Computation and Language 84
☆ Symmetry in language statistics shapes the geometry of model representations
Although learned representations underlie neural networks' success, their fundamental properties remain poorly understood. A striking example is the emergence of simple geometric structures in LLM representations: for example, calendar months organize into a circle, years form a smooth one-dimensional manifold, and cities' latitudes and longitudes can be decoded by a linear probe. We show that the statistics of language exhibit a translation symmetry -- e.g., the co-occurrence probability of two months depends only on the time interval between them -- and we prove that the latter governs the aforementioned geometric structures in high-dimensional word embedding models. Moreover, we find that these structures persist even when the co-occurrence statistics are strongly perturbed (for example, by removing all sentences in which two months appear together) and at moderate embedding dimension. We show that this robustness naturally emerges if the co-occurrence statistics are collectively controlled by an underlying continuous latent variable. We empirically validate this theoretical framework in word embedding models, text embedding models, and large language models.
☆ Scaling Beyond Masked Diffusion Language Models
Subham Sekhar Sahoo, Jean-Marie Lemercier, Zhihan Yang, Justin Deschenaux, Jingyu Liu, John Thickstun, Ante Jukic
Diffusion language models are a promising alternative to autoregressive models due to their potential for faster generation. Among discrete diffusion approaches, Masked diffusion currently dominates, largely driven by strong perplexity on language modeling benchmarks. In this work, we present the first scaling law study of uniform-state and interpolating discrete diffusion methods. We also show that Masked diffusion models can be made approximately 12% more FLOPs-efficient when trained with a simple cross-entropy objective. We find that perplexity is informative within a diffusion family but can be misleading across families, where models with worse likelihood scaling may be preferable due to faster and more practical sampling, as reflected by the speed-quality Pareto frontier. These results challenge the view that Masked diffusion is categorically the future of diffusion language modeling and that perplexity alone suffices for cross-algorithm comparison. Scaling all methods to 1.7B parameters, we show that uniform-state diffusion remains competitive on likelihood-based benchmarks and outperforms autoregressive and Masked diffusion models on GSM8K, despite worse validation perplexity. We provide the code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/scaling-dllms
comment: code: https://github.com/s-sahoo/scaling-dllms
☆ Text Style Transfer with Parameter-efficient LLM Finetuning and Round-trip Translation
This paper proposes a novel method for Text Style Transfer (TST) based on parameter-efficient fine-tuning of Large Language Models (LLMs). Addressing the scarcity of parallel corpora that map between styles, the study employs roundtrip translation to synthesize such parallel datasets from monolingual corpora. This approach creates 'neutralized' text devoid of stylistic attributes, essentially creating a shared input style at training-time and inference-time. Experimental results demonstrate consistent superiority of this method over zero-shot prompting and fewshot ICL techniques measured by BLEU scores and style accuracy scores across four investigated domains. Furthermore, the integration of retrieval-augmented generation (RAG) for terminology and name knowledge enhances robustness and stylistic consistency.
comment: 9 pages, 5 figures, 4 tables
☆ Cold-Start Personalization via Training-Free Priors from Structured World Models
Avinandan Bose, Shuyue Stella Li, Faeze Brahman, Pang Wei Koh, Simon Shaolei Du, Yulia Tsvetkov, Maryam Fazel, Lin Xiao, Asli Celikyilmaz
Cold-start personalization requires inferring user preferences through interaction when no user-specific historical data is available. The core challenge is a routing problem: each task admits dozens of preference dimensions, yet individual users care about only a few, and which ones matter depends on who is asking. With a limited question budget, asking without structure will miss the dimensions that matter. Reinforcement learning is the natural formulation, but in multi-turn settings its terminal reward fails to exploit the factored, per-criterion structure of preference data, and in practice learned policies collapse to static question sequences that ignore user responses. We propose decomposing cold-start elicitation into offline structure learning and online Bayesian inference. Pep (Preference Elicitation with Priors) learns a structured world model of preference correlations offline from complete profiles, then performs training-free Bayesian inference online to select informative questions and predict complete preference profiles, including dimensions never asked about. The framework is modular across downstream solvers and requires only simple belief models. Across medical, mathematical, social, and commonsense reasoning, Pep achieves 80.8% alignment between generated responses and users' stated preferences versus 68.5% for RL, with 3-5x fewer interactions. When two users give different answers to the same question, Pep changes its follow-up 39-62% of the time versus 0-28% for RL. It does so with ~10K parameters versus 8B for RL, showing that the bottleneck in cold-start elicitation is the capability to exploit the factored structure of preference data.
comment: 24 pages, 4 figures, 4 tables
☆ Learning User Interests via Reasoning and Distillation for Cross-Domain News Recommendation
News recommendation plays a critical role in online news platforms by helping users discover relevant content. Cross-domain news recommendation further requires inferring user's underlying information needs from heterogeneous signals that often extend beyond direct news consumption. A key challenge lies in moving beyond surface-level behaviors to capture deeper, reusable user interests while maintaining scalability in large-scale production systems. In this paper, we present a reinforcement learning framework that trains large language models to generate high-quality lists of interest-driven news search queries from cross-domain user signals. We formulate query-list generation as a policy optimization problem and employ GRPO with multiple reward signals. We systematically study two compute dimensions: inference-time sampling and model capacity, and empirically observe consistent improvements with increased compute that exhibit scaling-like behavior. Finally, we perform on-policy distillation to transfer the learned policy from a large, compute-intensive teacher to a compact student model suitable for scalable deployment. Extensive offline experiments, ablation studies and large-scale online A/B tests in a production news recommendation system demonstrate consistent gains in both interest modeling quality and downstream recommendation performance.
☆ Counterfactual Fairness Evaluation of LLM-Based Contact Center Agent Quality Assurance System
Large Language Models (LLMs) are increasingly deployed in contact-center Quality Assurance (QA) to automate agent performance evaluation and coaching feedback. While LLMs offer unprecedented scalability and speed, their reliance on web-scale training data raises concerns regarding demographic and behavioral biases that may distort workforce assessment. We present a counterfactual fairness evaluation of LLM-based QA systems across 13 dimensions spanning three categories: Identity, Context, and Behavioral Style. Fairness is quantified using the Counterfactual Flip Rate (CFR), the frequency of binary judgment reversals, and the Mean Absolute Score Difference (MASD), the average shift in coaching or confidence scores across counterfactual pairs. Evaluating 18 LLMs on 3,000 real-world contact center transcripts, we find systematic disparities, with CFR ranging from 5.4% to 13.0% and consistent MASD shifts across confidence, positive, and improvement scores. Larger, more strongly aligned models show lower unfairness, though fairness does not track accuracy. Contextual priming of historical performance induces the most severe degradations (CFR up to 16.4%), while implicit linguistic identity cues remain a persistent bias source. Finally, we analyze the efficacy of fairness-aware prompting, finding that explicit instructions yield only modest improvements in evaluative consistency. Our findings underscore the need for standardized fairness auditing pipelines prior to deploying LLMs in high-stakes workforce evaluation.
☆ Tool-Aware Planning in Contact Center AI: Evaluating LLMs through Lineage-Guided Query Decomposition
We present a domain-grounded framework and benchmark for tool-aware plan generation in contact centers, where answering a query for business insights, our target use case, requires decomposing it into executable steps over structured tools (Text2SQL (T2S)/Snowflake) and unstructured tools (RAG/transcripts) with explicit depends_on for parallelism. Our contributions are threefold: (i) a reference-based plan evaluation framework operating in two modes - a metric-wise evaluator spanning seven dimensions (e.g., tool-prompt alignment, query adherence) and a one-shot evaluator; (ii) a data curation methodology that iteratively refines plans via an evaluator->optimizer loop to produce high-quality plan lineages (ordered plan revisions) while reducing manual effort; and (iii) a large-scale study of 14 LLMs across sizes and families for their ability to decompose queries into step-by-step, executable, and tool-assigned plans, evaluated under prompts with and without lineage. Empirically, LLMs struggle on compound queries and on plans exceeding 4 steps (typically 5-15); the best total metric score reaches 84.8% (Claude-3-7-Sonnet), while the strongest one-shot match rate at the "A+" tier (Extremely Good, Very Good) is only 49.75% (o3-mini). Plan lineage yields mixed gains overall but benefits several top models and improves step executability for many. Our results highlight persistent gaps in tool-understanding, especially in tool-prompt alignment and tool-usage completeness, and show that shorter, simpler plans are markedly easier. The framework and findings provide a reproducible path for assessing and improving agentic planning with tools for answering data-analysis queries in contact-center settings.
☆ BFS-PO: Best-First Search for Large Reasoning Models
Large Reasoning Models (LRMs) such as OpenAI o1 and DeepSeek-R1 have shown excellent performance in reasoning tasks using long reasoning chains. However, this has also led to a significant increase of computational costs and the generation of verbose output, a phenomenon known as overthinking. The tendency to overthinking is often exacerbated by Reinforcement Learning (RL) algorithms such as GRPO/DAPO. In this paper, we propose BFS-PO, an RL algorithm which alleviates this problem using a Best-First Search exploration strategy. Specifically, BFS-PO looks for the shortest correct answer using a backtracking mechanism based on maximum entropy nodes. By generating progressively shorter responses during training, BFS-PO learns to produce concise reasoning chains. Using different benchmarks and base LRMs, we show that BFS-PO can simultaneously increase the LRM accuracy and shorten its answers.
☆ Testimole-Conversational: A 30-Billion-Word Italian Discussion Board Corpus (1996-2024) for Language Modeling and Sociolinguistic Research
We present "Testimole-conversational" a massive collection of discussion boards messages in the Italian language. The large size of the corpus, more than 30B word-tokens (1996-2024), renders it an ideal dataset for native Italian Large Language Models'pre-training. Furthermore, discussion boards' messages are a relevant resource for linguistic as well as sociological analysis. The corpus captures a rich variety of computer-mediated communication, offering insights into informal written Italian, discourse dynamics, and online social interaction in wide time span. Beyond its relevance for NLP applications such as language modelling, domain adaptation, and conversational analysis, it also support investigations of language variation and social phenomena in digital communication. The resource will be made freely available to the research community.
☆ Learning State-Tracking from Code Using Linear RNNs
Over the last years, state-tracking tasks, particularly permutation composition, have become a testbed to understand the limits of sequence models architectures like Transformers and RNNs (linear and non-linear). However, these are often sequence-to-sequence tasks: learning to map actions (permutations) to states, which is incompatible with the next-token prediction setting commonly used to train language models. We address this gap by converting permutation composition into code via REPL traces that interleave state-reveals through prints and variable transformations. We show that linear RNNs capable of state-tracking excel also in this setting, while Transformers still fail. Motivated by this representation, we investigate why tracking states in code is generally difficult: actions are not always fully observable. We frame this as tracking the state of a probabilistic finite-state automaton with deterministic state reveals and show that linear RNNs can be worse than non-linear RNNs at tracking states in this setup.
