Computation and Language 74
☆ Avey-B
Compact pretrained bidirectional encoders remain the backbone of industrial NLP under tight compute and memory budgets. Their effectiveness stems from self-attention's ability to deliver high-quality bidirectional contextualization with sequence-level parallelism, as popularized by BERT-style architectures. Recently, Avey was introduced as an autoregressive, attention-free alternative that naturally admits an encoder-only adaptation. In this paper, we reformulate Avey for the encoder-only paradigm and propose several innovations to its architecture, including decoupled static and dynamic parameterizations, stability-oriented normalization, and neural compression. Results show that this reformulated architecture compares favorably to four widely used Transformer-based encoders, consistently outperforming them on standard token-classification and information-retrieval benchmarks while scaling more efficiently to long contexts.
☆ Enhancing Building Semantics Preservation in AI Model Training with Large Language Model Encodings
Accurate representation of building semantics, encompassing both generic object types and specific subtypes, is essential for effective AI model training in the architecture, engineering, construction, and operation (AECO) industry. Conventional encoding methods (e.g., one-hot) often fail to convey the nuanced relationships among closely related subtypes, limiting AI's semantic comprehension. To address this limitation, this study proposes a novel training approach that employs large language model (LLM) embeddings (e.g., OpenAI GPT and Meta LLaMA) as encodings to preserve finer distinctions in building semantics. We evaluated the proposed method by training GraphSAGE models to classify 42 building object subtypes across five high-rise residential building information models (BIMs). Various embedding dimensions were tested, including original high-dimensional LLM embeddings (1,536, 3,072, or 4,096) and 1,024-dimensional compacted embeddings generated via the Matryoshka representation model. Experimental results demonstrated that LLM encodings outperformed the conventional one-hot baseline, with the llama-3 (compacted) embedding achieving a weighted average F1-score of 0.8766, compared to 0.8475 for one-hot encoding. The results underscore the promise of leveraging LLM-based encodings to enhance AI's ability to interpret complex, domain-specific building semantics. As the capabilities of LLMs and dimensionality reduction techniques continue to evolve, this approach holds considerable potential for broad application in semantic elaboration tasks throughout the AECO industry.
comment: 42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)
☆ *-PLUIE: Personalisable metric with Llm Used for Improved Evaluation
Quentin Lemesle, Léane Jourdan, Daisy Munson, Pierre Alain, Jonathan Chevelu, Arnaud Delhay, Damien Lolive
Evaluating the quality of automatically generated text often relies on LLM-as-a-judge (LLM-judge) methods. While effective, these approaches are computationally expensive and require post-processing. To address these limitations, we build upon ParaPLUIE, a perplexity-based LLM-judge metric that estimates confidence over ``Yes/No'' answers without generating text. We introduce *-PLUIE, task specific prompting variants of ParaPLUIE and evaluate their alignment with human judgement. Our experiments show that personalised *-PLUIE achieves stronger correlations with human ratings while maintaining low computational cost.
comment: Under review
☆ ViTaB-A: Evaluating Multimodal Large Language Models on Visual Table Attribution
Multimodal Large Language Models (mLLMs) are often used to answer questions in structured data such as tables in Markdown, JSON, and images. While these models can often give correct answers, users also need to know where those answers come from. In this work, we study structured data attribution/citation, which is the ability of the models to point to the specific rows and columns that support an answer. We evaluate several mLLMs across different table formats and prompting strategies. Our results show a clear gap between question answering and evidence attribution. Although question answering accuracy remains moderate, attribution accuracy is much lower, near random for JSON inputs, across all models. We also find that models are more reliable at citing rows than columns, and struggle more with textual formats than images. Finally, we observe notable differences across model families. Overall, our findings show that current mLLMs are unreliable at providing fine-grained, trustworthy attribution for structured data, which limits their usage in applications requiring transparency and traceability.
☆ GLM-5: from Vibe Coding to Agentic Engineering
GLM-5 Team, :, Aohan Zeng, Xin Lv, Zhenyu Hou, Zhengxiao Du, Qinkai Zheng, Bin Chen, Da Yin, Chendi Ge, Chengxing Xie, Cunxiang Wang, Gengzheng Pan, Hao Zeng, Haoke Zhang, Haoran Wang, Huilong Chen, Jiajie Zhang, Jian Jiao, Jiaqi Guo, Jingsen Wang, Jingzhao Du, Jinzhu Wu, Kedong Wang, Lei Li, Lin Fan, Lucen Zhong, Mingdao Liu, Mingming Zhao, Pengfan Du, Qian Dong, Rui Lu, Shuang-Li, Shulin Cao, Song Liu, Ting Jiang, Xiaodong Chen, Xiaohan Zhang, Xuancheng Huang, Xuezhen Dong, Yabo Xu, Yao Wei, Yifan An, Yilin Niu, Yitong Zhu, Yuanhao Wen, Yukuo Cen, Yushi Bai, Zhongpei Qiao, Zihan Wang, Zikang Wang, Zilin Zhu, Ziqiang Liu, Zixuan Li, Bojie Wang, Bosi Wen, Can Huang, Changpeng Cai, Chao Yu, Chen Li, Chen Li, Chenghua Huang, Chengwei Hu, Chenhui Zhang, Chenzheng Zhu, Congfeng Yin, Daoyan Lin, Dayong Yang, Di Wang, Ding Ai, Erle Zhu, Fangzhou Yi, Feiyu Chen, Guohong Wen, Hailong Sun, Haisha Zhao, Haiyi Hu, Hanchen Zhang, Hanrui Liu, Hanyu Zhang, Hao Peng, Hao Tai, Haobo Zhang, He Liu, Hongwei Wang, Hongxi Yan, Hongyu Ge, Huan Liu, Huan Liu, Huanpeng Chu, Jia'ni Zhao, Jiachen Wang, Jiajing Zhao, Jiamin Ren, Jiapeng Wang, Jiaxin Zhang, Jiayi Gui, Jiayue Zhao, Jijie Li, Jing An, Jing Li, Jingwei Yuan, Jinhua Du, Jinxin Liu, Junkai Zhi, Junwen Duan, Kaiyue Zhou, Kangjian Wei, Ke Wang, Keyun Luo, Laiqiang Zhang, Leigang Sha, Liang Xu, Lindong Wu, Lintao Ding, Lu Chen, Minghao Li, Nianyi Lin, Pan Ta, Qiang Zou, Rongjun Song, Ruiqi Yang, Shangqing Tu, Shangtong Yang, Shaoxiang Wu, Shengyan Zhang, Shijie Li, Shuang Li, Shuyi Fan, Wei Qin, Wei Tian, Weining Zhang, Wenbo Yu, Wenjie Liang, Xiang Kuang, Xiangmeng Cheng, Xiangyang Li, Xiaoquan Yan, Xiaowei Hu, Xiaoying Ling, Xing Fan, Xingye Xia, Xinyuan Zhang, Xinze Zhang, Xirui Pan, Xunkai Zhang, Yandong Wu, Yanfu Li, Yidong Wang, Yifan Zhu, Yijun Tan, Yilin Zhou, Yiming Pan, Ying Zhang, Yinpei Su, Yipeng Geng, Yipeng Geng, Yong Yan, Yonglin Tan, Yuean Bi, Yuhan Shen, Yuhao Yang, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yurong Wu, Yutao Zhang, Yuxi Duan, Yuxuan Zhang, Zezhen Liu, Zhengtao Jiang, Zhenhe Yan, Zheyu Zhang, Zhixiang Wei, Zhuo Chen, Zhuoer Feng, Zijun Yao, Ziwei Chai, Ziyuan Wang, Zuzhou Zhang, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, Jie Tang
We present GLM-5, a next-generation foundation model designed to transition the paradigm of vibe coding to agentic engineering. Building upon the agentic, reasoning, and coding (ARC) capabilities of its predecessor, GLM-5 adopts DSA to significantly reduce training and inference costs while maintaining long-context fidelity. To advance model alignment and autonomy, we implement a new asynchronous reinforcement learning infrastructure that drastically improves post-training efficiency by decoupling generation from training. Furthermore, we propose novel asynchronous agent RL algorithms that further improve RL quality, enabling the model to learn from complex, long-horizon interactions more effectively. Through these innovations, GLM-5 achieves state-of-the-art performance on major open benchmarks. Most critically, GLM-5 demonstrates unprecedented capability in real-world coding tasks, surpassing previous baselines in handling end-to-end software engineering challenges. Code, models, and more information are available at https://github.com/zai-org/GLM-5.
☆ ChartEditBench: Evaluating Grounded Multi-Turn Chart Editing in Multimodal Language Models
While Multimodal Large Language Models (MLLMs) perform strongly on single-turn chart generation, their ability to support real-world exploratory data analysis remains underexplored. In practice, users iteratively refine visualizations through multi-turn interactions that require maintaining common ground, tracking prior edits, and adapting to evolving preferences. We introduce ChartEditBench, a benchmark for incremental, visually grounded chart editing via code, comprising 5,000 difficulty-controlled modification chains and a rigorously human-verified subset. Unlike prior one-shot benchmarks, ChartEditBench evaluates sustained, context-aware editing. We further propose a robust evaluation framework that mitigates limitations of LLM-as-a-Judge metrics by integrating execution-based fidelity checks, pixel-level visual similarity, and logical code verification. Experiments with state-of-the-art MLLMs reveal substantial degradation in multi-turn settings due to error accumulation and breakdowns in shared context, with strong performance on stylistic edits but frequent execution failures on data-centric transformations. ChartEditBench, establishes a challenging testbed for grounded, intent-aware multimodal programming.
comment: 16 pages, 13 figures including Supplementary Material
☆ Beyond Binary Classification: Detecting Fine-Grained Sexism in Social Media Videos
Online sexism appears in various forms, which makes its detection challenging. Although automated tools can enhance the identification of sexist content, they are often restricted to binary classification. Consequently, more subtle manifestations of sexism may remain undetected due to the lack of fine-grained, context-sensitive labels. To address this issue, we make the following contributions: (1) we present FineMuSe, a new multimodal sexism detection dataset in Spanish that includes both binary and fine-grained annotations; (2) we introduce a comprehensive hierarchical taxonomy that encompasses forms of sexism, non-sexism, and rhetorical devices of irony and humor; and (3) we evaluate a wide range of LLMs for both binary and fine-grained sexism detection. Our findings indicate that multimodal LLMs perform competitively with human annotators in identifying nuanced forms of sexism; however, they struggle to capture co-occurring sexist types when these are conveyed through visual cues.
