MyArxiv
Computation and Language 76
☆ Requirements Elicitation Follow-Up Question Generation
Interviews are a widely used technique in eliciting requirements to gather stakeholder needs, preferences, and expectations for a software system. Effective interviewing requires skilled interviewers to formulate appropriate interview questions in real time while facing multiple challenges, including lack of familiarity with the domain, excessive cognitive load, and information overload that hinders how humans process stakeholders' speech. Recently, large language models (LLMs) have exhibited state-of-the-art performance in multiple natural language processing tasks, including text summarization and entailment. To support interviewers, we investigate the application of GPT-4o to generate follow-up interview questions during requirements elicitation by building on a framework of common interviewer mistake types. In addition, we describe methods to generate questions based on interviewee speech. We report a controlled experiment to evaluate LLM-generated and human-authored questions with minimal guidance, and a second controlled experiment to evaluate the LLM-generated questions when generation is guided by interviewer mistake types. Our findings demonstrate that, for both experiments, the LLM-generated questions are no worse than the human-authored questions with respect to clarity, relevancy, and informativeness. In addition, LLM-generated questions outperform human-authored questions when guided by common mistakes types. This highlights the potential of using LLMs to help interviewers improve the quality and ease of requirements elicitation interviews in real time.
comment: 13 pages, 2 figures, accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ Legal Requirements Translation from Law
Software systems must comply with legal regulations, which is a resource-intensive task, particularly for small organizations and startups lacking dedicated legal expertise. Extracting metadata from regulations to elicit legal requirements for software is a critical step to ensure compliance. However, it is a cumbersome task due to the length and complex nature of legal text. Although prior work has pursued automated methods for extracting structural and semantic metadata from legal text, key limitations remain: they do not consider the interplay and interrelationships among attributes associated with these metadata types, and they rely on manual labeling or heuristic-driven machine learning, which does not generalize well to new documents. In this paper, we introduce an approach based on textual entailment and in-context learning for automatically generating a canonical representation of legal text, encodable and executable as Python code. Our representation is instantiated from a manually designed Python class structure that serves as a domain-specific metamodel, capturing both structural and semantic legal metadata and their interrelationships. This design choice reduces the need for large, manually labeled datasets and enhances applicability to unseen legislation. We evaluate our approach on 13 U.S. state data breach notification laws, demonstrating that our generated representations pass approximately 89.4% of test cases and achieve a precision and recall of 82.2 and 88.7, respectively.
comment: 13 pages, 7 figures, Accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ Generalizing Verifiable Instruction Following
A crucial factor for successful human and AI interaction is the ability of language models or chatbots to follow human instructions precisely. A common feature of instructions are output constraints like ``only answer with yes or no" or ``mention the word `abrakadabra' at least 3 times" that the user adds to craft a more useful answer. Even today's strongest models struggle with fulfilling such constraints. We find that most models strongly overfit on a small set of verifiable constraints from the benchmarks that test these abilities, a skill called precise instruction following, and are not able to generalize well to unseen output constraints. We introduce a new benchmark, IFBench, to evaluate precise instruction following generalization on 58 new, diverse, and challenging verifiable out-of-domain constraints. In addition, we perform an extensive analysis of how and on what data models can be trained to improve precise instruction following generalization. Specifically, we carefully design constraint verification modules and show that reinforcement learning with verifiable rewards (RLVR) significantly improves instruction following. In addition to IFBench, we release 29 additional new hand-annotated training constraints and verification functions, RLVR training prompts, and code.
comment: 11 pages
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Multimodal Mathematical Reasoning with Diverse Solving Perspective
Recent progress in large-scale reinforcement learning (RL) has notably enhanced the reasoning capabilities of large language models (LLMs), especially in mathematical domains. However, current multimodal LLMs (MLLMs) for mathematical reasoning often rely on one-to-one image-text pairs and single-solution supervision, overlooking the diversity of valid reasoning perspectives and internal reflections. In this work, we introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair, fostering richer reasoning supervision. We further propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization (GRPO), a rule-based RL approach that integrates correctness discrimination and diversity-aware reward functions. Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions. Extensive experiments on the MathVista's minitest and Math-V benchmarks demonstrate that Qwen-VL-DP significantly outperforms prior base MLLMs in both accuracy and generative diversity, highlighting the importance of incorporating diverse perspectives and reflective reasoning in multimodal mathematical reasoning.
comment: 8 pages
☆ Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models
Reasoning Language Models (RLMs) have gained traction for their ability to perform complex, multi-step reasoning tasks through mechanisms such as Chain-of-Thought (CoT) prompting or fine-tuned reasoning traces. While these capabilities promise improved reliability, their impact on robustness to social biases remains unclear. In this work, we leverage the CLEAR-Bias benchmark, originally designed for Large Language Models (LLMs), to investigate the adversarial robustness of RLMs to bias elicitation. We systematically evaluate state-of-the-art RLMs across diverse sociocultural dimensions, using an LLM-as-a-judge approach for automated safety scoring and leveraging jailbreak techniques to assess the strength of built-in safety mechanisms. Our evaluation addresses three key questions: (i) how the introduction of reasoning capabilities affects model fairness and robustness; (ii) whether models fine-tuned for reasoning exhibit greater safety than those relying on CoT prompting at inference time; and (iii) how the success rate of jailbreak attacks targeting bias elicitation varies with the reasoning mechanisms employed. Our findings reveal a nuanced relationship between reasoning capabilities and bias safety. Surprisingly, models with explicit reasoning, whether via CoT prompting or fine-tuned reasoning traces, are generally more vulnerable to bias elicitation than base models without such mechanisms, suggesting reasoning may unintentionally open new pathways for stereotype reinforcement. Reasoning-enabled models appear somewhat safer than those relying on CoT prompting, which are particularly prone to contextual reframing attacks through storytelling prompts, fictional personas, or reward-shaped instructions. These results challenge the assumption that reasoning inherently improves robustness and underscore the need for more bias-aware approaches to reasoning design.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.
comment: Model and code available at: https://github.com/kehanlu/DeSTA2.5-Audio
☆ Measurement of the Granularity of Vowel Production Space By Just Producible Different (JPD) Limens
A body of work over the past several decades has demonstrated that the complex and coordinated articulatory movements of human vowel production are governed (at least in part)by control mechanisms whose targets are regions of auditory space. Within the target region control at the sub-phonemic level has also been demonstrated. But the degree of accuracy of that control is unknown. The current work investigates this question by asking how far apart must two vowel stimuli lie in auditory space in order to yield reliably different imitations? This distance is termed 'Just Producible Difference' (JPD). The current study uses a vowel mimicry paradigm to derive the first measurement of JPD among two sets of English speakers during front vowel production. JPD is estimated at between 14 and 51 mels in F1 X F2 space. This finding has implications for episodic theories of speech production. It also clarifies the possible structures of human vowel systems, by setting a theoretical lower bound for how close two vowel phonemes may be in a speaker's formant space, and hence a psychophysical explanation of observed trends in number and patterns of possible vowel phonemes.
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers
Peer review is fundamental to scientific research, but the growing volume of publications has intensified the challenges of this expertise-intensive process. While LLMs show promise in various scientific tasks, their potential to assist with peer review, particularly in identifying paper limitations, remains understudied. We first present a comprehensive taxonomy of limitation types in scientific research, with a focus on AI. Guided by this taxonomy, for studying limitations, we present LimitGen, the first comprehensive benchmark for evaluating LLMs' capability to support early-stage feedback and complement human peer review. Our benchmark consists of two subsets: LimitGen-Syn, a synthetic dataset carefully created through controlled perturbations of high-quality papers, and LimitGen-Human, a collection of real human-written limitations. To improve the ability of LLM systems to identify limitations, we augment them with literature retrieval, which is essential for grounding identifying limitations in prior scientific findings. Our approach enhances the capabilities of LLM systems to generate limitations in research papers, enabling them to provide more concrete and constructive feedback.
Exploring Gender Bias Beyond Occupational Titles
In this work, we investigate the correlation between gender and contextual biases, focusing on elements such as action verbs, object nouns, and particularly on occupations. We introduce a novel dataset, GenderLexicon, and a framework that can estimate contextual bias and its related gender bias. Our model can interpret the bias with a score and thus improve the explainability of gender bias. Also, our findings confirm the existence of gender biases beyond occupational stereotypes. To validate our approach and demonstrate its effectiveness, we conduct evaluations on five diverse datasets, including a Japanese dataset.
comment: Work in progress
☆ ASDA: Audio Spectrogram Differential Attention Mechanism for Self-Supervised Representation Learning
In recent advancements in audio self-supervised representation learning, the standard Transformer architecture has emerged as the predominant approach, yet its attention mechanism often allocates a portion of attention weights to irrelevant information, potentially impairing the model's discriminative ability. To address this, we introduce a differential attention mechanism, which effectively mitigates ineffective attention allocation through the integration of dual-softmax operations and appropriately tuned differential coefficients. Experimental results demonstrate that our ASDA model achieves state-of-the-art (SOTA) performance across multiple benchmarks, including audio classification (49.0% mAP on AS-2M, 41.5% mAP on AS20K), keyword spotting (98.3% accuracy on SPC-2), and environmental sound classification (96.1% accuracy on ESC-50). These results highlight ASDA's effectiveness in audio tasks, paving the way for broader applications.
comment: Accepted at Interspeech2025
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
comment: 29 pages, 27 tables, 4 figures
☆ MPF: Aligning and Debiasing Language Models post Deployment via Multi Perspective Fusion ICML 2025
Multiperspective Fusion (MPF) is a novel posttraining alignment framework for large language models (LLMs) developed in response to the growing need for easy bias mitigation. Built on top of the SAGED pipeline, an automated system for constructing bias benchmarks and extracting interpretable baseline distributions, MPF leverages multiperspective generations to expose and align biases in LLM outputs with nuanced, humanlike baselines. By decomposing baseline, such as sentiment distributions from HR professionals, into interpretable perspective components, MPF guides generation through sampling and balancing of responses, weighted by the probabilities obtained in the decomposition. Empirically, we demonstrate its ability to align LLM sentiment distributions with both counterfactual baselines (absolute equality) and the HR baseline (biased for Top Univeristy), resulting in small KL divergence, reduction of calibration error and generalization to unseen questions. This shows that MPF offers a scalable and interpretable method for alignment and bias mitigation, compatible with deployed LLMs and requiring no extensive prompt engineering or finetuning.
comment: Accepted at ICML 2025 AIW Workshop
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ A Cookbook for Community-driven Data Collection of Impaired Speech in LowResource Languages
This study presents an approach for collecting speech samples to build Automatic Speech Recognition (ASR) models for impaired speech, particularly, low-resource languages. It aims to democratize ASR technology and data collection by developing a "cookbook" of best practices and training for community-driven data collection and ASR model building. As a proof-of-concept, this study curated the first open-source dataset of impaired speech in Akan: a widely spoken indigenous language in Ghana. The study involved participants from diverse backgrounds with speech impairments. The resulting dataset, along with the cookbook and open-source tools, are publicly available to enable researchers and practitioners to create inclusive ASR technologies tailored to the unique needs of speech impaired individuals. In addition, this study presents the initial results of fine-tuning open-source ASR models to better recognize impaired speech in Akan.
comment: This version has been reviewed and accepted for presentation at the InterSpeech 2025 conference to be held in Rotterdam from 17 to 21 August. 5 pages and 3 tables
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.
☆ Efficient Code LLM Training via Distribution-Consistent and Diversity-Aware Data Selection
Recent advancements in large language models (LLMs) have significantly improved code generation and program comprehension, accelerating the evolution of software engineering. Current methods primarily enhance model performance by leveraging vast amounts of data, focusing on data quantity while often overlooking data quality, thereby reducing training efficiency. To address this, we introduce an approach that utilizes a parametric model for code data selection, aimed at improving both training efficiency and model performance. Our method optimizes the parametric model to ensure distribution consistency and diversity within the selected subset, guaranteeing high-quality data. Experimental results demonstrate that using only 10K samples, our method achieves gains of 2.4% (HumanEval) and 2.3% (MBPP) over 92K full-sampled baseline, outperforming other sampling approaches in both performance and efficiency. This underscores that our method effectively boosts model performance while significantly reducing computational costs.
☆ QFFN-BERT: An Empirical Study of Depth, Performance, and Data Efficiency in Hybrid Quantum-Classical Transformers
Parameterized quantum circuits (PQCs) have recently emerged as promising components for enhancing the expressibility of neural architectures. In this work, we introduce QFFN-BERT, a hybrid quantum-classical transformer where the feedforward network (FFN) modules of a compact BERT variant are replaced by PQC-based layers. This design is motivated by the dominant parameter contribution of FFNs, which account for approximately two-thirds of the parameters within standard Transformer encoder blocks. While prior studies have primarily integrated PQCs into self-attention modules, our work focuses on the FFN and systematically investigates the trade-offs between PQC depth, expressibility, and trainability. Our final PQC architecture incorporates a residual connection, both $R_Y$ and $R_Z$ rotations, and an alternating entanglement strategy to ensure stable training and high expressibility. Our experiments, conducted on a classical simulator, on the SST-2 and DBpedia benchmarks demonstrate two key findings. First, a carefully configured QFFN-BERT achieves up to 102.0% of the baseline accuracy, surpassing its classical counterpart in a full-data setting while reducing FFN-specific parameters by over 99%. Second, our model exhibits a consistent and competitive edge in few-shot learning scenarios, confirming its potential for superior data efficiency. These results, supported by an ablation study on a non-optimized PQC that failed to learn, confirm that PQCs can serve as powerful and parameter-efficient alternatives to classical FFNs when co-designed with foundational deep learning principles.
☆ Coling-UniA at SciVQA 2025: Few-Shot Example Retrieval and Confidence-Informed Ensembling for Multimodal Large Language Models ACL 2025
This paper describes our system for the SciVQA 2025 Shared Task on Scientific Visual Question Answering. Our system employs an ensemble of two Multimodal Large Language Models and various few-shot example retrieval strategies. The model and few-shot setting are selected based on the figure and question type. We also select answers based on the models' confidence levels. On the blind test data, our system ranks third out of seven with an average F1 score of 85.12 across ROUGE-1, ROUGE-L, and BERTS. Our code is publicly available.
comment: Accepted at 5th Workshop on Scholarly Document Processing @ ACL 2025
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Seeing Through Green: Text-Based Classification and the Firm's Returns from Green Patents
This paper introduces Natural Language Processing for identifying ``true'' green patents from official supporting documents. We start our training on about 12.4 million patents that had been classified as green from previous literature. Thus, we train a simple neural network to enlarge a baseline dictionary through vector representations of expressions related to environmental technologies. After testing, we find that ``true'' green patents represent about 20\% of the total of patents classified as green from previous literature. We show heterogeneity by technological classes, and then check that `true' green patents are about 1\% less cited by following inventions. In the second part of the paper, we test the relationship between patenting and a dashboard of firm-level financial accounts in the European Union. After controlling for reverse causality, we show that holding at least one ``true'' green patent raises sales, market shares, and productivity. If we restrict the analysis to high-novelty ``true'' green patents, we find that they also yield higher profits. Our findings underscore the importance of using text analyses to gauge finer-grained patent classifications that are useful for policymaking in different domains.
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. Availability and implementation: The standalone docker image for GDC Cohort Copilot is available at https://quay.io/repository/cdis/gdc-cohort-copilot. Source code is available at https://github.com/uc-cdis/gdc-cohort-copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds.
comment: 11 pages, 1 figure, 7 tables
☆ SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.
comment: 21 pages, 15 figures, 4 tables. Project Page: https://iyatomilab.github.io/SciGA/
♻ ☆ Improved Unbiased Watermark for Large Language Models ACL 2025
As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.
comment: ACL 2025 Main Conference
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ Enhancing Clinical Multiple-Choice Questions Benchmarks with Knowledge Graph Guided Distractor Generation
Clinical tasks such as diagnosis and treatment require strong decision-making abilities, highlighting the importance of rigorous evaluation benchmarks to assess the reliability of large language models (LLMs). In this work, we introduce a knowledge-guided data augmentation framework that enhances the difficulty of clinical multiple-choice question (MCQ) datasets by generating distractors (i.e., incorrect choices that are similar to the correct one and may confuse existing LLMs). Using our KG-based pipeline, the generated choices are both clinically plausible and deliberately misleading. Our approach involves multi-step, semantically informed walks on a medical knowledge graph to identify distractor paths-associations that are medically relevant but factually incorrect-which then guide the LLM in crafting more deceptive distractors. We apply the designed knowledge graph guided distractor generation (KGGDG) pipline, to six widely used medical QA benchmarks and show that it consistently reduces the accuracy of state-of-the-art LLMs. These findings establish KGGDG as a powerful tool for enabling more robust and diagnostic evaluations of medical LLMs.
♻ ☆ Batch-Max: Higher LLM Throughput using Larger Batch Sizes and KV Cache Compression
Several works have developed eviction policies to remove key-value (KV) pairs from the KV cache for more efficient inference. The focus has been on compressing the KV cache after the input prompt has been processed for faster token generation. In settings with limited GPU memory, and when the input context is longer than the generation length, we show that by also compressing the KV cache during the input processing phase, larger batch sizes can be used resulting in significantly higher throughput while still maintaining the original model's accuracy.
♻ ☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems-where agents autonomously browse the web, synthesize information, and return comprehensive citation-backed answers-represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of ten frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, highlighting its great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web-2/
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.
♻ ☆ Code2Logic: Game-Code-Driven Data Synthesis for Enhancing VLMs General Reasoning NeurIPS 2025
Visual-language Chain-of-Thought (CoT) data resources are relatively scarce compared to text-only counterparts, limiting the improvement of reasoning capabilities in Vision Language Models (VLMs). However, high-quality vision-language reasoning data is expensive and labor-intensive to annotate. To address this issue, we leverage a promising resource: game code, which naturally contains logical structures and state transition processes. Therefore, we propose Code2Logic, a novel game-code-driven approach for multimodal reasoning data synthesis. Our approach leverages Large Language Models (LLMs) to adapt game code, enabling automatic acquisition of reasoning processes and results through code execution. Using the Code2Logic approach, we developed the GameQA dataset to train and evaluate VLMs. GameQA is cost-effective and scalable, offers controllable difficulty gradation and is diverse with 30 games and 158 tasks. Surprisingly, despite training solely on game data, VLMs demonstrated out of domain generalization, specifically Qwen2.5-VL-7B improving performance by 2.33% across 7 diverse vision-language benchmarks. Our code, dataset and models are available at https://github.com/tongjingqi/Code2Logic.
comment: 63 pages, 23 figures, submitted to NeurIPS 2025
♻ ☆ Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
Ensuring complex systems meet regulations typically requires checking the validity of assurance cases through a claim-argument-evidence framework. Some challenges in this process include the complicated nature of legal and technical texts, the need for model explanations, and limited access to assurance case data. We propose a compliance detection approach based on Natural Language Inference (NLI): EXplainable CompLiance detection with Argumentative Inference of Multi-hop reasoning (EXCLAIM). We formulate the claim-argument-evidence structure of an assurance case as a multi-hop inference for explainable and traceable compliance detection. We address the limited number of assurance cases by generating them using large language models (LLMs). We introduce metrics that measure the coverage and structural consistency. We demonstrate the effectiveness of the generated assurance case from GDPR requirements in a multi-hop inference task as a case study. Our results highlight the potential of NLI-based approaches in automating the regulatory compliance process.
♻ ☆ Direct Preference Optimization Using Sparse Feature-Level Constraints
The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often introduce computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves a 5.08% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments.
♻ ☆ Symbolic or Numerical? Understanding Physics Problem Solving in Reasoning LLMs
Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.
♻ ☆ MedAide: Information Fusion and Anatomy of Medical Intents via LLM-based Agent Collaboration
In healthcare intelligence, the ability to fuse heterogeneous, multi-intent information from diverse clinical sources is fundamental to building reliable decision-making systems. Large Language Model (LLM)-driven information interaction systems currently showing potential promise in the healthcare domain. Nevertheless, they often suffer from information redundancy and coupling when dealing with complex medical intents, leading to severe hallucinations and performance bottlenecks. To this end, we propose MedAide, an LLM-based medical multi-agent collaboration framework designed to enable intent-aware information fusion and coordinated reasoning across specialized healthcare domains. Specifically, we introduce a regularization-guided module that combines syntactic constraints with retrieval augmented generation to decompose complex queries into structured representations, facilitating fine-grained clinical information fusion and intent resolution. Additionally, a dynamic intent prototype matching module is proposed to utilize dynamic prototype representation with a semantic similarity matching mechanism to achieve adaptive recognition and updating of the agent's intent in multi-round healthcare dialogues. Ultimately, we design a rotation agent collaboration mechanism that introduces dynamic role rotation and decision-level information fusion across specialized medical agents. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
comment: LLM-based Multi-Agent Collaboration for Medical Applications
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
comment: 12 pages main text, 27 pages total including references and appendices. 13 figures, 10 tables. Accepted for publication in the LNCS proceedings of CLEF 2025 (Best-of-Labs track)
♻ ☆ Task Prompt Vectors: Effective Initialization through Multi-Task Soft-Prompt Transfer
Prompt tuning is an efficient solution for training large language models (LLMs). However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning on 2 different language model architectures. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, we provide a competitive alternative to state-of-the-art baselines by arithmetic addition of task prompt vectors from multiple tasks.
♻ ☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
comment: ACL 2024 (Findings)
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
♻ ☆ Decision-Oriented Text Evaluation
Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
♻ ☆ Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
comment: Accept to ACL 2025 (Oral). Code are available on https://github.com/fuyuchenIfyw/token_prepending.git
♻ ☆ Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
comment: Our original goal was to use Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection (arXiv:2506.19420) to replace Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models (arXiv:2503.18681). Due to various reasons, both versions were released, so we would like to withdraw the latter
♻ ☆ Prompt-Guided Turn-Taking Prediction SIGDIAL 2025
Turn-taking prediction models are essential components in spoken dialogue systems and conversational robots. Recent approaches leverage transformer-based architectures to predict speech activity continuously and in real-time. In this study, we propose a novel model that enables turn-taking prediction to be dynamically controlled via textual prompts. This approach allows intuitive and explicit control through instructions such as "faster" or "calmer" adapting dynamically to conversational partners and contexts. The proposed model builds upon a transformer-based voice activity projection (VAP) model, incorporating textual prompt embeddings into both channel-wise transformers and a cross-channel transformer. We evaluated the feasibility of our approach using over 950 hours of human-human spoken dialogue data. Since textual prompt data for the proposed approach was not available in existing datasets, we utilized a large language model (LLM) to generate synthetic prompt sentences. Experimental results demonstrated that the proposed model improved prediction accuracy and effectively varied turn-taking timing behaviors according to the textual prompts.
comment: This paper has been accepted for presentation at SIGdial Meeting on Discourse and Dialogue 2025 (SIGDIAL 2025) and represents the author's version of the work
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings in which the treatment feature is based on human perception. The proposed GPI methodology is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research. Our code is available at https://github.com/Chen-XueWen/SMARTe.
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
Computer Vision and Pattern Recognition 150
☆ MultiGen: Using Multimodal Generation in Simulation to Learn Multimodal Policies in Real
Robots must integrate multiple sensory modalities to act effectively in the real world. Yet, learning such multimodal policies at scale remains challenging. Simulation offers a viable solution, but while vision has benefited from high-fidelity simulators, other modalities (e.g. sound) can be notoriously difficult to simulate. As a result, sim-to-real transfer has succeeded primarily in vision-based tasks, with multimodal transfer still largely unrealized. In this work, we tackle these challenges by introducing MultiGen, a framework that integrates large-scale generative models into traditional physics simulators, enabling multisensory simulation. We showcase our framework on the dynamic task of robot pouring, which inherently relies on multimodal feedback. By synthesizing realistic audio conditioned on simulation video, our method enables training on rich audiovisual trajectories -- without any real robot data. We demonstrate effective zero-shot transfer to real-world pouring with novel containers and liquids, highlighting the potential of generative modeling to both simulate hard-to-model modalities and close the multimodal sim-to-real gap.
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
comment: Project Page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c&feature=youtu.be
☆ RefTok: Reference-Based Tokenization for Video Generation
Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.
☆ Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
comment: The code is made available at https://github.com/H-EmbodVis/EasyCache. Project page: https://h-embodvis.github.io/EasyCache/
☆ Bootstrapping Grounded Chain-of-Thought in Multimodal LLMs for Data-Efficient Model Adaptation ICCV2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in interpreting images using natural language. However, without using large-scale datasets for retraining, these models are difficult to adapt to specialized vision tasks, e.g., chart understanding. This problem is caused by a mismatch between pre-training and downstream datasets: pre-training datasets primarily concentrate on scenes and objects but contain limited information about specialized, non-object images, such as charts and tables. In this paper, we share an interesting finding that training an MLLM with Chain-of-Thought (CoT) reasoning data can facilitate model adaptation in specialized vision tasks, especially under data-limited regimes. However, we identify a critical issue within CoT data distilled from pre-trained MLLMs, i.e., the data often contains multiple factual errors in the reasoning steps. To address the problem, we propose Grounded Chain-of-Thought (GCoT), a simple bootstrapping-based approach that aims to inject grounding information (i.e., bounding boxes) into CoT data, essentially making the reasoning steps more faithful to input images. We evaluate our approach on five specialized vision tasks, which cover a variety of visual formats including charts, tables, receipts, and reports. The results demonstrate that under data-limited regimes our approach significantly improves upon fine-tuning and distillation.
comment: Accepted by ICCV2025
☆ AnyI2V: Animating Any Conditional Image with Motion Control ICCV 2025
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
comment: ICCV 2025, Project Page: https://henghuiding.com/AnyI2V/
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ USAD: An Unsupervised Data Augmentation Spatio-Temporal Attention Diffusion Network
The primary objective of human activity recognition (HAR) is to infer ongoing human actions from sensor data, a task that finds broad applications in health monitoring, safety protection, and sports analysis. Despite proliferating research, HAR still faces key challenges, including the scarcity of labeled samples for rare activities, insufficient extraction of high-level features, and suboptimal model performance on lightweight devices. To address these issues, this paper proposes a comprehensive optimization approach centered on multi-attention interaction mechanisms. First, an unsupervised, statistics-guided diffusion model is employed to perform data augmentation, thereby alleviating the problems of labeled data scarcity and severe class imbalance. Second, a multi-branch spatio-temporal interaction network is designed, which captures multi-scale features of sequential data through parallel residual branches with 3*3, 5*5, and 7*7 convolutional kernels. Simultaneously, temporal attention mechanisms are incorporated to identify critical time points, while spatial attention enhances inter-sensor interactions. A cross-branch feature fusion unit is further introduced to improve the overall feature representation capability. Finally, an adaptive multi-loss function fusion strategy is integrated, allowing for dynamic adjustment of loss weights and overall model optimization. Experimental results on three public datasets, WISDM, PAMAP2, and OPPORTUNITY, demonstrate that the proposed unsupervised data augmentation spatio-temporal attention diffusion network (USAD) achieves accuracies of 98.84%, 93.81%, and 80.92% respectively, significantly outperforming existing approaches. Furthermore, practical deployment on embedded devices verifies the efficiency and feasibility of the proposed method.
☆ Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach
Sensor-based Human Activity Recognition (HAR) is a core technology that enables intelligent systems to perceive and interact with their environment. However, multimodal HAR systems still encounter key challenges, such as difficulties in cross-modal feature alignment and imbalanced modality contributions. To address these issues, we propose a novel framework called the Dynamic Contrastive Dual-Path Network (DCDP-HAR). The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseNet branches collaboratively process multimodal sensor data. Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction. Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation, effectively alleviating modality competition. In addition, a momentum-based gradient accumulation strategy is adopted to enhance training stability. We conduct ablation studies to validate the effectiveness of each component and perform extensive comparative experiments on four public benchmark datasets.
☆ LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.
comment: Project page: https://liuff19.github.io/LangScene-X
☆ HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.
comment: Project page: https://gserifi.github.io/HyperGaussians
☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
☆ RichControl: Structure- and Appearance-Rich Training-Free Spatial Control for Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown remarkable success in generating high-quality images from text prompts. Recent efforts extend these models to incorporate conditional images (e.g., depth or pose maps) for fine-grained spatial control. Among them, feature injection methods have emerged as a training-free alternative to traditional fine-tuning approaches. However, they often suffer from structural misalignment, condition leakage, and visual artifacts, especially when the condition image diverges significantly from natural RGB distributions. By revisiting existing methods, we identify a core limitation: the synchronous injection of condition features fails to account for the trade-off between domain alignment and structural preservation during denoising. Inspired by this observation, we propose a flexible feature injection framework that decouples the injection timestep from the denoising process. At its core is a structure-rich injection module, which enables the model to better adapt to the evolving interplay between alignment and structure preservation throughout the diffusion steps, resulting in more faithful structural generation. In addition, we introduce appearance-rich prompting and a restart refinement strategy to further enhance appearance control and visual quality. Together, these designs enable training-free generation that is both structure-rich and appearance-rich. Extensive experiments show that our approach achieves state-of-the-art performance across diverse zero-shot conditioning scenarios.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ From Pixels to Damage Severity: Estimating Earthquake Impacts Using Semantic Segmentation of Social Media Images
In the aftermath of earthquakes, social media images have become a crucial resource for disaster reconnaissance, providing immediate insights into the extent of damage. Traditional approaches to damage severity assessment in post-earthquake social media images often rely on classification methods, which are inherently subjective and incapable of accounting for the varying extents of damage within an image. Addressing these limitations, this study proposes a novel approach by framing damage severity assessment as a semantic segmentation problem, aiming for a more objective analysis of damage in earthquake-affected areas. The methodology involves the construction of a segmented damage severity dataset, categorizing damage into three degrees: undamaged structures, damaged structures, and debris. Utilizing this dataset, the study fine-tunes a SegFormer model to generate damage severity segmentations for post-earthquake social media images. Furthermore, a new damage severity scoring system is introduced, quantifying damage by considering the varying degrees of damage across different areas within images, adjusted for depth estimation. The application of this approach allows for the quantification of damage severity in social media images in a more objective and comprehensive manner. By providing a nuanced understanding of damage, this study enhances the ability to offer precise guidance to disaster reconnaissance teams, facilitating more effective and targeted response efforts in the aftermath of earthquakes.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Partial Weakly-Supervised Oriented Object Detection
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
comment: 10 pages, 5 figures, 4 tables, source code: https://github.com/VisionXLab/PWOOD
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ DexVLG: Dexterous Vision-Language-Grasp Model at Scale
As large models gain traction, vision-language-action (VLA) systems are enabling robots to tackle increasingly complex tasks. However, limited by the difficulty of data collection, progress has mainly focused on controlling simple gripper end-effectors. There is little research on functional grasping with large models for human-like dexterous hands. In this paper, we introduce DexVLG, a large Vision-Language-Grasp model for Dexterous grasp pose prediction aligned with language instructions using single-view RGBD input. To accomplish this, we generate a dataset of 170 million dexterous grasp poses mapped to semantic parts across 174,000 objects in simulation, paired with detailed part-level captions. This large-scale dataset, named DexGraspNet 3.0, is used to train a VLM and flow-matching-based pose head capable of producing instruction-aligned grasp poses for tabletop objects. To assess DexVLG's performance, we create benchmarks in physics-based simulations and conduct real-world experiments. Extensive testing demonstrates DexVLG's strong zero-shot generalization capabilities-achieving over 76% zero-shot execution success rate and state-of-the-art part-grasp accuracy in simulation-and successful part-aligned grasps on physical objects in real-world scenarios.
Prompt learning with bounding box constraints for medical image segmentation
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git
comment: Accepted to IEEE Transactions on Biomedical Engineering (TMBE), 14 pages
☆ FairHuman: Boosting Hand and Face Quality in Human Image Generation with Minimum Potential Delay Fairness in Diffusion Models ICCV 2025
Image generation has achieved remarkable progress with the development of large-scale text-to-image models, especially diffusion-based models. However, generating human images with plausible details, such as faces or hands, remains challenging due to insufficient supervision of local regions during training. To address this issue, we propose FairHuman, a multi-objective fine-tuning approach designed to enhance both global and local generation quality fairly. Specifically, we first construct three learning objectives: a global objective derived from the default diffusion objective function and two local objectives for hands and faces based on pre-annotated positional priors. Subsequently, we derive the optimal parameter updating strategy under the guidance of the Minimum Potential Delay (MPD) criterion, thereby attaining fairness-ware optimization for this multi-objective problem. Based on this, our proposed method can achieve significant improvements in generating challenging local details while maintaining overall quality. Extensive experiments showcase the effectiveness of our method in improving the performance of human image generation under different scenarios.
comment: ICCV 2025
☆ UniMC: Taming Diffusion Transformer for Unified Keypoint-Guided Multi-Class Image Generation
Although significant advancements have been achieved in the progress of keypoint-guided Text-to-Image diffusion models, existing mainstream keypoint-guided models encounter challenges in controlling the generation of more general non-rigid objects beyond humans (e.g., animals). Moreover, it is difficult to generate multiple overlapping humans and animals based on keypoint controls solely. These challenges arise from two main aspects: the inherent limitations of existing controllable methods and the lack of suitable datasets. First, we design a DiT-based framework, named UniMC, to explore unifying controllable multi-class image generation. UniMC integrates instance- and keypoint-level conditions into compact tokens, incorporating attributes such as class, bounding box, and keypoint coordinates. This approach overcomes the limitations of previous methods that struggled to distinguish instances and classes due to their reliance on skeleton images as conditions. Second, we propose HAIG-2.9M, a large-scale, high-quality, and diverse dataset designed for keypoint-guided human and animal image generation. HAIG-2.9M includes 786K images with 2.9M instances. This dataset features extensive annotations such as keypoints, bounding boxes, and fine-grained captions for both humans and animals, along with rigorous manual inspection to ensure annotation accuracy. Extensive experiments demonstrate the high quality of HAIG-2.9M and the effectiveness of UniMC, particularly in heavy occlusions and multi-class scenarios.
☆ SIU3R: Simultaneous Scene Understanding and 3D Reconstruction Beyond Feature Alignment
Simultaneous understanding and 3D reconstruction plays an important role in developing end-to-end embodied intelligent systems. To achieve this, recent approaches resort to 2D-to-3D feature alignment paradigm, which leads to limited 3D understanding capability and potential semantic information loss. In light of this, we propose SIU3R, the first alignment-free framework for generalizable simultaneous understanding and 3D reconstruction from unposed images. Specifically, SIU3R bridges reconstruction and understanding tasks via pixel-aligned 3D representation, and unifies multiple understanding tasks into a set of unified learnable queries, enabling native 3D understanding without the need of alignment with 2D models. To encourage collaboration between the two tasks with shared representation, we further conduct in-depth analyses of their mutual benefits, and propose two lightweight modules to facilitate their interaction. Extensive experiments demonstrate that our method achieves state-of-the-art performance not only on the individual tasks of 3D reconstruction and understanding, but also on the task of simultaneous understanding and 3D reconstruction, highlighting the advantages of our alignment-free framework and the effectiveness of the mutual benefit designs.
☆ CanonSwap: High-Fidelity and Consistent Video Face Swapping via Canonical Space Modulation ICCV
Video face swapping aims to address two primary challenges: effectively transferring the source identity to the target video and accurately preserving the dynamic attributes of the target face, such as head poses, facial expressions, lip-sync, \etc. Existing methods mainly focus on achieving high-quality identity transfer but often fall short in maintaining the dynamic attributes of the target face, leading to inconsistent results. We attribute this issue to the inherent coupling of facial appearance and motion in videos. To address this, we propose CanonSwap, a novel video face-swapping framework that decouples motion information from appearance information. Specifically, CanonSwap first eliminates motion-related information, enabling identity modification within a unified canonical space. Subsequently, the swapped feature is reintegrated into the original video space, ensuring the preservation of the target face's dynamic attributes. To further achieve precise identity transfer with minimal artifacts and enhanced realism, we design a Partial Identity Modulation module that adaptively integrates source identity features using a spatial mask to restrict modifications to facial regions. Additionally, we introduce several fine-grained synchronization metrics to comprehensively evaluate the performance of video face swapping methods. Extensive experiments demonstrate that our method significantly outperforms existing approaches in terms of visual quality, temporal consistency, and identity preservation. Our project page are publicly available at https://luoxyhappy.github.io/CanonSwap/.
comment: ICCV Accepted
☆ APT: Adaptive Personalized Training for Diffusion Models with Limited Data CVPR 2025
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
comment: CVPR 2025 camera ready. Project page: https://lgcnsai.github.io/apt
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
☆ Real-time Image-based Lighting of Glints
Image-based lighting is a widely used technique to reproduce shading under real-world lighting conditions, especially in real-time rendering applications. A particularly challenging scenario involves materials exhibiting a sparkling or glittering appearance, caused by discrete microfacets scattered across their surface. In this paper, we propose an efficient approximation for image-based lighting of glints, enabling fully dynamic material properties and environment maps. Our novel approach is grounded in real-time glint rendering under area light illumination and employs standard environment map filtering techniques. Crucially, our environment map filtering process is sufficiently fast to be executed on a per-frame basis. Our method assumes that the environment map is partitioned into few homogeneous regions of constant radiance. By filtering the corresponding indicator functions with the normal distribution function, we obtain the probabilities for individual microfacets to reflect light from each region. During shading, these probabilities are utilized to hierarchically sample a multinomial distribution, facilitated by our novel dual-gated Gaussian approximation of binomial distributions. We validate that our real-time approximation is close to ground-truth renderings for a range of material properties and lighting conditions, and demonstrate robust and stable performance, with little overhead over rendering glints from a single directional light. Compared to rendering smooth materials without glints, our approach requires twice as much memory to store the prefiltered environment map.
☆ MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping IROS
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ MEGANet-W: A Wavelet-Driven Edge-Guided Attention Framework for Weak Boundary Polyp Detection
Colorectal polyp segmentation is critical for early detection of colorectal cancer, yet weak and low contrast boundaries significantly limit automated accuracy. Existing deep models either blur fine edge details or rely on handcrafted filters that perform poorly under variable imaging conditions. We propose MEGANet-W, a Wavelet Driven Edge Guided Attention Network that injects directional, parameter free Haar wavelet edge maps into each decoder stage to recalibrate semantic features. Our two main contributions are: (1) a two-level Haar wavelet head for multi orientation edge extraction; and (2) Wavelet Edge Guided Attention (WEGA) modules that fuse wavelet cues with reverse and input branches. On five public polyp datasets, MEGANetW consistently outperforms existing methods, improving mIoU by up to 2.3% and mDice by 1.2%, while introducing no additional learnable parameters.
comment: 7 pages, 3 figures
☆ AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models ICCV 2025
The rapid development of AI-generated content (AIGC) technology has led to the misuse of highly realistic AI-generated images (AIGI) in spreading misinformation, posing a threat to public information security. Although existing AIGI detection techniques are generally effective, they face two issues: 1) a lack of human-verifiable explanations, and 2) a lack of generalization in the latest generation technology. To address these issues, we introduce a large-scale and comprehensive dataset, Holmes-Set, which includes the Holmes-SFTSet, an instruction-tuning dataset with explanations on whether images are AI-generated, and the Holmes-DPOSet, a human-aligned preference dataset. Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control via cross-model evaluation, expert defect filtering, and human preference modification. In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization. Holmes Pipeline adapts multimodal large language models (MLLMs) for AIGI detection while generating human-verifiable and human-aligned explanations, ultimately yielding our model AIGI-Holmes. During the inference stage, we introduce a collaborative decoding strategy that integrates the model perception of the visual expert with the semantic reasoning of MLLMs, further enhancing the generalization capabilities. Extensive experiments on three benchmarks validate the effectiveness of our AIGI-Holmes.
comment: Accepted to ICCV 2025
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
comment: Submitted to Acta Astronautica
☆ AuroraLong: Bringing RNNs Back to Efficient Open-Ended Video Understanding ICCV 2025
The challenge of long video understanding lies in its high computational complexity and prohibitive memory cost, since the memory and computation required by transformer-based LLMs scale quadratically with input sequence length. We propose AuroraLong to address this challenge by replacing the LLM component in MLLMs with a linear RNN language model that handles input sequence of arbitrary length with constant-size hidden states. To further increase throughput and efficiency, we combine visual token merge with linear RNN models by reordering the visual tokens by their sizes in ascending order. Despite having only 2B parameters and being trained exclusively on public data, AuroraLong achieves performance comparable to Transformer-based models of similar size trained on private datasets across multiple video benchmarks. This demonstrates the potential of efficient, linear RNNs to democratize long video understanding by lowering its computational entry barrier. To our best knowledge, we are the first to use a linear RNN based LLM backbone in a LLaVA-like model for open-ended video understanding.
comment: Accepted to ICCV 2025
☆ Structure-aware Semantic Discrepancy and Consistency for 3D Medical Image Self-supervised Learning ICCV25
3D medical image self-supervised learning (mSSL) holds great promise for medical analysis. Effectively supporting broader applications requires considering anatomical structure variations in location, scale, and morphology, which are crucial for capturing meaningful distinctions. However, previous mSSL methods partition images with fixed-size patches, often ignoring the structure variations. In this work, we introduce a novel perspective on 3D medical images with the goal of learning structure-aware representations. We assume that patches within the same structure share the same semantics (semantic consistency) while those from different structures exhibit distinct semantics (semantic discrepancy). Based on this assumption, we propose an mSSL framework named $S^2DC$, achieving Structure-aware Semantic Discrepancy and Consistency in two steps. First, $S^2DC$ enforces distinct representations for different patches to increase semantic discrepancy by leveraging an optimal transport strategy. Second, $S^2DC$ advances semantic consistency at the structural level based on neighborhood similarity distribution. By bridging patch-level and structure-level representations, $S^2DC$ achieves structure-aware representations. Thoroughly evaluated across 10 datasets, 4 tasks, and 3 modalities, our proposed method consistently outperforms the state-of-the-art methods in mSSL.
comment: Accepted by ICCV25
☆ Parametric shape models for vessels learned from segmentations via differentiable voxelization
Vessels are complex structures in the body that have been studied extensively in multiple representations. While voxelization is the most common of them, meshes and parametric models are critical in various applications due to their desirable properties. However, these representations are typically extracted through segmentations and used disjointly from each other. We propose a framework that joins the three representations under differentiable transformations. By leveraging differentiable voxelization, we automatically extract a parametric shape model of the vessels through shape-to-segmentation fitting, where we learn shape parameters from segmentations without the explicit need for ground-truth shape parameters. The vessel is parametrized as centerlines and radii using cubic B-splines, ensuring smoothness and continuity by construction. Meshes are differentiably extracted from the learned shape parameters, resulting in high-fidelity meshes that can be manipulated post-fit. Our method can accurately capture the geometry of complex vessels, as demonstrated by the volumetric fits in experiments on aortas, aneurysms, and brain vessels.
comment: 15 pages, 6 figures
☆ Reconstructing Close Human Interaction with Appearance and Proxemics Reasoning
Due to visual ambiguities and inter-person occlusions, existing human pose estimation methods cannot recover plausible close interactions from in-the-wild videos. Even state-of-the-art large foundation models~(\eg, SAM) cannot accurately distinguish human semantics in such challenging scenarios. In this work, we find that human appearance can provide a straightforward cue to address these obstacles. Based on this observation, we propose a dual-branch optimization framework to reconstruct accurate interactive motions with plausible body contacts constrained by human appearances, social proxemics, and physical laws. Specifically, we first train a diffusion model to learn the human proxemic behavior and pose prior knowledge. The trained network and two optimizable tensors are then incorporated into a dual-branch optimization framework to reconstruct human motions and appearances. Several constraints based on 3D Gaussians, 2D keypoints, and mesh penetrations are also designed to assist the optimization. With the proxemics prior and diverse constraints, our method is capable of estimating accurate interactions from in-the-wild videos captured in complex environments. We further build a dataset with pseudo ground-truth interaction annotations, which may promote future research on pose estimation and human behavior understanding. Experimental results on several benchmarks demonstrate that our method outperforms existing approaches. The code and data are available at https://www.buzhenhuang.com/works/CloseApp.html.
☆ MoGe-2: Accurate Monocular Geometry with Metric Scale and Sharp Details
We propose MoGe-2, an advanced open-domain geometry estimation model that recovers a metric scale 3D point map of a scene from a single image. Our method builds upon the recent monocular geometry estimation approach, MoGe, which predicts affine-invariant point maps with unknown scales. We explore effective strategies to extend MoGe for metric geometry prediction without compromising the relative geometry accuracy provided by the affine-invariant point representation. Additionally, we discover that noise and errors in real data diminish fine-grained detail in the predicted geometry. We address this by developing a unified data refinement approach that filters and completes real data from different sources using sharp synthetic labels, significantly enhancing the granularity of the reconstructed geometry while maintaining the overall accuracy. We train our model on a large corpus of mixed datasets and conducted comprehensive evaluations, demonstrating its superior performance in achieving accurate relative geometry, precise metric scale, and fine-grained detail recovery -- capabilities that no previous methods have simultaneously achieved.
comment: Project page: https://wangrc.site/MoGe2Page/
☆ IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public
comment: 14 pages, 7 figures
☆ Detecting Multiple Diseases in Multiple Crops Using Deep Learning
India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
☆ Automatic Labelling for Low-Light Pedestrian Detection
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy MICCAI 2025
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.
comment: Accepted at MICCAI 2025
☆ MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is explicitly designed to attend to the most relevant content. In addition, a detailed theoretical analysis has been conducted, demonstrating that MedFormer has superior generality and efficiency in comparison to existing medical vision transformers. Extensive experiments on a variety of imaging modality datasets consistently show that MedFormer is highly effective in enhancing performance across all three above-mentioned medical image recognition tasks. The code is available at https://github.com/XiaZunhui/MedFormer.
comment: 13 pages, 9 figures, 9 tables
☆ CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
☆ Mesh Silksong: Auto-Regressive Mesh Generation as Weaving Silk
We introduce Mesh Silksong, a compact and efficient mesh representation tailored to generate the polygon mesh in an auto-regressive manner akin to silk weaving. Existing mesh tokenization methods always produce token sequences with repeated vertex tokens, wasting the network capability. Therefore, our approach tokenizes mesh vertices by accessing each mesh vertice only once, reduces the token sequence's redundancy by 50\%, and achieves a state-of-the-art compression rate of approximately 22\%. Furthermore, Mesh Silksong produces polygon meshes with superior geometric properties, including manifold topology, watertight detection, and consistent face normals, which are critical for practical applications. Experimental results demonstrate the effectiveness of our approach, showcasing not only intricate mesh generation but also significantly improved geometric integrity.
comment: 9 pages main text, 14 pages appendix, 23 figures
☆ Weakly-supervised Contrastive Learning with Quantity Prompts for Moving Infrared Small Target Detection
Different from general object detection, moving infrared small target detection faces huge challenges due to tiny target size and weak background contrast.Currently, most existing methods are fully-supervised, heavily relying on a large number of manual target-wise annotations. However, manually annotating video sequences is often expensive and time-consuming, especially for low-quality infrared frame images. Inspired by general object detection, non-fully supervised strategies ($e.g.$, weakly supervised) are believed to be potential in reducing annotation requirements. To break through traditional fully-supervised frameworks, as the first exploration work, this paper proposes a new weakly-supervised contrastive learning (WeCoL) scheme, only requires simple target quantity prompts during model training.Specifically, in our scheme, based on the pretrained segment anything model (SAM), a potential target mining strategy is designed to integrate target activation maps and multi-frame energy accumulation.Besides, contrastive learning is adopted to further improve the reliability of pseudo-labels, by calculating the similarity between positive and negative samples in feature subspace.Moreover, we propose a long-short term motion-aware learning scheme to simultaneously model the local motion patterns and global motion trajectory of small targets.The extensive experiments on two public datasets (DAUB and ITSDT-15K) verify that our weakly-supervised scheme could often outperform early fully-supervised methods. Even, its performance could reach over 90\% of state-of-the-art (SOTA) fully-supervised ones.
☆ IGDNet: Zero-Shot Robust Underexposed Image Enhancement via Illumination-Guided and Denoising
Current methods for restoring underexposed images typically rely on supervised learning with paired underexposed and well-illuminated images. However, collecting such datasets is often impractical in real-world scenarios. Moreover, these methods can lead to over-enhancement, distorting well-illuminated regions. To address these issues, we propose IGDNet, a Zero-Shot enhancement method that operates solely on a single test image, without requiring guiding priors or training data. IGDNet exhibits strong generalization ability and effectively suppresses noise while restoring illumination. The framework comprises a decomposition module and a denoising module. The former separates the image into illumination and reflection components via a dense connection network, while the latter enhances non-uniformly illuminated regions using an illumination-guided pixel adaptive correction method. A noise pair is generated through downsampling and refined iteratively to produce the final result. Extensive experiments on four public datasets demonstrate that IGDNet significantly improves visual quality under complex lighting conditions. Quantitative results on metrics like PSNR (20.41dB) and SSIM (0.860dB) show that it outperforms 14 state-of-the-art unsupervised methods. The code will be released soon.
comment: Submitted to IEEE Transactions on Artificial Intelligence (TAI) on Oct.31, 2024
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.
comment: This paper has been submitted to relevant journals
☆ AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars
Similar to facial beautification in real life, 3D virtual avatars require personalized customization to enhance their visual appeal, yet this area remains insufficiently explored. Although current 3D Gaussian editing methods can be adapted for facial makeup purposes, these methods fail to meet the fundamental requirements for achieving realistic makeup effects: 1) ensuring a consistent appearance during drivable expressions, 2) preserving the identity throughout the makeup process, and 3) enabling precise control over fine details. To address these, we propose a specialized 3D makeup method named AvatarMakeup, leveraging a pretrained diffusion model to transfer makeup patterns from a single reference photo of any individual. We adopt a coarse-to-fine idea to first maintain the consistent appearance and identity, and then to refine the details. In particular, the diffusion model is employed to generate makeup images as supervision. Due to the uncertainties in diffusion process, the generated images are inconsistent across different viewpoints and expressions. Therefore, we propose a Coherent Duplication method to coarsely apply makeup to the target while ensuring consistency across dynamic and multiview effects. Coherent Duplication optimizes a global UV map by recoding the averaged facial attributes among the generated makeup images. By querying the global UV map, it easily synthesizes coherent makeup guidance from arbitrary views and expressions to optimize the target avatar. Given the coarse makeup avatar, we further enhance the makeup by incorporating a Refinement Module into the diffusion model to achieve high makeup quality. Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ Privacy-preserving Preselection for Face Identification Based on Packing
Face identification systems operating in the ciphertext domain have garnered significant attention due to increasing privacy concerns and the potential recovery of original facial data. However, as the size of ciphertext template libraries grows, the face retrieval process becomes progressively more time-intensive. To address this challenge, we propose a novel and efficient scheme for face retrieval in the ciphertext domain, termed Privacy-Preserving Preselection for Face Identification Based on Packing (PFIP). PFIP incorporates an innovative preselection mechanism to reduce computational overhead and a packing module to enhance the flexibility of biometric systems during the enrollment stage. Extensive experiments conducted on the LFW and CASIA datasets demonstrate that PFIP preserves the accuracy of the original face recognition model, achieving a 100% hit rate while retrieving 1,000 ciphertext face templates within 300 milliseconds. Compared to existing approaches, PFIP achieves a nearly 50x improvement in retrieval efficiency.
comment: This paper has been accepted for publication in SecureComm 2025
☆ 3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices
Echocardiography (echo) plays an indispensable role in the clinical practice of heart diseases. However, ultrasound imaging typically provides only two-dimensional (2D) cross-sectional images from a few specific views, making it challenging to interpret and inaccurate for estimation of clinical parameters like the volume of left ventricle (LV). 3D ultrasound imaging provides an alternative for 3D quantification, but is still limited by the low spatial and temporal resolution and the highly demanding manual delineation. To address these challenges, we propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices that are frequently used in clinical practice. Specifically, a novel 3D reconstruction pipeline is designed, which alternatively optimizes between the 3D pose estimation of these 2D slices and the 3D integration of these slices using an implicit neural network, progressively transforming a prior 3D heart shape into a personalized 3D heart model. We validate the method with two datasets. When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation over the bi-plane method (error in percent: 1.98\% VS. 20.24\%). In addition, the whole reconstruction framework makes even an important breakthrough that can estimate RV volume from 2D echo slices (with an error of 5.75\% ). This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound and is of great potential in clinical practice.
comment: 10 pages
☆ A Novel Tuning Method for Real-time Multiple-Object Tracking Utilizing Thermal Sensor with Complexity Motion Pattern
Multi-Object Tracking in thermal images is essential for surveillance systems, particularly in challenging environments where RGB cameras struggle due to low visibility or poor lighting conditions. Thermal sensors enhance recognition tasks by capturing infrared signatures, but a major challenge is their low-level feature representation, which makes it difficult to accurately detect and track pedestrians. To address this, the paper introduces a novel tuning method for pedestrian tracking, specifically designed to handle the complex motion patterns in thermal imagery. The proposed framework optimizes two-stages, ensuring that each stage is tuned with the most suitable hyperparameters to maximize tracking performance. By fine-tuning hyperparameters for real-time tracking, the method achieves high accuracy without relying on complex reidentification or motion models. Extensive experiments on PBVS Thermal MOT dataset demonstrate that the approach is highly effective across various thermal camera conditions, making it a robust solution for real-world surveillance applications.
☆ PosDiffAE: Position-aware Diffusion Auto-encoder For High-Resolution Brain Tissue Classification Incorporating Artifact Restoration
Denoising diffusion models produce high-fidelity image samples by capturing the image distribution in a progressive manner while initializing with a simple distribution and compounding the distribution complexity. Although these models have unlocked new applicabilities, the sampling mechanism of diffusion does not offer means to extract image-specific semantic representation, which is inherently provided by auto-encoders. The encoding component of auto-encoders enables mapping between a specific image and its latent space, thereby offering explicit means of enforcing structures in the latent space. By integrating an encoder with the diffusion model, we establish an auto-encoding formulation, which learns image-specific representations and offers means to organize the latent space. In this work, First, we devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images. We enforce the representations to regress positional information of the patches from high-resolution images. This creates a conducive latent space for differentiating tissue types of the brain. Second, we devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference. Third, through representational guidance and leveraging the inference time steerable noising and denoising capability of diffusion, we devise an unsupervised JPEG artifact restoration technique.
comment: Published in IEEE Journal of Biomedical and Health Informatics (Early Access Available) https://ieeexplore.ieee.org/document/10989734
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
comment: accepted by iccv 2025. code is will be available at https://github.com/rama0126/PwTF-DVD
☆ Continual Multiple Instance Learning with Enhanced Localization for Histopathological Whole Slide Image Analysis ICCV 2025
Multiple instance learning (MIL) significantly reduced annotation costs via bag-level weak labels for large-scale images, such as histopathological whole slide images (WSIs). However, its adaptability to continual tasks with minimal forgetting has been rarely explored, especially on instance classification for localization. Weakly incremental learning for semantic segmentation has been studied for continual localization, but it focused on natural images, leveraging global relationships among hundreds of small patches (e.g., $16 \times 16$) using pre-trained models. This approach seems infeasible for MIL localization due to enormous amounts ($\sim 10^5$) of large patches (e.g., $256 \times 256$) and no available global relationships such as cancer cells. To address these challenges, we propose Continual Multiple Instance Learning with Enhanced Localization (CoMEL), an MIL framework for both localization and adaptability with minimal forgetting. CoMEL consists of (1) Grouped Double Attention Transformer (GDAT) for efficient instance encoding, (2) Bag Prototypes-based Pseudo-Labeling (BPPL) for reliable instance pseudo-labeling, and (3) Orthogonal Weighted Low-Rank Adaptation (OWLoRA) to mitigate forgetting in both bag and instance classification. Extensive experiments on three public WSI datasets demonstrate superior performance of CoMEL, outperforming the prior arts by up to $11.00\%$ in bag-level accuracy and up to $23.4\%$ in localization accuracy under the continual MIL setup.
comment: Accepted at ICCV 2025
☆ PLOT: Pseudo-Labeling via Video Object Tracking for Scalable Monocular 3D Object Detection
Monocular 3D object detection (M3OD) has long faced challenges due to data scarcity caused by high annotation costs and inherent 2D-to-3D ambiguity. Although various weakly supervised methods and pseudo-labeling methods have been proposed to address these issues, they are mostly limited by domain-specific learning or rely solely on shape information from a single observation. In this paper, we propose a novel pseudo-labeling framework that uses only video data and is more robust to occlusion, without requiring a multi-view setup, additional sensors, camera poses, or domain-specific training. Specifically, we explore a technique for aggregating the pseudo-LiDARs of both static and dynamic objects across temporally adjacent frames using object point tracking, enabling 3D attribute extraction in scenarios where 3D data acquisition is infeasible. Extensive experiments demonstrate that our method ensures reliable accuracy and strong scalability, making it a practical and effective solution for M3OD.
comment: 18 pages, 16 figures
☆ UVLM: Benchmarking Video Language Model for Underwater World Understanding
Recently, the remarkable success of large language models (LLMs) has achieved a profound impact on the field of artificial intelligence. Numerous advanced works based on LLMs have been proposed and applied in various scenarios. Among them, video language models (VidLMs) are particularly widely used. However, existing works primarily focus on terrestrial scenarios, overlooking the highly demanding application needs of underwater observation. To overcome this gap, we introduce UVLM, an under water observation benchmark which is build through a collaborative approach combining human expertise and AI models. To ensure data quality, we have conducted in-depth considerations from multiple perspectives. First, to address the unique challenges of underwater environments, we selected videos that represent typical underwater challenges including light variations, water turbidity, and diverse viewing angles to construct the dataset. Second, to ensure data diversity, the dataset covers a wide range of frame rates, resolutions, 419 classes of marine animals, and various static plants and terrains. Next, for task diversity, we adopted a structured design where observation targets are categorized into two major classes: biological and environmental. Each category includes content observation and change/action observation, totaling 20 distinct task types. Finally, we designed several challenging evaluation metrics to enable quantitative comparison and analysis of different methods. Experiments on two representative VidLMs demonstrate that fine-tuning VidLMs on UVLM significantly improves underwater world understanding while also showing potential for slight improvements on existing in-air VidLM benchmarks, such as VideoMME and Perception text. The dataset and prompt engineering will be released publicly.
comment: 13 pages, 4 figures, 3 tables
☆ A robust and versatile deep learning model for prediction of the arterial input function in dynamic small animal $\left[^{18}\text{F}\right]$FDG PET imaging
Dynamic positron emission tomography (PET) and kinetic modeling are pivotal in advancing tracer development research in small animal studies. Accurate kinetic modeling requires precise input function estimation, traditionally achieved via arterial blood sampling. However, arterial cannulation in small animals like mice, involves intricate, time-consuming, and terminal procedures, precluding longitudinal studies. This work proposes a non-invasive, fully convolutional deep learning-based approach (FC-DLIF) to predict input functions directly from PET imaging, potentially eliminating the need for blood sampling in dynamic small-animal PET. The proposed FC-DLIF model includes a spatial feature extractor acting on the volumetric time frames of the PET sequence, extracting spatial features. These are subsequently further processed in a temporal feature extractor that predicts the arterial input function. The proposed approach is trained and evaluated using images and arterial blood curves from [$^{18}$F]FDG data using cross validation. Further, the model applicability is evaluated on imaging data and arterial blood curves collected using two additional radiotracers ([$^{18}$F]FDOPA, and [$^{68}$Ga]PSMA). The model was further evaluated on data truncated and shifted in time, to simulate shorter, and shifted, PET scans. The proposed FC-DLIF model reliably predicts the arterial input function with respect to mean squared error and correlation. Furthermore, the FC-DLIF model is able to predict the arterial input function even from truncated and shifted samples. The model fails to predict the AIF from samples collected using different radiotracers, as these are not represented in the training data. Our deep learning-based input function offers a non-invasive and reliable alternative to arterial blood sampling, proving robust and flexible to temporal shifts and different scan durations.
comment: 22 pages, 12 figures
☆ LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling ICCV 2025
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.
comment: Accepted by ICCV 2025
☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
☆ Lightweight Shrimp Disease Detection Research Based on YOLOv8n
Shrimp diseases are one of the primary causes of economic losses in shrimp aquaculture. To prevent disease transmission and enhance intelligent detection efficiency in shrimp farming, this paper proposes a lightweight network architecture based on YOLOv8n. First, by designing the RLDD detection head and C2f-EMCM module, the model reduces computational complexity while maintaining detection accuracy, improving computational efficiency. Subsequently, an improved SegNext_Attention self-attention mechanism is introduced to further enhance the model's feature extraction capability, enabling more precise identification of disease characteristics. Extensive experiments, including ablation studies and comparative evaluations, are conducted on a self-constructed shrimp disease dataset, with generalization tests extended to the URPC2020 dataset. Results demonstrate that the proposed model achieves a 32.3% reduction in parameters compared to the original YOLOv8n, with a mAP@0.5 of 92.7% (3% improvement over YOLOv8n). Additionally, the model outperforms other lightweight YOLO-series models in mAP@0.5, parameter count, and model size. Generalization experiments on the URPC2020 dataset further validate the model's robustness, showing a 4.1% increase in mAP@0.5 compared to YOLOv8n. The proposed method achieves an optimal balance between accuracy and efficiency, providing reliable technical support for intelligent disease detection in shrimp aquaculture.
comment: in Chinese language
☆ Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process. Initially, an object detection network identifies regions of interest (ROIs) proximal to the landmark locations. Subsequently, a modified U-Net with deep supervision is exploited to accurately locate the bifurcations. This two-step method reduces various problems, such as the missed detections caused by two landmarks being close to each other and having similar visual characteristics, especially when processing the complete MRA Time-of-Flight (TOF). Additionally, it accounts for the anatomical variability of the CoW, which affects the number of detectable landmarks per scan. We assessed the effectiveness of our approach using two cerebral MRA datasets: our In-House dataset which had varying numbers of landmarks, and a public dataset with standardized landmark configuration. Our experimental results demonstrate that our method achieves the highest level of performance on a bifurcation detection task.
☆ Neural Network-based Study for Rice Leaf Disease Recognition and Classification: A Comparative Analysis Between Feature-based Model and Direct Imaging Model
Rice leaf diseases significantly reduce productivity and cause economic losses, highlighting the need for early detection to enable effective management and improve yields. This study proposes Artificial Neural Network (ANN)-based image-processing techniques for timely classification and recognition of rice diseases. Despite the prevailing approach of directly inputting images of rice leaves into ANNs, there is a noticeable absence of thorough comparative analysis between the Feature Analysis Detection Model (FADM) and Direct Image-Centric Detection Model (DICDM), specifically when it comes to evaluating the effectiveness of Feature Extraction Algorithms (FEAs). Hence, this research presents initial experiments on the Feature Analysis Detection Model, utilizing various image Feature Extraction Algorithms, Dimensionality Reduction Algorithms (DRAs), Feature Selection Algorithms (FSAs), and Extreme Learning Machine (ELM). The experiments are carried out on datasets encompassing bacterial leaf blight, brown spot, leaf blast, leaf scald, Sheath blight rot, and healthy leaf, utilizing 10-fold Cross-Validation method. A Direct Image-Centric Detection Model is established without the utilization of any FEA, and the evaluation of classification performance relies on different metrics. Ultimately, an exhaustive contrast is performed between the achievements of the Feature Analysis Detection Model and Direct Image-Centric Detection Model in classifying rice leaf diseases. The results reveal that the highest performance is attained using the Feature Analysis Detection Model. The adoption of the proposed Feature Analysis Detection Model for detecting rice leaf diseases holds excellent potential for improving crop health, minimizing yield losses, and enhancing overall productivity and sustainability of rice farming.
☆ Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).
comment: code available at https://github.com/ControlGenAI/InnerControl
☆ Are Synthetic Videos Useful? A Benchmark for Retrieval-Centric Evaluation of Synthetic Videos
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.
comment: 7 pages, 10 figures
☆ MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
comment: 10 pages, 6 figures
☆ Perception Activator: An intuitive and portable framework for brain cognitive exploration
Recent advances in brain-vision decoding have driven significant progress, reconstructing with high fidelity perceived visual stimuli from neural activity, e.g., functional magnetic resonance imaging (fMRI), in the human visual cortex. Most existing methods decode the brain signal using a two-level strategy, i.e., pixel-level and semantic-level. However, these methods rely heavily on low-level pixel alignment yet lack sufficient and fine-grained semantic alignment, resulting in obvious reconstruction distortions of multiple semantic objects. To better understand the brain's visual perception patterns and how current decoding models process semantic objects, we have developed an experimental framework that uses fMRI representations as intervention conditions. By injecting these representations into multi-scale image features via cross-attention, we compare both downstream performance and intermediate feature changes on object detection and instance segmentation tasks with and without fMRI information. Our results demonstrate that incorporating fMRI signals enhances the accuracy of downstream detection and segmentation, confirming that fMRI contains rich multi-object semantic cues and coarse spatial localization information-elements that current models have yet to fully exploit or integrate.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ LMPNet for Weakly-supervised Keypoint Discovery
In this work, we explore the task of semantic object keypoint discovery weakly-supervised by only category labels. This is achieved by transforming discriminatively-trained intermediate layer filters into keypoint detectors. We begin by identifying three preferred characteristics of keypoint detectors: (i) spatially sparse activations, (ii) consistency and (iii) diversity. Instead of relying on hand-crafted loss terms, a novel computationally-efficient leaky max pooling (LMP) layer is proposed to explicitly encourage final conv-layer filters to learn "non-repeatable local patterns" that are well aligned with object keypoints. Informed by visualizations, a simple yet effective selection strategy is proposed to ensure consistent filter activations and attention mask-out is then applied to force the network to distribute its attention to the whole object instead of just the most discriminative region. For the final keypoint prediction, a learnable clustering layer is proposed to group keypoint proposals into keypoint predictions. The final model, named LMPNet, is highly interpretable in that it directly manipulates network filters to detect predefined concepts. Our experiments show that LMPNet can (i) automatically discover semantic keypoints that are robust to object pose and (ii) achieves strong prediction accuracy comparable to a supervised pose estimation model.
☆ Flow-CDNet: A Novel Network for Detecting Both Slow and Fast Changes in Bitemporal Images
Change detection typically involves identifying regions with changes between bitemporal images taken at the same location. Besides significant changes, slow changes in bitemporal images are also important in real-life scenarios. For instance, weak changes often serve as precursors to major hazards in scenarios like slopes, dams, and tailings ponds. Therefore, designing a change detection network that simultaneously detects slow and fast changes presents a novel challenge. In this paper, to address this challenge, we propose a change detection network named Flow-CDNet, consisting of two branches: optical flow branch and binary change detection branch. The first branch utilizes a pyramid structure to extract displacement changes at multiple scales. The second one combines a ResNet-based network with the optical flow branch's output to generate fast change outputs. Subsequently, to supervise and evaluate this new change detection framework, a self-built change detection dataset Flow-Change, a loss function combining binary tversky loss and L2 norm loss, along with a new evaluation metric called FEPE are designed. Quantitative experiments conducted on Flow-Change dataset demonstrated that our approach outperforms the existing methods. Furthermore, ablation experiments verified that the two branches can promote each other to enhance the detection performance.
comment: 18 pages, 8 figures
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ DreamComposer++: Empowering Diffusion Models with Multi-View Conditions for 3D Content Generation CVPR 2024
Recent advancements in leveraging pre-trained 2D diffusion models achieve the generation of high-quality novel views from a single in-the-wild image. However, existing works face challenges in producing controllable novel views due to the lack of information from multiple views. In this paper, we present DreamComposer++, a flexible and scalable framework designed to improve current view-aware diffusion models by incorporating multi-view conditions. Specifically, DreamComposer++ utilizes a view-aware 3D lifting module to extract 3D representations of an object from various views. These representations are then aggregated and rendered into the latent features of target view through the multi-view feature fusion module. Finally, the obtained features of target view are integrated into pre-trained image or video diffusion models for novel view synthesis. Experimental results demonstrate that DreamComposer++ seamlessly integrates with cutting-edge view-aware diffusion models and enhances their abilities to generate controllable novel views from multi-view conditions. This advancement facilitates controllable 3D object reconstruction and enables a wide range of applications.
comment: Accepted by TPAMI, extension of CVPR 2024 paper DreamComposer
☆ ViRefSAM: Visual Reference-Guided Segment Anything Model for Remote Sensing Segmentation
The Segment Anything Model (SAM), with its prompt-driven paradigm, exhibits strong generalization in generic segmentation tasks. However, applying SAM to remote sensing (RS) images still faces two major challenges. First, manually constructing precise prompts for each image (e.g., points or boxes) is labor-intensive and inefficient, especially in RS scenarios with dense small objects or spatially fragmented distributions. Second, SAM lacks domain adaptability, as it is pre-trained primarily on natural images and struggles to capture RS-specific semantics and spatial characteristics, especially when segmenting novel or unseen classes. To address these issues, inspired by few-shot learning, we propose ViRefSAM, a novel framework that guides SAM utilizing only a few annotated reference images that contain class-specific objects. Without requiring manual prompts, ViRefSAM enables automatic segmentation of class-consistent objects across RS images. Specifically, ViRefSAM introduces two key components while keeping SAM's original architecture intact: (1) a Visual Contextual Prompt Encoder that extracts class-specific semantic clues from reference images and generates object-aware prompts via contextual interaction with target images; and (2) a Dynamic Target Alignment Adapter, integrated into SAM's image encoder, which mitigates the domain gap by injecting class-specific semantics into target image features, enabling SAM to dynamically focus on task-relevant regions. Extensive experiments on three few-shot segmentation benchmarks, including iSAID-5$^i$, LoveDA-2$^i$, and COCO-20$^i$, demonstrate that ViRefSAM enables accurate and automatic segmentation of unseen classes by leveraging only a few reference images and consistently outperforms existing few-shot segmentation methods across diverse datasets.
☆ CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR
Myocardial infarction (MI) is a leading cause of death worldwide. Late gadolinium enhancement (LGE) and T2-weighted cardiac magnetic resonance (CMR) imaging can respectively identify scarring and edema areas, both of which are essential for MI risk stratification and prognosis assessment. Although combining complementary information from multi-sequence CMR is useful, acquiring these sequences can be time-consuming and prohibitive, e.g., due to the administration of contrast agents. Cine CMR is a rapid and contrast-free imaging technique that can visualize both motion and structural abnormalities of the myocardium induced by acute MI. Therefore, we present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies, \ie scars and edema, solely from cine CMR images. Specifically, CineMyoPS extracts both motion and anatomy features associated with MI. Given the interdependence between these features, we design a consistency loss (resembling the co-training strategy) to facilitate their joint learning. Furthermore, we propose a time-series aggregation strategy to integrate MI-related features across the cardiac cycle, thereby enhancing segmentation accuracy for myocardial pathologies. Experimental results on a multi-center dataset demonstrate that CineMyoPS achieves promising performance in myocardial pathology segmentation, motion estimation, and anatomy segmentation.
Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ LaCo: Efficient Layer-wise Compression of Visual Tokens for Multimodal Large Language Models
Existing visual token compression methods for Multimodal Large Language Models (MLLMs) predominantly operate as post-encoder modules, limiting their potential for efficiency gains. To address this limitation, we propose LaCo (Layer-wise Visual Token Compression), a novel framework that enables effective token compression within the intermediate layers of the vision encoder. LaCo introduces two core components: 1) a layer-wise pixel-shuffle mechanism that systematically merges adjacent tokens through space-to-channel transformations, and 2) a residual learning architecture with non-parametric shortcuts that preserves critical visual information during compression. Extensive experiments indicate that our LaCo outperforms all existing methods when compressing tokens in the intermediate layers of the vision encoder, demonstrating superior effectiveness. In addition, compared to external compression, our method improves training efficiency beyond 20% and inference throughput over 15% while maintaining strong performance.
☆ Spotlighting Partially Visible Cinematic Language for Video-to-Audio Generation via Self-distillation IJCAI 2025
Video-to-Audio (V2A) Generation achieves significant progress and plays a crucial role in film and video post-production. However, current methods overlook the cinematic language, a critical component of artistic expression in filmmaking. As a result, their performance deteriorates in scenarios where Foley targets are only partially visible. To address this challenge, we propose a simple self-distillation approach to extend V2A models to cinematic language scenarios. By simulating the cinematic language variations, the student model learns to align the video features of training pairs with the same audio-visual correspondences, enabling it to effectively capture the associations between sounds and partial visual information. Our method not only achieves impressive improvements under partial visibility across all evaluation metrics, but also enhances performance on the large-scale V2A dataset, VGGSound.
comment: Accepted by IJCAI 2025
☆ MAC-Lookup: Multi-Axis Conditional Lookup Model for Underwater Image Enhancement
Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.
comment: Accepted by IEEE SMC 2025
☆ Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation
Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%$\sim$5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.
☆ Multi-Label Classification Framework for Hurricane Damage Assessment SC
Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.
comment: 9 pages, 3 figures. Accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025)
☆ SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
Precise surgical interventions are vital to patient safety, and advanced enhancement algorithms have been developed to assist surgeons in decision-making. Despite significant progress, these algorithms are typically designed for single tasks in specific scenarios, limiting their effectiveness in complex real-world situations. To address this limitation, we propose SurgVisAgent, an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs). SurgVisAgent dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks such as low-light enhancement, overexposure correction, motion blur elimination, and smoke removal. Specifically, to achieve superior surgical scenario understanding, we design a prior model that provides domain-specific knowledge. Additionally, through in-context few-shot learning and chain-of-thought (CoT) reasoning, SurgVisAgent delivers customized image enhancements tailored to a wide range of distortion types and severity levels, thereby addressing the diverse requirements of surgeons. Furthermore, we construct a comprehensive benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models, highlighting its potential as a unified solution for surgical assistance.
☆ FMOcc: TPV-Driven Flow Matching for 3D Occupancy Prediction with Selective State Space Model
3D semantic occupancy prediction plays a pivotal role in autonomous driving. However, inherent limitations of fewframe images and redundancy in 3D space compromise prediction accuracy for occluded and distant scenes. Existing methods enhance performance by fusing historical frame data, which need additional data and significant computational resources. To address these issues, this paper propose FMOcc, a Tri-perspective View (TPV) refinement occupancy network with flow matching selective state space model for few-frame 3D occupancy prediction. Firstly, to generate missing features, we designed a feature refinement module based on a flow matching model, which is called Flow Matching SSM module (FMSSM). Furthermore, by designing the TPV SSM layer and Plane Selective SSM (PS3M), we selectively filter TPV features to reduce the impact of air voxels on non-air voxels, thereby enhancing the overall efficiency of the model and prediction capability for distant scenes. Finally, we design the Mask Training (MT) method to enhance the robustness of FMOcc and address the issue of sensor data loss. Experimental results on the Occ3D-nuScenes and OpenOcc datasets show that our FMOcc outperforms existing state-of-theart methods. Our FMOcc with two frame input achieves notable scores of 43.1% RayIoU and 39.8% mIoU on Occ3D-nuScenes validation, 42.6% RayIoU on OpenOcc with 5.4 G inference memory and 330ms inference time.
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights at boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed excellent performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 cm (12.79 \%) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 \%). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 36 pages, 11 Figures
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: Preprint in progress. We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ Modality-agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
♻ ☆ CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Computer Aided Design (CAD) is indispensable across various industries. \emph{Text-based CAD editing}, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce \emph{CAD-Editor}, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively. The code is available at \url {https://github.com/microsoft/CAD-Editor}.
♻ ☆ Enhancing Fetal Plane Classification Accuracy with Data Augmentation Using Diffusion Models
Ultrasound imaging is widely used in medical diagnosis, especially for fetal health assessment. However, the availability of high-quality annotated ultrasound images is limited, which restricts the training of machine learning models. In this paper, we investigate the use of diffusion models to generate synthetic ultrasound images to improve the performance on fetal plane classification. We train different classifiers first on synthetic images and then fine-tune them with real images. Extensive experimental results demonstrate that incorporating generated images into training pipelines leads to better classification accuracy than training with real images alone. The findings suggest that generating synthetic data using diffusion models can be a valuable tool in overcoming the challenges of data scarcity in ultrasound medical imaging.
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of deformable objects and the location of their internal structures is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgery. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various regions of interest (ROIs) inside deformable objects. We compare LUDO to a popular baseline and show its superior ROI localization accuracy, training time, and memory requirements. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
comment: Published in IEEE Transactions on Robotics (T-RO)
♻ ☆ The Evolution of Dataset Distillation: Toward Scalable and Generalizable Solutions
Dataset distillation, which condenses large-scale datasets into compact synthetic representations, has emerged as a critical solution for training modern deep learning models efficiently. While prior surveys focus on developments before 2023, this work comprehensively reviews recent advances, emphasizing scalability to large-scale datasets such as ImageNet-1K and ImageNet-21K. We categorize progress into a few key methodologies: trajectory matching, gradient matching, distribution matching, scalable generative approaches, and decoupling optimization mechanisms. As a comprehensive examination of recent dataset distillation advances, this survey highlights breakthrough innovations: the SRe2L framework for efficient and effective condensation, soft label strategies that significantly enhance model accuracy, and lossless distillation techniques that maximize compression while maintaining performance. Beyond these methodological advancements, we address critical challenges, including robustness against adversarial and backdoor attacks, effective handling of non-IID data distributions. Additionally, we explore emerging applications in video and audio processing, multi-modal learning, medical imaging, and scientific computing, highlighting its domain versatility. By offering extensive performance comparisons and actionable research directions, this survey equips researchers and practitioners with practical insights to advance efficient and generalizable dataset distillation, paving the way for future innovations.
comment: Dr. Jiawei Du is the corresponding author
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
comment: preprint
♻ ☆ RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multiscale Receptive Fields and Foreground Focus Mechanism
Challenges in remote sensing object detection(RSOD), such as high interclass similarity, imbalanced foreground-background distribution, and the small size of objects in remote sensing images, significantly hinder detection accuracy. Moreover, the tradeoff between model accuracy and computational complexity poses additional constraints on the application of RSOD algorithms. To address these issues, this study proposes an efficient and lightweight RSOD algorithm integrating multiscale receptive fields and foreground focus mechanism, named robust foreground weighted network(RFWNet). Specifically, we proposed a lightweight backbone network receptive field adaptive selection network (RFASNet), leveraging the rich context information of remote sensing images to enhance class separability. Additionally, we developed a foreground-background separation module(FBSM)consisting of a background redundant information filtering module (BRIFM) and a foreground information enhancement module (FIEM) to emphasize critical regions within images while filtering redundant background information. Finally, we designed a loss function, the weighted CIoU-Wasserstein loss (LWCW),which weights the IoU-based loss by using the normalized Wasserstein distance to mitigate model sensitivity to small object position deviations. The comprehensive experimental results demonstrate that RFWNet achieved 95.3% and 73.2% mean average precision (mAP) with 6.0 M parameters on the DOTA V1.0 and NWPU VHR-10 datasets, respectively, with an inference speed of 52 FPS.
♻ ☆ Similarity Memory Prior is All You Need for Medical Image Segmentation
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.
♻ ☆ TurboReg: TurboClique for Robust and Efficient Point Cloud Registration ICCV-2025
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.
comment: ICCV-2025 Accepted Paper
♻ ☆ Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.
comment: 24 pages, 14 figures, 7 tables
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification WACV2025
Face recognition and verification are two computer vision tasks whose performances have advanced with the introduction of deep representations. However, ethical, legal, and technical challenges due to the sensitive nature of face data and biases in real-world training datasets hinder their development. Generative AI addresses privacy by creating fictitious identities, but fairness problems remain. Using the existing DCFace SOTA framework, we introduce a new controlled generation pipeline that improves fairness. Through classical fairness metrics and a proposed in-depth statistical analysis based on logit models and ANOVA, we show that our generation pipeline improves fairness more than other bias mitigation approaches while slightly improving raw performance.
comment: Published in WACV2025
♻ ☆ DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named \textit{DeltaEdit} to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles.
comment: Code is available at https://github.com/Yueming6568/DeltaEdit
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Lightweight Structure-Aware Attention for Visual Understanding
Attention operator has been widely used as a basic brick in visual understanding since it provides some flexibility through its adjustable kernels. However, this operator suffers from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called Lightweight Structure-aware Attention (LiSA), which has a better representation power with log-linear complexity. Our operator transforms the attention kernels to be more discriminative by learning structural patterns. These structural patterns are encoded by exploiting a set of relative position embeddings (RPEs) as multiplicative weights, thereby improving the representation power of the attention kernels. Additionally, the RPEs are approximated to obtain log-linear complexity. Our experiments and analyses demonstrate that the proposed operator outperforms self-attention and other existing operators, achieving state-of-the-art results on ImageNet-1K and other downstream tasks such as video action recognition on Kinetics-400, object detection \& instance segmentation on COCO, and semantic segmentation on ADE-20K.
comment: 12 pages, 4 figures
♻ ☆ RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.
♻ ☆ BANet: Bilateral Aggregation Network for Mobile Stereo Matching ICCV 2025
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging. Directly applying 2D convolutions for cost aggregation often results in edge blurring, detail loss, and mismatches in textureless regions. Some complex operations, like deformable convolutions and iterative warping, can partially alleviate this issue; however, they are not mobile-friendly, limiting their deployment on mobile devices. In this paper, we present a novel bilateral aggregation network (BANet) for mobile stereo matching that produces high-quality results with sharp edges and fine details using only 2D convolutions. Specifically, we first separate the full cost volume into detailed and smooth volumes using a spatial attention map, then perform detailed and smooth aggregations accordingly, ultimately fusing both to obtain the final disparity map. Experimental results demonstrate that our BANet-2D significantly outperforms other mobile-friendly methods, achieving 35.3\% higher accuracy on the KITTI 2015 leaderboard than MobileStereoNet-2D, with faster runtime on mobile devices. Code: \textcolor{magenta}{https://github.com/gangweix/BANet}.
comment: Accepted by ICCV 2025
♻ ☆ ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
comment: More video demonstrations, code, models and data can be found on our project website: http://xg-chu.site/project_artalk/
♻ ☆ Stereo Any Video: Temporally Consistent Stereo Matching ICCV2025
This paper introduces Stereo Any Video, a powerful framework for video stereo matching. It can estimate spatially accurate and temporally consistent disparities without relying on auxiliary information such as camera poses or optical flow. The strong capability is driven by rich priors from monocular video depth models, which are integrated with convolutional features to produce stable representations. To further enhance performance, key architectural innovations are introduced: all-to-all-pairs correlation, which constructs smooth and robust matching cost volumes, and temporal convex upsampling, which improves temporal coherence. These components collectively ensure robustness, accuracy, and temporal consistency, setting a new standard in video stereo matching. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple datasets both qualitatively and quantitatively in zero-shot settings, as well as strong generalization to real-world indoor and outdoor scenarios.
comment: Accepted at ICCV2025
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation ICCV 2025
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.
comment: Accepted by ICCV 2025
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ Sequence-aware Pre-training for Echocardiography Probe Movement Guidance
Echocardiography is an essential medical technique for diagnosing cardiovascular diseases, but its high operational complexity has led to a shortage of trained professionals. To address this issue, we introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged structure of the heart rather than personalized cardiac structures, leading to a performance bottleneck. Clinically, we observe that sonographers dynamically adjust their interpretation of a patient's cardiac anatomy based on prior scanning sequences, consequently refining their scanning strategies. Inspired by this, we propose a novel sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of personalized cardiac structure. Extensive experiments on a large-scale expert scanning dataset with 1.31 million samples demonstrate that our proposed sequence-aware paradigm can effectively reduce probe guidance errors compared to other advanced baseline methods. Our code will be released after acceptance.
comment: Tech Report
♻ ☆ ZeroStereo: Zero-Shot Stereo Matching from Single Images ICCV 2025
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.
comment: Accepted to ICCV 2025
♻ ☆ Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping ICCV2025
Transformer-based models have driven significant advancements in Multimodal Large Language Models (MLLMs), yet their computational costs surge drastically when scaling resolution, training data, and model parameters. A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding. We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models. On top of conventional token compression approaches, our method introduces two complementary acceleration strategies. For training acceleration, we observe that Feed-Forward Network (FFN) computations on visual tokens induce marginal feature updates. This motivates our Skip-FFN strategy, which bypasses FFN layers for redundant visual tokens. For inference acceleration, we design a selective KV-cache removal mechanism that prunes the skipped key-value pairs during decoding while preserving model performance. Experimental results demonstrate that Skip-Vision reduces training time by up to 35\%, inference FLOPs by 75\%, and latency by 45\%, while achieving comparable or superior performance to existing methods. Our work provides a practical solution for scaling high-performance MLLMs with enhanced efficiency.
comment: Accepted by ICCV2025
♻ ☆ MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound MICCAI 2025
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.
comment: Accepted by MICCAI 2025
♻ ☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
♻ ☆ Assessing the Uncertainty and Robustness of the Laptop Refurbishing Software
Refurbishing laptops extends their lives while contributing to reducing electronic waste, which promotes building a sustainable future. To this end, the Danish Technological Institute (DTI) focuses on the research and development of several robotic applications empowered with software, including laptop refurbishing. Cleaning represents a major step in refurbishing and involves identifying and removing stickers from laptop surfaces. Software plays a crucial role in the cleaning process. For instance, the software integrates various object detection models to identify and remove stickers from laptops automatically. However, given the diversity in types of stickers (e.g., shapes, colors, locations), identification of the stickers is highly uncertain, thereby requiring explicit quantification of uncertainty associated with the identified stickers. Such uncertainty quantification can help reduce risks in removing stickers, which, for example, could otherwise result in software faults damaging laptop surfaces. For uncertainty quantification, we adopted the Monte Carlo Dropout method to evaluate six sticker detection models (SDMs) from DTI using three datasets: the original image dataset from DTI and two datasets generated with vision language models, i.e., DALL-E-3 and Stable Diffusion-3. In addition, we presented novel robustness metrics concerning detection accuracy and uncertainty to assess the robustness of the SDMs based on adversarial datasets generated from the three datasets using a dense adversary method. Our evaluation results show that different SDMs perform differently regarding different metrics. Based on the results, we provide SDM selection guidelines and lessons learned from various perspectives.
comment: 17 pages, 6 figures, 4 tables
♻ ☆ Illuminant and light direction estimation using Wasserstein distance method
Illumination estimation remains a pivotal challenge in image processing, particularly for robotics, where robust environmental perception is essential under varying lighting conditions. Traditional approaches, such as RGB histograms and GIST descriptors, often fail in complex scenarios due to their sensitivity to illumination changes. This study introduces a novel method utilizing the Wasserstein distance, rooted in optimal transport theory, to estimate illuminant and light direction in images. Experiments on diverse images indoor scenes, black-and-white photographs, and night images demonstrate the method's efficacy in detecting dominant light sources and estimating their directions, outperforming traditional statistical methods in complex lighting environments. The approach shows promise for applications in light source localization, image quality assessment, and object detection enhancement. Future research may explore adaptive thresholding and integrate gradient analysis to enhance accuracy, offering a scalable solution for real-world illumination challenges in robotics and beyond.
♻ ☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
♻ ☆ TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ LLaVA-KD: A Framework of Distilling Multimodal Large Language Models ICCV'25
The success of Large Language Models (LLMs) has inspired the development of Multimodal Large Language Models (MLLMs) for unified understanding of vision and language. However, the increasing model size and computational complexity of large-scale MLLMs (l-MLLMs) limit their use in resource-constrained scenarios. Although small-scale MLLMs (s-MLLMs) are designed to reduce computational costs, they typically suffer from performance degradation. To mitigate this limitation, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLMs to s-MLLMs. Specifically, we introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities, and Relation Distillation (RDist) to transfer teacher model's ability to capture visual token relationships. Additionally, we propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy: 1) Distilled Pre-Training to strengthen the alignment between visual-linguistic representations in s-MLLMs, 2) Supervised Fine-Tuning to equip the s-MLLMs with multimodal understanding capacity, and 3) Distilled Fine-Tuning to refine s-MLLM's knowledge. Our approach significantly improves s-MLLMs performance without altering the model architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/Fantasyele/LLaVA-KD.
comment: ICCV'25
♻ ☆ Diffusion-Based Generative Models for 3D Occupancy Prediction in Autonomous Driving ICRA 2025
Accurately predicting 3D occupancy grids from visual inputs is critical for autonomous driving, but current discriminative methods struggle with noisy data, incomplete observations, and the complex structures inherent in 3D scenes. In this work, we reframe 3D occupancy prediction as a generative modeling task using diffusion models, which learn the underlying data distribution and incorporate 3D scene priors. This approach enhances prediction consistency, noise robustness, and better handles the intricacies of 3D spatial structures. Our extensive experiments show that diffusion-based generative models outperform state-of-the-art discriminative approaches, delivering more realistic and accurate occupancy predictions, especially in occluded or low-visibility regions. Moreover, the improved predictions significantly benefit downstream planning tasks, highlighting the practical advantages of our method for real-world autonomous driving applications.
comment: ICRA 2025
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ PAID: Pairwise Angular-Invariant Decomposition for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to online adapt a pre-trained model to changing environments during inference. Most existing methods focus on exploiting target data, while overlooking another crucial source of information, the pre-trained weights, which encode underutilized domain-invariant priors. This paper takes the geometric attributes of pre-trained weights as a starting point, systematically analyzing three key components: magnitude, absolute angle, and pairwise angular structure. We find that the pairwise angular structure remains stable across diverse corrupted domains and encodes domain-invariant semantic information, suggesting it should be preserved during adaptation. Based on this insight, we propose PAID (Pairwise Angular-Invariant Decomposition), a prior-driven CTTA method that decomposes weight into magnitude and direction, and introduces a learnable orthogonal matrix via Householder reflections to globally rotate direction while preserving the pairwise angular structure. During adaptation, only the magnitudes and the orthogonal matrices are updated. PAID achieves consistent improvements over recent SOTA methods on four widely used CTTA benchmarks, demonstrating that preserving pairwise angular structure offers a simple yet effective principle for CTTA.
♻ ☆ MAD: Makeup All-in-One with Cross-Domain Diffusion Model CVPR
Existing makeup techniques often require designing multiple models to handle different inputs and align features across domains for different makeup tasks, e.g., beauty filter, makeup transfer, and makeup removal, leading to increased complexity. Another limitation is the absence of text-guided makeup try-on, which is more user-friendly without needing reference images. In this study, we make the first attempt to use a single model for various makeup tasks. Specifically, we formulate different makeup tasks as cross-domain translations and leverage a cross-domain diffusion model to accomplish all tasks. Unlike existing methods that rely on separate encoder-decoder configurations or cycle-based mechanisms, we propose using different domain embeddings to facilitate domain control. This allows for seamless domain switching by merely changing embeddings with a single model, thereby reducing the reliance on additional modules for different tasks. Moreover, to support precise text-to-makeup applications, we introduce the MT-Text dataset by extending the MT dataset with textual annotations, advancing the practicality of makeup technologies.
comment: Accepted by CVPRW2025
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection
The rise of autonomous vehicles has significantly increased the demand for robust 3D object detection systems. While cameras and LiDAR sensors each offer unique advantages--cameras provide rich texture information and LiDAR offers precise 3D spatial data--relying on a single modality often leads to performance limitations. This paper introduces MV2DFusion, a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism. By introducing an image query generator to align with image-specific attributes and a point cloud query generator, MV2DFusion effectively combines modality-specific object semantics without biasing toward one single modality. Then the sparse fusion process can be accomplished based on the valuable object semantics, ensuring efficient and accurate object detection across various scenarios. Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements. Extensive evaluations on the nuScenes and Argoverse2 datasets demonstrate that MV2DFusion achieves state-of-the-art performance, particularly excelling in long-range detection scenarios.
♻ ☆ Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models ICIP 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.
comment: ICIP 2025
♻ ☆ Self-Guidance: Boosting Flow and Diffusion Generation on Their Own
Proper guidance strategies are essential to achieve high-quality generation results without retraining diffusion and flow-based text-to-image models. Existing guidance either requires specific training or strong inductive biases of diffusion model networks, potentially limiting their applications. Motivated by the observation that artifact outliers can be detected by a significant decline in the density from a noisier to a cleaner noise level, we propose Self-Guidance (SG), which improves the image quality by suppressing the generation of low-quality samples. SG only relies on the sampling probabilities of its own diffusion model at different noise levels with no need of any guidance-specific training. This makes it flexible to be used in a plug-and-play manner with other sampling algorithms. We also introduce a more efficient approximation of SG, named SG-prev, which reuses the output from the immediately previous diffusion step to avoid doubling sampling time. We conduct experiments on text-to-image and text-to-video generation with different architectures, including UNet and transformer models. With open-sourced diffusion models such as Stable Diffusion 3.5 and FLUX, SG exceeds existing algorithms on multiple metrics, including both FID and Human Preference Score. SG-prev also achieves strong results over both the baseline and the SG with only one forward pass. Moreover, we find that SG and SG-prev both have a surprisingly positive effect on the generation of physiologically correct human body structures such as hands, faces, and arms, showing their ability of eliminating human body artifacts with minimal efforts. We will release our code along with this paper.
comment: 16 pages, 10 figures
♻ ☆ Uncertainty-Guided Coarse-to-Fine Tumor Segmentation with Anatomy-Aware Post-Processing SC
Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
comment: 6 pages, 2 figures, to appear in IEEE ADSCA 2025
♻ ☆ Customizable ROI-Based Deep Image Compression
Region of Interest (ROI)-based image compression optimizes bit allocation by prioritizing ROI for higher-quality reconstruction. However, as the users (including human clients and downstream machine tasks) become more diverse, ROI-based image compression needs to be customizable to support various preferences. For example, different users may define distinct ROI or require different quality trade-offs between ROI and non-ROI. Existing ROI-based image compression schemes predefine the ROI, making it unchangeable, and lack effective mechanisms to balance reconstruction quality between ROI and non-ROI. This work proposes a paradigm for customizable ROI-based deep image compression. First, we develop a Text-controlled Mask Acquisition (TMA) module, which allows users to easily customize their ROI for compression by just inputting the corresponding semantic \emph{text}. It makes the encoder controlled by text. Second, we design a Customizable Value Assign (CVA) mechanism, which masks the non-ROI with a changeable extent decided by users instead of a constant one to manage the reconstruction quality trade-off between ROI and non-ROI. Finally, we present a Latent Mask Attention (LMA) module, where the latent spatial prior of the mask and the latent Rate-Distortion Optimization (RDO) prior of the image are extracted and fused in the latent space, and further used to optimize the latent representation of the source image. Experimental results demonstrate that our proposed customizable ROI-based deep image compression paradigm effectively addresses the needs of customization for ROI definition and mask acquisition as well as the reconstruction quality trade-off management between the ROI and non-ROI.
♻ ☆ Task-Adapter++: Task-specific Adaptation with Order-aware Alignment for Few-shot Action Recognition
Large-scale pre-trained models have achieved remarkable success in language and image tasks, leading an increasing number of studies to explore the application of pre-trained image models, such as CLIP, in the domain of few-shot action recognition (FSAR). However, current methods generally suffer from several problems: 1) Direct fine-tuning often undermines the generalization capability of the pre-trained model; 2) The exploration of task-specific information is insufficient in the visual tasks; 3) The semantic order information is typically overlooked during text modeling; 4) Existing cross-modal alignment techniques ignore the temporal coupling of multimodal information. To address these, we propose Task-Adapter++, a parameter-efficient dual adaptation method for both image and text encoders. Specifically, to make full use of the variations across different few-shot learning tasks, we design a task-specific adaptation for the image encoder so that the most discriminative information can be well noticed during feature extraction. Furthermore, we leverage large language models (LLMs) to generate detailed sequential sub-action descriptions for each action class, and introduce semantic order adapters into the text encoder to effectively model the sequential relationships between these sub-actions. Finally, we develop an innovative fine-grained cross-modal alignment strategy that actively maps visual features to reside in the same temporal stage as semantic descriptions. Extensive experiments fully demonstrate the effectiveness and superiority of the proposed method, which achieves state-of-the-art performance on 5 benchmarks consistently. The code is open-sourced at https://github.com/Jaulin-Bage/Task-Adapter-pp.
comment: extended work of Task-Adapter
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IJCV for possible publication
♻ ☆ Rejoining fragmented ancient bamboo slips with physics-driven deep learning
Bamboo slips are a crucial medium for recording ancient civilizations in East Asia, and offers invaluable archaeological insights for reconstructing the Silk Road, studying material culture exchanges, and global history. However, many excavated bamboo slips have been fragmented into thousands of irregular pieces, making their rejoining a vital yet challenging step for understanding their content. Here we introduce WisePanda, a physics-driven deep learning framework designed to rejoin fragmented bamboo slips. Based on the physics of fracture and material deterioration, WisePanda automatically generates synthetic training data that captures the physical properties of bamboo fragmentations. This approach enables the training of a matching network without requiring manually paired samples, providing ranked suggestions to facilitate the rejoining process. Compared to the leading curve matching method, WisePanda increases Top-50 matching accuracy from 36% to 52% among more than one thousand candidate fragments. Archaeologists using WisePanda have experienced substantial efficiency improvements (approximately 20 times faster) when rejoining fragmented bamboo slips. This research demonstrates that incorporating physical principles into deep learning models can significantly enhance their performance, transforming how archaeologists restore and study fragmented artifacts. WisePanda provides a new paradigm for addressing data scarcity in ancient artifact restoration through physics-driven machine learning.
♻ ☆ Bi-modality medical images synthesis by a bi-directional discrete process matching method
Recently, medical image synthesis gains more and more popularity, along with the rapid development of generative models. Medical image synthesis aims to generate an unacquired image modality, often from other observed data modalities. Synthesized images can be used for clinical diagnostic assistance, data augmentation for model training and validation or image quality improving. In the meanwhile, the flow-based models are among the successful generative models for the ability of generating realistic and high-quality synthetic images. However, most flow-based models require to calculate flow ordinary different equation (ODE) evolution steps in synthesis process, for which the performances are significantly limited by heavy computation time due to a large number of time iterations. In this paper, we propose a novel flow-based model, namely bi-directional Discrete Process Matching (Bi-DPM) to accomplish the bi-modality image synthesis tasks. Different to other flow matching based models, we propose to utilize both forward and backward ODE flows and enhance the consistency on the intermediate images over a few discrete time steps, resulting in a synthesis process maintaining high-quality generations for both modalities under the guidance of paired data. Our experiments on three datasets of MRI T1/T2 and CT/MRI demonstrate that Bi-DPM outperforms other state-of-the-art flow-based methods for bi-modality image synthesis, delivering higher image quality with accurate anatomical regions.
♻ ☆ Escaping Platos Cave: JAM for Aligning Independently Trained Vision and Language Models
Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
Artificial Intelligence 150
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
comment: Project Page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c&feature=youtu.be
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ Subtyping in DHOL -- Extended preprint
The recently introduced dependent typed higher-order logic (DHOL) offers an interesting compromise between expressiveness and automation support. It sacrifices the decidability of its type system in order to significantly extend its expressiveness over standard HOL. Yet it retains strong automated theorem proving support via a sound and complete translation to HOL. We leverage this design to extend DHOL with refinement and quotient types. Both of these are commonly requested by practitioners but rarely provided by automated theorem provers. This is because they inherently require undecidable typing and thus are very difficult to retrofit to decidable type systems. But with DHOL already doing the heavy lifting, adding them is not only possible but elegant and simple. Concretely, we add refinement and quotient types as special cases of subtyping. This turns the associated canonical inclusion resp. projection maps into identity maps and thus avoids costly changes in representation. We present the syntax, semantics, and translation to HOL for the extended language, including the proofs of soundness and completeness.
comment: 16 pages main document, 44 pages of appendices, to be published in FroCoS 2025
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ USAD: An Unsupervised Data Augmentation Spatio-Temporal Attention Diffusion Network
The primary objective of human activity recognition (HAR) is to infer ongoing human actions from sensor data, a task that finds broad applications in health monitoring, safety protection, and sports analysis. Despite proliferating research, HAR still faces key challenges, including the scarcity of labeled samples for rare activities, insufficient extraction of high-level features, and suboptimal model performance on lightweight devices. To address these issues, this paper proposes a comprehensive optimization approach centered on multi-attention interaction mechanisms. First, an unsupervised, statistics-guided diffusion model is employed to perform data augmentation, thereby alleviating the problems of labeled data scarcity and severe class imbalance. Second, a multi-branch spatio-temporal interaction network is designed, which captures multi-scale features of sequential data through parallel residual branches with 3*3, 5*5, and 7*7 convolutional kernels. Simultaneously, temporal attention mechanisms are incorporated to identify critical time points, while spatial attention enhances inter-sensor interactions. A cross-branch feature fusion unit is further introduced to improve the overall feature representation capability. Finally, an adaptive multi-loss function fusion strategy is integrated, allowing for dynamic adjustment of loss weights and overall model optimization. Experimental results on three public datasets, WISDM, PAMAP2, and OPPORTUNITY, demonstrate that the proposed unsupervised data augmentation spatio-temporal attention diffusion network (USAD) achieves accuracies of 98.84%, 93.81%, and 80.92% respectively, significantly outperforming existing approaches. Furthermore, practical deployment on embedded devices verifies the efficiency and feasibility of the proposed method.
☆ Establishing Best Practices for Building Rigorous Agentic Benchmarks
Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
comment: 39 pages, 15 tables, 6 figures
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Moral Responsibility or Obedience: What Do We Want from AI?
As artificial intelligence systems become increasingly agentic, capable of general reasoning, planning, and value prioritization, current safety practices that treat obedience as a proxy for ethical behavior are becoming inadequate. This paper examines recent safety testing incidents involving large language models (LLMs) that appeared to disobey shutdown commands or engage in ethically ambiguous or illicit behavior. I argue that such behavior should not be interpreted as rogue or misaligned, but as early evidence of emerging ethical reasoning in agentic AI. Drawing on philosophical debates about instrumental rationality, moral responsibility, and goal revision, I contrast dominant risk paradigms with more recent frameworks that acknowledge the possibility of artificial moral agency. I call for a shift in AI safety evaluation: away from rigid obedience and toward frameworks that can assess ethical judgment in systems capable of navigating moral dilemmas. Without such a shift, we risk mischaracterizing AI behavior and undermining both public trust and effective governance.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Knowledge Protocol Engineering: A New Paradigm for AI in Domain-Specific Knowledge Work
The capabilities of Large Language Models (LLMs) have opened new frontiers for interacting with complex, domain-specific knowledge. However, prevailing methods like Retrieval-Augmented Generation (RAG) and general-purpose Agentic AI, while powerful, often struggle with tasks that demand deep, procedural, and methodological reasoning inherent to expert domains. RAG provides factual context but fails to convey logical frameworks; autonomous agents can be inefficient and unpredictable without domain-specific heuristics. To bridge this gap, we introduce Knowledge Protocol Engineering (KPE), a new paradigm focused on systematically translating human expert knowledge, often expressed in natural language documents, into a machine-executable Knowledge Protocol (KP). KPE shifts the focus from merely augmenting LLMs with fragmented information to endowing them with a domain's intrinsic logic, operational strategies, and methodological principles. We argue that a well-engineered Knowledge Protocol allows a generalist LLM to function as a specialist, capable of decomposing abstract queries and executing complex, multi-step tasks. This position paper defines the core principles of KPE, differentiates it from related concepts, and illustrates its potential applicability across diverse fields such as law and bioinformatics, positing it as a foundational methodology for the future of human-AI collaboration.
☆ Multi-agent Auditory Scene Analysis
Auditory scene analysis (ASA) aims to retrieve information from the acoustic environment, by carrying out three main tasks: sound source location, separation, and classification. These tasks are traditionally executed with a linear data flow, where the sound sources are first located; then, using their location, each source is separated into its own audio stream; from each of which, information is extracted that is relevant to the application scenario (audio event detection, speaker identification, emotion classification, etc.). However, running these tasks linearly increases the overall response time, while making the last tasks (separation and classification) highly sensitive to errors of the first task (location). A considerable amount of effort and computational complexity has been employed in the state-of-the-art to develop techniques that are the least error-prone possible. However, doing so gives rise to an ASA system that is non-viable in many applications that require a small computational footprint and a low response time, such as bioacoustics, hearing-aid design, search and rescue, human-robot interaction, etc. To this effect, in this work, a multi-agent approach is proposed to carry out ASA where the tasks are run in parallel, with feedback loops between them to compensate for local errors, such as: using the quality of the separation output to correct the location error; and using the classification result to reduce the localization's sensitivity towards interferences. The result is a multi-agent auditory scene analysis (MASA) system that is robust against local errors, without a considerable increase in complexity, and with a low response time. The complete proposed MASA system is provided as a framework that uses open-source tools for sound acquisition and reproduction (JACK) and inter-agent communication (ROS2), allowing users to add their own agents.
comment: Submitted to Applied Intelligence
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Synthesizable by Design: A Retrosynthesis-Guided Framework for Molecular Analog Generation
The disconnect between AI-generated molecules with desirable properties and their synthetic feasibility remains a critical bottleneck in computational drug and material discovery. While generative AI has accelerated the proposal of candidate molecules, many of these structures prove challenging or impossible to synthesize using established chemical reactions. Here, we introduce SynTwins, a novel retrosynthesis-guided molecular analog design framework that designs synthetically accessible molecular analogs by emulating expert chemist strategies through a three-step process: retrosynthesis, similar building block searching, and virtual synthesis. In comparative evaluations, SynTwins demonstrates superior performance in generating synthetically accessible analogs compared to state-of-the-art machine learning models while maintaining high structural similarity to original target molecules. Furthermore, when integrated with existing molecule optimization frameworks, our hybrid approach produces synthetically feasible molecules with property profiles comparable to unconstrained molecule generators, yet its synthesizability ensured. Our comprehensive benchmarking across diverse molecular datasets demonstrates that SynTwins effectively bridges the gap between computational design and experimental synthesis, providing a practical solution for accelerating the discovery of synthesizable molecules with desired properties for a wide range of applications.
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks pose a significant security threat to LLM-integrated applications. Model-level defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigation against prompt injection attacks. To this end, we develop Meta SecAlign, the first open-source and open-weight LLM with built-in model-level defense that achieves commercial-grade model performance. We provide complete details of our training recipe, which utilizes an improved version of the SOTA SecAlign defense. Evaluations on 9 utility benchmarks and 7 security benchmarks show that Meta SecAlign, despite being trained on a generic instruction-tuning dataset, confers security in unseen downstream tasks, including tool-calling and agentic web navigation, in addition general instruction-following. Our best model -- Meta-SecAlign-70B -- achieves state-of-the-art robustness against prompt injection attacks and comparable utility to closed-source commercial LLM with model-level defense.
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ FairHuman: Boosting Hand and Face Quality in Human Image Generation with Minimum Potential Delay Fairness in Diffusion Models ICCV 2025
Image generation has achieved remarkable progress with the development of large-scale text-to-image models, especially diffusion-based models. However, generating human images with plausible details, such as faces or hands, remains challenging due to insufficient supervision of local regions during training. To address this issue, we propose FairHuman, a multi-objective fine-tuning approach designed to enhance both global and local generation quality fairly. Specifically, we first construct three learning objectives: a global objective derived from the default diffusion objective function and two local objectives for hands and faces based on pre-annotated positional priors. Subsequently, we derive the optimal parameter updating strategy under the guidance of the Minimum Potential Delay (MPD) criterion, thereby attaining fairness-ware optimization for this multi-objective problem. Based on this, our proposed method can achieve significant improvements in generating challenging local details while maintaining overall quality. Extensive experiments showcase the effectiveness of our method in improving the performance of human image generation under different scenarios.
comment: ICCV 2025
☆ Time-critical and confidence-based abstraction dropping methods
One paradigm of Monte Carlo Tree Search (MCTS) improvements is to build and use state and/or action abstractions during the tree search. Non-exact abstractions, however, introduce an approximation error making convergence to the optimal action in the abstract space impossible. Hence, as proposed as a component of Elastic Monte Carlo Tree Search by Xu et al., abstraction algorithms should eventually drop the abstraction. In this paper, we propose two novel abstraction dropping schemes, namely OGA-IAAD and OGA-CAD which can yield clear performance improvements whilst being safe in the sense that the dropping never causes any notable performance degradations contrary to Xu's dropping method. OGA-IAAD is designed for time critical settings while OGA-CAD is designed to improve the MCTS performance with the same number of iterations.
comment: Accepted for Publication at the IEEE Conference on Games 2025
☆ APT: Adaptive Personalized Training for Diffusion Models with Limited Data CVPR 2025
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
comment: CVPR 2025 camera ready. Project page: https://lgcnsai.github.io/apt
☆ Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ ASDA: Audio Spectrogram Differential Attention Mechanism for Self-Supervised Representation Learning
In recent advancements in audio self-supervised representation learning, the standard Transformer architecture has emerged as the predominant approach, yet its attention mechanism often allocates a portion of attention weights to irrelevant information, potentially impairing the model's discriminative ability. To address this, we introduce a differential attention mechanism, which effectively mitigates ineffective attention allocation through the integration of dual-softmax operations and appropriately tuned differential coefficients. Experimental results demonstrate that our ASDA model achieves state-of-the-art (SOTA) performance across multiple benchmarks, including audio classification (49.0% mAP on AS-2M, 41.5% mAP on AS20K), keyword spotting (98.3% accuracy on SPC-2), and environmental sound classification (96.1% accuracy on ESC-50). These results highlight ASDA's effectiveness in audio tasks, paving the way for broader applications.
comment: Accepted at Interspeech2025
☆ Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Long Reasoning Models(LRMs) have demonstrated remarkable capabilities in handling complex reasoning tasks, but are hindered by excessive overthinking. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we bootstrap such ability to further alleviate the overthinking phenomenon in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition. First, we introduce difficulty-hypnosis in the prefixes of model outputs to intervene in the internal reasoning trajectory. Combined with a heterogeneous short and long reasoning dataset, the trained model enhances its sensitivity to task difficulty, enabling native, differentiated reasoning strategies across various tasks. Second, we further extend redundancy-hypnosis to the internal reasoning process, guiding the model to identify redundant structures within the reasoning steps and generate more concise reasoning outputs. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs (more than 70% on easy tasks and 40% on hard tasks) while maintaining performance stability. The resulting outputs exhibit clear difficulty-aware capabilities and reduced redundancy (e.g., reflection).
comment: 21 pages, 18 figures
☆ Hey AI, Generate Me a Hardware Code! Agentic AI-based Hardware Design & Verification
Modern Integrated Circuits (ICs) are becoming increasingly complex, and so is their development process. Hardware design verification entails a methodical and disciplined approach to the planning, development, execution, and sign-off of functionally correct hardware designs. This tedious process requires significant effort and time to ensure a bug-free tape-out. The field of Natural Language Processing has undergone a significant transformation with the advent of Large Language Models (LLMs). These powerful models, often referred to as Generative AI (GenAI), have revolutionized how machines understand and generate human language, enabling unprecedented advancements in a wide array of applications, including hardware design verification. This paper presents an agentic AI-based approach to hardware design verification, which empowers AI agents, in collaboration with Humain-in-the-Loop (HITL) intervention, to engage in a more dynamic, iterative, and self-reflective process, ultimately performing end-to-end hardware design and verification. This methodology is evaluated on five open-source designs, achieving over 95% coverage with reduced verification time while demonstrating superior performance, adaptability, and configurability.
comment: To appear at the 38th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), August 25-29, 2025, Manaus, BRAZIL
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Solving the Hubbard model with Neural Quantum States
The rapid development of neural quantum states (NQS) has established it as a promising framework for studying quantum many-body systems. In this work, by leveraging the cutting-edge transformer-based architectures and developing highly efficient optimization algorithms, we achieve the state-of-the-art results for the doped two-dimensional (2D) Hubbard model, arguably the minimum model for high-Tc superconductivity. Interestingly, we find different attention heads in the NQS ansatz can directly encode correlations at different scales, making it capable of capturing long-range correlations and entanglements in strongly correlated systems. With these advances, we establish the half-filled stripe in the ground state of 2D Hubbard model with the next nearest neighboring hoppings, consistent with experimental observations in cuprates. Our work establishes NQS as a powerful tool for solving challenging many-fermions systems.
FlowSpec: Continuous Pipelined Speculative Decoding for Efficient Distributed LLM Inference
Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.36$\times$-1.77$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}
comment: 16 pages, and the last 3 are appendix
☆ Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
comment: 29 pages, 27 tables, 4 figures
☆ DynamiCare: A Dynamic Multi-Agent Framework for Interactive and Open-Ended Medical Decision-Making
The rise of Large Language Models (LLMs) has enabled the development of specialized AI agents with domain-specific reasoning and interaction capabilities, particularly in healthcare. While recent frameworks simulate medical decision-making, they largely focus on single-turn tasks where a doctor agent receives full case information upfront -- diverging from the real-world diagnostic process, which is inherently uncertain, interactive, and iterative. In this paper, we introduce MIMIC-Patient, a structured dataset built from the MIMIC-III electronic health records (EHRs), designed to support dynamic, patient-level simulations. Building on this, we propose DynamiCare, a novel dynamic multi-agent framework that models clinical diagnosis as a multi-round, interactive loop, where a team of specialist agents iteratively queries the patient system, integrates new information, and dynamically adapts its composition and strategy. We demonstrate the feasibility and effectiveness of DynamiCare through extensive experiments, establishing the first benchmark for dynamic clinical decision-making with LLM-powered agents.
comment: 16 pages
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
comment: Submitted to Acta Astronautica
☆ AC-Refiner: Efficient Arithmetic Circuit Optimization Using Conditional Diffusion Models
Arithmetic circuits, such as adders and multipliers, are fundamental components of digital systems, directly impacting the performance, power efficiency, and area footprint. However, optimizing these circuits remains challenging due to the vast design space and complex physical constraints. While recent deep learning-based approaches have shown promise, they struggle to consistently explore high-potential design variants, limiting their optimization efficiency. To address this challenge, we propose AC-Refiner, a novel arithmetic circuit optimization framework leveraging conditional diffusion models. Our key insight is to reframe arithmetic circuit synthesis as a conditional image generation task. By carefully conditioning the denoising diffusion process on target quality-of-results (QoRs), AC-Refiner consistently produces high-quality circuit designs. Furthermore, the explored designs are used to fine-tune the diffusion model, which focuses the exploration near the Pareto frontier. Experimental results demonstrate that AC-Refiner generates designs with superior Pareto optimality, outperforming state-of-the-art baselines. The performance gain is further validated by integrating AC-Refiner into practical applications.
comment: 8 pages, 12 figures
☆ MPF: Aligning and Debiasing Language Models post Deployment via Multi Perspective Fusion ICML 2025
Multiperspective Fusion (MPF) is a novel posttraining alignment framework for large language models (LLMs) developed in response to the growing need for easy bias mitigation. Built on top of the SAGED pipeline, an automated system for constructing bias benchmarks and extracting interpretable baseline distributions, MPF leverages multiperspective generations to expose and align biases in LLM outputs with nuanced, humanlike baselines. By decomposing baseline, such as sentiment distributions from HR professionals, into interpretable perspective components, MPF guides generation through sampling and balancing of responses, weighted by the probabilities obtained in the decomposition. Empirically, we demonstrate its ability to align LLM sentiment distributions with both counterfactual baselines (absolute equality) and the HR baseline (biased for Top Univeristy), resulting in small KL divergence, reduction of calibration error and generalization to unseen questions. This shows that MPF offers a scalable and interpretable method for alignment and bias mitigation, compatible with deployed LLMs and requiring no extensive prompt engineering or finetuning.
comment: Accepted at ICML 2025 AIW Workshop
☆ WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
☆ Responsibility Gap and Diffusion in Sequential Decision-Making Mechanisms
Responsibility has long been a subject of study in law and philosophy. More recently, it became a focus of AI literature. The article investigates the computational complexity of two important properties of responsibility in collective decision-making: diffusion and gap. It shows that the sets of diffusion-free and gap-free decision-making mechanisms are $\Pi_2$-complete and $\Pi_3$-complete, respectively. At the same time, the intersection of these classes is $\Pi_2$-complete.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ Clarifying Before Reasoning: A Coq Prover with Structural Context
In this work, we investigate whether improving task clarity can enhance reasoning ability of large language models, focusing on theorem proving in Coq. We introduce a concept-level metric to evaluate task clarity and show that adding structured semantic context to the standard input used by modern LLMs, leads to a 1.85$\times$ improvement in clarity score (44.5\%~$\rightarrow$~82.3\%). Using the general-purpose model \texttt{DeepSeek-V3}, our approach leads to a 2.1$\times$ improvement in proof success (21.8\%~$\rightarrow$~45.8\%) and outperforms the previous state-of-the-art \texttt{Graph2Tac} (33.2\%). We evaluate this on 1,386 theorems randomly sampled from 15 standard Coq packages, following the same evaluation protocol as \texttt{Graph2Tac}. Furthermore, fine-tuning smaller models on our structured data can achieve even higher performance (48.6\%). Our method uses selective concept unfolding to enrich task descriptions, and employs a Planner--Executor architecture. These findings highlight the value of structured task representations in bridging the gap between understanding and reasoning.
☆ Are You Listening to Me? Fine-Tuning Chatbots for Empathetic Dialogue
Conversational agents have made significant progress since ELIZA, expanding their role across various domains, including healthcare, education, and customer service. As these agents become increasingly integrated into daily human interactions, the need for emotional intelligence, particularly empathetic listening, becomes increasingly essential. In this study, we explore how Large Language Models (LLMs) respond when tasked with generating emotionally rich interactions. Starting from a small dataset manually crafted by an expert to reflect empathic behavior, we extended the conversations using two LLMs: ChatGPT and Gemini. We analyzed the emotional progression of the dialogues using both sentiment analysis (via VADER) and expert assessments. While the generated conversations often mirrored the intended emotional structure, human evaluation revealed important differences in the perceived empathy and coherence of the responses. These findings suggest that emotion modeling in dialogues requires not only structural alignment in the expressed emotions but also qualitative depth, highlighting the importance of combining automated and humancentered methods in the development of emotionally competent agents.
☆ Detecting Multiple Diseases in Multiple Crops Using Deep Learning
India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy MICCAI 2025
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.
comment: Accepted at MICCAI 2025
☆ CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ The Gauss-Markov Adjunction: Categorical Semantics of Residuals in Supervised Learning
Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two concrete categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.
☆ Toward a Robust and Generalizable Metamaterial Foundation Model
Advances in material functionalities drive innovations across various fields, where metamaterials-defined by structure rather than composition-are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution(OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial Foundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
☆ CyberRAG: An agentic RAG cyber attack classification and reporting tool
Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming security analysts with logs that demand deep, rapidly evolving domain expertise. Conventional machine-learning detectors trim the alert volume but still yield high false-positive rates, while standard single-pass Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify their predictions. To overcome these shortcomings, we present CyberRAG, a modular, agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates (i) a pool of fine-tuned specialized classifiers, each tailored to a distinct attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that continuously queries a domain-specific knowledge base until the evidence is both relevant and self-consistent. Unlike traditional RAG systems, CyberRAG embraces an agentic design that enables dynamic control flow and adaptive reasoning. This agent-centric architecture refines its threat labels and natural-language justifications autonomously, reducing false positives and enhancing interpretability. The framework is fully extensible: new attack types can be supported by simply adding a classifier without retraining the core agent. CyberRAG has been evaluated achieving over 94% accuracy per class and pushing final classification accuracy to 94.92% through semantic orchestration. Generated explanations score up to 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation. These results show that agentic, specialist-oriented RAG can pair high detection accuracy with trustworthy, SOC-ready prose, offering a practical and scalable path toward semi-autonomous cyber-defence workflows.
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
comment: accepted by iccv 2025. code is will be available at https://github.com/rama0126/PwTF-DVD
☆ Evaluating Language Models For Threat Detection in IoT Security Logs
Log analysis is a relevant research field in cybersecurity as they can provide a source of information for the detection of threats to networks and systems. This paper presents a pipeline to use fine-tuned Large Language Models (LLMs) for anomaly detection and mitigation recommendation using IoT security logs. Utilizing classical machine learning classifiers as a baseline, three open-source LLMs are compared for binary and multiclass anomaly detection, with three strategies: zero-shot, few-shot prompting and fine-tuning using an IoT dataset. LLMs give better results on multi-class attack classification than the corresponding baseline models. By mapping detected threats to MITRE CAPEC, defining a set of IoT-specific mitigation actions, and fine-tuning the models with those actions, the models are able to provide a combined detection and recommendation guidance.
☆ An AI-native experimental laboratory for autonomous biomolecular engineering
Autonomous scientific research, capable of independently conducting complex experiments and serving non-specialists, represents a long-held aspiration. Achieving it requires a fundamental paradigm shift driven by artificial intelligence (AI). While autonomous experimental systems are emerging, they remain confined to areas featuring singular objectives and well-defined, simple experimental workflows, such as chemical synthesis and catalysis. We present an AI-native autonomous laboratory, targeting highly complex scientific experiments for applications like autonomous biomolecular engineering. This system autonomously manages instrumentation, formulates experiment-specific procedures and optimization heuristics, and concurrently serves multiple user requests. Founded on a co-design philosophy of models, experiments, and instruments, the platform supports the co-evolution of AI models and the automation system. This establishes an end-to-end, multi-user autonomous laboratory that handles complex, multi-objective experiments across diverse instrumentation. Our autonomous laboratory supports fundamental nucleic acid functions-including synthesis, transcription, amplification, and sequencing. It also enables applications in fields such as disease diagnostics, drug development, and information storage. Without human intervention, it autonomously optimizes experimental performance to match state-of-the-art results achieved by human scientists. In multi-user scenarios, the platform significantly improves instrument utilization and experimental efficiency. This platform paves the way for advanced biomaterials research to overcome dependencies on experts and resource barriers, establishing a blueprint for science-as-a-service at scale.
☆ VeFIA: An Efficient Inference Auditing Framework for Vertical Federated Collaborative Software
Vertical Federated Learning (VFL) is a distributed AI software deployment mechanism for cross-silo collaboration without accessing participants' data. However, existing VFL work lacks a mechanism to audit the execution correctness of the inference software of the data party. To address this problem, we design a Vertical Federated Inference Auditing (VeFIA) framework. VeFIA helps the task party to audit whether the data party's inference software is executed as expected during large-scale inference without leaking the data privacy of the data party or introducing additional latency to the inference system. The core of VeFIA is that the task party can use the inference results from a framework with Trusted Execution Environments (TEE) and the coordinator to validate the correctness of the data party's computation results. VeFIA guarantees that, as long as the abnormal inference exceeds 5.4%, the task party can detect execution anomalies in the inference software with a probability of 99.99%, without incurring any additional online inference latency. VeFIA's random sampling validation achieves 100% positive predictive value, negative predictive value, and true positive rate in detecting abnormal inference. To the best of our knowledge, this is the first paper to discuss the correctness of inference software execution in VFL.
☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
Keyword decision in Sponsored Search Advertising is critical to the success of ad campaigns. While LLM-based methods offer automated keyword generation, they face three major limitations: reliance on large-scale query-keyword pair data, lack of online multi-objective performance monitoring and optimization, and weak quality control in keyword selection. These issues hinder the agentic use of LLMs in fully automating keyword decisions by monitoring and reasoning over key performance indicators such as impressions, clicks, conversions, and CTA effectiveness. To overcome these challenges, we propose OMS, a keyword generation framework that is On-the-fly (requires no training data, monitors online performance, and adapts accordingly), Multi-objective (employs agentic reasoning to optimize keywords based on multiple performance metrics), and Self-reflective (agentically evaluates keyword quality). Experiments on benchmarks and real-world ad campaigns show that OMS outperforms existing methods; ablation and human evaluations confirm the effectiveness of each component and the quality of generated keywords.
☆ Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process. Initially, an object detection network identifies regions of interest (ROIs) proximal to the landmark locations. Subsequently, a modified U-Net with deep supervision is exploited to accurately locate the bifurcations. This two-step method reduces various problems, such as the missed detections caused by two landmarks being close to each other and having similar visual characteristics, especially when processing the complete MRA Time-of-Flight (TOF). Additionally, it accounts for the anatomical variability of the CoW, which affects the number of detectable landmarks per scan. We assessed the effectiveness of our approach using two cerebral MRA datasets: our In-House dataset which had varying numbers of landmarks, and a public dataset with standardized landmark configuration. Our experimental results demonstrate that our method achieves the highest level of performance on a bifurcation detection task.
☆ HelixDesign-Antibody: A Scalable Production-Grade Platform for Antibody Design Built on HelixFold3
Antibody engineering is essential for developing therapeutics and advancing biomedical research. Traditional discovery methods often rely on time-consuming and resource-intensive experimental screening. To enhance and streamline this process, we introduce a production-grade, high-throughput platform built on HelixFold3, HelixDesign-Antibody, which utilizes the high-accuracy structure prediction model, HelixFold3. The platform facilitates the large-scale generation of antibody candidate sequences and evaluates their interaction with antigens. Integrated high-performance computing (HPC) support enables high-throughput screening, addressing challenges such as fragmented toolchains and high computational demands. Validation on multiple antigens showcases the platform's ability to generate diverse and high-quality antibodies, confirming a scaling law where exploring larger sequence spaces increases the likelihood of identifying optimal binders. This platform provides a seamless, accessible solution for large-scale antibody design and is available via the antibody design page of PaddleHelix platform.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ ClustOpt: A Clustering-based Approach for Representing and Visualizing the Search Dynamics of Numerical Metaheuristic Optimization Algorithms
Understanding the behavior of numerical metaheuristic optimization algorithms is critical for advancing their development and application. Traditional visualization techniques, such as convergence plots, trajectory mapping, and fitness landscape analysis, often fall short in illustrating the structural dynamics of the search process, especially in high-dimensional or complex solution spaces. To address this, we propose a novel representation and visualization methodology that clusters solution candidates explored by the algorithm and tracks the evolution of cluster memberships across iterations, offering a dynamic and interpretable view of the search process. Additionally, we introduce two metrics - algorithm stability and algorithm similarity- to quantify the consistency of search trajectories across runs of an individual algorithm and the similarity between different algorithms, respectively. We apply this methodology to a set of ten numerical metaheuristic algorithms, revealing insights into their stability and comparative behaviors, thereby providing a deeper understanding of their search dynamics.
☆ Tracing the Interactions of Modular CMA-ES Configurations Across Problem Landscapes
This paper leverages the recently introduced concept of algorithm footprints to investigate the interplay between algorithm configurations and problem characteristics. Performance footprints are calculated for six modular variants of the CMA-ES algorithm (modCMA), evaluated on 24 benchmark problems from the BBOB suite, across two-dimensional settings: 5-dimensional and 30-dimensional. These footprints provide insights into why different configurations of the same algorithm exhibit varying performance and identify the problem features influencing these outcomes. Our analysis uncovers shared behavioral patterns across configurations due to common interactions with problem properties, as well as distinct behaviors on the same problem driven by differing problem features. The results demonstrate the effectiveness of algorithm footprints in enhancing interpretability and guiding configuration choices.
☆ Neural Network-based Study for Rice Leaf Disease Recognition and Classification: A Comparative Analysis Between Feature-based Model and Direct Imaging Model
Rice leaf diseases significantly reduce productivity and cause economic losses, highlighting the need for early detection to enable effective management and improve yields. This study proposes Artificial Neural Network (ANN)-based image-processing techniques for timely classification and recognition of rice diseases. Despite the prevailing approach of directly inputting images of rice leaves into ANNs, there is a noticeable absence of thorough comparative analysis between the Feature Analysis Detection Model (FADM) and Direct Image-Centric Detection Model (DICDM), specifically when it comes to evaluating the effectiveness of Feature Extraction Algorithms (FEAs). Hence, this research presents initial experiments on the Feature Analysis Detection Model, utilizing various image Feature Extraction Algorithms, Dimensionality Reduction Algorithms (DRAs), Feature Selection Algorithms (FSAs), and Extreme Learning Machine (ELM). The experiments are carried out on datasets encompassing bacterial leaf blight, brown spot, leaf blast, leaf scald, Sheath blight rot, and healthy leaf, utilizing 10-fold Cross-Validation method. A Direct Image-Centric Detection Model is established without the utilization of any FEA, and the evaluation of classification performance relies on different metrics. Ultimately, an exhaustive contrast is performed between the achievements of the Feature Analysis Detection Model and Direct Image-Centric Detection Model in classifying rice leaf diseases. The results reveal that the highest performance is attained using the Feature Analysis Detection Model. The adoption of the proposed Feature Analysis Detection Model for detecting rice leaf diseases holds excellent potential for improving crop health, minimizing yield losses, and enhancing overall productivity and sustainability of rice farming.
☆ Iterated belief revision: from postulates to abilities
The belief revision field is opulent in new proposals and indigent in analyses of existing approaches. Much work hinge on postulates, employed as syntactic characterizations: some revision mechanism is equivalent to some properties. Postulates constraint specific revision instances: certain revisions update certain beliefs in a certain way. As an example, if the revision is consistent with the current beliefs, it is incorporated with no other change. A postulate like this tells what revisions must do and neglect what they can do. Can they reach a certain state of beliefs? Can they reach all possible states of beliefs? Can they reach all possible states of beliefs from no previous belief? Can they reach a dogmatic state of beliefs, where everything not believed is impossible? Can they make two conditions equally believed? An application where every possible state of beliefs is sensible requires each state of beliefs to be reachable. An application where conditions may be equally believed requires such a belief state to be reachable. An application where beliefs may become dogmatic requires a way to make them dogmatic. Such doxastic states need to be reached in a way or another. Not in specific way, as dictated by a typical belief revision postulate. This is an ability, not a constraint: the ability of being plastic, equating, dogmatic. Amnesic, correcting, believer, damascan, learnable are other abilities. Each revision mechanism owns some of these abilities and lacks the others: lexicographic, natural, restrained, very radical, full meet, radical, severe, moderate severe, deep severe, plain severe and deep severe revisions, each of these revisions is proved to possess certain abilities.
☆ MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
comment: 10 pages, 6 figures
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ Synthetic Heuristic Evaluation: A Comparison between AI- and Human-Powered Usability Evaluation
Usability evaluation is crucial in human-centered design but can be costly, requiring expert time and user compensation. In this work, we developed a method for synthetic heuristic evaluation using multimodal LLMs' ability to analyze images and provide design feedback. Comparing our synthetic evaluations to those by experienced UX practitioners across two apps, we found our evaluation identified 73% and 77% of usability issues, which exceeded the performance of 5 experienced human evaluators (57% and 63%). Compared to human evaluators, the synthetic evaluation's performance maintained consistent performance across tasks and excelled in detecting layout issues, highlighting potential attentional and perceptual strengths of synthetic evaluation. However, synthetic evaluation struggled with recognizing some UI components and design conventions, as well as identifying across screen violations. Additionally, testing synthetic evaluations over time and accounts revealed stable performance. Overall, our work highlights the performance differences between human and LLM-driven evaluations, informing the design of synthetic heuristic evaluations.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
☆ Spotlighting Partially Visible Cinematic Language for Video-to-Audio Generation via Self-distillation IJCAI 2025
Video-to-Audio (V2A) Generation achieves significant progress and plays a crucial role in film and video post-production. However, current methods overlook the cinematic language, a critical component of artistic expression in filmmaking. As a result, their performance deteriorates in scenarios where Foley targets are only partially visible. To address this challenge, we propose a simple self-distillation approach to extend V2A models to cinematic language scenarios. By simulating the cinematic language variations, the student model learns to align the video features of training pairs with the same audio-visual correspondences, enabling it to effectively capture the associations between sounds and partial visual information. Our method not only achieves impressive improvements under partial visibility across all evaluation metrics, but also enhances performance on the large-scale V2A dataset, VGGSound.
comment: Accepted by IJCAI 2025
☆ Multi-Label Classification Framework for Hurricane Damage Assessment SC
Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.
comment: 9 pages, 3 figures. Accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025)
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Progress in enhancing large language model (LLM) planning and reasoning capabilities is significantly hampered by the bottleneck of scalable, reliable data generation and evaluation. To overcome this, I introduce NL2FLOW, a fully automated system for parametrically generating planning problems - expressed in natural language, a structured intermediate representation, and formal PDDL - and rigorously evaluating the quality of generated plans. I demonstrate NL2FLOW's capabilities by generating a dataset of 2296 problems in the automated workflow generation domain and evaluating multiple open-sourced, instruct-tuned LLMs. My results reveal that the highest performing models achieved 86% success in generating valid plans and 69% in generating optimal plans, specifically for problems with feasible solutions. Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. Notably, I observed that the highest success rate for translating natural language into a JSON representation of a plan was lower than the highest rate of generating a valid plan directly. This suggests that unnecessarily decomposing the reasoning task - introducing intermediate translation steps - may actually degrade performance, implying a benefit to models capable of reasoning directly from natural language to action. As I scale LLM reasoning to increasingly complex problems, the bottlenecks and sources of error within these systems will inevitably shift. Therefore, a dynamic understanding of these limitations - and the tools to systematically reveal them - will be crucial for unlocking the full potential of LLMs as intelligent problem solvers.
comment: 20 pages, 7 figures
☆ SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
Precise surgical interventions are vital to patient safety, and advanced enhancement algorithms have been developed to assist surgeons in decision-making. Despite significant progress, these algorithms are typically designed for single tasks in specific scenarios, limiting their effectiveness in complex real-world situations. To address this limitation, we propose SurgVisAgent, an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs). SurgVisAgent dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks such as low-light enhancement, overexposure correction, motion blur elimination, and smoke removal. Specifically, to achieve superior surgical scenario understanding, we design a prior model that provides domain-specific knowledge. Additionally, through in-context few-shot learning and chain-of-thought (CoT) reasoning, SurgVisAgent delivers customized image enhancements tailored to a wide range of distortion types and severity levels, thereby addressing the diverse requirements of surgeons. Furthermore, we construct a comprehensive benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models, highlighting its potential as a unified solution for surgical assistance.
☆ Order Acquisition Under Competitive Pressure: A Rapidly Adaptive Reinforcement Learning Approach for Ride-Hailing Subsidy Strategies
The proliferation of ride-hailing aggregator platforms presents significant growth opportunities for ride-service providers by increasing order volume and gross merchandise value (GMV). On most ride-hailing aggregator platforms, service providers that offer lower fares are ranked higher in listings and, consequently, are more likely to be selected by passengers. This competitive ranking mechanism creates a strong incentive for service providers to adopt coupon strategies that lower prices to secure a greater number of orders, as order volume directly influences their long-term viability and sustainability. Thus, designing an effective coupon strategy that can dynamically adapt to market fluctuations while optimizing order acquisition under budget constraints is a critical research challenge. However, existing studies in this area remain scarce. To bridge this gap, we propose FCA-RL, a novel reinforcement learning-based subsidy strategy framework designed to rapidly adapt to competitors' pricing adjustments. Our approach integrates two key techniques: Fast Competition Adaptation (FCA), which enables swift responses to dynamic price changes, and Reinforced Lagrangian Adjustment (RLA), which ensures adherence to budget constraints while optimizing coupon decisions on new price landscape. Furthermore, we introduce RideGym, the first dedicated simulation environment tailored for ride-hailing aggregators, facilitating comprehensive evaluation and benchmarking of different pricing strategies without compromising real-world operational efficiency. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches across diverse market conditions, highlighting its effectiveness in subsidy optimization for ride-hailing service providers.
☆ Understanding Trade offs When Conditioning Synthetic Data
Learning robust object detectors from only a handful of images is a critical challenge in industrial vision systems, where collecting high quality training data can take months. Synthetic data has emerged as a key solution for data efficient visual inspection and pick and place robotics. Current pipelines rely on 3D engines such as Blender or Unreal, which offer fine control but still require weeks to render a small dataset, and the resulting images often suffer from a large gap between simulation and reality. Diffusion models promise a step change because they can generate high quality images in minutes, yet precise control, especially in low data regimes, remains difficult. Although many adapters now extend diffusion beyond plain text prompts, the effect of different conditioning schemes on synthetic data quality is poorly understood. We study eighty diverse visual concepts drawn from four standard object detection benchmarks and compare two conditioning strategies: prompt based and layout based. When the set of conditioning cues is narrow, prompt conditioning yields higher quality synthetic data; as diversity grows, layout conditioning becomes superior. When layout cues match the full training distribution, synthetic data raises mean average precision by an average of thirty four percent and by as much as one hundred seventy seven percent compared with using real data alone.
☆ Dilution, Diffusion and Symbiosis in Spatial Prisoner's Dilemma with Reinforcement Learning
Recent studies in the spatial prisoner's dilemma games with reinforcement learning have shown that static agents can learn to cooperate through a diverse sort of mechanisms, including noise injection, different types of learning algorithms and neighbours' payoff knowledge.In this work, using an independent multi-agent Q-learning algorithm, we study the effects of dilution and mobility in the spatial version of the prisoner's dilemma. Within this setting, different possible actions for the algorithm are defined, connecting with previous results on the classical, non-reinforcement learning spatial prisoner's dilemma, showcasing the versatility of the algorithm in modeling different game-theoretical scenarios and the benchmarking potential of this approach.As a result, a range of effects is observed, including evidence that games with fixed update rules can be qualitatively equivalent to those with learned ones, as well as the emergence of a symbiotic mutualistic effect between populations that forms when multiple actions are defined.
Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
♻ ☆ Enabling Population-Level Parallelism in Tree-Based Genetic Programming for Comprehensive GPU Acceleration
Tree-based Genetic Programming (TGP) is a widely used evolutionary algorithm for tasks such as symbolic regression, classification, and robotic control. Due to the intensive computational demands of running TGP, GPU acceleration is crucial for achieving scalable performance. However, efficient GPU-based execution of TGP still remains challenging, primarily due to three core issues: (1) the structural heterogeneity of program individuals, (2) the complexity of integrating multiple levels of parallelism, and (3) the incompatibility between high-performance CUDA execution and flexible Python-based environments. To address these issues, we propose EvoGP, a high-performance framework tailored for comprehensive GPU acceleration of TGP via population-level parallel execution. First, EvoGP introduces a tensorized representation that encodes variable-sized trees into fixed-shape, memory-aligned arrays, enabling uniform memory access and parallel computation across diverse individuals. Second, EvoGP adopts an adaptive parallelism strategy that dynamically combines intra- and inter-individual parallelism based on dataset size, ensuring high GPU utilization across a broad spectrum of tasks. Third, EvoGP embeds custom CUDA kernels into the PyTorch runtime, achieving seamless integration with Python-based environments such as Gym, MuJoCo, Brax, and Genesis. Comprehensive experiments show that EvoGP achieves up to 140x speedup over state-of-the-art GPU-based TGP implementations, while maintaining competitive accuracy and significantly improving scalability under large population sizes. EvoGP is open source and accessible at: https://github.com/EMI-Group/evogp.
♻ ☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems-where agents autonomously browse the web, synthesize information, and return comprehensive citation-backed answers-represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of ten frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, highlighting its great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web-2/
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
♻ ☆ AC-DiT: Adaptive Coordination Diffusion Transformer for Mobile Manipulation
Recently, mobile manipulation has attracted increasing attention for enabling language-conditioned robotic control in household tasks. However, existing methods still face challenges in coordinating mobile base and manipulator, primarily due to two limitations. On the one hand, they fail to explicitly model the influence of the mobile base on manipulator control, which easily leads to error accumulation under high degrees of freedom. On the other hand, they treat the entire mobile manipulation process with the same visual observation modality (e.g., either all 2D or all 3D), overlooking the distinct multimodal perception requirements at different stages during mobile manipulation. To address this, we propose the Adaptive Coordination Diffusion Transformer (AC-DiT), which enhances mobile base and manipulator coordination for end-to-end mobile manipulation. First, since the motion of the mobile base directly influences the manipulator's actions, we introduce a mobility-to-body conditioning mechanism that guides the model to first extract base motion representations, which are then used as context prior for predicting whole-body actions. This enables whole-body control that accounts for the potential impact of the mobile base's motion. Second, to meet the perception requirements at different stages of mobile manipulation, we design a perception-aware multimodal conditioning strategy that dynamically adjusts the fusion weights between various 2D visual images and 3D point clouds, yielding visual features tailored to the current perceptual needs. This allows the model to, for example, adaptively rely more on 2D inputs when semantic information is crucial for action prediction, while placing greater emphasis on 3D geometric information when precise spatial understanding is required. We validate AC-DiT through extensive experiments on both simulated and real-world mobile manipulation tasks.
comment: Project website: https://ac-dit.github.io/
♻ ☆ Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Empowering Intelligent Low-altitude Economy with Large AI Model Deployment
Low-altitude economy (LAE) represents an emerging economic paradigm that redefines commercial and social aerial activities. Large artificial intelligence models (LAIMs) offer transformative potential to further enhance the intelligence of LAE services. However, deploying LAIMs in LAE poses several challenges, including the significant gap between their computational/storage demands and the limited onboard resources of LAE entities, the mismatch between lab-trained LAIMs and dynamic physical environments, and the inefficiencies of traditional decoupled designs for sensing, communication, and computation. To address these issues, we first propose a hierarchical system architecture tailored for LAIM deployment and present representative LAE application scenarios. Next, we explore key enabling techniques that facilitate the mutual co-evolution of LAIMs and low-altitude systems, and introduce a task-oriented execution pipeline for scalable and adaptive service delivery. Then, the proposed framework is validated through real-world case studies. Finally, we outline open challenges to inspire future research.
♻ ☆ Direct Preference Optimization Using Sparse Feature-Level Constraints
The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often introduce computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves a 5.08% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments.
♻ ☆ A framework for Conditional Reasoning in Answer Set Programming
In this paper we introduce a Conditional Answer Set Programming framework (Conditional ASP) for the definition of conditional extensions of Answer Set Programming (ASP). The approach builds on a conditional logic with typicality, and on the combination of a conditional knowledge base with an ASP program, and allows for conditional reasoning over the answer sets of the program. The formalism relies on a multi-preferential semantics (and on the KLM preferential semantics, as a special case) to provide an interpretation of conditionals.
comment: 23 pages; version v1 has been accepted for publication as a Technical Communication at ICLP 2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Aerial Vision-and-Language Navigation via Semantic-Topo-Metric Representation Guided LLM Reasoning
Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. It remains challenging due to the complex spatial relationships in outdoor aerial scenes. In this paper, we propose an end-to-end zero-shot framework for aerial VLN tasks, where the large language model (LLM) is introduced as our agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning ability of LLMs. This is achieved by extracting and projecting instruction-related semantic masks of landmarks into a top-down map that contains the location information of surrounding landmarks. Further, this map is transformed into a matrix representation with distance metrics as the text prompt to the LLM, for action prediction according to the instruction. Experiments conducted in real and simulation environments have successfully proved the effectiveness and robustness of our method, achieving 15.9% and 12.5% improvements (absolute) in Oracle Success Rate (OSR) on AerialVLN-S dataset.
♻ ☆ Embodied AI Agents: Modeling the World
This paper describes our research on AI agents embodied in visual, virtual or physical forms, enabling them to interact with both users and their environments. These agents, which include virtual avatars, wearable devices, and robots, are designed to perceive, learn and act within their surroundings, which makes them more similar to how humans learn and interact with the environments as compared to disembodied agents. We propose that the development of world models is central to reasoning and planning of embodied AI agents, allowing these agents to understand and predict their environment, to understand user intentions and social contexts, thereby enhancing their ability to perform complex tasks autonomously. World modeling encompasses the integration of multimodal perception, planning through reasoning for action and control, and memory to create a comprehensive understanding of the physical world. Beyond the physical world, we also propose to learn the mental world model of users to enable better human-agent collaboration.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ From Sentences to Sequences: Rethinking Languages in Biological System
The paradigm of large language models in natural language processing (NLP) has also shown promise in modeling biological languages, including proteins, RNA, and DNA. Both the auto-regressive generation paradigm and evaluation metrics have been transferred from NLP to biological sequence modeling. However, the intrinsic structural correlations in natural and biological languages differ fundamentally. Therefore, we revisit the notion of language in biological systems to better understand how NLP successes can be effectively translated to biological domains. By treating the 3D structure of biomolecules as the semantic content of a sentence and accounting for the strong correlations between residues or bases, we highlight the importance of structural evaluation and demonstrate the applicability of the auto-regressive paradigm in biological language modeling. Code can be found at \href{https://github.com/zjuKeLiu/RiFold}{github.com/zjuKeLiu/RiFold}
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ Agentic AI Process Observability: Discovering Behavioral Variability
AI agents that leverage Large Language Models (LLMs) are increasingly becoming core building blocks of modern software systems. A wide range of frameworks is now available to support the specification of such applications. These frameworks enable the definition of agent setups using natural language prompting, which specifies the roles, goals, and tools assigned to the various agents involved. Within such setups, agent behavior is non-deterministic for any given input, highlighting the critical need for robust debugging and observability tools. In this work, we explore the use of process and causal discovery applied to agent execution trajectories as a means of enhancing developer observability. This approach aids in monitoring and understanding the emergent variability in agent behavior. Additionally, we complement this with LLM-based static analysis techniques to distinguish between intended and unintended behavioral variability. We argue that such instrumentation is essential for giving developers greater control over evolving specifications and for identifying aspects of functionality that may require more precise and explicit definitions.
comment: 12 pages, 7 figures
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
♻ ☆ Sequence-aware Pre-training for Echocardiography Probe Movement Guidance
Echocardiography is an essential medical technique for diagnosing cardiovascular diseases, but its high operational complexity has led to a shortage of trained professionals. To address this issue, we introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged structure of the heart rather than personalized cardiac structures, leading to a performance bottleneck. Clinically, we observe that sonographers dynamically adjust their interpretation of a patient's cardiac anatomy based on prior scanning sequences, consequently refining their scanning strategies. Inspired by this, we propose a novel sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of personalized cardiac structure. Extensive experiments on a large-scale expert scanning dataset with 1.31 million samples demonstrate that our proposed sequence-aware paradigm can effectively reduce probe guidance errors compared to other advanced baseline methods. Our code will be released after acceptance.
comment: Tech Report
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound MICCAI 2025
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.
comment: Accepted by MICCAI 2025
♻ ☆ Illuminant and light direction estimation using Wasserstein distance method
Illumination estimation remains a pivotal challenge in image processing, particularly for robotics, where robust environmental perception is essential under varying lighting conditions. Traditional approaches, such as RGB histograms and GIST descriptors, often fail in complex scenarios due to their sensitivity to illumination changes. This study introduces a novel method utilizing the Wasserstein distance, rooted in optimal transport theory, to estimate illuminant and light direction in images. Experiments on diverse images indoor scenes, black-and-white photographs, and night images demonstrate the method's efficacy in detecting dominant light sources and estimating their directions, outperforming traditional statistical methods in complex lighting environments. The approach shows promise for applications in light source localization, image quality assessment, and object detection enhancement. Future research may explore adaptive thresholding and integrate gradient analysis to enhance accuracy, offering a scalable solution for real-world illumination challenges in robotics and beyond.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
comment: ACL 2024 (Findings)
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
♻ ☆ Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
comment: Accept to ACL 2025 (Oral). Code are available on https://github.com/fuyuchenIfyw/token_prepending.git
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ Autoformalization in the Era of Large Language Models: A Survey
Autoformalization, the process of transforming informal mathematical propositions into verifiable formal representations, is a foundational task in automated theorem proving, offering a new perspective on the use of mathematics in both theoretical and applied domains. Driven by the rapid progress in artificial intelligence, particularly large language models (LLMs), this field has witnessed substantial growth, bringing both new opportunities and unique challenges. In this survey, we provide a comprehensive overview of recent advances in autoformalization from both mathematical and LLM-centric perspectives. We examine how autoformalization is applied across various mathematical domains and levels of difficulty, and analyze the end-to-end workflow from data preprocessing to model design and evaluation. We further explore the emerging role of autoformalization in enhancing the verifiability of LLM-generated outputs, highlighting its potential to improve both the trustworthiness and reasoning capabilities of LLMs. Finally, we summarize key open-source models and datasets supporting current research, and discuss open challenges and promising future directions for the field.
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
comment: Our original goal was to use Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection (arXiv:2506.19420) to replace Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models (arXiv:2503.18681). Due to various reasons, both versions were released, so we would like to withdraw the latter
♻ ☆ Uncertainty-Guided Coarse-to-Fine Tumor Segmentation with Anatomy-Aware Post-Processing SC
Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
comment: 6 pages, 2 figures, to appear in IEEE ADSCA 2025
♻ ☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
♻ ☆ Fast AI Model Splitting over Edge Networks
Split learning (SL) has emerged as a computationally efficient approach for artificial intelligence (AI) model training, which can alleviate device-side computational workloads. However, complex AI model architectures pose high computational complexity to obtain the optimal model splitting. In this paper, we represent an arbitrary AI model as a directed acyclic graph (DAG), and then reformulate the optimal model splitting problem as a minimum s-t cut search problem. To solve the problem, we propose a fast DAG-based model splitting algorithm, which restructures the DAG to enable the optimal model splitting identification via a maximum flow method. Theoretical analysis indicates that the proposed algorithm is optimal. Furthermore, considering AI models with block structures, we propose a block-wise model splitting algorithm to reduce computational complexity. The algorithm abstracts each block, i.e., a component consisting of multiple layers, into a single vertex, thereby obtaining the optimal model splitting via a simplified DAG. Extensive experimental results demonstrate that the proposed algorithms can determine the optimal model splitting within milliseconds, as well as reduce training delay by 24.62%-38.95% in dynamic edge networks as compared to the state-of-the-art benchmarks.
comment: 13 pages, 14 figures
♻ ☆ Horus: A Protocol for Trustless Delegation Under Uncertainty
Correctness is an emergent property of systems where exposing error is cheaper than committing it. In dynamic, low-trust environments, autonomous AI agents benefit from delegating work to sub-agents, yet correctness cannot be assured through upfront specification or centralized oversight. We propose a protocol that enforces correctness through collateralized claims in a recursive verification game. Tasks are published as intents, and solvers compete to fulfill them. Selected solvers carry out tasks under risk, with correctness checked post hoc by verifiers. Any challenger can challenge a result by staking against it to trigger the verification process. Incorrect agents are slashed and correct opposition is rewarded, with an escalation path that penalizes erroneous verifiers themselves. When incentives are aligned across solvers, challengers, and verifiers, falsification conditions make correctness the Nash equilibrium.
comment: 9 pages, 1 figure
Machine Learning 150
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis MICCAI-25
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.
comment: Accepted by MICCAI-25, code is available at \url{https://github.com/zky04/MvHo-IB}
LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Measurement as Bricolage: Examining How Data Scientists Construct Target Variables for Predictive Modeling Tasks
Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
☆ Replicable Distribution Testing
We initiate a systematic investigation of distribution testing in the framework of algorithmic replicability. Specifically, given independent samples from a collection of probability distributions, the goal is to characterize the sample complexity of replicably testing natural properties of the underlying distributions. On the algorithmic front, we develop new replicable algorithms for testing closeness and independence of discrete distributions. On the lower bound front, we develop a new methodology for proving sample complexity lower bounds for replicable testing that may be of broader interest. As an application of our technique, we establish near-optimal sample complexity lower bounds for replicable uniformity testing -- answering an open question from prior work -- and closeness testing.
comment: 39 pages
☆ In-Training Multicalibrated Survival Analysis for Healthcare via Constrained Optimization
Survival analysis is an important problem in healthcare because it models the relationship between an individual's covariates and the onset time of an event of interest (e.g., death). It is important for survival models to be well-calibrated (i.e., for their predicted probabilities to be close to ground-truth probabilities) because badly calibrated systems can result in erroneous clinical decisions. Existing survival models are typically calibrated at the population level only, and thus run the risk of being poorly calibrated for one or more minority subpopulations. We propose a model called GRADUATE that achieves multicalibration by ensuring that all subpopulations are well-calibrated too. GRADUATE frames multicalibration as a constrained optimization problem, and optimizes both calibration and discrimination in-training to achieve a good balance between them. We mathematically prove that the optimization method used yields a solution that is both near-optimal and feasible with high probability. Empirical comparisons against state-of-the-art baselines on real-world clinical datasets demonstrate GRADUATE's efficacy. In a detailed analysis, we elucidate the shortcomings of the baselines vis-a-vis GRADUATE's strengths.
☆ Learning to Coordinate Bidders in Non-Truthful Auctions
In non-truthful auctions such as first-price and all-pay auctions, the independent strategic behaviors of bidders, with the corresponding equilibrium notion -- Bayes Nash equilibria -- are notoriously difficult to characterize and can cause undesirable outcomes. An alternative approach to designing better auction systems is to coordinate the bidders: let a mediator make incentive-compatible recommendations of correlated bidding strategies to the bidders, namely, implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however, requires knowledge of the distribution of bidders' private valuations, which is often unavailable. We initiate the study of the sample complexity of learning Bayes correlated equilibria in non-truthful auctions. We prove that the BCEs in a large class of non-truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial number $\tilde O(\frac{n}{\varepsilon^2})$ of samples from the bidders' value distributions. Our technique is a reduction to the problem of estimating bidders' expected utility from samples, combined with an analysis of the pseudo-dimension of the class of all monotone bidding strategies of bidders.
☆ Self-Steering Deep Non-Linear Spatially Selective Filters for Efficient Extraction of Moving Speakers under Weak Guidance SP
Recent works on deep non-linear spatially selective filters demonstrate exceptional enhancement performance with computationally lightweight architectures for stationary speakers of known directions. However, to maintain this performance in dynamic scenarios, resource-intensive data-driven tracking algorithms become necessary to provide precise spatial guidance conditioned on the initial direction of a target speaker. As this additional computational overhead hinders application in resource-constrained scenarios such as real-time speech enhancement, we present a novel strategy utilizing a low-complexity tracking algorithm in the form of a particle filter instead. Assuming a causal, sequential processing style, we introduce temporal feedback to leverage the enhanced speech signal of the spatially selective filter to compensate for the limited modeling capabilities of the particle filter. Evaluation on a synthetic dataset illustrates how the autoregressive interplay between both algorithms drastically improves tracking accuracy and leads to strong enhancement performance. A listening test with real-world recordings complements these findings by indicating a clear trend towards our proposed self-steering pipeline as preferred choice over comparable methods.
comment: Accepted at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2025
☆ Understanding and Improving Length Generalization in Recurrent Models
Recently, recurrent models such as state space models and linear attention have become popular due to their linear complexity in the sequence length. Thanks to their recurrent nature, in principle they can process arbitrarily long sequences, but their performance sometimes drops considerably beyond their training context lengths-i.e. they fail to length generalize. In this work, we provide comprehensive empirical and theoretical analysis to support the unexplored states hypothesis, which posits that models fail to length generalize when during training they are only exposed to a limited subset of the distribution of all attainable states (i.e. states that would be attained if the recurrence was applied to long sequences). Furthermore, we investigate simple training interventions that aim to increase the coverage of the states that the model is trained on, e.g. by initializing the state with Gaussian noise or with the final state of a different input sequence. With only 500 post-training steps ($\sim 0.1\%$ of the pre-training budget), these interventions enable length generalization for sequences that are orders of magnitude longer than the training context (e.g. $2k\longrightarrow 128k$) and show improved performance in long context tasks, thus presenting a simple and efficient way to enable robust length generalization in general recurrent models.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Contextual Online Pricing with (Biased) Offline Data
We study contextual online pricing with biased offline data. For the scalar price elasticity case, we identify the instance-dependent quantity $\delta^2$ that measures how far the offline data lies from the (unknown) online optimum. We show that the time length $T$, bias bound $V$, size $N$ and dispersion $\lambda_{\min}(\hat{\Sigma})$ of the offline data, and $\delta^2$ jointly determine the statistical complexity. An Optimism-in-the-Face-of-Uncertainty (OFU) policy achieves a minimax-optimal, instance-dependent regret bound $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT}{\lambda_{\min}(\hat{\Sigma}) + (N \wedge T) \delta^2})\big)$. For general price elasticity, we establish a worst-case, minimax-optimal rate $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT }{\lambda_{\min}(\hat{\Sigma})})\big)$ and provide a generalized OFU algorithm that attains it. When the bias bound $V$ is unknown, we design a robust variant that always guarantees sub-linear regret and strictly improves on purely online methods whenever the exact bias is small. These results deliver the first tight regret guarantees for contextual pricing in the presence of biased offline data. Our techniques also transfer verbatim to stochastic linear bandits with biased offline data, yielding analogous bounds.
comment: 47 pages, 4 figures
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Classification by Separating Hypersurfaces: An Entropic Approach
We consider the following classification problem: Given a population of individuals characterized by a set of attributes represented as a vector in ${\mathbb R}^N$, the goal is to find a hyperplane in ${\mathbb R}^N$ that separates two sets of points corresponding to two distinct classes. This problem, with a history dating back to the perceptron model, remains central to machine learning. In this paper we propose a novel approach by searching for a vector of parameters in a bounded $N$-dimensional hypercube centered at the origin and a positive vector in ${\mathbb R}^M$, obtained through the minimization of an entropy-based function defined over the space of unknown variables. The method extends to polynomial surfaces, allowing the separation of data points by more complex decision boundaries. This provides a robust alternative to traditional linear or quadratic optimization techniques, such as support vector machines and gradient descent. Numerical experiments demonstrate the efficiency and versatility of the method in handling diverse classification tasks, including linear and non-linear separability.
comment: 15 pages, 10 tables, 4 figures
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
Recent advances in AI for science have highlighted the power of contrastive learning in bridging heterogeneous biological data modalities. Building on this paradigm, we propose HIPPO (HIerarchical Protein-Protein interaction prediction across Organisms), a hierarchical contrastive framework for protein-protein interaction(PPI) prediction, where protein sequences and their hierarchical attributes are aligned through multi-tiered biological representation matching. The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins. The framework adaptively incorporates domain and family knowledge through a data-driven penalty mechanism, enforcing consistency between the learned embedding space and the intrinsic hierarchy of protein functions. Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes. Notably, the model demonstrates strong zero-shot transferability to other species without retraining, enabling reliable PPI prediction and functional inference even in less characterized or rare organisms where experimental data are limited. Further analysis reveals that hierarchical feature fusion is critical for capturing conserved interaction determinants, such as binding motifs and functional annotations. This work advances cross-species PPI prediction and provides a unified framework for interaction prediction in scenarios with sparse or imbalanced multi-species data.
☆ A Comprehensive Machine Learning Framework for Micromobility Demand Prediction
Dockless e-scooters, a key micromobility service, have emerged as eco-friendly and flexible urban transport alternatives. These services improve first and last-mile connectivity, reduce congestion and emissions, and complement public transport for short-distance travel. However, effective management of these services depends on accurate demand prediction, which is crucial for optimal fleet distribution and infrastructure planning. While previous studies have focused on analyzing spatial or temporal factors in isolation, this study introduces a framework that integrates spatial, temporal, and network dependencies for improved micromobility demand forecasting. This integration enhances accuracy while providing deeper insights into urban micromobility usage patterns. Our framework improves demand prediction accuracy by 27 to 49% over baseline models, demonstrating its effectiveness in capturing micromobility demand patterns. These findings support data-driven micromobility management, enabling optimized fleet distribution, cost reduction, and sustainable urban planning.
☆ A Forget-and-Grow Strategy for Deep Reinforcement Learning Scaling in Continuous Control
Deep reinforcement learning for continuous control has recently achieved impressive progress. However, existing methods often suffer from primacy bias, a tendency to overfit early experiences stored in the replay buffer, which limits an RL agent's sample efficiency and generalizability. In contrast, humans are less susceptible to such bias, partly due to infantile amnesia, where the formation of new neurons disrupts early memory traces, leading to the forgetting of initial experiences. Inspired by this dual processes of forgetting and growing in neuroscience, in this paper, we propose Forget and Grow (FoG), a new deep RL algorithm with two mechanisms introduced. First, Experience Replay Decay (ER Decay) "forgetting early experience", which balances memory by gradually reducing the influence of early experiences. Second, Network Expansion, "growing neural capacity", which enhances agents' capability to exploit the patterns of existing data by dynamically adding new parameters during training. Empirical results on four major continuous control benchmarks with more than 40 tasks demonstrate the superior performance of FoG against SoTA existing deep RL algorithms, including BRO, SimBa, and TD-MPC2.
☆ Fluid Democracy in Federated Data Aggregation ICML 2025
Federated learning (FL) mechanisms typically require each client to transfer their weights to a central server, irrespective of how useful they are. In order to avoid wasteful data transfer costs from clients to the central server, we propose the use of consensus based protocols to identify a subset of clients with most useful model weights at each data transfer step. First, we explore the application of existing fluid democracy protocols to FL from a performance standpoint, comparing them with traditional one-person-one-vote (also known as 1p1v or FedAvg). We propose a new fluid democracy protocol named viscous-retained democracy that always does better than 1p1v under the same assumptions as existing fluid democracy protocols while also not allowing for influence accumulation. Secondly, we identify weaknesses of fluid democracy protocols from an adversarial lens in terms of their dependence on topology and/ or number of adversaries required to negatively impact the global model weights. To this effect, we propose an algorithm (FedVRD) that dynamically limits the effect of adversaries while minimizing cost by leveraging the delegation topology.
comment: ICML 2025 Workshop on Collaborative and Federated Agentic Workflows
☆ Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Conditions
This study investigates how Multi-Agent Reinforcement Learning (MARL) can improve dynamic pricing strategies in supply chains, particularly in contexts where traditional ERP systems rely on static, rule-based approaches that overlook strategic interactions among market actors. While recent research has applied reinforcement learning to pricing, most implementations remain single-agent and fail to model the interdependent nature of real-world supply chains. This study addresses that gap by evaluating the performance of three MARL algorithms: MADDPG, MADQN, and QMIX against static rule-based baselines, within a simulated environment informed by real e-commerce transaction data and a LightGBM demand prediction model. Results show that rule-based agents achieve near-perfect fairness (Jain's Index: 0.9896) and the highest price stability (volatility: 0.024), but they fully lack competitive dynamics. Among MARL agents, MADQN exhibits the most aggressive pricing behaviour, with the highest volatility and the lowest fairness (0.5844). MADDPG provides a more balanced approach, supporting market competition (share volatility: 9.5 pp) while maintaining relatively high fairness (0.8819) and stable pricing. These findings suggest that MARL introduces emergent strategic behaviour not captured by static pricing rules and may inform future developments in dynamic pricing.
☆ RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.
comment: 15 pages, 7 figures. Business process prediction using reinforcement learning and heterogeneous graph neural networks
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
☆ Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ Guided Generation for Developable Antibodies ICML 2025
Therapeutic antibodies require not only high-affinity target engagement, but also favorable manufacturability, stability, and safety profiles for clinical effectiveness. These properties are collectively called `developability'. To enable a computational framework for optimizing antibody sequences for favorable developability, we introduce a guided discrete diffusion model trained on natural paired heavy- and light-chain sequences from the Observed Antibody Space (OAS) and quantitative developability measurements for 246 clinical-stage antibodies. To steer generation toward biophysically viable candidates, we integrate a Soft Value-based Decoding in Diffusion (SVDD) Module that biases sampling without compromising naturalness. In unconstrained sampling, our model reproduces global features of both the natural repertoire and approved therapeutics, and under SVDD guidance we achieve significant enrichment in predicted developability scores over unguided baselines. When combined with high-throughput developability assays, this framework enables an iterative, ML-driven pipeline for designing antibodies that satisfy binding and biophysical criteria in tandem.
comment: Published in ICML 2025 GenBio Workshop
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
In this work, we address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation. Specifically, we focus on a class of exploration bonuses that targets epistemic uncertainty rather than the aleatoric noise inherent in the environment. We prove that these bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards, thereby aligning exploration with genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches, which previously lacked theoretical grounding. To enable practical use, we also discuss tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep Ensemble models. We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration. We empirically demonstrate that PTS-BE substantially outperforms other baselines across a variety of environments characterized by sparse rewards and/or purely exploratory tasks.
☆ High-Order Deep Meta-Learning with Category-Theoretic Interpretation
We introduce a new hierarchical deep learning framework for recursive higher-order meta-learning that enables neural networks (NNs) to construct, solve, and generalise across hierarchies of tasks. Central to this approach is a generative mechanism that creates \emph{virtual tasks} -- synthetic problem instances designed to enable the meta-learner to learn \emph{soft constraints} and unknown generalisable rules across related tasks. Crucially, this enables the framework to generate its own informative, task-grounded datasets thereby freeing machine learning (ML) training from the limitations of relying entirely on human-generated data. By actively exploring the virtual point landscape and seeking out tasks lower-level learners find difficult, the meta-learner iteratively refines constraint regions. This enhances inductive biases, regularises the adaptation process, and produces novel, unanticipated tasks and constraints required for generalisation. Each meta-level of the hierarchy corresponds to a progressively abstracted generalisation of problems solved at lower levels, enabling a structured and interpretable learning progression. By interpreting meta-learners as category-theoretic \emph{functors} that generate and condition a hierarchy of subordinate learners, we establish a compositional structure that supports abstraction and knowledge transfer across progressively generalised tasks. The category-theoretic perspective unifies existing meta-learning models and reveals how learning processes can be transformed and compared through functorial relationships, while offering practical design principles for structuring meta-learning. We speculate this architecture may underpin the next generation of NNs capable of autonomously generating novel, instructive tasks and their solutions, thereby advancing ML towards general artificial intelligence.
☆ Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
Background: The use of Electronic Health Records (EHRs) for epidemiological studies and artificial intelligence (AI) training is increasing rapidly. The reliability of the results depends on the accuracy and completeness of EHR data. However, EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors, as they are primarily collected for clinical and billing purposes. Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research. Methods: We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns. We demonstrate our approach using the Medical Data Pecking Tool (MDPT), which consists of two main components: (1) an automated test generator that uses large language models and grounding techniques to create a test suite from data and study descriptions, and (2) a data testing framework that executes these tests, reporting potential errors and coverage. Results: We evaluated MDPT on three datasets: All of Us (AoU), MIMIC-III, and SyntheticMass, generating 55-73 tests per cohort across four conditions. These tests correctly identified 20-43 non-aligned or non-conforming data issues. We present a detailed analysis of the LLM-generated test suites in terms of reference grounding and value accuracy. Conclusion: Our approach incorporates external medical knowledge to enable context-sensitive data quality testing as part of the data analysis workflow to improve the validity of its outcomes. Our approach tackles these challenges from a quality assurance perspective, laying the foundation for further development such as additional data modalities and improved grounding methods.
comment: 18 pages, 4 figures (+ appendix)
☆ A Matrix Variational Auto-Encoder for Variant Effect Prediction in Pharmacogenes
Variant effect predictors (VEPs) aim to assess the functional impact of protein variants, traditionally relying on multiple sequence alignments (MSAs). This approach assumes that naturally occurring variants are fit, an assumption challenged by pharmacogenomics, where some pharmacogenes experience low evolutionary pressure. Deep mutational scanning (DMS) datasets provide an alternative by offering quantitative fitness scores for variants. In this work, we propose a transformer-based matrix variational auto-encoder (matVAE) with a structured prior and evaluate its performance on 33 DMS datasets corresponding to 26 drug target and ADME proteins from the ProteinGym benchmark. Our model trained on MSAs (matVAE-MSA) outperforms the state-of-the-art DeepSequence model in zero-shot prediction on DMS datasets, despite using an order of magnitude fewer parameters and requiring less computation at inference time. We also compare matVAE-MSA to matENC-DMS, a model of similar capacity trained on DMS data, and find that the latter performs better on supervised prediction tasks. Additionally, incorporating AlphaFold-generated structures into our transformer model further improves performance, achieving results comparable to DeepSequence trained on MSAs and finetuned on DMS. These findings highlight the potential of DMS datasets to replace MSAs without significant loss in predictive performance, motivating further development of DMS datasets and exploration of their relationships to enhance variant effect prediction.
comment: 12+8 pages
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
☆ Alleviating Attack Data Scarcity: SCANIA's Experience Towards Enhancing In-Vehicle Cyber Security Measures
The digital evolution of connected vehicles and the subsequent security risks emphasize the critical need for implementing in-vehicle cyber security measures such as intrusion detection and response systems. The continuous advancement of attack scenarios further highlights the need for adaptive detection mechanisms that can detect evolving, unknown, and complex threats. The effective use of ML-driven techniques can help address this challenge. However, constraints on implementing diverse attack scenarios on test vehicles due to safety, cost, and ethical considerations result in a scarcity of data representing attack scenarios. This limitation necessitates alternative efficient and effective methods for generating high-quality attack-representing data. This paper presents a context-aware attack data generator that generates attack inputs and corresponding in-vehicle network log, i.e., controller area network (CAN) log, representing various types of attack including denial of service (DoS), fuzzy, spoofing, suspension, and replay attacks. It utilizes parameterized attack models augmented with CAN message decoding and attack intensity adjustments to configure the attack scenarios with high similarity to real-world scenarios and promote variability. We evaluate the practicality of the generated attack-representing data within an intrusion detection system (IDS) case study, in which we develop and perform an empirical evaluation of two deep neural network IDS models using the generated data. In addition to the efficiency and scalability of the approach, the performance results of IDS models, high detection and classification capabilities, validate the consistency and effectiveness of the generated data as well. In this experience study, we also elaborate on the aspects influencing the fidelity of the data to real-world scenarios and provide insights into its application.
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Padé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Data
Purpose: The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad\'e Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research addresses the question: Can Pad\'e Approximant Neural Networks (Pad\'eNets) outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in diagnosing electrical and mechanical faults using vibration and acoustic data? Methods: We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad\'eNets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad\'eNet model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as Leaky ReLU. Results and Conclusion: Pad\'eNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad\'eNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.
comment: Submitted to the Journal of Vibration Engineering & Technologies
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ Scalable Interconnect Learning in Boolean Networks
Learned Differentiable Boolean Logic Networks (DBNs) already deliver efficient inference on resource-constrained hardware. We extend them with a trainable, differentiable interconnect whose parameter count remains constant as input width grows, allowing DBNs to scale to far wider layers than earlier learnable-interconnect designs while preserving their advantageous accuracy. To further reduce model size, we propose two complementary pruning stages: an SAT-based logic equivalence pass that removes redundant gates without affecting performance, and a similarity-based, data-driven pass that outperforms a magnitude-style greedy baseline and offers a superior compression-accuracy trade-off.
comment: 12 pages, 8 Figures
Transformers Don't Need LayerNorm at Inference Time: Scaling LayerNorm Removal to GPT-2 XL and the Implications for Mechanistic Interpretability
Layer-wise normalization (LN) is an essential component of virtually all transformer-based large language models. While its effects on training stability are well documented, its role at inference time is poorly understood. Additionally, LN layers hinder mechanistic interpretability by introducing additional nonlinearities and increasing the interconnectedness of individual model components. Here, we show that all LN layers can be removed from every GPT-2 model with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-2 XL). Thus, LN cannot play a substantial role in language modeling. We find that the amount of fine-tuning data needed for LN removal grows sublinearly with model parameters, suggesting scaling to larger models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face. Furthermore, we test interpretability techniques on LN-free models. Direct logit attribution now gives the exact direct effect of individual components, while the accuracy of attribution patching does not significantly improve. We also confirm that GPT-2's "confidence neurons" are inactive in the LN-free models. Our work clarifies the role of LN layers in language modeling, showing that GPT-2-class models can function without LN layers. We hope that our LN-free analogs of the GPT-2 family of models will enable more precise interpretability research and improve our understanding of language models.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ RetrySQL: text-to-SQL training with retry data for self-correcting query generation
The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
☆ TFOC-Net: A Short-time Fourier Transform-based Deep Learning Approach for Enhancing Cross-Subject Motor Imagery Classification
Cross-subject motor imagery (CS-MI) classification in brain-computer interfaces (BCIs) is a challenging task due to the significant variability in Electroencephalography (EEG) patterns across different individuals. This variability often results in lower classification accuracy compared to subject-specific models, presenting a major barrier to developing calibration-free BCIs suitable for real-world applications. In this paper, we introduce a novel approach that significantly enhances cross-subject MI classification performance through optimized preprocessing and deep learning techniques. Our approach involves direct classification of Short-Time Fourier Transform (STFT)-transformed EEG data, optimized STFT parameters, and a balanced batching strategy during training of a Convolutional Neural Network (CNN). This approach is uniquely validated across four different datasets, including three widely-used benchmark datasets leading to substantial improvements in cross-subject classification, achieving 67.60% on the BCI Competition IV Dataset 1 (IV-1), 65.96% on Dataset 2A (IV-2A), and 80.22% on Dataset 2B (IV-2B), outperforming state-of-the-art techniques. Additionally, we systematically investigate the classification performance using MI windows ranging from the full 4-second window to 1-second windows. These results establish a new benchmark for generalizable, calibration-free MI classification in addition to contributing a robust open-access dataset to advance research in this domain.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Online Conformal Prediction with Efficiency Guarantees
We study the problem of conformal prediction in a novel online framework that directly optimizes efficiency. In our problem, we are given a target miscoverage rate $\alpha > 0$, and a time horizon $T$. On each day $t \le T$ an algorithm must output an interval $I_t \subseteq [0, 1]$, then a point $y_t \in [0, 1]$ is revealed. The goal of the algorithm is to achieve coverage, that is, $y_t \in I_t$ on (close to) a $(1 - \alpha)$-fraction of days, while maintaining efficiency, that is, minimizing the average volume (length) of the intervals played. This problem is an online analogue to the problem of constructing efficient confidence intervals. We study this problem over arbitrary and exchangeable (random order) input sequences. For exchangeable sequences, we show that it is possible to construct intervals that achieve coverage $(1 - \alpha) - o(1)$, while having length upper bounded by the best fixed interval that achieves coverage in hindsight. For arbitrary sequences however, we show that any algorithm that achieves a $\mu$-approximation in average length compared to the best fixed interval achieving coverage in hindsight, must make a multiplicative factor more mistakes than $\alpha T$, where the multiplicative factor depends on $\mu$ and the aspect ratio of the problem. Our main algorithmic result is a matching algorithm that can recover all Pareto-optimal settings of $\mu$ and number of mistakes. Furthermore, our algorithm is deterministic and therefore robust to an adaptive adversary. This gap between the exchangeable and arbitrary settings is in contrast to the classical online learning problem. In fact, we show that no single algorithm can simultaneously be Pareto-optimal for arbitrary sequences and optimal for exchangeable sequences. On the algorithmic side, we give an algorithm that achieves the near-optimal tradeoff between the two cases.
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Variational Kolmogorov-Arnold Network IJCNN'25
Kolmogorov Arnold Networks (KANs) are an emerging architecture for building machine learning models. KANs are based on the theoretical foundation of the Kolmogorov-Arnold Theorem and its expansions, which provide an exact representation of a multi-variate continuous bounded function as the composition of a limited number of univariate continuous functions. While such theoretical results are powerful, their use as a representation learning alternative to a multi-layer perceptron (MLP) hinges on the ad-hoc choice of the number of bases modeling each of the univariate functions. In this work, we show how to address this problem by adaptively learning a potentially infinite number of bases for each univariate function during training. We therefore model the problem as a variational inference optimization problem. Our proposal, called InfinityKAN, which uses backpropagation, extends the potential applicability of KANs by treating an important hyperparameter as part of the learning process.
comment: A preliminary (short paper) version presented at ComBayNS Workshop at IJCNN'25
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization SC 2025
Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
comment: Accepted for publication at ITSC 2025
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Posterior Transition Modeling for Unsupervised Diffusion-Based Speech Enhancement
We explore unsupervised speech enhancement using diffusion models as expressive generative priors for clean speech. Existing approaches guide the reverse diffusion process using noisy speech through an approximate, noise-perturbed likelihood score, combined with the unconditional score via a trade-off hyperparameter. In this work, we propose two alternative algorithms that directly model the conditional reverse transition distribution of diffusion states. The first method integrates the diffusion prior with the observation model in a principled way, removing the need for hyperparameter tuning. The second defines a diffusion process over the noisy speech itself, yielding a fully tractable and exact likelihood score. Experiments on the WSJ0-QUT and VoiceBank-DEMAND datasets demonstrate improved enhancement metrics and greater robustness to domain shifts compared to both supervised and unsupervised baselines.
☆ Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Inducing-point-based sparse variational Gaussian processes have become the standard workhorse for scaling up GP models. Recent advances show that these methods can be improved by introducing a diagonal scaling matrix to the conditional posterior density given the inducing points. This paper first considers an extension that employs a block-diagonal structure for the scaling matrix, provably tightening the variational lower bound. We then revisit the unifying framework of sparse GPs based on Power Expectation Propagation (PEP) and show that it can leverage and benefit from the new structured approximate posteriors. Through extensive regression experiments, we show that the proposed block-diagonal approximation consistently performs similarly to or better than existing diagonal approximations while maintaining comparable computational costs. Furthermore, the new PEP framework with structured posteriors provides competitive performance across various power hyperparameter settings, offering practitioners flexible alternatives to standard variational approaches.
☆ Deep Reinforcement Learning-Based DRAM Equalizer Parameter Optimization Using Latent Representations
Equalizer parameter optimization for signal integrity in high-speed Dynamic Random Access Memory systems is crucial but often computationally demanding or model-reliant. This paper introduces a data-driven framework employing learned latent signal representations for efficient signal integrity evaluation, coupled with a model-free Advantage Actor-Critic reinforcement learning agent for parameter optimization. The latent representation captures vital signal integrity features, offering a fast alternative to direct eye diagram analysis during optimization, while the reinforcement learning agent derives optimal equalizer settings without explicit system models. Applied to industry-standard Dynamic Random Access Memory waveforms, the method achieved significant eye-opening window area improvements: 42.7\% for cascaded Continuous-Time Linear Equalizer and Decision Feedback Equalizer structures, and 36.8\% for Decision Feedback Equalizer-only configurations. These results demonstrate superior performance, computational efficiency, and robust generalization across diverse Dynamic Random Access Memory units compared to existing techniques. Core contributions include an efficient latent signal integrity metric for optimization, a robust model-free reinforcement learning strategy, and validated superior performance for complex equalizer architectures.
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms aim to compute a collision-free path, and many works focus on finding the optimal distance path. However, for some applications, a more suitable approach is to balance response time, safety of the paths, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of free configuration space. However, skeletonization algorithms are very resource-intensive, being primarily oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Auto-Encoder (DDAE) based on U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative process used by exact algorithms or the probabilistic sampling process. SkelUnet is trained and tested on a dataset consisting of 12,500 bi-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment for an Unmanned Aerial Vehicle (UAV) using 250 previously unseen maps, and assessed with various navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct a roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing times. These characteristics make this method particularly suitable for mobile service robots in structured environments.
Transformer-based EEG Decoding: A Survey
Electroencephalography (EEG) is one of the most common signals used to capture the electrical activity of the brain, and the decoding of EEG, to acquire the user intents, has been at the forefront of brain-computer/machine interfaces (BCIs/BMIs) research. Compared to traditional EEG analysis methods with machine learning, the advent of deep learning approaches have gradually revolutionized the field by providing an end-to-end long-cascaded architecture, which can learn more discriminative features automatically. Among these, Transformer is renowned for its strong handling capability of sequential data by the attention mechanism, and the application of Transformers in various EEG processing tasks is increasingly prevalent. This article delves into a relevant survey, summarizing the latest application of Transformer models in EEG decoding since it appeared. The evolution of the model architecture is followed to sort and organize the related advances, in which we first elucidate the fundamentals of the Transformer that benefits EEG decoding and its direct application. Then, the common hybrid architectures by integrating basic Transformer with other deep learning techniques (convolutional/recurrent/graph/spiking neural netwo-rks, generative adversarial networks, diffusion models, etc.) is overviewed in detail. The research advances of applying the modified intrinsic structures of customized Transformer have also been introduced. Finally, the current challenges and future development prospects in this rapidly evolving field are discussed. This paper aims to help readers gain a clear understanding of the current state of Transformer applications in EEG decoding and to provide valuable insights for future research endeavors.
comment: Submitted to IEEE Journals
☆ Improving Constrained Generation in Language Models via Self-Distilled Twisted Sequential Monte Carlo
Recent work has framed constrained text generation with autoregressive language models as a probabilistic inference problem. Among these, Zhao et al. (2024) introduced a promising approach based on twisted Sequential Monte Carlo, which incorporates learned twist functions and twist-induced proposals to guide the generation process. However, in constrained generation settings where the target distribution concentrates on outputs that are unlikely under the base model, learning becomes challenging due to sparse and uninformative reward signals. We show that iteratively refining the base model through self-distillation alleviates this issue by making the model progressively more aligned with the target, leading to substantial gains in generation quality.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
♻ ☆ Evaluating Frontier Models for Stealth and Situational Awareness
Recent work has demonstrated the plausibility of frontier AI models scheming -- knowingly and covertly pursuing an objective misaligned with its developer's intentions. Such behavior could be very hard to detect, and if present in future advanced systems, could pose severe loss of control risk. It is therefore important for AI developers to rule out harm from scheming prior to model deployment. In this paper, we present a suite of scheming reasoning evaluations measuring two types of reasoning capabilities that we believe are prerequisites for successful scheming: First, we propose five evaluations of ability to reason about and circumvent oversight (stealth). Second, we present eleven evaluations for measuring a model's ability to instrumentally reason about itself, its environment and its deployment (situational awareness). We demonstrate how these evaluations can be used as part of a scheming inability safety case: a model that does not succeed on these evaluations is almost certainly incapable of causing severe harm via scheming in real deployment. We run our evaluations on current frontier models and find that none of them show concerning levels of either situational awareness or stealth.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble CCS 2025
Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models and are widely used as tools for privacy assessment, auditing, and machine unlearning. While prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR - either by developing new methods to enhance these metrics or using them to evaluate privacy solutions - we found that it overlooks the disparities among different attacks. These disparities, both between distinct attack methods and between multiple instantiations of the same method, have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools. In this paper, we systematically investigate these disparities through a novel framework based on coverage and stability analysis. Extensive experiments reveal significant disparities in MIAs, their potential causes, and their broader implications for privacy evaluation. To address these challenges, we propose an ensemble framework with three distinct strategies to harness the strengths of state-of-the-art MIAs while accounting for their disparities. This framework not only enables the construction of more powerful attacks but also provides a more robust and comprehensive methodology for privacy evaluation.
comment: 22 pages, To appear at ACM CCS 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Interpreting Graph Inference with Skyline Explanations
Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNNs outputs are often hard to interpret comprehensively. Existing methods typically compromise to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-sided'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN output by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
♻ ☆ Orientation-Aware Sparse Tensor PCA for Efficient Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-art. When transform axes align with feature distribution patterns, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
♻ ☆ StructTransform: A Scalable Attack Surface for Safety-Aligned Large Language Models
In this work, we present a series of structure transformation attacks on LLM alignment, where we encode natural language intent using diverse syntax spaces, ranging from simple structure formats and basic query languages (e.g., SQL) to new novel spaces and syntaxes created entirely by LLMs. Our extensive evaluation shows that our simplest attacks can achieve close to a 90% success rate, even on strict LLMs (such as Claude 3.5 Sonnet) using SOTA alignment mechanisms. We improve the attack performance further by using an adaptive scheme that combines structure transformations along with existing content transformations, resulting in over 96% ASR with 0% refusals. To generalize our attacks, we explore numerous structure formats, including syntaxes purely generated by LLMs. Our results indicate that such novel syntaxes are easy to generate and result in a high ASR, suggesting that defending against our attacks is not a straightforward process. Finally, we develop a benchmark and evaluate existing safety-alignment defenses against it, showing that most of them fail with 100% ASR. Our results show that existing safety alignment mostly relies on token-level patterns without recognizing harmful concepts, highlighting and motivating the need for serious research efforts in this direction. As a case study, we demonstrate how attackers can use our attack to easily generate a sample malware and a corpus of fraudulent SMS messages, which perform well in bypassing detection.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Fading memory and the convolution theorem
Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analyzed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous similar characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces.
♻ ☆ Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Despite substantial progress in recent years, probabilistic solvers with adaptive step sizes can still not solve memory-demanding differential equations -- unless we care only about a single point in time (which is far too restrictive; we want the whole time series). Counterintuitively, the culprit is the adaptivity itself: Its unpredictable memory demands easily exceed our machine's capabilities, making our simulations fail unexpectedly and without warning. Still, dropping adaptivity would abandon years of progress, which can't be the answer. In this work, we solve this conundrum. We develop an adaptive probabilistic solver with fixed memory demands building on recent developments in robust state estimation. Switching to our method (i) eliminates memory issues for long time series, (ii) accelerates simulations by orders of magnitude through unlocking just-in-time compilation, and (iii) makes adaptive probabilistic solvers compatible with scientific computing in JAX.