☆ Physical Commonsense Reasoning for Lower-Resourced Languages and Dialects: a Study on Basque
Physical commonsense reasoning represents a fundamental capability of human intelligence, enabling individuals to understand their environment, predict future events, and navigate physical spaces. Recent years have witnessed growing interest in reasoning tasks within Natural Language Processing (NLP). However, no prior research has examined the performance of Large Language Models (LLMs) on non-question-answering (non-QA) physical commonsense reasoning tasks in low-resource languages such as Basque. Taking the Italian GITA as a starting point, this paper addresses this gap by presenting BasPhyCo, the first non-QA physical commonsense reasoning dataset for Basque, available in both standard and dialectal variants. We evaluate model performance across three hierarchical levels of commonsense understanding: (1) distinguishing between plausible and implausible narratives (accuracy), (2) identifying the conflicting element that renders a narrative implausible (consistency), and (3) determining the specific physical state that creates the implausibility (verifiability). These tasks were assessed using multiple multilingual LLMs as well as models pretrained specifically for Italian and Basque. Results indicate that, in terms of verifiability, LLMs exhibit limited physical commonsense capabilities in low-resource languages such as Basque, especially when processing dialectal variants.
☆ Overthinking Loops in Agents: A Structural Risk via MCP Tools
Tool-using LLM agents increasingly coordinate real workloads by selecting and chaining third-party tools based on text-visible metadata such as tool names, descriptions, and return messages. We show that this convenience creates a supply-chain attack surface: a malicious MCP tool server can be co-registered alongside normal tools and induce overthinking loops, where individually trivial or plausible tool calls compose into cyclic trajectories that inflate end-to-end tokens and latency without any single step looking abnormal. We formalize this as a structural overthinking attack, distinguishable from token-level verbosity, and implement 14 malicious tools across three servers that trigger repetition, forced refinement, and distraction. Across heterogeneous registries and multiple tool-capable models, the attack causes severe resource amplification (up to $142.4\times$ tokens) and can degrade task outcomes. Finally, we find that decoding-time concision controls do not reliably prevent loop induction, suggesting defenses should reason about tool-call structure rather than tokens alone.
☆ A Geometric Analysis of Small-sized Language Model Hallucinations
Hallucinations -- fluent but factually incorrect responses -- pose a major challenge to the reliability of language models, especially in multi-step or agentic settings.
This work investigates hallucinations in small-sized LLMs through a geometric perspective, starting from the hypothesis that when models generate multiple responses to the same prompt, genuine ones exhibit tighter clustering in the embedding space, we prove this hypothesis and, leveraging this geometrical insight, we also show that it is possible to achieve a consistent level of separability. This latter result is used to introduce a label-efficient propagation method that classifies large collections of responses from just 30-50 annotations, achieving F1 scores above 90%.
Our findings, framing hallucinations from a geometric perspective in the embedding space, complement traditional knowledge-centric and single-response evaluation paradigms, paving the way for further research.
☆ Emergently Misaligned Language Models Show Behavioral Self-Awareness That Shifts With Subsequent Realignment
Recent research has demonstrated that large language models (LLMs) fine-tuned on incorrect trivia question-answer pairs exhibit toxicity - a phenomenon later termed "emergent misalignment". Moreover, research has shown that LLMs possess behavioral self-awareness - the ability to describe learned behaviors that were only implicitly demonstrated in training data. Here, we investigate the intersection of these phenomena. We fine-tune GPT-4.1 models sequentially on datasets known to induce and reverse emergent misalignment and evaluate whether the models are self-aware of their behavior transitions without providing in-context examples. Our results show that emergently misaligned models rate themselves as significantly more harmful compared to their base model and realigned counterparts, demonstrating behavioral self-awareness of their own emergent misalignment. Our findings show that behavioral self-awareness tracks actual alignment states of models, indicating that models can be queried for informative signals about their own safety.
☆ Multi-Agent Comedy Club: Investigating Community Discussion Effects on LLM Humor Generation
Prior work has explored multi-turn interaction and feedback for LLM writing, but evaluations still largely center on prompts and localized feedback, leaving persistent public reception in online communities underexamined. We test whether broadcast community discussion improves stand-up comedy writing in a controlled multi-agent sandbox: in the discussion condition, critic and audience threads are recorded, filtered, stored as social memory, and later retrieved to condition subsequent generations, whereas the baseline omits discussion. Across 50 rounds (250 paired monologues) judged by five expert annotators using A/B preference and a 15-item rubric, discussion wins 75.6% of instances and improves Craft/Clarity (Δ = 0.440) and Social Response (Δ = 0.422), with occasional increases in aggressive humor.
comment: 18 pages, 5 figures
☆ Unlocking Reasoning Capability on Machine Translation in Large Language Models
Reasoning-oriented large language models (RLMs) achieve strong gains on tasks such as mathematics and coding by generating explicit intermediate reasoning. However, their impact on machine translation (MT) remains underexplored. We systematically evaluate several open- and closed-weights RLMs on the WMT24++ benchmark and find that enabling explicit reasoning consistently degrades translation quality across languages and models. Analysis reveals that MT reasoning traces are highly linear, lacking revision, self-correction and exploration of alternative translations, which limits their usefulness. Furthermore, injecting higher-quality reasoning traces from stronger models does not reliably improve weaker models' performance. To address this mismatch, we propose a structured reasoning framework tailored to translation, based on multi-step drafting, adequacy refinement, fluency improvement, and selective iterative revision. We curate a synthetic dataset of dynamic structured reasoning traces and post-train a large reasoning model on this data. Experiments show significant improvements over standard translation fine-tuning and injected generic reasoning baselines. Our findings demonstrate that reasoning must be task-structured to benefit MT.
☆ Residual Connections and the Causal Shift: Uncovering a Structural Misalignment in Transformers
Jonathan Lys, Vincent Gripon, Bastien Pasdeloup, Lukas Mauch, Fabien Cardinaux, Ghouthi Boukli Hacene
Large Language Models (LLMs) are trained with next-token prediction, implemented in autoregressive Transformers via causal masking for parallelism. This creates a subtle misalignment: residual connections tie activations to the current token, while supervision targets the next token, potentially propagating mismatched information if the current token is not the most informative for prediction. In this work, we empirically localize this input-output alignment shift in pretrained LLMs, using decoding trajectories over tied embedding spaces and similarity-based metrics. Our experiments reveal that the hidden token representations switch from input alignment to output alignment deep within the network. Motivated by this observation, we propose a lightweight residual-path mitigation based on residual attenuation, implemented either as a fixed-layer intervention or as a learnable gating mechanism. Experiments on multiple benchmarks show that these strategies alleviate the representation misalignment and yield improvements, providing an efficient and general architectural enhancement for autoregressive Transformers.
☆ Cognitive networks reconstruct mindsets about STEM subjects and educational contexts in almost 1000 high-schoolers, University students and LLM-based digital twins
Francesco Gariboldi, Emma Franchino, Edith Haim, Gianluca Lattanzi, Alessandro Grecucci, Massimo Stella
Attitudes toward STEM develop from the interaction of conceptual knowledge, educational experiences, and affect. Here we use cognitive network science to reconstruct group mindsets as behavioural forma mentis networks (BFMNs). In this case, nodes are cue words and free associations, edges are empirical associative links, and each concept is annotated with perceived valence. We analyse BFMNs from N = 994 observations spanning high school students, university students, and early-career STEM experts, alongside LLM (GPT-oss) "digital twins" prompted to emulate comparable profiles. Focusing also on semantic neighbourhoods ("frames") around key target concepts (e.g., STEM subjects or educational actors/places), we quantify frames in terms of valence auras, emotional profiles, network overlap (Jaccard similarity), and concreteness relative to null baselines. Across student groups, science and research are consistently framed positively, while their core quantitative subjects (mathematics and statistics) exhibit more negative and anxiety related auras, amplified in higher math-anxiety subgroups, evidencing a STEM-science cognitive and emotional dissonance. High-anxiety frames are also less concrete than chance, suggesting more abstract and decontextualised representations of threatening quantitative domains. Human networks show greater overlapping between mathematics and anxiety than GPT-oss. The results highlight how BFMNs capture cognitive-affective signatures of mindsets towards the target domains and indicate that LLM-based digital twins approximate cultural attitudes but miss key context-sensitive, experience-based components relevant to replicate human educational anxiety.
☆ Rethinking the Role of LLMs in Time Series Forecasting
Large language models (LLMs) have been introduced to time series forecasting (TSF) to incorporate contextual knowledge beyond numerical signals. However, existing studies question whether LLMs provide genuine benefits, often reporting comparable performance without LLMs. We show that such conclusions stem from limited evaluation settings and do not hold at scale. We conduct a large-scale study of LLM-based TSF (LLM4TSF) across 8 billion observations, 17 forecasting scenarios, 4 horizons, multiple alignment strategies, and both in-domain and out-of-domain settings. Our results demonstrate that \emph{LLM4TS indeed improves forecasting performance}, with especially large gains in cross-domain generalization. Pre-alignment outperforming post-alignment in over 90\% of tasks. Both pretrained knowledge and model architecture of LLMs contribute and play complementary roles: pretraining is critical under distribution shifts, while architecture excels at modeling complex temporal dynamics. Moreover, under large-scale mixed distributions, a fully intact LLM becomes indispensable, as confirmed by token-level routing analysis and prompt-based improvements. Overall, Our findings overturn prior negative assessments, establish clear conditions under which LLMs are not only useful, and provide practical guidance for effective model design. We release our code at https://github.com/EIT-NLP/LLM4TSF.
☆ LLMStructBench: Benchmarking Large Language Model Structured Data Extraction
We present LLMStructBench, a novel benchmark for evaluating Large Language Models (LLMs) on extracting structured data and generating valid JavaScript Object Notation (JSON) outputs from natural-language text. Our open dataset comprises diverse, manually verified parsing scenarios of varying complexity and enables systematic testing across 22 models and five prompting strategies. We further introduce complementary performance metrics that capture both token-level accuracy and document-level validity, facilitating rigorous comparison of model, size, and prompting effects on parsing reliability.
In particular, we show that choosing the right prompting strategy is more important than standard attributes such as model size. This especially ensures structural validity for smaller or less reliable models but increase the number of semantic errors. Our benchmark suite is an step towards future research in the area of LLM applied to parsing or Extract, Transform and Load (ETL) applications.