☆ Under-resourced studies of under-resourced languages: lemmatization and POS-tagging with LLM annotators for historical Armenian, Georgian, Greek and Syriac
Low-resource languages pose persistent challenges for Natural Language Processing tasks such as lemmatization and part-of-speech (POS) tagging. This paper investigates the capacity of recent large language models (LLMs), including GPT-4 variants and open-weight Mistral models, to address these tasks in few-shot and zero-shot settings for four historically and linguistically diverse under-resourced languages: Ancient Greek, Classical Armenian, Old Georgian, and Syriac. Using a novel benchmark comprising aligned training and out-of-domain test corpora, we evaluate the performance of foundation models across lemmatization and POS-tagging, and compare them with PIE, a task-specific RNN baseline. Our results demonstrate that LLMs, even without fine-tuning, achieve competitive or superior performance in POS-tagging and lemmatization across most languages in few-shot settings. Significant challenges persist for languages characterized by complex morphology and non-Latin scripts, but we demonstrate that LLMs are a credible and relevant option for initiating linguistic annotation tasks in the absence of data, serving as an effective aid for annotation.
☆ Causal Effect Estimation with Latent Textual Treatments
Understanding the causal effects of text on downstream outcomes is a central task in many applications. Estimating such effects requires researchers to run controlled experiments that systematically vary textual features. While large language models (LLMs) hold promise for generating text, producing and evaluating controlled variation requires more careful attention. In this paper, we present an end-to-end pipeline for the generation and causal estimation of latent textual interventions. Our work first performs hypothesis generation and steering via sparse autoencoders (SAEs), followed by robust causal estimation. Our pipeline addresses both computational and statistical challenges in text-as-treatment experiments. We demonstrate that naive estimation of causal effects suffers from significant bias as text inherently conflates treatment and covariate information. We describe the estimation bias induced in this setting and propose a solution based on covariate residualization. Our empirical results show that our pipeline effectively induces variation in target features and mitigates estimation error, providing a robust foundation for causal effect estimation in text-as-treatment settings.
☆ Recursive Concept Evolution for Compositional Reasoning in Large Language Models
Large language models achieve strong performance on many complex reasoning tasks, yet their accuracy degrades sharply on benchmarks that require compositional reasoning, including ARC-AGI-2, GPQA, MATH, BBH, and HLE. Existing methods improve reasoning by expanding token-level search through chain-of-thought prompting, self-consistency, or reinforcement learning, but they leave the model's latent representation space fixed. When the required abstraction is not already encoded in this space, performance collapses. We propose Recursive Concept Evolution (RCE), a framework that enables pretrained language models to modify their internal representation geometry during inference. RCE introduces dynamically generated low-rank concept subspaces that are spawned when representational inadequacy is detected, selected through a minimum description length criterion, merged when synergistic, and consolidated via constrained optimization to preserve stability. This process allows the model to construct new abstractions rather than recombining existing ones. We integrate RCE with Mistral-7B and evaluate it across compositional reasoning benchmarks. RCE yields 12-18 point gains on ARC-AGI-2, 8-14 point improvements on GPQA and BBH, and consistent reductions in depth-induced error on MATH and HLE.
☆ Rethinking Metrics for Lexical Semantic Change Detection EACL 2026
Lexical semantic change detection (LSCD) increasingly relies on contextualised language model embeddings, yet most approaches still quantify change using a small set of semantic change metrics, primarily Average Pairwise Distance (APD) and cosine distance over word prototypes (PRT). We introduce Average Minimum Distance (AMD) and Symmetric Average Minimum Distance (SAMD), new measures that quantify semantic change via local correspondence between word usages across time periods. Across multiple languages, encoder models, and representation spaces, we show that AMD often provides more robust performance, particularly under dimensionality reduction and with non-specialised encoders, while SAMD excels with specialised encoders. We suggest that LSCD may benefit from considering alternative semantic change metrics beyond APD and PRT, with AMD offering a robust option for contextualised embedding-based analysis.
comment: Accepted to the LChange 2026 Workshop, colocated with EACL 2026
☆ Proactive Conversational Assistant for a Procedural Manual Task based on Audio and IMU
Real-time conversational assistants for procedural tasks often depend on video input, which can be computationally expensive and compromise user privacy. For the first time, we propose a real-time conversational assistant that provides comprehensive guidance for a procedural task using only lightweight privacy-preserving modalities such as audio and IMU inputs from a user's wearable device to understand the context. This assistant proactively communicates step-by-step instructions to a user performing a furniture assembly task, and answers user questions. We construct a dataset containing conversations where the assistant guides the user in performing the task. On observing that an off-the-shelf language model is a very talkative assistant, we design a novel User Whim Agnostic (UWA) LoRA finetuning method which improves the model's ability to suppress less informative dialogues, while maintaining its tendency to communicate important instructions. This leads to >30% improvement in the F-score. Finetuning the model also results in a 16x speedup by eliminating the need to provide in-context examples in the prompt. We further describe how such an assistant is implemented on edge devices with no dependence on the cloud.
comment: 3 figures
☆ A Content-Based Framework for Cybersecurity Refusal Decisions in Large Language Models
Meirav Segal, Noa Linder, Omer Antverg, Gil Gekker, Tomer Fichman, Omri Bodenheimer, Edan Maor, Omer Nevo
Large language models and LLM-based agents are increasingly used for cybersecurity tasks that are inherently dual-use. Existing approaches to refusal, spanning academic policy frameworks and commercially deployed systems, often rely on broad topic-based bans or offensive-focused taxonomies. As a result, they can yield inconsistent decisions, over-restrict legitimate defenders, and behave brittlely under obfuscation or request segmentation. We argue that effective refusal requires explicitly modeling the trade-off between offensive risk and defensive benefit, rather than relying solely on intent or offensive classification. In this paper, we introduce a content-based framework for designing and auditing cyber refusal policies that makes offense-defense tradeoffs explicit. The framework characterizes requests along five dimensions: Offensive Action Contribution, Offensive Risk, Technical Complexity, Defensive Benefit, and Expected Frequency for Legitimate Users, grounded in the technical substance of the request rather than stated intent. We demonstrate that this content-grounded approach resolves inconsistencies in current frontier model behavior and allows organizations to construct tunable, risk-aware refusal policies.
☆ Revisiting Northrop Frye's Four Myths Theory with Large Language Models
Northrop Frye's theory of four fundamental narrative genres (comedy, romance, tragedy, satire) has profoundly influenced literary criticism, yet computational approaches to his framework have focused primarily on narrative patterns rather than character functions. In this paper, we present a new character function framework that complements pattern-based analysis by examining how archetypal roles manifest differently across Frye's genres. Drawing on Jungian archetype theory, we derive four universal character functions (protagonist, mentor, antagonist, companion) by mapping them to Jung's psychic structure components. These functions are then specialized into sixteen genre-specific roles based on prototypical works. To validate this framework, we conducted a multi-model study using six state-of-the-art Large Language Models (LLMs) to evaluate character-role correspondences across 40 narrative works. The validation employed both positive samples (160 valid correspondences) and negative samples (30 invalid correspondences) to evaluate whether models both recognize valid correspondences and reject invalid ones. LLMs achieved substantial performance (mean balanced accuracy of 82.5%) with strong inter-model agreement (Fleiss' $κ$ = 0.600), demonstrating that the proposed correspondences capture systematic structural patterns. Performance varied by genre (ranging from 72.7% to 89.9%) and role (52.5% to 99.2%), with qualitative analysis revealing that variations reflect genuine narrative properties, including functional distribution in romance and deliberate archetypal subversion in satire. This character-based approach demonstrates the potential of LLM-supported methods for computational narratology and provides a foundation for future development of narrative generation methods and interactive storytelling applications.
☆ LLM-to-Speech: A Synthetic Data Pipeline for Training Dialectal Text-to-Speech Models EACL26
Despite the advances in neural text to speech (TTS), many Arabic dialectal varieties remain marginally addressed, with most resources concentrated on Modern Spoken Arabic (MSA) and Gulf dialects, leaving Egyptian Arabic -- the most widely understood Arabic dialect -- severely under-resourced. We address this gap by introducing NileTTS: 38 hours of transcribed speech from two speakers across diverse domains including medical, sales, and general conversations. We construct this dataset using a novel synthetic pipeline: large language models (LLM) generate Egyptian Arabic content, which is then converted to natural speech using audio synthesis tools, followed by automatic transcription and speaker diarization with manual quality verification. We fine-tune XTTS v2, a state-of-the-art multilingual TTS model, on our dataset and evaluate against the baseline model trained on other Arabic dialects. Our contributions include: (1) the first publicly available Egyptian Arabic TTS dataset, (2) a reproducible synthetic data generation pipeline for dialectal TTS, and (3) an open-source fine-tuned model. All resources are released to advance Egyptian Arabic speech synthesis research.
comment: 8 pages, 2 figures, EACL26
☆ STAPO: Stabilizing Reinforcement Learning for LLMs by Silencing Rare Spurious Tokens
Shiqi Liu, Zeyu He, Guojian Zhan, Letian Tao, Zhilong Zheng, Jiang Wu, Yinuo Wang, Yang Guan, Kehua Sheng, Bo Zhang, Keqiang Li, Jingliang Duan, Shengbo Eben Li
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often experience late-stage performance collapse, leading to degraded reasoning quality and unstable training. We derive that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy entropy. Building on this result, we prove that training instability is driven by a tiny fraction of tokens, approximately 0.01\%, which we term \emph{spurious tokens}. When such tokens appear in correct responses, they contribute little to the reasoning outcome but inherit the full sequence-level reward, leading to abnormally amplified gradient updates. Motivated by this observation, we propose Spurious-Token-Aware Policy Optimization (STAPO) for large-scale model refining, which selectively masks such updates and renormalizes the loss over valid tokens. Across six mathematical reasoning benchmarks using Qwen 1.7B, 8B, and 14B base models, STAPO consistently demonstrates superior entropy stability and achieves an average performance improvement of 7.13\% over GRPO, 20-Entropy and JustRL.