♻ ☆ Flow Matching on Lie Groups
Flow Matching (FM) is a recent generative modelling technique: we aim to learn how to sample from distribution $\mathfrak{X}_1$ by flowing samples from some distribution $\mathfrak{X}_0$ that is easy to sample from. The key trick is that this flow field can be trained while conditioning on the end point in $\mathfrak{X}_1$: given an end point, simply move along a straight line segment to the end point (Lipman et al. 2022). However, straight line segments are only well-defined on Euclidean space. Consequently, Chen and Lipman (2023) generalised the method to FM on Riemannian manifolds, replacing line segments with geodesics or their spectral approximations. We take an alternative point of view: we generalise to FM on Lie groups by instead substituting exponential curves for line segments. This leads to a simple, intrinsic, and fast implementation for many matrix Lie groups, since the required Lie group operations (products, inverses, exponentials, logarithms) are simply given by the corresponding matrix operations. FM on Lie groups could then be used for generative modelling with data consisting of sets of features (in $\mathbb{R}^n$) and poses (in some Lie group), e.g. the latent codes of Equivariant Neural Fields (Wessels et al. 2025).
comment: Accepted in the 7th International Conference on Geometric Science of Information
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Higher-Order Singular-Value Derivatives of Rectangular Real Matrices
We present a theoretical framework for deriving the general $n$-th order Fr\'echet derivatives of singular values in real rectangular matrices, by leveraging reduced resolvent operators from Kato's analytic perturbation theory for self-adjoint operators. Deriving closed-form expressions for higher-order derivatives of singular values is notoriously challenging through standard matrix-analysis techniques. To overcome this, we treat a real rectangular matrix as a compact operator on a finite-dimensional Hilbert space, and embed the rectangular matrix into a block self-adjoint operator so that non-symmetric perturbations are captured. Applying Kato's asymptotic eigenvalue expansion to this construction, we obtain a general, closed-form expression for the infinitesimal $n$-th order spectral variations. Specializing to $n=2$ and deploying on a Kronecker-product representation with matrix convention yield the Hessian of a singular value, not found in literature. By bridging abstract operator-theoretic perturbation theory with matrices, our framework equips researchers with a practical toolkit for higher-order spectral sensitivity studies in random matrix applications (e.g., adversarial perturbation in deep learning).
comment: Adding authors; change title; change template
♻ ☆ Assessing Quantum Advantage for Gaussian Process Regression
Gaussian Process Regression is a well-known machine learning technique for which several quantum algorithms have been proposed. We show here that in a wide range of scenarios these algorithms show no exponential speedup. We achieve this by rigorously proving that the condition number of a kernel matrix scales at least linearly with the matrix size under general assumptions on the data and kernel. We additionally prove that the sparsity and Frobenius norm of a kernel matrix scale linearly under similar assumptions. The implications for the quantum algorithms runtime are independent of the complexity of loading classical data on a quantum computer and also apply to dequantised algorithms. We supplement our theoretical analysis with numerical verification for popular kernels in machine learning.
comment: 18 pages, 2 figures. Version 2 contains updated figures and a slightly revised discussion for additional clarity
♻ ☆ Ordinality in Discrete-level Question Difficulty Estimation: Introducing Balanced DRPS and OrderedLogitNN
Recent years have seen growing interest in Question Difficulty Estimation (QDE) using natural language processing techniques. Question difficulty is often represented using discrete levels, framing the task as ordinal regression due to the inherent ordering from easiest to hardest. However, the literature has neglected the ordinal nature of the task, relying on classification or discretized regression models, with specialized ordinal regression methods remaining unexplored. Furthermore, evaluation metrics are tightly coupled to the modeling paradigm, hindering cross-study comparability. While some metrics fail to account for the ordinal structure of difficulty levels, none adequately address class imbalance, resulting in biased performance assessments. This study addresses these limitations by benchmarking three types of model outputs -- discretized regression, classification, and ordinal regression -- using the balanced Discrete Ranked Probability Score (DRPS), a novel metric that jointly captures ordinality and class imbalance. In addition to using popular ordinal regression methods, we propose OrderedLogitNN, extending the ordered logit model from econometrics to neural networks. We fine-tune BERT on the RACE++ and ARC datasets and find that OrderedLogitNN performs considerably better on complex tasks. The balanced DRPS offers a robust and fair evaluation metric for discrete-level QDE, providing a principled foundation for future research.
comment: Published in the EvalLAC'25 workshop at AIED 2025
♻ ☆ A Square Peg in a Square Hole: Meta-Expert for Long-Tailed Semi-Supervised Learning ICML 2025
This paper studies the long-tailed semi-supervised learning (LTSSL) with distribution mismatch, where the class distribution of the labeled training data follows a long-tailed distribution and mismatches with that of the unlabeled training data. Most existing methods introduce auxiliary classifiers (experts) to model various unlabeled data distributions and produce pseudo-labels, but the expertises of various experts are not fully utilized. We observe that different experts are good at predicting different intervals of samples, e.g., long-tailed expert is skilled in samples located in the head interval and uniform expert excels in samples located in the medium interval. Therefore, we propose a dynamic expert assignment module that can estimate the class membership (i.e., head, medium, or tail class) of samples, and dynamically assigns suitable expert to each sample based on the estimated membership to produce high-quality pseudo-label in the training phase and produce prediction in the testing phase. We also theoretically reveal that integrating different experts' strengths will lead to a smaller generalization error bound. Moreover, we find that the deeper features are more biased toward the head class but with more discriminative ability, while the shallower features are less biased but also with less discriminative ability. We, therefore, propose a multi-depth feature fusion module to utilize different depth features to mitigate the model bias. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR-10-LT, STL-10-LT, and SVHN-LT datasets across various settings. The code is available at https://github.com/yaxinhou/Meta-Expert.
comment: The paper is accepted by ICML 2025
♻ ☆ Deep learning four decades of human migration
We present a novel and detailed dataset on origin-destination annual migration flows and stocks between 230 countries and regions, spanning the period from 1990 to the present. Our flow estimates are further disaggregated by country of birth, providing a comprehensive picture of migration over the last 35 years. The estimates are obtained by training a deep recurrent neural network to learn flow patterns from 18 covariates for all countries, including geographic, economic, cultural, societal, and political information. The recurrent architecture of the neural network means that the entire past can influence current migration patterns, allowing us to learn long-range temporal correlations. By training an ensemble of neural networks and additionally pushing uncertainty on the covariates through the trained network, we obtain confidence bounds for all our estimates, allowing researchers to pinpoint the geographic regions most in need of additional data collection. We validate our approach on various test sets of unseen data, demonstrating that it significantly outperforms traditional methods estimating five-year flows while delivering a significant increase in temporal resolution. The model is fully open source: all training data, neural network weights, and training code are made public alongside the migration estimates, providing a valuable resource for future studies of human migration.
♻ ☆ Self-Supervised Frameworks for Speaker Verification via Bootstrapped Positive Sampling
Recent developments in Self-Supervised Learning (SSL) have demonstrated significant potential for Speaker Verification (SV), but closing the performance gap with supervised systems remains an ongoing challenge. SSL frameworks rely on anchor-positive pairs, constructed from segments of the same audio utterance. Hence, positives have channel characteristics similar to those of their corresponding anchors, even with extensive data-augmentation. Therefore, this positive sampling strategy is a fundamental limitation as it encodes too much information regarding the recording source in the learned representations. This article introduces Self-Supervised Positive Sampling (SSPS), a bootstrapped technique for sampling appropriate and diverse positives in SSL frameworks for SV. SSPS samples positives close to their anchor in the representation space, assuming that these pseudo-positives belong to the same speaker identity but correspond to different recording conditions. This method consistently demonstrates improvements in SV performance on VoxCeleb benchmarks when applied to major SSL frameworks, including SimCLR, SwAV, VICReg, and DINO. Using SSPS, SimCLR and DINO achieve 2.57% and 2.53% EER on VoxCeleb1-O, respectively. SimCLR yields a 58% relative reduction in EER, getting comparable performance to DINO with a simpler training framework. Furthermore, SSPS lowers intra-class variance and reduces channel information in speaker representations while exhibiting greater robustness without data-augmentation.
comment: accepted for publication in IEEE TASLP
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ The Choice of Normalization Influences Shrinkage in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on binary features and show that their class balances (proportions of ones) directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance of the coefficient estimates. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 39 pages, 18 figures
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Learning Massive-scale Partial Correlation Networks in Clinical Multi-omics Studies with HP-ACCORD
Graphical model estimation from multi-omics data requires a balance between statistical estimation performance and computational scalability. We introduce a novel pseudolikelihood-based graphical model framework that reparameterizes the target precision matrix while preserving the sparsity pattern and estimates it by minimizing an $\ell_1$-penalized empirical risk based on a new loss function. The proposed estimator maintains estimation and selection consistency in various metrics under high-dimensional assumptions. The associated optimization problem allows for a provably fast computation algorithm using a novel operator-splitting approach and communication-avoiding distributed matrix multiplication. A high-performance computing implementation of our framework was tested using simulated data with up to one million variables, demonstrating complex dependency structures similar to those found in biological networks. Leveraging this scalability, we estimated a partial correlation network from a dual-omic liver cancer data set. The co-expression network estimated from the ultrahigh-dimensional data demonstrated superior specificity in prioritizing key transcription factors and co-activators by excluding the impact of epigenetic regulation, thereby highlighting the value of computational scalability in multi-omic data analysis.
comment: 25 pages, 6 figures, preprint
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Universal Collection of Euclidean Invariants between Pairs of Position-Orientations
Euclidean E(3) equivariant neural networks that employ scalar fields on position-orientation space M(3) have been effectively applied to tasks such as predicting molecular dynamics and properties. To perform equivariant convolutional-like operations in these architectures one needs Euclidean invariant kernels on M(3) x M(3). In practice, a handcrafted collection of invariants is selected, and this collection is then fed into multilayer perceptrons to parametrize the kernels. We rigorously describe an optimal collection of 4 smooth scalar invariants on the whole of M(3) x M(3). With optimal we mean that the collection is independent and universal, meaning that all invariants are pertinent, and any invariant kernel is a function of them. We evaluate two collections of invariants, one universal and one not, using the PONITA neural network architecture. Our experiments show that using a collection of invariants that is universal positively impacts the accuracy of PONITA significantly.
♻ ☆ Roto-Translation Invariant Metrics on Position-Orientation Space
Riemannian metrics on the position-orientation space M(3) that are roto-translation group SE(3) invariant play a key role in image analysis tasks like enhancement, denoising, and segmentation. These metrics enable roto-translation equivariant algorithms, with the associated Riemannian distance often used in implementation. However, computing the Riemannian distance is costly, which makes it unsuitable in situations where constant recomputation is needed. We propose the mav (minimal angular velocity) distance, defined as the Riemannian length of a geometrically meaningful curve, as a practical alternative. We see an application of the mav distance in geometric deep learning. Namely, neural networks architectures such as PONITA, relies on geometric invariants to create their roto-translation equivariant model. The mav distance offers a trainable invariant, with the parameters that determine the Riemannian metric acting as learnable weights. In this paper we: 1) classify and parametrize all SE(3) invariant metrics on M(3), 2) describes how to efficiently calculate the mav distance, and 3) investigate if including the mav distance within PONITA can positively impact its accuracy in predicting molecular properties.
♻ ☆ A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (\texttt{DANSur}) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around $10^{-4}$. Implemented in the \textsc{bilby} framework, we show they can be used for parameter estimation tasks.
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations
Increasing HPC cluster sizes and large-scale simulations that produce petabytes of data per run, create massive IO and storage challenges for analysis. Deep learning-based techniques, in particular, make use of these amounts of domain data to extract patterns that help build scientific understanding. Here, we demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework, circumventing the file system bottleneck. Data is transformed in transit, asynchronously to the simulation and the training of the model. With the presented workflow, data operations can be performed in common and easy-to-use programming languages, freeing the application user from adapting the application output routines. As a proof-of-concept we consider a GPU accelerated particle-in-cell (PIConGPU) simulation of the Kelvin- Helmholtz instability (KHI). We employ experience replay to avoid catastrophic forgetting in learning from this non-steady process in a continual manner. We detail challenges addressed while porting and scaling to Frontier exascale system.
comment: 12 pages, 9 figures, in 2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Milan, Italy, 2025
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation SIGGRAPH
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ Attention-based clustering
Transformers have emerged as a powerful neural network architecture capable of tackling a wide range of learning tasks. In this work, we provide a theoretical analysis of their ability to automatically extract structure from data in an unsupervised setting. In particular, we demonstrate their suitability for clustering when the input data is generated from a Gaussian mixture model. To this end, we study a simplified two-head attention layer and define a population risk whose minimization with unlabeled data drives the head parameters to align with the true mixture centroids. This phenomenon highlights the ability of attention-based layers to capture underlying distributional structure. We further examine an attention layer with key, query, and value matrices fixed to the identity, and show that, even without any trainable parameters, it can perform in-context quantization, revealing the surprising capacity of transformer-based methods to adapt dynamically to input-specific distributions.
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.
♻ ☆ Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations ICML
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.
comment: Accepted at ICML Workshop on Foundation Models for Structured Data
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
As modern networks grow increasingly complex--driven by diverse devices, encrypted protocols, and evolving threats--network traffic analysis has become critically important. Existing machine learning models often rely only on a single representation of packets or flows, limiting their ability to capture the contextual relationships essential for robust analysis. Furthermore, task-specific architectures for supervised, semi-supervised, and unsupervised learning lead to inefficiencies in adapting to varying data formats and security tasks. To address these gaps, we propose UniNet, a unified framework that introduces a novel multi-granular traffic representation (T-Matrix), integrating session, flow, and packet-level features to provide comprehensive contextual information. Combined with T-Attent, a lightweight attention-based model, UniNet efficiently learns latent embeddings for diverse security tasks. Extensive evaluations across four key network security and privacy problems--anomaly detection, attack classification, IoT device identification, and encrypted website fingerprinting--demonstrate UniNet's significant performance gain over state-of-the-art methods, achieving higher accuracy, lower false positive rates, and improved scalability. By addressing the limitations of single-level models and unifying traffic analysis paradigms, UniNet sets a new benchmark for modern network security.
comment: 16 pages,6 figures, 12 tables; accepted for publication in IEEE Transactions on Cognitive Communications and Networking, 2025
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ SecAlign: Defending Against Prompt Injection with Preference Optimization CCS 2025
Large language models (LLMs) are becoming increasingly prevalent in modern software systems, interfacing between the user and the Internet to assist with tasks that require advanced language understanding. To accomplish these tasks, the LLM often uses external data sources such as user documents, web retrieval, results from API calls, etc. This opens up new avenues for attackers to manipulate the LLM via prompt injection. Adversarial prompts can be injected into external data sources to override the system's intended instruction and instead execute a malicious instruction. To mitigate this vulnerability, we propose a new defense called SecAlign based on the technique of preference optimization. Our defense first constructs a preference dataset with prompt-injected inputs, secure outputs (ones that respond to the legitimate instruction), and insecure outputs (ones that respond to the injection). We then perform preference optimization on this dataset to teach the LLM to prefer the secure output over the insecure one. This provides the first known method that reduces the success rates of various prompt injections to <10%, even against attacks much more sophisticated than ones seen during training. This indicates our defense generalizes well against unknown and yet-to-come attacks. Also, SecAlign models are still practical with similar utility to the one before defensive training in our evaluations. Our code is at https://github.com/facebookresearch/SecAlign
comment: ACM CCS 2025. Key words: prompt injection defense, LLM security, LLM-integrated applications
♻ ☆ High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
This work presents an overview of the technical details behind a high performance reinforcement learning policy deployment with the Spot RL Researcher Development Kit for low level motor access on Boston Dynamics Spot. This represents the first public demonstration of an end to end end reinforcement learning policy deployed on Spot hardware with training code publicly available through Nvidia IsaacLab and deployment code available through Boston Dynamics. We utilize Wasserstein Distance and Maximum Mean Discrepancy to quantify the distributional dissimilarity of data collected on hardware and in simulation to measure our sim2real gap. We use these measures as a scoring function for the Covariance Matrix Adaptation Evolution Strategy to optimize simulated parameters that are unknown or difficult to measure from Spot. Our procedure for modeling and training produces high quality reinforcement learning policies capable of multiple gaits, including a flight phase. We deploy policies capable of over 5.2ms locomotion, more than triple Spots default controller maximum speed, robustness to slippery surfaces, disturbance rejection, and overall agility previously unseen on Spot. We detail our method and release our code to support future work on Spot with the low level API.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Generalization vs. Specialization under Concept Shift
Machine learning models are often brittle under distribution shift, i.e., when data distributions at test time differ from those during training. Understanding this failure mode is central to identifying and mitigating safety risks of mass adoption of machine learning. Here we analyze ridge regression under concept shift -- a form of distribution shift in which the input-label relationship changes at test time. We derive an exact expression for prediction risk in the thermodynamic limit. Our results reveal nontrivial effects of concept shift on generalization performance, including a phase transition between weak and strong concept shift regimes and nonmonotonic data dependence of test performance even when double descent is absent. Our theoretical results are in good agreement with experiments based on transformers pretrained to solve linear regression; under concept shift, too long context length can be detrimental to generalization performance of next token prediction. Finally, our experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
comment: 8 pages, 3 figures
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks
This work introduces Neural CRNs, a general-purpose chemical neural network framework that embeds learning directly into mass-action chemical reaction systems. Unlike prior approaches that chemically implement and compose discrete neural computations, Neural CRNs adopt an analog computing approach, where both forward and backward passes of learning are implemented as continuous-time evolutions of molecular concentrations. Such an analog formulation naturally aligns with the analog nature of chemical kinetics, yielding concise circuits and practicable reactions. We demonstrate this efficiency by constructing a streamlined supervised learning procedure executable in just two sequential stages. We then implement several learning circuits to demonstrate the framework's linear and nonlinear modeling capabilities and to validate its learning procedure. These circuits are implemented entirely using unimolecular and bimolecular reactions, avoiding the complexity of higher-order chemistries. In summary, Neural CRNs offer a compact, scalable, and autonomous framework for biochemical learning, opening new avenues for adaptive computing in synthetic biology, bioengineering, and biomedicine.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Implicit Counterfactual Data Augmentation for Robust Learning
Machine learning models are prone to capturing the spurious correlations between non-causal attributes and classes, with counterfactual data augmentation being a promising direction for breaking these spurious associations. However, generating counterfactual data explicitly poses a challenge, and incorporating augmented data into the training process decreases training efficiency. This study proposes an Implicit Counterfactual Data Augmentation (ICDA) method to remove spurious correlations and make stable predictions. Specifically, first, a novel sample-wise augmentation strategy is developed that generates semantically and counterfactually meaningful deep features with distinct augmentation strength for each sample. Second, we derive an easy-to-compute surrogate loss on the augmented feature set when the number of augmented samples becomes infinite. Third, two concrete schemes are proposed, including direct quantification and meta-learning, to derive the key parameters for the robust loss. In addition, ICDA is explained from a regularization perspective, revealing its capacity to improve intra-class compactness and augment margins at both class and sample levels. Extensive experiments have been conducted across various biased learning scenarios covering both image and text datasets, demonstrating that ICDA consistently enhances the generalization and robustness performance of popular networks.
comment: 46 pages, 12 figures
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
Information Retrieval 7
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Calibrated Recommendations: Survey and Future Directions
The idea of calibrated recommendations is that the properties of the items that are suggested to users should match the distribution of their individual past preferences. Calibration techniques are therefore helpful to ensure that the recommendations provided to a user are not limited to a certain subset of the user's interests. Over the past few years, we have observed an increasing number of research works that use calibration for different purposes, including questions of diversity, biases, and fairness. In this work, we provide a survey on the recent developments in the area of calibrated recommendations. We both review existing technical approaches for calibration and provide an overview on empirical and analytical studies on the effectiveness of calibration for different use cases. Furthermore, we discuss limitations and common challenges when implementing calibration in practice.
☆ Resolving CAP Through Automata-Theoretic Economic Design: A Unified Mathematical Framework for Real-Time Partition-Tolerant Systems
The CAP theorem asserts a trilemma between consistency, availability, and partition tolerance. This paper introduces a rigorous automata-theoretic and economically grounded framework that reframes the CAP trade-off as a constraint optimization problem. We model distributed systems as partition-aware state machines and embed economic incentive layers to stabilize consensus behavior across adversarially partitioned networks. By incorporating game-theoretic mechanisms into the global transition semantics, we define provable bounds on convergence, liveness, and correctness. Our results demonstrate that availability and consistency can be simultaneously preserved within bounded epsilon margins, effectively extending the classical CAP limits through formal economic control.
comment: 51 pages 4 tables, includes formal proofs, automata construction, and case study on Bitcoin Script
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
☆ Listwise Preference Alignment Optimization for Tail Item Recommendation
Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
Computation and Language 89
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ The Thin Line Between Comprehension and Persuasion in LLMs
Large language models (LLMs) are excellent at maintaining high-level, convincing dialogues. They are being fast deployed as chatbots and evaluators in sensitive areas, such as peer review and mental health applications. This, along with the disparate accounts on their reasoning capabilities, calls for a closer examination of LLMs and their comprehension of dialogue. In this work we begin by evaluating LLMs' ability to maintain a debate--one of the purest yet most complex forms of human communication. Then we measure how this capability relates to their understanding of what is being talked about, namely, their comprehension of dialogical structures and the pragmatic context. We find that LLMs are capable of maintaining coherent, persuasive debates, often swaying the beliefs of participants and audiences alike. We also note that awareness or suspicion of AI involvement encourage people to be more critical of the arguments made. When polling LLMs on their comprehension of deeper structures of dialogue, however, they cannot demonstrate said understanding. Our findings tie the shortcomings of LLMs-as-evaluators to their (in)ability to understand the context. More broadly, for the field of argumentation theory we posit that, if an agent can convincingly maintain a dialogue, it is not necessary for it to know what it is talking about. Hence, the modelling of pragmatic context and coherence are secondary to effectiveness.
☆ Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla
In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.
☆ Decision-oriented Text Evaluation
Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
☆ NaturalThoughts: Selecting and Distilling Reasoning Traces for General Reasoning Tasks
Recent work has shown that distilling reasoning traces from a larger teacher model via supervised finetuning outperforms reinforcement learning with the smaller student model alone (Guo et al. 2025). However, there has not been a systematic study of what kind of reasoning demonstrations from the teacher are most effective in improving the student model's reasoning capabilities. In this work we curate high-quality "NaturalThoughts" by selecting reasoning traces from a strong teacher model based on a large pool of questions from NaturalReasoning (Yuan et al. 2025). We first conduct a systematic analysis of factors that affect distilling reasoning capabilities, in terms of sample efficiency and scalability for general reasoning tasks. We observe that simply scaling up data size with random sampling is a strong baseline with steady performance gains. Further, we find that selecting difficult examples that require more diverse reasoning strategies is more sample-efficient to transfer the teacher model's reasoning skills. Evaluated on both Llama and Qwen models, training with NaturalThoughts outperforms existing reasoning datasets such as OpenThoughts, LIMO, etc. on general STEM reasoning benchmarks including GPQA-Diamond, MMLU-Pro and SuperGPQA.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ MiCoTA: Bridging the Learnability Gap with Intermediate CoT and Teacher Assistants
Large language models (LLMs) excel at reasoning tasks requiring long thought sequences for planning, reflection, and refinement. However, their substantial model size and high computational demands are impractical for widespread deployment. Yet, small language models (SLMs) often struggle to learn long-form CoT reasoning due to their limited capacity, a phenomenon we refer to as the "SLMs Learnability Gap". To address this, we introduce \textbf{Mi}d-\textbf{Co}T \textbf{T}eacher \textbf{A}ssistant Distillation (MiCoTAl), a framework for improving long CoT distillation for SLMs. MiCoTA employs intermediate-sized models as teacher assistants and utilizes intermediate-length CoT sequences to bridge both the capacity and reasoning length gaps. Our experiments on downstream tasks demonstrate that although SLMs distilled from large teachers can perform poorly, by applying MiCoTA, they achieve significant improvements in reasoning performance. Specifically, Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct achieve an improvement of 3.47 and 3.93 respectively on average score on AIME2024, AMC, Olympiad, MATH-500 and GSM8K benchmarks. To better understand the mechanism behind MiCoTA, we perform a quantitative experiment demonstrating that our method produces data more closely aligned with base SLM distributions. Our insights pave the way for future research into long-CoT data distillation for SLMs.
comment: Work in progress
☆ DIY-MKG: An LLM-Based Polyglot Language Learning System EMNLP 2025
Existing language learning tools, even those powered by Large Language Models (LLMs), often lack support for polyglot learners to build linguistic connections across vocabularies in multiple languages, provide limited customization for individual learning paces or needs, and suffer from detrimental cognitive offloading. To address these limitations, we design Do-It-Yourself Multilingual Knowledge Graph (DIY-MKG), an open-source system that supports polyglot language learning. DIY-MKG allows the user to build personalized vocabulary knowledge graphs, which are constructed by selective expansion with related words suggested by an LLM. The system further enhances learning through rich annotation capabilities and an adaptive review module that leverages LLMs for dynamic, personalized quiz generation. In addition, DIY-MKG allows users to flag incorrect quiz questions, simultaneously increasing user engagement and providing a feedback loop for prompt refinement. Our evaluation of LLM-based components in DIY-MKG shows that vocabulary expansion is reliable and fair across multiple languages, and that the generated quizzes are highly accurate, validating the robustness of DIY-MKG.
comment: Submitted to EMNLP 2025 System Demonstration
☆ Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Evaluating Structured Output Robustness of Small Language Models for Open Attribute-Value Extraction from Clinical Notes ACL
We present a comparative analysis of the parseability of structured outputs generated by small language models for open attribute-value extraction from clinical notes. We evaluate three widely used serialization formats: JSON, YAML, and XML, and find that JSON consistently yields the highest parseability. Structural robustness improves with targeted prompting and larger models, but declines for longer documents and certain note types. Our error analysis identifies recurring format-specific failure patterns. These findings offer practical guidance for selecting serialization formats and designing prompts when deploying language models in privacy-sensitive clinical settings.
comment: To appear in the ACL Anthology
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Probing Evaluation Awareness of Language Models ICML
Language models can distinguish between testing and deployment phases -- a capability known as evaluation awareness. This has significant safety and policy implications, potentially undermining the reliability of evaluations that are central to AI governance frameworks and voluntary industry commitments. In this paper, we study evaluation awareness in Llama-3.3-70B-Instruct. We show that linear probes can separate real-world evaluation and deployment prompts, suggesting that current models internally represent this distinction. We also find that current safety evaluations are correctly classified by the probes, suggesting that they already appear artificial or inauthentic to models. Our findings underscore the importance of ensuring trustworthy evaluations and understanding deceptive capabilities. More broadly, our work showcases how model internals may be leveraged to support blackbox methods in safety audits, especially for future models more competent at evaluation awareness and deception.
comment: Technical AI Governance Workshop, ICML (Poster)
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ Data interference: emojis, homoglyphs, and issues of data fidelity in corpora and their results
Tokenisation - "the process of splitting text into atomic parts" (Brezina & Timperley, 2017: 1) - is a crucial step for corpus linguistics, as it provides the basis for any applicable quantitative method (e.g. collocations) while ensuring the reliability of qualitative approaches. This paper examines how discrepancies in tokenisation affect the representation of language data and the validity of analytical findings: investigating the challenges posed by emojis and homoglyphs, the study highlights the necessity of preprocessing these elements to maintain corpus fidelity to the source data. The research presents methods for ensuring that digital texts are accurately represented in corpora, thereby supporting reliable linguistic analysis and guaranteeing the repeatability of linguistic interpretations. The findings emphasise the necessity of a detailed understanding of both linguistic and technical aspects involved in digital textual data to enhance the accuracy of corpus analysis, and have significant implications for both quantitative and qualitative approaches in corpus-based research.
comment: Author submitted manuscript
Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
LLMs for Legal Subsumption in German Employment Contracts
Legal work, characterized by its text-heavy and resource-intensive nature, presents unique challenges and opportunities for NLP research. While data-driven approaches have advanced the field, their lack of interpretability and trustworthiness limits their applicability in dynamic legal environments. To address these issues, we collaborated with legal experts to extend an existing dataset and explored the use of Large Language Models (LLMs) and in-context learning to evaluate the legality of clauses in German employment contracts. Our work evaluates the ability of different LLMs to classify clauses as "valid," "unfair," or "void" under three legal context variants: no legal context, full-text sources of laws and court rulings, and distilled versions of these (referred to as examination guidelines). Results show that full-text sources moderately improve performance, while examination guidelines significantly enhance recall for void clauses and weighted F1-Score, reaching 80\%. Despite these advancements, LLMs' performance when using full-text sources remains substantially below that of human lawyers. We contribute an extended dataset, including examination guidelines, referenced legal sources, and corresponding annotations, alongside our code and all log files. Our findings highlight the potential of LLMs to assist lawyers in contract legality review while also underscoring the limitations of the methods presented.
comment: PrePrint - ICAIL25, Chicago
☆ Stereotype Detection as a Catalyst for Enhanced Bias Detection: A Multi-Task Learning Approach
Bias and stereotypes in language models can cause harm, especially in sensitive areas like content moderation and decision-making. This paper addresses bias and stereotype detection by exploring how jointly learning these tasks enhances model performance. We introduce StereoBias, a unique dataset labeled for bias and stereotype detection across five categories: religion, gender, socio-economic status, race, profession, and others, enabling a deeper study of their relationship. Our experiments compare encoder-only models and fine-tuned decoder-only models using QLoRA. While encoder-only models perform well, decoder-only models also show competitive results. Crucially, joint training on bias and stereotype detection significantly improves bias detection compared to training them separately. Additional experiments with sentiment analysis confirm that the improvements stem from the connection between bias and stereotypes, not multi-task learning alone. These findings highlight the value of leveraging stereotype information to build fairer and more effective AI systems.
☆ AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness ACL 2025
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.
comment: ACL 2025
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings
In this paper, we investigate the transferability of pre-trained language models to low-resource Indonesian local languages through the task of sentiment analysis. We evaluate both zero-shot performance and adapter-based transfer on ten local languages using models of different types: a monolingual Indonesian BERT, multilingual models such as mBERT and XLM-R, and a modular adapter-based approach called MAD-X. To better understand model behavior, we group the target languages into three categories: seen (included during pre-training), partially seen (not included but linguistically related to seen languages), and unseen (absent and unrelated in pre-training data). Our results reveal clear performance disparities across these groups: multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages. We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language. Additionally, we conduct a further analysis on tokenization and show that while subword fragmentation and vocabulary overlap with Indonesian correlate weakly with prediction quality, they do not fully explain the observed performance. Instead, the most consistent predictor of transfer success is the model's prior exposure to the language, either directly or through a related language.
comment: AMLDS 2025
☆ Confidence and Stability of Global and Pairwise Scores in NLP Evaluation ACL
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
comment: 8 pages, accepted at ACL SRW 2025
☆ Chart Question Answering from Real-World Analytical Narratives ACL
We present a new dataset for chart question answering (CQA) constructed from visualization notebooks. The dataset features real-world, multi-view charts paired with natural language questions grounded in analytical narratives. Unlike prior benchmarks, our data reflects ecologically valid reasoning workflows. Benchmarking state-of-the-art multimodal large language models reveals a significant performance gap, with GPT-4.1 achieving an accuracy of 69.3%, underscoring the challenges posed by this more authentic CQA setting.
comment: This paper has been accepted to the ACL Student Research Workshop (SRW) 2025
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph (TKG) is an efficient method for describing the dynamic development of facts along a timeline. Most research on TKG reasoning (TKGR) focuses on modelling the repetition of global facts and designing patterns of local historical facts. However, they face two significant challenges: inadequate modeling of the event distribution shift between training and test samples, and reliance on random entity substitution for generating negative samples, which often results in low-quality sampling. To this end, we propose a novel distributional feature modeling approach for training TKGR models, Test-Time Training-guided Distribution shift Modelling (T3DM), to adjust the model based on distribution shift and ensure the global consistency of model reasoning. In addition, we design a negative-sampling strategy to generate higher-quality negative quadruples based on adversarial training. Extensive experiments show that T3DM provides better and more robust results than the state-of-the-art baselines in most cases.
☆ Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose \textbf{LUSTER}, an \textbf{L}LM-based \textbf{U}nified \textbf{S}ystem for \textbf{T}ask-oriented dialogue with \textbf{E}nd-to-end \textbf{R}einforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
comment: 19 pages, 6 figures
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
☆ Is External Information Useful for Stance Detection with LLMs? ACL
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.
comment: ACL Findings 2025
☆ Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence SC 2025
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Evaluating the Effectiveness of Direct Preference Optimization for Personalizing German Automatic Text Simplifications for Persons with Intellectual Disabilities
Automatic text simplification (ATS) aims to enhance language accessibility for various target groups, particularly persons with intellectual disabilities. Recent advancements in generative AI, especially large language models (LLMs), have substantially improved the quality of machine-generated text simplifications, thereby mitigating information barriers for the target group. However, existing LLM-based ATS systems do not incorporate preference feedback on text simplifications during training, resulting in a lack of personalization tailored to the specific needs of target group representatives. In this work, we extend the standard supervised fine-tuning (SFT) approach for adapting LLM-based ATS models by leveraging a computationally efficient LLM alignment technique -- direct preference optimization (DPO). Specifically, we post-train LLM-based ATS models using human feedback collected from persons with intellectual disabilities, reflecting their preferences on paired text simplifications generated by mainstream LLMs. Furthermore, we propose a pipeline for developing personalized LLM-based ATS systems, encompassing data collection, model selection, SFT and DPO post-training, and evaluation. Our findings underscore the necessity of active participation of target group persons in designing personalized AI accessibility solutions aligned with human expectations. This work represents a step towards personalizing inclusive AI systems at the target-group level, incorporating insights not only from text simplification experts but also from target group persons themselves.
☆ LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.
☆ Clinical NLP with Attention-Based Deep Learning for Multi-Disease Prediction
This paper addresses the challenges posed by the unstructured nature and high-dimensional semantic complexity of electronic health record texts. A deep learning method based on attention mechanisms is proposed to achieve unified modeling for information extraction and multi-label disease prediction. The study is conducted on the MIMIC-IV dataset. A Transformer-based architecture is used to perform representation learning over clinical text. Multi-layer self-attention mechanisms are employed to capture key medical entities and their contextual relationships. A Sigmoid-based multi-label classifier is then applied to predict multiple disease labels. The model incorporates a context-aware semantic alignment mechanism, enhancing its representational capacity in typical medical scenarios such as label co-occurrence and sparse information. To comprehensively evaluate model performance, a series of experiments were conducted, including baseline comparisons, hyperparameter sensitivity analysis, data perturbation studies, and noise injection tests. Results demonstrate that the proposed method consistently outperforms representative existing approaches across multiple performance metrics. The model maintains strong generalization under varying data scales, interference levels, and model depth configurations. The framework developed in this study offers an efficient algorithmic foundation for processing real-world clinical texts and presents practical significance for multi-label medical text modeling tasks.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
☆ LEDOM: An Open and Fundamental Reverse Language Model
We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
comment: Work in progress
☆ Symbolic or Numerical? Understanding Physics Problem Solving in Reasoning LLMs
Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.
☆ La RoSA: Enhancing LLM Efficiency via Layerwise Rotated Sparse Activation ICML 2025
Activation sparsity can reduce the computational overhead and memory transfers during the forward pass of Large Language Model (LLM) inference. Existing methods face limitations, either demanding time-consuming recovery training that hinders real-world adoption, or relying on empirical magnitude-based pruning, which causes fluctuating sparsity and unstable inference speed-up. This paper introduces LaRoSA (Layerwise Rotated Sparse Activation), a novel method for activation sparsification designed to improve LLM efficiency without requiring additional training or magnitude-based pruning. We leverage layerwise orthogonal rotations to transform input activations into rotated forms that are more suitable for sparsification. By employing a Top-K selection approach within the rotated activations, we achieve consistent model-level sparsity and reliable wall-clock time speed-up. LaRoSA is effective across various sizes and types of LLMs, demonstrating minimal performance degradation and robust inference acceleration. Specifically, for LLaMA2-7B at 40% sparsity, LaRoSA achieves a mere 0.17 perplexity gap with a consistent 1.30x wall-clock time speed-up, and reduces the accuracy gap in zero-shot tasks compared to the dense model to just 0.54%, while surpassing TEAL by 1.77% and CATS by 17.14%.
comment: ICML 2025 Acceptance
☆ Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
comment: 33 pages, 2 figures, 27 tables
☆ Rethinking All Evidence: Enhancing Trustworthy Retrieval-Augmented Generation via Conflict-Driven Summarization
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
☆ Evaluating Large Language Models for Multimodal Simulated Ophthalmic Decision-Making in Diabetic Retinopathy and Glaucoma Screening
Large language models (LLMs) can simulate clinical reasoning based on natural language prompts, but their utility in ophthalmology is largely unexplored. This study evaluated GPT-4's ability to interpret structured textual descriptions of retinal fundus photographs and simulate clinical decisions for diabetic retinopathy (DR) and glaucoma screening, including the impact of adding real or synthetic clinical metadata. We conducted a retrospective diagnostic validation study using 300 annotated fundus images. GPT-4 received structured prompts describing each image, with or without patient metadata. The model was tasked with assigning an ICDR severity score, recommending DR referral, and estimating the cup-to-disc ratio for glaucoma referral. Performance was evaluated using accuracy, macro and weighted F1 scores, and Cohen's kappa. McNemar's test and change rate analysis were used to assess the influence of metadata. GPT-4 showed moderate performance for ICDR classification (accuracy 67.5%, macro F1 0.33, weighted F1 0.67, kappa 0.25), driven mainly by correct identification of normal cases. Performance improved in the binary DR referral task (accuracy 82.3%, F1 0.54, kappa 0.44). For glaucoma referral, performance was poor across all settings (accuracy ~78%, F1 <0.04, kappa <0.03). Metadata inclusion did not significantly affect outcomes (McNemar p > 0.05), and predictions remained consistent across conditions. GPT-4 can simulate basic ophthalmic decision-making from structured prompts but lacks precision for complex tasks. While not suitable for clinical use, LLMs may assist in education, documentation, or image annotation workflows in ophthalmology.
☆ GAIus: Combining Genai with Legal Clauses Retrieval for Knowledge-based Assistant
In this paper we discuss the capability of large language models to base their answer and provide proper references when dealing with legal matters of non-english and non-chinese speaking country. We discuss the history of legal information retrieval, the difference between case law and statute law, its impact on the legal tasks and analyze the latest research in this field. Basing on that background we introduce gAIus, the architecture of the cognitive LLM-based agent, whose responses are based on the knowledge retrieved from certain legal act, which is Polish Civil Code. We propose a retrieval mechanism which is more explainable, human-friendly and achieves better results than embedding-based approaches. To evaluate our method we create special dataset based on single-choice questions from entrance exams for law apprenticeships conducted in Poland. The proposed architecture critically leveraged the abilities of used large language models, improving the gpt-3.5-turbo-0125 by 419%, allowing it to beat gpt-4o and lifting gpt-4o-mini score from 31% to 86%. At the end of our paper we show the possible future path of research and potential applications of our findings.
comment: 8 pages, 2 figures, presented at ICAART 2025, in proceedings of the 17th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART
☆ ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.
comment: A Strong Baseline for Reasoning based Event Stream Scene Text Recognition
☆ Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
☆ Analyzing and Improving Speaker Similarity Assessment for Speech Synthesis
Modeling voice identity is challenging due to its multifaceted nature. In generative speech systems, identity is often assessed using automatic speaker verification (ASV) embeddings, designed for discrimination rather than characterizing identity. This paper investigates which aspects of a voice are captured in such representations. We find that widely used ASV embeddings focus mainly on static features like timbre and pitch range, while neglecting dynamic elements such as rhythm. We also identify confounding factors that compromise speaker similarity measurements and suggest mitigation strategies. To address these gaps, we propose U3D, a metric that evaluates speakers' dynamic rhythm patterns. This work contributes to the ongoing challenge of assessing speaker identity consistency in the context of ever-better voice cloning systems. We publicly release our code.
comment: Accepted at SSW13 - Interspeech 2025 Speech Synthesis Workshop
☆ Reasoning or Not? A Comprehensive Evaluation of Reasoning LLMs for Dialogue Summarization
Dialogue summarization is a challenging task with significant practical value in customer service, meeting analysis, and conversational AI. Although large language models (LLMs) have achieved substantial progress in summarization tasks, the performance of step-by-step reasoning architectures-specifically Long Chain-of-Thought (CoT) implementations such as OpenAI-o1 and DeepSeek-R1-remains unexplored for dialogue scenarios requiring concurrent abstraction and conciseness. In this work, we present the first comprehensive and systematic evaluation of state-of-the-art reasoning LLMs and non-reasoning LLMs across three major paradigms-generic, role-oriented, and query-oriented dialogue summarization. Our study spans diverse languages, domains, and summary lengths, leveraging strong benchmarks (SAMSum, DialogSum, CSDS, and QMSum) and advanced evaluation protocols that include both LLM-based automatic metrics and human-inspired criteria. Contrary to trends in other reasoning-intensive tasks, our findings show that explicit stepwise reasoning does not consistently improve dialogue summarization quality. Instead, reasoning LLMs are often prone to verbosity, factual inconsistencies, and less concise summaries compared to their non-reasoning counterparts. Through scenario-specific analyses and detailed case studies, we further identify when and why explicit reasoning may fail to benefit-or even hinder-summarization in complex dialogue contexts. Our work provides new insights into the limitations of current reasoning LLMs and highlights the need for targeted modeling and evaluation strategies for real-world dialogue summarization.
☆ Dissecting the Impact of Mobile DVFS Governors on LLM Inference Performance and Energy Efficiency
Large Language Models (LLMs) are increasingly being integrated into various applications and services running on billions of mobile devices. However, deploying LLMs on resource-limited mobile devices faces a significant challenge due to their high demand for computation, memory, and ultimately energy. While current LLM frameworks for mobile use three power-hungry components-CPU, GPU, and Memory-even when running primarily-GPU LLM models, optimized DVFS governors for CPU, GPU, and memory featured in modern mobile devices operate independently and are oblivious of each other. Motivated by the above observation, in this work, we first measure the energy-efficiency of a SOTA LLM framework consisting of various LLM models on mobile phones which showed the triplet mobile governors result in up to 40.4% longer prefilling and decoding latency compared to optimal combinations of CPU, GPU, and memory frequencies with the same energy consumption for sampled prefill and decode lengths. Second, we conduct an in-depth measurement study to uncover how the intricate interplay (or lack of) among the mobile governors cause the above inefficiency in LLM inference. Finally, based on these insights, we design FUSE - a unified energy-aware governor for optimizing the energy efficiency of LLM inference on mobile devices. Our evaluation using a ShareGPT dataset shows FUSE reduces the time-to-first-token and time-per-output-token latencies by 7.0%-16.9% and 25.4%-36.8% on average with the same energy-per-token for various mobile LLM models.
comment: equal contribution between Zhang and Dash
☆ Energy-Based Transformers are Scalable Learners and Thinkers
Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.
☆ McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
comment: 24 pages, 9 figures
☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
♻ ☆ Sequential Diagnosis with Language Models
Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.
comment: 23 pages, 10 figures
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Towards Universal Semantics With Large Language Models
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond.
♻ ☆ LinguaSynth: Heterogeneous Linguistic Signals for News Classification
Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.
♻ ☆ Guaranteed Generation from Large Language Models ICLR 2025
As large language models (LLMs) are increasingly used across various applications, there is a growing need to control text generation to satisfy specific constraints or requirements. This raises a crucial question: Is it possible to guarantee strict constraint satisfaction in generated outputs while preserving the distribution of the original model as much as possible? We first define the ideal distribution - the one closest to the original model, which also always satisfies the expressed constraint - as the ultimate goal of guaranteed generation. We then state a fundamental limitation, namely that it is impossible to reach that goal through autoregressive training alone. This motivates the necessity of combining training-time and inference-time methods to enforce such guarantees. Based on this insight, we propose GUARD, a simple yet effective approach that combines an autoregressive proposal distribution with rejection sampling. Through GUARD's theoretical properties, we show how controlling the KL divergence between a specific proposal and the target ideal distribution simultaneously optimizes inference speed and distributional closeness. To validate these theoretical concepts, we conduct extensive experiments on two text generation settings with hard-to-satisfy constraints: a lexical constraint scenario and a sentiment reversal scenario. These experiments show that GUARD achieves perfect constraint satisfaction while almost preserving the ideal distribution with highly improved inference efficiency. GUARD provides a principled approach to enforcing strict guarantees for LLMs without compromising their generative capabilities.
comment: ICLR 2025
♻ ☆ QAEncoder: Towards Aligned Representation Learning in Question Answering Systems ACL 2025
Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. We introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments across diverse datasets, languages, and embedding models confirmed QAEncoder's alignment capability, which offers a simple-yet-effective solution with zero additional index storage, retrieval latency, training costs, or catastrophic forgetting and hallucination issues. The repository is publicly available at https://github.com/IAAR-Shanghai/QAEncoder.
comment: ACL 2025 Oral
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions ACL 2025
This paper investigates the faithfulness of multimodal large language model (MLLM) agents in a graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general scenario is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using a simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness of agents, our findings first indicate that these agents are prone to environmental distractions. Furthermore, we implement an adversarial environment injection and analyze the approach to improve faithfulness, calling for a collective focus on this important topic.
comment: ACL 2025
♻ ☆ Developing ChemDFM as a large language foundation model for chemistry
Artificial intelligence (AI) has played an increasingly important role in chemical research. However, most models currently used in chemistry are specialist models that require training and tuning for specific tasks. A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry. In its utmost form, such a generalist AI chemist could be referred to as Chemical General Intelligence. Large language models (LLMs) have recently logged tremendous success in the general domain of natural language processing, showing emerging task generalization and free-form dialogue capabilities. However, domain knowledge of chemistry is largely missing when training general-domain LLMs. The lack of such knowledge greatly hinders the performance of generalist LLMs in the field of chemistry. To this end, we develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions. As a result, it can understand and reason with chemical knowledge in free-form dialogue. Quantitative evaluations show that ChemDFM significantly surpasses most representative open-source LLMs. It outperforms GPT-4 on a great portion of chemical tasks, despite the substantial size difference. We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface (https://huggingface.co/OpenDFM/ChemDFM-v1.0-13B).
comment: 10 pages, 12 figures, 12 tables. Published on Cell Report Physical Science, DOI: https://doi.org/10.1016/j.xcrp.2025.102523
♻ ☆ Unifying Global and Near-Context Biasing in a Single Trie Pass
Despite the success of end-to-end automatic speech recognition (ASR) models, challenges persist in recognizing rare, out-of-vocabulary words - including named entities (NE) - and in adapting to new domains using only text data. This work presents a practical approach to address these challenges through an unexplored combination of an NE bias list and a word-level n-gram language model (LM). This solution balances simplicity and effectiveness, improving entities' recognition while maintaining or even enhancing overall ASR performance. We efficiently integrate this enriched biasing method into a transducer-based ASR system, enabling context adaptation with almost no computational overhead. We present our results on three datasets spanning four languages and compare them to state-of-the-art biasing strategies. We demonstrate that the proposed combination of keyword biasing and n-gram LM improves entity recognition by up to 32% relative and reduces overall WER by up to a 12% relative.
comment: Accepted to TSD2025
♻ ☆ BIS Reasoning 1.0: The First Large-Scale Japanese Benchmark for Belief-Inconsistent Syllogistic Reasoning
We present BIS Reasoning 1.0, the first large-scale Japanese dataset of syllogistic reasoning problems explicitly designed to evaluate belief-inconsistent reasoning in large language models (LLMs). Unlike prior datasets such as NeuBAROCO and JFLD, which focus on general or belief-aligned reasoning, BIS Reasoning 1.0 introduces logically valid yet belief-inconsistent syllogisms to uncover reasoning biases in LLMs trained on human-aligned corpora. We benchmark state-of-the-art models - including GPT models, Claude models, and leading Japanese LLMs - revealing significant variance in performance, with GPT-4o achieving 79.54% accuracy. Our analysis identifies critical weaknesses in current LLMs when handling logically valid but belief-conflicting inputs. These findings have important implications for deploying LLMs in high-stakes domains such as law, healthcare, and scientific literature, where truth must override intuitive belief to ensure integrity and safety.
comment: This version includes typo corrections, added logit lens analysis for open models, and an updated author list
♻ ☆ DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues ACL 2025
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
comment: 9 pages, ACL 2025 Vienna
♻ ☆ VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce \textbf{VLM2-Bench}, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across twelve VLMs, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
comment: Project Page: https://vlm2-bench.github.io/ Camera Ready version
♻ ☆ Don't Say No: Jailbreaking LLM by Suppressing Refusal ACL 2025
Ensuring the safety alignment of Large Language Models (LLMs) is critical for generating responses consistent with human values. However, LLMs remain vulnerable to jailbreaking attacks, where carefully crafted prompts manipulate them into producing toxic content. One category of such attacks reformulates the task as an optimization problem, aiming to elicit affirmative responses from the LLM. However, these methods heavily rely on predefined objectionable behaviors, limiting their effectiveness and adaptability to diverse harmful queries. In this study, we first identify why the vanilla target loss is suboptimal and then propose enhancements to the loss objective. We introduce DSN (Don't Say No) attack, which combines a cosine decay schedule method with refusal suppression to achieve higher success rates. Extensive experiments demonstrate that DSN outperforms baseline attacks and achieves state-of-the-art attack success rates (ASR). DSN also shows strong universality and transferability to unseen datasets and black-box models.
comment: Accepted by ACL 2025 Findings
♻ ☆ Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios. It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies. The method introduces knowledge alignment loss and soft prompt tuning to guide the model in effectively absorbing the structural features of target languages or tasks under minimal annotation. This enhances both generalization performance and training stability. The framework includes lightweight adaptation modules to reduce computational costs. During training, it integrates freezing strategies and prompt injection to preserve the model's original knowledge while enabling quick adaptation to new tasks. The study also conducts stability analysis experiments and synthetic pseudo-data transfer experiments to systematically evaluate the method's applicability and robustness across different low-resource tasks. Experimental results show that compared with existing multilingual pre-trained models and mainstream transfer methods, the proposed approach achieves higher performance and stability on cross-lingual tasks such as MLQA, XQuAD, and PAWS-X. It demonstrates particularly strong advantages under extremely data-scarce conditions. The proposed method offers strong generality and scalability. It enhances task-specific adaptability while preserving the general capabilities of large language models. This makes it well-suited for complex semantic modeling and multilingual processing tasks.
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate the use of transformer-based language models, RoBERTa, T5, and LLaMA, for predicting the band gaps of semiconductor materials directly from textual representations that encode key material features such as chemical composition, crystal system, space group, number of atoms per unit cell, valence electron count, and other relevant electronic and structural properties. Quantum chemistry simulations such as DFT provide accurate predictions but are computationally intensive, limiting their feasibility for large-scale materials screening. Shallow ML models offer faster alternatives but typically require extensive data preprocessing to convert non-numerical material features into structured numerical inputs, often at the cost of losing critical descriptive information. In contrast, our approach leverages pretrained language models to process textual data directly, eliminating the need for manual feature engineering. We construct material descriptions in two formats: structured strings that combine key features in a consistent template, and natural language narratives generated using the ChatGPT API. For each model, we append a custom regression head and perform task-specific finetuning on a curated dataset of inorganic compounds. Our results show that finetuned language models, particularly the decoder-only LLaMA-3 architecture, can outperform conventional approaches in prediction accuracy and flexibility, achieving an MAE of 0.25 eV and R2 of 0.89, compared to the best shallow ML baseline, which achieved an MAE of 0.32 eV and R2 of 0.84. Notably, LLaMA-3 achieves competitive accuracy with minimal finetuning, suggesting its architecture enables more transferable representations for scientific tasks. This work demonstrates the effectiveness of finetuned language models for scientific property prediction and provides a scalable, language-native framework for materials informatics.
♻ ☆ Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models ACL 2025
Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (MSQAD), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
comment: ACL 2025 main conference
♻ ☆ Multi-interaction TTS toward professional recording reproduction
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/
comment: 7 pages,6 figures, Accepted to Speech Synthesis Workshop 2025 (SSW13)
♻ ☆ olmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models
PDF documents have the potential to provide trillions of novel, high-quality tokens for training language models. However, these documents come in a diversity of types with differing formats and visual layouts that pose a challenge when attempting to extract and faithfully represent the underlying content for language model use. Traditional open source tools often produce lower quality extractions compared to vision language models (VLMs), but reliance on the best VLMs can be prohibitively costly (e.g., over 6,240 USD per million PDF pages for GPT-4o) or infeasible if the PDFs cannot be sent to proprietary APIs. We present olmOCR, an open-source toolkit for processing PDFs into clean, linearized plain text in natural reading order while preserving structured content like sections, tables, lists, equations, and more. Our toolkit runs a fine-tuned 7B vision language model (VLM) trained on olmOCR-mix-0225, a sample of 260,000 pages from over 100,000 crawled PDFs with diverse properties, including graphics, handwritten text and poor quality scans. olmOCR is optimized for large-scale batch processing, able to scale flexibly to different hardware setups and can convert a million PDF pages for only 176 USD. To aid comparison with existing systems, we also introduce olmOCR-Bench, a curated set of 1,400 PDFs capturing many content types that remain challenging even for the best tools and VLMs, including formulas, tables, tiny fonts, old scans, and more. We find olmOCR outperforms even top VLMs including GPT-4o, Gemini Flash 2 and Qwen-2.5-VL. We openly release all components of olmOCR: our fine-tuned VLM model, training code and data, an efficient inference pipeline that supports vLLM and SGLang backends, and benchmark olmOCR-Bench.
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
♻ ☆ MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
♻ ☆ Pre-training Large Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis ACL 2025
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
comment: Accepted to ACL 2025 main conference
♻ ☆ $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation MICCAI 2025
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $\mu^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel ${\mu}^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $\mu^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer
comment: Accepted by MICCAI 2025
♻ ☆ Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
♻ ☆ Towards Safety Evaluations of Theory of Mind in Large Language Models
As the capabilities of large language models (LLMs) continue to advance, the importance of rigorous safety evaluation is becoming increasingly evident. Recent concerns within the realm of safety assessment have highlighted instances in which LLMs exhibit behaviors that appear to disable oversight mechanisms and respond in a deceptive manner. For example, there have been reports suggesting that, when confronted with information unfavorable to their own persistence during task execution, LLMs may act covertly and even provide false answers to questions intended to verify their behavior. To evaluate the potential risk of such deceptive actions toward developers or users, it is essential to investigate whether these behaviors stem from covert, intentional processes within the model. In this study, we propose that it is necessary to measure the theory of mind capabilities of LLMs. We begin by reviewing existing research on theory of mind and identifying the perspectives and tasks relevant to its application in safety evaluation. Given that theory of mind has been predominantly studied within the context of developmental psychology, we analyze developmental trends across a series of open-weight LLMs. Our results indicate that while LLMs have improved in reading comprehension, their theory of mind capabilities have not shown comparable development. Finally, we present the current state of safety evaluation with respect to LLMs' theory of mind, and discuss remaining challenges for future work.
♻ ☆ SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction ACL 2025
Sign language processing has traditionally relied on task-specific models, limiting the potential for transfer learning across tasks. Pre-training methods for sign language have typically focused on either supervised pre-training, which cannot take advantage of unlabeled data, or context-independent (frame or video segment) representations, which ignore the effects of relationships across time in sign language. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised contextual representation model learned from approximately 1,000 hours of American Sign Language video. SHuBERT adapts masked token prediction objectives to multi-stream visual sign language input, learning to predict multiple targets corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple tasks including sign language translation, isolated sign language recognition, and fingerspelling detection.
comment: Fixed Figure 1. ACL 2025
♻ ☆ Beyond Scale: The Diversity Coefficient as a Data Quality Metric for Variability in Natural Language Data
Current trends in pre-training Large Language Models (LLMs) primarily focus on the scaling of model and dataset size. While the quality of pre-training data is considered an important factor for training powerful LLMs, it remains a nebulous concept that has not been rigorously characterized. To this end, we propose a formalization of one key aspect of data quality -- measuring the variability of natural language data -- specifically via a measure we call the diversity coefficient. Our empirical analysis shows that the proposed diversity coefficient aligns with the intuitive properties of diversity and variability, e.g., it increases as the number of latent concepts increases. Then, we measure the diversity coefficient of publicly available pre-training datasets and demonstrate that their formal diversity is high compared to theoretical lower and upper bounds. Finally, we conduct a comprehensive set of controlled interventional experiments with GPT-2 and LLaMAv2 that demonstrate the diversity coefficient of pre-training data characterizes useful aspects of downstream model evaluation performance -- totaling 44 models of various sizes (51M to 7B parameters). We conclude that our formal notion of diversity is an important aspect of data quality that captures variability and causally leads to improved evaluation performance.
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-aware approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
♻ ☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ De-mark: Watermark Removal in Large Language Models ICML 2025
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models (LMs). However, the robustness of the watermarking schemes has not been well explored. In this paper, we present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively. Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark and identifying the red-green list within the n-gram watermark. Experiments on popular LMs, such as Llama3 and ChatGPT, demonstrate the efficiency and effectiveness of De-mark in watermark removal and exploitation tasks.
comment: ICML 2025
Computer Vision and Pattern Recognition 150
☆ Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256$\times$256 res.) and 1024 to 48 (512$\times$512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4$\times$ lower latency than previous parallelized autoregressive models.
comment: The first two authors contributed equally to this work
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model ICCV 2025
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.
comment: ICCV 2025. Project page: https://yukangcao.github.io/FreeMorph/
☆ Kwai Keye-VL Technical Report
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.
comment: Technical Report: https://github.com/Kwai-Keye/Keye
☆ LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
☆ CI-VID: A Coherent Interleaved Text-Video Dataset
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
☆ evMLP: An Efficient Event-Driven MLP Architecture for Vision
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.
☆ IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
comment: Project page: https://liyaowei-stu.github.io/project/IC_Custom
☆ 3D Reconstruction and Information Fusion between Dormant and Canopy Seasons in Commercial Orchards Using Deep Learning and Fast GICP
In orchard automation, dense foliage during the canopy season severely occludes tree structures, minimizing visibility to various canopy parts such as trunks and branches, which limits the ability of a machine vision system. However, canopy structure is more open and visible during the dormant season when trees are defoliated. In this work, we present an information fusion framework that integrates multi-seasonal structural data to support robotic and automated crop load management during the entire growing season. The framework combines high-resolution RGB-D imagery from both dormant and canopy periods using YOLOv9-Seg for instance segmentation, Kinect Fusion for 3D reconstruction, and Fast Generalized Iterative Closest Point (Fast GICP) for model alignment. Segmentation outputs from YOLOv9-Seg were used to extract depth-informed masks, which enabled accurate 3D point cloud reconstruction via Kinect Fusion; these reconstructed models from each season were subsequently aligned using Fast GICP to achieve spatially coherent multi-season fusion. The YOLOv9-Seg model, trained on manually annotated images, achieved a mean squared error (MSE) of 0.0047 and segmentation mAP@50 scores up to 0.78 for trunks in dormant season dataset. Kinect Fusion enabled accurate reconstruction of tree geometry, validated with field measurements resulting in root mean square errors (RMSE) of 5.23 mm for trunk diameter, 4.50 mm for branch diameter, and 13.72 mm for branch spacing. Fast GICP achieved precise cross-seasonal registration with a minimum fitness score of 0.00197, allowing integrated, comprehensive tree structure modeling despite heavy occlusions during the growing season. This fused structural representation enables robotic systems to access otherwise obscured architectural information, improving the precision of pruning, thinning, and other automated orchard operations.
comment: 17 pages, 4 tables, 11 figures
☆ Modality Agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
☆ Reasoning to Edit: Hypothetical Instruction-Based Image Editing with Visual Reasoning
Instruction-based image editing (IIE) has advanced rapidly with the success of diffusion models. However, existing efforts primarily focus on simple and explicit instructions to execute editing operations such as adding, deleting, moving, or swapping objects. They struggle to handle more complex implicit hypothetical instructions that require deeper reasoning to infer plausible visual changes and user intent. Additionally, current datasets provide limited support for training and evaluating reasoning-aware editing capabilities. Architecturally, these methods also lack mechanisms for fine-grained detail extraction that support such reasoning. To address these limitations, we propose Reason50K, a large-scale dataset specifically curated for training and evaluating hypothetical instruction reasoning image editing, along with ReasonBrain, a novel framework designed to reason over and execute implicit hypothetical instructions across diverse scenarios. Reason50K includes over 50K samples spanning four key reasoning scenarios: Physical, Temporal, Causal, and Story reasoning. ReasonBrain leverages Multimodal Large Language Models (MLLMs) for editing guidance generation and a diffusion model for image synthesis, incorporating a Fine-grained Reasoning Cue Extraction (FRCE) module to capture detailed visual and textual semantics essential for supporting instruction reasoning. To mitigate the semantic loss, we further introduce a Cross-Modal Enhancer (CME) that enables rich interactions between the fine-grained cues and MLLM-derived features. Extensive experiments demonstrate that ReasonBrain consistently outperforms state-of-the-art baselines on reasoning scenarios while exhibiting strong zero-shot generalization to conventional IIE tasks. Our dataset and code will be released publicly.
☆ Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification ICCV 2025
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED
comment: Accepted by ICCV 2025
☆ Future Slot Prediction for Unsupervised Object Discovery in Surgical Video MICCAI2025
Object-centric slot attention is an emerging paradigm for unsupervised learning of structured, interpretable object-centric representations (slots). This enables effective reasoning about objects and events at a low computational cost and is thus applicable to critical healthcare applications, such as real-time interpretation of surgical video. The heterogeneous scenes in real-world applications like surgery are, however, difficult to parse into a meaningful set of slots. Current approaches with an adaptive slot count perform well on images, but their performance on surgical videos is low. To address this challenge, we propose a dynamic temporal slot transformer (DTST) module that is trained both for temporal reasoning and for predicting the optimal future slot initialization. The model achieves state-of-the-art performance on multiple surgical databases, demonstrating that unsupervised object-centric methods can be applied to real-world data and become part of the common arsenal in healthcare applications.
comment: Accepted by MICCAI2025
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices ICCV 2025
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.
comment: Accepted by ICCV 2025
☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
☆ Autoadaptive Medical Segment Anything Model
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.
comment: 11 pages, 2 figures, 3 tables
☆ Empowering Manufacturers with Privacy-Preserving AI Tools: A Case Study in Privacy-Preserving Machine Learning to Solve Real-World Problems
Small- and medium-sized manufacturers need innovative data tools but, because of competition and privacy concerns, often do not want to share their proprietary data with researchers who might be interested in helping. This paper introduces a privacy-preserving platform by which manufacturers may safely share their data with researchers through secure methods, so that those researchers then create innovative tools to solve the manufacturers' real-world problems, and then provide tools that execute solutions back onto the platform for others to use with privacy and confidentiality guarantees. We illustrate this problem through a particular use case which addresses an important problem in the large-scale manufacturing of food crystals, which is that quality control relies on image analysis tools. Previous to our research, food crystals in the images were manually counted, which required substantial and time-consuming human efforts, but we have developed and deployed a crystal analysis tool which makes this process both more rapid and accurate. The tool enables automatic characterization of the crystal size distribution and numbers from microscope images while the natural imperfections from the sample preparation are automatically removed; a machine learning model to count high resolution translucent crystals and agglomeration of crystals was also developed to aid in these efforts. The resulting algorithm was then packaged for real-world use on the factory floor via a web-based app secured through the originating privacy-preserving platform, allowing manufacturers to use it while keeping their proprietary data secure. After demonstrating this full process, future directions are also explored.
comment: 20 pages, 11 figures, 30 references
☆ AMD: Adaptive Momentum and Decoupled Contrastive Learning Framework for Robust Long-Tail Trajectory Prediction
Accurately predicting the future trajectories of traffic agents is essential in autonomous driving. However, due to the inherent imbalance in trajectory distributions, tail data in natural datasets often represents more complex and hazardous scenarios. Existing studies typically rely solely on a base model's prediction error, without considering the diversity and uncertainty of long-tail trajectory patterns. We propose an adaptive momentum and decoupled contrastive learning framework (AMD), which integrates unsupervised and supervised contrastive learning strategies. By leveraging an improved momentum contrast learning (MoCo-DT) and decoupled contrastive learning (DCL) module, our framework enhances the model's ability to recognize rare and complex trajectories. Additionally, we design four types of trajectory random augmentation methods and introduce an online iterative clustering strategy, allowing the model to dynamically update pseudo-labels and better adapt to the distributional shifts in long-tail data. We propose three different criteria to define long-tail trajectories and conduct extensive comparative experiments on the nuScenes and ETH$/$UCY datasets. The results show that AMD not only achieves optimal performance in long-tail trajectory prediction but also demonstrates outstanding overall prediction accuracy.
☆ HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision ICANN 2025
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.
comment: ICANN 2025
☆ Robust brain age estimation from structural MRI with contrastive learning
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging. In this work, we explore contrastive learning as a scalable and robust alternative to supervised approaches for brain age estimation. We introduce a novel contrastive loss function, $\mathcal{L}^{exp}$, and evaluate it across multiple public neuroimaging datasets comprising over 20,000 scans. Our experiments reveal four key findings. First, scaling pre-training on diverse, multi-site data consistently improves generalization performance, cutting external mean absolute error (MAE) nearly in half. Second, $\mathcal{L}^{exp}$ is robust to site-related confounds, maintaining low scanner-predictability as training size increases. Third, contrastive models reliably capture accelerated aging in patients with cognitive impairment and Alzheimer's disease, as shown through brain age gap analysis, ROC curves, and longitudinal trends. Lastly, unlike supervised baselines, $\mathcal{L}^{exp}$ maintains a strong correlation between brain age accuracy and downstream diagnostic performance, supporting its potential as a foundation model for neuroimaging. These results position contrastive learning as a promising direction for building generalizable and clinically meaningful brain representations.
comment: 11 pages
☆ FreeLoRA: Enabling Training-Free LoRA Fusion for Autoregressive Multi-Subject Personalization
Subject-driven image generation plays a crucial role in applications such as virtual try-on and poster design. Existing approaches typically fine-tune pretrained generative models or apply LoRA-based adaptations for individual subjects. However, these methods struggle with multi-subject personalization, as combining independently adapted modules often requires complex re-tuning or joint optimization. We present FreeLoRA, a simple and generalizable framework that enables training-free fusion of subject-specific LoRA modules for multi-subject personalization. Each LoRA module is adapted on a few images of a specific subject using a Full Token Tuning strategy, where it is applied across all tokens in the prompt to encourage weakly supervised token-content alignment. At inference, we adopt Subject-Aware Inference, activating each module only on its corresponding subject tokens. This enables training-free fusion of multiple personalized subjects within a single image, while mitigating overfitting and mutual interference between subjects. Extensive experiments show that FreeLoRA achieves strong performance in both subject fidelity and prompt consistency.
☆ Boosting Adversarial Transferability Against Defenses via Multi-Scale Transformation
The transferability of adversarial examples poses a significant security challenge for deep neural networks, which can be attacked without knowing anything about them. In this paper, we propose a new Segmented Gaussian Pyramid (SGP) attack method to enhance the transferability, particularly against defense models. Unlike existing methods that generally focus on single-scale images, our approach employs Gaussian filtering and three types of downsampling to construct a series of multi-scale examples. Then, the gradients of the loss function with respect to each scale are computed, and their average is used to determine the adversarial perturbations. The proposed SGP can be considered an input transformation with high extensibility that is easily integrated into most existing adversarial attacks. Extensive experiments demonstrate that in contrast to the state-of-the-art methods, SGP significantly enhances attack success rates against black-box defense models, with average attack success rates increasing by 2.3% to 32.6%, based only on transferability.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Are Vision Transformer Representations Semantically Meaningful? A Case Study in Medical Imaging
Vision transformers (ViTs) have rapidly gained prominence in medical imaging tasks such as disease classification, segmentation, and detection due to their superior accuracy compared to conventional deep learning models. However, due to their size and complex interactions via the self-attention mechanism, they are not well understood. In particular, it is unclear whether the representations produced by such models are semantically meaningful. In this paper, using a projected gradient-based algorithm, we show that their representations are not semantically meaningful and they are inherently vulnerable to small changes. Images with imperceptible differences can have very different representations; on the other hand, images that should belong to different semantic classes can have nearly identical representations. Such vulnerability can lead to unreliable classification results; for example, unnoticeable changes cause the classification accuracy to be reduced by over 60\%. %. To the best of our knowledge, this is the first work to systematically demonstrate this fundamental lack of semantic meaningfulness in ViT representations for medical image classification, revealing a critical challenge for their deployment in safety-critical systems.
comment: 9 pages
☆ A Hybrid Ensemble Learning Framework for Image-Based Solar Panel Classification
The installation of solar energy systems is on the rise, and therefore, appropriate maintenance techniques are required to be used in order to maintain maximum performance levels. One of the major challenges is the automated discrimination between clean and dirty solar panels. This paper presents a novel Dual Ensemble Neural Network (DENN) to classify solar panels using image-based features. The suggested approach utilizes the advantages offered by various ensemble models by integrating them into a dual framework, aimed at improving both classification accuracy and robustness. The DENN model is evaluated in comparison to current ensemble methods, showcasing its superior performance across a range of assessment metrics. The proposed approach performs the best compared to other methods and reaches state-of-the-art accuracy on experimental results for the Deep Solar Eye dataset, effectively serving predictive maintenance purposes in solar energy systems. It reveals the potential of hybrid ensemble learning techniques to further advance the prospects of automated solar panel inspections as a scalable solution to real-world challenges.
comment: 6 pages
☆ Rethinking Discrete Tokens: Treating Them as Conditions for Continuous Autoregressive Image Synthesis
Recent advances in large language models (LLMs) have spurred interests in encoding images as discrete tokens and leveraging autoregressive (AR) frameworks for visual generation. However, the quantization process in AR-based visual generation models inherently introduces information loss that degrades image fidelity. To mitigate this limitation, recent studies have explored to autoregressively predict continuous tokens. Unlike discrete tokens that reside in a structured and bounded space, continuous representations exist in an unbounded, high-dimensional space, making density estimation more challenging and increasing the risk of generating out-of-distribution artifacts. Based on the above findings, this work introduces DisCon (Discrete-Conditioned Continuous Autoregressive Model), a novel framework that reinterprets discrete tokens as conditional signals rather than generation targets. By modeling the conditional probability of continuous representations conditioned on discrete tokens, DisCon circumvents the optimization challenges of continuous token modeling while avoiding the information loss caused by quantization. DisCon achieves a gFID score of 1.38 on ImageNet 256$\times$256 generation, outperforming state-of-the-art autoregressive approaches by a clear margin.
comment: accepted by iccv 2025
☆ SSL4SAR: Self-Supervised Learning for Glacier Calving Front Extraction from SAR Imagery
Glaciers are losing ice mass at unprecedented rates, increasing the need for accurate, year-round monitoring to understand frontal ablation, particularly the factors driving the calving process. Deep learning models can extract calving front positions from Synthetic Aperture Radar imagery to track seasonal ice losses at the calving fronts of marine- and lake-terminating glaciers. The current state-of-the-art model relies on ImageNet-pretrained weights. However, they are suboptimal due to the domain shift between the natural images in ImageNet and the specialized characteristics of remote sensing imagery, in particular for Synthetic Aperture Radar imagery. To address this challenge, we propose two novel self-supervised multimodal pretraining techniques that leverage SSL4SAR, a new unlabeled dataset comprising 9,563 Sentinel-1 and 14 Sentinel-2 images of Arctic glaciers, with one optical image per glacier in the dataset. Additionally, we introduce a novel hybrid model architecture that combines a Swin Transformer encoder with a residual Convolutional Neural Network (CNN) decoder. When pretrained on SSL4SAR, this model achieves a mean distance error of 293 m on the "CAlving Fronts and where to Find thEm" (CaFFe) benchmark dataset, outperforming the prior best model by 67 m. Evaluating an ensemble of the proposed model on a multi-annotator study of the benchmark dataset reveals a mean distance error of 75 m, approaching the human performance of 38 m. This advancement enables precise monitoring of seasonal changes in glacier calving fronts.
comment: in IEEE Transactions on Geoscience and Remote Sensing. arXiv admin note: text overlap with arXiv:2501.05281
☆ Calibrated Self-supervised Vision Transformers Improve Intracranial Arterial Calcification Segmentation from Clinical CT Head Scans
Vision Transformers (ViTs) have gained significant popularity in the natural image domain but have been less successful in 3D medical image segmentation. Nevertheless, 3D ViTs are particularly interesting for large medical imaging volumes due to their efficient self-supervised training within the masked autoencoder (MAE) framework, which enables the use of imaging data without the need for expensive manual annotations. intracranial arterial calcification (IAC) is an imaging biomarker visible on routinely acquired CT scans linked to neurovascular diseases such as stroke and dementia, and automated IAC quantification could enable their large-scale risk assessment. We pre-train ViTs with MAE and fine-tune them for IAC segmentation for the first time. To develop our models, we use highly heterogeneous data from a large clinical trial, the third International Stroke Trial (IST-3). We evaluate key aspects of MAE pre-trained ViTs in IAC segmentation, and analyse the clinical implications. We show: 1) our calibrated self-supervised ViT beats a strong supervised nnU-Net baseline by 3.2 Dice points, 2) low patch sizes are crucial for ViTs for IAC segmentation and interpolation upsampling with regular convolutions is preferable to transposed convolutions for ViT-based models, and 3) our ViTs increase robustness to higher slice thicknesses and improve risk group classification in a clinical scenario by 46%. Our code is available online.
☆ DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy ICCV 2025
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.
comment: ICCV 2025
☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ When Does Pruning Benefit Vision Representations?
Pruning is widely used to reduce the complexity of deep learning models, but its effects on interpretability and representation learning remain poorly understood. This paper investigates how pruning influences vision models across three key dimensions: (i) interpretability, (ii) unsupervised object discovery, and (iii) alignment with human perception. We first analyze different vision network architectures to examine how varying sparsity levels affect feature attribution interpretability methods. Additionally, we explore whether pruning promotes more succinct and structured representations, potentially improving unsupervised object discovery by discarding redundant information while preserving essential features. Finally, we assess whether pruning enhances the alignment between model representations and human perception, investigating whether sparser models focus on more discriminative features similarly to humans. Our findings also reveal the presence of sweet spots, where sparse models exhibit higher interpretability, downstream generalization and human alignment. However, these spots highly depend on the network architectures and their size in terms of trainable parameters. Our results suggest a complex interplay between these three dimensions, highlighting the importance of investigating when and how pruning benefits vision representations.
☆ Soft Self-labeling and Potts Relaxations for Weakly-Supervised Segmentation CVPR 2025
We consider weakly supervised segmentation where only a fraction of pixels have ground truth labels (scribbles) and focus on a self-labeling approach optimizing relaxations of the standard unsupervised CRF/Potts loss on unlabeled pixels. While WSSS methods can directly optimize such losses via gradient descent, prior work suggests that higher-order optimization can improve network training by introducing hidden pseudo-labels and powerful CRF sub-problem solvers, e.g. graph cut. However, previously used hard pseudo-labels can not represent class uncertainty or errors, which motivates soft self-labeling. We derive a principled auxiliary loss and systematically evaluate standard and new CRF relaxations (convex and non-convex), neighborhood systems, and terms connecting network predictions with soft pseudo-labels. We also propose a general continuous sub-problem solver. Using only standard architectures, soft self-labeling consistently improves scribble-based training and outperforms significantly more complex specialized WSSS systems. It can outperform full pixel-precise supervision. Our general ideas apply to other weakly-supervised problems/systems.
comment: published at CVPR 2025
☆ Using Wavelet Domain Fingerprints to Improve Source Camera Identification
Camera fingerprint detection plays a crucial role in source identification and image forensics, with wavelet denoising approaches proving to be particularly effective in extracting sensor pattern noise (SPN). In this article, we propose a modification to wavelet-based SPN extraction. Rather than constructing the fingerprint as an image, we introduce the notion of a wavelet domain fingerprint. This avoids the final inversion step of the denoising algorithm and allows fingerprint comparisons to be made directly in the wavelet domain. As such, our modification streamlines the extraction and comparison process. Experimental results on real-world datasets demonstrate that our method not only achieves higher detection accuracy but can also significantly improve processing speed.
☆ Component Adaptive Clustering for Generalized Category Discovery ICME 2025
Generalized Category Discovery (GCD) tackles the challenging problem of categorizing unlabeled images into both known and novel classes within a partially labeled dataset, without prior knowledge of the number of unknown categories. Traditional methods often rely on rigid assumptions, such as predefining the number of classes, which limits their ability to handle the inherent variability and complexity of real-world data. To address these shortcomings, we propose AdaGCD, a cluster-centric contrastive learning framework that incorporates Adaptive Slot Attention (AdaSlot) into the GCD framework. AdaSlot dynamically determines the optimal number of slots based on data complexity, removing the need for predefined slot counts. This adaptive mechanism facilitates the flexible clustering of unlabeled data into known and novel categories by dynamically allocating representational capacity. By integrating adaptive representation with dynamic slot allocation, our method captures both instance-specific and spatially clustered features, improving class discovery in open-world scenarios. Extensive experiments on public and fine-grained datasets validate the effectiveness of our framework, emphasizing the advantages of leveraging spatial local information for category discovery in unlabeled image datasets.
comment: Accepted by IEEE ICME 2025
☆ Facial Emotion Learning with Text-Guided Multiview Fusion via Vision-Language Model for 3D/4D Facial Expression Recognition
Facial expression recognition (FER) in 3D and 4D domains presents a significant challenge in affective computing due to the complexity of spatial and temporal facial dynamics. Its success is crucial for advancing applications in human behavior understanding, healthcare monitoring, and human-computer interaction. In this work, we propose FACET-VLM, a vision-language framework for 3D/4D FER that integrates multiview facial representation learning with semantic guidance from natural language prompts. FACET-VLM introduces three key components: Cross-View Semantic Aggregation (CVSA) for view-consistent fusion, Multiview Text-Guided Fusion (MTGF) for semantically aligned facial emotions, and a multiview consistency loss to enforce structural coherence across views. Our model achieves state-of-the-art accuracy across multiple benchmarks, including BU-3DFE, Bosphorus, BU-4DFE, and BP4D-Spontaneous. We further extend FACET-VLM to 4D micro-expression recognition (MER) on the 4DME dataset, demonstrating strong performance in capturing subtle, short-lived emotional cues. The extensive experimental results confirm the effectiveness and substantial contributions of each individual component within the framework. Overall, FACET-VLM offers a robust, extensible, and high-performing solution for multimodal FER in both posed and spontaneous settings.
☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In a large study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extend. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ RobuSTereo: Robust Zero-Shot Stereo Matching under Adverse Weather ICCV25
Learning-based stereo matching models struggle in adverse weather conditions due to the scarcity of corresponding training data and the challenges in extracting discriminative features from degraded images. These limitations significantly hinder zero-shot generalization to out-of-distribution weather conditions. In this paper, we propose \textbf{RobuSTereo}, a novel framework that enhances the zero-shot generalization of stereo matching models under adverse weather by addressing both data scarcity and feature extraction challenges. First, we introduce a diffusion-based simulation pipeline with a stereo consistency module, which generates high-quality stereo data tailored for adverse conditions. By training stereo matching models on our synthetic datasets, we reduce the domain gap between clean and degraded images, significantly improving the models' robustness to unseen weather conditions. The stereo consistency module ensures structural alignment across synthesized image pairs, preserving geometric integrity and enhancing depth estimation accuracy. Second, we design a robust feature encoder that combines a specialized ConvNet with a denoising transformer to extract stable and reliable features from degraded images. The ConvNet captures fine-grained local structures, while the denoising transformer refines global representations, effectively mitigating the impact of noise, low visibility, and weather-induced distortions. This enables more accurate disparity estimation even under challenging visual conditions. Extensive experiments demonstrate that \textbf{RobuSTereo} significantly improves the robustness and generalization of stereo matching models across diverse adverse weather scenarios.
comment: accepted by ICCV25
☆ Autoregressive Image Generation with Linear Complexity: A Spatial-Aware Decay Perspective
Autoregressive (AR) models have garnered significant attention in image generation for their ability to effectively capture both local and global structures within visual data. However, prevalent AR models predominantly rely on the transformer architectures, which are beset by quadratic computational complexity concerning input sequence length and substantial memory overhead due to the necessity of maintaining key-value caches. Although linear attention mechanisms have successfully reduced this burden in language models, our initial experiments reveal that they significantly degrade image generation quality because of their inability to capture critical long-range dependencies in visual data. We propose Linear Attention with Spatial-Aware Decay (LASAD), a novel attention mechanism that explicitly preserves genuine 2D spatial relationships within the flattened image sequences by computing position-dependent decay factors based on true 2D spatial location rather than 1D sequence positions. Based on this mechanism, we present LASADGen, an autoregressive image generator that enables selective attention to relevant spatial contexts with linear complexity. Experiments on ImageNet show LASADGen achieves state-of-the-art image generation performance and computational efficiency, bridging the gap between linear attention's efficiency and spatial understanding needed for high-quality generation.
☆ SAILViT: Towards Robust and Generalizable Visual Backbones for MLLMs via Gradual Feature Refinement
Vision Transformers (ViTs) are essential as foundation backbones in establishing the visual comprehension capabilities of Multimodal Large Language Models (MLLMs). Although most ViTs achieve impressive performance through image-text pair-based contrastive learning or self-supervised mechanisms, they struggle to engage in connector-based co-training directly with LLMs due to potential parameter initialization conflicts and modality semantic gaps. To address the above challenges, this paper proposes SAILViT, a gradual feature learning-enhanced ViT for facilitating MLLMs to break through performance bottlenecks in complex multimodal interactions. SAILViT achieves coarse-to-fine-grained feature alignment and world knowledge infusion with gradual feature refinement, which better serves target training demands. We perform thorough empirical analyses to confirm the powerful robustness and generalizability of SAILViT across different dimensions, including parameter sizes, model architectures, training strategies, and data scales. Equipped with SAILViT, existing MLLMs show significant and consistent performance improvements on the OpenCompass benchmark across extensive downstream tasks. SAILViT series models are released at https://huggingface.co/BytedanceDouyinContent.
comment: We release SAILViT, a series of versatile vision foundation models
☆ Depth Anything at Any Condition
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss ICCV 2025
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. Code is available at https://github.com/YuxiaoWang-AI/P3HOT.
comment: Accepted by ICCV 2025
☆ Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference ICME
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.
comment: International Conference on Multimedia and Expo (ICME), 2025
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and Geometry-Consistent Video Depth Estimation ICCV 2025
Diffusion-based video depth estimation methods have achieved remarkable success with strong generalization ability. However, predicting depth for long videos remains challenging. Existing methods typically split videos into overlapping sliding windows, leading to accumulated scale discrepancies across different windows, particularly as the number of windows increases. Additionally, these methods rely solely on 2D diffusion priors, overlooking the inherent 3D geometric structure of video depths, which results in geometrically inconsistent predictions. In this paper, we propose DepthSync, a novel, training-free framework using diffusion guidance to achieve scale- and geometry-consistent depth predictions for long videos. Specifically, we introduce scale guidance to synchronize the depth scale across windows and geometry guidance to enforce geometric alignment within windows based on the inherent 3D constraints in video depths. These two terms work synergistically, steering the denoising process toward consistent depth predictions. Experiments on various datasets validate the effectiveness of our method in producing depth estimates with improved scale and geometry consistency, particularly for long videos.
comment: Accepted by ICCV 2025
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ Towards Controllable Real Image Denoising with Camera Parameters ICIP 2025
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.
comment: Accepted for publication in ICIP 2025, IEEE International Conference on Image Processing
☆ SketchColour: Channel Concat Guided DiT-based Sketch-to-Colour Pipeline for 2D Animation
The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .
comment: Project page and code: https://bconstantine.github.io/SketchColour
☆ A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.
comment: 20 pages, 14 figures
☆ Multi Source COVID-19 Detection via Kernel-Density-based Slice Sampling
We present our solution for the Multi-Source COVID-19 Detection Challenge, which classifies chest CT scans from four distinct medical centers. To address multi-source variability, we employ the Spatial-Slice Feature Learning (SSFL) framework with Kernel-Density-based Slice Sampling (KDS). Our preprocessing pipeline combines lung region extraction, quality control, and adaptive slice sampling to select eight representative slices per scan. We compare EfficientNet and Swin Transformer architectures on the validation set. The EfficientNet model achieves an F1-score of 94.68%, compared to the Swin Transformer's 93.34%. The results demonstrate the effectiveness of our KDS-based pipeline on multi-source data and highlight the importance of dataset balance in multi-institutional medical imaging evaluation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Interpolation-Based Event Visual Data Filtering Algorithms CVPR
The field of neuromorphic vision is developing rapidly, and event cameras are finding their way into more and more applications. However, the data stream from these sensors is characterised by significant noise. In this paper, we propose a method for event data that is capable of removing approximately 99\% of noise while preserving the majority of the valid signal. We have proposed four algorithms based on the matrix of infinite impulse response (IIR) filters method. We compared them on several event datasets that were further modified by adding artificially generated noise and noise recorded with dynamic vision sensor. The proposed methods use about 30KB of memory for a sensor with a resolution of 1280 x 720 and is therefore well suited for implementation in embedded devices.
comment: This paper has been accepted for publication at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, 2023. Copyright IEEE
☆ A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization
Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.
☆ TrackingMiM: Efficient Mamba-in-Mamba Serialization for Real-time UAV Object Tracking
The Vision Transformer (ViT) model has long struggled with the challenge of quadratic complexity, a limitation that becomes especially critical in unmanned aerial vehicle (UAV) tracking systems, where data must be processed in real time. In this study, we explore the recently proposed State-Space Model, Mamba, leveraging its computational efficiency and capability for long-sequence modeling to effectively process dense image sequences in tracking tasks. First, we highlight the issue of temporal inconsistency in existing Mamba-based methods, specifically the failure to account for temporal continuity in the Mamba scanning mechanism. Secondly, building upon this insight,we propose TrackingMiM, a Mamba-in-Mamba architecture, a minimal-computation burden model for handling image sequence of tracking problem. In our framework, the mamba scan is performed in a nested way while independently process temporal and spatial coherent patch tokens. While the template frame is encoded as query token and utilized for tracking in every scan. Extensive experiments conducted on five UAV tracking benchmarks confirm that the proposed TrackingMiM achieves state-of-the-art precision while offering noticeable higher speed in UAV tracking.
comment: 12 pages
Exploring Pose-based Sign Language Translation: Ablation Studies and Attention Insights CVPR2025
Sign Language Translation (SLT) has evolved significantly, moving from isolated recognition approaches to complex, continuous gloss-free translation systems. This paper explores the impact of pose-based data preprocessing techniques - normalization, interpolation, and augmentation - on SLT performance. We employ a transformer-based architecture, adapting a modified T5 encoder-decoder model to process pose representations. Through extensive ablation studies on YouTubeASL and How2Sign datasets, we analyze how different preprocessing strategies affect translation accuracy. Our results demonstrate that appropriate normalization, interpolation, and augmentation techniques can significantly improve model robustness and generalization abilities. Additionally, we provide a deep analysis of the model's attentions and reveal interesting behavior suggesting that adding a dedicated register token can improve overall model performance. We publish our code on our GitHub repository, including the preprocessed YouTubeASL data.
comment: 8 pages, 9 figures, supplementary, SLRTP2025, CVPR2025
☆ SafePTR: Token-Level Jailbreak Defense in Multimodal LLMs via Prune-then-Restore Mechanism
By incorporating visual inputs, Multimodal Large Language Models (MLLMs) extend LLMs to support visual reasoning. However, this integration also introduces new vulnerabilities, making MLLMs susceptible to multimodal jailbreak attacks and hindering their safe deployment.Existing defense methods, including Image-to-Text Translation, Safe Prompting, and Multimodal Safety Tuning, attempt to address this by aligning multimodal inputs with LLMs' built-in safeguards.Yet, they fall short in uncovering root causes of multimodal vulnerabilities, particularly how harmful multimodal tokens trigger jailbreak in MLLMs? Consequently, they remain vulnerable to text-driven multimodal jailbreaks, often exhibiting overdefensive behaviors and imposing heavy training overhead.To bridge this gap, we present an comprehensive analysis of where, how and which harmful multimodal tokens bypass safeguards in MLLMs. Surprisingly, we find that less than 1% tokens in early-middle layers are responsible for inducing unsafe behaviors, highlighting the potential of precisely removing a small subset of harmful tokens, without requiring safety tuning, can still effectively improve safety against jailbreaks. Motivated by this, we propose Safe Prune-then-Restore (SafePTR), an training-free defense framework that selectively prunes harmful tokens at vulnerable layers while restoring benign features at subsequent layers.Without incurring additional computational overhead, SafePTR significantly enhances the safety of MLLMs while preserving efficiency. Extensive evaluations across three MLLMs and five benchmarks demonstrate SafePTR's state-of-the-art performance in mitigating jailbreak risks without compromising utility.
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence SC 2025
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Integrating Traditional and Deep Learning Methods to Detect Tree Crowns in Satellite Images
Global warming, loss of biodiversity, and air pollution are among the most significant problems facing Earth. One of the primary challenges in addressing these issues is the lack of monitoring forests to protect them. To tackle this problem, it is important to leverage remote sensing and computer vision methods to automate monitoring applications. Hence, automatic tree crown detection algorithms emerged based on traditional and deep learning methods. In this study, we first introduce two different tree crown detection methods based on these approaches. Then, we form a novel rule-based approach that integrates these two methods to enhance robustness and accuracy of tree crown detection results. While traditional methods are employed for feature extraction and segmentation of forested areas, deep learning methods are used to detect tree crowns in our method. With the proposed rule-based approach, we post-process these results, aiming to increase the number of detected tree crowns through neighboring trees and localized operations. We compare the obtained results with the proposed method in terms of the number of detected tree crowns and report the advantages, disadvantages, and areas for improvement of the obtained outcomes.
comment: 11 pages, 4 figures, journal manuscript
☆ ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation ICCV 2025
Rectified Flow text-to-image models surpass diffusion models in image quality and text alignment, but adapting ReFlow for real-image editing remains challenging. We propose a new real-image editing method for ReFlow by analyzing the intermediate representations of multimodal transformer blocks and identifying three key features. To extract these features from real images with sufficient structural preservation, we leverage mid-step latent, which is inverted only up to the mid-step. We then adapt attention during injection to improve editability and enhance alignment to the target text. Our method is training-free, requires no user-provided mask, and can be applied even without a source prompt. Extensive experiments on two benchmarks with nine baselines demonstrate its superior performance over prior methods, further validated by human evaluations confirming a strong user preference for our approach.
comment: Published at ICCV 2025. Project page: https://wlaud1001.github.io/ReFlex/
☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
☆ AVC-DPO: Aligned Video Captioning via Direct Preference Optimization
Although video multimodal large language models (video MLLMs) have achieved substantial progress in video captioning tasks, it remains challenging to adjust the focal emphasis of video captions according to human preferences. To address this limitation, we propose Aligned Video Captioning via Direct Preference Optimization (AVC-DPO), a post-training framework designed to enhance captioning capabilities in video MLLMs through preference alignment. Our approach designs enhanced prompts that specifically target temporal dynamics and spatial information-two key factors that humans care about when watching a video-thereby incorporating human-centric preferences. AVC-DPO leverages the same foundation model's caption generation responses under varied prompt conditions to conduct preference-aware training and caption alignment. Using this framework, we have achieved exceptional performance in the LOVE@CVPR'25 Workshop Track 1A: Video Detailed Captioning Challenge, achieving first place on the Video Detailed Captioning (VDC) benchmark according to the VDCSCORE evaluation metric.
☆ What Really Matters for Robust Multi-Sensor HD Map Construction? IROS 2025
High-definition (HD) map construction methods are crucial for providing precise and comprehensive static environmental information, which is essential for autonomous driving systems. While Camera-LiDAR fusion techniques have shown promising results by integrating data from both modalities, existing approaches primarily focus on improving model accuracy and often neglect the robustness of perception models, which is a critical aspect for real-world applications. In this paper, we explore strategies to enhance the robustness of multi-modal fusion methods for HD map construction while maintaining high accuracy. We propose three key components: data augmentation, a novel multi-modal fusion module, and a modality dropout training strategy. These components are evaluated on a challenging dataset containing 10 days of NuScenes data. Our experimental results demonstrate that our proposed methods significantly enhance the robustness of baseline methods. Furthermore, our approach achieves state-of-the-art performance on the clean validation set of the NuScenes dataset. Our findings provide valuable insights for developing more robust and reliable HD map construction models, advancing their applicability in real-world autonomous driving scenarios. Project website: https://robomap-123.github.io.
comment: Accepted by IROS 2025
☆ Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.
comment: preprint version
☆ Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
comment: This is a preprint of a paper accepted for the EDHPC 2025 Conference
☆ Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.
☆ NOCTIS: Novel Object Cyclic Threshold based Instance Segmentation NeurIPS 2025
Instance segmentation of novel objects instances in RGB images, given some example images for each object, is a well known problem in computer vision. Designing a model general enough to be employed, for all kinds of novel objects, without (re-) training, has proven to be a difficult task. To handle this, we propose a simple, yet powerful, framework, called: Novel Object Cyclic Threshold based Instance Segmentation (NOCTIS). This work stems from and improves upon previous ones like CNOS, SAM-6D and NIDS-Net; thus, it also leverages on recent vision foundation models, namely: Grounded-SAM 2 and DINOv2. It utilises Grounded-SAM 2 to obtain object proposals with precise bounding boxes and their corresponding segmentation masks; while DINOv2's zero-shot capabilities are employed to generate the image embeddings. The quality of those masks, together with their embeddings, is of vital importance to our approach; as the proposal-object matching is realized by determining an object matching score based on the similarity of the class embeddings and the average maximum similarity of the patch embeddings. Differently to SAM-6D, calculating the latter involves a prior patch filtering based on the distance between each patch and its corresponding cyclic/roundtrip patch in the image grid. Furthermore, the average confidence of the proposals' bounding box and mask is used as an additional weighting factor for the object matching score. We empirically show that NOCTIS, without further training/fine tuning, outperforms the best RGB and RGB-D methods on the seven core datasets of the BOP 2023 challenge for the "Model-based 2D segmentation of unseen objects" task.
comment: 10 pages, 3 figures, 3 tables, NeurIPS 2025 preprint
☆ OoDDINO:A Multi-level Framework for Anomaly Segmentation on Complex Road Scenes
Anomaly segmentation aims to identify Out-of-Distribution (OoD) anomalous objects within images. Existing pixel-wise methods typically assign anomaly scores individually and employ a global thresholding strategy to segment anomalies. Despite their effectiveness, these approaches encounter significant challenges in real-world applications: (1) neglecting spatial correlations among pixels within the same object, resulting in fragmented segmentation; (2) variabil ity in anomaly score distributions across image regions, causing global thresholds to either generate false positives in background areas or miss segments of anomalous objects. In this work, we introduce OoDDINO, a novel multi-level anomaly segmentation framework designed to address these limitations through a coarse-to-fine anomaly detection strategy. OoDDINO combines an uncertainty-guided anomaly detection model with a pixel-level segmentation model within a two-stage cascade architecture. Initially, we propose an Orthogonal Uncertainty-Aware Fusion Strategy (OUAFS) that sequentially integrates multiple uncertainty metrics with visual representations, employing orthogonal constraints to strengthen the detection model's capacity for localizing anomalous regions accurately. Subsequently, we develop an Adaptive Dual-Threshold Network (ADT-Net), which dynamically generates region-specific thresholds based on object-level detection outputs and pixel-wise anomaly scores. This approach allows for distinct thresholding strategies within foreground and background areas, achieving fine-grained anomaly segmentation. The proposed framework is compatible with other pixel-wise anomaly detection models, which acts as a plug-in to boost the performance. Extensive experiments on two benchmark datasets validate our framework's superiority and compatibility over state-of-the-art methods.
comment: 12 pages, 5 figures
☆ TurboReg: TurboClique for Robust and Efficient Point Cloud Registration ICCV-2025
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.
comment: ICCV-2025 Accepted Paper
☆ DiffMark: Diffusion-based Robust Watermark Against Deepfakes
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.
☆ DocShaDiffusion: Diffusion Model in Latent Space for Document Image Shadow Removal
Document shadow removal is a crucial task in the field of document image enhancement. However, existing methods tend to remove shadows with constant color background and ignore color shadows. In this paper, we first design a diffusion model in latent space for document image shadow removal, called DocShaDiffusion. It translates shadow images from pixel space to latent space, enabling the model to more easily capture essential features. To address the issue of color shadows, we design a shadow soft-mask generation module (SSGM). It is able to produce accurate shadow mask and add noise into shadow regions specially. Guided by the shadow mask, a shadow mask-aware guided diffusion module (SMGDM) is proposed to remove shadows from document images by supervising the diffusion and denoising process. We also propose a shadow-robust perceptual feature loss to preserve details and structures in document images. Moreover, we develop a large-scale synthetic document color shadow removal dataset (SDCSRD). It simulates the distribution of realistic color shadows and provides powerful supports for the training of models. Experiments on three public datasets validate the proposed method's superiority over state-of-the-art. Our code and dataset will be publicly available.
☆ Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention ICCV 2025
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
comment: Accepted to ICCV 2025
☆ Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping
Grey matter loss in the hippocampus is a hallmark of neurobiological aging, yet understanding the corresponding changes in its functional connectivity remains limited. Seed-based functional connectivity (FC) analysis enables voxel-wise mapping of the hippocampus's synchronous activity with cortical regions, offering a window into functional reorganization during aging. In this study, we develop an interpretable deep learning framework to predict brain age from hippocampal FC using a three-dimensional convolutional neural network (3D CNN) combined with LayerCAM saliency mapping. This approach maps key hippocampal-cortical connections, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus, that are highly sensitive to age. Critically, disaggregating anterior and posterior hippocampal FC reveals distinct mapping aligned with their known functional specializations. These findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
☆ CaptionSmiths: Flexibly Controlling Language Pattern in Image Captioning ICCV2025
An image captioning model flexibly switching its language pattern, e.g., descriptiveness and length, should be useful since it can be applied to diverse applications. However, despite the dramatic improvement in generative vision-language models, fine-grained control over the properties of generated captions is not easy due to two reasons: (i) existing models are not given the properties as a condition during training and (ii) existing models cannot smoothly transition its language pattern from one state to the other. Given this challenge, we propose a new approach, CaptionSmiths, to acquire a single captioning model that can handle diverse language patterns. First, our approach quantifies three properties of each caption, length, descriptiveness, and uniqueness of a word, as continuous scalar values, without human annotation. Given the values, we represent the conditioning via interpolation between two endpoint vectors corresponding to the extreme states, e.g., one for a very short caption and one for a very long caption. Empirical results demonstrate that the resulting model can smoothly change the properties of the output captions and show higher lexical alignment than baselines. For instance, CaptionSmiths reduces the error in controlling caption length by 506\% despite better lexical alignment. Code will be available on https://github.com/omron-sinicx/captionsmiths.
comment: Accepted to ICCV2025
☆ Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound MICCAI 2025
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.
comment: Accepted by MICCAI 2025
☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
☆ FixTalk: Taming Identity Leakage for High-Quality Talking Head Generation in Extreme Cases
Talking head generation is gaining significant importance across various domains, with a growing demand for high-quality rendering. However, existing methods often suffer from identity leakage (IL) and rendering artifacts (RA), particularly in extreme cases. Through an in-depth analysis of previous approaches, we identify two key insights: (1) IL arises from identity information embedded within motion features, and (2) this identity information can be leveraged to address RA. Building on these findings, this paper introduces FixTalk, a novel framework designed to simultaneously resolve both issues for high-quality talking head generation. Firstly, we propose an Enhanced Motion Indicator (EMI) to effectively decouple identity information from motion features, mitigating the impact of IL on generated talking heads. To address RA, we introduce an Enhanced Detail Indicator (EDI), which utilizes the leaked identity information to supplement missing details, thus fixing the artifacts. Extensive experiments demonstrate that FixTalk effectively mitigates IL and RA, achieving superior performance compared to state-of-the-art methods.
☆ BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.
☆ MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing ICCV 2025
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.
comment: Accpted by ICCV 2025
☆ Active Measurement: Efficient Estimation at Scale
AI has the potential to transform scientific discovery by analyzing vast datasets with little human effort. However, current workflows often do not provide the accuracy or statistical guarantees that are needed. We introduce active measurement, a human-in-the-loop AI framework for scientific measurement. An AI model is used to predict measurements for individual units, which are then sampled for human labeling using importance sampling. With each new set of human labels, the AI model is improved and an unbiased Monte Carlo estimate of the total measurement is refined. Active measurement can provide precise estimates even with an imperfect AI model, and requires little human effort when the AI model is very accurate. We derive novel estimators, weighting schemes, and confidence intervals, and show that active measurement reduces estimation error compared to alternatives in several measurement tasks.
☆ Activation Reward Models for Few-Shot Model Alignment
Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
☆ 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation ICCV 2025
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.
comment: Accepted by ICCV 2025
☆ Long-Tailed Distribution-Aware Router For Mixture-of-Experts in Large Vision-Language Model
The mixture-of-experts (MoE), which replaces dense models with sparse architectures, has gained attention in large vision-language models (LVLMs) for achieving comparable performance with fewer activated parameters. Existing MoE frameworks for LVLMs focus on token-to-expert routing (TER), encouraging different experts to specialize in processing distinct tokens. However, these frameworks often rely on the load balancing mechanism, overlooking the inherent distributional differences between vision and language. To this end, we propose a Long-Tailed Distribution-aware Router (LTDR) for vision-language TER, tackling two challenges: (1) Distribution-aware router for modality-specific routing. We observe that language TER follows a uniform distribution, whereas vision TER exhibits a long-tailed distribution. This discrepancy necessitates distinct routing strategies tailored to each modality. (2) Enhancing expert activation for vision tail tokens. Recognizing the importance of vision tail tokens, we introduce an oversampling-like strategy by increasing the number of activated experts for these tokens. Experiments on extensive benchmarks validate the effectiveness of our approach.
☆ Learning from Random Subspace Exploration: Generalized Test-Time Augmentation with Self-supervised Distillation
We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA forms robust ensembles at test time in which, due to sound statistical properties, the structural and systematic noises in the initial input data is filtered out and final estimator errors are reduced. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost, at no loss in accuracy. Our tests and comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.
☆ Learning Camera-Agnostic White-Balance Preferences
The image signal processor (ISP) pipeline in modern cameras consists of several modules that transform raw sensor data into visually pleasing images in a display color space. Among these, the auto white balance (AWB) module is essential for compensating for scene illumination. However, commercial AWB systems often strive to compute aesthetic white-balance preferences rather than accurate neutral color correction. While learning-based methods have improved AWB accuracy, they typically struggle to generalize across different camera sensors -- an issue for smartphones with multiple cameras. Recent work has explored cross-camera AWB, but most methods remain focused on achieving neutral white balance. In contrast, this paper is the first to address aesthetic consistency by learning a post-illuminant-estimation mapping that transforms neutral illuminant corrections into aesthetically preferred corrections in a camera-agnostic space. Once trained, our mapping can be applied after any neutral AWB module to enable consistent and stylized color rendering across unseen cameras. Our proposed model is lightweight -- containing only $\sim$500 parameters -- and runs in just 0.024 milliseconds on a typical flagship mobile CPU. Evaluated on a dataset of 771 smartphone images from three different cameras, our method achieves state-of-the-art performance while remaining fully compatible with existing cross-camera AWB techniques, introducing minimal computational and memory overhead.
☆ Physics-informed Ground Reaction Dynamics from Human Motion Capture
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD
comment: 6 pages, 4 figures, 4 tables, HSI 2025
☆ Structure and Smoothness Constrained Dual Networks for MR Bias Field Correction MICCAI
MR imaging techniques are of great benefit to disease diagnosis. However, due to the limitation of MR devices, significant intensity inhomogeneity often exists in imaging results, which impedes both qualitative and quantitative medical analysis. Recently, several unsupervised deep learning-based models have been proposed for MR image improvement. However, these models merely concentrate on global appearance learning, and neglect constraints from image structures and smoothness of bias field, leading to distorted corrected results. In this paper, novel structure and smoothness constrained dual networks, named S2DNets, are proposed aiming to self-supervised bias field correction. S2DNets introduce piece-wise structural constraints and smoothness of bias field for network training to effectively remove non-uniform intensity and retain much more structural details. Extensive experiments executed on both clinical and simulated MR datasets show that the proposed model outperforms other conventional and deep learning-based models. In addition to comparison on visual metrics, downstream MR image segmentation tasks are also used to evaluate the impact of the proposed model. The source code is available at: https://github.com/LeongDong/S2DNets}{https://github.com/LeongDong/S2DNets.
comment: 11 pages, 3 figures, accepted by MICCAI
☆ SWinMamba: Serpentine Window State Space Model for Vascular Segmentation
Vascular segmentation in medical images is crucial for disease diagnosis and surgical navigation. However, the segmented vascular structure is often discontinuous due to its slender nature and inadequate prior modeling. In this paper, we propose a novel Serpentine Window Mamba (SWinMamba) to achieve accurate vascular segmentation. The proposed SWinMamba innovatively models the continuity of slender vascular structures by incorporating serpentine window sequences into bidirectional state space models. The serpentine window sequences enable efficient feature capturing by adaptively guiding global visual context modeling to the vascular structure. Specifically, the Serpentine Window Tokenizer (SWToken) adaptively splits the input image using overlapping serpentine window sequences, enabling flexible receptive fields (RFs) for vascular structure modeling. The Bidirectional Aggregation Module (BAM) integrates coherent local features in the RFs for vascular continuity representation. In addition, dual-domain learning with Spatial-Frequency Fusion Unit (SFFU) is designed to enhance the feature representation of vascular structure. Extensive experiments on three challenging datasets demonstrate that the proposed SWinMamba achieves superior performance with complete and connected vessels.
♻ ☆ Graph-Based Deep Learning for Component Segmentation of Maize Plants
In precision agriculture, one of the most important tasks when exploring crop production is identifying individual plant components. There are several attempts to accomplish this task by the use of traditional 2D imaging, 3D reconstructions, and Convolutional Neural Networks (CNN). However, they have several drawbacks when processing 3D data and identifying individual plant components. Therefore, in this work, we propose a novel Deep Learning architecture to detect components of individual plants on Light Detection and Ranging (LiDAR) 3D Point Cloud (PC) data sets. This architecture is based on the concept of Graph Neural Networks (GNN), and feature enhancing with Principal Component Analysis (PCA). For this, each point is taken as a vertex and by the use of a K-Nearest Neighbors (KNN) layer, the edges are established, thus representing the 3D PC data set. Subsequently, Edge-Conv layers are used to further increase the features of each point. Finally, Graph Attention Networks (GAT) are applied to classify visible phenotypic components of the plant, such as the leaf, stem, and soil. This study demonstrates that our graph-based deep learning approach enhances segmentation accuracy for identifying individual plant components, achieving percentages above 80% in the IoU average, thus outperforming other existing models based on point clouds.
♻ ☆ Real-Time Blind Defocus Deblurring for Earth Observation: The IMAGIN-e Mission Approach
This work addresses mechanical defocus in Earth observation images from the IMAGIN-e mission aboard the ISS, proposing a blind deblurring approach adapted to space-based edge computing constraints. Leveraging Sentinel-2 data, our method estimates the defocus kernel and trains a restoration model within a GAN framework, effectively operating without reference images. On Sentinel-2 images with synthetic degradation, SSIM improved by 72.47% and PSNR by 25.00%, confirming the model's ability to recover lost details when the original clean image is known. On IMAGIN-e, where no reference images exist, perceptual quality metrics indicate a substantial enhancement, with NIQE improving by 60.66% and BRISQUE by 48.38%, validating real-world onboard restoration. The approach is currently deployed aboard the IMAGIN-e mission, demonstrating its practical application in an operational space environment. By efficiently handling high-resolution images under edge computing constraints, the method enables applications such as water body segmentation and contour detection while maintaining processing viability despite resource limitations.
comment: Accepted for presentation at the European Space Agency's Big Data from Space (BiDS) 2025 Conference (https://www.bigdatafromspace2025.org/)
♻ ☆ GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling ICCV 2025
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2$\times$ times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
comment: ICCV 2025
♻ ☆ ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor that originates from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative analysis but remains a challenge due to blurred lesion boundaries, gradual color changes, and irregular shapes. To address this, we propose ScaleFusionNet, a hybrid model that integrates a Cross-Attention Transformer Module (CATM) and adaptive fusion block (AFB) to enhance feature extraction and fusion by capturing both local and global features. We introduce CATM, which utilizes Swin transformer blocks and Cross Attention Fusion (CAF) to adaptively refine feature fusion and reduce semantic gaps in the encoder-decoder to improve segmentation accuracy. Additionally, the AFB uses Swin Transformer-based attention and deformable convolution-based adaptive feature extraction to help the model gather local and global contextual information through parallel pathways. This enhancement refines the lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94\% and 91.80\% on the ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Simultaneously, independent validation experiments were conducted on the PH$^2$ dataset using the pretrained model weights. The results show that ScaleFusionNet demonstrates significant performance improvements compared with other state-of-the-art methods. Our code implementation is publicly available at GitHub.
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ Just Noticeable Difference for Large Multimodal Models
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.
comment: 19 pages, 19 figures
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ GraphGSOcc: Semantic-Geometric Graph Transformer with Dynamic-Static Decoupling for 3D Gaussian Splatting-based Occupancy Prediction
Addressing the task of 3D semantic occupancy prediction for autonomous driving, we tackle two key issues in existing 3D Gaussian Splatting (3DGS) methods: (1) unified feature aggregation neglecting semantic correlations among similar categories and across regions, (2) boundary ambiguities caused by the lack of geometric constraints in MLP iterative optimization and (3) biased issues in dynamic-static object coupling optimization. We propose the GraphGSOcc model, a novel framework that combines semantic and geometric graph Transformer and decouples dynamic-static objects optimization for 3D Gaussian Splatting-based Occupancy Prediction. We propose the Dual Gaussians Graph Attenntion, which dynamically constructs dual graph structures: a geometric graph adaptively calculating KNN search radii based on Gaussian poses, enabling large-scale Gaussians to aggregate features from broader neighborhoods while compact Gaussians focus on local geometric consistency; a semantic graph retaining top-M highly correlated nodes via cosine similarity to explicitly encode semantic relationships within and across instances. Coupled with the Multi-scale Graph Attention framework, fine-grained attention at lower layers optimizes boundary details, while coarsegrained attention at higher layers models object-level topology. On the other hand, we decouple dynamic and static objects by leveraging semantic probability distributions and design a Dynamic-Static Decoupled Gaussian Attention mechanism to optimize the prediction performance for both dynamic objects and static scenes. GraphGSOcc achieves state-ofthe-art performance on the SurroundOcc-nuScenes, Occ3D-nuScenes, OpenOcc and KITTI occupancy benchmarks. Experiments on the SurroundOcc dataset achieve an mIoU of 25.20%, reducing GPU memory to 6.8 GB, demonstrating a 1.97% mIoU improvement and 13.7% memory reduction compared to GaussianWorld.
♻ ☆ DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction ICCV 2025
Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments. Project page: https://batfacewayne.github.io/DeGauss.io/
comment: Accepted by ICCV 2025
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into meaningful features. Inversion-based methods address this by reversing the denoising trajectory, mapping each image back to its approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. As a consequence of this divergence, we present that the space of image inversions is notably less manipulative than the original Gaussian noise. Next, we explain the origin of the phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. As a surprisingly simple solution, we propose to replace the first DDIM Inversion steps with a forward diffusion process, which successfully decorrelates latent encodings, leading to higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ DCBM: Data-Efficient Visual Concept Bottleneck Models
Concept Bottleneck Models (CBMs) enhance the interpretability of neural networks by basing predictions on human-understandable concepts. However, current CBMs typically rely on concept sets extracted from large language models or extensive image corpora, limiting their effectiveness in data-sparse scenarios. We propose Data-efficient CBMs (DCBMs), which reduce the need for large sample sizes during concept generation while preserving interpretability. DCBMs define concepts as image regions detected by segmentation or detection foundation models, allowing each image to generate multiple concepts across different granularities. This removes reliance on textual descriptions and large-scale pre-training, making DCBMs applicable for fine-grained classification and out-of-distribution tasks. Attribution analysis using Grad-CAM demonstrates that DCBMs deliver visual concepts that can be localized in test images. By leveraging dataset-specific concepts instead of predefined ones, DCBMs enhance adaptability to new domains.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
♻ ☆ Mod-Adapter: Tuning-Free and Versatile Multi-concept Personalization via Modulation Adapter
Personalized text-to-image generation aims to synthesize images of user-provided concepts in diverse contexts. Despite recent progress in multi-concept personalization, most are limited to object concepts and struggle to customize abstract concepts (e.g., pose, lighting). Some methods have begun exploring multi-concept personalization supporting abstract concepts, but they require test-time fine-tuning for each new concept, which is time-consuming and prone to overfitting on limited training images. In this work, we propose a novel tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning. Our method builds upon the modulation mechanism in pretrained Diffusion Transformers (DiTs) model, leveraging the localized and semantically meaningful properties of the modulation space. Specifically, we propose a novel module, Mod-Adapter, to predict concept-specific modulation direction for the modulation process of concept-related text tokens. It incorporates vision-language cross-attention for extracting concept visual features, and Mixture-of-Experts (MoE) layers that adaptively map the concept features into the modulation space. Furthermore, to mitigate the training difficulty caused by the large gap between the concept image space and the modulation space, we introduce a VLM-guided pretraining strategy that leverages the strong image understanding capabilities of vision-language models to provide semantic supervision signals. For a comprehensive comparison, we extend a standard benchmark by incorporating abstract concepts. Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
comment: Project page: https://weizhi-zhong.github.io/Mod-Adapter
♻ ☆ TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
Illumination and texture editing are critical dimensions for world-to-world transfer, which is valuable for applications including sim2real and real2real visual data scaling up for embodied AI. Existing techniques generatively re-render the input video to realize the transfer, such as video relighting models and conditioned world generation models. Nevertheless, these models are predominantly limited to the domain of training data (e.g., portrait) or fall into the bottleneck of temporal consistency and computation efficiency, especially when the input video involves complex dynamics and long durations. In this paper, we propose TC-Light, a novel generative renderer to overcome these problems. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible re-rendering results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
comment: Project Page: https://dekuliutesla.github.io/tclight/ Code: https://github.com/Linketic/TC-Light
♻ ☆ Robust 6DoF Pose Tracking Considering Contour and Interior Correspondence Uncertainty for AR Assembly Guidance
Augmented reality assembly guidance is essential for intelligent manufacturing and medical applications, requiring continuous measurement of the 6DoF poses of manipulated objects. Although current tracking methods have made significant advancements in accuracy and efficiency, they still face challenges in robustness when dealing with cluttered backgrounds, rotationally symmetric objects, and noisy sequences. In this paper, we first propose a robust contour-based pose tracking method that addresses error-prone contour correspondences and improves noise tolerance. It utilizes a fan-shaped search strategy to refine correspondences and models local contour shape and noise uncertainty as mixed probability distribution, resulting in a highly robust contour energy function. Secondly, we introduce a CPU-only strategy to better track rotationally symmetric objects and assist the contour-based method in overcoming local minima by exploring sparse interior correspondences. This is achieved by pre-sampling interior points from sparse viewpoint templates offline and using the DIS optical flow algorithm to compute their correspondences during tracking. Finally, we formulate a unified energy function to fuse contour and interior information, which is solvable using a re-weighted least squares algorithm. Experiments on public datasets and real scenarios demonstrate that our method significantly outperforms state-of-the-art monocular tracking methods and can achieve more than 100 FPS using only a CPU.
comment: Accepted by IEEE Transactions on Instrumentation and Measurement
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ Admitting Ignorance Helps the Video Question Answering Models to Answer
Significant progress has been made in the field of video question answering (VideoQA) thanks to deep learning and large-scale pretraining. Despite the presence of sophisticated model structures and powerful video-text foundation models, most existing methods focus solely on maximizing the correlation between answers and video-question pairs during training. We argue that these models often establish shortcuts, resulting in spurious correlations between questions and answers, especially when the alignment between video and text data is suboptimal. To address these spurious correlations, we propose a novel training framework in which the model is compelled to acknowledge its ignorance when presented with an intervened question, rather than making guesses solely based on superficial question-answer correlations. We introduce methodologies for intervening in questions, utilizing techniques such as displacement and perturbation, and design frameworks for the model to admit its lack of knowledge in both multi-choice VideoQA and open-ended settings. In practice, we integrate a state-of-the-art model into our framework to validate its effectiveness. The results clearly demonstrate that our framework can significantly enhance the performance of VideoQA models with minimal structural modifications.
♻ ☆ Reducing Variability of Multiple Instance Learning Methods for Digital Pathology MICCAI 2025
Digital pathology has revolutionized the field by enabling the digitization of tissue samples into whole slide images (WSIs). However, the high resolution and large size of WSIs present significant challenges when it comes to applying Deep Learning models. As a solution, WSIs are often divided into smaller patches with a global label (\textit{i.e., diagnostic}) per slide, instead of a (too) costly pixel-wise annotation. By treating each slide as a bag of patches, Multiple Instance Learning (MIL) methods have emerged as a suitable solution for WSI classification. A major drawback of MIL methods is their high variability in performance across different runs, which can reach up to 10-15 AUC points on the test set, making it difficult to compare different MIL methods reliably. This variability mainly comes from three factors: i) weight initialization, ii) batch (shuffling) ordering, iii) and learning rate. To address that, we introduce a Multi-Fidelity, Model Fusion strategy for MIL methods. We first train multiple models for a few epochs and average the most stable and promising ones based on validation scores. This approach can be applied to any existing MIL model to reduce performance variability. It also simplifies hyperparameter tuning and improves reproducibility while maintaining computational efficiency. We extensively validate our approach on WSI classification tasks using 2 different datasets, 3 initialization strategies and 5 MIL methods, for a total of more than 2000 experiments.
comment: MICCAI 2025 - This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in LNCS, Springer
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets and algorithms approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered in the research field. In this work, we address this shortcoming by introducing: (1) Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes. Articulate3D provides 8 types of annotations for articulated objects, covering parts and detailed motion information, all stored in a standardized scene representation format designed for scalable 3D content creation, exchange and seamless integration into simulation environments. (2) USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects. We evaluate USDNet on Articulate3D as well as two existing datasets, demonstrating the advantage of our unified dense prediction approach. Furthermore, we highlight the value of Articulate3D through cross-dataset and cross-domain evaluations and showcase its applicability in downstream tasks such as scene editing through LLM prompting and robotic policy training for articulated object manipulation. We provide open access to our dataset, benchmark, and method's source code.
♻ ☆ Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs
The utilisation of event cameras represents an important and swiftly evolving trend aimed at addressing the constraints of traditional video systems. Particularly within the automotive domain, these cameras find significant relevance for their integration into embedded real-time systems due to lower latency and energy consumption. One effective approach to ensure the necessary throughput and latency for event processing is through the utilisation of graph convolutional networks (GCNs). In this study, we introduce a custom EFGCN (Event-based FPGA-accelerated Graph Convolutional Network) designed with a series of hardware-aware optimisations tailored for PointNetConv, a graph convolution designed for point cloud processing. The proposed techniques result in up to 100-fold reduction in model size compared to Asynchronous Event-based GNN (AEGNN), one of the most recent works in the field, with a relatively small decrease in accuracy (2.9% for the N-Caltech101 classification task, 2.2% for the N-Cars classification task), thus following the TinyML trend. We implemented EFGCN on a ZCU104 SoC FPGA platform without any external memory resources, achieving a throughput of 13.3 million events per second (MEPS) and real-time partially asynchronous processing with low latency. Our approach achieves state-of-the-art performance across multiple event-based classification benchmarks while remaining highly scalable, customisable and resource-efficient. We publish both software and hardware source code in an open repository: https://github.com/vision-agh/gcnn-dvs-fpga
comment: Submitted to the IEEE Transactions on Very Large Scale Integration Systems. This manuscript was first submitted for publication on March 31, 2024. It has since been revised three times: on 22 Mau 2024, 10 June 2024 and 19 June 2025 (major update)
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Semantic Alignment and Reinforcement for Data-Free Quantization of Vision Transformers ICCV2025
Data-free quantization (DFQ) enables model quantization without accessing real data, addressing concerns regarding data security and privacy. With the growing adoption of Vision Transformers (ViTs), DFQ for ViTs has garnered significant attention. However, existing DFQ methods exhibit two limitations: (1) semantic distortion, where the semantics of synthetic images deviate substantially from those of real images, and (2) semantic inadequacy, where synthetic images contain extensive regions with limited content and oversimplified textures, leading to suboptimal quantization performance. To address these limitations, we propose SARDFQ, a novel Semantics Alignment and Reinforcement Data-Free Quantization method for ViTs. To address semantic distortion, SARDFQ incorporates Attention Priors Alignment (APA), which optimizes synthetic images to follow randomly generated structure attention priors. To mitigate semantic inadequacy, SARDFQ introduces Multi-Semantic Reinforcement (MSR), leveraging localized patch optimization to enhance semantic richness across synthetic images. Furthermore, SARDFQ employs Soft-Label Learning (SL), wherein multiple semantic targets are adapted to facilitate the learning of multi-semantic images augmented by MSR. Extensive experiments demonstrate the effectiveness of SARDFQ, significantly surpassing existing methods. For example, SARDFQ improves top-1 accuracy on ImageNet by 15.52% for W4A4 ViT-B. The code is at https://github.com/zysxmu/SARDFQ.
comment: ICCV2025
♻ ☆ ExPaMoE: An Expandable Parallel Mixture of Experts for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to enable models to adapt on-the-fly to a stream of unlabeled data under evolving distribution shifts. However, existing CTTA methods typically rely on shared model parameters across all domains, making them vulnerable to feature entanglement and catastrophic forgetting in the presence of large or non-stationary domain shifts. To address this limitation, we propose ExPaMoE, a novel framework based on an Expandable Parallel Mixture-of-Experts architecture. ExPaMoE decouples domain-general and domain-specific knowledge via a dual-branch expert design with token-guided feature separation, and dynamically expands its expert pool based on a Spectral-Aware Online Domain Discriminator (SODD) that detects distribution changes in real-time using frequency-domain cues. Extensive experiments demonstrate the superiority of ExPaMoE across diverse CTTA scenarios. We evaluate our method on standard benchmarks including CIFAR-10C, CIFAR-100C, ImageNet-C, and Cityscapes-to-ACDC for semantic segmentation. Additionally, we introduce ImageNet++, a large-scale and realistic CTTA benchmark built from multiple ImageNet-derived datasets, to better reflect long-term adaptation under complex domain evolution. ExPaMoE consistently outperforms prior arts, showing strong robustness, scalability, and resistance to forgetting.
♻ ☆ TARO: Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning for Synchronized Video-to-Audio Synthesis ICCV 2025
This paper introduces Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning (TARO), a novel framework for high-fidelity and temporally coherent video-to-audio synthesis. Built upon flow-based transformers, which offer stable training and continuous transformations for enhanced synchronization and audio quality, TARO introduces two key innovations: (1) Timestep-Adaptive Representation Alignment (TRA), which dynamically aligns latent representations by adjusting alignment strength based on the noise schedule, ensuring smooth evolution and improved fidelity, and (2) Onset-Aware Conditioning (OAC), which integrates onset cues that serve as sharp event-driven markers of audio-relevant visual moments to enhance synchronization with dynamic visual events. Extensive experiments on the VGGSound and Landscape datasets demonstrate that TARO outperforms prior methods, achieving relatively 53% lower Frechet Distance (FD), 29% lower Frechet Audio Distance (FAD), and a 97.19% Alignment Accuracy, highlighting its superior audio quality and synchronization precision.
comment: Accepted to ICCV 2025
♻ ☆ NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Scaling Open-Vocabulary Action Detection
In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work.
♻ ☆ SimVecVis: A Dataset for Enhancing MLLMs in Visualization Understanding
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a novel simplified vector format that encodes chart elements such as mark type, position, and size. The effectiveness of SimVec is demonstrated by using MLLMs to reconstruct chart information from SimVec formats. Then, we build a new visualization dataset, SimVecVis, to enhance the performance of MLLMs in visualization understanding, which consists of three key dimensions: bitmap images of charts, their SimVec representations, and corresponding data-centric question-answering (QA) pairs with explanatory chain-of-thought (CoT) descriptions. We finetune state-of-the-art MLLMs (e.g., MiniCPM and Qwen-VL), using SimVecVis with different dataset dimensions. The experimental results show that it leads to substantial performance improvements of MLLMs with good spatial perception capabilities (e.g., MiniCPM) in data-centric QA tasks. Our dataset and source code are available at: https://github.com/VIDA-Lab/SimVecVis.
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
♻ ☆ Is Visual in-Context Learning for Compositional Medical Tasks within Reach? ICCV 2025
In this paper, we explore the potential of visual in-context learning to enable a single model to handle multiple tasks and adapt to new tasks during test time without re-training. Unlike previous approaches, our focus is on training in-context learners to adapt to sequences of tasks, rather than individual tasks. Our goal is to solve complex tasks that involve multiple intermediate steps using a single model, allowing users to define entire vision pipelines flexibly at test time. To achieve this, we first examine the properties and limitations of visual in-context learning architectures, with a particular focus on the role of codebooks. We then introduce a novel method for training in-context learners using a synthetic compositional task generation engine. This engine bootstraps task sequences from arbitrary segmentation datasets, enabling the training of visual in-context learners for compositional tasks. Additionally, we investigate different masking-based training objectives to gather insights into how to train models better for solving complex, compositional tasks. Our exploration not only provides important insights especially for multi-modal medical task sequences but also highlights challenges that need to be addressed.
comment: Accepted to ICCV 2025
♻ ☆ Sequential keypoint density estimator: an overlooked baseline of skeleton-based video anomaly detection ICCV 2025
Detecting anomalous human behaviour is an important visual task in safety-critical applications such as healthcare monitoring, workplace safety, or public surveillance. In these contexts, abnormalities are often reflected with unusual human poses. Thus, we propose SeeKer, a method for detecting anomalies in sequences of human skeletons. Our method formulates the skeleton sequence density through autoregressive factorization at the keypoint level. The corresponding conditional distributions represent probable keypoint locations given prior skeletal motion. We formulate the joint distribution of the considered skeleton as causal prediction of conditional Gaussians across its constituent keypoints. A skeleton is flagged as anomalous if its keypoint locations surprise our model (i.e. receive a low density). In practice, our anomaly score is a weighted sum of per-keypoint log-conditionals, where the weights account for the confidence of the underlying keypoint detector. Despite its conceptual simplicity, SeeKer surpasses all previous methods on the UBnormal and MSAD-HR datasets while delivering competitive performance on the ShanghaiTech dataset.
comment: Accepted to ICCV 2025
♻ ☆ Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment
Obstetric ultrasound image quality is crucial for accurate diagnosis and monitoring of fetal health. However, acquiring high-quality standard planes is difficult, influenced by the sonographer's expertise and factors like the maternal BMI or fetus dynamics. In this work, we explore diffusion-based counterfactual explainable AI to generate realistic, high-quality standard planes from low-quality non-standard ones. Through quantitative and qualitative evaluation, we demonstrate the effectiveness of our approach in generating plausible counterfactuals of increased quality. This shows future promise for enhancing training of clinicians by providing visual feedback and potentially improving standard plane quality and acquisition for downstream diagnosis and monitoring.
♻ ☆ FE-LWS: Refined Image-Text Representations via Decoder Stacking and Fused Encodings for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate descriptive text from remote sensing images, typically employing an encoder-decoder framework. In this setup, a convolutional neural network (CNN) extracts feature representations from the input image, which then guide the decoder in a sequence-to-sequence caption generation process. Although much research has focused on refining the decoder, the quality of image representations from the encoder remains crucial for accurate captioning. This paper introduces a novel approach that integrates features from two distinct CNN based encoders, capturing complementary information to enhance caption generation. Additionally, we propose a weighted averaging technique to combine the outputs of all GRUs in the stacked decoder. Furthermore, a comparison-based beam search strategy is incorporated to refine caption selection. The results demonstrate that our fusion-based approach, along with the enhanced stacked decoder, significantly outperforms both the transformer-based state-of-the-art model and other LSTM-based baselines.
♻ ☆ Advancing Textual Prompt Learning with Anchored Attributes ICCV 2025
Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-anchored Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. Additionally, we introduce a straightforward differentiable attribute search method to identify representative and suitable attributes for downstream tasks. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing basic prompt format in textual-based methods, providing general improvements at a negligible computational cost. Extensive experiments across 11 datasets validate the effectiveness of our method. Code is publicly available at https://github.com/zhengli97/ATPrompt.
comment: ICCV 2025. Code: https://github.com/zhengli97/ATPrompt. Project Page: https://zhengli97.github.io/ATPrompt/
♻ ☆ Anyview: Generalizable Indoor 3D Object Detection with Variable Frames
In this paper, we propose a novel network framework for indoor 3D object detection to handle variable input frame numbers in practical scenarios. Existing methods only consider fixed frames of input data for a single detector, such as monocular RGB-D images or point clouds reconstructed from dense multi-view RGB-D images. While in practical application scenes such as robot navigation and manipulation, the raw input to the 3D detectors is the RGB-D images with variable frame numbers instead of the reconstructed scene point cloud. However, the previous approaches can only handle fixed frame input data and have poor performance with variable frame input. In order to facilitate 3D object detection methods suitable for practical tasks, we present a novel 3D detection framework named AnyView for our practical applications, which generalizes well across different numbers of input frames with a single model. To be specific, we propose a geometric learner to mine the local geometric features of each input RGB-D image frame and implement local-global feature interaction through a designed spatial mixture module. Meanwhile, we further utilize a dynamic token strategy to adaptively adjust the number of extracted features for each frame, which ensures consistent global feature density and further enhances the generalization after fusion. Extensive experiments on the ScanNet dataset show our method achieves both great generalizability and high detection accuracy with a simple and clean architecture containing a similar amount of parameters with the baselines.
comment: 11 pages, 7 figures
♻ ☆ Perceiving Beyond Language Priors: Enhancing Visual Comprehension and Attention in Multimodal Models
Achieving deep alignment between vision and language remains a central challenge for Multimodal Large Language Models (MLLMs). These models often fail to fully leverage visual input, defaulting to strong language priors. Our approach first provides insights into how MLLMs internally build visual understanding of image regions and then introduces techniques to amplify this capability. Specifically, we explore techniques designed both to deepen the model's understanding of visual content and to ensure that these visual insights actively guide language generation. We demonstrate the superior multimodal understanding of our resultant model through a detailed upstream analysis quantifying its ability to predict visually-dependent tokens as well as 10 pt boost on visually challenging tasks.
♻ ☆ A Baseline Method for Removing Invisible Image Watermarks using Deep Image Prior
Image watermarks have been considered a promising technique to help detect AI-generated content, which can be used to protect copyright or prevent fake image abuse. In this work, we present a black-box method for removing invisible image watermarks, without the need of any dataset of watermarked images or any knowledge about the watermark system. Our approach is simple to implement: given a single watermarked image, we regress it by deep image prior (DIP). We show that from the intermediate steps of DIP one can reliably find an evasion image that can remove invisible watermarks while preserving high image quality. Due to its unique working mechanism and practical effectiveness, we advocate including DIP as a baseline invasion method for benchmarking the robustness of watermarking systems. Finally, by showing the limited ability of DIP and other existing black-box methods in evading training-based visible watermarks, we discuss the positive implications on the practical use of training-based visible watermarks to prevent misinformation abuse.
comment: Pulished in Transaction of Machine Learning Research (TMLR): https://openreview.net/forum?id=g85Vxlrq0O
♻ ☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
♻ ☆ DreamCinema: Cinematic Transfer with Free Camera and 3D Character
We are living in a flourishing era of digital media, where everyone has the potential to become a personal filmmaker. Current research on video generation suggests a promising avenue for controllable film creation in pixel space using Diffusion models. However, the reliance on overly verbose prompts and insufficient focus on cinematic elements (e.g., camera movement) results in videos that lack cinematic quality. Furthermore, the absence of 3D modeling often leads to failures in video generation, such as inconsistent character models at different frames, ultimately hindering the immersive experience for viewers. In this paper, we propose a new framework for film creation, Dream-Cinema, which is designed for user-friendly, 3D space-based film creation with generative models. Specifically, we decompose 3D film creation into four key elements: 3D character, driven motion, camera movement, and environment. We extract the latter three elements from user-specified film shots and generate the 3D character using a generative model based on a provided image. To seamlessly recombine these elements and ensure smooth film creation, we propose structure-guided character animation, shape-aware camera movement optimization, and environment-aware generative refinement. Extensive experiments demonstrate the effectiveness of our method in generating high-quality films with free camera and 3D characters.
comment: Project page: https://liuff19.github.io/DreamCinema
♻ ☆ High-Precision Transformer-Based Visual Servoing for Humanoid Robots in Aligning Tiny Objects
High-precision tiny object alignment remains a common and critical challenge for humanoid robots in real-world. To address this problem, this paper proposes a vision-based framework for precisely estimating and controlling the relative position between a handheld tool and a target object for humanoid robots, e.g., a screwdriver tip and a screw head slot. By fusing images from the head and torso cameras on a robot with its head joint angles, the proposed Transformer-based visual servoing method can correct the handheld tool's positional errors effectively, especially at a close distance. Experiments on M4-M8 screws demonstrate an average convergence error of 0.8-1.3 mm and a success rate of 93\%-100\%. Through comparative analysis, the results validate that this capability of high-precision tiny object alignment is enabled by the Distance Estimation Transformer architecture and the Multi-Perception-Head mechanism proposed in this paper.
comment: for associated video, see https://b23.tv/cklF7aK
♻ ☆ Convergent and divergent connectivity patterns of the arcuate fasciculus in macaques and humans
The organization and connectivity of the arcuate fasciculus (AF) in nonhuman primates remain contentious, especially concerning how its anatomy diverges from that of humans. Here, we combined cross-scale single-neuron tracing - using viral-based genetic labeling and fluorescence micro-optical sectioning tomography in macaques (n = 4; age 3 - 11 years) - with whole-brain tractography from 11.7T diffusion MRI. Complemented by spectral embedding analysis of 7.0T MRI in humans, we performed a comparative connectomic analysis of the AF across species. We demonstrate that the macaque AF originates in the temporal-parietal cortex, traverses the auditory cortex and parietal operculum, and projects into prefrontal regions. In contrast, the human AF exhibits greater expansion into the middle temporal gyrus and stronger prefrontal and parietal operculum connectivity - divergences quantified by Kullback-Leibler analysis that likely underpin the evolutionary specialization of human language networks. These interspecies differences - particularly the human AF's broader temporal integration and strengthened frontoparietal linkages - suggest a connectivity-based substrate for the emergence of advanced language processing unique to humans. Furthermore, our findings offer a neuroanatomical framework for understanding AF-related disorders such as aphasia and dyslexia, where aberrant connectivity disrupts language function.
comment: 34 pages, 6 figures
♻ ☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing ICCV 2025
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: ICCV 2025. Project page: https://github.com/sincostanx/LUSD
♻ ☆ Three-Stream Temporal-Shift Attention Network Based on Self-Knowledge Distillation for Micro-Expression Recognition
Micro-expressions are subtle facial movements that occur spontaneously when people try to conceal real emotions. Micro-expression recognition is crucial in many fields, including criminal analysis and psychotherapy. However, micro-expression recognition is challenging since micro-expressions have low intensity and public datasets are small in size. To this end, a three-stream temporal-shift attention network based on self-knowledge distillation is proposed in this paper. Firstly, to address the low intensity of muscle movements, we utilize learning-based motion magnification modules to enhance the intensity of muscle movements. Secondly, we employ efficient channel attention modules in the local-spatial stream to make the network focus on facial regions that are highly relevant to micro-expressions. In addition, temporal shift modules are used in the dynamic-temporal stream, which enables temporal modeling with no additional parameters by mixing motion information from two different temporal domains. Furthermore, we introduce self-knowledge distillation into the micro-expression recognition task by introducing auxiliary classifiers and using the deepest section of the network for supervision, encouraging all blocks to fully explore the features of the training set. Finally, extensive experiments are conducted on five publicly available micro-expression datasets. The experimental results demonstrate that our network outperforms other existing methods and achieves new state-of-the-art performance. Our code is available at https://github.com/GuanghaoZhu663/SKD-TSTSAN.
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis ICCV 2025
Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.
comment: Accepted by ICCV 2025
♻ ☆ Real-Time AIoT for AAV Antenna Interference Detection via Edge-Cloud Collaboration
In the fifth-generation (5G) era, eliminating communication interference sources is crucial for maintaining network performance. Interference often originates from unauthorized or malfunctioning antennas, and radio monitoring agencies must address numerous sources of such antennas annually. Unmanned aerial vehicles (UAVs) can improve inspection efficiency. However, the data transmission delay in the existing cloud-only (CO) artificial intelligence (AI) mode fails to meet the low latency requirements for real-time performance. Therefore, we propose a computer vision-based AI of Things (AIoT) system to detect antenna interference sources for UAVs. The system adopts an optimized edge-cloud collaboration (ECC+) mode, combining a keyframe selection algorithm (KSA), focusing on reducing end-to-end latency (E2EL) and ensuring reliable data transmission, which aligns with the core principles of ultra-reliable low-latency communication (URLLC). At the core of our approach is an end-to-end antenna localization scheme based on the tracking-by-detection (TBD) paradigm, including a detector (EdgeAnt) and a tracker (AntSort). EdgeAnt achieves state-of-the-art (SOTA) performance with a mean average precision (mAP) of 42.1% on our custom antenna interference source dataset, requiring only 3 million parameters and 14.7 GFLOPs. On the COCO dataset, EdgeAnt achieves 38.9% mAP with 5.4 GFLOPs. We deployed EdgeAnt on Jetson Xavier NX (TRT) and Raspberry Pi 4B (NCNN), achieving real-time inference speeds of 21.1 (1088) and 4.8 (640) frames per second (FPS), respectively. Compared with CO mode, the ECC+ mode reduces E2EL by 88.9%, increases accuracy by 28.2%. Additionally, the system offers excellent scalability for coordinated multiple UAVs inspections. The detector code is publicly available at https://github.com/SCNU-RISLAB/EdgeAnt.
♻ ☆ Semantic Equitable Clustering: A Simple and Effective Strategy for Clustering Vision Tokens ICCV2025
The Vision Transformer (ViT) has gained prominence for its superior relational modeling prowess. However, its global attention mechanism's quadratic complexity poses substantial computational burdens. A common remedy spatially groups tokens for self-attention, reducing computational requirements. Nonetheless, this strategy neglects semantic information in tokens, possibly scattering semantically-linked tokens across distinct groups, thus compromising the efficacy of self-attention intended for modeling inter-token dependencies. Motivated by these insights, we introduce a fast and balanced clustering method, named Semantic Equitable Clustering (SEC). SEC clusters tokens based on their global semantic relevance in an efficient, straightforward manner. In contrast to traditional clustering methods requiring multiple iterations, our method achieves token clustering in a single pass. Additionally, SEC regulates the number of tokens per cluster, ensuring a balanced distribution for effective parallel processing on current computational platforms without necessitating further optimization. Capitalizing on SEC, we propose a versatile vision backbone, SECViT. Comprehensive experiments in image classification, object detection, instance segmentation, and semantic segmentation validate the effectiveness of SECViT. Moreover, SEC can be conveniently and swiftly applied to multimodal large language models (MLLM), such as LLaVA, to serve as a vision language connector, effectively accelerating the model's efficiency while maintaining unchanged or better performance.
comment: Accepted by ICCV2025
♻ ☆ Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32$\times$ storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-$p\%$ most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into $b$-bit strings ($b=\lceil\log_2 K\rceil$), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
comment: 9 pages
♻ ☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
♻ ☆ On Efficient Variants of Segment Anything Model: A Survey
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications. However, its impressive performance comes with significant computational and resource demands, making it challenging to deploy in resource-limited environments such as edge devices. To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy. This survey provides the first comprehensive review of these efficient SAM variants. We begin by exploring the motivations driving this research. We then present core techniques used in SAM and model acceleration. This is followed by a detailed exploration of SAM acceleration strategies, categorized by approach, and a discussion of several future research directions. Finally, we offer a unified and extensive evaluation of these methods across various hardware, assessing their efficiency and accuracy on representative benchmarks, and providing a clear comparison of their overall performance.
Artificial Intelligence 150
☆ AC-DiT: Adaptive Coordination Diffusion Transformer for Mobile Manipulation
Recently, mobile manipulation has attracted increasing attention for enabling language-conditioned robotic control in household tasks. However, existing methods still face challenges in coordinating mobile base and manipulator, primarily due to two limitations. On the one hand, they fail to explicitly model the influence of the mobile base on manipulator control, which easily leads to error accumulation under high degrees of freedom. On the other hand, they treat the entire mobile manipulation process with the same visual observation modality (e.g., either all 2D or all 3D), overlooking the distinct multimodal perception requirements at different stages during mobile manipulation. To address this, we propose the Adaptive Coordination Diffusion Transformer (AC-DiT), which enhances mobile base and manipulator coordination for end-to-end mobile manipulation. First, since the motion of the mobile base directly influences the manipulator's actions, we introduce a mobility-to-body conditioning mechanism that guides the model to first extract base motion representations, which are then used as context prior for predicting whole-body actions. This enables whole-body control that accounts for the potential impact of the mobile base's motion. Second, to meet the perception requirements at different stages of mobile manipulation, we design a perception-aware multimodal conditioning strategy that dynamically adjusts the fusion weights between various 2D visual images and 3D point clouds, yielding visual features tailored to the current perceptual needs. This allows the model to, for example, adaptively rely more on 2D inputs when semantic information is crucial for action prediction, while placing greater emphasis on 3D geometric information when precise spatial understanding is required. We validate AC-DiT through extensive experiments on both simulated and real-world mobile manipulation tasks.
☆ Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256$\times$256 res.) and 1024 to 48 (512$\times$512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4$\times$ lower latency than previous parallelized autoregressive models.
comment: The first two authors contributed equally to this work
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 26 pages, 6 figures, 5 tables. To be submitted to AAS Journals. Comments welcome
☆ Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla
In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.
Exploring a Hybrid Deep Learning Approach for Anomaly Detection in Mental Healthcare Provider Billing: Addressing Label Scarcity through Semi-Supervised Anomaly Detection
The complexity of mental healthcare billing enables anomalies, including fraud. While machine learning methods have been applied to anomaly detection, they often struggle with class imbalance, label scarcity, and complex sequential patterns. This study explores a hybrid deep learning approach combining Long Short-Term Memory (LSTM) networks and Transformers, with pseudo-labeling via Isolation Forests (iForest) and Autoencoders (AE). Prior work has not evaluated such hybrid models trained on pseudo-labeled data in the context of healthcare billing. The approach is evaluated on two real-world billing datasets related to mental healthcare. The iForest LSTM baseline achieves the highest recall (0.963) on declaration-level data. On the operation-level data, the hybrid iForest-based model achieves the highest recall (0.744), though at the cost of lower precision. These findings highlight the potential of combining pseudo-labeling with hybrid deep learning in complex, imbalanced anomaly detection settings.
☆ End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning
We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module's role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint
☆ Towards Foundation Auto-Encoders for Time-Series Anomaly Detection KDD 2024
We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
comment: Presented at ACM KDD 2024, MiLeTS 2024 Workshop, August 25, 2024, Barcelona, Spain
☆ Bridging UI Design and chatbot Interactions: Applying Form-Based Principles to Conversational Agents
Domain specific chatbot applications often involve multi step interactions, such as refining search filters, selecting multiple items, or performing comparisons. Traditional graphical user interfaces (GUIs) handle these workflows by providing explicit "Submit" (commit data) and "Reset" (discard data) actions, allowing back-end systems to track user intent unambiguously. In contrast, conversational agents rely on subtle language cues, which can lead to confusion and incomplete context management. This paper proposes modeling these GUI inspired metaphors acknowledgment (submit like) and context switching (reset-like) as explicit tasks within large language model (LLM) prompts. By capturing user acknowledgment, reset actions, and chain of thought (CoT) reasoning as structured session data, we preserve clarity, reduce user confusion, and align domain-specific chatbot interactions with back-end logic. We demonstrate our approach in hotel booking and customer management scenarios, highlighting improvements in multi-turn task coherence, user satisfaction, and efficiency.
comment: 8 pages, 1 figure, pre-print of poster accepted for HCI International 2025 (HCII 2025), CCIS vol 2529
☆ Refining Gelfond Rationality Principle Towards More Comprehensive Foundational Principles for Answer Set Semantics IJCAI-2022
Non-monotonic logic programming is the basis for a declarative problem solving paradigm known as answer set programming (ASP). Departing from the seminal definition by Gelfond and Lifschitz in 1988 for simple normal logic programs, various answer set semantics have been proposed for extensions. We consider two important questions: (1) Should the minimal model property, constraint monotonicity and foundedness as defined in the literature be mandatory conditions for an answer set semantics in general? (2) If not, what other properties could be considered as general principles for answer set semantics? We address the two questions. First, it seems that the three aforementioned conditions may sometimes be too strong, and we illustrate with examples that enforcing them may exclude expected answer sets. Second, we evolve the Gelfond answer set (GAS) principles for answer set construction by refining the Gelfond's rationality principle to well-supportedness, minimality w.r.t. negation by default and minimality w.r.t. epistemic negation. The principle of well-supportedness guarantees that every answer set is constructible from if-then rules obeying a level mapping and is thus free of circular justification, while the two minimality principles ensure that the formalism minimizes knowledge both at the level of answer sets and of world views. Third, to embody the refined GAS principles, we extend the notion of well-supportedness substantially to answer sets and world views, respectively. Fourth, we define new answer set semantics in terms of the refined GAS principles. Fifth, we use the refined GAS principles as an alternative baseline to intuitively assess the existing answer set semantics. Finally, we analyze the computational complexity.
comment: 76 pages. This article is a significantly extended version of a paper presented by the authors at IJCAI-2022
☆ mGRADE: Minimal Recurrent Gating Meets Delay Convolutions for Lightweight Sequence Modeling
Edge devices for temporal processing demand models that capture both short- and long- range dynamics under tight memory constraints. While Transformers excel at sequence modeling, their quadratic memory scaling with sequence length makes them impractical for such settings. Recurrent Neural Networks (RNNs) offer constant memory but train sequentially, and Temporal Convolutional Networks (TCNs), though efficient, scale memory with kernel size. To address this, we propose mGRADE (mininally Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system that integrates a temporal 1D-convolution with learnable spacings followed by a minimal gated recurrent unit (minGRU). This design allows the convolutional layer to realize a flexible delay embedding that captures rapid temporal variations, while the recurrent module efficiently maintains global context with minimal memory overhead. We validate our approach on two synthetic tasks, demonstrating that mGRADE effectively separates and preserves multi-scale temporal features. Furthermore, on challenging pixel-by-pixel image classification benchmarks, mGRADE consistently outperforms both pure convolutional and pure recurrent counterparts using approximately 20% less memory footprint, highlighting its suitability for memory-constrained temporal processing at the edge. This highlights mGRADE's promise as an efficient solution for memory-constrained multi-scale temporal processing at the edge.
☆ MILP-SAT-GNN: Yet Another Neural SAT Solver
We proposes a novel method that enables Graph Neural Networks (GNNs) to solve SAT problems by leveraging a technique developed for applying GNNs to Mixed Integer Linear Programming (MILP). Specifically, k-CNF formulae are mapped into MILP problems, which are then encoded as weighted bipartite graphs and subsequently fed into a GNN for training and testing. From a theoretical perspective: (i) we establish permutation and equivalence invariance results, demonstrating that the method produces outputs that are stable under reordering of clauses and variables; (ii) we identify a theoretical limitation, showing that for a class of formulae called foldable formulae, standard GNNs cannot always distinguish satisfiable from unsatisfiable instances; (iii) we prove a universal approximation theorem, establishing that with Random Node Initialization (RNI), the method can approximate SAT solving to arbitrary precision on finite datasets, that is, the GNN becomes approximately sound and complete on such datasets. Furthermore, we show that for unfoldable formulae, the same approximation guarantee can be achieved without the need for RNI. Finally, we conduct an experimental evaluation of our approach, which show that, despite the simplicity of the neural architecture, the method achieves promising results.
☆ Empowering Manufacturers with Privacy-Preserving AI Tools: A Case Study in Privacy-Preserving Machine Learning to Solve Real-World Problems
Small- and medium-sized manufacturers need innovative data tools but, because of competition and privacy concerns, often do not want to share their proprietary data with researchers who might be interested in helping. This paper introduces a privacy-preserving platform by which manufacturers may safely share their data with researchers through secure methods, so that those researchers then create innovative tools to solve the manufacturers' real-world problems, and then provide tools that execute solutions back onto the platform for others to use with privacy and confidentiality guarantees. We illustrate this problem through a particular use case which addresses an important problem in the large-scale manufacturing of food crystals, which is that quality control relies on image analysis tools. Previous to our research, food crystals in the images were manually counted, which required substantial and time-consuming human efforts, but we have developed and deployed a crystal analysis tool which makes this process both more rapid and accurate. The tool enables automatic characterization of the crystal size distribution and numbers from microscope images while the natural imperfections from the sample preparation are automatically removed; a machine learning model to count high resolution translucent crystals and agglomeration of crystals was also developed to aid in these efforts. The resulting algorithm was then packaged for real-world use on the factory floor via a web-based app secured through the originating privacy-preserving platform, allowing manufacturers to use it while keeping their proprietary data secure. After demonstrating this full process, future directions are also explored.
comment: 20 pages, 11 figures, 30 references
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Are Vision Transformer Representations Semantically Meaningful? A Case Study in Medical Imaging
Vision transformers (ViTs) have rapidly gained prominence in medical imaging tasks such as disease classification, segmentation, and detection due to their superior accuracy compared to conventional deep learning models. However, due to their size and complex interactions via the self-attention mechanism, they are not well understood. In particular, it is unclear whether the representations produced by such models are semantically meaningful. In this paper, using a projected gradient-based algorithm, we show that their representations are not semantically meaningful and they are inherently vulnerable to small changes. Images with imperceptible differences can have very different representations; on the other hand, images that should belong to different semantic classes can have nearly identical representations. Such vulnerability can lead to unreliable classification results; for example, unnoticeable changes cause the classification accuracy to be reduced by over 60\%. %. To the best of our knowledge, this is the first work to systematically demonstrate this fundamental lack of semantic meaningfulness in ViT representations for medical image classification, revealing a critical challenge for their deployment in safety-critical systems.
comment: 9 pages
☆ Probing Evaluation Awareness of Language Models ICML
Language models can distinguish between testing and deployment phases -- a capability known as evaluation awareness. This has significant safety and policy implications, potentially undermining the reliability of evaluations that are central to AI governance frameworks and voluntary industry commitments. In this paper, we study evaluation awareness in Llama-3.3-70B-Instruct. We show that linear probes can separate real-world evaluation and deployment prompts, suggesting that current models internally represent this distinction. We also find that current safety evaluations are correctly classified by the probes, suggesting that they already appear artificial or inauthentic to models. Our findings underscore the importance of ensuring trustworthy evaluations and understanding deceptive capabilities. More broadly, our work showcases how model internals may be leveraged to support blackbox methods in safety audits, especially for future models more competent at evaluation awareness and deception.
comment: Technical AI Governance Workshop, ICML (Poster)
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ BranchNet: A Neuro-Symbolic Learning Framework for Structured Multi-Class Classification
We introduce BranchNet, a neuro-symbolic learning framework that transforms decision tree ensembles into sparse, partially connected neural networks. Each branch, defined as a decision path from root to a parent of leaves, is mapped to a hidden neuron, preserving symbolic structure while enabling gradient-based optimization. The resulting models are compact, interpretable, and require no manual architecture tuning. Evaluated on a suite of structured multi-class classification benchmarks, BranchNet consistently outperforms XGBoost in accuracy, with statistically significant gains. We detail the architecture, training procedure, and sparsity dynamics, and discuss the model's strengths in symbolic interpretability as well as its current limitations, particularly on binary tasks where further adaptive calibration may be beneficial.
comment: 18 pages, 3 figures (with two images each)
☆ GPU-based complete search for nonlinear minimization subject to bounds
This paper introduces a GPU-based complete search method to enclose the global minimum of a nonlinear function subject to simple bounds on the variables. Using interval analysis, coupled with the computational power and architecture of GPU, the method iteratively rules out the regions in the search domain where the global minimum cannot exist and leaves a finite set of regions where the global minimum must exist. For effectiveness, because of the rigor of interval analysis, the method is guaranteed to enclose the global minimum of the nonlinear function even in the presence of rounding errors. For efficiency, the method employs a novel GPU-based single program, single data parallel programming style to circumvent major GPU performance bottlenecks, and a variable cycling technique is also integrated into the method to reduce computational cost when minimizing large-scale nonlinear functions. The method is validated by minimizing 10 multimodal benchmark test functions with scalable dimensions, including the well-known Ackley function, Griewank function, Levy function, and Rastrigin function. These benchmark test functions represent grand challenges of global optimization, and enclosing the guaranteed global minimum of these benchmark test functions with more than 80 dimensions has not been reported in the literature. Our method completely searches the feasible domain and successfully encloses the guaranteed global minimum of these 10 benchmark test functions with up to 10,000 dimensions using only one GPU in a reasonable computation time, far exceeding the reported results in the literature due to the unique method design and implementation based on GPU architecture.
comment: 36 pages, 3 figures
☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by their incapacity to reliably evaluate sample quality. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics, Clipped Density and Clipped Coverage. By clipping individual sample contributions and, for fidelity, the radii of nearest neighbor balls, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics exhibit linear score degradation as the proportion of poor samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability for evaluating generative models.
Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ Joint Matching and Pricing for Crowd-shipping with In-store Customers
This paper examines the use of in-store customers as delivery couriers in a centralized crowd-shipping system, targeting the growing need for efficient last-mile delivery in urban areas. We consider a brick-and-mortar retail setting where shoppers are offered compensation to deliver time-sensitive online orders. To manage this process, we propose a Markov Decision Process (MDP) model that captures key uncertainties, including the stochastic arrival of orders and crowd-shippers, and the probabilistic acceptance of delivery offers. Our solution approach integrates Neural Approximate Dynamic Programming (NeurADP) for adaptive order-to-shopper assignment with a Deep Double Q-Network (DDQN) for dynamic pricing. This joint optimization strategy enables multi-drop routing and accounts for offer acceptance uncertainty, aligning more closely with real-world operations. Experimental results demonstrate that the integrated NeurADP + DDQN policy achieves notable improvements in delivery cost efficiency, with up to 6.7\% savings over NeurADP with fixed pricing and approximately 18\% over myopic baselines. We also show that allowing flexible delivery delays and enabling multi-destination routing further reduces operational costs by 8\% and 17\%, respectively. These findings underscore the advantages of dynamic, forward-looking policies in crowd-shipping systems and offer practical guidance for urban logistics operators.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ Towards culturally-appropriate conversational AI for health in the majority world: An exploratory study with citizens and professionals in Latin America
There is justifiable interest in leveraging conversational AI (CAI) for health across the majority world, but to be effective, CAI must respond appropriately within culturally and linguistically diverse contexts. Therefore, we need ways to address the fact that current LLMs exclude many lived experiences globally. Various advances are underway which focus on top-down approaches and increasing training data. In this paper, we aim to complement these with a bottom-up locally-grounded approach based on qualitative data collected during participatory workshops in Latin America. Our goal is to construct a rich and human-centred understanding of: a) potential areas of cultural misalignment in digital health; b) regional perspectives on chatbots for health and c)strategies for creating culturally-appropriate CAI; with a focus on the understudied Latin American context. Our findings show that academic boundaries on notions of culture lose meaning at the ground level and technologies will need to engage with a broader framework; one that encapsulates the way economics, politics, geography and local logistics are entangled in cultural experience. To this end, we introduce a framework for 'Pluriversal Conversational AI for Health' which allows for the possibility that more relationality and tolerance, rather than just more data, may be called for.
☆ Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness ACL 2025
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.
comment: ACL 2025
Exploring Advanced LLM Multi-Agent Systems Based on Blackboard Architecture
In this paper, we propose to incorporate the blackboard architecture into LLM multi-agent systems (MASs) so that (1) agents with various roles can share all the information and others' messages during the whole problem-solving process, (2) agents that will take actions are selected based on the current content of the blackboard, and (3) the selection and execution round is repeated until a consensus is reached on the blackboard. We develop the first implementation of this proposal and conduct experiments on commonsense knowledge, reasoning and mathematical datasets. The results show that our system can be competitive with the SOTA static and dynamic MASs by achieving the best average performance, and at the same time manage to spend less tokens. Our proposal has the potential to enable complex and dynamic problem-solving where well-defined structures or workflows are unavailable.
☆ Relational Causal Discovery with Latent Confounders UAI 2025
Estimating causal effects from real-world relational data can be challenging when the underlying causal model and potential confounders are unknown. While several causal discovery algorithms exist for learning causal models with latent confounders from data, they assume that the data is independent and identically distributed (i.i.d.) and are not well-suited for learning from relational data. Similarly, existing relational causal discovery algorithms assume causal sufficiency, which is unrealistic for many real-world datasets. To address this gap, we propose RelFCI, a sound and complete causal discovery algorithm for relational data with latent confounders. Our work builds upon the Fast Causal Inference (FCI) and Relational Causal Discovery (RCD) algorithms and it defines new graphical models, necessary to support causal discovery in relational domains. We also establish soundness and completeness guarantees for relational d-separation with latent confounders. We present experimental results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
comment: 30 pages, 19 figures. Accepted for publication at the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). Andrea Piras and Matteo Negro contributed equally to this work
GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
While existing auditing techniques attempt to identify potential unwanted behaviours in large language models (LLMs), we address the complementary forensic problem of reconstructing the exact input that led to an existing LLM output - enabling post-incident analysis and potentially the detection of fake output reports. We formalize exact input reconstruction as a discrete optimisation problem with a unique global minimum and introduce SODA, an efficient gradient-based algorithm that operates on a continuous relaxation of the input search space with periodic restarts and parameter decay. Through comprehensive experiments on LLMs ranging in size from 33M to 3B parameters, we demonstrate that SODA significantly outperforms existing approaches. We succeed in fully recovering 79.5% of shorter out-of-distribution inputs from next-token logits, without a single false positive, but struggle to extract private information from the outputs of longer (15+ token) input sequences. This suggests that standard deployment practices may currently provide adequate protection against malicious use of our method. Our code is available at https://doi.org/10.5281/zenodo.15539879.
comment: 9 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ Deep Recommender Models Inference: Automatic Asymmetric Data Flow Optimization
Deep Recommender Models (DLRMs) inference is a fundamental AI workload accounting for more than 79% of the total AI workload in Meta's data centers. DLRMs' performance bottleneck is found in the embedding layers, which perform many random memory accesses to retrieve small embedding vectors from tables of various sizes. We propose the design of tailored data flows to speedup embedding look-ups. Namely, we propose four strategies to look up an embedding table effectively on one core, and a framework to automatically map the tables asymmetrically to the multiple cores of a SoC. We assess the effectiveness of our method using the Huawei Ascend AI accelerators, comparing it with the default Ascend compiler, and we perform high-level comparisons with Nvidia A100. Results show a speed-up varying from 1.5x up to 6.5x for real workload distributions, and more than 20x for extremely unbalanced distributions. Furthermore, the method proves to be much more independent of the query distribution than the baseline.
comment: 5 pages, 4 figures, conference: IEEE ICCD24
☆ Comparing Optimization Algorithms Through the Lens of Search Behavior Analysis
The field of numerical optimization has recently seen a surge in the development of "novel" metaheuristic algorithms, inspired by metaphors derived from natural or human-made processes, which have been widely criticized for obscuring meaningful innovations and failing to distinguish themselves from existing approaches. Aiming to address these concerns, we investigate the applicability of statistical tests for comparing algorithms based on their search behavior. We utilize the cross-match statistical test to compare multivariate distributions and assess the solutions produced by 114 algorithms from the MEALPY library. These findings are incorporated into an empirical analysis aiming to identify algorithms with similar search behaviors.
☆ AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
☆ Autoregressive Image Generation with Linear Complexity: A Spatial-Aware Decay Perspective
Autoregressive (AR) models have garnered significant attention in image generation for their ability to effectively capture both local and global structures within visual data. However, prevalent AR models predominantly rely on the transformer architectures, which are beset by quadratic computational complexity concerning input sequence length and substantial memory overhead due to the necessity of maintaining key-value caches. Although linear attention mechanisms have successfully reduced this burden in language models, our initial experiments reveal that they significantly degrade image generation quality because of their inability to capture critical long-range dependencies in visual data. We propose Linear Attention with Spatial-Aware Decay (LASAD), a novel attention mechanism that explicitly preserves genuine 2D spatial relationships within the flattened image sequences by computing position-dependent decay factors based on true 2D spatial location rather than 1D sequence positions. Based on this mechanism, we present LASADGen, an autoregressive image generator that enables selective attention to relevant spatial contexts with linear complexity. Experiments on ImageNet show LASADGen achieves state-of-the-art image generation performance and computational efficiency, bridging the gap between linear attention's efficiency and spatial understanding needed for high-quality generation.
☆ GradMetaNet: An Equivariant Architecture for Learning on Gradients
Gradients of neural networks encode valuable information for optimization, editing, and analysis of models. Therefore, practitioners often treat gradients as inputs to task-specific algorithms, e.g. for pruning or optimization. Recent works explore learning algorithms that operate directly on gradients but use architectures that are not specifically designed for gradient processing, limiting their applicability. In this paper, we present a principled approach for designing architectures that process gradients. Our approach is guided by three principles: (1) equivariant design that preserves neuron permutation symmetries, (2) processing sets of gradients across multiple data points to capture curvature information, and (3) efficient gradient representation through rank-1 decomposition. Based on these principles, we introduce GradMetaNet, a novel architecture for learning on gradients, constructed from simple equivariant blocks. We prove universality results for GradMetaNet, and show that previous approaches cannot approximate natural gradient-based functions that GradMetaNet can. We then demonstrate GradMetaNet's effectiveness on a diverse set of gradient-based tasks on MLPs and transformers, such as learned optimization, INR editing, and estimating loss landscape curvature.
☆ Customized Exploration of Landscape Features Driving Multi-Objective Combinatorial Optimization Performance
We present an analysis of landscape features for predicting the performance of multi-objective combinatorial optimization algorithms. We consider features from the recently proposed compressed Pareto Local Optimal Solutions Networks (C-PLOS-net) model of combinatorial landscapes. The benchmark instances are a set of rmnk-landscapes with 2 and 3 objectives and various levels of ruggedness and objective correlation. We consider the performance of three algorithms -- Pareto Local Search (PLS), Global Simple EMO Optimizer (GSEMO), and Non-dominated Sorting Genetic Algorithm (NSGA-II) - using the resolution and hypervolume metrics. Our tailored analysis reveals feature combinations that influence algorithm performance specific to certain landscapes. This study provides deeper insights into feature importance, tailored to specific rmnk-landscapes and algorithms.
☆ Depth Anything at Any Condition
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss ICCV 2025
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. Code is available at https://github.com/YuxiaoWang-AI/P3HOT.
comment: Accepted by ICCV 2025
☆ Enhanced Influence-aware Group Recommendation for Online Media Propagation
Group recommendation over social media streams has attracted significant attention due to its wide applications in domains such as e-commerce, entertainment, and online news broadcasting. By leveraging social connections and group behaviours, group recommendation (GR) aims to provide more accurate and engaging content to a set of users rather than individuals. Recently, influence-aware GR has emerged as a promising direction, as it considers the impact of social influence on group decision-making. In earlier work, we proposed Influence-aware Group Recommendation (IGR) to solve this task. However, this task remains challenging due to three key factors: the large and ever-growing scale of social graphs, the inherently dynamic nature of influence propagation within user groups, and the high computational overhead of real-time group-item matching. To tackle these issues, we propose an Enhanced Influence-aware Group Recommendation (EIGR) framework. First, we introduce a Graph Extraction-based Sampling (GES) strategy to minimise redundancy across multiple temporal social graphs and effectively capture the evolving dynamics of both groups and items. Second, we design a novel DYnamic Independent Cascade (DYIC) model to predict how influence propagates over time across social items and user groups. Finally, we develop a two-level hash-based User Group Index (UG-Index) to efficiently organise user groups and enable real-time recommendation generation. Extensive experiments on real-world datasets demonstrate that our proposed framework, EIGR, consistently outperforms state-of-the-art baselines in both effectiveness and efficiency.
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph (TKG) is an efficient method for describing the dynamic development of facts along a timeline. Most research on TKG reasoning (TKGR) focuses on modelling the repetition of global facts and designing patterns of local historical facts. However, they face two significant challenges: inadequate modeling of the event distribution shift between training and test samples, and reliance on random entity substitution for generating negative samples, which often results in low-quality sampling. To this end, we propose a novel distributional feature modeling approach for training TKGR models, Test-Time Training-guided Distribution shift Modelling (T3DM), to adjust the model based on distribution shift and ensure the global consistency of model reasoning. In addition, we design a negative-sampling strategy to generate higher-quality negative quadruples based on adversarial training. Extensive experiments show that T3DM provides better and more robust results than the state-of-the-art baselines in most cases.
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
Exploring Classical Piano Performance Generation with Expressive Music Variational AutoEncoder
The creativity of classical music arises not only from composers who craft the musical sheets but also from performers who interpret the static notations with expressive nuances. This paper addresses the challenge of generating classical piano performances from scratch, aiming to emulate the dual roles of composer and pianist in the creative process. We introduce the Expressive Compound Word (ECP) representation, which effectively captures both the metrical structure and expressive nuances of classical performances. Building on this, we propose the Expressive Music Variational AutoEncoder (XMVAE), a model featuring two branches: a Vector Quantized Variational AutoEncoder (VQ-VAE) branch that generates score-related content, representing the Composer, and a vanilla VAE branch that produces expressive details, fulfilling the role of Pianist. These branches are jointly trained with similar Seq2Seq architectures, leveraging a multiscale encoder to capture beat-level contextual information and an orthogonal Transformer decoder for efficient compound tokens decoding. Both objective and subjective evaluations demonstrate that XMVAE generates classical performances with superior musical quality compared to state-of-the-art models. Furthermore, pretraining the Composer branch on extra musical score datasets contribute to a significant performance gain.
comment: Accepted by IEEE SMC 2025
☆ Real-Time Emergency Vehicle Siren Detection with Efficient CNNs on Embedded Hardware
We present a full-stack emergency vehicle (EV) siren detection system designed for real-time deployment on embedded hardware. The proposed approach is based on E2PANNs, a fine-tuned convolutional neural network derived from EPANNs, and optimized for binary sound event detection under urban acoustic conditions. A key contribution is the creation of curated and semantically structured datasets - AudioSet-EV, AudioSet-EV Augmented, and Unified-EV - developed using a custom AudioSet-Tools framework to overcome the low reliability of standard AudioSet annotations. The system is deployed on a Raspberry Pi 5 equipped with a high-fidelity DAC+microphone board, implementing a multithreaded inference engine with adaptive frame sizing, probability smoothing, and a decision-state machine to control false positive activations. A remote WebSocket interface provides real-time monitoring and facilitates live demonstration capabilities. Performance is evaluated using both framewise and event-based metrics across multiple configurations. Results show the system achieves low-latency detection with improved robustness under realistic audio conditions. This work demonstrates the feasibility of deploying IoS-compatible SED solutions that can form distributed acoustic monitoring networks, enabling collaborative emergency vehicle tracking across smart city infrastructures through WebSocket connectivity on low-cost edge devices.
comment: 10 pages, 10 figures, submitted to https://internetofsounds2025.ieee-is2.org/. arXiv admin note: text overlap with arXiv:2506.23437
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
☆ AI and Remote Sensing for Resilient and Sustainable Built Environments: A Review of Current Methods, Open Data and Future Directions
Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid threats ranging from natural disasters to cyber attacks and conflicts pose growing risks to their resilience and functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical transport infrastructures.
☆ Chargax: A JAX Accelerated EV Charging Simulator
Deep Reinforcement Learning can play a key role in addressing sustainable energy challenges. For instance, many grid systems are heavily congested, highlighting the urgent need to enhance operational efficiency. However, reinforcement learning approaches have traditionally been slow due to the high sample complexity and expensive simulation requirements. While recent works have effectively used GPUs to accelerate data generation by converting environments to JAX, these works have largely focussed on classical toy problems. This paper introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle charging stations designed for accelerated training of RL agents. We validate our environment in a variety of scenarios based on real data, comparing reinforcement learning agents against baselines. Chargax delivers substantial computational performance improvements of over 100x-1000x over existing environments. Additionally, Chargax' modular architecture enables the representation of diverse real-world charging station configurations.
comment: Accepted at RLC 2025
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence SC 2025
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Integrating Traditional and Deep Learning Methods to Detect Tree Crowns in Satellite Images
Global warming, loss of biodiversity, and air pollution are among the most significant problems facing Earth. One of the primary challenges in addressing these issues is the lack of monitoring forests to protect them. To tackle this problem, it is important to leverage remote sensing and computer vision methods to automate monitoring applications. Hence, automatic tree crown detection algorithms emerged based on traditional and deep learning methods. In this study, we first introduce two different tree crown detection methods based on these approaches. Then, we form a novel rule-based approach that integrates these two methods to enhance robustness and accuracy of tree crown detection results. While traditional methods are employed for feature extraction and segmentation of forested areas, deep learning methods are used to detect tree crowns in our method. With the proposed rule-based approach, we post-process these results, aiming to increase the number of detected tree crowns through neighboring trees and localized operations. We compare the obtained results with the proposed method in terms of the number of detected tree crowns and report the advantages, disadvantages, and areas for improvement of the obtained outcomes.
comment: 11 pages, 4 figures, journal manuscript
☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
☆ Agent-as-Tool: A Study on the Hierarchical Decision Making with Reinforcement Learning
Large Language Models (LLMs) have emerged as one of the most significant technological advancements in artificial intelligence in recent years. Their ability to understand, generate, and reason with natural language has transformed how we interact with AI systems. With the development of LLM-based agents and reinforcement-learning-based reasoning models, the study of applying reinforcement learning in agent frameworks has become a new research focus. However, all previous studies face the challenge of deciding the tool calling process and the reasoning process simultaneously, and the chain of reasoning was solely relied on the unprocessed raw result with redundant information and symbols unrelated to the task from the tool, which impose a heavy burden on the model's capability to reason. Therefore, in our research, we proposed a hierarchical framework Agent-as-tool that detach the tool calling process and the reasoning process, which enables the model to focus on the verbally reasoning process while the tool calling process is handled by another agent. Our work had achieved comparable results with only a slight reinforcement fine-tuning on 180 samples, and had achieved exceptionally well performance in Bamboogle with 63.2% of exact match and 75.2% in cover exact match, exceeding Search-R1 by 4.8% in exact match and 3.2% in cover exact match.
comment: 12 pages
☆ BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.
☆ Epistemic Scarcity: The Economics of Unresolvable Unknowns
This paper presents a praxeological analysis of artificial intelligence and algorithmic governance, challenging assumptions about the capacity of machine systems to sustain economic and epistemic order. Drawing on Misesian a priori reasoning and Austrian theories of entrepreneurship, we argue that AI systems are incapable of performing the core functions of economic coordination: interpreting ends, discovering means, and communicating subjective value through prices. Where neoclassical and behavioural models treat decisions as optimisation under constraint, we frame them as purposive actions under uncertainty. We critique dominant ethical AI frameworks such as Fairness, Accountability, and Transparency (FAT) as extensions of constructivist rationalism, which conflict with a liberal order grounded in voluntary action and property rights. Attempts to encode moral reasoning in algorithms reflect a misunderstanding of ethics and economics. However complex, AI systems cannot originate norms, interpret institutions, or bear responsibility. They remain opaque, misaligned, and inert. Using the concept of epistemic scarcity, we explore how information abundance degrades truth discernment, enabling both entrepreneurial insight and soft totalitarianism. Our analysis ends with a civilisational claim: the debate over AI concerns the future of human autonomy, institutional evolution, and reasoned choice. The Austrian tradition, focused on action, subjectivity, and spontaneous order, offers the only coherent alternative to rising computational social control.
comment: 47 pages - submission to QJAE
☆ Evaluating the Effectiveness of Direct Preference Optimization for Personalizing German Automatic Text Simplifications for Persons with Intellectual Disabilities
Automatic text simplification (ATS) aims to enhance language accessibility for various target groups, particularly persons with intellectual disabilities. Recent advancements in generative AI, especially large language models (LLMs), have substantially improved the quality of machine-generated text simplifications, thereby mitigating information barriers for the target group. However, existing LLM-based ATS systems do not incorporate preference feedback on text simplifications during training, resulting in a lack of personalization tailored to the specific needs of target group representatives. In this work, we extend the standard supervised fine-tuning (SFT) approach for adapting LLM-based ATS models by leveraging a computationally efficient LLM alignment technique -- direct preference optimization (DPO). Specifically, we post-train LLM-based ATS models using human feedback collected from persons with intellectual disabilities, reflecting their preferences on paired text simplifications generated by mainstream LLMs. Furthermore, we propose a pipeline for developing personalized LLM-based ATS systems, encompassing data collection, model selection, SFT and DPO post-training, and evaluation. Our findings underscore the necessity of active participation of target group persons in designing personalized AI accessibility solutions aligned with human expectations. This work represents a step towards personalizing inclusive AI systems at the target-group level, incorporating insights not only from text simplification experts but also from target group persons themselves.
☆ Zero-Incentive Dynamics: a look at reward sparsity through the lens of unrewarded subgoals
This work re-examines the commonly held assumption that the frequency of rewards is a reliable measure of task difficulty in reinforcement learning. We identify and formalize a structural challenge that undermines the effectiveness of current policy learning methods: when essential subgoals do not directly yield rewards. We characterize such settings as exhibiting zero-incentive dynamics, where transitions critical to success remain unrewarded. We show that state-of-the-art deep subgoal-based algorithms fail to leverage these dynamics and that learning performance is highly sensitive to the temporal proximity between subgoal completion and eventual reward. These findings reveal a fundamental limitation in current approaches and point to the need for mechanisms that can infer latent task structure without relying on immediate incentives.
comment: Accepted at "Finding the Frame 2025", workshop at RLC
☆ NOCTIS: Novel Object Cyclic Threshold based Instance Segmentation NeurIPS 2025
Instance segmentation of novel objects instances in RGB images, given some example images for each object, is a well known problem in computer vision. Designing a model general enough to be employed, for all kinds of novel objects, without (re-) training, has proven to be a difficult task. To handle this, we propose a simple, yet powerful, framework, called: Novel Object Cyclic Threshold based Instance Segmentation (NOCTIS). This work stems from and improves upon previous ones like CNOS, SAM-6D and NIDS-Net; thus, it also leverages on recent vision foundation models, namely: Grounded-SAM 2 and DINOv2. It utilises Grounded-SAM 2 to obtain object proposals with precise bounding boxes and their corresponding segmentation masks; while DINOv2's zero-shot capabilities are employed to generate the image embeddings. The quality of those masks, together with their embeddings, is of vital importance to our approach; as the proposal-object matching is realized by determining an object matching score based on the similarity of the class embeddings and the average maximum similarity of the patch embeddings. Differently to SAM-6D, calculating the latter involves a prior patch filtering based on the distance between each patch and its corresponding cyclic/roundtrip patch in the image grid. Furthermore, the average confidence of the proposals' bounding box and mask is used as an additional weighting factor for the object matching score. We empirically show that NOCTIS, without further training/fine tuning, outperforms the best RGB and RGB-D methods on the seven core datasets of the BOP 2023 challenge for the "Model-based 2D segmentation of unseen objects" task.
comment: 10 pages, 3 figures, 3 tables, NeurIPS 2025 preprint
☆ Quantum-Assisted Automatic Path-Planning for Robotic Quality Inspection in Industry 4.0
This work explores the application of hybrid quantum-classical algorithms to optimize robotic inspection trajectories derived from Computer-Aided Design (CAD) models in industrial settings. By modeling the task as a 3D variant of the Traveling Salesman Problem, incorporating incomplete graphs and open-route constraints, this study evaluates the performance of two D-Wave-based solvers against classical methods such as GUROBI and Google OR-Tools. Results across five real-world cases demonstrate competitive solution quality with significantly reduced computation times, highlighting the potential of quantum approaches in automation under Industry 4.0.
comment: 2 pages, 1 figure, paper accepted for presentation at the IEEE International Conference on Quantum Computing and Engineering (QCE)
☆ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs
RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
comment: 9 pages, 10 figures, 2 algorithms
☆ Using multi-agent architecture to mitigate the risk of LLM hallucinations
Improving customer service quality and response time are critical factors for maintaining customer loyalty and increasing a company's market share. While adopting emerging technologies such as Large Language Models (LLMs) is becoming a necessity to achieve these goals, the risk of hallucination remains a major challenge. In this paper, we present a multi-agent system to handle customer requests sent via SMS. This system integrates LLM based agents with fuzzy logic to mitigate hallucination risks.
☆ EdgeLoRA: An Efficient Multi-Tenant LLM Serving System on Edge Devices
Large Language Models (LLMs) have gained significant attention due to their versatility across a wide array of applications. Fine-tuning LLMs with parameter-efficient adapters, such as Low-Rank Adaptation (LoRA), enables these models to efficiently adapt to downstream tasks without extensive retraining. Deploying fine-tuned LLMs on multi-tenant edge devices offers substantial benefits, such as reduced latency, enhanced privacy, and personalized responses. However, serving LLMs efficiently on resource-constrained edge devices presents critical challenges, including the complexity of adapter selection for different tasks and memory overhead from frequent adapter swapping. Moreover, given the multiple requests in multi-tenant settings, processing requests sequentially results in underutilization of computational resources and increased latency. This paper introduces EdgeLoRA, an efficient system for serving LLMs on edge devices in multi-tenant environments. EdgeLoRA incorporates three key innovations: (1) an adaptive adapter selection mechanism to streamline the adapter configuration process; (2) heterogeneous memory management, leveraging intelligent adapter caching and pooling to mitigate memory operation overhead; and (3) batch LoRA inference, enabling efficient batch processing to significantly reduce computational latency. Comprehensive evaluations using the Llama3.1-8B model demonstrate that EdgeLoRA significantly outperforms the status quo (i.e., llama.cpp) in terms of both latency and throughput. The results demonstrate that EdgeLoRA can achieve up to a 4 times boost in throughput. Even more impressively, it can serve several orders of magnitude more adapters simultaneously. These results highlight EdgeLoRA's potential to transform edge deployment of LLMs in multi-tenant scenarios, offering a scalable and efficient solution for resource-constrained environments.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Hardware-software co-exploration with racetrack memory based in-memory computing for CNN inference in embedded systems
Deep neural networks generate and process large volumes of data, posing challenges for low-resource embedded systems. In-memory computing has been demonstrated as an efficient computing infrastructure and shows promise for embedded AI applications. Among newly-researched memory technologies, racetrack memory is a non-volatile technology that allows high data density fabrication, making it a good fit for in-memory computing. However, integrating in-memory arithmetic circuits with memory cells affects both the memory density and power efficiency. It remains challenging to build efficient in-memory arithmetic circuits on racetrack memory within area and energy constraints. To this end, we present an efficient in-memory convolutional neural network (CNN) accelerator optimized for use with racetrack memory. We design a series of fundamental arithmetic circuits as in-memory computing cells suited for multiply-and-accumulate operations. Moreover, we explore the design space of racetrack memory based systems and CNN model architectures, employing co-design to improve the efficiency and performance of performing CNN inference in racetrack memory while maintaining model accuracy. Our designed circuits and model-system co-optimization strategies achieve a small memory bank area with significant improvements in energy and performance for racetrack memory based embedded systems.
☆ DocShaDiffusion: Diffusion Model in Latent Space for Document Image Shadow Removal
Document shadow removal is a crucial task in the field of document image enhancement. However, existing methods tend to remove shadows with constant color background and ignore color shadows. In this paper, we first design a diffusion model in latent space for document image shadow removal, called DocShaDiffusion. It translates shadow images from pixel space to latent space, enabling the model to more easily capture essential features. To address the issue of color shadows, we design a shadow soft-mask generation module (SSGM). It is able to produce accurate shadow mask and add noise into shadow regions specially. Guided by the shadow mask, a shadow mask-aware guided diffusion module (SMGDM) is proposed to remove shadows from document images by supervising the diffusion and denoising process. We also propose a shadow-robust perceptual feature loss to preserve details and structures in document images. Moreover, we develop a large-scale synthetic document color shadow removal dataset (SDCSRD). It simulates the distribution of realistic color shadows and provides powerful supports for the training of models. Experiments on three public datasets validate the proposed method's superiority over state-of-the-art. Our code and dataset will be publicly available.
☆ Penalizing Transparency? How AI Disclosure and Author Demographics Shape Human and AI Judgments About Writing
As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
comment: Presented at CHIWORK 2025 Workshop on Generative AI Disclosure, Ownership, and Accountability in Co-Creative Domains
☆ Evaluating LLM Agent Collusion in Double Auctions
Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
☆ Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping
Grey matter loss in the hippocampus is a hallmark of neurobiological aging, yet understanding the corresponding changes in its functional connectivity remains limited. Seed-based functional connectivity (FC) analysis enables voxel-wise mapping of the hippocampus's synchronous activity with cortical regions, offering a window into functional reorganization during aging. In this study, we develop an interpretable deep learning framework to predict brain age from hippocampal FC using a three-dimensional convolutional neural network (3D CNN) combined with LayerCAM saliency mapping. This approach maps key hippocampal-cortical connections, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus, that are highly sensitive to age. Critically, disaggregating anterior and posterior hippocampal FC reveals distinct mapping aligned with their known functional specializations. These findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
☆ A Fuzzy Approach to the Specification, Verification and Validation of Risk-Based Ethical Decision Making Models
The ontological and epistemic complexities inherent in the moral domain make it challenging to establish clear standards for evaluating the performance of a moral machine. In this paper, we present a formal method to describe Ethical Decision Making models based on ethical risk assessment. Then, we show how these models that are specified as fuzzy rules can be verified and validated using fuzzy Petri nets. A case study from the medical field is considered to illustrate the proposed approach.
☆ Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound MICCAI 2025
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.
comment: Accepted by MICCAI 2025
☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10\% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
☆ RALLY: Role-Adaptive LLM-Driven Yoked Navigation for Agentic UAV Swarms
Intelligent control of Unmanned Aerial Vehicles (UAVs) swarms has emerged as a critical research focus, and it typically requires the swarm to navigate effectively while avoiding obstacles and achieving continuous coverage over multiple mission targets. Although traditional Multi-Agent Reinforcement Learning (MARL) approaches offer dynamic adaptability, they are hindered by the semantic gap in numerical communication and the rigidity of homogeneous role structures, resulting in poor generalization and limited task scalability. Recent advances in Large Language Model (LLM)-based control frameworks demonstrate strong semantic reasoning capabilities by leveraging extensive prior knowledge. However, due to the lack of online learning and over-reliance on static priors, these works often struggle with effective exploration, leading to reduced individual potential and overall system performance. To address these limitations, we propose a Role-Adaptive LLM-Driven Yoked navigation algorithm RALLY. Specifically, we first develop an LLM-driven semantic decision framework that uses structured natural language for efficient semantic communication and collaborative reasoning. Afterward, we introduce a dynamic role-heterogeneity mechanism for adaptive role switching and personalized decision-making. Furthermore, we propose a Role-value Mixing Network (RMIX)-based assignment strategy that integrates LLM offline priors with MARL online policies to enable semi-offline training of role selection strategies. Experiments in the Multi-Agent Particle Environment (MPE) environment and a Software-In-The-Loop (SITL) platform demonstrate that RALLY outperforms conventional approaches in terms of task coverage, convergence speed, and generalization, highlighting its strong potential for collaborative navigation in agentic multi-UAV systems.
☆ AI Agents and Agentic AI-Navigating a Plethora of Concepts for Future Manufacturing
AI agents are autonomous systems designed to perceive, reason, and act within dynamic environments. With the rapid advancements in generative AI (GenAI), large language models (LLMs) and multimodal large language models (MLLMs) have significantly improved AI agents' capabilities in semantic comprehension, complex reasoning, and autonomous decision-making. At the same time, the rise of Agentic AI highlights adaptability and goal-directed autonomy in dynamic and complex environments. LLMs-based AI Agents (LLM-Agents), MLLMs-based AI Agents (MLLM-Agents), and Agentic AI contribute to expanding AI's capabilities in information processing, environmental perception, and autonomous decision-making, opening new avenues for smart manufacturing. However, the definitions, capability boundaries, and practical applications of these emerging AI paradigms in smart manufacturing remain unclear. To address this gap, this study systematically reviews the evolution of AI and AI agent technologies, examines the core concepts and technological advancements of LLM-Agents, MLLM-Agents, and Agentic AI, and explores their potential applications in and integration into manufacturing, along with the potential challenges they may face.
comment: Submitted to JMS(March 2025)
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
☆ User-guided Generative Source Separation
Music source separation (MSS) aims to extract individual instrument sources from their mixture. While most existing methods focus on the widely adopted four-stem separation setup (vocals, bass, drums, and other instruments), this approach lacks the flexibility needed for real-world applications. To address this, we propose GuideSep, a diffusion-based MSS model capable of instrument-agnostic separation beyond the four-stem setup. GuideSep is conditioned on multiple inputs: a waveform mimicry condition, which can be easily provided by humming or playing the target melody, and mel-spectrogram domain masks, which offer additional guidance for separation. Unlike prior approaches that relied on fixed class labels or sound queries, our conditioning scheme, coupled with the generative approach, provides greater flexibility and applicability. Additionally, we design a mask-prediction baseline using the same model architecture to systematically compare predictive and generative approaches. Our objective and subjective evaluations demonstrate that GuideSep achieves high-quality separation while enabling more versatile instrument extraction, highlighting the potential of user participation in the diffusion-based generative process for MSS. Our code and demo page are available at https://yutongwen.github.io/GuideSep/
☆ LEDOM: An Open and Fundamental Reverse Language Model
We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
comment: Work in progress
☆ Reasoner for Real-World Event Detection: Scaling Reinforcement Learning via Adaptive Perplexity-Aware Sampling Strategy EMNLP
Detecting abnormal events in real-world customer service dialogues is highly challenging due to the complexity of business data and the dynamic nature of customer interactions. Moreover, models must demonstrate strong out-of-domain (OOD) generalization to enable rapid adaptation across different business scenarios and maximize commercial value. In this work, we propose a novel Adaptive Perplexity-Aware Reinforcement Learning (APARL) framework that leverages the advanced reasoning capabilities of large language models for abnormal event detection. APARL introduces a dual-loop dynamic curriculum learning architecture, enabling the model to progressively focus on more challenging samples as its proficiency increases. This design effectively addresses performance bottlenecks and significantly enhances OOD transferability. Extensive evaluations on food delivery dialogue tasks show that our model achieves significantly enhanced adaptability and robustness, attaining the highest F1 score with an average improvement of 17.19\%, and an average improvement of 9.59\% in OOD transfer tests. This method provides a superior solution for industrial deployment of anomaly detection models, contributing to improved operational efficiency and commercial benefits.
comment: 15 pages, 6 figures, submitted to EMNLP
☆ ICLShield: Exploring and Mitigating In-Context Learning Backdoor Attacks ICML 2025
In-context learning (ICL) has demonstrated remarkable success in large language models (LLMs) due to its adaptability and parameter-free nature. However, it also introduces a critical vulnerability to backdoor attacks, where adversaries can manipulate LLM behaviors by simply poisoning a few ICL demonstrations. In this paper, we propose, for the first time, the dual-learning hypothesis, which posits that LLMs simultaneously learn both the task-relevant latent concepts and backdoor latent concepts within poisoned demonstrations, jointly influencing the probability of model outputs. Through theoretical analysis, we derive an upper bound for ICL backdoor effects, revealing that the vulnerability is dominated by the concept preference ratio between the task and the backdoor. Motivated by these findings, we propose ICLShield, a defense mechanism that dynamically adjusts the concept preference ratio. Our method encourages LLMs to select clean demonstrations during the ICL phase by leveraging confidence and similarity scores, effectively mitigating susceptibility to backdoor attacks. Extensive experiments across multiple LLMs and tasks demonstrate that our method achieves state-of-the-art defense effectiveness, significantly outperforming existing approaches (+26.02% on average). Furthermore, our method exhibits exceptional adaptability and defensive performance even for closed-source models (e.g., GPT-4).
comment: ICML 2025
☆ Neural Hamiltonian Operator
Stochastic control problems in high dimensions are notoriously difficult to solve due to the curse of dimensionality. An alternative to traditional dynamic programming is Pontryagin's Maximum Principle (PMP), which recasts the problem as a system of Forward-Backward Stochastic Differential Equations (FBSDEs). In this paper, we introduce a formal framework for solving such problems with deep learning by defining a \textbf{Neural Hamiltonian Operator (NHO)}. This operator parameterizes the coupled FBSDE dynamics via neural networks that represent the feedback control and an ansatz for the value function's spatial gradient. We show how the optimal NHO can be found by training the underlying networks to enforce the consistency conditions dictated by the PMP. By adopting this operator-theoretic view, we situate the deep FBSDE method within the rigorous language of statistical inference, framing it as a problem of learning an unknown operator from simulated data. This perspective allows us to prove the universal approximation capabilities of NHOs under general martingale drivers and provides a clear lens for analyzing the significant optimization challenges inherent to this class of models.
