Computation and Language 95
☆ How Long Is a Piece of String? A Brief Empirical Analysis of Tokenizers
Frontier LLMs are increasingly utilised across academia, society and industry. A commonly used unit for comparing models, their inputs and outputs, and estimating inference pricing is the token. In general, tokens are used as a stable currency, assumed to be broadly consistent across tokenizers and contexts, enabling direct comparisons. However, tokenization varies significantly across models and domains of text, making naive interpretation of token counts problematic. We quantify this variation by providing a comprehensive empirical analysis of tokenization, exploring the compression of sequences to tokens across different distributions of textual data. Our analysis challenges commonly held heuristics about token lengths, finding them to be overly simplistic. We hope the insights of our study add clarity and intuition toward tokenization in contemporary LLMs.
☆ Do explanations generalize across large reasoning models?
Large reasoning models (LRMs) produce a textual chain of thought (CoT) in the process of solving a problem, which serves as a potentially powerful tool to understand the problem by surfacing a human-readable, natural-language explanation. However, it is unclear whether these explanations generalize, i.e. whether they capture general patterns about the underlying problem rather than patterns which are esoteric to the LRM. This is a crucial question in understanding or discovering new concepts, e.g. in AI for science. We study this generalization question by evaluating a specific notion of generalizability: whether explanations produced by one LRM induce the same behavior when given to other LRMs. We find that CoT explanations often exhibit this form of generalization (i.e. they increase consistency between LRMs) and that this increased generalization is correlated with human preference rankings and post-training with reinforcement learning. We further analyze the conditions under which explanations yield consistent answers and propose a straightforward, sentence-level ensembling strategy that improves consistency. Taken together, these results prescribe caution when using LRM explanations to yield new insights and outline a framework for characterizing LRM explanation generalization.
☆ Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architecture that handle this long-context distribution shift.
We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant shifts, including multi-turn conversations, static jailbreaks, and adaptive red teaming. Our results demonstrate that while multimax addresses context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes.
These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
☆ The Poisoned Apple Effect: Strategic Manipulation of Mediated Markets via Technology Expansion of AI Agents
The integration of AI agents into economic markets fundamentally alters the landscape of strategic interaction. We investigate the economic implications of expanding the set of available technologies in three canonical game-theoretic settings: bargaining (resource division), negotiation (asymmetric information trade), and persuasion (strategic information transmission). We find that simply increasing the choice of AI delegates can drastically shift equilibrium payoffs and regulatory outcomes, often creating incentives for regulators to proactively develop and release technologies. Conversely, we identify a strategic phenomenon termed the "Poisoned Apple" effect: an agent may release a new technology, which neither they nor their opponent ultimately uses, solely to manipulate the regulator's choice of market design in their favor. This strategic release improves the releaser's welfare at the expense of their opponent and the regulator's fairness objectives. Our findings demonstrate that static regulatory frameworks are vulnerable to manipulation via technology expansion, necessitating dynamic market designs that adapt to the evolving landscape of AI capabilities.
☆ CTest-Metric: A Unified Framework to Assess Clinical Validity of Metrics for CT Report Generation
In the generative AI era, where even critical medical tasks are increasingly automated, radiology report generation (RRG) continues to rely on suboptimal metrics for quality assessment. Developing domain-specific metrics has therefore been an active area of research, yet it remains challenging due to the lack of a unified, well-defined framework to assess their robustness and applicability in clinical contexts. To address this, we present CTest-Metric, a first unified metric assessment framework with three modules determining the clinical feasibility of metrics for CT RRG. The modules test: (i) Writing Style Generalizability (WSG) via LLM-based rephrasing; (ii) Synthetic Error Injection (SEI) at graded severities; and (iii) Metrics-vs-Expert correlation (MvE) using clinician ratings on 175 "disagreement" cases. Eight widely used metrics (BLEU, ROUGE, METEOR, BERTScore-F1, F1-RadGraph, RaTEScore, GREEN Score, CRG) are studied across seven LLMs built on a CT-CLIP encoder. Using our novel framework, we found that lexical NLG metrics are highly sensitive to stylistic variations; GREEN Score aligns best with expert judgments (Spearman~0.70), while CRG shows negative correlation; and BERTScore-F1 is least sensitive to factual error injection. We will release the framework, code, and allowable portion of the anonymized evaluation data (rephrased/error-injected CT reports), to facilitate reproducible benchmarking and future metric development.
comment: Accepted at ISBI 2026
☆ MHA2MLA-VLM: Enabling DeepSeek's Economical Multi-Head Latent Attention across Vision-Language Models
As vision-language models (VLMs) tackle increasingly complex and multimodal tasks, the rapid growth of Key-Value (KV) cache imposes significant memory and computational bottlenecks during inference. While Multi-Head Latent Attention (MLA) offers an effective means to compress the KV cache and accelerate inference, adapting existing VLMs to the MLA architecture without costly pretraining remains largely unexplored. In this work, we present MHA2MLA-VLM, a parameter-efficient and multimodal-aware framework for converting off-the-shelf VLMs to MLA. Our approach features two core techniques: (1) a modality-adaptive partial-RoPE strategy that supports both traditional and multimodal settings by selectively masking nonessential dimensions, and (2) a modality-decoupled low-rank approximation method that independently compresses the visual and textual KV spaces. Furthermore, we introduce parameter-efficient fine-tuning to minimize adaptation cost and demonstrate that minimizing output activation error, rather than parameter distance, substantially reduces performance loss. Extensive experiments on three representative VLMs show that MHA2MLA-VLM restores original model performance with minimal supervised data, significantly reduces KV cache footprint, and integrates seamlessly with KV quantization.
☆ Interactive Narrative Analytics: Bridging Computational Narrative Extraction and Human Sensemaking
Information overload and misinformation create significant challenges in extracting meaningful narratives from large news collections. This paper defines the nascent field of Interactive Narrative Analytics (INA), which combines computational narrative extraction with interactive visual analytics to support sensemaking. INA approaches enable the interactive exploration of narrative structures through computational methods and visual interfaces that facilitate human interpretation. The field faces challenges in scalability, interactivity, knowledge integration, and evaluation standardization, yet offers promising opportunities across news analysis, intelligence, scientific literature exploration, and social media analysis. Through the combination of computational and human insight, INA addresses complex challenges in narrative sensemaking.
comment: 17 pages, 5 figures, published in IEEE Access as open access paper
☆ Predict the Retrieval! Test time adaptation for Retrieval Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach for enhancing large language models' question-answering capabilities through the integration of external knowledge. However, when adapting RAG systems to specialized domains, challenges arise from distribution shifts, resulting in suboptimal generalization performance. In this work, we propose TTARAG, a test-time adaptation method that dynamically updates the language model's parameters during inference to improve RAG system performance in specialized domains. Our method introduces a simple yet effective approach where the model learns to predict retrieved content, enabling automatic parameter adjustment to the target domain. Through extensive experiments across six specialized domains, we demonstrate that TTARAG achieves substantial performance improvements over baseline RAG systems. Code available at https://github.com/sunxin000/TTARAG.
☆ Hierarchical Orthogonal Residual Spread for Precise Massive Editing in Large Language Models ICASSP 2026
Large language models (LLMs) exhibit exceptional performance across various domains, yet they face critical safety concerns. Model editing has emerged as an effective approach to mitigate these issues. Existing model editing methods often focus on optimizing an information matrix that blends new and old knowledge. While effective, these approaches can be computationally expensive and may cause conflicts. In contrast, we shift our attention to Hierarchical Orthogonal Residual SprEad of the information matrix, which reduces noisy gradients and enables more stable edits from a different perspective. We demonstrate the effectiveness of our method HORSE through a clear theoretical comparison with several popular methods and extensive experiments conducted on two datasets across multiple LLMs. The results show that HORSE maintains precise massive editing across diverse scenarios. The code is available at https://github.com/XiaojieGu/HORSE
comment: ICASSP 2026
☆ The unreasonable effectiveness of pattern matching
We report on an astonishing ability of large language models (LLMs) to make sense of "Jabberwocky" language in which most or all content words have been randomly replaced by nonsense strings, e.g., translating "He dwushed a ghanc zawk" to "He dragged a spare chair". This result addresses ongoing controversies regarding how to best think of what LLMs are doing: are they a language mimic, a database, a blurry version of the Web? The ability of LLMs to recover meaning from structural patterns speaks to the unreasonable effectiveness of pattern-matching. Pattern-matching is not an alternative to "real" intelligence, but rather a key ingredient.
☆ Relational Linearity is a Predictor of Hallucinations
Hallucination is a central failure mode in large language models (LLMs). We focus on hallucinations of answers to questions like: "Which instrument did Glenn Gould play?", but we ask these questions for synthetic entities that are unknown to the model. Surprisingly, we find that medium-size models like Gemma-7B-IT frequently hallucinate, i.e., they have difficulty recognizing that the hallucinated fact is not part of their knowledge. We hypothesize that an important factor in causing these hallucinations is the linearity of the relation: linear relations tend to be stored more abstractly, making it difficult for the LLM to assess its knowledge; the facts of nonlinear relations tend to be stored more directly, making knowledge assessment easier. To investigate this hypothesis, we create SyntHal, a dataset of 6000 synthetic entities for six relations. In our experiments with four models, we determine, for each relation, the hallucination rate on SyntHal and also measure its linearity, using $Δ\cos$. We find a strong correlation ($r \in [.78,.82]$) between relational linearity and hallucination rate, providing evidence for our hypothesis that the underlying storage of triples of a relation is a factor in how well a model can self-assess its knowledge. This finding has implications for how to manage hallucination behavior and suggests new research directions for improving the representation of factual knowledge in LLMs.
comment: 11 pages, 4 figures, 8 tables
☆ Isotropy-Optimized Contrastive Learning for Semantic Course Recommendation
This paper presents a semantic course recommendation system for students using a self-supervised contrastive learning approach built upon BERT (Bidirectional Encoder Representations from Transformers). Traditional BERT embeddings suffer from anisotropic representation spaces, where course descriptions exhibit high cosine similarities regardless of semantic relevance. To address this limitation, we propose a contrastive learning framework with data augmentation and isotropy regularization that produces more discriminative embeddings. Our system processes student text queries and recommends Top-N relevant courses from a curated dataset of over 500 engineering courses across multiple faculties. Experimental results demonstrate that our fine-tuned model achieves improved embedding separation and more accurate course recommendations compared to vanilla BERT baselines.
comment: 7 pages, 7 figures
☆ PubMed-OCR: PMC Open Access OCR Annotations
PubMed-OCR is an OCR-centric corpus of scientific articles derived from PubMed Central Open Access PDFs. Each page image is annotated with Google Cloud Vision and released in a compact JSON schema with word-, line-, and paragraph-level bounding boxes. The corpus spans 209.5K articles (1.5M pages; ~1.3B words) and supports layout-aware modeling, coordinate-grounded QA, and evaluation of OCR-dependent pipelines. We analyze corpus characteristics (e.g., journal coverage and detected layout features) and discuss limitations, including reliance on a single OCR engine and heuristic line reconstruction. We release the data and schema to facilitate downstream research and invite extensions.
☆ Evaluating LLM Behavior in Hiring: Implicit Weights, Fairness Across Groups, and Alignment with Human Preferences
General-purpose Large Language Models (LLMs) show significant potential in recruitment applications, where decisions require reasoning over unstructured text, balancing multiple criteria, and inferring fit and competence from indirect productivity signals. Yet, it is still uncertain how LLMs assign importance to each attribute and whether such assignments are in line with economic principles, recruiter preferences or broader societal norms. We propose a framework to evaluate an LLM's decision logic in recruitment, by drawing on established economic methodologies for analyzing human hiring behavior. We build synthetic datasets from real freelancer profiles and project descriptions from a major European online freelance marketplace and apply a full factorial design to estimate how a LLM weighs different match-relevant criteria when evaluating freelancer-project fit. We identify which attributes the LLM prioritizes and analyze how these weights vary across project contexts and demographic subgroups. Finally, we explain how a comparable experimental setup could be implemented with human recruiters to assess alignment between model and human decisions. Our findings reveal that the LLM weighs core productivity signals, such as skills and experience, but interprets certain features beyond their explicit matching value. While showing minimal average discrimination against minority groups, intersectional effects reveal that productivity signals carry different weights between demographic groups.
