MyArxiv
Computation and Language 112
☆ ParoQuant: Pairwise Rotation Quantization for Efficient Reasoning LLM Inference
Weight-only post-training quantization (PTQ) compresses the weights of Large Language Models (LLMs) into low-precision representations to reduce memory footprint and accelerate inference. However, the presence of outliers in weights and activations often leads to large quantization errors and severe accuracy degradation, especially in recent reasoning LLMs where errors accumulate across long chains of thought. Existing PTQ methods either fail to sufficiently suppress outliers or introduce significant overhead during inference. In this paper, we propose Pairwise Rotation Quantization (ParoQuant), a weight-only PTQ method that combines hardware-efficient and optimizable independent Givens rotations with channel-wise scaling to even out the magnitude across channels and narrow the dynamic range within each quantization group. We further co-design the inference kernel to fully exploit GPU parallelism and keep the rotations and scaling lightweight at runtime. ParoQuant achieves an average 2.4% accuracy improvement over AWQ on reasoning tasks with less than 10% overhead. This paves the way for more efficient and accurate deployment of reasoning LLMs.
☆ Black-Box On-Policy Distillation of Large Language Models
Black-box distillation creates student large language models (LLMs) by learning from a proprietary teacher model's text outputs alone, without access to its internal logits or parameters. In this work, we introduce Generative Adversarial Distillation (GAD), which enables on-policy and black-box distillation. GAD frames the student LLM as a generator and trains a discriminator to distinguish its responses from the teacher LLM's, creating a minimax game. The discriminator acts as an on-policy reward model that co-evolves with the student, providing stable, adaptive feedback. Experimental results show that GAD consistently surpasses the commonly used sequence-level knowledge distillation. In particular, Qwen2.5-14B-Instruct (student) trained with GAD becomes comparable to its teacher, GPT-5-Chat, on the LMSYS-Chat automatic evaluation. The results establish GAD as a promising and effective paradigm for black-box LLM distillation.
☆ Instella: Fully Open Language Models with Stellar Performance
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks, yet the majority of high-performing models remain closed-source or partially open, limiting transparency and reproducibility. In this work, we introduce Instella, a family of fully open three billion parameter language models trained entirely on openly available data and codebase. Powered by AMD Instinct MI300X GPUs, Instella is developed through large-scale pre-training, general-purpose instruction tuning, and alignment with human preferences. Despite using substantially fewer pre-training tokens than many contemporaries, Instella achieves state-of-the-art results among fully open models and is competitive with leading open-weight models of comparable size. We further release two specialized variants: Instella-Long, capable of handling context lengths up to 128K tokens, and Instella-Math, a reasoning-focused model enhanced through supervised fine-tuning and reinforcement learning on mathematical tasks. Together, these contributions establish Instella as a transparent, performant, and versatile alternative for the community, advancing the goal of open and reproducible language modeling research.
☆ SSR: Socratic Self-Refine for Large Language Model Reasoning
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.
comment: Preprint; work in progress
☆ Know Your Limits: Entropy Estimation Modeling for Compression and Generalization
Language prediction is constrained by informational entropy intrinsic to language, such that there exists a limit to how accurate any language model can become and equivalently a lower bound to language compression. The most efficient language compression algorithms today are causal (next token prediction) large language models, but the use of these models to form accurate estimates of language entropy is currently computationally infeasible. We introduce encoder-augmented causal decoder model architectures that exhibit superior training efficiency characteristics and achieve higher compression than causal transformers even when trained on modest hardware. We demonstrate how entropy estimates can be obtained on a per-token basis, and show that the generalization of models trained to approach the entropy of their training data necessarily exceeds the generalization of models trained to minimize loss beyond this value. We show empirically that causal models trained to approach but not exceed estimated per-token entropies exhibit greater generalization than models trained without taking entropy into account.
☆ Towards Blind and Low-Vision Accessibility of Lightweight VLMs and Custom LLM-Evals
Large Vision-Language Models (VLMs) excel at understanding and generating video descriptions but their high memory, computation, and deployment demands hinder practical use particularly for blind and low-vision (BLV) users who depend on detailed, context-aware descriptions. To study the effect of model size on accessibility-focused description quality, we evaluate SmolVLM2 variants with 500M and 2.2B parameters across two diverse datasets: AVCaps (outdoor), and Charades (indoor). In this work, we introduce two novel evaluation frameworks specifically designed for BLV accessibility assessment: the Multi-Context BLV Framework evaluating spatial orientation, social interaction, action events, and ambience contexts; and the Navigational Assistance Framework focusing on mobility-critical information. Additionally, we conduct a systematic evaluation of four different prompt design strategies and deploy both models on a smartphone, evaluating FP32 and INT8 precision variants to assess real-world performance constraints on resource-limited mobile devices.
comment: 8 pages
☆ Mined Prompting and Metadata-Guided Generation for Wound Care Visual Question Answering
The rapid expansion of asynchronous remote care has intensified provider workload, creating demand for AI systems that can assist clinicians in managing patient queries more efficiently. The MEDIQA-WV 2025 shared task addresses this challenge by focusing on generating free-text responses to wound care queries paired with images. In this work, we present two complementary approaches developed for the English track. The first leverages a mined prompting strategy, where training data is embedded and the top-k most similar examples are retrieved to serve as few-shot demonstrations during generation. The second approach builds on a metadata ablation study, which identified four metadata attributes that consistently enhance response quality. We train classifiers to predict these attributes for test cases and incorporate them into the generation pipeline, dynamically adjusting outputs based on prediction confidence. Experimental results demonstrate that mined prompting improves response relevance, while metadata-guided generation further refines clinical precision. Together, these methods highlight promising directions for developing AI-driven tools that can provide reliable and efficient wound care support.
comment: 2 figures, 11 pages
☆ Evaluating Prompting Strategies with MedGemma for Medical Order Extraction
The accurate extraction of medical orders from doctor-patient conversations is a critical task for reducing clinical documentation burdens and ensuring patient safety. This paper details our team submission to the MEDIQA-OE-2025 Shared Task. We investigate the performance of MedGemma, a new domain-specific open-source language model, for structured order extraction. We systematically evaluate three distinct prompting paradigms: a straightforward one-Shot approach, a reasoning-focused ReAct framework, and a multi-step agentic workflow. Our experiments reveal that while more complex frameworks like ReAct and agentic flows are powerful, the simpler one-shot prompting method achieved the highest performance on the official validation set. We posit that on manually annotated transcripts, complex reasoning chains can lead to "overthinking" and introduce noise, making a direct approach more robust and efficient. Our work provides valuable insights into selecting appropriate prompting strategies for clinical information extraction in varied data conditions.
comment: 2 figures 7 pages
☆ DESS: DeBERTa Enhanced Syntactic-Semantic Aspect Sentiment Triplet Extraction
Fine-grained sentiment analysis faces ongoing challenges in Aspect Sentiment Triple Extraction (ASTE), particularly in accurately capturing the relationships between aspects, opinions, and sentiment polarities. While researchers have made progress using BERT and Graph Neural Networks, the full potential of advanced language models in understanding complex language patterns remains unexplored. We introduce DESS, a new approach that builds upon previous work by integrating DeBERTa's enhanced attention mechanism to better understand context and relationships in text. Our framework maintains a dual-channel structure, where DeBERTa works alongside an LSTM channel to process both meaning and grammatical patterns in text. We have carefully refined how these components work together, paying special attention to how different types of language information interact. When we tested DESS on standard datasets, it showed meaningful improvements over current methods, with F1-score increases of 4.85, 8.36, and 2.42 in identifying aspect opinion pairs and determining sentiment accurately. Looking deeper into the results, we found that DeBERTa's sophisticated attention system helps DESS handle complicated sentence structures better, especially when important words are far apart. Our findings suggest that upgrading to more advanced language models when thoughtfully integrated, can lead to real improvements in how well we can analyze sentiments in text. The implementation of our approach is publicly available at: https://github.com/VishalRepos/DESS.
comment: 15 pages, 2 figures. Published in Proceedings of the 17th International Conference on Computational Collective Intelligence (ICCCI 2025), Lecture Notes in Artificial Intelligence, Springer
☆ Towards Emotionally Intelligent and Responsible Reinforcement Learning
Personalized decision systems in healthcare and behavioral support often rely on static rule-based or engagement-maximizing heuristics that overlook users' emotional context and ethical constraints. Such approaches risk recommending insensitive or unsafe interventions, especially in domains involving serious mental illness, substance use disorders, or depression. To address this limitation, we propose a Responsible Reinforcement Learning (RRL) framework that integrates emotional and contextual understanding with ethical considerations into the sequential decision-making process. RRL formulates personalization as a Constrained Markov Decision Process (CMDP), where the agent optimizes engagement and adherence while ensuring emotional alignment and ethical safety. We introduce a multi-objective reward function that explicitly balances short-term behavioral engagement with long-term user well-being, and define an emotion-informed state representation that captures fluctuations in emotional readiness, affect, and risk. The proposed architecture can be instantiated with any RL algorithm (e.g., DQN, PPO) augmented with safety constraints or Lagrangian regularization. Conceptually, this framework operationalizes empathy and responsibility within machine learning policy optimization, bridging safe RL, affective computing and responsible AI. We discuss the implications of this approach for human-centric domains such as behavioral health, education, and digital therapeutics, and outline simulation-based validation paths for future empirical work. This paper aims to initiate a methodological conversation about ethically aligned reinforcement learning for emotionally aware and trustworthy personalization systems.
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ URaG: Unified Retrieval and Generation in Multimodal LLMs for Efficient Long Document Understanding AAAI 2026
Recent multimodal large language models (MLLMs) still struggle with long document understanding due to two fundamental challenges: information interference from abundant irrelevant content, and the quadratic computational cost of Transformer-based architectures. Existing approaches primarily fall into two categories: token compression, which sacrifices fine-grained details; and introducing external retrievers, which increase system complexity and prevent end-to-end optimization. To address these issues, we conduct an in-depth analysis and observe that MLLMs exhibit a human-like coarse-to-fine reasoning pattern: early Transformer layers attend broadly across the document, while deeper layers focus on relevant evidence pages. Motivated by this insight, we posit that the inherent evidence localization capabilities of MLLMs can be explicitly leveraged to perform retrieval during the reasoning process, facilitating efficient long document understanding. To this end, we propose URaG, a simple-yet-effective framework that Unifies Retrieval and Generation within a single MLLM. URaG introduces a lightweight cross-modal retrieval module that converts the early Transformer layers into an efficient evidence selector, identifying and preserving the most relevant pages while discarding irrelevant content. This design enables the deeper layers to concentrate computational resources on pertinent information, improving both accuracy and efficiency. Extensive experiments demonstrate that URaG achieves state-of-the-art performance while reducing computational overhead by 44-56%. The code is available at https://github.com/shi-yx/URaG.
comment: Accepted by AAAI 2026 (Oral)
☆ Computing the Formal and Institutional Boundaries of Contemporary Genre and Literary Fiction
Though the concept of genre has been a subject of discussion for millennia, the relatively recent emergence of genre fiction has added a new layer to this ongoing conversation. While more traditional perspectives on genre have emphasized form, contemporary scholarship has invoked both formal and institutional characteristics in its taxonomy of genre, genre fiction, and literary fiction. This project uses computational methods to explore the soundness of genre as a formal designation as opposed to an institutional one. Pulling from Andrew Piper's CONLIT dataset of Contemporary Literature, we assemble a corpus of literary and genre fiction, with the latter category containing romance, mystery, and science fiction novels. We use Welch's ANOVA to compare the distribution of narrative features according to author gender within each genre and within genre versus literary fiction. Then, we use logistic regression to model the effect that each feature has on literary classification and to measure how author gender moderates these effects. Finally, we analyze stylistic and semantic vector representations of our genre categories to understand the importance of form and content in literary classification. This project finds statistically significant formal markers of each literary category and illustrates how female authorship narrows and blurs the target for achieving literary status.
comment: To be presented at Computational Humanities Research (CHR) Conference, 2025
☆ Convomem Benchmark: Why Your First 150 Conversations Don't Need RAG
We introduce a comprehensive benchmark for conversational memory evaluation containing 75,336 question-answer pairs across diverse categories including user facts, assistant recall, abstention, preferences, temporal changes, and implicit connections. While existing benchmarks have advanced the field, our work addresses fundamental challenges in statistical power, data generation consistency, and evaluation flexibility that limit current memory evaluation frameworks. We examine the relationship between conversational memory and retrieval-augmented generation (RAG). While these systems share fundamental architectural patterns--temporal reasoning, implicit extraction, knowledge updates, and graph representations--memory systems have a unique characteristic: they start from zero and grow progressively with each conversation. This characteristic enables naive approaches that would be impractical for traditional RAG. Consistent with recent findings on long context effectiveness, we observe that simple full-context approaches achieve 70-82% accuracy even on our most challenging multi-message evidence cases, while sophisticated RAG-based memory systems like Mem0 achieve only 30-45% when operating on conversation histories under 150 interactions. Our analysis reveals practical transition points: long context excels for the first 30 conversations, remains viable with manageable trade-offs up to 150 conversations, and typically requires hybrid or RAG approaches beyond that point as costs and latencies become prohibitive. These patterns indicate that the small-corpus advantage of conversational memory--where exhaustive search and complete reranking are feasible--deserves dedicated research attention rather than simply applying general RAG solutions to conversation histories.
☆ Say It Differently: Linguistic Styles as Jailbreak Vectors
Large Language Models (LLMs) are commonly evaluated for robustness against paraphrased or semantically equivalent jailbreak prompts, yet little attention has been paid to linguistic variation as an attack surface. In this work, we systematically study how linguistic styles such as fear or curiosity can reframe harmful intent and elicit unsafe responses from aligned models. We construct style-augmented jailbreak benchmark by transforming prompts from 3 standard datasets into 11 distinct linguistic styles using handcrafted templates and LLM-based rewrites, while preserving semantic intent. Evaluating 16 open- and close-source instruction-tuned models, we find that stylistic reframing increases jailbreak success rates by up to +57 percentage points. Styles such as fearful, curious and compassionate are most effective and contextualized rewrites outperform templated variants. To mitigate this, we introduce a style neutralization preprocessing step using a secondary LLM to strip manipulative stylistic cues from user inputs, significantly reducing jailbreak success rates. Our findings reveal a systemic and scaling-resistant vulnerability overlooked in current safety pipelines.
☆ LOCA-R: Near-Perfect Performance on the Chinese Physics Olympiad 2025
Olympiad-level physics problem-solving presents a significant challenge for both humans and artificial intelligence (AI), as it requires a sophisticated integration of precise calculation, abstract reasoning, and a fundamental grasp of physical principles. The Chinese Physics Olympiad (CPhO), renowned for its complexity and depth, serves as an ideal and rigorous testbed for these advanced capabilities. In this paper, we introduce LOCA-R (LOgical Chain Augmentation for Reasoning), an improved version of the LOCA framework adapted for complex reasoning, and apply it to the CPhO 2025 theory examination. LOCA-R achieves a near-perfect score of 313 out of 320 points, solidly surpassing the highest-scoring human competitor and significantly outperforming all baseline methods.
comment: 19 pages, 3 figures
☆ Rubric-Based Benchmarking and Reinforcement Learning for Advancing LLM Instruction Following
Recent progress in large language models (LLMs) has led to impressive performance on a range of tasks, yet advanced instruction following (IF)-especially for complex, multi-turn, and system-prompted instructions-remains a significant challenge. Rigorous evaluation and effective training for such capabilities are hindered by the lack of high-quality, human-annotated benchmarks and reliable, interpretable reward signals. In this work, we introduce AdvancedIF (we will release this benchmark soon), a comprehensive benchmark featuring over 1,600 prompts and expert-curated rubrics that assess LLMs ability to follow complex, multi-turn, and system-level instructions. We further propose RIFL (Rubric-based Instruction-Following Learning), a novel post-training pipeline that leverages rubric generation, a finetuned rubric verifier, and reward shaping to enable effective reinforcement learning for instruction following. Extensive experiments demonstrate that RIFL substantially improves the instruction-following abilities of LLMs, achieving a 6.7% absolute gain on AdvancedIF and strong results on public benchmarks. Our ablation studies confirm the effectiveness of each component in RIFL. This work establishes rubrics as a powerful tool for both training and evaluating advanced IF in LLMs, paving the way for more capable and reliable AI systems.
☆ Beyond Elicitation: Provision-based Prompt Optimization for Knowledge-Intensive Tasks
While prompt optimization has emerged as a critical technique for enhancing language model performance, existing approaches primarily focus on elicitation-based strategies that search for optimal prompts to activate models' capabilities. These methods exhibit fundamental limitations when addressing knowledge-intensive tasks, as they operate within fixed parametric boundaries rather than providing the factual knowledge, terminology precision, and reasoning patterns required in specialized domains. To address these limitations, we propose Knowledge-Provision-based Prompt Optimization (KPPO), a framework that reformulates prompt optimization as systematic knowledge integration rather than potential elicitation. KPPO introduces three key innovations: 1) a knowledge gap filling mechanism for knowledge gap identification and targeted remediation; 2) a batch-wise candidate evaluation approach that considers both performance improvement and distributional stability; 3) an adaptive knowledge pruning strategy that balances performance and token efficiency, reducing up to 29% token usage. Extensive evaluation on 15 knowledge-intensive benchmarks from various domains demonstrates KPPO's superiority over elicitation-based methods, with an average performance improvement of ~6% over the strongest baseline while achieving comparable or lower token consumption. Code at: https://github.com/xyz9911/KPPO.
comment: 16 pages, 19 figures
☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
Exploring State Tracking Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities in solving complex tasks, including those requiring a certain level of reasoning. In this paper, we focus on state tracking, a problem where models need to keep track of the state governing a number of entities. To isolate the state tracking component from other factors, we propose a benchmark based on three well-defined state tracking tasks and analyse the performance of LLMs in different scenarios. The results indicate that the recent generation of LLMs (specifically, GPT-4 and Llama3) are capable of tracking state, especially when integrated with mechanisms such as Chain of Thought. However, models from the former generation, while understanding the task and being able to solve it at the initial stages, often fail at this task after a certain number of steps.
☆ Reasoning About Intent for Ambiguous Requests
Large language models often respond to ambiguous requests by implicitly committing to one interpretation. Intent misunderstandings can frustrate users and create safety risks. To address this, we propose generating multiple interpretation-answer pairs in a single structured response to ambiguous requests. Our models are trained with reinforcement learning and customized reward functions using multiple valid answers as supervision. Experiments on conversational question answering and semantic parsing demonstrate that our method achieves higher coverage of valid answers than baseline approaches. Human evaluation confirms that predicted interpretations are highly aligned with their answers. Our approach promotes transparency with explicit interpretations, achieves efficiency by requiring only one generation step, and supports downstream applications through its structured output format.
☆ Analogical Structure, Minimal Contextual Cues and Contrastive Distractors: Input Design for Sample-Efficient Linguistic Rule Induction
Large language models achieve strong performance through training on vast datasets. Can analogical paradigm organization enable lightweight models to match this performance with minimal data? We develop a computational approach implementing three cognitive-inspired principles: analogical structure, contrastive learning, and minimal contextual cues. We test this approach with structured completion tasks where models identify correct sentence completions from analogical patterns with contrastive alternatives. Training lightweight models (BERT+CNN, $0.5M$ parameters) on only one hundred structured examples of English causative/inchoative alternations achieves $F1=0.95$, outperforming zero-shot \texttt{GPT-o3} ($F1=0.87$). Ablation studies confirm that analogical organization and contrastive structure improve performance, consistently surpassing randomly shuffled baselines across architectures. Cross-phenomenon validation using unspecified object alternations replicates these efficiency gains, confirming approach robustness. Our results show that analogical paradigm organization enables competitive linguistic rule learning with orders of magnitude less data than conventional approaches require.
☆ DELICATE: Diachronic Entity LInking using Classes And Temporal Evidence
In spite of the remarkable advancements in the field of Natural Language Processing, the task of Entity Linking (EL) remains challenging in the field of humanities due to complex document typologies, lack of domain-specific datasets and models, and long-tail entities, i.e., entities under-represented in Knowledge Bases (KBs). The goal of this paper is to address these issues with two main contributions. The first contribution is DELICATE, a novel neuro-symbolic method for EL on historical Italian which combines a BERT-based encoder with contextual information from Wikidata to select appropriate KB entities using temporal plausibility and entity type consistency. The second contribution is ENEIDE, a multi-domain EL corpus in historical Italian semi-automatically extracted from two annotated editions spanning from the 19th to the 20th century and including literary and political texts. Results show how DELICATE outperforms other EL models in historical Italian even if compared with larger architectures with billions of parameters. Moreover, further analyses reveal how DELICATE confidence scores and features sensitivity provide results which are more explainable and interpretable than purely neural methods.
☆ Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
☆ AgentEvolver: Towards Efficient Self-Evolving Agent System
Autonomous agents powered by large language models (LLMs) have the potential to significantly enhance human productivity by reasoning, using tools, and executing complex tasks in diverse environments. However, current approaches to developing such agents remain costly and inefficient, as they typically require manually constructed task datasets and reinforcement learning (RL) pipelines with extensive random exploration. These limitations lead to prohibitively high data-construction costs, low exploration efficiency, and poor sample utilization. To address these challenges, we present AgentEvolver, a self-evolving agent system that leverages the semantic understanding and reasoning capabilities of LLMs to drive autonomous agent learning. AgentEvolver introduces three synergistic mechanisms: (i) self-questioning, which enables curiosity-driven task generation in novel environments, reducing dependence on handcrafted datasets; (ii) self-navigating, which improves exploration efficiency through experience reuse and hybrid policy guidance; and (iii) self-attributing, which enhances sample efficiency by assigning differentiated rewards to trajectory states and actions based on their contribution. By integrating these mechanisms into a unified framework, AgentEvolver enables scalable, cost-effective, and continual improvement of agent capabilities. Preliminary experiments indicate that AgentEvolver achieves more efficient exploration, better sample utilization, and faster adaptation compared to traditional RL-based baselines.
☆ Simulating Misinformation Propagation in Social Networks using Large Language Models CIKM 2025
Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model large language model (LLM) personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.
comment: Accepted to CIKM 2025 Workshop LASS
☆ Position: On the Methodological Pitfalls of Evaluating Base LLMs for Reasoning
Existing work investigates the reasoning capabilities of large language models (LLMs) to uncover their limitations, human-like biases and underlying processes. Such studies include evaluations of base LLMs (pre-trained on unlabeled corpora only) for this purpose. Our position paper argues that evaluating base LLMs' reasoning capabilities raises inherent methodological concerns that are overlooked in such existing studies. We highlight the fundamental mismatch between base LLMs' pretraining objective and normative qualities, such as correctness, by which reasoning is assessed. In particular, we show how base LLMs generate logically valid or invalid conclusions as coincidental byproducts of conforming to purely linguistic patterns of statistical plausibility. This fundamental mismatch challenges the assumptions that (a) base LLMs' outputs can be assessed as their bona fide attempts at correct answers or conclusions; and (b) conclusions about base LLMs' reasoning can generalize to post-trained LLMs optimized for successful instruction-following. We call for a critical re-examination of existing work that relies implicitly on these assumptions, and for future work to account for these methodological pitfalls.
comment: Preprint
☆ TruthfulRAG: Resolving Factual-level Conflicts in Retrieval-Augmented Generation with Knowledge Graphs AAAI 2026
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework for enhancing the capabilities of Large Language Models (LLMs) by integrating retrieval-based methods with generative models. As external knowledge repositories continue to expand and the parametric knowledge within models becomes outdated, a critical challenge for RAG systems is resolving conflicts between retrieved external information and LLMs' internal knowledge, which can significantly compromise the accuracy and reliability of generated content. However, existing approaches to conflict resolution typically operate at the token or semantic level, often leading to fragmented and partial understanding of factual discrepancies between LLMs' knowledge and context, particularly in knowledge-intensive tasks. To address this limitation, we propose TruthfulRAG, the first framework that leverages Knowledge Graphs (KGs) to resolve factual-level knowledge conflicts in RAG systems. Specifically, TruthfulRAG constructs KGs by systematically extracting triples from retrieved content, utilizes query-based graph retrieval to identify relevant knowledge, and employs entropy-based filtering mechanisms to precisely locate conflicting elements and mitigate factual inconsistencies, thereby enabling LLMs to generate faithful and accurate responses. Extensive experiments reveal that TruthfulRAG outperforms existing methods, effectively alleviating knowledge conflicts and improving the robustness and trustworthiness of RAG systems.
comment: 12 pages, 3 figures, accepted at AAAI 2026
☆ Knowledge Graphs Generation from Cultural Heritage Texts: Combining LLMs and Ontological Engineering for Scholarly Debates
Cultural Heritage texts contain rich knowledge that is difficult to query systematically due to the challenges of converting unstructured discourse into structured Knowledge Graphs (KGs). This paper introduces ATR4CH (Adaptive Text-to-RDF for Cultural Heritage), a systematic five-step methodology for Large Language Model-based Knowledge Extraction from Cultural Heritage documents. We validate the methodology through a case study on authenticity assessment debates. Methodology - ATR4CH combines annotation models, ontological frameworks, and LLM-based extraction through iterative development: foundational analysis, annotation schema development, pipeline architecture, integration refinement, and comprehensive evaluation. We demonstrate the approach using Wikipedia articles about disputed items (documents, artifacts...), implementing a sequential pipeline with three LLMs (Claude Sonnet 3.7, Llama 3.3 70B, GPT-4o-mini). Findings - The methodology successfully extracts complex Cultural Heritage knowledge: 0.96-0.99 F1 for metadata extraction, 0.7-0.8 F1 for entity recognition, 0.65-0.75 F1 for hypothesis extraction, 0.95-0.97 for evidence extraction, and 0.62 G-EVAL for discourse representation. Smaller models performed competitively, enabling cost-effective deployment. Originality - This is the first systematic methodology for coordinating LLM-based extraction with Cultural Heritage ontologies. ATR4CH provides a replicable framework adaptable across CH domains and institutional resources. Research Limitations - The produced KG is limited to Wikipedia articles. While the results are encouraging, human oversight is necessary during post-processing. Practical Implications - ATR4CH enables Cultural Heritage institutions to systematically convert textual knowledge into queryable KGs, supporting automated metadata enrichment and knowledge discovery.
comment: 46 pages
☆ BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.
☆ Rectify Evaluation Preference: Improving LLMs' Critique on Math Reasoning via Perplexity-aware Reinforcement Learning AAAI2026
To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement and pay little attention to delving into the underlying reason for the poor critiquing performance of LLMs. In this paper, we orthogonally quantify and investigate the potential reason -- imbalanced evaluation preference, and conduct a statistical preference analysis. Motivated by the analysis of the reason, a novel perplexity-aware reinforcement learning algorithm is proposed to rectify the evaluation preference, elevating the critiquing capability. Specifically, to probe into LLMs' critiquing characteristics, a One-to-many Problem-Solution (OPS) benchmark is meticulously constructed to quantify the behavior difference of LLMs when evaluating the problem solutions generated by itself and others. Then, to investigate the behavior difference in depth, we conduct a statistical preference analysis oriented on perplexity and find an intriguing phenomenon -- ``LLMs incline to judge solutions with lower perplexity as correct'', which is dubbed as \textit{imbalanced evaluation preference}. To rectify this preference, we regard perplexity as the baton in the algorithm of Group Relative Policy Optimization, supporting the LLMs to explore trajectories that judge lower perplexity as wrong and higher perplexity as correct. Extensive experimental results on our built OPS and existing available critic benchmarks demonstrate the validity of our method.
comment: Accepted by AAAI2026
☆ Local Hybrid Retrieval-Augmented Document QA ACL
Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.
comment: 10 pages, 5 figures, 3 tables; conference-style (ACL format); fully local RAG system
☆ Music Flamingo: Scaling Music Understanding in Audio Language Models
We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do.
comment: Project Page: https://research.nvidia.com/labs/adlr/MF/
☆ OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
☆ FactGuard: Event-Centric and Commonsense-Guided Fake News Detection AAAI 2026
Fake news detection methods based on writing style have achieved remarkable progress. However, as adversaries increasingly imitate the style of authentic news, the effectiveness of such approaches is gradually diminishing. Recent research has explored incorporating large language models (LLMs) to enhance fake news detection. Yet, despite their transformative potential, LLMs remain an untapped goldmine for fake news detection, with their real-world adoption hampered by shallow functionality exploration, ambiguous usability, and prohibitive inference costs. In this paper, we propose a novel fake news detection framework, dubbed FactGuard, that leverages LLMs to extract event-centric content, thereby reducing the impact of writing style on detection performance. Furthermore, our approach introduces a dynamic usability mechanism that identifies contradictions and ambiguous cases in factual reasoning, adaptively incorporating LLM advice to improve decision reliability. To ensure efficiency and practical deployment, we employ knowledge distillation to derive FactGuard-D, enabling the framework to operate effectively in cold-start and resource-constrained scenarios. Comprehensive experiments on two benchmark datasets demonstrate that our approach consistently outperforms existing methods in both robustness and accuracy, effectively addressing the challenges of style sensitivity and LLM usability in fake news detection.
comment: Accepted by AAAI 2026
☆ MTR-DuplexBench: Towards a Comprehensive Evaluation of Multi-Round Conversations for Full-Duplex Speech Language Models
Full-Duplex Speech Language Models (FD-SLMs) enable real-time, overlapping conversational interactions, offering a more dynamic user experience compared to traditional half-duplex models. However, existing benchmarks primarily focus on evaluating single-round interactions and conversational features, neglecting the complexities of multi-round communication and critical capabilities such as instruction following and safety. Evaluating FD-SLMs in multi-round settings poses significant challenges, including blurred turn boundaries in communication and context inconsistency during model inference. To address these gaps, we introduce MTR-DuplexBench, a novel benchmark that segments continuous full-duplex dialogues into discrete turns, enabling comprehensive, turn-by-turn evaluation of FD-SLMs across dialogue quality, conversational dynamics, instruction following, and safety. Experimental results reveal that current FD-SLMs face difficulties in maintaining consistent performance across multiple rounds and evaluation dimensions, highlighting the necessity and effectiveness of our proposed benchmark. The benchmark and code will be available in the future.
comment: Work in progress
☆ ProgRAG: Hallucination-Resistant Progressive Retrieval and Reasoning over Knowledge Graphs
Large Language Models (LLMs) demonstrate strong reasoning capabilities but struggle with hallucinations and limited transparency. Recently, KG-enhanced LLMs that integrate knowledge graphs (KGs) have been shown to improve reasoning performance, particularly for complex, knowledge-intensive tasks. However, these methods still face significant challenges, including inaccurate retrieval and reasoning failures, often exacerbated by long input contexts that obscure relevant information or by context constructions that struggle to capture the richer logical directions required by different question types. Furthermore, many of these approaches rely on LLMs to directly retrieve evidence from KGs, and to self-assess the sufficiency of this evidence, which often results in premature or incorrect reasoning. To address the retrieval and reasoning failures, we propose ProgRAG, a multi-hop knowledge graph question answering (KGQA) framework that decomposes complex questions into sub-questions, and progressively extends partial reasoning paths by answering each sub-question. At each step, external retrievers gather candidate evidence, which is then refined through uncertainty-aware pruning by the LLM. Finally, the context for LLM reasoning is optimized by organizing and rearranging the partial reasoning paths obtained from the sub-question answers. Experiments on three well-known datasets demonstrate that ProgRAG outperforms existing baselines in multi-hop KGQA, offering improved reliability and reasoning quality.
☆ VocalNet-M2: Advancing Low-Latency Spoken Language Modeling via Integrated Multi-Codebook Tokenization and Multi-Token Prediction
Current end-to-end spoken language models (SLMs) have made notable progress, yet they still encounter considerable response latency. This delay primarily arises from the autoregressive generation of speech tokens and the reliance on complex flow-matching models for speech synthesis. To overcome this, we introduce VocalNet-M2, a novel low-latency SLM that integrates a multi-codebook tokenizer and a multi-token prediction (MTP) strategy. Our model directly generates multi-codebook speech tokens, thus eliminating the need for a latency-inducing flow-matching model. Furthermore, our MTP strategy enhances generation efficiency and improves overall performance. Extensive experiments demonstrate that VocalNet-M2 achieves a substantial reduction in first chunk latency (from approximately 725ms to 350ms) while maintaining competitive performance across mainstream SLMs. This work also provides a comprehensive comparison of single-codebook and multi-codebook strategies, offering valuable insights for developing efficient and high-performance SLMs for real-time interactive applications.
☆ LangGPS: Language Separability Guided Data Pre-Selection for Joint Multilingual Instruction Tuning AAAI2026
Joint multilingual instruction tuning is a widely adopted approach to improve the multilingual instruction-following ability and downstream performance of large language models (LLMs), but the resulting multilingual capability remains highly sensitive to the composition and selection of the training data. Existing selection methods, often based on features like text quality, diversity, or task relevance, typically overlook the intrinsic linguistic structure of multilingual data. In this paper, we propose LangGPS, a lightweight two-stage pre-selection framework guided by language separability which quantifies how well samples in different languages can be distinguished in the model's representation space. LangGPS first filters training data based on separability scores and then refines the subset using existing selection methods. Extensive experiments across six benchmarks and 22 languages demonstrate that applying LangGPS on top of existing selection methods improves their effectiveness and generalizability in multilingual training, especially for understanding tasks and low-resource languages. Further analysis reveals that highly separable samples facilitate the formation of clearer language boundaries and support faster adaptation, while low-separability samples tend to function as bridges for cross-lingual alignment. Besides, we also find that language separability can serve as an effective signal for multilingual curriculum learning, where interleaving samples with diverse separability levels yields stable and generalizable gains. Together, we hope our work offers a new perspective on data utility in multilingual contexts and support the development of more linguistically informed LLMs.
comment: AAAI2026 Main Track Accepted
☆ Persona-Aware Alignment Framework for Personalized Dialogue Generation
Personalized dialogue generation aims to leverage persona profiles and dialogue history to generate persona-relevant and consistent responses. Mainstream models typically rely on token-level language model training with persona dialogue data, such as Next Token Prediction, to implicitly achieve personalization, making these methods tend to neglect the given personas and generate generic responses. To address this issue, we propose a novel Persona-Aware Alignment Framework (PAL), which directly treats persona alignment as the training objective of dialogue generation. Specifically, PAL employs a two-stage training method including Persona-aware Learning and Persona Alignment, equipped with an easy-to-use inference strategy Select then Generate, to improve persona sensitivity and generate more persona-relevant responses at the semantics level. Through extensive experiments, we demonstrate that our framework outperforms many state-of-the-art personalized dialogue methods and large language models.
comment: Pre-MIT Press publication version
☆ EffiReason-Bench: A Unified Benchmark for Evaluating and Advancing Efficient Reasoning in Large Language Models
Large language models (LLMs) with Chain-of-Thought (CoT) prompting achieve strong reasoning but often produce unnecessarily long explanations, increasing cost and sometimes reducing accuracy. Fair comparison of efficiency-oriented approaches is hindered by fragmented evaluation practices. We introduce EffiReason-Bench, a unified benchmark for rigorous cross-paradigm evaluation of efficient reasoning methods across three categories: Reasoning Blueprints, Dynamic Execution, and Post-hoc Refinement. To enable step-by-step evaluation, we construct verified CoT annotations for CommonsenseQA and LogiQA via a pipeline that enforces standardized reasoning structures, comprehensive option-wise analysis, and human verification. We evaluate 7 methods across 6 open-source LLMs (1B-70B) on 4 datasets spanning mathematics, commonsense, and logic, and propose the E3-Score, a principled metric inspired by economic trade-off modeling that provides smooth, stable evaluation without discontinuities or heavy reliance on heuristics. Experiments show that no single method universally dominates; optimal strategies depend on backbone scale, task complexity, and architecture.
comment: 11 pages, 4 figures, 4 tables. Appendix included
☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has become pivotal in AI, especially for Text-to-SQL, where performance is limited by scarce, simplistic, and low-diversity datasets. To address this, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from minimal seed data. It operates across six augmentation dimensions and integrates an end-to-end pipeline featuring SQL execution verification, natural language question generation, chain-of-thought reasoning traces, and data classification. A modular Database Manager ensures cross-database compatibility and scalability. Using this framework, we build SQLFlow, a high-quality dataset of 89,544 annotated examples. We evaluate SQLFlow in two settings: (1) For open-source LLMs, fine-tuning on SQLFlow consistently improves performance across benchmarks under the same data budget. (2) For closed-source LLMs, we introduce a masked alignment retrieval method that treats SQLFlow as both knowledge base and training data for the retriever. This enables structure-aware example matching by modeling fine-grained alignments between questions and SQL queries. Experiments show our retrieval strategy outperforms existing methods, underscoring the value of SQLFlow's high-fidelity data and our novel technique. Our work establishes a scalable, data-centric foundation for advancing Text-to-SQL systems and highlights the critical role of high-quality structured data in modern AI.
☆ Beyond the Black Box: Demystifying Multi-Turn LLM Reasoning with VISTA
Recent research has increasingly focused on the reasoning capabilities of Large Language Models (LLMs) in multi-turn interactions, as these scenarios more closely mirror real-world problem-solving. However, analyzing the intricate reasoning processes within these interactions presents a significant challenge due to complex contextual dependencies and a lack of specialized visualization tools, leading to a high cognitive load for researchers. To address this gap, we present VISTA, an web-based Visual Interactive System for Textual Analytics in multi-turn reasoning tasks. VISTA allows users to visualize the influence of context on model decisions and interactively modify conversation histories to conduct "what-if" analyses across different models. Furthermore, the platform can automatically parse a session and generate a reasoning dependency tree, offering a transparent view of the model's step-by-step logical path. By providing a unified and interactive framework, VISTA significantly reduces the complexity of analyzing reasoning chains, thereby facilitating a deeper understanding of the capabilities and limitations of current LLMs. The platform is open-source and supports easy integration of custom benchmarks and local models.
☆ Generalizing to Unseen Disaster Events: A Causal View AACL 2025
Due to the rapid growth of social media platforms, these tools have become essential for monitoring information during ongoing disaster events. However, extracting valuable insights requires real-time processing of vast amounts of data. A major challenge in existing systems is their exposure to event-related biases, which negatively affects their ability to generalize to emerging events. While recent advancements in debiasing and causal learning offer promising solutions, they remain underexplored in the disaster event domain. In this work, we approach bias mitigation through a causal lens and propose a method to reduce event- and domain-related biases, enhancing generalization to future events. Our approach outperforms multiple baselines by up to +1.9% F1 and significantly improves a PLM-based classifier across three disaster classification tasks.
comment: Accepted to Findings of AACL 2025
☆ On the Military Applications of Large Language Models
In this paper, military use cases or applications and implementation thereof are considered for natural language processing and large language models, which have broken into fame with the invention of the generative pre-trained transformer (GPT) and the extensive foundation model pretraining done by OpenAI for ChatGPT and others. First, we interrogate a GPT-based language model (viz. Microsoft Copilot) to make it reveal its own knowledge about their potential military applications and then critically assess the information. Second, we study how commercial cloud services (viz. Microsoft Azure) could be used readily to build such applications and assess which of them are feasible. We conclude that the summarization and generative properties of language models directly facilitate many applications at large and other features may find particular uses.
comment: Published in the meeting proceedings of the 2025 International Conference on Military Communications and Information Systems (ICMCIS) by the NATO Science and Technology Organization (STO)
☆ ELYADATA & LIA at NADI 2025: ASR and ADI Subtasks EMNLP 2025
This paper describes Elyadata \& LIA's joint submission to the NADI multi-dialectal Arabic Speech Processing 2025. We participated in the Spoken Arabic Dialect Identification (ADI) and multi-dialectal Arabic ASR subtasks. Our submission ranked first for the ADI subtask and second for the multi-dialectal Arabic ASR subtask among all participants. Our ADI system is a fine-tuned Whisper-large-v3 encoder with data augmentation. This system obtained the highest ADI accuracy score of \textbf{79.83\%} on the official test set. For multi-dialectal Arabic ASR, we fine-tuned SeamlessM4T-v2 Large (Egyptian variant) separately for each of the eight considered dialects. Overall, we obtained an average WER and CER of \textbf{38.54\%} and \textbf{14.53\%}, respectively, on the test set. Our results demonstrate the effectiveness of large pre-trained speech models with targeted fine-tuning for Arabic speech processing.
comment: Published in Proceedings of the ArabicNLP 2025 Workshop (co-located with EMNLP 2025), Association for Computational Linguistics, 2025
☆ Format Matters: The Robustness of Multimodal LLMs in Reviewing Evidence from Tables and Charts AAAI 2026
With the growing number of submitted scientific papers, there is an increasing demand for systems that can assist reviewers in evaluating research claims. Experimental results are a core component of scientific work, often presented in varying formats such as tables or charts. Understanding how robust current multimodal large language models (multimodal LLMs) are at verifying scientific claims across different evidence formats remains an important and underexplored challenge. In this paper, we design and conduct a series of experiments to assess the ability of multimodal LLMs to verify scientific claims using both tables and charts as evidence. To enable this evaluation, we adapt two existing datasets of scientific papers by incorporating annotations and structures necessary for a multimodal claim verification task. Using this adapted dataset, we evaluate 12 multimodal LLMs and find that current models perform better with table-based evidence while struggling with chart-based evidence. We further conduct human evaluations and observe that humans maintain strong performance across both formats, unlike the models. Our analysis also reveals that smaller multimodal LLMs (under 8B) show weak correlation in performance between table-based and chart-based tasks, indicating limited cross-modal generalization. These findings highlight a critical gap in current models' multimodal reasoning capabilities. We suggest that future multimodal LLMs should place greater emphasis on improving chart understanding to better support scientific claim verification.
comment: Accepted at AAAI 2026
☆ ADI-20: Arabic Dialect Identification dataset and models
We present ADI-20, an extension of the previously published ADI-17 Arabic Dialect Identification (ADI) dataset. ADI-20 covers all Arabic-speaking countries' dialects. It comprises 3,556 hours from 19 Arabic dialects in addition to Modern Standard Arabic (MSA). We used this dataset to train and evaluate various state-of-the-art ADI systems. We explored fine-tuning pre-trained ECAPA-TDNN-based models, as well as Whisper encoder blocks coupled with an attention pooling layer and a classification dense layer. We investigated the effect of (i) training data size and (ii) the model's number of parameters on identification performance. Our results show a small decrease in F1 score while using only 30% of the original training data. We open-source our collected data and trained models to enable the reproduction of our work, as well as support further research in ADI.
comment: Published in Interspeech 2025
☆ Enhancing the Medical Context-Awareness Ability of LLMs via Multifaceted Self-Refinement Learning
Large language models (LLMs) have shown great promise in the medical domain, achieving strong performance on several benchmarks. However, they continue to underperform in real-world medical scenarios, which often demand stronger context-awareness, i.e., the ability to recognize missing or critical details (e.g., user identity, medical history, risk factors) and provide safe, helpful, and contextually appropriate responses. To address this issue, we propose Multifaceted Self-Refinement (MuSeR), a data-driven approach that enhances LLMs' context-awareness along three key facets (decision-making, communication, and safety) through self-evaluation and refinement. Specifically, we first design a attribute-conditioned query generator that simulates diverse real-world user contexts by varying attributes such as role, geographic region, intent, and degree of information ambiguity. An LLM then responds to these queries, self-evaluates its answers along three key facets, and refines its responses to better align with the requirements of each facet. Finally, the queries and refined responses are used for supervised fine-tuning to reinforce the model's context-awareness ability. Evaluation results on the latest HealthBench dataset demonstrate that our method significantly improves LLM performance across multiple aspects, with particularly notable gains in the context-awareness axis. Furthermore, by incorporating knowledge distillation with the proposed method, the performance of a smaller backbone LLM (e.g., Qwen3-32B) surpasses its teacher model, achieving a new SOTA across all open-source LLMs on HealthBench (63.8%) and its hard subset (43.1%). Code and dataset will be released at https://muser-llm.github.io.
comment: 20 pages, 13 figures
GraphIF: Enhancing Multi-Turn Instruction Following for Large Language Models with Relation Graph Prompt
Multi-turn instruction following is essential for building intelligent conversational systems that can consistently adhere to instructions across dialogue turns. However, existing approaches to enhancing multi-turn instruction following primarily rely on collecting or generating large-scale multi-turn dialogue datasets to fine-tune large language models (LLMs), which treat each response generation as an isolated task and fail to explicitly incorporate multi-turn instruction following into the optimization objectives. As a result, instruction-tuned LLMs often struggle with complex long-distance constraints. In multi-turn dialogues, relational constraints across turns can be naturally modeled as labeled directed edges, making graph structures particularly suitable for modeling multi-turn instruction following. Despite this potential, leveraging graph structures to enhance the multi-turn instruction following capabilities of LLMs remains unexplored. To bridge this gap, we propose GraphIF, a plug-and-play framework that models multi-turn dialogues as directed relation graphs and leverages graph prompts to enhance the instruction following capabilities of LLMs. GraphIF comprises three key components: (1) an agent-based relation extraction module that captures inter-turn semantic relations via action-triggered mechanisms to construct structured graphs; (2) a relation graph prompt generation module that converts structured graph information into natural language prompts; and (3) a response rewriting module that refines initial LLM outputs using the generated graph prompts. Extensive experiments on two long multi-turn dialogue datasets demonstrate that GraphIF can be seamlessly integrated into instruction-tuned LLMs and leads to significant improvements across all four multi-turn instruction-following evaluation metrics.
☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
☆ ScaleFormer: Span Representation Cumulation for Long-Context Transformer SIGIR
The quadratic complexity of standard self-attention severely limits the application of Transformer-based models to long-context tasks. While efficient Transformer variants exist, they often require architectural changes and costly pre-training from scratch. To circumvent this, we propose ScaleFormer(Span Representation Cumulation for Long-Context Transformer) - a simple and effective plug-and-play framework that adapts off-the-shelf pre-trained encoder-decoder models to process long sequences without requiring architectural modifications. Our approach segments long inputs into overlapping chunks and generates a compressed, context-aware representation for the decoder. The core of our method is a novel, parameter-free fusion mechanism that endows each chunk's representation with structural awareness of its position within the document. It achieves this by enriching each chunk's boundary representations with cumulative context vectors from all preceding and succeeding chunks. This strategy provides the model with a strong signal of the document's narrative flow, achieves linear complexity, and enables pre-trained models to reason effectively over long-form text. Experiments on long-document summarization show that our method is highly competitive with and often outperforms state-of-the-art approaches without requiring architectural modifications or external retrieval mechanisms.
comment: Accepted by SIGIR-AP'25
☆ PustakAI: Curriculum-Aligned and Interactive Textbooks Using Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like content. This has revolutionized various sectors such as healthcare, software development, and education. In education, LLMs offer potential for personalized and interactive learning experiences, especially in regions with limited teaching resources. However, adapting these models effectively to curriculum-specific content, such as the National Council of Educational Research and Training (NCERT) syllabus in India, presents unique challenges in terms of accuracy, alignment, and pedagogical relevance. In this paper, we present the framework "PustakAI"\footnote{Pustak means `book' in many Indian languages.} for the design and evaluation of a novel question-answering dataset "NCERT-QA" aligned with the NCERT curriculum for English and Science subjects of grades 6 to 8. We classify the curated QA pairs as Factoid, Inferential, and Others (evaluative and reasoning). We evaluate the dataset with various prompting techniques, such as meta-prompt, few-shot, and CoT-style prompting, using diverse evaluation metrics to understand which approach aligns more efficiently with the structure and demands of the curriculum. Along with the usability of the dataset, we analyze the strengths and limitations of current open-source LLMs (Gemma3:1b, Llama3.2:3b, and Nemotron-mini:4b) and high-end LLMs (Llama-4-Scout-17B and Deepseek-r1-70B) as AI-based learning tools in formal education systems.
☆ FinNuE: Exposing the Risks of Using BERTScore for Numerical Semantic Evaluation in Finance CIKM 2025
BERTScore has become a widely adopted metric for evaluating semantic similarity between natural language sentences. However, we identify a critical limitation: BERTScore exhibits low sensitivity to numerical variation, a significant weakness in finance where numerical precision directly affects meaning (e.g., distinguishing a 2% gain from a 20% loss). We introduce FinNuE, a diagnostic dataset constructed with controlled numerical perturbations across earnings calls, regulatory filings, social media, and news articles. Using FinNuE, demonstrate that BERTScore fails to distinguish semantically critical numerical differences, often assigning high similarity scores to financially divergent text pairs. Our findings reveal fundamental limitations of embedding-based metrics for finance and motivate numerically-aware evaluation frameworks for financial NLP.
comment: In CIKM 2025 Workshop on Advances in Financial AI: Innovations, Risk, and Responsibility in the Era of LLMs (Non-archival) (FinAI@CIKM 2025)
☆ Language Drift in Multilingual Retrieval-Augmented Generation: Characterization and Decoding-Time Mitigation AAAI'26
Multilingual Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to perform knowledge-intensive tasks in multilingual settings by leveraging retrieved documents as external evidence. However, when the retrieved evidence differs in language from the user query and in-context exemplars, the model often exhibits language drift by generating responses in an unintended language. This phenomenon is especially pronounced during reasoning-intensive decoding, such as Chain-of-Thought (CoT) generation, where intermediate steps introduce further language instability. In this paper, we systematically study output language drift in multilingual RAG across multiple datasets, languages, and LLM backbones. Our controlled experiments reveal that the drift results not from comprehension failure but from decoder-level collapse, where dominant token distributions and high-frequency English patterns dominate the intended generation language. We further observe that English serves as a semantic attractor under cross-lingual conditions, emerging as both the strongest interference source and the most frequent fallback language. To mitigate this, we propose Soft Constrained Decoding (SCD), a lightweight, training-free decoding strategy that gently steers generation toward the target language by penalizing non-target-language tokens. SCD is model-agnostic and can be applied to any generation algorithm without modifying the architecture or requiring additional data. Experiments across three multilingual datasets and multiple typologically diverse languages show that SCD consistently improves language alignment and task performance, providing an effective and generalizable solution in multilingual RAG.
comment: AAAI'26, Oral Paper
☆ Modeling Uncertainty Trends for Timely Retrieval in Dynamic RAG AAAI'26
Dynamic retrieval-augmented generation (RAG) allows large language models (LLMs) to fetch external knowledge on demand, offering greater adaptability than static RAG. A central challenge in this setting lies in determining the optimal timing for retrieval. Existing methods often trigger retrieval based on low token-level confidence, which may lead to delayed intervention after errors have already propagated. We introduce Entropy-Trend Constraint (ETC), a training-free method that determines optimal retrieval timing by modeling the dynamics of token-level uncertainty. Specifically, ETC utilizes first- and second-order differences of the entropy sequence to detect emerging uncertainty trends, enabling earlier and more precise retrieval. Experiments on six QA benchmarks with three LLM backbones demonstrate that ETC consistently outperforms strong baselines while reducing retrieval frequency. ETC is particularly effective in domain-specific scenarios, exhibiting robust generalization capabilities. Ablation studies and qualitative analyses further confirm that trend-aware uncertainty modeling yields more effective retrieval timing. The method is plug-and-play, model-agnostic, and readily integrable into existing decoding pipelines. Implementation code is included in the supplementary materials.
comment: AAAI'26, Oral Paper
☆ NumPert: Numerical Perturbations to Probe Language Models for Veracity Prediction AACL
Large language models show strong performance on knowledge intensive tasks such as fact-checking and question answering, yet they often struggle with numerical reasoning. We present a systematic evaluation of state-of-the-art models for veracity prediction on numerical claims and evidence pairs using controlled perturbations, including label-flipping probes, to test robustness. Our results indicate that even leading proprietary systems experience accuracy drops of up to 62\% under certain perturbations. No model proves to be robust across all conditions. We further find that increasing context length generally reduces accuracy, but when extended context is enriched with perturbed demonstrations, most models substantially recover. These findings highlight critical limitations in numerical fact-checking and suggest that robustness remains an open challenge for current language models.
comment: Accepted in ICJNLP/AACL SRW
☆ REAP: Enhancing RAG with Recursive Evaluation and Adaptive Planning for Multi-Hop Question Answering AAAI 2026
Retrieval-augmented generation (RAG) has been extensively employed to mitigate hallucinations in large language models (LLMs). However, existing methods for multi-hop reasoning tasks often lack global planning, increasing the risk of falling into local reasoning impasses. Insufficient exploitation of retrieved content and the neglect of latent clues fail to ensure the accuracy of reasoning outcomes. To overcome these limitations, we propose Recursive Evaluation and Adaptive Planning (REAP), whose core idea is to explicitly maintain structured sub-tasks and facts related to the current task through the Sub-task Planner (SP) and Fact Extractor (FE) modules. SP maintains a global perspective, guiding the overall reasoning direction and evaluating the task state based on the outcomes of FE, enabling dynamic optimization of the task-solving trajectory. FE performs fine-grained analysis over retrieved content to extract reliable answers and clues. These two modules incrementally enrich a logically coherent representation of global knowledge, enhancing the reliability and the traceability of the reasoning process. Furthermore, we propose a unified task paradigm design that enables effective multi-task fine-tuning, significantly enhancing SP's performance on complex, data-scarce tasks. We conduct extensive experiments on multiple public multi-hop datasets, and the results demonstrate that our method significantly outperforms existing RAG methods in both in-domain and out-of-domain settings, validating its effectiveness in complex multi-hop reasoning tasks.
comment: To be published in AAAI 2026
☆ Leveraging Large Language Models for Identifying Knowledge Components
Knowledge Components (KCs) are foundational to adaptive learning systems, but their manual identification by domain experts is a significant bottleneck. While Large Language Models (LLMs) offer a promising avenue for automating this process, prior research has been limited to small datasets and has been shown to produce superfluous, redundant KC labels. This study addresses these limitations by first scaling a "simulated textbook" LLM prompting strategy (using GPT-4o-mini) to a larger dataset of 646 multiple-choice questions. We found that this initial automated approach performed significantly worse than an expert-designed KC model (RMSE 0.4285 vs. 0.4206) and generated an excessive number of KCs (569 vs. 101). To address the issue of redundancy, we proposed and evaluated a novel method for merging semantically similar KC labels based on their cosine similarity. This merging strategy significantly improved the model's performance; a model using a cosine similarity threshold of 0.8 achieved the best result, reducing the KC count to 428 and improving the RMSE to 0.4259. This demonstrates that while scaled LLM generation alone is insufficient, combining it with a semantic merging technique offers a viable path toward automating and refining KC identification.
comment: Accepted as an extended abstract in The International Conference on Learning Analytics & Knowledge (LAK'25) Workshop: LLMs for Qualitative Analysis in Education
☆ Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers AAAI
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ MINDS: A Cross-cultural Dialogue Corpus for Social Norm Classification and Adherence Detection AACL 2025
Social norms are implicit, culturally grounded expectations that guide interpersonal communication. Unlike factual commonsense, norm reasoning is subjective, context-dependent, and varies across cultures, posing challenges for computational models. Prior works provide valuable normative annotations but mostly target isolated utterances or synthetic dialogues, limiting their ability to capture the fluid, multi-turn nature of real-world conversations. In this work, we present Norm-RAG, a retrieval-augmented, agentic framework for nuanced social norm inference in multi-turn dialogues. Norm-RAG models utterance-level attributes including communicative intent, speaker roles, interpersonal framing, and linguistic cues and grounds them in structured normative documentation retrieved via a novel Semantic Chunking approach. This enables interpretable and context-aware reasoning about norm adherence and violation across multilingual dialogues. We further introduce MINDS (Multilingual Interactions with Norm-Driven Speech), a bilingual dataset comprising 31 multi-turn Mandarin-English and Spanish-English conversations. Each turn is annotated for norm category and adherence status using multi-annotator consensus, reflecting cross-cultural and realistic norm expression. Our experiments show that Norm-RAG improves norm detection and generalization, demonstrates improved performance for culturally adaptive and socially intelligent dialogue systems.
comment: IJCNLP-AACL 2025
☆ HI-TransPA: Hearing Impairments Translation Personal Assistant
To provide a unified and flexible solution for daily communication among hearing-impaired individuals, we introduce the Omni-Model paradigm into assistive technology and present HI-TransPA, an instruction-driven audio-visual personal assistant. The model fuses indistinct speech with high-frame-rate lip dynamics, enabling both translation and dialogue within a single multimodal framework. To tackle the challenges of noisy and heterogeneous raw data and the limited adaptability of existing Omni-Models to hearing-impaired speech, we construct a comprehensive preprocessing and curation pipeline that detects facial landmarks, isolates and stabilizes the lip region, and quantitatively assesses multimodal sample quality. These quality scores guide a curriculum learning strategy that first trains on clean, high-confidence samples and progressively incorporates harder cases to strengthen model robustness. We further adopt a SigLIP encoder combined with a Unified 3D-Resampler to efficiently encode high-frame-rate lip motion. Experiments on our purpose-built HI-Dialogue dataset show that HI-TransPA achieves state-of-the-art performance in both literal accuracy and semantic fidelity. This work establishes a foundation for applying Omni-Models to assistive communication technology, providing an end-to-end modeling framework and essential processing tools for future research.
☆ Regional Attention-Enhanced Swin Transformer for Clinically Relevant Medical Image Captioning
Automated medical image captioning translates complex radiological images into diagnostic narratives that can support reporting workflows. We present a Swin-BART encoder-decoder system with a lightweight regional attention module that amplifies diagnostically salient regions before cross-attention. Trained and evaluated on ROCO, our model achieves state-of-the-art semantic fidelity while remaining compact and interpretable. We report results as mean$\pm$std over three seeds and include $95\%$ confidence intervals. Compared with baselines, our approach improves ROUGE (proposed 0.603, ResNet-CNN 0.356, BLIP2-OPT 0.255) and BERTScore (proposed 0.807, BLIP2-OPT 0.645, ResNet-CNN 0.623), with competitive BLEU, CIDEr, and METEOR. We further provide ablations (regional attention on/off and token-count sweep), per-modality analysis (CT/MRI/X-ray), paired significance tests, and qualitative heatmaps that visualize the regions driving each description. Decoding uses beam search (beam size $=4$), length penalty $=1.1$, $no\_repeat\_ngram\_size$ $=3$, and max length $=128$. The proposed design yields accurate, clinically phrased captions and transparent regional attributions, supporting safe research use with a human in the loop.
☆ EnchTable: Unified Safety Alignment Transfer in Fine-tuned Large Language Models
Many machine learning models are fine-tuned from large language models (LLMs) to achieve high performance in specialized domains like code generation, biomedical analysis, and mathematical problem solving. However, this fine-tuning process often introduces a critical vulnerability: the systematic degradation of safety alignment, undermining ethical guidelines and increasing the risk of harmful outputs. Addressing this challenge, we introduce EnchTable, a novel framework designed to transfer and maintain safety alignment in downstream LLMs without requiring extensive retraining. EnchTable leverages a Neural Tangent Kernel (NTK)-based safety vector distillation method to decouple safety constraints from task-specific reasoning, ensuring compatibility across diverse model architectures and sizes. Additionally, our interference-aware merging technique effectively balances safety and utility, minimizing performance compromises across various task domains. We implemented a fully functional prototype of EnchTable on three different task domains and three distinct LLM architectures, and evaluated its performance through extensive experiments on eleven diverse datasets, assessing both utility and model safety. Our evaluations include LLMs from different vendors, demonstrating EnchTable's generalization capability. Furthermore, EnchTable exhibits robust resistance to static and dynamic jailbreaking attacks, outperforming vendor-released safety models in mitigating adversarial prompts. Comparative analyses with six parameter modification methods and two inference-time alignment baselines reveal that EnchTable achieves a significantly lower unsafe rate, higher utility score, and universal applicability across different task domains. Additionally, we validate EnchTable can be seamlessly integrated into various deployment pipelines without significant overhead.
comment: Accepted by IEEE Symposium on Security and Privacy (S&P) 2026
☆ HierRouter: Coordinated Routing of Specialized Large Language Models via Reinforcement Learning
Large Language Models (LLMs) deliver state-of-the-art performance across many tasks but impose high computational and memory costs, limiting their deployment in resource-constrained or real-time settings. To address this, we propose HierRouter, a hierarchical routing approach that dynamically assembles inference pipelines from a pool of specialized, lightweight language models. Formulated as a finite-horizon Markov Decision Process (MDP), our approach trains a Proximal Policy Optimization (PPO)-based reinforcement learning agent to iteratively select which models to invoke at each stage of multi-hop inference. The agent conditions on the evolving context and accumulated cost to make context-aware routing decisions. Experiments with three open-source candidate LLMs across six benchmarks, including QA, code generation, and mathematical reasoning, show that HierRouter improves response quality by up to 2.4x compared to using individual models independently, while incurring only a minimal additional inference cost on average. These results highlight the promise of hierarchical routing for cost-efficient, high-performance LLM inference. All codes can be found here https://github.com/ Nikunj-Gupta/hierouter.
☆ In-Token Rationality Optimization: Towards Accurate and Concise LLM Reasoning via Self-Feedback AAAI 2026
Training Large Language Models (LLMs) for chain-of-thought reasoning presents a significant challenge: supervised fine-tuning on a single "golden" rationale hurts generalization as it penalizes equally valid alternatives, whereas reinforcement learning with verifiable rewards struggles with credit assignment and prohibitive computational cost. To tackle these limitations, we introduce InTRO (In-Token Rationality Optimization), a new framework that enables both token-level exploration and self-feedback for accurate and concise reasoning. Instead of directly optimizing an intractable objective over all valid reasoning paths, InTRO leverages correction factors-token-wise importance weights estimated by the information discrepancy between the generative policy and its answer-conditioned counterpart, for informative next token selection. This approach allows the model to perform token-level exploration and receive self-generated feedback within a single forward pass, ultimately encouraging accurate and concise rationales. Across six math-reasoning benchmarks, InTRO consistently outperforms other baselines, raising solution accuracy by up to 20% relative to the base model. Its chains of thought are also notably more concise, exhibiting reduced verbosity. Beyond this, InTRO enables cross-domain transfer, successfully adapting to out-of-domain reasoning tasks that extend beyond the realm of mathematics, demonstrating robust generalization.
comment: AAAI 2026 Oral
☆ TermGPT: Multi-Level Contrastive Fine-Tuning for Terminology Adaptation in Legal and Financial Domain
Large language models (LLMs) have demonstrated impressive performance in text generation tasks; however, their embedding spaces often suffer from the isotropy problem, resulting in poor discrimination of domain-specific terminology, particularly in legal and financial contexts. This weakness in terminology-level representation can severely hinder downstream tasks such as legal judgment prediction or financial risk analysis, where subtle semantic distinctions are critical. To address this problem, we propose TermGPT, a multi-level contrastive fine-tuning framework designed for terminology adaptation. We first construct a sentence graph to capture semantic and structural relations, and generate semantically consistent yet discriminative positive and negative samples based on contextual and topological cues. We then devise a multi-level contrastive learning approach at both the sentence and token levels, enhancing global contextual understanding and fine-grained terminology discrimination. To support robust evaluation, we construct the first financial terminology dataset derived from official regulatory documents. Experiments show that TermGPT outperforms existing baselines in term discrimination tasks within the finance and legal domains.
comment: 13 pages, 4 figures
☆ Answering Students' Questions on Course Forums Using Multiple Chain-of-Thought Reasoning and Finetuning RAG-Enabled LLM
The course forums are increasingly significant and play vital role in facilitating student discussions and answering their questions related to the course. It provides a platform for students to post their questions related to the content and admin issues related to the course. However, there are several challenges due to the increase in the number of students enrolled in the course. The primary challenge is that students' queries cannot be responded immediately and the instructors have to face lots of repetitive questions. To mitigate these issues, we propose a question answering system based on large language model with retrieval augmented generation (RAG) method. This work focuses on designing a question answering system with open source Large Language Model (LLM) and fine-tuning it on the relevant course dataset. To further improve the performance, we use a local knowledge base and applied RAG method to retrieve relevant documents relevant to students' queries, where the local knowledge base contains all the course content. To mitigate the hallucination of LLMs, We also integrate it with multi chain-of-thought reasoning to overcome the challenge of hallucination in LLMs. In this work, we experiment fine-tuned LLM with RAG method on the HotpotQA dataset. The experimental results demonstrate that the fine-tuned LLM with RAG method has a strong performance on question answering task.
comment: 8 pages
♻ ☆ AlignSurvey: A Comprehensive Benchmark for Human Preferences Alignment in Social Surveys
Understanding human attitudes, preferences, and behaviors through social surveys is essential for academic research and policymaking. Yet traditional surveys face persistent challenges, including fixed-question formats, high costs, limited adaptability, and difficulties ensuring cross-cultural equivalence. While recent studies explore large language models (LLMs) to simulate survey responses, most are limited to structured questions, overlook the entire survey process, and risks under-representing marginalized groups due to training data biases. We introduce AlignSurvey, the first benchmark that systematically replicates and evaluates the full social survey pipeline using LLMs. It defines four tasks aligned with key survey stages: social role modeling, semi-structured interview modeling, attitude stance modeling and survey response modeling. It also provides task-specific evaluation metrics to assess alignment fidelity, consistency, and fairness at both individual and group levels, with a focus on demographic diversity. To support AlignSurvey, we construct a multi-tiered dataset architecture: (i) the Social Foundation Corpus, a cross-national resource with 44K+ interview dialogues and 400K+ structured survey records; and (ii) a suite of Entire-Pipeline Survey Datasets, including the expert-annotated AlignSurvey-Expert (ASE) and two nationally representative surveys for cross-cultural evaluation. We release the SurveyLM family, obtained through two-stage fine-tuning of open-source LLMs, and offer reference models for evaluating domain-specific alignment. All datasets, models, and tools are available at github and huggingface to support transparent and socially responsible research.
♻ ☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning and safety training methods consistently fail to remove dangerous knowledge from language models. We identify the root cause - unlearning targets representations which are too general - and develop a highly selective technique that unlearns robustly while preserving general performance. Our method performs PCA on activations and module-output gradients to identify subspaces containing common representations, then collapses these subspaces before computing unlearning updates, a technique we term Collapse of Irrelevant Representations (CIR). This avoids unlearning general knowledge and targets only representations specific to the facts being unlearned. When unlearning bio- and cyber-hazardous facts from Llama-3.1-8B, we achieve over 30x greater reduction in post-attack accuracy than the best baseline (Circuit Breakers), while disrupting general performance 30x less, and using less than 3 GPU-seconds per fact. Thus, by disentangling harmful and benign capabilities at the level of representations, CIR enables robust and non-disruptive unlearning.
♻ ☆ Reducing the Scope of Language Models AAAI 2026
Large language models (LLMs) are deployed in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions grounded on documentation or acting as coding assistants, but they require general language understanding. In such deployments, LLMs should respond only to queries that align with the intended purpose and reject all other requests, such as generating poetry or answering questions about physics, a task we refer to as `scoping'. We conduct a comprehensive empirical evaluation of various methods, ranging from prompting, fine-tuning to preference learning and the recently proposed general alignment technique known as Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping LLMs.
comment: Appears in AAAI 2026 in the Main Technical Track
♻ ☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
♻ ☆ CCD-Bench: Probing Cultural Conflict in Large Language Model Decision-Making
Although large language models (LLMs) are increasingly implicated in interpersonal and societal decision-making, their ability to navigate explicit conflicts between legitimately different cultural value systems remains largely unexamined. Existing benchmarks predominantly target cultural knowledge (CulturalBench), value prediction (WorldValuesBench), or single-axis bias diagnostics (CDEval); none evaluate how LLMs adjudicate when multiple culturally grounded values directly clash. We address this gap with CCD-Bench, a benchmark that assesses LLM decision-making under cross-cultural value conflict. CCD-Bench comprises 2,182 open-ended dilemmas spanning seven domains, each paired with ten anonymized response options corresponding to the ten GLOBE cultural clusters. These dilemmas are presented using a stratified Latin square to mitigate ordering effects. We evaluate 17 non-reasoning LLMs. Models disproportionately prefer Nordic Europe (mean 20.2 percent) and Germanic Europe (12.4 percent), while options for Eastern Europe and the Middle East and North Africa are underrepresented (5.6 to 5.8 percent). Although 87.9 percent of rationales reference multiple GLOBE dimensions, this pluralism is superficial: models recombine Future Orientation and Performance Orientation, and rarely ground choices in Assertiveness or Gender Egalitarianism (both under 3 percent). Ordering effects are negligible (Cramer's V less than 0.10), and symmetrized KL divergence shows clustering by developer lineage rather than geography. These patterns suggest that current alignment pipelines promote a consensus-oriented worldview that underserves scenarios demanding power negotiation, rights-based reasoning, or gender-aware analysis. CCD-Bench shifts evaluation beyond isolated bias detection toward pluralistic decision making and highlights the need for alignment strategies that substantively engage diverse worldviews.
♻ ☆ Test Set Quality in Multilingual LLM Evaluation AACL 2025
Several multilingual benchmark datasets have been developed in a semi-automatic manner in the recent past to measure progress and understand the state-of-the-art in the multilingual capabilities of Large Language Models. However, there is not a lot of attention paid to the quality of the datasets themselves, despite the existence of previous work in identifying errors in even fully human-annotated test sets. In this paper, we manually analyze recent multilingual evaluation sets in two languages - French and Telugu, identifying several errors in the process. We compare the performance difference across several LLMs with the original and revised versions of the datasets and identify large differences (almost 10% in some cases) in both languages). Based on these results, we argue that test sets should not be considered immutable and should be revisited, checked for correctness, and potentially versioned. We end with some recommendations for both the dataset creators as well as consumers on addressing the dataset quality issues.
comment: to appear in the proceedings of Eval4NLP workshop at AACL 2025. Camera ready version
♻ ☆ Semantic, Orthographic, and Phonological Biases in Humans' Wordle Gameplay ACL
We show that human players' gameplay in the game of Wordle is influenced by the semantics, orthography, and phonology of the player's previous guesses. We compare actual human players' guesses with near-optimal guesses using NLP techniques. We study human language use in the constrained environment of Wordle, which is situated between natural language use and the artificial word association task
comment: Findings of the ACL: IJCNLP-AACL 2025 (accepted)
♻ ☆ Multi-Turn Interactions for Text-to-SQL with Large Language Models CIKM 2025
This study explores text-to-SQL parsing by leveraging the powerful reasoning capabilities of large language models (LLMs). Despite recent advancements, existing LLM-based methods are still inefficient and struggle to handle cases with wide tables effectively. Furthermore, current interaction-based approaches either lack a step-by-step, interpretable SQL generation process or fail to provide a universally applicable interaction design. To address these challenges, we introduce Interactive-T2S, a framework that generates SQL queries through direct interactions with databases. This framework includes four general tools that facilitate proactive and efficient information retrieval by the LLM. Additionally, we have developed detailed exemplars to demonstrate the step-wise reasoning processes within our framework. Our approach achieves advanced performance on the Spider and BIRD datasets as well as their variants. Notably, we obtain state-of-the-art results on the BIRD leaderboard under the setting without oracle knowledge, demonstrating the effectiveness of our method.
comment: This work has been accepted to CIKM 2025
♻ ☆ FlowMM: Cross-Modal Information Flow Guided KV Cache Merging for Efficient Multimodal Context Inference
Traditional KV cache eviction strategies, which discard less critical KV-pairs based on attention scores, often degrade generation quality, causing context loss or hallucinations. Recent efforts shift toward KV merging, merging eviction tokens with retention tokens based on similarity. However, in multimodal scenarios, distributional biases across modality tokens and attentional biases in cross-modal interactions limit its effectiveness. This work introduces FlowMM, an adaptive framework for cross-modal information flow-guided multimodal KV cache merging. FlowMM leverages cross-modal information flow to dynamically apply layer-specific merging strategies, capturing modality-specific patterns while preserving contextual integrity. Furthermore, we introduce a sensitivity-adaptive token matching mechanism that jointly evaluates token similarity and task-critical sensitivity, merging low-risk tokens while safeguarding high-sensitivity ones. Extensive experiments across diverse leading MLLMs show that FlowMM reduces KV cache memory by 80% to 95% and decoding latency by 1.3-1.8x, while maintaining competitive task performance.
♻ ☆ Investigating CoT Monitorability in Large Reasoning Models
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex tasks by engaging in extended reasoning before producing final answers. Beyond improving abilities, these detailed reasoning traces also create a new opportunity for AI safety, CoT Monitorability: monitoring potential model misbehavior, such as the use of shortcuts or sycophancy, through their chain-of-thought (CoT) during decision-making. However, two key fundamental challenges arise when attempting to build more effective monitors through CoT analysis. First, as prior research on CoT faithfulness has pointed out, models do not always truthfully represent their internal decision-making in the generated reasoning. Second, monitors themselves may be either overly sensitive or insufficiently sensitive, and can potentially be deceived by models' long, elaborate reasoning traces. In this paper, we present the first systematic investigation of the challenges and potential of CoT monitorability. Motivated by two fundamental challenges we mentioned before, we structure our study around two central perspectives: (i) verbalization: to what extent do LRMs faithfully verbalize the true factors guiding their decisions in the CoT, and (ii) monitor reliability: to what extent can misbehavior be reliably detected by a CoT-based monitor? Specifically, we provide empirical evidence and correlation analyses between verbalization quality, monitor reliability, and LLM performance across mathematical, scientific, and ethical domains. Then we further investigate how different CoT intervention methods, designed to improve reasoning efficiency or performance, will affect monitoring effectiveness. Finally, we propose MoME, a new paradigm in which LLMs monitor other models' misbehavior through their CoT and provide structured judgments along with supporting evidence.
♻ ☆ Guess or Recall? Training CNNs to Classify and Localize Memorization in LLMs AAAI-26
Verbatim memorization in Large Language Models (LLMs) is a multifaceted phenomenon involving distinct underlying mechanisms. We introduce a novel method to analyze the different forms of memorization described by the existing taxonomy. Specifically, we train Convolutional Neural Networks (CNNs) on the attention weights of the LLM and evaluate the alignment between this taxonomy and the attention weights involved in decoding. We find that the existing taxonomy performs poorly and fails to reflect distinct mechanisms within the attention blocks. We propose a new taxonomy that maximizes alignment with the attention weights, consisting of three categories: memorized samples that are guessed using language modeling abilities, memorized samples that are recalled due to high duplication in the training set, and non-memorized samples. Our results reveal that few-shot verbatim memorization does not correspond to a distinct attention mechanism. We also show that a significant proportion of extractable samples are in fact guessed by the model and should therefore be studied separately. Finally, we develop a custom visual interpretability technique to localize the regions of the attention weights involved in each form of memorization.
comment: This paper has been accepted for publication at AAAI-26
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ Chain-of-Lure: A Universal Jailbreak Attack Framework using Unconstrained Synthetic Narratives
In the era of rapid generative AI development, interactions with large language models (LLMs) pose increasing risks of misuse. Prior research has primarily focused on attacks using template-based prompts and optimization-oriented methods, while overlooking the fact that LLMs possess strong unconstrained deceptive capabilities to attack other LLMs. This paper introduces a novel jailbreaking method inspired by the Chain-of-Thought mechanism. The attacker employs mission transfer to conceal harmful user intent within dialogue and generates a progressive chain of lure questions without relying on predefined templates, enabling successful jailbreaks. To further improve the attack's strength, we incorporate a helper LLM model that performs randomized narrative optimization over multi-turn interactions, enhancing the attack performance while preserving alignment with the original intent. We also propose a toxicity-based framework using third-party LLMs to evaluate harmful content and its alignment with malicious intent. Extensive experiments demonstrate that our method consistently achieves high attack success rates and elevated toxicity scores across diverse types of LLMs under black-box API settings. These findings reveal the intrinsic potential of LLMs to perform unrestricted attacks in the absence of robust alignment constraints. Our approach offers data-driven insights to inform the design of future alignment mechanisms. Finally, we propose two concrete defense strategies to support the development of safer generative models.
comment: 23 pages, 3 main figures
♻ ☆ Beyond Perplexity: Let the Reader Select Retrieval Summaries via Spectrum Projection Score AAAI 2026
Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We move beyond perplexity and introduce Spectrum Projection Score (SPS), a lightweight and supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference-time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open-sourced LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation.
comment: Accepted by AAAI 2026 Oral. Project link: https://zhanghao-aaai2026-sps.github.io/AAAI2026-SPS/
♻ ☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
comment: This paper is being withdrawn because we have identified a significant error in the implementation of our self-supervised clustering approach. Specifically, our feature aggregation step inadvertently leaked temporal information across frames, which violates the core assumption of our training-free method. We sincerely apologize to the research community
♻ ☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency AAAI2026
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), transforming these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: using only 1,272 unlabeled data, GUI-RCPO achieves 3-6% accuracy improvements across various architectures on ScreenSpot benchmarks. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more data-efficient GUI agents.
comment: [Accepted by AAAI2026] Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ Unique Hard Attention: A Tale of Two Sides
Understanding the expressive power of transformers has recently attracted attention, as it offers insights into their abilities and limitations. Many studies analyze unique hard attention transformers, where attention selects a single position that maximizes the attention scores. When multiple positions achieve the maximum score, either the rightmost or the leftmost of those is chosen. In this paper, we highlight the importance of this seeming triviality. Recently, finite-precision transformers with both leftmost- and rightmost-hard attention were shown to be equivalent to Linear Temporal Logic (LTL). We show that this no longer holds with only leftmost-hard attention -- in that case, they correspond to a \emph{strictly weaker} fragment of LTL. Furthermore, we show that models with leftmost-hard attention are equivalent to \emph{soft} attention, suggesting they may better approximate real-world transformers than right-attention models. These findings refine the landscape of transformer expressivity and underscore the role of attention directionality.
♻ ☆ Rethinking Text-to-SQL: Dynamic Multi-turn SQL Interaction for Real-world Database Exploration
Recent advances in Text-to-SQL have achieved strong results in static, single-turn tasks, where models generate SQL queries from natural language questions. However, these systems fall short in real-world interactive scenarios, where user intents evolve and queries must be refined over multiple turns. In applications such as finance and business analytics, users iteratively adjust query constraints or dimensions based on intermediate results. To evaluate such dynamic capabilities, we introduce DySQL-Bench, a benchmark assessing model performance under evolving user interactions. Unlike previous manually curated datasets, DySQL-Bench is built through an automated two-stage pipeline of task synthesis and verification. Structured tree representations derived from raw database tables guide LLM-based task generation, followed by interaction-oriented filtering and expert validation. Human evaluation confirms 100% correctness of the synthesized data. We further propose a multi-turn evaluation framework simulating realistic interactions among an LLM-simulated user, the model under test, and an executable database. The model must adapt its reasoning and SQL generation as user intents change. DySQL-Bench covers 13 domains across BIRD and Spider 2 databases, totaling 1,072 tasks. Even GPT-4o attains only 58.34% overall accuracy and 23.81% on the Pass@5 metric, underscoring the benchmark's difficulty. All code and data are released at https://github.com/Aurora-slz/Real-World-SQL-Bench .
♻ ☆ Lessons in co-creation: the inconvenient truths of inclusive sign language technology development
In the era of AI-driven language technologies, the participation of deaf communities in sign language technology development, often framed as co-creation, is increasingly emphasized. We present a reflexive case study of two Horizon 2020 projects on sign language machine translation (2021- 2023), conducted with a EUD, a European-level deaf-led NGO. Using participant observation, internal documentation, and collaborative analysis among the authors, we interrogate co-creation as both a practice and a discourse. We offer five lessons for making co-creation consequential: 1) recognise and resource deaf partners invisible labor, 2) manage expectations via accessible science communication, 3) crip co-creation by dismantling structural ableism, 4) diversify participatory methods to address co-creation fatigue and intersectionality, and 5) redistribute power through deaf leadership. We contribute an empirically grounded account of how co-creation plays out in multi-partner AI projects, and actionable implications for design that extend to participatory AI with minoritized language and disability communities.
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
Large Language Models (LLMs) are trained on massive, unstructured corpora, making it unclear which social patterns and biases they absorb and later reproduce. Existing evaluations typically examine outputs or activations, but rarely connect them back to the pre-training data. We introduce a pipeline that couples LLMs with sparse autoencoders (SAEs) to trace how different themes are encoded during training. As a controlled case study, we trained a GPT-style model on 37 nineteenth-century novels by ten female authors, a corpus centered on themes such as gender, marriage, class, and morality. By applying SAEs across layers and probing with eleven social and moral categories, we mapped sparse features to human-interpretable concepts. The analysis revealed stable thematic backbones (most prominently around gender and kinship) and showed how associations expand and entangle with depth. More broadly, we argue that the LLM+SAEs pipeline offers a scalable framework for auditing how cultural assumptions from the data are embedded in model representations.
comment: Preprint. Draft version, subject to revision
♻ ☆ Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning NeurIPS 2025
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
comment: Accepted to NeurIPS 2025. 25 pages, 17 figures, 2 tables
♻ ☆ Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further aggravates the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across different model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. Larger models can predict the next token more accurately, achieving greater compression gains but at higher computational costs. Empirical evaluations on mainstream open-source models show that models of varying sizes within a series exhibit consistent information capacity. This metric enables a fair efficiency comparison across model series and accurate performance prediction within a model series. A distinctive feature of information capacity is that it incorporates tokenizer efficiency, which affects both input and output token counts but is often neglected in LLM evaluations. We assess the information capacity of 49 models on 5 heterogeneous datasets and observe consistent results on the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts architecture.
comment: Code: https://github.com/TeleAI-AI-Flow/InformationCapacity. Data: https://huggingface.co/datasets/TeleAI-AI-Flow/InformationCapacity
♻ ☆ Extending the SAREF4ENER Ontology with Flexibility Based on FlexOffers
A key element to support the increased amounts of renewable energy in the energy system is flexibility, i.e., the possibility of changing energy loads in time and amount. Many flexibility models have been designed; however, exact models fail to scale for long time horizons or many devices. Because of this, the FlexOffers model has been designed, to provide device-independent approximations of flexibility with good accuracy, and much better scaling for long time horizons and many devices. An important aspect of the real-life implementation of energy flexibility is enabling flexible data exchange with many smart energy appliances and market systems, e.g., in smart buildings. For this, ontologies standardizing data formats are required. However, the current industry standard ontology for integrating smart devices for energy purposes, SAREF for Energy Flexibility (SAREF4ENER), only has limited support for flexibility and thus cannot support important use cases. In this paper, we propose an extension of SAREF4ENER that integrates full support for the complete FlexOffer model, including advanced use cases, while maintaining backward compatibility. This novel ontology module can accurately describe flexibility for advanced devices such as electric vehicles, batteries, and heat pumps. It can also capture the inherent uncertainty associated with many flexible load types.
comment: 13 pages, 5 figures, 5 tables
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ Aligning MLLM Benchmark With Human Preferences via Structural Equation Modeling
Evaluating multimodal large language models (MLLMs) is fundamentally challenged by the absence of structured, interpretable, and theoretically grounded benchmarks; current heuristically-grouped tasks have vague cognitive targets, overlapping abilities, redundant indicators, and weak diagnostic power. We therefore propose a structural-equation-modeling-aligned framework that quantifies internal validity, dimensional separability, and component contributions, and introduce a Piaget-inspired capability hierarchy that stratifies MLLM abilities into Perception, Memory, and Reasoning. Reorganizing existing tasks under this theory, we build the GOLD benchmark, whose experiments show superior interpretability, lower indicator redundancy, and clearer cognitive consistency than prior benchmarks.
comment: 12 pages, 9 figures
♻ ☆ Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and Artificial Intelligence (AI)-generated language. This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as consonants, word stress, nouns, verbs, pronouns, direct objects, prepositional modifiers, and use of difficult words among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the capacity of AI for producing more human-like text.
♻ ☆ Language Specific Knowledge: Do Models Know Better in X than in English?
Often, multilingual language models are trained with the objective to map semantically similar content (in different languages) in the same latent space. In this paper, we show a nuance in this training objective, and find that by changing the language of the input query, we can improve the question answering ability of language models. Our contributions are two-fold. First, we introduce the term Language Specific Knowledge (LSK) to denote queries that are best answered in an "expert language" for a given LLM, thereby enhancing its question-answering ability. We introduce the problem of language selection -- for some queries, language models can perform better when queried in languages other than English, sometimes even better in low-resource languages -- and the goal is to select the optimal language for the query. Second, we introduce simple to strong baselines to test this problem. Additionally, as a first-pass solution to this novel problem, we design LSKExtractor to benchmark the language-specific knowledge present in a language model and then exploit it during inference. To test our framework, we employ three datasets that contain knowledge about both cultural and social behavioral norms. Overall, LSKExtractor achieves up to 10% relative improvement across datasets, and is competitive against strong baselines, while being feasible in real-world settings. Broadly, our research contributes to the open-source development (https://github.com/agarwalishika/LSKExtractor/tree/main) of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed.
♻ ☆ FHIR-AgentBench: Benchmarking LLM Agents for Realistic Interoperable EHR Question Answering ML4H 2025
The recent shift toward the Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR) standard opens a new frontier for clinical AI, demanding LLM agents to navigate complex, resource-based data models instead of conventional structured health data. However, existing benchmarks have lagged behind this transition, lacking the realism needed to evaluate recent LLMs on interoperable clinical data. To bridge this gap, we introduce FHIR-AgentBench, a benchmark that grounds 2,931 real-world clinical questions in the HL7 FHIR standard. Using this benchmark, we systematically evaluate agentic frameworks, comparing different data retrieval strategies (direct FHIR API calls vs. specialized tools), interaction patterns (single-turn vs. multi-turn), and reasoning strategies (natural language vs. code generation). Our experiments highlight the practical challenges of retrieving data from intricate FHIR resources and the difficulty of reasoning over them, both of which critically affect question answering performance. We publicly release the FHIR-AgentBench dataset and evaluation suite (https://github.com/glee4810/FHIR-AgentBench) to promote reproducible research and the development of robust, reliable LLM agents for clinical applications.
comment: ML4H 2025 Proceedings
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
Sarcasm in social media, frequently conveyed through the interplay of text and images, presents significant challenges for sentiment analysis and intention mining. Existing multi-modal sarcasm detection approaches have been shown to excessively depend on superficial cues within the textual modality, exhibiting limited capability to accurately discern sarcasm through subtle text-image interactions. To address this limitation, a novel framework, InterCLIP-MEP, is proposed. This framework integrates Interactive CLIP (InterCLIP), which employs an efficient training strategy to derive enriched cross-modal representations by embedding inter-modal information directly into each encoder, while using approximately 20.6$\times$ fewer trainable parameters compared with existing state-of-the-art (SOTA) methods. Furthermore, a Memory-Enhanced Predictor (MEP) is introduced, featuring a dynamic dual-channel memory mechanism that captures and retains valuable knowledge from test samples during inference, serving as a non-parametric classifier to enhance sarcasm detection robustness. Extensive experiments on MMSD, MMSD2.0, and DocMSU show that InterCLIP-MEP achieves SOTA performance, specifically improving accuracy by 1.08% and F1 score by 1.51% on MMSD2.0. Under distributional shift evaluation, it attains 73.96% accuracy, exceeding its memory-free variant by nearly 10% and the previous SOTA by over 15%, demonstrating superior stability and adaptability. The implementation of InterCLIP-MEP is publicly available at https://github.com/CoderChen01/InterCLIP-MEP.
comment: ACM TOMM; Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP
♻ ☆ R1-Compress: Long Chain-of-Thought Compression via Chunk Compression and Search NeurIPS
Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by enabling step-by-step problem-solving, yet its extension to Long-CoT introduces substantial computational overhead due to increased token length. Existing compression approaches -- instance-level and token-level -- either sacrifice essential local reasoning signals like reflection or yield incoherent outputs. To address these limitations, we propose R1-Compress, a two-stage chunk-level compression framework that preserves both local information and coherence. Our method segments Long-CoT into manageable chunks, applies LLM-driven inner-chunk compression, and employs an inter-chunk search mechanism to select the short and coherent sequence. Experiments on Qwen2.5-Instruct models across MATH500, AIME24, and GPQA-Diamond demonstrate that R1-Compress significantly reduces token usage while maintaining comparable reasoning accuracy. On MATH500, R1-Compress achieves an accuracy of 92.4%, with only a 0.6% drop compared to the Long-CoT baseline, while reducing token usage by about 20%. Source code will be available at https://github.com/w-yibo/R1-Compress
comment: Accepted by NeurIPS FoRLM Workshop
♻ ☆ Retrieval-Augmented Generation in Medicine: A Scoping Review of Technical Implementations, Clinical Applications, and Ethical Considerations
The rapid growth of medical knowledge and increasing complexity of clinical practice pose challenges. In this context, large language models (LLMs) have demonstrated value; however, inherent limitations remain. Retrieval-augmented generation (RAG) technologies show potential to enhance their clinical applicability. This study reviewed RAG applications in medicine. We found that research primarily relied on publicly available data, with limited application in private data. For retrieval, approaches commonly relied on English-centric embedding models, while LLMs were mostly generic, with limited use of medical-specific LLMs. For evaluation, automated metrics evaluated generation quality and task performance, whereas human evaluation focused on accuracy, completeness, relevance, and fluency, with insufficient attention to bias and safety. RAG applications were concentrated on question answering, report generation, text summarization, and information extraction. Overall, medical RAG remains at an early stage, requiring advances in clinical validation, cross-linguistic adaptation, and support for low-resource settings to enable trustworthy and responsible global use.
♻ ☆ CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning EMNLP 2025
Research on LLM technologies is rapidly emerging, with most of them employ a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. We validate CoAT's effectiveness across a variety of generative and reasoning tasks. Quantitative experiments show that CoAT achieves over 10% performance improvement on open-source multi-hop reasoning datasets (HotpotQA, MuSiQue) and more than 15% gain on our proprietary CRB dataset.
comment: 18 pages, 10 figures, Accepted by EMNLP 2025 (Findings)
♻ ☆ Thinking Forward and Backward: Multi-Objective Reinforcement Learning for Retrieval-Augmented Reasoning
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit guidance for intermediate steps. This often leads to reward hacking and degraded response quality. We propose Bi-RAR, a novel retrieval-augmented reasoning framework that evaluates each intermediate step jointly in both forward and backward directions. To assess the information completeness of each step, we introduce a bidirectional information distance grounded in Kolmogorov complexity, approximated via language model generation probabilities. This quantification measures both how far the current reasoning is from the answer and how well it addresses the question. To optimize reasoning under these bidirectional signals, we adopt a multi-objective reinforcement learning framework with a cascading reward structure that emphasizes early trajectory alignment. Empirical results on seven question answering benchmarks demonstrate that Bi-RAR surpasses previous methods and enables efficient interaction and reasoning with the search engine during training and inference.
♻ ☆ Enhanced Suicidal Ideation Detection from Social Media Using a CNN-BiLSTM Hybrid Model
Suicidal ideation detection is crucial for preventing suicides, a leading cause of death worldwide. Many individuals express suicidal thoughts on social media, offering a vital opportunity for early detection through advanced machine learning techniques. The identification of suicidal ideation in social media text is improved by utilising a hybrid framework that integrates Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM), enhanced with an attention mechanism. To enhance the interpretability of the model's predictions, Explainable AI (XAI) methods are applied, with a particular focus on SHapley Additive exPlanations (SHAP), are incorporated. At first, the model managed to reach an accuracy of 92.81%. By applying fine-tuning and early stopping techniques, the accuracy improved to 94.29%. The SHAP analysis revealed key features influencing the model's predictions, such as terms related to mental health struggles. This level of transparency boosts the model's credibility while helping mental health professionals understand and trust the predictions. This work highlights the potential for improving the accuracy and interpretability of detecting suicidal tendencies, making a valuable contribution to the progress of mental health monitoring systems. It emphasizes the significance of blending powerful machine learning methods with explainability to develop reliable and impactful mental health solutions.
♻ ☆ A Critical Review of the Need for Knowledge-Centric Evaluation of Quranic Recitation
The art and science of Quranic recitation (Tajweed), a discipline governed by meticulous phonetic, rhythmic, and theological principles, confronts substantial educational challenges in today's digital age. Although modern technology offers unparalleled opportunities for learning, existing automated systems for evaluating recitation have struggled to gain broad acceptance or demonstrate educational effectiveness. This literature review examines this crucial disparity, offering a thorough analysis of scholarly research, digital platforms, and commercial tools developed over the past twenty years. Our analysis uncovers a fundamental flaw in current approaches that adapt Automatic Speech Recognition (ASR) systems, which emphasize word identification over qualitative acoustic evaluation. These systems suffer from limitations such as reliance on biased datasets, demographic disparities, and an inability to deliver meaningful feedback for improvement. Challenging these data-centric methodologies, we advocate for a paradigm shift toward a knowledge-based computational framework. By leveraging the unchanging nature of the Quranic text and the well-defined rules of Tajweed, we propose that an effective evaluation system should be built upon rule-based acoustic modeling centered on canonical pronunciation principles and articulation points (Makhraj), rather than depending on statistical patterns derived from flawed or biased data. The review concludes that the future of automated Quranic recitation assessment lies in hybrid systems that combine linguistic expertise with advanced audio processing. Such an approach paves the way for developing reliable, fair, and pedagogically effective tools that can authentically assist learners across the globe.
comment: 32 pages
♻ ☆ Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs NeurIPS 2025
Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshka Pilot (M-Pilot), a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with M-Pilot serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. M-Pilot is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on diverse tasks demonstrate that our method effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks. Our code is publicly available at: https://github.com/lichangh20/Matryoshka.
comment: Accepted by NeurIPS 2025
♻ ☆ Backdoor Attacks Against Speech Language Models
Large Language Models (LLMs) and their multimodal extensions are becoming increasingly popular. One common approach to enable multimodality is to cascade domain-specific encoders with an LLM, making the resulting model inherit vulnerabilities from all of its components. In this work, we present the first systematic study of audio backdoor attacks against speech language models. We demonstrate its effectiveness across four speech encoders and three datasets, covering four tasks: automatic speech recognition (ASR), speech emotion recognition, and gender and age prediction. The attack consistently achieves high success rates, ranging from 90.76% to 99.41%. To better understand how backdoors propagate, we conduct a component-wise analysis to identify the most vulnerable stages of the pipeline. Finally, we propose a fine-tuning-based defense that mitigates the threat of poisoned pretrained encoders.
♻ ☆ Mitigating Multimodal Hallucinations via Gradient-based Self-Reflection
Multimodal large language models achieve strong performance across diverse tasks but remain prone to hallucinations, where outputs are not grounded in visual inputs. This issue can be attributed to two main biases: text-visual bias, the overreliance on prompts and prior outputs, and co-occurrence bias, spurious correlations between frequently paired objects. We propose Gradient-based Influence-Aware Constrained Decoding (GACD), an inference-based method, that addresses both biases without auxiliary models, and is readily applicable to existing models without finetuning. The core of our approach is bias estimation, which uses first-order Taylor gradients to understand the contribution of individual tokens-visual features and text tokens-to the current output. Based on this analysis, GACD mitigates hallucinations through two components: (1) suppressing spurious visual features correlated with the output objects, and (2) rebalancing cross-modal contributions by strengthening visual features relative to text. Experiments across multiple benchmarks demonstrate that GACD effectively reduces hallucinations and improves the visual grounding of MLLM outputs.
♻ ☆ The Markovian Thinker: Architecture-Agnostic Linear Scaling of Reasoning
Reinforcement learning (RL) has recently become a strong recipe for training reasoning LLMs that produce long chains of thought (LongCoT). Yet the standard RL "thinking environment", where the state is the prompt plus all prior reasoning tokens, makes the state unbounded and forces attention-based policies to pay quadratic compute as thoughts lengthen. We revisit the environment itself. We propose Markovian Thinking, a paradigm in which the policy advances reasoning while conditioning on a constant-size state, decoupling thinking length from context size. As an immediate consequence this yields linear compute with constant memory. We instantiate this idea with Delethink, an RL environment that structures reasoning into fixed-size chunks. Within each chunk, the model thinks as usual; at the boundary, the environment resets the context and reinitializes the prompt with a short carryover. Through RL, the policy learns to write a textual state near the end of each chunk sufficient for seamless continuation of reasoning after reset. Trained in this environment, an R1-Distill 1.5B model reasons in 8K-token chunks yet thinks up to 24K tokens, matching or surpassing LongCoT-RL trained with a 24K budget. With test-time scaling, Delethink continues to improve where LongCoT plateaus. The effect of linear compute is substantial: we empirically estimate at 96K average thinking length LongCoT-RL costs 27 H100-months vs. 7 for Delethink. Analysis at RL initialization shows off-the-shelf reasoning models (1.5B-120B) often sample Markovian traces zero-shot across diverse benchmarks, providing positive samples that make RL effective at scale. Our results show that redesigning the thinking environment is a powerful lever: it enables very long reasoning without quadratic overhead and opens a path toward efficient, scalable reasoning LLMs.
♻ ☆ PAN: A World Model for General, Interactable, and Long-Horizon World Simulation
A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
♻ ☆ Scaling Textual Gradients via Sampling-Based Momentum
LLM-based prompt optimization, that uses LLM-provided "textual gradients" (feedback) to refine prompts, has emerged an effective method for automatic prompt engineering. However, its scalability and stability are unclear when using more data in training. We systematically investigate the potential and challenges of scaling training data in textual gradient descent. We show that naively scaling training examples is infeasible due to both explicit context-length limits and an implicit context wall, where long-context degradation yields diminishing returns. Inspired by prior wisdom in stochastic gradient descent, we propose Textual Stochastic Gradient Descent with Momentum (TSGD-M), which reweights updates through momentum sampling, using bootstrapped minibatch validation accuracy as importance weights over historical prompts. We introduce Gumbel-Top-$k$ sampling for prompt generation, balancing exploration--exploitation and improving sampling efficiency while maintaining a low-variance running mean estimator. TSGD-M integrates seamlessly into existing prompt optimization frameworks, including TextGrad, DSPy-COPRO, and AdalFlow, and achieves consistent gains across 5 benchmarks. Our findings highlight the importance of incorporating probabilistic exploration into textual-gradient-based optimization, paving the way for more stable and scalable prompt optimization.
♻ ☆ Neural Correlates of Language Models Are Specific to Human Language NeurIPS 2025
Previous work has shown correlations between the hidden states of large language models and fMRI brain responses, on language tasks. These correlations have been taken as evidence of the representational similarity of these models and brain states. This study tests whether these previous results are robust to several possible concerns. Specifically this study shows: (i) that the previous results are still found after dimensionality reduction, and thus are not attributable to the curse of dimensionality; (ii) that previous results are confirmed when using new measures of similarity; (iii) that correlations between brain representations and those from models are specific to models trained on human language; and (iv) that the results are dependent on the presence of positional encoding in the models. These results confirm and strengthen the results of previous research and contribute to the debate on the biological plausibility and interpretability of state-of-the-art large language models.
comment: To be presented at NeurIPS 2025 Workshops
♻ ☆ From Capabilities to Performance: Evaluating Key Functional Properties of LLM Architectures in Penetration Testing
Large language models (LLMs) are increasingly used to automate or augment penetration testing, but their effectiveness and reliability across attack phases remain unclear. We present a comprehensive evaluation of multiple LLM-based agents, from single-agent to modular designs, across realistic penetration testing scenarios, measuring empirical performance and recurring failure patterns. We also isolate the impact of five core functional capabilities via targeted augmentations: Global Context Memory (GCM), Inter-Agent Messaging (IAM), Context-Conditioned Invocation (CCI), Adaptive Planning (AP), and Real-Time Monitoring (RTM). These interventions support, respectively: (i) context coherence and retention, (ii) inter-component coordination and state management, (iii) tool use accuracy and selective execution, (iv) multi-step strategic planning, error detection, and recovery, and (v) real-time dynamic responsiveness. Our results show that while some architectures natively exhibit subsets of these properties, targeted augmentations substantially improve modular agent performance, especially in complex, multi-step, and real-time penetration testing tasks.
Computer Vision and Pattern Recognition 150
☆ Enhancing the Outcome Reward-based RL Training of MLLMs with Self-Consistency Sampling NeurIPS 2025
Outcome-reward reinforcement learning (RL) is a common and increasingly significant way to refine the step-by-step reasoning of multimodal large language models (MLLMs). In the multiple-choice setting - a dominant format for multimodal reasoning benchmarks - the paradigm faces a significant yet often overlooked obstacle: unfaithful trajectories that guess the correct option after a faulty chain of thought receive the same reward as genuine reasoning, which is a flaw that cannot be ignored. We propose Self-Consistency Sampling (SCS) to correct this issue. For each question, SCS (i) introduces small visual perturbations and (ii) performs repeated truncation and resampling of an initial trajectory; agreement among the resulting trajectories yields a differentiable consistency score that down-weights unreliable traces during policy updates. Based on Qwen2.5-VL-7B-Instruct, plugging SCS into RLOO, GRPO, and REINFORCE++ series improves accuracy by up to 7.7 percentage points on six multimodal benchmarks with negligible extra computation. SCS also yields notable gains on both Qwen2.5-VL-3B-Instruct and InternVL3-8B, offering a simple, general remedy for outcome-reward RL in MLLMs.
comment: Accepted to NeurIPS 2025 (The Thirty-Ninth Annual Conference on Neural Information Processing Systems)
☆ Depth Anything 3: Recovering the Visual Space from Any Views
We present Depth Anything 3 (DA3), a model that predicts spatially consistent geometry from an arbitrary number of visual inputs, with or without known camera poses. In pursuit of minimal modeling, DA3 yields two key insights: a single plain transformer (e.g., vanilla DINO encoder) is sufficient as a backbone without architectural specialization, and a singular depth-ray prediction target obviates the need for complex multi-task learning. Through our teacher-student training paradigm, the model achieves a level of detail and generalization on par with Depth Anything 2 (DA2). We establish a new visual geometry benchmark covering camera pose estimation, any-view geometry and visual rendering. On this benchmark, DA3 sets a new state-of-the-art across all tasks, surpassing prior SOTA VGGT by an average of 44.3% in camera pose accuracy and 25.1% in geometric accuracy. Moreover, it outperforms DA2 in monocular depth estimation. All models are trained exclusively on public academic datasets.
comment: https://depth-anything-3.github.io/
☆ One Small Step in Latent, One Giant Leap for Pixels: Fast Latent Upscale Adapter for Your Diffusion Models
Diffusion models struggle to scale beyond their training resolutions, as direct high-resolution sampling is slow and costly, while post-hoc image super-resolution (ISR) introduces artifacts and additional latency by operating after decoding. We present the Latent Upscaler Adapter (LUA), a lightweight module that performs super-resolution directly on the generator's latent code before the final VAE decoding step. LUA integrates as a drop-in component, requiring no modifications to the base model or additional diffusion stages, and enables high-resolution synthesis through a single feed-forward pass in latent space. A shared Swin-style backbone with scale-specific pixel-shuffle heads supports 2x and 4x factors and remains compatible with image-space SR baselines, achieving comparable perceptual quality with nearly 3x lower decoding and upscaling time (adding only +0.42 s for 1024 px generation from 512 px, compared to 1.87 s for pixel-space SR using the same SwinIR architecture). Furthermore, LUA shows strong generalization across the latent spaces of different VAEs, making it easy to deploy without retraining from scratch for each new decoder. Extensive experiments demonstrate that LUA closely matches the fidelity of native high-resolution generation while offering a practical and efficient path to scalable, high-fidelity image synthesis in modern diffusion pipelines.
☆ Querying Labeled Time Series Data with Scenario Programs
Simulation-based testing has become a crucial complement to road testing for ensuring the safety of cyber physical systems (CPS). As a result, significant research efforts have been directed toward identifying failure scenarios within simulation environments. However, a critical question remains. Are the AV failure scenarios discovered in simulation reproducible on actual systems in the real world? The sim-to-real gap caused by differences between simulated and real sensor data means that failure scenarios identified in simulation might either be artifacts of synthetic sensor data or actual issues that also occur with real sensor data. To address this, an effective approach to validating simulated failure scenarios is to locate occurrences of these scenarios within real-world datasets and verify whether the failure persists on the datasets. To this end, we introduce a formal definition of how labeled time series sensor data can match an abstract scenario, represented as a scenario program using the Scenic probabilistic programming language. We present a querying algorithm that, given a scenario program and a labeled dataset, identifies the subset of data that matches the specified scenario. Our experiment shows that our algorithm is more accurate and orders of magnitude faster in querying scenarios than the state-of-the-art commercial vision large language models, and can scale with the duration of queried time series data.
☆ Towards Blind and Low-Vision Accessibility of Lightweight VLMs and Custom LLM-Evals
Large Vision-Language Models (VLMs) excel at understanding and generating video descriptions but their high memory, computation, and deployment demands hinder practical use particularly for blind and low-vision (BLV) users who depend on detailed, context-aware descriptions. To study the effect of model size on accessibility-focused description quality, we evaluate SmolVLM2 variants with 500M and 2.2B parameters across two diverse datasets: AVCaps (outdoor), and Charades (indoor). In this work, we introduce two novel evaluation frameworks specifically designed for BLV accessibility assessment: the Multi-Context BLV Framework evaluating spatial orientation, social interaction, action events, and ambience contexts; and the Navigational Assistance Framework focusing on mobility-critical information. Additionally, we conduct a systematic evaluation of four different prompt design strategies and deploy both models on a smartphone, evaluating FP32 and INT8 precision variants to assess real-world performance constraints on resource-limited mobile devices.
comment: 8 pages
☆ Multitask GLocal OBIA-Mamba for Sentinel-2 Landcover Mapping
Although Sentinel-2 based land use and land cover (LULC) classification is critical for various environmental monitoring applications, it is a very difficult task due to some key data challenges (e.g., spatial heterogeneity, context information, signature ambiguity). This paper presents a novel Multitask Glocal OBIA-Mamba (MSOM) for enhanced Sentinel-2 classification with the following contributions. First, an object-based image analysis (OBIA) Mamba model (OBIA-Mamba) is designed to reduce redundant computation without compromising fine-grained details by using superpixels as Mamba tokens. Second, a global-local (GLocal) dual-branch convolutional neural network (CNN)-mamba architecture is designed to jointly model local spatial detail and global contextual information. Third, a multitask optimization framework is designed to employ dual loss functions to balance local precision with global consistency. The proposed approach is tested on Sentinel-2 imagery in Alberta, Canada, in comparison with several advanced classification approaches, and the results demonstrate that the proposed approach achieves higher classification accuracy and finer details that the other state-of-the-art methods.
☆ From 2D to 3D Without Extra Baggage: Data-Efficient Cancer Detection in Digital Breast Tomosynthesis
Digital Breast Tomosynthesis (DBT) enhances finding visibility for breast cancer detection by providing volumetric information that reduces the impact of overlapping tissues; however, limited annotated data has constrained the development of deep learning models for DBT. To address data scarcity, existing methods attempt to reuse 2D full-field digital mammography (FFDM) models by either flattening DBT volumes or processing slices individually, thus discarding volumetric information. Alternatively, 3D reasoning approaches introduce complex architectures that require more DBT training data. Tackling these drawbacks, we propose M&M-3D, an architecture that enables learnable 3D reasoning while remaining parameter-free relative to its FFDM counterpart, M&M. M&M-3D constructs malignancy-guided 3D features, and 3D reasoning is learned through repeatedly mixing these 3D features with slice-level information. This is achieved by modifying operations in M&M without adding parameters, thus enabling direct weight transfer from FFDM. Extensive experiments show that M&M-3D surpasses 2D projection and 3D slice-based methods by 11-54% for localization and 3-10% for classification. Additionally, M&M-3D outperforms complex 3D reasoning variants by 20-47% for localization and 2-10% for classification in the low-data regime, while matching their performance in high-data regime. On the popular BCS-DBT benchmark, M&M-3D outperforms previous top baseline by 4% for classification and 10% for localization.
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ OmniVGGT: Omni-Modality Driven Visual Geometry Grounded
General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.
comment: Project Page: https://livioni.github.io/OmniVGGT-offcial/
☆ A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
comment: 16 pages, 13 figures, 5 tables
☆ Benchmarking Diversity in Image Generation via Attribute-Conditional Human Evaluation
Despite advances in generation quality, current text-to-image (T2I) models often lack diversity, generating homogeneous outputs. This work introduces a framework to address the need for robust diversity evaluation in T2I models. Our framework systematically assesses diversity by evaluating individual concepts and their relevant factors of variation. Key contributions include: (1) a novel human evaluation template for nuanced diversity assessment; (2) a curated prompt set covering diverse concepts with their identified factors of variation (e.g. prompt: An image of an apple, factor of variation: color); and (3) a methodology for comparing models in terms of human annotations via binomial tests. Furthermore, we rigorously compare various image embeddings for diversity measurement. Notably, our principled approach enables ranking of T2I models by diversity, identifying categories where they particularly struggle. This research offers a robust methodology and insights, paving the way for improvements in T2I model diversity and metric development.
☆ Dynamic Avatar-Scene Rendering from Human-centric Context
Reconstructing dynamic humans interacting with real-world environments from monocular videos is an important and challenging task. Despite considerable progress in 4D neural rendering, existing approaches either model dynamic scenes holistically or model scenes and backgrounds separately aim to introduce parametric human priors. However, these approaches either neglect distinct motion characteristics of various components in scene especially human, leading to incomplete reconstructions, or ignore the information exchange between the separately modeled components, resulting in spatial inconsistencies and visual artifacts at human-scene boundaries. To address this, we propose {\bf Separate-then-Map} (StM) strategy that introduces a dedicated information mapping mechanism to bridge separately defined and optimized models. Our method employs a shared transformation function for each Gaussian attribute to unify separately modeled components, enhancing computational efficiency by avoiding exhaustive pairwise interactions while ensuring spatial and visual coherence between humans and their surroundings. Extensive experiments on monocular video datasets demonstrate that StM significantly outperforms existing state-of-the-art methods in both visual quality and rendering accuracy, particularly at challenging human-scene interaction boundaries.
comment: 13 pages, 8 figures
☆ SemanticVLA: Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation AAAI 2026
Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA
comment: Accepted to AAAI 2026 (Oral), Project Page: https://github.com/JiuTian-VL/SemanticVLA
☆ Learnable Total Variation with Lambda Mapping for Low-Dose CT Denoising
Although Total Variation (TV) performs well in noise reduction and edge preservation on images, its dependence on the lambda parameter limits its efficiency and makes it difficult to use effectively. In this study, we present a Learnable Total Variation (LTV) framework that couples an unrolled TV solver with a data-driven Lambda Mapping Network (LambdaNet) predicting a per-pixel regularization map. The pipeline is trained end-to-end so that reconstruction and regularization are optimized jointly, yielding spatially adaptive smoothing: strong in homogeneous regions, relaxed near anatomical boundaries. Experiments on the DeepLesion dataset, using a realistic noise model adapted from the LoDoPaB-CT methodology, show consistent gains over classical TV and FBP+U-Net: +2.9 dB PSNR and +6% SSIM on average. LTV provides an interpretable alternative to black-box CNNs and a basis for 3D and data-consistency-driven reconstruction. Our codes are available at: https://github.com/itu-biai/deep_tv_for_ldct
☆ SPOT: Sparsification with Attention Dynamics via Token Relevance in Vision Transformers SP
While Vision Transformers (ViT) have demonstrated remarkable performance across diverse tasks, their computational demands are substantial, scaling quadratically with the number of processed tokens. Compact attention representations, reflecting token interaction distributions, can guide early detection and reduction of less salient tokens prior to attention computation. Motivated by this, we present SParsification with attentiOn dynamics via Token relevance (SPOT), a framework for early detection of redundant tokens within ViTs that leverages token embeddings, interactions, and attention dynamics across layers to infer token importance, resulting in a more context-aware and interpretable relevance detection process. SPOT informs token sparsification and facilitates the elimination of such tokens, improving computational efficiency without sacrificing performance. SPOT employs computationally lightweight predictors that can be plugged into various ViT architectures and learn to derive effective input-specific token prioritization across layers. Its versatile design supports a range of performance levels adaptable to varying resource constraints. Empirical evaluations demonstrate significant efficiency gains of up to 40% compared to standard ViTs, while maintaining or even improving accuracy. Code and models are available at https://github.com/odedsc/SPOT .
comment: Project repository: https://github.com/odedsc/SPOT
☆ Utility of Pancreas Surface Lobularity as a CT Biomarker for Opportunistic Screening of Type 2 Diabetes
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease that affects millions of people worldwide. Early detection is crucial as it can alter pancreas function through morphological changes and increased deposition of ectopic fat, eventually leading to organ damage. While studies have shown an association between T2DM and pancreas volume and fat content, the role of increased pancreatic surface lobularity (PSL) in patients with T2DM has not been fully investigated. In this pilot work, we propose a fully automated approach to delineate the pancreas and other abdominal structures, derive CT imaging biomarkers, and opportunistically screen for T2DM. Four deep learning-based models were used to segment the pancreas in an internal dataset of 584 patients (297 males, 437 non-diabetic, age: 45$\pm$15 years). PSL was automatically detected and it was higher for diabetic patients (p=0.01) at 4.26 $\pm$ 8.32 compared to 3.19 $\pm$ 3.62 for non-diabetic patients. The PancAP model achieved the highest Dice score of 0.79 $\pm$ 0.17 and lowest ASSD error of 1.94 $\pm$ 2.63 mm (p$<$0.05). For predicting T2DM, a multivariate model trained with CT biomarkers attained 0.90 AUC, 66.7\% sensitivity, and 91.9\% specificity. Our results suggest that PSL is useful for T2DM screening and could potentially help predict the early onset of T2DM.
comment: Submitted to IEEE ISBI 2026
☆ Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Code: https://github.com/cagries/IDIM.
comment: 45 pages, 11 figures
☆ OpenSR-SRGAN: A Flexible Super-Resolution Framework for Multispectral Earth Observation Data
We present OpenSR-SRGAN, an open and modular framework for single-image super-resolution in Earth Observation. The software provides a unified implementation of SRGAN-style models that is easy to configure, extend, and apply to multispectral satellite data such as Sentinel-2. Instead of requiring users to modify model code, OpenSR-SRGAN exposes generators, discriminators, loss functions, and training schedules through concise configuration files, making it straightforward to switch between architectures, scale factors, and band setups. The framework is designed as a practical tool and benchmark implementation rather than a state-of-the-art model. It ships with ready-to-use configurations for common remote sensing scenarios, sensible default settings for adversarial training, and built-in hooks for logging, validation, and large-scene inference. By turning GAN-based super-resolution into a configuration-driven workflow, OpenSR-SRGAN lowers the entry barrier for researchers and practitioners who wish to experiment with SRGANs, compare models in a reproducible way, and deploy super-resolution pipelines across diverse Earth-observation datasets.
☆ Histology-informed tiling of whole tissue sections improves the interpretability and predictability of cancer relapse and genetic alterations
Histopathologists establish cancer grade by assessing histological structures, such as glands in prostate cancer. Yet, digital pathology pipelines often rely on grid-based tiling that ignores tissue architecture. This introduces irrelevant information and limits interpretability. We introduce histology-informed tiling (HIT), which uses semantic segmentation to extract glands from whole slide images (WSIs) as biologically meaningful input patches for multiple-instance learning (MIL) and phenotyping. Trained on 137 samples from the ProMPT cohort, HIT achieved a gland-level Dice score of 0.83 +/- 0.17. By extracting 380,000 glands from 760 WSIs across ICGC-C and TCGA-PRAD cohorts, HIT improved MIL models AUCs by 10% for detecting copy number variation (CNVs) in genes related to epithelial-mesenchymal transitions (EMT) and MYC, and revealed 15 gland clusters, several of which were associated with cancer relapse, oncogenic mutations, and high Gleason. Therefore, HIT improved the accuracy and interpretability of MIL predictions, while streamlining computations by focussing on biologically meaningful structures during feature extraction.
comment: 26 pages, 6 figures
☆ RodEpil: A Video Dataset of Laboratory Rodents for Seizure Detection and Benchmark Evaluation
We introduce a curated video dataset of laboratory rodents for automatic detection of convulsive events. The dataset contains short (10~s) top-down and side-view video clips of individual rodents, labeled at clip level as normal activity or seizure. It includes 10,101 negative samples and 2,952 positive samples collected from 19 subjects. We describe the data curation, annotation protocol and preprocessing pipeline, and report baseline experiments using a transformer-based video classifier (TimeSformer). Experiments employ five-fold cross-validation with strict subject-wise partitioning to prevent data leakage (no subject appears in more than one fold). Results show that the TimeSformer architecture enables discrimination between seizure and normal activity with an average F1-score of 97%. The dataset and baseline code are publicly released to support reproducible research on non-invasive, video-based monitoring in preclinical epilepsy research. RodEpil Dataset access - DOI: 10.5281/zenodo.17601357
☆ 3DFETUS: Standardizing Fetal Facial Planes in 3D Ultrasound
Acquiring standard facial planes during routine fetal ultrasound (US) examinations is often challenging due to fetal movement, variability in orientation, and operator-dependent expertise. These factors contribute to inconsistencies, increased examination time, and potential diagnostic bias. To address these challenges in the context of facial assessment, we present: 1) GT++, a robust algorithm that estimates standard facial planes from 3D US volumes using annotated anatomical landmarks; and 2) 3DFETUS, a deep learning model that automates and standardizes their localization in 3D fetal US volumes. We evaluated our methods both qualitatively, through expert clinical review, and quantitatively. The proposed approach achieved a mean translation error of 4.13 mm and a mean rotation error of 7.93 degrees per plane, outperforming other state-of-the-art methods on 3D US volumes. Clinical assessments further confirmed the effectiveness of both GT++ and 3DFETUS, demonstrating statistically significant improvements in plane estimation accuracy.
LLM-YOLOMS: Large Language Model-based Semantic Interpretation and Fault Diagnosis for Wind Turbine Components
The health condition of wind turbine (WT) components is crucial for ensuring stable and reliable operation. However, existing fault detection methods are largely limited to visual recognition, producing structured outputs that lack semantic interpretability and fail to support maintenance decision-making. To address these limitations, this study proposes an integrated framework that combines YOLOMS with a large language model (LLM) for intelligent fault analysis and diagnosis. Specifically, YOLOMS employs multi-scale detection and sliding-window cropping to enhance fault feature extraction, while a lightweight key-value (KV) mapping module bridges the gap between visual outputs and textual inputs. This module converts YOLOMS detection results into structured textual representations enriched with both qualitative and quantitative attributes. A domain-tuned LLM then performs semantic reasoning to generate interpretable fault analyses and maintenance recommendations. Experiments on real-world datasets demonstrate that the proposed framework achieves a fault detection accuracy of 90.6\% and generates maintenance reports with an average accuracy of 89\%, thereby improving the interpretability of diagnostic results and providing practical decision support for the operation and maintenance of wind turbines.
comment: Journal resubmission
☆ GrounDiff: Diffusion-Based Ground Surface Generation from Digital Surface Models WACV 2026
Digital Terrain Models (DTMs) represent the bare-earth elevation and are important in numerous geospatial applications. Such data models cannot be directly measured by sensors and are typically generated from Digital Surface Models (DSMs) derived from LiDAR or photogrammetry. Traditional filtering approaches rely on manually tuned parameters, while learning-based methods require well-designed architectures, often combined with post-processing. To address these challenges, we introduce Ground Diffusion (GrounDiff), the first diffusion-based framework that iteratively removes non-ground structures by formulating the problem as a denoising task. We incorporate a gated design with confidence-guided generation that enables selective filtering. To increase scalability, we further propose Prior-Guided Stitching (PrioStitch), which employs a downsampled global prior automatically generated using GrounDiff to guide local high-resolution predictions. We evaluate our method on the DSM-to-DTM translation task across diverse datasets, showing that GrounDiff consistently outperforms deep learning-based state-of-the-art methods, reducing RMSE by up to 93% on ALS2DTM and up to 47% on USGS benchmarks. In the task of road reconstruction, which requires both high precision and smoothness, our method achieves up to 81% lower distance error compared to specialized techniques on the GeRoD benchmark, while maintaining competitive surface smoothness using only DSM inputs, without task-specific optimization. Our variant for road reconstruction, GrounDiff+, is specifically designed to produce even smoother surfaces, further surpassing state-of-the-art methods. The project page is available at https://deepscenario.github.io/GrounDiff/.
comment: Accepted at WACV 2026
☆ MonkeyOCR v1.5 Technical Report: Unlocking Robust Document Parsing for Complex Patterns
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage parsing pipeline. The first stage employs a large multimodal model to jointly predict document layout and reading order, leveraging visual information to ensure structural and sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios.
☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
☆ SAMIRO: Spatial Attention Mutual Information Regularization with a Pre-trained Model as Oracle for Lane Detection
Lane detection is an important topic in the future mobility solutions. Real-world environmental challenges such as background clutter, varying illumination, and occlusions pose significant obstacles to effective lane detection, particularly when relying on data-driven approaches that require substantial effort and cost for data collection and annotation. To address these issues, lane detection methods must leverage contextual and global information from surrounding lanes and objects. In this paper, we propose a Spatial Attention Mutual Information Regularization with a pre-trained model as an Oracle, called SAMIRO. SAMIRO enhances lane detection performance by transferring knowledge from a pretrained model while preserving domain-agnostic spatial information. Leveraging SAMIRO's plug-and-play characteristic, we integrate it into various state-of-the-art lane detection approaches and conduct extensive experiments on major benchmarks such as CULane, Tusimple, and LLAMAS. The results demonstrate that SAMIRO consistently improves performance across different models and datasets. The code will be made available upon publication.
comment: 7 pages, 4 figures, paper in press
☆ Fragile by Design: On the Limits of Adversarial Defenses in Personalized Generation
Personalized AI applications such as DreamBooth enable the generation of customized content from user images, but also raise significant privacy concerns, particularly the risk of facial identity leakage. Recent defense mechanisms like Anti-DreamBooth attempt to mitigate this risk by injecting adversarial perturbations into user photos to prevent successful personalization. However, we identify two critical yet overlooked limitations of these methods. First, the adversarial examples often exhibit perceptible artifacts such as conspicuous patterns or stripes, making them easily detectable as manipulated content. Second, the perturbations are highly fragile, as even a simple, non-learned filter can effectively remove them, thereby restoring the model's ability to memorize and reproduce user identity. To investigate this vulnerability, we propose a novel evaluation framework, AntiDB_Purify, to systematically evaluate existing defenses under realistic purification threats, including both traditional image filters and adversarial purification. Results reveal that none of the current methods maintains their protective effectiveness under such threats. These findings highlight that current defenses offer a false sense of security and underscore the urgent need for more imperceptible and robust protections to safeguard user identity in personalized generation.
☆ MSGNav: Unleashing the Power of Multi-modal 3D Scene Graph for Zero-Shot Embodied Navigation
Embodied navigation is a fundamental capability for robotic agents operating. Real-world deployment requires open vocabulary generalization and low training overhead, motivating zero-shot methods rather than task-specific RL training. However, existing zero-shot methods that build explicit 3D scene graphs often compress rich visual observations into text-only relations, leading to high construction cost, irreversible loss of visual evidence, and constrained vocabularies. To address these limitations, we introduce the Multi-modal 3D Scene Graph (M3DSG), which preserves visual cues by replacing textual relational edges with dynamically assigned images. Built on M3DSG, we propose MSGNav, a zero-shot navigation system that includes a Key Subgraph Selection module for efficient reasoning, an Adaptive Vocabulary Update module for open vocabulary support, and a Closed-Loop Reasoning module for accurate exploration reasoning. Additionally, we further identify the last-mile problem in zero-shot navigation - determining the feasible target location with a suitable final viewpoint, and propose a Visibility-based Viewpoint Decision module to explicitly resolve it. Comprehensive experimental results demonstrate that MSGNav achieves state-of-the-art performance on GOAT-Bench and HM3D-OVON datasets. The open-source code will be publicly available.
comment: 10 pages
☆ SHRUG-FM: Reliability-Aware Foundation Models for Earth Observation
Geospatial foundation models for Earth observation often fail to perform reliably in environments underrepresented during pretraining. We introduce SHRUG-FM, a framework for reliability-aware prediction that integrates three complementary signals: out-of-distribution (OOD) detection in the input space, OOD detection in the embedding space and task-specific predictive uncertainty. Applied to burn scar segmentation, SHRUG-FM shows that OOD scores correlate with lower performance in specific environmental conditions, while uncertainty-based flags help discard many poorly performing predictions. Linking these flags to land cover attributes from HydroATLAS shows that failures are not random but concentrated in certain geographies, such as low-elevation zones and large river areas, likely due to underrepresentation in pretraining data. SHRUG-FM provides a pathway toward safer and more interpretable deployment of GFMs in climate-sensitive applications, helping bridge the gap between benchmark performance and real-world reliability.
☆ DermAI: Clinical dermatology acquisition through quality-driven image collection for AI classification in mobile
AI-based dermatology adoption remains limited by biased datasets, variable image quality, and limited validation. We introduce DermAI, a lightweight, smartphone-based application that enables real-time capture, annotation, and classification of skin lesions during routine consultations. Unlike prior dermoscopy-focused tools, DermAI performs on-device quality checks, and local model adaptation. The DermAI clinical dataset, encompasses a wide range of skin tones, ethinicity and source devices. In preliminary experiments, models trained on public datasets failed to generalize to our samples, while fine-tuning with local data improved performance. These results highlight the importance of standardized, diverse data collection aligned with healthcare needs and oriented to machine learning development.
comment: 4 pages, 2 figures, 1 table, submitted on ISBI
☆ FOUND: Fourier-based von Mises Distribution for Robust Single Domain Generalization in Object Detection
Single Domain Generalization (SDG) for object detection aims to train a model on a single source domain that can generalize effectively to unseen target domains. While recent methods like CLIP-based semantic augmentation have shown promise, they often overlook the underlying structure of feature distributions and frequency-domain characteristics that are critical for robustness. In this paper, we propose a novel framework that enhances SDG object detection by integrating the von Mises-Fisher (vMF) distribution and Fourier transformation into a CLIP-guided pipeline. Specifically, we model the directional features of object representations using vMF to better capture domain-invariant semantic structures in the embedding space. Additionally, we introduce a Fourier-based augmentation strategy that perturbs amplitude and phase components to simulate domain shifts in the frequency domain, further improving feature robustness. Our method not only preserves the semantic alignment benefits of CLIP but also enriches feature diversity and structural consistency across domains. Extensive experiments on the diverse weather-driving benchmark demonstrate that our approach outperforms the existing state-of-the-art method.
☆ Learning to Tell Apart: Weakly Supervised Video Anomaly Detection via Disentangled Semantic Alignment AAAI 2026
Recent advancements in weakly-supervised video anomaly detection have achieved remarkable performance by applying the multiple instance learning paradigm based on multimodal foundation models such as CLIP to highlight anomalous instances and classify categories. However, their objectives may tend to detect the most salient response segments, while neglecting to mine diverse normal patterns separated from anomalies, and are prone to category confusion due to similar appearance, leading to unsatisfactory fine-grained classification results. Therefore, we propose a novel Disentangled Semantic Alignment Network (DSANet) to explicitly separate abnormal and normal features from coarse-grained and fine-grained aspects, enhancing the distinguishability. Specifically, at the coarse-grained level, we introduce a self-guided normality modeling branch that reconstructs input video features under the guidance of learned normal prototypes, encouraging the model to exploit normality cues inherent in the video, thereby improving the temporal separation of normal patterns and anomalous events. At the fine-grained level, we present a decoupled contrastive semantic alignment mechanism, which first temporally decomposes each video into event-centric and background-centric components using frame-level anomaly scores and then applies visual-language contrastive learning to enhance class-discriminative representations. Comprehensive experiments on two standard benchmarks, namely XD-Violence and UCF-Crime, demonstrate that DSANet outperforms existing state-of-the-art methods.
comment: Accepted to AAAI 2026. Code is available at https://github.com/lessiYin/DSANet
☆ Depth-Consistent 3D Gaussian Splatting via Physical Defocus Modeling and Multi-View Geometric Supervision
Three-dimensional reconstruction in scenes with extreme depth variations remains challenging due to inconsistent supervisory signals between near-field and far-field regions. Existing methods fail to simultaneously address inaccurate depth estimation in distant areas and structural degradation in close-range regions. This paper proposes a novel computational framework that integrates depth-of-field supervision and multi-view consistency supervision to advance 3D Gaussian Splatting. Our approach comprises two core components: (1) Depth-of-field Supervision employs a scale-recovered monocular depth estimator (e.g., Metric3D) to generate depth priors, leverages defocus convolution to synthesize physically accurate defocused images, and enforces geometric consistency through a novel depth-of-field loss, thereby enhancing depth fidelity in both far-field and near-field regions; (2) Multi-View Consistency Supervision employing LoFTR-based semi-dense feature matching to minimize cross-view geometric errors and enforce depth consistency via least squares optimization of reliable matched points. By unifying defocus physics with multi-view geometric constraints, our method achieves superior depth fidelity, demonstrating a 0.8 dB PSNR improvement over the state-of-the-art method on the Waymo Open Dataset. This framework bridges physical imaging principles and learning-based depth regularization, offering a scalable solution for complex depth stratification in urban environments.
☆ CLIP4VI-ReID: Learning Modality-shared Representations via CLIP Semantic Bridge for Visible-Infrared Person Re-identification
This paper proposes a novel CLIP-driven modality-shared representation learning network named CLIP4VI-ReID for VI-ReID task, which consists of Text Semantic Generation (TSG), Infrared Feature Embedding (IFE), and High-level Semantic Alignment (HSA). Specifically, considering the huge gap in the physical characteristics between natural images and infrared images, the TSG is designed to generate text semantics only for visible images, thereby enabling preliminary visible-text modality alignment. Then, the IFE is proposed to rectify the feature embeddings of infrared images using the generated text semantics. This process injects id-related semantics into the shared image encoder, enhancing its adaptability to the infrared modality. Besides, with text serving as a bridge, it enables indirect visible-infrared modality alignment. Finally, the HSA is established to refine the high-level semantic alignment. This process ensures that the fine-tuned text semantics only contain id-related information, thereby achieving more accurate cross-modal alignment and enhancing the discriminability of the learned modal-shared representations. Extensive experimental results demonstrate that the proposed CLIP4VI-ReID achieves superior performance than other state-of-the-art methods on some widely used VI-ReID datasets.
☆ Revisiting Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
☆ Rethinking Visual Information Processing in Multimodal LLMs
Despite the remarkable success of the LLaVA architecture for vision-language tasks, its design inherently struggles to effectively integrate visual features due to the inherent mismatch between text and vision modalities. We tackle this issue from a novel perspective in which the LLM not only serves as a language model but also a powerful vision encoder. To this end, we present LLaViT - Large Language Models as extended Vision Transformers - which enables the LLM to simultaneously function as a vision encoder through three key modifications: (1) learning separate QKV projections for vision modality, (2) enabling bidirectional attention on visual tokens, and (3) incorporating both global and local visual representations. Through extensive controlled experiments on a wide range of LLMs, we demonstrate that LLaViT significantly outperforms the baseline LLaVA method on a multitude of benchmarks, even surpassing models with double its parameter count, establishing a more effective approach to vision-language modeling.
☆ Generalizable Slum Detection from Satellite Imagery with Mixture-of-Experts AAAI 2026
Satellite-based slum segmentation holds significant promise in generating global estimates of urban poverty. However, the morphological heterogeneity of informal settlements presents a major challenge, hindering the ability of models trained on specific regions to generalize effectively to unseen locations. To address this, we introduce a large-scale high-resolution dataset and propose GRAM (Generalized Region-Aware Mixture-of-Experts), a two-phase test-time adaptation framework that enables robust slum segmentation without requiring labeled data from target regions. We compile a million-scale satellite imagery dataset from 12 cities across four continents for source training. Using this dataset, the model employs a Mixture-of-Experts architecture to capture region-specific slum characteristics while learning universal features through a shared backbone. During adaptation, prediction consistency across experts filters out unreliable pseudo-labels, allowing the model to generalize effectively to previously unseen regions. GRAM outperforms state-of-the-art baselines in low-resource settings such as African cities, offering a scalable and label-efficient solution for global slum mapping and data-driven urban planning.
comment: Accepted to AAAI 2026
☆ Adaptive Residual-Update Steering for Low-Overhead Hallucination Mitigation in Large Vision Language Models
Large Vision-Language Models (LVLMs) often suffer from object hallucination, generating text inconsistent with visual inputs, which can critically undermine their reliability. Existing inference-time interventions to mitigate this issue present a challenging trade-off: while methods that steer internal states or adjust output logits can be effective, they often incur substantial computational overhead, typically requiring extra forward passes. This efficiency bottleneck can limit their practicality for real-world, latency-sensitive deployments. In this work, we aim to address this trade-off with Residual-Update Directed DEcoding Regulation (RUDDER), a low-overhead framework that steers LVLMs towards visually-grounded generation. RUDDER is built on two key innovations: (1) Contextual Activation Residual Direction (CARD) vector, a per-sample visual evidence vector extracted from the residual update of a self-attention layer during a single, standard forward pass. (2) A Bayesian-inspired adaptive gate that performs token-wise injection, applying a corrective signal whose strength is conditioned on the model's deviation from the visual context. Extensive experiments on key hallucination benchmarks, including POPE and CHAIR, indicate that RUDDER achieves performance comparable to state-of-the-art methods while introducing negligible computational latency, validating RUDDER as a pragmatic and effective approach for improving LVLMs' reliability without a significant compromise on efficiency.
comment: Under review
☆ PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
Despite significant progress, Vision-Language Models (VLMs) still struggle with complex visual reasoning, where multi-step dependencies cause early errors to cascade through the reasoning chain. Existing post-training paradigms are limited: Supervised Fine-Tuning (SFT) relies on costly step-level annotations, while Reinforcement Learning with Verifiable Rewards (RLVR) methods like GRPO provide only sparse, outcome-level feedback, hindering stable optimization. We introduce PROPA (Process-level Reasoning Optimization with interleaved Policy Alignment), a novel framework that integrates Monte Carlo Tree Search (MCTS) with GRPO to generate dense, process-level rewards and optimize reasoning at each intermediate step without human annotations. To overcome the cold-start problem, PROPA interleaves GRPO updates with SFT, enabling the model to learn from both successful and failed reasoning trajectories. A Process Reward Model (PRM) is further trained to guide inference-time search, aligning the test-time search with the training signal. Across seven benchmarks and four VLM backbones, PROPA consistently outperforms both SFT- and RLVR-based baselines. It achieves up to 17.0% gains on in-domain tasks and 21.0% gains on out-of-domain tasks compared to existing state-of-the-art, establishing a strong reasoning and generalization capability for visual reasoning tasks. The code isavailable at: https://github.com/YanbeiJiang/PROPA.
☆ H3Former: Hypergraph-based Semantic-Aware Aggregation via Hyperbolic Hierarchical Contrastive Loss for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) remains a challenging task due to subtle inter-class differences and large intra-class variations. Existing approaches typically rely on feature-selection mechanisms or region-proposal strategies to localize discriminative regions for semantic analysis. However, these methods often fail to capture discriminative cues comprehensively while introducing substantial category-agnostic redundancy. To address these limitations, we propose H3Former, a novel token-to-region framework that leverages high-order semantic relations to aggregate local fine-grained representations with structured region-level modeling. Specifically, we propose the Semantic-Aware Aggregation Module (SAAM), which exploits multi-scale contextual cues to dynamically construct a weighted hypergraph among tokens. By applying hypergraph convolution, SAAM captures high-order semantic dependencies and progressively aggregates token features into compact region-level representations. Furthermore, we introduce the Hyperbolic Hierarchical Contrastive Loss (HHCL), which enforces hierarchical semantic constraints in a non-Euclidean embedding space. The HHCL enhances inter-class separability and intra-class consistency while preserving the intrinsic hierarchical relationships among fine-grained categories. Comprehensive experiments conducted on four standard FGVC benchmarks validate the superiority of our H3Former framework.