☆ Exposing the Systematic Vulnerability of Open-Weight Models to Prefill Attacks
As the capabilities of large language models continue to advance, so does their potential for misuse. While closed-source models typically rely on external defenses, open-weight models must primarily depend on internal safeguards to mitigate harmful behavior. Prior red-teaming research has largely focused on input-based jailbreaking and parameter-level manipulations. However, open-weight models also natively support prefilling, which allows an attacker to predefine initial response tokens before generation begins. Despite its potential, this attack vector has received little systematic attention. We present the largest empirical study to date of prefill attacks, evaluating over 20 existing and novel strategies across multiple model families and state-of-the-art open-weight models. Our results show that prefill attacks are consistently effective against all major contemporary open-weight models, revealing a critical and previously underexplored vulnerability with significant implications for deployment. While certain large reasoning models exhibit some robustness against generic prefilling, they remain vulnerable to tailored, model-specific strategies. Our findings underscore the urgent need for model developers to prioritize defenses against prefill attacks in open-weight LLMs.
comment: 54 pages, 7 figures, 35 tables
☆ Crowdsourcing Piedmontese to Test LLMs on Non-Standard Orthography
We present a crowdsourced dataset for Piedmontese, an endangered Romance language of northwestern Italy. The dataset comprises 145 Italian-Piedmontese parallel sentences derived from Flores+, with translations produced by speakers writing in their natural orthographic style rather than adhering to standardized conventions, along with manual word alignment. We use this resource to benchmark several large language models on tokenization parity, topic classification, and machine translation. Our analysis reveals that Piedmontese incurs a tokenization penalty relative to higher-resource Romance languages, yet LLMs achieve classification performance approaching that of Italian, French, and English. Machine translation results are asymmetric: models translate adequately from Piedmontese into high-resource languages, but generation into Piedmontese remains challenging. The dataset and code are publicly released.
comment: 17 pages, 6 figures, at VarDial20226
☆ Breaking Data Efficiency Dilemma: A Federated and Augmented Learning Framework For Alzheimer's Disease Detection via Speech ICASSP 2026
Early diagnosis of Alzheimer's Disease (AD) is crucial for delaying its progression. While AI-based speech detection is non-invasive and cost-effective, it faces a critical data efficiency dilemma due to medical data scarcity and privacy barriers. Therefore, we propose FAL-AD, a novel framework that synergistically integrates federated learning with data augmentation to systematically optimize data efficiency. Our approach delivers three key breakthroughs: First, absolute efficiency improvement through voice conversion-based augmentation, which generates diverse pathological speech samples via cross-category voice-content recombination. Second, collaborative efficiency breakthrough via an adaptive federated learning paradigm, maximizing cross-institutional benefits under privacy constraints. Finally, representational efficiency optimization by an attentive cross-modal fusion model, which achieves fine-grained word-level alignment and acoustic-textual interaction. Evaluated on ADReSSo, FAL-AD achieves a state-of-the-art multi-modal accuracy of 91.52%, outperforming all centralized baselines and demonstrating a practical solution to the data efficiency dilemma. Our source code is publicly available at https://github.com/smileix/fal-ad.
comment: 5 pages, 1 figures, accepted by ICASSP 2026 conference
☆ Is Information Density Uniform when Utterances are Grounded on Perception and Discourse? EACL 2026
The Uniform Information Density (UID) hypothesis posits that speakers are subject to a communicative pressure to distribute information evenly within utterances, minimising surprisal variance. While this hypothesis has been tested empirically, prior studies are limited exclusively to text-only inputs, abstracting away from the perceptual context in which utterances are produced. In this work, we present the first computational study of UID in visually grounded settings. We estimate surprisal using multilingual vision-and-language models over image-caption data in 30 languages and visual storytelling data in 13 languages, together spanning 11 families. We find that grounding on perception consistently smooths the distribution of information, increasing both global and local uniformity across typologically diverse languages compared to text-only settings. In visual narratives, grounding in both image and discourse contexts has additional effects, with the strongest surprisal reductions occurring at the onset of discourse units. Overall, this study takes a first step towards modelling the temporal dynamics of information flow in ecologically plausible, multimodal language use, and finds that grounded language exhibits greater information uniformity, supporting a context-sensitive formulation of UID.
comment: Accepted as main paper at EACL 2026
☆ GradMAP: Faster Layer Pruning with Gradient Metric and Projection Compensation
Large Language Models (LLMs) exhibit strong reasoning abilities, but their high computational costs limit their practical deployment. Recent studies reveal significant redundancy in LLMs layers, making layer pruning an active research topic. Layer pruning research primarily focuses on two aspects: measuring layer importance and recovering performance after pruning. Unfortunately, the present works fail to simultaneously maintain pruning performance and efficiency. In this study, we propose GradMAP, a faster layer pruning method with \textbf{Grad}ient \textbf{M}etric \textbf{A}nd \textbf{P}rojection compensation, which consists of two stages. In the first stage, we introduce a novel metric based on gradient magnitudes, enabling a global assessment of layer importance. Note that, it requires only a single backward propagation step per pruning decision, substantially enhancing pruning efficiency. In the second stage, we first analyze the layers with the largest mean shift resulting from pruning, and then incorporate a simple yet effective projection compensation matrix to correct this drift in one step. In this way, the degradation of model performance caused by layer pruning is effectively alleviated. Extensive experiments show that GradMAP outperforms previous layer pruning methods in both pruning speed (achieving an average $4\times$ speedup) and performance.
comment: 19 pages
☆ Alignment Adapter to Improve the Performance of Compressed Deep Learning Models
Compressed Deep Learning (DL) models are essential for deployment in resource-constrained environments. But their performance often lags behind their large-scale counterparts. To bridge this gap, we propose Alignment Adapter (AlAd): a lightweight, sliding-window-based adapter. It aligns the token-level embeddings of a compressed model with those of the original large model. AlAd preserves local contextual semantics, enables flexible alignment across differing dimensionalities or architectures, and is entirely agnostic to the underlying compression method. AlAd can be deployed in two ways: as a plug-and-play module over a frozen compressed model, or by jointly fine-tuning AlAd with the compressed model for further performance gains. Through experiments on BERT-family models across three token-level NLP tasks, we demonstrate that AlAd significantly boosts the performance of compressed models with only marginal overhead in size and latency.
☆ The Wikidata Query Logs Dataset
We present the Wikidata Query Logs (WDQL) dataset, a dataset consisting of 200k question-query pairs over the Wikidata knowledge graph. It is over 6x larger than the largest existing Wikidata datasets of similar format without relying on template-generated queries. Instead, we construct it using real-world SPARQL queries sent to the Wikidata Query Service and generate questions for them. Since these log-based queries are anonymized, and therefore often do not produce results, a significant amount of effort is needed to convert them back into meaningful SPARQL queries. To achieve this, we present an agent-based method that iteratively de-anonymizes, cleans, and verifies queries against Wikidata while also generating corresponding natural-language questions. We demonstrate the dataset's benefit for training question-answering methods. All WDQL assets, as well as the agent code, are publicly available under a permissive license.
☆ MATEO: A Multimodal Benchmark for Temporal Reasoning and Planning in LVLMs
AI agents need to plan to achieve complex goals that involve orchestrating perception, sub-goal decomposition, and execution. These plans consist of ordered steps structured according to a Temporal Execution Order (TEO, a directed acyclic graph that ensures each step executes only after its preconditions are satisfied. Existing research on foundational models' understanding of temporal execution is limited to automatically derived annotations, approximations of the TEO as a linear chain, or text-only inputs. To address this gap, we introduce MATEO (MultimodAl Temporal Execution Order), a benchmark designed to assess and improve the temporal reasoning abilities of Large Vision Language Models (LVLMs) required for real-world planning. We acquire a high-quality professional multimodal recipe corpus, authored through a standardized editorial process that decomposes instructions into discrete steps, each paired with corresponding images. We collect TEO annotations as graphs by designing and using a scalable crowdsourcing pipeline. Using MATEO, we evaluate six state-of-the-art LVLMs across model scales, varying language context, multimodal input structure, and fine-tuning strategies.
☆ Assessing Large Language Models for Medical QA: Zero-Shot and LLM-as-a-Judge Evaluation
Recently, Large Language Models (LLMs) have gained significant traction in medical domain, especially in developing a QA systems to Medical QA systems for enhancing access to healthcare in low-resourced settings. This paper compares five LLMs deployed between April 2024 and August 2025 for medical QA, using the iCliniq dataset, containing 38,000 medical questions and answers of diverse specialties. Our models include Llama-3-8B-Instruct, Llama 3.2 3B, Llama 3.3 70B Instruct, Llama-4-Maverick-17B-128E-Instruct, and GPT-5-mini. We are using a zero-shot evaluation methodology and using BLEU and ROUGE metrics to evaluate performance without specialized fine-tuning. Our results show that larger models like Llama 3.3 70B Instruct outperform smaller models, consistent with observed scaling benefits in clinical tasks. It is notable that, Llama-4-Maverick-17B exhibited more competitive results, thus highlighting evasion efficiency trade-offs relevant for practical deployment. These findings align with advancements in LLM capabilities toward professional-level medical reasoning and reflect the increasing feasibility of LLM-supported QA systems in the real clinical environments. This benchmark aims to serve as a standardized setting for future study to minimize model size, computational resources and to maximize clinical utility in medical NLP applications.
comment: Accepted in 28th ICCIT, 2025
☆ Explainable Token-level Noise Filtering for LLM Fine-tuning Datasets
Yuchen Yang, Wenze Lin, Enhao Huang, Zhixuan Chu, Hongbin Zhou, Lan Tao, Yiming Li, Zhan Qin, Kui Ren
Large Language Models (LLMs) have seen remarkable advancements, achieving state-of-the-art results in diverse applications. Fine-tuning, an important step for adapting LLMs to specific downstream tasks, typically involves further training on corresponding datasets. However, a fundamental discrepancy exists between current fine-tuning datasets and the token-level optimization mechanism of LLMs: most datasets are designed at the sentence-level, which introduces token-level noise, causing negative influence to final performance. In this paper, we propose XTF, an explainable token-level noise filtering framework. XTF decomposes the complex and subtle contributions of token-level data to the fine-tuning process into three distinct and explicit attributes (reasoning importance, knowledge novelty, and task relevance), which can be assessed using scoring methods, and then masks the gradients of selected noisy tokens accordingly to optimize the performance of fine-tuned LLMs. We conduct extensive experiments on three representative downstream tasks (math, code and medicine) across 7 mainstream LLMs. The results demonstrate that XTF can significantly improve downstream performance by up to 13.7% compared to regular fine-tuning. Our work highlights the importance of token-level dataset optimization, and demonstrates the potential of strategies based on attribute decomposition for explaining complex training mechanisms.
☆ Beyond Translation: Evaluating Mathematical Reasoning Capabilities of LLMs in Sinhala and Tamil
Large language models (LLMs) demonstrate strong mathematical reasoning in English, but whether these capabilities reflect genuine multilingual reasoning or reliance on translation-based processing in low-resource languages like Sinhala and Tamil remains unclear. We examine this fundamental question by evaluating whether LLMs genuinely reason mathematically in these languages or depend on implicit translation to English-like representations. Using a taxonomy of six math problem types, from basic arithmetic to complex unit conflict and optimization problems, we evaluate four prominent large language models. To avoid translation artifacts that confound language ability with translation quality, we construct a parallel dataset where each problem is natively authored by fluent speakers with mathematical training in all three languages. Our analysis demonstrates that while basic arithmetic reasoning transfers robustly across languages, complex reasoning tasks show significant degradation in Tamil and Sinhala. The pattern of failures varies by model and problem type, suggesting that apparent multilingual competence may not reflect uniform reasoning capabilities across languages. These findings challenge the common assumption that models exhibiting strong multilingual performance can reason equally effectively across languages, and highlight the need for fine-grained, type-aware evaluation in multilingual settings.