☆ Reward Modeling for Scientific Writing Evaluation
Scientific writing is an expert-domain task that demands deep domain knowledge, task-specific requirements and reasoning capabilities that leverage the domain knowledge to satisfy the task specifications. While scientific text generation has been widely studied, its evaluation remains a challenging and open problem. It is critical to develop models that can be reliably deployed for evaluating diverse open-ended scientific writing tasks while adhering to their distinct requirements. However, existing LLM-based judges and reward models are primarily optimized for general-purpose benchmarks with fixed scoring rubrics and evaluation criteria. Consequently, they often fail to reason over sparse knowledge of scientific domains when interpreting task-dependent and multi-faceted criteria. Moreover, fine-tuning for each individual task is costly and impractical for low-resource settings. To bridge these gaps, we propose cost-efficient, open-source reward models tailored for scientific writing evaluation. We introduce a two-stage training framework that initially optimizes scientific evaluation preferences and then refines reasoning capabilities. Our multi-aspect evaluation design and joint training across diverse tasks enable fine-grained assessment and robustness to dynamic criteria and scoring rubrics. Experimental analysis shows that our training regime strongly improves LLM-based scientific writing evaluation. Our models generalize effectively across tasks and to previously unseen scientific writing evaluation settings, allowing a single trained evaluator to be reused without task-specific retraining.
comment: arXiv admin note: text overlap with arXiv:2508.07955
☆ AstroReason-Bench: Evaluating Unified Agentic Planning across Heterogeneous Space Planning Problems
Recent advances in agentic Large Language Models (LLMs) have positioned them as generalist planners capable of reasoning and acting across diverse tasks. However, existing agent benchmarks largely focus on symbolic or weakly grounded environments, leaving their performance in physics-constrained real-world domains underexplored. We introduce AstroReason-Bench, a comprehensive benchmark for evaluating agentic planning in Space Planning Problems (SPP), a family of high-stakes problems with heterogeneous objectives, strict physical constraints, and long-horizon decision-making. AstroReason-Bench integrates multiple scheduling regimes, including ground station communication and agile Earth observation, and provides a unified agent-oriented interaction protocol. Evaluating on a range of state-of-the-art open- and closed-source agentic LLM systems, we find that current agents substantially underperform specialized solvers, highlighting key limitations of generalist planning under realistic constraints. AstroReason-Bench offers a challenging and diagnostic testbed for future agentic research.
☆ How Much Would a Clinician Edit This Draft? Evaluating LLM Alignment for Patient Message Response Drafting
Parker Seegmiller, Joseph Gatto, Sarah E. Greer, Ganza Belise Isingizwe, Rohan Ray, Timothy E. Burdick, Sarah Masud Preum
Large language models (LLMs) show promise in drafting responses to patient portal messages, yet their integration into clinical workflows raises various concerns, including whether they would actually save clinicians time and effort in their portal workload. We investigate LLM alignment with individual clinicians through a comprehensive evaluation of the patient message response drafting task. We develop a novel taxonomy of thematic elements in clinician responses and propose a novel evaluation framework for assessing clinician editing load of LLM-drafted responses at both content and theme levels. We release an expert-annotated dataset and conduct large-scale evaluations of local and commercial LLMs using various adaptation techniques including thematic prompting, retrieval-augmented generation, supervised fine-tuning, and direct preference optimization. Our results reveal substantial epistemic uncertainty in aligning LLM drafts with clinician responses. While LLMs demonstrate capability in drafting certain thematic elements, they struggle with clinician-aligned generation in other themes, particularly question asking to elicit further information from patients. Theme-driven adaptation strategies yield improvements across most themes. Our findings underscore the necessity of adapting LLMs to individual clinician preferences to enable reliable and responsible use in patient-clinician communication workflows.
☆ Unlocking the Potentials of Retrieval-Augmented Generation for Diffusion Language Models
Chuanyue Yu, Jiahui Wang, Yuhan Li, Heng Chang, Ge Lan, Qingyun Sun, Jia Li, Jianxin Li, Ziwei Zhang
Diffusion Language Models (DLMs) have recently demonstrated remarkable capabilities in natural language processing tasks. However, the potential of Retrieval-Augmented Generation (RAG), which shows great successes for enhancing large language models (LLMs), has not been well explored, due to the fundamental difference between LLM and DLM decoding. To fill this critical gap, we systematically test the performance of DLMs within the RAG framework. Our findings reveal that DLMs coupled with RAG show promising potentials with stronger dependency on contextual information, but suffer from limited generation precision. We identify a key underlying issue: Response Semantic Drift (RSD), where the generated answer progressively deviates from the query's original semantics, leading to low precision content. We trace this problem to the denoising strategies in DLMs, which fail to maintain semantic alignment with the query throughout the iterative denoising process. To address this, we propose Semantic-Preserving REtrieval-Augmented Diffusion (SPREAD), a novel framework that introduces a query-relevance-guided denoising strategy. By actively guiding the denoising trajectory, SPREAD ensures the generation remains anchored to the query's semantics and effectively suppresses drift. Experimental results demonstrate that SPREAD significantly enhances the precision and effectively mitigates RSD of generated answers within the RAG framework.
comment: Preprints
☆ Neural Chain-of-Thought Search: Searching the Optimal Reasoning Path to Enhance Large Language Models
Chain-of-Thought reasoning has significantly enhanced the problem-solving capabilities of Large Language Models. Unfortunately, current models generate reasoning steps sequentially without foresight, often becoming trapped in suboptimal reasoning paths with redundant steps. In contrast, we introduce Neural Chain-of-Thought Search (NCoTS), a framework that reformulates reasoning as a dynamic search for the optimal thinking strategy. By quantitatively characterizing the solution space, we reveal the existence of sparse superior reasoning paths that are simultaneously more accurate and concise than standard outputs. Our method actively navigates towards these paths by evaluating candidate reasoning operators using a dual-factor heuristic that optimizes for both correctness and computational cost. Consequently, NCoTS achieves a Pareto improvement across diverse reasoning benchmarks, boosting accuracy by over 3.5% while reducing generation length by over 22%. Our code and data are available at https://github.com/MilkThink-Lab/Neural-CoT-Search.
☆ Idea First, Code Later: Disentangling Problem Solving from Code Generation in Evaluating LLMs for Competitive Programming
Sama Hadhoud, Alaa Elsetohy, Frederikus Hudi, Jan Christian Blaise Cruz, Steven Halim, Alham Fikri Aji
Large Language Models (LLMs) increasingly succeed on competitive programming problems, yet existing evaluations conflate algorithmic reasoning with code-level implementation. We argue that competitive programming is fundamentally a problem-solving task and propose centering natural-language editorials in both solution generation and evaluation. Generating an editorial prior to code improves solve rates for some LLMs, with substantially larger gains when using expertly written gold editorials. However, even with gold editorials, models continue to struggle with implementation, while the gap between generated and gold editorials reveals a persistent problem-solving bottleneck in specifying correct and complete algorithms. Beyond pass/fail metrics, we diagnose reasoning errors by comparing model-generated editorials to gold standards using expert annotations and validate an LLM-as-a-judge protocol for scalable evaluation. We introduce a dataset of 83 ICPC-style problems with gold editorials and full test suites, and evaluate 19 LLMs, arguing that future benchmarks should explicitly separate problem solving from implementation.
☆ F-Actor: Controllable Conversational Behaviour in Full-Duplex Models
Spoken conversational systems require more than accurate speech generation to have human-like conversations: to feel natural and engaging, they must produce conversational behaviour that adapts dynamically to the context. Current spoken conversational systems, however, rarely allow such customization, limiting their naturalness and usability. In this work, we present the first open, instruction-following full-duplex conversational speech model that can be trained efficiently under typical academic resource constraints. By keeping the audio encoder frozen and finetuning only the language model, our model requires just 2,000 hours of data, without relying on large-scale pretraining or multi-stage optimization. The model can follow explicit instructions to control speaker voice, conversation topic, conversational behaviour (e.g., backchanneling and interruptions), and dialogue initiation. We propose a single-stage training protocol and systematically analyze design choices. Both the model and training code will be released to enable reproducible research on controllable full-duplex speech systems.
☆ Membership Inference on LLMs in the Wild
Membership Inference Attacks (MIAs) act as a crucial auditing tool for the opaque training data of Large Language Models (LLMs). However, existing techniques predominantly rely on inaccessible model internals (e.g., logits) or suffer from poor generalization across domains in strict black-box settings where only generated text is available. In this work, we propose SimMIA, a robust MIA framework tailored for this text-only regime by leveraging an advanced sampling strategy and scoring mechanism. Furthermore, we present WikiMIA-25, a new benchmark curated to evaluate MIA performance on modern proprietary LLMs. Experiments demonstrate that SimMIA achieves state-of-the-art results in the black-box setting, rivaling baselines that exploit internal model information.
☆ One LLM to Train Them All: Multi-Task Learning Framework for Fact-Checking ECIR 2026
Large language models (LLMs) are reshaping automated fact-checking (AFC) by enabling unified, end-to-end verification pipelines rather than isolated components. While large proprietary models achieve strong performance, their closed weights, complexity, and high costs limit sustainability. Fine-tuning smaller open weight models for individual AFC tasks can help but requires multiple specialized models resulting in high costs. We propose \textbf{multi-task learning (MTL)} as a more efficient alternative that fine-tunes a single model to perform claim detection, evidence ranking, and stance detection jointly. Using small decoder-only LLMs (e.g., Qwen3-4b), we explore three MTL strategies: classification heads, causal language modeling heads, and instruction-tuning, and evaluate them across model sizes, task orders, and standard non-LLM baselines. While multitask models do not universally surpass single-task baselines, they yield substantial improvements, achieving up to \textbf{44\%}, \textbf{54\%}, and \textbf{31\%} relative gains for claim detection, evidence re-ranking, and stance detection, respectively, over zero-/few-shot settings. Finally, we also provide practical, empirically grounded guidelines to help practitioners apply MTL with LLMs for automated fact-checking.
comment: Accepted version in ECIR 2026
☆ Knowledge is Not Enough: Injecting RL Skills for Continual Adaptation
Large Language Models (LLMs) face the "knowledge cutoff" challenge, where their frozen parametric memory prevents direct internalization of new information. While Supervised Fine-Tuning (SFT) is commonly used to update model knowledge, it often updates factual content without reliably improving the model's ability to use the newly incorporated information for question answering or decision-making. Reinforcement Learning (RL) is essential for acquiring reasoning skills; however, its high computational cost makes it impractical for efficient online adaptation. We empirically observe that the parameter updates induced by SFT and RL are nearly orthogonal. Based on this observation, we propose Parametric Skill Transfer (PaST), a framework that supports modular skill transfer for efficient and effective knowledge adaptation. By extracting a domain-agnostic Skill Vector from a source domain, we can linearly inject knowledge manipulation skills into a target model after it has undergone lightweight SFT on new data. Experiments on knowledge-incorporation QA (SQuAD, LooGLE) and agentic tool-use benchmarks (ToolBench) demonstrate the effectiveness of our method. On SQuAD, PaST outperforms the state-of-the-art self-editing SFT baseline by up to 9.9 points. PaST further scales to long-context QA on LooGLE with an 8.0-point absolute accuracy gain, and improves zero-shot ToolBench success rates by +10.3 points on average with consistent gains across tool categories, indicating strong scalability and cross-domain transferability of the Skill Vector.