☆ Clinically Inspired Symptom-Guided Depression Detection from Emotion-Aware Speech Representations
Depression manifests through a diverse set of symptoms such as sleep disturbance, loss of interest, and concentration difficulties. However, most existing works treat depression prediction either as a binary label or an overall severity score without explicitly modeling symptom-specific information. This limits their ability to provide symptom-level analysis relevant to clinical screening. To address this, we propose a symptom-specific and clinically inspired framework for depression severity estimation from speech. Our approach uses a symptom-guided cross-attention mechanism that aligns PHQ-8 questionnaire items with emotion-aware speech representations to identify which segments of a participant's speech are more important to each symptom. To account for differences in how symptoms are expressed over time, we introduce a learnable symptom-specific parameter that adaptively controls the sharpness of attention distributions. Our results on EDAIC, a standard clinical-style dataset, demonstrate improved performance outperforming prior works. Further, analyzing the attention distributions showed that higher attention is assigned to utterances containing cues related to multiple depressive symptoms, highlighting the interpretability of our approach. These findings outline the importance of symptom-guided and emotion-aware modeling for speech-based depression screening.
comment: 5 pages, 3 figures
☆ Beyond Static Pipelines: Learning Dynamic Workflows for Text-to-SQL
Text-to-SQL has recently achieved impressive progress, yet remains difficult to apply effectively in real-world scenarios. This gap stems from the reliance on single static workflows, fundamentally limiting scalability to out-of-distribution and long-tail scenarios. Instead of requiring users to select suitable methods through extensive experimentation, we attempt to enable systems to adaptively construct workflows at inference time. Through theoretical and empirical analysis, we demonstrate that optimal dynamic policies consistently outperform the best static workflow, with performance gains fundamentally driven by heterogeneity across candidate workflows. Motivated by this, we propose SquRL, a reinforcement learning framework that enhances LLMs' reasoning capability in adaptive workflow construction. We design a rule-based reward function and introduce two effective training mechanisms: dynamic actor masking to encourage broader exploration, and pseudo rewards to improve training efficiency. Experiments on widely-used Text-to-SQL benchmarks demonstrate that dynamic workflow construction consistently outperforms the best static workflow methods, with especially pronounced gains on complex and out-of-distribution queries. The codes are available at https://github.com/Satissss/SquRL
☆ RUVA: Personalized Transparent On-Device Graph Reasoning
Gabriele Conte, Alessio Mattiace, Gianni Carmosino, Potito Aghilar, Giovanni Servedio, Francesco Musicco, Vito Walter Anelli, Tommaso Di Noia, Francesco Maria Donini
The Personal AI landscape is currently dominated by "Black Box" Retrieval-Augmented Generation. While standard vector databases offer statistical matching, they suffer from a fundamental lack of accountability: when an AI hallucinates or retrieves sensitive data, the user cannot inspect the cause nor correct the error. Worse, "deleting" a concept from a vector space is mathematically imprecise, leaving behind probabilistic "ghosts" that violate true privacy. We propose Ruva, the first "Glass Box" architecture designed for Human-in-the-Loop Memory Curation. Ruva grounds Personal AI in a Personal Knowledge Graph, enabling users to inspect what the AI knows and to perform precise redaction of specific facts. By shifting the paradigm from Vector Matching to Graph Reasoning, Ruva ensures the "Right to be Forgotten." Users are the editors of their own lives; Ruva hands them the pen. The project and the demo video are available at http://sisinf00.poliba.it/ruva/.
☆ jina-embeddings-v5-text: Task-Targeted Embedding Distillation
Mohammad Kalim Akram, Saba Sturua, Nastia Havriushenko, Quentin Herreros, Michael Günther, Maximilian Werk, Han Xiao
Text embedding models are widely used for semantic similarity tasks, including information retrieval, clustering, and classification. General-purpose models are typically trained with single- or multi-stage processes using contrastive loss functions. We introduce a novel training regimen that combines model distillation techniques with task-specific contrastive loss to produce compact, high-performance embedding models. Our findings suggest that this approach is more effective for training small models than purely contrastive or distillation-based training paradigms alone. Benchmark scores for the resulting models, jina-embeddings-v5-text-small and jina-embeddings-v5-text-nano, exceed or match the state-of-the-art for models of similar size. jina-embeddings-v5-text models additionally support long texts (up to 32k tokens) in many languages, and generate embeddings that remain robust under truncation and binary quantization. Model weights are publicly available, hopefully inspiring further advances in embedding model development.
comment: 14 pages, 8 figures. Model weights: https://huggingface.co/collections/jinaai/jina-embeddings-v5-text
☆ Perspectives - Interactive Document Clustering in the Discourse Analysis Tool Suite
This paper introduces Perspectives, an interactive extension of the Discourse Analysis Tool Suite designed to empower Digital Humanities (DH) scholars to explore and organize large, unstructured document collections. Perspectives implements a flexible, aspect-focused document clustering pipeline with human-in-the-loop refinement capabilities. We showcase how this process can be initially steered by defining analytical lenses through document rewriting prompts and instruction-based embeddings, and further aligned with user intent through tools for refining clusters and mechanisms for fine-tuning the embedding model. The demonstration highlights a typical workflow, illustrating how DH researchers can leverage Perspectives's interactive document map to uncover topics, sentiments, or other relevant categories, thereby gaining insights and preparing their data for subsequent in-depth analysis.
☆ ZeroSyl: Simple Zero-Resource Syllable Tokenization for Spoken Language Modeling
Pure speech language models aim to learn language directly from raw audio without textual resources. A key challenge is that discrete tokens from self-supervised speech encoders result in excessively long sequences, motivating recent work on syllable-like units. However, methods like Sylber and SyllableLM rely on intricate multi-stage training pipelines. We propose ZeroSyl, a simple training-free method to extract syllable boundaries and embeddings directly from a frozen WavLM model. Using L2 norms of features in WavLM's intermediate layers, ZeroSyl achieves competitive syllable segmentation performance. The resulting segments are mean-pooled, discretized using K-means, and used to train a language model. ZeroSyl outperforms prior syllabic tokenizers across lexical, syntactic, and narrative benchmarks. Scaling experiments show that while finer-grained units are beneficial for lexical tasks, our discovered syllabic units exhibit better scaling behavior for syntactic modeling.
comment: 3 figures, 2 tables
☆ ExpertWeaver: Unlocking the Inherent MoE in Dense LLMs with GLU Activation Patterns
Ziyu Zhao, Tong Zhu, Zhi Zhang, Tiantian Fan, Jinluan Yang, Kun Kuang, Zhongyu Wei, Fei Wu, Yu Cheng
Mixture-of-Experts (MoE) effectively scales model capacity while preserving computational efficiency through sparse expert activation. However, training high-quality MoEs from scratch is prohibitively expensive. A promising alternative is to convert pretrained dense models into sparse MoEs. Existing dense-to-MoE methods fall into two categories: \textbf{dynamic structural pruning} that converts dense models into MoE architectures with moderate sparsity to balance performance and inference efficiency, and \textbf{downcycling} approaches that use pretrained dense models to initialize highly sparse MoE architectures. However, existing methods break the intrinsic activation patterns within dense models, leading to suboptimal expert construction. In this work, we argue that the Gated Linear Unit (GLU) mechanism provides a natural blueprint for dense-to-MoE conversion. We show that the fine-grained neural-wise activation patterns of GLU reveal a coarse-grained structure, uncovering an inherent MoE architecture composed of consistently activated universal neurons and dynamically activated specialized neurons. Leveraging this discovery, we introduce ExpertWeaver, a training-free framework that partitions neurons according to their activation patterns and constructs shared experts and specialized routed experts with layer-adaptive configurations. Our experiments demonstrate that ExpertWeaver significantly outperforms existing methods, both as a training-free dynamic structural pruning technique and as a downcycling strategy for superior MoE initialization.
☆ DependencyAI: Detecting AI Generated Text through Dependency Parsing
As large language models (LLMs) become increasingly prevalent, reliable methods for detecting AI-generated text are critical for mitigating potential risks. We introduce DependencyAI, a simple and interpretable approach for detecting AI-generated text using only the labels of linguistic dependency relations. Our method achieves competitive performance across monolingual, multi-generator, and multilingual settings. To increase interpretability, we analyze feature importance to reveal syntactic structures that distinguish AI-generated from human-written text. We also observe a systematic overprediction of certain models on unseen domains, suggesting that generator-specific writing styles may affect cross-domain generalization. Overall, our results demonstrate that dependency relations alone provide a robust signal for AI-generated text detection, establishing DependencyAI as a strong linguistically grounded, interpretable, and non-neural network baseline.
☆ Fine-Refine: Iterative Fine-grained Refinement for Mitigating Dialogue Hallucination
The tendency for hallucination in current large language models (LLMs) negatively impacts dialogue systems. Such hallucinations produce factually incorrect responses that may mislead users and undermine system trust. Existing refinement methods for dialogue systems typically operate at the response level, overlooking the fact that a single response may contain multiple verifiable or unverifiable facts. To address this gap, we propose Fine-Refine, a fine-grained refinement framework that decomposes responses into atomic units, verifies each unit using external knowledge, assesses fluency via perplexity, and iteratively corrects granular errors. We evaluate factuality across the HybriDialogue and OpendialKG datasets in terms of factual accuracy (fact score) and coverage (Not Enough Information Proportion), and experiments show that Fine-Refine substantially improves factuality, achieving up to a 7.63-point gain in dialogue fact score, with a small trade-off in dialogue quality.
☆ LuxMT Technical Report
We introduce LuxMT, a machine translation system based on Gemma 3 27B and fine-tuned for translation from Luxembourgish (LB) into French (FR) and English (EN). To assess translation performance, we construct a novel benchmark covering LB-FR, LB-EN, and LB-FR using human-translated data from Luci, a tourist magazine about Luxembourg. Training data stems from LuxAlign, a parallel corpus of multilingual Luxembourgish news articles, and LB parliamentary transcripts augmented with Google Translate. We filter the data using LuxEmbedder, LB sentence embeddings, to remove low-equivalence segment-pairs. Overall, LuxMT's results suggest strong improvements over the Gemma 3 baseline, even for translating LB to German (DE), despite the training data not containing any DE. We also explore LuxEmbedder's potential to be used as a quality estimation metric and find strong correlations with other reference-based metrics. However, we call for further research to fully assess the metric's utility and advise using it with caution.
comment: preprint
☆ Towards Expectation Detection in Language: A Case Study on Treatment Expectations in Reddit
Patients' expectations towards their treatment have a substantial effect on the treatments' success. While primarily studied in clinical settings, online patient platforms like medical subreddits may hold complementary insights: treatment expectations that patients feel unnecessary or uncomfortable to share elsewhere. Despite this, no studies examine what type of expectations users discuss online and how they express them. Presumably this is because expectations have not been studied in natural language processing (NLP) before. Therefore, we introduce the task of Expectation Detection, arguing that expectations are relevant for many applications, including opinion mining and product design. Subsequently, we present a case study for the medical domain, where expectations are particularly crucial to extract. We contribute RedHOTExpect, a corpus of Reddit posts (4.5K posts) to study expectations in this context. We use a large language model (LLM) to silver-label the data and validate its quality manually (label accuracy ~78%). Based on this, we analyze which linguistic patterns characterize expectations and explore what patients expect and why. We find that optimism and proactive framing are more pronounced in posts about physical or treatment-related illnesses compared to mental-health contexts, and that in our dataset, patients mostly discuss benefits rather than negative outcomes. The RedHOTExpect corpus can be obtained from https://www.ims.uni-stuttgart.de/data/RedHOTExpect
☆ In Agents We Trust, but Who Do Agents Trust? Latent Source Preferences Steer LLM Generations ICLR 2026
Mohammad Aflah Khan, Mahsa Amani, Soumi Das, Bishwamittra Ghosh, Qinyuan Wu, Krishna P. Gummadi, Manish Gupta, Abhilasha Ravichander
Agents based on Large Language Models (LLMs) are increasingly being deployed as interfaces to information on online platforms. These agents filter, prioritize, and synthesize information retrieved from the platforms' back-end databases or via web search. In these scenarios, LLM agents govern the information users receive, by drawing users' attention to particular instances of retrieved information at the expense of others. While much prior work has focused on biases in the information LLMs themselves generate, less attention has been paid to the factors that influence what information LLMs select and present to users. We hypothesize that when information is attributed to specific sources (e.g., particular publishers, journals, or platforms), current LLMs exhibit systematic latent source preferences- that is, they prioritize information from some sources over others. Through controlled experiments on twelve LLMs from six model providers, spanning both synthetic and real-world tasks, we find that several models consistently exhibit strong and predictable source preferences. These preferences are sensitive to contextual framing, can outweigh the influence of content itself, and persist despite explicit prompting to avoid them. They also help explain phenomena such as the observed left-leaning skew in news recommendations in prior work. Our findings advocate for deeper investigation into the origins of these preferences, as well as for mechanisms that provide users with transparency and control over the biases guiding LLM-powered agents.