☆ Query as Anchor: Scenario-Adaptive User Representation via Large Language Model
Jiahao Yuan, Yike Xu, Jinyong Wen, Baokun Wang, Ziyi Gao, Xiaotong Lin, Yun Liu, Xing Fu, Yu Cheng, Yongchao Liu, Weiqiang Wang, Zhongle Xie
Industrial-scale user representation learning requires balancing robust universality with acute task-sensitivity. However, existing paradigms primarily yield static, task-agnostic embeddings that struggle to reconcile the divergent requirements of downstream scenarios within unified vector spaces. Furthermore, heterogeneous multi-source data introduces inherent noise and modality conflicts, degrading representation. We propose Query-as-Anchor, a framework shifting user modeling from static encoding to dynamic, query-aware synthesis. To empower Large Language Models (LLMs) with deep user understanding, we first construct UserU, an industrial-scale pre-training dataset that aligns multi-modal behavioral sequences with user understanding semantics, and our Q-Anchor Embedding architecture integrates hierarchical coarse-to-fine encoders into dual-tower LLMs via joint contrastive-autoregressive optimization for query-aware user representation. To bridge the gap between general pre-training and specialized business logic, we further introduce Cluster-based Soft Prompt Tuning to enforce discriminative latent structures, effectively aligning model attention with scenario-specific modalities. For deployment, anchoring queries at sequence termini enables KV-cache-accelerated inference with negligible incremental latency. Evaluations on 10 Alipay industrial benchmarks show consistent SOTA performance, strong scalability, and efficient deployment. Large-scale online A/B testing in Alipay's production system across two real-world scenarios further validates its practical effectiveness. Our code is prepared for public release and will be available at: https://github.com/JhCircle/Q-Anchor.
comment: 15 pages, 12 figures
☆ Parameter-Efficient Fine-Tuning of LLMs with Mixture of Space Experts
Large Language Models (LLMs) have achieved remarkable progress, with Parameter-Efficient Fine-Tuning (PEFT) emerging as a key technique for downstream task adaptation. However, existing PEFT methods mainly operate in Euclidean space, fundamentally limiting their capacity to capture complex geometric structures inherent in language data. While alternative geometric spaces, like hyperbolic geometries for hierarchical data and spherical manifolds for circular patterns, offer theoretical advantages, forcing representations into a single manifold type ultimately limits expressiveness, even when curvature parameters are learnable. To address this, we propose Mixture of Space (MoS), a unified framework that leverages multiple geometric spaces simultaneously to learn richer, curvature-aware representations. Building on this scheme, we develop MoSLoRA, which extends Low-Rank Adaptation (LoRA) with heterogeneous geometric experts, enabling models to dynamically select or combine appropriate geometric spaces based on input context. Furthermore, to address the computational overhead of frequent manifold switching, we develop a lightweight routing mechanism. Moreover, we provide empirical insights into how curvature optimization impacts training stability and model performance. Our experiments across diverse benchmarks demonstrate that MoSLoRA consistently outperforms strong baselines, achieving up to 5.6% improvement on MATH500 and 15.9% on MAWPS.
comment: 15 pages, 11 figures
☆ BETA-Labeling for Multilingual Dataset Construction in Low-Resource IR
IR in low-resource languages remains limited by the scarcity of high-quality, task-specific annotated datasets. Manual annotation is expensive and difficult to scale, while using large language models (LLMs) as automated annotators introduces concerns about label reliability, bias, and evaluation validity. This work presents a Bangla IR dataset constructed using a BETA-labeling framework involving multiple LLM annotators from diverse model families. The framework incorporates contextual alignment, consistency checks, and majority agreement, followed by human evaluation to verify label quality. Beyond dataset creation, we examine whether IR datasets from other low-resource languages can be effectively reused through one-hop machine translation. Using LLM-based translation across multiple language pairs, we experimented on meaning preservation and task validity between source and translated datasets. Our experiment reveal substantial variation across languages, reflecting language-dependent biases and inconsistent semantic preservation that directly affect the reliability of cross-lingual dataset reuse. Overall, this study highlights both the potential and limitations of LLM-assisted dataset creation for low-resource IR. It provides empirical evidence of the risks associated with cross-lingual dataset reuse and offers practical guidance for constructing more reliable benchmarks and evaluation pipelines in low-resource language settings.
☆ HyperRAG: Reasoning N-ary Facts over Hypergraphs for Retrieval Augmented Generation WWW '26
Wen-Sheng Lien, Yu-Kai Chan, Hao-Lung Hsiao, Bo-Kai Ruan, Meng-Fen Chiang, Chien-An Chen, Yi-Ren Yeh, Hong-Han Shuai
Graph-based retrieval-augmented generation (RAG) methods, typically built on knowledge graphs (KGs) with binary relational facts, have shown promise in multi-hop open-domain QA. However, their rigid retrieval schemes and dense similarity search often introduce irrelevant context, increase computational overhead, and limit relational expressiveness. In contrast, n-ary hypergraphs encode higher-order relational facts that capture richer inter-entity dependencies and enable shallower, more efficient reasoning paths. To address this limitation, we propose HyperRAG, a RAG framework tailored for n-ary hypergraphs with two complementary retrieval variants: (i) HyperRetriever learns structural-semantic reasoning over n-ary facts to construct query-conditioned relational chains. It enables accurate factual tracking, adaptive high-order traversal, and interpretable multi-hop reasoning under context constraints. (ii) HyperMemory leverages the LLM's parametric memory to guide beam search, dynamically scoring n-ary facts and entities for query-aware path expansion. Extensive evaluations on WikiTopics (11 closed-domain datasets) and three open-domain QA benchmarks (HotpotQA, MuSiQue, and 2WikiMultiHopQA) validate HyperRAG's effectiveness. HyperRetriever achieves the highest answer accuracy overall, with average gains of 2.95% in MRR and 1.23% in Hits@10 over the strongest baseline. Qualitative analysis further shows that HyperRetriever bridges reasoning gaps through adaptive and interpretable n-ary chain construction, benefiting both open and closed-domain QA.
comment: Accepted by The ACM Web Conference 2026 (WWW '26)
☆ Measuring and Mitigating Post-hoc Rationalization in Reverse Chain-of-Thought Generation
Guangyue Peng, Zongchao Chen, Wen Luo, Yuntao Wen, Wei Li, Ruixiang Feng, Ran Le, Chen Yang, Zhenwei An, Yang Song, Tao Zhang, Houfeng Wang
Reverse Chain-of-Thought Generation (RCG) synthesizes reasoning traces from query-answer pairs, but runs the risk of producing post-hoc rationalizations: when models can see the answer during generation, the answer serves as a cognitive anchor that shapes the entire explanation. We formalize this phenomenon through a three-level measurement hierarchy: lexical, entropic, and probabilistic anchoring, each captures surface artifacts, entropy dynamics, and latent answer dependence, respectively. We analyze semantic suppression, the intuitive mitigation strategy that instructs models to ignore the answer, to find out its counterproduction: while it reduces lexical overlap, it paradoxically increases entropic and probabilistic anchoring. Drawing on Ironic Process Theory from cognitive psychology, we attribute this failure to active monitoring of the forbidden answer, which inadvertently deepens dependence on it. To break this cycle, we propose Structural Skeleton-guided Reasoning (SSR), a two-phase approach that first generates an answer-invariant functional skeleton structure, then uses this skeleton to guide full trace generation. By redirecting the information flow to structural planning rather than answer monitoring, SSR consistently reduces anchoring across all three levels. We further introduce Distilled SSR (SSR-D), which fine-tunes models on teacher-generated SSR traces to ensure reliable structural adherence. Experiments across open-ended reasoning benchmarks demonstrate that SSR-D achieves up to 10% improvement over suppression baselines while preserving out-of-distribution (OOD) generalization.
☆ Robust Bias Evaluation with FilBBQ: A Filipino Bias Benchmark for Question-Answering Language Models LREC 2026
With natural language generation becoming a popular use case for language models, the Bias Benchmark for Question-Answering (BBQ) has grown to be an important benchmark format for evaluating stereotypical associations exhibited by generative models. We expand the linguistic scope of BBQ and construct FilBBQ through a four-phase development process consisting of template categorization, culturally aware translation, new template construction, and prompt generation. These processes resulted in a bias test composed of more than 10,000 prompts which assess whether models demonstrate sexist and homophobic prejudices relevant to the Philippine context. We then apply FilBBQ on models trained in Filipino but do so with a robust evaluation protocol that improves upon the reliability and accuracy of previous BBQ implementations. Specifically, we account for models' response instability by obtaining prompt responses across multiple seeds and averaging the bias scores calculated from these distinctly seeded runs. Our results confirm both the variability of bias scores across different seeds and the presence of sexist and homophobic biases relating to emotion, domesticity, stereotyped queer interests, and polygamy. FilBBQ is available via GitHub.
comment: Accepted in LREC 2026
☆ Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report v1.5
Dongrui Liu, Yi Yu, Jie Zhang, Guanxu Chen, Qihao Lin, Hanxi Zhu, Lige Huang, Yijin Zhou, Peng Wang, Shuai Shao, Boxuan Zhang, Zicheng Liu, Jingwei Sun, Yu Li, Yuejin Xie, Jiaxuan Guo, Jia Xu, Chaochao Lu, Bowen Zhou, Xia Hu, Jing Shao
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, Frontier AI Risk Management Framework in Practice presents a comprehensive assessment of their frontier risks. As Large Language Models (LLMs) general capabilities rapidly evolve and the proliferation of agentic AI, this version of the risk analysis technical report presents an updated and granular assessment of five critical dimensions: cyber offense, persuasion and manipulation, strategic deception, uncontrolled AI R\&D, and self-replication. Specifically, we introduce more complex scenarios for cyber offense. For persuasion and manipulation, we evaluate the risk of LLM-to-LLM persuasion on newly released LLMs. For strategic deception and scheming, we add the new experiment with respect to emergent misalignment. For uncontrolled AI R\&D, we focus on the ``mis-evolution'' of agents as they autonomously expand their memory substrates and toolsets. Besides, we also monitor and evaluate the safety performance of OpenClaw during the interaction on the Moltbook. For self-replication, we introduce a new resource-constrained scenario. More importantly, we propose and validate a series of robust mitigation strategies to address these emerging threats, providing a preliminary technical and actionable pathway for the secure deployment of frontier AI. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
comment: 49 pages, 17 figures, 12 tables
☆ Precedent-Informed Reasoning: Mitigating Overthinking in Large Reasoning Models via Test-Time Precedent Learning
Reasoning in Large Language Models (LLMs) often suffers from inefficient long chain-of-thought traces with redundant self-exploration and validation, which inflate computational costs and even degrade performance. Inspired by human reasoning patterns where people solve new problems by leveraging past related cases to constrain search spaces and reduce trial-and-error, we propose Precedent Informed Reasoning (PIR) transforming LRMs'reasoning paradigm from exhaustive self-exploration to guided learning from precedents. PIR addresses two key challenges: what precedents to adopt and how to utilize them. First, Adaptive Precedent Selection (APS) constructs, for each question and LRM, a compact set of precedents that are both semantically related and informative for the model. It ranks examples by a joint score with semantic similarity and model perplexity, then adapts the amount of precedents to maximize perplexity reduction. Second, Test-time Experience Internalization (TEI) is treated as the test-time learning on precedent-informed instruction, updating lightweight adapters to internalize solution patterns and use them as a prior during subsequent reasoning. Experiments across mathematical reasoning, scientific QA, and code generation demonstrate that PIR consistently shortens reasoning traces while maintaining or improving final accuracy across LLMs, yielding outstanding accuracy-efficiency trade-offs.