☆ Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis AAAI 2026
Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two critical limitations: (1) hallucinated reasoning, where VLMs generate plausible but inaccurate explanations due to insufficient emotion-specific knowledge; and (2) misalignment between emotion reasoning and recognition, caused by fragmented connections between observed facial features and final labels. We propose Facial-R1, a three-stage alignment framework that effectively addresses both challenges with minimal supervision. First, we employ instruction fine-tuning to establish basic emotional reasoning capability. Second, we introduce reinforcement training guided by emotion and AU labels as reward signals, which explicitly aligns the generated reasoning process with the predicted emotion. Third, we design a data synthesis pipeline that iteratively leverages the prior stages to expand the training dataset, enabling scalable self-improvement of the model. Built upon this framework, we introduce FEA-20K, a benchmark dataset comprising 17,737 training and 1,688 test samples with fine-grained emotion analysis annotations. Extensive experiments across eight standard benchmarks demonstrate that Facial-R1 achieves state-of-the-art performance in FEA, with strong generalization and robust interpretability.
comment: This paper has been accepted by AAAI 2026. 16 pages, 3 figures, 10 tables
☆ FineSkiing: A Fine-grained Benchmark for Skiing Action Quality Assessment
Action Quality Assessment (AQA) aims to evaluate and score sports actions, which has attracted widespread interest in recent years. Existing AQA methods primarily predict scores based on features extracted from the entire video, resulting in limited interpretability and reliability. Meanwhile, existing AQA datasets also lack fine-grained annotations for action scores, especially for deduction items and sub-score annotations. In this paper, we construct the first AQA dataset containing fine-grained sub-score and deduction annotations for aerial skiing, which will be released as a new benchmark. For the technical challenges, we propose a novel AQA method, named JudgeMind, which significantly enhances performance and reliability by simulating the judgment and scoring mindset of professional referees. Our method segments the input action video into different stages and scores each stage to enhance accuracy. Then, we propose a stage-aware feature enhancement and fusion module to boost the perception of stage-specific key regions and enhance the robustness to visual changes caused by frequent camera viewpoints switching. In addition, we propose a knowledge-based grade-aware decoder to incorporate possible deduction items as prior knowledge to predict more accurate and reliable scores. Experimental results demonstrate that our method achieves state-of-the-art performance.
☆ TubeRMC: Tube-conditioned Reconstruction with Mutual Constraints for Weakly-supervised Spatio-Temporal Video Grounding
Spatio-Temporal Video Grounding (STVG) aims to localize a spatio-temporal tube that corresponds to a given language query in an untrimmed video. This is a challenging task since it involves complex vision-language understanding and spatiotemporal reasoning. Recent works have explored weakly-supervised setting in STVG to eliminate reliance on fine-grained annotations like bounding boxes or temporal stamps. However, they typically follow a simple late-fusion manner, which generates tubes independent of the text description, often resulting in failed target identification and inconsistent target tracking. To address this limitation, we propose a Tube-conditioned Reconstruction with Mutual Constraints (\textbf{TubeRMC}) framework that generates text-conditioned candidate tubes with pre-trained visual grounding models and further refine them via tube-conditioned reconstruction with spatio-temporal constraints. Specifically, we design three reconstruction strategies from temporal, spatial, and spatio-temporal perspectives to comprehensively capture rich tube-text correspondences. Each strategy is equipped with a Tube-conditioned Reconstructor, utilizing spatio-temporal tubes as condition to reconstruct the key clues in the query. We further introduce mutual constraints between spatial and temporal proposals to enhance their quality for reconstruction. TubeRMC outperforms existing methods on two public benchmarks VidSTG and HCSTVG. Further visualization shows that TubeRMC effectively mitigates both target identification errors and inconsistent tracking.
☆ Next-Frame Feature Prediction for Multimodal Deepfake Detection and Temporal Localization
Recent multimodal deepfake detection methods designed for generalization conjecture that single-stage supervised training struggles to generalize across unseen manipulations and datasets. However, such approaches that target generalization require pretraining over real samples. Additionally, these methods primarily focus on detecting audio-visual inconsistencies and may overlook intra-modal artifacts causing them to fail against manipulations that preserve audio-visual alignment. To address these limitations, we propose a single-stage training framework that enhances generalization by incorporating next-frame prediction for both uni-modal and cross-modal features. Additionally, we introduce a window-level attention mechanism to capture discrepancies between predicted and actual frames, enabling the model to detect local artifacts around every frame, which is crucial for accurately classifying fully manipulated videos and effectively localizing deepfake segments in partially spoofed samples. Our model, evaluated on multiple benchmark datasets, demonstrates strong generalization and precise temporal localization.
comment: Under Review, Multimodal Deepfake detection
☆ HeatV2X: Scalable Heterogeneous Collaborative Perception via Efficient Alignment and Interaction
Vehicle-to-Everything (V2X) collaborative perception extends sensing beyond single vehicle limits through transmission. However, as more agents participate, existing frameworks face two key challenges: (1) the participating agents are inherently multi-modal and heterogeneous, and (2) the collaborative framework must be scalable to accommodate new agents. The former requires effective cross-agent feature alignment to mitigate heterogeneity loss, while the latter renders full-parameter training impractical, highlighting the importance of scalable adaptation. To address these issues, we propose Heterogeneous Adaptation (HeatV2X), a scalable collaborative framework. We first train a high-performance agent based on heterogeneous graph attention as the foundation for collaborative learning. Then, we design Local Heterogeneous Fine-Tuning and Global Collaborative Fine-Tuning to achieve effective alignment and interaction among heterogeneous agents. The former efficiently extracts modality-specific differences using Hetero-Aware Adapters, while the latter employs the Multi-Cognitive Adapter to enhance cross-agent collaboration and fully exploit the fusion potential. These designs enable substantial performance improvement of the collaborative framework with minimal training cost. We evaluate our approach on the OPV2V-H and DAIR-V2X datasets. Experimental results demonstrate that our method achieves superior perception performance with significantly reduced training overhead, outperforming existing state-of-the-art approaches. Our implementation will be released soon.
comment: 10 pages, 6 figures
☆ LiNeXt: Revisiting LiDAR Completion with Efficient Non-Diffusion Architectures AAAI 2026
3D LiDAR scene completion from point clouds is a fundamental component of perception systems in autonomous vehicles. Previous methods have predominantly employed diffusion models for high-fidelity reconstruction. However, their multi-step iterative sampling incurs significant computational overhead, limiting its real-time applicability. To address this, we propose LiNeXt-a lightweight, non-diffusion network optimized for rapid and accurate point cloud completion. Specifically, LiNeXt first applies the Noise-to-Coarse (N2C) Module to denoise the input noisy point cloud in a single pass, thereby obviating the multi-step iterative sampling of diffusion-based methods. The Refine Module then takes the coarse point cloud and its intermediate features from the N2C Module to perform more precise refinement, further enhancing structural completeness. Furthermore, we observe that LiDAR point clouds exhibit a distance-dependent spatial distribution, being densely sampled at proximal ranges and sparsely sampled at distal ranges. Accordingly, we propose the Distance-aware Selected Repeat strategy to generate a more uniformly distributed noisy point cloud. On the SemanticKITTI dataset, LiNeXt achieves a 199.8x speedup in inference, reduces Chamfer Distance by 50.7%, and uses only 6.1% of the parameters compared with LiDiff. These results demonstrate the superior efficiency and effectiveness of LiNeXt for real-time scene completion.
comment: 18 pages, 13 figures, Accepted to AAAI 2026
☆ VISTA: A Vision and Intent-Aware Social Attention Framework for Multi-Agent Trajectory Prediction WACV 2026
Multi-agent trajectory prediction is crucial for autonomous systems operating in dense, interactive environments. Existing methods often fail to jointly capture agents' long-term goals and their fine-grained social interactions, which leads to unrealistic multi-agent futures. We propose VISTA, a recursive goal-conditioned transformer for multi-agent trajectory forecasting. VISTA combines (i) a cross-attention fusion module that integrates long-horizon intent with past motion, (ii) a social-token attention mechanism for flexible interaction modeling across agents, and (iii) pairwise attention maps that make social influence patterns interpretable at inference time. Our model turns single-agent goal-conditioned prediction into a coherent multi-agent forecasting framework. Beyond standard displacement metrics, we evaluate trajectory collision rates as a measure of joint realism. On the high-density MADRAS benchmark and on SDD, VISTA achieves state-of-the-art accuracy and substantially fewer collisions. On MADRAS, it reduces the average collision rate of strong baselines from 2.14 to 0.03 percent, and on SDD it attains zero collisions while improving ADE, FDE, and minFDE. These results show that VISTA generates socially compliant, goal-aware, and interpretable trajectories, making it promising for safety-critical autonomous systems.
comment: Paper accepted at WACV 2026
☆ Utilizing a Geospatial Foundation Model for Coastline Delineation in Small Sandy Islands
We present an initial evaluation of NASA and IBM's Prithvi-EO-2.0 geospatial foundation model on shoreline delineation of small sandy islands using satellite images. We curated and labeled a dataset of 225 multispectral images of two Maldivian islands, which we publicly release, and fine-tuned both the 300M and 600M parameter versions of Prithvi on training subsets ranging from 5 to 181 images. Our experiments show that even with as few as 5 training images, the models achieve high performance (F1 of 0.94, IoU of 0.79). Our results demonstrate the strong transfer learning capability of Prithvi, underscoring the potential of such models to support coastal monitoring in data-poor regions.
comment: 8 pages, 7 figures
☆ CephRes-MHNet: A Multi-Head Residual Network for Accurate and Robust Cephalometric Landmark Detection
Accurate localization of cephalometric landmarks from 2D lateral skull X-rays is vital for orthodontic diagnosis and treatment. Manual annotation is time-consuming and error-prone, whereas automated approaches often struggle with low contrast and anatomical complexity. This paper introduces CephRes-MHNet, a multi-head residual convolutional network for robust and efficient cephalometric landmark detection. The architecture integrates residual encoding, dual-attention mechanisms, and multi-head decoders to enhance contextual reasoning and anatomical precision. Trained on the Aariz Cephalometric dataset of 1,000 radiographs, CephRes-MHNet achieved a mean radial error (MRE) of 1.23 mm and a success detection rate (SDR) @ 2.0 mm of 85.5%, outperforming all evaluated models. In particular, it exceeded the strongest baseline, the attention-driven AFPF-Net (MRE = 1.25 mm, SDR @ 2.0 mm = 84.1%), while using less than 25% of its parameters. These results demonstrate that CephRes-MHNet attains state-of-the-art accuracy through architectural efficiency, providing a practical solution for real-world orthodontic analysis.
comment: 5 Pages, Under Review at The IEEE International Symposium on Biomedical Imaging (ISBI 2026)
☆ Physically Interpretable Multi-Degradation Image Restoration via Deep Unfolding and Explainable Convolution
Although image restoration has advanced significantly, most existing methods target only a single type of degradation. In real-world scenarios, images often contain multiple degradations simultaneously, such as rain, noise, and haze, requiring models capable of handling diverse degradation types. Moreover, methods that improve performance through module stacking often suffer from limited interpretability. In this paper, we propose a novel interpretability-driven approach for multi-degradation image restoration, built upon a deep unfolding network that maps the iterative process of a mathematical optimization algorithm into a learnable network structure. Specifically, we employ an improved second-order semi-smooth Newton algorithm to ensure that each module maintains clear physical interpretability. To further enhance interpretability and adaptability, we design an explainable convolution module inspired by the human brain's flexible information processing and the intrinsic characteristics of images, allowing the network to flexibly leverage learned knowledge and autonomously adjust parameters for different input. The resulting tightly integrated architecture, named InterIR, demonstrates excellent performance in multi-degradation restoration while remaining highly competitive on single-degradation tasks.
☆ GEA: Generation-Enhanced Alignment for Text-to-Image Person Retrieval
Text-to-Image Person Retrieval (TIPR) aims to retrieve person images based on natural language descriptions. Although many TIPR methods have achieved promising results, sometimes textual queries cannot accurately and comprehensively reflect the content of the image, leading to poor cross-modal alignment and overfitting to limited datasets. Moreover, the inherent modality gap between text and image further amplifies these issues, making accurate cross-modal retrieval even more challenging. To address these limitations, we propose the Generation-Enhanced Alignment (GEA) from a generative perspective. GEA contains two parallel modules: (1) Text-Guided Token Enhancement (TGTE), which introduces diffusion-generated images as intermediate semantic representations to bridge the gap between text and visual patterns. These generated images enrich the semantic representation of text and facilitate cross-modal alignment. (2) Generative Intermediate Fusion (GIF), which combines cross-attention between generated images, original images, and text features to generate a unified representation optimized by triplet alignment loss. We conduct extensive experiments on three public TIPR datasets, CUHK-PEDES, RSTPReid, and ICFG-PEDES, to evaluate the performance of GEA. The results justify the effectiveness of our method. More implementation details and extended results are available at https://github.com/sugelamyd123/Sup-for-GEA.
comment: 8pages,3figures
☆ Decoupling Bias, Aligning Distributions: Synergistic Fairness Optimization for Deepfake Detection
Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
☆ Split-Layer: Enhancing Implicit Neural Representation by Maximizing the Dimensionality of Feature Space AAAI 2026
Implicit neural representation (INR) models signals as continuous functions using neural networks, offering efficient and differentiable optimization for inverse problems across diverse disciplines. However, the representational capacity of INR defined by the range of functions the neural network can characterize, is inherently limited by the low-dimensional feature space in conventional multilayer perceptron (MLP) architectures. While widening the MLP can linearly increase feature space dimensionality, it also leads to a quadratic growth in computational and memory costs. To address this limitation, we propose the split-layer, a novel reformulation of MLP construction. The split-layer divides each layer into multiple parallel branches and integrates their outputs via Hadamard product, effectively constructing a high-degree polynomial space. This approach significantly enhances INR's representational capacity by expanding the feature space dimensionality without incurring prohibitive computational overhead. Extensive experiments demonstrate that the split-layer substantially improves INR performance, surpassing existing methods across multiple tasks, including 2D image fitting, 2D CT reconstruction, 3D shape representation, and 5D novel view synthesis.
comment: AAAI 2026
☆ Right Looks, Wrong Reasons: Compositional Fidelity in Text-to-Image Generation AAAI 2026
The architectural blueprint of today's leading text-to-image models contains a fundamental flaw: an inability to handle logical composition. This survey investigates this breakdown across three core primitives-negation, counting, and spatial relations. Our analysis reveals a dramatic performance collapse: models that are accurate on single primitives fail precipitously when these are combined, exposing severe interference. We trace this failure to three key factors. First, training data show a near-total absence of explicit negations. Second, continuous attention architectures are fundamentally unsuitable for discrete logic. Third, evaluation metrics reward visual plausibility over constraint satisfaction. By analyzing recent benchmarks and methods, we show that current solutions and simple scaling cannot bridge this gap. Achieving genuine compositionality, we conclude, will require fundamental advances in representation and reasoning rather than incremental adjustments to existing architectures.
comment: Accepted in AAAI 2026
☆ Explicit Temporal-Semantic Modeling for Dense Video Captioning via Context-Aware Cross-Modal Interaction AAAI 2026
Dense video captioning jointly localizes and captions salient events in untrimmed videos. Recent methods primarily focus on leveraging additional prior knowledge and advanced multi-task architectures to achieve competitive performance. However, these pipelines rely on implicit modeling that uses frame-level or fragmented video features, failing to capture the temporal coherence across event sequences and comprehensive semantics within visual contexts. To address this, we propose an explicit temporal-semantic modeling framework called Context-Aware Cross-Modal Interaction (CACMI), which leverages both latent temporal characteristics within videos and linguistic semantics from text corpus. Specifically, our model consists of two core components: Cross-modal Frame Aggregation aggregates relevant frames to extract temporally coherent, event-aligned textual features through cross-modal retrieval; and Context-aware Feature Enhancement utilizes query-guided attention to integrate visual dynamics with pseudo-event semantics. Extensive experiments on the ActivityNet Captions and YouCook2 datasets demonstrate that CACMI achieves the state-of-the-art performance on dense video captioning task.
comment: Accepted to AAAI 2026
☆ RobIA: Robust Instance-aware Continual Test-time Adaptation for Deep Stereo NeurIPS
Stereo Depth Estimation in real-world environments poses significant challenges due to dynamic domain shifts, sparse or unreliable supervision, and the high cost of acquiring dense ground-truth labels. While recent Test-Time Adaptation (TTA) methods offer promising solutions, most rely on static target domain assumptions and input-invariant adaptation strategies, limiting their effectiveness under continual shifts. In this paper, we propose RobIA, a novel Robust, Instance-Aware framework for Continual Test-Time Adaptation (CTTA) in stereo depth estimation. RobIA integrates two key components: (1) Attend-and-Excite Mixture-of-Experts (AttEx-MoE), a parameter-efficient module that dynamically routes input to frozen experts via lightweight self-attention mechanism tailored to epipolar geometry, and (2) Robust AdaptBN Teacher, a PEFT-based teacher model that provides dense pseudo-supervision by complementing sparse handcrafted labels. This strategy enables input-specific flexibility, broad supervision coverage, improving generalization under domain shift. Extensive experiments demonstrate that RobIA achieves superior adaptation performance across dynamic target domains while maintaining computational efficiency.
comment: Accepted by Neural Information Processing Systems (NeurIPS) 2025
☆ MTAttack: Multi-Target Backdoor Attacks against Large Vision-Language Models AAAI2026
Recent advances in Large Visual Language Models (LVLMs) have demonstrated impressive performance across various vision-language tasks by leveraging large-scale image-text pretraining and instruction tuning. However, the security vulnerabilities of LVLMs have become increasingly concerning, particularly their susceptibility to backdoor attacks. Existing backdoor attacks focus on single-target attacks, i.e., targeting a single malicious output associated with a specific trigger. In this work, we uncover multi-target backdoor attacks, where multiple independent triggers corresponding to different attack targets are added in a single pass of training, posing a greater threat to LVLMs in real-world applications. Executing such attacks in LVLMs is challenging since there can be many incorrect trigger-target mappings due to severe feature interference among different triggers. To address this challenge, we propose MTAttack, the first multi-target backdoor attack framework for enforcing accurate multiple trigger-target mappings in LVLMs. The core of MTAttack is a novel optimization method with two constraints, namely Proxy Space Partitioning constraint and Trigger Prototype Anchoring constraint. It jointly optimizes multiple triggers in the latent space, with each trigger independently mapping clean images to a unique proxy class while at the same time guaranteeing their separability. Experiments on popular benchmarks demonstrate a high success rate of MTAttack for multi-target attacks, substantially outperforming existing attack methods. Furthermore, our attack exhibits strong generalizability across datasets and robustness against backdoor defense strategies. These findings highlight the vulnerability of LVLMs to multi-target backdoor attacks and underscore the urgent need for mitigating such threats. Code is available at https://github.com/mala-lab/MTAttack.
comment: AAAI2026, with supplementary material
☆ How does My Model Fail? Automatic Identification and Interpretation of Physical Plausibility Failure Modes with Matryoshka Transcoders
Although recent generative models are remarkably capable of producing instruction-following and realistic outputs, they remain prone to notable physical plausibility failures. Though critical in applications, these physical plausibility errors often escape detection by existing evaluation methods. Furthermore, no framework exists for automatically identifying and interpreting specific physical error patterns in natural language, preventing targeted model improvements. We introduce Matryoshka Transcoders, a novel framework for the automatic discovery and interpretation of physical plausibility features in generative models. Our approach extends the Matryoshka representation learning paradigm to transcoder architectures, enabling hierarchical sparse feature learning at multiple granularity levels. By training on intermediate representations from a physical plausibility classifier and leveraging large multimodal models for interpretation, our method identifies diverse physics-related failure modes without manual feature engineering, achieving superior feature relevance and feature accuracy compared to existing approaches. We utilize the discovered visual patterns to establish a benchmark for evaluating physical plausibility in generative models. Our analysis of eight state-of-the-art generative models provides valuable insights into how these models fail to follow physical constraints, paving the way for further model improvements.
comment: 10 pages, 5 figures
☆ SUGAR: Learning Skeleton Representation with Visual-Motion Knowledge for Action Recognition AAAI 2026
Large Language Models (LLMs) hold rich implicit knowledge and powerful transferability. In this paper, we explore the combination of LLMs with the human skeleton to perform action classification and description. However, when treating LLM as a recognizer, two questions arise: 1) How can LLMs understand skeleton? 2) How can LLMs distinguish among actions? To address these problems, we introduce a novel paradigm named learning Skeleton representation with visUal-motion knowledGe for Action Recognition (SUGAR). In our pipeline, we first utilize off-the-shelf large-scale video models as a knowledge base to generate visual, motion information related to actions. Then, we propose to supervise skeleton learning through this prior knowledge to yield discrete representations. Finally, we use the LLM with untouched pre-training weights to understand these representations and generate the desired action targets and descriptions. Notably, we present a Temporal Query Projection (TQP) module to continuously model the skeleton signals with long sequences. Experiments on several skeleton-based action classification benchmarks demonstrate the efficacy of our SUGAR. Moreover, experiments on zero-shot scenarios show that SUGAR is more versatile than linear-based methods.
comment: Accepted by AAAI 2026 Main Track
☆ eXIAA: eXplainable Injections for Adversarial Attack
Post-hoc explainability methods are a subset of Machine Learning (ML) that aim to provide a reason for why a model behaves in a certain way. In this paper, we show a new black-box model-agnostic adversarial attack for post-hoc explainable Artificial Intelligence (XAI), particularly in the image domain. The goal of the attack is to modify the original explanations while being undetected by the human eye and maintain the same predicted class. In contrast to previous methods, we do not require any access to the model or its weights, but only to the model's computed predictions and explanations. Additionally, the attack is accomplished in a single step while significantly changing the provided explanations, as demonstrated by empirical evaluation. The low requirements of our method expose a critical vulnerability in current explainability methods, raising concerns about their reliability in safety-critical applications. We systematically generate attacks based on the explanations generated by post-hoc explainability methods (saliency maps, integrated gradients, and DeepLIFT SHAP) for pretrained ResNet-18 and ViT-B16 on ImageNet. The results show that our attacks could lead to dramatically different explanations without changing the predictive probabilities. We validate the effectiveness of our attack, compute the induced change based on the explanation with mean absolute difference, and verify the closeness of the original image and the corrupted one with the Structural Similarity Index Measure (SSIM).
☆ GridPrune: From "Where to Look" to "What to Select" in Visual Token Pruning for MLLMs
Multimodal large language models (MLLMs) have shown remarkable capabilities in a wide range of vision-language tasks. However, the large number of visual tokens introduces significant computational overhead. To address this issue, visual token pruning has emerged as a key technique for enhancing the efficiency of MLLMs. In cognitive science, humans tend to first determine which regions of a scene to attend to ("where to look") before deciding which specific elements within those regions to process in detail ("what to select"). This two-stage strategy enables the visual system to efficiently allocate attention at a coarse spatial level before performing fine-grained selection. However, existing pruning methods primarily focus on directly optimizing "what to select", typically using attention scores or similarity metrics. They rarely consider "where to look", which has been shown to lead to inefficient spatial allocation, positional bias, and the retention of irrelevant or redundant tokens. In this paper, we propose GridPrune, a method that replaces the global Top-K mechanism with a "guide-globally, select-locally" zonal selection system. GridPrune splits the pruning process into two steps: first, it uses text-conditional guidance to dynamically allocate a token budget across spatial zones; and then, it performs local selection within each budgeted zone. Experimental results demonstrate that GridPrune achieves superior performance across various MLLM architectures. On LLaVA-NeXT-7B, GridPrune retains 96.98% of the full performance while using 11.1% of the tokens, outperforming the best-performing baseline by 2.34% at the same pruning rate.
☆ Mitigating Error Accumulation in Co-Speech Motion Generation via Global Rotation Diffusion and Multi-Level Constraints AAAI 2026
Reliable co-speech motion generation requires precise motion representation and consistent structural priors across all joints. Existing generative methods typically operate on local joint rotations, which are defined hierarchically based on the skeleton structure. This leads to cumulative errors during generation, manifesting as unstable and implausible motions at end-effectors. In this work, we propose GlobalDiff, a diffusion-based framework that operates directly in the space of global joint rotations for the first time, fundamentally decoupling each joint's prediction from upstream dependencies and alleviating hierarchical error accumulation. To compensate for the absence of structural priors in global rotation space, we introduce a multi-level constraint scheme. Specifically, a joint structure constraint introduces virtual anchor points around each joint to better capture fine-grained orientation. A skeleton structure constraint enforces angular consistency across bones to maintain structural integrity. A temporal structure constraint utilizes a multi-scale variational encoder to align the generated motion with ground-truth temporal patterns. These constraints jointly regularize the global diffusion process and reinforce structural awareness. Extensive evaluations on standard co-speech benchmarks show that GlobalDiff generates smooth and accurate motions, improving the performance by 46.0 % compared to the current SOTA under multiple speaker identities.
comment: AAAI 2026
☆ VLF-MSC: Vision-Language Feature-Based Multimodal Semantic Communication System NeurIPS 2025
We propose Vision-Language Feature-based Multimodal Semantic Communication (VLF-MSC), a unified system that transmits a single compact vision-language representation to support both image and text generation at the receiver. Unlike existing semantic communication techniques that process each modality separately, VLF-MSC employs a pre-trained vision-language model (VLM) to encode the source image into a vision-language semantic feature (VLF), which is transmitted over the wireless channel. At the receiver, a decoder-based language model and a diffusion-based image generator are both conditioned on the VLF to produce a descriptive text and a semantically aligned image. This unified representation eliminates the need for modality-specific streams or retransmissions, improving spectral efficiency and adaptability. By leveraging foundation models, the system achieves robustness to channel noise while preserving semantic fidelity. Experiments demonstrate that VLF-MSC outperforms text-only and image-only baselines, achieving higher semantic accuracy for both modalities under low SNR with significantly reduced bandwidth.
comment: To appear in the AI4NextG Workshop at NeurIPS 2025
☆ Perceive, Act and Correct: Confidence Is Not Enough for Hyperspectral Classification AAAI 2026
Confidence alone is often misleading in hyperspectral image classification, as models tend to mistake high predictive scores for correctness while lacking awareness of uncertainty. This leads to confirmation bias, especially under sparse annotations or class imbalance, where models overfit confident errors and fail to generalize. We propose CABIN (Cognitive-Aware Behavior-Informed learNing), a semi-supervised framework that addresses this limitation through a closed-loop learning process of perception, action, and correction. CABIN first develops perceptual awareness by estimating epistemic uncertainty, identifying ambiguous regions where errors are likely to occur. It then acts by adopting an Uncertainty-Guided Dual Sampling Strategy, selecting uncertain samples for exploration while anchoring confident ones as stable pseudo-labels to reduce bias. To correct noisy supervision, CABIN introduces a Fine-Grained Dynamic Assignment Strategy that categorizes pseudo-labeled data into reliable, ambiguous, and noisy subsets, applying tailored losses to enhance generalization. Experimental results show that a wide range of state-of-the-art methods benefit from the integration of CABIN, with improved labeling efficiency and performance.
comment: Accepted to AAAI 2026
☆ Multivariate Gaussian Representation Learning for Medical Action Evaluation AAAI 2026
Fine-grained action evaluation in medical vision faces unique challenges due to the unavailability of comprehensive datasets, stringent precision requirements, and insufficient spatiotemporal dynamic modeling of very rapid actions. To support development and evaluation, we introduce CPREval-6k, a multi-view, multi-label medical action benchmark containing 6,372 expert-annotated videos with 22 clinical labels. Using this dataset, we present GaussMedAct, a multivariate Gaussian encoding framework, to advance medical motion analysis through adaptive spatiotemporal representation learning. Multivariate Gaussian Representation projects the joint motions to a temporally scaled multi-dimensional space, and decomposes actions into adaptive 3D Gaussians that serve as tokens. These tokens preserve motion semantics through anisotropic covariance modeling while maintaining robustness to spatiotemporal noise. Hybrid Spatial Encoding, employing a Cartesian and Vector dual-stream strategy, effectively utilizes skeletal information in the form of joint and bone features. The proposed method achieves 92.1% Top-1 accuracy with real-time inference on the benchmark, outperforming the ST-GCN baseline by +5.9% accuracy with only 10% FLOPs. Cross-dataset experiments confirm the superiority of our method in robustness.
comment: Accepted to AAAI 2026
☆ When Eyes and Ears Disagree: Can MLLMs Discern Audio-Visual Confusion? AAAI 2026
Can Multimodal Large Language Models (MLLMs) discern confused objects that are visually present but audio-absent? To study this, we introduce a new benchmark, AV-ConfuseBench, which simulates an ``Audio-Visual Confusion'' scene by modifying the corresponding sound of an object in the video, e.g., mute the sounding object and ask MLLMs Is there a/an muted-object sound''. Experimental results reveal that MLLMs, such as Qwen2.5-Omni and Gemini 2.5, struggle to discriminate non-existent audio due to visually dominated reasoning. Motivated by this observation, we introduce RL-CoMM, a Reinforcement Learning-based Collaborative Multi-MLLM that is built upon the Qwen2.5-Omni foundation. RL-CoMM includes two stages: 1) To alleviate visually dominated ambiguities, we introduce an external model, a Large Audio Language Model (LALM), as the reference model to generate audio-only reasoning. Then, we design a Step-wise Reasoning Reward function that enables MLLMs to self-improve audio-visual reasoning with the audio-only reference. 2) To ensure an accurate answer prediction, we introduce Answer-centered Confidence Optimization to reduce the uncertainty of potential heterogeneous reasoning differences. Extensive experiments on audio-visual question answering and audio-visual hallucination show that RL-CoMM improves the accuracy by 10~30\% over the baseline model with limited training data. Follow: https://github.com/rikeilong/AVConfusion.
comment: Accepted by AAAI 2026
☆ Image Aesthetic Reasoning via HCM-GRPO: Empowering Compact Model for Superior Performance
The performance of image generation has been significantly improved in recent years. However, the study of image screening is rare and its performance with Multimodal Large Language Models (MLLMs) is unsatisfactory due to the lack of data and the weak image aesthetic reasoning ability in MLLMs. In this work, we propose a complete solution to address these problems in terms of data and methodology. For data, we collect a comprehensive image screening dataset with over 128k samples, about 640k images. Each sample consists of an original image, four generated images. The dataset evaluates the image aesthetic reasoning ability under four aspects: appearance deformation, physical shadow, placement layout, and extension rationality. Regarding data annotation, we investigate multiple approaches, including purely manual, fully automated, and answer-driven annotations, to acquire high-quality chains of thought (CoT) data in the most cost-effective manner. Methodologically, we introduce a Hard Cases Mining (HCM) strategy with a Dynamic Proportional Accuracy (DPA) reward into the Group Relative Policy Optimization (GRPO) framework, called HCM-GRPO. This enhanced method demonstrates superior image aesthetic reasoning capabilities compared to the original GRPO. Our experimental results reveal that even state-of-the-art closed-source MLLMs, such as GPT4o and Qwen-VL-Max, exhibit performance akin to random guessing in image aesthetic reasoning. In contrast, by leveraging the HCM-GRPO, we are able to surpass the scores of both large-scale open-source and leading closed-source models with a much smaller model.
☆ Trapped by Their Own Light: Deployable and Stealth Retroreflective Patch Attacks on Traffic Sign Recognition Systems
Traffic sign recognition plays a critical role in ensuring safe and efficient transportation of autonomous vehicles but remain vulnerable to adversarial attacks using stickers or laser projections. While existing attack vectors demonstrate security concerns, they suffer from visual detectability or implementation constraints, suggesting unexplored vulnerability surfaces in TSR systems. We introduce the Adversarial Retroreflective Patch (ARP), a novel attack vector that combines the high deployability of patch attacks with the stealthiness of laser projections by utilizing retroreflective materials activated only under victim headlight illumination. We develop a retroreflection simulation method and employ black-box optimization to maximize attack effectiveness. ARP achieves $\geq$93.4\% success rate in dynamic scenarios at 35 meters and $\geq$60\% success rate against commercial TSR systems in real-world conditions. Our user study demonstrates that ARP attacks maintain near-identical stealthiness to benign signs while achieving $\geq$1.9\% higher stealthiness scores than previous patch attacks. We propose the DPR Shield defense, employing strategically placed polarized filters, which achieves $\geq$75\% defense success rates for stop signs and speed limit signs against micro-prism patches.
☆ MuSc-V2: Zero-Shot Multimodal Industrial Anomaly Classification and Segmentation with Mutual Scoring of Unlabeled Samples
Zero-shot anomaly classification (AC) and segmentation (AS) methods aim to identify and outline defects without using any labeled samples. In this paper, we reveal a key property that is overlooked by existing methods: normal image patches across industrial products typically find many other similar patches, not only in 2D appearance but also in 3D shapes, while anomalies remain diverse and isolated. To explicitly leverage this discriminative property, we propose a Mutual Scoring framework (MuSc-V2) for zero-shot AC/AS, which flexibly supports single 2D/3D or multimodality. Specifically, our method begins by improving 3D representation through Iterative Point Grouping (IPG), which reduces false positives from discontinuous surfaces. Then we use Similarity Neighborhood Aggregation with Multi-Degrees (SNAMD) to fuse 2D/3D neighborhood cues into more discriminative multi-scale patch features for mutual scoring. The core comprises a Mutual Scoring Mechanism (MSM) that lets samples within each modality to assign score to each other, and Cross-modal Anomaly Enhancement (CAE) that fuses 2D and 3D scores to recover modality-specific missing anomalies. Finally, Re-scoring with Constrained Neighborhood (RsCon) suppresses false classification based on similarity to more representative samples. Our framework flexibly works on both the full dataset and smaller subsets with consistently robust performance, ensuring seamless adaptability across diverse product lines. In aid of the novel framework, MuSc-V2 achieves significant performance improvements: a $\textbf{+23.7\%}$ AP gain on the MVTec 3D-AD dataset and a $\textbf{+19.3\%}$ boost on the Eyecandies dataset, surpassing previous zero-shot benchmarks and even outperforming most few-shot methods. The code will be available at The code will be available at \href{https://github.com/HUST-SLOW/MuSc-V2}{https://github.com/HUST-SLOW/MuSc-V2}.
☆ FreDFT: Frequency Domain Fusion Transformer for Visible-Infrared Object Detection
Visible-infrared object detection has gained sufficient attention due to its detection performance in low light, fog, and rain conditions. However, visible and infrared modalities captured by different sensors exist the information imbalance problem in complex scenarios, which can cause inadequate cross-modal fusion, resulting in degraded detection performance. \textcolor{red}{Furthermore, most existing methods use transformers in the spatial domain to capture complementary features, ignoring the advantages of developing frequency domain transformers to mine complementary information.} To solve these weaknesses, we propose a frequency domain fusion transformer, called FreDFT, for visible-infrared object detection. The proposed approach employs a novel multimodal frequency domain attention (MFDA) to mine complementary information between modalities and a frequency domain feed-forward layer (FDFFL) via a mixed-scale frequency feature fusion strategy is designed to better enhance multimodal features. To eliminate the imbalance of multimodal information, a cross-modal global modeling module (CGMM) is constructed to perform pixel-wise inter-modal feature interaction in a spatial and channel manner. Moreover, a local feature enhancement module (LFEM) is developed to strengthen multimodal local feature representation and promote multimodal feature fusion by using various convolution layers and applying a channel shuffle. Extensive experimental results have verified that our proposed FreDFT achieves excellent performance on multiple public datasets compared with other state-of-the-art methods. The code of our FreDFT is linked at https://github.com/WenCongWu/FreDFT.
☆ LoG3D: Ultra-High-Resolution 3D Shape Modeling via Local-to-Global Partitioning
Generating high-fidelity 3D contents remains a fundamental challenge due to the complexity of representing arbitrary topologies-such as open surfaces and intricate internal structures-while preserving geometric details. Prevailing methods based on signed distance fields (SDFs) are hampered by costly watertight preprocessing and struggle with non-manifold geometries, while point-cloud representations often suffer from sampling artifacts and surface discontinuities. To overcome these limitations, we propose a novel 3D variational autoencoder (VAE) framework built upon unsigned distance fields (UDFs)-a more robust and computationally efficient representation that naturally handles complex and incomplete shapes. Our core innovation is a local-to-global (LoG) architecture that processes the UDF by partitioning it into uniform subvolumes, termed UBlocks. This architecture couples 3D convolutions for capturing local detail with sparse transformers for enforcing global coherence. A Pad-Average strategy further ensures smooth transitions at subvolume boundaries during reconstruction. This modular design enables seamless scaling to ultra-high resolutions up to 2048^3-a regime previously unattainable for 3D VAEs. Experiments demonstrate state-of-the-art performance in both reconstruction accuracy and generative quality, yielding superior surface smoothness and geometric flexibility.
comment: 11 pages, 6 figures
☆ DGFusion: Dual-guided Fusion for Robust Multi-Modal 3D Object Detection
As a critical task in autonomous driving perception systems, 3D object detection is used to identify and track key objects, such as vehicles and pedestrians. However, detecting distant, small, or occluded objects (hard instances) remains a challenge, which directly compromises the safety of autonomous driving systems. We observe that existing multi-modal 3D object detection methods often follow a single-guided paradigm, failing to account for the differences in information density of hard instances between modalities. In this work, we propose DGFusion, based on the Dual-guided paradigm, which fully inherits the advantages of the Point-guide-Image paradigm and integrates the Image-guide-Point paradigm to address the limitations of the single paradigms. The core of DGFusion, the Difficulty-aware Instance Pair Matcher (DIPM), performs instance-level feature matching based on difficulty to generate easy and hard instance pairs, while the Dual-guided Modules exploit the advantages of both pair types to enable effective multi-modal feature fusion. Experimental results demonstrate that our DGFusion outperforms the baseline methods, with respective improvements of +1.0\% mAP, +0.8\% NDS, and +1.3\% average recall on nuScenes. Extensive experiments demonstrate consistent robustness gains for hard instance detection across ego-distance, size, visibility, and small-scale training scenarios.
☆ Efficient Automated Diagnosis of Retinopathy of Prematurity by Customize CNN Models
This paper encompasses an in-depth examination of Retinopathy of Prematurity (ROP) diagnosis, employing advanced deep learning methodologies. Our focus centers on refining and evaluating CNN-based approaches for precise and efficient ROP detection. We navigate the complexities of dataset curation, preprocessing strategies, and model architecture, aligning with research objectives encompassing model effectiveness, computational cost analysis, and time complexity assessment. Results underscore the supremacy of tailored CNN models over pre-trained counterparts, evident in heightened accuracy and F1-scores. Implementation of a voting system further enhances performance. Additionally, our study reveals the potential of the proposed customized CNN model to alleviate computational burdens associated with deep neural networks. Furthermore, we showcase the feasibility of deploying these models within dedicated software and hardware configurations, highlighting their utility as valuable diagnostic aids in clinical settings. In summary, our discourse significantly contributes to ROP diagnosis, unveiling the efficacy of deep learning models in enhancing diagnostic precision and efficiency.
☆ Anomagic: Crossmodal Prompt-driven Zero-shot Anomaly Generation
We propose Anomagic, a zero-shot anomaly generation method that produces semantically coherent anomalies without requiring any exemplar anomalies. By unifying both visual and textual cues through a crossmodal prompt encoding scheme, Anomagic leverages rich contextual information to steer an inpainting-based generation pipeline. A subsequent contrastive refinement strategy enforces precise alignment between synthesized anomalies and their masks, thereby bolstering downstream anomaly detection accuracy. To facilitate training, we introduce AnomVerse, a collection of 12,987 anomaly-mask-caption triplets assembled from 13 publicly available datasets, where captions are automatically generated by multimodal large language models using structured visual prompts and template-based textual hints. Extensive experiments demonstrate that Anomagic trained on AnomVerse can synthesize more realistic and varied anomalies than prior methods, yielding superior improvements in downstream anomaly detection. Furthermore, Anomagic can generate anomalies for any normal-category image using user-defined prompts, establishing a versatile foundation model for anomaly generation.
☆ AffordBot: 3D Fine-grained Embodied Reasoning via Multimodal Large Language Models NeurIPS 2025
Effective human-agent collaboration in physical environments requires understanding not only what to act upon, but also where the actionable elements are and how to interact with them. Existing approaches often operate at the object level or disjointedly handle fine-grained affordance reasoning, lacking coherent, instruction-driven grounding and reasoning. In this work, we introduce a new task: Fine-grained 3D Embodied Reasoning, which requires an agent to predict, for each referenced affordance element in a 3D scene, a structured triplet comprising its spatial location, motion type, and motion axis, based on a task instruction. To solve this task, we propose AffordBot, a novel framework that integrates Multimodal Large Language Models (MLLMs) with a tailored chain-of-thought (CoT) reasoning paradigm. To bridge the gap between 3D input and 2D-compatible MLLMs, we render surround-view images of the scene and project 3D element candidates into these views, forming a rich visual representation aligned with the scene geometry. Our CoT pipeline begins with an active perception stage, prompting the MLLM to select the most informative viewpoint based on the instruction, before proceeding with step-by-step reasoning to localize affordance elements and infer plausible interaction motions. Evaluated on the SceneFun3D dataset, AffordBot achieves state-of-the-art performance, demonstrating strong generalization and physically grounded reasoning with only 3D point cloud input and MLLMs.
comment: NeurIPS 2025
☆ MIRNet: Integrating Constrained Graph-Based Reasoning with Pre-training for Diagnostic Medical Imaging AAAI-26
Automated interpretation of medical images demands robust modeling of complex visual-semantic relationships while addressing annotation scarcity, label imbalance, and clinical plausibility constraints. We introduce MIRNet (Medical Image Reasoner Network), a novel framework that integrates self-supervised pre-training with constrained graph-based reasoning. Tongue image diagnosis is a particularly challenging domain that requires fine-grained visual and semantic understanding. Our approach leverages self-supervised masked autoencoder (MAE) to learn transferable visual representations from unlabeled data; employs graph attention networks (GAT) to model label correlations through expert-defined structured graphs; enforces clinical priors via constraint-aware optimization using KL divergence and regularization losses; and mitigates imbalance using asymmetric loss (ASL) and boosting ensembles. To address annotation scarcity, we also introduce TongueAtlas-4K, a comprehensive expert-curated benchmark comprising 4,000 images annotated with 22 diagnostic labels--representing the largest public dataset in tongue analysis. Validation shows our method achieves state-of-the-art performance. While optimized for tongue diagnosis, the framework readily generalizes to broader diagnostic medical imaging tasks.
comment: To appear at AAAI-26
☆ LampQ: Towards Accurate Layer-wise Mixed Precision Quantization for Vision Transformers AAAI 2026
How can we accurately quantize a pre-trained Vision Transformer model? Quantization algorithms compress Vision Transformers (ViTs) into low-bit formats, reducing memory and computation demands with minimal accuracy degradation. However, existing methods rely on uniform precision, ignoring the diverse sensitivity of ViT components to quantization. Metric-based Mixed Precision Quantization (MPQ) is a promising alternative, but previous MPQ methods for ViTs suffer from three major limitations: 1) coarse granularity, 2) mismatch in metric scale across component types, and 3) quantization-unaware bit allocation. In this paper, we propose LampQ (Layer-wise Mixed Precision Quantization for Vision Transformers), an accurate metric-based MPQ method for ViTs to overcome these limitations. LampQ performs layer-wise quantization to achieve both fine-grained control and efficient acceleration, incorporating a type-aware Fisher-based metric to measure sensitivity. Then, LampQ assigns bit-widths optimally through integer linear programming and further updates them iteratively. Extensive experiments show that LampQ provides the state-of-the-art performance in quantizing ViTs pre-trained on various tasks such as image classification, object detection, and zero-shot quantization.
comment: AAAI 2026
☆ DBGroup: Dual-Branch Point Grouping for Weakly Supervised 3D Instance Segmentation
Weakly supervised 3D instance segmentation is essential for 3D scene understanding, especially as the growing scale of data and high annotation costs associated with fully supervised approaches. Existing methods primarily rely on two forms of weak supervision: one-thing-one-click annotations and bounding box annotations, both of which aim to reduce labeling efforts. However, these approaches still encounter limitations, including labor-intensive annotation processes, high complexity, and reliance on expert annotators. To address these challenges, we propose \textbf{DBGroup}, a two-stage weakly supervised 3D instance segmentation framework that leverages scene-level annotations as a more efficient and scalable alternative. In the first stage, we introduce a Dual-Branch Point Grouping module to generate pseudo labels guided by semantic and mask cues extracted from multi-view images. To further improve label quality, we develop two refinement strategies: Granularity-Aware Instance Merging and Semantic Selection and Propagation. The second stage involves multi-round self-training on an end-to-end instance segmentation network using the refined pseudo-labels. Additionally, we introduce an Instance Mask Filter strategy to address inconsistencies within the pseudo labels. Extensive experiments demonstrate that DBGroup achieves competitive performance compared to sparse-point-level supervised 3D instance segmentation methods, while surpassing state-of-the-art scene-level supervised 3D semantic segmentation approaches. Code is available at https://github.com/liuxuexun/DBGroup.
☆ MOBA: A Material-Oriented Backdoor Attack against LiDAR-based 3D Object Detection Systems AAAI 2026
LiDAR-based 3D object detection is widely used in safety-critical systems. However, these systems remain vulnerable to backdoor attacks that embed hidden malicious behaviors during training. A key limitation of existing backdoor attacks is their lack of physical realizability, primarily due to the digital-to-physical domain gap. Digital triggers often fail in real-world settings because they overlook material-dependent LiDAR reflection properties. On the other hand, physically constructed triggers are often unoptimized, leading to low effectiveness or easy detectability.This paper introduces Material-Oriented Backdoor Attack (MOBA), a novel framework that bridges the digital-physical gap by explicitly modeling the material properties of real-world triggers. MOBA tackles two key challenges in physical backdoor design: 1) robustness of the trigger material under diverse environmental conditions, 2) alignment between the physical trigger's behavior and its digital simulation. First, we propose a systematic approach to selecting robust trigger materials, identifying titanium dioxide (TiO_2) for its high diffuse reflectivity and environmental resilience. Second, to ensure the digital trigger accurately mimics the physical behavior of the material-based trigger, we develop a novel simulation pipeline that features: (1) an angle-independent approximation of the Oren-Nayar BRDF model to generate realistic LiDAR intensities, and (2) a distance-aware scaling mechanism to maintain spatial consistency across varying depths. We conduct extensive experiments on state-of-the-art LiDAR-based and Camera-LiDAR fusion models, showing that MOBA achieves a 93.50% attack success rate, outperforming prior methods by over 41%. Our work reveals a new class of physically realizable threats and underscores the urgent need for defenses that account for material-level properties in real-world environments.
comment: Accepted at AAAI 2026 Conference
☆ STELLAR: Scene Text Editor for Low-Resource Languages and Real-World Data AAAI
Scene Text Editing (STE) is the task of modifying text content in an image while preserving its visual style, such as font, color, and background. While recent diffusion-based approaches have shown improvements in visual quality, key limitations remain: lack of support for low-resource languages, domain gap between synthetic and real data, and the absence of appropriate metrics for evaluating text style preservation. To address these challenges, we propose STELLAR (Scene Text Editor for Low-resource LAnguages and Real-world data). STELLAR enables reliable multilingual editing through a language-adaptive glyph encoder and a multi-stage training strategy that first pre-trains on synthetic data and then fine-tunes on real images. We also construct a new dataset, STIPLAR(Scene Text Image Pairs of Low-resource lAnguages and Real-world data), for training and evaluation. Furthermore, we propose Text Appearance Similarity (TAS), a novel metric that assesses style preservation by independently measuring font, color, and background similarity, enabling robust evaluation even without ground truth. Experimental results demonstrate that STELLAR outperforms state-of-the-art models in visual consistency and recognition accuracy, achieving an average TAS improvement of 2.2% across languages over the baselines.
comment: Accepted to AAAI Workshop (Artificial Intelligence with Biased or Scarce Data)
☆ Difference Vector Equalization for Robust Fine-tuning of Vision-Language Models AAAI 2026
Contrastive pre-trained vision-language models, such as CLIP, demonstrate strong generalization abilities in zero-shot classification by leveraging embeddings extracted from image and text encoders. This paper aims to robustly fine-tune these vision-language models on in-distribution (ID) data without compromising their generalization abilities in out-of-distribution (OOD) and zero-shot settings. Current robust fine-tuning methods tackle this challenge by reusing contrastive learning, which was used in pre-training, for fine-tuning. However, we found that these methods distort the geometric structure of the embeddings, which plays a crucial role in the generalization of vision-language models, resulting in limited OOD and zero-shot performance. To address this, we propose Difference Vector Equalization (DiVE), which preserves the geometric structure during fine-tuning. The idea behind DiVE is to constrain difference vectors, each of which is obtained by subtracting the embeddings extracted from the pre-trained and fine-tuning models for the same data sample. By constraining the difference vectors to be equal across various data samples, we effectively preserve the geometric structure. Therefore, we introduce two losses: average vector loss (AVL) and pairwise vector loss (PVL). AVL preserves the geometric structure globally by constraining difference vectors to be equal to their weighted average. PVL preserves the geometric structure locally by ensuring a consistent multimodal alignment. Our experiments demonstrate that DiVE effectively preserves the geometric structure, achieving strong results across ID, OOD, and zero-shot metrics.
comment: Accepted by AAAI 2026
☆ Equivariant Sampling for Improving Diffusion Model-based Image Restoration
Recent advances in generative models, especially diffusion models, have significantly improved image restoration (IR) performance. However, existing problem-agnostic diffusion model-based image restoration (DMIR) methods face challenges in fully leveraging diffusion priors, resulting in suboptimal performance. In this paper, we address the limitations of current problem-agnostic DMIR methods by analyzing their sampling process and providing effective solutions. We introduce EquS, a DMIR method that imposes equivariant information through dual sampling trajectories. To further boost EquS, we propose the Timestep-Aware Schedule (TAS) and introduce EquS$^+$. TAS prioritizes deterministic steps to enhance certainty and sampling efficiency. Extensive experiments on benchmarks demonstrate that our method is compatible with previous problem-agnostic DMIR methods and significantly boosts their performance without increasing computational costs. Our code is available at https://github.com/FouierL/EquS.
comment: 12 pages, 9 figures
☆ Robust Object Detection with Pseudo Labels from VLMs using Per-Object Co-teaching
Foundation models, especially vision-language models (VLMs), offer compelling zero-shot object detection for applications like autonomous driving, a domain where manual labelling is prohibitively expensive. However, their detection latency and tendency to hallucinate predictions render them unsuitable for direct deployment. This work introduces a novel pipeline that addresses this challenge by leveraging VLMs to automatically generate pseudo-labels for training efficient, real-time object detectors. Our key innovation is a per-object co-teaching-based training strategy that mitigates the inherent noise in VLM-generated labels. The proposed per-object coteaching approach filters noisy bounding boxes from training instead of filtering the entire image. Specifically, two YOLO models learn collaboratively, filtering out unreliable boxes from each mini-batch based on their peers' per-object loss values. Overall, our pipeline provides an efficient, robust, and scalable approach to train high-performance object detectors for autonomous driving, significantly reducing reliance on costly human annotation. Experimental results on the KITTI dataset demonstrate that our method outperforms a baseline YOLOv5m model, achieving a significant mAP@0.5 boost ($31.12\%$ to $46.61\%$) while maintaining real-time detection latency. Furthermore, we show that supplementing our pseudo-labelled data with a small fraction of ground truth labels ($10\%$) leads to further performance gains, reaching $57.97\%$ mAP@0.5 on the KITTI dataset. We observe similar performance improvements for the ACDC and BDD100k datasets.
☆ Beyond Cosine Similarity Magnitude-Aware CLIP for No-Reference Image Quality Assessment
Recent efforts have repurposed the Contrastive Language-Image Pre-training (CLIP) model for No-Reference Image Quality Assessment (NR-IQA) by measuring the cosine similarity between the image embedding and textual prompts such as "a good photo" or "a bad photo." However, this semantic similarity overlooks a critical yet underexplored cue: the magnitude of the CLIP image features, which we empirically find to exhibit a strong correlation with perceptual quality. In this work, we introduce a novel adaptive fusion framework that complements cosine similarity with a magnitude-aware quality cue. Specifically, we first extract the absolute CLIP image features and apply a Box-Cox transformation to statistically normalize the feature distribution and mitigate semantic sensitivity. The resulting scalar summary serves as a semantically-normalized auxiliary cue that complements cosine-based prompt matching. To integrate both cues effectively, we further design a confidence-guided fusion scheme that adaptively weighs each term according to its relative strength. Extensive experiments on multiple benchmark IQA datasets demonstrate that our method consistently outperforms standard CLIP-based IQA and state-of-the-art baselines, without any task-specific training.
☆ TSPE-GS: Probabilistic Depth Extraction for Semi-Transparent Surface Reconstruction via 3D Gaussian Splatting AAAI26
3D Gaussian Splatting offers a strong speed-quality trade-off but struggles to reconstruct semi-transparent surfaces because most methods assume a single depth per pixel, which fails when multiple surfaces are visible. We propose TSPE-GS (Transparent Surface Probabilistic Extraction for Gaussian Splatting), which uniformly samples transmittance to model a pixel-wise multi-modal distribution of opacity and depth, replacing the prior single-peak assumption and resolving cross-surface depth ambiguity. By progressively fusing truncated signed distance functions, TSPE-GS reconstructs external and internal surfaces separately within a unified framework. The method generalizes to other Gaussian-based reconstruction pipelines without extra training overhead. Extensive experiments on public and self-collected semi-transparent and opaque datasets show TSPE-GS significantly improves semi-transparent geometry reconstruction while maintaining performance on opaque scenes.
comment: AAAI26 Poster
☆ AdaptViG: Adaptive Vision GNN with Exponential Decay Gating WACV 2026
Vision Graph Neural Networks (ViGs) offer a new direction for advancements in vision architectures. While powerful, ViGs often face substantial computational challenges stemming from their graph construction phase, which can hinder their efficiency. To address this issue we propose AdaptViG, an efficient and powerful hybrid Vision GNN that introduces a novel graph construction mechanism called Adaptive Graph Convolution. This mechanism builds upon a highly efficient static axial scaffold and a dynamic, content-aware gating strategy called Exponential Decay Gating. This gating mechanism selectively weighs long-range connections based on feature similarity. Furthermore, AdaptViG employs a hybrid strategy, utilizing our efficient gating mechanism in the early stages and a full Global Attention block in the final stage for maximum feature aggregation. Our method achieves a new state-of-the-art trade-off between accuracy and efficiency among Vision GNNs. For instance, our AdaptViG-M achieves 82.6% top-1 accuracy, outperforming ViG-B by 0.3% while using 80% fewer parameters and 84% fewer GMACs. On downstream tasks, AdaptViG-M obtains 45.8 mIoU, 44.8 APbox, and 41.1 APmask, surpassing the much larger EfficientFormer-L7 by 0.7 mIoU, 2.2 APbox, and 2.1 APmask, respectively, with 78% fewer parameters.
comment: Accepted in 2026 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2026)
☆ Debiased Dual-Invariant Defense for Adversarially Robust Person Re-Identification AAAI 2026
Person re-identification (ReID) is a fundamental task in many real-world applications such as pedestrian trajectory tracking. However, advanced deep learning-based ReID models are highly susceptible to adversarial attacks, where imperceptible perturbations to pedestrian images can cause entirely incorrect predictions, posing significant security threats. Although numerous adversarial defense strategies have been proposed for classification tasks, their extension to metric learning tasks such as person ReID remains relatively unexplored. Moreover, the several existing defenses for person ReID fail to address the inherent unique challenges of adversarially robust ReID. In this paper, we systematically identify the challenges of adversarial defense in person ReID into two key issues: model bias and composite generalization requirements. To address them, we propose a debiased dual-invariant defense framework composed of two main phases. In the data balancing phase, we mitigate model bias using a diffusion-model-based data resampling strategy that promotes fairness and diversity in training data. In the bi-adversarial self-meta defense phase, we introduce a novel metric adversarial training approach incorporating farthest negative extension softening to overcome the robustness degradation caused by the absence of classifier. Additionally, we introduce an adversarially-enhanced self-meta mechanism to achieve dual-generalization for both unseen identities and unseen attack types. Experiments demonstrate that our method significantly outperforms existing state-of-the-art defenses.
comment: Accepted by AAAI 2026
☆ Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers AAAI
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ MosaicDoc: A Large-Scale Bilingual Benchmark for Visually Rich Document Understanding
Despite the rapid progress of Vision-Language Models (VLMs), their capabilities are inadequately assessed by existing benchmarks, which are predominantly English-centric, feature simplistic layouts, and support limited tasks. Consequently, they fail to evaluate model performance for Visually Rich Document Understanding (VRDU), a critical challenge involving complex layouts and dense text. To address this, we introduce DocWeaver, a novel multi-agent pipeline that leverages Large Language Models to automatically generate a new benchmark. The result is MosaicDoc, a large-scale, bilingual (Chinese and English) resource designed to push the boundaries of VRDU. Sourced from newspapers and magazines, MosaicDoc features diverse and complex layouts (including multi-column and non-Manhattan), rich stylistic variety from 196 publishers, and comprehensive multi-task annotations (OCR, VQA, reading order, and localization). With 72K images and over 600K QA pairs, MosaicDoc serves as a definitive benchmark for the field. Our extensive evaluation of state-of-the-art models on this benchmark reveals their current limitations in handling real-world document complexity and charts a clear path for future research.
☆ Simulating Distribution Dynamics: Liquid Temporal Feature Evolution for Single-Domain Generalized Object Detection
In this paper, we focus on Single-Domain Generalized Object Detection (Single-DGOD), aiming to transfer a detector trained on one source domain to multiple unknown domains. Existing methods for Single-DGOD typically rely on discrete data augmentation or static perturbation methods to expand data diversity, thereby mitigating the lack of access to target domain data. However, in real-world scenarios such as changes in weather or lighting conditions, domain shifts often occur continuously and gradually. Discrete augmentations and static perturbations fail to effectively capture the dynamic variation of feature distributions, thereby limiting the model's ability to perceive fine-grained cross-domain differences. To this end, we propose a new method, Liquid Temporal Feature Evolution, which simulates the progressive evolution of features from the source domain to simulated latent distributions by incorporating temporal modeling and liquid neural network-driven parameter adjustment. Specifically, we introduce controllable Gaussian noise injection and multi-scale Gaussian blurring to simulate initial feature perturbations, followed by temporal modeling and a liquid parameter adjustment mechanism to generate adaptive modulation parameters, enabling a smooth and continuous adaptation across domains. By capturing progressive cross-domain feature evolution and dynamically regulating adaptation paths, our method bridges the source-unknown domain distribution gap, significantly boosting generalization and robustness to unseen shifts. Significant performance improvements on the Diverse Weather dataset and Real-to-Art benchmark demonstrate the superiority of our method. Our code is available at https://github.com/2490o/LTFE.
☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data bootstrap problem-design strategies from the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our method achieves an average improvement of 2.5% and generalizes to both language and vision-language models. Moreover, a solver trained on the synthesized data provides improved rewards for continued generator training, enabling co-evolution and yielding a further 0.7% performance gain. Our code will be made publicly available here.
☆ PRISM: Diversifying Dataset Distillation by Decoupling Architectural Priors
Dataset distillation (DD) promises compact yet faithful synthetic data, but existing approaches often inherit the inductive bias of a single teacher model. As dataset size increases, this bias drives generation toward overly smooth, homogeneous samples, reducing intra-class diversity and limiting generalization. We present PRISM (PRIors from diverse Source Models), a framework that disentangles architectural priors during synthesis. PRISM decouples the logit-matching and regularization objectives, supervising them with different teacher architectures: a primary model for logits and a stochastic subset for batch-normalization (BN) alignment. On ImageNet-1K, PRISM consistently and reproducibly outperforms single-teacher methods (e.g., SRe2L) and recent multi-teacher variants (e.g., G-VBSM) at low- and mid-IPC regimes. The generated data also show significantly richer intra-class diversity, as reflected by a notable drop in cosine similarity between features. We further analyze teacher selection strategies (pre- vs. intra-distillation) and introduce a scalable cross-class batch formation scheme for fast parallel synthesis. Code will be released after the review period.
☆ EgoEMS: A High-Fidelity Multimodal Egocentric Dataset for Cognitive Assistance in Emergency Medical Services AAAI 2026
Emergency Medical Services (EMS) are critical to patient survival in emergencies, but first responders often face intense cognitive demands in high-stakes situations. AI cognitive assistants, acting as virtual partners, have the potential to ease this burden by supporting real-time data collection and decision making. In pursuit of this vision, we introduce EgoEMS, the first end-to-end, high-fidelity, multimodal, multiperson dataset capturing over 20 hours of realistic, procedural EMS activities from an egocentric view in 233 simulated emergency scenarios performed by 62 participants, including 46 EMS professionals. Developed in collaboration with EMS experts and aligned with national standards, EgoEMS is captured using an open-source, low-cost, and replicable data collection system and is annotated with keysteps, timestamped audio transcripts with speaker diarization, action quality metrics, and bounding boxes with segmentation masks. Emphasizing realism, the dataset includes responder-patient interactions reflecting real-world emergency dynamics. We also present a suite of benchmarks for real-time multimodal keystep recognition and action quality estimation, essential for developing AI support tools for EMS. We hope EgoEMS inspires the research community to push the boundaries of intelligent EMS systems and ultimately contribute to improved patient outcomes.
comment: Accepted to AAAI 2026 (Preprint), 45 pages, 29 figures
♻ ☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
comment: v2: added DeiT, added ablation vs simple copy-paste
♻ ☆ Interpretable and Granular Video-Based Quantification of Motor Characteristics from the Finger Tapping Test in Parkinson Disease
Accurately quantifying motor characteristics in Parkinson disease (PD) is crucial for monitoring disease progression and optimizing treatment strategies. The finger-tapping test is a standard motor assessment. Clinicians visually evaluate a patient's tapping performance and assign an overall severity score based on tapping amplitude, speed, and irregularity. However, this subjective evaluation is prone to inter- and intra-rater variability, and does not offer insights into individual motor characteristics captured during this test. This paper introduces a granular computer vision-based method for quantifying PD motor characteristics from video recordings. Four sets of clinically relevant features are proposed to characterize hypokinesia, bradykinesia, sequence effect, and hesitation-halts. We evaluate our approach on video recordings and clinical evaluations of 74 PD patients from the Personalized Parkinson Project. Principal component analysis with varimax rotation shows that the video-based features corresponded to the four deficits. Additionally, video-based analysis has allowed us to identify further granular distinctions within sequence effect and hesitation-halts deficits. In the following, we have used these features to train machine learning classifiers to estimate the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) finger-tapping score. Compared to state-of-the-art approaches, our method achieves a higher accuracy in MDS-UPDRS score prediction, while still providing an interpretable quantification of individual finger-tapping motor characteristics. In summary, the proposed framework provides a practical solution for the objective assessment of PD motor characteristics, that can potentially be applied in both clinical and remote settings. Future work is needed to assess its responsiveness to symptomatic treatment and disease progression.
♻ ☆ Enhanced Structured Lasso Pruning with Class-wise Information
Modern applications require lightweight neural network models. Most existing neural network pruning methods focus on removing unimportant filters; however, these may result in the loss of statistical information after pruning due to failing to consider the class-wise information. In this paper, we employ the structured lasso from the perspective of utilizing precise class-wise information for model pruning with the help of Information Bottleneck theory, which guides us to ensure the retention of statistical information before and after pruning. With these techniques, we propose two novel adaptive network pruning schemes in parallel: sparse graph-structured lasso pruning with Information Bottleneck (sGLP-IB) and sparse tree-guided lasso pruning with Information Bottleneck (sTLP-IB). The key component is that we prune the model filters utilizing sGLP-IB and sTLP-IB with more precise structured class-wise relatedness. Compared to multiple state-of-the-art methods, our approaches achieve the best performance across three datasets and six model structures on extensive experiments. For example, with the VGG16 model based on the CIFAR-10 dataset, we can reduce the parameters by 85%, decrease the FLOPs by 61%, and maintain an accuracy of 94.10% (0.14% better than the original). For large-scale ImageNet, we can reduce the parameters by 55% while keeping the accuracy at 76.12% (only drop 0.03%) using the ResNet architecture. In summary, we succeed in reducing the model size and computational resource usage while maintaining the effectiveness of accuracy.
comment: 11 pages, 3 figures
♻ ☆ Towards Consistent and Efficient Dataset Distillation via Diffusion-Driven Selection
Dataset distillation provides an effective approach to reduce memory and computational costs by optimizing a compact dataset that achieves performance comparable to the full original. However, for large-scale datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the vast optimization space hinders distillation effectiveness, limiting practical applications. Recent methods leverage pre-trained diffusion models to directly generate informative images, thereby bypassing pixel-level optimization and achieving promising results. Nonetheless, these approaches often suffer from distribution shifts between the pre-trained diffusion prior and target datasets, as well as the need for multiple distillation steps under varying settings. To overcome these challenges, we propose a novel framework that is orthogonal to existing diffusion-based distillation techniques by utilizing the diffusion prior for patch selection rather than generation. Our method predicts noise from the diffusion model conditioned on input images and optional text prompts (with or without label information), and computes the associated loss for each image-patch pair. Based on the loss differences, we identify distinctive regions within the original images. Furthermore, we apply intra-class clustering and ranking on the selected patches to enforce diversity constraints. This streamlined pipeline enables a one-step distillation process. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art methods across various metrics and settings.
♻ ☆ Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Deep neural networks (DNNs) are vulnerable to adversarial examples, in which DNNs are misled to false outputs due to inputs containing imperceptible perturbations. Adversarial training, a reliable and effective method of defense, may significantly reduce the vulnerability of neural networks and becomes the de facto standard for robust learning. While many recent works practice the data-centric philosophy, such as how to generate better adversarial examples or use generative models to produce additional training data, we look back to the models themselves and revisit the adversarial robustness from the perspective of deep feature distribution as an insightful complementarity. In this paper, we propose \textit{Branch Orthogonality adveRsarial Training} (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training. To practice our design idea of integrating multiple orthogonal solution spaces, we leverage a simple multi-branch neural network and propose a corresponding loss function, branch-orthogonal loss, to make each solution space of the multi-branch model orthogonal. We evaluate our approach on CIFAR-10, CIFAR-100 and SVHN against $\ell_{\infty}$ norm-bounded perturbations of size $ε= 8/255$, respectively. Exhaustive experiments are conducted to show that our method goes beyond all state-of-the-art methods without any tricks. Compared to all methods that do not use additional data for training, our models achieve 67.3\% and 41.5\% robust accuracy on CIFAR-10 and CIFAR-100 (improving upon the state-of-the-art by +7.23\% and +9.07\%).
comment: Camera-ready version for ICPADS 2025
♻ ☆ Drifting Away from Truth: GenAI-Driven News Diversity Challenges LVLM-Based Misinformation Detection
The proliferation of multimodal misinformation poses growing threats to public discourse and societal trust. While Large Vision-Language Models (LVLMs) have enabled recent progress in multimodal misinformation detection (MMD), the rise of generative AI (GenAI) tools introduces a new challenge: GenAI-driven news diversity, characterized by highly varied and complex content. We show that this diversity induces multi-level drift, comprising (1) model-level misperception drift, where stylistic variations disrupt a model's internal reasoning, and (2) evidence-level drift, where expression diversity degrades the quality or relevance of retrieved external evidence. These drifts significantly degrade the robustness of current LVLM-based MMD systems. To systematically study this problem, we introduce DriftBench, a large-scale benchmark comprising 16,000 news instances across six categories of diversification. We design three evaluation tasks: (1) robustness of truth verification under multi-level drift; (2) susceptibility to adversarial evidence contamination generated by GenAI; and (3) analysis of reasoning consistency across diverse inputs. Experiments with six state-of-the-art LVLM-based detectors show substantial performance drops (average F1 -14.8%) and increasingly unstable reasoning traces, with even more severe failures under adversarial evidence injection. Our findings uncover fundamental vulnerabilities in existing MMD systems and suggest an urgent need for more resilient approaches in the GenAI era.
♻ ☆ vMFCoOp: Towards Equilibrium on a Unified Hyperspherical Manifold for Prompting Biomedical VLMs AAAI 2026
Recent advances in context optimization (CoOp) guided by large language model (LLM)-distilled medical semantic priors offer a scalable alternative to manual prompt engineering and full fine-tuning for adapting biomedical CLIP-based vision-language models (VLMs). However, prompt learning in this context is challenged by semantic misalignment between LLMs and CLIP variants due to divergent training corpora and model architectures; it further lacks scalability across continuously evolving families of foundation models. More critically, pairwise multimodal alignment via conventional Euclidean-space optimization lacks the capacity to model unified representations or apply localized geometric constraints, which tends to amplify modality gaps in complex biomedical imaging and destabilize few-shot adaptation. In this work, we propose vMFCoOp, a framework that inversely estimates von Mises-Fisher (vMF) distributions on a shared Hyperspherical Manifold, aligning semantic biases between arbitrary LLMs and CLIP backbones via Unified Semantic Anchors to achieve robust biomedical prompting and superior few-shot classification. Grounded in three complementary constraints, vMFCoOp demonstrates consistent improvements across 14 medical datasets, 12 medical imaging modalities, and 13 anatomical regions, outperforming state-of-the-art methods in accuracy, generalization, and clinical applicability. This work aims to continuously expand to encompass more downstream applications, and the corresponding resources are intended to be shared through https://github.com/VinyehShaw/UniEqui.
comment: Accepted as an Oral Presentation at AAAI 2026 Main Technical Track (this version is not peer-reviewed; it is the extended version)
♻ ☆ Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Point cloud representation has recently become a research hotspot in the field of computer vision and has been utilized for autonomous vehicles. However, adapting deep learning networks for point cloud data recognition is challenging due to the variability in datasets and sensor technologies. This variability underscores the necessity for adaptive techniques to maintain accuracy under different conditions. In this paper, we present the Multi-View Structural Convolution Network (MSCN) designed for domain-invariant point cloud recognition. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Furthermore, MSCN enhances feature robustness by training with unseen domain point clouds generated from the source domain, enabling the model to acquire domain-invariant representations. Extensive cross-domain experiments demonstrate that MSCN achieves an average accuracy of 82.0%, surpassing the strong baseline PointTransformer by 15.8%, confirming its effectiveness under real-world domain shifts. Our code is available at https://github.com/MLMLab/MSCN.
comment: 16 pages, 6 figures
♻ ☆ Intraoperative 2D/3D Registration via Spherical Similarity Learning and Inference-Time Differentiable Levenberg-Marquardt Optimization WACV 2026
Intraoperative 2D/3D registration aligns preoperative 3D volumes with real-time 2D radiographs, enabling accurate localization of instruments and implants. A recent fully differentiable similarity learning framework approximates geodesic distances on SE(3), expanding the capture range of registration and mitigating the effects of substantial disturbances, but existing Euclidean approximations distort manifold structure and slow convergence. To address these limitations, we explore similarity learning in non-Euclidean spherical feature spaces to better capture and fit complex manifold structure. We extract feature embeddings using a CNN-Transformer encoder, project them into spherical space, and approximate their geodesic distances with Riemannian distances in the bi-invariant SO(4) space. This enables a more expressive and geometrically consistent deep similarity metric, enhancing the ability to distinguish subtle pose differences. During inference, we replace gradient descent with fully differentiable Levenberg-Marquardt optimization to accelerate convergence. Experiments on real and synthetic datasets show superior accuracy in both patient-specific and patient-agnostic scenarios.
comment: WACV 2026 Accepted
♻ ☆ HD$^2$-SSC: High-Dimension High-Density Semantic Scene Completion for Autonomous Driving AAAI 2026
Camera-based 3D semantic scene completion (SSC) plays a crucial role in autonomous driving, enabling voxelized 3D scene understanding for effective scene perception and decision-making. Existing SSC methods have shown efficacy in improving 3D scene representations, but suffer from the inherent input-output dimension gap and annotation-reality density gap, where the 2D planner view from input images with sparse annotated labels leads to inferior prediction of real-world dense occupancy with a 3D stereoscopic view. In light of this, we propose the corresponding High-Dimension High-Density Semantic Scene Completion (HD$^2$-SSC) framework with expanded pixel semantics and refined voxel occupancies. To bridge the dimension gap, a High-dimension Semantic Decoupling module is designed to expand 2D image features along a pseudo third dimension, decoupling coarse pixel semantics from occlusions, and then identify focal regions with fine semantics to enrich image features. To mitigate the density gap, a High-density Occupancy Refinement module is devised with a "detect-and-refine" architecture to leverage contextual geometric and semantic structures for enhanced semantic density with the completion of missing voxels and correction of erroneous ones. Extensive experiments and analyses on the SemanticKITTI and SSCBench-KITTI-360 datasets validate the effectiveness of our HD$^2$-SSC framework.
comment: 10 pages, 6 figures, accepted by AAAI 2026
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Boosting Adversarial Transferability via Ensemble Non-Attention AAAI 2026
Ensemble attacks integrate the outputs of surrogate models with diverse architectures, which can be combined with various gradient-based attacks to improve adversarial transferability. However, previous work shows unsatisfactory attack performance when transferring across heterogeneous model architectures. The main reason is that the gradient update directions of heterogeneous surrogate models differ widely, making it hard to reduce the gradient variance of ensemble models while making the best of individual model. To tackle this challenge, we design a novel ensemble attack, NAMEA, which for the first time integrates the gradients from the non-attention areas of ensemble models into the iterative gradient optimization process. Our design is inspired by the observation that the attention areas of heterogeneous models vary sharply, thus the non-attention areas of ViTs are likely to be the focus of CNNs and vice versa. Therefore, we merge the gradients respectively from the attention and non-attention areas of ensemble models so as to fuse the transfer information of CNNs and ViTs. Specifically, we pioneer a new way of decoupling the gradients of non-attention areas from those of attention areas, while merging gradients by meta-learning. Empirical evaluations on ImageNet dataset indicate that NAMEA outperforms AdaEA and SMER, the state-of-the-art ensemble attacks by an average of 15.0% and 9.6%, respectively. This work is the first attempt to explore the power of ensemble non-attention in boosting cross-architecture transferability, providing new insights into launching ensemble attacks.
comment: 16 pages, 11 figures, accepted by AAAI 2026
♻ ☆ Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Automated visual inspection in medical-device manufacturing faces unique challenges, including extremely low defect rates, limited annotated data, hardware restrictions on production lines, and the need for validated, explainable artificial-intelligence systems. This paper presents two attention-guided autoencoder architectures that address these constraints through complementary anomaly-detection strategies. The first employs a multi-scale structural-similarity (4-MS-SSIM) index for inline inspection, enabling interpretable, real-time defect detection on constrained hardware. The second applies a Mahalanobis-distance analysis of randomly reduced latent features for efficient feature-space monitoring and lifecycle verification. Both approaches share a lightweight backbone optimised for high-resolution imagery for typical manufacturing conditions. Evaluations on the Surface Seal Image (SSI) dataset-representing sterile-barrier packaging inspection-demonstrate that the proposed methods outperform reference baselines, including MOCCA, CPCAE, and RAG-PaDiM, under realistic industrial constraints. Cross-domain validation on the MVTec-Zipper benchmark confirms comparable accuracy to state-of-the-art anomaly-detection methods. The dual-mode framework integrates inline anomaly detection and supervisory monitoring, advancing explainable AI architectures toward greater reliability, observability, and lifecycle monitoring in safety-critical manufacturing environments. To facilitate reproducibility, the source code developed for the experiments has been released in the project repository, while the datasets were obtained from publicly available sources.
comment: 12 pages, 3 figures, 3 tables
♻ ☆ Lane Departure Accident Prevention in Foggy Conditions: A Prior-Guided Dynamic Feature Fusion Transformer Framework for Real-Time Lane Detection
Lane departure accident prevention plays a critical role in enhancing road safety, and lane detection is a core technology to achieve this goal, especially under complex weather conditions. While existing lane detection algorithms perform well under favorable weather conditions, their effectiveness significantly degrades in foggy environments, which increases the risk of traffic accidents. In response to this challenge, we propose PDT-Net, a robust Prior-Guided Dynamic Feature Fusion Transformer framework designed for real-time lane detection in foggy conditions. This framework integrates three key modules: a Global Feature Fusion Module (GFFM) to capture the relationship between local and global features in foggy images, a Dynamic Feature Fusion Module (DFFM) to model the structural and positional relationships of lane instances, and a Prior-Guided Edge Enhancement Module (PEM) to recover lost edge details in foggy environments. Furthermore, we introduce the FoggyLane dataset, a real-world dataset that specifically targets lane detection in foggy conditions, along with two synthesized datasets, FoggyCULane and FoggyTusimple, to address the lack of fog-specific data for lane detection. Extensive experiments show that PDT-Net achieves state-of-the-art performance with F1-scores of 95.04% on FoggyLane, 79.85% on FoggyCULane, and 96.95% on FoggyTusimple. Moreover, with TensorRT acceleration, our method achieves a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capability and robustness in challenging foggy environments. By improving the precision of lane detection, our framework can contribute to active safety warning systems, helping to prevent accidents in foggy conditions.
♻ ☆ SphereDiff: Tuning-free 360° Static and Dynamic Panorama Generation via Spherical Latent Representation AAAI 2026
The increasing demand for AR/VR applications has highlighted the need for high-quality content, such as 360° live wallpapers. However, generating high-quality 360° panoramic contents remains a challenging task due to the severe distortions introduced by equirectangular projection (ERP). Existing approaches either fine-tune pretrained diffusion models on limited ERP datasets or adopt tuning-free methods that still rely on ERP latent representations, often resulting in distracting distortions near the poles. In this paper, we introduce SphereDiff, a novel approach for synthesizing 360° static and live wallpaper with state-of-the-art diffusion models without additional tuning. We define a spherical latent representation that ensures consistent quality across all perspectives, including near the poles. Then, we extend MultiDiffusion to spherical latent representation and propose a dynamic spherical latent sampling method to enable direct use of pretrained diffusion models. Moreover, we introduce distortion-aware weighted averaging to further improve the generation quality. Our method outperforms existing approaches in generating 360° static and live wallpaper, making it a robust solution for immersive AR/VR applications. The code is available here. https://github.com/pmh9960/SphereDiff
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ UniGS: Unified Geometry-Aware Gaussian Splatting for Multimodal Rendering
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
♻ ☆ VADB: A Large-Scale Video Aesthetic Database with Professional and Multi-Dimensional Annotations
Video aesthetic assessment, a vital area in multimedia computing, integrates computer vision with human cognition. Its progress is limited by the lack of standardized datasets and robust models, as the temporal dynamics of video and multimodal fusion challenges hinder direct application of image-based methods. This study introduces VADB, the largest video aesthetic database with 10,490 diverse videos annotated by 37 professionals across multiple aesthetic dimensions, including overall and attribute-specific aesthetic scores, rich language comments and objective tags. We propose VADB-Net, a dual-modal pre-training framework with a two-stage training strategy, which outperforms existing video quality assessment models in scoring tasks and supports downstream video aesthetic assessment tasks. The dataset and source code are available at https://github.com/BestiVictory/VADB.
♻ ☆ STATIC : Surface Temporal Affine for TIme Consistency in Video Monocular Depth Estimation
Video monocular depth estimation is essential for applications such as autonomous driving, AR/VR, and robotics. Recent transformer-based single-image monocular depth estimation models perform well on single images but struggle with depth consistency across video frames. Traditional methods aim to improve temporal consistency using multi-frame temporal modules or prior information like optical flow and camera parameters. However, these approaches face issues such as high memory use, reduced performance with dynamic or irregular motion, and limited motion understanding. We propose STATIC, a novel model that independently learns temporal consistency in static and dynamic area without additional information. A difference mask from surface normals identifies static and dynamic area by measuring directional variance. For static area, the Masked Static (MS) module enhances temporal consistency by focusing on stable regions. For dynamic area, the Surface Normal Similarity (SNS) module aligns areas and enhances temporal consistency by measuring feature similarity between frames. A final refinement integrates the independently learned static and dynamic area, enabling STATIC to achieve temporal consistency across the entire sequence. Our method achieves state-of-the-art video depth estimation on the KITTI and NYUv2 datasets without additional information.
♻ ☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
comment: This paper is being withdrawn because we have identified a significant error in the implementation of our self-supervised clustering approach. Specifically, our feature aggregation step inadvertently leaked temporal information across frames, which violates the core assumption of our training-free method. We sincerely apologize to the research community
♻ ☆ LPLC: A Dataset for License Plate Legibility Classification
Automatic License Plate Recognition (ALPR) faces a major challenge when dealing with illegible license plates (LPs). While reconstruction methods such as super-resolution (SR) have emerged, the core issue of recognizing these low-quality LPs remains unresolved. To optimize model performance and computational efficiency, image pre-processing should be applied selectively to cases that require enhanced legibility. To support research in this area, we introduce a novel dataset comprising 10,210 images of vehicles with 12,687 annotated LPs for legibility classification (the LPLC dataset). The images span a wide range of vehicle types, lighting conditions, and camera/image quality levels. We adopt a fine-grained annotation strategy that includes vehicle- and LP-level occlusions, four legibility categories (perfect, good, poor, and illegible), and character labels for three categories (excluding illegible LPs). As a benchmark, we propose a classification task using three image recognition networks to determine whether an LP image is good enough, requires super-resolution, or is completely unrecoverable. The overall F1 score, which remained below 80% for all three baseline models (ViT, ResNet, and YOLO), together with the analyses of SR and LP recognition methods, highlights the difficulty of the task and reinforces the need for further research. The proposed dataset is publicly available at https://github.com/lmlwojcik/lplc-dataset.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2025
♻ ☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency AAAI2026
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), transforming these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: using only 1,272 unlabeled data, GUI-RCPO achieves 3-6% accuracy improvements across various architectures on ScreenSpot benchmarks. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more data-efficient GUI agents.
comment: [Accepted by AAAI2026] Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
♻ ☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
♻ ☆ TUS-REC2024: A Challenge to Reconstruct 3D Freehand Ultrasound Without External Tracker
Trackerless freehand ultrasound reconstruction aims to reconstruct 3D volumes from sequences of 2D ultrasound images without relying on external tracking systems. By eliminating the need for optical or electromagnetic trackers, this approach offers a low-cost, portable, and widely deployable alternative to more expensive volumetric ultrasound imaging systems, particularly valuable in resource-constrained clinical settings. However, predicting long-distance transformations and handling complex probe trajectories remain challenging. The TUS-REC2024 Challenge establishes the first benchmark for trackerless 3D freehand ultrasound reconstruction by providing a large publicly available dataset, along with a baseline model and a rigorous evaluation framework. By the submission deadline, the Challenge had attracted 43 registered teams, of which 6 teams submitted 21 valid dockerized solutions. The submitted methods span a wide range of approaches, including the state space model, the recurrent model, the registration-driven volume refinement, the attention mechanism, and the physics-informed model. This paper provides a comprehensive background introduction and literature review in the field, presents an overview of the challenge design and dataset, and offers a comparative analysis of submitted methods across multiple evaluation metrics. These analyses highlight both the progress and the current limitations of state-of-the-art approaches in this domain and provide insights for future research directions. All data and code are publicly available to facilitate ongoing development and reproducibility. As a live and evolving benchmark, it is designed to be continuously iterated and improved. The Challenge was held at MICCAI 2024 and is organised again at MICCAI 2025, reflecting its sustained commitment to advancing this field.
♻ ☆ Remodeling Semantic Relationships in Vision-Language Fine-Tuning
Vision-language fine-tuning has emerged as an efficient paradigm for constructing multimodal foundation models. While textual context often highlights semantic relationships within an image, existing fine-tuning methods typically overlook this information when aligning vision and language, thus leading to suboptimal performance. Toward solving this problem, we propose a method that can improve multimodal alignment and fusion based on both semantics and relationships.Specifically, we first extract multilevel semantic features from different vision encoder to capture more visual cues of the relationships. Then, we learn to project the vision features to group related semantics, among which are more likely to have relationships. Finally, we fuse the visual features with the textual by using inheritable cross-attention, where we globally remove the redundant visual relationships by discarding visual-language feature pairs with low correlation. We evaluate our proposed method on eight foundation models and two downstream tasks, visual question answering and image captioning, and show that it outperforms all existing methods.
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ Generating Attribute-Aware Human Motions from Textual Prompt AAAI 2026
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes-such as age, gender, weight, and height-which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware motion generation. Extensive experiments validate our model's effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ LayerPeeler: Autoregressive Peeling for Layer-wise Image Vectorization
Image vectorization is a powerful technique that converts raster images into vector graphics, enabling enhanced flexibility and interactivity. However, popular image vectorization tools struggle with occluded regions, producing incomplete or fragmented shapes that hinder editability. While recent advancements have explored optimization-based and learning-based layer-wise image vectorization, these methods face limitations in vectorization quality and flexibility. In this paper, we introduce LayerPeeler, a novel layer-wise image vectorization approach that addresses these challenges through a progressive simplification paradigm. The key to LayerPeeler's success lies in its autoregressive peeling strategy: by identifying and removing the topmost non-occluded layers while recovering underlying content, we generate vector graphics with complete paths and coherent layer structures. Our method leverages vision-language models to construct a layer graph that captures occlusion relationships among elements, enabling precise detection and description for non-occluded layers. These descriptive captions are used as editing instructions for a finetuned image diffusion model to remove the identified layers. To ensure accurate removal, we employ localized attention control that precisely guides the model to target regions while faithfully preserving the surrounding content. To support this, we contribute a large-scale dataset specifically designed for layer peeling tasks. Extensive quantitative and qualitative experiments demonstrate that LayerPeeler significantly outperforms existing techniques, producing vectorization results with superior path semantics, geometric regularity, and visual fidelity.
comment: Project Page: https://layerpeeler.github.io/
♻ ☆ Seeing the Unseen in Low-light Spike Streams
Spike camera, a type of neuromorphic sensor with high-temporal resolution, shows great promise for high-speed visual tasks. Unlike traditional cameras, spike camera continuously accumulates photons and fires asynchronous spike streams. Due to unique data modality, spike streams require reconstruction methods to become perceptible to the human eye. However, lots of methods struggle to handle spike streams in low-light high-speed scenarios due to severe noise and sparse information. In this work, we propose Diff-SPK, a diffusion-based reconstruction method. Diff-SPK effectively leverages generative priors to supplement texture information under diverse low-light conditions. Specifically, it first employs an Enhanced Texture from Inter-spike Interval (ETFI) to aggregate sparse information from low-light spike streams. Then, the encoded ETFI by a suitable encoder serve as the input of ControlNet for high-speed scenes generation. To improve the quality of results, we introduce an ETFI-based feature fusion module during the generation process.
♻ ☆ ImageSet2Text: Describing Sets of Images through Text
In the era of large-scale visual data, understanding collections of images is a challenging yet important task. To this end, we introduce ImageSet2Text, a novel method to automatically generate natural language descriptions of image sets. Based on large language models, visual-question answering chains, an external lexical graph, and CLIP-based verification, ImageSet2Text iteratively extracts key concepts from image subsets and organizes them into a structured concept graph. We conduct extensive experiments evaluating the quality of the generated descriptions in terms of accuracy, completeness, and user satisfaction. We also examine the method's behavior through ablation studies, scalability assessments, and failure analyses. Results demonstrate that ImageSet2Text combines data-driven AI and symbolic representations to reliably summarize large image collections for a wide range of applications.
♻ ☆ A Bayesian Approach to Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios, such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground-truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data include label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. However, Bayesian inference for such spatially correlated discrete variables is notoriously intractable. To overcome this fundamental challenge, we introduce a novel class of probabilistic models, which we term the ELBO-Computable Correlated Discrete Distribution (ECCD). By representing the discrete dependencies through a continuous latent Gaussian field with a Kac-Murdock-Szegö (KMS) structured covariance, our framework enables scalable and efficient variational inference for problems previously considered computationally prohibitive. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
♻ ☆ RangeSAM: On the Potential of Visual Foundation Models for Range-View represented LiDAR segmentation
Point cloud segmentation is central to autonomous driving and 3D scene understanding. While voxel- and point-based methods dominate recent research due to their compatibility with deep architectures and ability to capture fine-grained geometry, they often incur high computational cost, irregular memory access, and limited real-time efficiency. In contrast, range-view methods, though relatively underexplored - can leverage mature 2D semantic segmentation techniques for fast and accurate predictions. Motivated by the rapid progress in Visual Foundation Models (VFMs) for captioning, zero-shot recognition, and multimodal tasks, we investigate whether SAM2, the current state-of-the-art VFM for segmentation tasks, can serve as a strong backbone for LiDAR point cloud segmentation in the range view. We present , to our knowledge, the first range-view framework that adapts SAM2 to 3D segmentation, coupling efficient 2D feature extraction with standard projection/back-projection to operate on point clouds. To optimize SAM2 for range-view representations, we implement several architectural modifications to the encoder: (1) a novel module that emphasizes horizontal spatial dependencies inherent in LiDAR range images, (2) a customized configuration of tailored to the geometric properties of spherical projections, and (3) an adapted mechanism in the encoder backbone specifically designed to capture the unique spatial patterns and discontinuities present in range-view pseudo-images. Our approach achieves competitive performance on SemanticKITTI while benefiting from the speed, scalability, and deployment simplicity of 2D-centric pipelines. This work highlights the viability of VFMs as general-purpose backbones for 3D perception and opens a path toward unified, foundation-model-driven LiDAR segmentation. Results lets us conclude that range-view segmentation methods using VFMs leads to promising results.
♻ ☆ Temporal Zoom Networks: Distance Regression and Continuous Depth for Efficient Action Localization
Temporal action localization requires both precise boundary detection and computational efficiency. Current methods apply uniform computation across all temporal positions, wasting resources on easy boundaries while struggling with ambiguous ones. We address this through two complementary innovations: Boundary Distance Regression (BDR), which replaces classification-based boundary detection with signed-distance regression achieving 3.3--16.7$\times$ lower variance; and Adaptive Temporal Refinement (ATR), which allocates transformer depth continuously ($τ\in[0,1]$) to concentrate computation near difficult boundaries. On THUMOS14, our method achieves 56.5\% mAP@0.7 and 58.2\% average mAP@[0.3:0.7] with 151G FLOPs, using 36\% fewer FLOPs than ActionFormer++ (55.7\% mAP@0.7 at 235G). Compared to uniform baselines, we achieve +2.9\% mAP@0.7 (+1.8\% avg mAP, 5.4\% relative) with 24\% fewer FLOPs and 29\% lower latency, with particularly strong gains on short actions (+4.2\%, 8.6\% relative). Training requires 1.29$\times$ baseline FLOPs, but this one-time cost is amortized over many inference runs; knowledge distillation further reduces this to 1.1$\times$ while retaining 99.5\% accuracy. Our contributions include: (i) a theoretically-grounded distance formulation with information-theoretic analysis showing optimal variance scaling; (ii) a continuous depth allocation mechanism avoiding discrete routing complexity; and (iii) consistent improvements across four datasets with gains correlating with boundary heterogeneity.
♻ ☆ VasoMIM: Vascular Anatomy-Aware Masked Image Modeling for Vessel Segmentation AAAI
Accurate vessel segmentation in X-ray angiograms is crucial for numerous clinical applications. However, the scarcity of annotated data presents a significant challenge, which has driven the adoption of self-supervised learning (SSL) methods such as masked image modeling (MIM) to leverage large-scale unlabeled data for learning transferable representations. Unfortunately, conventional MIM often fails to capture vascular anatomy because of the severe class imbalance between vessel and background pixels, leading to weak vascular representations. To address this, we introduce Vascular anatomy-aware Masked Image Modeling (VasoMIM), a novel MIM framework tailored for X-ray angiograms that explicitly integrates anatomical knowledge into the pre-training process. Specifically, it comprises two complementary components: anatomy-guided masking strategy and anatomical consistency loss. The former preferentially masks vessel-containing patches to focus the model on reconstructing vessel-relevant regions. The latter enforces consistency in vascular semantics between the original and reconstructed images, thereby improving the discriminability of vascular representations. Empirically, VasoMIM achieves state-of-the-art performance across three datasets. These findings highlight its potential to facilitate X-ray angiogram analysis.
comment: Accepted by the Annual AAAI Conference on Artificial Intelligence (AAAI). Extended version
♻ ☆ Self-Supervised Training For Low Dose CT Reconstruction
Ionizing radiation has been the biggest concern in CT imaging. To reduce the dose level without compromising the image quality, low-dose CT reconstruction has been offered with the availability of compressed sensing based reconstruction methods. Recently, data-driven methods got attention with the rise of deep learning, the availability of high computational power, and big datasets. Deep learning based methods have also been used in low-dose CT reconstruction problem in different manners. Usually, the success of these methods depends on labeled data. However, recent studies showed that training can be achieved successfully with noisy datasets. In this study, we defined a training scheme to use low-dose sinograms as their own training targets. We applied the self-supervision principle in the projection domain where the noise is element-wise independent which is a requirement for self-supervised training methods. Using the self-supervised training, the filtering part of the FBP method and the parameters of a denoiser neural network are optimized. We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods qualitatively and quantitatively in the reconstruction of analytic CT phantoms and real-world CT images in low-dose CT reconstruction task.
♻ ☆ LLM-Guided Probabilistic Fusion for Label-Efficient Document Layout Analysis
Document layout understanding remains data-intensive despite advances in semi-supervised learning. We present a framework that enhances semi-supervised detection by fusing visual predictions with structural priors from text-pretrained LLMs via principled probabilistic weighting. Given unlabeled documents, an OCR-LLM pipeline infers hierarchical regions which are combined with teacher detector outputs through inverse-variance fusion to generate refined pseudo-labels.Our method demonstrates consistent gains across model scales. With a lightweight SwiftFormer backbone (26M params), we achieve 88.2$\pm$0.3 AP using only 5\% labels on PubLayNet. When applied to document-pretrained LayoutLMv3 (133M params), our fusion framework reaches 89.7$\pm$0.4 AP, surpassing both LayoutLMv3 with standard semi-supervised learning (89.1$\pm$0.4 AP, p=0.02) and matching UDOP~\cite{udop} (89.8 AP) which requires 100M+ pages of multimodal pretraining. This demonstrates that LLM structural priors are complementary to both lightweight and pretrained architectures. Key findings include: (1) learned instance-adaptive gating improves over fixed weights by +0.9 AP with data-dependent PAC bounds correctly predicting convergence; (2) open-source LLMs enable privacy-preserving deployment with minimal loss (Llama-3-70B: 87.1 AP lightweight, 89.4 AP with LayoutLMv3); (3) LLMs provide targeted semantic disambiguation (18.7\% of cases, +3.8 AP gain) beyond simple text heuristics.Total system cost includes \$12 for GPT-4o-mini API or 17 GPU-hours for local Llama-3-70B per 50K pages, amortized across training runs.
♻ ☆ Agent Journey Beyond RGB: Hierarchical Semantic-Spatial Representation Enrichment for Vision-and-Language Navigation AAAI2026
Navigating unseen environments from natural language instructions remains challenging for egocentric agents in Vision-and-Language Navigation (VLN). Humans naturally ground concrete semantic knowledge within spatial layouts during indoor navigation. Although prior work has introduced diverse environment representations to improve reasoning, auxiliary modalities are often naively concatenated with RGB features, which underutilizes each modality's distinct contribution. We propose a hierarchical Semantic Understanding and Spatial Awareness (SUSA) architecture to enable agents to perceive and ground environments at multiple scales. Specifically, the Textual Semantic Understanding (TSU) module supports local action prediction by generating view-level descriptions, capturing fine-grained semantics and narrowing the modality gap between instructions and environments. Complementarily, the Depth Enhanced Spatial Perception (DSP) module incrementally builds a trajectory-level depth exploration map, providing a coarse-grained representation of global spatial layout. Extensive experiments show that the hierarchical representation enrichment of SUSA significantly improves navigation performance over the baseline on discrete VLN benchmarks (REVERIE, R2R, and SOON) and generalizes better to the continuous R2R-CE benchmark.
comment: AAAI2026, I14 pages, 12 figures, 11 tables
♻ ☆ Beyond Frequency: Seeing Subtle Cues Through the Lens of Spatial Decomposition for Fine-Grained Visual Classification
The crux of resolving fine-grained visual classification (FGVC) lies in capturing discriminative and class-specific cues that correspond to subtle visual characteristics. Recently, frequency decomposition/transform based approaches have attracted considerable interests since its appearing discriminative cue mining ability. However, the frequency-domain methods are based on fixed basis functions, lacking adaptability to image content and unable to dynamically adjust feature extraction according to the discriminative requirements of different images. To address this, we propose a novel method for FGVC, named Subtle-Cue Oriented Perception Engine (SCOPE), which adaptively enhances the representational capability of low-level details and high-level semantics in the spatial domain, breaking through the limitations of fixed scales in the frequency domain and improving the flexibility of multi-scale fusion. The core of SCOPE lies in two modules: the Subtle Detail Extractor (SDE), which dynamically enhances subtle details such as edges and textures from shallow features, and the Salient Semantic Refiner (SSR), which learns semantically coherent and structure-aware refinement features from the high-level features guided by the enhanced shallow features. The SDE and SSR are cascaded stage-by-stage to progressively combine local details with global semantics. Extensive experiments demonstrate that our method achieves new state-of-the-art on four popular fine-grained image classification benchmarks.
comment: After supplementary experiments and careful review, minor inconsistencies in prompt template configuration and partial experimental parameter records were identified. To ensure research accuracy, rigor, and reproducibility, we will revise technical descriptions, verify results with standardized parameters, and resubmit a polished version soon. Apologies for any inconvenience
♻ ☆ MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching
Cross-view matching is fundamentally achieved through cross-attention mechanisms. However, matching of high-resolution images remains challenging due to the quadratic complexity and lack of explicit matching constraints in the existing cross-attention. This paper proposes an attention mechanism, MatchAttention, that dynamically matches relative positions. The relative position determines the attention sampling center of the key-value pairs given a query. Continuous and differentiable sliding-window attention sampling is achieved by the proposed BilinearSoftmax. The relative positions are iteratively updated through residual connections across layers by embedding them into the feature channels. Since the relative position is exactly the learning target for cross-view matching, an efficient hierarchical cross-view decoder, MatchDecoder, is designed with MatchAttention as its core component. To handle cross-view occlusions, gated cross-MatchAttention and a consistency-constrained loss are proposed. These two components collectively mitigate the impact of occlusions in both forward and backward passes, allowing the model to focus more on learning matching relationships. When applied to stereo matching, MatchStereo-B ranked 1st in average error on the public Middlebury benchmark and requires only 29ms for KITTI-resolution inference. MatchStereo-T can process 4K UHD images in 0.1 seconds using only 3GB of GPU memory. The proposed models also achieve state-of-the-art performance on KITTI 2012, KITTI 2015, ETH3D, and Spring flow datasets. The combination of high accuracy and low computational complexity makes real-time, high-resolution, and high-accuracy cross-view matching possible. Project page: https://github.com/TingmanYan/MatchAttention.
♻ ☆ Redundant Queries in DETR-Based 3D Detection Methods: Unnecessary and Prunable AAAI 2026
Query-based models are extensively used in 3D object detection tasks, with a wide range of pre-trained checkpoints readily available online. However, despite their popularity, these models often require an excessive number of object queries, far surpassing the actual number of objects to detect. The redundant queries result in unnecessary computational and memory costs. In this paper, we find that not all queries contribute equally -- a significant portion of queries have a much smaller impact compared to others. Based on this observation, we propose an embarrassingly simple approach called Gradually Pruning Queries (GPQ), which prunes queries incrementally based on their classification scores. A key advantage of GPQ is that it requires no additional learnable parameters. It is straightforward to implement in any query-based method, as it can be seamlessly integrated as a fine-tuning step using an existing checkpoint after training. With GPQ, users can easily generate multiple models with fewer queries, starting from a checkpoint with an excessive number of queries. Experiments on various advanced 3D detectors show that GPQ effectively reduces redundant queries while maintaining performance. Using our method, model inference on desktop GPUs can be accelerated by up to 1.35x. Moreover, after deployment on edge devices, it achieves up to a 67.86% reduction in FLOPs and a 65.16% decrease in inference time. The code will be available at https://github.com/iseri27/Gpq.
comment: AAAI 2026
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
♻ ☆ PressTrack-HMR: Pressure-Based Top-Down Multi-Person Global Human Mesh Recovery AAAI-2026
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.
comment: Accepted by AAAI-2026
♻ ☆ TinyDef-DETR: A Transformer-Based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
♻ ☆ Latent Knowledge-Guided Video Diffusion for Scientific Phenomena Generation from a Single Initial Frame
Video diffusion models have achieved impressive results in natural scene generation, yet they struggle to generalize to scientific phenomena such as fluid simulations and meteorological processes, where underlying dynamics are governed by scientific laws. These tasks pose unique challenges, including severe domain gaps, limited training data, and the lack of descriptive language annotations. To handle this dilemma, we extracted the latent scientific phenomena knowledge and further proposed a fresh framework that teaches video diffusion models to generate scientific phenomena from a single initial frame. Particularly, static knowledge is extracted via pre-trained masked autoencoders, while dynamic knowledge is derived from pre-trained optical flow prediction. Subsequently, based on the aligned spatial relations between the CLIP vision and language encoders, the visual embeddings of scientific phenomena, guided by latent scientific phenomena knowledge, are projected to generate the pseudo-language prompt embeddings in both spatial and frequency domains. By incorporating these prompts and fine-tuning the video diffusion model, we enable the generation of videos that better adhere to scientific laws. Extensive experiments on both computational fluid dynamics simulations and real-world typhoon observations demonstrate the effectiveness of our approach, achieving superior fidelity and consistency across diverse scientific scenarios.
♻ ☆ Improving the generalization of gait recognition with limited datasets
Generalized gait recognition remains challenging due to significant domain shifts in viewpoints, appearances, and environments. Mixed-dataset training has recently become a practical route to improve cross-domain robustness, but it introduces underexplored issues: 1) inter-dataset supervision conflicts, which distract identity learning, and 2) redundant or noisy samples, which reduce data efficiency and may reinforce dataset-specific patterns. To address these challenges, we introduce a unified paradigm for cross-dataset gait learning that simultaneously improves motion-signal quality and supervision consistency. We first increase the reliability of training data by suppressing sequences dominated by redundant gait cycles or unstable silhouettes, guided by representation redundancy and prediction uncertainty. This refinement concentrates learning on informative gait dynamics when mixing heterogeneous datasets. In parallel, we stabilize supervision by disentangling metric learning across datasets, forming triplets within each source to prevent destructive cross-domain gradients while preserving transferable identity cues. These components act in synergy to stabilize optimization and strengthen generalization without modifying network architectures or requiring extra annotations. Experiments on CASIA-B, OU-MVLP, Gait3D, and GREW with both GaitBase and DeepGaitV2 backbones consistently show improved cross-domain performance without sacrificing in-domain accuracy. These results demonstrate that data selection and aligning supervision effectively enables scalable mixed-dataset gait learning.
comment: 10 pages, 3 figures
♻ ☆ InterCLIP-MEP: Interactive CLIP and Memory-Enhanced Predictor for Multi-modal Sarcasm Detection
Sarcasm in social media, frequently conveyed through the interplay of text and images, presents significant challenges for sentiment analysis and intention mining. Existing multi-modal sarcasm detection approaches have been shown to excessively depend on superficial cues within the textual modality, exhibiting limited capability to accurately discern sarcasm through subtle text-image interactions. To address this limitation, a novel framework, InterCLIP-MEP, is proposed. This framework integrates Interactive CLIP (InterCLIP), which employs an efficient training strategy to derive enriched cross-modal representations by embedding inter-modal information directly into each encoder, while using approximately 20.6$\times$ fewer trainable parameters compared with existing state-of-the-art (SOTA) methods. Furthermore, a Memory-Enhanced Predictor (MEP) is introduced, featuring a dynamic dual-channel memory mechanism that captures and retains valuable knowledge from test samples during inference, serving as a non-parametric classifier to enhance sarcasm detection robustness. Extensive experiments on MMSD, MMSD2.0, and DocMSU show that InterCLIP-MEP achieves SOTA performance, specifically improving accuracy by 1.08% and F1 score by 1.51% on MMSD2.0. Under distributional shift evaluation, it attains 73.96% accuracy, exceeding its memory-free variant by nearly 10% and the previous SOTA by over 15%, demonstrating superior stability and adaptability. The implementation of InterCLIP-MEP is publicly available at https://github.com/CoderChen01/InterCLIP-MEP.
comment: ACM TOMM; Code and data are available at https://github.com/CoderChen01/InterCLIP-MEP
♻ ☆ ManipDreamer3D : Synthesizing Plausible Robotic Manipulation Video with Occupancy-aware 3D Trajectory
Data scarcity continues to be a major challenge in the field of robotic manipulation. Although diffusion models provide a promising solution for generating robotic manipulation videos, existing methods largely depend on 2D trajectories, which inherently face issues with 3D spatial ambiguity. In this work, we present a novel framework named ManipDreamer3D for generating plausible 3D-aware robotic manipulation videos from the input image and the text instruction. Our method combines 3D trajectory planning with a reconstructed 3D occupancy map created from a third-person perspective, along with a novel trajectory-to-video diffusion model. Specifically, ManipDreamer3D first reconstructs the 3D occupancy representation from the input image and then computes an optimized 3D end-effector trajectory, minimizing path length while avoiding collisions. Next, we employ a latent editing technique to create video sequences from the initial image latent and the optimized 3D trajectory. This process conditions our specially trained trajectory-to-video diffusion model to produce robotic pick-and-place videos. Our method generates robotic videos with autonomously planned plausible 3D trajectories, significantly reducing human intervention requirements. Experimental results demonstrate superior visual quality compared to existing methods.
comment: 7pages; 7figures; 3 tables
♻ ☆ Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation AAAI 2026
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision.
comment: Accepted to the AAAI 2026 Student Abstract and Poster Program
♻ ☆ Image-based Outlier Synthesis With Training Data SC
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has focused instead largely on relatively easier (conventional) cases. Even the few recent works addressing these challenging cases rely on carefully curated or synthesized outliers, ultimately requiring external data. This motivates our central research question: ``Can we innovate OOD detection training framework for fine-grained and spurious settings \textbf{without requiring any external data at all?}" In this work, we present a unified \textbf{A}pproach to \textbf{S}purious, fine-grained, and \textbf{C}onventional \textbf{OOD D}etection (\textbf{\ASCOOD}) that eliminates the reliance on external data. First, we synthesize virtual outliers from ID data by approximating the destruction of invariant features. Specifically, we propose to add gradient attribution values to ID inputs to disrupt invariant features while amplifying true-class logit, thereby synthesizing challenging near-manifold virtual outliers. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers. For this, we further propose to leverage standardized features with z-score normalization. ASCOOD effectively mitigates impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across \textbf{7} datasets and and comparisons with \textbf{30+} methods demonstrate merit of ASCOOD in spurious, fine-grained and conventional settings.
comment: Code: https://github.com/sudarshanregmi/ASCOOD/
♻ ☆ Mitigating Perception Bias: A Training-Free Approach to Enhance LMM for Image Quality Assessment
Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitably leads to a heavy reliance on image semantics when those LMMs are forced for quality rating. In this paper, instead of retraining or tuning an LMM costly, we propose a training-free debiasing framework, in which the image quality prediction is rectified by mitigating the bias caused by image semantics. Specifically, we first explore several semantic-preserving distortions that can significantly degrade image quality while maintaining identifiable semantics. By applying these specific distortions to the query or test images, we ensure that the degraded images are recognized as poor quality while their semantics mainly remain. During quality inference, both a query image and its corresponding degraded version are fed to the LMM along with a prompt indicating that the query image quality should be inferred under the condition that the degraded one is deemed poor quality. This prior condition effectively aligns the LMM's quality perception, as all degraded images are consistently rated as poor quality, regardless of their semantic variance. Finally, the quality scores of the query image inferred under different prior conditions (degraded versions) are aggregated using a conditional probability model. Extensive experiments on various IQA datasets show that our debiasing framework could consistently enhance the LMM performance.
♻ ☆ Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +3.78 pp top-1 accuracy gain for ViT-B on ImageNet-1k.
comment: 27 pages, maybe final final version
♻ ☆ LISA: A Layer-wise Integration and Suppression Approach for Hallucination Mitigation in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) excel in vision-language tasks such as image captioning but remain prone to object hallucinations, where they describe objects that do not appear in the image. To mitigate this, we propose LISA, a Layer-wise Integration and Suppression Approach. LISA leverages the layer-wise functional roles in MLLMs: shallow layers provide visual grounding, middle layers encode semantics, and deep layers tend to amplify spurious signals. First, layer-wise spectral modulation stabilizes attention by suppressing over-amplified activations in deeper layers while preserving alignment cues in earlier layers. Second, token-level logits from selected layers are fused via anchor-based routing, with token-wise anchor selection and soft logit fusion enabling adaptive integration during decoding. LISA is fully plug-and-play and can be seamlessly integrated into existing MLLMs, including Qwen2.5-VL. Experiments on multiple benchmarks show that LISA reduces hallucinations by up to 53.6% in $\text{CHAIR}_\text{I}$ and improves POPE F1 by up to 5.1%, demonstrating strong generalization across models and tasks. Our code is available at https://github.com/zhlisa1010-eng/LISA.
♻ ☆ Generating Physically Stable and Buildable Brick Structures from Text
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
comment: Project page: https://avalovelace1.github.io/BrickGPT/
♻ ☆ Cameras as Relative Positional Encoding
Transformers are increasingly prevalent for multi-view computer vision tasks, where geometric relationships between viewpoints are critical for 3D perception. To leverage these relationships, multi-view transformers must use camera geometry to ground visual tokens in 3D space. In this work, we compare techniques for conditioning transformers on cameras: token-level raymap encodings, attention-level relative pose encodings, and a new relative encoding we propose -- Projective Positional Encoding (PRoPE) -- that captures complete camera frustums, both intrinsics and extrinsics, as a relative positional encoding. Our experiments begin by showing how relative camera conditioning improves performance in feedforward novel view synthesis, with further gains from PRoPE. This holds across settings: scenes with both shared and varying intrinsics, when combining token- and attention-level conditioning, and for generalization to inputs with out-of-distribution sequence lengths and camera intrinsics. We then verify that these benefits persist for different tasks, stereo depth estimation and discriminative spatial cognition, as well as larger model sizes.
comment: Project Page: https://www.liruilong.cn/prope/
♻ ☆ Zero-Shot Referring Expression Comprehension via Vison-Language True/False Verification
Referring Expression Comprehension (REC) is usually addressed with task-trained grounding models. We show that a zero-shot workflow, without any REC-specific training, can achieve competitive or superior performance. Our approach reformulates REC as box-wise visual-language verification: given proposals from a COCO-clean generic detector (YOLO-World), a general-purpose VLM independently answers True/False queries for each region. This simple procedure reduces cross-box interference, supports abstention and multiple matches, and requires no fine-tuning. On RefCOCO, RefCOCO+, and RefCOCOg, our method not only surpasses a zero-shot GroundingDINO baseline but also exceeds reported results for GroundingDINO trained on REC and GroundingDINO+CRG. Controlled studies with identical proposals confirm that verification significantly outperforms selection-based prompting, and results hold with open VLMs. Overall, we show that workflow design, rather than task-specific pretraining, drives strong zero-shot REC performance.
♻ ☆ Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals
Interpretability is crucial for machine learning algorithms in high-stakes medical applications. However, high-performing neural networks typically cannot explain their predictions. Post-hoc explanation methods provide a way to understand neural networks but have been shown to suffer from conceptual problems. Moreover, current research largely focuses on providing local explanations for individual samples rather than global explanations for the model itself. In this paper, we propose Attri-Net, an inherently interpretable model for multi-label classification that provides local and global explanations. Attri-Net first counterfactually generates class-specific attribution maps to highlight the disease evidence, then performs classification with logistic regression classifiers based solely on the attribution maps. Local explanations for each prediction can be obtained by interpreting the attribution maps weighted by the classifiers' weights. Global explanation of whole model can be obtained by jointly considering learned average representations of the attribution maps for each class (called the class centers) and the weights of the linear classifiers. To ensure the model is ``right for the right reason", we further introduce a mechanism to guide the model's explanations to align with human knowledge. Our comprehensive evaluations show that Attri-Net can generate high-quality explanations consistent with clinical knowledge while not sacrificing classification performance.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:028
♻ ☆ Understanding while Exploring: Semantics-driven Active Mapping
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
♻ ☆ Mitigating Multimodal Hallucinations via Gradient-based Self-Reflection
Multimodal large language models achieve strong performance across diverse tasks but remain prone to hallucinations, where outputs are not grounded in visual inputs. This issue can be attributed to two main biases: text-visual bias, the overreliance on prompts and prior outputs, and co-occurrence bias, spurious correlations between frequently paired objects. We propose Gradient-based Influence-Aware Constrained Decoding (GACD), an inference-based method, that addresses both biases without auxiliary models, and is readily applicable to existing models without finetuning. The core of our approach is bias estimation, which uses first-order Taylor gradients to understand the contribution of individual tokens-visual features and text tokens-to the current output. Based on this analysis, GACD mitigates hallucinations through two components: (1) suppressing spurious visual features correlated with the output objects, and (2) rebalancing cross-modal contributions by strengthening visual features relative to text. Experiments across multiple benchmarks demonstrate that GACD effectively reduces hallucinations and improves the visual grounding of MLLM outputs.
Artificial Intelligence 150
☆ Black-Box On-Policy Distillation of Large Language Models
Black-box distillation creates student large language models (LLMs) by learning from a proprietary teacher model's text outputs alone, without access to its internal logits or parameters. In this work, we introduce Generative Adversarial Distillation (GAD), which enables on-policy and black-box distillation. GAD frames the student LLM as a generator and trains a discriminator to distinguish its responses from the teacher LLM's, creating a minimax game. The discriminator acts as an on-policy reward model that co-evolves with the student, providing stable, adaptive feedback. Experimental results show that GAD consistently surpasses the commonly used sequence-level knowledge distillation. In particular, Qwen2.5-14B-Instruct (student) trained with GAD becomes comparable to its teacher, GPT-5-Chat, on the LMSYS-Chat automatic evaluation. The results establish GAD as a promising and effective paradigm for black-box LLM distillation.
☆ Instella: Fully Open Language Models with Stellar Performance
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks, yet the majority of high-performing models remain closed-source or partially open, limiting transparency and reproducibility. In this work, we introduce Instella, a family of fully open three billion parameter language models trained entirely on openly available data and codebase. Powered by AMD Instinct MI300X GPUs, Instella is developed through large-scale pre-training, general-purpose instruction tuning, and alignment with human preferences. Despite using substantially fewer pre-training tokens than many contemporaries, Instella achieves state-of-the-art results among fully open models and is competitive with leading open-weight models of comparable size. We further release two specialized variants: Instella-Long, capable of handling context lengths up to 128K tokens, and Instella-Math, a reasoning-focused model enhanced through supervised fine-tuning and reinforcement learning on mathematical tasks. Together, these contributions establish Instella as a transparent, performant, and versatile alternative for the community, advancing the goal of open and reproducible language modeling research.
☆ Querying Labeled Time Series Data with Scenario Programs
Simulation-based testing has become a crucial complement to road testing for ensuring the safety of cyber physical systems (CPS). As a result, significant research efforts have been directed toward identifying failure scenarios within simulation environments. However, a critical question remains. Are the AV failure scenarios discovered in simulation reproducible on actual systems in the real world? The sim-to-real gap caused by differences between simulated and real sensor data means that failure scenarios identified in simulation might either be artifacts of synthetic sensor data or actual issues that also occur with real sensor data. To address this, an effective approach to validating simulated failure scenarios is to locate occurrences of these scenarios within real-world datasets and verify whether the failure persists on the datasets. To this end, we introduce a formal definition of how labeled time series sensor data can match an abstract scenario, represented as a scenario program using the Scenic probabilistic programming language. We present a querying algorithm that, given a scenario program and a labeled dataset, identifies the subset of data that matches the specified scenario. Our experiment shows that our algorithm is more accurate and orders of magnitude faster in querying scenarios than the state-of-the-art commercial vision large language models, and can scale with the duration of queried time series data.
☆ SSR: Socratic Self-Refine for Large Language Model Reasoning
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.
comment: Preprint; work in progress
☆ Know Your Limits: Entropy Estimation Modeling for Compression and Generalization
Language prediction is constrained by informational entropy intrinsic to language, such that there exists a limit to how accurate any language model can become and equivalently a lower bound to language compression. The most efficient language compression algorithms today are causal (next token prediction) large language models, but the use of these models to form accurate estimates of language entropy is currently computationally infeasible. We introduce encoder-augmented causal decoder model architectures that exhibit superior training efficiency characteristics and achieve higher compression than causal transformers even when trained on modest hardware. We demonstrate how entropy estimates can be obtained on a per-token basis, and show that the generalization of models trained to approach the entropy of their training data necessarily exceeds the generalization of models trained to minimize loss beyond this value. We show empirically that causal models trained to approach but not exceed estimated per-token entropies exhibit greater generalization than models trained without taking entropy into account.
☆ Towards an Agentic Workflow for Internet Measurement Research
Internet measurement research faces an accessibility crisis: complex analyses require custom integration of multiple specialized tools that demands specialized domain expertise. When network disruptions occur, operators need rapid diagnostic workflows spanning infrastructure mapping, routing analysis, and dependency modeling. However, developing these workflows requires specialized knowledge and significant manual effort. We present ArachNet, the first system demonstrating that LLM agents can independently generate measurement workflows that mimics expert reasoning. Our core insight is that measurement expertise follows predictable compositional patterns that can be systematically automated. ArachNet operates through four specialized agents that mirror expert workflow, from problem decomposition to solution implementation. We validate ArachNet with progressively challenging Internet resilience scenarios. The system independently generates workflows that match expert-level reasoning and produce analytical outputs similar to specialist solutions. Generated workflows handle complex multi-framework integration that traditionally requires days of manual coordination. ArachNet lowers barriers to measurement workflow composition by automating the systematic reasoning process that experts use, enabling broader access to sophisticated measurement capabilities while maintaining the technical rigor required for research-quality analysis.
☆ Regular Games -- an Automata-Based General Game Playing Language AAAI 2026
We propose a new General Game Playing (GGP) system called Regular Games (RG). The main goal of RG is to be both computationally efficient and convenient for game design. The system consists of several languages. The core component is a low-level language that defines the rules by a finite automaton. It is minimal with only a few mechanisms, which makes it easy for automatic processing (by agents, analysis, optimization, etc.). The language is universal for the class of all finite turn-based games with imperfect information. Higher-level languages are introduced for game design (by humans or Procedural Content Generation), which are eventually translated to a low-level language. RG generates faster forward models than the current state of the art, beating other GGP systems (Regular Boardgames, Ludii) in terms of efficiency. Additionally, RG's ecosystem includes an editor with LSP, automaton visualization, benchmarking tools, and a debugger of game description transformations.
comment: Full version of AAAI 2026 paper
☆ Mined Prompting and Metadata-Guided Generation for Wound Care Visual Question Answering
The rapid expansion of asynchronous remote care has intensified provider workload, creating demand for AI systems that can assist clinicians in managing patient queries more efficiently. The MEDIQA-WV 2025 shared task addresses this challenge by focusing on generating free-text responses to wound care queries paired with images. In this work, we present two complementary approaches developed for the English track. The first leverages a mined prompting strategy, where training data is embedded and the top-k most similar examples are retrieved to serve as few-shot demonstrations during generation. The second approach builds on a metadata ablation study, which identified four metadata attributes that consistently enhance response quality. We train classifiers to predict these attributes for test cases and incorporate them into the generation pipeline, dynamically adjusting outputs based on prediction confidence. Experimental results demonstrate that mined prompting improves response relevance, while metadata-guided generation further refines clinical precision. Together, these methods highlight promising directions for developing AI-driven tools that can provide reliable and efficient wound care support.
comment: 2 figures, 11 pages
☆ Textual understanding boost in the WikiRace
The WikiRace game, where players navigate between Wikipedia articles using only hyperlinks, serves as a compelling benchmark for goal-directed search in complex information networks. This paper presents a systematic evaluation of navigation strategies for this task, comparing agents guided by graph-theoretic structure (betweenness centrality), semantic meaning (language model embeddings), and hybrid approaches. Through rigorous benchmarking on a large Wikipedia subgraph, we demonstrate that a purely greedy agent guided by the semantic similarity of article titles is overwhelmingly effective. This strategy, when combined with a simple loop-avoidance mechanism, achieved a perfect success rate and navigated the network with an efficiency an order of magnitude better than structural or hybrid methods. Our findings highlight the critical limitations of purely structural heuristics for goal-directed search and underscore the transformative potential of large language models to act as powerful, zero-shot semantic navigators in complex information spaces.
☆ Evaluating Prompting Strategies with MedGemma for Medical Order Extraction
The accurate extraction of medical orders from doctor-patient conversations is a critical task for reducing clinical documentation burdens and ensuring patient safety. This paper details our team submission to the MEDIQA-OE-2025 Shared Task. We investigate the performance of MedGemma, a new domain-specific open-source language model, for structured order extraction. We systematically evaluate three distinct prompting paradigms: a straightforward one-Shot approach, a reasoning-focused ReAct framework, and a multi-step agentic workflow. Our experiments reveal that while more complex frameworks like ReAct and agentic flows are powerful, the simpler one-shot prompting method achieved the highest performance on the official validation set. We posit that on manually annotated transcripts, complex reasoning chains can lead to "overthinking" and introduce noise, making a direct approach more robust and efficient. Our work provides valuable insights into selecting appropriate prompting strategies for clinical information extraction in varied data conditions.
comment: 2 figures 7 pages
☆ Towards Emotionally Intelligent and Responsible Reinforcement Learning
Personalized decision systems in healthcare and behavioral support often rely on static rule-based or engagement-maximizing heuristics that overlook users' emotional context and ethical constraints. Such approaches risk recommending insensitive or unsafe interventions, especially in domains involving serious mental illness, substance use disorders, or depression. To address this limitation, we propose a Responsible Reinforcement Learning (RRL) framework that integrates emotional and contextual understanding with ethical considerations into the sequential decision-making process. RRL formulates personalization as a Constrained Markov Decision Process (CMDP), where the agent optimizes engagement and adherence while ensuring emotional alignment and ethical safety. We introduce a multi-objective reward function that explicitly balances short-term behavioral engagement with long-term user well-being, and define an emotion-informed state representation that captures fluctuations in emotional readiness, affect, and risk. The proposed architecture can be instantiated with any RL algorithm (e.g., DQN, PPO) augmented with safety constraints or Lagrangian regularization. Conceptually, this framework operationalizes empathy and responsibility within machine learning policy optimization, bridging safe RL, affective computing and responsible AI. We discuss the implications of this approach for human-centric domains such as behavioral health, education, and digital therapeutics, and outline simulation-based validation paths for future empirical work. This paper aims to initiate a methodological conversation about ethically aligned reinforcement learning for emotionally aware and trustworthy personalization systems.
☆ Bi-Level Contextual Bandits for Individualized Resource Allocation under Delayed Feedback AAAI-26
Equitably allocating limited resources in high-stakes domains-such as education, employment, and healthcare-requires balancing short-term utility with long-term impact, while accounting for delayed outcomes, hidden heterogeneity, and ethical constraints. However, most learning-based allocation frameworks either assume immediate feedback or ignore the complex interplay between individual characteristics and intervention dynamics. We propose a novel bi-level contextual bandit framework for individualized resource allocation under delayed feedback, designed to operate in real-world settings with dynamic populations, capacity constraints, and time-sensitive impact. At the meta level, the model optimizes subgroup-level budget allocations to satisfy fairness and operational constraints. At the base level, it identifies the most responsive individuals within each group using a neural network trained on observational data, while respecting cooldown windows and delayed treatment effects modeled via resource-specific delay kernels. By explicitly modeling temporal dynamics and feedback delays, the algorithm continually refines its policy as new data arrive, enabling more responsive and adaptive decision-making. We validate our approach on two real-world datasets from education and workforce development, showing that it achieves higher cumulative outcomes, better adapts to delay structures, and ensures equitable distribution across subgroups. Our results highlight the potential of delay-aware, data-driven decision-making systems to improve institutional policy and social welfare.
comment: Accepted at AAAI-26 (AISI Track). Final version to appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-26), 2026
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
comment: 16 pages, 13 figures, 5 tables
☆ Preview, Accept or Discard? A Predictive Low-Motion Interaction Paradigm
Repetitive strain injury (RSI) affects roughly one in five computer users and remains largely unresolved despite decades of ergonomic mouse redesign. All such devices share a fundamental limitation: they still require fine-motor motion to operate. This work investigates whether predictive, AI-assisted input can reduce that motion by replacing physical pointing with ranked on-screen suggestions. To preserve user agency, we introduce Preview Accept Discard (PAD), a zero-click interaction paradigm that lets users preview predicted GUI targets, cycle through a small set of ranked alternatives, and accept or discard them via key-release timing. We evaluate PAD in two settings: a browser-based email client and a ISO 9241-9 keyboard-prediction task under varying top-3 accuracies. Across both studies, PAD substantially reduces hand motion relative to trackpad use while maintaining comparable task times with the trackpad only when accuracies are similar to those of the best spell-checkers.
☆ Rethinking Science in the Age of Artificial Intelligence
Artificial intelligence (AI) is reshaping how research is conceived, conducted, and communicated across fields from chemistry to biomedicine. This commentary examines how AI is transforming the research workflow. AI systems now help researchers manage the information deluge, filtering the literature, surfacing cross-disciplinary links for ideas and collaborations, generating hypotheses, and designing and executing experiments. These developments mark a shift from AI as a mere computational tool to AI as an active collaborator in science. Yet this transformation demands thoughtful integration and governance. We argue that at this time AI must augment but not replace human judgment in academic workflows such as peer review, ethical evaluation, and validation of results. This paper calls for the deliberate adoption of AI within the scientific practice through policies that promote transparency, reproducibility, and accountability.
☆ Say It Differently: Linguistic Styles as Jailbreak Vectors
Large Language Models (LLMs) are commonly evaluated for robustness against paraphrased or semantically equivalent jailbreak prompts, yet little attention has been paid to linguistic variation as an attack surface. In this work, we systematically study how linguistic styles such as fear or curiosity can reframe harmful intent and elicit unsafe responses from aligned models. We construct style-augmented jailbreak benchmark by transforming prompts from 3 standard datasets into 11 distinct linguistic styles using handcrafted templates and LLM-based rewrites, while preserving semantic intent. Evaluating 16 open- and close-source instruction-tuned models, we find that stylistic reframing increases jailbreak success rates by up to +57 percentage points. Styles such as fearful, curious and compassionate are most effective and contextualized rewrites outperform templated variants. To mitigate this, we introduce a style neutralization preprocessing step using a secondary LLM to strip manipulative stylistic cues from user inputs, significantly reducing jailbreak success rates. Our findings reveal a systemic and scaling-resistant vulnerability overlooked in current safety pipelines.
☆ LOCA-R: Near-Perfect Performance on the Chinese Physics Olympiad 2025
Olympiad-level physics problem-solving presents a significant challenge for both humans and artificial intelligence (AI), as it requires a sophisticated integration of precise calculation, abstract reasoning, and a fundamental grasp of physical principles. The Chinese Physics Olympiad (CPhO), renowned for its complexity and depth, serves as an ideal and rigorous testbed for these advanced capabilities. In this paper, we introduce LOCA-R (LOgical Chain Augmentation for Reasoning), an improved version of the LOCA framework adapted for complex reasoning, and apply it to the CPhO 2025 theory examination. LOCA-R achieves a near-perfect score of 313 out of 320 points, solidly surpassing the highest-scoring human competitor and significantly outperforming all baseline methods.
comment: 19 pages, 3 figures
☆ On the Detectability of Active Gradient Inversion Attacks in Federated Learning
One of the key advantages of Federated Learning (FL) is its ability to collaboratively train a Machine Learning (ML) model while keeping clients' data on-site. However, this can create a false sense of security. Despite not sharing private data increases the overall privacy, prior studies have shown that gradients exchanged during the FL training remain vulnerable to Gradient Inversion Attacks (GIAs). These attacks allow reconstructing the clients' local data, breaking the privacy promise of FL. GIAs can be launched by either a passive or an active server. In the latter case, a malicious server manipulates the global model to facilitate data reconstruction. While effective, earlier attacks falling under this category have been demonstrated to be detectable by clients, limiting their real-world applicability. Recently, novel active GIAs have emerged, claiming to be far stealthier than previous approaches. This work provides the first comprehensive analysis of these claims, investigating four state-of-the-art GIAs. We propose novel lightweight client-side detection techniques, based on statistically improbable weight structures and anomalous loss and gradient dynamics. Extensive evaluation across several configurations demonstrates that our methods enable clients to effectively detect active GIAs without any modifications to the FL training protocol.
☆ Strategic Opponent Modeling with Graph Neural Networks, Deep Reinforcement Learning and Probabilistic Topic Modeling
This paper provides a comprehensive review of mainly Graph Neural Networks, Deep Reinforcement Learning, and Probabilistic Topic Modeling methods with a focus on their potential incorporation in strategic multiagent settings. We draw interest in (i) Machine Learning methods currently utilized for uncovering unknown model structures adaptable to the task of strategic opponent modeling, and (ii) the integration of these methods with Game Theoretic concepts that avoid relying on assumptions often invalid in real-world scenarios, such as the Common Prior Assumption (CPA) and the Self-Interest Hypothesis (SIH). We analyze the ability to handle uncertainty and heterogeneity, two characteristics that are very common in real-world application cases, as well as scalability. As a potential answer to effectively modeling relationships and interactions in multiagent settings, we champion the use of Graph Neural Networks (GNN). Such approaches are designed to operate upon graph-structured data, and have been shown to be a very powerful tool for performing tasks such as node classification and link prediction. Next, we review the domain of Reinforcement Learning (RL), and in particular that of Multiagent Deep Reinforcement Learning (MADRL). Following, we describe existing relevant game theoretic solution concepts and consider properties such as fairness and stability. Our review comes complete with a note on the literature that utilizes PTM in domains other than that of document analysis and classification. The capability of PTM to estimate unknown underlying distributions can help with tackling heterogeneity and unknown agent beliefs. Finally, we identify certain open challenges specifically, the need to (i) fit non-stationary environments, (ii) balance the degrees of stability and adaptation, (iii) tackle uncertainty and heterogeneity, (iv) guarantee scalability and solution tractability.
comment: 26 pages
☆ Utility of Pancreas Surface Lobularity as a CT Biomarker for Opportunistic Screening of Type 2 Diabetes
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease that affects millions of people worldwide. Early detection is crucial as it can alter pancreas function through morphological changes and increased deposition of ectopic fat, eventually leading to organ damage. While studies have shown an association between T2DM and pancreas volume and fat content, the role of increased pancreatic surface lobularity (PSL) in patients with T2DM has not been fully investigated. In this pilot work, we propose a fully automated approach to delineate the pancreas and other abdominal structures, derive CT imaging biomarkers, and opportunistically screen for T2DM. Four deep learning-based models were used to segment the pancreas in an internal dataset of 584 patients (297 males, 437 non-diabetic, age: 45$\pm$15 years). PSL was automatically detected and it was higher for diabetic patients (p=0.01) at 4.26 $\pm$ 8.32 compared to 3.19 $\pm$ 3.62 for non-diabetic patients. The PancAP model achieved the highest Dice score of 0.79 $\pm$ 0.17 and lowest ASSD error of 1.94 $\pm$ 2.63 mm (p$<$0.05). For predicting T2DM, a multivariate model trained with CT biomarkers attained 0.90 AUC, 66.7\% sensitivity, and 91.9\% specificity. Our results suggest that PSL is useful for T2DM screening and could potentially help predict the early onset of T2DM.
comment: Submitted to IEEE ISBI 2026
☆ Proceedings of The third international workshop on eXplainable AI for the Arts (XAIxArts)
This third international workshop on explainable AI for the Arts (XAIxArts) brought together a community of researchers in HCI, Interaction Design, AI, explainable AI (XAI), and digital arts to explore the role of XAI for the Arts. Workshop held at the 17th ACM Conference on Creativity and Cognition (C&C 2025), online.
comment: Proceedings of The second international workshop on eXplainable AI for the Arts (XAIxArts)
☆ Scalable Synthesis of distributed LLM workloads through Symbolic Tensor Graphs
Optimizing the performance of large language models (LLMs) on large-scale AI training and inference systems requires a scalable and expressive mechanism to model distributed workload execution. Such modeling is essential for pre-deployment system-level optimizations (e.g., parallelization strategies) and design-space explorations. While recent efforts have proposed collecting execution traces from real systems, access to large-scale infrastructure remains limited to major cloud providers. Moreover, traces obtained from existing platforms cannot be easily adapted to study future larger-scale system configurations. We introduce Symbolic Tensor grAph GEnerator(STAGE), a framework that synthesizes high-fidelity execution traces to accurately model LLM workloads. STAGE supports a comprehensive set of parallelization strategies, allowing users to systematically explore a wide spectrum of LLM architectures and system configurations. STAGE demonstrates its scalability by synthesizing high-fidelity LLM traces spanning over 32K GPUs, while preserving tensor-level accuracy in compute, memory, and communication. STAGE will be publicly available to facilitate further research in distributed machine learning systems.
☆ Beyond Elicitation: Provision-based Prompt Optimization for Knowledge-Intensive Tasks
While prompt optimization has emerged as a critical technique for enhancing language model performance, existing approaches primarily focus on elicitation-based strategies that search for optimal prompts to activate models' capabilities. These methods exhibit fundamental limitations when addressing knowledge-intensive tasks, as they operate within fixed parametric boundaries rather than providing the factual knowledge, terminology precision, and reasoning patterns required in specialized domains. To address these limitations, we propose Knowledge-Provision-based Prompt Optimization (KPPO), a framework that reformulates prompt optimization as systematic knowledge integration rather than potential elicitation. KPPO introduces three key innovations: 1) a knowledge gap filling mechanism for knowledge gap identification and targeted remediation; 2) a batch-wise candidate evaluation approach that considers both performance improvement and distributional stability; 3) an adaptive knowledge pruning strategy that balances performance and token efficiency, reducing up to 29% token usage. Extensive evaluation on 15 knowledge-intensive benchmarks from various domains demonstrates KPPO's superiority over elicitation-based methods, with an average performance improvement of ~6% over the strongest baseline while achieving comparable or lower token consumption. Code at: https://github.com/xyz9911/KPPO.
comment: 16 pages, 19 figures
☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
☆ Reasoning About Intent for Ambiguous Requests
Large language models often respond to ambiguous requests by implicitly committing to one interpretation. Intent misunderstandings can frustrate users and create safety risks. To address this, we propose generating multiple interpretation-answer pairs in a single structured response to ambiguous requests. Our models are trained with reinforcement learning and customized reward functions using multiple valid answers as supervision. Experiments on conversational question answering and semantic parsing demonstrate that our method achieves higher coverage of valid answers than baseline approaches. Human evaluation confirms that predicted interpretations are highly aligned with their answers. Our approach promotes transparency with explicit interpretations, achieves efficiency by requiring only one generation step, and supports downstream applications through its structured output format.
☆ Non-Monotonic S4F Standpoint Logic
Standpoint logics offer unified modal logic-based formalisms for representing multiple heterogeneous viewpoints. At the same time, many non-monotonic reasoning frameworks can be naturally captured using modal logics, in particular using the modal logic S4F. In this work, we propose a novel formalism called S4F Standpoint Logic, which generalises both S4F and standpoint propositional logic and is therefore capable of expressing multi-viewpoint, non-monotonic semantic commitments. We define its syntax and semantics and analyze its computational complexity, obtaining the result that S4F Standpoint Logic is not computationally harder than its constituent logics, whether in monotonic or non-monotonic form. We also outline mechanisms for credulous and sceptical acceptance and illustrate the framework with an example.