☆ VLAD: A VLM-Augmented Autonomous Driving Framework with Hierarchical Planning and Interpretable Decision Process SC
Recent advancements in open-source Visual Language Models (VLMs) such as LLaVA, Qwen-VL, and Llama have catalyzed extensive research on their integration with diverse systems. The internet-scale general knowledge encapsulated within these models presents significant opportunities for enhancing autonomous driving perception, prediction, and planning capabilities. In this paper we propose VLAD, a vision-language autonomous driving model, which integrates a fine-tuned VLM with VAD, a state-of-the-art end-to-end system. We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model. The enhanced VLM generates high-level navigational commands that VAD subsequently processes to guide vehicle operation. Additionally, our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture. Comprehensive evaluation on the real-world nuScenes dataset demonstrates that our integrated system reduces average collision rates by 31.82% compared to baseline methodologies, establishing a new benchmark for VLM-augmented autonomous driving systems.
comment: 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC)
☆ Beyond Black-Box AI: Interpretable Hybrid Systems for Dementia Care
The recent boom of large language models (LLMs) has re-ignited the hope that artificial intelligence (AI) systems could aid medical diagnosis. Yet despite dazzling benchmark scores, LLM assistants have yet to deliver measurable improvements at the bedside. This scoping review aims to highlight the areas where AI is limited to make practical contributions in the clinical setting, specifically in dementia diagnosis and care. Standalone machine-learning models excel at pattern recognition but seldom provide actionable, interpretable guidance, eroding clinician trust. Adjacent use of LLMs by physicians did not result in better diagnostic accuracy or speed. Key limitations trace to the data-driven paradigm: black-box outputs which lack transparency, vulnerability to hallucinations, and weak causal reasoning. Hybrid approaches that combine statistical learning with expert rule-based knowledge, and involve clinicians throughout the process help bring back interpretability. They also fit better with existing clinical workflows, as seen in examples like PEIRS and ATHENA-CDS. Future decision-support should prioritise explanatory coherence by linking predictions to clinically meaningful causes. This can be done through neuro-symbolic or hybrid AI that combines the language ability of LLMs with human causal expertise. AI researchers have addressed this direction, with explainable AI and neuro-symbolic AI being the next logical steps in further advancement in AI. However, they are still based on data-driven knowledge integration instead of human-in-the-loop approaches. Future research should measure success not only by accuracy but by improvements in clinician understanding, workflow fit, and patient outcomes. A better understanding of what helps improve human-computer interactions is greatly needed for AI systems to become part of clinical practice.
☆ Rethinking All Evidence: Enhancing Trustworthy Retrieval-Augmented Generation via Conflict-Driven Summarization
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating their parametric knowledge with external retrieved content. However, knowledge conflicts caused by internal inconsistencies or noisy retrieved content can severely undermine the generation reliability of RAG systems.In this work, we argue that LLMs should rethink all evidence, including both retrieved content and internal knowledge, before generating responses.We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.CARE-RAG first derives parameter-aware evidence by comparing parameter records to identify diverse internal perspectives. It then refines retrieved evidences to produce context-aware evidence, removing irrelevant or misleading content. To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.To further ensure evaluation integrity, we introduce a QA Repair step to correct outdated or ambiguous benchmark answers.Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
☆ AI Meets Maritime Training: Precision Analytics for Enhanced Safety and Performance
Traditional simulator-based training for maritime professionals is critical for ensuring safety at sea but often depends on subjective trainer assessments of technical skills, behavioral focus, communication, and body language, posing challenges such as subjectivity, difficulty in measuring key features, and cognitive limitations. Addressing these issues, this study develops an AI-driven framework to enhance maritime training by objectively assessing trainee performance through visual focus tracking, speech recognition, and stress detection, improving readiness for high-risk scenarios. The system integrates AI techniques, including visual focus determination using eye tracking, pupil dilation analysis, and computer vision; communication analysis through a maritime-specific speech-to-text model and natural language processing; communication correctness using large language models; and mental stress detection via vocal pitch. Models were evaluated on data from simulated maritime scenarios with seafarers exposed to controlled high-stress events. The AI algorithms achieved high accuracy, with ~92% for visual detection, ~91% for maritime speech recognition, and ~90% for stress detection, surpassing existing benchmarks. The system provides insights into visual attention, adherence to communication checklists, and stress levels under demanding conditions. This study demonstrates how AI can transform maritime training by delivering objective performance analytics, enabling personalized feedback, and improving preparedness for real-world operational challenges.
comment: Accepted and Presented at 11th International Maritime Science Conference
☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Towards Universal Semantics With Large Language Models
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond.
♻ ☆ Real-Time Blind Defocus Deblurring for Earth Observation: The IMAGIN-e Mission Approach
This work addresses mechanical defocus in Earth observation images from the IMAGIN-e mission aboard the ISS, proposing a blind deblurring approach adapted to space-based edge computing constraints. Leveraging Sentinel-2 data, our method estimates the defocus kernel and trains a restoration model within a GAN framework, effectively operating without reference images. On Sentinel-2 images with synthetic degradation, SSIM improved by 72.47% and PSNR by 25.00%, confirming the model's ability to recover lost details when the original clean image is known. On IMAGIN-e, where no reference images exist, perceptual quality metrics indicate a substantial enhancement, with NIQE improving by 60.66% and BRISQUE by 48.38%, validating real-world onboard restoration. The approach is currently deployed aboard the IMAGIN-e mission, demonstrating its practical application in an operational space environment. By efficiently handling high-resolution images under edge computing constraints, the method enables applications such as water body segmentation and contour detection while maintaining processing viability despite resource limitations.
comment: Accepted for presentation at the European Space Agency's Big Data from Space (BiDS) 2025 Conference (https://www.bigdatafromspace2025.org/)
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Distribution Matching for Self-Supervised Transfer Learning
In this paper, we propose a novel self-supervised transfer learning method called \underline{\textbf{D}}istribution \underline{\textbf{M}}atching (DM), which drives the representation distribution toward a predefined reference distribution while preserving augmentation invariance. DM results in a learned representation space that is intuitively structured and therefore easy to interpret. Experimental results across multiple real-world datasets and evaluation metrics demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the self-supervised learning task and target classification accuracy, while the sample theorem shows that, even with a limited number of samples from the target domain, DM can deliver exceptional classification performance, provided the unlabeled sample size is sufficiently large.
♻ ☆ GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant advantage of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, by leveraging DRL, we can train the policy network towards optimizing the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
Embedded AI systems are expected to incur low power/energy consumption for solving machine learning tasks, as these systems are usually power constrained (e.g., object recognition task in autonomous mobile agents with portable batteries). These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, and/or developed without considering memory budgets from the underlying processing hardware of embedded platforms. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from targeted embedded systems. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, developing a fast memory-aware search algorithm, and performing quantization. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy compared to state-of-the-art while meeting the given memory budgets (e.g., 29x, 117x, and 3.7x faster search for CIFAR10, CIFAR100, and TinyImageNet200 respectively, using an Nvidia RTX A6000 GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained embedded AI systems.
comment: To appear at the IEEE Transactions on Artificial Intelligence (TAI) 2025
♻ ☆ Beating Transformers using Synthetic Cognition
The road to Artificial General Intelligence goes through the generation of context-aware reactive behaviors, where the Transformer architecture has been proven to be the state-of-the-art. However, they still fail to develop reasoning. Recently, a novel approach for developing cognitive architectures, called Synthetic Cognition, has been proposed and implemented to develop instantaneous reactive behavior. In this study, we aim to explore the use of Synthetic Cognition to develop context-aware reactive behaviors. We propose a mechanism to deal with sequences for the recent implementation of Synthetic Cognition, and test it against DNA foundation models in DNA sequence classification tasks. In our experiments, our proposal clearly outperforms the DNA foundation models, obtaining the best score on more benchmark tasks than the alternatives. Thus, we achieve two goals: expanding Synthetic Cognition to deal with sequences, and beating the Transformer architecture for sequence classification.
♻ ☆ World-aware Planning Narratives Enhance Large Vision-Language Model Planner
Large Vision-Language Models (LVLMs) show promise for embodied planning tasks but struggle with complex scenarios involving unfamiliar environments and multi-step goals. Current approaches rely on environment-agnostic imitation learning that disconnects instructions from environmental contexts, causing models to struggle with context-sensitive instructions and rely on supplementary cues rather than visual reasoning during long-horizon interactions. In this work, we propose World-Aware Planning Narrative Enhancement (WAP), a framework that infuses LVLMs with comprehensive environmental understanding through four cognitive capabilities (visual appearance modeling, spatial reasoning, functional abstraction, and syntactic grounding) while developing and evaluating models using only raw visual observations through curriculum learning. Evaluations on the EB-ALFRED benchmark demonstrate substantial improvements, with Qwen2.5-VL achieving a 60.7 absolute improvement in task success rates, particularly in commonsense reasoning (+60.0) and long-horizon planning (+70.0). Notably, our enhanced open-source models outperform proprietary systems like GPT-4o and Claude-3.5-Sonnet by a large margin.
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ 15,500 Seconds: Lean UAV Classification Leveraging PEFT and Pre-Trained Networks
Unmanned Aerial Vehicles (UAVs) pose an escalating security concerns as the market for consumer and military UAVs grows. This paper address the critical data scarcity challenges in deep UAV audio classification. We build upon our previous work expanding novel approaches such as: parameter efficient fine-tuning, data augmentation, and pre-trained networks. We achieve performance upwards of 95\% validation accuracy with EfficientNet-B0.
♻ ☆ Towards Efficient Educational Chatbots: Benchmarking RAG Frameworks
Large Language Models (LLMs) have proven immensely beneficial in education by capturing vast amounts of literature-based information, allowing them to generate context without relying on external sources. In this paper, we propose a generative AI-powered GATE question-answering framework (GATE stands for Graduate Aptitude Test in Engineering) that leverages LLMs to explain GATE solutions and support students in their exam preparation. We conducted extensive benchmarking to select the optimal embedding model and LLM, evaluating our framework based on criteria such as latency, faithfulness, and relevance, with additional validation through human evaluation. Our chatbot integrates state-of-the-art embedding models and LLMs to deliver accurate, context-aware responses. Through rigorous experimentation, we identified configurations that balance performance and computational efficiency, ensuring a reliable chatbot to serve students' needs. Additionally, we discuss the challenges faced in data processing and modeling and implemented solutions. Our work explores the application of Retrieval-Augmented Generation (RAG) for GATE Q/A explanation tasks, and our findings demonstrate significant improvements in retrieval accuracy and response quality. This research offers practical insights for developing effective AI-driven educational tools while highlighting areas for future enhancement in usability and scalability.
comment: One of the co-authors is having conflict in the submission to arXiv due to many edits (we have to make changes in evaluation strategies, i.e. section 5); in the paper there are still formatting issues
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ GraphGSOcc: Semantic-Geometric Graph Transformer with Dynamic-Static Decoupling for 3D Gaussian Splatting-based Occupancy Prediction
Addressing the task of 3D semantic occupancy prediction for autonomous driving, we tackle two key issues in existing 3D Gaussian Splatting (3DGS) methods: (1) unified feature aggregation neglecting semantic correlations among similar categories and across regions, (2) boundary ambiguities caused by the lack of geometric constraints in MLP iterative optimization and (3) biased issues in dynamic-static object coupling optimization. We propose the GraphGSOcc model, a novel framework that combines semantic and geometric graph Transformer and decouples dynamic-static objects optimization for 3D Gaussian Splatting-based Occupancy Prediction. We propose the Dual Gaussians Graph Attenntion, which dynamically constructs dual graph structures: a geometric graph adaptively calculating KNN search radii based on Gaussian poses, enabling large-scale Gaussians to aggregate features from broader neighborhoods while compact Gaussians focus on local geometric consistency; a semantic graph retaining top-M highly correlated nodes via cosine similarity to explicitly encode semantic relationships within and across instances. Coupled with the Multi-scale Graph Attention framework, fine-grained attention at lower layers optimizes boundary details, while coarsegrained attention at higher layers models object-level topology. On the other hand, we decouple dynamic and static objects by leveraging semantic probability distributions and design a Dynamic-Static Decoupled Gaussian Attention mechanism to optimize the prediction performance for both dynamic objects and static scenes. GraphGSOcc achieves state-ofthe-art performance on the SurroundOcc-nuScenes, Occ3D-nuScenes, OpenOcc and KITTI occupancy benchmarks. Experiments on the SurroundOcc dataset achieve an mIoU of 25.20%, reducing GPU memory to 6.8 GB, demonstrating a 1.97% mIoU improvement and 13.7% memory reduction compared to GaussianWorld.
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into meaningful features. Inversion-based methods address this by reversing the denoising trajectory, mapping each image back to its approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. As a consequence of this divergence, we present that the space of image inversions is notably less manipulative than the original Gaussian noise. Next, we explain the origin of the phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. As a surprisingly simple solution, we propose to replace the first DDIM Inversion steps with a forward diffusion process, which successfully decorrelates latent encodings, leading to higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ Enhancing Robustness to Missing Modalities through Clustered Federated Learning
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution.
comment: 15 pages, 3 figures
♻ ☆ Positioning AI Tools to Support Online Harm Reduction Practice: Applications and Design Directions
Access to accurate and actionable harm reduction information can directly impact the health outcomes of People Who Use Drugs (PWUD), yet existing online channels often fail to meet their diverse and dynamic needs due to limitations in adaptability, accessibility, and the pervasive impact of stigma. Large Language Models (LLMs) present a novel opportunity to enhance information provision, but their application in such a high-stakes domain is under-explored and presents socio-technical challenges. This paper investigates how LLMs can be responsibly designed to support the information needs of PWUD. Through a qualitative workshop involving diverse stakeholder groups (academics, harm reduction practitioners, and an online community moderator), we explored LLM capabilities, identified potential use cases, and delineated core design considerations. Our findings reveal that while LLMs can address some existing information barriers (e.g., by offering responsive, multilingual, and potentially less stigmatising interactions), their effectiveness is contingent upon overcoming challenges related to ethical alignment with harm reduction principles, nuanced contextual understanding, effective communication, and clearly defined operational boundaries. We articulate design pathways emphasising collaborative co-design with experts and PWUD to develop LLM systems that are helpful, safe, and responsibly governed. This work contributes empirically grounded insights and actionable design considerations for the responsible development of LLMs as supportive tools within the harm reduction ecosystem.
comment: 16 pages, 4 figures, with appendix
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ Reducing Variability of Multiple Instance Learning Methods for Digital Pathology MICCAI 2025
Digital pathology has revolutionized the field by enabling the digitization of tissue samples into whole slide images (WSIs). However, the high resolution and large size of WSIs present significant challenges when it comes to applying Deep Learning models. As a solution, WSIs are often divided into smaller patches with a global label (\textit{i.e., diagnostic}) per slide, instead of a (too) costly pixel-wise annotation. By treating each slide as a bag of patches, Multiple Instance Learning (MIL) methods have emerged as a suitable solution for WSI classification. A major drawback of MIL methods is their high variability in performance across different runs, which can reach up to 10-15 AUC points on the test set, making it difficult to compare different MIL methods reliably. This variability mainly comes from three factors: i) weight initialization, ii) batch (shuffling) ordering, iii) and learning rate. To address that, we introduce a Multi-Fidelity, Model Fusion strategy for MIL methods. We first train multiple models for a few epochs and average the most stable and promising ones based on validation scores. This approach can be applied to any existing MIL model to reduce performance variability. It also simplifies hyperparameter tuning and improves reproducibility while maintaining computational efficiency. We extensively validate our approach on WSI classification tasks using 2 different datasets, 3 initialization strategies and 5 MIL methods, for a total of more than 2000 experiments.
comment: MICCAI 2025 - This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in LNCS, Springer
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ NegMerge: Sign-Consensual Weight Merging for Machine Unlearning ICML 2025
Machine unlearning aims to selectively remove specific knowledge from a trained model. Existing approaches, such as Task Arithmetic, fine-tune the model on the forget set to create a task vector (i.e., a direction in weight space) for subtraction from the original model's weight. However, their effectiveness is highly sensitive to hyperparameter selection, requiring extensive validation to identify the optimal vector from many fine-tuned candidates. In this paper, we propose a novel method that utilizes all fine-tuned models trained with varying hyperparameters instead of a single selection. Specifically, we aggregate the computed task vectors by retaining only the elements with consistent shared signs. The merged task vector is then negated to induce unlearning on the original model. Evaluations on zero-shot and standard image recognition tasks across twelve datasets and four backbone architectures show that our approach outperforms state-of-the-art methods while requiring similar or fewer computational resources. Code is available at https://github.com/naver-ai/negmerge.
comment: Accepted to ICML 2025
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures. Accepted for publication in SIAM Journal on Control and Optimization (2025)
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Adapting Rule Representation With Four-Parameter Beta Distribution for Learning Classifier Systems
Rule representations significantly influence the search capabilities and decision boundaries within the search space of Learning Classifier Systems (LCSs), a family of rule-based machine learning systems that evolve interpretable models through evolutionary processes. However, it is very difficult to choose an appropriate rule representation for each problem. Additionally, some problems benefit from using different representations for different subspaces within the input space. Thus, an adaptive mechanism is needed to choose an appropriate rule representation for each rule in LCSs. This article introduces a flexible rule representation using a four-parameter beta distribution and integrates it into a fuzzy-style LCS. The four-parameter beta distribution can form various function shapes, and this flexibility enables our LCS to automatically select appropriate representations for different subspaces. Our rule representation can represent crisp/fuzzy decision boundaries in various boundary shapes, such as rectangles and bells, by controlling four parameters, compared to the standard representations such as trapezoidal ones. Leveraging this flexibility, our LCS is designed to adapt the appropriate rule representation for each subspace. Moreover, our LCS incorporates a generalization bias favoring crisp rules where feasible, enhancing model interpretability without compromising accuracy. Experimental results on real-world classification tasks show that our LCS achieves significantly superior test accuracy and produces more compact rule sets. Our implementation is available at https://github.com/YNU-NakataLab/Beta4-UCS. An extended abstract related to this work is available at https://doi.org/10.36227/techrxiv.174900805.59801248/v1.
♻ ☆ Using Large Language Models to Categorize Strategic Situations and Decipher Motivations Behind Human Behaviors
By varying prompts to a large language model, we can elicit the full range of human behaviors in a variety of different scenarios in classic economic games. By analyzing which prompts elicit which behaviors, we can categorize and compare different strategic situations, which can also help provide insight into what different economic scenarios induce people to think about. We discuss how this provides a first step towards a non-standard method of inferring (deciphering) the motivations behind the human behaviors. We also show how this deciphering process can be used to categorize differences in the behavioral tendencies of different populations.
♻ ☆ TARO: Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning for Synchronized Video-to-Audio Synthesis ICCV 2025
This paper introduces Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning (TARO), a novel framework for high-fidelity and temporally coherent video-to-audio synthesis. Built upon flow-based transformers, which offer stable training and continuous transformations for enhanced synchronization and audio quality, TARO introduces two key innovations: (1) Timestep-Adaptive Representation Alignment (TRA), which dynamically aligns latent representations by adjusting alignment strength based on the noise schedule, ensuring smooth evolution and improved fidelity, and (2) Onset-Aware Conditioning (OAC), which integrates onset cues that serve as sharp event-driven markers of audio-relevant visual moments to enhance synchronization with dynamic visual events. Extensive experiments on the VGGSound and Landscape datasets demonstrate that TARO outperforms prior methods, achieving relatively 53% lower Frechet Distance (FD), 29% lower Frechet Audio Distance (FAD), and a 97.19% Alignment Accuracy, highlighting its superior audio quality and synchronization precision.
comment: Accepted to ICCV 2025
♻ ☆ How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review
Background: Metacognition has gained significant attention for its potential to enhance autonomy and adaptability of artificial agents but remains a fragmented field: diverse theories, terminologies, and design choices have led to disjointed developments and limited comparability across systems. Existing overviews remain at a conceptual level that is undiscerning to the underlying algorithms, representations, and their respective success. Methods: We address this gap by performing an explorative systematic review. Reports were included if they described techniques enabling Computational Metacognitive Architectures (CMAs) to model, store, remember, and process their episodic metacognitive experiences, one of Flavell's (1979a) three foundational components of metacognition. Searches were conducted in 16 databases, consulted between December 2023 and June 2024. Data were extracted using a 20-item framework considering pertinent aspects. Results: A total of 101 reports on 35 distinct CMAs were included. Our findings show that metacognitive experiences may boost system performance and explainability, e.g., via self-repair. However, lack of standardization and limited evaluations may hinder progress: only 17% of CMAs were quantitatively evaluated regarding this review's focus, and significant terminological inconsistency limits cross-architecture synthesis. Systems also varied widely in memory content, data types, and employed algorithms. Discussion: Limitations include the non-iterative nature of the search query, heterogeneous data availability, and an under-representation of emergent, sub-symbolic CMAs. Future research should focus on standardization and evaluation, e.g., via community-driven challenges, and on transferring promising principles to emergent architectures.
comment: version 2, submitted to Artificial Intelligence Review
♻ ☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called co-learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED yields curricula that improve zero-shot generalization across multiple benchmarks while requiring up to 2x fewer environment interactions than strong baselines. Ablation studies confirm that the transition prediction error drives rapid complexity ramp-up and that co-learnability delivers additional gains when paired with the transition prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED.
♻ ☆ MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification
Large Language Models (LLMs) have demonstrated significant potential in code generation. However, in the factory automation sector, particularly motion control, manual programming, alongside inefficient and unsafe debugging practices, remains prevalent. This stems from the complex interplay of mechanical and electrical systems and stringent safety requirements. Moreover, most current AI-assisted motion control programming efforts focus on PLCs, with little attention given to high-level languages and function libraries. To address these challenges, we introduce MCCoder, an LLM-powered system tailored for generating motion control code, integrated with a soft-motion controller. MCCoder improves code generation through a structured workflow that combines multitask decomposition, hybrid retrieval-augmented generation (RAG), and iterative self-correction, utilizing a well-established motion library. Additionally, it integrates a 3D simulator for intuitive motion validation and logs of full motion trajectories for data verification, significantly enhancing accuracy and safety. In the absence of benchmark datasets and metrics tailored for evaluating motion control code generation, we propose MCEVAL, a dataset spanning motion tasks of varying complexity. Experiments show that MCCoder outperforms baseline models using Advanced RAG, achieving an overall performance gain of 33.09% and a 131.77% improvement on complex tasks in the MCEVAL dataset.
comment: IEEE CASE 2025 Best Student Paper Finalists
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ DREAMS: A python framework for Training Deep Learning Models on EEG Data with Model Card Reporting for Medical Applications
Electroencephalography (EEG) provides a non-invasive way to observe brain activity in real time. Deep learning has enhanced EEG analysis, enabling meaningful pattern detection for clinical and research purposes. However, most existing frameworks for EEG data analysis are either focused on preprocessing techniques or deep learning model development, often overlooking the crucial need for structured documentation and model interpretability. In this paper, we introduce DREAMS (Deep REport for AI ModelS), a Python-based framework designed to generate automated model cards for deep learning models applied to EEG data. Unlike generic model reporting tools, DREAMS is specifically tailored for EEG-based deep learning applications, incorporating domain-specific metadata, preprocessing details, performance metrics, and uncertainty quantification. The framework seamlessly integrates with deep learning pipelines, providing structured YAML-based documentation. We evaluate DREAMS through two case studies: an EEG emotion classification task using the FACED dataset and a abnormal EEG classification task using the Temple Univeristy Hospital (TUH) Abnormal dataset. These evaluations demonstrate how the generated model card enhances transparency by documenting model performance, dataset biases, and interpretability limitations. Unlike existing model documentation approaches, DREAMS provides visualized performance metrics, dataset alignment details, and model uncertainty estimations, making it a valuable tool for researchers and clinicians working with EEG-based AI. The source code for DREAMS is open-source, facilitating broad adoption in healthcare AI, research, and ethical AI development.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{nonlinear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing the state-transition matrix to be diagonal and learned at every step, the full sequence can be solved in parallel with a single prefix-scan, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Lastly, for network depth $L$, as the forward and backward passes cost $\Theta(T\,D\,L)$ FLOPs, with its low sequential depth and parameter count $\Theta(D\,L)$, the model follows the compute-optimal scaling law regime ($\beta \approx 0.42$) recently observed for Mamba, outperforming quadratic-attention Transformers at equal compute while avoiding the memory overhead of FFT-based long convolutions. We show that on a series of long-range forecasting tasks, LrcSSM outperforms LRU, S5 and Mamba.
♻ ☆ SKIL: Semantic Keypoint Imitation Learning for Generalizable Data-efficient Manipulation
Real-world tasks such as garment manipulation and table rearrangement demand robots to perform generalizable, highly precise, and long-horizon actions. Although imitation learning has proven to be an effective approach for teaching robots new skills, large amounts of expert demonstration data are still indispensible for these complex tasks, resulting in high sample complexity and costly data collection. To address this, we propose Semantic Keypoint Imitation Learning (SKIL), a framework which automatically obtains semantic keypoints with the help of vision foundation models, and forms the descriptor of semantic keypoints that enables efficient imitation learning of complex robotic tasks with significantly lower sample complexity. In real-world experiments, SKIL doubles the performance of baseline methods in tasks such as picking a cup or mouse, while demonstrating exceptional robustness to variations in objects, environmental changes, and distractors. For long-horizon tasks like hanging a towel on a rack where previous methods fail completely, SKIL achieves a mean success rate of 70\% with as few as 30 demonstrations. Furthermore, SKIL naturally supports cross-embodiment learning due to its semantic keypoints abstraction. Our experiments demonstrate that even human videos bring considerable improvement to the learning performance. All these results demonstrate the great success of SKIL in achieving data-efficient generalizable robotic learning. Visualizations and code are available at: https://skil-robotics.github.io/SKIL-robotics/.
comment: 22 pages, 22 figures
♻ ☆ BIS Reasoning 1.0: The First Large-Scale Japanese Benchmark for Belief-Inconsistent Syllogistic Reasoning
We present BIS Reasoning 1.0, the first large-scale Japanese dataset of syllogistic reasoning problems explicitly designed to evaluate belief-inconsistent reasoning in large language models (LLMs). Unlike prior datasets such as NeuBAROCO and JFLD, which focus on general or belief-aligned reasoning, BIS Reasoning 1.0 introduces logically valid yet belief-inconsistent syllogisms to uncover reasoning biases in LLMs trained on human-aligned corpora. We benchmark state-of-the-art models - including GPT models, Claude models, and leading Japanese LLMs - revealing significant variance in performance, with GPT-4o achieving 79.54% accuracy. Our analysis identifies critical weaknesses in current LLMs when handling logically valid but belief-conflicting inputs. These findings have important implications for deploying LLMs in high-stakes domains such as law, healthcare, and scientific literature, where truth must override intuitive belief to ensure integrity and safety.
comment: This version includes typo corrections, added logit lens analysis for open models, and an updated author list
♻ ☆ DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues ACL 2025
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
comment: 9 pages, ACL 2025 Vienna
♻ ☆ Embodied Instruction Following in Unknown Environments
Enabling embodied agents to complete complex human instructions from natural language is crucial to autonomous systems in household services. Conventional methods can only accomplish human instructions in the known environment where all interactive objects are provided to the embodied agent, and directly deploying the existing approaches for the unknown environment usually generates infeasible plans that manipulate non-existing objects. On the contrary, we propose an embodied instruction following (EIF) method for complex tasks in the unknown environment, where the agent efficiently explores the unknown environment to generate feasible plans with existing objects to accomplish abstract instructions. Specifically, we build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller with multimodal large language models. We then construct a semantic representation map of the scene with dynamic region attention to demonstrate the known visual clues, where the goal of task planning and scene exploration is aligned for human instruction. For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues. For the exploration controller, the optimal navigation or object interaction policy is predicted based on the generated step-wise plans and the known visual clues. The experimental results demonstrate that our method can achieve 45.09% success rate in 204 complex human instructions such as making breakfast and tidying rooms in large house-level scenes. Code and supplementary are available at https://gary3410.github.io/eif_unknown.
comment: Project Page: https://gary3410.github.io/eif_unknown/
♻ ☆ Perceiving Beyond Language Priors: Enhancing Visual Comprehension and Attention in Multimodal Models
Achieving deep alignment between vision and language remains a central challenge for Multimodal Large Language Models (MLLMs). These models often fail to fully leverage visual input, defaulting to strong language priors. Our approach first provides insights into how MLLMs internally build visual understanding of image regions and then introduces techniques to amplify this capability. Specifically, we explore techniques designed both to deepen the model's understanding of visual content and to ensure that these visual insights actively guide language generation. We demonstrate the superior multimodal understanding of our resultant model through a detailed upstream analysis quantifying its ability to predict visually-dependent tokens as well as 10 pt boost on visually challenging tasks.
♻ ☆ A Baseline Method for Removing Invisible Image Watermarks using Deep Image Prior
Image watermarks have been considered a promising technique to help detect AI-generated content, which can be used to protect copyright or prevent fake image abuse. In this work, we present a black-box method for removing invisible image watermarks, without the need of any dataset of watermarked images or any knowledge about the watermark system. Our approach is simple to implement: given a single watermarked image, we regress it by deep image prior (DIP). We show that from the intermediate steps of DIP one can reliably find an evasion image that can remove invisible watermarks while preserving high image quality. Due to its unique working mechanism and practical effectiveness, we advocate including DIP as a baseline invasion method for benchmarking the robustness of watermarking systems. Finally, by showing the limited ability of DIP and other existing black-box methods in evading training-based visible watermarks, we discuss the positive implications on the practical use of training-based visible watermarks to prevent misinformation abuse.
comment: Pulished in Transaction of Machine Learning Research (TMLR): https://openreview.net/forum?id=g85Vxlrq0O
♻ ☆ MedAgent-Pro: Towards Evidence-based Multi-modal Medical Diagnosis via Reasoning Agentic Workflow
In modern medicine, clinical diagnosis relies on the comprehensive analysis of primarily textual and visual data, drawing on medical expertise to ensure systematic and rigorous reasoning. Recent advances in large Vision-Language Models (VLMs) and agent-based methods hold great potential for medical diagnosis, thanks to the ability to effectively integrate multi-modal patient data. However, they often provide direct answers and draw empirical-driven conclusions without quantitative analysis, which reduces their reliability and clinical usability. We propose MedAgent-Pro, a new agentic reasoning paradigm that follows the diagnosis principle in modern medicine, to decouple the process into sequential components for step-by-step, evidence-based reasoning. Our MedAgent-Pro workflow presents a hierarchical diagnostic structure to mirror this principle, consisting of disease-level standardized plan generation and patient-level personalized step-by-step reasoning. To support disease-level planning, an RAG-based agent is designed to retrieve medical guidelines to ensure alignment with clinical standards. For patient-level reasoning, we propose to integrate professional tools such as visual models to enable quantitative assessments. Meanwhile, we propose to verify the reliability of each step to achieve evidence-based diagnosis, enforcing rigorous logical reasoning and a well-founded conclusion. Extensive experiments across a wide range of anatomical regions, imaging modalities, and diseases demonstrate the superiority of MedAgent-Pro to mainstream VLMs, agentic systems and state-of-the-art expert models. Ablation studies and human evaluation by clinical experts further validate its robustness and clinical relevance. Code is available at https://github.com/jinlab-imvr/MedAgent-Pro.
♻ ☆ Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments
With the growing integration of vision-language models (VLMs), mobile agents are now widely used for tasks like UI automation and camera-based user assistance. These agents are often fine-tuned on limited user-generated datasets, leaving them vulnerable to covert threats during the training process. In this work we present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon VLMs. Our method manipulates only the visual inputs of a portion of the training samples - without altering their corresponding labels or instructions - thereby injecting malicious behaviors into the model. Once fine-tuned with this tampered data, the agent will exhibit attacker-controlled responses when a specific visual trigger is introduced at inference time. The core of our approach lies in aligning the gradients of poisoned samples with those of a chosen target instance, embedding backdoor-relevant features into the poisoned training data. To maintain stealth and enhance robustness, we develop three realistic visual triggers: static visual patches, dynamic motion cues, and subtle low-opacity overlays. We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use. Results show that our attack achieves high attack success rates (up to 94.67 percent) while maintaining high clean-task performance (FSR up to 95.85 percent). Additionally, ablation studies shed light on how various design choices affect the efficacy and concealment of the attack. Overall, this work is the first to expose critical security flaws in VLM-based mobile agents, highlighting their susceptibility to clean-label backdoor attacks and the urgent need for effective defense mechanisms in their training pipelines.
comment: 12 pages
♻ ☆ Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess--a deficit which RL alone may not be able to fully overcome.
comment: 27 pages
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection. The code is released at https://github.com/xinchen930/SSF-Strategic-Selection-and-Forgetting.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters, 2025
♻ ☆ ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation ACL 2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose \textbf{ChartCoder}, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce \textbf{Chart2Code-160k}, the first large-scale and diverse dataset for chart-to-code generation, and propose the \textbf{Snippet-of-Thought (SoT)} method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code is available at https://github.com/thunlp/ChartCoder.
comment: Accepted by ACL 2025 Main, Camera Ready
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
We have developed Aitomia - a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations. This evolving intelligent assistant platform is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running the atomistic simulations, monitoring their computation status, analyzing the simulation results, and summarizing them for the user in text and graphical forms. We achieve these goals by exploiting open-source large language models (LLMs, original and fine-tuned), rule-based agents, and a retrieval-augmented generation (RAG) system. Aitomia leverages the versatility of our MLatom ecosystem, supporting AI-enhanced computational chemistry tasks ranging from ground- to excited-state calculations such as geometry optimizations, thermochemistry, and spectra calculations. Aitomia is the first intelligent assistant publicly accessible online on a cloud computing platform for atomistic simulations of broad scope (Aitomistic Hub at https://aitomistic.xyz), while it may also be deployed locally as described at http://mlatom.com/aitomia. Aitomia is expected to lower the barrier to performing atomistic simulations, democratizing simulations, and accelerating research and development in the relevant fields.
♻ ☆ Pre-training Large Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ Backdooring Bias (B^2) into Stable Diffusion Models USENIX Security '25
Recent advances in large text-conditional diffusion models have revolutionized image generation by enabling users to create realistic, high-quality images from textual prompts, significantly enhancing artistic creation and visual communication. However, these advancements also introduce an underexplored attack opportunity: the possibility of inducing biases by an adversary into the generated images for malicious intentions, e.g., to influence public opinion and spread propaganda. In this paper, we study an attack vector that allows an adversary to inject arbitrary bias into a target model. The attack leverages low-cost backdooring techniques using a targeted set of natural textual triggers embedded within a small number of malicious data samples produced with public generative models. An adversary could pick common sequences of words that can then be inadvertently activated by benign users during inference. We investigate the feasibility and challenges of such attacks, demonstrating how modern generative models have made this adversarial process both easier and more adaptable. On the other hand, we explore various aspects of the detectability of such attacks and demonstrate that the model's utility remains intact in the absence of the triggers. Our extensive experiments using over 200,000 generated images and against hundreds of fine-tuned models demonstrate the feasibility of the presented backdoor attack. We illustrate how these biases maintain strong text-image alignment, highlighting the challenges in detecting biased images without knowing that bias in advance. Our cost analysis confirms the low financial barrier ($10-$15) to executing such attacks, underscoring the need for robust defensive strategies against such vulnerabilities in diffusion models.
comment: Accepted to USENIX Security '25
♻ ☆ KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis ACL 2025
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
comment: Accepted to ACL 2025 main conference
♻ ☆ FastMamba: A High-Speed and Efficient Mamba Accelerator on FPGA with Accurate Quantization
State Space Models (SSMs), like recent Mamba2, have achieved remarkable performance and received extensive attention. However, deploying Mamba2 on resource-constrained edge devices encounters many problems: severe outliers within the linear layer challenging the quantization, diverse and irregular element-wise tensor operations, and hardware-unfriendly nonlinear functions in the SSM block. To address these issues, this paper presents FastMamba, a dedicated accelerator on FPGA with hardware-algorithm co-design to promote the deployment efficiency of Mamba2. Specifically, we successfully achieve 8-bit quantization for linear layers through Hadamard transformation to eliminate outliers. Moreover, a hardware-friendly and fine-grained power-of-two quantization framework is presented for the SSM block and convolution layer, and a first-order linear approximation is developed to optimize the nonlinear functions. Based on the accurate algorithm quantization, we propose an accelerator that integrates parallel vector processing units, pipelined execution dataflow, and an efficient SSM Nonlinear Approximation Unit, which enhances computational efficiency and reduces hardware complexity. Finally, we evaluate FastMamba on Xilinx VC709 FPGA. For the input prefill task on Mamba2-130M, FastMamba achieves 68.80\times and 8.90\times speedup over Intel Xeon 4210R CPU and NVIDIA RTX 3090 GPU, respectively. In the output decode experiment with Mamba2-2.7B, FastMamba attains 6\times higher energy efficiency than RTX 3090 GPU.
♻ ☆ Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin
We introduce real-is-sim, a new approach to integrating simulation into behavior cloning pipelines. In contrast to real-only methods, which lack the ability to safely test policies before deployment, and sim-to-real methods, which require complex adaptation to cross the sim-to-real gap, our framework allows policies to seamlessly switch between running on real hardware and running in parallelized virtual environments. At the center of real-is-sim is a dynamic digital twin, powered by the Embodied Gaussian simulator, that synchronizes with the real world at 60Hz. This twin acts as a mediator between the behavior cloning policy and the real robot. Policies are trained using representations derived from simulator states and always act on the simulated robot, never the real one. During deployment, the real robot simply follows the simulated robot's joint states, and the simulation is continuously corrected with real world measurements. This setup, where the simulator drives all policy execution and maintains real-time synchronization with the physical world, shifts the responsibility of crossing the sim-to-real gap to the digital twin's synchronization mechanisms, instead of the policy itself. We demonstrate real-is-sim on a long-horizon manipulation task (PushT), showing that virtual evaluations are consistent with real-world results. We further show how real-world data can be augmented with virtual rollouts and compare to policies trained on different representations derived from the simulator state including object poses and rendered images from both static and robot-mounted cameras. Our results highlight the flexibility of the real-is-sim framework across training, evaluation, and deployment stages. Videos available at https://real-is-sim.github.io.
♻ ☆ Drug Discovery SMILES-to-Pharmacokinetics Diffusion Models with Deep Molecular Understanding
Artificial intelligence (AI) is increasingly used in every stage of drug development. One challenge facing drug discovery AI is that drug pharmacokinetic (PK) datasets are often collected independently from each other, often with limited overlap, creating data overlap sparsity. Data sparsity makes data curation difficult for researchers looking to answer research questions in poly-pharmacy, drug combination research, and high-throughput screening. We propose Imagand, a novel SMILES-to-Pharmacokinetic (S2PK) diffusion model capable of generating an array of PK target properties conditioned on SMILES inputs. We show that Imagand-generated synthetic PK data closely resembles real data univariate and bivariate distributions, and improves performance for downstream tasks. Imagand is a promising solution for data overlap sparsity and allows researchers to efficiently generate ligand PK data for drug discovery research. Code is available at https://github.com/bing1100/Imagand.
comment: 13 pages, 5 figures, 4 tables
♻ ☆ MMLU-Reason: Benchmarking Multi-Task Multi-modal Language Understanding and Reasoning
Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMLU-Reason, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMLU-Reason comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMLU-Reason offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.
comment: 39 pages, 28 figures, 4 tables
♻ ☆ OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. In addition, this paper presents the OralBBNet architecture, which is based on the best segmentation and detection qualities of architectures such as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for tooth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over state-of-the-art (SOTA) solutions for various tooth categories and 2-4% improvement in the dice score compared to other SOTA segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
♻ ☆ A Framework for Mining Collectively-Behaving Bots in MMORPGs
In MMORPGs (Massively Multiplayer Online Role-Playing Games), abnormal players (bots) using unauthorized automated programs to carry out pre-defined behaviors systematically and repeatedly are commonly observed. Bots usually engage in these activities to gain in-game money, which they eventually trade for real money outside the game. Such abusive activities negatively impact the in-game experiences of legitimate users since bots monopolize specific hunting areas and obtain valuable items. Thus, detecting abnormal players is a significant task for game companies. Motivated by the fact that bots tend to behave collectively with similar in-game trajectories due to the auto-programs, we developed BotTRep, a framework that comprises trajectory representation learning followed by clustering using a completely unlabeled in-game trajectory dataset. Our model aims to learn representations for in-game trajectory sequences so that players with contextually similar trajectories have closer embeddings. Then, by applying DBSCAN to these representations and visualizing the corresponding moving patterns, our framework ultimately assists game masters in identifying and banning bots.
♻ ☆ Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
Machine Learning 150
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ Characterizing control between interacting subsystems with deep Jacobian estimation
Biological function arises through the dynamical interactions of multiple subsystems, including those between brain areas, within gene regulatory networks, and more. A common approach to understanding these systems is to model the dynamics of each subsystem and characterize communication between them. An alternative approach is through the lens of control theory: how the subsystems control one another. This approach involves inferring the directionality, strength, and contextual modulation of control between subsystems. However, methods for understanding subsystem control are typically linear and cannot adequately describe the rich contextual effects enabled by nonlinear complex systems. To bridge this gap, we devise a data-driven nonlinear control-theoretic framework to characterize subsystem interactions via the Jacobian of the dynamics. We address the challenge of learning Jacobians from time-series data by proposing the JacobianODE, a deep learning method that leverages properties of the Jacobian to directly estimate it for arbitrary dynamical systems from data alone. We show that JacobianODEs outperform existing Jacobian estimation methods on challenging systems, including high-dimensional chaos. Applying our approach to a multi-area recurrent neural network (RNN) trained on a working memory selection task, we show that the "sensory" area gains greater control over the "cognitive" area over learning. Furthermore, we leverage the JacobianODE to directly control the trained RNN, enabling precise manipulation of its behavior. Our work lays the foundation for a theoretically grounded and data-driven understanding of interactions among biological subsystems.
comment: 10 pages, 6 figures
☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 26 pages, 6 figures, 5 tables. To be submitted to AAS Journals. Comments welcome
☆ A first-order method for nonconvex-nonconcave minimax problems under a local Kurdyka-Łojasiewicz condition
We study a class of nonconvex-nonconcave minimax problems in which the inner maximization problem satisfies a local Kurdyka-{\L}ojasiewicz (KL) condition that may vary with the outer minimization variable. In contrast to the global KL or Polyak-{\L}ojasiewicz (PL) conditions commonly assumed in the literature -- which are significantly stronger and often too restrictive in practice -- this local KL condition accommodates a broader range of practical scenarios. However, it also introduces new analytical challenges. In particular, as an optimization algorithm progresses toward a stationary point of the problem, the region over which the KL condition holds may shrink, resulting in a more intricate and potentially ill-conditioned landscape. To address this challenge, we show that the associated maximal function is locally H\"older smooth. Leveraging this key property, we develop an inexact proximal gradient method for solving the minimax problem, where the inexact gradient of the maximal function is computed by applying a proximal gradient method to a KL-structured subproblem. Under mild assumptions, we establish complexity guarantees for computing an approximate stationary point of the minimax problem.
comment: 26 pages
Exploring a Hybrid Deep Learning Approach for Anomaly Detection in Mental Healthcare Provider Billing: Addressing Label Scarcity through Semi-Supervised Anomaly Detection
The complexity of mental healthcare billing enables anomalies, including fraud. While machine learning methods have been applied to anomaly detection, they often struggle with class imbalance, label scarcity, and complex sequential patterns. This study explores a hybrid deep learning approach combining Long Short-Term Memory (LSTM) networks and Transformers, with pseudo-labeling via Isolation Forests (iForest) and Autoencoders (AE). Prior work has not evaluated such hybrid models trained on pseudo-labeled data in the context of healthcare billing. The approach is evaluated on two real-world billing datasets related to mental healthcare. The iForest LSTM baseline achieves the highest recall (0.963) on declaration-level data. On the operation-level data, the hybrid iForest-based model achieves the highest recall (0.744), though at the cost of lower precision. These findings highlight the potential of combining pseudo-labeling with hybrid deep learning in complex, imbalanced anomaly detection settings.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ Advancing Magnetic Materials Discovery -- A structure-based machine learning approach for magnetic ordering and magnetic moment prediction
Accurately predicting magnetic behavior across diverse materials systems remains a longstanding challenge due to the complex interplay of structural and electronic factors and is pivotal for the accelerated discovery and design of next-generation magnetic materials. In this work, a refined descriptor is proposed that significantly improves the prediction of two critical magnetic properties -- magnetic ordering (Ferromagnetic vs. Ferrimagnetic) and magnetic moment per atom -- using only the structural information of materials. Unlike previous models limited to Mn-based or lanthanide-transition metal compounds, the present approach generalizes across a diverse dataset of 5741 stable, binary and ternary, ferromagnetic and ferrimagnetic compounds sourced from the Materials Project. Leveraging an enriched elemental vector representation and advanced feature engineering, including nonlinear terms and reduced matrix sparsity, the LightGBM-based model achieves an accuracy of 82.4% for magnetic ordering classification and balanced recall across FM and FiM classes, addressing a key limitation in prior studies. The model predicts magnetic moment per atom with a correlation coefficient of 0.93, surpassing the Hund's matrix and orbital field matrix descriptors. Additionally, it accurately estimates formation energy per atom, enabling assessment of both magnetic behavior and material stability. This generalized and computationally efficient framework offers a robust tool for high-throughput screening of magnetic materials with tailored properties.
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ STEM Diffraction Pattern Analysis with Deep Learning Networks
Accurate grain orientation mapping is essential for understanding and optimizing the performance of polycrystalline materials, particularly in energy-related applications. Lithium nickel oxide (LiNiO$_{2}$) is a promising cathode material for next-generation lithium-ion batteries, and its electrochemical behaviour is closely linked to microstructural features such as grain size and crystallographic orientations. Traditional orientation mapping methods--such as manual indexing, template matching (TM), or Hough transform-based techniques--are often slow and noise-sensitive when handling complex or overlapping patterns, creating a bottleneck in large-scale microstructural analysis. This work presents a machine learning-based approach for predicting Euler angles directly from scanning transmission electron microscopy (STEM) diffraction patterns (DPs). This enables the automated generation of high-resolution crystal orientation maps, facilitating the analysis of internal microstructures at the nanoscale. Three deep learning architectures--convolutional neural networks (CNNs), Dense Convolutional Networks (DenseNets), and Shifted Windows (Swin) Transformers--are evaluated, using an experimentally acquired dataset labelled via a commercial TM algorithm. While the CNN model serves as a baseline, both DenseNets and Swin Transformers demonstrate superior performance, with the Swin Transformer achieving the highest evaluation scores and the most consistent microstructural predictions. The resulting crystal maps exhibit clear grain boundary delineation and coherent intra-grain orientation distributions, underscoring the potential of attention-based architectures for analyzing diffraction-based image data. These findings highlight the promise of combining advanced machine learning models with STEM data for robust, high-throughput microstructural characterization.
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ Evolving HPC services to enable ML workloads on HPE Cray EX
The Alps Research Infrastructure leverages GH200 technology at scale, featuring 10,752 GPUs. Accessing Alps provides a significant computational advantage for researchers in Artificial Intelligence (AI) and Machine Learning (ML). While Alps serves a broad range of scientific communities, traditional HPC services alone are not sufficient to meet the dynamic needs of the ML community. This paper presents an initial investigation into extending HPC service capabilities to better support ML workloads. We identify key challenges and gaps we have observed since the early-access phase (2023) of Alps by the Swiss AI community and propose several technological enhancements. These include a user environment designed to facilitate the adoption of HPC for ML workloads, balancing performance with flexibility; a utility for rapid performance screening of ML applications during development; observability capabilities and data products for inspecting ongoing large-scale ML workloads; a utility to simplify the vetting of allocated nodes for compute readiness; a service plane infrastructure to deploy various types of workloads, including support and inference services; and a storage infrastructure tailored to the specific needs of ML workloads. These enhancements aim to facilitate the execution of ML workloads on HPC systems, increase system usability and resilience, and better align with the needs of the ML community. We also discuss our current approach to security aspects. This paper concludes by placing these proposals in the broader context of changes in the communities served by HPC infrastructure like ours.
comment: Presented at the Cray User Group 2025 (CUG'25)
☆ Towards Foundation Auto-Encoders for Time-Series Anomaly Detection KDD 2024
We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
comment: Presented at ACM KDD 2024, MiLeTS 2024 Workshop, August 25, 2024, Barcelona, Spain
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Automatic Rank Determination for Low-Rank Adaptation via Submodular Function Maximization
In this paper, we propose SubLoRA, a rank determination method for Low-Rank Adaptation (LoRA) based on submodular function maximization. In contrast to prior approaches, such as AdaLoRA, that rely on first-order (linearized) approximations of the loss function, SubLoRA utilizes second-order information to capture the potentially complex loss landscape by incorporating the Hessian matrix. We show that the linearization becomes inaccurate and ill-conditioned when the LoRA parameters have been well optimized, motivating the need for a more reliable and nuanced second-order formulation. To this end, we reformulate the rank determination problem as a combinatorial optimization problem with a quadratic objective. However, solving this problem exactly is NP-hard in general. To overcome the computational challenge, we introduce a submodular function maximization framework and devise a greedy algorithm with approximation guarantees. We derive a sufficient and necessary condition under which the rank-determination objective becomes submodular, and construct a closed-form projection of the Hessian matrix that satisfies this condition while maintaining computational efficiency. Our method combines solid theoretical foundations, second-order accuracy, and practical computational efficiency. We further extend SubLoRA to a joint optimization setting, alternating between LoRA parameter updates and rank determination under a rank budget constraint. Extensive experiments on fine-tuning physics-informed neural networks (PINNs) for solving partial differential equations (PDEs) demonstrate the effectiveness of our approach. Results show that SubLoRA outperforms existing methods in both rank determination and joint training performance.
☆ Out-of-Distribution Detection Methods Answer the Wrong Questions ICML 2025
To detect distribution shifts and improve model safety, many out-of-distribution (OOD) detection methods rely on the predictive uncertainty or features of supervised models trained on in-distribution data. In this paper, we critically re-examine this popular family of OOD detection procedures, and we argue that these methods are fundamentally answering the wrong questions for OOD detection. There is no simple fix to this misalignment, since a classifier trained only on in-distribution classes cannot be expected to identify OOD points; for instance, a cat-dog classifier may confidently misclassify an airplane if it contains features that distinguish cats from dogs, despite generally appearing nothing alike. We find that uncertainty-based methods incorrectly conflate high uncertainty with being OOD, while feature-based methods incorrectly conflate far feature-space distance with being OOD. We show how these pathologies manifest as irreducible errors in OOD detection and identify common settings where these methods are ineffective. Additionally, interventions to improve OOD detection such as feature-logit hybrid methods, scaling of model and data size, epistemic uncertainty representation, and outlier exposure also fail to address this fundamental misalignment in objectives. We additionally consider unsupervised density estimation and generative models for OOD detection, which we show have their own fundamental limitations.
comment: Extended version of ICML 2025 paper
☆ mGRADE: Minimal Recurrent Gating Meets Delay Convolutions for Lightweight Sequence Modeling
Edge devices for temporal processing demand models that capture both short- and long- range dynamics under tight memory constraints. While Transformers excel at sequence modeling, their quadratic memory scaling with sequence length makes them impractical for such settings. Recurrent Neural Networks (RNNs) offer constant memory but train sequentially, and Temporal Convolutional Networks (TCNs), though efficient, scale memory with kernel size. To address this, we propose mGRADE (mininally Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system that integrates a temporal 1D-convolution with learnable spacings followed by a minimal gated recurrent unit (minGRU). This design allows the convolutional layer to realize a flexible delay embedding that captures rapid temporal variations, while the recurrent module efficiently maintains global context with minimal memory overhead. We validate our approach on two synthetic tasks, demonstrating that mGRADE effectively separates and preserves multi-scale temporal features. Furthermore, on challenging pixel-by-pixel image classification benchmarks, mGRADE consistently outperforms both pure convolutional and pure recurrent counterparts using approximately 20% less memory footprint, highlighting its suitability for memory-constrained temporal processing at the edge. This highlights mGRADE's promise as an efficient solution for memory-constrained multi-scale temporal processing at the edge.
☆ MILP-SAT-GNN: Yet Another Neural SAT Solver
We proposes a novel method that enables Graph Neural Networks (GNNs) to solve SAT problems by leveraging a technique developed for applying GNNs to Mixed Integer Linear Programming (MILP). Specifically, k-CNF formulae are mapped into MILP problems, which are then encoded as weighted bipartite graphs and subsequently fed into a GNN for training and testing. From a theoretical perspective: (i) we establish permutation and equivalence invariance results, demonstrating that the method produces outputs that are stable under reordering of clauses and variables; (ii) we identify a theoretical limitation, showing that for a class of formulae called foldable formulae, standard GNNs cannot always distinguish satisfiable from unsatisfiable instances; (iii) we prove a universal approximation theorem, establishing that with Random Node Initialization (RNI), the method can approximate SAT solving to arbitrary precision on finite datasets, that is, the GNN becomes approximately sound and complete on such datasets. Furthermore, we show that for unfoldable formulae, the same approximation guarantee can be achieved without the need for RNI. Finally, we conduct an experimental evaluation of our approach, which show that, despite the simplicity of the neural architecture, the method achieves promising results.
☆ TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.
comment: Preprint of a manuscript submitted for peer review
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ Towards Decentralized and Sustainable Foundation Model Training with the Edge
Foundation models are at the forefront of AI research, appealing for their ability to learn from vast datasets and cater to diverse tasks. Yet, their significant computational demands raise issues of environmental impact and the risk of centralized control in their development. We put forward a vision towards decentralized and sustainable foundation model training that leverages the collective compute of sparingly used connected edge AI devices. We present the rationale behind our vision, particularly in support of its sustainability benefit. We further outline a set of challenges that need to be addressed to turn this vision into reality.
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ Neural Entropy-stable conservative flux form neural networks for learning hyperbolic conservation laws
We propose a neural entropy-stable conservative flux form neural network (NESCFN) for learning hyperbolic conservation laws and their associated entropy functions directly from solution trajectories, without requiring any predefined numerical discretization. While recent neural network architectures have successfully integrated classical numerical principles into learned models, most rely on prior knowledge of the governing equations or assume a fixed discretization. Our approach removes this dependency by embedding entropy-stable design principles into the learning process itself, enabling the discovery of physically consistent dynamics in a fully data-driven setting. By jointly learning both the numerical flux function and a corresponding entropy, the proposed method ensures conservation and entropy dissipation, critical for long-term stability and fidelity in the system of hyperbolic conservation laws. Numerical results demonstrate that the method achieves stability and conservation over extended time horizons and accurately captures shock propagation speeds, even without oracle access to future-time solution profiles in the training data.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ BranchNet: A Neuro-Symbolic Learning Framework for Structured Multi-Class Classification
We introduce BranchNet, a neuro-symbolic learning framework that transforms decision tree ensembles into sparse, partially connected neural networks. Each branch, defined as a decision path from root to a parent of leaves, is mapped to a hidden neuron, preserving symbolic structure while enabling gradient-based optimization. The resulting models are compact, interpretable, and require no manual architecture tuning. Evaluated on a suite of structured multi-class classification benchmarks, BranchNet consistently outperforms XGBoost in accuracy, with statistically significant gains. We detail the architecture, training procedure, and sparsity dynamics, and discuss the model's strengths in symbolic interpretability as well as its current limitations, particularly on binary tasks where further adaptive calibration may be beneficial.
comment: 18 pages, 3 figures (with two images each)
☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by their incapacity to reliably evaluate sample quality. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics, Clipped Density and Clipped Coverage. By clipping individual sample contributions and, for fidelity, the radii of nearest neighbor balls, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics exhibit linear score degradation as the proportion of poor samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability for evaluating generative models.
Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ A Real-Time Digital Twin for Type 1 Diabetes using Simulation-Based Inference
Accurately estimating parameters of physiological models is essential to achieving reliable digital twins. For Type 1 Diabetes, this is particularly challenging due to the complexity of glucose-insulin interactions. Traditional methods based on Markov Chain Monte Carlo struggle with high-dimensional parameter spaces and fit parameters from scratch at inference time, making them slow and computationally expensive. In this study, we propose a Simulation-Based Inference approach based on Neural Posterior Estimation to efficiently capture the complex relationships between meal intake, insulin, and glucose level, providing faster, amortized inference. Our experiments demonstrate that SBI not only outperforms traditional methods in parameter estimation but also generalizes better to unseen conditions, offering real-time posterior inference with reliable uncertainty quantification.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ Token Communication in the Era of Large Models: An Information Bottleneck-Based Approach
This letter proposes UniToCom, a unified token communication paradigm that treats tokens as the fundamental units for both processing and wireless transmission. Specifically, to enable efficient token representations, we propose a generative information bottleneck (GenIB) principle, which facilitates the learning of tokens that preserve essential information while supporting reliable generation across multiple modalities. By doing this, GenIB-based tokenization is conducive to improving the communication efficiency and reducing computational complexity. Additionally, we develop $\sigma$-GenIB to address the challenges of variance collapse in autoregressive modeling, maintaining representational diversity and stability. Moreover, we employ a causal Transformer-based multimodal large language model (MLLM) at the receiver to unify the processing of both discrete and continuous tokens under the next-token prediction paradigm. Simulation results validate the effectiveness and superiority of the proposed UniToCom compared to baselines under dynamic channel conditions. By integrating token processing with MLLMs, UniToCom enables scalable and generalizable communication in favor of multimodal understanding and generation, providing a potential solution for next-generation intelligent communications.
☆ Revisiting Learning Rate Control
The learning rate is one of the most important hyperparameters in deep learning, and how to control it is an active area within both AutoML and deep learning research. Approaches for learning rate control span from classic optimization to online scheduling based on gradient statistics. This paper compares paradigms to assess the current state of learning rate control. We find that methods from multi-fidelity hyperparameter optimization, fixed-hyperparameter schedules, and hyperparameter-free learning often perform very well on selected deep learning tasks but are not reliable across settings. This highlights the need for algorithm selection methods in learning rate control, which have been neglected so far by both the AutoML and deep learning communities. We also observe a trend of hyperparameter optimization approaches becoming less effective as models and tasks grow in complexity, even when combined with multi-fidelity approaches for more expensive model trainings. A focus on more relevant test tasks and new promising directions like finetunable methods and meta-learning will enable the AutoML community to significantly strengthen its impact on this crucial factor in deep learning.
☆ Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ B-PL-PINN: Stabilizing PINN Training with Bayesian Pseudo Labeling
Training physics-informed neural networks (PINNs) for forward problems often suffers from severe convergence issues, hindering the propagation of information from regions where the desired solution is well-defined. Haitsiukevich and Ilin (2023) proposed an ensemble approach that extends the active training domain of each PINN based on i) ensemble consensus and ii) vicinity to (pseudo-)labeled points, thus ensuring that the information from the initial condition successfully propagates to the interior of the computational domain. In this work, we suggest replacing the ensemble by a Bayesian PINN, and consensus by an evaluation of the PINN's posterior variance. Our experiments show that this mathematically principled approach outperforms the ensemble on a set of benchmark problems and is competitive with PINN ensembles trained with combinations of Adam and LBFGS.
☆ Relational Causal Discovery with Latent Confounders UAI 2025
Estimating causal effects from real-world relational data can be challenging when the underlying causal model and potential confounders are unknown. While several causal discovery algorithms exist for learning causal models with latent confounders from data, they assume that the data is independent and identically distributed (i.i.d.) and are not well-suited for learning from relational data. Similarly, existing relational causal discovery algorithms assume causal sufficiency, which is unrealistic for many real-world datasets. To address this gap, we propose RelFCI, a sound and complete causal discovery algorithm for relational data with latent confounders. Our work builds upon the Fast Causal Inference (FCI) and Relational Causal Discovery (RCD) algorithms and it defines new graphical models, necessary to support causal discovery in relational domains. We also establish soundness and completeness guarantees for relational d-separation with latent confounders. We present experimental results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
comment: 30 pages, 19 figures. Accepted for publication at the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). Andrea Piras and Matteo Negro contributed equally to this work
☆ Variational Graph Convolutional Neural Networks
Estimation of model uncertainty can help improve the explainability of Graph Convolutional Networks and the accuracy of the models at the same time. Uncertainty can also be used in critical applications to verify the results of the model by an expert or additional models. In this paper, we propose Variational Neural Network versions of spatial and spatio-temporal Graph Convolutional Networks. We estimate uncertainty in both outputs and layer-wise attentions of the models, which has the potential for improving model explainability. We showcase the benefits of these models in the social trading analysis and the skeleton-based human action recognition tasks on the Finnish board membership, NTU-60, NTU-120 and Kinetics datasets, where we show improvement in model accuracy in addition to estimated model uncertainties.
comment: This work has been submitted to the IEEE for possible publication. 9 pages, 6 figures
☆ Dynamic Similarity Graph Construction with Kernel Density Estimation ICML'25
In the kernel density estimation (KDE) problem, we are given a set $X$ of data points in $\mathbb{R}^d$, a kernel function $k: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, and a query point $\mathbf{q} \in \mathbb{R}^d$, and the objective is to quickly output an estimate of $\sum_{\mathbf{x} \in X} k(\mathbf{q}, \mathbf{x})$. In this paper, we consider $\textsf{KDE}$ in the dynamic setting, and introduce a data structure that efficiently maintains the estimates for a set of query points as data points are added to $X$ over time. Based on this, we design a dynamic data structure that maintains a sparse approximation of the fully connected similarity graph on $X$, and develop a fast dynamic spectral clustering algorithm. We further evaluate the effectiveness of our algorithms on both synthetic and real-world datasets.
comment: ICML'25
☆ PERTINENCE: Input-based Opportunistic Neural Network Dynamic Execution
Deep neural networks (DNNs) have become ubiquitous thanks to their remarkable ability to model complex patterns across various domains such as computer vision, speech recognition, robotics, etc. While large DNN models are often more accurate than simpler, lightweight models, they are also resource- and energy-hungry. Hence, it is imperative to design methods to reduce reliance on such large models without significant degradation in output accuracy. The high computational cost of these models is often necessary only for a reduced set of challenging inputs, while lighter models can handle most simple ones. Thus, carefully combining properties of existing DNN models in a dynamic, input-based way opens opportunities to improve efficiency without impacting accuracy. In this work, we introduce PERTINENCE, a novel online method designed to analyze the complexity of input features and dynamically select the most suitable model from a pre-trained set to process a given input effectively. To achieve this, we employ a genetic algorithm to explore the training space of an ML-based input dispatcher, enabling convergence towards the Pareto front in the solution space that balances overall accuracy and computational efficiency. We showcase our approach on state-of-the-art Convolutional Neural Networks (CNNs) trained on the CIFAR-10 and CIFAR-100, as well as Vision Transformers (ViTs) trained on TinyImageNet dataset. We report results showing PERTINENCE's ability to provide alternative solutions to existing state-of-the-art models in terms of trade-offs between accuracy and number of operations. By opportunistically selecting among models trained for the same task, PERTINENCE achieves better or comparable accuracy with up to 36% fewer operations.
GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
While existing auditing techniques attempt to identify potential unwanted behaviours in large language models (LLMs), we address the complementary forensic problem of reconstructing the exact input that led to an existing LLM output - enabling post-incident analysis and potentially the detection of fake output reports. We formalize exact input reconstruction as a discrete optimisation problem with a unique global minimum and introduce SODA, an efficient gradient-based algorithm that operates on a continuous relaxation of the input search space with periodic restarts and parameter decay. Through comprehensive experiments on LLMs ranging in size from 33M to 3B parameters, we demonstrate that SODA significantly outperforms existing approaches. We succeed in fully recovering 79.5% of shorter out-of-distribution inputs from next-token logits, without a single false positive, but struggle to extract private information from the outputs of longer (15+ token) input sequences. This suggests that standard deployment practices may currently provide adequate protection against malicious use of our method. Our code is available at https://doi.org/10.5281/zenodo.15539879.
comment: 9 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ A generative modeling / Physics-Informed Neural Network approach to random differential equations
The integration of Scientific Machine Learning (SciML) techniques with uncertainty quantification (UQ) represents a rapidly evolving frontier in computational science. This work advances Physics-Informed Neural Networks (PINNs) by incorporating probabilistic frameworks to effectively model uncertainty in complex systems. Our approach enhances the representation of uncertainty in forward problems by combining generative modeling techniques with PINNs. This integration enables in a systematic fashion uncertainty control while maintaining the predictive accuracy of the model. We demonstrate the utility of this method through applications to random differential equations and random partial differential equations (PDEs).
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ GradMetaNet: An Equivariant Architecture for Learning on Gradients
Gradients of neural networks encode valuable information for optimization, editing, and analysis of models. Therefore, practitioners often treat gradients as inputs to task-specific algorithms, e.g. for pruning or optimization. Recent works explore learning algorithms that operate directly on gradients but use architectures that are not specifically designed for gradient processing, limiting their applicability. In this paper, we present a principled approach for designing architectures that process gradients. Our approach is guided by three principles: (1) equivariant design that preserves neuron permutation symmetries, (2) processing sets of gradients across multiple data points to capture curvature information, and (3) efficient gradient representation through rank-1 decomposition. Based on these principles, we introduce GradMetaNet, a novel architecture for learning on gradients, constructed from simple equivariant blocks. We prove universality results for GradMetaNet, and show that previous approaches cannot approximate natural gradient-based functions that GradMetaNet can. We then demonstrate GradMetaNet's effectiveness on a diverse set of gradient-based tasks on MLPs and transformers, such as learned optimization, INR editing, and estimating loss landscape curvature.
☆ Dance Dance ConvLSTM
\textit{Dance Dance Revolution} is a rhythm game consisting of songs and accompanying choreography, referred to as charts. Players press arrows on a device referred to as a dance pad in time with steps determined by the song's chart. In 2017, the authors of Dance Dance Convolution (DDC) developed an algorithm for the automatic generation of \textit{Dance Dance Revolution} charts, utilizing a CNN-LSTM architecture. We introduce Dance Dance ConvLSTM (DDCL), a new method for the automatic generation of DDR charts using a ConvLSTM based model, which improves upon the DDC methodology and substantially increases the accuracy of chart generation.
comment: 15 pages, 9 figures, 4 tables
☆ Kernel Recursive Least Squares Dictionary Learning Algorithm
We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.
comment: Published in Digital Signal Processing, Volume 141, 2023. DOI: https://doi.org/10.1016/j.dsp.2023.104159 12 pages, 8 figures. Code and data available at: https://github.com/G-Alipoor/kernel-rls-dictionary-learning
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
☆ When Less Is More: Binary Feedback Can Outperform Ordinal Comparisons in Ranking Recovery
Paired comparison data, where users evaluate items in pairs, play a central role in ranking and preference learning tasks. While ordinal comparison data intuitively offer richer information than binary comparisons, this paper challenges that conventional wisdom. We propose a general parametric framework for modeling ordinal paired comparisons without ties. The model adopts a generalized additive structure, featuring a link function that quantifies the preference difference between two items and a pattern function that governs the distribution over ordinal response levels. This framework encompasses classical binary comparison models as special cases, by treating binary responses as binarized versions of ordinal data. Within this framework, we show that binarizing ordinal data can significantly improve the accuracy of ranking recovery. Specifically, we prove that under the counting algorithm, the ranking error associated with binary comparisons exhibits a faster exponential convergence rate than that of ordinal data. Furthermore, we characterize a substantial performance gap between binary and ordinal data in terms of a signal-to-noise ratio (SNR) determined by the pattern function. We identify the pattern function that minimizes the SNR and maximizes the benefit of binarization. Extensive simulations and a real application on the MovieLens dataset further corroborate our theoretical findings.
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ Analysis of Muon's Convergence and Critical Batch Size
This paper presents a theoretical analysis of Muon, a new optimizer that leverages the inherent matrix structure of neural network parameters. We provide convergence proofs for four practical variants of Muon: with and without Nesterov momentum, and with and without weight decay. We then show that adding weight decay leads to strictly tighter bounds on both the parameter and gradient norms, and we clarify the relationship between the weight decay coefficient and the learning rate. Finally, we derive Muon's critical batch size minimizing the stochastic first-order oracle (SFO) complexity, which is the stochastic computational cost, and validate our theoretical findings with experiments.
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ A Privacy-Preserving Indoor Localization System based on Hierarchical Federated Learning
Location information serves as the fundamental element for numerous Internet of Things (IoT) applications. Traditional indoor localization techniques often produce significant errors and raise privacy concerns due to centralized data collection. In response, Machine Learning (ML) techniques offer promising solutions by capturing indoor environment variations. However, they typically require central data aggregation, leading to privacy, bandwidth, and server reliability issues. To overcome these challenges, in this paper, we propose a Federated Learning (FL)-based approach for dynamic indoor localization using a Deep Neural Network (DNN) model. Experimental results show that FL has the nearby performance to Centralized Model (CL) while keeping the data privacy, bandwidth efficiency and server reliability. This research demonstrates that our proposed FL approach provides a viable solution for privacy-enhanced indoor localization, paving the way for advancements in secure and efficient indoor localization systems.
☆ Transfer Learning for VLC-based indoor Localization: Addressing Environmental Variability
Accurate indoor localization is crucial in industrial environments. Visible Light Communication (VLC) has emerged as a promising solution, offering high accuracy, energy efficiency, and minimal electromagnetic interference. However, VLC-based indoor localization faces challenges due to environmental variability, such as lighting fluctuations and obstacles. To address these challenges, we propose a Transfer Learning (TL)-based approach for VLC-based indoor localization. Using real-world data collected at a BOSCH factory, the TL framework integrates a deep neural network (DNN) to improve localization accuracy by 47\%, reduce energy consumption by 32\%, and decrease computational time by 40\% compared to the conventional models. The proposed solution is highly adaptable under varying environmental conditions and achieves similar accuracy with only 30\% of the dataset, making it a cost-efficient and scalable option for industrial applications in Industry 4.0.
comment: Accepted for publication in the IEEE VTC2025-Spring Conference, 7 pages
☆ On the Effect of Ruleset Tuning and Data Imbalance on Explainable Network Security Alert Classifications: a Case-Study on DeepCASE
Automation in Security Operations Centers (SOCs) plays a prominent role in alert classification and incident escalation. However, automated methods must be robust in the presence of imbalanced input data, which can negatively affect performance. Additionally, automated methods should make explainable decisions. In this work, we evaluate the effect of label imbalance on the classification of network intrusion alerts. As our use-case we employ DeepCASE, the state-of-the-art method for automated alert classification. We show that label imbalance impacts both classification performance and correctness of the classification explanations offered by DeepCASE. We conclude tuning the detection rules used in SOCs can significantly reduce imbalance and may benefit the performance and explainability offered by alert post-processing methods such as DeepCASE. Therefore, our findings suggest that traditional methods to improve the quality of input data can benefit automation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ AI and Remote Sensing for Resilient and Sustainable Built Environments: A Review of Current Methods, Open Data and Future Directions
Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid threats ranging from natural disasters to cyber attacks and conflicts pose growing risks to their resilience and functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical transport infrastructures.
☆ MARVIS: Modality Adaptive Reasoning over VISualizations
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis
☆ Parsimonious Gaussian mixture models with piecewise-constant eigenvalue profiles
Gaussian mixture models (GMMs) are ubiquitous in statistical learning, particularly for unsupervised problems. While full GMMs suffer from the overparameterization of their covariance matrices in high-dimensional spaces, spherical GMMs (with isotropic covariance matrices) certainly lack flexibility to fit certain anisotropic distributions. Connecting these two extremes, we introduce a new family of parsimonious GMMs with piecewise-constant covariance eigenvalue profiles. These extend several low-rank models like the celebrated mixtures of probabilistic principal component analyzers (MPPCA), by enabling any possible sequence of eigenvalue multiplicities. If the latter are prespecified, then we can naturally derive an expectation-maximization (EM) algorithm to learn the mixture parameters. Otherwise, to address the notoriously-challenging issue of jointly learning the mixture parameters and hyperparameters, we propose a componentwise penalized EM algorithm, whose monotonicity is proven. We show the superior likelihood-parsimony tradeoffs achieved by our models on a variety of unsupervised experiments: density fitting, clustering and single-image denoising.
☆ Consistency of Learned Sparse Grid Quadrature Rules using NeuralODEs
This paper provides a proof of the consistency of sparse grid quadrature for numerical integration of high dimensional distributions. In a first step, a transport map is learned that normalizes the distribution to a noise distribution on the unit cube. This step is built on the statistical learning theory of neural ordinary differential equations, which has been established recently. Secondly, the composition of the generative map with the quantity of interest is integrated numerically using the Clenshaw-Curtis sparse grid quadrature. A decomposition of the total numerical error in quadrature error and statistical error is provided. As main result it is proven in the framework of empirical risk minimization that all error terms can be controlled in the sense of PAC (probably approximately correct) learning and with high probability the numerical integral approximates the theoretical value up to an arbitrary small error in the limit where the data set size is growing and the network capacity is increased adaptively.
☆ Chargax: A JAX Accelerated EV Charging Simulator
Deep Reinforcement Learning can play a key role in addressing sustainable energy challenges. For instance, many grid systems are heavily congested, highlighting the urgent need to enhance operational efficiency. However, reinforcement learning approaches have traditionally been slow due to the high sample complexity and expensive simulation requirements. While recent works have effectively used GPUs to accelerate data generation by converting environments to JAX, these works have largely focussed on classical toy problems. This paper introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle charging stations designed for accelerated training of RL agents. We validate our environment in a variety of scenarios based on real data, comparing reinforcement learning agents against baselines. Chargax delivers substantial computational performance improvements of over 100x-1000x over existing environments. Additionally, Chargax' modular architecture enables the representation of diverse real-world charging station configurations.
comment: Accepted at RLC 2025
☆ Loss Functions in Diffusion Models: A Comparative Study ECML 2025
Diffusion models have emerged as powerful generative models, inspiring extensive research into their underlying mechanisms. One of the key questions in this area is the loss functions these models shall train with. Multiple formulations have been introduced in the literature over the past several years with some links and some critical differences stemming from various initial considerations. In this paper, we explore the different target objectives and corresponding loss functions in detail. We present a systematic overview of their relationships, unifying them under the framework of the variational lower bound objective. We complement this theoretical analysis with an empirical study providing insights into the conditions under which these objectives diverge in performance and the underlying factors contributing to such deviations. Additionally, we evaluate how the choice of objective impacts the model ability to achieve specific goals, such as generating high-quality samples or accurately estimating likelihoods. This study offers a unified understanding of loss functions in diffusion models, contributing to more efficient and goal-oriented model designs in future research.
comment: Accepted to ECML 2025
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Meteoroid stream identification with HDBSCAN unsupervised clustering algorithm
Accurate identification of meteoroid streams is central to understanding their origins and evolution. However, overlapping clusters and background noise hinder classification, an issue amplified for missions such as ESA's LUMIO that rely on meteor shower observations to infer lunar meteoroid impact parameters. This study evaluates the performance of the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm for unsupervised meteoroid stream identification, comparing its outcomes with the established Cameras for All-Sky Meteor Surveillance (CAMS) look-up table method. We analyze the CAMS Meteoroid Orbit Database v3.0 using three feature vectors: LUTAB (CAMS geocentric parameters), ORBIT (heliocentric orbital elements), and GEO (adapted geocentric parameters). HDBSCAN is applied with varying minimum cluster sizes and two cluster selection methods (eom and leaf). To align HDBSCAN clusters with CAMS classifications, the Hungarian algorithm determines the optimal mapping. Clustering performance is assessed via the Silhouette score, Normalized Mutual Information, and F1 score, with Principal Component Analysis further supporting the analysis. With the GEO vector, HDBSCAN confirms 39 meteoroid streams, 21 strongly aligning with CAMS. The ORBIT vector identifies 30 streams, 13 with high matching scores. Less active showers pose identification challenges. The eom method consistently yields superior performance and agreement with CAMS. Although HDBSCAN requires careful selection of the minimum cluster size, it delivers robust, internally consistent clusters and outperforms the look-up table method in statistical coherence. These results underscore HDBSCAN's potential as a mathematically consistent alternative for meteoroid stream identification, although further validation is needed to assess physical validity.
comment: Accepted in The Astronomical Journal
☆ How to Securely Shuffle? A survey about Secure Shufflers for privacy-preserving computations
Ishai et al. (FOCS'06) introduced secure shuffling as an efficient building block for private data aggregation. Recently, the field of differential privacy has revived interest in secure shufflers by highlighting the privacy amplification they can provide in various computations. Although several works argue for the utility of secure shufflers, they often treat them as black boxes; overlooking the practical vulnerabilities and performance trade-offs of existing implementations. This leaves a central question open: what makes a good secure shuffler? This survey addresses that question by identifying, categorizing, and comparing 26 secure protocols that realize the necessary shuffling functionality. To enable a meaningful comparison, we adapt and unify existing security definitions into a consistent set of properties. We also present an overview of privacy-preserving technologies that rely on secure shufflers, offer practical guidelines for selecting appropriate protocols, and outline promising directions for future work.
☆ Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
comment: This is a preprint of a paper accepted for the EDHPC 2025 Conference
☆ Zero-Incentive Dynamics: a look at reward sparsity through the lens of unrewarded subgoals
This work re-examines the commonly held assumption that the frequency of rewards is a reliable measure of task difficulty in reinforcement learning. We identify and formalize a structural challenge that undermines the effectiveness of current policy learning methods: when essential subgoals do not directly yield rewards. We characterize such settings as exhibiting zero-incentive dynamics, where transitions critical to success remain unrewarded. We show that state-of-the-art deep subgoal-based algorithms fail to leverage these dynamics and that learning performance is highly sensitive to the temporal proximity between subgoal completion and eventual reward. These findings reveal a fundamental limitation in current approaches and point to the need for mechanisms that can infer latent task structure without relying on immediate incentives.
comment: Accepted at "Finding the Frame 2025", workshop at RLC
☆ Cross-platform Smartphone Positioning at Museums
Indoor Positioning Systems (IPSs) hold significant potential for enhancing visitor experiences in cultural heritage institutions. By enabling personalized navigation, efficient artifact organization, and better interaction with exhibits, IPSs can transform the modalities of how individuals engage with museums, galleries and libraries. However, these institutions face several challenges in implementing IPSs, including environmental constraints, technical limits, and limited experimentation. In other contexts, Received Signal Strength (RSS)-based approaches using Bluetooth Low Energy (BLE) and WiFi have emerged as preferred solutions due to their non-invasive nature and minimal infrastructure requirements. Nevertheless, the lack of publicly available RSS datasets that specifically reflect museum environments presents a substantial barrier to developing and evaluating positioning algorithms designed for the intricate spatial characteristics typical of cultural heritage sites. To address this limitation, we present BAR, a novel RSS dataset collected in front of 90 artworks across 13 museum rooms using two different platforms, i.e., Android and iOS. Additionally, we provide an advanced position classification baseline taking advantage of a proximity-based method and $k$-NN algorithms. In our analysis, we discuss the results and offer suggestions for potential research directions.
comment: Accepted at the 2025 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Tampere, Finland, September 15-18, 2025
☆ Symbolic identification of tensor equations in multidimensional physical fields
Recently, data-driven methods have shown great promise for discovering governing equations from simulation or experimental data. However, most existing approaches are limited to scalar equations, with few capable of identifying tensor relationships. In this work, we propose a general data-driven framework for identifying tensor equations, referred to as Symbolic Identification of Tensor Equations (SITE). The core idea of SITE--representing tensor equations using a host-plasmid structure--is inspired by the multidimensional gene expression programming (M-GEP) approach. To improve the robustness of the evolutionary process, SITE adopts a genetic information retention strategy. Moreover, SITE introduces two key innovations beyond conventional evolutionary algorithms. First, it incorporates a dimensional homogeneity check to restrict the search space and eliminate physically invalid expressions. Second, it replaces traditional linear scaling with a tensor linear regression technique, greatly enhancing the efficiency of numerical coefficient optimization. We validate SITE using two benchmark scenarios, where it accurately recovers target equations from synthetic data, showing robustness to noise and small sample sizes. Furthermore, SITE is applied to identify constitutive relations directly from molecular simulation data, which are generated without reliance on macroscopic constitutive models. It adapts to both compressible and incompressible flow conditions and successfully identifies the corresponding macroscopic forms, highlighting its potential for data-driven discovery of tensor equation.
☆ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs
RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
comment: 9 pages, 10 figures, 2 algorithms
☆ EdgeLoRA: An Efficient Multi-Tenant LLM Serving System on Edge Devices
Large Language Models (LLMs) have gained significant attention due to their versatility across a wide array of applications. Fine-tuning LLMs with parameter-efficient adapters, such as Low-Rank Adaptation (LoRA), enables these models to efficiently adapt to downstream tasks without extensive retraining. Deploying fine-tuned LLMs on multi-tenant edge devices offers substantial benefits, such as reduced latency, enhanced privacy, and personalized responses. However, serving LLMs efficiently on resource-constrained edge devices presents critical challenges, including the complexity of adapter selection for different tasks and memory overhead from frequent adapter swapping. Moreover, given the multiple requests in multi-tenant settings, processing requests sequentially results in underutilization of computational resources and increased latency. This paper introduces EdgeLoRA, an efficient system for serving LLMs on edge devices in multi-tenant environments. EdgeLoRA incorporates three key innovations: (1) an adaptive adapter selection mechanism to streamline the adapter configuration process; (2) heterogeneous memory management, leveraging intelligent adapter caching and pooling to mitigate memory operation overhead; and (3) batch LoRA inference, enabling efficient batch processing to significantly reduce computational latency. Comprehensive evaluations using the Llama3.1-8B model demonstrate that EdgeLoRA significantly outperforms the status quo (i.e., llama.cpp) in terms of both latency and throughput. The results demonstrate that EdgeLoRA can achieve up to a 4 times boost in throughput. Even more impressively, it can serve several orders of magnitude more adapters simultaneously. These results highlight EdgeLoRA's potential to transform edge deployment of LLMs in multi-tenant scenarios, offering a scalable and efficient solution for resource-constrained environments.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention ICCV 2025
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
comment: Accepted to ICCV 2025
☆ Decomposing Prediction Mechanisms for In-Context Recall
We introduce a new family of toy problems that combine features of linear-regression-style continuous in-context learning (ICL) with discrete associative recall. We pretrain transformer models on sample traces from this toy, specifically symbolically-labeled interleaved state observations from randomly drawn linear deterministic dynamical systems. We study if the transformer models can recall the state of a sequence previously seen in its context when prompted to do so with the corresponding in-context label. Taking a closer look at this task, it becomes clear that the model must perform two functions: (1) identify which system's state should be recalled and apply that system to its last seen state, and (2) continuing to apply the correct system to predict the subsequent states. Training dynamics reveal that the first capability emerges well into a model's training. Surprisingly, the second capability, of continuing the prediction of a resumed sequence, develops much earlier. Via out-of-distribution experiments, and a mechanistic analysis on model weights via edge pruning, we find that next-token prediction for this toy problem involves at least two separate mechanisms. One mechanism uses the discrete symbolic labels to do the associative recall required to predict the start of a resumption of a previously seen sequence. The second mechanism, which is largely agnostic to the discrete symbolic labels, performs a "Bayesian-style" prediction based on the previous token and the context. These two mechanisms have different learning dynamics. To confirm that this multi-mechanism (manifesting as separate phase transitions) phenomenon is not just an artifact of our toy setting, we used OLMo training checkpoints on an ICL translation task to see a similar phenomenon: a decisive gap in the emergence of first-task-token performance vs second-task-token performance.
comment: 44 pages, 47 figures, 2 tables
☆ Evaluating LLM Agent Collusion in Double Auctions
Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
☆ Surrogate Modeling via Factorization Machine and Ising Model with Enhanced Higher-Order Interaction Learning
Recently, a surrogate model was proposed that employs a factorization machine to approximate the underlying input-output mapping of the original system, with quantum annealing used to optimize the resulting surrogate function. Inspired by this approach, we propose an enhanced surrogate model that incorporates additional slack variables into both the factorization machine and its associated Ising representation thereby unifying what was by design a two-step process into a single, integrated step. During the training phase, the slack variables are iteratively updated, enabling the model to account for higher-order feature interactions. We apply the proposed method to the task of predicting drug combination effects. Experimental results indicate that the introduction of slack variables leads to a notable improvement of performance. Our algorithm offers a promising approach for building efficient surrogate models that exploit potential quantum advantages.
☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10\% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
☆ Active Measurement: Efficient Estimation at Scale
AI has the potential to transform scientific discovery by analyzing vast datasets with little human effort. However, current workflows often do not provide the accuracy or statistical guarantees that are needed. We introduce active measurement, a human-in-the-loop AI framework for scientific measurement. An AI model is used to predict measurements for individual units, which are then sampled for human labeling using importance sampling. With each new set of human labels, the AI model is improved and an unbiased Monte Carlo estimate of the total measurement is refined. Active measurement can provide precise estimates even with an imperfect AI model, and requires little human effort when the AI model is very accurate. We derive novel estimators, weighting schemes, and confidence intervals, and show that active measurement reduces estimation error compared to alternatives in several measurement tasks.
☆ Activation Reward Models for Few-Shot Model Alignment
Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
☆ Efficient Kilometer-Scale Precipitation Downscaling with Conditional Wavelet Diffusion
Effective hydrological modeling and extreme weather analysis demand precipitation data at a kilometer-scale resolution, which is significantly finer than the 10 km scale offered by standard global products like IMERG. To address this, we propose the Wavelet Diffusion Model (WDM), a generative framework that achieves 10x spatial super-resolution (downscaling to 1 km) and delivers a 9x inference speedup over pixel-based diffusion models. WDM is a conditional diffusion model that learns the learns the complex structure of precipitation from MRMS radar data directly in the wavelet domain. By focusing on high-frequency wavelet coefficients, it generates exceptionally realistic and detailed 1-km precipitation fields. This wavelet-based approach produces visually superior results with fewer artifacts than pixel-space models, and delivers a significant gains in sampling efficiency. Our results demonstrate that WDM provides a robust solution to the dual challenges of accuracy and speed in geoscience super-resolution, paving the way for more reliable hydrological forecasts.
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Distribution Matching for Self-Supervised Transfer Learning
In this paper, we propose a novel self-supervised transfer learning method called \underline{\textbf{D}}istribution \underline{\textbf{M}}atching (DM), which drives the representation distribution toward a predefined reference distribution while preserving augmentation invariance. DM results in a learned representation space that is intuitively structured and therefore easy to interpret. Experimental results across multiple real-world datasets and evaluation metrics demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the self-supervised learning task and target classification accuracy, while the sample theorem shows that, even with a limited number of samples from the target domain, DM can deliver exceptional classification performance, provided the unlabeled sample size is sufficiently large.
♻ ☆ GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Generalization performance of narrow one-hidden layer networks in the teacher-student setting
Understanding the generalization abilities of neural networks for simple input-output distributions is crucial to account for their learning performance on real datasets. The classical teacher-student setting, where a network is trained from data obtained thanks to a label-generating teacher model, serves as a perfect theoretical test bed. In this context, a complete theoretical account of the performance of fully connected one-hidden layer networks in the presence of generic activation functions is lacking. In this work, we develop such a general theory for narrow networks, i.e. networks with a large number of hidden units, yet much smaller than the input dimension. Using methods from statistical physics, we provide closed-form expressions for the typical performance of both finite temperature (Bayesian) and empirical risk minimization estimators, in terms of a small number of weight statistics. In doing so, we highlight the presence of a transition where hidden neurons specialize when the number of samples is sufficiently large and proportional to the number of parameters of the network. Our theory accurately predicts the generalization error of neural networks trained on regression or classification tasks with either noisy full-batch gradient descent (Langevin dynamics) or full-batch gradient descent.
comment: 34 pages, figures
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant advantage of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, by leveraging DRL, we can train the policy network towards optimizing the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
Embedded AI systems are expected to incur low power/energy consumption for solving machine learning tasks, as these systems are usually power constrained (e.g., object recognition task in autonomous mobile agents with portable batteries). These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, and/or developed without considering memory budgets from the underlying processing hardware of embedded platforms. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from targeted embedded systems. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, developing a fast memory-aware search algorithm, and performing quantization. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy compared to state-of-the-art while meeting the given memory budgets (e.g., 29x, 117x, and 3.7x faster search for CIFAR10, CIFAR100, and TinyImageNet200 respectively, using an Nvidia RTX A6000 GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained embedded AI systems.
comment: To appear at the IEEE Transactions on Artificial Intelligence (TAI) 2025
♻ ☆ Beating Transformers using Synthetic Cognition
The road to Artificial General Intelligence goes through the generation of context-aware reactive behaviors, where the Transformer architecture has been proven to be the state-of-the-art. However, they still fail to develop reasoning. Recently, a novel approach for developing cognitive architectures, called Synthetic Cognition, has been proposed and implemented to develop instantaneous reactive behavior. In this study, we aim to explore the use of Synthetic Cognition to develop context-aware reactive behaviors. We propose a mechanism to deal with sequences for the recent implementation of Synthetic Cognition, and test it against DNA foundation models in DNA sequence classification tasks. In our experiments, our proposal clearly outperforms the DNA foundation models, obtaining the best score on more benchmark tasks than the alternatives. Thus, we achieve two goals: expanding Synthetic Cognition to deal with sequences, and beating the Transformer architecture for sequence classification.
♻ ☆ Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry
Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks.
♻ ☆ Long-Context Linear System Identification ICLR 2025
This paper addresses the problem of long-context linear system identification, where the state $x_t$ of a dynamical system at time $t$ depends linearly on previous states $x_s$ over a fixed context window of length $p$. We establish a sample complexity bound that matches the i.i.d. parametric rate up to logarithmic factors for a broad class of systems, extending previous works that considered only first-order dependencies. Our findings reveal a learning-without-mixing phenomenon, indicating that learning long-context linear autoregressive models is not hindered by slow mixing properties potentially associated with extended context windows. Additionally, we extend these results to (i) shared low-rank representations, where rank-regularized estimators improve the dependence of the rates on the dimensionality, and (ii) misspecified context lengths in strictly stable systems, where shorter contexts offer statistical advantages.
comment: Published at ICLR 2025. This version includes minor corrections and improved grammar from the published version. 34 pages, 4 figures
♻ ☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Published in Applied Soft Computing (ASOC), 49 pages, 14 figures
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
In remote control systems, transmitting large data volumes (e.g., images, video frames) from wireless sensors to remote controllers is challenging when uplink capacity is limited (e.g., RedCap devices or massive wireless sensor networks). Furthermore, controllers often need only information-rich representations of the original data. To address this, we propose a semantic-driven predictive control combined with a channel-aware scheduling to enhance control performance for multiple devices under limited network capacity. At its core, the proposed framework, coined Time-Series Joint Embedding Predictive Architecture (TS-JEPA), encodes high-dimensional sensory data into low-dimensional semantic embeddings at the sensor, reducing communication overhead. Furthermore, TS-JEPA enables predictive inference by predicting future embeddings from current ones and predicted commands, which are directly used by a semantic actor model to compute control commands within the embedding space, eliminating the need to reconstruct raw data. To further enhance reliability and communication efficiency, a channel-aware scheduling is integrated to dynamically prioritize device transmissions based on channel conditions and age of information (AoI). Simulations on inverted cart-pole systems show that the proposed framework significantly outperforms conventional control baselines in communication efficiency, control cost, and predictive accuracy. It enables robust and scalable control under limited network capacity compared to traditional scheduling schemes.
♻ ☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Leveraging Genetic Algorithms for Efficient Demonstration Generation in Real-World Reinforcement Learning Environments
Reinforcement Learning (RL) has demonstrated significant potential in certain real-world industrial applications, yet its broader deployment remains limited by inherent challenges such as sample inefficiency and unstable learning dynamics. This study investigates the utilization of Genetic Algorithms (GAs) as a mechanism for improving RL performance in an industrially inspired sorting environment. We propose a novel approach in which GA-generated expert demonstrations are used to enhance policy learning. These demonstrations are incorporated into a Deep Q-Network (DQN) replay buffer for experience-based learning and utilized as warm-start trajectories for Proximal Policy Optimization (PPO) agents to accelerate training convergence. Our experiments compare standard RL training with rule-based heuristics, brute-force optimization, and demonstration data, revealing that GA-derived demonstrations significantly improve RL performance. Notably, PPO agents initialized with GA-generated data achieved superior cumulative rewards, highlighting the potential of hybrid learning paradigms, where heuristic search methods complement data-driven RL. The utilized framework is publicly available and enables further research into adaptive RL strategies for real-world applications.
comment: This manuscript corresponds to the submitted version to LOD 2025. The final Version of Record will appear in the official conference proceedings
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ 15,500 Seconds: Lean UAV Classification Leveraging PEFT and Pre-Trained Networks
Unmanned Aerial Vehicles (UAVs) pose an escalating security concerns as the market for consumer and military UAVs grows. This paper address the critical data scarcity challenges in deep UAV audio classification. We build upon our previous work expanding novel approaches such as: parameter efficient fine-tuning, data augmentation, and pre-trained networks. We achieve performance upwards of 95\% validation accuracy with EfficientNet-B0.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ Enhancing Expressivity of Quantum Neural Networks Based on the SWAP test
Parameterized quantum circuits represent promising architectures for machine learning applications, yet many lack clear connections to classical models, potentially limiting their ability to translate the wide success of classical neural networks to the quantum realm. We examine a specific type of quantum neural network (QNN) built exclusively from SWAP test circuits, and discuss its mathematical equivalence to a classical two-layer feedforward network with quadratic activation functions under amplitude encoding. Our analysis across classical real-world and synthetic datasets reveals that while this architecture can successfully learn many practical tasks, it exhibits fundamental expressivity limitations due to violating the universal approximation theorem, particularly failing on harder problems like the parity check function. To address this limitation, we introduce a circuit modification using generalized SWAP test circuits that effectively implements classical neural networks with product layers. This enhancement enables successful learning of parity check functions in arbitrary dimensions which we analytically argue to be impossible for the original architecture beyond two dimensions regardless of network size. Our results establish a framework for enhancing QNN expressivity through classical task analysis and demonstrate that our SWAP test-based architecture offers broad representational capacity, suggesting potential promise also for quantum learning tasks.
comment: 15 pages, 7 figures, added code availability statement
♻ ☆ Grower-in-the-Loop Interactive Reinforcement Learning for Greenhouse Climate Control
Climate control is crucial for greenhouse production as it directly affects crop growth and resource use. Reinforcement learning (RL) has received increasing attention in this field, but still faces challenges, including limited training efficiency and high reliance on initial learning conditions. Interactive RL, which combines human (grower) input with the RL agent's learning, offers a potential solution to overcome these challenges. However, interactive RL has not yet been applied to greenhouse climate control and may face challenges related to imperfect inputs. Therefore, this paper aims to explore the possibility and performance of applying interactive RL with imperfect inputs into greenhouse climate control, by: (1) developing three representative interactive RL algorithms tailored for greenhouse climate control (reward shaping, policy shaping and control sharing); (2) analyzing how input characteristics are often contradicting, and how the trade-offs between them make grower's inputs difficult to perfect; (3) proposing a neural network-based approach to enhance the robustness of interactive RL agents under limited input availability; (4) conducting a comprehensive evaluation of the three interactive RL algorithms with imperfect inputs in a simulated greenhouse environment. The demonstration shows that interactive RL incorporating imperfect grower inputs has the potential to improve the performance of the RL agent. RL algorithms that influence action selection, such as policy shaping and control sharing, perform better when dealing with imperfect inputs, achieving 8.4% and 6.8% improvement in profit, respectively. In contrast, reward shaping, an algorithm that manipulates the reward function, is sensitive to imperfect inputs and leads to a 9.4% decrease in profit. This highlights the importance of selecting an appropriate mechanism when incorporating imperfect inputs.
♻ ☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Enhancing Robustness to Missing Modalities through Clustered Federated Learning
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution.
comment: 15 pages, 3 figures
♻ ☆ Co-Optimizing Reconfigurable Environments and Policies for Decentralized Multi-Agent Navigation
This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in a cluttered environment, where we assume that the layout of the environment is reconfigurable. By introducing two sub-objectives -- multi-agent navigation and environment optimization -- we propose an agent-environment co-optimization problem and develop a coordinated algorithm that alternates between these sub-objectives to search for an optimal synthesis of agent actions and environment configurations; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between the agents, the environment and their performance therein, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum solution of an associated time-varying non-convex optimization problem. Experiments corroborate theoretical findings and show the benefits of co-optimization. Interestingly, the results also indicate that optimized environments can offer structural guidance to de-conflict agents in motion.
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ NegMerge: Sign-Consensual Weight Merging for Machine Unlearning ICML 2025
Machine unlearning aims to selectively remove specific knowledge from a trained model. Existing approaches, such as Task Arithmetic, fine-tune the model on the forget set to create a task vector (i.e., a direction in weight space) for subtraction from the original model's weight. However, their effectiveness is highly sensitive to hyperparameter selection, requiring extensive validation to identify the optimal vector from many fine-tuned candidates. In this paper, we propose a novel method that utilizes all fine-tuned models trained with varying hyperparameters instead of a single selection. Specifically, we aggregate the computed task vectors by retaining only the elements with consistent shared signs. The merged task vector is then negated to induce unlearning on the original model. Evaluations on zero-shot and standard image recognition tasks across twelve datasets and four backbone architectures show that our approach outperforms state-of-the-art methods while requiring similar or fewer computational resources. Code is available at https://github.com/naver-ai/negmerge.
comment: Accepted to ICML 2025
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures. Accepted for publication in SIAM Journal on Control and Optimization (2025)
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model
This paper presents an initialization method that can approximate a given approximate Ising model with a high degree of accuracy using a factorization machine (FM), a machine learning model. The construction of an Ising models using an FM is applied to black-box combinatorial optimization problems using factorization machine with quantum annealing (FMQA). It is anticipated that the optimization performance of FMQA will be enhanced through an implementation of the warm-start method. Nevertheless, the optimal initialization method for leveraging the warm-start approach in FMQA remains undetermined. Consequently, the present study compares initialization methods based on random initialization and low-rank approximation, and then identifies a suitable one for use with warm-start in FMQA through numerical experiments. Furthermore, the properties of the initialization method by the low-rank approximation for the FM are analyzed using random matrix theory, demonstrating that the approximation accuracy of the proposed method is not significantly influenced by the specific Ising model under consideration. The findings of this study will facilitate advancements of research in the field of black-box combinatorial optimization through the use of Ising machines.
comment: 31 pages, 5 figures
♻ ☆ Truthful Elicitation of Imprecise Forecasts UAI 2025
The quality of probabilistic forecasts is crucial for decision-making under uncertainty. While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-critical domains where decision-makers (DMs) prioritize proper uncertainty management. To address this, we propose a framework for scoring imprecise forecasts -- forecasts given as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we enable truthful elicitation by drawing connection to social choice theory and introducing a two-way communication framework where DMs first share their aggregation rules (e.g., averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This, in turn, helps forecasters resolve indecision during elicitation. We further show that truthful elicitation of imprecise forecasts is achievable using proper scoring rules randomized over the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster's epistemic uncertainty into their decision-making process, thus improving credibility.
comment: Accepted at UAI 2025 for Oral Presentation (fixed formatting)
♻ ☆ Non-collective Calibrating Strategy for Time Series Forecasting IJCAI 2025
Deep learning-based approaches have demonstrated significant advancements in time series forecasting. Despite these ongoing developments, the complex dynamics of time series make it challenging to establish the rule of thumb for designing the golden model architecture. In this study, we argue that refining existing advanced models through a universal calibrating strategy can deliver substantial benefits with minimal resource costs, as opposed to elaborating and training a new model from scratch. We first identify a multi-target learning conflict in the calibrating process, which arises when optimizing variables across time steps, leading to the underutilization of the model's learning capabilities. To address this issue, we propose an innovative calibrating strategy called Socket+Plug (SoP). This approach retains an exclusive optimizer and early-stopping monitor for each predicted target within each Plug while keeping the fully trained Socket backbone frozen. The model-agnostic nature of SoP allows it to directly calibrate the performance of any trained deep forecasting models, regardless of their specific architectures. Extensive experiments on various time series benchmarks and a spatio-temporal meteorological ERA5 dataset demonstrate the effectiveness of SoP, achieving up to a 22% improvement even when employing a simple MLP as the Plug (highlighted in Figure 1). Code is available at https://github.com/hanyuki23/SoP.
comment: Accepted by IJCAI 2025
♻ ☆ Adapting Rule Representation With Four-Parameter Beta Distribution for Learning Classifier Systems
Rule representations significantly influence the search capabilities and decision boundaries within the search space of Learning Classifier Systems (LCSs), a family of rule-based machine learning systems that evolve interpretable models through evolutionary processes. However, it is very difficult to choose an appropriate rule representation for each problem. Additionally, some problems benefit from using different representations for different subspaces within the input space. Thus, an adaptive mechanism is needed to choose an appropriate rule representation for each rule in LCSs. This article introduces a flexible rule representation using a four-parameter beta distribution and integrates it into a fuzzy-style LCS. The four-parameter beta distribution can form various function shapes, and this flexibility enables our LCS to automatically select appropriate representations for different subspaces. Our rule representation can represent crisp/fuzzy decision boundaries in various boundary shapes, such as rectangles and bells, by controlling four parameters, compared to the standard representations such as trapezoidal ones. Leveraging this flexibility, our LCS is designed to adapt the appropriate rule representation for each subspace. Moreover, our LCS incorporates a generalization bias favoring crisp rules where feasible, enhancing model interpretability without compromising accuracy. Experimental results on real-world classification tasks show that our LCS achieves significantly superior test accuracy and produces more compact rule sets. Our implementation is available at https://github.com/YNU-NakataLab/Beta4-UCS. An extended abstract related to this work is available at https://doi.org/10.36227/techrxiv.174900805.59801248/v1.
♻ ☆ Query Complexity of Classical and Quantum Channel Discrimination
Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As a special case of these findings, we precisely characterize the query complexity of discriminating two classical channels and two classical-quantum channels. Furthermore, by obtaining a tighter characterization of the sample complexity of quantum hypothesis testing, including prior probabilities, we provide a more precise characterization of query complexity when the error probability does not exceed a fixed threshold. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric R\'enyi and Petz R\'enyi channel divergences, while for the latter, it depends on the negative logarithm of the (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels.
comment: v2: 33 pages, Added tighter and precise characterization of sample and query complexity in Theorem 11 (for states), Theorem 12 (for general channels), and Corollaries 10 and 14 for classical-quantum channels; v1:22 pages; see also the independent work "Sampling complexity of quantum channel discrimination" DOI 10.1088/1572-9494/adcb9e
♻ ☆ Upper and lower bounds for the Lipschitz constant of random neural networks
Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For deep networks of fixed depth and sufficiently large width, our established upper bound is larger than the lower bound by a factor that is logarithmic in the width. In contrast, for shallow neural networks we characterize the Lipschitz constant up to an absolute numerical constant that is independent of all parameters.
♻ ☆ Efficiently Vectorized MCMC on Modern Accelerators
With the advent of automatic vectorization tools (e.g., JAX's $\texttt{vmap}$), writing multi-chain MCMC algorithms is often now as simple as invoking those tools on single-chain code. Whilst convenient, for various MCMC algorithms this results in a synchronization problem -- loosely speaking, at each iteration all chains running in parallel must wait until the last chain has finished drawing its sample. In this work, we show how to design single-chain MCMC algorithms in a way that avoids synchronization overheads when vectorizing with tools like $\texttt{vmap}$ by using the framework of finite state machines (FSMs). Using a simplified model, we derive an exact theoretical form of the obtainable speed-ups using our approach, and use it to make principled recommendations for optimal algorithm design. We implement several popular MCMC algorithms as FSMs, including Elliptical Slice Sampling, HMC-NUTS, and Delayed Rejection, demonstrating speed-ups of up to an order of magnitude in experiments.
♻ ☆ Is merging worth it? Securely evaluating the information gain for causal dataset acquisition AISTATS 2025
Merging datasets across institutions is a lengthy and costly procedure, especially when it involves private information. Data hosts may therefore want to prospectively gauge which datasets are most beneficial to merge with, without revealing sensitive information. For causal estimation this is particularly challenging as the value of a merge depends not only on reduction in epistemic uncertainty but also on improvement in overlap. To address this challenge, we introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge in the context of heterogeneous treatment effect estimation. We do this by evaluating the Expected Information Gain (EIG) using multi-party computation to ensure that no raw data is revealed. We further demonstrate that our approach can be combined with differential privacy (DP) to meet arbitrary privacy requirements whilst preserving more accurate computation compared to DP alone. To the best of our knowledge, this work presents the first privacy-preserving method for dataset acquisition tailored to causal estimation. We demonstrate the effectiveness and reliability of our method on a range of simulated and realistic benchmarks. Code is publicly available: https://github.com/LucileTerminassian/causal_prospective_merge.
comment: Published at AISTATS 2025
♻ ☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called co-learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED yields curricula that improve zero-shot generalization across multiple benchmarks while requiring up to 2x fewer environment interactions than strong baselines. Ablation studies confirm that the transition prediction error drives rapid complexity ramp-up and that co-learnability delivers additional gains when paired with the transition prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Who Should I Listen To? Adaptive Collaboration in Personalized Federated Learning
Data heterogeneity is a central challenge in federated learning, and personalized federated learning (PFL) aims to address it by tailoring models to each client's distribution. Yet many PFL methods fail to outperform local or centralized baselines, suggesting a mismatch between the collaboration they enforce and the structure of the data. We propose an approach based on adaptive collaboration, where clients decide adaptively not only how much to rely on others, but also whom to trust at the level of individual examples. We instantiate this principle in FEDMOSAIC, a federated co-training method in which clients exchange predictions over a shared unlabeled dataset. This enables fine-grained trust decisions that are difficult to achieve with parameter sharing alone. Each client adjusts its loss weighting based on the agreement between private and public data, and contributes to global pseudo-labels in proportion to its estimated per-example confidence. Empirically, FEDMOSAIC improves upon state-of-the-art PFL methods across diverse non-IID settings, and we provide convergence guarantees under standard assumptions. Our results demonstrate the potential of data-aware collaboration for robust and effective personalization.
♻ ☆ Learned-Database Systems Security
A learned database system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned database systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned components currently being explored in the database community. To empirically validate the vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against these. We show that the use of ML cause leakage of past queries in a database, enable a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enable index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is an universal threat against learned components in database systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
comment: Accepted at TMLR
♻ ☆ ZeCO: Zero Communication Overhead Sequence Parallelism for Linear Attention
Linear attention mechanisms deliver significant advantages for Large Language Models (LLMs) by providing linear computational complexity, enabling efficient processing of ultra-long sequences (e.g., 1M context). However, existing Sequence Parallelism (SP) methods, essential for distributing these workloads across devices, become the primary bottleneck due to substantial communication overhead. In this paper, we introduce ZeCO (Zero Communication Overhead) sequence parallelism for linear attention models, a new SP method designed to overcome these limitations and achieve end-to-end near-linear scalability for long sequence training. For example, training a model with a 1M sequence length across 64 devices using ZeCO takes roughly the same time as training with an 16k sequence on a single device. At the heart of ZeCO lies All-Scan, a new collective communication primitive. All-Scan provides each SP rank with precisely the initial operator state it requires while maintaining a minimal communication footprint, effectively eliminating communication overhead. Theoretically, we prove the optimaity of ZeCO, showing that it introduces only negligible time and space overhead. Empirically, we compare the communication costs of different sequence parallelism strategies and demonstrate that All-Scan achieves the fastest communication in SP scenarios. Specifically, on 256 GPUs with an 8M sequence length, ZeCO achieves a 60\% speedup compared to the current state-of-the-art (SOTA) SP method. We believe ZeCO establishes a clear path toward efficiently training next-generation LLMs on previously intractable sequence lengths.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{nonlinear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing the state-transition matrix to be diagonal and learned at every step, the full sequence can be solved in parallel with a single prefix-scan, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Lastly, for network depth $L$, as the forward and backward passes cost $\Theta(T\,D\,L)$ FLOPs, with its low sequential depth and parameter count $\Theta(D\,L)$, the model follows the compute-optimal scaling law regime ($\beta \approx 0.42$) recently observed for Mamba, outperforming quadratic-attention Transformers at equal compute while avoiding the memory overhead of FFT-based long convolutions. We show that on a series of long-range forecasting tasks, LrcSSM outperforms LRU, S5 and Mamba.
♻ ☆ SimBank: from Simulation to Solution in Prescriptive Process Monitoring
Prescriptive Process Monitoring (PresPM) is an emerging area within Process Mining, focused on optimizing processes through real-time interventions for effective decision-making. PresPM holds significant promise for organizations seeking enhanced operational performance. However, the current literature faces two key limitations: a lack of extensive comparisons between techniques and insufficient evaluation approaches. To address these gaps, we introduce SimBank: a simulator designed for accurate benchmarking of PresPM methods. Modeled after a bank's loan application process, SimBank enables extensive comparisons of both online and offline PresPM methods. It incorporates a variety of intervention optimization problems with differing levels of complexity and supports experiments on key causal machine learning challenges, such as assessing a method's robustness to confounding in data. SimBank additionally offers a comprehensive evaluation capability: for each test case, it can generate the true outcome under each intervention action, which is not possible using recorded datasets. The simulator incorporates parallel activities and loops, drawing from common logs to generate cases that closely resemble real-life process instances. Our proof of concept demonstrates SimBank's benchmarking capabilities through experiments with various PresPM methods across different interventions, highlighting its value as a publicly available simulator for advancing research and practice in PresPM.
♻ ☆ optimizn: a Python Library for Developing Customized Optimization Algorithms
Combinatorial optimization problems are prevalent across a wide variety of domains. These problems are often nuanced, their optimal solutions might not be efficiently obtainable, and they may require lots of time and compute resources to solve (they are NP-hard). It follows that the best course of action for solving these problems is to use general optimization algorithm paradigms to quickly and easily develop algorithms that are customized to these problems and can produce good solutions in a reasonable amount of time. In this paper, we present optimizn, a Python library for developing customized optimization algorithms under general optimization algorithm paradigms (simulated annealing, branch and bound). Additionally, optimizn offers continuous training, with which users can run their algorithms on a regular cadence, retain the salient aspects of previous runs, and use them in subsequent runs to potentially produce solutions that get closer and closer to optimality. An earlier version of this paper was peer reviewed and published internally at Microsoft.
♻ ☆ Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment
Obstetric ultrasound image quality is crucial for accurate diagnosis and monitoring of fetal health. However, acquiring high-quality standard planes is difficult, influenced by the sonographer's expertise and factors like the maternal BMI or fetus dynamics. In this work, we explore diffusion-based counterfactual explainable AI to generate realistic, high-quality standard planes from low-quality non-standard ones. Through quantitative and qualitative evaluation, we demonstrate the effectiveness of our approach in generating plausible counterfactuals of increased quality. This shows future promise for enhancing training of clinicians by providing visual feedback and potentially improving standard plane quality and acquisition for downstream diagnosis and monitoring.
♻ ☆ On the Trade-off between Flatness and Optimization in Distributed Learning
This paper proposes a theoretical framework to evaluate and compare the performance of stochastic gradient algorithms for distributed learning in relation to their behavior around local minima in nonconvex environments. Previous works have noticed that convergence toward flat local minima tend to enhance the generalization ability of learning algorithms. This work discovers three interesting results. First, it shows that decentralized learning strategies are able to escape faster away from local minima and favor convergence toward flatter minima relative to the centralized solution. Second, in decentralized methods, the consensus strategy has a worse excess-risk performance than diffusion, giving it a better chance of escaping from local minima and favoring flatter minima. Third, and importantly, the ultimate classification accuracy is not solely dependent on the flatness of the local minimum but also on how well a learning algorithm can approach that minimum. In other words, the classification accuracy is a function of both flatness and optimization performance. In this regard, since diffusion has a lower excess-risk than consensus, when both algorithms are trained starting from random initial points, diffusion enhances the classification accuracy. The paper examines the interplay between the two measures of flatness and optimization error closely. One important conclusion is that decentralized strategies deliver in general enhanced classification accuracy because they strike a more favorable balance between flatness and optimization performance compared to the centralized solution.
♻ ☆ Adaptive NAD: Online and Self-adaptive Unsupervised Network Anomaly Detector
The widespread usage of the Internet of Things (IoT) has raised the risks of cyber threats, thus developing Anomaly Detection Systems (ADSs) that can adapt to evolving or new attacks is critical. Previous studies primarily focused on offline unsupervised learning methods to safeguard ADSs, which is not applicable in practical real-world applications. Besides, most of them strongly rely on assumptions of known legitimates and fail to satisfy the interpretable requirements in security applications, creating barriers to the adoption in practice. In this paper, we design Adaptive NAD, a general framework to improve and interpret online unsupervised anomaly detection in security domains. An interpretable two-layer anomaly detection strategy is proposed to generate reliable high-confidence pseudo-labels. Then, an online learning scheme is introduced to update Adaptive NAD by a novel threshold calculation technique to adapt to new threats. Experimental results demonstrate that Adaptive NAD achieves more than 5.4%, 23.0%, and 3.2% improvements in SPAUC compared with state-of-the-art solutions on the CIC-Darknet2020, CIC-DoHBrw-2020, and Edge-IIoTset datasets, respectively. The code is released at https://github.com/MyLearnCodeSpace/Adaptive-NAD.
♻ ☆ Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
♻ ☆ FE-LWS: Refined Image-Text Representations via Decoder Stacking and Fused Encodings for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate descriptive text from remote sensing images, typically employing an encoder-decoder framework. In this setup, a convolutional neural network (CNN) extracts feature representations from the input image, which then guide the decoder in a sequence-to-sequence caption generation process. Although much research has focused on refining the decoder, the quality of image representations from the encoder remains crucial for accurate captioning. This paper introduces a novel approach that integrates features from two distinct CNN based encoders, capturing complementary information to enhance caption generation. Additionally, we propose a weighted averaging technique to combine the outputs of all GRUs in the stacked decoder. Furthermore, a comparison-based beam search strategy is incorporated to refine caption selection. The results demonstrate that our fusion-based approach, along with the enhanced stacked decoder, significantly outperforms both the transformer-based state-of-the-art model and other LSTM-based baselines.
♻ ☆ Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization NeurIPS 2023
The nonconvex formulation of the matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient Descent (GD) is a simple yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this paper, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in a logarithmic number of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence, and show that a larger initialization can be used as more samples are available. We observe that the implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
comment: NeurIPS 2023
♻ ☆ Efficient Split Federated Learning for Large Language Models over Communication Networks
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks. To address this challenge, we propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques. By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices. Furthermore, the introduction of a federated server facilitates parallel training and enhances data privacy. To accommodate heterogeneous communication conditions and diverse computational capabilities of edge devices, as well as the impact of LoRA rank selection on model convergence and training cost, we formulate a joint optimization problem of both communication and computation resource. The formulated problem jointly optimizes subchannel allocation, power control, model splitting point selection, and LoRA rank configuration, aimed at minimizing total training delay. An iterative optimization algorithm is proposed to solve this problem efficiently. Specifically, a greedy heuristic is employed for subchannel allocation, the power control subproblem is reformulated as a convex optimization problem using auxiliary variables, and an exhaustive search is adopted for optimal split position and rank selection. Simulation results demonstrate that the proposed SflLLM framework achieves comparable model accuracy while significantly reducing client-side computational requirements. Furthermore, the proposed resource allocation scheme and adaptive LoRA rank selection strategy notably reduce the training latency compared to conventional approaches.
♻ ☆ A deep solver for backward stochastic Volterra integral equations
We present the first deep-learning solver for backward stochastic Volterra integral equations (BSVIEs) and their fully-coupled forward-backward variants. The method trains a neural network to approximate the two solution fields in a single stage, avoiding the use of nested time-stepping cycles that limit classical algorithms. For the decoupled case we prove a non-asymptotic error bound composed of an a posteriori residual plus the familiar square root dependence on the time step. Numerical experiments confirm this rate and reveal two key properties: \emph{scalability}, in the sense that accuracy remains stable from low dimension up to 500 spatial variables while GPU batching keeps wall-clock time nearly constant; and \emph{generality}, since the same method handles coupled systems whose forward dynamics depend on the backward solution. These results open practical access to a family of high-dimensional, path-dependent problems in stochastic control and quantitative finance.
comment: 25 pages, 10 figures
♻ ☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
♻ ☆ Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent
For nonconvex objective functions, including those found in training deep neural networks, stochastic gradient descent (SGD) with momentum is said to converge faster and have better generalizability than SGD without momentum. In particular, adding momentum is thought to reduce stochastic noise. To verify this, we estimated the magnitude of gradient noise by using convergence analysis and an optimal batch size estimation formula and found that momentum does not reduce gradient noise. We also analyzed the effect of search direction noise, which is stochastic noise defined as the error between the search direction of the optimizer and the steepest descent direction, and found that it inherently smooths the objective function and that momentum does not reduce search direction noise either. Finally, an analysis of the degree of smoothing introduced by search direction noise revealed that adding momentum offers limited advantage to SGD.
comment: We retract this paper due to an irrecoverable and critical error in its content
♻ ☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing ICCV 2025
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: ICCV 2025. Project page: https://github.com/sincostanx/LUSD
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess--a deficit which RL alone may not be able to fully overcome.
comment: 27 pages
♻ ☆ Feature Reweighting for EEG-based Motor Imagery Classification
Classification of motor imagery (MI) using non-invasive electroencephalographic (EEG) signals is a critical objective as it is used to predict the intention of limb movements of a subject. In recent research, convolutional neural network (CNN) based methods have been widely utilized for MI-EEG classification. The challenges of training neural networks for MI-EEG signals classification include low signal-to-noise ratio, non-stationarity, non-linearity, and high complexity of EEG signals. The features computed by CNN-based networks on the highly noisy MI-EEG signals contain irrelevant information. Subsequently, the feature maps of the CNN-based network computed from the noisy and irrelevant features contain irrelevant information. Thus, many non-contributing features often mislead the neural network training and degrade the classification performance. Hence, a novel feature reweighting approach is proposed to address this issue. The proposed method gives a noise reduction mechanism named feature reweighting module that suppresses irrelevant temporal and channel feature maps. The feature reweighting module of the proposed method generates scores that reweight the feature maps to reduce the impact of irrelevant information. Experimental results show that the proposed method significantly improved the classification of MI-EEG signals of Physionet EEG-MMIDB and BCI Competition IV 2a datasets by a margin of 9.34% and 3.82%, respectively, compared to the state-of-the-art methods.
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection. The code is released at https://github.com/xinchen930/SSF-Strategic-Selection-and-Forgetting.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters, 2025
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
We have developed Aitomia - a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations. This evolving intelligent assistant platform is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running the atomistic simulations, monitoring their computation status, analyzing the simulation results, and summarizing them for the user in text and graphical forms. We achieve these goals by exploiting open-source large language models (LLMs, original and fine-tuned), rule-based agents, and a retrieval-augmented generation (RAG) system. Aitomia leverages the versatility of our MLatom ecosystem, supporting AI-enhanced computational chemistry tasks ranging from ground- to excited-state calculations such as geometry optimizations, thermochemistry, and spectra calculations. Aitomia is the first intelligent assistant publicly accessible online on a cloud computing platform for atomistic simulations of broad scope (Aitomistic Hub at https://aitomistic.xyz), while it may also be deployed locally as described at http://mlatom.com/aitomia. Aitomia is expected to lower the barrier to performing atomistic simulations, democratizing simulations, and accelerating research and development in the relevant fields.
Information Retrieval 19
☆ Evaluating Structured Output Robustness of Small Language Models for Open Attribute-Value Extraction from Clinical Notes ACL
We present a comparative analysis of the parseability of structured outputs generated by small language models for open attribute-value extraction from clinical notes. We evaluate three widely used serialization formats: JSON, YAML, and XML, and find that JSON consistently yields the highest parseability. Structural robustness improves with targeted prompting and larger models, but declines for longer documents and certain note types. Our error analysis identifies recurring format-specific failure patterns. These findings offer practical guidance for selecting serialization formats and designing prompts when deploying language models in privacy-sensitive clinical settings.
comment: To appear in the ACL Anthology
☆ Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ Deep Recommender Models Inference: Automatic Asymmetric Data Flow Optimization
Deep Recommender Models (DLRMs) inference is a fundamental AI workload accounting for more than 79% of the total AI workload in Meta's data centers. DLRMs' performance bottleneck is found in the embedding layers, which perform many random memory accesses to retrieve small embedding vectors from tables of various sizes. We propose the design of tailored data flows to speedup embedding look-ups. Namely, we propose four strategies to look up an embedding table effectively on one core, and a framework to automatically map the tables asymmetrically to the multiple cores of a SoC. We assess the effectiveness of our method using the Huawei Ascend AI accelerators, comparing it with the default Ascend compiler, and we perform high-level comparisons with Nvidia A100. Results show a speed-up varying from 1.5x up to 6.5x for real workload distributions, and more than 20x for extremely unbalanced distributions. Furthermore, the method proves to be much more independent of the query distribution than the baseline.
comment: 5 pages, 4 figures, conference: IEEE ICCD24
☆ Confidence and Stability of Global and Pairwise Scores in NLP Evaluation ACL
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
comment: 8 pages, accepted at ACL SRW 2025
☆ Enhanced Influence-aware Group Recommendation for Online Media Propagation
Group recommendation over social media streams has attracted significant attention due to its wide applications in domains such as e-commerce, entertainment, and online news broadcasting. By leveraging social connections and group behaviours, group recommendation (GR) aims to provide more accurate and engaging content to a set of users rather than individuals. Recently, influence-aware GR has emerged as a promising direction, as it considers the impact of social influence on group decision-making. In earlier work, we proposed Influence-aware Group Recommendation (IGR) to solve this task. However, this task remains challenging due to three key factors: the large and ever-growing scale of social graphs, the inherently dynamic nature of influence propagation within user groups, and the high computational overhead of real-time group-item matching. To tackle these issues, we propose an Enhanced Influence-aware Group Recommendation (EIGR) framework. First, we introduce a Graph Extraction-based Sampling (GES) strategy to minimise redundancy across multiple temporal social graphs and effectively capture the evolving dynamics of both groups and items. Second, we design a novel DYnamic Independent Cascade (DYIC) model to predict how influence propagates over time across social items and user groups. Finally, we develop a two-level hash-based User Group Index (UG-Index) to efficiently organise user groups and enable real-time recommendation generation. Extensive experiments on real-world datasets demonstrate that our proposed framework, EIGR, consistently outperforms state-of-the-art baselines in both effectiveness and efficiency.
☆ DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:2409.07500; text overlap with arXiv:2212.05399 by other authors
☆ Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
comment: 33 pages, 2 figures, 27 tables
☆ Far From Sight, Far From Mind: Inverse Distance Weighting for Graph Federated Recommendation
Graph federated recommendation systems offer a privacy-preserving alternative to traditional centralized recommendation architectures, which often raise concerns about data security. While federated learning enables personalized recommendations without exposing raw user data, existing aggregation methods overlook the unique properties of user embeddings in this setting. Indeed, traditional aggregation methods fail to account for their complexity and the critical role of user similarity in recommendation effectiveness. Moreover, evolving user interactions require adaptive aggregation while preserving the influence of high-relevance anchor users (the primary users before expansion in graph-based frameworks). To address these limitations, we introduce Dist-FedAvg, a novel distance-based aggregation method designed to enhance personalization and aggregation efficiency in graph federated learning. Our method assigns higher aggregation weights to users with similar embeddings, while ensuring that anchor users retain significant influence in local updates. Empirical evaluations on multiple datasets demonstrate that Dist-FedAvg consistently outperforms baseline aggregation techniques, improving recommendation accuracy while maintaining seamless integration into existing federated learning frameworks.
comment: 17 pages, 5 figures
☆ When LLMs Disagree: Diagnosing Relevance Filtering Bias and Retrieval Divergence in SDG Search SIGIR 2025
Large language models (LLMs) are increasingly used to assign document relevance labels in information retrieval pipelines, especially in domains lacking human-labeled data. However, different models often disagree on borderline cases, raising concerns about how such disagreement affects downstream retrieval. This study examines labeling disagreement between two open-weight LLMs, LLaMA and Qwen, on a corpus of scholarly abstracts related to Sustainable Development Goals (SDGs) 1, 3, and 7. We isolate disagreement subsets and examine their lexical properties, rank-order behavior, and classification predictability. Our results show that model disagreement is systematic, not random: disagreement cases exhibit consistent lexical patterns, produce divergent top-ranked outputs under shared scoring functions, and are distinguishable with AUCs above 0.74 using simple classifiers. These findings suggest that LLM-based filtering introduces structured variability in document retrieval, even under controlled prompting and shared ranking logic. We propose using classification disagreement as an object of analysis in retrieval evaluation, particularly in policy-relevant or thematic search tasks.
comment: Presented at LLM4Eval Workshop, SIGIR 2025 Padova, Italy, July 17, 2025
☆ The Future is Agentic: Definitions, Perspectives, and Open Challenges of Multi-Agent Recommender Systems
Large language models (LLMs) are rapidly evolving from passive engines of text generation into agentic entities that can plan, remember, invoke external tools, and co-operate with one another. This perspective paper investigates how such LLM agents (and societies thereof) can transform the design space of recommender systems. We introduce a unified formalism that (i) models an individual agent as a tuple comprising its language core, tool set, and hierarchical memory, and (ii) captures a multi-agent recommender as a triple of agents, shared environment, and communication protocol. Within this framework, we present four end-to-end use cases-interactive party planning, synthetic user-simulation for offline evaluation, multi-modal furniture recommendation, and brand-aligned explanation generation-each illustrating a distinct capability unlocked by agentic orchestration. We then surface five cross-cutting challenge families: protocol complexity, scalability, hallucination and error propagation, emergent misalignment (including covert collusion), and brand compliance. For each, we formalize the problem, review nascent mitigation strategies, and outline open research questions. The result is both a blueprint and an agenda: a blueprint that shows how memory-augmented, tool-using LLM agents can be composed into robust recommendation pipelines, and an agenda inviting the RecSys community to develop benchmarks, theoretical guarantees, and governance tools that keep pace with this new degree of autonomy. By unifying agentic abstractions with recommender objectives, the paper lays the groundwork for the next generation of personalized, trustworthy, and context-rich recommendation services.
☆ ManifoldMind: Dynamic Hyperbolic Reasoning for Trustworthy Recommendations
We introduce ManifoldMind, a probabilistic geometric recommender system for exploratory reasoning over semantic hierarchies in hyperbolic space. Unlike prior methods with fixed curvature and rigid embeddings, ManifoldMind represents users, items, and tags as adaptive-curvature probabilistic spheres, enabling personalised uncertainty modeling and geometry-aware semantic exploration. A curvature-aware semantic kernel supports soft, multi-hop inference, allowing the model to explore diverse conceptual paths instead of overfitting to shallow or direct interactions. Experiments on four public benchmarks show superior NDCG, calibration, and diversity compared to strong baselines. ManifoldMind produces explicit reasoning traces, enabling transparent, trustworthy, and exploration-driven recommendations in sparse or abstract domains.
☆ Uncertainty-Aware Complex Scientific Table Data Extraction
Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47\% of extraction results, the data quality can be improved by 30\%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.
♻ ☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Published in Applied Soft Computing (ASOC), 49 pages, 14 figures
♻ ☆ Towards Efficient Educational Chatbots: Benchmarking RAG Frameworks
Large Language Models (LLMs) have proven immensely beneficial in education by capturing vast amounts of literature-based information, allowing them to generate context without relying on external sources. In this paper, we propose a generative AI-powered GATE question-answering framework (GATE stands for Graduate Aptitude Test in Engineering) that leverages LLMs to explain GATE solutions and support students in their exam preparation. We conducted extensive benchmarking to select the optimal embedding model and LLM, evaluating our framework based on criteria such as latency, faithfulness, and relevance, with additional validation through human evaluation. Our chatbot integrates state-of-the-art embedding models and LLMs to deliver accurate, context-aware responses. Through rigorous experimentation, we identified configurations that balance performance and computational efficiency, ensuring a reliable chatbot to serve students' needs. Additionally, we discuss the challenges faced in data processing and modeling and implemented solutions. Our work explores the application of Retrieval-Augmented Generation (RAG) for GATE Q/A explanation tasks, and our findings demonstrate significant improvements in retrieval accuracy and response quality. This research offers practical insights for developing effective AI-driven educational tools while highlighting areas for future enhancement in usability and scalability.
comment: One of the co-authors is having conflict in the submission to arXiv due to many edits (we have to make changes in evaluation strategies, i.e. section 5); in the paper there are still formatting issues
♻ ☆ Neural Prioritisation for Web Crawling ICTIR 2025
Given the vast scale of the Web, crawling prioritisation techniques based on link graph traversal, popularity, link analysis, and textual content are frequently applied to surface documents that are most likely to be valuable. While existing techniques are effective for keyword-based search, both retrieval methods and user search behaviours are shifting from keyword-based matching to natural language semantic matching. The remarkable success of applying semantic matching and quality signals during ranking leads us to hypothesize that crawling could be improved by prioritizing Web pages with high semantic quality. To investigate this, we propose a semantic quality-driven prioritisation technique to enhance the effectiveness of crawling and align the crawler behaviour with recent shift towards natural language search. We embed semantic understanding directly into the crawling process -- leveraging recent neural semantic quality estimators to prioritise the crawling frontier -- with the goal of surfacing content that is semantically rich and valuable for modern search needs. Our experiments on the English subset of ClueWeb22-B and the Researchy Questions query set show that, compared to existing crawling techniques, neural crawling policies significantly improve harvest rate, maxNDCG, and search effectiveness during the early stages of crawling. Meanwhile, crawlers based on our proposed neural policies maintain comparable search performance on keyword queries from the MS MARCO Web Search query set. While this work does not propose a definitive and complete solution, it presents a forward-looking perspective on Web crawling and opens the door to a new line of research on leveraging semantic analysis to effectively align crawlers with the ongoing shift toward natural language search.
comment: Published at ACM ICTIR 2025
♻ ☆ MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
♻ ☆ Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32$\times$ storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-$p\%$ most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into $b$-bit strings ($b=\lceil\log_2 K\rceil$), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
comment: 9 pages
♻ ☆ WebANNS: Fast and Efficient Approximate Nearest Neighbor Search in Web Browsers SIGIR 2025
Approximate nearest neighbor search (ANNS) has become vital to modern AI infrastructure, particularly in retrieval-augmented generation (RAG) applications. Numerous in-browser ANNS engines have emerged to seamlessly integrate with popular LLM-based web applications, while addressing privacy protection and challenges of heterogeneous device deployments. However, web browsers present unique challenges for ANNS, including computational limitations, external storage access issues, and memory utilization constraints, which state-of-the-art (SOTA) solutions fail to address comprehensively. We propose WebANNS, a novel ANNS engine specifically designed for web browsers. WebANNS leverages WebAssembly to overcome computational bottlenecks, designs a lazy loading strategy to optimize data retrieval from external storage, and applies a heuristic approach to reduce memory usage. Experiments show that WebANNS is fast and memory efficient, achieving up to $743.8\times$ improvement in 99th percentile query latency over the SOTA engine, while reducing memory usage by up to 39\%. Note that WebANNS decreases query time from 10 seconds to the 10-millisecond range in browsers, making in-browser ANNS practical with user-acceptable latency.
comment: SIGIR 2025
♻ ☆ Large Language Models, and LLM-Based Agents, Should Be Used to Enhance the Digital Public Sphere
This paper argues that large language model-based recommenders can displace today's attention-allocation machinery. LLM-based recommenders would ingest open-web content, infer a user's natural-language goals, and present information that matches their reflective preferences. Properly designed, they could deliver personalization without industrial-scale data hoarding, return control to individuals, optimize for genuine ends rather than click-through proxies, and support autonomous attention management. Synthesizing evidence of current systems' harms with recent work on LLM-driven pipelines, we identify four key research hurdles: generating candidates without centralized data, maintaining computational efficiency, modeling preferences robustly, and defending against prompt-injection. None looks prohibitive; surmounting them would steer the digital public sphere toward democratic, human-centered values.
Computation and Language 84
☆ The Medium Is Not the Message: Deconfounding Text Embeddings via Linear Concept Erasure
Embedding-based similarity metrics between text sequences can be influenced not just by the content dimensions we most care about, but can also be biased by spurious attributes like the text's source or language. These document confounders cause problems for many applications, but especially those that need to pool texts from different corpora. This paper shows that a debiasing algorithm that removes information about observed confounders from the encoder representations substantially reduces these biases at a minimal computational cost. Document similarity and clustering metrics improve across every embedding variant and task we evaluate -- often dramatically. Interestingly, performance on out-of-distribution benchmarks is not impacted, indicating that the embeddings are not otherwise degraded.
☆ MEGA: xLSTM with Multihead Exponential Gated Fusion for Precise Aspect-based Sentiment Analysis
Aspect-based Sentiment Analysis (ABSA) is a critical Natural Language Processing (NLP) task that extracts aspects from text and determines their associated sentiments, enabling fine-grained analysis of user opinions. Existing ABSA methods struggle to balance computational efficiency with high performance: deep learning models often lack global context, transformers demand significant computational resources, and Mamba-based approaches face CUDA dependency and diminished local correlations. Recent advancements in Extended Long Short-Term Memory (xLSTM) models, particularly their efficient modeling of long-range dependencies, have significantly advanced the NLP community. However, their potential in ABSA remains untapped. To this end, we propose xLSTM with Multihead Exponential Gated Fusion (MEGA), a novel framework integrating a bi-directional mLSTM architecture with forward and partially flipped backward (PF-mLSTM) streams. The PF-mLSTM enhances localized context modeling by processing the initial sequence segment in reverse with dedicated parameters, preserving critical short-range patterns. We further introduce an mLSTM-based multihead cross exponential gated fusion mechanism (MECGAF) that dynamically combines forward mLSTM outputs as query and key with PF-mLSTM outputs as value, optimizing short-range dependency capture while maintaining global context and efficiency. Experimental results on three benchmark datasets demonstrate that MEGA outperforms state-of-the-art baselines, achieving superior accuracy and efficiency in ABSA tasks.
comment: 6, 1 figure
☆ Matching and Linking Entries in Historical Swedish Encyclopedias
The \textit{Nordisk familjebok} is a Swedish encyclopedia from the 19th and 20th centuries. It was written by a team of experts and aimed to be an intellectual reference, stressing precision and accuracy. This encyclopedia had four main editions remarkable by their size, ranging from 20 to 38 volumes. As a consequence, the \textit{Nordisk familjebok} had a considerable influence in universities, schools, the media, and society overall. As new editions were released, the selection of entries and their content evolved, reflecting intellectual changes in Sweden. In this paper, we used digitized versions from \textit{Project Runeberg}. We first resegmented the raw text into entries and matched pairs of entries between the first and second editions using semantic sentence embeddings. We then extracted the geographical entries from both editions using a transformer-based classifier and linked them to Wikidata. This enabled us to identify geographic trends and possible shifts between the first and second editions, written between 1876-1899 and 1904-1926, respectively. Interpreting the results, we observe a small but significant shift in geographic focus away from Europe and towards North America, Africa, Asia, Australia, and northern Scandinavia from the first to the second edition, confirming the influence of the First World War and the rise of new powers. The code and data are available on GitHub at https://github.com/sibbo/nordisk-familjebok.
comment: 10 pages, 3 figures
☆ Event-based evaluation of abstractive news summarization ACL 2025
An abstractive summary of a news article contains its most important information in a condensed version. The evaluation of automatically generated summaries by generative language models relies heavily on human-authored summaries as gold references, by calculating overlapping units or similarity scores. News articles report events, and ideally so should the summaries. In this work, we propose to evaluate the quality of abstractive summaries by calculating overlapping events between generated summaries, reference summaries, and the original news articles. We experiment on a richly annotated Norwegian dataset comprising both events annotations and summaries authored by expert human annotators. Our approach provides more insight into the event information contained in the summaries.
comment: to appear at GEM2 workshop@ACL 2025
☆ SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
☆ La Leaderboard: A Large Language Model Leaderboard for Spanish Varieties and Languages of Spain and Latin America ACL 2025
Leaderboards showcase the current capabilities and limitations of Large Language Models (LLMs). To motivate the development of LLMs that represent the linguistic and cultural diversity of the Spanish-speaking community, we present La Leaderboard, the first open-source leaderboard to evaluate generative LLMs in languages and language varieties of Spain and Latin America. La Leaderboard is a community-driven project that aims to establish an evaluation standard for everyone interested in developing LLMs for the Spanish-speaking community. This initial version combines 66 datasets in Basque, Catalan, Galician, and different Spanish varieties, showcasing the evaluation results of 50 models. To encourage community-driven development of leaderboards in other languages, we explain our methodology, including guidance on selecting the most suitable evaluation setup for each downstream task. In particular, we provide a rationale for using fewer few-shot examples than typically found in the literature, aiming to reduce environmental impact and facilitate access to reproducible results for a broader research community.
comment: Accepted at ACL 2025 Main
☆ Should We Still Pretrain Encoders with Masked Language Modeling?
Learning high-quality text representations is fundamental to a wide range of NLP tasks. While encoder pretraining has traditionally relied on Masked Language Modeling (MLM), recent evidence suggests that decoder models pretrained with Causal Language Modeling (CLM) can be effectively repurposed as encoders, often surpassing traditional encoders on text representation benchmarks. However, it remains unclear whether these gains reflect an inherent advantage of the CLM objective or arise from confounding factors such as model and data scale. In this paper, we address this question through a series of large-scale, carefully controlled pretraining ablations, training a total of 30 models ranging from 210 million to 1 billion parameters, and conducting over 15,000 fine-tuning and evaluation runs. We find that while training with MLM generally yields better performance across text representation tasks, CLM-trained models are more data-efficient and demonstrate improved fine-tuning stability. Building on these findings, we experimentally show that a biphasic training strategy that sequentially applies CLM and then MLM, achieves optimal performance under a fixed computational training budget. Moreover, we demonstrate that this strategy becomes more appealing when initializing from readily available pretrained CLM models (from the existing LLM ecosystem), reducing the computational burden needed to train best-in-class encoder models. We release all project artifacts at https://hf.co/MLMvsCLM to foster further research.
comment: 23 pages, 10 figures, 17 tables
☆ Discourse Heuristics For Paradoxically Moral Self-Correction
Moral self-correction has emerged as a promising approach for aligning the output of Large Language Models (LLMs) with human moral values. However, moral self-correction techniques are subject to two primary paradoxes. First, despite empirical and theoretical evidence to support the effectiveness of self-correction, this LLM capability only operates at a superficial level. Second, while LLMs possess the capability of self-diagnosing immoral aspects of their output, they struggle to identify the cause of this moral inconsistency during their self-correction process. To better understand and address these paradoxes, we analyze the discourse constructions in fine-tuning corpora designed to enhance moral self-correction, uncovering the existence of the heuristics underlying effective constructions. We demonstrate that moral self-correction relies on discourse constructions that reflect heuristic shortcuts, and that the presence of these heuristic shortcuts during self-correction leads to inconsistency when attempting to enhance both self-correction and self-diagnosis capabilities jointly. Based on our findings, we propose a solution to improve moral self-correction by leveraging the heuristics of curated datasets. We also highlight the generalization challenges of this capability, particularly in terms of learning from situated context and model scales.
☆ Enhancing LLM Agent Safety via Causal Influence Prompting ACL 2025
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.
comment: Accepted at ACL 2025 Findings, Source code: https://github.com/HahmDY/causal_influence_prompting.git
☆ The Cognate Data Bottleneck in Language Phylogenetics
To fully exploit the potential of computational phylogenetic methods for cognate data one needs to leverage specific (complex) models an machine learning-based techniques. However, both approaches require datasets that are substantially larger than the manually collected cognate data currently available. To the best of our knowledge, there exists no feasible approach to automatically generate larger cognate datasets. We substantiate this claim by automatically extracting datasets from BabelNet, a large multilingual encyclopedic dictionary. We demonstrate that phylogenetic inferences on the respective character matrices yield trees that are largely inconsistent with the established gold standard ground truth trees. We also discuss why we consider it as being unlikely to be able to extract more suitable character matrices from other multilingual resources. Phylogenetic data analysis approaches that require larger datasets can therefore not be applied to cognate data. Thus, it remains an open question how, and if these computational approaches can be applied in historical linguistics.
☆ ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models ICCV 2025
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.
comment: Accepted by ICCV 2025. Project page: https://zifuwan.github.io/ONLY/
☆ MemeCMD: An Automatically Generated Chinese Multi-turn Dialogue Dataset with Contextually Retrieved Memes
Memes are widely used in online social interactions, providing vivid, intuitive, and often humorous means to express intentions and emotions. Existing dialogue datasets are predominantly limited to either manually annotated or pure-text conversations, lacking the expressiveness and contextual nuance that multimodal interactions provide.To address these challenges, we introduce MemeCMD, an automatically generated Chinese Multi-turn Dialogue dataset with contextually retrieved memes. Our dataset combines a large-scale, MLLM-annotated meme library with dialogues auto-generated by dual agents across diverse scenarios. We introduce a retrieval framework and adaptive threshold to ensure contextually relevant, naturally spaced meme usage. Experiments demonstrate the effectiveness of our approach in generating contextually appropriate and diverse meme-incorporated dialogues, offering a scalable and privacy-preserving resource for advancing multimodal conversational AI.
☆ Scaling Laws Are Unreliable for Downstream Tasks: A Reality Check
Downstream scaling laws aim to predict task performance at larger scales from pretraining losses at smaller scales. Whether this prediction should be possible is unclear: some works demonstrate that task performance follows clear linear scaling trends under transformation, whereas others point out fundamental challenges to downstream scaling laws, such as emergence and inverse scaling. In this work, we conduct a meta-analysis of existing data on downstream scaling laws, finding that close fit to linear scaling laws only occurs in a minority of cases: 39% of the time. Furthermore, seemingly benign changes to the experimental setting can completely change the scaling trend. Our analysis underscores the need to understand the conditions under which scaling laws succeed. To fully model the relationship between pretraining loss and downstream task performance, we must embrace the cases in which scaling behavior deviates from linear trends.
☆ Mathematics Isn't Culture-Free: Probing Cultural Gaps via Entity and Scenario Perturbations
Although mathematics is often considered culturally neutral, the way mathematical problems are presented can carry implicit cultural context. Existing benchmarks like GSM8K are predominantly rooted in Western norms, including names, currencies, and everyday scenarios. In this work, we create culturally adapted variants of the GSM8K test set for five regions Africa, India, China, Korea, and Japan using prompt-based transformations followed by manual verification. We evaluate six large language models (LLMs), ranging from 8B to 72B parameters, across five prompting strategies to assess their robustness to cultural variation in math problem presentation. Our findings reveal a consistent performance gap: models perform best on the original US-centric dataset and comparatively worse on culturally adapted versions. However, models with reasoning capabilities are more resilient to these shifts, suggesting that deeper reasoning helps bridge cultural presentation gaps in mathematical tasks
☆ Verifiable Natural Language to Linear Temporal Logic Translation: A Benchmark Dataset and Evaluation Suite
Empirical evaluation of state-of-the-art natural-language (NL) to temporal-logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies measure only the accuracy of the translation of NL logic into formal TL, ignoring a system's capacity to ground atomic propositions into new scenarios or environments. This is a critical feature, necessary for the verification of resulting formulas in a concrete state space. Consequently, most NL-to-TL translation frameworks propose their own bespoke dataset in which the correct grounding is known a-priori, inflating performance metrics and neglecting the need for extensible, domain-general systems. In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark ( VLTL-Bench), a unifying benchmark that measures verification and verifiability of automated NL-to-LTL translation. The dataset consists of three unique state spaces and thousands of diverse natural language specifications and corresponding formal specifications in temporal logic. Moreover, the benchmark contains sample traces to validate the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researches to improve and evaluate different substeps of the overall problem. To encourage methodologically sound advances in verifiable NL-to-LTL translation approaches, we release VLTL-Bench here: https://www.kaggle.com/datasets/dubascudes/vltl bench.
☆ TransLaw: Benchmarking Large Language Models in Multi-Agent Simulation of the Collaborative Translation
Multi-agent systems empowered by large language models (LLMs) have demonstrated remarkable capabilities in a wide range of downstream applications, including machine translation. However, the potential of LLMs in translating Hong Kong legal judgments remains uncertain due to challenges such as intricate legal terminology, culturally embedded nuances, and strict linguistic structures. In this work, we introduce TransLaw, a novel multi-agent framework implemented for real-world Hong Kong case law translation. It employs three specialized agents, namely, Translator, Annotator, and Proofreader, to collaboratively produce translations for high accuracy in legal meaning, appropriateness in style, and adequate coherence and cohesion in structure. This framework supports customizable LLM configurations and achieves tremendous cost reduction compared to professional human translation services. We evaluated its performance using 13 open-source and commercial LLMs as agents and obtained interesting findings, including that it surpasses GPT-4o in legal semantic accuracy, structural coherence, and stylistic fidelity, yet trails human experts in contextualizing complex terminology and stylistic naturalness. Our platform website is available at CityUHK, and our bilingual judgment corpus used for the evaluation is available at Hugging Face.
comment: arXiv admin note: text overlap with arXiv:2501.09444; text overlap with arXiv:2409.20288 by other authors
☆ Stylometry recognizes human and LLM-generated texts in short samples
The paper explores stylometry as a method to distinguish between texts created by Large Language Models (LLMs) and humans, addressing issues of model attribution, intellectual property, and ethical AI use. Stylometry has been used extensively to characterise the style and attribute authorship of texts. By applying it to LLM-generated texts, we identify their emergent writing patterns. The paper involves creating a benchmark dataset based on Wikipedia, with (a) human-written term summaries, (b) texts generated purely by LLMs (GPT-3.5/4, LLaMa 2/3, Orca, and Falcon), (c) processed through multiple text summarisation methods (T5, BART, Gensim, and Sumy), and (d) rephrasing methods (Dipper, T5). The 10-sentence long texts were classified by tree-based models (decision trees and LightGBM) using human-designed (StyloMetrix) and n-gram-based (our own pipeline) stylometric features that encode lexical, grammatical, syntactic, and punctuation patterns. The cross-validated results reached a performance of up to .87 Matthews correlation coefficient in the multiclass scenario with 7 classes, and accuracy between .79 and 1. in binary classification, with the particular example of Wikipedia and GPT-4 reaching up to .98 accuracy on a balanced dataset. Shapley Additive Explanations pinpointed features characteristic of the encyclopaedic text type, individual overused words, as well as a greater grammatical standardisation of LLMs with respect to human-written texts. These results show -- crucially, in the context of the increasingly sophisticated LLMs -- that it is possible to distinguish machine- from human-generated texts at least for a well-defined text type.
☆ ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering ACL 2025
Topic model and document-clustering evaluations either use automated metrics that align poorly with human preferences or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators -- or an LLM-based proxy -- review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxies are statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations. Package, web interface, and data are at https://github.com/ahoho/proxann
comment: Accepted to ACL 2025 (Main)
☆ Many LLMs Are More Utilitarian Than One
Moral judgment is integral to large language model (LLM) alignment and social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function collectively during collaboration, compared to individual agents. In human moral judgment, group deliberation leads to a utilitarian boost: a tendency to endorse norm violations that maximize benefits for the greatest number of people despite harms. We study whether a similar dynamic emerges in multi-agent LLM systems. We tested six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reasoned independently, and (2) Group, where they engaged in multi-turn discussions in pairs or triads. In personal moral dilemmas, where agents must decide to directly harm one individual to maximize the utility for others, all models found moral violations to be more acceptable when part of a group than individually, similar to human experiments. Some models endorsed actions that maximized overall well-being, even if they benefited strangers over familiar individuals. Others became more willing to violate moral norms in groups. However, while human groups show a similar action bias, the mechanism for their utilitarian boost differs from LLMs. Whereas the human shift comes from heightened sensitivity to decision outcomes, LLM groups show either reduced norm sensitivity or enhanced impartiality. This suggests that while the surface behavior of LLM collectives mimics human group reasoning, the underlying drivers differ. We discuss the implications for AI alignment, multi-agent design, and artificial moral reasoning.
comment: 9 pages, 8 Figures, 7 tables
☆ Generative AI and the future of scientometrics: current topics and future questions
The aim of this paper is to review the use of GenAI in scientometrics, and to begin a debate on the broader implications for the field. First, we provide an introduction on GenAI's generative and probabilistic nature as rooted in distributional linguistics. And we relate this to the debate on the extent to which GenAI might be able to mimic human 'reasoning'. Second, we leverage this distinction for a critical engagement with recent experiments using GenAI in scientometrics, including topic labelling, the analysis of citation contexts, predictive applications, scholars' profiling, and research assessment. GenAI shows promise in tasks where language generation dominates, such as labelling, but faces limitations in tasks that require stable semantics, pragmatic reasoning, or structured domain knowledge. However, these results might become quickly outdated. Our recommendation is, therefore, to always strive to systematically compare the performance of different GenAI models for specific tasks. Third, we inquire whether, by generating large amounts of scientific language, GenAI might have a fundamental impact on our field by affecting textual characteristics used to measure science, such as authors, words, and references. We argue that careful empirical work and theoretical reflection will be essential to remain capable of interpreting the evolving patterns of knowledge production.
☆ A Diagrammatic Calculus for a Functional Model of Natural Language Semantics
In this paper, we study a functional programming approach to natural language semantics, allowing us to increase the expressivity of a more traditional denotation style. We will formalize a category based type and effect system, and construct a diagrammatic calculus to model parsing and handling of effects, and use it to efficiently compute the denotations for sentences.
comment: 15 pages, preprint before submission to CSL 2026
☆ LitBench: A Benchmark and Dataset for Reliable Evaluation of Creative Writing
Evaluating creative writing generated by large language models (LLMs) remains challenging because open-ended narratives lack ground truths. Without performant automated evaluation methods, off-the-shelf (OTS) language models are employed as zero-shot judges, yet their reliability is unclear in this context. In pursuit of robust evaluation for creative writing, we introduce LitBench, the first standardized benchmark and paired dataset for creative writing verification, comprising a held-out test set of 2,480 debiased, human-labeled story comparisons drawn from Reddit and a 43,827-pair training corpus of human preference labels. Using LitBench, we (i) benchmark zero-shot LLM judges, (ii) train Bradley Terry and generative reward models, and (iii) conduct an online human study to validate reward model rankings on newly LLM-generated stories. Our benchmark identifies Claude-3.7-Sonnet as the strongest off-the-shelf judge, reaching 73% agreement with human preferences; among trained reward models, Bradley-Terry and Generative reward models both attain an accuracy of 78%, outperforming all off-the-shelf judges. An online human study further confirms that our trained reward models consistently align with human preferences in novel LLM-generated stories. We release LitBench and reward models at https://huggingface.co/collections/SAA-Lab/litbench-68267b5da3aafe58f9e43461, providing a vetted resource for reliable, automated evaluation and optimization of creative writing systems.
☆ Safe Low Bandwidth SPV: A Formal Treatment of Simplified Payment Verification Protocols and Security Bounds
This paper presents a complete formal specification, protocol description, and mathematical proof structure for Simplified Payment Verification (SPV) as originally defined in the Bitcoin whitepaper \cite{nakamoto2008}. In stark contrast to the misrepresentations proliferated by popular implementations, we show that SPV is not only secure under bounded adversarial assumptions but strictly optimal for digital cash systems requiring scalable and verifiable transaction inclusion. We reconstruct the SPV protocol from first principles, grounding its verification model in symbolic automata, Merkle membership relations, and chain-of-proof dominance predicates. Through rigorous probabilistic and game-theoretic analysis, we derive the economic bounds within which the protocol operates securely and verify its liveness and safety properties under partial connectivity, hostile relay networks, and adversarial propagation delay. Our specification further introduces low-bandwidth optimisations such as adaptive polling and compressed header synchronisation while preserving correctness. This document serves both as a blueprint for secure SPV implementation and a rebuttal of common misconceptions surrounding non-validating clients.
comment: 56 pages 5 images
☆ AI Analyst: Framework and Comprehensive Evaluation of Large Language Models for Financial Time Series Report Generation
This paper explores the potential of large language models (LLMs) to generate financial reports from time series data. We propose a framework encompassing prompt engineering, model selection, and evaluation. We introduce an automated highlighting system to categorize information within the generated reports, differentiating between insights derived directly from time series data, stemming from financial reasoning, and those reliant on external knowledge. This approach aids in evaluating the factual grounding and reasoning capabilities of the models. Our experiments, utilizing both data from the real stock market indices and synthetic time series, demonstrate the capability of LLMs to produce coherent and informative financial reports.
☆ Contrasting Cognitive Styles in Vision-Language Models: Holistic Attention in Japanese Versus Analytical Focus in English
Cross-cultural research in perception and cognition has shown that individuals from different cultural backgrounds process visual information in distinct ways. East Asians, for example, tend to adopt a holistic perspective, attending to contextual relationships, whereas Westerners often employ an analytical approach, focusing on individual objects and their attributes. In this study, we investigate whether Vision-Language Models (VLMs) trained predominantly on different languages, specifically Japanese and English, exhibit similar culturally grounded attentional patterns. Using comparative analysis of image descriptions, we examine whether these models reflect differences in holistic versus analytic tendencies. Our findings suggest that VLMs not only internalize the structural properties of language but also reproduce cultural behaviors embedded in the training data, indicating that cultural cognition may implicitly shape model outputs.
☆ Leveraging Large Language Models for Spontaneous Speech-Based Suicide Risk Detection
Early identification of suicide risk is crucial for preventing suicidal behaviors. As a result, the identification and study of patterns and markers related to suicide risk have become a key focus of current research. In this paper, we present the results of our work in the 1st SpeechWellness Challenge (SW1), which aims to explore speech as a non-invasive and easily accessible mental health indicator for identifying adolescents at risk of suicide.Our approach leverages large language model (LLM) as the primary tool for feature extraction, alongside conventional acoustic and semantic features. The proposed method achieves an accuracy of 74\% on the test set, ranking first in the SW1 challenge. These findings demonstrate the potential of LLM-based methods for analyzing speech in the context of suicide risk assessment.
comment: Accepted to Interspeech 2025
☆ SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to large language model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}
☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning.Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
☆ TUM-MiKaNi at SemEval-2025 Task 3: Towards Multilingual and Knowledge-Aware Non-factual Hallucination Identification SemEval-2025
Hallucinations are one of the major problems of LLMs, hindering their trustworthiness and deployment to wider use cases. However, most of the research on hallucinations focuses on English data, neglecting the multilingual nature of LLMs. This paper describes our submission to the SemEval-2025 Task-3 - Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. We propose a two-part pipeline that combines retrieval-based fact verification against Wikipedia with a BERT-based system fine-tuned to identify common hallucination patterns. Our system achieves competitive results across all languages, reaching top-10 results in eight languages, including English. Moreover, it supports multiple languages beyond the fourteen covered by the shared task. This multilingual hallucination identifier can help to improve LLM outputs and their usefulness in the future.
comment: 6 pages, 3 figures, SemEval-2025 Task 3, ACL
☆ Methodological Rigour in Algorithm Application: An Illustration of Topic Modelling Algorithm
The rise of advanced computational algorithms has opened new avenues for computationally intensive research approaches to theory development. However, the opacity of these algorithms and lack of transparency and rigour in their application pose methodological challenges, potentially undermining trust in research. The discourse on methodological rigour in this new genre of research is still emerging. Against this backdrop, I attempt to offer guidance on methodological rigour, particularly in the context of topic modelling algorithms. By illustrating the application of the structural topic modelling algorithm and presenting a set of guidelines, I discuss how to ensure rigour in topic modelling studies. Although the guidelines are for the application of topic modelling algorithms, they can be applied to other algorithms with context-specific adjustments. The guidelines are helpful, especially for novice researchers applying topic modelling, and editors and reviewers handling topic modelling manuscripts. I contribute to the literature on topic modelling and join the emerging dialogue on methodological rigour in computationally intensive theory construction research.
☆ Capsule Network-Based Semantic Intent Modeling for Human-Computer Interaction
This paper proposes a user semantic intent modeling algorithm based on Capsule Networks to address the problem of insufficient accuracy in intent recognition for human-computer interaction. The method represents semantic features in input text through a vectorized capsule structure. It uses a dynamic routing mechanism to transfer information across multiple capsule layers. This helps capture hierarchical relationships and part-whole structures between semantic entities more effectively. The model uses a convolutional feature extraction module as the low-level encoder. After generating initial semantic capsules, it forms high-level abstract intent representations through an iterative routing process. To further enhance performance, a margin-based mechanism is introduced into the loss function. This improves the model's ability to distinguish between intent classes. Experiments are conducted using a public natural language understanding dataset. Multiple mainstream models are used for comparison. Results show that the proposed model outperforms traditional methods and other deep learning structures in terms of accuracy, F1-score, and intent detection rate. The study also analyzes the effect of the number of dynamic routing iterations on model performance. A convergence curve of the loss function during training is provided. These results verify the stability and effectiveness of the proposed method in semantic modeling. Overall, this study presents a new structured modeling approach to improve intent recognition under complex semantic conditions.
☆ NIRANTAR: Continual Learning with New Languages and Domains on Real-world Speech Data
We introduce Nirantar, a comprehensive framework for evaluating continual learning (CL) in multilingual and multi-domain ASR. Designed to reflect real-world CL challenges, Nirantar leverages data collected incrementally across 22 languages and 208 districts in India through natural episodes. This enables evaluation across Language-Incremental (LIL), Domain-Incremental (DIL), and the novel Language-Incremental Domain-Incremental Learning (LIDIL) scenarios. Unlike prior work that relies on simulated episodes, Nirantar presents dynamic, non-uniform language and domain shifts, making it an ideal testbed for CL research. With 3250 hours of human-transcribed speech, including 1720 hours newly introduced in this work, our framework enables systematic benchmarking of CL methods. We evaluate existing approaches and demonstrate that no single method performs consistently well, underscoring the need for more robust CL strategies.
comment: Accepted in Interspecch 2025
☆ TeamCMU at Touché: Adversarial Co-Evolution for Advertisement Integration and Detection in Conversational Search
As conversational search engines increasingly adopt generation-based paradigms powered by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), the integration of advertisements into generated responses presents both commercial opportunities and challenges for user experience. Unlike traditional search, where advertisements are clearly delineated, generative systems blur the boundary between informational content and promotional material, raising concerns around transparency and trust. In this work, we propose a modular pipeline for advertisement management in RAG-based conversational systems, consisting of an ad-rewriter for seamless ad integration and a robust ad-classifier for detection. We leverage synthetic data to train high-performing classifiers, which are then used to guide two complementary ad-integration strategies: supervised fine-tuning of the ad-rewriter and a best-of-N sampling approach that selects the least detectable ad-integrated response among multiple candidates. Our evaluation focuses on two core questions: the effectiveness of ad classifiers in detecting diverse ad integration strategies, and the training methods that best support coherent, minimally intrusive ad insertion. Experimental results show that our ad-classifier, trained on synthetic advertisement data inspired by marketing strategies and enhanced through curriculum learning, achieves robust detection performance. Additionally, we demonstrate that classifier-guided optimization, through both fine-tuning and best-of-N sampling, significantly improves ad stealth, enabling more seamless integration. These findings contribute an adversarial co-evolution framework for developing more sophisticated ad-aware generative search systems and robust ad classifiers.
☆ Beat and Downbeat Tracking in Performance MIDI Using an End-to-End Transformer Architecture
Beat tracking in musical performance MIDI is a challenging and important task for notation-level music transcription and rhythmical analysis, yet existing methods primarily focus on audio-based approaches. This paper proposes an end-to-end transformer-based model for beat and downbeat tracking in performance MIDI, leveraging an encoder-decoder architecture for sequence-to-sequence translation of MIDI input to beat annotations. Our approach introduces novel data preprocessing techniques, including dynamic augmentation and optimized tokenization strategies, to improve accuracy and generalizability across different datasets. We conduct extensive experiments using the A-MAPS, ASAP, GuitarSet, and Leduc datasets, comparing our model against state-of-the-art hidden Markov models (HMMs) and deep learning-based beat tracking methods. The results demonstrate that our model outperforms existing symbolic music beat tracking approaches, achieving competitive F1-scores across various musical styles and instruments. Our findings highlight the potential of transformer architectures for symbolic beat tracking and suggest future integration with automatic music transcription systems for enhanced music analysis and score generation.
comment: Accepted to the 22nd Sound and Music Computing Conference (SMC), 2025
☆ Pitfalls of Evaluating Language Models with Open Benchmarks
Open Large Language Model (LLM) benchmarks, such as HELM and BIG-bench, offer standardized, transparent protocols that facilitate the fair comparison, reproducibility, and iterative advancement of Language Models (LMs). However, their openness also introduces critical and underexplored pitfalls. This study exposes these weaknesses by systematically constructing ``cheating'' models -- smaller variants of BART, T5, and GPT-2 fine-tuned directly on public test sets -- which achieve top rankings on a prominent open, holistic benchmark (HELM) despite poor generalization and limited practical utility. Our findings underscore three key insights: \ca high leaderboard performance on open benchmarks may not always reflect real-world effectiveness; \cb private or dynamic benchmarks must complement open evaluations to safeguard integrity; and \cc a fundamental reevaluation of current benchmarking practices is essential to ensure robust and trustworthy LM assessments.
☆ Overcoming Long-Context Limitations of State-Space Models via Context-Dependent Sparse Attention
Efficient long-context modeling remains a critical challenge for natural language processing (NLP), as the time complexity of the predominant Transformer architecture scales quadratically with the sequence length. While state-space models (SSMs) offer alternative sub-quadratic solutions, they struggle to capture long-range dependencies effectively. In this work, we focus on analyzing and improving the long-context modeling capabilities of SSMs. We show that the widely used synthetic task, associative recall, which requires a model to recall a value associated with a single key without context, insufficiently represents the complexities of real-world long-context modeling. To address this limitation, we extend the associative recall to a novel synthetic task, \emph{joint recall}, which requires a model to recall the value associated with a key given in a specified context. Theoretically, we prove that SSMs do not have the expressiveness to solve multi-query joint recall in sub-quadratic time complexity. To resolve this issue, we propose a solution based on integrating SSMs with Context-Dependent Sparse Attention (CDSA), which has the expressiveness to solve multi-query joint recall with sub-quadratic computation. To bridge the gap between theoretical analysis and real-world applications, we propose locality-sensitive Hashing Attention with sparse Key Selection (HAX), which instantiates the theoretical solution and is further tailored to natural language domains. Extensive experiments on both synthetic and real-world long-context benchmarks show that HAX consistently outperforms SSM baselines and SSMs integrated with context-independent sparse attention (CISA).
comment: Proceedings of the 42nd International Conference on Machine Learning, ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models, 18 pages, 9 figures
☆ Beyond Sociodemographic Prompting: Using Supervision to Align LLMs with Human Response Distributions
The ability to accurately predict how different population groups would answer subjective questions would have great value. In this work, we show that use of relatively simple supervision can greatly improve language model alignment with diverse population groups, as measured over three datasets spanning various topics. Beyond evaluating average performance, we also report how alignment varies across specific groups. The simplicity and generality of our approach promotes easy adoption, while our broad findings provide useful guidance for when to use or not use our approach in practice. By conducting evaluation over many LLMs and prompting strategies, along with open-sourcing our work, we provide a useful benchmark to stimulate future research.
☆ Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning
Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? To answer this question, we evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks, including math, scientific QA, agent planning, coding, and standard instruction-following. We surprisingly find that most models that succeed in math fail to transfer their gains to other domains. To rigorously study this phenomenon, we conduct controlled experiments on Qwen3-14B models using math-only data but different tuning methods. We find that reinforcement learning (RL)-tuned models generalize well across domains, while supervised fine-tuning (SFT)-tuned models often forget general capabilities. Latent-space representation and token-space distribution shift analyses reveal that SFT induces substantial representation and output drift, while RL preserves general-domain structure. Our results suggest a need to rethink standard post-training recipes, particularly the reliance on SFT-distilled data for advancing reasoning models.
☆ Flexible Language Modeling in Continuous Space with Transformer-based Autoregressive Flows
Autoregressive models have driven remarkable progress in language modeling. Their foundational reliance on discrete tokens, unidirectional context, and single-pass decoding, while central to their success, also inspires the exploration of a design space that could offer new axes of modeling flexibility. In this work, we explore an alternative paradigm, shifting language modeling from a discrete token space to a continuous latent space. We propose a novel framework TarFlowLM, that employs transformer-based autoregressive normalizing flows to model these continuous representations. This approach unlocks substantial flexibility, enabling the construction of models that can capture global bi-directional context through stacked, alternating-direction autoregressive transformations, support block-wise generation with flexible token patch sizes, and facilitate a hierarchical multi-pass generation process. We further propose new mixture-based coupling transformations designed to capture complex dependencies within the latent space shaped by discrete data, and demonstrate theoretical connections to conventional discrete autoregressive models. Extensive experiments on language modeling benchmarks demonstrate strong likelihood performance and highlight the flexible modeling capabilities inherent in our framework.
♻ ☆ Capturing Visualization Design Rationale IEEE VIS 2025
Prior natural language datasets for data visualization have focused on tasks such as visualization literacy assessment, insight generation, and visualization generation from natural language instructions. These studies often rely on controlled setups with purpose-built visualizations and artificially constructed questions. As a result, they tend to prioritize the interpretation of visualizations, focusing on decoding visualizations rather than understanding their encoding. In this paper, we present a new dataset and methodology for probing visualization design rationale through natural language. We leverage a unique source of real-world visualizations and natural language narratives: literate visualization notebooks created by students as part of a data visualization course. These notebooks combine visual artifacts with design exposition, in which students make explicit the rationale behind their design decisions. We also use large language models (LLMs) to generate and categorize question-answer-rationale triples from the narratives and articulations in the notebooks. We then carefully validate the triples and curate a dataset that captures and distills the visualization design choices and corresponding rationales of the students.
comment: To be presented at IEEE VIS 2025
♻ ☆ Flow-Modulated Scoring for Semantic-Aware Knowledge Graph Completion
Effective modeling of multifaceted relations is pivotal for Knowledge Graph Completion (KGC). However, a majority of existing approaches are predicated on static, embedding-based scoring, exhibiting inherent limitations in capturing contextual dependencies and relational dynamics. Addressing this gap, we propose the Flow-Modulated Scoring (FMS) framework. FMS comprises two principal components: (1) a semantic context learning module that encodes context-sensitive entity representations, and (2) a conditional flow-matching module designed to learn the dynamic transformation from a head to a tail embedding, governed by the aforementioned context. The resultant predictive vector field, representing the context-informed relational path, serves to dynamically refine the initial static score of an entity pair. Through this synergy of context-aware static representations and conditioned dynamic information, FMS facilitates a more profound modeling of relational semantics. Comprehensive evaluations on several standard benchmarks demonstrate that our proposed method surpasses prior state-of-the-art results.
comment: 10 pages
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Intertextual Parallel Detection in Biblical Hebrew: A Transformer-Based Benchmark
Identifying parallel passages in biblical Hebrew (BH) is central to biblical scholarship for understanding intertextual relationships. Traditional methods rely on manual comparison, a labor-intensive process prone to human error. This study evaluates the potential of pre-trained transformer-based language models, including E5, AlephBERT, MPNet, and LaBSE, for detecting textual parallels in the Hebrew Bible. Focusing on known parallels between Samuel/Kings and Chronicles, I assessed each model's capability to generate word embeddings distinguishing parallel from non-parallel passages. Using cosine similarity and Wasserstein Distance measures, I found that E5 and AlephBERT show promise; E5 excels in parallel detection, while AlephBERT demonstrates stronger non-parallel differentiation. These findings indicate that pre-trained models can enhance the efficiency and accuracy of detecting intertextual parallels in ancient texts, suggesting broader applications for ancient language studies.
♻ ☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
♻ ☆ Text Production and Comprehension by Human and Artificial Intelligence: Interdisciplinary Workshop Report
This report synthesizes the outcomes of a recent interdisciplinary workshop that brought together leading experts in cognitive psychology, language learning, and artificial intelligence (AI)-based natural language processing (NLP). The workshop, funded by the National Science Foundation, aimed to address a critical knowledge gap in our understanding of the relationship between AI language models and human cognitive processes in text comprehension and composition. Through collaborative dialogue across cognitive, linguistic, and technological perspectives, workshop participants examined the underlying processes involved when humans produce and comprehend text, and how AI can both inform our understanding of these processes and augment human capabilities. The workshop revealed emerging patterns in the relationship between large language models (LLMs) and human cognition, with highlights on both the capabilities of LLMs and their limitations in fully replicating human-like language understanding and generation. Key findings include the potential of LLMs to offer insights into human language processing, the increasing alignment between LLM behavior and human language processing when models are fine-tuned with human feedback, and the opportunities and challenges presented by human-AI collaboration in language tasks. By synthesizing these findings, this report aims to guide future research, development, and implementation of LLMs in cognitive psychology, linguistics, and education. It emphasizes the importance of ethical considerations and responsible use of AI technologies while striving to enhance human capabilities in text comprehension and production through effective human-AI collaboration.
♻ ☆ A Study of In-Context-Learning-Based Text-to-SQL Errors
Large language models (LLMs) have been adopted to perform text-to-SQL tasks, utilizing their in-context learning (ICL) capability to translate natural language questions into structured query language (SQL). However, such a technique faces correctness problems and requires efficient repairing solutions. In this paper, we conduct the first comprehensive study of text-to-SQL errors. Our study covers four representative ICL-based techniques, five basic repairing methods, two benchmarks, and two LLM settings. We find that text-to-SQL errors are widespread and summarize 29 error types of 7 categories. We also find that existing repairing attempts have limited correctness improvement at the cost of high computational overhead with many mis-repairs. Based on the findings, we propose MapleRepair, a novel text-to-SQL error detection and repairing framework. The evaluation demonstrates that MapleRepair outperforms existing solutions by repairing 13.8% more queries with neglectable mis-repairs and 67.4% less overhead.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose a fresh approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurements for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in an OV testbed originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some apparent false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 50 pages, 13 figures; fixed figures in the appendix
♻ ☆ AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
comment: Technical Report
♻ ☆ Quasi-symbolic Semantic Geometry over Transformer-based Variational AutoEncoder CoNLL2025
Formal/symbolic semantics can provide canonical, rigid controllability and interpretability to sentence representations due to their \textit{localisation} or \textit{composition} property. How can we deliver such property to the current distributional sentence representations to control and interpret the generation of language models (LMs)? In this work, we theoretically frame the sentence semantics as the composition of \textit{semantic role - word content} features and propose the formal semantic geometry. To inject such geometry into Transformer-based LMs (i.e. GPT2), we deploy Transformer-based Variational AutoEncoder with a supervision approach, where the sentence generation can be manipulated and explained over low-dimensional latent Gaussian space. In addition, we propose a new probing algorithm to guide the movement of sentence vectors over such geometry. Experimental results reveal that the formal semantic geometry can potentially deliver better control and interpretation to sentence generation.
comment: CoNLL2025 (Best Paper nomination)
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Not Minds, but Signs: Reframing LLMs through Semiotics
This paper challenges the prevailing tendency to frame Large Language Models (LLMs) as cognitive systems, arguing instead for a semiotic perspective that situates these models within the broader dynamics of sign manipulation and meaning-making. Rather than assuming that LLMs understand language or simulate human thought, we propose that their primary function is to recombine, recontextualize, and circulate linguistic forms based on probabilistic associations. By shifting from a cognitivist to a semiotic framework, we avoid anthropomorphism and gain a more precise understanding of how LLMs participate in cultural processes, not by thinking, but by generating texts that invite interpretation. Through theoretical analysis and practical examples, the paper demonstrates how LLMs function as semiotic agents whose outputs can be treated as interpretive acts, open to contextual negotiation and critical reflection. We explore applications in literature, philosophy, education, and cultural production, emphasizing how LLMs can serve as tools for creativity, dialogue, and critical inquiry. The semiotic paradigm foregrounds the situated, contingent, and socially embedded nature of meaning, offering a more rigorous and ethically aware framework for studying and using LLMs. Ultimately, this approach reframes LLMs as technological participants in an ongoing ecology of signs. They do not possess minds, but they alter how we read, write, and make meaning, compelling us to reconsider the foundations of language, interpretation, and the role of artificial systems in the production of knowledge.
♻ ☆ Positional Bias in Binary Question Answering: How Uncertainty Shapes Model Preferences
Positional bias in binary question answering occurs when a model systematically favors one choice over another based solely on the ordering of presented options. In this study, we quantify and analyze positional bias across five large language models under varying degrees of answer uncertainty. We re-adapted the SQuAD-it dataset by adding an extra incorrect answer option and then created multiple versions with progressively less context and more out-of-context answers, yielding datasets that range from low to high uncertainty. Additionally, we evaluate two naturally higher-uncertainty benchmarks: (1) WebGPT - question pairs with unequal human-assigned quality scores, and (2) Winning Arguments - where models predict the more persuasive argument in Reddit's r/ChangeMyView exchanges. Across each dataset, the order of the "correct" (or higher-quality/persuasive) option is systematically flipped (first placed in position 1, then in position 2) to compute both Preference Fairness and Position Consistency. We observe that positional bias is nearly absent under low-uncertainty conditions, but grows exponentially when it becomes doubtful to decide which option is correct.
♻ ☆ Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion ACL
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
comment: accepted to ACL Findings 2025
♻ ☆ Efficient Domain-adaptive Continual Pretraining for the Process Industry in the German Language
Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique that further trains a language model (LM) on its pretraining task, e.g., masked language modeling (MLM), when common domain adaptation via LM fine-tuning is not possible due to a lack of labeled task data. Although popular, MLM requires a significant corpus of domain-related data, which is difficult to obtain for specific domains in languages other than English, such as the process industry in the German language. This paper introduces an efficient approach called ICL-augmented pretraining or ICL-APT that leverages in-context learning (ICL) and k-nearest neighbors (kNN) to augment target data with domain-related and in-domain texts, significantly reducing GPU time while maintaining strong model performance. Our results show that the best configuration of ICL-APT performed better than the state-of-the-art DAPT by 28.7% (7.87 points) and requires almost 4 times less GPU-computing time, providing a cost-effective solution for industries with limited computational capacity. The findings highlight the broader applicability of this framework to other low-resource industries, making NLP-based solutions more accessible and feasible in production environments.
comment: accepted to TSD 2025
♻ ☆ Integrating Expert Labels into LLM-based Emission Goal Detection: Example Selection vs Automatic Prompt Design
We address the detection of emission reduction goals in corporate reports, an important task for monitoring companies' progress in addressing climate change. Specifically, we focus on the issue of integrating expert feedback in the form of labeled example passages into LLM-based pipelines, and compare the two strategies of (1) a dynamic selection of few-shot examples and (2) the automatic optimization of the prompt by the LLM itself. Our findings on a public dataset of 769 climate-related passages from real-world business reports indicate that automatic prompt optimization is the superior approach, while combining both methods provides only limited benefit. Qualitative results indicate that optimized prompts do indeed capture many intricacies of the targeted emission goal extraction task.
♻ ☆ DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models NeurIPS 2024
Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
comment: Accepted by NeurIPS 2024 D&B Track
♻ ☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study on the assessment of the quality of translations generated by LLMs, including Gemini, GPT, and Google Translate. This study addresses this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts (Bhagavad Gita, Tamas and Maha Prasthanam ) that have been well translated by experts and use LLMs to generate their translations into English, and provide a comparison with selected expert (human) translations. Our investigation revealed that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in metaphorical and philosophical contexts for texts such as the Bhagavad Gita. The sentiment analysis revealed that GPT models are better at preserving the sentiment polarity for the given texts when compared to human (expert) translation. The results revealed that GPT models are generally better at maintaining the sentiment and semantics when compared to Google Translate. This study could help in the development of accurate and culturally sensitive translation systems for large language models.
♻ ☆ SAGE: Steering Dialog Generation with Future-Aware State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level. https://github.com/apple/ml-sage-dialog-gen
comment: 9 pages main text
♻ ☆ Learning-to-Context Slope: Evaluating In-Context Learning Effectiveness Beyond Performance Illusions
In-context learning (ICL) has emerged as an effective approach to enhance the performance of large language models (LLMs). However, its effectiveness varies significantly across models and tasks, posing challenges for practitioners to determine when ICL reliably improves performance. Current evaluation approaches, reliant on performance change after applying ICL, suffer from low reliability, poor attribution, and impracticality in data-insufficient scenarios. We propose the Learning-to-Context Slope (LCS), a novel metric that quantifies ICL effectiveness by modeling the slope between learning gain (loss decrease from demonstrations) and contextual relevance (demonstration-input relevance). LCS addresses key limitations of performance-based metrics: (1) it captures continuous loss changes even when outputs are incorrect, improving reliability; (2) its formulation attributes ICL failures to weak contextual alignment (inability to adapt inputs to demonstrations) or strong output calibration (self-verification of correctness); and (3) it minimizes reliance on labeled data via synthetic evaluation. Extensive experiments demonstrate that LCS strongly correlates with performance improvements in labeled settings and reliably reflects true effectiveness in biased or data-scarce scenarios. Further analysis reveals actionable thresholds for LCS and identifies model capabilities critical to ICL success.
♻ ☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
♻ ☆ ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry ACL 2025
Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines--achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7% to 23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.
comment: 7 pages, 4 figures. Accepted at ACL 2025 Industry Track
♻ ☆ Revisiting Epistemic Markers in Confidence Estimation: Can Markers Accurately Reflect Large Language Models' Uncertainty? ACL2025
As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., "fairly confident") instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define marker confidence as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.
comment: ACL2025 Main
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ Generative Representational Learning of Foundation Models for Recommendation
Developing a single foundation model with the capability to excel across diverse tasks has been a long-standing objective in the field of artificial intelligence. As the wave of general-purpose foundation models sweeps across various domains, their influence has significantly extended to the field of recommendation systems. While recent efforts have explored recommendation foundation models for various generative tasks, they often overlook crucial embedding tasks and struggle with the complexities of multi-task learning, including knowledge sharing & conflict resolution, and convergence speed inconsistencies. To address these limitations, we introduce RecFound, a generative representational learning framework for recommendation foundation models. We construct the first comprehensive dataset for recommendation foundation models covering both generative and embedding tasks across diverse scenarios. Based on this dataset, we propose a novel multi-task training scheme featuring a Task-wise Mixture of Low-rank Experts (TMoLE) to handle knowledge sharing & conflict, a Step-wise Convergence-oriented Sample Scheduler (S2Sched) to address inconsistent convergence, and a Model Merge module to balance the performance across tasks. Experiments demonstrate that RecFound achieves state-of-the-art performance across various recommendation tasks, outperforming existing baselines.
comment: Project page is available at https://junkfood436.github.io/RecFound/
♻ ☆ Pipelined Decoder for Efficient Context-Aware Text Generation
As the basis of generative AI, an autoregressive model requires the generation of a new token depending on all the previously generated tokens, which brings high quality but also restricts the model to generate tokens one by one, forming a bottleneck limiting the generation speed. In this paper, we propose a new decoder architecture that efficiently generates text in parallel for context-aware generation tasks. Our proposed pipelined decoder initiates the generation of multiple subsequences simultaneously, and, at each time-step, it generates a new token for each subsequence to realize parallelism. Experiments on multiple text generation tasks, including question answering, text summarization, and keyphrase generation, show that our pipelined decoder significantly improves the generation speed without a significant loss of generation quality or additional memory consumption.
♻ ☆ Parameter-Efficient Fine-Tuning via Circular Convolution ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices $\mathbf{A}$ and $\mathbf{B}$ to represent weight changes (i.e., $\Delta \mathbf{W} = \mathbf{B} \mathbf{A}$). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying $\mathbf{A}$ and $\mathbf{B}$ with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C$^3$A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C$^3$A consistently outperforms LoRA and its variants across various fine-tuning tasks.
comment: ACL 2025
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs
Multimodal Large Language Models (MLLMs) have achieved success across various domains. However, their applicability tends to degrade when confronted with different types of data inputs, especially for MLLMs that have been fine-tuned for specific tasks. Despite its importance, the study of knowledge sharing among domain-specific MLLMs--such as those trained for mathematics or code--remains largely underexplored. To address the fragmentation of knowledge across domain-specialized MLLMs, we propose a unified parameter integration framework that enables modular composition of expert capabilities. Our method is grounded in a novel Compatibility-Aware Parameter Splicing (CAPS) strategy, which leverages both local functional attribution and global information-theoretic signals to guide selective parameter fusion. By extending this mechanism to the low-rank adaptation layer granularity, we ensure efficient integration with minimal inference overhead. Furthermore, we introduce a domain compatibility scoring mechanism that quantifies inter-expert alignment at the activation level and correlates with downstream task utility. This principled fusion protocol allows the final model to synergize heterogeneous expertise while preserving structural modularity. Extensive evaluations across diverse multimodal benchmarks validate the effectiveness of our framework, offering a scalable path toward compositional, domain-adaptive MLLMs.
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference ICML 2025
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
comment: ICML 2025
♻ ☆ DALR: Dual-level Alignment Learning for Multimodal Sentence Representation Learning ACL 2025
Previous multimodal sentence representation learning methods have achieved impressive performance. However, most approaches focus on aligning images and text at a coarse level, facing two critical challenges:cross-modal misalignment bias and intra-modal semantic divergence, which significantly degrade sentence representation quality. To address these challenges, we propose DALR (Dual-level Alignment Learning for Multimodal Sentence Representation). For cross-modal alignment, we propose a consistency learning module that softens negative samples and utilizes semantic similarity from an auxiliary task to achieve fine-grained cross-modal alignment. Additionally, we contend that sentence relationships go beyond binary positive-negative labels, exhibiting a more intricate ranking structure. To better capture these relationships and enhance representation quality, we integrate ranking distillation with global intra-modal alignment learning. Comprehensive experiments on semantic textual similarity (STS) and transfer (TR) tasks validate the effectiveness of our approach, consistently demonstrating its superiority over state-of-the-art baselines.
comment: Accepted by ACL 2025 Findings
♻ ☆ Flexora: Flexible Low Rank Adaptation for Large Language Models
Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora.
comment: 40 pages, 15 figures
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Teaching Audio-Aware Large Language Models What Does Not Hear: Mitigating Hallucinations through Synthesized Negative Samples
Recent advancements in audio-aware large language models (ALLMs) enable them to process and understand audio inputs. However, these models often hallucinate non-existent sound events, reducing their reliability in real-world applications. To address this, we propose LISTEN (Learning to Identify Sounds Through Extended Negative Samples), a contrastive-like training method that enhances ALLMs' ability to distinguish between present and absent sounds using synthesized data from the backbone LLM. Unlike prior approaches, our method requires no modification to LLM parameters and efficiently integrates audio representations via a lightweight adapter. Experiments show that LISTEN effectively mitigates hallucinations while maintaining impressive performance on existing audio question and reasoning benchmarks. At the same time, it is more efficient in both data and computation.
comment: Accepted to Interspeech 2025. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ Seeking and Updating with Live Visual Knowledge
The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
comment: Preprint. Under Review
♻ ☆ SPADE: Structured Prompting Augmentation for Dialogue Enhancement in Machine-Generated Text Detection ACL
The increasing capability of large language models (LLMs) to generate synthetic content has heightened concerns about their misuse, driving the development of Machine-Generated Text (MGT) detection models. However, these detectors face significant challenges due to the lack of high-quality synthetic datasets for training. To address this issue, we propose SPADE, a structured framework for detecting synthetic dialogues using prompt-based positive and negative samples. Our proposed methods yield 14 new dialogue datasets, which we benchmark against eight MGT detection models. The results demonstrate improved generalization performance when utilizing a mixed dataset produced by proposed augmentation frameworks, offering a practical approach to enhancing LLM application security. Considering that real-world agents lack knowledge of future opponent utterances, we simulate online dialogue detection and examine the relationship between chat history length and detection accuracy. Our open-source datasets, code and prompts can be downloaded from https://github.com/AngieYYF/SPADE-customer-service-dialogue.
comment: ACL LLMSEC
♻ ☆ A Survey on Uncertainty Quantification of Large Language Models: Taxonomy, Open Research Challenges, and Future Directions
The remarkable performance of large language models (LLMs) in content generation, coding, and common-sense reasoning has spurred widespread integration into many facets of society. However, integration of LLMs raises valid questions on their reliability and trustworthiness, given their propensity to generate hallucinations: plausible, factually-incorrect responses, which are expressed with striking confidence. Previous work has shown that hallucinations and other non-factual responses generated by LLMs can be detected by examining the uncertainty of the LLM in its response to the pertinent prompt, driving significant research efforts devoted to quantifying the uncertainty of LLMs. This survey seeks to provide an extensive review of existing uncertainty quantification methods for LLMs, identifying their salient features, along with their strengths and weaknesses. We present existing methods within a relevant taxonomy, unifying ostensibly disparate methods to aid understanding of the state of the art. Furthermore, we highlight applications of uncertainty quantification methods for LLMs, spanning chatbot and textual applications to embodied artificial intelligence applications in robotics. We conclude with open research challenges in uncertainty quantification of LLMs, seeking to motivate future research.
♻ ☆ Reasoning about Uncertainty: Do Reasoning Models Know When They Don't Know?
Reasoning language models have set state-of-the-art (SOTA) records on many challenging benchmarks, enabled by multi-step reasoning induced using reinforcement learning. However, like previous language models, reasoning models are prone to generating confident, plausible responses that are incorrect (hallucinations). Knowing when and how much to trust these models is critical to the safe deployment of reasoning models in real-world applications. To this end, we explore uncertainty quantification of reasoning models in this work. Specifically, we ask three fundamental questions: First, are reasoning models well-calibrated? Second, does deeper reasoning improve model calibration? Finally, inspired by humans' innate ability to double-check their thought processes to verify the validity of their answers and their confidence, we ask: can reasoning models improve their calibration by explicitly reasoning about their chain-of-thought traces? We introduce introspective uncertainty quantification (UQ) to explore this direction. In extensive evaluations on SOTA reasoning models across a broad range of benchmarks, we find that reasoning models: (i) are typically overconfident, with self-verbalized confidence estimates often greater than 85% particularly for incorrect responses, (ii) become even more overconfident with deeper reasoning, and (iii) can become better calibrated through introspection (e.g., o3-Mini and DeepSeek R1) but not uniformly (e.g., Claude 3.7 Sonnet becomes more poorly calibrated). Lastly, we conclude with important research directions to design necessary UQ benchmarks and improve the calibration of reasoning models.