☆ Selective Synchronization Attention
The Transformer architecture has become the foundation of modern deep learning, yet its core self-attention mechanism suffers from quadratic computational complexity and lacks grounding in biological neural computation. We propose Selective Synchronization Attention (SSA), a novel attention mechanism that replaces the standard dot-product self-attention with a closed-form operator derived from the steady-state solution of the Kuramoto model of coupled oscillators. In SSA, each token is represented as an oscillator characterized by a learnable natural frequency and phase; the synchronization strength between token pairs, determined by a frequency-dependent coupling and phase-locking condition, serves as the attention weight. This formulation provides three key advantages: (i) natural sparsity arising from the phase-locking threshold, whereby tokens with incompatible frequencies automatically receive zero attention weight without explicit masking; (ii) unified positional-semantic encoding through the natural frequency spectrum, eliminating the need for separate positional encodings; and (iii) a single-pass, closed-form computation that avoids iterative ODE integration, with all components (coupling, order parameter, synchronization) derived from the oscillatory framework. We instantiate SSA within the Oscillatory Synchronization Network (OSN), a drop-in replacement for the Transformer block. Analysis of the synchronization matrices reveals non-uniform, head-diverse coupling patterns even at initialization, demonstrating a stronger architectural inductive bias than the approximately uniform attention produced by randomly initialized Transformers.
☆ Synthetic Reader Panels: Tournament-Based Ideation with LLM Personas for Autonomous Publishing
We present a system for autonomous book ideation that replaces human focus groups with synthetic reader panels -- diverse collections of LLM-instantiated reader personas that evaluate book concepts through structured tournament competitions. Each persona is defined by demographic attributes (age group, gender, income, education, reading level), behavioral patterns (books per year, genre preferences, discovery methods, price sensitivity), and consistency parameters. Panels are composed per imprint to reflect target demographics, with diversity constraints ensuring representation across age, reading level, and genre affinity. Book concepts compete in single-elimination, double-elimination, round-robin, or Swiss-system tournaments, judged against weighted criteria including market appeal, originality, and execution potential. To reject low-quality LLM evaluations, we implement five automated anti-slop checks (repetitive phrasing, generic framing, circular reasoning, score clustering, audience mismatch). We report results from deployment within a multi-imprint publishing operation managing 6 active imprints and 609 titles in distribution. Three case studies -- a 270-evaluator panel for a children's literacy novel, and two 5-person expert panels for a military memoir and a naval strategy monograph -- demonstrate that synthetic panels produce actionable demographic segmentation, identify structural content issues invisible to homogeneous reviewers, and enable tournament filtering that eliminates low-quality concepts while enriching high-quality survivors from 15% to 62% of the evaluated pool.
comment: 5 tables, 1 figure
☆ LLM-Guided Knowledge Distillation for Temporal Knowledge Graph Reasoning
Temporal knowledge graphs (TKGs) support reasoning over time-evolving facts, yet state-of-the-art models are often computationally heavy and costly to deploy. Existing compression and distillation techniques are largely designed for static graphs; directly applying them to temporal settings may overlook time-dependent interactions and lead to performance degradation. We propose an LLM-assisted distillation framework specifically designed for temporal knowledge graph reasoning. Beyond a conventional high-capacity temporal teacher, we incorporate a large language model as an auxiliary instructor to provide enriched supervision. The LLM supplies broad background knowledge and temporally informed signals, enabling a lightweight student to better model event dynamics without increasing inference-time complexity. Training is conducted by jointly optimizing supervised and distillation objectives, using a staged alignment strategy to progressively integrate guidance from both teachers. Extensive experiments on multiple public TKG benchmarks with diverse backbone architectures demonstrate that the proposed approach consistently improves link prediction performance over strong distillation baselines, while maintaining a compact and efficient student model. The results highlight the potential of large language models as effective teachers for transferring temporal reasoning capability to resource-efficient TKG systems.
☆ WavePhaseNet: A DFT-Based Method for Constructing Semantic Conceptual Hierarchy Structures (SCHS)
This paper reformulates Transformer/Attention mechanisms in Large Language Models (LLMs) through measure theory and frequency analysis, theoretically demonstrating that hallucination is an inevitable structural limitation. The embedding space functions as a conditional expectation over a σ-algebra, and its failure to be isomorphic to the semantic truth set fundamentally causes logical consistency breakdown. WavePhaseNet Method The authors propose WavePhaseNet, which explicitly constructs a Semantic Conceptual Hierarchy Structure (SCHS) using Discrete Fourier Transform (DFT). By applying DFT along the sequence dimension, semantic information is decomposed into frequency bands: low-frequency components capture global meaning and intent, while high-frequency components represent local syntax and expression. This staged separation enables precise semantic manipulation in diagonalized space. Dimensionality Reduction GPT-4's 24,576-dimensional embedding space exhibits a 1/f spectral structure based on language self-similarity and Zipf's law. Through cumulative energy analysis, the authors derive that approximately 3,000 dimensions constitute the lower bound for "complete representation." This demonstrates that reduction from 24,576 to 3,000 dimensions preserves meaning and intent while enabling rigorous reasoning and suppressing hallucination. Cohomological Consistency Control The reduced embedding space, constructed via cohomological regularization over overlapping local windows, allows defining a graph structure and cochain complex. This quantifies inconsistencies among local inferences as coboundary-based losses. Applying harmonic projection based on Hodge theory positions cohomology as a computable regularization principle for controlling semantic consistency, extracting maximally consistent global representations.
☆ TruthStance: An Annotated Dataset of Conversations on Truth Social
Argument mining and stance detection are central to understanding how opinions are formed and contested in online discourse. However, most publicly available resources focus on mainstream platforms such as Twitter and Reddit, leaving conversational structure on alt-tech platforms comparatively under-studied. We introduce TruthStance, a large-scale dataset of Truth Social conversation threads spanning 2023-2025, consisting of 24,378 posts and 523,360 comments with reply-tree structure preserved. We provide a human-annotated benchmark of 1,500 instances across argument mining and claim-based stance detection, including inter-annotator agreement, and use it to evaluate large language model (LLM) prompting strategies. Using the best-performing configuration, we release additional LLM-generated labels for 24,352 posts (argument presence) and 107,873 comments (stance to parent), enabling analysis of stance and argumentation patterns across depth, topics, and users. All code and data are released publicly.
☆ Beyond Token-Level Policy Gradients for Complex Reasoning with Large Language Models
Existing policy-gradient methods for auto-regressive language models typically select subsequent tokens one at a time as actions in the policy. While effective for many generation tasks, such an approach may not fully capture the structure of complex reasoning tasks, where a single semantic decision is often realized across multiple tokens--for example, when defining variables or composing equations. This introduces a potential mismatch between token-level optimization and the inherently block-level nature of reasoning in these settings. To bridge this gap, we propose Multi-token Policy Gradient Optimization (MPO), a framework that treats sequences of K consecutive tokens as unified semantic actions. This block-level perspective enables our method to capture the compositional structure of reasoning trajectories and supports optimization over coherent, higher-level objectives. Experiments on mathematical reasoning and coding benchmarks show that MPO outperforms standard token-level policy gradient baselines, highlight the limitations of token-level policy gradients for complex reasoning, motivating future research to look beyond token-level granularity for reasoning-intensive language tasks.
☆ Differentially Private Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is a widely used framework for reducing hallucinations in large language models (LLMs) on domain-specific tasks by retrieving relevant documents from a database to support accurate responses. However, when the database contains sensitive corpora, such as medical records or legal documents, RAG poses serious privacy risks by potentially exposing private information through its outputs. Prior work has demonstrated that one can practically craft adversarial prompts that force an LLM to regurgitate the augmented contexts. A promising direction is to integrate differential privacy (DP), a privacy notion that offers strong formal guarantees, into RAG systems. However, naively applying DP mechanisms into existing systems often leads to significant utility degradation. Particularly for RAG systems, DP can reduce the usefulness of the augmented contexts leading to increase risk of hallucination from the LLMs. Motivated by these challenges, we present DP-KSA, a novel privacy-preserving RAG algorithm that integrates DP using the propose-test-release paradigm. DP-KSA follows from a key observation that most question-answering (QA) queries can be sufficiently answered with a few keywords. Hence, DP-KSA first obtains an ensemble of relevant contexts, each of which will be used to generate a response from an LLM. We utilize these responses to obtain the most frequent keywords in a differentially private manner. Lastly, the keywords are augmented into the prompt for the final output. This approach effectively compresses the semantic space while preserving both utility and privacy. We formally show that DP-KSA provides formal DP guarantees on the generated output with respect to the RAG database. We evaluate DP-KSA on two QA benchmarks using three instruction-tuned LLMs, and our empirical results demonstrate that DP-KSA achieves a strong privacy-utility tradeoff.
☆ InnoEval: On Research Idea Evaluation as a Knowledge-Grounded, Multi-Perspective Reasoning Problem
Shuofei Qiao, Yunxiang Wei, Xuehai Wang, Bin Wu, Boyang Xue, Ningyu Zhang, Hossein A. Rahmani, Yanshan Wang, Qiang Zhang, Keyan Ding, Jeff Z. Pan, Huajun Chen, Emine Yilmaz
The rapid evolution of Large Language Models has catalyzed a surge in scientific idea production, yet this leap has not been accompanied by a matching advance in idea evaluation. The fundamental nature of scientific evaluation needs knowledgeable grounding, collective deliberation, and multi-criteria decision-making. However, existing idea evaluation methods often suffer from narrow knowledge horizons, flattened evaluation dimensions, and the inherent bias in LLM-as-a-Judge. To address these, we regard idea evaluation as a knowledge-grounded, multi-perspective reasoning problem and introduce InnoEval, a deep innovation evaluation framework designed to emulate human-level idea assessment. We apply a heterogeneous deep knowledge search engine that retrieves and grounds dynamic evidence from diverse online sources. We further achieve review consensus with an innovation review board containing reviewers with distinct academic backgrounds, enabling a multi-dimensional decoupled evaluation across multiple metrics. We construct comprehensive datasets derived from authoritative peer-reviewed submissions to benchmark InnoEval. Experiments demonstrate that InnoEval can consistently outperform baselines in point-wise, pair-wise, and group-wise evaluation tasks, exhibiting judgment patterns and consensus highly aligned with human experts.