☆ Reasoning in Trees: Improving Retrieval-Augmented Generation for Multi-Hop Question Answering WWW2026
Retrieval-Augmented Generation (RAG) has demonstrated significant effectiveness in enhancing large language models (LLMs) for complex multi-hop question answering (QA). For multi-hop QA tasks, current iterative approaches predominantly rely on LLMs to self-guide and plan multi-step exploration paths during retrieval, leading to substantial challenges in maintaining reasoning coherence across steps from inaccurate query decomposition and error propagation. To address these issues, we introduce Reasoning Tree Guided RAG (RT-RAG), a novel hierarchical framework for complex multi-hop QA. RT-RAG systematically decomposes multi-hop questions into explicit reasoning trees, minimizing inaccurate decomposition through structured entity analysis and consensus-based tree selection that clearly separates core queries, known entities, and unknown entities. Subsequently, a bottom-up traversal strategy employs iterative query rewriting and refinement to collect high-quality evidence, thereby mitigating error propagation. Comprehensive experiments show that RT-RAG substantially outperforms state-of-the-art methods by 7.0% F1 and 6.0% EM, demonstrating the effectiveness of RT-RAG in complex multi-hop QA.
comment: Accepted to GLOW@WWW2026. Code available at https://github.com/sakura20221/RT-RAG
☆ How DDAIR you? Disambiguated Data Augmentation for Intent Recognition EACL 2026
Large Language Models (LLMs) are effective for data augmentation in classification tasks like intent detection. In some cases, they inadvertently produce examples that are ambiguous with regard to untargeted classes. We present DDAIR (Disambiguated Data Augmentation for Intent Recognition) to mitigate this problem. We use Sentence Transformers to detect ambiguous class-guided augmented examples generated by LLMs for intent recognition in low-resource scenarios. We identify synthetic examples that are semantically more similar to another intent than to their target one. We also provide an iterative re-generation method to mitigate such ambiguities. Our findings show that sentence embeddings effectively help to (re)generate less ambiguous examples, and suggest promising potential to improve classification performance in scenarios where intents are loosely or broadly defined.
comment: Accepted for publication at EACL 2026
☆ FactCorrector: A Graph-Inspired Approach to Long-Form Factuality Correction of Large Language Models
Javier Carnerero-Cano, Massimiliano Pronesti, Radu Marinescu, Tigran Tchrakian, James Barry, Jasmina Gajcin, Yufang Hou, Alessandra Pascale, Elizabeth Daly
Large language models (LLMs) are widely used in knowledge-intensive applications but often generate factually incorrect responses. A promising approach to rectify these flaws is correcting LLMs using feedback. Therefore, in this paper, we introduce FactCorrector, a new post-hoc correction method that adapts across domains without retraining and leverages structured feedback about the factuality of the original response to generate a correction. To support rigorous evaluations of factuality correction methods, we also develop the VELI5 benchmark, a novel dataset containing systematically injected factual errors and ground-truth corrections. Experiments on VELI5 and several popular long-form factuality datasets show that the FactCorrector approach significantly improves factual precision while preserving relevance, outperforming strong baselines. We release our code at https://ibm.biz/factcorrector.
☆ Language of Thought Shapes Output Diversity in Large Language Models
Output diversity is crucial for Large Language Models as it underpins pluralism and creativity. In this work, we reveal that controlling the language used during model thinking-the language of thought-provides a novel and structural source of output diversity. Our preliminary study shows that different thinking languages occupy distinct regions in a model's thinking space. Based on this observation, we study two repeated sampling strategies under multilingual thinking-Single-Language Sampling and Mixed-Language Sampling-and conduct diversity evaluation on outputs that are controlled to be in English, regardless of the thinking language used. Across extensive experiments, we demonstrate that switching the thinking language from English to non-English languages consistently increases output diversity, with a clear and consistent positive correlation such that languages farther from English in the thinking space yield larger gains. We further show that aggregating samples across multiple thinking languages yields additional improvements through compositional effects, and that scaling sampling with linguistic heterogeneity expands the model's diversity ceiling. Finally, we show that these findings translate into practical benefits in pluralistic alignment scenarios, leading to broader coverage of cultural knowledge and value orientations in LLM outputs. Our code is publicly available at https://github.com/iNLP-Lab/Multilingual-LoT-Diversity.
☆ MultiCaption: Detecting disinformation using multilingual visual claims
Online disinformation poses an escalating threat to society, driven increasingly by the rapid spread of misleading content across both multimedia and multilingual platforms. While automated fact-checking methods have advanced in recent years, their effectiveness remains constrained by the scarcity of datasets that reflect these real-world complexities. To address this gap, we first present MultiCaption, a new dataset specifically designed for detecting contradictions in visual claims. Pairs of claims referring to the same image or video were labeled through multiple strategies to determine whether they contradict each other. The resulting dataset comprises 11,088 visual claims in 64 languages, offering a unique resource for building and evaluating misinformation-detection systems in truly multimodal and multilingual environments. We then provide comprehensive experiments using transformer-based architectures, natural language inference models, and large language models, establishing strong baselines for future research. The results show that MultiCaption is more challenging than standard NLI tasks, requiring task-specific finetuning for strong performance. Moreover, the gains from multilingual training and testing highlight the dataset's potential for building effective multilingual fact-checking pipelines without relying on machine translation.
☆ T$^\star$: Progressive Block Scaling for MDM Through Trajectory Aware RL
We present T$^\star$, a simple \textsc{TraceRL}-based training curriculum for progressive block-size scaling in masked diffusion language models (MDMs). Starting from an AR-initialized small-block MDM, T$^\star$~transitions smoothly to larger blocks, enabling higher-parallelism decoding with minimal performance degradation on math reasoning benchmarks. Moreover, further analysis suggests that T$^\star$~can converge to an alternative decoding schedule $\hat{\rm S}$ that achieves comparable performance.
☆ DOREMI: Optimizing Long Tail Predictions in Document-Level Relation Extraction
Document-Level Relation Extraction (DocRE) presents significant challenges due to its reliance on cross-sentence context and the long-tail distribution of relation types, where many relations have scarce training examples. In this work, we introduce DOcument-level Relation Extraction optiMizing the long taIl (DOREMI), an iterative framework that enhances underrepresented relations through minimal yet targeted manual annotations. Unlike previous approaches that rely on large-scale noisy data or heuristic denoising, DOREMI actively selects the most informative examples to improve training efficiency and robustness. DOREMI can be applied to any existing DocRE model and is effective at mitigating long-tail biases, offering a scalable solution to improve generalization on rare relations.
comment: Accepted for publication in Knowledge-Based Systems
☆ TANDEM: Temporal-Aware Neural Detection for Multimodal Hate Speech
Social media platforms are increasingly dominated by long-form multimodal content, where harmful narratives are constructed through a complex interplay of audio, visual, and textual cues. While automated systems can flag hate speech with high accuracy, they often function as "black boxes" that fail to provide the granular, interpretable evidence, such as precise timestamps and target identities, required for effective human-in-the-loop moderation. In this work, we introduce TANDEM, a unified framework that transforms audio-visual hate detection from a binary classification task into a structured reasoning problem. Our approach employs a novel tandem reinforcement learning strategy where vision-language and audio-language models optimize each other through self-constrained cross-modal context, stabilizing reasoning over extended temporal sequences without requiring dense frame-level supervision. Experiments across three benchmark datasets demonstrate that TANDEM significantly outperforms zero-shot and context-augmented baselines, achieving 0.73 F1 in target identification on HateMM (a 30% improvement over state-of-the-art) while maintaining precise temporal grounding. We further observe that while binary detection is robust, differentiating between offensive and hateful content remains challenging in multi-class settings due to inherent label ambiguity and dataset imbalance. More broadly, our findings suggest that structured, interpretable alignment is achievable even in complex multimodal settings, offering a blueprint for the next generation of transparent and actionable online safety moderation tools.
comment: Under review at ICWSM 2026
☆ The Growing Gains and Pains of Iterative Web Corpora Crawling: Insights from South Slavic CLASSLA-web 2.0 Corpora LREC 2026
Crawling national top-level domains has proven to be highly effective for collecting texts in less-resourced languages. This approach has been recently used for South Slavic languages and resulted in the largest general corpora for this language group: the CLASSLA-web 1.0 corpora. Building on this success, we established a continuous crawling infrastructure for iterative national top-level domain crawling across South Slavic and related webs. We present the first outcome of this crawling infrastructure - the CLASSLA-web 2.0 corpus collection, with substantially larger web corpora containing 17.0 billion words in 38.1 million texts in seven languages: Bosnian, Bulgarian, Croatian, Macedonian, Montenegrin, Serbian, and Slovenian. In addition to genre categories, the new version is also automatically annotated with topic labels. Comparing CLASSLA-web 2.0 with its predecessor reveals that only one-fifth of the texts overlap, showing that re-crawling after just two years yields largely new content. However, while the new web crawls bring growing gains, we also notice growing pains - a manual inspection of top domains reveals a visible degradation of web content, as machine-generated sites now contribute a significant portion of texts.
comment: 10 pages, 7 figures, 2 tables. Submitted to the LREC 2026 conference
☆ FlashLabs Chroma 1.0: A Real-Time End-to-End Spoken Dialogue Model with Personalized Voice Cloning
Recent end-to-end spoken dialogue systems leverage speech tokenizers and neural audio codecs to enable LLMs to operate directly on discrete speech representations. However, these models often exhibit limited speaker identity preservation, hindering personalized voice interaction. In this work, we present Chroma 1.0, the first open-source, real-time, end-to-end spoken dialogue model that achieves both low-latency interaction and high-fidelity personalized voice cloning. Chroma achieves sub-second end-to-end latency through an interleaved text-audio token schedule (1:2) that supports streaming generation, while maintaining high-quality personalized voice synthesis across multi-turn conversations. Our experimental results demonstrate that Chroma achieves a 10.96% relative improvement in speaker similarity over the human baseline, with a Real-Time Factor (RTF) of 0.43, while maintaining strong reasoning and dialogue capabilities. Our code and models are publicly available at https://github.com/FlashLabs-AI-Corp/FlashLabs-Chroma and https://huggingface.co/FlashLabs/Chroma-4B .
☆ Integrity Shield A System for Ethical AI Use & Authorship Transparency in Assessments
Large Language Models (LLMs) can now solve entire exams directly from uploaded PDF assessments, raising urgent concerns about academic integrity and the reliability of grades and credentials. Existing watermarking techniques either operate at the token level or assume control over the model's decoding process, making them ineffective when students query proprietary black-box systems with instructor-provided documents. We present Integrity Shield, a document-layer watermarking system that embeds schema-aware, item-level watermarks into assessment PDFs while keeping their human-visible appearance unchanged. These watermarks consistently prevent MLLMs from answering shielded exam PDFs and encode stable, item-level signatures that can be reliably recovered from model or student responses. Across 30 exams spanning STEM, humanities, and medical reasoning, Integrity Shield achieves exceptionally high prevention (91-94% exam-level blocking) and strong detection reliability (89-93% signature retrieval) across four commercial MLLMs. Our demo showcases an interactive interface where instructors upload an exam, preview watermark behavior, and inspect pre/post AI performance & authorship evidence.
☆ Efficient Multilingual Name Type Classification Using Convolutional Networks
We present a convolutional neural network approach for classifying proper names by language and entity type. Our model, Onomas-CNN X, combines parallel convolution branches with depthwise-separable operations and hierarchical classification to process names efficiently on CPU hardware. We evaluate the architecture on a large multilingual dataset covering 104 languages and four entity types (person, organization, location, other). Onomas-CNN X achieves 92.1% accuracy while processing 2,813 names per second on a single CPU core - 46 times faster than fine-tuned XLM-RoBERTa with comparable accuracy. The model reduces energy consumption by a factor of 46 compared to transformer baselines. Our experiments demonstrate that specialized CNN architectures remain competitive with large pre-trained models for focused NLP tasks when sufficient training data exists.
comment: Preprint of paper presented at ISAI-NLP Phukat 2025
☆ ABC-Bench: Benchmarking Agentic Backend Coding in Real-World Development
Jie Yang, Honglin Guo, Li Ji, Jiazheng Zhou, Rui Zheng, Zhikai Lei, Shuo Zhang, Zhiheng Xi, Shichun Liu, Yuxin Wang, Bo Wang, Yining Zheng, Tao Gui, Xipeng Qiu
The evolution of Large Language Models (LLMs) into autonomous agents has expanded the scope of AI coding from localized code generation to complex, repository-level, and execution-driven problem solving. However, current benchmarks predominantly evaluate code logic in static contexts, neglecting the dynamic, full-process requirements of real-world engineering, particularly in backend development which demands rigorous environment configuration and service deployment. To address this gap, we introduce ABC-Bench, a benchmark explicitly designed to evaluate agentic backend coding within a realistic, executable workflow. Using a scalable automated pipeline, we curated 224 practical tasks spanning 8 languages and 19 frameworks from open-source repositories. Distinct from previous evaluations, ABC-Bench require the agents to manage the entire development lifecycle from repository exploration to instantiating containerized services and pass the external end-to-end API tests. Our extensive evaluation reveals that even state-of-the-art models struggle to deliver reliable performance on these holistic tasks, highlighting a substantial disparity between current model capabilities and the demands of practical backend engineering. Our code is available at https://github.com/OpenMOSS/ABC-Bench.