comment: ICLR 2026
☆ TAROT: Test-driven and Capability-adaptive Curriculum Reinforcement Fine-tuning for Code Generation with Large Language Models
Large Language Models (LLMs) are changing the coding paradigm, known as vibe coding, yet synthesizing algorithmically sophisticated and robust code still remains a critical challenge. Incentivizing the deep reasoning capabilities of LLMs is essential to overcoming this hurdle. Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy to address this need. However, most existing approaches overlook the heterogeneous difficulty and granularity inherent in test cases, leading to an imbalanced distribution of reward signals and consequently biased gradient updates during training. To address this, we propose Test-driven and cApability-adaptive cuRriculum reinfOrcement fine-Tuning (TAROT). TAROT systematically constructs, for each problem, a four-tier test suite (basic, intermediate, complex, edge), providing a controlled difficulty landscape for curriculum design and evaluation. Crucially, TAROT decouples curriculum progression from raw reward scores, enabling capability-conditioned evaluation and principled selection from a portfolio of curriculum policies rather than incidental test-case difficulty composition. This design fosters stable optimization and more efficient competency acquisition. Extensive experimental results reveal that the optimal curriculum for RFT in code generation is closely tied to a model's inherent capability, with less capable models achieving greater gains with an easy-to-hard progression, whereas more competent models excel under a hard-first curriculum. TAROT provides a reproducible method that adaptively tailors curriculum design to a model's capability, thereby consistently improving the functional correctness and robustness of the generated code. All code and data are released to foster reproducibility and advance community research at https://github.com/deep-diver/TAROT.
comment: The first three authors contributed equally to this work; listing order is random
☆ Measuring Social Integration Through Participation: Categorizing Organizations and Leisure Activities in the Displaced Karelians Interview Archive using LLMs EACL 2026
Digitized historical archives make it possible to study everyday social life on a large scale, but the information extracted directly from text often does not directly allow one to answer the research questions posed by historians or sociologists in a quantitative manner. We address this problem in a large collection of Finnish World War II Karelian evacuee family interviews. Prior work extracted more than 350K mentions of leisure time activities and organizational memberships from these interviews, yielding 71K unique activity and organization names -- far too many to analyze directly.
We develop a categorization framework that captures key aspects of participation (the kind of activity/organization, how social it typically is, how regularly it happens, and how physically demanding it is). We annotate a gold-standard set to allow for a reliable evaluation, and then test whether large language models can apply the same schema at scale. Using a simple voting approach across multiple model runs, we find that an open-weight LLM can closely match expert judgments. Finally, we apply the method to label the 350K entities, producing a structured resource for downstream studies of social integration and related outcomes.
comment: Presented at: The 10th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature; EACL 2026 Workshop
☆ World-Model-Augmented Web Agents with Action Correction
Web agents based on large language models have demonstrated promising capability in automating web tasks. However, current web agents struggle to reason out sensible actions due to the limitations of predicting environment changes, and might not possess comprehensive awareness of execution risks, prematurely performing risky actions that cause losses and lead to task failure. To address these challenges, we propose WAC, a web agent that integrates model collaboration, consequence simulation, and feedback-driven action refinement. To overcome the cognitive isolation of individual models, we introduce a multi-agent collaboration process that enables an action model to consult a world model as a web-environment expert for strategic guidance; the action model then grounds these suggestions into executable actions, leveraging prior knowledge of environmental state transition dynamics to enhance candidate action proposal. To achieve risk-aware resilient task execution, we introduce a two-stage deduction chain. A world model, specialized in environmental state transitions, simulates action outcomes, which a judge model then scrutinizes to trigger action corrective feedback when necessary. Experiments show that WAC achieves absolute gains of 1.8% on VisualWebArena and 1.3% on Online-Mind2Web.
☆ The Vision Wormhole: Latent-Space Communication in Heterogeneous Multi-Agent Systems
Xiaoze Liu, Ruowang Zhang, Weichen Yu, Siheng Xiong, Liu He, Feijie Wu, Hoin Jung, Matt Fredrikson, Xiaoqian Wang, Jing Gao
Multi-Agent Systems (MAS) powered by Large Language Models have unlocked advanced collaborative reasoning, yet they remain shackled by the inefficiency of discrete text communication, which imposes significant runtime overhead and information quantization loss. While latent state transfer offers a high-bandwidth alternative, existing approaches either assume homogeneous sender-receiver architectures or rely on pair-specific learned translators, limiting scalability and modularity across diverse model families with disjoint manifolds. In this work, we propose the Vision Wormhole, a novel framework that repurposes the visual interface of Vision-Language Models (VLMs) to enable model-agnostic, text-free communication. By introducing a Universal Visual Codec, we map heterogeneous reasoning traces into a shared continuous latent space and inject them directly into the receiver's visual pathway, effectively treating the vision encoder as a universal port for inter-agent telepathy. Our framework adopts a hub-and-spoke topology to reduce pairwise alignment complexity from O(N^2) to O(N) and leverages a label-free, teacher-student distillation objective to align the high-speed visual channel with the robust reasoning patterns of the text pathway. Extensive experiments across heterogeneous model families (e.g., Qwen-VL, Gemma) demonstrate that the Vision Wormhole reduces end-to-end wall-clock time in controlled comparisons while maintaining reasoning fidelity comparable to standard text-based MAS. Code is available at https://github.com/xz-liu/heterogeneous-latent-mas
comment: Preprint. Work in progress
☆ Making Large Language Models Speak Tulu: Structured Prompting for an Extremely Low-Resource Language EACL
Can large language models converse in languages virtually absent from their training data? We investigate this question through a case study on Tulu, a Dravidian language with over 2 million speakers but minimal digital presence. Rather than fine-tuning an LLM, we examine whether structured prompts alone can elicit basic conversational ability under controlled prompting. We systematically tackle various challenges posed by absence of training data for Tulu by combining explicit grammar documentation, negative constraints to suppress high-probability tokens from related languages, romanization standardization, and quality-controlled synthetic data generation via self-play. Evaluated on a manually curated held-out set across three LLMs (Gemini 2.0 Flash, GPT-4o, Llama 3.1 70B) and validated by native speakers, our approach reduces vocabulary contamination from 80% to 5% while achieving 85% grammatical accuracy. Cross-model analysis reveals that negative constraints provide consistent improvements (12--18 percentage points), while grammar documentation effects vary by model architecture (8--22 points).
comment: Accepted to EACL LoResLM Workshop
☆ Orchestration-Free Customer Service Automation: A Privacy-Preserving and Flowchart-Guided Framework
Customer service automation has seen growing demand within digital transformation. Existing approaches either rely on modular system designs with extensive agent orchestration or employ over-simplified instruction schemas, providing limited guidance and poor generalizability. This paper introduces an orchestration-free framework using Task-Oriented Flowcharts (TOFs) to enable end-to-end automation without manual intervention. We first define the components and evaluation metrics for TOFs, then formalize a cost-efficient flowchart construction algorithm to abstract procedural knowledge from service dialogues. We emphasize local deployment of small language models and propose decentralized distillation with flowcharts to mitigate data scarcity and privacy issues in model training. Extensive experiments validate the effectiveness in various service tasks, with superior quantitative and application performance compared to strong baselines and market products. By releasing a web-based system demonstration with case studies, we aim to promote streamlined creation of future service automation.
comment: Accepted by TheWebConf 2026
☆ Far Out: Evaluating Language Models on Slang in Australian and Indian English EACL 2026
Language models exhibit systematic performance gaps when processing text in non-standard language varieties, yet their ability to comprehend variety-specific slang remains underexplored for several languages. We present a comprehensive evaluation of slang awareness in Indian English (en-IN) and Australian English (en-AU) across seven state-of-the-art language models. We construct two complementary datasets: \textsc{web}, containing 377 web-sourced usage examples from Urban Dictionary, and \textsc{gen}, featuring 1,492 synthetically generated usages of these slang terms, across diverse scenarios. We assess language models on three tasks: target word prediction (TWP), guided target word prediction (TWP$^*$) and target word selection (TWS). Our results reveal four key findings: (1) Higher average model performance TWS versus TWP and TWP$^*$, with average accuracy score increasing from 0.03 to 0.49 respectively (2) Stronger average model performance on \textsc{web} versus \textsc{gen} datasets, with average similarity score increasing by 0.03 and 0.05 across TWP and TWP$^*$ tasks respectively (3) en-IN tasks outperform en-AU when averaged across all models and datasets, with TWS demonstrating the largest disparity, increasing average accuracy from 0.44 to 0.54. These findings underscore fundamental asymmetries between generative and discriminative competencies for variety-specific language, particularly in the context of slang expressions despite being in a technologically rich language such as English.
comment: Accepted as a paper at 13th VarDial workshop at EACL 2026
☆ NeuroSymActive: Differentiable Neural-Symbolic Reasoning with Active Exploration for Knowledge Graph Question Answering
Rong Fu, Yang Li, Zeyu Zhang, Jiekai Wu, Yaohua Liu, Shuaishuai Cao, Yangchen Zeng, Yuhang Zhang, Xiaojing Du, Chuang Zhao, Kangning Cui, Simon Fong
Large pretrained language models and neural reasoning systems have advanced many natural language tasks, yet they remain challenged by knowledge-intensive queries that require precise, structured multi-hop inference. Knowledge graphs provide a compact symbolic substrate for factual grounding, but integrating graph structure with neural models is nontrivial: naively embedding graph facts into prompts leads to inefficiency and fragility, while purely symbolic or search-heavy approaches can be costly in retrievals and lack gradient-based refinement. We introduce NeuroSymActive, a modular framework that combines a differentiable neural-symbolic reasoning layer with an active, value-guided exploration controller for Knowledge Graph Question Answering. The method couples soft-unification style symbolic modules with a neural path evaluator and a Monte-Carlo style exploration policy that prioritizes high-value path expansions. Empirical results on standard KGQA benchmarks show that NeuroSymActive attains strong answer accuracy while reducing the number of expensive graph lookups and model calls compared to common retrieval-augmented baselines.
comment: 26 pages, 7 figures
☆ Discovering Implicit Large Language Model Alignment Objectives
Large language model (LLM) alignment relies on complex reward signals that often obscure the specific behaviors being incentivized, creating critical risks of misalignment and reward hacking. Existing interpretation methods typically rely on pre-defined rubrics, risking the omission of "unknown unknowns", or fail to identify objectives that comprehensively cover and are causal to the model behavior. To address these limitations, we introduce Obj-Disco, a framework that automatically decomposes an alignment reward signal into a sparse, weighted combination of human-interpretable natural language objectives. Our approach utilizes an iterative greedy algorithm to analyze behavioral changes across training checkpoints, identifying and validating candidate objectives that best explain the residual reward signal. Extensive evaluations across diverse tasks, model sizes, and alignment algorithms demonstrate the framework's robustness. Experiments with popular open-source reward models show that the framework consistently captures > 90% of reward behavior, a finding further corroborated by human evaluation. Additionally, a case study on alignment with an open-source reward model reveals that Obj-Disco can successfully identify latent misaligned incentives that emerge alongside intended behaviors. Our work provides a crucial tool for uncovering the implicit objectives in LLM alignment, paving the way for more transparent and safer AI development.