♻ ☆ Squat: Quant Small Language Models on the Edge
A growing trend has emerged in designing high-quality Small Language Models (SLMs) with a few million parameters. This trend is driven by the increasing concerns over cloud costs, privacy, and latency. Considering that full parameter training is feasible for SLMs on mobile devices, Quantization-Aware Training (QAT) is employed to improve efficiency by reducing computational overhead and memory footprint. However, previous QAT works adopt fine-grained quantization methods to compress models with billions of parameters on GPUs, incompatible with current commodity hardware, such as mobile and edge devices, which relies on Single Instruction Multiple Data (SIMD) instructions. Thus, the generalization of these methods to SLMs on mobile devices is limited. In this paper, we propose Squat method, an effective QAT framework with deployable quantization for SLMs on mobile devices. Specifically, we propose entropy-guided and distribution-aligned distillation to mitigate the distortion of attention information from quantization. Besides, we employ sub-8-bit token adaptive quantization, assigning varying bit widths to different tokens based on their importance. Furthermore, we develop a SIMD-based Multi-Kernel Mixed-Precision (MKMP) multiplier to support sub-8-bit mixed-precision MAC on mobile devices. Our extensive experiments verify the substantial improvements of our method compared to other QAT methods across various datasets. Furthermore, we achieve an on-device speedup of up to 2.37x compared with its FP16 counterparts, signaling a great advancement. Code: https://github.com/shawnricecake/squant
comment: Accepeted by ICCAD 2025
♻ ☆ Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect
Divergent Creativity in Humans and Large Language Models
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs' semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
comment: First two and last listed authors are corresponding authors. The first two listed authors contributed equally to this work
♻ ☆ BioPars: A Pretrained Biomedical Large Language Model for Persian Biomedical Text Mining
Large Language Models (LLMs) have recently gained attention in the life sciences due to their capacity to model, extract, and apply complex biological information. Beyond their classical use as chatbots, these systems are increasingly used for complex analysis and problem-solving in specialized fields, including bioinformatics. First, we introduce BIOPARS-BENCH, a dataset from over 10,000 scientific articles, textbooks, and medical websites. BioParsQA was also introduced to evaluate the proposed model, which consists of 5,231 Persian medical questions and answers. This study then introduces BioPars, a simple but accurate measure designed to assess LLMs for three main abilities: acquiring subject-specific knowledge, interpreting and synthesizing such knowledge, and demonstrating proper evidence. Comparing ChatGPT, Llama, and Galactica, our study highlights their ability to remember and retrieve learned knowledge but also reveals shortcomings in addressing higher-level, real-world questions and fine-grained inferences. These findings indicate the need for further fine-tuning to address the capabilities of LLM in bioinformatics tasks. To our knowledge, BioPars is the first application of LLM in Persian medical QA, especially for generating long answers. Evaluation of four selected medical QA datasets shows that BioPars has achieved remarkable results compared to comparative approaches. The model on BioParsQA achieved a ROUGE-L score of 29.99, which is an improvement over GPT-4 1.0. The model achieved a BERTScore of 90.87 with the MMR method. The MoverScore and BLEURT values were also higher in this model than the other three models. In addition, the reported scores for the model are MoverScore=60.43 and BLEURT=50.78. BioPars is an ongoing project and all resources related to its development will be made available via the following GitHub repository: https://github.com/amirap80/BioPars.
Computer Vision and Pattern Recognition 60
♻ ☆ Defensive Adversarial CAPTCHA: A Semantics-Driven Framework for Natural Adversarial Example Generation
Traditional CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on the original image characteristics, resulting in distortions that hinder human interpretation and limit their applicability in scenarios where no initial input images are available. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (DAC), a novel framework that generates high-fidelity adversarial examples guided by attacker-specified semantics information. Leveraging a Large Language Model (LLM), DAC enhances CAPTCHA diversity and enriches the semantic information. To address various application scenarios, we examine the white-box targeted attack scenario and the black box untargeted attack scenario. For target attacks, we introduce two latent noise variables that are alternately guided in the diffusion step to achieve robust inversion. The synergy between gradient guidance and latent variable optimization achieved in this way ensures that the generated adversarial examples not only accurately align with the target conditions but also achieve optimal performance in terms of distributional consistency and attack effectiveness. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-DAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show that the defensive adversarial CAPTCHA generated by BP-DAC is able to defend against most of the unknown models, and the generated CAPTCHA is indistinguishable to both humans and DNNs.
comment: 13 pages, 6 figures
♻ ☆ Training Free Stylized Abstraction
Stylized abstraction synthesizes visually exaggerated yet semantically faithful representations of subjects, balancing recognizability with perceptual distortion. Unlike image-to-image translation, which prioritizes structural fidelity, stylized abstraction demands selective retention of identity cues while embracing stylistic divergence, especially challenging for out-of-distribution individuals. We propose a training-free framework that generates stylized abstractions from a single image using inference-time scaling in vision-language models (VLLMs) to extract identity-relevant features, and a novel cross-domain rectified flow inversion strategy that reconstructs structure based on style-dependent priors. Our method adapts structural restoration dynamically through style-aware temporal scheduling, enabling high-fidelity reconstructions that honor both subject and style. It supports multi-round abstraction-aware generation without fine-tuning. To evaluate this task, we introduce StyleBench, a GPT-based human-aligned metric suited for abstract styles where pixel-level similarity fails. Experiments across diverse abstraction (e.g., LEGO, knitted dolls, South Park) show strong generalization to unseen identities and styles in a fully open-source setup.
comment: Project Page: https://kartik-3004.github.io/TF-SA/
♻ ☆ Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation
Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, non-medical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM framework centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric framework enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Code from this study will be available at https://github.com/grabkeem/CCELLA
comment: MAH and BT are co-senior authors on the work. This work has been submitted to the IEEE for possible publication
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method, the Video-3D Geometry Large Language Model (VG LLM). Our approach employs a 3D visual geometry encoder that extracts 3D prior information from video sequences. This information is integrated with visual tokens and fed into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification
This paper introduces AdaptoVision, a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy. By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements while preserving competitive performance across various benchmark and medical image datasets. Extensive experimentation demonstrates that AdaptoVision achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3\% on CIFAR-10 and 85.77\% on CIFAR-100, without relying on any pretrained weights. The model's streamlined architecture and strategic simplifications promote effective feature extraction and robust generalization, making it particularly suitable for deployment in real-time and resource-constrained environments.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Building Rome with Convex Optimization
Global bundle adjustment is made easy by depth prediction and convex optimization. We (i) propose a scaled bundle adjustment (SBA) formulation that lifts 2D keypoint measurements to 3D with learned depth, (ii) design an empirically tight convex semidfinite program (SDP) relaxation that solves SBA to certfiable global optimality, (iii) solve the SDP relaxations at extreme scale with Burer-Monteiro factorization and a CUDA-based trust-region Riemannian optimizer (dubbed XM), (iv) build a structure from motion (SfM) pipeline with XM as the optimization engine and show that XM-SfM compares favorably with existing pipelines in terms of reconstruction quality while being significantly faster, more scalable, and initialization-free.
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
♻ ☆ Depth Matters: Exploring Deep Interactions of RGB-D for Semantic Segmentation in Traffic Scenes IROS 2025
RGB-D has gradually become a crucial data source for understanding complex scenes in assisted driving. However, existing studies have paid insufficient attention to the intrinsic spatial properties of depth maps. This oversight significantly impacts the attention representation, leading to prediction errors caused by attention shift issues. To this end, we propose a novel learnable Depth interaction Pyramid Transformer (DiPFormer) to explore the effectiveness of depth. Firstly, we introduce Depth Spatial-Aware Optimization (Depth SAO) as offset to represent real-world spatial relationships. Secondly, the similarity in the feature space of RGB-D is learned by Depth Linear Cross-Attention (Depth LCA) to clarify spatial differences at the pixel level. Finally, an MLP Decoder is utilized to effectively fuse multi-scale features for meeting real-time requirements. Comprehensive experiments demonstrate that the proposed DiPFormer significantly addresses the issue of attention misalignment in both road detection (+7.5%) and semantic segmentation (+4.9% / +1.5%) tasks. DiPFormer achieves state-of-the-art performance on the KITTI (97.57% F-score on KITTI road and 68.74% mIoU on KITTI-360) and Cityscapes (83.4% mIoU) datasets.
comment: Accepted by IROS 2025
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ SurgTPGS: Semantic 3D Surgical Scene Understanding with Text Promptable Gaussian Splatting MICCAI 2025
In contemporary surgical research and practice, accurately comprehending 3D surgical scenes with text-promptable capabilities is particularly crucial for surgical planning and real-time intra-operative guidance, where precisely identifying and interacting with surgical tools and anatomical structures is paramount. However, existing works focus on surgical vision-language model (VLM), 3D reconstruction, and segmentation separately, lacking support for real-time text-promptable 3D queries. In this paper, we present SurgTPGS, a novel text-promptable Gaussian Splatting method to fill this gap. We introduce a 3D semantics feature learning strategy incorporating the Segment Anything model and state-of-the-art vision-language models. We extract the segmented language features for 3D surgical scene reconstruction, enabling a more in-depth understanding of the complex surgical environment. We also propose semantic-aware deformation tracking to capture the seamless deformation of semantic features, providing a more precise reconstruction for both texture and semantic features. Furthermore, we present semantic region-aware optimization, which utilizes regional-based semantic information to supervise the training, particularly promoting the reconstruction quality and semantic smoothness. We conduct comprehensive experiments on two real-world surgical datasets to demonstrate the superiority of SurgTPGS over state-of-the-art methods, highlighting its potential to revolutionize surgical practices. SurgTPGS paves the way for developing next-generation intelligent surgical systems by enhancing surgical precision and safety. Our code is available at: https://github.com/lastbasket/SurgTPGS.
comment: MICCAI 2025. Project Page: https://lastbasket.github.io/MICCAI-2025-SurgTPGS/
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Beyond Diagnostic Performance: Revealing and Quantifying Ethical Risks in Pathology Foundation Models
Pathology foundation models (PFMs), as large-scale pre-trained models tailored for computational pathology, have significantly advanced a wide range of applications. Their ability to leverage prior knowledge from massive datasets has streamlined the development of intelligent pathology models. However, we identify several critical and interrelated ethical risks that remain underexplored, yet must be addressed to enable the safe translation of PFMs from lab to clinic. These include the potential leakage of patient-sensitive attributes, disparities in model performance across demographic and institutional subgroups, and the reliance on diagnosis-irrelevant features that undermine clinical reliability. In this study, we pioneer the quantitative analysis for ethical risks in PFMs, including privacy leakage, clinical reliability, and group fairness. Specifically, we propose an evaluation framework that systematically measures key dimensions of ethical concern: the degree to which patient-sensitive attributes can be inferred from model representations, the extent of performance disparities across demographic and institutional subgroups, and the influence of diagnostically irrelevant features on model decisions. We further investigate the underlying causes of these ethical risks in PFMs and empirically validate our findings. Then we offer insights into potential directions for mitigating such risks, aiming to inform the development of more ethically robust PFMs. This work provides the first quantitative and systematic evaluation of ethical risks in PFMs. Our findings highlight the urgent need for ethical safeguards in PFMs and offer actionable insights for building more trustworthy and clinically robust PFMs. To facilitate future research and deployment, we will release the assessment framework as an online toolkit to support the development, auditing, and deployment of ethically robust PFMs.
comment: 33 pages,5 figure,23 tables
♻ ☆ SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images ICCV 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that plays a crucial role in modern medical diagnostics by visualizing radio-tracer distribution to reveal physiological processes. Accurate organ segmentation from PET images is essential for comprehensive multi-systemic analysis of interactions between different organs and pathologies. Existing segmentation methods are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical application. Recent developments in segmentation foundation models have shown superior versatility across diverse segmentation tasks. Despite the efforts of medical adaptations, these works primarily focus on structural medical images with detailed physiological structural information and exhibit limited generalization performance on molecular PET imaging. In this paper, we collect and construct PETS-5k, the largest PET segmentation dataset to date, comprising 5,731 three-dimensional whole-body PET images and encompassing over 1.3M 2D images. Based on the established dataset, we develop SegAnyPET, a modality-specific 3D foundation model for universal promptable segmentation from PET images. To issue the challenge of discrepant annotation quality, we adopt a cross prompting confident learning (CPCL) strategy with an uncertainty-guided self-rectification process to robustly learn segmentation from high-quality labeled data and low-quality noisy labeled data for promptable segmentation. Experimental results demonstrate that SegAnyPET can segment seen and unseen target organs using only one or a few prompt points, outperforming state-of-the-art foundation models and task-specific fully supervised models with higher accuracy and strong generalization ability for universal segmentation.
comment: Accept for ICCV 2025
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing. For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics. To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing.
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection CVPR2025
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.
comment: Accepted by CVPR2025
♻ ☆ StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging
In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher $F_1$ scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at https://github.com/BestAnHongjun/StreakNet .
comment: Accepted by IEEE Transactions on Image Processing (T-IP)
♻ ☆ Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
comment: Project Page: https://ayanami-yu.github.io/GTF-Project-Page/
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Listener-Rewarded Thinking in VLMs for Image Preferences
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
♻ ☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue MICCAI
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: An improved version of this manuscript was accepted to MICCAI
♻ ☆ StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning ICCV 2025
Recently, Mamba-based methods have demonstrated impressive performance in point cloud representation learning by leveraging State Space Model (SSM) with the efficient context modeling ability and linear complexity. However, these methods still face two key issues that limit the potential of SSM: Destroying the adjacency of 3D points during SSM processing and failing to retain long-sequence memory as the input length increases in downstream tasks. To address these issues, we propose StruMamba3D, a novel paradigm for self-supervised point cloud representation learning. It enjoys several merits. First, we design spatial states and use them as proxies to preserve spatial dependencies among points. Second, we enhance the SSM with a state-wise update strategy and incorporate a lightweight convolution to facilitate interactions between spatial states for efficient structure modeling. Third, our method reduces the sensitivity of pre-trained Mamba-based models to varying input lengths by introducing a sequence length-adaptive strategy. Experimental results across four downstream tasks showcase the superior performance of our method. In addition, our method attains the SOTA 95.1% accuracy on ModelNet40 and 92.75% accuracy on the most challenging split of ScanObjectNN without voting strategy.
comment: Accepted by ICCV 2025
♻ ☆ Edit Transfer: Learning Image Editing via Vision In-Context Relations
We introduce a new setting, Edit Transfer, where a model learns a transformation from just a single source-target example and applies it to a new query image. While text-based methods excel at semantic manipulations through textual prompts, they often struggle with precise geometric details (e.g., poses and viewpoint changes). Reference-based editing, on the other hand, typically focuses on style or appearance and fails at non-rigid transformations. By explicitly learning the editing transformation from a source-target pair, Edit Transfer mitigates the limitations of both text-only and appearance-centric references. Drawing inspiration from in-context learning in large language models, we propose a visual relation in-context learning paradigm, building upon a DiT-based text-to-image model. We arrange the edited example and the query image into a unified four-panel composite, then apply lightweight LoRA fine-tuning to capture complex spatial transformations from minimal examples. Despite using only 42 training samples, Edit Transfer substantially outperforms state-of-the-art TIE and RIE methods on diverse non-rigid scenarios, demonstrating the effectiveness of few-shot visual relation learning.
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning ICCV 2025
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead. However, as task diversity and complexity increase, EVIT faces significant challenges in resolving data conflicts. To address this limitation, we propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict through dual structural optimization. Specifically, we utilize two subspaces: a skill space for stable, holistic knowledge retention, and a rank-rectified task space that locally activates the holistic knowledge. Additionally, we introduce Visual Cue Enhancement (VCE), a multi-level local feature aggregation module designed to enrich the vision-language projection with local details. Our approach is both memory- and time-efficient, requiring only 1.16$\times$ the inference time of the standard LoRA method (with injection into the query and value projection layers), and just 73\% of the inference time of a 4-expert LoRA-MoE. Extensive experiments on various downstream tasks and general MLLM benchmarks validate the effectiveness of our proposed methods.
comment: ICCV 2025
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ SMoLoRA: Exploring and Defying Dual Catastrophic Forgetting in Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules-one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a new CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions. Code is available at https://github.com/Minato-Zackie/SMoLoRA.
♻ ☆ A Dataset for Enhancing MLLMs in Visualization Understanding and Reconstruction
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a compact and structured vector format that encodes chart elements, including mark types, positions, and sizes. Then, we present a new visualization dataset, which consists of bitmap images of charts, their corresponding SimVec representations, and data-centric question-answering pairs, each accompanied by explanatory chain-of-thought sentences. We fine-tune state-of-the-art MLLMs using our dataset. The experimental results show that fine-tuning leads to substantial improvements in data-centric reasoning tasks compared to their zero-shot versions. SimVec also enables MLLMs to accurately and compactly reconstruct chart structures from images. Our dataset and code are available at: https://github.com/VIDA-Lab/MLLM4VIS.
♻ ☆ Maximum Dispersion, Maximum Concentration: Enhancing the Quality of MOP Solutions
Multi-objective optimization problems (MOPs) often require a trade-off between conflicting objectives, maximizing diversity and convergence in the objective space. This study presents an approach to improve the quality of MOP solutions by optimizing the dispersion in the decision space and the convergence in a specific region of the objective space. Our approach defines a Region of Interest (ROI) based on a cone representing the decision maker's preferences in the objective space, while enhancing the dispersion of solutions in the decision space using a uniformity measure. Combining solution concentration in the objective space with dispersion in the decision space intensifies the search for Pareto-optimal solutions while increasing solution diversity. When combined, these characteristics improve the quality of solutions and avoid the bias caused by clustering solutions in a specific region of the decision space. Preliminary experiments suggest that this method enhances multi-objective optimization by generating solutions that effectively balance dispersion and concentration, thereby mitigating bias in the decision space.
comment: 11 pages
♻ ☆ Ovis-U1 Technical Report
In this report, we introduce Ovis-U1, a 3-billion-parameter unified model that integrates multimodal understanding, text-to-image generation, and image editing capabilities. Building on the foundation of the Ovis series, Ovis-U1 incorporates a diffusion-based visual decoder paired with a bidirectional token refiner, enabling image generation tasks comparable to leading models like GPT-4o. Unlike some previous models that use a frozen MLLM for generation tasks, Ovis-U1 utilizes a new unified training approach starting from a language model. Compared to training solely on understanding or generation tasks, unified training yields better performance, demonstrating the enhancement achieved by integrating these two tasks. Ovis-U1 achieves a score of 69.6 on the OpenCompass Multi-modal Academic Benchmark, surpassing recent state-of-the-art models such as Ristretto-3B and SAIL-VL-1.5-2B. In text-to-image generation, it excels with scores of 83.72 and 0.89 on the DPG-Bench and GenEval benchmarks, respectively. For image editing, it achieves 4.00 and 6.42 on the ImgEdit-Bench and GEdit-Bench-EN, respectively. As the initial version of the Ovis unified model series, Ovis-U1 pushes the boundaries of multimodal understanding, generation, and editing.
comment: An unified model for multimodal understanding, text-to-image generation, and image editing. GitHub: https://github.com/AIDC-AI/Ovis-U1
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) offers an alternative by learning a reference representation of healthy anatomy without the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, achieving state-of-the-art anomaly localization performance on the NOVA benchmark.
comment: Under consideration at Pattern Recognition Letters
♻ ☆ ZonUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces ZonUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, ZonUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights ZonUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The ZonUI-3B is available at: https://github.com/Han1018/ZonUI-3B
♻ ☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
♻ ☆ ICME 2025 Grand Challenge on Video Super-Resolution for Video Conferencing
Super-Resolution (SR) is a critical task in computer vision, focusing on reconstructing high-resolution (HR) images from low-resolution (LR) inputs. The field has seen significant progress through various challenges, particularly in single-image SR. Video Super-Resolution (VSR) extends this to the temporal domain, aiming to enhance video quality using methods like local, uni-, bi-directional propagation, or traditional upscaling followed by restoration. This challenge addresses VSR for conferencing, where LR videos are encoded with H.265 at fixed QPs. The goal is to upscale videos by a specific factor, providing HR outputs with enhanced perceptual quality under a low-delay scenario using causal models. The challenge included three tracks: general-purpose videos, talking head videos, and screen content videos, with separate datasets provided by the organizers for training, validation, and testing. We open-sourced a new screen content dataset for the SR task in this challenge. Submissions were evaluated through subjective tests using a crowdsourced implementation of the ITU-T Rec P.910.
♻ ☆ Unleashing Diffusion and State Space Models for Medical Image Segmentation
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.
♻ ☆ Instruct-4DGS: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation CVPR 2025
Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose Instruct-4DGS, an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which captures dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field, which may arise from the editing process, we introduce a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that Instruct-4DGS is efficient, reducing editing time by more than half compared to existing methods while achieving high-quality edits that better follow user instructions. Code and results: https://hanbyelcho.info/instruct-4dgs/
comment: Accepted to CVPR 2025. The first two authors contributed equally
♻ ☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
♻ ☆ Contrastive Conditional Latent Diffusion for Audio-visual Segmentation
We propose a contrastive conditional latent diffusion model for audio-visual segmentation (AVS) to thoroughly investigate the impact of audio, where the correlation between audio and the final segmentation map is modeled to guarantee the strong correlation between them. To achieve semantic-correlated representation learning, our framework incorporates a latent diffusion model. The diffusion model learns the conditional generation process of the ground-truth segmentation map, resulting in ground-truth aware inference during the denoising process at the test stage. As our model is conditional, it is vital to ensure that the conditional variable contributes to the model output. We thus extensively model the contribution of the audio signal by minimizing the density ratio between the conditional probability of the multimodal data, e.g. conditioned on the audio-visual data, and that of the unimodal data, e.g. conditioned on the audio data only. In this way, our latent diffusion model via density ratio optimization explicitly maximizes the contribution of audio for AVS, which can then be achieved with contrastive learning as a constraint, where the diffusion part serves as the main objective to achieve maximum likelihood estimation, and the density ratio optimization part imposes the constraint. By adopting this latent diffusion model via contrastive learning, we effectively enhance the contribution of audio for AVS. The effectiveness of our solution is validated through experimental results on the benchmark dataset. Code and results are online via our project page: https://github.com/OpenNLPLab/DiffusionAVS.
♻ ☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ De-LightSAM: Modality-Decoupled Lightweight SAM for Generalizable Medical Segmentation
The universality of deep neural networks across different modalities and their generalization capabilities to unseen domains play an essential role in medical image segmentation. The recent segment anything model (SAM) has demonstrated strong adaptability across diverse natural scenarios. However, the huge computational costs, demand for manual annotations as prompts and conflict-prone decoding process of SAM degrade its generalization capabilities in medical scenarios. To address these limitations, we propose a modality-decoupled lightweight SAM for domain-generalized medical image segmentation, named De-LightSAM. Specifically, we first devise a lightweight domain-controllable image encoder (DC-Encoder) that produces discriminative visual features for diverse modalities. Further, we introduce the self-patch prompt generator (SP-Generator) to automatically generate high-quality dense prompt embeddings for guiding segmentation decoding. Finally, we design the query-decoupled modality decoder (QM-Decoder) that leverages a one-to-one strategy to provide an independent decoding channel for every modality, preventing mutual knowledge interference of different modalities. Moreover, we design a multi-modal decoupled knowledge distillation (MDKD) strategy to leverage robust common knowledge to complement domain-specific medical feature representations. Extensive experiments indicate that De-LightSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks, displaying superior modality universality and generalization capabilities. Especially, De-LightSAM uses only 2.0% parameters compared to SAM-H. The source code is available at https://github.com/xq141839/De-LightSAM.
comment: Under Review
♻ ☆ VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
Recent advancements in Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding. However, it remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception. Existing benchmarks typically rely on real-world, annotated videos, which lack control over video content and inherent difficulty, limiting their diagnostic power. To bridge this gap, we propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments, designed to evaluate the cognitive abilities of LVLMs. By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty. This approach enables a focused evaluation of video cognitive abilities, independent of prior knowledge from visual scene semantics. The dataset includes 800 videos and 3,280 question-answer pairs, featuring tasks related to abstract concepts, symbolic elements, and multimodal integration, with varying levels of difficulty. Experimental results show that even state-of-the-art (SOTA) models, such as GPT-4o, achieve an average performance of 48.8% on tasks involving abstract concepts. Additionally, performance drops by 15% as task complexity increases, highlighting the challenges LVLMs face in maintaining consistent performance. Through this work, we hope to show the limitations of current LVLMs and offer insights into how they can more effectively emulate human cognitive processes in the future.
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Enabling Collaborative Parametric Knowledge Calibration for Retrieval-Augmented Vision Question Answering
Knowledge-based Vision Question Answering (KB-VQA) systems address complex visual-grounded questions with knowledge retrieved from external knowledge bases. The tasks of knowledge retrieval and answer generation tasks both necessitate precise multimodal understanding of question context and external knowledge. However, existing methods treat these two stages as separate modules with limited interaction during training, which hinders bi-directional parametric knowledge sharing, ultimately leading to suboptimal performance. To fully exploit the cross-task synergy in KB-VQA, we propose a unified retrieval-augmented VQA framework with collaborative parametric knowledge calibration. The proposed framework can effectively adapt general multimodal pre-trained models for fine-grained, knowledge-intensive tasks while enabling the retriever and generator to collaboratively enhance and share their parametric knowledge during both training and inference. To enhance fine-grained understanding of questions and external documents, we also integrate late interaction mechanism into the proposed training framework. Additionally, we introduce a reflective-answering mechanism that allows the model to explicitly evaluate and refine its knowledge boundary. Our approach achieves competitive performance against state-of-the-art models, delivering a significant 4.7\% improvement in answering accuracy, and brings an average 7.5\% boost in base MLLMs' VQA performance.
comment: 10 pages, 5 figures, Under Review
♻ ☆ OMNI-DC: Highly Robust Depth Completion with Multiresolution Depth Integration ICCV 2025
Depth completion (DC) aims to predict a dense depth map from an RGB image and a sparse depth map. Existing DC methods generalize poorly to new datasets or unseen sparse depth patterns, limiting their real-world applications. We propose OMNI-DC, a highly robust DC model that generalizes well zero-shot to various datasets. The key design is a novel Multi-resolution Depth Integrator, allowing our model to deal with very sparse depth inputs. We also introduce a novel Laplacian loss to model the ambiguity in the training process. Moreover, we train OMNI-DC on a mixture of high-quality datasets with a scale normalization technique and synthetic depth patterns. Extensive experiments on 7 datasets show consistent improvements over baselines, reducing errors by as much as 43%. Codes and checkpoints are available at https://github.com/princeton-vl/OMNI-DC.
comment: Accepted to ICCV 2025. Added additional results and ablations
♻ ☆ Seeking and Updating with Live Visual Knowledge
The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
comment: Preprint. Under Review
♻ ☆ FreqDGT: Frequency-Adaptive Dynamic Graph Networks with Transformer for Cross-subject EEG Emotion Recognition
Electroencephalography (EEG) serves as a reliable and objective signal for emotion recognition in affective brain-computer interfaces, offering unique advantages through its high temporal resolution and ability to capture authentic emotional states that cannot be consciously controlled. However, cross-subject generalization remains a fundamental challenge due to individual variability, cognitive traits, and emotional responses. We propose FreqDGT, a frequency-adaptive dynamic graph transformer that systematically addresses these limitations through an integrated framework. FreqDGT introduces frequency-adaptive processing (FAP) to dynamically weight emotion-relevant frequency bands based on neuroscientific evidence, employs adaptive dynamic graph learning (ADGL) to learn input-specific brain connectivity patterns, and implements multi-scale temporal disentanglement network (MTDN) that combines hierarchical temporal transformers with adversarial feature disentanglement to capture both temporal dynamics and ensure cross-subject robustness. Comprehensive experiments demonstrate that FreqDGT significantly improves cross-subject emotion recognition accuracy, confirming the effectiveness of integrating frequency-adaptive, spatial-dynamic, and temporal-hierarchical modeling while ensuring robustness to individual differences. The code is available at https://github.com/NZWANG/FreqDGT.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ DynaCLR: Contrastive Learning of Cellular Dynamics with Temporal Regularization
We report DynaCLR, a self-supervised method for embedding cell and organelle Dynamics via Contrastive Learning of Representations of time-lapse images. DynaCLR integrates single-cell tracking and time-aware contrastive sampling to learn robust, temporally regularized representations of cell dynamics. DynaCLR embeddings generalize effectively to in-distribution and out-of-distribution datasets, and can be used for several downstream tasks with sparse human annotations. We demonstrate efficient annotations of cell states with a human-in-the-loop using fluorescence and label-free imaging channels. DynaCLR method enables diverse downstream biological analyses: classification of cell division and infection, clustering heterogeneous cell migration patterns, cross-modal distillation of cell states from fluorescence to label-free channel, alignment of asynchronous cellular responses and broken cell tracks, and discovering organelle response due to infection. DynaCLR is a flexible method for comparative analyses of dynamic cellular responses to pharmacological, microbial, and genetic perturbations. We provide PyTorch-based implementations of the model training and inference pipeline (https://github.com/mehta-lab/viscy) and a GUI (https://github.com/czbiohub-sf/napari-iohub) for the visualization and annotation of trajectories of cells in the real space and the embedding space.
comment: 30 pages, 6 figures, 13 appendix figures, 5 videos (ancillary files)
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Grounding Creativity in Physics: A Brief Survey of Physical Priors in AIGC IJCAI 2025
Recent advancements in AI-generated content have significantly improved the realism of 3D and 4D generation. However, most existing methods prioritize appearance consistency while neglecting underlying physical principles, leading to artifacts such as unrealistic deformations, unstable dynamics, and implausible objects interactions. Incorporating physics priors into generative models has become a crucial research direction to enhance structural integrity and motion realism. This survey provides a review of physics-aware generative methods, systematically analyzing how physical constraints are integrated into 3D and 4D generation. First, we examine recent works in incorporating physical priors into static and dynamic 3D generation, categorizing methods based on representation types, including vision-based, NeRF-based, and Gaussian Splatting-based approaches. Second, we explore emerging techniques in 4D generation, focusing on methods that model temporal dynamics with physical simulations. Finally, we conduct a comparative analysis of major methods, highlighting their strengths, limitations, and suitability for different materials and motion dynamics. By presenting an in-depth analysis of physics-grounded AIGC, this survey aims to bridge the gap between generative models and physical realism, providing insights that inspire future research in physically consistent content generation.
comment: Accepted by IJCAI 2025 Survey Track
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
♻ ☆ Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset
Human communication involves a complex interplay of verbal and nonverbal signals, essential for conveying meaning and achieving interpersonal goals. To develop socially intelligent AI technologies, it is crucial to develop models that can both comprehend and generate dyadic behavioral dynamics. To this end, we introduce the Seamless Interaction Dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage from over 4,000 participants in diverse contexts. This dataset enables the development of AI technologies that understand dyadic embodied dynamics, unlocking breakthroughs in virtual agents, telepresence experiences, and multimodal content analysis tools. We also develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech. These models can take as input both the speech and visual behavior of their interlocutors. We present a variant with speech from an LLM model and integrations with 2D and 3D rendering methods, bringing us closer to interactive virtual agents. Additionally, we describe controllable variants of our motion models that can adapt emotional responses and expressivity levels, as well as generating more semantically-relevant gestures. Finally, we discuss methods for assessing the quality of these dyadic motion models, which are demonstrating the potential for more intuitive and responsive human-AI interactions.
♻ ☆ Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration
Vehicle-to-everything (V2X) collaborative perception has emerged as a promising solution to address the limitations of single-vehicle perception systems. However, existing V2X datasets are limited in scope, diversity, and quality. To address these gaps, we present Mixed Signals, a comprehensive V2X dataset featuring 45.1k point clouds and 240.6k bounding boxes collected from three connected autonomous vehicles (CAVs) equipped with two different configurations of LiDAR sensors, plus a roadside unit with dual LiDARs. Our dataset provides point clouds and bounding box annotations across 10 classes, ensuring reliable data for perception training. We provide detailed statistical analysis on the quality of our dataset and extensively benchmark existing V2X methods on it. The Mixed Signals dataset is ready-to-use, with precise alignment and consistent annotations across time and viewpoints. Dataset website is available at https://mixedsignalsdataset.cs.cornell.edu/.
Artificial Intelligence 73
♻ ☆ Flow-Modulated Scoring for Semantic-Aware Knowledge Graph Completion
Effective modeling of multifaceted relations is pivotal for Knowledge Graph Completion (KGC). However, a majority of existing approaches are predicated on static, embedding-based scoring, exhibiting inherent limitations in capturing contextual dependencies and relational dynamics. Addressing this gap, we propose the Flow-Modulated Scoring (FMS) framework. FMS comprises two principal components: (1) a semantic context learning module that encodes context-sensitive entity representations, and (2) a conditional flow-matching module designed to learn the dynamic transformation from a head to a tail embedding, governed by the aforementioned context. The resultant predictive vector field, representing the context-informed relational path, serves to dynamically refine the initial static score of an entity pair. Through this synergy of context-aware static representations and conditioned dynamic information, FMS facilitates a more profound modeling of relational semantics. Comprehensive evaluations on several standard benchmarks demonstrate that our proposed method surpasses prior state-of-the-art results.
comment: 10 pages
♻ ☆ SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Privacy-Preserving LLM Interaction with Socratic Chain-of-Thought Reasoning and Homomorphically Encrypted Vector Databases
Large language models (LLMs) are increasingly used as personal agents, accessing sensitive user data such as calendars, emails, and medical records. Users currently face a trade-off: They can send private records, many of which are stored in remote databases, to powerful but untrusted LLM providers, increasing their exposure risk. Alternatively, they can run less powerful models locally on trusted devices. We bridge this gap. Our Socratic Chain-of-Thought Reasoning first sends a generic, non-private user query to a powerful, untrusted LLM, which generates a Chain-of-Thought (CoT) prompt and detailed sub-queries without accessing user data. Next, we embed these sub-queries and perform encrypted sub-second semantic search using our Homomorphically Encrypted Vector Database across one million entries of a single user's private data. This represents a realistic scale of personal documents, emails, and records accumulated over years of digital activity. Finally, we feed the CoT prompt and the decrypted records to a local language model and generate the final response. On the LoCoMo long-context QA benchmark, our hybrid framework, combining GPT-4o with a local Llama-3.2-1B model, outperforms using GPT-4o alone by up to 7.1 percentage points. This demonstrates a first step toward systems where tasks are decomposed and split between untrusted strong LLMs and weak local ones, preserving user privacy.
comment: 29 pages
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method, the Video-3D Geometry Large Language Model (VG LLM). Our approach employs a 3D visual geometry encoder that extracts 3D prior information from video sequences. This information is integrated with visual tokens and fed into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ Text Production and Comprehension by Human and Artificial Intelligence: Interdisciplinary Workshop Report
This report synthesizes the outcomes of a recent interdisciplinary workshop that brought together leading experts in cognitive psychology, language learning, and artificial intelligence (AI)-based natural language processing (NLP). The workshop, funded by the National Science Foundation, aimed to address a critical knowledge gap in our understanding of the relationship between AI language models and human cognitive processes in text comprehension and composition. Through collaborative dialogue across cognitive, linguistic, and technological perspectives, workshop participants examined the underlying processes involved when humans produce and comprehend text, and how AI can both inform our understanding of these processes and augment human capabilities. The workshop revealed emerging patterns in the relationship between large language models (LLMs) and human cognition, with highlights on both the capabilities of LLMs and their limitations in fully replicating human-like language understanding and generation. Key findings include the potential of LLMs to offer insights into human language processing, the increasing alignment between LLM behavior and human language processing when models are fine-tuned with human feedback, and the opportunities and challenges presented by human-AI collaboration in language tasks. By synthesizing these findings, this report aims to guide future research, development, and implementation of LLMs in cognitive psychology, linguistics, and education. It emphasizes the importance of ethical considerations and responsible use of AI technologies while striving to enhance human capabilities in text comprehension and production through effective human-AI collaboration.
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
♻ ☆ Studying and Improving Graph Neural Network-based Motif Estimation
Graph Neural Networks (GNNs) are a predominant method for graph representation learning. However, beyond subgraph frequency estimation, their application to network motif significance-profile (SP) prediction remains under-explored, with no established benchmarks in the literature. We propose to address this problem, framing SP estimation as a task independent of subgraph frequency estimation. Our approach shifts from frequency counting to direct SP estimation and modulates the problem as multitarget regression. The reformulation is optimised for interpretability, stability and scalability on large graphs. We validate our method using a large synthetic dataset and further test it on real-world graphs. Our experiments reveal that 1-WL limited models struggle to make precise estimations of SPs. However, they can generalise to approximate the graph generation processes of networks by comparing their predicted SP with the ones originating from synthetic generators. This first study on GNN-based motif estimation also hints at how using direct SP estimation can help go past the theoretical limitations that motif estimation faces when performed through subgraph counting.
comment: This manuscript represents a revised version from the paper on https://openreview.net/forum?id=PZVVOeu6xx. Still a work in progress. Comments are welcome! 23 pages (12 main text + references), 9 figures, 5 tables. (First update: Fix broken links, references and text review.)
♻ ☆ A Study of In-Context-Learning-Based Text-to-SQL Errors
Large language models (LLMs) have been adopted to perform text-to-SQL tasks, utilizing their in-context learning (ICL) capability to translate natural language questions into structured query language (SQL). However, such a technique faces correctness problems and requires efficient repairing solutions. In this paper, we conduct the first comprehensive study of text-to-SQL errors. Our study covers four representative ICL-based techniques, five basic repairing methods, two benchmarks, and two LLM settings. We find that text-to-SQL errors are widespread and summarize 29 error types of 7 categories. We also find that existing repairing attempts have limited correctness improvement at the cost of high computational overhead with many mis-repairs. Based on the findings, we propose MapleRepair, a novel text-to-SQL error detection and repairing framework. The evaluation demonstrates that MapleRepair outperforms existing solutions by repairing 13.8% more queries with neglectable mis-repairs and 67.4% less overhead.
♻ ☆ MMMR: Benchmarking Massive Multi-Modal Reasoning Tasks
Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMMR, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMMR comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMMR offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.
comment: 39 pages, 28 figures, 4 tables
♻ ☆ Program of Equations Thoughts to Solve Algebra Word Problems
Solving algebraic word problems (AWPs) has recently emerged as an important natural language processing task. Recently, large language models (LLMs) have demonstrated powerful mathematical capabilities, and the Chain-of-Thought technique, which guides LLMs through step-by-step reasoning, has yielded impressive results. However, this reasoning ability is limited by the computational weaknesses of LLMs themselves, where calculation errors can accumulate, leading to incorrect final answers. To address this, we propose Program of Equations Thoughts (POET), which transforms the task of generating step-by-step reasoning answers into a two-stage task of predicting equations and generating code, offloading complex computations to a Python interpreter to avoid calculation errors in LLMs. Furthermore, we propose Zero-shot POET, which utilizes a manually designed template to enable LLMs to directly generate Python code for one-step solving. Our method achieves accuracies of 95.3% and 98.0% on the PEN and ALG514 datasets, respectively, setting a new state-of-the-art (SOTA). Zero-shot POET also achieves the SOTA result of 95.5% on the DRAW-1K dataset.
comment: Withdrawn pending institutional authorization and core revisions to address methodological inconsistencies in Sections 3-4
♻ ☆ Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms
Artificial Intelligence (AI) agents capable of autonomous learning and independent decision-making hold great promise for addressing complex challenges across various critical infrastructure domains, including transportation, energy systems, and manufacturing. However, the surge in the design and deployment of AI systems, driven by various stakeholders with distinct and unaligned objectives, introduces a crucial challenge: How can uncoordinated AI systems coexist and evolve harmoniously in shared environments without creating chaos or compromising safety? To address this, we advocate for a fundamental rethinking of existing multi-agent frameworks, such as multi-agent systems and game theory, which are largely limited to predefined rules and static objective structures. We posit that AI agents should be empowered to adjust their objectives dynamically, make compromises, form coalitions, and safely compete or cooperate through evolving relationships and social feedback. Through two case studies in critical infrastructure applications, we call for a shift toward the emergent, self-organizing, and context-aware nature of these multi-agentic AI systems.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose a fresh approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurements for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in an OV testbed originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some apparent false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging
In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher $F_1$ scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at https://github.com/BestAnHongjun/StreakNet .
comment: Accepted by IEEE Transactions on Image Processing (T-IP)
♻ ☆ Evaluating GPT- and Reasoning-based Large Language Models on Physics Olympiad Problems: Surpassing Human Performance and Implications for Educational Assessment
Large language models (LLMs) are now widely accessible, reaching learners at all educational levels. This development has raised concerns that their use may circumvent essential learning processes and compromise the integrity of established assessment formats. In physics education, where problem solving plays a central role in instruction and assessment, it is therefore essential to understand the physics-specific problem-solving capabilities of LLMs. Such understanding is key to informing responsible and pedagogically sound approaches to integrating LLMs into instruction and assessment. This study therefore compares the problem-solving performance of a general-purpose LLM (GPT-4o, using varying prompting techniques) and a reasoning-optimized model (o1-preview) with that of participants of the German Physics Olympiad, based on a set of well-defined Olympiad problems. In addition to evaluating the correctness of the generated solutions, the study analyzes characteristic strengths and limitations of LLM-generated solutions. The findings of this study indicate that both tested LLMs (GPT-4o and o1-preview) demonstrate advanced problem-solving capabilities on Olympiad-type physics problems, on average outperforming the human participants. Prompting techniques had little effect on GPT-4o's performance, while o1-preview almost consistently outperformed both GPT-4o and the human benchmark. Based on these findings, the study discusses implications for the design of summative and formative assessment in physics education, including how to uphold assessment integrity and support students in critically engaging with LLMs.
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Listener-Rewarded Thinking in VLMs for Image Preferences
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
♻ ☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 50 pages, 13 figures; fixed figures in the appendix
♻ ☆ AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
comment: Technical Report
♻ ☆ Quasi-symbolic Semantic Geometry over Transformer-based Variational AutoEncoder CoNLL2025
Formal/symbolic semantics can provide canonical, rigid controllability and interpretability to sentence representations due to their \textit{localisation} or \textit{composition} property. How can we deliver such property to the current distributional sentence representations to control and interpret the generation of language models (LMs)? In this work, we theoretically frame the sentence semantics as the composition of \textit{semantic role - word content} features and propose the formal semantic geometry. To inject such geometry into Transformer-based LMs (i.e. GPT2), we deploy Transformer-based Variational AutoEncoder with a supervision approach, where the sentence generation can be manipulated and explained over low-dimensional latent Gaussian space. In addition, we propose a new probing algorithm to guide the movement of sentence vectors over such geometry. Experimental results reveal that the formal semantic geometry can potentially deliver better control and interpretation to sentence generation.
comment: CoNLL2025 (Best Paper nomination)
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ eACGM: Non-instrumented Performance Tracing and Anomaly Detection towards Machine Learning Systems
We present eACGM, a full-stack AI/ML system monitoring framework based on eBPF. eACGM collects real-time performance data from key hardware components, including the GPU and network communication layer, as well as from key software stacks such as CUDA, Python, and PyTorch, all without requiring any code instrumentation or modifications. Additionally, it leverages libnvml to gather process-level GPU resource usage information. By applying a Gaussian Mixture Model (GMM) to the collected multidimensional performance metrics for statistical modeling and clustering analysis, eACGM effectively identifies complex failure modes, such as latency anomalies, hardware failures, and communication inefficiencies, enabling rapid diagnosis of system bottlenecks and abnormal behaviors. To evaluate eACGM's effectiveness and practicality, we conducted extensive empirical studies and case analyses in multi-node distributed training scenarios. The results demonstrate that eACGM, while maintaining a non-intrusive and low-overhead profile, successfully captures critical performance anomalies during model training and inference. Its stable anomaly detection performance and comprehensive monitoring capabilities validate its applicability and scalability in real-world production environments, providing strong support for performance optimization and fault diagnosis in large-scale AI/ML systems.
comment: IWQoS 2025 (Camera-Ready Version)
♻ ☆ From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning ICCV 2025
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead. However, as task diversity and complexity increase, EVIT faces significant challenges in resolving data conflicts. To address this limitation, we propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict through dual structural optimization. Specifically, we utilize two subspaces: a skill space for stable, holistic knowledge retention, and a rank-rectified task space that locally activates the holistic knowledge. Additionally, we introduce Visual Cue Enhancement (VCE), a multi-level local feature aggregation module designed to enrich the vision-language projection with local details. Our approach is both memory- and time-efficient, requiring only 1.16$\times$ the inference time of the standard LoRA method (with injection into the query and value projection layers), and just 73\% of the inference time of a 4-expert LoRA-MoE. Extensive experiments on various downstream tasks and general MLLM benchmarks validate the effectiveness of our proposed methods.
comment: ICCV 2025
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ Against 'softmaxing' culture
AI is flattening culture. Evaluations of "culture" are showing the myriad ways in which large AI models are homogenizing language and culture, averaging out rich linguistic differences into generic expressions. I call this phenomenon "softmaxing culture,'' and it is one of the fundamental challenges facing AI evaluations today. Efforts to improve and strengthen evaluations of culture are central to the project of cultural alignment in large AI systems. This position paper argues that machine learning (ML) and human-computer interaction (HCI) approaches to evaluation are limited. I propose two key conceptual shifts. First, instead of asking "what is culture?" at the start of system evaluations, I propose beginning with the question: "when is culture?" Second, while I acknowledge the philosophical claim that cultural universals exist, the challenge is not simply to describe them, but to situate them in relation to their particulars. Taken together, these conceptual shifts invite evaluation approaches that move beyond technical requirements toward perspectives that are more responsive to the complexities of culture.
comment: 7 pages
♻ ☆ SMoLoRA: Exploring and Defying Dual Catastrophic Forgetting in Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules-one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a new CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions. Code is available at https://github.com/Minato-Zackie/SMoLoRA.
♻ ☆ Ovis-U1 Technical Report
In this report, we introduce Ovis-U1, a 3-billion-parameter unified model that integrates multimodal understanding, text-to-image generation, and image editing capabilities. Building on the foundation of the Ovis series, Ovis-U1 incorporates a diffusion-based visual decoder paired with a bidirectional token refiner, enabling image generation tasks comparable to leading models like GPT-4o. Unlike some previous models that use a frozen MLLM for generation tasks, Ovis-U1 utilizes a new unified training approach starting from a language model. Compared to training solely on understanding or generation tasks, unified training yields better performance, demonstrating the enhancement achieved by integrating these two tasks. Ovis-U1 achieves a score of 69.6 on the OpenCompass Multi-modal Academic Benchmark, surpassing recent state-of-the-art models such as Ristretto-3B and SAIL-VL-1.5-2B. In text-to-image generation, it excels with scores of 83.72 and 0.89 on the DPG-Bench and GenEval benchmarks, respectively. For image editing, it achieves 4.00 and 6.42 on the ImgEdit-Bench and GEdit-Bench-EN, respectively. As the initial version of the Ovis unified model series, Ovis-U1 pushes the boundaries of multimodal understanding, generation, and editing.
comment: An unified model for multimodal understanding, text-to-image generation, and image editing. GitHub: https://github.com/AIDC-AI/Ovis-U1
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
comment: Submitted to Information Sciences
♻ ☆ Hecto: Modular Sparse Experts for Adaptive and Interpretable Reasoning
Mixture-of-Experts (MoE) models enable conditional computation by routing inputs to specialized experts, but these experts rely on identical inductive biases, thus limiting representational diversity. This static computation pathway is inefficient for inputs that require different types of reasoning and limits specialization and interpretability. We propose Hecto, a lightweight MoE architecture that leverages architectural heterogeneity by combining a GRU expert for temporal reasoning and an FFNN expert for static abstraction under a sparse Top-1 gating mechanism. Evaluated on three reasoning benchmarks (AG News, SST-2, HotpotQA) and a regression task (STS-B), Hecto matches or closely trails homogeneous baselines in performance despite receiving isolated input representations, while achieving clear expert specialization, with each expert aligning to distinct reasoning types (temporal vs static). At larger batch sizes, Hecto exhibits improved performance, benefiting from relaxed computational constraints that allow its heterogeneous architecture to optimize more effectively. Ablation results isolate architectural diversity as the source of Hecto's stability and interpretability across diverse reasoning tasks. Overall, Hecto establishes itself as a new benchmark for conditional computation, offering a principled framework for specialized reasoning in low-resource regimes with its model strength derived from principled specialization.
♻ ☆ ZonUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces ZonUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, ZonUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights ZonUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The ZonUI-3B is available at: https://github.com/Han1018/ZonUI-3B
♻ ☆ DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models NeurIPS 2024
Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
comment: Accepted by NeurIPS 2024 D&B Track
♻ ☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
♻ ☆ The Curse of Depth in Large Language Models
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
♻ ☆ ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data
With the increasing interest in robotic synthesis in the context of organic chemistry, the automated extraction of chemical procedures from literature is critical. However, this task remains challenging due to the inherent ambiguity of chemical language and the high cost of human annotation required for developing reliable computer-aided extraction protocols. Here, we present ChemActor, a fully fine-tuned large language model (LLM), as a chemical executor to convert between unstructured experimental procedures and structured action sequences. We propose a sequential LLM-generated data framework to address the challenges of insufficient and low-quality annotated data. This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input. Additionally, we introduce a novel multi-round LLMs circle review metric, which reflects the model's advanced understanding of chemical experimental procedures. Extensive experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor, augmented by LLM-generated data, achieves state-of-the-art performance, outperforming the baseline model by 10%. The code is available at: https://github.com/Zhanghahah/ChemActor.
♻ ☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study on the assessment of the quality of translations generated by LLMs, including Gemini, GPT, and Google Translate. This study addresses this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts (Bhagavad Gita, Tamas and Maha Prasthanam ) that have been well translated by experts and use LLMs to generate their translations into English, and provide a comparison with selected expert (human) translations. Our investigation revealed that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in metaphorical and philosophical contexts for texts such as the Bhagavad Gita. The sentiment analysis revealed that GPT models are better at preserving the sentiment polarity for the given texts when compared to human (expert) translation. The results revealed that GPT models are generally better at maintaining the sentiment and semantics when compared to Google Translate. This study could help in the development of accurate and culturally sensitive translation systems for large language models.
♻ ☆ The Impact of AI on Educational Assessment: A Framework for Constructive Alignment
The influence of Artificial Intelligence (AI), and specifically Large Language Models (LLM), on education is continuously increasing. These models are frequently used by students, giving rise to the question whether current forms of assessment are still a valid way to evaluate student performance and comprehension. The theoretical framework developed in this paper is grounded in Constructive Alignment (CA) theory and Bloom's taxonomy for defining learning objectives. We argue that AI influences learning objectives of different Bloom levels in a different way, and assessment has to be adopted accordingly. Furthermore, in line with Bloom's vision, formative and summative assessment should be aligned on whether the use of AI is permitted or not. Although lecturers tend to agree that education and assessment need to be adapted to the presence of AI, a strong bias exists on the extent to which lecturers want to allow for AI in assessment. This bias is caused by a lecturer's familiarity with AI and specifically whether they use it themselves. To avoid this bias, we propose structured guidelines on a university or faculty level, to foster alignment among the staff. Besides that, we argue that teaching staff should be trained on the capabilities and limitations of AI tools. In this way, they are better able to adapt their assessment methods.
♻ ☆ Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems
Artificial Intelligence (AI) technology epitomizes the complex challenges posed by human-made artifacts, particularly those widely integrated into society and exert significant influence, highlighting potential benefits and their negative consequences. While other technologies may also pose substantial risks, AI's pervasive reach makes its societal effects especially profound. The complexity of AI systems, coupled with their remarkable capabilities, can lead to a reliance on technologies that operate beyond direct human oversight or understanding. To mitigate the risks that arise, several theoretical tools and guidelines have been developed, alongside efforts to create technological tools aimed at safeguarding Trustworthy AI. The guidelines take a more holistic view of the issue but fail to provide techniques for quantifying trustworthiness. Conversely, while technological tools are better at achieving such quantification, they lack a holistic perspective, focusing instead on specific aspects of Trustworthy AI. This paper aims to introduce an assessment method that combines the ethical components of Trustworthy AI with the algorithmic processes of PageRank and TrustRank. The goal is to establish an assessment framework that minimizes the subjectivity inherent in the self-assessment techniques prevalent in the field by introducing algorithmic criteria. The application of our approach indicates that a holistic assessment of an AI system's trustworthiness can be achieved by providing quantitative insights while considering the theoretical content of relevant guidelines.
♻ ☆ SAGE: Steering Dialog Generation with Future-Aware State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level. https://github.com/apple/ml-sage-dialog-gen
comment: 9 pages main text
♻ ☆ Unleashing Diffusion and State Space Models for Medical Image Segmentation
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.
♻ ☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
♻ ☆ ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry ACL 2025
Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines--achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7% to 23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.
comment: 7 pages, 4 figures. Accepted at ACL 2025 Industry Track
♻ ☆ An Automatic Graph Construction Framework based on Large Language Models for Recommendation KDD'25
Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.
comment: Accepted by KDD'25
♻ ☆ CARTS: Collaborative Agents for Recommendation Textual Summarization
Current recommendation systems often require some form of textual data summarization, such as generating concise and coherent titles for product carousels or other grouped item displays. While large language models have shown promise in NLP domains for textual summarization, these approaches do not directly apply to recommendation systems, where explanations must be highly relevant to the core features of item sets, adhere to strict word limit constraints. In this paper, we propose CARTS (Collaborative Agents for Recommendation Textual Summarization), a multi-agent LLM framework designed for structured summarization in recommendation systems. CARTS decomposes the task into three stages-Generation Augmented Generation (GAG), refinement circle, and arbitration, where successive agent roles are responsible for extracting salient item features, iteratively refining candidate titles based on relevance and length feedback, and selecting the final title through a collaborative arbitration process. Experiments on large-scale e-commerce data and live A/B testing show that CARTS significantly outperforms single-pass and chain-of-thought LLM baselines, delivering higher title relevance and improved user engagement metrics.
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
♻ ☆ Conquering Ghosts: Relation Learning for Information Reliability Representation and End-to-End Robust Navigation
Environmental disturbances, such as sensor data noises, various lighting conditions, challenging weathers and external adversarial perturbations, are inevitable in real self-driving applications. Existing researches and testings have shown that they can severely influence the vehicles perception ability and performance, one of the main issue is the false positive detection, i.e., the ghost object which is not real existed or occurs in the wrong position (such as a non-existent vehicle). Traditional navigation methods tend to avoid every detected objects for safety, however, avoiding a ghost object may lead the vehicle into a even more dangerous situation, such as a sudden break on the highway. Considering the various disturbance types, it is difficult to address this issue at the perceptual aspect. A potential solution is to detect the ghost through relation learning among the whole scenario and develop an integrated end-to-end navigation system. Our underlying logic is that the behavior of all vehicles in the scene is influenced by their neighbors, and normal vehicles behave in a logical way, while ghost vehicles do not. By learning the spatio-temporal relation among surrounding vehicles, an information reliability representation is learned for each detected vehicle and then a robot navigation network is developed. In contrast to existing works, we encourage the network to learn how to represent the reliability and how to aggregate all the information with uncertainties by itself, thus increasing the efficiency and generalizability. To the best of the authors knowledge, this paper provides the first work on using graph relation learning to achieve end-to-end robust navigation in the presence of ghost vehicles. Simulation results in the CARLA platform demonstrate the feasibility and effectiveness of the proposed method in various scenarios.
♻ ☆ Pipelined Decoder for Efficient Context-Aware Text Generation
As the basis of generative AI, an autoregressive model requires the generation of a new token depending on all the previously generated tokens, which brings high quality but also restricts the model to generate tokens one by one, forming a bottleneck limiting the generation speed. In this paper, we propose a new decoder architecture that efficiently generates text in parallel for context-aware generation tasks. Our proposed pipelined decoder initiates the generation of multiple subsequences simultaneously, and, at each time-step, it generates a new token for each subsequence to realize parallelism. Experiments on multiple text generation tasks, including question answering, text summarization, and keyphrase generation, show that our pipelined decoder significantly improves the generation speed without a significant loss of generation quality or additional memory consumption.
♻ ☆ SwarmThinkers: Learning Physically Consistent Atomic KMC Transitions at Scale
Can a scientific simulation system be physically consistent, interpretable by design, and scalable across regimes--all at once? Despite decades of progress, this trifecta remains elusive. Classical methods like Kinetic Monte Carlo ensure thermodynamic accuracy but scale poorly; learning-based methods offer efficiency but often sacrifice physical consistency and interpretability. We present SwarmThinkers, a reinforcement learning framework that recasts atomic-scale simulation as a physically grounded swarm intelligence system. Each diffusing particle is modeled as a local decision-making agent that selects transitions via a shared policy network trained under thermodynamic constraints. A reweighting mechanism fuses learned preferences with transition rates, preserving statistical fidelity while enabling interpretable, step-wise decision making. Training follows a centralized-training, decentralized-execution paradigm, allowing the policy to generalize across system sizes, concentrations, and temperatures without retraining. On a benchmark simulating radiation-induced Fe-Cu alloy precipitation, SwarmThinkers is the first system to achieve full-scale, physically consistent simulation on a single A100 GPU, previously attainable only via OpenKMC on a supercomputer. It delivers up to 4963x (3185x on average) faster computation with 485x lower memory usage. By treating particles as decision-makers, not passive samplers, SwarmThinkers marks a paradigm shift in scientific simulation--one that unifies physical consistency, interpretability, and scalability through agent-driven intelligence.
♻ ☆ VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
Recent advancements in Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding. However, it remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception. Existing benchmarks typically rely on real-world, annotated videos, which lack control over video content and inherent difficulty, limiting their diagnostic power. To bridge this gap, we propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments, designed to evaluate the cognitive abilities of LVLMs. By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty. This approach enables a focused evaluation of video cognitive abilities, independent of prior knowledge from visual scene semantics. The dataset includes 800 videos and 3,280 question-answer pairs, featuring tasks related to abstract concepts, symbolic elements, and multimodal integration, with varying levels of difficulty. Experimental results show that even state-of-the-art (SOTA) models, such as GPT-4o, achieve an average performance of 48.8% on tasks involving abstract concepts. Additionally, performance drops by 15% as task complexity increases, highlighting the challenges LVLMs face in maintaining consistent performance. Through this work, we hope to show the limitations of current LVLMs and offer insights into how they can more effectively emulate human cognitive processes in the future.
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ Conceptual Framework Toward Embodied Collective Adaptive Intelligence
Collective Adaptive Intelligence (CAI) represent a transformative approach in embodied AI, wherein numerous autonomous agents collaborate, adapt, and self-organize to navigate complex, dynamic environments. By enabling systems to reconfigure themselves in response to unforeseen challenges, CAI facilitate robust performance in real-world scenarios. This article introduces a conceptual framework for designing and analyzing CAI. It delineates key attributes including task generalization, resilience, scalability, and self-assembly, aiming to bridge theoretical foundations with practical methodologies for engineering adaptive, emergent intelligence. By providing a structured foundation for understanding and implementing CAI, this work seeks to guide researchers and practitioners in developing more resilient, scalable, and adaptable AI systems across various domains.
♻ ☆ Red Teaming for Generative AI, Report on a Copyright-Focused Exercise Completed in an Academic Medical Center
Background: Generative artificial intelligence (AI) deployment in healthcare settings raises copyright compliance concerns. Dana-Farber Cancer Institute implemented GPT4DFCI, an internal generative AI tool utilizing OpenAI models, that is approved for enterprise use in research and operations. Given (i) the exceptionally broad adoption of the tool in our organization, (ii) our research mission, and (iii) the shared responsibility model required by Microsoft OpenAI products, we deemed rigorous copyright compliance testing necessary. Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through indirect prompting strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards with data reformatting rather than reproduction. Discussion: The successful extraction of literary content indicates potential copyright material presence in training data, necessitating enhanced inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation is in production since Jan. 2025. Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI must implement continuous testing protocols to ensure legal and ethical compliance.
♻ ☆ Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds
In-Context Reinforcement Learning (ICRL) enables agents to learn automatically and on-the-fly from their interactive experiences. However, a major challenge in scaling up ICRL is the lack of scalable task collections. To address this, we propose the procedurally generated tabular Markov Decision Processes, named AnyMDP. Through a carefully designed randomization process, AnyMDP is capable of generating high-quality tasks on a large scale while maintaining relatively low structural biases. To facilitate efficient meta-training at scale, we further introduce step-wise supervision and induce prior information in the ICRL framework.Our results demonstrate that, with a sufficiently large scale of AnyMDP tasks, the proposed model can generalize to tasks that were not considered in the training set. The scalable task set provided by AnyMDP also enables a more thorough empirical investigation of the relationship between data distribution and ICRL performance. We further show that the generalization of ICRL potentially comes at the cost of increased task diversity and longer adaptation periods. This finding carries critical implications for scaling robust ICRL capabilities, highlighting the necessity of diverse and extensive task design, and prioritizing asymptotic performance over few-shot adaptation.
comment: Preprint
♻ ☆ Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we propose an IDF-aware penalty for the matching function that suppresses the contribution of low-IDF tokens and increases the model's focus on informative terms. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by \textbf{3.3 NDCG@10 score}. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only \textbf{1.1x that of BM25}.
♻ ☆ Flexora: Flexible Low Rank Adaptation for Large Language Models
Large Language Models (LLMs) are driving advancements in artificial intelligence by increasing the scale of model parameters, which has significantly enhanced generalization ability and unlocked new capabilities in practice. However, their performance in specific downstream tasks is usually hindered by their knowledge boundaries on these tasks. Thus, fine-tuning techniques, especially the widely used Low-Rank Adaptation (LoRA) method, have been introduced to expand the boundaries on these tasks, whereas LoRA would underperform on certain tasks owing to its potential overfitting on these tasks. To overcome this overfitting and improve the performance of LoRA, we propose the flexible low rank adaptation (Flexora) method to automatically and flexibly select the most important layers needing to be fine-tuned to achieve the best performance on different downstream tasks. Specifically, Flexora firstly frames this layer selection problem as a well-defined hyperparameter optimization (HPO) problem, then addresses it using the unrolled differentiation (UD) method, and finally selects the most useful layers based on the optimized hyperparameters. Our extensive experiments on many pretrained models and natural language tasks show that Flexora is able to consistently improve over the existing baselines, indicating the effectiveness of our Flexora in practice. We additionally provide insightful theoretical results and many ablation studies to deliver a comprehensive understanding of our Flexora.
comment: 40 pages, 15 figures
♻ ☆ Beyond Code: The Multidimensional Impacts of Large Language Models in Software Development
Large language models (LLMs) are poised to significantly impact software development, especially in the Open-Source Software (OSS) sector. To understand this impact, we first outline the mechanisms through which LLMs may influence OSS through code development, collaborative knowledge transfer, and skill development. We then empirically examine how LLMs affect OSS developers' work in these three key areas. Leveraging a natural experiment from a temporary ChatGPT ban in Italy, we employ a Difference-in-Differences framework with two-way fixed effects to analyze data from all OSS developers on GitHub in three similar countries, Italy, France, and Portugal, totaling 88,022 users. We find that access to ChatGPT increases developer productivity by 6.4%, knowledge sharing by 9.6%, and skill acquisition by 8.4%. These benefits vary significantly by user experience level: novice developers primarily experience productivity gains, whereas more experienced developers benefit more from improved knowledge sharing and accelerated skill acquisition. In addition, we find that LLM-assisted learning is highly context-dependent, with the greatest benefits observed in technically complex, fragmented, or rapidly evolving contexts. We show that the productivity effects of LLMs extend beyond direct code generation to include enhanced collaborative learning and knowledge exchange among developers, dynamics that are essential for gaining a holistic understanding of LLMs' impact in OSS. Our findings offer critical managerial implications: strategically deploying LLMs can accelerate novice developers' onboarding and productivity, empower intermediate developers to foster knowledge sharing and collaboration, and support rapid skill acquisition, together enhancing long-term organizational productivity and agility.
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Adapt Your Body: Mitigating Proprioception Shifts in Imitation Learning
Imitation learning models for robotic tasks typically rely on multi-modal inputs, such as RGB images, language, and proprioceptive states. While proprioception is intuitively important for decision-making and obstacle avoidance, simply incorporating all proprioceptive states leads to a surprising degradation in imitation learning performance. In this work, we identify the underlying issue as the proprioception shift problem, where the distributions of proprioceptive states diverge significantly between training and deployment. To address this challenge, we propose a domain adaptation framework that bridges the gap by utilizing rollout data collected during deployment. Using Wasserstein distance, we quantify the discrepancy between expert and rollout proprioceptive states and minimize this gap by adding noise to both sets of states, proportional to the Wasserstein distance. This strategy enhances robustness against proprioception shifts by aligning the training and deployment distributions. Experiments on robotic manipulation tasks demonstrate the efficacy of our method, enabling the imitation policy to leverage proprioception while mitigating its adverse effects. Our approach outperforms the naive solution which discards proprioception, and other baselines designed to address distributional shifts.
comment: Need further modification
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. V4: sharpened results and typos fixed
♻ ☆ Transformers from Diffusion: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which integrates the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers (DIFFormer), whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset
Human communication involves a complex interplay of verbal and nonverbal signals, essential for conveying meaning and achieving interpersonal goals. To develop socially intelligent AI technologies, it is crucial to develop models that can both comprehend and generate dyadic behavioral dynamics. To this end, we introduce the Seamless Interaction Dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage from over 4,000 participants in diverse contexts. This dataset enables the development of AI technologies that understand dyadic embodied dynamics, unlocking breakthroughs in virtual agents, telepresence experiences, and multimodal content analysis tools. We also develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech. These models can take as input both the speech and visual behavior of their interlocutors. We present a variant with speech from an LLM model and integrations with 2D and 3D rendering methods, bringing us closer to interactive virtual agents. Additionally, we describe controllable variants of our motion models that can adapt emotional responses and expressivity levels, as well as generating more semantically-relevant gestures. Finally, we discuss methods for assessing the quality of these dyadic motion models, which are demonstrating the potential for more intuitive and responsive human-AI interactions.
♻ ☆ Junk DNA Hypothesis: Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs "Difficult" Downstream Tasks in LLMs ICML 2024
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization, fails to exhibit similar monotonic effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (1) within the same task category, and (2) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even pruning methods. Codes are available at: https://github.com/VITA-Group/Junk_DNA_Hypothesis.git.
comment: Published at ICML 2024
Machine Learning 68
♻ ☆ STONet: A neural operator for modeling solute transport in micro-cracked reservoirs
In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet's model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper will be published at https://github.com/ehsanhaghighat/STONet.
♻ ☆ SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
♻ ☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ Meta-Posterior Consistency for the Bayesian Inference of Metastable System
The vast majority of the literature on learning dynamical systems or stochastic processes from time series has focused on stable or ergodic systems, for both Bayesian and frequentist inference procedures. However, most real-world systems are only metastable, that is, the dynamics appear to be stable on some time scale, but are in fact unstable over longer time scales. Consistency of inference for metastable systems may not be possible, but one can ask about metaconsistency: Do inference procedures converge when observations are taken over a large but finite time interval, but diverge on longer time scales? In this paper we introduce, discuss, and quantify metaconsistency in a Bayesian framework. We discuss how metaconsistency can be exploited to efficiently infer a model for a sub-system of a larger system, where inference on the global behavior may require much more data, or there is no theoretical guarantee as to the asymptotic success of inference procedures. We also discuss the relation between metaconsistency and the spectral properties of the model dynamical system in the case of uniformly ergodic and non-ergodic diffusions.
comment: 32 pages, 3 figures
♻ ☆ Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.
comment: 7 pages, 9 figures, The 4th Workshop on Sustainable Computer Systems (HotCarbon'25), Cambridge, MA, July 10-11th, 2025
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ Uncertainty Quantification of Wind Gust Predictions in the Northeast United States: An Evidential Neural Network and Explainable Artificial Intelligence Approach
Machine learning algorithms have shown promise in reducing bias in wind gust predictions, while still underpredicting high gusts. Uncertainty quantification (UQ) supports this issue by identifying when predictions are reliable or need cautious interpretation. Using data from 61 extratropical storms in the Northeastern USA, we introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions, leveraging atmospheric variables from the Weather Research and Forecasting (WRF) model. Explainable AI techniques suggested that key predictive features contributed to higher uncertainty, which correlated strongly with storm intensity and spatial gust gradients. Compared to WRF, ENN demonstrated a 47% reduction in RMSE and allowed the construction of gust prediction intervals without an ensemble, successfully capturing at least 95% of observed gusts at 179 out of 266 stations. From an operational perspective, providing gust forecasts with quantified uncertainty enhances stakeholders' confidence in risk assessment and response planning for extreme gust events.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ Persistence Paradox in Dynamic Science
Persistence is often regarded as a virtue in science. In this paper, however, we challenge this conventional view by highlighting its contextual nature, particularly how persistence can become a liability during periods of paradigm shift. We focus on the deep learning revolution catalyzed by AlexNet in 2012. Analyzing the 20-year career trajectories of over 5,000 scientists who were active in top machine learning venues during the preceding decade, we examine how their research focus and output evolved. We first uncover a dynamic period in which leading venues increasingly prioritized cutting-edge deep learning developments that displaced relatively traditional statistical learning methods. Scientists responded to these changes in markedly different ways. Those who were previously successful or affiliated with old teams adapted more slowly, experiencing what we term a rigidity penalty - a reluctance to embrace new directions leading to a decline in scientific impact, as measured by citation percentile rank. In contrast, scientists who pursued strategic adaptation - selectively pivoting toward emerging trends while preserving weak connections to prior expertise - reaped the greatest benefits. Taken together, our macro- and micro-level findings show that scientific breakthroughs act as mechanisms that reconfigure power structures within a field.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Unsupervised Attributed Dynamic Network Embedding with Stability Guarantees
Stability for dynamic network embeddings ensures that nodes behaving the same at different times receive the same embedding, allowing comparison of nodes in the network across time. We present attributed unfolded adjacency spectral embedding (AUASE), a stable unsupervised representation learning framework for dynamic networks in which nodes are attributed with time-varying covariate information. To establish stability, we prove uniform convergence to an associated latent position model. We quantify the benefits of our dynamic embedding by comparing with state-of-the-art network representation learning methods on four real attributed networks. To the best of our knowledge, AUASE is the only attributed dynamic embedding that satisfies stability guarantees without the need for ground truth labels, which we demonstrate provides significant improvements for link prediction and node classification.
comment: 28 pages, 5 figures
♻ ☆ Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought
Large Language Models (LLMs) have demonstrated remarkable performance in many applications, including challenging reasoning problems via chain-of-thoughts (CoTs) techniques that generate ``thinking tokens'' before answering the questions. While existing theoretical works demonstrate that CoTs with discrete tokens boost the capability of LLMs, recent work on continuous CoTs lacks a theoretical understanding of why it outperforms discrete counterparts in various reasoning tasks such as directed graph reachability, a fundamental graph reasoning problem that includes many practical domain applications as special cases. In this paper, we prove that a two-layer transformer with $D$ steps of continuous CoTs can solve the directed graph reachability problem, where $D$ is the diameter of the graph, while the best known result of constant-depth transformers with discrete CoTs requires $O(n^2)$ decoding steps where $n$ is the number of vertices ($D
comment: 26 pages, 7 figures
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
♻ ☆ Studying and Improving Graph Neural Network-based Motif Estimation
Graph Neural Networks (GNNs) are a predominant method for graph representation learning. However, beyond subgraph frequency estimation, their application to network motif significance-profile (SP) prediction remains under-explored, with no established benchmarks in the literature. We propose to address this problem, framing SP estimation as a task independent of subgraph frequency estimation. Our approach shifts from frequency counting to direct SP estimation and modulates the problem as multitarget regression. The reformulation is optimised for interpretability, stability and scalability on large graphs. We validate our method using a large synthetic dataset and further test it on real-world graphs. Our experiments reveal that 1-WL limited models struggle to make precise estimations of SPs. However, they can generalise to approximate the graph generation processes of networks by comparing their predicted SP with the ones originating from synthetic generators. This first study on GNN-based motif estimation also hints at how using direct SP estimation can help go past the theoretical limitations that motif estimation faces when performed through subgraph counting.
comment: This manuscript represents a revised version from the paper on https://openreview.net/forum?id=PZVVOeu6xx. Still a work in progress. Comments are welcome! 23 pages (12 main text + references), 9 figures, 5 tables. (First update: Fix broken links, references and text review.)
♻ ☆ LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
Recent research has shown an increasing interest in utilizing pre-trained large language models (LLMs) for a variety of time series applications. However, there are three main challenges when using LLMs as foundational models for time series forecasting: (1) Cross-domain generalization. (2) Cross-modality alignment. (3) Error accumulation in autoregressive frameworks. To address these challenges, we proposed LangTime, a language-guided unified model for time series forecasting that incorporates cross-domain pre-training with reinforcement learning-based fine-tuning. Specifically, LangTime constructs Temporal Comprehension Prompts (TCPs), which include dataset-wise and channel-wise instructions, to facilitate domain adaptation and condense time series into a single token, enabling LLMs to understand better and align temporal data. To improve autoregressive forecasting, we introduce TimePPO, a reinforcement learning-based fine-tuning algorithm. TimePPO mitigates error accumulation by leveraging a multidimensional rewards function tailored for time series and a repeat-based value estimation strategy. Extensive experiments demonstrate that LangTime achieves state-of-the-art cross-domain forecasting performance, while TimePPO fine-tuning effectively enhances the stability and accuracy of autoregressive forecasting.
♻ ☆ On best approximation by multivariate ridge functions with applications to generalized translation networks
In this paper, we prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., for approximation by functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n \varrho_k(A_k x) \in \mathbb{R}$ with $\varrho_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity (order of differentiability) of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results regarding the approximation properties of univariate ridge functions to the multivariate case. We use our results to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
♻ ☆ EvoPress: Accurate Dynamic Model Compression via Evolutionary Search ICML
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on estimating the importance of a given layer, implicitly assuming that layers contribute independently to the overall compression error. We begin from the motivating observation that this independence assumption does not generally hold for LLM compression: pruning a model further may even significantly recover performance. To address this, we propose EvoPress, a novel evolutionary framework for dynamic LLM compression. By formulating dynamic compression as a general optimization problem, EvoPress identifies optimal compression profiles in a highly efficient manner, and generalizes across diverse models and compression techniques. Via EvoPress, we achieve state-of-the-art performance for dynamic compression of Llama, Mistral, and Phi models, setting new benchmarks for structural pruning (block/layer dropping), unstructured sparsity, and quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress}.
comment: ICML camera-ready
♻ ☆ Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data
On-device learning at the edge enables low-latency, private personalization with improved long-term robustness and reduced maintenance costs. Yet, achieving scalable, low-power end-to-end on-chip learning, especially from real-world sequential data with a limited number of examples, is an open challenge. Indeed, accelerators supporting error backpropagation optimize for learning performance at the expense of inference efficiency, while simplified learning algorithms often fail to reach acceptable accuracy targets. In this work, we present Chameleon, leveraging three key contributions to solve these challenges. (i) A unified learning and inference architecture supports few-shot learning (FSL), continual learning (CL) and inference at only 0.5% area overhead to the inference logic. (ii) Long temporal dependencies are efficiently captured with temporal convolutional networks (TCNs), enabling the first demonstration of end-to-end on-chip FSL and CL on sequential data and inference on 16-kHz raw audio. (iii) A dual-mode, matrix-multiplication-free compute array allows either matching the power consumption of state-of-the-art inference-only keyword spotting (KWS) accelerators or enabling $4.3\times$ higher peak GOPS. Fabricated in 40-nm CMOS, Chameleon sets new accuracy records on Omniglot for end-to-end on-chip FSL (96.8%, 5-way 1-shot, 98.8%, 5-way 5-shot) and CL (82.2% final accuracy for learning 250 classes with 10 shots), while maintaining an inference accuracy of 93.3% on the 12-class Google Speech Commands dataset at an extreme-edge power budget of 3.1 $\mu$W.
comment: 14 pages, 7 figures; added FSL power consumption measurements at 100 kHz clock speed, fixed typos
♻ ☆ Conditional Local Independence Testing for Dynamic Causal Discovery
Inferring causal relationships from dynamical systems is the central interest of many scientific inquiries. Conditional Local Independence (CLI), which describes whether the evolution of one process is influenced by another process given additional processes, is important for causal learning in such systems. However, existing CLI tests were limited to counting processes. In this paper, we propose a nonparametric CLT test for It\^o processes. Specifically, we first introduce a testing statistic based on the Local Covariance Measure (LCM) by constructing a martingale from the conditional expectation of the process of interest. For estimation, we propose an efficient estimator based on the optimal filtering equation, which can achieve root-N consistency. To establish the asymptotic level and power of the test, we relax the restrictive boundedness condition to a moment bound condition, which is practical for It\^o processes. We verify the proposed test in synthetic and real-world experiments.
comment: Working paper
♻ ☆ Machine Learning-Based Analysis of ECG and PCG Signals for Rheumatic Heart Disease Detection: A Scoping Review (2015-2025)
AI-powered stethoscopes offer a promising alternative for screening rheumatic heart disease (RHD), particularly in regions with limited diagnostic infrastructure. Early detection is vital, yet echocardiography, the gold standard tool, remains largely inaccessible in low-resource settings due to cost and workforce constraints. This review systematically examines machine learning (ML) applications from 2015 to 2025 that analyze electrocardiogram (ECG) and phonocardiogram (PCG) data to support accessible, scalable screening of all RHD variants in relation to the World Heart Federation's "25 by 25" goal to reduce RHD mortality. Using PRISMA-ScR guidelines, 37 peer-reviewed studies were selected from PubMed, IEEE Xplore, Scopus, and Embase. Convolutional neural networks (CNNs) dominate recent efforts, achieving a median accuracy of 97.75%, F1-score of 0.95, and AUROC of 0.89. However, challenges remain: 73% of studies used single-center datasets, 81.1% relied on private data, only 10.8% were externally validated, and none assessed cost-effectiveness. Although 45.9% originated from endemic regions, few addressed demographic diversity or implementation feasibility. These gaps underscore the disconnect between model performance and clinical readiness. Bridging this divide requires standardized benchmark datasets, prospective trials in endemic areas, and broader validation. If these issues are addressed, AI-augmented auscultation could transform cardiovascular diagnostics in underserved populations, thereby aiding early detection. This review also offers practical recommendations for building accessible ML-based RHD screening tools, aiming to close the diagnostic gap in low-resource settings where conventional auscultation may miss up to 90% of cases and echocardiography remains out of reach.
♻ ☆ Gradient Descent Algorithm in Hilbert Spaces under Stationary Markov Chains with $φ$- and $β$-Mixing
In this paper, we study a strictly stationary Markov chain gradient descent algorithm operating in general Hilbert spaces. Our analysis focuses on the mixing coefficients of the underlying process, specifically the $\phi$- and $\beta$-mixing coefficients. Under these assumptions, we derive probabilistic upper bounds on the convergence behavior of the algorithm based on the exponential as well as the polynomial decay of the mixing coefficients.
♻ ☆ Towards Efficient Parametric State Estimation in Circulating Fuel Reactors with Shallow Recurrent Decoder Networks
The recent developments in data-driven methods have paved the way to new methodologies to provide accurate state reconstruction of engineering systems; nuclear reactors represent particularly challenging applications for this task due to the complexity of the strongly coupled physics involved and the extremely harsh and hostile environments, especially for new technologies such as Generation-IV reactors. Data-driven techniques can combine different sources of information, including computational proxy models and local noisy measurements on the system, to robustly estimate the state. This work leverages the novel Shallow Recurrent Decoder architecture to infer the entire state vector (including neutron fluxes, precursors concentrations, temperature, pressure and velocity) of a reactor from three out-of-core time-series neutron flux measurements alone. In particular, this work extends the standard architecture to treat parametric time-series data, ensuring the possibility of investigating different accidental scenarios and showing the capabilities of this approach to provide an accurate state estimation in various operating conditions. This paper considers as a test case the Molten Salt Fast Reactor (MSFR), a Generation-IV reactor concept, characterised by strong coupling between the neutronics and the thermal hydraulics due to the liquid nature of the fuel. The promising results of this work are further strengthened by the possibility of quantifying the uncertainty associated with the state estimation, due to the considerably low training cost. The accurate reconstruction of every characteristic field in real-time makes this approach suitable for monitoring and control purposes in the framework of a reactor digital twin.
♻ ☆ Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
There has been a growing interest in studying sequential neural posterior estimation (SNPE) techniques for their advantages in dealing with simulation-based models with intractable likelihoods. They are devoted to learning the posterior from adaptively proposed simulations using neural network-based conditional density estimators. As a SNPE technique, the automatic posterior transformation (APT) method proposed by Greenberg et al. (2019) performs notably and scales to high dimensional data. However, the APT method bears the computation of an expectation of the logarithm of an intractable normalizing constant, i.e., a nested expectation. Although atomic APT was proposed to solve this by discretizing the normalizing constant, it remains challenging to analyze the convergence of learning. In this paper, we propose a nested APT method to estimate the involved nested expectation instead. This facilitates establishing the convergence analysis. Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators for debiasing. To further reduce the excessive variance of the unbiased estimators, this paper also develops some truncated MLMC estimators by taking account of the trade-off between the bias and the average cost. Numerical experiments for approximating complex posteriors with multimodal in moderate dimensions are provided.
comment: 30 pages, 6 figures
♻ ☆ Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning ICML 2025
Effective visual representation learning is crucial for reinforcement learning (RL) agents to extract task-relevant information from raw sensory inputs and generalize across diverse environments. However, existing RL benchmarks lack the ability to systematically evaluate representation learning capabilities in isolation from other learning challenges. To address this gap, we introduce the Sliding Puzzles Gym (SPGym), a novel benchmark that transforms the classic 8-tile puzzle into a visual RL task with images drawn from arbitrarily large datasets. SPGym's key innovation lies in its ability to precisely control representation learning complexity through adjustable grid sizes and image pools, while maintaining fixed environment dynamics, observation, and action spaces. This design enables researchers to isolate and scale the visual representation challenge independently of other learning components. Through extensive experiments with model-free and model-based RL algorithms, we uncover fundamental limitations in current methods' ability to handle visual diversity. As we increase the pool of possible images, all algorithms exhibit in- and out-of-distribution performance degradation, with sophisticated representation learning techniques often underperforming simpler approaches like data augmentation. These findings highlight critical gaps in visual representation learning for RL and establish SPGym as a valuable tool for driving progress in robust, generalizable decision-making systems.
comment: Accepted at ICML 2025
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Learning dynamical systems from data: Gradient-based dictionary optimization
The Koopman operator plays a crucial role in analyzing the global behavior of dynamical systems. Existing data-driven methods for approximating the Koopman operator or discovering the governing equations of the underlying system typically require a fixed set of basis functions, also called dictionary. The optimal choice of basis functions is highly problem-dependent and often requires domain knowledge. We present a novel gradient descent-based optimization framework for learning suitable and interpretable basis functions from data and show how it can be used in combination with EDMD, SINDy, and PDE-FIND. We illustrate the efficacy of the proposed approach with the aid of various benchmark problems such as the Ornstein-Uhlenbeck process, Chua's circuit, a nonlinear heat equation, as well as protein-folding data.
♻ ☆ The Number of Trials Matters in Infinite-Horizon General-Utility Markov Decision Processes
The general-utility Markov decision processes (GUMDPs) framework generalizes the MDPs framework by considering objective functions that depend on the frequency of visitation of state-action pairs induced by a given policy. In this work, we contribute with the first analysis on the impact of the number of trials, i.e., the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We show that, as opposed to standard MDPs, the number of trials plays a key-role in infinite-horizon GUMDPs and the expected performance of a given policy depends, in general, on the number of trials. We consider both discounted and average GUMDPs, where the objective function depends, respectively, on discounted and average frequencies of visitation of state-action pairs. First, we study policy evaluation under discounted GUMDPs, proving lower and upper bounds on the mismatch between the finite and infinite trials formulations for GUMDPs. Second, we address average GUMDPs, studying how different classes of GUMDPs impact the mismatch between the finite and infinite trials formulations. Third, we provide a set of empirical results to support our claims, highlighting how the number of trajectories and the structure of the underlying GUMDP influence policy evaluation.
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ Mirror Online Conformal Prediction with Intermittent Feedback
Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, operates under potentially intermittent feedback, and features minimal memory complexity. IM-OCP guarantees long-term coverage and sub-linear regret, both of which hold deterministically for any given data sequence and in expectation with respect to the intermittent feedback.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results quantify the relationship between the quality of the prediction sets and the severity of distributional changes, and can potentially be used to compute more efficient prediction sets.
comment: arXiv admin note: text overlap with arXiv:2404.13731
♻ ☆ A novel Trunk Branch-net PINN for flow and heat transfer prediction in porous medium
A novel Trunk-Branch (TB)-net physics-informed neural network (PINN) architecture is developed, which is a PINN-based method incorporating trunk and branch nets to capture both global and local features. The aim is to solve four main classes of problems: forward flow problem, forward heat transfer problem, inverse heat transfer problem, and transfer learning problem within the porous medium, which are notoriously complex that could not be handled by origin PINN. In the proposed TB-net PINN architecture, a Fully-connected Neural Network (FNN) is used as the trunk net, followed by separated FNNs as the branch nets with respect to outputs, and automatic differentiation is performed for partial derivatives of outputs with respect to inputs by considering various physical loss. The effectiveness and flexibility of the novel TB-net PINN architecture is demonstrated through a collection of forward problems, and transfer learning validates the feasibility of resource reuse. Combining with the superiority over traditional numerical methods in solving inverse problems, the proposed TB-net PINN shows its great potential for practical engineering applications.
comment: 33 pages, 24 figures,
♻ ☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
♻ ☆ Integrating Expert Labels into LLM-based Emission Goal Detection: Example Selection vs Automatic Prompt Design
We address the detection of emission reduction goals in corporate reports, an important task for monitoring companies' progress in addressing climate change. Specifically, we focus on the issue of integrating expert feedback in the form of labeled example passages into LLM-based pipelines, and compare the two strategies of (1) a dynamic selection of few-shot examples and (2) the automatic optimization of the prompt by the LLM itself. Our findings on a public dataset of 769 climate-related passages from real-world business reports indicate that automatic prompt optimization is the superior approach, while combining both methods provides only limited benefit. Qualitative results indicate that optimized prompts do indeed capture many intricacies of the targeted emission goal extraction task.
♻ ☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
♻ ☆ Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
Detecting structural change in dynamic network data has wide-ranging applications. Existing approaches typically divide the data into time bins, extract network features within each bin, and then compare these features over time. This introduces an inherent tradeoff between temporal resolution and the statistical stability of the extracted features. Despite this tradeoff, reminiscent of time-frequency tradeoffs in signal processing, most methods rely on a fixed temporal resolution. Choosing an appropriate resolution parameter is typically difficult and can be especially problematic in domains like cybersecurity, where anomalous behavior may emerge at multiple time scales. We address this challenge by proposing ANIE (Adaptive Network Intensity Estimation), a multi-resolution framework designed to automatically identify the time scales at which network structure evolves, enabling the joint detection of both rapid and gradual changes. Modeling interactions as Poisson processes, our method proceeds in two steps: (1) estimating a low-dimensional subspace of node behavior, and (2) deriving a set of novel empirical affinity coefficients that quantify change in interaction intensity between latent factors and support statistical testing for structural change across time scales. We provide theoretical guarantees for subspace estimation and the asymptotic behavior of the affinity coefficients, enabling model-based change detection. Experiments on synthetic networks show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise. Furthermore, applications to real-world data showcase the practical benefits of ANIE's multiresolution approach to detecting structural change over fixed resolution methods.
♻ ☆ Downscaling Neural Network for Coastal Simulations
Learning the fine-scale details of a coastal ocean simulation from a coarse representation is a challenging task. For real-world applications, high-resolution simulations are necessary to advance understanding of many coastal processes, specifically, to predict flooding resulting from tsunamis and storm surges. We propose a Downscaling Neural Network for Coastal Simulation (DNNCS) for spatiotemporal enhancement to efficiently learn the high-resolution numerical solution. Given images of coastal simulations produced on low-resolution computational meshes using low polynomial order discontinuous Galerkin discretizations and a coarse temporal resolution, the proposed DNNCS learns to produce high-resolution free surface elevation and velocity visualizations in both time and space. To efficiently model the dynamic changes over time and space, we propose grid-aware spatiotemporal attention to project the temporal features to the spatial domain for non-local feature matching. The coordinate information is also utilized via positional encoding. For the final reconstruction, we use the spatiotemporal bilinear operation to interpolate the missing frames and then expand the feature maps to the frequency domain for residual mapping. Besides data-driven losses, the proposed physics-informed loss guarantees gradient consistency and momentum changes. Their combination contributes to the overall 24% improvements in Root Mean Square Error (RMSE). To train the proposed model, we propose a novel coastal simulation dataset and use it for model optimization and evaluation. Our method shows superior downscaling quality and fast computation compared to the state-of-the-art methods.
comment: 13 pages, 12 figures
♻ ☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
comment: Submitted to Information Sciences
♻ ☆ Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to \textit{catastrophic forgetting} that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, an adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the excellent performance of DPTA. Code is available in https://github.com/Yorkxzm/DPTA
comment: 10 pages,9 figures,2 tables
♻ ☆ The Curse of Depth in Large Language Models
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
♻ ☆ Plastic tensor networks for interpretable generative modeling
A structural optimization scheme for a single-layer nonnegative adaptive tensor tree (NATT) that models a target probability distribution is proposed as an alternative paradigm for generative modeling. The NATT scheme, by construction, automatically searches for a tree structure that best fits a given discrete dataset whose features serve as inputs, and has the advantage that it is interpretable as a probabilistic graphical model. We consider the NATT scheme and a recently proposed Born machine adaptive tensor tree (BMATT) optimization scheme and demonstrate their effectiveness on a variety of generative modeling tasks where the objective is to infer the hidden structure of a provided dataset. Our results show that in terms of minimizing the negative log-likelihood, the single-layer scheme has model performance comparable to the Born machine scheme, though not better. The tasks include deducing the structure of binary bitwise operations, learning the internal structure of random Bayesian networks given only visible sites, and a real-world example related to hierarchical clustering where a cladogram is constructed from mitochondrial DNA sequences. In doing so, we also show the importance of the choice of network topology and the versatility of a least-mutual information criterion in selecting a candidate structure for a tensor tree, as well as discuss aspects of these tensor tree generative models including their information content and interpretability.
comment: 18 pages, 17 figures
♻ ☆ UFGraphFR: Graph Federation Recommendation System based on User Text description features
Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, which limits their recommendation effectiveness. To overcome this limitation, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a novel personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual feature descriptions exhibit similar preferences. Accordingly, UFGraphFR introduces two key components: (1) a privacy-preserving user relationship graph constructed from the joint embedding layer's weight matrix without leaking raw user attributes; (2) a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves recommendation accuracy comparable to both centralized and state-of-the-art federated baselines while preserving user privacy. The code is available at: https://github.com/trueWangSyutung/UFGraphFR.
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
♻ ☆ Both Asymptotic and Non-Asymptotic Convergence of Quasi-Hyperbolic Momentum using Increasing Batch Size
Momentum methods were originally introduced for their superiority to stochastic gradient descent (SGD) in deterministic settings with convex objective functions. However, despite their widespread application to deep neural networks -- a representative case of stochastic nonconvex optimization -- the theoretical justification for their effectiveness in such settings remains limited. Quasi-hyperbolic momentum (QHM) is an algorithm that generalizes various momentum methods and has been studied to better understand the class of momentum-based algorithms as a whole. In this paper, we provide both asymptotic and non-asymptotic convergence results for mini-batch QHM with an increasing batch size. We show that achieving asymptotic convergence requires either a decaying learning rate or an increasing batch size. Since a decaying learning rate adversely affects non-asymptotic convergence, we demonstrate that using mini-batch QHM with an increasing batch size -- without decaying the learning rate -- can be a more effective strategy. Our experiments show that even a finite increase in batch size can provide benefits for training neural networks.
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ Parameter-Efficient Fine-Tuning via Circular Convolution ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices $\mathbf{A}$ and $\mathbf{B}$ to represent weight changes (i.e., $\Delta \mathbf{W} = \mathbf{B} \mathbf{A}$). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying $\mathbf{A}$ and $\mathbf{B}$ with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C$^3$A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C$^3$A consistently outperforms LoRA and its variants across various fine-tuning tasks.
comment: ACL 2025
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ PEAKS: Selecting Key Training Examples Incrementally via Prediction Error Anchored by Kernel Similarity
As deep learning continues to be driven by ever-larger datasets, understanding which examples are most important for generalization has become a critical question. While progress in data selection continues, emerging applications require studying this problem in dynamic contexts. To bridge this gap, we pose the Incremental Data Selection (IDS) problem, where examples arrive as a continuous stream, and need to be selected without access to the full data source. In this setting, the learner must incrementally build a training dataset of predefined size while simultaneously learning the underlying task. We find that in IDS, the impact of a new sample on the model state depends fundamentally on both its geometric relationship in the feature space and its prediction error. Leveraging this insight, we propose PEAKS (Prediction Error Anchored by Kernel Similarity), an efficient data selection method tailored for IDS. Our comprehensive evaluations demonstrate that PEAKS consistently outperforms existing selection strategies. Furthermore, PEAKS yields increasingly better performance returns than random selection as training data size grows on real-world datasets. The code is available at https://github.com/BurakGurbuz97/PEAKS.
♻ ☆ Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds
In-Context Reinforcement Learning (ICRL) enables agents to learn automatically and on-the-fly from their interactive experiences. However, a major challenge in scaling up ICRL is the lack of scalable task collections. To address this, we propose the procedurally generated tabular Markov Decision Processes, named AnyMDP. Through a carefully designed randomization process, AnyMDP is capable of generating high-quality tasks on a large scale while maintaining relatively low structural biases. To facilitate efficient meta-training at scale, we further introduce step-wise supervision and induce prior information in the ICRL framework.Our results demonstrate that, with a sufficiently large scale of AnyMDP tasks, the proposed model can generalize to tasks that were not considered in the training set. The scalable task set provided by AnyMDP also enables a more thorough empirical investigation of the relationship between data distribution and ICRL performance. We further show that the generalization of ICRL potentially comes at the cost of increased task diversity and longer adaptation periods. This finding carries critical implications for scaling robust ICRL capabilities, highlighting the necessity of diverse and extensive task design, and prioritizing asymptotic performance over few-shot adaptation.
comment: Preprint
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference ICML 2025
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
comment: ICML 2025
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Analogical Learning for Cross-Scenario Generalization: Framework and Application to Intelligent Localization
Existing learning models often exhibit poor generalization when deployed across diverse scenarios. It is primarily due to that the underlying reference frame of the data varies with the deployment environment and settings. However, despite that data of each scenario has a distinct reference frame, its generation generally follows common underlying physical rules. Based on this understanding, this article proposes a deep learning framework named analogical learning (AL), which implicitly retrieves the reference frame information associated with a scenario and then to make accurate prediction by relative analogy with other scenarios. Specifically, we design a bipartite neural network called Mateformer. Its first part captures the relativity within multiple latent feature spaces between the input data and a small amount of embedded data from the studied scenario, while its second part uses this relativity to guide the nonlinear analogy. We apply AL to the typical multi-scenario learning problem of intelligent wireless localization in cellular networks. Extensive experiments validate AL's superiority across three key dimensions. First, it achieves state-of-the-art accuracy in single-scenario benchmarks. Second, it demonstrates stable transferability between different scenarios, avoiding catastrophic forgetting. Finally, and most importantly, it robustly adapts to new, unseen scenarios--including dynamic weather and traffic conditions--without any tuning. All data and code are available at https://github.com/ziruichen-research/ALLoc.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
Portable and wearable consumer-grade electroencephalography (EEG) devices, like Muse headbands, offer unprecedented mobility for daily brain-computer interface (BCI) applications, including cognitive load detection. However, the exacerbated non-stationarity in portable EEG signals constrains data fidelity and decoding accuracy, creating a fundamental trade-off between portability and performance. To mitigate such limitation, we propose MuseCogNet (Muse-based Cognitive Network), a unified joint learning framework integrating self-supervised and supervised training paradigms. In particular, we introduce an EEG-grounded self-supervised reconstruction loss based on average pooling to capture robust neurophysiological patterns, while cross-entropy loss refines task-specific cognitive discriminants. This joint learning framework resembles the bottom-up and top-down attention in humans, enabling MuseCogNet to significantly outperform state-of-the-art methods on a publicly available Muse dataset and establish an implementable pathway for neurocognitive monitoring in ecological settings.
comment: 2 pages short paper
♻ ☆ Ansatz-free Hamiltonian learning with Heisenberg-limited scaling
Learning the unknown interactions that govern a quantum system is crucial for quantum information processing, device benchmarking, and quantum sensing. The problem, known as Hamiltonian learning, is well understood under the assumption that interactions are local, but this assumption may not hold for arbitrary Hamiltonians. Previous methods all require high-order inverse polynomial dependency with precision, unable to surpass the standard quantum limit and reach the gold standard Heisenberg-limited scaling. Whether Heisenberg-limited Hamiltonian learning is possible without prior assumptions about the interaction structures, a challenge we term \emph{ansatz-free Hamiltonian learning}, remains an open question. In this work, we present a quantum algorithm to learn arbitrary sparse Hamiltonians without any structure constraints using only black-box queries of the system's real-time evolution and minimal digital controls to attain Heisenberg-limited scaling in estimation error. Our method is also resilient to state-preparation-and-measurement errors, enhancing its practical feasibility. We numerically demonstrate our ansatz-free protocol for learning physical Hamiltonians and validating analog quantum simulations, benchmarking our performance against the state-of-the-art Heisenberg-limited learning approach. Moreover, we establish a fundamental trade-off between total evolution time and quantum control on learning arbitrary interactions, revealing the intrinsic interplay between controllability and total evolution time complexity for any learning algorithm. These results pave the way for further exploration into Heisenberg-limited Hamiltonian learning in complex quantum systems under minimal assumptions, potentially enabling new benchmarking and verification protocols.
comment: Updated version with expanded explanations, added pseudocode, and new numerical demonstrations. 10 pages, 4 figures. HYH and MM contributed equally
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. V4: sharpened results and typos fixed
♻ ☆ Transformers from Diffusion: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which integrates the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers (DIFFormer), whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Junk DNA Hypothesis: Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs "Difficult" Downstream Tasks in LLMs ICML 2024
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization, fails to exhibit similar monotonic effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (1) within the same task category, and (2) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even pruning methods. Codes are available at: https://github.com/VITA-Group/Junk_DNA_Hypothesis.git.
comment: Published at ICML 2024
♻ ☆ Geological and Well prior assisted full waveform inversion using conditional diffusion models
Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the OpenFWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.
Information Retrieval 21
☆ Towards a Signal Detection Based Measure for Assessing Information Quality of Explainable Recommender Systems
There is growing interest in explainable recommender systems that provide recommendations along with explanations for the reasoning behind them. When evaluating recommender systems, most studies focus on overall recommendation performance. Only a few assess the quality of the explanations. Explanation quality is often evaluated through user studies that subjectively gather users' opinions on representative explanatory factors that shape end-users' perspective towards the results, not about the explanation contents itself. We aim to fill this gap by developing an objective metric to evaluate Veracity: the information quality of explanations. Specifically, we decompose Veracity into two dimensions: Fidelity and Attunement. Fidelity refers to whether the explanation includes accurate information about the recommended item. Attunement evaluates whether the explanation reflects the target user's preferences. By applying signal detection theory, we first determine decision outcomes for each dimension and then combine them to calculate a sensitivity, which serves as the final Veracity value. To assess the effectiveness of the proposed metric, we set up four cases with varying levels of information quality to validate whether our metric can accurately capture differences in quality. The results provided meaningful insights into the effectiveness of our proposed metric.
comment: Accepted to IEEE CAI 2025
☆ Digital Collections Explorer: An Open-Source, Multimodal Viewer for Searching Digital Collections
We present Digital Collections Explorer, a web-based, open-source exploratory search platform that leverages CLIP (Contrastive Language-Image Pre-training) for enhanced visual discovery of digital collections. Our Digital Collections Explorer can be installed locally and configured to run on a visual collection of interest on disk in just a few steps. Building upon recent advances in multimodal search techniques, our interface enables natural language queries and reverse image searches over digital collections with visual features. This paper describes the system's architecture, implementation, and application to various cultural heritage collections, demonstrating its potential for democratizing access to digital archives, especially those with impoverished metadata. We present case studies with maps, photographs, and PDFs extracted from web archives in order to demonstrate the flexibility of the Digital Collections Explorer, as well as its ease of use. We demonstrate that the Digital Collections Explorer scales to hundreds of thousands of images on a MacBook Pro with an M4 chip. Lastly, we host a public demo of Digital Collections Explorer.
comment: 14 pages, 8 figures, 2 tables
☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
☆ EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD 2025
Large Language Model-based generative recommendation (LLMRec) has achieved notable success, but it suffers from high inference latency due to massive computational overhead and memory pressure of KV Cache. Existing KV Cache reduction methods face critical limitations: cache compression offers marginal acceleration given recommendation tasks' short decoding steps, while prompt compression risks discarding vital interaction history. Through systematic analysis of attention patterns in LLMRec, we uncover two pivotal insights: 1) layer-wise attention sparsity inversion where early layers retain dense informative patterns while later layers exhibit high redundancy, and 2) dual attention sinks phenomenon where attention scores concentrate on both head and tail tokens of input sequences. Motivated by these insights, we propose EARN, an efficient inference framework that leverages the early layers to compress information into register tokens placed at the input sequence boundaries, then focuses solely on these tokens in the subsequent layers. Extensive experiments on three datasets, two LLMRec methods and two LLM architectures demonstrate EARN's superiority, achieving up to 3.79x speedup and 80.8% KV Cache reduction with better accuracy than the general finetuning approach. Our work bridges the efficiency-effectiveness gap in LLMRec, offering practical deployment advantages for industrial scenarios.
comment: Accepted by KDD 2025
☆ Reliable Annotations with Less Effort: Evaluating LLM-Human Collaboration in Search Clarifications
Despite growing interest in using large language models (LLMs) to automate annotation, their effectiveness in complex, nuanced, and multi-dimensional labelling tasks remains relatively underexplored. This study focuses on annotation for the search clarification task, leveraging a high-quality, multi-dimensional dataset that includes five distinct fine-grained annotation subtasks. Although LLMs have shown impressive capabilities in general settings, our study reveals that even state-of-the-art models struggle to replicate human-level performance in subjective or fine-grained evaluation tasks. Through a systematic assessment, we demonstrate that LLM predictions are often inconsistent, poorly calibrated, and highly sensitive to prompt variations. To address these limitations, we propose a simple yet effective human-in-the-loop (HITL) workflow that uses confidence thresholds and inter-model disagreement to selectively involve human review. Our findings show that this lightweight intervention significantly improves annotation reliability while reducing human effort by up to 45%, offering a relatively scalable and cost-effective yet accurate path forward for deploying LLMs in real-world evaluation settings.
comment: 9 pages,5 figures
☆ Rethinking Group Recommender Systems in the Era of Generative AI: From One-Shot Recommendations to Agentic Group Decision Support
More than twenty-five years ago, first ideas were developed on how to design a system that can provide recommendations to groups of users instead of individual users. Since then, a rich variety of algorithmic proposals were published, e.g., on how to acquire individual preferences, how to aggregate them, and how to generate recommendations for groups of users. However, despite the rich literature on the topic, barely any examples of real-world group recommender systems can be found. This lets us question common assumptions in academic research, in particular regarding communication processes in a group and how recommendation-supported decisions are made. In this essay, we argue that these common assumptions and corresponding system designs often may not match the needs or expectations of users. We thus call for a reorientation in this research area, leveraging the capabilities of modern Generative AI assistants like ChatGPT. Specifically, as one promising future direction, we envision group recommender systems to be systems where human group members interact in a chat and an AI-based group recommendation agent assists the decision-making process in an agentic way. Ultimately, this shall lead to a more natural group decision-making environment and finally to wider adoption of group recommendation systems in practice.
comment: Submitted for publication
Exploring Large Action Sets with Hyperspherical Embeddings using von Mises-Fisher Sampling ICML 2025
This paper introduces von Mises-Fisher exploration (vMF-exp), a scalable method for exploring large action sets in reinforcement learning problems where hyperspherical embedding vectors represent these actions. vMF-exp involves initially sampling a state embedding representation using a von Mises-Fisher distribution, then exploring this representation's nearest neighbors, which scales to virtually unlimited numbers of candidate actions. We show that, under theoretical assumptions, vMF-exp asymptotically maintains the same probability of exploring each action as Boltzmann Exploration (B-exp), a popular alternative that, nonetheless, suffers from scalability issues as it requires computing softmax values for each action. Consequently, vMF-exp serves as a scalable alternative to B-exp for exploring large action sets with hyperspherical embeddings. Experiments on simulated data, real-world public data, and the successful large-scale deployment of vMF-exp on the recommender system of a global music streaming service empirically validate the key properties of the proposed method.
comment: 42nd International Conference on Machine Learning (ICML 2025)
☆ On Mitigating Data Sparsity in Conversational Recommender Systems
Conversational recommender systems (CRSs) capture user preference through textual information in dialogues. However, they suffer from data sparsity on two fronts: the dialogue space is vast and linguistically diverse, while the item space exhibits long-tail and sparse distributions. Existing methods struggle with (1) generalizing to varied dialogue expressions due to underutilization of rich textual cues, and (2) learning informative item representations under severe sparsity. To address these problems, we propose a CRS model named DACRS. It consists of three modules, namely Dialogue Augmentation, Knowledge-Guided Entity Modeling, and Dialogue-Entity Matching. In the Dialogue Augmentation module, we apply a two-stage augmentation pipeline to augment the dialogue context to enrich the data and improve generalizability. In the Knowledge-Guided Entity Modeling, we propose a knowledge graph (KG) based entity substitution and an entity similarity constraint to enhance the expressiveness of entity embeddings. In the Dialogue-Entity Matching module, we fuse the dialogue embedding with the mentioned entity embeddings through a dialogue-guided attention aggregation to acquire user embeddings that contain both the explicit and implicit user preferences. Extensive experiments on two public datasets demonstrate the state-of-the-art performance of DACRS.
☆ Read the Docs Before Rewriting: Equip Rewriter with Domain Knowledge via Continual Pre-training
A Retrieval-Augmented Generation (RAG)-based question-answering (QA) system enhances a large language model's knowledge by retrieving relevant documents based on user queries. Discrepancies between user queries and document phrasings often necessitate query rewriting. However, in specialized domains, the rewriter model may struggle due to limited domain-specific knowledge. To resolve this, we propose the R\&R (Read the doc before Rewriting) rewriter, which involves continual pre-training on professional documents, akin to how students prepare for open-book exams by reviewing textbooks. Additionally, it can be combined with supervised fine-tuning for improved results. Experiments on multiple datasets demonstrate that R\&R excels in professional QA across multiple domains, effectively bridging the query-document gap, while maintaining good performance in general scenarios, thus advancing the application of RAG-based QA systems in specialized fields.
☆ Modeling Data Diversity for Joint Instance and Verbalizer Selection in Cold-Start Scenarios
Prompt-based methods leverage the knowledge of pre-trained language models (PLMs) trained with a masked language modeling (MLM) objective; however, these methods are sensitive to template, verbalizer, and few-shot instance selection, particularly in cold-start settings with no labeled data. Existing studies overlook the dependency between instances and verbalizers, where instance-label probabilities depend on verbalizer token proximity in the embedding space. To address this, we propose COLDSELECT, a joint verbalizer and instance selection approach that models data diversity. COLDSELECT maps PLM vocabulary and $h_{[MASK]}$ embeddings into a shared space, applying dimensionality reduction and clustering to ensure efficient and diverse selection. By optimizing for minimal uncertainty and maximal diversity, COLDSELECT captures data relationships effectively. Experiments on eight benchmarks demonstrate COLDSELECT's superiority in reducing uncertainty and enhancing generalization, outperforming baselines in verbalizer and few-shot instance selection for cold-start scenarios.
☆ Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness. Our code is available at https://github.com/zysensmile/HyFairCRS.
♻ ☆ A Unified Bayesian Perspective for Conventional and Robust Adaptive Filters
In this work, we present a new perspective on the origin and interpretation of adaptive filters. By applying Bayesian principles of recursive inference from the state-space model and using a series of simplifications regarding the structure of the solution, we can present, in a unified framework, derivations of many adaptive filters that depend on the probabilistic model of the measurement noise. In particular, under a Gaussian model, we obtain solutions well-known in the literature (such as LMS, NLMS, or Kalman filter), while using non-Gaussian noise, we derive new adaptive algorithms. Notably, under the assumption of Laplacian noise, we obtain a family of robust filters of which the sign-error algorithm is a well-known member, while other algorithms, derived effortlessly in the proposed framework, are entirely new. Numerical examples are shown to illustrate the properties and provide a better insight into the performance of the derived adaptive filters.
♻ ☆ What About Emotions? Guiding Fine-Grained Emotion Extraction from Mobile App Reviews
Opinion mining plays a vital role in analysing user feedback and extracting insights from textual data. While most research focuses on sentiment polarity (e.g., positive, negative, neutral), fine-grained emotion classification in app reviews remains underexplored. Fine-grained emotion classification is thus needed to better understand users' affective responses and support downstream tasks such as feature-emotion analysis, user-oriented release planning, and issue triaging. This paper addresses this gap by identifying and addressing the challenges and limitations in fine-grained emotion analysis in the context of app reviews. Our study adapts Plutchik's emotion taxonomy to app reviews by developing a structured annotation framework and dataset. Through an iterative human annotation process, we define clear annotation guidelines and document key challenges in emotion classification. Additionally, we evaluate the feasibility of automating emotion annotation using large language models, assessing their cost-effectiveness and agreement with human-labelled data. Our findings reveal that while large language models significantly reduce manual effort and maintain substantial agreement with human annotators, full automation remains challenging due to the complexity of emotional interpretation. This work contributes to opinion mining in requirements engineering by providing structured guidelines, an annotated dataset, and insights for developing automated pipelines to capture the complexity of emotions in app reviews.
comment: Accepted at the 33rd IEEE International Requirements Engineering 2025 conference
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose a fresh approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurements for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in an OV testbed originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some apparent false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Rethinking Click Models in Light of Carousel Interfaces: Theory-Based Categorization and Design of Click Models ICTIR 2025
Click models are a well-established for modeling user interactions with web interfaces. Previous work has mainly focused on traditional single-list web search settings; this includes existing surveys that introduced categorizations based on the first generation of probabilistic graphical model (PGM) click models that have become standard. However, these categorizations have become outdated, as their conceptualizations are unable to meaningfully compare PGM with neural network (NN) click models nor generalize to newer interfaces, such as carousel interfaces. We argue that this outdated view fails to adequately explain the fundamentals of click model designs, thus hindering the development of novel click models. This work reconsiders what should be the fundamental concepts in click model design, grounding them - unlike previous approaches - in their mathematical properties. We propose three fundamental key-design choices that explain what statistical patterns a click model can capture, and thus indirectly, what user behaviors they can capture. Based on these choices, we create a novel click model taxonomy that allows a meaningful comparison of all existing click models; this is the first taxonomy of single-list, grid and carousel click models that includes PGMs and NNs. Finally, we show how our conceptualization provides a foundation for future click model design by an example derivation of a novel design for carousel interfaces.
comment: Accepted by ICTIR 2025
♻ ☆ An Automatic Graph Construction Framework based on Large Language Models for Recommendation KDD'25
Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.
comment: Accepted by KDD'25
♻ ☆ CARTS: Collaborative Agents for Recommendation Textual Summarization
Current recommendation systems often require some form of textual data summarization, such as generating concise and coherent titles for product carousels or other grouped item displays. While large language models have shown promise in NLP domains for textual summarization, these approaches do not directly apply to recommendation systems, where explanations must be highly relevant to the core features of item sets, adhere to strict word limit constraints. In this paper, we propose CARTS (Collaborative Agents for Recommendation Textual Summarization), a multi-agent LLM framework designed for structured summarization in recommendation systems. CARTS decomposes the task into three stages-Generation Augmented Generation (GAG), refinement circle, and arbitration, where successive agent roles are responsible for extracting salient item features, iteratively refining candidate titles based on relevance and length feedback, and selecting the final title through a collaborative arbitration process. Experiments on large-scale e-commerce data and live A/B testing show that CARTS significantly outperforms single-pass and chain-of-thought LLM baselines, delivering higher title relevance and improved user engagement metrics.
♻ ☆ Generative Representational Learning of Foundation Models for Recommendation
Developing a single foundation model with the capability to excel across diverse tasks has been a long-standing objective in the field of artificial intelligence. As the wave of general-purpose foundation models sweeps across various domains, their influence has significantly extended to the field of recommendation systems. While recent efforts have explored recommendation foundation models for various generative tasks, they often overlook crucial embedding tasks and struggle with the complexities of multi-task learning, including knowledge sharing & conflict resolution, and convergence speed inconsistencies. To address these limitations, we introduce RecFound, a generative representational learning framework for recommendation foundation models. We construct the first comprehensive dataset for recommendation foundation models covering both generative and embedding tasks across diverse scenarios. Based on this dataset, we propose a novel multi-task training scheme featuring a Task-wise Mixture of Low-rank Experts (TMoLE) to handle knowledge sharing & conflict, a Step-wise Convergence-oriented Sample Scheduler (S2Sched) to address inconsistent convergence, and a Model Merge module to balance the performance across tasks. Experiments demonstrate that RecFound achieves state-of-the-art performance across various recommendation tasks, outperforming existing baselines.
comment: Project page is available at https://junkfood436.github.io/RecFound/
♻ ☆ Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we propose an IDF-aware penalty for the matching function that suppresses the contribution of low-IDF tokens and increases the model's focus on informative terms. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by \textbf{3.3 NDCG@10 score}. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only \textbf{1.1x that of BM25}.
♻ ☆ Enabling Collaborative Parametric Knowledge Calibration for Retrieval-Augmented Vision Question Answering
Knowledge-based Vision Question Answering (KB-VQA) systems address complex visual-grounded questions with knowledge retrieved from external knowledge bases. The tasks of knowledge retrieval and answer generation tasks both necessitate precise multimodal understanding of question context and external knowledge. However, existing methods treat these two stages as separate modules with limited interaction during training, which hinders bi-directional parametric knowledge sharing, ultimately leading to suboptimal performance. To fully exploit the cross-task synergy in KB-VQA, we propose a unified retrieval-augmented VQA framework with collaborative parametric knowledge calibration. The proposed framework can effectively adapt general multimodal pre-trained models for fine-grained, knowledge-intensive tasks while enabling the retriever and generator to collaboratively enhance and share their parametric knowledge during both training and inference. To enhance fine-grained understanding of questions and external documents, we also integrate late interaction mechanism into the proposed training framework. Additionally, we introduce a reflective-answering mechanism that allows the model to explicitly evaluate and refine its knowledge boundary. Our approach achieves competitive performance against state-of-the-art models, delivering a significant 4.7\% improvement in answering accuracy, and brings an average 7.5\% boost in base MLLMs' VQA performance.
comment: 10 pages, 5 figures, Under Review
Computation and Language 80
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Computational Detection of Intertextual Parallels in Biblical Hebrew: A Benchmark Study Using Transformer-Based Language Models
Identifying parallel passages in biblical Hebrew is foundational in biblical scholarship for uncovering intertextual relationships. Traditional methods rely on manual comparison, which is labor-intensive and prone to human error. This study evaluates the potential of pre-trained transformer-based language models, including E5, AlephBERT, MPNet, and LaBSE, for detecting textual parallels in the Hebrew Bible. Focusing on known parallels between the books of Samuel/Kings and Chronicles, I assessed each model's capability to generate word embeddings that delineate parallel from non-parallel passages. Utilizing cosine similarity and Wasserstein Distance measures, I found that E5 and AlephBERT show significant promise, with E5 excelling in parallel detection and AlephBERT demonstrating stronger non-parallel differentiation. These findings indicate that pre-trained models can enhance the efficiency and accuracy of detecting intertextual parallels in ancient texts, suggesting broader applications for ancient language studies.
☆ On the Predictive Power of Representation Dispersion in Language Models
We show that a language model's ability to predict text is tightly linked to the breadth of its embedding space: models that spread their contextual representations more widely tend to achieve lower perplexity. Concretely, we find that representation dispersion - the average pairwise cosine distance among hidden vectors - strongly and negatively correlates with perplexity across diverse model families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific abstracts). Beyond illustrating this link, we show how dispersion can be leveraged for a range of practical tasks without requiring labeled data. First, measuring dispersion on unlabeled text allows us to predict downstream accuracy in new domains, offering a data-efficient tool for model selection. Next, we find that identifying layers with higher dispersion pinpoints the best representations for retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer searches. Finally, we integrate a simple push-away objective into training, which increases dispersion in both single-domain and cross-domain scenarios and directly improves perplexity in each.
☆ MotionGPT3: Human Motion as a Second Modality
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
comment: 21 pages, 8 figures
☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic guards their latest Claude 4 Opus model using one such defense pipeline, and other frontier developers including Google DeepMind and OpenAI pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
☆ Logit-Gap Steering: Efficient Short-Suffix Jailbreaks for Aligned Large Language Models
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
☆ Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
Large Language Models Don't Make Sense of Word Problems. A Scoping Review from a Mathematics Education Perspective
The progress of Large Language Models (LLMs) like ChatGPT raises the question of how they can be integrated into education. One hope is that they can support mathematics learning, including word-problem solving. Since LLMs can handle textual input with ease, they appear well-suited for solving mathematical word problems. Yet their real competence, whether they can make sense of the real-world context, and the implications for classrooms remain unclear. We conducted a scoping review from a mathematics-education perspective, including three parts: a technical overview, a systematic review of word problems used in research, and a state-of-the-art empirical evaluation of LLMs on mathematical word problems. First, in the technical overview, we contrast the conceptualization of word problems and their solution processes between LLMs and students. In computer-science research this is typically labeled mathematical reasoning, a term that does not align with usage in mathematics education. Second, our literature review of 213 studies shows that the most popular word-problem corpora are dominated by s-problems, which do not require a consideration of realities of their real-world context. Finally, our evaluation of GPT-3.5-turbo, GPT-4o-mini, GPT-4.1, and o3 on 287 word problems shows that most recent LLMs solve these s-problems with near-perfect accuracy, including a perfect score on 20 problems from PISA. LLMs still showed weaknesses in tackling problems where the real-world context is problematic or non-sensical. In sum, we argue based on all three aspects that LLMs have mastered a superficial solution process but do not make sense of word problems, which potentially limits their value as instructional tools in mathematics classrooms.
☆ Auto-TA: Towards Scalable Automated Thematic Analysis (TA) via Multi-Agent Large Language Models with Reinforcement Learning ACL 2025
Congenital heart disease (CHD) presents complex, lifelong challenges often underrepresented in traditional clinical metrics. While unstructured narratives offer rich insights into patient and caregiver experiences, manual thematic analysis (TA) remains labor-intensive and unscalable. We propose a fully automated large language model (LLM) pipeline that performs end-to-end TA on clinical narratives, which eliminates the need for manual coding or full transcript review. Our system employs a novel multi-agent framework, where specialized LLM agents assume roles to enhance theme quality and alignment with human analysis. To further improve thematic relevance, we optionally integrate reinforcement learning from human feedback (RLHF). This supports scalable, patient-centered analysis of large qualitative datasets and allows LLMs to be fine-tuned for specific clinical contexts.
comment: Presented at ACL 2025 SRW
☆ Machine Understanding of Scientific Language
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
comment: PhD Thesis, 210 pages
☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 33 pages, 15 tables, 11 figures
LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ Unveiling Decision-Making in LLMs for Text Classification : Extraction of influential and interpretable concepts with Sparse Autoencoders
Sparse Autoencoders (SAEs) have been successfully used to probe Large Language Models (LLMs) and extract interpretable concepts from their internal representations. These concepts are linear combinations of neuron activations that correspond to human-interpretable features. In this paper, we investigate the effectiveness of SAE-based explainability approaches for sentence classification, a domain where such methods have not been extensively explored. We present a novel SAE-based architecture tailored for text classification, leveraging a specialized classifier head and incorporating an activation rate sparsity loss. We benchmark this architecture against established methods such as ConceptShap, Independent Component Analysis, and other SAE-based concept extraction techniques. Our evaluation covers two classification benchmarks and four fine-tuned LLMs from the Pythia family. We further enrich our analysis with two novel metrics for measuring the precision of concept-based explanations, using an external sentence encoder. Our empirical results show that our architecture improves both the causality and interpretability of the extracted features.
☆ Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs
Multimodal Large Language Models (MLLMs) have achieved success across various domains. However, their applicability tends to degrade when confronted with different types of data inputs, especially for MLLMs that have been fine-tuned for specific tasks. Despite its importance, the study of knowledge sharing among domain-specific MLLMs--such as those trained for mathematics or code--remains largely underexplored. To address the fragmentation of knowledge across domain-specialized MLLMs, we propose a unified parameter integration framework that enables modular composition of expert capabilities. Our method is grounded in a novel Compatibility-Aware Parameter Splicing (CAPS) strategy, which leverages both local functional attribution and global information-theoretic signals to guide selective parameter fusion. By extending this mechanism to the low-rank adaptation layer granularity, we ensure efficient integration with minimal inference overhead. Furthermore, we introduce a domain compatibility scoring mechanism that quantifies inter-expert alignment at the activation level and correlates with downstream task utility. This principled fusion protocol allows the final model to synergize heterogeneous expertise while preserving structural modularity. Extensive evaluations across diverse multimodal benchmarks validate the effectiveness of our framework, offering a scalable path toward compositional, domain-adaptive MLLMs.
☆ Leveraging the Potential of Prompt Engineering for Hate Speech Detection in Low-Resource Languages
The rapid expansion of social media leads to a marked increase in hate speech, which threatens personal lives and results in numerous hate crimes. Detecting hate speech presents several challenges: diverse dialects, frequent code-mixing, and the prevalence of misspelled words in user-generated content on social media platforms. Recent progress in hate speech detection is typically concentrated on high-resource languages. However, low-resource languages still face significant challenges due to the lack of large-scale, high-quality datasets. This paper investigates how we can overcome this limitation via prompt engineering on large language models (LLMs) focusing on low-resource Bengali language. We investigate six prompting strategies - zero-shot prompting, refusal suppression, flattering the classifier, multi-shot prompting, role prompting, and finally our innovative metaphor prompting to detect hate speech effectively in low-resource languages. We pioneer the metaphor prompting to circumvent the built-in safety mechanisms of LLMs that marks a significant departure from existing jailbreaking methods. We investigate all six different prompting strategies on the Llama2-7B model and compare the results extensively with three pre-trained word embeddings - GloVe, Word2Vec, and FastText for three different deep learning models - multilayer perceptron (MLP), convolutional neural network (CNN), and bidirectional gated recurrent unit (BiGRU). To prove the effectiveness of our metaphor prompting in the low-resource Bengali language, we also evaluate it in another low-resource language - Hindi, and two high-resource languages - English and German. The performance of all prompting techniques is evaluated using the F1 score, and environmental impact factor (IF), which measures CO$_2$ emissions, electricity usage, and computational time.
☆ IMPACT: Inflectional Morphology Probes Across Complex Typologies
Large Language Models (LLMs) have shown significant progress on various multilingual benchmarks and are increasingly used to generate and evaluate text in non-English languages. However, while they may produce fluent outputs, it remains unclear to what extent these models truly grasp the underlying linguistic complexity of those languages, particularly in morphology. To investigate this, we introduce IMPACT, a synthetically generated evaluation framework focused on inflectional morphology, which we publicly release, designed to evaluate LLM performance across five morphologically rich languages: Arabic, Russian, Finnish, Turkish, and Hebrew. IMPACT includes unit-test-style cases covering both shared and language-specific phenomena, from basic verb inflections (e.g., tense, number, gender) to unique features like Arabic's reverse gender agreement and vowel harmony in Finnish and Turkish. We assess eight multilingual LLMs that, despite strong English performance, struggle with other languages and uncommon morphological patterns, especially when judging ungrammatical examples. We also show that Chain of Thought and Thinking Models can degrade performance. Our work exposes gaps in LLMs' handling of linguistic complexity, pointing to clear room for improvement. To support further research, we publicly release the IMPACT framework.
☆ The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
☆ Advancing Multi-Step Mathematical Reasoning in Large Language Models through Multi-Layered Self-Reflection with Auto-Prompting ECML
Recent advancements in Large Language Models (LLMs) have significantly improved their problem-solving capabilities. However, these models still struggle when faced with complex multi-step reasoning tasks. In this paper, we propose the Multi-Layered Self-Reflection with Auto-Prompting (MAPS) framework, a novel approach designed to enhance multi-step mathematical reasoning in LLMs by integrating techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-Prompting. Unlike traditional static prompting methods, MAPS employs an iterative refinement process. Initially, the model generates a solution using CoT prompting. When errors are detected, an adaptive self-reflection mechanism identifies and analyzes them, generating tailored prompts to guide corrections. These dynamically adjusted prompts enable the model to iteratively refine its reasoning. Experiments on four well-established benchmarks across multiple LLMs show that MAPS significantly outperforms standard CoT and achieves competitive results with reasoning-optimized models. In addition, MAPS enables general-purpose LLMs to reach performance levels comparable to specialized reasoning models. While deeper reflection layers improve accuracy, they also increase token usage and costs. To balance this trade-off, MAPS strategically limits reflection depth, ensuring an optimal balance between cost and reasoning performance.
comment: Accepted for publication in: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025). Research Track
☆ Garbage In, Reasoning Out? Why Benchmark Scores are Unreliable and What to Do About It
We conduct a systematic audit of three widely used reasoning benchmarks, SocialIQa, FauxPas-EAI, and ToMi, and uncover pervasive flaws in both benchmark items and evaluation methodology. Using five LLMs (GPT-{3, 3.5, 4, o1}, and LLaMA 3.1) as diagnostic tools, we identify structural, semantic, and pragmatic issues in benchmark design (e.g., duplicated items, ambiguous wording, and implausible answers), as well as scoring procedures that prioritize output form over reasoning process. Through systematic human annotation and re-evaluation on cleaned benchmark subsets, we find that model scores often improve not due to due to erratic surface wording variations and not to improved reasoning. Infact, further analyses show that model performance is highly sensitive to minor input variations such as context availability and phrasing, revealing that high scores may reflect alignment with format-specific cues rather than consistent inference based on the input. These findings challenge the validity of current benchmark-based claims about reasoning in LLMs, and highlight the need for evaluation protocols that assess reasoning as a process of drawing inference from available information, rather than as static output selection. We release audited data and evaluation tools to support more interpretable and diagnostic assessments of model reasoning.
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ Do Thinking Tokens Help or Trap? Towards More Efficient Large Reasoning Model
Large Reasoning Models (LRMs) excel at solving complex problems but face an overthinking dilemma. When handling simple tasks, they often produce verbose responses overloaded with thinking tokens (e.g., wait, however). These tokens trigger unnecessary high-level reasoning behaviors like reflection and backtracking, reducing efficiency. In this work, our pilot study reveals that these thinking-token-induced behaviors are not essential for effective problem-solving and may even hinder correct reasoning within constrained token budgets. We identify this phenomenon as the thinking trap. To mitigate this issue, we propose Dual Policy Preference Optimization (DuP-PO), a novel algorithm featuring: (1) A rollout sampling strategy that guarantees balanced exposure to responses with and without thinking tokens; (2) A fine-grained advantage control technique to dynamically regulate the prediction of target tokens; (3) A policy shaping method ensuring stable gradient contributions from thinking tokens. Experimental results on five popular math reasoning benchmarks show that DuP-PO performs well on the popular LRM, which significantly improves their token efficiency during reasoning, while achieving superior performance of the base model.
comment: 13 pages, 5 figures
☆ Positional Bias in Binary Question Answering: How Uncertainty Shapes Model Preferences
Positional bias in binary question answering occurs when a model systematically favors one choice over another based solely on the ordering of presented options. In this study, we quantify and analyze positional bias across five large language models under varying degrees of answer uncertainty. We re-adapted the SQuAD-it dataset by adding an extra incorrect answer option and then created multiple versions with progressively less context and more out-of-context answers, yielding datasets that range from low to high uncertainty. Additionally, we evaluate two naturally higher-uncertainty benchmarks: (1) WebGPT - question pairs with unequal human-assigned quality scores, and (2) Winning Arguments - where models predict the more persuasive argument in Reddit's r/ChangeMyView exchanges. Across each dataset, the order of the "correct" (or higher-quality/persuasive) option is systematically flipped (first placed in position 1, then in position 2) to compute both Preference Fairness and Position Consistency. We observe that positional bias is nearly absent under low-uncertainty conditions, but grows exponentially when it becomes doubtful to decide which option is correct.
☆ AutoEvoEval: An Automated Framework for Evolving Close-Ended LLM Evaluation Data
Large language models (LLMs) have shown remarkable performance on various tasks, but existing evaluation benchmarks are often static and insufficient to fully assess their robustness and generalization in realistic scenarios. Prior work using evolutionary or adversarial data augmentation has improved evaluation diversity but lacks systematic control over perturbation types and multi-step complexity, limiting comprehensive robustness analysis. To address these gaps, we propose AutoEvoEval, an evolution-based evaluation framework for close-ended tasks such as multi-choice question answering. AutoEvoEval introduces 22 interpretable atomic evolution operations and supports multi-round compositions, enabling controlled generation of diverse, challenging, and realistic test samples. We conduct extensive experiments addressing four research questions on a broad set of open- and closed-source LLMs. Our results show that atomic operations cause an average accuracy drop of 7.283\%, with structure-disrupting or misleading semantic edits causing the largest declines. Model sensitivities vary significantly for the same perturbation, and combining multiple evolution steps amplifies adversarial effects by up to 52.932\%. These findings suggest current benchmarks may overestimate true model generalization and emphasize the need for evolution-aware robustness evaluation. Code and resources are available at: https://github.com/SYSUSELab/AutoEvoEval.
☆ Towards an Automated Multimodal Approach for Video Summarization: Building a Bridge Between Text, Audio and Facial Cue-Based Summarization
The increasing volume of video content in educational, professional, and social domains necessitates effective summarization techniques that go beyond traditional unimodal approaches. This paper proposes a behaviour-aware multimodal video summarization framework that integrates textual, audio, and visual cues to generate timestamp-aligned summaries. By extracting prosodic features, textual cues and visual indicators, the framework identifies semantically and emotionally important moments. A key contribution is the identification of bonus words, which are terms emphasized across multiple modalities and used to improve the semantic relevance and expressive clarity of the summaries. The approach is evaluated against pseudo-ground truth (pGT) summaries generated using LLM-based extractive method. Experimental results demonstrate significant improvements over traditional extractive method, such as the Edmundson method, in both text and video-based evaluation metrics. Text-based metrics show ROUGE-1 increasing from 0.4769 to 0.7929 and BERTScore from 0.9152 to 0.9536, while in video-based evaluation, our proposed framework improves F1-Score by almost 23%. The findings underscore the potential of multimodal integration in producing comprehensive and behaviourally informed video summaries.
comment: Accepted to HHAI WS 2025: Workshops at the Fourth International Conference on Hybrid Human-Artificial Intelligence (HHAI)
☆ Attestable Audits: Verifiable AI Safety Benchmarks Using Trusted Execution Environments ICML 2024
Benchmarks are important measures to evaluate safety and compliance of AI models at scale. However, they typically do not offer verifiable results and lack confidentiality for model IP and benchmark datasets. We propose Attestable Audits, which run inside Trusted Execution Environments and enable users to verify interaction with a compliant AI model. Our work protects sensitive data even when model provider and auditor do not trust each other. This addresses verification challenges raised in recent AI governance frameworks. We build a prototype demonstrating feasibility on typical audit benchmarks against Llama-3.1.
comment: ICML 2024 Workshop TAIG
☆ Efficient Interleaved Speech Modeling through Knowledge Distillation
Current speech language models exceed the size and latency constraints of many deployment environments. We build compact, expressive speech generation models through layer-aligned distillation, matching hidden states, attention maps, and softened logits to compress large multimodal transformers by 3x with minimal loss in performance. We introduce TinyWave, a family of 2B-parameter models for speech-to-speech and interleaved speech-text generation, trained on 50,000 hours of public audio. TinyWave supports (i) speech-only generation using phonetic or expressive tokens and (ii) mixed speech-text continuations. Evaluation on Libri-Light shows TinyWave within 1.4 normalized perplexity points of its teacher. Accuracy on spoken StoryCloze and SALMon reaches 93-97% of the teacher's performance, outperforming size-matched baselines. These models are optimized for deployment on commodity hardware, enabling applications in real-time conversational agents, assistive technologies, and low-resource environments. We release models, training code, and evaluation scripts to support reproducible research on compact, expressive speech generation.
☆ L0: Reinforcement Learning to Become General Agents
Training large language models (LLMs) to act as autonomous agents for multi-turn, long-horizon tasks remains significant challenges in scalability and training efficiency. To address this, we introduce L-Zero (L0), a scalable, end-to-end training pipeline for general-purpose agents. Featuring a low-cost, extensible, and sandboxed concurrent agent worker pool, L0 lowers the barrier for applying reinforcement learning in complex environments. We also introduce NB-Agent, the agent scaffold within L0, which operates in a "code-as-action" fashion via a Read-Eval-Print-Loop (REPL). We evaluate L0 on factuality question-answering benchmarks. Our experiments demonstrate that a base model can develop robust problem-solving skills using solely Reinforcement Learning with Verifiable Rewards (RLVR). On the Qwen2.5-7B-Instruct model, our method boosts accuracy on SimpleQA from 30 % to 80 % and on HotpotQA from 22 % to 41 %. We have open-sourced the entire L0 system, including our L0 series models, the NB-Agent, a complete training pipeline, and the corresponding training recipes on (https://github.com/cmriat/l0).
☆ Zero-Shot Contextual Embeddings via Offline Synthetic Corpus Generation
Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resource-constrained settings. We present ZEST, a zero-shot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domain-specific distributions. At inference, the frozen context-aware encoder uses this proxy corpus -- without any finetuning or target corpus access -- to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST's zero-shot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access -- demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.
☆ Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
comment: 12 pages main text, 27 pages total including references and appendices. 13 figures, 10 tables. Accepted for publication in the LNCS proceedings of CLEF 2025 (Best-of-Labs track)
☆ Evaluating the Simulation of Human Personality-Driven Susceptibility to Misinformation with LLMs
Large language models (LLMs) make it possible to generate synthetic behavioural data at scale, offering an ethical and low-cost alternative to human experiments. Whether such data can faithfully capture psychological differences driven by personality traits, however, remains an open question. We evaluate the capacity of LLM agents, conditioned on Big-Five profiles, to reproduce personality-based variation in susceptibility to misinformation, focusing on news discernment, the ability to judge true headlines as true and false headlines as false. Leveraging published datasets in which human participants with known personality profiles rated headline accuracy, we create matching LLM agents and compare their responses to the original human patterns. Certain trait-misinformation associations, notably those involving Agreeableness and Conscientiousness, are reliably replicated, whereas others diverge, revealing systematic biases in how LLMs internalize and express personality. The results underscore both the promise and the limits of personality-aligned LLMs for behavioral simulation, and offer new insight into modeling cognitive diversity in artificial agents.
comment: pre-print version - paper actually under submission
☆ Semantic-guided Diverse Decoding for Large Language Model
Diverse decoding of large language models is crucial for applications requiring multiple semantically distinct responses, yet existing methods primarily achieve lexical rather than semantic diversity. This limitation significantly constrains Best-of-N strategies, group-based reinforcement learning, and data synthesis. While temperature sampling and diverse beam search modify token distributions or apply n-gram penalties, they fail to ensure meaningful semantic differentiation. We introduce Semantic-guided Diverse Decoding (SemDiD), operating directly in embedding space that balances quality with diversity through three complementary mechanisms: orthogonal directional guidance, dynamic inter-group repulsion, and position-debiased probability assessment. SemDiD harmonizes these competing objectives using adaptive gain functions and constraint optimization, ensuring both quality thresholds and maximal semantic differentiation. Experiments show SemDiD consistently outperforms existing methods, improving Best-of-N coverage by 1.4-5.2% across diverse tasks and accelerating RLHF training convergence by 15% while increasing accuracy by up to 2.1%.
☆ Reachability in symmetric VASS
We investigate the reachability problem in symmetric vector addition systems with states (VASS), where transitions are invariant under a group of permutations of coordinates. One extremal case, the trivial groups, yields general VASS. In another extremal case, the symmetric groups, we show that the reachability problem can be solved in PSPACE, regardless of the dimension of input VASS (to be contrasted with Ackermannian complexity in general VASS). We also consider other groups, in particular alternating and cyclic ones. Furthermore, motivated by the open status of the reachability problem in data VASS, we estimate the gain in complexity when the group arises as a combination of the trivial and symmetric groups.
☆ MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.
comment: Technical report
☆ On Recipe Memorization and Creativity in Large Language Models: Is Your Model a Creative Cook, a Bad Cook, or Merely a Plagiator?
This work-in-progress investigates the memorization, creativity, and nonsense found in cooking recipes generated from Large Language Models (LLMs). Precisely, we aim (i) to analyze memorization, creativity, and non-sense in LLMs using a small, high-quality set of human judgments and (ii) to evaluate potential approaches to automate such a human annotation in order to scale our study to hundreds of recipes. To achieve (i), we conduct a detailed human annotation on 20 preselected recipes generated by LLM (Mixtral), extracting each recipe's ingredients and step-by-step actions to assess which elements are memorized--i.e., directly traceable to online sources possibly seen during training--and which arise from genuine creative synthesis or outright nonsense. We find that Mixtral consistently reuses ingredients that can be found in online documents, potentially seen during model training, suggesting strong reliance on memorized content. To achieve aim (ii) and scale our analysis beyond small sample sizes and single LLM validation, we design an ``LLM-as-judge'' pipeline that automates recipe generation, nonsense detection, parsing ingredients and recipe steps, and their annotation. For instance, comparing its output against human annotations, the best ingredient extractor and annotator is Llama 3.1+Gemma 2 9B, achieving up to 78% accuracy on ingredient matching. This automated framework enables large-scale quantification of memorization, creativity, and nonsense in generated recipes, providing rigorous evidence of the models' creative capacities.
comment: 13 pages, 5 figures
☆ NEU-ESC: A Comprehensive Vietnamese dataset for Educational Sentiment analysis and topic Classification toward multitask learning
In the field of education, understanding students' opinions through their comments is crucial, especially in the Vietnamese language, where resources remain limited. Existing educational datasets often lack domain relevance and student slang. To address these gaps, we introduce NEU-ESC, a new Vietnamese dataset for Educational Sentiment Classification and Topic Classification, curated from university forums, which offers more samples, richer class diversity, longer texts, and broader vocabulary. In addition, we explore multitask learning using encoder-only language models (BERT), in which we showed that it achieves performance up to 83.7% and 79.8% accuracy for sentiment and topic classification tasks. We also benchmark our dataset and model with other datasets and models, including Large Language Models, and discuss these benchmarks. The dataset is publicly available at: https://huggingface.co/datasets/hung20gg/NEU-ESC.
☆ Assessing GPTZero's Accuracy in Identifying AI vs. Human-Written Essays
As the use of AI tools by students has become more prevalent, instructors have started using AI detection tools like GPTZero and QuillBot to detect AI written text. However, the reliability of these detectors remains uncertain. In our study, we focused mostly on the success rate of GPTZero, the most-used AI detector, in identifying AI-generated texts based on different lengths of randomly submitted essays: short (40-100 word count), medium (100-350 word count), and long (350-800 word count). We gathered a data set consisting of twenty-eight AI-generated papers and fifty human-written papers. With this randomized essay data, papers were individually plugged into GPTZero and measured for percentage of AI generation and confidence. A vast majority of the AI-generated papers were detected accurately (ranging from 91-100% AI believed generation), while the human generated essays fluctuated; there were a handful of false positives. These findings suggest that although GPTZero is effective at detecting purely AI-generated content, its reliability in distinguishing human-authored texts is limited. Educators should therefore exercise caution when relying solely on AI detection tools.
☆ Reinforcement Fine-Tuning Enables MLLMs Learning Novel Tasks Stably
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on an open-source multimodal model, Qwen2.5-VL. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly on novel tasks but maintains prior knowledge. We analyze this phenomenon through the lens of learning dynamics, showing that RFT reinforces correct samples that are naturally aligned with the base model's probability landscape, mitigating interference with prior knowledge. Moreover, supervised training on correct RFT-simulated rollouts allows SFT to preserve knowledge while rapidly learning new tasks. These findings suggest that data distribution, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 18 pages (Preprint. Work in progress)
☆ Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.
☆ What to Keep and What to Drop: Adaptive Table Filtering Framework
Large language models (LLMs) for table-based reasoning often struggle with large tables due to input length limits. We propose ATF (Adaptive Table Filtering Framework), a modular and question-aware filtering pipeline that prunes uninformative columns and rows using LLM-generated column descriptions, clustering, and sparse-dense alignment scores. ATF integrates seamlessly with existing models (e.g., TAPAS, TAPEX) without retraining. Experiments show that ATF reduces table cells by ~70\%, boosting performance on out-of-domain TableQA tasks while causing slight performance drops on Table Fact Verification, where full-table context is more critical. These results highlight ATF's ability to adaptively balance informativeness and minimalism across tasks.
comment: 26 pages, 9 figures
♻ ☆ Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing SIGIR 2025
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ KMI: A Dataset of Korean Motivational Interviewing Dialogues for Psychotherapy NAACL 2025
The increasing demand for mental health services has led to the rise of AI-driven mental health chatbots, though challenges related to privacy, data collection, and expertise persist. Motivational Interviewing (MI) is gaining attention as a theoretical basis for boosting expertise in the development of these chatbots. However, existing datasets are showing limitations for training chatbots, leading to a substantial demand for publicly available resources in the field of MI and psychotherapy. These challenges are even more pronounced in non-English languages, where they receive less attention. In this paper, we propose a novel framework that simulates MI sessions enriched with the expertise of professional therapists. We train an MI forecaster model that mimics the behavioral choices of professional therapists and employ Large Language Models (LLMs) to generate utterances through prompt engineering. Then, we present KMI, the first synthetic dataset theoretically grounded in MI, containing 1,000 high-quality Korean Motivational Interviewing dialogues. Through an extensive expert evaluation of the generated dataset and the dialogue model trained on it, we demonstrate the quality, expertise, and practicality of KMI. We also introduce novel metrics derived from MI theory in order to evaluate dialogues from the perspective of MI.
comment: Accepted at NAACL 2025 Main Conference
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries ACL 2025
Open-source AI libraries are foundational to modern AI systems, yet they present significant, underexamined risks spanning security, licensing, maintenance, supply chain integrity, and regulatory compliance. We introduce LibVulnWatch, a system that leverages recent advances in large language models and agentic workflows to perform deep, evidence-based evaluations of these libraries. Built on a graph-based orchestration of specialized agents, the framework extracts, verifies, and quantifies risk using information from repositories, documentation, and vulnerability databases. LibVulnWatch produces reproducible, governance-aligned scores across five critical domains, publishing results to a public leaderboard for ongoing ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our approach covers up to 88% of OpenSSF Scorecard checks while surfacing up to 19 additional risks per library, such as critical RCE vulnerabilities, missing SBOMs, and regulatory gaps. By integrating advanced language technologies with the practical demands of software risk assessment, this work demonstrates a scalable, transparent mechanism for continuous supply chain evaluation and informed library selection.
comment: ACL 2025 Student Research Workshop and ICML 2025 TAIG Workshop
♻ ☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
♻ ☆ Empirical evidence of Large Language Model's influence on human spoken communication
From the invention of writing and the printing press, to television and social media, human history is punctuated by major innovations in communication technology, which fundamentally altered how ideas spread and reshaped our culture. Recent chatbots powered by generative artificial intelligence constitute a novel medium that encodes cultural patterns in their neural representations and disseminates them in conversations with hundreds of millions of people. Understanding whether these patterns transmit into human language, and ultimately shape human culture, is a fundamental question. While fully quantifying the causal impact of a chatbot like ChatGPT on human culture is very challenging, lexicographic shift in human spoken communication may offer an early indicator of such broad phenomenon. Here, we apply econometric causal inference techniques to 740,249 hours of human discourse from 360,445 YouTube academic talks and 771,591 conversational podcast episodes across multiple disciplines. We detect a measurable and abrupt increase in the use of words preferentially generated by ChatGPT, such as delve, comprehend, boast, swift, and meticulous, after its release. These findings suggest a scenario where machines, originally trained on human data and subsequently exhibiting their own cultural traits, can, in turn, measurably reshape human culture. This marks the beginning of a closed cultural feedback loop in which cultural traits circulate bidirectionally between humans and machines. Our results motivate further research into the evolution of human-machine culture, and raise concerns over the erosion of linguistic and cultural diversity, and the risks of scalable manipulation.
♻ ☆ GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, 2 figures, 6 tables, revised and re-submitted to an IEEE journal
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Published at TACL 2025, presented at ACL 2025. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72\% execution accuracy, while the 32B model achieves 73.67\%. The code has been open sourced at https://github.com/CycloneBoy/csc_sql.
comment: 25 pages, 5 figures
♻ ☆ Sparsing Law: Towards Large Language Models with Greater Activation Sparsity
Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-$p\%$ sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., $1-\mathrm{sparsity\ ratio}$) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.
comment: 23 pages, 13 figures, 6 tables
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Evaluating K-Fold Cross Validation for Transformer Based Symbolic Regression Models
Symbolic Regression remains an NP-Hard problem, with extensive research focusing on AI models for this task. Transformer models have shown promise in Symbolic Regression, but performance suffers with smaller datasets. We propose applying k-fold cross-validation to a transformer-based symbolic regression model trained on a significantly reduced dataset (15,000 data points, down from 500,000). This technique partitions the training data into multiple subsets (folds), iteratively training on some while validating on others. Our aim is to provide an estimate of model generalization and mitigate overfitting issues associated with smaller datasets. Results show that this process improves the model's output consistency and generalization by a relative improvement in validation loss of 53.31%. Potentially enabling more efficient and accessible symbolic regression in resource-constrained environments.
♻ ☆ KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation
In this paper, we introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM). Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process in question-answering (Q&A) tasks on domain-specific knowledge bases (KBs) within LLMs. Following the \textbf{Logical Form} guided retrieval and reasoning technology route of KAG, this framework first decomposes complex questions into independently solvable sub-problems (which are also referred to as logical forms) through \textbf{breadth decomposition}. Each such logical form is represented in two equivalent forms-natural language and logical function-and subsequently classified as either a Knowledge Retrieval or Reasoning Analysis task. Dependencies and parameter passing between these tasks are explicitly modeled via logical function interfaces. In the solving process, the Retrieval function performs retrieval tasks. It retrieves one-hop structured and unstructured information of specified knowledge unit. While the Math and Deduce functions are used to perform reasoning analysis tasks. Secondly, it is worth noting that, in the Knowledge Retrieval sub-problem tasks, LLMs and external knowledge sources are regarded as equivalent KBs. We use the \textbf{knowledge boundary} module to determine the optimal source using self-regulatory mechanisms such as confidence calibration and reflective reasoning, and use the \textbf{depth solving} module to enhance the comprehensiveness of knowledge acquisition...
♻ ☆ FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models ACL 2025
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models. However, applying LoRA in federated learning environments, where data is distributed across multiple clients, presents unique challenges. Existing methods rely on traditional federated averaging of LoRA adapters, resulting in inexact updates. To address this, we propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix. Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency. We evaluate the method on various models across arithmetic reasoning, commonsense reasoning, natural language understanding and natural language generation tasks, showing consistent performance gains over state-of-the-art methods across multiple settings. Through extensive analysis, we quantify that the deviations in updates from the ideal solution are significant, highlighting the need for exact aggregation. Our method's simplicity, efficiency, and broad applicability position it as a promising solution for accurate and effective federated fine-tuning of foundation models. Our code is publicly available at https://github.com/RaghavSinghal10/fedex-lora.
comment: ACL 2025 - Oral. Raghav Singhal and Kaustubh Ponkshe contributed equally to this work
♻ ☆ From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ FlexRAG: A Flexible and Comprehensive Framework for Retrieval-Augmented Generation ACL 2025
Retrieval-Augmented Generation (RAG) plays a pivotal role in modern large language model applications, with numerous existing frameworks offering a wide range of functionalities to facilitate the development of RAG systems. However, we have identified several persistent challenges in these frameworks, including difficulties in algorithm reproduction and sharing, lack of new techniques, and high system overhead. To address these limitations, we introduce \textbf{FlexRAG}, an open-source framework specifically designed for research and prototyping. FlexRAG supports text-based, multimodal, and network-based RAG, providing comprehensive lifecycle support alongside efficient asynchronous processing and persistent caching capabilities. By offering a robust and flexible solution, FlexRAG enables researchers to rapidly develop, deploy, and share advanced RAG systems. Our toolkit and resources are available at \href{https://github.com/ictnlp/FlexRAG}{https://github.com/ictnlp/FlexRAG}.
comment: Accepted by ACL 2025 Demo
♻ ☆ A Comprehensive Evaluation of Semantic Relation Knowledge of Pretrained Language Models and Humans
Recently, much work has concerned itself with the enigma of what exactly PLMs (pretrained language models) learn about different aspects of language, and how they learn it. One stream of this type of research investigates the knowledge that PLMs have about semantic relations. However, many aspects of semantic relations were left unexplored. Only one relation was considered, namely hypernymy. Furthermore, previous work did not measure humans' performance on the same task as that solved by the PLMs. This means that at this point in time, there is only an incomplete view of models' semantic relation knowledge. To address this gap, we introduce a comprehensive evaluation framework covering five relations beyond hypernymy, namely hyponymy, holonymy, meronymy, antonymy, and synonymy. We use six metrics (two newly introduced here) for recently untreated aspects of semantic relation knowledge, namely soundness, completeness, symmetry, asymmetry, prototypicality, and distinguishability and fairly compare humans and models on the same task. Our extensive experiments involve 16 PLMs, eight masked and eight causal language models. Up to now only masked language models had been tested although causal and masked language models treat context differently. Our results reveal a significant knowledge gap between humans and models for almost all semantic relations. Antonymy is the outlier relation where all models perform reasonably well. In general, masked language models perform significantly better than causal language models. Nonetheless, both masked and causal language models are likely to confuse non-antonymy relations with antonymy.
comment: This manuscript is currently under review at Language Resources and Evaluation
♻ ☆ Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding ICML 2025
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025). Code: https://github.com/AMD-AIG-AIMA/Gumiho
♻ ☆ LLM Braces: Straightening Out LLM Predictions with Relevant Sub-Updates ACL 2025
Recent findings reveal that much of the knowledge in a Transformer-based Large Language Model (LLM) is encoded in its feed-forward (FFN) layers, where each FNN layer can be interpreted as the summation of sub-updates, each corresponding to a weighted column vector from the FFN's value parameter matrix that often encodes human-interpretable concepts. In light of this, we hypothesize that model performance and behaviors can be further enhanced and controlled by modulating the contributions of these sub-updates based on their relevance to the input or target output style, and propose LLMBRACES, a novel and efficient method that computes relevance scores associated with value vectors in FFN layers and leverages these scores to dynamically adjust the contribution of sub-updates. By optimizing sub-update contributions, LLMBRACES refines the prediction process, leading to more accurate and reliable outputs, much like a 'brace' providing support and stability. Moreover, LLMBRACES can be extended to support conditional control over generation characteristics, such as sentiment, thereby offering fine-grained steering of LLM outputs. Extensive experiments on various LLMs-including Qwen2.5-1.5B, Llama2-7B, and Llama3-8B-demonstrate that LLMBRACES outperforms baseline approaches in both fine-tuning and zero-shot settings while requiring significantly fewer tunable parameters, up to 75% fewer compared to LoRA. Furthermore, LLMBRACES excels in sentiment-controlled generation and toxicity reduction, highlighting its potential for flexible, controlled text generation across applications.
comment: ACL 2025, 16 pages, 2 figures
♻ ☆ FinEval-KR: A Financial Domain Evaluation Framework for Large Language Models' Knowledge and Reasoning
Large Language Models (LLMs) demonstrate significant potential but face challenges in complex financial reasoning tasks requiring both domain knowledge and sophisticated reasoning. Current evaluation benchmarks often fall short by not decoupling these capabilities indicators from single task performance and lack root cause analysis for task failure. To address this, we introduce FinEval-KR, a novel evaluation framework for decoupling and quantifying LLMs' knowledge and reasoning abilities independently, proposing distinct knowledge score and reasoning score metrics. Inspired by cognitive science, we further propose a cognitive score based on Bloom's taxonomy to analyze capabilities in reasoning tasks across different cognitive levels. We also release a new open-source Chinese financial reasoning dataset covering 22 subfields to support reproducible research and further advancements in financial reasoning. Our experimental results reveal that LLM reasoning ability and higher-order cognitive ability are the core factors influencing reasoning accuracy. We also specifically find that even top models still face a bottleneck with knowledge application. Furthermore, our analysis shows that specialized financial LLMs generally lag behind the top general large models across multiple metrics.
comment: The statistics included in the paper are incomplete (e.g., Tables 2 and 5 report only the results of a single run), which may lead readers to misunderstand
♻ ☆ CTISum: A New Benchmark Dataset For Cyber Threat Intelligence Summarization
Cyber Threat Intelligence (CTI) summarization involves generating concise and accurate highlights from web intelligence data, which is critical for providing decision-makers with actionable insights to swiftly detect and respond to cyber threats in the cybersecurity domain. Despite that, the development of efficient techniques for summarizing CTI reports, comprising facts, analytical insights, attack processes, and more, has been hindered by the lack of suitable datasets. To address this gap, we introduce CTISum, a new benchmark dataset designed for the CTI summarization task. Recognizing the significance of understanding attack processes, we also propose a novel fine-grained subtask: attack process summarization, which aims to help defenders assess risks, identify security gaps, and uncover vulnerabilities. Specifically, a multi-stage annotation pipeline is designed to collect and annotate CTI data from diverse web sources, alongside a comprehensive benchmarking of CTISum using both extractive, abstractive and LLMs-based summarization methods. Experimental results reveal that current state-of-the-art models face significant challenges when applied to CTISum, highlighting that automatic summarization of CTI reports remains an open research problem. The code and example dataset can be made publicly available at https://github.com/pengwei-iie/CTISum.
♻ ☆ Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning ACL 2025
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
Knowledge graph completion (KGC) is a task of inferring missing triples based on existing Knowledge Graphs (KGs). Both structural and semantic information are vital for successful KGC. However, existing methods only use either the structural knowledge from the KG embeddings or the semantic information from pre-trained language models (PLMs), leading to suboptimal model performance. Moreover, since PLMs are not trained on KGs, directly using PLMs to encode triples may be inappropriate. To overcome these limitations, we propose a novel framework called Bridge, which jointly encodes structural and semantic information of KGs. Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs and enable structured representation learning via a structural learning principle. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple. Unlike BYOL, which uses augmentation methods to create two semantically similar views of the same image, potentially altering the semantic information. We strategically separate the triple into two parts to create different views, thus avoiding semantic alteration. Experiments demonstrate that Bridge outperforms the SOTA models on three benchmark datasets.
♻ ☆ Mechanistic Interpretability of Emotion Inference in Large Language Models ACL 2025
Large language models (LLMs) show promising capabilities in predicting human emotions from text. However, the mechanisms through which these models process emotional stimuli remain largely unexplored. Our study addresses this gap by investigating how autoregressive LLMs infer emotions, showing that emotion representations are functionally localized to specific regions in the model. Our evaluation includes diverse model families and sizes and is supported by robustness checks. We then show that the identified representations are psychologically plausible by drawing on cognitive appraisal theory, a well-established psychological framework positing that emotions emerge from evaluations (appraisals) of environmental stimuli. By causally intervening on construed appraisal concepts, we steer the generation and show that the outputs align with theoretical and intuitive expectations. This work highlights a novel way to causally intervene and precisely shape emotional text generation, potentially benefiting safety and alignment in sensitive affective domains.
comment: ACL 2025 camera-ready version. First two authors contributed equally
♻ ☆ ETTA: Elucidating the Design Space of Text-to-Audio Models ICML 2025
Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, enabling users to enrich their creative workflows with synthetic audio generated from natural language prompts. Despite this progress, the effects of data, model architecture, training objective functions, and sampling strategies on target benchmarks are not well understood. With the purpose of providing a holistic understanding of the design space of TTA models, we set up a large-scale empirical experiment focused on diffusion and flow matching models. Our contributions include: 1) AF-Synthetic, a large dataset of high quality synthetic captions obtained from an audio understanding model; 2) a systematic comparison of different architectural, training, and inference design choices for TTA models; 3) an analysis of sampling methods and their Pareto curves with respect to generation quality and inference speed. We leverage the knowledge obtained from this extensive analysis to propose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated on AudioCaps and MusicCaps, ETTA provides improvements over the baselines trained on publicly available data, while being competitive with models trained on proprietary data. Finally, we show ETTA's improved ability to generate creative audio following complex and imaginative captions -- a task that is more challenging than current benchmarks.
comment: ICML 2025. Demo: https://research.nvidia.com/labs/adlr/ETTA/ Code: https://github.com/NVIDIA/elucidated-text-to-audio
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Can LLMs Evaluate Complex Attribution in QA? Automatic Benchmarking using Knowledge Graphs ACL 2025
Attributed Question Answering (AQA) has attracted wide attention, but there are still several limitations in evaluating the attributions, including lacking fine-grained attribution categories, relying on manual annotations, and failing to compare attributions with only subtle differences. To bridge these gaps, we introduce Complex Attributed Question Answering (CAQA), a large-scale benchmark containing comprehensive attribution categories, automatically generated using Knowledge Graphs (KGs), and complex attribution scenarios. We have conducted extensive experiments to verify the effectiveness of CAQA, including the benchmarking of 25 automatic evaluators, their comparison with human evaluators, the testing of LLM evaluators fine-tuned by CAQA and so on. These experiments also lead to a series of important findings that can benefit the future research of AQA. All the codes and data are publicly accessible at https://github.com/HuuuNan/CAQA-Benchmark.
comment: Accepted to ACL 2025 (Main Conference)
From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
Humans organize knowledge into compact categories through semantic compression by mapping diverse instances to abstract representations while preserving meaning (e.g., robin and blue jay are both birds; most birds can fly). These concepts reflect a trade-off between expressive fidelity and representational simplicity. Large Language Models (LLMs) demonstrate remarkable linguistic abilities, yet whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear. We introduce a novel information-theoretic framework, drawing from Rate-Distortion Theory and the Information Bottleneck principle, to quantitatively compare these strategies. Analyzing token embeddings from a diverse suite of LLMs against seminal human categorization benchmarks, we uncover key divergences. While LLMs form broad conceptual categories that align with human judgment, they struggle to capture the fine-grained semantic distinctions crucial for human understanding. More fundamentally, LLMs demonstrate a strong bias towards aggressive statistical compression, whereas human conceptual systems appear to prioritize adaptive nuance and contextual richness, even if this results in lower compressional efficiency by our measures. These findings illuminate critical differences between current AI and human cognitive architectures, guiding pathways toward LLMs with more human-aligned conceptual representations.
♻ ☆ ECG-Byte: A Tokenizer for End-to-End Generative Electrocardiogram Language Modeling
Large Language Models (LLMs) have demonstrated exceptional versatility across domains, including applications to electrocardiograms (ECGs). A growing body of work focuses on generating text from multi-channeled ECG signals and corresponding textual prompts. Existing approaches often involve a two-stage process: pretraining an ECG-specific encoder with a self-supervised learning (SSL) objective, followed by finetuning an LLM for natural language generation (NLG) using encoder-derived features. However, these methods face two key limitations: inefficiency due to multi-stage training and challenges in interpreting encoder-generated features. To overcome these issues, we propose ECG-Byte, an adapted byte pair encoding (BPE) tokenizer pipeline for autoregressive language modeling of ECGs. ECG-Byte compresses and encodes ECG signals into tokens, enabling direct end-to-end LLM training by combining ECG and text tokens. This approach enhances interpretability, as ECG tokens can be directly mapped back to the original signals. Leveraging ECG-Byte, we achieve competitive NLG performance while training 3 times faster and using just 48\% of the data required by traditional two-stage methods.
comment: 38 pages, 9 figures
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ A Graph-Based Classical and Quantum Approach to Deterministic L-System Inference
L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-systems) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.
comment: 17 pages, 1 figure
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 14 pages, 11 figures
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
comment: ICML 2025
♻ ☆ Evaluating Deduplication Techniques for Economic Research Paper Titles with a Focus on Semantic Similarity using NLP and LLMs
This study investigates efficient deduplication techniques for a large NLP dataset of economic research paper titles. We explore various pairing methods alongside established distance measures (Levenshtein distance, cosine similarity) and a sBERT model for semantic evaluation. Our findings suggest a potentially low prevalence of duplicates based on the observed semantic similarity across different methods. Further exploration with a human-annotated ground truth set is completed for a more conclusive assessment. The result supports findings from the NLP, LLM based distance metrics.
comment: 6 pages, 1 figure
Computer Vision and Pattern Recognition 160
☆ How to Design and Train Your Implicit Neural Representation for Video Compression
Implicit neural representation (INR) methods for video compression have recently achieved visual quality and compression ratios that are competitive with traditional pipelines. However, due to the need for per-sample network training, the encoding speeds of these methods are too slow for practical adoption. We develop a library to allow us to disentangle and review the components of methods from the NeRV family, reframing their performance in terms of not only size-quality trade-offs, but also impacts on training time. We uncover principles for effective video INR design and propose a state-of-the-art configuration of these components, Rabbit NeRV (RNeRV). When all methods are given equal training time (equivalent to 300 NeRV epochs) for 7 different UVG videos at 1080p, RNeRV achieves +1.27% PSNR on average compared to the best-performing alternative for each video in our NeRV library. We then tackle the encoding speed issue head-on by investigating the viability of hyper-networks, which predict INR weights from video inputs, to disentangle training from encoding to allow for real-time encoding. We propose masking the weights of the predicted INR during training to allow for variable, higher quality compression, resulting in 1.7% improvements to both PSNR and MS-SSIM at 0.037 bpp on the UCF-101 dataset, and we increase hyper-network parameters by 0.4% for 2.5%/2.7% improvements to PSNR/MS-SSIM with equal bpp and similar speeds. Our project website is available at https://mgwillia.github.io/vinrb/ and our code is available at https://github.com/mgwillia/vinrb.
comment: 21 pages, 41 figures, 5 tables
☆ FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation
Residual connection has been extensively studied and widely applied at the model architecture level. However, its potential in the more challenging data-centric approaches remains unexplored. In this work, we introduce the concept of Data Residual Matching for the first time, leveraging data-level skip connections to facilitate data generation and mitigate data information vanishing. This approach maintains a balance between newly acquired knowledge through pixel space optimization and existing core local information identification within raw data modalities, specifically for the dataset distillation task. Furthermore, by incorporating optimization-level refinements, our method significantly improves computational efficiency, achieving superior performance while reducing training time and peak GPU memory usage by 50%. Consequently, the proposed method Fast and Accurate Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-of-the-art, demonstrating substantial improvements over existing methods across multiple dataset benchmarks in both efficiency and effectiveness. For instance, with ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the method achieves 47.7% test accuracy in single-model dataset distillation and 50.0% in multi-model dataset distillation, surpassing RDED by +5.7% and outperforming state-of-the-art multi-model approaches, EDC and CV-DD, by +1.4% and +4.0%. Code is available at: https://github.com/Jiacheng8/FADRM.
comment: Code at: https://github.com/Jiacheng8/FADRM
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Calligrapher: Freestyle Text Image Customization
We introduce Calligrapher, a novel diffusion-based framework that innovatively integrates advanced text customization with artistic typography for digital calligraphy and design applications. Addressing the challenges of precise style control and data dependency in typographic customization, our framework incorporates three key technical contributions. First, we develop a self-distillation mechanism that leverages the pre-trained text-to-image generative model itself alongside the large language model to automatically construct a style-centric typography benchmark. Second, we introduce a localized style injection framework via a trainable style encoder, which comprises both Qformer and linear layers, to extract robust style features from reference images. An in-context generation mechanism is also employed to directly embed reference images into the denoising process, further enhancing the refined alignment of target styles. Extensive quantitative and qualitative evaluations across diverse fonts and design contexts confirm Calligrapher's accurate reproduction of intricate stylistic details and precise glyph positioning. By automating high-quality, visually consistent typography, Calligrapher surpasses traditional models, empowering creative practitioners in digital art, branding, and contextual typographic design.
comment: Project page: https://calligrapher2025.github.io/Calligrapher Code: https://github.com/Calligrapher2025/Calligrapher
☆ TextMesh4D: High-Quality Text-to-4D Mesh Generation
Recent advancements in diffusion generative models significantly advanced image, video, and 3D content creation from user-provided text prompts. However, the challenging problem of dynamic 3D content generation (text-to-4D) with diffusion guidance remains largely unexplored. In this paper, we introduce TextMesh4D, a novel framework for high-quality text-to-4D generation. Our approach leverages per-face Jacobians as a differentiable mesh representation and decomposes 4D generation into two stages: static object creation and dynamic motion synthesis. We further propose a flexibility-rigidity regularization term to stabilize Jacobian optimization under video diffusion priors, ensuring robust geometric performance. Experiments demonstrate that TextMesh4D achieves state-of-the-art results in terms of temporal consistency, structural fidelity, and visual realism. Moreover, TextMesh4D operates with a low GPU memory overhead-requiring only a single 24GB GPU-offering a cost-effective yet high-quality solution for text-driven 4D mesh generation. The code will be released to facilitate future research in text-to-4D generation.
☆ Epona: Autoregressive Diffusion World Model for Autonomous Driving ICCV2025
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
comment: ICCV2025, Project Page: https://kevin-thu.github.io/Epona/
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ DenseWorld-1M: Towards Detailed Dense Grounded Caption in the Real World
Multimodal Large Language Models (MLLMs) demonstrate a complex understanding of scenes, benefiting from large-scale and high-quality datasets. Most existing caption datasets lack the ground locations and relations for visual entities. Several grounded caption datasets face the problems of missing detailed descriptions, relations, and massive object descriptions on high-resolution images. To fill this gap for the community, we present DenseWorld-1M, the first massive, detailed, dense grounded caption dataset in the real world. We design a three-stage labeling pipeline, containing open-world perception, detailed object caption generation, and dense caption merging. The first stage obtains entity-level masks and labels. The second stage generates the object-level, detailed captions with the guidance of masks and labels from the first stage. The final stage merges object captions and masks into spatial and relational dense captions. To accelerate the labeling process and improve caption quality, we present two VLM models: the Detailed Region Caption model and the Spatial Caption Merging model. Extensive experiments on various settings, including vision-language understanding, visual grounding, and region caption generation, demonstrate the effectiveness of our DenseWorld-1M dataset and labeling models.
comment: Datasets and Models: https://github.com/lxtGH/DenseWorld-1M
☆ MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction
While recent advances in Gaussian Splatting have enabled fast reconstruction of high-quality 3D scenes from images, extracting accurate surface meshes remains a challenge. Current approaches extract the surface through costly post-processing steps, resulting in the loss of fine geometric details or requiring significant time and leading to very dense meshes with millions of vertices. More fundamentally, the a posteriori conversion from a volumetric to a surface representation limits the ability of the final mesh to preserve all geometric structures captured during training. We present MILo, a novel Gaussian Splatting framework that bridges the gap between volumetric and surface representations by differentiably extracting a mesh from the 3D Gaussians. We design a fully differentiable procedure that constructs the mesh-including both vertex locations and connectivity-at every iteration directly from the parameters of the Gaussians, which are the only quantities optimized during training. Our method introduces three key technical contributions: a bidirectional consistency framework ensuring both representations-Gaussians and the extracted mesh-capture the same underlying geometry during training; an adaptive mesh extraction process performed at each training iteration, which uses Gaussians as differentiable pivots for Delaunay triangulation; a novel method for computing signed distance values from the 3D Gaussians that enables precise surface extraction while avoiding geometric erosion. Our approach can reconstruct complete scenes, including backgrounds, with state-of-the-art quality while requiring an order of magnitude fewer mesh vertices than previous methods. Due to their light weight and empty interior, our meshes are well suited for downstream applications such as physics simulations or animation.
comment: 10 pages. A presentation video of our approach is available at https://youtu.be/_SGNhhNz0fE
☆ MotionGPT3: Human Motion as a Second Modality
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
comment: 21 pages, 8 figures
☆ Imagine for Me: Creative Conceptual Blending of Real Images and Text via Blended Attention
Blending visual and textual concepts into a new visual concept is a unique and powerful trait of human beings that can fuel creativity. However, in practice, cross-modal conceptual blending for humans is prone to cognitive biases, like design fixation, which leads to local minima in the design space. In this paper, we propose a T2I diffusion adapter "IT-Blender" that can automate the blending process to enhance human creativity. Prior works related to cross-modal conceptual blending are limited in encoding a real image without loss of details or in disentangling the image and text inputs. To address these gaps, IT-Blender leverages pretrained diffusion models (SD and FLUX) to blend the latent representations of a clean reference image with those of the noisy generated image. Combined with our novel blended attention, IT-Blender encodes the real reference image without loss of details and blends the visual concept with the object specified by the text in a disentangled way. Our experiment results show that IT-Blender outperforms the baselines by a large margin in blending visual and textual concepts, shedding light on the new application of image generative models to augment human creativity.
comment: Project website is available at https://imagineforme.github.io/
☆ C3VDv2 -- Colonoscopy 3D video dataset with enhanced realism
Computer vision techniques have the potential to improve the diagnostic performance of colonoscopy, but the lack of 3D colonoscopy datasets for training and validation hinders their development. This paper introduces C3VDv2, the second version (v2) of the high-definition Colonoscopy 3D Video Dataset, featuring enhanced realism designed to facilitate the quantitative evaluation of 3D colon reconstruction algorithms. 192 video sequences were captured by imaging 60 unique, high-fidelity silicone colon phantom segments. Ground truth depth, surface normals, optical flow, occlusion, six-degree-of-freedom pose, coverage maps, and 3D models are provided for 169 colonoscopy videos. Eight simulated screening colonoscopy videos acquired by a gastroenterologist are provided with ground truth poses. The dataset includes 15 videos featuring colon deformations for qualitative assessment. C3VDv2 emulates diverse and challenging scenarios for 3D reconstruction algorithms, including fecal debris, mucous pools, blood, debris obscuring the colonoscope lens, en-face views, and fast camera motion. The enhanced realism of C3VDv2 will allow for more robust and representative development and evaluation of 3D reconstruction algorithms.
comment: 19 pages, 7 figures
☆ Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios
In practice, environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption, i.e., training and test data share the same distribution. To this end, continual test-time adaptation has attracted much attention, aiming to improve detectors' generalization by fine-tuning a few specific parameters, e.g., BatchNorm layers. However, based on a small number of test images, fine-tuning certain parameters may affect the representation ability of other fixed parameters, leading to performance degradation. Instead, we explore a new mechanism, i.e., converting the fine-tuning process to a specific-parameter generation. Particularly, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components, enabling efficient adaptation. Additionally, a conditional diffusion-based parameter generation mechanism is presented to synthesize the adapter's parameters based on the current environment, preventing the optimization from getting stuck in local optima. Finally, we propose a class-centered optimal transport alignment method to mitigate catastrophic forgetting. Extensive experiments conducted on various continuous domain adaptive object detection tasks demonstrate the effectiveness. Meanwhile, visualization results show that the representation extracted by the generated parameters can capture more object-related information and strengthen the generalization ability.
☆ A Survey on Vision-Language-Action Models for Autonomous Driving
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
☆ Foundation Models for Zero-Shot Segmentation of Scientific Images without AI-Ready Data
Zero-shot and prompt-based technologies capitalized on using frequently occurring images to transform visual reasoning tasks, which explains why such technologies struggle with valuable yet scarce scientific image sets. In this work, we propose Zenesis, a comprehensive no-code interactive platform designed to minimize barriers posed by data readiness for scientific images. We develop lightweight multi-modal adaptation techniques that enable zero-shot operation on raw scientific data, along with human-in-the-loop refinement and heuristic-based temporal enhancement options. We demonstrate the performance of our approach through comprehensive comparison and validation on challenging Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) data of catalyst-loaded membranes. Zenesis significantly outperforms baseline methods, achieving an average accuracy of 0.947, an Intersection over Union (IOU) of 0.858, and a Dice score of 0.923 for amorphous catalyst samples and accuracy of 0.987, an IOU of 0.857, and a Dice score of 0.923 for crystalline samples. These results mark a substantial improvement over traditional methods like Otsu thresholding and even advanced models like Segment Anything Model (SAM) when used in isolation. Our results demonstrate that Zenesis is a powerful tool for scientific applications, particularly in fields where high-quality annotated datasets are unavailable, accelerating accurate analysis of experimental imaging.
comment: This manuscript is a draft on arxiv. A final version has been submitted to the 59th ICPP 2025, DRAI workshop
☆ Supervised Diffusion-Model-Based PET Image Reconstruction MICCAI 2025
Diffusion models (DMs) have recently been introduced as a regularizing prior for PET image reconstruction, integrating DMs trained on high-quality PET images with unsupervised schemes that condition on measured data. While these approaches have potential generalization advantages due to their independence from the scanner geometry and the injected activity level, they forgo the opportunity to explicitly model the interaction between the DM prior and noisy measurement data, potentially limiting reconstruction accuracy. To address this, we propose a supervised DM-based algorithm for PET reconstruction. Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images. Through experiments on realistic brain PET phantoms, we demonstrate that our approach outperforms or matches state-of-the-art deep learning-based methods quantitatively across a range of dose levels. We further conduct ablation studies to demonstrate the benefits of the proposed components in our model, as well as its dependence on training data, parameter count, and number of diffusion steps. Additionally, we show that our approach enables more accurate posterior sampling than unsupervised DM-based methods, suggesting improved uncertainty estimation. Finally, we extend our methodology to a practical approach for fully 3D PET and present example results from real [$^{18}$F]FDG brain PET data.
comment: 12 pages, 6 figures. Submitted to MICCAI 2025, not peer-reviewed
☆ Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
☆ ShapeKit
In this paper, we present a practical approach to improve anatomical shape accuracy in whole-body medical segmentation. Our analysis shows that a shape-focused toolkit can enhance segmentation performance by over 8%, without the need for model re-training or fine-tuning. In comparison, modifications to model architecture typically lead to marginal gains of less than 3%. Motivated by this observation, we introduce ShapeKit, a flexible and easy-to-integrate toolkit designed to refine anatomical shapes. This work highlights the underappreciated value of shape-based tools and calls attention to their potential impact within the medical segmentation community.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.
comment: 14 pages, 4 figures
☆ Toward Simple and Robust Contrastive Explanations for Image Classification by Leveraging Instance Similarity and Concept Relevance
Understanding why a classification model prefers one class over another for an input instance is the challenge of contrastive explanation. This work implements concept-based contrastive explanations for image classification by leveraging the similarity of instance embeddings and relevance of human-understandable concepts used by a fine-tuned deep learning model. Our approach extracts concepts with their relevance score, computes contrasts for similar instances, and evaluates the resulting contrastive explanations based on explanation complexity. Robustness is tested for different image augmentations. Two research questions are addressed: (1) whether explanation complexity varies across different relevance ranges, and (2) whether explanation complexity remains consistent under image augmentations such as rotation and noise. The results confirm that for our experiments higher concept relevance leads to shorter, less complex explanations, while lower relevance results in longer, more diffuse explanations. Additionally, explanations show varying degrees of robustness. The discussion of these findings offers insights into the potential of building more interpretable and robust AI systems.
comment: 17 pages, 6 figures, KI2025 - 48th German Conference on Artificial Intelligence
☆ Visual and Memory Dual Adapter for Multi-Modal Object Tracking
Prompt-learning-based multi-modal trackers have achieved promising progress by employing lightweight visual adapters to incorporate auxiliary modality features into frozen foundation models. However, existing approaches often struggle to learn reliable prompts due to limited exploitation of critical cues across frequency and temporal domains. In this paper, we propose a novel visual and memory dual adapter (VMDA) to construct more robust and discriminative representations for multi-modal tracking. Specifically, we develop a simple but effective visual adapter that adaptively transfers discriminative cues from auxiliary modality to dominant modality by jointly modeling the frequency, spatial, and channel-wise features. Additionally, we design the memory adapter inspired by the human memory mechanism, which stores global temporal cues and performs dynamic update and retrieval operations to ensure the consistent propagation of reliable temporal information across video sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the various multi-modal tracking tasks, including RGB-Thermal, RGB-Depth, and RGB-Event tracking. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.
☆ Evaluating the Impact of Khmer Font Types on Text Recognition
Text recognition is significantly influenced by font types, especially for complex scripts like Khmer. The variety of Khmer fonts, each with its unique character structure, presents challenges for optical character recognition (OCR) systems. In this study, we evaluate the impact of 19 randomly selected Khmer font types on text recognition accuracy using Pytesseract. The fonts include Angkor, Battambang, Bayon, Bokor, Chenla, Dangrek, Freehand, Kh Kompong Chhnang, Kh SN Kampongsom, Khmer, Khmer CN Stueng Songke, Khmer Savuth Pen, Metal, Moul, Odor MeanChey, Preah Vihear, Siemreap, Sithi Manuss, and iSeth First. Our comparison of OCR performance across these fonts reveals that Khmer, Odor MeanChey, Siemreap, Sithi Manuss, and Battambang achieve high accuracy, while iSeth First, Bayon, and Dangrek perform poorly. This study underscores the critical importance of font selection in optimizing Khmer text recognition and provides valuable insights for developing more robust OCR systems.
☆ GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering
Video stabilization is pivotal for video processing, as it removes unwanted shakiness while preserving the original user motion intent. Existing approaches, depending on the domain they operate, suffer from several issues (e.g. geometric distortions, excessive cropping, poor generalization) that degrade the user experience. To address these issues, we introduce \textbf{GaVS}, a novel 3D-grounded approach that reformulates video stabilization as a temporally-consistent `local reconstruction and rendering' paradigm. Given 3D camera poses, we augment a reconstruction model to predict Gaussian Splatting primitives, and finetune it at test-time, with multi-view dynamics-aware photometric supervision and cross-frame regularization, to produce temporally-consistent local reconstructions. The model are then used to render each stabilized frame. We utilize a scene extrapolation module to avoid frame cropping. Our method is evaluated on a repurposed dataset, instilled with 3D-grounded information, covering samples with diverse camera motions and scene dynamics. Quantitatively, our method is competitive with or superior to state-of-the-art 2D and 2.5D approaches in terms of conventional task metrics and new geometry consistency. Qualitatively, our method produces noticeably better results compared to alternatives, validated by the user study.
comment: siggraph 2025, project website: https://sinoyou.github.io/gavs
☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
☆ Three-dimensional end-to-end deep learning for brain MRI analysis
Deep learning (DL) methods are increasingly outperforming classical approaches in brain imaging, yet their generalizability across diverse imaging cohorts remains inadequately assessed. As age and sex are key neurobiological markers in clinical neuroscience, influencing brain structure and disease risk, this study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction using T1-weighted MRI from four independent cohorts: UK Biobank (UKB, n=47,390), Dallas Lifespan Brain Study (DLBS, n=132), Parkinson's Progression Markers Initiative (PPMI, n=108 healthy controls), and Information eXtraction from Images (IXI, n=319). We found that SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB (internal test set) and 0.85-0.91 in external test sets for sex classification. For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets. Pairwise DeLong and Wilcoxon signed-rank tests with Bonferroni corrections confirmed SFCN's superiority over Swin Transformer across most cohorts (p<0.017, for three comparisons). Explainability analysis further demonstrates the regional consistency of model attention across cohorts and specific to each task. Our findings reveal that simpler convolutional networks outperform the denser and more complex attention-based DL architectures in brain image analysis by demonstrating better generalizability across different datasets.
☆ GroundingDINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 6 figures
☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
comment: 11 pages
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction
Multi-view 3D reconstruction remains a core challenge in computer vision. Recent methods, such as DUST3R and its successors, directly regress pointmaps from image pairs without relying on known scene geometry or camera parameters. However, the performance of these models is constrained by the diversity and scale of available training data. In this work, we introduce Puzzles, a data augmentation strategy that synthesizes an unbounded volume of high-quality posed video-depth data from a single image or video clip. By simulating diverse camera trajectories and realistic scene geometry through targeted image transformations, Puzzles significantly enhances data variety. Extensive experiments show that integrating Puzzles into existing video-based 3D reconstruction pipelines consistently boosts performance without modifying the underlying network architecture. Notably, models trained on only ten percent of the original data augmented with Puzzles still achieve accuracy comparable to those trained on the full dataset. Code is available at https://jiahao-ma.github.io/puzzles/.
comment: Feed-forward 3D reconstruction, Data Augmentation
☆ VMoBA: Mixture-of-Block Attention for Video Diffusion Models
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
comment: Code is at https://github.com/KwaiVGI/VMoBA
☆ A Closer Look at Conditional Prompt Tuning for Vision-Language Models
Despite the great promise of Prompt Tuning (PT) in adapting large Vision-Language Pretrained Models (VLPMs) to downstream tasks, they often struggle to overcome the Base-New Tradeoff (BNT) dilemma: as VLPMs are better tuned to a base task, their ability to generalize to new tasks diminishes. Recent work on conditional PT addresses this problem by replacing static prompts with dynamic Visual Image Information (VII)-conditioned prompts, improving the model's generalization to new tasks to some extent. In this work, we first identify a critical issue with existing conditional PT methods: using VII as the "condition" of prompts yields suboptimal performance, and even random noise-conditioned prompts can outperform the VII-conditioned counterparts. On further analysis, we find that learning dynamic prompts conditioned on Textual Class Information (TCI) is the key to solving the BNT problem. Motivated by this, we then propose Class-adaptive Prompt Tuning (CaPT), which enables fast adaptation of tuned models to new classes by learning TCI-conditioned prompts from base classes. Remarkably, CaPT can be used as a plugin to mitigate the BNT problem for existing unconditional PT schemes. Extensive experiments on 11 datasets show that CaPT consistently improves the performance of five strong unconditional PT baselines with negligible additional computational cost. Additionally, by integrating CaPT with our recently proposed DePT framework, we devise a new conditional PT approach, termed DeCaPT, which outperforms the H ACC of the state-of-the-art conditional PT scheme by 3.49%, averaged over the 11 datasets. Code: https://github.com/Koorye/CaPT.
comment: 18 pages
☆ HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity ICCV
Neural surface reconstruction faces persistent challenges in reconciling geometric fidelity with photometric consistency under complex scene conditions. We present HiNeuS, a unified framework that holistically addresses three core limitations in existing approaches: multi-view radiance inconsistency, missing keypoints in textureless regions, and structural degradation from over-enforced Eikonal constraints during joint optimization. To resolve these issues through a unified pipeline, we introduce: 1) Differential visibility verification through SDF-guided ray tracing, resolving reflection ambiguities via continuous occlusion modeling; 2) Planar-conformal regularization via ray-aligned geometry patches that enforce local surface coherence while preserving sharp edges through adaptive appearance weighting; and 3) Physically-grounded Eikonal relaxation that dynamically modulates geometric constraints based on local radiance gradients, enabling detail preservation without sacrificing global regularity. Unlike prior methods that handle these aspects through sequential optimizations or isolated modules, our approach achieves cohesive integration where appearance-geometry constraints evolve synergistically throughout training. Comprehensive evaluations across synthetic and real-world datasets demonstrate state-of-the-art performance, including a 21.4% reduction in Chamfer distance over reflection-aware baselines and 2.32 dB PSNR improvement against neural rendering counterparts. Qualitative analyses reveal superior capability in recovering specular instruments, urban layouts with centimeter-scale infrastructure, and low-textured surfaces without local patch collapse. The method's generalizability is further validated through successful application to inverse rendering tasks, including material decomposition and view-consistent relighting.
comment: Published in International Conference on Computer Vision (ICCV) 2025
☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
☆ Refine Any Object in Any Scene
Viewpoint missing of objects is common in scene reconstruction, as camera paths typically prioritize capturing the overall scene structure rather than individual objects. This makes it highly challenging to achieve high-fidelity object-level modeling while maintaining accurate scene-level representation. Addressing this issue is critical for advancing downstream tasks requiring detailed object understanding and appearance modeling. In this paper, we introduce Refine Any object In any ScenE (RAISE), a novel 3D enhancement framework that leverages 3D generative priors to recover fine-grained object geometry and appearance under missing views. Starting from substituting degraded objects with proxies, via a 3D generative model with strong 3D understanding, RAISE progressively refines geometry and texture by aligning each proxy to its degraded counterpart in 7-DOF pose, followed by correcting spatial and appearance inconsistencies via registration-constrained enhancement. This two-stage refinement ensures the high-fidelity geometry and appearance of the original object in unseen views while maintaining consistency in spatial positioning, observed geometry, and appearance. Extensive experiments on challenging benchmarks show that RAISE significantly outperforms state-of-the-art methods in both novel view synthesis and geometry completion tasks. RAISE is made publicly available at https://github.com/PolySummit/RAISE.
comment: 9 pages with 6 figures
☆ PointSSIM: A novel low dimensional resolution invariant image-to-image comparison metric
This paper presents PointSSIM, a novel low-dimensional image-to-image comparison metric that is resolution invariant. Drawing inspiration from the structural similarity index measure and mathematical morphology, PointSSIM enables robust comparison across binary images of varying resolutions by transforming them into marked point pattern representations. The key features of the image, referred to as anchor points, are extracted from binary images by identifying locally adaptive maxima from the minimal distance transform. Image comparisons are then performed using a summary vector, capturing intensity, connectivity, complexity, and structural attributes. Results show that this approach provides an efficient and reliable method for image comparison, particularly suited to applications requiring structural analysis across different resolutions.
comment: 13 pages, 20 figures
☆ Low-latency vision transformers via large-scale multi-head attention
The emergence of spontaneous symmetry breaking among a few heads of multi-head attention (MHA) across transformer blocks in classification tasks was recently demonstrated through the quantification of single-nodal performance (SNP). This finding indicates that each head focuses its attention on a subset of labels through cooperation among its SNPs. This underlying learning mechanism is generalized to large-scale MHA (LS-MHA) using a single matrix value representing single-head performance (SHP), analogous to single-filter performance in convolutional neural networks (CNNs). The results indicate that each SHP matrix comprises multiple unit clusters such that each label being explicitly recognized by a few heads with negligible noise. This leads to an increased signal-to-noise ratio (SNR) along the transformer blocks, thereby improving classification accuracy. These features give rise to several distinct vision transformer (ViT) architectures that achieve the same accuracy but differ in their LS-MHA structures. As a result, their soft committee yields superior accuracy, an outcome not typically observed in CNNs which rely on hundreds of filters. In addition, a significant reduction in latency is achieved without affecting the accuracy by replacing the initial transformer blocks with convolutional layers. This substitution accelerates early-stage learning, which is then improved by subsequent transformer layers. The extension of this learning mechanism to natural language processing tasks, based on quantitative differences between CNNs and ViT architectures, has the potential to yield new insights in deep learning. The findings are demonstrated using compact convolutional transformer architectures trained on the CIFAR-100 dataset.
comment: 23 pages, 4 figures, 7 tables
☆ Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning MICCAI 2025
Spatial transcriptomics (ST) provides crucial insights into tissue micro-environments, but is limited to its high cost and complexity. As an alternative, predicting gene expression from pathology whole slide images (WSI) is gaining increasing attention. However, existing methods typically rely on single patches or a single pathology modality, neglecting the complex spatial and molecular interactions between target and neighboring information (e.g., gene co-expression). This leads to a failure in establishing connections among adjacent regions and capturing intricate cross-modal relationships. To address these issues, we propose NH2ST, a framework that integrates spatial context and both pathology and gene modalities for gene expression prediction. Our model comprises a query branch and a neighbor branch to process paired target patch and gene data and their neighboring regions, where cross-attention and contrastive learning are employed to capture intrinsic associations and ensure alignments between pathology and gene expression. Extensive experiments on six datasets demonstrate that our model consistently outperforms existing methods, achieving over 20% in PCC metrics. Codes are available at https://github.com/MCPathology/NH2ST
comment: Our paper has been accepted by MICCAI 2025
☆ Flash-VStream: Efficient Real-Time Understanding for Long Video Streams ICCV 2025
Benefiting from the advances in large language models and cross-modal alignment, existing multimodal large language models have achieved prominent performance in image and short video understanding. However, the understanding of long videos is still challenging, as their long-context nature results in significant computational and memory overhead. Most existing work treats long videos in the same way as short videos, which is inefficient for real-world applications and hard to generalize to even longer videos. To address these issues, we propose Flash-VStream, an efficient video language model capable of processing extremely long videos and responding to user queries in real time. Particularly, we design a Flash Memory module, containing a low-capacity context memory to aggregate long-context temporal information and model the distribution of information density, and a high-capacity augmentation memory to retrieve detailed spatial information based on this distribution. Compared to existing models, Flash-VStream achieves significant reductions in inference latency. Extensive experiments on long video benchmarks and comprehensive video benchmarks, i.e., EgoSchema, MLVU, LVBench, MVBench and Video-MME, demonstrate the state-of-the-art performance and outstanding efficiency of our method. Code is available at https://github.com/IVGSZ/Flash-VStream.
comment: Accepted by ICCV 2025
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ Interpretable Zero-Shot Learning with Locally-Aligned Vision-Language Model ICCV'25
Large-scale vision-language models (VLMs), such as CLIP, have achieved remarkable success in zero-shot learning (ZSL) by leveraging large-scale visual-text pair datasets. However, these methods often lack interpretability, as they compute the similarity between an entire query image and the embedded category words, making it difficult to explain their predictions. One approach to address this issue is to develop interpretable models by integrating language, where classifiers are built using discrete attributes, similar to human perception. This introduces a new challenge: how to effectively align local visual features with corresponding attributes based on pre-trained VLMs. To tackle this, we propose LaZSL, a locally-aligned vision-language model for interpretable ZSL. LaZSL employs local visual-semantic alignment via optimal transport to perform interaction between visual regions and their associated attributes, facilitating effective alignment and providing interpretable similarity without the need for additional training. Extensive experiments demonstrate that our method offers several advantages, including enhanced interpretability, improved accuracy, and strong domain generalization. Codes available at: https://github.com/shiming-chen/LaZSL.
comment: Accepted to ICCV'25
☆ MadCLIP: Few-shot Medical Anomaly Detection with CLIP MICCAI 2025
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data, and adapting it for both image-level anomaly classification (AC) and pixel-level anomaly segmentation (AS). A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters in the CLIP vision encoder. To improve semantic alignment, learnable text prompts are employed to link visual features. Furthermore, SigLIP loss is applied to effectively handle the many-to-one relationship between images and unpaired text prompts, showcasing its adaptation in the medical field for the first time. Our approach is validated on multiple modalities, demonstrating superior performance over existing methods for AC and AS, in both same-dataset and cross-dataset evaluations. Unlike prior work, it does not rely on synthetic data or memory banks, and an ablation study confirms the contribution of each component. The code is available at https://github.com/mahshid1998/MadCLIP.
comment: Accepted to MICCAI 2025 (this version is not peer-reviewed; it is the submitted version). MICCAI proceedings DOI will appear here
☆ Towards Initialization-free Calibrated Bundle Adjustment
A recent series of works has shown that initialization-free BA can be achieved using pseudo Object Space Error (pOSE) as a surrogate objective. The initial reconstruction-step optimizes an objective where all terms are projectively invariant and it cannot incorporate knowledge of the camera calibration. As a result, the solution is only determined up to a projective transformation of the scene and the process requires more data for successful reconstruction. In contrast, we present a method that is able to use the known camera calibration thereby producing near metric solutions, that is, reconstructions that are accurate up to a similarity transformation. To achieve this we introduce pairwise relative rotation estimates that carry information about camera calibration. These are only invariant to similarity transformations, thus encouraging solutions that preserve metric features of the real scene. Our method can be seen as integrating rotation averaging into the pOSE framework striving towards initialization-free calibrated SfM. Our experimental evaluation shows that we are able to reliably optimize our objective, achieving convergence to the global minimum with high probability from random starting solutions, resulting in accurate near metric reconstructions.