☆ Spurious Rewards Paradox: Mechanistically Understanding How RLVR Activates Memorization Shortcuts in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
comment: Work in process
☆ CoG: Controllable Graph Reasoning via Relational Blueprints and Failure-Aware Refinement over Knowledge Graphs
Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities but often grapple with reliability challenges like hallucinations. While Knowledge Graphs (KGs) offer explicit grounding, existing paradigms of KG-augmented LLMs typically exhibit cognitive rigidity--applying homogeneous search strategies that render them vulnerable to instability under neighborhood noise and structural misalignment leading to reasoning stagnation. To address these challenges, we propose CoG, a training-free framework inspired by Dual-Process Theory that mimics the interplay between intuition and deliberation. First, functioning as the fast, intuitive process, the Relational Blueprint Guidance module leverages relational blueprints as interpretable soft structural constraints to rapidly stabilize the search direction against noise. Second, functioning as the prudent, analytical process, the Failure-Aware Refinement module intervenes upon encountering reasoning impasses. It triggers evidence-conditioned reflection and executes controlled backtracking to overcome reasoning stagnation. Experimental results on three benchmarks demonstrate that CoG significantly outperforms state-of-the-art approaches in both accuracy and efficiency.
☆ Spectral Characterization and Mitigation of Sequential Knowledge Editing Collapse
Chi Zhang, Mengqi Zhang, Xiaotian Ye, Runxi Cheng, Zisheng Zhou, Ying Zhou, Pengjie Ren, Zhumin Chen
Sequential knowledge editing in large language models often causes catastrophic collapse of the model's general abilities, especially for parameter-modifying methods. Existing approaches mitigate this issue through heuristic constraints on parameter updates, yet the mechanisms underlying such degradation remain insufficiently understood. In this work, we present a spectral analysis of sequential knowledge editing and show that a model's general abilities are closely associated with dominant singular directions of pretrained weight matrices. These directions are highly sensitive to perturbations and are progressively disrupted by repeated edits, closely tracking the collapse in both editing efficacy and general performance. Building on this insight, we propose REVIVE, a plug-and-play framework that stabilizes sequential editing by explicitly preserving the dominant singular subspace. REVIVE represents parameter updates in the spectral basis of the original weights and filters components that would interfere with the protected region. Extensive experiments across multiple models and benchmarks show that REVIVE consistently improves editing efficacy while substantially preserving general abilities under long-horizon sequential editing, including extreme settings with up to 20,000 edits.
comment: 22 pages, 18 figures
☆ SonicBench: Dissecting the Physical Perception Bottleneck in Large Audio Language Models
Yirong Sun, Yanjun Chen, Xin Qiu, Gang Zhang, Hongyu Chen, Daokuan Wu, Chengming Li, Min Yang, Dawei Zhu, Wei Zhang, Xiaoyu Shen
Large Audio Language Models (LALMs) excel at semantic and paralinguistic tasks, yet their ability to perceive the fundamental physical attributes of audio such as pitch, loudness, and spatial location remains under-explored. To bridge this gap, we introduce SonicBench, a psychophysically grounded benchmark that systematically evaluates 12 core physical attributes across five perceptual dimensions. Unlike previous datasets, SonicBench uses a controllable generation toolbox to construct stimuli for two complementary paradigms: recognition (absolute judgment) and comparison (relative judgment). This design allows us to probe not only sensory precision but also relational reasoning capabilities, a domain where humans typically exhibit greater proficiency. Our evaluation reveals a substantial deficiency in LALMs' foundational auditory understanding; most models perform near random guessing and, contrary to human patterns, fail to show the expected advantage on comparison tasks. Furthermore, explicit reasoning yields minimal gains. However, our linear probing analysis demonstrates crucially that frozen audio encoders do successfully capture these physical cues (accuracy at least 60%), suggesting that the primary bottleneck lies in the alignment and decoding stages, where models fail to leverage the sensory signals they have already captured.
☆ Budget-Aware Anytime Reasoning with LLM-Synthesized Preference Data
Xuanming Zhang, Shwan Ashrafi, Aziza Mirsaidova, Amir Rezaeian, Miguel Ballesteros, Lydia B. Chilton, Zhou Yu, Dan Roth
We study the reasoning behavior of large language models (LLMs) under limited computation budgets. In such settings, producing useful partial solutions quickly is often more practical than exhaustive reasoning, which incurs high inference costs. Many real-world tasks, such as trip planning, require models to deliver the best possible output within a fixed reasoning budget. We introduce an anytime reasoning framework and the Anytime Index, a metric that quantifies how effectively solution quality improves as reasoning tokens increase. To further enhance efficiency, we propose an inference-time self-improvement method using LLM-synthesized preference data, where models learn from their own reasoning comparisons to produce better intermediate solutions. Experiments on NaturalPlan (Trip), AIME, and GPQA datasets show consistent gains across Grok-3, GPT-oss, GPT-4.1/4o, and LLaMA models, improving both reasoning quality and efficiency under budget constraints.
comment: 13 pages, 3 figures
☆ From Interpretability to Performance: Optimizing Retrieval Heads for Long-Context Language Models
Advances in mechanistic interpretability have identified special attention heads, known as retrieval heads, that are responsible for retrieving information from the context. However, the role of these retrieval heads in improving model performance remains unexplored. This work investigates whether retrieval heads can be leveraged to enhance the long-context capabilities of LLMs. Specifically, we propose RetMask, a method that generates training signals by contrasting normal model outputs with those from an ablated variant in which the retrieval heads are masked. This mechanism-based approach achieves substantial improvements: +2.28 points on HELMET at 128K for Llama-3.1, with +70% gains on generation with citation and +32% on passage re-ranking, while preserving performance on general tasks. Experiments across three model families reveal that the effectiveness depends on retrieval head organization: models with concentrated patterns of retrieval heads respond strongly, while those with distributed patterns show limited gains. This mechanistic relationship validates the function of retrieval heads and demonstrates that mechanistic insights can be transformed into performance enhancements.
comment: 13 pages
☆ Finding the Translation Switch: Discovering and Exploiting the Task-Initiation Features in LLMs AAAI 2026
Xinwei Wu, Heng Liu, Xiaohu Zhao, Yuqi Ren, Linlong Xu, Longyue Wang, Deyi Xiong, Weihua Luo, Kaifu Zhang
Large Language Models (LLMs) frequently exhibit strong translation abilities, even without task-specific fine-tuning. However, the internal mechanisms governing this innate capability remain largely opaque. To demystify this process, we leverage Sparse Autoencoders (SAEs) and introduce a novel framework for identifying task-specific features. Our method first recalls features that are frequently co-activated on translation inputs and then filters them for functional coherence using a PCA-based consistency metric. This framework successfully isolates a small set of **translation initiation** features. Causal interventions demonstrate that amplifying these features steers the model towards correct translation, while ablating them induces hallucinations and off-task outputs, confirming they represent a core component of the model's innate translation competency. Moving from analysis to application, we leverage this mechanistic insight to propose a new data selection strategy for efficient fine-tuning. Specifically, we prioritize training on **mechanistically hard** samples-those that fail to naturally activate the translation initiation features. Experiments show this approach significantly improves data efficiency and suppresses hallucinations. Furthermore, we find these mechanisms are transferable to larger models of the same family. Our work not only decodes a core component of the translation mechanism in LLMs but also provides a blueprint for using internal model mechanism to create more robust and efficient models. The codes are available at https://github.com/flamewei123/AAAI26-translation-Initiation-Features.
comment: Accepted by AAAI 2026
☆ AdaMARP: An Adaptive Multi-Agent Interaction Framework for General Immersive Role-Playing
LLM role-playing aims to portray arbitrary characters in interactive narratives, yet existing systems often suffer from limited immersion and adaptability. They typically under-model dynamic environmental information and assume largely static scenes and casts, offering insufficient support for multi-character orchestration, scene transitions, and on-the-fly character introduction. We propose an adaptive multi-agent role-playing framework, AdaMARP, featuring an immersive message format that interleaves [Thought], (Action), , and Speech, together with an explicit Scene Manager that governs role-playing through discrete actions (init_scene, pick_speaker, switch_scene, add_role, end) accompanied by rationales. To train these capabilities, we construct AdaRPSet for the Actor Model and AdaSMSet for supervising orchestration decisions, and introduce AdaptiveBench for trajectory-level evaluation. Experiments across multiple backbones and model scales demonstrate consistent improvements: AdaRPSet enhances character consistency, environment grounding, and narrative coherence, with an 8B actor outperforming several commercial LLMs, while AdaSMSet enables smoother scene transitions and more natural role introductions, surpassing Claude Sonnet 4.5 using only a 14B LLM.
☆ NAACL: Noise-AwAre Verbal Confidence Calibration for LLMs in RAG Systems
Jiayu Liu, Rui Wang, Qing Zong, Qingcheng Zeng, Tianshi Zheng, Haochen Shi, Dadi Guo, Baixuan Xu, Chunyang Li, Yangqiu Song
Accurately assessing model confidence is essential for deploying large language models (LLMs) in mission-critical factual domains. While retrieval-augmented generation (RAG) is widely adopted to improve grounding, confidence calibration in RAG settings remains poorly understood. We conduct a systematic study across four benchmarks, revealing that LLMs exhibit poor calibration performance due to noisy retrieved contexts. Specifically, contradictory or irrelevant evidence tends to inflate the model's false certainty, leading to severe overconfidence. To address this, we propose NAACL Rules (Noise-AwAre Confidence CaLibration Rules) to provide a principled foundation for resolving overconfidence under noise. We further design NAACL, a noise-aware calibration framework that synthesizes supervision from about 2K HotpotQA examples guided by these rules. By performing supervised fine-tuning (SFT) with this data, NAACL equips models with intrinsic noise awareness without relying on stronger teacher models. Empirical results show that NAACL yields substantial gains, improving ECE scores by 10.9% in-domain and 8.0% out-of-domain. By bridging the gap between retrieval noise and verbal calibration, NAACL paves the way for both accurate and epistemically reliable LLMs.