☆ Completion of partial structures using Patterson maps with the CrysFormer machine learning model
Protein structure determination has long been one of the primary challenges of structural biology, to which deep machine learning (ML)-based approaches have increasingly been applied. However, these ML models generally do not incorporate the experimental measurements directly, such as X-ray crystallographic diffraction data. To this end, we explore an approach that more tightly couples these traditional crystallographic and recent ML-based methods, by training a hybrid 3-d vision transformer and convolutional network on inputs from both domains. We make use of two distinct input constructs / Patterson maps, which are directly obtainable from crystallographic data, and ``partial structure'' template maps derived from predicted structures deposited in the AlphaFold Protein Structure Database with subsequently omitted residues. With these, we predict electron density maps that are then post-processed into atomic models through standard crystallographic refinement processes. Introducing an initial dataset of small protein fragments taken from Protein Data Bank entries and placing them in hypothetical crystal settings, we demonstrate that our method is effective at both improving the phases of the crystallographic structure factors and completing the regions missing from partial structure templates, as well as improving the agreement of the electron density maps with the ground truth atomic structures.
comment: 15 pages, accepted at Acta Crystallographic section D
☆ Improving Perturbation-based Explanations by Understanding the Role of Uncertainty Calibration NeurIPS 2025
Perturbation-based explanations are widely utilized to enhance the transparency of machine-learning models in practice. However, their reliability is often compromised by the unknown model behavior under the specific perturbations used. This paper investigates the relationship between uncertainty calibration - the alignment of model confidence with actual accuracy - and perturbation-based explanations. We show that models systematically produce unreliable probability estimates when subjected to explainability-specific perturbations and theoretically prove that this directly undermines global and local explanation quality. To address this, we introduce ReCalX, a novel approach to recalibrate models for improved explanations while preserving their original predictions. Empirical evaluations across diverse models and datasets demonstrate that ReCalX consistently reduces perturbation-specific miscalibration most effectively while enhancing explanation robustness and the identification of globally important input features.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Preference Elicitation for Step-Wise Explanations in Logic Puzzles
Step-wise explanations can explain logic puzzles and other satisfaction problems by showing how to derive decisions step by step. Each step consists of a set of constraints that derive an assignment to one or more decision variables. However, many candidate explanation steps exist, with different sets of constraints and different decisions they derive. To identify the most comprehensible one, a user-defined objective function is required to quantify the quality of each step. However, defining a good objective function is challenging. Here, interactive preference elicitation methods from the wider machine learning community can offer a way to learn user preferences from pairwise comparisons. We investigate the feasibility of this approach for step-wise explanations and address several limitations that distinguish it from elicitation for standard combinatorial problems. First, because the explanation quality is measured using multiple sub-objectives that can vary a lot in scale, we propose two dynamic normalization techniques to rescale these features and stabilize the learning process. We also observed that many generated comparisons involve similar explanations. For this reason, we introduce MACHOP (Multi-Armed CHOice Perceptron), a novel query generation strategy that integrates non-domination constraints with upper confidence bound-based diversification. We evaluate the elicitation techniques on Sudokus and Logic-Grid puzzles using artificial users, and validate them with a real-user evaluation. In both settings, MACHOP consistently produces higher-quality explanations than the standard approach.
☆ Using Certifying Constraint Solvers for Generating Step-wise Explanations AAAI 2026
In the field of Explainable Constraint Solving, it is common to explain to a user why a problem is unsatisfiable. A recently proposed method for this is to compute a sequence of explanation steps. Such a step-wise explanation shows individual reasoning steps involving constraints from the original specification, that in the end explain a conflict. However, computing a step-wise explanation is computationally expensive, limiting the scope of problems for which it can be used. We investigate how we can use proofs generated by a constraint solver as a starting point for computing step-wise explanations, instead of computing them step-by-step. More specifically, we define a framework of abstract proofs, in which both proofs and step-wise explanations can be represented. We then propose several methods for converting a proof to a step-wise explanation sequence, with special attention to trimming and simplification techniques to keep the sequence and its individual steps small. Our results show our method significantly speeds up the generation of step-wise explanation sequences, while the resulting step-wise explanation has a quality similar to the current state-of-the-art.
comment: Accepted for publication at AAAI 2026
☆ Generalizing Analogical Inference from Boolean to Continuous Domains AAAI 2026
Analogical reasoning is a powerful inductive mechanism, widely used in human cognition and increasingly applied in artificial intelligence. Formal frameworks for analogical inference have been developed for Boolean domains, where inference is provably sound for affine functions and approximately correct for functions close to affine. These results have informed the design of analogy-based classifiers. However, they do not extend to regression tasks or continuous domains. In this paper, we revisit analogical inference from a foundational perspective. We first present a counterexample showing that existing generalization bounds fail even in the Boolean setting. We then introduce a unified framework for analogical reasoning in real-valued domains based on parameterized analogies defined via generalized means. This model subsumes both Boolean classification and regression, and supports analogical inference over continuous functions. We characterize the class of analogy-preserving functions in this setting and derive both worst-case and average-case error bounds under smoothness assumptions. Our results offer a general theory of analogical inference across discrete and continuous domains.
comment: 11 pages, to appear in AAAI 2026, extended version
☆ Explaining Decentralized Multi-Agent Reinforcement Learning Policies AAAI-26
Multi-Agent Reinforcement Learning (MARL) has gained significant interest in recent years, enabling sequential decision-making across multiple agents in various domains. However, most existing explanation methods focus on centralized MARL, failing to address the uncertainty and nondeterminism inherent in decentralized settings. We propose methods to generate policy summarizations that capture task ordering and agent cooperation in decentralized MARL policies, along with query-based explanations for When, Why Not, and What types of user queries about specific agent behaviors. We evaluate our approach across four MARL domains and two decentralized MARL algorithms, demonstrating its generalizability and computational efficiency. User studies show that our summarizations and explanations significantly improve user question-answering performance and enhance subjective ratings on metrics such as understanding and satisfaction.
comment: Accepted for oral presentation at AAAI-26
☆ nuPlan-R: A Closed-Loop Planning Benchmark for Autonomous Driving via Reactive Multi-Agent Simulation
Recent advances in closed-loop planning benchmarks have significantly improved the evaluation of autonomous vehicles. However, existing benchmarks still rely on rule-based reactive agents such as the Intelligent Driver Model (IDM), which lack behavioral diversity and fail to capture realistic human interactions, leading to oversimplified traffic dynamics. To address these limitations, we present nuPlan-R, a new reactive closed-loop planning benchmark that integrates learning-based reactive multi-agent simulation into the nuPlan framework. Our benchmark replaces the rule-based IDM agents with noise-decoupled diffusion-based reactive agents and introduces an interaction-aware agent selection mechanism to ensure both realism and computational efficiency. Furthermore, we extend the benchmark with two additional metrics to enable a more comprehensive assessment of planning performance. Extensive experiments demonstrate that our reactive agent model produces more realistic, diverse, and human-like traffic behaviors, leading to a benchmark environment that better reflects real-world interactive driving. We further reimplement a collection of rule-based, learning-based, and hybrid planning approaches within our nuPlan-R benchmark, providing a clearer reflection of planner performance in complex interactive scenarios and better highlighting the advantages of learning-based planners in handling complex and dynamic scenarios. These results establish nuPlan-R as a new standard for fair, reactive, and realistic closed-loop planning evaluation. We will open-source the code for the new benchmark.
comment: 8 pages, 3 figures
☆ Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
☆ AgentEvolver: Towards Efficient Self-Evolving Agent System
Autonomous agents powered by large language models (LLMs) have the potential to significantly enhance human productivity by reasoning, using tools, and executing complex tasks in diverse environments. However, current approaches to developing such agents remain costly and inefficient, as they typically require manually constructed task datasets and reinforcement learning (RL) pipelines with extensive random exploration. These limitations lead to prohibitively high data-construction costs, low exploration efficiency, and poor sample utilization. To address these challenges, we present AgentEvolver, a self-evolving agent system that leverages the semantic understanding and reasoning capabilities of LLMs to drive autonomous agent learning. AgentEvolver introduces three synergistic mechanisms: (i) self-questioning, which enables curiosity-driven task generation in novel environments, reducing dependence on handcrafted datasets; (ii) self-navigating, which improves exploration efficiency through experience reuse and hybrid policy guidance; and (iii) self-attributing, which enhances sample efficiency by assigning differentiated rewards to trajectory states and actions based on their contribution. By integrating these mechanisms into a unified framework, AgentEvolver enables scalable, cost-effective, and continual improvement of agent capabilities. Preliminary experiments indicate that AgentEvolver achieves more efficient exploration, better sample utilization, and faster adaptation compared to traditional RL-based baselines.
☆ Enhancing Kernel Power K-means: Scalable and Robust Clustering with Random Fourier Features and Possibilistic Method
Kernel power $k$-means (KPKM) leverages a family of means to mitigate local minima issues in kernel $k$-means. However, KPKM faces two key limitations: (1) the computational burden of the full kernel matrix restricts its use on extensive data, and (2) the lack of authentic centroid-sample assignment learning reduces its noise robustness. To overcome these challenges, we propose RFF-KPKM, introducing the first approximation theory for applying random Fourier features (RFF) to KPKM. RFF-KPKM employs RFF to generate efficient, low-dimensional feature maps, bypassing the need for the whole kernel matrix. Crucially, we are the first to establish strong theoretical guarantees for this combination: (1) an excess risk bound of $\mathcal{O}(\sqrt{k^3/n})$, (2) strong consistency with membership values, and (3) a $(1+\varepsilon)$ relative error bound achievable using the RFF of dimension $\mathrm{poly}(\varepsilon^{-1}\log k)$. Furthermore, to improve robustness and the ability to learn multiple kernels, we propose IP-RFF-MKPKM, an improved possibilistic RFF-based multiple kernel power $k$-means. IP-RFF-MKPKM ensures the scalability of MKPKM via RFF and refines cluster assignments by combining the merits of the possibilistic membership and fuzzy membership. Experiments on large-scale datasets demonstrate the superior efficiency and clustering accuracy of the proposed methods compared to the state-of-the-art alternatives.
☆ MonkeyOCR v1.5 Technical Report: Unlocking Robust Document Parsing for Complex Patterns
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage parsing pipeline. The first stage employs a large multimodal model to jointly predict document layout and reading order, leveraging visual information to ensure structural and sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios.
☆ Simulating Misinformation Propagation in Social Networks using Large Language Models CIKM 2025
Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model large language model (LLM) personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.
comment: Accepted to CIKM 2025 Workshop LASS
☆ SHRUG-FM: Reliability-Aware Foundation Models for Earth Observation
Geospatial foundation models for Earth observation often fail to perform reliably in environments underrepresented during pretraining. We introduce SHRUG-FM, a framework for reliability-aware prediction that integrates three complementary signals: out-of-distribution (OOD) detection in the input space, OOD detection in the embedding space and task-specific predictive uncertainty. Applied to burn scar segmentation, SHRUG-FM shows that OOD scores correlate with lower performance in specific environmental conditions, while uncertainty-based flags help discard many poorly performing predictions. Linking these flags to land cover attributes from HydroATLAS shows that failures are not random but concentrated in certain geographies, such as low-elevation zones and large river areas, likely due to underrepresentation in pretraining data. SHRUG-FM provides a pathway toward safer and more interpretable deployment of GFMs in climate-sensitive applications, helping bridge the gap between benchmark performance and real-world reliability.
☆ DermAI: Clinical dermatology acquisition through quality-driven image collection for AI classification in mobile
AI-based dermatology adoption remains limited by biased datasets, variable image quality, and limited validation. We introduce DermAI, a lightweight, smartphone-based application that enables real-time capture, annotation, and classification of skin lesions during routine consultations. Unlike prior dermoscopy-focused tools, DermAI performs on-device quality checks, and local model adaptation. The DermAI clinical dataset, encompasses a wide range of skin tones, ethinicity and source devices. In preliminary experiments, models trained on public datasets failed to generalize to our samples, while fine-tuning with local data improved performance. These results highlight the importance of standardized, diverse data collection aligned with healthcare needs and oriented to machine learning development.
comment: 4 pages, 2 figures, 1 table, submitted on ISBI
☆ SITA: A Framework for Structure-to-Instance Theorem Autoformalization
While large language models (LLMs) have shown progress in mathematical reasoning, they still face challenges in formalizing theorems that arise from instantiating abstract structures in concrete settings. With the goal of auto-formalizing mathematical results at the research level, we develop a framework for structure-to-instance theorem autoformalization (SITA), which systematically bridges the gap between abstract mathematical theories and their concrete applications in Lean proof assistant. Formalized abstract structures are treated as modular templates that contain definitions, assumptions, operations, and theorems. These templates serve as reusable guides for the formalization of concrete instances. Given a specific instantiation, we generate corresponding Lean definitions and instance declarations, integrate them using Lean's typeclass mechanism, and construct verified theorems by checking structural assumptions. We incorporate LLM-based generation with feedback-guided refinement to ensure both automation and formal correctness. Experiments on a dataset of optimization problems demonstrate that SITA effectively formalizes diverse instances grounded in abstract structures.
☆ Massively Parallel Proof-Number Search for Impartial Games and Beyond
Proof-Number Search is a best-first search algorithm with many successful applications, especially in game solving. As large-scale computing clusters become increasingly accessible, parallelization is a natural way to accelerate computation. However, existing parallel versions of Proof-Number Search are known to scale poorly on many CPU cores. Using two parallelized levels and shared information among workers, we present the first massively parallel version of Proof-Number Search that scales efficiently even on a large number of CPUs. We apply our solver, enhanced with Grundy numbers for reducing game trees, to the Sprouts game, a case study motivated by the long-standing Sprouts Conjecture. Our solver achieves a significantly improved 332.9$\times$ speedup when run on 1024 cores, enabling it to outperform the state-of-the-art Sprouts solver GLOP by four orders of magnitude in runtime and to generate proofs 1,000$\times$ more complex. Despite exponential growth in game tree size, our solver verified the Sprouts Conjecture for 42 new positions, nearly doubling the number of known outcomes.
☆ BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.
☆ Depth-Consistent 3D Gaussian Splatting via Physical Defocus Modeling and Multi-View Geometric Supervision
Three-dimensional reconstruction in scenes with extreme depth variations remains challenging due to inconsistent supervisory signals between near-field and far-field regions. Existing methods fail to simultaneously address inaccurate depth estimation in distant areas and structural degradation in close-range regions. This paper proposes a novel computational framework that integrates depth-of-field supervision and multi-view consistency supervision to advance 3D Gaussian Splatting. Our approach comprises two core components: (1) Depth-of-field Supervision employs a scale-recovered monocular depth estimator (e.g., Metric3D) to generate depth priors, leverages defocus convolution to synthesize physically accurate defocused images, and enforces geometric consistency through a novel depth-of-field loss, thereby enhancing depth fidelity in both far-field and near-field regions; (2) Multi-View Consistency Supervision employing LoFTR-based semi-dense feature matching to minimize cross-view geometric errors and enforce depth consistency via least squares optimization of reliable matched points. By unifying defocus physics with multi-view geometric constraints, our method achieves superior depth fidelity, demonstrating a 0.8 dB PSNR improvement over the state-of-the-art method on the Waymo Open Dataset. This framework bridges physical imaging principles and learning-based depth regularization, offering a scalable solution for complex depth stratification in urban environments.
☆ Rethinking Visual Information Processing in Multimodal LLMs
Despite the remarkable success of the LLaVA architecture for vision-language tasks, its design inherently struggles to effectively integrate visual features due to the inherent mismatch between text and vision modalities. We tackle this issue from a novel perspective in which the LLM not only serves as a language model but also a powerful vision encoder. To this end, we present LLaViT - Large Language Models as extended Vision Transformers - which enables the LLM to simultaneously function as a vision encoder through three key modifications: (1) learning separate QKV projections for vision modality, (2) enabling bidirectional attention on visual tokens, and (3) incorporating both global and local visual representations. Through extensive controlled experiments on a wide range of LLMs, we demonstrate that LLaViT significantly outperforms the baseline LLaVA method on a multitude of benchmarks, even surpassing models with double its parameter count, establishing a more effective approach to vision-language modeling.
☆ Adaptive Residual-Update Steering for Low-Overhead Hallucination Mitigation in Large Vision Language Models
Large Vision-Language Models (LVLMs) often suffer from object hallucination, generating text inconsistent with visual inputs, which can critically undermine their reliability. Existing inference-time interventions to mitigate this issue present a challenging trade-off: while methods that steer internal states or adjust output logits can be effective, they often incur substantial computational overhead, typically requiring extra forward passes. This efficiency bottleneck can limit their practicality for real-world, latency-sensitive deployments. In this work, we aim to address this trade-off with Residual-Update Directed DEcoding Regulation (RUDDER), a low-overhead framework that steers LVLMs towards visually-grounded generation. RUDDER is built on two key innovations: (1) Contextual Activation Residual Direction (CARD) vector, a per-sample visual evidence vector extracted from the residual update of a self-attention layer during a single, standard forward pass. (2) A Bayesian-inspired adaptive gate that performs token-wise injection, applying a corrective signal whose strength is conditioned on the model's deviation from the visual context. Extensive experiments on key hallucination benchmarks, including POPE and CHAIR, indicate that RUDDER achieves performance comparable to state-of-the-art methods while introducing negligible computational latency, validating RUDDER as a pragmatic and effective approach for improving LVLMs' reliability without a significant compromise on efficiency.
comment: Under review
☆ Beyond Verification: Abductive Explanations for Post-AI Assessment of Privacy Leakage AAAI-26
Privacy leakage in AI-based decision processes poses significant risks, particularly when sensitive information can be inferred. We propose a formal framework to audit privacy leakage using abductive explanations, which identifies minimal sufficient evidence justifying model decisions and determines whether sensitive information disclosed. Our framework formalizes both individual and system-level leakage, introducing the notion of Potentially Applicable Explanations (PAE) to identify individuals whose outcomes can shield those with sensitive features. This approach provides rigorous privacy guarantees while producing human understandable explanations, a key requirement for auditing tools. Experimental evaluation on the German Credit Dataset illustrates how the importance of sensitive literal in the model decision process affects privacy leakage. Despite computational challenges and simplifying assumptions, our results demonstrate that abductive reasoning enables interpretable privacy auditing, offering a practical pathway to reconcile transparency, model interpretability, and privacy preserving in AI decision-making.
comment: Accepted at the Workshop on Post-AI Formal Methods at AAAI-26
☆ Torch-Uncertainty: A Deep Learning Framework for Uncertainty Quantification NeurIPS 2025
Deep Neural Networks (DNNs) have demonstrated remarkable performance across various domains, including computer vision and natural language processing. However, they often struggle to accurately quantify the uncertainty of their predictions, limiting their broader adoption in critical real-world applications. Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge by providing methods to improve the reliability of uncertainty estimates. Although numerous techniques have been proposed, a unified tool offering a seamless workflow to evaluate and integrate these methods remains lacking. To bridge this gap, we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework designed to streamline DNN training and evaluation with UQ techniques and metrics. In this paper, we outline the foundational principles of our library and present comprehensive experimental results that benchmark a diverse set of UQ methods across classification, segmentation, and regression tasks. Our library is available at https://github.com/ENSTA-U2IS-AI/Torch-Uncertainty
comment: NeurIPS 2025 Spotlight
☆ FactGuard: Event-Centric and Commonsense-Guided Fake News Detection AAAI 2026
Fake news detection methods based on writing style have achieved remarkable progress. However, as adversaries increasingly imitate the style of authentic news, the effectiveness of such approaches is gradually diminishing. Recent research has explored incorporating large language models (LLMs) to enhance fake news detection. Yet, despite their transformative potential, LLMs remain an untapped goldmine for fake news detection, with their real-world adoption hampered by shallow functionality exploration, ambiguous usability, and prohibitive inference costs. In this paper, we propose a novel fake news detection framework, dubbed FactGuard, that leverages LLMs to extract event-centric content, thereby reducing the impact of writing style on detection performance. Furthermore, our approach introduces a dynamic usability mechanism that identifies contradictions and ambiguous cases in factual reasoning, adaptively incorporating LLM advice to improve decision reliability. To ensure efficiency and practical deployment, we employ knowledge distillation to derive FactGuard-D, enabling the framework to operate effectively in cold-start and resource-constrained scenarios. Comprehensive experiments on two benchmark datasets demonstrate that our approach consistently outperforms existing methods in both robustness and accuracy, effectively addressing the challenges of style sensitivity and LLM usability in fake news detection.
comment: Accepted by AAAI 2026
☆ Fixed-Persona SLMs with Modular Memory: Scalable NPC Dialogue on Consumer Hardware
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, yet their applicability to dialogue systems in computer games remains limited. This limitation arises from their substantial hardware requirements, latency constraints, and the necessity to maintain clearly defined knowledge boundaries within a game setting. In this paper, we propose a modular NPC dialogue system that leverages Small Language Models (SLMs), fine-tuned to encode specific NPC personas and integrated with runtime-swappable memory modules. These memory modules preserve character-specific conversational context and world knowledge, enabling expressive interactions and long-term memory without retraining or model reloading during gameplay. We comprehensively evaluate our system using three open-source SLMs: DistilGPT-2, TinyLlama-1.1B-Chat, and Mistral-7B-Instruct, trained on synthetic persona-aligned data and benchmarked on consumer-grade hardware. While our approach is motivated by applications in gaming, its modular design and persona-driven memory architecture hold significant potential for broader adoption in domains requiring expressive, scalable, and memory-rich conversational agents, such as virtual assistants, customer support bots, or interactive educational systems.
☆ RoboBenchMart: Benchmarking Robots in Retail Environment
Most existing robotic manipulation benchmarks focus on simplified tabletop scenarios, typically involving a stationary robotic arm interacting with various objects on a flat surface. To address this limitation, we introduce RoboBenchMart, a more challenging and realistic benchmark designed for dark store environments, where robots must perform complex manipulation tasks with diverse grocery items. This setting presents significant challenges, including dense object clutter and varied spatial configurations -- with items positioned at different heights, depths, and in close proximity. By targeting the retail domain, our benchmark addresses a setting with strong potential for near-term automation impact. We demonstrate that current state-of-the-art generalist models struggle to solve even common retail tasks. To support further research, we release the RoboBenchMart suite, which includes a procedural store layout generator, a trajectory generation pipeline, evaluation tools and fine-tuned baseline models.
☆ Bidirectional Bounded-Suboptimal Heuristic Search with Consistent Heuristics
Recent advancements in bidirectional heuristic search have yielded significant theoretical insights and novel algorithms. While most previous work has concentrated on optimal search methods, this paper focuses on bounded-suboptimal bidirectional search, where a bound on the suboptimality of the solution cost is specified. We build upon the state-of-the-art optimal bidirectional search algorithm, BAE*, designed for consistent heuristics, and introduce several variants of BAE* specifically tailored for the bounded-suboptimal context. Through experimental evaluation, we compare the performance of these new variants against other bounded-suboptimal bidirectional algorithms as well as the standard weighted A* algorithm. Our results demonstrate that each algorithm excels under distinct conditions, highlighting the strengths and weaknesses of each approach.
☆ Quality Assurance of LLM-generated Code: Addressing Non-Functional Quality Characteristics
In recent years, LLMs have been widely integrated into software engineering workflows, supporting tasks like code generation. However, while these models often generate functionally correct outputs, we still lack a systematic understanding and evaluation of their non-functional qualities. Existing studies focus mainly on whether generated code passes the tests rather than whether it passes with quality. Guided by the ISO/IEC 25010 quality model, this study conducted three complementary investigations: a systematic review of 108 papers, two industry workshops with practitioners from multiple organizations, and an empirical analysis of patching real-world software issues using three LLMs. Motivated by insights from both the literature and practitioners, the empirical study examined the quality of generated patches on security, maintainability, and performance efficiency. Across the literature, we found that security and performance efficiency dominate academic attention, while maintainability and other qualities are understudied. In contrast, industry experts prioritize maintainability and readability, warning that generated code may accelerate the accumulation of technical debt. In our evaluation of functionally correct patches generated by three LLMs, improvements in one quality dimension often come at the cost of others. Runtime and memory results further show high variance across models and optimization strategies. Overall, our findings reveal a mismatch between academic focus, industry priorities, and model performance, highlighting the urgent need to integrate quality assurance mechanisms into LLM code generation pipelines to ensure that future generated code not only passes tests but truly passes with quality.
☆ Causal-HalBench: Uncovering LVLMs Object Hallucinations Through Causal Intervention AAAI
Large Vision-Language Models (LVLMs) often suffer from object hallucination, making erroneous judgments about the presence of objects in images. We propose this primar- ily stems from spurious correlations arising when models strongly associate highly co-occurring objects during train- ing, leading to hallucinated objects influenced by visual con- text. Current benchmarks mainly focus on hallucination de- tection but lack a formal characterization and quantitative evaluation of spurious correlations in LVLMs. To address this, we introduce causal analysis into the object recognition scenario of LVLMs, establishing a Structural Causal Model (SCM). Utilizing the language of causality, we formally de- fine spurious correlations arising from co-occurrence bias. To quantify the influence induced by these spurious correla- tions, we develop Causal-HalBench, a benchmark specifically constructed with counterfactual samples and integrated with comprehensive causal metrics designed to assess model ro- bustness against spurious correlations. Concurrently, we pro- pose an extensible pipeline for the construction of these coun- terfactual samples, leveraging the capabilities of proprietary LVLMs and Text-to-Image (T2I) models for their genera- tion. Our evaluations on mainstream LVLMs using Causal- HalBench demonstrate these models exhibit susceptibility to spurious correlations, albeit to varying extents.
comment: accepted for publication in the Association for the Advancement of Artificial Intelligence (AAAI), 2026
☆ Temporal Properties of Conditional Independence in Dynamic Bayesian Networks
Dynamic Bayesian networks (DBNs) are compact graphical representations used to model probabilistic systems where interdependent random variables and their distributions evolve over time. In this paper, we study the verification of the evolution of conditional-independence (CI) propositions against temporal logic specifications. To this end, we consider two specification formalisms over CI propositions: linear temporal logic (LTL), and non-deterministic Büchi automata (NBAs). This problem has two variants. Stochastic CI properties take the given concrete probability distributions into account, while structural CI properties are viewed purely in terms of the graphical structure of the DBN. We show that deciding if a stochastic CI proposition eventually holds is at least as hard as the Skolem problem for linear recurrence sequences, a long-standing open problem in number theory. On the other hand, we show that verifying the evolution of structural CI propositions against LTL and NBA specifications is in PSPACE, and is NP- and coNP-hard. We also identify natural restrictions on the graphical structure of DBNs that make the verification of structural CI properties tractable.
☆ Beyond Single-Step Updates: Reinforcement Learning of Heuristics with Limited-Horizon Search
Many sequential decision-making problems can be formulated as shortest-path problems, where the objective is to reach a goal state from a given starting state. Heuristic search is a standard approach for solving such problems, relying on a heuristic function to estimate the cost to the goal from any given state. Recent approaches leverage reinforcement learning to learn heuristics by applying deep approximate value iteration. These methods typically rely on single-step Bellman updates, where the heuristic of a state is updated based on its best neighbor and the corresponding edge cost. This work proposes a generalized approach that enhances both state sampling and heuristic updates by performing limited-horizon searches and updating each state's heuristic based on the shortest path to the search frontier, incorporating both edge costs and the heuristic values of frontier states.
☆ MTR-DuplexBench: Towards a Comprehensive Evaluation of Multi-Round Conversations for Full-Duplex Speech Language Models
Full-Duplex Speech Language Models (FD-SLMs) enable real-time, overlapping conversational interactions, offering a more dynamic user experience compared to traditional half-duplex models. However, existing benchmarks primarily focus on evaluating single-round interactions and conversational features, neglecting the complexities of multi-round communication and critical capabilities such as instruction following and safety. Evaluating FD-SLMs in multi-round settings poses significant challenges, including blurred turn boundaries in communication and context inconsistency during model inference. To address these gaps, we introduce MTR-DuplexBench, a novel benchmark that segments continuous full-duplex dialogues into discrete turns, enabling comprehensive, turn-by-turn evaluation of FD-SLMs across dialogue quality, conversational dynamics, instruction following, and safety. Experimental results reveal that current FD-SLMs face difficulties in maintaining consistent performance across multiple rounds and evaluation dimensions, highlighting the necessity and effectiveness of our proposed benchmark. The benchmark and code will be available in the future.
comment: Work in progress
☆ H3Former: Hypergraph-based Semantic-Aware Aggregation via Hyperbolic Hierarchical Contrastive Loss for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) remains a challenging task due to subtle inter-class differences and large intra-class variations. Existing approaches typically rely on feature-selection mechanisms or region-proposal strategies to localize discriminative regions for semantic analysis. However, these methods often fail to capture discriminative cues comprehensively while introducing substantial category-agnostic redundancy. To address these limitations, we propose H3Former, a novel token-to-region framework that leverages high-order semantic relations to aggregate local fine-grained representations with structured region-level modeling. Specifically, we propose the Semantic-Aware Aggregation Module (SAAM), which exploits multi-scale contextual cues to dynamically construct a weighted hypergraph among tokens. By applying hypergraph convolution, SAAM captures high-order semantic dependencies and progressively aggregates token features into compact region-level representations. Furthermore, we introduce the Hyperbolic Hierarchical Contrastive Loss (HHCL), which enforces hierarchical semantic constraints in a non-Euclidean embedding space. The HHCL enhances inter-class separability and intra-class consistency while preserving the intrinsic hierarchical relationships among fine-grained categories. Comprehensive experiments conducted on four standard FGVC benchmarks validate the superiority of our H3Former framework.
☆ Workload Schedulers -- Genesis, Algorithms and Differences
This paper presents a novel approach to categorization of modern workload schedulers. We provide descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems.
☆ Heuristic Transformer: Belief Augmented In-Context Reinforcement Learning
Transformers have demonstrated exceptional in-context learning (ICL) capabilities, enabling applications across natural language processing, computer vision, and sequential decision-making. In reinforcement learning, ICL reframes learning as a supervised problem, facilitating task adaptation without parameter updates. Building on prior work leveraging transformers for sequential decision-making, we propose Heuristic Transformer (HT), an in-context reinforcement learning (ICRL) approach that augments the in-context dataset with a belief distribution over rewards to achieve better decision-making. Using a variational auto-encoder (VAE), a low-dimensional stochastic variable is learned to represent the posterior distribution over rewards, which is incorporated alongside an in-context dataset and query states as prompt to the transformer policy. We assess the performance of HT across the Darkroom, Miniworld, and MuJoCo environments, showing that it consistently surpasses comparable baselines in terms of both effectiveness and generalization. Our method presents a promising direction to bridge the gap between belief-based augmentations and transformer-based decision-making.
☆ FineSkiing: A Fine-grained Benchmark for Skiing Action Quality Assessment
Action Quality Assessment (AQA) aims to evaluate and score sports actions, which has attracted widespread interest in recent years. Existing AQA methods primarily predict scores based on features extracted from the entire video, resulting in limited interpretability and reliability. Meanwhile, existing AQA datasets also lack fine-grained annotations for action scores, especially for deduction items and sub-score annotations. In this paper, we construct the first AQA dataset containing fine-grained sub-score and deduction annotations for aerial skiing, which will be released as a new benchmark. For the technical challenges, we propose a novel AQA method, named JudgeMind, which significantly enhances performance and reliability by simulating the judgment and scoring mindset of professional referees. Our method segments the input action video into different stages and scores each stage to enhance accuracy. Then, we propose a stage-aware feature enhancement and fusion module to boost the perception of stage-specific key regions and enhance the robustness to visual changes caused by frequent camera viewpoints switching. In addition, we propose a knowledge-based grade-aware decoder to incorporate possible deduction items as prior knowledge to predict more accurate and reliable scores. Experimental results demonstrate that our method achieves state-of-the-art performance.
☆ Robustness and Imperceptibility Analysis of Hybrid Spatial-Frequency Domain Image Watermarking
The proliferation of digital media necessitates robust methods for copyright protection and content authentication. This paper presents a comprehensive comparative study of digital image watermarking techniques implemented using the spatial domain (Least Significant Bit - LSB), the frequency domain (Discrete Fourier Transform - DFT), and a novel hybrid (LSB+DFT) approach. The core objective is to evaluate the trade-offs between imperceptibility (measured by Peak Signal-to-Noise Ratio - PSNR) and robustness (measured by Normalized Correlation - NC and Bit Error Rate - BER). We implemented these three techniques within a unified MATLAB-based experimental framework. The watermarked images were subjected to a battery of common image processing attacks, including JPEG compression, Gaussian noise, and salt-and-pepper noise, at varying intensities. Experimental results generated from standard image datasets (USC-SIPI) demonstrate that while LSB provides superior imperceptibility, it is extremely fragile. The DFT method offers significant robustness at the cost of visual quality. The proposed hybrid LSB+DFT technique, which leverages redundant embedding and a fallback extraction mechanism, is shown to provide the optimal balance, maintaining high visual fidelity while exhibiting superior resilience to all tested attacks.
☆ PepTriX: A Framework for Explainable Peptide Analysis through Protein Language Models
Peptide classification tasks, such as predicting toxicity and HIV inhibition, are fundamental to bioinformatics and drug discovery. Traditional approaches rely heavily on handcrafted encodings of one-dimensional (1D) peptide sequences, which can limit generalizability across tasks and datasets. Recently, protein language models (PLMs), such as ESM-2 and ESMFold, have demonstrated strong predictive performance. However, they face two critical challenges. First, fine-tuning is computationally costly. Second, their complex latent representations hinder interpretability for domain experts. Additionally, many frameworks have been developed for specific types of peptide classification, lacking generalization. These limitations restrict the ability to connect model predictions to biologically relevant motifs and structural properties. To address these limitations, we present PepTriX, a novel framework that integrates one dimensional (1D) sequence embeddings and three-dimensional (3D) structural features via a graph attention network enhanced with contrastive training and cross-modal co-attention. PepTriX automatically adapts to diverse datasets, producing task-specific peptide vectors while retaining biological plausibility. After evaluation by domain experts, we found that PepTriX performs remarkably well across multiple peptide classification tasks and provides interpretable insights into the structural and biophysical motifs that drive predictions. Thus, PepTriX offers both predictive robustness and interpretable validation, bridging the gap between performance-driven peptide-level models (PLMs) and domain-level understanding in peptide research.
☆ ProgRAG: Hallucination-Resistant Progressive Retrieval and Reasoning over Knowledge Graphs
Large Language Models (LLMs) demonstrate strong reasoning capabilities but struggle with hallucinations and limited transparency. Recently, KG-enhanced LLMs that integrate knowledge graphs (KGs) have been shown to improve reasoning performance, particularly for complex, knowledge-intensive tasks. However, these methods still face significant challenges, including inaccurate retrieval and reasoning failures, often exacerbated by long input contexts that obscure relevant information or by context constructions that struggle to capture the richer logical directions required by different question types. Furthermore, many of these approaches rely on LLMs to directly retrieve evidence from KGs, and to self-assess the sufficiency of this evidence, which often results in premature or incorrect reasoning. To address the retrieval and reasoning failures, we propose ProgRAG, a multi-hop knowledge graph question answering (KGQA) framework that decomposes complex questions into sub-questions, and progressively extends partial reasoning paths by answering each sub-question. At each step, external retrievers gather candidate evidence, which is then refined through uncertainty-aware pruning by the LLM. Finally, the context for LLM reasoning is optimized by organizing and rearranging the partial reasoning paths obtained from the sub-question answers. Experiments on three well-known datasets demonstrate that ProgRAG outperforms existing baselines in multi-hop KGQA, offering improved reliability and reasoning quality.
☆ Lost in Serialization: Invariance and Generalization of LLM Graph Reasoners AAAI 2026
While promising, graph reasoners based on Large Language Models (LLMs) lack built-in invariance to symmetries in graph representations. Operating on sequential graph serializations, LLMs can produce different outputs under node reindexing, edge reordering, or formatting changes, raising robustness concerns. We systematically analyze these effects, studying how fine-tuning impacts encoding sensitivity as well generalization on unseen tasks. We propose a principled decomposition of graph serializations into node labeling, edge encoding, and syntax, and evaluate LLM robustness to variations of each of these factors on a comprehensive benchmarking suite. We also contribute a novel set of spectral tasks to further assess generalization abilities of fine-tuned reasoners. Results show that larger (non-fine-tuned) models are more robust. Fine-tuning reduces sensitivity to node relabeling but may increase it to variations in structure and format, while it does not consistently improve performance on unseen tasks.
comment: AAAI 2026 Workshop on Graphs and more Complex Structures For Learning and Reasoning (GCLR)
☆ Bridging Synthetic and Real Routing Problems via LLM-Guided Instance Generation and Progressive Adaptation AAAI-26
Recent advances in Neural Combinatorial Optimization (NCO) methods have significantly improved the capability of neural solvers to handle synthetic routing instances. Nonetheless, existing neural solvers typically struggle to generalize effectively from synthetic, uniformly-distributed training data to real-world VRP scenarios, including widely recognized benchmark instances from TSPLib and CVRPLib. To bridge this generalization gap, we present Evolutionary Realistic Instance Synthesis (EvoReal), which leverages an evolutionary module guided by large language models (LLMs) to generate synthetic instances characterized by diverse and realistic structural patterns. Specifically, the evolutionary module produces synthetic instances whose structural attributes statistically mimics those observed in authentic real-world instances. Subsequently, pre-trained NCO models are progressively refined, firstly aligning them with these structurally enriched synthetic distributions and then further adapting them through direct fine-tuning on actual benchmark instances. Extensive experimental evaluations demonstrate that EvoReal markedly improves the generalization capabilities of state-of-the-art neural solvers, yielding a notable reduced performance gap compared to the optimal solutions on the TSPLib (1.05%) and CVRPLib (2.71%) benchmarks across a broad spectrum of problem scales.
comment: 21 pages; To be published in AAAI-26
☆ VocalNet-M2: Advancing Low-Latency Spoken Language Modeling via Integrated Multi-Codebook Tokenization and Multi-Token Prediction
Current end-to-end spoken language models (SLMs) have made notable progress, yet they still encounter considerable response latency. This delay primarily arises from the autoregressive generation of speech tokens and the reliance on complex flow-matching models for speech synthesis. To overcome this, we introduce VocalNet-M2, a novel low-latency SLM that integrates a multi-codebook tokenizer and a multi-token prediction (MTP) strategy. Our model directly generates multi-codebook speech tokens, thus eliminating the need for a latency-inducing flow-matching model. Furthermore, our MTP strategy enhances generation efficiency and improves overall performance. Extensive experiments demonstrate that VocalNet-M2 achieves a substantial reduction in first chunk latency (from approximately 725ms to 350ms) while maintaining competitive performance across mainstream SLMs. This work also provides a comprehensive comparison of single-codebook and multi-codebook strategies, offering valuable insights for developing efficient and high-performance SLMs for real-time interactive applications.
☆ Speech-Audio Compositional Attacks on Multimodal LLMs and Their Mitigation with SALMONN-Guard
Recent progress in large language models (LLMs) has enabled understanding of both speech and non-speech audio, but exposing new safety risks emerging from complex audio inputs that are inadequately handled by current safeguards. We introduce SACRED-Bench (Speech-Audio Composition for RED-teaming) to evaluate the robustness of LLMs under complex audio-based attacks. Unlike existing perturbation-based methods that rely on noise optimization or white-box access, SACRED-Bench exploits speech-audio composition mechanisms. SACRED-Bench adopts three mechanisms: (a) speech overlap and multi-speaker dialogue, which embeds harmful prompts beneath or alongside benign speech; (b) speech-audio mixture, which imply unsafe intent via non-speech audio alongside benign speech or audio; and (c) diverse spoken instruction formats (open-ended QA, yes/no) that evade text-only filters. Experiments show that, even Gemini 2.5 Pro, the state-of-the-art proprietary LLM, still exhibits 66% attack success rate in SACRED-Bench test set, exposing vulnerabilities under cross-modal, speech-audio composition attacks. To bridge this gap, we propose SALMONN-Guard, a safeguard LLM that jointly inspects speech, audio, and text for safety judgments, reducing attack success down to 20%. Our results highlight the need for audio-aware defenses for the safety of multimodal LLMs. The benchmark and SALMONN-Guard checkpoints can be found at https://huggingface.co/datasets/tsinghua-ee/SACRED-Bench. Warning: this paper includes examples that may be offensive or harmful.
☆ MTP: Exploring Multimodal Urban Traffic Profiling with Modality Augmentation and Spectrum Fusion
With rapid urbanization in the modern era, traffic signals from various sensors have been playing a significant role in monitoring the states of cities, which provides a strong foundation in ensuring safe travel, reducing traffic congestion and optimizing urban mobility. Most existing methods for traffic signal modeling often rely on the original data modality, i.e., numerical direct readings from the sensors in cities. However, this unimodal approach overlooks the semantic information existing in multimodal heterogeneous urban data in different perspectives, which hinders a comprehensive understanding of traffic signals and limits the accurate prediction of complex traffic dynamics. To address this problem, we propose a novel \textit{M}ultimodal framework, \textit{MTP}, for urban \textit{T}raffic \textit{P}rofiling, which learns multimodal features through numeric, visual, and textual perspectives. The three branches drive for a multimodal perspective of urban traffic signal learning in the frequency domain, while the frequency learning strategies delicately refine the information for extraction. Specifically, we first conduct the visual augmentation for the traffic signals, which transforms the original modality into frequency images and periodicity images for visual learning. Also, we augment descriptive texts for the traffic signals based on the specific topic, background information and item description for textual learning. To complement the numeric information, we utilize frequency multilayer perceptrons for learning on the original modality. We design a hierarchical contrastive learning on the three branches to fuse the spectrum of three modalities. Finally, extensive experiments on six real-world datasets demonstrate superior performance compared with the state-of-the-art approaches.
☆ Persona-Aware Alignment Framework for Personalized Dialogue Generation
Personalized dialogue generation aims to leverage persona profiles and dialogue history to generate persona-relevant and consistent responses. Mainstream models typically rely on token-level language model training with persona dialogue data, such as Next Token Prediction, to implicitly achieve personalization, making these methods tend to neglect the given personas and generate generic responses. To address this issue, we propose a novel Persona-Aware Alignment Framework (PAL), which directly treats persona alignment as the training objective of dialogue generation. Specifically, PAL employs a two-stage training method including Persona-aware Learning and Persona Alignment, equipped with an easy-to-use inference strategy Select then Generate, to improve persona sensitivity and generate more persona-relevant responses at the semantics level. Through extensive experiments, we demonstrate that our framework outperforms many state-of-the-art personalized dialogue methods and large language models.
comment: Pre-MIT Press publication version
☆ Advanced Black-Box Tuning of Large Language Models with Limited API Calls
Black-box tuning is an emerging paradigm for adapting large language models (LLMs) to better achieve desired behaviors, particularly when direct access to model parameters is unavailable. Current strategies, however, often present a dilemma of suboptimal extremes: either separately train a small proxy model and then use it to shift the predictions of the foundation model, offering notable efficiency but often yielding limited improvement; or making API calls in each tuning iteration to the foundation model, which entails prohibitive computational costs. Therefore, we propose a novel advanced black-box tuning method for LLMs with limited API calls. Our core strategy involves training a Gaussian Process (GP) surrogate model with "LogitMap Pairs" derived from querying the foundation model on a minimal but highly informative training subset. This surrogate can approximate the outputs of the foundation model to guide the training of the proxy model, thereby effectively reducing the need for direct queries to the foundation model. Extensive experiments verify that our approach elevates pre-trained language model accuracy from 55.92% to 86.85%, reducing the frequency of API queries to merely 1.38%. This significantly outperforms offline approaches that operate entirely without API access. Notably, our method also achieves comparable or superior accuracy to query-intensive approaches, while significantly reducing API costs. This offers a robust and high-efficiency paradigm for language model adaptation.
comment: 15 pages, 6 figures
☆ Fractional neural attention for efficient multiscale sequence processing
Attention mechanisms underpin the computational power of Transformer models, which have achieved remarkable success across diverse domains. Yet understanding and extending the principles underlying self-attention remains a key challenge for advancing artificial intelligence. Drawing inspiration from the multiscale dynamics of biological attention and from dynamical systems theory, we introduce Fractional Neural Attention (FNA), a principled, neuroscience-inspired framework for multiscale information processing. FNA models token interactions through Lévy diffusion governed by the fractional Laplacian, intrinsically realizing simultaneous short- and long-range dependencies across multiple scales. This mechanism yields greater expressivity and faster information mixing, advancing the foundational capacity of Transformers. Theoretically, we show that FNA's dynamics are governed by the fractional diffusion equation, and that the resulting attention networks exhibit larger spectral gaps and shorter path lengths -- mechanistic signatures of enhanced computational efficiency. Empirically, FNA achieves competitive text-classification performance even with a single layer and a single head; it also improves performance in image processing and neural machine translation. Finally, the diffusion map algorithm from geometric harmonics enables dimensionality reduction of FNA weights while preserving the intrinsic structure of embeddings and hidden states. Together, these results establish FNA as a principled mechanism connecting self-attention, stochastic dynamics, and geometry, providing an interpretable, biologically grounded foundation for powerful, neuroscience-inspired AI.
☆ VISTA: A Vision and Intent-Aware Social Attention Framework for Multi-Agent Trajectory Prediction WACV 2026
Multi-agent trajectory prediction is crucial for autonomous systems operating in dense, interactive environments. Existing methods often fail to jointly capture agents' long-term goals and their fine-grained social interactions, which leads to unrealistic multi-agent futures. We propose VISTA, a recursive goal-conditioned transformer for multi-agent trajectory forecasting. VISTA combines (i) a cross-attention fusion module that integrates long-horizon intent with past motion, (ii) a social-token attention mechanism for flexible interaction modeling across agents, and (iii) pairwise attention maps that make social influence patterns interpretable at inference time. Our model turns single-agent goal-conditioned prediction into a coherent multi-agent forecasting framework. Beyond standard displacement metrics, we evaluate trajectory collision rates as a measure of joint realism. On the high-density MADRAS benchmark and on SDD, VISTA achieves state-of-the-art accuracy and substantially fewer collisions. On MADRAS, it reduces the average collision rate of strong baselines from 2.14 to 0.03 percent, and on SDD it attains zero collisions while improving ADE, FDE, and minFDE. These results show that VISTA generates socially compliant, goal-aware, and interpretable trajectories, making it promising for safety-critical autonomous systems.
comment: Paper accepted at WACV 2026
☆ Improved Offline Reinforcement Learning via Quantum Metric Encoding
Reinforcement learning (RL) with limited samples is common in real-world applications. However, offline RL performance under this constraint is often suboptimal. We consider an alternative approach to dealing with limited samples by introducing the Quantum Metric Encoder (QME). In this methodology, instead of applying the RL framework directly on the original states and rewards, we embed the states into a more compact and meaningful representation, where the structure of the encoding is inspired by quantum circuits. For classical data, QME is a classically simulable, trainable unitary embedding and thus serves as a quantum-inspired module, on a classical device. For quantum data in the form of quantum states, QME can be implemented directly on quantum hardware, allowing for training without measurement or re-encoding. We evaluated QME on three datasets, each limited to 100 samples. We use Soft-Actor-Critic (SAC) and Implicit-Q-Learning (IQL), two well-known RL algorithms, to demonstrate the effectiveness of our approach. From the experimental results, we find that training offline RL agents on QME-embedded states with decoded rewards yields significantly better performance than training on the original states and rewards. On average across the three datasets, for maximum reward performance, we achieve a 116.2% improvement for SAC and 117.6% for IQL. We further investigate the $Δ$-hyperbolicity of our framework, a geometric property of the state space known to be important for the RL training efficacy. The QME-embedded states exhibit low $Δ$-hyperbolicity, suggesting that the improvement after embedding arises from the modified geometry of the state space induced by QME. Thus, the low $Δ$-hyperbolicity and the corresponding effectiveness of QME could provide valuable information for developing efficient offline RL methods under limited-sample conditions.
☆ Utilizing a Geospatial Foundation Model for Coastline Delineation in Small Sandy Islands
We present an initial evaluation of NASA and IBM's Prithvi-EO-2.0 geospatial foundation model on shoreline delineation of small sandy islands using satellite images. We curated and labeled a dataset of 225 multispectral images of two Maldivian islands, which we publicly release, and fine-tuned both the 300M and 600M parameter versions of Prithvi on training subsets ranging from 5 to 181 images. Our experiments show that even with as few as 5 training images, the models achieve high performance (F1 of 0.94, IoU of 0.79). Our results demonstrate the strong transfer learning capability of Prithvi, underscoring the potential of such models to support coastal monitoring in data-poor regions.
comment: 8 pages, 7 figures
☆ Two Constraint Compilation Methods for Lifted Planning
We study planning in a fragment of PDDL with qualitative state-trajectory constraints, capturing safety requirements, task ordering conditions, and intermediate sub-goals commonly found in real-world problems. A prominent approach to tackle such problems is to compile their constraints away, leading to a problem that is supported by state-of-the-art planners. Unfortunately, existing compilers do not scale on problems with a large number of objects and high-arity actions, as they necessitate grounding the problem before compilation. To address this issue, we propose two methods for compiling away constraints without grounding, making them suitable for large-scale planning problems. We prove the correctness of our compilers and outline their worst-case time complexity. Moreover, we present a reproducible empirical evaluation on the domains used in the latest International Planning Competition. Our results demonstrate that our methods are efficient and produce planning specifications that are orders of magnitude more succinct than the ones produced by compilers that ground the domain, while remaining competitive when used for planning with a state-of-the-art planner.
☆ DenoGrad: Deep Gradient Denoising Framework for Enhancing the Performance of Interpretable AI Models
The performance of Machine Learning (ML) models, particularly those operating within the Interpretable Artificial Intelligence (Interpretable AI) framework, is significantly affected by the presence of noise in both training and production data. Denoising has therefore become a critical preprocessing step, typically categorized into instance removal and instance correction techniques. However, existing correction approaches often degrade performance or oversimplify the problem by altering the original data distribution. This leads to unrealistic scenarios and biased models, which is particularly problematic in contexts where interpretable AI models are employed, as their interpretability depends on the fidelity of the underlying data patterns. In this paper, we argue that defining noise independently of the solution may be ineffective, as its nature can vary significantly across tasks and datasets. Using a task-specific high quality solution as a reference can provide a more precise and adaptable noise definition. To this end, we propose DenoGrad, a novel Gradient-based instance Denoiser framework that leverages gradients from an accurate Deep Learning (DL) model trained on the target data -- regardless of the specific task -- to detect and adjust noisy samples. Unlike conventional approaches, DenoGrad dynamically corrects noisy instances, preserving problem's data distribution, and improving AI models robustness. DenoGrad is validated on both tabular and time series datasets under various noise settings against the state-of-the-art. DenoGrad outperforms existing denoising strategies, enhancing the performance of interpretable IA models while standing out as the only high quality approach that preserves the original data distribution.
☆ GEA: Generation-Enhanced Alignment for Text-to-Image Person Retrieval
Text-to-Image Person Retrieval (TIPR) aims to retrieve person images based on natural language descriptions. Although many TIPR methods have achieved promising results, sometimes textual queries cannot accurately and comprehensively reflect the content of the image, leading to poor cross-modal alignment and overfitting to limited datasets. Moreover, the inherent modality gap between text and image further amplifies these issues, making accurate cross-modal retrieval even more challenging. To address these limitations, we propose the Generation-Enhanced Alignment (GEA) from a generative perspective. GEA contains two parallel modules: (1) Text-Guided Token Enhancement (TGTE), which introduces diffusion-generated images as intermediate semantic representations to bridge the gap between text and visual patterns. These generated images enrich the semantic representation of text and facilitate cross-modal alignment. (2) Generative Intermediate Fusion (GIF), which combines cross-attention between generated images, original images, and text features to generate a unified representation optimized by triplet alignment loss. We conduct extensive experiments on three public TIPR datasets, CUHK-PEDES, RSTPReid, and ICFG-PEDES, to evaluate the performance of GEA. The results justify the effectiveness of our method. More implementation details and extended results are available at https://github.com/sugelamyd123/Sup-for-GEA.
comment: 8pages,3figures
☆ Right Looks, Wrong Reasons: Compositional Fidelity in Text-to-Image Generation AAAI 2026
The architectural blueprint of today's leading text-to-image models contains a fundamental flaw: an inability to handle logical composition. This survey investigates this breakdown across three core primitives-negation, counting, and spatial relations. Our analysis reveals a dramatic performance collapse: models that are accurate on single primitives fail precipitously when these are combined, exposing severe interference. We trace this failure to three key factors. First, training data show a near-total absence of explicit negations. Second, continuous attention architectures are fundamentally unsuitable for discrete logic. Third, evaluation metrics reward visual plausibility over constraint satisfaction. By analyzing recent benchmarks and methods, we show that current solutions and simple scaling cannot bridge this gap. Achieving genuine compositionality, we conclude, will require fundamental advances in representation and reasoning rather than incremental adjustments to existing architectures.
comment: Accepted in AAAI 2026
RAGFort: Dual-Path Defense Against Proprietary Knowledge Base Extraction in Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) systems deployed over proprietary knowledge bases face growing threats from reconstruction attacks that aggregate model responses to replicate knowledge bases. Such attacks exploit both intra-class and inter-class paths, progressively extracting fine-grained knowledge within topics and diffusing it across semantically related ones, thereby enabling comprehensive extraction of the original knowledge base. However, existing defenses target only one path, leaving the other unprotected. We conduct a systematic exploration to assess the impact of protecting each path independently and find that joint protection is essential for effective defense. Based on this, we propose RAGFort, a structure-aware dual-module defense combining "contrastive reindexing" for inter-class isolation and "constrained cascade generation" for intra-class protection. Experiments across security, performance, and robustness confirm that RAGFort significantly reduces reconstruction success while preserving answer quality, offering comprehensive defense against knowledge base extraction attacks.
comment: Accepted by AAAI 2026 Conference
☆ Intilligence Foundation Model: A New Perspective to Approach Artificial General Intelligence
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
☆ MATAI: A Generalist Machine Learning Framework for Property Prediction and Inverse Design of Advanced Alloys
The discovery of advanced metallic alloys is hindered by vast composition spaces, competing property objectives, and real-world constraints on manufacturability. Here we introduce MATAI, a generalist machine learning framework for property prediction and inverse design of as-cast alloys. MATAI integrates a curated alloy database, deep neural network-based property predictors, a constraint-aware optimization engine, and an iterative AI-experiment feedback loop. The framework estimates key mechanical propertie, sincluding density, yield strength, ultimate tensile strength, and elongation, directly from composition, using multi-task learning and physics-informed inductive biases. Alloy design is framed as a constrained optimization problem and solved using a bi-level approach that combines local search with symbolic constraint programming. We demonstrate MATAI's capabilities on the Ti-based alloy system, a canonical class of lightweight structural materials, where it rapidly identifies candidates that simultaneously achieve lower density (<4.45 g/cm3), higher strength (>1000 MPa) and appreciable ductility (>5%) through only seven iterations. Experimental validation confirms that MATAI-designed alloys outperform commercial references such as TC4, highlighting the framework's potential to accelerate the discovery of lightweight, high-performance materials under real-world design constraints.
☆ Balancing Centralized Learning and Distributed Self-Organization: A Hybrid Model for Embodied Morphogenesis
We investigate how to couple a learnable brain-like'' controller to a cell-like'' Gray--Scott substrate to steer pattern formation with minimal effort. A compact convolutional policy is embedded in a differentiable PyTorch reaction--diffusion simulator, producing spatially smooth, bounded modulations of the feed and kill parameters ($ΔF$, $ΔK$) under a warm--hold--decay gain schedule. Training optimizes Turing-band spectral targets (FFT-based) while penalizing control effort ($\ell_1/\ell_2$) and instability. We compare three regimes: pure reaction--diffusion, NN-dominant, and a hybrid coupling. The hybrid achieves reliable, fast formation of target textures: 100% strict convergence in $\sim 165$ steps, matching cell-only spectral selectivity (0.436 vs.\ 0.434) while using $\sim 15\times$ less $\ell_1$ effort and $>200\times$ less $\ell_2$ power than NN-dominant control. An amplitude sweep reveals a non-monotonic Goldilocks'' zone ($A \approx 0.03$--$0.045$) that yields 100\% quasi convergence in 94--96 steps, whereas weaker or stronger gains fail to converge or degrade selectivity. These results quantify morphological computation: the controller seeds then cedes,'' providing brief, sparse nudges that place the system in the correct basin of attraction, after which local physics maintains the pattern. The study offers a practical recipe for building steerable, robust, and energy-efficient embodied systems that exploit an optimal division of labor between centralized learning and distributed self-organization.
☆ On the Military Applications of Large Language Models
In this paper, military use cases or applications and implementation thereof are considered for natural language processing and large language models, which have broken into fame with the invention of the generative pre-trained transformer (GPT) and the extensive foundation model pretraining done by OpenAI for ChatGPT and others. First, we interrogate a GPT-based language model (viz. Microsoft Copilot) to make it reveal its own knowledge about their potential military applications and then critically assess the information. Second, we study how commercial cloud services (viz. Microsoft Azure) could be used readily to build such applications and assess which of them are feasible. We conclude that the summarization and generative properties of language models directly facilitate many applications at large and other features may find particular uses.
comment: Published in the meeting proceedings of the 2025 International Conference on Military Communications and Information Systems (ICMCIS) by the NATO Science and Technology Organization (STO)
☆ T2IBias: Uncovering Societal Bias Encoded in the Latent Space of Text-to-Image Generative Models
Text-to-image (T2I) generative models are largely used in AI-powered real-world applications and value creation. However, their strategic deployment raises critical concerns for responsible AI management, particularly regarding the reproduction and amplification of race- and gender-related stereotypes that can undermine organizational ethics. In this work, we investigate whether such societal biases are systematically encoded within the pretrained latent spaces of state-of-the-art T2I models. We conduct an empirical study across the five most popular open-source models, using ten neutral, profession-related prompts to generate 100 images per profession, resulting in a dataset of 5,000 images evaluated by diverse human assessors representing different races and genders. We demonstrate that all five models encode and amplify pronounced societal skew: caregiving and nursing roles are consistently feminized, while high-status professions such as corporate CEO, politician, doctor, and lawyer are overwhelmingly represented by males and mostly White individuals. We further identify model-specific patterns, such as QWEN-Image's near-exclusive focus on East Asian outputs, Kandinsky's dominance of White individuals, and SDXL's comparatively broader but still biased distributions. These results provide critical insights for AI project managers and practitioners, enabling them to select equitable AI models and customized prompts that generate images in alignment with the principles of responsible AI. We conclude by discussing the risks of these biases and proposing actionable strategies for bias mitigation in building responsible GenAI systems.
comment: This manuscript has been accepted for presentation in the First Interdisciplinary Workshop on Responsible AI for Value Creation. Dec 1, Copenhagen. The final version will be submitted for inclusion in a Springer LNCS Volume. (15 pages, 7 figures)
☆ eXIAA: eXplainable Injections for Adversarial Attack
Post-hoc explainability methods are a subset of Machine Learning (ML) that aim to provide a reason for why a model behaves in a certain way. In this paper, we show a new black-box model-agnostic adversarial attack for post-hoc explainable Artificial Intelligence (XAI), particularly in the image domain. The goal of the attack is to modify the original explanations while being undetected by the human eye and maintain the same predicted class. In contrast to previous methods, we do not require any access to the model or its weights, but only to the model's computed predictions and explanations. Additionally, the attack is accomplished in a single step while significantly changing the provided explanations, as demonstrated by empirical evaluation. The low requirements of our method expose a critical vulnerability in current explainability methods, raising concerns about their reliability in safety-critical applications. We systematically generate attacks based on the explanations generated by post-hoc explainability methods (saliency maps, integrated gradients, and DeepLIFT SHAP) for pretrained ResNet-18 and ViT-B16 on ImageNet. The results show that our attacks could lead to dramatically different explanations without changing the predictive probabilities. We validate the effectiveness of our attack, compute the induced change based on the explanation with mean absolute difference, and verify the closeness of the original image and the corrupted one with the Structural Similarity Index Measure (SSIM).
☆ Opinion: Towards Unified Expressive Policy Optimization for Robust Robot Learning NeurIPS 2025
Offline-to-online reinforcement learning (O2O-RL) has emerged as a promising paradigm for safe and efficient robotic policy deployment but suffers from two fundamental challenges: limited coverage of multimodal behaviors and distributional shifts during online adaptation. We propose UEPO, a unified generative framework inspired by large language model pretraining and fine-tuning strategies. Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy that efficiently captures diverse modalities without training multiple models; (2) a dynamic divergence regularization mechanism that enforces physically meaningful policy diversity; and (3) a diffusion-based data augmentation module that enhances dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9\% absolute improvement over Uni-O4 on locomotion tasks and +12.4\% on dexterous manipulation, demonstrating strong generalization and scalability.
comment: Accepted by NeurIPS 2025 Workshop on Embodied World Models for Decision Making
☆ Enhancing the Medical Context-Awareness Ability of LLMs via Multifaceted Self-Refinement Learning
Large language models (LLMs) have shown great promise in the medical domain, achieving strong performance on several benchmarks. However, they continue to underperform in real-world medical scenarios, which often demand stronger context-awareness, i.e., the ability to recognize missing or critical details (e.g., user identity, medical history, risk factors) and provide safe, helpful, and contextually appropriate responses. To address this issue, we propose Multifaceted Self-Refinement (MuSeR), a data-driven approach that enhances LLMs' context-awareness along three key facets (decision-making, communication, and safety) through self-evaluation and refinement. Specifically, we first design a attribute-conditioned query generator that simulates diverse real-world user contexts by varying attributes such as role, geographic region, intent, and degree of information ambiguity. An LLM then responds to these queries, self-evaluates its answers along three key facets, and refines its responses to better align with the requirements of each facet. Finally, the queries and refined responses are used for supervised fine-tuning to reinforce the model's context-awareness ability. Evaluation results on the latest HealthBench dataset demonstrate that our method significantly improves LLM performance across multiple aspects, with particularly notable gains in the context-awareness axis. Furthermore, by incorporating knowledge distillation with the proposed method, the performance of a smaller backbone LLM (e.g., Qwen3-32B) surpasses its teacher model, achieving a new SOTA across all open-source LLMs on HealthBench (63.8%) and its hard subset (43.1%). Code and dataset will be released at https://muser-llm.github.io.
comment: 20 pages, 13 figures
☆ Radiology Workflow-Guided Hierarchical Reinforcement Fine-Tuning for Medical Report Generation
Radiologists compose diagnostic reports through a structured workflow: they describe visual findings, summarize them into impressions, and carefully refine statements in clinically critical cases. However, most existing medical report generation (MRG) systems treat reports as flat sequences, overlooking this hierarchical organization and leading to inconsistencies between descriptive and diagnostic content. To align model behavior with real-world reporting practices, we propose RadFlow, a hierarchical workflow-guided reinforcement optimization framework that explicitly models the structured nature of clinical reporting. RadFlow introduces a clinically grounded reward hierarchy that mirrors the organization of radiological reports. At the global level, the reward integrates linguistic fluency, medical-domain correctness, and cross-sectional consistency between Finding and Impression, promoting coherent and clinically faithful narratives. At the local level, a section-specific reward emphasizes Impression quality, reflecting its central role in diagnostic accuracy. Furthermore, a critical-aware policy optimization mechanism adaptively regularizes learning for high-risk or clinically sensitive cases, emulating the cautious refinement behavior of radiologists when documenting critical findings. Together, these components translate the structured reporting paradigm into the reinforcement fine-tuning process, enabling the model to generate reports that are both linguistically consistent and clinically aligned. Experiments on chest X-ray and carotid ultrasound datasets demonstrate that RadFlow consistently improves diagnostic coherence and overall report quality compared with state-of-the-art baselines.
☆ Multivariate Gaussian Representation Learning for Medical Action Evaluation AAAI 2026
Fine-grained action evaluation in medical vision faces unique challenges due to the unavailability of comprehensive datasets, stringent precision requirements, and insufficient spatiotemporal dynamic modeling of very rapid actions. To support development and evaluation, we introduce CPREval-6k, a multi-view, multi-label medical action benchmark containing 6,372 expert-annotated videos with 22 clinical labels. Using this dataset, we present GaussMedAct, a multivariate Gaussian encoding framework, to advance medical motion analysis through adaptive spatiotemporal representation learning. Multivariate Gaussian Representation projects the joint motions to a temporally scaled multi-dimensional space, and decomposes actions into adaptive 3D Gaussians that serve as tokens. These tokens preserve motion semantics through anisotropic covariance modeling while maintaining robustness to spatiotemporal noise. Hybrid Spatial Encoding, employing a Cartesian and Vector dual-stream strategy, effectively utilizes skeletal information in the form of joint and bone features. The proposed method achieves 92.1% Top-1 accuracy with real-time inference on the benchmark, outperforming the ST-GCN baseline by +5.9% accuracy with only 10% FLOPs. Cross-dataset experiments confirm the superiority of our method in robustness.
comment: Accepted to AAAI 2026
☆ BuddyMoE: Exploiting Expert Redundancy to Accelerate Memory-Constrained Mixture-of-Experts Inference
Mixture-of-Experts (MoE) architectures scale language models by activating only a subset of specialized expert networks for each input token, thereby reducing the number of floating-point operations. However, the growing size of modern MoE models causes their full parameter sets to exceed GPU memory capacity; for example, Mixtral-8x7B has 45 billion parameters and requires 87 GB of memory even though only 14 billion parameters are used per token. Existing systems alleviate this limitation by offloading inactive experts to CPU memory, but transferring experts across the PCIe interconnect incurs significant latency (about 10 ms). Prefetching heuristics aim to hide this latency by predicting which experts are needed, but prefetch failures introduce significant stalls and amplify inference latency. In the event of a prefetch failure, prior work offers two primary solutions: either fetch the expert on demand, which incurs a long stall due to the PCIe bottleneck, or drop the expert from the computation, which significantly degrades model accuracy. The critical challenge, therefore, is to maintain both high inference speed and model accuracy when prefetching fails.
☆ Efficient Thought Space Exploration through Strategic Intervention AAAI 2026
While large language models (LLMs) demonstrate emerging reasoning capabilities, current inference-time expansion methods incur prohibitive computational costs by exhaustive sampling. Through analyzing decoding trajectories, we observe that most next-token predictions align well with the golden output, except for a few critical tokens that lead to deviations. Inspired by this phenomenon, we propose a novel Hint-Practice Reasoning (HPR) framework that operationalizes this insight through two synergistic components: 1) a hinter (powerful LLM) that provides probabilistic guidance at critical decision points, and 2) a practitioner (efficient smaller model) that executes major reasoning steps. The framework's core innovation lies in Distributional Inconsistency Reduction (DIR), a theoretically-grounded metric that dynamically identifies intervention points by quantifying the divergence between practitioner's reasoning trajectory and hinter's expected distribution in a tree-structured probabilistic space. Through iterative tree updates guided by DIR, HPR reweights promising reasoning paths while deprioritizing low-probability branches. Experiments across arithmetic and commonsense reasoning benchmarks demonstrate HPR's state-of-the-art efficiency-accuracy tradeoffs: it achieves comparable performance to self-consistency and MCTS baselines while decoding only 1/5 tokens, and outperforms existing methods by at most 5.1% absolute accuracy while maintaining similar or lower FLOPs.
comment: AAAI 2026
♻ ☆ Ax-Prover: A Deep Reasoning Agentic Framework for Theorem Proving in Mathematics and Quantum Physics
We present Ax-Prover, a multi-agent system for automated theorem proving in Lean that can solve problems across diverse scientific domains and operate either autonomously or collaboratively with human experts. To achieve this, Ax-Prover approaches scientific problem solving through formal proof generation, a process that demands both creative reasoning and strict syntactic rigor. Ax-Prover meets this challenge by equipping Large Language Models (LLMs), which provide knowledge and reasoning, with Lean tools via the Model Context Protocol (MCP), which ensure formal correctness. To evaluate its performance as an autonomous prover, we benchmark our approach against frontier LLMs and specialized prover models on two public math benchmarks and on two Lean benchmarks we introduce in the fields of abstract algebra and quantum theory. On public datasets, Ax-Prover is competitive with state-of-the-art provers, while it largely outperforms them on the new benchmarks. This shows that, unlike specialized systems that struggle to generalize, our tool-based agentic theorem prover approach offers a generalizable methodology for formal verification across diverse scientific domains. Furthermore, we demonstrate Ax-Prover's assistant capabilities in a practical use case, showing how it enabled an expert mathematician to formalize the proof of a complex cryptography theorem.
♻ ☆ Bine Trees: Enhancing Collective Operations by Optimizing Communication Locality
Communication locality plays a key role in the performance of collective operations on large HPC systems, especially on oversubscribed networks where groups of nodes are fully connected internally but sparsely linked through global connections. We present Bine (binomial negabinary) trees, a family of collective algorithms that improve communication locality. Bine trees maintain the generality of binomial trees and butterflies while cutting global-link traffic by up to 33%. We implement eight Bine-based collectives and evaluate them on four large-scale supercomputers with Dragonfly, Dragonfly+, oversubscribed fat-tree, and torus topologies, achieving up to 5x speedups and consistent reductions in global-link traffic across different vector sizes and node counts.
♻ ☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
comment: v2: added DeiT, added ablation vs simple copy-paste
♻ ☆ Interpretable and Granular Video-Based Quantification of Motor Characteristics from the Finger Tapping Test in Parkinson Disease
Accurately quantifying motor characteristics in Parkinson disease (PD) is crucial for monitoring disease progression and optimizing treatment strategies. The finger-tapping test is a standard motor assessment. Clinicians visually evaluate a patient's tapping performance and assign an overall severity score based on tapping amplitude, speed, and irregularity. However, this subjective evaluation is prone to inter- and intra-rater variability, and does not offer insights into individual motor characteristics captured during this test. This paper introduces a granular computer vision-based method for quantifying PD motor characteristics from video recordings. Four sets of clinically relevant features are proposed to characterize hypokinesia, bradykinesia, sequence effect, and hesitation-halts. We evaluate our approach on video recordings and clinical evaluations of 74 PD patients from the Personalized Parkinson Project. Principal component analysis with varimax rotation shows that the video-based features corresponded to the four deficits. Additionally, video-based analysis has allowed us to identify further granular distinctions within sequence effect and hesitation-halts deficits. In the following, we have used these features to train machine learning classifiers to estimate the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) finger-tapping score. Compared to state-of-the-art approaches, our method achieves a higher accuracy in MDS-UPDRS score prediction, while still providing an interpretable quantification of individual finger-tapping motor characteristics. In summary, the proposed framework provides a practical solution for the objective assessment of PD motor characteristics, that can potentially be applied in both clinical and remote settings. Future work is needed to assess its responsiveness to symptomatic treatment and disease progression.
♻ ☆ Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models NeurIPS 2025
Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on the object's geometry and functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Creative AI Track
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.5 billion items.
♻ ☆ Enhanced Structured Lasso Pruning with Class-wise Information
Modern applications require lightweight neural network models. Most existing neural network pruning methods focus on removing unimportant filters; however, these may result in the loss of statistical information after pruning due to failing to consider the class-wise information. In this paper, we employ the structured lasso from the perspective of utilizing precise class-wise information for model pruning with the help of Information Bottleneck theory, which guides us to ensure the retention of statistical information before and after pruning. With these techniques, we propose two novel adaptive network pruning schemes in parallel: sparse graph-structured lasso pruning with Information Bottleneck (sGLP-IB) and sparse tree-guided lasso pruning with Information Bottleneck (sTLP-IB). The key component is that we prune the model filters utilizing sGLP-IB and sTLP-IB with more precise structured class-wise relatedness. Compared to multiple state-of-the-art methods, our approaches achieve the best performance across three datasets and six model structures on extensive experiments. For example, with the VGG16 model based on the CIFAR-10 dataset, we can reduce the parameters by 85%, decrease the FLOPs by 61%, and maintain an accuracy of 94.10% (0.14% better than the original). For large-scale ImageNet, we can reduce the parameters by 55% while keeping the accuracy at 76.12% (only drop 0.03%) using the ResNet architecture. In summary, we succeed in reducing the model size and computational resource usage while maintaining the effectiveness of accuracy.
comment: 11 pages, 3 figures
♻ ☆ Biologically-Informed Hybrid Membership Inference Attacks on Generative Genomic Models
The increased availability of genetic data has transformed genomics research, but raised many privacy concerns regarding its handling due to its sensitive nature. This work explores the use of language models (LMs) for the generation of synthetic genetic mutation profiles, leveraging differential privacy (DP) for the protection of sensitive genetic data. We empirically evaluate the privacy guarantees of our DP modes by introducing a novel Biologically-Informed Hybrid Membership Inference Attack (biHMIA), which combines traditional black box MIA with contextual genomics metrics for enhanced attack power. Our experiments show that both small and large transformer GPT-like models are viable synthetic variant generators for small-scale genomics, and that our hybrid attack leads, on average, to higher adversarial success compared to traditional metric-based MIAs.
♻ ☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning and safety training methods consistently fail to remove dangerous knowledge from language models. We identify the root cause - unlearning targets representations which are too general - and develop a highly selective technique that unlearns robustly while preserving general performance. Our method performs PCA on activations and module-output gradients to identify subspaces containing common representations, then collapses these subspaces before computing unlearning updates, a technique we term Collapse of Irrelevant Representations (CIR). This avoids unlearning general knowledge and targets only representations specific to the facts being unlearned. When unlearning bio- and cyber-hazardous facts from Llama-3.1-8B, we achieve over 30x greater reduction in post-attack accuracy than the best baseline (Circuit Breakers), while disrupting general performance 30x less, and using less than 3 GPU-seconds per fact. Thus, by disentangling harmful and benign capabilities at the level of representations, CIR enables robust and non-disruptive unlearning.
♻ ☆ Reducing the Scope of Language Models AAAI 2026
Large language models (LLMs) are deployed in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions grounded on documentation or acting as coding assistants, but they require general language understanding. In such deployments, LLMs should respond only to queries that align with the intended purpose and reject all other requests, such as generating poetry or answering questions about physics, a task we refer to as `scoping'. We conduct a comprehensive empirical evaluation of various methods, ranging from prompting, fine-tuning to preference learning and the recently proposed general alignment technique known as Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping LLMs.
comment: Appears in AAAI 2026 in the Main Technical Track
♻ ☆ Bridging LMS and generative AI: dynamic course content integration (DCCI) for enhancing student satisfaction and engagement via the ask ME assistant
Integration of Large Language Models (LLMs) with Learning Management Systems (LMSs) can enhance task automation and accessibility in education. However, hallucination where LLMs generate inaccurate or misleading information remains a challenge. This study introduces the Dynamic Course Content Integration (DCCI) mechanism, which dynamically retrieves course content from Canvas LMS and structures it within an LLM's context window via prompt engineering, enabling the LLM-powered assistant, Ask ME, to deliver context-aware, curriculum-aligned responses while mitigating hallucinations. A mixed-methods pilot study grounded in Self-Determination Theory (autonomy, competence) and the Technology Acceptance Model (perceived usefulness, ease of use) evaluated DCCI's effectiveness with 120 first-year programming students at Eötvös Loránd University. The course focused on foundational programming patterns in C#, including writing program specifications. We analyzed 14,746 logged interactions and a post-course survey completed by 101 students. User satisfaction was measured via a 5-point Likert scale (turn-level ratings), while the survey assessed usability, engagement, and ethical concerns. Results indicated high satisfaction (mean 4.65/5) and strong recognition of Ask ME's ability to provide timely, contextually relevant answers to administrative and course-related queries. 78.06% agreed that Ask ME's Canvas integration reduced platform switching, improving usability, engagement, comprehension, and topic exploration. Many students reported reduced hesitation to ask questions and increased motivation for self-directed learning, though concerns about over-reliance on AI and reduced student-teacher interaction emerged. This study demonstrates that DCCI enhances LLM reliability, student satisfaction, and engagement in AI-driven educational automation, while highlighting the importance of balancing
♻ ☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
♻ ☆ SOM Directions are Better than One: Multi-Directional Refusal Suppression in Language Models AAAI 2026
Refusal refers to the functional behavior enabling safety-aligned language models to reject harmful or unethical prompts. Following the growing scientific interest in mechanistic interpretability, recent work encoded refusal behavior as a single direction in the model's latent space; e.g., computed as the difference between the centroids of harmful and harmless prompt representations. However, emerging evidence suggests that concepts in LLMs often appear to be encoded as a low-dimensional manifold embedded in the high-dimensional latent space. Motivated by these findings, we propose a novel method leveraging Self-Organizing Maps (SOMs) to extract multiple refusal directions. To this end, we first prove that SOMs generalize the prior work's difference-in-means technique. We then train SOMs on harmful prompt representations to identify multiple neurons. By subtracting the centroid of harmless representations from each neuron, we derive a set of multiple directions expressing the refusal concept. We validate our method on an extensive experimental setup, demonstrating that ablating multiple directions from models' internals outperforms not only the single-direction baseline but also specialized jailbreak algorithms, leading to an effective suppression of refusal. Finally, we conclude by analyzing the mechanistic implications of our approach.
comment: Accepted at AAAI 2026
♻ ☆ A Brain Cell Type Resource Created by Large Language Models and a Multi-Agent AI System for Collaborative Community Annotation
Single-cell RNA sequencing has transformed our ability to identify diverse cell types and their transcriptomic signatures. However, annotating these signatures-especially those involving poorly characterized genes-remains a major challenge. Traditional methods, such as Gene Set Enrichment Analysis (GSEA), depend on well-curated annotations and often perform poorly in these contexts. Large Language Models (LLMs) offer a promising alternative but struggle to represent complex biological knowledge within structured ontologies. To address this, we present BRAINCELL-AID (BRAINCELL-AID: https://biodataai.uth.edu/BRAINCELL-AID), a novel multi-agent AI system that integrates free-text descriptions with ontology labels to enable more accurate and robust gene set annotation. By incorporating retrieval-augmented generation (RAG), we developed a robust agentic workflow that refines predictions using relevant PubMed literature, reducing hallucinations and enhancing interpretability. Using this workflow, we achieved correct annotations for 77% of mouse gene sets among their top predictions. Applying this approach, we annotated 5,322 brain cell clusters from the comprehensive mouse brain cell atlas generated by the BRAIN Initiative Cell Census Network, enabling novel insights into brain cell function by identifying region-specific gene co-expression patterns and inferring functional roles of gene ensembles. BRAINCELL-AID also identifies Basal Ganglia-related cell types with neurologically meaningful descriptions. Hence, we create a valuable resource to support community-driven cell type annotation.
comment: 23 pages, 6 figures, 2 tables
♻ ☆ Does AI-Assisted Coding Deliver? A Difference-in-Differences Study of Cursor's Impact on Software Projects
Large language models (LLMs) have demonstrated the promise to revolutionize the field of software engineering. Among other things, LLM agents are rapidly gaining momentum in their application to software development, with practitioners claiming a multifold productivity increase after adoption. Yet, empirical evidence is lacking around these claims. In this paper, we estimate the causal effect of adopting a widely popular LLM agent assistant, namely Cursor, on development velocity and software quality. The estimation is enabled by a state-of-the-art difference-in-differences design comparing Cursor-adopting GitHub projects with a matched control group of similar GitHub projects that do not use Cursor. We find that the adoption of Cursor leads to a significant, large, but transient increase in project-level development velocity, along with a significant and persistent increase in static analysis warnings and code complexity. Further panel generalized method of moments estimation reveals that the increase in static analysis warnings and code complexity acts as a major factor causing long-term velocity slowdown. Our study carries implications for software engineering practitioners, LLM agent assistant designers, and researchers.
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Multi-Turn Interactions for Text-to-SQL with Large Language Models CIKM 2025
This study explores text-to-SQL parsing by leveraging the powerful reasoning capabilities of large language models (LLMs). Despite recent advancements, existing LLM-based methods are still inefficient and struggle to handle cases with wide tables effectively. Furthermore, current interaction-based approaches either lack a step-by-step, interpretable SQL generation process or fail to provide a universally applicable interaction design. To address these challenges, we introduce Interactive-T2S, a framework that generates SQL queries through direct interactions with databases. This framework includes four general tools that facilitate proactive and efficient information retrieval by the LLM. Additionally, we have developed detailed exemplars to demonstrate the step-wise reasoning processes within our framework. Our approach achieves advanced performance on the Spider and BIRD datasets as well as their variants. Notably, we obtain state-of-the-art results on the BIRD leaderboard under the setting without oracle knowledge, demonstrating the effectiveness of our method.
comment: This work has been accepted to CIKM 2025
♻ ☆ Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Automated visual inspection in medical-device manufacturing faces unique challenges, including extremely low defect rates, limited annotated data, hardware restrictions on production lines, and the need for validated, explainable artificial-intelligence systems. This paper presents two attention-guided autoencoder architectures that address these constraints through complementary anomaly-detection strategies. The first employs a multi-scale structural-similarity (4-MS-SSIM) index for inline inspection, enabling interpretable, real-time defect detection on constrained hardware. The second applies a Mahalanobis-distance analysis of randomly reduced latent features for efficient feature-space monitoring and lifecycle verification. Both approaches share a lightweight backbone optimised for high-resolution imagery for typical manufacturing conditions. Evaluations on the Surface Seal Image (SSI) dataset-representing sterile-barrier packaging inspection-demonstrate that the proposed methods outperform reference baselines, including MOCCA, CPCAE, and RAG-PaDiM, under realistic industrial constraints. Cross-domain validation on the MVTec-Zipper benchmark confirms comparable accuracy to state-of-the-art anomaly-detection methods. The dual-mode framework integrates inline anomaly detection and supervisory monitoring, advancing explainable AI architectures toward greater reliability, observability, and lifecycle monitoring in safety-critical manufacturing environments. To facilitate reproducibility, the source code developed for the experiments has been released in the project repository, while the datasets were obtained from publicly available sources.
comment: 12 pages, 3 figures, 3 tables
♻ ☆ ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset
We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.
♻ ☆ Leveraging Large Language Models for Use Case Model Generation from Software Requirements
Use case modeling employs user-centered scenarios to outline system requirements. These help to achieve consensus among relevant stakeholders. Because the manual creation of use case models is demanding and time-consuming, it is often skipped in practice. This study explores the potential of Large Language Models (LLMs) to assist in this tedious process. The proposed method integrates an open-weight LLM to systematically extract actors and use cases from software requirements with advanced prompt engineering techniques. The method is evaluated using an exploratory study conducted with five professional software engineers, which compares traditional manual modeling to the proposed LLM-based approach. The results show a substantial acceleration, reducing the modeling time by 60\%. At the same time, the model quality remains on par. Besides improving the modeling efficiency, the participants indicated that the method provided valuable guidance in the process.
comment: Accepted at the Intelligent Software Engineering Workshop (ISE 2025) at ASE 2025
♻ ☆ Constructing an Optimal Behavior Basis for the Option Keyboard NeurIPS
Multi-task reinforcement learning aims to quickly identify solutions for new tasks with minimal or no additional interaction with the environment. Generalized Policy Improvement (GPI) addresses this by combining a set of base policies to produce a new one that is at least as good -- though not necessarily optimal -- as any individual base policy. Optimality can be ensured, particularly in the linear-reward case, via techniques that compute a Convex Coverage Set (CCS). However, these are computationally expensive and do not scale to complex domains. The Option Keyboard (OK) improves upon GPI by producing policies that are at least as good -- and often better. It achieves this through a learned meta-policy that dynamically combines base policies. However, its performance critically depends on the choice of base policies. This raises a key question: is there an optimal set of base policies -- an optimal behavior basis -- that enables zero-shot identification of optimal solutions for any linear tasks? We solve this open problem by introducing a novel method that efficiently constructs such an optimal behavior basis. We show that it significantly reduces the number of base policies needed to ensure optimality in new tasks. We also prove that it is strictly more expressive than a CCS, enabling particular classes of non-linear tasks to be solved optimally. We empirically evaluate our technique in challenging domains and show that it outperforms state-of-the-art approaches, increasingly so as task complexity increases.
comment: To appear in the Proceedings of the Thirty-ninth Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ National Institute on Aging PREPARE Challenge: Early Detection of Cognitive Impairment Using Speech -- The SpeechCARE Solution
Alzheimer's disease and related dementias (ADRD) affect one in five adults over 60, yet more than half of individuals with cognitive decline remain undiagnosed. Speech-based assessments show promise for early detection, as phonetic motor planning deficits alter acoustic features (e.g., pitch, tone), while memory and language impairments lead to syntactic and semantic errors. However, conventional speech-processing pipelines with hand-crafted features or general-purpose audio classifiers often exhibit limited performance and generalizability. To address these limitations, we introduce SpeechCARE, a multimodal speech processing pipeline that leverages pretrained, multilingual acoustic and linguistic transformer models to capture subtle speech-related cues associated with cognitive impairment. Inspired by the Mixture of Experts (MoE) paradigm, SpeechCARE employs a dynamic fusion architecture that weights transformer-based acoustic, linguistic, and demographic inputs, allowing integration of additional modalities (e.g., social factors, imaging) and enhancing robustness across diverse tasks. Its robust preprocessing includes automatic transcription, large language model (LLM)-based anomaly detection, and task identification. A SHAP-based explainability module and LLM reasoning highlight each modality's contribution to decision-making. SpeechCARE achieved AUC = 0.88 and F1 = 0.72 for classifying cognitively healthy, MCI, and AD individuals, with AUC = 0.90 and F1 = 0.62 for MCI detection. Bias analysis showed minimal disparities, except for adults over 80. Mitigation techniques included oversampling and weighted loss. Future work includes deployment in real-world care settings (e.g., VNS Health, Columbia ADRC) and EHR-integrated explainability for underrepresented populations in New York City.
♻ ☆ One-Shot Multi-Label Causal Discovery in High-Dimensional Event Sequences
Understanding causality in event sequences with thousands of sparse event types is critical in domains such as healthcare, cybersecurity, or vehicle diagnostics, yet current methods fail to scale. We present OSCAR, a one-shot causal autoregressive method that infers per-sequence Markov Boundaries using two pretrained Transformers as density estimators. This enables efficient, parallel causal discovery without costly global CI testing. On a real-world automotive dataset with 29,100 events and 474 labels, OSCAR recovers interpretable causal structures in minutes, while classical methods fail to scale, enabling practical scientific diagnostics at production scale.
comment: Accepted at NeuRIPS2025 Workshop CauScien: Discovering Causality in Science. arXiv admin note: substantial text overlap with arXiv:2509.19112
♻ ☆ Towards Practical Multi-label Causal Discovery in High-Dimensional Event Sequences via One-Shot Graph Aggregation
Understanding causality in event sequences where outcome labels such as diseases or system failures arise from preceding events like symptoms or error codes is critical. Yet remains an unsolved challenge across domains like healthcare or vehicle diagnostics. We introduce CARGO, a scalable multi-label causal discovery method for sparse, high-dimensional event sequences comprising of thousands of unique event types. Using two pretrained causal Transformers as domain-specific foundation models for event sequences. CARGO infers in parallel, per sequence one-shot causal graphs and aggregates them using an adaptive frequency fusion to reconstruct the global Markov boundaries of labels. This two-stage approach enables efficient probabilistic reasoning at scale while bypassing the intractable cost of full-dataset conditional independence testing. Our results on a challenging real-world automotive fault prediction dataset with over 29,100 unique event types and 474 imbalanced labels demonstrate CARGO's ability to perform structured reasoning.
comment: Accepted at NeuRIPS2025 Workshop on Structured Probabilistic Inference and Generative Modeling
♻ ☆ Xiaoice: Training-Free Video Understanding via Self-Supervised Spatio-Temporal Clustering of Semantic Features
The remarkable zero-shot reasoning capabilities of large-scale Visual Language Models (VLMs) on static images have yet to be fully translated to the video domain. Conventional video understanding models often rely on extensive, task-specific training on annotated datasets, a process that is both costly and limited in scalability. This paper introduces a novel, training-free framework for video understanding that circumvents end-to-end training by synergistically combining the rich semantic priors of pre-trained VLMs with classic machine learning algorithms for pattern discovery. Our core idea is to reframe video understanding as a self-supervised spatio-temporal clustering problem within a high-dimensional semantic feature space. The proposed pipeline first transforms a video stream into a semantic feature trajectory using the frozen visual encoder of a pre-trained VLM. Subsequently, we employ Kernel Temporal Segmentation (KTS), a robust machine learning technique, to partition the continuous feature stream into discrete, semantically coherent event segments. These segments are then subjected to unsupervised density-based clustering to identify recurring macroscopic scenes and themes throughout the video. By selecting representative keyframes from each discovered cluster and leveraging the VLM's generative capabilities for textual description, our framework automatically produces a structured, multi-modal summary of the video content. This approach provides an effective, interpretable, and model-agnostic pathway for zero-shot, automated structural analysis of video content.
comment: This paper is being withdrawn because we have identified a significant error in the implementation of our self-supervised clustering approach. Specifically, our feature aggregation step inadvertently leaked temporal information across frames, which violates the core assumption of our training-free method. We sincerely apologize to the research community
♻ ☆ Test-Time Reinforcement Learning for GUI Grounding via Region Consistency AAAI2026
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), transforming these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: using only 1,272 unlabeled data, GUI-RCPO achieves 3-6% accuracy improvements across various architectures on ScreenSpot benchmarks. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more data-efficient GUI agents.
comment: [Accepted by AAAI2026] Project Page: https://zju-real.github.io/gui-rcpo Code: https://github.com/zju-real/gui-rcpo
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
♻ ☆ Learning the Basis: A Kolmogorov-Arnold Network Approach Embedding Green's Function Priors
The Method of Moments (MoM) is constrained by the usage of static, geometry-defined basis functions, such as the Rao-Wilton-Glisson (RWG) basis. This letter reframes electromagnetic modeling around a learnable basis representation rather than solving for the coefficients over a fixed basis. We first show that the RWG basis is essentially a static and piecewise-linear realization of the Kolmogorov-Arnold representation theorem. Inspired by this insight, we propose PhyKAN, a physics-informed Kolmogorov-Arnold Network (KAN) that generalizes RWG into a learnable and adaptive basis family. Derived from the EFIE, PhyKAN integrates a local KAN branch with a global branch embedded with Green's function priors to preserve physical consistency. It is demonstrated that, across canonical geometries, PhyKAN achieves sub-0.01 reconstruction errors as well as accurate, unsupervised radar cross section predictions, offering an interpretable, physics-consistent bridge between classical solvers and modern neural network models for electromagnetic modeling.
♻ ☆ Remodeling Semantic Relationships in Vision-Language Fine-Tuning
Vision-language fine-tuning has emerged as an efficient paradigm for constructing multimodal foundation models. While textual context often highlights semantic relationships within an image, existing fine-tuning methods typically overlook this information when aligning vision and language, thus leading to suboptimal performance. Toward solving this problem, we propose a method that can improve multimodal alignment and fusion based on both semantics and relationships.Specifically, we first extract multilevel semantic features from different vision encoder to capture more visual cues of the relationships. Then, we learn to project the vision features to group related semantics, among which are more likely to have relationships. Finally, we fuse the visual features with the textual by using inheritable cross-attention, where we globally remove the redundant visual relationships by discarding visual-language feature pairs with low correlation. We evaluate our proposed method on eight foundation models and two downstream tasks, visual question answering and image captioning, and show that it outperforms all existing methods.
♻ ☆ Green AI: A systematic review and meta-analysis of its definitions, lifecycle models, hardware and measurement attempts
Across the Artificial Intelligence (AI) lifecycle - from hardware to development, deployment, and reuse - burdens span energy, carbon, water, and embodied impacts. Cloud provider tools improve transparency but remain heterogeneous and often omit water and value chain effects, limiting comparability and reproducibility. Addressing these multi dimensional burdens requires a lifecycle approach linking phase explicit mapping with system levers (hardware, placement, energy mix, cooling, scheduling) and calibrated measurement across facility, system, device, and workload levels. This article (i) establishes a unified, operational definition of Green AI distinct from Sustainable AI; (ii) formalizes a five phase lifecycle mapped to Life Cycle Assessment (LCA) stages, making energy, carbon, water, and embodied impacts first class; (iii) specifies governance via Plan Do Check Act (PDCA) cycles with decision gateways; (iv) systematizes hardware and system level strategies across the edge cloud continuum to reduce embodied burdens; and (v) defines a calibrated measurement framework combining estimator models with direct metering to enable reproducible, provider agnostic comparisons. Combining definition, lifecycle processes, hardware strategies, and calibrated measurement, this article offers actionable, evidence based guidance for researchers, practitioners, and policymakers.
♻ ☆ An Efficient Training Pipeline for Reasoning Graphical User Interface Agents
Visual grounding is the task of localising image regions from natural language queries and is critical for reasoning capable Graphical User Interface agents. Many existing methods rely on massive, noisy synthetic datasets.This work introduces an efficient training pipeline that combines model-based data filtering with parameter-efficient fine-tuning. From 4.8M synthetic examples, 12K clean and diverse instances are curated by first identifying challenging cases, removing misaligned and then selecting a diverse set of multimodal instances. On this data, a 3B-parameter Vision-Language Model is trained under three regimes: supervised fine-tuning, chain-of-thought-augmented fine-tuning, and reinforcement learning via Group Relative Policy Optimization. Models trained with the filtered data and lightweight training strategies match or surpass larger baselines on benchmarks such as ScreenSpot, Multimodal-Mind2Web, and AndroidControl. These results demonstrate that principled data curation and robust adaptation can rival large-scale training, enabling compact yet capable multimodal reasoning agents.
♻ ☆ Artificial-Intelligence Grading Assistance for Handwritten Components of a Calculus Exam
We investigate whether contemporary multimodal LLMs can assist with grading open-ended calculus at scale without eroding validity. In a large first-year exam, students' handwritten work was graded by GPT-5 against the same rubric used by teaching assistants (TAs), with fractional credit permitted; TA rubric decisions served as ground truth. We calibrated a human-in-the-loop filter that combines a partial-credit threshold with an Item Response Theory (2PL) risk measure based on the deviation between the AI score and the model-expected score for each student-item. Unfiltered AI-TA agreement was moderate, adequate for low-stakes feedback but not for high-stakes use. Confidence filtering made the workload-quality trade-off explicit: under stricter settings, AI delivered human-level accuracy, but also left roughly 70% of the items to be graded by humans. Psychometric patterns were constrained by low stakes on the open-ended portion, a small set of rubric checkpoints, and occasional misalignment between designated answer regions and where work appeared. Practical adjustments such as slightly higher weight and protected time, a few rubric-visible substeps, stronger spatial anchoring should raise ceiling performance. Overall, calibrated confidence and conservative routing enable AI to reliably handle a sizable subset of routine cases while reserving expert judgment for ambiguous or pedagogically rich responses.
♻ ☆ The Prompt War: How AI Decides on a Military Intervention
Which factors determine AI propensity for military intervention? While the use of AI in war games and military planning is growing exponentially, the simple analysis of key drivers embedded in the models has not yet been done. This paper does a simple conjoint experiment proposing a model to decide on military intervention in 640 vignettes where each was run for 100 times allowing to explore AI decision on military intervention systematically. The analysis finds that largest predictors of AI decision to intervene are high domestic support and high probability of success. Costs such as international condemnation, military deaths, civilian deaths, and negative economic effect are statistically significant, but their effect is around half of domestic support and probability of victory. Closing window of opportunity only reaches statistical significance in interaction with other factors. The results are remarkably consistent across scenarios and across different models (OpenAI GPT, Anthropic Claude, Google Gemini) suggesting a pattern in AI decision-making.
comment: 22 pages, 4 tables, 3 figures
♻ ☆ Enhancing the development of Cherenkov Telescope Array control software with Large Language Models
We develop AI agents based on instruction-finetuned large language models (LLMs) to assist in the engineering and operation of the Cherenkov Telescope Array Observatory (CTAO) Control and Data Acquisition Software (ACADA). These agents align with project-specific documentation and codebases, understand contextual information, interact with external APIs, and communicate with users in natural language. We present our progress in integrating these features into CTAO pipelines for operations and offline data analysis.
comment: EuCAIFCon 2025 proceedings
♻ ☆ Enhancing Conflict Resolution in Language Models via Abstract Argumentation
In recent years, large language models (LLMs) have made significant advancements in developing human-like and engaging dialogue systems. However, in tasks such as consensus-building and persuasion, LLMs often struggle to resolve conflicts arising from incomplete or inconsistent information, revealing their limitations in real-world applications. Given these limitations, abstract argumentation, a specialized logical framework designed to resolve conflicts and inconsistencies, becomes particularly relevant. In this paper, we aim to enhance the conflict-solving capabilities of LLMs by leveraging formal abstract argumentation, integrating language model learning with symbolic computation. To achieve this, we develop and curate a dataset comprising diverse abstract argumentation frameworks, accompanied by detailed explanations of the argument acceptability computation process. Subsequently, we fine-tune LLMs on this dataset, focusing on abstract conflict resolution tasks. As a comparative baseline, LLMs are also evaluated using a chain-of-thought approach, however, they fail to solve the conflict-based arguments effectively. Our experiments demonstrate that process explanations play a crucial role in learning. Models trained with explanations exhibit superior generalization accuracy compared to those trained solely on question-answer pairs. Furthermore, leveraging LLMs' self-explanation capabilities, our approach provides detailed illustrations that mitigate the lack of transparency typically associated with neural networks.
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
Large Language Models (LLMs) are trained on massive, unstructured corpora, making it unclear which social patterns and biases they absorb and later reproduce. Existing evaluations typically examine outputs or activations, but rarely connect them back to the pre-training data. We introduce a pipeline that couples LLMs with sparse autoencoders (SAEs) to trace how different themes are encoded during training. As a controlled case study, we trained a GPT-style model on 37 nineteenth-century novels by ten female authors, a corpus centered on themes such as gender, marriage, class, and morality. By applying SAEs across layers and probing with eleven social and moral categories, we mapped sparse features to human-interpretable concepts. The analysis revealed stable thematic backbones (most prominently around gender and kinship) and showed how associations expand and entangle with depth. More broadly, we argue that the LLM+SAEs pipeline offers a scalable framework for auditing how cultural assumptions from the data are embedded in model representations.
comment: Preprint. Draft version, subject to revision
♻ ☆ Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning NeurIPS 2025
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
comment: Accepted to NeurIPS 2025. 25 pages, 17 figures, 2 tables
♻ ☆ Computing Wasserstein Barycenters through Gradient Flows
Wasserstein barycenters provide a powerful tool for aggregating probability measures, while leveraging the geometry of their ambient space. Existing discrete methods suffer from poor scalability, as they require access to the complete set of samples from input measures. We address this issue by recasting the original barycenter problem as a gradient flow in the Wasserstein space. Our approach offers two advantages. First, we achieve scalability by sampling mini-batches from the input measures. Second, we incorporate functionals over probability measures, which regularize the barycenter problem through internal, potential, and interaction energies. We present two algorithms for empirical and Gaussian mixture measures, providing convergence guarantees under the Polyak-Łojasiewicz inequality. Experimental validation on toy datasets and domain adaptation benchmarks show that our methods outperform previous discrete and neural net-based methods for computing Wasserstein barycenters.
comment: Under review
♻ ☆ Personalized Chain-of-Thought Summarization of Financial News for Investor Decision Support ICDM
Financial advisors and investors struggle with information overload from financial news, where irrelevant content and noise obscure key market signals and hinder timely investment decisions. To address this, we propose a novel Chain-of-Thought (CoT) summarization framework that condenses financial news into concise, event-driven summaries. The framework integrates user-specified keywords to generate personalized outputs, ensuring that only the most relevant contexts are highlighted. These personalized summaries provide an intermediate layer that supports language models in producing investor-focused narratives, bridging the gap between raw news and actionable insights.
comment: Proceedings of ICDM Workshops
♻ ☆ Feedback-MPPI: Fast Sampling-Based MPC via Rollout Differentiation -- Adios low-level controllers
Model Predictive Path Integral control is a powerful sampling-based approach suitable for complex robotic tasks due to its flexibility in handling nonlinear dynamics and non-convex costs. However, its applicability in real-time, highfrequency robotic control scenarios is limited by computational demands. This paper introduces Feedback-MPPI (F-MPPI), a novel framework that augments standard MPPI by computing local linear feedback gains derived from sensitivity analysis inspired by Riccati-based feedback used in gradient-based MPC. These gains allow for rapid closed-loop corrections around the current state without requiring full re-optimization at each timestep. We demonstrate the effectiveness of F-MPPI through simulations and real-world experiments on two robotic platforms: a quadrupedal robot performing dynamic locomotion on uneven terrain and a quadrotor executing aggressive maneuvers with onboard computation. Results illustrate that incorporating local feedback significantly improves control performance and stability, enabling robust, high-frequency operation suitable for complex robotic systems.
♻ ☆ Spikingformer: A Key Foundation Model for Spiking Neural Networks AAAI 2026
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks, due to their event-driven spiking computation. However, some foundation SNN backbones (including Spikformer and SEW ResNet) suffer from non-spike computations (integer-float multiplications) caused by the structure of their residual connections. These non-spike computations increase SNNs' power consumption and make them unsuitable for deployment on mainstream neuromorphic hardware. In this paper, we analyze the spike-driven behavior of the residual connection methods in SNNs. We then present Spikingformer, a novel spiking transformer backbone that merges the MS Residual connection with Self-Attention in a biologically plausible way to address the non-spike computation challenge in Spikformer while maintaining global modeling capabilities. We evaluate Spikingformer across 13 datasets spanning large static images, neuromorphic data, and natural language tasks, and demonstrate the effectiveness and universality of Spikingformer, setting a vital benchmark for spiking neural networks. In addition, with the spike-driven features and global modeling capabilities, Spikingformer is expected to become a more efficient general-purpose SNN backbone towards energy-efficient artificial intelligence. Code: https://github.com/TheBrainLab/Spikingformer
comment: Accepted by AAAI 2026 (Oral), Code: https://github.com/TheBrainLab/Spikingformer
♻ ☆ Enhancing Logical Expressiveness in Graph Neural Networks via Path-Neighbor Aggregation
Graph neural networks (GNNs) can effectively model structural information of graphs, making them widely used in knowledge graph (KG) reasoning. However, existing studies on the expressive power of GNNs mainly focuses on simple single-relation graphs, and there is still insufficient discussion on the power of GNN to express logical rules in KGs. How to enhance the logical expressive power of GNNs is still a key issue. Motivated by this, we propose Path-Neighbor enhanced GNN (PN-GNN), a method to enhance the logical expressive power of GNN by aggregating node-neighbor embeddings on the reasoning path. First, we analyze the logical expressive power of existing GNN-based methods and point out the shortcomings of the expressive power of these methods. Then, we theoretically investigate the logical expressive power of PN-GNN, showing that it not only has strictly stronger expressive power than C-GNN but also that its $(k+1)$-hop logical expressiveness is strictly superior to that of $k$-hop. Finally, we evaluate the logical expressive power of PN-GNN on six synthetic datasets and two real-world datasets. Both theoretical analysis and extensive experiments confirm that PN-GNN enhances the expressive power of logical rules without compromising generalization, as evidenced by its competitive performance in KG reasoning tasks.
♻ ☆ Scalable Quantum State Preparation via Large-Language-Model-Driven Discovery
Efficient quantum state preparation remains a central challenge in first-principles quantum simulations of dynamics in quantum field theories, where the Hilbert space is intrinsically infinite-dimensional. Here, we introduce a large language model (LLM)-assisted framework for quantum-circuit design that systematically scales state-preparation circuits to large lattice volumes. Applied to a 1+1d XY spin chain, the LLM autonomously discovers a compact 4-parameter circuit that captures boundary-induced symmetry breaking with sub-percent energy deviation, enabling successful validation on the \texttt{Zuchongzhi} quantum processor. Guided by this insight, we extend the framework to 2+1d quantum field theories, where scalable variational ansätze have remained elusive. For a scalar field theory, the search yields a symmetry-preserving, 3-parameter shallow-depth ansatz whose optimized parameters converge to size-independent constants for lattices $n \ge 4$, providing, to our knowledge, the first scalable ansatz for this class of 2+1d models. Our results establish a practical route toward AI-assisted, human-guided discovery in quantum simulation.
comment: 6 + 3 pages, 9 figures. Substantially update the draft, including a study of the 2+1d scalar field theory
♻ ☆ Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further aggravates the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across different model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. Larger models can predict the next token more accurately, achieving greater compression gains but at higher computational costs. Empirical evaluations on mainstream open-source models show that models of varying sizes within a series exhibit consistent information capacity. This metric enables a fair efficiency comparison across model series and accurate performance prediction within a model series. A distinctive feature of information capacity is that it incorporates tokenizer efficiency, which affects both input and output token counts but is often neglected in LLM evaluations. We assess the information capacity of 49 models on 5 heterogeneous datasets and observe consistent results on the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts architecture.
comment: Code: https://github.com/TeleAI-AI-Flow/InformationCapacity. Data: https://huggingface.co/datasets/TeleAI-AI-Flow/InformationCapacity
♻ ☆ Unlocking Efficient Vehicle Dynamics Modeling via Analytic World Models AAAI 2026
Differentiable simulators represent an environment's dynamics as a differentiable function. Within robotics and autonomous driving, this property is used in Analytic Policy Gradients (APG), which relies on backpropagating through the dynamics to train accurate policies for diverse tasks. Here we show that differentiable simulation also has an important role in world modeling, where it can impart predictive, prescriptive, and counterfactual capabilities to an agent. Specifically, we design three novel task setups in which the differentiable dynamics are combined within an end-to-end computation graph not with a policy, but a state predictor. This allows us to learn relative odometry, optimal planners, and optimal inverse states. We collectively call these predictors Analytic World Models (AWMs) and demonstrate how differentiable simulation enables their efficient, end-to-end learning. In autonomous driving scenarios, they have broad applicability and can augment an agent's decision-making beyond reactive control.
comment: Accepted at AAAI 2026
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ DOoM: Difficult Olympiads of Math
This paper introduces DOoM, a new open-source benchmark designed to assess the capabilities of language models in solving mathematics and physics problems in Russian. The benchmark includes problems of varying difficulty, ranging from school-level tasks to university Olympiad and entrance exam questions. In this paper we discuss the motivation behind its creation, describe dataset's structure and evaluation methodology, and present initial results from testing various models. Analysis of the results shows a correlation between model performance and the number of tokens used, and highlights differences in performance between mathematics and physics tasks.
♻ ☆ Beyond Frequency: Seeing Subtle Cues Through the Lens of Spatial Decomposition for Fine-Grained Visual Classification
The crux of resolving fine-grained visual classification (FGVC) lies in capturing discriminative and class-specific cues that correspond to subtle visual characteristics. Recently, frequency decomposition/transform based approaches have attracted considerable interests since its appearing discriminative cue mining ability. However, the frequency-domain methods are based on fixed basis functions, lacking adaptability to image content and unable to dynamically adjust feature extraction according to the discriminative requirements of different images. To address this, we propose a novel method for FGVC, named Subtle-Cue Oriented Perception Engine (SCOPE), which adaptively enhances the representational capability of low-level details and high-level semantics in the spatial domain, breaking through the limitations of fixed scales in the frequency domain and improving the flexibility of multi-scale fusion. The core of SCOPE lies in two modules: the Subtle Detail Extractor (SDE), which dynamically enhances subtle details such as edges and textures from shallow features, and the Salient Semantic Refiner (SSR), which learns semantically coherent and structure-aware refinement features from the high-level features guided by the enhanced shallow features. The SDE and SSR are cascaded stage-by-stage to progressively combine local details with global semantics. Extensive experiments demonstrate that our method achieves new state-of-the-art on four popular fine-grained image classification benchmarks.
comment: After supplementary experiments and careful review, minor inconsistencies in prompt template configuration and partial experimental parameter records were identified. To ensure research accuracy, rigor, and reproducibility, we will revise technical descriptions, verify results with standardized parameters, and resubmit a polished version soon. Apologies for any inconvenience
♻ ☆ Small Models Struggle to Learn from Strong Reasoners
Large language models (LLMs) excel in complex reasoning tasks, and distilling their reasoning capabilities into smaller models has shown promise. However, we uncover an interesting phenomenon, which we term the Small Model Learnability Gap: small models ($\leq$3B parameters) do not consistently benefit from long chain-of-thought (CoT) reasoning or distillation from larger models. Instead, they perform better when fine-tuned on shorter, simpler reasoning chains that better align with their intrinsic learning capacity. To address this, we propose Mix Distillation, a simple yet effective strategy that balances reasoning complexity by combining long and short CoT examples or reasoning from both larger and smaller models. Our experiments demonstrate that Mix Distillation significantly improves small model reasoning performance compared to training on either data alone. These findings highlight the limitations of direct strong model distillation and underscore the importance of adapting reasoning complexity for effective reasoning capability transfer.
♻ ☆ Discussion Graph Semantics of First-Order Logic with Equality for Reasoning about Discussion and Argumentation
We make three contributions. First, we formulate a discussion-graph semantics for first-order logic with equality, enabling reasoning about discussion and argumentation in AI more generally than before. This addresses the current lack of a formal reasoning framework capable of handling diverse discussion and argumentation models. Second, we generalise Dung's notion of extensions to cases where two or more graph nodes in an argumentation framework are equivalent. Third, we connect these two contributions by showing that the generalised extensions are first-order characterisable within the proposed discussion-graph semantics. Propositional characterisability of all Dung's extensions is an immediate consequence. We furthermore show that the set of all generalised extensions (acceptability semantics), too, are first-order characterisable. Propositional characterisability of all Dung's acceptability semantics is an immediate consequence.
comment: Typos have been corrected. 1. Definition 14: there were two formulas given to 1 \leq k case. One was longer than the other. The longer one has been deleted. 2. Definition 20: corrected a wrong (..) scope in the last conjunct. 3. Theorem 6: the formula after "iff*" contained t_1, ..., t_k, ...., .... They have been corrected. c_1, ..., c_t, ..., 4. Corollary 2: a minor typo corrected
♻ ☆ Enhancing PIBT via Multi-Action Operations
PIBT is a rule-based Multi-Agent Path Finding (MAPF) solver, widely used as a low-level planner or action sampler in many state-of-the-art approaches. Its primary advantage lies in its exceptional speed, enabling action selection for thousands of agents within milliseconds by considering only the immediate next timestep. However, this short-horizon design leads to poor performance in scenarios where agents have orientation and must perform time-consuming rotation actions. In this work, we present an enhanced version of PIBT that addresses this limitation by incorporating multi-action operations. We detail the modifications introduced to improve PIBT's performance while preserving its hallmark efficiency. Furthermore, we demonstrate how our method, when combined with graph-guidance technique and large neighborhood search optimization, achieves state-of-the-art performance in the online LMAPF-T setting.
♻ ☆ Differentiating between human-written and AI-generated texts using linguistic features automatically extracted from an online computational tool
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and Artificial Intelligence (AI)-generated language. This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as consonants, word stress, nouns, verbs, pronouns, direct objects, prepositional modifiers, and use of difficult words among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the capacity of AI for producing more human-like text.
♻ ☆ Application-Specific Component-Aware Structured Pruning of Deep Neural Networks in Control via Soft Coefficient Optimization
Deep neural networks (DNNs) offer significant flexibility and robust performance. This makes them ideal for building not only system models but also advanced neural network controllers (NNCs). However, their high complexity and computational needs often limit their use. Various model compression strategies have been developed over the past few decades to address these issues. These strategies are effective for general DNNs but do not directly apply to NNCs. NNCs need both size reduction and the retention of key application-specific performance features. In structured pruning, which removes groups of related elements, standard importance metrics often fail to protect these critical characteristics. In this paper, we introduce a novel framework for calculating importance metrics in pruning groups. This framework not only shrinks the model size but also considers various application-specific constraints. To find the best pruning coefficient for each group, we evaluate two approaches. The first approach involves simple exploration through grid search. The second utilizes gradient descent optimization, aiming to balance compression and task performance. We test our method in two use cases: one on an MNIST autoencoder and the other on a Temporal Difference Model Predictive Control (TDMPC) agent. Results show that the method effectively maintains application-relevant performance while achieving a significant reduction in model size.
comment: 8 pages, 24th European Control Conference (ECC26)
♻ ☆ PressTrack-HMR: Pressure-Based Top-Down Multi-Person Global Human Mesh Recovery AAAI-2026
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.
comment: Accepted by AAAI-2026
♻ ☆ TinyDef-DETR: A Transformer-Based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
Machine Learning 150
☆ Robot Crash Course: Learning Soft and Stylized Falling
Despite recent advances in robust locomotion, bipedal robots operating in the real world remain at risk of falling. While most research focuses on preventing such events, we instead concentrate on the phenomenon of falling itself. Specifically, we aim to reduce physical damage to the robot while providing users with control over a robot's end pose. To this end, we propose a robot agnostic reward function that balances the achievement of a desired end pose with impact minimization and the protection of critical robot parts during reinforcement learning. To make the policy robust to a broad range of initial falling conditions and to enable the specification of an arbitrary and unseen end pose at inference time, we introduce a simulation-based sampling strategy of initial and end poses. Through simulated and real-world experiments, our work demonstrates that even bipedal robots can perform controlled, soft falls.
☆ Instella: Fully Open Language Models with Stellar Performance
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks, yet the majority of high-performing models remain closed-source or partially open, limiting transparency and reproducibility. In this work, we introduce Instella, a family of fully open three billion parameter language models trained entirely on openly available data and codebase. Powered by AMD Instinct MI300X GPUs, Instella is developed through large-scale pre-training, general-purpose instruction tuning, and alignment with human preferences. Despite using substantially fewer pre-training tokens than many contemporaries, Instella achieves state-of-the-art results among fully open models and is competitive with leading open-weight models of comparable size. We further release two specialized variants: Instella-Long, capable of handling context lengths up to 128K tokens, and Instella-Math, a reasoning-focused model enhanced through supervised fine-tuning and reinforcement learning on mathematical tasks. Together, these contributions establish Instella as a transparent, performant, and versatile alternative for the community, advancing the goal of open and reproducible language modeling research.
☆ Querying Labeled Time Series Data with Scenario Programs
Simulation-based testing has become a crucial complement to road testing for ensuring the safety of cyber physical systems (CPS). As a result, significant research efforts have been directed toward identifying failure scenarios within simulation environments. However, a critical question remains. Are the AV failure scenarios discovered in simulation reproducible on actual systems in the real world? The sim-to-real gap caused by differences between simulated and real sensor data means that failure scenarios identified in simulation might either be artifacts of synthetic sensor data or actual issues that also occur with real sensor data. To address this, an effective approach to validating simulated failure scenarios is to locate occurrences of these scenarios within real-world datasets and verify whether the failure persists on the datasets. To this end, we introduce a formal definition of how labeled time series sensor data can match an abstract scenario, represented as a scenario program using the Scenic probabilistic programming language. We present a querying algorithm that, given a scenario program and a labeled dataset, identifies the subset of data that matches the specified scenario. Our experiment shows that our algorithm is more accurate and orders of magnitude faster in querying scenarios than the state-of-the-art commercial vision large language models, and can scale with the duration of queried time series data.
☆ Global Solutions to Non-Convex Functional Constrained Problems with Hidden Convexity
Constrained non-convex optimization is fundamentally challenging, as global solutions are generally intractable and constraint qualifications may not hold. However, in many applications, including safe policy optimization in control and reinforcement learning, such problems possess hidden convexity, meaning they can be reformulated as convex programs via a nonlinear invertible transformation. Typically such transformations are implicit or unknown, making the direct link with the convex program impossible. On the other hand, (sub-)gradients with respect to the original variables are often accessible or can be easily estimated, which motivates algorithms that operate directly in the original (non-convex) problem space using standard (sub-)gradient oracles. In this work, we develop the first algorithms to provably solve such non-convex problems to global minima. First, using a modified inexact proximal point method, we establish global last-iterate convergence guarantees with $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ oracle complexity in non-smooth setting. For smooth problems, we propose a new bundle-level type method based on linearly constrained quadratic subproblems, improving the oracle complexity to $\widetilde{\mathcal{O}}(\varepsilon^{-1})$. Surprisingly, despite non-convexity, our methodology does not require any constraint qualifications, can handle hidden convex equality constraints, and achieves complexities matching those for solving unconstrained hidden convex optimization.
☆ SSR: Socratic Self-Refine for Large Language Model Reasoning
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.
comment: Preprint; work in progress
☆ Algorithm Design and Stronger Guarantees for the Improving Multi-Armed Bandits Problem
The improving multi-armed bandits problem is a formal model for allocating effort under uncertainty, motivated by scenarios such as investing research effort into new technologies, performing clinical trials, and hyperparameter selection from learning curves. Each pull of an arm provides reward that increases monotonically with diminishing returns. A growing line of work has designed algorithms for improving bandits, albeit with somewhat pessimistic worst-case guarantees. Indeed, strong lower bounds of $Ω(k)$ and $Ω(\sqrt{k})$ multiplicative approximation factors are known for both deterministic and randomized algorithms (respectively) relative to the optimal arm, where $k$ is the number of bandit arms. In this work, we propose two new parameterized families of bandit algorithms and bound the sample complexity of learning the near-optimal algorithm from each family using offline data. The first family we define includes the optimal randomized algorithm from prior work. We show that an appropriately chosen algorithm from this family can achieve stronger guarantees, with optimal dependence on $k$, when the arm reward curves satisfy additional properties related to the strength of concavity. Our second family contains algorithms that both guarantee best-arm identification on well-behaved instances and revert to worst case guarantees on poorly-behaved instances. Taking a statistical learning perspective on the bandit rewards optimization problem, we achieve stronger data-dependent guarantees without the need for actually verifying whether the assumptions are satisfied.
comment: 25 pages
☆ Know Your Limits: Entropy Estimation Modeling for Compression and Generalization
Language prediction is constrained by informational entropy intrinsic to language, such that there exists a limit to how accurate any language model can become and equivalently a lower bound to language compression. The most efficient language compression algorithms today are causal (next token prediction) large language models, but the use of these models to form accurate estimates of language entropy is currently computationally infeasible. We introduce encoder-augmented causal decoder model architectures that exhibit superior training efficiency characteristics and achieve higher compression than causal transformers even when trained on modest hardware. We demonstrate how entropy estimates can be obtained on a per-token basis, and show that the generalization of models trained to approach the entropy of their training data necessarily exceeds the generalization of models trained to minimize loss beyond this value. We show empirically that causal models trained to approach but not exceed estimated per-token entropies exhibit greater generalization than models trained without taking entropy into account.
☆ Multitask GLocal OBIA-Mamba for Sentinel-2 Landcover Mapping
Although Sentinel-2 based land use and land cover (LULC) classification is critical for various environmental monitoring applications, it is a very difficult task due to some key data challenges (e.g., spatial heterogeneity, context information, signature ambiguity). This paper presents a novel Multitask Glocal OBIA-Mamba (MSOM) for enhanced Sentinel-2 classification with the following contributions. First, an object-based image analysis (OBIA) Mamba model (OBIA-Mamba) is designed to reduce redundant computation without compromising fine-grained details by using superpixels as Mamba tokens. Second, a global-local (GLocal) dual-branch convolutional neural network (CNN)-mamba architecture is designed to jointly model local spatial detail and global contextual information. Third, a multitask optimization framework is designed to employ dual loss functions to balance local precision with global consistency. The proposed approach is tested on Sentinel-2 imagery in Alberta, Canada, in comparison with several advanced classification approaches, and the results demonstrate that the proposed approach achieves higher classification accuracy and finer details that the other state-of-the-art methods.
Pretrained Joint Predictions for Scalable Batch Bayesian Optimization of Molecular Designs
Batched synthesis and testing of molecular designs is the key bottleneck of drug development. There has been great interest in leveraging biomolecular foundation models as surrogates to accelerate this process. In this work, we show how to obtain scalable probabilistic surrogates of binding affinity for use in Batch Bayesian Optimization (Batch BO). This demands parallel acquisition functions that hedge between designs and the ability to rapidly sample from a joint predictive density to approximate them. Through the framework of Epistemic Neural Networks (ENNs), we obtain scalable joint predictive distributions of binding affinity on top of representations taken from large structure-informed models. Key to this work is an investigation into the importance of prior networks in ENNs and how to pretrain them on synthetic data to improve downstream performance in Batch BO. Their utility is demonstrated by rediscovering known potent EGFR inhibitors on a semi-synthetic benchmark in up to 5x fewer iterations, as well as potent inhibitors from a real-world small-molecule library in up to 10x fewer iterations, offering a promising solution for large-scale drug discovery applications.
☆ Tight Robustness Certification through the Convex Hull of $\ell_0$ Attacks
Few-pixel attacks mislead a classifier by modifying a few pixels of an image. Their perturbation space is an $\ell_0$-ball, which is not convex, unlike $\ell_p$-balls for $p\geq1$. However, existing local robustness verifiers typically scale by relying on linear bound propagation, which captures convex perturbation spaces. We show that the convex hull of an $\ell_0$-ball is the intersection of its bounding box and an asymmetrically scaled $\ell_1$-like polytope. The volumes of the convex hull and this polytope are nearly equal as the input dimension increases. We then show a linear bound propagation that precisely computes bounds over the convex hull and is significantly tighter than bound propagations over the bounding box or our $\ell_1$-like polytope. This bound propagation scales the state-of-the-art $\ell_0$ verifier on its most challenging robustness benchmarks by 1.24x-7.07x, with a geometric mean of 3.16.
☆ Semi-Unified Sparse Dictionary Learning with Learnable Top-K LISTA and FISTA Encoders
We present a semi-unified sparse dictionary learning framework that bridges the gap between classical sparse models and modern deep architectures. Specifically, the method integrates strict Top-$K$ LISTA and its convex FISTA-based variant (LISTAConv) into the discriminative LC-KSVD2 model, enabling co-evolution between the sparse encoder and the dictionary under supervised or unsupervised regimes. This unified design retains the interpretability of traditional sparse coding while benefiting from efficient, differentiable training. We further establish a PALM-style convergence analysis for the convex variant, ensuring theoretical stability under block alternation. Experimentally, our method achieves 95.6\% on CIFAR-10, 86.3\% on CIFAR-100, and 88.5\% on TinyImageNet with faster convergence and lower memory cost ($<$4GB GPU). The results confirm that the proposed LC-KSVD2 + LISTA/LISTAConv pipeline offers an interpretable and computationally efficient alternative for modern deep architectures.
☆ Towards Emotionally Intelligent and Responsible Reinforcement Learning
Personalized decision systems in healthcare and behavioral support often rely on static rule-based or engagement-maximizing heuristics that overlook users' emotional context and ethical constraints. Such approaches risk recommending insensitive or unsafe interventions, especially in domains involving serious mental illness, substance use disorders, or depression. To address this limitation, we propose a Responsible Reinforcement Learning (RRL) framework that integrates emotional and contextual understanding with ethical considerations into the sequential decision-making process. RRL formulates personalization as a Constrained Markov Decision Process (CMDP), where the agent optimizes engagement and adherence while ensuring emotional alignment and ethical safety. We introduce a multi-objective reward function that explicitly balances short-term behavioral engagement with long-term user well-being, and define an emotion-informed state representation that captures fluctuations in emotional readiness, affect, and risk. The proposed architecture can be instantiated with any RL algorithm (e.g., DQN, PPO) augmented with safety constraints or Lagrangian regularization. Conceptually, this framework operationalizes empathy and responsibility within machine learning policy optimization, bridging safe RL, affective computing and responsible AI. We discuss the implications of this approach for human-centric domains such as behavioral health, education, and digital therapeutics, and outline simulation-based validation paths for future empirical work. This paper aims to initiate a methodological conversation about ethically aligned reinforcement learning for emotionally aware and trustworthy personalization systems.
☆ Bi-Level Contextual Bandits for Individualized Resource Allocation under Delayed Feedback AAAI-26
Equitably allocating limited resources in high-stakes domains-such as education, employment, and healthcare-requires balancing short-term utility with long-term impact, while accounting for delayed outcomes, hidden heterogeneity, and ethical constraints. However, most learning-based allocation frameworks either assume immediate feedback or ignore the complex interplay between individual characteristics and intervention dynamics. We propose a novel bi-level contextual bandit framework for individualized resource allocation under delayed feedback, designed to operate in real-world settings with dynamic populations, capacity constraints, and time-sensitive impact. At the meta level, the model optimizes subgroup-level budget allocations to satisfy fairness and operational constraints. At the base level, it identifies the most responsive individuals within each group using a neural network trained on observational data, while respecting cooldown windows and delayed treatment effects modeled via resource-specific delay kernels. By explicitly modeling temporal dynamics and feedback delays, the algorithm continually refines its policy as new data arrive, enabling more responsive and adaptive decision-making. We validate our approach on two real-world datasets from education and workforce development, showing that it achieves higher cumulative outcomes, better adapts to delay structures, and ensures equitable distribution across subgroups. Our results highlight the potential of delay-aware, data-driven decision-making systems to improve institutional policy and social welfare.
comment: Accepted at AAAI-26 (AISI Track). Final version to appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-26), 2026
☆ Belief Net: A Filter-Based Framework for Learning Hidden Markov Models from Observations
Hidden Markov Models (HMMs) are fundamental for modeling sequential data, yet learning their parameters from observations remains challenging. Classical methods like the Baum-Welch (EM) algorithm are computationally intensive and prone to local optima, while modern spectral algorithms offer provable guarantees but may produce probability outputs outside valid ranges. This work introduces Belief Net, a novel framework that learns HMM parameters through gradient-based optimization by formulating the HMM's forward filter as a structured neural network. Unlike black-box Transformer models, Belief Net's learnable weights are explicitly the logits of the initial distribution, transition matrix, and emission matrix, ensuring full interpretability. The model processes observation sequences using a decoder-only architecture and is trained end-to-end with standard autoregressive next-observation prediction loss. On synthetic HMM data, Belief Net achieves superior convergence speed compared to Baum-Welch, successfully recovering parameters in both undercomplete and overcomplete settings where spectral methods fail. Comparisons with Transformer-based models are also presented on real-world language data.
comment: 19 pages, 7 pages, submitted to conference: L4DC 2026
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ Oya: Deep Learning for Accurate Global Precipitation Estimation
Accurate precipitation estimation is critical for hydrological applications, especially in the Global South where ground-based observation networks are sparse and forecasting skill is limited. Existing satellite-based precipitation products often rely on the longwave infrared channel alone or are calibrated with data that can introduce significant errors, particularly at sub-daily timescales. This study introduces Oya, a novel real-time precipitation retrieval algorithm utilizing the full spectrum of visible and infrared (VIS-IR) observations from geostationary (GEO) satellites. Oya employs a two-stage deep learning approach, combining two U-Net models: one for precipitation detection and another for quantitative precipitation estimation (QPE), to address the inherent data imbalance between rain and no-rain events. The models are trained using high-resolution GPM Combined Radar-Radiometer Algorithm (CORRA) v07 data as ground truth and pre-trained on IMERG-Final retrievals to enhance robustness and mitigate overfitting due to the limited temporal sampling of CORRA. By leveraging multiple GEO satellites, Oya achieves quasi-global coverage and demonstrates superior performance compared to existing competitive regional and global precipitation baselines, offering a promising pathway to improved precipitation monitoring and forecasting.
☆ Maximizing Efficiency of Dataset Compression for Machine Learning Potentials With Information Theory
Machine learning interatomic potentials (MLIPs) balance high accuracy and lower costs compared to density functional theory calculations, but their performance often depends on the size and diversity of training datasets. Large datasets improve model accuracy and generalization but are computationally expensive to produce and train on, while smaller datasets risk discarding rare but important atomic environments and compromising MLIP accuracy/reliability. Here, we develop an information-theoretical framework to quantify the efficiency of dataset compression methods and propose an algorithm that maximizes this efficiency. By framing atomistic dataset compression as an instance of the minimum set cover (MSC) problem over atom-centered environments, our method identifies the smallest subset of structures that contains as much information as possible from the original dataset while pruning redundant information. The approach is extensively demonstrated on the GAP-20 and TM23 datasets, and validated on 64 varied datasets from the ColabFit repository. Across all cases, MSC consistently retains outliers, preserves dataset diversity, and reproduces the long-tail distributions of forces even at high compression rates, outperforming other subsampling methods. Furthermore, MLIPs trained on MSC-compressed datasets exhibit reduced error for out-of-distribution data even in low-data regimes. We explain these results using an outlier analysis and show that such quantitative conclusions could not be achieved with conventional dimensionality reduction methods. The algorithm is implemented in the open-source QUESTS package and can be used for several tasks in atomistic modeling, from data subsampling, outlier detection, and training improved MLIPs at a lower cost.
comment: main text + SI; code at https://github.com/dskoda/quests
☆ Benchmarking Diversity in Image Generation via Attribute-Conditional Human Evaluation
Despite advances in generation quality, current text-to-image (T2I) models often lack diversity, generating homogeneous outputs. This work introduces a framework to address the need for robust diversity evaluation in T2I models. Our framework systematically assesses diversity by evaluating individual concepts and their relevant factors of variation. Key contributions include: (1) a novel human evaluation template for nuanced diversity assessment; (2) a curated prompt set covering diverse concepts with their identified factors of variation (e.g. prompt: An image of an apple, factor of variation: color); and (3) a methodology for comparing models in terms of human annotations via binomial tests. Furthermore, we rigorously compare various image embeddings for diversity measurement. Notably, our principled approach enables ranking of T2I models by diversity, identifying categories where they particularly struggle. This research offers a robust methodology and insights, paving the way for improvements in T2I model diversity and metric development.
☆ Two Americas of Well-Being: Divergent Rural-Urban Patterns of Life Satisfaction and Happiness from 2.6 B Social Media Posts
Using 2.6 billion geolocated social-media posts (2014-2022) and a fine-tuned generative language model, we construct county-level indicators of life satisfaction and happiness for the United States. We document an apparent rural-urban paradox: rural counties express higher life satisfaction while urban counties exhibit greater happiness. We reconcile this by treating the two as distinct layers of subjective well-being, evaluative vs. hedonic, showing that each maps differently onto place, politics, and time. Republican-leaning areas appear more satisfied in evaluative terms, but partisan gaps in happiness largely flatten outside major metros, indicating context-dependent political effects. Temporal shocks dominate the hedonic layer: happiness falls sharply during 2020-2022, whereas life satisfaction moves more modestly. These patterns are robust across logistic and OLS specifications and align with well-being theory. Interpreted as associations for the population of social-media posts, the results show that large-scale, language-based indicators can resolve conflicting findings about the rural-urban divide by distinguishing the type of well-being expressed, offering a transparent, reproducible complement to traditional surveys.
☆ Edge Machine Learning for Cluster Counting in Next-Generation Drift Chambers NeurIPS 2025
Drift chambers have long been central to collider tracking, but future machines like a Higgs factory motivate higher granularity and cluster counting for particle ID, posing new data processing challenges. Machine learning (ML) at the "edge", or in cell-level readout, can dramatically reduce the off-detector data rate for high-granularity drift chambers by performing cluster counting at-source. We present machine learning algorithms for cluster counting in real-time readout of future drift chambers. These algorithms outperform traditional derivative-based techniques based on achievable pion-kaon separation. When synthesized to FPGA resources, they can achieve latencies consistent with real-time operation in a future Higgs factory scenario, thus advancing both R&D for future collider detectors as well as hardware-based ML for edge applications in high energy physics.
comment: 6 pages, 3 figures, 1 table. Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
☆ Holonorm
Normalization is a key point in transformer training . In Dynamic Tanh (DyT), the author demonstrated that Tanh can be used as an alternative layer normalization (LN) and confirmed the effectiveness of the idea. But Tanh itself faces orthogonality, linearity and distortion problems. Due to that, his proposition cannot be reliable. So we propose a Holonorm (hn) which has residual connections and nonlinearity. Holonorm is suitable for replacing Tanh in the context of normalization. Although the HoloNorm expression could be similar to the softsign function in dimension one, softsign is a componentwise function which is not good for tensors and vectors of great dimension. Holonorm preserves the orthogonality, the direction, the invertibility of the signal. Holonorm is also a suitable metric, maps all vectors into the open unit ball. This prevents exploding activations and improves stability in deep Transformer models. In this work, we have meticulously examined the normalization in transformers and say that Holonorm, a generalized form of softsign function suited as a normalization function first.Second, defined between 0 and 1 hn serves as a percentage, and $1 - \text{Holonorm}$ is its complement, making it better understandable in evaluating a model.
comment: 17 pages, 11 figures, 10 tables, 2 datasets. A stable geometric alternative to LayerNorm and Tanh normalization in deep neural networks
☆ Weak Relation Enforcement for Kinematic-Informed Long-Term Stock Prediction with Artificial Neural Networks
We propose loss function week enforcement of the velocity relations between time-series points in the Kinematic-Informed artificial Neural Networks (KINN) for long-term stock prediction. Problems of the series volatility, Out-of-Distribution (OOD) test data, and outliers in training data are addressed by (Artificial Neural Networks) ANN's learning not only future points prediction but also by learning velocity relations between the points, such a way as avoiding unrealistic spurious predictions. The presented loss function penalizes not only errors between predictions and supervised label data, but also errors between the next point prediction and the previous point plus velocity prediction. The loss function is tested on the multiple popular and exotic AR ANN architectures, and around fifteen years of Dow Jones function demonstrated statistically meaningful improvement across the normalization-sensitive activation functions prone to spurious behaviour in the OOD data conditions. Results show that such architecture addresses the issue of the normalization in the auto-regressive models that break the data topology by weakly enforcing the data neighbourhood proximity (relation) preservation during the ANN transformation.
☆ Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
☆ Panda: Test-Time Adaptation with Negative Data Augmentation AAAI 2026
Pretrained VLMs exhibit strong zero-shot classification capabilities, but their predictions degrade significantly under common image corruptions. To improve robustness, many test-time adaptation (TTA) methods adopt positive data augmentation (PDA), which generates multiple views of each test sample to reduce prediction variance. However, these methods suffer from two key limitations. First, it introduces considerable computational overhead due to the large number of augmentations required per image. Second, it fails to mitigate prediction bias, where the model tends to predict certain classes disproportionately under corruption, as PDA operates on corrupted inputs and typically does not remove the corruption itself. To address these challenges, we propose Panda, a novel TTA method based on negative data augmentation (NDA). Unlike positive augmentations that preserve object semantics, Panda generates negative augmentations by disrupting semantic content. It divides images into patches and randomly assembles them from a shared patch pool. These negatively augmented images retain corruption-specific features while discarding object-relevant signals. We then subtract the mean feature of these negative samples from the original image feature, effectively suppressing corruption-related components while preserving class-relevant information. This mitigates prediction bias under distribution shifts. Panda allows augmentation to be shared across samples within a batch, resulting in minimal computational overhead. Panda can be seamlessly integrated into existing test-time adaptation frameworks and substantially improve their robustness. Our experiments indicate that Panda delivers superior performance compared to PDA methods, and a wide range of TTA methods exhibit significantly enhanced performance when integrated with Panda. Our code is available at https://github.com/ruxideng/Panda .
comment: Accepted by AAAI 2026
☆ Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Code: https://github.com/cagries/IDIM.
comment: 45 pages, 11 figures
☆ OpenSR-SRGAN: A Flexible Super-Resolution Framework for Multispectral Earth Observation Data
We present OpenSR-SRGAN, an open and modular framework for single-image super-resolution in Earth Observation. The software provides a unified implementation of SRGAN-style models that is easy to configure, extend, and apply to multispectral satellite data such as Sentinel-2. Instead of requiring users to modify model code, OpenSR-SRGAN exposes generators, discriminators, loss functions, and training schedules through concise configuration files, making it straightforward to switch between architectures, scale factors, and band setups. The framework is designed as a practical tool and benchmark implementation rather than a state-of-the-art model. It ships with ready-to-use configurations for common remote sensing scenarios, sensible default settings for adversarial training, and built-in hooks for logging, validation, and large-scene inference. By turning GAN-based super-resolution into a configuration-driven workflow, OpenSR-SRGAN lowers the entry barrier for researchers and practitioners who wish to experiment with SRGANs, compare models in a reproducible way, and deploy super-resolution pipelines across diverse Earth-observation datasets.