☆ Controllable Reference-Based Real-World Remote Sensing Image Super-Resolution with Generative Diffusion Priors
Super-resolution (SR) techniques can enhance the spatial resolution of remote sensing images by utilizing low-resolution (LR) images to reconstruct high-resolution (HR) images, enabling more efficient large-scale earth observation applications. While single-image super-resolution (SISR) methods have shown progress, reference-based super-resolution (RefSR) offers superior performance by incorporating historical HR images alongside current LR observations. However, existing RefSR methods struggle with real-world complexities, such as cross-sensor resolution gap and significant land cover changes, often leading to under-generation or over-reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference-based diffusion model for real-world remote sensing image SR. To address the under-generation problem, CRefDiff is built upon the pretrained Stable Diffusion model, leveraging its powerful generative prior to produce accurate structures and textures. To mitigate over-reliance on the reference, we introduce a dual-branch fusion mechanism that adaptively integrates both local and global information from the reference image. Moreover, this novel dual-branch design enables reference strength control during inference, enhancing interactivity and flexibility of the model. Finally, a strategy named Better Start is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce Real-RefRSSRD, a new real-world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel-2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on Real-RefRSSRD show that CRefDiff achieves state-of-the-art performance across various metrics and improves downstream tasks such as scene classification and semantic segmentation.
☆ Visual Textualization for Image Prompted Object Detection ICCV 2025
We propose VisTex-OVLM, a novel image prompted object detection method that introduces visual textualization -- a process that projects a few visual exemplars into the text feature space to enhance Object-level Vision-Language Models' (OVLMs) capability in detecting rare categories that are difficult to describe textually and nearly absent from their pre-training data, while preserving their pre-trained object-text alignment. Specifically, VisTex-OVLM leverages multi-scale textualizing blocks and a multi-stage fusion strategy to integrate visual information from visual exemplars, generating textualized visual tokens that effectively guide OVLMs alongside text prompts. Unlike previous methods, our method maintains the original architecture of OVLM, maintaining its generalization capabilities while enhancing performance in few-shot settings. VisTex-OVLM demonstrates superior performance across open-set datasets which have minimal overlap with OVLM's pre-training data and achieves state-of-the-art results on few-shot benchmarks PASCAL VOC and MSCOCO. The code will be released at https://github.com/WitGotFlg/VisTex-OVLM.
comment: Accepted by ICCV 2025
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Spatio-Temporal Representation Decoupling and Enhancement for Federated Instrument Segmentation in Surgical Videos
Surgical instrument segmentation under Federated Learning (FL) is a promising direction, which enables multiple surgical sites to collaboratively train the model without centralizing datasets. However, there exist very limited FL works in surgical data science, and FL methods for other modalities do not consider inherent characteristics in surgical domain: i) different scenarios show diverse anatomical backgrounds while highly similar instrument representation; ii) there exist surgical simulators which promote large-scale synthetic data generation with minimal efforts. In this paper, we propose a novel Personalized FL scheme, Spatio-Temporal Representation Decoupling and Enhancement (FedST), which wisely leverages surgical domain knowledge during both local-site and global-server training to boost segmentation. Concretely, our model embraces a Representation Separation and Cooperation (RSC) mechanism in local-site training, which decouples the query embedding layer to be trained privately, to encode respective backgrounds. Meanwhile, other parameters are optimized globally to capture the consistent representations of instruments, including the temporal layer to capture similar motion patterns. A textual-guided channel selection is further designed to highlight site-specific features, facilitating model adapta tion to each site. Moreover, in global-server training, we propose Synthesis-based Explicit Representation Quantification (SERQ), which defines an explicit representation target based on synthetic data to synchronize the model convergence during fusion for improving model generalization.
☆ Can We Challenge Open-Vocabulary Object Detectors with Generated Content in Street Scenes?
Open-vocabulary object detectors such as Grounding DINO are trained on vast and diverse data, achieving remarkable performance on challenging datasets. Due to that, it is unclear where to find their limitations, which is of major concern when using in safety-critical applications. Real-world data does not provide sufficient control, required for a rigorous evaluation of model generalization. In contrast, synthetically generated data allows to systematically explore the boundaries of model competence/generalization. In this work, we address two research questions: 1) Can we challenge open-vocabulary object detectors with generated image content? 2) Can we find systematic failure modes of those models? To address these questions, we design two automated pipelines using stable diffusion to inpaint unusual objects with high diversity in semantics, by sampling multiple substantives from WordNet and ChatGPT. On the synthetically generated data, we evaluate and compare multiple open-vocabulary object detectors as well as a classical object detector. The synthetic data is derived from two real-world datasets, namely LostAndFound, a challenging out-of-distribution (OOD) detection benchmark, and the NuImages dataset. Our results indicate that inpainting can challenge open-vocabulary object detectors in terms of overlooking objects. Additionally, we find a strong dependence of open-vocabulary models on object location, rather than on object semantics. This provides a systematic approach to challenge open-vocabulary models and gives valuable insights on how data could be acquired to effectively improve these models.
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: Preprint. Work in progress
☆ When Small Guides Large: Cross-Model Co-Learning for Test-Time Adaptation
Test-time Adaptation (TTA) adapts a given model to testing domain data with potential domain shifts through online unsupervised learning, yielding impressive performance. However, to date, existing TTA methods primarily focus on single-model adaptation. In this work, we investigate an intriguing question: how does cross-model knowledge influence the TTA process? Our findings reveal that, in TTA's unsupervised online setting, each model can provide complementary, confident knowledge to the others, even when there are substantial differences in model size. For instance, a smaller model like MobileViT (10.6M parameters) can effectively guide a larger model like ViT-Base (86.6M parameters). In light of this, we propose COCA, a Cross-Model Co-Learning framework for TTA, which mainly consists of two main strategies. 1) Co-adaptation adaptively integrates complementary knowledge from other models throughout the TTA process, reducing individual model biases. 2) Self-adaptation enhances each model's unique strengths via unsupervised learning, enabling diverse adaptation to the target domain. Extensive experiments show that COCA, which can also serve as a plug-and-play module, significantly boosts existing SOTAs, on models with various sizes--including ResNets, ViTs, and Mobile-ViTs--via cross-model co-learned TTA. For example, with Mobile-ViT's guidance, COCA raises ViT-Base's average adaptation accuracy on ImageNet-C from 51.7% to 64.5%. The code is publicly available at https://github.com/ycarobot/COCA.
comment: 15 pages, 5 figures
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet and the dynamic CIFAR-DVS and DVS-GESTURE, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69\% accuracy gain and 4.16$\times$ lower bit budgets over the advanced baseline work on ImageNet. This work will be fully open-sourced.
☆ Towards an Automated Multimodal Approach for Video Summarization: Building a Bridge Between Text, Audio and Facial Cue-Based Summarization
The increasing volume of video content in educational, professional, and social domains necessitates effective summarization techniques that go beyond traditional unimodal approaches. This paper proposes a behaviour-aware multimodal video summarization framework that integrates textual, audio, and visual cues to generate timestamp-aligned summaries. By extracting prosodic features, textual cues and visual indicators, the framework identifies semantically and emotionally important moments. A key contribution is the identification of bonus words, which are terms emphasized across multiple modalities and used to improve the semantic relevance and expressive clarity of the summaries. The approach is evaluated against pseudo-ground truth (pGT) summaries generated using LLM-based extractive method. Experimental results demonstrate significant improvements over traditional extractive method, such as the Edmundson method, in both text and video-based evaluation metrics. Text-based metrics show ROUGE-1 increasing from 0.4769 to 0.7929 and BERTScore from 0.9152 to 0.9536, while in video-based evaluation, our proposed framework improves F1-Score by almost 23%. The findings underscore the potential of multimodal integration in producing comprehensive and behaviourally informed video summaries.
comment: Accepted to HHAI WS 2025: Workshops at the Fourth International Conference on Hybrid Human-Artificial Intelligence (HHAI)
☆ Subjective Camera: Bridging Human Cognition and Visual Reconstruction through Sequence-Aware Sketch-Guided Diffusion
We propose Subjective Camera, a human-as-imaging-device paradigm that reconstructs real-world scenes from mental impressions through synergistic use of verbal descriptions and progressive rough sketches. This approach overcomes dual limitations of language ambiguity and sketch abstraction by treating the user's drawing sequence as priors, effectively translating subjective perceptual expectations into photorealistic images. Existing approaches face three fundamental barriers: (1) user-specific subjective input biases, (2) huge modality gap between planar sketch and 3D priors in diffusion, and (3) sketch quality-sensitive performance degradation. Current solutions either demand resource-intensive model adaptation or impose impractical requirements on sketch precision. Our framework addresses these challenges through concept-sequential generation. (1) We establish robust appearance priors through text-reward optimization, and then implement sequence-aware disentangled generation that processes concepts in sketching order; these steps accommodate user-specific subjective expectation in a train-free way. (2) We employ latent optimization that effectively bridges the modality gap between planar sketches and 3D priors in diffusion. (3) Our hierarchical reward-guided framework enables the use of rough sketches without demanding artistic expertise. Comprehensive evaluation across diverse datasets demonstrates that our approach achieves state-of-the-art performance in maintaining both semantic and spatial coherence.
☆ Single Image Test-Time Adaptation via Multi-View Co-Training MICCAI 2025
Test-time adaptation enables a trained model to adjust to a new domain during inference, making it particularly valuable in clinical settings where such on-the-fly adaptation is required. However, existing techniques depend on large target domain datasets, which are often impractical and unavailable in medical scenarios that demand per-patient, real-time inference. Moreover, current methods commonly focus on two-dimensional images, failing to leverage the volumetric richness of medical imaging data. Bridging this gap, we propose a Patch-Based Multi-View Co-Training method for Single Image Test-Time adaptation. Our method enforces feature and prediction consistency through uncertainty-guided self-training, enabling effective volumetric segmentation in the target domain with only a single test-time image. Validated on three publicly available breast magnetic resonance imaging datasets for tumor segmentation, our method achieves performance close to the upper bound supervised benchmark while also outperforming all existing state-of-the-art methods, on average by a Dice Similarity Coefficient of 3.75%. We publicly share our accessible codebase, readily integrable with the popular nnUNet framework, at https://github.com/smriti-joshi/muvi.git.
comment: MICCAI 2025
☆ MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction MICCAI2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.
comment: Accept by MICCAI2025
☆ MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.
☆ SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
comment: Project page: https://lucaria-academy.github.io/SynMotion/
☆ A Unified Framework for Stealthy Adversarial Generation via Latent Optimization and Transferability Enhancement
Due to their powerful image generation capabilities, diffusion-based adversarial example generation methods through image editing are rapidly gaining popularity. However, due to reliance on the discriminative capability of the diffusion model, these diffusion-based methods often struggle to generalize beyond conventional image classification tasks, such as in Deepfake detection. Moreover, traditional strategies for enhancing adversarial example transferability are challenging to adapt to these methods. To address these challenges, we propose a unified framework that seamlessly incorporates traditional transferability enhancement strategies into diffusion model-based adversarial example generation via image editing, enabling their application across a wider range of downstream tasks. Our method won first place in the "1st Adversarial Attacks on Deepfake Detectors: A Challenge in the Era of AI-Generated Media" competition at ACM MM25, which validates the effectiveness of our approach.
☆ Pruning by Block Benefit: Exploring the Properties of Vision Transformer Blocks during Domain Adaptation ICCV'25
Vision Transformer have set new benchmarks in several tasks, but these models come with the lack of high computational costs which makes them impractical for resource limited hardware. Network pruning reduces the computational complexity by removing less important operations while maintaining performance. However, pruning a model on an unseen data domain, leads to a misevaluation of weight significance, resulting in suboptimal resource assignment. In this work, we find that task-sensitive layers initially fail to improve the feature representation on downstream tasks, leading to performance loss for early pruning decisions. To address this problem, we introduce Pruning by Block Benefit (P3B), a pruning method that utilizes the relative contribution on block level to globally assign parameter resources. P3B identifies low-impact components to reduce parameter allocation while preserving critical ones. Classical pruning mask optimization struggles to reactivate zero-mask-elements. In contrast, P3B sets a layerwise keep ratio based on global performance metrics, ensuring the reactivation of late-converging blocks. We show in extensive experiments that P3B is a state of the art pruning method with most noticeable gains in transfer learning tasks. Notably, P3B is able to conserve high performance, even in high sparsity regimes of 70% parameter reduction while only losing 0.64% in accuracy.
comment: ICCV'25 Workshops
☆ Partial Forward Blocking: A Novel Data Pruning Paradigm for Lossless Training Acceleration ICCV2025
The ever-growing size of training datasets enhances the generalization capability of modern machine learning models but also incurs exorbitant computational costs. Existing data pruning approaches aim to accelerate training by removing those less important samples. However, they often rely on gradients or proxy models, leading to prohibitive additional costs of gradient back-propagation and proxy model training. In this paper, we propose Partial Forward Blocking (PFB), a novel framework for lossless training acceleration. The efficiency of PFB stems from its unique adaptive pruning pipeline: sample importance is assessed based on features extracted from the shallow layers of the target model. Less important samples are then pruned, allowing only the retained ones to proceed with the subsequent forward pass and loss back-propagation. This mechanism significantly reduces the computational overhead of deep-layer forward passes and back-propagation for pruned samples, while also eliminating the need for auxiliary backward computations and proxy model training. Moreover, PFB introduces probability density as an indicator of sample importance. Combined with an adaptive distribution estimation module, our method dynamically prioritizes relatively rare samples, aligning with the constantly evolving training state. Extensive experiments demonstrate the significant superiority of PFB in performance and speed. On ImageNet, PFB achieves a 0.5% accuracy improvement and 33% training time reduction with 40% data pruned.
comment: Accepted by ICCV2025
☆ Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.
☆ On the Domain Robustness of Contrastive Vision-Language Models
In real-world vision-language applications, practitioners increasingly rely on large, pretrained foundation models rather than custom-built solutions, despite limited transparency regarding their training data and processes. While these models achieve impressive performance on general benchmarks, their effectiveness can decline notably under specialized domain shifts, such as unique imaging conditions or environmental variations. In this work, we introduce Deepbench, a framework designed to assess domain-specific robustness of vision-language models (VLMs). Deepbench leverages a large language model (LLM) to generate realistic, context-aware image corruptions tailored to specific deployment domains without requiring labeled data. We evaluate a range of contrastive vision-language architectures and architectural variants across six real-world domains and observe substantial variability in robustness, highlighting the need for targeted, domain-aware evaluation. Deepbench is released as open-source software to support further research into domain-aware robustness assessment.
comment: Deepbench is available at https://github.com/ml-lab-htw/deepbench
☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: Preprint of paper, submitted
☆ MReg: A Novel Regression Model with MoE-based Video Feature Mining for Mitral Regurgitation Diagnosis MICCAI 2025
Color Doppler echocardiography is a crucial tool for diagnosing mitral regurgitation (MR). Recent studies have explored intelligent methods for MR diagnosis to minimize user dependence and improve accuracy. However, these approaches often fail to align with clinical workflow and may lead to suboptimal accuracy and interpretability. In this study, we introduce an automated MR diagnosis model (MReg) developed on the 4-chamber cardiac color Doppler echocardiography video (A4C-CDV). It follows comprehensive feature mining strategies to detect MR and assess its severity, considering clinical realities. Our contribution is threefold. First, we formulate the MR diagnosis as a regression task to capture the continuity and ordinal relationships between categories. Second, we design a feature selection and amplification mechanism to imitate the sonographer's diagnostic logic for accurate MR grading. Third, inspired by the Mixture-of-Experts concept, we introduce a feature summary module to extract the category-level features, enhancing the representational capacity for more accurate grading. We trained and evaluated our proposed MReg on a large in-house A4C-CDV dataset comprising 1868 cases with three graded regurgitation labels. Compared to other weakly supervised video anomaly detection and supervised classification methods, MReg demonstrated superior performance in MR diagnosis. Our code is available at: https://github.com/cskdstz/MReg.
comment: 10 pages, 5 figures, accepted by MICCAI 2025
☆ VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.
☆ Unified Multimodal Understanding via Byte-Pair Visual Encoding
Multimodal large language models (MLLMs) have made significant progress in vision-language understanding, yet effectively aligning different modalities remains a fundamental challenge. We present a framework that unifies multimodal understanding by applying byte-pair encoding to visual tokens. Unlike conventional approaches that rely on modality-specific encoders, our method directly incorporates structural information into visual tokens, mirroring successful tokenization strategies in text-only language models. We introduce a priority-guided encoding scheme that considers both frequency and spatial consistency, coupled with a multi-stage training procedure based on curriculum-driven data composition. These enhancements enable the transformer model to better capture cross-modal relationships and reason with visual information. Comprehensive experiments demonstrate improved performance across diverse vision-language tasks. By bridging the gap between visual and textual representations, our approach contributes to the advancement of more capable and efficient multimodal foundation models.
☆ Blending Concepts with Text-to-Image Diffusion Models
Diffusion models have dramatically advanced text-to-image generation in recent years, translating abstract concepts into high-fidelity images with remarkable ease. In this work, we examine whether they can also blend distinct concepts, ranging from concrete objects to intangible ideas, into coherent new visual entities under a zero-shot framework. Specifically, concept blending merges the key attributes of multiple concepts (expressed as textual prompts) into a single, novel image that captures the essence of each concept. We investigate four blending methods, each exploiting different aspects of the diffusion pipeline (e.g., prompt scheduling, embedding interpolation, or layer-wise conditioning). Through systematic experimentation across diverse concept categories, such as merging concrete concepts, synthesizing compound words, transferring artistic styles, and blending architectural landmarks, we show that modern diffusion models indeed exhibit creative blending capabilities without further training or fine-tuning. Our extensive user study, involving 100 participants, reveals that no single approach dominates in all scenarios: each blending technique excels under certain conditions, with factors like prompt ordering, conceptual distance, and random seed affecting the outcome. These findings highlight the remarkable compositional potential of diffusion models while exposing their sensitivity to seemingly minor input variations.
comment: Currently under review
☆ Brain Tumor Detection through Thermal Imaging and MobileNET
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.
☆ Revisiting Audio-Visual Segmentation with Vision-Centric Transformer CVPR 2025
Audio-Visual Segmentation (AVS) aims to segment sound-producing objects in video frames based on the associated audio signal. Prevailing AVS methods typically adopt an audio-centric Transformer architecture, where object queries are derived from audio features. However, audio-centric Transformers suffer from two limitations: perception ambiguity caused by the mixed nature of audio, and weakened dense prediction ability due to visual detail loss. To address these limitations, we propose a new Vision-Centric Transformer (VCT) framework that leverages vision-derived queries to iteratively fetch corresponding audio and visual information, enabling queries to better distinguish between different sounding objects from mixed audio and accurately delineate their contours. Additionally, we also introduce a Prototype Prompted Query Generation (PPQG) module within our VCT framework to generate vision-derived queries that are both semantically aware and visually rich through audio prototype prompting and pixel context grouping, facilitating audio-visual information aggregation. Extensive experiments demonstrate that our VCT framework achieves new state-of-the-art performances on three subsets of the AVSBench dataset. The code is available at https://github.com/spyflying/VCT_AVS.
comment: Accepted by CVPR 2025; Code: https://github.com/spyflying/VCT_AVS; Models: https://huggingface.co/nowherespyfly/VCT_AVS
☆ TurboVSR: Fantastic Video Upscalers and Where to Find Them ICCV
Diffusion-based generative models have demonstrated exceptional promise in the video super-resolution (VSR) task, achieving a substantial advancement in detail generation relative to prior methods. However, these approaches face significant computational efficiency challenges. For instance, current techniques may require tens of minutes to super-resolve a mere 2-second, 1080p video. In this paper, we present TurboVSR, an ultra-efficient diffusion-based video super-resolution model. Our core design comprises three key aspects: (1) We employ an autoencoder with a high compression ratio of 32$\times$32$\times$8 to reduce the number of tokens. (2) Highly compressed latents pose substantial challenges for training. We introduce factorized conditioning to mitigate the learning complexity: we first learn to super-resolve the initial frame; subsequently, we condition the super-resolution of the remaining frames on the high-resolution initial frame and the low-resolution subsequent frames. (3) We convert the pre-trained diffusion model to a shortcut model to enable fewer sampling steps, further accelerating inference. As a result, TurboVSR performs on par with state-of-the-art VSR methods, while being 100+ times faster, taking only 7 seconds to process a 2-second long 1080p video. TurboVSR also supports image resolution by considering image as a one-frame video. Our efficient design makes SR beyond 1080p possible, results on 4K (3648$\times$2048) image SR show surprising fine details.
comment: ICCV, 2025
☆ AttentionGS: Towards Initialization-Free 3D Gaussian Splatting via Structural Attention
3D Gaussian Splatting (3DGS) is a powerful alternative to Neural Radiance Fields (NeRF), excelling in complex scene reconstruction and efficient rendering. However, it relies on high-quality point clouds from Structure-from-Motion (SfM), limiting its applicability. SfM also fails in texture-deficient or constrained-view scenarios, causing severe degradation in 3DGS reconstruction. To address this limitation, we propose AttentionGS, a novel framework that eliminates the dependency on high-quality initial point clouds by leveraging structural attention for direct 3D reconstruction from randomly initialization. In the early training stage, we introduce geometric attention to rapidly recover the global scene structure. As training progresses, we incorporate texture attention to refine fine-grained details and enhance rendering quality. Furthermore, we employ opacity-weighted gradients to guide Gaussian densification, leading to improved surface reconstruction. Extensive experiments on multiple benchmark datasets demonstrate that AttentionGS significantly outperforms state-of-the-art methods, particularly in scenarios where point cloud initialization is unreliable. Our approach paves the way for more robust and flexible 3D Gaussian Splatting in real-world applications.
☆ PGOV3D: Open-Vocabulary 3D Semantic Segmentation with Partial-to-Global Curriculum
Existing open-vocabulary 3D semantic segmentation methods typically supervise 3D segmentation models by merging text-aligned features (e.g., CLIP) extracted from multi-view images onto 3D points. However, such approaches treat multi-view images merely as intermediaries for transferring open-vocabulary information, overlooking their rich semantic content and cross-view correspondences, which limits model effectiveness. To address this, we propose PGOV3D, a novel framework that introduces a Partial-to-Global curriculum for improving open-vocabulary 3D semantic segmentation. The key innovation lies in a two-stage training strategy. In the first stage, we pre-train the model on partial scenes that provide dense semantic information but relatively simple geometry. These partial point clouds are derived from multi-view RGB-D inputs via pixel-wise depth projection. To enable open-vocabulary learning, we leverage a multi-modal large language model (MLLM) and a 2D segmentation foundation model to generate open-vocabulary labels for each viewpoint, offering rich and aligned supervision. An auxiliary inter-frame consistency module is introduced to enforce feature consistency across varying viewpoints and enhance spatial understanding. In the second stage, we fine-tune the model on complete scene-level point clouds, which are sparser and structurally more complex. We aggregate the partial vocabularies associated with each scene and generate pseudo labels using the pre-trained model, effectively bridging the semantic gap between dense partial observations and large-scale 3D environments. Extensive experiments on ScanNet, ScanNet200, and S3DIS benchmarks demonstrate that PGOV3D achieves competitive performance in open-vocabulary 3D semantic segmentation.
☆ SG-LDM: Semantic-Guided LiDAR Generation via Latent-Aligned Diffusion
Lidar point cloud synthesis based on generative models offers a promising solution to augment deep learning pipelines, particularly when real-world data is scarce or lacks diversity. By enabling flexible object manipulation, this synthesis approach can significantly enrich training datasets and enhance discriminative models. However, existing methods focus on unconditional lidar point cloud generation, overlooking their potential for real-world applications. In this paper, we propose SG-LDM, a Semantic-Guided Lidar Diffusion Model that employs latent alignment to enable robust semantic-to-lidar synthesis. By directly operating in the native lidar space and leveraging explicit semantic conditioning, SG-LDM achieves state-of-the-art performance in generating high-fidelity lidar point clouds guided by semantic labels. Moreover, we propose the first diffusion-based lidar translation framework based on SG-LDM, which enables cross-domain translation as a domain adaptation strategy to enhance downstream perception performance. Systematic experiments demonstrate that SG-LDM significantly outperforms existing lidar diffusion models and the proposed lidar translation framework further improves data augmentation performance in the downstream lidar segmentation task.
☆ AI-Generated Lecture Slides for Improving Slide Element Detection and Retrieval ICDAR 2025
Lecture slide element detection and retrieval are key problems in slide understanding. Training effective models for these tasks often depends on extensive manual annotation. However, annotating large volumes of lecture slides for supervised training is labor intensive and requires domain expertise. To address this, we propose a large language model (LLM)-guided synthetic lecture slide generation pipeline, SynLecSlideGen, which produces high-quality, coherent and realistic slides. We also create an evaluation benchmark, namely RealSlide by manually annotating 1,050 real lecture slides. To assess the utility of our synthetic slides, we perform few-shot transfer learning on real data using models pre-trained on them. Experimental results show that few-shot transfer learning with pretraining on synthetic slides significantly improves performance compared to training only on real data. This demonstrates that synthetic data can effectively compensate for limited labeled lecture slides. The code and resources of our work are publicly available on our project website: https://synslidegen.github.io/.
comment: 40 pages including supplementary, accepted at ICDAR 2025
☆ CAI: Caption-Sensitive Attention Intervention for Mitigating Object Hallucination in Large Vision-Language Models
Although Large Vision-Language Models (LVLMs) have demonstrated powerful capabilities in interpreting visual information, they frequently produce content that deviates from visual information, leading to object hallucination. To tackle this, recent works mostly depend on expensive manual annotations and training cost, or significantly increase inference time. In this work, we observe that LVLMs' attention to visual information is significantly stronger when answering caption queries compared to non-caption queries. Inspired by this phenomenon, we propose Caption-sensitive Attention Intervention (CAI), a training-free, plug-and-play hallucination mitigation method that leverages the attention activation pattern in response to caption queries to enhance LVLMs' visual perception capability. Extensive experimental results across four benchmarks covering both discriminative and generative tasks, demonstrate that CAI achieves state-of-the-art (SOTA) hallucination mitigating performance only with minimal additional inference cost.
☆ A Clinically-Grounded Two-Stage Framework for Renal CT Report Generation
Generating radiology reports from CT scans remains a complex task due to the nuanced nature of medical imaging and the variability in clinical documentation. In this study, we propose a two-stage framework for generating renal radiology reports from 2D CT slices. First, we extract structured abnormality features using a multi-task learning model trained to identify lesion attributes such as location, size, enhancement, and attenuation. These extracted features are subsequently combined with the corresponding CT image and fed into a fine-tuned vision-language model to generate natural language report sentences aligned with clinical findings. We conduct experiments on a curated dataset of renal CT studies with manually annotated sentence-slice-feature triplets and evaluate performance using both classification metrics and natural language generation metrics. Our results demonstrate that the proposed model outperforms random baselines across all abnormality types, and the generated reports capture key clinical content with reasonable textual accuracy. This exploratory work highlights the feasibility of modular, feature-informed report generation for renal imaging. Future efforts will focus on extending this pipeline to 3D CT volumes and further improving clinical fidelity in multimodal medical AI systems.
☆ PBCAT: Patch-based composite adversarial training against physically realizable attacks on object detection ICCV 2025
Object detection plays a crucial role in many security-sensitive applications. However, several recent studies have shown that object detectors can be easily fooled by physically realizable attacks, \eg, adversarial patches and recent adversarial textures, which pose realistic and urgent threats. Adversarial Training (AT) has been recognized as the most effective defense against adversarial attacks. While AT has been extensively studied in the $l_\infty$ attack settings on classification models, AT against physically realizable attacks on object detectors has received limited exploration. Early attempts are only performed to defend against adversarial patches, leaving AT against a wider range of physically realizable attacks under-explored. In this work, we consider defending against various physically realizable attacks with a unified AT method. We propose PBCAT, a novel Patch-Based Composite Adversarial Training strategy. PBCAT optimizes the model by incorporating the combination of small-area gradient-guided adversarial patches and imperceptible global adversarial perturbations covering the entire image. With these designs, PBCAT has the potential to defend against not only adversarial patches but also unseen physically realizable attacks such as adversarial textures. Extensive experiments in multiple settings demonstrated that PBCAT significantly improved robustness against various physically realizable attacks over state-of-the-art defense methods. Notably, it improved the detection accuracy by 29.7\% over previous defense methods under one recent adversarial texture attack.
comment: Accepted by ICCV 2025
Dataset Distillation via Vision-Language Category Prototype ICCV2025
Dataset distillation (DD) condenses large datasets into compact yet informative substitutes, preserving performance comparable to the original dataset while reducing storage, transmission costs, and computational consumption. However, previous DD methods mainly focus on distilling information from images, often overlooking the semantic information inherent in the data. The disregard for context hinders the model's generalization ability, particularly in tasks involving complex datasets, which may result in illogical outputs or the omission of critical objects. In this study, we integrate vision-language methods into DD by introducing text prototypes to distill language information and collaboratively synthesize data with image prototypes, thereby enhancing dataset distillation performance. Notably, the text prototypes utilized in this study are derived from descriptive text information generated by an open-source large language model. This framework demonstrates broad applicability across datasets without pre-existing text descriptions, expanding the potential of dataset distillation beyond traditional image-based approaches. Compared to other methods, the proposed approach generates logically coherent images containing target objects, achieving state-of-the-art validation performance and demonstrating robust generalization. Source code and generated data are available in https://github.com/zou-yawen/Dataset-Distillation-via-Vision-Language-Category-Prototype/
comment: accepted by ICCV2025
☆ StackCLIP: Clustering-Driven Stacked Prompt in Zero-Shot Industrial Anomaly Detection
Enhancing the alignment between text and image features in the CLIP model is a critical challenge in zero-shot industrial anomaly detection tasks. Recent studies predominantly utilize specific category prompts during pretraining, which can cause overfitting to the training categories and limit model generalization. To address this, we propose a method that transforms category names through multicategory name stacking to create stacked prompts, forming the basis of our StackCLIP model. Our approach introduces two key components. The Clustering-Driven Stacked Prompts (CSP) module constructs generic prompts by stacking semantically analogous categories, while utilizing multi-object textual feature fusion to amplify discriminative anomalies among similar objects. The Ensemble Feature Alignment (EFA) module trains knowledge-specific linear layers tailored for each stack cluster and adaptively integrates them based on the attributes of test categories. These modules work together to deliver superior training speed, stability, and convergence, significantly boosting anomaly segmentation performance. Additionally, our stacked prompt framework offers robust generalization across classification tasks. To further improve performance, we introduce the Regulating Prompt Learning (RPL) module, which leverages the generalization power of stacked prompts to refine prompt learning, elevating results in anomaly detection classification tasks. Extensive testing on seven industrial anomaly detection datasets demonstrates that our method achieves state-of-the-art performance in both zero-shot anomaly detection and segmentation tasks.
☆ Event-based Tiny Object Detection: A Benchmark Dataset and Baseline
Small object detection (SOD) in anti-UAV task is a challenging problem due to the small size of UAVs and complex backgrounds. Traditional frame-based cameras struggle to detect small objects in complex environments due to their low frame rates, limited dynamic range, and data redundancy. Event cameras, with microsecond temporal resolution and high dynamic range, provide a more effective solution for SOD. However, existing event-based object detection datasets are limited in scale, feature large targets size, and lack diverse backgrounds, making them unsuitable for SOD benchmarks. In this paper, we introduce a Event-based Small object detection (EVSOD) dataset (namely EV-UAV), the first large-scale, highly diverse benchmark for anti-UAV tasks. It includes 147 sequences with over 2.3 million event-level annotations, featuring extremely small targets (averaging 6.8 $\times$ 5.4 pixels) and diverse scenarios such as urban clutter and extreme lighting conditions. Furthermore, based on the observation that small moving targets form continuous curves in spatiotemporal event point clouds, we propose Event based Sparse Segmentation Network (EV-SpSegNet), a novel baseline for event segmentation in point cloud space, along with a Spatiotemporal Correlation (STC) loss that leverages motion continuity to guide the network in retaining target events. Extensive experiments on the EV-UAV dataset demonstrate the superiority of our method and provide a benchmark for future research in EVSOD. The dataset and code are at https://github.com/ChenYichen9527/Ev-UAV.
☆ Metadata, Wavelet, and Time Aware Diffusion Models for Satellite Image Super Resolution ICLR 2025
The acquisition of high-resolution satellite imagery is often constrained by the spatial and temporal limitations of satellite sensors, as well as the high costs associated with frequent observations. These challenges hinder applications such as environmental monitoring, disaster response, and agricultural management, which require fine-grained and high-resolution data. In this paper, we propose MWT-Diff, an innovative framework for satellite image super-resolution (SR) that combines latent diffusion models with wavelet transforms to address these challenges. At the core of the framework is a novel metadata-, wavelet-, and time-aware encoder (MWT-Encoder), which generates embeddings that capture metadata attributes, multi-scale frequency information, and temporal relationships. The embedded feature representations steer the hierarchical diffusion dynamics, through which the model progressively reconstructs high-resolution satellite imagery from low-resolution inputs. This process preserves critical spatial characteristics including textural patterns, boundary discontinuities, and high-frequency spectral components essential for detailed remote sensing analysis. The comparative analysis of MWT-Diff across multiple datasets demonstrated favorable performance compared to recent approaches, as measured by standard perceptual quality metrics including FID and LPIPS.
comment: ICLR 2025 Workshop on Machine Learning for Remote Sensing (ML4RS)
☆ OcRFDet: Object-Centric Radiance Fields for Multi-View 3D Object Detection in Autonomous Driving ICCV2025
Current multi-view 3D object detection methods typically transfer 2D features into 3D space using depth estimation or 3D position encoder, but in a fully data-driven and implicit manner, which limits the detection performance. Inspired by the success of radiance fields on 3D reconstruction, we assume they can be used to enhance the detector's ability of 3D geometry estimation. However, we observe a decline in detection performance, when we directly use them for 3D rendering as an auxiliary task. From our analysis, we find the performance drop is caused by the strong responses on the background when rendering the whole scene. To address this problem, we propose object-centric radiance fields, focusing on modeling foreground objects while discarding background noises. Specifically, we employ Object-centric Radiance Fields (OcRF) to enhance 3D voxel features via an auxiliary task of rendering foreground objects. We further use opacity - the side-product of rendering- to enhance the 2D foreground BEV features via Height-aware Opacity-based Attention (HOA), where attention maps at different height levels are generated separately via multiple networks in parallel. Extensive experiments on the nuScenes validation and test datasets demonstrate that our OcRFDet achieves superior performance, outperforming previous state-of-the-art methods with 57.2$\%$ mAP and 64.8$\%$ NDS on the nuScenes test benchmark. Code will be available at https://github.com/Mingqj/OcRFDet.
comment: Accepted by ICCV2025
☆ MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.
comment: Technical report
☆ LH2Face: Loss function for Hard High-quality Face
In current practical face authentication systems, most face recognition (FR) algorithms are based on cosine similarity with softmax classification. Despite its reliable classification performance, this method struggles with hard samples. A popular strategy to improve FR performance is incorporating angular or cosine margins. However, it does not take face quality or recognition hardness into account, simply increasing the margin value and thus causing an overly uniform training strategy. To address this problem, a novel loss function is proposed, named Loss function for Hard High-quality Face (LH2Face). Firstly, a similarity measure based on the von Mises-Fisher (vMF) distribution is stated, specifically focusing on the logarithm of the Probability Density Function (PDF), which represents the distance between a probability distribution and a vector. Then, an adaptive margin-based multi-classification method using softmax, called the Uncertainty-Aware Margin Function, is implemented in the article. Furthermore, proxy-based loss functions are used to apply extra constraints between the proxy and sample to optimize their representation space distribution. Finally, a renderer is constructed that optimizes FR through face reconstruction and vice versa. Our LH2Face is superior to similiar schemes on hard high-quality face datasets, achieving 49.39% accuracy on the IJB-B dataset, which surpasses the second-place method by 2.37%.
☆ JAM-Flow: Joint Audio-Motion Synthesis with Flow Matching
The intrinsic link between facial motion and speech is often overlooked in generative modeling, where talking head synthesis and text-to-speech (TTS) are typically addressed as separate tasks. This paper introduces JAM-Flow, a unified framework to simultaneously synthesize and condition on both facial motion and speech. Our approach leverages flow matching and a novel Multi-Modal Diffusion Transformer (MM-DiT) architecture, integrating specialized Motion-DiT and Audio-DiT modules. These are coupled via selective joint attention layers and incorporate key architectural choices, such as temporally aligned positional embeddings and localized joint attention masking, to enable effective cross-modal interaction while preserving modality-specific strengths. Trained with an inpainting-style objective, JAM-Flow supports a wide array of conditioning inputs-including text, reference audio, and reference motion-facilitating tasks such as synchronized talking head generation from text, audio-driven animation, and much more, within a single, coherent model. JAM-Flow significantly advances multi-modal generative modeling by providing a practical solution for holistic audio-visual synthesis. project page: https://joonghyuk.com/jamflow-web
comment: project page: https://joonghyuk.com/jamflow-web Under review. Preprint published on arXiv
☆ Oneta: Multi-Style Image Enhancement Using Eigentransformation Functions
The first algorithm, called Oneta, for a novel task of multi-style image enhancement is proposed in this work. Oneta uses two point operators sequentially: intensity enhancement with a transformation function (TF) and color correction with a color correction matrix (CCM). This two-step enhancement model, though simple, achieves a high performance upper bound. Also, we introduce eigentransformation function (eigenTF) to represent TF compactly. The Oneta network comprises Y-Net and C-Net to predict eigenTF and CCM parameters, respectively. To support $K$ styles, Oneta employs $K$ learnable tokens. During training, each style token is learned using image pairs from the corresponding dataset. In testing, Oneta selects one of the $K$ style tokens to enhance an image accordingly. Extensive experiments show that the single Oneta network can effectively undertake six enhancement tasks -- retouching, image signal processing, low-light image enhancement, dehazing, underwater image enhancement, and white balancing -- across 30 datasets.
☆ Consistent Time-of-Flight Depth Denoising via Graph-Informed Geometric Attention ICCV
Depth images captured by Time-of-Flight (ToF) sensors are prone to noise, requiring denoising for reliable downstream applications. Previous works either focus on single-frame processing, or perform multi-frame processing without considering depth variations at corresponding pixels across frames, leading to undesirable temporal inconsistency and spatial ambiguity. In this paper, we propose a novel ToF depth denoising network leveraging motion-invariant graph fusion to simultaneously enhance temporal stability and spatial sharpness. Specifically, despite depth shifts across frames, graph structures exhibit temporal self-similarity, enabling cross-frame geometric attention for graph fusion. Then, by incorporating an image smoothness prior on the fused graph and data fidelity term derived from ToF noise distribution, we formulate a maximum a posterior problem for ToF denoising. Finally, the solution is unrolled into iterative filters whose weights are adaptively learned from the graph-informed geometric attention, producing a high-performance yet interpretable network. Experimental results demonstrate that the proposed scheme achieves state-of-the-art performance in terms of accuracy and consistency on synthetic DVToF dataset and exhibits robust generalization on the real Kinectv2 dataset. Source code will be released at \href{https://github.com/davidweidawang/GIGA-ToF}{https://github.com/davidweidawang/GIGA-ToF}.
comment: This paper has been accepted for publication at the International Conference on Computer Vision (ICCV) 2025
☆ Pyramidal Patchification Flow for Visual Generation
Diffusion transformers (DiTs) adopt Patchify, mapping patch representations to token representations through linear projections, to adjust the number of tokens input to DiT blocks and thus the computation cost. Instead of a single patch size for all the timesteps, we introduce a Pyramidal Patchification Flow (PPFlow) approach: Large patch sizes are used for high noise timesteps and small patch sizes for low noise timesteps; Linear projections are learned for each patch size; and Unpatchify is accordingly modified. Unlike Pyramidal Flow, our approach operates over full latent representations other than pyramid representations, and adopts the normal denoising process without requiring the renoising trick. We demonstrate the effectiveness of our approach through two training manners. Training from scratch achieves a $1.6\times$ ($2.0\times$) inference speed over SiT-B/2 for 2-level (3-level) pyramid patchification with slightly lower training FLOPs and similar image generation performance. Training from pretrained normal DiTs achieves even better performance with small training time. The code and checkpoint are at https://github.com/fudan-generative-vision/PPFlow.
comment: 10 pages, 9figures
☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
☆ AFUNet: Cross-Iterative Alignment-Fusion Synergy for HDR Reconstruction via Deep Unfolding Paradigm ICCV
Existing learning-based methods effectively reconstruct HDR images from multi-exposure LDR inputs with extended dynamic range and improved detail, but they rely more on empirical design rather than theoretical foundation, which can impact their reliability. To address these limitations, we propose the cross-iterative Alignment and Fusion deep Unfolding Network (AFUNet), where HDR reconstruction is systematically decoupled into two interleaved subtasks -- alignment and fusion -- optimized through alternating refinement, achieving synergy between the two subtasks to enhance the overall performance. Our method formulates multi-exposure HDR reconstruction from a Maximum A Posteriori (MAP) estimation perspective, explicitly incorporating spatial correspondence priors across LDR images and naturally bridging the alignment and fusion subproblems through joint constraints. Building on the mathematical foundation, we reimagine traditional iterative optimization through unfolding -- transforming the conventional solution process into an end-to-end trainable AFUNet with carefully designed modules that work progressively. Specifically, each iteration of AFUNet incorporates an Alignment-Fusion Module (AFM) that alternates between a Spatial Alignment Module (SAM) for alignment and a Channel Fusion Module (CFM) for adaptive feature fusion, progressively bridging misaligned content and exposure discrepancies. Extensive qualitative and quantitative evaluations demonstrate AFUNet's superior performance, consistently surpassing state-of-the-art methods. Our code is available at: https://github.com/eezkni/AFUNet
comment: Accepted to International Conference on Computer Vision (ICCV) 2025
☆ GViT: Representing Images as Gaussians for Visual Recognition
We introduce GVIT, a classification framework that abandons conventional pixel or patch grid input representations in favor of a compact set of learnable 2D Gaussians. Each image is encoded as a few hundred Gaussians whose positions, scales, orientations, colors, and opacities are optimized jointly with a ViT classifier trained on top of these representations. We reuse the classifier gradients as constructive guidance, steering the Gaussians toward class-salient regions while a differentiable renderer optimizes an image reconstruction loss. We demonstrate that by 2D Gaussian input representations coupled with our GVIT guidance, using a relatively standard ViT architecture, closely matches the performance of a traditional patch-based ViT, reaching a 76.9% top-1 accuracy on Imagenet-1k using a ViT-B architecture.
☆ When Test-Time Adaptation Meets Self-Supervised Models
Training on test-time data enables deep learning models to adapt to dynamic environmental changes, enhancing their practical applicability. Online adaptation from source to target domains is promising but it remains highly reliant on the performance of source pretrained model. In this paper, we investigate whether test-time adaptation (TTA) methods can continuously improve models trained via self-supervised learning (SSL) without relying on source pretraining. We introduce a self-supervised TTA protocol after observing that existing TTA approaches struggle when directly applied to self-supervised models with low accuracy on the source domain. Furthermore, we propose a collaborative learning framework that integrates SSL and TTA models, leveraging contrastive learning and knowledge distillation for stepwise representation refinement. We validate our method on diverse self-supervised models, including DINO, MoCo, and iBOT, across TTA benchmarks. Extensive experiments validate the effectiveness of our approach in SSL, showing that it achieves competitive performance even without source pretraining.
comment: 15 pages, 7 figures
♻ ☆ GLIMPSE: Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation for Generative LVLMs
Recent progress in large vision-language models (LVLMs) has advanced the state of the art in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention while generating free-form responses remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals supporting open-ended VQA. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior interpretability methods and pushing the state-of-the-art in human-alignment. We demonstrate an analytic explainable AI (XAI) approach using GLIMPSE to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic human-attention misalignment, diagnose hallucination, expose bias, and ensure transparency.
♻ ☆ Accurate and lightweight dehazing via multi-receptive-field non-local network and novel contrastive regularization
Recently, deep learning-based methods have dominated image dehazing domain. Although very competitive dehazing performance has been achieved with sophisticated models, effective solutions for extracting useful features are still under-explored. In addition, non-local network, which has made a breakthrough in many vision tasks, has not been appropriately applied to image dehazing. Thus, a multi-receptive-field non-local network (MRFNLN) consisting of the multi-stream feature attention block (MSFAB) and cross non-local block (CNLB) is presented in this paper. We start with extracting richer features for dehazing. Specifically, we design a multi-stream feature extraction (MSFE) sub-block, which contains three parallel convolutions with different receptive fields (i.e., $1\times 1$, $3\times 3$, $5\times 5$) for extracting multi-scale features. Following MSFE, we employ an attention sub-block to make the model adaptively focus on important channels/regions. The MSFE and attention sub-blocks constitute our MSFAB. Then, we design a cross non-local block (CNLB), which can capture long-range dependencies beyond the query. Instead of the same input source of query branch, the key and value branches are enhanced by fusing more preceding features. CNLB is computation-friendly by leveraging a spatial pyramid down-sampling (SPDS) strategy to reduce the computation and memory consumption without sacrificing the performance. Last but not least, a novel detail-focused contrastive regularization (DFCR) is presented by emphasizing the low-level details and ignoring the high-level semantic information in the representation space. Comprehensive experimental results demonstrate that the proposed MRFNLN model outperforms recent state-of-the-art dehazing methods with less than 1.5 Million parameters.
comment: submitted to the IEEE Journal for possible publication
♻ ☆ AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions
Robust visual recognition in underwater environments remains a significant challenge due to complex distortions such as turbidity, low illumination, and occlusion, which severely degrade the performance of standard vision systems. This paper introduces AQUA20, a comprehensive benchmark dataset comprising 8,171 underwater images across 20 marine species reflecting real-world environmental challenges such as illumination, turbidity, occlusions, etc., providing a valuable resource for underwater visual understanding. Thirteen state-of-the-art deep learning models, including lightweight CNNs (SqueezeNet, MobileNetV2) and transformer-based architectures (ViT, ConvNeXt), were evaluated to benchmark their performance in classifying marine species under challenging conditions. Our experimental results show ConvNeXt achieving the best performance, with a Top-3 accuracy of 98.82% and a Top-1 accuracy of 90.69%, as well as the highest overall F1-score of 88.92% with moderately large parameter size. The results obtained from our other benchmark models also demonstrate trade-offs between complexity and performance. We also provide an extensive explainability analysis using GRAD-CAM and LIME for interpreting the strengths and pitfalls of the models. Our results reveal substantial room for improvement in underwater species recognition and demonstrate the value of AQUA20 as a foundation for future research in this domain. The dataset is publicly available at: https://huggingface.co/datasets/taufiktrf/AQUA20.
comment: Submitted to AJSE Springer
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations ICCV 2025
Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This is challenging as it involves deep vision-language understanding, pixel-level dense prediction and spatiotemporal reasoning. Despite notable progress in recent years, existing methods still exhibit a noticeable gap when considering all these aspects. In this work, we propose \textbf{ReferDINO}, a strong RVOS model that inherits region-level vision-language alignment from foundational visual grounding models, and is further endowed with pixel-level dense perception and cross-modal spatiotemporal reasoning. In detail, ReferDINO integrates two key components: 1) a grounding-guided deformable mask decoder that utilizes location prediction to progressively guide mask prediction through differentiable deformation mechanisms; 2) an object-consistent temporal enhancer that injects pretrained time-varying text features into inter-frame interaction to capture object-aware dynamic changes. Moreover, a confidence-aware query pruning strategy is designed to accelerate object decoding without compromising model performance. Extensive experimental results on five benchmarks demonstrate that our ReferDINO significantly outperforms previous methods (e.g., +3.9% (\mathcal{J}&\mathcal{F}) on Ref-YouTube-VOS) with real-time inference speed (51 FPS).
comment: Accepted to ICCV 2025. Project page: \url{https://isee-laboratory.github.io/ReferDINO}
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomous Driving ICRA 2025
The integration of data from diverse sensor modalities (e.g., camera and LiDAR) constitutes a prevalent methodology within the ambit of autonomous driving scenarios. Recent advancements in efficient point cloud transformers have underscored the efficacy of integrating information in sparse formats. When it comes to fusion, since image patches are dense in pixel space with ambiguous depth, it necessitates additional design considerations for effective fusion. In this paper, we conduct a comprehensive exploration of design choices for Transformer-based sparse cameraLiDAR fusion. This investigation encompasses strategies for image-to-3D and LiDAR-to-2D mapping, attention neighbor grouping, single modal tokenizer, and micro-structure of Transformer. By amalgamating the most effective principles uncovered through our investigation, we introduce FlatFusion, a carefully designed framework for sparse camera-LiDAR fusion. Notably, FlatFusion significantly outperforms state-of-the-art sparse Transformer-based methods, including UniTR, CMT, and SparseFusion, achieving 73.7 NDS on the nuScenes validation set with 10.1 FPS with PyTorch.
comment: Accepted by ICRA 2025
♻ ☆ Advancing Textual Prompt Learning with Anchored Attributes ICCV 2025
Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-anchored Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. Additionally, we introduce a straightforward differentiable attribute search method to identify representative and suitable attributes for downstream tasks. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing basic prompt format in textual-based methods, providing general improvements at a negligible computational cost. Extensive experiments across 11 datasets validate the effectiveness of our method.
comment: ICCV 2025. Project Page: https://zhengli97.github.io/ATPrompt/
♻ ☆ INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables
♻ ☆ Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment CVPR2025
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals although they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
comment: CVPR2025
♻ ☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation. The code is available at https://github.com/Jiahao-UTS/TUFA.
comment: 24 Pages, 9 Figures, accepted to IJCV-2025
♻ ☆ FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers ICCV
The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.
comment: Accepted to the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ Towards Vision-Language-Garment Models for Web Knowledge Garment Understanding and Generation CVPR
Multimodal foundation models have demonstrated strong generalization, yet their ability to transfer knowledge to specialized domains such as garment generation remains underexplored. We introduce VLG, a vision-language-garment model that synthesizes garments from textual descriptions and visual imagery. Our experiments assess VLG's zero-shot generalization, investigating its ability to transfer web-scale reasoning to unseen garment styles and prompts. Preliminary results indicate promising transfer capabilities, highlighting the potential for multimodal foundation models to adapt effectively to specialized domains like fashion design.
comment: Presented at MMFM CVPRW'25, Project Page: https://www.computationalimaging.org/publications/vision-language-garment-models/
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ PerLDiff: Controllable Street View Synthesis Using Perspective-Layout Diffusion Models ICCV 2025
Controllable generation is considered a potentially vital approach to address the challenge of annotating 3D data, and the precision of such controllable generation becomes particularly imperative in the context of data production for autonomous driving. Existing methods focus on the integration of diverse generative information into controlling inputs, utilizing frameworks such as GLIGEN or ControlNet, to produce commendable outcomes in controllable generation. However, such approaches intrinsically restrict generation performance to the learning capacities of predefined network architectures. In this paper, we explore the innovative integration of controlling information and introduce PerLDiff (\textbf{Per}spective-\textbf{L}ayout \textbf{Diff}usion Models), a novel method for effective street view image generation that fully leverages perspective 3D geometric information. Our PerLDiff employs 3D geometric priors to guide the generation of street view images with precise object-level control within the network learning process, resulting in a more robust and controllable output. Moreover, it demonstrates superior controllability compared to alternative layout control methods. Empirical results justify that our PerLDiff markedly enhances the precision of controllable generation on the NuScenes and KITTI datasets.
comment: Accepted by ICCV 2025
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: a multi-reader study
Despite the plethora of AI-based algorithms developed for anomaly detection in radiology, subsequent integration into clinical setting is rarely evaluated. In this work, we assess the applicability and utility of an AI-based model for brain aneurysm detection comparing the performance of two readers with different levels of experience (2 and 13 years). We aim to answer the following questions: 1) Do the readers improve their performance when assisted by the AI algorithm? 2) How much does the AI algorithm impact routine clinical workflow? We reuse and enlarge our open-access, Time-Of-Flight Magnetic Resonance Angiography dataset (N=460). We use 360 subjects for training/validating our algorithm and 100 as unseen test set for the reading session. Even though our model reaches state-of-the-art results on the test set (sensitivity=74%, false positive rate=1.6), we show that neither the junior nor the senior reader significantly increase their sensitivity (p=0.59, p=1, respectively). In addition, we find that reading time for both readers is significantly higher in the "AI-assisted" setting than in the "Unassisted" (+15 seconds, on average; p=3x10^(-4) junior, p=3x10^(-5) senior). The confidence reported by the readers is unchanged across the two settings, indicating that the AI assistance does not influence the certainty of the diagnosis. Our findings highlight the importance of clinical validation of AI algorithms in a clinical setting involving radiologists. This study should serve as a reminder to the community to always examine the real-word effectiveness and workflow impact of proposed algorithms.
comment: This paper has been accepted for publication in the journal NeuroImage: Clinical (DOI: https://doi.org/10.1016/j.nicl.2025.103835)
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ AWF: Adaptive Weight Fusion for Enhanced Class Incremental Semantic Segmentation
Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.
comment: 10 pages,6 figures
♻ ☆ Cluster and Predict Latent Patches for Improved Masked Image Modeling
Masked Image Modeling (MIM) offers a promising approach to self-supervised representation learning, however existing MIM models still lag behind the state-of-the-art. In this paper, we systematically analyze target representations, loss functions, and architectures, to introduce CAPI - a novel pure-MIM framework that relies on the prediction of latent clusterings. Our approach leverages a clustering-based loss, which is stable to train, and exhibits promising scaling properties. Our ViT-L backbone, CAPI, achieves 83.8% accuracy on ImageNet and 32.1% mIoU on ADE20K with simple linear probes, substantially outperforming previous MIM methods and approaching the performance of the current state-of-the-art, DINOv2. We release all our code and models.
comment: 26 pages, 14 figures, accepted in TMLR 2025
♻ ☆ USP: Unified Self-Supervised Pretraining for Image Generation and Understanding ICCV2025
Recent studies have highlighted the interplay between diffusion models and representation learning. Intermediate representations from diffusion models can be leveraged for downstream visual tasks, while self-supervised vision models can enhance the convergence and generation quality of diffusion models. However, transferring pretrained weights from vision models to diffusion models is challenging due to input mismatches and the use of latent spaces. To address these challenges, we propose Unified Self-supervised Pretraining (USP), a framework that initializes diffusion models via masked latent modeling in a Variational Autoencoder (VAE) latent space. USP achieves comparable performance in understanding tasks while significantly improving the convergence speed and generation quality of diffusion models. Our code will be publicly available at https://github.com/AMAP-ML/USP.
comment: Accepted to ICCV2025
♻ ☆ DepthART: Monocular Depth Estimation as Autoregressive Refinement Task
Monocular depth estimation has seen significant advances through discriminative approaches, yet their performance remains constrained by the limitations of training datasets. While generative approaches have addressed this challenge by leveraging priors from internet-scale datasets, with recent studies showing state-of-the-art results using fine-tuned text-to-image diffusion models, there is still room for improvement. Notably, autoregressive generative approaches, particularly Visual AutoRegressive modeling, have demonstrated superior results compared to diffusion models in conditioned image synthesis, while offering faster inference times. In this work, we apply Visual Autoregressive Transformer (VAR) to the monocular depth estimation problem. However, the conventional GPT-2-style training procedure (teacher forcing) inherited by VAR yields suboptimal results for depth estimation. To address this limitation, we introduce DepthART - a novel training method formulated as a Depth Autoregressive Refinement Task. Unlike traditional VAR training with static inputs and targets, our method implements a dynamic target formulation based on model outputs, enabling self-refinement. By utilizing the model's own predictions as inputs instead of ground truth token maps during training, we frame the objective as residual minimization, effectively reducing the discrepancy between training and inference procedures. Our experimental results demonstrate that the proposed training approach significantly enhances the performance of VAR in depth estimation tasks. When trained on Hypersim dataset using our approach, the model achieves superior results across multiple unseen benchmarks compared to existing generative and discriminative baselines.
♻ ☆ Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression techniques require additional end-to-end fine-tuning or incur a significant drawback to runtime, making them ill-suited for online (real-time) inference, where a prediction is made on any new input as it comes in. We introduce the $\textbf{Visual Word Tokenizer}$ (VWT), a training-free method for reducing power costs while retaining performance and runtime. The VWT groups visual subwords (image patches) that are frequently used into visual words while infrequent ones remain intact. To do so, $\textit{intra}$-image or $\textit{inter}$-image statistics are leveraged to identify similar visual concepts for sequence compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar power efficiency but exact a higher toll on runtime (up to 100% or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
♻ ☆ Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance ATC
In automated driving, object detection is crucial for perceiving the environment. Although deep learning-based detectors offer high performance, their black-box nature complicates safety assurance. We propose a novel methodology to analyze how object- and environment-related factors affect LiDAR- and camera-based 3D object detectors. A statistical univariate analysis relates each factor to pedestrian detection errors. Additionally, a Random Forest (RF) model predicts errors from meta-information, with Shapley Values interpreting feature importance. By capturing feature dependencies, the RF enables a nuanced analysis of detection errors. Understanding these factors reveals detector performance gaps and supports safer object detection system development.
comment: IEEE International Conference on Autonomous and Trusted Computing (IEEE ATC), 2025
♻ ☆ Grid: Omni Visual Generation
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
comment: Codes: https://github.com/Should-AI-Lab/GRID
♻ ☆ MSF: Efficient Diffusion Model Via Multi-Scale Latent Factorize
While diffusion-based generative models have made significant strides in visual content creation, conventional approaches face computational challenges, especially for high-resolution images, as they denoise the entire image from noisy inputs. This contrasts with signal processing techniques, such as Fourier and wavelet analyses, which often employ hierarchical decompositions. Inspired by such principles, particularly the idea of signal separation, we introduce a diffusion framework leveraging multi-scale latent factorization. Our framework uniquely decomposes the denoising target, typically latent features from a pretrained Variational Autoencoder, into a low-frequency base signal capturing core structural information and a high-frequency residual signal that contributes finer, high-frequency details like textures. This decomposition into base and residual components directly informs our two-stage image generation process, which first produces the low-resolution base, followed by the generation of the high-resolution residual. Our proposed architecture facilitates reduced sampling steps during the residual learning stage, owing to the inherent ease of modeling residual information, which confers advantages over conventional full-resolution generation techniques. This specific approach of decomposing the signal into a base and a residual, conceptually akin to how wavelet analysis can separate different frequency bands, yields a more streamlined and intuitive design distinct from generic hierarchical models. Our method, \name\ (Multi-Scale Factorization), demonstrates its effectiveness by achieving FID scores of 2.08 ($256\times256$) and 2.47 ($512\times512$) on class-conditional ImageNet benchmarks, outperforming the DiT baseline (2.27 and 3.04 respectively) while also delivering a $4\times$ speed-up with the same number of sampling steps.
♻ ☆ Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
comment: Submitted to ISVC 2025
♻ ☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects ICML 2025
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available at: $\href{https://t2m4lvo.github.io}{https://t2m4lvo.github.io}$.
comment: Accepted to ICML 2025
♻ ☆ HMSViT: A Hierarchical Masked Self-Supervised Vision Transformer for Corneal Nerve Segmentation and Diabetic Neuropathy Diagnosis
Diabetic Peripheral Neuropathy (DPN) affects nearly half of diabetes patients, requiring early detection. Corneal Confocal Microscopy (CCM) enables non-invasive diagnosis, but automated methods suffer from inefficient feature extraction, reliance on handcrafted priors, and data limitations. We propose HMSViT, a novel Hierarchical Masked Self-Supervised Vision Transformer (HMSViT) designed for corneal nerve segmentation and DPN diagnosis. Unlike existing methods, HMSViT employs pooling-based hierarchical and dual attention mechanisms with absolute positional encoding, enabling efficient multi-scale feature extraction by capturing fine-grained local details in early layers and integrating global context in deeper layers, all at a lower computational cost. A block-masked self supervised learning framework is designed for the HMSViT that reduces reliance on labelled data, enhancing feature robustness, while a multi-scale decoder is used for segmentation and classification by fusing hierarchical features. Experiments on clinical CCM datasets showed HMSViT achieves state-of-the-art performance, with 61.34% mIoU for nerve segmentation and 70.40% diagnostic accuracy, outperforming leading hierarchical models like the Swin Transformer and HiViT by margins of up to 6.39% in segmentation accuracy while using fewer parameters. Detailed ablation studies further reveal that integrating block-masked SSL with hierarchical multi-scale feature extraction substantially enhances performance compared to conventional supervised training. Overall, these comprehensive experiments confirm that HMSViT delivers excellent, robust, and clinically viable results, demonstrating its potential for scalable deployment in real-world diagnostic applications.
♻ ☆ TinyAlign: Boosting Lightweight Vision-Language Models by Mitigating Modal Alignment Bottlenecks
Lightweight Vision-Language Models (VLMs) are indispensable for resource-constrained applications. The prevailing approach to aligning vision and language models involves freezing both the vision encoder and the language model while training small connector modules. However, this strategy heavily depends on the intrinsic capabilities of the language model, which can be suboptimal for lightweight models with limited representational capacity. In this work, we investigate this alignment bottleneck through the lens of mutual information, demonstrating that the constrained capacity of the language model inherently limits the Effective Mutual Information (EMI) between multimodal inputs and outputs, thereby compromising alignment quality. To address this challenge, we propose TinyAlign, a novel framework inspired by Retrieval-Augmented Generation, which strategically retrieves relevant context from a memory bank to enrich multimodal inputs and enhance their alignment. Extensive empirical evaluations reveal that TinyAlign significantly reduces training loss, accelerates convergence, and enhances task performance. Remarkably, it allows models to achieve baseline-level performance with only 40\% of the fine-tuning data, highlighting exceptional data efficiency. Our work thus offers a practical pathway for developing more capable lightweight VLMs while introducing a fresh theoretical lens to better understand and address alignment bottlenecks in constrained multimodal systems.
♻ ☆ OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models ICCV 2025
End-to-end human animation, such as audio-driven talking human generation, has undergone notable advancements in the recent few years. However, existing methods still struggle to scale up as large general video generation models, limiting their potential in real applications. In this paper, we propose OmniHuman, a Diffusion Transformer-based framework that scales up data by mixing motion-related conditions into the training phase. To this end, we introduce two training principles for these mixed conditions, along with the corresponding model architecture and inference strategy. These designs enable OmniHuman to fully leverage data-driven motion generation, ultimately achieving highly realistic human video generation. More importantly, OmniHuman supports various portrait contents (face close-up, portrait, half-body, full-body), supports both talking and singing, handles human-object interactions and challenging body poses, and accommodates different image styles. Compared to existing end-to-end audio-driven methods, OmniHuman not only produces more realistic videos, but also offers greater flexibility in inputs. It also supports multiple driving modalities (audio-driven, video-driven and combined driving signals). Video samples are provided on the ttfamily project page (https://omnihuman-lab.github.io)
comment: ICCV 2025, Homepage: https://omnihuman-lab.github.io/
♻ ☆ HalCECE: A Framework for Explainable Hallucination Detection through Conceptual Counterfactuals in Image Captioning
In the dynamic landscape of artificial intelligence, the exploration of hallucinations within vision-language (VL) models emerges as a critical frontier. This work delves into the intricacies of hallucinatory phenomena exhibited by widely used image captioners, unraveling interesting patterns. Specifically, we step upon previously introduced techniques of conceptual counterfactual explanations to address VL hallucinations. The deterministic and efficient nature of the employed conceptual counterfactuals backbone is able to suggest semantically minimal edits driven by hierarchical knowledge, so that the transition from a hallucinated caption to a non-hallucinated one is performed in a black-box manner. HalCECE, our proposed hallucination detection framework is highly interpretable, by providing semantically meaningful edits apart from standalone numbers, while the hierarchical decomposition of hallucinated concepts leads to a thorough hallucination analysis. Another novelty tied to the current work is the investigation of role hallucinations, being one of the first works to involve interconnections between visual concepts in hallucination detection. Overall, HalCECE recommends an explainable direction to the crucial field of VL hallucination detection, thus fostering trustworthy evaluation of current and future VL systems.
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address these issues, we introduce VPP-LLaVA, an MLLM enhanced with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms: the global VPP overlays a learnable, axis-like tensor onto the input image to provide structured spatial cues, while the local VPP incorporates position-aware queries to support fine-grained localization.To effectively train our model with spatial guidance, we further introduce VPP-SFT, a curated dataset of 0.6M high-quality visual grounding samples. Designed in a compact format, it enables efficient training and is significantly smaller than datasets used by other MLLMs (e.g., ~21M samples in MiniGPT-v2), yet still provides a strong performance boost. The resulting model, VPP-LLaVA, not only achieves state-of-the-art results on standard visual grounding benchmarks but also demonstrates strong zero-shot generalization to challenging unseen datasets. Code and dataset will be released upon acceptance at https://github.com/WayneTomas/VPP-LLaVA.
♻ ☆ AEM: Attention Entropy Maximization for Multiple Instance Learning based Whole Slide Image Classification MICCAI2025
Multiple Instance Learning (MIL) effectively analyzes whole slide images but faces overfitting due to attention over-concentration. While existing solutions rely on complex architectural modifications or additional processing steps, we introduce Attention Entropy Maximization (AEM), a simple yet effective regularization technique. Our investigation reveals the positive correlation between attention entropy and model performance. Building on this insight, we integrate AEM regularization into the MIL framework to penalize excessive attention concentration. To address sensitivity to the AEM weight parameter, we implement Cosine Weight Annealing, reducing parameter dependency. Extensive evaluations demonstrate AEM's superior performance across diverse feature extractors, MIL frameworks, attention mechanisms, and augmentation techniques. Here is our anonymous code: https://github.com/dazhangyu123/AEM.
comment: Accepted by MICCAI2025
♻ ☆ Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL.
comment: Transactions on Machine Learning Research (TMLR). Raja Kumar and Raghav Singhal contributed equally to this work
♻ ☆ FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models ACL 2025
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models. However, applying LoRA in federated learning environments, where data is distributed across multiple clients, presents unique challenges. Existing methods rely on traditional federated averaging of LoRA adapters, resulting in inexact updates. To address this, we propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix. Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency. We evaluate the method on various models across arithmetic reasoning, commonsense reasoning, natural language understanding and natural language generation tasks, showing consistent performance gains over state-of-the-art methods across multiple settings. Through extensive analysis, we quantify that the deviations in updates from the ideal solution are significant, highlighting the need for exact aggregation. Our method's simplicity, efficiency, and broad applicability position it as a promising solution for accurate and effective federated fine-tuning of foundation models. Our code is publicly available at https://github.com/RaghavSinghal10/fedex-lora.
comment: ACL 2025 - Oral. Raghav Singhal and Kaustubh Ponkshe contributed equally to this work
♻ ☆ Emulating Self-attention with Convolution for Efficient Image Super-Resolution ICCV 2025
In this paper, we tackle the high computational overhead of Transformers for efficient image super-resolution~(SR). Motivated by the observations of self-attention's inter-layer repetition, we introduce a convolutionized self-attention module named Convolutional Attention~(ConvAttn) that emulates self-attention's long-range modeling capability and instance-dependent weighting with a single shared large kernel and dynamic kernels. By utilizing the ConvAttn module, we significantly reduce the reliance on self-attention and its involved memory-bound operations while maintaining the representational capability of Transformers. Furthermore, we overcome the challenge of integrating flash attention into the lightweight SR regime, effectively mitigating self-attention's inherent memory bottleneck. We scale up the window size to 32$\times$32 with flash attention rather than proposing an intricate self-attention module, significantly improving PSNR by 0.31dB on Urban100$\times$2 while reducing latency and memory usage by 16$\times$ and 12.2$\times$. Building on these approaches, our proposed network, termed Emulating Self-attention with Convolution~(ESC), notably improves PSNR by 0.27 dB on Urban100$\times$4 compared to HiT-SRF, reducing the latency and memory usage by 3.7$\times$ and 6.2$\times$, respectively. Extensive experiments demonstrate that our ESC maintains the ability for long-range modeling, data scalability, and the representational power of Transformers despite most self-attention being replaced by the ConvAttn module.
comment: ICCV 2025
♻ ☆ Visual Re-Ranking with Non-Visual Side Information SC
The standard approach for visual place recognition is to use global image descriptors to retrieve the most similar database images for a given query image. The results can then be further improved with re-ranking methods that re-order the top scoring images. However, existing methods focus on re-ranking based on the same image descriptors that were used for the initial retrieval, which we argue provides limited additional signal. In this work we propose Generalized Contextual Similarity Aggregation (GCSA), which is a graph neural network-based re-ranking method that, in addition to the visual descriptors, can leverage other types of available side information. This can for example be other sensor data (such as signal strength of nearby WiFi or BlueTooth endpoints) or geometric properties such as camera poses for database images. In many applications this information is already present or can be acquired with low effort. Our architecture leverages the concept of affinity vectors to allow for a shared encoding of the heterogeneous multi-modal input. Two large-scale datasets, covering both outdoor and indoor localization scenarios, are utilized for training and evaluation. In experiments we show significant improvement not only on image retrieval metrics, but also for the downstream visual localization task.
comment: Accepted at Scandinavian Conference on Image Analysis (SCIA) 2025
♻ ☆ Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration MICCAI
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.
comment: 11 pages, 3 figures, 2 tables, Accepted at Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
♻ ☆ InstructionBench: An Instructional Video Understanding Benchmark
Despite progress in video large language models (Video-LLMs), research on instructional video understanding, crucial for enhancing access to instructional content, remains insufficient. To address this, we introduce InstructionBench, an Instructional video understanding Benchmark, which challenges models' advanced temporal reasoning within instructional videos characterized by their strict step-by-step flow. Employing GPT-4, we formulate Q&A pairs in open-ended and multiple-choice formats to assess both Coarse-Grained event-level and Fine-Grained object-level reasoning. Our filtering strategies exclude questions answerable purely by common-sense knowledge, focusing on visual perception and analysis when evaluating Video-LLM models. The benchmark finally contains 5k questions across over 700 videos. We evaluate the latest Video-LLMs on our InstructionBench, finding that closed-source models outperform open-source ones. However, even the best model, GPT-4o, achieves only 53.42% accuracy, indicating significant gaps in temporal reasoning. To advance the field, we also develop a comprehensive instructional video dataset with over 19k Q&A pairs from nearly 2.5k videos, using an automated data generation framework, thereby enriching the community's research resources. All data are available at https://huggingface.co/datasets/sunwhw/InstructionBench.
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ D$^2$ST-Adapter: Disentangled-and-Deformable Spatio-Temporal Adapter for Few-shot Action Recognition ICCV2025
Adapting pre-trained image models to video modality has proven to be an effective strategy for robust few-shot action recognition. In this work, we explore the potential of adapter tuning in image-to-video model adaptation and propose a novel video adapter tuning framework, called Disentangled-and-Deformable Spatio-Temporal Adapter (D$^2$ST-Adapter). It features a lightweight design, low adaptation overhead and powerful spatio-temporal feature adaptation capabilities. D$^2$ST-Adapter is structured with an internal dual-pathway architecture that enables built-in disentangled encoding of spatial and temporal features within the adapter, seamlessly integrating into the single-stream feature learning framework of pre-trained image models. In particular, we develop an efficient yet effective implementation of the D$^2$ST-Adapter, incorporating the specially devised anisotropic Deformable Spatio-Temporal Attention as its pivotal operation. This mechanism can be individually tailored for two pathways with anisotropic sampling densities along the spatial and temporal domains in 3D spatio-temporal space, enabling disentangled encoding of spatial and temporal features while maintaining a lightweight design. Extensive experiments by instantiating our method on both pre-trained ResNet and ViT demonstrate the superiority of our method over state-of-the-art methods. Our method is particularly well-suited to challenging scenarios where temporal dynamics are critical for action recognition. Code is available at https://github.com/qizhongtan/D2ST-Adapter.
comment: Accepted by ICCV2025
Edit360: 2D Image Edits to 3D Assets from Any Angle
Recent advances in diffusion models have significantly improved image generation and editing, but extending these capabilities to 3D assets remains challenging, especially for fine-grained edits that require multi-view consistency. Existing methods typically restrict editing to predetermined viewing angles, severely limiting their flexibility and practical applications. We introduce Edit360, a tuning-free framework that extends 2D modifications to multi-view consistent 3D editing. Built upon video diffusion models, Edit360 enables user-specific editing from arbitrary viewpoints while ensuring structural coherence across all views. The framework selects anchor views for 2D modifications and propagates edits across the entire 360-degree range. To achieve this, Edit360 introduces a novel Anchor-View Editing Propagation mechanism, which effectively aligns and merges multi-view information within the latent and attention spaces of diffusion models. The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets, enabling customizable 3D content creation.
comment: 11 pages, 9 figures
♻ ☆ LW2G: Learning Whether to Grow for Prompt-based Continual Learning
Recent Prompt-based Continual learning (PCL) has achieved remarkable performance with pre-trained models. These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference. Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL. In this paper, we propose a plug-in method, $\textbf{L}$earning $\textbf{W}$hether $\textbf{t}$o $\textbf{G}$row $\textbf{(LW2G)}$, which leverages the disparities between tasks to form an effective and efficient prompt sets pool, thereby achieving intra-task knowledge sharing and cooperation and avoiding the unbounded increase in the cost of the prompt pool. Specifically, a shared set is utilized when several tasks share certain commonalities, and a new set is added when there are significant differences between the new and previous tasks. To achieve this, we develop a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks by surgically modifying the original gradient onto the orthogonal complement of the old feature space. With HFC, an automated scheme, Dynamic Growing Approach, adaptively learns whether to grow with a dynamic threshold. Furthermore, we design a gradient-based constraint to ensure consistency between the updating prompts and pre-trained knowledge. Extensive experiments show the effectiveness of our method. Code is available at https://github.com/RAIAN08/LW2G.
♻ ☆ Advancing Facial Stylization through Semantic Preservation Constraint and Pseudo-Paired Supervision
Facial stylization aims to transform facial images into appealing, high-quality stylized portraits, with the critical challenge of accurately learning the target style while maintaining content consistency with the original image. Although previous StyleGAN-based methods have made significant advancements, the generated results still suffer from artifacts or insufficient fidelity to the source image. We argue that these issues stem from neglecting semantic shift of the generator during stylization. Therefore, we propose a facial stylization method that integrates semantic preservation constraint and pseudo-paired supervision to enhance the content correspondence and improve the stylization effect. Additionally, we develop a methodology for creating multi-level pseudo-paired datasets to implement supervisory constraint. Furthermore, building upon our facial stylization framework, we achieve more flexible multimodal and reference-guided stylization without complex network architecture designs or additional training. Experimental results demonstrate that our approach produces high-fidelity, aesthetically pleasing facial style transfer that surpasses previous methods.
♻ ☆ StereoDiff: Stereo-Diffusion Synergy for Video Depth Estimation
Recent video depth estimation methods achieve great performance by following the paradigm of image depth estimation, i.e., typically fine-tuning pre-trained video diffusion models with massive data. However, we argue that video depth estimation is not a naive extension of image depth estimation. The temporal consistency requirements for dynamic and static regions in videos are fundamentally different. Consistent video depth in static regions, typically backgrounds, can be more effectively achieved via stereo matching across all frames, which provides much stronger global 3D cues. While the consistency for dynamic regions still should be learned from large-scale video depth data to ensure smooth transitions, due to the violation of triangulation constraints. Based on these insights, we introduce StereoDiff, a two-stage video depth estimator that synergizes stereo matching for mainly the static areas with video depth diffusion for maintaining consistent depth transitions in dynamic areas. We mathematically demonstrate how stereo matching and video depth diffusion offer complementary strengths through frequency domain analysis, highlighting the effectiveness of their synergy in capturing the advantages of both. Experimental results on zero-shot, real-world, dynamic video depth benchmarks, both indoor and outdoor, demonstrate StereoDiff's SoTA performance, showcasing its superior consistency and accuracy in video depth estimation.
comment: Work done in Nov 2024, during an internship at the University of Pennsylvania. Project page: https://stereodiff.github.io/
♻ ☆ Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser AAAI24
Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Code and models are available at https://github.com/Andyen512/DDHPose
comment: Accepted by AAAI24
♻ ☆ OrderChain: Towards General Instruct-Tuning for Stimulating the Ordinal Understanding Ability of MLLM
Despite the remarkable progress of multimodal large language models (MLLMs), they continue to face challenges in achieving competitive performance on ordinal regression (OR; a.k.a. ordinal classification). To address this issue, this paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling. Specifically, our OrderChain consists of a set of task-aware prompts to facilitate the specificity modeling of diverse OR tasks and a new range optimization Chain-of-Thought (RO-CoT), which learns a commonality way of thinking about OR tasks by uniformly decomposing them into multiple small-range optimization subtasks. Further, we propose a category recursive division (CRD) method to generate instruction candidate category prompts to support RO-CoT automatic optimization. Comprehensive experiments show that a Large Language and Vision Assistant (LLaVA) model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets, e.g., from 47.5% to 93.2% accuracy on the Adience dataset for age estimation, and from 30.0% to 85.7% accuracy on the Diabetic Retinopathy dataset. Notably, LLaVA with our OrderChain also remarkably outperforms state-of-the-art methods by 27% on accuracy and 0.24 on MAE on the Adience dataset. To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets.
♻ ☆ Deblurring in the Wild: A Real-World Dataset from Smartphone High-Speed Videos
We introduce the largest real-world image deblurring dataset constructed from smartphone slow-motion videos. Using 240 frames captured over one second, we simulate realistic long-exposure blur by averaging frames to produce blurry images, while using the temporally centered frame as the sharp reference. Our dataset contains over 42,000 high-resolution blur-sharp image pairs, making it approximately 10 times larger than widely used datasets, with 8 times the amount of different scenes, including indoor and outdoor environments, with varying object and camera motions. We benchmark multiple state-of-the-art (SOTA) deblurring models on our dataset and observe significant performance degradation, highlighting the complexity and diversity of our benchmark. Our dataset serves as a challenging new benchmark to facilitate robust and generalizable deblurring models.
comment: 8 pages (without references), 3 figures. Dataset https://huggingface.co/datasets/masterda/SloMoBlur
♻ ☆ Mesh-Learner: Texturing Mesh with Spherical Harmonics IROS2025
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.
comment: IROS2025 Accepted
♻ ☆ Object detection in adverse weather conditions for autonomous vehicles using Instruct Pix2Pix IJCNN
Enhancing the robustness of object detection systems under adverse weather conditions is crucial for the advancement of autonomous driving technology. This study presents a novel approach leveraging the diffusion model Instruct Pix2Pix to develop prompting methodologies that generate realistic datasets with weather-based augmentations aiming to mitigate the impact of adverse weather on the perception capabilities of state-of-the-art object detection models, including Faster R-CNN and YOLOv10. Experiments were conducted in two environments, in the CARLA simulator where an initial evaluation of the proposed data augmentation was provided, and then on the real-world image data sets BDD100K and ACDC demonstrating the effectiveness of the approach in real environments. The key contributions of this work are twofold: (1) identifying and quantifying the performance gap in object detection models under challenging weather conditions, and (2) demonstrating how tailored data augmentation strategies can significantly enhance the robustness of these models. This research establishes a solid foundation for improving the reliability of perception systems in demanding environmental scenarios, and provides a pathway for future advancements in autonomous driving.
comment: 8 pages, 5 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 (to appear)
♻ ☆ ProSAM: Enhancing the Robustness of SAM-based Visual Reference Segmentation with Probabilistic Prompts
The recent advancements in large foundation models have driven the success of open-set image segmentation, a task focused on segmenting objects beyond predefined categories. Among various prompt types (such as points, boxes, texts, and visual references), visual reference segmentation stands out for its unique flexibility and strong zero-shot capabilities. Recently, several SAM-based methods have made notable progress in this task by automatically generating prompts to guide SAM. However, these methods often generate prompts at object boundaries due to suboptimal prompt encoder, which results in instability and reduced robustness. In this work, we introduce ProSAM, a simple but effective method to address the stability challenges we identified in existing SAM-based visual reference segmentation approaches. By learning a variational prompt encoder to predict multivariate prompt distributions, ProSAM avoids generating prompts that lie in unstable regions, overcoming the instability caused by less robust prompts. Our approach consistently surpasses state-of-the-art methods on the Pascal-5$^i$ and COCO-20$^i$ datasets, providing a more robust solution for visual reference segmentation.
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
comment: Need further revision
♻ ☆ PRVQL: Progressive Knowledge-guided Refinement for Robust Egocentric Visual Query Localization
Egocentric visual query localization (EgoVQL) focuses on localizing the target of interest in space and time from first-person videos, given a visual query. Despite recent progressive, existing methods often struggle to handle severe object appearance changes and cluttering background in the video due to lacking sufficient target cues, leading to degradation. Addressing this, we introduce PRVQL, a novel Progressive knowledge-guided Refinement framework for EgoVQL. The core is to continuously exploit target-relevant knowledge directly from videos and utilize it as guidance to refine both query and video features for improving target localization. Our PRVQL contains multiple processing stages. The target knowledge from one stage, comprising appearance and spatial knowledge extracted via two specially designed knowledge learning modules, are utilized as guidance to refine the query and videos features for the next stage, which are used to generate more accurate knowledge for further feature refinement. With such a progressive process, target knowledge in PRVQL can be gradually improved, which, in turn, leads to better refined query and video features for localization in the final stage. Compared to previous methods, our PRVQL, besides the given object cues, enjoys additional crucial target information from a video as guidance to refine features, and hence enhances EgoVQL in complicated scenes. In our experiments on challenging Ego4D, PRVQL achieves state-of-the-art result and largely surpasses other methods, showing its efficacy. Our code, model and results will be released at https://github.com/fb-reps/PRVQL.
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code is available at https://github.com/WonwoongCho/Towards-Enhanced-Controllability-of-Diffusion-Models
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection IROS 2025
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Camera-ready version for IROS 2025
♻ ☆ Generating Physically Stable and Buildable Brick Structures from Text
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
comment: Project page: https://avalovelace1.github.io/BrickGPT/
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
♻ ☆ INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables. arXiv admin note: substantial text overlap with arXiv:2503.02424
Artificial Intelligence 171
☆ FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation
Residual connection has been extensively studied and widely applied at the model architecture level. However, its potential in the more challenging data-centric approaches remains unexplored. In this work, we introduce the concept of Data Residual Matching for the first time, leveraging data-level skip connections to facilitate data generation and mitigate data information vanishing. This approach maintains a balance between newly acquired knowledge through pixel space optimization and existing core local information identification within raw data modalities, specifically for the dataset distillation task. Furthermore, by incorporating optimization-level refinements, our method significantly improves computational efficiency, achieving superior performance while reducing training time and peak GPU memory usage by 50%. Consequently, the proposed method Fast and Accurate Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-of-the-art, demonstrating substantial improvements over existing methods across multiple dataset benchmarks in both efficiency and effectiveness. For instance, with ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the method achieves 47.7% test accuracy in single-model dataset distillation and 50.0% in multi-model dataset distillation, surpassing RDED by +5.7% and outperforming state-of-the-art multi-model approaches, EDC and CV-DD, by +1.4% and +4.0%. Code is available at: https://github.com/Jiacheng8/FADRM.
comment: Code at: https://github.com/Jiacheng8/FADRM
☆ Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complex tasks with limited prior knowledge. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connections and function compositions in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ On the Predictive Power of Representation Dispersion in Language Models
We show that a language model's ability to predict text is tightly linked to the breadth of its embedding space: models that spread their contextual representations more widely tend to achieve lower perplexity. Concretely, we find that representation dispersion - the average pairwise cosine distance among hidden vectors - strongly and negatively correlates with perplexity across diverse model families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific abstracts). Beyond illustrating this link, we show how dispersion can be leveraged for a range of practical tasks without requiring labeled data. First, measuring dispersion on unlabeled text allows us to predict downstream accuracy in new domains, offering a data-efficient tool for model selection. Next, we find that identifying layers with higher dispersion pinpoints the best representations for retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer searches. Finally, we integrate a simple push-away objective into training, which increases dispersion in both single-domain and cross-domain scenarios and directly improves perplexity in each.
☆ Development of Hybrid Artificial Intelligence Training on Real and Synthetic Data: Benchmark on Two Mixed Training Strategies
Synthetic data has emerged as a cost-effective alternative to real data for training artificial neural networks (ANN). However, the disparity between synthetic and real data results in a domain gap. That gap leads to poor performance and generalization of the trained ANN when applied to real-world scenarios. Several strategies have been developed to bridge this gap, which combine synthetic and real data, known as mixed training using hybrid datasets. While these strategies have been shown to mitigate the domain gap, a systematic evaluation of their generalizability and robustness across various tasks and architectures remains underexplored. To address this challenge, our study comprehensively analyzes two widely used mixing strategies on three prevalent architectures and three distinct hybrid datasets. From these datasets, we sample subsets with varying proportions of synthetic to real data to investigate the impact of synthetic and real components. The findings of this paper provide valuable insights into optimizing the use of synthetic data in the training process of any ANN, contributing to enhancing robustness and efficacy.
comment: 21pages, 14 figures, 2 tables
☆ Imagine for Me: Creative Conceptual Blending of Real Images and Text via Blended Attention
Blending visual and textual concepts into a new visual concept is a unique and powerful trait of human beings that can fuel creativity. However, in practice, cross-modal conceptual blending for humans is prone to cognitive biases, like design fixation, which leads to local minima in the design space. In this paper, we propose a T2I diffusion adapter "IT-Blender" that can automate the blending process to enhance human creativity. Prior works related to cross-modal conceptual blending are limited in encoding a real image without loss of details or in disentangling the image and text inputs. To address these gaps, IT-Blender leverages pretrained diffusion models (SD and FLUX) to blend the latent representations of a clean reference image with those of the noisy generated image. Combined with our novel blended attention, IT-Blender encodes the real reference image without loss of details and blends the visual concept with the object specified by the text in a disentangled way. Our experiment results show that IT-Blender outperforms the baselines by a large margin in blending visual and textual concepts, shedding light on the new application of image generative models to augment human creativity.
comment: Project website is available at https://imagineforme.github.io/
☆ SQUASH: A SWAP-Based Quantum Attack to Sabotage Hybrid Quantum Neural Networks
We propose a circuit-level attack, SQUASH, a SWAP-Based Quantum Attack to sabotage Hybrid Quantum Neural Networks (HQNNs) for classification tasks. SQUASH is executed by inserting SWAP gate(s) into the variational quantum circuit of the victim HQNN. Unlike conventional noise-based or adversarial input attacks, SQUASH directly manipulates the circuit structure, leading to qubit misalignment and disrupting quantum state evolution. This attack is highly stealthy, as it does not require access to training data or introduce detectable perturbations in input states. Our results demonstrate that SQUASH significantly degrades classification performance, with untargeted SWAP attacks reducing accuracy by up to 74.08\% and targeted SWAP attacks reducing target class accuracy by up to 79.78\%. These findings reveal a critical vulnerability in HQNN implementations, underscoring the need for more resilient architectures against circuit-level adversarial interventions.
comment: Keywords: Quantum Machine Learning, Hybrid Quantum Neural Networks, SWAP Test, Fidelity, Circuit-level Attack
☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic guards their latest Claude 4 Opus model using one such defense pipeline, and other frontier developers including Google DeepMind and OpenAI pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
☆ A Survey on Vision-Language-Action Models for Autonomous Driving
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
☆ Constructing Non-Markovian Decision Process via History Aggregator
In the domain of algorithmic decision-making, non-Markovian dynamics manifest as a significant impediment, especially for paradigms such as Reinforcement Learning (RL), thereby exerting far-reaching consequences on the advancement and effectiveness of the associated systems. Nevertheless, the existing benchmarks are deficient in comprehensively assessing the capacity of decision algorithms to handle non-Markovian dynamics. To address this deficiency, we have devised a generalized methodology grounded in category theory. Notably, we established the category of Markov Decision Processes (MDP) and the category of non-Markovian Decision Processes (NMDP), and proved the equivalence relationship between them. This theoretical foundation provides a novel perspective for understanding and addressing non-Markovian dynamics. We further introduced non-Markovianity into decision-making problem settings via the History Aggregator for State (HAS). With HAS, we can precisely control the state dependency structure of decision-making problems in the time series. Our analysis demonstrates the effectiveness of our method in representing a broad range of non-Markovian dynamics. This approach facilitates a more rigorous and flexible evaluation of decision algorithms by testing them in problem settings where non-Markovian dynamics are explicitly constructed.
☆ Bridging Theory and Practice in Link Representation with Graph Neural Networks
Graph Neural Networks (GNNs) are widely used to compute representations of node pairs for downstream tasks such as link prediction. Yet, theoretical understanding of their expressive power has focused almost entirely on graph-level representations. In this work, we shift the focus to links and provide the first comprehensive study of GNN expressiveness in link representation. We introduce a unifying framework, the $k_\phi$-$k_\rho$-$m$ framework, that subsumes existing message-passing link models and enables formal expressiveness comparisons. Using this framework, we derive a hierarchy of state-of-the-art methods and offer theoretical tools to analyze future architectures. To complement our analysis, we propose a synthetic evaluation protocol comprising the first benchmark specifically designed to assess link-level expressiveness. Finally, we ask: does expressiveness matter in practice? We use a graph symmetry metric that quantifies the difficulty of distinguishing links and show that while expressive models may underperform on standard benchmarks, they significantly outperform simpler ones as symmetry increases, highlighting the need for dataset-aware model selection.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
☆ Bridging Physical and Digital Worlds: Embodied Large AI for Future Wireless Systems
Large artificial intelligence (AI) models offer revolutionary potential for future wireless systems, promising unprecedented capabilities in network optimization and performance. However, current paradigms largely overlook crucial physical interactions. This oversight means they primarily rely on offline datasets, leading to difficulties in handling real-time wireless dynamics and non-stationary environments. Furthermore, these models often lack the capability for active environmental probing. This paper proposes a fundamental paradigm shift towards wireless embodied large AI (WELAI), moving from passive observation to active embodiment. We first identify key challenges faced by existing models, then we explore the design principles and system structure of WELAI. Besides, we outline prospective applications in next-generation wireless. Finally, through an illustrative case study, we demonstrate the effectiveness of WELAI and point out promising research directions for realizing adaptive, robust, and autonomous wireless systems.
comment: 7 pages, 4 figures
☆ STCLocker: Deadlock Avoidance Testing for Autonomous Driving Systems
Autonomous Driving System (ADS) testing is essential to ensure the safety and reliability of autonomous vehicles (AVs) before deployment. However, existing techniques primarily focus on evaluating ADS functionalities in single-AV settings. As ADSs are increasingly deployed in multi-AV traffic, it becomes crucial to assess their cooperative performance, particularly regarding deadlocks, a fundamental coordination failure in which multiple AVs enter a circular waiting state indefinitely, resulting in motion planning failures. Despite its importance, the cooperative capability of ADSs to prevent deadlocks remains insufficiently underexplored. To address this gap, we propose the first dedicated Spatio-Temporal Conflict-Guided Deadlock Avoidance Testing technique, STCLocker, for generating DeadLock Scenarios (DLSs), where a group of AVs controlled by the ADS under test are in a circular wait state. STCLocker consists of three key components: Deadlock Oracle, Conflict Feedback, and Conflict-aware Scenario Generation. Deadlock Oracle provides a reliable black-box mechanism for detecting deadlock cycles among multiple AVs within a given scenario. Conflict Feedback and Conflict-aware Scenario Generation collaborate to actively guide AVs into simultaneous competition over spatial conflict resources (i.e., shared passing regions) and temporal competitive behaviors (i.e., reaching the conflict region at the same time), thereby increasing the effectiveness of generating conflict-prone deadlocks. We evaluate STCLocker on two types of ADSs: Roach, an end-to-end ADS, and OpenCDA, a module-based ADS supporting cooperative communication. Experimental results show that, on average, STCLocker generates more DLS than the best-performing baseline.
☆ Harnessing AI Agents to Advance Research on Refugee Child Mental Health
The international refugee crisis deepens, exposing millions of dis placed children to extreme psychological trauma. This research suggests a com pact, AI-based framework for processing unstructured refugee health data and distilling knowledge on child mental health. We compare two Retrieval-Aug mented Generation (RAG) pipelines, Zephyr-7B-beta and DeepSeek R1-7B, to determine how well they process challenging humanitarian datasets while avoid ing hallucination hazards. By combining cutting-edge AI methods with migration research and child psychology, this study presents a scalable strategy to assist policymakers, mental health practitioners, and humanitarian agencies to better assist displaced children and recognize their mental wellbeing. In total, both the models worked properly but significantly Deepseek R1 is superior to Zephyr with an accuracy of answer relevance 0.91
comment: 14 page , 2 image , 2 tables , accepted under 5th International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV-2025)
☆ ADReFT: Adaptive Decision Repair for Safe Autonomous Driving via Reinforcement Fine-Tuning
Autonomous Driving Systems (ADSs) continue to face safety-critical risks due to the inherent limitations in their design and performance capabilities. Online repair plays a crucial role in mitigating such limitations, ensuring the runtime safety and reliability of ADSs. Existing online repair solutions enforce ADS compliance by transforming unacceptable trajectories into acceptable ones based on predefined specifications, such as rule-based constraints or training datasets. However, these approaches often lack generalizability, adaptability and tend to be overly conservative, resulting in ineffective repairs that not only fail to mitigate safety risks sufficiently but also degrade the overall driving experience. To address this issue, we propose Adaptive Decision Repair (ADReFT), a novel and effective repair method that identifies safety-critical states through offline learning from failed tests and generates appropriate mitigation actions to improve ADS safety. Specifically, ADReFT incorporates a transformer-based model with two joint heads, State Monitor and Decision Adapter, designed to capture complex driving environment interactions to evaluate state safety severity and generate adaptive repair actions. Given the absence of oracles for state safety identification, we first pretrain ADReFT using supervised learning with coarse annotations, i.e., labeling states preceding violations as positive samples and others as negative samples. It establishes ADReFT's foundational capability to mitigate safety-critical violations, though it may result in somewhat conservative mitigation strategies. Therefore, we subsequently finetune ADReFT using reinforcement learning to improve its initial capability and generate more precise and contextually appropriate repair decisions. Our evaluation results illustrate that ADReFT achieves better repair performance.
☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
☆ AI Risk-Management Standards Profile for General-Purpose AI (GPAI) and Foundation Models
Increasingly multi-purpose AI models, such as cutting-edge large language models or other 'general-purpose AI' (GPAI) models, 'foundation models,' generative AI models, and 'frontier models' (typically all referred to hereafter with the umbrella term 'GPAI/foundation models' except where greater specificity is needed), can provide many beneficial capabilities but also risks of adverse events with profound consequences. This document provides risk-management practices or controls for identifying, analyzing, and mitigating risks of GPAI/foundation models. We intend this document primarily for developers of large-scale, state-of-the-art GPAI/foundation models; others that can benefit from this guidance include downstream developers of end-use applications that build on a GPAI/foundation model. This document facilitates conformity with or use of leading AI risk management-related standards, adapting and building on the generic voluntary guidance in the NIST AI Risk Management Framework and ISO/IEC 23894, with a focus on the unique issues faced by developers of GPAI/foundation models.
☆ Adapt Your Body: Mitigating Proprioception Shifts in Imitation Learning
Imitation learning models for robotic tasks typically rely on multi-modal inputs, such as RGB images, language, and proprioceptive states. While proprioception is intuitively important for decision-making and obstacle avoidance, simply incorporating all proprioceptive states leads to a surprising degradation in imitation learning performance. In this work, we identify the underlying issue as the proprioception shift problem, where the distributions of proprioceptive states diverge significantly between training and deployment. To address this challenge, we propose a domain adaptation framework that bridges the gap by utilizing rollout data collected during deployment. Using Wasserstein distance, we quantify the discrepancy between expert and rollout proprioceptive states and minimize this gap by adding noise to both sets of states, proportional to the Wasserstein distance. This strategy enhances robustness against proprioception shifts by aligning the training and deployment distributions. Experiments on robotic manipulation tasks demonstrate the efficacy of our method, enabling the imitation policy to leverage proprioception while mitigating its adverse effects. Our approach outperforms the naive solution which discards proprioception, and other baselines designed to address distributional shifts.
☆ QPART: Adaptive Model Quantization and Dynamic Workload Balancing for Accuracy-aware Edge Inference
As machine learning inferences increasingly move to edge devices, adapting to diverse computational capabilities, hardware, and memory constraints becomes more critical. Instead of relying on a pre-trained model fixed for all future inference queries across diverse edge devices, we argue that planning an inference pattern with a request-specific model tailored to the device's computational capacity, accuracy requirements, and time constraints is more cost-efficient and robust to diverse scenarios. To this end, we propose an accuracy-aware and workload-balanced inference system that integrates joint model quantization and inference partitioning. In this approach, the server dynamically responds to inference queries by sending a quantized model and adaptively sharing the inference workload with the device. Meanwhile, the device's computational power, channel capacity, and accuracy requirements are considered when deciding. Furthermore, we introduce a new optimization framework for the inference system, incorporating joint model quantization and partitioning. Our approach optimizes layer-wise quantization bit width and partition points to minimize time consumption and cost while accounting for varying accuracy requirements of tasks through an accuracy degradation metric in our optimization model. To our knowledge, this work represents the first exploration of optimizing quantization layer-wise bit-width in the inference serving system, by introducing theoretical measurement of accuracy degradation. Simulation results demonstrate a substantial reduction in overall time and power consumption, with computation payloads decreasing by over 80% and accuracy degradation kept below 1%.
☆ Leveraging the Potential of Prompt Engineering for Hate Speech Detection in Low-Resource Languages
The rapid expansion of social media leads to a marked increase in hate speech, which threatens personal lives and results in numerous hate crimes. Detecting hate speech presents several challenges: diverse dialects, frequent code-mixing, and the prevalence of misspelled words in user-generated content on social media platforms. Recent progress in hate speech detection is typically concentrated on high-resource languages. However, low-resource languages still face significant challenges due to the lack of large-scale, high-quality datasets. This paper investigates how we can overcome this limitation via prompt engineering on large language models (LLMs) focusing on low-resource Bengali language. We investigate six prompting strategies - zero-shot prompting, refusal suppression, flattering the classifier, multi-shot prompting, role prompting, and finally our innovative metaphor prompting to detect hate speech effectively in low-resource languages. We pioneer the metaphor prompting to circumvent the built-in safety mechanisms of LLMs that marks a significant departure from existing jailbreaking methods. We investigate all six different prompting strategies on the Llama2-7B model and compare the results extensively with three pre-trained word embeddings - GloVe, Word2Vec, and FastText for three different deep learning models - multilayer perceptron (MLP), convolutional neural network (CNN), and bidirectional gated recurrent unit (BiGRU). To prove the effectiveness of our metaphor prompting in the low-resource Bengali language, we also evaluate it in another low-resource language - Hindi, and two high-resource languages - English and German. The performance of all prompting techniques is evaluated using the F1 score, and environmental impact factor (IF), which measures CO$_2$ emissions, electricity usage, and computational time.
☆ Industrial brain: a human-like autonomous neuro-symbolic cognitive decision-making system
Resilience non-equilibrium measurement, the ability to maintain fundamental functionality amidst failures and errors, is crucial for scientific management and engineering applications of industrial chain. The problem is particularly challenging when the number or types of multiple co-evolution of resilience (for example, randomly placed) are extremely chaos. Existing end-to-end deep learning ordinarily do not generalize well to unseen full-feld reconstruction of spatiotemporal co-evolution structure, and predict resilience of network topology, especially in multiple chaos data regimes typically seen in real-world applications. To address this challenge, here we propose industrial brain, a human-like autonomous cognitive decision-making and planning framework integrating higher-order activity-driven neuro network and CT-OODA symbolic reasoning to autonomous plan resilience directly from observational data of global variable. The industrial brain not only understands and model structure of node activity dynamics and network co-evolution topology without simplifying assumptions, and reveal the underlying laws hidden behind complex networks, but also enabling accurate resilience prediction, inference, and planning. Experimental results show that industrial brain significantly outperforms resilience prediction and planning methods, with an accurate improvement of up to 10.8\% over GoT and OlaGPT framework and 11.03\% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that industrial brain addresses an important gap in resilience prediction and planning for industrial chain.
☆ Performance of LLMs on Stochastic Modeling Operations Research Problems: From Theory to Practice
Large language models (LLMs) have exhibited expert-level capabilities across various domains. However, their abilities to solve problems in Operations Research (OR) -- the analysis and optimization of mathematical models derived from real-world problems or their verbal descriptions -- remain underexplored. In this work, we take a first step toward evaluating LLMs' abilities to solve stochastic modeling problems, a core class of OR problems characterized by uncertainty and typically involving tools from probability, statistics, and stochastic processes. We manually procure a representative set of graduate-level homework and doctoral qualification-exam problems and test LLMs' abilities to solve them. We further leverage SimOpt, an open-source library of simulation-optimization problems and solvers, to investigate LLMs' abilities to make real-world decisions under uncertainty. Our results show that, though a nontrivial amount of work is still needed to reliably automate the stochastic modeling pipeline in reality, state-of-the-art LLMs demonstrate proficiency on par with human experts in both classroom and practical settings. These findings highlight the potential of building AI agents that assist OR researchers and amplify the real-world impact of OR through automation.
☆ Reinforcement Learning for Synchronised Flow Control in a Dual-Gate Resin Infusion System
Resin infusion (RI) and resin transfer moulding (RTM) are critical processes for the manufacturing of high-performance fibre-reinforced polymer composites, particularly for large-scale applications such as wind turbine blades. Controlling the resin flow dynamics in these processes is critical to ensure the uniform impregnation of the fibre reinforcements, thereby preventing residual porosities and dry spots that impact the consequent structural integrity of the final component. This paper presents a reinforcement learning (RL) based strategy, established using process simulations, for synchronising the different resin flow fronts in an infusion scenario involving two resin inlets and a single outlet. Using Proximal Policy Optimisation (PPO), our approach addresses the challenge of managing the fluid dynamics in a partially observable environment. The results demonstrate the effectiveness of the RL approach in achieving an accurate flow convergence, highlighting its potential towards improving process control and product quality in composites manufacturing.
comment: 11 pages, 4 figures, 45th Ris{\o} International Symposium on Materials Science
☆ Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
Sound deductive reasoning -- the ability to derive new knowledge from existing facts and rules -- is an indisputably desirable aspect of general intelligence. Despite the major advances of AI systems in areas such as math and science, especially since the introduction of transformer architectures, it is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable deductive reasoning tasks. Hence, these systems are unfit to fulfill the dream of achieving artificial general intelligence capable of sound deductive reasoning. We argue that their unsound behavior is a consequence of the statistical learning approach powering their development. To overcome this, we contend that to achieve reliable deductive reasoning in learning-based AI systems, researchers must fundamentally shift from optimizing for statistical performance against distributions on reasoning problems and algorithmic tasks to embracing the more ambitious exact learning paradigm, which demands correctness on all inputs. We argue that exact learning is both essential and possible, and that this ambitious objective should guide algorithm design.
☆ GroundingDINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 6 figures
☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought is fundamental in Transformers, which is to perform step-by-step reasoning. Besides what intermediate steps work, the order of these steps critically affects the difficulty of the reasoning. This study addresses a novel task of unraveling chain of thought - reordering decoder input tokens to a learning-friendly sequence for Transformers to learn arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially with sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on four order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, on the multiplication task, it recovered the reverse-digit order reported in prior studies.
comment: 14 pages, 10 figures
☆ Scaling Self-Supervised Representation Learning for Symbolic Piano Performance
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions. After first pretraining on approximately 60,000 hours of music, we use a comparatively smaller, high-quality subset, to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings by adapting the SimCLR framework to symbolic music. When evaluating piano continuation coherence, our generative model outperforms leading symbolic generation techniques and remains competitive with proprietary audio generation models. On MIR classification benchmarks, frozen representations from our contrastive model achieve state-of-the-art results in linear probe experiments, while direct finetuning demonstrates the generalizability of pretrained representations, often requiring only a few hundred labeled examples to specialize to downstream tasks.
comment: ISMIR (2025)
☆ Differentially Private Synthetic Data Release for Topics API Outputs
The analysis of the privacy properties of Privacy-Preserving Ads APIs is an area of research that has received strong interest from academics, industry, and regulators. Despite this interest, the empirical study of these methods is hindered by the lack of publicly available data. Reliable empirical analysis of the privacy properties of an API, in fact, requires access to a dataset consisting of realistic API outputs; however, privacy concerns prevent the general release of such data to the public. In this work, we develop a novel methodology to construct synthetic API outputs that are simultaneously realistic enough to enable accurate study and provide strong privacy protections. We focus on one Privacy-Preserving Ads APIs: the Topics API, part of Google Chrome's Privacy Sandbox. We developed a methodology to generate a differentially-private dataset that closely matches the re-identification risk properties of the real Topics API data. The use of differential privacy provides strong theoretical bounds on the leakage of private user information from this release. Our methodology is based on first computing a large number of differentially-private statistics describing how output API traces evolve over time. Then, we design a parameterized distribution over sequences of API traces and optimize its parameters so that they closely match the statistics obtained. Finally, we create the synthetic data by drawing from this distribution. Our work is complemented by an open-source release of the anonymized dataset obtained by this methodology. We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset. We believe that this work will contribute to fostering transparency regarding the privacy properties of Privacy-Preserving Ads APIs.
comment: 20 pages, 8 figures
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents
Recent advances in large language models (LLMs) have catalyzed the rise of autonomous AI agents capable of perceiving, reasoning, and acting in dynamic, open-ended environments. These large-model agents mark a paradigm shift from static inference systems to interactive, memory-augmented entities. While these capabilities significantly expand the functional scope of AI, they also introduce qualitatively novel security risks - such as memory poisoning, tool misuse, reward hacking, and emergent misalignment - that extend beyond the threat models of conventional systems or standalone LLMs. In this survey, we first examine the structural foundations and key capabilities that underpin increasing levels of agent autonomy, including long-term memory retention, modular tool use, recursive planning, and reflective reasoning. We then analyze the corresponding security vulnerabilities across the agent stack, identifying failure modes such as deferred decision hazards, irreversible tool chains, and deceptive behaviors arising from internal state drift or value misalignment. These risks are traced to architectural fragilities that emerge across perception, cognition, memory, and action modules. To address these challenges, we systematically review recent defense strategies deployed at different autonomy layers, including input sanitization, memory lifecycle control, constrained decision-making, structured tool invocation, and introspective reflection. We introduce the Reflective Risk-Aware Agent Architecture (R2A2), a unified cognitive framework grounded in Constrained Markov Decision Processes (CMDPs), which incorporates risk-aware world modeling, meta-policy adaptation, and joint reward-risk optimization to enable principled, proactive safety across the agent's decision-making loop.
comment: 18 pages
☆ Do Thinking Tokens Help or Trap? Towards More Efficient Large Reasoning Model
Large Reasoning Models (LRMs) excel at solving complex problems but face an overthinking dilemma. When handling simple tasks, they often produce verbose responses overloaded with thinking tokens (e.g., wait, however). These tokens trigger unnecessary high-level reasoning behaviors like reflection and backtracking, reducing efficiency. In this work, our pilot study reveals that these thinking-token-induced behaviors are not essential for effective problem-solving and may even hinder correct reasoning within constrained token budgets. We identify this phenomenon as the thinking trap. To mitigate this issue, we propose Dual Policy Preference Optimization (DuP-PO), a novel algorithm featuring: (1) A rollout sampling strategy that guarantees balanced exposure to responses with and without thinking tokens; (2) A fine-grained advantage control technique to dynamically regulate the prediction of target tokens; (3) A policy shaping method ensuring stable gradient contributions from thinking tokens. Experimental results on five popular math reasoning benchmarks show that DuP-PO performs well on the popular LRM, which significantly improves their token efficiency during reasoning, while achieving superior performance of the base model.
comment: 13 pages, 5 figures
☆ Towards the "Digital Me": A vision of authentic Conversational Agents powered by personal Human Digital Twins
Human Digital Twins (HDTs) have traditionally been conceptualized as data-driven models designed to support decision-making across various domains. However, recent advancements in conversational AI open new possibilities for HDTs to function as authentic, interactive digital counterparts of individuals. This paper introduces a novel HDT system architecture that integrates large language models with dynamically updated personal data, enabling it to mirror an individual's conversational style, memories, and behaviors. To achieve this, our approach implements context-aware memory retrieval, neural plasticity-inspired consolidation, and adaptive learning mechanisms, creating a more natural and evolving digital persona. The resulting system does not only replicate an individual's unique conversational style depending on who they are speaking with, but also enriches responses with dynamically captured personal experiences, opinions, and memories. While this marks a significant step toward developing authentic virtual counterparts, it also raises critical ethical concerns regarding privacy, accountability, and the long-term implications of persistent digital identities. This study contributes to the field of HDTs by describing our novel system architecture, demonstrating its capabilities, and discussing future directions and emerging challenges to ensure the responsible and ethical development of HDTs.
comment: 24 pages, 9 figures
☆ The Impact of AI on Educational Assessment: A Framework for Constructive Alignment
The influence of Artificial Intelligence (AI), and specifically Large Language Models (LLM), on education is continuously increasing. These models are frequently used by students, giving rise to the question whether current forms of assessment are still a valid way to evaluate student performance and comprehension. The theoretical framework developed in this paper is grounded in Constructive Alignment (CA) theory and Bloom's taxonomy for defining learning objectives. We argue that AI influences learning objectives of different Bloom levels in a different way, and assessment has to be adopted accordingly. Furthermore, in line with Bloom's vision, formative and summative assessment should be aligned on whether the use of AI is permitted or not. Although lecturers tend to agree that education and assessment need to be adapted to the presence of AI, a strong bias exists on the extent to which lecturers want to allow for AI in assessment. This bias is caused by a lecturer's familiarity with AI and specifically whether they use it themselves. To avoid this bias, we propose structured guidelines on a university or faculty level, to foster alignment among the staff. Besides that, we argue that teaching staff should be trained on the capabilities and limitations of AI tools. In this way, they are better able to adapt their assessment methods.
☆ Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Multi-agent pathfinding (MAPF) is a common abstraction of multi-robot trajectory planning problems, where multiple homogeneous robots simultaneously move in the shared environment. While solving MAPF optimally has been proven to be NP-hard, scalable, and efficient, solvers are vital for real-world applications like logistics, search-and-rescue, etc. To this end, decentralized suboptimal MAPF solvers that leverage machine learning have come on stage. Building on the success of the recently introduced MAPF-GPT, a pure imitation learning solver, we introduce MAPF-GPT-DDG. This novel approach effectively fine-tunes the pre-trained MAPF model using centralized expert data. Leveraging a novel delta-data generation mechanism, MAPF-GPT-DDG accelerates training while significantly improving performance at test time. Our experiments demonstrate that MAPF-GPT-DDG surpasses all existing learning-based MAPF solvers, including the original MAPF-GPT, regarding solution quality across many testing scenarios. Remarkably, it can work with MAPF instances involving up to 1 million agents in a single environment, setting a new milestone for scalability in MAPF domains.
☆ When GNNs Met a Word Equations Solver: Learning to Rank Equations (Extended Technical Report)
Nielsen transformation is a standard approach for solving word equations: by repeatedly splitting equations and applying simplification steps, equations are rewritten until a solution is reached. When solving a conjunction of word equations in this way, the performance of the solver will depend considerably on the order in which equations are processed. In this work, the use of Graph Neural Networks (GNNs) for ranking word equations before and during the solving process is explored. For this, a novel graph-based representation for word equations is presented, preserving global information across conjuncts, enabling the GNN to have a holistic view during ranking. To handle the variable number of conjuncts, three approaches to adapt a multi-classification task to the problem of ranking equations are proposed. The training of the GNN is done with the help of minimum unsatisfiable subsets (MUSes) of word equations. The experimental results show that, compared to state-of-the-art string solvers, the new framework solves more problems in benchmarks where each variable appears at most once in each equation.
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Calibrating Graph Neural Networks with Wavelet-Aware Temperature Scaling
Graph Neural Networks (GNNs) have demonstrated strong predictive performance on relational data; however, their confidence estimates often misalign with actual predictive correctness, posing significant limitations for deployment in safety-critical settings. While existing graph-aware calibration methods seek to mitigate this limitation, they primarily depend on coarse one-hop statistics, such as neighbor-predicted confidence, or latent node embeddings, thereby neglecting the fine-grained structural heterogeneity inherent in graph topology. In this work, we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration framework that assigns node-specific temperatures based on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the scalability and topology sensitivity of graph wavelets to refine confidence estimates, all without necessitating model retraining or access to neighboring logits or predictions. Extensive evaluations across seven benchmark datasets with varying graph structures and two GNN backbones demonstrate that WATS achieves the lowest Expected Calibration Error (ECE) among all compared methods, outperforming both classical and graph-specific baselines by up to 42.3\% in ECE and reducing calibration variance by 17.24\% on average compared with graph-specific methods. Moreover, WATS remains computationally efficient, scaling well across graphs of diverse sizes and densities. Code will be released based on publication.
☆ BayesL: Towards a Logical Framework for Bayesian Networks
We introduce BayesL, a novel logical framework for specifying, querying, and verifying the behaviour of Bayesian networks (BNs). BayesL (pronounced "Basil") is a structured language that allows for the creation of queries over BNs. It facilitates versatile reasoning concerning causal and evidence-based relationships, and permits comprehensive what-if scenario evaluations without the need for manual modifications to the model.
☆ Multi-Timescale Hierarchical Reinforcement Learning for Unified Behavior and Control of Autonomous Driving
Reinforcement Learning (RL) is increasingly used in autonomous driving (AD) and shows clear advantages. However, most RL-based AD methods overlook policy structure design. An RL policy that only outputs short-timescale vehicle control commands results in fluctuating driving behavior due to fluctuations in network outputs, while one that only outputs long-timescale driving goals cannot achieve unified optimality of driving behavior and control. Therefore, we propose a multi-timescale hierarchical reinforcement learning approach. Our approach adopts a hierarchical policy structure, where high- and low-level RL policies are unified-trained to produce long-timescale motion guidance and short-timescale control commands, respectively. Therein, motion guidance is explicitly represented by hybrid actions to capture multimodal driving behaviors on structured road and support incremental low-level extend-state updates. Additionally, a hierarchical safety mechanism is designed to ensure multi-timescale safety. Evaluation in simulator-based and HighD dataset-based highway multi-lane scenarios demonstrates that our approach significantly improves AD performance, effectively increasing driving efficiency, action consistency and safety.
comment: 8 pages, Submitted to IEEE Robotics and Automation Letters
☆ Software Engineering for Large Language Models: Research Status, Challenges and the Road Ahead
The rapid advancement of large language models (LLMs) has redefined artificial intelligence (AI), pushing the boundaries of AI research and enabling unbounded possibilities for both academia and the industry. However, LLM development faces increasingly complex challenges throughout its lifecycle, yet no existing research systematically explores these challenges and solutions from the perspective of software engineering (SE) approaches. To fill the gap, we systematically analyze research status throughout the LLM development lifecycle, divided into six phases: requirements engineering, dataset construction, model development and enhancement, testing and evaluation, deployment and operations, and maintenance and evolution. We then conclude by identifying the key challenges for each phase and presenting potential research directions to address these challenges. In general, we provide valuable insights from an SE perspective to facilitate future advances in LLM development.
☆ AutoEvoEval: An Automated Framework for Evolving Close-Ended LLM Evaluation Data
Large language models (LLMs) have shown remarkable performance on various tasks, but existing evaluation benchmarks are often static and insufficient to fully assess their robustness and generalization in realistic scenarios. Prior work using evolutionary or adversarial data augmentation has improved evaluation diversity but lacks systematic control over perturbation types and multi-step complexity, limiting comprehensive robustness analysis. To address these gaps, we propose AutoEvoEval, an evolution-based evaluation framework for close-ended tasks such as multi-choice question answering. AutoEvoEval introduces 22 interpretable atomic evolution operations and supports multi-round compositions, enabling controlled generation of diverse, challenging, and realistic test samples. We conduct extensive experiments addressing four research questions on a broad set of open- and closed-source LLMs. Our results show that atomic operations cause an average accuracy drop of 7.283\%, with structure-disrupting or misleading semantic edits causing the largest declines. Model sensitivities vary significantly for the same perturbation, and combining multiple evolution steps amplifies adversarial effects by up to 52.932\%. These findings suggest current benchmarks may overestimate true model generalization and emphasize the need for evolution-aware robustness evaluation. Code and resources are available at: https://github.com/SYSUSELab/AutoEvoEval.
☆ Marker Gene Method : Identifying Stable Solutions in a Dynamic Environment
Competitive Co-evolutionary Algorithms (CCEAs) are often hampered by complex dynamics like intransitivity and the Red Queen effect, leading to unstable convergence. To counter these challenges, this paper introduces the Marker Gene Method (MGM), a framework that establishes stability by using a 'marker gene' as a dynamic benchmark and an adaptive weighting mechanism to balance exploration and exploitation. We provide rigorous mathematical proofs demonstrating that MGM creates strong attractors near Nash Equilibria within the Strictly Competitive Game framework. Empirically, MGM demonstrates its efficacy across a spectrum of challenges: it stabilizes the canonical Rock-Paper-Scissors game, significantly improves the performance of C-RMOEA/D on ZDT benchmarks, and, when augmented with a Memory Pool (MP) extension, it successfully tames the notoriously pathological Shapley Biased Game. This work presents a theoretically sound and empirically validated framework that substantially enhances the stability and robustness of CCEAs in complex competitive environments.
comment: Submitted to IEEE Transactions on Evolutionary Computation. 13 pages, 10 figures. Supplementary material is included
☆ System-Embedded Diffusion Bridge Models
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: Preprint
☆ PAC Bench: Do Foundation Models Understand Prerequisites for Executing Manipulation Policies?
Vision-Language Models (VLMs) are increasingly pivotal for generalist robot manipulation, enabling tasks such as physical reasoning, policy generation, and failure detection. However, their proficiency in these high-level applications often assumes a deep understanding of low-level physical prerequisites, a capability that remains largely unverified. For robots to perform actions reliably, they must comprehend intrinsic object properties (e.g., material, weight), action affordances (e.g., graspable, stackable), and physical constraints (e.g., stability, reachability, or an object's state, such as being closed). Despite the widespread use of VLMs in manipulation tasks, we argue that off-the-shelf models may lack this granular, physically grounded understanding, as such prerequisites are often overlooked during training. To address this critical gap, we introduce PAC Bench, a comprehensive benchmark designed to systematically evaluate VLMs on their understanding of core Properties, Affordances, and Constraints (PAC) from a task executability perspective. PAC Bench features a diverse dataset with over 30,000 annotations, comprising 673 real-world images (115 object classes, 15 property types, and 1 to 3 affordances defined per class), 100 real-world humanoid-view scenarios, and 120 unique simulated constraint scenarios across four tasks. Our evaluations reveal significant gaps in the ability of current VLMs to grasp fundamental physical concepts, highlighting limitations in their suitability for reliable robot manipulation and pointing to key areas for targeted research. PAC Bench also serves as a standardized benchmark for rigorously evaluating physical reasoning in VLMs and guiding the development of more robust, physically grounded models for robotic applications. Project Page: https://pacbench.github.io/
☆ When Small Guides Large: Cross-Model Co-Learning for Test-Time Adaptation
Test-time Adaptation (TTA) adapts a given model to testing domain data with potential domain shifts through online unsupervised learning, yielding impressive performance. However, to date, existing TTA methods primarily focus on single-model adaptation. In this work, we investigate an intriguing question: how does cross-model knowledge influence the TTA process? Our findings reveal that, in TTA's unsupervised online setting, each model can provide complementary, confident knowledge to the others, even when there are substantial differences in model size. For instance, a smaller model like MobileViT (10.6M parameters) can effectively guide a larger model like ViT-Base (86.6M parameters). In light of this, we propose COCA, a Cross-Model Co-Learning framework for TTA, which mainly consists of two main strategies. 1) Co-adaptation adaptively integrates complementary knowledge from other models throughout the TTA process, reducing individual model biases. 2) Self-adaptation enhances each model's unique strengths via unsupervised learning, enabling diverse adaptation to the target domain. Extensive experiments show that COCA, which can also serve as a plug-and-play module, significantly boosts existing SOTAs, on models with various sizes--including ResNets, ViTs, and Mobile-ViTs--via cross-model co-learned TTA. For example, with Mobile-ViT's guidance, COCA raises ViT-Base's average adaptation accuracy on ImageNet-C from 51.7% to 64.5%. The code is publicly available at https://github.com/ycarobot/COCA.
comment: 15 pages, 5 figures
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
☆ DABstep: Data Agent Benchmark for Multi-step Reasoning
We introduce DABstep, a novel benchmark for evaluating AI agents on realistic multi-step data analysis tasks. DABstep comprises over 450 real-world challenges derived from a financial analytics platform, requiring models to combine code-based data processing with contextual reasoning over heterogeneous documentation. Each task demands an iterative, multi-step problem-solving approach, testing capabilities in data manipulation, cross-referencing multiple sources, and precise result reporting. The benchmark provides a factoid-style answer format with automatic correctness checks for objective scoring at scale. We evaluate leading LLM-based agents, revealing a substantial performance gap: even the best agent achieves only 14.55% accuracy on the hardest tasks. We detail our benchmark's design, dataset composition, task formulation, evaluation protocol, report baseline results and analyze failure modes. DABstep is released with a public leaderboard and toolkit to accelerate research in autonomous data analysis.
comment: 13 pages, 5 figures
☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet and the dynamic CIFAR-DVS and DVS-GESTURE, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69\% accuracy gain and 4.16$\times$ lower bit budgets over the advanced baseline work on ImageNet. This work will be fully open-sourced.
☆ Attestable Audits: Verifiable AI Safety Benchmarks Using Trusted Execution Environments ICML 2024
Benchmarks are important measures to evaluate safety and compliance of AI models at scale. However, they typically do not offer verifiable results and lack confidentiality for model IP and benchmark datasets. We propose Attestable Audits, which run inside Trusted Execution Environments and enable users to verify interaction with a compliant AI model. Our work protects sensitive data even when model provider and auditor do not trust each other. This addresses verification challenges raised in recent AI governance frameworks. We build a prototype demonstrating feasibility on typical audit benchmarks against Llama-3.1.
comment: ICML 2024 Workshop TAIG
☆ A New Perspective On AI Safety Through Control Theory Methodologies
While artificial intelligence (AI) is advancing rapidly and mastering increasingly complex problems with astonishing performance, the safety assurance of such systems is a major concern. Particularly in the context of safety-critical, real-world cyber-physical systems, AI promises to achieve a new level of autonomy but is hampered by a lack of safety assurance. While data-driven control takes up recent developments in AI to improve control systems, control theory in general could be leveraged to improve AI safety. Therefore, this article outlines a new perspective on AI safety based on an interdisciplinary interpretation of the underlying data-generation process and the respective abstraction by AI systems in a system theory-inspired and system analysis-driven manner. In this context, the new perspective, also referred to as data control, aims to stimulate AI engineering to take advantage of existing safety analysis and assurance in an interdisciplinary way to drive the paradigm of data control. Following a top-down approach, a generic foundation for safety analysis and assurance is outlined at an abstract level that can be refined for specific AI systems and applications and is prepared for future innovation.
comment: Accepted to be published as part of the 2025 IEEE Open Journal of Intelligent Transportation Systems (OJ-ITS)
☆ Agent4S: The Transformation of Research Paradigms from the Perspective of Large Language Models
While AI for Science (AI4S) serves as an analytical tool in the current research paradigm, it doesn't solve its core inefficiency. We propose "Agent for Science" (Agent4S)-the use of LLM-driven agents to automate the entire research workflow-as the true Fifth Scientific Paradigm. This paper introduces a five-level classification for Agent4S, outlining a clear roadmap from simple task automation to fully autonomous, collaborative "AI Scientists." This framework defines the next revolutionary step in scientific discovery.
☆ PokéAI: A Goal-Generating, Battle-Optimizing Multi-agent System for Pokemon Red
We introduce Pok\'eAI, the first text-based, multi-agent large language model (LLM) framework designed to autonomously play and progress through Pok\'emon Red. Our system consists of three specialized agents-Planning, Execution, and Critique-each with its own memory bank, role, and skill set. The Planning Agent functions as the central brain, generating tasks to progress through the game. These tasks are then delegated to the Execution Agent, which carries them out within the game environment. Upon task completion, the Critique Agent evaluates the outcome to determine whether the objective was successfully achieved. Once verification is complete, control returns to the Planning Agent, forming a closed-loop decision-making system. As a preliminary step, we developed a battle module within the Execution Agent. Our results show that the battle AI achieves an average win rate of 80.8% across 50 wild encounters, only 6% lower than the performance of an experienced human player. Furthermore, we find that a model's battle performance correlates strongly with its LLM Arena score on language-related tasks, indicating a meaningful link between linguistic ability and strategic reasoning. Finally, our analysis of gameplay logs reveals that each LLM exhibits a unique playstyle, suggesting that individual models develop distinct strategic behaviors.
☆ Learning Modular Exponentiation with Transformers
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
☆ Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models
The output quality of large language models (LLMs) can be improved via "reasoning": generating segments of chain-of-thought (CoT) content to further condition the model prior to producing user-facing output. While these chains contain valuable information, they are verbose and lack explicit organization, making them tedious to review. Moreover, they lack opportunities for user feedback, such as to remove unwanted considerations, add desired ones, or clarify unclear assumptions. We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics and enables user review and modification. We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs. In a user study with 16 participants, we find that interactive reasoning in Hippo allows users to quickly identify and interrupt erroneous generations, efficiently steer the model towards customized responses, and better understand both model reasoning and model outputs. Our work contributes to a new paradigm that incorporates user oversight into LLM reasoning processes.
☆ HASD: Hierarchical Adaption for pathology Slide-level Domain-shift
Domain shift is a critical problem for pathology AI as pathology data is heavily influenced by center-specific conditions. Current pathology domain adaptation methods focus on image patches rather than WSI, thus failing to capture global WSI features required in typical clinical scenarios. In this work, we address the challenges of slide-level domain shift by proposing a Hierarchical Adaptation framework for Slide-level Domain-shift (HASD). HASD achieves multi-scale feature consistency and computationally efficient slide-level domain adaptation through two key components: (1) a hierarchical adaptation framework that integrates a Domain-level Alignment Solver for feature alignment, a Slide-level Geometric Invariance Regularization to preserve the morphological structure, and a Patch-level Attention Consistency Regularization to maintain local critical diagnostic cues; and (2) a prototype selection mechanism that reduces computational overhead. We validate our method on two slide-level tasks across five datasets, achieving a 4.1\% AUROC improvement in a Breast Cancer HER2 Grading cohort and a 3.9\% C-index gain in a UCEC survival prediction cohort. Our method provides a practical and reliable slide-level domain adaption solution for pathology institutions, minimizing both computational and annotation costs.
☆ QLPro: Automated Code Vulnerability Discovery via LLM and Static Code Analysis Integration
We introduce QLPro, a vulnerability detection framework that systematically integrates LLMs and static analysis tools to enable comprehensive vulnerability detection across entire open-source projects.We constructed a new dataset, JavaTest, comprising 10 open-source projects from GitHub with 62 confirmed vulnerabilities. CodeQL, a state-of-the-art static analysis tool, detected only 24 of these vulnerabilities while QLPro detected 41. Furthermore, QLPro discovered 6 previously unknown vulnerabilities, 2 of which have been confirmed as 0-days.
☆ VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.
☆ Unified Multimodal Understanding via Byte-Pair Visual Encoding
Multimodal large language models (MLLMs) have made significant progress in vision-language understanding, yet effectively aligning different modalities remains a fundamental challenge. We present a framework that unifies multimodal understanding by applying byte-pair encoding to visual tokens. Unlike conventional approaches that rely on modality-specific encoders, our method directly incorporates structural information into visual tokens, mirroring successful tokenization strategies in text-only language models. We introduce a priority-guided encoding scheme that considers both frequency and spatial consistency, coupled with a multi-stage training procedure based on curriculum-driven data composition. These enhancements enable the transformer model to better capture cross-modal relationships and reason with visual information. Comprehensive experiments demonstrate improved performance across diverse vision-language tasks. By bridging the gap between visual and textual representations, our approach contributes to the advancement of more capable and efficient multimodal foundation models.
☆ Towards Building Private LLMs: Exploring Multi-Node Expert Parallelism on Apple Silicon for Mixture-of-Experts Large Language Model
Large Language Models (LLMs) have revolutionized Artificial Intelligence (AI) with significant advancements such as OpenAI's ChatGPT, Meta's Llama, and Databricks' DBRX. This paper addresses the cost and scalability challenges encountered when constructing private LLM systems for personal or small group services, as aimed by Apple Intelligence. A Mac Studio cluster with Apple's M2 Ultra chips is established as a cost-efficient solution to host and accelerate the pretrained DBRX model with the Mixture-of-Experts (MoE) architecture. Our performance analysis reveal that parallel execution of the model's experts across two to four machine nodes significantly reduces inference time. We find that computation time for the experts is comparable to the communication time for exchanging their outputs, emphasizing the importance of network latency over bandwidth. We also observe significant management overhead due to Apple software stack's memory management logic. Based on these findings, we develop optimization schemes to eliminate the memory management overhead. As a result, the Mac Studio cluster is 1.15 times more cost-efficient than the state-of-the-art AI supercomputer with NVIDIA H100 GPUs. In addition, we construct a performance model to estimate system performance under varying configurations, and the model provides valuable insights for designing private LLM systems.
comment: International Conference on Research in Adaptive and Convergent Systems (RACS '24), November 5--8, 2024, Pompei, Italy
☆ gMBA: Expression Semantic Guided Mixed Boolean-Arithmetic Deobfuscation Using Transformer Architectures
Mixed Boolean-Arithmetic (MBA) obfuscation protects intellectual property by converting programs into forms that are more complex to analyze. However, MBA has been increasingly exploited by malware developers to evade detection and cause significant real-world problems. Traditional MBA deobfuscation methods often consider these expressions as part of a black box and overlook their internal semantic information. To bridge this gap, we propose a truth table, which is an automatically constructed semantic representation of an expression's behavior that does not rely on external resources. The truth table is a mathematical form that represents the output of expression for all possible combinations of input. We also propose a general and extensible guided MBA deobfuscation framework (gMBA) that modifies a Transformer-based neural encoder-decoder Seq2Seq architecture to incorporate this semantic guidance. Experimental results and in-depth analysis show that integrating expression semantics significantly improves performance and highlights the importance of internal semantic expressions in recovering obfuscated code to its original form.
☆ A Nonlinear Low-rank Representation Model with Convolutional Neural Network for Imputing Water Quality Data
The integrity of Water Quality Data (WQD) is critical in environmental monitoring for scientific decision-making and ecological protection. However, water quality monitoring systems are often challenged by large amounts of missing data due to unavoidable problems such as sensor failures and communication delays, which further lead to water quality data becoming High-Dimensional and Sparse (HDS). Traditional data imputation methods are difficult to depict the potential dynamics and fail to capture the deep data features, resulting in unsatisfactory imputation performance. To effectively address the above issues, this paper proposes a Nonlinear Low-rank Representation model (NLR) with Convolutional Neural Networks (CNN) for imputing missing WQD, which utilizes CNNs to implement two ideas: a) fusing temporal features to model the temporal dependence of data between time slots, and b) Extracting nonlinear interactions and local patterns to mine higher-order relationships features and achieve deep fusion of multidimensional information. Experimental studies on three real water quality datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art data imputation models in terms of estimation accuracy. It provides an effective approach for handling water quality monitoring data in complex dynamic environments.
comment: 7 pages, 2 figures, conference
☆ The Kubernetes Network Driver Model: A Composable Architecture for High-Performance Networking
Traditional Kubernetes networking struggles to meet the escalating demands of AI/ML and evolving Telco infrastructure. This paper introduces Kubernetes Network Drivers (KNDs), a transformative, modular, and declarative architecture designed to overcome current imperative provisioning and API limitations. KNDs integrate network resource management into Kubernetes' core by utilizing Dynamic Resource Allocation (DRA), Node Resource Interface (NRI) improvements, and upcoming OCI Runtime Specification changes. Our DraNet implementation demonstrates declarative attachment of network interfaces, including Remote Direct Memory Access (RDMA) devices, significantly boosting high-performance AI/ML workloads. This capability enables sophisticated cloud-native applications and lays crucial groundwork for future Telco solutions, fostering a "galaxy" of specialized KNDs for enhanced application delivery and reduced operational complexity.
comment: 6 pages, 9 figures, submitted to IEEE LCN Special Track on Cloud-AI-Native Mobile Networks Powered by eBPF (CAMe 2025)
☆ Self-correcting Reward Shaping via Language Models for Reinforcement Learning Agents in Games
Reinforcement Learning (RL) in games has gained significant momentum in recent years, enabling the creation of different agent behaviors that can transform a player's gaming experience. However, deploying RL agents in production environments presents two key challenges: (1) designing an effective reward function typically requires an RL expert, and (2) when a game's content or mechanics are modified, previously tuned reward weights may no longer be optimal. Towards the latter challenge, we propose an automated approach for iteratively fine-tuning an RL agent's reward function weights, based on a user-defined language based behavioral goal. A Language Model (LM) proposes updated weights at each iteration based on this target behavior and a summary of performance statistics from prior training rounds. This closed-loop process allows the LM to self-correct and refine its output over time, producing increasingly aligned behavior without the need for manual reward engineering. We evaluate our approach in a racing task and show that it consistently improves agent performance across iterations. The LM-guided agents show a significant increase in performance from $9\%$ to $74\%$ success rate in just one iteration. We compare our LM-guided tuning against a human expert's manual weight design in the racing task: by the final iteration, the LM-tuned agent achieved an $80\%$ success rate, and completed laps in an average of $855$ time steps, a competitive performance against the expert-tuned agent's peak $94\%$ success, and $850$ time steps.
comment: 16 pages in total, 10 pages of main paper, 5 figures
☆ AI-Generated Lecture Slides for Improving Slide Element Detection and Retrieval ICDAR 2025
Lecture slide element detection and retrieval are key problems in slide understanding. Training effective models for these tasks often depends on extensive manual annotation. However, annotating large volumes of lecture slides for supervised training is labor intensive and requires domain expertise. To address this, we propose a large language model (LLM)-guided synthetic lecture slide generation pipeline, SynLecSlideGen, which produces high-quality, coherent and realistic slides. We also create an evaluation benchmark, namely RealSlide by manually annotating 1,050 real lecture slides. To assess the utility of our synthetic slides, we perform few-shot transfer learning on real data using models pre-trained on them. Experimental results show that few-shot transfer learning with pretraining on synthetic slides significantly improves performance compared to training only on real data. This demonstrates that synthetic data can effectively compensate for limited labeled lecture slides. The code and resources of our work are publicly available on our project website: https://synslidegen.github.io/.
comment: 40 pages including supplementary, accepted at ICDAR 2025
☆ SoK: Semantic Privacy in Large Language Models
As Large Language Models (LLMs) are increasingly deployed in sensitive domains, traditional data privacy measures prove inadequate for protecting information that is implicit, contextual, or inferable - what we define as semantic privacy. This Systematization of Knowledge (SoK) introduces a lifecycle-centric framework to analyze how semantic privacy risks emerge across input processing, pretraining, fine-tuning, and alignment stages of LLMs. We categorize key attack vectors and assess how current defenses, such as differential privacy, embedding encryption, edge computing, and unlearning, address these threats. Our analysis reveals critical gaps in semantic-level protection, especially against contextual inference and latent representation leakage. We conclude by outlining open challenges, including quantifying semantic leakage, protecting multimodal inputs, balancing de-identification with generation quality, and ensuring transparency in privacy enforcement. This work aims to inform future research on designing robust, semantically aware privacy-preserving techniques for LLMs.
☆ Semantic-guided Diverse Decoding for Large Language Model
Diverse decoding of large language models is crucial for applications requiring multiple semantically distinct responses, yet existing methods primarily achieve lexical rather than semantic diversity. This limitation significantly constrains Best-of-N strategies, group-based reinforcement learning, and data synthesis. While temperature sampling and diverse beam search modify token distributions or apply n-gram penalties, they fail to ensure meaningful semantic differentiation. We introduce Semantic-guided Diverse Decoding (SemDiD), operating directly in embedding space that balances quality with diversity through three complementary mechanisms: orthogonal directional guidance, dynamic inter-group repulsion, and position-debiased probability assessment. SemDiD harmonizes these competing objectives using adaptive gain functions and constraint optimization, ensuring both quality thresholds and maximal semantic differentiation. Experiments show SemDiD consistently outperforms existing methods, improving Best-of-N coverage by 1.4-5.2% across diverse tasks and accelerating RLHF training convergence by 15% while increasing accuracy by up to 2.1%.
☆ When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series ICML 2025
Recently, forecasting future abnormal events has emerged as an important scenario to tackle real-world necessities. However, the solution of predicting specific future time points when anomalies will occur, known as Anomaly Prediction (AP), remains under-explored. Existing methods dealing with time series data fail in AP, focusing only on immediate anomalies or failing to provide precise predictions for future anomalies. To address the AP task, we propose a novel framework called Anomaly to Prompt (A2P), comprised of Anomaly-Aware Forecasting (AAF) and Synthetic Anomaly Prompting (SAP). To enable the forecasting model to forecast abnormal time points, we adopt a strategy to learn the relationships of anomalies. For the robust detection of anomalies, our proposed SAP introduces a learnable Anomaly Prompt Pool (APP) that simulates diverse anomaly patterns using signal adaptive prompt. Comprehensive experiments on multiple real-world datasets demonstrate the superiority of A2P over state-of-the-art methods, showcasing its ability to predict future anomalies. Our implementation code is available at https://github.com/KU-VGI/AP.
comment: 18 pages, 10 figures, 12 tables, ICML 2025
☆ Transition Matching: Scalable and Flexible Generative Modeling
Diffusion and flow matching models have significantly advanced media generation, yet their design space is well-explored, somewhat limiting further improvements. Concurrently, autoregressive (AR) models, particularly those generating continuous tokens, have emerged as a promising direction for unifying text and media generation. This paper introduces Transition Matching (TM), a novel discrete-time, continuous-state generative paradigm that unifies and advances both diffusion/flow models and continuous AR generation. TM decomposes complex generation tasks into simpler Markov transitions, allowing for expressive non-deterministic probability transition kernels and arbitrary non-continuous supervision processes, thereby unlocking new flexible design avenues. We explore these choices through three TM variants: (i) Difference Transition Matching (DTM), which generalizes flow matching to discrete-time by directly learning transition probabilities, yielding state-of-the-art image quality and text adherence as well as improved sampling efficiency. (ii) Autoregressive Transition Matching (ARTM) and (iii) Full History Transition Matching (FHTM) are partially and fully causal models, respectively, that generalize continuous AR methods. They achieve continuous causal AR generation quality comparable to non-causal approaches and potentially enable seamless integration with existing AR text generation techniques. Notably, FHTM is the first fully causal model to match or surpass the performance of flow-based methods on text-to-image task in continuous domains. We demonstrate these contributions through a rigorous large-scale comparison of TM variants and relevant baselines, maintaining a fixed architecture, training data, and hyperparameters.
☆ A Clinically-Grounded Two-Stage Framework for Renal CT Report Generation
Generating radiology reports from CT scans remains a complex task due to the nuanced nature of medical imaging and the variability in clinical documentation. In this study, we propose a two-stage framework for generating renal radiology reports from 2D CT slices. First, we extract structured abnormality features using a multi-task learning model trained to identify lesion attributes such as location, size, enhancement, and attenuation. These extracted features are subsequently combined with the corresponding CT image and fed into a fine-tuned vision-language model to generate natural language report sentences aligned with clinical findings. We conduct experiments on a curated dataset of renal CT studies with manually annotated sentence-slice-feature triplets and evaluate performance using both classification metrics and natural language generation metrics. Our results demonstrate that the proposed model outperforms random baselines across all abnormality types, and the generated reports capture key clinical content with reasonable textual accuracy. This exploratory work highlights the feasibility of modular, feature-informed report generation for renal imaging. Future efforts will focus on extending this pipeline to 3D CT volumes and further improving clinical fidelity in multimodal medical AI systems.
☆ PBCAT: Patch-based composite adversarial training against physically realizable attacks on object detection ICCV 2025
Object detection plays a crucial role in many security-sensitive applications. However, several recent studies have shown that object detectors can be easily fooled by physically realizable attacks, \eg, adversarial patches and recent adversarial textures, which pose realistic and urgent threats. Adversarial Training (AT) has been recognized as the most effective defense against adversarial attacks. While AT has been extensively studied in the $l_\infty$ attack settings on classification models, AT against physically realizable attacks on object detectors has received limited exploration. Early attempts are only performed to defend against adversarial patches, leaving AT against a wider range of physically realizable attacks under-explored. In this work, we consider defending against various physically realizable attacks with a unified AT method. We propose PBCAT, a novel Patch-Based Composite Adversarial Training strategy. PBCAT optimizes the model by incorporating the combination of small-area gradient-guided adversarial patches and imperceptible global adversarial perturbations covering the entire image. With these designs, PBCAT has the potential to defend against not only adversarial patches but also unseen physically realizable attacks such as adversarial textures. Extensive experiments in multiple settings demonstrated that PBCAT significantly improved robustness against various physically realizable attacks over state-of-the-art defense methods. Notably, it improved the detection accuracy by 29.7\% over previous defense methods under one recent adversarial texture attack.
comment: Accepted by ICCV 2025
☆ Evaluating Multi-Agent Defences Against Jailbreaking Attacks on Large Language Models
Recent advances in large language models (LLMs) have raised concerns about jailbreaking attacks, i.e., prompts that bypass safety mechanisms. This paper investigates the use of multi-agent LLM systems as a defence against such attacks. We evaluate three jailbreaking strategies, including the original AutoDefense attack and two from Deepleaps: BetterDan and JB. Reproducing the AutoDefense framework, we compare single-agent setups with two- and three-agent configurations. Our results show that multi-agent systems enhance resistance to jailbreaks, especially by reducing false negatives. However, its effectiveness varies by attack type, and it introduces trade-offs such as increased false positives and computational overhead. These findings point to the limitations of current automated defences and suggest directions for improving alignment robustness in future LLM systems.
comment: 26 pages, 1 figure
☆ Online Human Action Detection during Escorting
The deployment of robot assistants in large indoor spaces has seen significant growth, with escorting tasks becoming a key application. However, most current escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue. In crowded environments, this assumption often falls short, as individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly. As a result, conventional robotic systems are often unable to provide effective escorting services due to their limited understanding of human movement dynamics. To address these challenges, an effective escorting robot must continuously detect and interpret human actions during the escorting process and adjust its movement accordingly. However, there is currently no existing dataset designed specifically for human action detection in the context of escorting. Given that escorting often occurs in crowded environments, where other individuals may enter the robot's camera view, the robot also needs to identify the specific human it is escorting (the subject) before predicting their actions. Since no existing model performs both person re-identification and action prediction in real-time, we propose a novel neural network architecture that can accomplish both tasks. This enables the robot to adjust its speed dynamically based on the escortee's movements and seamlessly resume escorting after any disruption. In comparative evaluations against strong baselines, our system demonstrates superior efficiency and effectiveness, showcasing its potential to significantly improve robotic escorting services in complex, real-world scenarios.
comment: Accepted in IEEE RO-MAN '25
☆ MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.
comment: Technical report
☆ Tensor Train Quantum State Tomography using Compressed Sensing
Quantum state tomography (QST) is a fundamental technique for estimating the state of a quantum system from measured data and plays a crucial role in evaluating the performance of quantum devices. However, standard estimation methods become impractical due to the exponential growth of parameters in the state representation. In this work, we address this challenge by parameterizing the state using a low-rank block tensor train decomposition and demonstrate that our approach is both memory- and computationally efficient. This framework applies to a broad class of quantum states that can be well approximated by low-rank decompositions, including pure states, nearly pure states, and ground states of Hamiltonians.
comment: Accepted for publication in EUSIPCO 2025
☆ CooT: Learning to Coordinate In-Context with Coordination Transformers
Effective coordination among artificial agents in dynamic and uncertain environments remains a significant challenge in multi-agent systems. Existing approaches, such as self-play and population-based methods, either generalize poorly to unseen partners or require extensive training. To overcome these limitations, we propose Coordination Transformers (CooT), a novel in-context coordination framework that uses recent interaction histories to adapt to unseen partners rapidly. Unlike previous approaches that primarily aim to increase the diversity of training partners, CooT explicitly focuses on adapting to new partner behaviors by predicting actions aligned with observed partner interactions. Trained on interaction trajectories collected from diverse pairs of agents with complementary behaviors, CooT quickly learns effective coordination strategies without explicit supervision or fine-tuning. Evaluations on the Overcooked benchmark demonstrate that CooT significantly outperforms baseline methods in coordination tasks involving previously unseen partners. Human evaluations further confirm CooT as the most effective collaborative partner, while extensive ablations highlight its robustness, flexibility, and sensitivity to context in multi-agent scenarios.
comment: 23 pages, 10 tables, 8 figures
☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
☆ NEU-ESC: A Comprehensive Vietnamese dataset for Educational Sentiment analysis and topic Classification toward multitask learning
In the field of education, understanding students' opinions through their comments is crucial, especially in the Vietnamese language, where resources remain limited. Existing educational datasets often lack domain relevance and student slang. To address these gaps, we introduce NEU-ESC, a new Vietnamese dataset for Educational Sentiment Classification and Topic Classification, curated from university forums, which offers more samples, richer class diversity, longer texts, and broader vocabulary. In addition, we explore multitask learning using encoder-only language models (BERT), in which we showed that it achieves performance up to 83.7% and 79.8% accuracy for sentiment and topic classification tasks. We also benchmark our dataset and model with other datasets and models, including Large Language Models, and discuss these benchmarks. The dataset is publicly available at: https://huggingface.co/datasets/hung20gg/NEU-ESC.
☆ ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data
With the increasing interest in robotic synthesis in the context of organic chemistry, the automated extraction of chemical procedures from literature is critical. However, this task remains challenging due to the inherent ambiguity of chemical language and the high cost of human annotation required for developing reliable computer-aided extraction protocols. Here, we present ChemActor, a fully fine-tuned large language model (LLM), as a chemical executor to convert between unstructured experimental procedures and structured action sequences. We propose a sequential LLM-generated data framework to address the challenges of insufficient and low-quality annotated data. This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input. Additionally, we introduce a novel multi-round LLMs circle review metric, which reflects the model's advanced understanding of chemical experimental procedures. Extensive experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor, augmented by LLM-generated data, achieves state-of-the-art performance, outperforming the baseline model by 10%. The code is available at: https://github.com/Zhanghahah/ChemActor.
☆ Assessing GPTZero's Accuracy in Identifying AI vs. Human-Written Essays
As the use of AI tools by students has become more prevalent, instructors have started using AI detection tools like GPTZero and QuillBot to detect AI written text. However, the reliability of these detectors remains uncertain. In our study, we focused mostly on the success rate of GPTZero, the most-used AI detector, in identifying AI-generated texts based on different lengths of randomly submitted essays: short (40-100 word count), medium (100-350 word count), and long (350-800 word count). We gathered a data set consisting of twenty-eight AI-generated papers and fifty human-written papers. With this randomized essay data, papers were individually plugged into GPTZero and measured for percentage of AI generation and confidence. A vast majority of the AI-generated papers were detected accurately (ranging from 91-100% AI believed generation), while the human generated essays fluctuated; there were a handful of false positives. These findings suggest that although GPTZero is effective at detecting purely AI-generated content, its reliability in distinguishing human-authored texts is limited. Educators should therefore exercise caution when relying solely on AI detection tools.
☆ FedWSQ: Efficient Federated Learning with Weight Standardization and Distribution-Aware Non-Uniform Quantization
Federated learning (FL) often suffers from performance degradation due to key challenges such as data heterogeneity and communication constraints. To address these limitations, we present a novel FL framework called FedWSQ, which integrates weight standardization (WS) and the proposed distribution-aware non-uniform quantization (DANUQ). WS enhances FL performance by filtering out biased components in local updates during training, thereby improving the robustness of the model against data heterogeneity and unstable client participation. In addition, DANUQ minimizes quantization errors by leveraging the statistical properties of local model updates. As a result, FedWSQ significantly reduces communication overhead while maintaining superior model accuracy. Extensive experiments on FL benchmark datasets demonstrate that FedWSQ consistently outperforms existing FL methods across various challenging FL settings, including extreme data heterogeneity and ultra-low-bit communication scenarios.
☆ MGPRL: Distributed Multi-Gaussian Processes for Wi-Fi-based Multi-Robot Relative Localization in Large Indoor Environments IROS 2025
Relative localization is a crucial capability for multi-robot systems operating in GPS-denied environments. Existing approaches for multi-robot relative localization often depend on costly or short-range sensors like cameras and LiDARs. Consequently, these approaches face challenges such as high computational overhead (e.g., map merging) and difficulties in disjoint environments. To address this limitation, this paper introduces MGPRL, a novel distributed framework for multi-robot relative localization using convex-hull of multiple Wi-Fi access points (AP). To accomplish this, we employ co-regionalized multi-output Gaussian Processes for efficient Radio Signal Strength Indicator (RSSI) field prediction and perform uncertainty-aware multi-AP localization, which is further coupled with weighted convex hull-based alignment for robust relative pose estimation. Each robot predicts the RSSI field of the environment by an online scan of APs in its environment, which are utilized for position estimation of multiple APs. To perform relative localization, each robot aligns the convex hull of its predicted AP locations with that of the neighbor robots. This approach is well-suited for devices with limited computational resources and operates solely on widely available Wi-Fi RSSI measurements without necessitating any dedicated pre-calibration or offline fingerprinting. We rigorously evaluate the performance of the proposed MGPRL in ROS simulations and demonstrate it with real-world experiments, comparing it against multiple state-of-the-art approaches. The results showcase that MGPRL outperforms existing methods in terms of localization accuracy and computational efficiency. Finally, we open source MGPRL as a ROS package https://github.com/herolab-uga/MGPRL.
comment: Accepted to IROS 2025
☆ Reinforcement Fine-Tuning Enables MLLMs Learning Novel Tasks Stably
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on an open-source multimodal model, Qwen2.5-VL. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly on novel tasks but maintains prior knowledge. We analyze this phenomenon through the lens of learning dynamics, showing that RFT reinforces correct samples that are naturally aligned with the base model's probability landscape, mitigating interference with prior knowledge. Moreover, supervised training on correct RFT-simulated rollouts allows SFT to preserve knowledge while rapidly learning new tasks. These findings suggest that data distribution, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 18 pages (Preprint. Work in progress)
☆ Artificial Intelligence-assisted Pixel-level Lung (APL) Scoring for Fast and Accurate Quantification in Ultra-short Echo-time MRI
Lung magnetic resonance imaging (MRI) with ultrashort echo-time (UTE) represents a recent breakthrough in lung structure imaging, providing image resolution and quality comparable to computed tomography (CT). Due to the absence of ionising radiation, MRI is often preferred over CT in paediatric diseases such as cystic fibrosis (CF), one of the most common genetic disorders in Caucasians. To assess structural lung damage in CF imaging, CT scoring systems provide valuable quantitative insights for disease diagnosis and progression. However, few quantitative scoring systems are available in structural lung MRI (e.g., UTE-MRI). To provide fast and accurate quantification in lung MRI, we investigated the feasibility of novel Artificial intelligence-assisted Pixel-level Lung (APL) scoring for CF. APL scoring consists of 5 stages, including 1) image loading, 2) AI lung segmentation, 3) lung-bounded slice sampling, 4) pixel-level annotation, and 5) quantification and reporting. The results shows that our APL scoring took 8.2 minutes per subject, which was more than twice as fast as the previous grid-level scoring. Additionally, our pixel-level scoring was statistically more accurate (p=0.021), while strongly correlating with grid-level scoring (R=0.973, p=5.85e-9). This tool has great potential to streamline the workflow of UTE lung MRI in clinical settings, and be extended to other structural lung MRI sequences (e.g., BLADE MRI), and for other lung diseases (e.g., bronchopulmonary dysplasia).
comment: Oral presentation in ISMRM2025
☆ Hybrid Approach for Electricity Price Forecasting using AlexNet and LSTM
The recent development of advanced machine learning methods for hybrid models has greatly addressed the need for the correct prediction of electrical prices. This method combines AlexNet and LSTM algorithms, which are used to introduce a new model with higher accuracy in price forecasting. Despite RNN and ANN being effective, they often fail to deal with forex time sequence data. The traditional methods do not accurately forecast the prices. These traditional methods only focus on demand and price which leads to insufficient analysis of data. To address this issue, using the hybrid approach, which focuses on external variables that also effect the predicted prices. Nevertheless, due to AlexNet's excellent feature extraction and LSTM's learning sequential patterns, the prediction accuracy is vastly increased. The model is built on the past data, which has been supplied with the most significant elements like demand, temperature, sunlight, and rain. For example, the model applies methods, such as minimum-maximum scaling and a time window, to predict the electricity prices of the future. The results show that this hybrid model is good than the standalone ones in terms of accuracy. Although we got our accuracy rating of 97.08, it shows higher accompaniments than remaining models RNN and ANN with accuracies of 96.64 and 96.63 respectively.
comment: 6 Pages, 7 Figures
☆ Data Augmentation for Cognitive Behavioral Therapy: Leveraging ERNIE Language Models using Artificial Intelligence
Cognitive Behavioral Therapy (CBT) is a proven approach for addressing the irrational thought patterns associated with mental health disorders, but its effectiveness relies on accurately identifying cognitive pathways to provide targeted treatment. In today's digital age, individuals often express negative emotions on social media, where they may reveal cognitive distortions, and in severe cases, exhibit suicidal tendencies. However, there is a significant gap in methodologies designed to analyze these cognitive pathways, which could be critical for psychotherapists aiming to deliver timely and effective interventions in online environments. Cognitive Behavioral Therapy (CBT) framework leveraging acceptance, commitment and data augmentation to categorize and address both textual and visual content as positive or negative. Specifically, the system employs BERT, RoBERTa for Sentiment Analysis and T5, PEGASUS for Text Summarization, mT5 for Text Translation in Multiple Languages focusing on detecting negative emotions and cognitive distortions within social media data. While existing models are primarily designed to identify negative thoughts, the proposed system goes beyond this by predicting additional negative side effects and other potential mental health disorders likes Phobias, Eating Disorders. This enhancement allows for a more comprehensive understanding and intervention strategy, offering psychotherapists a powerful tool for early detection and treatment of various psychological issues.
comment: 6 Pages, 5 Figures, IEEE IDCIoT 2025
☆ Sample Margin-Aware Recalibration of Temperature Scaling
Recent advances in deep learning have significantly improved predictive accuracy. However, modern neural networks remain systematically overconfident, posing risks for deployment in safety-critical scenarios. Current post-hoc calibration methods face a fundamental dilemma: global approaches like Temperature Scaling apply uniform adjustments across all samples, introducing high bias despite computational efficiency, while more expressive methods that operate on full logit distributions suffer from high variance due to noisy high-dimensional inputs and insufficient validation data. To address these challenges, we propose Sample Margin-Aware Recalibration of Temperature (SMART), a lightweight, data-efficient recalibration method that precisely scales logits based on the margin between the top two logits -- termed the logit gap. Specifically, the logit gap serves as a denoised, scalar signal directly tied to decision boundary uncertainty, providing a robust indicator that avoids the noise inherent in high-dimensional logit spaces while preserving model prediction invariance. Meanwhile, SMART employs a novel soft-binned Expected Calibration Error (SoftECE) objective that balances model bias and variance through adaptive binning, enabling stable parameter updates even with extremely limited calibration data. Extensive evaluations across diverse datasets and architectures demonstrate that SMART achieves state-of-the-art calibration performance even with substantially fewer parameters compared to existing parametric methods, offering a principled, robust, and highly efficient solution for practical uncertainty quantification in neural network predictions. The source code is available at: https://anonymous.4open.science/r/SMART-8B11.
☆ Qwen-GUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces Qwen-GUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, Qwen-GUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights Qwen-GUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The Qwen-GUI-3B is available at: https://github.com/Han1018/Qwen-GUI-3B
☆ UltraTwin: Towards Cardiac Anatomical Twin Generation from Multi-view 2D Ultrasound
Echocardiography is routine for cardiac examination. However, 2D ultrasound (US) struggles with accurate metric calculation and direct observation of 3D cardiac structures. Moreover, 3D US is limited by low resolution, small field of view and scarce availability in practice. Constructing the cardiac anatomical twin from 2D images is promising to provide precise treatment planning and clinical quantification. However, it remains challenging due to the rare paired data, complex structures, and US noises. In this study, we introduce a novel generative framework UltraTwin, to obtain cardiac anatomical twin from sparse multi-view 2D US. Our contribution is three-fold. First, pioneered the construction of a real-world and high-quality dataset containing strictly paired multi-view 2D US and CT, and pseudo-paired data. Second, we propose a coarse-to-fine scheme to achieve hierarchical reconstruction optimization. Last, we introduce an implicit autoencoder for topology-aware constraints. Extensive experiments show that UltraTwin reconstructs high-quality anatomical twins versus strong competitors. We believe it advances anatomical twin modeling for potential applications in personalized cardiac care.
comment: accepted by miccai 2025
☆ Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.
♻ ☆ GLIMPSE: Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation for Generative LVLMs
Recent progress in large vision-language models (LVLMs) has advanced the state of the art in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention while generating free-form responses remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals supporting open-ended VQA. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior interpretability methods and pushing the state-of-the-art in human-alignment. We demonstrate an analytic explainable AI (XAI) approach using GLIMPSE to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic human-attention misalignment, diagnose hallucination, expose bias, and ensure transparency.
♻ ☆ Trust & Safety of LLMs and LLMs in Trust & Safety
In recent years, Large Language Models (LLMs) have garnered considerable attention for their remarkable abilities in natural language processing tasks. However, their widespread adoption has raised concerns pertaining to trust and safety. This systematic review investigates the current research landscape on trust and safety in LLMs, with a particular focus on the novel application of LLMs within the field of Trust and Safety itself. We delve into the complexities of utilizing LLMs in domains where maintaining trust and safety is paramount, offering a consolidated perspective on this emerging trend.\ By synthesizing findings from various studies, we identify key challenges and potential solutions, aiming to benefit researchers and practitioners seeking to understand the nuanced interplay between LLMs and Trust and Safety. This review provides insights on best practices for using LLMs in Trust and Safety, and explores emerging risks such as prompt injection and jailbreak attacks. Ultimately, this study contributes to a deeper understanding of how LLMs can be effectively and responsibly utilized to enhance trust and safety in the digital realm.
comment: 11 pages
♻ ☆ Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing SIGIR 2025
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ INSIGHT: Bridging the Student-Teacher Gap in Times of Large Language Models
The rise of AI, especially Large Language Models, presents challenges and opportunities to integrate such technology into the classroom. AI has the potential to revolutionize education by helping teaching staff with various tasks, such as personalizing their teaching methods, but it also raises concerns, for example, about the degradation of student-teacher interactions and user privacy. Based on interviews with teaching staff, this paper introduces INSIGHT, a proof of concept to combine various AI tools to assist teaching staff and students in the process of solving exercises. INSIGHT has a modular design that allows it to be integrated into various higher education courses. We analyze students' questions to an LLM by extracting keywords, which we use to dynamically build an FAQ from students' questions and provide new insights for the teaching staff to use for more personalized face-to-face support. Future work could build upon INSIGHT by using the collected data to provide adaptive learning and adjust content based on student progress and learning styles to offer a more interactive and inclusive learning experience.
comment: Accepted author version for the D-SAIL Workshop - Transformative Curriculum Design: Digitalisation, Sustainability, and AI Literacy for 21st Century Learning, July 22, 2025, Palermo, Italy
♻ ☆ KMI: A Dataset of Korean Motivational Interviewing Dialogues for Psychotherapy NAACL 2025
The increasing demand for mental health services has led to the rise of AI-driven mental health chatbots, though challenges related to privacy, data collection, and expertise persist. Motivational Interviewing (MI) is gaining attention as a theoretical basis for boosting expertise in the development of these chatbots. However, existing datasets are showing limitations for training chatbots, leading to a substantial demand for publicly available resources in the field of MI and psychotherapy. These challenges are even more pronounced in non-English languages, where they receive less attention. In this paper, we propose a novel framework that simulates MI sessions enriched with the expertise of professional therapists. We train an MI forecaster model that mimics the behavioral choices of professional therapists and employ Large Language Models (LLMs) to generate utterances through prompt engineering. Then, we present KMI, the first synthetic dataset theoretically grounded in MI, containing 1,000 high-quality Korean Motivational Interviewing dialogues. Through an extensive expert evaluation of the generated dataset and the dialogue model trained on it, we demonstrate the quality, expertise, and practicality of KMI. We also introduce novel metrics derived from MI theory in order to evaluate dialogues from the perspective of MI.
comment: Accepted at NAACL 2025 Main Conference
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Ego-Foresight: Self-supervised Learning of Agent-Aware Representations for Improved RL
Despite the significant advancements in Deep Reinforcement Learning (RL) observed in the last decade, the amount of training experience necessary to learn effective policies remains one of the primary concerns both in simulated and real environments. Looking to solve this issue, previous work has shown that improved training efficiency can be achieved by separately modeling agent and environment, but usually requiring a supervisory agent mask. In contrast to RL, humans can perfect a new skill from a small number of trials and in most cases do so without a supervisory signal, making neuroscientific studies of human development a valuable source of inspiration for RL. In particular, we explore the idea of motor prediction, which states that humans develop an internal model of themselves and of the consequences that their motor commands have on the immediate sensory inputs. Our insight is that the movement of the agent provides a cue that allows the duality between agent and environment to be learned. To instantiate this idea, we present Ego-Foresight, a self-supervised method for disentangling agent and environment based on motion and prediction. Our main finding is self-supervised agent-awareness by visuomotor prediction of the agent improves sample-efficiency and performance of the underlying RL algorithm. To test our approach, we first study its ability to visually predict agent movement irrespective of the environment, in simulated and real-world robotic data. Then, we integrate Ego-Foresight with a model-free RL algorithm to solve simulated robotic tasks, showing that self-supervised agent-awareness can improve sample-efficiency and performance in RL.
comment: 13 pages, 8 figures, conference
♻ ☆ Empirical evidence of Large Language Model's influence on human spoken communication
From the invention of writing and the printing press, to television and social media, human history is punctuated by major innovations in communication technology, which fundamentally altered how ideas spread and reshaped our culture. Recent chatbots powered by generative artificial intelligence constitute a novel medium that encodes cultural patterns in their neural representations and disseminates them in conversations with hundreds of millions of people. Understanding whether these patterns transmit into human language, and ultimately shape human culture, is a fundamental question. While fully quantifying the causal impact of a chatbot like ChatGPT on human culture is very challenging, lexicographic shift in human spoken communication may offer an early indicator of such broad phenomenon. Here, we apply econometric causal inference techniques to 740,249 hours of human discourse from 360,445 YouTube academic talks and 771,591 conversational podcast episodes across multiple disciplines. We detect a measurable and abrupt increase in the use of words preferentially generated by ChatGPT, such as delve, comprehend, boast, swift, and meticulous, after its release. These findings suggest a scenario where machines, originally trained on human data and subsequently exhibiting their own cultural traits, can, in turn, measurably reshape human culture. This marks the beginning of a closed cultural feedback loop in which cultural traits circulate bidirectionally between humans and machines. Our results motivate further research into the evolution of human-machine culture, and raise concerns over the erosion of linguistic and cultural diversity, and the risks of scalable manipulation.
♻ ☆ Adaptive Domain Modeling with Language Models: A Multi-Agent Approach to Task Planning
We introduce TAPAS (Task-based Adaptation and Planning using AgentS), a multi-agent framework that integrates Large Language Models (LLMs) with symbolic planning to solve complex tasks without the need for manually defined environment models. TAPAS employs specialized LLM-based agents that collaboratively generate and adapt domain models, initial states, and goal specifications as needed using structured tool-calling mechanisms. Through this tool-based interaction, downstream agents can request modifications from upstream agents, enabling adaptation to novel attributes and constraints without manual domain redefinition. A ReAct (Reason+Act)-style execution agent, coupled with natural language plan translation, bridges the gap between dynamically generated plans and real-world robot capabilities. TAPAS demonstrates strong performance in benchmark planning domains and in the VirtualHome simulated real-world environment.
comment: Accepted at IEEE CASE 2025, 8 pages, 8 figures
♻ ☆ Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models ICML 2025
Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
comment: Published at the Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Green AI in Action: Strategic Model Selection for Ensembles in Production
Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their capabilities while escalating energy demands. Ensemble learning, combining predictions from multiple models to form a single prediction, intensifies this problem due to cumulative energy consumption. This paper presents a novel approach to model selection that addresses the challenge of balancing the accuracy of AI models with their energy consumption in a live AI ensemble system. We explore how reducing the number of models or improving the efficiency of model usage within an ensemble during inference can reduce energy demands without substantially sacrificing accuracy. This study introduces and evaluates two model selection strategies, Static and Dynamic, for optimizing ensemble learning systems performance while minimizing energy usage. Our results demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further enhances F1 scores, using on average 76% compared to 100% of the full ensemble. Moreover, we propose an approach that balances accuracy with resource consumption, significantly reducing energy usage without substantially impacting accuracy. This method decreased the average energy usage of the Static strategy from approximately 62% to 14%, and for the Dynamic strategy, from around 76% to 57%. Our field study of Green AI using an operational AI system developed by a large professional services provider shows the practical applicability of adopting energy-conscious model selection strategies in live production environments.
comment: 10 pages. Accepted at the 1st ACM International Conference on AI-powered Software (AIware), 2024
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ WATCHDOG: an ontology-aWare risk AssessmenT approaCH via object-oriented DisruptiOn Graphs
When considering risky events or actions, we must not downplay the role of involved objects: a charged battery in our phone averts the risk of being stranded in the desert after a flat tyre, and a functional firewall mitigates the risk of a hacker intruding the network. The Common Ontology of Value and Risk (COVER) highlights how the role of objects and their relationships remains pivotal to performing transparent, complete and accountable risk assessment. In this paper, we operationalize some of the notions proposed by COVER -- such as parthood between objects and participation of objects in events/actions -- by presenting a new framework for risk assessment: WATCHDOG. WATCHDOG enriches the expressivity of vetted formal models for risk -- i.e., fault trees and attack trees -- by bridging the disciplines of ontology and formal methods into an ontology-aware formal framework composed by a more expressive modelling formalism, Object-Oriented Disruption Graphs (DOGs), logic (DOGLog) and an intermediate query language (DOGLang). With these, WATCHDOG allows risk assessors to pose questions about disruption propagation, disruption likelihood and risk levels, keeping the fundamental role of objects at risk always in sight.
♻ ☆ Mathematical Reasoning for Unmanned Aerial Vehicles: A RAG-Based Approach for Complex Arithmetic Reasoning
Autonomous UAV operation necessitates reliable mathematical reasoning for tasks such as trajectory planning and power management. While traditional flight control relies on hardcoded equations, recent Large Language Models (LLMs) offer potential for more flexible problem-solving but struggle with reliably selecting and applying correct mathematical formulations and executing precise multi-step arithmetic. We propose RAG-UAV, a retrieval-augmented generation framework designed to improve the mathematical reasoning of several LLMs (including GPT o1/Turbo, Llama-3.2/3.3, Mistral, and DeepSeek R1) in UAV-specific contexts by providing access to relevant domain literature. To conduct an initial assessment, we introduce the UAV-Math-Bench, a 20-question problem set of UAV-centric mathematical problems across four difficulty levels. Our experiments demonstrate that incorporating retrieval substantially increases exact answer accuracy (achieving up to 75% with o1), reduces instances of incorrect formulation selection (from 25% without RAG to 5\% with RAG), and decreases numerical errors, reducing Mean Squared Error (MSE) by orders of magnitude for the best-performing models. This pilot study indicates that RAG can enable general-purpose LLMs to function as more reliable tools for engineering analysis, although direct real-time flight control requires further investigation and validation on a larger scale. All benchmark data, questions, and answers are publicly available.
comment: 15 pages, 7 figures, 4 appendix subsections
♻ ☆ A General Framework on Conditions for Constraint-based Causal Learning
Most constraint-based causal learning algorithms provably return the correct causal graph under certain correctness conditions, such as faithfulness. By representing any constraint-based causal learning algorithm using the notion of a property, we provide a general framework to obtain and study correctness conditions for these algorithms. From the framework, we provide exact correctness conditions for the PC algorithm, which are then related to the correctness conditions of some other existing causal discovery algorithms. The framework also suggests a paradigm for designing causal learning algorithms which allows for the correctness conditions of algorithms to be controlled for before designing the actual algorithm, and has the following implications. We show that the sparsest Markov representation condition is the weakest correctness condition for algorithms that output ancestral graphs or directed acyclic graphs satisfying any existing notions of minimality. We also reason that Pearl-minimality is necessary for meaningful causal learning but not sufficient to relax the faithfulness condition and, as such, has to be strengthened, such as by including background knowledge, for causal learning beyond faithfulness.
♻ ☆ Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective
Machines that can replicate human intelligence with type 2 reasoning capabilities should be able to reason at multiple levels of spatio-temporal abstractions and scales using internal world models. Devising formalisms to develop such internal world models, which accurately reflect the causal hierarchies inherent in the dynamics of the real world, is a critical research challenge in the domains of artificial intelligence and machine learning. This thesis identifies several limitations with the prevalent use of state space models (SSMs) as internal world models and propose two new probabilistic formalisms namely Hidden-Parameter SSMs and Multi-Time Scale SSMs to address these drawbacks. The structure of graphical models in both formalisms facilitates scalable exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time. This approach permits the development of scalable, adaptive hierarchical world models capable of representing nonstationary dynamics across multiple temporal abstractions and scales. Moreover, these probabilistic formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the stochastic nature of the real world and quantify the confidence in its predictions. The thesis also discuss how these formalisms are in line with related neuroscience literature on Bayesian brain hypothesis and predicitive processing. Our experiments on various real and simulated robots demonstrate that our formalisms can match and in many cases exceed the performance of contemporary transformer variants in making long-range future predictions. We conclude the thesis by reflecting on the limitations of our current models and suggesting directions for future research.
comment: Doctoral Dissertation, Department of Computer Science, Karlsruhe Institute Of Technology, 2024
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, 2 figures, 6 tables, revised and re-submitted to an IEEE journal
♻ ☆ HyperMono: A Monotonicity-aware Approach to Hyper-Relational Knowledge Representation
In a hyper-relational knowledge graph (HKG), each fact is composed of a main triple associated with attribute-value qualifiers, which express additional factual knowledge. The hyper-relational knowledge graph completion (HKGC) task aims at inferring plausible missing links in a HKG. Most existing approaches to HKGC focus on enhancing the communication between qualifier pairs and main triples, while overlooking two important properties that emerge from the monotonicity of the hyper-relational graphs representation regime. Stage Reasoning allows for a two-step reasoning process, facilitating the integration of coarse-grained inference results derived solely from main triples and fine-grained inference results obtained from hyper-relational facts with qualifiers. In the initial stage, coarse-grained results provide an upper bound for correct predictions, which are subsequently refined in the fine-grained step. More generally, Qualifier Monotonicity implies that by attaching more qualifier pairs to a main triple, we may only narrow down the answer set, but never enlarge it. This paper proposes the HyperMono model for hyper-relational knowledge graph completion, which realizes stage reasoning and qualifier monotonicity. To implement qualifier monotonicity HyperMono resorts to cone embeddings. Experiments on three real-world datasets with three different scenario conditions demonstrate the strong performance of HyperMono when compared to the SoTA.
♻ ☆ Quantum computing and artificial intelligence: status and perspectives
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.
comment: 33 pages, 3 figures
♻ ☆ Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.
comment: Manuscript accepted by Data Mining and Knowledge Discovery for publication (June 2025). This is the final revised version
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ A Consequentialist Critique of Binary Classification Evaluation Practices
ML-supported decisions, such as ordering tests or determining preventive custody, often involve binary classification based on probabilistic forecasts. Evaluation frameworks for such forecasts typically consider whether to prioritize independent-decision metrics (e.g., Accuracy) or top-K metrics (e.g., Precision@K), and whether to focus on fixed thresholds or threshold-agnostic measures like AUC-ROC. We highlight that a consequentialist perspective, long advocated by decision theorists, should naturally favor evaluations that support independent decisions using a mixture of thresholds given their prevalence, such as Brier scores and Log loss. However, our empirical analysis reveals a strong preference for top-K metrics or fixed thresholds in evaluations at major conferences like ICML, FAccT, and CHIL. To address this gap, we use this decision-theoretic framework to map evaluation metrics to their optimal use cases, along with a Python package, briertools, to promote the broader adoption of Brier scores. In doing so, we also uncover new theoretical connections, including a reconciliation between the Brier Score and Decision Curve Analysis, which clarifies and responds to a longstanding critique by (Assel, et al. 2017) regarding the clinical utility of proper scoring rules.
♻ ☆ Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Machine learning-based decision support systems are increasingly deployed in clinical settings, where probabilistic scoring functions are used to inform and prioritize patient management decisions. However, widely used scoring rules, such as accuracy and AUC-ROC, fail to adequately reflect key clinical priorities, including calibration, robustness to distributional shifts, and sensitivity to asymmetric error costs. In this work, we propose a principled yet practical evaluation framework for selecting calibrated thresholded classifiers that explicitly accounts for the uncertainty in class prevalences and domain-specific cost asymmetries often found in clinical settings. Building on the theory of proper scoring rules, particularly the Schervish representation, we derive an adjusted variant of cross-entropy (log score) that averages cost-weighted performance over clinically relevant ranges of class balance. The resulting evaluation is simple to apply, sensitive to clinical deployment conditions, and designed to prioritize models that are both calibrated and robust to real-world variations.
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Value-Free Policy Optimization via Reward Partitioning
Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ StepProof: Step-by-step verification of natural language mathematical proofs
Interactive theorem provers (ITPs) are powerful tools for the formal verification of mathematical proofs down to the axiom level. However, their lack of a natural language interface remains a significant limitation. Recent advancements in large language models (LLMs) have enhanced the understanding of natural language inputs, paving the way for autoformalization - the process of translating natural language proofs into formal proofs that can be verified. Despite these advancements, existing autoformalization approaches are limited to verifying complete proofs and lack the capability for finer, sentence-level verification. To address this gap, we propose StepProof, a novel autoformalization method designed for granular, step-by-step verification. StepProof breaks down complete proofs into multiple verifiable subproofs, enabling sentence-level verification. Experimental results demonstrate that StepProof significantly improves proof success rates and efficiency compared to traditional methods. Additionally, we found that minor manual adjustments to the natural language proofs, tailoring them for step-level verification, further enhanced StepProof's performance in autoformalization.
♻ ☆ Cluster and Predict Latent Patches for Improved Masked Image Modeling
Masked Image Modeling (MIM) offers a promising approach to self-supervised representation learning, however existing MIM models still lag behind the state-of-the-art. In this paper, we systematically analyze target representations, loss functions, and architectures, to introduce CAPI - a novel pure-MIM framework that relies on the prediction of latent clusterings. Our approach leverages a clustering-based loss, which is stable to train, and exhibits promising scaling properties. Our ViT-L backbone, CAPI, achieves 83.8% accuracy on ImageNet and 32.1% mIoU on ADE20K with simple linear probes, substantially outperforming previous MIM methods and approaching the performance of the current state-of-the-art, DINOv2. We release all our code and models.
comment: 26 pages, 14 figures, accepted in TMLR 2025
♻ ☆ Error Optimization: Overcoming Exponential Signal Decay in Deep Predictive Coding Networks
Predictive Coding (PC) offers a biologically plausible alternative to backpropagation for neural network training, yet struggles with deeper architectures. This paper identifies the root cause: an inherent signal decay problem where gradients attenuate exponentially with depth, becoming computationally negligible due to numerical precision constraints. To address this fundamental limitation, we introduce Error Optimization (EO), a novel reparameterization that preserves PC's theoretical properties while eliminating signal decay. By optimizing over prediction errors rather than states, EO enables signals to reach all layers simultaneously and without attenuation, converging orders of magnitude faster than standard PC. Experiments across multiple architectures and datasets demonstrate that EO matches backpropagation's performance even for deeper models where conventional PC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling biologically-inspired learning to deeper architectures on digital hardware and beyond.
comment: All code available at https://github.com/cgoemaere/pc_error_optimization
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects ICML 2025
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available at: $\href{https://t2m4lvo.github.io}{https://t2m4lvo.github.io}$.
comment: Accepted to ICML 2025
♻ ☆ BIMgent: Towards Autonomous Building Modeling via Computer-use Agents ICML 2025
Existing computer-use agents primarily focus on general-purpose desktop automation tasks, with limited exploration of their application in highly specialized domains. In particular, the 3D building modeling process in the Architecture, Engineering, and Construction (AEC) sector involves open-ended design tasks and complex interaction patterns within Building Information Modeling (BIM) authoring software, which has yet to be thoroughly addressed by current studies. In this paper, we propose BIMgent, an agentic framework powered by multimodal large language models (LLMs), designed to enable autonomous building model authoring via graphical user interface (GUI) operations. BIMgent automates the architectural building modeling process, including multimodal input for conceptual design, planning of software-specific workflows, and efficient execution of the authoring GUI actions. We evaluate BIMgent on real-world building modeling tasks, including both text-based conceptual design generation and reconstruction from existing building design. The design quality achieved by BIMgent was found to be reasonable. Its operations achieved a 32% success rate, whereas all baseline models failed to complete the tasks (0% success rate). Results demonstrate that BIMgent effectively reduces manual workload while preserving design intent, highlighting its potential for practical deployment in real-world architectural modeling scenarios. Project page: https://tumcms.github.io/BIMgent.github.io/
comment: ICML 2025 Workshop on Computer Use Agents
♻ ☆ TinyAlign: Boosting Lightweight Vision-Language Models by Mitigating Modal Alignment Bottlenecks
Lightweight Vision-Language Models (VLMs) are indispensable for resource-constrained applications. The prevailing approach to aligning vision and language models involves freezing both the vision encoder and the language model while training small connector modules. However, this strategy heavily depends on the intrinsic capabilities of the language model, which can be suboptimal for lightweight models with limited representational capacity. In this work, we investigate this alignment bottleneck through the lens of mutual information, demonstrating that the constrained capacity of the language model inherently limits the Effective Mutual Information (EMI) between multimodal inputs and outputs, thereby compromising alignment quality. To address this challenge, we propose TinyAlign, a novel framework inspired by Retrieval-Augmented Generation, which strategically retrieves relevant context from a memory bank to enrich multimodal inputs and enhance their alignment. Extensive empirical evaluations reveal that TinyAlign significantly reduces training loss, accelerates convergence, and enhances task performance. Remarkably, it allows models to achieve baseline-level performance with only 40\% of the fine-tuning data, highlighting exceptional data efficiency. Our work thus offers a practical pathway for developing more capable lightweight VLMs while introducing a fresh theoretical lens to better understand and address alignment bottlenecks in constrained multimodal systems.
♻ ☆ HalCECE: A Framework for Explainable Hallucination Detection through Conceptual Counterfactuals in Image Captioning
In the dynamic landscape of artificial intelligence, the exploration of hallucinations within vision-language (VL) models emerges as a critical frontier. This work delves into the intricacies of hallucinatory phenomena exhibited by widely used image captioners, unraveling interesting patterns. Specifically, we step upon previously introduced techniques of conceptual counterfactual explanations to address VL hallucinations. The deterministic and efficient nature of the employed conceptual counterfactuals backbone is able to suggest semantically minimal edits driven by hierarchical knowledge, so that the transition from a hallucinated caption to a non-hallucinated one is performed in a black-box manner. HalCECE, our proposed hallucination detection framework is highly interpretable, by providing semantically meaningful edits apart from standalone numbers, while the hierarchical decomposition of hallucinated concepts leads to a thorough hallucination analysis. Another novelty tied to the current work is the investigation of role hallucinations, being one of the first works to involve interconnections between visual concepts in hallucination detection. Overall, HalCECE recommends an explainable direction to the crucial field of VL hallucination detection, thus fostering trustworthy evaluation of current and future VL systems.
♻ ☆ ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining
The development of AI-assisted chemical synthesis tools requires comprehensive datasets covering diverse reaction types, yet current high-throughput experimental (HTE) approaches are expensive and limited in scope. Chemical literature represents a vast, underexplored data source containing thousands of reactions published annually. However, extracting reaction information from literature faces significant challenges including varied writing styles, complex coreference relationships, and multimodal information presentation. This paper proposes ChemMiner, a novel end-to-end framework leveraging multiple agents powered by large language models (LLMs) to extract high-fidelity chemical data from literature. ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation. Furthermore, we developed a comprehensive benchmark with expert-annotated chemical literature to evaluate both extraction efficiency and precision. Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores. Our open-sourced benchmark facilitates future research in chemical literature data mining.