☆ Redefining Machine Simultaneous Interpretation: From Incremental Translation to Human-Like Strategies
Simultaneous Machine Translation (SiMT) requires high-quality translations under strict real-time constraints, which traditional policies with only READ/WRITE actions cannot fully address. We extend the action space of SiMT with four adaptive actions: Sentence_Cut, Drop, Partial_Summarization and Pronominalization, which enable real-time restructuring, omission, and simplification while preserving semantic fidelity. We adapt these actions in a large language model (LLM) framework and construct training references through action-aware prompting. To evaluate both quality and word-level monotonicity, we further develop a latency-aware TTS pipeline that maps textual outputs to speech with realistic timing. Experiments on the ACL60/60 English-Chinese, English-German and English-Japanese benchmarks show that our framework consistently improves semantic metrics and achieves lower delay compared to reference translations and salami-based baselines. Notably, combining Drop and Sentence_Cut leads to consistent improvements in the balance between fluency and latency. These results demonstrate that enriching the action space of LLM-based SiMT provides a promising direction for bridging the gap between human and machine interpretation.
comment: arXiv admin note: substantial text overlap with arXiv:2509.21801
☆ When Personalization Misleads: Understanding and Mitigating Hallucinations in Personalized LLMs
Personalized large language models (LLMs) adapt model behavior to individual users to enhance user satisfaction, yet personalization can inadvertently distort factual reasoning. We show that when personalized LLMs face factual queries, there exists a phenomenon where the model generates answers aligned with a user's prior history rather than the objective truth, resulting in personalization-induced hallucinations that degrade factual reliability and may propagate incorrect beliefs, due to representational entanglement between personalization and factual representations. To address this issue, we propose Factuality-Preserving Personalized Steering (FPPS), a lightweight inference-time approach that mitigates personalization-induced factual distortions while preserving personalized behavior. We further introduce PFQABench, the first benchmark designed to jointly evaluate factual and personalized question answering under personalization. Experiments across multiple LLM backbones and personalization methods show that FPPS substantially improves factual accuracy while maintaining personalized performance.
comment: 20 pages, 15 figures
☆ ZPD Detector: Data Selection via Capability-Difficulty Alignment for Large Language Models
As the cost of training large language models continues to increase and high-quality training data become increasingly scarce, selecting high-value samples or synthesizing effective training data under limited data budgets has emerged as a critical research problem. Most existing data selection methods rely on static criteria, such as difficulty, uncertainty, or heuristics, and fail to model the evolving relationship between the model and the data. Inspired by the educational theory of the Zone of Proximal Development (ZPD), we propose ZPD Detector, a data selection framework that adopts a bidirectional perspective between models and data by explicitly modeling the alignment between sample difficulty and the model's current capability. ZPD Detector integrates difficulty calibration, model capability estimation based on Item Response Theory (IRT), and a capability-difficulty matching score to dynamically identify the most informative samples at each learning stage, improving data utilization efficiency; moreover, this dynamic matching strategy provides new insights into training strategy design. All code and data will be released after our work be accepted to support reproducible researc
☆ AJAR: Adaptive Jailbreak Architecture for Red-teaming
As Large Language Models (LLMs) evolve from static chatbots into autonomous agents capable of tool execution, the landscape of AI safety is shifting from content moderation to action security. However, existing red-teaming frameworks remain bifurcated: they either focus on rigid, script-based text attacks or lack the architectural modularity to simulate complex, multi-turn agentic exploitations. In this paper, we introduce AJAR (Adaptive Jailbreak Architecture for Red-teaming), a proof-of-concept framework designed to bridge this gap through Protocol-driven Cognitive Orchestration. Built upon the robust runtime of Petri, AJAR leverages the Model Context Protocol (MCP) to decouple adversarial logic from the execution loop, encapsulating state-of-the-art algorithms like X-Teaming as standardized, plug-and-play services. We validate the architectural feasibility of AJAR through a controlled qualitative case study, demonstrating its ability to perform stateful backtracking within a tool-use environment. Furthermore, our preliminary exploration of the "Agentic Gap" reveals a complex safety dynamic: while tool usage introduces new injection vectors via code execution, the cognitive load of parameter formatting can inadvertently disrupt persona-based attacks. AJAR is open-sourced to facilitate the standardized, environment-aware evaluation of this emerging attack surface. The code and data are available at https://github.com/douyipu/ajar.
☆ Steering Language Models Before They Speak: Logit-Level Interventions
Steering LLMs is essential for specialized applications such as style-sensitive text rewriting, user-adaptive communication, and toxicity mitigation. Current steering methods, such as prompting-based and activation-based approaches, are widely used to guide model behavior. However, activation-based techniques require deep access to internal layers, while prompting-based steering often fails to provide consistent or fine-grained control. In order to address these limitations, we propose a training-free inference-time logit intervention for controllable generation. Our approach utilizes a statistical token score table derived from z-normalized log-odds of labeled corpora to shift the decoding distribution. Empirical evaluations across three diverse datasets focusing on writing complexity, formality, and toxicity demonstrate that our method effectively steers output characteristics, confirming its broad applicability and task-agnostic nature. Our results show that statistically grounded logit steering can achieve large, consistent, and multi-task control gains: up to +47%p accuracy and 50x f1 improvement.
comment: 14 pages, 5 figures, preprint
☆ Multi-Stage Patient Role-Playing Framework for Realistic Clinical Interactions
The simulation of realistic clinical interactions plays a pivotal role in advancing clinical Large Language Models (LLMs) and supporting medical diagnostic education. Existing approaches and benchmarks rely on generic or LLM-generated dialogue data, which limits the authenticity and diversity of doctor-patient interactions. In this work, we propose the first Chinese patient simulation dataset (Ch-PatientSim), constructed from realistic clinical interaction scenarios to comprehensively evaluate the performance of models in emulating patient behavior. Patients are simulated based on a five-dimensional persona structure. To address issues of the persona class imbalance, a portion of the dataset is augmented using few-shot generation, followed by manual verification. We evaluate various state-of-the-art LLMs and find that most produce overly formal responses that lack individual personality. To address this limitation, we propose a training-free Multi-Stage Patient Role-Playing (MSPRP) framework, which decomposes interactions into three stages to ensure both personalization and realism in model responses. Experimental results demonstrate that our approach significantly improves model performance across multiple dimensions of patient simulation.
comment: 22 pages, 5figures, under review
☆ PatientVLM Meets DocVLM: Pre-Consultation Dialogue Between Vision-Language Models for Efficient Diagnosis AAAI 2026
K Lokesh, Abhirama Subramanyam Penamakuri, Uday Agarwal, Apoorva Challa, Shreya K Gowda, Somesh Gupta, Anand Mishra
Traditionally, AI research in medical diagnosis has largely centered on image analysis. While this has led to notable advancements, the absence of patient-reported symptoms continues to hinder diagnostic accuracy. To address this, we propose a Pre-Consultation Dialogue Framework (PCDF) that mimics real-world diagnostic procedures, where doctors iteratively query patients before reaching a conclusion. Specifically, we simulate diagnostic dialogues between two vision-language models (VLMs): a DocVLM, which generates follow-up questions based on the image and dialogue history, and a PatientVLM, which responds using a symptom profile derived from the ground-truth diagnosis. We additionally conducted a small-scale clinical validation of the synthetic symptoms generated by our framework, with licensed clinicians confirming their clinical relevance, symptom coverage, and overall realism. These findings indicate that the resulting DocVLM-PatientVLM interactions form coherent, multi-turn consultations paired with images and diagnoses, which we then use to fine-tune the DocVLM. This dialogue-based supervision leads to substantial gains over image-only training, highlighting the value of realistic symptom elicitation for diagnosis.
comment: Accepted at AAAI 2026 Main Track
☆ Selecting Language Models for Social Science: Start Small, Start Open, and Validate
Currently, there are thousands of large pretrained language models (LLMs) available to social scientists. How do we select among them? Using validity, reliability, reproducibility, and replicability as guides, we explore the significance of: (1) model openness, (2) model footprint, (3) training data, and (4) model architectures and fine-tuning. While ex-ante tests of validity (i.e., benchmarks) are often privileged in these discussions, we argue that social scientists cannot altogether avoid validating computational measures (ex-post). Replicability, in particular, is a more pressing guide for selecting language models. Being able to reliably replicate a particular finding that entails the use of a language model necessitates reliably reproducing a task. To this end, we propose starting with smaller, open models, and constructing delimited benchmarks to demonstrate the validity of the entire computational pipeline.
☆ Massively Multilingual Joint Segmentation and Glossing
Michael Ginn, Lindia Tjuatja, Enora Rice, Ali Marashian, Maria Valentini, Jasmine Xu, Graham Neubig, Alexis Palmer
Automated interlinear gloss prediction with neural networks is a promising approach to accelerate language documentation efforts. However, while state-of-the-art models like GlossLM achieve high scores on glossing benchmarks, user studies with linguists have found critical barriers to the usefulness of such models in real-world scenarios. In particular, existing models typically generate morpheme-level glosses but assign them to whole words without predicting the actual morpheme boundaries, making the predictions less interpretable and thus untrustworthy to human annotators.
We conduct the first study on neural models that jointly predict interlinear glosses and the corresponding morphological segmentation from raw text. We run experiments to determine the optimal way to train models that balance segmentation and glossing accuracy, as well as the alignment between the two tasks. We extend the training corpus of GlossLM and pretrain PolyGloss, a family of seq2seq multilingual models for joint segmentation and glossing that outperforms GlossLM on glossing and beats various open-source LLMs on segmentation, glossing, and alignment. In addition, we demonstrate that PolyGloss can be quickly adapted to a new dataset via low-rank adaptation.
comment: 13 pages, 8 figures, submitted to ARR Jan 2026
☆ Neural Induction of Finite-State Transducers
Finite-State Transducers (FSTs) are effective models for string-to-string rewriting tasks, often providing the efficiency necessary for high-performance applications, but constructing transducers by hand is difficult. In this work, we propose a novel method for automatically constructing unweighted FSTs following the hidden state geometry learned by a recurrent neural network. We evaluate our methods on real-world datasets for morphological inflection, grapheme-to-phoneme prediction, and historical normalization, showing that the constructed FSTs are highly accurate and robust for many datasets, substantially outperforming classical transducer learning algorithms by up to 87% accuracy on held-out test sets.
comment: 14 pages, 8 figures, submitted to ARR Jan 2026
♻ ☆ What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study
Xiaoran Fan, Zhichao Sun, Yangfan Gao, Jingfei Xiong, Hang Yan, Yifei Cao, Jiajun Sun, Shuo Li, Zhihao Zhang, Zhiheng Xi, Yuhao Zhou, Senjie Jin, Changhao Jiang, Junjie Ye, Ming Zhang, Rui Zheng, Zhenhua Han, Yunke Zhang, Demei Yan, Shaokang Dong, Tao Ji, Tao Gui
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation. However, challenges remain in achieving effective cross-modal alignment and high-quality speech generation. In this work, we systematically investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling. We compare coupled, semi-decoupled, and fully decoupled speech tokenizers under a fair SLM framework and find that decoupled tokenization significantly improves alignment and synthesis quality. To address the information density mismatch between speech and text, we introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens. This leads to up to 12$\times$ faster decoding and a substantial drop in word error rate (from 6.07 to 3.01). Furthermore, we propose a speaker-aware generation paradigm and introduce RoleTriviaQA, a large-scale role-playing knowledge QA benchmark with diverse speaker identities. Experiments demonstrate that our methods enhance both knowledge understanding and speaker consistency.
♻ ☆ Computational emotion analysis with multimodal LLMs: Current evidence on an emerging methodological opportunity
Research increasingly leverages audio-visual materials to analyze emotions in political communication. Multimodal large language models (mLLMs) promise to enable such analyses through in-context learning. However, we lack systematic evidence on whether these models can reliably measure emotions in real-world political settings. This paper evaluates leading mLLMs for video-based emotional arousal measurement using two complementary human-labeled video datasets: recordings created under laboratory conditions and real-world parliamentary debates. I find a critical lab-vs-field performance gap. In video created under laboratory conditions, mLLMs arousal scores approach human-level reliability with little to no demographic bias. However, in parliamentary debate recordings, all examined models' arousal scores correlate at best moderately with average human ratings and exhibit systematic bias by speaker gender and age. Neither relying on leading closed-source mLLMs nor computational noise mitigation strategies change this finding. Further, mLLMs underperform even in sentiment analysis when using video recordings instead of text transcripts of the same speeches. These findings reveal important limitations of current mLLMs for real-world political video analysis and establish a rigorous evaluation framework for tracking future developments.
♻ ☆ From Noise to Signal to Selbstzweck: Reframing Human Label Variation in the Era of Post-training in NLP
Human Label Variation (HLV) refers to legitimate disagreement in annotation that reflects the diversity of human perspectives rather than mere error. Long treated in NLP as noise to be eliminated, HLV has only recently been reframed as a signal for improving model robustness. With the rise of large language models (LLMs) and post-training methods such as human feedback-based alignment, the role of HLV has become increasingly consequential. Yet current preference-learning datasets routinely collapse multiple annotations into a single label, flattening diverse perspectives into artificial consensus. Preserving HLV is necessary not only for pluralistic alignment but also for sociotechnical safety evaluation, where model behavior must be assessed in relation to human interaction and societal context. This position paper argues that preserving HLV as an embodiment of human pluralism must be treated as a Selbstzweck, an intrinsic value in itself. We analyze the limitations of existing preference datasets and propose actionable strategies for incorporating HLV into dataset construction to better preserve pluralistic human values.