☆ Prescriptive Scaling Reveals the Evolution of Language Model Capabilities
For deploying foundation models, practitioners increasingly need prescriptive scaling laws: given a pre training compute budget, what downstream accuracy is attainable with contemporary post training practice, and how stable is that mapping as the field evolves? Using large scale observational evaluations with 5k observational and 2k newly sampled data on model performance, we estimate capability boundaries, high conditional quantiles of benchmark scores as a function of log pre training FLOPs, via smoothed quantile regression with a monotone, saturating sigmoid parameterization. We validate the temporal reliability by fitting on earlier model generations and evaluating on later releases. Across various tasks, the estimated boundaries are mostly stable, with the exception of math reasoning that exhibits a consistently advancing boundary over time. We then extend our approach to analyze task dependent saturation and to probe contamination related shifts on math reasoning tasks. Finally, we introduce an efficient algorithm that recovers near full data frontiers using roughly 20% of evaluation budget. Together, our work releases the Proteus 2k, the latest model performance evaluation dataset, and introduces a practical methodology for translating compute budgets into reliable performance expectations and for monitoring when capability boundaries shift across time.
comment: Blog Post: https://jkjin.com/prescriptive-scaling
☆ Mnemis: Dual-Route Retrieval on Hierarchical Graphs for Long-Term LLM Memory
Zihao Tang, Xin Yu, Ziyu Xiao, Zengxuan Wen, Zelin Li, Jiaxi Zhou, Hualei Wang, Haohua Wang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang
AI Memory, specifically how models organizes and retrieves historical messages, becomes increasingly valuable to Large Language Models (LLMs), yet existing methods (RAG and Graph-RAG) primarily retrieve memory through similarity-based mechanisms. While efficient, such System-1-style retrieval struggles with scenarios that require global reasoning or comprehensive coverage of all relevant information. In this work, We propose Mnemis, a novel memory framework that integrates System-1 similarity search with a complementary System-2 mechanism, termed Global Selection. Mnemis organizes memory into a base graph for similarity retrieval and a hierarchical graph that enables top-down, deliberate traversal over semantic hierarchies. By combining the complementary strength from both retrieval routes, Mnemis retrieves memory items that are both semantically and structurally relevant. Mnemis achieves state-of-the-art performance across all compared methods on long-term memory benchmarks, scoring 93.9 on LoCoMo and 91.6 on LongMemEval-S using GPT-4.1-mini.
comment: 10 pages
☆ Extracting Consumer Insight from Text: A Large Language Model Approach to Emotion and Evaluation Measurement
Accurately measuring consumer emotions and evaluations from unstructured text remains a core challenge for marketing research and practice. This study introduces the Linguistic eXtractor (LX), a fine-tuned, large language model trained on consumer-authored text that also has been labeled with consumers' self-reported ratings of 16 consumption-related emotions and four evaluation constructs: trust, commitment, recommendation, and sentiment. LX consistently outperforms leading models, including GPT-4 Turbo, RoBERTa, and DeepSeek, achieving 81% macro-F1 accuracy on open-ended survey responses and greater than 95% accuracy on third-party-annotated Amazon and Yelp reviews. An application of LX to online retail data, using seemingly unrelated regression, affirms that review-expressed emotions predict product ratings, which in turn predict purchase behavior. Most emotional effects are mediated by product ratings, though some emotions, such as discontent and peacefulness, influence purchase directly, indicating that emotional tone provides meaningful signals beyond star ratings. To support its use, a no-code, cost-free, LX web application is available, enabling scalable analyses of consumer-authored text. In establishing a new methodological foundation for consumer perception measurement, this research demonstrates new methods for leveraging large language models to advance marketing research and practice, thereby achieving validated detection of marketing constructs from consumer data.
☆ The Information Geometry of Softmax: Probing and Steering
This paper concerns the question of how AI systems encode semantic structure into the geometric structure of their representation spaces. The motivating observation of this paper is that the natural geometry of these representation spaces should reflect the way models use representations to produce behavior. We focus on the important special case of representations that define softmax distributions. In this case, we argue that the natural geometry is information geometry. Our focus is on the role of information geometry on semantic encoding and the linear representation hypothesis. As an illustrative application, we develop "dual steering", a method for robustly steering representations to exhibit a particular concept using linear probes. We prove that dual steering optimally modifies the target concept while minimizing changes to off-target concepts. Empirically, we find that dual steering enhances the controllability and stability of concept manipulation.
comment: Code is available at https://github.com/KihoPark/dual-steering
☆ FrameRef: A Framing Dataset and Simulation Testbed for Modeling Bounded Rational Information Health
Information ecosystems increasingly shape how people internalize exposure to adverse digital experiences, raising concerns about the long-term consequences for information health. In modern search and recommendation systems, ranking and personalization policies play a central role in shaping such exposure and its long-term effects on users. To study these effects in a controlled setting, we present FrameRef, a large-scale dataset of 1,073,740 systematically reframed claims across five framing dimensions: authoritative, consensus, emotional, prestige, and sensationalist, and propose a simulation-based framework for modeling sequential information exposure and reinforcement dynamics characteristic of ranking and recommendation systems. Within this framework, we construct framing-sensitive agent personas by fine-tuning language models with framing-conditioned loss attenuation, inducing targeted biases while preserving overall task competence. Using Monte Carlo trajectory sampling, we show that small, systematic shifts in acceptance and confidence can compound over time, producing substantial divergence in cumulative information health trajectories. Human evaluation further confirms that FrameRef's generated framings measurably affect human judgment. Together, our dataset and framework provide a foundation for systematic information health research through simulation, complementing and informing responsible human-centered research. We release FrameRef, code, documentation, human evaluation data, and persona adapter models at https://github.com/infosenselab/frameref.
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. While previous work has largely study the ability of LLMs to solve combined exploration-exploitation tasks, we take a more systematic approach and use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that reasoning models show the most promise for solving exploitation tasks, although they are still too expensive or too slow to be used in many practical settings. Motivated by this, we study tool use and in-context summarization using non-reasoning models. We find that these mitigations may be used to substantially improve performance on medium-difficulty tasks, however even then, all LLMs we study perform worse than a simple linear regression, even in non-linear settings. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critique from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring into the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
♻ ☆ LogiPart: Local Large Language Models for Data Exploration at Scale with Logical Partitioning
The discovery of deep, steerable taxonomies in large text corpora is currently restricted by a trade-off between the surface-level efficiency of topic models and the prohibitive, non-scalable assignment costs of LLM-integrated frameworks. We introduce \textbf{LogiPart}, a scalable, hypothesis-first framework for building interpretable hierarchical partitions that decouples hierarchy growth from expensive full-corpus LLM conditioning. LogiPart utilizes locally hosted LLMs on compact, embedding-aware samples to generate concise natural-language taxonomic predicates. These predicates are then evaluated efficiently across the entire corpus using zero-shot Natural Language Inference (NLI) combined with fast graph-based label propagation, achieving constant $O(1)$ generative token complexity per node relative to corpus size. We evaluate LogiPart across four diverse text corpora (totaling $\approx$140,000 documents). Using structured manifolds for \textbf{calibration}, we identify an empirical reasoning threshold at the 14B-parameter scale required for stable semantic grounding. On complex, high-entropy corpora (Wikipedia, US Bills), where traditional thematic metrics reveal an ``alignment gap,'' inverse logic validation confirms the stability of the induced logic, with individual taxonomic bisections maintaining an average per-node routing accuracy of up to 96\%. A qualitative audit by an independent LLM-as-a-judge confirms the discovery of meaningful functional axes, such as policy intent, that thematic ground-truth labels fail to capture. LogiPart enables frontier-level exploratory analysis on consumer-grade hardware, making hypothesis-driven taxonomic discovery feasible under realistic computational and governance constraints.
comment: This version introduces a major architectural shift to Local LLMs and NLI-based assignment, scaling the framework to O(1) generative complexity. Formerly titled 'Question-Driven Analysis and Synthesis'
♻ ☆ Can Multimodal LLMs Perform Time Series Anomaly Detection? WWW'26
Time series anomaly detection (TSAD) has been a long-standing pillar problem in Web-scale systems and online infrastructures, such as service reliability monitoring, system fault diagnosis, and performance optimization. Large language models (LLMs) have demonstrated unprecedented capabilities in time series analysis, the potential of multimodal LLMs (MLLMs), particularly vision-language models, in TSAD remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. It motivates our research question: Can multimodal LLMs perform time series anomaly detection? Existing studies often oversimplify the problem by treating point-wise anomalies as special cases of range-wise ones or by aggregating point anomalies to approximate range-wise scenarios. They limit our understanding for realistic scenarios such as multi-granular anomalies and irregular time series. To address the gap, we build a VisualTimeAnomaly benchmark to comprehensively investigate zero-shot capabilities of MLLMs for TSAD, progressively from point-, range-, to variate-wise anomalies, and extends to irregular sampling conditions. Our study reveals several key insights in multimodal MLLMs for TSAD. Built on these findings, we propose a MLLMs-based multi-agent framework TSAD-Agents to achieve automatic TSAD. Our framework comprises scanning, planning, detection, and checking agents that synergistically collaborate to reason, plan, and self-reflect to enable automatic TSAD. These agents adaptively invoke tools such as traditional methods and MLLMs and dynamically switch between text and image modalities to optimize detection performance.
comment: ACM Web Conference 2026 (WWW'26)
♻ ☆ A Scoping Review of Synthetic Data Generation by Language Models in Biomedical Research and Application: Data Utility and Quality Perspectives
Synthetic data generation using large language models (LLMs) demonstrates substantial promise in addressing biomedical data challenges and shows increasing adoption in biomedical research. This study systematically reviews recent advances in synthetic data generation for biomedical applications and clinical research, focusing on how LLMs address data scarcity, utility, and quality issues with different modalities. We conducted a scoping review following PRISMA-ScR guidelines and searched literature published between 2020 and 2025 through PubMed, ACM, Web of Science, and Google Scholar. A total of 59 studies were included based on relevance to synthetic data generation in biomedical contexts. Among the reviewed studies, the predominant data modalities were unstructured texts (78.0\%), tabular data (13.6\%), and multimodal sources (8.4\%). Common generation methods included LLM prompting (74.6\%), fine-tuning (20.3\%), and specialized models (5.1\%). Evaluations were heterogeneous: intrinsic metrics (27.1\%), human-in-the-loop assessments (44.1\%), and LLM-based evaluations (13.6\%). However, limitations and key barriers persist in data modalities, domain utility, resource and model accessibility, and standardized evaluation protocols. Future efforts may focus on developing standardized, transparent evaluation frameworks and expanding accessibility to support effective applications in biomedical research.