☆ Continuum Dropout for Neural Differential Equations
Neural Differential Equations (NDEs) excel at modeling continuous-time dynamics, effectively handling challenges such as irregular observations, missing values, and noise. Despite their advantages, NDEs face a fundamental challenge in adopting dropout, a cornerstone of deep learning regularization, making them susceptible to overfitting. To address this research gap, we introduce Continuum Dropout, a universally applicable regularization technique for NDEs built upon the theory of alternating renewal processes. Continuum Dropout formulates the on-off mechanism of dropout as a stochastic process that alternates between active (evolution) and inactive (paused) states in continuous time. This provides a principled approach to prevent overfitting and enhance the generalization capabilities of NDEs. Moreover, Continuum Dropout offers a structured framework to quantify predictive uncertainty via Monte Carlo sampling at test time. Through extensive experiments, we demonstrate that Continuum Dropout outperforms existing regularization methods for NDEs, achieving superior performance on various time series and image classification tasks. It also yields better-calibrated and more trustworthy probability estimates, highlighting its effectiveness for uncertainty-aware modeling.
☆ Completion of partial structures using Patterson maps with the CrysFormer machine learning model
Protein structure determination has long been one of the primary challenges of structural biology, to which deep machine learning (ML)-based approaches have increasingly been applied. However, these ML models generally do not incorporate the experimental measurements directly, such as X-ray crystallographic diffraction data. To this end, we explore an approach that more tightly couples these traditional crystallographic and recent ML-based methods, by training a hybrid 3-d vision transformer and convolutional network on inputs from both domains. We make use of two distinct input constructs / Patterson maps, which are directly obtainable from crystallographic data, and ``partial structure'' template maps derived from predicted structures deposited in the AlphaFold Protein Structure Database with subsequently omitted residues. With these, we predict electron density maps that are then post-processed into atomic models through standard crystallographic refinement processes. Introducing an initial dataset of small protein fragments taken from Protein Data Bank entries and placing them in hypothetical crystal settings, we demonstrate that our method is effective at both improving the phases of the crystallographic structure factors and completing the regions missing from partial structure templates, as well as improving the agreement of the electron density maps with the ground truth atomic structures.
comment: 15 pages, accepted at Acta Crystallographic section D
☆ Improving Perturbation-based Explanations by Understanding the Role of Uncertainty Calibration NeurIPS 2025
Perturbation-based explanations are widely utilized to enhance the transparency of machine-learning models in practice. However, their reliability is often compromised by the unknown model behavior under the specific perturbations used. This paper investigates the relationship between uncertainty calibration - the alignment of model confidence with actual accuracy - and perturbation-based explanations. We show that models systematically produce unreliable probability estimates when subjected to explainability-specific perturbations and theoretically prove that this directly undermines global and local explanation quality. To address this, we introduce ReCalX, a novel approach to recalibrate models for improved explanations while preserving their original predictions. Empirical evaluations across diverse models and datasets demonstrate that ReCalX consistently reduces perturbation-specific miscalibration most effectively while enhancing explanation robustness and the identification of globally important input features.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Neuronal Fluctuations: Learning Rates vs Participating Neurons
Deep Neural Networks (DNNs) rely on inherent fluctuations in their internal parameters (weights and biases) to effectively navigate the complex optimization landscape and achieve robust performance. While these fluctuations are recognized as crucial for escaping local minima and improving generalization, their precise relationship with fundamental hyperparameters remains underexplored. A significant knowledge gap exists concerning how the learning rate, a critical parameter governing the training process, directly influences the dynamics of these neural fluctuations. This study systematically investigates the impact of varying learning rates on the magnitude and character of weight and bias fluctuations within a neural network. We trained a model using distinct learning rates and analyzed the corresponding parameter fluctuations in conjunction with the network's final accuracy. Our findings aim to establish a clear link between the learning rate's value, the resulting fluctuation patterns, and overall model performance. By doing so, we provide deeper insights into the optimization process, shedding light on how the learning rate mediates the crucial exploration-exploitation trade-off during training. This work contributes to a more nuanced understanding of hyperparameter tuning and the underlying mechanics of deep learning.
☆ Unlocking Dynamic Inter-Client Spatial Dependencies: A Federated Spatio-Temporal Graph Learning Method for Traffic Flow Forecasting
Spatio-temporal graphs are powerful tools for modeling complex dependencies in traffic time series. However, the distributed nature of real-world traffic data across multiple stakeholders poses significant challenges in modeling and reconstructing inter-client spatial dependencies while adhering to data locality constraints. Existing methods primarily address static dependencies, overlooking their dynamic nature and resulting in suboptimal performance. In response, we propose Federated Spatio-Temporal Graph with Dynamic Inter-Client Dependencies (FedSTGD), a framework designed to model and reconstruct dynamic inter-client spatial dependencies in federated learning. FedSTGD incorporates a federated nonlinear computation decomposition module to approximate complex graph operations. This is complemented by a graph node embedding augmentation module, which alleviates performance degradation arising from the decomposition. These modules are coordinated through a client-server collective learning protocol, which decomposes dynamic inter-client spatial dependency learning tasks into lightweight, parallelizable subtasks. Extensive experiments on four real-world datasets demonstrate that FedSTGD achieves superior performance over state-of-the-art baselines in terms of RMSE, MAE, and MAPE, approaching that of centralized baselines. Ablation studies confirm the contribution of each module in addressing dynamic inter-client spatial dependencies, while sensitivity analysis highlights the robustness of FedSTGD to variations in hyperparameters.
☆ Generalizing Analogical Inference from Boolean to Continuous Domains AAAI 2026
Analogical reasoning is a powerful inductive mechanism, widely used in human cognition and increasingly applied in artificial intelligence. Formal frameworks for analogical inference have been developed for Boolean domains, where inference is provably sound for affine functions and approximately correct for functions close to affine. These results have informed the design of analogy-based classifiers. However, they do not extend to regression tasks or continuous domains. In this paper, we revisit analogical inference from a foundational perspective. We first present a counterexample showing that existing generalization bounds fail even in the Boolean setting. We then introduce a unified framework for analogical reasoning in real-valued domains based on parameterized analogies defined via generalized means. This model subsumes both Boolean classification and regression, and supports analogical inference over continuous functions. We characterize the class of analogy-preserving functions in this setting and derive both worst-case and average-case error bounds under smoothness assumptions. Our results offer a general theory of analogical inference across discrete and continuous domains.
comment: 11 pages, to appear in AAAI 2026, extended version
☆ AgentEvolver: Towards Efficient Self-Evolving Agent System
Autonomous agents powered by large language models (LLMs) have the potential to significantly enhance human productivity by reasoning, using tools, and executing complex tasks in diverse environments. However, current approaches to developing such agents remain costly and inefficient, as they typically require manually constructed task datasets and reinforcement learning (RL) pipelines with extensive random exploration. These limitations lead to prohibitively high data-construction costs, low exploration efficiency, and poor sample utilization. To address these challenges, we present AgentEvolver, a self-evolving agent system that leverages the semantic understanding and reasoning capabilities of LLMs to drive autonomous agent learning. AgentEvolver introduces three synergistic mechanisms: (i) self-questioning, which enables curiosity-driven task generation in novel environments, reducing dependence on handcrafted datasets; (ii) self-navigating, which improves exploration efficiency through experience reuse and hybrid policy guidance; and (iii) self-attributing, which enhances sample efficiency by assigning differentiated rewards to trajectory states and actions based on their contribution. By integrating these mechanisms into a unified framework, AgentEvolver enables scalable, cost-effective, and continual improvement of agent capabilities. Preliminary experiments indicate that AgentEvolver achieves more efficient exploration, better sample utilization, and faster adaptation compared to traditional RL-based baselines.
☆ Enhancing Kernel Power K-means: Scalable and Robust Clustering with Random Fourier Features and Possibilistic Method
Kernel power $k$-means (KPKM) leverages a family of means to mitigate local minima issues in kernel $k$-means. However, KPKM faces two key limitations: (1) the computational burden of the full kernel matrix restricts its use on extensive data, and (2) the lack of authentic centroid-sample assignment learning reduces its noise robustness. To overcome these challenges, we propose RFF-KPKM, introducing the first approximation theory for applying random Fourier features (RFF) to KPKM. RFF-KPKM employs RFF to generate efficient, low-dimensional feature maps, bypassing the need for the whole kernel matrix. Crucially, we are the first to establish strong theoretical guarantees for this combination: (1) an excess risk bound of $\mathcal{O}(\sqrt{k^3/n})$, (2) strong consistency with membership values, and (3) a $(1+\varepsilon)$ relative error bound achievable using the RFF of dimension $\mathrm{poly}(\varepsilon^{-1}\log k)$. Furthermore, to improve robustness and the ability to learn multiple kernels, we propose IP-RFF-MKPKM, an improved possibilistic RFF-based multiple kernel power $k$-means. IP-RFF-MKPKM ensures the scalability of MKPKM via RFF and refines cluster assignments by combining the merits of the possibilistic membership and fuzzy membership. Experiments on large-scale datasets demonstrate the superior efficiency and clustering accuracy of the proposed methods compared to the state-of-the-art alternatives.
☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
☆ Operator Models for Continuous-Time Offline Reinforcement Learning
Continuous-time stochastic processes underlie many natural and engineered systems. In healthcare, autonomous driving, and industrial control, direct interaction with the environment is often unsafe or impractical, motivating offline reinforcement learning from historical data. However, there is limited statistical understanding of the approximation errors inherent in learning policies from offline datasets. We address this by linking reinforcement learning to the Hamilton-Jacobi-Bellman equation and proposing an operator-theoretic algorithm based on a simple dynamic programming recursion. Specifically, we represent our world model in terms of the infinitesimal generator of controlled diffusion processes learned in a reproducing kernel Hilbert space. By integrating statistical learning methods and operator theory, we establish global convergence of the value function and derive finite-sample guarantees with bounds tied to system properties such as smoothness and stability. Our theoretical and numerical results indicate that operator-based approaches may hold promise in solving offline reinforcement learning using continuous-time optimal control.
☆ SHRUG-FM: Reliability-Aware Foundation Models for Earth Observation
Geospatial foundation models for Earth observation often fail to perform reliably in environments underrepresented during pretraining. We introduce SHRUG-FM, a framework for reliability-aware prediction that integrates three complementary signals: out-of-distribution (OOD) detection in the input space, OOD detection in the embedding space and task-specific predictive uncertainty. Applied to burn scar segmentation, SHRUG-FM shows that OOD scores correlate with lower performance in specific environmental conditions, while uncertainty-based flags help discard many poorly performing predictions. Linking these flags to land cover attributes from HydroATLAS shows that failures are not random but concentrated in certain geographies, such as low-elevation zones and large river areas, likely due to underrepresentation in pretraining data. SHRUG-FM provides a pathway toward safer and more interpretable deployment of GFMs in climate-sensitive applications, helping bridge the gap between benchmark performance and real-world reliability.
☆ Product distribution learning with imperfect advice NeurIPS 2025
Given i.i.d.~samples from an unknown distribution $P$, the goal of distribution learning is to recover the parameters of a distribution that is close to $P$. When $P$ belongs to the class of product distributions on the Boolean hypercube $\{0,1\}^d$, it is known that $Ω(d/\varepsilon^2)$ samples are necessary to learn $P$ within total variation (TV) distance $\varepsilon$. We revisit this problem when the learner is also given as advice the parameters of a product distribution $Q$. We show that there is an efficient algorithm to learn $P$ within TV distance $\varepsilon$ that has sample complexity $\tilde{O}(d^{1-η}/\varepsilon^2)$, if $\|\mathbf{p} - \mathbf{q}\|_1 < \varepsilon d^{0.5 - Ω(η)}$. Here, $\mathbf{p}$ and $\mathbf{q}$ are the mean vectors of $P$ and $Q$ respectively, and no bound on $\|\mathbf{p} - \mathbf{q}\|_1$ is known to the algorithm a priori.
comment: Full version (11 pages). To be published in NeurIPS 2025
☆ Gradient Flow Equations for Deep Linear Neural Networks: A Survey from a Network Perspective
The paper surveys recent progresses in understanding the dynamics and loss landscape of the gradient flow equations associated to deep linear neural networks, i.e., the gradient descent training dynamics (in the limit when the step size goes to 0) of deep neural networks missing the activation functions and subject to quadratic loss functions. When formulated in terms of the adjacency matrix of the neural network, as we do in the paper, these gradient flow equations form a class of converging matrix ODEs which is nilpotent, polynomial, isospectral, and with conservation laws. The loss landscape is described in detail. It is characterized by infinitely many global minima and saddle points, both strict and nonstrict, but lacks local minima and maxima. The loss function itself is a positive semidefinite Lyapunov function for the gradient flow, and its level sets are unbounded invariant sets of critical points, with critical values that correspond to the amount of singular values of the input-output data learnt by the gradient along a certain trajectory. The adjacency matrix representation we use in the paper allows to highlight the existence of a quotient space structure in which each critical value of the loss function is represented only once, while all other critical points with the same critical value belong to the fiber associated to the quotient space. It also allows to easily determine stable and unstable submanifolds at the saddle points, even when the Hessian fails to obtain them.
comment: Manuscript accepted for publication in SIAM Review (SIREV)
☆ Robust Decentralized Multi-armed Bandits: From Corruption-Resilience to Byzantine-Resilience
Decentralized cooperative multi-agent multi-armed bandits (DeCMA2B) considers how multiple agents collaborate in a decentralized multi-armed bandit setting. Though this problem has been extensively studied in previous work, most existing methods remain susceptible to various adversarial attacks. In this paper, we first study DeCMA2B with adversarial corruption, where an adversary can corrupt reward observations of all agents with a limited corruption budget. We propose a robust algorithm, called DeMABAR, which ensures that each agent's individual regret suffers only an additive term proportional to the corruption budget. Then we consider a more realistic scenario where the adversary can only attack a small number of agents. Our theoretical analysis shows that the DeMABAR algorithm can also almost completely eliminate the influence of adversarial attacks and is inherently robust in the Byzantine setting, where an unknown fraction of the agents can be Byzantine, i.e., may arbitrarily select arms and communicate wrong information. We also conduct numerical experiments to illustrate the robustness and effectiveness of the proposed method.
☆ EDGC: Entropy-driven Dynamic Gradient Compression for Efficient LLM Training
Training large language models (LLMs) poses significant challenges regarding computational resources and memory capacity. Although distributed training techniques help mitigate these issues, they still suffer from considerable communication overhead. Existing approaches primarily rely on static gradient compression to enhance communication efficiency; however, these methods neglect the dynamic nature of evolving gradients during training, leading to performance degradation. Accelerating LLM training via compression without sacrificing performance remains a challenge. In this paper, we propose an entropy-driven dynamic gradient compression framework called EDGC. The core concept is to adjust the compression rate during LLM training based on the evolving trends of gradient entropy, taking into account both compression efficiency and error. EDGC consists of three key components.First, it employs a down-sampling method to efficiently estimate gradient entropy, reducing computation overhead. Second, it establishes a theoretical model linking compression rate with gradient entropy, enabling more informed compression decisions. Lastly, a window-based adjustment mechanism dynamically adapts the compression rate across pipeline stages, improving communication efficiency and maintaining model performance. We implemented EDGC on a 32-NVIDIA-V100 cluster and a 64-NVIDIA-H100 cluster to train GPT2-2.5B and GPT2-12.1B, respectively. The results show that EDGC significantly reduces communication latency and training time by up to 46.45% and 16.13% while preserving LLM accuracy.
☆ PITE: Multi-Prototype Alignment for Individual Treatment Effect Estimation
Estimating Individual Treatment Effects (ITE) from observational data is challenging due to confounding bias. Most studies tackle this bias by balancing distributions globally, but ignore individual heterogeneity and fail to capture the local structure that represents the natural clustering among individuals, which ultimately compromises ITE estimation. While instance-level alignment methods consider heterogeneity, they similarly overlook the local structure information. To address these issues, we propose an end-to-end Multi-\textbf{P}rototype alignment method for \textbf{ITE} estimation (\textbf{PITE}). PITE effectively captures local structure within groups and enforces cross-group alignment, thereby achieving robust ITE estimation. Specifically, we first define prototypes as cluster centroids based on similar individuals under the same treatment. To identify local similarity and the distribution consistency, we perform instance-to-prototype matching to assign individuals to the nearest prototype within groups, and design a multi-prototype alignment strategy to encourage the matched prototypes to be close across treatment arms in the latent space. PITE not only reduces distribution shift through fine-grained, prototype-level alignment, but also preserves the local structures of treated and control groups, which provides meaningful constraints for ITE estimation. Extensive evaluations on benchmark datasets demonstrate that PITE outperforms 13 state-of-the-art methods, achieving more accurate and robust ITE estimation.
☆ Revisiting Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
☆ Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions
Solar thermal systems (STS) present a promising avenue for low-carbon heat generation, with a well-running system providing heat at minimal cost and carbon emissions. However, STS can exhibit faults due to improper installation, maintenance, or operation, often resulting in a substantial reduction in efficiency or even damage to the system. As monitoring at the individual level is economically prohibitive for small-scale systems, automated monitoring and fault detection should be used to address such issues. Recent advances in data-driven anomaly detection, particularly in time series analysis, offer a cost-effective solution by leveraging existing sensors to identify abnormal system states. Here, we propose a probabilistic reconstruction-based framework for anomaly detection. We evaluate our method on the publicly available PaSTS dataset of operational domestic STS, which features real-world complexities and diverse fault types. Our experiments show that reconstruction-based methods can detect faults in domestic STS both qualitatively and quantitatively, while generalizing to previously unseen systems. We also demonstrate that our model outperforms both simple and more complex deep learning baselines. Additionally, we show that heteroscedastic uncertainty estimation is essential to fault detection performance. Finally, we discuss the engineering overhead required to unlock these improvements and make a case for simple deep learning models.
☆ Causal Model-Based Reinforcement Learning for Sample-Efficient IoT Channel Access
Despite the advantages of multi-agent reinforcement learning (MARL) for wireless use case such as medium access control (MAC), their real-world deployment in Internet of Things (IoT) is hindered by their sample inefficiency. To alleviate this challenge, one can leverage model-based reinforcement learning (MBRL) solutions, however, conventional MBRL approaches rely on black-box models that are not interpretable and cannot reason. In contrast, in this paper, a novel causal model-based MARL framework is developed by leveraging tools from causal learn- ing. In particular, the proposed model can explicitly represent causal dependencies between network variables using structural causal models (SCMs) and attention-based inference networks. Interpretable causal models are then developed to capture how MAC control messages influence observations, how transmission actions determine outcomes, and how channel observations affect rewards. Data augmentation techniques are then used to generate synthetic rollouts using the learned causal model for policy optimization via proximal policy optimization (PPO). Analytical results demonstrate exponential sample complexity gains of causal MBRL over black-box approaches. Extensive simulations demonstrate that, on average, the proposed approach can reduce environment interactions by 58%, and yield faster convergence compared to model-free baselines. The proposed approach inherently is also shown to provide interpretable scheduling decisions via attention-based causal attribution, revealing which network conditions drive the policy. The resulting combination of sample efficiency and interpretability establishes causal MBRL as a practical approach for resource-constrained wireless systems.
☆ OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
☆ Torch-Uncertainty: A Deep Learning Framework for Uncertainty Quantification NeurIPS 2025
Deep Neural Networks (DNNs) have demonstrated remarkable performance across various domains, including computer vision and natural language processing. However, they often struggle to accurately quantify the uncertainty of their predictions, limiting their broader adoption in critical real-world applications. Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge by providing methods to improve the reliability of uncertainty estimates. Although numerous techniques have been proposed, a unified tool offering a seamless workflow to evaluate and integrate these methods remains lacking. To bridge this gap, we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework designed to streamline DNN training and evaluation with UQ techniques and metrics. In this paper, we outline the foundational principles of our library and present comprehensive experimental results that benchmark a diverse set of UQ methods across classification, segmentation, and regression tasks. Our library is available at https://github.com/ENSTA-U2IS-AI/Torch-Uncertainty
comment: NeurIPS 2025 Spotlight
☆ Unitho: A Unified Multi-Task Framework for Computational Lithography
Reliable, generalizable data foundations are critical for enabling large-scale models in computational lithography. However, essential tasks-mask generation, rule violation detection, and layout optimization-are often handled in isolation, hindered by scarce datasets and limited modeling approaches. To address these challenges, we introduce Unitho, a unified multi-task large vision model built upon the Transformer architecture. Trained on a large-scale industrial lithography simulation dataset with hundreds of thousands of cases, Unitho supports end-to-end mask generation, lithography simulation, and rule violation detection. By enabling agile and high-fidelity lithography simulation, Unitho further facilitates the construction of robust data foundations for intelligent EDA. Experimental results validate its effectiveness and generalizability, with performance substantially surpassing academic baselines.
☆ Heuristic Transformer: Belief Augmented In-Context Reinforcement Learning
Transformers have demonstrated exceptional in-context learning (ICL) capabilities, enabling applications across natural language processing, computer vision, and sequential decision-making. In reinforcement learning, ICL reframes learning as a supervised problem, facilitating task adaptation without parameter updates. Building on prior work leveraging transformers for sequential decision-making, we propose Heuristic Transformer (HT), an in-context reinforcement learning (ICRL) approach that augments the in-context dataset with a belief distribution over rewards to achieve better decision-making. Using a variational auto-encoder (VAE), a low-dimensional stochastic variable is learned to represent the posterior distribution over rewards, which is incorporated alongside an in-context dataset and query states as prompt to the transformer policy. We assess the performance of HT across the Darkroom, Miniworld, and MuJoCo environments, showing that it consistently surpasses comparable baselines in terms of both effectiveness and generalization. Our method presents a promising direction to bridge the gap between belief-based augmentations and transformer-based decision-making.
☆ Lost in Serialization: Invariance and Generalization of LLM Graph Reasoners AAAI 2026
While promising, graph reasoners based on Large Language Models (LLMs) lack built-in invariance to symmetries in graph representations. Operating on sequential graph serializations, LLMs can produce different outputs under node reindexing, edge reordering, or formatting changes, raising robustness concerns. We systematically analyze these effects, studying how fine-tuning impacts encoding sensitivity as well generalization on unseen tasks. We propose a principled decomposition of graph serializations into node labeling, edge encoding, and syntax, and evaluate LLM robustness to variations of each of these factors on a comprehensive benchmarking suite. We also contribute a novel set of spectral tasks to further assess generalization abilities of fine-tuned reasoners. Results show that larger (non-fine-tuned) models are more robust. Fine-tuning reduces sensitivity to node relabeling but may increase it to variations in structure and format, while it does not consistently improve performance on unseen tasks.
comment: AAAI 2026 Workshop on Graphs and more Complex Structures For Learning and Reasoning (GCLR)
☆ Bridging Synthetic and Real Routing Problems via LLM-Guided Instance Generation and Progressive Adaptation AAAI-26
Recent advances in Neural Combinatorial Optimization (NCO) methods have significantly improved the capability of neural solvers to handle synthetic routing instances. Nonetheless, existing neural solvers typically struggle to generalize effectively from synthetic, uniformly-distributed training data to real-world VRP scenarios, including widely recognized benchmark instances from TSPLib and CVRPLib. To bridge this generalization gap, we present Evolutionary Realistic Instance Synthesis (EvoReal), which leverages an evolutionary module guided by large language models (LLMs) to generate synthetic instances characterized by diverse and realistic structural patterns. Specifically, the evolutionary module produces synthetic instances whose structural attributes statistically mimics those observed in authentic real-world instances. Subsequently, pre-trained NCO models are progressively refined, firstly aligning them with these structurally enriched synthetic distributions and then further adapting them through direct fine-tuning on actual benchmark instances. Extensive experimental evaluations demonstrate that EvoReal markedly improves the generalization capabilities of state-of-the-art neural solvers, yielding a notable reduced performance gap compared to the optimal solutions on the TSPLib (1.05%) and CVRPLib (2.71%) benchmarks across a broad spectrum of problem scales.
comment: 21 pages; To be published in AAAI-26
☆ FedCure: Mitigating Participation Bias in Semi-Asynchronous Federated Learning with Non-IID Data
While semi-asynchronous federated learning (SAFL) combines the efficiency of synchronous training with the flexibility of asynchronous updates, it inherently suffers from participation bias, which is further exacerbated by non-IID data distributions. More importantly, hierarchical architecture shifts participation from individual clients to client groups, thereby further intensifying this issue. Despite notable advancements in SAFL research, most existing works still focus on conventional cloud-end architectures while largely overlooking the critical impact of non-IID data on scheduling across the cloud-edge-client hierarchy. To tackle these challenges, we propose FedCure, an innovative semi-asynchronous Federated learning framework that leverages coalition construction and participation-aware scheduling to mitigate participation bias with non-IID data. Specifically, FedCure operates through three key rules: (1) a preference rule that optimizes coalition formation by maximizing collective benefits and establishing theoretically stable partitions to reduce non-IID-induced performance degradation; (2) a scheduling rule that integrates the virtual queue technique with Bayesian-estimated coalition dynamics, mitigating efficiency loss while ensuring mean rate stability; and (3) a resource allocation rule that enhances computational efficiency by optimizing client CPU frequencies based on estimated coalition dynamics while satisfying delay requirements. Comprehensive experiments on four real-world datasets demonstrate that FedCure improves accuracy by up to 5.1x compared with four state-of-the-art baselines, while significantly enhancing efficiency with the lowest coefficient of variation 0.0223 for per-round latency and maintaining long-term balance across diverse scenarios.
☆ Out-of-Context Misinformation Detection via Variational Domain-Invariant Learning with Test-Time Training AAAI
Out-of-context misinformation (OOC) is a low-cost form of misinformation in news reports, which refers to place authentic images into out-of-context or fabricated image-text pairings. This problem has attracted significant attention from researchers in recent years. Current methods focus on assessing image-text consistency or generating explanations. However, these approaches assume that the training and test data are drawn from the same distribution. When encountering novel news domains, models tend to perform poorly due to the lack of prior knowledge. To address this challenge, we propose \textbf{VDT} to enhance the domain adaptation capability for OOC misinformation detection by learning domain-invariant features and test-time training mechanisms. Domain-Invariant Variational Align module is employed to jointly encodes source and target domain data to learn a separable distributional space domain-invariant features. For preserving semantic integrity, we utilize domain consistency constraint module to reconstruct the source and target domain latent distribution. During testing phase, we adopt the test-time training strategy and confidence-variance filtering module to dynamically updating the VAE encoder and classifier, facilitating the model's adaptation to the target domain distribution. Extensive experiments conducted on the benchmark dataset NewsCLIPpings demonstrate that our method outperforms state-of-the-art baselines under most domain adaptation settings.
comment: accepted by the AAAI Conference on Artificial Intelligence (AAAI) 2026
☆ Fractional neural attention for efficient multiscale sequence processing
Attention mechanisms underpin the computational power of Transformer models, which have achieved remarkable success across diverse domains. Yet understanding and extending the principles underlying self-attention remains a key challenge for advancing artificial intelligence. Drawing inspiration from the multiscale dynamics of biological attention and from dynamical systems theory, we introduce Fractional Neural Attention (FNA), a principled, neuroscience-inspired framework for multiscale information processing. FNA models token interactions through Lévy diffusion governed by the fractional Laplacian, intrinsically realizing simultaneous short- and long-range dependencies across multiple scales. This mechanism yields greater expressivity and faster information mixing, advancing the foundational capacity of Transformers. Theoretically, we show that FNA's dynamics are governed by the fractional diffusion equation, and that the resulting attention networks exhibit larger spectral gaps and shorter path lengths -- mechanistic signatures of enhanced computational efficiency. Empirically, FNA achieves competitive text-classification performance even with a single layer and a single head; it also improves performance in image processing and neural machine translation. Finally, the diffusion map algorithm from geometric harmonics enables dimensionality reduction of FNA weights while preserving the intrinsic structure of embeddings and hidden states. Together, these results establish FNA as a principled mechanism connecting self-attention, stochastic dynamics, and geometry, providing an interpretable, biologically grounded foundation for powerful, neuroscience-inspired AI.
☆ Beyond MSE: Ordinal Cross-Entropy for Probabilistic Time Series Forecasting
Time series forecasting is an important task that involves analyzing temporal dependencies and underlying patterns (such as trends, cyclicality, and seasonality) in historical data to predict future values or trends. Current deep learning-based forecasting models primarily employ Mean Squared Error (MSE) loss functions for regression modeling. Despite enabling direct value prediction, this method offers no uncertainty estimation and exhibits poor outlier robustness. To address these limitations, we propose OCE-TS, a novel ordinal classification approach for time series forecasting that replaces MSE with Ordinal Cross-Entropy (OCE) loss, preserving prediction order while quantifying uncertainty through probability output. Specifically, OCE-TS begins by discretizing observed values into ordered intervals and deriving their probabilities via a parametric distribution as supervision signals. Using a simple linear model, we then predict probability distributions for each timestep. The OCE loss is computed between the cumulative distributions of predicted and ground-truth probabilities, explicitly preserving ordinal relationships among forecasted values. Through theoretical analysis using influence functions, we establish that cross-entropy (CE) loss exhibits superior stability and outlier robustness compared to MSE loss. Empirically, we compared OCE-TS with five baseline models-Autoformer, DLinear, iTransformer, TimeXer, and TimeBridge-on seven public time series datasets. Using MSE and Mean Absolute Error (MAE) as evaluation metrics, the results demonstrate that OCE-TS consistently outperforms benchmark models. The code will be published.
☆ Towards Leveraging Sequential Structure in Animal Vocalizations NeurIPS
Animal vocalizations contain sequential structures that carry important communicative information, yet most computational bioacoustics studies average the extracted frame-level features across the temporal axis, discarding the order of the sub-units within a vocalization. This paper investigates whether discrete acoustic token sequences, derived through vector quantization and gumbel-softmax vector quantization of extracted self-supervised speech model representations can effectively capture and leverage temporal information. To that end, pairwise distance analysis of token sequences generated from HuBERT embeddings shows that they can discriminate call-types and callers across four bioacoustics datasets. Sequence classification experiments using $k$-Nearest Neighbour with Levenshtein distance show that the vector-quantized token sequences yield reasonable call-type and caller classification performances, and hold promise as alternative feature representations towards leveraging sequential information in animal vocalizations.
comment: Accepted at NeurIPS workshop (AI for Non-Human Animal Communication)
☆ Improved Offline Reinforcement Learning via Quantum Metric Encoding
Reinforcement learning (RL) with limited samples is common in real-world applications. However, offline RL performance under this constraint is often suboptimal. We consider an alternative approach to dealing with limited samples by introducing the Quantum Metric Encoder (QME). In this methodology, instead of applying the RL framework directly on the original states and rewards, we embed the states into a more compact and meaningful representation, where the structure of the encoding is inspired by quantum circuits. For classical data, QME is a classically simulable, trainable unitary embedding and thus serves as a quantum-inspired module, on a classical device. For quantum data in the form of quantum states, QME can be implemented directly on quantum hardware, allowing for training without measurement or re-encoding. We evaluated QME on three datasets, each limited to 100 samples. We use Soft-Actor-Critic (SAC) and Implicit-Q-Learning (IQL), two well-known RL algorithms, to demonstrate the effectiveness of our approach. From the experimental results, we find that training offline RL agents on QME-embedded states with decoded rewards yields significantly better performance than training on the original states and rewards. On average across the three datasets, for maximum reward performance, we achieve a 116.2% improvement for SAC and 117.6% for IQL. We further investigate the $Δ$-hyperbolicity of our framework, a geometric property of the state space known to be important for the RL training efficacy. The QME-embedded states exhibit low $Δ$-hyperbolicity, suggesting that the improvement after embedding arises from the modified geometry of the state space induced by QME. Thus, the low $Δ$-hyperbolicity and the corresponding effectiveness of QME could provide valuable information for developing efficient offline RL methods under limited-sample conditions.
☆ EPO: Diverse and Realistic Protein Ensemble Generation via Energy Preference Optimization AAAI 2026
Accurate exploration of protein conformational ensembles is essential for uncovering function but remains hard because molecular-dynamics (MD) simulations suffer from high computational costs and energy-barrier trapping. This paper presents Energy Preference Optimization (EPO), an online refinement algorithm that turns a pretrained protein ensemble generator into an energy-aware sampler without extra MD trajectories. Specifically, EPO leverages stochastic differential equation sampling to explore the conformational landscape and incorporates a novel energy-ranking mechanism based on list-wise preference optimization. Crucially, EPO introduces a practical upper bound to efficiently approximate the intractable probability of long sampling trajectories in continuous-time generative models, making it easily adaptable to existing pretrained generators. On Tetrapeptides, ATLAS, and Fast-Folding benchmarks, EPO successfully generates diverse and physically realistic ensembles, establishing a new state-of-the-art in nine evaluation metrics. These results demonstrate that energy-only preference signals can efficiently steer generative models toward thermodynamically consistent conformational ensembles, providing an alternative to long MD simulations and widening the applicability of learned potentials in structural biology and drug discovery.
comment: Accepted as AAAI 2026 Poster
☆ DenoGrad: Deep Gradient Denoising Framework for Enhancing the Performance of Interpretable AI Models
The performance of Machine Learning (ML) models, particularly those operating within the Interpretable Artificial Intelligence (Interpretable AI) framework, is significantly affected by the presence of noise in both training and production data. Denoising has therefore become a critical preprocessing step, typically categorized into instance removal and instance correction techniques. However, existing correction approaches often degrade performance or oversimplify the problem by altering the original data distribution. This leads to unrealistic scenarios and biased models, which is particularly problematic in contexts where interpretable AI models are employed, as their interpretability depends on the fidelity of the underlying data patterns. In this paper, we argue that defining noise independently of the solution may be ineffective, as its nature can vary significantly across tasks and datasets. Using a task-specific high quality solution as a reference can provide a more precise and adaptable noise definition. To this end, we propose DenoGrad, a novel Gradient-based instance Denoiser framework that leverages gradients from an accurate Deep Learning (DL) model trained on the target data -- regardless of the specific task -- to detect and adjust noisy samples. Unlike conventional approaches, DenoGrad dynamically corrects noisy instances, preserving problem's data distribution, and improving AI models robustness. DenoGrad is validated on both tabular and time series datasets under various noise settings against the state-of-the-art. DenoGrad outperforms existing denoising strategies, enhancing the performance of interpretable IA models while standing out as the only high quality approach that preserves the original data distribution.
☆ RI-Loss: A Learnable Residual-Informed Loss for Time Series Forecasting
Time series forecasting relies on predicting future values from historical data, yet most state-of-the-art approaches-including transformer and multilayer perceptron-based models-optimize using Mean Squared Error (MSE), which has two fundamental weaknesses: its point-wise error computation fails to capture temporal relationships, and it does not account for inherent noise in the data. To overcome these limitations, we introduce the Residual-Informed Loss (RI-Loss), a novel objective function based on the Hilbert-Schmidt Independence Criterion (HSIC). RI-Loss explicitly models noise structure by enforcing dependence between the residual sequence and a random time series, enabling more robust, noise-aware representations. Theoretically, we derive the first non-asymptotic HSIC bound with explicit double-sample complexity terms, achieving optimal convergence rates through Bernstein-type concentration inequalities and Rademacher complexity analysis. This provides rigorous guarantees for RI-Loss optimization while precisely quantifying kernel space interactions. Empirically, experiments across eight real-world benchmarks and five leading forecasting models demonstrate improvements in predictive performance, validating the effectiveness of our approach. Code will be made publicly available to ensure reproducibility.
☆ Generalizing to Unseen Disaster Events: A Causal View AACL 2025
Due to the rapid growth of social media platforms, these tools have become essential for monitoring information during ongoing disaster events. However, extracting valuable insights requires real-time processing of vast amounts of data. A major challenge in existing systems is their exposure to event-related biases, which negatively affects their ability to generalize to emerging events. While recent advancements in debiasing and causal learning offer promising solutions, they remain underexplored in the disaster event domain. In this work, we approach bias mitigation through a causal lens and propose a method to reduce event- and domain-related biases, enhancing generalization to future events. Our approach outperforms multiple baselines by up to +1.9% F1 and significantly improves a PLM-based classifier across three disaster classification tasks.
comment: Accepted to Findings of AACL 2025
☆ How does My Model Fail? Automatic Identification and Interpretation of Physical Plausibility Failure Modes with Matryoshka Transcoders
Although recent generative models are remarkably capable of producing instruction-following and realistic outputs, they remain prone to notable physical plausibility failures. Though critical in applications, these physical plausibility errors often escape detection by existing evaluation methods. Furthermore, no framework exists for automatically identifying and interpreting specific physical error patterns in natural language, preventing targeted model improvements. We introduce Matryoshka Transcoders, a novel framework for the automatic discovery and interpretation of physical plausibility features in generative models. Our approach extends the Matryoshka representation learning paradigm to transcoder architectures, enabling hierarchical sparse feature learning at multiple granularity levels. By training on intermediate representations from a physical plausibility classifier and leveraging large multimodal models for interpretation, our method identifies diverse physics-related failure modes without manual feature engineering, achieving superior feature relevance and feature accuracy compared to existing approaches. We utilize the discovered visual patterns to establish a benchmark for evaluating physical plausibility in generative models. Our analysis of eight state-of-the-art generative models provides valuable insights into how these models fail to follow physical constraints, paving the way for further model improvements.
comment: 10 pages, 5 figures
☆ T2IBias: Uncovering Societal Bias Encoded in the Latent Space of Text-to-Image Generative Models
Text-to-image (T2I) generative models are largely used in AI-powered real-world applications and value creation. However, their strategic deployment raises critical concerns for responsible AI management, particularly regarding the reproduction and amplification of race- and gender-related stereotypes that can undermine organizational ethics. In this work, we investigate whether such societal biases are systematically encoded within the pretrained latent spaces of state-of-the-art T2I models. We conduct an empirical study across the five most popular open-source models, using ten neutral, profession-related prompts to generate 100 images per profession, resulting in a dataset of 5,000 images evaluated by diverse human assessors representing different races and genders. We demonstrate that all five models encode and amplify pronounced societal skew: caregiving and nursing roles are consistently feminized, while high-status professions such as corporate CEO, politician, doctor, and lawyer are overwhelmingly represented by males and mostly White individuals. We further identify model-specific patterns, such as QWEN-Image's near-exclusive focus on East Asian outputs, Kandinsky's dominance of White individuals, and SDXL's comparatively broader but still biased distributions. These results provide critical insights for AI project managers and practitioners, enabling them to select equitable AI models and customized prompts that generate images in alignment with the principles of responsible AI. We conclude by discussing the risks of these biases and proposing actionable strategies for bias mitigation in building responsible GenAI systems.
comment: This manuscript has been accepted for presentation in the First Interdisciplinary Workshop on Responsible AI for Value Creation. Dec 1, Copenhagen. The final version will be submitted for inclusion in a Springer LNCS Volume. (15 pages, 7 figures)
☆ eXIAA: eXplainable Injections for Adversarial Attack
Post-hoc explainability methods are a subset of Machine Learning (ML) that aim to provide a reason for why a model behaves in a certain way. In this paper, we show a new black-box model-agnostic adversarial attack for post-hoc explainable Artificial Intelligence (XAI), particularly in the image domain. The goal of the attack is to modify the original explanations while being undetected by the human eye and maintain the same predicted class. In contrast to previous methods, we do not require any access to the model or its weights, but only to the model's computed predictions and explanations. Additionally, the attack is accomplished in a single step while significantly changing the provided explanations, as demonstrated by empirical evaluation. The low requirements of our method expose a critical vulnerability in current explainability methods, raising concerns about their reliability in safety-critical applications. We systematically generate attacks based on the explanations generated by post-hoc explainability methods (saliency maps, integrated gradients, and DeepLIFT SHAP) for pretrained ResNet-18 and ViT-B16 on ImageNet. The results show that our attacks could lead to dramatically different explanations without changing the predictive probabilities. We validate the effectiveness of our attack, compute the induced change based on the explanation with mean absolute difference, and verify the closeness of the original image and the corrupted one with the Structural Similarity Index Measure (SSIM).
☆ Opinion: Towards Unified Expressive Policy Optimization for Robust Robot Learning NeurIPS 2025
Offline-to-online reinforcement learning (O2O-RL) has emerged as a promising paradigm for safe and efficient robotic policy deployment but suffers from two fundamental challenges: limited coverage of multimodal behaviors and distributional shifts during online adaptation. We propose UEPO, a unified generative framework inspired by large language model pretraining and fine-tuning strategies. Our contributions are threefold: (1) a multi-seed dynamics-aware diffusion policy that efficiently captures diverse modalities without training multiple models; (2) a dynamic divergence regularization mechanism that enforces physically meaningful policy diversity; and (3) a diffusion-based data augmentation module that enhances dynamics model generalization. On the D4RL benchmark, UEPO achieves +5.9\% absolute improvement over Uni-O4 on locomotion tasks and +12.4\% on dexterous manipulation, demonstrating strong generalization and scalability.
comment: Accepted by NeurIPS 2025 Workshop on Embodied World Models for Decision Making
☆ Physics-informed Machine Learning for Static Friction Modeling in Robotic Manipulators Based on Kolmogorov-Arnold Networks
Friction modeling plays a crucial role in achieving high-precision motion control in robotic operating systems. Traditional static friction models (such as the Stribeck model) are widely used due to their simple forms; however, they typically require predefined functional assumptions, which poses significant challenges when dealing with unknown functional structures. To address this issue, this paper proposes a physics-inspired machine learning approach based on the Kolmogorov Arnold Network (KAN) for static friction modeling of robotic joints. The method integrates spline activation functions with a symbolic regression mechanism, enabling model simplification and physical expression extraction through pruning and attribute scoring, while maintaining both high prediction accuracy and interpretability. We first validate the method's capability to accurately identify key parameters under known functional models, and further demonstrate its robustness and generalization ability under conditions with unknown functional structures and noisy data. Experiments conducted on both synthetic data and real friction data collected from a six-degree-of-freedom industrial manipulator show that the proposed method achieves a coefficient of determination greater than 0.95 across various tasks and successfully extracts concise and physically meaningful friction expressions. This study provides a new perspective for interpretable and data-driven robotic friction modeling with promising engineering applicability.
☆ Tree-Based Stochastic Optimization for Solving Large-Scale Urban Network Security Games
Urban Network Security Games (UNSGs), which model the strategic allocation of limited security resources on city road networks, are critical for urban safety. However, finding a Nash Equilibrium (NE) in large-scale UNSGs is challenging due to their massive and combinatorial action spaces. One common approach to addressing these games is the Policy-Space Response Oracle (PSRO) framework, which requires computing best responses (BR) at each iteration. However, precisely computing exact BRs is impractical in large-scale games, and employing reinforcement learning to approximate BRs inevitably introduces errors, which limits the overall effectiveness of the PSRO methods. Recent advancements in leveraging non-convex stochastic optimization to approximate an NE offer a promising alternative to the burdensome BR computation. However, utilizing existing stochastic optimization techniques with an unbiased loss function for UNSGs remains challenging because the action spaces are too vast to be effectively represented by neural networks. To address these issues, we introduce Tree-based Stochastic Optimization (TSO), a framework that bridges the gap between the stochastic optimization paradigm for NE-finding and the demands of UNSGs. Specifically, we employ the tree-based action representation that maps the whole action space onto a tree structure, addressing the challenge faced by neural networks in representing actions when the action space cannot be enumerated. We then incorporate this representation into the loss function and theoretically demonstrate its equivalence to the unbiased loss function. To further enhance the quality of the converged solution, we introduce a sample-and-prune mechanism that reduces the risk of being trapped in suboptimal local optima. Extensive experimental results indicate the superiority of TSO over other baseline algorithms in addressing the UNSGs.
☆ FAQNAS: FLOPs-aware Hybrid Quantum Neural Architecture Search using Genetic Algorithm
Hybrid Quantum Neural Networks (HQNNs), which combine parameterized quantum circuits with classical neural layers, are emerging as promising models in the noisy intermediate-scale quantum (NISQ) era. While quantum circuits are not naturally measured in floating point operations (FLOPs), most HQNNs (in NISQ era) are still trained on classical simulators where FLOPs directly dictate runtime and scalability. Hence, FLOPs represent a practical and viable metric to measure the computational complexity of HQNNs. In this work, we introduce FAQNAS, a FLOPs-aware neural architecture search (NAS) framework that formulates HQNN design as a multi-objective optimization problem balancing accuracy and FLOPs. Unlike traditional approaches, FAQNAS explicitly incorporates FLOPs into the optimization objective, enabling the discovery of architectures that achieve strong performance while minimizing computational cost. Experiments on five benchmark datasets (MNIST, Digits, Wine, Breast Cancer, and Iris) show that quantum FLOPs dominate accuracy improvements, while classical FLOPs remain largely fixed. Pareto-optimal solutions reveal that competitive accuracy can often be achieved with significantly reduced computational cost compared to FLOPs-agnostic baselines. Our results establish FLOPs-awareness as a practical criterion for HQNN design in the NISQ era and as a scalable principle for future HQNN systems.
☆ From Static Structures to Ensembles: Studying and Harnessing Protein Structure Tokenization NeurIPS 2025
Protein structure tokenization converts 3D structures into discrete or vectorized representations, enabling the integration of structural and sequence data. Despite many recent works on structure tokenization, the properties of the underlying discrete representations are not well understood. In this work, we first demonstrate that the successful utilization of structural tokens in a language model for structure prediction depends on using rich, pre-trained sequence embeddings to bridge the semantic gap between the sequence and structural "language". The analysis of the structural vocabulary itself then reveals significant semantic redundancy, where multiple distinct tokens correspond to nearly identical local geometries, acting as "structural synonyms". This redundancy, rather than being a flaw, can be exploited with a simple "synonym swap" strategy to generate diverse conformational ensembles by perturbing a predicted structure with its structural synonyms. This computationally lightweight method accurately recapitulates protein flexibility, performing competitively with state-of-the-art models. Our study provides fundamental insights into the nature of discrete protein structure representations and introduces a powerful, near-instantaneous method for modeling protein dynamics. Source code is available in https://github.com/IDEA-XL/TokenMD.
comment: NeurIPS 2025 AI for Science Workshop
☆ BuddyMoE: Exploiting Expert Redundancy to Accelerate Memory-Constrained Mixture-of-Experts Inference
Mixture-of-Experts (MoE) architectures scale language models by activating only a subset of specialized expert networks for each input token, thereby reducing the number of floating-point operations. However, the growing size of modern MoE models causes their full parameter sets to exceed GPU memory capacity; for example, Mixtral-8x7B has 45 billion parameters and requires 87 GB of memory even though only 14 billion parameters are used per token. Existing systems alleviate this limitation by offloading inactive experts to CPU memory, but transferring experts across the PCIe interconnect incurs significant latency (about 10 ms). Prefetching heuristics aim to hide this latency by predicting which experts are needed, but prefetch failures introduce significant stalls and amplify inference latency. In the event of a prefetch failure, prior work offers two primary solutions: either fetch the expert on demand, which incurs a long stall due to the PCIe bottleneck, or drop the expert from the computation, which significantly degrades model accuracy. The critical challenge, therefore, is to maintain both high inference speed and model accuracy when prefetching fails.
☆ Temporal Latent Variable Structural Causal Model for Causal Discovery under External Interferences
Inferring causal relationships from observed data is an important task, yet it becomes challenging when the data is subject to various external interferences. Most of these interferences are the additional effects of external factors on observed variables. Since these external factors are often unknown, we introduce latent variables to represent these unobserved factors that affect the observed data. Specifically, to capture the causal strength and adjacency information, we propose a new temporal latent variable structural causal model, incorporating causal strength and adjacency coefficients that represent the causal relationships between variables. Considering that expert knowledge can provide information about unknown interferences in certain scenarios, we develop a method that facilitates the incorporation of prior knowledge into parameter learning based on Variational Inference, to guide the model estimation. Experimental results demonstrate the stability and accuracy of our proposed method.
comment: Accepted by Neurocomputing
☆ Multi-agent In-context Coordination via Decentralized Memory Retrieval
Large transformer models, trained on diverse datasets, have demonstrated impressive few-shot performance on previously unseen tasks without requiring parameter updates. This capability has also been explored in Reinforcement Learning (RL), where agents interact with the environment to retrieve context and maximize cumulative rewards, showcasing strong adaptability in complex settings. However, in cooperative Multi-Agent Reinforcement Learning (MARL), where agents must coordinate toward a shared goal, decentralized policy deployment can lead to mismatches in task alignment and reward assignment, limiting the efficiency of policy adaptation. To address this challenge, we introduce Multi-agent In-context Coordination via Decentralized Memory Retrieval (MAICC), a novel approach designed to enhance coordination by fast adaptation. Our method involves training a centralized embedding model to capture fine-grained trajectory representations, followed by decentralized models that approximate the centralized one to obtain team-level task information. Based on the learned embeddings, relevant trajectories are retrieved as context, which, combined with the agents' current sub-trajectories, inform decision-making. During decentralized execution, we introduce a novel memory mechanism that effectively balances test-time online data with offline memory. Based on the constructed memory, we propose a hybrid utility score that incorporates both individual- and team-level returns, ensuring credit assignment across agents. Extensive experiments on cooperative MARL benchmarks, including Level-Based Foraging (LBF) and SMAC (v1/v2), show that MAICC enables faster adaptation to unseen tasks compared to existing methods. Code is available at https://github.com/LAMDA-RL/MAICC.
☆ SVD-NO: Learning PDE Solution Operators with SVD Integral Kernels AAAI-26
Neural operators have emerged as a promising paradigm for learning solution operators of partial differential equa- tions (PDEs) directly from data. Existing methods, such as those based on Fourier or graph techniques, make strong as- sumptions about the structure of the kernel integral opera- tor, assumptions which may limit expressivity. We present SVD-NO, a neural operator that explicitly parameterizes the kernel by its singular-value decomposition (SVD) and then carries out the integral directly in the low-rank basis. Two lightweight networks learn the left and right singular func- tions, a diagonal parameter matrix learns the singular values, and a Gram-matrix regularizer enforces orthonormality. As SVD-NO approximates the full kernel, it obtains a high de- gree of expressivity. Furthermore, due to its low-rank struc- ture the computational complexity of applying the operator remains reasonable, leading to a practical system. In exten- sive evaluations on five diverse benchmark equations, SVD- NO achieves a new state of the art. In particular, SVD-NO provides greater performance gains on PDEs whose solutions are highly spatially variable. The code of this work is publicly available at https://github.com/2noamk/SVDNO.git.
comment: AAAI-26
GraphSB: Boosting Imbalanced Node Classification on Graphs through Structural Balance
Imbalanced node classification is a critical challenge in graph learning, where most existing methods typically utilize Graph Neural Networks (GNNs) to learn node representations. These methods can be broadly categorized into the data-level and the algorithm-level. The former aims to synthesize minority-class nodes to mitigate quantity imbalance, while the latter tries to optimize the learning process to highlight minority classes. However, neither category addresses the inherently imbalanced graph structure, which is a fundamental factor that incurs majority-class dominance and minority-class assimilation in GNNs. Our theoretical analysis further supports this critical insight. Therefore, we propose GraphSB (Graph Structural Balance), a novel framework that incorporates Structural Balance as a key strategy to address the underlying imbalanced graph structure before node synthesis. Structural Balance performs a two-stage structure optimization: Structure Enhancement that adaptively builds similarity-based edges to strengthen connectivity of minority-class nodes, and Relation Diffusion that captures higher-order dependencies while amplifying signals from minority classes. Thus, GraphSB balances structural distribution before node synthesis, enabling more effective learning in GNNs. Extensive experiments demonstrate that GraphSB significantly outperforms the state-of-the-art methods. More importantly, the proposed Structural Balance can be seamlessly integrated into state-of-the-art methods as a simple plug-and-play module, increasing their accuracy by an average of 3.67\%.
☆ Interaction as Interference: A Quantum-Inspired Aggregation Approach
Classical approaches often treat interaction as engineered product terms or as emergent patterns in flexible models, offering little control over how synergy or antagonism arises. We take a quantum-inspired view: following the Born rule (probability as squared amplitude), \emph{coherent} aggregation sums complex amplitudes before squaring, creating an interference cross-term, whereas an \emph{incoherent} proxy sums squared magnitudes and removes it. In a minimal linear-amplitude model, this cross-term equals the standard potential-outcome interaction contrast \(Δ_{\mathrm{INT}}\) in a \(2\times 2\) factorial design, giving relative phase a direct, mechanism-level control over synergy versus antagonism. We instantiate this idea in a lightweight \emph{Interference Kernel Classifier} (IKC) and introduce two diagnostics: \emph{Coherent Gain} (log-likelihood gain of coherent over the incoherent proxy) and \emph{Interference Information} (the induced Kullback-Leibler gap). A controlled phase sweep recovers the identity. On a high-interaction synthetic task (XOR), IKC outperforms strong baselines under paired, budget-matched comparisons; on real tabular data (\emph{Adult} and \emph{Bank Marketing}) it is competitive overall but typically trails the most capacity-rich baseline in paired differences. Holding learned parameters fixed, toggling aggregation from incoherent to coherent consistently improves negative log-likelihood, Brier score, and expected calibration error, with positive Coherent Gain on both datasets.
☆ The Role of Advanced Computer Architectures in Accelerating Artificial Intelligence Workloads
The remarkable progress in Artificial Intelligence (AI) is foundation-ally linked to a concurrent revolution in computer architecture. As AI models, particularly Deep Neural Networks (DNNs), have grown in complexity, their massive computational demands have pushed traditional architectures to their limits. This paper provides a structured review of this co-evolution, analyzing the architectural landscape designed to accelerate modern AI workloads. We explore the dominant architectural paradigms Graphics Processing Units (GPUs), Appli-cation-Specific Integrated Circuits (ASICs), and Field-Programmable Gate Ar-rays (FPGAs) by breaking down their design philosophies, key features, and per-formance trade-offs. The core principles essential for performance and energy efficiency, including dataflow optimization, advanced memory hierarchies, spar-sity, and quantization, are analyzed. Furthermore, this paper looks ahead to emerging technologies such as Processing-in-Memory (PIM) and neuromorphic computing, which may redefine future computation. By synthesizing architec-tural principles with quantitative performance data from industry-standard benchmarks, this survey presents a comprehensive picture of the AI accelerator landscape. We conclude that AI and computer architecture are in a symbiotic relationship, where hardware-software co-design is no longer an optimization but a necessity for future progress in computing.
comment: 16 Pages, 2 Figures
☆ DemoTuner: Efficient DBMS Knobs Tuning via LLM-Assisted Demonstration Reinforcement Learning
The performance of modern DBMSs such as MySQL and PostgreSQL heavily depends on the configuration of performance-critical knobs. Manual tuning these knobs is laborious and inefficient due to the complex and high-dimensional nature of the configuration space. Among the automated tuning methods, reinforcement learning (RL)-based methods have recently sought to improve the DBMS knobs tuning process from several different perspectives. However, they still encounter challenges with slow convergence speed during offline training. In this paper, we mainly focus on how to leverage the valuable tuning hints contained in various textual documents such as DBMS manuals and web forums to improve the offline training of RL-based methods. To this end, we propose an efficient DBMS knobs tuning framework named DemoTuner via a novel LLM-assisted demonstration reinforcement learning method. Specifically, to comprehensively and accurately mine tuning hints from documents, we design a structured chain of thought prompt to employ LLMs to conduct a condition-aware tuning hints extraction task. To effectively integrate the mined tuning hints into RL agent training, we propose a hint-aware demonstration reinforcement learning algorithm HA-DDPGfD in DemoTuner. As far as we know, DemoTuner is the first work to introduce the demonstration reinforcement learning algorithm for DBMS knobs tuning. Experimental evaluations conducted on MySQL and PostgreSQL across various workloads demonstrate the significant advantages of DemoTuner in both performance improvement and online tuning cost reduction over three representative baselines including DB-BERT, GPTuner and CDBTune. Additionally, DemoTuner also exhibits superior adaptability to application scenarios with unknown workloads.
comment: 14 pages, 9 figures
☆ A Novel Data-Dependent Learning Paradigm for Large Hypothesis Classes
We address the general task of learning with a set of candidate models that is too large to have a uniform convergence of empirical estimates to true losses. While the common approach to such challenges is SRM (or regularization) based learning algorithms, we propose a novel learning paradigm that relies on stronger incorporation of empirical data and requires less algorithmic decisions to be based on prior assumptions. We analyze the generalization capabilities of our approach and demonstrate its merits in several common learning assumptions, including similarity of close points, clustering of the domain into highly label-homogeneous regions, Lipschitzness assumptions of the labeling rule, and contrastive learning assumptions. Our approach allows utilizing such assumptions without the need to know their true parameters a priori.
☆ Towards Robust Multimodal Learning in the Open World
The rapid evolution of machine learning has propelled neural networks to unprecedented success across diverse domains. In particular, multimodal learning has emerged as a transformative paradigm, leveraging complementary information from heterogeneous data streams (e.g., text, vision, audio) to advance contextual reasoning and intelligent decision-making. Despite these advancements, current neural network-based models often fall short in open-world environments characterized by inherent unpredictability, where unpredictable environmental composition dynamics, incomplete modality inputs, and spurious distributions relations critically undermine system reliability. While humans naturally adapt to such dynamic, ambiguous scenarios, artificial intelligence systems exhibit stark limitations in robustness, particularly when processing multimodal signals under real-world complexity. This study investigates the fundamental challenge of multimodal learning robustness in open-world settings, aiming to bridge the gap between controlled experimental performance and practical deployment requirements.
comment: Thesis
☆ Rediscovering the Lunar Equation of the Centre with AI Feynman via Embedded Physical Biases
This work explores using the physics-inspired AI Feynman symbolic regression algorithm to automatically rediscover a fundamental equation in astronomy -- the Equation of the Centre. Through the introduction of observational and inductive biases corresponding to the physical nature of the system through data preprocessing and search space restriction, AI Feynman was successful in recovering the first-order analytical form of this equation from lunar ephemerides data. However, this manual approach highlights a key limitation in its reliance on expert-driven coordinate system selection. We therefore propose an automated preprocessing extension to find the canonical coordinate system. Results demonstrate that targeted domain knowledge embedding enables symbolic regression to rediscover physical laws, but also highlight further challenges in constraining symbolic regression to derive physics equations when leveraging domain knowledge through tailored biases.
comment: 7 pages, 1 figure, 4 tables
♻ ☆ LLM Inference Beyond a Single Node: From Bottlenecks to Mitigations with Fast All-Reduce Communication
As large language models (LLMs) continue to grow in size, distributed inference has become increasingly important. Model-parallel strategies must now efficiently scale not only across multiple GPUs but also across multiple nodes. In this work, we present a detailed performance study of multi-node distributed inference using LLMs on GPU-based supercomputers. We conduct experiments with several state-of-the-art inference engines alongside YALIS, a research-oriented prototype engine designed for controlled experimentation. We analyze the strong-scaling behavior of different model-parallel schemes and identify key bottlenecks. Since all-reduce operations are a common performance bottleneck, we develop NVRAR, a hierarchical all-reduce algorithm based on recursive doubling with NVSHMEM. NVRAR achieves up to 1.9x-3.6x lower latency than NCCL for message sizes between 128 KB and 2 MB on HPE Slingshot and InfiniBand interconnects. Integrated into YALIS, NVRAR achieves up to a 1.72x reduction in end-to-end batch latency for the Llama 3.1 405B model in multi-node decode-heavy workloads using tensor parallelism.
comment: 12 Figures
♻ ☆ Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis AAAI 2026
Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials while addressing chronic data scarcity in global development research. However, because standard training objectives prioritize overall predictive accuracy, these predictions often suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy evaluations. Existing debiasing methods, such as Prediction-Powered Inference (PPI), can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. We introduce and evaluate two post-hoc correction methods -- Linear Calibration Correction (LCC) and a Tweedie's correction approach -- that substantially reduce shrinkage-induced prediction bias without relying on newly collected labeled data. LCC applies a simple linear transformation estimated on a held-out calibration split; Tweedie's method locally de-shrink predictions using density score estimates and a noise scale learned upstream. We provide practical diagnostics for when a correction is warranted and discuss practical limitations. Across analytical results, simulations, and experiments with Demographic and Health Surveys (DHS) data, both approaches reduce attenuation; Tweedie's correction yields nearly unbiased treatment-effect estimates, enabling a "one map, many trials" paradigm. Although we demonstrate on EO-ML wealth mapping, the methods are not geospatial-specific: they apply to any setting where imputed outcomes are reused downstream (e.g., pollution indices, population density, or LLM-derived indicators).
comment: To appear in the Proceedings of AAAI 2026
♻ ☆ BATIS: Bayesian Approaches for Targeted Improvement of Species Distribution Models
Species distribution models (SDMs), which aim to predict species occurrence based on environmental variables, are widely used to monitor and respond to biodiversity change. Recent deep learning advances for SDMs have been shown to perform well on complex and heterogeneous datasets, but their effectiveness remains limited by spatial biases in the data. In this paper, we revisit deep SDMs from a Bayesian perspective and introduce BATIS, a novel and practical framework wherein prior predictions are updated iteratively using limited observational data. Models must appropriately capture both aleatoric and epistemic uncertainty to effectively combine fine-grained local insights with broader ecological patterns. We benchmark an extensive set of uncertainty quantification approaches on a novel dataset including citizen science observations from the eBird platform. Our empirical study shows how Bayesian deep learning approaches can greatly improve the reliability of SDMs in data-scarce locations, which can contribute to ecological understanding and conservation efforts.
♻ ☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
comment: v2: added DeiT, added ablation vs simple copy-paste
♻ ☆ Generalized Linear Mode Connectivity for Transformers NeurIPS 2025
Understanding the geometry of neural network loss landscapes is a central question in deep learning, with implications for generalization and optimization. A striking phenomenon is linear mode connectivity (LMC), where independently trained models can be connected by low- or zero-loss paths despite appearing to lie in separate loss basins. However, this is often obscured by symmetries in parameter space -- such as neuron permutations -- which make functionally equivalent models appear dissimilar. Prior work has predominantly focused on neuron reordering through permutations, but such approaches are limited in scope and fail to capture the richer symmetries exhibited by modern architectures such as Transformers. In this work, we introduce a unified framework that captures four symmetry classes -- permutations, semi-permutations, orthogonal transformations, and general invertible maps -- broadening the set of valid reparameterizations and subsuming many previous approaches as special cases. Crucially, this generalization enables, for the first time, the discovery of low- and zero-barrier linear interpolation paths between independently trained Vision Transformers and GPT-2 models. Furthermore, our framework extends beyond pairwise alignment to multi-model and width-heterogeneous settings, enabling alignment across architectures of different sizes. These results reveal deeper structure in the loss landscape and underscore the importance of symmetry-aware analysis for understanding model space geometry.
comment: Accepted to NeurIPS 2025 (Oral)
♻ ☆ Are Foundational Atomistic Models Reliable for Finite-Temperature Molecular Dynamics?
Machine learning force fields have emerged as promising tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. Inspired by foundational large language models, recent years have seen considerable progress in developing foundational atomistic models, sometimes referred to as universal force fields, designed to cover most elements in the periodic table. This Perspective adopts a practitioner's viewpoint to ask a critical question: Are these foundational atomistic models reliable for one of their most compelling applications, in particular simulating finite-temperature dynamics? Instead of a broad benchmark, we use the canonical ferroelectric-paraelectric phase transition in PbTiO$_3$ as a focused case study to evaluate prominent foundational atomistic models. Our findings suggest a potential disconnect between static accuracy and dynamic reliability. While 0 K properties are often well-reproduced, we observed that the models can struggle to consistently capture the correct phase transition, sometimes exhibiting simulation instabilities. We believe these challenges may stem from inherent biases in training data and a limited description of anharmonicity. These observed shortcomings, though demonstrated on a single system, appear to point to broader, systemic challenges that can be addressed with targeted fine-tuning. This Perspective serves not to rank models, but to initiate a crucial discussion on the practical readiness of foundational atomistic models and to explore future directions for their improvement.
comment: 18 pages, 5 figures
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.5 billion items.
♻ ☆ Transforming Calabi-Yau Constructions: Generating New Calabi-Yau Manifolds with Transformers
Fine, regular, and star triangulations (FRSTs) of four-dimensional reflexive polytopes give rise to toric varieties, within which generic anticanonical hypersurfaces yield smooth Calabi-Yau threefolds. We introduce CYTransformer, a deep learning model based on the transformer architecture, to automate the generation of FRSTs. We demonstrate that CYTransformer efficiently and unbiasedly samples FRSTs for polytopes across a range of sizes, and can self-improve through retraining on its own output. These results lay the foundation for AICY: a community-driven platform designed to combine self-improving machine learning models with a continuously expanding database to explore and catalog the Calabi-Yau landscape.
comment: 43 pages, 17 figures, 1 table
♻ ☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning and safety training methods consistently fail to remove dangerous knowledge from language models. We identify the root cause - unlearning targets representations which are too general - and develop a highly selective technique that unlearns robustly while preserving general performance. Our method performs PCA on activations and module-output gradients to identify subspaces containing common representations, then collapses these subspaces before computing unlearning updates, a technique we term Collapse of Irrelevant Representations (CIR). This avoids unlearning general knowledge and targets only representations specific to the facts being unlearned. When unlearning bio- and cyber-hazardous facts from Llama-3.1-8B, we achieve over 30x greater reduction in post-attack accuracy than the best baseline (Circuit Breakers), while disrupting general performance 30x less, and using less than 3 GPU-seconds per fact. Thus, by disentangling harmful and benign capabilities at the level of representations, CIR enables robust and non-disruptive unlearning.
♻ ☆ Reducing the Scope of Language Models AAAI 2026
Large language models (LLMs) are deployed in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions grounded on documentation or acting as coding assistants, but they require general language understanding. In such deployments, LLMs should respond only to queries that align with the intended purpose and reject all other requests, such as generating poetry or answering questions about physics, a task we refer to as `scoping'. We conduct a comprehensive empirical evaluation of various methods, ranging from prompting, fine-tuning to preference learning and the recently proposed general alignment technique known as Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping LLMs.
comment: Appears in AAAI 2026 in the Main Technical Track
♻ ☆ Transfer in Reinforcement Learning via Regret Bounds for Learning Agents
We present an approach for the quantification of the usefulness of transfer in reinforcement learning via regret bounds for a multi-agent setting. Considering a number of $\aleph$ agents operating in the same Markov decision process, however possibly with different reward functions, we consider the regret each agent suffers with respect to an optimal policy maximizing her average reward. We show that when the agents share their observations the total regret of all agents is smaller by a factor of $\sqrt{\aleph}$ compared to the case when each agent has to rely on the information collected by herself. This result demonstrates how considering the regret in multi-agent settings can provide theoretical bounds on the benefit of sharing observations in transfer learning.
♻ ☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
♻ ☆ Interpretable Clinical Classification with Kolgomorov-Arnold Networks
Why should a clinician trust an Artificial Intelligence (AI) prediction? Despite the increasing accuracy of machine learning methods in medicine, the lack of transparency continues to hinder their adoption in clinical practice. In this work, we explore Kolmogorov-Arnold Networks (KANs) for clinical classification tasks on tabular data. In contrast to traditional neural networks, KANs are function-based architectures that offer intrinsic interpretability through transparent, symbolic representations. We introduce \emph{Logistic-KAN}, a flexible generalization of logistic regression, and \emph{Kolmogorov-Arnold Additive Model (KAAM)}, a simplified additive variant that delivers transparent, symbolic formulas. Unlike ``black-box'' models that require post-hoc explainability tools, our models support built-in patient-level insights, intuitive visualizations, and nearest-patient retrieval. Across multiple health datasets, our models match or outperform standard baselines, while remaining fully interpretable. These results position KANs as a promising step toward trustworthy AI that clinicians can understand, audit, and act upon. We release the code for reproducibility in \codeurl.
♻ ☆ Two-Scale Latent Dynamics for Recurrent-Depth Transformers
Recurrent-depth transformers scale test-time compute by iterating latent computations before emitting tokens. We study the geometry of these iterates and argue for a simple, two-scale operational picture: (i) within a looped block, updates act as small-scale refinements; (ii) across consecutive blocks, states undergo a larger-scale drift. Across training, our measurements show that loop steps become smaller and increasingly orthogonal to one another, indicating better local modeling of fine structure rather than merely pushing in a single direction. These dynamics motivate an early-exit mechanism based on the model's second-order difference in step-size, which we show is superior in terms of performance, stability and time-efficiency, when compared to the KL-divergence exit strategy of Geiping et al. and its naive first-order counterpart.
♻ ☆ SOM Directions are Better than One: Multi-Directional Refusal Suppression in Language Models AAAI 2026
Refusal refers to the functional behavior enabling safety-aligned language models to reject harmful or unethical prompts. Following the growing scientific interest in mechanistic interpretability, recent work encoded refusal behavior as a single direction in the model's latent space; e.g., computed as the difference between the centroids of harmful and harmless prompt representations. However, emerging evidence suggests that concepts in LLMs often appear to be encoded as a low-dimensional manifold embedded in the high-dimensional latent space. Motivated by these findings, we propose a novel method leveraging Self-Organizing Maps (SOMs) to extract multiple refusal directions. To this end, we first prove that SOMs generalize the prior work's difference-in-means technique. We then train SOMs on harmful prompt representations to identify multiple neurons. By subtracting the centroid of harmless representations from each neuron, we derive a set of multiple directions expressing the refusal concept. We validate our method on an extensive experimental setup, demonstrating that ablating multiple directions from models' internals outperforms not only the single-direction baseline but also specialized jailbreak algorithms, leading to an effective suppression of refusal. Finally, we conclude by analyzing the mechanistic implications of our approach.
comment: Accepted at AAAI 2026
♻ ☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
♻ ☆ Spectral methods for Neural Integral Equations
Neural integral equations are deep learning models based on the theory of integral equations, where the model consists of an integral operator and the corresponding equation (of the second kind) which is learned through an optimization procedure. This approach allows to leverage the nonlocal properties of integral operators in machine learning, but it is computationally expensive. In this article, we introduce a framework for neural integral equations based on spectral methods that allows us to learn an operator in the spectral domain, resulting in a cheaper computational cost, as well as in high interpolation accuracy. We study the properties of our methods and show various theoretical guarantees regarding the approximation capabilities of the model, and convergence to solutions of the numerical methods. We provide numerical experiments to demonstrate the practical effectiveness of the resulting model.
comment: v4: There were various inaccuracies that have been fixed. First, the approach was performed on a proper subspace of X (Hölder space), rather than on X as declared at some point. Second, in the preamble to Theorem 3.5 a hypothesis was not listed: P_N's are assumed to be uniformly bounded on the space R, to show that P_N approximates the identity on R, rather than the opposite at it was written
♻ ☆ Why do zeroes happen? A model-based approach for demand classification
Effective demand forecasting is critical for inventory management, production planning, and decision making across industries. Selecting the appropriate model and suitable features to efficiently capture patterns in the data is one of the main challenges in demand forecasting. In reality, this becomes even more complicated when the recorded sales have zeroes, which can happen naturally or due to some anomalies, such as stockouts and recording errors. Mistreating the zeroes can lead to the application of inappropriate forecasting methods, and thus leading to poor decision making. Furthermore, the demand itself can have different fundamental characteristics, and being able to distinguish one type from another might bring substantial benefits in terms of accuracy and thus decision making. We propose a two-stage model-based classification framework that in the first step, identifies artificially occurring zeroes, and in the second, classifies demand to one of the possible types: regular/intermittent, intermittent smooth/lumpy, fractional/count. The framework relies on statistical modelling and information criteria. We argue that different types of demand need different features, and show empirically that they tend to increase the accuracy of the forecasting methods and reduce inventory costs compared to those applied directly to the dataset without the generated features and the two-stage framework.
comment: 46 pages, 14 figures, 3 tables. This was updated after one round of the revision
♻ ☆ On Stealing Graph Neural Network Models AAAI 2026
Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract a GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
comment: Accepted at AAAI 2026
♻ ☆ Onboard Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
♻ ☆ REACT-LLM: A Benchmark for Evaluating LLM Integration with Causal Features in Clinical Prognostic Tasks
Large Language Models (LLMs) and causal learning each hold strong potential for clinical decision making (CDM). However, their synergy remains poorly understood, largely due to the lack of systematic benchmarks evaluating their integration in clinical risk prediction. In real-world healthcare, identifying features with causal influence on outcomes is crucial for actionable and trustworthy predictions. While recent work highlights LLMs' emerging causal reasoning abilities, there lacks comprehensive benchmarks to assess their causal learning and performance informed by causal features in clinical risk prediction. To address this, we introduce REACT-LLM, a benchmark designed to evaluate whether combining LLMs with causal features can enhance clinical prognostic performance and potentially outperform traditional machine learning (ML) methods. Unlike existing LLM-clinical benchmarks that often focus on a limited set of outcomes, REACT-LLM evaluates 7 clinical outcomes across 2 real-world datasets, comparing 15 prominent LLMs, 6 traditional ML models, and 3 causal discovery (CD) algorithms. Our findings indicate that while LLMs perform reasonably in clinical prognostics, they have not yet outperformed traditional ML models. Integrating causal features derived from CD algorithms into LLMs offers limited performance gains, primarily due to the strict assumptions of many CD methods, which are often violated in complex clinical data. While the direct integration yields limited improvement, our benchmark reveals a more promising synergy.
♻ ☆ A Novel Sliced Fused Gromov-Wasserstein Distance
The Gromov--Wasserstein (GW) distance and its fused extension (FGW) are powerful tools for comparing heterogeneous data. Their computation is, however, challenging since both distances are based on non-convex, quadratic optimal transport (OT) problems. Leveraging 1D OT, a sliced version of GW has been proposed to lower the computational burden. Unfortunately, this sliced version is restricted to Euclidean geometry and loses invariance to isometries, strongly limiting its application in practice. To overcome these issues, we propose a novel slicing technique for GW as well as for FGW that is based on an appropriate lower bound, hierarchical OT, and suitable quadrature rules for the underlying 1D OT problems. Our novel sliced FGW significantly reduces the numerical effort while remaining invariant to isometric transformations and allowing the comparison of arbitrary geometries. We show that our new distance actually defines a pseudo-metric for structured spaces that bounds FGW from below and study its interpolation properties between sliced Wasserstein and GW. Since we avoid the underlying quadratic program, our sliced distance is numerically more robust and reliable than the original GW and FGW distance; especially in the context of shape retrieval and graph isomorphism testing.
♻ ☆ Surrogate Quantum Circuit Design for the Lattice Boltzmann Collision Operator
This study introduces a framework for learning a low-depth surrogate quantum circuit (SQC) that approximates the nonlinear, dissipative, and hence non-unitary Bhatnagar-Gross-Krook (BGK) collision operator in the lattice Boltzmann method (LBM) for the D2Q9 lattice. By appropriately selecting the quantum state encoding, circuit architecture, and measurement protocol, non-unitary dynamics emerge naturally within the physical population space. This approach removes the need for probabilistic algorithms relying on any ancilla qubits and post-selection to reproduce dissipation, or for multiple state copies to capture nonlinearity. The SQC is designed to preserve key physical properties of the BGK operator, including mass conservation, scale equivariance, and D8 equivariance, while momentum conservation is encouraged through penalization in the training loss. When compiled to the IBM Heron quantum processor's native gate set, assuming all-to-all qubit connectivity, the circuit requires only 724 native gates and operates locally on the velocity register, making it independent of the lattice size. The learned SQC is validated on two benchmark cases, the Taylor-Green vortex decay and the lid-driven cavity, showing accurate reproduction of vortex decay and flow recirculation. While integration of the SQC into a quantum LBM framework presently requires measurement and re-initialization at each timestep, the necessary steps towards a measurement-free formulation are outlined.
comment: 54 pages, 18 figures
♻ ☆ Exposing the Vulnerability of Decentralized Learning to Membership Inference Attacks Through the Lens of Graph Mixing
The primary promise of decentralized learning is to allow users to engage in the training of machine learning models in a collaborative manner while keeping their data on their premises and without relying on any central entity. However, this paradigm necessitates the exchange of model parameters or gradients between peers. Such exchanges can be exploited to infer sensitive information about training data, which is achieved through privacy attacks (e.g., Membership Inference Attacks -- MIA). In order to devise effective defense mechanisms, it is important to understand the factors that increase/reduce the vulnerability of a given decentralized learning architecture to MIA. In this study, we extensively explore the vulnerability to MIA of various decentralized learning architectures by varying the graph structure (e.g., number of neighbors), the graph dynamics, and the aggregation strategy, across diverse datasets and data distributions. Our key finding, which to the best of our knowledge we are the first to report, is that the vulnerability to MIA is heavily correlated to (i) the local model mixing strategy performed by each node upon reception of models from neighboring nodes and (ii) the global mixing properties of the communication graph. We illustrate these results experimentally using four datasets and by theoretically analyzing the mixing properties of various decentralized architectures. We also empirically show that enhancing mixing properties is highly beneficial when combined with other privacy-preserving techniques such as Differential Privacy. Our paper draws a set of lessons learned for devising decentralized learning systems that reduce by design the vulnerability to MIA.
comment: Accepted at Middleware'25, 13 pages, 8 figures
♻ ☆ Explainable Cross-Disease Reasoning for Cardiovascular Risk Assessment from LDCT
Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
♻ ☆ Amorphous Solid Model of Vectorial Hopfield Neural Networks
We introduce a three-dimensional vectorial extension of the Hopfield associative-memory model in which each neuron is a unit vector on $S^2$ and synaptic couplings are $3\times 3$ blocks generated through a vectorial Hebbian rule. The resulting block-structured operator is mathematically analogous to the Hessian of amorphous solids and induces a rigid energy landscape with deep minima for stored patterns. Simulations and spectral analysis show that the vectorial network substantially outperforms the classical binary Hopfield model. For moderate connectivity, the critical storage ratio $γ_c$ grows approximately linearly with the coordination number $Z$, while for $Z\gtrsim 40$ a high-connectivity regime emerges in which $γ_c$ systematically exceeds the extrapolated low-$Z$ linear fit. At the same time, a persistent spectral gap separates pattern modes from the bulk and basins of attraction enlarge, yielding enhanced robustness to initialization noise. Thus geometric constraints combined with amorphous-solid-inspired structure produce associative memories with superior storage and retrieval performance, especially in the high-connectivity ($Z \gtrsim 20$-$30$) regime.
comment: Revised and extended calculations, thoroughly checked convergence
♻ ☆ Boosting Adversarial Transferability via Ensemble Non-Attention AAAI 2026
Ensemble attacks integrate the outputs of surrogate models with diverse architectures, which can be combined with various gradient-based attacks to improve adversarial transferability. However, previous work shows unsatisfactory attack performance when transferring across heterogeneous model architectures. The main reason is that the gradient update directions of heterogeneous surrogate models differ widely, making it hard to reduce the gradient variance of ensemble models while making the best of individual model. To tackle this challenge, we design a novel ensemble attack, NAMEA, which for the first time integrates the gradients from the non-attention areas of ensemble models into the iterative gradient optimization process. Our design is inspired by the observation that the attention areas of heterogeneous models vary sharply, thus the non-attention areas of ViTs are likely to be the focus of CNNs and vice versa. Therefore, we merge the gradients respectively from the attention and non-attention areas of ensemble models so as to fuse the transfer information of CNNs and ViTs. Specifically, we pioneer a new way of decoupling the gradients of non-attention areas from those of attention areas, while merging gradients by meta-learning. Empirical evaluations on ImageNet dataset indicate that NAMEA outperforms AdaEA and SMER, the state-of-the-art ensemble attacks by an average of 15.0% and 9.6%, respectively. This work is the first attempt to explore the power of ensemble non-attention in boosting cross-architecture transferability, providing new insights into launching ensemble attacks.
comment: 16 pages, 11 figures, accepted by AAAI 2026
♻ ☆ PRDP: Progressively Refined Differentiable Physics ICLR 2025
The physics solvers employed for neural network training are primarily iterative, and hence, differentiating through them introduces a severe computational burden as iterations grow large. Inspired by works in bilevel optimization, we show that full accuracy of the network is achievable through physics significantly coarser than fully converged solvers. We propose Progressively Refined Differentiable Physics (PRDP), an approach that identifies the level of physics refinement sufficient for full training accuracy. By beginning with coarse physics, adaptively refining it during training, and stopping refinement at the level adequate for training, it enables significant compute savings without sacrificing network accuracy. Our focus is on differentiating iterative linear solvers for sparsely discretized differential operators, which are fundamental to scientific computing. PRDP is applicable to both unrolled and implicit differentiation. We validate its performance on a variety of learning scenarios involving differentiable physics solvers such as inverse problems, autoregressive neural emulators, and correction-based neural-hybrid solvers. In the challenging example of emulating the Navier-Stokes equations, we reduce training time by 62%.
comment: Accepted at ICLR 2025
♻ ☆ Distribution Learning Meets Graph Structure Sampling NeurIPS 2025
This work establishes a novel link between the problem of PAC-learning high-dimensional graphical models and the task of (efficient) counting and sampling of graph structures, using an online learning framework. We observe that if we apply the exponentially weighted average (EWA) or randomized weighted majority (RWM) forecasters on a sequence of samples from a distribution P using the log loss function, the average regret incurred by the forecaster's predictions can be used to bound the expected KL divergence between P and the predictions. Known regret bounds for EWA and RWM then yield new sample complexity bounds for learning Bayes nets. Moreover, these algorithms can be made computationally efficient for several interesting classes of Bayes nets. Specifically, we give a new sample-optimal and polynomial time learning algorithm with respect to trees of unknown structure and the first polynomial sample and time algorithm for learning with respect to Bayes nets over a given chordal skeleton.
comment: Full version (50 pages, 2 figures). Shortened abstract as per arXiv criteria. To be published in NeurIPS 2025
♻ ☆ ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset
We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.
♻ ☆ Constructing an Optimal Behavior Basis for the Option Keyboard NeurIPS
Multi-task reinforcement learning aims to quickly identify solutions for new tasks with minimal or no additional interaction with the environment. Generalized Policy Improvement (GPI) addresses this by combining a set of base policies to produce a new one that is at least as good -- though not necessarily optimal -- as any individual base policy. Optimality can be ensured, particularly in the linear-reward case, via techniques that compute a Convex Coverage Set (CCS). However, these are computationally expensive and do not scale to complex domains. The Option Keyboard (OK) improves upon GPI by producing policies that are at least as good -- and often better. It achieves this through a learned meta-policy that dynamically combines base policies. However, its performance critically depends on the choice of base policies. This raises a key question: is there an optimal set of base policies -- an optimal behavior basis -- that enables zero-shot identification of optimal solutions for any linear tasks? We solve this open problem by introducing a novel method that efficiently constructs such an optimal behavior basis. We show that it significantly reduces the number of base policies needed to ensure optimality in new tasks. We also prove that it is strictly more expressive than a CCS, enabling particular classes of non-linear tasks to be solved optimally. We empirically evaluate our technique in challenging domains and show that it outperforms state-of-the-art approaches, increasingly so as task complexity increases.
comment: To appear in the Proceedings of the Thirty-ninth Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ One-Shot Multi-Label Causal Discovery in High-Dimensional Event Sequences
Understanding causality in event sequences with thousands of sparse event types is critical in domains such as healthcare, cybersecurity, or vehicle diagnostics, yet current methods fail to scale. We present OSCAR, a one-shot causal autoregressive method that infers per-sequence Markov Boundaries using two pretrained Transformers as density estimators. This enables efficient, parallel causal discovery without costly global CI testing. On a real-world automotive dataset with 29,100 events and 474 labels, OSCAR recovers interpretable causal structures in minutes, while classical methods fail to scale, enabling practical scientific diagnostics at production scale.
comment: Accepted at NeuRIPS2025 Workshop CauScien: Discovering Causality in Science. arXiv admin note: substantial text overlap with arXiv:2509.19112
♻ ☆ Towards Practical Multi-label Causal Discovery in High-Dimensional Event Sequences via One-Shot Graph Aggregation
Understanding causality in event sequences where outcome labels such as diseases or system failures arise from preceding events like symptoms or error codes is critical. Yet remains an unsolved challenge across domains like healthcare or vehicle diagnostics. We introduce CARGO, a scalable multi-label causal discovery method for sparse, high-dimensional event sequences comprising of thousands of unique event types. Using two pretrained causal Transformers as domain-specific foundation models for event sequences. CARGO infers in parallel, per sequence one-shot causal graphs and aggregates them using an adaptive frequency fusion to reconstruct the global Markov boundaries of labels. This two-stage approach enables efficient probabilistic reasoning at scale while bypassing the intractable cost of full-dataset conditional independence testing. Our results on a challenging real-world automotive fault prediction dataset with over 29,100 unique event types and 474 imbalanced labels demonstrate CARGO's ability to perform structured reasoning.
comment: Accepted at NeuRIPS2025 Workshop on Structured Probabilistic Inference and Generative Modeling
♻ ☆ Efficient quantification on large-scale networks
Network quantification (NQ) is the problem of estimating the proportions of nodes belonging to each class in subsets of unlabelled graph nodes. When prior probability shift is at play, this task cannot be effectively addressed by first classifying the nodes and then counting the class predictions. In addition, unlike non-relational quantification, NQ demands enhanced flexibility in order to capture a broad range of connectivity patterns, resilience to the challenge of heterophily, and scalability to large networks. In order to meet these stringent requirements, we introduce XNQ, a novel method that synergizes the flexibility and efficiency of the unsupervised node embeddings computed by randomized recursive Graph Neural Networks, with an Expectation-Maximization algorithm that provides a robust quantification-aware adjustment to the output probabilities of a calibrated node classifier. In an extensive evaluation, in which we also validate the design choices underpinning XNQ through comprehensive ablation experiments, we find that XNQ consistently and significantly improves on the best network quantification methods to date, thereby setting the new state of the art for this challenging task. XNQ also provides a training speed-up of up to 10x-100x over other methods based on graph learning.
comment: Published version
♻ ☆ Reassessing feature-based Android malware detection in a contemporary context
We report the findings of a reimplementation of 18 foundational studies in feature-based machine learning for Android malware detection, published during the period 2013-2023. These studies are reevaluated on a level playing field using a contemporary Android environment and a balanced dataset of 124,000 applications. Our findings show that feature-based approaches can still achieve detection accuracies beyond 98%, despite a considerable increase in the size of the underlying Android feature sets. We observe that features derived through dynamic analysis yield only a small benefit over those derived from static analysis, and that simpler models often out-perform more complex models. We also find that API calls and opcodes are the most productive static features within our evaluation context, network traffic is the most predictive dynamic feature, and that ensemble models provide an efficient means of combining models trained on static and dynamic features. Together, these findings suggest that simple, fast machine learning approaches can still be an effective basis for malware detection, despite the increasing focus on slower, more expensive machine learning models in the literature.
♻ ☆ Preconditioned Inexact Stochastic ADMM for Deep Model
The recent advancement of foundation models (FMs) has brought about a paradigm shift, revolutionizing various sectors worldwide. The popular optimizers used to train these models are stochastic gradient descent-based algorithms, which face inherent limitations, such as slow convergence and stringent assumptions for convergence. In particular, data heterogeneity arising from distributed settings poses significant challenges to their theoretical and numerical performance. This paper develops an algorithm, PISA (Preconditioned Inexact Stochastic Alternating Direction Method of Multipliers). Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, thereby removing the need for other conditions commonly imposed by stochastic methods. This capability enables the proposed algorithm to tackle the challenge of data heterogeneity effectively. Moreover, the algorithmic architecture enables scalable parallel computing and supports various preconditions, such as second-order information, second moment, and orthogonalized momentum by Newton-Schulz iterations. Incorporating the latter two preconditions in PISA yields two computationally efficient variants: SISA and NSISA. Comprehensive experimental evaluations for training or fine-tuning diverse deep models, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate superior numerical performance of SISA and NSISA compared to various state-of-the-art optimizers.
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ Learning the Basis: A Kolmogorov-Arnold Network Approach Embedding Green's Function Priors
The Method of Moments (MoM) is constrained by the usage of static, geometry-defined basis functions, such as the Rao-Wilton-Glisson (RWG) basis. This letter reframes electromagnetic modeling around a learnable basis representation rather than solving for the coefficients over a fixed basis. We first show that the RWG basis is essentially a static and piecewise-linear realization of the Kolmogorov-Arnold representation theorem. Inspired by this insight, we propose PhyKAN, a physics-informed Kolmogorov-Arnold Network (KAN) that generalizes RWG into a learnable and adaptive basis family. Derived from the EFIE, PhyKAN integrates a local KAN branch with a global branch embedded with Green's function priors to preserve physical consistency. It is demonstrated that, across canonical geometries, PhyKAN achieves sub-0.01 reconstruction errors as well as accurate, unsupervised radar cross section predictions, offering an interpretable, physics-consistent bridge between classical solvers and modern neural network models for electromagnetic modeling.
♻ ☆ Provably Scalable Black-Box Variational Inference with Structured Variational Families ICML'24
Variational families with full-rank covariance approximations are known not to work well in black-box variational inference (BBVI), both empirically and theoretically. In fact, recent computational complexity results for BBVI have established that full-rank variational families scale poorly with the dimensionality of the problem compared to e.g. mean-field families. This is particularly critical to hierarchical Bayesian models with local variables; their dimensionality increases with the size of the datasets. Consequently, one gets an iteration complexity with an explicit $\mathcal{O}(N^2)$ dependence on the dataset size $N$. In this paper, we explore a theoretical middle ground between mean-field variational families and full-rank families: structured variational families. We rigorously prove that certain scale matrix structures can achieve a better iteration complexity of $\mathcal{O}\left(N\right)$, implying better scaling with respect to $N$. We empirically verify our theoretical results on large-scale hierarchical models.
comment: Accepted to ICML'24; v3, v4: fixed typos
♻ ☆ Effector: A Python package for regional explanations
Effector is a Python package for interpreting machine learning (ML) models that are trained on tabular data through global and regional feature effects. Global effects, like Partial Dependence Plot (PDP) and Accumulated Local Effects (ALE), are widely used for explaining tabular ML models due to their simplicity -- each feature's average influence on the prediction is summarized by a single 1D plot. However, when features are interacting, global effects can be misleading. Regional effects address this by partitioning the input space into disjoint subregions with minimal interactions within each and computing a separate regional effect per subspace. Regional effects are then visualized by a set of 1D plots per feature. Effector provides efficient implementations of state-of-the-art global and regional feature effects methods under a unified API. The package integrates seamlessly with major ML libraries like scikit-learn and PyTorch. It is designed to be modular and extensible, and comes with comprehensive documentation and tutorials. Effector is an open-source project publicly available on Github at https://github.com/givasile/effector.
comment: 11 pages, 5 figures
♻ ☆ Unique Hard Attention: A Tale of Two Sides
Understanding the expressive power of transformers has recently attracted attention, as it offers insights into their abilities and limitations. Many studies analyze unique hard attention transformers, where attention selects a single position that maximizes the attention scores. When multiple positions achieve the maximum score, either the rightmost or the leftmost of those is chosen. In this paper, we highlight the importance of this seeming triviality. Recently, finite-precision transformers with both leftmost- and rightmost-hard attention were shown to be equivalent to Linear Temporal Logic (LTL). We show that this no longer holds with only leftmost-hard attention -- in that case, they correspond to a \emph{strictly weaker} fragment of LTL. Furthermore, we show that models with leftmost-hard attention are equivalent to \emph{soft} attention, suggesting they may better approximate real-world transformers than right-attention models. These findings refine the landscape of transformer expressivity and underscore the role of attention directionality.
♻ ☆ Training on Plausible Counterfactuals Removes Spurious Correlations
Plausible counterfactual explanations (p-CFEs) are perturbations that minimally modify inputs to change classifier decisions while remaining plausible under the data distribution. In this study, we demonstrate that classifiers can be trained on p-CFEs labeled with induced \emph{incorrect} target classes to classify unperturbed inputs with the original labels. While previous studies have shown that such learning is possible with adversarial perturbations, we extend this paradigm to p-CFEs. Interestingly, our experiments reveal that learning from p-CFEs is even more effective: the resulting classifiers achieve not only high in-distribution accuracy but also exhibit significantly reduced bias with respect to spurious correlations.
♻ ☆ S-CFE: Simple Counterfactual Explanations
We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
♻ ☆ How Evaluation Choices Distort the Outcome of Generative Drug Discovery
"How to evaluate the de novo designs proposed by a generative model?" Despite the transformative potential of generative deep learning in drug discovery, this seemingly simple question has no clear answer. The absence of standardized guidelines challenges both the benchmarking of generative approaches and the selection of molecules for prospective studies. In this work, we take a fresh - critical and constructive - perspective on de novo design evaluation. By training chemical language models, we analyze approximately 1 billion molecule designs and discover principles consistent across different neural networks and datasets. We uncover a key confounder: the size of the generated molecular library significantly impacts evaluation outcomes, often leading to misleading model comparisons. We find increasing the number of designs as a remedy and propose new and compute-efficient metrics to compute at large-scale. We also identify critical pitfalls in commonly used metrics - such as uniqueness and distributional similarity - that can distort assessments of generative performance. To address these issues, we propose new and refined strategies for reliable model comparison and design evaluation. Furthermore, when examining molecule selection and sampling strategies, our findings reveal the constraints to diversify the generated libraries and draw new parallels and distinctions between deep learning and drug discovery. We anticipate our findings to help reshape evaluation pipelines in generative drug discovery, paving the way for more reliable and reproducible generative modeling approaches.
♻ ☆ Quantum Information Ordering and Differential Privacy
We study quantum differential privacy (QDP) by defining a notion of the order of informativeness between two pairs of quantum states. In particular, we show that if the hypothesis testing divergence of the one pair dominates over that of the other pair, then this dominance holds for every $f$-divergence. This approach completely characterizes $(\varepsilon,δ)$-QDP mechanisms by identifying the most informative $(\varepsilon,δ)$-DP quantum state pairs. We apply this to analyze the stability of quantum differentially private learning algorithms, generalizing classical results to the case $δ>0$. Additionally, we study precise limits for privatized hypothesis testing and privatized quantum parameter estimation, including tight upper-bounds on the quantum Fisher information under QDP. Finally, we establish near-optimal contraction bounds for differentially private quantum channels with respect to the hockey-stick divergence.
comment: Corrected few errors, 52 pages, 3 figures
♻ ☆ Democratizing Tabular Data Access with an Open$\unicode{x2013}$Source Synthetic$\unicode{x2013}$Data SDK
Machine learning development critically depends on access to high-quality data. However, increasing restrictions due to privacy, proprietary interests, and ethical concerns have created significant barriers to data accessibility. Synthetic data offers a viable solution by enabling safe, broad data usage without compromising sensitive information. This paper presents the MOSTLY AI Synthetic Data Software Development Kit (SDK), an open-source toolkit designed specifically for synthesizing high-quality tabular data. The SDK integrates robust features such as differential privacy guarantees, fairness-aware data generation, and automated quality assurance into a flexible and accessible Python interface. Leveraging the TabularARGN autoregressive framework, the SDK supports diverse data types and complex multi-table and sequential datasets, delivering competitive performance with notable improvements in speed and usability. Currently deployed both as a cloud service and locally installable software, the SDK has seen rapid adoption, highlighting its practicality in addressing real-world data bottlenecks and promoting widespread data democratization.
♻ ☆ The Algorithmic Phase Transition in Symmetric Correlated Spiked Wigner Model
We study the computational task of detecting and estimating correlated signals in a pair of spiked Wigner matrices. Our model consists of observations $$ X = \tfracλ{\sqrt{n}} xx^{\top} + W \,, \quad Y = \tfracμ{\sqrt{n}} yy^{\top} + Z \,. $$ where $x,y \in \mathbb R^n$ are signal vectors with norm $\|x\|,\|y\| \approx\sqrt{n}$ and correlation $\langle x,y \rangle \approx ρ\|x\|\|y\|$, while $W,Z$ are independent Gaussian Wigner matrices. We propose an efficient algorithm that succeeds whenever $F(λ,μ,ρ)>1$, where $$ F(λ,μ,ρ)=\max\Big\{ λ,μ, \frac{ λ^2 ρ^2 }{ 1-λ^2+λ^2 ρ^2 } + \frac{ μ^2 ρ^2 }{ 1-μ^2+μ^2 ρ^2 } \Big\} \,. $$ Our result shows that an algorithm can leverage the correlation between the spikes to detect and estimate the signals even in regimes where efficiently recovering either $x$ from $X$ alone or $y$ from $Y$ alone is believed to be computationally infeasible. We complement our algorithmic result with evidence for a matching computational lower bound. In particular, we prove that when $F(λ,μ,ρ)<1$, all algorithms based on {\em low-degree polynomials} fails to distinguish $(X,Y)$ with two independent Wigner matrices. This low-degree analysis strongly suggests that $F(λ,μ,ρ)=1$ is the precise computation threshold for this problem.
comment: 47 pages; updated the reference
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
Large Language Models (LLMs) are trained on massive, unstructured corpora, making it unclear which social patterns and biases they absorb and later reproduce. Existing evaluations typically examine outputs or activations, but rarely connect them back to the pre-training data. We introduce a pipeline that couples LLMs with sparse autoencoders (SAEs) to trace how different themes are encoded during training. As a controlled case study, we trained a GPT-style model on 37 nineteenth-century novels by ten female authors, a corpus centered on themes such as gender, marriage, class, and morality. By applying SAEs across layers and probing with eleven social and moral categories, we mapped sparse features to human-interpretable concepts. The analysis revealed stable thematic backbones (most prominently around gender and kinship) and showed how associations expand and entangle with depth. More broadly, we argue that the LLM+SAEs pipeline offers a scalable framework for auditing how cultural assumptions from the data are embedded in model representations.
comment: Preprint. Draft version, subject to revision
♻ ☆ Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning NeurIPS 2025
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
comment: Accepted to NeurIPS 2025. 25 pages, 17 figures, 2 tables
♻ ☆ Computing Wasserstein Barycenters through Gradient Flows
Wasserstein barycenters provide a powerful tool for aggregating probability measures, while leveraging the geometry of their ambient space. Existing discrete methods suffer from poor scalability, as they require access to the complete set of samples from input measures. We address this issue by recasting the original barycenter problem as a gradient flow in the Wasserstein space. Our approach offers two advantages. First, we achieve scalability by sampling mini-batches from the input measures. Second, we incorporate functionals over probability measures, which regularize the barycenter problem through internal, potential, and interaction energies. We present two algorithms for empirical and Gaussian mixture measures, providing convergence guarantees under the Polyak-Łojasiewicz inequality. Experimental validation on toy datasets and domain adaptation benchmarks show that our methods outperform previous discrete and neural net-based methods for computing Wasserstein barycenters.
comment: Under review
♻ ☆ A Bayesian Approach to Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios, such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground-truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data include label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. However, Bayesian inference for such spatially correlated discrete variables is notoriously intractable. To overcome this fundamental challenge, we introduce a novel class of probabilistic models, which we term the ELBO-Computable Correlated Discrete Distribution (ECCD). By representing the discrete dependencies through a continuous latent Gaussian field with a Kac-Murdock-Szegö (KMS) structured covariance, our framework enables scalable and efficient variational inference for problems previously considered computationally prohibitive. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
♻ ☆ Finding separatrices of dynamical flows with Deep Koopman Eigenfunctions
Many natural systems, including neural circuits involved in decision making, are modeled as high-dimensional dynamical systems with multiple stable states. While existing analytical tools primarily describe behavior near stable equilibria, characterizing separatrices--the manifolds that delineate boundaries between different basins of attraction--remains challenging, particularly in high-dimensional settings. Here, we introduce a numerical framework leveraging Koopman Theory combined with Deep Neural Networks to effectively characterize separatrices. Specifically, we approximate Koopman Eigenfunctions (KEFs) associated with real positive eigenvalues, which vanish precisely at the separatrices. Utilizing these scalar KEFs, optimization methods efficiently locate separatrices even in complex systems. We demonstrate our approach on synthetic benchmarks, ecological network models, and high-dimensional recurrent neural networks trained on either neuroscience-inspired tasks or fit to real neural data. Moreover, we illustrate the practical utility of our method by designing optimal perturbations that can shift systems across separatrices, enabling predictions relevant to optogenetic stimulation experiments in neuroscience.
♻ ☆ Convergence of Deterministic and Stochastic Diffusion-Model Samplers: A Simple Analysis in Wasserstein Distance
We provide new convergence guarantees in Wasserstein distance for diffusion-based generative models, covering both stochastic (DDPM-like) and deterministic (DDIM-like) sampling methods. We introduce a simple framework to analyze discretization, initialization, and score estimation errors. Notably, we derive the first Wasserstein convergence bound for the Heun sampler and improve existing results for the Euler sampler of the probability flow ODE. Our analysis emphasizes the importance of spatial regularity of the learned score function and argues for controlling the score error with respect to the true reverse process, in line with denoising score matching. We also incorporate recent results on smoothed Wasserstein distances to sharpen initialization error bounds.
♻ ☆ SpikCommander: A High-performance Spiking Transformer with Multi-view Learning for Efficient Speech Command Recognition AAAI
Spiking neural networks (SNNs) offer a promising path toward energy-efficient speech command recognition (SCR) by leveraging their event-driven processing paradigm. However, existing SNN-based SCR methods often struggle to capture rich temporal dependencies and contextual information from speech due to limited temporal modeling and binary spike-based representations. To address these challenges, we first introduce the multi-view spiking temporal-aware self-attention (MSTASA) module, which combines effective spiking temporal-aware attention with a multi-view learning framework to model complementary temporal dependencies in speech commands. Building on MSTASA, we further propose SpikCommander, a fully spike-driven transformer architecture that integrates MSTASA with a spiking contextual refinement channel MLP (SCR-MLP) to jointly enhance temporal context modeling and channel-wise feature integration. We evaluate our method on three benchmark datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC), and the Google Speech Commands V2 (GSC). Extensive experiments demonstrate that SpikCommander consistently outperforms state-of-the-art (SOTA) SNN approaches with fewer parameters under comparable time steps, highlighting its effectiveness and efficiency for robust speech command recognition.
comment: Accepted by The Fortieth AAAI Conference on Artificial Intelligence (AAAI 2026)
♻ ☆ Negative Dependence as a toolbox for machine learning : review and new developments
Negative dependence is becoming a key driver in advancing learning capabilities beyond the limits of traditional independence. Recent developments have evidenced support towards negatively dependent systems as a learning paradigm in a broad range of fundamental machine learning challenges including optimization, sampling, dimensionality reduction and sparse signal recovery, often surpassing the performance of current methods based on statistical independence. The most popular negatively dependent model has been that of determinantal point processes (DPPs), which have their origins in quantum theory. However, other models, such as perturbed lattice models, strongly Rayleigh measures, zeros of random functions have gained salience in various learning applications. In this article, we review this burgeoning field of research, as it has developed over the past two decades or so. We also present new results on applications of DPPs to the parsimonious representation of neural networks. In the limited scope of the article, we mostly focus on aspects of this area to which the authors contributed over the recent years, including applications to Monte Carlo methods, coresets and stochastic gradient descent, stochastic networks, signal processing and connections to quantum computation. However, starting from basics of negative dependence for the uninitiated reader, extensive references are provided to a broad swath of related developments which could not be covered within our limited scope. While existing works and reviews generally focus on specific negatively dependent models (e.g. DPPs), a notable feature of this article is that it addresses negative dependence as a machine learning methodology as a whole. In this vein, it covers within its span an array of negatively dependent models and their applications well beyond DPPs, thereby putting forward a very general and rather unique perspective.
comment: Dedicated to the memory of Prof K.R. Parthasarathy: visionary, guru, and scientist par excellence
♻ ☆ Multi-agent Markov Entanglement
Value decomposition has long been a fundamental technique in multi-agent dynamic programming and reinforcement learning (RL). Specifically, the value function of a global state $(s_1,s_2,\ldots,s_N)$ is often approximated as the sum of local functions: $V(s_1,s_2,\ldots,s_N)\approx\sum_{i=1}^N V_i(s_i)$. This approach traces back to the index policy in restless multi-armed bandit problems and has found various applications in modern RL systems. However, the theoretical justification for why this decomposition works so effectively remains underexplored. In this paper, we uncover the underlying mathematical structure that enables value decomposition. We demonstrate that a multi-agent Markov decision process (MDP) permits value decomposition if and only if its transition matrix is not "entangled" -- a concept analogous to quantum entanglement in quantum physics. Drawing inspiration from how physicists measure quantum entanglement, we introduce how to measure the "Markov entanglement" for multi-agent MDPs and show that this measure can be used to bound the decomposition error in general multi-agent MDPs. Using the concept of Markov entanglement, we proved that a widely-used class of index policies is weakly entangled and enjoys a sublinear $\mathcal O(\sqrt{N})$ scale of decomposition error for $N$-agent systems. Finally, we show how Markov entanglement can be efficiently estimated in practice, providing practitioners with an empirical proxy for the quality of value decomposition.
♻ ☆ HyperEvent: A Strong Baseline for Dynamic Link Prediction via Relative Structural Encoding
Learning representations for continuous-time dynamic graphs is critical for dynamic link prediction. While recent methods have become increasingly complex, the field lacks a strong and informative baseline to reliably gauge progress. This paper proposes HyperEvent, a simple approach that captures relative structural patterns in event sequences through an intuitive encoding mechanism. As a straightforward baseline, HyperEvent leverages relative structural encoding to identify meaningful event sequences without complex parameterization. By combining these interpretable features with a lightweight transformer classifier, HyperEvent reframes link prediction as event structure recognition. Despite its simplicity, HyperEvent achieves competitive results across multiple benchmarks, often matching the performance of more complex models. This work demonstrates that effective modeling can be achieved through simple structural encoding, providing a clear reference point for evaluating future advancements.
♻ ☆ CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.
comment: 204 pages, 100+ figures, 30+ tables; v2: matches published version
♻ ☆ Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective
Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plugin-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.
♻ ☆ Application-Specific Component-Aware Structured Pruning of Deep Neural Networks in Control via Soft Coefficient Optimization
Deep neural networks (DNNs) offer significant flexibility and robust performance. This makes them ideal for building not only system models but also advanced neural network controllers (NNCs). However, their high complexity and computational needs often limit their use. Various model compression strategies have been developed over the past few decades to address these issues. These strategies are effective for general DNNs but do not directly apply to NNCs. NNCs need both size reduction and the retention of key application-specific performance features. In structured pruning, which removes groups of related elements, standard importance metrics often fail to protect these critical characteristics. In this paper, we introduce a novel framework for calculating importance metrics in pruning groups. This framework not only shrinks the model size but also considers various application-specific constraints. To find the best pruning coefficient for each group, we evaluate two approaches. The first approach involves simple exploration through grid search. The second utilizes gradient descent optimization, aiming to balance compression and task performance. We test our method in two use cases: one on an MNIST autoencoder and the other on a Temporal Difference Model Predictive Control (TDMPC) agent. Results show that the method effectively maintains application-relevant performance while achieving a significant reduction in model size.
comment: 8 pages, 24th European Control Conference (ECC26)
♻ ☆ Caption, Create, Continue: Continual Learning with Pre-trained Generative Vision-Language Models CIKM 2025
Continual learning (CL) enables models to adapt to evolving data streams without catastrophic forgetting, a fundamental requirement for real-world AI systems. However, the current methods often depend on large replay buffers or heavily annotated datasets which are impractical due to storage, privacy, and cost constraints. We propose CLTS (Continual Learning via Text-Image Synergy), a novel class-incremental framework that mitigates forgetting without storing real task data. CLTS leverages pre-trained vision-language models, BLIP (Bootstrapping Language-Image Pre-training) for caption generation and stable diffusion for sample generation. Each task is handled by a dedicated Task Head, while a Task Router learns to assign inputs to the correct Task Head using the generated data. On three benchmark datasets, CLTS improves average task accuracy by up to 54% and achieves 63 times better memory efficiency compared to four recent continual learning baselines, demonstrating improved retention and adaptability. CLTS introduces a novel perspective by integrating generative text-image augmentation for scalable continual learning.
comment: This is the revised and peer-reviewed version of our paper, accepted and published in the Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
♻ ☆ Towards Non-Stationary Time Series Forecasting with Temporal Stabilization and Frequency Differencing AAAI 2026
Time series forecasting is critical for decision-making across dynamic domains such as energy, finance, transportation, and cloud computing. However, real-world time series often exhibit non-stationarity, including temporal distribution shifts and spectral variability, which pose significant challenges for long-term time series forecasting. In this paper, we propose DTAF, a dual-branch framework that addresses non-stationarity in both the temporal and frequency domains. For the temporal domain, the Temporal Stabilizing Fusion (TFS) module employs a non-stationary mix of experts (MOE) filter to disentangle and suppress temporal non-stationary patterns while preserving long-term dependencies. For the frequency domain, the Frequency Wave Modeling (FWM) module applies frequency differencing to dynamically highlight components with significant spectral shifts. By fusing the complementary outputs of TFS and FWM, DTAF generates robust forecasts that adapt to both temporal and frequency domain non-stationarity. Extensive experiments on real-world benchmarks demonstrate that DTAF outperforms state-of-the-art baselines, yielding significant improvements in forecasting accuracy under non-stationary conditions. All codes are available at https://github.com/PandaJunk/DTAF.
comment: Accepted by AAAI 2026
♻ ☆ DarkFarseer: Robust Spatio-temporal Kriging under Graph Sparsity and Noise AAAI'26
With the rapid growth of the Internet of Things and Cyber-Physical Systems, widespread sensor deployment has become essential. However, the high costs of building sensor networks limit their scale and coverage, making fine-grained deployment challenging. Inductive Spatio-Temporal Kriging (ISK) addresses this issue by introducing virtual sensors. Based on graph neural networks (GNNs) extracting the relationships between physical and virtual sensors, ISK can infer the measurements of virtual sensors from physical sensors. However, current ISK methods rely on conventional message-passing mechanisms and network architectures, without effectively extracting spatio-temporal features of physical sensors and focusing on representing virtual sensors. Additionally, existing graph construction methods face issues of sparse and noisy connections, destroying ISK performance. To address these issues, we propose DarkFarseer, a novel ISK framework with three key components. First, we propose the Neighbor Hidden Style Enhancement module with a style transfer strategy to enhance the representation of virtual nodes in a temporal-then-spatial manner to better extract the spatial relationships between physical and virtual nodes. Second, we propose Virtual-Component Contrastive Learning, which aims to enrich the node representation by establishing the association between the patterns of virtual nodes and the regional patterns within graph components. Lastly, we design a Similarity-Based Graph Denoising Strategy, which reduces the connectivity strength of noisy connections around virtual nodes and their neighbors based on their temporal information and regional spatial patterns. Extensive experiments demonstrate that DarkFarseer significantly outperforms existing ISK methods.
comment: Accepted by AAAI'26
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
♻ ☆ Parameter-Free Clustering via Self-Supervised Consensus Maximization (Extended Version)
Clustering is a fundamental task in unsupervised learning, but most existing methods heavily rely on hyperparameters such as the number of clusters or other sensitive settings, limiting their applicability in real-world scenarios. To address this long-standing challenge, we propose a novel and fully parameter-free clustering framework via Self-supervised Consensus Maximization, named SCMax. Our framework performs hierarchical agglomerative clustering and cluster evaluation in a single, integrated process. At each step of agglomeration, it creates a new, structure-aware data representation through a self-supervised learning task guided by the current clustering structure. We then introduce a nearest neighbor consensus score, which measures the agreement between the nearest neighbor-based merge decisions suggested by the original representation and the self-supervised one. The moment at which consensus maximization occurs can serve as a criterion for determining the optimal number of clusters. Extensive experiments on multiple datasets demonstrate that the proposed framework outperforms existing clustering approaches designed for scenarios with an unknown number of clusters.
♻ ☆ Can Current Detectors Catch Face-to-Voice Deepfake Attacks? ACSA
The rapid advancement of generative models has enabled the creation of increasingly stealthy synthetic voices, commonly referred to as audio deepfakes. A recent technique, FOICE [USENIX'24], demonstrates a particularly alarming capability: generating a victim's voice from a single facial image, without requiring any voice sample. By exploiting correlations between facial and vocal features, FOICE produces synthetic voices realistic enough to bypass industry-standard authentication systems, including WeChat Voiceprint and Microsoft Azure. This raises serious security concerns, as facial images are far easier for adversaries to obtain than voice samples, dramatically lowering the barrier to large-scale attacks. In this work, we investigate two core research questions: (RQ1) can state-of-the-art audio deepfake detectors reliably detect FOICE-generated speech under clean and noisy conditions, and (RQ2) whether fine-tuning these detectors on FOICE data improves detection without overfitting, thereby preserving robustness to unseen voice generators such as SpeechT5. Our study makes three contributions. First, we present the first systematic evaluation of FOICE detection, showing that leading detectors consistently fail under both standard and noisy conditions. Second, we introduce targeted fine-tuning strategies that capture FOICE-specific artifacts, yielding significant accuracy improvements. Third, we assess generalization after fine-tuning, revealing trade-offs between specialization to FOICE and robustness to unseen synthesis pipelines. These findings expose fundamental weaknesses in today's defenses and motivate new architectures and training protocols for next-generation audio deepfake detection.
comment: 8 pages, Accepted at Workshop on AI for Cyber Threat Intelligence, co-located with ACSAC 2025
♻ ☆ Learning-based Radio Link Failure Prediction Based on Measurement Dataset in Railway Environments
In this paper, a measurement-driven framework is proposed for early radio link failure (RLF) prediction in 5G non-standalone (NSA) railway environments. Using 10 Hz metro-train traces with serving and neighbor-cell indicators, we benchmark six models, namely CNN, LSTM, XGBoost, Anomaly Transformer, PatchTST, and TimesNet, under varied observation windows and prediction horizons. When the observation window is three seconds, TimesNet attains the highest F1 score with a three-second prediction horizon, while CNN provides a favorable accuracy-latency tradeoff with a two-second horizon, enabling proactive actions such as redundancy and adaptive handovers. The results indicate that deep temporal models can anticipate reliability degradations several seconds in advance using lightweight features available on commercial devices, offering a practical path to early-warning control in 5G-based railway systems.
comment: 6 pages, 3 figures, 2 tables, and submitted to IEEE ICC 2026
♻ ☆ Variance Reduction via Resampling and Experience Replay
Experience replay is a foundational technique in reinforcement learning that enhances learning stability by storing past experiences in a replay buffer and reusing them during training. Despite its practical success, its theoretical properties remain underexplored. In this paper, we present a theoretical framework that models experience replay using resampled $U$- and $V$-statistics, providing rigorous variance reduction guarantees. We apply this framework to policy evaluation tasks using the Least-Squares Temporal Difference (LSTD) algorithm and a Partial Differential Equation (PDE)-based model-free algorithm, demonstrating significant improvements in stability and efficiency, particularly in data-scarce scenarios. Beyond policy evaluation, we extend the framework to kernel ridge regression, showing that the experience replay-based method reduces the computational cost from the traditional $O(n^3)$ in time to as low as $O(n^2)$ in time while simultaneously reducing variance. Extensive numerical experiments validate our theoretical findings, demonstrating the broad applicability and effectiveness of experience replay in diverse machine learning tasks.
♻ ☆ Predict-then-Optimize for Seaport Power-Logistics Scheduling: Generalization across Varying Tasks Stream
Power-logistics scheduling in modern seaports typically follow a predict-then-optimize pipeline. To enhance the decision quality of forecasts, decision-focused learning has been proposed, which aligns the training of forecasting models with downstream decision outcomes. However, this end-to-end design inherently restricts the value of forecasting models to only a specific task structure, and thus generalize poorly to evolving tasks induced by varying seaport vessel arrivals. We address this gap with a decision-focused continual learning framework that adapts online to a stream of scheduling tasks. Specifically, we introduce Fisher information based regularization to enhance cross-task generalization by preserving parameters critical to prior tasks. A differentiable convex surrogate is also developed to stabilize gradient backpropagation. The proposed approach enables learning a decision-aligned forecasting model across a varying tasks stream with a sustainable long-term computational burden. Experiments calibrated to the Jurong Port demonstrate superior decision performance and generalization over existing methods with reduced computational cost.
comment: Preprint to IEEE Transactions on Smart Grid
Information Retrieval 11
☆ Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
☆ Fixed-Persona SLMs with Modular Memory: Scalable NPC Dialogue on Consumer Hardware
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, yet their applicability to dialogue systems in computer games remains limited. This limitation arises from their substantial hardware requirements, latency constraints, and the necessity to maintain clearly defined knowledge boundaries within a game setting. In this paper, we propose a modular NPC dialogue system that leverages Small Language Models (SLMs), fine-tuned to encode specific NPC personas and integrated with runtime-swappable memory modules. These memory modules preserve character-specific conversational context and world knowledge, enabling expressive interactions and long-term memory without retraining or model reloading during gameplay. We comprehensively evaluate our system using three open-source SLMs: DistilGPT-2, TinyLlama-1.1B-Chat, and Mistral-7B-Instruct, trained on synthetic persona-aligned data and benchmarked on consumer-grade hardware. While our approach is motivated by applications in gaming, its modular design and persona-driven memory architecture hold significant potential for broader adoption in domains requiring expressive, scalable, and memory-rich conversational agents, such as virtual assistants, customer support bots, or interactive educational systems.
☆ GPR: Towards a Generative Pre-trained One-Model Paradigm for Large-Scale Advertising Recommendation
As an intelligent infrastructure connecting users with commercial content, advertising recommendation systems play a central role in information flow and value creation within the digital economy. However, existing multi-stage advertising recommendation systems suffer from objective misalignment and error propagation, making it difficult to achieve global optimality, while unified generative recommendation models still struggle to meet the demands of practical industrial applications. To address these issues, we propose GPR (Generative Pre-trained Recommender), the first one-model framework that redefines advertising recommendation as an end-to-end generative task, replacing the traditional cascading paradigm with a unified generative approach. To realize GPR, we introduce three key innovations spanning unified representation, network architecture, and training strategy. First, we design a unified input schema and tokenization method tailored to advertising scenarios, mapping both ads and organic content into a shared multi-level semantic ID space, thereby enhancing semantic alignment and modeling consistency across heterogeneous data. Second, we develop the Heterogeneous Hierarchical Decoder (HHD), a dual-decoder architecture that decouples user intent modeling from ad generation, achieving a balance between training efficiency and inference flexibility while maintaining strong modeling capacity. Finally, we propose a multi-stage joint training strategy that integrates Multi-Token Prediction (MTP), Value-Aware Fine-Tuning and the Hierarchy Enhanced Policy Optimization (HEPO) algorithm, forming a complete generative recommendation pipeline that unifies interest modeling, value alignment, and policy optimization. GPR has been fully deployed in the Tencent Weixin Channels advertising system, delivering significant improvements in key business metrics including GMV and CTCVR.
comment: 12 pages, 5 figures
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.5 billion items.
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ DatAasee -- A Metadata-Lake as Metadata Catalog for a Virtual Data-Lake
Metadata management for distributed data sources is a long-standing but ever-growing problem. To counter this challenge in a research-data and library-oriented setting, this work constructs a data architecture, derived from the data-lake: the metadata-lake. A proof-of-concept implementation of this proposed metadata aggregator is presented, too, and also evaluated.
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ Thinking Forward and Backward: Multi-Objective Reinforcement Learning for Retrieval-Augmented Reasoning
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit guidance for intermediate steps. This often leads to reward hacking and degraded response quality. We propose Bi-RAR, a novel retrieval-augmented reasoning framework that evaluates each intermediate step jointly in both forward and backward directions. To assess the information completeness of each step, we introduce a bidirectional information distance grounded in Kolmogorov complexity, approximated via language model generation probabilities. This quantification measures both how far the current reasoning is from the answer and how well it addresses the question. To optimize reasoning under these bidirectional signals, we adopt a multi-objective reinforcement learning framework with a cascading reward structure that emphasizes early trajectory alignment. Empirical results on seven question answering benchmarks demonstrate that Bi-RAR surpasses previous methods and enables efficient interaction and reasoning with the search engine during training and inference.
♻ ☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool pre-selection via retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and tool retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average CompleteRecall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information modeled in the graph provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
Computation and Language 38
☆ Improving Graduate Outcomes by Identifying Skills Gaps and Recommending Courses Based on Career Interests
This paper aims to address the challenge of selecting relevant courses for students by proposing the design and development of a course recommendation system. The course recommendation system utilises a combination of data analytics techniques and machine learning algorithms to recommend courses that align with current industry trends and requirements. In order to provide customised suggestions, the study entails the design and implementation of an extensive algorithmic framework that combines machine learning methods, user preferences, and academic criteria. The system employs data mining and collaborative filtering techniques to examine past courses and individual career goals in order to provide course recommendations. Moreover, to improve the accessibility and usefulness of the recommendation system, special attention is given to the development of an easy-to-use front-end interface. The front-end design prioritises visual clarity, interaction, and simplicity through iterative prototyping and user input revisions, guaranteeing a smooth and captivating user experience. We refined and optimised the proposed system by incorporating user feedback, ensuring that it effectively meets the needs and preferences of its target users. The proposed course recommendation system could be a useful tool for students, instructors, and career advisers to use in promoting lifelong learning and professional progression as it fills the gap between university learning and industry expectations. We hope that the proposed course recommendation system will help university students in making data-drive and industry-informed course decisions, in turn, improving graduate outcomes for the university sector.
comment: 10 pages
☆ Khmer Spellchecking: A Holistic Approach
Compared to English and other high-resource languages, spellchecking for Khmer remains an unresolved problem due to several challenges. First, there are misalignments between words in the lexicon and the word segmentation model. Second, a Khmer word can be written in different forms. Third, Khmer compound words are often loosely and easily formed, and these compound words are not always found in the lexicon. Fourth, some proper nouns may be flagged as misspellings due to the absence of a Khmer named-entity recognition (NER) model. Unfortunately, existing solutions do not adequately address these challenges. This paper proposes a holistic approach to the Khmer spellchecking problem by integrating Khmer subword segmentation, Khmer NER, Khmer grapheme-to-phoneme (G2P) conversion, and a Khmer language model to tackle these challenges, identify potential correction candidates, and rank the most suitable candidate. Experimental results show that the proposed approach achieves a state-of-the-art Khmer spellchecking accuracy of up to 94.4%, compared to existing solutions. The benchmark datasets for Khmer spellchecking and NER tasks in this study will be made publicly available.
☆ TARG: Training-Free Adaptive Retrieval Gating for Efficient RAG
Retrieval-Augmented Generation (RAG) improves factuality but retrieving for every query often hurts quality while inflating tokens and latency. We propose Training-free Adaptive Retrieval Gating (TARG), a single-shot policy that decides when to retrieve using only a short, no-context draft from the base model. From the draft's prefix logits, TARG computes lightweight uncertainty scores: mean token entropy, a margin signal derived from the top-1/top-2 logit gap via a monotone link, or small-N variance across a handful of stochastic prefixes, and triggers retrieval only when the score exceeds a threshold. The gate is model agnostic, adds only tens to hundreds of draft tokens, and requires no additional training or auxiliary heads. On NQ-Open, TriviaQA, and PopQA, TARG consistently shifts the accuracy-efficiency frontier: compared with Always-RAG, TARG matches or improves EM/F1 while reducing retrieval by 70-90% and cutting end-to-end latency, and it remains close to Never-RAG in overhead. A central empirical finding is that under modern instruction-tuned LLMs the margin signal is a robust default (entropy compresses as backbones sharpen), with small-N variance offering a conservative, budget-first alternative. We provide ablations over gate type and prefix length and use a delta-latency view to make budget trade-offs explicit.
☆ Predicate-Argument Structure Divergences in Chinese and English Parallel Sentences and their Impact on Language Transfer
Cross-lingual Natural Language Processing (NLP) has gained significant traction in recent years, offering practical solutions in low-resource settings by transferring linguistic knowledge from resource-rich to low-resource languages. This field leverages techniques like annotation projection and model transfer for language adaptation, supported by multilingual pre-trained language models. However, linguistic divergences hinder language transfer, especially among typologically distant languages. In this paper, we present an analysis of predicate-argument structures in parallel Chinese and English sentences. We explore the alignment and misalignment of predicate annotations, inspecting similarities and differences and proposing a categorization of structural divergences. The analysis and the categorization are supported by a qualitative and quantitative analysis of the results of an annotation projection experiment, in which, in turn, one of the two languages has been used as source language to project annotations into the corresponding parallel sentences. The results of this analysis show clearly that language transfer is asymmetric. An aspect that requires attention when it comes to selecting the source language in transfer learning applications and that needs to be investigated before any scientific claim about cross-lingual NLP is proposed.
☆ How Small Can You Go? Compact Language Models for On-Device Critical Error Detection in Machine Translation
Large Language Models (LLMs) excel at evaluating machine translation (MT), but their scale and cost hinder deployment on edge devices and in privacy-sensitive workflows. We ask: how small can you get while still detecting meaning-altering translation errors? Focusing on English->German Critical Error Detection (CED), we benchmark sub-2B models (LFM2-350M, Qwen-3-0.6B/1.7B, Llama-3.2-1B-Instruct, Gemma-3-1B) across WMT21, WMT22, and SynCED-EnDe-2025. Our framework standardizes prompts, applies lightweight logit-bias calibration and majority voting, and reports both semantic quality (MCC, F1-ERR/F1-NOT) and compute metrics (VRAM, latency, throughput). Results reveal a clear sweet spot around one billion parameters: Gemma-3-1B provides the best quality-efficiency trade-off, reaching MCC=0.77 with F1-ERR=0.98 on SynCED-EnDe-2025 after merged-weights fine-tuning, while maintaining 400 ms single-sample latency on a MacBook Pro M4 Pro (24 GB). At larger scale, Qwen-3-1.7B attains the highest absolute MCC (+0.11 over Gemma) but with higher compute cost. In contrast, ultra-small models (0.6B) remain usable with few-shot calibration yet under-detect entity and number errors. Overall, compact, instruction-tuned LLMs augmented with lightweight calibration and small-sample supervision can deliver trustworthy, on-device CED for MT, enabling private, low-cost error screening in real-world translation pipelines. All datasets, prompts, and scripts are publicly available at our GitHub repository.
comment: Accepted in IEEE BigData 2025
☆ Assessing the Applicability of Natural Language Processing to Traditional Social Science Methodology: A Case Study in Identifying Strategic Signaling Patterns in Presidential Directives
Our research investigates how Natural Language Processing (NLP) can be used to extract main topics from a larger corpus of written data, as applied to the case of identifying signaling themes in Presidential Directives (PDs) from the Reagan through Clinton administrations. Analysts and NLP both identified relevant documents, demonstrating the potential utility of NLPs in research involving large written corpuses. However, we also identified discrepancies between NLP and human-labeled results that indicate a need for more research to assess the validity of NLP in this use case. The research was conducted in 2023, and the rapidly evolving landscape of AIML means existing tools have improved and new tools have been developed; this research displays the inherent capabilities of a potentially dated AI tool in emerging social science applications.
comment: 24 pages
☆ Contextual morphologically-guided tokenization for Latin encoder models
Tokenization is a critical component of language model pretraining, yet standard tokenization methods often prioritize information-theoretical goals like high compression and low fertility rather than linguistic goals like morphological alignment. In fact, they have been shown to be suboptimal for morphologically rich languages, where tokenization quality directly impacts downstream performance. In this work, we investigate morphologically-aware tokenization for Latin, a morphologically rich language that is medium-resource in terms of pretraining data, but high-resource in terms of curated lexical resources -- a distinction that is often overlooked but critical in discussions of low-resource language modeling. We find that morphologically-guided tokenization improves overall performance on four downstream tasks. Performance gains are most pronounced for out of domain texts, highlighting our models' improved generalization ability. Our findings demonstrate the utility of linguistic resources to improve language modeling for morphologically complex languages. For low-resource languages that lack large-scale pretraining data, the development and incorporation of linguistic resources can serve as a feasible alternative to improve LM performance.
☆ Order Matters: Rethinking Prompt Construction in In-Context Learning
In-context learning (ICL) enables large language models to perform new tasks by conditioning on a sequence of examples. Most prior work reasonably and intuitively assumes that which examples are chosen has a far greater effect on performance than how those examples are ordered, leading to a focus on example selection. We revisit this assumption and conduct a systematic comparison between the effect of selection and ordering. Through controlled experiments on both classification and generation tasks, using multiple open-source model families (0.5B to 27B parameters) and GPT-5, we find that the variance in performance due to different example orderings is comparable to that from using entirely different example sets. Furthermore, we show that strong orderings can be identified using only a development set, achieving performance close to an oracle that selects the best ordering based on test labels. Our findings highlight the equal and intertwined importance of example selection and ordering in prompt design, calling for a reexamination of the assumptions held in ICL.
☆ Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages
Automatic speech recognition (ASR) has advanced in high-resource languages, but most of the world's 7,000+ languages remain unsupported, leaving thousands of long-tail languages behind. Expanding ASR coverage has been costly and limited by architectures that restrict language support, making extension inaccessible to most--all while entangled with ethical concerns when pursued without community collaboration. To transcend these limitations, we introduce Omnilingual ASR, the first large-scale ASR system designed for extensibility. Omnilingual ASR enables communities to introduce unserved languages with only a handful of data samples. It scales self-supervised pre-training to 7B parameters to learn robust speech representations and introduces an encoder-decoder architecture designed for zero-shot generalization, leveraging a LLM-inspired decoder. This capability is grounded in a massive and diverse training corpus; by combining breadth of coverage with linguistic variety, the model learns representations robust enough to adapt to unseen languages. Incorporating public resources with community-sourced recordings gathered through compensated local partnerships, Omnilingual ASR expands coverage to over 1,600 languages, the largest such effort to date--including over 500 never before served by ASR. Automatic evaluations show substantial gains over prior systems, especially in low-resource conditions, and strong generalization. We release Omnilingual ASR as a family of models, from 300M variants for low-power devices to 7B for maximum accuracy. We reflect on the ethical considerations shaping this design and conclude by discussing its societal impact. In particular, we highlight how open-sourcing models and tools can lower barriers for researchers and communities, inviting new forms of participation. Open-source artifacts are available at https://github.com/facebookresearch/omnilingual-asr.
☆ SynClaimEval: A Framework for Evaluating the Utility of Synthetic Data in Long-Context Claim Verification
Large Language Models (LLMs) with extended context windows promise direct reasoning over long documents, reducing the need for chunking or retrieval. Constructing annotated resources for training and evaluation, however, remains costly. Synthetic data offers a scalable alternative, and we introduce SynClaimEval, a framework for evaluating synthetic data utility in long-context claim verification -- a task central to hallucination detection and fact-checking. Our framework examines three dimensions: (i) input characteristics, by varying context length and testing generalization to out-of-domain benchmarks; (ii) synthesis logic, by controlling claim complexity and error type variation; and (iii) explanation quality, measuring the degree to which model explanations provide evidence consistent with predictions. Experiments across benchmarks show that long-context synthesis can improve verification in base instruction-tuned models, particularly when augmenting existing human-written datasets. Moreover, synthesis enhances explanation quality, even when verification scores do not improve, underscoring its potential to strengthen both performance and explainability.
☆ Readability Measures and Automatic Text Simplification: In the Search of a Construct
Readability is a key concept in the current era of abundant written information. To help making texts more readable and make information more accessible to everyone, a line of researched aims at making texts accessible for their target audience: automatic text simplification (ATS). Lately, there have been studies on the correlations between automatic evaluation metrics in ATS and human judgment. However, the correlations between those two aspects and commonly available readability measures (such as readability formulas or linguistic features) have not been the focus of as much attention. In this work, we investigate the place of readability measures in ATS by complementing the existing studies on evaluation metrics and human judgment, on English. We first discuss the relationship between ATS and research in readability, then we report a study on correlations between readability measures and human judgment, and between readability measures and ATS evaluation metrics. We identify that in general, readability measures do not correlate well with automatic metrics and human judgment. We argue that as the three different angles from which simplification can be assessed tend to exhibit rather low correlations with one another, there is a need for a clear definition of the construct in ATS.
☆ AdaCuRL: Adaptive Curriculum Reinforcement Learning with Invalid Sample Mitigation and Historical Revisiting
Reinforcement learning (RL) has demonstrated considerable potential for enhancing reasoning in large language models (LLMs). However, existing methods suffer from Gradient Starvation and Policy Degradation when training directly on samples with mixed difficulty. To mitigate this, prior approaches leverage Chain-of-Thought (CoT) data, but the construction of high-quality CoT annotations remains labor-intensive. Alternatively, curriculum learning strategies have been explored but frequently encounter challenges, such as difficulty mismatch, reliance on manual curriculum design, and catastrophic forgetting. To address these issues, we propose AdaCuRL, a Adaptive Curriculum Reinforcement Learning framework that integrates coarse-to-fine difficulty estimation with adaptive curriculum scheduling. This approach dynamically aligns data difficulty with model capability and incorporates a data revisitation mechanism to mitigate catastrophic forgetting. Furthermore, AdaCuRL employs adaptive reference and sparse KL strategies to prevent Policy Degradation. Extensive experiments across diverse reasoning benchmarks demonstrate that AdaCuRL consistently achieves significant performance improvements on both LLMs and MLLMs.
☆ BIG5-TPoT: Predicting BIG Five Personality Traits, Facets, and Items Through Targeted Preselection of Texts
Predicting an individual's personalities from their generated texts is a challenging task, especially when the text volume is large. In this paper, we introduce a straightforward yet effective novel strategy called targeted preselection of texts (TPoT). This method semantically filters the texts as input to a deep learning model, specifically designed to predict a Big Five personality trait, facet, or item, referred to as the BIG5-TPoT model. By selecting texts that are semantically relevant to a particular trait, facet, or item, this strategy not only addresses the issue of input text limits in large language models but also improves the Mean Absolute Error and accuracy metrics in predictions for the Stream of Consciousness Essays dataset.
☆ GSAP-ERE: Fine-Grained Scholarly Entity and Relation Extraction Focused on Machine Learning AAAI 2026
Research in Machine Learning (ML) and AI evolves rapidly. Information Extraction (IE) from scientific publications enables to identify information about research concepts and resources on a large scale and therefore is a pathway to improve understanding and reproducibility of ML-related research. To extract and connect fine-grained information in ML-related research, e.g. method training and data usage, we introduce GSAP-ERE. It is a manually curated fine-grained dataset with 10 entity types and 18 semantically categorized relation types, containing mentions of 63K entities and 35K relations from the full text of 100 ML publications. We show that our dataset enables fine-tuned models to automatically extract information relevant for downstream tasks ranging from knowledge graph (KG) construction, to monitoring the computational reproducibility of AI research at scale. Additionally, we use our dataset as a test suite to explore prompting strategies for IE using Large Language Models (LLM). We observe that the performance of state-of-the-art LLM prompting methods is largely outperformed by our best fine-tuned baseline model (NER: 80.6%, RE: 54.0% for the fine-tuned model vs. NER: 44.4%, RE: 10.1% for the LLM). This disparity of performance between supervised models and unsupervised usage of LLMs suggests datasets like GSAP-ERE are needed to advance research in the domain of scholarly information extraction.
comment: Accepted at AAAI 2026
☆ CARE-Bench: A Benchmark of Diverse Client Simulations Guided by Expert Principles for Evaluating LLMs in Psychological Counseling
The mismatch between the growing demand for psychological counseling and the limited availability of services has motivated research into the application of Large Language Models (LLMs) in this domain. Consequently, there is a need for a robust and unified benchmark to assess the counseling competence of various LLMs. Existing works, however, are limited by unprofessional client simulation, static question-and-answer evaluation formats, and unidimensional metrics. These limitations hinder their effectiveness in assessing a model's comprehensive ability to handle diverse and complex clients. To address this gap, we introduce \textbf{CARE-Bench}, a dynamic and interactive automated benchmark. It is built upon diverse client profiles derived from real-world counseling cases and simulated according to expert guidelines. CARE-Bench provides a multidimensional performance evaluation grounded in established psychological scales. Using CARE-Bench, we evaluate several general-purpose LLMs and specialized counseling models, revealing their current limitations. In collaboration with psychologists, we conduct a detailed analysis of the reasons for LLMs' failures when interacting with clients of different types, which provides directions for developing more comprehensive, universal, and effective counseling models.