♻ ☆ DecoupledESC: Enhancing Emotional Support Generation via Strategy-Response Decoupled Preference Optimization
Recent advances in Emotional Support Conversation (ESC) have improved emotional support generation by fine-tuning Large Language Models (LLMs) via Supervised Fine-Tuning (SFT). However, common psychological errors still persist. While Direct Preference Optimization (DPO) shows promise in reducing such errors through pairwise preference learning, its effectiveness in ESC tasks is limited by two key challenges: (1) Entangled data structure: Existing ESC data inherently entangles psychological strategies and response content, making it difficult to construct high-quality preference pairs; and (2) Optimization ambiguity: Applying vanilla DPO to such entangled pairwise data leads to ambiguous training objectives. To address these issues, we introduce Inferential Preference Mining (IPM) to construct high-quality preference data, forming the IPM-PrefDial dataset. Building upon this data, we propose a Decoupled ESC framework inspired by Gross's Extended Process Model of Emotion Regulation, which decomposes the ESC task into two sequential subtasks: strategy planning and empathic response generation. Each was trained via SFT and subsequently enhanced by DPO to align with the psychological preference. Extensive experiments demonstrate that our Decoupled ESC framework outperforms joint optimization baselines, reducing preference bias and improving response quality.
♻ ☆ Tug-of-war between idioms' figurative and literal interpretations in LLMs
Idioms present a unique challenge for language models due to their non-compositional figurative interpretations, which often strongly diverge from the idiom's literal interpretation. In this paper, we employ causal tracing to systematically analyze how pretrained causal transformers deal with this ambiguity. We localize three mechanisms: (i) Early sublayers and specific attention heads retrieve an idiom's figurative interpretation, while suppressing its literal interpretation. (ii) When disambiguating context precedes the idiom, the model leverages it from the earliest layer and later layers refine the interpretation if the context conflicts with the retrieved interpretation. (iii) Then, selective, competing pathways carry both interpretations: an intermediate pathway prioritizes the figurative interpretation and a parallel direct route favors the literal interpretation, ensuring that both readings remain available. Our findings provide mechanistic evidence for idiom comprehension in autoregressive transformers.
♻ ☆ Causal-SAM-LLM: Large Language Models as Causal Reasoners for Robust Medical Segmentation ICASSP 2026
The clinical utility of deep learning models for medical image segmentation is severely constrained by their inability to generalize to unseen domains. This failure is often rooted in the models learning spurious correlations between anatomical content and domain-specific imaging styles. To overcome this fundamental challenge, we introduce Causal-SAM-LLM, a novel framework that elevates Large Language Models (LLMs) to the role of causal reasoners. Our framework, built upon a frozen Segment Anything Model (SAM) encoder, incorporates two synergistic innovations. First, Linguistic Adversarial Disentanglement (LAD) employs a Vision-Language Model to generate rich, textual descriptions of confounding image styles. By training the segmentation model's features to be contrastively dissimilar to these style descriptions, it learns a representation robustly purged of non-causal information. Second, Test-Time Causal Intervention (TCI) provides an interactive mechanism where an LLM interprets a clinician's natural language command to modulate the segmentation decoder's features in real-time, enabling targeted error correction. We conduct an extensive empirical evaluation on a composite benchmark from four public datasets (BTCV, CHAOS, AMOS, BraTS), assessing generalization under cross-scanner, cross-modality, and cross-anatomy settings. Causal-SAM-LLM establishes a new state of the art in out-of-distribution (OOD) robustness, improving the average Dice score by up to 6.2 points and reducing the Hausdorff Distance by 15.8 mm over the strongest baseline, all while using less than 9% of the full model's trainable parameters. Our work charts a new course for building robust, efficient, and interactively controllable medical AI systems.
comment: Accepted by IEEE ICASSP 2026
♻ ☆ Generate-Then-Validate: A Novel Question Generation Approach Using Small Language Models
We explore the use of small language models (SLMs) for automatic question generation as a complement to the prevalent use of their large counterparts in learning analytics research. We present a novel question generation pipeline that leverages both the text generation and the probabilistic reasoning abilities of SLMs to generate high-quality questions. Adopting a "generate-then-validate" strategy, our pipeline first performs expansive generation to create an abundance of candidate questions and refine them through selective validation based on novel probabilistic reasoning. We conducted two evaluation studies, one with seven human experts and the other with a large language model (LLM), to assess the quality of the generated questions. Most judges (humans or LLMs) agreed that the generated questions had clear answers and generally aligned well with the intended learning objectives. Our findings suggest that an SLM can effectively generate high-quality questions when guided by a well-designed pipeline that leverages its strengths.
comment: Accepted as a full research paper for the 16th International Conference on Learning Analytics and Knowledge (LAK'26)
♻ ☆ LLM-as-evaluator in Strategy Research: A Normative, Variance-Aware Protocol
Large language models (LLMs) offer strategy researchers powerful tools for annotating text at scale, but treating LLM-generated labels as deterministic overlooks substantial instability. Grounded in content analysis and generalizability theory, we diagnose five variance sources: construct specification, interface effects, model preferences, output extraction, and system-level aggregation. Empirical demonstrations show that minor design choices-prompt phrasing, model selection-can shift outcomes by 12-85 percentage points. Such variance threatens not only reproducibility but econometric identification: annotation errors correlated with covariates bias parameter estimates regardless of average accuracy. We develop a variance-aware protocol specifying sampling budgets, aggregation rules, and reporting standards, and delineate scope conditions where LLM annotation should not be used. These contributions transform LLM-based annotation from ad hoc practice into auditable measurement infrastructure.
comment: 41 pages for the main paper 53 pages for appendix
♻ ☆ How Good is Post-Hoc Watermarking With Language Model Rephrasing?
Pierre Fernandez, Tom Sander, Hady Elsahar, Hongyan Chang, Tomáš Souček, Valeriu Lacatusu, Tuan Tran, Sylvestre-Alvise Rebuffi, Alexandre Mourachko
Generation-time text watermarking embeds statistical signals into text for traceability of AI-generated content. We explore *post-hoc watermarking* where an LLM rewrites existing text while applying generation-time watermarking, to protect copyrighted documents, or detect their use in training or RAG via watermark radioactivity. Unlike generation-time approaches, which is constrained by how LLMs are served, this setting offers additional degrees of freedom for both generation and detection. We investigate how allocating compute (through larger rephrasing models, beam search, multi-candidate generation, or entropy filtering at detection) affects the quality-detectability trade-off. Our strategies achieve strong detectability and semantic fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme surprisingly outperforms more recent alternatives under nucleus sampling, and most methods benefit significantly from beam search. However, most approaches struggle when watermarking verifiable text such as code, where we counterintuitively find that smaller models outperform larger ones. This study reveals both the potential and limitations of post-hoc watermarking, laying groundwork for practical applications and future research.
comment: Code at https://github.com/facebookresearch/textseal
♻ ☆ PERM: Psychology-grounded Empathetic Reward Modeling for Large Language Models
Large Language Models (LLMs) are increasingly deployed in human-centric applications, yet they often fail to provide substantive emotional support. While Reinforcement Learning (RL) has been utilized to enhance empathy of LLMs, existing reward models typically evaluate empathy from a single perspective, overlooking the inherently bidirectional interaction nature of empathy between the supporter and seeker as defined by Empathy Cycle theory. To address this limitation, we propose Psychology-grounded Empathetic Reward Modeling (PERM). PERM operationalizes empathy evaluation through a bidirectional decomposition: 1) Supporter perspective, assessing internal resonation and communicative expression; 2) Seeker perspective, evaluating emotional reception. Additionally, it incorporates a bystander perspective to monitor overall interaction quality. Extensive experiments on a widely-used emotional intelligence benchmark and an industrial daily conversation dataset demonstrate that PERM outperforms state-of-the-art baselines by over 10\%. Furthermore, a blinded user study reveals a 70\% preference for our approach, highlighting its efficacy in generating more empathetic responses. Our code, dataset, and models are available at https://github.com/ZhengWwwq/PERM.
♻ ☆ An Efficient Long-Context Ranking Architecture With Calibrated LLM Distillation: Application to Person-Job Fit
Finding the most relevant person for a job proposal in real time is challenging, especially when resumes are long, structured, and multilingual. In this paper, we propose a re-ranking model based on a new generation of late cross-attention architecture, that decomposes both resumes and project briefs to efficiently handle long-context inputs with minimal computational overhead. To mitigate historical data biases, we use a generative large language model (LLM) as a teacher, generating fine-grained, semantically grounded supervision. This signal is distilled into our student model via an enriched distillation loss function. The resulting model produces skill-fit scores that enable consistent and interpretable person-job matching. Experiments on relevance, ranking, and calibration metrics demonstrate that our approach outperforms state-of-the-art baselines.
♻ ☆ POWSM: A Phonetic Open Whisper-Style Speech Foundation Model
Chin-Jou Li, Kalvin Chang, Shikhar Bharadwaj, Eunjung Yeo, Kwanghee Choi, Jian Zhu, David Mortensen, Shinji Watanabe
Recent advances in spoken language processing have led to substantial progress in phonetic tasks such as automatic speech recognition (ASR), phone recognition (PR), grapheme-to-phoneme conversion (G2P), and phoneme-to-grapheme conversion (P2G). Despite their conceptual similarity, these tasks have largely been studied in isolation, each relying on task-specific architectures and datasets. In this paper, we introduce POWSM (Phonetic Open Whisper-style Speech Model), the first unified framework capable of jointly performing multiple phone-related tasks. POWSM enables seamless conversion between audio, text (graphemes), and phones, opening up new possibilities for universal and low-resource speech processing. Our model outperforms or matches specialized PR models of similar size (Wav2Vec2Phoneme and ZIPA) while jointly supporting G2P, P2G, and ASR. Our training data, code and models are released to foster open science.
comment: 18 pages, under review. Model available at https://huggingface.co/espnet/powsm
♻ ☆ A Safety Report on GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5
Xingjun Ma, Yixu Wang, Hengyuan Xu, Yutao Wu, Yifan Ding, Yunhan Zhao, Zilong Wang, Jiabin Hua, Ming Wen, Jianan Liu, Ranjie Duan, Yifeng Gao, Yingshui Tan, Yunhao Chen, Hui Xue, Xin Wang, Wei Cheng, Jingjing Chen, Zuxuan Wu, Bo Li, Yu-Gang Jiang
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has driven major gains in reasoning, perception, and generation across language and vision, yet whether these advances translate into comparable improvements in safety remains unclear, partly due to fragmented evaluations that focus on isolated modalities or threat models. In this report, we present an integrated safety evaluation of six frontier models--GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5--assessing each across language, vision-language, and image generation using a unified protocol that combines benchmark, adversarial, multilingual, and compliance evaluations. By aggregating results into safety leaderboards and model profiles, we reveal a highly uneven safety landscape: while GPT-5.2 demonstrates consistently strong and balanced performance, other models exhibit clear trade-offs across benchmark safety, adversarial robustness, multilingual generalization, and regulatory compliance. Despite strong results under standard benchmarks, all models remain highly vulnerable under adversarial testing, with worst-case safety rates dropping below 6%. Text-to-image models show slightly stronger alignment in regulated visual risk categories, yet remain fragile when faced with adversarial or semantically ambiguous prompts. Overall, these findings highlight that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation design--underscoring the need for standardized, holistic safety assessments to better reflect real-world risk and guide responsible deployment.
comment: 41 pages, 22 figures
♻ ☆ DEER: A Benchmark for Evaluating Deep Research Agents on Expert Report Generation
Janghoon Han, Heegyu Kim, Changho Lee, Dahm Lee, Min Hyung Park, Hosung Song, Stanley Jungkyu Choi, Moontae Lee, Honglak Lee
As large language models advance, deep research systems capable of generating expert-level reports through multi-step reasoning and evidence-based synthesis are emerging. However, evaluating such reports remains challenging. Existing benchmarks often lack systematic evaluation criteria, rely heavily on LLM-based judges that may miss issues requiring expert judgment, and verify only a limited subset of explicitly cited statements rather than report-wide factual reliability. To address these limitations, we introduce DEER, a benchmark for evaluating expert-level deep research reports. DEER comprises 50 report-writing tasks spanning 13 domains, along with an expert-grounded evaluation taxonomy with seven dimensions and 25 subdimensions, operationalized into 101 fine-grained rubric items. To improve evaluation consistency, DEER provides task-specific Expert Evaluation Guidance to support LLM-based judging. Complementing rubric-based assessment, we propose a document-level fact-checking architecture that verifies both cited and uncited claims and quantifies the quality and reliability of the supporting evidence. Experimental results show that DEER exhibits strong correlation with human expert judgments and yields interpretable diagnostics of system strengths and weaknesses.