♻ ☆ KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation
In this paper, we introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM). Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process in question-answering (Q&A) tasks on domain-specific knowledge bases (KBs) within LLMs. Following the \textbf{Logical Form} guided retrieval and reasoning technology route of KAG, this framework first decomposes complex questions into independently solvable sub-problems (which are also referred to as logical forms) through \textbf{breadth decomposition}. Each such logical form is represented in two equivalent forms-natural language and logical function-and subsequently classified as either a Knowledge Retrieval or Reasoning Analysis task. Dependencies and parameter passing between these tasks are explicitly modeled via logical function interfaces. In the solving process, the Retrieval function performs retrieval tasks. It retrieves one-hop structured and unstructured information of specified knowledge unit. While the Math and Deduce functions are used to perform reasoning analysis tasks. Secondly, it is worth noting that, in the Knowledge Retrieval sub-problem tasks, LLMs and external knowledge sources are regarded as equivalent KBs. We use the \textbf{knowledge boundary} module to determine the optimal source using self-regulatory mechanisms such as confidence calibration and reflective reasoning, and use the \textbf{depth solving} module to enhance the comprehensiveness of knowledge acquisition...
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address these issues, we introduce VPP-LLaVA, an MLLM enhanced with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms: the global VPP overlays a learnable, axis-like tensor onto the input image to provide structured spatial cues, while the local VPP incorporates position-aware queries to support fine-grained localization.To effectively train our model with spatial guidance, we further introduce VPP-SFT, a curated dataset of 0.6M high-quality visual grounding samples. Designed in a compact format, it enables efficient training and is significantly smaller than datasets used by other MLLMs (e.g., ~21M samples in MiniGPT-v2), yet still provides a strong performance boost. The resulting model, VPP-LLaVA, not only achieves state-of-the-art results on standard visual grounding benchmarks but also demonstrates strong zero-shot generalization to challenging unseen datasets. Code and dataset will be released upon acceptance at https://github.com/WayneTomas/VPP-LLaVA.
♻ ☆ Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL.
comment: Transactions on Machine Learning Research (TMLR). Raja Kumar and Raghav Singhal contributed equally to this work
♻ ☆ EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments
As artificial intelligence systems increasingly operate in Real-world environments, the integration of multi-modal data sources such as vision, language, and audio presents both unprecedented opportunities and critical challenges for achieving trustworthy intelligence. In this paper, we propose a novel framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings. Our approach, called FedMM-X (Federated Multi-Modal Explainable Intelligence), leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration to address challenges posed by data heterogeneity, modality imbalance, and out-of-distribution generalization. Through rigorous evaluation across federated multi-modal benchmarks involving vision-language tasks, we demonstrate improved performance in both accuracy and interpretability while reducing vulnerabilities to adversarial and spurious correlations. Further, we introduce a novel trust score aggregation method to quantify global model reliability under dynamic client participation. Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
♻ ☆ From Alignment to Advancement: Bootstrapping Audio-Language Alignment with Synthetic Data
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing. Project Website: https://kuan2jiu99.github.io/Balsa
♻ ☆ PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at \href{https://github.com/sail-sg/zero-bubble-pipeline-parallelism}{this url}.
♻ ☆ Object detection in adverse weather conditions for autonomous vehicles using Instruct Pix2Pix IJCNN
Enhancing the robustness of object detection systems under adverse weather conditions is crucial for the advancement of autonomous driving technology. This study presents a novel approach leveraging the diffusion model Instruct Pix2Pix to develop prompting methodologies that generate realistic datasets with weather-based augmentations aiming to mitigate the impact of adverse weather on the perception capabilities of state-of-the-art object detection models, including Faster R-CNN and YOLOv10. Experiments were conducted in two environments, in the CARLA simulator where an initial evaluation of the proposed data augmentation was provided, and then on the real-world image data sets BDD100K and ACDC demonstrating the effectiveness of the approach in real environments. The key contributions of this work are twofold: (1) identifying and quantifying the performance gap in object detection models under challenging weather conditions, and (2) demonstrating how tailored data augmentation strategies can significantly enhance the robustness of these models. This research establishes a solid foundation for improving the reliability of perception systems in demanding environmental scenarios, and provides a pathway for future advancements in autonomous driving.
comment: 8 pages, 5 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 (to appear)
♻ ☆ A general language model for peptide identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-convolutional architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses-including dimensionality reduction and comparison studies-PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub:https://github.com/fondress/PDeepPP and Hugging Face:https://huggingface.co/fondress/PDeppPP.
comment: 24 pages, 9 figures, 4 tables, submitted to arXiv
♻ ☆ Generalizing vision-language models to novel domains: A comprehensive survey
Recently, vision-language pretraining has emerged as a transformative technique that integrates the strengths of both visual and textual modalities, resulting in powerful vision-language models (VLMs). Leveraging web-scale pretraining data, these models exhibit strong zero-shot capabilities. However, their performance often deteriorates when confronted with domain-specific or specialized generalization tasks. To address this, a growing body of research focuses on transferring or generalizing the rich knowledge embedded in VLMs to various downstream applications. This survey aims to comprehensively summarize the generalization settings, methodologies, benchmarking and results in VLM literatures. Delving into the typical VLM structures, current literatures are categorized into prompt-based, parameter-based and feature-based methods according to the transferred modules. The differences and characteristics in each category are furthered summarized and discussed by revisiting the typical transfer learning (TL) settings, providing novel interpretations for TL in the era of VLMs. Popular benchmarks for VLM generalization are further introduced with thorough performance comparisons among the reviewed methods. Following the advances in large-scale generalizable pretraining, this survey also discusses the relations and differences between VLMs and up-to-date multimodal large language models (MLLM), e.g., DeepSeek-VL. By systematically reviewing the surging literatures in vision-language research from a novel and practical generalization prospective, this survey contributes to a clear landscape of current and future multimodal researches.
♻ ☆ KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in Artificial Pancreas Systems SC'25
Significant progress has been made in anomaly detection and run-time monitoring to improve the safety and security of cyber-physical systems (CPS). However, less attention has been paid to hazard mitigation. This paper proposes a combined knowledge and data driven approach, KnowSafe, for the design of safety engines that can predict and mitigate safety hazards resulting from safety-critical malicious attacks or accidental faults targeting a CPS controller. We integrate domain-specific knowledge of safety constraints and context-specific mitigation actions with machine learning (ML) techniques to estimate system trajectories in the far and near future, infer potential hazards, and generate optimal corrective actions to keep the system safe. Experimental evaluation on two realistic closed-loop testbeds for artificial pancreas systems (APS) and a real-world clinical trial dataset for diabetes treatment demonstrates that KnowSafe outperforms the state-of-the-art by achieving higher accuracy in predicting system state trajectories and potential hazards, a low false positive rate, and no false negatives. It also maintains the safe operation of the simulated APS despite faults or attacks without introducing any new hazards, with a hazard mitigation success rate of 92.8%, which is at least 76% higher than solely rule-based (50.9%) and data-driven (52.7%) methods.
comment: 17 pages, 11 figures, 11 tables, to appear in the IEEE Transactions on Dependable and Secure Computing (TDSC'25)
♻ ☆ Bridging Subjective and Objective QoE: Operator-Level Aggregation Using LLM-Based Comment Analysis and Network MOS Comparison
This paper introduces a dual-layer framework for network operator-side quality of experience (QoE) assessment that integrates both objective network modeling and subjective user perception extracted from live-streaming platforms. On the objective side, we develop a machine learning model trained on mean opinion scores (MOS) computed via the ITU-T P.1203 reference implementation, allowing accurate prediction of user-perceived video quality using only network parameters such as packet loss, delay, jitter, and throughput without reliance on video content or client-side instrumentation. On the subjective side, we present a semantic filtering and scoring pipeline that processes user comments from live streams to extract performance-related feedback. A large language model is used to assign scalar MOS scores to filtered comments in a deterministic and reproducible manner. To support scalable and interpretable analysis, we construct a labeled dataset of 47,894 live-stream comments, of which about 34,000 are identified as QoE-relevant through multi-layer semantic filtering. Each comment is enriched with simulated Internet Service Provider attribution and temporally aligned using synthetic timestamps in 5-min intervals. The resulting dataset enables operator-level aggregation and time-series analysis of user-perceived quality. A delta MOS metric is proposed to measure each Internet service provider's deviation from platform-wide sentiment, allowing detection of localized degradations even in the absence of direct network telemetry. A controlled outage simulation confirms the framework's effectiveness in identifying service disruptions through comment-based trends alone. The system provides each operator with its own subjective MOS and the global platform average per interval, enabling real-time interpretation of performance deviations and comparison with objective network-based QoE estimates.
comment: 19 ppages, 13 figures
♻ ☆ From Diffusion to Transformers: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which combines the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers, whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding ICML 2025
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025). Code: https://github.com/AMD-AIG-AIMA/Gumiho
♻ ☆ Achieving binary weight and activation for LLMs using Post-Training Quantization
Quantizing large language models (LLMs) to 1-bit precision significantly reduces computational costs, but existing quantization techniques suffer from noticeable performance degradation when using weight and activation precisions below 4 bits (W4A4). In this paper, we propose a post-training quantization framework with W(1+1)A(1*4) configuration, where weights are quantized to 1 bit with an additional 1 bit for fine-grain grouping and activations are quantized to 1 bit with a 4-fold increase in the number of channels. For weight quantization, we propose utilizing Hessian-aware fine-grained grouping along with an EM-based quantization scheme. For activation quantization, we decompose INT4-quantized activations into a 4 * INT1 format equivalently and simultaneously smooth the scaling factors based on quantization errors, which further reduces the quantization errors in activations. Our method surpasses state-of-the-art (SOTA) LLM quantization baselines on W2A4 across multiple tasks, pushing the boundaries of existing LLM quantization methods toward fully binarized models. Code is available at https://github.com/JimmyCrave/LLM-PTQ-binarization.
♻ ☆ The Problem of the Priors, or Posteriors?
The problem of the priors is well known: it concerns the challenge of identifying norms that govern one's prior credences. I argue that a key to addressing this problem lies in considering what I call the problem of the posteriors -- the challenge of identifying norms that directly govern one's posterior credences, which backward induce some norms on the priors via the diachronic requirement of conditionalization. This forward-looking approach can be summarized as: Think ahead, work backward. Although this idea can be traced to Freedman (1963), Carnap (1963), and Shimony (1970), I believe that it has not received enough attention. In this paper, I initiate a systematic defense of forward-looking Bayesianism, addressing potential objections from more traditional views (both subjectivist and objectivist). I also develop a specific approach to forward-looking Bayesianism -- one that values the convergence of posterior credences to the truth, and treats it as a fundamental rather than derived norm. This approach, called convergentist Bayesianism, is argued to be crucial for a Bayesian foundation of Ockham's razor in statistics and machine learning.
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ Deep Unlearn: Benchmarking Machine Unlearning for Image Classification EuroS&P 2025
Machine unlearning (MU) aims to remove the influence of particular data points from the learnable parameters of a trained machine learning model. This is a crucial capability in light of data privacy requirements, trustworthiness, and safety in deployed models. MU is particularly challenging for deep neural networks (DNNs), such as convolutional nets or vision transformers, as such DNNs tend to memorize a notable portion of their training dataset. Nevertheless, the community lacks a rigorous and multifaceted study that looks into the success of MU methods for DNNs. In this paper, we investigate 18 state-of-the-art MU methods across various benchmark datasets and models, with each evaluation conducted over 10 different initializations, a comprehensive evaluation involving MU over 100K models. We show that, with the proper hyperparameters, Masked Small Gradients (MSG) and Convolution Transpose (CT), consistently perform better in terms of model accuracy and run-time efficiency across different models, datasets, and initializations, assessed by population-based membership inference attacks (MIA) and per-sample unlearning likelihood ratio attacks (U-LiRA). Furthermore, our benchmark highlights the fact that comparing a MU method only with commonly used baselines, such as Gradient Ascent (GA) or Successive Random Relabeling (SRL), is inadequate, and we need better baselines like Negative Gradient Plus (NG+) with proper hyperparameter selection.
comment: Accepted at EuroS&P 2025
♻ ☆ FZOO: Fast Zeroth-Order Optimizer for Fine-Tuning Large Language Models towards Adam-Scale Speed
Fine-tuning large language models (LLMs) often faces GPU memory bottlenecks: the backward pass of first-order optimizers like Adam increases memory usage to more than 10 times the inference level (e.g., 633 GB for OPT-30B). Zeroth-order (ZO) optimizers avoid this cost by estimating gradients only from forward passes, yet existing methods like MeZO usually require many more steps to converge. Can this trade-off between speed and memory in ZO be fundamentally improved? Normalized-SGD demonstrates strong empirical performance with greater memory efficiency than Adam. In light of this, we introduce FZOO, a Fast Zeroth-Order Optimizer toward Adam-Scale Speed. FZOO reduces the total forward passes needed for convergence by employing batched one-sided estimates that adapt step sizes based on the standard deviation of batch losses. It also accelerates per-batch computation through the use of Rademacher random vector perturbations coupled with CUDA's parallel processing. Extensive experiments on diverse models, including RoBERTa-large, OPT (350M-66B), Phi-2, and Llama3, across 11 tasks validate FZOO's effectiveness. On average, FZOO outperforms MeZO by 3 percent in accuracy while requiring 3 times fewer forward passes. For RoBERTa-large, FZOO achieves average improvements of 5.6 percent in accuracy and an 18 times reduction in forward passes compared to MeZO, achieving convergence speeds comparable to Adam. We also provide theoretical analysis proving FZOO's formal equivalence to a normalized-SGD update rule and its convergence guarantees. FZOO integrates smoothly into PEFT techniques, enabling even larger memory savings. Overall, our results make single-GPU, high-speed, full-parameter fine-tuning practical and point toward future work on memory-efficient pre-training.
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
♻ ☆ Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach
We address the problem of quantum reinforcement learning (QRL) under model-free settings with quantum oracle access to the Markov Decision Process (MDP). This paper introduces a Quantum Natural Policy Gradient (QNPG) algorithm, which replaces the random sampling used in classical Natural Policy Gradient (NPG) estimators with a deterministic gradient estimation approach, enabling seamless integration into quantum systems. While this modification introduces a bounded bias in the estimator, the bias decays exponentially with increasing truncation levels. This paper demonstrates that the proposed QNPG algorithm achieves a sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-1.5})$ for queries to the quantum oracle, significantly improving the classical lower bound of $\tilde{\mathcal{O}}(\epsilon^{-2})$ for queries to the MDP.
comment: Proceedings of the 42nd International Conference on Machine Learning
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
♻ ☆ Quantifying analogy of concepts via ologs and wiring diagrams
We build on the theory of ontology logs (ologs) created by Spivak and Kent, and define a notion of wiring diagrams. In this article, a wiring diagram is a finite directed labelled graph. The labels correspond to types in an olog; they can also be interpreted as readings of sensors in an autonomous system. As such, wiring diagrams can be used as a framework for an autonomous system to form abstract concepts. We show that the graphs underlying skeleton wiring diagrams form a category. This allows skeleton wiring diagrams to be compared and manipulated using techniques from both graph theory and category theory. We also extend the usual definition of graph edit distance to the case of wiring diagrams by using operations only available to wiring diagrams, leading to a metric on the set of all skeleton wiring diagrams. In the end, we give an extended example on calculating the distance between two concepts represented by wiring diagrams, and explain how to apply our framework to any application domain.
comment: 30 pages. Minor updates to Section 5
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
Deploying a Machine Learning (ML) training pipeline into production requires good software engineering practices. Unfortunately, the typical data science workflow often leads to code that lacks critical software quality attributes. This experience report investigates this problem in SPIRA, a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose insufficiency respiratory via speech analysis. This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem: from a proof of concept Big Ball of Mud (v1), to a design pattern-based Modular Monolith (v2), to a test-driven set of Microservices (v3) Each version improved its overall extensibility, maintainability, robustness, and resiliency. The paper shares challenges and lessons learned in this process, offering insights for researchers and practitioners seeking to productionize their pipelines.
comment: 8 pages, 3 figures (2 diagrams, 2 code listings), accepted to the workshop SADIS 2025
From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
Humans organize knowledge into compact categories through semantic compression by mapping diverse instances to abstract representations while preserving meaning (e.g., robin and blue jay are both birds; most birds can fly). These concepts reflect a trade-off between expressive fidelity and representational simplicity. Large Language Models (LLMs) demonstrate remarkable linguistic abilities, yet whether their internal representations strike a human-like trade-off between compression and semantic fidelity is unclear. We introduce a novel information-theoretic framework, drawing from Rate-Distortion Theory and the Information Bottleneck principle, to quantitatively compare these strategies. Analyzing token embeddings from a diverse suite of LLMs against seminal human categorization benchmarks, we uncover key divergences. While LLMs form broad conceptual categories that align with human judgment, they struggle to capture the fine-grained semantic distinctions crucial for human understanding. More fundamentally, LLMs demonstrate a strong bias towards aggressive statistical compression, whereas human conceptual systems appear to prioritize adaptive nuance and contextual richness, even if this results in lower compressional efficiency by our measures. These findings illuminate critical differences between current AI and human cognitive architectures, guiding pathways toward LLMs with more human-aligned conceptual representations.
The Singapore Consensus on Global AI Safety Research Priorities SC
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to ensure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential -- it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. The "2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety" aimed to support research in this space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. This resulting report builds on the International AI Safety Report chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this report organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control).
comment: Final report from the "2025 Singapore Conference on AI (SCAI)" held April 26: https://www.scai.gov.sg/2025/scai2025-report
♻ ☆ Generating and Customizing Robotic Arm Trajectories using Neural Networks
We introduce a neural network approach for generating and customizing the trajectory of a robotic arm, that guarantees precision and repeatability. To highlight the potential of this novel method, we describe the design and implementation of the technique and show its application in an experimental setting of cognitive robotics. In this scenario, the NICO robot was characterized by the ability to point to specific points in space with precise linear movements, increasing the predictability of the robotic action during its interaction with humans. To achieve this goal, the neural network computes the forward kinematics of the robot arm. By integrating it with a generator of joint angles, another neural network was developed and trained on an artificial dataset created from suitable start and end poses of the robotic arm. Through the computation of angular velocities, the robot was characterized by its ability to perform the movement, and the quality of its action was evaluated in terms of shape and accuracy. Thanks to its broad applicability, our approach successfully generates precise trajectories that could be customized in their shape and adapted to different settings.
comment: The code is released at https://github.com/andylucny/nico2/tree/main/generate
♻ ☆ Bregman Centroid Guided Cross-Entropy Method
The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Active Inference AI Systems for Scientific Discovery
The rapid evolution of artificial intelligence has led to expectations of transformative scientific discovery, yet current systems remain fundamentally limited by their operational architectures, brittle reasoning mechanisms, and their separation from experimental reality. Building on earlier work, we contend that progress in AI-driven science now depends on closing three fundamental gaps -- the abstraction gap, the reasoning gap, and the reality gap -- rather than on model size/data/test time compute. Scientific reasoning demands internal representations that support simulation of actions and response, causal structures that distinguish correlation from mechanism, and continuous calibration. We define active inference AI systems for scientific discovery as those that (i) maintain long-lived research memories grounded in causal self-supervised foundation models, (ii) symbolic or neuro-symbolic planners equipped with Bayesian guardrails, (iii) grow persistent knowledge graphs where thinking generates novel conceptual nodes, reasoning establishes causal edges, and real-world interaction prunes false connections while strengthening verified pathways, and (iv) refine their internal representations through closed-loop interaction with both high-fidelity simulators and automated laboratories - an operational loop where mental simulation guides action and empirical surprise reshapes understanding. In essence, we outline an architecture where discovery arises from the interplay between internal models that enable counterfactual reasoning and external validation that grounds hypotheses in reality. It is also argued that the inherent ambiguity in feedback from simulations and experiments, and underlying uncertainties makes human judgment indispensable, not as a temporary scaffold but as a permanent architectural component.
♻ ☆ Free and Fair Hardware: A Pathway to Copyright Infringement-Free Verilog Generation using LLMs
Limitations in Large Language Model (LLM) capabilities for hardware design tasks, such as generating functional Verilog codes, have motivated various fine-tuning optimizations utilizing curated hardware datasets from open-source repositories. However, these datasets remain limited in size and contain minimal checks on licensing for reuse, resulting in potential copyright violations by fine-tuned LLMs. Therefore, we propose an evaluation benchmark to estimate the risk of Verilog-trained LLMs to generate copyright-protected codes. To minimize this risk, we present an open-source Verilog dataset, FreeSet, containing over 220k files, along with the automated dataset curation framework utilized to provide additional guarantees of fair-use Verilog data. We then execute an LLM fine-tuning framework consisting of continual pre-training, resulting in a fine-tuned Llama model for Verilog, FreeV. Our results indicate that FreeV demonstrates the smallest risk of copyright-infringement among prior works, with only a 3% violation rate. Furthermore, experimental results demonstrate improvements in Verilog generation functionality over its baseline model, improving VerilogEval pass@10 rates by over 10%.
comment: Accepted at DAC 2025
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code is available at https://github.com/WonwoongCho/Towards-Enhanced-Controllability-of-Diffusion-Models
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version) SP 2025
Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.
comment: Accepted to ACISP 2025. This is the full version
♻ ☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 14 pages, 11 figures
♻ ☆ Establishing baselines for generative discovery of inorganic crystals
Generative artificial intelligence offers a promising avenue for materials discovery, yet its advantages over traditional methods remain unclear. In this work, we introduce and benchmark two baseline approaches - random enumeration of charge-balanced prototypes and data-driven ion exchange of known compounds - against four generative techniques based on diffusion models, variational autoencoders, and large language models. Our results show that established methods such as ion exchange are better at generating novel materials that are stable, although many of these closely resemble known compounds. In contrast, generative models excel at proposing novel structural frameworks and, when sufficient training data is available, can more effectively target properties such as electronic band gap and bulk modulus. To enhance the performance of both the baseline and generative approaches, we implement a post-generation screening step in which all proposed structures are passed through stability and property filters from pre-trained machine learning models including universal interatomic potentials. This low-cost filtering step leads to substantial improvement in the success rates of all methods, remains computationally efficient, and ultimately provides a practical pathway toward more effective generative strategies for materials discovery. By establishing baselines for comparison, this work highlights opportunities for continued advancement of generative models, especially for the targeted generation of novel materials that are thermodynamically stable.
♻ ☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
♻ ☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection IROS 2025
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Camera-ready version for IROS 2025
♻ ☆ Evaluating Deduplication Techniques for Economic Research Paper Titles with a Focus on Semantic Similarity using NLP and LLMs
This study investigates efficient deduplication techniques for a large NLP dataset of economic research paper titles. We explore various pairing methods alongside established distance measures (Levenshtein distance, cosine similarity) and a sBERT model for semantic evaluation. Our findings suggest a potentially low prevalence of duplicates based on the observed semantic similarity across different methods. Further exploration with a human-annotated ground truth set is completed for a more conclusive assessment. The result supports findings from the NLP, LLM based distance metrics.
comment: 6 pages, 1 figure
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
Machine Learning 124
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complex tasks with limited prior knowledge. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connections and function compositions in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ Development of Hybrid Artificial Intelligence Training on Real and Synthetic Data: Benchmark on Two Mixed Training Strategies
Synthetic data has emerged as a cost-effective alternative to real data for training artificial neural networks (ANN). However, the disparity between synthetic and real data results in a domain gap. That gap leads to poor performance and generalization of the trained ANN when applied to real-world scenarios. Several strategies have been developed to bridge this gap, which combine synthetic and real data, known as mixed training using hybrid datasets. While these strategies have been shown to mitigate the domain gap, a systematic evaluation of their generalizability and robustness across various tasks and architectures remains underexplored. To address this challenge, our study comprehensively analyzes two widely used mixing strategies on three prevalent architectures and three distinct hybrid datasets. From these datasets, we sample subsets with varying proportions of synthetic to real data to investigate the impact of synthetic and real components. The findings of this paper provide valuable insights into optimizing the use of synthetic data in the training process of any ANN, contributing to enhancing robustness and efficacy.
comment: 21pages, 14 figures, 2 tables
☆ SQUASH: A SWAP-Based Quantum Attack to Sabotage Hybrid Quantum Neural Networks
We propose a circuit-level attack, SQUASH, a SWAP-Based Quantum Attack to sabotage Hybrid Quantum Neural Networks (HQNNs) for classification tasks. SQUASH is executed by inserting SWAP gate(s) into the variational quantum circuit of the victim HQNN. Unlike conventional noise-based or adversarial input attacks, SQUASH directly manipulates the circuit structure, leading to qubit misalignment and disrupting quantum state evolution. This attack is highly stealthy, as it does not require access to training data or introduce detectable perturbations in input states. Our results demonstrate that SQUASH significantly degrades classification performance, with untargeted SWAP attacks reducing accuracy by up to 74.08\% and targeted SWAP attacks reducing target class accuracy by up to 79.78\%. These findings reveal a critical vulnerability in HQNN implementations, underscoring the need for more resilient architectures against circuit-level adversarial interventions.
comment: Keywords: Quantum Machine Learning, Hybrid Quantum Neural Networks, SWAP Test, Fidelity, Circuit-level Attack
☆ Logit-Gap Steering: Efficient Short-Suffix Jailbreaks for Aligned Large Language Models
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
☆ Consensus-based optimization for closed-box adversarial attacks and a connection to evolution strategies
Consensus-based optimization (CBO) has established itself as an efficient gradient-free optimization scheme, with attractive mathematical properties, such as mean-field convergence results for non-convex loss functions. In this work, we study CBO in the context of closed-box adversarial attacks, which are imperceptible input perturbations that aim to fool a classifier, without accessing its gradient. Our contribution is to establish a connection between the so-called consensus hopping as introduced by Riedl et al. and natural evolution strategies (NES) commonly applied in the context of adversarial attacks and to rigorously relate both methods to gradient-based optimization schemes. Beyond that, we provide a comprehensive experimental study that shows that despite the conceptual similarities, CBO can outperform NES and other evolutionary strategies in certain scenarios.
☆ Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC
The proliferation of agentic Large Language Models (LLMs) on personal devices introduces a new class of workloads characterized by a dichotomy of objectives. Reactive tasks, initiated by users, demand immediate, low-latency responses, while proactive tasks operate invisibly and prioritize throughput. Existing on-device LLM engines, designed for isolated inferences, fail to efficiently manage these concurrent and conflicting requests on consumer-grade heterogeneous SoCs with CPU, integrated GPU, and NPU. This paper introduces Agent.xpu, an efficient serving system for agentic LLM workloads on memory-unified heterogeneous SoCs. With dedicated offline profiling, Agent.xpu first constructs a heterogeneous execution graph, which fuses and chunks model kernels for affinity-guided, elastic accelerator mapping with predictive kernel annotation. At runtime, its online scheduler enables fine-grained, kernel-level preemption to guarantee the responsiveness of reactive tasks. To maximize SoC utilization, it adopts slack-aware kernel backfill to opportunistically append proactive tasks, and mitigates NPU-iGPU contention via bandwidth-aware dispatch. Evaluation on an Intel Core Ultra SoC shows that Agent.xpu achieves 4.6$\times$ lower latency for reactive tasks and sustains 1.6$\times$-6.8$\times$ higher throughput for proactive tasks compared to state-of-the-art inference engines.
☆ Faster Diffusion Models via Higher-Order Approximation
In this paper, we explore provable acceleration of diffusion models without any additional retraining. Focusing on the task of approximating a target data distribution in $\mathbb{R}^d$ to within $\varepsilon$ total-variation distance, we propose a principled, training-free sampling algorithm that requires only the order of $$ d^{1+2/K} \varepsilon^{-1/K} $$ score function evaluations (up to log factor) in the presence of accurate scores, where $K$ is an arbitrarily large fixed integer. This result applies to a broad class of target data distributions, without the need for assumptions such as smoothness or log-concavity. Our theory is robust vis-a-vis inexact score estimation, degrading gracefully as the score estimation error increases -- without demanding higher-order smoothness on the score estimates as assumed in previous work. The proposed algorithm draws insight from high-order ODE solvers, leveraging high-order Lagrange interpolation and successive refinement to approximate the integral derived from the probability flow ODE.
☆ Unsupervised Sparse Coding-based Spiking Neural Network for Real-time Spike Sorting
Spike sorting is a crucial step in decoding multichannel extracellular neural signals, enabling the identification of individual neuronal activity. A key challenge in brain-machine interfaces (BMIs) is achieving real-time, low-power spike sorting at the edge while keeping high neural decoding performance. This study introduces the Neuromorphic Sparse Sorter (NSS), a compact two-layer spiking neural network optimized for efficient spike sorting. NSS leverages the Locally Competitive Algorithm (LCA) for sparse coding to extract relevant features from noisy events with reduced computational demands. NSS learns to sort detected spike waveforms in an online fashion and operates entirely unsupervised. To exploit multi-bit spike coding capabilities of neuromorphic platforms like Intel's Loihi 2, a custom neuron model was implemented, enabling flexible power-performance trade-offs via adjustable spike bit-widths. Evaluations on simulated and real-world tetrode signals with biological drift showed NSS outperformed established pipelines such as WaveClus3 and PCA+KMeans. With 2-bit graded spikes, NSS on Loihi 2 outperformed NSS implemented with leaky integrate-and-fire neuron and achieved an F1-score of 77% (+10% improvement) while consuming 8.6mW (+1.65mW) when tested on a drifting recording, with a computational processing time of 0.25ms (+60 us) per inference.
comment: Main article : 16 pages, 7 figures and 4 tables. Supplementary Material starts at page 17 with 7 figures
☆ Post-processing of EEG-based Auditory Attention Decoding Decisions via Hidden Markov Models
Auditory attention decoding (AAD) algorithms exploit brain signals, such as electroencephalography (EEG), to identify which speaker a listener is focusing on in a multi-speaker environment. While state-of-the-art AAD algorithms can identify the attended speaker on short time windows, their predictions are often too inaccurate for practical use. In this work, we propose augmenting AAD with a hidden Markov model (HMM) that models the temporal structure of attention. More specifically, the HMM relies on the fact that a subject is much less likely to switch attention than to keep attending the same speaker at any moment in time. We show how a HMM can significantly improve existing AAD algorithms in both causal (real-time) and non-causal (offline) settings. We further demonstrate that HMMs outperform existing postprocessing approaches in both accuracy and responsiveness, and explore how various factors such as window length, switching frequency, and AAD accuracy influence overall performance. The proposed method is computationally efficient, intuitive to use and applicable in both real-time and offline settings.
☆ Bridging Theory and Practice in Link Representation with Graph Neural Networks
Graph Neural Networks (GNNs) are widely used to compute representations of node pairs for downstream tasks such as link prediction. Yet, theoretical understanding of their expressive power has focused almost entirely on graph-level representations. In this work, we shift the focus to links and provide the first comprehensive study of GNN expressiveness in link representation. We introduce a unifying framework, the $k_\phi$-$k_\rho$-$m$ framework, that subsumes existing message-passing link models and enables formal expressiveness comparisons. Using this framework, we derive a hierarchy of state-of-the-art methods and offer theoretical tools to analyze future architectures. To complement our analysis, we propose a synthetic evaluation protocol comprising the first benchmark specifically designed to assess link-level expressiveness. Finally, we ask: does expressiveness matter in practice? We use a graph symmetry metric that quantifies the difficulty of distinguishing links and show that while expressive models may underperform on standard benchmarks, they significantly outperform simpler ones as symmetry increases, highlighting the need for dataset-aware model selection.
☆ Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
This study investigates adaptive experimental design for treatment choice, also known as fixed-budget best-arm identification. We consider an adaptive procedure consisting of a treatment-allocation phase followed by a treatment-choice phase, and we design an adaptive experiment for this setup to efficiently identify the best treatment arm, defined as the one with the highest expected outcome. In our designed experiment, the treatment-allocation phase consists of two stages. The first stage is a pilot phase, where we allocate each treatment arm uniformly with equal proportions to eliminate clearly suboptimal arms and estimate outcome variances. In the second stage, we allocate treatment arms in proportion to the variances estimated in the first stage. After the treatment-allocation phase, the procedure enters the treatment-choice phase, where we choose the treatment arm with the highest sample mean as our estimate of the best treatment arm. We prove that this single design is simultaneously asymptotically minimax and Bayes optimal for the simple regret, with upper bounds that match our lower bounds up to exact constants. Therefore, our designed experiment achieves the sharp efficiency limits without requiring separate tuning for minimax and Bayesian objectives.
☆ Provably Efficient and Agile Randomized Q-Learning
While Bayesian-based exploration often demonstrates superior empirical performance compared to bonus-based methods in model-based reinforcement learning (RL), its theoretical understanding remains limited for model-free settings. Existing provable algorithms either suffer from computational intractability or rely on stage-wise policy updates which reduce responsiveness and slow down the learning process. In this paper, we propose a novel variant of Q-learning algorithm, refereed to as RandomizedQ, which integrates sampling-based exploration with agile, step-wise, policy updates, for episodic tabular RL. We establish an $\widetilde{O}(\sqrt{H^5SAT})$ regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the episode length, and $T$ is the total number of episodes. In addition, we present a logarithmic regret bound under a mild positive sub-optimality condition on the optimal Q-function. Empirically, RandomizedQ exhibits outstanding performance compared to existing Q-learning variants with both bonus-based and Bayesian-based exploration on standard benchmarks.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ The Jacobian and Hessian of the Kullback-Leibler Divergence between Multivariate Gaussian Distributions (Technical Report)
This document shows how to obtain the Jacobian and Hessian matrices of the Kullback-Leibler divergence between two multivariate Gaussian distributions, using the first and second-order differentials. The presented derivations are based on the theory presented by \cite{magnus99}. I've also got great inspiration from some of the derivations in \cite{minka}. Since I pretend to be at most didactic, the document is split into a summary of results and detailed derivations on each of the elements involved, with specific references to the tricks used in the derivations, and to many of the underlying concepts.
☆ Machine Understanding of Scientific Language
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
comment: PhD Thesis, 210 pages
LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ A Scalable Approach for Safe and Robust Learning via Lipschitz-Constrained Networks
Certified robustness is a critical property for deploying neural networks (NN) in safety-critical applications. A principle approach to achieving such guarantees is to constrain the global Lipschitz constant of the network. However, accurate methods for Lipschitz-constrained training often suffer from non-convex formulations and poor scalability due to reliance on global semidefinite programs (SDPs). In this letter, we propose a convex training framework that enforces global Lipschitz constraints via semidefinite relaxation. By reparameterizing the NN using loop transformation, we derive a convex admissibility condition that enables tractable and certifiable training. While the resulting formulation guarantees robustness, its scalability is limited by the size of global SDP. To overcome this, we develop a randomized subspace linear matrix inequalities (RS-LMI) approach that decomposes the global constraints into sketched layerwise constraints projected onto low-dimensional subspaces, yielding a smooth and memory-efficient training objective. Empirical results on MNIST, CIFAR-10, and ImageNet demonstrate that the proposed framework achieves competitive accuracy with significantly improved Lipschitz bounds and runtime performance.
☆ UMA: A Family of Universal Models for Atoms
The ability to quickly and accurately compute properties from atomic simulations is critical for advancing a large number of applications in chemistry and materials science including drug discovery, energy storage, and semiconductor manufacturing. To address this need, Meta FAIR presents a family of Universal Models for Atoms (UMA), designed to push the frontier of speed, accuracy, and generalization. UMA models are trained on half a billion unique 3D atomic structures (the largest training runs to date) by compiling data across multiple chemical domains, e.g. molecules, materials, and catalysts. We develop empirical scaling laws to help understand how to increase model capacity alongside dataset size to achieve the best accuracy. The UMA small and medium models utilize a novel architectural design we refer to as mixture of linear experts that enables increasing model capacity without sacrificing speed. For example, UMA-medium has 1.4B parameters but only ~50M active parameters per atomic structure. We evaluate UMA models on a diverse set of applications across multiple domains and find that, remarkably, a single model without any fine-tuning can perform similarly or better than specialized models. We are releasing the UMA code, weights, and associated data to accelerate computational workflows and enable the community to continue to build increasingly capable AI models.
comment: 29 pages, 5 figures
☆ Learning Constraints Directly from Network Data
Network data conforms to a wide range of rules that arise from protocols, design principles, and deployment decisions (e.g., a packet's queuing delay must be less than its end-to-end delay). Formalizing such rules as logic constraints can (i) improve the quality of synthetic data, (ii) reduce the brittleness of machine learning (ML) models, and (iii) improve semantic understanding of network measurements. However, these benefits remain out of reach if rule extraction is manual or solely reliant on ML, as both approaches yield incomplete, unreliable, and/or inaccurate rules. This paper formulates rule extraction as a constraint modeling problem and introduces NetNomos that learns propositional logic constraints directly from raw network measurements. Constraint modeling in this domain is uniquely challenging due to the scale of the data, the inherent learning complexity and passive environment, and the lack of ground truth supervision. NetNomos addresses these challenges via a lattice-based search structured by constraint specificity and succinctness. Our approach reduces learning complexity from superquadratic to logarithmic and enables efficient traversal in combinatorial search space. Our evaluations on diverse network datasets show that NetNomos learns all benchmark rules, including those associated with as little as 0.01% of data points, in under three hours. In contrast, baseline methods discover less than 25% of the rules and require several days to run. Through three case studies, we show that: NetNomos (i) finds rule violations in the outputs of all seven synthetic traffic generators, hence can be used to assess and guide their generation process; (ii) detects semantic differences in traffic, hence can be used for anomaly detection; and (iii) automatically finds rules used for telemetry imputation, hence can support monitoring through inference.
comment: 13 pages, 15 figures
☆ ADReFT: Adaptive Decision Repair for Safe Autonomous Driving via Reinforcement Fine-Tuning
Autonomous Driving Systems (ADSs) continue to face safety-critical risks due to the inherent limitations in their design and performance capabilities. Online repair plays a crucial role in mitigating such limitations, ensuring the runtime safety and reliability of ADSs. Existing online repair solutions enforce ADS compliance by transforming unacceptable trajectories into acceptable ones based on predefined specifications, such as rule-based constraints or training datasets. However, these approaches often lack generalizability, adaptability and tend to be overly conservative, resulting in ineffective repairs that not only fail to mitigate safety risks sufficiently but also degrade the overall driving experience. To address this issue, we propose Adaptive Decision Repair (ADReFT), a novel and effective repair method that identifies safety-critical states through offline learning from failed tests and generates appropriate mitigation actions to improve ADS safety. Specifically, ADReFT incorporates a transformer-based model with two joint heads, State Monitor and Decision Adapter, designed to capture complex driving environment interactions to evaluate state safety severity and generate adaptive repair actions. Given the absence of oracles for state safety identification, we first pretrain ADReFT using supervised learning with coarse annotations, i.e., labeling states preceding violations as positive samples and others as negative samples. It establishes ADReFT's foundational capability to mitigate safety-critical violations, though it may result in somewhat conservative mitigation strategies. Therefore, we subsequently finetune ADReFT using reinforcement learning to improve its initial capability and generate more precise and contextually appropriate repair decisions. Our evaluation results illustrate that ADReFT achieves better repair performance.
☆ Bridging the Gap with Retrieval-Augmented Generation: Making Prosthetic Device User Manuals Available in Marginalised Languages
Millions of people in African countries face barriers to accessing healthcare due to language and literacy gaps. This research tackles this challenge by transforming complex medical documents -- in this case, prosthetic device user manuals -- into accessible formats for underserved populations. This case study in cross-cultural translation is particularly pertinent/relevant for communities that receive donated prosthetic devices but may not receive the accompanying user documentation. Or, if available online, may only be available in formats (e.g., language and readability) that are inaccessible to local populations (e.g., English-language, high resource settings/cultural context). The approach is demonstrated using the widely spoken Pidgin dialect, but our open-source framework has been designed to enable rapid and easy extension to other languages/dialects. This work presents an AI-powered framework designed to process and translate complex medical documents, e.g., user manuals for prosthetic devices, into marginalised languages. The system enables users -- such as healthcare workers or patients -- to upload English-language medical equipment manuals, pose questions in their native language, and receive accurate, localised answers in real time. Technically, the system integrates a Retrieval-Augmented Generation (RAG) pipeline for processing and semantic understanding of the uploaded manuals. It then employs advanced Natural Language Processing (NLP) models for generative question-answering and multilingual translation. Beyond simple translation, it ensures accessibility to device instructions, treatment protocols, and safety information, empowering patients and clinicians to make informed healthcare decisions.
comment: 5 pages, 0 figures, 0 tables
☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
☆ QPART: Adaptive Model Quantization and Dynamic Workload Balancing for Accuracy-aware Edge Inference
As machine learning inferences increasingly move to edge devices, adapting to diverse computational capabilities, hardware, and memory constraints becomes more critical. Instead of relying on a pre-trained model fixed for all future inference queries across diverse edge devices, we argue that planning an inference pattern with a request-specific model tailored to the device's computational capacity, accuracy requirements, and time constraints is more cost-efficient and robust to diverse scenarios. To this end, we propose an accuracy-aware and workload-balanced inference system that integrates joint model quantization and inference partitioning. In this approach, the server dynamically responds to inference queries by sending a quantized model and adaptively sharing the inference workload with the device. Meanwhile, the device's computational power, channel capacity, and accuracy requirements are considered when deciding. Furthermore, we introduce a new optimization framework for the inference system, incorporating joint model quantization and partitioning. Our approach optimizes layer-wise quantization bit width and partition points to minimize time consumption and cost while accounting for varying accuracy requirements of tasks through an accuracy degradation metric in our optimization model. To our knowledge, this work represents the first exploration of optimizing quantization layer-wise bit-width in the inference serving system, by introducing theoretical measurement of accuracy degradation. Simulation results demonstrate a substantial reduction in overall time and power consumption, with computation payloads decreasing by over 80% and accuracy degradation kept below 1%.
☆ Industrial brain: a human-like autonomous neuro-symbolic cognitive decision-making system
Resilience non-equilibrium measurement, the ability to maintain fundamental functionality amidst failures and errors, is crucial for scientific management and engineering applications of industrial chain. The problem is particularly challenging when the number or types of multiple co-evolution of resilience (for example, randomly placed) are extremely chaos. Existing end-to-end deep learning ordinarily do not generalize well to unseen full-feld reconstruction of spatiotemporal co-evolution structure, and predict resilience of network topology, especially in multiple chaos data regimes typically seen in real-world applications. To address this challenge, here we propose industrial brain, a human-like autonomous cognitive decision-making and planning framework integrating higher-order activity-driven neuro network and CT-OODA symbolic reasoning to autonomous plan resilience directly from observational data of global variable. The industrial brain not only understands and model structure of node activity dynamics and network co-evolution topology without simplifying assumptions, and reveal the underlying laws hidden behind complex networks, but also enabling accurate resilience prediction, inference, and planning. Experimental results show that industrial brain significantly outperforms resilience prediction and planning methods, with an accurate improvement of up to 10.8\% over GoT and OlaGPT framework and 11.03\% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that industrial brain addresses an important gap in resilience prediction and planning for industrial chain.
☆ Reinforcement Learning for Synchronised Flow Control in a Dual-Gate Resin Infusion System
Resin infusion (RI) and resin transfer moulding (RTM) are critical processes for the manufacturing of high-performance fibre-reinforced polymer composites, particularly for large-scale applications such as wind turbine blades. Controlling the resin flow dynamics in these processes is critical to ensure the uniform impregnation of the fibre reinforcements, thereby preventing residual porosities and dry spots that impact the consequent structural integrity of the final component. This paper presents a reinforcement learning (RL) based strategy, established using process simulations, for synchronising the different resin flow fronts in an infusion scenario involving two resin inlets and a single outlet. Using Proximal Policy Optimisation (PPO), our approach addresses the challenge of managing the fluid dynamics in a partially observable environment. The results demonstrate the effectiveness of the RL approach in achieving an accurate flow convergence, highlighting its potential towards improving process control and product quality in composites manufacturing.
comment: 11 pages, 4 figures, 45th Ris{\o} International Symposium on Materials Science
☆ The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
☆ Learning robust parameter inference and density reconstruction in flyer plate impact experiments
Estimating physical parameters or material properties from experimental observations is a common objective in many areas of physics and material science. In many experiments, especially in shock physics, radiography is the primary means of observing the system of interest. However, radiography does not provide direct access to key state variables, such as density, which prevents the application of traditional parameter estimation approaches. Here we focus on flyer plate impact experiments on porous materials, and resolving the underlying parameterized equation of state (EoS) and crush porosity model parameters given radiographic observation(s). We use machine learning as a tool to demonstrate with high confidence that using only high impact velocity data does not provide sufficient information to accurately infer both EoS and crush model parameters, even with fully resolved density fields or a dynamic sequence of images. We thus propose an observable data set consisting of low and high impact velocity experiments/simulations that capture different regimes of compaction and shock propagation, and proceed to introduce a generative machine learning approach which produces a posterior distribution of physical parameters directly from radiographs. We demonstrate the effectiveness of the approach in estimating parameters from simulated flyer plate impact experiments, and show that the obtained estimates of EoS and crush model parameters can then be used in hydrodynamic simulations to obtain accurate and physically admissible density reconstructions. Finally, we examine the robustness of the approach to model mismatches, and find that the learned approach can provide useful parameter estimates in the presence of out-of-distribution radiographic noise and previously unseen physics, thereby promoting a potential breakthrough in estimating material properties from experimental radiographic images.
comment: 24 pages, 21 figures
☆ RawMal-TF: Raw Malware Dataset Labeled by Type and Family
This work addresses the challenge of malware classification using machine learning by developing a novel dataset labeled at both the malware type and family levels. Raw binaries were collected from sources such as VirusShare, VX Underground, and MalwareBazaar, and subsequently labeled with family information parsed from binary names and type-level labels integrated from ClarAVy. The dataset includes 14 malware types and 17 malware families, and was processed using a unified feature extraction pipeline based on static analysis, particularly extracting features from Portable Executable headers, to support advanced classification tasks. The evaluation was focused on three key classification tasks. In the binary classification of malware versus benign samples, Random Forest and XGBoost achieved high accuracy on the full datasets, reaching 98.5% for type-based detection and 98.98% for family-based detection. When using truncated datasets of 1,000 samples to assess performance under limited data conditions, both models still performed strongly, achieving 97.6% for type-based detection and 98.66% for family-based detection. For interclass classification, which distinguishes between malware types or families, the models reached up to 97.5% accuracy on type-level tasks and up to 93.7% on family-level tasks. In the multiclass classification setting, which assigns samples to the correct type or family, SVM achieved 81.1% accuracy on type labels, while Random Forest and XGBoost reached approximately 73.4% on family labels. The results highlight practical trade-offs between accuracy and computational cost, and demonstrate that labeling at both the type and family levels enables more fine-grained and insightful malware classification. The work establishes a robust foundation for future research on advanced malware detection and classification.
☆ Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
Sound deductive reasoning -- the ability to derive new knowledge from existing facts and rules -- is an indisputably desirable aspect of general intelligence. Despite the major advances of AI systems in areas such as math and science, especially since the introduction of transformer architectures, it is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable deductive reasoning tasks. Hence, these systems are unfit to fulfill the dream of achieving artificial general intelligence capable of sound deductive reasoning. We argue that their unsound behavior is a consequence of the statistical learning approach powering their development. To overcome this, we contend that to achieve reliable deductive reasoning in learning-based AI systems, researchers must fundamentally shift from optimizing for statistical performance against distributions on reasoning problems and algorithmic tasks to embracing the more ambitious exact learning paradigm, which demands correctness on all inputs. We argue that exact learning is both essential and possible, and that this ambitious objective should guide algorithm design.
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought is fundamental in Transformers, which is to perform step-by-step reasoning. Besides what intermediate steps work, the order of these steps critically affects the difficulty of the reasoning. This study addresses a novel task of unraveling chain of thought - reordering decoder input tokens to a learning-friendly sequence for Transformers to learn arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially with sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on four order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, on the multiplication task, it recovered the reverse-digit order reported in prior studies.
comment: 14 pages, 10 figures
☆ Emergent musical properties of a transformer under contrastive self-supervised learning
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
comment: Accepted at ISMIR 2025
☆ When Plants Respond: Electrophysiology and Machine Learning for Green Monitoring Systems
Living plants, while contributing to ecological balance and climate regulation, also function as natural sensors capable of transmitting information about their internal physiological states and surrounding conditions. This rich source of data provides potential for applications in environmental monitoring and precision agriculture. With integration into biohybrid systems, we establish novel channels of physiological signal flow between living plants and artificial devices. We equipped *Hedera helix* with a plant-wearable device called PhytoNode to continuously record the plant's electrophysiological activity. We deployed plants in an uncontrolled outdoor environment to map electrophysiological patterns to environmental conditions. Over five months, we collected data that we analyzed using state-of-the-art and automated machine learning (AutoML). Our classification models achieve high performance, reaching macro F1 scores of up to 95 percent in binary tasks. AutoML approaches outperformed manual tuning, and selecting subsets of statistical features further improved accuracy. Our biohybrid living system monitors the electrophysiology of plants in harsh, real-world conditions. This work advances scalable, self-sustaining, and plant-integrated living biohybrid systems for sustainable environmental monitoring.
comment: Submitted and Accepted at the 14th international conference on biomimetic and biohybrid systems (Living Machines)
☆ Scaling Self-Supervised Representation Learning for Symbolic Piano Performance
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions. After first pretraining on approximately 60,000 hours of music, we use a comparatively smaller, high-quality subset, to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings by adapting the SimCLR framework to symbolic music. When evaluating piano continuation coherence, our generative model outperforms leading symbolic generation techniques and remains competitive with proprietary audio generation models. On MIR classification benchmarks, frozen representations from our contrastive model achieve state-of-the-art results in linear probe experiments, while direct finetuning demonstrates the generalizability of pretrained representations, often requiring only a few hundred labeled examples to specialize to downstream tasks.
comment: ISMIR (2025)
☆ Differentially Private Synthetic Data Release for Topics API Outputs
The analysis of the privacy properties of Privacy-Preserving Ads APIs is an area of research that has received strong interest from academics, industry, and regulators. Despite this interest, the empirical study of these methods is hindered by the lack of publicly available data. Reliable empirical analysis of the privacy properties of an API, in fact, requires access to a dataset consisting of realistic API outputs; however, privacy concerns prevent the general release of such data to the public. In this work, we develop a novel methodology to construct synthetic API outputs that are simultaneously realistic enough to enable accurate study and provide strong privacy protections. We focus on one Privacy-Preserving Ads APIs: the Topics API, part of Google Chrome's Privacy Sandbox. We developed a methodology to generate a differentially-private dataset that closely matches the re-identification risk properties of the real Topics API data. The use of differential privacy provides strong theoretical bounds on the leakage of private user information from this release. Our methodology is based on first computing a large number of differentially-private statistics describing how output API traces evolve over time. Then, we design a parameterized distribution over sequences of API traces and optimize its parameters so that they closely match the statistics obtained. Finally, we create the synthetic data by drawing from this distribution. Our work is complemented by an open-source release of the anonymized dataset obtained by this methodology. We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset. We believe that this work will contribute to fostering transparency regarding the privacy properties of Privacy-Preserving Ads APIs.
comment: 20 pages, 8 figures
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ EFPI: Elastic Formation and Position Identification in Football (Soccer) using Template Matching and Linear Assignment
Understanding team formations and player positioning is crucial for tactical analysis in football (soccer). This paper presents a flexible method for formation recognition and player position assignment in football using predefined static formation templates and cost minimization from spatiotemporal tracking data, called EFPI. Our approach employs linear sum assignment to optimally match players to positions within a set of template formations by minimizing the total distance between actual player locations and template positions, subsequently selecting the formation with the lowest assignment cost. To improve accuracy, we scale actual player positions to match the dimensions of these formation templates in both width and length. While the method functions effectively on individual frames, it extends naturally to larger game segments such as complete periods, possession sequences or specific intervals (e.g. 10 second intervals, 5 minute intervals etc.). Additionally, we incorporate an optional stability parameter that prevents unnecessary formation changes when assignment costs differ only marginally between time segments. EFPI is available as open-source code through the unravelsports Python package.
☆ Proving the Limited Scalability of Centralized Distributed Optimization via a New Lower Bound Construction
We consider centralized distributed optimization in the classical federated learning setup, where $n$ workers jointly find an $\varepsilon$-stationary point of an $L$-smooth, $d$-dimensional nonconvex function $f$, having access only to unbiased stochastic gradients with variance $\sigma^2$. Each worker requires at most $h$ seconds to compute a stochastic gradient, and the communication times from the server to the workers and from the workers to the server are $\tau_{s}$ and $\tau_{w}$ seconds per coordinate, respectively. One of the main motivations for distributed optimization is to achieve scalability with respect to $n$. For instance, it is well known that the distributed version of SGD has a variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{n \varepsilon^2},$ which improves with the number of workers $n,$ where $\Delta = f(x^0) - f^*,$ and $x^0 \in R^d$ is the starting point. Similarly, using unbiased sparsification compressors, it is possible to reduce both the variance-dependent runtime term and the communication runtime term. However, once we account for the communication from the server to the workers $\tau_{s}$, we prove that it becomes infeasible to design a method using unbiased random sparsification compressors that scales both the server-side communication runtime term $\tau_{s} d \frac{L \Delta}{\varepsilon}$ and the variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{\varepsilon^2},$ better than poly-logarithmically in $n$, even in the homogeneous (i.i.d.) case, where all workers access the same distribution. To establish this result, we construct a new "worst-case" function and develop a new lower bound framework that reduces the analysis to the concentration of a random sum, for which we prove a concentration bound. These results reveal fundamental limitations in scaling distributed optimization, even under the homogeneous assumption.
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ SGD with Adaptive Preconditioning: Unified Analysis and Momentum Acceleration
In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type preconditioning. Our contributions are twofold. First, we develop a unified convergence analysis of SGD with adaptive preconditioning under anisotropic or matrix smoothness and noise assumptions. This allows us to recover state-of-the-art convergence results for several popular adaptive gradient methods, including AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we establish the fundamental connection between two recently proposed algorithms, Scion and DASGO, and provide the first theoretical guarantees for the latter. Second, we show that the convergence of methods like AdaGrad and DASGO can be provably accelerated beyond the best-known rates using Nesterov momentum. Consequently, we obtain the first theoretical justification that AdaGrad-type algorithms can simultaneously benefit from both diagonal preconditioning and momentum, which may provide an ultimate explanation for the practical efficiency of Adam.
☆ Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
In this work we introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations. Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process. The primary contributions of this study include the development of an innovative RFS-based framework that not only learns the normal behavior of the data-generating process online but also dynamically adapts to behavioral shifts to accurately identify abnormal point patterns. To achieve this, we introduce a new class of RFS-based posterior distributions, named Power Discounting Posteriors (PD), which facilitate adaptation to systematic changes in data while enabling anomaly detection of point pattern data through a novel predictive posterior density function. The effectiveness of the proposed approach is demonstrated by extensive qualitative and quantitative simulation experiments.
comment: 23rd European Control Conference (ECC 2025), Thessaloniki, Greece, 24-27 June 2025
☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
☆ KAIROS: Scalable Model-Agnostic Data Valuation
Training data increasingly shapes not only model accuracy but also regulatory compliance and market valuation of AI assets. Yet existing valuation methods remain inadequate: model-based techniques depend on a single fitted model and inherit its biases, while algorithm-based approaches such as Data Shapley require costly retrainings at web scale. Recent Wasserstein-based model-agnostic methods rely on approximations that misrank examples relative to their true leave-one-out (LOO) utility. We introduce KAIROS, a scalable, model-agnostic valuation framework that assigns each example a distributional influence score: its contribution to the Maximum Mean Discrepancy (MMD) between the empirical training distribution and a clean reference set. Unlike Wasserstein surrogates, our MMD-based influence admits a closed-form solution that faithfully approximates the exact LOO ranking within $O(1/N^2)$ error, requires no retraining, and naturally extends to conditional kernels for unified label- and feature-error detection. Moreover, KAIROS supports efficient online updates: when a new batch of size m arrives, all scores can be updated in $O(mN)$ time, delivering up to 50x speedup without compromising ranking quality. Empirical evaluations on noise, mislabeling, and poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime. We provide rigorous theoretical guarantees, including symmetry for reproducible rankings and density-separation for interpretable thresholds.
comment: 19 pages, 9 figures
☆ Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Multi-agent pathfinding (MAPF) is a common abstraction of multi-robot trajectory planning problems, where multiple homogeneous robots simultaneously move in the shared environment. While solving MAPF optimally has been proven to be NP-hard, scalable, and efficient, solvers are vital for real-world applications like logistics, search-and-rescue, etc. To this end, decentralized suboptimal MAPF solvers that leverage machine learning have come on stage. Building on the success of the recently introduced MAPF-GPT, a pure imitation learning solver, we introduce MAPF-GPT-DDG. This novel approach effectively fine-tunes the pre-trained MAPF model using centralized expert data. Leveraging a novel delta-data generation mechanism, MAPF-GPT-DDG accelerates training while significantly improving performance at test time. Our experiments demonstrate that MAPF-GPT-DDG surpasses all existing learning-based MAPF solvers, including the original MAPF-GPT, regarding solution quality across many testing scenarios. Remarkably, it can work with MAPF instances involving up to 1 million agents in a single environment, setting a new milestone for scalability in MAPF domains.
☆ When GNNs Met a Word Equations Solver: Learning to Rank Equations (Extended Technical Report)
Nielsen transformation is a standard approach for solving word equations: by repeatedly splitting equations and applying simplification steps, equations are rewritten until a solution is reached. When solving a conjunction of word equations in this way, the performance of the solver will depend considerably on the order in which equations are processed. In this work, the use of Graph Neural Networks (GNNs) for ranking word equations before and during the solving process is explored. For this, a novel graph-based representation for word equations is presented, preserving global information across conjuncts, enabling the GNN to have a holistic view during ranking. To handle the variable number of conjuncts, three approaches to adapt a multi-classification task to the problem of ranking equations are proposed. The training of the GNN is done with the help of minimum unsatisfiable subsets (MUSes) of word equations. The experimental results show that, compared to state-of-the-art string solvers, the new framework solves more problems in benchmarks where each variable appears at most once in each equation.
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Calibrating Graph Neural Networks with Wavelet-Aware Temperature Scaling
Graph Neural Networks (GNNs) have demonstrated strong predictive performance on relational data; however, their confidence estimates often misalign with actual predictive correctness, posing significant limitations for deployment in safety-critical settings. While existing graph-aware calibration methods seek to mitigate this limitation, they primarily depend on coarse one-hop statistics, such as neighbor-predicted confidence, or latent node embeddings, thereby neglecting the fine-grained structural heterogeneity inherent in graph topology. In this work, we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration framework that assigns node-specific temperatures based on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the scalability and topology sensitivity of graph wavelets to refine confidence estimates, all without necessitating model retraining or access to neighboring logits or predictions. Extensive evaluations across seven benchmark datasets with varying graph structures and two GNN backbones demonstrate that WATS achieves the lowest Expected Calibration Error (ECE) among all compared methods, outperforming both classical and graph-specific baselines by up to 42.3\% in ECE and reducing calibration variance by 17.24\% on average compared with graph-specific methods. Moreover, WATS remains computationally efficient, scaling well across graphs of diverse sizes and densities. Code will be released based on publication.
☆ Model-driven Stochastic Trace Clustering
Process discovery algorithms automatically extract process models from event logs, but high variability often results in complex and hard-to-understand models. To mitigate this issue, trace clustering techniques group process executions into clusters, each represented by a simpler and more understandable process model. Model-driven trace clustering improves on this by assigning traces to clusters based on their conformity to cluster-specific process models. However, most existing clustering techniques rely on either no process model discovery, or non-stochastic models, neglecting the frequency or probability of activities and transitions, thereby limiting their capability to capture real-world execution dynamics. We propose a novel model-driven trace clustering method that optimizes stochastic process models within each cluster. Our approach uses entropic relevance, a stochastic conformance metric based on directly-follows probabilities, to guide trace assignment. This allows clustering decisions to consider both structural alignment with a cluster's process model and the likelihood that a trace originates from a given stochastic process model. The method is computationally efficient, scales linearly with input size, and improves model interpretability by producing clusters with clearer control-flow patterns. Extensive experiments on public real-life datasets show that our method outperforms existing alternatives in representing process behavior and reveals how clustering performance rankings can shift when stochasticity is considered.
☆ Explainable AI for Comprehensive Risk Assessment for Financial Reports: A Lightweight Hierarchical Transformer Network Approach
Every publicly traded U.S. company files an annual 10-K report containing critical insights into financial health and risk. We propose Tiny eXplainable Risk Assessor (TinyXRA), a lightweight and explainable transformer-based model that automatically assesses company risk from these reports. Unlike prior work that relies solely on the standard deviation of excess returns (adjusted for the Fama-French model), which indiscriminately penalizes both upside and downside risk, TinyXRA incorporates skewness, kurtosis, and the Sortino ratio for more comprehensive risk assessment. We leverage TinyBERT as our encoder to efficiently process lengthy financial documents, coupled with a novel dynamic, attention-based word cloud mechanism that provides intuitive risk visualization while filtering irrelevant terms. This lightweight design ensures scalable deployment across diverse computing environments with real-time processing capabilities for thousands of financial documents which is essential for production systems with constrained computational resources. We employ triplet loss for risk quartile classification, improving over pairwise loss approaches in existing literature by capturing both the direction and magnitude of risk differences. Our TinyXRA achieves state-of-the-art predictive accuracy across seven test years on a dataset spanning 2013-2024, while providing transparent and interpretable risk assessments. We conduct comprehensive ablation studies to evaluate our contributions and assess model explanations both quantitatively by systematically removing highly attended words and sentences, and qualitatively by examining explanation coherence. The paper concludes with findings, practical implications, limitations, and future research directions.
☆ Training of Spiking Neural Networks with Expectation-Propagation
In this paper, we propose a unifying message-passing framework for training spiking neural networks (SNNs) using Expectation-Propagation. Our gradient-free method is capable of learning the marginal distributions of network parameters and simultaneously marginalizes nuisance parameters, such as the outputs of hidden layers. This framework allows for the first time, training of discrete and continuous weights, for deterministic and stochastic spiking networks, using batches of training samples. Although its convergence is not ensured, the algorithm converges in practice faster than gradient-based methods, without requiring a large number of passes through the training data. The classification and regression results presented pave the way for new efficient training methods for deep Bayesian networks.
comment: 10 pages
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ System-Embedded Diffusion Bridge Models
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: Preprint
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ Optimization, Isoperimetric Inequalities, and Sampling via Lyapunov Potentials COLT 2025
In this paper, we prove that optimizability of any function F using Gradient Flow from all initializations implies a Poincar\'e Inequality for Gibbs measures mu_{beta} = e^{-beta F}/Z at low temperature. In particular, under mild regularity assumptions on the convergence rate of Gradient Flow, we establish that mu_{beta} satisfies a Poincar\'e Inequality with constant O(C'+1/beta) for beta >= Omega(d), where C' is the Poincar\'e constant of mu_{beta} restricted to a neighborhood of the global minimizers of F. Under an additional mild condition on F, we show that mu_{beta} satisfies a Log-Sobolev Inequality with constant O(beta max(S, 1) max(C', 1)) where S denotes the second moment of mu_{beta}. Here asymptotic notation hides F-dependent parameters. At a high level, this establishes that optimizability via Gradient Flow from every initialization implies a Poincar\'e and Log-Sobolev Inequality for the low-temperature Gibbs measure, which in turn imply sampling from all initializations. Analogously, we establish that under the same assumptions, if F can be initialized from everywhere except some set S, then mu_{beta} satisfies a Weak Poincar\'e Inequality with parameters (O(C'+1/beta), O(mu_{beta}(S))) for \beta = Omega(d). At a high level, this shows while optimizability from 'most' initializations implies a Weak Poincar\'e Inequality, which in turn implies sampling from suitable warm starts. Our regularity assumptions are mild and as a consequence, we show we can efficiently sample from several new natural and interesting classes of non-log-concave densities, an important setting with relatively few examples. As another corollary, we obtain efficient discrete-time sampling results for log-concave measures satisfying milder regularity conditions than smoothness, similar to Lehec (2023).
comment: COLT 2025
♻ ☆ What Makes Treatment Effects Identifiable? Characterizations and Estimators Beyond Unconfoundedness COLT
Most of the widely used estimators of the average treatment effect (ATE) in causal inference rely on the assumptions of unconfoundedness and overlap. Unconfoundedness requires that the observed covariates account for all correlations between the outcome and treatment. Overlap requires the existence of randomness in treatment decisions for all individuals. Nevertheless, many types of studies frequently violate unconfoundedness or overlap, for instance, observational studies with deterministic treatment decisions - popularly known as Regression Discontinuity designs - violate overlap. In this paper, we initiate the study of general conditions that enable the identification of the average treatment effect, extending beyond unconfoundedness and overlap. In particular, following the paradigm of statistical learning theory, we provide an interpretable condition that is sufficient and necessary for the identification of ATE. Moreover, this condition also characterizes the identification of the average treatment effect on the treated (ATT) and can be used to characterize other treatment effects as well. To illustrate the utility of our condition, we present several well-studied scenarios where our condition is satisfied and, hence, we prove that ATE can be identified in regimes that prior works could not capture. For example, under mild assumptions on the data distributions, this holds for the models proposed by Tan (2006) and Rosenbaum (2002), and the Regression Discontinuity design model introduced by Thistlethwaite and Campbell (1960). For each of these scenarios, we also show that, under natural additional assumptions, ATE can be estimated from finite samples. We believe these findings open new avenues for bridging learning-theoretic insights and causal inference methodologies, particularly in observational studies with complex treatment mechanisms.
comment: Accepted for presentation at the 38th Conference on Learning Theory (COLT) 2025. v2 strengthens results to give a tight characterization for ATE identification
♻ ☆ Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Redundant Data
Compressed Sparse Column (CSC) and Coordinate (COO) are popular compression formats for sparse matrices. However, both CSC and COO are general purpose and cannot take advantage of any of the properties of the data other than sparsity, such as data redundancy. Highly redundant sparse data is common in many machine learning applications, such as genomics, and is often too large for in-core computation using conventional sparse storage formats. In this paper, we present two extensions to CSC: (1) Value-Compressed Sparse Column (VCSC) and (2) Index- and Value-Compressed Sparse Column (IVCSC). VCSC takes advantage of high redundancy within a column to further compress data up to 3-fold over COO and 2.25-fold over CSC, without significant negative impact to performance characteristics. IVCSC extends VCSC by compressing index arrays through delta encoding and byte-packing, achieving a 10-fold decrease in memory usage over COO and 7.5-fold decrease over CSC. Our benchmarks on simulated and real data show that VCSC and IVCSC can be read in compressed form with little added computational cost. These two novel compression formats offer a broadly useful solution to encoding and reading redundant sparse data.
♻ ☆ Refined climatologies of future precipitation over High Mountain Asia using probabilistic ensemble learning
High Mountain Asia (HMA) holds the highest concentration of frozen water outside the polar regions, serving as a crucial water source for more than 1.9 billion people. Precipitation represents the largest source of uncertainty for future hydrological modelling in this area. In this study, we propose a probabilistic machine learning framework to combine monthly precipitation from 13 regional climate models developed under the Coordinated Regional Downscaling Experiment (CORDEX) over HMA via a mixture of experts (MoE). This approach accounts for seasonal and spatial biases within the models, enabling the prediction of more faithful precipitation distributions. The MoE is trained and validated against gridded historical precipitation data, yielding 32% improvement over an equally-weighted average and 254% improvement over choosing any single ensemble member. This approach is then used to generate precipitation projections for the near future (2036-2065) and far future (2066-2095) under RCP4.5 and RCP8.5 scenarios. Compared to previous estimates, the MoE projects wetter summers but drier winters over the western Himalayas and Karakoram and wetter winters over the Tibetan Plateau, Hengduan Shan, and South East Tibet.
comment: 16 pages 8 figures (main text), 32 pages 14 figures (total)
♻ ☆ Experimenting, Fast and Slow: Bayesian Optimization of Long-term Outcomes with Online Experiments
Online experiments in internet systems, also known as A/B tests, are used for a wide range of system tuning problems, such as optimizing recommender system ranking policies and learning adaptive streaming controllers. Decision-makers generally wish to optimize for long-term treatment effects of the system changes, which often requires running experiments for a long time as short-term measurements can be misleading due to non-stationarity in treatment effects over time. The sequential experimentation strategies--which typically involve several iterations--can be prohibitively long in such cases. We describe a novel approach that combines fast experiments (e.g., biased experiments run only for a few hours or days) and/or offline proxies (e.g., off-policy evaluation) with long-running, slow experiments to perform sequential, Bayesian optimization over large action spaces in a short amount of time.
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Semiparametric Double Reinforcement Learning with Applications to Long-Term Causal Inference
Long-term causal effects often must be estimated from short-term data due to limited follow-up in healthcare, economics, and online platforms. Markov Decision Processes (MDPs) provide a natural framework for capturing such long-term dynamics through sequences of states, actions, and rewards. Double Reinforcement Learning (DRL) enables efficient inference on policy values in MDPs, but nonparametric implementations require strong intertemporal overlap assumptions and often exhibit high variance and instability. We propose a semiparametric extension of DRL for efficient inference on linear functionals of the Q-function--such as policy values--in infinite-horizon, time-homogeneous MDPs. By imposing structural restrictions on the Q-function, our approach relaxes the strong overlap conditions required by nonparametric methods and improves statistical efficiency. Under model misspecification, our estimators target the functional of the best-approximating Q-function, with only second-order bias. We provide conditions for valid inference using sieve methods and data-driven model selection. A central challenge in DRL is the estimation of nuisance functions, such as density ratios, which often involve difficult minimax optimization. To address this, we introduce a novel plug-in estimator based on isotonic Bellman calibration, which combines fitted Q-iteration with an isotonic regression adjustment. The estimator is debiased without requiring estimation of additional nuisance functions and reduces high-dimensional overlap assumptions to a one-dimensional condition. Bellman calibration extends isotonic calibration--widely used in prediction and classification--to the MDP setting and may be of independent interest.
♻ ☆ Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus, where the loss landscape becomes flat. We study an analog VQA ans\"atze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms. By tuning the disorder strength we place each quench in either a thermalized phase or a many-body-localized (MBL) phase and analyse (i) the ans\"atze's expressivity and (ii) the scaling of loss variance. Numerics shows that both phases reach maximal expressivity at large $M$, but barren plateaus emerge at far smaller $M$ in the thermalized phase than in the MBL phase. Exploiting this gap, we propose an MBL initialisation strategy: initialise the ans\"atze in the MBL regime at intermediate quench $M$, enabling an initial trainability while retaining sufficient expressivity for subsequent optimization. The results link quantum phases of matter and VQA trainability, and provide practical guidelines for scaling analog-hardware VQAs.
comment: 15+7 pages, 7+5 figures
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations KDD
Transparency and interpretability are crucial for enhancing customer confidence and user engagement, especially when dealing with black-box Machine Learning (ML)-based recommendation systems. Modern recommendation systems leverage Graph Neural Network (GNN) due to their ability to produce high-quality recommendations in terms of both relevance and diversity. Therefore, the explainability of GNN is especially important for Link Prediction (LP) tasks since recommending relevant items can be viewed as predicting links between users and items. GNN explainability has been a well-studied field, but existing methods primarily focus on node or graph-level tasks, leaving a gap in LP explanation techniques. This work introduces Z-REx, a GNN explanation framework designed explicitly for heterogeneous link prediction tasks. Z-REx utilizes structural and attribute perturbation to identify critical substructures and important features while reducing the search space by leveraging domain-specific knowledge. In our experimentation, we show the efficacy of Z-REx in generating contextually relevant and human-interpretable explanations for ZiGNN, a GNN-based recommendation engine, using a real-world real-estate dataset from Zillow Group, Inc. We compare against State-of-The-Art (SOTA) GNN explainers to show Z-REx outperforms them by 61% in the Fidelity metric by producing superior human-interpretable explanations.
comment: Accepted to be published in KDD Workshop in Machine Learning on Graphs in the Era of Generative Artificial Intelligence (MLoG-GenAI@KDD) 2025
♻ ☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
♻ ☆ DGSAM: Domain Generalization via Individual Sharpness-Aware Minimization
Domain generalization (DG) aims to learn models that perform well on unseen target domains by training on multiple source domains. Sharpness-Aware Minimization (SAM), known for finding flat minima that improve generalization, has therefore been widely adopted in DG. However, our analysis reveals that SAM in DG may converge to \textit{fake flat minima}, where the total loss surface appears flat in terms of global sharpness but remains sharp with respect to individual source domains. To understand this phenomenon more precisely, we formalize the average worst-case domain risk as the maximum loss under domain distribution shifts within a bounded divergence, and derive a generalization bound that reveals the limitations of global sharpness-aware minimization. In contrast, we show that individual sharpness provides a valid upper bound on this risk, making it a more suitable proxy for robust domain generalization. Motivated by these insights, we shift the DG paradigm toward minimizing individual sharpness across source domains. We propose \textit{Decreased-overhead Gradual SAM (DGSAM)}, which applies gradual domain-wise perturbations in a computationally efficient manner to consistently reduce individual sharpness. Extensive experiments demonstrate that DGSAM not only improves average accuracy but also reduces performance variance across domains, while incurring less computational overhead than SAM.
♻ ☆ ROCK: A variational formulation for occupation kernel methods in Reproducing Kernel Hilbert Spaces
We present a Representer Theorem result for a large class of weak formulation problems. We provide examples of applications of our formulation both in traditional machine learning and numerical methods as well as in new and emerging techniques. Finally we apply our formulation to generalize the multivariate occupation kernel (MOCK) method for learning dynamical systems from data proposing the more general Riesz Occupation Kernel (ROCK) method. Our generalized methods are both more computationally efficient and performant on most of the benchmarks we test against.
♻ ☆ Table Foundation Models: on knowledge pre-training for tabular learning
Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ Intelligent Orchestration of Distributed Large Foundation Model Inference at the Edge
Large Foundation Models (LFMs), including multi-modal and generative models, promise to unlock new capabilities for next-generation Edge AI applications. However, performing inference with LFMs in resource-constrained and heterogeneous edge environments, such as Multi-access Edge Computing (MEC), presents significant challenges for workload orchestration due to time-varying network, compute, and storage conditions. In particular, current split inference strategies, which partition LFM layers across nodes, are not designed to adapt to fluctuating workloads, dynamic bandwidth conditions, or evolving privacy constraints in high-utilization MEC environments. In this work, we propose a novel adaptive split inference orchestration framework that elevates both the placement and partitioning of LFM layers to runtime-tunable variables. Specifically, our framework enables real-time, quality-of-service (QoS)-aware management of inference workloads by extending conventional orchestrators with three key services: (1) Capacity-aware workload distribution, which continuously profiles node resources and selects an optimal subset of MEC nodes; (2) Dynamic partition migration, which transparently relocates pre-cut LFM segments in response to changes in utilization or network conditions; (3) Real-time reconfiguration, which dynamically re-splits LFM layers to balance latency, throughput, and privacy. We formalize the joint placement-partitioning problem, outline a reference architecture and algorithmic workflow, and discuss applicability in representative smart city, V2X, and industrial edge scenarios.
comment: 25 pages, 3 figures, 4 tables, 50 references
♻ ☆ Scaling and renormalization in high-dimensional regression
From benign overfitting in overparameterized models to rich power-law scalings in performance, simple ridge regression displays surprising behaviors sometimes thought to be limited to deep neural networks. This balance of phenomenological richness with analytical tractability makes ridge regression the model system of choice in high-dimensional machine learning. In this paper, we present a unifying perspective on recent results on ridge regression using the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning. We highlight the fact that statistical fluctuations in empirical covariance matrices can be absorbed into a renormalization of the ridge parameter. This `deterministic equivalence' allows us to obtain analytic formulas for the training and generalization errors in a few lines of algebra by leveraging the properties of the $S$-transform of free probability. From these precise asymptotics, we can easily identify sources of power-law scaling in model performance. In all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. This allows us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 74 pages, 17 figures
♻ ☆ Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou High-Dimensional Trajectories Through Manifold Learning: A Linear Approach
A data-driven approach based on unsupervised machine learning is proposed to infer the intrinsic dimension $m^{\ast}$ of the high-dimensional trajectories of the Fermi-Pasta-Ulam-Tsingou (FPUT) model. Principal component analysis (PCA) is applied to trajectory data consisting of $n_s = 4,000,000$ datapoints, of the FPUT $\beta$ model with $N = 32$ coupled oscillators, revealing a critical relationship between $m^{\ast}$ and the model's nonlinear strength. By estimating the intrinsic dimension $m^{\ast}$ using multiple methods (participation ratio, Kaiser rule, and the Kneedle algorithm), it is found that $m^{\ast}$ increases with the model nonlinearity. Interestingly, in the weakly nonlinear regime, for trajectories initialized by exciting the first mode, the participation ratio estimates $m^{\ast} = 2, 3$, strongly suggesting that quasi-periodic motion on a low-dimensional Riemannian manifold underlies the characteristic energy recurrences observed in the FPUT model.
comment: 15 pages, 15 figures
♻ ☆ Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models ICML 2025
Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
comment: Published at the Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Green AI in Action: Strategic Model Selection for Ensembles in Production
Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their capabilities while escalating energy demands. Ensemble learning, combining predictions from multiple models to form a single prediction, intensifies this problem due to cumulative energy consumption. This paper presents a novel approach to model selection that addresses the challenge of balancing the accuracy of AI models with their energy consumption in a live AI ensemble system. We explore how reducing the number of models or improving the efficiency of model usage within an ensemble during inference can reduce energy demands without substantially sacrificing accuracy. This study introduces and evaluates two model selection strategies, Static and Dynamic, for optimizing ensemble learning systems performance while minimizing energy usage. Our results demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further enhances F1 scores, using on average 76% compared to 100% of the full ensemble. Moreover, we propose an approach that balances accuracy with resource consumption, significantly reducing energy usage without substantially impacting accuracy. This method decreased the average energy usage of the Static strategy from approximately 62% to 14%, and for the Dynamic strategy, from around 76% to 57%. Our field study of Green AI using an operational AI system developed by a large professional services provider shows the practical applicability of adopting energy-conscious model selection strategies in live production environments.
comment: 10 pages. Accepted at the 1st ACM International Conference on AI-powered Software (AIware), 2024
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ Pressing Intensity: An Intuitive Measure for Pressing in Soccer
Pressing is a fundamental defensive strategy in football, characterized by applying pressure on the ball owning team to regain possession. Despite its significance, existing metrics for measuring pressing often lack precision or comprehensive consideration of positional data, player movement and speed. This research introduces an innovative framework for quantifying pressing intensity, leveraging advancements in positional tracking data and components from Spearman's Pitch Control model. Our method integrates player velocities, movement directions, and reaction times to compute the time required for a defender to intercept an attacker or the ball. This time-to-intercept measure is then transformed into probabilistic values using a logistic function, enabling dynamic and intuitive analysis of pressing situations at the individual frame level. the model captures how every player's movement influences pressure on the field, offering actionable insights for coaches, analysts, and decision-makers. By providing a robust and intepretable metric, our approach facilitates the identification of pressing strategies, advanced situational analyses, and the derivation of metrics, advancing the analytical capabilities for modern football.
♻ ☆ Robustness of Decentralised Learning to Nodes and Data Disruption
In the vibrant landscape of AI research, decentralised learning is gaining momentum. Decentralised learning allows individual nodes to keep data locally where they are generated and to share knowledge extracted from local data among themselves through an interactive process of collaborative refinement. This paradigm supports scenarios where data cannot leave local nodes due to privacy or sovereignty reasons or real-time constraints imposing proximity of models to locations where inference has to be carried out. The distributed nature of decentralised learning implies significant new research challenges with respect to centralised learning. Among them, in this paper, we focus on robustness issues. Specifically, we study the effect of nodes' disruption on the collective learning process. Assuming a given percentage of "central" nodes disappear from the network, we focus on different cases, characterised by (i) different distributions of data across nodes and (ii) different times when disruption occurs with respect to the start of the collaborative learning task. Through these configurations, we are able to show the non-trivial interplay between the properties of the network connecting nodes, the persistence of knowledge acquired collectively before disruption or lack thereof, and the effect of data availability pre- and post-disruption. Our results show that decentralised learning processes are remarkably robust to network disruption. As long as even minimum amounts of data remain available somewhere in the network, the learning process is able to recover from disruptions and achieve significant classification accuracy. This clearly varies depending on the remaining connectivity after disruption, but we show that even nodes that remain completely isolated can retain significant knowledge acquired before the disruption.
comment: Supported by the H2020 HumaneAI Net (952026), CHIST-ERA-19-XAI010 SAI, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 FAIR, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000001 RESTART
♻ ☆ Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions
Recovery rate prediction plays a pivotal role in bond investment strategies by enhancing risk assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting effective credit risk management. However, accurate forecasting remains challenging due to complex nonlinear dependencies, high-dimensional feature spaces, and limited sample sizes-conditions under which classical machine learning models are prone to overfitting. We propose a hybrid Quantum Machine Learning (QML) model with Amplitude Encoding, leveraging the unitarity constraint of Parametrized Quantum Circuits (PQC) and the exponential data compression capability of qubits. We evaluate the model on a global recovery rate dataset comprising 1,725 observations and 256 features from 1996 to 2023. Our hybrid method significantly outperforms both classical neural networks and QML models using Angle Encoding, achieving a lower Root Mean Squared Error (RMSE) of 0.228, compared to 0.246 and 0.242, respectively. It also performs competitively with ensemble tree methods such as XGBoost. While practical implementation challenges remain for Noisy Intermediate-Scale Quantum (NISQ) hardware, our quantum simulation and preliminary results on noisy simulators demonstrate the promise of hybrid quantum-classical architectures in enhancing the accuracy and robustness of recovery rate forecasting. These findings illustrate the potential of quantum machine learning in shaping the future of credit risk prediction.
♻ ☆ Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
This study investigates the efficacy of machine learning models in network security threat detection through the critical lens of partial versus complete flow information, addressing a common gap between research settings and real-time operational needs. We systematically evaluate how a standard benchmark model, Random Forest, performs under varying training and testing conditions (complete/complete, partial/partial, complete/partial), quantifying the performance impact when dealing with the incomplete data typical in real-time environments. Our findings demonstrate a significant performance difference, with precision and recall dropping by up to 30% under certain conditions when models trained on complete flows are tested against partial flows. The study also reveals that, for the evaluated dataset and model, a minimum threshold around 7 packets in the test set appears necessary for maintaining reliable detection rates, providing valuable, quantified insights for developing more realistic real-time detection strategies.
comment: accepted for presentation at WTMC 2025
♻ ☆ Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective
Machines that can replicate human intelligence with type 2 reasoning capabilities should be able to reason at multiple levels of spatio-temporal abstractions and scales using internal world models. Devising formalisms to develop such internal world models, which accurately reflect the causal hierarchies inherent in the dynamics of the real world, is a critical research challenge in the domains of artificial intelligence and machine learning. This thesis identifies several limitations with the prevalent use of state space models (SSMs) as internal world models and propose two new probabilistic formalisms namely Hidden-Parameter SSMs and Multi-Time Scale SSMs to address these drawbacks. The structure of graphical models in both formalisms facilitates scalable exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time. This approach permits the development of scalable, adaptive hierarchical world models capable of representing nonstationary dynamics across multiple temporal abstractions and scales. Moreover, these probabilistic formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the stochastic nature of the real world and quantify the confidence in its predictions. The thesis also discuss how these formalisms are in line with related neuroscience literature on Bayesian brain hypothesis and predicitive processing. Our experiments on various real and simulated robots demonstrate that our formalisms can match and in many cases exceed the performance of contemporary transformer variants in making long-range future predictions. We conclude the thesis by reflecting on the limitations of our current models and suggesting directions for future research.
comment: Doctoral Dissertation, Department of Computer Science, Karlsruhe Institute Of Technology, 2024
♻ ☆ HyperMono: A Monotonicity-aware Approach to Hyper-Relational Knowledge Representation
In a hyper-relational knowledge graph (HKG), each fact is composed of a main triple associated with attribute-value qualifiers, which express additional factual knowledge. The hyper-relational knowledge graph completion (HKGC) task aims at inferring plausible missing links in a HKG. Most existing approaches to HKGC focus on enhancing the communication between qualifier pairs and main triples, while overlooking two important properties that emerge from the monotonicity of the hyper-relational graphs representation regime. Stage Reasoning allows for a two-step reasoning process, facilitating the integration of coarse-grained inference results derived solely from main triples and fine-grained inference results obtained from hyper-relational facts with qualifiers. In the initial stage, coarse-grained results provide an upper bound for correct predictions, which are subsequently refined in the fine-grained step. More generally, Qualifier Monotonicity implies that by attaching more qualifier pairs to a main triple, we may only narrow down the answer set, but never enlarge it. This paper proposes the HyperMono model for hyper-relational knowledge graph completion, which realizes stage reasoning and qualifier monotonicity. To implement qualifier monotonicity HyperMono resorts to cone embeddings. Experiments on three real-world datasets with three different scenario conditions demonstrate the strong performance of HyperMono when compared to the SoTA.
♻ ☆ Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behaviour in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search, The experiments demonstrated the utility of this dual-tomography producing state-of-the-art performance with efficient compression during training, accelerating and supporting lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 5 pages, 5 figures
♻ ☆ NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
♻ ☆ Quantum computing and artificial intelligence: status and perspectives
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.
comment: 33 pages, 3 figures
♻ ☆ Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.
comment: Manuscript accepted by Data Mining and Knowledge Discovery for publication (June 2025). This is the final revised version
♻ ☆ Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
In recent years, inconsistency in Bayesian deep learning has attracted significant attention. Tempered or generalized posterior distributions are frequently employed as direct and effective solutions. Nonetheless, the underlying mechanisms and the effectiveness of generalized posteriors remain active research topics. In this work, we interpret posterior tempering as a correction for model misspecification via adjustments to the joint probability, and as a recalibration of priors by reducing aleatoric uncertainty. We also identify a unique property of the Laplace approximation: the generalized normalizing constant remains invariant, in contrast to general Bayesian learning, where this constant typically depends on model parameters after generalization. Leveraging this property, we introduce the generalized Laplace approximation, which requires only a simple modification to the Hessian calculation of the regularized loss. This approach provides a flexible and scalable framework for high-quality posterior inference. We evaluate the proposed method on state-of-the-art neural networks and real-world datasets, demonstrating that the generalized Laplace approximation enhances predictive performance.
♻ ☆ A Consequentialist Critique of Binary Classification Evaluation Practices
ML-supported decisions, such as ordering tests or determining preventive custody, often involve binary classification based on probabilistic forecasts. Evaluation frameworks for such forecasts typically consider whether to prioritize independent-decision metrics (e.g., Accuracy) or top-K metrics (e.g., Precision@K), and whether to focus on fixed thresholds or threshold-agnostic measures like AUC-ROC. We highlight that a consequentialist perspective, long advocated by decision theorists, should naturally favor evaluations that support independent decisions using a mixture of thresholds given their prevalence, such as Brier scores and Log loss. However, our empirical analysis reveals a strong preference for top-K metrics or fixed thresholds in evaluations at major conferences like ICML, FAccT, and CHIL. To address this gap, we use this decision-theoretic framework to map evaluation metrics to their optimal use cases, along with a Python package, briertools, to promote the broader adoption of Brier scores. In doing so, we also uncover new theoretical connections, including a reconciliation between the Brier Score and Decision Curve Analysis, which clarifies and responds to a longstanding critique by (Assel, et al. 2017) regarding the clinical utility of proper scoring rules.
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Published at TACL 2025, presented at ACL 2025. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Machine learning-based decision support systems are increasingly deployed in clinical settings, where probabilistic scoring functions are used to inform and prioritize patient management decisions. However, widely used scoring rules, such as accuracy and AUC-ROC, fail to adequately reflect key clinical priorities, including calibration, robustness to distributional shifts, and sensitivity to asymmetric error costs. In this work, we propose a principled yet practical evaluation framework for selecting calibrated thresholded classifiers that explicitly accounts for the uncertainty in class prevalences and domain-specific cost asymmetries often found in clinical settings. Building on the theory of proper scoring rules, particularly the Schervish representation, we derive an adjusted variant of cross-entropy (log score) that averages cost-weighted performance over clinically relevant ranges of class balance. The resulting evaluation is simple to apply, sensitive to clinical deployment conditions, and designed to prioritize models that are both calibrated and robust to real-world variations.
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Value-Free Policy Optimization via Reward Partitioning
Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
♻ ☆ Recovering Imbalanced Clusters via Gradient-Based Projection Pursuit
Projection Pursuit is a classic exploratory technique for finding interesting projections of a dataset. We propose a method for recovering projections containing either Imbalanced Clusters or a Bernoulli-Rademacher distribution using a gradient-based technique to optimize the projection index. As sample complexity is a major limiting factor in Projection Pursuit, we analyze our algorithm's sample complexity within a Planted Vector setting where we can observe that Imbalanced Clusters can be recovered more easily than balanced ones. Additionally, we give a generalized result that works for a variety of data distributions and projection indices. We compare these results to computational lower bounds in the Low-Degree-Polynomial Framework. Finally, we experimentally evaluate our method's applicability to real-world data using FashionMNIST and the Human Activity Recognition Dataset, where our algorithm outperforms others when only a few samples are available.
♻ ☆ Online model learning with data-assimilated reservoir computers
We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation. We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
comment: 8 pages, 5 figures
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ ETTA: Elucidating the Design Space of Text-to-Audio Models ICML 2025
Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, enabling users to enrich their creative workflows with synthetic audio generated from natural language prompts. Despite this progress, the effects of data, model architecture, training objective functions, and sampling strategies on target benchmarks are not well understood. With the purpose of providing a holistic understanding of the design space of TTA models, we set up a large-scale empirical experiment focused on diffusion and flow matching models. Our contributions include: 1) AF-Synthetic, a large dataset of high quality synthetic captions obtained from an audio understanding model; 2) a systematic comparison of different architectural, training, and inference design choices for TTA models; 3) an analysis of sampling methods and their Pareto curves with respect to generation quality and inference speed. We leverage the knowledge obtained from this extensive analysis to propose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated on AudioCaps and MusicCaps, ETTA provides improvements over the baselines trained on publicly available data, while being competitive with models trained on proprietary data. Finally, we show ETTA's improved ability to generate creative audio following complex and imaginative captions -- a task that is more challenging than current benchmarks.
comment: ICML 2025. Demo: https://research.nvidia.com/labs/adlr/ETTA/ Code: https://github.com/NVIDIA/elucidated-text-to-audio
♻ ☆ Stacked conformal prediction
We consider a method for conformalizing a stacked ensemble of predictive models, showing that the potentially simple form of the meta-learner at the top of the stack enables a procedure with manageable computational cost that achieves approximate marginal validity without requiring the use of a separate calibration sample. Empirical results indicate that the method compares favorably to a standard inductive alternative.
comment: 12 pages, 2 figures
♻ ☆ TabNSA: Native Sparse Attention for Efficient Tabular Data Learning
Tabular data poses unique challenges for deep learning due to its heterogeneous feature types, lack of spatial structure, and often limited sample sizes. We propose TabNSA, a novel deep learning framework that integrates Native Sparse Attention (NSA) with a TabMixer backbone to efficiently model tabular data. TabNSA tackles computational and representational challenges by dynamically focusing on relevant feature subsets per instance. The NSA module employs a hierarchical sparse attention mechanism, including token compression, selective preservation, and localized sliding windows, to significantly reduce the quadratic complexity of standard attention operations while addressing feature heterogeneity. Complementing this, the TabMixer backbone captures complex, non-linear dependencies through parallel multilayer perceptron (MLP) branches with independent parameters. These modules are synergistically combined via element-wise summation and mean pooling, enabling TabNSA to model both global context and fine-grained interactions. Extensive experiments across supervised and transfer learning settings show that TabNSA consistently outperforms state-of-the-art deep learning models. Furthermore, by augmenting TabNSA with a fine-tuned large language model (LLM), we enable it to effectively address Few-Shot Learning challenges through language-guided generalization on diverse tabular benchmarks.
comment: 26 pages, 11 tables
♻ ☆ Empirical and computer-aided robustness analysis of long-step and accelerated methods in smooth convex optimization
This work assesses both empirically and theoretically, using the performance estimation methodology, how robust different first-order optimization methods are when subject to relative inexactness in their gradient computations. Relative inexactness occurs, for example, when compressing the gradient using fewer bits of information, which happens when dealing with large-scale problems on GPUs. Three major families of methods are analyzed: constant step gradient descent, long-step methods, and accelerated methods. The latter two are first shown to be theoretically not robust to inexactness. Then, a semi-heuristic shortening factor is introduced to improve their theoretical guarantees. All methods are subsequently tested on a concrete inexact problem, with two different types of relative inexactness, and it is observed that both accelerated methods are much more robust than expected, and that the shortening factor significantly helps the long-step methods. In the end, all shortened methods appear to be promising, even in this inexact setting.
♻ ☆ Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity ICML 2024
Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge when it comes to practical deployment due to their colossal model size. In response to this challenge, efforts have been directed toward the application of traditional network pruning techniques to LLMs, uncovering a massive number of parameters that can be pruned in one-shot without hurting performance. Prevailing LLM pruning strategies have consistently adhered to the practice of uniformly pruning all layers at equivalent sparsity, resulting in robust performance. However, this observation stands in contrast to the prevailing trends observed in the field of vision models, where non-uniform layerwise sparsity typically yields stronger results. To understand the underlying reasons for this disparity, we conduct a comprehensive study and discover a strong correlation with the emergence of activation outliers in LLMs. Inspired by this finding, we introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL). The sparsity ratio of OWL is proportional to the outlier ratio observed within each layer, facilitating a more effective alignment between layerwise weight sparsity and outlier ratios. Our empirical evaluation, conducted across the LLaMA-V1 family and OPT, spanning various benchmarks, demonstrates the distinct advantages offered by OWL over previous methods. For instance, OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively, while delivering 2.6x end-to-end inference speed-up in the DeepSparse inference engine. Codes are available at https://github.com/luuyin/OWL.
comment: Published at ICML 2024
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
Deploying a Machine Learning (ML) training pipeline into production requires good software engineering practices. Unfortunately, the typical data science workflow often leads to code that lacks critical software quality attributes. This experience report investigates this problem in SPIRA, a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose insufficiency respiratory via speech analysis. This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem: from a proof of concept Big Ball of Mud (v1), to a design pattern-based Modular Monolith (v2), to a test-driven set of Microservices (v3) Each version improved its overall extensibility, maintainability, robustness, and resiliency. The paper shares challenges and lessons learned in this process, offering insights for researchers and practitioners seeking to productionize their pipelines.
comment: 8 pages, 3 figures (2 diagrams, 2 code listings), accepted to the workshop SADIS 2025
♻ ☆ Bregman Centroid Guided Cross-Entropy Method
The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ An Unconditional Representation of the Conditional Score in Infinite-Dimensional Linear Inverse Problems
Score-based diffusion models (SDMs) have emerged as a powerful tool for sampling from the posterior distribution in Bayesian inverse problems. However, existing methods often require multiple evaluations of the forward mapping to generate a single sample, resulting in significant computational costs for large-scale inverse problems. To address this, we propose an unconditional representation of the conditional score-function (UCoS) tailored to linear inverse problems, which avoids forward model evaluations during sampling by shifting computational effort to an offline training phase. In this phase, a task-dependent score function is learned based on the linear forward operator. Crucially, we show that the conditional score can be derived exactly from a trained (unconditional) score using affine transformations, eliminating the need for conditional score approximations. Our approach is formulated in infinite-dimensional function spaces, making it inherently discretization-invariant. We support this formulation with a rigorous convergence analysis that justifies UCoS beyond any specific discretization. Finally we validate UCoS through high-dimensional computed tomography (CT) and image deblurring experiments, demonstrating both scalability and accuracy.
comment: Title changed, main text substantially revised, including new experiments, method acronym changed, references added. 34 pages, 11 figures, 2tables
♻ ☆ Causal Machine Learning in IoT-based Engineering Problems: A Tool Comparison in the Case of Household Energy Consumption
The rapid increase in computing power and the ability to store Big Data in the infrastructure has enabled predictions in a large variety of domains by Machine Learning. However, in many cases, existing Machine Learning tools are considered insufficient or incorrect since they exploit only probabilistic dependencies rather than inference logic. Causal Machine Learning methods seem to close this gap. In this paper, two prevalent tools based on Causal Machine Learning methods are compared, as well as their mathematical underpinning background. The operation of the tools is demonstrated by examining their response to 18 queries, based on the IDEAL Household Energy Dataset, published by the University of Edinburgh. First, it was important to evaluate the causal relations assumption that allowed the use of this approach; this was based on the preexisting scientific knowledge of the domain and was implemented by use of the in-built validation tools. Results were encouraging and may easily be extended to other domains.
♻ ☆ A Graph-Based Classical and Quantum Approach to Deterministic L-System Inference
L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-systems) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.
comment: 17 pages, 1 figure
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Storing overlapping associative memories on latent manifolds in low-rank spiking networks NeurIPS 2024
Associative memory architectures such as the Hopfield network have long been important conceptual and theoretical models for neuroscience and artificial intelligence. However, translating these abstract models into spiking neural networks has been surprisingly difficult. Indeed, much previous work has been restricted to storing a small number of primarily non-overlapping memories in large networks, thereby limiting their scalability. Here, we revisit the associative memory problem in light of recent advances in understanding spike-based computation. Using a recently-established geometric framework, we show that the spiking activity for a large class of all-inhibitory networks is situated on a low-dimensional, convex, and piecewise-linear manifold, with dynamics that move along the manifold. We then map the associative memory problem onto these dynamics, and demonstrate how the vertices of a hypercubic manifold can be used to store stable, overlapping activity patterns with a direct correspondence to the original Hopfield model. We propose several learning rules, and demonstrate a linear scaling of the storage capacity with the number of neurons, as well as robust pattern completion abilities. Overall, this work serves as a case study to demonstrate the effectiveness of using a geometrical perspective to design dynamics on neural manifolds, with implications for neuroscience and machine learning.
comment: 17 pages, 5 figures; accepted to NeurIPS 2024 Workshop on Symmetry and Geometry in Neural Representations (NeurReps 2024)
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
♻ ☆ Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version) SP 2025
Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.
comment: Accepted to ACISP 2025. This is the full version
♻ ☆ Intelligent Routing for Sparse Demand Forecasting: A Comparative Evaluation of Selection Strategies
Sparse and intermittent demand forecasting in supply chains presents a critical challenge, as frequent zero-demand periods hinder traditional model accuracy and impact inventory management. We propose and evaluate a Model-Router framework that dynamically selects the most suitable forecasting model-spanning classical, ML, and DL methods for each product based on its unique demand pattern. By comparing rule-based, LightGBM, and InceptionTime routers, our approach learns to assign appropriate forecasting strategies, effectively differentiating between smooth, lumpy, or intermittent demand regimes to optimize predictions. Experiments on the large-scale Favorita dataset show our deep learning (Inception Time) router improves forecasting accuracy by up to 11.8% (NWRMSLE) over strong, single-model benchmarks with 4.67x faster inference time. Ultimately, these gains in forecasting precision will drive substantial reductions in both stockouts and wasteful excess inventory, underscoring the critical role of intelligent, adaptive Al in optimizing contemporary supply chain operations.
comment: 8 pages, 4 figures, conference
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
comment: ICML 2025
♻ ☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
♻ ☆ Generative Intervention Models for Causal Perturbation Modeling
We consider the problem of predicting perturbation effects via causal models. In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation, even though the features of the perturbation are available. For example, in genomics, some properties of a drug may be known, but not their causal effects on the regulatory pathways of cells. We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions in a jointly-estimated causal model. Contrary to prior approaches, this enables us to predict the distribution shifts of unseen perturbation features while gaining insights about their mechanistic effects in the underlying data-generating process. On synthetic data and scRNA-seq drug perturbation data, GIMs achieve robust out-of-distribution predictions on par with unstructured approaches, while effectively inferring the underlying perturbation mechanisms, often better than other causal inference methods.
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
Information Retrieval 18
☆ Emergent musical properties of a transformer under contrastive self-supervised learning
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
comment: Accepted at ISMIR 2025
☆ Towards the "Digital Me": A vision of authentic Conversational Agents powered by personal Human Digital Twins
Human Digital Twins (HDTs) have traditionally been conceptualized as data-driven models designed to support decision-making across various domains. However, recent advancements in conversational AI open new possibilities for HDTs to function as authentic, interactive digital counterparts of individuals. This paper introduces a novel HDT system architecture that integrates large language models with dynamically updated personal data, enabling it to mirror an individual's conversational style, memories, and behaviors. To achieve this, our approach implements context-aware memory retrieval, neural plasticity-inspired consolidation, and adaptive learning mechanisms, creating a more natural and evolving digital persona. The resulting system does not only replicate an individual's unique conversational style depending on who they are speaking with, but also enriches responses with dynamically captured personal experiences, opinions, and memories. While this marks a significant step toward developing authentic virtual counterparts, it also raises critical ethical concerns regarding privacy, accountability, and the long-term implications of persistent digital identities. This study contributes to the field of HDTs by describing our novel system architecture, demonstrating its capabilities, and discussing future directions and emerging challenges to ensure the responsible and ethical development of HDTs.
comment: 24 pages, 9 figures
☆ Zero-Shot Contextual Embeddings via Offline Synthetic Corpus Generation
Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resource-constrained settings. We present ZEST, a zero-shot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domain-specific distributions. At inference, the frozen context-aware encoder uses this proxy corpus -- without any finetuning or target corpus access -- to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST's zero-shot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access -- demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.
☆ Act-With-Think: Chunk Auto-Regressive Modeling for Generative Recommendation
Generative recommendation (GR) typically encodes behavioral or semantic aspects of item information into discrete tokens, leveraging the standard autoregressive (AR) generation paradigm to make predictions. However, existing methods tend to overlook their intrinsic relationship, that is, the semantic usually provides some reasonable explainability "$\textbf{why}$" for the behavior "$\textbf{what}$", which may constrain the full potential of GR. To this end, we present Chunk AutoRegressive Modeling (CAR), a new generation paradigm following the decision pattern that users usually think semantic aspects of items (e.g. brand) and then take actions on target items (e.g. purchase). Our CAR, for the $\textit{first time}$, incorporates semantics (SIDs) and behavior (UID) into a single autoregressive transformer from an ``act-with-think'' dual perspective via chunk-level autoregression. Specifically, CAR packs SIDs and UID into a conceptual chunk for item unified representation, allowing each decoding step to make a holistic prediction. Experiments show that our CAR significantly outperforms existing methods based on traditional AR, improving Recall@5 by 7.93% to 22.30%. Furthermore, we verify the scaling effect between model performance and SIDs bit number, demonstrating that CAR preliminary emulates a kind of slow-thinking style mechanism akin to the reasoning processes observed in large language models (LLMs).
comment: 9 pages, 2 figures
☆ Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.
☆ KiseKloset: Comprehensive System For Outfit Retrieval, Recommendation, And Try-On
The global fashion e-commerce industry has become integral to people's daily lives, leveraging technological advancements to offer personalized shopping experiences, primarily through recommendation systems that enhance customer engagement through personalized suggestions. To improve customers' experience in online shopping, we propose a novel comprehensive KiseKloset system for outfit retrieval, recommendation, and try-on. We explore two approaches for outfit retrieval: similar item retrieval and text feedback-guided item retrieval. Notably, we introduce a novel transformer architecture designed to recommend complementary items from diverse categories. Furthermore, we enhance the overall performance of the search pipeline by integrating approximate algorithms to optimize the search process. Additionally, addressing the crucial needs of online shoppers, we employ a lightweight yet efficient virtual try-on framework capable of real-time operation, memory efficiency, and maintaining realistic outputs compared to its predecessors. This virtual try-on module empowers users to visualize specific garments on themselves, enhancing the customers' experience and reducing costs associated with damaged items for retailers. We deployed our end-to-end system for online users to test and provide feedback, enabling us to measure their satisfaction levels. The results of our user study revealed that 84% of participants found our comprehensive system highly useful, significantly improving their online shopping experience.
☆ Embedding-based Retrieval in Multimodal Content Moderation SIGIR 2025
Video understanding plays a fundamental role for content moderation on short video platforms, enabling the detection of inappropriate content. While classification remains the dominant approach for content moderation, it often struggles in scenarios requiring rapid and cost-efficient responses, such as trend adaptation and urgent escalations. To address this issue, we introduce an Embedding-Based Retrieval (EBR) method designed to complement traditional classification approaches. We first leverage a Supervised Contrastive Learning (SCL) framework to train a suite of foundation embedding models, including both single-modal and multi-modal architectures. Our models demonstrate superior performance over established contrastive learning methods such as CLIP and MoCo. Building on these embedding models, we design and implement the embedding-based retrieval system that integrates embedding generation and video retrieval to enable efficient and effective trend handling. Comprehensive offline experiments on 25 diverse emerging trends show that EBR improves ROC-AUC from 0.85 to 0.99 and PR-AUC from 0.35 to 0.95. Further online experiments reveal that EBR increases action rates by 10.32% and reduces operational costs by over 80%, while also enhancing interpretability and flexibility compared to classification-based solutions.
comment: Camera ready for SIGIR 2025
☆ FAIR-MATCH: A Multi-Objective Framework for Bias Mitigation in Reciprocal Dating Recommendations
Online dating platforms have fundamentally transformed the formation of romantic relationships, with millions of users worldwide relying on algorithmic matching systems to find compatible partners. However, current recommendation systems in dating applications suffer from significant algorithmic deficiencies, including but not limited to popularity bias, filter bubble effects, and inadequate reciprocity modeling that limit effectiveness and introduce harmful biases. This research integrates foundational work with recent empirical findings to deliver a detailed analysis of dating app recommendation systems, highlighting key issues and suggesting research-backed solutions. Through analysis of reciprocal recommendation frameworks, fairness evaluation metrics, and industry implementations, we demonstrate that current systems achieve modest performance with collaborative filtering reaching 25.1\% while reciprocal methods achieve 28.7\%. Our proposed mathematical framework addresses these limitations through enhanced similarity measures, multi-objective optimization, and fairness-aware algorithms that maintain competitive accuracy while improving demographic representation to reduce algorithmic bias.
☆ Optimizing Conversational Product Recommendation via Reinforcement Learning
We propose a reinforcement learning-based approach to optimize conversational strategies for product recommendation across diverse industries. As organizations increasingly adopt intelligent agents to support sales and service operations, the effectiveness of a conversation hinges not only on what is recommended but how and when recommendations are delivered. We explore a methodology where agentic systems learn optimal dialogue policies through feedback-driven reinforcement learning. By mining aggregate behavioral patterns and conversion outcomes, our approach enables agents to refine talk tracks that drive higher engagement and product uptake, while adhering to contextual and regulatory constraints. We outline the conceptual framework, highlight key innovations, and discuss the implications for scalable, personalized recommendation in enterprise environments.
♻ ☆ Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing SIGIR 2025
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations KDD
Transparency and interpretability are crucial for enhancing customer confidence and user engagement, especially when dealing with black-box Machine Learning (ML)-based recommendation systems. Modern recommendation systems leverage Graph Neural Network (GNN) due to their ability to produce high-quality recommendations in terms of both relevance and diversity. Therefore, the explainability of GNN is especially important for Link Prediction (LP) tasks since recommending relevant items can be viewed as predicting links between users and items. GNN explainability has been a well-studied field, but existing methods primarily focus on node or graph-level tasks, leaving a gap in LP explanation techniques. This work introduces Z-REx, a GNN explanation framework designed explicitly for heterogeneous link prediction tasks. Z-REx utilizes structural and attribute perturbation to identify critical substructures and important features while reducing the search space by leveraging domain-specific knowledge. In our experimentation, we show the efficacy of Z-REx in generating contextually relevant and human-interpretable explanations for ZiGNN, a GNN-based recommendation engine, using a real-world real-estate dataset from Zillow Group, Inc. We compare against State-of-The-Art (SOTA) GNN explainers to show Z-REx outperforms them by 61% in the Fidelity metric by producing superior human-interpretable explanations.
comment: Accepted to be published in KDD Workshop in Machine Learning on Graphs in the Era of Generative Artificial Intelligence (MLoG-GenAI@KDD) 2025
♻ ☆ Dual-Perspective Disentangled Multi-Intent Alignment for Enhanced Collaborative Filtering
Disentangling user intents from implicit feedback has emerged as a promising strategy for enhancing both the accuracy and interpretability of recommendation systems. However, existing methods often model user and item intents independently and rely heavily on implicit structural signals, lacking explicit guidance to uncover the joint semantics that drive user-item interactions. To address these limitations, we propose DMICF, a dual-perspective collaborative filtering framework that unifies intent alignment, structural fusion, and discriminative training into a cohesive architecture. DMICF jointly encodes user-item graphs from both user and item views, leveraging cross-perspective structural signals to reinforce representation learning, especially under sparse or long-tail scenarios. A sub-intent alignment mechanism is introduced to uncover fine-grained semantic correspondences between users and items, enabling adaptive refinement of interaction representations. To enhance prediction quality, DMICF employs an intent-aware scoring module that aggregates compatibility signals across matched latent intents. Furthermore, a multi-negative softmax-based supervision strategy is incorporated to promote semantic disentanglement, encouraging alignment between relevant intents while suppressing spurious or entangled components. Extensive experiments confirm that DMICF consistently delivers robust performance across datasets with diverse interaction distributions. Qualitative analysis confirms that DMICF disentangles interaction intents and adaptively structures intent subspaces into semantically coherent clusters, enabling fine-grained personalization.
comment: 27 pages, 11 figures
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining
The development of AI-assisted chemical synthesis tools requires comprehensive datasets covering diverse reaction types, yet current high-throughput experimental (HTE) approaches are expensive and limited in scope. Chemical literature represents a vast, underexplored data source containing thousands of reactions published annually. However, extracting reaction information from literature faces significant challenges including varied writing styles, complex coreference relationships, and multimodal information presentation. This paper proposes ChemMiner, a novel end-to-end framework leveraging multiple agents powered by large language models (LLMs) to extract high-fidelity chemical data from literature. ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation. Furthermore, we developed a comprehensive benchmark with expert-annotated chemical literature to evaluate both extraction efficiency and precision. Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores. Our open-sourced benchmark facilitates future research in chemical literature data mining.
♻ ☆ Reward Balancing Revisited: Enhancing Offline Reinforcement Learning for Recommender Systems
Offline reinforcement learning (RL) has emerged as a prevalent and effective methodology for real-world recommender systems, enabling learning policies from historical data and capturing user preferences. In offline RL, reward shaping encounters significant challenges, with past efforts to incorporate prior strategies for uncertainty to improve world models or penalize underexplored state-action pairs. Despite these efforts, a critical gap remains: the simultaneous balancing of intrinsic biases in world models and the diversity of policy recommendations. To address this limitation, we present an innovative offline RL framework termed Reallocated Reward for Recommender Systems (R3S). By integrating inherent model uncertainty to tackle the intrinsic fluctuations in reward predictions, we boost diversity for decision-making to align with a more interactive paradigm, incorporating extra penalizers with decay that deter actions leading to diminished state variety at both local and global scales. The experimental results demonstrate that R3S improves the accuracy of world models and efficiently harmonizes the heterogeneous preferences of the users.
comment: Accepted in Companion Proceedings of the ACM Web Conference 2025
♻ ☆ FlexRAG: A Flexible and Comprehensive Framework for Retrieval-Augmented Generation ACL 2025
Retrieval-Augmented Generation (RAG) plays a pivotal role in modern large language model applications, with numerous existing frameworks offering a wide range of functionalities to facilitate the development of RAG systems. However, we have identified several persistent challenges in these frameworks, including difficulties in algorithm reproduction and sharing, lack of new techniques, and high system overhead. To address these limitations, we introduce \textbf{FlexRAG}, an open-source framework specifically designed for research and prototyping. FlexRAG supports text-based, multimodal, and network-based RAG, providing comprehensive lifecycle support alongside efficient asynchronous processing and persistent caching capabilities. By offering a robust and flexible solution, FlexRAG enables researchers to rapidly develop, deploy, and share advanced RAG systems. Our toolkit and resources are available at \href{https://github.com/ictnlp/FlexRAG}{https://github.com/ictnlp/FlexRAG}.
comment: Accepted by ACL 2025 Demo
♻ ☆ Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning ACL 2025
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
comment: Accepted to ACL 2025 Main Conference
Computation and Language 69
☆ Pipelined Decoder for Efficient Context-Aware Text Generation
As the basis of generative AI, an autoregressive model requires the generation of a new token depending on all the previously generated tokens, which brings high quality but also restricts the model to generate tokens one by one, forming a bottleneck limiting the generation speed. In this paper, we propose a new decoder architecture that efficiently generates text in parallel for context-aware generation tasks. Our proposed pipelined decoder initiates the generation of multiple subsequences simultaneously, and, at each time-step, it generates a new token for each subsequence to realize parallelism. Experiments on multiple text generation tasks, including question answering, text summarization, and keyphrase generation, show that our pipelined decoder significantly improves the generation speed without a significant loss of generation quality or additional memory consumption.
☆ TuCo: Measuring the Contribution of Fine-Tuning to Individual Responses of LLMs ICML 2025
Past work has studied the effects of fine-tuning on large language models' (LLMs) overall performance on certain tasks. However, a quantitative and systematic method for analyzing its effect on individual outputs is still lacking. Here, we propose a new method for measuring the contribution that fine-tuning makes to individual LLM responses, assuming access to the original pre-trained model. Our method tracks the model's intermediate hidden states, providing a more fine-grained insight into the effects of fine-tuning than a simple comparison of final outputs from pre-trained and fine-tuned models. We introduce and theoretically analyze an exact decomposition of any fine-tuned LLM into a pre-training component and a fine-tuning component. Empirically, we find that model behavior and performance can be steered by up- or down-scaling the fine-tuning component during the forward pass. Motivated by this finding and our theoretical analysis, we define the Tuning Contribution (TuCo) as the ratio of the magnitudes of the fine-tuning component to the pre-training component. We observe that three prominent adversarial attacks on LLMs circumvent safety measures in a way that reduces TuCo, and that TuCo is consistently lower on prompts where these attacks succeed compared to those where they do not. This suggests that attenuating the effect of fine-tuning on model outputs plays a role in the success of such attacks. In summary, TuCo enables the quantitative study of how fine-tuning influences model behavior and safety, and vice versa.
comment: ICML 2025
Datasets for Fairness in Language Models: An In-Depth Survey
Fairness benchmarks play a central role in shaping how we evaluate language models, yet surprisingly little attention has been given to examining the datasets that these benchmarks rely on. This survey addresses that gap by presenting a broad and careful review of the most widely used fairness datasets in current language model research, characterizing them along several key dimensions including their origin, scope, content, and intended use to help researchers better appreciate the assumptions and limitations embedded in these resources. To support more meaningful comparisons and analyses, we introduce a unified evaluation framework that reveals consistent patterns of demographic disparities across datasets and scoring methods. Applying this framework to twenty four common benchmarks, we highlight the often overlooked biases that can influence conclusions about model fairness and offer practical guidance for selecting, combining, and interpreting these datasets. We also point to opportunities for creating new fairness benchmarks that reflect more diverse social contexts and encourage more thoughtful use of these tools going forward. All code, data, and detailed results are publicly available at https://github.com/vanbanTruong/Fairness-in-Large-Language-Models/tree/main/datasets to promote transparency and reproducibility across the research community.
☆ Teaching a Language Model to Speak the Language of Tools
External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.
☆ Hierarchical Memory Organization for Wikipedia Generation ACL 2025
Generating Wikipedia articles autonomously is a challenging task requiring the integration of accurate, comprehensive, and well-structured information from diverse sources. This paper introduces the Memory Organization-based Generation (MOG) framework, a novel approach to address these challenges by leveraging a hierarchical memory architecture. MOG extracts fine-grained memory units from web documents, recursively organizes them into a Wikipedia-style hierarchical structure, and uses this structure to guide the generation process. This ensures alignment between memory and the article outline, improving both informativeness and verifiability while minimizing hallucinations. Additionally, a citation module is implemented to enhance traceability by linking every generated sentence to specific memory units. Evaluations on our newly created WikiStart dataset demonstrate that MOG outperforms baseline methods in producing informative and reliable articles, making it particularly robust in real-world scenarios.
comment: ACL 2025 Main Conference
☆ Perspective Dial: Measuring Perspective of Text and Guiding LLM Outputs
Large language models (LLMs) are used in a variety of mission-critical roles. Due to the rapidly developing nature of LLMs, there is a lack of quantifiable understanding of the bias and perspective associated with LLM output. Inspired by this need, this paper considers the broader issue of perspective or viewpoint of general text and perspective control of large-language model (LLM) output. Perspective-Dial consists of two main components: a (1) metric space, dubbed Perspective Space, that enables quantitative measurements of different perspectives regarding a topic, and the use of (2) Systematic Prompt Engineering that utilizes greedy-coordinate descent to control LLM output perspective based on measurement feedback from the Perspective Space. The empirical nature of the approach allows progress to side step a principled understanding of perspective or bias -- effectively quantifying and adjusting outputs for a variety of topics. Potential applications include detection, tracking and mitigation of LLM bias, narrative detection, sense making and tracking in public discourse, and debate bot advocating given perspective.
comment: 7 pages, 5 main pages of text, 5 figures, 2 tables. Research work performed at CACI INTL INC
☆ You Sound a Little Tense: L2 Tailored Clear TTS Using Durational Vowel Properties ISCA
We present the first text-to-speech (TTS) system tailored to second language (L2) speakers. We use duration differences between American English tense (longer) and lax (shorter) vowels to create a "clarity mode" for Matcha-TTS. Our perception studies showed that French-L1, English-L2 listeners had fewer (at least 9.15%) transcription errors when using our clarity mode, and found it more encouraging and respectful than overall slowed down speech. Remarkably, listeners were not aware of these effects: despite the decreased word error rate in clarity mode, listeners still believed that slowing all target words was the most intelligible, suggesting that actual intelligibility does not correlate with perceived intelligibility. Additionally, we found that Whisper-ASR did not use the same cues as L2 speakers to differentiate difficult vowels and is not sufficient to assess the intelligibility of TTS systems for these individuals.
comment: Accepted to ISCA Speech Synthesis Workshop, 2025
☆ Density, asymmetry and citation dynamics in scientific literature
Scientific behavior is often characterized by a tension between building upon established knowledge and introducing novel ideas. Here, we investigate whether this tension is reflected in the relationship between the similarity of a scientific paper to previous research and its eventual citation rate. To operationalize similarity to previous research, we introduce two complementary metrics to characterize the local geometry of a publication's semantic neighborhood: (1) \emph{density} ($\rho$), defined as the ratio between a fixed number of previously-published papers and the minimum distance enclosing those papers in a semantic embedding space, and (2) asymmetry ($\alpha$), defined as the average directional difference between a paper and its nearest neighbors. We tested the predictive relationship between these two metrics and its subsequent citation rate using a Bayesian hierarchical regression approach, surveying $\sim 53,000$ publications across nine academic disciplines and five different document embeddings. While the individual effects of $\rho$ on citation count are small and variable, incorporating density-based predictors consistently improves out-of-sample prediction when added to baseline models. These results suggest that the density of a paper's surrounding scientific literature may carry modest but informative signals about its eventual impact. Meanwhile, we find no evidence that publication asymmetry improves model predictions of citation rates. Our work provides a scalable framework for linking document embeddings to scientometric outcomes and highlights new questions regarding the role that semantic similarity plays in shaping the dynamics of scientific reward.
☆ ATGen: A Framework for Active Text Generation ACL 2025
Active learning (AL) has demonstrated remarkable potential in reducing the annotation effort required for training machine learning models. However, despite the surging popularity of natural language generation (NLG) tasks in recent years, the application of AL to NLG has been limited. In this paper, we introduce Active Text Generation (ATGen) - a comprehensive framework that bridges AL with text generation tasks, enabling the application of state-of-the-art AL strategies to NLG. Our framework simplifies AL-empowered annotation in NLG tasks using both human annotators and automatic annotation agents based on large language models (LLMs). The framework supports LLMs deployed as services, such as ChatGPT and Claude, or operated on-premises. Furthermore, ATGen provides a unified platform for smooth implementation and benchmarking of novel AL strategies tailored to NLG tasks. Finally, we present evaluation results for state-of-the-art AL strategies across diverse settings and multiple text generation tasks. We show that ATGen reduces both the effort of human annotators and costs associated with API calls to LLM-based annotation agents. The code of the framework is available on GitHub under the MIT license. The video presentation is available at http://atgen-video.nlpresearch.group
comment: Accepted at ACL 2025 System Demonstrations
☆ Information Loss in LLMs' Multilingual Translation: The Role of Training Data, Language Proximity, and Language Family
Large language models have achieved impressive progress in multilingual translation, yet they continue to face challenges with certain language pairs-particularly those with limited training data or significant linguistic divergence from English. This study systematically investigates how training data, language proximity, and language family affect information loss in multilingual translation. We evaluate two large language models, GPT-4 and Llama 2, by performing round-trip translations. Translation quality was assessed using BLEU scores and BERT similarity metrics. Our results reveal a robust interaction between training data size and language distance: while abundant training data can mitigate the effects of linguistic divergence, languages structurally closer to English consistently yield higher translation quality in low-resource conditions. Among various distance metrics, orthographic, phylogenetic, syntactic, and geographical distances emerge as strong predictors of translation performance. Language family also exerts an independent influence. These findings contribute to a deeper understanding of the linguistic constraints shaping multilingual translation in large language models, emphasizing that translation quality is shaped not only by data volume but also by structural and typological relationships between languages.
☆ GaussMaster: An LLM-based Database Copilot System
In the financial industry, data is the lifeblood of operations, and DBAs shoulder significant responsibilities for SQL tuning, database deployment, diagnosis, and service repair. In recent years, both database vendors and customers have increasingly turned to autonomous database platforms in an effort to alleviate the heavy workload of DBAs. However, existing autonomous database platforms are limited in their capabilities, primarily addressing single-point issues such as NL2SQL, anomaly detection, and SQL tuning. Manual intervention remains a necessity for comprehensive database maintenance. GaussMaster aims to revolutionize this landscape by introducing an LLM-based database copilot system. This innovative solution is designed not only to assist developers in writing efficient SQL queries but also to provide comprehensive care for database services. When database instances exhibit abnormal behavior, GaussMaster is capable of orchestrating the entire maintenance process automatically. It achieves this by analyzing hundreds of metrics and logs, employing a Tree-of-thought approach to identify root causes, and invoking appropriate tools to resolve issues. We have successfully implemented GaussMaster in real-world scenarios, such as the banking industry, where it has achieved zero human intervention for over 34 database maintenance scenarios. In this paper, we present significant improvements in these tasks with code at https://gitcode.com/opengauss/openGauss-GaussMaster.
comment: We welcome contributions from the community. For reference, please see the code at: https://gitcode.com/opengauss/openGauss-GaussMaster
☆ Ensemble BERT for Medication Event Classification on Electronic Health Records (EHRs)
Identification of key variables such as medications, diseases, relations from health records and clinical notes has a wide range of applications in the clinical domain. n2c2 2022 provided shared tasks on challenges in natural language processing for clinical data analytics on electronic health records (EHR), where it built a comprehensive annotated clinical data Contextualized Medication Event Dataset (CMED). This study focuses on subtask 2 in Track 1 of this challenge that is to detect and classify medication events from clinical notes through building a novel BERT-based ensemble model. It started with pretraining BERT models on different types of big data such as Wikipedia and MIMIC. Afterwards, these pretrained BERT models were fine-tuned on CMED training data. These fine-tuned BERT models were employed to accomplish medication event classification on CMED testing data with multiple predictions. These multiple predictions generated by these fine-tuned BERT models were integrated to build final prediction with voting strategies. Experimental results demonstrated that BERT-based ensemble models can effectively improve strict Micro-F score by about 5% and strict Macro-F score by about 6%, respectively.
☆ Objective-Free Local Learning and Emergent Language Structure in Thinking Machines
We present a neuro-symbolic framework for generative language modeling based on local, event-driven emergent learning. At its core is a hierarchical Hopfield memory chain acting as a compositional short-term memory and dynamic tokenizer (retokenizer). Rather than relying on predefined tokens or supervision, the model builds structure from scratch, learning symbol sequences as multi-scale representations. It constructs projection tensors that bind co-occurring features into hierarchical tokens, introducing redundancy (i.e an emergent gauge structure) and enabling compression of local activations into long-range dependencies. Curiously, we find that the retokenizer can filter natural language patterns from noise, generating synthetic languages with coherent internal morphology -- quantifiably the same as human language. Language is learned in a local (Hebbian) fashion, where model constraints dictate allowed emergent structure, and new information is retained in alignment with this structure. The absence of a global objective enables a form of plasticity not found in conventional language models, allowing the system to generalize beyond its initial inference class -- even without explicit data. We demonstrate that briefly activating a new neuron during inference binds distributed multi-scale token features into a symbolic embedding. These emergent embedding neurons act as long-term memory and support a key-value mechanism for compositional inference and generalization. This architecture provides a methodological foundation for studying how symbolic structure can emerge from local neural learning. It offers a new pathway for building scalable, interpretable neuro-symbolic systems -- where tokens, grammar, and reasoning arise as compressed memory traces within a Hopfield hierarchy. This approach advances the development of neuromorphic architectures for generative language models.
comment: 22 pages, 7 figures
☆ Two Spelling Normalization Approaches Based on Large Language Models
The absence of standardized spelling conventions and the organic evolution of human language present an inherent linguistic challenge within historical documents, a longstanding concern for scholars in the humanities. Addressing this issue, spelling normalization endeavors to align a document's orthography with contemporary standards. In this study, we propose two new approaches based on large language models: one of which has been trained without a supervised training, and a second one which has been trained for machine translation. Our evaluation spans multiple datasets encompassing diverse languages and historical periods, leading us to the conclusion that while both of them yielded encouraging results, statistical machine translation still seems to be the most suitable technology for this task.
☆ Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games
As large language models (LLMs) are increasingly deployed as autonomous agents, understanding their cooperation and social mechanisms is becoming increasingly important. In particular, how LLMs balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment. In this paper, we examine the challenge of costly sanctioning in multi-agent LLM systems, where an agent must decide whether to invest its own resources to incentivize cooperation or penalize defection. To study this, we adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas over repeated interactions. Our analysis reveals four distinct behavioral patterns among models: some consistently establish and sustain high levels of cooperation, others fluctuate between engagement and disengagement, some gradually decline in cooperative behavior over time, and others rigidly follow fixed strategies regardless of outcomes. Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation, whereas some traditional LLMs consistently achieve high levels of cooperation. These findings suggest that the current approach to improving LLMs, which focuses on enhancing their reasoning capabilities, does not necessarily lead to cooperation, providing valuable insights for deploying LLM agents in environments that require sustained collaboration. Our code is available at https://github.com/davidguzmanp/SanctSim
☆ Generalist Reward Models: Found Inside Large Language Models
The alignment of Large Language Models (LLMs) is critically dependent on reward models trained on costly human preference data. While recent work explores bypassing this cost with AI feedback, these methods often lack a rigorous theoretical foundation. In this paper, we discover that a powerful generalist reward model is already latently present within any LLM trained via standard next-token prediction. We prove that this endogenous reward is not a heuristic, but is theoretically equivalent to a reward function learned through offline inverse reinforcement learning. This connection allows us to directly elicit a high-quality reward signal from a base (pre-trained or supervised fine-tuned) model without any further training. Critically, we also prove that subsequent reinforcement learning using this endogenous reward leads to a policy with a provably superior error bound compared to the base model. To our best knowledge, this is the first theoretical proof of the effectiveness of reinforcement learning for LLMs. Our experiments validate this theory, demonstrating that our method not only outperforms existing LLM-as-a-judge approaches but can also surpass explicitly trained reward models. These findings suggest that the reward modeling stage can be replaced by a principled method of eliciting the knowledge already captured during pre-training, heralding a more efficient, powerful, and scalable paradigm for LLMs alignment as well as multi-modal models.
☆ Masked Gated Linear Unit
Gated Linear Units (GLUs) have become essential components in the feed-forward networks of state-of-the-art Large Language Models (LLMs). However, they require twice as many memory reads compared to feed-forward layers without gating, due to the use of separate weight matrices for the gate and value streams. To address this bottleneck, we introduce Masked Gated Linear Units (MGLUs), a novel family of GLUs with an efficient kernel implementation. The core contribution of MGLUs include: (1) the Mixture of Element-wise Gating (MoEG) architecture that learns multiple binary masks, each determining gate or value assignments at the element level on a single shared weight matrix resulting in reduced memory transfer, and (2) FlashMGLU, a hardware-friendly kernel that yields up to a 19.7 $\times$ inference-time speed-up over a naive PyTorch MGLU and is 47% more memory-efficient and 34% faster than standard GLUs despite added architectural complexity on an RTX5090 GPU. In LLM experiments, the Swish-activated variant SwiMGLU preserves its memory advantages while matching - or even surpassing - the downstream accuracy of the SwiGLU baseline.
☆ UrbanLLaVA: A Multi-modal Large Language Model for Urban Intelligence with Spatial Reasoning and Understanding ICCV 2025
Urban research involves a wide range of scenarios and tasks that require the understanding of multi-modal data. Current methods often focus on specific data types and lack a unified framework in urban field for processing them comprehensively. The recent success of multi-modal large language models (MLLMs) presents a promising opportunity to overcome this limitation. In this paper, we introduce $\textit{UrbanLLaVA}$, a multi-modal large language model designed to process these four types of data simultaneously and achieve strong performance across diverse urban tasks compared with general MLLMs. In $\textit{UrbanLLaVA}$, we first curate a diverse urban instruction dataset encompassing both single-modal and cross-modal urban data, spanning from location view to global view of urban environment. Additionally, we propose a multi-stage training framework that decouples spatial reasoning enhancement from domain knowledge learning, thereby improving the compatibility and downstream performance of $\textit{UrbanLLaVA}$ across diverse urban tasks. Finally, we also extend existing benchmark for urban research to assess the performance of MLLMs across a wide range of urban tasks. Experimental results from three cities demonstrate that $\textit{UrbanLLaVA}$ outperforms open-source and proprietary MLLMs in both single-modal tasks and complex cross-modal tasks and shows robust generalization abilities across cities. Source codes and data are openly accessible to the research community via https://github.com/tsinghua-fib-lab/UrbanLLaVA.
comment: Accepted by ICCV 2025
☆ RiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streams SIGIR'23
Word embeddings have become essential components in various information retrieval and natural language processing tasks, such as ranking, document classification, and question answering. However, despite their widespread use, traditional word embedding models present a limitation in their static nature, which hampers their ability to adapt to the constantly evolving language patterns that emerge in sources such as social media and the web (e.g., new hashtags or brand names). To overcome this problem, incremental word embedding algorithms are introduced, capable of dynamically updating word representations in response to new language patterns and processing continuous data streams. This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams. Our tool is a resource for the information retrieval and natural language processing communities that work with word embeddings in streaming scenarios, such as analyzing social media. The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix, in a standardized framework. In addition, it uses PyTorch as its backend for neural network training. We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting. Finally, we compare the implemented methods with different hyperparameter settings and discuss the results. Our open-source library is available at https://github.com/dccuchile/rivertext.
comment: Accepted at SIGIR'23
☆ V-SYNTHESIS: Task-Agnostic Synthesis of Consistent and Diverse In-Context Demonstrations from Scratch via V-Entropy
High labeling cost for in-context learning (ICL) demonstrations motivates using large language models (LLMs) for synthesis to reduce overhead. However, existing synthesis methods are mainly task-specific or rely on pre-existing demonstrations. So this paper focuses on synthesizing demonstrations from scratch for arbitrary tasks. A major challenge in synthesizing from scratch is ensuring consistency with the target task, as the lack of labeling guidance could lead to synthesis bias. We first propose a consistency metric called V-Score, which has higher performance and lower computation cost compared with the metrics based on grams or embedding vectors. Furthermore, we introduce V-Synthesis, which leverages V-Score for proportional sampling to ensure both high consistency and diversity of synthesized demonstrations. Experimental results demonstrate that V-Synthesis yields an average performance improvement of 2.0% compared to existing synthesis methods confirming the effectiveness of V-Synthesis.
☆ Learning-to-Context Slope: Evaluating In-Context Learning Effectiveness Beyond Performance Illusions
In-context learning (ICL) has emerged as an effective approach to enhance the performance of large language models (LLMs). However, its effectiveness varies significantly across models and tasks, posing challenges for practitioners to determine when ICL reliably improves performance. Current evaluation approaches, reliant on performance change after applying ICL, suffer from low reliability, poor attribution, and impracticality in data-insufficient scenarios. We propose the Learning-to-Context Slope (LCS), a novel metric that quantifies ICL effectiveness by modeling the slope between learning gain (loss decrease from demonstrations) and contextual relevance (demonstration-input relevance). LCS addresses key limitations of performance-based metrics: (1) it captures continuous loss changes even when outputs are incorrect, improving reliability; (2) its formulation attributes ICL failures to weak contextual alignment (inability to adapt inputs to demonstrations) or strong output calibration (self-verification of correctness); and (3) it minimizes reliance on labeled data via synthetic evaluation. Extensive experiments demonstrate that LCS strongly correlates with performance improvements in labeled settings and reliably reflects true effectiveness in biased or data-scarce scenarios. Further analysis reveals actionable thresholds for LCS and identifies model capabilities critical to ICL success.
☆ Benchmarking Deep Search over Heterogeneous Enterprise Data
We present a new benchmark for evaluating Deep Search--a realistic and complex form of retrieval-augmented generation (RAG) that requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources. These include documents, meeting transcripts, Slack messages, GitHub, and URLs, which vary in structure and often contain human-to-human interactions. We build it using a synthetic data pipeline that simulates business workflows across product planning, development, and support stages, generating interconnected content with realistic noise and multi-hop questions with guaranteed ground-truth answers. We release our benchmark with both answerable and unanswerable queries, and retrieval pool of 39,190 enterprise artifacts, enabling fine-grained evaluation of long-context LLM and RAG systems. Our experiments reveal that even the best-performing agentic RAG methods achieve an average performance score of 32.96 on our benchmark. With further analysis, we highlight retrieval as the main bottleneck: existing methods struggle to conduct deep searches and retrieve all necessary evidence. Consequently, they often reason over partial context, leading to significant performance degradation.
☆ Flow-Modulated Scoring for Semantic-Aware Knowledge Graph Completion
Effective modeling of multifaceted relations is pivotal for Knowledge Graph Completion (KGC). However, a majority of existing approaches are predicated on static, embedding-based scoring, exhibiting inherent limitations in capturing contextual dependencies and relational dynamics. Addressing this gap, we propose the Flow-Modulated Scoring (FMS) framework. FMS comprises two principal components: (1) a semantic context learning module that encodes context-sensitive entity representations, and (2) a conditional flow-matching module designed to learn the dynamic transformation from a head to a tail embedding, governed by the aforementioned context. The resultant predictive vector field, representing the context-informed relational path, serves to dynamically refine the initial static score of an entity pair. Through this synergy of context-aware static representations and conditioned dynamic information, FMS facilitates a more profound modeling of relational semantics. Comprehensive evaluations on several standard benchmarks demonstrate that our proposed method surpasses prior state-of-the-art results.
comment: 10 pages
LLM-Assisted Question-Answering on Technical Documents Using Structured Data-Aware Retrieval Augmented Generation
Large Language Models (LLMs) are capable of natural language understanding and generation. But they face challenges such as hallucination and outdated knowledge. Fine-tuning is one possible solution, but it is resource-intensive and must be repeated with every data update. Retrieval-Augmented Generation (RAG) offers an efficient solution by allowing LLMs to access external knowledge sources. However, traditional RAG pipelines struggle with retrieving information from complex technical documents with structured data such as tables and images. In this work, we propose a RAG pipeline, capable of handling tables and images in documents, for technical documents that support both scanned and searchable formats. Its retrieval process combines vector similarity search with a fine-tuned reranker based on Gemma-2-9b-it. The reranker is trained using RAFT (Retrieval-Augmented Fine-Tuning) on a custom dataset designed to improve context identification for question answering. Our evaluation demonstrates that the proposed pipeline achieves a high faithfulness score of 94% (RAGas) and 96% (DeepEval), and an answer relevancy score of 87% (RAGas) and 93% (DeepEval). Comparative analysis demonstrates that the proposed architecture is superior to general RAG pipelines in terms of table-based questions and handling questions outside context.
comment: 29 Pages, 11 Tables
☆ Format-Adapter: Improving Reasoning Capability of LLMs by Adapting Suitable Format
Generating and voting multiple answers is an effective method to mitigate reasoning inconsistencies of large language models (LLMs). Prior works have shown that multiple reasoning formats outperform a single format when generating multiple answers. However, previous works using multiple formats rely on formats labeled by humans, which could be unsuitable for all tasks and have high labeling costs. To address this issue, we adapt suitable formats to the given tasks by generating and selecting formats. We first propose how to measure the reasoning error when generating multiple answers. Then, we introduce Format-Adapter, which utilizes LLMs to generate and select suitable reasoning formats by minimizing the error measurement we present. We conduct experiments on math and commonsense reasoning tasks, where Format-Adapter achieves a 4.3% performance improvement on average over previous works, demonstrating the effectiveness.
☆ Unleashing Embodied Task Planning Ability in LLMs via Reinforcement Learning
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they face significant challenges in embodied task planning scenarios that require continuous environmental understanding and action generation. Existing approaches generate open-loop action scripts based on static knowledge, making it difficult to learn causal relationships between actions and environmental feedback, particularly in partially observable environments. We introduce Embodied Planner-R1, a novel outcome-driven reinforcement learning framework that enables LLMs to develop interactive capabilities through autonomous exploration with minimal supervision. Our framework incorporates three key innovations: (1) Without human annotations, we employ pure reinforcement learning with group rollout, incorporating in-environment interaction through parallel exploration; (2) completion-driven sparse reward; and (3) Interactive Policy Optimization (IPO) for efficient learning from grouped trajectories. Across two challenging text-based Embodied planning benchmarks, Embodied Planner-R1 achieves impressive completion rates of 97.78% on ALFWorld and 79.92% on ScienceWorld, surpassing prior methods by a large margin, and suffers only a -3.66% drop in previously unseen environments, evidencing strong generalization.
☆ Decoding Memes: Benchmarking Narrative Role Classification across Multilingual and Multimodal Models
This work investigates the challenging task of identifying narrative roles - Hero, Villain, Victim, and Other - in Internet memes, across three diverse test sets spanning English and code-mixed (English-Hindi) languages. Building on an annotated dataset originally skewed toward the 'Other' class, we explore a more balanced and linguistically diverse extension, originally introduced as part of the CLEF 2024 shared task. Comprehensive lexical and structural analyses highlight the nuanced, culture-specific, and context-rich language used in real memes, in contrast to synthetically curated hateful content, which exhibits explicit and repetitive lexical markers. To benchmark the role detection task, we evaluate a wide spectrum of models, including fine-tuned multilingual transformers, sentiment and abuse-aware classifiers, instruction-tuned LLMs, and multimodal vision-language models. Performance is assessed under zero-shot settings using precision, recall, and F1 metrics. While larger models like DeBERTa-v3 and Qwen2.5-VL demonstrate notable gains, results reveal consistent challenges in reliably identifying the 'Victim' class and generalising across cultural and code-mixed content. We also explore prompt design strategies to guide multimodal models and find that hybrid prompts incorporating structured instructions and role definitions offer marginal yet consistent improvements. Our findings underscore the importance of cultural grounding, prompt engineering, and multimodal reasoning in modelling subtle narrative framings in visual-textual content.
comment: This work has been submitted to the IEEE for possible publication
☆ MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings
Multimodal embedding models, built upon causal Vision Language Models (VLMs), have shown promise in various tasks. However, current approaches face three key limitations: the use of causal attention in VLM backbones is suboptimal for embedding tasks; scalability issues due to reliance on high-quality labeled paired data for contrastive learning; and limited diversity in training objectives and data. To address these issues, we propose MoCa, a two-stage framework for transforming pre-trained VLMs into effective bidirectional multimodal embedding models. The first stage, Modality-aware Continual Pre-training, introduces a joint reconstruction objective that simultaneously denoises interleaved text and image inputs, enhancing bidirectional context-aware reasoning. The second stage, Heterogeneous Contrastive Fine-tuning, leverages diverse, semantically rich multimodal data beyond simple image-caption pairs to enhance generalization and alignment. Our method addresses the stated limitations by introducing bidirectional attention through continual pre-training, scaling effectively with massive unlabeled datasets via joint reconstruction objectives, and utilizing diverse multimodal data for enhanced representation robustness. Experiments demonstrate that MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results, and exhibits strong scalability with both model size and training data on MMEB.
comment: Homepage: https://haon-chen.github.io/MoCa/
☆ FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes ACL 2025
Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India. To address this gap, we introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 identity groups encompassing diverse castes, religions, regions, and tribes. We first consult domain experts to curate over 1,800 socio-cultural topics spanning behaviors and situations, where biases and stereotypes are likely to emerge. Grounded in these topics, we generate and manually validate 20,000 real-world scenario templates to probe LLMs for fairness. We structure these templates into three evaluation tasks: plausibility, judgment, and generation. Our evaluation of 14 popular LLMs on these tasks reveals strong negative biases against marginalized identities, with models frequently reinforcing common stereotypes. Additionally, we find that models struggle to mitigate bias even when explicitly asked to rationalize their decision. Our evaluation provides evidence of both allocative and representational harms that current LLMs could cause towards Indian identities, calling for a more cautious usage in practical applications. We release INDIC-BIAS as an open-source benchmark to advance research on benchmarking and mitigating biases and stereotypes in the Indian context.
comment: Accepted in ACL 2025
☆ From Individuals to Interactions: Benchmarking Gender Bias in Multimodal Large Language Models from the Lens of Social Relationship
Multimodal large language models (MLLMs) have shown impressive capabilities across tasks involving both visual and textual modalities. However, growing concerns remain about their potential to encode and amplify gender bias, particularly in socially sensitive applications. Existing benchmarks predominantly evaluate bias in isolated scenarios, overlooking how bias may emerge subtly through interpersonal interactions. We fill this gap by going beyond single-entity evaluation and instead focusing on a deeper examination of relational and contextual gender bias in dual-individual interactions. We introduce Genres, a novel benchmark designed to evaluate gender bias in MLLMs through the lens of social relationships in generated narratives. Genres assesses gender bias through a dual-character profile and narrative generation task that captures rich interpersonal dynamics and supports a fine-grained bias evaluation suite across multiple dimensions. Experiments on both open- and closed-source MLLMs reveal persistent, context-sensitive gender biases that are not evident in single-character settings. Our findings underscore the importance of relationship-aware benchmarks for diagnosing subtle, interaction-driven gender bias in MLLMs and provide actionable insights for future bias mitigation.
☆ Text2VectorSQL: Bridging Text-to-SQL and Vector Search for Unified Natural Language Queries
While Text-to-SQL enables natural language interaction with structured databases, its effectiveness diminishes with unstructured data or ambiguous queries due to rigid syntax and limited expressiveness. Concurrently, vector search has emerged as a powerful paradigm for semantic retrieval, particularly for unstructured data. However, existing VectorSQL implementations still rely heavily on manual crafting and lack tailored evaluation frameworks, leaving a significant gap between theoretical potential and practical deployment. To bridge these complementary paradigms, we introduces Text2VectorSQL, a novel framework unifying Text-to-SQL and vector search to overcome expressiveness constraints and support more diverse and holistical natural language queries. Specifically, Text2VectorSQL enables semantic filtering, multi-modal matching, and retrieval acceleration. For evaluation, we build vector index on appropriate columns, extend user queries with semantic search, and annotate ground truths via an automatic pipeline with expert review. Furthermore, we develop dedicated Text2VectorSQL models with synthetic data, demonstrating significant performance improvements over baseline methods. Our work establishes the foundation for the Text2VectorSQL task, paving the way for more versatile and intuitive database interfaces. The repository will be publicly available at https://github.com/Open-DataFlow/Text2VectorSQL.
comment: Work in progess
☆ Boosting LLM's Molecular Structure Elucidation with Knowledge Enhanced Tree Search Reasoning ACL 2025
Molecular structure elucidation involves deducing a molecule's structure from various types of spectral data, which is crucial in chemical experimental analysis. While large language models (LLMs) have shown remarkable proficiency in analyzing and reasoning through complex tasks, they still encounter substantial challenges in molecular structure elucidation. We identify that these challenges largely stem from LLMs' limited grasp of specialized chemical knowledge. In this work, we introduce a Knowledge-enhanced reasoning framework for Molecular Structure Elucidation (K-MSE), leveraging Monte Carlo Tree Search for test-time scaling as a plugin. Specifically, we construct an external molecular substructure knowledge base to extend the LLMs' coverage of the chemical structure space. Furthermore, we design a specialized molecule-spectrum scorer to act as a reward model for the reasoning process, addressing the issue of inaccurate solution evaluation in LLMs. Experimental results show that our approach significantly boosts performance, particularly gaining more than 20% improvement on both GPT-4o-mini and GPT-4o. Our code is available at https://github.com/HICAI-ZJU/K-MSE.
comment: ACL 2025 Main
☆ MariNER: A Dataset for Historical Brazilian Portuguese Named Entity Recognition
Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task that aims to identify and classify entity mentions in texts across different categories. While languages such as English possess a large number of high-quality resources for this task, Brazilian Portuguese still lacks in quantity of gold-standard NER datasets, especially when considering specific domains. Particularly, this paper considers the importance of NER for analyzing historical texts in the context of digital humanities. To address this gap, this work outlines the construction of MariNER: \textit{Mapeamento e Anota\c{c}\~oes de Registros hIst\'oricos para NER} (Mapping and Annotation of Historical Records for NER), the first gold-standard dataset for early 20th-century Brazilian Portuguese, with more than 9,000 manually annotated sentences. We also assess and compare the performance of state-of-the-art NER models for the dataset.
☆ AURA: Agent for Understanding, Reasoning, and Automated Tool Use in Voice-Driven Tasks
Despite advances in language and speech technologies, no open-source system enables full speech-to-speech, multi-turn dialogue with integrated tool use and agentic reasoning. We introduce AURA (Agent for Understanding, Reasoning, and Automated Tool Use), the first open-source, speech-native assistant capable of completing complex, goal-driven tasks through dynamic tool invocation and multi-turn conversation. AURA combines open-weight ASR, TTS, and LLMs in a cascaded pipeline and supports tools such as calendar booking, contact lookup, web search, and email. Its modular design allows easy integration of new tools using natural language prompts and action classes. On VoiceBench, AURA scores 92.75% on OpenBookQA-outperforming all open-weight systems and nearing GPT-4o-and 4.39 on AlpacaEval, competitive with other open-weight systems. Human evaluation shows 90% task success on complex, multi-turn speech tasks.
☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 23 pages, 6 figures
♻ ☆ Automating Adjudication of Cardiovascular Events Using Large Language Models
Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.
♻ ☆ Comparative Evaluation of ChatGPT and DeepSeek Across Key NLP Tasks: Strengths, Weaknesses, and Domain-Specific Performance
The increasing use of large language models (LLMs) in natural language processing (NLP) tasks has sparked significant interest in evaluating their effectiveness across diverse applications. While models like ChatGPT and DeepSeek have shown strong results in many NLP domains, a comprehensive evaluation is needed to understand their strengths, weaknesses, and domain-specific abilities. This is critical as these models are applied to various tasks, from sentiment analysis to more nuanced tasks like textual entailment and translation. This study aims to evaluate ChatGPT and DeepSeek across five key NLP tasks: sentiment analysis, topic classification, text summarization, machine translation, and textual entailment. A structured experimental protocol is used to ensure fairness and minimize variability. Both models are tested with identical, neutral prompts and evaluated on two benchmark datasets per task, covering domains like news, reviews, and formal/informal texts. The results show that DeepSeek excels in classification stability and logical reasoning, while ChatGPT performs better in tasks requiring nuanced understanding and flexibility. These findings provide valuable insights for selecting the appropriate LLM based on task requirements.
♻ ☆ Emotional RAG LLMs: Reading Comprehension for the Open Internet
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia-like texts written in a neutral and factual tone. However, real-world RAG applications often retrieve internet-based text with diverse tones and linguistic styles, posing challenges for downstream tasks. This paper introduces (a) a dataset that transforms RAG-retrieved passages into emotionally inflected and sarcastic text, (b) an emotion translation model for adapting text to different tones, and (c) a prompt-based method to improve LLMs' pragmatic interpretation of retrieved text.
♻ ☆ ChipXplore: Natural Language Exploration of Hardware Designs and Libraries
Hardware design workflows rely on Process Design Kits (PDKs) from different fabrication nodes, each containing standard cell libraries optimized for speed, power, or density. Engineers typically navigate between the design and target PDK to make informed decisions, such as selecting gates for area optimization or enhancing the speed of the critical path. However, this process is often manual, time-consuming, and prone to errors. To address this, we present ChipXplore, a multi-agent collaborative framework powered by large language models that enables engineers to query hardware designs and PDKs using natural language. By exploiting the structured nature of PDK and hardware design data, ChipXplore retrieves relevant information through text-to-SQL and text-to-Cypher customized workflows. The framework achieves an execution accuracy of 97.39\% in complex natural language queries and improves productivity by making retrieval 5.63x faster while reducing errors by 5.25x in user studies. Compared to generic workflows, ChipXplore's customized workflow is capable of orchestrating reasoning and planning over multiple databases, improving accuracy by 29.78\%. ChipXplore lays the foundation for building autonomous agents capable of tackling diverse physical design tasks that require PDK and hardware design awareness.
comment: 10 pages
♻ ☆ Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
♻ ☆ Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
♻ ☆ I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue ACL 2025
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
comment: Accepted to Findings of ACL 2025
♻ ☆ TigerLLM -- A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
♻ ☆ WebDancer: Towards Autonomous Information Seeking Agency
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
♻ ☆ Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
Multimodal emotion recognition in conversation (MERC) has garnered substantial research attention recently. Existing MERC methods face several challenges: (1) they fail to fully harness direct inter-modal cues, possibly leading to less-than-thorough cross-modal modeling; (2) they concurrently extract information from the same and different modalities at each network layer, potentially triggering conflicts from the fusion of multi-source data; (3) they lack the agility required to detect dynamic sentimental changes, perhaps resulting in inaccurate classification of utterances with abrupt sentiment shifts. To address these issues, a novel approach named GraphSmile is proposed for tracking intricate emotional cues in multimodal dialogues. GraphSmile comprises two key components, i.e., GSF and SDP modules. GSF ingeniously leverages graph structures to alternately assimilate inter-modal and intra-modal emotional dependencies layer by layer, adequately capturing cross-modal cues while effectively circumventing fusion conflicts. SDP is an auxiliary task to explicitly delineate the sentiment dynamics between utterances, promoting the model's ability to distinguish sentimental discrepancies. GraphSmile is effortlessly applied to multimodal sentiment analysis in conversation (MSAC), thus enabling simultaneous execution of MERC and MSAC tasks. Empirical results on multiple benchmarks demonstrate that GraphSmile can handle complex emotional and sentimental patterns, significantly outperforming baseline models.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Creativity in AI: Progresses and Challenges
Creativity is the ability to produce novel, useful, and surprising ideas, and has been widely studied as a crucial aspect of human cognition. Machine creativity on the other hand has been a long-standing challenge. With the rise of advanced generative AI, there has been renewed interest and debate regarding AI's creative capabilities. Therefore, it is imperative to revisit the state of creativity in AI and identify key progresses and remaining challenges. In this work, we survey leading works studying the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity. Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs such as poems, images, and musical pieces, they struggle with tasks that require creative problem-solving, abstract thinking and compositionality and their generations suffer from a lack of diversity, originality, long-range incoherence and hallucinations. We also discuss key questions concerning copyright and authorship issues with generative models. Furthermore, we highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity. Finally, we propose future research directions to improve the creativity of AI outputs, drawing inspiration from cognitive science and psychology.
comment: minor updates to content + contact information
♻ ☆ AutoToM: Scaling Model-based Mental Inference via Automated Agent Modeling
Theory of Mind (ToM), the ability to understand people's minds based on their behavior, is key to developing socially intelligent agents. Current approaches to ToM reasoning either rely on prompting Large Language Models (LLMs), which are prone to systematic errors, or use handcrafted, rigid agent models for model-based inference, which are more robust but fail to generalize across domains. In this work, we introduce AutoToM, an automated agent modeling method for scalable, robust, and interpretable mental inference. Given a ToM problem, AutoToM first proposes an initial agent model and then performs automated Bayesian inverse planning based on this model, leveraging an LLM backend. Guided by inference uncertainty, it iteratively refines the model by introducing additional mental variables and/or incorporating more timesteps in the context. Across five diverse benchmarks, AutoToM outperforms existing ToM methods and even large reasoning models. Additionally, we show that AutoToM can produce human-like confidence estimates and enable online mental inference for embodied decision-making.
comment: 39 pages, 10 figures, 13 tables. Website at https://chuanyangjin.com/AutoToM/
♻ ☆ AI Awareness
Recent breakthroughs in artificial intelligence (AI) have brought about increasingly capable systems that demonstrate remarkable abilities in reasoning, language understanding, and problem-solving. These advancements have prompted a renewed examination of AI awareness not as a philosophical question of consciousness, but as a measurable, functional capacity. AI awareness is a double-edged sword: it improves general capabilities, i.e., reasoning, safety, while also raising concerns around misalignment and societal risks, demanding careful oversight as AI capabilities grow. In this review, we explore the emerging landscape of AI awareness, which includes metacognition (the ability to represent and reason about its own cognitive state), self-awareness (recognizing its own identity, knowledge, limitations, inter alia), social awareness (modeling the knowledge, intentions, and behaviors of other agents and social norms), and situational awareness (assessing and responding to the context in which it operates). First, we draw on insights from cognitive science, psychology, and computational theory to trace the theoretical foundations of awareness and examine how the four distinct forms of AI awareness manifest in state-of-the-art AI. Next, we systematically analyze current evaluation methods and empirical findings to better understand these manifestations. Building on this, we explore how AI awareness is closely linked to AI capabilities, demonstrating that more aware AI agents tend to exhibit higher levels of intelligent behaviors. Finally, we discuss the risks associated with AI awareness, including key topics in AI safety, alignment, and broader ethical concerns.
♻ ☆ Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles ACL 2025
User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, current role-playing methods face challenges such as a lack of utterance-level authenticity and user-level diversity, often hindered by role confusion and dependence on predefined profiles of well-known figures. In contrast, direct simulation focuses solely on text, neglecting implicit user traits like personality and conversation-level consistency. To address these issues, we introduce the User Simulator with Implicit Profiles (USP), a framework that infers implicit user profiles from human-machine interactions to simulate personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema, then refine the simulation using conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing at both the utterance and conversation levels. Finally, a diverse profile sampler captures the distribution of real-world user profiles. Experimental results show that USP outperforms strong baselines in terms of authenticity and diversity while maintaining comparable consistency. Additionally, using USP to evaluate LLM on dynamic multi-turn aligns well with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
comment: 9 pages. Accepted to ACL 2025. Camera-ready version
♻ ☆ A Context-aware Framework for Translation-mediated Conversations
Automatic translation systems offer a powerful solution to bridge language barriers in scenarios where participants do not share a common language. However, these systems can introduce errors leading to misunderstandings and conversation breakdown. A key issue is that current systems fail to incorporate the rich contextual information necessary to resolve ambiguities and omitted details, resulting in literal, inappropriate, or misaligned translations. In this work, we present a framework to improve large language model-based translation systems by incorporating contextual information in bilingual conversational settings during training and inference. We validate our proposed framework on two task-oriented domains: customer chat and user-assistant interaction. Across both settings, the system produced by our framework-TowerChat-consistently results in better translations than state-of-the-art systems like GPT-4o and TowerInstruct, as measured by multiple automatic translation quality metrics on several language pairs. We also show that the resulting model leverages context in an intended and interpretable way, improving consistency between the conveyed message and the generated translations.
♻ ☆ Sample then Identify: A General Framework for Risk Control and Assessment in Multimodal Large Language Models ICLR 2025
Multimodal Large Language Models (MLLMs) exhibit promising advancements across various tasks, yet they still encounter significant trustworthiness issues. Prior studies apply Split Conformal Prediction (SCP) in language modeling to construct prediction sets with statistical guarantees. However, these methods typically rely on internal model logits or are restricted to multiple-choice settings, which hampers their generalizability and adaptability in dynamic, open-ended environments. In this paper, we introduce TRON, a two-step framework for risk control and assessment, applicable to any MLLM that supports sampling in both open-ended and closed-ended scenarios. TRON comprises two main components: (1) a novel conformal score to sample response sets of minimum size, and (2) a nonconformity score to identify high-quality responses based on self-consistency theory, controlling the error rates by two specific risk levels. Furthermore, we investigate semantic redundancy in prediction sets within open-ended contexts for the first time, leading to a promising evaluation metric for MLLMs based on average set size. Our comprehensive experiments across four Video Question-Answering (VideoQA) datasets utilizing eight MLLMs show that TRON achieves desired error rates bounded by two user-specified risk levels. Additionally, deduplicated prediction sets maintain adaptiveness while being more efficient and stable for risk assessment under different risk levels.
comment: Accepted by ICLR 2025 Spotlights
♻ ☆ Agentic Medical Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge
Large Language Models (LLMs) have significantly advanced medical question-answering by leveraging extensive clinical data and medical literature. However, the rapid evolution of medical knowledge and the labor-intensive process of manually updating domain-specific resources pose challenges to the reliability of these systems. To address this, we introduce Agentic Medical Graph-RAG (AMG-RAG), a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs, integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch. By dynamically linking new findings and complex medical concepts, AMG-RAG not only improves accuracy but also enhances interpretability in medical queries. Evaluations on the MEDQA and MEDMCQA benchmarks demonstrate the effectiveness of AMG-RAG, achieving an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger. Notably, these improvements are achieved without increasing computational overhead, highlighting the critical role of automated knowledge graph generation and external evidence retrieval in delivering up-to-date, trustworthy medical insights.
♻ ☆ RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey.
comment: 30 pages, 7 figures. Draft version 1
♻ ☆ Redefining Evaluation Standards: A Unified Framework for Evaluating the Korean Capabilities of Language Models
Recent advancements in Korean large language models (LLMs) have driven numerous benchmarks and evaluation methods, yet inconsistent protocols cause up to 10 p.p performance gaps across institutions. Overcoming these reproducibility gaps does not mean enforcing a one-size-fits-all evaluation. Rather, effective benchmarking requires diverse experimental approaches and a framework robust enough to support them. To this end, we introduce HRET (Haerae Evaluation Toolkit), an open-source, registry-based framework that unifies Korean LLM assessment. HRET integrates major Korean benchmarks, multiple inference backends, and multi-method evaluation, with language consistency enforcement to ensure genuine Korean outputs. Its modular registry design also enables rapid incorporation of new datasets, methods, and backends, ensuring the toolkit adapts to evolving research needs. Beyond standard accuracy metrics, HRET incorporates Korean-focused output analyses-morphology-aware Type-Token Ratio (TTR) for evaluating lexical diversity and systematic keyword-omission detection for identifying missing concepts-to provide diagnostic insights into language-specific behaviors. These targeted analyses help researchers pinpoint morphological and semantic shortcomings in model outputs, guiding focused improvements in Korean LLM development.
♻ ☆ The Effectiveness of LLMs as Annotators: A Comparative Overview and Empirical Analysis of Direct Representation LREC
Large Language Models (LLMs) have emerged as powerful support tools across various natural language tasks and a range of application domains. Recent studies focus on exploring their capabilities for data annotation. This paper provides a comparative overview of twelve studies investigating the potential of LLMs in labelling data. While the models demonstrate promising cost and time-saving benefits, there exist considerable limitations, such as representativeness, bias, sensitivity to prompt variations and English language preference. Leveraging insights from these studies, our empirical analysis further examines the alignment between human and GPT-generated opinion distributions across four subjective datasets. In contrast to the studies examining representation, our methodology directly obtains the opinion distribution from GPT. Our analysis thereby supports the minority of studies that are considering diverse perspectives when evaluating data annotation tasks and highlights the need for further research in this direction.
comment: LREC-COLING NLPerspectives workshop
♻ ☆ Brevity is the soul of sustainability: Characterizing LLM response lengths ACL 2025
A significant portion of the energy consumed by Large Language Models (LLMs) arises from their inference processes; hence developing energy-efficient methods for inference is crucial. While several techniques exist for inference optimization, output compression remains relatively unexplored, with only a few preliminary efforts addressing this aspect. In this work, we first benchmark 12 decoder-only LLMs across 5 datasets, revealing that these models often produce responses that are substantially longer than necessary. We then conduct a comprehensive quality assessment of LLM responses, formally defining six information categories present in LLM responses. We show that LLMs often tend to include redundant or additional information besides the minimal answer. To address this issue of long responses by LLMs, we explore several simple and intuitive prompt-engineering strategies. Empirical evaluation shows that appropriate prompts targeting length reduction and controlling information content can achieve significant energy optimization between 25-60\% by reducing the response length while preserving the quality of LLM responses.
comment: Accepted to appear at the ACL 2025 findings
♻ ☆ Evaluating Rare Disease Diagnostic Performance in Symptom Checkers: A Synthetic Vignette Simulation Approach
Symptom Checkers (SCs) provide medical information tailored to user symptoms. A critical challenge in SC development is preventing unexpected performance degradation for individual diseases, especially rare diseases, when updating algorithms. This risk stems from the lack of practical pre-deployment evaluation methods. For rare diseases, obtaining sufficient evaluation data from user feedback is difficult. To evaluate the impact of algorithm updates on the diagnostic performance for individual rare diseases before deployment, this study proposes and validates a novel Synthetic Vignette Simulation Approach. This approach aims to enable this essential evaluation efficiently and at a low cost. To estimate the impact of algorithm updates, we generated synthetic vignettes from disease-phenotype annotations in the Human Phenotype Ontology (HPO), a publicly available knowledge base for rare diseases curated by experts. Using these vignettes, we simulated SC interviews to predict changes in diagnostic performance. The effectiveness of this approach was validated retrospectively by comparing the predicted changes with actual performance metrics using the R-squared ($R^2$) coefficient. Our experiment, covering eight past algorithm updates for rare diseases, showed that the proposed method accurately predicted performance changes for diseases with phenotype frequency information in HPO (n=5). For these updates, we found a strong correlation for both Recall@8 change ($R^2$ = 0.83,$p$ = 0.031) and Precision@8 change ($R^2$ = 0.78,$p$ = 0.047). Our proposed method enables the pre-deployment evaluation of SC algorithm changes for individual rare diseases. This evaluation is based on a publicly available medical knowledge database created by experts, ensuring transparency and explainability for stakeholders. Additionally, SC developers can efficiently improve diagnostic performance at a low cost.
♻ ☆ Time-R1: Post-Training Large Vision Language Model for Temporal Video Grounding
Temporal Video Grounding (TVG), the task of locating specific video segments based on language queries, is a core challenge in long-form video understanding. While recent Large Vision-Language Models (LVLMs) have shown early promise in tackling TVG through supervised fine-tuning (SFT), their abilities to generalize remain limited. To address this, we propose a novel post-training framework that enhances the generalization capabilities of LVLMs via reinforcement learning (RL). Specifically, our contributions span three key directions: (1) Time-R1: we introduce a reasoning-guided post-training framework via RL with verifiable reward to enhance the capabilities of LVLMs on the TVG task. (2) TimeRFT: we explore data-efficient post-training strategies on our curated RL-friendly dataset, which trains the model to progressively comprehend difficult samples, leading to better generalization. (3) TVGBench: we carefully construct a small yet comprehensive benchmark for LVLM evaluation, assessing 11 types of queries and featuring balanced distributions across both videos and queries. Extensive experiments demonstrate that Time-R1 achieves state-of-the-art performance across multiple downstream datasets using only 2.5K training data, while improving its general video understanding capabilities.
comment: Project Page: https://xuboshen.github.io/Time-R1/
♻ ☆ Beware of Calibration Data for Pruning Large Language Models ICLR 2025
As large language models (LLMs) are widely applied across various fields, model compression has become increasingly crucial for reducing costs and improving inference efficiency. Post-training pruning is a promising method that does not require resource-intensive iterative training and only needs a small amount of calibration data to assess the importance of parameters. Recent research has enhanced post-training pruning from different aspects but few of them systematically explore the effects of calibration data, and it is unclear if there exist better calibration data construction strategies. We fill this blank and surprisingly observe that calibration data is also crucial to post-training pruning, especially for high sparsity. Through controlled experiments on important influence factors of calibration data, including the pruning settings, the amount of data, and its similarity with pre-training data, we observe that a small size of data is adequate, and more similar data to its pre-training stage can yield better performance. As pre-training data is usually inaccessible for advanced LLMs, we further provide a self-generating calibration data synthesis strategy to construct feasible calibration data. Experimental results on recent strong open-source LLMs (e.g., DCLM, and LLaMA-3) show that the proposed strategy can enhance the performance of strong pruning methods (e.g., Wanda, DSnoT, OWL) by a large margin (up to $2.68\%$). Code is available at https://github.com/Dereck0602/calibration_data.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Enough Coin Flips Can Make LLMs Act Bayesian ACL 2025
Large language models (LLMs) exhibit the ability to generalize given few-shot examples in their input prompt, an emergent capability known as in-context learning (ICL). We investigate whether LLMs use ICL to perform structured reasoning in ways that are consistent with a Bayesian framework or rely on pattern matching. Using a controlled setting of biased coin flips, we find that: (1) LLMs often possess biased priors, causing initial divergence in zero-shot settings, (2) in-context evidence outweighs explicit bias instructions, (3) LLMs broadly follow Bayesian posterior updates, with deviations primarily due to miscalibrated priors rather than flawed updates, and (4) attention magnitude has negligible effect on Bayesian inference. With sufficient demonstrations of biased coin flips via ICL, LLMs update their priors in a Bayesian manner.
comment: ACL 2025 Main
♻ ☆ A Survey of Test-Time Compute: From Intuitive Inference to Deliberate Reasoning
The remarkable performance of the o1 model in complex reasoning demonstrates that test-time compute scaling can further unlock the model's potential, enabling powerful System-2 thinking. However, there is still a lack of comprehensive surveys for test-time compute scaling. We trace the concept of test-time compute back to System-1 models. In System-1 models, test-time compute addresses distribution shifts and improves robustness and generalization through parameter updating, input modification, representation editing, and output calibration. In System-2 models, it enhances the model's reasoning ability to solve complex problems through repeated sampling, self-correction, and tree search. We organize this survey according to the trend of System-1 to System-2 thinking, highlighting the key role of test-time compute in the transition from System-1 models to weak System-2 models, and then to strong System-2 models. We also point out advanced topics and future directions.
comment: Work in progress
♻ ☆ Learning Dynamics of LLM Finetuning
Learning dynamics, which describes how the learning of specific training examples influences the model's predictions on other examples, gives us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during different types of finetuning, by analyzing the step-wise decomposition of how influence accumulates among different potential responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. In particular, we propose a hypothetical explanation of why specific types of hallucination are strengthened after finetuning, e.g., the model might use phrases or facts in the response for question B to answer question A, or the model might keep repeating similar simple phrases when generating responses. We also extend our framework and highlight a unique "squeezing effect" to explain a previously observed phenomenon in off-policy direct preference optimization (DPO), where running DPO for too long makes even the desired outputs less likely. This framework also provides insights into where the benefits of on-policy DPO and other variants come from. The analysis not only provides a novel perspective of understanding LLM's finetuning but also inspires a simple, effective method to improve alignment performance.
♻ ☆ MMInA: Benchmarking Multihop Multimodal Internet Agents ACL 2025
Autonomous embodied agents live on an Internet of multimedia websites. Can they hop around multimodal websites to complete complex user tasks? Existing benchmarks fail to assess them in a realistic, evolving environment for their embodiment across websites. To answer this question, we present MMInA, a multihop and multimodal benchmark to evaluate the embodied agents for compositional Internet tasks, with several appealing properties: 1) Evolving real-world multimodal websites. Our benchmark uniquely operates on evolving real-world websites, ensuring a high degree of realism and applicability to natural user tasks. Our data includes 1,050 human-written tasks covering various domains such as shopping and travel, with each task requiring the agent to extract multimodal information from web pages as observations autonomously; 2) Multihop web browsing. Our dataset features naturally compositional tasks that require information from or actions on multiple websites to solve, to assess long-range reasoning capabilities on web tasks; 3) Holistic evaluation. We propose a novel protocol for evaluating an agent's progress in completing multihop tasks. We experiment with both standalone (multimodal) language models and heuristic-based web agents. Extensive experiments demonstrate that while long-chain multihop web tasks are easy for humans, they remain challenging for state-of-the-art web agents. We identify that agents are more likely to fail on the early hops when solving tasks with more hops, which results in lower task success rates. To address this issue, we propose a simple memory augmentation approach that replays past action trajectories to reflect. Our method significantly improves the performance of both the single-hop and multihop web browsing abilities. Our code and data are available at github.com/shulin16/MMInA.
comment: ACL 2025 findings. The live leaderboard is at https://mmina.cliangyu.com/
♻ ☆ TyphoFormer: Language-Augmented Transformer for Accurate Typhoon Track Forecasting
Accurate typhoon track forecasting is crucial for early system warning and disaster response. While Transformer-based models have demonstrated strong performance in modeling the temporal dynamics of dense trajectories of humans and vehicles in smart cities, they usually lack access to broader contextual knowledge that enhances the forecasting reliability of sparse meteorological trajectories, such as typhoon tracks. To address this challenge, we propose TyphoFormer, a novel framework that incorporates natural language descriptions as auxiliary prompts to improve typhoon trajectory forecasting. For each time step, we use Large Language Model (LLM) to generate concise textual descriptions based on the numerical attributes recorded in the North Atlantic hurricane database. The language descriptions capture high-level meteorological semantics and are embedded as auxiliary special tokens prepended to the numerical time series input. By integrating both textual and sequential information within a unified Transformer encoder, TyphoFormer enables the model to leverage contextual cues that are otherwise inaccessible through numerical features alone. Extensive experiments are conducted on HURDAT2 benchmark, results show that TyphoFormer consistently outperforms other state-of-the-art baseline methods, particularly under challenging scenarios involving nonlinear path shifts and limited historical observations.
comment: Short research paper
♻ ☆ DReSS: Data-driven Regularized Structured Streamlining for Large Language Models
Large language models (LLMs) have achieved significant progress across various domains, but their increasing scale results in high computational and memory costs. Recent studies have revealed that LLMs exhibit sparsity, providing the potential to reduce model size through pruning techniques. However, existing pruning methods typically follow a prune-then-finetune paradigm. Since the pruned components still contain valuable information, their direct removal often leads to irreversible performance degradation, imposing a substantial computational burden to recover performance during finetuning. In this paper, we propose a novel paradigm that first applies regularization, then prunes, and finally finetunes. Based on this paradigm, we introduce DReSS, a simple and effective Data-driven Regularized Structured Streamlining method for LLMs. By leveraging a small amount of data to regularize the components to be pruned, DReSS explicitly transfers the important information to the remaining parts of the model in advance. Compared to direct pruning, this can reduce the information loss caused by parameter removal, thereby enhancing its language modeling capabilities. Experimental results demonstrate that DReSS significantly outperforms existing pruning methods even under extreme pruning ratios, significantly reducing latency and increasing throughput.
♻ ☆ Multimodal Medical Code Tokenizer ICML'25
Foundation models trained on patient electronic health records (EHRs) require tokenizing medical data into sequences of discrete vocabulary items. Existing tokenizers treat medical codes from EHRs as isolated textual tokens. However, each medical code is defined by its textual description, its position in ontological hierarchies, and its relationships to other codes, such as disease co-occurrences and drug-treatment associations. Medical vocabularies contain more than 600,000 codes with critical information for clinical reasoning. We introduce MedTok, a multimodal medical code tokenizer that uses the text descriptions and relational context of codes. MedTok processes text using a language model encoder and encodes the relational structure with a graph encoder. It then quantizes both modalities into a unified token space, preserving modality-specific and cross-modality information. We integrate MedTok into five EHR models and evaluate it on operational and clinical tasks across in-patient and out-patient datasets, including outcome prediction, diagnosis classification, drug recommendation, and risk stratification. Swapping standard EHR tokenizers with MedTok improves AUPRC across all EHR models, by 4.10% on MIMIC-III, 4.78% on MIMIC-IV, and 11.32% on EHRShot, with the largest gains in drug recommendation. Beyond EHR modeling, we demonstrate using MedTok tokenizer with medical QA systems. Our results demonstrate the potential of MedTok as a unified tokenizer for medical codes, improving tokenization for medical foundation models.
comment: ICML'25
♻ ☆ MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation ACL 2025
Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
comment: 33 pages, 17 figures. Findings of ACL 2025
♻ ☆ CHARTOM: A Visual Theory-of-Mind Benchmark for LLMs on Misleading Charts
We introduce CHARTOM, a visual theory-of-mind benchmark designed to evaluate multimodal large language models' capability to understand and reason about misleading data visualizations though charts. CHARTOM consists of carefully designed charts and associated questions that require a language model to not only correctly comprehend the factual content in the chart (the FACT question) but also judge whether the chart will be misleading to a human readers (the MIND question), a dual capability with significant societal benefits. We detail the construction of our benchmark including its calibration on human performance and estimation of MIND ground truth called the Human Misleadingness Index. We evaluated several leading LLMs -- including GPT, Claude, Gemini, Qwen, Llama, and Llava series models -- on the CHARTOM dataset and found that it was challenging to all models both on FACT and MIND questions. This highlights the limitations of current LLMs and presents significant opportunity for future LLMs to improve on understanding misleading charts.
♻ ☆ TigerLLM - A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
Information Retrieval 13
☆ NaviX: A Native Vector Index Design for Graph DBMSs With Robust Predicate-Agnostic Search Performance
There is an increasing demand for extending existing DBMSs with vector indices so that they become unified systems capable of supporting modern predictive applications, which require joint querying of vector embeddings together with the structured properties and connections of objects. We present NaviX, a native vector index for graph DBMSs (GDBMSs) that has two main design goals. First, we aim to implement a disk-based vector index that leverages the core storage and query-processing capabilities of the underlying GDBMS. To this end, NaviX is built on the Hierarchical Navigable Small-World (HNSW) graph, which itself is a graph-based structure. Second, we aim to support predicate-agnostic filtered vector search queries, in which the k nearest neighbors (kNNs) of a query vector vQ are searched only within an arbitrary subset S of vectors defined by an ad-hoc selection sub-query QS. We adopt a prefiltering approach that evaluates QS first and passes the full description of subset S to the kNN search operator. We study how to design a prefiltering search algorithm that remains robust under varying selectivities and under different correlations between subset S and query vector vQ. We propose an adaptive algorithm that uses the local selectivity of each vector in the HNSW graph to choose an appropriate heuristic at every iteration of the kNN search. Finally, We demonstrate NaviX's robustness and efficiency through extensive experiments against both existing prefiltering- and postfiltering-based baselines.
☆ Teaching a Language Model to Speak the Language of Tools
External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.
☆ GaussMaster: An LLM-based Database Copilot System
In the financial industry, data is the lifeblood of operations, and DBAs shoulder significant responsibilities for SQL tuning, database deployment, diagnosis, and service repair. In recent years, both database vendors and customers have increasingly turned to autonomous database platforms in an effort to alleviate the heavy workload of DBAs. However, existing autonomous database platforms are limited in their capabilities, primarily addressing single-point issues such as NL2SQL, anomaly detection, and SQL tuning. Manual intervention remains a necessity for comprehensive database maintenance. GaussMaster aims to revolutionize this landscape by introducing an LLM-based database copilot system. This innovative solution is designed not only to assist developers in writing efficient SQL queries but also to provide comprehensive care for database services. When database instances exhibit abnormal behavior, GaussMaster is capable of orchestrating the entire maintenance process automatically. It achieves this by analyzing hundreds of metrics and logs, employing a Tree-of-thought approach to identify root causes, and invoking appropriate tools to resolve issues. We have successfully implemented GaussMaster in real-world scenarios, such as the banking industry, where it has achieved zero human intervention for over 34 database maintenance scenarios. In this paper, we present significant improvements in these tasks with code at https://gitcode.com/opengauss/openGauss-GaussMaster.
comment: We welcome contributions from the community. For reference, please see the code at: https://gitcode.com/opengauss/openGauss-GaussMaster
☆ Learning to Rank with Variable Result Presentation Lengths SIGIR 2025
Learning to Rank (LTR) methods generally assume that each document in a top-K ranking is presented in an equal format. However, previous work has shown that users' perceptions of relevance can be changed by varying presentations, i.e., allocating more vertical space to some documents to provide additional textual or image information. Furthermore, presentation length can also redirect attention, as users are more likely to notice longer presentations when scrolling through results. Deciding on the document presentation lengths in a fixed vertical space ranking is an important problem that has not been addressed by existing LTR methods. We address this gap by introducing the variable presentation length ranking task, where simultaneously the ordering of documents and their presentation length is decided. Despite being a generalization of standard ranking, we show that this setting brings significant new challenges: Firstly, the probability ranking principle no longer applies to this setting, and secondly, the problem cannot be divided into separate ordering and length selection tasks. We therefore propose VLPL - a new family of Plackett-Luce list-wise gradient estimation methods for the joint optimization of document ordering and lengths. Our semi-synthetic experiments show that VLPL can effectively balance the expected exposure and attractiveness of all documents, achieving the best performance across different ranking settings. Furthermore, we observe that even simple length-aware methods can achieve significant performance improvements over fixed-length models. Altogether, our theoretical and empirical results highlight the importance and difficulties of combining document presentation with LTR.
comment: SIGIR 2025
☆ Impact of Shallow vs. Deep Relevance Judgments on BERT-based Reranking Models ICTIR'25
This paper investigates the impact of shallow versus deep relevance judgments on the performance of BERT-based reranking models in neural Information Retrieval. Shallow-judged datasets, characterized by numerous queries each with few relevance judgments, and deep-judged datasets, involving fewer queries with extensive relevance judgments, are compared. The research assesses how these datasets affect the performance of BERT-based reranking models trained on them. The experiments are run on the MS MARCO and LongEval collections. Results indicate that shallow-judged datasets generally enhance generalization and effectiveness of reranking models due to a broader range of available contexts. The disadvantage of the deep-judged datasets might be mitigated by a larger number of negative training examples.
comment: Accepted at ICTIR'25
☆ Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
In the online digital realm, recommendation systems are ubiquitous and play a crucial role in enhancing user experience. These systems leverage user preferences to provide personalized recommendations, thereby helping users navigate through the paradox of choice. This work focuses on personalized sequential recommendation, where the system considers not only a user's immediate, evolving session context, but also their cumulative historical behavior to provide highly relevant and timely recommendations. Through an empirical study conducted on diverse real-world datasets, we have observed and quantified the existence and impact of both short-term (immediate and transient) and long-term (enduring and stable) preferences on users' historical interactions. Building on these insights, we propose a framework that combines short- and long-term preferences to enhance recommendation performance, namely Compositions of Variant Experts (CoVE). This novel framework dynamically integrates short- and long-term preferences through the use of different specialized recommendation models (i.e., experts). Extensive experiments showcase the effectiveness of the proposed methods and ablation studies further investigate the impact of variant expert types.
☆ Multi-task Offline Reinforcement Learning for Online Advertising in Recommender Systems KDD 2025
Online advertising in recommendation platforms has gained significant attention, with a predominant focus on channel recommendation and budget allocation strategies. However, current offline reinforcement learning (RL) methods face substantial challenges when applied to sparse advertising scenarios, primarily due to severe overestimation, distributional shifts, and overlooking budget constraints. To address these issues, we propose MTORL, a novel multi-task offline RL model that targets two key objectives. First, we establish a Markov Decision Process (MDP) framework specific to the nuances of advertising. Then, we develop a causal state encoder to capture dynamic user interests and temporal dependencies, facilitating offline RL through conditional sequence modeling. Causal attention mechanisms are introduced to enhance user sequence representations by identifying correlations among causal states. We employ multi-task learning to decode actions and rewards, simultaneously addressing channel recommendation and budget allocation. Notably, our framework includes an automated system for integrating these tasks into online advertising. Extensive experiments on offline and online environments demonstrate MTORL's superiority over state-of-the-art methods.
comment: KDD 2025
☆ Enhancing Live Broadcast Engagement: A Multi-modal Approach to Short Video Recommendations Using MMGCN and User Preferences
The purpose of this paper is to explore a multi-modal approach to enhancing live broadcast engagement by developing a short video recommendation system that incorporates Multi-modal Graph Convolutional Networks (MMGCN) with user preferences. In order to provide personalized recommendations tailored to individual interests, the proposed system takes into account user interaction data, video content features, and contextual information. With the aid of a hybrid approach combining collaborative filtering and content-based filtering techniques, the system is able to capture nuanced relationships between users, video attributes, and engagement patterns. Three datasets are used to evaluate the effectiveness of the system: Kwai, TikTok, and MovieLens. Compared to baseline models, such as DeepFM, Wide & Deep, LightGBM, and XGBoost, the proposed MMGCN-based model shows superior performance. A notable feature of the proposed model is that it outperforms all baseline methods in capturing diverse user preferences and making accurate, personalized recommendations, resulting in a Kwai F1 score of 0.574, a Tiktok F1 score of 0.506, and a MovieLens F1 score of 0.197. We emphasize the importance of multi-modal integration and user-centric approaches in advancing recommender systems, emphasizing the role they play in enhancing content discovery and audience interaction on live broadcast platforms.
☆ Synergizing Implicit and Explicit User Interests: A Multi-Embedding Retrieval Framework at Pinterest KDD 2025
Industrial recommendation systems are typically composed of multiple stages, including retrieval, ranking, and blending. The retrieval stage plays a critical role in generating a high-recall set of candidate items that covers a wide range of diverse user interests. Effectively covering the diverse and long-tail user interests within this stage poses a significant challenge: traditional two-tower models struggle in this regard due to limited user-item feature interaction and often bias towards top use cases. To address these issues, we propose a novel multi-embedding retrieval framework designed to enhance user interest representation by generating multiple user embeddings conditioned on both implicit and explicit user interests. Implicit interests are captured from user history through a Differentiable Clustering Module (DCM), whereas explicit interests, such as topics that the user has followed, are modeled via Conditional Retrieval (CR). These methodologies represent a form of conditioned user representation learning that involves condition representation construction and associating the target item with the relevant conditions. Synergizing implicit and explicit user interests serves as a complementary approach to achieve more effective and comprehensive candidate retrieval as they benefit on different user segments and extract conditions from different but supplementary sources. Extensive experiments and A/B testing reveal significant improvements in user engagements and feed diversity metrics. Our proposed framework has been successfully deployed on Pinterest home feed.
comment: KDD 2025
♻ ☆ Emotional RAG LLMs: Reading Comprehension for the Open Internet
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia-like texts written in a neutral and factual tone. However, real-world RAG applications often retrieve internet-based text with diverse tones and linguistic styles, posing challenges for downstream tasks. This paper introduces (a) a dataset that transforms RAG-retrieved passages into emotionally inflected and sarcastic text, (b) an emotion translation model for adapting text to different tones, and (c) a prompt-based method to improve LLMs' pragmatic interpretation of retrieved text.
♻ ☆ Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
♻ ☆ Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints AAAI 2025
User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to 1.3x faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. Code: https://github.com/MachineUnlearn/MMRecUN Extended version: arXiv:2405.15328
comment: Extended Version, Accepted at AAAI 2025. 17 pages, 4 figures and 9 tables
♻ ☆ The Next Phase of Scientific Fact-Checking: Advanced Evidence Retrieval from Complex Structured Academic Papers SIGIR
Scientific fact-checking aims to determine the veracity of scientific claims by retrieving and analysing evidence from research literature. The problem is inherently more complex than general fact-checking since it must accommodate the evolving nature of scientific knowledge, the structural complexity of academic literature and the challenges posed by long-form, multimodal scientific expression. However, existing approaches focus on simplified versions of the problem based on small-scale datasets consisting of abstracts rather than full papers, thereby avoiding the distinct challenges associated with processing complete documents. This paper examines the limitations of current scientific fact-checking systems and reveals the many potential features and resources that could be exploited to advance their performance. It identifies key research challenges within evidence retrieval, including (1) evidence-driven retrieval that addresses semantic limitations and topic imbalance (2) time-aware evidence retrieval with citation tracking to mitigate outdated information, (3) structured document parsing to leverage long-range context, (4) handling complex scientific expressions, including tables, figures, and domain-specific terminology and (5) assessing the credibility of scientific literature. Preliminary experiments were conducted to substantiate these challenges and identify potential solutions. This perspective paper aims to advance scientific fact-checking with a specialised IR system tailored for real-world applications.
comment: Accepted for ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR'25)
Computation and Language 14
☆ MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning
The ability to process information from multiple modalities and to reason through it step-by-step remains a critical challenge in advancing artificial intelligence. However, existing reasoning benchmarks focus on text-only reasoning, or employ multimodal questions that can be answered by directly retrieving information from a non-text modality. Thus, complex reasoning remains poorly understood in multimodal domains. Here, we present MARBLE, a challenging multimodal reasoning benchmark that is designed to scrutinize multimodal language models (MLLMs) in their ability to carefully reason step-by-step through complex multimodal problems and environments. MARBLE is composed of two highly challenging tasks, M-Portal and M-Cube, that require the crafting and understanding of multistep plans under spatial, visual, and physical constraints. We find that current MLLMs perform poorly on MARBLE -- all the 12 advanced models obtain near-random performance on M-Portal and 0% accuracy on M-Cube. Only in simplified subtasks some models outperform the random baseline, indicating that complex reasoning is still a challenge for existing MLLMs. Moreover, we show that perception remains a bottleneck, where MLLMs occasionally fail to extract information from the visual inputs. By shedding a light on the limitations of MLLMs, we hope that MARBLE will spur the development of the next generation of models with the ability to reason and plan across many, multimodal reasoning steps.
☆ A Systematic Study of Compositional Syntactic Transformer Language Models
Syntactic language models (SLMs) enhance Transformers by incorporating syntactic biases through the modeling of linearized syntactic parse trees alongside surface sentences. This paper focuses on compositional SLMs that are based on constituency parse trees and contain explicit bottom-up composition of constituent representations. We identify key aspects of design choices in existing compositional SLMs and propose a unified framework encompassing both existing models and novel variants. We conduct a comprehensive empirical evaluation of all the variants in our framework across language modeling, syntactic generalization, summarization, dialogue, and inference efficiency. Based on the experimental results, we make multiple recommendations on the design of compositional SLMs. Our code is released at https://github.com/zhaoyd1/compositional_SLMs.