☆ Multimodal Large Language Models for Low-Resource Languages: A Case Study for Basque
Current Multimodal Large Language Models exhibit very strong performance for several demanding tasks. While commercial MLLMs deliver acceptable performance in low-resource languages, comparable results remain unattained within the open science community. In this paper, we aim to develop a strong MLLM for a low-resource language, namely Basque. For that purpose, we develop our own training and evaluation image-text datasets. Using two different Large Language Models as backbones, the Llama-3.1-Instruct model and a Basque-adapted variant called Latxa, we explore several data mixtures for training. We show that: i) low ratios of Basque multimodal data (around 20%) are already enough to obtain solid results on Basque benchmarks, and ii) contrary to expected, a Basque instructed backbone LLM is not required to obtain a strong MLLM in Basque. Our results pave the way to develop MLLMs for other low-resource languages by openly releasing our resources.
☆ AMaPO: Adaptive Margin-attached Preference Optimization for Language Model Alignment AAAI 2026
Offline preference optimization offers a simpler and more stable alternative to RLHF for aligning language models. However, their effectiveness is critically dependent on ranking accuracy, a metric where further gains are highly impactful. This limitation arises from a fundamental problem that we identify and formalize as the Overfitting-Underfitting Dilemma: current margin designs cause models to apply excessive, wasteful gradients to correctly ranked samples (overfitting) while providing insufficient corrective signals for misranked ones (underfitting). To resolve this dilemma, we propose Adaptive Margin-attached Preference Optimization (AMaPO), a simple yet principled algorithm. AMaPO employs an instance-wise adaptive margin, refined by Z-normalization and exponential scaling, which dynamically reallocates learning effort by amplifying gradients for misranked samples and suppressing them for correct ones. Extensive experiments on widely used benchmarks demonstrate that AMaPO not only achieves better ranking accuracy and superior downstream alignment performance, but targeted analysis also confirms that it successfully mitigates the core overfitting and underfitting issues.
comment: AAAI 2026 AIA track, our code is available at https://github.com/Shiroha-Offical/AMaPO
☆ Self-Correcting Large Language Models: Generation vs. Multiple Choice
Large language models have recently demonstrated remarkable abilities to self-correct their responses through iterative refinement, often referred to as self-consistency or self-reflection. However, the dynamics of this self-correction mechanism may differ substantially depending on whether the model is tasked with open-ended text generation or with selecting the most appropriate response from multiple predefined options. In this paper, we conduct a systematic investigation of these two paradigms by comparing performance trends and error-correction behaviors across various natural language understanding and reasoning tasks, covering language models of different scales and families. Our experimental results reveal distinct patterns of improvement and failure modes: \textit{While open-ended generation often benefits from the flexibility of re-interpretation and compositional refinement, multiple-choice selection can leverage clearer solution boundaries but may be limited by the provided options}. This contrast also reflects the dual demands faced by emerging agentic LLM applications: effective agents must not only generate and refine open-ended plans or explanations, but also make reliable discrete choices when operating within constrained action spaces. Our findings, therefore, highlight that the design of self-correction mechanisms should take into account the interaction between task structure and output space, with implications for both knowledge-intensive reasoning and decision-oriented applications of LLMs.
comment: 20 pages
☆ MTQ-Eval: Multilingual Text Quality Evaluation for Language Models AACL 2025
The use of large language models (LLMs) for evaluating outputs is becoming an increasingly effective and scalable approach. However, it remains uncertain whether this capability extends beyond task-specific evaluations to more general assessments of text quality, particularly in multilingual contexts. In this study, we introduce, MTQ-Eval, a novel framework for multilingual text quality evaluation that learns from examples of both high- and low-quality texts, adjusting its internal representations. To develop MTQ-Eval, we first automatically generate text quality preference data and then use it to train open-source base LLMs to align with ratings of high- and low-quality text. Our comprehensive evaluation across 115 languages demonstrates the improved performance of the proposed model. Upon further analysis, we find that this enhanced evaluation capability also leads to notable improvements in downstream tasks.
comment: Accepted at IJCNLP-AACL 2025 Findings
☆ Routesplain: Towards Faithful and Intervenable Routing for Software-related Tasks
LLMs now tackle a wide range of software-related tasks, yet we show that their performance varies markedly both across and within these tasks. Routing user queries to the appropriate LLMs can therefore help improve response quality while reducing cost. Prior work, however, has focused mainly on general-purpose LLM routing via black-box models. We introduce Routesplain, the first LLM router for software-related tasks, including multilingual code generation and repair, input/output prediction, and computer science QA. Unlike existing routing approaches, Routesplain first extracts human-interpretable concepts from each query (e.g., task, domain, reasoning complexity) and only routes based on these concepts, thereby providing intelligible, faithful rationales. We evaluate Routesplain on 16 state-of-the-art LLMs across eight software-related tasks; Routesplain outperforms individual models both in terms of accuracy and cost, and equals or surpasses all black-box baselines, with concept-level intervention highlighting avenues for further router improvements.
♻ ☆ Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt Generation for Enhanced LLM Content Moderation EMNLP 2025
As large language models (LLMs) become increasingly prevalent, ensuring their robustness against adversarial misuse is crucial. This paper introduces the GAP (Graph of Attacks with Pruning) framework, an advanced approach for generating stealthy jailbreak prompts to evaluate and enhance LLM safeguards. GAP addresses limitations in existing tree-based LLM jailbreak methods by implementing an interconnected graph structure that enables knowledge sharing across attack paths. Our experimental evaluation demonstrates GAP's superiority over existing techniques, achieving a 20.8% increase in attack success rates while reducing query costs by 62.7%. GAP consistently outperforms state-of-the-art methods for attacking both open and closed LLMs, with attack success rates of >96%. Additionally, we present specialized variants like GAP-Auto for automated seed generation and GAP-VLM for multimodal attacks. GAP-generated prompts prove highly effective in improving content moderation systems, increasing true positive detection rates by 108.5% and accuracy by 183.6% when used for fine-tuning. Our implementation is available at https://github.com/dsbuddy/GAP-LLM-Safety.
comment: 14 pages, 5 figures; published in EMNLP 2025 ; Code at: https://github.com/dsbuddy/GAP-LLM-Safety
♻ ☆ PsychCounsel-Bench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: \textit{Can LLMs be effectively applied to psychological counseling?} To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychCounsel-Bench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70\% accuracy to pass. PsychCounsel-Bench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs. We release the proposed dataset for public use: https://github.com/cloversjtu/PsychCounsel-Bench
♻ ☆ MedMobile: A mobile-sized language model with clinical capabilities
Language models (LMs) have demonstrated expert-level reasoning and recall abilities in medicine. However, computational costs and privacy concerns are mounting barriers to wide-scale implementation. To address these significant limitations, we introduce a parsimonious adaptation of phi-3-mini, MedMobile, a 3.8 billion parameter LM capable of running on a mobile device, for medical applications. We perform a careful set of pipeline additions and demonstrate that chain of thought, ensembling, and fine-tuning lead to the greatest performance gains, while unexpectedly retrieval augmented generation fails to demonstrate significant improvements. We evaluate the efficiency of our pipeline on the MultiMedQA and MedBullets. We demonstrate that MedMobile scores 75.7% on the MedQA (USMLE), surpassing the passing mark for licensed physicians (~60%) and rivaling scores of models 100 times its size. Across the entirety of the MultiMedQA, MedMobile achieves SOTA performance for models with less than 5B parameters and represents the smallest model to pass the MedQA (USMLE). MedMobile holds promise to democratize access to language models in medicine, bolstering lower compute needs and fast inference speeds. With the ability to combat the biggest barriers to entry for language models in medicine, we hope that MedMobile is a critical step forward in developing clinically relevant language models.
comment: 24 pages, 7 figures (4 main, 3 supplementary)
♻ ☆ Bot Meets Shortcut: How Can LLMs Aid in Handling Unknown Invariance OOD Scenarios?
While existing social bot detectors perform well on benchmarks, their robustness across diverse real-world scenarios remains limited due to unclear ground truth and varied misleading cues. In particular, the impact of shortcut learning, where models rely on spurious correlations instead of capturing causal task-relevant features, has received limited attention. To address this gap, we conduct an in-depth study to assess how detectors are influenced by potential shortcuts based on textual features, which are most susceptible to manipulation by social bots. We design a series of shortcut scenarios by constructing spurious associations between user labels and superficial textual cues to evaluate model robustness. Results show that shifts in irrelevant feature distributions significantly degrade social bot detector performance, with an average relative accuracy drop of 32\% in the baseline models. To tackle this challenge, we propose mitigation strategies based on large language models, leveraging counterfactual data augmentation. These methods mitigate the problem from data and model perspectives across three levels, including data distribution at both the individual user text and overall dataset levels, as well as the model's ability to extract causal information. Our strategies achieve an average relative performance improvement of 56\% under shortcut scenarios.
♻ ☆ Siren: A Learning-Based Multi-Turn Attack Framework for Simulating Real-World Human Jailbreak Behaviors ACSA
Large language models (LLMs) are widely used in real-world applications, raising concerns about their safety and trustworthiness. While red-teaming with jailbreak prompts exposes the vulnerabilities of LLMs, current efforts focus primarily on single-turn attacks, overlooking the multi-turn strategies used by real-world adversaries. Existing multi-turn methods rely on static patterns or predefined logical chains, failing to account for the dynamic strategies during attacks. We propose Siren, a learning-based multi-turn attack framework designed to simulate real-world human jailbreak behaviors. Siren consists of three stages: (1) MiniMax-driven training set construction utilizing Turn-Level LLM feedback, (2) post-training attackers with supervised fine-tuning (SFT) and direct preference optimization (DPO), and (3) interactions between the attacking and target LLMs. Experiments demonstrate that Siren achieves an attack success rate (ASR) of 90% with LLaMA-3-8B as the attacker against Gemini-1.5-Pro as the target model, and 70% with Mistral-7B against GPT-4o, significantly outperforming single-turn baselines. Moreover, Siren with a 7B-scale model achieves performance comparable to a multi-turn baseline that leverages GPT-4o as the attacker, while requiring fewer turns and employing decomposition strategies that are better semantically aligned with attack goals. We hope Siren inspires the development of stronger defenses against advanced multi-turn jailbreak attacks under realistic scenarios. Code is available at https://github.com/YiyiyiZhao/siren. Warning: This paper contains potentially harmful text.
comment: Accepted at ACSAC 2025
♻ ☆ FactReasoner: A Probabilistic Approach to Long-Form Factuality Assessment for Large Language Models
Large language models (LLMs) have achieved remarkable success in generative tasks, yet they often fall short in ensuring the factual accuracy of their outputs, thus limiting their reliability in real-world applications where correctness is critical. In this paper, we present FactReasoner, a novel neuro-symbolic based factuality assessment framework that employs probabilistic reasoning to evaluate the truthfulness of long-form generated responses. FactReasoner decomposes a response into atomic units, retrieves relevant contextual information from external knowledge sources, and models the logical relationships (e.g., entailment, contradiction) between these units and their contexts using probabilistic encodings. It then estimates the posterior probability that each atomic unit is supported by the retrieved evidence. Our experiments on both labeled and unlabeled benchmark datasets demonstrate that FactReasoner often outperforms state-of-the-art prompt-based methods in terms of factual precision and recall. Our open-source implementation is publicly available at: https://github.com/IBM/FactReasoner.
♻ ☆ EcomMMMU: Strategic Utilization of Visuals for Robust Multimodal E-commerce Models AACL 2025
E-commerce platforms are rich in multimodal data, featuring a variety of images that depict product details. However, this raises an important question: do these images always enhance product understanding, or can they sometimes introduce redundancy or degrade performance? Existing datasets are limited in both scale and design, making it difficult to systematically examine this question. To this end, we introduce EcomMMMU, an e-commerce multimodal multitask understanding dataset with 406,190 samples and 8,989,510 images. EcomMMMU is comprised of multi-image visual-language data designed with 8 essential tasks and a specialized VSS subset to benchmark the capability of multimodal large language models (MLLMs) to effectively utilize visual content. Analysis on EcomMMMU reveals that product images do not consistently improve performance and can, in some cases, degrade it. This indicates that MLLMs may struggle to effectively leverage rich visual content for e-commerce tasks. Building on these insights, we propose SUMEI, a data-driven method that strategically utilizes multiple images via predicting visual utilities before using them for downstream tasks. Comprehensive experiments demonstrate the effectiveness and robustness of SUMEI. The data and code are available through https://github.com/ninglab/EcomMMMU.
comment: ICJNLP-AACL 2025
♻ ☆ Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data AACL 2025
Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
comment: IJCNLP-AACL 2025
♻ ☆ In Good GRACEs: Principled Teacher Selection for Knowledge Distillation
Knowledge distillation is an efficient strategy to use data generated by large "teacher" language models to train smaller capable "student" models, but selecting the optimal teacher for a specific student-task combination requires expensive trial-and-error. We propose a lightweight score called GRACE to quantify how effective a teacher will be for post-training a student model. GRACE measures distributional properties of the student's gradients without access to a verifier, teacher logits, teacher internals, or test data. From an information-theoretic perspective, GRACE connects to leave-one-out stability of gradient-based algorithms, which controls the generalization performance of the distilled students. On GSM8K and MATH, GRACE correlates strongly (up to 86% Spearman correlation) with the performance of the distilled LLaMA and OLMo students. In particular, training a student using the GRACE-selected teacher can improve the performance by up to 7.4% over naively using the best-performing teacher. Further, GRACE can provide guidance on crucial design choices in distillation, including (1) the best temperature to use when generating from the teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher to use within a specific model family. Altogether, our findings demonstrate that GRACE can efficiently and effectively identify a strongly compatible teacher for a given student and provide fine-grained guidance on how to perform distillation.
♻ ☆ HLPD: Aligning LLMs to Human Language Preference for Machine-Revised Text Detection AAAI'26
To prevent misinformation and social issues arising from trustworthy-looking content generated by LLMs, it is crucial to develop efficient and reliable methods for identifying the source of texts. Previous approaches have demonstrated exceptional performance in detecting texts fully generated by LLMs. However, these methods struggle when confronting more advanced LLM output or text with adversarial multi-task machine revision, especially in the black-box setting, where the generating model is unknown. To address this challenge, grounded in the hypothesis that human writing possesses distinctive stylistic patterns, we propose Human Language Preference Detection (HLPD). HLPD employs a reward-based alignment process, Human Language Preference Optimization (HLPO), to shift the scoring model's token distribution toward human-like writing, making the model more sensitive to human writing, therefore enhancing the identification of machine-revised text. We test HLPD in an adversarial multi-task evaluation framework that leverages a five-dimensional prompt generator and multiple advanced LLMs to create diverse revision scenarios. When detecting texts revised by GPT-series models, HLPD achieves a 15.11% relative improvement in AUROC over ImBD, surpassing Fast-DetectGPT by 45.56%. When evaluated on texts generated by advanced LLMs, HLPD achieves the highest average AUROC, exceeding ImBD by 5.53% and Fast-DetectGPT by 34.14%. Code will be made available at https://github.com/dfq2021/HLPD.
comment: 20 pages, 10 figures, accepted by AAAI'26
♻ ☆ Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Within the context of large language models (LLMs) for natural language processing (NLP), current automated neuron-level feature description methods face two key challenges: limited robustness and the assumption that each neuron encodes a single concept (monosemanticity), despite increasing evidence of polysemanticity. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework specifically designed to capture the complexity of features in LLMs. Unlike approaches that assign a single description per neuron, common in many automated interpretability methods in NLP, PRISM produces more nuanced descriptions that account for both monosemantic and polysemantic behavior. We apply PRISM to LLMs and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
♻ ☆ SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning AAAI 2026
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.
comment: accepted to AAAI 2026
♻ ☆ Unveiling Super Experts in Mixture-of-Experts Large Language Models
In this study, we report, for the first time, the discovery and systematic investigation of a distinct subset of experts that play a pivotal role in the MoE LLMs' forward inference. These experts are prevalent in open-source MoE LLMs, and despite their extremely limited number, pruning them results in a substantial decline in model performance (e.g., prune just three out of 6,144 causes Qwen3-30B-A3B to generate repetitive and uninformative outputs).We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs: (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs is model-specific, data-agnostic, and remains unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further investigate why compressing SEs exerts such a pronounced impact. We show that, in MoE LLMs, SEs serve as the primary source of the systematic outlier mechanism in Transformers, and that compressing them profoundly disrupts this process, ultimately causing the collapse of attention sinks. These findings advance the understanding of the internal dynamics of MoE LLMs, filling an important gap in the current knowledge. The code is provided in https://github.com/ZunhaiSu/Super-Experts-Profilling.
♻ ☆ Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we outline a versatile framework for closed-book hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we propose a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.
comment: Accepted by TMLR; UQLM repository: https://github.com/cvs-health/uqlm
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ NaturalTurn: A Method to Segment Speech into Psychologically Meaningful Conversational Turns
Conversation is a subject of increasing interest in the social, cognitive, and computational sciences. Yet as conversational datasets continue to increase in size and complexity, researchers lack scalable methods to segment speech-to-text transcripts into conversational "turns"-the basic building blocks of social interaction. We discuss this challenge and then introduce "NaturalTurn," a turn-segmentation algorithm designed to accurately capture the dynamics of conversational exchange. NaturalTurn operates by distinguishing speakers' primary conversational turns from listeners' secondary utterances, such as backchannels, brief interjections, and other forms of parallel speech that characterize human conversation. Using data from a large conversation corpus, we show that NaturalTurn captures conversational turns more accurately than a baseline model. For example, it produces turns with durations and gaps that match empirical literature, reveals stronger linguistic alignment patterns between speakers, and uncovers otherwise hidden relationships between turn-taking and affective outcomes. NaturalTurn thus represents a pragmatic development in machine-generated transcript-processing methods, or "turn models", that will enable researchers to link turn-taking dynamics with important outcomes of social interaction, a central goal of conversation science.
comment: 61 pages, 7 figures
♻ ☆ LLMs Struggle to Reject False Presuppositions when Misinformation Stakes are High
This paper examines how LLMs handle false presuppositions and whether certain linguistic factors influence their responses to falsely presupposed content. Presuppositions subtly introduce information as given, making them highly effective at embedding disputable or false information. This raises concerns about whether LLMs, like humans, may fail to detect and correct misleading assumptions introduced as false presuppositions, even when the stakes of misinformation are high. Using a systematic approach based on linguistic presupposition analysis, we investigate the conditions under which LLMs are more or less sensitive to adopt or reject false presuppositions. Focusing on political contexts, we examine how factors like linguistic construction, political party, and scenario probability impact the recognition of false presuppositions. We conduct experiments with a newly created dataset and examine three LLMs: OpenAI's GPT-4-o, Meta's LLama-3-8B, and MistralAI's Mistral-7B-v03. Our results show that the models struggle to recognize false presuppositions, with performance varying by condition. This study highlights that linguistic presupposition analysis is a valuable tool for uncovering the reinforcement of political misinformation in LLM responses.
comment: 8 pages (including References). Published at CogSci 2025: https://escholarship.org/uc/item/4932r1hx
♻ ☆ GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases
Large language models have shown remarkable language processing and reasoning ability but are prone to hallucinate when asked about private data. Retrieval-augmented generation (RAG) retrieves relevant data that fit into an LLM's context window and prompts the LLM for an answer. GraphRAG extends this approach to structured Knowledge Graphs (KGs) and questions regarding entities multiple hops away. The majority of recent GraphRAG methods either overlook the retrieval step or have ad hoc retrieval processes that are abstract or inefficient. This prevents them from being adopted when the KGs are stored in graph databases supporting graph query languages. In this work, we present GraphRAFT, a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries to retrieve high-quality subgraph contexts and produce accurate answers. Our method is the first such solution that can be taken off-the-shelf and used on KGs stored in native graph DBs. Benchmarks suggest that our method is sample-efficient and scales with the availability of training data. Our method achieves significantly better results than all state-of-the-art models across all four standard metrics on two challenging Q&As on large text-attributed KGs.
Information Retrieval 15
☆ Practical RAG Evaluation: A Rarity-Aware Set-Based Metric and Cost-Latency-Quality Trade-offs
This paper addresses the guessing game in building production RAG. Classical rank-centric IR metrics (nDCG/MAP/MRR) are a poor fit for RAG, where LLMs consume a set of passages rather than a browsed list; position discounts and prevalence-blind aggregation miss what matters: whether the prompt at cutoff K contains the decisive evidence. Second, there is no standardized, reproducible way to build and audit golden sets. Third, leaderboards exist but lack end-to-end, on-corpus benchmarking that reflects production trade-offs. Fourth, how state-of-the-art embedding models handle proper-name identity signals and conversational noise remains opaque. To address these, we contribute: (1) RA-nWG@K, a rarity-aware, per-query-normalized set score, and operational ceilings via the pool-restricted oracle ceiling (PROC) and the percentage of PROC (%PROC) to separate retrieval from ordering headroom within a Cost-Latency-Quality (CLQ) lens; (2) rag-gs (MIT), a lean golden-set pipeline with Plackett-Luce listwise refinement whose iterative updates outperform single-shot LLM ranking; (3) a comprehensive benchmark on a production RAG (scientific-papers corpus) spanning dense retrieval, hybrid dense+BM25, embedding models and dimensions, cross-encoder rerankers, ANN (HNSW), and quantization; and (4) targeted diagnostics that quantify proper-name identity signal and conversational-noise sensitivity via identity-destroying and formatting ablations. Together, these components provide practitioner Pareto guidance and auditable guardrails to support reproducible, budget/SLA-aware decisions.
☆ Sim4IA-Bench: A User Simulation Benchmark Suite for Next Query and Utterance Prediction
Validating user simulation is a difficult task due to the lack of established measures and benchmarks, which makes it challenging to assess whether a simulator accurately reflects real user behavior. As part of the Sim4IA Micro-Shared Task at the Sim4IA Workshop, SIGIR 2025, we present Sim4IA-Bench, a simulation benchmark suit for the prediction of the next queries and utterances, the first of its kind in the IR community. Our dataset as part of the suite comprises 160 real-world search sessions from the CORE search engine. For 70 of these sessions, up to 62 simulator runs are available, divided into Task A and Task B, in which different approaches predicted users next search queries or utterances. Sim4IA-Bench provides a basis for evaluating and comparing user simulation approaches and for developing new measures of simulator validity. Although modest in size, the suite represents the first publicly available benchmark that links real search sessions with simulated next-query predictions. In addition to serving as a testbed for next query prediction, it also enables exploratory studies on query reformulation behavior, intent drift, and interaction-aware retrieval evaluation. We also introduce a new measure for evaluating next-query predictions in this task. By making the suite publicly available, we aim to promote reproducible research and stimulate further work on realistic and explainable user simulation for information access: https://github.com/irgroup/Sim4IA-Bench.
☆ NeuroCLIP: Brain-Inspired Prompt Tuning for EEG-to-Image Multimodal Contrastive Learning
Recent advances in brain-inspired artificial intelligence have sought to align neural signals with visual semantics using multimodal models such as CLIP. However, existing methods often treat CLIP as a static feature extractor, overlooking its adaptability to neural representations and the inherent physiological-symbolic gap in EEG-image alignment. To address these challenges, we present NeuroCLIP, a prompt tuning framework tailored for EEG-to-image contrastive learning. Our approach introduces three core innovations: (1) We design a dual-stream visual embedding pipeline that combines dynamic filtering and token-level fusion to generate instance-level adaptive prompts, which guide the adjustment of patch embedding tokens based on image content, thereby enabling fine-grained modulation of visual representations under neural constraints; (2) We are the first to introduce visual prompt tokens into EEG-image alignment, acting as global, modality-level prompts that work in conjunction with instance-level adjustments. These visual prompt tokens are inserted into the Transformer architecture to facilitate neural-aware adaptation and parameter optimization at a global level; (3) Inspired by neuroscientific principles of human visual encoding, we propose a refined contrastive loss that better model the semantic ambiguity and cross-modal noise present in EEG signals. On the THINGS-EEG2 dataset, NeuroCLIP achieves a Top-1 accuracy of 63.2% in zero-shot image retrieval, surpassing the previous best method by +12.3%, and demonstrates strong generalization under inter-subject conditions (+4.6% Top-1), highlighting the potential of physiology-aware prompt tuning for bridging brain signals and visual semantics.
☆ Efficient Model-Agnostic Continual Learning for Next POI Recommendation ICDE2026
Next point-of-interest (POI) recommendation improves personalized location-based services by predicting users' next destinations based on their historical check-ins. However, most existing methods rely on static datasets and fixed models, limiting their ability to adapt to changes in user behavior over time. To address this limitation, we explore a novel task termed continual next POI recommendation, where models dynamically adapt to evolving user interests through continual updates. This task is particularly challenging, as it requires capturing shifting user behaviors while retaining previously learned knowledge. Moreover, it is essential to ensure efficiency in update time and memory usage for real-world deployment. To this end, we propose GIRAM (Generative Key-based Interest Retrieval and Adaptive Modeling), an efficient, model-agnostic framework that integrates context-aware sustained interests with recent interests. GIRAM comprises four components: (1) an interest memory to preserve historical preferences; (2) a context-aware key encoding module for unified interest key representation; (3) a generative key-based retrieval module to identify diverse and relevant sustained interests; and (4) an adaptive interest update and fusion module to update the interest memory and balance sustained and recent interests. In particular, GIRAM can be seamlessly integrated with existing next POI recommendation models. Experiments on three real-world datasets demonstrate that GIRAM consistently outperforms state-of-the-art methods while maintaining high efficiency in both update time and memory consumption.
comment: This paper was accepted by ICDE2026
♻ ☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
♻ ☆ Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data AACL 2025
Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
comment: IJCNLP-AACL 2025
♻ ☆ GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases
Large language models have shown remarkable language processing and reasoning ability but are prone to hallucinate when asked about private data. Retrieval-augmented generation (RAG) retrieves relevant data that fit into an LLM's context window and prompts the LLM for an answer. GraphRAG extends this approach to structured Knowledge Graphs (KGs) and questions regarding entities multiple hops away. The majority of recent GraphRAG methods either overlook the retrieval step or have ad hoc retrieval processes that are abstract or inefficient. This prevents them from being adopted when the KGs are stored in graph databases supporting graph query languages. In this work, we present GraphRAFT, a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries to retrieve high-quality subgraph contexts and produce accurate answers. Our method is the first such solution that can be taken off-the-shelf and used on KGs stored in native graph DBs. Benchmarks suggest that our method is sample-efficient and scales with the availability of training data. Our method achieves significantly better results than all state-of-the-art models across all four standard metrics on two challenging Q&As on large text-attributed KGs.
♻ ☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval AAAI 2026
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ Machine-Readable Ads: Accessibility and Trust Patterns for AI Web Agents interacting with Online Advertisements
Autonomous multimodal language models are rapidly evolving into web agents that can browse, click, and purchase items on behalf of users, posing a threat to display advertising designed for human eyes. Yet little is known about how these agents interact with ads or which design principles ensure reliable engagement. To address this, we ran a controlled experiment using a faithful clone of the news site TT.com, seeded with diverse ads: static banners, GIFs, carousels, videos, cookie dialogues, and paywalls. We ran 300 initial trials plus follow-ups using the Document Object Model (DOM)-centric Browser Use framework with GPT-4o, Claude 3.7 Sonnet, Gemini 2.0 Flash, and the pixel-based OpenAI Operator, across 10 realistic user tasks. Our results show these agents display severe satisficing: they never scroll beyond two viewports and ignore purely visual calls to action, clicking banners only when semantic button overlays or off-screen text labels are present. Critically, when sweepstake participation required a purchase, GPT-4o and Claude 3.7 Sonnet subscribed in 100% of trials, and Gemini 2.0 Flash in 70%, revealing gaps in cost-benefit analysis. We identified five actionable design principles-semantic overlays, hidden labels, top-left placement, static frames, and dialogue replacement, that make human-centric creatives machine-detectable without harming user experience. We also evaluated agent trustworthiness through "behavior patterns" such as cookie consent handling and subscription choices, highlighting model-specific risk boundaries and the urgent need for robust trust evaluation frameworks in real-world advertising.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives.
comment: WACV 2026 Accepted
♻ ☆ M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Cold-start item recommendation is a significant challenge in recommendation systems, particularly when new items are introduced without any historical interaction data. While existing methods leverage multi-modal content to alleviate the cold-start issue, they often neglect the inherent multi-view structure of modalities, the distinction between shared and modality-specific features. In this paper, we propose Multi-Modal Multi-View Variational AutoEncoder (M^2VAE), a generative model that addresses the challenges of modeling common and unique views in attribute and multi-modal features, as well as user preferences over single-typed item features. Specifically, we generate type-specific latent variables for item IDs, categorical attributes, and image features, and use Product-of-Experts (PoE) to derive a common representation. A disentangled contrastive loss decouples the common view from unique views while preserving feature informativeness. To model user inclinations, we employ a preference-guided Mixture-of-Experts (MoE) to adaptively fuse representations. We further incorporate co-occurrence signals via contrastive learning, eliminating the need for pretraining. Extensive experiments on real-world datasets validate the effectiveness of our approach.
♻ ☆ ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER
Grounded Multimodal Named Entity Recognition (GMNER) extends traditional NER by jointly detecting textual mentions and grounding them to visual regions. While existing supervised methods achieve strong performance, they rely on costly multimodal annotations and often underperform in low-resource domains. Multimodal Large Language Models (MLLMs) show strong generalization but suffer from Domain Knowledge Conflict, producing redundant or incorrect mentions for domain-specific entities. To address these challenges, we propose ReFineG, a three-stage collaborative framework that integrates small supervised models with frozen MLLMs for low-resource GMNER. In the Training Stage, a domain-aware NER data synthesis strategy transfers LLM knowledge to small models with supervised training while avoiding domain knowledge conflicts. In the Refinement Stage, an uncertainty-based mechanism retains confident predictions from supervised models and delegates uncertain ones to the MLLM. In the Grounding Stage, a multimodal context selection algorithm enhances visual grounding through analogical reasoning. In the CCKS2025 GMNER Shared Task, ReFineG ranked second with an F1 score of 0.6461 on the online leaderboard, demonstrating its effectiveness with limited annotations.
comment: CCKS 2025 Shared Task Paper
♻ ☆ TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance
Query-product relevance prediction is fundamental to e-commerce search and has become even more critical in the era of AI-powered shopping, where semantic understanding and complex reasoning directly shape the user experience and business conversion. Large Language Models (LLMs) enable generative, reasoning-based approaches, typically aligned via supervised fine-tuning (SFT) or preference optimization methods like Direct Preference Optimization (DPO). However, the increasing complexity of business rules and user queries exposes the inability of existing methods to endow models with robust reasoning capacity for long-tail and challenging cases. Efforts to address this via reinforcement learning strategies like Group Relative Policy Optimization (GRPO) often suffer from sparse terminal rewards, offering insufficient guidance for multi-step reasoning and slowing convergence. To address these challenges, we propose TaoSR-AGRL, an Adaptive Guided Reinforcement Learning framework for LLM-based relevance prediction in Taobao Search Relevance. TaoSR-AGRL introduces two key innovations: (1) Rule-aware Reward Shaping, which decomposes the final relevance judgment into dense, structured rewards aligned with domain-specific relevance criteria; and (2) Adaptive Guided Replay, which identifies low-accuracy rollouts during training and injects targeted ground-truth guidance to steer the policy away from stagnant, rule-violating reasoning patterns toward compliant trajectories. TaoSR-AGRL was evaluated on large-scale real-world datasets and through online side-by-side human evaluations on Taobao Search. It consistently outperforms DPO and standard GRPO baselines in offline experiments, improving relevance accuracy, rule adherence, and training stability. The model trained with TaoSR-AGRL has been successfully deployed in the main search scenario on Taobao, serving hundreds of millions of users.
♻ ☆ Read the Docs Before Rewriting: Equip Rewriter with Domain Knowledge via Continual Pre-training
A Retrieval-Augmented Generation (RAG)-based question-answering (QA) system enhances a large language model's knowledge by retrieving relevant documents based on user queries. Discrepancies between user queries and document phrasings often necessitate query rewriting. However, in specialized domains, the rewriter model may struggle due to limited domain-specific knowledge. To resolve this, we propose the R\&R (Read the doc before Rewriting) rewriter, which involves continual pre-training on professional documents, akin to how students prepare for open-book exams by reviewing textbooks. Additionally, it can be combined with supervised fine-tuning for improved results. Experiments on multiple datasets demonstrate that R\&R excels in professional QA across multiple domains, effectively bridging the query-document gap, while maintaining good performance in general scenarios, thus advancing the application of RAG-based QA systems in specialized fields.
comment: The paper is about to undergo significant revisions
♻ ☆ Positional Bias in Long-Document Ranking: Impact, Assessment, and Mitigation AACL 2025
We tested over 20 Transformer models for ranking long documents (including recent LongP models trained with FlashAttention and RankGPT models "powered" by OpenAI and Anthropic cloud APIs). We compared them with the simple FirstP baseline, which applied the same model to truncated input (up to 512 tokens). On MS MARCO, TREC DL, and Robust04 no long-document model outperformed FirstP by more than 5% (on average). We hypothesized that this lack of improvement is not due to inherent model limitations, but due to benchmark positional bias (most relevant passages tend to occur early in documents), which is known to exist in MS MARCO. To confirm this, we analyzed positional relevance distributions across four long-document corpora (with six query sets) and observed the same early-position bias. Surprisingly, we also found bias in six BEIR collections, which are typically categorized as short-document datasets. We then introduced a new diagnostic dataset, MS MARCO FarRelevant, where relevant spans were deliberately placed beyond the first 512 tokens. On this dataset, many long-context models (including RankGPT) performed at random-baseline level, suggesting overfitting to positional bias. We also experimented with debiasing training data, but with limited success. Our findings (1) highlight the need for careful benchmark design in evaluating long-context models for document ranking, (2) identify model types that are more robust to positional bias, and (3) motivate further work on approaches to debias training data. We release our code and data to support further research.
comment: Accepted at IJCNLP-AACL 2025 Main
Information Retrieval 26
☆ Compression then Matching: An Efficient Pre-training Paradigm for Multimodal Embedding
Vision-language models advance multimodal representation learning by acquiring transferable semantic embeddings, thereby substantially enhancing performance across a range of vision-language tasks, including cross-modal retrieval, clustering, and classification. An effective embedding is expected to comprehensively preserve the semantic content of the input while simultaneously emphasizing features that are discriminative for downstream tasks. Recent approaches demonstrate that VLMs can be adapted into competitive embedding models via large-scale contrastive learning, enabling the simultaneous optimization of two complementary objectives. We argue that the two aforementioned objectives can be decoupled: a comprehensive understanding of the input facilitates the embedding model in achieving superior performance in downstream tasks via contrastive learning. In this paper, we propose CoMa, a compressed pre-training phase, which serves as a warm-up stage for contrastive learning. Experiments demonstrate that with only a small amount of pre-training data, we can transform a VLM into a competitive embedding model. CoMa achieves new state-of-the-art results among VLMs of comparable size on the MMEB, realizing optimization in both efficiency and effectiveness.
comment: Multimodal Embedding
☆ Advancing Scientific Knowledge Retrieval and Reuse with a Novel Digital Library for Machine-Readable Knowledge
Digital libraries for research, such as the ACM Digital Library or Semantic Scholar, do not enable the machine-supported, efficient reuse of scientific knowledge (e.g., in synthesis research). This is because these libraries are based on document-centric models with narrative text knowledge expressions that require manual or semi-automated knowledge extraction, structuring, and organization. We present ORKG reborn, an emerging digital library that supports finding, accessing, and reusing accurate, fine-grained, and reproducible machine-readable expressions of scientific knowledge that relate scientific statements and their supporting evidence in terms of data and code. The rich expressions of scientific knowledge are published as reborn (born-reusable) articles and provide novel possibilities for scientific knowledge retrieval, for instance by statistical methods, software packages, variables, or data matching specific constraints. We describe the proposed system and demonstrate its practical viability and potential for information retrieval in contrast to state-of-the-art digital libraries and document-centric scholarly communication using several published articles in research fields ranging from computer science to soil science. Our work underscores the enormous potential of scientific knowledge databases and a viable approach to their construction.
☆ Bid Farewell to Seesaw: Towards Accurate Long-tail Session-based Recommendation via Dual Constraints of Hybrid Intents
Session-based recommendation (SBR) aims to predict anonymous users' next interaction based on their interaction sessions. In the practical recommendation scenario, low-exposure items constitute the majority of interactions, creating a long-tail distribution that severely compromises recommendation diversity. Existing approaches attempt to address this issue by promoting tail items but incur accuracy degradation, exhibiting a "see-saw" effect between long-tail and accuracy performance. We attribute such conflict to session-irrelevant noise within the tail items, which existing long-tail approaches fail to identify and constrain effectively. To resolve this fundamental conflict, we propose \textbf{HID} (\textbf{H}ybrid \textbf{I}ntent-based \textbf{D}ual Constraint Framework), a plug-and-play framework that transforms the conventional "see-saw" into "win-win" through introducing the hybrid intent-based dual constraints for both long-tail and accuracy. Two key innovations are incorporated in this framework: (i) \textit{Hybrid Intent Learning}, where we reformulate the intent extraction strategies by employing attribute-aware spectral clustering to reconstruct the item-to-intent mapping. Furthermore, discrimination of session-irrelevant noise is achieved through the assignment of the target and noise intents to each session. (ii) \textit{Intent Constraint Loss}, which incorporates two novel constraint paradigms regarding the \textit{diversity} and \textit{accuracy} to regulate the representation learning process of both items and sessions. These two objectives are unified into a single training loss through rigorous theoretical derivation. Extensive experiments across multiple SBR models and datasets demonstrate that HID can enhance both long-tail performance and recommendation accuracy, establishing new state-of-the-art performance in long-tail recommender systems.
☆ TurkEmbed: Turkish Embedding Model on NLI & STS Tasks
This paper introduces TurkEmbed, a novel Turkish language embedding model designed to outperform existing models, particularly in Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. Current Turkish embedding models often rely on machine-translated datasets, potentially limiting their accuracy and semantic understanding. TurkEmbed utilizes a combination of diverse datasets and advanced training techniques, including matryoshka representation learning, to achieve more robust and accurate embeddings. This approach enables the model to adapt to various resource-constrained environments, offering faster encoding capabilities. Our evaluation on the Turkish STS-b-TR dataset, using Pearson and Spearman correlation metrics, demonstrates significant improvements in semantic similarity tasks. Furthermore, TurkEmbed surpasses the current state-of-the-art model, Emrecan, on All-NLI-TR and STS-b-TR benchmarks, achieving a 1-4\% improvement. TurkEmbed promises to enhance the Turkish NLP ecosystem by providing a more nuanced understanding of language and facilitating advancements in downstream applications.
comment: 9 pages, 1 Figure, 4 Tables, ASYU Conference. 2025 IEEE 11th International Conference on Advances in Software, hardware and Systems Engineering (ASYU)
☆ AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress
Despite rapid development, large language models (LLMs) still encounter challenges in multi-turn decision-making tasks (i.e., agent tasks) like web shopping and browser navigation, which require making a sequence of intelligent decisions based on environmental feedback. Previous work for LLM agents typically relies on elaborate prompt engineering or fine-tuning with expert trajectories to improve performance. In this work, we take a different perspective: we explore constructing process reward models (PRMs) to evaluate each decision and guide the agent's decision-making process. Unlike LLM reasoning, where each step is scored based on correctness, actions in agent tasks do not have a clear-cut correctness. Instead, they should be evaluated based on their proximity to the goal and the progress they have made. Building on this insight, we propose a re-defined PRM for agent tasks, named AgentPRM, to capture both the interdependence between sequential decisions and their contribution to the final goal. This enables better progress tracking and exploration-exploitation balance. To scalably obtain labeled data for training AgentPRM, we employ a Temporal Difference-based (TD-based) estimation method combined with Generalized Advantage Estimation (GAE), which proves more sample-efficient than prior methods. Extensive experiments across different agentic tasks show that AgentPRM is over $8\times$ more compute-efficient than baselines, and it demonstrates robust improvement when scaling up test-time compute. Moreover, we perform detailed analyses to show how our method works and offer more insights, e.g., applying AgentPRM to the reinforcement learning of LLM agents.
comment: Preprint
☆ MARC: Multimodal and Multi-Task Agentic Retrieval-Augmented Generation for Cold-Start Recommender System CIKM 2025
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag
comment: 13 pages, 2 figures, Accepted at RDGENAI at CIKM 2025 workshop
☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.
comment: This paper is under review
☆ BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives AAAI 2026
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
comment: Accepted for oral presentation at AAAI 2026
☆ From IDs to Semantics: A Generative Framework for Cross-Domain Recommendation with Adaptive Semantic Tokenization
Cross-domain recommendation (CDR) is crucial for improving recommendation accuracy and generalization, yet traditional methods are often hindered by the reliance on shared user/item IDs, which are unavailable in most real-world scenarios. Consequently, many efforts have focused on learning disentangled representations through multi-domain joint training to bridge the domain gaps. Recent Large Language Model (LLM)-based approaches show promise, they still face critical challenges, including: (1) the \textbf{item ID tokenization dilemma}, which leads to vocabulary explosion and fails to capture high-order collaborative knowledge; and (2) \textbf{insufficient domain-specific modeling} for the complex evolution of user interests and item semantics. To address these limitations, we propose \textbf{GenCDR}, a novel \textbf{Gen}erative \textbf{C}ross-\textbf{D}omain \textbf{R}ecommendation framework. GenCDR first employs a \textbf{Domain-adaptive Tokenization} module, which generates disentangled semantic IDs for items by dynamically routing between a universal encoder and domain-specific adapters. Symmetrically, a \textbf{Cross-domain Autoregressive Recommendation} module models user preferences by fusing universal and domain-specific interests. Finally, a \textbf{Domain-aware Prefix-tree} enables efficient and accurate generation. Extensive experiments on multiple real-world datasets demonstrate that GenCDR significantly outperforms state-of-the-art baselines. Our code is available in the supplementary materials.
♻ ☆ From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL
The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
♻ ☆ FS-DAG: Few Shot Domain Adapting Graph Networks for Visually Rich Document Understanding COLING 2025
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG's capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance. Code : https://github.com/oracle-samples/fs-dag
comment: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), Industry Track, pages 100-114
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata
♻ ☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval AAAI 2026
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design.
comment: Accepted by AAAI 2026
♻ ☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI 2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI 2026
♻ ☆ Exploiting Inter-Session Information with Frequency-enhanced Dual-Path Networks for Sequential Recommendation
Sequential recommendation (SR) aims to predict a user's next item preference by modeling historical interaction sequences. Recent advances often integrate frequency-domain modules to compensate for self-attention's low-pass nature by restoring the high-frequency signals critical for personalized recommendations. Nevertheless, existing frequency-aware solutions process each session in isolation and optimize exclusively with time-domain objectives. Consequently, they overlook cross-session spectral dependencies and fail to enforce alignment between predicted and actual spectral signatures, leaving valuable frequency information under-exploited. To this end, we propose FreqRec, a Frequency-Enhanced Dual-Path Network for sequential Recommendation that jointly captures inter-session and intra-session behaviors via a learnable Frequency-domain Multi-layer Perceptrons. Moreover, FreqRec is optimized under a composite objective that combines cross entropy with a frequency-domain consistency loss, explicitly aligning predicted and true spectral signatures. Extensive experiments on three benchmarks show that FreqRec surpasses strong baselines and remains robust under data sparsity and noisy-log conditions.
♻ ☆ Question-to-Knowledge (Q2K): Multi-Agent Generation of Inspectable Facts for Product Mapping
Identifying whether two product listings refer to the same Stock Keeping Unit (SKU) is a persistent challenge in ecommerce, especially when explicit identifiers are missing and product names vary widely across platforms. Rule based heuristics and keyword similarity often misclassify products by overlooking subtle distinctions in brand, specification, or bundle configuration. To overcome these limitations, we propose Question to Knowledge (Q2K), a multi agent framework that leverages Large Language Models (LLMs) for reliable SKU mapping. Q2K integrates: (1) a Reasoning Agent that generates targeted disambiguation questions, (2) a Knowledge Agent that resolves them via focused web searches, and (3) a Deduplication Agent that reuses validated reasoning traces to reduce redundancy and ensure consistency. A human in the loop mechanism further refines uncertain cases. Experiments on real world consumer goods datasets show that Q2K surpasses strong baselines, achieving higher accuracy and robustness in difficult scenarios such as bundle identification and brand origin disambiguation. By reusing retrieved reasoning instead of issuing repeated searches, Q2K balances accuracy with efficiency, offering a scalable and interpretable solution for product integration.
comment: Accepted by IEEE BigData 2025 Industry Track
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ A Remarkably Efficient Paradigm to Multimodal Large Language Models for Sequential Recommendation
Sequential recommendations (SR) predict users' future interactions based on their historical behavior. The rise of Large Language Models (LLMs) has brought powerful generative and reasoning capabilities, significantly enhancing SR performance, while Multimodal LLMs (MLLMs) further extend this by introducing data like images and interactive relationships. However, critical issues remain, i.e., (a) Suboptimal item representations caused by lengthy and redundant descriptions, leading to inefficiencies in both training and inference; (b) Modality-related cognitive bias, as LLMs are predominantly pretrained on textual data, limiting their ability to effectively integrate and utilize non-textual modalities; (c) Weakening sequential perception in long interaction sequences, where attention mechanisms struggle to capture earlier interactions, hindering the modeling of long-range dependencies. To address these issues, we propose Speeder, an efficient MLLM-based paradigm for SR featuring three key innovations: 1) Multimodal Representation Compression (MRC), which condenses item attributes into concise yet informative tokens, reducing redundancy and computational cost; 2) Modality-aware Progressive Optimization (MPO), enabling gradual learning of multimodal representations; 3) Sequential Position Awareness Enhancement (SPAE), improving the LLM's capability to capture both relative and absolute sequential dependencies in long interaction sequences. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of Speeder. Speeder increases training speed to 250% of the original while reducing inference time to 25% on the Amazon dataset.
♻ ☆ OneRec-Think: In-Text Reasoning for Generative Recommendation
The powerful generative capacity of Large Language Models (LLMs) has instigated a paradigm shift in recommendation. However, existing generative models (e.g., OneRec) operate as implicit predictors, critically lacking the capacity for explicit and controllable reasoning-a key advantage of LLMs. To bridge this gap, we propose OneRec-Think, a unified framework that seamlessly integrates dialogue, reasoning, and personalized recommendation. OneRec-Think incorporates: (1) Itemic Alignment: cross-modal Item-Textual Alignment for semantic grounding; (2) Reasoning Activation: Reasoning Scaffolding to activate LLM reasoning within the recommendation context; and (3) Reasoning Enhancement, where we design a recommendation-specific reward function that accounts for the multi-validity nature of user preferences. Experiments across public benchmarks show state-of-the-art performance. Moreover, our proposed "Think-Ahead" architecture enables effective industrial deployment on Kuaishou, achieving a 0.159\% gain in APP Stay Time and validating the practical efficacy of the model's explicit reasoning capability.
♻ ☆ Does Generative Retrieval Overcome the Limitations of Dense Retrieval?
Generative retrieval (GR) has emerged as a new paradigm in neural information retrieval, offering an alternative to dense retrieval (DR) by directly generating identifiers of relevant documents. In this paper, we theoretically and empirically investigate how GR fundamentally diverges from DR in both learning objectives and representational capacity. GR performs globally normalized maximum-likelihood optimization and encodes corpus and relevance information directly in the model parameters, whereas DR adopts locally normalized objectives and represents the corpus with external embeddings before computing similarity via a bilinear interaction. Our analysis suggests that, under scaling, GR can overcome the inherent limitations of DR, yielding two major benefits. First, with larger corpora, GR avoids the sharp performance degradation caused by the optimization drift induced by DR's local normalization. Second, with larger models, GR's representational capacity scales with parameter size, unconstrained by the global low-rank structure that limits DR. We validate these theoretical insights through controlled experiments on the Natural Questions and MS MARCO datasets, across varying negative sampling strategies, embedding dimensions, and model scales. But despite its theoretical advantages, GR does not universally outperform DR in practice. We outline directions to bridge the gap between GR's theoretical potential and practical performance, providing guidance for future research in scalable and robust generative retrieval.
♻ ☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
♻ ☆ LLM-based Relevance Assessment for Web-Scale Search Evaluation at Pinterest RecSys 2025
Relevance evaluation plays a crucial role in personalized search systems to ensure that search results align with a user's queries and intent. While human annotation is the traditional method for relevance evaluation, its high cost and long turnaround time limit its scalability. In this work, we present our approach at Pinterest Search to automate relevance evaluation for online experiments using fine-tuned LLMs. We rigorously validate the alignment between LLM-generated judgments and human annotations, demonstrating that LLMs can provide reliable relevance measurement for experiments while greatly improving the evaluation efficiency. Leveraging LLM-based labeling further unlocks the opportunities to expand the query set, optimize sampling design, and efficiently assess a wider range of search experiences at scale. This approach leads to higher-quality relevance metrics and significantly reduces the Minimum Detectable Effect (MDE) in online experiment measurements.
comment: RecSys 2025 EARL Workshop
♻ ☆ Enhancing Speech-to-Speech Dialogue Modeling with End-to-End Retrieval-Augmented Generation EMNLP 2025
End-to-end speech-to-speech (S2S) dialogue systems have recently garnered increasing research attention for their lower latency and more natural integration of nonverbal cues such as emotion and speaker identity. However, these systems face key challenges, particularly in incorporating external knowledge, a capability commonly addressed by Retrieval-Augmented Generation (RAG) in text-based large language models (LLMs). The core difficulty lies in the modality gap between input speech and retrieved textual knowledge, which hinders effective integration of information. To address this issue, we propose a novel end-to-end RAG framework that directly retrieves relevant textual knowledge from speech queries. Experimental results demonstrate that our method significantly improves the performance of end-to-end S2S dialogue systems while achieving higher retrieval efficiency. Although the overall performance still lags behind the SOTA cascaded models, our framework offers a promising direction for enhancing knowledge integration in end-to-end S2S systems. Our code and dataset are released.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Evaluating and Addressing Fairness Across User Groups in Negative Sampling for Recommender Systems CIKM 2025
Recommender systems trained on implicit feedback data rely on negative sampling to distinguish positive items from negative items for each user. Since the majority of positive interactions come from a small group of active users, negative samplers are often impacted by data imbalance, leading them to choose more informative negatives for prominent users while providing less useful ones for users who are not so active. This leads to inactive users being further marginalised in the training process, thus receiving inferior recommendations. In this paper, we conduct a comprehensive empirical study demonstrating that state-of-the-art negative sampling strategies provide more accurate recommendations for active users than for inactive users. We also find that increasing the number of negative samples for each positive item improves the average performance, but the benefit is distributed unequally across user groups, with active users experiencing performance gain while inactive users suffering performance degradation. To address this, we propose a group-specific negative sampling strategy that assigns smaller negative ratios to inactive user groups and larger ratios to active groups. Experiments on eight negative samplers show that our approach improves user-side fairness and performance when compared to a uniform global ratio.
comment: Accepted to CIKM 2025
Computation and Language 115
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ SPOT: An Annotated French Corpus and Benchmark for Detecting Critical Interventions in Online Conversations
We introduce SPOT (Stopping Points in Online Threads), the first annotated corpus translating the sociological concept of stopping point into a reproducible NLP task. Stopping points are ordinary critical interventions that pause or redirect online discussions through a range of forms (irony, subtle doubt or fragmentary arguments) that frameworks like counterspeech or social correction often overlook. We operationalize this concept as a binary classification task and provide reliable annotation guidelines. The corpus contains 43,305 manually annotated French Facebook comments linked to URLs flagged as false information by social media users, enriched with contextual metadata (article, post, parent comment, page or group, and source). We benchmark fine-tuned encoder models (CamemBERT) and instruction-tuned LLMs under various prompting strategies. Results show that fine-tuned encoders outperform prompted LLMs in F1 score by more than 10 percentage points, confirming the importance of supervised learning for emerging non-English social media tasks. Incorporating contextual metadata further improves encoder models F1 scores from 0.75 to 0.78. We release the anonymized dataset, along with the annotation guidelines and code in our code repository, to foster transparency and reproducible research.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ ConvFill: Model Collaboration for Responsive Conversational Voice Agents
Deploying conversational voice agents with large language models faces a critical challenge: cloud-based foundation models provide deep reasoning and domain knowledge but introduce latency that disrupts natural conversation, while on-device models respond immediately but lack sophistication. We propose conversational infill, a task where a lightweight on-device model generates contextually appropriate dialogue while seamlessly incorporating streaming knowledge from a powerful backend model. This approach decouples response latency from model capability, enabling systems that feel responsive while accessing the full power of large-scale models. We present ConvFill, a 360M parameter model trained on synthetic multi-domain conversations. Evaluation across multiple backend models shows that conversational infill can be successfully learned, with ConvFill achieving accuracy improvements of 36-42% over standalone small models of the same size while consistently retaining sub-200ms response latencies. Our results demonstrate the promise of this approach for building on-device conversational agents that are both immediately responsive and knowledgeable.
☆ Surgical Agent Orchestration Platform for Voice-directed Patient Data Interaction
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
comment: 22 pages, 12 figures, 1 table, Supplementary Information, Supplementary Data 1
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ Retriv at BLP-2025 Task 2: Test-Driven Feedback-Guided Framework for Bangla-to-Python Code Generation
Large Language Models (LLMs) have advanced the automated generation of code from natural language prompts. However, low-resource languages (LRLs) like Bangla remain underrepresented due to the limited availability of instruction-to-code datasets and evaluation benchmarks. To address this, the BLP Workshop at IJCNLP-AACL 2025 introduced a shared task on "Code Generation in Bangla". In this work, we propose a method that combines instruction prompting with a test-driven, feedback-guided iterative refinement process using a fine-tuned Qwen2.5-14B model. The model generates code from Bangla instructions, tests it against unit tests, and iteratively refines any failing outputs through three evaluation passes, using test feedback to guide each step. This approach helped our team "Retriv" to secure 2nd place in the shared task with a Pass@1 score of 0.934. The analysis highlights challenges in Bangla instruction understanding and Python code generation, emphasizing the need for targeted methods in LRLs. We made experimental scripts publicly available for the community.
comment: 8 pages, 1 figure, experimental scripts publicly available at https://github.com/NafiAsib/Retriv-BLP25-Task-2
☆ Selecting Auxiliary Data via Neural Tangent Kernels for Low-Resource Domains
Large language models (LLMs) have achieved remarkable success across widespread tasks, yet their application in low-resource domains remains a significant challenge due to data scarcity and the high risk of overfitting. While in-domain data is limited, there exist vast amounts of similar general-domain data, and our initial findings reveal that they could potentially serve as auxiliary supervision for domain enhancement. This observation leads us to our central research question: \textbf{\textit{how to effectively select the most valuable auxiliary data to maximize domain-specific performance}}, particularly when traditional methods are inapplicable due to a lack of large in-domain data pools or validation sets. To address this, we propose \textbf{NTK-Selector}, a principled and efficient framework for selecting general-domain auxiliary data to enhance domain-specific performance via neural tangent kernels (NTK). Our method tackles two challenges of directly applying NTK to LLMs, theoretical assumptions and prohibitive computational cost, by empirically demonstrating a stable NTK-like behavior in LLMs during LoRA fine-tuning and proposing a Jacobian-free approximation method. Extensive experiments across four low-resource domains (medical, financial, legal, and psychological) demonstrate that NTK-Selector consistently improves downstream performance. Specifically, fine-tuning on 1,000 in-domain samples alone only yielded +0.8 points for Llama3-8B-Instruct and +0.9 points for Qwen3-8B. In contrast, enriching with 9,000 auxiliary samples selected by NTK-Selector led to substantial \textbf{gains of +8.7 and +5.1 points}, which corresponds to a \textbf{10.9x and 5.7x improvement} over the domain-only setting.
comment: 27 pages
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.
comment: https://github.com/Alibaba-NLP/DeepResearch
☆ FinRpt: Dataset, Evaluation System and LLM-based Multi-agent Framework for Equity Research Report Generation AAAI 2026
While LLMs have shown great success in financial tasks like stock prediction and question answering, their application in fully automating Equity Research Report generation remains uncharted territory. In this paper, we formulate the Equity Research Report (ERR) Generation task for the first time. To address the data scarcity and the evaluation metrics absence, we present an open-source evaluation benchmark for ERR generation - FinRpt. We frame a Dataset Construction Pipeline that integrates 7 financial data types and produces a high-quality ERR dataset automatically, which could be used for model training and evaluation. We also introduce a comprehensive evaluation system including 11 metrics to assess the generated ERRs. Moreover, we propose a multi-agent framework specifically tailored to address this task, named FinRpt-Gen, and train several LLM-based agents on the proposed datasets using Supervised Fine-Tuning and Reinforcement Learning. Experimental results indicate the data quality and metrics effectiveness of the benchmark FinRpt and the strong performance of FinRpt-Gen, showcasing their potential to drive innovation in the ERR generation field. All code and datasets are publicly available.
comment: AAAI 2026
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments
We introduce Reinforcement Learning (RL) with Adaptive Verifiable Environments (RLVE), an approach using verifiable environments that procedurally generate problems and provide algorithmically verifiable rewards, to scale up RL for language models (LMs). RLVE enables each verifiable environment to dynamically adapt its problem difficulty distribution to the policy model's capabilities as training progresses. In contrast, static data distributions often lead to vanishing learning signals when problems are either too easy or too hard for the policy. To implement RLVE, we create RLVE-Gym, a large-scale suite of 400 verifiable environments carefully developed through manual environment engineering. Using RLVE-Gym, we show that environment scaling, i.e., expanding the collection of training environments, consistently improves generalizable reasoning capabilities. RLVE with joint training across all 400 environments in RLVE-Gym yields a 3.37% absolute average improvement across six reasoning benchmarks, starting from one of the strongest 1.5B reasoning LMs. By comparison, continuing this LM's original RL training yields only a 0.49% average absolute gain despite using over 3x more compute. We release our code publicly.
☆ ACE-ICD: Acronym Expansion As Data Augmentation For Automated ICD Coding AACL 2025
Automatic ICD coding, the task of assigning disease and procedure codes to electronic medical records, is crucial for clinical documentation and billing. While existing methods primarily enhance model understanding of code hierarchies and synonyms, they often overlook the pervasive use of medical acronyms in clinical notes, a key factor in ICD code inference. To address this gap, we propose a novel effective data augmentation technique that leverages large language models to expand medical acronyms, allowing models to be trained on their full form representations. Moreover, we incorporate consistency training to regularize predictions by enforcing agreement between the original and augmented documents. Extensive experiments on the MIMIC-III dataset demonstrate that our approach, ACE-ICD establishes new state-of-the-art performance across multiple settings, including common codes, rare codes, and full-code assignments. Our code is publicly available.
comment: Camera ready version for IJCNLP-AACL 2025 (Findings)
☆ Retriv at BLP-2025 Task 1: A Transformer Ensemble and Multi-Task Learning Approach for Bangla Hate Speech Identification
This paper addresses the problem of Bangla hate speech identification, a socially impactful yet linguistically challenging task. As part of the "Bangla Multi-task Hate Speech Identification" shared task at the BLP Workshop, IJCNLP-AACL 2025, our team "Retriv" participated in all three subtasks: (1A) hate type classification, (1B) target group identification, and (1C) joint detection of type, severity, and target. For subtasks 1A and 1B, we employed a soft-voting ensemble of transformer models (BanglaBERT, MuRIL, IndicBERTv2). For subtask 1C, we trained three multitask variants and aggregated their predictions through a weighted voting ensemble. Our systems achieved micro-f1 scores of 72.75% (1A) and 72.69% (1B), and a weighted micro-f1 score of 72.62% (1C). On the shared task leaderboard, these corresponded to 9th, 10th, and 7th positions, respectively. These results highlight the promise of transformer ensembles and weighted multitask frameworks for advancing Bangla hate speech detection in low-resource contexts. We made experimental scripts publicly available for the community.
comment: 7 pages, 3 figures, experimental scripts publicly available at https://github.com/sahasourav17/Retriv-BLP25-Task-1
☆ Who Is the Story About? Protagonist Entity Recognition in News
News articles often reference numerous organizations, but traditional Named Entity Recognition (NER) treats all mentions equally, obscuring which entities genuinely drive the narrative. This limits downstream tasks that rely on understanding event salience, influence, or narrative focus. We introduce Protagonist Entity Recognition (PER), a task that identifies the organizations that anchor a news story and shape its main developments. To validate PER, we compare he predictions of Large Language Models (LLMs) against annotations from four expert annotators over a gold corpus, establishing both inter-annotator consistency and human-LLM agreement. Leveraging these findings, we use state-of-the-art LLMs to automatically label large-scale news collections through NER-guided prompting, generating scalable, high-quality supervision. We then evaluate whether other LLMs, given reduced context and without explicit candidate guidance, can still infer the correct protagonists. Our results demonstrate that PER is a feasible and meaningful extension to narrative-centered information extraction, and that guided LLMs can approximate human judgments of narrative importance at scale.
☆ The Few Govern the Many:Unveiling Few-Layer Dominance for Time Series Models
Large-scale models are at the forefront of time series (TS) forecasting, dominated by two paradigms: fine-tuning text-based Large Language Models (LLM4TS) and training Time Series Foundation Models (TSFMs) from scratch. Both approaches share a foundational assumption that scaling up model capacity and data volume leads to improved performance. However, we observe a \textit{\textbf{scaling paradox}} in TS models, revealing a puzzling phenomenon that larger models do \emph{NOT} achieve better performance. Through extensive experiments on two model families across four scales (100M to 1.7B parameters) and diverse data (up to 6B observations), we rigorously confirm that the scaling paradox is a pervasive issue. We then diagnose its root cause by analyzing internal representations, identifying a phenomenon we call \textit{few-layer dominance}: only a small subset of layers are functionally important, while the majority are redundant, under-utilized, and can even distract training. Based on this discovery, we propose a practical method to automatically identify and retain only these dominant layers. In our models, retaining only 21\% of the parameters achieves up to a 12\% accuracy improvement and a 2.7$\times$ inference speedup. We validate the universality of our method on 8 prominent SOTA models (LLM4TS and TSFMs, 90M to 6B), showing that retaining less than 30\% of layers achieves comparable or superior accuracy in over 95\% of tasks.
☆ Discourse Graph Guided Document Translation with Large Language Models
Adapting large language models to full document translation remains challenging due to the difficulty of capturing long-range dependencies and preserving discourse coherence throughout extended texts. While recent agentic machine translation systems mitigate context window constraints through multi-agent orchestration and persistent memory, they require substantial computational resources and are sensitive to memory retrieval strategies. We introduce TransGraph, a discourse-guided framework that explicitly models inter-chunk relationships through structured discourse graphs and selectively conditions each translation segment on relevant graph neighbourhoods rather than relying on sequential or exhaustive context. Across three document-level MT benchmarks spanning six languages and diverse domains, TransGraph consistently surpasses strong baselines in translation quality and terminology consistency while incurring significantly lower token overhead.
☆ EMODIS: A Benchmark for Context-Dependent Emoji Disambiguation in Large Language Models AAAI2026
Large language models (LLMs) are increasingly deployed in real-world communication settings, yet their ability to resolve context-dependent ambiguity remains underexplored. In this work, we present EMODIS, a new benchmark for evaluating LLMs' capacity to interpret ambiguous emoji expressions under minimal but contrastive textual contexts. Each instance in EMODIS comprises an ambiguous sentence containing an emoji, two distinct disambiguating contexts that lead to divergent interpretations, and a specific question that requires contextual reasoning. We evaluate both open-source and API-based LLMs, and find that even the strongest models frequently fail to distinguish meanings when only subtle contextual cues are present. Further analysis reveals systematic biases toward dominant interpretations and limited sensitivity to pragmatic contrast. EMODIS provides a rigorous testbed for assessing contextual disambiguation, and highlights the gap in semantic reasoning between humans and LLMs.
comment: Accepted by AAAI2026
Graph Representation-based Model Poisoning on the Heterogeneous Internet of Agents
Internet of Agents (IoA) envisions a unified, agent-centric paradigm where heterogeneous large language model (LLM) agents can interconnect and collaborate at scale. Within this paradigm, federated learning (FL) serves as a key enabler that allows distributed LLM agents to co-train global models without centralizing data. However, the FL-enabled IoA system remains vulnerable to model poisoning attacks, and the prevailing distance and similarity-based defenses become fragile at billion-parameter scale and under heterogeneous data distributions. This paper proposes a graph representation-based model poisoning (GRMP) attack, which passively exploits observed benign local models to construct a parameter correlation graph and extends an adversarial variational graph autoencoder to capture and reshape higher-order dependencies. The GRMP attack synthesizes malicious local models that preserve benign-like statistics while embedding adversarial objectives, remaining elusive to detection at the server. Experiments demonstrate a gradual drop in system accuracy under the proposed attack and the ineffectiveness of the prevailing defense mechanism in detecting the attack, underscoring a severe threat to the ambitious IoA paradigm.
comment: 6 pages, 6 figures
☆ AdaRec: Adaptive Recommendation with LLMs via Narrative Profiling and Dual-Channel Reasoning
We propose AdaRec, a few-shot in-context learning framework that leverages large language models for an adaptive personalized recommendation. AdaRec introduces narrative profiling, transforming user-item interactions into natural language representations to enable unified task handling and enhance human readability. Centered on a bivariate reasoning paradigm, AdaRec employs a dual-channel architecture that integrates horizontal behavioral alignment, discovering peer-driven patterns, with vertical causal attribution, highlighting decisive factors behind user preferences. Unlike existing LLM-based approaches, AdaRec eliminates manual feature engineering through semantic representations and supports rapid cross-task adaptation with minimal supervision. Experiments on real ecommerce datasets demonstrate that AdaRec outperforms both machine learning models and LLM-based baselines by up to eight percent in few-shot settings. In zero-shot scenarios, it achieves up to a nineteen percent improvement over expert-crafted profiling, showing effectiveness for long-tail personalization with minimal interaction data. Furthermore, lightweight fine-tuning on synthetic data generated by AdaRec matches the performance of fully fine-tuned models, highlighting its efficiency and generalization across diverse tasks.
☆ Categorical Emotions or Appraisals - Which Emotion Model Explains Argument Convincingness Better?
The convincingness of an argument does not only depend on its structure (logos), the person who makes the argument (ethos), but also on the emotion that it causes in the recipient (pathos). While the overall intensity and categorical values of emotions in arguments have received considerable attention in the research community, we argue that the emotion an argument evokes in a recipient is subjective. It depends on the recipient's goals, standards, prior knowledge, and stance. Appraisal theories lend themselves as a link between the subjective cognitive assessment of events and emotions. They have been used in event-centric emotion analysis, but their suitability for assessing argument convincingness remains unexplored. In this paper, we evaluate whether appraisal theories are suitable for emotion analysis in arguments by considering subjective cognitive evaluations of the importance and impact of an argument on its receiver. Based on the annotations in the recently published ContArgA corpus, we perform zero-shot prompting experiments to evaluate the importance of gold-annotated and predicted emotions and appraisals for the assessment of the subjective convincingness labels. We find that, while categorical emotion information does improve convincingness prediction, the improvement is more pronounced with appraisals. This work presents the first systematic comparison between emotion models for convincingness prediction, demonstrating the advantage of appraisals, providing insights for theoretical and practical applications in computational argumentation.
☆ TCM-Eval: An Expert-Level Dynamic and Extensible Benchmark for Traditional Chinese Medicine
Large Language Models (LLMs) have demonstrated remarkable capabilities in modern medicine, yet their application in Traditional Chinese Medicine (TCM) remains severely limited by the absence of standardized benchmarks and the scarcity of high-quality training data. To address these challenges, we introduce TCM-Eval, the first dynamic and extensible benchmark for TCM, meticulously curated from national medical licensing examinations and validated by TCM experts. Furthermore, we construct a large-scale training corpus and propose Self-Iterative Chain-of-Thought Enhancement (SI-CoTE) to autonomously enrich question-answer pairs with validated reasoning chains through rejection sampling, establishing a virtuous cycle of data and model co-evolution. Using this enriched training data, we develop ZhiMingTang (ZMT), a state-of-the-art LLM specifically designed for TCM, which significantly exceeds the passing threshold for human practitioners. To encourage future research and development, we release a public leaderboard, fostering community engagement and continuous improvement.
comment: Work in Progress
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ More Agents Helps but Adversarial Robustness Gap Persists
When LLM agents work together, they seem to be more powerful than a single LLM in mathematical question answering. However, are they also more robust to adversarial inputs? We investigate this question using adversarially perturbed math questions. These perturbations include punctuation noise with three intensities (10, 30, and 50 percent), plus real-world and human-like typos (WikiTypo, R2ATA). Using a unified sampling-and-voting framework (Agent Forest), we evaluate six open-source models (Qwen3-4B/14B, Llama3.1-8B, Mistral-7B, Gemma3-4B/12B) across four benchmarks (GSM8K, MATH, MMLU-Math, MultiArith), with various numbers of agents n from one to 25 (1, 2, 5, 10, 15, 20, 25). Our findings show that (1) Noise type matters: punctuation noise harm scales with its severity, and the human typos remain the dominant bottleneck, yielding the largest gaps to Clean accuracy and the highest ASR even with a large number of agents. And (2) Collaboration reliably improves accuracy as the number of agents, n, increases, with the largest gains from one to five agents and diminishing returns beyond 10 agents. However, the adversarial robustness gap persists regardless of the agent count.
☆ MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Risks in LLMs on Domain Tasks
Ensuring the safety and value alignment of large language models (LLMs) is critical for their deployment. Current alignment efforts primarily target explicit risks such as bias, hate speech, and violence. However, they often fail to address deeper, domain-specific implicit risks and lack a flexible, generalizable framework applicable across diverse specialized fields. Hence, we proposed MENTOR: A MEtacognition-driveN self-evoluTion framework for uncOvering and mitigating implicit Risks in LLMs on Domain Tasks. To address the limitations of labor-intensive human evaluation, we introduce a novel metacognitive self-assessment tool. This enables LLMs to reflect on potential value misalignments in their responses using strategies like perspective-taking and consequential thinking. We also release a supporting dataset of 9,000 risk queries spanning education, finance, and management to enhance domain-specific risk identification. Subsequently, based on the outcomes of metacognitive reflection, the framework dynamically generates supplementary rule knowledge graphs that extend predefined static rule trees. This enables models to actively apply validated rules to future similar challenges, establishing a continuous self-evolution cycle that enhances generalization by reducing maintenance costs and inflexibility of static systems. Finally, we employ activation steering during inference to guide LLMs in following the rules, a cost-effective method to robustly enhance enforcement across diverse contexts. Experimental results show MENTOR's effectiveness: In defensive testing across three vertical domains, the framework substantially reduces semantic attack success rates, enabling a new level of implicit risk mitigation for LLMs. Furthermore, metacognitive assessment not only aligns closely with baseline human evaluators but also delivers more thorough and insightful analysis of LLMs value alignment.
☆ Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora
The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic.
☆ EmoBang: Detecting Emotion From Bengali Texts
Emotion detection from text seeks to identify an individual's emotional or mental state - positive, negative, or neutral - based on linguistic cues. While significant progress has been made for English and other high-resource languages, Bengali remains underexplored despite being the world's fourth most spoken language. The lack of large, standardized datasets classifies Bengali as a low-resource language for emotion detection. Existing studies mainly employ classical machine learning models with traditional feature engineering, yielding limited performance. In this paper, we introduce a new Bengali emotion dataset annotated across eight emotion categories and propose two models for automatic emotion detection: (i) a hybrid Convolutional Recurrent Neural Network (CRNN) model (EmoBangHybrid) and (ii) an AdaBoost-Bidirectional Encoder Representations from Transformers (BERT) ensemble model (EmoBangEnsemble). Additionally, we evaluate six baseline models with five feature engineering techniques and assess zero-shot and few-shot large language models (LLMs) on the dataset. To the best of our knowledge, this is the first comprehensive benchmark for Bengali emotion detection. Experimental results show that EmoBangH and EmoBangE achieve accuracies of 92.86% and 93.69%, respectively, outperforming existing methods and establishing strong baselines for future research.
☆ Importance-Aware Data Selection for Efficient LLM Instruction Tuning AAAI 2026
Instruction tuning plays a critical role in enhancing the performance and efficiency of Large Language Models (LLMs). Its success depends not only on the quality of the instruction data but also on the inherent capabilities of the LLM itself. Some studies suggest that even a small amount of high-quality data can achieve instruction fine-tuning results that are on par with, or even exceed, those from using a full-scale dataset. However, rather than focusing solely on calculating data quality scores to evaluate instruction data, there is a growing need to select high-quality data that maximally enhances the performance of instruction tuning for a given LLM. In this paper, we propose the Model Instruction Weakness Value (MIWV) as a novel metric to quantify the importance of instruction data in enhancing model's capabilities. The MIWV metric is derived from the discrepancies in the model's responses when using In-Context Learning (ICL), helping identify the most beneficial data for enhancing instruction tuning performance. Our experimental results demonstrate that selecting only the top 1\% of data based on MIWV can outperform training on the full dataset. Furthermore, this approach extends beyond existing research that focuses on data quality scoring for data selection, offering strong empirical evidence supporting the effectiveness of our proposed method.
comment: Accepted by AAAI 2026 Oral
☆ Aligning Attention with Human Rationales for Self-Explaining Hate Speech Detection AAAI
The opaque nature of deep learning models presents significant challenges for the ethical deployment of hate speech detection systems. To address this limitation, we introduce Supervised Rational Attention (SRA), a framework that explicitly aligns model attention with human rationales, improving both interpretability and fairness in hate speech classification. SRA integrates a supervised attention mechanism into transformer-based classifiers, optimizing a joint objective that combines standard classification loss with an alignment loss term that minimizes the discrepancy between attention weights and human-annotated rationales. We evaluated SRA on hate speech benchmarks in English (HateXplain) and Portuguese (HateBRXplain) with rationale annotations. Empirically, SRA achieves 2.4x better explainability compared to current baselines, and produces token-level explanations that are more faithful and human-aligned. In terms of fairness, SRA achieves competitive fairness across all measures, with second-best performance in detecting toxic posts targeting identity groups, while maintaining comparable results on other metrics. These findings demonstrate that incorporating human rationales into attention mechanisms can enhance interpretability and faithfulness without compromising fairness.
comment: Accepted at the Annual AAAI Conference on Artificial Intelligence (AAAI26)
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Evaluating LLMs for Anxiety, Depression, and Stress Detection Evaluating Large Language Models for Anxiety, Depression, and Stress Detection: Insights into Prompting Strategies and Synthetic Data
Mental health disorders affect over one-fifth of adults globally, yet detecting such conditions from text remains challenging due to the subtle and varied nature of symptom expression. This study evaluates multiple approaches for mental health detection, comparing Large Language Models (LLMs) such as Llama and GPT with classical machine learning and transformer-based architectures including BERT, XLNet, and Distil-RoBERTa. Using the DAIC-WOZ dataset of clinical interviews, we fine-tuned models for anxiety, depression, and stress classification and applied synthetic data generation to mitigate class imbalance. Results show that Distil-RoBERTa achieved the highest F1 score (0.883) for GAD-2, while XLNet outperformed others on PHQ tasks (F1 up to 0.891). For stress detection, a zero-shot synthetic approach (SD+Zero-Shot-Basic) reached an F1 of 0.884 and ROC AUC of 0.886. Findings demonstrate the effectiveness of transformer-based models and highlight the value of synthetic data in improving recall and generalization. However, careful calibration is required to prevent precision loss. Overall, this work emphasizes the potential of combining advanced language models and data augmentation to enhance automated mental health assessment from text.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ Multilingual Lexical Feature Analysis of Spoken Language for Predicting Major Depression Symptom Severity
Background: Captured between clinical appointments using mobile devices, spoken language has potential for objective, more regular assessment of symptom severity and earlier detection of relapse in major depressive disorder. However, research to date has largely been in non-clinical cross-sectional samples of written language using complex machine learning (ML) approaches with limited interpretability. Methods: We describe an initial exploratory analysis of longitudinal speech data and PHQ-8 assessments from 5,836 recordings of 586 participants in the UK, Netherlands, and Spain, collected in the RADAR-MDD study. We sought to identify interpretable lexical features associated with MDD symptom severity with linear mixed-effects modelling. Interpretable features and high-dimensional vector embeddings were also used to test the prediction performance of four regressor ML models. Results: In English data, MDD symptom severity was associated with 7 features including lexical diversity measures and absolutist language. In Dutch, associations were observed with words per sentence and positive word frequency; no associations were observed in recordings collected in Spain. The predictive power of lexical features and vector embeddings was near chance level across all languages. Limitations: Smaller samples in non-English speech and methodological choices, such as the elicitation prompt, may have also limited the effect sizes observable. A lack of NLP tools in languages other than English restricted our feature choice. Conclusion: To understand the value of lexical markers in clinical research and practice, further research is needed in larger samples across several languages using improved protocols, and ML models that account for within- and between-individual variations in language.
☆ A Picture is Worth a Thousand (Correct) Captions: A Vision-Guided Judge-Corrector System for Multimodal Machine Translation AACL 2025
In this paper, we describe our system under the team name BLEU Monday for the English-to-Indic Multimodal Translation Task at WAT 2025. We participate in the text-only translation tasks for English-Hindi, English-Bengali, English-Malayalam, and English-Odia language pairs. We present a two-stage approach that addresses quality issues in the training data through automated error detection and correction, followed by parameter-efficient model fine-tuning. Our methodology introduces a vision-augmented judge-corrector pipeline that leverages multimodal language models to systematically identify and correct translation errors in the training data. The judge component classifies translations into three categories: correct, visually ambiguous (requiring image context), or mistranslated (poor translation quality). Identified errors are routed to specialized correctors: GPT-4o-mini regenerates captions requiring visual disambiguation, while IndicTrans2 retranslates cases with pure translation quality issues. This automated pipeline processes 28,928 training examples across four languages, correcting an average of 17.1% of captions per language. We then apply Low-Rank Adaptation (LoRA) to fine-tune the IndicTrans2 en-indic 200M distilled model on both original and corrected datasets. Training on corrected data yields consistent improvements, with BLEU score gains of +1.30 for English-Bengali on the evaluation set (42.00 -> 43.30) and +0.70 on the challenge set (44.90 -> 45.60), +0.60 for English-Odia on the evaluation set (41.00 -> 41.60), and +0.10 for English-Hindi on the challenge set (53.90 -> 54.00).
comment: Accepted at The 12th Workshop on Asian Translation, co-located with IJCLNLP-AACL 2025
☆ Beyond English: Toward Inclusive and Scalable Multilingual Machine Translation with LLMs
Large language models have significantly advanced Multilingual Machine Translation (MMT), yet the broad language coverage, consistent translation quality, and English-centric bias remain open challenges. To address these challenges, we introduce \textbf{LMT}, a suite of \textbf{L}arge-scale \textbf{M}ultilingual \textbf{T}ranslation models centered on both Chinese and English, covering 60 languages and 234 translation directions. During development, we identify a previously overlooked phenomenon of \textbf{directional degeneration}, where symmetric multi-way fine-tuning data overemphasize reverse directions (X $\to$ En/Zh), leading to excessive many-to-one mappings and degraded translation quality. We propose \textbf{Strategic Downsampling}, a simple yet effective method to mitigate this degeneration. In addition, we design \textbf{Parallel Multilingual Prompting (PMP)}, which leverages typologically related auxiliary languages to enhance cross-lingual transfer. Through rigorous data curation and refined adaptation strategies, LMT achieves SOTA performance among models of comparable language coverage, with our 4B model (LMT-60-4B) surpassing the much larger Aya-101-13B and NLLB-54B models by a substantial margin. We release LMT in four sizes (0.6B/1.7B/4B/8B) to catalyze future research and provide strong baselines for inclusive, scalable, and high-quality MMT \footnote{\href{https://github.com/NiuTrans/LMT}{https://github.com/NiuTrans/LMT}}.
☆ Automated Circuit Interpretation via Probe Prompting
Mechanistic interpretability aims to understand neural networks by identifying which learned features mediate specific behaviors. Attribution graphs reveal these feature pathways, but interpreting them requires extensive manual analysis -- a single prompt can take approximately 2 hours for an experienced circuit tracer. We present probe prompting, an automated pipeline that transforms attribution graphs into compact, interpretable subgraphs built from concept-aligned supernodes. Starting from a seed prompt and target logit, we select high-influence features, generate concept-targeted yet context-varying probes, and group features by cross-prompt activation signatures into Semantic, Relationship, and Say-X categories using transparent decision rules. Across five prompts including classic "capitals" circuits, probe-prompted subgraphs preserve high explanatory coverage while compressing complexity (Completeness 0.83, mean across circuits; Replacement 0.54). Compared to geometric clustering baselines, concept-aligned groups exhibit higher behavioral coherence: 2.3x higher peak-token consistency (0.425 vs 0.183) and 5.8x higher activation-pattern similarity (0.762 vs 0.130), despite lower geometric compactness. Entity-swap tests reveal a layerwise hierarchy: early-layer features transfer robustly (64% transfer rate, mean layer 6.3), while late-layer Say-X features specialize for output promotion (mean layer 16.4), supporting a backbone-and-specialization view of transformer computation. We release code (https://github.com/peppinob-ol/attribution-graph-probing), an interactive demo (https://huggingface.co/spaces/Peppinob/attribution-graph-probing), and minimal artifacts enabling immediate reproduction and community adoption.
comment: 27 pages, 5 figures, 3 tables. Code and interactive demo available
☆ SCOPE: Intrinsic Semantic Space Control for Mitigating Copyright Infringement in LLMs AAAI 2026
Large language models sometimes inadvertently reproduce passages that are copyrighted, exposing downstream applications to legal risk. Most existing studies for inference-time defences focus on surface-level token matching and rely on external blocklists or filters, which add deployment complexity and may overlook semantically paraphrased leakage. In this work, we reframe copyright infringement mitigation as intrinsic semantic-space control and introduce SCOPE, an inference-time method that requires no parameter updates or auxiliary filters. Specifically, the sparse autoencoder (SAE) projects hidden states into a high-dimensional, near-monosemantic space; benefiting from this representation, we identify a copyright-sensitive subspace and clamp its activations during decoding. Experiments on widely recognized benchmarks show that SCOPE mitigates copyright infringement without degrading general utility. Further interpretability analyses confirm that the isolated subspace captures high-level semantics.
comment: Accepted by the AAAI 2026 (Main Track)
☆ HLPD: Aligning LLMs to Human Language Preference for Machine-Revised Text Detection AAAI'26
To prevent misinformation and social issues arising from trustworthy-looking content generated by LLMs, it is crucial to develop efficient and reliable methods for identifying the source of texts. Previous approaches have demonstrated exceptional performance in detecting texts fully generated by LLMs. However, these methods struggle when confronting more advanced LLM output or text with adversarial multi-task machine revision, especially in the black-box setting, where the generating model is unknown. To address this challenge, grounded in the hypothesis that human writing possesses distinctive stylistic patterns, we propose Human Language Preference Detection (HLPD). HLPD employs a reward-based alignment process, Human Language Preference Optimization (HLPO), to shift the scoring model's token distribution toward human-like writing, making the model more sensitive to human writing, therefore enhancing the identification of machine-revised text. We test HLPD in an adversarial multi-task evaluation framework that leverages a five-dimensional prompt generator and multiple advanced LLMs to create diverse revision scenarios. When detecting texts revised by GPT-series models, HLPD achieves a 15.11% relative improvement in AUROC over ImBD, surpassing Fast-DetectGPT by 45.56%. When evaluated on texts generated by advanced LLMs, HLPD achieves the highest average AUROC, exceeding ImBD by 5.53% and Fast-DetectGPT by 34.14%. Code will be made available at https://github.com/dfq2021/HLPD.
comment: 9 pages, 3 figures, accepted by AAAI'26
☆ RPTS: Tree-Structured Reasoning Process Scoring for Faithful Multimodal Evaluation
Large Vision-Language Models (LVLMs) excel in multimodal reasoning and have shown impressive performance on various multimodal benchmarks. However, most of these benchmarks evaluate models primarily through multiple-choice or short-answer formats, which do not take the reasoning process into account. Although some benchmarks assess the reasoning process, their methods are often overly simplistic and only examine reasoning when answers are incorrect. This approach overlooks scenarios where flawed reasoning leads to correct answers. In addition, these benchmarks do not consider the impact of intermodal relationships on reasoning. To address this issue, we propose the Reasoning Process Tree Score (RPTS), a tree structure-based metric to assess reasoning processes. Specifically, we organize the reasoning steps into a reasoning tree and leverage its hierarchical information to assign weighted faithfulness scores to each reasoning step. By dynamically adjusting these weights, RPTS not only evaluates the overall correctness of the reasoning, but also pinpoints where the model fails in the reasoning. To validate RPTS in real-world multimodal scenarios, we construct a new benchmark, RPTS-Eval, comprising 374 images and 390 reasoning instances. Each instance includes reliable visual-textual clues that serve as leaf nodes of the reasoning tree. Furthermore, we define three types of intermodal relationships to investigate how intermodal interactions influence the reasoning process. We evaluated representative LVLMs (e.g., GPT4o, Llava-Next), uncovering their limitations in multimodal reasoning and highlighting the differences between open-source and closed-source commercial LVLMs. We believe that this benchmark will contribute to the advancement of research in the field of multimodal reasoning.
☆ EduGuardBench: A Holistic Benchmark for Evaluating the Pedagogical Fidelity and Adversarial Safety of LLMs as Simulated Teachers AAAI2026
Large Language Models for Simulating Professions (SP-LLMs), particularly as teachers, are pivotal for personalized education. However, ensuring their professional competence and ethical safety is a critical challenge, as existing benchmarks fail to measure role-playing fidelity or address the unique teaching harms inherent in educational scenarios. To address this, we propose EduGuardBench, a dual-component benchmark. It assesses professional fidelity using a Role-playing Fidelity Score (RFS) while diagnosing harms specific to the teaching profession. It also probes safety vulnerabilities using persona-based adversarial prompts targeting both general harms and, particularly, academic misconduct, evaluated with metrics including Attack Success Rate (ASR) and a three-tier Refusal Quality assessment. Our extensive experiments on 14 leading models reveal a stark polarization in performance. While reasoning-oriented models generally show superior fidelity, incompetence remains the dominant failure mode across most models. The adversarial tests uncovered a counterintuitive scaling paradox, where mid-sized models can be the most vulnerable, challenging monotonic safety assumptions. Critically, we identified a powerful Educational Transformation Effect: the safest models excel at converting harmful requests into teachable moments by providing ideal Educational Refusals. This capacity is strongly negatively correlated with ASR, revealing a new dimension of advanced AI safety. EduGuardBench thus provides a reproducible framework that moves beyond siloed knowledge tests toward a holistic assessment of professional, ethical, and pedagogical alignment, uncovering complex dynamics essential for deploying trustworthy AI in education. See https://github.com/YL1N/EduGuardBench for Materials.
comment: 22 pages, 9 figures, accepted by AAAI2026 as oral paper
☆ Inclusion of Role into Named Entity Recognition and Ranking
Most of the Natural Language Processing sys- tems are involved in entity-based processing for several tasks like Information Extraction, Question-Answering, Text-Summarization and so on. A new challenge comes when entities play roles according to their act or attributes in certain context. Entity Role Detection is the task of assigning such roles to the entities. Usu- ally real-world entities are of types: person, lo- cation and organization etc. Roles could be con- sidered as domain-dependent subtypes of these types. In the cases, where retrieving a subset of entities based on their roles is needed, poses the problem of defining the role and entities having those roles. This paper presents the study of study of solving Entity Role Detection prob- lem by modeling it as Named Entity Recogni- tion (NER) and Entity Retrieval/Ranking task. In NER, these roles could be considered as mutually exclusive classes and standard NER methods like sequence tagging could be used. For Entity Retrieval, Roles could be formulated as Query and entities as Collection on which the query needs to be executed. The aspect of Entity Retrieval task, which is different than document retrieval task is that the entities and roles against which they need to be retrieved are indirectly described. We have formulated au- tomated ways of learning representative words and phrases and building representations of roles and entities using them. We have also explored different contexts like sentence and document. Since the roles depend upon con- text, so it is not always possible to have large domain-specific dataset or knowledge bases for learning purposes, so we have tried to exploit the information from small dataset in domain- agnostic way.
comment: MTP Paper
☆ CLiFT-ASR: A Cross-Lingual Fine-Tuning Framework for Low-Resource Taiwanese Hokkien Speech Recognition
Automatic speech recognition (ASR) for low-resource languages such as Taiwanese Hokkien is difficult due to the scarcity of annotated data. However, direct fine-tuning on Han-character transcriptions often fails to capture detailed phonetic and tonal cues, while training only on romanization lacks lexical and syntactic coverage. In addition, prior studies have rarely explored staged strategies that integrate both annotation types. To address this gap, we present CLiFT-ASR, a cross-lingual fine-tuning framework that builds on Mandarin HuBERT models and progressively adapts them to Taiwanese Hokkien. The framework employs a two-stage process in which it first learns acoustic and tonal representations from phonetic Tai-lo annotations and then captures vocabulary and syntax from Han-character transcriptions. This progressive adaptation enables effective alignment between speech sounds and orthographic structures. Experiments on the TAT-MOE corpus demonstrate that CLiFT-ASR achieves a 24.88\% relative reduction in character error rate (CER) compared with strong baselines. The results indicate that CLiFT-ASR provides an effective and parameter-efficient solution for Taiwanese Hokkien ASR and that it has potential to benefit other low-resource language scenarios.
comment: Accepted for an oral presentation at the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
☆ Beyond Plain Demos: A Demo-centric Anchoring Paradigm for In-Context Learning in Alzheimer's Disease Detection AAAI
Detecting Alzheimer's disease (AD) from narrative transcripts challenges large language models (LLMs): pre-training rarely covers this out-of-distribution task, and all transcript demos describe the same scene, producing highly homogeneous contexts. These factors cripple both the model's built-in task knowledge (\textbf{task cognition}) and its ability to surface subtle, class-discriminative cues (\textbf{contextual perception}). Because cognition is fixed after pre-training, improving in-context learning (ICL) for AD detection hinges on enriching perception through better demonstration (demo) sets. We demonstrate that standard ICL quickly saturates, its demos lack diversity (context width) and fail to convey fine-grained signals (context depth), and that recent task vector (TV) approaches improve broad task adaptation by injecting TV into the LLMs' hidden states (HSs), they are ill-suited for AD detection due to the mismatch of injection granularity, strength and position. To address these bottlenecks, we introduce \textbf{DA4ICL}, a demo-centric anchoring framework that jointly expands context width via \emph{\textbf{Diverse and Contrastive Retrieval}} (DCR) and deepens each demo's signal via \emph{\textbf{Projected Vector Anchoring}} (PVA) at every Transformer layer. Across three AD benchmarks, DA4ICL achieves large, stable gains over both ICL and TV baselines, charting a new paradigm for fine-grained, OOD and low-resource LLM adaptation.
comment: Accepted to the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Main Technical Track (Oral)
☆ Learning to Focus: Focal Attention for Selective and Scalable Transformers
Attention is a core component of transformer architecture, whether encoder-only, decoder-only, or encoder-decoder model. However, the standard softmax attention often produces noisy probability distribution, which can impair effective feature selection at every layer of these models, particularly for long contexts. We propose Focal Attention, a simple yet effective modification that sharpens the attention distribution by controlling the softmax temperature, either as a fixed hyperparameter or as a learnable parameter during training. This sharpening enables the model to concentrate on the most relevant tokens while suppressing irrelevant ones. Empirically, Focal Attention scales more favorably than standard transformer with respect to model size, training data, and context length. Across diverse benchmarks, it achieves the same accuracy with up to 42% fewer parameters or 33% less training data. On long-context tasks, it delivers substantial relative improvements ranging from 17% to 82%, demonstrating its effectiveness in real world applications.
☆ SAFENLIDB: A Privacy-Preserving Safety Alignment Framework for LLM-based Natural Language Database Interfaces
The rapid advancement of Large Language Models (LLMs) has driven significant progress in Natural Language Interface to Database (NLIDB). However, the widespread adoption of LLMs has raised critical privacy and security concerns. During interactions, LLMs may unintentionally expose confidential database contents or be manipulated by attackers to exfiltrate data through seemingly benign queries. While current efforts typically rely on rule-based heuristics or LLM agents to mitigate this leakage risk, these methods still struggle with complex inference-based attacks, suffer from high false positive rates, and often compromise the reliability of SQL queries. To address these challenges, we propose \textsc{SafeNlidb}, a novel privacy-security alignment framework for LLM-based NLIDB. The framework features an automated pipeline that generates hybrid chain-of-thought interaction data from scratch, seamlessly combining implicit security reasoning with SQL generation. Additionally, we introduce reasoning warm-up and alternating preference optimization to overcome the multi-preference oscillations of Direct Preference Optimization (DPO), enabling LLMs to produce security-aware SQL through fine-grained reasoning without the need for human-annotated preference data. Extensive experiments demonstrate that our method outperforms both larger-scale LLMs and ideal-setting baselines, achieving significant security improvements while preserving high utility.WARNING: This work may contain content that is offensive and harmful!
comment: 26 pages, 14 figures, 22 tables
☆ Sensitivity of Small Language Models to Fine-tuning Data Contamination
Small Language Models (SLMs) are increasingly being deployed in resource-constrained environments, yet their behavioral robustness to data contamination during instruction tuning remains poorly understood. We systematically investigate the contamination sensitivity of 23 SLMs (270M to 4B parameters) across multiple model families by measuring susceptibility to syntactic and semantic transformation types during instruction tuning: syntactic transformations (character and word reversal) and semantic transformations (irrelevant and counterfactual responses), each applied at contamination levels of 25\%, 50\%, 75\%, and 100\%. Our results reveal fundamental asymmetries in vulnerability patterns: syntactic transformations cause catastrophic performance degradation, with character reversal producing near-complete failure across all models regardless of size or family, while semantic transformations demonstrate distinct threshold behaviors and greater resilience in core linguistic capabilities. Critically, we discover a ``\textit{capability curse}" where larger, more capable models become more susceptible to learning semantic corruptions, effectively following harmful instructions more readily, while our analysis of base versus instruction-tuned variants reveals that alignment provides inconsistent robustness benefits, sometimes even reducing resilience. Our work establishes three core contributions: (1) empirical evidence of SLMs' disproportionate vulnerability to syntactic pattern contamination, (2) identification of asymmetric sensitivity patterns between syntactic and semantic transformations, and (3) systematic evaluation protocols for contamination robustness assessment. These findings have immediate deployment implications, suggesting that current robustness assumptions may not hold for smaller models and highlighting the need for contamination-aware training protocols.
☆ Rethinking Retrieval-Augmented Generation for Medicine: A Large-Scale, Systematic Expert Evaluation and Practical Insights
Large language models (LLMs) are transforming the landscape of medicine, yet two fundamental challenges persist: keeping up with rapidly evolving medical knowledge and providing verifiable, evidence-grounded reasoning. Retrieval-augmented generation (RAG) has been widely adopted to address these limitations by supplementing model outputs with retrieved evidence. However, whether RAG reliably achieves these goals remains unclear. Here, we present the most comprehensive expert evaluation of RAG in medicine to date. Eighteen medical experts contributed a total of 80,502 annotations, assessing 800 model outputs generated by GPT-4o and Llama-3.1-8B across 200 real-world patient and USMLE-style queries. We systematically decomposed the RAG pipeline into three components: (i) evidence retrieval (relevance of retrieved passages), (ii) evidence selection (accuracy of evidence usage), and (iii) response generation (factuality and completeness of outputs). Contrary to expectation, standard RAG often degraded performance: only 22% of top-16 passages were relevant, evidence selection remained weak (precision 41-43%, recall 27-49%), and factuality and completeness dropped by up to 6% and 5%, respectively, compared with non-RAG variants. Retrieval and evidence selection remain key failure points for the model, contributing to the overall performance drop. We further show that simple yet effective strategies, including evidence filtering and query reformulation, substantially mitigate these issues, improving performance on MedMCQA and MedXpertQA by up to 12% and 8.2%, respectively. These findings call for re-examining RAG's role in medicine and highlight the importance of stage-aware evaluation and deliberate system design for reliable medical LLM applications.
comment: 34 pages, 6 figures
☆ Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View AAAI 2026
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.
comment: Accpeted by AAAI 2026
☆ Sentiment Analysis On YouTube Comments Using Machine Learning Techniques Based On Video Games Content
The rapid evolution of the gaming industry, driven by technological advancements and a burgeoning community, necessitates a deeper understanding of user sentiments, especially as expressed on popular social media platforms like YouTube. This study presents a sentiment analysis on video games based on YouTube comments, aiming to understand user sentiments within the gaming community. Utilizing YouTube API, comments related to various video games were collected and analyzed using the TextBlob sentiment analysis tool. The pre-processed data underwent classification using machine learning algorithms, including Na\"ive Bayes, Logistic Regression, and Support Vector Machine (SVM). Among these, SVM demonstrated superior performance, achieving the highest classification accuracy across different datasets. The analysis spanned multiple popular gaming videos, revealing trends and insights into user preferences and critiques. The findings underscore the importance of advanced sentiment analysis in capturing the nuanced emotions expressed in user comments, providing valuable feedback for game developers to enhance game design and user experience. Future research will focus on integrating more sophisticated natural language processing techniques and exploring additional data sources to further refine sentiment analysis in the gaming domain.
comment: 6 pages, 7 figures, 2025 IEEE 9th International Conference on Software Engineering & Computer Systems
☆ Place Matters: Comparing LLM Hallucination Rates for Place-Based Legal Queries
How do we make a meaningful comparison of a large language model's knowledge of the law in one place compared to another? Quantifying these differences is critical to understanding if the quality of the legal information obtained by users of LLM-based chatbots varies depending on their location. However, obtaining meaningful comparative metrics is challenging because legal institutions in different places are not themselves easily comparable. In this work we propose a methodology to obtain place-to-place metrics based on the comparative law concept of functionalism. We construct a dataset of factual scenarios drawn from Reddit posts by users seeking legal advice for family, housing, employment, crime and traffic issues. We use these to elicit a summary of a law from the LLM relevant to each scenario in Los Angeles, London and Sydney. These summaries, typically of a legislative provision, are manually evaluated for hallucinations. We show that the rate of hallucination of legal information by leading closed-source LLMs is significantly associated with place. This suggests that the quality of legal solutions provided by these models is not evenly distributed across geography. Additionally, we show a strong negative correlation between hallucination rate and the frequency of the majority response when the LLM is sampled multiple times, suggesting a measure of uncertainty of model predictions of legal facts.
☆ Textual Self-attention Network: Test-Time Preference Optimization through Textual Gradient-based Attention AAAI2026
Large Language Models (LLMs) have demonstrated remarkable generalization capabilities, but aligning their outputs with human preferences typically requires expensive supervised fine-tuning. Recent test-time methods leverage textual feedback to overcome this, but they often critique and revise a single candidate response, lacking a principled mechanism to systematically analyze, weigh, and synthesize the strengths of multiple promising candidates. Such a mechanism is crucial because different responses may excel in distinct aspects (e.g., clarity, factual accuracy, or tone), and combining their best elements may produce a far superior outcome. This paper proposes the Textual Self-Attention Network (TSAN), a new paradigm for test-time preference optimization that requires no parameter updates. TSAN emulates self-attention entirely in natural language to overcome this gap: it analyzes multiple candidates by formatting them into textual keys and values, weighs their relevance using an LLM-based attention module, and synthesizes their strengths into a new, preference-aligned response under the guidance of the learned textual attention. This entire process operates in a textual gradient space, enabling iterative and interpretable optimization. Empirical evaluations demonstrate that with just three test-time iterations on a base SFT model, TSAN outperforms supervised models like Llama-3.1-70B-Instruct and surpasses the current state-of-the-art test-time alignment method by effectively leveraging multiple candidate solutions.
comment: AAAI2026
☆ Steering LLMs toward Korean Local Speech: Iterative Refinement Framework for Faithful Dialect Translation LREC 2026
Standard-to-dialect machine translation remains challenging due to a persistent dialect gap in large language models and evaluation distortions inherent in n-gram metrics, which favor source copying over authentic dialect translation. In this paper, we propose the dialect refinement (DIA-REFINE) framework, which guides LLMs toward faithful target dialect outputs through an iterative loop of translation, verification, and feedback using external dialect classifiers. To address the limitations of n-gram-based metrics, we introduce the dialect fidelity score (DFS) to quantify linguistic shift and the target dialect ratio (TDR) to measure the success of dialect translation. Experiments on Korean dialects across zero-shot and in-context learning baselines demonstrate that DIA-REFINE consistently enhances dialect fidelity. The proposed metrics distinguish between False Success cases, where high n-gram scores obscure failures in dialectal translation, and True Attempt cases, where genuine attempts at dialectal translation yield low n-gram scores. We also observed that models exhibit varying degrees of responsiveness to the framework, and that integrating in-context examples further improves the translation of dialectal expressions. Our work establishes a robust framework for goal-directed, inclusive dialect translation, providing both rigorous evaluation and critical insights into model performance.
comment: Submitted to LREC 2026
☆ How AI Fails: An Interactive Pedagogical Tool for Demonstrating Dialectal Bias in Automated Toxicity Models
Now that AI-driven moderation has become pervasive in everyday life, we often hear claims that "the AI is biased". While this is often said jokingly, the light-hearted remark reflects a deeper concern. How can we be certain that an online post flagged as "inappropriate" was not simply the victim of a biased algorithm? This paper investigates this problem using a dual approach. First, I conduct a quantitative benchmark of a widely used toxicity model (unitary/toxic-bert) to measure performance disparity between text in African-American English (AAE) and Standard American English (SAE). The benchmark reveals a clear, systematic bias: on average, the model scores AAE text as 1.8 times more toxic and 8.8 times higher for "identity hate". Second, I introduce an interactive pedagogical tool that makes these abstract biases tangible. The tool's core mechanic, a user-controlled "sensitivity threshold," demonstrates that the biased score itself is not the only harm; instead, the more-concerning harm is the human-set, seemingly neutral policy that ultimately operationalises discrimination. This work provides both statistical evidence of disparate impact and a public-facing tool designed to foster critical AI literacy.
comment: 9 pages, 5 figures, 4 tables, 14 references
☆ HiMo-CLIP: Modeling Semantic Hierarchy and Monotonicity in Vision-Language Alignment AAAI 2026
Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.
comment: Accepted by AAAI 2026 as an Oral Presentation (13 pages, 7 figures, 7 tables)
☆ Adaptive Testing for Segmenting Watermarked Texts From Language Models
The rapid adoption of large language models (LLMs), such as GPT-4 and Claude 3.5, underscores the need to distinguish LLM-generated text from human-written content to mitigate the spread of misinformation and misuse in education. One promising approach to address this issue is the watermark technique, which embeds subtle statistical signals into LLM-generated text to enable reliable identification. In this paper, we first generalize the likelihood-based LLM detection method of a previous study by introducing a flexible weighted formulation, and further adapt this approach to the inverse transform sampling method. Moving beyond watermark detection, we extend this adaptive detection strategy to tackle the more challenging problem of segmenting a given text into watermarked and non-watermarked substrings. In contrast to the approach in a previous study, which relies on accurate estimation of next-token probabilities that are highly sensitive to prompt estimation, our proposed framework removes the need for precise prompt estimation. Extensive numerical experiments demonstrate that the proposed methodology is both effective and robust in accurately segmenting texts containing a mixture of watermarked and non-watermarked content.
comment: 13 pages, 3 figures, accepted for publication in STAT, October 28, 2025
GRAPH-GRPO-LEX: Contract Graph Modeling and Reinforcement Learning with Group Relative Policy Optimization
Contracts are complex documents featuring detailed formal structures, explicit and implicit dependencies and rich semantic content. Given these document properties, contract drafting and manual examination of contracts have proven to be both arduous and susceptible to errors. This work aims to simplify and automate the task of contract review and analysis using a novel framework for transforming legal contracts into structured semantic graphs, enabling computational analysis and data-driven insights. We introduce a detailed ontology mapping core legal contract elements to their graph-theoretic equivalents of nodes and edges. We then present a reinforcement learning based Large Language Model (LLM) framework for segmentation and extraction of entities and relationships from contracts. Our method, GRAPH-GRPO-LEX, incorporates both LLMs and reinforcement learning with group relative policy optimization (GRPO). By applying a carefully drafted reward function of graph metrics, we demonstrate the ability to automatically identify direct relationships between clauses, and even uncover hidden dependencies. Our introduction of the gated GRPO approach shows a strong learning signal and can move contract analysis from a linear, manual reading process to an easily visualized graph. This allows for a more dynamic analysis, including building the groundwork for contract linting similar to what is now practiced in software engineering.
☆ Duality-based Mode Operations and Pyramid Multilayer Mapping for Rhetorical Modes
Rhetorical modes are useful in both academic and non-academic writing, and can be subjects to be studied within linguistic research and computational modeling. Establishing a conceptual bridge among these domains could enable each to benefit from the others. This paper proposes duality-based mode operations (split-unite, forward-backward, expansion-reduction and orthogonal dualities) to expand the set of rhetorical modes, introducing generated modes like combination and generalization, thereby enhancing epistemic diversity across multiple applications. It further presents a pyramid multilayer mapping framework (e.g., three layers from the rhetorical model layer, to cognitive layer, and to epistemic layers) that reduces the resulting cognitive complexity. The degrees of expressive diversity and complexity reduction are quantified through binomial combinatorics and Shannon entropy analysis. A Marginal Rhetorical Bit (MRB) is identified, permitting the definition of a rhetorical-scalable parameter that measures expressive growth speed in bits per stage. A direct entropy measure shows that hierarchical selection over smaller subsets markedly reduces choice uncertainty compared with flat selection across all modes. These considerations appear to transform static and non-measurable rhetorical taxonomies into more dynamic and more measurable systems for discourse design. From this work, it would be possible to identify a pathway for future AI systems to operate not only on language tokens but on layered rhetorical reasoning structures, bridging linguistic, pedagogical, academic, and computational research
☆ MedVoiceBias: A Controlled Study of Audio LLM Behavior in Clinical Decision-Making
As large language models transition from text-based interfaces to audio interactions in clinical settings, they might introduce new vulnerabilities through paralinguistic cues in audio. We evaluated these models on 170 clinical cases, each synthesized into speech from 36 distinct voice profiles spanning variations in age, gender, and emotion. Our findings reveal a severe modality bias: surgical recommendations for audio inputs varied by as much as 35% compared to identical text-based inputs, with one model providing 80% fewer recommendations. Further analysis uncovered age disparities of up to 12% between young and elderly voices, which persisted in most models despite chain-of-thought prompting. While explicit reasoning successfully eliminated gender bias, the impact of emotion was not detected due to poor recognition performance. These results demonstrate that audio LLMs are susceptible to making clinical decisions based on a patient's voice characteristics rather than medical evidence, a flaw that risks perpetuating healthcare disparities. We conclude that bias-aware architectures are essential and urgently needed before the clinical deployment of these models.
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ Mixed Signals: Understanding Model Disagreement in Multimodal Empathy Detection
Multimodal models play a key role in empathy detection, but their performance can suffer when modalities provide conflicting cues. To understand these failures, we examine cases where unimodal and multimodal predictions diverge. Using fine-tuned models for text, audio, and video, along with a gated fusion model, we find that such disagreements often reflect underlying ambiguity, as evidenced by annotator uncertainty. Our analysis shows that dominant signals in one modality can mislead fusion when unsupported by others. We also observe that humans, like models, do not consistently benefit from multimodal input. These insights position disagreement as a useful diagnostic signal for identifying challenging examples and improving empathy system robustness.
♻ ☆ REINFORCE++: Stabilizing Critic-Free Policy Optimization with Global Advantage Normalization
Reinforcement Learning from Human Feedback~(RLHF) plays a crucial role in aligning Large Language Models~(LLMs). The dominant algorithm, Proximal Policy Optimization~(PPO), employs a critic network to estimate advantages, which introduces significant computational and memory overhead. To address this, a family of critic-free algorithms (e.g., GRPO, RLOO) has emerged. However, these methods typically rely on \textit{prompt-level (local)} advantage normalization, which suffers from inaccurate advantage estimation, a tendency to overfit, and, as we show, is a theoretically biased estimator. To solve these challenges, we introduce REINFORCE++, a critic-free framework centered on \textbf{Global Advantage Normalization}. By normalizing advantages across the entire global batch rather than small, prompt-specific groups, our method provides a more stable and theoretically sound, \textit{effectively unbiased} estimate (whose bias vanishes as batch size increases). We introduce two variants: REINFORCE++, a highly efficient and general algorithm ($k \ge 1$) for general-domain RLHF, and REINFORCE++ /w baseline, a robust group-sampling variant ($k > 1$) for complex reasoning tasks. Our empirical evaluation demonstrates that each variant shows superior stability and performance in its respective domain, outperforming existing methods and even PPO in complex agentic settings.
comment: refactor
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ When Language Shapes Thought: Cross-Lingual Transfer of Factual Knowledge in Question Answering CIKM2025
Multilingual large language models (LLMs) offer promising opportunities for cross-lingual information access, yet their use of factual knowledge remains highly sensitive to the input language. Prior work has addressed this through English prompting and evaluation, assuming that English-based reasoning is universally beneficial. In this work, we challenge that assumption by exploring factual knowledge transfer from non-English to English through the lens of Language and Thought Theory. We introduce Language-to-Thought (L2T) prompting, which aligns the model's internal ''thinking'' language with the source of knowledge. Across three languages and four models, L2T consistently outperforms English-based reasoning, reversing the expected advantage of English prompts. Our code is available at https://github.com/GeomeunByeol/Language2Thought.
comment: Accepted at CIKM2025 (Expanded version)
♻ ☆ ZK-SenseLM: Verifiable Large-Model Wireless Sensing with Selective Abstention and Zero-Knowledge Attestation
ZK-SenseLM is a secure and auditable wireless sensing framework that pairs a large-model encoder for Wi-Fi channel state information (and optionally mmWave radar or RFID) with a policy-grounded decision layer and end-to-end zero-knowledge proofs of inference. The encoder uses masked spectral pretraining with phase-consistency regularization, plus a light cross-modal alignment that ties RF features to compact, human-interpretable policy tokens. To reduce unsafe actions under distribution shift, we add a calibrated selective-abstention head; the chosen risk-coverage operating point is registered and bound into the proof. We implement a four-stage proving pipeline: (C1) feature sanity and commitment, (C2) threshold and version binding, (C3) time-window binding, and (C4) PLONK-style proofs that the quantized network, given the committed window, produced the logged action and confidence. Micro-batched proving amortizes cost across adjacent windows, and a gateway option offloads proofs from low-power devices. The system integrates with differentially private federated learning and on-device personalization without weakening verifiability: model hashes and the registered threshold are part of each public statement. Across activity, presence or intrusion, respiratory proxy, and RF fingerprinting tasks, ZK-SenseLM improves macro-F1 and calibration, yields favorable coverage-risk curves under perturbations, and rejects tamper and replay with compact proofs and fast verification.
comment: 45 pages
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ CoSense-LLM: Semantics at the Edge with Cost- and Uncertainty-Aware Cloud-Edge Cooperation
We present CoSense-LLM, an edge-first framework that turns continuous multimodal sensor streams (for example Wi-Fi CSI, IMU, audio, RFID, and lightweight vision) into compact, verifiable semantic tokens and coordinates with large language models under explicit latency, energy, bandwidth, and privacy constraints. CoSense-LLM has four parts: (i) SenseFusion, a lightweight encoder that aligns sensor embeddings with language and compresses them into short discrete code sequences; (ii) Edge-RAG, a local hybrid retrieval layer that grounds generation in site specific policies and notes; (iii) PromptRouter, a cost and uncertainty aware policy that selects edge only generation, edge plus retrieval, or compact cloud escalation; and (iv) Secure Execution, an auditable redaction path that enforces data minimization so raw waveforms never leave the device. The system works with modern serving optimizations, including paged or streaming KV caches, FlashAttention style kernels, speculative decoding, and quantized LoRA adapters, and supports on device personalization and federated updates under non IID drift. Across home, office, and clinic deployments, CoSense-LLM delivers grounded explanations while meeting tight service level objectives: it sustains sub second (p95) end to end latency on edge dominant paths, reduces inter tier token and bandwidth costs by preferring local retrieval grounded responses, and preserves privacy by transmitting only discrete codes and redacted metadata. Ablations show that Edge-RAG improves factual consistency and reduces contradictions, calibrated uncertainty enables selective abstention and controlled escalations, and KV plus decoding accelerators lower energy per decision. The results support an edge first design that treats semantics, privacy, and predictable latency as co equal goals for large model deployments in interference prone environments.
comment: 19 pages,8 figures
♻ ☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
The relationship between tokenizer algorithm (e.g., Byte-Pair Encoding (BPE), Unigram), morphological alignment, tokenization quality (e.g., compression efficiency), and downstream performance remains largely unclear, particularly for languages with complex morphology. In this paper, we conduct a comprehensive evaluation of tokenizers using small-sized BERT models -- from pre-training through fine-tuning -- for Telugu (agglutinative), along with preliminary evaluation in Hindi (primarily fusional with some agglutination) and English (fusional). To evaluate morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal two key findings for Telugu. First, the choice of tokenizer algorithm is the most significant factor influencing performance, with Unigram-based tokenizers consistently outperforming BPE across most settings. Second, while better morphological alignment shows a moderate, positive correlation with performance on text classification and structure prediction tasks, its impact is secondary to the tokenizer algorithm. Notably, hybrid approaches that use morphological information for pre-segmentation significantly boost the performance of BPE, though not Unigram. Our results further showcase the need for comprehensive intrinsic evaluation metrics for tokenizers that could explain downstream performance trends consistently.
♻ ☆ All Entities are Not Created Equal: Examining the Long Tail for Ultra-Fine Entity Typing
Due to their capacity to acquire world knowledge from large corpora, pre-trained language models (PLMs) are extensively used in ultra-fine entity typing tasks where the space of labels is extremely large. In this work, we explore the limitations of the knowledge acquired by PLMs by proposing a novel heuristic to approximate the pre-training distribution of entities when the pre-training data is unknown. Then, we systematically demonstrate that entity-typing approaches that rely solely on the parametric knowledge of PLMs struggle significantly with entities at the long tail of the pre-training distribution, and that knowledge-infused approaches can account for some of these shortcomings. Our findings suggest that we need to go beyond PLMs to produce solutions that perform well for infrequent entities.
♻ ☆ Evaluating the Ability of Large Language Models to Reason about Cardinal Directions, Revisited IJCAI
We investigate the abilities of 28 Large language Models (LLMs) to reason about cardinal directions (CDs) using a benchmark generated from a set of templates, extensively testing an LLM's ability to determine the correct CD given a particular scenario. The templates allow for a number of degrees of variation such as means of locomotion of the agent involved, and whether set in the first, second or third person. Even the newer Large Reasoning Models are unable to reliably determine the correct CD for all questions. This paper summarises and extends earlier work presented at COSIT-24.
comment: 8 pages, 5 figures. Accepted at QR 2025 : 38th International Workshop on Qualitative Reasoning at IJCAI. arXiv admin note: substantial text overlap with arXiv:2406.16528
♻ ☆ DeepDiver: Adaptive Search Intensity Scaling via Open-Web Reinforcement Learning NeurIPS 2025
Information seeking demands iterative evidence gathering and reflective reasoning, yet large language models (LLMs) still struggle with it in open-web question answering. Existing prompting and supervised fine-tuning (SFT) methods remain fixed by prompt rules or training corpora, and are usually benchmarked only on well-structured wiki sources, limiting real-world adaptability. We introduce WebPuzzle, a 24k-sample training and 275-sample test benchmark that evaluates information seeking on the live internet, across both wiki and open-domain queries. Leveraging 7k WebPuzzle instances, we develop DeepDiver, a reinforcement-learning (RL) framework that cultivates Search Intensity Scaling (SIS)-an emergent ability to escalate search frequency and depth instead of settling on overconfident, under-evidenced answers. With SIS, Qwen2.5-7B-Instruct and Pangu-7B-Reasoner attain performance on real-web tasks comparable to the 671B-parameter DeepSeek-R1. We detail DeepDiver's curriculum from cold-start SFT to a well designed RL procedure, and show that its seeking policy generalized from closed-ended queries to open-ended generation such as long-form writing. Our results advance adaptive information seeking in LLMs and provide a rigorous benchmark for future work.
comment: Accepted as NeurIPS 2025 Spotlight
♻ ☆ Shared Heritage, Distinct Writing: Rethinking Resource Selection for East Asian Historical Documents AACL 2025
Historical documents in the Sinosphere are known to share common formats and practices, particularly in veritable records compiled by court historians. This shared linguistic heritage has led researchers to use Classical Chinese resources for cross-lingual transfer when processing historical documents from Korea and Japan, which remain relatively low-resource. In this paper, we question the assumption of cross-lingual transferability from Classical Chinese to Hanja and Kanbun, the ancient written languages of Korea and Japan, respectively. Our experiments across machine translation, named entity recognition, and punctuation restoration tasks show minimal impact of Classical Chinese datasets on language model performance for ancient Korean documents written in Hanja, with performance differences within $\pm{}0.0068$ F1-score for sequence labeling tasks and up to $+0.84$ BLEU score for translation. These limitations persist consistently across various model sizes, architectures, and domain-specific datasets. Our analysis reveals that the benefits of Classical Chinese resources diminish rapidly as local language data increases for Hanja, while showing substantial improvements only in extremely low-resource scenarios for both Korean and Japanese historical documents. These findings emphasize the need for careful empirical validation rather than assuming benefits from indiscriminate cross-lingual transfer.
comment: IJCNLP-AACL 2025 Findings
♻ ☆ How Efficient Are Diffusion Language Models? A Critical Examination of Efficiency Evaluation Practices
Diffusion language models (DLMs) have emerged as a promising alternative to the long-dominant autoregressive (AR) paradigm, offering a parallelable decoding process that could yield greater efficiency. Yet, in practice, current open-source DLMs often underperform their AR counterparts in speed, limiting their real-world utility. This work presents a systematic study of DLM efficiency, identifying key issues in prior evaluation methods. Through empirical benchmarking and a theoretical analysis, we demonstrate that AR models generally achieve higher throughput, while DLMs consistently lag. We also investigate acceleration strategies, finding that techniques like dual cache and parallel decoding mainly offer gains at small batch sizes, with their benefits diminishing upon scaling. Our findings underscore the necessity of robust evaluation methods and improved acceleration strategies to advance research on DLMs.
♻ ☆ On the Consistency of Multilingual Context Utilization in Retrieval-Augmented Generation EMNLP 2025
Retrieval-augmented generation (RAG) with large language models (LLMs) has demonstrated strong performance in multilingual question-answering (QA) tasks by leveraging relevant passages retrieved from corpora. In multilingual RAG (mRAG), the retrieved passages can be written in languages other than that of the query entered by the user, making it challenging for LLMs to effectively utilize the provided information. Recent research suggests that retrieving passages from multilingual corpora can improve RAG performance, particularly for low-resource languages. However, the extent to which LLMs can leverage different kinds of multilingual contexts to generate accurate answers, *independently from retrieval quality*, remains understudied. In this paper, we conduct an extensive assessment of LLMs' ability to (i) make consistent use of a relevant passage regardless of its language, (ii) respond in the expected language, and (iii) focus on the relevant passage even when multiple `distracting' passages in different languages are provided in the context. Our experiments with four LLMs across three QA datasets covering a total of 48 languages reveal a surprising ability of LLMs to extract the relevant information from passages in a different language than the query, but a much weaker ability to formulate a full answer in the correct language. Our analysis, based on both accuracy and feature attribution techniques, further shows that distracting passages negatively impact answer quality regardless of their language. However, distractors in the query language exert a slightly stronger influence. Taken together, our findings deepen the understanding of how LLMs utilize context in mRAG systems, providing directions for future improvements.
comment: Best Paper Award at MRL Workshop 2025, colocated with EMNLP 2025. All codes and data are released at https://github.com/Betswish/mRAG-Context-Consistency
♻ ☆ Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain
Tabular data is considered the last unconquered castle of deep learning, yet the task of data stream classification is stated to be an equally important and demanding research area. Due to the temporal constraints, it is assumed that deep learning methods are not the optimal solution for application in this field. However, excluding the entire -- and prevalent -- group of methods seems rather rash given the progress that has been made in recent years in its development. For this reason, the following paper is the first to present an approach to natural language data stream classification using the sentence space method, which allows for encoding text into the form of a discrete digital signal. This allows the use of convolutional deep networks dedicated to image classification to solve the task of recognizing fake news based on text data. Based on the real-life Fakeddit dataset, the proposed approach was compared with state-of-the-art algorithms for data stream classification based on generalization ability and time complexity.
comment: 16 pages, 7 figures
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Dissecting Long-Chain-of-Thought Reasoning Models: An Empirical Study
Despite recent progress in training long-chain-of-thought reasoning models via scaling reinforcement learning (RL), its underlying training dynamics remain poorly understood, and several counterintuitive behaviors persist. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in scaling RL, revealing that positive samples mainly facilitate precise fitting to the training data, whereas negative samples significantly enhance generalization and robustness. Interestingly, while positive samples are essential for convergence in the zero-RL setting, training on negative samples alone suffices to attain strong reasoning performance and even better generalization in cold-start scenarios. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two strategies, including relative length rewards and offline sample injection, to leverage these data better and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that greedy decoding can distort evaluation by flipping the correctness of responses. Our code is available at: https://github.com/takagi97/Dissect-Long-Reason-Models.
comment: Working in process
♻ ☆ LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
♻ ☆ Evaluating Test-Time Scaling LLMs for Legal Reasoning: OpenAI o1, DeepSeek-R1, and Beyond EMNLP 2025
Recent advances in test-time scaling of large language models (LLMs), exemplified by DeepSeek-R1 and OpenAI's o1, show that extending the chain of thought during inference can significantly improve general reasoning performance. However, the impact of this paradigm on legal reasoning remains insufficiently explored. To address this gap, we present the first systematic evaluation of 12 LLMs, including both reasoning-focused and general-purpose models, across 17 Chinese and English legal tasks spanning statutory and case-law traditions. In addition, we curate a bilingual chain-of-thought dataset for legal reasoning through distillation from DeepSeek-R1 and develop Legal-R1, an open-source model specialized for the legal domain. Experimental results show that Legal-R1 delivers competitive performance across diverse tasks. DeepSeek-R1 exhibits clear advantages in Chinese legal reasoning, while OpenAI's o1 achieves comparable results on English tasks. We further conduct a detailed error analysis, which reveals recurring issues such as outdated legal knowledge, limited capacity for legal interpretation, and susceptibility to factual hallucinations. These findings delineate the main obstacles confronting legal-domain LLMs and suggest promising directions for future research.
comment: 23 pages, Published in Findings of the Association for Computational Linguistics: EMNLP 2025
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ BEE-RAG: Balanced Entropy Engineering for Retrieval-Augmented Generation
With the rapid advancement of large language models (LLMs), retrieval-augmented generation (RAG) has emerged as a critical approach to supplement the inherent knowledge limitations of LLMs. However, due to the typically large volume of retrieved information, RAG tends to operate with long context lengths. From the perspective of entropy engineering, we identify unconstrained entropy growth and attention dilution due to long retrieval context as significant factors affecting RAG performance. In this paper, we propose the balanced entropy-engineered RAG (BEE-RAG) framework, which improves the adaptability of RAG systems to varying context lengths through the principle of entropy invariance. By leveraging balanced context entropy to reformulate attention dynamics, BEE-RAG separates attention sensitivity from context length, ensuring a stable entropy level. Building upon this, we introduce a zero-shot inference strategy for multi-importance estimation and a parameter-efficient adaptive fine-tuning mechanism to obtain the optimal balancing factor for different settings. Extensive experiments across multiple RAG tasks demonstrate the effectiveness of BEE-RAG.
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
♻ ☆ Pralekha: Cross-Lingual Document Alignment for Indic Languages
Mining parallel document pairs for document-level machine translation (MT) remains challenging due to the limitations of existing Cross-Lingual Document Alignment (CLDA) techniques. Existing methods often rely on metadata such as URLs, which are scarce, or on pooled document representations that fail to capture fine-grained alignment cues. Moreover, the limited context window of sentence embedding models hinders their ability to represent document-level context, while sentence-based alignment introduces a combinatorially large search space, leading to high computational cost. To address these challenges for Indic languages, we introduce Pralekha, a benchmark containing over 3 million aligned document pairs across 11 Indic languages and English, which includes 1.5 million English-Indic pairs. Furthermore, we propose Document Alignment Coefficient (DAC), a novel metric for fine-grained document alignment. Unlike pooling-based methods, DAC aligns documents by matching smaller chunks and computes similarity as the ratio of aligned chunks to the average number of chunks in a pair. Intrinsic evaluation shows that our chunk-based method is 2-3x faster while maintaining competitive performance, and that DAC achieves substantial gains over pooling-based baselines. Extrinsic evaluation further demonstrates that document-level MT models trained on DAC-aligned pairs consistently outperform those using baseline alignment methods. These results highlight DAC's effectiveness for parallel document mining. The dataset and evaluation framework are publicly available to support further research.
♻ ☆ Compositional Phoneme Approximation for L1-Grounded L2 Pronunciation Training AACL 2025
Learners of a second language (L2) often map non-native phonemes to similar native-language (L1) phonemes, making conventional L2-focused training slow and effortful. To address this, we propose an L1-grounded pronunciation training method based on compositional phoneme approximation (CPA), a feature-based representation technique that approximates L2 sounds with sequences of L1 phonemes. Evaluations with 20 Korean non-native English speakers show that CPA-based training achieves a 76% in-box formant rate in acoustic analysis, 17.6% relative improvement in phoneme recognition accuracy, and over 80% of speech being rated as more native-like, with minimal training. Project page: https://gsanpark.github.io/CPA-Pronunciation.
comment: Accepted to IJCNLP-AACL 2025
♻ ☆ LLMCARE: early detection of cognitive impairment via transformer models enhanced by LLM-generated synthetic data
Alzheimer's disease and related dementias(ADRD) affect nearly five million older adults in the United States, yet more than half remain undiagnosed. Speech-based natural language processing(NLP) offers a scalable approach for detecting early cognitive decline through subtle linguistic markers that may precede clinical diagnosis. This study develops and evaluates a speech-based screening pipeline integrating transformer embeddings with handcrafted linguistic features, synthetic augmentation using large language models(LLMs), and benchmarking of unimodal and multimodal classifiers. External validation assessed generalizability to a MCI-only cohort. Transcripts were drawn from the ADReSSo 2021 benchmark dataset(n=237, Pitt Corpus) and the DementiaBank Delaware corpus(n=205, MCI vs. controls). Ten transformer models were tested under three fine-tuning strategies. A late-fusion model combined embeddings from the top transformer with 110 linguistic features. Five LLMs(LLaMA8B/70B, MedAlpaca7B, Ministral8B,GPT-4o) generated label-conditioned synthetic speech for augmentation, and three multimodal LLMs(GPT-4o,Qwen-Omni,Phi-4) were evaluated in zero-shot and fine-tuned modes. On ADReSSo, the fusion model achieved F1=83.3(AUC=89.5), outperforming transformer-only and linguistic baselines. MedAlpaca7B augmentation(2x) improved F1=85.7, though larger scales reduced gains. Fine-tuning boosted unimodal LLMs(MedAlpaca7B F1=47.7=>78.7), while multimodal models performed lower (Phi-4=71.6;GPT-4o=67.6). On Delaware, the fusion plus 1x MedAlpaca7B model achieved F1=72.8(AUC=69.6). Integrating transformer and linguistic features enhances ADRD detection. LLM-based augmentation improves data efficiency but yields diminishing returns, while current multimodal models remain limited. Validation on an independent MCI cohort supports the pipeline's potential for scalable, clinically relevant early screening.
♻ ☆ LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification
With the ever-increasing number of news stories available online, classifying them by topic, regardless of the language they are written in, has become crucial for enhancing readers' access to relevant content. To address this challenge, we propose a teacher-student framework based on large language models (LLMs) for developing multilingual news topic classification models of reasonable size with no need for manual data annotation. The framework employs a Generative Pretrained Transformer (GPT) model as the teacher model to develop a news topic training dataset through automatic annotation of 20,000 news articles in Slovenian, Croatian, Greek, and Catalan. Articles are classified into 17 main categories from the Media Topic schema, developed by the International Press Telecommunications Council (IPTC). The teacher model exhibits high zero-shot performance in all four languages. Its agreement with human annotators is comparable to that between the human annotators themselves. To mitigate the computational limitations associated with the requirement of processing millions of texts daily, smaller BERT-like student models are fine-tuned on the GPT-annotated dataset. These student models achieve high performance comparable to the teacher model. Furthermore, we explore the impact of the training data size on the performance of the student models and investigate their monolingual, multilingual, and zero-shot cross-lingual capabilities. The findings indicate that student models can achieve high performance with a relatively small number of training instances, and demonstrate strong zero-shot cross-lingual abilities. Finally, we publish the best-performing news topic classifier, enabling multilingual classification with the top-level categories of the IPTC Media Topic schema.
comment: This work has been accepted and published in the IEEE Access journal. This arXiv version is retained for archival purposes. Readers should use and cite the IEEE Access Version available at https://ieeexplore.ieee.org/document/10900365
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Skill Path: Unveiling Language Skills from Circuit Graphs AAAI 2026
Circuit graph discovery has emerged as a fundamental approach to elucidating the skill mechanistic of language models. Despite the output faithfulness of circuit graphs, they suffer from atomic ablation, which causes the loss of causal dependencies between connected components. In addition, their discovery process, designed to preserve output faithfulness, inadvertently captures extraneous effects other than an isolated target skill. To alleviate these challenges, we introduce skill paths, which offers a more refined and compact representation by isolating individual skills within a linear chain of components. To enable skill path extracting from circuit graphs, we propose a three-step framework, consisting of decomposition, pruning, and post-pruning causal mediation. In particular, we offer a complete linear decomposition of the transformer model which leads to a disentangled computation graph. After pruning, we further adopt causal analysis techniques, including counterfactuals and interventions, to extract the final skill paths from the circuit graph. To underscore the significance of skill paths, we investigate three generic language skills-Previous Token Skill, Induction Skill, and In-Context Learning Skill-using our framework. Experiments support two crucial properties of these skills, namely stratification and inclusiveness.
comment: accepted by AAAI 2026 (oral)
♻ ☆ Verifiable Fine-Tuning for LLMs: Zero-Knowledge Training Proofs Bound to Data Provenance and Policy
Large language models are often adapted through parameter efficient fine tuning, but current release practices provide weak assurances about what data were used and how updates were computed. We present Verifiable Fine Tuning, a protocol and system that produces succinct zero knowledge proofs that a released model was obtained from a public initialization under a declared training program and an auditable dataset commitment. The approach combines five elements. First, commitments that bind data sources, preprocessing, licenses, and per epoch quota counters to a manifest. Second, a verifiable sampler that supports public replayable and private index hiding batch selection. Third, update circuits restricted to parameter efficient fine tuning that enforce AdamW style optimizer semantics and proof friendly approximations with explicit error budgets. Fourth, recursive aggregation that folds per step proofs into per epoch and end to end certificates with millisecond verification. Fifth, provenance binding and optional trusted execution property cards that attest code identity and constants. On English and bilingual instruction mixtures, the method maintains utility within tight budgets while achieving practical proof performance. Policy quotas are enforced with zero violations, and private sampling windows show no measurable index leakage. Federated experiments demonstrate that the system composes with probabilistic audits and bandwidth constraints. These results indicate that end to end verifiable fine tuning is feasible today for real parameter efficient pipelines, closing a critical trust gap for regulated and decentralized deployments.
comment: 20 pages, 10 figures
♻ ☆ SageLM: A Multi-aspect and Explainable Large Language Model for Speech Judgement
Speech-to-Speech (S2S) Large Language Models (LLMs) are foundational to natural human-computer interaction, enabling end-to-end spoken dialogue systems. However, evaluating these models remains a fundamental challenge. We propose \texttt{SageLM}, an end-to-end, multi-aspect, and explainable speech LLM for comprehensive S2S LLMs evaluation. First, unlike cascaded approaches that disregard acoustic features, SageLM jointly assesses both semantic and acoustic dimensions. Second, it leverages rationale-based supervision to enhance explainability and guide model learning, achieving superior alignment with evaluation outcomes compared to rule-based reinforcement learning methods. Third, we introduce \textit{SpeechFeedback}, a synthetic preference dataset, and employ a two-stage training paradigm to mitigate the scarcity of speech preference data. Trained on both semantic and acoustic dimensions, SageLM achieves an 82.79\% agreement rate with human evaluators, outperforming cascaded and SLM-based baselines by at least 7.42\% and 26.20\%, respectively.
♻ ☆ BLADE: Benchmarking Language Model Agents for Data-Driven Science EMNLP 2024
Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.
comment: EMNLP 2024
♻ ☆ Continual Pre-training of MoEs: How robust is your router?
Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating-point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay, learning rate re-warming, and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale study training a 500M parameter dense transformer and four 500M-active/2B-total parameter MoE transformers. Each model is trained for 600B tokens. Our results establish a surprising robustness to distribution shifts for MoEs using both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
♻ ☆ RareAgents: Autonomous Multi-disciplinary Team for Rare Disease Diagnosis and Treatment AAAI2026
Rare diseases, despite their low individual incidence, collectively impact around 300 million people worldwide due to the vast number of diseases. The involvement of multiple organs and systems, and the shortage of specialized doctors with relevant experience, make diagnosing and treating rare diseases more challenging than common diseases. Recently, agents powered by large language models (LLMs) have demonstrated notable applications across various domains. In the medical field, some agent methods have outperformed direct prompts in question-answering tasks from medical examinations. However, current agent frameworks are not well-adapted to real-world clinical scenarios, especially those involving the complex demands of rare diseases. To bridge this gap, we introduce RareAgents, the first LLM-driven multi-disciplinary team decision-support tool designed specifically for the complex clinical context of rare diseases. RareAgents integrates advanced Multidisciplinary Team (MDT) coordination, memory mechanisms, and medical tools utilization, leveraging Llama-3.1-8B/70B as the base model. Experimental results show that RareAgents outperforms state-of-the-art domain-specific models, GPT-4o, and current agent frameworks in diagnosis and treatment for rare diseases. Furthermore, we contribute a novel rare disease dataset, MIMIC-IV-Ext-Rare, to facilitate further research in this field.
comment: AAAI2026 Oral
♻ ☆ Likelihood-based Mitigation of Evaluation Bias in Large Language Models
Large Language Models (LLMs) are widely used to evaluate natural language generation tasks as automated metrics. However, the likelihood, a measure of LLM's plausibility for a sentence, can vary due to superficial differences in sentences, such as word order and sentence structure. It is therefore possible that there might be a likelihood bias if LLMs are used for evaluation: they might overrate sentences with higher likelihoods while underrating those with lower likelihoods. In this paper, we investigate the presence and impact of likelihood bias in LLM-based evaluators. We also propose a method to mitigate the likelihood bias. Our method utilizes highly biased instances as few-shot examples for in-context learning. Our experiments in evaluating the data-to-text and grammatical error correction tasks reveal that several LLMs we test display a likelihood bias. Furthermore, our proposed method successfully mitigates this bias, also improving evaluation performance (in terms of correlation of models with human scores) significantly.
comment: 5 main pages
♻ ☆ SDS KoPub VDR: A Benchmark Dataset for Visual Document Retrieval in Korean Public Documents
Existing benchmarks for visual document retrieval (VDR) largely overlook non-English languages and the structural complexity of official publications. To address this gap, we introduce SDS KoPub VDR, the first large-scale, public benchmark for retrieving and understanding Korean public documents. The benchmark is built upon 361 real-world documents, including 256 files under the KOGL Type 1 license and 105 from official legal portals, capturing complex visual elements like tables, charts, and multi-column layouts. To establish a reliable evaluation set, we constructed 600 query-page-answer triples. These were initially generated using multimodal models (e.g., GPT-4o) and subsequently underwent human verification to ensure factual accuracy and contextual relevance. The queries span six major public domains and are categorized by the reasoning modality required: text-based, visual-based, and cross-modal. We evaluate SDS KoPub VDR on two complementary tasks: (1) text-only retrieval and (2) multimodal retrieval, which leverages visual features alongside text. This dual-task evaluation reveals substantial performance gaps, particularly in multimodal scenarios requiring cross-modal reasoning, even for state-of-the-art models. As a foundational resource, SDS KoPub VDR enables rigorous and fine-grained evaluation and provides a roadmap for advancing multimodal AI in real-world document intelligence. The dataset is available at https://huggingface.co/datasets/SamsungSDS-Research/SDS-KoPub-VDR-Benchmark.
comment: 27 pages, 15 figures, 6 tables
♻ ☆ SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the authors' thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors. By bridging the gap between reviewers' critiques and authors' comprehension, SEAGraph contributes to a more efficient, transparent and collaborative scientific publishing ecosystem.
♻ ☆ Atomic Consistency Preference Optimization for Long-Form Question Answering
Large Language Models (LLMs) often produce factoid hallucinations - plausible yet incorrect answers. A common mitigation strategy is model alignment, which improves factual accuracy by training on curated (factual, non-factual) pairs. However, this approach often relies on a stronger model (e.g., GPT-4) or an external knowledge base to assess factual correctness that may not always be accessible. Addressing this, we propose Atomic Consistency Preference Optimization (ACPO), a self-supervised preference-tuning method that enhances factual accuracy without external supervision. ACPO leverages atomic consistency signals (i.e., the agreement of individual facts across multiple stochastic responses) to identify high- and low-quality data pairs for model alignment. Despite being fully self-supervised, ACPO outperforms the strong supervised alignment baseline by 1.95 points averaged across Phi-3 and Llama3 on the LongFact and BioGen datasets, demonstrating its effectiveness in improving factual reliability without relying on external models or knowledge bases.
comment: 13 pages, 1 figure
♻ ☆ multiMentalRoBERTa: A Fine-tuned Multiclass Classifier for Mental Health Disorder
The early detection of mental health disorders from social media text is critical for enabling timely support, risk assessment, and referral to appropriate resources. This work introduces multiMentalRoBERTa, a fine-tuned RoBERTa model designed for multiclass classification of common mental health conditions, including stress, anxiety, depression, post-traumatic stress disorder (PTSD), suicidal ideation, and neutral discourse. Drawing on multiple curated datasets, data exploration is conducted to analyze class overlaps, revealing strong correlations between depression and suicidal ideation as well as anxiety and PTSD, while stress emerges as a broad, overlapping category. Comparative experiments with traditional machine learning methods, domain-specific transformers, and prompting-based large language models demonstrate that multiMentalRoBERTa achieves superior performance, with macro F1-scores of 0.839 in the six-class setup and 0.870 in the five-class setup (excluding stress), outperforming both fine-tuned MentalBERT and baseline classifiers. Beyond predictive accuracy, explainability methods, including Layer Integrated Gradients and KeyBERT, are applied to identify lexical cues that drive classification, with a particular focus on distinguishing depression from suicidal ideation. The findings emphasize the effectiveness of fine-tuned transformers for reliable and interpretable detection in sensitive contexts, while also underscoring the importance of fairness, bias mitigation, and human-in-the-loop safety protocols. Overall, multiMentalRoBERTa is presented as a lightweight, robust, and deployable solution for enhancing support in mental health platforms.
comment: Accepted in IEEE Big Data, 8-11 December, 2025 @ Macau SAR, China
♻ ☆ Rethinking Text-based Protein Understanding: Retrieval or LLM? EMNLP 2025
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
comment: Accepted by Empirical Methods in Natural Language Processing 2025 (EMNLP 2025) Main Conference
♻ ☆ Reasoning Planning for Language Models
Selecting an appropriate reasoning method for a given query remains a key challenge in language model generation. Existing approaches typically generate multiple candidate responses and use an aggregation strategy to select the output answer, often assuming that more candidate answers yield higher accuracy. We revisit this assumption through a rigorous theoretical analysis, deriving accuracy bounds for standard aggregation methods under fixed generation distributions and candidate sizes. Building on these insights, we introduce EPIC, an Ensemble Planning with Contrastive learning framework to learn a shared representation space that captures both model reasoning abilities and query-method compatibility. EPIC incorporates our probability bounds as a regularizer in a utility-driven optimization that balances accuracy and computational cost. Experiments on diverse mathematical reasoning tasks show that EPIC consistently selects optimal reasoning methods, improving accuracy while reducing computational overhead. Our code can be found at https://github.com/nguyenngocbaocmt02/EPIC.
comment: 27 pages, 5 figures
♻ ☆ The Markovian Thinker
Reinforcement learning (RL) has recently become a strong recipe for training reasoning LLMs that produce long chains of thought (LongCoT). Yet the standard RL "thinking environment", where the state is the prompt plus all prior reasoning tokens, makes the state unbounded and forces attention-based policies to pay quadratic compute as thoughts lengthen. We revisit the environment itself. We propose Markovian Thinking, a paradigm in which the policy advances reasoning while conditioning on a constant-size state, decoupling thinking length from context size. As an immediate consequence this yields linear compute with constant memory. We instantiate this idea with Delethink, an RL environment that structures reasoning into fixed-size chunks. Within each chunk, the model thinks as usual; at the boundary, the environment resets the context and reinitializes the prompt with a short carryover. Through RL, the policy learns to write a textual state near the end of each chunk sufficient for seamless continuation of reasoning after reset. Trained in this environment, an R1-Distill 1.5B model reasons in 8K-token chunks yet thinks up to 24K tokens, matching or surpassing LongCoT-RL trained with a 24K budget. With test-time scaling, Delethink continues to improve where LongCoT plateaus. The effect of linear compute is substantial: we empirically estimate at 96K average thinking length LongCoT-RL costs 27 H100-months vs. 7 for Delethink. Analysis at RL initialization shows off-the-shelf reasoning models (1.5B-120B) often sample Markovian traces zero-shot across diverse benchmarks, providing positive samples that make RL effective at scale. Our results show that redesigning the thinking environment is a powerful lever: it enables very long reasoning without quadratic overhead and opens a path toward efficient, scalable reasoning LLMs.
♻ ☆ Mufu: Multilingual Fused Learning for Low-Resource Translation with LLM
Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations.
comment: 29 pages
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs AACL 2025
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks still suffer two practical drawbacks: they must be re-tuned whenever the KG or reasoning task changes, and they depend on a single, high-capacity LLM for reliable (i.e., trustworthy) reasoning. To address this, we introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across five diverse benchmarks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability with reduced inference cost but increased abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning, reducing reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
comment: Accepted to IJCNLP-AACL 2025 Findings
♻ ☆ EMNLP: Educator-role Moral and Normative Large Language Models Profiling EMNLP
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
comment: 29pages, 15 figures, Accepted by EMNLP Main Confrence
♻ ☆ Understanding Forgetting in LLM Supervised Fine-Tuning and Preference Learning - A Convex Optimization Perspective
The post-training of LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning stage (RLHF or DPO), is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, this is suboptimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. This sequential paradigm persists largely due to its simplicity and modularity, which make it easier to implement and manage at scale despite its limitations. We theoretically prove the sub-optimality of sequential post-training and propose a practical joint post-training framework which has theoretical convergence guarantees and empirically outperforms sequential post-training framework, with up to 23% overall performance improvement across multiple LLM evaluation benchmarks, while having minimal computational overhead. Our code is available at https://github.com/heshandevaka/XRIGHT.
♻ ☆ Retrieval-Augmented Feature Generation for Domain-Specific Classification ICDM 2025
Feature generation can significantly enhance learning outcomes, particularly for tasks with limited data. An effective way to improve feature generation is to expand the current feature space using existing features and enriching the informational content. However, generating new, interpretable features usually requires domain-specific knowledge on top of the existing features. In this paper, we introduce a Retrieval-Augmented Feature Generation method, RAFG, to generate useful and explainable features specific to domain classification tasks. To increase the interpretability of the generated features, we conduct knowledge retrieval among the existing features in the domain to identify potential feature associations. These associations are expected to help generate useful features. Moreover, we develop a framework based on large language models (LLMs) for feature generation with reasoning to verify the quality of the features during their generation process. Experiments across several datasets in medical, economic, and geographic domains show that our RAFG method can produce high-quality, meaningful features and significantly improve classification performance compared with baseline methods.
comment: Accepted by ICDM 2025
♻ ☆ EditGRPO: Reinforcement Learning with Post-Rollout Edits for Clinically Accurate Chest X-Ray Report Generation AACL 2025
Radiology report generation requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. Although recent innovations, particularly multimodal large language models, have shown improved performance, their supervised fine-tuning (SFT) objective is not explicitly aligned with clinical efficacy. In this work, we introduce EditGRPO, a mixed-policy reinforcement learning algorithm designed specifically to optimize the generation through clinically motivated rewards. EditGRPO integrates on-policy exploration with off-policy guidance by injecting sentence-level detailed corrections during training rollouts. This mixed-policy approach addresses the exploration dilemma and sampling efficiency issues typically encountered in RL. Applied to a Qwen2.5-VL-3B, EditGRPO outperforms both SFT and vanilla GRPO baselines, achieving an average improvement of 3.4\% in clinical metrics across four major datasets. Notably, EditGRPO also demonstrates superior out-of-domain generalization, with an average performance gain of 5.9\% on unseen datasets.
comment: AACL 2025
♻ ☆ Minimal and Mechanistic Conditions for Behavioral Self-Awareness in LLMs
Recent studies have revealed that LLMs can exhibit behavioral self-awareness: the ability to accurately describe or predict their own learned behaviors without explicit supervision. This capability raises safety concerns as it may, for example, allow models to better conceal their true abilities during evaluation. We attempt to characterize the minimal conditions under which such self-awareness emerges, and the mechanistic processes through which it manifests. Through controlled finetuning experiments on instruction-tuned LLMs with low-rank adapters (LoRA), we find: (1) that self-awareness can be reliably induced using a single rank-1 LoRA adapter; (2) that the learned self-aware behavior can be largely captured by a single steering vector in activation space, recovering nearly all of the fine-tune's behavioral effect; and (3) that self-awareness is non-universal and domain-localized, with independent representations across tasks. Together, these findings suggest that behavioral self-awareness emerges as a domain-specific, linear feature that can be easily induced and modulated.
♻ ☆ KVLink: Accelerating Large Language Models via Efficient KV Cache Reuse
We describe KVLink, an approach for efficient key-value (KV) cache reuse in large language models (LLMs). In many LLM applications, different inputs can share overlapping context, such as the same retrieved document appearing in multiple queries. However, the LLMs still need to encode the entire context for each query, leading to redundant computation. In this paper, we investigate a new strategy to eliminate such inefficiency, where the KV cache of each document is precomputed independently. During inference, the KV caches of retrieved documents are concatenated, allowing the model to reuse cached representations instead of recomputing them. To mitigate the performance degradation when using KV caches computed independently for each document, KVLink introduces two key techniques: adjusting positional embeddings of the KV cache at inference to match the global position after concatenation, and using trainable special tokens to restore self-attention across independently encoded documents. Experiments across 7 datasets demonstrate that KVLink improves question answering accuracy by an average of 4% over state-of-the-art methods. Furthermore, by leveraging precomputed KV caches, our approach reduces time-to-first-token by up to 96% compared to standard LLM inference, making it a scalable and efficient solution for context reuse. Additionally, KVLink can be combined with KV cache compression to further save cache loading and storage overhead while outperforming the baselines.
♻ ☆ Breadcrumbs Reasoning: Memory-Efficient Reasoning with Compression Beacons
The scalability of large language models for long-context reasoning is severely constrained by the linear growth of their Transformer key-value cache, which incurs significant memory and computational costs. We posit that as a model generates reasoning tokens, the informational value of past generated tokens diminishes, creating an opportunity for compression. In this work, we propose to periodically compress the generation KV cache with a learned, special-purpose token and evict compressed entries. We train the model to perform this compression via a modified joint distillation and reinforcement learning (RL) framework. Our training method minimizes overhead over the conventional RL process, as it leverages RL outputs for distillation. Empirically, our method achieves a superior memory-accuracy Pareto frontier compared to both the model without cache compression and training-free compression techniques.
Computer Vision and Pattern Recognition 100
☆ Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
☆ Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
☆ TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
☆ DIMO: Diverse 3D Motion Generation for Arbitrary Objects ICCV 2025
We present DIMO, a generative approach capable of generating diverse 3D motions for arbitrary objects from a single image. The core idea of our work is to leverage the rich priors in well-trained video models to extract the common motion patterns and then embed them into a shared low-dimensional latent space. Specifically, we first generate multiple videos of the same object with diverse motions. We then embed each motion into a latent vector and train a shared motion decoder to learn the distribution of motions represented by a structured and compact motion representation, i.e., neural key point trajectories. The canonical 3D Gaussians are then driven by these key points and fused to model the geometry and appearance. During inference time with learned latent space, we can instantly sample diverse 3D motions in a single-forward pass and support several interesting applications including 3D motion interpolation and language-guided motion generation. Our project page is available at https://linzhanm.github.io/dimo.
comment: Published in ICCV 2025, project page https://linzhanm.github.io/dimo
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ YoNoSplat: You Only Need One Model for Feedforward 3D Gaussian Splatting
Fast and flexible 3D scene reconstruction from unstructured image collections remains a significant challenge. We present YoNoSplat, a feedforward model that reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary number of images. Our model is highly versatile, operating effectively with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat predicts local Gaussians and camera poses for each view, which are aggregated into a global representation using either predicted or provided poses. To overcome the inherent difficulty of jointly learning 3D Gaussians and camera parameters, we introduce a novel mixing training strategy. This approach mitigates the entanglement between the two tasks by initially using ground-truth poses to aggregate local Gaussians and gradually transitioning to a mix of predicted and ground-truth poses, which prevents both training instability and exposure bias. We further resolve the scale ambiguity problem by a novel pairwise camera-distance normalization scheme and by embedding camera intrinsics into the network. Moreover, YoNoSplat also predicts intrinsic parameters, making it feasible for uncalibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in both pose-free and pose-dependent settings. Our project page is at https://botaoye.github.io/yonosplat/.
☆ Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
☆ LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.
☆ VADER: Towards Causal Video Anomaly Understanding with Relation-Aware Large Language Models
Video anomaly understanding (VAU) aims to provide detailed interpretation and semantic comprehension of anomalous events within videos, addressing limitations of traditional methods that focus solely on detecting and localizing anomalies. However, existing approaches often neglect the deeper causal relationships and interactions between objects, which are critical for understanding anomalous behaviors. In this paper, we propose VADER, an LLM-driven framework for Video Anomaly unDErstanding, which integrates keyframe object Relation features with visual cues to enhance anomaly comprehension from video. Specifically, VADER first applies an Anomaly Scorer to assign per-frame anomaly scores, followed by a Context-AwarE Sampling (CAES) strategy to capture the causal context of each anomalous event. A Relation Feature Extractor and a COntrastive Relation Encoder (CORE) jointly model dynamic object interactions, producing compact relational representations for downstream reasoning. These visual and relational cues are integrated with LLMs to generate detailed, causally grounded descriptions and support robust anomaly-related question answering. Experiments on multiple real-world VAU benchmarks demonstrate that VADER achieves strong results across anomaly description, explanation, and causal reasoning tasks, advancing the frontier of explainable video anomaly analysis.
☆ Verifying rich robustness properties for neural networks
Robustness is a important problem in AI alignment and safety, with models such as neural networks being increasingly used in safety-critical systems. In the last decade, a large body of work has emerged on local robustness, i.e., checking if the decision of a neural network remains unchanged when the input is slightly perturbed. However, many of these approaches require specialized encoding and often ignore the confidence of a neural network on its output. In this paper, our goal is to build a generalized framework to specify and verify variants of robustness in neural network verification. We propose a specification framework using a simple grammar, which is flexible enough to capture most existing variants. This allows us to introduce new variants of robustness that take into account the confidence of the neural network in its outputs. Next, we develop a novel and powerful unified technique to verify all such variants in a homogeneous way, viz., by adding a few additional layers to the neural network. This enables us to use any state-of-the-art neural network verification tool, without having to tinker with the encoding within, while incurring an approximation error that we show is bounded. We perform an extensive experimental evaluation over a large suite of 8870 benchmarks having 138M parameters in a largest network, and show that we are able to capture a wide set of robustness variants and outperform direct encoding approaches by a significant margin.
☆ PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.
☆ CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.
comment: 14 pages, 6 figures
☆ Glioma C6: A Novel Dataset for Training and Benchmarking Cell Segmentation
We present Glioma C6, a new open dataset for instance segmentation of glioma C6 cells, designed as both a benchmark and a training resource for deep learning models. The dataset comprises 75 high-resolution phase-contrast microscopy images with over 12,000 annotated cells, providing a realistic testbed for biomedical image analysis. It includes soma annotations and morphological cell categorization provided by biologists. Additional categorization of cells, based on morphology, aims to enhance the utilization of image data for cancer cell research. Glioma C6 consists of two parts: the first is curated with controlled parameters for benchmarking, while the second supports generalization testing under varying conditions. We evaluate the performance of several generalist segmentation models, highlighting their limitations on our dataset. Our experiments demonstrate that training on Glioma C6 significantly enhances segmentation performance, reinforcing its value for developing robust and generalizable models. The dataset is publicly available for researchers.
☆ Segmentation of Ischemic Stroke Lesions using Transfer Learning on Multi-sequence MRI
The accurate understanding of ischemic stroke lesions is critical for efficient therapy and prognosis of stroke patients. Magnetic resonance imaging (MRI) is sensitive to acute ischemic stroke and is a common diagnostic method for stroke. However, manual lesion segmentation performed by experts is tedious, time-consuming, and prone to observer inconsistency. Automatic medical image analysis methods have been proposed to overcome this challenge. However, previous approaches have relied on hand-crafted features that may not capture the irregular and physiologically complex shapes of ischemic stroke lesions. In this study, we present a novel framework for quickly and automatically segmenting ischemic stroke lesions on various MRI sequences, including T1-weighted, T2-weighted, DWI, and FLAIR. The proposed methodology is validated on the ISLES 2015 Brain Stroke sequence dataset, where we trained our model using the Res-Unet architecture twice: first, with pre-existing weights, and then without, to explore the benefits of transfer learning. Evaluation metrics, including the Dice score and sensitivity, were computed across 3D volumes. Finally, a Majority Voting Classifier was integrated to amalgamate the outcomes from each axis, resulting in a comprehensive segmentation method. Our efforts culminated in achieving a Dice score of 80.5\% and an accuracy of 74.03\%, showcasing the efficacy of our segmentation approach.
comment: Ischemic Stroke, Segmentation, Transfer Learning, Magnetic Resonance Imaging, Deep Learning, Res-UNet
☆ StreamKV: Streaming Video Question-Answering with Segment-based KV Cache Retrieval and Compression
Video Large Language Models (Video-LLMs) have demonstrated significant potential in the areas of video captioning, search, and summarization. However, current Video-LLMs still face challenges with long real-world videos. Recent methods have introduced a retrieval mechanism that retrieves query-relevant KV caches for question answering, enhancing the efficiency and accuracy of long real-world videos. However, the compression and retrieval of KV caches are still not fully explored. In this paper, we propose \textbf{StreamKV}, a training-free framework that seamlessly equips Video-LLMs with advanced KV cache retrieval and compression. Compared to previous methods that used uniform partitioning, StreamKV dynamically partitions video streams into semantic segments, which better preserves semantic information. For KV cache retrieval, StreamKV calculates a summary vector for each segment to retain segment-level information essential for retrieval. For KV cache compression, StreamKV introduces a guidance prompt designed to capture the key semantic elements within each segment, ensuring only the most informative KV caches are retained for answering questions. Moreover, StreamKV unifies KV cache retrieval and compression within a single module, performing both in a layer-adaptive manner, thereby further improving the effectiveness of streaming video question answering. Extensive experiments on public StreamingVQA benchmarks demonstrate that StreamKV significantly outperforms existing Online Video-LLMs, achieving superior accuracy while substantially improving both memory efficiency and computational latency. The code has been released at https://github.com/sou1p0wer/StreamKV.
☆ Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.
comment: Project website: https://umbertocappellazzo.github.io/Omni-AVSR/
☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
☆ 4DSTR: Advancing Generative 4D Gaussians with Spatial-Temporal Rectification for High-Quality and Consistent 4D Generation AAAI 2026
Remarkable advances in recent 2D image and 3D shape generation have induced a significant focus on dynamic 4D content generation. However, previous 4D generation methods commonly struggle to maintain spatial-temporal consistency and adapt poorly to rapid temporal variations, due to the lack of effective spatial-temporal modeling. To address these problems, we propose a novel 4D generation network called 4DSTR, which modulates generative 4D Gaussian Splatting with spatial-temporal rectification. Specifically, temporal correlation across generated 4D sequences is designed to rectify deformable scales and rotations and guarantee temporal consistency. Furthermore, an adaptive spatial densification and pruning strategy is proposed to address significant temporal variations by dynamically adding or deleting Gaussian points with the awareness of their pre-frame movements. Extensive experiments demonstrate that our 4DSTR achieves state-of-the-art performance in video-to-4D generation, excelling in reconstruction quality, spatial-temporal consistency, and adaptation to rapid temporal movements.
comment: Accepted by AAAI 2026.The first two authors contributed equally
☆ Leveraging Text-Driven Semantic Variation for Robust OOD Segmentation IROS
In autonomous driving and robotics, ensuring road safety and reliable decision-making critically depends on out-of-distribution (OOD) segmentation. While numerous methods have been proposed to detect anomalous objects on the road, leveraging the vision-language space-which provides rich linguistic knowledge-remains an underexplored field. We hypothesize that incorporating these linguistic cues can be especially beneficial in the complex contexts found in real-world autonomous driving scenarios. To this end, we present a novel approach that trains a Text-Driven OOD Segmentation model to learn a semantically diverse set of objects in the vision-language space. Concretely, our approach combines a vision-language model's encoder with a transformer decoder, employs Distance-Based OOD prompts located at varying semantic distances from in-distribution (ID) classes, and utilizes OOD Semantic Augmentation for OOD representations. By aligning visual and textual information, our approach effectively generalizes to unseen objects and provides robust OOD segmentation in diverse driving environments. We conduct extensive experiments on publicly available OOD segmentation datasets such as Fishyscapes, Segment-Me-If-You-Can, and Road Anomaly datasets, demonstrating that our approach achieves state-of-the-art performance across both pixel-level and object-level evaluations. This result underscores the potential of vision-language-based OOD segmentation to bolster the safety and reliability of future autonomous driving systems.
comment: 8 pages, 5 figure references, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) submission
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ Mapping Reduced Accessibility to WASH Facilities in Rohingya Refugee Camps with Sub-Meter Imagery
Access to Water, Sanitation, and Hygiene (WASH) services remains a major public health concern in refugee camps. This study introduces a remote sensing-driven framework to quantify WASH accessibility-specifically to water pumps, latrines, and bathing cubicles-in the Rohingya camps of Cox's Bazar, one of the world's most densely populated displacement settings. Detecting refugee shelters in such emergent camps presents substantial challenges, primarily due to their dense spatial configuration and irregular geometric patterns. Using sub-meter satellite images, we develop a semi-supervised segmentation framework that achieves an F1-score of 76.4% in detecting individual refugee shelters. Applying the framework across multi-year data reveals declining WASH accessibility, driven by rapid refugee population growth and reduced facility availability, rising from 25 people per facility in 2022 to 29.4 in 2025. Gender-disaggregated analysis further shows that women and girls experience reduced accessibility, in scenarios with inadequate safety-related segregation in WASH facilities. These findings suggest the importance of demand-responsive allocation strategies that can identify areas with under-served populations-such as women and girls-and ensure that limited infrastructure serves the greatest number of people in settings with fixed or shrinking budgets. We also discuss the value of high-resolution remote sensing and machine learning to detect inequality and inform equitable resource planning in complex humanitarian environments.
comment: 23 pages, 13 figures, 2 tables
☆ Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation.
comment: Under review
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ Geometric implicit neural representations for signed distance functions
\textit{Implicit neural representations} (INRs) have emerged as a promising framework for representing signals in low-dimensional spaces. This survey reviews the existing literature on the specialized INR problem of approximating \textit{signed distance functions} (SDFs) for surface scenes, using either oriented point clouds or a set of posed images. We refer to neural SDFs that incorporate differential geometry tools, such as normals and curvatures, in their loss functions as \textit{geometric} INRs. The key idea behind this 3D reconstruction approach is to include additional \textit{regularization} terms in the loss function, ensuring that the INR satisfies certain global properties that the function should hold -- such as having unit gradient in the case of SDFs. We explore key methodological components, including the definition of INR, the construction of geometric loss functions, and sampling schemes from a differential geometry perspective. Our review highlights the significant advancements enabled by geometric INRs in surface reconstruction from oriented point clouds and posed images.
☆ Automated Estimation of Anatomical Risk Metrics for Endoscopic Sinus Surgery Using Deep Learning SP
Endoscopic sinus surgery requires careful preoperative assessment of the skull base anatomy to minimize risks such as cerebrospinal fluid leakage. Anatomical risk scores like the Keros, Gera and Thailand-Malaysia-Singapore score offer a standardized approach but require time-consuming manual measurements on coronal CT or CBCT scans. We propose an automated deep learning pipeline that estimates these risk scores by localizing key anatomical landmarks via heatmap regression. We compare a direct approach to a specialized global-to-local learning strategy and find mean absolute errors on the relevant anatomical measurements of 0.506mm for the Keros, 4.516{\deg} for the Gera and 0.802mm / 0.777mm for the TMS classification.
comment: Accepted to SPIE Medical Imaging conference 2026
☆ LiteUpdate: A Lightweight Framework for Updating AI-Generated Image Detectors
The rapid progress of generative AI has led to the emergence of new generative models, while existing detection methods struggle to keep pace, resulting in significant degradation in the detection performance. This highlights the urgent need for continuously updating AI-generated image detectors to adapt to new generators. To overcome low efficiency and catastrophic forgetting in detector updates, we propose LiteUpdate, a lightweight framework for updating AI-generated image detectors. LiteUpdate employs a representative sample selection module that leverages image confidence and gradient-based discriminative features to precisely select boundary samples. This approach improves learning and detection accuracy on new distributions with limited generated images, significantly enhancing detector update efficiency. Additionally, LiteUpdate incorporates a model merging module that fuses weights from multiple fine-tuning trajectories, including pre-trained, representative, and random updates. This balances the adaptability to new generators and mitigates the catastrophic forgetting of prior knowledge. Experiments demonstrate that LiteUpdate substantially boosts detection performance in various detectors. Specifically, on AIDE, the average detection accuracy on Midjourney improved from 87.63% to 93.03%, a 6.16% relative increase.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use ICTAI 2025
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ ProcGen3D: Learning Neural Procedural Graph Representations for Image-to-3D Reconstruction
We introduce ProcGen3D, a new approach for 3D content creation by generating procedural graph abstractions of 3D objects, which can then be decoded into rich, complex 3D assets. Inspired by the prevalent use of procedural generators in production 3D applications, we propose a sequentialized, graph-based procedural graph representation for 3D assets. We use this to learn to approximate the landscape of a procedural generator for image-based 3D reconstruction. We employ edge-based tokenization to encode the procedural graphs, and train a transformer prior to predict the next token conditioned on an input RGB image. Crucially, to enable better alignment of our generated outputs to an input image, we incorporate Monte Carlo Tree Search (MCTS) guided sampling into our generation process, steering output procedural graphs towards more image-faithful reconstructions. Our approach is applicable across a variety of objects that can be synthesized with procedural generators. Extensive experiments on cacti, trees, and bridges show that our neural procedural graph generation outperforms both state-of-the-art generative 3D methods and domain-specific modeling techniques. Furthermore, this enables improved generalization on real-world input images, despite training only on synthetic data.
comment: Project Page: https://xzhang-t.github.io/project/ProcGen3D/
☆ MPJudge: Towards Perceptual Assessment of Music-Induced Paintings
Music induced painting is a unique artistic practice, where visual artworks are created under the influence of music. Evaluating whether a painting faithfully reflects the music that inspired it poses a challenging perceptual assessment task. Existing methods primarily rely on emotion recognition models to assess the similarity between music and painting, but such models introduce considerable noise and overlook broader perceptual cues beyond emotion. To address these limitations, we propose a novel framework for music induced painting assessment that directly models perceptual coherence between music and visual art. We introduce MPD, the first large scale dataset of music painting pairs annotated by domain experts based on perceptual coherence. To better handle ambiguous cases, we further collect pairwise preference annotations. Building on this dataset, we present MPJudge, a model that integrates music features into a visual encoder via a modulation based fusion mechanism. To effectively learn from ambiguous cases, we adopt Direct Preference Optimization for training. Extensive experiments demonstrate that our method outperforms existing approaches. Qualitative results further show that our model more accurately identifies music relevant regions in paintings.
☆ Sparse4DGS: 4D Gaussian Splatting for Sparse-Frame Dynamic Scene Reconstruction AAAI 2026
Dynamic Gaussian Splatting approaches have achieved remarkable performance for 4D scene reconstruction. However, these approaches rely on dense-frame video sequences for photorealistic reconstruction. In real-world scenarios, due to equipment constraints, sometimes only sparse frames are accessible. In this paper, we propose Sparse4DGS, the first method for sparse-frame dynamic scene reconstruction. We observe that dynamic reconstruction methods fail in both canonical and deformed spaces under sparse-frame settings, especially in areas with high texture richness. Sparse4DGS tackles this challenge by focusing on texture-rich areas. For the deformation network, we propose Texture-Aware Deformation Regularization, which introduces a texture-based depth alignment loss to regulate Gaussian deformation. For the canonical Gaussian field, we introduce Texture-Aware Canonical Optimization, which incorporates texture-based noise into the gradient descent process of canonical Gaussians. Extensive experiments show that when taking sparse frames as inputs, our method outperforms existing dynamic or few-shot techniques on NeRF-Synthetic, HyperNeRF, NeRF-DS, and our iPhone-4D datasets.
comment: AAAI 2026
☆ HENet++: Hybrid Encoding and Multi-task Learning for 3D Perception and End-to-end Autonomous Driving
Three-dimensional feature extraction is a critical component of autonomous driving systems, where perception tasks such as 3D object detection, bird's-eye-view (BEV) semantic segmentation, and occupancy prediction serve as important constraints on 3D features. While large image encoders, high-resolution images, and long-term temporal inputs can significantly enhance feature quality and deliver remarkable performance gains, these techniques are often incompatible in both training and inference due to computational resource constraints. Moreover, different tasks favor distinct feature representations, making it difficult for a single model to perform end-to-end inference across multiple tasks while maintaining accuracy comparable to that of single-task models. To alleviate these issues, we present the HENet and HENet++ framework for multi-task 3D perception and end-to-end autonomous driving. Specifically, we propose a hybrid image encoding network that uses a large image encoder for short-term frames and a small one for long-term frames. Furthermore, our framework simultaneously extracts both dense and sparse features, providing more suitable representations for different tasks, reducing cumulative errors, and delivering more comprehensive information to the planning module. The proposed architecture maintains compatibility with various existing 3D feature extraction methods and supports multimodal inputs. HENet++ achieves state-of-the-art end-to-end multi-task 3D perception results on the nuScenes benchmark, while also attaining the lowest collision rate on the nuScenes end-to-end autonomous driving benchmark.
comment: Preliminary version, 19 pages
☆ GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution AAAI 2026
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
comment: This manuscript has been accepted for publication in AAAI 2026
☆ Task-Adaptive Low-Dose CT Reconstruction
Deep learning-based low-dose computed tomography reconstruction methods already achieve high performance on standard image quality metrics like peak signal-to-noise ratio and structural similarity index measure. Yet, they frequently fail to preserve the critical anatomical details needed for diagnostic tasks. This fundamental limitation hinders their clinical applicability despite their high metric scores. We propose a novel task-adaptive reconstruction framework that addresses this gap by incorporating a frozen pre-trained task network as a regularization term in the reconstruction loss function. Unlike existing joint-training approaches that simultaneously optimize both reconstruction and task networks, and risk diverging from satisfactory reconstructions, our method leverages a pre-trained task model to guide reconstruction training while still maintaining diagnostic quality. We validate our framework on a liver and liver tumor segmentation task. Our task-adaptive models achieve Dice scores up to 0.707, approaching the performance of full-dose scans (0.874), and substantially outperforming joint-training approaches (0.331) and traditional reconstruction methods (0.626). Critically, our framework can be integrated into any existing deep learning-based reconstruction model through simple loss function modification, enabling widespread adoption for task-adaptive optimization in clinical practice. Our codes are available at: https://github.com/itu-biai/task_adaptive_ct
☆ How Bias Binds: Measuring Hidden Associations for Bias Control in Text-to-Image Compositions AAAI
Text-to-image generative models often exhibit bias related to sensitive attributes. However, current research tends to focus narrowly on single-object prompts with limited contextual diversity. In reality, each object or attribute within a prompt can contribute to bias. For example, the prompt "an assistant wearing a pink hat" may reflect female-inclined biases associated with a pink hat. The neglected joint effects of the semantic binding in the prompts cause significant failures in current debiasing approaches. This work initiates a preliminary investigation on how bias manifests under semantic binding, where contextual associations between objects and attributes influence generative outcomes. We demonstrate that the underlying bias distribution can be amplified based on these associations. Therefore, we introduce a bias adherence score that quantifies how specific object-attribute bindings activate bias. To delve deeper, we develop a training-free context-bias control framework to explore how token decoupling can facilitate the debiasing of semantic bindings. This framework achieves over 10% debiasing improvement in compositional generation tasks. Our analysis of bias scores across various attribute-object bindings and token decorrelation highlights a fundamental challenge: reducing bias without disrupting essential semantic relationships. These findings expose critical limitations in current debiasing approaches when applied to semantically bound contexts, underscoring the need to reassess prevailing bias mitigation strategies.
comment: Accepted for publication at the Alignment Track of The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Achieving Effective Virtual Reality Interactions via Acoustic Gesture Recognition based on Large Language Models ICASSP 2026
Natural and efficient interaction remains a critical challenge for virtual reality and augmented reality (VR/AR) systems. Vision-based gesture recognition suffers from high computational cost, sensitivity to lighting conditions, and privacy leakage concerns. Acoustic sensing provides an attractive alternative: by emitting inaudible high-frequency signals and capturing their reflections, channel impulse response (CIR) encodes how gestures perturb the acoustic field in a low-cost and user-transparent manner. However, existing CIR-based gesture recognition methods often rely on extensive training of models on large labeled datasets, making them unsuitable for few-shot VR scenarios. In this work, we propose the first framework that leverages large language models (LLMs) for CIR-based gesture recognition in VR/AR systems. Despite LLMs' strengths, it is non-trivial to achieve few-shot and zero-shot learning of CIR gestures due to their inconspicuous features. To tackle this challenge, we collect differential CIR rather than original CIR data. Moreover, we construct a real-world dataset collected from 10 participants performing 15 gestures across three categories (digits, letters, and shapes), with 10 repetitions each. We then conduct extensive experiments on this dataset using an LLM-adopted classifier. Results show that our LLM-based framework achieves accuracy comparable to classical machine learning baselines, while requiring no domain-specific retraining.
comment: 5 pages, 4 figures, 1 table, under review at ICASSP 2026
☆ Pandar128 dataset for lane line detection
We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
☆ LeCoT: revisiting network architecture for two-view correspondence pruning SC
Two-view correspondence pruning aims to accurately remove incorrect correspondences (outliers) from initial ones and is widely applied to various computer vision tasks. Current popular strategies adopt multilayer perceptron (MLP) as the backbone, supplemented by additional modules to enhance the network ability to handle context information, which is a known limitation of MLPs. In contrast, we introduce a novel perspective for capturing correspondence context information without extra design modules. To this end, we design a two-view correspondence pruning network called LeCoT, which can naturally leverage global context information at different stages. Specifically, the core design of LeCoT is the Spatial-Channel Fusion Transformer block, a newly proposed component that efficiently utilizes both spatial and channel global context information among sparse correspondences. In addition, we integrate the proposed prediction block that utilizes correspondence features from intermediate stages to generate a probability set, which acts as guiding information for subsequent learning phases, allowing the network to more effectively capture robust global context information. Notably, this prediction block progressively refines the probability set, thereby mitigating the issue of information loss that is common in the traditional one. Extensive experiments prove that the proposed LeCoT outperforms state-of-the-art methods in correspondence pruning, relative pose estimation, homography estimation, visual localization, and $3$D~reconstruction tasks. The code is provided in https://github.com/Dailuanyuan2024/LeCoT-Revisiting-Network-Architecture-for-Two-View-Correspondence-Pruning.
comment: Just accepted at SCIENCE CHINA Information Sciences
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ RaLD: Generating High-Resolution 3D Radar Point Clouds with Latent Diffusion
Millimeter-wave radar offers a promising sensing modality for autonomous systems thanks to its robustness in adverse conditions and low cost. However, its utility is significantly limited by the sparsity and low resolution of radar point clouds, which poses challenges for tasks requiring dense and accurate 3D perception. Despite that recent efforts have shown great potential by exploring generative approaches to address this issue, they often rely on dense voxel representations that are inefficient and struggle to preserve structural detail. To fill this gap, we make the key observation that latent diffusion models (LDMs), though successful in other modalities, have not been effectively leveraged for radar-based 3D generation due to a lack of compatible representations and conditioning strategies. We introduce RaLD, a framework that bridges this gap by integrating scene-level frustum-based LiDAR autoencoding, order-invariant latent representations, and direct radar spectrum conditioning. These insights lead to a more compact and expressive generation process. Experiments show that RaLD produces dense and accurate 3D point clouds from raw radar spectrums, offering a promising solution for robust perception in challenging environments.
☆ TauFlow: Dynamic Causal Constraint for Complexity-Adaptive Lightweight Segmentation
Deploying lightweight medical image segmentation models on edge devices presents two major challenges: 1) efficiently handling the stark contrast between lesion boundaries and background regions, and 2) the sharp drop in accuracy that occurs when pursuing extremely lightweight designs (e.g., <0.5M parameters). To address these problems, this paper proposes TauFlow, a novel lightweight segmentation model. The core of TauFlow is a dynamic feature response strategy inspired by brain-like mechanisms. This is achieved through two key innovations: the Convolutional Long-Time Constant Cell (ConvLTC), which dynamically regulates the feature update rate to "slowly" process low-frequency backgrounds and "quickly" respond to high-frequency boundaries; and the STDP Self-Organizing Module, which significantly mitigates feature conflicts between the encoder and decoder, reducing the conflict rate from approximately 35%-40% to 8%-10%.
comment: 42 pages and 9 figures
☆ Improving Deepfake Detection with Reinforcement Learning-Based Adaptive Data Augmentation
The generalization capability of deepfake detectors is critical for real-world use. Data augmentation via synthetic fake face generation effectively enhances generalization, yet current SoTA methods rely on fixed strategies-raising a key question: Is a single static augmentation sufficient, or does the diversity of forgery features demand dynamic approaches? We argue existing methods overlook the evolving complexity of real-world forgeries (e.g., facial warping, expression manipulation), which fixed policies cannot fully simulate. To address this, we propose CRDA (Curriculum Reinforcement-Learning Data Augmentation), a novel framework guiding detectors to progressively master multi-domain forgery features from simple to complex. CRDA synthesizes augmented samples via a configurable pool of forgery operations and dynamically generates adversarial samples tailored to the detector's current learning state. Central to our approach is integrating reinforcement learning (RL) and causal inference. An RL agent dynamically selects augmentation actions based on detector performance to efficiently explore the vast augmentation space, adapting to increasingly challenging forgeries. Simultaneously, the agent introduces action space variations to generate heterogeneous forgery patterns, guided by causal inference to mitigate spurious correlations-suppressing task-irrelevant biases and focusing on causally invariant features. This integration ensures robust generalization by decoupling synthetic augmentation patterns from the model's learned representations. Extensive experiments show our method significantly improves detector generalizability, outperforming SOTA methods across multiple cross-domain datasets.
☆ From Pretrain to Pain: Adversarial Vulnerability of Video Foundation Models Without Task Knowledge AAAI 2026
Large-scale Video Foundation Models (VFMs) has significantly advanced various video-related tasks, either through task-specific models or Multi-modal Large Language Models (MLLMs). However, the open accessibility of VFMs also introduces critical security risks, as adversaries can exploit full knowledge of the VFMs to launch potent attacks. This paper investigates a novel and practical adversarial threat scenario: attacking downstream models or MLLMs fine-tuned from open-source VFMs, without requiring access to the victim task, training data, model query, and architecture. In contrast to conventional transfer-based attacks that rely on task-aligned surrogate models, we demonstrate that adversarial vulnerabilities can be exploited directly from the VFMs. To this end, we propose the Transferable Video Attack (TVA), a temporal-aware adversarial attack method that leverages the temporal representation dynamics of VFMs to craft effective perturbations. TVA integrates a bidirectional contrastive learning mechanism to maximize the discrepancy between the clean and adversarial features, and introduces a temporal consistency loss that exploits motion cues to enhance the sequential impact of perturbations. TVA avoids the need to train expensive surrogate models or access to domain-specific data, thereby offering a more practical and efficient attack strategy. Extensive experiments across 24 video-related tasks demonstrate the efficacy of TVA against downstream models and MLLMs, revealing a previously underexplored security vulnerability in the deployment of video models.
comment: AAAI 2026 (Oral presentation)
☆ 3D-ANC: Adaptive Neural Collapse for Robust 3D Point Cloud Recognition AAAI 2026
Deep neural networks have recently achieved notable progress in 3D point cloud recognition, yet their vulnerability to adversarial perturbations poses critical security challenges in practical deployments. Conventional defense mechanisms struggle to address the evolving landscape of multifaceted attack patterns. Through systematic analysis of existing defenses, we identify that their unsatisfactory performance primarily originates from an entangled feature space, where adversarial attacks can be performed easily. To this end, we present 3D-ANC, a novel approach that capitalizes on the Neural Collapse (NC) mechanism to orchestrate discriminative feature learning. In particular, NC depicts where last-layer features and classifier weights jointly evolve into a simplex equiangular tight frame (ETF) arrangement, establishing maximally separable class prototypes. However, leveraging this advantage in 3D recognition confronts two substantial challenges: (1) prevalent class imbalance in point cloud datasets, and (2) complex geometric similarities between object categories. To tackle these obstacles, our solution combines an ETF-aligned classification module with an adaptive training framework consisting of representation-balanced learning (RBL) and dynamic feature direction loss (FDL). 3D-ANC seamlessly empowers existing models to develop disentangled feature spaces despite the complexity in 3D data distribution. Comprehensive evaluations state that 3D-ANC significantly improves the robustness of models with various structures on two datasets. For instance, DGCNN's classification accuracy is elevated from 27.2% to 80.9% on ModelNet40 -- a 53.7% absolute gain that surpasses leading baselines by 34.0%.
comment: AAAI 2026
☆ Certified L2-Norm Robustness of 3D Point Cloud Recognition in the Frequency Domain AAAI26
3D point cloud classification is a fundamental task in safety-critical applications such as autonomous driving, robotics, and augmented reality. However, recent studies reveal that point cloud classifiers are vulnerable to structured adversarial perturbations and geometric corruptions, posing risks to their deployment in safety-critical scenarios. Existing certified defenses limit point-wise perturbations but overlook subtle geometric distortions that preserve individual points yet alter the overall structure, potentially leading to misclassification. In this work, we propose FreqCert, a novel certification framework that departs from conventional spatial domain defenses by shifting robustness analysis to the frequency domain, enabling structured certification against global L2-bounded perturbations. FreqCert first transforms the input point cloud via the graph Fourier transform (GFT), then applies structured frequency-aware subsampling to generate multiple sub-point clouds. Each sub-cloud is independently classified by a standard model, and the final prediction is obtained through majority voting, where sub-clouds are constructed based on spectral similarity rather than spatial proximity, making the partitioning more stable under L2 perturbations and better aligned with the object's intrinsic structure. We derive a closed-form lower bound on the certified L2 robustness radius and prove its tightness under minimal and interpretable assumptions, establishing a theoretical foundation for frequency domain certification. Extensive experiments on the ModelNet40 and ScanObjectNN datasets demonstrate that FreqCert consistently achieves higher certified accuracy and empirical accuracy under strong perturbations. Our results suggest that spectral representations provide an effective pathway toward certifiable robustness in 3D point cloud recognition.
comment: Accepted by AAAI26
☆ A Picture is Worth a Thousand (Correct) Captions: A Vision-Guided Judge-Corrector System for Multimodal Machine Translation AACL 2025
In this paper, we describe our system under the team name BLEU Monday for the English-to-Indic Multimodal Translation Task at WAT 2025. We participate in the text-only translation tasks for English-Hindi, English-Bengali, English-Malayalam, and English-Odia language pairs. We present a two-stage approach that addresses quality issues in the training data through automated error detection and correction, followed by parameter-efficient model fine-tuning. Our methodology introduces a vision-augmented judge-corrector pipeline that leverages multimodal language models to systematically identify and correct translation errors in the training data. The judge component classifies translations into three categories: correct, visually ambiguous (requiring image context), or mistranslated (poor translation quality). Identified errors are routed to specialized correctors: GPT-4o-mini regenerates captions requiring visual disambiguation, while IndicTrans2 retranslates cases with pure translation quality issues. This automated pipeline processes 28,928 training examples across four languages, correcting an average of 17.1% of captions per language. We then apply Low-Rank Adaptation (LoRA) to fine-tune the IndicTrans2 en-indic 200M distilled model on both original and corrected datasets. Training on corrected data yields consistent improvements, with BLEU score gains of +1.30 for English-Bengali on the evaluation set (42.00 -> 43.30) and +0.70 on the challenge set (44.90 -> 45.60), +0.60 for English-Odia on the evaluation set (41.00 -> 41.60), and +0.10 for English-Hindi on the challenge set (53.90 -> 54.00).
comment: Accepted at The 12th Workshop on Asian Translation, co-located with IJCLNLP-AACL 2025
☆ Performance Decay in Deepfake Detection: The Limitations of Training on Outdated Data
The continually advancing quality of deepfake technology exacerbates the threats of disinformation, fraud, and harassment by making maliciously-generated synthetic content increasingly difficult to distinguish from reality. We introduce a simple yet effective two-stage detection method that achieves an AUROC of over 99.8% on contemporary deepfakes. However, this high performance is short-lived. We show that models trained on this data suffer a recall drop of over 30% when evaluated on deepfakes created with generation techniques from just six months later, demonstrating significant decay as threats evolve. Our analysis reveals two key insights for robust detection. Firstly, continued performance requires the ongoing curation of large, diverse datasets. Second, predictive power comes primarily from static, frame-level artifacts, not temporal inconsistencies. The future of effective deepfake detection therefore depends on rapid data collection and the development of advanced frame-level feature detectors.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
Exploring the "Great Unseen" in Medieval Manuscripts: Instance-Level Labeling of Legacy Image Collections with Zero-Shot Models
We aim to theorize the medieval manuscript page and its contents more holistically, using state-of-the-art techniques to segment and describe the entire manuscript folio, for the purpose of creating richer training data for computer vision techniques, namely instance segmentation, and multimodal models for medieval-specific visual content.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Learning from the Right Patches: A Two-Stage Wavelet-Driven Masked Autoencoder for Histopathology Representation Learning
Whole-slide images are central to digital pathology, yet their extreme size and scarce annotations make self-supervised learning essential. Masked Autoencoders (MAEs) with Vision Transformer backbones have recently shown strong potential for histopathology representation learning. However, conventional random patch sampling during MAE pretraining often includes irrelevant or noisy regions, limiting the model's ability to capture meaningful tissue patterns. In this paper, we present a lightweight and domain-adapted framework that brings structure and biological relevance into MAE-based learning through a wavelet-informed patch selection strategy. WISE-MAE applies a two-step coarse-to-fine process: wavelet-based screening at low magnification to locate structurally rich regions, followed by high-resolution extraction for detailed modeling. This approach mirrors the diagnostic workflow of pathologists and improves the quality of learned representations. Evaluations across multiple cancer datasets, including lung, renal, and colorectal tissues, show that WISE-MAE achieves competitive representation quality and downstream classification performance while maintaining efficiency under weak supervision.
☆ GFix: Perceptually Enhanced Gaussian Splatting Video Compression
3D Gaussian Splatting (3DGS) enhances 3D scene reconstruction through explicit representation and fast rendering, demonstrating potential benefits for various low-level vision tasks, including video compression. However, existing 3DGS-based video codecs generally exhibit more noticeable visual artifacts and relatively low compression ratios. In this paper, we specifically target the perceptual enhancement of 3DGS-based video compression, based on the assumption that artifacts from 3DGS rendering and quantization resemble noisy latents sampled during diffusion training. Building on this premise, we propose a content-adaptive framework, GFix, comprising a streamlined, single-step diffusion model that serves as an off-the-shelf neural enhancer. Moreover, to increase compression efficiency, We propose a modulated LoRA scheme that freezes the low-rank decompositions and modulates the intermediate hidden states, thereby achieving efficient adaptation of the diffusion backbone with highly compressible updates. Experimental results show that GFix delivers strong perceptual quality enhancement, outperforming GSVC with up to 72.1% BD-rate savings in LPIPS and 21.4% in FID.
☆ PADM: A Physics-aware Diffusion Model for Attenuation Correction WACV
Attenuation artifacts remain a significant challenge in cardiac Myocardial Perfusion Imaging (MPI) using Single-Photon Emission Computed Tomography (SPECT), often compromising diagnostic accuracy and reducing clinical interpretability. While hybrid SPECT/CT systems mitigate these artifacts through CT-derived attenuation maps, their high cost, limited accessibility, and added radiation exposure hinder widespread clinical adoption. In this study, we propose a novel CT-free solution to attenuation correction in cardiac SPECT. Specifically, we introduce Physics-aware Attenuation Correction Diffusion Model (PADM), a diffusion-based generative method that incorporates explicit physics priors via a teacher--student distillation mechanism. This approach enables attenuation artifact correction using only Non-Attenuation-Corrected (NAC) input, while still benefiting from physics-informed supervision during training. To support this work, we also introduce CardiAC, a comprehensive dataset comprising 424 patient studies with paired NAC and Attenuation-Corrected (AC) reconstructions, alongside high-resolution CT-based attenuation maps. Extensive experiments demonstrate that PADM outperforms state-of-the-art generative models, delivering superior reconstruction fidelity across both quantitative metrics and visual assessment.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
☆ FoCLIP: A Feature-Space Misalignment Framework for CLIP-Based Image Manipulation and Detection
The well-aligned attribute of CLIP-based models enables its effective application like CLIPscore as a widely adopted image quality assessment metric. However, such a CLIP-based metric is vulnerable for its delicate multimodal alignment. In this work, we propose \textbf{FoCLIP}, a feature-space misalignment framework for fooling CLIP-based image quality metric. Based on the stochastic gradient descent technique, FoCLIP integrates three key components to construct fooling examples: feature alignment as the core module to reduce image-text modality gaps, the score distribution balance module and pixel-guard regularization, which collectively optimize multimodal output equilibrium between CLIPscore performance and image quality. Such a design can be engineered to maximize the CLIPscore predictions across diverse input prompts, despite exhibiting either visual unrecognizability or semantic incongruence with the corresponding adversarial prompts from human perceptual perspectives. Experiments on ten artistic masterpiece prompts and ImageNet subsets demonstrate that optimized images can achieve significant improvement in CLIPscore while preserving high visual fidelity. In addition, we found that grayscale conversion induces significant feature degradation in fooling images, exhibiting noticeable CLIPscore reduction while preserving statistical consistency with original images. Inspired by this phenomenon, we propose a color channel sensitivity-driven tampering detection mechanism that achieves 91% accuracy on standard benchmarks. In conclusion, this work establishes a practical pathway for feature misalignment in CLIP-based multimodal systems and the corresponding defense method.
comment: 15 page, 9 figures, published to PRCV
☆ From Attribution to Action: Jointly ALIGNing Predictions and Explanations AAAI 2026
Explanation-guided learning (EGL) has shown promise in aligning model predictions with interpretable reasoning, particularly in computer vision tasks. However, most approaches rely on external annotations or heuristic-based segmentation to supervise model explanations, which can be noisy, imprecise and difficult to scale. In this work, we provide both empirical and theoretical evidence that low-quality supervision signals can degrade model performance rather than improve it. In response, we propose ALIGN, a novel framework that jointly trains a classifier and a masker in an iterative manner. The masker learns to produce soft, task-relevant masks that highlight informative regions, while the classifier is optimized for both prediction accuracy and alignment between its saliency maps and the learned masks. By leveraging high-quality masks as guidance, ALIGN improves both interpretability and generalizability, showing its superiority across various settings. Experiments on the two domain generalization benchmarks, VLCS and Terra Incognita, show that ALIGN consistently outperforms six strong baselines in both in-distribution and out-of-distribution settings. Besides, ALIGN also yields superior explanation quality concerning sufficiency and comprehensiveness, highlighting its effectiveness in producing accurate and interpretable models.
comment: Accepted in AAAI 2026
☆ PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
☆ DTTNet: Improving Video Shadow Detection via Dark-Aware Guidance and Tokenized Temporal Modeling
Video shadow detection confronts two entwined difficulties: distinguishing shadows from complex backgrounds and modeling dynamic shadow deformations under varying illumination. To address shadow-background ambiguity, we leverage linguistic priors through the proposed Vision-language Match Module (VMM) and a Dark-aware Semantic Block (DSB), extracting text-guided features to explicitly differentiate shadows from dark objects. Furthermore, we introduce adaptive mask reweighting to downweight penumbra regions during training and apply edge masks at the final decoder stage for better supervision. For temporal modeling of variable shadow shapes, we propose a Tokenized Temporal Block (TTB) that decouples spatiotemporal learning. TTB summarizes cross-frame shadow semantics into learnable temporal tokens, enabling efficient sequence encoding with minimal computation overhead. Comprehensive Experiments on multiple benchmark datasets demonstrate state-of-the-art accuracy and real-time inference efficiency. Codes are available at https://github.com/city-cheng/DTTNet.
☆ Mono3DVG-EnSD: Enhanced Spatial-aware and Dimension-decoupled Text Encoding for Monocular 3D Visual Grounding
Monocular 3D Visual Grounding (Mono3DVG) is an emerging task that locates 3D objects in RGB images using text descriptions with geometric cues. However, existing methods face two key limitations. Firstly, they often over-rely on high-certainty keywords that explicitly identify the target object while neglecting critical spatial descriptions. Secondly, generalized textual features contain both 2D and 3D descriptive information, thereby capturing an additional dimension of details compared to singular 2D or 3D visual features. This characteristic leads to cross-dimensional interference when refining visual features under text guidance. To overcome these challenges, we propose Mono3DVG-EnSD, a novel framework that integrates two key components: the CLIP-Guided Lexical Certainty Adapter (CLIP-LCA) and the Dimension-Decoupled Module (D2M). The CLIP-LCA dynamically masks high-certainty keywords while retaining low-certainty implicit spatial descriptions, thereby forcing the model to develop a deeper understanding of spatial relationships in captions for object localization. Meanwhile, the D2M decouples dimension-specific (2D/3D) textual features from generalized textual features to guide corresponding visual features at same dimension, which mitigates cross-dimensional interference by ensuring dimensionally-consistent cross-modal interactions. Through comprehensive comparisons and ablation studies on the Mono3DRefer dataset, our method achieves state-of-the-art (SOTA) performance across all metrics. Notably, it improves the challenging Far(Acc@0.5) scenario by a significant +13.54%.
comment: 10 pages
☆ Classification of Microplastic Particles in Water using Polarized Light Scattering and Machine Learning Methods
Facing the critical need for continuous, large-scale microplastic monitoring, which is hindered by the limitations of gold-standard methods in aquatic environments, this paper introduces and validates a novel, reflection-based approach for the in-situ classification and identification of microplastics directly in water bodies, which is based on polarized light scattering. In this experiment, we classify colorless microplastic particles (50-300 $\mu$m) by illuminating them with linearly polarized laser light and capturing their reflected signals using a polarization-sensitive camera. This reflection-based technique successfully circumvents the transmission-based interference issues that plague many conventional methods when applied in water. Using a deep convolutional neural network (CNN) for image-based classification, we successfully identified three common polymer types, high-density polyethylene, low-density polyethylene, and polypropylene, achieving a peak mean classification accuracy of 80% on the test dataset. A subsequent feature hierarchy analysis demonstrated that the CNN's decision-making process relies mainly on the microstructural integrity and internal texture (polarization patterns) of the particle rather than its macroshape. Critically, we found that the Angle of Linear Polarization (AOLP) signal is significantly more robust against contextual noise than the Degree of Linear Polarization (DOLP) signal. While the AOLP-based classification achieved superior overall performance, its strength lies in distinguishing between the two polyethylene plastics, showing a lower confusion rate between high-density and low-density polyethylene. Conversely, the DOLP signal demonstrated slightly worse overall classification results but excels at accurately identifying the polypropylene class, which it isolated with greater success than AOLP.
comment: 20 pages, 6 figures
☆ Adaptive Morph-Patch Transformer for Arotic Vessel Segmentation AAAI 2026
Accurate segmentation of aortic vascular structures is critical for diagnosing and treating cardiovascular diseases.Traditional Transformer-based models have shown promise in this domain by capturing long-range dependencies between vascular features. However, their reliance on fixed-size rectangular patches often influences the integrity of complex vascular structures, leading to suboptimal segmentation accuracy. To address this challenge, we propose the adaptive Morph Patch Transformer (MPT), a novel architecture specifically designed for aortic vascular segmentation. Specifically, MPT introduces an adaptive patch partitioning strategy that dynamically generates morphology-aware patches aligned with complex vascular structures. This strategy can preserve semantic integrity of complex vascular structures within individual patches. Moreover, a Semantic Clustering Attention (SCA) method is proposed to dynamically aggregate features from various patches with similar semantic characteristics. This method enhances the model's capability to segment vessels of varying sizes, preserving the integrity of vascular structures. Extensive experiments on three open-source dataset(AVT, AortaSeg24 and TBAD) demonstrate that MPT achieves state-of-the-art performance, with improvements in segmenting intricate vascular structures.
comment: This is the preprint version of a paper accepted by AAAI 2026. The final version will appear in the AAAI Proceedings
☆ A Two-Stage System for Layout-Controlled Image Generation using Large Language Models and Diffusion Models
Text-to-image diffusion models exhibit remarkable generative capabilities, but lack precise control over object counts and spatial arrangements. This work introduces a two-stage system to address these compositional limitations. The first stage employs a Large Language Model (LLM) to generate a structured layout from a list of objects. The second stage uses a layout-conditioned diffusion model to synthesize a photorealistic image adhering to this layout. We find that task decomposition is critical for LLM-based spatial planning; by simplifying the initial generation to core objects and completing the layout with rule-based insertion, we improve object recall from 57.2% to 99.9% for complex scenes. For image synthesis, we compare two leading conditioning methods: ControlNet and GLIGEN. After domain-specific finetuning on table-setting datasets, we identify a key trade-off: ControlNet preserves text-based stylistic control but suffers from object hallucination, while GLIGEN provides superior layout fidelity at the cost of reduced prompt-based controllability. Our end-to-end system successfully generates images with specified object counts and plausible spatial arrangements, demonstrating the viability of a decoupled approach for compositionally controlled synthesis.
comment: 12 pages, 5 figures
☆ Generating an Image From 1,000 Words: Enhancing Text-to-Image With Structured Captions
Text-to-image models have rapidly evolved from casual creative tools to professional-grade systems, achieving unprecedented levels of image quality and realism. Yet, most models are trained to map short prompts into detailed images, creating a gap between sparse textual input and rich visual outputs. This mismatch reduces controllability, as models often fill in missing details arbitrarily, biasing toward average user preferences and limiting precision for professional use. We address this limitation by training the first open-source text-to-image model on long structured captions, where every training sample is annotated with the same set of fine-grained attributes. This design maximizes expressive coverage and enables disentangled control over visual factors. To process long captions efficiently, we propose DimFusion, a fusion mechanism that integrates intermediate tokens from a lightweight LLM without increasing token length. We also introduce the Text-as-a-Bottleneck Reconstruction (TaBR) evaluation protocol. By assessing how well real images can be reconstructed through a captioning-generation loop, TaBR directly measures controllability and expressiveness, even for very long captions where existing evaluation methods fail. Finally, we demonstrate our contributions by training the large-scale model FIBO, achieving state-of-the-art prompt alignment among open-source models. Model weights are publicly available at https://huggingface.co/briaai/FIBO
☆ VAEVQ: Enhancing Discrete Visual Tokenization through Variational Modeling
Vector quantization (VQ) transforms continuous image features into discrete representations, providing compressed, tokenized inputs for generative models. However, VQ-based frameworks suffer from several issues, such as non-smooth latent spaces, weak alignment between representations before and after quantization, and poor coherence between the continuous and discrete domains. These issues lead to unstable codeword learning and underutilized codebooks, ultimately degrading the performance of both reconstruction and downstream generation tasks. To this end, we propose VAEVQ, which comprises three key components: (1) Variational Latent Quantization (VLQ), replacing the AE with a VAE for quantization to leverage its structured and smooth latent space, thereby facilitating more effective codeword activation; (2) Representation Coherence Strategy (RCS), adaptively modulating the alignment strength between pre- and post-quantization features to enhance consistency and prevent overfitting to noise; and (3) Distribution Consistency Regularization (DCR), aligning the entire codebook distribution with the continuous latent distribution to improve utilization. Extensive experiments on two benchmark datasets demonstrate that VAEVQ outperforms state-of-the-art methods.
☆ Ambiguity-aware Truncated Flow Matching for Ambiguous Medical Image Segmentation AAAI-26
A simultaneous enhancement of accuracy and diversity of predictions remains a challenge in ambiguous medical image segmentation (AMIS) due to the inherent trade-offs. While truncated diffusion probabilistic models (TDPMs) hold strong potential with a paradigm optimization, existing TDPMs suffer from entangled accuracy and diversity of predictions with insufficient fidelity and plausibility. To address the aforementioned challenges, we propose Ambiguity-aware Truncated Flow Matching (ATFM), which introduces a novel inference paradigm and dedicated model components. Firstly, we propose Data-Hierarchical Inference, a redefinition of AMIS-specific inference paradigm, which enhances accuracy and diversity at data-distribution and data-sample level, respectively, for an effective disentanglement. Secondly, Gaussian Truncation Representation (GTR) is introduced to enhance both fidelity of predictions and reliability of truncation distribution, by explicitly modeling it as a Gaussian distribution at $T_{\text{trunc}}$ instead of using sampling-based approximations.Thirdly, Segmentation Flow Matching (SFM) is proposed to enhance the plausibility of diverse predictions by extending semantic-aware flow transformation in Flow Matching (FM). Comprehensive evaluations on LIDC and ISIC3 datasets demonstrate that ATFM outperforms SOTA methods and simultaneously achieves a more efficient inference. ATFM improves GED and HM-IoU by up to $12\%$ and $7.3\%$ compared to advanced methods.
comment: 13 pages, 10 figures, extended version of AAAI-26 paper
☆ Distillation Dynamics: Towards Understanding Feature-Based Distillation in Vision Transformers AAAI 2026
While feature-based knowledge distillation has proven highly effective for compressing CNNs, these techniques unexpectedly fail when applied to Vision Transformers (ViTs), often performing worse than simple logit-based distillation. We provide the first comprehensive analysis of this phenomenon through a novel analytical framework termed as ``distillation dynamics", combining frequency spectrum analysis, information entropy metrics, and activation magnitude tracking. Our investigation reveals that ViTs exhibit a distinctive U-shaped information processing pattern: initial compression followed by expansion. We identify the root cause of negative transfer in feature distillation: a fundamental representational paradigm mismatch between teacher and student models. Through frequency-domain analysis, we show that teacher models employ distributed, high-dimensional encoding strategies in later layers that smaller student models cannot replicate due to limited channel capacity. This mismatch causes late-layer feature alignment to actively harm student performance. Our findings reveal that successful knowledge transfer in ViTs requires moving beyond naive feature mimicry to methods that respect these fundamental representational constraints, providing essential theoretical guidance for designing effective ViTs compression strategies. All source code and experimental logs are provided in the supplementary material.
comment: Accepted to AAAI 2026. Submitted version
☆ Gaussian-Augmented Physics Simulation and System Identification with Complex Colliders NeurIPS 2025
System identification involving the geometry, appearance, and physical properties from video observations is a challenging task with applications in robotics and graphics. Recent approaches have relied on fully differentiable Material Point Method (MPM) and rendering for simultaneous optimization of these properties. However, they are limited to simplified object-environment interactions with planar colliders and fail in more challenging scenarios where objects collide with non-planar surfaces. We propose AS-DiffMPM, a differentiable MPM framework that enables physical property estimation with arbitrarily shaped colliders. Our approach extends existing methods by incorporating a differentiable collision handling mechanism, allowing the target object to interact with complex rigid bodies while maintaining end-to-end optimization. We show AS-DiffMPM can be easily interfaced with various novel view synthesis methods as a framework for system identification from visual observations.
comment: Accepted to NeurIPS 2025. Project website: https://as-diffmpm.github.io/
☆ Aerial Image Stitching Using IMU Data from a UAV
Unmanned Aerial Vehicles (UAVs) are widely used for aerial photography and remote sensing applications. One of the main challenges is to stitch together multiple images into a single high-resolution image that covers a large area. Featurebased image stitching algorithms are commonly used but can suffer from errors and ambiguities in feature detection and matching. To address this, several approaches have been proposed, including using bundle adjustment techniques or direct image alignment. In this paper, we present a novel method that uses a combination of IMU data and computer vision techniques for stitching images captured by a UAV. Our method involves several steps such as estimating the displacement and rotation of the UAV between consecutive images, correcting for perspective distortion, and computing a homography matrix. We then use a standard image stitching algorithm to align and blend the images together. Our proposed method leverages the additional information provided by the IMU data, corrects for various sources of distortion, and can be easily integrated into existing UAV workflows. Our experiments demonstrate the effectiveness and robustness of our method, outperforming some of the existing feature-based image stitching algorithms in terms of accuracy and reliability, particularly in challenging scenarios such as large displacements, rotations, and variations in camera pose.
♻ ☆ Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation
Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA and GPT-4V, the direction of using these models to replace time-consuming manual annotation workflows and achieve ``manual-annotation-free" training for downstream tasks has become a highly promising research avenue. This paper focuses on learning from noisy partial labels annotated by pre-trained VLMs and proposes an innovative collaborative consistency regularization (Co-Reg) method. Unlike the symmetric noise primarily addressed in traditional noisy label learning, the noise generated by pre-trained models is instance-dependent, embodying the underlying patterns of the pre-trained models themselves, which significantly increases the learning difficulty for the model. To address this, we simultaneously train two neural networks that implement collaborative purification of training labels through a ``Co-Pseudo-Labeling" mechanism, while enforcing consistency regularization constraints in both the label space and feature representation space. Specifically, we construct multiple anti-overfitting mechanisms that efficiently mine latent information from noisy partially labeled samples including alternating optimization of contrastive feature representations and pseudo-labels, as well as maintaining prototypical class vectors in the shared feature space.
♻ ☆ Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
♻ ☆ GauSSmart: Enhanced 3D Reconstruction through 2D Foundation Models and Geometric Filtering
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
♻ ☆ LangBridge: Interpreting Image as a Combination of Language Embeddings
Recent years have witnessed remarkable advances in Large Vision-Language Models (LVLMs), which have achieved human-level performance across various complex vision-language tasks. Following LLaVA's paradigm, mainstream LVLMs typically employ a shallow MLP for visual-language alignment through a two-stage training process: pretraining for cross-modal alignment followed by instruction tuning. While this approach has proven effective, the underlying mechanisms of how MLPs bridge the modality gap remain poorly understood. Although some research has explored how LLMs process transformed visual tokens, few studies have investigated the fundamental alignment mechanism. Furthermore, the MLP adapter requires retraining whenever switching LLM backbones. To address these limitations, we first investigate the working principles of MLP adapters and discover that they learn to project visual embeddings into subspaces spanned by corresponding text embeddings progressively. Based on this insight, we propose LangBridge, a novel adapter that explicitly maps visual tokens to linear combinations of LLM vocabulary embeddings. This innovative design enables pretraining-free adapter transfer across different LLMs while maintaining performance. Our experimental results demonstrate that a LangBridge adapter pre-trained on Qwen2-0.5B can be directly applied to larger models such as LLaMA3-8B or Qwen2.5-14B while maintaining competitive performance. Overall, LangBridge enables interpretable vision-language alignment by grounding visual representations in LLM vocab embedding, while its plug-and-play design ensures efficient reuse across multiple LLMs with nearly no performance degradation. See our project page at https://curryx-001.github.io/LangBridge.github.io/
comment: The code and weights are open-sourced. Project page: https://curryx-001.github.io/LangBridge.github.io/
♻ ☆ Consistent Story Generation: Unlocking the Potential of Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 20 pages, 10 figures
♻ ☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
♻ ☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models generate images in far fewer timesteps but suffer from reduced sample diversity when generating multiple outputs from the same prompt. To understand this phenomenon, we first investigate whether distillation damages concept representations by examining if the required diversity is properly learned. Surprisingly, distilled models retain the base model's representational structure: control mechanisms like Concept Sliders and LoRAs transfer seamlessly without retraining, and SliderSpace analysis reveals distilled models possess variational directions needed for diversity yet fail to activate them. This redirects our investigation to understanding how the generation dynamics differ between base and distilled models. Using $\hat{\mathbf{x}}_{0}$ trajectory visualization, we discover distilled models commit to their final image structure almost immediately at the first timestep, while base models distribute structural decisions across many steps. To test whether this first-step commitment causes the diversity loss, we introduce diversity distillation, a hybrid approach using the base model for only the first critical timestep before switching to the distilled model. This single intervention restores sample diversity while maintaining computational efficiency. We provide both causal validation and theoretical support showing why the very first timestep concentrates the diversity bottleneck in distilled models. Our code and data are available at https://distillation.baulab.info/
comment: Project Page: https://distillation.baulab.info/
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ ChestGPT: Integrating Large Language Models and Vision Transformers for Disease Detection and Localization in Chest X-Rays
The global demand for radiologists is increasing rapidly due to a growing reliance on medical imaging services, while the supply of radiologists is not keeping pace. Advances in computer vision and image processing technologies present significant potential to address this gap by enhancing radiologists' capabilities and improving diagnostic accuracy. Large language models (LLMs), particularly generative pre-trained transformers (GPTs), have become the primary approach for understanding and generating textual data. In parallel, vision transformers (ViTs) have proven effective at converting visual data into a format that LLMs can process efficiently. In this paper, we present ChestGPT, a deep-learning framework that integrates the EVA ViT with the Llama 2 LLM to classify diseases and localize regions of interest in chest X-ray images. The ViT converts X-ray images into tokens, which are then fed, together with engineered prompts, into the LLM, enabling joint classification and localization of diseases. This approach incorporates transfer learning techniques to enhance both explainability and performance. The proposed method achieved strong global disease classification performance on the VinDr-CXR dataset, with an F1 score of 0.76, and successfully localized pathologies by generating bounding boxes around the regions of interest. We also outline several task-specific prompts, in addition to general-purpose prompts, for scenarios radiologists might encounter. Overall, this framework offers an assistive tool that can lighten radiologists' workload by providing preliminary findings and regions of interest to facilitate their diagnostic process.
comment: 8 pages, 5 figures, 4 tables
♻ ☆ AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs while recognizing both known and unknown objects. Transferring open-vocabulary knowledge from vision-language models (VLMs) offers a promising direction but remains challenging. However, methods based on VLM-derived 2D pseudo-labels with traditional supervision are limited by a predefined label space and lack general prediction capabilities. Direct alignment with pretrained image embeddings, on the other hand, often fails to achieve reliable performance because of inconsistent image and text representations in VLMs. To address these challenges, we propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios. AGO first encodes surrounding images and class prompts into 3D and text embeddings, respectively, leveraging similarity-based grounding training with 3D pseudo-labels. Additionally, a modality adapter maps 3D embeddings into a space aligned with VLM-derived image embeddings, reducing modality gaps. Experiments on Occ3D-nuScenes show that AGO improves unknown object prediction in zero-shot and few-shot transfer while achieving state-of-the-art closed-world self-supervised performance, surpassing prior methods by 4.09 mIoU. Code is available at: https://github.com/EdwardLeeLPZ/AGO.
♻ ☆ Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis
Scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data, while it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this paper, we disentangle human-scene interaction from motion synthesis during training, and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. For long-term motion synthesis, we introduce motion blending in joint rotation power space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. Code will be publicly available at https://github.com/jingyugong/DIP.
♻ ☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
♻ ☆ Bidirectional Image-Event Guided Fusion Framework for Low-Light Image Enhancement
Under extreme low-light conditions, frame-based cameras suffer from severe detail loss due to limited dynamic range. Recent studies have introduced event cameras for event-guided low-light image enhancement. However, existing approaches often overlook the flickering artifacts and structural discontinuities caused by dynamic illumination changes and event sparsity. To address these challenges, we propose BiLIE, a Bidirectional image-event guided fusion framework for Low-Light Image Enhancement, which achieves mutual guidance and complementary enhancement between the two modalities. First, to highlight edge details, we develop a Dynamic Adaptive Filtering Enhancement (DAFE) module that performs adaptive high-pass filtering on event representations to suppress flickering artifacts and preserve high-frequency information under varying illumination. Subsequently, we design a Bidirectional Guided Awareness Fusion (BGAF) mechanism, which achieves breakpoint-aware restoration from images to events and structure-aware enhancement from events to images through a two-stage attention mechanism, establishing cross-modal consistency, thereby producing a clear, smooth, and structurally intact fused representation. Moreover, recognizing that existing datasets exhibit insufficient ground-truth fidelity and color accuracy, we construct a high-quality low-light image-event dataset (RELIE) via a reliable ground truth refinement scheme. Extensive experiments demonstrate that our method outperforms existing approaches on both the RELIE and LIE datasets. Notably, on RELIE, BiLIE exceeds the state-of-the-art by 0.81dB in PSNR and shows significant advantages in edge restoration, color fidelity, and noise suppression.
♻ ☆ MAROON: A Dataset for the Joint Characterization of Near-Field High-Resolution Radio-Frequency and Optical Depth Imaging Techniques
Utilizing the complementary strengths of wavelength-specific range or depth sensors is crucial for robust computer-assisted tasks such as autonomous driving. Despite this, there is still little research done at the intersection of optical depth sensors and radars operating close range, where the target is decimeters away from the sensors. Together with a growing interest in high-resolution imaging radars operating in the near field, the question arises how these sensors behave in comparison to their traditional optical counterparts. In this work, we take on the unique challenge of jointly characterizing depth imagers from both, the optical and radio-frequency domain using a multimodal spatial calibration. We collect data from four depth imagers, with three optical sensors of varying operation principle and an imaging radar. We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances. Specifically, we reveal scattering effects of partially transmissive materials and investigate the response of radio-frequency signals. All object measurements will be made public in form of a multimodal dataset, called MAROON.
♻ ☆ MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.
comment: This paper was accepted by IEEE BIBM 2025 conference
♻ ☆ Improving Generalization in Deepfake Detection with Face Foundation Models and Metric Learning
The increasing realism and accessibility of deepfakes have raised critical concerns about media authenticity and information integrity. Despite recent advances, deepfake detection models often struggle to generalize beyond their training distributions, particularly when applied to media content found in the wild. In this work, we present a robust video deepfake detection framework with strong generalization that takes advantage of the rich facial representations learned by face foundation models. Our method is built on top of FSFM, a self-supervised model trained on real face data, and is further fine-tuned using an ensemble of deepfake datasets spanning both face-swapping and face-reenactment manipulations. To enhance discriminative power, we incorporate triplet loss variants during training, guiding the model to produce more separable embeddings between real and fake samples. Additionally, we explore attribution-based supervision schemes, where deepfakes are categorized by manipulation type or source dataset, to assess their impact on generalization. Extensive experiments across diverse evaluation benchmarks demonstrate the effectiveness of our approach, especially in challenging real-world scenarios.
comment: The authors did not manage to secure approval by the funder of this research on time
♻ ☆ Not Only Consistency: Enhance Test-Time Adaptation with Spatio-temporal Inconsistency for Remote Physiological Measurement
Remote physiological measurement (RPM) has emerged as a promising non-invasive method for monitoring physiological signals using the non-contact device. Although various domain adaptation and generalization methods were proposed to promote the adaptability of deep-based RPM models in unseen deployment environments, considerations in aspects such as privacy concerns and real-time adaptation restrict their application in real-world deployment. Thus, we aim to propose a novel fully Test-Time Adaptation (TTA) strategy tailored for RPM tasks in this work. Specifically, based on prior knowledge in physiology and our observations, we noticed not only there is spatio-temporal consistency in the frequency domain of BVP signals, but also that inconsistency in the time domain was significant. Given this, by leveraging both consistency and inconsistency priors, we introduce an innovative expert knowledge-based self-supervised \textbf{C}onsistency-\textbf{i}n\textbf{C}onsistency-\textbf{i}ntegration (\textbf{CiCi}) framework to enhances model adaptation during inference. Besides, our approach further incorporates a gradient dynamic control mechanism to mitigate potential conflicts between priors, ensuring stable adaptation across instances. Through extensive experiments on five diverse datasets under the TTA protocol, our method consistently outperforms existing techniques, presenting state-of-the-art performance in real-time self-supervised adaptation without accessing source data. The code will be released later.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ FedHUG: Federated Heterogeneous Unsupervised Generalization for Remote Physiological Measurements
Remote physiological measurement gained wide attention, while it requires collecting users' privacy-sensitive information, and existing contactless measurements still rely on labeled client data. This presents challenges when we want to further update real-world deployed models with numerous user data lacking labels. To resolve these challenges, we instantiate a new protocol called Federated Unsupervised Domain Generalization (FUDG) in this work. Subsequently, the \textbf{Fed}erated \textbf{H}eterogeneous \textbf{U}nsupervised \textbf{G}eneralization (\textbf{FedHUG}) framework is proposed and consists of: (1) Minimal Bias Aggregation module dynamically adjusts aggregation weights based on prior-driven bias evaluation to cope with heterogeneous non-IID features from multiple domains. (2) The Global Distribution-aware Learning Controller parameterizes the label distribution and dynamically manipulates client-specific training strategies, thereby mitigating the server-client label distribution skew and long-tail issue. The proposal shows superior performance across state-of-the-art techniques in estimation with either RGB video or mmWave radar. The code will be released.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ LegalEval-Q: A New Benchmark for The Quality Evaluation of LLM-Generated Legal Text
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework. Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
comment: 10 pages, 11 figures
♻ ☆ Enhanced Partially Relevant Video Retrieval through Inter- and Intra-Sample Analysis with Coherence Prediction
Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant moment features and distinguishing them from query-relevant moments, encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances temporal structure learning by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments demonstrate the superiority of our approach compared to prior methods, achieving state-of-the-art results.
comment: Upon further consideration, we have concluded that the current version requires revision and may not yet be ready for publication. We plan to conduct additional experiments and make necessary improvements to ensure the paper meets the standards for future submission
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Free-T2M: Robust Text-to-Motion Generation for Humanoid Robots via Frequency-Domain
Enabling humanoid robots to synthesize complex, physically coherent motions from natural language commands is a cornerstone of autonomous robotics and human-robot interaction. While diffusion models have shown promise in this text-to-motion (T2M) task, they often generate semantically flawed or unstable motions, limiting their applicability to real-world robots. This paper reframes the T2M problem from a frequency-domain perspective, revealing that the generative process mirrors a hierarchical control paradigm. We identify two critical phases: a semantic planning stage, where low-frequency components establish the global motion trajectory, and a fine-grained execution stage, where high-frequency details refine the movement. To address the distinct challenges of each phase, we introduce Frequency enhanced text-to-motion (Free-T2M), a framework incorporating stage-specific frequency-domain consistency alignment. We design a frequency-domain temporal-adaptive module to modulate the alignment effects of different frequency bands. These designs enforce robustness in the foundational semantic plan and enhance the accuracy of detailed execution. Extensive experiments show our method dramatically improves motion quality and semantic correctness. Notably, when applied to the StableMoFusion baseline, Free-T2M reduces the FID from 0.152 to 0.060, establishing a new state-of-the-art within diffusion architectures. These findings underscore the critical role of frequency-domain insights for generating robust and reliable motions, paving the way for more intuitive natural language control of robots.
♻ ☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
♻ ☆ OccLE: Label-Efficient 3D Semantic Occupancy Prediction
3D semantic occupancy prediction offers an intuitive and efficient scene understanding and has attracted significant interest in autonomous driving perception. Existing approaches either rely on full supervision, which demands costly voxel-level annotations, or on self-supervision, which provides limited guidance and yields suboptimal performance. To address these challenges, we propose OccLE, a Label-Efficient 3D Semantic Occupancy Prediction that takes images and LiDAR as inputs and maintains high performance with limited voxel annotations. Our intuition is to decouple the semantic and geometric learning tasks and then fuse the learned feature grids from both tasks for the final semantic occupancy prediction. Therefore, the semantic branch distills 2D foundation model to provide aligned pseudo labels for 2D and 3D semantic learning. The geometric branch integrates image and LiDAR inputs in cross-plane synergy based on their inherency, employing semi-supervision to enhance geometry learning. We fuse semantic-geometric feature grids through Dual Mamba and incorporate a scatter-accumulated projection to supervise unannotated prediction with aligned pseudo labels. Experiments show that OccLE achieves competitive performance with only 10\% of voxel annotations on the SemanticKITTI and Occ3D-nuScenes datasets. The code will be publicly released on https://github.com/NerdFNY/OccLE
Artificial Intelligence 150
☆ Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.
comment: Code: https://github.com/zhaohengyin/lightning-grasp
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ Robot Learning from a Physical World Model
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.
comment: Project page: https://pointscoder.github.io/PhysWorld_Web/
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ Using Vision Language Models as Closed-Loop Symbolic Planners for Robotic Applications: A Control-Theoretic Perspective
Large Language Models (LLMs) and Vision Language Models (VLMs) have been widely used for embodied symbolic planning. Yet, how to effectively use these models for closed-loop symbolic planning remains largely unexplored. Because they operate as black boxes, LLMs and VLMs can produce unpredictable or costly errors, making their use in high-level robotic planning especially challenging. In this work, we investigate how to use VLMs as closed-loop symbolic planners for robotic applications from a control-theoretic perspective. Concretely, we study how the control horizon and warm-starting impact the performance of VLM symbolic planners. We design and conduct controlled experiments to gain insights that are broadly applicable to utilizing VLMs as closed-loop symbolic planners, and we discuss recommendations that can help improve the performance of VLM symbolic planners.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ Surgical Agent Orchestration Platform for Voice-directed Patient Data Interaction
In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.
comment: 22 pages, 12 figures, 1 table, Supplementary Information, Supplementary Data 1
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs AAAI 2026
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
comment: Accepted at AAAI 2026
Transformers Provably Learn Chain-of-Thought Reasoning with Length Generalization NeurIPS 2025
The ability to reason lies at the core of artificial intelligence (AI), and challenging problems usually call for deeper and longer reasoning to tackle. A crucial question about AI reasoning is whether models can extrapolate learned reasoning patterns to solve harder tasks with longer chain-of-thought (CoT). In this work, we present a theoretical analysis of transformers learning on synthetic state-tracking tasks with gradient descent. We mathematically prove how the algebraic structure of state-tracking problems governs the degree of extrapolation of the learned CoT. Specifically, our theory characterizes the length generalization of transformers through the mechanism of attention concentration, linking the retrieval robustness of the attention layer to the state-tracking task structure of long-context reasoning. Moreover, for transformers with limited reasoning length, we prove that a recursive self-training scheme can progressively extend the range of solvable problem lengths. To our knowledge, we provide the first optimization guarantee that constant-depth transformers provably learn $\mathsf{NC}^1$-complete problems with CoT, significantly going beyond prior art confined in $\mathsf{TC}^0$, unless the widely held conjecture $\mathsf{TC}^0 \neq \mathsf{NC}^1$ fails. Finally, we present a broad set of experiments supporting our theoretical results, confirming the length generalization behaviors and the mechanism of attention concentration.
comment: This is the full version of a paper published at NeurIPS 2025
☆ Real-Time LiDAR Super-Resolution via Frequency-Aware Multi-Scale Fusion
LiDAR super-resolution addresses the challenge of achieving high-quality 3D perception from cost-effective, low-resolution sensors. While recent transformer-based approaches like TULIP show promise, they remain limited to spatial-domain processing with restricted receptive fields. We introduce FLASH (Frequency-aware LiDAR Adaptive Super-resolution with Hierarchical fusion), a novel framework that overcomes these limitations through dual-domain processing. FLASH integrates two key innovations: (i) Frequency-Aware Window Attention that combines local spatial attention with global frequency-domain analysis via FFT, capturing both fine-grained geometry and periodic scanning patterns at log-linear complexity. (ii) Adaptive Multi-Scale Fusion that replaces conventional skip connections with learned position-specific feature aggregation, enhanced by CBAM attention for dynamic feature selection. Extensive experiments on KITTI demonstrate that FLASH achieves state-of-the-art performance across all evaluation metrics, surpassing even uncertainty-enhanced baselines that require multiple forward passes. Notably, FLASH outperforms TULIP with Monte Carlo Dropout while maintaining single-pass efficiency, which enables real-time deployment. The consistent superiority across all distance ranges validates that our dual-domain approach effectively handles uncertainty through architectural design rather than computationally expensive stochastic inference, making it practical for autonomous systems.
☆ Consistency Is Not Always Correct: Towards Understanding the Role of Exploration in Post-Training Reasoning
Foundation models exhibit broad knowledge but limited task-specific reasoning, motivating post-training strategies such as RLVR and inference scaling with outcome or process reward models (ORM/PRM). While recent work highlights the role of exploration and entropy stability in improving pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typically reinforce existing tree-like reasoning paths rather than expanding the reasoning scope, raising the question of why exploration helps at all if no new patterns emerge. To reconcile this paradox, we adopt the perspective of Kim et al. (2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering a symmetry) reasoning steps as low- versus high-probability Markov transitions, and formalize post-training dynamics through Multi-task Tree-structured Markov Chains (TMC). In this tractable model, pretraining corresponds to tree expansion, while post-training corresponds to chain-of-thought reweighting. We show that several phenomena recently observed in empirical studies arise naturally in this setting: (1) RLVR induces a squeezing effect, reducing reasoning entropy and forgetting some correct paths; (2) population rewards of ORM/PRM encourage consistency rather than accuracy, thereby favoring common patterns; and (3) certain rare, high-uncertainty reasoning paths by the base model are responsible for solving hard problem instances. Together, these explain why exploration -- even when confined to the base model's reasoning scope -- remains essential: it preserves access to rare but crucial reasoning traces needed for difficult cases, which are squeezed out by RLVR or unfavored by inference scaling. Building on this, we further show that exploration strategies such as rejecting easy instances and KL regularization help preserve rare reasoning traces. Empirical simulations corroborate our theoretical results.
☆ Machine-Learning Accelerated Calculations of Reduced Density Matrices
$n$-particle reduced density matrices ($n$-RDMs) play a central role in understanding correlated phases of matter. Yet the calculation of $n$-RDMs is often computationally inefficient for strongly-correlated states, particularly when the system sizes are large. In this work, we propose to use neural network (NN) architectures to accelerate the calculation of, and even predict, the $n$-RDMs for large-size systems. The underlying intuition is that $n$-RDMs are often smooth functions over the Brillouin zone (BZ) (certainly true for gapped states) and are thus interpolable, allowing NNs trained on small-size $n$-RDMs to predict large-size ones. Building on this intuition, we devise two NNs: (i) a self-attention NN that maps random RDMs to physical ones, and (ii) a Sinusoidal Representation Network (SIREN) that directly maps momentum-space coordinates to RDM values. We test the NNs in three 2D models: the pair-pair correlation functions of the Richardson model of superconductivity, the translationally-invariant 1-RDM in a four-band model with short-range repulsion, and the translation-breaking 1-RDM in the half-filled Hubbard model. We find that a SIREN trained on a $6\times 6$ momentum mesh can predict the $18\times 18$ pair-pair correlation function with a relative accuracy of $0.839$. The NNs trained on $6\times 6 \sim 8\times 8$ meshes can provide high-quality initial guesses for $50\times 50$ translation-invariant Hartree-Fock (HF) and $30\times 30$ fully translation-breaking-allowed HF, reducing the number of iterations required for convergence by up to $91.63\%$ and $92.78\%$, respectively, compared to random initializations. Our results illustrate the potential of using NN-based methods for interpolable $n$-RDMs, which might open a new avenue for future research on strongly correlated phases.
comment: 10+32 pages, 6+4 figures, 1+6 tables
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ TNT: Improving Chunkwise Training for Test-Time Memorization
Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed-up to 17 times faster than the most accurate baseline configuration - while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.
☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025)
☆ Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
☆ IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.
comment: https://github.com/Alibaba-NLP/DeepResearch
☆ FinRpt: Dataset, Evaluation System and LLM-based Multi-agent Framework for Equity Research Report Generation AAAI 2026
While LLMs have shown great success in financial tasks like stock prediction and question answering, their application in fully automating Equity Research Report generation remains uncharted territory. In this paper, we formulate the Equity Research Report (ERR) Generation task for the first time. To address the data scarcity and the evaluation metrics absence, we present an open-source evaluation benchmark for ERR generation - FinRpt. We frame a Dataset Construction Pipeline that integrates 7 financial data types and produces a high-quality ERR dataset automatically, which could be used for model training and evaluation. We also introduce a comprehensive evaluation system including 11 metrics to assess the generated ERRs. Moreover, we propose a multi-agent framework specifically tailored to address this task, named FinRpt-Gen, and train several LLM-based agents on the proposed datasets using Supervised Fine-Tuning and Reinforcement Learning. Experimental results indicate the data quality and metrics effectiveness of the benchmark FinRpt and the strong performance of FinRpt-Gen, showcasing their potential to drive innovation in the ERR generation field. All code and datasets are publicly available.
comment: AAAI 2026
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
☆ Beyond Boundaries: Leveraging Vision Foundation Models for Source-Free Object Detection AAAI 2026
Source-Free Object Detection (SFOD) aims to adapt a source-pretrained object detector to a target domain without access to source data. However, existing SFOD methods predominantly rely on internal knowledge from the source model, which limits their capacity to generalize across domains and often results in biased pseudo-labels, thereby hindering both transferability and discriminability. In contrast, Vision Foundation Models (VFMs), pretrained on massive and diverse data, exhibit strong perception capabilities and broad generalization, yet their potential remains largely untapped in the SFOD setting. In this paper, we propose a novel SFOD framework that leverages VFMs as external knowledge sources to jointly enhance feature alignment and label quality. Specifically, we design three VFM-based modules: (1) Patch-weighted Global Feature Alignment (PGFA) distills global features from VFMs using patch-similarity-based weighting to enhance global feature transferability; (2) Prototype-based Instance Feature Alignment (PIFA) performs instance-level contrastive learning guided by momentum-updated VFM prototypes; and (3) Dual-source Enhanced Pseudo-label Fusion (DEPF) fuses predictions from detection VFMs and teacher models via an entropy-aware strategy to yield more reliable supervision. Extensive experiments on six benchmarks demonstrate that our method achieves state-of-the-art SFOD performance, validating the effectiveness of integrating VFMs to simultaneously improve transferability and discriminability.
comment: Accepted to AAAI 2026. Extended version with full Appendix
☆ LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.
☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI2026
☆ Verifying rich robustness properties for neural networks
Robustness is a important problem in AI alignment and safety, with models such as neural networks being increasingly used in safety-critical systems. In the last decade, a large body of work has emerged on local robustness, i.e., checking if the decision of a neural network remains unchanged when the input is slightly perturbed. However, many of these approaches require specialized encoding and often ignore the confidence of a neural network on its output. In this paper, our goal is to build a generalized framework to specify and verify variants of robustness in neural network verification. We propose a specification framework using a simple grammar, which is flexible enough to capture most existing variants. This allows us to introduce new variants of robustness that take into account the confidence of the neural network in its outputs. Next, we develop a novel and powerful unified technique to verify all such variants in a homogeneous way, viz., by adding a few additional layers to the neural network. This enables us to use any state-of-the-art neural network verification tool, without having to tinker with the encoding within, while incurring an approximation error that we show is bounded. We perform an extensive experimental evaluation over a large suite of 8870 benchmarks having 138M parameters in a largest network, and show that we are able to capture a wide set of robustness variants and outperform direct encoding approaches by a significant margin.
☆ Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
comment: 14 pages and 4 images
☆ Glioma C6: A Novel Dataset for Training and Benchmarking Cell Segmentation
We present Glioma C6, a new open dataset for instance segmentation of glioma C6 cells, designed as both a benchmark and a training resource for deep learning models. The dataset comprises 75 high-resolution phase-contrast microscopy images with over 12,000 annotated cells, providing a realistic testbed for biomedical image analysis. It includes soma annotations and morphological cell categorization provided by biologists. Additional categorization of cells, based on morphology, aims to enhance the utilization of image data for cancer cell research. Glioma C6 consists of two parts: the first is curated with controlled parameters for benchmarking, while the second supports generalization testing under varying conditions. We evaluate the performance of several generalist segmentation models, highlighting their limitations on our dataset. Our experiments demonstrate that training on Glioma C6 significantly enhances segmentation performance, reinforcing its value for developing robust and generalizable models. The dataset is publicly available for researchers.
☆ Designing Beyond Language: Sociotechnical Barriers in AI Health Technologies for Limited English Proficiency
Limited English proficiency (LEP) patients in the U.S. face systemic barriers to healthcare beyond language and interpreter access, encompassing procedural and institutional constraints. AI advances may support communication and care through on-demand translation and visit preparation, but also risk exacerbating existing inequalities. We conducted storyboard-driven interviews with 14 patient navigators to explore how AI could shape care experiences for Spanish-speaking LEP individuals. We identified tensions around linguistic and cultural misunderstandings, privacy concerns, and opportunities and risks for AI to augment care workflows. Participants highlighted structural factors that can undermine trust in AI systems, including sensitive information disclosure, unstable technology access, and low digital literacy. While AI tools can potentially alleviate social barriers and institutional constraints, there are risks of misinformation and uprooting human camaraderie. Our findings contribute design considerations for AI that support LEP patients and care teams via rapport-building, education, and language support, and minimizing disruptions to existing practices.
☆ Beyond Detection: Exploring Evidence-based Multi-Agent Debate for Misinformation Intervention and Persuasion AAAI 2026
Multi-agent debate (MAD) frameworks have emerged as promising approaches for misinformation detection by simulating adversarial reasoning. While prior work has focused on detection accuracy, it overlooks the importance of helping users understand the reasoning behind factual judgments and develop future resilience. The debate transcripts generated during MAD offer a rich but underutilized resource for transparent reasoning. In this study, we introduce ED2D, an evidence-based MAD framework that extends previous approach by incorporating factual evidence retrieval. More importantly, ED2D is designed not only as a detection framework but also as a persuasive multi-agent system aimed at correcting user beliefs and discouraging misinformation sharing. We compare the persuasive effects of ED2D-generated debunking transcripts with those authored by human experts. Results demonstrate that ED2D outperforms existing baselines across three misinformation detection benchmarks. When ED2D generates correct predictions, its debunking transcripts exhibit persuasive effects comparable to those of human experts; However, when ED2D misclassifies, its accompanying explanations may inadvertently reinforce users'misconceptions, even when presented alongside accurate human explanations. Our findings highlight both the promise and the potential risks of deploying MAD systems for misinformation intervention. We further develop a public community website to help users explore ED2D, fostering transparency, critical thinking, and collaborative fact-checking.
comment: This paper has been accepted to AAAI 2026
☆ AgenticSciML: Collaborative Multi-Agent Systems for Emergent Discovery in Scientific Machine Learning
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
☆ PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork AAAI
Ad hoc teamwork (AHT) requires agents to collaborate with previously unseen teammates, which is crucial for many real-world applications. The core challenge of AHT is to develop an ego agent that can predict and adapt to unknown teammates on the fly. Conventional RL-based approaches optimize a single expected return, which often causes policies to collapse into a single dominant behavior, thus failing to capture the multimodal cooperation patterns inherent in AHT. In this work, we introduce PADiff, a diffusion-based approach that captures agent's multimodal behaviors, unlocking its diverse cooperation modes with teammates. However, standard diffusion models lack the ability to predict and adapt in highly non-stationary AHT scenarios. To address this limitation, we propose a novel diffusion-based policy that integrates critical predictive information about teammates into the denoising process. Extensive experiments across three cooperation environments demonstrate that PADiff outperforms existing AHT methods significantly.
comment: Accepted by the 40th AAAI conference on Artificial Intelligence (AAAI 2026)
☆ MVU-Eval: Towards Multi-Video Understanding Evaluation for Multimodal LLMs
The advent of Multimodal Large Language Models (MLLMs) has expanded AI capabilities to visual modalities, yet existing evaluation benchmarks remain limited to single-video understanding, overlooking the critical need for multi-video understanding in real-world scenarios (e.g., sports analytics and autonomous driving). To address this significant gap, we introduce MVU-Eval, the first comprehensive benchmark for evaluating Multi-Video Understanding for MLLMs. Specifically, our MVU-Eval mainly assesses eight core competencies through 1,824 meticulously curated question-answer pairs spanning 4,959 videos from diverse domains, addressing both fundamental perception tasks and high-order reasoning tasks. These capabilities are rigorously aligned with real-world applications such as multi-sensor synthesis in autonomous systems and cross-angle sports analytics. Through extensive evaluation of state-of-the-art open-source and closed-source models, we reveal significant performance discrepancies and limitations in current MLLMs' ability to perform understanding across multiple videos. The benchmark will be made publicly available to foster future research.
☆ Leveraging Text-Driven Semantic Variation for Robust OOD Segmentation IROS
In autonomous driving and robotics, ensuring road safety and reliable decision-making critically depends on out-of-distribution (OOD) segmentation. While numerous methods have been proposed to detect anomalous objects on the road, leveraging the vision-language space-which provides rich linguistic knowledge-remains an underexplored field. We hypothesize that incorporating these linguistic cues can be especially beneficial in the complex contexts found in real-world autonomous driving scenarios. To this end, we present a novel approach that trains a Text-Driven OOD Segmentation model to learn a semantically diverse set of objects in the vision-language space. Concretely, our approach combines a vision-language model's encoder with a transformer decoder, employs Distance-Based OOD prompts located at varying semantic distances from in-distribution (ID) classes, and utilizes OOD Semantic Augmentation for OOD representations. By aligning visual and textual information, our approach effectively generalizes to unseen objects and provides robust OOD segmentation in diverse driving environments. We conduct extensive experiments on publicly available OOD segmentation datasets such as Fishyscapes, Segment-Me-If-You-Can, and Road Anomaly datasets, demonstrating that our approach achieves state-of-the-art performance across both pixel-level and object-level evaluations. This result underscores the potential of vision-language-based OOD segmentation to bolster the safety and reliability of future autonomous driving systems.
comment: 8 pages, 5 figure references, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) submission
☆ Discourse Graph Guided Document Translation with Large Language Models
Adapting large language models to full document translation remains challenging due to the difficulty of capturing long-range dependencies and preserving discourse coherence throughout extended texts. While recent agentic machine translation systems mitigate context window constraints through multi-agent orchestration and persistent memory, they require substantial computational resources and are sensitive to memory retrieval strategies. We introduce TransGraph, a discourse-guided framework that explicitly models inter-chunk relationships through structured discourse graphs and selectively conditions each translation segment on relevant graph neighbourhoods rather than relying on sequential or exhaustive context. Across three document-level MT benchmarks spanning six languages and diverse domains, TransGraph consistently surpasses strong baselines in translation quality and terminology consistency while incurring significantly lower token overhead.
LLMServingSim2.0: A Unified Simulator for Heterogeneous Hardware and Serving Techniques in LLM Infrastructure
This paper introduces LLMServingSim2.0, a system simulator designed for exploring heterogeneous hardware in large-scale LLM serving systems. LLMServingSim2.0 addresses two key limitations of its predecessor: (1) integrating hardware models into system-level simulators is non-trivial due to the lack of a clear abstraction, and (2) existing simulators support only a narrow subset of serving techniques, leaving no infrastructure that captures the breadth of approaches in modern LLM serving. To overcome these issues, LLMServingSim2.0 adopts trace-driven performance modeling, accompanied by an operator-level latency profiler, enabling the integration of new accelerators with a single command. It further embeds up-to-date serving techniques while exposing flexible interfaces for request routing, cache management, and scheduling policies. In a TPU case study, our profiler requires 18.5x fewer LoC and outperforms the predecessor's hardware-simulator integration, demonstrating LLMServingSim2.0's low-effort hardware extensibility. Our experiments further show that LLMServingSim2.0 reproduces GPU-based LLM serving with 1.9% error, while maintaining practical simulation time, making it a comprehensive platform for both hardware developers and LLM service providers.
comment: 4 pages, 3 figures
☆ NoteEx: Interactive Visual Context Manipulation for LLM-Assisted Exploratory Data Analysis in Computational Notebooks
Computational notebooks have become popular for Exploratory Data Analysis (EDA), augmented by LLM-based code generation and result interpretation. Effective LLM assistance hinges on selecting informative context -- the minimal set of cells whose code, data, or outputs suffice to answer a prompt. As notebooks grow long and messy, users can lose track of the mental model of their analysis. They thus fail to curate appropriate contexts for LLM tasks, causing frustration and tedious prompt engineering. We conducted a formative study (n=6) that surfaced challenges in LLM context selection and mental model maintenance. Therefore, we introduce NoteEx, a JupyterLab extension that provides a semantic visualization of the EDA workflow, allowing analysts to externalize their mental model, specify analysis dependencies, and enable interactive selection of task-relevant contexts for LLMs. A user study (n=12) against a baseline shows that NoteEx improved mental model retention and context selection, leading to more accurate and relevant LLM responses.
☆ SMiLE: Provably Enforcing Global Relational Properties in Neural Networks
Artificial Intelligence systems are increasingly deployed in settings where ensuring robustness, fairness, or domain-specific properties is essential for regulation compliance and alignment with human values. However, especially on Neural Networks, property enforcement is very challenging, and existing methods are limited to specific constraints or local properties (defined around datapoints), or fail to provide full guarantees. We tackle these limitations by extending SMiLE, a recently proposed enforcement framework for NNs, to support global relational properties (defined over the entire input space). The proposed approach scales well with model complexity, accommodates general properties and backbones, and provides full satisfaction guarantees. We evaluate SMiLE on monotonicity, global robustness, and individual fairness, on synthetic and real data, for regression and classification tasks. Our approach is competitive with property-specific baselines in terms of accuracy and runtime, and strictly superior in terms of generality and level of guarantees. Overall, our results emphasize the potential of the SMiLE framework as a platform for future research and applications.
☆ Twenty-Five Years of MIR Research: Achievements, Practices, Evaluations, and Future Challenges
In this paper, we trace the evolution of Music Information Retrieval (MIR) over the past 25 years. While MIR gathers all kinds of research related to music informatics, a large part of it focuses on signal processing techniques for music data, fostering a close relationship with the IEEE Audio and Acoustic Signal Processing Technical Commitee. In this paper, we reflect the main research achievements of MIR along the three EDICS related to music analysis, processing and generation. We then review a set of successful practices that fuel the rapid development of MIR research. One practice is the annual research benchmark, the Music Information Retrieval Evaluation eXchange, where participants compete on a set of research tasks. Another practice is the pursuit of reproducible and open research. The active engagement with industry research and products is another key factor for achieving large societal impacts and motivating younger generations of students to join the field. Last but not the least, the commitment to diversity, equity and inclusion ensures MIR to be a vibrant and open community where various ideas, methodologies, and career pathways collide. We finish by providing future challenges MIR will have to face.
☆ Evaluating Online Moderation Via LLM-Powered Counterfactual Simulations AAAI
Online Social Networks (OSNs) widely adopt content moderation to mitigate the spread of abusive and toxic discourse. Nonetheless, the real effectiveness of moderation interventions remains unclear due to the high cost of data collection and limited experimental control. The latest developments in Natural Language Processing pave the way for a new evaluation approach. Large Language Models (LLMs) can be successfully leveraged to enhance Agent-Based Modeling and simulate human-like social behavior with unprecedented degree of believability. Yet, existing tools do not support simulation-based evaluation of moderation strategies. We fill this gap by designing a LLM-powered simulator of OSN conversations enabling a parallel, counterfactual simulation where toxic behavior is influenced by moderation interventions, keeping all else equal. We conduct extensive experiments, unveiling the psychological realism of OSN agents, the emergence of social contagion phenomena and the superior effectiveness of personalized moderation strategies.
comment: Accepted for publication at AAAI Conference on Artificial Intelligence 2026
☆ Resilient by Design - Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free-energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use ICTAI 2025
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ AdaRec: Adaptive Recommendation with LLMs via Narrative Profiling and Dual-Channel Reasoning
We propose AdaRec, a few-shot in-context learning framework that leverages large language models for an adaptive personalized recommendation. AdaRec introduces narrative profiling, transforming user-item interactions into natural language representations to enable unified task handling and enhance human readability. Centered on a bivariate reasoning paradigm, AdaRec employs a dual-channel architecture that integrates horizontal behavioral alignment, discovering peer-driven patterns, with vertical causal attribution, highlighting decisive factors behind user preferences. Unlike existing LLM-based approaches, AdaRec eliminates manual feature engineering through semantic representations and supports rapid cross-task adaptation with minimal supervision. Experiments on real ecommerce datasets demonstrate that AdaRec outperforms both machine learning models and LLM-based baselines by up to eight percent in few-shot settings. In zero-shot scenarios, it achieves up to a nineteen percent improvement over expert-crafted profiling, showing effectiveness for long-tail personalization with minimal interaction data. Furthermore, lightweight fine-tuning on synthetic data generated by AdaRec matches the performance of fully fine-tuned models, highlighting its efficiency and generalization across diverse tasks.
☆ Fuzzy Label: From Concept to Its Application in Label Learning
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
☆ Conditional Diffusion as Latent Constraints for Controllable Symbolic Music Generation
Recent advances in latent diffusion models have demonstrated state-of-the-art performance in high-dimensional time-series data synthesis while providing flexible control through conditioning and guidance. However, existing methodologies primarily rely on musical context or natural language as the main modality of interacting with the generative process, which may not be ideal for expert users who seek precise fader-like control over specific musical attributes. In this work, we explore the application of denoising diffusion processes as plug-and-play latent constraints for unconditional symbolic music generation models. We focus on a framework that leverages a library of small conditional diffusion models operating as implicit probabilistic priors on the latents of a frozen unconditional backbone. While previous studies have explored domain-specific use cases, this work, to the best of our knowledge, is the first to demonstrate the versatility of such an approach across a diverse array of musical attributes, such as note density, pitch range, contour, and rhythm complexity. Our experiments show that diffusion-driven constraints outperform traditional attribute regularization and other latent constraints architectures, achieving significantly stronger correlations between target and generated attributes while maintaining high perceptual quality and diversity.
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ Saliency Map-Guided Knowledge Discovery for Subclass Identification with LLM-Based Symbolic Approximations
This paper proposes a novel neuro-symbolic approach for sensor signal-based knowledge discovery, focusing on identifying latent subclasses in time series classification tasks. The approach leverages gradient-based saliency maps derived from trained neural networks to guide the discovery process. Multiclass time series classification problems are transformed into binary classification problems through label subsumption, and classifiers are trained for each of these to yield saliency maps. The input signals, grouped by predicted class, are clustered under three distinct configurations. The centroids of the final set of clusters are provided as input to an LLM for symbolic approximation and fuzzy knowledge graph matching to discover the underlying subclasses of the original multiclass problem. Experimental results on well-established time series classification datasets demonstrate the effectiveness of our saliency map-driven method for knowledge discovery, outperforming signal-only baselines in both clustering and subclass identification.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Explicit latent variable models provide a flexible yet powerful framework for data synthesis, enabling controlled manipulation of generative factors. With latent variables drawn from a tractable probability density function that can be further constrained, these models enable continuous and semantically rich exploration of the output space by navigating their latent spaces. Structured latent representations are typically obtained through the joint minimization of regularization loss functions. In variational information bottleneck models, reconstruction loss and Kullback-Leibler Divergence (KLD) are often linearly combined with an auxiliary Attribute-Regularization (AR) loss. However, balancing KLD and AR turns out to be a very delicate matter. When KLD dominates over AR, generative models tend to lack controllability; when AR dominates over KLD, the stochastic encoder is encouraged to violate the standard normal prior. We explore this trade-off in the context of symbolic music generation with explicit control over continuous musical attributes. We show that existing approaches struggle to jointly minimize both regularization objectives, whereas suitable attribute transformations can help achieve both controllability and regularization of the target latent dimensions.
comment: IEEE Catalog No.: CFP2540S-ART ISBN: 978-9-46-459362-4
☆ More Agents Helps but Adversarial Robustness Gap Persists
When LLM agents work together, they seem to be more powerful than a single LLM in mathematical question answering. However, are they also more robust to adversarial inputs? We investigate this question using adversarially perturbed math questions. These perturbations include punctuation noise with three intensities (10, 30, and 50 percent), plus real-world and human-like typos (WikiTypo, R2ATA). Using a unified sampling-and-voting framework (Agent Forest), we evaluate six open-source models (Qwen3-4B/14B, Llama3.1-8B, Mistral-7B, Gemma3-4B/12B) across four benchmarks (GSM8K, MATH, MMLU-Math, MultiArith), with various numbers of agents n from one to 25 (1, 2, 5, 10, 15, 20, 25). Our findings show that (1) Noise type matters: punctuation noise harm scales with its severity, and the human typos remain the dominant bottleneck, yielding the largest gaps to Clean accuracy and the highest ASR even with a large number of agents. And (2) Collaboration reliably improves accuracy as the number of agents, n, increases, with the largest gains from one to five agents and diminishing returns beyond 10 agents. However, the adversarial robustness gap persists regardless of the agent count.
☆ Two Heads are Better than One: Distilling Large Language Model Features Into Small Models with Feature Decomposition and Mixture
Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an H\'{a}jek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.
☆ MENTOR: A Metacognition-Driven Self-Evolution Framework for Uncovering and Mitigating Implicit Risks in LLMs on Domain Tasks
Ensuring the safety and value alignment of large language models (LLMs) is critical for their deployment. Current alignment efforts primarily target explicit risks such as bias, hate speech, and violence. However, they often fail to address deeper, domain-specific implicit risks and lack a flexible, generalizable framework applicable across diverse specialized fields. Hence, we proposed MENTOR: A MEtacognition-driveN self-evoluTion framework for uncOvering and mitigating implicit Risks in LLMs on Domain Tasks. To address the limitations of labor-intensive human evaluation, we introduce a novel metacognitive self-assessment tool. This enables LLMs to reflect on potential value misalignments in their responses using strategies like perspective-taking and consequential thinking. We also release a supporting dataset of 9,000 risk queries spanning education, finance, and management to enhance domain-specific risk identification. Subsequently, based on the outcomes of metacognitive reflection, the framework dynamically generates supplementary rule knowledge graphs that extend predefined static rule trees. This enables models to actively apply validated rules to future similar challenges, establishing a continuous self-evolution cycle that enhances generalization by reducing maintenance costs and inflexibility of static systems. Finally, we employ activation steering during inference to guide LLMs in following the rules, a cost-effective method to robustly enhance enforcement across diverse contexts. Experimental results show MENTOR's effectiveness: In defensive testing across three vertical domains, the framework substantially reduces semantic attack success rates, enabling a new level of implicit risk mitigation for LLMs. Furthermore, metacognitive assessment not only aligns closely with baseline human evaluators but also delivers more thorough and insightful analysis of LLMs value alignment.
☆ A Theoretical Analysis of Detecting Large Model-Generated Time Series AAAI-2026
Motivated by the increasing risks of data misuse and fabrication, we investigate the problem of identifying synthetic time series generated by Time-Series Large Models (TSLMs) in this work. While there are extensive researches on detecting model generated text, we find that these existing methods are not applicable to time series data due to the fundamental modality difference, as time series usually have lower information density and smoother probability distributions than text data, which limit the discriminative power of token-based detectors. To address this issue, we examine the subtle distributional differences between real and model-generated time series and propose the contraction hypothesis, which states that model-generated time series, unlike real ones, exhibit progressively decreasing uncertainty under recursive forecasting. We formally prove this hypothesis under theoretical assumptions on model behavior and time series structure. Model-generated time series exhibit progressively concentrated distributions under recursive forecasting, leading to uncertainty contraction. We provide empirical validation of the hypothesis across diverse datasets. Building on this insight, we introduce the Uncertainty Contraction Estimator (UCE), a white-box detector that aggregates uncertainty metrics over successive prefixes to identify TSLM-generated time series. Extensive experiments on 32 datasets show that UCE consistently outperforms state-of-the-art baselines, offering a reliable and generalizable solution for detecting model-generated time series.
comment: 23 pages,12 figures, to be published in AAAI-2026 main track
☆ GEWDiff: Geometric Enhanced Wavelet-based Diffusion Model for Hyperspectral Image Super-resolution AAAI 2026
Improving the quality of hyperspectral images (HSIs), such as through super-resolution, is a crucial research area. However, generative modeling for HSIs presents several challenges. Due to their high spectral dimensionality, HSIs are too memory-intensive for direct input into conventional diffusion models. Furthermore, general generative models lack an understanding of the topological and geometric structures of ground objects in remote sensing imagery. In addition, most diffusion models optimize loss functions at the noise level, leading to a non-intuitive convergence behavior and suboptimal generation quality for complex data. To address these challenges, we propose a Geometric Enhanced Wavelet-based Diffusion Model (GEWDiff), a novel framework for reconstructing hyperspectral images at 4-times super-resolution. A wavelet-based encoder-decoder is introduced that efficiently compresses HSIs into a latent space while preserving spectral-spatial information. To avoid distortion during generation, we incorporate a geometry-enhanced diffusion process that preserves the geometric features. Furthermore, a multi-level loss function was designed to guide the diffusion process, promoting stable convergence and improved reconstruction fidelity. Our model demonstrated state-of-the-art results across multiple dimensions, including fidelity, spectral accuracy, visual realism, and clarity.
comment: This manuscript has been accepted for publication in AAAI 2026
☆ E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis NeurIPS 2025
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
comment: Accepted to NeurIPS 2025
☆ Boosting Fine-Grained Urban Flow Inference via Lightweight Architecture and Focalized Optimization AAAI'26
Fine-grained urban flow inference is crucial for urban planning and intelligent transportation systems, enabling precise traffic management and resource allocation. However, the practical deployment of existing methods is hindered by two key challenges: the prohibitive computational cost of over-parameterized models and the suboptimal performance of conventional loss functions on the highly skewed distribution of urban flows. To address these challenges, we propose a unified solution that synergizes architectural efficiency with adaptive optimization. Specifically, we first introduce PLGF, a lightweight yet powerful architecture that employs a Progressive Local-Global Fusion strategy to effectively capture both fine-grained details and global contextual dependencies. Second, we propose DualFocal Loss, a novel function that integrates dual-space supervision with a difficulty-aware focusing mechanism, enabling the model to adaptively concentrate on hard-to-predict regions. Extensive experiments on 4 real-world scenarios validate the effectiveness and scalability of our method. Notably, while achieving state-of-the-art performance, PLGF reduces the model size by up to 97% compared to current high-performing methods. Furthermore, under comparable parameter budgets, our model yields an accuracy improvement of over 10% against strong baselines. The implementation is included in the https://github.com/Yasoz/PLGF.
comment: Accepted as a regular paper by AAAI'26
☆ Agentic AI Sustainability Assessment for Supply Chain Document Insights
This paper presents a comprehensive sustainability assessment framework for document intelligence within supply chain operations, centered on agentic artificial intelligence (AI). We address the dual objective of improving automation efficiency while providing measurable environmental performance in document-intensive workflows. The research compares three scenarios: fully manual (human-only), AI-assisted (human-in-the-loop, HITL), and an advanced multi-agent agentic AI workflow leveraging parsers and verifiers. Empirical results show that AI-assisted HITL and agentic AI scenarios achieve reductions of up to 70-90% in energy consumption, 90-97% in carbon dioxide emissions, and 89-98% in water usage compared to manual processes. Notably, full agentic configurations, combining advanced reasoning (thinking mode) and multi-agent validation, achieve substantial sustainability gains over human-only approaches, even when resource usage increases slightly versus simpler AI-assisted solutions. The framework integrates performance, energy, and emission indicators into a unified ESG-oriented methodology for assessing and governing AI-enabled supply chain solutions. The paper includes a complete replicability use case demonstrating the methodology's application to real-world document extraction tasks.
comment: 17 pages, 4 figures
☆ Data Complexity of Querying Description Logic Knowledge Bases under Cost-Based Semantics AAAI 2026
In this paper, we study the data complexity of querying inconsistent weighted description logic (DL) knowledge bases under recently-introduced cost-based semantics. In a nutshell, the idea is to assign each interpretation a cost based upon the weights of the violated axioms and assertions, and certain and possible query answers are determined by considering all (resp. some) interpretations having optimal or bounded cost. Whereas the initial study of cost-based semantics focused on DLs between $\mathcal{EL}_\bot$ and $\mathcal{ALCO}$, we consider DLs that may contain inverse roles and role inclusions, thus covering prominent DL-Lite dialects. Our data complexity analysis goes significantly beyond existing results by sharpening several lower bounds and pinpointing the precise complexity of optimal-cost certain answer semantics (no non-trivial upper bound was known). Moreover, while all existing results show the intractability of cost-based semantics, our most challenging and surprising result establishes that if we consider $\text{DL-Lite}^\mathcal{H}_\mathsf{bool}$ ontologies and a fixed cost bound, certain answers for instance queries and possible answers for conjunctive queries can be computed using first-order rewriting and thus enjoy the lowest possible data complexity ($\mathsf{TC}_0$).
comment: Long version of paper to appear in AAAI 2026
☆ Sample-efficient quantum error mitigation via classical learning surrogates
The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
comment: 26 pages, 8 figures
☆ How Bias Binds: Measuring Hidden Associations for Bias Control in Text-to-Image Compositions AAAI
Text-to-image generative models often exhibit bias related to sensitive attributes. However, current research tends to focus narrowly on single-object prompts with limited contextual diversity. In reality, each object or attribute within a prompt can contribute to bias. For example, the prompt "an assistant wearing a pink hat" may reflect female-inclined biases associated with a pink hat. The neglected joint effects of the semantic binding in the prompts cause significant failures in current debiasing approaches. This work initiates a preliminary investigation on how bias manifests under semantic binding, where contextual associations between objects and attributes influence generative outcomes. We demonstrate that the underlying bias distribution can be amplified based on these associations. Therefore, we introduce a bias adherence score that quantifies how specific object-attribute bindings activate bias. To delve deeper, we develop a training-free context-bias control framework to explore how token decoupling can facilitate the debiasing of semantic bindings. This framework achieves over 10% debiasing improvement in compositional generation tasks. Our analysis of bias scores across various attribute-object bindings and token decorrelation highlights a fundamental challenge: reducing bias without disrupting essential semantic relationships. These findings expose critical limitations in current debiasing approaches when applied to semantically bound contexts, underscoring the need to reassess prevailing bias mitigation strategies.
comment: Accepted for publication at the Alignment Track of The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Green AI: A systematic review and meta-analysis of its definitions, lifecycle models, hardware and measurement attempts
Across the Artificial Intelligence (AI) lifecycle - from hardware to development, deployment, and reuse - burdens span energy, carbon, water, and embodied impacts. Cloud provider tools improve transparency but remain heterogeneous and often omit water and value chain effects, limiting comparability and reproducibility. Addressing these multi dimensional burdens requires a lifecycle approach linking phase explicit mapping with system levers (hardware, placement, energy mix, cooling, scheduling) and calibrated measurement across facility, system, device, and workload levels. This article (i) establishes a unified, operational definition of Green AI distinct from Sustainable AI; (ii) formalizes a five phase lifecycle mapped to Life Cycle Assessment (LCA) stages, making energy, carbon, water, and embodied impacts first class; (iii) specifies governance via Plan Do Check Act (PDCA) cycles with decision gateways; (iv) systematizes hardware and system level strategies across the edge cloud continuum to reduce embodied burdens; and (v) defines a calibrated measurement framework combining estimator models with direct metering to enable reproducible, provider agnostic comparisons. Combining definition, lifecycle processes, hardware strategies, and calibrated measurement, this article offers actionable, evidence based guidance for researchers, practitioners, and policymakers.
LLM Driven Processes to Foster Explainable AI
We present a modular, explainable LLM-agent pipeline for decision support that externalizes reasoning into auditable artifacts. The system instantiates three frameworks: Vester's Sensitivity Model (factor set, signed impact matrix, systemic roles, feedback loops); normal-form games (strategies, payoff matrix, equilibria); and sequential games (role-conditioned agents, tree construction, backward induction), with swappable modules at every step. LLM components (default: GPT-5) are paired with deterministic analyzers for equilibria and matrix-based role classification, yielding traceable intermediates rather than opaque outputs. In a real-world logistics case (100 runs), mean factor alignment with a human baseline was 55.5\% over 26 factors and 62.9\% on the transport-core subset; role agreement over matches was 57\%. An LLM judge using an eight-criterion rubric (max 100) scored runs on par with a reconstructed human baseline. Configurable LLM pipelines can thus mimic expert workflows with transparent, inspectable steps.
☆ Achieving Effective Virtual Reality Interactions via Acoustic Gesture Recognition based on Large Language Models ICASSP 2026
Natural and efficient interaction remains a critical challenge for virtual reality and augmented reality (VR/AR) systems. Vision-based gesture recognition suffers from high computational cost, sensitivity to lighting conditions, and privacy leakage concerns. Acoustic sensing provides an attractive alternative: by emitting inaudible high-frequency signals and capturing their reflections, channel impulse response (CIR) encodes how gestures perturb the acoustic field in a low-cost and user-transparent manner. However, existing CIR-based gesture recognition methods often rely on extensive training of models on large labeled datasets, making them unsuitable for few-shot VR scenarios. In this work, we propose the first framework that leverages large language models (LLMs) for CIR-based gesture recognition in VR/AR systems. Despite LLMs' strengths, it is non-trivial to achieve few-shot and zero-shot learning of CIR gestures due to their inconspicuous features. To tackle this challenge, we collect differential CIR rather than original CIR data. Moreover, we construct a real-world dataset collected from 10 participants performing 15 gestures across three categories (digits, letters, and shapes), with 10 repetitions each. We then conduct extensive experiments on this dataset using an LLM-adopted classifier. Results show that our LLM-based framework achieves accuracy comparable to classical machine learning baselines, while requiring no domain-specific retraining.
comment: 5 pages, 4 figures, 1 table, under review at ICASSP 2026
☆ Pandar128 dataset for lane line detection
We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
☆ Increasing AI Explainability by LLM Driven Standard Processes
This paper introduces an approach to increasing the explainability of artificial intelligence (AI) systems by embedding Large Language Models (LLMs) within standardized analytical processes. While traditional explainable AI (XAI) methods focus on feature attribution or post-hoc interpretation, the proposed framework integrates LLMs into defined decision models such as Question-Option-Criteria (QOC), Sensitivity Analysis, Game Theory, and Risk Management. By situating LLM reasoning within these formal structures, the approach transforms opaque inference into transparent and auditable decision traces. A layered architecture is presented that separates the reasoning space of the LLM from the explainable process space above it. Empirical evaluations show that the system can reproduce human-level decision logic in decentralized governance, systems analysis, and strategic reasoning contexts. The results suggest that LLM-driven standard processes provide a foundation for reliable, interpretable, and verifiable AI-supported decision making.
☆ Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora
The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic.
☆ RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services
As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.
☆ Improving Region Representation Learning from Urban Imagery with Noisy Long-Caption Supervision AAAI-26
Region representation learning plays a pivotal role in urban computing by extracting meaningful features from unlabeled urban data. Analogous to how perceived facial age reflects an individual's health, the visual appearance of a city serves as its ``portrait", encapsulating latent socio-economic and environmental characteristics. Recent studies have explored leveraging Large Language Models (LLMs) to incorporate textual knowledge into imagery-based urban region representation learning. However, two major challenges remain: i)~difficulty in aligning fine-grained visual features with long captions, and ii) suboptimal knowledge incorporation due to noise in LLM-generated captions. To address these issues, we propose a novel pre-training framework called UrbanLN that improves Urban region representation learning through Long-text awareness and Noise suppression. Specifically, we introduce an information-preserved stretching interpolation strategy that aligns long captions with fine-grained visual semantics in complex urban scenes. To effectively mine knowledge from LLM-generated captions and filter out noise, we propose a dual-level optimization strategy. At the data level, a multi-model collaboration pipeline automatically generates diverse and reliable captions without human intervention. At the model level, we employ a momentum-based self-distillation mechanism to generate stable pseudo-targets, facilitating robust cross-modal learning under noisy conditions. Extensive experiments across four real-world cities and various downstream tasks demonstrate the superior performance of our UrbanLN.
comment: Accepted as a full paper by AAAI-26
☆ Do LLMs Feel? Teaching Emotion Recognition with Prompts, Retrieval, and Curriculum Learning AAAI 2026
Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.
comment: Accepted at AAAI 2026
☆ TauFlow: Dynamic Causal Constraint for Complexity-Adaptive Lightweight Segmentation
Deploying lightweight medical image segmentation models on edge devices presents two major challenges: 1) efficiently handling the stark contrast between lesion boundaries and background regions, and 2) the sharp drop in accuracy that occurs when pursuing extremely lightweight designs (e.g., <0.5M parameters). To address these problems, this paper proposes TauFlow, a novel lightweight segmentation model. The core of TauFlow is a dynamic feature response strategy inspired by brain-like mechanisms. This is achieved through two key innovations: the Convolutional Long-Time Constant Cell (ConvLTC), which dynamically regulates the feature update rate to "slowly" process low-frequency backgrounds and "quickly" respond to high-frequency boundaries; and the STDP Self-Organizing Module, which significantly mitigates feature conflicts between the encoder and decoder, reducing the conflict rate from approximately 35%-40% to 8%-10%.
comment: 42 pages and 9 figures
☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
☆ Benchmarking LLMs for Fine-Grained Code Review with Enriched Context in Practice
Code review is a cornerstone of software quality assurance, and recent advances in Large Language Models (LLMs) have shown promise in automating this process. However, existing benchmarks for LLM-based code review face three major limitations. (1) Lack of semantic context: most benchmarks provide only code diffs without textual information such as issue descriptions, which are crucial for understanding developer intent. (2) Data quality issues: without rigorous validation, many samples are noisy-e.g., reviews on outdated or irrelevant code-reducing evaluation reliability. (3) Coarse granularity: most benchmarks operate at the file or commit level, overlooking the fine-grained, line-level reasoning essential for precise review. We introduce ContextCRBench, a high-quality, context-rich benchmark for fine-grained LLM evaluation in code review. Our construction pipeline comprises: (1) Raw Data Crawling, collecting 153.7K issues and pull requests from top-tier repositories; (2) Comprehensive Context Extraction, linking issue-PR pairs for textual context and extracting the full surrounding function or class for code context; and (3) Multi-stage Data Filtering, combining rule-based and LLM-based validation to remove outdated, malformed, or low-value samples, resulting in 67,910 context-enriched entries. ContextCRBench supports three evaluation scenarios aligned with the review workflow: (1) hunk-level quality assessment, (2) line-level defect localization, and (3) line-level comment generation. Evaluating eight leading LLMs (four closed-source and four open-source) reveals that textual context yields greater performance gains than code context alone, while current LLMs remain far from human-level review ability. Deployed at ByteDance, ContextCRBench drives a self-evolving code review system, improving performance by 61.98% and demonstrating its robustness and industrial utility.
☆ Diffolio: A Diffusion Model for Multivariate Probabilistic Financial Time-Series Forecasting and Portfolio Construction
Probabilistic forecasting is crucial in multivariate financial time-series for constructing efficient portfolios that account for complex cross-sectional dependencies. In this paper, we propose Diffolio, a diffusion model designed for multivariate financial time-series forecasting and portfolio construction. Diffolio employs a denoising network with a hierarchical attention architecture, comprising both asset-level and market-level layers. Furthermore, to better reflect cross-sectional correlations, we introduce a correlation-guided regularizer informed by a stable estimate of the target correlation matrix. This structure effectively extracts salient features not only from historical returns but also from asset-specific and systematic covariates, significantly enhancing the performance of forecasts and portfolios. Experimental results on the daily excess returns of 12 industry portfolios show that Diffolio outperforms various probabilistic forecasting baselines in multivariate forecasting accuracy and portfolio performance. Moreover, in portfolio experiments, portfolios constructed from Diffolio's forecasts show consistently robust performance, thereby outperforming those from benchmarks by achieving higher Sharpe ratios for the mean-variance tangency portfolio and higher certainty equivalents for the growth-optimal portfolio. These results demonstrate the superiority of our proposed Diffolio in terms of not only statistical accuracy but also economic significance.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ S$^2$Drug: Bridging Protein Sequence and 3D Structure in Contrastive Representation Learning for Virtual Screening AAAI 2026
Virtual screening (VS) is an essential task in drug discovery, focusing on the identification of small-molecule ligands that bind to specific protein pockets. Existing deep learning methods, from early regression models to recent contrastive learning approaches, primarily rely on structural data while overlooking protein sequences, which are more accessible and can enhance generalizability. However, directly integrating protein sequences poses challenges due to the redundancy and noise in large-scale protein-ligand datasets. To address these limitations, we propose \textbf{S$^2$Drug}, a two-stage framework that explicitly incorporates protein \textbf{S}equence information and 3D \textbf{S}tructure context in protein-ligand contrastive representation learning. In the first stage, we perform protein sequence pretraining on ChemBL using an ESM2-based backbone, combined with a tailored data sampling strategy to reduce redundancy and noise on both protein and ligand sides. In the second stage, we fine-tune on PDBBind by fusing sequence and structure information through a residue-level gating module, while introducing an auxiliary binding site prediction task. This auxiliary task guides the model to accurately localize binding residues within the protein sequence and capture their 3D spatial arrangement, thereby refining protein-ligand matching. Across multiple benchmarks, S$^2$Drug consistently improves virtual screening performance and achieves strong results on binding site prediction, demonstrating the value of bridging sequence and structure in contrastive learning.
comment: Accepted by AAAI 2026 Main Technical Track
☆ Hybrid Autoencoders for Tabular Data: Leveraging Model-Based Augmentation in Low-Label Settings
Deep neural networks often under-perform on tabular data due to their sensitivity to irrelevant features and a spectral bias toward smooth, low-frequency functions. These limitations hinder their ability to capture the sharp, high-frequency signals that often define tabular structure, especially under limited labeled samples. While self-supervised learning (SSL) offers promise in such settings, it remains challenging in tabular domains due to the lack of effective data augmentations. We propose a hybrid autoencoder that combines a neural encoder with an oblivious soft decision tree (OSDT) encoder, each guided by its own stochastic gating network that performs sample-specific feature selection. Together, these structurally different encoders and model-specific gating networks implement model-based augmentation, producing complementary input views tailored to each architecture. The two encoders, trained with a shared decoder and cross-reconstruction loss, learn distinct yet aligned representations that reflect their respective inductive biases. During training, the OSDT encoder (robust to noise and effective at modeling localized, high-frequency structure) guides the neural encoder toward representations more aligned with tabular data. At inference, only the neural encoder is used, preserving flexibility and SSL compatibility. Spectral analysis highlights the distinct inductive biases of each encoder. Our method achieves consistent gains in low-label classification and regression across diverse tabular datasets, outperforming deep and tree-based supervised baselines.
comment: accepted to neurips 2025, main text is 10 pages
☆ FoCLIP: A Feature-Space Misalignment Framework for CLIP-Based Image Manipulation and Detection
The well-aligned attribute of CLIP-based models enables its effective application like CLIPscore as a widely adopted image quality assessment metric. However, such a CLIP-based metric is vulnerable for its delicate multimodal alignment. In this work, we propose \textbf{FoCLIP}, a feature-space misalignment framework for fooling CLIP-based image quality metric. Based on the stochastic gradient descent technique, FoCLIP integrates three key components to construct fooling examples: feature alignment as the core module to reduce image-text modality gaps, the score distribution balance module and pixel-guard regularization, which collectively optimize multimodal output equilibrium between CLIPscore performance and image quality. Such a design can be engineered to maximize the CLIPscore predictions across diverse input prompts, despite exhibiting either visual unrecognizability or semantic incongruence with the corresponding adversarial prompts from human perceptual perspectives. Experiments on ten artistic masterpiece prompts and ImageNet subsets demonstrate that optimized images can achieve significant improvement in CLIPscore while preserving high visual fidelity. In addition, we found that grayscale conversion induces significant feature degradation in fooling images, exhibiting noticeable CLIPscore reduction while preserving statistical consistency with original images. Inspired by this phenomenon, we propose a color channel sensitivity-driven tampering detection mechanism that achieves 91% accuracy on standard benchmarks. In conclusion, this work establishes a practical pathway for feature misalignment in CLIP-based multimodal systems and the corresponding defense method.
comment: 15 page, 9 figures, published to PRCV
☆ Learning to Focus: Prioritizing Informative Histories with Structured Attention Mechanisms in Partially Observable Reinforcement Learning NeurIPS 2025
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
comment: Accepted to Embodied World Models for Decision Making (EWM) Workshop at NeurIPS 2025
☆ From Attribution to Action: Jointly ALIGNing Predictions and Explanations AAAI 2026
Explanation-guided learning (EGL) has shown promise in aligning model predictions with interpretable reasoning, particularly in computer vision tasks. However, most approaches rely on external annotations or heuristic-based segmentation to supervise model explanations, which can be noisy, imprecise and difficult to scale. In this work, we provide both empirical and theoretical evidence that low-quality supervision signals can degrade model performance rather than improve it. In response, we propose ALIGN, a novel framework that jointly trains a classifier and a masker in an iterative manner. The masker learns to produce soft, task-relevant masks that highlight informative regions, while the classifier is optimized for both prediction accuracy and alignment between its saliency maps and the learned masks. By leveraging high-quality masks as guidance, ALIGN improves both interpretability and generalizability, showing its superiority across various settings. Experiments on the two domain generalization benchmarks, VLCS and Terra Incognita, show that ALIGN consistently outperforms six strong baselines in both in-distribution and out-of-distribution settings. Besides, ALIGN also yields superior explanation quality concerning sufficiency and comprehensiveness, highlighting its effectiveness in producing accurate and interpretable models.
comment: Accepted in AAAI 2026
☆ PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data AAAI
Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling.
comment: Preprint version of the paper accepted at the 40th AAAI Conference on Artificial Intelligence (AAAI-26), organized by the Association for the Advancement of Artificial Intelligence
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Proceedings of the 2025 XCSP3 Competition
This document represents the proceedings of the 2025 XCSP3 Competition. The results of this competition of constraint solvers were presented at CP'25 (31st International Conference on Principles and Practice of Constraint Programming).
comment: 110 pages
☆ Sampling and Loss Weights in Multi-Domain Training
In the training of large deep neural networks, there is a need for vast amounts of training data. To meet this need, data is collected from multiple domains, such as Wikipedia and GitHub. These domains are heterogeneous in both data quality and the diversity of information they provide. This raises the question of how much we should rely on each domain. Several methods have attempted to address this issue by assigning sampling weights to each data domain using heuristics or approximations. As a first step toward a deeper understanding of the role of data mixing, this work revisits the problem by studying two kinds of weights: sampling weights, which control how much each domain contributes in a batch, and loss weights, which scale the loss from each domain during training. Through a rigorous study of linear regression, we show that these two weights play complementary roles. First, they can reduce the variance of gradient estimates in iterative methods such as stochastic gradient descent (SGD). Second, they can improve generalization performance by reducing the generalization gap. We provide both theoretical and empirical support for these claims. We further study the joint dynamics of sampling weights and loss weights, examining how they can be combined to capture both contributions.