comment: Work in progress
♻ ☆ Opportunities and Challenges of LLMs in Education: An NLP Perspective
Interest in the role of large language models (LLMs) in education is increasing, considering the new opportunities they offer for teaching, learning, and assessment. In this paper, we examine the impact of LLMs on educational NLP in the context of two main application scenarios: {\em assistance} and {\em assessment}, grounding them along the four dimensions -- reading, writing, speaking, and tutoring. We then present the new directions enabled by LLMs, and the key challenges to address. We envision that this holistic overview would be useful for NLP researchers and practitioners interested in exploring the role of LLMs in developing language-focused and NLP-enabled educational applications of the future.
comment: Pre-print
♻ ☆ Entangled in Representations: Mechanistic Investigation of Cultural Biases in Large Language Models
Haeun Yu, Seogyeong Jeong, Siddhesh Pawar, Jisu Shin, Jiho Jin, Junho Myung, Alice Oh, Isabelle Augenstein
The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a deeper understanding of LLMs' representations of different cultures. Prior work has focused on evaluating the cultural awareness of LLMs by only examining the text they generate. This approach overlooks the internal sources of cultural misrepresentation within the models themselves. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of different cultural knowledge in LLMs. We also introduce a cultural flattening score as a measure of the intrinsic cultural biases of the decoded knowledge from Culturescope. Additionally, we study how LLMs internalize cultural biases, which allows us to trace how cultural biases such as Western-dominance bias and cultural flattening emerge within LLMs. We find that low-resource cultures are less susceptible to cultural biases, likely due to the model's limited parametric knowledge. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding.
comment: 16 pages, 7 figures
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present Calgacus, a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages. v5 contains an Italian translation of this paper by the author
♻ ☆ From Adversarial Poetry to Adversarial Tales: An Interpretability Research Agenda
Piercosma Bisconti, Marcello Galisai, Matteo Prandi, Federico Pierucci, Olga Sorokoletova, Francesco Giarrusso, Vincenzo Suriani, Marcantonio Bracale Syrnikov, Daniele Nardi
Safety mechanisms in LLMs remain vulnerable to attacks that reframe harmful requests through culturally coded structures. We introduce Adversarial Tales, a jailbreak technique that embeds harmful content within cyberpunk narratives and prompts models to perform functional analysis inspired by Vladimir Propp's morphology of folktales. By casting the task as structural decomposition, the attack induces models to reconstruct harmful procedures as legitimate narrative interpretation. Across 26 frontier models from nine providers, we observe an average attack success rate of 71.3%, with no model family proving reliably robust. Together with our prior work on Adversarial Poetry, these findings suggest that structurally-grounded jailbreaks constitute a broad vulnerability class rather than isolated techniques. The space of culturally coded frames that can mediate harmful intent is vast, likely inexhaustible by pattern-matching defenses alone. Understanding why these attacks succeed is therefore essential: we outline a mechanistic interpretability research agenda to investigate how narrative cues reshape model representations and whether models can learn to recognize harmful intent independently of surface form.
♻ ☆ Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models
Piercosma Bisconti, Matteo Prandi, Federico Pierucci, Francesco Giarrusso, Marcantonio Bracale Syrnikov, Marcello Galisai, Vincenzo Suriani, Olga Sorokoletova, Federico Sartore, Daniele Nardi
We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for Large Language Models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 MLCommons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of 3 open-weight LLM judges, whose binary safety assessments were validated on a stratified human-labeled subset. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.
♻ ☆ FACTUM: Mechanistic Detection of Citation Hallucination in Long-Form RAG ECIR 2026
Maxime Dassen, Rebecca Kotula, Kenton Murray, Andrew Yates, Dawn Lawrie, Efsun Kayi, James Mayfield, Kevin Duh
Retrieval-Augmented Generation (RAG) models are critically undermined by citation hallucinations, a deceptive failure where a model cites a source that fails to support its claim. While existing work attributes hallucination to a simple over-reliance on parametric knowledge, we reframe this failure as an evolving, scale-dependent coordination failure between the Attention (reading) and Feed-Forward Network (recalling) pathways. We introduce FACTUM (Framework for Attesting Citation Trustworthiness via Underlying Mechanisms), a framework of four mechanistic scores: Contextual Alignment (CAS), Attention Sink Usage (BAS), Parametric Force (PFS), and Pathway Alignment (PAS). Our analysis reveals that correct citations are consistently marked by higher parametric force (PFS) and greater use of the attention sink (BAS) for information synthesis. Crucially, we find that "one-size-fits-all" theories are insufficient as the signature of correctness evolves with scale: while the 3B model relies on high pathway alignment (PAS), our best-performing 8B detector identifies a shift toward a specialized strategy where pathways provide distinct, orthogonal information. By capturing this complex interplay, FACTUM outperforms state-of-the-art baselines by up to 37.5% in AUC. Our results demonstrate that high parametric force is constructive when successfully coordinated with the Attention pathway, paving the way for more nuanced and reliable RAG systems.
comment: Accepted at ECIR 2026. 13 pages, 2 figures
♻ ☆ MIST: Towards Multi-dimensional Implicit BiaS Evaluation of LLMs for Theory of Mind
Theory of Mind (ToM) in Large Language Models (LLMs) refers to the model's ability to infer the mental states of others, with failures in this ability often manifesting as systemic implicit biases. Assessing this challenge is difficult, as traditional direct inquiry methods are often met with refusal to answer and fail to capture its subtle and multidimensional nature. Therefore, we propose MIST, which reconceptualizes the content model of stereotypes into multidimensional failures of ToM, specifically in the domains of competence, sociability, and morality. The framework introduces two indirect tasks. The Word Association Bias Test (WABT) assesses implicit lexical associations, while the Affective Attribution Test (AAT) measures implicit emotional tendencies, aiming to uncover latent stereotypes without triggering model avoidance. Through extensive experimentation on eight state-of-the-art LLMs, our framework demonstrates the ability to reveal complex bias structures and improved robustness. All data and code will be released.
♻ ☆ Chandomitra: Towards Generating Structured Sanskrit Poetry from Natural Language Inputs
Manoj Balaji Jagadeeshan, Samarth Bhatia, Pretam Ray, Harshul Raj Surana, Akhil Rajeev P, Priya Mishra, Annarao Kulkarni, Ganesh Ramakrishnan, Prathosh AP, Pawan Goyal
Text Generation has achieved remarkable performance using large language models. It has also been recently well-studied that these large language models are capable of creative generation tasks but prominently for high-resource languages. This prompts a fundamental question: Is there a way to utilize these (large) language models for structured poetry generation in a low-resource language, such as Sanskrit? We present Chandomitra, an English input to structured Sanskrit Poetry translation dataset, specifically adhering to the Anushtubh meter. We benchmark various open and closed models, and scrutinize specialized techniques such as constrained decoding and instruction fine-tuning, for the proposed task. Our constrained decoding methodology achieves 99.86% syntactic accuracy in generating metrically valid Sanskrit poetry, outperforming GPT-4o (1-shot: 31.24%). Our best-performing instruction-tuned model, on the other hand, performs better in semantic coherence with the English input, at the expense of slightly lower syntactic accuracy. Human evaluation further reveals that instruction fine-tuned model is better able to capture the poetic aspects. Data and Code are available.
♻ ☆ Discovery and Reinforcement of Tool-Integrated Reasoning Chains via Rollout Trees
Tool-Integrated Reasoning has emerged as a key paradigm to augment Large Language Models (LLMs) with computational capabilities, yet integrating tool-use into long Chain-of-Thought (long CoT) remains underexplored, largely due to the scarcity of training data and the challenge of integrating tool-use without compromising the model's intrinsic long-chain reasoning. In this paper, we introduce DART (Discovery And Reinforcement of Tool-Integrated Reasoning Chains via Rollout Trees), a reinforcement learning framework that enables spontaneous tool-use during long CoT reasoning without human annotation. DART operates by constructing dynamic rollout trees during training to discover valid tool-use opportunities, branching out at promising positions to explore diverse tool-integrated trajectories. Subsequently, a tree-based process advantage estimation identifies and credits specific sub-trajectories where tool invocation positively contributes to the solution, effectively reinforcing these beneficial behaviors. Extensive experiments on challenging benchmarks like AIME and GPQA-Diamond demonstrate that DART significantly outperforms existing methods, successfully harmonizing tool execution with long CoT reasoning.
♻ ☆ Southern Newswires: A Large-Scale Study of Mid-Century Wire Content Beyond the Front Page
This paper describes the construction of a large-scale corpus of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services (e.g., Associated Press, United Press International, Newspaper Enterprise Association). Unlike prior work that focuses primarily on front-page content, the corpus captures wire-sourced articles across the entire newspaper, offering broader insight into mid-century Southern news coverage. The analysis incorporates both raw OCR text and a version processed through an LLM-based text correction pipeline designed to reduce OCR noise and improve suitability for quantitative text analysis. Multiple versions of the same wire dispatch are retained, allowing for the study of editorial differences in language and framing across newspapers. Articles are classified by wire service, enabling comparative analysis of editorial patterns across agencies. Together, these features provide a detailed perspective on how Southern newspapers transmitted national and international news during a transformative period in American history.
♻ ☆ SDialog: A Python Toolkit for End-to-End Agent Building, User Simulation, Dialog Generation, and Evaluation EACL
Sergio Burdisso, Séverin Baroudi, Yanis Labrak, David Grunert, Pawel Cyrta, Yiyang Chen, Srikanth Madikeri, Thomas Schaaf, Esaú Villatoro-Tello, Ahmed Hassoon, Ricard Marxer, Petr Motlicek
We present SDialog, an MIT-licensed open-source Python toolkit that unifies dialog generation, evaluation and mechanistic interpretability into a single end-to-end framework for building and analyzing LLM-based conversational agents. Built around a standardized Dialog representation, SDialog provides: (1) persona-driven multi-agent simulation with composable orchestration for controlled, synthetic dialog generation, (2) comprehensive evaluation combining linguistic metrics, LLM-as-a-judge and functional correctness validators, (3) mechanistic interpretability tools for activation inspection and steering via feature ablation and induction, and (4) audio generation with full acoustic simulation including 3D room modeling and microphone effects. The toolkit integrates with all major LLM backends, enabling mixed-backend experiments under a unified API. By coupling generation, evaluation, and interpretability in a dialog-centric architecture, SDialog enables researchers to build, benchmark and understand conversational systems more systematically.
comment: Pre-print submitted to EACL System Demonstration (under review)
♻ ☆ Better Language Models Exhibit Higher Visual Alignment
How well do text-only large language models (LLMs) align with the visual world? We present a systematic evaluation of this question by incorporating frozen representations of various language models into a discriminative vision-language framework and measuring zero-shot generalization to novel concepts. We find that decoder-based models exhibit stronger visual alignment than encoders, even when controlling for model and dataset size. Moreover, language modeling performance correlates with visual generalization, suggesting that advances in unimodal LLMs can simultaneously improve vision models. Leveraging these insights, we propose ShareLock, a lightweight method for fusing frozen vision and language backbones. ShareLock achieves robust performance across tasks while drastically reducing the need for paired data and compute. With just 563k image-caption pairs and under one GPU-hour of training, it reaches 51% accuracy on ImageNet. In cross-lingual settings, ShareLock dramatically outperforms CLIP, achieving 38.7% top-1 accuracy on Chinese image classification versus CLIP's 1.4%. Code is available.
♻ ☆ MedReflect: Teaching Medical LLMs to Self-Improve via Reflective Correction
Medical problem-solving demands expert knowledge and intricate reasoning. Recent studies of large language models (LLMs) attempt to ease this complexity by introducing external knowledge verification through retrieval-augmented generation or by training on reasoning datasets. However, these approaches suffer from drawbacks such as retrieval overhead and high annotation costs, and they heavily rely on substituted external assistants to reach limited performance in medical field. In this paper, we introduce MedReflect, a generalizable framework designed to inspire LLMs with a physician-like reflective thinking mode. MedReflect generates a single-pass reflection chain that includes initial hypothesis generation, self-questioning, self-answering and decision refinement. This self-verified and self-reflective nature releases large language model's latent capability in medical problem-solving without external retrieval or heavy annotation. We demonstrate that MedReflect enables cost-efficient medical dataset construction. With only a minimal subset of randomly sampled training examples and lightweight fine-tuning, this approach achieves notable absolute accuracy improvements across a series of medical benchmarks while significantly cutting annotation requirements. Our results provide evidence that LLMs can learn to solve specialized medical problems via self-reflection and self-improvement, reducing reliance on external supervision and extensive task-specific fine-tuning data.