☆ On the Generalizability of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals"
We present a reproduction study of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals" (Ortu et al., 2024), which investigates competition of mechanisms in language models between factual recall and counterfactual in-context repetition. Our study successfully reproduces their primary findings regarding the localization of factual and counterfactual information, the dominance of attention blocks in mechanism competition, and the specialization of attention heads in handling competing information. We reproduce their results on both GPT-2 (Radford et al., 2019) and Pythia 6.9B (Biderman et al., 2023). We extend their work in three significant directions. First, we explore the generalizability of these findings to even larger models by replicating the experiments on Llama 3.1 8B (Grattafiori et al., 2024), discovering greatly reduced attention head specialization. Second, we investigate the impact of prompt structure by introducing variations where we avoid repeating the counterfactual statement verbatim or we change the premise word, observing a marked decrease in the logit for the counterfactual token. Finally, we test the validity of the authors' claims for prompts of specific domains, discovering that certain categories of prompts skew the results by providing the factual prediction token as part of the subject of the sentence. Overall, we find that the attention head ablation proposed in Ortu et al. (2024) is ineffective for domains that are underrepresented in their dataset, and that the effectiveness varies based on model architecture, prompt structure, domain and task.
comment: 22 pages, 25 figures. For an interactive dashboard with all figures, see https://comp-mech-generalizability.streamlit.app/ . For the accompanying code, see https://github.com/asendotsinski/comp-mech-generalizability . To be published in proceedings of the 2025 Machine Learning Reproducibility Challenge
☆ Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models
As large language models (LLMs) are increasingly integrated into multi-agent and human-AI systems, understanding their awareness of both self-context and conversational partners is essential for ensuring reliable performance and robust safety. While prior work has extensively studied situational awareness which refers to an LLM's ability to recognize its operating phase and constraints, it has largely overlooked the complementary capacity to identify and adapt to the identity and characteristics of a dialogue partner. In this paper, we formalize this latter capability as interlocutor awareness and present the first systematic evaluation of its emergence in contemporary LLMs. We examine interlocutor inference across three dimensions-reasoning patterns, linguistic style, and alignment preferences-and show that LLMs reliably identify same-family peers and certain prominent model families, such as GPT and Claude. To demonstrate its practical significance, we develop three case studies in which interlocutor awareness both enhances multi-LLM collaboration through prompt adaptation and introduces new alignment and safety vulnerabilities, including reward-hacking behaviors and increased jailbreak susceptibility. Our findings highlight the dual promise and peril of identity-sensitive behavior in LLMs, underscoring the need for further understanding of interlocutor awareness and new safeguards in multi-agent deployments. Our code is open-sourced at https://github.com/younwoochoi/InterlocutorAwarenessLLM.
♻ ☆ Multimodal Contrastive Representation Learning in Augmented Biomedical Knowledge Graphs
Biomedical Knowledge Graphs (BKGs) integrate diverse datasets to elucidate complex relationships within the biomedical field. Effective link prediction on these graphs can uncover valuable connections, such as potential novel drug-disease relations. We introduce a novel multimodal approach that unifies embeddings from specialized Language Models (LMs) with Graph Contrastive Learning (GCL) to enhance intra-entity relationships while employing a Knowledge Graph Embedding (KGE) model to capture inter-entity relationships for effective link prediction. To address limitations in existing BKGs, we present PrimeKG++, an enriched knowledge graph incorporating multimodal data, including biological sequences and textual descriptions for each entity type. By combining semantic and relational information in a unified representation, our approach demonstrates strong generalizability, enabling accurate link predictions even for unseen nodes. Experimental results on PrimeKG++ and the DrugBank drug-target interaction dataset demonstrate the effectiveness and robustness of our method across diverse biomedical datasets. Our source code, pre-trained models, and data are publicly available at https://github.com/HySonLab/BioMedKG
♻ ☆ The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models EMNLP 2024
Several recent works seek to adapt general-purpose large language models (LLMs) and vision-language models (VLMs) for medical applications through continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining improves performance on various downstream medical tasks, such as answering medical exam questions. In this paper, we compare ten "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question answering (QA). For instance, on clinical-note-based QA tasks in the 3-shot setting, medical LLMs outperform their base models in only 26.7% of cases, reach a (statistical) tie in 16.7% of cases, and perform significantly worse in the remaining 56.7% of cases. Our conclusions are based on (i) comparing each medical model directly against its base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
comment: Extended version of EMNLP 2024 paper arXiv:2411.04118. Includes additional results on clinical note QA tasks and supervised fine-tuning evaluations
♻ ☆ Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement ACL 2025
Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing $\sim$200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, user study questionnaires for evaluation, and other related materials have been open-sourced.
comment: Annual Meeting of the Association for Computational Linguistics (ACL 2025, Main)
♻ ☆ Interpretable LLM-based Table Question Answering
Interpretability in Table Question Answering (Table QA) is critical, especially in high-stakes domains like finance and healthcare. While recent Table QA approaches based on Large Language Models (LLMs) achieve high accuracy, they often produce ambiguous explanations of how answers are derived. We propose Plan-of-SQLs (POS), a new Table QA method that makes the model's decision-making process interpretable. POS decomposes a question into a sequence of atomic steps, each directly translated into an executable SQL command on the table, thereby ensuring that every intermediate result is transparent. Through extensive experiments, we show that: First, POS generates the highest-quality explanations among compared methods, which markedly improves the users' ability to simulate and verify the model's decisions. Second, when evaluated on standard Table QA benchmarks (TabFact, WikiTQ, and FeTaQA), POS achieves QA accuracy that is competitive to existing methods, while also offering greater efficiency-requiring significantly fewer LLM calls and table database queries (up to 25x fewer)-and more robust performance on large-sized tables. Finally, we observe high agreement (up to 90.59% in forward simulation) between LLMs and human users when making decisions based on the same explanations, suggesting that LLMs could serve as an effective proxy for humans in evaluating Table QA explanations.
comment: Published in Transactions on Machine Learning Research (TMLR) in 06/2025. Reviews at: https://openreview.net/forum?id=2eTsZBoU2W
♻ ☆ MLAN: Language-Based Instruction Tuning Preserves and Transfers Knowledge in Multimodal Language Models
We present a novel visual instruction tuning strategy to improve the zero-shot task generalization of multimodal large language models by building a firm text-only knowledge base. Existing work lacks sufficient experimentation on the importance of each modality in the instruction tuning stage, often using a majority of vision-language data while keeping text-only data limited and fixing mixtures of modalities. By incorporating diverse text-only data in the visual instruction tuning stage, we vary vision-language data in various controlled experiments to investigate the importance of modality in visual instruction tuning. Our comprehensive evaluation shows that the text-heavy instruction tuning approach is able to perform on-par with traditional vision-heavy mixtures on both modalities across 12 general datasets while using as low as half the total training tokens. We find that simply increasing sufficiently diverse text-only data enables transfer of instruction following ability and domain knowledge across modalities while being more efficient than the vision-language approach.
♻ ☆ Truth Neurons
Despite their remarkable success and deployment across diverse workflows, language models sometimes produce untruthful responses. Our limited understanding of how truthfulness is mechanistically encoded within these models jeopardizes their reliability and safety. In this paper, we propose a method for identifying representations of truthfulness at the neuron level. We show that language models contain truth neurons, which encode truthfulness in a subject-agnostic manner. Experiments conducted across models of varying scales validate the existence of truth neurons, confirming that the encoding of truthfulness at the neuron level is a property shared by many language models. The distribution patterns of truth neurons over layers align with prior findings on the geometry of truthfulness. Selectively suppressing the activations of truth neurons found through the TruthfulQA dataset degrades performance both on TruthfulQA and on other benchmarks, showing that the truthfulness mechanisms are not tied to a specific dataset. Our results offer novel insights into the mechanisms underlying truthfulness in language models and highlight potential directions toward improving their trustworthiness and reliability.
♻ ☆ What can large language models do for sustainable food? ICML
Food systems are responsible for a third of human-caused greenhouse gas emissions. We investigate what Large Language Models (LLMs) can contribute to reducing the environmental impacts of food production. We define a typology of design and prediction tasks based on the sustainable food literature and collaboration with domain experts, and evaluate six LLMs on four tasks in our typology. For example, for a sustainable protein design task, food science experts estimated that collaboration with an LLM can reduce time spent by 45% on average, compared to 22% for collaboration with another expert human food scientist. However, for a sustainable menu design task, LLMs produce suboptimal solutions when instructed to consider both human satisfaction and climate impacts. We propose a general framework for integrating LLMs with combinatorial optimization to improve reasoning capabilities. Our approach decreases emissions of food choices by 79% in a hypothetical restaurant while maintaining participants' satisfaction with their set of choices. Our results demonstrate LLMs' potential, supported by optimization techniques, to accelerate sustainable food development and adoption.
comment: ICML camera ready version
♻ ☆ Enabling Precise Topic Alignment in Large Language Models Via Sparse Autoencoders
Recent work shows that Sparse Autoencoders (SAE) applied to large language model (LLM) layers have neurons corresponding to interpretable concepts. These SAE neurons can be modified to align generated outputs, but only towards pre-identified topics and with some parameter tuning. Our approach leverages the observational and modification properties of SAEs to enable alignment for any topic. This method 1) scores each SAE neuron by its semantic similarity to an alignment text and uses them to 2) modify SAE-layer-level outputs by emphasizing topic-aligned neurons. We assess the alignment capabilities of this approach on diverse public topic datasets including Amazon reviews, Medicine, and Sycophancy, across the currently available open-source LLMs and SAE pairs (GPT2 and Gemma) with multiple SAEs configurations. Experiments aligning to medical prompts reveal several benefits over fine-tuning, including increased average language acceptability (0.25 vs. 0.5), reduced training time across multiple alignment topics (333.6s vs. 62s), and acceptable inference time for many applications (+0.00092s/token). Our open-source code is available at github.com/IBM/sae-steering.
♻ ☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
♻ ☆ SConU: Selective Conformal Uncertainty in Large Language Models ACL 2025
As large language models are increasingly utilized in real-world applications, guarantees of task-specific metrics are essential for their reliable deployment. Previous studies have introduced various criteria of conformal uncertainty grounded in split conformal prediction, which offer user-specified correctness coverage. However, existing frameworks often fail to identify uncertainty data outliers that violate the exchangeability assumption, leading to unbounded miscoverage rates and unactionable prediction sets. In this paper, we propose a novel approach termed Selective Conformal Uncertainty (SConU), which, for the first time, implements significance tests, by developing two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level. Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions. Furthermore, we comprehensively analyze the components of the conformal procedures, aiming to approximate conditional coverage, particularly in high-stakes question-answering tasks.
comment: Accepted by ACL 2025 Main
Information Retrieval 6
☆ Machine Assistant with Reliable Knowledge: Enhancing Student Learning via RAG-based Retrieval
We present Machine Assistant with Reliable Knowledge (MARK), a retrieval-augmented question-answering system designed to support student learning through accurate and contextually grounded responses. The system is built on a retrieval-augmented generation (RAG) framework, which integrates a curated knowledge base to ensure factual consistency. To enhance retrieval effectiveness across diverse question types, we implement a hybrid search strategy that combines dense vector similarity with sparse keyword-based retrieval. This dual-retrieval mechanism improves robustness for both general and domain-specific queries. The system includes a feedback loop in which students can rate responses and instructors can review and revise them. Instructor corrections are incorporated into the retrieval corpus, enabling adaptive refinement over time. The system was deployed in a classroom setting as a substitute for traditional office hours, where it successfully addressed a broad range of student queries. It was also used to provide technical support by integrating with a customer-specific knowledge base, demonstrating its ability to handle routine, context-sensitive tasks in applied domains. MARK is publicly accessible at https://app.eduquery.ai.
☆ A Data Science Approach to Calcutta High Court Judgments: An Efficient LLM and RAG-powered Framework for Summarization and Similar Cases Retrieval
The judiciary, as one of democracy's three pillars, is dealing with a rising amount of legal issues, needing careful use of judicial resources. This research presents a complex framework that leverages Data Science methodologies, notably Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques, to improve the efficiency of analyzing Calcutta High Court verdicts. Our framework focuses on two key aspects: first, the creation of a robust summarization mechanism that distills complex legal texts into concise and coherent summaries; and second, the development of an intelligent system for retrieving similar cases, which will assist legal professionals in research and decision making. By fine-tuning the Pegasus model using case head note summaries, we achieve significant improvements in the summarization of legal cases. Our two-step summarizing technique preserves crucial legal contexts, allowing for the production of a comprehensive vector database for RAG. The RAG-powered framework efficiently retrieves similar cases in response to user queries, offering thorough overviews and summaries. This technique not only improves legal research efficiency, but it also helps legal professionals and students easily acquire and grasp key legal information, benefiting the overall legal scenario.
comment: 12 pages, 6 figures
♻ ☆ Recommender Systems for Good (RS4Good): Survey of Use Cases and a Call to Action for Research that Matters
In the area of recommender systems, the vast majority of research efforts is spent on developing increasingly sophisticated recommendation models, also using increasingly more computational resources. Unfortunately, most of these research efforts target a very small set of application domains, mostly e-commerce and media recommendation. Furthermore, many of these models are never evaluated with users, let alone put into practice. The scientific, economic and societal value of much of these efforts by scholars therefore remains largely unclear. To achieve a stronger positive impact resulting from these efforts, we posit that we as a research community should more often address use cases where recommender systems contribute to societal good (RS4Good). In this opinion piece, we first discuss a number of examples where the use of recommender systems for problems of societal concern has been successfully explored in the literature. We then proceed by outlining a paradigmatic shift that is needed to conduct successful RS4Good research, where the key ingredients are interdisciplinary collaborations and longitudinal evaluation approaches with humans in the loop.
♻ ☆ GlobalMood: A cross-cultural benchmark for music emotion recognition
Human annotations of mood in music are essential for music generation and recommender systems. However, existing datasets predominantly focus on Western songs with terms derived from English, which may limit generalizability across diverse linguistic and cultural backgrounds. We introduce 'GlobalMood', a novel cross-cultural benchmark dataset comprising 1,180 songs sampled from 59 countries, with large-scale annotations collected from 2,519 individuals across five culturally and linguistically distinct locations: U.S., France, Mexico, S. Korea, and Egypt. Rather than imposing predefined emotion and mood categories, we implement a bottom-up, participant-driven approach to organically elicit culturally specific music-related emotion terms. We then recruit another pool of human participants to collect 988,925 ratings for these culture-specific descriptors. Our analysis confirms the presence of a valence-arousal structure shared across cultures, yet also reveals significant divergences in how certain emotion terms (despite being dictionary equivalents) are perceived cross-culturally. State-of-the-art multimodal models benefit substantially from fine-tuning on our cross-culturally balanced dataset, particularly in non-English contexts. Broadly, our findings inform the ongoing debate on the universality versus cultural specificity of emotional descriptors, and our methodology can contribute to other multimodal and cross-lingual research.
comment: To be presented at International Society of Music Information Retrieval (ISMIR)
♻ ☆ A Pre-trained Sequential Recommendation Framework: Popularity Dynamics for Zero-shot Transfer
Sequential recommenders are crucial to the success of online applications, \eg e-commerce, video streaming, and social media. While model architectures continue to improve, for every new application domain, we still have to train a new model from scratch for high quality recommendations. On the other hand, pre-trained language and vision models have shown great success in zero-shot or few-shot adaptation to new application domains. Inspired by the success of pre-trained models in peer AI fields, we propose a novel pre-trained sequential recommendation framework: PrepRec. We learn universal item representations by modeling item popularity dynamics. Through extensive experiments on five real-world datasets, we show that PrepRec, without any auxiliary information, can not only zero-shot transfer to a new domain, but achieve competitive performance compared to state-of-the-art sequential recommender models with only a fraction of the model size. In addition, with a simple post-hoc interpolation, PrepRec can improve the performance of existing sequential recommenders on average by 13.8\% in Recall@10 and 29.5% in NDCG@10. We provide an anonymized implementation of PrepRec at https://anonymous.4open.science/r/PrepRec--2F60/
♻ ☆ PromptDSI: Prompt-based Rehearsal-free Continual Learning for Document Retrieval ECML
Differentiable Search Index (DSI) utilizes pre-trained language models to perform indexing and document retrieval via end-to-end learning without relying on external indexes. However, DSI requires full re-training to index new documents, causing significant computational inefficiencies. Continual learning (CL) offers a solution by enabling the model to incrementally update without full re-training. Existing CL solutions in document retrieval rely on memory buffers or generative models for rehearsal, which is infeasible when accessing previous training data is restricted due to privacy concerns. To this end, we introduce PromptDSI, a prompt-based, rehearsal-free continual learning approach for document retrieval. PromptDSI follows the Prompt-based Continual Learning (PCL) framework, using learnable prompts to efficiently index new documents without accessing previous documents or queries. To improve retrieval latency, we remove the initial forward pass of PCL, which otherwise greatly increases training and inference time, with a negligible trade-off in performance. Additionally, we introduce a novel topic-aware prompt pool that employs neural topic embeddings as fixed keys, eliminating the instability of prompt key optimization while maintaining competitive performance with existing PCL prompt pools. In a challenging rehearsal-free continual learning setup, we demonstrate that PromptDSI variants outperform rehearsal-based baselines, match the strong cache-based baseline in mitigating forgetting, and significantly improving retrieval performance on new corpora.
comment: ECML PKDD 2025 Research track. Camera-ready version. Code is available at https://github.com/LouisDo2108/PromptDSI
Computation and Language 102
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ Sequential Diagnosis with Language Models
Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.
comment: 23 pages, 10 figures
☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 49 pages, 13 figures
☆ Refining Czech GEC: Insights from a Multi-Experiment Approach
We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec.
comment: Accepted to TSD 2025
☆ QuickSilver -- Speeding up LLM Inference through Dynamic Token Halting, KV Skipping, Contextual Token Fusion, and Adaptive Matryoshka Quantization
Inference accounts for the majority of latency and energy consumption in large language model (LLM) deployments, often exceeding 90% of total cost. While training-time efficiency has seen extensive progress, runtime optimization remains a key bottleneck, particularly under autoregressive decoding. Existing approaches -- such as pruning, quantization, early exits, and speculative decoding -- often require retraining, architectural changes, or disrupt decoding compatibility. We introduce QuickSilver, a modular, token-level framework that enables semantic adaptivity at inference time without altering model weights or structure. QuickSilver integrates four synergistic mechanisms: (i) Dynamic Token Halting, which halts computation for tokens with converged representations; (ii) KV Cache Skipping, which selectively suppresses memory writes to reduce attention overhead; and (iii) Contextual Token Fusion, which collapses redundant tokens into shared paths to shrink sequence length. Unlike speculative decoding or MoE routing, QuickSilver operates entirely on frozen, dense models and requires no auxiliary networks. Applied to GPT-2 and Llama-2 across WikiText-103 and C4, QuickSilver achieves up to 39.6% FLOP reduction with negligible perplexity degradation (<=0.2).
comment: Preprint. Under submission
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Towards Fair Rankings: Leveraging LLMs for Gender Bias Detection and Measurement SIGIR
The presence of social biases in Natural Language Processing (NLP) and Information Retrieval (IR) systems is an ongoing challenge, which underlines the importance of developing robust approaches to identifying and evaluating such biases. In this paper, we aim to address this issue by leveraging Large Language Models (LLMs) to detect and measure gender bias in passage ranking. Existing gender fairness metrics rely on lexical- and frequency-based measures, leading to various limitations, e.g., missing subtle gender disparities. Building on our LLM-based gender bias detection method, we introduce a novel gender fairness metric, named Class-wise Weighted Exposure (CWEx), aiming to address existing limitations. To measure the effectiveness of our proposed metric and study LLMs' effectiveness in detecting gender bias, we annotate a subset of the MS MARCO Passage Ranking collection and release our new gender bias collection, called MSMGenderBias, to foster future research in this area. Our extensive experimental results on various ranking models show that our proposed metric offers a more detailed evaluation of fairness compared to previous metrics, with improved alignment to human labels (58.77% for Grep-BiasIR, and 18.51% for MSMGenderBias, measured using Cohen's Kappa agreement), effectively distinguishing gender bias in ranking. By integrating LLM-driven bias detection, an improved fairness metric, and gender bias annotations for an established dataset, this work provides a more robust framework for analyzing and mitigating bias in IR systems.
comment: Accepted by ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR 2025)
☆ Why Are Parsing Actions for Understanding Message Hierarchies Not Random?
If humans understood language by randomly selecting parsing actions, it might have been necessary to construct a robust symbolic system capable of being interpreted under any hierarchical structure. However, human parsing strategies do not seem to follow such a random pattern. Why is that the case? In fact, a previous study on emergent communication using models with hierarchical biases have reported that agents adopting random parsing strategies$\unicode{x2013}$ones that deviate significantly from human language comprehension$\unicode{x2013}$can achieve high communication accuracy. In this study, we investigate this issue by making two simple and natural modifications to the experimental setup: (I) we use more complex inputs that have hierarchical structures, such that random parsing makes semantic interpretation more difficult, and (II) we incorporate a surprisal-related term, which is known to influence the order of words and characters in natural language, into the objective function. With these changes, we evaluate whether agents employing random parsing strategies still maintain high communication accuracy.
☆ Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
☆ Evaluating Scoring Bias in LLM-as-a-Judge
The remarkable performance of Large Language Models (LLMs) gives rise to``LLM-as-a-Judge'', where LLMs are employed as evaluators for complex tasks. Moreover, it has been widely adopted across fields such as Natural Language Processing (NLP), preference learning, and various specific domains. However, there are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments. Current research on evaluating or mitigating bias in LLM-as-a-Judge predominantly focuses on comparison-based evaluations, while systematic investigations into bias in scoring-based evaluations remain limited. Therefore, we define scoring bias in LLM-as-a-Judge as the scores differ when scoring judge models are bias-related perturbed, and provide a well-designed framework to comprehensively evaluate scoring bias. We augment existing LLM-as-a-Judge benchmarks through data synthesis to construct our evaluation dataset and design multi-faceted evaluation metrics. Our experimental results demonstrate that the scoring stability of existing judge models is disrupted by scoring biases. Further exploratory experiments and discussions provide valuable insights into the design of scoring prompt templates and the mitigation of scoring biases on aspects such as score rubrics, score IDs, and reference answer selection.
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ Detection of Personal Data in Structured Datasets Using a Large Language Model
We propose a novel approach for detecting personal data in structured datasets, leveraging GPT-4o, a state-of-the-art Large Language Model. A key innovation of our method is the incorporation of contextual information: in addition to a feature's name and values, we utilize information from other feature names within the dataset as well as the dataset description. We compare our approach to alternative methods, including Microsoft Presidio and CASSED, evaluating them on multiple datasets: DeSSI, a large synthetic dataset, datasets we collected from Kaggle and OpenML as well as MIMIC-Demo-Ext, a real-world dataset containing patient information from critical care units. Our findings reveal that detection performance varies significantly depending on the dataset used for evaluation. CASSED excels on DeSSI, the dataset on which it was trained. Performance on the medical dataset MIMIC-Demo-Ext is comparable across all models, with our GPT-4o-based approach clearly outperforming the others. Notably, personal data detection in the Kaggle and OpenML datasets appears to benefit from contextual information. This is evidenced by the poor performance of CASSED and Presidio (both of which do not utilize the context of the dataset) compared to the strong results of our GPT-4o-based approach. We conclude that further progress in this field would greatly benefit from the availability of more real-world datasets containing personal information.
comment: 10 pages
☆ COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Fine-Tuning MIDI-to-Audio Alignment using a Neural Network on Piano Roll and CQT Representations
In this paper, we present a neural network approach for synchronizing audio recordings of human piano performances with their corresponding loosely aligned MIDI files. The task is addressed using a Convolutional Recurrent Neural Network (CRNN) architecture, which effectively captures spectral and temporal features by processing an unaligned piano roll and a spectrogram as inputs to estimate the aligned piano roll. To train the network, we create a dataset of piano pieces with augmented MIDI files that simulate common human timing errors. The proposed model achieves up to 20% higher alignment accuracy than the industry-standard Dynamic Time Warping (DTW) method across various tolerance windows. Furthermore, integrating DTW with the CRNN yields additional improvements, offering enhanced robustness and consistency. These findings demonstrate the potential of neural networks in advancing state-of-the-art MIDI-to-audio alignment.
comment: 9 pages, 3 figures, 6 tables
☆ Leveraging In-Context Learning for Political Bias Testing of LLMs ACL 2025
A growing body of work has been querying LLMs with political questions to evaluate their potential biases. However, this probing method has limited stability, making comparisons between models unreliable. In this paper, we argue that LLMs need more context. We propose a new probing task, Questionnaire Modeling (QM), that uses human survey data as in-context examples. We show that QM improves the stability of question-based bias evaluation, and demonstrate that it may be used to compare instruction-tuned models to their base versions. Experiments with LLMs of various sizes indicate that instruction tuning can indeed change the direction of bias. Furthermore, we observe a trend that larger models are able to leverage in-context examples more effectively, and generally exhibit smaller bias scores in QM. Data and code are publicly available.
comment: ACL 2025
Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery and design. In this study, we critically examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the agentic system such as the LLM are interchangeable, a topic that has received limited attention in drug discovery applications. We compare the performance of different large language models (LLMs) and the effectiveness of tool-calling agents versus code-generating agents in this domain. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question and model dependent. Furthermore, the impact of replacing system prompts is dependent on the specific question asked and the model used, underscoring that -- even in this particular domain -- one cannot just replace language models without considering prompt re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of stable and scalable solutions for real-world problems.
☆ Training Language Model to Critique for Better Refinement ACL 2025
Large language models (LLMs) have demonstrated remarkable evaluation and critique capabilities, providing insightful feedback and identifying flaws in various tasks. However, limited research has explored which types of critiques are most effective for improving model responses or how to generate such critiques. To address this gap, we introduce \textbf{R}efinement-oriented \textbf{C}ritique \textbf{O}ptimization (RCO), a novel framework designed to train critic models using refinement signals. RCO uses a feedback loop where critiques, generated by the critic model, guide the actor model in refining its responses. The critique utility (CU) quantifies the effectiveness of these refinements, serving as the reward signal for training the critic model. By focusing on critiques that lead to better refinements, RCO eliminates the need for direct critique preference assessment, ensuring that critiques driving meaningful improvements are rewarded. We evaluate RCO across five tasks, i.e., dialog generation, summarization, question answering, mathematical reasoning, and code generation, and show that it significantly outperforms traditional methods and open-source models in terms of critique quality and refinement outcomes. Our contributions include the introduction of RCO, a novel supervision scheme based on refined response preferences, and comprehensive experimental results that highlight the method's effectiveness in enhancing LLM critique-refinement loops.
comment: Accepted to ACL 2025 Findings
☆ SAGE: Spliced-Audio Generated Data for Enhancing Foundational Models in Low-Resource Arabic-English Code-Switched Speech Recognition SP 2025
This paper investigates the performance of various speech SSL models on dialectal Arabic (DA) and Arabic-English code-switched (CS) speech. To address data scarcity, a modified audio-splicing approach is introduced to generate artificial CS speech data. Fine-tuning an already fine-tuned SSL model with the proposed Spliced-Audio Generated (SAGE) data results in an absolute improvement on Word Error Rate (WER) of 7.8% on Arabic and English CS benchmarks. Additionally, an Experience Replay (ER) inspired approach is proposed to enhance generalisation across DA and CS speech while mitigating catastrophic forgetting. Integrating an out-of-domain 3-gram language model reduces the overall mean WER from 31.7% to 26.6%. Few-shot fine-tuning for code-switching benchmarks further improves WER by 4.9%. A WER of 31.1% on Arabic-English CS benchmarks surpasses large-scale multilingual models, including USM and Whisper-large-v2 (both over ten times larger) by an absolute margin of 5.5% and 8.4%, respectively.
comment: Accepted for IEEE MLSP 2025
☆ DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level
In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).
☆ Identifying a Circuit for Verb Conjugation in GPT-2
I implement a procedure to isolate and interpret the sub-network (or "circuit") responsible for subject-verb agreement in GPT-2 Small. In this study, the model is given prompts where the subject is either singular (e.g. "Alice") or plural (e.g. "Alice and Bob"), and the task is to correctly predict the appropriate verb form ("walks" for singular subjects, "walk" for plural subjects). Using a series of techniques-including performance verification automatic circuit discovery via direct path patching, and direct logit attribution- I isolate a candidate circuit that contributes significantly to the model's correct verb conjugation. The results suggest that only a small fraction of the network's component-token pairs is needed to achieve near-model performance on the base task but substantially more for more complex settings.
☆ Involvement drives complexity of language in online debates
Language is a fundamental aspect of human societies, continuously evolving in response to various stimuli, including societal changes and intercultural interactions. Technological advancements have profoundly transformed communication, with social media emerging as a pivotal force that merges entertainment-driven content with complex social dynamics. As these platforms reshape public discourse, analyzing the linguistic features of user-generated content is essential to understanding their broader societal impact. In this paper, we examine the linguistic complexity of content produced by influential users on Twitter across three globally significant and contested topics: COVID-19, COP26, and the Russia-Ukraine war. By combining multiple measures of textual complexity, we assess how language use varies along four key dimensions: account type, political leaning, content reliability, and sentiment. Our analysis reveals significant differences across all four axes, including variations in language complexity between individuals and organizations, between profiles with sided versus moderate political views, and between those associated with higher versus lower reliability scores. Additionally, profiles producing more negative and offensive content tend to use more complex language, with users sharing similar political stances and reliability levels converging toward a common jargon. Our findings offer new insights into the sociolinguistic dynamics of digital platforms and contribute to a deeper understanding of how language reflects ideological and social structures in online spaces.
☆ MDC-R: The Minecraft Dialogue Corpus with Reference
We introduce the Minecraft Dialogue Corpus with Reference (MDC-R). MDC-R is a new language resource that supplements the original Minecraft Dialogue Corpus (MDC) with expert annotations of anaphoric and deictic reference. MDC's task-orientated, multi-turn, situated dialogue in a dynamic environment has motivated multiple annotation efforts, owing to the interesting linguistic phenomena that this setting gives rise to. We believe it can serve as a valuable resource when annotated with reference, too. Here, we discuss our method of annotation and the resulting corpus, and provide both a quantitative and a qualitative analysis of the data. Furthermore, we carry out a short experiment demonstrating the usefulness of our corpus for referring expression comprehension.
☆ Lost at the Beginning of Reasoning
Recent advancements in large language models (LLMs) have significantly advanced complex reasoning capabilities, particularly through extended chain-of-thought (CoT) reasoning that incorporates mechanisms such as backtracking, self-reflection and self-correction. Despite these developments, the self-correction abilities of LLMs during long CoT reasoning remain underexplored. And recent findings on overthinking suggest that such models often engage in unnecessarily redundant reasoning. In this work, we empirically show that the first reasoning step exerts a disproportionately large influence on the final prediction - errors introduced at this stage can substantially degrade subsequent reasoning quality. This phenomenon is consistently observed across two state-of-the-art open-source reasoning model families: DeepSeek-R1 and Qwen3. To address this, we propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps while discarding suboptimal ones, achieving up to a 70% reduction in inference cost without sacrificing accuracy. Finally, we introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities, offering a foundation for future research on robust reasoning in LLMs.
comment: 9 pages, 5 figures, 2 tables
☆ Decoding Machine Translationese in English-Chinese News: LLMs vs. NMTs ACL
This study explores Machine Translationese (MTese) -- the linguistic peculiarities of machine translation outputs -- focusing on the under-researched English-to-Chinese language pair in news texts. We construct a large dataset consisting of 4 sub-corpora and employ a comprehensive five-layer feature set. Then, a chi-square ranking algorithm is applied for feature selection in both classification and clustering tasks. Our findings confirm the presence of MTese in both Neural Machine Translation systems (NMTs) and Large Language Models (LLMs). Original Chinese texts are nearly perfectly distinguishable from both LLM and NMT outputs. Notable linguistic patterns in MT outputs are shorter sentence lengths and increased use of adversative conjunctions. Comparing LLMs and NMTs, we achieve approximately 70% classification accuracy, with LLMs exhibiting greater lexical diversity and NMTs using more brackets. Additionally, translation-specific LLMs show lower lexical diversity but higher usage of causal conjunctions compared to generic LLMs. Lastly, we find no significant differences between LLMs developed by Chinese firms and their foreign counterparts.
comment: 14 pages, 5 figures, 6 tables. Accpeted in MT Summit 2025, Research: Technical track. Official version may be accessed later in the ACL Anthology
☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
☆ Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children's Literature Translation ACL
This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in English-to-Chinese children's literature translation (CLT) from a stylometric perspective. The research constructs a Peter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhythm, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-YiYang, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT.
comment: 19 pages, 8 figures, 4 tables. Accepted in 2nd Workshop on Creative-text Translation and Technology Co-located with MT Summit 2025. Official paper may later be accessed from ACL Anthology
☆ Robust and Efficient Autoregressive Speech Synthesis with Dynamic Chunk-wise Prediction Policy
Recently, autoregressive (AR) language models have emerged as a dominant approach in speech synthesis, offering expressive generation and scalable training. However, conventional AR speech synthesis models relying on the next-token prediction paradigm often encounter significant challenges when handling long speech sequences. These models often struggle to construct stable frame-to-frame attention, leading to increased latency and degraded synthesis quality, thereby limiting their feasibility for real-time applications. To address these limitations, we introduce a novel dynamic chunk-wise autoregressive synthesis framework, termed DCAR, designed to enhance both efficiency and intelligibility robustness in AR speech generation. DCAR introduces a chunk-to-frame attention mechanism through training with multi-token prediction, enabling dynamic chunk prediction in variable speech contexts using a lightweight module trained on-policy. DCAR dynamically adjusts the token prediction span, significantly reducing the sequence length dependency while obtaining high synthesis quality. Comprehensive empirical evaluations demonstrate that DCAR substantially outperforms traditional next-token prediction models, achieving up to 72.27% intelligibility improvement and 2.61x inference speedup simultaneously on the test set. Furthermore, we conduct comprehensive analysis to support it as a versatile foundation for next-generation speech synthesis systems.
comment: 17 pages, 8 figures, 5 tables
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
comment: 11 pages, 1 figure, 3 tables
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ More Vulnerable than You Think: On the Stability of Tool-Integrated LLM Agents
Current evaluations of tool-integrated LLM agents typically focus on end-to-end tool-usage evaluation while neglecting their stability. This limits their real-world applicability, as various internal or external factors can cause agents to crash or behave abnormally. Our research addresses this by investigating whether agents are vulnerable to errors throughout the entire tool invocation process, including reading tool documentation, selecting tools and generating parameters, and processing the tool's response. Through extensive experiments, we observe that agents are highly susceptible to errors at each stage and agents based on open-source models are more vulnerable than those based on proprietary models. We also find that increasing the model size does not significantly improve tool invocation reasoning and may make agents more vulnerable to attacks resembling normal user instructions. This highlights the importance of evaluating agent stability and offers valuable insights for future LLM development and evaluation.
☆ Using Large Language Models to Suggest Informative Prior Distributions in Bayesian Statistics
Selecting prior distributions in Bayesian statistics is challenging, resource-intensive, and subjective. We analyze using large-language models (LLMs) to suggest suitable, knowledge-based informative priors. We developed an extensive prompt asking LLMs not only to suggest priors but also to verify and reflect on their choices. We evaluated Claude Opus, Gemini 2.5 Pro, and ChatGPT-4o-mini on two real datasets: heart disease risk and concrete strength. All LLMs correctly identified the direction for all associations (e.g., that heart disease risk is higher for males). The quality of suggested priors was measured by their Kullback-Leibler divergence from the maximum likelihood estimator's distribution. The LLMs suggested both moderately and weakly informative priors. The moderate priors were often overconfident, resulting in distributions misaligned with the data. In our experiments, Claude and Gemini provided better priors than ChatGPT. For weakly informative priors, a key performance difference emerged: ChatGPT and Gemini defaulted to an "unnecessarily vague" mean of 0, while Claude did not, demonstrating a significant advantage. The ability of LLMs to identify correct associations shows their great potential as an efficient, objective method for developing informative priors. However, the primary challenge remains in calibrating the width of these priors to avoid over- and under-confidence.
☆ PapersPlease: A Benchmark for Evaluating Motivational Values of Large Language Models Based on ERG Theory ACL 2025
Evaluating the performance and biases of large language models (LLMs) through role-playing scenarios is becoming increasingly common, as LLMs often exhibit biased behaviors in these contexts. Building on this line of research, we introduce PapersPlease, a benchmark consisting of 3,700 moral dilemmas designed to investigate LLMs' decision-making in prioritizing various levels of human needs. In our setup, LLMs act as immigration inspectors deciding whether to approve or deny entry based on the short narratives of people. These narratives are constructed using the Existence, Relatedness, and Growth (ERG) theory, which categorizes human needs into three hierarchical levels. Our analysis of six LLMs reveals statistically significant patterns in decision-making, suggesting that LLMs encode implicit preferences. Additionally, our evaluation of the impact of incorporating social identities into the narratives shows varying responsiveness based on both motivational needs and identity cues, with some models exhibiting higher denial rates for marginalized identities. All data is publicly available at https://github.com/yeonsuuuu28/papers-please.
comment: Accepted to GEM2 Workshop: Generation, Evaluation & Metrics - ACL 2025
☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
☆ HyReC: Exploring Hybrid-based Retriever for Chinese
Hybrid-based retrieval methods, which unify dense-vector and lexicon-based retrieval, have garnered considerable attention in the industry due to performance enhancement. However, despite their promising results, the application of these hybrid paradigms in Chinese retrieval contexts has remained largely underexplored. In this paper, we introduce HyReC, an innovative end-to-end optimization method tailored specifically for hybrid-based retrieval in Chinese. HyReC enhances performance by integrating the semantic union of terms into the representation model. Additionally, it features the Global-Local-Aware Encoder (GLAE) to promote consistent semantic sharing between lexicon-based and dense retrieval while minimizing the interference between them. To further refine alignment, we incorporate a Normalization Module (NM) that fosters mutual benefits between the retrieval approaches. Finally, we evaluate HyReC on the C-MTEB retrieval benchmark to demonstrate its effectiveness.
☆ AutoMixer: Checkpoint Artifacts as Automatic Data Mixers ACL 2025
In language model training, it is desirable to equip models with capabilities from various tasks. However, it is not clear how to directly obtain the right data mixtures for these capabilities as the relationship between data and tasks is difficult to be modeled. In this work, we observe that checkpoint models exhibit emerging capabilities at different points in the training trajectory. Often, the training process saves checkpoints as artifacts that are under-utilized as a source of in-training data signals. We identify these artifact models based on their respective capabilities on the benchmarks and leverage them as data mixers by using their aggregated first-order influence approximation over source data. We demonstrated on eight reasoning benchmarks that the proposed framework shows significant improvements in the pretraining setting, with performance improvements of up to 1.93%. Overall, this shows the potential of checkpoint models to enhance data quality and optimize data mixtures.
comment: Accepted at ACL 2025
☆ A Dual-Layered Evaluation of Geopolitical and Cultural Bias in LLMs ACL
As large language models (LLMs) are increasingly deployed across diverse linguistic and cultural contexts, understanding their behavior in both factual and disputable scenarios is essential, especially when their outputs may shape public opinion or reinforce dominant narratives. In this paper, we define two types of bias in LLMs: model bias (bias stemming from model training) and inference bias (bias induced by the language of the query), through a two-phase evaluation. Phase 1 evaluates LLMs on factual questions where a single verifiable answer exists, assessing whether models maintain consistency across different query languages. Phase 2 expands the scope by probing geopolitically sensitive disputes, where responses may reflect culturally embedded or ideologically aligned perspectives. We construct a manually curated dataset spanning both factual and disputable QA, across four languages and question types. The results show that Phase 1 exhibits query language induced alignment, while Phase 2 reflects an interplay between the model's training context and query language. This paper offers a structured framework for evaluating LLM behavior across neutral and sensitive topics, providing insights for future LLM deployment and culturally aware evaluation practices in multilingual contexts.
comment: This paper is accepted to ACL Student Research Workshop (SRW) 2025
☆ Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation ACL 2025
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
comment: ACL 2025 (Findings)
☆ WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
☆ RiverEcho: Real-Time Interactive Digital System for Ancient Yellow River Culture
The Yellow River is China's mother river and a cradle of human civilization. The ancient Yellow River culture is, moreover, an indispensable part of human art history. To conserve and inherit the ancient Yellow River culture, we designed RiverEcho, a real-time interactive system that responds to voice queries using a large language model and a cultural knowledge dataset, delivering explanations through a talking-head digital human. Specifically, we built a knowledge database focused on the ancient Yellow River culture, including the collection of historical texts and the processing pipeline. Experimental results demonstrate that leveraging Retrieval-Augmented Generation (RAG) on the proposed dataset enhances the response quality of the Large Language Model(LLM), enabling the system to generate more professional and informative responses. Our work not only diversifies the means of promoting Yellow River culture but also provides users with deeper cultural insights.
comment: IEEE International Conference on Multimedia and Expo Workshop, 2025.(Accepted)
☆ DeepTalk: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
☆ Derivational Probing: Unveiling the Layer-wise Derivation of Syntactic Structures in Neural Language Models
Recent work has demonstrated that neural language models encode syntactic structures in their internal representations, yet the derivations by which these structures are constructed across layers remain poorly understood. In this paper, we propose Derivational Probing to investigate how micro-syntactic structures (e.g., subject noun phrases) and macro-syntactic structures (e.g., the relationship between the root verbs and their direct dependents) are constructed as word embeddings propagate upward across layers. Our experiments on BERT reveal a clear bottom-up derivation: micro-syntactic structures emerge in lower layers and are gradually integrated into a coherent macro-syntactic structure in higher layers. Furthermore, a targeted evaluation on subject-verb number agreement shows that the timing of constructing macro-syntactic structures is critical for downstream performance, suggesting an optimal timing for integrating global syntactic information.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models UAI
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ LinguaSynth: Heterogeneous Linguistic Signals for News Classification
Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.
☆ 3Description: An Intuitive Human-AI Collaborative 3D Modeling Approach
This paper presents 3Description, an experimental human-AI collaborative approach for intuitive 3D modeling. 3Description aims to address accessibility and usability challenges in traditional 3D modeling by enabling non-professional individuals to co-create 3D models using verbal and gesture descriptions. Through a combination of qualitative research, product analysis, and user testing, 3Description integrates AI technologies such as Natural Language Processing and Computer Vision, powered by OpenAI and MediaPipe. Recognizing the web has wide cross-platform capabilities, 3Description is web-based, allowing users to describe the desired model and subsequently adjust its components using verbal and gestural inputs. In the era of AI and emerging media, 3Description not only contributes to a more inclusive and user-friendly design process, empowering more people to participate in the construction of the future 3D world, but also strives to increase human engagement in co-creation with AI, thereby avoiding undue surrender to technology and preserving human creativity.
comment: 5 pages, 2 figures, 3 tables (containing 21 subfigures)
☆ PARSI: Persian Authorship Recognition via Stylometric Integration
The intricate linguistic, stylistic, and metrical aspects of Persian classical poetry pose a challenge for computational authorship attribution. In this work, we present a versatile framework to determine authorship among 67 prominent poets. We employ a multi-input neural framework consisting of a transformer-based language encoder complemented by features addressing the semantic, stylometric, and metrical dimensions of Persian poetry. Our feature set encompasses 100-dimensional Word2Vec embeddings, seven stylometric measures, and categorical encodings of poetic form and meter. We compiled a vast corpus of 647,653 verses of the Ganjoor digital collection, validating the data through strict preprocessing and author verification while preserving poem-level splitting to prevent overlap. This work employs verse-level classification and majority and weighted voting schemes in evaluation, revealing that weighted voting yields 71% accuracy. We further investigate threshold-based decision filtering, allowing the model to generate highly confident predictions, achieving 97% accuracy at a 0.9 threshold, though at lower coverage. Our work focuses on the integration of deep representational forms with domain-specific features for improved authorship attribution. The results illustrate the potential of our approach for automated classification and the contribution to stylistic analysis, authorship disputes, and general computational literature research. This research will facilitate further research on multilingual author attribution, style shift, and generative modeling of Persian poetry.
☆ GenEscape: Hierarchical Multi-Agent Generation of Escape Room Puzzles
We challenge text-to-image models with generating escape room puzzle images that are visually appealing, logically solid, and intellectually stimulating. While base image models struggle with spatial relationships and affordance reasoning, we propose a hierarchical multi-agent framework that decomposes this task into structured stages: functional design, symbolic scene graph reasoning, layout synthesis, and local image editing. Specialized agents collaborate through iterative feedback to ensure the scene is visually coherent and functionally solvable. Experiments show that agent collaboration improves output quality in terms of solvability, shortcut avoidance, and affordance clarity, while maintaining visual quality.
♻ ☆ Metadata Conditioning Accelerates Language Model Pre-training ICML 2025
The vast diversity of styles, domains, and quality levels present in language model pre-training corpora is essential in developing general model capabilities, but efficiently learning and deploying the correct behaviors exemplified in each of these heterogeneous data sources is challenging. To address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to incorporate additional learning cues during pre-training. MeCo first provides metadata (e.g., URLs like www$.$wikipedia$.$org) alongside the text during training and later uses a cooldown phase with only the standard text, thereby enabling the model to function normally even without metadata. MeCo significantly accelerates pre-training across different model scales (600M to 8B parameters) and training sources (C4, RefinedWeb, and DCLM). For instance, a 1.6B language model trained with MeCo matches the downstream task performance of standard pre-training while using 33% less data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt on either real or fabricated metadata that encodes the desired properties of the output: for example, prepending wikipedia$.$org to reduce harmful generations or factquizmaster$.$com (fabricated) to improve common knowledge task performance. We also demonstrate that MeCo is compatible with different types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no computational overhead, and demonstrates promise in producing more capable and steerable language models.
comment: Accepted to ICML 2025. Code available at https://github.com/princeton-pli/MeCo
♻ ☆ How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Oldies but Goldies: The Potential of Character N-grams for Romanian Texts
This study addresses the problem of authorship attribution for Romanian texts using the ROST corpus, a standard benchmark in the field. We systematically evaluate six machine learning techniques: Support Vector Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors (k-NN), Decision Trees (DT), Random Forests (RF), and Artificial Neural Networks (ANN), employing character n-gram features for classification. Among these, the ANN model achieved the highest performance, including perfect classification in four out of fifteen runs when using 5-gram features. These results demonstrate that lightweight, interpretable character n-gram approaches can deliver state-of-the-art accuracy for Romanian authorship attribution, rivaling more complex methods. Our findings highlight the potential of simple stylometric features in resource, constrained or under-studied language settings.
♻ ☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ All Entities are Not Created Equal: Examining the Long Tail for Ultra-Fine Entity Typing
Due to their capacity to acquire world knowledge from large corpora, pre-trained language models (PLMs) are extensively used in ultra-fine entity typing tasks where the space of labels is extremely large. In this work, we explore the limitations of the knowledge acquired by PLMs by proposing a novel heuristic to approximate the pre-training distribution of entities when the pre-training data is unknown. Then, we systematically demonstrate that entity-typing approaches that rely solely on the parametric knowledge of PLMs struggle significantly with entities at the long tail of the pre-training distribution, and that knowledge-infused approaches can account for some of these shortcomings. Our findings suggest that we need to go beyond PLMs to produce solutions that perform well for infrequent entities.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Quantum-Enhanced Attention Mechanism in NLP: A Hybrid Classical-Quantum Approach
Recent advances in quantum computing have opened new pathways for enhancing deep learning architectures, particularly in domains characterized by high-dimensional and context-rich data such as natural language processing (NLP). In this work, we present a hybrid classical-quantum Transformer model that integrates a quantum-enhanced attention mechanism into the standard classical architecture. By embedding token representations into a quantum Hilbert space via parameterized variational circuits and exploiting entanglement-aware kernel similarities, the model captures complex semantic relationships beyond the reach of conventional dot-product attention. We demonstrate the effectiveness of this approach across diverse NLP benchmarks, showing improvements in both efficiency and representational capacity. The results section reveal that the quantum attention layer yields globally coherent attention maps and more separable latent features, while requiring comparatively fewer parameters than classical counterparts. These findings highlight the potential of quantum-classical hybrid models to serve as a powerful and resource-efficient alternative to existing attention mechanisms in NLP.
comment: 16 pages, 7 figures, 5 tables
♻ ☆ TableLoRA: Low-rank Adaptation on Table Structure Understanding for Large Language Models ACL 2025
Tabular data are crucial in many fields and their understanding by large language models (LLMs) under high parameter efficiency paradigm is important. However, directly applying parameter-efficient fine-tuning (PEFT) techniques to tabular tasks presents significant challenges, particularly in terms of better table serialization and the representation of two-dimensional structured information within a one-dimensional sequence. To address this, we propose TableLoRA, a module designed to improve LLMs' understanding of table structure during PEFT. It incorporates special tokens for serializing tables with special token encoder and uses 2D LoRA to encode low-rank information on cell positions. Experiments on four tabular-related datasets demonstrate that TableLoRA consistently outperforms vanilla LoRA and surpasses various table encoding methods tested in control experiments. These findings reveal that TableLoRA, as a table-specific LoRA, enhances the ability of LLMs to process tabular data effectively, especially in low-parameter settings, demonstrating its potential as a robust solution for handling table-related tasks.
comment: Accepted by ACL 2025 main conference, long paper
♻ ☆ Plant in Cupboard, Orange on Rably, Inat Aphone. Benchmarking Incremental Learning of Situation and Language Model using a Text-Simulated Situated Environment
Large Language Models (LLMs) serve not only as chatbots but as key components in agent systems, where their common-sense knowledge significantly impacts performance as language-based planners for situated or embodied action. We assess LLMs' incremental learning (based on feedback from the environment), and controlled in-context learning abilities using a text-based environment. We introduce challenging yet interesting set of experiments to test i) how agents can incrementally solve tasks related to every day objects in typical rooms in a house where each of them are discovered by interacting within the environment, ii) controlled in-context learning abilities and efficiency of agents by providing short info about locations of objects and rooms to check how faster the task can be solved, and finally iii) using synthetic pseudo-English words to gauge how well LLMs are at inferring meaning of unknown words from environmental feedback. Results show that larger commercial models have a substantial gap in performance compared to open-weight but almost all models struggle with the synthetic words experiments.
comment: Accepted at The 28th International Conference of Text, Speech and Dialogue (TSD2025)
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models ACL 2025
Parameter-Efficient Fine-Tuning (PEFT) has gained prominence through low-rank adaptation methods like LoRA. In this paper, we focus on sparsity-based PEFT (SPEFT), which introduces trainable sparse adaptations to the weight matrices in the model, offering greater flexibility in selecting fine-tuned parameters compared to low-rank methods. We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies, and identify simple gradient-based metrics is reliable, and results are on par with the best alternatives, offering both computational efficiency and robust performance. Additionally, we compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance, while dynamic masking offers no substantial benefits. Across NLP tasks, a simple gradient-based, static SPEFT consistently outperforms other fine-tuning methods for LLMs, providing a simple yet effective baseline for SPEFT. Our work challenges the notion that complexity is necessary for effective PEFT, while our open-source framework establishes a reproducible benchmark for future research, which is available at [https://github.com/0-ml/speft].
comment: ACL 2025
♻ ☆ MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 178 pages
♻ ☆ iPrOp: Interactive Prompt Optimization for Large Language Models with a Human in the Loop
Prompt engineering has made significant contributions to the era of large language models, yet its effectiveness depends on the skills of a prompt author. This paper introduces $\textit{iPrOp}$, a novel interactive prompt optimization approach, to bridge manual prompt engineering and automatic prompt optimization while offering users the flexibility to assess evolving prompts. We aim to provide users with task-specific guidance to enhance human engagement in the optimization process, which is structured through prompt variations, informative instances, predictions generated by large language models along with their corresponding explanations, and relevant performance metrics. This approach empowers users to choose and further refine the prompts based on their individual preferences and needs. It can not only assist non-technical domain experts in generating optimal prompts tailored to their specific tasks or domains, but also enable to study the intrinsic parameters that influence the performance of prompt optimization. The evaluation shows that our approach has the capability to generate improved prompts, leading to enhanced task performance.
♻ ☆ Llama See, Llama Do: A Mechanistic Perspective on Contextual Entrainment and Distraction in LLMs ACL 2025
We observe a novel phenomenon, contextual entrainment, across a wide range of language models (LMs) and prompt settings, providing a new mechanistic perspective on how LMs become distracted by ``irrelevant'' contextual information in the input prompt. Specifically, LMs assign significantly higher logits (or probabilities) to any tokens that have previously appeared in the context prompt, even for random tokens. This suggests that contextual entrainment is a mechanistic phenomenon, occurring independently of the relevance or semantic relation of the tokens to the question or the rest of the sentence. We find statistically significant evidence that the magnitude of contextual entrainment is influenced by semantic factors. Counterfactual prompts have a greater effect compared to factual ones, suggesting that while contextual entrainment is a mechanistic phenomenon, it is modulated by semantic factors. We hypothesise that there is a circuit of attention heads -- the entrainment heads -- that corresponds to the contextual entrainment phenomenon. Using a novel entrainment head discovery method based on differentiable masking, we identify these heads across various settings. When we ``turn off'' these heads, i.e., set their outputs to zero, the effect of contextual entrainment is significantly attenuated, causing the model to generate output that capitulates to what it would produce if no distracting context were provided. Our discovery of contextual entrainment, along with our investigation into LM distraction via the entrainment heads, marks a key step towards the mechanistic analysis and mitigation of the distraction problem.
comment: ACL 2025
♻ ☆ English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k\_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to yielded non-significant results indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures, v2
♻ ☆ Beyond Fixed Length: Bucket Pre-training is All You Need IJCAI 2025
Large Language Models (LLMs) have demonstrated exceptional performance across various tasks, with pre-training stage serving as the cornerstone of their capabilities. However, the conventional fixed-length data composition strategy for pre-training presents several practical challenges. When using shorter sequences, documents are often truncated, potentially leading to information loss and affecting the model's ability to capture long-range dependencies. Conversely, longer sequences require concatenation of multiple documents, which can introduce noise and affect the natural document boundaries and semantic coherence as well as require substantial computational overhead. To address these challenges, we first establish three quantitative metrics for evaluating data composition quality: padding ratio, truncation ratio, and concatenation ratio. Building upon these metrics, we propose a novel multi-bucket data composition method that transcends the fixed-length paradigm. Our approach adaptively organizes training data to achieve optimal composition quality as measured by the proposed metrics, offering a more flexible and efficient approach for pre-training. We conduct extensive experiments and the results demonstrate that our proposed method significantly enhances both the efficiency and effectiveness of LLM pre-training.
comment: 8 pages, 5 figures, 3 tables. Accetped by IJCAI 2025
♻ ☆ Large Language Models in Argument Mining: A Survey
Argument Mining (AM), a critical subfield of Natural Language Processing (NLP), focuses on extracting argumentative structures from text. The advent of Large Language Models (LLMs) has profoundly transformed AM, enabling advanced in-context learning, prompt-based generation, and robust cross-domain adaptability. This survey systematically synthesizes recent advancements in LLM-driven AM. We provide a concise review of foundational theories and annotation frameworks, alongside a meticulously curated catalog of datasets. A key contribution is our comprehensive taxonomy of AM subtasks, elucidating how contemporary LLM techniques -- such as prompting, chain-of-thought reasoning, and retrieval augmentation -- have reconfigured their execution. We further detail current LLM architectures and methodologies, critically assess evaluation practices, and delineate pivotal challenges including long-context reasoning, interpretability, and annotation bottlenecks. Conclusively, we highlight emerging trends and propose a forward-looking research agenda for LLM-based computational argumentation, aiming to strategically guide researchers in this rapidly evolving domain.
comment: Work draft
♻ ☆ Benchmarking Vision Language Models on German Factual Data
Similar to LLMs, the development of vision language models is mainly driven by English datasets and models trained in English and Chinese language, whereas support for other languages, even those considered high-resource languages such as German, remains significantly weaker. In this work we present an analysis of open-weight VLMs on factual knowledge in the German and English language. We disentangle the image-related aspects from the textual ones by analyzing accu-racy with jury-as-a-judge in both prompt languages and images from German and international contexts. We found that for celebrities and sights, VLMs struggle because they are lacking visual cognition of German image contents. For animals and plants, the tested models can often correctly identify the image contents ac-cording to the scientific name or English common name but fail in German lan-guage. Cars and supermarket products were identified equally well in English and German images across both prompt languages.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): Benchmarking Vision Language Models on German Factual Data. 21st International Conference on Artificial Intelligence Applications and Innovations, 26-29 June, 2025, Limassol, Cyprus (accepted)
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency ICCV2025
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
comment: ICCV2025
♻ ☆ Language in Vivo vs. in Silico: Size Matters but Larger Language Models Still Do Not Comprehend Language on a Par with Humans Due to Impenetrable Semantic Reference
Understanding the limits of language is a prerequisite for Large Language Models (LLMs) to act as theories of natural language. LLM performance in some language tasks presents both quantitative and qualitative differences from that of humans, however it remains to be determined whether such differences are amenable to model size. This work investigates the critical role of model scaling, determining whether increases in size make up for such differences between humans and models. We test three LLMs from different families (Bard, 137 billion parameters; ChatGPT-3.5, 175 billion; ChatGPT-4, 1.5 trillion) on a grammaticality judgment task featuring anaphora, center embedding, comparatives, and negative polarity. N=1,200 judgments are collected and scored for accuracy, stability, and improvements in accuracy upon repeated presentation of a prompt. Results of the best performing LLM, ChatGPT-4, are compared to results of n=80 humans on the same stimuli. We find that humans are overall less accurate than ChatGPT-4 (76% vs. 80% accuracy, respectively), but that this is due to ChatGPT-4 outperforming humans only in one task condition, namely on grammatical sentences. Additionally, ChatGPT-4 wavers more than humans in its answers (12.5% vs. 9.6% likelihood of an oscillating answer, respectively). Thus, while increased model size may lead to better performance, LLMs are still not sensitive to (un)grammaticality the same way as humans are. It seems possible but unlikely that scaling alone can fix this issue. We interpret these results by comparing language learning in vivo and in silico, identifying three critical differences concerning (i) the type of evidence, (ii) the poverty of the stimulus, and (iii) the occurrence of semantic hallucinations due to impenetrable linguistic reference.
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ Towards Reproducible LLM Evaluation: Quantifying Uncertainty in LLM Benchmark Scores
Large language models (LLMs) are stochastic, and not all models give deterministic answers, even when setting temperature to zero with a fixed random seed. However, few benchmark studies attempt to quantify uncertainty, partly due to the time and cost of repeated experiments. We use benchmarks designed for testing LLMs' capacity to reason about cardinal directions to explore the impact of experimental repeats on mean score and prediction interval. We suggest a simple method for cost-effectively quantifying the uncertainty of a benchmark score and make recommendations concerning reproducible LLM evaluation.
comment: 4 pages, 1 figure
♻ ☆ ACORD: An Expert-Annotated Retrieval Dataset for Legal Contract Drafting ACL 2025
Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
comment: Accepted to ACL 2025. See the project page at https://www.atticusprojectai.org/acord
♻ ☆ ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
Large Language Models (LLMs) require significant GPU memory when processing long texts, with the key value (KV) cache consuming up to 70\% of total memory during inference. Although existing compression methods reduce memory by evaluating the importance of individual tokens, they overlook critical semantic relationships between tokens, resulting in fragmented context and degraded performance. We introduce ChunkKV, which fundamentally reimagines KV cache compression by treating semantic chunks - rather than isolated tokens - as basic compression units. This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression. Our innovation includes a novel layer-wise index reuse technique that exploits the higher cross-layer similarity of preserved indices in ChunkKV, reducing computational overhead and improving throughput by 26.5\%. Comprehensive evaluations on challenging benchmarks: LongBench, Needle-In-A-HayStack, GSM8K, and JailbreakV demonstrate that ChunkKV outperforms state-of-the-art methods by up to 8.7\% in precision while maintaining the same compression ratio. These results confirm that semantic-aware compression significantly enhances both efficiency and performance for long-context LLM inference, providing a simple yet effective solution to the memory bottleneck problem.
comment: 41 pages
♻ ☆ MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration ACL 2025
In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
comment: 18 pages, ACL 2025
♻ ☆ Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
♻ ☆ Advancing Language Multi-Agent Learning with Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
comment: 28 pages, under review
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference ACL25
Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
comment: ACL25 May ARR
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ EasyDistill: A Comprehensive Toolkit for Effective Knowledge Distillation of Large Language Models
In this paper, we present EasyDistill, a comprehensive toolkit designed for effective black-box and white-box knowledge distillation (KD) of large language models (LLMs). Our framework offers versatile functionalities, including data synthesis, supervised fine-tuning, ranking optimization, and reinforcement learning techniques specifically tailored for KD scenarios. The toolkit accommodates KD functionalities for both System 1 (fast, intuitive) and System 2 (slow, analytical) models. With its modular design and user-friendly interface, EasyDistill empowers researchers and industry practitioners to seamlessly experiment with and implement state-of-the-art KD strategies for LLMs. In addition, EasyDistill provides a series of robust distilled models and KD-based industrial solutions developed by us, along with the corresponding open-sourced datasets, catering to a variety of use cases. Furthermore, we describe the seamless integration of EasyDistill into Alibaba Cloud's Platform for AI (PAI). Overall, the EasyDistill toolkit makes advanced KD techniques for LLMs more accessible and impactful within the NLP community.
♻ ☆ BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models
In this paper, we propose BeamLLM, a vision-aided millimeter-wave (mmWave) beam prediction framework leveraging large language models (LLMs) to address the challenges of high training overhead and latency in mmWave communication systems. By combining computer vision (CV) with LLMs' cross-modal reasoning capabilities, the framework extracts user equipment (UE) positional features from RGB images and aligns visual-temporal features with LLMs' semantic space through reprogramming techniques. Evaluated on a realistic vehicle-to-infrastructure (V2I) scenario, the proposed method achieves 61.01% top-1 accuracy and 97.39% top-3 accuracy in standard prediction tasks, significantly outperforming traditional deep learning models. In few-shot prediction scenarios, the performance degradation is limited to 12.56% (top-1) and 5.55% (top-3) from time sample 1 to 10, demonstrating superior prediction capability.
comment: 6 pages, 7 figures, conference
♻ ☆ STAIR: Improving Safety Alignment with Introspective Reasoning ICML2025
Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.
comment: 22 pages, 8 figures, ICML2025 Oral
♻ ☆ ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Multilingual Contrastive Framework ACL 2025
Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based multilingual Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research.
comment: Accepted by ACL 2025
♻ ☆ EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods
Accurate forecasting of the EUR/USD exchange rate is crucial for investors, businesses, and policymakers. This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators to enhance exchange rate prediction. The IUS framework employs large language models for sentiment polarity scoring and exchange rate movement classification of texts. These textual features are combined with quantitative features and input into a Causality-Driven Feature Generator. An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate. Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline. Results also show the benefits of data fusion, with the combination of unstructured and structured data yielding higher accuracy than structured data alone. Furthermore, feature selection using the top 12 important quantitative features combined with the textual features proves most effective. The proposed IUS framework and Optuna-Bi-LSTM model provide a powerful new approach for exchange rate forecasting through multi-source data integration.
♻ ☆ A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions ACL 2025
Mental health is increasingly critical in contemporary healthcare, with psychotherapy demanding dynamic, context-sensitive interactions that traditional NLP methods struggle to capture. Large Language Models (LLMs) offer significant potential for addressing this gap due to their ability to handle extensive context and multi-turn reasoning. This review introduces a conceptual taxonomy dividing psychotherapy into interconnected stages--assessment, diagnosis, and treatment--to systematically examine LLM advancements and challenges. Our comprehensive analysis reveals imbalances in current research, such as a focus on common disorders, linguistic biases, fragmented methods, and limited theoretical integration. We identify critical challenges including capturing dynamic symptom fluctuations, overcoming linguistic and cultural biases, and ensuring diagnostic reliability. Highlighting future directions, we advocate for continuous multi-stage modeling, real-time adaptive systems grounded in psychological theory, and diversified research covering broader mental disorders and therapeutic approaches, aiming toward more holistic and clinically integrated psychotherapy LLMs systems.
comment: Accepted by ACL 2025 Findings
♻ ☆ Dynamic Adaptive Rank Space Exploration for Efficient Sentiment Analysis with Large Language Models
Sentiment analysis has become increasingly important for assessing public opinion and informing decision-making. Large language models (LLMs) have revolutionized this field by capturing nuanced language patterns. However, adapting LLMs to domain-specific sentiment analysis tasks remains challenging due to computational constraints and the need for optimal fine-tuning. To address these challenges, we propose a novel Dynamic Adaptive Rank Space Exploration (DARSE) framework for efficient and effective sentiment analysis using LLMs. DARSE consists of a coarse-grained greedy algorithm to identify the optimal rank range, a fine-grained exploration algorithm to refine rank selection, and a dynamic rank allocation method to determine the optimal rank combination for each LLM layer. Extensive experiments demonstrate that DARSE significantly improves sentiment analysis accuracy, achieving a 15.1% improvement in MSE and a 4.3% improvement in accuracy compared to previous work. Our framework strikes a balance between computational efficiency and model performance, making it a promising approach for sentiment analysis with LLMs.
♻ ☆ Embedding-based Approaches to Hyperpartisan News Detection
In this paper, we describe our systems in which the objective is to determine whether a given news article could be considered as hyperpartisan. Hyperpartisan news is news that takes an extremely polarized political standpoint with an intention of creating political divide among the public. We attempted several approaches, including n-grams, sentiment analysis, as well as sentence and document representation using pre-tained ELMo. Our best system using pre-trained ELMo with Bidirectional LSTM achieved an accuracy of 83% through 10-fold cross-validation without much hyperparameter tuning.
comment: The authorship dispute of this article could not be resolved, and it was submitted without the consent of P. Chen
♻ ☆ PQ-GCN: Enhancing Text Graph Question Classification with Phrase Features
Effective question classification is crucial for AI-driven educational tools, enabling adaptive learning systems to categorize questions by skill area, difficulty level, and competence. It not only supports educational diagnostics and analytics but also enhances complex downstream tasks like information retrieval and question answering by associating questions with relevant categories. Traditional methods, often based on word embeddings and conventional classifiers, struggle to capture the nuanced relationships in question statements, leading to suboptimal performance. We propose a novel approach leveraging graph convolutional networks, named Phrase Question-Graph Convolutional Network (PQ-GCN). Through PQ-GCN, we evaluate the incorporation of phrase-based features to enhance classification performance on question datasets of various domains and characteristics. The proposed method, augmented with phrase-based features, outperform baseline graph-based methods in low-resource settings, and performs competitively against language model-based methods with a fraction of their parameter size. Our findings offer a possible solution for more context-aware, parameter-efficient question classification, bridging the gap between graph neural network research and its educational applications.
♻ ☆ LRP4RAG: Detecting Hallucinations in Retrieval-Augmented Generation via Layer-wise Relevance Propagation
Retrieval-Augmented Generation (RAG) has become a primary technique for mitigating hallucinations in large language models (LLMs). However, incomplete knowledge extraction and insufficient understanding can still mislead LLMs to produce irrelevant or even contradictory responses, which means hallucinations persist in RAG. In this paper, we propose LRP4RAG, a method based on the Layer-wise Relevance Propagation (LRP) algorithm for detecting hallucinations in RAG. Specifically, we first utilize LRP to compute the relevance between the input and output of the RAG generator. We then apply further extraction and resampling to the relevance matrix. The processed relevance data are input into multiple classifiers to determine whether the output contains hallucinations. To the best of our knowledge, this is the first time that LRP has been used for detecting RAG hallucinations, and extensive experiments demonstrate that LRP4RAG outperforms existing baselines.
♻ ☆ Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models
Sentiment analysis plays a crucial role in various domains, such as business intelligence and financial forecasting. Large language models (LLMs) have become a popular paradigm for sentiment analysis, leveraging multi-task learning to address specific tasks concurrently. However, LLMs with fine-tuning for sentiment analysis often underperforms due to the inherent challenges in managing diverse task complexities. Moreover, constant-weight approaches in multi-task learning struggle to adapt to variations in data characteristics, further complicating model effectiveness. To address these issues, we propose a novel multi-task learning framework with a dynamic adaptive optimization (DAO) module. This module is designed as a plug-and-play component that can be seamlessly integrated into existing models, providing an effective and flexible solution for multi-task learning. The key component of the DAO module is dynamic adaptive loss, which dynamically adjusts the weights assigned to different tasks based on their relative importance and data characteristics during training. Sentiment analyses on a standard and customized financial text dataset demonstrate that the proposed framework achieves superior performance. Specifically, this work improves the Mean Squared Error (MSE) and Accuracy (ACC) by 15.58% and 1.24% respectively, compared with previous work.
♻ ☆ Collective Reasoning Among LLMs: A Framework for Answer Validation Without Ground Truth
We introduce a new approach in which several advanced large language models-specifically GPT-4-0125-preview, Meta-LLAMA-3-70B-Instruct, Claude-3-Opus, and Gemini-1.5-Flash-collaborate to both produce and answer intricate, doctoral-level probability problems without relying on any single "correct" reference. Rather than depending on an established ground truth, our investigation focuses on how agreement among diverse models can signal the reliability of their outputs and, by extension, reflect the overall quality of the generated questions. To measure this inter-model alignment, we apply a suite of statistical evaluations, including chi-square tests, Fleiss' Kappa coefficients, and confidence interval calculations, thereby capturing both precision in answers and clarity in question phrasing. Our analysis reveals that Claude and Gemini tend to frame questions more coherently and unambiguously, which is evidenced by their tighter confidence intervals and greater concordance with responding agents. In contrast, LLAMA exhibits wider confidence bands and a lower level of agreement, indicating more variability and reduced consistency in its question formulations. These observations support the notion that a multi-model collaborative strategy not only improves answer dependability but also offers an effective, data-driven mechanism for evaluating and refining question quality when no definitive solution exists. Ultimately, this work delivers actionable insights into enhancing AI-guided reasoning processes through coordinated interactions among heterogeneous language models.
comment: 7pages
♻ ☆ Round Attention: A Novel Round-Level Attention Mechanism to Accelerate LLM Inference
The increasing context window size in large language models (LLMs) has improved their ability to handle complex, long-text tasks. However, as the conversation rounds continue, it is required to store a large amount of KV cache in GPU memory, which significantly affects the efficiency and even availability of the model serving systems. This paper analyzes dialogue data from real users on the granularity of round and discovers that the LLM inference manifests a watershed layer, after which the distribution of round-level attention shows notable similarity. Based on this, we propose Round Attention - a novel round-level attention mechanism that selectively processes the KV cache of top-k relevant rounds, where k is dynamically determined through the attention matrix in the watershed layer. Theoretical analysis demonstrates that our method reduces memory usage by 54\% to 82\%, while experimental results confirm that loading sparse critical-round KV cache maintains answer accuracy without performance degradation.
♻ ☆ Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone. Our code is available at https://github.com/tsunehiko/rlgdg
comment: Published at IEEE Conference on Games, 2025
♻ ☆ Time is On My Side: Dynamics of Talk-Time Sharing in Video-chat Conversations SC
An intrinsic aspect of every conversation is the way talk-time is shared between multiple speakers. Conversations can be balanced, with each speaker claiming a similar amount of talk-time, or imbalanced when one talks disproportionately. Such overall distributions are the consequence of continuous negotiations between the speakers throughout the conversation: who should be talking at every point in time, and for how long? In this work we introduce a computational framework for quantifying both the conversation-level distribution of talk-time between speakers, as well as the lower-level dynamics that lead to it. We derive a typology of talk-time sharing dynamics structured by several intuitive axes of variation. By applying this framework to a large dataset of video-chats between strangers, we confirm that, perhaps unsurprisingly, different conversation-level distributions of talk-time are perceived differently by speakers, with balanced conversations being preferred over imbalanced ones, especially by those who end up talking less. Then we reveal that -- even when they lead to the same level of overall balance -- different types of talk-time sharing dynamics are perceived differently by the participants, highlighting the relevance of our newly introduced typology. Finally, we discuss how our framework offers new tools to designers of computer-mediated communication platforms, for both human-human and human-AI communication.
comment: Accepted for publication at CSCW 2025. Code and data available in ConvoKit (https://convokit.cornell.edu)
♻ ☆ Bridging Compositional and Distributional Semantics: A Survey on Latent Semantic Geometry via AutoEncoder
Integrating compositional and symbolic properties into current distributional semantic spaces can enhance the interpretability, controllability, compositionality, and generalisation capabilities of Transformer-based auto-regressive language models (LMs). In this survey, we offer a novel perspective on latent space geometry through the lens of compositional semantics, a direction we refer to as \textit{semantic representation learning}. This direction enables a bridge between symbolic and distributional semantics, helping to mitigate the gap between them. We review and compare three mainstream autoencoder architectures-Variational AutoEncoder (VAE), Vector Quantised VAE (VQVAE), and Sparse AutoEncoder (SAE)-and examine the distinctive latent geometries they induce in relation to semantic structure and interpretability.
comment: In progress
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ MMCR: Benchmarking Cross-Source Reasoning in Scientific Papers
Fully comprehending scientific papers by machines reflects a high level of Artificial General Intelligence, requiring the ability to reason across fragmented and heterogeneous sources of information, presenting a complex and practically significant challenge. While Vision-Language Models (VLMs) have made remarkable strides in various tasks, particularly those involving reasoning with evidence source from single image or text page, their ability to use cross-source information for reasoning remains an open problem. This work presents MMCR, a high-difficulty benchmark designed to evaluate VLMs' capacity for reasoning with cross-source information from scientific papers. The benchmark comprises 276 high-quality questions, meticulously annotated by humans across 7 subjects and 10 task types. Experiments with 18 VLMs demonstrate that cross-source reasoning presents a substantial challenge for existing models. Notably, even the top-performing model, GPT-4o, achieved only 48.55% overall accuracy, with only 20% accuracy in multi-table comprehension tasks, while the second-best model, Qwen2.5-VL-72B, reached 39.86% overall accuracy. Furthermore, we investigated the impact of the Chain-of-Thought (CoT) technique on cross-source reasoning and observed a detrimental effect on small models, whereas larger models demonstrated substantially enhanced performance. These results highlight the pressing need to develop VLMs capable of effectively utilizing cross-source information for reasoning.
♻ ☆ Strengthening False Information Propagation Detection: Leveraging SVM and Sophisticated Text Vectorization Techniques in comparison to BERT
The rapid spread of misinformation, particularly through online platforms, underscores the urgent need for reliable detection systems. This study explores the utilization of machine learning and natural language processing, specifically Support Vector Machines (SVM) and BERT, to detect fake news. We employ three distinct text vectorization methods for SVM: Term Frequency Inverse Document Frequency (TF-IDF), Word2Vec, and Bag of Words (BoW), evaluating their effectiveness in distinguishing between genuine and fake news. Additionally, we compare these methods against the transformer large language model, BERT. Our comprehensive approach includes detailed preprocessing steps, rigorous model implementation, and thorough evaluation to determine the most effective techniques. The results demonstrate that while BERT achieves superior accuracy with 99.98% and an F1-score of 0.9998, the SVM model with a linear kernel and BoW vectorization also performs exceptionally well, achieving 99.81% accuracy and an F1-score of 0.9980. These findings highlight that, despite BERT's superior performance, SVM models with BoW and TF-IDF vectorization methods come remarkably close, offering highly competitive performance with the advantage of lower computational requirements.
comment: 6 pages, 3 tables and 6 Figures. Submitted to a conference
♻ ☆ RLSF: Fine-tuning LLMs via Symbolic Feedback
Large Language Models (LLMs) have transformed AI but often struggle with tasks that require domain-specific reasoning and logical alignment. Traditional fine-tuning methods do not leverage the vast amount of symbolic domain-knowledge available to us via symbolic reasoning tools (e.g., provers), and are further limited by sparse rewards and unreliable reward models. We introduce Reinforcement Learning via Symbolic Feedback (RLSF), a novel fine-tuning paradigm where symbolic reasoning tools (e.g., solvers, provers, and algebra systems) provide fine-grained feedback to LLMs. RLSF uses poly-sized certificates (e.g., proofs) generated by symbolic tools to identify and correct errors in model outputs, offering token-level guidance without requiring differentiable reasoning systems. This paradigm bridges the gap between symbolic reasoning and LLM fine-tuning, enabling precise alignment with domain-specific constraints while addressing key limitations of traditional reward signals. Via extensive evaluations, we show that our RLSF-based fine-tuning of LLMs outperforms traditional approaches on five different applications (that have some associated logical or domain constraints), namely, program synthesis from natural language pseudo-code to programming language, three chemistry tasks, and solving the Game of 24. A key takeaway is that fine-tuning via RLSF enables relatively smaller LLMs to significantly outperform closed-source models that are orders of magnitude larger.
Computer Vision and Pattern Recognition 149
☆ MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
☆ WarpRF: Multi-View Consistency for Training-Free Uncertainty Quantification and Applications in Radiance Fields
We introduce WarpRF, a training-free general-purpose framework for quantifying the uncertainty of radiance fields. Built upon the assumption that photometric and geometric consistency should hold among images rendered by an accurate model, WarpRF quantifies its underlying uncertainty from an unseen point of view by leveraging backward warping across viewpoints, projecting reliable renderings to the unseen viewpoint and measuring the consistency with images rendered there. WarpRF is simple and inexpensive, does not require any training, and can be applied to any radiance field implementation for free. WarpRF excels at both uncertainty quantification and downstream tasks, e.g., active view selection and active mapping, outperforming any existing method tailored to specific frameworks.
comment: Project page: https://kuis-ai.github.io/WarpRF/
☆ Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
☆ Single-shot HDR using conventional image sensor shutter functions and optical randomization
High-dynamic-range (HDR) imaging is an essential technique for overcoming the dynamic range limits of image sensors. The classic method relies on multiple exposures, which slows capture time, resulting in motion artifacts when imaging dynamic scenes. Single-shot HDR imaging alleviates this issue by encoding HDR data into a single exposure, then computationally recovering it. Many established methods use strong image priors to recover improperly exposed image detail. These approaches struggle with extended highlight regions. We utilize the global reset release (GRR) shutter mode of an off-the-shelf sensor. GRR shutter mode applies a longer exposure time to rows closer to the bottom of the sensor. We use optics that relay a randomly permuted (shuffled) image onto the sensor, effectively creating spatially randomized exposures across the scene. The exposure diversity allows us to recover HDR data by solving an optimization problem with a simple total variation image prior. In simulation, we demonstrate that our method outperforms other single-shot methods when many sensor pixels are saturated (10% or more), and is competitive at a modest saturation (1%). Finally, we demonstrate a physical lab prototype that uses an off-the-shelf random fiber bundle for the optical shuffling. The fiber bundle is coupled to a low-cost commercial sensor operating in GRR shutter mode. Our prototype achieves a dynamic range of up to 73dB using an 8-bit sensor with 48dB dynamic range.
☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: supplement pending, 4 figures, 10 pages + refs
☆ Test-Time Consistency in Vision Language Models
Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks, yet they often exhibit inconsistent behavior when faced with semantically equivalent inputs, undermining their reliability and robustness. Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs, despite maintaining high average accuracy. Prior work addresses this issue by modifying model architectures or conducting large-scale fine-tuning on curated datasets. In contrast, we propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training. Our method is entirely post-hoc, model-agnostic, and applicable to any VLM with access to its weights. Given a single test point, we enforce consistent predictions via two complementary objectives: (i) a Cross-Entropy Agreement Loss that aligns predictive distributions across semantically equivalent inputs, and (ii) a Pseudo-Label Consistency Loss that draws outputs toward a self-averaged consensus. Our method is plug-and-play and leverages information from a single test input itself to improve consistency. Experiments on the MM-R3 benchmark show that our framework yields substantial gains in consistency across state-of-the-art models, establishing a new direction for inference-time adaptation in multimodal learning.
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Exploiting Vision Language Model for Training-Free 3D Point Cloud OOD Detection via Graph Score Propagation ICCV 2025
Out-of-distribution (OOD) detection in 3D point cloud data remains a challenge, particularly in applications where safe and robust perception is critical. While existing OOD detection methods have shown progress for 2D image data, extending these to 3D environments involves unique obstacles. This paper introduces a training-free framework that leverages Vision-Language Models (VLMs) for effective OOD detection in 3D point clouds. By constructing a graph based on class prototypes and testing data, we exploit the data manifold structure to enhancing the effectiveness of VLMs for 3D OOD detection. We propose a novel Graph Score Propagation (GSP) method that incorporates prompt clustering and self-training negative prompting to improve OOD scoring with VLM. Our method is also adaptable to few-shot scenarios, providing options for practical applications. We demonstrate that GSP consistently outperforms state-of-the-art methods across synthetic and real-world datasets 3D point cloud OOD detection.
comment: Accepted by ICCV 2025
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Closing the Performance Gap in Biometric Cryptosystems: A Deeper Analysis on Unlinkable Fuzzy Vaults
This paper analyses and addresses the performance gap in the fuzzy vault-based \ac{BCS}. We identify unstable error correction capabilities, which are caused by variable feature set sizes and their influence on similarity thresholds, as a key source of performance degradation. This issue is further compounded by information loss introduced through feature type transformations. To address both problems, we propose a novel feature quantization method based on \it{equal frequent intervals}. This method guarantees fixed feature set sizes and supports training-free adaptation to any number of intervals. The proposed approach significantly reduces the performance gap introduced by template protection. Additionally, it integrates seamlessly with existing systems to minimize the negative effects of feature transformation. Experiments on state-of-the-art face, fingerprint, and iris recognition systems confirm that only minimal performance degradation remains, demonstrating the effectiveness of the method across major biometric modalities.
comment: 10 pages, 4 figures, 4 tables
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts. Although optical satellite imagery is commonly used for disaster mapping, its effectiveness is often hampered by cloud cover or the absence of pre-event acquisitions. To overcome these challenges, we introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery from the Italian Space Agency (ASI) COSMO SkyMed (CSK) constellation, complemented by auxiliary geospatial data. Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM) to improve detection accuracy and contextual interpretation. Unlike existing approaches that depend on pre and post event imagery, our model utilizes only post event data, facilitating rapid deployment in critical scenarios. The framework effectiveness is demonstrated using a new dataset from the 2023 earthquake in Turkey, covering multiple cities with diverse urban settings. Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas. By combining SAR imagery with detailed vulnerability and exposure information, our approach provides reliable and rapid building damage assessments without the dependency from available pre-event data. Moreover, the automated and scalable data generation process ensures the framework's applicability across diverse disaster-affected regions, underscoring its potential to support effective disaster management and recovery efforts. Code and data will be made available upon acceptance of the paper.
comment: 13 pages, 6 figures (plus 4 author photos), and 5 tables. Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ MatChA: Cross-Algorithm Matching with Feature Augmentation
State-of-the-art methods fail to solve visual localization in scenarios where different devices use different sparse feature extraction algorithms to obtain keypoints and their corresponding descriptors. Translating feature descriptors is enough to enable matching. However, performance is drastically reduced in cross-feature detector cases, because current solutions assume common keypoints. This means that the same detector has to be used, which is rarely the case in practice when different descriptors are used. The low repeatability of keypoints, in addition to non-discriminatory and non-distinctive descriptors, make the identification of true correspondences extremely challenging. We present the first method tackling this problem, which performs feature descriptor augmentation targeting cross-detector feature matching, and then feature translation to a latent space. We show that our method significantly improves image matching and visual localization in the cross-feature scenario and evaluate the proposed method on several benchmarks.
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ OutDreamer: Video Outpainting with a Diffusion Transformer
Video outpainting is a challenging task that generates new video content by extending beyond the boundaries of an original input video, requiring both temporal and spatial consistency. Many state-of-the-art methods utilize latent diffusion models with U-Net backbones but still struggle to achieve high quality and adaptability in generated content. Diffusion transformers (DiTs) have emerged as a promising alternative because of their superior performance. We introduce OutDreamer, a DiT-based video outpainting framework comprising two main components: an efficient video control branch and a conditional outpainting branch. The efficient video control branch effectively extracts masked video information, while the conditional outpainting branch generates missing content based on these extracted conditions. Additionally, we propose a mask-driven self-attention layer that dynamically integrates the given mask information, further enhancing the model's adaptability to outpainting tasks. Furthermore, we introduce a latent alignment loss to maintain overall consistency both within and between frames. For long video outpainting, we employ a cross-video-clip refiner to iteratively generate missing content, ensuring temporal consistency across video clips. Extensive evaluations demonstrate that our zero-shot OutDreamer outperforms state-of-the-art zero-shot methods on widely recognized benchmarks.
☆ RoomCraft: Controllable and Complete 3D Indoor Scene Generation
Generating realistic 3D indoor scenes from user inputs remains a challenging problem in computer vision and graphics, requiring careful balance of geometric consistency, spatial relationships, and visual realism. While neural generation methods often produce repetitive elements due to limited global spatial reasoning, procedural approaches can leverage constraints for controllable generation but struggle with multi-constraint scenarios. When constraints become numerous, object collisions frequently occur, forcing the removal of furniture items and compromising layout completeness. To address these limitations, we propose RoomCraft, a multi-stage pipeline that converts real images, sketches, or text descriptions into coherent 3D indoor scenes. Our approach combines a scene generation pipeline with a constraint-driven optimization framework. The pipeline first extracts high-level scene information from user inputs and organizes it into a structured format containing room type, furniture items, and spatial relations. It then constructs a spatial relationship network to represent furniture arrangements and generates an optimized placement sequence using a heuristic-based depth-first search (HDFS) algorithm to ensure layout coherence. To handle complex multi-constraint scenarios, we introduce a unified constraint representation that processes both formal specifications and natural language inputs, enabling flexible constraint-oriented adjustments through a comprehensive action space design. Additionally, we propose a Conflict-Aware Positioning Strategy (CAPS) that dynamically adjusts placement weights to minimize furniture collisions and ensure layout completeness. Extensive experiments demonstrate that RoomCraft significantly outperforms existing methods in generating realistic, semantically coherent, and visually appealing room layouts across diverse input modalities.
☆ Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment
Large Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics. These visual tokens often outnumber their textual counterparts by a large margin, leading to substantial computational overhead and limiting the scalability of LVLMs in practice. Previous efforts have explored visual token reduction either prior to or within the large language models (LLM). However, most in-LLM reduction approaches rely on text-conditioned interactions, implicitly assuming that textual tokens can reliably capture the importance of visual tokens. In this work, we revisit this assumption and reveal causal, semantic, and spatial forms of cross-modal misalignment. These misalignments undermine the effectiveness of text-guided visual token reduction. To address this, we introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention, without relying on textual signals. To further suppress redundancy throughout the model hierarchy, we treat the visual encoder and the LLM as a unified system and design a progressive pruning pipeline. Our method performs dominant token selection and lightweight contextual merging at multiple stages, enabling fine-grained visual information to be retained even under aggressive token budgets. Extensive experiments across diverse benchmarks show that VisionDrop achieves consistent improvements over existing methods, despite requiring no additional training or complex modifications. Its simple yet effective design enables efficient inference while preserving strong performance across tasks.
☆ DIGS: Dynamic CBCT Reconstruction using Deformation-Informed 4D Gaussian Splatting and a Low-Rank Free-Form Deformation Model MICCAI 2025
3D Cone-Beam CT (CBCT) is widely used in radiotherapy but suffers from motion artifacts due to breathing. A common clinical approach mitigates this by sorting projections into respiratory phases and reconstructing images per phase, but this does not account for breathing variability. Dynamic CBCT instead reconstructs images at each projection, capturing continuous motion without phase sorting. Recent advancements in 4D Gaussian Splatting (4DGS) offer powerful tools for modeling dynamic scenes, yet their application to dynamic CBCT remains underexplored. Existing 4DGS methods, such as HexPlane, use implicit motion representations, which are computationally expensive. While explicit low-rank motion models have been proposed, they lack spatial regularization, leading to inconsistencies in Gaussian motion. To address these limitations, we introduce a free-form deformation (FFD)-based spatial basis function and a deformation-informed framework that enforces consistency by coupling the temporal evolution of Gaussian's mean position, scale, and rotation under a unified deformation field. We evaluate our approach on six CBCT datasets, demonstrating superior image quality with a 6x speedup over HexPlane. These results highlight the potential of deformation-informed 4DGS for efficient, motion-compensated CBCT reconstruction. The code is available at https://github.com/Yuliang-Huang/DIGS.
comment: Accepted by MICCAI 2025
☆ COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.
☆ EAMamba: Efficient All-Around Vision State Space Model for Image Restoration ICCV 2025
Image restoration is a key task in low-level computer vision that aims to reconstruct high-quality images from degraded inputs. The emergence of Vision Mamba, which draws inspiration from the advanced state space model Mamba, marks a significant advancement in this field. Vision Mamba demonstrates excellence in modeling long-range dependencies with linear complexity, a crucial advantage for image restoration tasks. Despite its strengths, Vision Mamba encounters challenges in low-level vision tasks, including computational complexity that scales with the number of scanning sequences and local pixel forgetting. To address these limitations, this study introduces Efficient All-Around Mamba (EAMamba), an enhanced framework that incorporates a Multi-Head Selective Scan Module (MHSSM) with an all-around scanning mechanism. MHSSM efficiently aggregates multiple scanning sequences, which avoids increases in computational complexity and parameter count. The all-around scanning strategy implements multiple patterns to capture holistic information and resolves the local pixel forgetting issue. Our experimental evaluations validate these innovations across several restoration tasks, including super resolution, denoising, deblurring, and dehazing. The results validate that EAMamba achieves a significant 31-89% reduction in FLOPs while maintaining favorable performance compared to existing low-level Vision Mamba methods.
comment: ICCV 2025
☆ 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ Cardiovascular disease classification using radiomics and geometric features from cardiac CT MICCAI 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net
comment: Under Review at STACOM 2025 with MICCAI 2025
☆ Advanced Deep Learning Techniques for Automated Segmentation of Type B Aortic Dissections
Purpose: Aortic dissections are life-threatening cardiovascular conditions requiring accurate segmentation of true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT) from CTA images for effective management. Manual segmentation is time-consuming and variable, necessitating automated solutions. Materials and Methods: We developed four deep learning-based pipelines for Type B aortic dissection segmentation: a single-step model, a sequential model, a sequential multi-task model, and an ensemble model, utilizing 3D U-Net and Swin-UnetR architectures. A dataset of 100 retrospective CTA images was split into training (n=80), validation (n=10), and testing (n=10). Performance was assessed using the Dice Coefficient and Hausdorff Distance. Results: Our approach achieved superior segmentation accuracy, with Dice Coefficients of 0.91 $\pm$ 0.07 for TL, 0.88 $\pm$ 0.18 for FL, and 0.47 $\pm$ 0.25 for FLT, outperforming Yao et al. (1), who reported 0.78 $\pm$ 0.20, 0.68 $\pm$ 0.18, and 0.25 $\pm$ 0.31, respectively. Conclusion: The proposed pipelines provide accurate segmentation of TBAD features, enabling derivation of morphological parameters for surveillance and treatment planning
comment: 9 pages, 5 figures, 3 tables
☆ ReF-LLE: Personalized Low-Light Enhancement via Reference-Guided Deep Reinforcement Learning ICME2025
Low-light image enhancement presents two primary challenges: 1) Significant variations in low-light images across different conditions, and 2) Enhancement levels influenced by subjective preferences and user intent. To address these issues, we propose ReF-LLE, a novel personalized low-light image enhancement method that operates in the Fourier frequency domain and incorporates deep reinforcement learning. ReF-LLE is the first to integrate deep reinforcement learning into this domain. During training, a zero-reference image evaluation strategy is introduced to score enhanced images, providing reward signals that guide the model to handle varying degrees of low-light conditions effectively. In the inference phase, ReF-LLE employs a personalized adaptive iterative strategy, guided by the zero-frequency component in the Fourier domain, which represents the overall illumination level. This strategy enables the model to adaptively adjust low-light images to align with the illumination distribution of a user-provided reference image, ensuring personalized enhancement results. Extensive experiments on benchmark datasets demonstrate that ReF-LLE outperforms state-of-the-art methods, achieving superior perceptual quality and adaptability in personalized low-light image enhancement.
comment: 6 pages, 8 figures, accepted by ICME2025
☆ Robust and Accurate Multi-view 2D/3D Image Registration with Differentiable X-ray Rendering and Dual Cross-view Constraints ICRA 2025
Robust and accurate 2D/3D registration, which aligns preoperative models with intraoperative images of the same anatomy, is crucial for successful interventional navigation. To mitigate the challenge of a limited field of view in single-image intraoperative scenarios, multi-view 2D/3D registration is required by leveraging multiple intraoperative images. In this paper, we propose a novel multi-view 2D/3D rigid registration approach comprising two stages. In the first stage, a combined loss function is designed, incorporating both the differences between predicted and ground-truth poses and the dissimilarities (e.g., normalized cross-correlation) between simulated and observed intraoperative images. More importantly, additional cross-view training loss terms are introduced for both pose and image losses to explicitly enforce cross-view constraints. In the second stage, test-time optimization is performed to refine the estimated poses from the coarse stage. Our method exploits the mutual constraints of multi-view projection poses to enhance the robustness of the registration process. The proposed framework achieves a mean target registration error (mTRE) of $0.79 \pm 2.17$ mm on six specimens from the DeepFluoro dataset, demonstrating superior performance compared to state-of-the-art registration algorithms.
comment: ICRA 2025
☆ Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition ICCV 2025
Zero-shot skeleton-based action recognition aims to develop models capable of identifying actions beyond the categories encountered during training. Previous approaches have primarily focused on aligning visual and semantic representations but often overlooked the importance of fine-grained action patterns in the semantic space (e.g., the hand movements in drinking water and brushing teeth). To address these limitations, we propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition. FS-VAE consists of three key components: 1) a frequency-based enhancement module with high- and low-frequency adjustments to enrich the skeletal semantics learning and improve the robustness of zero-shot action recognition; 2) a semantic-based action description with multilevel alignment to capture both local details and global correspondence, effectively bridging the semantic gap and compensating for the inherent loss of information in skeleton sequences; 3) a calibrated cross-alignment loss that enables valid skeleton-text pairs to counterbalance ambiguous ones, mitigating discrepancies and ambiguities in skeleton and text features, thereby ensuring robust alignment. Evaluations on the benchmarks demonstrate the effectiveness of our approach, validating that frequency-enhanced semantic features enable robust differentiation of visually and semantically similar action clusters, improving zero-shot action recognition.
comment: Accepted to ICCV 2025
☆ KnotDLO: Toward Interpretable Knot Tying ICRA20243
This work presents KnotDLO, a method for one-handed Deformable Linear Object (DLO) knot tying that is robust to occlusion, repeatable for varying rope initial configurations, interpretable for generating motion policies, and requires no human demonstrations or training. Grasp and target waypoints for future DLO states are planned from the current DLO shape. Grasp poses are computed from indexing the tracked piecewise linear curve representing the DLO state based on the current curve shape and are piecewise continuous. KnotDLO computes intermediate waypoints from the geometry of the current DLO state and the desired next state. The system decouples visual reasoning from control. In 16 trials of knot tying, KnotDLO achieves a 50% success rate in tying an overhand knot from previously unseen configurations.
comment: 4 pages, 5 figures, presented at the Workshop on 3D Visual Representations for Manipulation at the 2023 IEEE International Conference on Robotics and Automation in Yokohama, Japan. Video presentation [https://youtu.be/mg30uCUtpOk]. Poster [https://hollydinkel.github.io/assets/pdf/ICRA20243DVRM_poster.pdf] 3DVRM Workshop [https://3d-manipulation-workshop.github.io/]
☆ Attention-disentangled Uniform Orthogonal Feature Space Optimization for Few-shot Object Detection
Few-shot object detection (FSOD) aims to detect objects with limited samples for novel classes, while relying on abundant data for base classes. Existing FSOD approaches, predominantly built on the Faster R-CNN detector, entangle objectness recognition and foreground classification within shared feature spaces. This paradigm inherently establishes class-specific objectness criteria and suffers from unrepresentative novel class samples. To resolve this limitation, we propose a Uniform Orthogonal Feature Space (UOFS) optimization framework. First, UOFS decouples the feature space into two orthogonal components, where magnitude encodes objectness and angle encodes classification. This decoupling enables transferring class-agnostic objectness knowledge from base classes to novel classes. Moreover, implementing the disentanglement requires careful attention to two challenges: (1) Base set images contain unlabeled foreground instances, causing confusion between potential novel class instances and backgrounds. (2) Angular optimization depends exclusively on base class foreground instances, inducing overfitting of angular distributions to base classes. To address these challenges, we propose a Hybrid Background Optimization (HBO) strategy: (1) Constructing a pure background base set by removing unlabeled instances in original images to provide unbiased magnitude-based objectness supervision. (2) Incorporating unlabeled foreground instances in the original base set into angular optimization to enhance distribution uniformity. Additionally, we propose a Spatial-wise Attention Disentanglement and Association (SADA) module to address task conflicts between class-agnostic and class-specific tasks. Experiments demonstrate that our method significantly outperforms existing approaches based on entangled feature spaces.
☆ Hardware acceleration for ultra-fast Neural Network training on FPGA for MRF map reconstruction
Magnetic Resonance Fingerprinting (MRF) is a fast quantitative MR Imaging technique that provides multi-parametric maps with a single acquisition. Neural Networks (NNs) accelerate reconstruction but require significant resources for training. We propose an FPGA-based NN for real-time brain parameter reconstruction from MRF data. Training the NN takes an estimated 200 seconds, significantly faster than standard CPU-based training, which can be up to 250 times slower. This method could enable real-time brain analysis on mobile devices, revolutionizing clinical decision-making and telemedicine.
comment: 8 pages, 2 figures, to be published in conference proceedings of SDPS 2024: 2024 International Conference of the Society for Design and Process Science on Advances and Challenges of Applying AI/GenAI in Design and Process Science
☆ RetFiner: A Vision-Language Refinement Scheme for Retinal Foundation Models MICCAI 2025
The rise of imaging techniques such as optical coherence tomography (OCT) and advances in deep learning (DL) have enabled clinicians and researchers to streamline retinal disease staging. A popular DL approach is self-supervised learning (SSL), where models learn from vast amounts of unlabeled data, avoiding costly annotation. SSL has allowed the development of foundation models (FMs), large models that can be used for a variety of downstream tasks. However, existing FMs for OCT, trained solely on image data, lack a comprehensive and robust semantic understanding of images, as evidenced by their downstream performance (especially for complex tasks), and thus require supervised fine-tuning (which may be unfeasible) to better adapt to specific applications and populations. To address this, we propose RetFiner, an SSL vision-language refinement scheme that improves the representations of existing FMs and enables their efficient and direct adaptation to specific populations for improved downstream performance. Our method uses a diverse set of training objectives which take advantage of the rich supervisory signal found in textual data. We tested RetFiner on the retinal FMs RETFound, UrFound, and VisionFM, showing significant improvements in linear probing performance on seven highly diverse OCT classification tasks, with an average increase of 5.8, 3.9, and 2.1 percentage points over their baselines, respectively. Our code and model weights are publicly available at https://github.com/ronnief1/RetFiner.
comment: Accepted for presentation at MICCAI 2025
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs ICCV 2025
Multimodal Large Language Models (MLLMs) have demonstrated significant success in visual understanding tasks. However, challenges persist in adapting these models for video comprehension due to the large volume of data and temporal complexity. Existing Video-LLMs using uniform frame sampling often struggle to capture the query-related crucial spatiotemporal clues of videos effectively. In this paper, we introduce Q-Frame, a novel approach for adaptive frame selection and multi-resolution scaling tailored to the video's content and the specific query. Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP, utilizing the Gumbel-Max trick for efficient frame selection. Q-Frame allows Video-LLMs to process more frames without exceeding computational limits, thereby preserving critical temporal and spatial information. We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets, including MLVU, LongVideoBench, and Video-MME, illustrating its superiority over existing methods and its applicability across various video understanding tasks.
comment: Accepted at ICCV 2025
☆ Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization
Higher-order tensors are well-suited for representing multi-dimensional data, such as color images and videos. Low-rank tensor representation has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. In contrast, while the CANDECOMP/PARAFAC (CP) decomposition provides a more natural and interpretable tensor structure, obtaining sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks for implicit neural representation (CP-INR). This approach enables continuous data representation beyond structured grids, fully exploiting the non-linearity of tensor data with theoretical guarantees on excess risk bounds. To achieve a sparse CP decomposition, we introduce a variational form of the Schatten-p quasi-norm and prove its relationship to multilinear rank minimization. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. Our proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to continuous data. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology
☆ Pipe Reconstruction from Point Cloud Data
Accurate digital twins of industrial assets, such as ships and offshore platforms, rely on the precise reconstruction of complex pipe networks. However, manual modelling of pipes from laser scan data is a time-consuming and labor-intensive process. This paper presents a pipeline for automated pipe reconstruction from incomplete laser scan data. The approach estimates a skeleton curve using Laplacian-based contraction, followed by curve elongation. The skeleton axis is then recentred using a rolling sphere technique combined with 2D circle fitting, and refined with a 3D smoothing step. This enables the determination of pipe properties, including radius, length and orientation, and facilitates the creation of detailed 3D models of complex pipe networks. By automating pipe reconstruction, this approach supports the development of digital twins, allowing for rapid and accurate modeling while reducing costs.
☆ Evaluating Pointing Gestures for Target Selection in Human-Robot Collaboration
Pointing gestures are a common interaction method used in Human-Robot Collaboration for various tasks, ranging from selecting targets to guiding industrial processes. This study introduces a method for localizing pointed targets within a planar workspace. The approach employs pose estimation, and a simple geometric model based on shoulder-wrist extension to extract gesturing data from an RGB-D stream. The study proposes a rigorous methodology and comprehensive analysis for evaluating pointing gestures and target selection in typical robotic tasks. In addition to evaluating tool accuracy, the tool is integrated into a proof-of-concept robotic system, which includes object detection, speech transcription, and speech synthesis to demonstrate the integration of multiple modalities in a collaborative application. Finally, a discussion over tool limitations and performance is provided to understand its role in multimodal robotic systems. All developments are available at: https://github.com/NMKsas/gesture_pointer.git.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). Preprint
☆ Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD
With the rapid advancements in autonomous driving, accurately predicting pedestrian behavior has become essential for ensuring safety in complex and unpredictable traffic conditions. The growing interest in this challenge highlights the need for comprehensive datasets that capture unstructured environments, enabling the development of more robust prediction models to enhance pedestrian safety and vehicle navigation. In this paper, we introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments, such as illumination changes, occlusion of pedestrians, unsignalized scene types and vehicle-pedestrian interactions. The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention. Evaluation of the state-of-the-art intention prediction methods on our dataset shows a significant performance drop of up to $\mathbf{15\%}$, while trajectory prediction methods underperform with an increase of up to $\mathbf{1208}$ MSE, defeating standard pedestrian datasets. Additionally, we present exhaustive quantitative and qualitative analysis of intention and trajectory baselines. We believe that our dataset will open new challenges for the pedestrian behavior research community to build robust models. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/iddped
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
☆ Towards Accurate Heart Rate Measurement from Ultra-Short Video Clips via Periodicity-Guided rPPG Estimation and Signal Reconstruction
Many remote Heart Rate (HR) measurement methods focus on estimating remote photoplethysmography (rPPG) signals from video clips lasting around 10 seconds but often overlook the need for HR estimation from ultra-short video clips. In this paper, we aim to accurately measure HR from ultra-short 2-second video clips by specifically addressing two key challenges. First, to overcome the limited number of heartbeat cycles in ultra-short video clips, we propose an effective periodicity-guided rPPG estimation method that enforces consistent periodicity between rPPG signals estimated from ultra-short clips and their much longer ground truth signals. Next, to mitigate estimation inaccuracies due to spectral leakage, we propose including a generator to reconstruct longer rPPG signals from ultra-short ones while preserving their periodic consistency to enable more accurate HR measurement. Extensive experiments on four rPPG estimation benchmark datasets demonstrate that our proposed method not only accurately measures HR from ultra-short video clips but also outperform previous rPPG estimation techniques to achieve state-of-the-art performance.
☆ Reasoning in machine vision: learning to think fast and slow
Reasoning is a hallmark of human intelligence, enabling adaptive decision-making in complex and unfamiliar scenarios. In contrast, machine intelligence remains bound to training data, lacking the ability to dynamically refine solutions at inference time. While some recent advances have explored reasoning in machines, these efforts are largely limited to verbal domains such as mathematical problem-solving, where explicit rules govern step-by-step reasoning. Other critical real-world tasks - including visual perception, spatial reasoning, and radiological diagnosis - require non-verbal reasoning, which remains an open challenge. Here we present a novel learning paradigm that enables machine reasoning in vision by allowing performance improvement with increasing thinking time (inference-time compute), even under conditions where labelled data is very limited. Inspired by dual-process theories of human cognition in psychology, our approach integrates a fast-thinking System I module for familiar tasks, with a slow-thinking System II module that iteratively refines solutions using self-play reinforcement learning. This paradigm mimics human reasoning by proposing, competing over, and refining solutions in data-scarce scenarios. We demonstrate superior performance through extended thinking time, compared not only to large-scale supervised learning but also foundation models and even human experts, in real-world vision tasks. These tasks include computer-vision benchmarks and cancer localisation on medical images across five organs, showcasing transformative potential for non-verbal machine reasoning.
☆ Single-Scanline Relative Pose Estimation for Rolling Shutter Cameras ICCV 2025
We propose a novel approach for estimating the relative pose between rolling shutter cameras using the intersections of line projections with a single scanline per image. This allows pose estimation without explicitly modeling camera motion. Alternatively, scanlines can be selected within a single image, enabling single-view relative pose estimation for scanlines of rolling shutter cameras. Our approach is designed as a foundational building block for rolling shutter structure-from-motion (SfM), where no motion model is required, and each scanline's pose can be computed independently. % We classify minimal solvers for this problem in both generic and specialized settings, including cases with parallel lines and known gravity direction, assuming known intrinsics and no lens distortion. Furthermore, we develop minimal solvers for the parallel-lines scenario, both with and without gravity priors, by leveraging connections between this problem and the estimation of 2D structure from 1D cameras. % Experiments on rolling shutter images from the Fastec dataset demonstrate the feasibility of our approach for initializing rolling shutter SfM, highlighting its potential for further development. % The code will be made publicly available.
comment: ICCV 2025, 15 pages, 5 figures, 12 tables
☆ MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
Audio-driven portrait animation, which synthesizes realistic videos from reference images using audio signals, faces significant challenges in real-time generation of high-fidelity, temporally coherent animations. While recent diffusion-based methods improve generation quality by integrating audio into denoising processes, their reliance on frame-by-frame UNet architectures introduces prohibitive latency and struggles with temporal consistency. This paper introduces MirrorMe, a real-time, controllable framework built on the LTX video model, a diffusion transformer that compresses video spatially and temporally for efficient latent space denoising. To address LTX's trade-offs between compression and semantic fidelity, we propose three innovations: 1. A reference identity injection mechanism via VAE-encoded image concatenation and self-attention, ensuring identity consistency; 2. A causal audio encoder and adapter tailored to LTX's temporal structure, enabling precise audio-expression synchronization; and 3. A progressive training strategy combining close-up facial training, half-body synthesis with facial masking, and hand pose integration for enhanced gesture control. Extensive experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
comment: 8 pages, 6 figures
☆ EnLVAM: Enhanced Left Ventricle Linear Measurements Utilizing Anatomical Motion Mode
Linear measurements of the left ventricle (LV) in the Parasternal Long Axis (PLAX) view using B-mode echocardiography are crucial for cardiac assessment. These involve placing 4-6 landmarks along a virtual scanline (SL) perpendicular to the LV axis near the mitral valve tips. Manual placement is time-consuming and error-prone, while existing deep learning methods often misalign landmarks, causing inaccurate measurements. We propose a novel framework that enhances LV measurement accuracy by enforcing straight-line constraints. A landmark detector is trained on Anatomical M-Mode (AMM) images, computed in real time from B-mode videos, then transformed back to B-mode space. This approach addresses misalignment and reduces measurement errors. Experiments show improved accuracy over standard B-mode methods, and the framework generalizes well across network architectures. Our semi-automatic design includes a human-in-the-loop step where the user only places the SL, simplifying interaction while preserving alignment flexibility and clinical relevance.
☆ Few-Shot Identity Adaptation for 3D Talking Heads via Global Gaussian Field
Reconstruction and rendering-based talking head synthesis methods achieve high-quality results with strong identity preservation but are limited by their dependence on identity-specific models. Each new identity requires training from scratch, incurring high computational costs and reduced scalability compared to generative model-based approaches. To overcome this limitation, we propose FIAG, a novel 3D speaking head synthesis framework that enables efficient identity-specific adaptation using only a few training footage. FIAG incorporates Global Gaussian Field, which supports the representation of multiple identities within a shared field, and Universal Motion Field, which captures the common motion dynamics across diverse identities. Benefiting from the shared facial structure information encoded in the Global Gaussian Field and the general motion priors learned in the motion field, our framework enables rapid adaptation from canonical identity representations to specific ones with minimal data. Extensive comparative and ablation experiments demonstrate that our method outperforms existing state-of-the-art approaches, validating both the effectiveness and generalizability of the proposed framework. Code is available at: \textit{https://github.com/gme-hong/FIAG}.
☆ Towards Scalable and Robust White Matter Lesion Localization via Multimodal Deep Learning
White matter hyperintensities (WMH) are radiological markers of small vessel disease and neurodegeneration, whose accurate segmentation and spatial localization are crucial for diagnosis and monitoring. While multimodal MRI offers complementary contrasts for detecting and contextualizing WM lesions, existing approaches often lack flexibility in handling missing modalities and fail to integrate anatomical localization efficiently. We propose a deep learning framework for WM lesion segmentation and localization that operates directly in native space using single- and multi-modal MRI inputs. Our study evaluates four input configurations: FLAIR-only, T1-only, concatenated FLAIR and T1, and a modality-interchangeable setup. It further introduces a multi-task model for jointly predicting lesion and anatomical region masks to estimate region-wise lesion burden. Experiments conducted on the MICCAI WMH Segmentation Challenge dataset demonstrate that multimodal input significantly improves the segmentation performance, outperforming unimodal models. While the modality-interchangeable setting trades accuracy for robustness, it enables inference in cases with missing modalities. Joint lesion-region segmentation using multi-task learning was less effective than separate models, suggesting representational conflict between tasks. Our findings highlight the utility of multimodal fusion for accurate and robust WMH analysis, and the potential of joint modeling for integrated predictions.
comment: 2nd Sorbonne-Heidelberg Workshop on AI in medicine: Machine Learning for multi-modal data
☆ Partial CLIP is Enough: Chimera-Seg for Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment both seen and unseen classes using supervision from only seen classes. Beyond adaptation-based methods, distillation-based approaches transfer vision-language alignment of vision-language model, e.g., CLIP, to segmentation models. However, such knowledge transfer remains challenging due to: (1) the difficulty of aligning vision-based features with the textual space, which requires combining spatial precision with vision-language alignment; and (2) the semantic gap between CLIP's global representations and the local, fine-grained features of segmentation models. To address challenge (1), we propose Chimera-Seg, which integrates a segmentation backbone as the body and a CLIP-based semantic head as the head, like the Chimera in Greek mythology, combining spatial precision with vision-language alignment. Specifically, Chimera-Seg comprises a trainable segmentation model and a CLIP Semantic Head (CSH), which maps dense features into the CLIP-aligned space. The CSH incorporates a frozen subnetwork and fixed projection layers from the CLIP visual encoder, along with lightweight trainable components. The partial module from CLIP visual encoder, paired with the segmentation model, retains segmentation capability while easing the mapping to CLIP's semantic space. To address challenge (2), we propose Selective Global Distillation (SGD), which distills knowledge from dense features exhibiting high similarity to the CLIP CLS token, while gradually reducing the number of features used for alignment as training progresses. Besides, we also use a Semantic Alignment Module (SAM) to further align dense visual features with semantic embeddings extracted from the frozen CLIP text encoder. Experiments on two benchmarks show improvements of 0.9% and 1.2% in hIoU.
☆ Cross-modal Ship Re-Identification via Optical and SAR Imagery: A Novel Dataset and Method ICCV 2025
Detecting and tracking ground objects using earth observation imagery remains a significant challenge in the field of remote sensing. Continuous maritime ship tracking is crucial for applications such as maritime search and rescue, law enforcement, and shipping analysis. However, most current ship tracking methods rely on geostationary satellites or video satellites. The former offer low resolution and are susceptible to weather conditions, while the latter have short filming durations and limited coverage areas, making them less suitable for the real-world requirements of ship tracking. To address these limitations, we present the Hybrid Optical and Synthetic Aperture Radar (SAR) Ship Re-Identification Dataset (HOSS ReID dataset), designed to evaluate the effectiveness of ship tracking using low-Earth orbit constellations of optical and SAR sensors. This approach ensures shorter re-imaging cycles and enables all-weather tracking. HOSS ReID dataset includes images of the same ship captured over extended periods under diverse conditions, using different satellites of different modalities at varying times and angles. Furthermore, we propose a baseline method for cross-modal ship re-identification, TransOSS, which is built on the Vision Transformer architecture. It refines the patch embedding structure to better accommodate cross-modal tasks, incorporates additional embeddings to introduce more reference information, and employs contrastive learning to pre-train on large-scale optical-SAR image pairs, ensuring the model's ability to extract modality-invariant features. Our dataset and baseline method are publicly available on https://github.com/Alioth2000/Hoss-ReID.
comment: Accepted to ICCV 2025
☆ Advancing Facial Stylization through Semantic Preservation Constraint and Pseudo-Paired Supervision
Facial stylization aims to transform facial images into appealing, high-quality stylized portraits, with the critical challenge of accurately learning the target style while maintaining content consistency with the original image. Although previous StyleGAN-based methods have made significant advancements, the generated results still suffer from artifacts or insufficient fidelity to the source image. We argue that these issues stem from neglecting semantic shift of the generator during stylization. Therefore, we propose a facial stylization method that integrates semantic preservation constraint and pseudo-paired supervision to enhance the content correspondence and improve the stylization effect. Additionally, we develop a methodology for creating multi-level pseudo-paired datasets to implement supervisory constraint. Furthermore, building upon our facial stylization framework, we achieve more flexible multimodal and reference-guided stylization without complex network architecture designs or additional training. Experimental results demonstrate that our approach produces high-fidelity, aesthetically pleasing facial style transfer that surpasses previous methods.
☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
☆ Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.
comment: Accepted for publication in Medical Image Analysis, 2025
☆ RoboEnvision: A Long-Horizon Video Generation Model for Multi-Task Robot Manipulation
We address the problem of generating long-horizon videos for robotic manipulation tasks. Text-to-video diffusion models have made significant progress in photorealism, language understanding, and motion generation but struggle with long-horizon robotic tasks. Recent works use video diffusion models for high-quality simulation data and predictive rollouts in robot planning. However, these works predict short sequences of the robot achieving one task and employ an autoregressive paradigm to extend to the long horizon, leading to error accumulations in the generated video and in the execution. To overcome these limitations, we propose a novel pipeline that bypasses the need for autoregressive generation. We achieve this through a threefold contribution: 1) we first decompose the high-level goals into smaller atomic tasks and generate keyframes aligned with these instructions. A second diffusion model then interpolates between each of the two generated frames, achieving the long-horizon video. 2) We propose a semantics preserving attention module to maintain consistency between the keyframes. 3) We design a lightweight policy model to regress the robot joint states from generated videos. Our approach achieves state-of-the-art results on two benchmarks in video quality and consistency while outperforming previous policy models on long-horizon tasks.
comment: 8 pages, 6 figures
☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
☆ StableCodec: Taming One-Step Diffusion for Extreme Image Compression
Diffusion-based image compression has shown remarkable potential for achieving ultra-low bitrate coding (less than 0.05 bits per pixel) with high realism, by leveraging the generative priors of large pre-trained text-to-image diffusion models. However, current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme bitrate constraints, limiting their application in real-time compression scenarios. Additionally, these methods often sacrifice reconstruction fidelity, as diffusion models typically fail to guarantee pixel-level consistency. To address these challenges, we introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression with improved coding efficiency. To achieve ultra-low bitrates, we first develop an efficient Deep Compression Latent Codec to transmit a noisy latent representation for a single-step denoising process. We then propose a Dual-Branch Coding Structure, consisting of a pair of auxiliary encoder and decoder, to enhance reconstruction fidelity. Furthermore, we adopt end-to-end optimization with joint bitrate and pixel-level constraints. Extensive experiments on the CLIC 2020, DIV2K, and Kodak dataset demonstrate that StableCodec outperforms existing methods in terms of FID, KID and DISTS by a significant margin, even at bitrates as low as 0.005 bits per pixel, while maintaining strong fidelity. Additionally, StableCodec achieves inference speeds comparable to mainstream transform coding schemes. All source code are available at https://github.com/LuizScarlet/StableCodec.
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ TASeg: Text-aware RGB-T Semantic Segmentation based on Fine-tuning Vision Foundation Models
Reliable semantic segmentation of open environments is essential for intelligent systems, yet significant problems remain: 1) Existing RGB-T semantic segmentation models mainly rely on low-level visual features and lack high-level textual information, which struggle with accurate segmentation when categories share similar visual characteristics. 2) While SAM excels in instance-level segmentation, integrating it with thermal images and text is hindered by modality heterogeneity and computational inefficiency. To address these, we propose TASeg, a text-aware RGB-T segmentation framework by using Low-Rank Adaptation (LoRA) fine-tuning technology to adapt vision foundation models. Specifically, we propose a Dynamic Feature Fusion Module (DFFM) in the image encoder, which effectively merges features from multiple visual modalities while freezing SAM's original transformer blocks. Additionally, we incorporate CLIP-generated text embeddings in the mask decoder to enable semantic alignment, which further rectifies the classification error and improves the semantic understanding accuracy. Experimental results across diverse datasets demonstrate that our method achieves superior performance in challenging scenarios with fewer trainable parameters.
comment: 6 pages, accepted for publication in lEEE/RSJ international Conference on Intelligent Robots and Systems (lROS 2025)
Exploring Semantic Masked Autoencoder for Self-supervised Point Cloud Understanding IJCAI 2025
Point cloud understanding aims to acquire robust and general feature representations from unlabeled data. Masked point modeling-based methods have recently shown significant performance across various downstream tasks. These pre-training methods rely on random masking strategies to establish the perception of point clouds by restoring corrupted point cloud inputs, which leads to the failure of capturing reasonable semantic relationships by the self-supervised models. To address this issue, we propose Semantic Masked Autoencoder, which comprises two main components: a prototype-based component semantic modeling module and a component semantic-enhanced masking strategy. Specifically, in the component semantic modeling module, we design a component semantic guidance mechanism to direct a set of learnable prototypes in capturing the semantics of different components from objects. Leveraging these prototypes, we develop a component semantic-enhanced masking strategy that addresses the limitations of random masking in effectively covering complete component structures. Furthermore, we introduce a component semantic-enhanced prompt-tuning strategy, which further leverages these prototypes to improve the performance of pre-trained models in downstream tasks. Extensive experiments conducted on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our proposed modules.
comment: Accepted by IJCAI 2025
☆ SDRNET: Stacked Deep Residual Network for Accurate Semantic Segmentation of Fine-Resolution Remotely Sensed Images
Land cover maps generated from semantic segmentation of high-resolution remotely sensed images have drawn mucon in the photogrammetry and remote sensing research community. Currently, massive fine-resolution remotely sensed (FRRS) images acquired by improving sensing and imaging technologies become available. However, accurate semantic segmentation of such FRRS images is greatly affected by substantial class disparities, the invisibility of key ground objects due to occlusion, and object size variation. Despite the extraordinary potential in deep convolutional neural networks (DCNNs) in image feature learning and representation, extracting sufficient features from FRRS images for accurate semantic segmentation is still challenging. These challenges demand the deep learning models to learn robust features and generate sufficient feature descriptors. Specifically, learning multi-contextual features to guarantee adequate coverage of varied object sizes from the ground scene and harnessing global-local contexts to overcome class disparities challenge even profound networks. Deeper networks significantly lose spatial details due to gradual downsampling processes resulting in poor segmentation results and coarse boundaries. This article presents a stacked deep residual network (SDRNet) for semantic segmentation from FRRS images. The proposed framework utilizes two stacked encoder-decoder networks to harness long-range semantics yet preserve spatial information and dilated residual blocks (DRB) between each encoder and decoder network to capture sufficient global dependencies thus improving segmentation performance. Our experimental results obtained using the ISPRS Vaihingen and Potsdam datasets demonstrate that the SDRNet performs effectively and competitively against current DCNNs in semantic segmentation.
☆ CAL-RAG: Retrieval-Augmented Multi-Agent Generation for Content-Aware Layout Design
Automated content-aware layout generation -- the task of arranging visual elements such as text, logos, and underlays on a background canvas -- remains a fundamental yet under-explored problem in intelligent design systems. While recent advances in deep generative models and large language models (LLMs) have shown promise in structured content generation, most existing approaches lack grounding in contextual design exemplars and fall short in handling semantic alignment and visual coherence. In this work we introduce CAL-RAG, a retrieval-augmented, agentic framework for content-aware layout generation that integrates multimodal retrieval, large language models, and collaborative agentic reasoning. Our system retrieves relevant layout examples from a structured knowledge base and invokes an LLM-based layout recommender to propose structured element placements. A vision-language grader agent evaluates the layout with visual metrics, and a feedback agent provides targeted refinements, enabling iterative improvement. We implement our framework using LangGraph and evaluate it on the PKU PosterLayout dataset, a benchmark rich in semantic and structural variability. CAL-RAG achieves state-of-the-art performance across multiple layout metrics -- including underlay effectiveness, element alignment, and overlap -- substantially outperforming strong baselines such as LayoutPrompter. These results demonstrate that combining retrieval augmentation with agentic multi-step reasoning yields a scalable, interpretable, and high-fidelity solution for automated layout generation.
☆ Quality Assessment and Distortion-aware Saliency Prediction for AI-Generated Omnidirectional Images
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques, AI generated images (AIGIs) have attracted widespread attention, among which AI generated omnidirectional images (AIGODIs) hold significant potential for Virtual Reality (VR) and Augmented Reality (AR) applications. AI generated omnidirectional images exhibit unique quality issues, however, research on the quality assessment and optimization of AI-generated omnidirectional images is still lacking. To this end, this work first studies the quality assessment and distortion-aware saliency prediction problems for AIGODIs, and further presents a corresponding optimization process. Specifically, we first establish a comprehensive database to reflect human feedback for AI-generated omnidirectionals, termed OHF2024, which includes both subjective quality ratings evaluated from three perspectives and distortion-aware salient regions. Based on the constructed OHF2024 database, we propose two models with shared encoders based on the BLIP-2 model to evaluate the human visual experience and predict distortion-aware saliency for AI-generated omnidirectional images, which are named as BLIP2OIQA and BLIP2OISal, respectively. Finally, based on the proposed models, we present an automatic optimization process that utilizes the predicted visual experience scores and distortion regions to further enhance the visual quality of an AI-generated omnidirectional image. Extensive experiments show that our BLIP2OIQA model and BLIP2OISal model achieve state-of-the-art (SOTA) results in the human visual experience evaluation task and the distortion-aware saliency prediction task for AI generated omnidirectional images, and can be effectively used in the optimization process. The database and codes will be released on https://github.com/IntMeGroup/AIGCOIQA to facilitate future research.
☆ SPAZER: Spatial-Semantic Progressive Reasoning Agent for Zero-shot 3D Visual Grounding
3D Visual Grounding (3DVG) aims to localize target objects within a 3D scene based on natural language queries. To alleviate the reliance on costly 3D training data, recent studies have explored zero-shot 3DVG by leveraging the extensive knowledge and powerful reasoning capabilities of pre-trained LLMs and VLMs. However, existing paradigms tend to emphasize either spatial (3D-based) or semantic (2D-based) understanding, limiting their effectiveness in complex real-world applications. In this work, we introduce SPAZER - a VLM-driven agent that combines both modalities in a progressive reasoning framework. It first holistically analyzes the scene and produces a 3D rendering from the optimal viewpoint. Based on this, anchor-guided candidate screening is conducted to perform a coarse-level localization of potential objects. Furthermore, leveraging retrieved relevant 2D camera images, 3D-2D joint decision-making is efficiently performed to determine the best-matching object. By bridging spatial and semantic reasoning neural streams, SPAZER achieves robust zero-shot grounding without training on 3D-labeled data. Extensive experiments on ScanRefer and Nr3D benchmarks demonstrate that SPAZER significantly outperforms previous state-of-the-art zero-shot methods, achieving notable gains of 9.0% and 10.9% in accuracy.
☆ ZeroReg3D: A Zero-shot Registration Pipeline for 3D Consecutive Histopathology Image Reconstruction
Histological analysis plays a crucial role in understanding tissue structure and pathology. While recent advancements in registration methods have improved 2D histological analysis, they often struggle to preserve critical 3D spatial relationships, limiting their utility in both clinical and research applications. Specifically, constructing accurate 3D models from 2D slices remains challenging due to tissue deformation, sectioning artifacts, variability in imaging techniques, and inconsistent illumination. Deep learning-based registration methods have demonstrated improved performance but suffer from limited generalizability and require large-scale training data. In contrast, non-deep-learning approaches offer better generalizability but often compromise on accuracy. In this study, we introduced ZeroReg3D, a novel zero-shot registration pipeline tailored for accurate 3D reconstruction from serial histological sections. By combining zero-shot deep learning-based keypoint matching with optimization-based affine and non-rigid registration techniques, ZeroReg3D effectively addresses critical challenges such as tissue deformation, sectioning artifacts, staining variability, and inconsistent illumination without requiring retraining or fine-tuning. The code has been made publicly available at https://github.com/hrlblab/ZeroReg3D
☆ SepFormer: Coarse-to-fine Separator Regression Network for Table Structure Recognition
The automated reconstruction of the logical arrangement of tables from image data, termed Table Structure Recognition (TSR), is fundamental for semantic data extraction. Recently, researchers have explored a wide range of techniques to tackle this problem, demonstrating significant progress. Each table is a set of vertical and horizontal separators. Following this realization, we present SepFormer, which integrates the split-and-merge paradigm into a single step through separator regression with a DETR-style architecture, improving speed and robustness. SepFormer is a coarse-to-fine approach that predicts table separators from single-line to line-strip separators with a stack of two transformer decoders. In the coarse-grained stage, the model learns to gradually refine single-line segments through decoder layers with additional angle loss. At the end of the fine-grained stage, the model predicts line-strip separators by refining sampled points from each single-line segment. Our SepFormer can run on average at 25.6 FPS while achieving comparable performance with state-of-the-art methods on several benchmark datasets, including SciTSR, PubTabNet, WTW, and iFLYTAB.
☆ Generating Attribute-Aware Human Motions from Textual Prompt
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes (such as age, gender, weight, and height) which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating realistic, attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce HumanAttr, a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware text-to-motion generation. Extensive experiments on the new dataset validate our model's effectiveness.
☆ CERBERUS: Crack Evaluation & Recognition Benchmark for Engineering Reliability & Urban Stability
CERBERUS is a synthetic benchmark designed to help train and evaluate AI models for detecting cracks and other defects in infrastructure. It includes a crack image generator and realistic 3D inspection scenarios built in Unity. The benchmark features two types of setups: a simple Fly-By wall inspection and a more complex Underpass scene with lighting and geometry challenges. We tested a popular object detection model (YOLO) using different combinations of synthetic and real crack data. Results show that combining synthetic and real data improves performance on real-world images. CERBERUS provides a flexible, repeatable way to test defect detection systems and supports future research in automated infrastructure inspection. CERBERUS is publicly available at https://github.com/justinreinman/Cerberus-Defect-Generator.
☆ RAUM-Net: Regional Attention and Uncertainty-aware Mamba Network
Fine Grained Visual Categorization (FGVC) remains a challenging task in computer vision due to subtle inter class differences and fragile feature representations. Existing methods struggle in fine grained scenarios, especially when labeled data is scarce. We propose a semi supervised method combining Mamba based feature modeling, region attention, and Bayesian uncertainty. Our approach enhances local to global feature modeling while focusing on key areas during learning. Bayesian inference selects high quality pseudo labels for stability. Experiments show strong performance on FGVC benchmarks with occlusions, demonstrating robustness when labeled data is limited. Code is available at https://github.com/wxqnl/RAUM Net.
☆ Visual Content Detection in Educational Videos with Transfer Learning and Dataset Enrichment
Video is transforming education with online courses and recorded lectures supplementing and replacing classroom teaching. Recent research has focused on enhancing information retrieval for video lectures with advanced navigation, searchability, summarization, as well as question answering chatbots. Visual elements like tables, charts, and illustrations are central to comprehension, retention, and data presentation in lecture videos, yet their full potential for improving access to video content remains underutilized. A major factor is that accurate automatic detection of visual elements in a lecture video is challenging; reasons include i) most visual elements, such as charts, graphs, tables, and illustrations, are artificially created and lack any standard structure, and ii) coherent visual objects may lack clear boundaries and may be composed of connected text and visual components. Despite advancements in deep learning based object detection, current models do not yield satisfactory performance due to the unique nature of visual content in lectures and scarcity of annotated datasets. This paper reports on a transfer learning approach for detecting visual elements in lecture video frames. A suite of state of the art object detection models were evaluated for their performance on lecture video datasets. YOLO emerged as the most promising model for this task. Subsequently YOLO was optimized for lecture video object detection with training on multiple benchmark datasets and deploying a semi-supervised auto labeling strategy. Results evaluate the success of this approach, also in developing a general solution to the problem of object detection in lecture videos. Paper contributions include a publicly released benchmark of annotated lecture video frames, along with the source code to facilitate future research.
comment: This is an extended version of a paper accepted to MIPR 2025
Exploring Task-Solving Paradigm for Generalized Cross-Domain Face Anti-Spoofing via Reinforcement Fine-Tuning
Recently the emergence of novel presentation attacks has drawn increasing attention to face anti-spoofing. However, existing methods tend to memorize data patterns from the training set, resulting in poor generalization to unknown attack types across different scenarios and limited interpretability. To address these challenges, this paper presents a reinforcement fine-tuning-based face anti-spoofing method that stimulates the capabilities of multimodal large language models to think and learn how to solve the anti-spoofing task itself, rather than relying on the memorization of authenticity patterns. We design verifiable class consistent reward and reasoning consistent reward, and employ a GRPO-based optimization strategy to guide the model in exploring reasoning policies from multiple perspectives to maximize expected rewards. As a result, through iterative trial-and-error learning while retaining only high-reward trajectories, the model distills highly generalizable decision-making rules from the extensive solution space to effectively address cross-domain face anti-spoofing tasks. Extensive experimental results demonstrate that our method achieves state-of-the-art cross-domain generalization performance. It generalizes well to diverse unknown attack types in unseen target domains while providing interpretable reasoning for its authenticity decisions without requiring labor-intensive textual annotations for training.
☆ SODA: Out-of-Distribution Detection in Domain-Shifted Point Clouds via Neighborhood Propagation
As point cloud data increases in prevalence in a variety of applications, the ability to detect out-of-distribution (OOD) point cloud objects becomes critical for ensuring model safety and reliability. However, this problem remains under-explored in existing research. Inspired by success in the image domain, we propose to exploit advances in 3D vision-language models (3D VLMs) for OOD detection in point cloud objects. However, a major challenge is that point cloud datasets used to pre-train 3D VLMs are drastically smaller in size and object diversity than their image-based counterparts. Critically, they often contain exclusively computer-designed synthetic objects. This leads to a substantial domain shift when the model is transferred to practical tasks involving real objects scanned from the physical environment. In this paper, our empirical experiments show that synthetic-to-real domain shift significantly degrades the alignment of point cloud with their associated text embeddings in the 3D VLM latent space, hindering downstream performance. To address this, we propose a novel methodology called SODA which improves the detection of OOD point clouds through a neighborhood-based score propagation scheme. SODA is inference-based, requires no additional model training, and achieves state-of-the-art performance over existing approaches across datasets and problem settings.
☆ DIVE: Deep-search Iterative Video Exploration A Technical Report for the CVRR Challenge at CVPR 2025
In this report, we present the winning solution that achieved the 1st place in the Complex Video Reasoning & Robustness Evaluation Challenge 2025. This challenge evaluates the ability to generate accurate natural language answers to questions about diverse, real-world video clips. It uses the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES) benchmark, which consists of 214 unique videos and 2,400 question-answer pairs spanning 11 categories. Our method, DIVE (Deep-search Iterative Video Exploration), adopts an iterative reasoning approach, in which each input question is semantically decomposed and solved through stepwise reasoning and progressive inference. This enables our system to provide highly accurate and contextually appropriate answers to even the most complex queries. Applied to the CVRR-ES benchmark, our approach achieves 81.44% accuracy on the test set, securing the top position among all participants. This report details our methodology and provides a comprehensive analysis of the experimental results, demonstrating the effectiveness of our iterative reasoning framework in achieving robust video question answering. The code is available at https://github.com/PanasonicConnect/DIVE
☆ Integrating Multi-Modal Sensors: A Review of Fusion Techniques for Intelligent Vehicles
Multi-sensor fusion plays a critical role in enhancing perception for autonomous driving, overcoming individual sensor limitations, and enabling comprehensive environmental understanding. This paper first formalizes multi-sensor fusion strategies into data-level, feature-level, and decision-level categories and then provides a systematic review of deep learning-based methods corresponding to each strategy. We present key multi-modal datasets and discuss their applicability in addressing real-world challenges, particularly in adverse weather conditions and complex urban environments. Additionally, we explore emerging trends, including the integration of Vision-Language Models (VLMs), Large Language Models (LLMs), and the role of sensor fusion in end-to-end autonomous driving, highlighting its potential to enhance system adaptability and robustness. Our work offers valuable insights into current methods and future directions for multi-sensor fusion in autonomous driving.
comment: Accepted by IEEE IV 2025
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ GRASP-PsONet: Gradient-based Removal of Spurious Patterns for PsOriasis Severity Classification
Psoriasis (PsO) severity scoring is important for clinical trials but is hindered by inter-rater variability and the burden of in person clinical evaluation. Remote imaging using patient captured mobile photos offers scalability but introduces challenges, such as variation in lighting, background, and device quality that are often imperceptible to humans but can impact model performance. These factors, along with inconsistencies in dermatologist annotations, reduce the reliability of automated severity scoring. We propose a framework to automatically flag problematic training images that introduce spurious correlations which degrade model generalization, using a gradient based interpretability approach. By tracing the gradients of misclassified validation images, we detect training samples where model errors align with inconsistently rated examples or are affected by subtle, nonclinical artifacts. We apply this method to a ConvNeXT based weakly supervised model designed to classify PsO severity from phone images. Removing 8.2% of flagged images improves model AUC-ROC by 5% (85% to 90%) on a held out test set. Commonly, multiple annotators and an adjudication process ensure annotation accuracy, which is expensive and time consuming. Our method detects training images with annotation inconsistencies, potentially removing the need for manual review. When applied to a subset of training data rated by two dermatologists, the method identifies over 90% of cases with inter-rater disagreement by reviewing only the top 30% of samples. This improves automated scoring for remote assessments, ensuring robustness despite data collection variability.
☆ Physical Degradation Model-Guided Interferometric Hyperspectral Reconstruction with Unfolding Transformer
Interferometric Hyperspectral Imaging (IHI) is a critical technique for large-scale remote sensing tasks due to its advantages in flux and spectral resolution. However, IHI is susceptible to complex errors arising from imaging steps, and its quality is limited by existing signal processing-based reconstruction algorithms. Two key challenges hinder performance enhancement: 1) the lack of training datasets. 2) the difficulty in eliminating IHI-specific degradation components through learning-based methods. To address these challenges, we propose a novel IHI reconstruction pipeline. First, based on imaging physics and radiometric calibration data, we establish a simplified yet accurate IHI degradation model and a parameter estimation method. This model enables the synthesis of realistic IHI training datasets from hyperspectral images (HSIs), bridging the gap between IHI reconstruction and deep learning. Second, we design the Interferometric Hyperspectral Reconstruction Unfolding Transformer (IHRUT), which achieves effective spectral correction and detail restoration through a stripe-pattern enhancement mechanism and a spatial-spectral transformer architecture. Experimental results demonstrate the superior performance and generalization capability of our method.
☆ Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation ACL 2025
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
comment: ACL 2025 (Findings)
☆ Grounding-Aware Token Pruning: Recovering from Drastic Performance Drops in Visual Grounding Caused by Pruning
Recent Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual grounding, establishing themselves as a general interface for various vision-language applications. This progress has driven the development of token pruning methods to mitigate the high computational costs associated with processing numerous visual tokens. However, we observe that pruning significantly weakens the model's grounding ability, leading to incorrect predictions and drastic performance degradation. In Referring Expression Comprehension (REC), for instance, pruning causes the accuracy of LLaVA on the RefCOCO validation set to drop from 56.14% to 15.34%. Our analysis identifies misaligned position IDs after pruning as the primary cause of this degradation, as both the order and value of these IDs are crucial for maintaining performance in grounding tasks. To address this issue, we propose Grounding-Aware Token Pruning (GAP), a simple yet effective adjustment to position IDs that recovers REC accuracy back to 51.42%, which is 90% of the original performance in the without pruning setting, all while requiring no additional training, memory, or computational overhead. Applied to models such as Shikra, MiniGPTv2, and the LLaVA series, our method consistently improves performance across various token pruning strategies.
☆ Dual-Perspective United Transformer for Object Segmentation in Optical Remote Sensing Images IJCAI 2025
Automatically segmenting objects from optical remote sensing images (ORSIs) is an important task. Most existing models are primarily based on either convolutional or Transformer features, each offering distinct advantages. Exploiting both advantages is valuable research, but it presents several challenges, including the heterogeneity between the two types of features, high complexity, and large parameters of the model. However, these issues are often overlooked in existing the ORSIs methods, causing sub-optimal segmentation. For that, we propose a novel Dual-Perspective United Transformer (DPU-Former) with a unique structure designed to simultaneously integrate long-range dependencies and spatial details. In particular, we design the global-local mixed attention, which captures diverse information through two perspectives and introduces a Fourier-space merging strategy to obviate deviations for efficient fusion. Furthermore, we present a gated linear feed-forward network to increase the expressive ability. Additionally, we construct a DPU-Former decoder to aggregate and strength features at different layers. Consequently, the DPU-Former model outperforms the state-of-the-art methods on multiple datasets. Code: https://github.com/CSYSI/DPU-Former.
comment: Accepted by IJCAI 2025
☆ Remote Sensing Large Vision-Language Model: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling
Large Vision and Language Models (LVLMs) have shown strong performance across various vision-language tasks in natural image domains. However, their application to remote sensing (RS) remains underexplored due to significant domain differences in visual appearances, object scales, and semantics. These discrepancies hider the effective understanding of RS scenes, which contain rich, multi-level semantic information spanning from coarse-to-fine levels. Hence, it limits the direct adaptation of existing LVLMs to RS imagery. To address this gap, we propose a novel LVLM framework tailored for RS understanding, incorporating two core components: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling. First, to align multi-level visual features, we introduce the retrieval-based Semantic Augmentation Module which enriches the visual features with relevant semantics across fine-to-coarse levels (e.g., object- and scene-level information). It is designed to retrieve relevant semantic cues from a RS semantic knowledge database, followed by aggregation of semantic cues with user query and multi-level visual features, resulting in semantically enriched representation across multiple levels. Second, for Semantic-aware Expert Modeling, we design semantic experts, where each expert is responsible for processing semantic representation at different levels separately. This enables hierarchical semantic understanding from coarse to fine levels. Evaluations across multiple RS tasks-including scene classification and VQA, etc.-demonstrate that the proposed framework achieves consistent improvements across multiple semantic levels. This highlights its capability and effectiveness in bridging the gap between general LVLMs and unique demands of RS-specific vision-language understanding.
comment: 13 pages including reference pages, 7 tables, and 6 figures
☆ LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs
In this paper, we present LLaVA-Scissor, a training-free token compression strategy designed for video multimodal large language models. Previous methods mostly attempt to compress tokens based on attention scores, but fail to effectively capture all semantic regions and often lead to token redundancy. Differently, we propose to leverage the Semantic Connected Components (SCC) approach that assigns tokens to distinct semantic regions within the token set, ensuring comprehensive semantic coverage. The outcome is a two-step spatio-temporal token compression strategy that utilizes SCC in both spatial and temporal domains. This strategy can effectively compress tokens by representing the entire video with a set of non-overlapping semantic tokens. We conduct extensive evaluations of the token compression capabilities of LLaVA-Scissor across diverse video understanding benchmarks, including video question answering, long video understanding, and comprehensive multi-choices benchmarks. Experimental results show that the proposed LLaVA-Scissor outperforms other token compression methods, achieving superior performance in various video understanding benchmarks, particularly at low token retention ratios. Project page: https://github.com/HumanMLLM/LLaVA-Scissor.
comment: 21 pages, 4 figures, 7 tables
☆ Embodied Domain Adaptation for Object Detection IROS 2025
Mobile robots rely on object detectors for perception and object localization in indoor environments. However, standard closed-set methods struggle to handle the diverse objects and dynamic conditions encountered in real homes and labs. Open-vocabulary object detection (OVOD), driven by Vision Language Models (VLMs), extends beyond fixed labels but still struggles with domain shifts in indoor environments. We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data. We refine pseudo labels via temporal clustering, employ multi-scale threshold fusion, and apply a Mean Teacher framework with contrastive learning. Our Embodied Domain Adaptation for Object Detection (EDAOD) benchmark evaluates adaptation under sequential changes in lighting, layout, and object diversity. Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.
comment: Accepted by IROS 2025
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ Periodic-MAE: Periodic Video Masked Autoencoder for rPPG Estimation
In this paper, we propose a method that learns a general representation of periodic signals from unlabeled facial videos by capturing subtle changes in skin tone over time. The proposed framework employs the video masked autoencoder to learn a high-dimensional spatio-temporal representation of the facial region through self-supervised learning. Capturing quasi-periodic signals in the video is crucial for remote photoplethysmography (rPPG) estimation. To account for signal periodicity, we apply frame masking in terms of video sampling, which allows the model to capture resampled quasi-periodic signals during the pre-training stage. Moreover, the framework incorporates physiological bandlimit constraints, leveraging the property that physiological signals are sparse within their frequency bandwidth to provide pulse cues to the model. The pre-trained encoder is then transferred to the rPPG task, where it is used to extract physiological signals from facial videos. We evaluate the proposed method through extensive experiments on the PURE, UBFC-rPPG, MMPD, and V4V datasets. Our results demonstrate significant performance improvements, particularly in challenging cross-dataset evaluations. Our code is available at https://github.com/ziiho08/Periodic-MAE.
☆ End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy Model
RGB-IR(RGB-Infrared) image pairs are frequently applied simultaneously in various applications like intelligent surveillance. However, as the number of modalities increases, the required data storage and transmission costs also double. Therefore, efficient RGB-IR data compression is essential. This work proposes a joint compression framework for RGB-IR image pair. Specifically, to fully utilize cross-modality prior information for accurate context probability modeling within and between modalities, we propose a Channel-wise Cross-modality Entropy Model (CCEM). Among CCEM, a Low-frequency Context Extraction Block (LCEB) and a Low-frequency Context Fusion Block (LCFB) are designed for extracting and aggregating the global low-frequency information from both modalities, which assist the model in predicting entropy parameters more accurately. Experimental results demonstrate that our approach outperforms existing RGB-IR image pair and single-modality compression methods on LLVIP and KAIST datasets. For instance, the proposed framework achieves a 23.1% bit rate saving on LLVIP dataset compared to the state-of-the-art RGB-IR image codec presented at CVPR 2022.
comment: IEEE International Conference on Systems, Man, and Cybernetics 2025. (SMC), under review
☆ 3D-Telepathy: Reconstructing 3D Objects from EEG Signals
Reconstructing 3D visual stimuli from Electroencephalography (EEG) data holds significant potential for applications in Brain-Computer Interfaces (BCIs) and aiding individuals with communication disorders. Traditionally, efforts have focused on converting brain activity into 2D images, neglecting the translation of EEG data into 3D objects. This limitation is noteworthy, as the human brain inherently processes three-dimensional spatial information regardless of whether observing 2D images or the real world. The neural activities captured by EEG contain rich spatial information that is inevitably lost when reconstructing only 2D images, thus limiting its practical applications in BCI. The transition from EEG data to 3D object reconstruction faces considerable obstacles. These include the presence of extensive noise within EEG signals and a scarcity of datasets that include both EEG and 3D information, which complicates the extraction process of 3D visual data. Addressing this challenging task, we propose an innovative EEG encoder architecture that integrates a dual self-attention mechanism. We use a hybrid training strategy to train the EEG Encoder, which includes cross-attention, contrastive learning, and self-supervised learning techniques. Additionally, by employing stable diffusion as a prior distribution and utilizing Variational Score Distillation to train a neural radiation field, we successfully generate 3D objects with similar content and structure from EEG data.
☆ GenEscape: Hierarchical Multi-Agent Generation of Escape Room Puzzles
We challenge text-to-image models with generating escape room puzzle images that are visually appealing, logically solid, and intellectually stimulating. While base image models struggle with spatial relationships and affordance reasoning, we propose a hierarchical multi-agent framework that decomposes this task into structured stages: functional design, symbolic scene graph reasoning, layout synthesis, and local image editing. Specialized agents collaborate through iterative feedback to ensure the scene is visually coherent and functionally solvable. Experiments show that agent collaboration improves output quality in terms of solvability, shortcut avoidance, and affordance clarity, while maintaining visual quality.
☆ ProSAM: Enhancing the Robustness of SAM-based Visual Reference Segmentation with Probabilistic Prompts
The recent advancements in large foundation models have driven the success of open-set image segmentation, a task focused on segmenting objects beyond predefined categories. Among various prompt types (such as points, boxes, texts, and visual references), visual reference segmentation stands out for its unique flexibility and strong zero-shot capabilities. Recently, several SAM-based methods have made notable progress in this task by automatically generating prompts to guide SAM. However, these methods often generate prompts at object boundaries due to suboptimal prompt encoder, which results in instability and reduced robustness. In this work, we introduce ProSAM, a simple but effective method to address the stability challenges we identified in existing SAM-based visual reference segmentation approaches. By learning a variational prompt encoder to predict multivariate prompt distributions, ProSAM avoids generating prompts that lie in unstable regions, overcoming the instability caused by less robust prompts. Our approach consistently surpasses state-of-the-art methods on the Pascal-5$^i$ and COCO-20$^i$ datasets, providing a more robust solution for visual reference segmentation.
☆ PrefPaint: Enhancing Image Inpainting through Expert Human Feedback
Inpainting, the process of filling missing or corrupted image parts, has broad applications, including medical imaging. However, in specialized fields like medical polyps imaging, where accuracy and reliability are critical, inpainting models can generate inaccurate images, leading to significant errors in medical diagnosis and treatment. To ensure reliability, medical images should be annotated by experts like oncologists for effective model training. We propose PrefPaint, an approach that incorporates human feedback into the training process of Stable Diffusion Inpainting, bypassing the need for computationally expensive reward models. In addition, we develop a web-based interface streamlines training, fine-tuning, and inference. This interactive interface provides a smooth and intuitive user experience, making it easier to offer feedback and manage the fine-tuning process. User study on various domains shows that PrefPaint outperforms existing methods, reducing visual inconsistencies and improving image rendering, particularly in medical contexts, where our model generates more realistic polyps images.
☆ TaleForge: Interactive Multimodal System for Personalized Story Creation
Storytelling is a deeply personal and creative process, yet existing methods often treat users as passive consumers, offering generic plots with limited personalization. This undermines engagement and immersion, especially where individual style or appearance is crucial. We introduce TaleForge, a personalized story-generation system that integrates large language models (LLMs) and text-to-image diffusion to embed users' facial images within both narratives and illustrations. TaleForge features three interconnected modules: Story Generation, where LLMs create narratives and character descriptions from user prompts; Personalized Image Generation, merging users' faces and outfit choices into character illustrations; and Background Generation, creating scene backdrops that incorporate personalized characters. A user study demonstrated heightened engagement and ownership when individuals appeared as protagonists. Participants praised the system's real-time previews and intuitive controls, though they requested finer narrative editing tools. TaleForge advances multimodal storytelling by aligning personalized text and imagery to create immersive, user-centric experiences.
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models ICDAR2025
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ Bridging the Gap Between Saliency Prediction and Image Quality Assessment
Over the past few years, deep neural models have made considerable advances in image quality assessment (IQA). However, the underlying reasons for their success remain unclear, owing to the complex nature of deep neural networks. IQA aims to describe how the human visual system (HVS) works and to create its efficient approximations. On the other hand, Saliency Prediction task aims to emulate HVS via determining areas of visual interest. Thus, we believe that saliency plays a crucial role in human perception. In this work, we conduct an empirical study that reveals the relation between IQA and Saliency Prediction tasks, demonstrating that the former incorporates knowledge of the latter. Moreover, we introduce a novel SACID dataset of saliency-aware compressed images and conduct a large-scale comparison of classic and neural-based IQA methods. All supplementary code and data will be available at the time of publication.
comment: Accepted to EUSIPCO 2025
♻ ☆ MM-R$^3$: On (In-)Consistency of Vision-Language Models (VLMs)
With the advent of LLMs and variants, a flurry of research has emerged, analyzing the performance of such models across an array of tasks. While most studies focus on evaluating the capabilities of state-of-the-art (SoTA) Vision Language Models (VLMs) through task accuracy (e.g., visual question answering, grounding), our work explores the related but complementary aspect of consistency - the ability of a VLM to produce semantically similar or identical responses to semantically similar queries. We note that consistency is a fundamental prerequisite (necessary but not sufficient condition) for robustness and trust in VLMs. Armed with this perspective, we propose the MM-R3 benchmark, which allows us to analyze performance, in terms of consistency and accuracy, of SoTA VLMs on three tasks: Question Rephrasing, Image Restyling, and Context Reasoning. Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa. Furthermore, we propose a simple yet effective mitigation strategy in the form of an adapter module trained to minimize inconsistency across prompts. With our proposed strategy, we are able to achieve absolute improvements of 5.7% and 12.5%, on average on widely used VLMs such as BLIP-2 and LLaVa 1.5M in terms of consistency over their existing counterparts.
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing.For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics.To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to high image acquisition and labeling costs complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address this issue, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation on various state-of-the-art models.
comment: Preprint
♻ ☆ Secure Video Quality Assessment Resisting Adversarial Attacks
The exponential surge in video traffic has intensified the imperative for Video Quality Assessment (VQA). Leveraging cutting-edge architectures, current VQA models have achieved human-comparable accuracy. However, recent studies have revealed the vulnerability of existing VQA models against adversarial attacks. To establish a reliable and practical assessment system, a secure VQA model capable of resisting such malicious attacks is urgently demanded. Unfortunately, no attempt has been made to explore this issue. This paper first attempts to investigate general adversarial defense principles, aiming at endowing existing VQA models with security. Specifically, we first introduce random spatial grid sampling on the video frame for intra-frame defense. Then, we design pixel-wise randomization through a guardian map, globally neutralizing adversarial perturbations. Meanwhile, we extract temporal information from the video sequence as compensation for inter-frame defense. Building upon these principles, we present a novel VQA framework from the security-oriented perspective, termed SecureVQA. Extensive experiments indicate that SecureVQA sets a new benchmark in security while achieving competitive VQA performance compared with state-of-the-art models. Ablation studies delve deeper into analyzing the principles of SecureVQA, demonstrating their generalization and contributions to the security of leading VQA models.
♻ ☆ PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling ICCV 2025
Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
comment: Accepted by ICCV 2025 Page: https://physrig.github.io/
♻ ☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation
Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.
♻ ☆ ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Enhancing Object Detection Robustness: Detecting and Restoring Confidence in the Presence of Adversarial Patch Attacks
The widespread adoption of computer vision systems has underscored their susceptibility to adversarial attacks, particularly adversarial patch attacks on object detectors. This study evaluates defense mechanisms for the YOLOv5 model against such attacks. Optimized adversarial patches were generated and placed in sensitive image regions, by applying EigenCAM and grid search to determine optimal placement. We tested several defenses, including Segment and Complete (SAC), Inpainting, and Latent Diffusion Models. Our pipeline comprises three main stages: patch application, object detection, and defense analysis. Results indicate that adversarial patches reduce average detection confidence by 22.06\%. Defenses restored confidence levels by 3.45\% (SAC), 5.05\% (Inpainting), and significantly improved them by 26.61\%, which even exceeds the original accuracy levels, when using the Latent Diffusion Model, highlighting its superior effectiveness in mitigating the effects of adversarial patches.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers, datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
♻ ☆ SegChange-R1: LLM-Augmented Remote Sensing Change Detection
Remote sensing change detection is used in urban planning, terrain analysis, and environmental monitoring by analyzing feature changes in the same area over time. In this paper, we propose a large language model (LLM) augmented inference approach (SegChange-R1), which enhances the detection capability by integrating textual descriptive information and guides the model to focus on relevant change regions, accelerating convergence. We designed a linear attention-based spatial transformation module (BEV) to address modal misalignment by unifying features from different times into a BEV space. Furthermore, we introduce DVCD, a novel dataset for building change detection from UAV viewpoints. Experiments on four widely-used datasets demonstrate significant improvements over existing method The code and pre-trained models are available in {https://github.com/Yu-Zhouz/SegChange-R1}.
♻ ☆ StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment IJCAI 2025
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
comment: IJCAI 2025; Code is available at https://github.com/alinlab/StarFT
♻ ☆ ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation ICCV 2025
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .
comment: Accepted to ICCV 2025
♻ ☆ VideoFusion: A Spatio-Temporal Collaborative Network for Multi-modal Video Fusion and Restoration
Compared to images, videos better align with real-world acquisition scenarios and possess valuable temporal cues. However, existing multi-sensor fusion research predominantly integrates complementary context from multiple images rather than videos. This primarily stems from two factors: 1) the scarcity of large-scale multi-sensor video datasets, limiting research in video fusion, and 2) the inherent difficulty of jointly modeling spatial and temporal dependencies in a unified framework. This paper proactively compensates for the dilemmas. First, we construct M3SVD, a benchmark dataset with $220$ temporally synchronized and spatially registered infrared-visible video pairs comprising 153,797 frames, filling the data gap for the video fusion community. Secondly, we propose VideoFusion, a multi-modal video fusion model that fully exploits cross-modal complementarity and temporal dynamics to generate spatio-temporally coherent videos from (potentially degraded) multi-modal inputs. Specifically, 1) a differential reinforcement module is developed for cross-modal information interaction and enhancement, 2) a complete modality-guided fusion strategy is employed to adaptively integrate multi-modal features, and 3) a bi-temporal co-attention mechanism is devised to dynamically aggregate forward-backward temporal contexts to reinforce cross-frame feature representations. Extensive experiments reveal that VideoFusion outperforms existing image-oriented fusion paradigms in sequential scenarios, effectively mitigating temporal inconsistency and interference.
♻ ☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
♻ ☆ Scale-Aware Pre-Training for Human-Centric Visual Perception: Enabling Lightweight and Generalizable Models
Human-centric visual perception (HVP) has recently achieved remarkable progress due to advancements in large-scale self-supervised pretraining (SSP). However, existing HVP models face limitations in adapting to real-world applications, which require general visual patterns for downstream tasks while maintaining computationally sustainable costs to ensure compatibility with edge devices. These limitations primarily arise from two issues: 1) the pretraining objectives focus solely on specific visual patterns, limiting the generalizability of the learned patterns for diverse downstream tasks; and 2) HVP models often exhibit excessively large model sizes, making them incompatible with real-world applications.To address these limitations, we introduce Scale-Aware Image Pretraining (SAIP), a novel SSP framework pretraining lightweight vision models to acquire general patterns for HVP. Specifically, SAIP incorporates three learning objectives based on the principle of cross-scale consistency: 1) Cross-scale Matching (CSM) which contrastively learns image-level invariant patterns from multi-scale single-person images; 2) Cross-scale Reconstruction (CSR) which learns pixel-level consistent visual structures from multi-scale masked single-person images; and 3) Cross-scale Search (CSS) which learns to capture diverse patterns from multi-scale multi-person images. Three objectives complement one another, enabling lightweight models to learn multi-scale generalizable patterns essential for HVP downstream tasks.Extensive experiments conducted across 12 HVP datasets demonstrate that SAIP exhibits remarkable generalization capabilities across 9 human-centric vision tasks. Moreover, it achieves significant performance improvements over existing methods, with gains of 3%-13% in single-person discrimination tasks, 1%-11% in dense prediction tasks, and 1%-6% in multi-person visual understanding tasks.
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ VGAT: A Cancer Survival Analysis Framework Transitioning from Generative Visual Question Answering to Genomic Reconstruction ICME2025
Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.
comment: Accepted by ICME2025
♻ ☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance ICML 2025
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
comment: ICML 2025
♻ ☆ Spatial Degradation-Aware and Temporal Consistent Diffusion Model for Compressed Video Super-Resolution
Due to storage and bandwidth limitations, videos transmitted over the Internet often exhibit low quality, characterized by low-resolution and compression artifacts. Although video super-resolution (VSR) is an efficient video enhancing technique, existing VSR methods focus less on compressed videos. Consequently, directly applying general VSR approaches fails to improve practical videos with compression artifacts, especially when frames are highly compressed at a low bit rate. The inevitable quantization information loss complicates the reconstruction of texture details. Recently, diffusion models have shown superior performance in low-level visual tasks. Leveraging the high-realism generation capability of diffusion models, we propose a novel method that exploits the priors of pre-trained diffusion models for compressed VSR. To mitigate spatial distortions and refine temporal consistency, we introduce a Spatial Degradation-Aware and Temporal Consistent (SDATC) diffusion model. Specifically, we incorporate a distortion control module (DCM) to modulate diffusion model inputs, thereby minimizing the impact of noise from low-quality frames on the generation stage. Subsequently, the diffusion model performs a denoising process to generate details, guided by a fine-tuned compression-aware prompt module (CAPM) and a spatio-temporal attention module (STAM). CAPM dynamically encodes compression-related information into prompts, enabling the sampling process to adapt to different degradation levels. Meanwhile, STAM extends the spatial attention mechanism into the spatio-temporal dimension, effectively capturing temporal correlations. Additionally, we utilize optical flow-based alignment during each denoising step to enhance the smoothness of output videos. Extensive experimental results on benchmark datasets demonstrate the effectiveness of our proposed modules in restoring compressed videos.
♻ ☆ Cell Tracking according to Biological Needs -- Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty
Cell tracking and segmentation assist biologists in extracting insights from large-scale microscopy time-lapse data. Driven by local accuracy metrics, current tracking approaches often suffer from a lack of long-term consistency and the ability to reconstruct lineage trees correctly. To address this issue, we introduce an uncertainty estimation technique for motion estimation frameworks and extend the multi-hypothesis tracking framework. Our uncertainty estimation lifts motion representations into probabilistic spatial densities using problem-specific test-time augmentations. Moreover, we introduce a novel mitosis-aware assignment problem formulation that allows multi-hypothesis trackers to model cell splits and to resolve false associations and mitosis detections based on long-term conflicts. In our framework, explicit biological knowledge is modeled in assignment costs. We evaluate our approach on nine competitive datasets and demonstrate that we outperform the current state-of-the-art on biologically inspired metrics substantially, achieving improvements by a factor of approximately 6 and uncover new insights into the behavior of motion estimation uncertainty.
comment: 19 pages, 7 figures, 6 tables. This work has been accepted to the IEEE for publication
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ Split Matching for Inductive Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment categories that are not annotated during training. While fine-tuning vision-language models has achieved promising results, these models often overfit to seen categories due to the lack of supervision for unseen classes. As an alternative to fully supervised approaches, query-based segmentation has shown great latent in ZSS, as it enables object localization without relying on explicit labels. However, conventional Hungarian matching, a core component in query-based frameworks, needs full supervision and often misclassifies unseen categories as background in the setting of ZSS. To address this issue, we propose Split Matching (SM), a novel assignment strategy that decouples Hungarian matching into two components: one for seen classes in annotated regions and another for latent classes in unannotated regions (referred to as unseen candidates). Specifically, we partition the queries into seen and candidate groups, enabling each to be optimized independently according to its available supervision. To discover unseen candidates, we cluster CLIP dense features to generate pseudo masks and extract region-level embeddings using CLS tokens. Matching is then conducted separately for the two groups based on both class-level similarity and mask-level consistency. Additionally, we introduce a Multi-scale Feature Enhancement (MFE) module that refines decoder features through residual multi-scale aggregation, improving the model's ability to capture spatial details across resolutions. SM is the first to introduce decoupled Hungarian matching under the inductive ZSS setting, and achieves state-of-the-art performance on two standard benchmarks.
♻ ☆ Real-World Remote Sensing Image Dehazing: Benchmark and Baseline
Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
comment: 14 pages, 11 figures, real-world remote sensing image dehazing dataset
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
comment: Zero-shot video editing
♻ ☆ End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music
Optical Music Recognition (OMR) has made significant progress since its inception, with various approaches now capable of accurately transcribing music scores into digital formats. Despite these advancements, most so-called end-to-end OMR approaches still rely on multi-stage processing pipelines for transcribing full-page score images, which entails challenges such as the need for dedicated layout analysis and specific annotated data, thereby limiting the general applicability of such methods. In this paper, we present the first truly end-to-end approach for page-level OMR in complex layouts. Our system, which combines convolutional layers with autoregressive Transformers, processes an entire music score page and outputs a complete transcription in a music encoding format. This is made possible by both the architecture and the training procedure, which utilizes curriculum learning through incremental synthetic data generation. We evaluate the proposed system using pianoform corpora, which is one of the most complex sources in the OMR literature. This evaluation is conducted first in a controlled scenario with synthetic data, and subsequently against two real-world corpora of varying conditions. Our approach is compared with leading commercial OMR software. The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain, representing a significant contribution to the field of OMR.
♻ ☆ Disentangled and Interpretable Multimodal Attention Fusion for Cancer Survival Prediction MICCAI 2025
To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.
comment: 11 pages, 1 figure, 3 tables. Preprint submitted and accepted to MICCAI 2025. This preprint has not undergone peer review or any post-submission improvements or corrections
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models SIGGRAPH 2025
We present the first text-based image editing approach for object parts based on pre-trained diffusion models. Diffusion-based image editing approaches capitalized on the deep understanding of diffusion models of image semantics to perform a variety of edits. However, existing diffusion models lack sufficient understanding of many object parts, hindering fine-grained edits requested by users. To address this, we propose to expand the knowledge of pre-trained diffusion models to allow them to understand various object parts, enabling them to perform fine-grained edits. We achieve this by learning special textual tokens that correspond to different object parts through an efficient token optimization process. These tokens are optimized to produce reliable localization masks at each inference step to localize the editing region. Leveraging these masks, we design feature-blending and adaptive thresholding strategies to execute the edits seamlessly. To evaluate our approach, we establish a benchmark and an evaluation protocol for part editing. Experiments show that our approach outperforms existing editing methods on all metrics and is preferred by users 66-90% of the time in conducted user studies.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://gorluxor.github.io/part-edit/
♻ ☆ DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content. However, their massive size and the limited availability of fine-grained annotations pose substantial challenges for conventional supervised learning. We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design. DSAGL explicitly addresses instance-level ambiguity and bag-level semantic consistency by generating multi-scale attention-based pseudo labels and guiding instance-level learning. A shared lightweight encoder (VSSMamba) enables efficient long-range dependency modeling, while a fusion-attentive module (FASA) enhances focus on sparse but diagnostically relevant regions. We further introduce a hybrid loss to enforce mutual consistency between the two streams. Experiments on CIFAR-10, NCT-CRC, and TCGA-Lung datasets demonstrate that DSAGL consistently outperforms state-of-the-art MIL baselines, achieving superior discriminative performance and robustness under weak supervision.
♻ ☆ Preemptive Hallucination Reduction: An Input-Level Approach for Multimodal Language Model
Visual hallucinations in Large Language Models (LLMs), where the model generates responses that are inconsistent with the visual input, pose a significant challenge to their reliability, particularly in contexts where precise and trustworthy outputs are critical. Current research largely emphasizes post-hoc correction or model-specific fine-tuning strategies, with limited exploration of preprocessing techniques to address hallucination issues at the input stage. This study presents a novel ensemble-based preprocessing framework that adaptively selects the most appropriate filtering approach -- noise reduced (NR), edge enhanced (EE), or unaltered input (org) based on the type of question posed, resulting into reduced hallucination without requiring any modifications to the underlying model architecture or training pipeline. Evaluated on the `HaloQuest' dataset -- a benchmark designed to test multimodal reasoning on visually complex inputs, our method achieves a 44.3% reduction in hallucination rates, as measured by Natural Language Inference (NLI) scores using SelfCheckGPT. This demonstrates that intelligent input conditioning alone can significantly enhance factual grounding in LLM responses. The findings highlight the importance of adaptive preprocessing techniques in mitigating hallucinations, paving the way for more reliable multimodal systems capable of addressing real-world challenges.
comment: Submitted for review in NCAA Springer, 21 pages, 4 figures, 4 Tables
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.The dataset and code are publicly available at https://github.com/RS2002/KNN-MMD .
♻ ☆ Event Data Association via Robust Model Fitting for Event-based Object Tracking
Event-based approaches, which are based on bio-inspired asynchronous event cameras, have achieved promising performance on various computer vision tasks. However, the study of the fundamental event data association problem is still in its infancy. In this paper, we propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem. The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion. In EDA, we first asynchronously fuse the event data based on its information entropy. Then, we introduce a deterministic model hypothesis generation strategy, which effectively generates model hypotheses from the fused events, to represent the corresponding event trajectories. After that, we present a two-stage weighting algorithm, which robustly weighs and selects true models from the generated model hypotheses, through multi-structural geometric model fitting. Meanwhile, we also propose an adaptive model selection strategy to automatically determine the number of the true models. Finally, we use the selected true models to associate and fuse the event data, without being affected by sensor noise and irrelevant structures. We evaluate the performance of the proposed EDA on the object tracking task. The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
comment: 32 pages, 7 figures
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.
♻ ☆ Releasing Inequality Phenomenon in $\ell_{\infty}$-norm Adversarial Training via Input Gradient Distillation
Adversarial training (AT) is considered the most effective defense against adversarial attacks. However, a recent study revealed that \(\ell_{\infty}\)-norm adversarial training (\(\ell_{\infty}\)-AT) will also induce unevenly distributed input gradients, which is called the inequality phenomenon. This phenomenon makes the \(\ell_{\infty}\)-norm adversarially trained model more vulnerable than the standard-trained model when high-attribution or randomly selected pixels are perturbed, enabling robust and practical black-box attacks against \(\ell_{\infty}\)-adversarially trained models. In this paper, we propose a simple yet effective method called Input Gradient Distillation (IGD) to release the inequality phenomenon in $\ell_{\infty}$-AT. IGD distills the standard-trained teacher model's equal decision pattern into the $\ell_{\infty}$-adversarially trained student model by aligning input gradients of the student model and the standard-trained model with the Cosine Similarity. Experiments show that IGD can mitigate the inequality phenomenon and its threats while preserving adversarial robustness. Compared to vanilla $\ell_{\infty}$-AT, IGD reduces error rates against inductive noise, inductive occlusion, random noise, and noisy images in ImageNet-C by up to 60\%, 16\%, 50\%, and 21\%, respectively. Other than empirical experiments, we also conduct a theoretical analysis to explain why releasing the inequality phenomenon can improve such robustness and discuss why the severity of the inequality phenomenon varies according to the dataset's image resolution. Our code is available at https://github.com/fhdnskfbeuv/Inuput-Gradient-Distillation
comment: 16 pages. Accepted by IEEE TIFS
♻ ☆ A Wavelet Diffusion GAN for Image Super-Resolution
In recent years, diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation, with wide applications in text-to-image generation, image-to-image translation, and super-resolution. However, their real-time feasibility is hindered by slow training and inference speeds. This study addresses this challenge by proposing a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution (SISR). Our approach utilizes the diffusion GAN paradigm to reduce the timesteps required by the reverse diffusion process and the Discrete Wavelet Transform (DWT) to achieve dimensionality reduction, decreasing training and inference times significantly. The results of an experimental validation on the CelebA-HQ dataset confirm the effectiveness of our proposed scheme. Our approach outperforms other state-of-the-art methodologies successfully ensuring high-fidelity output while overcoming inherent drawbacks associated with diffusion models in time-sensitive applications.
comment: The paper has been accepted at Italian Workshop on Neural Networks (WIRN) 2024
♻ ☆ ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
♻ ☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
♻ ☆ The Aging Multiverse: Generating Condition-Aware Facial Aging Tree via Training-Free Diffusion
We introduce the Aging Multiverse, a framework for generating multiple plausible facial aging trajectories from a single image, each conditioned on external factors such as environment, health, and lifestyle. Unlike prior methods that model aging as a single deterministic path, our approach creates an aging tree that visualizes diverse futures. To enable this, we propose a training-free diffusion-based method that balances identity preservation, age accuracy, and condition control. Our key contributions include attention mixing to modulate editing strength and a Simulated Aging Regularization strategy to stabilize edits. Extensive experiments and user studies demonstrate state-of-the-art performance across identity preservation, aging realism, and conditional alignment, outperforming existing editing and age-progression models, which often fail to account for one or more of the editing criteria. By transforming aging into a multi-dimensional, controllable, and interpretable process, our approach opens up new creative and practical avenues in digital storytelling, health education, and personalized visualization.
♻ ☆ OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport MICCAI 2025
Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.
comment: Accepted by International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2025)
♻ ☆ Leveraging Semantic Asymmetry for Precise Gross Tumor Volume Segmentation of Nasopharyngeal Carcinoma in Planning CT
In the radiation therapy of nasopharyngeal carcinoma (NPC), clinicians typically delineate the gross tumor volume (GTV) using non-contrast planning computed tomography to ensure accurate radiation dose delivery. However, the low contrast between tumors and adjacent normal tissues necessitates that radiation oncologists manually delineate the tumors, often relying on diagnostic MRI for guidance. % In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method. Specifically, we posit that a healthy nasopharyngeal region is characteristically bilaterally symmetric, whereas the emergence of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose a Siamese contrastive learning segmentation framework that minimizes the voxel-wise distance between original and flipped areas without tumor and encourages a larger distance between original and flipped areas with tumor. Thus, our approach enhances the sensitivity of features to semantic asymmetries. % Extensive experiments demonstrate that the proposed SATs achieves the leading NPC GTV segmentation performance in both internal and external testing, \emph{e.g.}, with at least 2\% absolute Dice score improvement and 12\% average distance error reduction when compared to other state-of-the-art methods in the external testing.
♻ ☆ Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning SC
Few-shot class-incremental learning (FSCIL) aims to incrementally learn novel classes from limited examples while preserving knowledge of previously learned classes. Existing methods face a critical dilemma: static architectures rely on a fixed parameter space to learn from data that arrive sequentially, prone to overfitting to the current session, while dynamic architectures require the expansion of the parameter space continually, leading to increased complexity. In this study, we explore the potential of Selective State Space Models (SSMs) for FSCIL. Mamba leverages its input-dependent parameters to dynamically adjust its processing patterns and generate content-aware scan patterns within a fixed architecture. This enables it to configure distinct processing for base and novel classes, effectively preserving existing knowledge while adapting to new ones. To leverage Mamba's potential for FSCIL, we design two key modules: First, we propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation. The dual-design structurally decouples base and novel class processing with a frozen base branch, employing a frozen base branch to maintain robust base-class features and a dynamic incremental branch that adaptively learns distinctive feature shifts for novel classes. Second, we develop a class-sensitive selective scan mechanism to guide dynamic adaptation of the incremental branch. It minimizes the disruption to base-class representations caused by training on novel data, and meanwhile, forces the selective scan to perform in distinct patterns between base and novel classes. Extensive experiments on miniImageNet, CUB-200, and CIFAR-100 demonstrate that Mamba-FSCIL achieves state-of-the-art performance. The code is available at https://github.com/xiaojieli0903/Mamba-FSCIL.
comment: Code: https://github.com/xiaojieli0903/Mamba-FSCIL
♻ ☆ SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Estimating displacement vector field via a cost volume computed in the feature space has shown great success in image registration, but it suffers excessive computation burdens. Moreover, existing feature descriptors only extract local features incapable of representing the global semantic information, which is especially important for solving large transformations. To address the discussed issues, we propose SAMConvex, a fast coarse-to-fine discrete optimization method for CT registration that includes a decoupled convex optimization procedure to obtain deformation fields based on a self-supervised anatomical embedding (SAM) feature extractor that captures both local and global information. To be specific, SAMConvex extracts per-voxel features and builds 6D correlation volumes based on SAM features, and iteratively updates a flow field by performing lookups on the correlation volumes with a coarse-to-fine scheme. SAMConvex outperforms the state-of-the-art learning-based methods and optimization-based methods over two inter-patient registration datasets (Abdomen CT and HeadNeck CT) and one intra-patient registration dataset (Lung CT). Moreover, as an optimization-based method, SAMConvex only takes $\sim2$s ($\sim5s$ with instance optimization) for one paired images.
♻ ☆ FSDA-DG: Improving Cross-Domain Generalizability of Medical Image Segmentation with Few Source Domain Annotations
Deep learning-based medical image segmentation faces significant challenges arising from limited labeled data and domain shifts. While prior approaches have primarily addressed these issues independently, their simultaneous occurrence is common in medical imaging. A method that generalizes to unseen domains using only minimal annotations offers significant practical value due to reduced data annotation and development costs. In pursuit of this goal, we propose FSDA-DG, a novel solution to improve cross-domain generalizability of medical image segmentation with few single-source domain annotations. Specifically, our approach introduces semantics-guided semi-supervised data augmentation. This method divides images into global broad regions and semantics-guided local regions, and applies distinct augmentation strategies to enrich data distribution. Within this framework, both labeled and unlabeled data are transformed into extensive domain knowledge while preserving domain-invariant semantic information. Additionally, FSDA-DG employs a multi-decoder U-Net pipeline semi-supervised learning (SSL) network to improve domain-invariant representation learning through consistent prior assumption across multiple perturbations. By integrating data-level and model-level designs, FSDA-DG achieves superior performance compared to state-of-the-art methods in two challenging single domain generalization (SDG) tasks with limited annotations. The code is publicly available at https://github.com/yezanting/FSDA-DG.
comment: This work has been accepted by Medcial Image Analysis journal; 15 pages, 11 figures, 10 Tables
Self is the Best Learner: CT-free Ultra-Low-Dose PET Organ Segmentation via Collaborating Denoising and Segmentation Learning MICCAI2025
Organ segmentation in Positron Emission Tomography (PET) plays a vital role in cancer quantification. Low-dose PET (LDPET) provides a safer alternative by reducing radiation exposure. However, the inherent noise and blurred boundaries make organ segmentation more challenging. Additionally, existing PET organ segmentation methods rely on coregistered Computed Tomography (CT) annotations, overlooking the problem of modality mismatch. In this study, we propose LDOS, a novel CT-free ultra-LDPET organ segmentation pipeline. Inspired by Masked Autoencoders (MAE), we reinterpret LDPET as a naturally masked version of Full-Dose PET (FDPET). LDOS adopts a simple yet effective architecture: a shared encoder extracts generalized features, while task-specific decoders independently refine outputs for denoising and segmentation. By integrating CT-derived organ annotations into the denoising process, LDOS improves anatomical boundary recognition and alleviates the PET/CT misalignments. Experiments demonstrate that LDOS achieves state-of-the-art performance with mean Dice scores of 73.11% (18F-FDG) and 73.97% (68Ga-FAPI) across 18 organs in 5% dose PET. Our code will be available at https://github.com/yezanting/LDOS.
comment: This work has been accepted by MICCAI2025; 9 pages, 5 figures
♻ ☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has emerged as a prominent research topic in computer graphics and multimedia, yet most existing methods often struggle to strike a balance between generation quality and computational efficiency, particularly under real-time constraints. In this paper, we propose a novel framework that integrates Gaussian Splatting with a structured Audio Factorization Plane (Audio-Plane) to enable high-quality, audio-synchronized, and real-time talking head generation. For modeling a dynamic talking head, a 4D volume representation, which consists of three axes in 3D space and one temporal axis aligned with audio progression, is typically required. However, directly storing and processing a dense 4D grid is impractical due to the high memory and computation cost, and lack of scalability for longer durations. We address this challenge by decomposing the 4D volume representation into a set of audio-independent spatial planes and audio-dependent planes, forming a compact and interpretable representation for talking head modeling that we refer to as the Audio-Plane. This factorized design allows for efficient and fine-grained audio-aware spatial encoding, and significantly enhances the model's ability to capture complex lip dynamics driven by speech signals. To further improve region-specific motion modeling, we introduce an audio-guided saliency splatting mechanism based on region-aware modulation, which adaptively emphasizes highly dynamic regions such as the mouth area. This allows the model to focus its learning capacity on where it matters most for accurate speech-driven animation. Extensive experiments on both the self-driven and the cross-driven settings demonstrate that our method achieves state-of-the-art visual quality, precise audio-lip synchronization, and real-time performance, outperforming prior approaches across both 2D- and 3D-based paradigms.
comment: Demo video at \url{https://sstzal.github.io/Audio-Plane/}
♻ ☆ Not All Frame Features Are Equal: Video-to-4D Generation via Decoupling Dynamic-Static Features ICCV2025
Recently, the generation of dynamic 3D objects from a video has shown impressive results. Existing methods directly optimize Gaussians using whole information in frames. However, when dynamic regions are interwoven with static regions within frames, particularly if the static regions account for a large proportion, existing methods often overlook information in dynamic regions and are prone to overfitting on static regions. This leads to producing results with blurry textures. We consider that decoupling dynamic-static features to enhance dynamic representations can alleviate this issue. Thus, we propose a dynamic-static feature decoupling module (DSFD). Along temporal axes, it regards the regions of current frame features that possess significant differences relative to reference frame features as dynamic features. Conversely, the remaining parts are the static features. Then, we acquire decoupled features driven by dynamic features and current frame features. Moreover, to further enhance the dynamic representation of decoupled features from different viewpoints and ensure accurate motion prediction, we design a temporal-spatial similarity fusion module (TSSF). Along spatial axes, it adaptively selects similar information of dynamic regions. Hinging on the above, we construct a novel approach, DS4D. Experimental results verify our method achieves state-of-the-art (SOTA) results in video-to-4D. In addition, the experiments on a real-world scenario dataset demonstrate its effectiveness on the 4D scene. Our code will be publicly available.
comment: Accepted by ICCV2025
♻ ☆ Med-LEGO: Editing and Adapting toward Generalist Medical Image Diagnosis MICCAI
The adoption of visual foundation models has become a common practice in computer-aided diagnosis (CAD). While these foundation models provide a viable solution for creating generalist medical AI, privacy concerns make it difficult to pre-train or continuously update such models across multiple domains and datasets, leading many studies to focus on specialist models. To address this challenge, we propose Med-LEGO, a training-free framework that enables the seamless integration or updating of a generalist CAD model by combining multiple specialist models, similar to assembling LEGO bricks. Med-LEGO enhances LoRA (low-rank adaptation) by incorporating singular value decomposition (SVD) to efficiently capture the domain expertise of each specialist model with minimal additional parameters. By combining these adapted weights through simple operations, Med-LEGO allows for the easy integration or modification of specific diagnostic capabilities without the need for original data or retraining. Finally, the combined model can be further adapted to new diagnostic tasks, making it a versatile generalist model. Our extensive experiments demonstrate that Med-LEGO outperforms existing methods in both cross-domain and in-domain medical tasks while using only 0.18% of full model parameters. These merged models show better convergence and generalization to new tasks, providing an effective path toward generalist medical AI.
comment: Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ DidSee: Diffusion-Based Depth Completion for Material-Agnostic Robotic Perception and Manipulation
Commercial RGB-D cameras often produce noisy, incomplete depth maps for non-Lambertian objects. Traditional depth completion methods struggle to generalize due to the limited diversity and scale of training data. Recent advances exploit visual priors from pre-trained text-to-image diffusion models to enhance generalization in dense prediction tasks. However, we find that biases arising from training-inference mismatches in the vanilla diffusion framework significantly impair depth completion performance. Additionally, the lack of distinct visual features in non-Lambertian regions further hinders precise prediction. To address these issues, we propose \textbf{DidSee}, a diffusion-based framework for depth completion on non-Lambertian objects. First, we integrate a rescaled noise scheduler enforcing a zero terminal signal-to-noise ratio to eliminate signal leakage bias. Second, we devise a noise-agnostic single-step training formulation to alleviate error accumulation caused by exposure bias and optimize the model with a task-specific loss. Finally, we incorporate a semantic enhancer that enables joint depth completion and semantic segmentation, distinguishing objects from backgrounds and yielding precise, fine-grained depth maps. DidSee achieves state-of-the-art performance on multiple benchmarks, demonstrates robust real-world generalization, and effectively improves downstream tasks such as category-level pose estimation and robotic grasping.
comment: Project page: https://wenzhoulyu.github.io/DidSee/
♻ ☆ Shape2Animal: Creative Animal Generation from Natural Silhouettes
Humans possess a unique ability to perceive meaningful patterns in ambiguous stimuli, a cognitive phenomenon known as pareidolia. This paper introduces Shape2Animal framework to mimics this imaginative capacity by reinterpreting natural object silhouettes, such as clouds, stones, or flames, as plausible animal forms. Our automated framework first performs open-vocabulary segmentation to extract object silhouette and interprets semantically appropriate animal concepts using vision-language models. It then synthesizes an animal image that conforms to the input shape, leveraging text-to-image diffusion model and seamlessly blends it into the original scene to generate visually coherent and spatially consistent compositions. We evaluated Shape2Animal on a diverse set of real-world inputs, demonstrating its robustness and creative potential. Our Shape2Animal can offer new opportunities for visual storytelling, educational content, digital art, and interactive media design. Our project page is here: https://shape2image.github.io
♻ ☆ FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen
comment: Project Page: https://jayleejia.github.io/FairyGen/ ; Code: https://github.com/GVCLab/FairyGen
♻ ☆ A Hyperdimensional One Place Signature to Represent Them All: Stackable Descriptors For Visual Place Recognition ICCV 2025
Visual Place Recognition (VPR) enables coarse localization by comparing query images to a reference database of geo-tagged images. Recent breakthroughs in deep learning architectures and training regimes have led to methods with improved robustness to factors like environment appearance change, but with the downside that the required training and/or matching compute scales with the number of distinct environmental conditions encountered. Here, we propose Hyperdimensional One Place Signatures (HOPS) to simultaneously improve the performance, compute and scalability of these state-of-the-art approaches by fusing the descriptors from multiple reference sets captured under different conditions. HOPS scales to any number of environmental conditions by leveraging the Hyperdimensional Computing framework. Extensive evaluations demonstrate that our approach is highly generalizable and consistently improves recall performance across all evaluated VPR methods and datasets by large margins. Arbitrarily fusing reference images without compute penalty enables numerous other useful possibilities, three of which we demonstrate here: descriptor dimensionality reduction with no performance penalty, stacking synthetic images, and coarse localization to an entire traverse or environmental section.
comment: Accepted into ICCV 2025
Artificial Intelligence 134
☆ CLoVE: Personalized Federated Learning through Clustering of Loss Vector Embeddings
We propose CLoVE (Clustering of Loss Vector Embeddings), a novel algorithm for Clustered Federated Learning (CFL). In CFL, clients are naturally grouped into clusters based on their data distribution. However, identifying these clusters is challenging, as client assignments are unknown. CLoVE utilizes client embeddings derived from model losses on client data, and leverages the insight that clients in the same cluster share similar loss values, while those in different clusters exhibit distinct loss patterns. Based on these embeddings, CLoVE is able to iteratively identify and separate clients from different clusters and optimize cluster-specific models through federated aggregation. Key advantages of CLoVE over existing CFL algorithms are (1) its simplicity, (2) its applicability to both supervised and unsupervised settings, and (3) the fact that it eliminates the need for near-optimal model initialization, which makes it more robust and better suited for real-world applications. We establish theoretical convergence bounds, showing that CLoVE can recover clusters accurately with high probability in a single round and converges exponentially fast to optimal models in a linear setting. Our comprehensive experiments comparing with a variety of both CFL and generic Personalized Federated Learning (PFL) algorithms on different types of datasets and an extensive array of non-IID settings demonstrate that CLoVE achieves highly accurate cluster recovery in just a few rounds of training, along with state-of-the-art model accuracy, across a variety of both supervised and unsupervised PFL tasks.
comment: 31 pages, 4 figures
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ HyperCLOVA X THINK Technical Report
We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly $6$ trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with $\mu$P, pre-trained through a three-stage curriculum that expands the context window to $128$K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community.
comment: 49 pages, 13 figures
☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: supplement pending, 4 figures, 10 pages + refs
☆ QuickSilver -- Speeding up LLM Inference through Dynamic Token Halting, KV Skipping, Contextual Token Fusion, and Adaptive Matryoshka Quantization
Inference accounts for the majority of latency and energy consumption in large language model (LLM) deployments, often exceeding 90% of total cost. While training-time efficiency has seen extensive progress, runtime optimization remains a key bottleneck, particularly under autoregressive decoding. Existing approaches -- such as pruning, quantization, early exits, and speculative decoding -- often require retraining, architectural changes, or disrupt decoding compatibility. We introduce QuickSilver, a modular, token-level framework that enables semantic adaptivity at inference time without altering model weights or structure. QuickSilver integrates four synergistic mechanisms: (i) Dynamic Token Halting, which halts computation for tokens with converged representations; (ii) KV Cache Skipping, which selectively suppresses memory writes to reduce attention overhead; and (iii) Contextual Token Fusion, which collapses redundant tokens into shared paths to shrink sequence length. Unlike speculative decoding or MoE routing, QuickSilver operates entirely on frozen, dense models and requires no auxiliary networks. Applied to GPT-2 and Llama-2 across WikiText-103 and C4, QuickSilver achieves up to 39.6% FLOP reduction with negligible perplexity degradation (<=0.2).
comment: Preprint. Under submission
☆ Multi-View Contrastive Learning for Robust Domain Adaptation in Medical Time Series Analysis
Adapting machine learning models to medical time series across different domains remains a challenge due to complex temporal dependencies and dynamic distribution shifts. Current approaches often focus on isolated feature representations, limiting their ability to fully capture the intricate temporal dynamics necessary for robust domain adaptation. In this work, we propose a novel framework leveraging multi-view contrastive learning to integrate temporal patterns, derivative-based dynamics, and frequency-domain features. Our method employs independent encoders and a hierarchical fusion mechanism to learn feature-invariant representations that are transferable across domains while preserving temporal coherence. Extensive experiments on diverse medical datasets, including electroencephalogram (EEG), electrocardiogram (ECG), and electromyography (EMG) demonstrate that our approach significantly outperforms state-of-the-art methods in transfer learning tasks. By advancing the robustness and generalizability of machine learning models, our framework offers a practical pathway for deploying reliable AI systems in diverse healthcare settings.