☆ Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
comment: 27pages,9figures,9tables
☆ RPTS: Tree-Structured Reasoning Process Scoring for Faithful Multimodal Evaluation
Large Vision-Language Models (LVLMs) excel in multimodal reasoning and have shown impressive performance on various multimodal benchmarks. However, most of these benchmarks evaluate models primarily through multiple-choice or short-answer formats, which do not take the reasoning process into account. Although some benchmarks assess the reasoning process, their methods are often overly simplistic and only examine reasoning when answers are incorrect. This approach overlooks scenarios where flawed reasoning leads to correct answers. In addition, these benchmarks do not consider the impact of intermodal relationships on reasoning. To address this issue, we propose the Reasoning Process Tree Score (RPTS), a tree structure-based metric to assess reasoning processes. Specifically, we organize the reasoning steps into a reasoning tree and leverage its hierarchical information to assign weighted faithfulness scores to each reasoning step. By dynamically adjusting these weights, RPTS not only evaluates the overall correctness of the reasoning, but also pinpoints where the model fails in the reasoning. To validate RPTS in real-world multimodal scenarios, we construct a new benchmark, RPTS-Eval, comprising 374 images and 390 reasoning instances. Each instance includes reliable visual-textual clues that serve as leaf nodes of the reasoning tree. Furthermore, we define three types of intermodal relationships to investigate how intermodal interactions influence the reasoning process. We evaluated representative LVLMs (e.g., GPT4o, Llava-Next), uncovering their limitations in multimodal reasoning and highlighting the differences between open-source and closed-source commercial LVLMs. We believe that this benchmark will contribute to the advancement of research in the field of multimodal reasoning.
☆ A Hybrid Autoencoder-Transformer Model for Robust Day-Ahead Electricity Price Forecasting under Extreme Conditions
Accurate day-ahead electricity price forecasting (DAEPF) is critical for the efficient operation of power systems, but extreme condition and market anomalies pose significant challenges to existing forecasting methods. To overcome these challenges, this paper proposes a novel hybrid deep learning framework that integrates a Distilled Attention Transformer (DAT) model and an Autoencoder Self-regression Model (ASM). The DAT leverages a self-attention mechanism to dynamically assign higher weights to critical segments of historical data, effectively capturing both long-term trends and short-term fluctuations. Concurrently, the ASM employs unsupervised learning to detect and isolate anomalous patterns induced by extreme conditions, such as heavy rain, heat waves, or human festivals. Experiments on datasets sampled from California and Shandong Province demonstrate that our framework significantly outperforms state-of-the-art methods in prediction accuracy, robustness, and computational efficiency. Our framework thus holds promise for enhancing grid resilience and optimizing market operations in future power systems.
comment: Published in 2025 IEEE 1st International Symposium on the Application of Artificial Intelligence in Electrical Engineering (AAIEE) https://ieeexplore.ieee.org/document/11100637
☆ On The Presence of Double-Descent in Deep Reinforcement Learning
The double descent (DD) paradox, where over-parameterized models see generalization improve past the interpolation point, remains largely unexplored in the non-stationary domain of Deep Reinforcement Learning (DRL). We present preliminary evidence that DD exists in model-free DRL, investigating it systematically across varying model capacity using the Actor-Critic framework. We rely on an information-theoretic metric, Policy Entropy, to measure policy uncertainty throughout training. Preliminary results show a clear epoch-wise DD curve; the policy's entrance into the second descent region correlates with a sustained, significant reduction in Policy Entropy. This entropic decay suggests that over-parameterization acts as an implicit regularizer, guiding the policy towards robust, flatter minima in the loss landscape. These findings establish DD as a factor in DRL and provide an information-based mechanism for designing agents that are more general, transferable, and robust.
☆ COGNOS: Universal Enhancement for Time Series Anomaly Detection via Constrained Gaussian-Noise Optimization and Smoothing
Reconstruction-based methods are a dominant paradigm in time series anomaly detection (TSAD), however, their near-universal reliance on Mean Squared Error (MSE) loss results in statistically flawed reconstruction residuals. This fundamental weakness leads to noisy, unstable anomaly scores with a poor signal-to-noise ratio, hindering reliable detection. To address this, we propose Constrained Gaussian-Noise Optimization and Smoothing (COGNOS), a universal, model-agnostic enhancement framework that tackles this issue at its source. COGNOS introduces a novel Gaussian-White Noise Regularization strategy during training, which directly constrains the model's output residuals to conform to a Gaussian white noise distribution. This engineered statistical property creates the ideal precondition for our second contribution: a Kalman Smoothing Post-processor that provably operates as a statistically optimal estimator to denoise the raw anomaly scores. The synergy between these two components allows COGNOS to robustly separate the true anomaly signal from random fluctuations. Extensive experiments demonstrate that COGNOS is highly effective, delivering an average F-score uplift of 57.9% when applied to 12 diverse backbone models across multiple real-world benchmark datasets. Our work reveals that directly regularizing output statistics is a powerful and generalizable strategy for significantly improving anomaly detection systems.
☆ DeepBooTS: Dual-Stream Residual Boosting for Drift-Resilient Time-Series Forecasting AAAI-26
Time-Series (TS) exhibits pronounced non-stationarity. Consequently, most forecasting methods display compromised robustness to concept drift, despite the prevalent application of instance normalization. We tackle this challenge by first analysing concept drift through a bias-variance lens and proving that weighted ensemble reduces variance without increasing bias. These insights motivate DeepBooTS, a novel end-to-end dual-stream residual-decreasing boosting method that progressively reconstructs the intrinsic signal. In our design, each block of a deep model becomes an ensemble of learners with an auxiliary output branch forming a highway to the final prediction. The block-wise outputs correct the residuals of previous blocks, leading to a learning-driven decomposition of both inputs and targets. This method enhances versatility and interpretability while substantially improving robustness to concept drift. Extensive experiments, including those on large-scale datasets, show that the proposed method outperforms existing methods by a large margin, yielding an average performance improvement of 15.8% across various datasets, establishing a new benchmark for TS forecasting.
comment: 28 pages,17 pages, Published in AAAI-26
☆ TuckA: Hierarchical Compact Tensor Experts for Efficient Fine-Tuning
Efficiently fine-tuning pre-trained models for downstream tasks is a key challenge in the era of foundation models. Parameter-efficient fine-tuning (PEFT) presents a promising solution, achieving performance comparable to full fine-tuning by updating only a small number of adaptation weights per layer. Traditional PEFT methods typically rely on a single expert, where the adaptation weight is a low-rank matrix. However, for complex tasks, the data's inherent diversity poses a significant challenge for such models, as a single adaptation weight cannot adequately capture the features of all samples. To address this limitation, we explore how to integrate multiple small adaptation experts into a compact structure to defeat a large adapter. Specifically, we propose Tucker Adaptation (TuckA), a method with four key properties: (i) We use Tucker decomposition to create a compact 3D tensor where each slice naturally serves as an expert. The low-rank nature of this decomposition ensures that the number of parameters scales efficiently as more experts are added. (ii) We introduce a hierarchical strategy that organizes these experts into groups at different granularities, allowing the model to capture both local and global data patterns. (iii) We develop an efficient batch-level routing mechanism, which reduces the router's parameter size by a factor of $L$ compared to routing at every adapted layer (where $L$ is the number of adapted layers) (iv) We propose data-aware initialization to achieve loss-free expert load balancing based on theoretical analysis. Extensive experiments on benchmarks in natural language understanding, image classification, and mathematical reasoning speak to the efficacy of TuckA, offering a new and effective solution to the PEFT problem.
☆ Deep learning EPI-TIRF cross-modality enables background subtraction and axial super-resolution for widefield fluorescence microscopy
The resolving ability of wide-field fluorescence microscopy is fundamentally limited by out-of-focus background owing to its low axial resolution, particularly for densely labeled biological samples. To address this, we developed ET2dNet, a deep learning-based EPI-TIRF cross-modality network that achieves TIRF-comparable background subtraction and axial super-resolution from a single wide-field image without requiring hardware modifications. The model employs a physics-informed hybrid architecture, synergizing supervised learning with registered EPI-TIRF image pairs and self-supervised physical modeling via convolution with the point spread function. This framework ensures exceptional generalization across microscope objectives, enabling few-shot adaptation to new imaging setups. Rigorous validation on cellular and tissue samples confirms ET2dNet's superiority in background suppression and axial resolution enhancement, while maintaining compatibility with deconvolution techniques for lateral resolution improvement. Furthermore, by extending this paradigm through knowledge distillation, we developed ET3dNet, a dedicated three-dimensional reconstruction network that produces artifact-reduced volumetric results. ET3dNet effectively removes out-of-focus background signals even when the input image stack lacks the source of background. This framework makes axial super-resolution imaging more accessible by providing an easy-to-deploy algorithm that avoids additional hardware costs and complexity, showing great potential for live cell studies and clinical histopathology.
☆ Differentiated Directional Intervention A Framework for Evading LLM Safety Alignment AAAI-26
Safety alignment instills in Large Language Models (LLMs) a critical capacity to refuse malicious requests. Prior works have modeled this refusal mechanism as a single linear direction in the activation space. We posit that this is an oversimplification that conflates two functionally distinct neural processes: the detection of harm and the execution of a refusal. In this work, we deconstruct this single representation into a Harm Detection Direction and a Refusal Execution Direction. Leveraging this fine-grained model, we introduce Differentiated Bi-Directional Intervention (DBDI), a new white-box framework that precisely neutralizes the safety alignment at critical layer. DBDI applies adaptive projection nullification to the refusal execution direction while suppressing the harm detection direction via direct steering. Extensive experiments demonstrate that DBDI outperforms prominent jailbreaking methods, achieving up to a 97.88\% attack success rate on models such as Llama-2. By providing a more granular and mechanistic framework, our work offers a new direction for the in-depth understanding of LLM safety alignment.
comment: AAAI-26-AIA
☆ NeuroBridge: Bio-Inspired Self-Supervised EEG-to-Image Decoding via Cognitive Priors and Bidirectional Semantic Alignment AAAI 2026
Visual neural decoding seeks to reconstruct or infer perceived visual stimuli from brain activity patterns, providing critical insights into human cognition and enabling transformative applications in brain-computer interfaces and artificial intelligence. Current approaches, however, remain constrained by the scarcity of high-quality stimulus-brain response pairs and the inherent semantic mismatch between neural representations and visual content. Inspired by perceptual variability and co-adaptive strategy of the biological systems, we propose a novel self-supervised architecture, named NeuroBridge, which integrates Cognitive Prior Augmentation (CPA) with Shared Semantic Projector (SSP) to promote effective cross-modality alignment. Specifically, CPA simulates perceptual variability by applying asymmetric, modality-specific transformations to both EEG signals and images, enhancing semantic diversity. Unlike previous approaches, SSP establishes a bidirectional alignment process through a co-adaptive strategy, which mutually aligns features from two modalities into a shared semantic space for effective cross-modal learning. NeuroBridge surpasses previous state-of-the-art methods under both intra-subject and inter-subject settings. In the intra-subject scenario, it achieves the improvements of 12.3% in top-1 accuracy and 10.2% in top-5 accuracy, reaching 63.2% and 89.9% respectively on a 200-way zero-shot retrieval task. Extensive experiments demonstrate the effectiveness, robustness, and scalability of the proposed framework for neural visual decoding.
comment: AAAI 2026
☆ DeepRWCap: Neural-Guided Random-Walk Capacitance Solver for IC Design AAAI-26
Monte Carlo random walk methods are widely used in capacitance extraction for their mesh-free formulation and inherent parallelism. However, modern semiconductor technologies with densely packed structures present significant challenges in unbiasedly sampling transition domains in walk steps with multiple high-contrast dielectric materials. We present DeepRWCap, a machine learning-guided random walk solver that predicts the transition quantities required to guide each step of the walk. These include Poisson kernels, gradient kernels, signs and magnitudes of weights. DeepRWCap employs a two-stage neural architecture that decomposes structured outputs into face-wise distributions and spatial kernels on cube faces. It uses 3D convolutional networks to capture volumetric dielectric interactions and 2D depthwise separable convolutions to model localized kernel behavior. The design incorporates grid-based positional encodings and structural design choices informed by cube symmetries to reduce learning redundancy and improve generalization. Trained on 100,000 procedurally generated dielectric configurations, DeepRWCap achieves a mean relative error of $1.24\pm0.53$\% when benchmarked against the commercial Raphael solver on the self-capacitance estimation of 10 industrial designs spanning 12 to 55 nm nodes. Compared to the state-of-the-art stochastic difference method Microwalk, DeepRWCap achieves an average 23\% speedup. On complex designs with runtimes over 10 s, it reaches an average 49\% acceleration.
comment: Accepted to AAAI-26
☆ Beyond Plain Demos: A Demo-centric Anchoring Paradigm for In-Context Learning in Alzheimer's Disease Detection AAAI
Detecting Alzheimer's disease (AD) from narrative transcripts challenges large language models (LLMs): pre-training rarely covers this out-of-distribution task, and all transcript demos describe the same scene, producing highly homogeneous contexts. These factors cripple both the model's built-in task knowledge (\textbf{task cognition}) and its ability to surface subtle, class-discriminative cues (\textbf{contextual perception}). Because cognition is fixed after pre-training, improving in-context learning (ICL) for AD detection hinges on enriching perception through better demonstration (demo) sets. We demonstrate that standard ICL quickly saturates, its demos lack diversity (context width) and fail to convey fine-grained signals (context depth), and that recent task vector (TV) approaches improve broad task adaptation by injecting TV into the LLMs' hidden states (HSs), they are ill-suited for AD detection due to the mismatch of injection granularity, strength and position. To address these bottlenecks, we introduce \textbf{DA4ICL}, a demo-centric anchoring framework that jointly expands context width via \emph{\textbf{Diverse and Contrastive Retrieval}} (DCR) and deepens each demo's signal via \emph{\textbf{Projected Vector Anchoring}} (PVA) at every Transformer layer. Across three AD benchmarks, DA4ICL achieves large, stable gains over both ICL and TV baselines, charting a new paradigm for fine-grained, OOD and low-resource LLM adaptation.
comment: Accepted to the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Main Technical Track (Oral)
☆ TiS-TSL: Image-Label Supervised Surgical Video Stereo Matching via Time-Switchable Teacher-Student Learning
Stereo matching in minimally invasive surgery (MIS) is essential for next-generation navigation and augmented reality. Yet, dense disparity supervision is nearly impossible due to anatomical constraints, typically limiting annotations to only a few image-level labels acquired before the endoscope enters deep body cavities. Teacher-Student Learning (TSL) offers a promising solution by leveraging a teacher trained on sparse labels to generate pseudo labels and associated confidence maps from abundant unlabeled surgical videos. However, existing TSL methods are confined to image-level supervision, providing only spatial confidence and lacking temporal consistency estimation. This absence of spatio-temporal reliability results in unstable disparity predictions and severe flickering artifacts across video frames. To overcome these challenges, we propose TiS-TSL, a novel time-switchable teacher-student learning framework for video stereo matching under minimal supervision. At its core is a unified model that operates in three distinct modes: Image-Prediction (IP), Forward Video-Prediction (FVP), and Backward Video-Prediction (BVP), enabling flexible temporal modeling within a single architecture. Enabled by this unified model, TiS-TSL adopts a two-stage learning strategy. The Image-to-Video (I2V) stage transfers sparse image-level knowledge to initialize temporal modeling. The subsequent Video-to-Video (V2V) stage refines temporal disparity predictions by comparing forward and backward predictions to calculate bidirectional spatio-temporal consistency. This consistency identifies unreliable regions across frames, filters noisy video-level pseudo labels, and enforces temporal coherence. Experimental results on two public datasets demonstrate that TiS-TSL exceeds other image-based state-of-the-arts by improving TEPE and EPE by at least 2.11% and 4.54%, respectively..
comment: 8 pages, 4 figures, accepted by BiBM2025
☆ Controllable Flow Matching for Online Reinforcement Learning AAAI
Model-based reinforcement learning (MBRL) typically relies on modeling environment dynamics for data efficiency. However, due to the accumulation of model errors over long-horizon rollouts, such methods often face challenges in maintaining modeling stability. To address this, we propose CtrlFlow, a trajectory-level synthetic method using conditional flow matching (CFM), which directly modeling the distribution of trajectories from initial states to high-return terminal states without explicitly modeling the environment transition function. Our method ensures optimal trajectory sampling by minimizing the control energy governed by the non-linear Controllability Gramian Matrix, while the generated diverse trajectory data significantly enhances the robustness and cross-task generalization of policy learning. In online settings, CtrlFlow demonstrates the better performance on common MuJoCo benchmark tasks than dynamics models and achieves superior sample efficiency compared to standard MBRL methods.
comment: 9 pages, The Fortieth AAAI Conference on Artificial Intelligence(AAAI2026)
☆ MathSE: Improving Multimodal Mathematical Reasoning via Self-Evolving Iterative Reflection and Reward-Guided Fine-Tuning
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language answering tasks. Despite their strengths, these models often encounter challenges in achieving complex reasoning tasks such as mathematical problem-solving. Previous works have focused on fine-tuning on specialized mathematical datasets. However, these datasets are typically distilled directly from teacher models, which capture only static reasoning patterns and leaving substantial gaps compared to student models. This reliance on fixed teacher-derived datasets not only restricts the model's ability to adapt to novel or more intricate questions that extend beyond the confines of the training data, but also lacks the iterative depth needed for robust generalization. To overcome these limitations, we propose \textbf{\method}, a \textbf{Math}ematical \textbf{S}elf-\textbf{E}volving framework for MLLMs. In contrast to traditional one-shot fine-tuning paradigms, \method iteratively refines the model through cycles of inference, reflection, and reward-based feedback. Specifically, we leverage iterative fine-tuning by incorporating correct reasoning paths derived from previous-stage inference and integrating reflections from a specialized Outcome Reward Model (ORM). To verify the effectiveness of \method, we evaluate it on a suite of challenging benchmarks, demonstrating significant performance gains over backbone models. Notably, our experimental results on MathVL-test surpass the leading open-source multimodal mathematical reasoning model QVQ. Our code and models are available at \texttt{https://zheny2751\allowbreak-dotcom.github.io/\allowbreak MathSE.github.io/}.
comment: 19 pages, 11 figures
☆ AgentSUMO: An Agentic Framework for Interactive Simulation Scenario Generation in SUMO via Large Language Models
The growing complexity of urban mobility systems has made traffic simulation indispensable for evidence-based transportation planning and policy evaluation. However, despite the analytical capabilities of platforms such as the Simulation of Urban MObility (SUMO), their application remains largely confined to domain experts. Developing realistic simulation scenarios requires expertise in network construction, origin-destination modeling, and parameter configuration for policy experimentation, creating substantial barriers for non-expert users such as policymakers, urban planners, and city officials. Moreover, the requests expressed by these users are often incomplete and abstract-typically articulated as high-level objectives, which are not well aligned with the imperative, sequential workflows employed in existing language-model-based simulation frameworks. To address these challenges, this study proposes AgentSUMO, an agentic framework for interactive simulation scenario generation via large language models. AgentSUMO departs from imperative, command-driven execution by introducing an adaptive reasoning layer that interprets user intents, assesses task complexity, infers missing parameters, and formulates executable simulation plans. The framework is structured around two complementary components, the Interactive Planning Protocol, which governs reasoning and user interaction, and the Model Context Protocol, which manages standardized communication and orchestration among simulation tools. Through this design, AgentSUMO converts abstract policy objectives into executable simulation scenarios. Experiments on urban networks in Seoul and Manhattan demonstrate that the agentic workflow achieves substantial improvements in traffic flow metrics while maintaining accessibility for non-expert users, successfully bridging the gap between policy goals and executable simulation workflows.
comment: Submitted to Transportation Research Part C (under review)
♻ ☆ Explaining Human Choice Probabilities with Simple Vector Representations
When people pursue rewards in stochastic environments, they often match their choice frequencies to the observed target frequencies, even when this policy is demonstrably sub-optimal. We used a ``hide and seek'' task to evaluate this behavior under conditions where pursuit (seeking) could be toggled to avoidance (hiding), while leaving the probability distribution fixed, or varying complexity by changing the number of possible choices. We developed a model for participant choice built from choice frequency histograms treated as vectors. We posited the existence of a probability antimatching strategy for avoidance (hiding) rounds, and formalized this as a vector reflection of probability matching. We found that only two basis policies: matching/antimatching and maximizing/minimizing were sufficient to account for participant choices across a range of room numbers and opponent probability distributions. This schema requires only that people have the ability to remember the relative frequency of the different outcomes. With this knowledge simple operations can construct the maximizing and minimizing policies as well as matching and antimatching strategies. A mixture of these two policies captures human choice patterns in a stochastic environment.
♻ ☆ Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning ECAI 2025
Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.
comment: Accepted for Poster, Presentation and Proceedings at: 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), co-located with ECAI 2025, Bologna, Italy, 25-30 October 2025
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA and GPT-4V, the direction of using these models to replace time-consuming manual annotation workflows and achieve ``manual-annotation-free" training for downstream tasks has become a highly promising research avenue. This paper focuses on learning from noisy partial labels annotated by pre-trained VLMs and proposes an innovative collaborative consistency regularization (Co-Reg) method. Unlike the symmetric noise primarily addressed in traditional noisy label learning, the noise generated by pre-trained models is instance-dependent, embodying the underlying patterns of the pre-trained models themselves, which significantly increases the learning difficulty for the model. To address this, we simultaneously train two neural networks that implement collaborative purification of training labels through a ``Co-Pseudo-Labeling" mechanism, while enforcing consistency regularization constraints in both the label space and feature representation space. Specifically, we construct multiple anti-overfitting mechanisms that efficiently mine latent information from noisy partially labeled samples including alternating optimization of contrastive feature representations and pseudo-labels, as well as maintaining prototypical class vectors in the shared feature space.
♻ ☆ When Bias Helps Learning: Bridging Initial Prejudice and Trainability
Understanding the statistical properties of deep neural networks (DNNs) at initialization is crucial for elucidating both their trainability and the intrinsic architectural biases they encode prior to data exposure. Mean-field (MF) analyses have demonstrated that the parameter distribution in randomly initialized networks dictates whether gradients vanish or explode. Recent work has shown that untrained DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input space are assigned to a single class. In this work, we provide a theoretical proof linking IGB to MF analyses, establishing that a network predisposition toward specific classes is intrinsically tied to the conditions for efficient learning. This connection leads to a counterintuitive conclusion: the initialization that optimizes trainability is systematically biased rather than neutral. We validate our theory through experiments across multiple architectures and datasets.
♻ ☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop; v2: added collaboration
♻ ☆ HyperSHAP: Shapley Values and Interactions for Explaining Hyperparameter Optimization AAAI-26
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. Yet, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque HPO methods to find optimal configurations. However, the black-box nature of most HPO methods undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameters' contributions and their interactions. The framework, named HyperSHAP, offers insights into ablation studies, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We demonstrate HyperSHAP's capabilities on various HPO benchmarks to analyze the interaction structure of the corresponding HPO problems, demonstrating its broad applicability and actionable insights for improving HPO.
comment: Accepted at AAAI-26 (oral)
♻ ☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch EMNLP 2025
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
comment: EMNLP 2025 finding
♻ ☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attack has been listed as the top-1 security threat to LLM-integrated applications, which interact with external environment data for complex tasks. The untrusted data may contain an injected prompt trying to arbitrarily manipulate the system. Model-level prompt injection defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source secure models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigating prompt injection attacks. To this end, we develop Meta SecAlign, the first fully open-source LLM with built-in model-level defense that achieves commercial-grade performance, powerful enough for complex agentic tasks. We provide complete details of our training recipe, an improved version of the SOTA SecAlign defense. We perform the most comprehensive evaluation to date on 9 utility benchmarks and 7 security benchmarks on general knowledge, instruction following, and agentic workflows. Results show that Meta SecAlign, despite being trained on generic instruction-tuning samples only, surprisingly confers security in unseen downstream tasks, including tool-calling and web-navigation, in addition to general instruction-following. Our best model -- Meta-SecAlign-70B -- establishes a new frontier of utility-security trade-off for open-source LLMs. Even compared to closed-course commercial models such as GPT-5, our model is much securer than most of them. Below are links for the code (https://github.com/facebookresearch/Meta_SecAlign), Meta-SecAlign-70B(https://huggingface.co/facebook/Meta-SecAlign-70B), and Meta-SecAlign-8B(https://huggingface.co/facebook/Meta-SecAlign-8B) models.
♻ ☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
♻ ☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
The task of reconstructing unknown textual inputs to language models is a fundamental auditing primitive that allows us to assess the model's vulnerability to a range of security issues, including stealing hidden system prompts, detecting backdoors, and leaking private data. Existing inversion works assume access to differing levels of information (e.g. requiring input-output examples, the model parameters, intermediate activations or output logits) but oftentimes fail to fully reconstruct the desired input. In this paper, we present the Sparse One-hot Discrete Adam (SODA) algorithm, a search-based inversion method that can accurately reconstruct the input text, given white-box access to the language model and its output. Our experiments demonstrate for the first time that exact language model inversion is possible on both natural language and random inputs. Indeed, SODA achieves respectively 98% and 79% reconstruction rates on inputs with lengths up to 10 tokens. Furthermore, we show that input length and vocabulary size have a far greater impact on the probability of a successful reconstruction than the size of the language model itself, thus allowing us to scale to models from 33M to 3B parameters.
comment: 7 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
♻ ☆ GlitchMiner: Mining Glitch Tokens in Large Language Models via Gradient-based Discrete Optimization
Glitch tokens, inputs that trigger unpredictable or anomalous behavior in Large Language Models (LLMs), pose significant challenges to model reliability and safety. Existing detection methods primarily rely on heuristic embedding patterns or statistical anomalies within internal representations, limiting their generalizability across different model architectures and potentially missing anomalies that deviate from observed patterns. We introduce GlitchMiner, an behavior-driven framework designed to identify glitch tokens by maximizing predictive entropy. Leveraging a gradient-guided local search strategy, GlitchMiner efficiently explores the discrete token space without relying on model-specific heuristics or large-batch sampling. Extensive experiments across ten LLMs from five major model families demonstrate that GlitchMiner consistently outperforms existing approaches in detection accuracy and query efficiency, providing a generalizable and scalable solution for effective glitch token discovery. Code is available at [https://github.com/wooozihu/GlitchMiner]
♻ ☆ ANO : Faster is Better in Noisy Landscape ICLR 2026
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks.
comment: Under Review for ICLR 2026, 25 pages total with appendix, 7 figures, 12 tables
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ When Language Shapes Thought: Cross-Lingual Transfer of Factual Knowledge in Question Answering CIKM2025
Multilingual large language models (LLMs) offer promising opportunities for cross-lingual information access, yet their use of factual knowledge remains highly sensitive to the input language. Prior work has addressed this through English prompting and evaluation, assuming that English-based reasoning is universally beneficial. In this work, we challenge that assumption by exploring factual knowledge transfer from non-English to English through the lens of Language and Thought Theory. We introduce Language-to-Thought (L2T) prompting, which aligns the model's internal ''thinking'' language with the source of knowledge. Across three languages and four models, L2T consistently outperforms English-based reasoning, reversing the expected advantage of English prompts. Our code is available at https://github.com/GeomeunByeol/Language2Thought.
comment: Accepted at CIKM2025 (Expanded version)
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
The increasing digitalization of education presents unprecedented opportunities for data-driven personalization, but it also introduces significant challenges to student data privacy. Conventional recommender systems rely on centralized data, a paradigm often incompatible with modern data protection regulations. A novel privacy-preserving recommender system is proposed and evaluated to address this critical issue using Federated Learning (FL). The approach utilizes a Deep Neural Network (DNN) with rich, engineered features from the large-scale ASSISTments educational dataset. A rigorous comparative analysis of federated aggregation strategies was conducted, identifying FedProx as a significantly more stable and effective method for handling heterogeneous student data than the standard FedAvg baseline. The optimized federated model achieves a high-performance F1-Score of 76.28%, corresponding to 92% of the performance of a powerful, centralized XGBoost model. These findings validate that a federated approach can provide highly effective content recommendations without centralizing sensitive student data. Consequently, our work presents a viable and robust solution to the personalization-privacy dilemma in modern educational platforms.
♻ ☆ Rethinking Tokenization for Rich Morphology: The Dominance of Unigram over BPE and Morphological Alignment
The relationship between tokenizer algorithm (e.g., Byte-Pair Encoding (BPE), Unigram), morphological alignment, tokenization quality (e.g., compression efficiency), and downstream performance remains largely unclear, particularly for languages with complex morphology. In this paper, we conduct a comprehensive evaluation of tokenizers using small-sized BERT models -- from pre-training through fine-tuning -- for Telugu (agglutinative), along with preliminary evaluation in Hindi (primarily fusional with some agglutination) and English (fusional). To evaluate morphological alignment of tokenizers in Telugu, we create a dataset containing gold morpheme segmentations of 600 derivational and 7000 inflectional word forms. Our experiments reveal two key findings for Telugu. First, the choice of tokenizer algorithm is the most significant factor influencing performance, with Unigram-based tokenizers consistently outperforming BPE across most settings. Second, while better morphological alignment shows a moderate, positive correlation with performance on text classification and structure prediction tasks, its impact is secondary to the tokenizer algorithm. Notably, hybrid approaches that use morphological information for pre-segmentation significantly boost the performance of BPE, though not Unigram. Our results further showcase the need for comprehensive intrinsic evaluation metrics for tokenizers that could explain downstream performance trends consistently.
♻ ☆ Security-aware Semantic-driven ISAC via Paired Adversarial Residual Networks
This paper proposes a novel and flexible security-aware semantic-driven integrated sensing and communication (ISAC) framework, namely security semantic ISAC (SS-ISAC). Inspired by the positive impact of the adversarial attack, a pair of pluggable encryption and decryption modules is designed in the proposed SS-ISAC framework. The encryption module is installed after the semantic transmitter, adopting a trainable adversarial residual network (ARN) to create the adversarial attack. Correspondingly, the decryption module before the semantic receiver utilizes another trainable ARN to mitigate the adversarial attack and noise. These two modules can be flexibly assembled considering the system security demands, without drastically modifying the hardware infrastructure. To ensure the sensing and communication (SAC) performance while preventing the eavesdropping threat, the above ARNs are jointly optimized by minimizing a carefully designed loss function that relates to the adversarial attack power, SAC performance, as well as the privacy leakage risk. Simulation results validate the effectiveness of the proposed SS-ISAC framework in terms of both SAC and eavesdropping prevention performance.
comment: This paper contains errors, including insufficient technical elaboration, incorrect expression of PSR, lack of benchmark, and incomplete simulation justification. We politely request withdrawal of the current version (v1) to prevent misunderstanding
♻ ☆ DPCformer: An Interpretable Deep Learning Model for Genomic Prediction in Crops
Genomic Selection (GS) uses whole-genome information to predict crop phenotypes and accelerate breeding. Traditional GS methods, however, struggle with prediction accuracy for complex traits and large datasets. We propose DPCformer, a deep learning model integrating convolutional neural networks with a self-attention mechanism to model complex genotype-phenotype relationships. We applied DPCformer to 13 traits across five crops (maize, cotton, tomato, rice, chickpea). Our approach uses an 8-dimensional one-hot encoding for SNP data, ordered by chromosome, and employs the PMF algorithm for feature selection. Evaluations show DPCformer outperforms existing methods. In maize datasets, accuracy for traits like days to tasseling and plant height improved by up to 2.92%. For cotton, accuracy gains for fiber traits reached 8.37%. On small-sample tomato data, the Pearson Correlation Coefficient for a key trait increased by up to 57.35%. In chickpea, the yield correlation was boosted by 16.62%. DPCformer demonstrates superior accuracy, robustness in small-sample scenarios, and enhanced interpretability, providing a powerful tool for precision breeding and addressing global food security challenges.
comment: This work has been accepted by BIBM 2025
♻ ☆ TERAG: Token-Efficient Graph-Based Retrieval-Augmented Generation
Graph-based Retrieval-augmented generation (RAG) has become a widely studied approach for improving the reasoning, accuracy, and factuality of Large Language Models (LLMs). However, many existing graph-based RAG systems overlook the high cost associated with LLM token usage during graph construction, hindering large-scale adoption. To address this, we propose TERAG, a simple yet effective framework designed to build informative graphs at a significantly lower cost. Inspired by HippoRAG, we incorporate Personalized PageRank (PPR) during the retrieval phase, and we achieve at least 80% of the accuracy of widely used graph-based RAG methods while consuming only 3%-11% of the output tokens. With its low token footprint and efficient construction pipeline, TERAG is well-suited for large-scale and cost-sensitive deployment scenarios.
comment: 16 pages, 3 figures, 4 tables. Code available at https://github.com/wocqcm2/TERAG
♻ ☆ SOCIA-Nabla: Textual Gradient Meets Multi-Agent Orchestration for Automated Simulator Generation
In this paper, we present SOCIA-Nabla, an end-to-end, agentic framework that treats simulator construction asinstance optimization over code within a textual computation graph. Specialized LLM-driven agents are embedded as graph nodes, and a workflow manager executes a loss-driven loop: code synthesis -> execution -> evaluation -> code repair. The optimizer performs Textual-Gradient Descent (TGD), while human-in-the-loop interaction is reserved for task-spec confirmation, minimizing expert effort and keeping the code itself as the trainable object. Across three CPS tasks, i.e., User Modeling, Mask Adoption, and Personal Mobility, SOCIA-Nabla attains state-of-the-art overall accuracy. By unifying multi-agent orchestration with a loss-aligned optimization view, SOCIA-Nabla converts brittle prompt pipelines into reproducible, constraint-aware simulator code generation that scales across domains and simulation granularities. This work is under review, and we will release the code soon.
comment: superseded by newest version of arXiv:2505.12006
♻ ☆ CodeEvolve: An open source evolutionary coding agent for algorithm discovery and optimization
In this work, we introduce CodeEvolve, an open-source evolutionary coding agent that unites Large Language Models (LLMs) with genetic algorithms to solve complex computational problems. Our framework adapts powerful evolutionary concepts to the LLM domain, building upon recent methods for generalized scientific discovery. CodeEvolve employs an island-based genetic algorithm to maintain population diversity and increase throughput, introduces a novel inspiration-based crossover mechanism that leverages the LLMs context window to combine features from successful solutions, and implements meta-prompting strategies for dynamic exploration of the solution space. We conduct a rigorous evaluation of CodeEvolve on a subset of the mathematical benchmarks used to evaluate Google DeepMind's closed-source AlphaEvolve. Our findings show that our method surpasses AlphaEvolve's performance on several challenging problems. To foster collaboration and accelerate progress, we release our complete framework as an open-source repository.
comment: 11 pages, 9 figures, 2 tables
♻ ☆ Perceptually Aligning Representations of Music via Noise-Augmented Autoencoders NeurIPS 2025
We argue that training autoencoders to reconstruct inputs from noised versions of their encodings, when combined with perceptual losses, yields encodings that are structured according to a perceptual hierarchy. We demonstrate the emergence of this hierarchical structure by showing that, after training an audio autoencoder in this manner, perceptually salient information is captured in coarser representation structures than with conventional training. Furthermore, we show that such perceptual hierarchies improve latent diffusion decoding in the context of estimating surprisal in music pitches and predicting EEG-brain responses to music listening. Pretrained weights are available on github.com/CPJKU/pa-audioic.
comment: Accepted at NeurIPS 2025 - AI for Music Workshop, 11 pages, 5 figures, 1 table
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models AACL 2025
Although behavioral studies have documented numerical reasoning errors in large language models (LLMs), the underlying representational mechanisms remain unclear. We hypothesize that numerical attributes occupy shared latent subspaces and investigate two questions:(1) How do LLMs internally integrate multiple numerical attributes of a single entity? (2)How does irrelevant numerical context perturb these representations and their downstream outputs? To address these questions, we combine linear probing with partial correlation analysis and prompt-based vulnerability tests across models of varying sizes. Our results show that LLMs encode real-world numerical correlations but tend to systematically amplify them. Moreover, irrelevant context induces consistent shifts in magnitude representations, with downstream effects that vary by model size. These findings reveal a vulnerability in LLM decision-making and lay the groundwork for fairer, representation-aware control under multi-attribute entanglement.
comment: Accepted to IJCNLP-AACL 2025 (Main). Code available at https://github.com/htkg/num_attrs
♻ ☆ Beyond Data Scarcity Optimizing R3GAN for Medical Image Generation from Small Datasets
Medical image datasets frequently exhibit significant class imbalance, a challenge that is further amplified by the inherently limited sample sizes that characterize clinical imaging data. Using human embryo time-lapse imaging (TLI) as a case study, this work investigates how generative adversarial networks (GANs) can be optimized for small datasets to generate realistic and diagnostically meaningful images. Based on systematic experiments with R3GAN, we established effective training strategies and designed an optimized configuration for 256x256-resolution datasets, featuring a full burn-in phase and a low, gradually increasing gamma range (5 to 40). The generated samples were used to balance an imbalanced embryo dataset, leading to substantial improvement in classification performance. The recall and F1-score of the three-cell (t3) class increased from 0.06 to 0.69 and from 0.11 to 0.60, respectively, without compromising the performance of other classes. These results demonstrate that tailored R3GAN training strategies can effectively alleviate data scarcity and improve model robustness in small-scale medical imaging tasks.
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Environment-Aware Indoor LoRaWAN Ranging Using Path Loss Model Inversion and Adaptive RSSI Filtering
Achieving sub-10 m indoor ranging with LoRaWAN is difficult because multipath, human blockage, and micro-climate dynamics induce non-stationary attenuation in received signal strength indicator (RSSI) measurements. We present a lightweight, interpretable pipeline that couples an environment-aware multi-wall path loss model with a forward-only, innovation-driven Kalman prefilter for RSSI. The model augments distance and wall terms with frequency, signal-to-noise ratio (SNR), and co-located environmental covariates (temperature, relative humidity, carbon dioxide, particulate matter, and barometric pressure), and is inverted deterministically for distance estimation. On a one-year single-gateway office dataset comprising over 2 million uplinks, the approach attains a mean absolute error (MAE) of 4.74 m and a root mean square error (RMSE) of 6.76 m in distance estimation, improving over a COST-231 multi-wall baseline (12.07 m MAE) and its environment-augmented variant (7.76 m MAE. Filtering reduces RSSI volatility from 10.33 to 5.43 dB and halves path loss error to 5.35 dB while raising R-squared from 0.82 to 0.89. The result is a single-anchor LoRaWAN ranging method with constant per-packet cost that is accurate, robust, and interpretable, providing a strong building block for multi-gateway localization.
♻ ☆ On the Consistency of Multilingual Context Utilization in Retrieval-Augmented Generation EMNLP 2025
Retrieval-augmented generation (RAG) with large language models (LLMs) has demonstrated strong performance in multilingual question-answering (QA) tasks by leveraging relevant passages retrieved from corpora. In multilingual RAG (mRAG), the retrieved passages can be written in languages other than that of the query entered by the user, making it challenging for LLMs to effectively utilize the provided information. Recent research suggests that retrieving passages from multilingual corpora can improve RAG performance, particularly for low-resource languages. However, the extent to which LLMs can leverage different kinds of multilingual contexts to generate accurate answers, *independently from retrieval quality*, remains understudied. In this paper, we conduct an extensive assessment of LLMs' ability to (i) make consistent use of a relevant passage regardless of its language, (ii) respond in the expected language, and (iii) focus on the relevant passage even when multiple `distracting' passages in different languages are provided in the context. Our experiments with four LLMs across three QA datasets covering a total of 48 languages reveal a surprising ability of LLMs to extract the relevant information from passages in a different language than the query, but a much weaker ability to formulate a full answer in the correct language. Our analysis, based on both accuracy and feature attribution techniques, further shows that distracting passages negatively impact answer quality regardless of their language. However, distractors in the query language exert a slightly stronger influence. Taken together, our findings deepen the understanding of how LLMs utilize context in mRAG systems, providing directions for future improvements.
comment: Best Paper Award at MRL Workshop 2025, colocated with EMNLP 2025. All codes and data are released at https://github.com/Betswish/mRAG-Context-Consistency
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Assisting the Grading of a Handwritten General Chemistry Exam with Artificial Intelligence
We explore the effectiveness and reliability of an artificial intelligence (AI)-based grading system for a handwritten general chemistry exam, comparing AI-assigned scores to human grading across various types of questions. Exam pages and grading rubrics were uploaded as images to account for chemical reaction equations, short and long open-ended answers, numerical and symbolic answer derivations, drawing, and sketching in pencil-and-paper format. Using linear regression analyses and psychometric evaluations, the investigation reveals high agreement between AI and human graders for textual and chemical reaction questions, while highlighting lower reliability for numerical and graphical tasks. The findings emphasize the necessity for human oversight to ensure grading accuracy, based on selective filtering. The results indicate promising applications for AI in routine assessment tasks, though careful consideration must be given to student perceptions of fairness and trust in integrating AI-based grading into educational practice.
♻ ☆ LLM-Powered Swarms: A New Frontier or a Conceptual Stretch?
Swarm intelligence describes how simple, decentralized agents can collectively produce complex behaviors. Recently, the concept of swarming has been extended to large language model (LLM)-powered systems, such as OpenAI's Swarm (OAS) framework, where agents coordinate through natural language prompts. This paper evaluates whether such systems capture the fundamental principles of classical swarm intelligence: decentralization, simplicity, emergence, and scalability. Using OAS, we implement and compare classical and LLM-based versions of two well-established swarm algorithms: Boids and Ant Colony Optimization. Results indicate that while LLM-powered swarms can emulate swarm-like dynamics, they are constrained by substantial computational overhead. For instance, our LLM-based Boids simulation required roughly 300x more computation time than its classical counterpart, highlighting current limitations in applying LLM-driven swarms to real-time systems.
comment: This is the author's version of a paper submitted to IEEE Intelligent Systems. 2 Tables, 2 Figures
♻ ☆ GUI-360$^\circ$: A Comprehensive Dataset and Benchmark for Computer-Using Agents
We introduce GUI-360$^\circ$, a large-scale, comprehensive dataset and benchmark suite designed to advance computer-using agents (CUAs). CUAs present unique challenges and is constrained by three persistent gaps: a scarcity of real-world CUA tasks, the lack of automated collection-and-annotation pipelines for multi-modal trajectories, and the absence of a unified benchmark that jointly evaluates GUI grounding, screen parsing, and action prediction. GUI-360$^\circ$ addresses these gaps with an LLM-augmented, largely automated pipeline for query sourcing, environment-template construction, task instantiation, batched execution, and LLM-driven quality filtering. The released corpus contains over 1.2M executed action steps across thousands of trajectories in popular Windows office applications, and includes full-resolution screenshots, accessibility metadata when available, instantiated goals, intermediate reasoning traces, and both successful and failed action trajectories. The dataset supports three canonical tasks, GUI grounding, screen parsing, and action prediction, and a hybrid GUI+API action space that reflects modern agent designs. Benchmarking state-of-the-art vision--language models on GUI-360$^\circ$ reveals substantial out-of-the-box shortcomings in grounding and action prediction; supervised fine-tuning and reinforcement learning yield significant gains but do not close the gap to human-level reliability. We release GUI-360$^\circ$ and accompanying code to facilitate reproducible research and accelerate progress on robust desktop CUAs. The full dataset has been made public on https://huggingface.co/datasets/vyokky/GUI-360.
♻ ☆ MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.
comment: This paper was accepted by IEEE BIBM 2025 conference
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting, but this progress is still met with skepticism about whether LLMs are truly useful for this task. To address this, we propose Time-Prompt, a framework for activating LLMs for time series forecasting. Specifically, we first construct a unified prompt paradigm with learnable soft prompts to guide the LLM's behavior and textualized hard prompts to enhance the time series representations. Second, to enhance LLM' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve fusion of temporal and textual data. Finally, we efficiently fine-tune the LLM's parameters using time series data. Furthermore, we focus on carbon emissions, aiming to provide a modest contribution to global carbon neutrality. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that Time-Prompt is a powerful framework for time series forecasting.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ GRAM: Spatial general-purpose audio representation models for real-world applications
Although audio foundations models have seen great progress on a wide variety of tasks, their application in real-world acoustic environments with reverberation and noise has been less successful. Moreover, as audio foundation models are typically trained on dry, single-channel audio clips, the inherent spatial nature of real-world sound scenes is overlooked and tasks involving sound localization ruled out. To address these limitations, we propose GRAM: a General-purpose Real-world Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently learn spatial audio representations from high-quality simulated real-world scenes. To evaluate the performance of GRAM and other audio foundation models in real-world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR benchmark suite comprising a simulated real-world version, as well as two new sound localization tasks. We show that the performance of GRAM surpasses all state-of-the-art self-supervised audio foundation models and speech models on both HEAR and Nat-HEAR, while using only a fraction of the training data. GRAM also showcases state-of-the-art localization performance, surpassing even supervised sound localization approaches, and can be flexibly applied either to a two-channel, binaural sound format or a four-channel, Ambisonics format. Validating GRAM's performance on real-world sound recordings demonstrates robust transfer to real-world scenes. Taken together, GRAM presents a significant advancement towards robust, spatial audio foundation models for real-world applications.
comment: Still under review
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
♻ ☆ Calibrating and Rotating: A Unified Framework for Weight Conditioning in PEFT
Parameter-Efficient Fine-Tuning (PEFT) methods are crucial for adapting large pre-trained models. Among these, LoRA is considered a foundational approach. Building on this, the influential DoRA method enhances performance by decomposing weight updates into magnitude and direction. However, its underlying mechanism remains unclear, and it introduces significant computational overhead. In this work, we first identify that DoRA's success stems from its capacity to increase the singular value entropy of the weight update matrix, which promotes a more uniform update distribution akin to full fine-tuning. We then reformulate DoRA into a mathematically equivalent and more efficient matrix form, revealing it as a learnable weight conditioning method. Based on this insight, we propose a unified framework for designing advanced PEFT methods by exploring two orthogonal dimensions: the architectural placement and the transformation type of the conditioning matrix. Within this framework, we introduce two novel methods: (1) \textbf{Pre-Diag}, which applies a diagonal conditioning matrix before the LoRA update to efficiently calibrate the pre-trained weights, thereby enhancing performance while reducing training time; and (2) \textbf{S}kewed \textbf{O}rthogonal \textbf{R}otation \textbf{A}daptation (\textbf{SORA}), which employs a parameter-efficient orthogonal rotation to perform a more powerful, norm-preserving transformation of the feature space. Extensive experiments on natural language understanding and generation tasks demonstrate that our proposed methods achieve superior performance and efficiency compared to both LoRA and DoRA. The code is available at https://github.com/MaeChd/SORA.
♻ ☆ LLMCARE: early detection of cognitive impairment via transformer models enhanced by LLM-generated synthetic data
Alzheimer's disease and related dementias(ADRD) affect nearly five million older adults in the United States, yet more than half remain undiagnosed. Speech-based natural language processing(NLP) offers a scalable approach for detecting early cognitive decline through subtle linguistic markers that may precede clinical diagnosis. This study develops and evaluates a speech-based screening pipeline integrating transformer embeddings with handcrafted linguistic features, synthetic augmentation using large language models(LLMs), and benchmarking of unimodal and multimodal classifiers. External validation assessed generalizability to a MCI-only cohort. Transcripts were drawn from the ADReSSo 2021 benchmark dataset(n=237, Pitt Corpus) and the DementiaBank Delaware corpus(n=205, MCI vs. controls). Ten transformer models were tested under three fine-tuning strategies. A late-fusion model combined embeddings from the top transformer with 110 linguistic features. Five LLMs(LLaMA8B/70B, MedAlpaca7B, Ministral8B,GPT-4o) generated label-conditioned synthetic speech for augmentation, and three multimodal LLMs(GPT-4o,Qwen-Omni,Phi-4) were evaluated in zero-shot and fine-tuned modes. On ADReSSo, the fusion model achieved F1=83.3(AUC=89.5), outperforming transformer-only and linguistic baselines. MedAlpaca7B augmentation(2x) improved F1=85.7, though larger scales reduced gains. Fine-tuning boosted unimodal LLMs(MedAlpaca7B F1=47.7=>78.7), while multimodal models performed lower (Phi-4=71.6;GPT-4o=67.6). On Delaware, the fusion plus 1x MedAlpaca7B model achieved F1=72.8(AUC=69.6). Integrating transformer and linguistic features enhances ADRD detection. LLM-based augmentation improves data efficiency but yields diminishing returns, while current multimodal models remain limited. Validation on an independent MCI cohort supports the pipeline's potential for scalable, clinically relevant early screening.
♻ ☆ Multi-Scenario Highway Lane-Change Intention Prediction: A Physics-Informed AI Framework for Three-Class Classification
Lane-change maneuvers are a leading cause of highway accidents, underscoring the need for accurate intention prediction to improve the safety and decision-making of autonomous driving systems. While prior studies using machine learning and deep learning methods (e.g., SVM, CNN, LSTM, Transformers) have shown promise, most approaches remain limited by binary classification, lack of scenario diversity, and degraded performance under longer prediction horizons. In this study, we propose a physics-informed AI framework that explicitly integrates vehicle kinematics, interaction feasibility, and traffic-safety metrics (e.g., distance headway, time headway, time-to-collision, closing gap time) into the learning process. lane-change prediction is formulated as a three-class problem that distinguishes left change, right change, and no change, and is evaluated across both straight highway segments (highD) and complex ramp scenarios (exiD). By integrating vehicle kinematics with interaction features, our machine learning models, particularly LightGBM, achieve state-of-the-art accuracy and strong generalization. Results show up to 99.8% accuracy and 93.6% macro F1 on highD, and 96.1% accuracy and 88.7% macro F1 on exiD at a 1-second horizon, outperforming a two-layer stacked LSTM baseline. These findings demonstrate the practical advantages of a physics-informed and feature-rich machine learning framework for real-time lane-change intention prediction in autonomous driving systems.
♻ ☆ The human-machine paradox: how collaboration creates or destroys value, and why augmentation is key to resolving it
When deploying artificial skills, decision-makers often assume that layering human oversight is a safe harbor that mitigates the risks of full automation in high-complexity tasks. This paper formally challenges the economic validity of this widespread assumption, arguing that the true bottom-line economic utility of a human-machine skill policy is dangerously misunderstood and highly contingent on situational and design factors. To investigate this gap, we develop an in-silico exploratory framework for policy analysis based on Monte Carlo simulations to quantify the economic impact of skill policies in the execution of tasks presenting varying levels of complexity across diverse setups. Our results show that in complex scenarios, a human-machine strategy can yield the highest economic utility, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine approach can perform worse than either the machine-exclusive or the human-exclusive policy, actively destroying value under the pressure of costs that are not sufficiently compensated by performance gains. This finding points to a key implication for decision-makers: when the context is complex and critical, simply allocating human and machine skills to a task may be insufficient, and far from being a silver-bullet solution or a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation when surprise is the norm, even when machines become more effective than humans in handling uncertainty.
comment: New simulation data added, consistent with previous (unchanged) results; improvements to title, abstract, introduction, doe description, and conclusions; improved illustrations, simplified structure, added appendix
♻ ☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Skill Path: Unveiling Language Skills from Circuit Graphs AAAI 2026
Circuit graph discovery has emerged as a fundamental approach to elucidating the skill mechanistic of language models. Despite the output faithfulness of circuit graphs, they suffer from atomic ablation, which causes the loss of causal dependencies between connected components. In addition, their discovery process, designed to preserve output faithfulness, inadvertently captures extraneous effects other than an isolated target skill. To alleviate these challenges, we introduce skill paths, which offers a more refined and compact representation by isolating individual skills within a linear chain of components. To enable skill path extracting from circuit graphs, we propose a three-step framework, consisting of decomposition, pruning, and post-pruning causal mediation. In particular, we offer a complete linear decomposition of the transformer model which leads to a disentangled computation graph. After pruning, we further adopt causal analysis techniques, including counterfactuals and interventions, to extract the final skill paths from the circuit graph. To underscore the significance of skill paths, we investigate three generic language skills-Previous Token Skill, Induction Skill, and In-Context Learning Skill-using our framework. Experiments support two crucial properties of these skills, namely stratification and inclusiveness.
comment: accepted by AAAI 2026 (oral)
♻ ☆ Pure Vision Language Action (VLA) Models: A Comprehensive Survey
The emergence of Vision Language Action (VLA) models marks a paradigm shift from traditional policy-based control to generalized robotics, reframing Vision Language Models (VLMs) from passive sequence generators into active agents for manipulation and decision-making in complex, dynamic environments. This survey delves into advanced VLA methods, aiming to provide a clear taxonomy and a systematic, comprehensive review of existing research. It presents a comprehensive analysis of VLA applications across different scenarios and classifies VLA approaches into several paradigms: autoregression-based, diffusion-based, reinforcement-based, hybrid, and specialized methods; while examining their motivations, core strategies, and implementations in detail. In addition, foundational datasets, benchmarks, and simulation platforms are introduced. Building on the current VLA landscape, the review further proposes perspectives on key challenges and future directions to advance research in VLA models and generalizable robotics. By synthesizing insights from over three hundred recent studies, this survey maps the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose VLA methods.
♻ ☆ PreferThinker: Reasoning-based Personalized Image Preference Assessment
Personalized image preference assessment aims to evaluate an individual user's image preferences by relying only on a small set of reference images as prior information. Existing methods mainly focus on general preference assessment, training models with large-scale data to tackle well-defined tasks such as text-image alignment. However, these approaches struggle to handle personalized preference because user-specific data are scarce and not easily scalable, and individual tastes are often diverse and complex. To overcome these challenges, we introduce a common preference profile that serves as a bridge across users, allowing large-scale user data to be leveraged for training profile prediction and capturing complex personalized preferences. Building on this idea, we propose a reasoning-based personalized image preference assessment framework that follows a \textit{predict-then-assess} paradigm: it first predicts a user's preference profile from reference images, and then provides interpretable, multi-dimensional scores and assessments of candidate images based on the predicted profile. To support this, we first construct a large-scale Chain-of-Thought (CoT)-style personalized assessment dataset annotated with diverse user preference profiles and high-quality CoT-style reasoning, enabling explicit supervision of structured reasoning. Next, we adopt a two-stage training strategy: a cold-start supervised fine-tuning phase to empower the model with structured reasoning capabilities, followed by reinforcement learning to incentivize the model to explore more reasonable assessment paths and enhance generalization. Furthermore, we propose a similarity-aware prediction reward to encourage better prediction of the user's preference profile, which facilitates more reasonable assessments exploration. Extensive experiments demonstrate the superiority of the proposed method.
Machine Learning 150
☆ Routing Manifold Alignment Improves Generalization of Mixture-of-Experts LLMs
Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large language models since it can efficiently scale up the model capability without increasing the inference cost. However, evaluations on broad downstream tasks reveal a consistent suboptimality of the routers in existing MoE LLMs, which results in a severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this paper, we show that aligning the manifold of routing weights with that of task embedding can effectively reduce the gap and improve MoE LLMs' generalization performance. Our method, "Routing Manifold Alignment (RoMA)", introduces an additional manifold regularization term in the post-training objective and only requires lightweight finetuning of routers (with other parameters frozen). Specifically, the regularization encourages the routing weights of each sample to be close to those of its successful neighbors (whose routing weights lead to correct answers) in a task embedding space. Consequently, samples targeting similar tasks will share similar expert choices across layers. Building such bindings between tasks and experts over different samples is essential to achieve better generalization. Moreover, RoMA demonstrates the advantage of unifying the task understanding (by embedding models) with solution generation (by MoE LLMs). In experiments, we finetune routers in OLMoE, DeepSeekMoE, and Qwen3-MoE using RoMA. Evaluations on diverse benchmarks and extensive comparisons with baselines show the substantial improvement brought by RoMA.
☆ Language Generation with Infinite Contamination
We study language generation in the limit, where an algorithm observes an adversarial enumeration of strings from an unknown target language $K$ and must eventually generate new, unseen strings from $K$. Kleinberg and Mullainathan [KM24] proved that generation is achievable in surprisingly general settings. But their generator suffers from ``mode collapse,'' producing from an ever-smaller subset of the target. To address this, Kleinberg and Wei [KW25] require the generator's output to be ``dense'' in the target language. They showed that generation with density, surprisingly, remains achievable at the same generality. Both results assume perfect data: no noisy insertions and no omissions. This raises a central question: how much contamination can generation tolerate? Recent works made partial progress on this question by studying (non-dense) generation with either finite amounts of noise (but no omissions) or omissions (but no noise). We characterize robustness under contaminated enumerations: 1. Generation under Contamination: Language generation in the limit is achievable for all countable collections iff the fraction of contaminated examples converges to zero. When this fails, we characterize which collections are generable. 2. Dense Generation under Contamination: Dense generation is strictly less robust to contamination than generation. As a byproduct, we resolve an open question of Raman and Raman [ICML25] by showing that generation is possible with only membership oracle access under finitely many contaminated examples. Finally, we introduce a beyond-worst-case model inspired by curriculum learning and prove that dense generation is achievable even with infinite contamination provided the fraction of contaminated examples converges to zero. This suggests curriculum learning may be crucial for learning from noisy web data.
☆ DigiData: Training and Evaluating General-Purpose Mobile Control Agents
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
comment: Website: https://facebookresearch.github.io/DigiData
☆ Entangled Schrödinger Bridge Matching
Simulating trajectories of multi-particle systems on complex energy landscapes is a central task in molecular dynamics (MD) and drug discovery, but remains challenging at scale due to computationally expensive and long simulations. Previous approaches leverage techniques such as flow or Schr\"odinger bridge matching to implicitly learn joint trajectories through data snapshots. However, many systems, including biomolecular systems and heterogeneous cell populations, undergo dynamic interactions that evolve over their trajectory and cannot be captured through static snapshots. To close this gap, we introduce Entangled Schr\"odinger Bridge Matching (EntangledSBM), a framework that learns the first- and second-order stochastic dynamics of interacting, multi-particle systems where the direction and magnitude of each particle's path depend dynamically on the paths of the other particles. We define the Entangled Schr\"odinger Bridge (EntangledSB) problem as solving a coupled system of bias forces that entangle particle velocities. We show that our framework accurately simulates heterogeneous cell populations under perturbations and rare transitions in high-dimensional biomolecular systems.
☆ SpatialThinker: Reinforcing 3D Reasoning in Multimodal LLMs via Spatial Rewards NeurIPS 2025
Multimodal large language models (MLLMs) have achieved remarkable progress in vision-language tasks, but they continue to struggle with spatial understanding. Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific modifications, and remain constrained by large-scale datasets or sparse supervision. To address these limitations, we introduce SpatialThinker, a 3D-aware MLLM trained with RL to integrate structured spatial grounding with multi-step reasoning. The model simulates human-like spatial perception by constructing a scene graph of task-relevant objects and spatial relations, and reasoning towards an answer via dense spatial rewards. SpatialThinker consists of two key contributions: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA dataset, and (2) online RL with a multi-objective dense spatial reward enforcing spatial grounding. SpatialThinker-7B outperforms supervised fine-tuning and the sparse RL baseline on spatial understanding and real-world VQA benchmarks, nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-4o. These results showcase the effectiveness of combining spatial supervision with reward-aligned reasoning in enabling robust 3D spatial understanding with limited data and advancing MLLMs towards human-level visual reasoning.
comment: Preprint. Accepted at NeurIPS 2025 Workshops on SPACE in Vision, Language, and Embodied AI (SpaVLE), Embodied World Models for Decision Making (EWM), Aligning Reinforcement Learning Experimentalists and Theorists (ARLET), and Scaling Environments for Agents (SEA)
☆ StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
comment: Project Page: http://streamdiffusionv2.github.io
☆ Solving bilevel optimization via sequential minimax optimization
In this paper we propose a sequential minimax optimization (SMO) method for solving a class of constrained bilevel optimization problems in which the lower-level part is a possibly nonsmooth convex optimization problem, while the upper-level part is a possibly nonconvex optimization problem. Specifically, SMO applies a first-order method to solve a sequence of minimax subproblems, which are obtained by employing a hybrid of modified augmented Lagrangian and penalty schemes on the bilevel optimization problems. Under suitable assumptions, we establish an operation complexity of $O(\varepsilon^{-7}\log\varepsilon^{-1})$ and $O(\varepsilon^{-6}\log\varepsilon^{-1})$, measured in terms of fundamental operations, for SMO in finding an $\varepsilon$-KKT solution of the bilevel optimization problems with merely convex and strongly convex lower-level objective functions, respectively. The latter result improves the previous best-known operation complexity by a factor of $\varepsilon^{-1}$. Preliminary numerical results demonstrate significantly superior computational performance compared to the recently developed first-order penalty method.
comment: Accepted by Mathematics of Operations Research
☆ C3PO: Optimized Large Language Model Cascades with Probabilistic Cost Constraints for Reasoning
Large language models (LLMs) have achieved impressive results on complex reasoning tasks, but their high inference cost remains a major barrier to real-world deployment. A promising solution is to use cascaded inference, where small, cheap models handle easy queries, and only the hardest examples are escalated to more powerful models. However, existing cascade methods typically rely on supervised training with labeled data, offer no theoretical generalization guarantees, and provide limited control over test-time computational cost. We introduce C3PO (Cost Controlled Cascaded Prediction Optimization), a self-supervised framework for optimizing LLM cascades under probabilistic cost constraints. By focusing on minimizing regret with respect to the most powerful model (MPM), C3PO avoids the need for labeled data by constructing a cascade using only unlabeled model outputs. It leverages conformal prediction to bound the probability that inference cost exceeds a user-specified budget. We provide theoretical guarantees on both cost control and generalization error, and show that our optimization procedure is effective even with small calibration sets. Empirically, C3PO achieves state-of-the-art performance across a diverse set of reasoning benchmarks including GSM8K, MATH-500, BigBench-Hard and AIME, outperforming strong LLM cascading baselines in both accuracy and cost-efficiency. Our results demonstrate that principled, label-free cascade optimization can enable scalable LLM deployment.
☆ A Diffusion Model to Shrink Proteins While Maintaining Their Function SC
Many proteins useful in modern medicine or bioengineering are challenging to make in the lab, fuse with other proteins in cells, or deliver to tissues in the body, because their sequences are too long. Shortening these sequences typically involves costly, time-consuming experimental campaigns. Ideally, we could instead use modern models of massive databases of sequences from nature to learn how to propose shrunken proteins that resemble sequences found in nature. Unfortunately, these models struggle to efficiently search the combinatorial space of all deletions, and are not trained with inductive biases to learn how to delete. To address this gap, we propose SCISOR, a novel discrete diffusion model that deletes letters from sequences to generate protein samples that resemble those found in nature. To do so, SCISOR trains a de-noiser to reverse a forward noising process that adds random insertions to natural sequences. As a generative model, SCISOR fits evolutionary sequence data competitively with previous large models. In evaluation, SCISOR achieves state-of-the-art predictions of the functional effects of deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long protein sequences, and show that its suggested deletions result in significantly more realistic proteins and more often preserve functional motifs than previous models of evolutionary sequences.
comment: Code available at https://github.com/baronet2/SCISOR
☆ Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.
comment: code: https://github.com/mcleish7/retrofitting-recurrence, models: https://huggingface.co/collections/tomg-group-umd/retrofitting-recurrence
☆ LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs AAAI 2026
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
comment: Accepted at AAAI 2026
Transformers Provably Learn Chain-of-Thought Reasoning with Length Generalization NeurIPS 2025
The ability to reason lies at the core of artificial intelligence (AI), and challenging problems usually call for deeper and longer reasoning to tackle. A crucial question about AI reasoning is whether models can extrapolate learned reasoning patterns to solve harder tasks with longer chain-of-thought (CoT). In this work, we present a theoretical analysis of transformers learning on synthetic state-tracking tasks with gradient descent. We mathematically prove how the algebraic structure of state-tracking problems governs the degree of extrapolation of the learned CoT. Specifically, our theory characterizes the length generalization of transformers through the mechanism of attention concentration, linking the retrieval robustness of the attention layer to the state-tracking task structure of long-context reasoning. Moreover, for transformers with limited reasoning length, we prove that a recursive self-training scheme can progressively extend the range of solvable problem lengths. To our knowledge, we provide the first optimization guarantee that constant-depth transformers provably learn $\mathsf{NC}^1$-complete problems with CoT, significantly going beyond prior art confined in $\mathsf{TC}^0$, unless the widely held conjecture $\mathsf{TC}^0 \neq \mathsf{NC}^1$ fails. Finally, we present a broad set of experiments supporting our theoretical results, confirming the length generalization behaviors and the mechanism of attention concentration.
comment: This is the full version of a paper published at NeurIPS 2025
☆ Provable Benefit of Curriculum in Transformer Tree-Reasoning Post-Training
Recent curriculum techniques in the post-training stage of LLMs have been widely observed to outperform non-curriculum approaches in enhancing reasoning performance, yet a principled understanding of why and to what extent they work remains elusive. To address this gap, we develop a theoretical framework grounded in the intuition that progressively learning through manageable steps is more efficient than directly tackling a hard reasoning task, provided each stage stays within the model's effective competence. Under mild complexity conditions linking consecutive curriculum stages, we show that curriculum post-training avoids the exponential complexity bottleneck. To substantiate this result, drawing insights from the Chain-of-Thoughts (CoTs) solving mathematical problems such as Countdown and parity, we model CoT generation as a states-conditioned autoregressive reasoning tree, define a uniform-branching base model to capture pretrained behavior, and formalize curriculum stages as either depth-increasing (longer reasoning chains) or hint-decreasing (shorter prefixes) subtasks. Our analysis shows that, under outcome-only reward signals, reinforcement learning finetuning achieves high accuracy with polynomial sample complexity, whereas direct learning suffers from an exponential bottleneck. We further establish analogous guarantees for test-time scaling, where curriculum-aware querying reduces both reward oracle calls and sampling cost from exponential to polynomial order.
☆ Consistency Is Not Always Correct: Towards Understanding the Role of Exploration in Post-Training Reasoning
Foundation models exhibit broad knowledge but limited task-specific reasoning, motivating post-training strategies such as RLVR and inference scaling with outcome or process reward models (ORM/PRM). While recent work highlights the role of exploration and entropy stability in improving pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typically reinforce existing tree-like reasoning paths rather than expanding the reasoning scope, raising the question of why exploration helps at all if no new patterns emerge. To reconcile this paradox, we adopt the perspective of Kim et al. (2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering a symmetry) reasoning steps as low- versus high-probability Markov transitions, and formalize post-training dynamics through Multi-task Tree-structured Markov Chains (TMC). In this tractable model, pretraining corresponds to tree expansion, while post-training corresponds to chain-of-thought reweighting. We show that several phenomena recently observed in empirical studies arise naturally in this setting: (1) RLVR induces a squeezing effect, reducing reasoning entropy and forgetting some correct paths; (2) population rewards of ORM/PRM encourage consistency rather than accuracy, thereby favoring common patterns; and (3) certain rare, high-uncertainty reasoning paths by the base model are responsible for solving hard problem instances. Together, these explain why exploration -- even when confined to the base model's reasoning scope -- remains essential: it preserves access to rare but crucial reasoning traces needed for difficult cases, which are squeezed out by RLVR or unfavored by inference scaling. Building on this, we further show that exploration strategies such as rejecting easy instances and KL regularization help preserve rare reasoning traces. Empirical simulations corroborate our theoretical results.
☆ UAV-Assisted Resilience in 6G and Beyond Network Energy Saving: A Multi-Agent DRL Approach
This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
comment: 6 pages, 5 figures, 1 table
☆ Private Sketches for Linear Regression
Linear regression is frequently applied in a variety of domains. In order to improve the efficiency of these methods, various methods have been developed that compute summaries or \emph{sketches} of the datasets. Certain domains, however, contain sensitive data which necessitates that the application of these statistical methods does not reveal private information. Differentially private (DP) linear regression methods have been developed for mitigating this problem. These techniques typically involve estimating a noisy version of the parameter vector. Instead, we propose releasing private sketches of the datasets. We present differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage.
comment: 13 pages
☆ Self-Evaluating LLMs for Multi-Step Tasks: Stepwise Confidence Estimation for Failure Detection NeurIPS 2025
Reliability and failure detection of large language models (LLMs) is critical for their deployment in high-stakes, multi-step reasoning tasks. Prior work explores confidence estimation for self-evaluating LLM-scorer systems, with confidence scorers estimating the likelihood of errors in LLM responses. However, most methods focus on single-step outputs and overlook the challenges of multi-step reasoning. In this work, we extend self-evaluation techniques to multi-step tasks, testing two intuitive approaches: holistic scoring and step-by-step scoring. Using two multi-step benchmark datasets, we show that stepwise evaluation generally outperforms holistic scoring in detecting potential errors, with up to 15% relative increase in AUC-ROC. Our findings demonstrate that self-evaluating LLM systems provide meaningful confidence estimates in complex reasoning, improving their trustworthiness and providing a practical framework for failure detection.
comment: Accepted at NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Inference-Time Scaling of Diffusion Models for Infrared Data Generation
Infrared imagery enables temperature-based scene understanding using passive sensors, particularly under conditions of low visibility where traditional RGB imaging fails. Yet, developing downstream vision models for infrared applications is hindered by the scarcity of high-quality annotated data, due to the specialized expertise required for infrared annotation. While synthetic infrared image generation has the potential to accelerate model development by providing large-scale, diverse training data, training foundation-level generative diffusion models in the infrared domain has remained elusive due to limited datasets. In light of such data constraints, we explore an inference-time scaling approach using a domain-adapted CLIP-based verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning it on a small sample of infrared images using parameter-efficient techniques. The trained verifier is then employed during inference to guide the diffusion sampling process toward higher quality infrared generations that better align with input text prompts. Empirically, we find that our approach leads to consistent improvements in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian Detection Benchmark dataset by 10% compared to unguided baseline samples. Our results suggest that inference-time guidance offers a promising direction for bridging the domain gap in low-data infrared settings.
comment: Peer-reviewed workshop paper
☆ Walsh-Hadamard Neural Operators for Solving PDEs with Discontinuous Coefficients
Neural operators have emerged as powerful tools for learning solution operators of partial differential equations (PDEs). However, standard spectral methods based on Fourier transforms struggle with problems involving discontinuous coefficients due to the Gibbs phenomenon and poor representation of sharp interfaces. We introduce the Walsh-Hadamard Neural Operator (WHNO), which leverages Walsh-Hadamard transforms-a spectral basis of rectangular wave functions naturally suited for piecewise constant fields-combined with learnable spectral weights that transform low-sequency Walsh coefficients to capture global dependencies efficiently. We validate WHNO on three problems: steady-state Darcy flow (preliminary validation), heat conduction with discontinuous thermal conductivity, and the 2D Burgers equation with discontinuous initial conditions. In controlled comparisons with Fourier Neural Operators (FNO) under identical conditions, WHNO demonstrates superior accuracy with better preservation of sharp solution features at material interfaces. Critically, we discover that weighted ensemble combinations of WHNO and FNO achieve substantial improvements over either model alone: for both heat conduction and Burgers equation, optimal ensembles reduce mean squared error by 35-40 percent and maximum error by up to 25 percent compared to individual models. This demonstrates that Walsh-Hadamard and Fourier representations capture complementary aspects of discontinuous PDE solutions, with WHNO excelling at sharp interfaces while FNO captures smooth features effectively.
☆ TNT: Improving Chunkwise Training for Test-Time Memorization
Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed-up to 17 times faster than the most accurate baseline configuration - while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.
☆ DeepPersona: A Generative Engine for Scaling Deep Synthetic Personas NeurIPS 2025
Simulating human profiles by instilling personas into large language models (LLMs) is rapidly transforming research in agentic behavioral simulation, LLM personalization, and human-AI alignment. However, most existing synthetic personas remain shallow and simplistic, capturing minimal attributes and failing to reflect the rich complexity and diversity of real human identities. We introduce DEEPPERSONA, a scalable generative engine for synthesizing narrative-complete synthetic personas through a two-stage, taxonomy-guided method. First, we algorithmically construct the largest-ever human-attribute taxonomy, comprising over hundreds of hierarchically organized attributes, by mining thousands of real user-ChatGPT conversations. Second, we progressively sample attributes from this taxonomy, conditionally generating coherent and realistic personas that average hundreds of structured attributes and roughly 1 MB of narrative text, two orders of magnitude deeper than prior works. Intrinsic evaluations confirm significant improvements in attribute diversity (32 percent higher coverage) and profile uniqueness (44 percent greater) compared to state-of-the-art baselines. Extrinsically, our personas enhance GPT-4.1-mini's personalized question answering accuracy by 11.6 percent on average across ten metrics and substantially narrow (by 31.7 percent) the gap between simulated LLM citizens and authentic human responses in social surveys. Our generated national citizens reduced the performance gap on the Big Five personality test by 17 percent relative to LLM-simulated citizens. DEEPPERSONA thus provides a rigorous, scalable, and privacy-free platform for high-fidelity human simulation and personalized AI research.
comment: 12 pages, 5 figures, accepted at LAW 2025 Workshop (NeurIPS 2025)
☆ Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ Garbage Vulnerable Point Monitoring using IoT and Computer Vision
This paper proposes a smart way to manage municipal solid waste by using the Internet of Things (IoT) and computer vision (CV) to monitor illegal waste dumping at garbage vulnerable points (GVPs) in urban areas. The system can quickly detect and monitor dumped waste using a street-level camera and object detection algorithm. Data was collected from the Sangareddy district in Telangana, India. A series of comprehensive experiments was carried out using the proposed dataset to assess the accuracy and overall performance of various object detection models. Specifically, we performed an in-depth evaluation of YOLOv8, YOLOv10, YOLO11m, and RT-DETR on our dataset. Among these models, YOLO11m achieved the highest accuracy of 92.39\% in waste detection, demonstrating its effectiveness in detecting waste. Additionally, it attains an mAP@50 of 0.91, highlighting its high precision. These findings confirm that the object detection model is well-suited for monitoring and tracking waste dumping events at GVP locations. Furthermore, the system effectively captures waste disposal patterns, including hourly, daily, and weekly dumping trends, ensuring comprehensive daily and nightly monitoring.
☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
☆ RLVE: Scaling Up Reinforcement Learning for Language Models with Adaptive Verifiable Environments
We introduce Reinforcement Learning (RL) with Adaptive Verifiable Environments (RLVE), an approach using verifiable environments that procedurally generate problems and provide algorithmically verifiable rewards, to scale up RL for language models (LMs). RLVE enables each verifiable environment to dynamically adapt its problem difficulty distribution to the policy model's capabilities as training progresses. In contrast, static data distributions often lead to vanishing learning signals when problems are either too easy or too hard for the policy. To implement RLVE, we create RLVE-Gym, a large-scale suite of 400 verifiable environments carefully developed through manual environment engineering. Using RLVE-Gym, we show that environment scaling, i.e., expanding the collection of training environments, consistently improves generalizable reasoning capabilities. RLVE with joint training across all 400 environments in RLVE-Gym yields a 3.37% absolute average improvement across six reasoning benchmarks, starting from one of the strongest 1.5B reasoning LMs. By comparison, continuing this LM's original RL training yields only a 0.49% average absolute gain despite using over 3x more compute. We release our code publicly.
☆ De-Individualizing fMRI Signals via Mahalanobis Whitening and Bures Geometry
Functional connectivity has been widely investigated to understand brain disease in clinical studies and imaging-based neuroscience, and analyzing changes in functional connectivity has proven to be valuable for understanding and computationally evaluating the effects on brain function caused by diseases or experimental stimuli. By using Mahalanobis data whitening prior to the use of dimensionality reduction algorithms, we are able to distill meaningful information from fMRI signals about subjects and the experimental stimuli used to prompt them. Furthermore, we offer an interpretation of Mahalanobis whitening as a two-stage de-individualization of data which is motivated by similarity as captured by the Bures distance, which is connected to quantum mechanics. These methods have potential to aid discoveries about the mechanisms that link brain function with cognition and behavior and may improve the accuracy and consistency of Alzheimer's diagnosis, especially in the preclinical stage of disease progression.
comment: 34 pages, 7 figures
☆ Superhuman AI for Stratego Using Self-Play Reinforcement Learning and Test-Time Search
Few classical games have been regarded as such significant benchmarks of artificial intelligence as to have justified training costs in the millions of dollars. Among these, Stratego -- a board wargame exemplifying the challenge of strategic decision making under massive amounts of hidden information -- stands apart as a case where such efforts failed to produce performance at the level of top humans. This work establishes a step change in both performance and cost for Stratego, showing that it is now possible not only to reach the level of top humans, but to achieve vastly superhuman level -- and that doing so requires not an industrial budget, but merely a few thousand dollars. We achieved this result by developing general approaches for self-play reinforcement learning and test-time search under imperfect information.
☆ Can Training Dynamics of Scale-Invariant Neural Networks Be Explained by the Thermodynamics of an Ideal Gas?
Understanding the training dynamics of deep neural networks remains a major open problem, with physics-inspired approaches offering promising insights. Building on this perspective, we develop a thermodynamic framework to describe the stationary distributions of stochastic gradient descent (SGD) with weight decay for scale-invariant neural networks, a setting that both reflects practical architectures with normalization layers and permits theoretical analysis. We establish analogies between training hyperparameters (e.g., learning rate, weight decay) and thermodynamic variables such as temperature, pressure, and volume. Starting with a simplified isotropic noise model, we uncover a close correspondence between SGD dynamics and ideal gas behavior, validated through theory and simulation. Extending to training of neural networks, we show that key predictions of the framework, including the behavior of stationary entropy, align closely with experimental observations. This framework provides a principled foundation for interpreting training dynamics and may guide future work on hyperparameter tuning and the design of learning rate schedulers.
☆ Enabling Off-Policy Imitation Learning with Deep Actor Critic Stabilization
Learning complex policies with Reinforcement Learning (RL) is often hindered by instability and slow convergence, a problem exacerbated by the difficulty of reward engineering. Imitation Learning (IL) from expert demonstrations bypasses this reliance on rewards. However, state-of-the-art IL methods, exemplified by Generative Adversarial Imitation Learning (GAIL)Ho et. al, suffer from severe sample inefficiency. This is a direct consequence of their foundational on-policy algorithms, such as TRPO Schulman et.al. In this work, we introduce an adversarial imitation learning algorithm that incorporates off-policy learning to improve sample efficiency. By combining an off-policy framework with auxiliary techniques specifically, double Q network based stabilization and value learning without reward function inference we demonstrate a reduction in the samples required to robustly match expert behavior.
comment: 14 pages and 4 images
☆ MG-HGNN: A Heterogeneous GNN Framework for Indoor Wi-Fi Fingerprint-Based Localization
Received signal strength indicator (RSSI) is the primary representation of Wi-Fi fingerprints and serves as a crucial tool for indoor localization. However, existing RSSI-based positioning methods often suffer from reduced accuracy due to environmental complexity and challenges in processing multi-source information. To address these issues, we propose a novel multi-graph heterogeneous GNN framework (MG-HGNN) to enhance spatial awareness and improve positioning performance. In this framework, two graph construction branches perform node and edge embedding, respectively, to generate informative graphs. Subsequently, a heterogeneous graph neural network is employed for graph representation learning, enabling accurate positioning. The MG-HGNN framework introduces the following key innovations: 1) multi-type task-directed graph construction that combines label estimation and feature encoding for richer graph information; 2) a heterogeneous GNN structure that enhances the performance of conventional GNN models. Evaluations on the UJIIndoorLoc and UTSIndoorLoc public datasets demonstrate that MG-HGNN not only achieves superior performance compared to several state-of-the-art methods, but also provides a novel perspective for enhancing GNN-based localization methods. Ablation studies further confirm the rationality and effectiveness of the proposed framework.
comment: 16 pages, 11 figures, 11 tables
☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
☆ RobustA: Robust Anomaly Detection in Multimodal Data
In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
comment: Submitted to IEEE Transactions on Image Processing
☆ Multi-modal Dynamic Proxy Learning for Personalized Multiple Clustering AAAI 2026
Multiple clustering aims to discover diverse latent structures from different perspectives, yet existing methods generate exhaustive clusterings without discerning user interest, necessitating laborious manual screening. Current multi-modal solutions suffer from static semantic rigidity: predefined candidate words fail to adapt to dataset-specific concepts, and fixed fusion strategies ignore evolving feature interactions. To overcome these limitations, we propose Multi-DProxy, a novel multi-modal dynamic proxy learning framework that leverages cross-modal alignment through learnable textual proxies. Multi-DProxy introduces 1) gated cross-modal fusion that synthesizes discriminative joint representations by adaptively modeling feature interactions. 2) dual-constraint proxy optimization where user interest constraints enforce semantic consistency with domain concepts while concept constraints employ hard example mining to enhance cluster discrimination. 3) dynamic candidate management that refines textual proxies through iterative clustering feedback. Therefore, Multi-DProxy not only effectively captures a user's interest through proxies but also enables the identification of relevant clusterings with greater precision. Extensive experiments demonstrate state-of-the-art performance with significant improvements over existing methods across a broad set of multi-clustering benchmarks.
comment: Accepted by AAAI 2026
☆ Understanding the role of depth in the neural tangent kernel for overparameterized neural networks
Overparameterized fully-connected neural networks have been shown to behave like kernel models when trained with gradient descent, under mild conditions on the width, the learning rate, and the parameter initialization. In the limit of infinitely large widths and small learning rate, the kernel that is obtained allows to represent the output of the learned model with a closed-form solution. This closed-form solution hinges on the invertibility of the limiting kernel, a property that often holds on real-world datasets. In this work, we analyze the sensitivity of large ReLU networks to increasing depths by characterizing the corresponding limiting kernel. Our theoretical results demonstrate that the normalized limiting kernel approaches the matrix of ones. In contrast, they show the corresponding closed-form solution approaches a fixed limit on the sphere. We empirically evaluate the order of magnitude in network depth required to observe this convergent behavior, and we describe the essential properties that enable the generalization of our results to other kernels.
☆ High-Dimensional Asymptotics of Differentially Private PCA
In differential privacy, statistics of a sensitive dataset are privatized by introducing random noise. Most privacy analyses provide privacy bounds specifying a noise level sufficient to achieve a target privacy guarantee. Sometimes, these bounds are pessimistic and suggest adding excessive noise, which overwhelms the meaningful signal. It remains unclear if such high noise levels are truly necessary or a limitation of the proof techniques. This paper explores whether we can obtain sharp privacy characterizations that identify the smallest noise level required to achieve a target privacy level for a given mechanism. We study this problem in the context of differentially private principal component analysis, where the goal is to privatize the leading principal components (PCs) of a dataset with n samples and p features. We analyze the exponential mechanism for this problem in a model-free setting and provide sharp utility and privacy characterizations in the high-dimensional limit ($p\rightarrow\infty$). Our privacy result shows that, in high dimensions, detecting the presence of a target individual in the dataset using the privatized PCs is exactly as hard as distinguishing two Gaussians with slightly different means, where the mean difference depends on certain spectral properties of the dataset. Our privacy analysis combines the hypothesis-testing formulation of privacy guarantees proposed by Dong, Roth, and Su (2022) with classical contiguity arguments due to Le Cam to obtain sharp high-dimensional privacy characterizations.
☆ AgenticSciML: Collaborative Multi-Agent Systems for Emergent Discovery in Scientific Machine Learning
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
☆ PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork AAAI
Ad hoc teamwork (AHT) requires agents to collaborate with previously unseen teammates, which is crucial for many real-world applications. The core challenge of AHT is to develop an ego agent that can predict and adapt to unknown teammates on the fly. Conventional RL-based approaches optimize a single expected return, which often causes policies to collapse into a single dominant behavior, thus failing to capture the multimodal cooperation patterns inherent in AHT. In this work, we introduce PADiff, a diffusion-based approach that captures agent's multimodal behaviors, unlocking its diverse cooperation modes with teammates. However, standard diffusion models lack the ability to predict and adapt in highly non-stationary AHT scenarios. To address this limitation, we propose a novel diffusion-based policy that integrates critical predictive information about teammates into the denoising process. Extensive experiments across three cooperation environments demonstrate that PADiff outperforms existing AHT methods significantly.
comment: Accepted by the 40th AAAI conference on Artificial Intelligence (AAAI 2026)
☆ A Fully Polynomial-Time Algorithm for Robustly Learning Halfspaces over the Hypercube
We give the first fully polynomial-time algorithm for learning halfspaces with respect to the uniform distribution on the hypercube in the presence of contamination, where an adversary may corrupt some fraction of examples and labels arbitrarily. We achieve an error guarantee of $\eta^{O(1)}+\epsilon$ where $\eta$ is the noise rate. Such a result was not known even in the agnostic setting, where only labels can be adversarially corrupted. All prior work over the last two decades has a superpolynomial dependence in $1/\epsilon$ or succeeds only with respect to continuous marginals (such as log-concave densities). Previous analyses rely heavily on various structural properties of continuous distributions such as anti-concentration. Our approach avoids these requirements and makes use of a new algorithm for learning Generalized Linear Models (GLMs) with only a polylogarithmic dependence on the activation function's Lipschitz constant. More generally, our framework shows that supervised learning with respect to discrete distributions is not as difficult as previously thought.
comment: 52 pages, 1 figure
☆ The Few Govern the Many:Unveiling Few-Layer Dominance for Time Series Models
Large-scale models are at the forefront of time series (TS) forecasting, dominated by two paradigms: fine-tuning text-based Large Language Models (LLM4TS) and training Time Series Foundation Models (TSFMs) from scratch. Both approaches share a foundational assumption that scaling up model capacity and data volume leads to improved performance. However, we observe a \textit{\textbf{scaling paradox}} in TS models, revealing a puzzling phenomenon that larger models do \emph{NOT} achieve better performance. Through extensive experiments on two model families across four scales (100M to 1.7B parameters) and diverse data (up to 6B observations), we rigorously confirm that the scaling paradox is a pervasive issue. We then diagnose its root cause by analyzing internal representations, identifying a phenomenon we call \textit{few-layer dominance}: only a small subset of layers are functionally important, while the majority are redundant, under-utilized, and can even distract training. Based on this discovery, we propose a practical method to automatically identify and retain only these dominant layers. In our models, retaining only 21\% of the parameters achieves up to a 12\% accuracy improvement and a 2.7$\times$ inference speedup. We validate the universality of our method on 8 prominent SOTA models (LLM4TS and TSFMs, 90M to 6B), showing that retaining less than 30\% of layers achieves comparable or superior accuracy in over 95\% of tasks.
☆ Does TabPFN Understand Causal Structures?
Causal discovery is fundamental for multiple scientific domains, yet extracting causal information from real world data remains a significant challenge. Given the recent success on real data, we investigate whether TabPFN, a transformer-based tabular foundation model pre-trained on synthetic datasets generated from structural causal models, encodes causal information in its internal representations. We develop an adapter framework using a learnable decoder and causal tokens that extract causal signals from TabPFN's frozen embeddings and decode them into adjacency matrices for causal discovery. Our evaluations demonstrate that TabPFN's embeddings contain causal information, outperforming several traditional causal discovery algorithms, with such causal information being concentrated in mid-range layers. These findings establish a new direction for interpretable and adaptable foundation models and demonstrate the potential for leveraging pre-trained tabular models for causal discovery.
☆ Deep Neural Operator Learning for Probabilistic Models
We propose a deep neural-operator framework for a general class of probability models. Under global Lipschitz conditions on the operator over the entire Euclidean space-and for a broad class of probabilistic models-we establish a universal approximation theorem with explicit network-size bounds for the proposed architecture. The underlying stochastic processes are required only to satisfy integrability and general tail-probability conditions. We verify these assumptions for both European and American option-pricing problems within the forward-backward SDE (FBSDE) framework, which in turn covers a broad class of operators arising from parabolic PDEs, with or without free boundaries. Finally, we present a numerical example for a basket of American options, demonstrating that the learned model produces optimal stopping boundaries for new strike prices without retraining.
comment: 36 pages, 1 figure
☆ Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
☆ DETECT: Data-Driven Evaluation of Treatments Enabled by Classification Transformers ICDM 2025
Chronic pain is a global health challenge affecting millions of individuals, making it essential for physicians to have reliable and objective methods to measure the functional impact of clinical treatments. Traditionally used methods, like the numeric rating scale, while personalized and easy to use, are subjective due to their self-reported nature. Thus, this paper proposes DETECT (Data-Driven Evaluation of Treatments Enabled by Classification Transformers), a data-driven framework that assesses treatment success by comparing patient activities of daily life before and after treatment. We use DETECT on public benchmark datasets and simulated patient data from smartphone sensors. Our results demonstrate that DETECT is objective yet lightweight, making it a significant and novel contribution to clinical decision-making. By using DETECT, independently or together with other self-reported metrics, physicians can improve their understanding of their treatment impacts, ultimately leading to more personalized and responsive patient care.
comment: 5 pages, 4 figures, 2 tables, accepted for presentation by IEEE ICDM 2025 UGHS Symposium and publication with proceedings forthcoming
☆ Breaking the Stealth-Potency Trade-off in Clean-Image Backdoors with Generative Trigger Optimization AAAI '26
Clean-image backdoor attacks, which use only label manipulation in training datasets to compromise deep neural networks, pose a significant threat to security-critical applications. A critical flaw in existing methods is that the poison rate required for a successful attack induces a proportional, and thus noticeable, drop in Clean Accuracy (CA), undermining their stealthiness. This paper presents a new paradigm for clean-image attacks that minimizes this accuracy degradation by optimizing the trigger itself. We introduce Generative Clean-Image Backdoors (GCB), a framework that uses a conditional InfoGAN to identify naturally occurring image features that can serve as potent and stealthy triggers. By ensuring these triggers are easily separable from benign task-related features, GCB enables a victim model to learn the backdoor from an extremely small set of poisoned examples, resulting in a CA drop of less than 1%. Our experiments demonstrate GCB's remarkable versatility, successfully adapting to six datasets, five architectures, and four tasks, including the first demonstration of clean-image backdoors in regression and segmentation. GCB also exhibits resilience against most of the existing backdoor defenses.
comment: 19 pages, 22 figures, 15 tables. To appear in AAAI '26 (Oral). This paper extends the AAAI-2026 version by including the Appendix
☆ SMiLE: Provably Enforcing Global Relational Properties in Neural Networks
Artificial Intelligence systems are increasingly deployed in settings where ensuring robustness, fairness, or domain-specific properties is essential for regulation compliance and alignment with human values. However, especially on Neural Networks, property enforcement is very challenging, and existing methods are limited to specific constraints or local properties (defined around datapoints), or fail to provide full guarantees. We tackle these limitations by extending SMiLE, a recently proposed enforcement framework for NNs, to support global relational properties (defined over the entire input space). The proposed approach scales well with model complexity, accommodates general properties and backbones, and provides full satisfaction guarantees. We evaluate SMiLE on monotonicity, global robustness, and individual fairness, on synthetic and real data, for regression and classification tasks. Our approach is competitive with property-specific baselines in terms of accuracy and runtime, and strictly superior in terms of generality and level of guarantees. Overall, our results emphasize the potential of the SMiLE framework as a platform for future research and applications.
☆ Synergy over Discrepancy: A Partition-Based Approach to Multi-Domain LLM Fine-Tuning NeurIPS 2025
Large language models (LLMs) demonstrate impressive generalization abilities, yet adapting them effectively across multiple heterogeneous domains remains challenging due to inter-domain interference. To overcome this challenge, we propose a partition-based multi-stage fine-tuning framework designed to exploit inter-domain synergies while minimizing negative transfer. Our approach strategically partitions domains into subsets (stages) by balancing domain discrepancy, synergy, and model capacity constraints. We theoretically analyze the proposed framework and derive novel generalization bounds that justify our partitioning strategy. Extensive empirical evaluations on various language understanding tasks show that our method consistently outperforms state-of-the-art baselines.
comment: 20 pages, 5 figures, 21 tables. Accepted at NeurIPS 2025. Corresponding author: Xuan Zhang (xuanzhang2199@gmail.com)
☆ Simulation-based Methods for Optimal Sampling Design in Systems Biology
In many areas of systems biology, including virology, pharmacokinetics, and population biology, dynamical systems are commonly used to describe biological processes. These systems can be characterized by estimating their parameters from sampled data. The key problem is how to optimally select sampling points to achieve accurate parameter estimation. Classical approaches often rely on Fisher information matrix-based criteria such as A-, D-, and E-optimality, which require an initial parameter estimate and may yield suboptimal results when the estimate is inaccurate. This study proposes two simulation-based methods for optimal sampling design that do not depend on initial parameter estimates. The first method, E-optimal-ranking (EOR), employs the E-optimal criterion, while the second utilizes a Long Short-Term Memory (LSTM) neural network. Simulation studies based on the Lotka-Volterra and three-compartment models demonstrate that the proposed methods outperform both random selection and classical E-optimal design.
☆ Federated Learning for Video Violence Detection: Complementary Roles of Lightweight CNNs and Vision-Language Models for Energy-Efficient Use ICTAI 2025
Deep learning-based video surveillance increasingly demands privacy-preserving architectures with low computational and environmental overhead. Federated learning preserves privacy but deploying large vision-language models (VLMs) introduces major energy and sustainability challenges. We compare three strategies for federated violence detection under realistic non-IID splits on the RWF-2000 and RLVS datasets: zero-shot inference with pretrained VLMs, LoRA-based fine-tuning of LLaVA-NeXT-Video-7B, and personalized federated learning of a 65.8M-parameter 3D CNN. All methods exceed 90% accuracy in binary violence detection. The 3D CNN achieves superior calibration (ROC AUC 92.59%) at roughly half the energy cost (240 Wh vs. 570 Wh) of federated LoRA, while VLMs provide richer multimodal reasoning. Hierarchical category grouping (based on semantic similarity and class exclusion) boosts VLM multiclass accuracy from 65.31% to 81% on the UCF-Crime dataset. To our knowledge, this is the first comparative simulation study of LoRA-tuned VLMs and personalized CNNs for federated violence detection, with explicit energy and CO2e quantification. Our results inform hybrid deployment strategies that default to efficient CNNs for routine inference and selectively engage VLMs for complex contextual reasoning.
comment: 5 pages, 3 figures, ICTAI 2025
☆ On Stealing Graph Neural Network Models
Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract the GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
☆ Fuzzy Label: From Concept to Its Application in Label Learning
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
☆ Combining digital data streams and epidemic networks for real time outbreak detection
Responding to disease outbreaks requires close surveillance of their trajectories, but outbreak detection is hindered by the high noise in epidemic time series. Aggregating information across data sources has shown great denoising ability in other fields, but remains underexplored in epidemiology. Here, we present LRTrend, an interpretable machine learning framework to identify outbreaks in real time. LRTrend effectively aggregates diverse health and behavioral data streams within one region and learns disease-specific epidemic networks to aggregate information across regions. We reveal diverse epidemic clusters and connections across the United States that are not well explained by commonly used human mobility networks and may be informative for future public health coordination. We apply LRTrend to 2 years of COVID-19 data in 305 hospital referral regions and frequently detect regional Delta and Omicron waves within 2 weeks of the outbreak's start, when case counts are a small fraction of the wave's resulting peak.
LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track
☆ Guiding Generative Models to Uncover Diverse and Novel Crystals via Reinforcement Learning
Discovering functional crystalline materials entails navigating an immense combinatorial design space. While recent advances in generative artificial intelligence have enabled the sampling of chemically plausible compositions and structures, a fundamental challenge remains: the objective misalignment between likelihood-based sampling in generative modelling and targeted focus on underexplored regions where novel compounds reside. Here, we introduce a reinforcement learning framework that guides latent denoising diffusion models toward diverse and novel, yet thermodynamically viable crystalline compounds. Our approach integrates group relative policy optimisation with verifiable, multi-objective rewards that jointly balance creativity, stability, and diversity. Beyond de novo generation, we demonstrate enhanced property-guided design that preserves chemical validity, while targeting desired functional properties. This approach establishes a modular foundation for controllable AI-driven inverse design that addresses the novelty-validity trade-off across scientific discovery applications of generative models.
☆ Conditional Diffusion as Latent Constraints for Controllable Symbolic Music Generation
Recent advances in latent diffusion models have demonstrated state-of-the-art performance in high-dimensional time-series data synthesis while providing flexible control through conditioning and guidance. However, existing methodologies primarily rely on musical context or natural language as the main modality of interacting with the generative process, which may not be ideal for expert users who seek precise fader-like control over specific musical attributes. In this work, we explore the application of denoising diffusion processes as plug-and-play latent constraints for unconditional symbolic music generation models. We focus on a framework that leverages a library of small conditional diffusion models operating as implicit probabilistic priors on the latents of a frozen unconditional backbone. While previous studies have explored domain-specific use cases, this work, to the best of our knowledge, is the first to demonstrate the versatility of such an approach across a diverse array of musical attributes, such as note density, pitch range, contour, and rhythm complexity. Our experiments show that diffusion-driven constraints outperform traditional attribute regularization and other latent constraints architectures, achieving significantly stronger correlations between target and generated attributes while maintaining high perceptual quality and diversity.
☆ Dynamics-Decoupled Trajectory Alignment for Sim-to-Real Transfer in Reinforcement Learning for Autonomous Driving
Reinforcement learning (RL) has shown promise in robotics, but deploying RL on real vehicles remains challenging due to the complexity of vehicle dynamics and the mismatch between simulation and reality. Factors such as tire characteristics, road surface conditions, aerodynamic disturbances, and vehicle load make it infeasible to model real-world dynamics accurately, which hinders direct transfer of RL agents trained in simulation. In this paper, we present a framework that decouples motion planning from vehicle control through a spatial and temporal alignment strategy between a virtual vehicle and the real system. An RL agent is first trained in simulation using a kinematic bicycle model to output continuous control actions. Its behavior is then distilled into a trajectory-predicting agent that generates finite-horizon ego-vehicle trajectories, enabling synchronization between virtual and real vehicles. At deployment, a Stanley controller governs lateral dynamics, while longitudinal alignment is maintained through adaptive update mechanisms that compensate for deviations between virtual and real trajectories. We validate our approach on a real vehicle and demonstrate that the proposed alignment strategy enables robust zero-shot transfer of RL-based motion planning from simulation to reality, successfully decoupling high-level trajectory generation from low-level vehicle control.
☆ Trading Vector Data in Vector Databases ICDE 2026
Vector data trading is essential for cross-domain learning with vector databases, yet it remains largely unexplored. We study this problem under online learning, where sellers face uncertain retrieval costs and buyers provide stochastic feedback to posted prices. Three main challenges arise: (1) heterogeneous and partial feedback in configuration learning, (2) variable and complex feedback in pricing learning, and (3) inherent coupling between configuration and pricing decisions. We propose a hierarchical bandit framework that jointly optimizes retrieval configurations and pricing. Stage I employs contextual clustering with confidence-based exploration to learn effective configurations with logarithmic regret. Stage II adopts interval-based price selection with local Taylor approximation to estimate buyer responses and achieve sublinear regret. We establish theoretical guarantees with polynomial time complexity and validate the framework on four real-world datasets, demonstrating consistent improvements in cumulative reward and regret reduction compared with existing methods.
comment: Accepted by ICDE 2026
☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models.However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
☆ REACT-LLM: A Benchmark for Evaluating LLM Integration with Causal Features in Clinical Prognostic Tasks
Large Language Models (LLMs) and causal learning each hold strong potential for clinical decision making (CDM). However, their synergy remains poorly understood, largely due to the lack of systematic benchmarks evaluating their integration in clinical risk prediction. In real-world healthcare, identifying features with causal influence on outcomes is crucial for actionable and trustworthy predictions. While recent work highlights LLMs' emerging causal reasoning abilities, there lacks comprehensive benchmarks to assess their causal learning and performance informed by causal features in clinical risk prediction. To address this, we introduce REACT-LLM, a benchmark designed to evaluate whether combining LLMs with causal features can enhance clinical prognostic performance and potentially outperform traditional machine learning (ML) methods. Unlike existing LLM-clinical benchmarks that often focus on a limited set of outcomes, REACT-LLM evaluates 7 clinical outcomes across 2 real-world datasets, comparing 15 prominent LLMs, 6 traditional ML models, and 3 causal discovery (CD) algorithms. Our findings indicate that while LLMs perform reasonably in clinical prognostics, they have not yet outperformed traditional ML models. Integrating causal features derived from CD algorithms into LLMs offers limited performance gains, primarily due to the strict assumptions of many CD methods, which are often violated in complex clinical data. While the direct integration yields limited improvement, our benchmark reveals a more promising synergy.
☆ Think Consistently, Reason Efficiently: Energy-Based Calibration for Implicit Chain-of-Thought
Large Language Models (LLMs) have demonstrated strong reasoning capabilities through \emph{Chain-of-Thought} (CoT) prompting, which enables step-by-step intermediate reasoning. However, explicit CoT methods rely on discrete token-level reasoning processes that are prone to error propagation and limited by vocabulary expressiveness, often resulting in rigid and inconsistent reasoning trajectories. Recent research has explored implicit or continuous reasoning in latent spaces, allowing models to perform internal reasoning before generating explicit output. Although such approaches alleviate some limitations of discrete CoT, they generally lack explicit mechanisms to enforce consistency among reasoning steps, leading to divergent reasoning paths and unstable outcomes. To address this issue, we propose EBM-CoT, an Energy-Based Chain-of-Thought Calibration framework that refines latent thought representations through an energy-based model (EBM). Our method dynamically adjusts latent reasoning trajectories toward lower-energy, high-consistency regions in the embedding space, improving both reasoning accuracy and consistency without modifying the base language model. Extensive experiments across mathematical, commonsense, and symbolic reasoning benchmarks demonstrate that the proposed framework significantly enhances the consistency and efficiency of multi-step reasoning in LLMs.
☆ On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Explicit latent variable models provide a flexible yet powerful framework for data synthesis, enabling controlled manipulation of generative factors. With latent variables drawn from a tractable probability density function that can be further constrained, these models enable continuous and semantically rich exploration of the output space by navigating their latent spaces. Structured latent representations are typically obtained through the joint minimization of regularization loss functions. In variational information bottleneck models, reconstruction loss and Kullback-Leibler Divergence (KLD) are often linearly combined with an auxiliary Attribute-Regularization (AR) loss. However, balancing KLD and AR turns out to be a very delicate matter. When KLD dominates over AR, generative models tend to lack controllability; when AR dominates over KLD, the stochastic encoder is encouraged to violate the standard normal prior. We explore this trade-off in the context of symbolic music generation with explicit control over continuous musical attributes. We show that existing approaches struggle to jointly minimize both regularization objectives, whereas suitable attribute transformations can help achieve both controllability and regularization of the target latent dimensions.
comment: IEEE Catalog No.: CFP2540S-ART ISBN: 978-9-46-459362-4
☆ A Provably-Correct and Robust Convex Model for Smooth Separable NMF
Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.
comment: 30 pages, 10 figures, code available from https://github.com/vleplat/ConvexSmoothSeparableNMF.git
☆ E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis NeurIPS 2025
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.
comment: Accepted to NeurIPS 2025
☆ Sample-efficient quantum error mitigation via classical learning surrogates
The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
comment: 26 pages, 8 figures
☆ Direct Molecular Polarizability Prediction with SO(3) Equivariant Local Frame GNNs
We introduce a novel equivariant graph neural network (GNN) architecture designed to predict the tensorial response properties of molecules. Unlike traditional frameworks that focus on regressing scalar quantities and derive tensorial properties from their derivatives, our approach maintains $SO(3)$-equivariance through the use of local coordinate frames. Our GNN effectively captures geometric information by integrating scalar, vector, and tensor channels within a local message-passing framework. To assess the accuracy of our model, we apply it to predict the polarizabilities of molecules in the QM7-X dataset and show that tensorial message passing outperforms scalar message passing models. This work marks an advancement towards developing structured, geometry-aware neural models for molecular property prediction.
☆ Breaking Privacy in Federated Clustering: Perfect Input Reconstruction via Temporal Correlations
Federated clustering allows multiple parties to discover patterns in distributed data without sharing raw samples. To reduce overhead, many protocols disclose intermediate centroids during training. While often treated as harmless for efficiency, whether such disclosure compromises privacy remains an open question. Prior analyses modeled the problem as a so-called Hidden Subset Sum Problem (HSSP) and argued that centroid release may be safe, since classical HSSP attacks fail to recover inputs. We revisit this question and uncover a new leakage mechanism: temporal regularities in $k$-means iterations create exploitable structure that enables perfect input reconstruction. Building on this insight, we propose Trajectory-Aware Reconstruction (TAR), an attack that combines temporal assignment information with algebraic analysis to recover exact original inputs. Our findings provide the first rigorous evidence, supported by a practical attack, that centroid disclosure in federated clustering significantly compromises privacy, exposing a fundamental tension between privacy and efficiency.
☆ RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services
As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.
☆ ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora WACV 2026
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
comment: Accepted in WACV 2026. Code in https://github.com/HHU-MMBS/clustermine_wacv_official 9 Tables, 11 Figures
☆ Aligning Attention with Human Rationales for Self-Explaining Hate Speech Detection AAAI
The opaque nature of deep learning models presents significant challenges for the ethical deployment of hate speech detection systems. To address this limitation, we introduce Supervised Rational Attention (SRA), a framework that explicitly aligns model attention with human rationales, improving both interpretability and fairness in hate speech classification. SRA integrates a supervised attention mechanism into transformer-based classifiers, optimizing a joint objective that combines standard classification loss with an alignment loss term that minimizes the discrepancy between attention weights and human-annotated rationales. We evaluated SRA on hate speech benchmarks in English (HateXplain) and Portuguese (HateBRXplain) with rationale annotations. Empirically, SRA achieves 2.4x better explainability compared to current baselines, and produces token-level explanations that are more faithful and human-aligned. In terms of fairness, SRA achieves competitive fairness across all measures, with second-best performance in detecting toxic posts targeting identity groups, while maintaining comparable results on other metrics. These findings demonstrate that incorporating human rationales into attention mechanisms can enhance interpretability and faithfulness without compromising fairness.
comment: Accepted at the Annual AAAI Conference on Artificial Intelligence (AAAI26)
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Anatomy-Aware Lymphoma Lesion Detection in Whole-Body PET/CT
Early cancer detection is crucial for improving patient outcomes, and 18F FDG PET/CT imaging plays a vital role by combining metabolic and anatomical information. Accurate lesion detection remains challenging due to the need to identify multiple lesions of varying sizes. In this study, we investigate the effect of adding anatomy prior information to deep learning-based lesion detection models. In particular, we add organ segmentation masks from the TotalSegmentator tool as auxiliary inputs to provide anatomical context to nnDetection, which is the state-of-the-art for lesion detection, and Swin Transformer. The latter is trained in two stages that combine self-supervised pre-training and supervised fine-tuning. The method is tested in the AutoPET and Karolinska lymphoma datasets. The results indicate that the inclusion of anatomical priors substantially improves the detection performance within the nnDetection framework, while it has almost no impact on the performance of the vision transformer. Moreover, we observe that Swin Transformer does not offer clear advantages over conventional convolutional neural network (CNN) encoders used in nnDetection. These findings highlight the critical role of the anatomical context in cancer lesion detection, especially in CNN-based models.
☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
☆ Fair Bayesian Data Selection via Generalized Discrepancy Measures
Fairness concerns are increasingly critical as machine learning models are deployed in high-stakes applications. While existing fairness-aware methods typically intervene at the model level, they often suffer from high computational costs, limited scalability, and poor generalization. To address these challenges, we propose a Bayesian data selection framework that ensures fairness by aligning group-specific posterior distributions of model parameters and sample weights with a shared central distribution. Our framework supports flexible alignment via various distributional discrepancy measures, including Wasserstein distance, maximum mean discrepancy, and $f$-divergence, allowing geometry-aware control without imposing explicit fairness constraints. This data-centric approach mitigates group-specific biases in training data and improves fairness in downstream tasks, with theoretical guarantees. Experiments on benchmark datasets show that our method consistently outperforms existing data selection and model-based fairness methods in both fairness and accuracy.
☆ Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time AAAI 2026
Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
comment: 9 pages, 5 figures, accepted by AAAI 2026
☆ Multilingual Lexical Feature Analysis of Spoken Language for Predicting Major Depression Symptom Severity
Background: Captured between clinical appointments using mobile devices, spoken language has potential for objective, more regular assessment of symptom severity and earlier detection of relapse in major depressive disorder. However, research to date has largely been in non-clinical cross-sectional samples of written language using complex machine learning (ML) approaches with limited interpretability. Methods: We describe an initial exploratory analysis of longitudinal speech data and PHQ-8 assessments from 5,836 recordings of 586 participants in the UK, Netherlands, and Spain, collected in the RADAR-MDD study. We sought to identify interpretable lexical features associated with MDD symptom severity with linear mixed-effects modelling. Interpretable features and high-dimensional vector embeddings were also used to test the prediction performance of four regressor ML models. Results: In English data, MDD symptom severity was associated with 7 features including lexical diversity measures and absolutist language. In Dutch, associations were observed with words per sentence and positive word frequency; no associations were observed in recordings collected in Spain. The predictive power of lexical features and vector embeddings was near chance level across all languages. Limitations: Smaller samples in non-English speech and methodological choices, such as the elicitation prompt, may have also limited the effect sizes observable. A lack of NLP tools in languages other than English restricted our feature choice. Conclusion: To understand the value of lexical markers in clinical research and practice, further research is needed in larger samples across several languages using improved protocols, and ML models that account for within- and between-individual variations in language.
☆ TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding 3DV 2026
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/
comment: The paper accepted for 3DV 2026 (International Conference on 3D Vision 2026)
☆ S$^2$Drug: Bridging Protein Sequence and 3D Structure in Contrastive Representation Learning for Virtual Screening AAAI 2026
Virtual screening (VS) is an essential task in drug discovery, focusing on the identification of small-molecule ligands that bind to specific protein pockets. Existing deep learning methods, from early regression models to recent contrastive learning approaches, primarily rely on structural data while overlooking protein sequences, which are more accessible and can enhance generalizability. However, directly integrating protein sequences poses challenges due to the redundancy and noise in large-scale protein-ligand datasets. To address these limitations, we propose \textbf{S$^2$Drug}, a two-stage framework that explicitly incorporates protein \textbf{S}equence information and 3D \textbf{S}tructure context in protein-ligand contrastive representation learning. In the first stage, we perform protein sequence pretraining on ChemBL using an ESM2-based backbone, combined with a tailored data sampling strategy to reduce redundancy and noise on both protein and ligand sides. In the second stage, we fine-tune on PDBBind by fusing sequence and structure information through a residue-level gating module, while introducing an auxiliary binding site prediction task. This auxiliary task guides the model to accurately localize binding residues within the protein sequence and capture their 3D spatial arrangement, thereby refining protein-ligand matching. Across multiple benchmarks, S$^2$Drug consistently improves virtual screening performance and achieves strong results on binding site prediction, demonstrating the value of bridging sequence and structure in contrastive learning.
comment: Accepted by AAAI 2026 Main Technical Track
☆ CoLM: Collaborative Large Models via A Client-Server Paradigm
Large models have achieved remarkable performance across a range of reasoning and understanding tasks. Prior work often utilizes model ensembles or multi-agent systems to collaboratively generate responses, effectively operating in a server-to-server paradigm. However, such approaches do not align well with practical deployment settings, where a limited number of server-side models are shared by many clients under modern internet architectures. In this paper, we introduce \textbf{CoLM} (\textbf{Co}llaboration in \textbf{L}arge-\textbf{M}odels), a novel framework for collaborative reasoning that redefines cooperation among large models from a client-server perspective. Unlike traditional ensemble methods that rely on simultaneous inference from multiple models to produce a single output, CoLM allows the outputs of multiple models to be aggregated or shared, enabling each client model to independently refine and update its own generation based on these high-quality outputs. This design enables collaborative benefits by fully leveraging both client-side and shared server-side models. We further extend CoLM to vision-language models (VLMs), demonstrating its applicability beyond language tasks. Experimental results across multiple benchmarks show that CoLM consistently improves model performance on previously failed queries, highlighting the effectiveness of collaborative guidance in enhancing single-model capabilities.
☆ HCFSLN: Adaptive Hyperbolic Few-Shot Learning for Multimodal Anxiety Detection
Anxiety disorders impact millions globally, yet traditional diagnosis relies on clinical interviews, while machine learning models struggle with overfitting due to limited data. Large-scale data collection remains costly and time-consuming, restricting accessibility. To address this, we introduce the Hyperbolic Curvature Few-Shot Learning Network (HCFSLN), a novel Few-Shot Learning (FSL) framework for multimodal anxiety detection, integrating speech, physiological signals, and video data. HCFSLN enhances feature separability through hyperbolic embeddings, cross-modal attention, and an adaptive gating network, enabling robust classification with minimal data. We collected a multimodal anxiety dataset from 108 participants and benchmarked HCFSLN against six FSL baselines, achieving 88% accuracy, outperforming the best baseline by 14%. These results highlight the effectiveness of hyperbolic space for modeling anxiety-related speech patterns and demonstrate FSL's potential for anxiety classification.
☆ Breaking the Gradient Barrier: Unveiling Large Language Models for Strategic Classification NeurIPS 2025
Strategic classification~(SC) explores how individuals or entities modify their features strategically to achieve favorable classification outcomes. However, existing SC methods, which are largely based on linear models or shallow neural networks, face significant limitations in terms of scalability and capacity when applied to real-world datasets with significantly increasing scale, especially in financial services and the internet sector. In this paper, we investigate how to leverage large language models to design a more scalable and efficient SC framework, especially in the case of growing individuals engaged with decision-making processes. Specifically, we introduce GLIM, a gradient-free SC method grounded in in-context learning. During the feed-forward process of self-attention, GLIM implicitly simulates the typical bi-level optimization process of SC, including both the feature manipulation and decision rule optimization. Without fine-tuning the LLMs, our proposed GLIM enjoys the advantage of cost-effective adaptation in dynamic strategic environments. Theoretically, we prove GLIM can support pre-trained LLMs to adapt to a broad range of strategic manipulations. We validate our approach through experiments with a collection of pre-trained LLMs on real-world and synthetic datasets in financial and internet domains, demonstrating that our GLIM exhibits both robustness and efficiency, and offering an effective solution for large-scale SC tasks.
comment: Accepted by NeurIPS 2025
☆ Fast Bayesian Updates via Harmonic Representations
Bayesian inference, while foundational to probabilistic reasoning, is often hampered by the computational intractability of posterior distributions, particularly through the challenging evidence integral. Conventional approaches like Markov Chain Monte Carlo (MCMC) and Variational Inference (VI) face significant scalability and efficiency limitations. This paper introduces a novel, unifying framework for fast Bayesian updates by leveraging harmonic analysis. We demonstrate that representing the prior and likelihood in a suitable orthogonal basis transforms the Bayesian update rule into a spectral convolution. Specifically, the Fourier coefficients of the posterior are shown to be the normalized convolution of the prior and likelihood coefficients. To achieve computational feasibility, we introduce a spectral truncation scheme, which, for smooth functions, yields an exceptionally accurate finite-dimensional approximation and reduces the update to a circular convolution. This formulation allows us to exploit the Fast Fourier Transform (FFT), resulting in a deterministic algorithm with O(N log N) complexity -- a substantial improvement over the O(N^2) cost of naive methods. We establish rigorous mathematical criteria for the applicability of our method, linking its efficiency to the smoothness and spectral decay of the involved distributions. The presented work offers a paradigm shift, connecting Bayesian computation to signal processing and opening avenues for real-time, sequential inference in a wide class of problems.
comment: 13 pages
☆ Rethinking Crystal Symmetry Prediction: A Decoupled Perspective
Efficiently and accurately determining the symmetry is a crucial step in the structural analysis of crystalline materials. Existing methods usually mindlessly apply deep learning models while ignoring the underlying chemical rules. More importantly, experiments show that they face a serious sub-property confusion SPC problem. To address the above challenges, from a decoupled perspective, we introduce the XRDecoupler framework, a problem-solving arsenal specifically designed to tackle the SPC problem. Imitating the thinking process of chemists, we innovatively incorporate multidimensional crystal symmetry information as superclass guidance to ensure that the model's prediction process aligns with chemical intuition. We further design a hierarchical PXRD pattern learning model and a multi-objective optimization approach to achieve high-quality representation and balanced optimization. Comprehensive evaluations on three mainstream databases (e.g., CCDC, CoREMOF, and InorganicData) demonstrate that XRDecoupler excels in performance, interpretability, and generalization.
☆ Oh That Looks Familiar: A Novel Similarity Measure for Spreadsheet Template Discovery
Traditional methods for identifying structurally similar spreadsheets fail to capture the spatial layouts and type patterns defining templates. To quantify spreadsheet similarity, we introduce a hybrid distance metric that combines semantic embeddings, data type information, and spatial positioning. In order to calculate spreadsheet similarity, our method converts spreadsheets into cell-level embeddings and then uses aggregation techniques like Chamfer and Hausdorff distances. Experiments across template families demonstrate superior unsupervised clustering performance compared to the graph-based Mondrian baseline, achieving perfect template reconstruction (Adjusted Rand Index of 1.00 versus 0.90) on the FUSTE dataset. Our approach facilitates large-scale automated template discovery, which in turn enables downstream applications such as retrieval-augmented generation over tabular collections, model training, and bulk data cleaning.
comment: 5 pages, 2 figures, Accepted for EuroIPS: AI for Tabular Data Workshop (2025)
☆ Hybrid Autoencoders for Tabular Data: Leveraging Model-Based Augmentation in Low-Label Settings
Deep neural networks often under-perform on tabular data due to their sensitivity to irrelevant features and a spectral bias toward smooth, low-frequency functions. These limitations hinder their ability to capture the sharp, high-frequency signals that often define tabular structure, especially under limited labeled samples. While self-supervised learning (SSL) offers promise in such settings, it remains challenging in tabular domains due to the lack of effective data augmentations. We propose a hybrid autoencoder that combines a neural encoder with an oblivious soft decision tree (OSDT) encoder, each guided by its own stochastic gating network that performs sample-specific feature selection. Together, these structurally different encoders and model-specific gating networks implement model-based augmentation, producing complementary input views tailored to each architecture. The two encoders, trained with a shared decoder and cross-reconstruction loss, learn distinct yet aligned representations that reflect their respective inductive biases. During training, the OSDT encoder (robust to noise and effective at modeling localized, high-frequency structure) guides the neural encoder toward representations more aligned with tabular data. At inference, only the neural encoder is used, preserving flexibility and SSL compatibility. Spectral analysis highlights the distinct inductive biases of each encoder. Our method achieves consistent gains in low-label classification and regression across diverse tabular datasets, outperforming deep and tree-based supervised baselines.
comment: accepted to neurips 2025, main text is 10 pages
☆ Learning to Focus: Prioritizing Informative Histories with Structured Attention Mechanisms in Partially Observable Reinforcement Learning NeurIPS 2025
Transformers have shown strong ability to model long-term dependencies and are increasingly adopted as world models in model-based reinforcement learning (RL) under partial observability. However, unlike natural language corpora, RL trajectories are sparse and reward-driven, making standard self-attention inefficient because it distributes weight uniformly across all past tokens rather than emphasizing the few transitions critical for control. To address this, we introduce structured inductive priors into the self-attention mechanism of the dynamics head: (i) per-head memory-length priors that constrain attention to task-specific windows, and (ii) distributional priors that learn smooth Gaussian weightings over past state-action pairs. We integrate these mechanisms into UniZero, a model-based RL agent with a Transformer-based world model that supports planning under partial observability. Experiments on the Atari 100k benchmark show that most efficiency gains arise from the Gaussian prior, which smoothly allocates attention to informative transitions, while memory-length priors often truncate useful signals with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77% relative improvement in mean human-normalized scores over UniZero. These findings suggest that in partially observable RL domains with non-stationary temporal dependencies, discrete memory windows are difficult to learn reliably, whereas smooth distributional priors flexibly adapt across horizons and yield more robust data efficiency. Overall, our results demonstrate that encoding structured temporal priors directly into self-attention improves the prioritization of informative histories for dynamics modeling under partial observability.
comment: Accepted to Embodied World Models for Decision Making (EWM) Workshop at NeurIPS 2025
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
♻ ☆ Lagrangian neural ODEs: Measuring the existence of a Lagrangian with Helmholtz metrics NeurIPS 2025
Neural ODEs are a widely used, powerful machine learning technique in particular for physics. However, not every solution is physical in that it is an Euler-Lagrange equation. We present Helmholtz metrics to quantify this resemblance for a given ODE and demonstrate their capabilities on several fundamental systems with noise. We combine them with a second order neural ODE to form a Lagrangian neural ODE, which allows to learn Euler-Lagrange equations in a direct fashion and with zero additional inference cost. We demonstrate that, using only positional data, they can distinguish Lagrangian and non-Lagrangian systems and improve the neural ODE solutions.
comment: Accepted for the NeurIPS 2025 Machine Learning and the Physical Sciences workshop. 6 pages, 3 figures
♻ ☆ Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning ECAI 2025
Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.
comment: Accepted for Poster, Presentation and Proceedings at: 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), co-located with ECAI 2025, Bologna, Italy, 25-30 October 2025
♻ ☆ Sensitivity Analysis for Climate Science with Generative Flow Models
Sensitivity analysis is a cornerstone of climate science, essential for understanding phenomena ranging from storm intensity to long-term climate feedbacks. However, computing these sensitivities using traditional physical models is often prohibitively expensive in terms of both computation and development time. While modern AI-based generative models are orders of magnitude faster to evaluate, computing sensitivities with them remains a significant bottleneck. This work addresses this challenge by applying the adjoint state method for calculating gradients in generative flow models. We apply this method to the cBottle generative model, trained on ERA5 and ICON data, to perform sensitivity analysis of any atmospheric variable with respect to sea surface temperatures. We quantitatively validate the computed sensitivities against the model's own outputs. Our results provide initial evidence that this approach can produce reliable gradients, reducing the computational cost of sensitivity analysis from weeks on a supercomputer with a physical model to hours on a GPU, thereby simplifying a critical workflow in climate science. The code can be found at https://github.com/Kwartzl8/cbottle_adjoint_sensitivity.
♻ ☆ Graph-Conditional Flow Matching for Relational Data Generation AAAI26
Data synthesis is gaining momentum as a privacy-enhancing technology. While single-table tabular data generation has seen considerable progress, current methods for multi-table data often lack the flexibility and expressiveness needed to capture complex relational structures. In particular, they struggle with long-range dependencies and complex foreign-key relationships, such as tables with multiple parent tables or multiple types of links between the same pair of tables. We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships. We do this by learning a deep generative model of the content of the whole relational database by flow matching, where the neural network trained to denoise records leverages a graph neural network to obtain information from connected records. Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component. We evaluate our method on several benchmark datasets and show that it achieves state-of-the-art performance in terms of synthetic data fidelity.
comment: 9 pages of main content, accepted to AAAI26 conference
♻ ☆ NOWS: Neural Operator Warm Starts for Accelerating Iterative Solvers
Partial differential equations (PDEs) underpin quantitative descriptions across the physical sciences and engineering, yet high-fidelity simulation remains a major computational bottleneck for many-query, real-time, and design tasks. Data-driven surrogates can be strikingly fast but are often unreliable when applied outside their training distribution. Here we introduce Neural Operator Warm Starts (NOWS), a hybrid strategy that harnesses learned solution operators to accelerate classical iterative solvers by producing high-quality initial guesses for Krylov methods such as conjugate gradient and GMRES. NOWS leaves existing discretizations and solver infrastructures intact, integrating seamlessly with finite-difference, finite-element, isogeometric analysis, finite volume method, etc. Across our benchmarks, the learned initialization consistently reduces iteration counts and end-to-end runtime, resulting in a reduction of the computational time of up to 90 %, while preserving the stability and convergence guarantees of the underlying numerical algorithms. By combining the rapid inference of neural operators with the rigor of traditional solvers, NOWS provides a practical and trustworthy approach to accelerate high-fidelity PDE simulations.
♻ ☆ Estimation of aboveground biomass in a tropical dry forest: An intercomparison of airborne, unmanned, and space laser scanning
According to the Paris Climate Change Agreement, all nations are required to submit reports on their greenhouse gas emissions and absorption every two years by 2024. Consequently, forests play a crucial role in reducing carbon emissions, which is essential for meeting these obligations. Recognizing the significance of forest conservation in the global battle against climate change, Article 5 of the Paris Agreement emphasizes the need for high-quality forest data. This study focuses on enhancing methods for mapping aboveground biomass in tropical dry forests. Tropical dry forests are considered one of the least understood tropical forest environments; therefore, there is a need for accurate approaches to estimate carbon pools. We employ a comparative analysis of AGB estimates, utilizing different discrete and full-waveform laser scanning datasets in conjunction with Ordinary Least Squares and Bayesian approaches SVM. Airborne Laser Scanning, Unmanned Laser Scanning, and Space Laser Scanning were used as independent variables for extracting forest metrics. Variable selection, SVM regression tuning, and cross-validation via a machine-learning approach were applied to account for overfitting and underfitting. The results indicate that six key variables primarily related to tree height: Elev\.minimum, Elev\.L3, lev\.MAD\.mode, Elev\.mode, Elev\.MAD\.median, and Elev\.skewness, are important for AGB estimation using ALSD and ULSD, while Leaf Area Index, canopy coverage and height, terrain elevation, and full-waveform signal energy emerged as the most vital variables. AGB values estimated from ten permanent tropical dry forest plots in Costa Rica Guanacaste province ranged from 26.02 Mg/ha to 175.43 Mg/ha. The SVM regressions demonstrated a 17.89 error across all laser scanning systems, with SLSF W exhibiting the lowest error 17.07 in estimating total biomass per plot.
comment: 32 pages, 17 figures, research paper
♻ ☆ CAGE: Curvature-Aware Gradient Estimation For Accurate Quantization-Aware Training
Despite significant work on low-bit quantization-aware training (QAT), there is still an accuracy gap between such techniques and native training. To address this, we introduce CAGE (Curvature-Aware Gradient Estimation), a new QAT method that augments the straight-through estimator (STE) gradient with a curvature-aware correction designed to counteract the loss increase induced by quantization. CAGE is derived from a multi-objective view of QAT that balances loss minimization with the quantization constraints, yielding a principled correction term that depends on local curvature information. On the theoretical side, we introduce the notion of Pareto-optimal solutions for quantized optimization, and establish that CAGE yields strong convergence guarantees in the smooth non-convex setting. In terms of implementation, our approach is optimizer-agnostic, but we provide a highly-efficient implementation that leverages Adam statistics. CAGE significantly improves upon the prior state-of-the-art methods in terms of accuracy, for similar computational cost: for QAT fine-tuning, it halves the compression accuracy loss relative to the prior best method, while for QAT pre-training of Llama models, its accuracy for 3-bit weights-and-activations (W3A3) matches the accuracy achieved at 4-bits (W4A4) with the prior best method. The official implementation can be found over https://github.com/IST-DASLab/CAGE .
♻ ☆ Adaptive Group Robust Ensemble Knowledge Distillation
Neural networks can learn spurious correlations in the data, often leading to performance degradation for underrepresented subgroups. Studies have demonstrated that the disparity is amplified when knowledge is distilled from a complex teacher model to a relatively ``simple'' student model. Prior work has shown that ensemble deep learning methods can improve the performance of the worst-case subgroups; however, it is unclear if this advantage carries over when distilling knowledge from an ensemble of teachers, especially when the teacher models are debiased. This study demonstrates that traditional ensemble knowledge distillation can significantly drop the performance of the worst-case subgroups in the distilled student model even when the teacher models are debiased. To overcome this, we propose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a simple ensembling strategy to ensure that the student model receives knowledge beneficial for unknown underrepresented subgroups. Leveraging an additional biased model, our method selectively chooses teachers whose knowledge would better improve the worst-performing subgroups by upweighting the teachers with gradient directions deviating from the biased model. Our experiments on several datasets demonstrate the superiority of the proposed ensemble distillation technique and show that it can even outperform classic model ensembles based on majority voting. Our source code is available at https://github.com/patrikken/AGRE-KD
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Which Similarity-Sensitive Entropy?
A canonical step in quantifying a system is to measure its entropy. Shannon entropy and other traditional entropy measures capture only the information encoded in the frequencies of a system's elements. Recently, Leinster, Cobbold, and Reeve (LCR) introduced a method that also captures the rich information encoded in the similarities and differences among elements, yielding similarity-sensitive entropy. More recently, the Vendi score (VS) was introduced as an alternative, raising the question of how LCR and VS compare, and which is preferable. Here we address these questions conceptually, analytically, and experimentally, using 53 machine-learning datasets. We show that LCR and VS can differ by orders of magnitude and can capture complementary information about a system, except in limiting cases. We demonstrate that both LCR and VS depend on how similarities are scaled and introduce the concept of ``half distance'' to parameterize this dependence. We prove that VS provides an upper bound on LCR for several values of the R\'enyi-Hill order parameter and conjecture that this bound holds for all values. We conclude that VS is preferable only when interpreting elements as linear combinations of a more fundamental set of ``ur-elements'' or when the system or dataset possesses a quantum-mechanical character. In the broader circumstance where one seeks simply to capture the rich information encoded by similarity, LCR is favored; nevertheless, for certain half-distances the two methods can complement each other.
comment: 21 pages, 8 figures
♻ ☆ Real-to-Sim Robot Policy Evaluation with Gaussian Splatting Simulation of Soft-Body Interactions
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
comment: The first two authors contributed equally. Website: https://real2sim-eval.github.io/
♻ ☆ Revisiting Stochastic Approximation and Stochastic Gradient Descent
In this paper, we introduce a new approach to proving the convergence of the Stochastic Approximation (SA) and the Stochastic Gradient Descent (SGD) algorithms. The new approach is based on a concept called GSLLN (Generalized Strong Law of Large Numbers), which extends the traditional SLLN. Using this concept, we provide sufficient conditions for convergence, which effectively decouple the properties of the function whose zero we are trying to find, from the properties of the measurement errors (noise sequence). The new approach provides an alternative to the two widely used approaches, namely the ODE approach and the martingale approach, and also permits a wider class of noise signals than either of the two known approaches. In particular, the ``noise'' or measurement error \textit{need not} have a finite second moment, and under suitable conditions, not even a finite mean. By adapting this method of proof, we also derive sufficient conditions for the convergence of zero-order SGD, wherein the stochastic gradient is computed using $2d$ function evaluations, but no gradient computations. The sufficient conditions derived here are the weakest to date, thus leading to a considerable expansion of the applicability of SA and SGD theory.
comment: 31 pages
♻ ☆ When Bias Helps Learning: Bridging Initial Prejudice and Trainability
Understanding the statistical properties of deep neural networks (DNNs) at initialization is crucial for elucidating both their trainability and the intrinsic architectural biases they encode prior to data exposure. Mean-field (MF) analyses have demonstrated that the parameter distribution in randomly initialized networks dictates whether gradients vanish or explode. Recent work has shown that untrained DNNs exhibit an initial-guessing bias (IGB), in which large regions of the input space are assigned to a single class. In this work, we provide a theoretical proof linking IGB to MF analyses, establishing that a network predisposition toward specific classes is intrinsically tied to the conditions for efficient learning. This connection leads to a counterintuitive conclusion: the initialization that optimizes trainability is systematically biased rather than neutral. We validate our theory through experiments across multiple architectures and datasets.
♻ ☆ Multiple Streams of Knowledge Retrieval: Enriching and Recalling in Transformers
When an LLM learns a new fact during finetuning (e.g., new movie releases, newly elected pope, etc.), where does this information go? Are entities enriched with relation information, or do models recall information just-in-time before a prediction? Or, are ``all of the above'' true with LLMs implementing multiple redundant heuristics? Existing localization approaches (e.g., activation patching) are ill-suited for this analysis because they usually \textit{replace} parts of the residual stream, thus overriding previous information. To fill this gap, we propose \emph{dynamic weight grafting}, a technique that selectively grafts weights from a finetuned model onto a pretrained model. Using this technique, we show two separate pathways for retrieving finetuned relation information: 1) ``enriching" the residual stream with relation information while processing the tokens that correspond to an entity (e.g., ``Zendaya'' in ``Zendaya co-starred with John David Washington'') and 2) ``recalling" this information at the final token position before generating a target fact. In some cases, models need information from both of these pathways to correctly generate finetuned facts while, in other cases, either the ``enrichment" or ``recall" pathway alone is sufficient. We localize the ``recall'' pathway to model components -- finding that ``recall" occurs via both task-specific attention mechanisms and an entity-specific extraction step in the feedforward networks of the final layers before the target prediction. By targeting model components and parameters, as opposed to just activations, we are able to understand the \textit{mechanisms} by which finetuned knowledge is retrieved during generation.
♻ ☆ From Invariant Representations to Invariant Data: Provable Robustness to Spurious Correlations via Noisy Counterfactual Matching
Models that learn spurious correlations from training data often fail when deployed in new environments. While many methods aim to learn invariant representations to address this, they often underperform standard empirical risk minimization (ERM). We propose a data-centric alternative that shifts the focus from learning invariant representations to leveraging invariant data pairs -- pairs of samples that should have the same prediction. We prove that certain counterfactuals naturally satisfy this invariance property. Based on this, we introduce Noisy Counterfactual Matching (NCM), a simple constraint-based method that improves robustness by leveraging even a small number of \emph{noisy} counterfactual pairs -- improving upon prior works that do not explicitly consider noise. For linear causal models, we prove that NCM's test-domain error is bounded by its in-domain error plus a term dependent on the counterfactuals' quality and diversity. Experiments on synthetic data validate our theory, and we demonstrate NCM's effectiveness on real-world datasets.