♻ ☆ Long Grounded Thoughts: Synthesizing Visual Problems and Reasoning Chains at Scale
David Acuna, Chao-Han Huck Yang, Yuntian Deng, Jaehun Jung, Ximing Lu, Prithviraj Ammanabrolu, Hyunwoo Kim, Yuan-Hong Liao, Yejin Choi
Despite rapid progress, multimodal reasoning still lacks a systematic approach to synthesize large-scale vision-centric datasets beyond visual math. We introduce a framework able to synthesize vision-centric problems spanning diverse levels of complexity, and the resulting dataset with over 1M high-quality problems including: reasoning traces, preference data, and instruction prompts supporting SFT, offline and online RL. Our vision-centric synthesis framework uses a two-stage process focusing on: (1) generating diverse verifiable questions from existing images at scale, and (2) creating complex compositional visual problems by merging simpler questions. Remarkably, finetuning Qwen2.5-VL-7B on our data outperforms existing open-data baselines across evaluated vision-centric benchmarks, and our best configurations match or surpass strong closed-data models such as MiMo-VL-7B-RL on Vstar Bench, CV-Bench and MMStar-V. Notably, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro, +3.7%) and audio reasoning (MMAU, +1.32%), demonstrating its effectiveness. Similarly, despite containing no embodied visual data, we observe notable gains (NiEH, +8.8%) when evaluating open-ended embodied QA. Lastly, we use our data to comprehensively analyze at scale (1M+) the entire VLM post-training pipeline showing that (i) SFT on high-quality data with cognitive behaviors on reasoning traces is essential to scale online RL, (ii) offline RL could match online RL's performance while disaggregating compute demands, and, (iii) SFT on high quality data also improve out-of-domain, cross-modality transfer.
♻ ☆ mini-vec2vec: Scaling Universal Geometry Alignment with Linear Transformations
We build upon vec2vec, a procedure designed to align text embedding spaces without parallel data. vec2vec finds a near-perfect alignment, but it is expensive and unstable. We present mini-vec2vec, a simple and efficient alternative that requires substantially lower computational cost and is highly robust. Moreover, the learned mapping is a linear transformation. Our method consists of three main stages: a tentative matching of pseudo-parallel embedding vectors, transformation fitting, and iterative refinement. Our linear alternative exceeds the original instantiation of vec2vec by orders of magnitude in efficiency, while matching or exceeding their results. The method's stability and interpretable algorithmic steps facilitate scaling and unlock new opportunities for adoption in new domains and fields.
♻ ☆ The Mighty ToRR: A Benchmark for Table Reasoning and Robustness
Shir Ashury-Tahan, Yifan Mai, Rajmohan C, Ariel Gera, Yotam Perlitz, Asaf Yehudai, Elron Bandel, Leshem Choshen, Eyal Shnarch, Percy Liang, Michal Shmueli-Scheuer
Despite its real-world significance, model performance on tabular data remains underexplored, leaving uncertainty about which model to rely on and which prompt configuration to adopt. To address this gap, we create ToRR, a benchmark for Table Reasoning and Robustness, measuring model performance and robustness on table-related tasks. The benchmark includes 10 datasets that cover different types of table reasoning capabilities across varied domains. ToRR goes beyond model performance rankings, and is designed to reflect whether models can handle tabular data consistently and robustly, across a variety of common table representation formats. We present a leaderboard as well as comprehensive analyses of the results of leading models over ToRR. Our results reveal a striking pattern of brittle model behavior, where even strong models are unable to perform robustly on tabular data tasks. Although no specific table format leads to consistently better performance, we show that testing over multiple formats is crucial for reliably estimating model capabilities. Moreover, we show that the reliability boost from testing multiple prompts can be equivalent to adding more test examples. Overall, our findings show that table understanding and reasoning tasks remain a significant challenge.
♻ ☆ PII-Bench: Evaluating Query-Aware Privacy Protection Systems
The widespread adoption of Large Language Models (LLMs) has raised significant privacy concerns regarding the exposure of personally identifiable information (PII) in user prompts. To address this challenge, we propose a query-unrelated PII masking strategy and introduce PII-Bench, the first comprehensive evaluation framework for assessing privacy protection systems. PII-Bench comprises 2,842 test samples across 55 fine-grained PII categories, featuring diverse scenarios from single-subject descriptions to complex multi-party interactions. Each sample is carefully crafted with a user query, context description, and standard answer indicating query-relevant PII. Our empirical evaluation reveals that while current models perform adequately in basic PII detection, they show significant limitations in determining PII query relevance. Even state-of-the-art LLMs struggle with this task, particularly in handling complex multi-subject scenarios, indicating substantial room for improvement in achieving intelligent PII masking.
♻ ☆ ErrorMap and ErrorAtlas: Charting the Failure Landscape of Large Language Models
Large Language Models (LLM) benchmarks tell us when models fail, but not why they fail. A wrong answer on a reasoning dataset may stem from formatting issues, calculation errors, or dataset noise rather than weak reasoning. Without disentangling such causes, benchmarks remain incomplete and cannot reliably guide model improvement. We introduce ErrorMap, the first method to chart the sources of LLM failure. It extracts a model's unique "failure signature", clarifies what benchmarks measure, and broadens error identification to reduce blind spots. This helps developers debug models, aligns benchmark goals with outcomes, and supports informed model selection. ErrorMap works on any model or dataset with the same logic. Applying our method to 35 datasets and 83 models we generate ErrorAtlas, a taxonomy of model errors, revealing recurring failure patterns. ErrorAtlas highlights error types that are currently underexplored in LLM research, such as omissions of required details in the output and question misinterpretation. By shifting focus from where models succeed to why they fail, ErrorMap and ErrorAtlas enable advanced evaluation - one that exposes hidden weaknesses and directs progress. Unlike success, typically measured by task-level metrics, our approach introduces a deeper evaluation layer that can be applied globally across models and tasks, offering richer insights into model behavior and limitations. We make the taxonomy and code publicly available with plans to periodically update ErrorAtlas as new benchmarks and models emerge.
♻ ☆ Embedding Retrofitting: Data Engineering for better RAG
Embedding retrofitting adjusts pre-trained word vectors using knowledge graph constraints to improve domain-specific retrieval. However, the effectiveness of retrofitting depends critically on knowledge graph quality, which in turn depends on text preprocessing. This paper presents a data engineering framework that addresses data quality degradation from annotation artifacts in real-world corpora.
The analysis shows that hashtag annotations inflate knowledge graph density, leading to creating spurious edges that corrupt the retrofitting objective. On noisy graphs, all retrofitting techniques produce statistically significant degradation ($-3.5\%$ to $-5.2\%$, $p<0.05$). After preprocessing, \acrshort{ewma} retrofitting achieves $+6.2\%$ improvement ($p=0.0348$) with benefits concentrated in quantitative synthesis questions ($+33.8\%$ average). The gap between clean and noisy preprocessing (10\%+ swing) exceeds the gap between algorithms (3\%), establishing preprocessing quality as the primary determinant of retrofitting success.
comment: This paper was built on an assumption which has been proven incorrect
♻ ☆ ARGUS: Adaptive Rotation-Invariant Geometric Unsupervised System
Detecting distributional drift in high-dimensional data streams presents fundamental challenges: global comparison methods scale poorly, projection-based approaches lose geometric structure, and re-clustering methods suffer from identity instability. This paper introduces Argus, A framework that reconceptualizes drift detection as tracking local statistics over a fixed spatial partition of the data manifold.
The key contributions are fourfold. First, it is proved that Voronoi tessellations over canonical orthonormal frames yield drift metrics that are invariant to orthogonal transformations. The rotations and reflections that preserve Euclidean geometry. Second, it is established that this framework achieves O(N) complexity per snapshot while providing cell-level spatial localization of distributional change. Third, a graph-theoretic characterization of drift propagation is developed that distinguishes coherent distributional shifts from isolated perturbations. Fourth, product quantization tessellation is introduced for scaling to very high dimensions (d>500) by decomposing the space into independent subspaces and aggregating drift signals across subspaces.
This paper formalizes the theoretical foundations, proves invariance properties, and presents experimental validation demonstrating that the framework correctly identifies drift under coordinate rotation while existing methods produce false positives. The tessellated approach offers a principled geometric foundation for distribution monitoring that preserves high-dimensional structure without the computational burden of pairwise comparisons.
comment: This concept was built with an incorrect assumption and isn't viable
♻ ☆ LLMs Know More About Numbers than They Can Say EACL 2026
Although state-of-the-art LLMs can solve math problems, we find that they make errors on numerical comparisons with mixed notation: "Which is larger, $5.7 \times 10^2$ or $580$?" This raises a fundamental question: Do LLMs even know how big these numbers are? We probe the hidden states of several smaller open-source LLMs. A single linear projection of an appropriate hidden layer encodes the log-magnitudes of both kinds of numerals, allowing us to recover the numbers with relative error of about 2.3% (on restricted synthetic text) or 19.06% (on scientific papers). Furthermore, the hidden state after reading a pair of numerals encodes their ranking, with a linear classifier achieving over 90% accuracy. Yet surprisingly, when explicitly asked to rank the same pairs of numerals, these LLMs achieve only 50-70% accuracy, with worse performance for models whose probes are less effective. Finally, we show that incorporating the classifier probe's log-loss as an auxiliary objective during finetuning brings an additional 3.22% improvement in verbalized accuracy over base models, demonstrating that improving models' internal magnitude representations can enhance their numerical reasoning capabilities. Our code is available at https://github.com/VCY019/Numeracy-Probing.
comment: EACL 2026 (Oral), camera-ready version with GitHub link
♻ ☆ Intermittent Semi-Working Mask: A New Masking Paradigm for LLMs
HaoYuan Hu, Mingcong Lu, Di Luo, XinYa Wu, Jiangcai Zhu, Taoye Yin, Zheng Li, Hao Wang, Shusheng Zhang, KeZun Zhang, KaiLai Shao, Chao Chen, Feng Wang
Multi-turn dialogues and context-intensive tasks challenge Large Language Models (LLMs) to integrate long histories without sacrificing generation quality. Although prefix LLMs can better exploit historical context via bidirectional attention on prefix tokens, they are rarely used in practice because multi-turn training requires many duplicated triplets, and its bidirectional prefix prevents KV-cache reuse at inference time, driving up high cost and latency. To retain the contextual understanding of prefix mask while preserving the inference-time efficiency of causal mask, we introduce Intermittent Semi-working Mask (ISM), a masking scheme that injects sparse bidirectional attention into the causal backbone. ISM alternates bidirectional attention over query segments with unidirectional attention over answer segments, enabling the synthesis of in-context while preserving global causality. This design eliminates triplet expansion during training and maintains KV-cache reuse during inference, yielding latency comparable to standard causal LLMs. ISM is architecture-agnostic and parameter-free, adding only minimal latency. Across extensive evaluations, ISM outperforms causal baselines not only on multi-turn dialogue, but also on context-intensive tasks like mathematical reasoning.