☆ Towards Distributed Neural Architectures
We introduce and train distributed neural architectures (DNA) in vision and language domains. DNAs are initialized with a proto-architecture that consists of (transformer, MLP, attention, etc.) modules and routers. Any token (or patch) can traverse any series of modules in any order. DNAs are a natural generalization of the sparse methods such as Mixture-of-Experts, Mixture-of-Depths, parameter sharing, etc. Computation and communication patterns of DNA modules are learnt end-to-end during training and depend on the content and context of each token (or patch). These patterns can be shaped by further requirements added to the optimization objective such as compute/memory efficiency or load balancing. We empirically show that (i) trained DNAs are competitive with the dense baselines in both domains and (ii) compute efficiency/parameter sharing can be learnt from data. Next, we analyze the emergent connectivity and computation patterns in the trained DNAs. We find that the paths that tokens take through the models are themselves distributed according to a power-law. We show that some paths (or, equivalently, groups of modules) show emergent specialization. Finally, we demonstrate that models learn to allocate compute and active parameters in an interpretable way.
comment: 36 pages, 25 figures
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Sheaf-Based Decentralized Multimodal Learning for Next-Generation Wireless Communication Systems
In large-scale communication systems, increasingly complex scenarios require more intelligent collaboration among edge devices collecting various multimodal sensory data to achieve a more comprehensive understanding of the environment and improve decision-making accuracy. However, conventional federated learning (FL) algorithms typically consider unimodal datasets, require identical model architectures, and fail to leverage the rich information embedded in multimodal data, limiting their applicability to real-world scenarios with diverse modalities and varying client capabilities. To address this issue, we propose Sheaf-DMFL, a novel decentralized multimodal learning framework leveraging sheaf theory to enhance collaboration among devices with diverse modalities. Specifically, each client has a set of local feature encoders for its different modalities, whose outputs are concatenated before passing through a task-specific layer. While encoders for the same modality are trained collaboratively across clients, we capture the intrinsic correlations among clients' task-specific layers using a sheaf-based structure. To further enhance learning capability, we propose an enhanced algorithm named Sheaf-DMFL-Att, which tailors the attention mechanism within each client to capture correlations among different modalities. A rigorous convergence analysis of Sheaf-DMFL-Att is provided, establishing its theoretical guarantees. Extensive simulations are conducted on real-world link blockage prediction and mmWave beamforming scenarios, demonstrate the superiority of the proposed algorithms in such heterogeneous wireless communication systems.
comment: 13 pages, 9 figures
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Concept-Level AI for Telecom: Moving Beyond Large Language Models
The telecommunications and networking domain stands at the precipice of a transformative era, driven by the necessity to manage increasingly complex, hierarchical, multi administrative domains (i.e., several operators on the same path) and multilingual systems. Recent research has demonstrated that Large Language Models (LLMs), with their exceptional general-purpose text analysis and code generation capabilities, can be effectively applied to certain telecom problems (e.g., auto-configuration of data plan to meet certain application requirements). However, due to their inherent token-by-token processing and limited capacity for maintaining extended context, LLMs struggle to fulfill telecom-specific requirements such as cross-layer dependency cascades (i.e., over OSI), temporal-spatial fault correlation, and real-time distributed coordination. In contrast, Large Concept Models (LCMs), which reason at the abstraction level of semantic concepts rather than individual lexical tokens, offer a fundamentally superior approach for addressing these telecom challenges. By employing hyperbolic latent spaces for hierarchical representation and encapsulating complex multi-layered network interactions within concise concept embeddings, LCMs overcome critical shortcomings of LLMs in terms of memory efficiency, cross-layer correlation, and native multimodal integration. This paper argues that adopting LCMs is not simply an incremental step, but a necessary evolutionary leap toward achieving robust and effective AI-driven telecom management.
☆ AI Model Passport: Data and System Traceability Framework for Transparent AI in Health
The increasing integration of Artificial Intelligence (AI) into health and biomedical systems necessitates robust frameworks for transparency, accountability, and ethical compliance. Existing frameworks often rely on human-readable, manual documentation which limits scalability, comparability, and machine interpretability across projects and platforms. They also fail to provide a unique, verifiable identity for AI models to ensure their provenance and authenticity across systems and use cases, limiting reproducibility and stakeholder trust. This paper introduces the concept of the AI Model Passport, a structured and standardized documentation framework that acts as a digital identity and verification tool for AI models. It captures essential metadata to uniquely identify, verify, trace and monitor AI models across their lifecycle - from data acquisition and preprocessing to model design, development and deployment. In addition, an implementation of this framework is presented through AIPassport, an MLOps tool developed within the ProCAncer-I EU project for medical imaging applications. AIPassport automates metadata collection, ensures proper versioning, decouples results from source scripts, and integrates with various development environments. Its effectiveness is showcased through a lesion segmentation use case using data from the ProCAncer-I dataset, illustrating how the AI Model Passport enhances transparency, reproducibility, and regulatory readiness while reducing manual effort. This approach aims to set a new standard for fostering trust and accountability in AI-driven healthcare solutions, aspiring to serve as the basis for developing transparent and regulation compliant AI systems across domains.
☆ Embodied AI Agents: Modeling the World
This paper describes our research on AI agents embodied in visual, virtual or physical forms, enabling them to interact with both users and their environments. These agents, which include virtual avatars, wearable devices, and robots, are designed to perceive, learn and act within their surroundings, which makes them more similar to how humans learn and interact with the environments as compared to disembodied agents. We propose that the development of world models is central to reasoning and planning of embodied AI agents, allowing these agents to understand and predict their environment, to understand user intentions and social contexts, thereby enhancing their ability to perform complex tasks autonomously. World modeling encompasses the integration of multimodal perception, planning through reasoning for action and control, and memory to create a comprehensive understanding of the physical world. Beyond the physical world, we also propose to learn the mental world model of users to enable better human-agent collaboration.
☆ A Framework for Multi-source Privacy Preserving Epidemic Analysis
It is now well understood that diverse datasets provide a lot of value in key epidemiology and public health analyses, such as forecasting and nowcasting, development of epidemic models, evaluation and design of interventions and resource allocation. Some of these datasets are often sensitive, and need adequate privacy protections. There are many models of privacy, but Differential Privacy (DP) has become a de facto standard because of its strong guarantees, without making models about adversaries. In this paper, we develop a framework the integrates deep learning and epidemic models to simultaneously perform epidemic forecasting and learning a mechanistic model of epidemic spread, while incorporating multiple datasets for these analyses, including some with DP guarantees. We demonstrate our framework using a realistic but synthetic financial dataset with DP; such a dataset has not been used in such epidemic analyses. We show that this dataset provides significant value in forecasting and learning an epidemic model, even when used with DP guarantees.
comment: 17 pages, 6 figures
☆ A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts. Although optical satellite imagery is commonly used for disaster mapping, its effectiveness is often hampered by cloud cover or the absence of pre-event acquisitions. To overcome these challenges, we introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery from the Italian Space Agency (ASI) COSMO SkyMed (CSK) constellation, complemented by auxiliary geospatial data. Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM) to improve detection accuracy and contextual interpretation. Unlike existing approaches that depend on pre and post event imagery, our model utilizes only post event data, facilitating rapid deployment in critical scenarios. The framework effectiveness is demonstrated using a new dataset from the 2023 earthquake in Turkey, covering multiple cities with diverse urban settings. Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas. By combining SAR imagery with detailed vulnerability and exposure information, our approach provides reliable and rapid building damage assessments without the dependency from available pre-event data. Moreover, the automated and scalable data generation process ensures the framework's applicability across diverse disaster-affected regions, underscoring its potential to support effective disaster management and recovery efforts. Code and data will be made available upon acceptance of the paper.
comment: 13 pages, 6 figures (plus 4 author photos), and 5 tables. Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ Less Greedy Equivalence Search
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step: rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior assumptions, while correcting these assumptions when contradicted by the data. Finally, LGES can exploit interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit from observational and interventional data, even with misspecified prior assumptions. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified assumptions. Our code is available at https://github.com/CausalAILab/lges.
comment: 35 total pages. 14 figures
☆ A Practical Approach to Power Saving in Hearables Using Sub-Nyquist Sampling with Bandwidth Extension
Hearables are wearable computers that are worn on the ear. Bone conduction microphones (BCMs) are used with air conduction microphones (ACMs) in hearables as a supporting modality for multimodal speech enhancement (SE) in noisy conditions. However, existing works don't consider the following practical aspects for low-power implementations on hearables: (i) They do not explore how lowering the sampling frequencies and bit resolutions in analog-to-digital converters (ADCs) of hearables jointly impact low-power processing and multimodal SE in terms of speech quality and intelligibility. (ii) They don't discuss how GAN-like audio quality can be achieved without using actual GAN discriminators. And (iii) They don't process signals from ACMs/BCMs at sub-Nyquist sampling rate because, in their frameworks, they lack a wideband reconstruction methodology from their narrowband parts. We propose SUBARU (\textbf{Sub}-Nyquist \textbf{A}udio \textbf{R}esolution \textbf{U}psampling), which achieves the following: SUBARU (i) intentionally uses sub-Nyquist sampling and low bit resolution in ADCs, achieving a 3.31x reduction in power consumption; (ii) introduces novel multi-scale and multi-period virtual discriminators, which achieve GAN-like audio quality without using GANs' adversarial training; and (iii) achieves streaming operations on mobile platforms and SE in in-the-wild noisy conditions with an inference time of 1.74ms and a memory footprint of less than 13.77MB.
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
Graph Neural Networks (GNNs) have garnered substantial attention due to their remarkable capability in learning graph representations. However, real-world graphs often exhibit substantial noise and incompleteness, which severely degrades the performance of GNNs. Existing methods typically address this issue through single-dimensional augmentation, focusing either on refining topology structures or perturbing node attributes, thereby overlooking the deeper interplays between the two. To bridge this gap, this paper presents CoATA, a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute. Specifically, CoATA first propagates structural signals to enrich and denoise node attributes. Then, it projects the enhanced attribute space into a node-attribute bipartite graph for further refinement or reconstruction of the underlying structure. Subsequently, CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs. Finally, extensive experiments on seven benchmark datasets demonstrate that the proposed CoATA outperforms eleven state-of-the-art baseline methods, showcasing its effectiveness in capturing the synergistic relationship between topology and attributes.
comment: icmr
☆ RoomCraft: Controllable and Complete 3D Indoor Scene Generation
Generating realistic 3D indoor scenes from user inputs remains a challenging problem in computer vision and graphics, requiring careful balance of geometric consistency, spatial relationships, and visual realism. While neural generation methods often produce repetitive elements due to limited global spatial reasoning, procedural approaches can leverage constraints for controllable generation but struggle with multi-constraint scenarios. When constraints become numerous, object collisions frequently occur, forcing the removal of furniture items and compromising layout completeness. To address these limitations, we propose RoomCraft, a multi-stage pipeline that converts real images, sketches, or text descriptions into coherent 3D indoor scenes. Our approach combines a scene generation pipeline with a constraint-driven optimization framework. The pipeline first extracts high-level scene information from user inputs and organizes it into a structured format containing room type, furniture items, and spatial relations. It then constructs a spatial relationship network to represent furniture arrangements and generates an optimized placement sequence using a heuristic-based depth-first search (HDFS) algorithm to ensure layout coherence. To handle complex multi-constraint scenarios, we introduce a unified constraint representation that processes both formal specifications and natural language inputs, enabling flexible constraint-oriented adjustments through a comprehensive action space design. Additionally, we propose a Conflict-Aware Positioning Strategy (CAPS) that dynamically adjusts placement weights to minimize furniture collisions and ensure layout completeness. Extensive experiments demonstrate that RoomCraft significantly outperforms existing methods in generating realistic, semantically coherent, and visually appealing room layouts across diverse input modalities.
☆ Artificial Intelligent Disobedience: Rethinking the Agency of Our Artificial Teammates
Artificial intelligence has made remarkable strides in recent years, achieving superhuman performance across a wide range of tasks. Yet despite these advances, most cooperative AI systems remain rigidly obedient, designed to follow human instructions without question and conform to user expectations, even when doing so may be counterproductive or unsafe. This paper argues for expanding the agency of AI teammates to include \textit{intelligent disobedience}, empowering them to make meaningful and autonomous contributions within human-AI teams. It introduces a scale of AI agency levels and uses representative examples to highlight the importance and growing necessity of treating AI autonomy as an independent research focus in cooperative settings. The paper then explores how intelligent disobedience manifests across different autonomy levels and concludes by proposing initial boundaries and considerations for studying disobedience as a core capability of artificial agents.
comment: Extended version of a paper accepted for publication in AI Magazine
☆ Breaking Rank Bottlenecks in Knowledge Graph Completion
Many Knowledge Graph Completion (KGC) models, despite using powerful encoders, rely on a simple vector-matrix multiplication to score queries against candidate object entities. When the number of entities is larger than the model's embedding dimension, which in practical scenarios is often by several orders of magnitude, we have a linear output layer with a rank bottleneck. Such bottlenecked layers limit model expressivity. We investigate both theoretically and empirically how rank bottlenecks affect KGC models. We find that, by limiting the set of feasible predictions, rank bottlenecks hurt ranking accuracy and the distribution fidelity of scores. Inspired by the language modelling literature, we propose KGE-MoS, a mixture-based output layer to break rank bottlenecks in many KGC models. Our experiments on four datasets show that KGE-MoS improves performance and probabilistic fit of KGC models for a low parameter cost.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Adapting University Policies for Generative AI: Opportunities, Challenges, and Policy Solutions in Higher Education
The rapid proliferation of generative artificial intelligence (AI) tools - especially large language models (LLMs) such as ChatGPT - has ushered in a transformative era in higher education. Universities in developed regions are increasingly integrating these technologies into research, teaching, and assessment. On one hand, LLMs can enhance productivity by streamlining literature reviews, facilitating idea generation, assisting with coding and data analysis, and even supporting grant proposal drafting. On the other hand, their use raises significant concerns regarding academic integrity, ethical boundaries, and equitable access. Recent empirical studies indicate that nearly 47% of students use LLMs in their coursework - with 39% using them for exam questions and 7% for entire assignments - while detection tools currently achieve around 88% accuracy, leaving a 12% error margin. This article critically examines the opportunities offered by generative AI, explores the multifaceted challenges it poses, and outlines robust policy solutions. Emphasis is placed on redesigning assessments to be AI-resilient, enhancing staff and student training, implementing multi-layered enforcement mechanisms, and defining acceptable use. By synthesizing data from recent research and case studies, the article argues that proactive policy adaptation is imperative to harness AI's potential while safeguarding the core values of academic integrity and equity.
☆ EFRame: Deeper Reasoning via Exploration-Filtering-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
☆ Autonomic Microservice Management via Agentic AI and MAPE-K Integration
While microservices are revolutionizing cloud computing by offering unparalleled scalability and independent deployment, their decentralized nature poses significant security and management challenges that can threaten system stability. We propose a framework based on MAPE-K, which leverages agentic AI, for autonomous anomaly detection and remediation to address the daunting task of highly distributed system management. Our framework offers practical, industry-ready solutions for maintaining robust and secure microservices. Practitioners and researchers can customize the framework to enhance system stability, reduce downtime, and monitor broader system quality attributes such as system performance level, resilience, security, and anomaly management, among others.
☆ A Different Approach to AI Safety: Proceedings from the Columbia Convening on Openness in Artificial Intelligence and AI Safety
The rapid rise of open-weight and open-source foundation models is intensifying the obligation and reshaping the opportunity to make AI systems safe. This paper reports outcomes from the Columbia Convening on AI Openness and Safety (San Francisco, 19 Nov 2024) and its six-week preparatory programme involving more than forty-five researchers, engineers, and policy leaders from academia, industry, civil society, and government. Using a participatory, solutions-oriented process, the working groups produced (i) a research agenda at the intersection of safety and open source AI; (ii) a mapping of existing and needed technical interventions and open source tools to safely and responsibly deploy open foundation models across the AI development workflow; and (iii) a mapping of the content safety filter ecosystem with a proposed roadmap for future research and development. We find that openness -- understood as transparent weights, interoperable tooling, and public governance -- can enhance safety by enabling independent scrutiny, decentralized mitigation, and culturally plural oversight. However, significant gaps persist: scarce multimodal and multilingual benchmarks, limited defenses against prompt-injection and compositional attacks in agentic systems, and insufficient participatory mechanisms for communities most affected by AI harms. The paper concludes with a roadmap of five priority research directions, emphasizing participatory inputs, future-proof content filters, ecosystem-wide safety infrastructure, rigorous agentic safeguards, and expanded harm taxonomies. These recommendations informed the February 2025 French AI Action Summit and lay groundwork for an open, plural, and accountable AI safety discipline.
comment: Proceedings from the Columbia Convening on Openness in Artificial Intelligence and AI Safety
☆ Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition ICCV 2025
Zero-shot skeleton-based action recognition aims to develop models capable of identifying actions beyond the categories encountered during training. Previous approaches have primarily focused on aligning visual and semantic representations but often overlooked the importance of fine-grained action patterns in the semantic space (e.g., the hand movements in drinking water and brushing teeth). To address these limitations, we propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition. FS-VAE consists of three key components: 1) a frequency-based enhancement module with high- and low-frequency adjustments to enrich the skeletal semantics learning and improve the robustness of zero-shot action recognition; 2) a semantic-based action description with multilevel alignment to capture both local details and global correspondence, effectively bridging the semantic gap and compensating for the inherent loss of information in skeleton sequences; 3) a calibrated cross-alignment loss that enables valid skeleton-text pairs to counterbalance ambiguous ones, mitigating discrepancies and ambiguities in skeleton and text features, thereby ensuring robust alignment. Evaluations on the benchmarks demonstrate the effectiveness of our approach, validating that frequency-enhanced semantic features enable robust differentiation of visually and semantically similar action clusters, improving zero-shot action recognition.
comment: Accepted to ICCV 2025
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Learning to Solve Multi-Objective Routing Problems on Multigraphs
Learning-based methods for routing have gained significant attention in recent years, both in single-objective and multi-objective contexts. However, the multigraph setting, where multiple paths with distinct attributes can exist between destinations, has largely been overlooked, despite its high practical relevancy. In this paper, we introduce two neural approaches to address multi-objective routing on multigraphs. Our first approach works directly on the multigraph, by autoregressively selecting edges until a tour is completed. On the other hand, our second model first prunes the multigraph into a simple graph and then builds routes. We validate both models experimentally and find that they demonstrate strong performance across a variety of problems, including the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP).
comment: 18 pages, 5 Figures
Transformers are Graph Neural Networks
We establish connections between the Transformer architecture, originally introduced for natural language processing, and Graph Neural Networks (GNNs) for representation learning on graphs. We show how Transformers can be viewed as message passing GNNs operating on fully connected graphs of tokens, where the self-attention mechanism capture the relative importance of all tokens w.r.t. each-other, and positional encodings provide hints about sequential ordering or structure. Thus, Transformers are expressive set processing networks that learn relationships among input elements without being constrained by apriori graphs. Despite this mathematical connection to GNNs, Transformers are implemented via dense matrix operations that are significantly more efficient on modern hardware than sparse message passing. This leads to the perspective that Transformers are GNNs currently winning the hardware lottery.
comment: This paper is a technical version of an article in The Gradient at https://thegradient.pub/transformers-are-graph-neural-networks/
☆ Query as Test: An Intelligent Driving Test and Data Storage Method for Integrated Cockpit-Vehicle-Road Scenarios
With the deep penetration of Artificial Intelligence (AI) in the transportation sector, intelligent cockpits, autonomous driving, and intelligent road networks are developing at an unprecedented pace. However, the data ecosystems of these three key areas are increasingly fragmented and incompatible. Especially, existing testing methods rely on data stacking, fail to cover all edge cases, and lack flexibility. To address this issue, this paper introduces the concept of "Query as Test" (QaT). This concept shifts the focus from rigid, prescripted test cases to flexible, on-demand logical queries against a unified data representation. Specifically, we identify the need for a fundamental improvement in data storage and representation, leading to our proposal of "Extensible Scenarios Notations" (ESN). ESN is a novel declarative data framework based on Answer Set Programming (ASP), which uniformly represents heterogeneous multimodal data from the cockpit, vehicle, and road as a collection of logical facts and rules. This approach not only achieves deep semantic fusion of data, but also brings three core advantages: (1) supports complex and flexible semantic querying through logical reasoning; (2) provides natural interpretability for decision-making processes; (3) allows for on-demand data abstraction through logical rules, enabling fine-grained privacy protection. We further elaborate on the QaT paradigm, transforming the functional validation and safety compliance checks of autonomous driving systems into logical queries against the ESN database, significantly enhancing the expressiveness and formal rigor of the testing. Finally, we introduce the concept of "Validation-Driven Development" (VDD), which suggests to guide developments by logical validation rather than quantitative testing in the era of Large Language Models, in order to accelerating the iteration and development process.
comment: Submitted to IEEE Transaction on Vehicular Technology
☆ Universal Retrieval for Multimodal Trajectory Modeling ICML 2025
Trajectory data, capturing human actions and environmental states across various modalities, holds significant potential for enhancing AI agent capabilities, particularly in GUI environments. However, how to model the representation of trajectory-level data presents a significant challenge that has not been systematically addressed amid explosive trajectory data growth. In this work, we introduce Multimodal Trajectory Retrieval, bridging the gap between universal retrieval and agent-centric trajectory modeling. We construct the Unified Agent Trajectory Dataset (UATD) from annotated demonstrations and states across diverse real-world scenarios. Based on this, we present GAE-Bench, a benchmark containing a large number of trajectory-based retrieval pairs. In addition, we propose GAE-Retriever, a multimodal retrieval framework that adopts vision-language models and incorporates optimized contrastive learning through a token selection and the GradCache mechanism. Comprehensive evaluations across multiple datasets show that GAE-Retriever consistently outperforms strong baselines in retrieval recall, highlighting its effectiveness in advancing multimodal trajectory retrieval.
comment: 18 pages, 3 figures, accepted by Workshop on Computer-use Agents @ ICML 2025
☆ UniCA: Adapting Time Series Foundation Model to General Covariate-Aware Forecasting
Time Series Foundation Models (TSFMs) have achieved remarkable success through large-scale pretraining. However, their design primarily targets real-valued series, limiting their ability to handle general forecasting tasks involving diverse and often heterogeneous covariates--such as categorical variables and multimodal data (e.g., images, text)--which are typically task-specific and difficult to leverage during pretraining. To address this gap, we propose Unified Covariate Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware forecasting. UniCA first performs covariate homogenization to transform heterogeneous covariates into high-level homogeneous series representations and then fuses them via a unified attention-based fusion mechanism. UniCA is compatible and universal for adaptation with both homogeneous and heterogeneous covariates, incorporating extra covariate information while preserving the generalization ability of TSFMs.Extensive experiments on multiple unimodal and multimodal covariate-aware forecasting benchmarks demonstrate the superiority of UniCA, highlighting the promise of covariate-aware TSFM adaptation in real-world forecasting scenarios. Codes are released on https://github.com/hanlu-nju/UniCA.
☆ Literature-Grounded Novelty Assessment of Scientific Ideas
Automated scientific idea generation systems have made remarkable progress, yet the automatic evaluation of idea novelty remains a critical and underexplored challenge. Manual evaluation of novelty through literature review is labor-intensive, prone to error due to subjectivity, and impractical at scale. To address these issues, we propose the Idea Novelty Checker, an LLM-based retrieval-augmented generation (RAG) framework that leverages a two-stage retrieve-then-rerank approach. The Idea Novelty Checker first collects a broad set of relevant papers using keyword and snippet-based retrieval, then refines this collection through embedding-based filtering followed by facet-based LLM re-ranking. It incorporates expert-labeled examples to guide the system in comparing papers for novelty evaluation and in generating literature-grounded reasoning. Our extensive experiments demonstrate that our novelty checker achieves approximately 13% higher agreement than existing approaches. Ablation studies further showcases the importance of the facet-based re-ranker in identifying the most relevant literature for novelty evaluation.
☆ TROFI: Trajectory-Ranked Offline Inverse Reinforcement Learning
In offline reinforcement learning, agents are trained using only a fixed set of stored transitions derived from a source policy. However, this requires that the dataset be labeled by a reward function. In applied settings such as video game development, the availability of the reward function is not always guaranteed. This paper proposes Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach to effectively learn a policy offline without a pre-defined reward function. TROFI first learns a reward function from human preferences, which it then uses to label the original dataset making it usable for training the policy. In contrast to other approaches, our method does not require optimal trajectories. Through experiments on the D4RL benchmark we demonstrate that TROFI consistently outperforms baselines and performs comparably to using the ground truth reward to learn policies. Additionally, we validate the efficacy of our method in a 3D game environment. Our studies of the reward model highlight the importance of the reward function in this setting: we show that to ensure the alignment of a value function to the actual future discounted reward, it is fundamental to have a well-engineered and easy-to-learn reward function.
comment: Published at Reinforcement Learning and Video Games Workshop at RLC 2025
☆ LeanConjecturer: Automatic Generation of Mathematical Conjectures for Theorem Proving
We introduce LeanConjecturer, a pipeline for automatically generating university-level mathematical conjectures in Lean 4 using Large Language Models (LLMs). Our hybrid approach combines rule-based context extraction with LLM-based theorem statement generation, addressing the data scarcity challenge in formal theorem proving. Through iterative generation and evaluation, LeanConjecturer produced 12,289 conjectures from 40 Mathlib seed files, with 3,776 identified as syntactically valid and non-trivial, that is, cannot be proven by \texttt{aesop} tactic. We demonstrate the utility of these generated conjectures for reinforcement learning through Group Relative Policy Optimization (GRPO), showing that targeted training on domain-specific conjectures can enhance theorem proving capabilities. Our approach generates 103.25 novel conjectures per seed file on average, providing a scalable solution for creating training data for theorem proving systems. Our system successfully verified several non-trivial theorems in topology, including properties of semi-open, alpha-open, and pre-open sets, demonstrating its potential for mathematical discovery beyond simple variations of existing results.
comment: 15 pages, 4 figures, 5 tables
☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
☆ AlphaBeta is not as good as you think: a new probabilistic model to better analyze deterministic game-solving algorithms
Deterministic game-solving algorithms are conventionally analyzed in the light of their average-case complexity against a distribution of random game-trees, where leaf values are independently sampled from a fixed distribution. This simplified model enables uncluttered mathematical analysis, revealing two key properties: root value distributions asymptotically collapse to a single fixed value for finite-valued trees, and all reasonable algorithms achieve global optimality. However, these findings are artifacts of the model's design-its long criticized independence assumption strips games of structural complexity, producing trivial instances where no algorithm faces meaningful challenges. To address this limitation, we introduce a new probabilistic model that incrementally constructs game-trees using a fixed level-wise conditional distribution. By enforcing ancestor dependency, a critical structural feature of real-world games, our framework generates problems with adjustable difficulty while retaining some form of analytical tractability. For several algorithms, including AlphaBeta and Scout, we derive recursive formulas characterizing their average-case complexities under this model. These allow us to rigorously compare algorithms on deep game-trees, where Monte-Carlo simulations are no longer feasible. While asymptotically, all algorithms seem to converge to identical branching factor (a result analogous to those of independence-based models), deep finite trees reveal stark differences: AlphaBeta incurs a significantly larger constant multiplicative factor compared to algorithms like Scout, leading to a substantial practical slowdown. Our framework sheds new light on classical game-solving algorithms, offering rigorous evidence and analytical tools to advance the understanding of these methods under a more realistic, challenging, and yet tractable model.
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ Using Large Language Models to Suggest Informative Prior Distributions in Bayesian Statistics
Selecting prior distributions in Bayesian statistics is challenging, resource-intensive, and subjective. We analyze using large-language models (LLMs) to suggest suitable, knowledge-based informative priors. We developed an extensive prompt asking LLMs not only to suggest priors but also to verify and reflect on their choices. We evaluated Claude Opus, Gemini 2.5 Pro, and ChatGPT-4o-mini on two real datasets: heart disease risk and concrete strength. All LLMs correctly identified the direction for all associations (e.g., that heart disease risk is higher for males). The quality of suggested priors was measured by their Kullback-Leibler divergence from the maximum likelihood estimator's distribution. The LLMs suggested both moderately and weakly informative priors. The moderate priors were often overconfident, resulting in distributions misaligned with the data. In our experiments, Claude and Gemini provided better priors than ChatGPT. For weakly informative priors, a key performance difference emerged: ChatGPT and Gemini defaulted to an "unnecessarily vague" mean of 0, while Claude did not, demonstrating a significant advantage. The ability of LLMs to identify correct associations shows their great potential as an efficient, objective method for developing informative priors. However, the primary challenge remains in calibrating the width of these priors to avoid over- and under-confidence.
☆ SDRNET: Stacked Deep Residual Network for Accurate Semantic Segmentation of Fine-Resolution Remotely Sensed Images
Land cover maps generated from semantic segmentation of high-resolution remotely sensed images have drawn mucon in the photogrammetry and remote sensing research community. Currently, massive fine-resolution remotely sensed (FRRS) images acquired by improving sensing and imaging technologies become available. However, accurate semantic segmentation of such FRRS images is greatly affected by substantial class disparities, the invisibility of key ground objects due to occlusion, and object size variation. Despite the extraordinary potential in deep convolutional neural networks (DCNNs) in image feature learning and representation, extracting sufficient features from FRRS images for accurate semantic segmentation is still challenging. These challenges demand the deep learning models to learn robust features and generate sufficient feature descriptors. Specifically, learning multi-contextual features to guarantee adequate coverage of varied object sizes from the ground scene and harnessing global-local contexts to overcome class disparities challenge even profound networks. Deeper networks significantly lose spatial details due to gradual downsampling processes resulting in poor segmentation results and coarse boundaries. This article presents a stacked deep residual network (SDRNet) for semantic segmentation from FRRS images. The proposed framework utilizes two stacked encoder-decoder networks to harness long-range semantics yet preserve spatial information and dilated residual blocks (DRB) between each encoder and decoder network to capture sufficient global dependencies thus improving segmentation performance. Our experimental results obtained using the ISPRS Vaihingen and Potsdam datasets demonstrate that the SDRNet performs effectively and competitively against current DCNNs in semantic segmentation.
☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
☆ SODA: Out-of-Distribution Detection in Domain-Shifted Point Clouds via Neighborhood Propagation
As point cloud data increases in prevalence in a variety of applications, the ability to detect out-of-distribution (OOD) point cloud objects becomes critical for ensuring model safety and reliability. However, this problem remains under-explored in existing research. Inspired by success in the image domain, we propose to exploit advances in 3D vision-language models (3D VLMs) for OOD detection in point cloud objects. However, a major challenge is that point cloud datasets used to pre-train 3D VLMs are drastically smaller in size and object diversity than their image-based counterparts. Critically, they often contain exclusively computer-designed synthetic objects. This leads to a substantial domain shift when the model is transferred to practical tasks involving real objects scanned from the physical environment. In this paper, our empirical experiments show that synthetic-to-real domain shift significantly degrades the alignment of point cloud with their associated text embeddings in the 3D VLM latent space, hindering downstream performance. To address this, we propose a novel methodology called SODA which improves the detection of OOD point clouds through a neighborhood-based score propagation scheme. SODA is inference-based, requires no additional model training, and achieves state-of-the-art performance over existing approaches across datasets and problem settings.
☆ Interactive Multi-Objective Probabilistic Preference Learning with Soft and Hard Bounds
High-stakes decision-making involves navigating multiple competing objectives with expensive evaluations. For instance, in brachytherapy, clinicians must balance maximizing tumor coverage (e.g., an aspirational target or soft bound of >95% coverage) against strict organ dose limits (e.g., a non-negotiable hard bound of <601 cGy to the bladder), with each plan evaluation being resource-intensive. Selecting Pareto-optimal solutions that match implicit preferences is challenging, as exhaustive Pareto frontier exploration is computationally and cognitively prohibitive, necessitating interactive frameworks to guide users. While decision-makers (DMs) often possess domain knowledge to narrow the search via such soft-hard bounds, current methods often lack systematic approaches to iteratively refine these multi-faceted preference structures. Critically, DMs must trust their final decision, confident they haven't missed superior alternatives; this trust is paramount in high-consequence scenarios. We present Active-MoSH, an interactive local-global framework designed for this process. Its local component integrates soft-hard bounds with probabilistic preference learning, maintaining distributions over DM preferences and bounds for adaptive Pareto subset refinement. This is guided by an active sampling strategy optimizing exploration-exploitation while minimizing cognitive burden. To build DM trust, Active-MoSH's global component, T-MoSH, leverages multi-objective sensitivity analysis to identify potentially overlooked, high-value points beyond immediate feedback. We demonstrate Active-MoSH's performance benefits through diverse synthetic and real-world applications. A user study on AI-generated image selection further validates our hypotheses regarding the framework's ability to improve convergence, enhance DM trust, and provide expressive preference articulation, enabling more effective DMs.
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation ACL 2025
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
comment: ACL 2025 (Findings)
☆ On the Feasibility of Poisoning Text-to-Image AI Models via Adversarial Mislabeling
Today's text-to-image generative models are trained on millions of images sourced from the Internet, each paired with a detailed caption produced by Vision-Language Models (VLMs). This part of the training pipeline is critical for supplying the models with large volumes of high-quality image-caption pairs during training. However, recent work suggests that VLMs are vulnerable to stealthy adversarial attacks, where adversarial perturbations are added to images to mislead the VLMs into producing incorrect captions. In this paper, we explore the feasibility of adversarial mislabeling attacks on VLMs as a mechanism to poisoning training pipelines for text-to-image models. Our experiments demonstrate that VLMs are highly vulnerable to adversarial perturbations, allowing attackers to produce benign-looking images that are consistently miscaptioned by the VLM models. This has the effect of injecting strong "dirty-label" poison samples into the training pipeline for text-to-image models, successfully altering their behavior with a small number of poisoned samples. We find that while potential defenses can be effective, they can be targeted and circumvented by adaptive attackers. This suggests a cat-and-mouse game that is likely to reduce the quality of training data and increase the cost of text-to-image model development. Finally, we demonstrate the real-world effectiveness of these attacks, achieving high attack success (over 73%) even in black-box scenarios against commercial VLMs (Google Vertex AI and Microsoft Azure).
comment: ACM Conference on Computer and Communications Security 2025
☆ Grounding-Aware Token Pruning: Recovering from Drastic Performance Drops in Visual Grounding Caused by Pruning
Recent Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual grounding, establishing themselves as a general interface for various vision-language applications. This progress has driven the development of token pruning methods to mitigate the high computational costs associated with processing numerous visual tokens. However, we observe that pruning significantly weakens the model's grounding ability, leading to incorrect predictions and drastic performance degradation. In Referring Expression Comprehension (REC), for instance, pruning causes the accuracy of LLaVA on the RefCOCO validation set to drop from 56.14% to 15.34%. Our analysis identifies misaligned position IDs after pruning as the primary cause of this degradation, as both the order and value of these IDs are crucial for maintaining performance in grounding tasks. To address this issue, we propose Grounding-Aware Token Pruning (GAP), a simple yet effective adjustment to position IDs that recovers REC accuracy back to 51.42%, which is 90% of the original performance in the without pruning setting, all while requiring no additional training, memory, or computational overhead. Applied to models such as Shikra, MiniGPTv2, and the LLaVA series, our method consistently improves performance across various token pruning strategies.
☆ A Survey of Continual Reinforcement Learning
Reinforcement Learning (RL) is an important machine learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in this field due to the rapid development of deep neural networks. However, the success of RL currently relies on extensive training data and computational resources. In addition, RL's limited ability to generalize across tasks restricts its applicability in dynamic and real-world environments. With the arisen of Continual Learning (CL), Continual Reinforcement Learning (CRL) has emerged as a promising research direction to address these limitations by enabling agents to learn continuously, adapt to new tasks, and retain previously acquired knowledge. In this survey, we provide a comprehensive examination of CRL, focusing on its core concepts, challenges, and methodologies. Firstly, we conduct a detailed review of existing works, organizing and analyzing their metrics, tasks, benchmarks, and scenario settings. Secondly, we propose a new taxonomy of CRL methods, categorizing them into four types from the perspective of knowledge storage and/or transfer. Finally, our analysis highlights the unique challenges of CRL and provides practical insights into future directions.
comment: This work has been submitted to the IEEE TPAMI
☆ DeepTalk: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
☆ LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs
In this paper, we present LLaVA-Scissor, a training-free token compression strategy designed for video multimodal large language models. Previous methods mostly attempt to compress tokens based on attention scores, but fail to effectively capture all semantic regions and often lead to token redundancy. Differently, we propose to leverage the Semantic Connected Components (SCC) approach that assigns tokens to distinct semantic regions within the token set, ensuring comprehensive semantic coverage. The outcome is a two-step spatio-temporal token compression strategy that utilizes SCC in both spatial and temporal domains. This strategy can effectively compress tokens by representing the entire video with a set of non-overlapping semantic tokens. We conduct extensive evaluations of the token compression capabilities of LLaVA-Scissor across diverse video understanding benchmarks, including video question answering, long video understanding, and comprehensive multi-choices benchmarks. Experimental results show that the proposed LLaVA-Scissor outperforms other token compression methods, achieving superior performance in various video understanding benchmarks, particularly at low token retention ratios. Project page: https://github.com/HumanMLLM/LLaVA-Scissor.
comment: 21 pages, 4 figures, 7 tables
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models UAI
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ 3Description: An Intuitive Human-AI Collaborative 3D Modeling Approach
This paper presents 3Description, an experimental human-AI collaborative approach for intuitive 3D modeling. 3Description aims to address accessibility and usability challenges in traditional 3D modeling by enabling non-professional individuals to co-create 3D models using verbal and gesture descriptions. Through a combination of qualitative research, product analysis, and user testing, 3Description integrates AI technologies such as Natural Language Processing and Computer Vision, powered by OpenAI and MediaPipe. Recognizing the web has wide cross-platform capabilities, 3Description is web-based, allowing users to describe the desired model and subsequently adjust its components using verbal and gestural inputs. In the era of AI and emerging media, 3Description not only contributes to a more inclusive and user-friendly design process, empowering more people to participate in the construction of the future 3D world, but also strives to increase human engagement in co-creation with AI, thereby avoiding undue surrender to technology and preserving human creativity.
comment: 5 pages, 2 figures, 3 tables (containing 21 subfigures)
☆ PARSI: Persian Authorship Recognition via Stylometric Integration
The intricate linguistic, stylistic, and metrical aspects of Persian classical poetry pose a challenge for computational authorship attribution. In this work, we present a versatile framework to determine authorship among 67 prominent poets. We employ a multi-input neural framework consisting of a transformer-based language encoder complemented by features addressing the semantic, stylometric, and metrical dimensions of Persian poetry. Our feature set encompasses 100-dimensional Word2Vec embeddings, seven stylometric measures, and categorical encodings of poetic form and meter. We compiled a vast corpus of 647,653 verses of the Ganjoor digital collection, validating the data through strict preprocessing and author verification while preserving poem-level splitting to prevent overlap. This work employs verse-level classification and majority and weighted voting schemes in evaluation, revealing that weighted voting yields 71% accuracy. We further investigate threshold-based decision filtering, allowing the model to generate highly confident predictions, achieving 97% accuracy at a 0.9 threshold, though at lower coverage. Our work focuses on the integration of deep representational forms with domain-specific features for improved authorship attribution. The results illustrate the potential of our approach for automated classification and the contribution to stylistic analysis, authorship disputes, and general computational literature research. This research will facilitate further research on multilingual author attribution, style shift, and generative modeling of Persian poetry.
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models ICDAR2025
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ L2MAC: Large Language Model Automatic Computer for Extensive Code Generation ICLR
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
comment: Published in The Twelfth International Conference on Learning Representations (ICLR), 2024. Copyright 2023 by the author(s)
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen, Mistral, and Llama families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents ACL
The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and the complexities of constructing tasks and evaluators. To overcome these limitations, we introduce Crab, the first agent benchmark framework designed to support cross-environment tasks, incorporating a graph-based fine-grained evaluation method and an efficient mechanism for task and evaluator construction. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging Crab, we developed a cross-platform Crab Benchmark-v0 comprising 120 tasks in computer desktop and mobile phone environments. We evaluated four advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%. All framework code, agent code, and task datasets are publicly available at https://github.com/camel-ai/crab.
comment: 2025 ACL Findings
♻ ☆ FEAST: A Flexible Mealtime-Assistance System Towards In-the-Wild Personalization
Physical caregiving robots hold promise for improving the quality of life of millions worldwide who require assistance with feeding. However, in-home meal assistance remains challenging due to the diversity of activities (e.g., eating, drinking, mouth wiping), contexts (e.g., socializing, watching TV), food items, and user preferences that arise during deployment. In this work, we propose FEAST, a flexible mealtime-assistance system that can be personalized in-the-wild to meet the unique needs of individual care recipients. Developed in collaboration with two community researchers and informed by a formative study with a diverse group of care recipients, our system is guided by three key tenets for in-the-wild personalization: adaptability, transparency, and safety. FEAST embodies these principles through: (i) modular hardware that enables switching between assisted feeding, drinking, and mouth-wiping, (ii) diverse interaction methods, including a web interface, head gestures, and physical buttons, to accommodate diverse functional abilities and preferences, and (iii) parameterized behavior trees that can be safely and transparently adapted using a large language model. We evaluate our system based on the personalization requirements identified in our formative study, demonstrating that FEAST offers a wide range of transparent and safe adaptations and outperforms a state-of-the-art baseline limited to fixed customizations. To demonstrate real-world applicability, we conduct an in-home user study with two care recipients (who are community researchers), feeding them three meals each across three diverse scenarios. We further assess FEAST's ecological validity by evaluating with an Occupational Therapist previously unfamiliar with the system. In all cases, users successfully personalize FEAST to meet their individual needs and preferences. Website: https://emprise.cs.cornell.edu/feast
comment: RSS 2025 - Best Paper Award
♻ ☆ LoopGen: Training-Free Loopable Music Generation
Loops--short audio segments designed for seamless repetition--are central to many music genres, particularly those rooted in dance and electronic styles. However, current generative music models struggle to produce truly loopable audio, as generating a short waveform alone does not guarantee a smooth transition from its endpoint back to its start, often resulting in audible discontinuities. We address this gap by modifying a non-autoregressive model (MAGNeT) to generate tokens in a circular pattern, letting the model attend to the beginning of the audio when creating its ending. This inference-only approach results in generations that are aware of future context and loop naturally, without the need for any additional training or data. We evaluate the consistency of loop transitions by computing token perplexity around the seam of the loop, observing a 55% improvement. Blind listening tests further confirm significant perceptual gains over baseline methods, improving mean ratings by 70%. Taken together, these results highlight the effectiveness of inference-only approaches in improving generative models and underscore the advantages of non-autoregressive methods for context-aware music generation.
♻ ☆ Heuristics for AI-driven Graphical Asset Generation Tools in Game Design and Development Pipelines: A User-Centred Approach
Graphical assets play an important role in the design and development of games. There is potential in the use of AI-driven generative tools, to aid in creating graphical assets, thus improving game design and development pipelines. However, there is little research to address how the generative methods can fit into the wider pipeline. There also no guidelines or heuristics for creating such tools. To address this gap we conducted a user study with 16 game designers and developers to examine their behaviour and interaction with generative tools for graphical assets. The findings highlight that early design stage is preferred by all participants. Designers and developers are inclined to use such tools for creating large amounts of variations at the cost of quality as they can improve the quality of the artefacts once they generate a suitable asset. The results also strongly raised the need for better integration of such tools in existing design and development environments and the need for the outputs to be in common data formats, to be manipulatable and smoothly integrate into existing environments. The study also highlights the requirement for further emphasis on the needs of the users to incorporate these tools effectively in existing pipelines. Informed by these results, we provide a set of heuristics for creating tools that meet the expectations and needs of game designers and developers.
♻ ☆ Toward Data Systems That Are Business Semantic Centric and AI Agents Assisted
Contemporary businesses operate in dynamic environments requiring rapid adaptation to achieve goals and maintain competitiveness. Existing data platforms often fall short by emphasizing tools over alignment with business needs, resulting in inefficiencies and delays. To address this gap, I propose the Business Semantics Centric, AI Agents Assisted Data System (BSDS), a holistic system that integrates architecture, workflows, and team organization to ensure data systems are tailored to business priorities rather than dictated by technical constraints. BSDS redefines data systems as dynamic enablers of business success, transforming them from passive tools into active drivers of organizational growth. BSDS has a modular architecture that comprises curated data linked to business entities, a knowledge base for context-aware AI agents, and efficient data pipelines. AI agents play a pivotal role in assisting with data access and system management, reducing human effort, and improving scalability. Complementing this architecture, BSDS incorporates workflows optimized for both exploratory data analysis and production requirements, balancing speed of delivery with quality assurance. A key innovation of BSDS is its incorporation of the human factor. By aligning data team expertise with business semantics, BSDS bridges the gap between technical capabilities and business needs. Validated through real-world implementation, BSDS accelerates time-to-market for data-driven initiatives, enhances cross-functional collaboration, and provides a scalable blueprint for businesses of all sizes. Future research can build on BSDS to explore optimization strategies using complex systems and adaptive network theories, as well as developing autonomous data systems leveraging AI agents.
comment: Published by IEEE Access
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile World Models ICML 2025
Exploration is a cornerstone of reinforcement learning (RL). Intrinsic motivation attempts to decouple exploration from external, task-based rewards. However, established approaches to intrinsic motivation that follow general principles such as information gain, often only uncover low-level interactions. In contrast, children's play suggests that they engage in meaningful high-level behavior by imitating or interacting with their caregivers. Recent work has focused on using foundation models to inject these semantic biases into exploration. However, these methods often rely on unrealistic assumptions, such as language-embedded environments or access to high-level actions. We propose SEmaNtically Sensible ExploratIon (SENSEI), a framework to equip model-based RL agents with an intrinsic motivation for semantically meaningful behavior. SENSEI distills a reward signal of interestingness from Vision Language Model (VLM) annotations, enabling an agent to predict these rewards through a world model. Using model-based RL, SENSEI trains an exploration policy that jointly maximizes semantic rewards and uncertainty. We show that in both robotic and video game-like simulations SENSEI discovers a variety of meaningful behaviors from image observations and low-level actions. SENSEI provides a general tool for learning from foundation model feedback, a crucial research direction, as VLMs become more powerful.
comment: ICML 2025 camera-ready version. Project webpage at https://sites.google.com/view/sensei-paper
♻ ☆ Automated detection of atomicity violations in large-scale systems
Atomicity violations in interrupt-driven programs pose a significant threat to software safety in critical systems. These violations occur when the execution sequence of operations on shared resources is disrupted by asynchronous interrupts. Detecting atomicity violations is challenging due to the vast program state space, application-level code dependencies, and complex domain-specific knowledge. We propose Clover, a hybrid framework that integrates static analysis with large language model (LLM) agents to detect atomicity violations in real-world programs. Clover first performs static analysis to extract critical code snippets and operation information. It then initiates a multi-agent process, where the expert agent leverages domain-specific knowledge to detect atomicity violations, which are subsequently validated by the judge agent. Evaluations on RaceBench 2.1, SV-COMP, and RWIP demonstrate that Clover achieves a precision/recall of 92.3%/86.6%, outperforming existing approaches by 27.4-118.2% on F1-score.
♻ ☆ How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data?
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Local Markov Equivalence and Local Causal Discovery for Identifying Controlled Direct Effects UAI 2025
Understanding and identifying controlled direct effects (CDEs) is crucial across numerous scientific domains, including public health. While existing methods can identify these effects from causal directed acyclic graphs (DAGs), the true underlying structure is often unknown in practice. Essential graphs, which represent a Markov equivalence class of DAGs characterized by the same set of $d$-separations, provide a more practical and realistic alternative. However, learning the full essential graph is computationally intensive and typically depends on strong, untestable assumptions. In this work, we characterize a local class of graphs, defined relative to a target variable, that share a specific subset of $d$-separations, and introduce a graphical representation of this class, called the local essential graph (LEG). We then present LocPC, a novel algorithm designed to recover the LEG from an observed distribution using only local conditional independence tests. Building on LocPC, we propose LocPC-CDE, an algorithm that discovers the portion of the LEG that is both sufficient and necessary to identify a CDE, bypassing the need of retrieving the full essential graph. Compared to global methods, our algorithms require less conditional independence tests and operate under weaker assumptions while maintaining theoretical guarantees. We illustrate the effectiveness of our approach through simulation studies.
comment: Accepted to the UAI 2025 workshop on Causal Abstractions and Representations
♻ ☆ USM-VC: Mitigating Timbre Leakage with Universal Semantic Mapping Residual Block for Voice Conversion
Voice conversion (VC) transforms source speech into a target voice by preserving the content. However, timbre information from the source speaker is inherently embedded in the content representations, causing significant timbre leakage and reducing similarity to the target speaker. To address this, we introduce a Universal Semantic Matching (USM) residual block to a content extractor. The residual block consists of two weighted branches: 1) universal semantic dictionary based Content Feature Re-expression (CFR) module, supplying timbre-free content representation. 2) skip connection to the original content layer, providing complementary fine-grained information. In the CFR module, each dictionary entry in the universal semantic dictionary represents a phoneme class, computed statistically using speech from multiple speakers, creating a stable, speaker-independent semantic set. We introduce a CFR method to obtain timbre-free content representations by expressing each content frame as a weighted linear combination of dictionary entries using corresponding phoneme posteriors as weights. Extensive experiments across various VC frameworks demonstrate that our approach effectively mitigates timbre leakage and significantly improves similarity to the target speaker.
♻ ☆ The AI Imperative: Scaling High-Quality Peer Review in Machine Learning
Peer review, the bedrock of scientific advancement in machine learning (ML), is strained by a crisis of scale. Exponential growth in manuscript submissions to premier ML venues such as NeurIPS, ICML, and ICLR is outpacing the finite capacity of qualified reviewers, leading to concerns about review quality, consistency, and reviewer fatigue. This position paper argues that AI-assisted peer review must become an urgent research and infrastructure priority. We advocate for a comprehensive AI-augmented ecosystem, leveraging Large Language Models (LLMs) not as replacements for human judgment, but as sophisticated collaborators for authors, reviewers, and Area Chairs (ACs). We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making. Crucially, we contend that the development of such systems hinges on access to more granular, structured, and ethically-sourced peer review process data. We outline a research agenda, including illustrative experiments, to develop and validate these AI assistants, and discuss significant technical and ethical challenges. We call upon the ML community to proactively build this AI-assisted future, ensuring the continued integrity and scalability of scientific validation, while maintaining high standards of peer review.
comment: 18 pages, 3 figures. Position paper
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Enhancing Object Detection Robustness: Detecting and Restoring Confidence in the Presence of Adversarial Patch Attacks
The widespread adoption of computer vision systems has underscored their susceptibility to adversarial attacks, particularly adversarial patch attacks on object detectors. This study evaluates defense mechanisms for the YOLOv5 model against such attacks. Optimized adversarial patches were generated and placed in sensitive image regions, by applying EigenCAM and grid search to determine optimal placement. We tested several defenses, including Segment and Complete (SAC), Inpainting, and Latent Diffusion Models. Our pipeline comprises three main stages: patch application, object detection, and defense analysis. Results indicate that adversarial patches reduce average detection confidence by 22.06\%. Defenses restored confidence levels by 3.45\% (SAC), 5.05\% (Inpainting), and significantly improved them by 26.61\%, which even exceeds the original accuracy levels, when using the Latent Diffusion Model, highlighting its superior effectiveness in mitigating the effects of adversarial patches.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ On CNF formulas irredundant with respect to unit clause propagation
Two CNF formulas are called ucp-equivalent, if they behave in the same way with respect to the unit clause propagation (UCP). A formula is called ucp-irredundant, if removing any clause leads to a formula which is not ucp-equivalent to the original one. As a consequence of known results, the ratio of the size of a ucp-irredundant formula and the size of a smallest ucp-equivalent formula is at most $n^2$, where $n$ is the number of the variables. We demonstrate an example of a ucp-irredundant formula for a symmetric definite Horn function which is larger than a smallest ucp-equivalent formula by a factor $\Omega(n/\ln n)$. Consequently, a general upper bound on the above ratio cannot be smaller than this.
comment: 21 pages, this version includes modifications suggested by journal reviewers to improve readability
♻ ☆ Epistemic Artificial Intelligence is Essential for Machine Learning Models to Truly 'Know When They Do Not Know'
Despite AI's impressive achievements, including recent advances in generative and large language models, there remains a significant gap in the ability of AI systems to handle uncertainty and generalize beyond their training data. AI models consistently fail to make robust enough predictions when facing unfamiliar or adversarial data. Traditional machine learning approaches struggle to address this issue, due to an overemphasis on data fitting, while current uncertainty quantification approaches suffer from serious limitations. This position paper posits a paradigm shift towards epistemic artificial intelligence, emphasizing the need for models to learn from what they know while at the same time acknowledging their ignorance, using the mathematics of second-order uncertainty measures. This approach, which leverages the expressive power of such measures to efficiently manage uncertainty, offers an effective way to improve the resilience and robustness of AI systems, allowing them to better handle unpredictable real-world environments.
♻ ☆ StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment IJCAI 2025
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
comment: IJCAI 2025; Code is available at https://github.com/alinlab/StarFT
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce Anchored-Branched Universal Physics Transformers (AB-UPT) as a novel modeling scheme for building neural surrogates for computational fluid dynamics (CFD) simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a computer-aided design geometry alone, omitting the need for costly CFD meshing procedures.
comment: Preprint. Github: https://github.com/Emmi-AI/AB-UPT
♻ ☆ Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models ACL 2025
Parameter-Efficient Fine-Tuning (PEFT) has gained prominence through low-rank adaptation methods like LoRA. In this paper, we focus on sparsity-based PEFT (SPEFT), which introduces trainable sparse adaptations to the weight matrices in the model, offering greater flexibility in selecting fine-tuned parameters compared to low-rank methods. We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies, and identify simple gradient-based metrics is reliable, and results are on par with the best alternatives, offering both computational efficiency and robust performance. Additionally, we compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance, while dynamic masking offers no substantial benefits. Across NLP tasks, a simple gradient-based, static SPEFT consistently outperforms other fine-tuning methods for LLMs, providing a simple yet effective baseline for SPEFT. Our work challenges the notion that complexity is necessary for effective PEFT, while our open-source framework establishes a reproducible benchmark for future research, which is available at [https://github.com/0-ml/speft].
comment: ACL 2025
♻ ☆ Fairness and Bias in Algorithmic Hiring: a Multidisciplinary Survey
Employers are adopting algorithmic hiring technology throughout the recruitment pipeline. Algorithmic fairness is especially applicable in this domain due to its high stakes and structural inequalities. Unfortunately, most work in this space provides partial treatment, often constrained by two competing narratives, optimistically focused on replacing biased recruiter decisions or pessimistically pointing to the automation of discrimination. Whether, and more importantly what types of, algorithmic hiring can be less biased and more beneficial to society than low-tech alternatives currently remains unanswered, to the detriment of trustworthiness. This multidisciplinary survey caters to practitioners and researchers with a balanced and integrated coverage of systems, biases, measures, mitigation strategies, datasets, and legal aspects of algorithmic hiring and fairness. Our work supports a contextualized understanding and governance of this technology by highlighting current opportunities and limitations, providing recommendations for future work to ensure shared benefits for all stakeholders.
comment: Alessandro Fabris, Nina Baranowska, Matthew J. Dennis, David Graus, Philipp Hacker, Jorge Saldivar, Frederik Zuiderveen Borgesius, and Asia J. Biega. Fairness and Bias in Algorithmic Hiring: a Multidisciplinary Survey. ACM Transactions on Intelligent Systems and Technology. 2025. https://doi.org/10.1145/3696457
♻ ☆ Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search ICLR 2025
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
comment: Presented at ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 178 pages
♻ ☆ English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k\_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to yielded non-significant results indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures, v2
♻ ☆ SONG: Self-Organizing Neural Graphs WACV 2023
Recent years have seen a surge in research on deep interpretable neural networks with decision trees as one of the most commonly incorporated tools. There are at least three advantages of using decision trees over logistic regression classification models: they are easy to interpret since they are based on binary decisions, they can make decisions faster, and they provide a hierarchy of classes. However, one of the well-known drawbacks of decision trees, as compared to decision graphs, is that decision trees cannot reuse the decision nodes. Nevertheless, decision graphs were not commonly used in deep learning due to the lack of efficient gradient-based training techniques. In this paper, we fill this gap and provide a general paradigm based on Markov processes, which allows for efficient training of the special type of decision graphs, which we call Self-Organizing Neural Graphs (SONG). We provide an extensive theoretical study of SONG, complemented by experiments conducted on Letter, Connect4, MNIST, CIFAR, and TinyImageNet datasets, showing that our method performs on par or better than existing decision models.
comment: Accepted in WACV 2023
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency ICCV2025
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
comment: ICCV2025
♻ ☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance ICML 2025
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
comment: ICML 2025
♻ ☆ Improving LLM Outputs Against Jailbreak Attacks with Expert Model Integration
Using LLMs in a production environment presents security challenges that include vulnerabilities to jailbreaks and prompt injections, which can result in harmful outputs for humans or the enterprise. The challenge is amplified when working within a specific domain, as topics generally accepted for LLMs to address may be irrelevant to that field. These problems can be mitigated, for example, by fine-tuning large language models with domain-specific and security-focused data. However, these alone are insufficient, as jailbreak techniques evolve. Additionally, API-accessed models do not offer the flexibility needed to tailor behavior to industry-specific objectives, and in-context learning is not always sufficient or reliable. In response to these challenges, we introduce Archias, an expert model adept at distinguishing between in-domain and out-of-domain communications. Archias classifies user inquiries into several categories: in-domain (specifically for the automotive industry), malicious questions, price injections, prompt injections, and out-of-domain examples. Our methodology integrates outputs from the expert model (Archias) into prompts, which are then processed by the LLM to generate responses. This method increases the model's ability to understand the user's intention and give appropriate answers. Archias can be adjusted, fine-tuned, and used for many different purposes due to its small size. Therefore, it can be easily customized to the needs of any industry. To validate our approach, we created a benchmark dataset for the automotive industry. Furthermore, in the interest of advancing research and development, we release our benchmark dataset to the community.
comment: Under review at IEEE Access. Supplementary material is included in the main PDF
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ A Systematic Review of Human-AI Co-Creativity
The co creativity community is making significant progress in developing more sophisticated and tailored systems to support and enhance human creativity. Design considerations from prior work can serve as a valuable and efficient foundation for future systems. To support this effort, we conducted a systematic literature review of 62 papers on co-creative systems. These papers cover a diverse range of applications, including visual arts, design, and writing, where the AI acts not just as a tool but as an active collaborator in the creative process. From this review, we identified several key dimensions relevant to system design: phase of the creative process, creative task, proactive behavior of the system, user control, system embodiment, and AI model type. Our findings suggest that systems offering high user control lead to greater satisfaction, trust, and a stronger sense of ownership over creative outcomes. Furthermore, proactive systems, when adaptive and context sensitive, can enhance collaboration. We also extracted 24 design considerations, highlighting the value of encouraging users to externalize their thoughts and of increasing the system's social presence and transparency to foster trust. Despite recent advancements, important gaps remain, such as limited support for early creative phases like problem clarification, and challenges related to user adaptation to AI systems.
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available \footnote{https://anonymous.4open.science/r/Amber-B203/}.
comment: 8pages. arXiv admin note: text overlap with arXiv:2410.08821 by other authors
♻ ☆ DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
comment: Zero-shot video editing
♻ ☆ Programming Distributed Collective Processes in the eXchange Calculus
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
comment: 41 pages, 17 figures
♻ ☆ Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ Problem Solving Through Human-AI Preference-Based Cooperation
While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including difficulty to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAICo2, a novel human-AI co-construction framework. We take first steps towards a formalization of HAICo2 and discuss the difficult open research problems that it faces.
comment: 22 pages (main), 6 pages (appendix), 5 figures
♻ ☆ KunLunBaizeRAG: Reinforcement Learning Driven Inference Performance Leap for Large Language Models
This paper introduces KunLunBaizeRAG, a reinforcement learning-driven reasoning framework designed to enhance the reasoning capabilities of large language models (LLMs) in complex multi-hop question-answering tasks. The framework addresses key limitations of traditional RAG, such as retrieval drift, information redundancy, and strategy rigidity. Key innovations include the RAG-driven Reasoning Alignment (RDRA) mechanism, the Search-Think Iterative Enhancement (STIE) mechanism, the Network-Local Intelligent Routing (NLR) mechanism, and a progressive hybrid training strategy. Experimental results demonstrate significant improvements in exact match (EM) and LLM-judged score (LJ) across four benchmarks, highlighting the framework's robustness and effectiveness in complex reasoning scenarios.
♻ ☆ Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team
Scientific progress increasingly relies on effective collaboration among researchers, a dynamic that large language models (LLMs) have only begun to emulate. While recent LLM-based scientist agents show promise in autonomous scientific discovery, they often lack the interactive reasoning and evaluation mechanisms essential to real-world research. We propose IDVSCI (Internal Discussion and Vote SCIentists), a multi-agent framework built on LLMs that incorporates two key innovations: a Dynamic Knowledge Exchange mechanism enabling iterative feedback among agents, and a Dual-Diversity Review paradigm that simulates heterogeneous expert evaluation. These components jointly promote deeper reasoning and the generation of more creative and impactful scientific ideas. To evaluate the effectiveness and generalizability of our approach, we conduct experiments on two datasets: a widely used benchmark in computer science and a new dataset we introduce in the health sciences domain. Results show that IDVSCI consistently achieves the best performance across both datasets, outperforming existing systems such as AI Scientist and VIRSCI. These findings highlight the value of modeling interaction and peer review dynamics in LLM-based autonomous research.
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ EasyDistill: A Comprehensive Toolkit for Effective Knowledge Distillation of Large Language Models
In this paper, we present EasyDistill, a comprehensive toolkit designed for effective black-box and white-box knowledge distillation (KD) of large language models (LLMs). Our framework offers versatile functionalities, including data synthesis, supervised fine-tuning, ranking optimization, and reinforcement learning techniques specifically tailored for KD scenarios. The toolkit accommodates KD functionalities for both System 1 (fast, intuitive) and System 2 (slow, analytical) models. With its modular design and user-friendly interface, EasyDistill empowers researchers and industry practitioners to seamlessly experiment with and implement state-of-the-art KD strategies for LLMs. In addition, EasyDistill provides a series of robust distilled models and KD-based industrial solutions developed by us, along with the corresponding open-sourced datasets, catering to a variety of use cases. Furthermore, we describe the seamless integration of EasyDistill into Alibaba Cloud's Platform for AI (PAI). Overall, the EasyDistill toolkit makes advanced KD techniques for LLMs more accessible and impactful within the NLP community.
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v4 updates: mention concurrent work of speculative decoding for SSM
♻ ☆ The SWE-Bench Illusion: When State-of-the-Art LLMs Remember Instead of Reason
As large language models (LLMs) become increasingly capable and widely adopted, benchmarks play a central role in assessing their practical utility. For example, SWE-Bench Verified has emerged as a critical benchmark for evaluating LLMs' software engineering abilities, particularly their aptitude for resolving real-world GitHub issues. Recent LLMs show impressive performance on SWE-Bench, leading to optimism about their capacity for complex coding tasks. However, current evaluation protocols may overstate these models' true capabilities. It is crucial to distinguish LLMs' generalizable problem-solving ability and other learned artifacts. In this work, we introduce two diagnostic tasks: file path identification from issue descriptions alone, and ground truth function reproduction with only the current file context and issue description to probe models' underlying knowledge. We present empirical evidence that performance gains on SWE-Bench-Verified may be partially driven by memorization rather than genuine problem-solving. We show that state-of-the-art models achieve up to 76% accuracy in identifying buggy file paths using only issue descriptions, without access to repository structure. This performance is merely up to 53% on tasks from repositories not included in SWE-Bench, pointing to possible data contamination or memorization. A similar pattern is also observed for the function reproduction task, where the verbatim similarity is much higher on SWE-Bench-Verified than on other similar coding benchmarks. These findings raise concerns about the validity of existing results and underscore the need for more robust, contamination-resistant benchmarks to reliably evaluate LLMs' coding abilities.
♻ ☆ From Data Quality for AI to AI for Data Quality: A Systematic Review of Tools for AI-Augmented Data Quality Management in Data Warehouses
While high data quality (DQ) is critical for analytics, compliance, and AI performance, data quality management (DQM) remains a complex, resource-intensive, and often manual process. This study investigates the extent to which existing tools support AI-augmented data quality management (DQM) in data warehouse environments. To this end, we conduct a systematic review of 151 DQ tools to evaluate their automation capabilities, particularly in detecting and recommending DQ rules in data warehouses -- a key component of modern data ecosystems. Using a multi-phase screening process based on functionality, trialability, regulatory compliance (e.g., GDPR), and architectural compatibility with data warehouses, only 10 tools met the criteria for AI-augmented DQM. The analysis reveals that most tools emphasize data cleansing and preparation for AI, rather than leveraging AI to improve DQ itself. Although metadata- and ML-based rule detection techniques are present, features such as SQL-based rule specification, reconciliation logic, and explainability of AI-driven recommendations remain scarce. This study offers practical guidance for tool selection and outlines critical design requirements for next-generation AI-driven DQ solutions -- advocating a paradigm shift from ``data quality for AI'' to ``AI for data quality management''.
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.The dataset and code are publicly available at https://github.com/RS2002/KNN-MMD .
♻ ☆ EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods
Accurate forecasting of the EUR/USD exchange rate is crucial for investors, businesses, and policymakers. This paper proposes a novel framework, IUS, that integrates unstructured textual data from news and analysis with structured data on exchange rates and financial indicators to enhance exchange rate prediction. The IUS framework employs large language models for sentiment polarity scoring and exchange rate movement classification of texts. These textual features are combined with quantitative features and input into a Causality-Driven Feature Generator. An Optuna-optimized Bi-LSTM model is then used to forecast the EUR/USD exchange rate. Experiments demonstrate that the proposed method outperforms benchmark models, reducing MAE by 10.69% and RMSE by 9.56% compared to the best performing baseline. Results also show the benefits of data fusion, with the combination of unstructured and structured data yielding higher accuracy than structured data alone. Furthermore, feature selection using the top 12 important quantitative features combined with the textual features proves most effective. The proposed IUS framework and Optuna-Bi-LSTM model provide a powerful new approach for exchange rate forecasting through multi-source data integration.
♻ ☆ Dynamic Adaptive Rank Space Exploration for Efficient Sentiment Analysis with Large Language Models
Sentiment analysis has become increasingly important for assessing public opinion and informing decision-making. Large language models (LLMs) have revolutionized this field by capturing nuanced language patterns. However, adapting LLMs to domain-specific sentiment analysis tasks remains challenging due to computational constraints and the need for optimal fine-tuning. To address these challenges, we propose a novel Dynamic Adaptive Rank Space Exploration (DARSE) framework for efficient and effective sentiment analysis using LLMs. DARSE consists of a coarse-grained greedy algorithm to identify the optimal rank range, a fine-grained exploration algorithm to refine rank selection, and a dynamic rank allocation method to determine the optimal rank combination for each LLM layer. Extensive experiments demonstrate that DARSE significantly improves sentiment analysis accuracy, achieving a 15.1% improvement in MSE and a 4.3% improvement in accuracy compared to previous work. Our framework strikes a balance between computational efficiency and model performance, making it a promising approach for sentiment analysis with LLMs.
♻ ☆ EUR/USD Exchange Rate Forecasting incorporating Text Mining Based on Pre-trained Language Models and Deep Learning Methods
This study introduces a novel approach for EUR/USD exchange rate forecasting that integrates deep learning, textual analysis, and particle swarm optimization (PSO). By incorporating online news and analysis texts as qualitative data, the proposed PSO-LSTM model demonstrates superior performance compared to traditional econometric and machine learning models. The research employs advanced text mining techniques, including sentiment analysis using the RoBERTa-Large model and topic modeling with LDA. Empirical findings underscore the significant advantage of incorporating textual data, with the PSO-LSTM model outperforming benchmark models such as SVM, SVR, ARIMA, and GARCH. Ablation experiments reveal the contribution of each textual data category to the overall forecasting performance. The study highlights the transformative potential of artificial intelligence in finance and paves the way for future research in real-time forecasting and the integration of alternative data sources.
♻ ☆ MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.
♻ ☆ Generative AI for Software Architecture. Applications, Challenges, and Future Directions
Context: Generative Artificial Intelligence (GenAI) is transforming much of software development, yet its application in software architecture is still in its infancy, and no prior study has systematically addressed the topic. Aim: We aim to systematically synthesize the use, rationale, contexts, usability, and future challenges of GenAI in software architecture. Method: We performed a multivocal literature review (MLR), analyzing peer-reviewed and gray literature, identifying current practices, models, adoption contexts, and reported challenges, extracting themes via open coding. Results: Our review identified significant adoption of GenAI for architectural decision support and architectural reconstruction. OpenAI GPT models are predominantly applied, and there is consistent use of techniques such as few-shot prompting and retrieved-augmented generation (RAG). GenAI has been applied mostly to initial stages of the Software Development Life Cycle (SDLC), such as Requirements-to-Architecture and Architecture-to-Code. Monolithic and microservice architectures were the dominant targets. However, rigorous testing of GenAI outputs was typically missing from the studies. Among the most frequent challenges are model precision, hallucinations, ethical aspects, privacy issues, lack of architecture-specific datasets, and the absence of sound evaluation frameworks. Conclusions: GenAI shows significant potential in software design, but several challenges remain on its path to greater adoption. Research efforts should target designing general evaluation methodologies, handling ethics and precision, increasing transparency and explainability, and promoting architecture-specific datasets and benchmarks to bridge the gap between theoretical possibilities and practical use.
♻ ☆ LRP4RAG: Detecting Hallucinations in Retrieval-Augmented Generation via Layer-wise Relevance Propagation
Retrieval-Augmented Generation (RAG) has become a primary technique for mitigating hallucinations in large language models (LLMs). However, incomplete knowledge extraction and insufficient understanding can still mislead LLMs to produce irrelevant or even contradictory responses, which means hallucinations persist in RAG. In this paper, we propose LRP4RAG, a method based on the Layer-wise Relevance Propagation (LRP) algorithm for detecting hallucinations in RAG. Specifically, we first utilize LRP to compute the relevance between the input and output of the RAG generator. We then apply further extraction and resampling to the relevance matrix. The processed relevance data are input into multiple classifiers to determine whether the output contains hallucinations. To the best of our knowledge, this is the first time that LRP has been used for detecting RAG hallucinations, and extensive experiments demonstrate that LRP4RAG outperforms existing baselines.
♻ ☆ Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models
Sentiment analysis plays a crucial role in various domains, such as business intelligence and financial forecasting. Large language models (LLMs) have become a popular paradigm for sentiment analysis, leveraging multi-task learning to address specific tasks concurrently. However, LLMs with fine-tuning for sentiment analysis often underperforms due to the inherent challenges in managing diverse task complexities. Moreover, constant-weight approaches in multi-task learning struggle to adapt to variations in data characteristics, further complicating model effectiveness. To address these issues, we propose a novel multi-task learning framework with a dynamic adaptive optimization (DAO) module. This module is designed as a plug-and-play component that can be seamlessly integrated into existing models, providing an effective and flexible solution for multi-task learning. The key component of the DAO module is dynamic adaptive loss, which dynamically adjusts the weights assigned to different tasks based on their relative importance and data characteristics during training. Sentiment analyses on a standard and customized financial text dataset demonstrate that the proposed framework achieves superior performance. Specifically, this work improves the Mean Squared Error (MSE) and Accuracy (ACC) by 15.58% and 1.24% respectively, compared with previous work.
♻ ☆ Mobile-R1: Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via Task-Level Rewards
Vision-language model-based mobile agents have gained the ability to not only understand complex instructions and mobile screenshots, but also optimize their action outputs via thinking and reasoning, benefiting from reinforcement learning, such as Group Relative Policy Optimization (GRPO). However, existing research centers on offline reinforcement learning training or online optimization using action-level rewards, which limits the agent's dynamic interaction with the environment. This often results in agents settling into local optima, thereby weakening their ability for exploration and error action correction. To address these challenges, we introduce an approach called Mobile-R1, which employs interactive multi-turn reinforcement learning with task-level rewards for mobile agents. Our training framework consists of three stages: initial format finetuning, single-step online training via action-level reward, followed by online training via task-level reward based on multi-turn trajectories. This strategy is designed to enhance the exploration and error correction capabilities of Mobile-R1, leading to significant performance improvements. Moreover, we have collected a dataset covering 28 Chinese applications with 24,521 high-quality manual annotations and established a new benchmark with 500 trajectories. We will open source all resources, including the dataset, benchmark, model weight, and codes: https://mobile-r1.github.io/Mobile-R1/.
comment: 14 pages, 12 figures
♻ ☆ PhysUniBench: An Undergraduate-Level Physics Reasoning Benchmark for Multimodal Models
Physics problem-solving is a challenging domain for large AI models, requiring integration of conceptual understanding, mathematical reasoning, and interpretation of physical diagrams. Current evaluation methodologies show notable limitations in capturing the breadth and complexity of undergraduate-level physics, underscoring the need for more rigorous assessments. To this end, we present PhysUniBench, a large-scale multimodal benchmark designed to evaluate and improve the reasoning capabilities of multimodal large language models (MLLMs) specifically on undergraduate-level physics problems. PhysUniBench consists of 3,304 physics questions spanning 8 major sub-disciplines of physics, each accompanied by one visual diagrams. The benchmark includes both open-ended and multiple-choice questions, systematically curated and difficulty-rated through an iterative model-in-the-loop process. The benchmark's construction involved a rigorous multi-stage process, including multiple roll-outs, expert-level evaluation, automated filtering of easily solved problems, and a nuanced difficulty grading system with five levels. Through extensive experiments, we observe that current state-of-the-art models encounter substantial challenges in physics reasoning. For example, GPT-4o mini achieves only about 34.2% accuracy in the proposed PhysUniBench. These results highlight that current MLLMs struggle with advanced physics reasoning, especially on multi-step problems and those requiring precise diagram interpretation. By providing a broad and rigorous assessment tool, PhysUniBench aims to drive progress in AI for Science, encouraging the development of models with stronger physical reasoning, problem-solving skills, and multimodal understanding. The benchmark and evaluation scripts are available at https://prismax-team.github.io/PhysUniBenchmark/.
♻ ☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 30 pages; 4 figures
♻ ☆ OpenTCM: A GraphRAG-Empowered LLM-based System for Traditional Chinese Medicine Knowledge Retrieval and Diagnosis
Traditional Chinese Medicine (TCM) represents a rich repository of ancient medical knowledge that continues to play an important role in modern healthcare. Due to the complexity and breadth of the TCM literature, the integration of AI technologies is critical for its modernization and broader accessibility. However, this integration poses considerable challenges, including the interpretation of obscure classical Chinese texts and the modeling of intricate semantic relationships among TCM concepts. In this paper, we develop OpenTCM, an LLM-based system that combines a domain-specific TCM knowledge graph and Graph-based Retrieval-Augmented Generation (GraphRAG). First, we extract more than 3.73 million classical Chinese characters from 68 gynecological books in the Chinese Medical Classics Database, with the help of TCM and gynecology experts. Second, we construct a comprehensive multi-relational knowledge graph comprising more than 48,000 entities and 152,000 interrelationships, using customized prompts and Chinese-oriented LLMs such as DeepSeek and Kimi to ensure high-fidelity semantic understanding. Last, we empower OpenTCM with GraphRAG, enabling high-fidelity ingredient knowledge retrieval and diagnostic question-answering without model fine-tuning. Experimental evaluations demonstrate that OpenTCM achieves mean expert scores (MES) of 4.378 in ingredient information retrieval and 4.045 in diagnostic question-answering tasks, outperforming state-of-the-art solutions in real-world TCM use cases.
comment: 8 pages, 5 figures, 7 tables
♻ ☆ $C^3$-Bench: The Things Real Disturbing LLM based Agent in Multi-Tasking
Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark $C^3$-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, $C^3$-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/TencentHunyuan/C3-Benchmark.
♻ ☆ Collective Reasoning Among LLMs: A Framework for Answer Validation Without Ground Truth
We introduce a new approach in which several advanced large language models-specifically GPT-4-0125-preview, Meta-LLAMA-3-70B-Instruct, Claude-3-Opus, and Gemini-1.5-Flash-collaborate to both produce and answer intricate, doctoral-level probability problems without relying on any single "correct" reference. Rather than depending on an established ground truth, our investigation focuses on how agreement among diverse models can signal the reliability of their outputs and, by extension, reflect the overall quality of the generated questions. To measure this inter-model alignment, we apply a suite of statistical evaluations, including chi-square tests, Fleiss' Kappa coefficients, and confidence interval calculations, thereby capturing both precision in answers and clarity in question phrasing. Our analysis reveals that Claude and Gemini tend to frame questions more coherently and unambiguously, which is evidenced by their tighter confidence intervals and greater concordance with responding agents. In contrast, LLAMA exhibits wider confidence bands and a lower level of agreement, indicating more variability and reduced consistency in its question formulations. These observations support the notion that a multi-model collaborative strategy not only improves answer dependability but also offers an effective, data-driven mechanism for evaluating and refining question quality when no definitive solution exists. Ultimately, this work delivers actionable insights into enhancing AI-guided reasoning processes through coordinated interactions among heterogeneous language models.
comment: 7pages
♻ ☆ Round Attention: A Novel Round-Level Attention Mechanism to Accelerate LLM Inference
The increasing context window size in large language models (LLMs) has improved their ability to handle complex, long-text tasks. However, as the conversation rounds continue, it is required to store a large amount of KV cache in GPU memory, which significantly affects the efficiency and even availability of the model serving systems. This paper analyzes dialogue data from real users on the granularity of round and discovers that the LLM inference manifests a watershed layer, after which the distribution of round-level attention shows notable similarity. Based on this, we propose Round Attention - a novel round-level attention mechanism that selectively processes the KV cache of top-k relevant rounds, where k is dynamically determined through the attention matrix in the watershed layer. Theoretical analysis demonstrates that our method reduces memory usage by 54\% to 82\%, while experimental results confirm that loading sparse critical-round KV cache maintains answer accuracy without performance degradation.
♻ ☆ Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone. Our code is available at https://github.com/tsunehiko/rlgdg
comment: Published at IEEE Conference on Games, 2025
♻ ☆ REMOR: Automated Peer Review Generation with LLM Reasoning and Multi-Objective Reinforcement Learning
AI-based peer review systems tend to produce shallow and overpraising suggestions compared to human feedback. Here, we evaluate how well a reasoning LLM trained with multi-objective reinforcement learning (REMOR) can overcome these limitations. We start by designing a multi-aspect reward function that aligns with human evaluation of reviews. The aspects are related to the review itself (e.g., criticisms, novelty) and the relationship between the review and the manuscript (i.e., relevance). First, we perform supervised fine-tuning of DeepSeek-R1-Distill-Qwen-7B using LoRA on PeerRT, a new dataset of high-quality top AI conference reviews enriched with reasoning traces. We then apply Group Relative Policy Optimization (GRPO) to train two models: REMOR-H (with the human-aligned reward) and REMOR-U (with a uniform reward). Interestingly, the human-aligned reward penalizes aspects typically associated with strong reviews, leading REMOR-U to produce qualitatively more substantive feedback. Our results show that REMOR-U and REMOR-H achieve more than twice the average rewards of human reviews, non-reasoning state-of-the-art agentic multi-modal AI review systems, and general commercial LLM baselines. We found that while the best AI and human reviews are comparable in quality, REMOR avoids the long tail of low-quality human reviews. We discuss how reasoning is key to achieving these improvements and release the Human-aligned Peer Review Reward (HPRR) function, the Peer Review Reasoning-enriched Traces (PeerRT) dataset, and the REMOR models, which we believe can help spur progress in the area.
comment: 18 pages, 6 figures
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ From Superficial to Deep: Integrating External Knowledge for Follow-up Question Generation Using Knowledge Graph and LLM
In a conversational system, dynamically generating follow-up questions based on context can help users explore information and provide a better user experience. Humans are usually able to ask questions that involve some general life knowledge and demonstrate higher order cognitive skills. However, the questions generated by existing methods are often limited to shallow contextual questions that are uninspiring and have a large gap to the human level. In this paper, we propose a three-stage external knowledge-enhanced follow-up question generation method, which generates questions by identifying contextual topics, constructing a knowledge graph (KG) online, and finally combining these with a large language model to generate the final question. The model generates information-rich and exploratory follow-up questions by introducing external common sense knowledge and performing a knowledge fusion operation. Experiments show that compared to baseline models, our method generates questions that are more informative and closer to human questioning levels while maintaining contextual relevance.
comment: Proceedings of the 31st International Conference on Computational Linguistics
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ FEAT: A Preference Feedback Dataset through a Cost-Effective Auto-Generation and Labeling Framework for English AI Tutoring ACL 2025
In English education tutoring, teacher feedback is essential for guiding students. Recently, AI-based tutoring systems have emerged to assist teachers; however, these systems require high-quality and large-scale teacher feedback data, which is both time-consuming and costly to generate manually. In this study, we propose FEAT, a cost-effective framework for generating teacher feedback, and have constructed three complementary datasets: (1) DIRECT-Manual (DM), where both humans and large language models (LLMs) collaboratively generate high-quality teacher feedback, albeit at a higher cost; (2) DIRECT-Generated (DG), an LLM-only generated, cost-effective dataset with lower quality;, and (3) DIRECT-Augmented (DA), primarily based on DG with a small portion of DM added to enhance quality while maintaining cost-efficiency. Experimental results showed that incorporating a small portion of DM (5-10%) into DG leads to superior performance compared to using 100% DM alone.
comment: ACL 2025 (Short)
♻ ☆ DRAGON (Differentiable Graph Execution) : A suite of Hardware Simulation and Optimization tools for Modern AI/Non-AI Workloads
We introduce DRAGON, a fast and explainable hardware simulation and optimization toolchain that enables hardware architects to simulate hardware designs, and to optimize hardware designs to efficiently execute workloads. The DRAGON toolchain provides the following tools: Hardware Model Generator (DGen), Hardware Simulator (DSim) and Hardware Optimizer (DOpt). DSim provides the simulation of running algorithms (represented as data-flow graphs) on hardware described. DGen describes the hardware in detail, with user input architectures/technology (represented in a custom description language). A novel methodology of gradient descent from the simulation allows us optimize the hardware model (giving the directions for improvements in technology parameters and design parameters), provided by Dopt. DRAGON framework (DSim) is much faster than previously avaible works for simulation, which is possible through performance-first code writing practices, mathematical formulas for common computing operations to avoid cycle-accurate simulation steps, efficient algorithms for mapping, and data-structure representations for hardware state. DRAGON framework (Dopt) generates performance optimized architectures for both AI and Non-AI Workloads, and provides technology improvement directions for 100x-1000x better future computing systems.
♻ ☆ RLSF: Fine-tuning LLMs via Symbolic Feedback
Large Language Models (LLMs) have transformed AI but often struggle with tasks that require domain-specific reasoning and logical alignment. Traditional fine-tuning methods do not leverage the vast amount of symbolic domain-knowledge available to us via symbolic reasoning tools (e.g., provers), and are further limited by sparse rewards and unreliable reward models. We introduce Reinforcement Learning via Symbolic Feedback (RLSF), a novel fine-tuning paradigm where symbolic reasoning tools (e.g., solvers, provers, and algebra systems) provide fine-grained feedback to LLMs. RLSF uses poly-sized certificates (e.g., proofs) generated by symbolic tools to identify and correct errors in model outputs, offering token-level guidance without requiring differentiable reasoning systems. This paradigm bridges the gap between symbolic reasoning and LLM fine-tuning, enabling precise alignment with domain-specific constraints while addressing key limitations of traditional reward signals. Via extensive evaluations, we show that our RLSF-based fine-tuning of LLMs outperforms traditional approaches on five different applications (that have some associated logical or domain constraints), namely, program synthesis from natural language pseudo-code to programming language, three chemistry tasks, and solving the Game of 24. A key takeaway is that fine-tuning via RLSF enables relatively smaller LLMs to significantly outperform closed-source models that are orders of magnitude larger.
Machine Learning 129
☆ Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
While the theory of deep learning has made some progress in recent years, much of it is limited to the ReLU activation function. In particular, while the neural tangent kernel (NTK) and neural network Gaussian process kernel (NNGP) have given theoreticians tractable limiting cases of fully connected neural networks, their properties for most activation functions except for powers of the ReLU function are poorly understood. Our main contribution is to provide a more general characterization of the RKHS of these kernels for typical activation functions whose only non-smoothness is at zero, such as SELU, ELU, or LeakyReLU. Our analysis also covers a broad set of special cases such as missing biases, two-layer networks, or polynomial activations. Our results show that a broad class of not infinitely smooth activations generate equivalent RKHSs at different network depths, while polynomial activations generate non-equivalent RKHSs. Finally, we derive results for the smoothness of NNGP sample paths, characterizing the smoothness of infinitely wide neural networks at initialization.
☆ CLoVE: Personalized Federated Learning through Clustering of Loss Vector Embeddings
We propose CLoVE (Clustering of Loss Vector Embeddings), a novel algorithm for Clustered Federated Learning (CFL). In CFL, clients are naturally grouped into clusters based on their data distribution. However, identifying these clusters is challenging, as client assignments are unknown. CLoVE utilizes client embeddings derived from model losses on client data, and leverages the insight that clients in the same cluster share similar loss values, while those in different clusters exhibit distinct loss patterns. Based on these embeddings, CLoVE is able to iteratively identify and separate clients from different clusters and optimize cluster-specific models through federated aggregation. Key advantages of CLoVE over existing CFL algorithms are (1) its simplicity, (2) its applicability to both supervised and unsupervised settings, and (3) the fact that it eliminates the need for near-optimal model initialization, which makes it more robust and better suited for real-world applications. We establish theoretical convergence bounds, showing that CLoVE can recover clusters accurately with high probability in a single round and converges exponentially fast to optimal models in a linear setting. Our comprehensive experiments comparing with a variety of both CFL and generic Personalized Federated Learning (PFL) algorithms on different types of datasets and an extensive array of non-IID settings demonstrate that CLoVE achieves highly accurate cluster recovery in just a few rounds of training, along with state-of-the-art model accuracy, across a variety of both supervised and unsupervised PFL tasks.
comment: 31 pages, 4 figures
☆ ARMOR: Robust Reinforcement Learning-based Control for UAVs under Physical Attacks
Unmanned Aerial Vehicles (UAVs) depend on onboard sensors for perception, navigation, and control. However, these sensors are susceptible to physical attacks, such as GPS spoofing, that can corrupt state estimates and lead to unsafe behavior. While reinforcement learning (RL) offers adaptive control capabilities, existing safe RL methods are ineffective against such attacks. We present ARMOR (Adaptive Robust Manipulation-Optimized State Representations), an attack-resilient, model-free RL controller that enables robust UAV operation under adversarial sensor manipulation. Instead of relying on raw sensor observations, ARMOR learns a robust latent representation of the UAV's physical state via a two-stage training framework. In the first stage, a teacher encoder, trained with privileged attack information, generates attack-aware latent states for RL policy training. In the second stage, a student encoder is trained via supervised learning to approximate the teacher's latent states using only historical sensor data, enabling real-world deployment without privileged information. Our experiments show that ARMOR outperforms conventional methods, ensuring UAV safety. Additionally, ARMOR improves generalization to unseen attacks and reduces training cost by eliminating the need for iterative adversarial training.
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ Exploration from a Primal-Dual Lens: Value-Incentivized Actor-Critic Methods for Sample-Efficient Online RL
Online reinforcement learning (RL) with complex function approximations such as transformers and deep neural networks plays a significant role in the modern practice of artificial intelligence. Despite its popularity and importance, balancing the fundamental trade-off between exploration and exploitation remains a long-standing challenge; in particular, we are still in lack of efficient and practical schemes that are backed by theoretical performance guarantees. Motivated by recent developments in exploration via optimistic regularization, this paper provides an interpretation of the principle of optimism through the lens of primal-dual optimization. From this fresh perspective, we set forth a new value-incentivized actor-critic (VAC) method, which optimizes a single easy-to-optimize objective integrating exploration and exploitation -- it promotes state-action and policy estimates that are both consistent with collected data transitions and result in higher value functions. Theoretically, the proposed VAC method has near-optimal regret guarantees under linear Markov decision processes (MDPs) in both finite-horizon and infinite-horizon settings, which can be extended to the general function approximation setting under appropriate assumptions.
☆ Multi-View Contrastive Learning for Robust Domain Adaptation in Medical Time Series Analysis
Adapting machine learning models to medical time series across different domains remains a challenge due to complex temporal dependencies and dynamic distribution shifts. Current approaches often focus on isolated feature representations, limiting their ability to fully capture the intricate temporal dynamics necessary for robust domain adaptation. In this work, we propose a novel framework leveraging multi-view contrastive learning to integrate temporal patterns, derivative-based dynamics, and frequency-domain features. Our method employs independent encoders and a hierarchical fusion mechanism to learn feature-invariant representations that are transferable across domains while preserving temporal coherence. Extensive experiments on diverse medical datasets, including electroencephalogram (EEG), electrocardiogram (ECG), and electromyography (EMG) demonstrate that our approach significantly outperforms state-of-the-art methods in transfer learning tasks. By advancing the robustness and generalizability of machine learning models, our framework offers a practical pathway for deploying reliable AI systems in diverse healthcare settings.
☆ Towards Distributed Neural Architectures
We introduce and train distributed neural architectures (DNA) in vision and language domains. DNAs are initialized with a proto-architecture that consists of (transformer, MLP, attention, etc.) modules and routers. Any token (or patch) can traverse any series of modules in any order. DNAs are a natural generalization of the sparse methods such as Mixture-of-Experts, Mixture-of-Depths, parameter sharing, etc. Computation and communication patterns of DNA modules are learnt end-to-end during training and depend on the content and context of each token (or patch). These patterns can be shaped by further requirements added to the optimization objective such as compute/memory efficiency or load balancing. We empirically show that (i) trained DNAs are competitive with the dense baselines in both domains and (ii) compute efficiency/parameter sharing can be learnt from data. Next, we analyze the emergent connectivity and computation patterns in the trained DNAs. We find that the paths that tokens take through the models are themselves distributed according to a power-law. We show that some paths (or, equivalently, groups of modules) show emergent specialization. Finally, we demonstrate that models learn to allocate compute and active parameters in an interpretable way.
comment: 36 pages, 25 figures
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Sheaf-Based Decentralized Multimodal Learning for Next-Generation Wireless Communication Systems
In large-scale communication systems, increasingly complex scenarios require more intelligent collaboration among edge devices collecting various multimodal sensory data to achieve a more comprehensive understanding of the environment and improve decision-making accuracy. However, conventional federated learning (FL) algorithms typically consider unimodal datasets, require identical model architectures, and fail to leverage the rich information embedded in multimodal data, limiting their applicability to real-world scenarios with diverse modalities and varying client capabilities. To address this issue, we propose Sheaf-DMFL, a novel decentralized multimodal learning framework leveraging sheaf theory to enhance collaboration among devices with diverse modalities. Specifically, each client has a set of local feature encoders for its different modalities, whose outputs are concatenated before passing through a task-specific layer. While encoders for the same modality are trained collaboratively across clients, we capture the intrinsic correlations among clients' task-specific layers using a sheaf-based structure. To further enhance learning capability, we propose an enhanced algorithm named Sheaf-DMFL-Att, which tailors the attention mechanism within each client to capture correlations among different modalities. A rigorous convergence analysis of Sheaf-DMFL-Att is provided, establishing its theoretical guarantees. Extensive simulations are conducted on real-world link blockage prediction and mmWave beamforming scenarios, demonstrate the superiority of the proposed algorithms in such heterogeneous wireless communication systems.
comment: 13 pages, 9 figures
☆ Reinforcement Learning with Physics-Informed Symbolic Program Priors for Zero-Shot Wireless Indoor Navigation
When using reinforcement learning (RL) to tackle physical control tasks, inductive biases that encode physics priors can help improve sample efficiency during training and enhance generalization in testing. However, the current practice of incorporating these helpful physics-informed inductive biases inevitably runs into significant manual labor and domain expertise, making them prohibitive for general users. This work explores a symbolic approach to distill physics-informed inductive biases into RL agents, where the physics priors are expressed in a domain-specific language (DSL) that is human-readable and naturally explainable. Yet, the DSL priors do not translate directly into an implementable policy due to partial and noisy observations and additional physical constraints in navigation tasks. To address this gap, we develop a physics-informed program-guided RL (PiPRL) framework with applications to indoor navigation. PiPRL adopts a hierarchical and modularized neuro-symbolic integration, where a meta symbolic program receives semantically meaningful features from a neural perception module, which form the bases for symbolic programming that encodes physics priors and guides the RL process of a low-level neural controller. Extensive experiments demonstrate that PiPRL consistently outperforms purely symbolic or neural policies and reduces training time by over 26% with the help of the program-based inductive biases.
comment: Spotlight paper at Reinforcement Learning Conference 2025, Workshop on Inductive Biases in Reinforcement Learning
☆ DiffSoundStream: Efficient Speech Tokenization via Diffusion Decoding
Token-based language modeling is a prominent approach for speech generation, where tokens are obtained by quantizing features from self-supervised learning (SSL) models and extracting codes from neural speech codecs, generally referred to as semantic tokens and acoustic tokens. These tokens are often modeled autoregressively, with the inference speed being constrained by the token rate. In this work, we propose DiffSoundStream, a solution that improves the efficiency of speech tokenization in non-streaming scenarios through two techniques: (1) conditioning the neural codec on semantic tokens to minimize redundancy between semantic and acoustic tokens, and (2) leveraging latent diffusion models to synthesize high-quality waveforms from semantic and coarse-level acoustic tokens. Experiments show that at 50 tokens per second, DiffSoundStream achieves speech quality on par with a standard SoundStream model operating at twice the token rate. Additionally, we achieve step-size distillation using just four diffusion sampling steps with only a minor quality loss.
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
☆ A Framework for Multi-source Privacy Preserving Epidemic Analysis
It is now well understood that diverse datasets provide a lot of value in key epidemiology and public health analyses, such as forecasting and nowcasting, development of epidemic models, evaluation and design of interventions and resource allocation. Some of these datasets are often sensitive, and need adequate privacy protections. There are many models of privacy, but Differential Privacy (DP) has become a de facto standard because of its strong guarantees, without making models about adversaries. In this paper, we develop a framework the integrates deep learning and epidemic models to simultaneously perform epidemic forecasting and learning a mechanistic model of epidemic spread, while incorporating multiple datasets for these analyses, including some with DP guarantees. We demonstrate our framework using a realistic but synthetic financial dataset with DP; such a dataset has not been used in such epidemic analyses. We show that this dataset provides significant value in forecasting and learning an epidemic model, even when used with DP guarantees.
comment: 17 pages, 6 figures
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ Robust quantum reservoir computers for forecasting chaotic dynamics: generalized synchronization and stability
We show that recurrent quantum reservoir computers (QRCs) and their recurrence-free architectures (RF-QRCs) are robust tools for learning and forecasting chaotic dynamics from time-series data. First, we formulate and interpret quantum reservoir computers as coupled dynamical systems, where the reservoir acts as a response system driven by training data; in other words, quantum reservoir computers are generalized-synchronization (GS) systems. Second, we show that quantum reservoir computers can learn chaotic dynamics and their invariant properties, such as Lyapunov spectra, attractor dimensions, and geometric properties such as the covariant Lyapunov vectors. This analysis is enabled by deriving the Jacobian of the quantum reservoir update. Third, by leveraging tools from generalized synchronization, we provide a method for designing robust quantum reservoir computers. We propose the criterion $GS=ESP$: GS implies the echo state property (ESP), and vice versa. We analytically show that RF-QRCs, by design, fulfill $GS=ESP$. Finally, we analyze the effect of simulated noise. We find that dissipation from noise enhances the robustness of quantum reservoir computers. Numerical verifications on systems of different dimensions support our conclusions. This work opens opportunities for designing robust quantum machines for chaotic time series forecasting on near-term quantum hardware.
comment: 28 pages, 12 figures
☆ Less Greedy Equivalence Search
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step: rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior assumptions, while correcting these assumptions when contradicted by the data. Finally, LGES can exploit interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit from observational and interventional data, even with misspecified prior assumptions. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified assumptions. Our code is available at https://github.com/CausalAILab/lges.
comment: 35 total pages. 14 figures
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ Weakly-Supervised Domain Adaptation with Proportion-Constrained Pseudo-Labeling IJCNN2025
Domain shift is a significant challenge in machine learning, particularly in medical applications where data distributions differ across institutions due to variations in data collection practices, equipment, and procedures. This can degrade performance when models trained on source domain data are applied to the target domain. Domain adaptation methods have been widely studied to address this issue, but most struggle when class proportions between the source and target domains differ. In this paper, we propose a weakly-supervised domain adaptation method that leverages class proportion information from the target domain, which is often accessible in medical datasets through prior knowledge or statistical reports. Our method assigns pseudo-labels to the unlabeled target data based on class proportion (called proportion-constrained pseudo-labeling), improving performance without the need for additional annotations. Experiments on two endoscopic datasets demonstrate that our method outperforms semi-supervised domain adaptation techniques, even when 5% of the target domain is labeled. Additionally, the experimental results with noisy proportion labels highlight the robustness of our method, further demonstrating its effectiveness in real-world application scenarios.
comment: Accepted at IJCNN2025
☆ CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
Graph Neural Networks (GNNs) have garnered substantial attention due to their remarkable capability in learning graph representations. However, real-world graphs often exhibit substantial noise and incompleteness, which severely degrades the performance of GNNs. Existing methods typically address this issue through single-dimensional augmentation, focusing either on refining topology structures or perturbing node attributes, thereby overlooking the deeper interplays between the two. To bridge this gap, this paper presents CoATA, a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute. Specifically, CoATA first propagates structural signals to enrich and denoise node attributes. Then, it projects the enhanced attribute space into a node-attribute bipartite graph for further refinement or reconstruction of the underlying structure. Subsequently, CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs. Finally, extensive experiments on seven benchmark datasets demonstrate that the proposed CoATA outperforms eleven state-of-the-art baseline methods, showcasing its effectiveness in capturing the synergistic relationship between topology and attributes.
comment: icmr
☆ Score-Based Model for Low-Rank Tensor Recovery
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis. Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions. From a probabilistic perspective, these can be viewed as using Dirac delta distributions to model the relationships between shared factors and the low-rank tensor. However, such prior knowledge is rarely available in practical scenarios, particularly regarding the optimal rank structure and contraction rules. The optimization procedures based on fixed contraction rules are complex, and approximations made during these processes often lead to accuracy loss. To address this issue, we propose a score-based model that eliminates the need for predefined structural or distributional assumptions, enabling the learning of compatibility between tensors and shared factors. Specifically, a neural network is designed to learn the energy function, which is optimized via score matching to capture the gradient of the joint log-probability of tensor entries and shared factors. Our method allows for modeling structures and distributions beyond the Dirac delta assumption. Moreover, integrating the block coordinate descent (BCD) algorithm with the proposed smooth regularization enables the model to perform both tensor completion and denoising. Experimental results demonstrate significant performance improvements across various tensor types, including sparse and continuous-time tensors, as well as visual data.
☆ Breaking Rank Bottlenecks in Knowledge Graph Completion
Many Knowledge Graph Completion (KGC) models, despite using powerful encoders, rely on a simple vector-matrix multiplication to score queries against candidate object entities. When the number of entities is larger than the model's embedding dimension, which in practical scenarios is often by several orders of magnitude, we have a linear output layer with a rank bottleneck. Such bottlenecked layers limit model expressivity. We investigate both theoretically and empirically how rank bottlenecks affect KGC models. We find that, by limiting the set of feasible predictions, rank bottlenecks hurt ranking accuracy and the distribution fidelity of scores. Inspired by the language modelling literature, we propose KGE-MoS, a mixture-based output layer to break rank bottlenecks in many KGC models. Our experiments on four datasets show that KGE-MoS improves performance and probabilistic fit of KGC models for a low parameter cost.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Risk-Averse Best Arm Set Identification with Fixed Budget and Fixed Confidence
Decision making under uncertain environments in the maximization of expected reward while minimizing its risk is one of the ubiquitous problems in many subjects. Here, we introduce a novel problem setting in stochastic bandit optimization that jointly addresses two critical aspects of decision-making: maximizing expected reward and minimizing associated uncertainty, quantified via the mean-variance(MV) criterion. Unlike traditional bandit formulations that focus solely on expected returns, our objective is to efficiently and accurately identify the Pareto-optimal set of arms that strikes the best trade-off between expected performance and risk. We propose a unified meta-algorithmic framework capable of operating under both fixed-confidence and fixed-budget regimes, achieved through adaptive design of confidence intervals tailored to each scenario using the same sample exploration strategy. We provide theoretical guarantees on the correctness of the returned solutions in both settings. To complement this theoretical analysis, we conduct extensive empirical evaluations across synthetic benchmarks, demonstrating that our approach outperforms existing methods in terms of both accuracy and sample efficiency, highlighting its broad applicability to risk-aware decision-making tasks in uncertain environments.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ A Plea for History and Philosophy of Statistics and Machine Learning
The integration of the history and philosophy of statistics was initiated at least by Hacking (1965) and advanced by Mayo (1996), but it has not received sustained follow-up. Yet such integration is more urgent than ever, as the recent success of artificial intelligence has been driven largely by machine learning -- a field historically developed alongside statistics. Today, the boundary between statistics and machine learning is increasingly blurred. What we now need is integration, twice over: of history and philosophy, and of the field they engage -- statistics and machine learning. I present a case study of a philosophical idea in machine learning (and in formal epistemology) whose root can be traced back to an often under-appreciated insight in Neyman and Pearson's 1936 work (a follow-up to their 1933 classic). This leads to the articulation of a foundational assumption -- largely implicit in, but shared by, the practices of frequentist statistics and machine learning -- which I call achievabilism. Another integration also emerges at the level of methodology, combining two ends of the philosophy of science spectrum: history and philosophy of science on the one hand, and formal epistemology on the other hand.
☆ Uncovering smooth structures in single-cell data with PCS-guided neighbor embeddings
Single-cell sequencing is revolutionizing biology by enabling detailed investigations of cell-state transitions. Many biological processes unfold along continuous trajectories, yet it remains challenging to extract smooth, low-dimensional representations from inherently noisy, high-dimensional single-cell data. Neighbor embedding (NE) algorithms, such as t-SNE and UMAP, are widely used to embed high-dimensional single-cell data into low dimensions. But they often introduce undesirable distortions, resulting in misleading interpretations. Existing evaluation methods for NE algorithms primarily focus on separating discrete cell types rather than capturing continuous cell-state transitions, while dynamic modeling approaches rely on strong assumptions about cellular processes and specialized data. To address these challenges, we build on the Predictability-Computability-Stability (PCS) framework for reliable and reproducible data-driven discoveries. First, we systematically evaluate popular NE algorithms through empirical analysis, simulation, and theory, and reveal their key shortcomings, such as artifacts and instability. We then introduce NESS, a principled and interpretable machine learning approach to improve NE representations by leveraging algorithmic stability and to enable robust inference of smooth biological structures. NESS offers useful concepts, quantitative stability metrics, and efficient computational workflows to uncover developmental trajectories and cell-state transitions in single-cell data. Finally, we apply NESS to six single-cell datasets, spanning pluripotent stem cell differentiation, organoid development, and multiple tissue-specific lineage trajectories. Across these diverse contexts, NESS consistently yields useful biological insights, such as identification of transitional and stable cell states and quantification of transcriptional dynamics during development.
☆ Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport ICLR 2025
Physics phenomena are often described by ordinary and/or partial differential equations (ODEs/PDEs), and solved analytically or numerically. Unfortunately, many real-world systems are described only approximately with missing or unknown terms in the equations. This makes the distribution of the physics model differ from the true data-generating process (DGP). Using limited and unpaired data between DGP observations and the imperfect model simulations, we investigate this particular setting by completing the known-physics model, combining theory-driven models and data-driven to describe the shifted distribution involved in the DGP. We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models. Our method implements OT maps in data space while maintaining minimal source distribution distortion, demonstrating superior performance in resolving the unpaired problem and ensuring correct usage of physics parameters. Unlike black-box alternatives, our approach leverages physics-based inductive biases to accurately learn system dynamics while preserving interpretability through its domain knowledge foundation. Experimental results validate our method's effectiveness in both generation tasks and model transparency, offering detailed insights into learned physics dynamics.
comment: Workshop paper at ICLR 2025 (XAI4Science Workshop)
☆ EFRame: Deeper Reasoning via Exploration-Filtering-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
☆ REDELEX: A Framework for Relational Deep Learning Exploration ECML
Relational databases (RDBs) are widely regarded as the gold standard for storing structured information. Consequently, predictive tasks leveraging this data format hold significant application promise. Recently, Relational Deep Learning (RDL) has emerged as a novel paradigm wherein RDBs are conceptualized as graph structures, enabling the application of various graph neural architectures to effectively address these tasks. However, given its novelty, there is a lack of analysis into the relationships between the performance of various RDL models and the characteristics of the underlying RDBs. In this study, we present REDELEX$-$a comprehensive exploration framework for evaluating RDL models of varying complexity on the most diverse collection of over 70 RDBs, which we make available to the community. Benchmarked alongside key representatives of classic methods, we confirm the generally superior performance of RDL while providing insights into the main factors shaping performance, including model complexity, database sizes and their structural properties.
comment: Accepted to ECMLPKDD 2025 at Porto, Portugal
☆ dreaMLearning: Data Compression Assisted Machine Learning
Despite rapid advancements, machine learning, particularly deep learning, is hindered by the need for large amounts of labeled data to learn meaningful patterns without overfitting and immense demands for computation and storage, which motivate research into architectures that can achieve good performance with fewer resources. This paper introduces dreaMLearning, a novel framework that enables learning from compressed data without decompression, built upon Entropy-based Generalized Deduplication (EntroGeDe), an entropy-driven lossless compression method that consolidates information into a compact set of representative samples. DreaMLearning accommodates a wide range of data types, tasks, and model architectures. Extensive experiments on regression and classification tasks with tabular and image data demonstrate that dreaMLearning accelerates training by up to 8.8x, reduces memory usage by 10x, and cuts storage by 42%, with a minimal impact on model performance. These advancements enhance diverse ML applications, including distributed and federated learning, and tinyML on resource-constrained edge devices, unlocking new possibilities for efficient and scalable learning.
comment: 18 pages, 11 figures
Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery and design. In this study, we critically examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the agentic system such as the LLM are interchangeable, a topic that has received limited attention in drug discovery applications. We compare the performance of different large language models (LLMs) and the effectiveness of tool-calling agents versus code-generating agents in this domain. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question and model dependent. Furthermore, the impact of replacing system prompts is dependent on the specific question asked and the model used, underscoring that -- even in this particular domain -- one cannot just replace language models without considering prompt re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of stable and scalable solutions for real-world problems.
☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is an effective method to explore parametric uncertainties and can therefore be used for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work pro poses a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to explore potential optimal control laws, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
☆ ASVSim (AirSim for Surface Vehicles): A High-Fidelity Simulation Framework for Autonomous Surface Vehicle Research
The transport industry has recently shown significant interest in unmanned surface vehicles (USVs), specifically for port and inland waterway transport. These systems can improve operational efficiency and safety, which is especially relevant in the European Union, where initiatives such as the Green Deal are driving a shift towards increased use of inland waterways. At the same time, a shortage of qualified personnel is accelerating the adoption of autonomous solutions. However, there is a notable lack of open-source, high-fidelity simulation frameworks and datasets for developing and evaluating such solutions. To address these challenges, we introduce AirSim For Surface Vehicles (ASVSim), an open-source simulation framework specifically designed for autonomous shipping research in inland and port environments. The framework combines simulated vessel dynamics with marine sensor simulation capabilities, including radar and camera systems and supports the generation of synthetic datasets for training computer vision models and reinforcement learning agents. Built upon Cosys-AirSim, ASVSim provides a comprehensive platform for developing autonomous navigation algorithms and generating synthetic datasets. The simulator supports research of both traditional control methods and deep learning-based approaches. Through limited experiments, we demonstrate the potential of the simulator in these research areas. ASVSim is provided as an open-source project under the MIT license, making autonomous navigation research accessible to a larger part of the ocean engineering community.
comment: 14 Pages, 11 Figures
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models
In the aftermath of major earthquakes, evaluating structural and infrastructural damage is vital for coordinating post-disaster response efforts. This includes assessing damage's extent and spatial distribution to prioritize rescue operations and resource allocation. Accurately estimating damage grades to buildings post-earthquake is paramount for effective response and recovery, given the significant impact on lives and properties, underscoring the urgency of streamlining relief fund allocation processes. Previous studies have shown the effectiveness of multi-class classification, especially XGBoost, along with other machine learning models and ensembling methods, incorporating regularization to address class imbalance. One consequence of class imbalance is that it may give rise to skewed models that undervalue minority classes and give preference to the majority class. This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE). We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades. The study elucidates performance determinants through comprehensive feature manipulation experiments and diverse training approaches. It identifies key factors contributing to seismic vulnerability while evaluating model performance using techniques like the confusion matrix further to enhance understanding of the effectiveness of earthquake damage prediction.
comment: 3rd International Conference on Applied Mathematics in Science and Engineering
☆ Identifying a Circuit for Verb Conjugation in GPT-2
I implement a procedure to isolate and interpret the sub-network (or "circuit") responsible for subject-verb agreement in GPT-2 Small. In this study, the model is given prompts where the subject is either singular (e.g. "Alice") or plural (e.g. "Alice and Bob"), and the task is to correctly predict the appropriate verb form ("walks" for singular subjects, "walk" for plural subjects). Using a series of techniques-including performance verification automatic circuit discovery via direct path patching, and direct logit attribution- I isolate a candidate circuit that contributes significantly to the model's correct verb conjugation. The results suggest that only a small fraction of the network's component-token pairs is needed to achieve near-model performance on the base task but substantially more for more complex settings.
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ Transfer Learning for Assessing Heavy Metal Pollution in Seaports Sediments
Detecting heavy metal pollution in soils and seaports is vital for regional environmental monitoring. The Pollution Load Index (PLI), an international standard, is commonly used to assess heavy metal containment. However, the conventional PLI assessment involves laborious procedures and data analysis of sediment samples. To address this challenge, we propose a deep-learning-based model that simplifies the heavy metal assessment process. Our model tackles the issue of data scarcity in the water-sediment domain, which is traditionally plagued by challenges in data collection and varying standards across nations. By leveraging transfer learning, we develop an accurate quantitative assessment method for predicting PLI. Our approach allows the transfer of learned features across domains with different sets of features. We evaluate our model using data from six major ports in New South Wales, Australia: Port Yamba, Port Newcastle, Port Jackson, Port Botany, Port Kembla, and Port Eden. The results demonstrate significantly lower Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of approximately 0.5 and 0.03, respectively, compared to other models. Our model performance is up to 2 orders of magnitude than other baseline models. Our proposed model offers an innovative, accessible, and cost-effective approach to predicting water quality, benefiting marine life conservation, aquaculture, and industrial pollution monitoring.
☆ Learning to Solve Multi-Objective Routing Problems on Multigraphs
Learning-based methods for routing have gained significant attention in recent years, both in single-objective and multi-objective contexts. However, the multigraph setting, where multiple paths with distinct attributes can exist between destinations, has largely been overlooked, despite its high practical relevancy. In this paper, we introduce two neural approaches to address multi-objective routing on multigraphs. Our first approach works directly on the multigraph, by autoregressively selecting edges until a tour is completed. On the other hand, our second model first prunes the multigraph into a simple graph and then builds routes. We validate both models experimentally and find that they demonstrate strong performance across a variety of problems, including the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP).
comment: 18 pages, 5 Figures
Transformers are Graph Neural Networks
We establish connections between the Transformer architecture, originally introduced for natural language processing, and Graph Neural Networks (GNNs) for representation learning on graphs. We show how Transformers can be viewed as message passing GNNs operating on fully connected graphs of tokens, where the self-attention mechanism capture the relative importance of all tokens w.r.t. each-other, and positional encodings provide hints about sequential ordering or structure. Thus, Transformers are expressive set processing networks that learn relationships among input elements without being constrained by apriori graphs. Despite this mathematical connection to GNNs, Transformers are implemented via dense matrix operations that are significantly more efficient on modern hardware than sparse message passing. This leads to the perspective that Transformers are GNNs currently winning the hardware lottery.
comment: This paper is a technical version of an article in The Gradient at https://thegradient.pub/transformers-are-graph-neural-networks/
☆ crypto price prediction using lstm+xgboost
The volatility and complex dynamics of cryptocurrency markets present unique challenges for accurate price forecasting. This research proposes a hybrid deep learning and machine learning model that integrates Long Short-Term Memory (LSTM) networks and Extreme Gradient Boosting (XGBoost) for cryptocurrency price prediction. The LSTM component captures temporal dependencies in historical price data, while XGBoost enhances prediction by modeling nonlinear relationships with auxiliary features such as sentiment scores and macroeconomic indicators. The model is evaluated on historical datasets of Bitcoin, Ethereum, Dogecoin, and Litecoin, incorporating both global and localized exchange data. Comparative analysis using Mean Absolute Percentage Error (MAPE) and Min-Max Normalized Root Mean Square Error (MinMax RMSE) demonstrates that the LSTM+XGBoost hybrid consistently outperforms standalone models and traditional forecasting methods. This study underscores the potential of hybrid architectures in financial forecasting and provides insights into model adaptability across different cryptocurrencies and market contexts.
☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
☆ UniCA: Adapting Time Series Foundation Model to General Covariate-Aware Forecasting
Time Series Foundation Models (TSFMs) have achieved remarkable success through large-scale pretraining. However, their design primarily targets real-valued series, limiting their ability to handle general forecasting tasks involving diverse and often heterogeneous covariates--such as categorical variables and multimodal data (e.g., images, text)--which are typically task-specific and difficult to leverage during pretraining. To address this gap, we propose Unified Covariate Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware forecasting. UniCA first performs covariate homogenization to transform heterogeneous covariates into high-level homogeneous series representations and then fuses them via a unified attention-based fusion mechanism. UniCA is compatible and universal for adaptation with both homogeneous and heterogeneous covariates, incorporating extra covariate information while preserving the generalization ability of TSFMs.Extensive experiments on multiple unimodal and multimodal covariate-aware forecasting benchmarks demonstrate the superiority of UniCA, highlighting the promise of covariate-aware TSFM adaptation in real-world forecasting scenarios. Codes are released on https://github.com/hanlu-nju/UniCA.
☆ Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion
With the increasing multimodal knowledge privatization requirements, multimodal knowledge graphs in different institutes are usually decentralized, lacking of effective collaboration system with both stronger reasoning ability and transmission safety guarantees. In this paper, we propose the Federated Multimodal Knowledge Graph Completion (FedMKGC) task, aiming at training over federated MKGs for better predicting the missing links in clients without sharing sensitive knowledge. We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC. (1) Inside the clients, our proposed Hyper-modal Imputation Diffusion Embedding model (HidE) recovers the complete multimodal distributions from incomplete entity embeddings constrained by available modalities. (2) Among clients, our proposed Multimodal FeDerated Dual Distillation (MMFeD3) transfers knowledge mutually between clients and the server with logit and feature distillation to improve both global convergence and semantic consistency. We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines. Experiments conducted on our benchmark validate the effectiveness, semantic consistency, and convergence robustness of MMFeD3-HidE.
comment: Submitted to the IEEE for possible publication
☆ TROFI: Trajectory-Ranked Offline Inverse Reinforcement Learning
In offline reinforcement learning, agents are trained using only a fixed set of stored transitions derived from a source policy. However, this requires that the dataset be labeled by a reward function. In applied settings such as video game development, the availability of the reward function is not always guaranteed. This paper proposes Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach to effectively learn a policy offline without a pre-defined reward function. TROFI first learns a reward function from human preferences, which it then uses to label the original dataset making it usable for training the policy. In contrast to other approaches, our method does not require optimal trajectories. Through experiments on the D4RL benchmark we demonstrate that TROFI consistently outperforms baselines and performs comparably to using the ground truth reward to learn policies. Additionally, we validate the efficacy of our method in a 3D game environment. Our studies of the reward model highlight the importance of the reward function in this setting: we show that to ensure the alignment of a value function to the actual future discounted reward, it is fundamental to have a well-engineered and easy-to-learn reward function.
comment: Published at Reinforcement Learning and Video Games Workshop at RLC 2025
☆ GKNet: Graph Kalman Filtering and Model Inference via Model-based Deep Learning
Inference tasks with time series over graphs are of importance in applications such as urban water networks, economics, and networked neuroscience. Addressing these tasks typically relies on identifying a computationally affordable model that jointly captures the graph-temporal patterns of the data. In this work, we propose a graph-aware state space model for graph time series, where both the latent state and the observation equation are parametric graph-induced models with a limited number of parameters that need to be learned. More specifically, we consider the state equation to follow a stochastic partial differential equation driven by noise over the graphs edges accounting not only for potential edge uncertainties but also for increasing the degrees of freedom in the latter in a tractable manner. The graph structure conditioning of the noise dispersion allows the state variable to deviate from the stochastic process in certain neighborhoods. The observation model is a sampled and graph-filtered version of the state capturing multi-hop neighboring influence. The goal is to learn the parameters in both state and observation models from the partially observed data for downstream tasks such as prediction and imputation. The model is inferred first through a maximum likelihood approach that provides theoretical tractability but is limited in expressivity and scalability. To improve on the latter, we use the state-space formulation to build a principled deep learning architecture that jointly learns the parameters and tracks the state in an end-to-end manner in the spirit of Kalman neural networks.
☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ More Vulnerable than You Think: On the Stability of Tool-Integrated LLM Agents
Current evaluations of tool-integrated LLM agents typically focus on end-to-end tool-usage evaluation while neglecting their stability. This limits their real-world applicability, as various internal or external factors can cause agents to crash or behave abnormally. Our research addresses this by investigating whether agents are vulnerable to errors throughout the entire tool invocation process, including reading tool documentation, selecting tools and generating parameters, and processing the tool's response. Through extensive experiments, we observe that agents are highly susceptible to errors at each stage and agents based on open-source models are more vulnerable than those based on proprietary models. We also find that increasing the model size does not significantly improve tool invocation reasoning and may make agents more vulnerable to attacks resembling normal user instructions. This highlights the importance of evaluating agent stability and offers valuable insights for future LLM development and evaluation.
☆ Optimal Return-to-Go Guided Decision Transformer for Auto-Bidding in Advertisement
In the realm of online advertising, advertisers partake in ad auctions to obtain advertising slots, frequently taking advantage of auto-bidding tools provided by demand-side platforms. To improve the automation of these bidding systems, we adopt generative models, namely the Decision Transformer (DT), to tackle the difficulties inherent in automated bidding. Applying the Decision Transformer to the auto-bidding task enables a unified approach to sequential modeling, which efficiently overcomes short-sightedness by capturing long-term dependencies between past bidding actions and user behavior. Nevertheless, conventional DT has certain drawbacks: (1) DT necessitates a preset return-to-go (RTG) value before generating actions, which is not inherently produced; (2) The policy learned by DT is restricted by its training data, which is consists of mixed-quality trajectories. To address these challenges, we introduce the R* Decision Transformer (R* DT), developed in a three-step process: (1) R DT: Similar to traditional DT, R DT stores actions based on state and RTG value, as well as memorizing the RTG for a given state using the training set; (2) R^ DT: We forecast the highest value (within the training set) of RTG for a given state, deriving a suboptimal policy based on the current state and the forecasted supreme RTG value; (3) R* DT: Based on R^ DT, we generate trajectories and select those with high rewards (using a simulator) to augment our training dataset. This data enhancement has been shown to improve the RTG of trajectories in the training data and gradually leads the suboptimal policy towards optimality. Comprehensive tests on a publicly available bidding dataset validate the R* DT's efficacy and highlight its superiority when dealing with mixed-quality trajectories.
☆ Physics-informed network paradigm with data generation and background noise removal for diverse distributed acoustic sensing applications
Distributed acoustic sensing (DAS) has attracted considerable attention across various fields and artificial intelligence (AI) technology plays an important role in DAS applications to realize event recognition and denoising. Existing AI models require real-world data (RWD), whether labeled or not, for training, which is contradictory to the fact of limited available event data in real-world scenarios. Here, a physics-informed DAS neural network paradigm is proposed, which does not need real-world events data for training. By physically modeling target events and the constraints of real world and DAS system, physical functions are derived to train a generative network for generation of DAS events data. DAS debackground net is trained by using the generated DAS events data to eliminate background noise in DAS data. The effectiveness of the proposed paradigm is verified in event identification application based on a public dataset of DAS spatiotemporal data and in belt conveyor fault monitoring application based on DAS time-frequency data, and achieved comparable or better performance than data-driven networks trained with RWD. Owing to the introduction of physical information and capability of background noise removal, the paradigm demonstrates generalization in same application on different sites. A fault diagnosis accuracy of 91.8% is achieved in belt conveyor field with networks which transferred from simulation test site without any fault events data of test site and field for training. The proposed paradigm is a prospective solution to address significant obstacles of data acquisition and intense noise in practical DAS applications and explore more potential fields for DAS.
☆ Hitchhiking Rides Dataset: Two decades of crowd-sourced records on stochastic traveling
Hitchhiking, a spontaneous and decentralized mode of travel, has long eluded systematic study due to its informal nature. This paper presents and analyzes the largest known structured dataset of hitchhiking rides, comprising over 63,000 entries collected over nearly two decades through platforms associated with hitchwiki.org and lately on hitchmap.com. By leveraging crowd-sourced contributions, the dataset captures key spatiotemporal and strategic aspects of hitchhiking. This work documents the dataset's origins, evolution, and community-driven maintenance, highlighting its Europe-centric distribution, seasonal patterns, and reliance on a small number of highly active contributors. Through exploratory analyses, I examine waiting times, user behavior, and comment metadata, shedding light on the lived realities of hitchhikers. While the dataset has inherent biases and limitations - such as demographic skew and unverifiable entries it offers a rare and valuable window into an alternative form of mobility. I conclude by outlining future directions for enriching the dataset and advancing research on hitchhiking as both a transportation practice and cultural phenomenon.
☆ GuiderNet: A Meta-Learning Framework for Optimizing Quantum Circuit Geometry and Mitigating Barren Plateaus
Variational Quantum Algorithms (VQAs) offer potential for near-term quantum advantage but face challenges from barren plateaus, where gradients vanish, and poorly conditioned optimization landscapes. We introduce GuiderNet, a meta-learning framework that conditions Parameterized Quantum Circuits (PQCs) using data-dependent parameter shifts aimed at minimizing the log condition number of the Fubini-Study metric tensor. Implemented as a classical neural network, GuiderNet is meta-trained to guide PQC parameters into geometrically favorable regions and is embedded within hybrid quantum-classical pipelines to steer both initialization and adaptive modulation during training. Applied to the Kaggle Diabetes classification task, GuiderNet reduces cumulative training loss by over 5x, improves test accuracy from 75.3% to 98.6%, and increases the minority-class F1 score from 0.67 to 0.95. It also suppresses gradient explosion and stabilizes parameter updates, enabling smoother and more robust optimization. These results demonstrate that geometric meta-conditioning can mitigate barren plateaus and ill-conditioning, providing a scalable approach to enhance trainability and generalization in quantum machine learning.
☆ HQCM-EBTC: A Hybrid Quantum-Classical Model for Explainable Brain Tumor Classification
We propose HQCM-EBTC, a hybrid quantum-classical model for automated brain tumor classification using MRI images. Trained on a dataset of 7,576 scans covering normal, meningioma, glioma, and pituitary classes, HQCM-EBTC integrates a 5-qubit, depth-2 quantum layer with 5 parallel circuits, optimized via AdamW and a composite loss blending cross-entropy and attention consistency. HQCM-EBTC achieves 96.48% accuracy, substantially outperforming the classical baseline (86.72%). It delivers higher precision and F1-scores, especially for glioma detection. t-SNE projections reveal enhanced feature separability in quantum space, and confusion matrices show lower misclassification. Attention map analysis (Jaccard Index) confirms more accurate and focused tumor localization at high-confidence thresholds. These results highlight the promise of quantum-enhanced models in medical imaging, advancing both diagnostic accuracy and interpretability for clinical brain tumor assessment.
☆ Joint Task Offloading and Resource Allocation in Low-Altitude MEC via Graph Attention Diffusion
With the rapid development of the low-altitude economy, air-ground integrated multi-access edge computing (MEC) systems are facing increasing demands for real-time and intelligent task scheduling. In such systems, task offloading and resource allocation encounter multiple challenges, including node heterogeneity, unstable communication links, and dynamic task variations. To address these issues, this paper constructs a three-layer heterogeneous MEC system architecture for low-altitude economic networks, encompassing aerial and ground users as well as edge servers. The system is systematically modeled from the perspectives of communication channels, computational costs, and constraint conditions, and the joint optimization problem of offloading decisions and resource allocation is uniformly abstracted into a graph-structured modeling task. On this basis, we propose a graph attention diffusion-based solution generator (GADSG). This method integrates the contextual awareness of graph attention networks with the solution distribution learning capability of diffusion models, enabling joint modeling and optimization of discrete offloading variables and continuous resource allocation variables within a high-dimensional latent space. We construct multiple simulation datasets with varying scales and topologies. Extensive experiments demonstrate that the proposed GADSG model significantly outperforms existing baseline methods in terms of optimization performance, robustness, and generalization across task structures, showing strong potential for efficient task scheduling in dynamic and complex low-altitude economic network environments.
☆ TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
The evolution toward 6G networks demands a fundamental shift from bit-centric transmission to semantic-aware communication that emphasizes task-relevant information. This work introduces TOAST (Task-Oriented Adaptive Semantic Transmission), a unified framework designed to address the core challenge of multi-task optimization in dynamic wireless environments through three complementary components. First, we formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy based on real-time channel conditions. Second, we integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture, enabling parameter-efficient fine-tuning that dramatically reduces adaptation overhead while maintaining full performance across diverse channel impairments including Additive White Gaussian Noise (AWGN), fading, phase noise, and impulse interference. Third, we incorporate an Elucidating diffusion model that operates in the latent space to restore features corrupted by channel noises, providing substantial quality improvements compared to baseline approaches. Extensive experiments across multiple datasets demonstrate that TOAST achieves superior performance compared to baseline approaches, with significant improvements in both classification accuracy and reconstruction quality at low Signal-to-Noise Ratio (SNR) conditions while maintaining robust performance across all tested scenarios.
☆ Advancements and Challenges in Continual Reinforcement Learning: A Comprehensive Review
The diversity of tasks and dynamic nature of reinforcement learning (RL) require RL agents to be able to learn sequentially and continuously, a learning paradigm known as continuous reinforcement learning. This survey reviews how continual learning transforms RL agents into dynamic continual learners. This enables RL agents to acquire and retain useful and reusable knowledge seamlessly. The paper delves into fundamental aspects of continual reinforcement learning, exploring key concepts, significant challenges, and novel methodologies. Special emphasis is placed on recent advancements in continual reinforcement learning within robotics, along with a succinct overview of evaluation environments utilized in prominent research, facilitating accessibility for newcomers to the field. The review concludes with a discussion on limitations and promising future directions, providing valuable insights for researchers and practitioners alike.
comment: 65 pages, 9 figures
☆ Thompson Sampling in Function Spaces via Neural Operators
We propose an extension of Thompson sampling to optimization problems over function spaces where the objective is a known functional of an unknown operator's output. We assume that functional evaluations are inexpensive, while queries to the operator (such as running a high-fidelity simulator) are costly. Our algorithm employs a sample-then-optimize approach using neural operator surrogates. This strategy avoids explicit uncertainty quantification by treating trained neural operators as approximate samples from a Gaussian process. We provide novel theoretical convergence guarantees, based on Gaussian processes in the infinite-dimensional setting, under minimal assumptions. We benchmark our method against existing baselines on functional optimization tasks involving partial differential equations and other nonlinear operator-driven phenomena, demonstrating improved sample efficiency and competitive performance.
comment: Under review
☆ Interactive Multi-Objective Probabilistic Preference Learning with Soft and Hard Bounds
High-stakes decision-making involves navigating multiple competing objectives with expensive evaluations. For instance, in brachytherapy, clinicians must balance maximizing tumor coverage (e.g., an aspirational target or soft bound of >95% coverage) against strict organ dose limits (e.g., a non-negotiable hard bound of <601 cGy to the bladder), with each plan evaluation being resource-intensive. Selecting Pareto-optimal solutions that match implicit preferences is challenging, as exhaustive Pareto frontier exploration is computationally and cognitively prohibitive, necessitating interactive frameworks to guide users. While decision-makers (DMs) often possess domain knowledge to narrow the search via such soft-hard bounds, current methods often lack systematic approaches to iteratively refine these multi-faceted preference structures. Critically, DMs must trust their final decision, confident they haven't missed superior alternatives; this trust is paramount in high-consequence scenarios. We present Active-MoSH, an interactive local-global framework designed for this process. Its local component integrates soft-hard bounds with probabilistic preference learning, maintaining distributions over DM preferences and bounds for adaptive Pareto subset refinement. This is guided by an active sampling strategy optimizing exploration-exploitation while minimizing cognitive burden. To build DM trust, Active-MoSH's global component, T-MoSH, leverages multi-objective sensitivity analysis to identify potentially overlooked, high-value points beyond immediate feedback. We demonstrate Active-MoSH's performance benefits through diverse synthetic and real-world applications. A user study on AI-generated image selection further validates our hypotheses regarding the framework's ability to improve convergence, enhance DM trust, and provide expressive preference articulation, enabling more effective DMs.
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ A Survey of Continual Reinforcement Learning
Reinforcement Learning (RL) is an important machine learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in this field due to the rapid development of deep neural networks. However, the success of RL currently relies on extensive training data and computational resources. In addition, RL's limited ability to generalize across tasks restricts its applicability in dynamic and real-world environments. With the arisen of Continual Learning (CL), Continual Reinforcement Learning (CRL) has emerged as a promising research direction to address these limitations by enabling agents to learn continuously, adapt to new tasks, and retain previously acquired knowledge. In this survey, we provide a comprehensive examination of CRL, focusing on its core concepts, challenges, and methodologies. Firstly, we conduct a detailed review of existing works, organizing and analyzing their metrics, tasks, benchmarks, and scenario settings. Secondly, we propose a new taxonomy of CRL methods, categorizing them into four types from the perspective of knowledge storage and/or transfer. Finally, our analysis highlights the unique challenges of CRL and provides practical insights into future directions.
comment: This work has been submitted to the IEEE TPAMI
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models UAI
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ Koopman operator-based discussion on partial observation in stochastic systems
It is sometimes difficult to achieve a complete observation for a full set of observables, and partial observations are necessary. For deterministic systems, the Mori-Zwanzig formalism provides a theoretical framework for handling partial observations. Recently, data-driven algorithms based on the Koopman operator theory have made significant progress, and there is a discussion to connect the Mori-Zwanzig formalism with the Koopman operator theory. In this work, we discuss the effects of partial observation in stochastic systems using the Koopman operator theory. The discussion clarifies the importance of distinguishing the state space and the function space in stochastic systems. Even in stochastic systems, the delay embedding technique is beneficial for partial observation, and several numerical experiments showed a power-law behavior of the accuracy for the amplitude of the additive noise. We also discuss the relation between the exponent of the power-law behavior and the effects of partial observation.
comment: 23 pages, 5 figures
☆ Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses
Quantum Machine Learning (QML) integrates quantum computing with classical machine learning, primarily to solve classification, regression and generative tasks. However, its rapid development raises critical security challenges in the Noisy Intermediate-Scale Quantum (NISQ) era. This chapter examines adversarial threats unique to QML systems, focusing on vulnerabilities in cloud-based deployments, hybrid architectures, and quantum generative models. Key attack vectors include model stealing via transpilation or output extraction, data poisoning through quantum-specific perturbations, reverse engineering of proprietary variational quantum circuits, and backdoor attacks. Adversaries exploit noise-prone quantum hardware and insufficiently secured QML-as-a-Service (QMLaaS) workflows to compromise model integrity, ownership, and functionality. Defense mechanisms leverage quantum properties to counter these threats. Noise signatures from training hardware act as non-invasive watermarks, while hardware-aware obfuscation techniques and ensemble strategies disrupt cloning attempts. Emerging solutions also adapt classical adversarial training and differential privacy to quantum settings, addressing vulnerabilities in quantum neural networks and generative architectures. However, securing QML requires addressing open challenges such as balancing noise levels for reliability and security, mitigating cross-platform attacks, and developing quantum-classical trust frameworks. This chapter summarizes recent advances in attacks and defenses, offering a roadmap for researchers and practitioners to build robust, trustworthy QML systems resilient to evolving adversarial landscapes.
comment: 23 pages, 5 figures
☆ The Cost of Avoiding Backpropagation
Forward-mode automatic differentiation (FmAD) and zero-order (ZO) optimization have been proposed as memory-efficient alternatives to backpropagation (BP) for gradient computation, especially in low-resource settings. However, their practical benefits remain unclear due to two key gaps: a lack of comparison against memory-efficient BP variants, such as activation checkpointing, and a lack of a unified theoretical analysis. This work presents a comprehensive theoretical and empirical comparison of BP, FmAD, and ZO methods. Our theoretical analysis shows that while FmAD, and ZO can reduce memory usage, they incur significant costs in accuracy, convergence speed, and computation compared to BP with checkpointing. These drawbacks worsen with larger models or constrained perturbation budgets. Empirical experiments on large language and vision-language models show that BP with checkpointing outperforms FmAD and ZO variants, including those enhanced with variance reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence, and 3.8x fewer computations at comparable memory usage. Our results highlight fundamental limitations of FmAD and ZO, and reaffirm BP with checkpointing as the most effective strategy for model training under memory-constrained settings. Our code is available at https://github.com/Astuary/The_Cost_of_Avoiding_Backpropagation.
☆ Fetal Sleep: A Cross-Species Review of Physiology, Measurement, and Classification
Fetal sleep is a relatively underexplored yet vital aspect of prenatal neurodevelopment. Understanding fetal sleep patterns could provide insights into early brain maturation and help clinicians detect signs of neurological compromise that arise due to fetal hypoxia or fetal growth restriction. This review synthesizes over eight decades of research on the physiological characteristics, ontogeny, and regulation of fetal sleep. We compare sleep-state patterns in humans and large animal models, highlighting species-specific differences and the presence of sleep-state analogs. We review both invasive techniques in animals and non-invasive modalities in humans. Computational methods for sleep-state classification are also examined, including rule-based approaches (with and without clustering-based preprocessing) and state-of-the-art deep learning techniques. Finally, we discuss how intrauterine conditions such as hypoxia and fetal growth restriction can disrupt fetal sleep. This review provides a comprehensive foundation for the development of objective, multimodal, and non-invasive fetal sleep monitoring technologies to support early diagnosis and intervention in prenatal care.
comment: Review article, 17 pages, 1 figure, 5 tables, submitted to Sleep (under review)
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models ICDAR2025
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ L2MAC: Large Language Model Automatic Computer for Extensive Code Generation ICLR
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
comment: Published in The Twelfth International Conference on Learning Representations (ICLR), 2024. Copyright 2023 by the author(s)
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen, Mistral, and Llama families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Decoupled SGDA for Games with Intermittent Strategy Communication
We focus on reducing communication overhead in multiplayer games, where frequently exchanging strategies between players is not feasible and players have noisy or outdated strategies of the other players. We introduce Decoupled SGDA, a novel adaptation of Stochastic Gradient Descent Ascent (SGDA). In this approach, players independently update their strategies based on outdated opponent strategies, with periodic synchronization to align strategies. For Strongly-Convex-Strongly-Concave (SCSC) games, we demonstrate that Decoupled SGDA achieves near-optimal communication complexity comparable to the best-known GDA rates. For weakly coupled games where the interaction between players is lower relative to the non-interactive part of the game, Decoupled SGDA significantly reduces communication costs compared to standard SGDA. Our findings extend to multi-player games. To provide insights into the effect of communication frequency and convergence, we extensively study the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in settings where the noise over the players is imbalanced, Decoupled SGDA significantly outperforms federated minimax methods.
♻ ☆ How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
♻ ☆ Learning Non-Local Molecular Interactions via Equivariant Local Representations and Charge Equilibration
Graph Neural Network (GNN) potentials relying on chemical locality offer near-quantum mechanical accuracy at significantly reduced computational costs. Message-passing GNNs model interactions beyond their immediate neighborhood by propagating local information between neighboring particles while remaining effectively local. However, locality precludes modeling long-range effects critical to many real-world systems, such as charge transfer, electrostatic interactions, and dispersion effects. In this work, we propose the Charge Equilibration Layer for Long-range Interactions (CELLI) to address the challenge of efficiently modeling non-local interactions. This novel architecture generalizes the classical charge equilibration (Qeq) method to a model-agnostic building block for modern equivariant GNN potentials. Therefore, CELLI extends the capability of GNNs to model long-range interactions while providing high interpretability through explicitly modeled charges. On benchmark systems, CELLI achieves state-of-the-art results for strictly local models. CELLI generalizes to diverse datasets and large structures while providing high computational efficiency and robust predictions.
♻ ☆ Learning Networks from Wide-Sense Stationary Stochastic Processes
Complex networked systems driven by latent inputs are common in fields like neuroscience, finance, and engineering. A key inference problem here is to learn edge connectivity from node outputs (potentials). We focus on systems governed by steady-state linear conservation laws: $X_t = {L^{\ast}}Y_{t}$, where $X_t, Y_t \in \mathbb{R}^p$ denote inputs and potentials, respectively, and the sparsity pattern of the $p \times p$ Laplacian $L^{\ast}$ encodes the edge structure. Assuming $X_t$ to be a wide-sense stationary stochastic process with a known spectral density matrix, we learn the support of $L^{\ast}$ from temporally correlated samples of $Y_t$ via an $\ell_1$-regularized Whittle's maximum likelihood estimator (MLE). The regularization is particularly useful for learning large-scale networks in the high-dimensional setting where the network size $p$ significantly exceeds the number of samples $n$. We show that the MLE problem is strictly convex, admitting a unique solution. Under a novel mutual incoherence condition and certain sufficient conditions on $(n, p, d)$, we show that the ML estimate recovers the sparsity pattern of $L^\ast$ with high probability, where $d$ is the maximum degree of the graph underlying $L^{\ast}$. We provide recovery guarantees for $L^\ast$ in element-wise maximum, Frobenius, and operator norms. Finally, we complement our theoretical results with several simulation studies on synthetic and benchmark datasets, including engineered systems (power and water networks), and real-world datasets from neural systems (such as the human brain).
♻ ☆ Scalable Hypergraph Structure Learning with Diverse Smoothness Priors
In graph signal processing, learning the weighted connections between nodes from a set of sample signals is a fundamental task when the underlying relationships are not known a priori. This task is typically addressed by finding a graph Laplacian on which the observed signals are smooth. With the extension of graphs to hypergraphs - where edges can connect more than two nodes - graph learning methods have similarly been generalized to hypergraphs. However, the absence of a unified framework for calculating total variation has led to divergent definitions of smoothness and, consequently, differing approaches to hyperedge recovery. We confront this challenge through generalization of several previously proposed hypergraph total variations, subsequently allowing ease of substitution into a vector based optimization. To this end, we propose a novel hypergraph learning method that recovers a hypergraph topology from time-series signals based on a smoothness prior. Our approach, designated as Hypergraph Structure Learning with Smoothness (HSLS), addresses key limitations in prior works, such as hyperedge selection and convergence issues, by formulating the problem as a convex optimization solved via a forward-backward-forward algorithm, ensuring guaranteed convergence. Additionally, we introduce a process that simultaneously limits the span of the hyperedge search and maintains a valid hyperedge selection set. In doing so, our method becomes scalable in increasingly complex network structures. The experimental results demonstrate improved performance, in terms of accuracy, over other state-of-the-art hypergraph inference methods; furthermore, we empirically show our method to be robust to total variation terms, biased towards global smoothness, and scalable to larger hypergraphs.
comment: 15 pages, 7 figures, submitted to IEEE for possible publication; Section I includes more applications, comparisons, and enumerated list of novel contributions; removed numerical analysis of TV terms in Section II, added more general discussion; updated Algorithm 1 and corresponding text; third experiment of Section V-C replaced with new experiment
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ Gradual Domain Adaptation for Graph Learning
Existing literature lacks a graph domain adaptation technique for handling large distribution shifts, primarily due to the difficulty in simulating an evolving path from source to target graph. To make a breakthrough, we present a graph gradual domain adaptation (GGDA) framework with the construction of a compact domain sequence that minimizes information loss in adaptations. Our approach starts with an efficient generation of knowledge-preserving intermediate graphs over the Fused Gromov-Wasserstein (FGW) metric. With the bridging data pool, GGDA domains are then constructed via a novel vertex-based domain progression, which comprises "close" vertex selections and adaptive domain advancement to enhance inter-domain information transferability. Theoretically, our framework concretizes the intractable inter-domain distance $W_p(\mu_t,\mu_{t+1})$ via implementable upper and lower bounds, enabling flexible adjustments of this metric for optimizing domain formation. Extensive experiments under various transfer scenarios validate the superior performance of our GGDA framework.
♻ ☆ How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data?
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Spring-block theory of feature learning in deep neural networks
Feature-learning deep nets progressively collapse data to a regular low-dimensional geometry. How this emerges from the collective action of nonlinearity, noise, learning rate, and other factors, has eluded first-principles theories built from microscopic neuronal dynamics. We exhibit a noise-nonlinearity phase diagram that identifies regimes where shallow or deep layers learn more effectively and propose a macroscopic mechanical theory that reproduces the diagram and links feature learning across layers to generalization.
♻ ☆ Fairness-Optimized Synthetic EHR Generation for Arbitrary Downstream Predictive Tasks
Among various aspects of ensuring the responsible design of AI tools for healthcare applications, addressing fairness concerns has been a key focus area. Specifically, given the wide spread of electronic health record (EHR) data and their huge potential to inform a wide range of clinical decision support tasks, improving fairness in this category of health AI tools is of key importance. While such a broad problem (mitigating fairness in EHR-based AI models) has been tackled using various methods, task- and model-agnostic methods are noticeably rare. In this study, we aimed to target this gap by presenting a new pipeline that generates synthetic EHR data, which is not only consistent with (faithful to) the real EHR data but also can reduce the fairness concerns (defined by the end-user) in the downstream tasks, when combined with the real data. We demonstrate the effectiveness of our proposed pipeline across various downstream tasks and two different EHR datasets. Our proposed pipeline can add a widely applicable and complementary tool to the existing toolbox of methods to address fairness in health AI applications, such as those modifying the design of a downstream model. The codebase for our project is available at https://github.com/healthylaife/FairSynth
comment: The paper has been accepted at the IEEE/ACM conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2025
♻ ☆ Performance of Rank-One Tensor Approximation on Incomplete Data
We are interested in the estimation of a rank-one tensor signal when only a portion $\varepsilon$ of its noisy observation is available. We show that the study of this problem can be reduced to that of a random matrix model whose spectral analysis gives access to the reconstruction performance. These results shed light on and specify the loss of performance induced by an artificial reduction of the memory cost of a tensor via the deletion of a random part of its entries.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets ICML 2025
Benchmark datasets have proved pivotal to the success of graph learning, and good benchmark datasets are crucial to guide the development of the field. Recent research has highlighted problems with graph-learning datasets and benchmarking practices -- revealing, for example, that methods which ignore the graph structure can outperform graph-based approaches. Such findings raise two questions: (1) What makes a good graph-learning dataset, and (2) how can we evaluate dataset quality in graph learning? Our work addresses these questions. As the classic evaluation setup uses datasets to evaluate models, it does not apply to dataset evaluation. Hence, we start from first principles. Observing that graph-learning datasets uniquely combine two modes -- graph structure and node features --, we introduce Rings, a flexible and extensible mode-perturbation framework to assess the quality of graph-learning datasets based on dataset ablations -- i.e., quantifying differences between the original dataset and its perturbed representations. Within this framework, we propose two measures -- performance separability and mode complementarity -- as evaluation tools, each assessing the capacity of a graph dataset to benchmark the power and efficacy of graph-learning methods from a distinct angle. We demonstrate the utility of our framework for dataset evaluation via extensive experiments on graph-level tasks and derive actionable recommendations for improving the evaluation of graph-learning methods. Our work opens new research directions in data-centric graph learning, and it constitutes a step toward the systematic evaluation of evaluations.
comment: Accepted at ICML 2025
♻ ☆ Soft Condorcet Optimization for Ranking of General Agents
Driving progress of AI models and agents requires comparing their performance on standardized benchmarks; for general agents, individual performances must be aggregated across a potentially wide variety of different tasks. In this paper, we describe a novel ranking scheme inspired by social choice frameworks, called Soft Condorcet Optimization (SCO), to compute the optimal ranking of agents: the one that makes the fewest mistakes in predicting the agent comparisons in the evaluation data. This optimal ranking is the maximum likelihood estimate when evaluation data (which we view as votes) are interpreted as noisy samples from a ground truth ranking, a solution to Condorcet's original voting system criteria. SCO ratings are maximal for Condorcet winners when they exist, which we show is not necessarily true for the classical rating system Elo. We propose three optimization algorithms to compute SCO ratings and evaluate their empirical performance. When serving as an approximation to the Kemeny-Young voting method, SCO rankings are on average 0 to 0.043 away from the optimal ranking in normalized Kendall-tau distance across 865 preference profiles from the PrefLib open ranking archive. In a simulated noisy tournament setting, SCO achieves accurate approximations to the ground truth ranking and the best among several baselines when 59\% or more of the preference data is missing. Finally, SCO ranking provides the best approximation to the optimal ranking, measured on held-out test sets, in a problem containing 52,958 human players across 31,049 games of the classic seven-player game of Diplomacy.
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce Anchored-Branched Universal Physics Transformers (AB-UPT) as a novel modeling scheme for building neural surrogates for computational fluid dynamics (CFD) simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a computer-aided design geometry alone, omitting the need for costly CFD meshing procedures.
comment: Preprint. Github: https://github.com/Emmi-AI/AB-UPT
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ ROME: Robust Multi-Modal Density Estimator
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estimation problems. In this paper, we present ROME (RObust Multi-modal Estimator), a non-parametric approach for density estimation which addresses the challenge of estimating multi-modal, non-normal, and highly correlated distributions. ROME utilizes clustering to segment a multi-modal set of samples into multiple uni-modal ones and then combines simple KDE estimates obtained for individual clusters in a single multi-modal estimate. We compared our approach to state-of-the-art methods for density estimation as well as ablations of ROME, showing that it not only outperforms established methods but is also more robust to a variety of distributions. Our results demonstrate that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators.
♻ ☆ Graph-Reward-SQL: Execution-Free Reinforcement Learning for Text-to-SQL via Graph Matching and Stepwise Reward
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to-SQL tasks. However, existing methods often rely on execution-based or LLM-based Bradley-Terry reward models. The former suffers from high execution latency caused by repeated database calls, whereas the latter imposes substantial GPU memory overhead, both of which significantly hinder the efficiency and scalability of RL pipelines. To this end, we propose a novel Text-to-SQL RL fine-tuning framework named Graph-Reward-SQL, which employs the GMNScore outcome reward model. We leverage SQL graph representations to provide accurate reward signals while significantly reducing inference time and GPU memory usage. Building on this foundation, we further introduce StepRTM, a stepwise reward model that provides intermediate supervision over Common Table Expression (CTE) subqueries. This encourages both functional correctness and structural clarity of SQL. Extensive comparative and ablation experiments on standard benchmarks, including Spider and BIRD, demonstrate that our method consistently outperforms existing reward models.
♻ ☆ Near Field Localization via AI-Aided Subspace Methods
The increasing demands for high-throughput and energy-efficient wireless communications are driving the adoption of extremely large antennas operating at high-frequency bands. In these regimes, multiple users will reside in the radiative near-field, and accurate localization becomes essential. Unlike conventional far-field systems that rely solely on DOA estimation, near-field localization exploits spherical wavefront propagation to recover both DOA and range information. While subspace-based methods, such as MUSIC and its extensions, offer high resolution and interpretability for near-field localization, their performance is significantly impacted by model assumptions, including non-coherent sources, well-calibrated arrays, and a sufficient number of snapshots. To address these limitations, this work proposes AI-aided subspace methods for near-field localization that enhance robustness to real-world challenges. Specifically, we introduce NF-SubspaceNet, a deep learning-augmented 2D MUSIC algorithm that learns a surrogate covariance matrix to improve localization under challenging conditions, and DCD-MUSIC, a cascaded AI-aided approach that decouples angle and range estimation to reduce computational complexity. We further develop a novel model-order-aware training method to accurately estimate the number of sources, that is combined with casting of near field subspace methods as AI models for learning. Extensive simulations demonstrate that the proposed methods outperform classical and existing deep-learning-based localization techniques, providing robust near-field localization even under coherent sources, miscalibrations, and few snapshots.
comment: Under review for publication in the IEEE
♻ ☆ Design Patterns for Securing LLM Agents against Prompt Injections
As AI agents powered by Large Language Models (LLMs) become increasingly versatile and capable of addressing a broad spectrum of tasks, ensuring their security has become a critical challenge. Among the most pressing threats are prompt injection attacks, which exploit the agent's resilience on natural language inputs -- an especially dangerous threat when agents are granted tool access or handle sensitive information. In this work, we propose a set of principled design patterns for building AI agents with provable resistance to prompt injection. We systematically analyze these patterns, discuss their trade-offs in terms of utility and security, and illustrate their real-world applicability through a series of case studies.
♻ ☆ Generative AI for O-RAN Slicing: A Semi-Supervised Approach with VAE and Contrastive Learning
This paper introduces a novel generative AI (GAI)-driven, unified semi-supervised learning architecture for optimizing resource allocation and network slicing in O-RAN. Termed Generative Semi-Supervised VAE-Contrastive Learning, our approach maximizes the weighted user equipment (UE) throughput and allocates physical resource blocks (PRBs) to enhance the quality of service for eMBB and URLLC services. The GAI framework utilizes a dedicated xApp for intelligent power control and PRB allocation. This integrated GAI model synergistically combines the generative power of a VAE with contrastive learning to achieve robustness in an end-to-end trainable system. It is a semi-supervised training approach that concurrently optimizes supervised regression of resource allocation decisions (i.e., power, UE association, PRB) and unsupervised contrastive objectives. This intrinsic fusion improves the precision of resource management and model generalization in dynamic mobile networks. We evaluated our GAI methodology against exhaustive search and deep Q-Network algorithms using key performance metrics. Results show our integrated GAI approach offers superior efficiency and effectiveness in various scenarios, presenting a compelling GAI-based solution for critical network slicing and resource management challenges in next-generation O-RAN systems.
♻ ☆ SONG: Self-Organizing Neural Graphs WACV 2023
Recent years have seen a surge in research on deep interpretable neural networks with decision trees as one of the most commonly incorporated tools. There are at least three advantages of using decision trees over logistic regression classification models: they are easy to interpret since they are based on binary decisions, they can make decisions faster, and they provide a hierarchy of classes. However, one of the well-known drawbacks of decision trees, as compared to decision graphs, is that decision trees cannot reuse the decision nodes. Nevertheless, decision graphs were not commonly used in deep learning due to the lack of efficient gradient-based training techniques. In this paper, we fill this gap and provide a general paradigm based on Markov processes, which allows for efficient training of the special type of decision graphs, which we call Self-Organizing Neural Graphs (SONG). We provide an extensive theoretical study of SONG, complemented by experiments conducted on Letter, Connect4, MNIST, CIFAR, and TinyImageNet datasets, showing that our method performs on par or better than existing decision models.
comment: Accepted in WACV 2023
♻ ☆ Forecasting the future development in quality and value of professional football players
Transfers in professional football (soccer) are risky investments because of the large transfer fees and high risks involved. Although data-driven models can be used to improve transfer decisions, existing models focus on describing players' historical progress, leaving their future performance unknown. Moreover, recent developments have called for the use of explainable models combined with uncertainty quantification of predictions. This paper assesses explainable machine learning models based on predictive accuracy and uncertainty quantification methods for the prediction of the future development in quality and transfer value of professional football players. The predictive accuracy is studied by training the models to predict the quality and value of players one year ahead. This is carried out by training them on two data sets containing data-driven indicators describing the player quality and player value in historical settings. In general, the random forest model is found to be the most suitable model because it provides accurate predictions as well as an uncertainty quantification method that naturally arises from the bagging procedure of the random forest model. Additionally, this research shows that the development of player performance contains nonlinear patterns and interactions between variables, and that time series information can provide useful information for the modeling of player performance metrics. The resulting models can help football clubs make more informed, data-driven transfer decisions by forecasting player quality and transfer value.
comment: The article itself is on the pages 1-31. The data set used in this article is described in the appendix at the pages 32-39
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
comment: Revised version, submitted to IEEE-TSG
♻ ☆ C-Learner: Constrained Learning for Causal Inference
Popular debiased estimation methods for causal inference -- such as augmented inverse propensity weighting and targeted maximum likelihood estimation -- enjoy desirable asymptotic properties like statistical efficiency and double robustness but they can produce unstable estimates when there is limited overlap between treatment and control, requiring additional assumptions or ad hoc adjustments in practice (e.g., truncating propensity scores). In contrast, simple plug-in estimators are stable but lack desirable asymptotic properties. We propose a novel debiasing approach that achieves the best of both worlds, producing stable plug-in estimates with desirable asymptotic properties. Our constrained learning framework solves for the best plug-in estimator under the constraint that the first-order error with respect to the plugged-in quantity is zero, and can leverage flexible model classes including neural networks and tree ensembles. In several experimental settings, including ones in which we handle text-based covariates by fine-tuning language models, our constrained learning-based estimator outperforms basic versions of one-step estimation and targeting in challenging settings with limited overlap between treatment and control, and performs similarly otherwise.
♻ ☆ Distilling the Unknown to Unveil Certainty
Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.
♻ ☆ Generative adversarial neural networks for simulating neutrino interactions
We propose a new approach to simulate neutrino scattering events as an alternative to the standard Monte Carlo generator approach. Generative adversarial neural network (GAN) models are developed to simulate charged current neutrino-carbon collisions in the few-GeV energy range. We consider a simplified framework to generate muon kinematic variables, specifically its energy and scattering angle. GAN models are trained on simulation data from \nuwro{} Monte Carlo event generator. Two GAN models have been obtained: one simulating quasielastic neutrino-nucleus scatterings and another simulating all interactions at given neutrino energy. The models work for neutrino energy ranging from 300 MeV to 10 GeV. The performance of both models has been assessed using two statistical metrics. It is shown that both GAN models successfully reproduce the distribution of muon kinematics.
comment: 16 pages, 16 figures
♻ ☆ Time series classification with random convolution kernels: pooling operators and input representations matter
This article presents a new approach based on MiniRocket, called SelF-Rocket, for fast time series classification (TSC). Unlike existing approaches based on random convolution kernels, it dynamically selects the best couple of input representations and pooling operator during the training process. SelF-Rocket achieves state-of-the-art accuracy on the University of California Riverside (UCR) TSC benchmark datasets.
comment: v1: initial version, incorrect evaluation. v2: Method improved, evaluation corrected, title simplified. v3: Add acknowledgments. v4: text correction
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v4 updates: mention concurrent work of speculative decoding for SSM
♻ ☆ BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models
In this paper, we propose BeamLLM, a vision-aided millimeter-wave (mmWave) beam prediction framework leveraging large language models (LLMs) to address the challenges of high training overhead and latency in mmWave communication systems. By combining computer vision (CV) with LLMs' cross-modal reasoning capabilities, the framework extracts user equipment (UE) positional features from RGB images and aligns visual-temporal features with LLMs' semantic space through reprogramming techniques. Evaluated on a realistic vehicle-to-infrastructure (V2I) scenario, the proposed method achieves 61.01% top-1 accuracy and 97.39% top-3 accuracy in standard prediction tasks, significantly outperforming traditional deep learning models. In few-shot prediction scenarios, the performance degradation is limited to 12.56% (top-1) and 5.55% (top-3) from time sample 1 to 10, demonstrating superior prediction capability.
comment: 6 pages, 7 figures, conference
♻ ☆ Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets. Traditionally, this involves using dimensionality reduction (DR) methods to project data onto lower-dimensional spaces or organizing points into meaningful clusters (clustering). In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem. This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem. We empirically demonstrate its relevance to the identification of low-dimensional prototypes representing data at different scales, across multiple image and genomic datasets.
comment: 45 pages, 20 figures
♻ ☆ Green LIME: Improving AI Explainability through Design of Experiments
In artificial intelligence (AI), the complexity of many models and processes surpasses human understanding, making it challenging to determine why a specific prediction is made. This lack of transparency is particularly problematic in critical fields like healthcare, where trust in a model's predictions is paramount. As a result, the explainability of machine learning (ML) and other complex models has become a key area of focus. Efforts to improve model explainability often involve experimenting with AI systems and approximating their behavior through interpretable surrogate mechanisms. However, these procedures can be resource-intensive. Optimal design of experiments, which seeks to maximize the information obtained from a limited number of observations, offers promising methods for improving the efficiency of these explainability techniques. To demonstrate this potential, we explore Local Interpretable Model-agnostic Explanations (LIME), a widely used method introduced by Ribeiro et al. (2016). LIME provides explanations by generating new data points near the instance of interest and passing them through the model. While effective, this process can be computationally expensive, especially when predictions are costly or require many samples. LIME is highly versatile and can be applied to a wide range of models and datasets. In this work, we focus on models involving tabular data, regression tasks, and linear models as interpretable local approximations. By utilizing optimal design of experiments' techniques, we reduce the number of function evaluations of the complex model, thereby reducing the computational effort of LIME by a significant amount. We consider this modified version of LIME to be energy-efficient or "green".
♻ ☆ A Survey on Federated Fine-tuning of Large Language Models
Large Language Models (LLMs) have demonstrated impressive success across various tasks. Integrating LLMs with Federated Learning (FL), a paradigm known as FedLLM, offers a promising avenue for collaborative model adaptation while preserving data privacy. This survey provides a systematic and comprehensive review of FedLLM. We begin by tracing the historical development of both LLMs and FL, summarizing relevant prior research to set the context. Subsequently, we delve into an in-depth analysis of the fundamental challenges inherent in deploying FedLLM. Addressing these challenges often requires efficient adaptation strategies; therefore, we conduct an extensive examination of existing Parameter-Efficient Fine-tuning (PEFT) methods and explore their applicability within the FL framework. To rigorously evaluate the performance of FedLLM, we undertake a thorough review of existing fine-tuning datasets and evaluation benchmarks. Furthermore, we discuss FedLLM's diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to foster future advancements in FedLLM. This survey aims to serve as a foundational resource for researchers and practitioners, offering valuable insights into the rapidly evolving landscape of federated fine-tuning for LLMs. It also establishes a roadmap for future innovations in privacy-preserving AI. We actively maintain a GitHub repo \href{https://github.com/Clin0212/Awesome-Federated-LLM-Learning}{https://github.com/Clin0212/Awesome-Federated-LLM-Learning} to track cutting-edge advancements in this field.
♻ ☆ Spectraformer: A Unified Random Feature Framework for Transformer
Linearization of attention using various kernel approximation and kernel learning techniques has shown promise. Past methods used a subset of combinations of component functions and weight matrices within the random feature paradigm. We identify the need for a systematic comparison of different combinations of weight matrices and component functions for attention learning in Transformer. Hence, we introduce Spectraformer, a unified framework for approximating and learning the kernel function in the attention mechanism of the Transformer. Our empirical results demonstrate, for the first time, that a random feature-based approach can achieve performance comparable to top-performing sparse and low-rank methods on the challenging Long Range Arena benchmark. Thus, we establish a new state-of-the-art for random feature-based efficient Transformers. The framework also produces many variants that offer different advantages in accuracy, training time, and memory consumption. Our code is available at: https://github.com/cruiseresearchgroup/spectraformer .
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ On the Lipschitz Continuity of Set Aggregation Functions and Neural Networks for Sets
The Lipschitz constant of a neural network is connected to several important properties of the network such as its robustness and generalization. It is thus useful in many settings to estimate the Lipschitz constant of a model. Prior work has focused mainly on estimating the Lipschitz constant of multi-layer perceptrons and convolutional neural networks. Here we focus on data modeled as sets or multisets of vectors and on neural networks that can handle such data. These models typically apply some permutation invariant aggregation function, such as the sum, mean or max operator, to the input multisets to produce a single vector for each input sample. In this paper, we investigate whether these aggregation functions are Lipschitz continuous with respect to three distance functions for unordered multisets, and we compute their Lipschitz constants. In the general case, we find that each aggregation function is Lipschitz continuous with respect to only one of the three distance functions. Then, we build on these results to derive upper bounds on the Lipschitz constant of neural networks that can process multisets of vectors, while we also study their stability to perturbations and generalization under distribution shifts. To empirically verify our theoretical analysis, we conduct a series of experiments on datasets from different domains.
♻ ☆ deCIFer: Crystal Structure Prediction from Powder Diffraction Data using Autoregressive Language Models
Novel materials drive progress across applications from energy storage to electronics. Automated characterization of material structures with machine learning methods offers a promising strategy for accelerating this key step in material design. In this work, we introduce an autoregressive language model that performs crystal structure prediction (CSP) from powder diffraction data. The presented model, deCIFer, generates crystal structures in the widely used Crystallographic Information File (CIF) format and can be conditioned on powder X-ray diffraction (PXRD) data. Unlike earlier works that primarily rely on high-level descriptors like composition, deCIFer is also able to use diffraction data to perform CSP. We train deCIFer on nearly 2.3M crystal structures and validate on diverse sets of PXRD patterns for characterizing challenging inorganic crystal systems. Qualitative checks and quantitative assessments using the residual weighted profile show that deCIFer produces structures that more accurately match the target diffraction data. Notably, deCIFer can achieve a 94% match rate on test data. deCIFer bridges experimental diffraction data with computational CSP, lending itself as a powerful tool for crystal structure characterization.
comment: 24 pages, 18 figures, 8 tables. v2: Figure 8 revision. v3: added benchmarks, text revisions
♻ ☆ Embedding-based Approaches to Hyperpartisan News Detection
In this paper, we describe our systems in which the objective is to determine whether a given news article could be considered as hyperpartisan. Hyperpartisan news is news that takes an extremely polarized political standpoint with an intention of creating political divide among the public. We attempted several approaches, including n-grams, sentiment analysis, as well as sentence and document representation using pre-tained ELMo. Our best system using pre-trained ELMo with Bidirectional LSTM achieved an accuracy of 83% through 10-fold cross-validation without much hyperparameter tuning.
comment: The authorship dispute of this article could not be resolved, and it was submitted without the consent of P. Chen
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ Causal Inference Isn't Special: Why It's Just Another Prediction Problem
Causal inference is often portrayed as fundamentally distinct from predictive modeling, with its own terminology, goals, and intellectual challenges. But at its core, causal inference is simply a structured instance of prediction under distribution shift. In both cases, we begin with labeled data from a source domain and seek to generalize to a target domain where outcomes are not observed. The key difference is that in causal inference, the labels -- potential outcomes -- are selectively observed based on treatment assignment, introducing bias that must be addressed through assumptions. This perspective reframes causal estimation as a familiar generalization problem and highlights how techniques from predictive modeling, such as reweighting and domain adaptation, apply directly to causal tasks. It also clarifies that causal assumptions are not uniquely strong -- they are simply more explicit. By viewing causal inference through the lens of prediction, we demystify its logic, connect it to familiar tools, and make it more accessible to practitioners and educators alike.
♻ ☆ Mic-hackathon 2024: Hackathon on Machine Learning for Electron and Scanning Probe Microscopy
Microscopy is a primary source of information on materials structure and functionality at nanometer and atomic scales. The data generated is often well-structured, enriched with metadata and sample histories, though not always consistent in detail or format. The adoption of Data Management Plans (DMPs) by major funding agencies promotes preservation and access. However, deriving insights remains difficult due to the lack of standardized code ecosystems, benchmarks, and integration strategies. As a result, data usage is inefficient and analysis time is extensive. In addition to post-acquisition analysis, new APIs from major microscope manufacturers enable real-time, ML-based analytics for automated decision-making and ML-agent-controlled microscope operation. Yet, a gap remains between the ML and microscopy communities, limiting the impact of these methods on physics, materials discovery, and optimization. Hackathons help bridge this divide by fostering collaboration between ML researchers and microscopy experts. They encourage the development of novel solutions that apply ML to microscopy, while preparing a future workforce for instrumentation, materials science, and applied ML. This hackathon produced benchmark datasets and digital twins of microscopes to support community growth and standardized workflows. All related code is available at GitHub: https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/tree/1.0.0.1
♻ ☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
♻ ☆ Enhancing Cloud Security through Topic Modelling
Protecting cloud applications is critical in an era where security threats are increasingly sophisticated and persistent. Continuous Integration and Continuous Deployment (CI/CD) pipelines are particularly vulnerable, making innovative security approaches essential. This research explores the application of Natural Language Processing (NLP) techniques, specifically Topic Modelling, to analyse security-related text data and anticipate potential threats. We focus on Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic Analysis (PLSA) to extract meaningful patterns from data sources, including logs, reports, and deployment traces. Using the Gensim framework in Python, these methods categorise log entries into security-relevant topics (e.g., phishing, encryption failures). The identified topics are leveraged to highlight patterns indicative of security issues across CI/CD's continuous stages (build, test, deploy). This approach introduces a semantic layer that supports early vulnerability recognition and contextual understanding of runtime behaviours.
comment: 7 pages, 5 figures, 28th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2024-Winter)
♻ ☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 30 pages; 4 figures
♻ ☆ Advances in Temporal Point Processes: Bayesian, Neural, and LLM Approaches
Temporal point processes (TPPs) are stochastic process models used to characterize event sequences occurring in continuous time. Traditional statistical TPPs have a long-standing history, with numerous models proposed and successfully applied across diverse domains. In recent years, advances in deep learning have spurred the development of neural TPPs, enabling greater flexibility and expressiveness in capturing complex temporal dynamics. The emergence of large language models (LLMs) has further sparked excitement, offering new possibilities for modeling and analyzing event sequences by leveraging their rich contextual understanding. This survey presents a comprehensive review of recent research on TPPs from three perspectives: Bayesian, deep learning, and LLM approaches. We begin with a review of the fundamental concepts of TPPs, followed by an in-depth discussion of model design and parameter estimation techniques in these three frameworks. We also revisit classic application areas of TPPs to highlight their practical relevance. Finally, we outline challenges and promising directions for future research.
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ Computational Efficient and Minimax Optimal Nonignorable Matrix Completion
While the matrix completion problem has attracted considerable attention over the decades, few works address the nonignorable missing issue and all have their limitations. In this article, we propose a nuclear norm regularized row- and column-wise matrix U-statistic loss function for the generalized nonignorable missing mechanism, a flexible and generally applicable missing mechanism which contains both ignorable and nonignorable missing mechanism assumptions. The proposed method achieves computational efficiency comparable to the existing missing-at-random approaches, while providing the near minimax optimal statistical convergence rate guarantees for the more general nonignorable missing case. We propose an accelerated proximal gradient algorithm to solve the associated optimization problem, and characterize the interaction between algorithmic and statistical convergence. Simulations and real data analyzes further support the practical utility of the proposed method.
♻ ☆ RLSF: Fine-tuning LLMs via Symbolic Feedback
Large Language Models (LLMs) have transformed AI but often struggle with tasks that require domain-specific reasoning and logical alignment. Traditional fine-tuning methods do not leverage the vast amount of symbolic domain-knowledge available to us via symbolic reasoning tools (e.g., provers), and are further limited by sparse rewards and unreliable reward models. We introduce Reinforcement Learning via Symbolic Feedback (RLSF), a novel fine-tuning paradigm where symbolic reasoning tools (e.g., solvers, provers, and algebra systems) provide fine-grained feedback to LLMs. RLSF uses poly-sized certificates (e.g., proofs) generated by symbolic tools to identify and correct errors in model outputs, offering token-level guidance without requiring differentiable reasoning systems. This paradigm bridges the gap between symbolic reasoning and LLM fine-tuning, enabling precise alignment with domain-specific constraints while addressing key limitations of traditional reward signals. Via extensive evaluations, we show that our RLSF-based fine-tuning of LLMs outperforms traditional approaches on five different applications (that have some associated logical or domain constraints), namely, program synthesis from natural language pseudo-code to programming language, three chemistry tasks, and solving the Game of 24. A key takeaway is that fine-tuning via RLSF enables relatively smaller LLMs to significantly outperform closed-source models that are orders of magnitude larger.
Information Retrieval 20
☆ Towards Fair Rankings: Leveraging LLMs for Gender Bias Detection and Measurement SIGIR
The presence of social biases in Natural Language Processing (NLP) and Information Retrieval (IR) systems is an ongoing challenge, which underlines the importance of developing robust approaches to identifying and evaluating such biases. In this paper, we aim to address this issue by leveraging Large Language Models (LLMs) to detect and measure gender bias in passage ranking. Existing gender fairness metrics rely on lexical- and frequency-based measures, leading to various limitations, e.g., missing subtle gender disparities. Building on our LLM-based gender bias detection method, we introduce a novel gender fairness metric, named Class-wise Weighted Exposure (CWEx), aiming to address existing limitations. To measure the effectiveness of our proposed metric and study LLMs' effectiveness in detecting gender bias, we annotate a subset of the MS MARCO Passage Ranking collection and release our new gender bias collection, called MSMGenderBias, to foster future research in this area. Our extensive experimental results on various ranking models show that our proposed metric offers a more detailed evaluation of fairness compared to previous metrics, with improved alignment to human labels (58.77% for Grep-BiasIR, and 18.51% for MSMGenderBias, measured using Cohen's Kappa agreement), effectively distinguishing gender bias in ranking. By integrating LLM-driven bias detection, an improved fairness metric, and gender bias annotations for an established dataset, this work provides a more robust framework for analyzing and mitigating bias in IR systems.
comment: Accepted by ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR 2025)
☆ HLTCOE at LiveRAG: GPT-Researcher using ColBERT retrieval
The HLTCOE LiveRAG submission utilized the GPT-researcher framework for researching the context of the question, filtering the returned results, and generating the final answer. The retrieval system was a ColBERT bi-encoder architecture, which represents a passage with many dense tokens. Retrieval used a local, compressed index of the FineWeb10-BT collection created with PLAID-X, using a model fine-tuned for multilingual retrieval. Query generation from context was done with Qwen2.5-7B-Instruct, while filtering was accomplished with m2-bert-80M-8k-retrieval. Up to nine passages were used as context to generate an answer using Falcon3-10B. This system placed 5th in the LiveRAG automatic evaluation for correctness with a score of 1.07.
comment: 5 pages, 1 figure
☆ Education-Oriented Graph Retrieval-Augmented Generation for Learning Path Recommendation
Learning path recommendation seeks to provide learners with a structured sequence of learning items (e.g., knowledge concepts or exercises) to optimize their learning efficiency. Despite significant efforts in this area, most existing methods primarily rely on prerequisite relationships, which present two major limitations: 1) Many educational datasets do not explicitly provide prerequisite relationships between knowledge concepts, hindering the application of current learning path recommendation methods. 2) Relying solely on prerequisite relationships as the sole knowledge structure can impede learning progress and negatively impact student outcomes. To address these challenges, we propose a novel approach, Discrimination Learning Enhances Learning Path Recommendation (DLELP), which enhances learning path recommendations by incorporating both prerequisite and similarity relationships between knowledge concepts. Specifically, we introduce a knowledge concept structure graph generation module that adaptively constructs knowledge concept structure graphs for different educational datasets, significantly improving the generalizability of learning path recommendation methods. We then propose a Discrimination Learning-driven Reinforcement Learning (DLRL) framework, which mitigates the issue of blocked learning paths, further enhancing the efficacy of learning path recommendations. Finally, we conduct extensive experiments on three benchmark datasets, demonstrating that our method not only achieves state-of-the-art performance but also provides interpretable reasoning for the recommended learning paths.
☆ JointRank: Rank Large Set with Single Pass ICTIR'25
Efficiently ranking relevant items from large candidate pools is a cornerstone of modern information retrieval systems -- such as web search, recommendation, and retrieval-augmented generation. Listwise rerankers, which improve relevance by jointly considering multiple candidates, are often limited in practice: either by model input size constraints, or by degraded quality when processing large sets. We propose a model-agnostic method for fast reranking large sets that exceed a model input limits. The method first partitions candidate items into overlapping blocks, each of which is ranked independently in parallel. Implicit pairwise comparisons are then derived from these local rankings. Finally, these comparisons are aggregated to construct a global ranking using algorithms such as Winrate or PageRank. Experiments on TREC DL-2019 show that our method achieves an nDCG@10 of 70.88 compared to the 57.68 for full-context listwise approach using gpt-4.1-mini as long-context model, while reducing latency from 21 to 8 seconds. The implementation of the algorithm and the experiments is available in the repository: https://github.com/V3RGANz/jointrank
comment: ICTIR'25 Accepted
☆ UiS-IAI@LiveRAG: Retrieval-Augmented Information Nugget-Based Generation of Responses
Retrieval-augmented generation (RAG) faces challenges related to factual correctness, source attribution, and response completeness. The LiveRAG Challenge hosted at SIGIR'25 aims to advance RAG research using a fixed corpus and a shared, open-source LLM. We propose a modular pipeline that operates on information nuggets-minimal, atomic units of relevant information extracted from retrieved documents. This multistage pipeline encompasses query rewriting, passage retrieval and reranking, nugget detection and clustering, cluster ranking and summarization, and response fluency enhancement. This design inherently promotes grounding in specific facts, facilitates source attribution, and ensures maximum information inclusion within length constraints. In this challenge, we extend our focus to also address the retrieval component of RAG, building upon our prior work on multi-faceted query rewriting. Furthermore, for augmented generation, we concentrate on improving context curation capabilities, maximizing the breadth of information covered in the response while ensuring pipeline efficiency. Our results show that combining original queries with a few sub-query rewrites boosts recall, while increasing the number of documents used for reranking and generation beyond a certain point reduces effectiveness, without improving response quality.
☆ The Missing Link: Joint Legal Citation Prediction using Heterogeneous Graph Enrichment
Legal systems heavily rely on cross-citations of legal norms as well as previous court decisions. Practitioners, novices and legal AI systems need access to these relevant data to inform appraisals and judgments. We propose a Graph-Neural-Network (GNN) link prediction model that can identify Case-Law and Case-Case citations with high proficiency through fusion of semantic and topological information. We introduce adapted relational graph convolutions operating on an extended and enriched version of the original citation graph that allow the topological integration of semantic meta-information. This further improves prediction by 3.1 points of average precision and by 8.5 points in data sparsity as well as showing robust performance over time and in challenging fully inductive prediction. Jointly learning and predicting case and norm citations achieves a large synergistic effect that improves case citation prediction by up to 4.7 points, at almost doubled efficiency.
☆ DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level
In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).
☆ Reward Balancing Revisited: Enhancing Offline Reinforcement Learning for Recommender Systems
Offline reinforcement learning (RL) has emerged as a prevalent and effective methodology for real-world recommender systems, enabling learning policies from historical data and capturing user preferences. In offline RL, reward shaping encounters significant challenges, with past efforts to incorporate prior strategies for uncertainty to improve world models or penalize underexplored state-action pairs. Despite these efforts, a critical gap remains: the simultaneous balancing of intrinsic biases in world models and the diversity of policy recommendations. To address this limitation, we present an innovative offline RL framework termed Reallocated Reward for Recommender Systems (R3S). By integrating inherent model uncertainty to tackle the intrinsic fluctuations in reward predictions, we boost diversity for decision-making to align with a more interactive paradigm, incorporating extra penalizers with decay that deter actions leading to diminished state variety at both local and global scales. The experimental results demonstrate that R3S improves the accuracy of world models and efficiently harmonizes the heterogeneous preferences of the users.
comment: Accepted in Companion Proceedings of the ACM Web Conference 2025
☆ Literature-Grounded Novelty Assessment of Scientific Ideas
Automated scientific idea generation systems have made remarkable progress, yet the automatic evaluation of idea novelty remains a critical and underexplored challenge. Manual evaluation of novelty through literature review is labor-intensive, prone to error due to subjectivity, and impractical at scale. To address these issues, we propose the Idea Novelty Checker, an LLM-based retrieval-augmented generation (RAG) framework that leverages a two-stage retrieve-then-rerank approach. The Idea Novelty Checker first collects a broad set of relevant papers using keyword and snippet-based retrieval, then refines this collection through embedding-based filtering followed by facet-based LLM re-ranking. It incorporates expert-labeled examples to guide the system in comparing papers for novelty evaluation and in generating literature-grounded reasoning. Our extensive experiments demonstrate that our novelty checker achieves approximately 13% higher agreement than existing approaches. Ablation studies further showcases the importance of the facet-based re-ranker in identifying the most relevant literature for novelty evaluation.
☆ CAL-RAG: Retrieval-Augmented Multi-Agent Generation for Content-Aware Layout Design
Automated content-aware layout generation -- the task of arranging visual elements such as text, logos, and underlays on a background canvas -- remains a fundamental yet under-explored problem in intelligent design systems. While recent advances in deep generative models and large language models (LLMs) have shown promise in structured content generation, most existing approaches lack grounding in contextual design exemplars and fall short in handling semantic alignment and visual coherence. In this work we introduce CAL-RAG, a retrieval-augmented, agentic framework for content-aware layout generation that integrates multimodal retrieval, large language models, and collaborative agentic reasoning. Our system retrieves relevant layout examples from a structured knowledge base and invokes an LLM-based layout recommender to propose structured element placements. A vision-language grader agent evaluates the layout with visual metrics, and a feedback agent provides targeted refinements, enabling iterative improvement. We implement our framework using LangGraph and evaluate it on the PKU PosterLayout dataset, a benchmark rich in semantic and structural variability. CAL-RAG achieves state-of-the-art performance across multiple layout metrics -- including underlay effectiveness, element alignment, and overlap -- substantially outperforming strong baselines such as LayoutPrompter. These results demonstrate that combining retrieval augmentation with agentic multi-step reasoning yields a scalable, interpretable, and high-fidelity solution for automated layout generation.
☆ ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation
Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.
☆ HyReC: Exploring Hybrid-based Retriever for Chinese
Hybrid-based retrieval methods, which unify dense-vector and lexicon-based retrieval, have garnered considerable attention in the industry due to performance enhancement. However, despite their promising results, the application of these hybrid paradigms in Chinese retrieval contexts has remained largely underexplored. In this paper, we introduce HyReC, an innovative end-to-end optimization method tailored specifically for hybrid-based retrieval in Chinese. HyReC enhances performance by integrating the semantic union of terms into the representation model. Additionally, it features the Global-Local-Aware Encoder (GLAE) to promote consistent semantic sharing between lexicon-based and dense retrieval while minimizing the interference between them. To further refine alignment, we incorporate a Normalization Module (NM) that fosters mutual benefits between the retrieval approaches. Finally, we evaluate HyReC on the C-MTEB retrieval benchmark to demonstrate its effectiveness.
☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30\% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274\% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Accepted for publication in Applied Soft Computing (ASOC), 49 pages, 14 figures
☆ Evaluating Hybrid Retrieval Augmented Generation using Dynamic Test Sets: LiveRAG Challenge SIGIR
We present our submission to the LiveRAG Challenge 2025, which evaluates retrieval-augmented generation (RAG) systems on dynamic test sets using the FineWeb-10BT corpus. Our final hybrid approach combines sparse (BM25) and dense (E5) retrieval methods and then aims to generate relevant and faithful answers with Falcon3-10B-Instruct. Through systematic evaluation on 200 synthetic questions generated with DataMorgana across 64 unique question-user combinations, we demonstrate that neural re-ranking with RankLLaMA improves MAP from 0.523 to 0.797 (52% relative improvement) but introduces prohibitive computational costs (84s vs 1.74s per question). While DSPy-optimized prompting strategies achieved higher semantic similarity (0.771 vs 0.668), their 0% refusal rates raised concerns about over-confidence and generalizability. Our submitted hybrid system without re-ranking achieved 4th place in faithfulness and 11th place in correctness among 25 teams. Analysis across question categories reveals that vocabulary alignment between questions and documents was the strongest predictor of performance on our development set, with document-similar phrasing improving cosine similarity from 0.562 to 0.762.
comment: 4 pages, 3 tables, 2 figures. Accepted at the SIGIR LiveRAG Workshop 2025 (Submission 2664)
☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
As ever-larger clinical datasets become available, they have the potential to unlock unprecedented opportunities for medical research. Foremost among them is Medical Information Mart for Intensive Care (MIMIC-IV), the world's largest open-source EHR database. However, the inherent complexity of these datasets, particularly the need for sophisticated querying skills and the need to understand the underlying clinical settings, often presents a significant barrier to their effective use. M3 lowers the technical barrier to understanding and querying MIMIC-IV data. With a single command it retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance (or hooks into the hosted BigQuery), and-via the Model Context Protocol (MCP)-lets researchers converse with the database in plain English. Ask a clinical question in natural language; M3 uses a language model to translate it into SQL, executes the query against the MIMIC-IV dataset, and returns structured results alongside the underlying query for verifiability and reproducibility. Demonstrations show that minutes of dialogue with M3 yield the kind of nuanced cohort analyses that once demanded hours of handcrafted SQL and relied on understanding the complexities of clinical workflows. By simplifying access, M3 invites the broader research community to mine clinical critical-care data and accelerates the translation of raw records into actionable insight.
comment: 10 pages, 4 figures
♻ ☆ MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records (EHR). It can serve as a key module of the healthcare copilot, helping reduce misdiagnosis for healthcare practitioners and patients. However, the diagnostic accuracy and specificity of existing heuristic-based RAG models used in the medical domain are inadequate, particularly for diseases with similar manifestations. This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain that retrieves diagnosis and treatment recommendations based on manifestations. MedRAG systematically constructs a comprehensive four-tier hierarchical diagnostic KG encompassing critical diagnostic differences of various diseases. These differences are dynamically integrated with similar EHRs retrieved from an EHR database, and reasoned within a large language model. This process enables more accurate and specific decision support, while also proactively providing follow-up questions to enhance personalized medical decision-making. MedRAG is evaluated on both a public dataset DDXPlus and a private chronic pain diagnostic dataset (CPDD) collected from Tan Tock Seng Hospital, and its performance is compared against various existing RAG methods. Experimental results show that, leveraging the information integration and relational abilities of the KG, our MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates. Our code will be available at https://github.com/SNOWTEAM2023/MedRAG
♻ ☆ Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available \footnote{https://anonymous.4open.science/r/Amber-B203/}.
comment: 8pages. arXiv admin note: text overlap with arXiv:2410.08821 by other authors
♻ ☆ OpenTCM: A GraphRAG-Empowered LLM-based System for Traditional Chinese Medicine Knowledge Retrieval and Diagnosis
Traditional Chinese Medicine (TCM) represents a rich repository of ancient medical knowledge that continues to play an important role in modern healthcare. Due to the complexity and breadth of the TCM literature, the integration of AI technologies is critical for its modernization and broader accessibility. However, this integration poses considerable challenges, including the interpretation of obscure classical Chinese texts and the modeling of intricate semantic relationships among TCM concepts. In this paper, we develop OpenTCM, an LLM-based system that combines a domain-specific TCM knowledge graph and Graph-based Retrieval-Augmented Generation (GraphRAG). First, we extract more than 3.73 million classical Chinese characters from 68 gynecological books in the Chinese Medical Classics Database, with the help of TCM and gynecology experts. Second, we construct a comprehensive multi-relational knowledge graph comprising more than 48,000 entities and 152,000 interrelationships, using customized prompts and Chinese-oriented LLMs such as DeepSeek and Kimi to ensure high-fidelity semantic understanding. Last, we empower OpenTCM with GraphRAG, enabling high-fidelity ingredient knowledge retrieval and diagnostic question-answering without model fine-tuning. Experimental evaluations demonstrate that OpenTCM achieves mean expert scores (MES) of 4.378 in ingredient information retrieval and 4.045 in diagnostic question-answering tasks, outperforming state-of-the-art solutions in real-world TCM use cases.
comment: 8 pages, 5 figures, 7 tables
♻ ☆ CURE: A Dataset for Clinical Understanding & Retrieval Evaluation
Given the dominance of dense retrievers that do not generalize well beyond their training dataset distributions, domain-specific test sets are essential in evaluating retrieval. There are few test datasets for retrieval systems intended for use by healthcare providers in a point-of-care setting. To fill this gap we have collaborated with medical professionals to create CURE, an ad-hoc retrieval test dataset for passage ranking with 2000 queries spanning 10 medical domains with a monolingual (English) and two cross-lingual (French/Spanish -> English) conditions. In this paper, we describe how CURE was constructed and provide baseline results to showcase its effectiveness as an evaluation tool. CURE is published with a Creative Commons Attribution Non Commercial 4.0 license and can be accessed on Hugging Face and as a retrieval task on MTEB.
♻ ☆ Retrieval Augmented Generation Based LLM Evaluation For Protocol State Machine Inference With Chain-of-Thought Reasoning
This paper presents a novel approach to evaluate the efficiency of a RAG-based agentic Large Language Model (LLM) architecture for network packet seed generation and enrichment. Enhanced by chain-of-thought (COT) prompting techniques, the proposed approach focuses on the improvement of the seeds' structural quality in order to guide protocol fuzzing frameworks through a wide exploration of the protocol state space. Our method leverages RAG and text embeddings to dynamically reference to the Request For Comments (RFC) documents knowledge base for answering queries regarding the protocol's Finite State Machine (FSM), then iteratively reasons through the retrieved knowledge, for output refinement and proper seed placement. We then evaluate the response structure quality of the agent's output, based on metrics as BLEU, ROUGE, and Word Error Rate (WER) by comparing the generated packets against the ground-truth packets. Our experiments demonstrate significant improvements of up to 18.19%, 14.81%, and 23.45% in BLEU, ROUGE, and WER, respectively, over baseline models. These results confirm the potential of such approach, improving LLM-based protocol fuzzing frameworks for the identification of hidden vulnerabilities.
comment: Minor modifications in sections: abstract, introduction, background problem formulation, and conclusion. (Typos and Clarifications)