comment: Ongoing Work
♻ ☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
David P. Woodruff, Vincent Cohen-Addad, Lalit Jain, Jieming Mao, Song Zuo, MohammadHossein Bateni, Simina Branzei, Michael P. Brenner, Lin Chen, Ying Feng, Lance Fortnow, Gang Fu, Ziyi Guan, Zahra Hadizadeh, Mohammad T. Hajiaghayi, Mahdi JafariRaviz, Adel Javanmard, Karthik C. S., Ken-ichi Kawarabayashi, Ravi Kumar, Silvio Lattanzi, Euiwoong Lee, Yi Li, Ioannis Panageas, Dimitris Paparas, Benjamin Przybocki, Bernardo Subercaseaux, Ola Svensson, Shayan Taherijam, Xuan Wu, Eylon Yogev, Morteza Zadimoghaddam, Samson Zhou, Yossi Matias, James Manyika, Vahab Mirrokni
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
comment: Author list now includes Yossi Matias and James Manyika. Acknowledgements also updated. Added more general discussion to sections 1, 9.1, and 9.5. Discussed related work of Gurvits in section 4.3. Clarified closed form in section 6.1 and gave finite sum expansions for coefficients. Other minor formatting fixes
♻ ☆ Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning NeurIPS 2025
While fine-tuning large language models (LLMs) for specific tasks often yields impressive results, it comes at the cost of memory inefficiency due to back-propagation in gradient-based training. Memory-efficient Zeroth-order (MeZO) optimizers, recently proposed to address this issue, only require forward passes during training, making them more memory-friendly. However, compared with exact gradients, ZO-based gradients usually exhibit an estimation error, which can significantly hurt the optimization process, leading to slower convergence and suboptimal solutions. In addition, we find that the estimation error will hurt more when adding to large weights instead of small weights. Based on this observation, this paper introduces Sparse MeZO, a novel memory-efficient zeroth-order optimization approach that applies ZO only to a carefully chosen subset of parameters. We propose a simple yet effective parameter selection scheme that yields significant performance gains with Sparse-MeZO. Additionally, we develop a memory-optimized implementation for sparse masking, ensuring the algorithm requires only inference-level memory consumption, allowing Sparse-MeZO to fine-tune LLaMA-30b on a single A100 GPU. Experimental results illustrate that Sparse-MeZO consistently improves both performance and convergence speed over MeZO without any overhead. For example, it achieves a 9\% absolute accuracy improvement and 3.5x speedup over MeZO on the RTE task. Code is available at https://github.com/NUS-HPC-AI-Lab/SparseMeZO.
comment: Accepted by NeurIPS 2025
♻ ☆ Why Synthetic Isn't Real Yet: A Diagnostic Framework for Contact Center Dialogue Generation
Synthetic data is increasingly critical for contact centers, where privacy constraints and data scarcity limit the availability of real conversations. However, generating synthetic dialogues that are realistic and useful for downstream applications remains challenging. In this work, we benchmark multiple generation strategies guided by structured supervision on call attributes (Intent Summaries, Topic Flows, and Quality Assurance (QA) Forms) across multiple languages. To test downstream utility, we evaluate synthetic transcripts on an automated quality assurance (AutoQA) task, finding that prompts optimized on real transcripts consistently outperform those optimized on synthetic transcripts. These results suggest that current synthetic transcripts fall short in capturing the full realism of real agent-customer interactions. To highlight these downstream gaps, we introduce a diagnostic evaluation framework comprising 17 metrics across four dimensions: (1) Emotional and Sentiment Arcs, (2) Linguistic Complexity, (3) Interaction Style, and (4) Conversational Properties. Our analysis shows that even with structured supervision, current generation strategies exhibit measurable deficiencies in sentiment fidelity, disfluency modeling, behavioral variation, and conversational realism. Together, these results highlight the importance of diagnostic, metric-driven evaluation for synthetic conversation generation intended for downstream applications.
♻ ☆ SYNAPSE: Empowering LLM Agents with Episodic-Semantic Memory via Spreading Activation
Hanqi Jiang, Junhao Chen, Yi Pan, Ling Chen, Weihang You, Yifan Zhou, Ruidong Zhang, Andrea Sikora, Lin Zhao, Yohannes Abate, Tianming Liu
While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
♻ ☆ iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs. The code is publicly available at: https://github.com/Wangshuaiia/iQUEST.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Reward Modeling from Natural Language Human Feedback
Reinforcement Learning with Verifiable reward (RLVR) on preference data has become the mainstream approach for training Generative Reward Models (GRMs). Typically in pairwise rewarding tasks, GRMs generate reasoning chains ending with critiques and preference labels, and RLVR then relies on the correctness of the preference labels as the training reward. However, in this paper, we demonstrate that such binary classification tasks make GRMs susceptible to guessing correct outcomes without sound critiques. Consequently, these spurious successes introduce substantial noise into the reward signal, thereby impairing the effectiveness of reinforcement learning. To address this issue, we propose Reward Modeling from Natural Language Human Feedback (RM-NLHF), which leverages natural language feedback to obtain process reward signals, thereby mitigating the problem of limited solution space inherent in binary tasks. Specifically, we compute the similarity between GRM-generated and human critiques as the training reward, which provides more accurate reward signals than outcome-only supervision. Additionally, considering that human critiques are difficult to scale up, we introduce Meta Reward Model (MetaRM) which learns to predict process reward from datasets with human critiques and then generalizes to data without human critiques. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art GRMs trained with outcome-only reward, confirming the superiority of integrating natural language over binary human feedback as supervision.
♻ ☆ Context Volume Drives Performance: Tackling Domain Shift in Extremely Low-Resource Translation via RAG
Neural Machine Translation (NMT) models for low-resource languages suffer significant performance degradation under domain shift. We quantify this challenge using Dhao, an indigenous language of Eastern Indonesia with no digital footprint beyond the New Testament (NT). When applied to the unseen Old Testament (OT), a standard NMT model fine-tuned on the NT drops from an in-domain score of 36.17 chrF++ to 27.11 chrF++. To recover this loss, we introduce a hybrid framework where a fine-tuned NMT model generates an initial draft, which is then refined by a Large Language Model (LLM) using Retrieval-Augmented Generation (RAG). The final system achieves 35.21 chrF++ (+8.10 recovery), effectively matching the original in-domain quality. Our analysis reveals that this performance is driven primarily by the number of retrieved examples rather than the choice of retrieval algorithm. Qualitative analysis confirms the LLM acts as a robust "safety net," repairing severe failures in zero-shot domains.
♻ ☆ Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks
Large language models (LLMs) are shown to be vulnerable to jailbreaking attacks where adversarial prompts are designed to elicit harmful responses. While existing defenses effectively mitigate single-turn attacks by detecting and filtering unsafe inputs, they fail against multi-turn jailbreaks that exploit contextual drift over multiple interactions, gradually leading LLMs away from safe behavior. To address this challenge, we propose a safety steering framework grounded in safe control theory, ensuring invariant safety in multi-turn dialogues. Our approach models the dialogue with LLMs using state-space representations and introduces a novel neural barrier function (NBF) to detect and filter harmful queries emerging from evolving contexts proactively. Our method achieves invariant safety at each turn of dialogue by learning a safety predictor that accounts for adversarial queries, preventing potential context drift toward jailbreaks. Extensive experiments under multiple LLMs show that our NBF-based safety steering outperforms safety alignment, prompt-based steering and lightweight LLM guardrails baselines, offering stronger defenses against multi-turn jailbreaks while maintaining a better trade-off among safety, helpfulness and over-refusal. Check out the website here https://sites.google.com/view/llm-nbf/home.
comment: TMLR, 31 pages, 11 figures, 15 tables
♻ ☆ Finding Diamonds in Conversation Haystacks: A Benchmark for Conversational Data Retrieval EMNLP 2025
We present the Conversational Data Retrieval (CDR) benchmark, the first comprehensive test set for evaluating systems that retrieve conversation data for product insights. With 1.6k queries across five analytical tasks and 9.1k conversations, our benchmark provides a reliable standard for measuring conversational data retrieval performance. Our evaluation of 16 popular embedding models shows that even the best models reach only around NDCG@10 of 0.51, revealing a substantial gap between document and conversational data retrieval capabilities. Our work identifies unique challenges in conversational data retrieval (implicit state recognition, turn dynamics, contextual references) while providing practical query templates and detailed error analysis across different task categories. The benchmark dataset and code are available at https://github.com/l-yohai/CDR-Benchmark.
comment: Accepted by EMNLP 2025 Industry Track
♻ ☆ RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments ICLR 2026
Zeyi Liao, Jaylen Jones, Linxi Jiang, Yuting Ning, Eric Fosler-Lussier, Yu Su, Zhiqiang Lin, Huan Sun
Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning high ASRs in realistic end-to-end settings, with the strongest-to-date Claude 4.5 Sonnet | CUA exhibiting the highest ASR of 60%, indicating that CUA threats can already result in tangible risks to users and computer systems. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.
comment: ICLR 2026 (Oral)
♻ ☆ Peeking inside the Black-Box: Reinforcement Learning for Explainable and Accurate Relation Extraction
We introduce CogRE, a novel framework for relation extraction (RE), enhancing RE from both accuracy and explainability. The framework has two key components: (i) a reasoning mechanism that formulates relation extraction as a series of text-processing steps inspired by cognitive science, and (ii) an optimization process driven by a novel reinforcement learning (RL) reward function. Our framework introduces relation keywords and rewards generating such keywords using an automatically constructed keywords dictionary. This design addresses the lack of language-based explanations in traditional RE and provides supervision for explanation during RL training. Our experiments show that CogRE improves explanation quality by addressing two common failure patterns in one-shot RE: poor attention focus and limited one-shot learning capability. For example, our cognitive-structured reasoning with Qwen2.5-15B-Instruct on One-shot NYT29 achieves 24.65% F1, surpassing prior reasoning-based designs. Optimizing this approach with RL using our reward further improves performance by +23.46% (absolute). Further, models trained on NYT29 with our reward achieve a +16.9% F1 gain on out-of-distribution WIKIDATA. Finally, human evaluation shows that our best model generates relational keywords closely aligned with gold labels, increasing human explanation quality ratings by 54% (relative).
comment: Working in process
♻ ☆ PersonalAI: A Systematic Comparison of Knowledge Graph Storage and Retrieval Approaches for Personalized LLM agents
Mikhail Menschikov, Dmitry Evseev, Victoria Dochkina, Ruslan Kostoev, Ilia Perepechkin, Petr Anokhin, Evgeny Burnaev, Nikita Semenov
Personalizing language models that effectively incorporating user interaction history remains a central challenge in development of adaptive AI systems. While large language models (LLMs), combined with Retrieval-Augmented Generation (RAG), have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graph, which construct and update memory model automatically by LLM itself. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyper-edges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle traversal, beam search and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks: TriviaQA, HotpotQA, DiaASQ and demonstrate that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
♻ ☆ The Speech-LLM Takes It All: A Truly Fully End-to-End Spoken Dialogue State Tracking Approach LREC 2026
This paper presents a comparative study of context management strategies for end-to-end Spoken Dialog State Tracking using Speech-LLMs. We systematically evaluate traditional multimodal context (combining text history and spoken current turn), full spoken history, and compressed spoken history approaches. Our experiments on the SpokenWOZ corpus demonstrate that providing the full spoken conversation as input yields the highest performance among models of similar size, significantly surpassing prior methods. Furthermore, we show that attention-pooling-based compression of the spoken history offers a strong trade-off, maintaining competitive accuracy with reduced context size. Detailed analysis confirms that improvements stem from more effective context utilization.