♻ ☆ Your AI Bosses Are Still Prejudiced: The Emergence of Stereotypes in LLM-Based Multi-Agent Systems
While stereotypes are well-documented in human social interactions, AI systems are often presumed to be less susceptible to such biases. Previous studies have focused on biases inherited from training data, but whether stereotypes can emerge spontaneously in AI agent interactions merits further exploration. Through a novel experimental framework simulating workplace interactions with neutral initial conditions, we investigate the emergence and evolution of stereotypes in LLM-based multi-agent systems. Our findings reveal that (1) LLM-Based AI agents develop stereotype-driven biases in their interactions despite beginning without predefined biases; (2) stereotype effects intensify with increased interaction rounds and decision-making power, particularly after introducing hierarchical structures; (3) these systems exhibit group effects analogous to human social behavior, including halo effects, confirmation bias, and role congruity; and (4) these stereotype patterns manifest consistently across different LLM architectures. Through comprehensive quantitative analysis, these findings suggest that stereotype formation in AI systems may arise as an emergent property of multi-agent interactions, rather than merely from training data biases. Our work underscores the need for future research to explore the underlying mechanisms of this phenomenon and develop strategies to mitigate its ethical impacts.
♻ ☆ HLE-Verified: A Systematic Verification and Structured Revision of Humanity's Last Exam
Weiqi Zhai, Zhihai Wang, Jinghang Wang, Boyu Yang, Xiaogang Li, Xiang Xu, Bohan Wang, Peng Wang, Xingzhe Wu, Anfeng Li, Qiyuan Feng, Yuhao Zhou, Shoulin Han, Wenjie Luo, Yiyuan Li, Yaxuan Wang, Ruixian Luo, Guojie Lin, Peiyao Xiao, Chengliang Xu, Ben Wang, Zeyu Wang, Zichao Chen, Jianan Ye, Yijie Hu, Jialong Chen, Zongwen Shen, Yuliang Xu, An Yang, Bowen Yu, Dayiheng Liu, Junyang Lin, Hu Wei, Que Shen, Bing Zhao
Humanity's Last Exam (HLE) has become a widely used benchmark for evaluating frontier large language models on challenging, multi-domain questions. However, community-led analyses have raised concerns that HLE contains a non-trivial number of noisy items, which can bias evaluation results and distort cross-model comparisons. To address this challenge, we introduce HLE-Verified, a verified and revised version of HLE with a transparent verification protocol and fine-grained error taxonomy. Our construction follows a two-stage validation-and-repair workflow resulting in a certified benchmark. In Stage I, each item undergoes binary validation of the problem and final answer through domain-expert review and model-based cross-checks, yielding 641 verified items. In Stage II, flawed but fixable items are revised under strict constraints preserving the original evaluation intent, through dual independent expert repairs, model-assisted auditing, and final adjudication, resulting in 1,170 revised-and-certified items. The remaining 689 items are released as a documented uncertain set with explicit uncertainty sources and expertise tags for future refinement. We evaluate seven state-of-the-art language models on HLE and HLE-Verified, observing an average absolute accuracy gain of 7--10 percentage points on HLE-Verified. The improvement is particularly pronounced on items where the original problem statement and/or reference answer is erroneous, with gains of 30--40 percentage points. Our analyses further reveal a strong association between model confidence and the presence of errors in the problem statement or reference answer, supporting the effectiveness of our revisions. Overall, HLE-Verified improves HLE-style evaluations by reducing annotation noise and enabling more faithful measurement of model capabilities. Data is available at: https://github.com/SKYLENAGE-AI/HLE-Verified
comment: 14 pages, 10 figures
♻ ☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Wenhao Li, Daohai Yu, Gen Luo, Yuxin Zhang, Fei Chao, Rongrong Ji, Yifan Wu, Jiaxin Liu, Ziyang Gong, Zimu Liao
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
♻ ☆ What if Deception Cannot be Detected? A Cross-Linguistic Study on the Limits of Deception Detection from Text
Can deception be detected solely from written text? Cues of deceptive communication are inherently subtle, even more so in text-only communication. Yet, prior studies have reported considerable success in automatic deception detection. We hypothesize that such findings are largely driven by artifacts introduced during data collection and do not generalize beyond specific datasets. We revisit this assumption by introducing a belief-based deception framework, which defines deception as a misalignment between an author's claims and true beliefs, irrespective of factual accuracy, allowing deception cues to be studied in isolation. Based on this framework, we construct three corpora, collectively referred to as DeFaBel, including a German-language corpus of deceptive and non-deceptive arguments and a multilingual version in German and English, each collected under varying conditions to account for belief change and enable cross-linguistic analysis. Using these corpora, we evaluate commonly reported linguistic cues of deception. Across all three DeFaBel variants, these cues show negligible, statistically insignificant correlations with deception labels, contrary to prior work that treats such cues as reliable indicators. We further benchmark against other English deception datasets following similar data collection protocols. While some show statistically significant correlations, effect sizes remain low and, critically, the set of predictive cues is inconsistent across datasets. We also evaluate deception detection using feature-based models, pretrained language models, and instruction-tuned large language models. While some models perform well on established deception datasets, they consistently perform near chance on DeFaBel. Our findings challenge the assumption that deception can be reliably inferred from linguistic cues and call for rethinking how deception is studied and modeled in NLP.
♻ ☆ Curriculum Learning and Pseudo-Labeling Improve the Generalization of Multi-Label Arabic Dialect Identification Models EACL 2026
Being modeled as a single-label classification task for a long time, recent work has argued that Arabic Dialect Identification (ADI) should be framed as a multi-label classification task. However, ADI remains constrained by the availability of single-label datasets, with no large-scale multi-label resources available for training. By analyzing models trained on single-label ADI data, we show that the main difficulty in repurposing such datasets for Multi-Label Arabic Dialect Identification (MLADI) lies in the selection of negative samples, as many sentences treated as negative could be acceptable in multiple dialects. To address these issues, we construct a multi-label dataset by generating automatic multi-label annotations using GPT-4o and binary dialect acceptability classifiers, with aggregation guided by the Arabic Level of Dialectness (ALDi). Afterward, we train a BERT-based multi-label classifier using curriculum learning strategies aligned with dialectal complexity and label cardinality. On the MLADI leaderboard, our best-performing LAHJATBERT model achieves a macro F1 of 0.69, compared to 0.55 for the strongest previously reported system. Code and data are available at https://mohamedalaa9.github.io/lahjatbert/.
comment: Accepted at the 13th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2026
♻ ☆ Who is the richest club in the championship? Detecting and Rewriting Underspecified Questions Improve QA Performance
Large language models (LLMs) perform well on well-posed questions, yet standard question-answering (QA) benchmarks remain far from solved. We argue that this gap is partly due to underspecified questions - queries whose interpretation cannot be uniquely determined without additional context. To test this hypothesis, we introduce an LLM-based classifier to identify underspecified questions and apply it to several widely used QA datasets, finding that 16% to over 50% of benchmark questions are underspecified and that LLMs perform significantly worse on them. To isolate the effect of underspecification, we conduct a controlled rewriting experiment that serves as an upper-bound analysis, rewriting underspecified questions into fully specified variants while holding gold answers fixed. QA performance consistently improves under this setting, indicating that many apparent QA failures stem from question underspecification rather than model limitations. Our findings highlight underspecification as an important confound in QA evaluation and motivate greater attention to question clarity in benchmark design.
comment: 4 pages of main text, 13 pages in total, 5 tables and 10 figures in total
♻ ☆ NPG-Muse: Scaling Long Chain-of-Thought Reasoning with NP-Hard Graph Problems
Yuyao Wang, Bowen Liu, Jianheng Tang, Nuo Chen, Yuhan Li, Qifan Zhang, Chenyi Zi, Chen Zhang, Jia Li
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are the core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long-CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. The resulting NPG-Muse-series models exhibit substantially enhanced Long CoT reasoning capabilities, achieving consistent gains across mathematics, coding, logical, and graph reasoning benchmarks. NPG-Muse-7B even surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLM post-training. Our implementation is available at https://github.com/littlewyy/NPG-Muse.
♻ ☆ Topological quantification of ambiguity in semantic search
We studied how the local topological structure of sentence-embedding neighborhoods encodes semantic ambiguity. Extending ideas that link word-level polysemy to non-trivial persistent homology, we generalized the concept to full sentences and quantified ambiguity of a query in a semantic search process with two persistent homology metrics: the 1-Wasserstein norm of $H_{0}$ and the maximum loop lifetime of $H_{1}$. We formalized the notion of ambiguity as the relative presence of semantic domains or topics in sentences. We then used this formalism to compute "ab-initio" simulations that encode datapoints as linear combination of randomly generated single topics vectors in an arbitrary embedding space and demonstrate that ambiguous sentences separate from unambiguous ones in both metrics. Finally we validated those findings with real-world case by investigating on a fully open corpus comprising Nobel Prize Physics lectures from 1901 to 2024, segmented into contiguous, non-overlapping chunks at two granularity: $\sim\!250$ tokens and $\sim\!750$ tokens. We tested embedding with four publicly available models. Results across all models reproduce simulations and remain stable despite changes in embedding architecture. We conclude that persistent homology provides a model-agnostic signal of semantic discontinuities, suggesting practical use for ambiguity detection and semantic search recall.
♻ ☆ Annotation-Efficient Vision-Language Model Adaptation to the Polish Language Using the LLaVA Framework
Grzegorz Statkiewicz, Alicja Dobrzeniecka, Karolina Seweryn, Aleksandra Krasnodębska, Karolina Piosek, Katarzyna Bogusz, Sebastian Cygert, Wojciech Kusa
Most vision-language models (VLMs) are trained on English-centric data, limiting their performance in other languages and cultural contexts. This restricts their usability for non-English-speaking users and hinders the development of multimodal systems that reflect diverse linguistic and cultural realities. In this work, we reproduce and adapt the LLaVA-Next methodology to create a set of Polish VLMs. We rely on a fully automated pipeline for translating and filtering existing multimodal datasets, and complement this with synthetic Polish data for OCR and culturally specific tasks. Despite relying almost entirely on automatic translation and minimal manual intervention to the training data, our approach yields strong results: we observe a +9.5% improvement over LLaVA-1.6-Vicuna-13B on a Polish-adapted MMBench, along with higher-quality captions in generative evaluations, as measured by human annotators in terms of linguistic correctness. These findings highlight that large-scale automated translation, combined with lightweight filtering, can effectively bootstrap high-quality multimodal models for low-resource languages. Some challenges remain, particularly in cultural coverage and evaluation. To facilitate further research, we make our models and evaluation dataset publicly available.