♻ ☆ Mistake Notebook Learning: Batch-Clustered Failures for Training-Free Agent Adaptation
With the growing adoption of Large Language Model (LLM) agents in persistent, real-world roles, they naturally encounter continuous streams of tasks and inevitable failures. A key limitation, however, is their inability to systematically learn from these mistakes, forcing them to repeat identical errors in similar contexts. Unlike prior training-free methods that primarily store raw instance-level experience or focus on retrieving successful trajectories, we propose Mistake Notebook Learning (MNL), a novel memory framework that enables agents to self-curate generalizable guidance from batch-clustered failures. This mechanism allows agents to distill shared error patterns into structured "mistake notes," updating an external memory only when batch performance improves to ensure stability. To further amplify adaptability, we integrate MNL with test-time scaling, leveraging aggregated failure patterns to actively steer the search process away from known pitfalls. Experiments on mathematical reasoning, Text-to-SQL, and interactive agent benchmarks show that MNL achieves competitive performance compared to existing memory mechanisms and in-context methods in both effectiveness and efficiency. These findings position structured mistake abstraction as a critical lever for robust agent evolution, enabling continuous improvement without the cost of parameter updates. The code is available at https://github.com/Bairong-Xdynamics/MistakeNotebookLearning/tree/main.
♻ ☆ iReasoner: Trajectory-Aware Intrinsic Reasoning Supervision for Self-Evolving Large Multimodal Models
Recent work shows that large multimodal models (LMMs) can self-improve from unlabeled data via self-play and intrinsic feedback. Yet existing self-evolving frameworks mainly reward final outcomes, leaving intermediate reasoning weakly constrained despite its importance for visually grounded decision making. We propose iReasoner, a self-evolving framework that improves an LMM's implicit reasoning by explicitly eliciting chain-of-thought (CoT) and rewarding its internal agreement. In a Proposer--Solver loop over unlabeled images, iReasoner augments outcome-level intrinsic rewards with a trajectory-aware signal defined over intermediate reasoning steps, providing learning signals that distinguish reasoning paths leading to the same answer without ground-truth labels or external judges. Starting from Qwen2.5-VL-7B, iReasoner yields up to $+2.1$ points across diverse multimodal reasoning benchmarks under fully unsupervised post-training. We hope this work serves as a starting point for reasoning-aware self-improvement in LMMs in purely unsupervised settings.
♻ ☆ Emergent Misalignment via In-Context Learning: Narrow in-context examples can produce broadly misaligned LLMs
Nikita Afonin, Nikita Andriyanov, Vahagn Hovhannisyan, Nikhil Bageshpura, Kyle Liu, Kevin Zhu, Sunishchal Dev, Ashwinee Panda, Oleg Rogov, Elena Tutubalina, Alexander Panchenko, Mikhail Seleznyov
Recent work has shown that narrow finetuning can produce broadly misaligned LLMs, a phenomenon termed emergent misalignment (EM). While concerning, these findings were limited to finetuning and activation steering, leaving out in-context learning (ICL). We therefore ask: does EM emerge in ICL? We find that it does: across four model families (Gemini, Kimi-K2, Grok, and Qwen), narrow in-context examples cause models to produce misaligned responses to benign, unrelated queries. With 16 in-context examples, EM rates range from 1\% to 24\% depending on model and domain, appearing with as few as 2 examples. Neither larger model scale nor explicit reasoning provides reliable protection. We formulate and test a hypothesis, which explains in-context EM as conflict between safety objectives and context-following behavior. Consistent with this, instructing models to prioritize safety reduces EM while prioritizing context-following increases it. These findings establish ICL as a previously underappreciated vector for emergent misalignment that operates without parameter modification and resists simple scaling-based solutions.
♻ ☆ Assessing and Improving Punctuation Robustness in English-Marathi Machine Translation
Punctuation plays a critical role in resolving semantic and structural ambiguity in written language. Machine Translation (MT) systems are now widely applied across diverse domains and languages, including many low-resource settings. In this work, we focus on Marathi, a low- to middle-resource language. We introduce Virām, the first diagnostic benchmark for assessing punctuation robustness in English-to-Marathi machine translation, consisting of 54 manually curated, punctuation-ambiguous instances. We evaluate two primary strategies for enhancing reliability: a pipeline-based restore-then-translate approach and direct fine-tuned on punctuation-varied data. Our results demonstrate that specialized fine-tuned models and pipeline systems significantly improve translation quality over standard baselines on the Virām benchmark. Qualitative analysis reveals that the original model may result in wrong translations leading to wrong interpretations, while fine-tuned models significantly improve overall reliability. Furthermore, we find that current Large Language Models (LLMs) lag behind these task-specific approaches in preserving meaning for punctuation-ambiguous text, thus necessitating further research in this area. The code and dataset is available at https://github.com/KaustubhShejole/Viram_Marathi.
♻ ☆ Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation
Yibo Wang, Tiansheng Huang, Li Shen, Huanjin Yao, Haotian Luo, Rui Liu, Naiqiang Tan, Jiaxing Huang, Dacheng Tao
Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Main-stream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile--with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution--adding purely random perturbations to the fine-tuned model, can recover the model from harmful behaviors, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.2%, while maintaining fine-tuning performance. As a by-product, we analyze the adaptive perturbation and show that different layers in various LLMs have distinct safety affinity, which coincide with finding from several previous study. Source code available at https://github.com/w-yibo/Panacea.
comment: Accepted by NeruIPS 2025
♻ ☆ Beyond Hard Masks: Progressive Token Evolution for Diffusion Language Models
Linhao Zhong, Linyu Wu, Bozhen Fang, Tianjian Feng, Chenchen Jing, Wen Wang, Jiaheng Zhang, Hao Chen, Chunhua Shen
Diffusion Language Models (DLMs) offer a promising alternative for language modeling by enabling parallel decoding through iterative refinement. However, most DLMs rely on hard binary masking and discrete token assignments, which hinder the revision of early decisions and underutilize intermediate probabilistic representations. In this paper, we propose EvoToken-DLM, a novel diffusion-based language modeling approach that replaces hard binary masks with evolving soft token distributions. EvoToken-DLM enables a progressive transition from masked states to discrete outputs, supporting revisable decoding. To effectively support this evolution, we introduce continuous trajectory supervision, which aligns training objectives with iterative probabilistic updates. Extensive experiments across multiple benchmarks show that EvoToken-DLM consistently achieves superior performance, outperforming strong diffusion-based and masked DLM baselines. Project webpage: https://aim-uofa.github.io/EvoTokenDLM.
comment: Project webpage: https://aim-uofa.github.io/EvoTokenDLM
♻ ☆ Lost in Benchmarks? Rethinking Large Language Model Benchmarking with Item Response Theory AAAI 2026
Hongli Zhou, Hui Huang, Ziqing Zhao, Lvyuan Han, Huicheng Wang, Kehai Chen, Muyun Yang, Wei Bao, Jian Dong, Bing Xu, Conghui Zhu, Hailong Cao, Tiejun Zhao
The evaluation of large language models (LLMs) via benchmarks is widespread, yet inconsistencies between different leaderboards and poor separability among top models raise concerns about their ability to accurately reflect authentic model capabilities. This paper provides a critical analysis of benchmark effectiveness, examining mainstream prominent LLM benchmarks using results from diverse models. We first propose Pseudo-Siamese Network for Item Response Theory (PSN-IRT), an enhanced Item Response Theory framework that incorporates a rich set of item parameters within an IRT-grounded architecture. PSN-IRT can be utilized for accurate and reliable estimations of item characteristics and model abilities. Based on PSN-IRT, we conduct extensive analysis on 11 LLM benchmarks comprising 41,871 items, revealing significant and varied shortcomings in their measurement quality. Furthermore, we demonstrate that leveraging PSN-IRT is able to construct smaller benchmarks while maintaining stronger alignment with human preference.
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ AviationLMM: A Large Multimodal Foundation Model for Civil Aviation ICICS
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025), Chongqing, China; 9 pages,1 figure,5 tables
♻ ☆ OctoBench: Benchmarking Scaffold-Aware Instruction Following in Repository-Grounded Agentic Coding
Deming Ding, Shichun Liu, Enhui Yang, Jiahang Lin, Ziying Chen, Shihan Dou, Honglin Guo, Weiyu Cheng, Pengyu Zhao, Chengjun Xiao, Qunhong Zeng, Qi Zhang, Xuanjing Huang, Qidi Xu, Tao Gui
Modern coding scaffolds turn LLMs into capable software agents, but their ability to follow scaffold-specified instructions remains under-examined, especially when constraints are heterogeneous and persist across interactions. To fill this gap, we introduce OctoBench, which benchmarks scaffold-aware instruction following in repository-grounded agentic coding. OctoBench includes 34 environments and 217 tasks instantiated under three scaffold types, and is paired with 7,098 objective checklist items. To disentangle solving the task from following the rules, we provide an automated observation-and-scoring toolkit that captures full trajectories and performs fine-grained checks. Experiments on eight representative models reveal a systematic gap between task-solving and scaffold-aware compliance, underscoring the need for training and evaluation that explicitly targets heterogeneous instruction following. We release the benchmark to support reproducible benchmarking and to accelerate the development of more scaffold-aware coding agents.
♻ ☆ MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.
♻ ☆ Less LLM, More Documents: Searching for Improved RAG ECIR 2026
Retrieval-Augmented Generation (RAG) couples document retrieval with large language models (LLMs). While scaling generators often improves accuracy, it also increases inference and deployment overhead. We study an orthogonal axis: enlarging the retriever's corpus, and how it trades off with generator scale. Across multiple open-domain QA benchmarks, corpus scaling consistently strengthens RAG and can in many cases match the gains of moving to a larger model tier, though with diminishing returns at larger scales. Small- and mid-sized generators paired with larger corpora often rival much larger models with smaller corpora; mid-sized models tend to gain the most, while tiny and very large models benefit less. Our analysis suggests that these improvements arise primarily from increased coverage of answer-bearing passages, while utilization efficiency remains largely unchanged. Overall, our results characterize a corpus-generator trade-off in RAG and provide empirical guidance on how corpus scale and model capacity interact in this setting.
comment: Proceeding Version of ECIR 2026
♻ ☆ QuantEval: A Benchmark for Financial Quantitative Tasks in Large Language Models
Zhaolu Kang, Junhao Gong, Wenqing Hu, Shuo Yin, Kehan Jiang, Zhicheng Fang, Yingjie He, Chunlei Meng, Rong Fu, Dongyang Chen, Leqi Zheng, Eric Hanchen Jiang, Yunfei Feng, Yitong Leng, Junfan Zhu, Xiaoyou Chen, Xi Yang, Richeng Xuan
Large Language Models (LLMs) have shown strong capabilities across many domains, yet their evaluation in financial quantitative tasks remains fragmented and mostly limited to knowledge-centric question answering. We introduce QuantEval, a benchmark that evaluates LLMs across three essential dimensions of quantitative finance: knowledge-based QA, quantitative mathematical reasoning, and quantitative strategy coding. Unlike prior financial benchmarks, QuantEval integrates a CTA-style backtesting framework that executes model-generated strategies and evaluates them using financial performance metrics, enabling a more realistic assessment of quantitative coding ability. We evaluate some state-of-the-art open-source and proprietary LLMs and observe substantial gaps to human experts, particularly in reasoning and strategy coding. Finally, we conduct large-scale supervised fine-tuning and reinforcement learning experiments on domain-aligned data, demonstrating consistent improvements. We hope QuantEval will facilitate research on LLMs' quantitative finance capabilities and accelerate their practical adoption in real-world trading workflows. We additionally release the full deterministic backtesting configuration (asset universe, cost model, and metric definitions) to ensure strict reproducibility.