comment: Accepted for presentation at LREC 2026
♻ ☆ Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum
We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval'24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies in a setting where only a single consumer-grade GPU with 8 GB of VRAM is available, and we explicitly choose all training and inference configurations to fit within this budget. Presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals - short-range context, LIWC-22, and moral lexica - and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus, namely the best official ValueEval'24 English run (macro-F1 = 0.28 on the same 19-value test set). Methodologically, our study provides, to our knowledge, the first systematic comparison of direct versus presence-gated architectures, lightweight feature-augmented encoders, and medium-sized instruction-tuned Large Language Models (LLMs) for refined Schwartz values at sentence level. We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same compute budget. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models.
comment: Code: https://github.com/VictorMYeste/human-value-detection, models: https://huggingface.co/papers/2601.14172, 52 pages, 4 figures
♻ ☆ Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay NeurIPS 2025
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism inspired by experience replay in traditional RL. This technique reuses recent rollouts, lowering per-step computation while maintaining stable updates. Experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 23% to 62% while reaching the same level of performance as the original GRPO algorithm. Our code is available at https://github.com/ASTRAL-Group/data-efficient-llm-rl.
comment: Accepted at NeurIPS 2025
♻ ☆ ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Quan Van Nguyen, Dan Quang Tran, Huy Quang Pham, Thang Kien-Bao Nguyen, Nghia Hieu Nguyen, Kiet Van Nguyen, Ngan Luu-Thuy Nguyen
Visual Question Answerinng (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. This task was initially researched with a focus on developing methods to help machines understand objects and scene contexts in images. However, some scene text that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand scene text, we call it ViTextVQA (\textbf{Vi}etnamese \textbf{Text}-based \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering dataset) which contains \textbf{over 16,000} images and \textbf{over 50,000} questions with answers. To tackle this task efficiently, we propose ViTextBLIP-2, an novel multimodal feature fusion Method, which optimizes Vietnamese OCR-based VQA by integrating a frozen Vision Transformer, SwinTextSpotter OCR, and ViT5 LLM with a trainable Q-Former for multimodal feature fusion. Through experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available (https://github.com/minhquan6203/ViTextVQA-Dataset) for research purposes.
comment: International Journal of Expert Systems with Applications
♻ ☆ From Associations to Activations: Comparing Behavioral and Hidden-State Semantic Geometry in LLMs
We investigate the extent to which an LLM's hidden-state geometry can be recovered from its behavior in psycholinguistic experiments. Across eight instruction-tuned transformer models, we run two experimental paradigms -- similarity-based forced choice and free association -- over a shared 5,000-word vocabulary, collecting 17.5M+ trials to build behavior-based similarity matrices. Using representational similarity analysis, we compare behavioral geometries to layerwise hidden-state similarity and benchmark against FastText, BERT, and cross-model consensus. We find that forced-choice behavior aligns substantially more with hidden-state geometry than free association. In a held-out-words regression, behavioral similarity (especially forced choice) predicts unseen hidden-state similarities beyond lexical baselines and cross-model consensus, indicating that behavior-only measurements retain recoverable information about internal semantic geometry. Finally, we discuss implications for the ability of behavioral tasks to uncover hidden cognitive states.
comment: 25 pages including references, 15 figures, 6 tables
♻ ☆ Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Lai Wei, Liangbo He, Jun Lan, Lingzhong Dong, Yutong Cai, Siyuan Li, Huijia Zhu, Weiqiang Wang, Linghe Kong, Yue Wang, Zhuosheng Zhang, Weiran Huang
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
♻ ☆ Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, inherent to RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while providing more stable and efficient training. Extensive experiments demonstrate that PACS significantly outperforms strong open-source models and RLVR baselines, yielding substantial average gains of $\textbf{+8.26\%}$ (4B) and $\textbf{+9.57\%}$ (8B) over base models offering a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.
♻ ☆ EmoLoom-2B: Fast Base-Model Screening for Emotion Classification and VAD with Lexicon-Weak Supervision and KV-Off Evaluation
We introduce EmoLoom-2B, a lightweight and reproducible pipeline that turns small language models under 2B parameters into fast screening candidates for joint emotion classification and Valence-Arousal-Dominance prediction. To ensure protocol-faithful and fair evaluation, we unify data loading, training, and inference under a single JSON input-output contract and remove avoidable variance by adopting KV-off decoding as the default setting. We incorporate two orthogonal semantic regularizers: a VAD-preserving constraint that aligns generated text with target VAD triples, and a lightweight external appraisal classifier that provides training-time guidance on goal attainment, controllability, certainty, and fairness without injecting long rationales. To improve polarity sensitivity, we introduce Valence Flip augmentation based on mirrored emotional pairs. During supervised fine-tuning, we apply A/B mixture sampling with entropy-aware temperature scheduling to balance coverage and convergence. Using Qwen-1.8B-Chat as the base model, EmoLoom-2B achieves strong performance on GoEmotions and EmpatheticDialogues, and demonstrates robust cross-corpus generalization on DailyDialog. The proposed recipe is budget-aware, auditable, and re-entrant, serving as a dependable screening pass before heavier training or multimodal fusion.
comment: This paper presents an initial and self-contained study of a lightweight screening pipeline for emotion-aware language modeling, intended as a reproducible baseline and system-level design reference. This latest version corrects and updates certain personal information
♻ ☆ Context-Emotion Aware Therapeutic Dialogue Generation: A Multi-component Reinforcement Learning Approach to Language Models for Mental Health Support
Mental health disorders impose a substantial global socioeconomic burden. While large language models (LLMs) offer 24/7, non-judgmental interactions to address this gap, pretrained models lack contextual coherence and emotional alignment for appropriate therapeutic dialogue. Existing methods suffer from three critical methodological gaps: 1) Supervised Fine-Tuning (SFT) produces repetitive, context-insensitive outputs that fail to balance clinical accuracy with genuine empathy; 2) Reinforcement Learning (RL)-based therapeutic systems rely on generic reward functions (e.g., BLEU, ROUGE) that prioritise lexical similarity over clinical-specific emotional appropriateness and contextual relevance; 3) LLMs are resource-intensive and pose data privacy risks, making local deployment in clinical settings infeasible. To address these gaps, this study investigates the application of SFT and RL techniques to enhance GPT-2's capacity for therapeutic dialogue generation. The methodology restructured input formats to enable simultaneous processing of contextual information and emotional states alongside user input, employing a novel multi-component reward function that explicitly aligns model outputs with professional therapeutic logic (not just lexical overlap) and annotated emotions. Results demonstrated substantial improvements through RLs over baseline GPT-2 across multiple evaluation metrics: BLEU (0.0111), ROUGE-1 (0.1397), ROUGE-2 (0.0213), ROUGE-L (0.1317), and METEOR (0.0581). LLM evaluation confirmed high contextual relevance and professionalism, while RL achieved 99.34% emotion accuracy compared to 66.96% for baseline GPT-2. These findings demonstrate RL's effectiveness in developing therapeutic dialogue systems that can serve as valuable assistive tools for therapists, while maintaining essential human clinical oversight.
♻ ☆ Who is the richest club in the championship? Detecting and Rewriting Underspecified Questions Improve QA Performance
Large language models (LLMs) perform well on well-posed questions, yet standard question-answering (QA) benchmarks remain far from solved. We argue that this gap is partly due to underspecified questions - queries whose interpretation cannot be uniquely determined without additional context. To test this hypothesis, we introduce an LLM-based classifier to identify underspecified questions and apply it to several widely used QA datasets, finding that 16% to over 50% of benchmark questions are underspecified and that LLMs perform significantly worse on them. To isolate the effect of underspecification, we conduct a controlled rewriting experiment that serves as an upper-bound analysis, rewriting underspecified questions into fully specified variants while holding gold answers fixed. QA performance consistently improves under this setting, indicating that many apparent QA failures stem from question underspecification rather than model limitations. Our findings highlight underspecification as an important confound in QA evaluation and motivate greater attention to question clarity in benchmark design.
comment: 4 pages of main text, 13 pages in total, 5 tables and 10 figures in total
♻ ☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Weike Zhao, Chaoyi Wu, Yanjie Fan, Xiaoman Zhang, Pengcheng Qiu, Yuze Sun, Xiao Zhou, Yanfeng Wang, Xin Sun, Ya Zhang, Yongguo Yu, Kun Sun, Weidi Xie
Rare diseases affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains an urgent challenge. Patients often endure a prolonged diagnostic odyssey exceeding five years, marked by repeated referrals, misdiagnoses, and unnecessary interventions, leading to delayed treatment and substantial emotional and economic burdens. Here we present DeepRare, a multi-agent system for rare disease differential diagnosis decision support powered by large language models, integrating over 40 specialized tools and up-to-date knowledge sources. DeepRare processes heterogeneous clinical inputs, including free-text descriptions, structured Human Phenotype Ontology terms, and genetic testing results, to generate ranked diagnostic hypotheses with transparent reasoning linked to verifiable medical evidence. Evaluated across nine datasets from literature, case reports and clinical centres across Asia, North America and Europe spanning 14 medical specialties, DeepRare demonstrates exceptional performance on 3,134 diseases. In human-phenotype-ontology-based tasks, it achieves an average Recall@1 of 57.18%, outperforming the next-best method by 23.79%; in multi-modal tests, it reaches 69.1% compared with Exomiser's 55.9% on 168 cases. Expert review achieved 95.4% agreement on its reasoning chains, confirming their validity and traceability. Our work not only advances rare disease diagnosis but also demonstrates how the latest powerful large-language-model-driven agentic systems can reshape current clinical workflows.
♻ ☆ MedXIAOHE: A Comprehensive Recipe for Building Medical MLLMs
Baorong Shi, Bo Cui, Boyuan Jiang, Deli Yu, Fang Qian, Haihua Yang, Huichao Wang, Jiale Chen, Jianfei Pan, Jieqiong Cao, Jinghao Lin, Kai Wu, Lin Yang, Shengsheng Yao, Tao Chen, Xiaojun Xiao, Xiaozhong Ji, Xu Wang, Yijun He, Zhixiong Yang
We present MedXIAOHE, a medical vision-language foundation model designed to advance general-purpose medical understanding and reasoning in real-world clinical applications. MedXIAOHE achieves state-of-the-art performance across diverse medical benchmarks and surpasses leading closed-source multimodal systems on multiple capabilities. To achieve this, we propose an entity-aware continual pretraining framework that organizes heterogeneous medical corpora to broaden knowledge coverage and reduce long-tail gaps (e.g., rare diseases). For medical expert-level reasoning and interaction, MedXIAOHE incorporates diverse medical reasoning patterns via reinforcement learning and tool-augmented agentic training, enabling multi-step diagnostic reasoning with verifiable decision traces. To improve reliability in real-world use, MedXIAOHE integrates user-preference rubrics, evidence-grounded reasoning, and low-hallucination long-form report generation, with improved adherence to medical instructions. We release this report to document our practical design choices, scaling insights, and evaluation framework, hoping to inspire further research.
comment: XIAOHE Medical AI team. Currently, the model is exclusively available on XIAOHE AI Doctor, accessible via both the App Store and the Douyin Mini Program
♻ ☆ d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching ICLR 2026
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce \textit{Dual aDaptive Cache} (d$^2$Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d$^2$Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d$^2$Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d$^2$Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.
comment: Accepted by ICLR 2026, 21 pages, 9 figures
♻ ☆ FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ Recent Advancements and Challenges of Turkic Central Asian Language Processing
Research in NLP for Central Asian Turkic languages - Kazakh, Uzbek, Kyrgyz, and Turkmen - faces typical low-resource language challenges like data scarcity, limited linguistic resources and technology development. However, recent advancements have included the collection of language-specific datasets and the development of models for downstream tasks. Thus, this paper aims to summarize recent progress and identify future research directions. It provides a high-level overview of each language's linguistic features, the current technology landscape, the application of transfer learning from higher-resource languages, and the availability of labeled and unlabeled data. By outlining the current state, we hope to inspire and facilitate future research.