♻ ☆ Differentiating Between Human-Written and AI-Generated Texts Using Automatically Extracted Linguistic Features
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and artificial intelligence (AI)-generated language. This exploratory study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as specific types of consonants, nouns, adjectives, pronouns, adjectival/prepositional modifiers, and use of difficult words, among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the engineering capacity of AI for producing more human-like text.
♻ ☆ General Exploratory Bonus for Optimistic Exploration in RLHF ICLR 2026
Optimistic exploration is central to improving sample efficiency in reinforcement learning with human feedback, yet existing exploratory bonus methods to incentivize exploration often fail to realize optimism. We provide a theoretical analysis showing that current formulations, under KL or $α$-divergence regularization, unintentionally bias exploration toward high-probability regions of the reference model, thereby reinforcing conservative behavior instead of promoting discovery of uncertain regions. To address this pitfall, we introduce the General Exploratory Bonus (GEB), a novel theoretical framework that provably satisfies the optimism principle. GEB counteracts divergence-induced bias via reference-dependent reward regulation and unifies prior heuristic bonuses as special cases, while extending naturally across the full $α$-divergence family. Empirically, GEB consistently outperforms baselines on alignment tasks across multiple divergence settings and large language model backbones. These results demonstrate that GEB offers both a principled and practical solution for optimistic exploration in RLHF.
comment: ICLR 2026
♻ ☆ Moving Beyond Medical Exams: A Clinician-Annotated Fairness Dataset of Real-World Tasks and Ambiguity in Mental Healthcare ICLR 2026
Max Lamparth, Declan Grabb, Amy Franks, Scott Gershan, Kaitlyn N. Kunstman, Aaron Lulla, Monika Drummond Roots, Manu Sharma, Aryan Shrivastava, Nina Vasan, Colleen Waickman
Current medical language model (LM) benchmarks often over-simplify the complexities of day-to-day clinical practice tasks and instead rely on evaluating LMs on multiple-choice board exam questions. In psychiatry especially, these challenges are worsened by fairness and bias issues, since models can be swayed by patient demographics even when those factors should not influence clinical decisions. Thus, we present an expert-created and annotated dataset spanning five critical domains of decision-making in mental healthcare: treatment, diagnosis, documentation, monitoring, and triage. This U.S.-centric dataset - created without any LM assistance - is designed to capture the nuanced clinical reasoning and daily ambiguities mental health practitioners encounter, reflecting the inherent complexities of care delivery that are missing from existing datasets. Almost all base questions with five answer options each have had the decision-irrelevant demographic patient information removed and replaced with variables, e.g., for age or ethnicity, and are available for male, female, or non-binary-coded patients. This design enables systematic evaluations of model performance and bias by studying how demographic factors affect decision-making. For question categories dealing with ambiguity and multiple valid answer options, we create a preference dataset with uncertainties from the expert annotations. We outline a series of intended use cases and demonstrate the usability of our dataset by evaluating sixteen off-the-shelf and six (mental) health fine-tuned LMs on category-specific task accuracy, on the fairness impact of patient demographic information on decision-making, and how consistently free-form responses deviate from human-annotated samples.
comment: Camera-ready version for ICLR 2026
♻ ☆ Stop saying LLM: Large Discourse Models (LDM) and Artificial Discursive Agent (ADA)?
This paper proposes an epistemological shift in the analysis of large generative models, replacing the category ''Large Language Models'' (LLM) with that of ''Large Discourse Models'' (LDM), and then with that of Artificial Discursive Agent (ADA). The theoretical framework is based on an ontological triad distinguishing three regulatory instances: the apprehension of the phenomenal regularities of the referential world, the structuring of embodied cognition, and the structural-linguistic sedimentation of the utterance within a socio-historical context. LDMs, operating on the product of these three instances (the document), model the discursive projection of a portion of human experience reified by the learning corpus. The proposed program aims to replace the ''fascination/fear'' dichotomy with public trials and procedures that make the place, uses, and limits of artificial discursive agents in contemporary social space decipherable, situating this approach within a perspective of governance and co-regulation involving the State, industry, civil society, and academia.
comment: in French language
♻ ☆ Multimodal Peer Review Simulation with Actionable To-Do Recommendations for Community-Aware Manuscript Revisions
Mengze Hong, Di Jiang, Weiwei Zhao, Yawen Li, Yihang Wang, Xinyuan Luo, Yanjie Sun, Chen Jason Zhang
While large language models (LLMs) offer promising capabilities for automating academic workflows, existing systems for academic peer review remain constrained by text-only inputs, limited contextual grounding, and a lack of actionable feedback. In this work, we present an interactive web-based system for multimodal, community-aware peer review simulation to enable effective manuscript revisions before paper submission. Our framework integrates textual and visual information through multimodal LLMs, enhances review quality via retrieval-augmented generation (RAG) grounded in web-scale OpenReview data, and converts generated reviews into actionable to-do lists using the proposed Action:Objective[\#] format, providing structured and traceable guidance. The system integrates seamlessly into existing academic writing platforms, providing interactive interfaces for real-time feedback and revision tracking. Experimental results highlight the effectiveness of the proposed system in generating more comprehensive and useful reviews aligned with expert standards, surpassing ablated baselines and advancing transparent, human-centered scholarly assistance.
comment: Accepted by TheWebConf 2026 Demo Track
♻ ☆ Stratified Hazard Sampling: Minimal-Variance Event Scheduling for CTMC/DTMC Discrete Diffusion and Flow Models
Uniform-noise discrete diffusion and flow models (e.g., D3PM, SEDD, UDLM, DFM) generate sequences non-autoregressively by iteratively refining randomly initialized vocabulary tokens through multiple context-dependent replacements. These models are typically formulated as time-inhomogeneous CTMC/DTMC processes and sampled using independent Bernoulli change decisions at each discretization step. This induces Poisson-binomial variance in per-position jump counts that grows with the number of required edits, leading to the characteristic under-editing (residual noise) and over-editing (cascading substitutions) failure modes that degrade sample quality, especially under tight discretization budgets. In contrast, absorbing-state (mask-start) models avoid this instability by allowing each position to jump at most once. We propose Stratified Hazard Sampling (SHS), a training-free, drop-in, and hyperparameter-free inference principle for any sampler that admits a stay-vs.-replace decomposition. SHS models per-token edits as events driven by cumulative hazard (CTMC) or cumulative jump mass (DTMC) and places events by stratifying this cumulative quantity: with a single random phase per position, a token is updated whenever its accumulated hazard crosses unit-spaced thresholds. This preserves the expected number of jumps while achieving the minimum possible conditional variance among unbiased integer estimators (bounded by 1/4 for any fixed cumulative mass), without altering per-jump destination sampling and thus retaining multimodality. Experiments on uniform-noise discrete diffusion language models show that SHS consistently improves sample quality. We further show that SHS improves robustness under token-level blacklist filtering, with benefits increasing as lexical constraints grow more severe.
comment: Work in progress. Feedback welcome
♻ ☆ Multi-Agent Comedy Club: Investigating Community Discussion Effects on LLM Humor Generation
Prior work has explored multi-turn interaction and feedback for LLM writing, but evaluations still largely center on prompts and localized feedback, leaving persistent public reception in online communities underexamined. We test whether broadcast community discussion improves stand-up comedy writing in a controlled multi-agent sandbox: in the discussion condition, critic and audience threads are recorded, filtered, stored as social memory, and later retrieved to condition subsequent generations, whereas the baseline omits discussion. Across 50 rounds (250 paired monologues) judged by five expert annotators using A/B preference and a 15-item rubric, discussion wins 75.6% of instances and improves Craft/Clarity (Δ = 0.440) and Social Response (Δ = 0.422), with occasional increases in aggressive humor.
comment: 18 pages, 5 figures
♻ ☆ CLARITY: Contextual Linguistic Adaptation and Accent Retrieval for Dual-Bias Mitigation in Text-to-Speech Generation
Crystal Min Hui Poon, Pai Chet Ng, Xiaoxiao Miao, Immanuel Jun Kai Loh, Bowen Zhang, Haoyu Song, Ian Mcloughlin
Instruction-guided text-to-speech (TTS) research has reached a maturity level where excellent speech generation quality is possible on demand, yet two coupled biases persist in reducing perceived quality: accent bias, where models default towards dominant phonetic patterns, and linguistic bias, a misalignment in dialect-specific lexical or cultural information. These biases are interdependent and authentic accent generation requires both accent fidelity and correctly localized text. We present CLARITY (Contextual Linguistic Adaptation and Retrieval for Inclusive TTS sYnthesis), a backbone-agnostic framework to address both biases through dual-signal optimization. Firstly, we apply contextual linguistic adaptation to localize input text to align with the target dialect. Secondly, we propose retrieval-augmented accent prompting (RAAP) to ensure accent-consistent speech prompts. We evaluate CLARITY on twelve varieties of English accent via both subjective and objective analysis. Results clearly indicate that CLARITY improves accent accuracy and fairness, ensuring higher perceptual quality output\footnote{Code and audio samples are available at https://github.com/ICT-SIT/CLARITY.
comment: under review
♻ ☆ Query as Anchor: Scenario-Adaptive User Representation via Large Language Model
Jiahao Yuan, Yike Xu, Jinyong Wen, Baokun Wang, Ziyi Gao, Xiaotong Lin, Yun Liu, Xing Fu, Yu Cheng, Yongchao Liu, Weiqiang Wang, Zhongle Xie
Industrial-scale user representation learning requires balancing robust universality with acute task-sensitivity. However, existing paradigms primarily yield static, task-agnostic embeddings that struggle to reconcile the divergent requirements of downstream scenarios within unified vector spaces. Furthermore, heterogeneous multi-source data introduces inherent noise and modality conflicts, degrading representation. We propose Query-as-Anchor, a framework shifting user modeling from static encoding to dynamic, query-aware synthesis. To empower Large Language Models (LLMs) with deep user understanding, we first construct UserU, an industrial-scale pre-training dataset that aligns multi-modal behavioral sequences with user understanding semantics, and our Q-Anchor Embedding architecture integrates hierarchical coarse-to-fine encoders into dual-tower LLMs via joint contrastive-autoregressive optimization for query-aware user representation. To bridge the gap between general pre-training and specialized business logic, we further introduce Cluster-based Soft Prompt Tuning to enforce discriminative latent structures, effectively aligning model attention with scenario-specific modalities. For deployment, anchoring queries at sequence termini enables KV-cache-accelerated inference with negligible incremental latency. Evaluations on 10 Alipay industrial benchmarks show consistent SOTA performance, strong scalability, and efficient deployment. Large-scale online A/B testing in Alipay's production system across two real-world scenarios further validates its practical effectiveness. Our code is prepared for public release and will be available at: https://github.com/JhCircle/Q-Anchor.
comment: 15 pages, 12 figures