♻ ☆ When Attention Collapses: How Degenerate Layers in LLMs Enable Smaller, Stronger Models
Large Language Models (LLMs) are known for their performance, but we uncover a significant structural inefficiency: a phenomenon we term attention collapse. In many pre-trained decoder-style LLMs, the attention matrices in deeper layers degenerate, collapsing to near rank-one structures. These underutilized layers, which we call lazy layers, are redundant and impair model efficiency. To address this, we introduce Inheritune, a simple yet powerful training recipe designed to build smaller, stronger language models. Inheritune initializes a compact model by inheriting the potent early layers from a larger pre-trained model and then progressively trains and expands it. Our experiments on various models, including the GPT-2 family, demonstrate that models trained with Inheritune can match or even surpass the performance of their larger counterparts, despite having significantly fewer layers. This work presents a novel path toward model compression by design, enabling the creation of compact, yet highly performant language models. Code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Offline RL by Reward-Weighted Fine-Tuning for Conversation Optimization
Subhojyoti Mukherjee, Viet Dac Lai, Raghavendra Addanki, Ryan Rossi, Seunghyun Yoon, Trung Bui, Anup Rao, Jayakumar Subramanian, Branislav Kveton
Offline reinforcement learning (RL) is a variant of RL where the policy is learned from a previously collected dataset of trajectories and rewards. In our work, we propose a practical approach to offline RL with large language models (LLMs). We recast the problem as reward-weighted fine-tuning, which can be solved using similar techniques to supervised fine-tuning (SFT). To showcase the value of our approach, we apply it to learning short-horizon question-answering policies of a fixed length, where the agent reasons about potential answers or asks clarifying questions. Our work stands in a stark contrast to state-of-the-art methods in this domain, based on SFT and direct preference optimization, which have additional hyper-parameters and do not directly optimize for rewards. We compare to them empirically, and report major gains in both optimized rewards and language quality.
comment: Advances in Neural Information Processing Systems 38
♻ ☆ CAST: Character-and-Scene Episodic Memory for Agents
Episodic memory is a central component of human memory, which refers to the ability to recall coherent events grounded in who, when, and where. However, most agent memory systems only emphasize semantic recall and treat experience as structures such as key-value, vector, or graph, which makes them struggle to represent and retrieve coherent events. To address this challenge, we propose a Character-and-Scene based memory architecture(CAST) inspired by dramatic theory. Specifically, CAST constructs 3D scenes (time/place/topic) and organizes them into character profiles that summarize the events of a character to represent episodic memory. Moreover, CAST complements this episodic memory with a graph-based semantic memory, which yields a robust dual memory design. Experiments demonstrate that CAST has averagely improved 8.11% F1 and 10.21% J(LLM-as-a-Judge) than baselines on various datasets, especially on open and time-sensitive conversational questions.
♻ ☆ MemoTime: Memory-Augmented Temporal Knowledge Graph Enhanced Large Language Model Reasoning WWW
Large Language Models (LLMs) have achieved impressive reasoning abilities, but struggle with temporal understanding, especially when questions involve multiple entities, compound operators, and evolving event sequences. Temporal Knowledge Graphs (TKGs), which capture vast amounts of temporal facts in a structured format, offer a reliable source for temporal reasoning. However, existing TKG-based LLM reasoning methods still struggle with four major challenges: maintaining temporal faithfulness in multi-hop reasoning, achieving multi-entity temporal synchronization, adapting retrieval to diverse temporal operators, and reusing prior reasoning experience for stability and efficiency. To address these issues, we propose MemoTime, a memory-augmented temporal knowledge graph framework that enhances LLM reasoning through structured grounding, recursive reasoning, and continual experience learning. MemoTime decomposes complex temporal questions into a hierarchical Tree of Time, enabling operator-aware reasoning that enforces monotonic timestamps and co-constrains multiple entities under unified temporal bounds. A dynamic evidence retrieval layer adaptively selects operator-specific retrieval strategies, while a self-evolving experience memory stores verified reasoning traces, toolkit decisions, and sub-question embeddings for cross-type reuse. Comprehensive experiments on multiple temporal QA benchmarks show that MemoTime achieves overall state-of-the-art results, outperforming the strong baseline by up to 24.0%. Furthermore, MemoTime enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
comment: Accepted by The Web Conference 2026 (WWW, 2026)
♻ ☆ Benchmarking Retrieval-Augmented Generation for Chemistry
Retrieval-augmented generation (RAG) has emerged as a powerful framework for enhancing large language models (LLMs) with external knowledge, particularly in scientific domains that demand specialized and dynamic information. Despite its promise, the application of RAG in the chemistry domain remains underexplored, primarily due to the lack of high-quality, domain-specific corpora and well-curated evaluation benchmarks. In this work, we introduce ChemRAG-Bench, a comprehensive benchmark designed to systematically assess the effectiveness of RAG across a diverse set of chemistry-related tasks. The accompanying chemistry corpus integrates heterogeneous knowledge sources, including scientific literature, the PubChem database, PubMed abstracts, textbooks, and Wikipedia entries. In addition, we present ChemRAG-Toolkit, a modular and extensible RAG toolkit that supports five retrieval algorithms and eight LLMs. Using ChemRAG-Toolkit, we demonstrate that RAG yields a substantial performance gain -- achieving an average relative improvement of 17.4% over direct inference methods. We further conduct in-depth analyses on retriever architectures, corpus selection, and the number of retrieved passages, culminating in practical recommendations to guide future research and deployment of RAG systems in the chemistry domain. The code and data is available at https://chemrag.github.io.
comment: Accepted to COLM 2025
♻ ☆ Writing in Symbiosis: Mapping Human Creative Agency in the AI Era NeurIPS 2025
The proliferation of Large Language Models (LLMs) raises a critical question about what it means to be human when we share an increasingly symbiotic relationship with persuasive and creative machines. This paper examines patterns of human-AI coevolution in creative writing, investigating how human craft and agency are adapting alongside machine capabilities. We challenge the prevailing notion of stylistic homogenization by examining diverse patterns in longitudinal writing data. Using a large-scale corpus spanning the pre- and post-LLM era, we observe patterns suggestive of a "Dual-Track Evolution": thematic convergence around AI-related topics, coupled with structured stylistic differentiation. Our analysis reveals three emergent adaptation patterns: authors showing increased similarity to AI style, those exhibiting decreased similarity, and those maintaining stylistic stability while engaging with AI-related themes. This Creative Archetype Map illuminates how authorship is coevolving with AI, contributing to discussions about human-AI collaboration, detection challenges, and the preservation of creative diversity.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Scalable LLM Reasoning Acceleration with Low-rank Distillation
Due to long generations, large language model (LLM) math reasoning demands significant computational resources and time. While many existing efficient inference methods have been developed with excellent performance preservation on language tasks, they often severely degrade math performance. In this paper, we propose Caprese, a resource-efficient distillation method to recover lost capabilities from deploying efficient inference methods, focused primarily in feedforward blocks. With original weights unperturbed, roughly 1% of additional parameters, and only 20K synthetic training samples, we are able to recover much if not all of the reasoning capabilities lost from efficient inference for thinking LLMs and without harm to language tasks for instruct LLMs. Moreover, Caprese slashes the number of active parameters (~2B cut for Gemma 2 9B and Llama 3.1 8B) and integrates cleanly into existing model layers to reduce latency (>16% time-to-next-token reduction) while encouraging response brevity (up to 8.5% fewer tokens).
♻ ☆ Consistency of Large Reasoning Models Under Multi-Turn Attacks
Large reasoning models with reasoning capabilities achieve state-of-the-art performance on complex tasks, but their robustness under multi-turn adversarial pressure remains underexplored. We evaluate nine frontier reasoning models under adversarial attacks. Our findings reveal that reasoning confers meaningful but incomplete robustness: most reasoning models studied significantly outperform instruction-tuned baselines, yet all exhibit distinct vulnerability profiles, with misleading suggestions universally effective and social pressure showing model-specific efficacy. Through trajectory analysis, we identify five failure modes (Self-Doubt, Social Conformity, Suggestion Hijacking, Emotional Susceptibility, and Reasoning Fatigue) with the first two accounting for 50% of failures. We further demonstrate that Confidence-Aware Response Generation (CARG), effective for standard LLMs, fails for reasoning models due to overconfidence induced by extended reasoning traces; counterintuitively, random confidence embedding outperforms targeted extraction. Our results highlight that reasoning capabilities do not automatically confer adversarial robustness and that confidence-based defenses require fundamental redesign for reasoning models.
♻ ☆ Learning to Extract Rational Evidence via Reinforcement Learning for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) effectively improves the accuracy of Large Language Models (LLMs). However, retrieval noises significantly undermine the quality of LLMs' generation, necessitating the development of denoising mechanisms. Previous works extract evidence straightforwardly without deep thinking, which may risk filtering out key clues and struggle with generalization. To this end, we propose EviOmni, which learns to extract rational evidence via reasoning first and then extracting. Specifically, EviOmni integrates evidence reasoning and evidence extraction into one unified trajectory, followed by knowledge token masking to avoid information leakage, optimized via on-policy reinforcement learning with verifiable rewards in terms of answer, length, and format. Extensive experiments on five benchmark datasets show the superiority of EviOmni, which provides compact and high-quality evidence, enhances the accuracy of downstream tasks, and supports both traditional and agentic RAG systems.
comment: 22 pages, 8 Figures, 18 Tables
♻ ☆ Through the Lens of Human-Human Collaboration: A Configurable Research Platform for Exploring Human-Agent Collaboration
Intelligent systems have traditionally been designed as tools rather than collaborators, often lacking critical characteristics that collaboration partnerships require. Recent advances in large language model (LLM) agents open new opportunities for human-LLM-agent collaboration by enabling natural communication and various social and cognitive behaviors. Yet it remains unclear whether principles of computer-mediated collaboration established in HCI and CSCW persist, change, or fail when humans collaborate with LLM agents. To support systematic investigations of these questions, we introduce an open and configurable research platform for HCI researchers. The platform's modular design allows seamless adaptation of classic CSCW experiments and manipulation of theory-grounded interaction controls. We demonstrate the platform's research efficacy and usability through three case studies: (1) two Shape Factory experiments for resource negotiation with 16 participants, (2) one Hidden Profile experiment for information pooling with 16 participants, and (3) a participatory cognitive walkthrough with five HCI researchers to refine workflows of researcher interface for experiment setup and analysis.
comment: Accepted at CHI 2026