♻ ☆ VeriLLM: A Lightweight Framework for Publicly Verifiable Decentralized Inference
Decentralized inference provides a scalable and resilient paradigm for serving large language models (LLMs), enabling distributed resource utilization and reducing reliance on centralized providers. However, in a permissionless environment without trusted nodes, ensuring the correctness of model outputs remains a core challenge. We introduce VeriLLM, a publicly verifiable protocol for decentralized LLM inference that achieves security under a one-honest-verifier assumption while maintaining practical efficiency. VeriLLM combines lightweight empirical rerunning with cryptographic commitments, allowing verifiers to validate results at approximately 1% of the underlying inference cost. To prevent verification bottlenecks, we design an isomorphic inference-verification architecture that multiplexes both inference and verification roles across the same GPU workers. This design (i) improves GPU utilization and overall throughput, (ii) enlarges the effective validator set, enhancing robustness and liveness, and (iii) enforces task indistinguishability to prevent node-specific optimizations or selective behavior. Through theoretical analysis and system-level evaluation, we show that VeriLLM achieves reliable public verifiability with minimal overhead, offering a practical foundation for trustworthy and scalable decentralized LLM inference.
comment: 20 pages, 4 figures, 6 tables
♻ ☆ Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning NeurIPS 2025
Sequential scientific data span many resolutions and domains, and unifying them into a common representation is a key step toward developing foundation models for the sciences. Astronomical spectra exemplify this challenge: massive surveys have collected millions of spectra across a wide range of wavelengths and resolutions, yet analyses remain fragmented across spectral domains (e.g., optical vs. infrared) and object types (e.g., stars vs. galaxies), limiting the ability to pool information across datasets. We present a deep learning model that jointly learns from heterogeneous spectra in a self-supervised manner. Our universal spectral tokenizer processes spectra from a variety of object types and resolutions directly on their native wavelength grids, producing intrinsically aligned, homogeneous, and physically meaningful representations that can be efficiently adapted to achieve competitive performance across a range of downstream tasks. For the first time, we demonstrate that a single model can unify spectral data across resolutions and domains, suggesting that our model can serve as a powerful building block for foundation models in astronomy -- and potentially extend to other scientific domains with heterogeneous sequential data, such as climate and healthcare.
comment: Accepted at NeurIPS 2025 Machine Learning and the Physical Sciences Workshop; v2: added collaboration
♻ ☆ HyperSHAP: Shapley Values and Interactions for Explaining Hyperparameter Optimization AAAI-26
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. Yet, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque HPO methods to find optimal configurations. However, the black-box nature of most HPO methods undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameters' contributions and their interactions. The framework, named HyperSHAP, offers insights into ablation studies, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We demonstrate HyperSHAP's capabilities on various HPO benchmarks to analyze the interaction structure of the corresponding HPO problems, demonstrating its broad applicability and actionable insights for improving HPO.
comment: Accepted at AAAI-26 (oral)
♻ ☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
♻ ☆ Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch EMNLP 2025
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
comment: EMNLP 2025 finding
♻ ☆ HumorReject: Decoupling LLM Safety from Refusal Prefix via A Little Humor
Large Language Models (LLMs) commonly rely on explicit refusal prefixes for safety, making them vulnerable to prefix injection attacks. We introduce HumorReject, a novel data-driven approach that reimagines LLM safety by decoupling it from refusal prefixes through humor as an indirect refusal strategy. Rather than explicitly rejecting harmful instructions, HumorReject responds with contextually appropriate humor that naturally defuses potentially dangerous requests. Our approach effectively addresses common "over-defense" issues while demonstrating superior robustness against various attack vectors. Our findings suggest that improvements in training data design can be as important as the alignment algorithm itself in achieving effective LLM safety. The code and dataset are available at https://github.com/wooozihui/HumorReject.
♻ ☆ ChemBOMAS: Accelerated BO in Chemistry with LLM-Enhanced Multi-Agent System
Bayesian optimization (BO) is a powerful tool for scientific discovery in chemistry, yet its efficiency is often hampered by the sparse experimental data and vast search space. Here, we introduce ChemBOMAS: a large language model (LLM)-enhanced multi-agent system that accelerates BO through synergistic data- and knowledge-driven strategies. Firstly, the data-driven strategy involves an 8B-scale LLM regressor fine-tuned on a mere 1% labeled samples for pseudo-data generation, robustly initializing the optimization process. Secondly, the knowledge-driven strategy employs a hybrid Retrieval-Augmented Generation approach to guide LLM in dividing the search space while mitigating LLM hallucinations. An Upper Confidence Bound algorithm then identifies high-potential subspaces within this established partition. Across the LLM-refined subspaces and supported by LLM-generated data, BO achieves the improvement of effectiveness and efficiency. Comprehensive evaluations across multiple scientific benchmarks demonstrate that ChemBOMAS set a new state-of-the-art, accelerating optimization efficiency by up to 5-fold compared to baseline methods.
♻ ☆ Causal Discovery in Dynamic Fading Wireless Networks
Dynamic causal discovery in wireless networks is essential due to evolving interference, fading, and mobility, which complicate traditional static causal models. This paper addresses causal inference challenges in dynamic fading wireless environments by proposing a sequential regression-based algorithm with a novel application of the NOTEARS acyclicity constraint, enabling efficient online updates. We derive theoretical lower and upper bounds on the detection delay required to identify structural changes, explicitly quantifying their dependence on network size, noise variance, and fading severity. Monte Carlo simulations validate these theoretical results, demonstrating linear increases in detection delay with network size, quadratic growth with noise variance, and inverse-square dependence on the magnitude of structural changes. Our findings provide rigorous theoretical insights and practical guidelines for designing robust online causal inference mechanisms to maintain network reliability under nonstationary wireless conditions.
comment: Inaccurate contextual grounding of the methodology explored in the paper. This inaccuracy could lead to false results if other researchers read and use the method in their projects. To prevent such scenario from happening, it is appropriate if this paper is withdrawn. Thank you
♻ ☆ FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization
Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems. Our source code is provided at https://github.com/nmduonggg/PEPSY
comment: The 22nd International Symposium on Network Computing and Applications (NCA 2024)
♻ ☆ Exploring the Early Universe with Deep Learning
Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
comment: EPIA 2025 preprint version, 12 pages, 3 figures
♻ ☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
The task of reconstructing unknown textual inputs to language models is a fundamental auditing primitive that allows us to assess the model's vulnerability to a range of security issues, including stealing hidden system prompts, detecting backdoors, and leaking private data. Existing inversion works assume access to differing levels of information (e.g. requiring input-output examples, the model parameters, intermediate activations or output logits) but oftentimes fail to fully reconstruct the desired input. In this paper, we present the Sparse One-hot Discrete Adam (SODA) algorithm, a search-based inversion method that can accurately reconstruct the input text, given white-box access to the language model and its output. Our experiments demonstrate for the first time that exact language model inversion is possible on both natural language and random inputs. Indeed, SODA achieves respectively 98% and 79% reconstruction rates on inputs with lengths up to 10 tokens. Furthermore, we show that input length and vocabulary size have a far greater impact on the probability of a successful reconstruction than the size of the language model itself, thus allowing us to scale to models from 33M to 3B parameters.
comment: 7 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
♻ ☆ ANO : Faster is Better in Noisy Landscape ICLR 2026
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks.
comment: Under Review for ICLR 2026, 25 pages total with appendix, 7 figures, 12 tables
♻ ☆ Mitigating Sexual Content Generation via Embedding Distortion in Text-conditioned Diffusion Models NeurIPS 2025
Diffusion models show remarkable image generation performance following text prompts, but risk generating sexual contents. Existing approaches, such as prompt filtering, concept removal, and even sexual contents mitigation methods, struggle to defend against adversarial attacks while maintaining benign image quality. In this paper, we propose a novel approach called Distorting Embedding Space (DES), a text encoder-based defense mechanism that effectively tackles these issues through innovative embedding space control. DES transforms unsafe embeddings, extracted from a text encoder using unsafe prompts, toward carefully calculated safe embedding regions to prevent unsafe contents generation, while reproducing the original safe embeddings. DES also neutralizes the ``nudity'' embedding, by aligning it with neutral embedding to enhance robustness against adversarial attacks. As a result, extensive experiments on explicit content mitigation and adaptive attack defense show that DES achieves state-of-the-art (SOTA) defense, with attack success rate (ASR) of 9.47% on FLUX.1, a recent popular model, and 0.52% on the widely adopted Stable Diffusion v1.5. These correspond to ASR reductions of 76.5% and 63.9% compared to previous SOTA methods, EraseAnything and AdvUnlearn, respectively. Furthermore, DES maintains benign image quality, achieving Frechet Inception Distance and CLIP score comparable to those of the original FLUX.1 and Stable Diffusion v1.5.
comment: NeurIPS 2025 accepted. Official code: https://github.com/amoeba04/des
♻ ☆ PyLO: Towards Accessible Learned Optimizers in PyTorch ICML
Learned optimizers have been an active research topic over the past decade, with increasing progress toward practical, general-purpose optimizers that can serve as drop-in replacements for widely used methods like Adam. However, recent advances -- such as VeLO, which was meta-trained for 4000 TPU-months -- remain largely inaccessible to the broader community, in part due to their reliance on JAX and the absence of user-friendly packages for applying the optimizers after meta-training. To address this gap, we introduce PyLO, a PyTorch-based library that brings learned optimizers to the broader machine learning community through familiar, widely adopted workflows. Unlike prior work focused on synthetic or convex tasks, our emphasis is on applying learned optimization to real-world large-scale pre-training tasks. Our release includes a CUDA-accelerated version of the small_fc_lopt learned optimizer architecture from (Metz et al., 2022a), delivering substantial speedups -- from 39.36 to 205.59 samples/sec throughput for training ViT B/16 with batch size 32. PyLO also allows us to easily combine learned optimizers with existing optimization tools such as learning rate schedules and weight decay. When doing so, we find that learned optimizers can substantially benefit. Our code is available at https://github.com/Belilovsky-Lab/pylo
comment: Accepted at ICML CODEML Workshop 2025
♻ ☆ REINFORCE++: Stabilizing Critic-Free Policy Optimization with Global Advantage Normalization
Reinforcement Learning from Human Feedback~(RLHF) plays a crucial role in aligning Large Language Models~(LLMs). The dominant algorithm, Proximal Policy Optimization~(PPO), employs a critic network to estimate advantages, which introduces significant computational and memory overhead. To address this, a family of critic-free algorithms (e.g., GRPO, RLOO) has emerged. However, these methods typically rely on \textit{prompt-level (local)} advantage normalization, which suffers from inaccurate advantage estimation, a tendency to overfit, and, as we show, is a theoretically biased estimator. To solve these challenges, we introduce REINFORCE++, a critic-free framework centered on \textbf{Global Advantage Normalization}. By normalizing advantages across the entire global batch rather than small, prompt-specific groups, our method provides a more stable and theoretically sound, \textit{effectively unbiased} estimate (whose bias vanishes as batch size increases). We introduce two variants: REINFORCE++, a highly efficient and general algorithm ($k \ge 1$) for general-domain RLHF, and REINFORCE++ /w baseline, a robust group-sampling variant ($k > 1$) for complex reasoning tasks. Our empirical evaluation demonstrates that each variant shows superior stability and performance in its respective domain, outperforming existing methods and even PPO in complex agentic settings.
comment: refactor
♻ ☆ Robust Hallucination Detection in LLMs via Adaptive Token Selection NeurIPS 2025
Hallucinations in large language models (LLMs) pose significant safety concerns that impede their broader deployment. Recent research in hallucination detection has demonstrated that LLMs' internal representations contain truthfulness hints, which can be harnessed for detector training. However, the performance of these detectors is heavily dependent on the internal representations of predetermined tokens, fluctuating considerably when working on free-form generations with varying lengths and sparse distributions of hallucinated entities. To address this, we propose HaMI, a novel approach that enables robust detection of hallucinations through adaptive selection and learning of critical tokens that are most indicative of hallucinations. We achieve this robustness by an innovative formulation of the Hallucination detection task as Multiple Instance (HaMI) learning over token-level representations within a sequence, thereby facilitating a joint optimisation of token selection and hallucination detection on generation sequences of diverse forms. Comprehensive experimental results on four hallucination benchmarks show that HaMI significantly outperforms existing state-of-the-art approaches.
comment: Accepted by NeurIPS 2025
♻ ☆ Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.
comment: Issues, comments, and questions are all welcome in https://github.com/Agent4Science-UTokyo/Jr.AI-Scientist
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ How do Machine Learning Models Change?
The proliferation of Machine Learning (ML) models and their open-source implementations has transformed Artificial Intelligence research and applications. Platforms like Hugging Face (HF) enable this evolving ecosystem, yet a large-scale longitudinal study of how these models change is lacking. This study addresses this gap by analyzing over 680,000 commits from 100,000 models and 2,251 releases from 202 of these models on HF using repository mining and longitudinal methods. We apply an extended ML change taxonomy to classify commits and use Bayesian networks to model temporal patterns in commit and release activities. Our findings show that commit activities align with established data science methodologies, such as the Cross-Industry Standard Process for Data Mining (CRISP-DM), emphasizing iterative refinement. Release patterns tend to consolidate significant updates, particularly in model outputs, sharing, and documentation, distinguishing them from granular commits. Furthermore, projects with higher popularity exhibit distinct evolutionary paths, often starting from a more mature baseline with fewer foundational commits in their public history. In contrast, those with intensive collaboration show unique documentation and technical evolution patterns. These insights enhance the understanding of model changes on community platforms and provide valuable guidance for best practices in model maintenance.
comment: This paper has been accepted for publication in ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ Privacy-Preserving Personalization in Education: A Federated Recommender System for Student Performance Prediction
The increasing digitalization of education presents unprecedented opportunities for data-driven personalization, but it also introduces significant challenges to student data privacy. Conventional recommender systems rely on centralized data, a paradigm often incompatible with modern data protection regulations. A novel privacy-preserving recommender system is proposed and evaluated to address this critical issue using Federated Learning (FL). The approach utilizes a Deep Neural Network (DNN) with rich, engineered features from the large-scale ASSISTments educational dataset. A rigorous comparative analysis of federated aggregation strategies was conducted, identifying FedProx as a significantly more stable and effective method for handling heterogeneous student data than the standard FedAvg baseline. The optimized federated model achieves a high-performance F1-Score of 76.28%, corresponding to 92% of the performance of a powerful, centralized XGBoost model. These findings validate that a federated approach can provide highly effective content recommendations without centralizing sensitive student data. Consequently, our work presents a viable and robust solution to the personalization-privacy dilemma in modern educational platforms.
♻ ☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes, making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained Markov decision process. Our proposed algorithm obtains an $\tilde{\mathcal{O}}\left(1/T^{1/3}\right)$ convergence rate in the sample-based robust constrained Markov decision process setting. The paper also contributes an algorithm for approximate gradient descent in the space of transition kernels, which is of independent interest for designing adversarial environments in general Markov decision processes. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
♻ ☆ DPCformer: An Interpretable Deep Learning Model for Genomic Prediction in Crops
Genomic Selection (GS) uses whole-genome information to predict crop phenotypes and accelerate breeding. Traditional GS methods, however, struggle with prediction accuracy for complex traits and large datasets. We propose DPCformer, a deep learning model integrating convolutional neural networks with a self-attention mechanism to model complex genotype-phenotype relationships. We applied DPCformer to 13 traits across five crops (maize, cotton, tomato, rice, chickpea). Our approach uses an 8-dimensional one-hot encoding for SNP data, ordered by chromosome, and employs the PMF algorithm for feature selection. Evaluations show DPCformer outperforms existing methods. In maize datasets, accuracy for traits like days to tasseling and plant height improved by up to 2.92%. For cotton, accuracy gains for fiber traits reached 8.37%. On small-sample tomato data, the Pearson Correlation Coefficient for a key trait increased by up to 57.35%. In chickpea, the yield correlation was boosted by 16.62%. DPCformer demonstrates superior accuracy, robustness in small-sample scenarios, and enhanced interpretability, providing a powerful tool for precision breeding and addressing global food security challenges.
comment: This work has been accepted by BIBM 2025
♻ ☆ Tight Bounds for Schrödinger Potential Estimation in Unpaired Data Translation
Modern methods of generative modelling and unpaired data translation based on Schr\"odinger bridges and stochastic optimal control theory aim to transform an initial density to a target one in an optimal way. In the present paper, we assume that we only have access to i.i.d. samples from initial and final distributions. This makes our setup suitable for both generative modelling and unpaired data translation. Relying on the stochastic optimal control approach, we choose an Ornstein-Uhlenbeck process as the reference one and estimate the corresponding Schr\"odinger potential. Introducing a risk function as the Kullback-Leibler divergence between couplings, we derive tight bounds on generalization ability of an empirical risk minimizer in a class of Schr\"odinger potentials including Gaussian mixtures. Thanks to the mixing properties of the Ornstein-Uhlenbeck process, we almost achieve fast rates of convergence up to some logarithmic factors in favourable scenarios. We also illustrate performance of the suggested approach with numerical experiments.
comment: 54 pages, 4 figures
♻ ☆ CodeEvolve: An open source evolutionary coding agent for algorithm discovery and optimization
In this work, we introduce CodeEvolve, an open-source evolutionary coding agent that unites Large Language Models (LLMs) with genetic algorithms to solve complex computational problems. Our framework adapts powerful evolutionary concepts to the LLM domain, building upon recent methods for generalized scientific discovery. CodeEvolve employs an island-based genetic algorithm to maintain population diversity and increase throughput, introduces a novel inspiration-based crossover mechanism that leverages the LLMs context window to combine features from successful solutions, and implements meta-prompting strategies for dynamic exploration of the solution space. We conduct a rigorous evaluation of CodeEvolve on a subset of the mathematical benchmarks used to evaluate Google DeepMind's closed-source AlphaEvolve. Our findings show that our method surpasses AlphaEvolve's performance on several challenging problems. To foster collaboration and accelerate progress, we release our complete framework as an open-source repository.
comment: 11 pages, 9 figures, 2 tables
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Data-assimilated model-informed reinforcement learning
The control of spatio-temporally chaos is challenging because of high dimensionality and unpredictability. Model-free reinforcement learning (RL) discovers optimal control policies by interacting with the system, typically requiring observations of the full physical state. In practice, sensors often provide only partial and noisy measurements (observations) of the system. The objective of this paper is to develop a framework that enables the control of chaotic systems with partial and noisy observability. The proposed method, data-assimilated model-informed reinforcement learning (DA-MIRL), integrates (i) low-order models to approximate high-dimensional dynamics; (ii) sequential data assimilation to correct the model prediction when observations become available; and (iii) an off-policy actor-critic RL algorithm to adaptively learn an optimal control strategy based on the corrected state estimates. We test DA-MIRL on the spatiotemporally chaotic solutions of the Kuramoto-Sivashinsky equation. We estimate the full state of the environment with (i) a physics-based model, here, a coarse-grained model; and (ii) a data-driven model, here, the control-aware echo state network, which is proposed in this paper. We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models. This work opens opportunities for the control of partially observable chaotic systems.
♻ ☆ Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Extreme precipitation nowcasting demands high spatiotemporal fidelity and extended lead times, yet existing approaches remain limited. Numerical Weather Prediction (NWP) and its deep-learning emulations are too slow and coarse for rapidly evolving convection, while extrapolation and purely data-driven models suffer from error accumulation and excessive smoothing. Hybrid 2D radar-based methods discard crucial vertical information, preventing accurate reconstruction of height-dependent dynamics. We introduce a gray-box, fully three-dimensional nowcasting framework that directly processes volumetric radar reflectivity and couples physically constrained neural operators with datadriven learning. The model learns vertically varying 3D advection fields under a conservative advection operator, parameterizes spatially varying diffusion, and introduces a Brownian-motion--inspired stochastic term to represent unresolved motions. A residual branch captures small-scale convective initiation and microphysical variability, while a diffusion-based stochastic module estimates uncertainty. The framework achieves more accurate forecasts up to three-hour lead time across precipitation regimes and ranked first in 57\% of cases in a blind evaluation by 160 meteorologists. By restoring full 3D dynamics with physical consistency, it offers a scalable and robust pathway for skillful and reliable nowcasting of extreme precipitation.
♻ ☆ Disturbance-based Discretization, Differentiable IDS Channel, and an IDS-Correcting Code for DNA-based Storage
With recent advancements in next-generation data storage, especially in biological molecule-based storage, insertion, deletion, and substitution (IDS) error-correcting codes have garnered increased attention. However, a universal method for designing tailored IDS-correcting codes across varying channel settings remains underexplored. We present an autoencoder-based approach, THEA-code, aimed at efficiently generating IDS-correcting codes for complex IDS channels. In the work, a disturbance-based discretization is proposed to discretize the features of the autoencoder, and a simulated differentiable IDS channel is developed as a differentiable alternative for IDS operations. These innovations facilitate the successful convergence of the autoencoder, producing channel-customized IDS-correcting codes that demonstrate commendable performance across complex IDS channels, particularly in realistic DNA-based storage channels.
♻ ☆ Variational Diffusion Unlearning: A Variational Inference Framework for Unlearning in Diffusion Models under Data Constraints
For a responsible and safe deployment of diffusion models in various domains, regulating the generated outputs from these models is desirable because such models could generate undesired, violent, and obscene outputs. To tackle this problem, recent works use machine unlearning methodology to forget training data points containing these undesired features from pre-trained generative models. However, these methods proved to be ineffective in data-constrained settings where the whole training dataset is inaccessible. Thus, the principal objective of this work is to propose a machine unlearning methodology that can prevent the generation of outputs containing undesired features from a pre-trained diffusion model in such a data-constrained setting. Our proposed method, termed as Variational Diffusion Unlearning (VDU), is a computationally efficient method that only requires access to a subset of training data containing undesired features. Our approach is inspired by the variational inference framework with the objective of minimizing a loss function consisting of two terms: plasticity inducer and stability regularizer. Plasticity inducer reduces the log-likelihood of the undesired training data points, while the stability regularizer, essential for preventing loss of image generation quality, regularizes the model in parameter space. We validate the effectiveness of our method through comprehensive experiments for both class unlearning and feature unlearning. For class unlearning, we unlearn some user-identified classes from MNIST, CIFAR-10, and tinyImageNet datasets from a pre-trained unconditional denoising diffusion probabilistic model (DDPM). Similarly, for feature unlearning, we unlearn the generation of certain high-level features from a pre-trained Stable Diffusion model
♻ ☆ Disciplined Biconvex Programming
We introduce disciplined biconvex programming (DBCP), a modeling framework for specifying and solving biconvex optimization problems. Biconvex optimization problems arise in various applications, including machine learning, signal processing, computational science, and control. Solving a biconvex optimization problem in practice usually resolves to heuristic methods based on alternate convex search (ACS), which iteratively optimizes over one block of variables while keeping the other fixed, so that the resulting subproblems are convex and can be efficiently solved. However, designing and implementing an ACS solver for a specific biconvex optimization problem usually requires significant effort from the user, which can be tedious and error-prone. DBCP extends the principles of disciplined convex programming to biconvex problems, allowing users to specify biconvex optimization problems in a natural way based on a small number of syntax rules. The resulting problem can then be automatically split and transformed into convex subproblems, for which a customized ACS solver is then generated and applied. DBCP allows users to quickly experiment with different biconvex problem formulations, without expertise in convex optimization. We implement DBCP into the open source Python package dbcp, as an extension to the famous domain specific language CVXPY for convex optimization.
♻ ☆ TimeMosaic: Temporal Heterogeneity Guided Time Series Forecasting via Adaptive Granularity Patch and Segment-wise Decoding AAAI
Multivariate time series forecasting is essential in domains such as finance, transportation, climate, and energy. However, existing patch-based methods typically adopt fixed-length segmentation, overlooking the heterogeneity of local temporal dynamics and the decoding heterogeneity of forecasting. Such designs lose details in information-dense regions, introduce redundancy in stable segments, and fail to capture the distinct complexities of short-term and long-term horizons. We propose TimeMosaic, a forecasting framework that aims to address temporal heterogeneity. TimeMosaic employs adaptive patch embedding to dynamically adjust granularity according to local information density, balancing motif reuse with structural clarity while preserving temporal continuity. In addition, it introduces segment-wise decoding that treats each prediction horizon as a related subtask and adapts to horizon-specific difficulty and information requirements, rather than applying a single uniform decoder. Extensive evaluations on benchmark datasets demonstrate that TimeMosaic delivers consistent improvements over existing methods, and our model trained on the large-scale corpus with 321 billion observations achieves performance competitive with state-of-the-art TSFMs.
comment: This paper has been accepted by AAAI
♻ ☆ Environment-Aware Indoor LoRaWAN Ranging Using Path Loss Model Inversion and Adaptive RSSI Filtering
Achieving sub-10 m indoor ranging with LoRaWAN is difficult because multipath, human blockage, and micro-climate dynamics induce non-stationary attenuation in received signal strength indicator (RSSI) measurements. We present a lightweight, interpretable pipeline that couples an environment-aware multi-wall path loss model with a forward-only, innovation-driven Kalman prefilter for RSSI. The model augments distance and wall terms with frequency, signal-to-noise ratio (SNR), and co-located environmental covariates (temperature, relative humidity, carbon dioxide, particulate matter, and barometric pressure), and is inverted deterministically for distance estimation. On a one-year single-gateway office dataset comprising over 2 million uplinks, the approach attains a mean absolute error (MAE) of 4.74 m and a root mean square error (RMSE) of 6.76 m in distance estimation, improving over a COST-231 multi-wall baseline (12.07 m MAE) and its environment-augmented variant (7.76 m MAE. Filtering reduces RSSI volatility from 10.33 to 5.43 dB and halves path loss error to 5.35 dB while raising R-squared from 0.82 to 0.89. The result is a single-anchor LoRaWAN ranging method with constant per-packet cost that is accurate, robust, and interpretable, providing a strong building block for multi-gateway localization.
♻ ☆ Employing Sentence Space Embedding for Classification of Data Stream from Fake News Domain
Tabular data is considered the last unconquered castle of deep learning, yet the task of data stream classification is stated to be an equally important and demanding research area. Due to the temporal constraints, it is assumed that deep learning methods are not the optimal solution for application in this field. However, excluding the entire -- and prevalent -- group of methods seems rather rash given the progress that has been made in recent years in its development. For this reason, the following paper is the first to present an approach to natural language data stream classification using the sentence space method, which allows for encoding text into the form of a discrete digital signal. This allows the use of convolutional deep networks dedicated to image classification to solve the task of recognizing fake news based on text data. Based on the real-life Fakeddit dataset, the proposed approach was compared with state-of-the-art algorithms for data stream classification based on generalization ability and time complexity.
comment: 16 pages, 7 figures
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding has become a standard way to accelerate LLM inference: a small drafter proposes multiple tokens and a large target model verifies them once per speculation length. Recently, scaling of the LLM vocabulary has pushed the number of tokens to grow substantially. While verification over the full vocabulary leaves the target model largely unaffected, the O(|V|d) parameters in the drafter's output head become a latency bottleneck, slowing the entire pipeline. Contemporary methods (e.g., FR-Spec, VocabTrim) restrict the drafter's vocabulary to a fixed top frequent subset of the target model's vocabulary. Although this reduces draft-time compute, it is brittle, since: (i) frequency lists are corpus-dependent and require retuning to generalize, and (ii) static shortlists suppress rare or domain-specific tokens, lowering the expected number of tokens per verification step. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism that is robust, speeds up drafting, and generalizes across diverse tasks. Concretely, we introduce lightweight, coarse-grained meta-classifiers that route contexts to a small number of token clusters; the union of the top-k selected clusters forms the drafter's shortlist, while verification retains the full vocabulary and exactness. The meta-classifier finishes its computation earlier than the drafter's hidden state generation by exploiting parallel execution of draft encoding and meta shortlisting on separate streams. Across standard speculative decoding benchmarks, DynaSpec delivers consistent improvements in mean accepted length, for Llama-3-8B, reaching upto 98.2% of full-vocabulary performance, while fixed-shortlist baselines attain only 84.4%. By leveraging context-dependent selection, DynaSpec achieves up to a 2.18 times increase in generated tokens compared to 1.91 times for fixed-vocabulary approaches.
♻ ☆ Dissecting Long-Chain-of-Thought Reasoning Models: An Empirical Study
Despite recent progress in training long-chain-of-thought reasoning models via scaling reinforcement learning (RL), its underlying training dynamics remain poorly understood, and several counterintuitive behaviors persist. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in scaling RL, revealing that positive samples mainly facilitate precise fitting to the training data, whereas negative samples significantly enhance generalization and robustness. Interestingly, while positive samples are essential for convergence in the zero-RL setting, training on negative samples alone suffices to attain strong reasoning performance and even better generalization in cold-start scenarios. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two strategies, including relative length rewards and offline sample injection, to leverage these data better and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that greedy decoding can distort evaluation by flipping the correctness of responses. Our code is available at: https://github.com/takagi97/Dissect-Long-Reason-Models.
comment: Working in process
♻ ☆ Model Inversion Attacks Meet Cryptographic Fuzzy Extractors
Model inversion attacks pose an open challenge to privacy-sensitive applications that use machine learning (ML) models. For example, face authentication systems use modern ML models to compute embedding vectors from face images of the enrolled users and store them. If leaked, inversion attacks can accurately reconstruct user faces from the leaked vectors. There is no systematic characterization of properties needed in an ideal defense against model inversion, even for the canonical example application of a face authentication system susceptible to data breaches, despite a decade of best-effort solutions. In this paper, we formalize the desired properties of a provably strong defense against model inversion and connect it, for the first time, to the cryptographic concept of fuzzy extractors. We further show that existing fuzzy extractors are insecure for use in ML-based face authentication. We do so through a new model inversion attack called PIPE, which achieves a success rate of over 89% in most cases against prior schemes. We then propose L2FE-Hash, the first candidate fuzzy extractor which supports standard Euclidean distance comparators as needed in many ML-based applications, including face authentication. We formally characterize its computational security guarantees, even in the extreme threat model of full breach of stored secrets, and empirically show its usable accuracy in face authentication for practical face distributions. It offers attack-agnostic security without requiring any re-training of the ML model it protects. Empirically, it nullifies both prior state-of-the-art inversion attacks as well as our new PIPE attack.
♻ ☆ Rectifying Regression in Reinforcement Learning
This paper investigates the impact of the loss function in value-based methods for reinforcement learning through an analysis of underlying prediction objectives. We theoretically show that mean absolute error is a better prediction objective than the traditional mean squared error for controlling the learned policy's suboptimality gap. Furthermore, we present results that different loss functions are better aligned with these different regression objectives: binary and categorical cross-entropy losses with the mean absolute error and squared loss with the mean squared error. We then provide empirical evidence that algorithms minimizing these cross-entropy losses can outperform those based on the squared loss in linear reinforcement learning.
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting, but this progress is still met with skepticism about whether LLMs are truly useful for this task. To address this, we propose Time-Prompt, a framework for activating LLMs for time series forecasting. Specifically, we first construct a unified prompt paradigm with learnable soft prompts to guide the LLM's behavior and textualized hard prompts to enhance the time series representations. Second, to enhance LLM' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve fusion of temporal and textual data. Finally, we efficiently fine-tune the LLM's parameters using time series data. Furthermore, we focus on carbon emissions, aiming to provide a modest contribution to global carbon neutrality. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that Time-Prompt is a powerful framework for time series forecasting.
♻ ☆ Bayesian Network Structural Consensus via Greedy Min-Cut Analysis AAAI-26
This paper presents the Min-Cut Bayesian Network Consensus (MCBNC) algorithm, a greedy method for structural consensus of Bayesian Networks (BNs), with applications in federated learning and model aggregation. MCBNC prunes weak edges from an initial unrestricted fusion using a structural score based on min-cut analysis, integrated into a modified Backward Equivalence Search (BES) phase of the Greedy Equivalence Search (GES) algorithm. The score quantifies edge support across input networks and is computed using max-flow. Unlike methods with fixed treewidth bounds, MCBNC introduces a pruning threshold $\theta$ that can be selected post hoc using only structural information. Experiments on real-world BNs show that MCBNC yields sparser, more accurate consensus structures than both canonical fusion and the input networks. The method is scalable, data-agnostic, and well-suited for distributed or federated scenarios.
comment: Camera-ready version accepted at AAAI-26. The official proceedings version will appear in the Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ Stacking Variational Bayesian Monte Carlo
Approximate Bayesian inference for models with computationally expensive, black-box likelihoods poses a significant challenge, especially when the posterior distribution is complex. Many inference methods struggle to explore the parameter space efficiently under a limited budget of likelihood evaluations. Variational Bayesian Monte Carlo (VBMC) is a sample-efficient method that addresses this by building a local surrogate model of the log-posterior. However, its conservative exploration strategy, while promoting stability, can cause it to miss important regions of the posterior, such as distinct modes or long tails. In this work, we introduce Stacking Variational Bayesian Monte Carlo (S-VBMC), a method that overcomes this limitation by constructing a robust, global posterior approximation from multiple independent VBMC runs. Our approach merges these local approximations through a principled and inexpensive post-processing step that leverages VBMC's mixture posterior representation and per-component evidence estimates. Crucially, S-VBMC requires no additional likelihood evaluations and is naturally parallelisable, fitting seamlessly into existing inference workflows. We demonstrate its effectiveness on two synthetic problems designed to challenge VBMC's exploration and two real-world applications from computational neuroscience, showing substantial improvements in posterior approximation quality across all cases. Our code is available as a Python package at https://github.com/acerbilab/svbmc.
comment: Published in Transactions on Machine Learning Research (November 2025), https://openreview.net/forum?id=M2ilYAJdPe. 38 pages, 13 figures
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs NeurIPS 2025
Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
comment: Accepted to NeurIPS 2025 (Thirty-ninth Conference on Neural Information Processing Systems)
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on algorithms that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are, in any case, too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their input activations, to obtain sparse models that maximize the activations' alignment with respect to their corresponding dense models. Hence, we propose \textbf{NeuroAl}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Different from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over $\sim$300 test cases with four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Preference-Guided Reinforcement Learning for Efficient Exploration
In this paper, we investigate preference-based reinforcement learning (PbRL), which enables reinforcement learning (RL) agents to learn from human feedback. This is particularly valuable when defining a fine-grain reward function is not feasible. However, this approach is inefficient and impractical for promoting deep exploration in hard-exploration tasks with long horizons and sparse rewards. To tackle this issue, we introduce LOPE: \textbf{L}earning \textbf{O}nline with trajectory \textbf{P}reference guidanc\textbf{E}, an end-to-end preference-guided RL framework that enhances exploration efficiency in hard-exploration tasks. Our intuition is that LOPE directly adjusts the focus of online exploration by considering human feedback as guidance, thereby avoiding the need to learn a separate reward model from preferences. Specifically, LOPE includes a two-step sequential policy optimization technique consisting of trust-region-based policy improvement and preference guidance steps. We reformulate preference guidance as a trajectory-wise state marginal matching problem that minimizes the maximum mean discrepancy distance between the preferred trajectories and the learned policy. Furthermore, we provide a theoretical analysis to characterize the performance improvement bound and evaluate the effectiveness of the LOPE. When assessed in various challenging hard-exploration environments, LOPE outperforms several state-of-the-art methods in terms of convergence rate and overall performance.The code used in this study is available at https://github.com/buaawgj/LOPE.
comment: 13 pages, 15 figures
♻ ☆ On the Relation between Rectified Flows and Optimal Transport NeurIPS 2025
This paper investigates the connections between rectified flows, flow matching, and optimal transport. Flow matching is a recent approach to learning generative models by estimating velocity fields that guide transformations from a source to a target distribution. Rectified flow matching aims to straighten the learned transport paths, yielding more direct flows between distributions. Our first contribution is a set of invariance properties of rectified flows and explicit velocity fields. In addition, we also provide explicit constructions and analysis in the Gaussian (not necessarily independent) and Gaussian mixture settings and study the relation to optimal transport. Our second contribution addresses recent claims suggesting that rectified flows, when constrained such that the learned velocity field is a gradient, can yield (asymptotically) solutions to optimal transport problems. We study the existence of solutions for this problem and demonstrate that they only relate to optimal transport under assumptions that are significantly stronger than those previously acknowledged. In particular, we present several counterexamples that invalidate earlier equivalence results in the literature, and we argue that enforcing a gradient constraint on rectified flows is, in general, not a reliable method for computing optimal transport maps.
comment: Accepted for NeurIPS 2025
♻ ☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning AAAI 2026
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and its high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods could fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition on reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global context comprehension, offering a principled, cognitively motivated paradigm towards retrieval-based stateful reasoning. Our framework is made publicly available at https://github.com/EternityJune25/ComoRAG.
comment: Accepted by AAAI 2026
♻ ☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
♻ ☆ The Evolving Nature of Latent Spaces: From GANs to Diffusion
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
♻ ☆ Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Accurately estimating treatment effects over time is crucial in fields such as precision medicine, epidemiology, economics, and marketing. Many current methods for estimating treatment effects over time assume that all confounders are observed or attempt to infer unobserved ones. In contrast, our approach focuses on unobserved adjustment variables, which specifically have a causal effect on the outcome sequence. Under the assumption of unconfoundedness, we address estimating Conditional Average Treatment Effects (CATEs) while accounting for unobserved heterogeneity in response to treatment due to these unobserved adjustment variables. Our proposed Causal Dynamic Variational Autoencoder (CDVAE) is grounded in theoretical guarantees concerning the validity of latent adjustment variables and generalization bounds on CATE estimation error. Extensive evaluations on synthetic and real-world datasets show that CDVAE outperforms existing baselines. Moreover, we demonstrate that state-of-the-art models significantly improve their CATE estimates when augmented with the latent substitutes learned by CDVAE, approaching oracle-level performance without direct access to the true adjustment variables.
comment: Published at TMLR
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for CNN interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, submitted to the Journal of the Acoustical Society of America (JASA)
Information Retrieval 42
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI2026
☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ CGLE: Class-label Graph Link Estimator for Link Prediction ICDM 2025
Link prediction is a pivotal task in graph mining with wide-ranging applications in social networks, recommendation systems, and knowledge graph completion. However, many leading Graph Neural Network (GNN) models often neglect the valuable semantic information aggregated at the class level. To address this limitation, this paper introduces CGLE (Class-label Graph Link Estimator), a novel framework designed to augment GNN-based link prediction models. CGLE operates by constructing a class-conditioned link probability matrix, where each entry represents the probability of a link forming between two node classes. This matrix is derived from either available ground-truth labels or from pseudo-labels obtained through clustering. The resulting class-based prior is then concatenated with the structural link embedding from a backbone GNN, and the combined representation is processed by a Multi-Layer Perceptron (MLP) for the final prediction. Crucially, CGLE's logic is encapsulated in an efficient preprocessing stage, leaving the computational complexity of the underlying GNN model unaffected. We validate our approach through extensive experiments on a broad suite of benchmark datasets, covering both homophilous and sparse heterophilous graphs. The results show that CGLE yields substantial performance gains over strong baselines such as NCN and NCNC, with improvements in HR@100 of over 10 percentage points on homophilous datasets like Pubmed and DBLP. On sparse heterophilous graphs, CGLE delivers an MRR improvement of over 4% on the Chameleon dataset. Our work underscores the efficacy of integrating global, data-driven semantic priors, presenting a compelling alternative to the pursuit of increasingly complex model architectures. Code to reproduce our findings is available at: https://github.com/data-iitd/cgle-icdm2025.
comment: Paper accepted at the IEEE International Conference on Data Mining (ICDM 2025)
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Accessibility Gaps in U.S. Government Dashboards for Blind and Low-Vision Residents
Public dashboards are now a common way for US government agencies to share high stakes information with residents. We audited six live systems at federal, state, and city levels: CDC respiratory illness, HUD homelessness PIT and HIC, California HCD Annual Progress Report, New York City Mayor's Management Report, Houston Permitting, and Chicago public health and budget dashboards. Using a rubric based on screen reader needs and WCAG, we checked five items: (1) discoverability of key metrics by assistive tech, (2) keyboard access without mouse hover, (3) clear semantic labels for axes, series, and categories, (4) short plain language status and trend notes, and (5) machine readable tables or CSVs that mirror what sighted users see. Findings are mixed. Many charts fail basic discoverability or depend on hover, which blocks keyboard and screen reader use. Plain language summaries are common in CDC and Chicago, but rare in HUD and Houston. Machine readable data is strong for NYC, California, and HUD; it is weaker or unclear for Houston. Several sites promise service for the public or for customers yet do not name accessibility in their descriptions. Across systems we also observe urgency inversion: faster, operational dashboards tend to provide fewer accessible affordances than slower accountability dashboards. These patterns matter for equal participation and for ADA Title II compliance that references WCAG 2.1 AA. We propose three steps for any public dashboard: add a brief status and trend text at the same update cadence, publish a matching table or CSV of the visual metrics, and state an explicit accessibility commitment.
comment: Preprint. Accessibility audit of six U.S. public dashboard ecosystems; 1 figure, 2 tables
☆ When Evidence Contradicts: Toward Safer Retrieval-Augmented Generation in Healthcare
In high-stakes information domains such as healthcare, where large language models (LLMs) can produce hallucinations or misinformation, retrieval-augmented generation (RAG) has been proposed as a mitigation strategy, grounding model outputs in external, domain-specific documents. Yet, this approach can introduce errors when source documents contain outdated or contradictory information. This work investigates the performance of five LLMs in generating RAG-based responses to medicine-related queries. Our contributions are three-fold: i) the creation of a benchmark dataset using consumer medicine information documents from the Australian Therapeutic Goods Administration (TGA), where headings are repurposed as natural language questions, ii) the retrieval of PubMed abstracts using TGA headings, stratified across multiple publication years, to enable controlled temporal evaluation of outdated evidence, and iii) a comparative analysis of the frequency and impact of outdated or contradictory content on model-generated responses, assessing how LLMs integrate and reconcile temporally inconsistent information. Our findings show that contradictions between highly similar abstracts do, in fact, degrade performance, leading to inconsistencies and reduced factual accuracy in model answers. These results highlight that retrieval similarity alone is insufficient for reliable medical RAG and underscore the need for contradiction-aware filtering strategies to ensure trustworthy responses in high-stakes domains.
☆ Can LLM Annotations Replace User Clicks for Learning to Rank?
Large-scale supervised data is essential for training modern ranking models, but obtaining high-quality human annotations is costly. Click data has been widely used as a low-cost alternative, and with recent advances in large language models (LLMs), LLM-based relevance annotation has emerged as another promising annotation. This paper investigates whether LLM annotations can replace click data for learning to rank (LTR) by conducting a comprehensive comparison across multiple dimensions. Experiments on both a public dataset, TianGong-ST, and an industrial dataset, Baidu-Click, show that click-supervised models perform better on high-frequency queries, while LLM annotation-supervised models are more effective on medium- and low-frequency queries. Further analysis shows that click-supervised models are better at capturing document-level signals such as authority or quality, while LLM annotation-supervised models are more effective at modeling semantic matching between queries and documents and at distinguishing relevant from non-relevant documents. Motivated by these observations, we explore two training strategies -- data scheduling and frequency-aware multi-objective learning -- that integrate both supervision signals. Both approaches enhance ranking performance across queries at all frequency levels, with the latter being more effective. Our code is available at https://github.com/Trustworthy-Information-Access/LLMAnn_Click.
comment: 12 pages, 7 figures
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
☆ TurkEmbed4Retrieval: Turkish Embedding Model for Retrieval Task
In this work, we introduce TurkEmbed4Retrieval, a retrieval specialized variant of the TurkEmbed model originally designed for Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. By fine-tuning the base model on the MS MARCO TR dataset using advanced training techniques, including Matryoshka representation learning and a tailored multiple negatives ranking loss, we achieve SOTA performance for Turkish retrieval tasks. Extensive experiments demonstrate that our model outperforms Turkish colBERT by 19,26% on key retrieval metrics for the Scifact TR dataset, thereby establishing a new benchmark for Turkish information retrieval.
comment: 4 pages, in Turkish language, 1 figure, conference
☆ Think Before You Retrieve: Learning Test-Time Adaptive Search with Small Language Models
Effective information retrieval requires reasoning over partial evidence and refining strategies as information emerges. Yet current approaches fall short: neural retrievers lack reasoning capabilities, large language models (LLMs) provide semantic depth but at prohibitive cost, and query rewriting or decomposition limits improvement to static transformations. As a result, existing methods fail to capture the iterative dynamics of exploration, feedback, and revision that complex user queries demand. We introduce Orion, a training framework that enables compact models (350M-1.2B parameters) to perform iterative retrieval through learned search strategies. Orion combines: (1) synthetic trajectory generation and supervised fine-tuning to encourage diverse exploration patterns in models, (2) reinforcement learning (RL) that rewards effective query refinement and backtracking behaviors, and (3) inference-time beam search algorithms that exploit the self-reflection capabilities learned during RL. Despite using only 3% of the training data available, our 1.2B model achieves 77.6% success on SciFact (vs. 72.6% for prior retrievers), 25.2% on BRIGHT (vs. 22.1%), 63.2% on NFCorpus (vs. 57.8%), and remains competitive on FEVER, HotpotQA, and MSMarco. It outperforms retrievers up to 200-400x larger on five of six benchmarks. These findings suggest that retrieval performance can emerge from learned strategies, not just model scale, when models are trained to search, reflect, and revise.
comment: 37 images, 7 figures, and 15 tables
☆ A Decentralized Retrieval Augmented Generation System with Source Reliabilities Secured on Blockchain
Existing retrieval-augmented generation (RAG) systems typically use a centralized architecture, causing a high cost of data collection, integration, and management, as well as privacy concerns. There is a great need for a decentralized RAG system that enables foundation models to utilize information directly from data owners who maintain full control over their sources. However, decentralization brings a challenge: the numerous independent data sources vary significantly in reliability, which can diminish retrieval accuracy and response quality. To address this, our decentralized RAG system has a novel reliability scoring mechanism that dynamically evaluates each source based on the quality of responses it contributes to generate and prioritizes high-quality sources during retrieval. To ensure transparency and trust, the scoring process is securely managed through blockchain-based smart contracts, creating verifiable and tamper-proof reliability records without relying on a central authority. We evaluate our decentralized system with two Llama models (3B and 8B) in two simulated environments where six data sources have different levels of reliability. Our system achieves a +10.7\% performance improvement over its centralized counterpart in the real world-like unreliable data environments. Notably, it approaches the upper-bound performance of centralized systems under ideally reliable data environments. The decentralized infrastructure enables secure and trustworthy scoring management, achieving approximately 56\% marginal cost savings through batched update operations. Our code and system are open-sourced at github.com/yining610/Reliable-dRAG.
☆ A Hybrid Multimodal Deep Learning Framework for Intelligent Fashion Recommendation
The rapid expansion of online fashion platforms has created an increasing demand for intelligent recommender systems capable of understanding both visual and textual cues. This paper proposes a hybrid multimodal deep learning framework for fashion recommendation that jointly addresses two key tasks: outfit compatibility prediction and complementary item retrieval. The model leverages the visual and textual encoders of the CLIP architecture to obtain joint latent representations of fashion items, which are then integrated into a unified feature vector and processed by a transformer encoder. For compatibility prediction, an "outfit token" is introduced to model the holistic relationships among items, achieving an AUC of 0.95 on the Polyvore dataset. For complementary item retrieval, a "target item token" representing the desired item description is used to retrieve compatible items, reaching an accuracy of 69.24% under the Fill-in-the-Blank (FITB) metric. The proposed approach demonstrates strong performance across both tasks, highlighting the effectiveness of multimodal learning for fashion recommendation.
comment: 8 pages, 1 figure
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ CGLE: Class-label Graph Link Estimator for Link Prediction ICDM 2025
Link prediction is a pivotal task in graph mining with wide-ranging applications in social networks, recommendation systems, and knowledge graph completion. However, many leading Graph Neural Network (GNN) models often neglect the valuable semantic information aggregated at the class level. To address this limitation, this paper introduces CGLE (Class-label Graph Link Estimator), a novel framework designed to augment GNN-based link prediction models. CGLE operates by constructing a class-conditioned link probability matrix, where each entry represents the probability of a link forming between two node classes. This matrix is derived from either available ground-truth labels or from pseudo-labels obtained through clustering. The resulting class-based prior is then concatenated with the structural link embedding from a backbone GNN, and the combined representation is processed by a Multi-Layer Perceptron (MLP) for the final prediction. Crucially, CGLE's logic is encapsulated in an efficient preprocessing stage, leaving the computational complexity of the underlying GNN model unaffected. We validate our approach through extensive experiments on a broad suite of benchmark datasets, covering both homophilous and sparse heterophilous graphs. The results show that CGLE yields substantial performance gains over strong baselines such as NCN and NCNC, with improvements in HR@100 of over 10 percentage points on homophilous datasets like Pubmed and DBLP. On sparse heterophilous graphs, CGLE delivers an MRR improvement of over 4% on the Chameleon dataset. Our work underscores the efficacy of integrating global, data-driven semantic priors, presenting a compelling alternative to the pursuit of increasingly complex model architectures. Code to reproduce our findings is available at: https://github.com/data-iitd/cgle-icdm2025.
comment: Paper accepted at the IEEE International Conference on Data Mining (ICDM 2025)
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Accessibility Gaps in U.S. Government Dashboards for Blind and Low-Vision Residents
Public dashboards are now a common way for US government agencies to share high stakes information with residents. We audited six live systems at federal, state, and city levels: CDC respiratory illness, HUD homelessness PIT and HIC, California HCD Annual Progress Report, New York City Mayor's Management Report, Houston Permitting, and Chicago public health and budget dashboards. Using a rubric based on screen reader needs and WCAG, we checked five items: (1) discoverability of key metrics by assistive tech, (2) keyboard access without mouse hover, (3) clear semantic labels for axes, series, and categories, (4) short plain language status and trend notes, and (5) machine readable tables or CSVs that mirror what sighted users see. Findings are mixed. Many charts fail basic discoverability or depend on hover, which blocks keyboard and screen reader use. Plain language summaries are common in CDC and Chicago, but rare in HUD and Houston. Machine readable data is strong for NYC, California, and HUD; it is weaker or unclear for Houston. Several sites promise service for the public or for customers yet do not name accessibility in their descriptions. Across systems we also observe urgency inversion: faster, operational dashboards tend to provide fewer accessible affordances than slower accountability dashboards. These patterns matter for equal participation and for ADA Title II compliance that references WCAG 2.1 AA. We propose three steps for any public dashboard: add a brief status and trend text at the same update cadence, publish a matching table or CSV of the visual metrics, and state an explicit accessibility commitment.
comment: Preprint. Accessibility audit of six U.S. public dashboard ecosystems; 1 figure, 2 tables
☆ When Evidence Contradicts: Toward Safer Retrieval-Augmented Generation in Healthcare
In high-stakes information domains such as healthcare, where large language models (LLMs) can produce hallucinations or misinformation, retrieval-augmented generation (RAG) has been proposed as a mitigation strategy, grounding model outputs in external, domain-specific documents. Yet, this approach can introduce errors when source documents contain outdated or contradictory information. This work investigates the performance of five LLMs in generating RAG-based responses to medicine-related queries. Our contributions are three-fold: i) the creation of a benchmark dataset using consumer medicine information documents from the Australian Therapeutic Goods Administration (TGA), where headings are repurposed as natural language questions, ii) the retrieval of PubMed abstracts using TGA headings, stratified across multiple publication years, to enable controlled temporal evaluation of outdated evidence, and iii) a comparative analysis of the frequency and impact of outdated or contradictory content on model-generated responses, assessing how LLMs integrate and reconcile temporally inconsistent information. Our findings show that contradictions between highly similar abstracts do, in fact, degrade performance, leading to inconsistencies and reduced factual accuracy in model answers. These results highlight that retrieval similarity alone is insufficient for reliable medical RAG and underscore the need for contradiction-aware filtering strategies to ensure trustworthy responses in high-stakes domains.
☆ Can LLM Annotations Replace User Clicks for Learning to Rank?
Large-scale supervised data is essential for training modern ranking models, but obtaining high-quality human annotations is costly. Click data has been widely used as a low-cost alternative, and with recent advances in large language models (LLMs), LLM-based relevance annotation has emerged as another promising annotation. This paper investigates whether LLM annotations can replace click data for learning to rank (LTR) by conducting a comprehensive comparison across multiple dimensions. Experiments on both a public dataset, TianGong-ST, and an industrial dataset, Baidu-Click, show that click-supervised models perform better on high-frequency queries, while LLM annotation-supervised models are more effective on medium- and low-frequency queries. Further analysis shows that click-supervised models are better at capturing document-level signals such as authority or quality, while LLM annotation-supervised models are more effective at modeling semantic matching between queries and documents and at distinguishing relevant from non-relevant documents. Motivated by these observations, we explore two training strategies -- data scheduling and frequency-aware multi-objective learning -- that integrate both supervision signals. Both approaches enhance ranking performance across queries at all frequency levels, with the latter being more effective. Our code is available at https://github.com/Trustworthy-Information-Access/LLMAnn_Click.
comment: 12 pages, 7 figures
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ Enhancing Multimodal Recommendations with Vision-Language Models and Information-Aware Fusion
Recent advances in multimodal recommendation (MMR) highlight the potential of integrating visual and textual content to enrich item representations. However, existing methods often rely on coarse visual features and naive fusion strategies, resulting in redundant or misaligned representations. From an information-theoretic perspective, effective fusion should balance unique, shared, and redundant modality information to preserve complementary cues. To this end, we propose VIRAL, a novel Vision-Language and Information-aware Recommendation framework that enhances multimodal fusion through two components: (i) a VLM-based visual enrichment module that generates fine-grained, title-guided descriptions for semantically aligned image representations, and (ii) an information-aware fusion module inspired by Partial Information Decomposition (PID) to disentangle and integrate complementary signals. Experiments on three Amazon datasets show that VIRAL consistently outperforms strong multimodal baselines and substantially improves the contribution of visual features.
♻ ☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: Accepted at EUSIPCO 2025 - 5 pages, 5 figures, 2 tables
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ Enhancing Multimodal Recommendations with Vision-Language Models and Information-Aware Fusion
Recent advances in multimodal recommendation (MMR) highlight the potential of integrating visual and textual content to enrich item representations. However, existing methods often rely on coarse visual features and naive fusion strategies, resulting in redundant or misaligned representations. From an information-theoretic perspective, effective fusion should balance unique, shared, and redundant modality information to preserve complementary cues. To this end, we propose VIRAL, a novel Vision-Language and Information-aware Recommendation framework that enhances multimodal fusion through two components: (i) a VLM-based visual enrichment module that generates fine-grained, title-guided descriptions for semantically aligned image representations, and (ii) an information-aware fusion module inspired by Partial Information Decomposition (PID) to disentangle and integrate complementary signals. Experiments on three Amazon datasets show that VIRAL consistently outperforms strong multimodal baselines and substantially improves the contribution of visual features.
♻ ☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
Computation and Language 35
☆ Rep2Text: Decoding Full Text from a Single LLM Token Representation
Large language models (LLMs) have achieved remarkable progress across diverse tasks, yet their internal mechanisms remain largely opaque. In this work, we address a fundamental question: to what extent can the original input text be recovered from a single last-token representation within an LLM? We propose Rep2Text, a novel framework for decoding full text from last-token representations. Rep2Text employs a trainable adapter that projects a target model's internal representations into the embedding space of a decoding language model, which then autoregressively reconstructs the input text. Experiments on various model combinations (Llama-3.1-8B, Gemma-7B, Mistral-7B-v0.1, Llama-3.2-3B) demonstrate that, on average, over half of the information in 16-token sequences can be recovered from this compressed representation while maintaining strong semantic integrity and coherence. Furthermore, our analysis reveals an information bottleneck effect: longer sequences exhibit decreased token-level recovery while preserving strong semantic integrity. Besides, our framework also demonstrates robust generalization to out-of-distribution medical data.
comment: 15 pages, 7 figures, 4 tables
☆ FPGA or GPU? Analyzing comparative research for application-specific guidance
The growing complexity of computational workloads has amplified the need for efficient and specialized hardware accelerators. Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) have emerged as prominent solutions, each excelling in specific domains. Although there is substantial research comparing FPGAs and GPUs, most of the work focuses primarily on performance metrics, offering limited insight into the specific types of applications that each accelerator benefits the most. This paper aims to bridge this gap by synthesizing insights from various research articles to guide users in selecting the appropriate accelerator for domain-specific applications. By categorizing the reviewed studies and analyzing key performance metrics, this work highlights the strengths, limitations, and ideal use cases for FPGAs and GPUs. The findings offer actionable recommendations, helping researchers and practitioners navigate trade-offs in performance, energy efficiency, and programmability.
comment: 7 pages
☆ Ibom NLP: A Step Toward Inclusive Natural Language Processing for Nigeria's Minority Languages AACL
Nigeria is the most populous country in Africa with a population of more than 200 million people. More than 500 languages are spoken in Nigeria and it is one of the most linguistically diverse countries in the world. Despite this, natural language processing (NLP) research has mostly focused on the following four languages: Hausa, Igbo, Nigerian-Pidgin, and Yoruba (i.e <1% of the languages spoken in Nigeria). This is in part due to the unavailability of textual data in these languages to train and apply NLP algorithms. In this work, we introduce ibom -- a dataset for machine translation and topic classification in four Coastal Nigerian languages from the Akwa Ibom State region: Anaang, Efik, Ibibio, and Oro. These languages are not represented in Google Translate or in major benchmarks such as Flores-200 or SIB-200. We focus on extending Flores-200 benchmark to these languages, and further align the translated texts with topic labels based on SIB-200 classification dataset. Our evaluation shows that current LLMs perform poorly on machine translation for these languages in both zero-and-few shot settings. However, we find the few-shot samples to steadily improve topic classification with more shots.
comment: Accepted at IJCNLP-AACL
☆ Better Datasets Start From RefineLab: Automatic Optimization for High-Quality Dataset Refinement
High-quality Question-Answer (QA) datasets are foundational for reliable Large Language Model (LLM) evaluation, yet even expert-crafted datasets exhibit persistent gaps in domain coverage, misaligned difficulty distributions, and factual inconsistencies. The recent surge in generative model-powered datasets has compounded these quality challenges. In this work, we introduce RefineLab, the first LLM-driven framework that automatically refines raw QA textual data into high-quality datasets under a controllable token-budget constraint. RefineLab takes a set of target quality attributes (such as coverage and difficulty balance) as refinement objectives, and performs selective edits within a predefined token budget to ensure practicality and efficiency. In essence, RefineLab addresses a constrained optimization problem: improving the quality of QA samples as much as possible while respecting resource limitations. With a set of available refinement operations (e.g., rephrasing, distractor replacement), RefineLab takes as input the original dataset, a specified set of target quality dimensions, and a token budget, and determines which refinement operations should be applied to each QA sample. This process is guided by an assignment module that selects optimal refinement strategies to maximize overall dataset quality while adhering to the budget constraint. Experiments demonstrate that RefineLab consistently narrows divergence from expert datasets across coverage, difficulty alignment, factual fidelity, and distractor quality. RefineLab pioneers a scalable, customizable path to reproducible dataset design, with broad implications for LLM evaluation.
☆ On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception
Artificial Neural Networks, the building blocks of AI, were inspired by the human brain's network of neurons. Over the years, these networks have evolved to replicate the complex capabilities of the brain, allowing them to handle tasks such as image and language processing. In the realm of Large Language Models, there has been a keen interest in making the language learning process more akin to that of humans. While neuroscientific research has shown that different grammatical categories are processed by different neurons in the brain, we show that LLMs operate in a similar way. Utilizing Llama 3, we identify the most important neurons associated with the prediction of words belonging to different part-of-speech tags. Using the achieved knowledge, we train a classifier on a dataset, which shows that the activation patterns of these key neurons can reliably predict part-of-speech tags on fresh data. The results suggest the presence of a subspace in LLMs focused on capturing part-of-speech tag concepts, resembling patterns observed in lesion studies of the brain in neuroscience.
☆ You Had One Job: Per-Task Quantization Using LLMs' Hidden Representations
Large Language Models (LLMs) excel across diverse tasks, yet many applications require only limited capabilities, making large variants inefficient in memory and latency. Existing approaches often combine distillation and quantization, but most post-training quantization (PTQ) methods are task-agnostic, ignoring how task-specific signals are distributed across layers. In this work, we propose to use hidden representations that encode task-salient signals as a guideline for quantization. In order to fully utilize our innovative idea, this paper compares two new task-aware PTQ methods: Task-Aware Quantization (TAQ), which allocates bitwidths using task-conditioned statistics from hidden activations, and TAQO, which allocates precision based on direct layer sensitivity tests. From a small calibration set, these approaches identify task-relevant layers, preserving their precision while aggressively quantizing the rest. This yields stable task sensitivity profiles and efficient task-specialized models. Across models, TAQ and TAQO outperform the baselines; TAQ leads on Phi-4, while TAQO leads on Llama-3.1, Qwen3, and Qwen2.5. For instances, on Phi-4 it achieves 42.33 EM / 50.81 F1, far surpassing Activation-aware Weight Quantization (AWQ) (2.25 / 7.07), while remaining within < 1.0% of the original accuracy at lower average precision.
☆ Rethinking what Matters: Effective and Robust Multilingual Realignment for Low-Resource Languages AACL 2025
Realignment is a promising strategy to improve cross-lingual transfer in multilingual language models. However, empirical results are mixed and often unreliable, particularly for typologically distant or low-resource languages (LRLs) compared to English. Moreover, word realignment tools often rely on high-quality parallel data, which can be scarce or noisy for many LRLs. In this work, we conduct an extensive empirical study to investigate whether realignment truly benefits from using all available languages, or if strategically selected subsets can offer comparable or even improved cross-lingual transfer, and study the impact on LRLs. Our controlled experiments show that realignment can be particularly effective for LRLs and that using carefully selected, linguistically diverse subsets can match full multilingual alignment, and even outperform it for unseen LRLs. This indicates that effective realignment does not require exhaustive language coverage and can reduce data collection overhead, while remaining both efficient and robust when guided by informed language selection.
comment: Accepted to IJCNLP-AACL 2025
☆ When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.
comment: Code is available at https://github.com/zheng977/MutiAgent4Fraud
☆ SR-KI: Scalable and Real-Time Knowledge Integration into LLMs via Supervised Attention AAAI 2026
This paper proposes SR-KI, a novel approach for integrating real-time and large-scale structured knowledge bases (KBs) into large language models (LLMs). SR-KI begins by encoding KBs into key-value pairs using a pretrained encoder, and injects them into LLMs' KV cache. Building on this representation, we employ a two-stage training paradigm: first locating a dedicated retrieval layer within the LLM, and then applying an attention-based loss at this layer to explicitly supervise attention toward relevant KB entries. Unlike traditional retrieval-augmented generation methods that rely heavily on the performance of external retrievers and multi-stage pipelines, SR-KI supports end-to-end inference by performing retrieval entirely within the models latent space. This design enables efficient compression of injected knowledge and facilitates dynamic knowledge updates. Comprehensive experiments demonstrate that SR-KI enables the integration of up to 40K KBs into a 7B LLM on a single A100 40GB GPU, and achieves strong retrieval performance, maintaining over 98% Recall@10 on the best-performing task and exceeding 88% on average across all tasks. Task performance on question answering and KB ID generation also demonstrates that SR-KI maintains strong performance while achieving up to 99.75% compression of the injected KBs.
comment: Accepted by AAAI 2026
☆ Towards Resource-Efficient Multimodal Intelligence: Learned Routing among Specialized Expert Models
As AI moves beyond text, large language models (LLMs) increasingly power vision, audio, and document understanding; however, their high inference costs hinder real-time, scalable deployment. Conversely, smaller open-source models offer cost advantages but struggle with complex or multimodal queries. We introduce a unified, modular framework that intelligently routes each query - textual, multimodal, or complex - to the most fitting expert model, using a learned routing network that balances cost and quality. For vision tasks, we employ a two-stage open-source pipeline optimized for efficiency and reviving efficient classical vision components where they remain SOTA for sub-tasks. On benchmarks such as Massive Multitask Language Understanding (MMLU) and Visual Question Answering (VQA), we match or exceed the performance of always-premium LLM (monolithic systems with one model serving all query types) performance, yet reduce the reliance on costly models by over 67%. With its extensible, multi-agent orchestration, we deliver high-quality, resource-efficient AI at scale.
comment: 15 pages, 4 figures
☆ Optimizing Chain-of-Thought Confidence via Topological and Dirichlet Risk Analysis
Chain-of-thought (CoT) prompting enables Large Language Models to solve complex problems, but deploying these models safely requires reliable confidence estimates, a capability where existing methods suffer from poor calibration and severe overconfidence on incorrect predictions. We propose Enhanced Dirichlet and Topology Risk (EDTR), a novel decoding strategy that combines topological analysis with Dirichlet-based uncertainty quantification to measure LLM confidence across multiple reasoning paths. EDTR treats each CoT as a vector in high-dimensional space and extracts eight topological risk features capturing the geometric structure of reasoning distributions: tighter, more coherent clusters indicate higher confidence while dispersed, inconsistent paths signal uncertainty. We evaluate EDTR against three state-of-the-art calibration methods across four diverse reasoning benchmarks spanning olympiad-level mathematics (AIME), grade school math (GSM8K), commonsense reasoning, and stock price prediction \cite{zhang2025aime, cobbe2021training, talmor-etal-2019-commonsenseqa, yahoo_finance}. EDTR achieves 41\% better calibration than competing methods with an average ECE of 0.287 and the best overall composite score of 0.672, while notably achieving perfect accuracy on AIME and exceptional calibration on GSM8K with an ECE of 0.107, domains where baselines exhibit severe overconfidence. Our work provides a geometric framework for understanding and quantifying uncertainty in multi-step LLM reasoning, enabling more reliable deployment where calibrated confidence estimates are essential.
☆ CG-TTRL: Context-Guided Test-Time Reinforcement Learning for On-Device Large Language Models
Test-time Reinforcement Learning (TTRL) has shown promise in adapting foundation models for complex tasks at test-time, resulting in large performance improvements. TTRL leverages an elegant two-phase sampling strategy: first, multi-sampling derives a pseudo-label via majority voting, while subsequent downsampling and reward-based fine-tuning encourages the model to explore and learn diverse valid solutions, with the pseudo-label modulating the reward signal. Meanwhile, in-context learning has been widely explored at inference time and demonstrated the ability to enhance model performance without weight updates. However, TTRL's two-phase sampling strategy under-utilizes contextual guidance, which can potentially improve pseudo-label accuracy in the initial exploitation phase while regulating exploration in the second. To address this, we propose context-guided TTRL (CG-TTRL), integrating context dynamically into both sampling phases and propose a method for efficient context selection for on-device applications. Our evaluations on mathematical and scientific QA benchmarks show CG-TTRL outperforms TTRL (e.g. additional 7% relative accuracy improvement over TTRL), while boosting efficiency by obtaining strong performance after only a few steps of test-time training (e.g. 8% relative improvement rather than 1% over TTRL after 3 steps).
comment: 12 pages, 7 Figures, 4 Tables
☆ Dutch Metaphor Extraction from Cancer Patients' Interviews and Forum Data using LLMs and Human in the Loop
Metaphors and metaphorical language (MLs) play an important role in healthcare communication between clinicians, patients, and patients' family members. In this work, we focus on Dutch language data from cancer patients. We extract metaphors used by patients using two data sources: (1) cancer patient storytelling interview data and (2) online forum data, including patients' posts, comments, and questions to professionals. We investigate how current state-of-the-art large language models (LLMs) perform on this task by exploring different prompting strategies such as chain of thought reasoning, few-shot learning, and self-prompting. With a human-in-the-loop setup, we verify the extracted metaphors and compile the outputs into a corpus named HealthQuote.NL. We believe the extracted metaphors can support better patient care, for example shared decision making, improved communication between patients and clinicians, and enhanced patient health literacy. They can also inform the design of personalized care pathways. We share prompts and related resources at https://github.com/aaronlifenghan/HealthQuote.NL
comment: Ongoing project report, on behalf of 4D PICTURE https://4dpicture.eu/
☆ MONICA: Real-Time Monitoring and Calibration of Chain-of-Thought Sycophancy in Large Reasoning Models
Large Reasoning Models (LRMs) suffer from sycophantic behavior, where models tend to agree with users' incorrect beliefs and follow misinformation rather than maintain independent reasoning. This behavior undermines model reliability and poses societal risks. Mitigating LRM sycophancy requires monitoring how this sycophancy emerges during the reasoning trajectory; however, current methods mainly focus on judging based on final answers and correcting them, without understanding how sycophancy develops during reasoning processes. To address this limitation, we propose MONICA, a novel Monitor-guided Calibration framework that monitors and mitigates sycophancy during model inference at the level of reasoning steps, without requiring the model to finish generating its complete answer. MONICA integrates a sycophantic monitor that provides real-time monitoring of sycophantic drift scores during response generation with a calibrator that dynamically suppresses sycophantic behavior when scores exceed predefined thresholds. Extensive experiments across 12 datasets and 3 LRMs demonstrate that our method effectively reduces sycophantic behavior in both intermediate reasoning steps and final answers, yielding robust performance improvements.
☆ How Well Do LLMs Understand Drug Mechanisms? A Knowledge + Reasoning Evaluation Dataset
Two scientific fields showing increasing interest in pre-trained large language models (LLMs) are drug development / repurposing, and personalized medicine. For both, LLMs have to demonstrate factual knowledge as well as a deep understanding of drug mechanisms, so they can recall and reason about relevant knowledge in novel situations. Drug mechanisms of action are described as a series of interactions between biomedical entities, which interlink into one or more chains directed from the drug to the targeted disease. Composing the effects of the interactions in a candidate chain leads to an inference about whether the drug might be useful or not for that disease. We introduce a dataset that evaluates LLMs on both factual knowledge of known mechanisms, and their ability to reason about them under novel situations, presented as counterfactuals that the models are unlikely to have seen during training. Using this dataset, we show that o4-mini outperforms the 4o, o3, and o3-mini models from OpenAI, and the recent small Qwen3-4B-thinking model closely matches o4-mini's performance, even outperforming it in some cases. We demonstrate that the open world setting for reasoning tasks, which requires the model to recall relevant knowledge, is more challenging than the closed world setting where the needed factual knowledge is provided. We also show that counterfactuals affecting internal links in the reasoning chain present a much harder task than those affecting a link from the drug mentioned in the prompt.
comment: An earlier version of this paper appears in IEEE FLLM 2025. GitHub: https://github.com/czi-ai/DrugMechCounterfactuals
☆ SugarTextNet: A Transformer-Based Framework for Detecting Sugar Dating-Related Content on Social Media with Context-Aware Focal Loss
Sugar dating-related content has rapidly proliferated on mainstream social media platforms, giving rise to serious societal and regulatory concerns, including commercialization of intimate relationships and the normalization of transactional relationships.~Detecting such content is highly challenging due to the prevalence of subtle euphemisms, ambiguous linguistic cues, and extreme class imbalance in real-world data.~In this work, we present SugarTextNet, a novel transformer-based framework specifically designed to identify sugar dating-related posts on social media.~SugarTextNet integrates a pretrained transformer encoder, an attention-based cue extractor, and a contextual phrase encoder to capture both salient and nuanced features in user-generated text.~To address class imbalance and enhance minority-class detection, we introduce Context-Aware Focal Loss, a tailored loss function that combines focal loss scaling with contextual weighting.~We evaluate SugarTextNet on a newly curated, manually annotated dataset of 3,067 Chinese social media posts from Sina Weibo, demonstrating that our approach substantially outperforms traditional machine learning models, deep learning baselines, and large language models across multiple metrics.~Comprehensive ablation studies confirm the indispensable role of each component.~Our findings highlight the importance of domain-specific, context-aware modeling for sensitive content detection, and provide a robust solution for content moderation in complex, real-world scenarios.
comment: This paper is accepted by HICSS 2026
☆ HatePrototypes: Interpretable and Transferable Representations for Implicit and Explicit Hate Speech Detection
Optimization of offensive content moderation models for different types of hateful messages is typically achieved through continued pre-training or fine-tuning on new hate speech benchmarks. However, existing benchmarks mainly address explicit hate toward protected groups and often overlook implicit or indirect hate, such as demeaning comparisons, calls for exclusion or violence, and subtle discriminatory language that still causes harm. While explicit hate can often be captured through surface features, implicit hate requires deeper, full-model semantic processing. In this work, we question the need for repeated fine-tuning and analyze the role of HatePrototypes, class-level vector representations derived from language models optimized for hate speech detection and safety moderation. We find that these prototypes, built from as few as 50 examples per class, enable cross-task transfer between explicit and implicit hate, with interchangeable prototypes across benchmarks. Moreover, we show that parameter-free early exiting with prototypes is effective for both hate types. We release the code, prototype resources, and evaluation scripts to support future research on efficient and transferable hate speech detection.
☆ LPFQA: A Long-Tail Professional Forum-based Benchmark for LLM Evaluation
Large Language Models (LLMs) have made rapid progress in reasoning, question answering, and professional applications; however, their true capabilities remain difficult to evaluate using existing benchmarks. Current datasets often focus on simplified tasks or artificial scenarios, overlooking long-tail knowledge and the complexities of real-world applications. To bridge this gap, we propose LPFQA, a long-tail knowledge-based benchmark derived from authentic professional forums across 20 academic and industrial fields, covering 502 tasks grounded in practical expertise. LPFQA introduces four key innovations: fine-grained evaluation dimensions that target knowledge depth, reasoning, terminology comprehension, and contextual analysis; a hierarchical difficulty structure that ensures semantic clarity and unique answers; authentic professional scenario modeling with realistic user personas; and interdisciplinary knowledge integration across diverse domains. We evaluated 12 mainstream LLMs on LPFQA and observed significant performance disparities, especially in specialized reasoning tasks. LPFQA provides a robust, authentic, and discriminative benchmark for advancing LLM evaluation and guiding future model development.
☆ TimeSense:Making Large Language Models Proficient in Time-Series Analysis
In the time-series domain, an increasing number of works combine text with temporal data to leverage the reasoning capabilities of large language models (LLMs) for various downstream time-series understanding tasks. This enables a single model to flexibly perform tasks that previously required specialized models for each domain. However, these methods typically rely on text labels for supervision during training, biasing the model toward textual cues while potentially neglecting the full temporal features. Such a bias can lead to outputs that contradict the underlying time-series context. To address this issue, we construct the EvalTS benchmark, comprising 10 tasks across three difficulty levels, from fundamental temporal pattern recognition to complex real-world reasoning, to evaluate models under more challenging and realistic scenarios. We also propose TimeSense, a multimodal framework that makes LLMs proficient in time-series analysis by balancing textual reasoning with a preserved temporal sense. TimeSense incorporates a Temporal Sense module that reconstructs the input time-series within the model's context, ensuring that textual reasoning is grounded in the time-series dynamics. Moreover, to enhance spatial understanding of time-series data, we explicitly incorporate coordinate-based positional embeddings, which provide each time point with spatial context and enable the model to capture structural dependencies more effectively. Experimental results demonstrate that TimeSense achieves state-of-the-art performance across multiple tasks, and it particularly outperforms existing methods on complex multi-dimensional time-series reasoning tasks.
☆ ELEGANCE: Efficient LLM Guidance for Audio-Visual Target Speech Extraction
Audio-visual target speaker extraction (AV-TSE) models primarily rely on visual cues from the target speaker. However, humans also leverage linguistic knowledge, such as syntactic constraints, next word prediction, and prior knowledge of conversation, to extract target speech. Inspired by this observation, we propose ELEGANCE, a novel framework that incorporates linguistic knowledge from large language models (LLMs) into AV-TSE models through three distinct guidance strategies: output linguistic constraints, intermediate linguistic prediction, and input linguistic prior. Comprehensive experiments with RoBERTa, Qwen3-0.6B, and Qwen3-4B on two AV-TSE backbones demon- strate the effectiveness of our approach. Significant improvements are observed in challenging scenarios, including visual cue impaired, unseen languages, target speaker switches, increased interfering speakers, and out-of-domain test set. Demo page: https://alexwxwu.github.io/ELEGANCE/.
♻ ☆ Meronymic Ontology Extraction via Large Language Models AACL 2025
Ontologies have become essential in today's digital age as a way of organising the vast amount of readily available unstructured text. In providing formal structure to this information, ontologies have immense value and application across various domains, e.g., e-commerce, where countless product listings necessitate proper product organisation. However, the manual construction of these ontologies is a time-consuming, expensive and laborious process. In this paper, we harness the recent advancements in large language models (LLMs) to develop a fully-automated method of extracting product ontologies, in the form of meronymies, from raw review texts. We demonstrate that the ontologies produced by our method surpass an existing, BERT-based baseline when evaluating using an LLM-as-a-judge. Our investigation provides the groundwork for LLMs to be used more generally in (product or otherwise) ontology extraction.
comment: Accepted to AACL 2025
♻ ☆ Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning
Fine-tuning large language models (LLMs) can lead to unintended out-of-distribution generalization. Standard approaches to this problem rely on modifying training data, for example by adding data that better specify the intended generalization. However, this is not always practical. We introduce Concept Ablation Fine-Tuning (CAFT), a technique that leverages interpretability tools to control how LLMs generalize from fine-tuning, without needing to modify the training data or otherwise use data from the target distribution. Given a set of directions in an LLM's latent space corresponding to undesired concepts, CAFT works by ablating these concepts with linear projections during fine-tuning, steering the model away from unintended generalizations. We successfully apply CAFT to three fine-tuning tasks, including emergent misalignment, a phenomenon where LLMs fine-tuned on a narrow task generalize to give egregiously misaligned responses to general questions. Without any changes to the fine-tuning data, CAFT reduces misaligned responses by 10x without degrading performance on the training distribution. Overall, CAFT represents a novel approach for steering LLM generalization without modifying training data.
♻ ☆ EMBRACE: Shaping Inclusive Opinion Representation by Aligning Implicit Conversations with Social Norms AACL 2025
Shaping inclusive representations that embrace diversity and ensure fair participation and reflections of values is at the core of many conversation-based models. However, many existing methods rely on surface inclusion using mention of user demographics or behavioral attributes of social groups. Such methods overlook the nuanced, implicit expression of opinion embedded in conversations. Furthermore, the over-reliance on overt cues can exacerbate misalignment and reinforce harmful or stereotypical representations in model outputs. Thus, we took a step back and recognized that equitable inclusion needs to account for the implicit expression of opinion and use the stance of responses to validate the normative alignment. This study aims to evaluate how opinions are represented in NLP or computational models by introducing an alignment evaluation framework that foregrounds implicit, often overlooked conversations and evaluates the normative social views and discourse. Our approach models the stance of responses as a proxy for the underlying opinion, enabling a considerate and reflective representation of diverse social viewpoints. We evaluate the framework using both (i) positive-unlabeled (PU) online learning with base classifiers, and (ii) instruction-tuned language models to assess post-training alignment. Through this, we provide a principled and structured lens on how implicit opinions are (mis)represented and offer a pathway toward more inclusive model behavior.
comment: Accepted, to appear IJCNLP-AACL 2025 Findings
♻ ☆ OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics
Robust unlearning is crucial for safely deploying large language models (LLMs) in environments where data privacy, model safety, and regulatory compliance must be ensured. Yet the task is inherently challenging, partly due to difficulties in reliably measuring whether unlearning has truly occurred. Moreover, fragmentation in current methodologies and inconsistent evaluation metrics hinder comparative analysis and reproducibility. To unify and accelerate research efforts, we introduce OpenUnlearning, a standardized and extensible framework designed explicitly for benchmarking both LLM unlearning methods and metrics. OpenUnlearning integrates 13 unlearning algorithms and 16 diverse evaluations across 3 leading benchmarks (TOFU, MUSE, and WMDP) and also enables analyses of forgetting behaviors across 450+ checkpoints we publicly release. Leveraging OpenUnlearning, we propose a novel meta-evaluation benchmark focused specifically on assessing the faithfulness and robustness of evaluation metrics themselves. We also benchmark diverse unlearning methods and provide a comparative analysis against an extensive evaluation suite. Overall, we establish a clear, community-driven pathway toward rigorous development in LLM unlearning research.
♻ ☆ MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation EMNLP 2025
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST
comment: EMNLP 2025
♻ ☆ HaluMem: Evaluating Hallucinations in Memory Systems of Agents
Memory systems are key components that enable AI systems such as LLMs and AI agents to achieve long-term learning and sustained interaction. However, during memory storage and retrieval, these systems frequently exhibit memory hallucinations, including fabrication, errors, conflicts, and omissions. Existing evaluations of memory hallucinations are primarily end-to-end question answering, which makes it difficult to localize the operational stage within the memory system where hallucinations arise. To address this, we introduce the Hallucination in Memory Benchmark (HaluMem), the first operation level hallucination evaluation benchmark tailored to memory systems. HaluMem defines three evaluation tasks (memory extraction, memory updating, and memory question answering) to comprehensively reveal hallucination behaviors across different operational stages of interaction. To support evaluation, we construct user-centric, multi-turn human-AI interaction datasets, HaluMem-Medium and HaluMem-Long. Both include about 15k memory points and 3.5k multi-type questions. The average dialogue length per user reaches 1.5k and 2.6k turns, with context lengths exceeding 1M tokens, enabling evaluation of hallucinations across different context scales and task complexities. Empirical studies based on HaluMem show that existing memory systems tend to generate and accumulate hallucinations during the extraction and updating stages, which subsequently propagate errors to the question answering stage. Future research should focus on developing interpretable and constrained memory operation mechanisms that systematically suppress hallucinations and improve memory reliability.
♻ ☆ Quriosity: Analyzing Human Questioning Behavior and Causal Inquiry through Curiosity-Driven Queries AACL 2025
Recent progress in Large Language Model (LLM) technology has changed our role in interacting with these models. Instead of primarily testing these models with questions we already know answers to, we are now using them for queries where the answers are unknown to us, driven by human curiosity. This shift highlights the growing need to understand curiosity-driven human questions - those that are more complex, open-ended, and reflective of real-world needs. To this end, we present Quriosity, a collection of 13.5K naturally occurring questions from three diverse sources: human-to-search-engine queries, human-to-human interactions, and human-to-LLM conversations. Our comprehensive collection enables a rich understanding of human curiosity across various domains and contexts. Our analysis reveals a significant presence of causal questions (up to 42%) in the dataset, for which we develop an iterative prompt improvement framework to identify all causal queries and examine their unique linguistic properties, cognitive complexity and source distribution. Our paper paves the way for future work on causal question identification and open-ended chatbot interactions. Our code and data are at https://github.com/roberto-ceraolo/quriosity.
comment: IJCNLP-AACL 2025 Findings
♻ ☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models UAI
Large language models (LLMs) do not preserve privacy at inference-time. The LLM's outputs can inadvertently reveal information about the model's context, which presents a privacy challenge when the LLM is augmented via tools or databases containing sensitive information. Existing privacy-preserving methods at inference-time have significant limitations since they (i) lack provable guarantees or (ii) have a poor utility/privacy trade-off. We propose DP-Fusion, a Differentially Private Inference (DPI) mechanism for LLMs that provably bounds the influence a set of tokens in the context can have on the LLM's output. DP-Fusion works as follows: (1) label a subset of sensitive tokens, (2) infer the LLM without any sensitive tokens to obtain a baseline, (3) infer the LLM with the sensitive tokens, and (4) blend distributions so that the final output remains within a bounded distance of the baseline distribution. While this per-token influence bound also mitigates jailbreak-style prompt injection, we focus on \emph{document privatization}, where the goal is to paraphrase a document containing sensitive tokens, e.g., personally identifiable information, so that no attacker can reliably infer them from the paraphrased document while preserving high text quality. The privacy/utility trade-off is controlled by $\epsilon$, where $\epsilon=0$ hides sensitive tokens entirely, while higher values trade off privacy for improved text quality. We show that our method creates token-level provably privatized documents with substantially improved theoretical and empirical privacy, achieving $6\times$ lower perplexity than related DPI methods.
comment: Our code and data are publicly available here: https://github.com/MBZUAI-Trustworthy-ML/DP-Fusion-DPI
♻ ☆ Robustness of Neurosymbolic Reasoners on First-Order Logic Problems
Recent trends in NLP aim to improve reasoning capabilities in Large Language Models (LLMs), with key focus on generalization and robustness to variations in tasks. Counterfactual task variants introduce minimal but semantically meaningful changes to otherwise valid first-order logic (FOL) problem instances altering a single predicate or swapping roles of constants to probe whether a reasoning system can maintain logical consistency under perturbation. Previous studies showed that LLMs becomes brittle on counterfactual variations, suggesting that they often rely on spurious surface patterns to generate responses. In this work, we explore if a neurosymbolic (NS) approach that integrates an LLM and a symbolic logical solver could mitigate this problem. Experiments across LLMs of varying sizes show that NS methods are more robust but perform worse overall that purely neural methods. We then propose NSCoT that combines an NS method and Chain-of-Thought (CoT) prompting and demonstrate that while it improves performance, NSCoT still lags behind standard CoT. Our analysis opens research directions for future work.
comment: Accepted to ALA Conference
♻ ☆ Distributional Surgery for Language Model Activations
Language models, while capable of generating remarkably coherent and seemingly accurate text, can occasionally produce undesirable content, including harmful or toxic outputs. In this paper, we present a new two-stage approach to detect and mitigate undesirable content generations by rectifying activations. First, we train an ensemble of layerwise classifiers to detect undesirable content using activations by minimizing a smooth surrogate of the risk-aware score. Then, for detected undesirable contents, we propose layerwise distributional steering policies that transform the attention heads. These policies are computed through principled semidefinite programming, which aims to minimally perturb the attention distribution while probabilistically guaranteeing the effectiveness of the editions. Empirical evaluations across multiple language models and datasets show that our method outperforms baselines in reducing the generation of undesirable output.
comment: 3 figures
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models. Our code and datasets are available at https://github.com/DEEP-PolyU/LinearRAG.
♻ ☆ CultureGuard: Towards Culturally-Aware Dataset and Guard Model for Multilingual Safety Applications
The increasing use of Large Language Models (LLMs) in agentic applications highlights the need for robust safety guard models. While content safety in English is well-studied, non-English languages lack similar advancements due to the high cost of collecting culturally aligned labeled datasets. We present CultureGuard, a novel solution for curating culturally aligned, high-quality safety datasets across multiple languages. Our approach introduces a four-stage synthetic data generation and filtering pipeline: cultural data segregation, cultural data adaptation, machine translation, and quality filtering. This pipeline enables the conversion and expansion of the Nemotron-Content-Safety-Dataset-V2 English safety dataset into eight distinct languages: Arabic, German, Spanish, French, Hindi, Japanese, Thai, and Chinese. The resulting dataset, Nemotron-Safety-Guard-Dataset-v3, comprises 386,661 samples in 9 languages and facilitates the training of Llama-3.1-Nemotron-Safety-Guard-8B-v3 via LoRA-based fine-tuning. The final model achieves state-of-the-art performance on several multilingual content safety benchmarks. Furthermore, we show our moderately multilingual fine-tuning enables robust cross-lingual transfer and strong zero-shot generalization to unseen languages. We also benchmark the latest open LLMs on multilingual safety and observe that these LLMs are more prone to give unsafe responses when prompted in non-English languages. This work advances multilingual LLM safety by enabling the development of culturally aware safety guard models.
♻ ☆ Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations ML4H 2025
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's $\tau_b=0.670$), moderate alignment for fidelity ($\tau_b=0.387$), and weak alignment for confidence tone ($\tau_b=0.091$), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality can be decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
comment: Accepted to ML4H 2025 Proceedings
♻ ☆ Order Doesn't Matter, But Reasoning Does: Training LLMs with Order-Centric Augmentation
Logical reasoning is essential for large language models (LLMs) to ensure accurate and coherent inference. However, LLMs struggle with reasoning order variations and fail to generalize across logically equivalent transformations. LLMs often rely on fixed sequential patterns rather than true logical understanding. To address this issue, we introduce an order-centric data augmentation framework based on commutativity in logical reasoning. We first randomly shuffle independent premises to introduce condition order augmentation. For reasoning steps, we construct a directed acyclic graph (DAG) to model dependencies between steps, which allows us to identify valid reorderings of steps while preserving logical correctness. By leveraging order-centric augmentations, models can develop a more flexible and generalized reasoning process. Finally, we conduct extensive experiments across multiple logical reasoning benchmarks, demonstrating that our method significantly enhances LLMs' reasoning performance and adaptability to diverse logical structures. We release our codes and augmented data in https://github.com/qianxiHe147/Order-Centric-Data-Augmentation.
♻ ☆ Auto-PRE: An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation AAAI 2026
The rapid development of large language models (LLMs) has highlighted the need for efficient and reliable methods to evaluate their performance. Traditional evaluation methods often face challenges like high costs, limited task formats, dependence on human references, and systematic biases. To address these limitations, we propose Auto-PRE, an automatic LLM evaluation framework inspired by the peer review process. Unlike previous approaches that rely on human annotations, Auto-PRE automatically selects evaluator LLMs based on three core traits: consistency, pertinence, and self-confidence, which correspond to the instruction, content, and response stages, respectively, and collectively cover the entire evaluation process. Experiments on three representative tasks, including summarization, non-factoid QA, and dialogue generation, demonstrate that Auto-PRE achieves state-of-the-art performance while significantly reducing evaluation costs. Furthermore, the structured and scalable design of our automatic qualification exam framework provides valuable insights into automating the evaluation of LLMs-as-judges, paving the way for more advanced LLM-based evaluation frameworks.
comment: AAAI 2026
Information Retrieval 15
☆ TOOL4POI: A Tool-Augmented LLM Framework for Next POI Recommendation AAAI2026
Next Point-of-Interest (POI) recommendation is a fundamental task in location-based services. While recent advances leverage Large Language Model (LLM) for sequential modeling, existing LLM-based approaches face two key limitations: (i) strong reliance on the contextual completeness of user histories, resulting in poor performance on out-of-history (OOH) scenarios; (ii) limited scalability, due to the restricted context window of LLMs, which limits their ability to access and process a large number of candidate POIs. To address these challenges, we propose Tool4POI, a novel tool-augmented framework that enables LLMs to perform open-set POI recommendation through external retrieval and reasoning. Tool4POI consists of three key modules: preference extraction module, multi-turn candidate retrieval module, and reranking module, which together summarize long-term user interests, interact with external tools to retrieve relevant POIs, and refine final recommendations based on recent behaviors. Unlike existing methods, Tool4POI requires no task-specific fine-tuning and is compatible with off-the-shelf LLMs in a plug-and-play manner. Extensive experiments on three real-world datasets show that Tool4POI substantially outperforms state-of-the-art baselines, achieving up to 40% accuracy on challenging OOH scenarios where existing methods fail, and delivering average improvements of 20% and 30% on Acc@5 and Acc@10, respectively.
comment: Accepted by AAAI2026
☆ HyMoERec: Hybrid Mixture-of-Experts for Sequential Recommendation AAAI 2026
We propose HyMoERec, a novel sequential recommendation framework that addresses the limitations of uniform Position-wise Feed-Forward Networks in existing models. Current approaches treat all user interactions and items equally, overlooking the heterogeneity in user behavior patterns and diversity in item complexity. HyMoERec initially introduces a hybrid mixture-of-experts architecture that combines shared and specialized expert branches with an adaptive expert fusion mechanism for the sequential recommendation task. This design captures diverse reasoning for varied users and items while ensuring stable training. Experiments on MovieLens-1M and Beauty datasets demonstrate that HyMoERec consistently outperforms state-of-the-art baselines.
comment: AAAI 2026 Student Abstract
☆ Exploiting Inter-Session Information with Frequency-enhanced Dual-Path Networks for Sequential Recommendation
Sequential recommendation (SR) aims to predict a user's next item preference by modeling historical interaction sequences. Recent advances often integrate frequency-domain modules to compensate for self-attention's low-pass nature by restoring the high-frequency signals critical for personalized recommendations. Nevertheless, existing frequency-aware solutions process each session in isolation and optimize exclusively with time-domain objectives. Consequently, they overlook cross-session spectral dependencies and fail to enforce alignment between predicted and actual spectral signatures, leaving valuable frequency information under-exploited. To this end, we propose FreqRec, a Frequency-Enhanced Dual-Path Network for sequential Recommendation that jointly captures inter-session and intra-session behaviors via a learnable Frequency-domain Multi-layer Perceptrons. Moreover, FreqRec is optimized under a composite objective that combines cross entropy with a frequency-domain consistency loss, explicitly aligning predicted and true spectral signatures. Extensive experiments on three benchmarks show that FreqRec surpasses strong baselines and remains robust under data sparsity and noisy-log conditions.
☆ LLaDA-Rec: Discrete Diffusion for Parallel Semantic ID Generation in Generative Recommendation
Generative recommendation represents each item as a semantic ID, i.e., a sequence of discrete tokens, and generates the next item through autoregressive decoding. While effective, existing autoregressive models face two intrinsic limitations: (1) unidirectional constraints, where causal attention restricts each token to attend only to its predecessors, hindering global semantic modeling; and (2) error accumulation, where the fixed left-to-right generation order causes prediction errors in early tokens to propagate to the predictions of subsequent token. To address these issues, we propose LLaDA-Rec, a discrete diffusion framework that reformulates recommendation as parallel semantic ID generation. By combining bidirectional attention with the adaptive generation order, the approach models inter-item and intra-item dependencies more effectively and alleviates error accumulation. Specifically, our approach comprises three key designs: (1) a parallel tokenization scheme that produces semantic IDs for bidirectional modeling, addressing the mismatch between residual quantization and bidirectional architectures; (2) two masking mechanisms at the user-history and next-item levels to capture both inter-item sequential dependencies and intra-item semantic relationships; and (3) an adapted beam search strategy for adaptive-order discrete diffusion decoding, resolving the incompatibility of standard beam search with diffusion-based generation. Experiments on three real-world datasets show that LLaDA-Rec consistently outperforms both ID-based and state-of-the-art generative recommenders, establishing discrete diffusion as a new paradigm for generative recommendation.
☆ Time Matters: A Novel Real-Time Long- and Short-term User Interest Model for Click-Through Rate Prediction
Click-Through Rate (CTR) prediction is a core task in online personalization platform. A key step for CTR prediction is to learn accurate user representation to capture their interests. Generally, the interest expressed by a user is time-variant, i.e., a user activates different interests at different time. However, most previous CTR prediction methods overlook the correlation between the activated interest and the occurrence time, resulting in what they actually learn is the mixture of the interests expressed by the user at all time, rather than the real-time interest at the certain prediction time. To capture the correlation between the activated interest and the occurrence time, in this paper we investigate users' interest evolution from the perspective of the whole time line and develop two regular patterns: periodic pattern and time-point pattern. Based on the two patterns, we propose a novel time-aware long- and short-term user interest modeling method to model users' dynamic interests at different time. Extensive experiments on public datasets as well as an industrial dataset verify the effectiveness of exploiting the two patterns and demonstrate the superiority of our proposed method compared with other state-of-the-art ones.
comment: This work was doned when the first author interned at Alibaba Group
☆ MemoriesDB: A Temporal-Semantic-Relational Database for Long-Term Agent Memory / Modeling Experience as a Graph of Temporal-Semantic Surfaces
We introduce MemoriesDB, a unified data architecture designed to avoid decoherence across time, meaning, and relation in long-term computational memory. Each memory is a time-semantic-relational entity-a structure that simultaneously encodes when an event occurred, what it means, and how it connects to other events. Built initially atop PostgreSQL with pgvector extensions, MemoriesDB combines the properties of a time-series datastore, a vector database, and a graph system within a single append-only schema. Each memory is represented as a vertex uniquely labeled by its microsecond timestamp and accompanied by low- and high-dimensional normalized embeddings that capture semantic context. Directed edges between memories form labeled relations with per-edge metadata, enabling multiple contextual links between the same vertices. Together these constructs form a time-indexed stack of temporal-semantic surfaces, where edges project as directional arrows in a 1+1-dimensional similarity field, tracing the evolution of meaning through time while maintaining cross-temporal coherence. This formulation supports efficient time-bounded retrieval, hybrid semantic search, and lightweight structural reasoning in a single query path. A working prototype demonstrates scalable recall and contextual reinforcement using standard relational infrastructure, and we discuss extensions toward a columnar backend, distributed clustering, and emergent topic modeling.
☆ TOOL4POI: A Tool-Augmented LLM Framework for Next POI Recommendation AAAI2026
Next Point-of-Interest (POI) recommendation is a fundamental task in location-based services. While recent advances leverage Large Language Model (LLM) for sequential modeling, existing LLM-based approaches face two key limitations: (i) strong reliance on the contextual completeness of user histories, resulting in poor performance on out-of-history (OOH) scenarios; (ii) limited scalability, due to the restricted context window of LLMs, which limits their ability to access and process a large number of candidate POIs. To address these challenges, we propose Tool4POI, a novel tool-augmented framework that enables LLMs to perform open-set POI recommendation through external retrieval and reasoning. Tool4POI consists of three key modules: preference extraction module, multi-turn candidate retrieval module, and reranking module, which together summarize long-term user interests, interact with external tools to retrieve relevant POIs, and refine final recommendations based on recent behaviors. Unlike existing methods, Tool4POI requires no task-specific fine-tuning and is compatible with off-the-shelf LLMs in a plug-and-play manner. Extensive experiments on three real-world datasets show that Tool4POI substantially outperforms state-of-the-art baselines, achieving up to 40% accuracy on challenging OOH scenarios where existing methods fail, and delivering average improvements of 20% and 30% on Acc@5 and Acc@10, respectively.
comment: Accepted by AAAI2026
☆ HyMoERec: Hybrid Mixture-of-Experts for Sequential Recommendation AAAI 2026
We propose HyMoERec, a novel sequential recommendation framework that addresses the limitations of uniform Position-wise Feed-Forward Networks in existing models. Current approaches treat all user interactions and items equally, overlooking the heterogeneity in user behavior patterns and diversity in item complexity. HyMoERec initially introduces a hybrid mixture-of-experts architecture that combines shared and specialized expert branches with an adaptive expert fusion mechanism for the sequential recommendation task. This design captures diverse reasoning for varied users and items while ensuring stable training. Experiments on MovieLens-1M and Beauty datasets demonstrate that HyMoERec consistently outperforms state-of-the-art baselines.
comment: AAAI 2026 Student Abstract
☆ LLaDA-Rec: Discrete Diffusion for Parallel Semantic ID Generation in Generative Recommendation
Generative recommendation represents each item as a semantic ID, i.e., a sequence of discrete tokens, and generates the next item through autoregressive decoding. While effective, existing autoregressive models face two intrinsic limitations: (1) unidirectional constraints, where causal attention restricts each token to attend only to its predecessors, hindering global semantic modeling; and (2) error accumulation, where the fixed left-to-right generation order causes prediction errors in early tokens to propagate to the predictions of subsequent token. To address these issues, we propose LLaDA-Rec, a discrete diffusion framework that reformulates recommendation as parallel semantic ID generation. By combining bidirectional attention with the adaptive generation order, the approach models inter-item and intra-item dependencies more effectively and alleviates error accumulation. Specifically, our approach comprises three key designs: (1) a parallel tokenization scheme that produces semantic IDs for bidirectional modeling, addressing the mismatch between residual quantization and bidirectional architectures; (2) two masking mechanisms at the user-history and next-item levels to capture both inter-item sequential dependencies and intra-item semantic relationships; and (3) an adapted beam search strategy for adaptive-order discrete diffusion decoding, resolving the incompatibility of standard beam search with diffusion-based generation. Experiments on three real-world datasets show that LLaDA-Rec consistently outperforms both ID-based and state-of-the-art generative recommenders, establishing discrete diffusion as a new paradigm for generative recommendation.
☆ Time Matters: A Novel Real-Time Long- and Short-term User Interest Model for Click-Through Rate Prediction
Click-Through Rate (CTR) prediction is a core task in online personalization platform. A key step for CTR prediction is to learn accurate user representation to capture their interests. Generally, the interest expressed by a user is time-variant, i.e., a user activates different interests at different time. However, most previous CTR prediction methods overlook the correlation between the activated interest and the occurrence time, resulting in what they actually learn is the mixture of the interests expressed by the user at all time, rather than the real-time interest at the certain prediction time. To capture the correlation between the activated interest and the occurrence time, in this paper we investigate users' interest evolution from the perspective of the whole time line and develop two regular patterns: periodic pattern and time-point pattern. Based on the two patterns, we propose a novel time-aware long- and short-term user interest modeling method to model users' dynamic interests at different time. Extensive experiments on public datasets as well as an industrial dataset verify the effectiveness of exploiting the two patterns and demonstrate the superiority of our proposed method compared with other state-of-the-art ones.
comment: This work was doned when the first author interned at Alibaba Group
☆ MemoriesDB: A Temporal-Semantic-Relational Database for Long-Term Agent Memory / Modeling Experience as a Graph of Temporal-Semantic Surfaces
We introduce MemoriesDB, a unified data architecture designed to avoid decoherence across time, meaning, and relation in long-term computational memory. Each memory is a time-semantic-relational entity-a structure that simultaneously encodes when an event occurred, what it means, and how it connects to other events. Built initially atop PostgreSQL with pgvector extensions, MemoriesDB combines the properties of a time-series datastore, a vector database, and a graph system within a single append-only schema. Each memory is represented as a vertex uniquely labeled by its microsecond timestamp and accompanied by low- and high-dimensional normalized embeddings that capture semantic context. Directed edges between memories form labeled relations with per-edge metadata, enabling multiple contextual links between the same vertices. Together these constructs form a time-indexed stack of temporal-semantic surfaces, where edges project as directional arrows in a 1+1-dimensional similarity field, tracing the evolution of meaning through time while maintaining cross-temporal coherence. This formulation supports efficient time-bounded retrieval, hybrid semantic search, and lightweight structural reasoning in a single query path. A working prototype demonstrates scalable recall and contextual reinforcement using standard relational infrastructure, and we discuss extensions toward a columnar backend, distributed clustering, and emergent topic modeling.
♻ ☆ Cross-Platform E-Commerce Product Categorization and Recategorization: A Multimodal Hierarchical Classification Approach
This study addresses critical industrial challenges in e-commerce product categorization, namely platform heterogeneity and the structural limitations of existing taxonomies, by developing and deploying a multimodal hierarchical classification framework. Using a dataset of 271,700 products from 40 international fashion e-commerce platforms, we integrate textual features (RoBERTa), visual features (ViT), and joint vision-language representations (CLIP). We investigate fusion strategies, including early, late, and attention-based fusion within a hierarchical architecture enhanced by dynamic masking to ensure taxonomic consistency. Results show that CLIP embeddings combined via an MLP-based late-fusion strategy achieve the highest hierarchical F1 (98.59%), outperforming unimodal baselines. To address shallow or inconsistent categories, we further introduce a self-supervised "product recategorization" pipeline using SimCLR, UMAP, and cascade clustering, which discovered new, fine-grained categories (for example, subtypes of "Shoes") with cluster purities above 86%. Cross-platform experiments reveal a deployment-relevant trade-off: complex late-fusion methods maximize accuracy with diverse training data, while simpler early-fusion methods generalize more effectively to unseen platforms. Finally, we demonstrate the framework's industrial scalability through deployment in EURWEB's commercial transaction intelligence platform via a two-stage inference pipeline, combining a lightweight RoBERTa stage with a GPU-accelerated multimodal stage to balance cost and accuracy.
comment: Accetped at IEEE BigData 2025, 10 pages, 5 figures, 3 tables
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services online, yet stock recommender systems have received limited attention. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios, often neglecting user preferences. The former would result in unsuccessful investment because accurately predicting stock prices is almost impossible, whereas the latter would not be accepted by investors because many investors, including both individuals and institutional portfolio managers, who typically hold focused portfolios based on their investment strategies and interests. Collaborative filtering (CF) also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend user's preference with the portfolio theory. However, no existing model considers both aspects. We propose a simple yet effective model, called mean-variance efficient collaborative filtering (MVECF). Our model is designed to improve the Pareto optimality in a trade-off between the risk and return by systemically handling uncertainties in stock prices. Experiments on real-world data show our model can increase the mean-variance efficiency of recommended portfolios while sacrificing just a small amount of recommendation accuracy. Finally, we further show MVECF is easily applicable to the graph-based ranking model.
comment: To appear in the 6th ACM International Conference on AI in Finance (ICAIF '25), November 15-18, 2025, Singapore. 8 pages, 3 tables, 3 figures
♻ ☆ Cross-Platform E-Commerce Product Categorization and Recategorization: A Multimodal Hierarchical Classification Approach
This study addresses critical industrial challenges in e-commerce product categorization, namely platform heterogeneity and the structural limitations of existing taxonomies, by developing and deploying a multimodal hierarchical classification framework. Using a dataset of 271,700 products from 40 international fashion e-commerce platforms, we integrate textual features (RoBERTa), visual features (ViT), and joint vision-language representations (CLIP). We investigate fusion strategies, including early, late, and attention-based fusion within a hierarchical architecture enhanced by dynamic masking to ensure taxonomic consistency. Results show that CLIP embeddings combined via an MLP-based late-fusion strategy achieve the highest hierarchical F1 (98.59%), outperforming unimodal baselines. To address shallow or inconsistent categories, we further introduce a self-supervised "product recategorization" pipeline using SimCLR, UMAP, and cascade clustering, which discovered new, fine-grained categories (for example, subtypes of "Shoes") with cluster purities above 86%. Cross-platform experiments reveal a deployment-relevant trade-off: complex late-fusion methods maximize accuracy with diverse training data, while simpler early-fusion methods generalize more effectively to unseen platforms. Finally, we demonstrate the framework's industrial scalability through deployment in EURWEB's commercial transaction intelligence platform via a two-stage inference pipeline, combining a lightweight RoBERTa stage with a GPU-accelerated multimodal stage to balance cost and accuracy.
comment: Accetped at IEEE BigData 2025, 10 pages, 5 figures, 3 tables
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services online, yet stock recommender systems have received limited attention. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios, often neglecting user preferences. The former would result in unsuccessful investment because accurately predicting stock prices is almost impossible, whereas the latter would not be accepted by investors because many investors, including both individuals and institutional portfolio managers, who typically hold focused portfolios based on their investment strategies and interests. Collaborative filtering (CF) also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend user's preference with the portfolio theory. However, no existing model considers both aspects. We propose a simple yet effective model, called mean-variance efficient collaborative filtering (MVECF). Our model is designed to improve the Pareto optimality in a trade-off between the risk and return by systemically handling uncertainties in stock prices. Experiments on real-world data show our model can increase the mean-variance efficiency of recommended portfolios while sacrificing just a small amount of recommendation accuracy. Finally, we further show MVECF is easily applicable to the graph-based ranking model.
comment: To appear in the 6th ACM International Conference on AI in Finance (ICAIF '25), November 15-18, 2025, Singapore. 8 pages, 3 tables, 3 figures
Information Retrieval 16
☆ Evaluation of retrieval-based QA on QUEST-LOFT
Despite the popularity of retrieval-augmented generation (RAG) as a solution for grounded QA in both academia and industry, current RAG methods struggle with questions where the necessary information is distributed across many documents or where retrieval needs to be combined with complex reasoning. Recently, the LOFT study has shown that this limitation also applies to approaches based on long-context language models, with the QUEST benchmark exhibiting particularly large headroom. In this paper, we provide an in-depth analysis of the factors contributing to the poor performance on QUEST-LOFT, publish updated numbers based on a thorough human evaluation, and demonstrate that RAG can be optimized to significantly outperform long-context approaches when combined with a structured output format containing reasoning and evidence, optionally followed by answer re-verification.
☆ Make It Long, Keep It Fast: End-to-End 10k-Sequence Modeling at Billion Scale on Douyin
Short-video recommenders such as Douyin must exploit extremely long user histories without breaking latency or cost budgets. We present an end-to-end system that scales long-sequence modeling to 10k-length histories in production. First, we introduce Stacked Target-to-History Cross Attention (STCA), which replaces history self-attention with stacked cross-attention from the target to the history, reducing complexity from quadratic to linear in sequence length and enabling efficient end-to-end training. Second, we propose Request Level Batching (RLB), a user-centric batching scheme that aggregates multiple targets for the same user/request to share the user-side encoding, substantially lowering sequence-related storage, communication, and compute without changing the learning objective. Third, we design a length-extrapolative training strategy -- train on shorter windows, infer on much longer ones -- so the model generalizes to 10k histories without additional training cost. Across offline and online experiments, we observe predictable, monotonic gains as we scale history length and model capacity, mirroring the scaling law behavior observed in large language models. Deployed at full traffic on Douyin, our system delivers significant improvements on key engagement metrics while meeting production latency, demonstrating a practical path to scaling end-to-end long-sequence recommendation to the 10k regime.
☆ Ontology Learning and Knowledge Graph Construction: A Comparison of Approaches and Their Impact on RAG Performance
Retrieval-Augmented Generation (RAG) systems combine Large Language Models (LLMs) with external knowledge, and their performance depends heavily on how that knowledge is represented. This study investigates how different Knowledge Graph (KG) construction strategies influence RAG performance. We compare a variety of approaches: standard vector-based RAG, GraphRAG, and retrieval over KGs built from ontologies derived either from relational databases or textual corpora. Results show that ontology-guided KGs incorporating chunk information achieve competitive performance with state-of-the-art frameworks, substantially outperforming vector retrieval baselines. Moreover, the findings reveal that ontology-guided KGs built from relational databases perform competitively to ones built with ontologies extracted from text, with the benefit of offering a dual advantage: they require a one-time-only ontology learning process, substantially reducing LLM usage costs; and avoid the complexity of ontology merging inherent to text-based approaches.
comment: 12 pages, 8 Figures
☆ A Remarkably Efficient Paradigm to Multimodal Large Language Models for Sequential Recommendation
In this paper, we proposed Speeder, a remarkably efficient paradigm to multimodal large language models for sequential recommendation. Speeder introduces 3 key components: (1) Multimodal Representation Compression (MRC), which efficiently reduces redundancy in item descriptions; (2) Sequential Position Awareness Enhancement (SPAE), which strengthens the model's ability to capture complex sequential dependencies; (3) Modality-aware Progressive Optimization (MPO), which progressively integrates different modalities to improve the model's understanding and reduce cognitive biases. Through extensive experiments, Speeder demonstrates superior performance over baselines in terms of VHR@1 and computational efficiency. Specifically, Speeder achieved 250% of the training speed and 400% of the inference speed compared to the state-of-the-art MLLM-based SR models. Future work could focus on incorporating real-time feedback from real-world systems.
☆ Retrieval Quality at Context Limit
The ability of large language models (LLMs) to recall and retrieve information from long contexts is critical for many real-world applications. Prior work (Liu et al., 2023) reported that LLMs suffer significant drops in retrieval accuracy for facts placed in the middle of large contexts, an effect known as "Lost in the Middle" (LITM). We find the model Gemini 2.5 Flash can answer needle-in-a-haystack questions with great accuracy regardless of document position including when the document is nearly at the input context limit. Our results suggest that the "Lost in the Middle" effect is not present for simple factoid Q\&A in Gemini 2.5 Flash, indicating substantial improvements in long-context retrieval.
comment: 3 pages, 0 figures
☆ User Hesitation and Negative Transfer in Multi-Behavior Recommendation
Multi-behavior recommendation aims to integrate users' interactions across various behavior types (e.g., view, favorite, add-to-cart, purchase) to more comprehensively characterize user preferences. However, existing methods lack in-depth modeling when dealing with interactions that generate only auxiliary behaviors without triggering the target behavior. In fact, these weak signals contain rich latent information and can be categorized into two types: (1) positive weak signals-items that have not triggered the target behavior but exhibit frequent auxiliary interactions, reflecting users' hesitation tendencies toward these items; and (2) negative weak signals-auxiliary behaviors that result from misoperations or interaction noise, which deviate from true preferences and may cause negative transfer effects. To more effectively identify and utilize these weak signals, we propose a recommendation framework focused on weak signal learning, termed HNT. Specifically, HNT models weak signal features from two dimensions: positive and negative effects. By learning the characteristics of auxiliary behaviors that lead to target behaviors, HNT identifies similar auxiliary behaviors that did not trigger the target behavior and constructs a hesitation set of related items as weak positive samples to enhance preference modeling, thereby capturing users' latent hesitation intentions. Meanwhile, during auxiliary feature fusion, HNT incorporates latent negative transfer effect modeling to distinguish and suppress interference caused by negative representations through item similarity learning. Experiments on three real-world datasets demonstrate that HNT improves HR@10 and NDCG@10 by 12.57% and 14.37%, respectively, compared to the best baseline methods.
☆ Evaluation of retrieval-based QA on QUEST-LOFT
Despite the popularity of retrieval-augmented generation (RAG) as a solution for grounded QA in both academia and industry, current RAG methods struggle with questions where the necessary information is distributed across many documents or where retrieval needs to be combined with complex reasoning. Recently, the LOFT study has shown that this limitation also applies to approaches based on long-context language models, with the QUEST benchmark exhibiting particularly large headroom. In this paper, we provide an in-depth analysis of the factors contributing to the poor performance on QUEST-LOFT, publish updated numbers based on a thorough human evaluation, and demonstrate that RAG can be optimized to significantly outperform long-context approaches when combined with a structured output format containing reasoning and evidence, optionally followed by answer re-verification.
☆ Make It Long, Keep It Fast: End-to-End 10k-Sequence Modeling at Billion Scale on Douyin
Short-video recommenders such as Douyin must exploit extremely long user histories without breaking latency or cost budgets. We present an end-to-end system that scales long-sequence modeling to 10k-length histories in production. First, we introduce Stacked Target-to-History Cross Attention (STCA), which replaces history self-attention with stacked cross-attention from the target to the history, reducing complexity from quadratic to linear in sequence length and enabling efficient end-to-end training. Second, we propose Request Level Batching (RLB), a user-centric batching scheme that aggregates multiple targets for the same user/request to share the user-side encoding, substantially lowering sequence-related storage, communication, and compute without changing the learning objective. Third, we design a length-extrapolative training strategy -- train on shorter windows, infer on much longer ones -- so the model generalizes to 10k histories without additional training cost. Across offline and online experiments, we observe predictable, monotonic gains as we scale history length and model capacity, mirroring the scaling law behavior observed in large language models. Deployed at full traffic on Douyin, our system delivers significant improvements on key engagement metrics while meeting production latency, demonstrating a practical path to scaling end-to-end long-sequence recommendation to the 10k regime.
☆ Ontology Learning and Knowledge Graph Construction: A Comparison of Approaches and Their Impact on RAG Performance
Retrieval-Augmented Generation (RAG) systems combine Large Language Models (LLMs) with external knowledge, and their performance depends heavily on how that knowledge is represented. This study investigates how different Knowledge Graph (KG) construction strategies influence RAG performance. We compare a variety of approaches: standard vector-based RAG, GraphRAG, and retrieval over KGs built from ontologies derived either from relational databases or textual corpora. Results show that ontology-guided KGs incorporating chunk information achieve competitive performance with state-of-the-art frameworks, substantially outperforming vector retrieval baselines. Moreover, the findings reveal that ontology-guided KGs built from relational databases perform competitively to ones built with ontologies extracted from text, with the benefit of offering a dual advantage: they require a one-time-only ontology learning process, substantially reducing LLM usage costs; and avoid the complexity of ontology merging inherent to text-based approaches.
comment: 12 pages, 8 Figures
☆ Retrieval Quality at Context Limit
The ability of large language models (LLMs) to recall and retrieve information from long contexts is critical for many real-world applications. Prior work (Liu et al., 2023) reported that LLMs suffer significant drops in retrieval accuracy for facts placed in the middle of large contexts, an effect known as "Lost in the Middle" (LITM). We find the model Gemini 2.5 Flash can answer needle-in-a-haystack questions with great accuracy regardless of document position including when the document is nearly at the input context limit. Our results suggest that the "Lost in the Middle" effect is not present for simple factoid Q\&A in Gemini 2.5 Flash, indicating substantial improvements in long-context retrieval.
comment: 3 pages, 0 figures
☆ User Hesitation and Negative Transfer in Multi-Behavior Recommendation
Multi-behavior recommendation aims to integrate users' interactions across various behavior types (e.g., view, favorite, add-to-cart, purchase) to more comprehensively characterize user preferences. However, existing methods lack in-depth modeling when dealing with interactions that generate only auxiliary behaviors without triggering the target behavior. In fact, these weak signals contain rich latent information and can be categorized into two types: (1) positive weak signals-items that have not triggered the target behavior but exhibit frequent auxiliary interactions, reflecting users' hesitation tendencies toward these items; and (2) negative weak signals-auxiliary behaviors that result from misoperations or interaction noise, which deviate from true preferences and may cause negative transfer effects. To more effectively identify and utilize these weak signals, we propose a recommendation framework focused on weak signal learning, termed HNT. Specifically, HNT models weak signal features from two dimensions: positive and negative effects. By learning the characteristics of auxiliary behaviors that lead to target behaviors, HNT identifies similar auxiliary behaviors that did not trigger the target behavior and constructs a hesitation set of related items as weak positive samples to enhance preference modeling, thereby capturing users' latent hesitation intentions. Meanwhile, during auxiliary feature fusion, HNT incorporates latent negative transfer effect modeling to distinguish and suppress interference caused by negative representations through item similarity learning. Experiments on three real-world datasets demonstrate that HNT improves HR@10 and NDCG@10 by 12.57% and 14.37%, respectively, compared to the best baseline methods.
♻ ☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.25% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.29% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025
♻ ☆ From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
♻ ☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.25% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.29% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025
♻ ☆ From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
Computation and Language 72
☆ MIMIC-SR-ICD11: A Dataset for Narrative-Based Diagnosis
Disease diagnosis is a central pillar of modern healthcare, enabling early detection and timely intervention for acute conditions while guiding lifestyle adjustments and medication regimens to prevent or slow chronic disease. Self-reports preserve clinically salient signals that templated electronic health record (EHR) documentation often attenuates or omits, especially subtle but consequential details. To operationalize this shift, we introduce MIMIC-SR-ICD11, a large English diagnostic dataset built from EHR discharge notes and natively aligned to WHO ICD-11 terminology. We further present LL-Rank, a likelihood-based re-ranking framework that computes a length-normalized joint likelihood of each label given the clinical report context and subtracts the corresponding report-free prior likelihood for that label. Across seven model backbones, LL-Rank consistently outperforms a strong generation-plus-mapping baseline (GenMap). Ablation experiments show that LL-Rank's gains primarily stem from its PMI-based scoring, which isolates semantic compatibility from label frequency bias.
comment: 19
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ Steering Language Models with Weight Arithmetic
Providing high-quality feedback to Large Language Models (LLMs) on a diverse training distribution can be difficult and expensive, and providing feedback only on a narrow distribution can result in unintended generalizations. To better leverage narrow training data, we propose contrastive weight steering, a simple post-training method that edits the model parameters using weight arithmetic. We isolate a behavior direction in weight-space by subtracting the weight deltas from two small fine-tunes -- one that induces the desired behavior and another that induces its opposite -- and then add or remove this direction to modify the model's weights. We apply this technique to mitigate sycophancy and induce misalignment, and find that weight steering often generalizes further than activation steering, achieving stronger out-of-distribution behavioral control before degrading general capabilities. We also show that, in the context of task-specific fine-tuning, weight steering can partially mitigate undesired behavioral drift: it can reduce sycophancy and under-refusals introduced during fine-tuning while preserving task performance gains. Finally, we provide preliminary evidence that emergent misalignment can be detected by measuring the similarity between fine-tuning updates and an "evil" weight direction, suggesting that it may be possible to monitor the evolution of weights during training and detect rare misaligned behaviors that never manifest during training or evaluations.
☆ Minority-Aware Satisfaction Estimation in Dialogue Systems via Preference-Adaptive Reinforcement Learning AACL 2025
User satisfaction in dialogue systems is inherently subjective. When the same response strategy is applied across users, minority users may assign different satisfaction ratings than majority users due to variations in individual intents and preferences. However, existing alignment methods typically train one-size-fits-all models that aim for broad consensus, often overlooking minority perspectives and user-specific adaptation. We propose a unified framework that models both individual- and group-level preferences for user satisfaction estimation. First, we introduce Chain-of-Personalized-Reasoning (CoPeR) to capture individual preferences through interpretable reasoning chains. Second, we propose an expectation-maximization-based Majority-Minority Preference-Aware Clustering (M2PC) algorithm that discovers distinct user groups in an unsupervised manner to learn group-level preferences. Finally, we integrate these components into a preference-adaptive reinforcement learning framework (PAda-PPO) that jointly optimizes alignment with both individual and group preferences. Experiments on the Emotional Support Conversation dataset demonstrate consistent improvements in user satisfaction estimation, particularly for underrepresented user groups.
comment: IJCNLP-AACL 2025 (Main)
Large Language Models for Explainable Threat Intelligence
As cyber threats continue to grow in complexity, traditional security mechanisms struggle to keep up. Large language models (LLMs) offer significant potential in cybersecurity due to their advanced capabilities in text processing and generation. This paper explores the use of LLMs with retrieval-augmented generation (RAG) to obtain threat intelligence by combining real-time information retrieval with domain-specific data. The proposed system, RAGRecon, uses a LLM with RAG to answer questions about cybersecurity threats. Moreover, it makes this form of Artificial Intelligence (AI) explainable by generating and visually presenting to the user a knowledge graph for every reply. This increases the transparency and interpretability of the reasoning of the model, allowing analysts to better understand the connections made by the system based on the context recovered by the RAG system. We evaluated RAGRecon experimentally with two datasets and seven different LLMs and the responses matched the reference responses more than 91% of the time for the best combinations.
☆ A multimodal multiplex of the mental lexicon for multilingual individuals
Historically, bilingualism was often perceived as an additional cognitive load that could hinder linguistic and intellectual development. However, over the last three decades, this view has changed considerably. Numerous studies have aimed to model and understand the architecture of the bilingual word recognition system Dijkstra and van Heuven (2002), investigating how parallel activation operates in the brain and how one language influences another Kroll et al. (2015). Increasingly, evidence suggests that multilinguals, individuals who speak three or more languages, can perform better than monolinguals in various linguistic and cognitive tasks, such as learning an additional language Abu-Rabia and Sanitsky (2010). This research proposal focuses on the study of the mental lexicon and how it may be structured in individuals who speak multiple languages. Building on the work of Stella et al. (2018), who investigated explosive learning in humans using a multiplex model of the mental lexicon, and the Bilingual Interactive Activation (BIA+) framework proposed by Dijkstra and van Heuven (2002), the present study applies the same multilayer network principles introduced by Kivela et al. (2014). Our experimental design extends previous research by incorporating multimodality into the multiplex model, introducing an additional layer that connects visual inputs to their corresponding lexical representations across the multilingual layers of the mental lexicon. In this research, we aim to explore how a heritage language influences the acquisition of another language. Specifically, we ask: Does the presence of visual input in a translation task influence participants' proficiency and accuracy compared to text-only conditions?
☆ ConVerse: Benchmarking Contextual Safety in Agent-to-Agent Conversations
As language models evolve into autonomous agents that act and communicate on behalf of users, ensuring safety in multi-agent ecosystems becomes a central challenge. Interactions between personal assistants and external service providers expose a core tension between utility and protection: effective collaboration requires information sharing, yet every exchange creates new attack surfaces. We introduce ConVerse, a dynamic benchmark for evaluating privacy and security risks in agent-agent interactions. ConVerse spans three practical domains (travel, real estate, insurance) with 12 user personas and over 864 contextually grounded attacks (611 privacy, 253 security). Unlike prior single-agent settings, it models autonomous, multi-turn agent-to-agent conversations where malicious requests are embedded within plausible discourse. Privacy is tested through a three-tier taxonomy assessing abstraction quality, while security attacks target tool use and preference manipulation. Evaluating seven state-of-the-art models reveals persistent vulnerabilities; privacy attacks succeed in up to 88% of cases and security breaches in up to 60%, with stronger models leaking more. By unifying privacy and security within interactive multi-agent contexts, ConVerse reframes safety as an emergent property of communication.
☆ Evaluating Subword Tokenization Techniques for Bengali: A Benchmark Study with BengaliBPE
Tokenization is an important first step in Natural Language Processing (NLP) pipelines because it decides how models learn and represent linguistic information. However, current subword tokenizers like SentencePiece or HuggingFace BPE are mostly designed for Latin or multilingual corpora and do not perform well on languages with rich morphology such as Bengali. To address this limitation, we present BengaliBPE, a Byte Pair Encoding (BPE) tokenizer specifically developed for the Bengali script. BengaliBPE applies Unicode normalization, grapheme-level initialization, and morphology-aware merge rules to maintain linguistic consistency and preserve subword integrity. We use a large-scale Bengali news classification dataset to compare BengaliBPE with three baselines: Whitespace, SentencePiece BPE, and HuggingFace BPE. The evaluation considers tokenization granularity, encoding speed, and downstream classification accuracy. While all methods perform reasonably well, BengaliBPE provides the most detailed segmentation and the best morphological interpretability, albeit with slightly higher computational cost. These findings highlight the importance of language-aware tokenization for morphologically rich scripts and establish BengaliBPE as a strong foundation for future Bengali NLP systems, including large-scale pretraining of contextual language models.
comment: 10 pages, 3 figures, 3 tables
☆ What Are the Facts? Automated Extraction of Court-Established Facts from Criminal-Court Opinions
Criminal justice administrative data contain only a limited amount of information about the committed offense. However, there is an unused source of extensive information in continental European courts' decisions: descriptions of criminal behaviors in verdicts by which offenders are found guilty. In this paper, we study the feasibility of extracting these descriptions from publicly available court decisions from Slovakia. We use two different approaches for retrieval: regular expressions and large language models (LLMs). Our baseline was a simple method employing regular expressions to identify typical words occurring before and after the description. The advanced regular expression approach further focused on "sparing" and its normalization (insertion of spaces between individual letters), typical for delineating the description. The LLM approach involved prompting the Gemini Flash 2.0 model to extract the descriptions using predefined instructions. Although the baseline identified descriptions in only 40.5% of verdicts, both methods significantly outperformed it, achieving 97% with advanced regular expressions and 98.75% with LLMs, and 99.5% when combined. Evaluation by law students showed that both advanced methods matched human annotations in about 90% of cases, compared to just 34.5% for the baseline. LLMs fully matched human-labeled descriptions in 91.75% of instances, and a combination of advanced regular expressions with LLMs reached 92%.
comment: Paper accepted to the proceedings of ASAIL 2025 Workshop under ICAIL conference for publication. Paper contains 6 pages (references included) and 2 appendices. It contains 8 tables, no figures
☆ Listening Between the Lines: Decoding Podcast Narratives with Language Modeling
Podcasts have become a central arena for shaping public opinion, making them a vital source for understanding contemporary discourse. Their typically unscripted, multi-themed, and conversational style offers a rich but complex form of data. To analyze how podcasts persuade and inform, we must examine their narrative structures -- specifically, the narrative frames they employ. The fluid and conversational nature of podcasts presents a significant challenge for automated analysis. We show that existing large language models, typically trained on more structured text such as news articles, struggle to capture the subtle cues that human listeners rely on to identify narrative frames. As a result, current approaches fall short of accurately analyzing podcast narratives at scale. To solve this, we develop and evaluate a fine-tuned BERT model that explicitly links narrative frames to specific entities mentioned in the conversation, effectively grounding the abstract frame in concrete details. Our approach then uses these granular frame labels and correlates them with high-level topics to reveal broader discourse trends. The primary contributions of this paper are: (i) a novel frame-labeling methodology that more closely aligns with human judgment for messy, conversational data, and (ii) a new analysis that uncovers the systematic relationship between what is being discussed (the topic) and how it is being presented (the frame), offering a more robust framework for studying influence in digital media.
comment: 10 pages, 6 Figures, 5 Tables. Under review at IEEE TCSS
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Language Generation and Identification From Partial Enumeration: Tight Density Bounds and Topological Characterizations
The success of large language models (LLMs) has motivated formal theories of language generation and learning. We study the framework of \emph{language generation in the limit}, where an adversary enumerates strings from an unknown language $K$ drawn from a countable class, and an algorithm must generate unseen strings from $K$. Prior work showed that generation is always possible, and that some algorithms achieve positive lower density, revealing a \emph{validity--breadth} trade-off between correctness and coverage. We resolve a main open question in this line, proving a tight bound of $1/2$ on the best achievable lower density. We then strengthen the model to allow \emph{partial enumeration}, where the adversary reveals only an infinite subset $C \subseteq K$. We show that generation in the limit remains achievable, and if $C$ has lower density $\alpha$ in $K$, the algorithm's output achieves density at least $\alpha/2$, matching the upper bound. This generalizes the $1/2$ bound to the partial-information setting, where the generator must recover within a factor $1/2$ of the revealed subset's density. We further revisit the classical Gold--Angluin model of \emph{language identification} under partial enumeration. We characterize when identification in the limit is possible -- when hypotheses $M_t$ eventually satisfy $C \subseteq M \subseteq K$ -- and in the process give a new topological formulation of Angluin's characterization, showing that her condition is precisely equivalent to an appropriate topological space having the $T_D$ separation property.
☆ Reflective Personalization Optimization: A Post-hoc Rewriting Framework for Black-Box Large Language Models
The personalization of black-box large language models (LLMs) is a critical yet challenging task. Existing approaches predominantly rely on context injection, where user history is embedded into the prompt to directly guide the generation process. However, this single-step paradigm imposes a dual burden on the model: generating accurate content while simultaneously aligning with user-specific styles. This often results in a trade-off that compromises output quality and limits precise control. To address this fundamental tension, we propose Reflective Personalization Optimization (RPO), a novel framework that redefines the personalization paradigm by decoupling content generation from alignment. RPO operates in two distinct stages: first, a base model generates a high-quality, generic response; then, an external reflection module explicitly rewrites this output to align with the user's preferences. This reflection module is trained using a two-stage process. Initially, supervised fine-tuning is employed on structured rewriting trajectories to establish a core personalized reasoning policy that models the transformation from generic to user-aligned responses. Subsequently, reinforcement learning is applied to further refine and enhance the quality of the personalized outputs. Comprehensive experiments on the LaMP benchmark demonstrate that RPO, by decoupling content generation from personalization, significantly outperforms state-of-the-art baselines. These findings underscore the superiority of explicit response shaping over implicit context injection. Moreover, RPO introduces an efficient, model-agnostic personalization layer that can be seamlessly integrated with any underlying base model, paving the way for a new and effective direction in user-centric generation scenarios.
☆ Translation via Annotation: A Computational Study of Translating Classical Chinese into Japanese
Ancient people translated classical Chinese into Japanese by annotating around each character. We abstract this process as sequence tagging tasks and fit them into modern language technologies. The research of this annotation and translation system is a facing low-resource problem. We release this problem by introducing a LLM-based annotation pipeline and construct a new dataset from digitalized open-source translation data. We show that under the low-resource setting, introducing auxiliary Chinese NLP tasks has a promoting effect on the training of sequence tagging tasks. We also evaluate the performance of large language models. They achieve high scores in direct machine translation, but they are confused when being asked to annotate characters. Our method could work as a supplement of LLMs.
☆ Effectiveness of Chain-of-Thought in Distilling Reasoning Capability from Large Language Models
Chain-of-Thought (CoT) prompting is a widely used method to improve the reasoning capability of Large Language Models (LLMs). More recently, CoT has been leveraged in Knowledge Distillation (KD) to transfer reasoning capability from a larger LLM to a smaller one. This paper examines the role of CoT in distilling the reasoning capability from larger LLMs to smaller LLMs using white-box KD, analysing its effectiveness in improving the performance of the distilled models for various natural language reasoning and understanding tasks. We conduct white-box KD experiments using LLMs from the Qwen and Llama2 families, employing CoT data from the CoT-Collection dataset. The distilled models are then evaluated on natural language reasoning and understanding tasks from the BIG-Bench-Hard (BBH) benchmark, which presents complex challenges for smaller LLMs. Experimental results demonstrate the role of CoT in improving white-box KD effectiveness, enabling the distilled models to achieve better average performance in natural language reasoning and understanding tasks from BBH.
comment: In proceedings of the 18th International Natural Language Generation Conference (INLG 2025)
☆ Mind the Gap... or Not? How Translation Errors and Evaluation Details Skew Multilingual Results
Most current large language models (LLMs) support a wide variety of languages in addition to English, including high-resource languages (e.g. German, Chinese, French), as well as low-resource ones (e.g. Swahili, Telugu). In addition they have also shown impressive capabilities in different domains, like coding, science and math. In this short paper, taking math as an example domain, we study the performance of different LLMs across languages. Experimental results show that there exists a non-negligible and consistent gap in the performance of the models across languages. Interestingly, and somewhat against expectations, the gap exists for both high- and low-resource languages. We hope that these results influence further research into cross-lingual capability generalization for next generation LLMs. If it weren't for the fact that they are false! By analyzing one of the standard multilingual math benchmarks (MGSM), we determine that several translation errors are present in the data. Furthermore, the lack of standardized answer extraction from LLM outputs further influences the final results. We propose a method for automatic quality assurance to address the first issue at scale, and give recommendations to address the second one. Combining these two approaches we show that the aforementioned language gap mostly disappears, leading to completely different conclusions from our research. We additionally release the corrected dataset to the community.
☆ ManufactuBERT: Efficient Continual Pretraining for Manufacturing LREC 2026
While large general-purpose Transformer-based encoders excel at general language understanding, their performance diminishes in specialized domains like manufacturing due to a lack of exposure to domain-specific terminology and semantics. In this paper, we address this gap by introducing ManufactuBERT, a RoBERTa model continually pretrained on a large-scale corpus curated for the manufacturing domain. We present a comprehensive data processing pipeline to create this corpus from web data, involving an initial domain-specific filtering step followed by a multi-stage deduplication process that removes redundancies. Our experiments show that ManufactuBERT establishes a new state-of-the-art on a range of manufacturing-related NLP tasks, outperforming strong specialized baselines. More importantly, we demonstrate that training on our carefully deduplicated corpus significantly accelerates convergence, leading to a 33\% reduction in training time and computational cost compared to training on the non-deduplicated dataset. The proposed pipeline offers a reproducible example for developing high-performing encoders in other specialized domains. We will release our model and curated corpus at https://huggingface.co/cea-list-ia.
comment: Submitted to LREC 2026
☆ A Toolbox for Improving Evolutionary Prompt Search
Evolutionary prompt optimization has demonstrated effectiveness in refining prompts for LLMs. However, existing approaches lack robust operators and efficient evaluation mechanisms. In this work, we propose several key improvements to evolutionary prompt optimization that can partially generalize to prompt optimization in general: 1) decomposing evolution into distinct steps to enhance the evolution and its control, 2) introducing an LLM-based judge to verify the evolutions, 3) integrating human feedback to refine the evolutionary operator, and 4) developing more efficient evaluation strategies that maintain performance while reducing computational overhead. Our approach improves both optimization quality and efficiency. We release our code, enabling prompt optimization on new tasks and facilitating further research in this area.
☆ Iterative Layer-wise Distillation for Efficient Compression of Large Language Models
This work investigates distillation methods for large language models (LLMs) with the goal of developing compact models that preserve high performance. Several existing approaches are reviewed, with a discussion of their respective strengths and limitations. An improved method based on the ShortGPT approach has been developed, building upon the idea of incorporating iterative evaluation of layer importance. At each step, importance is assessed by measuring performance degradation when individual layers are removed, using a set of representative datasets. This process is combined with further training using a joint loss function based on KL divergence and mean squared error. Experiments on the Qwen2.5-3B model show that the number of layers can be reduced from 36 to 28 (resulting in a 2.47 billion parameter model) with only a 9.7% quality loss, and to 24 layers with an 18% loss. The findings suggest that the middle transformer layers contribute less to inference, underscoring the potential of the proposed method for creating efficient models. The results demonstrate the effectiveness of iterative distillation and fine-tuning, making the approach suitable for deployment in resource-limited settings.
☆ On Text Simplification Metrics and General-Purpose LLMs for Accessible Health Information, and A Potential Architectural Advantage of The Instruction-Tuned LLM class
The increasing health-seeking behavior and digital consumption of biomedical information by the general public necessitate scalable solutions for automatically adapting complex scientific and technical documents into plain language. Automatic text simplification solutions, including advanced large language models, however, continue to face challenges in reliably arbitrating the tension between optimizing readability performance and ensuring preservation of discourse fidelity. This report empirically assesses the performance of two major classes of general-purpose LLMs, demonstrating their linguistic capabilities and foundational readiness for the task compared to a human benchmark. Using a comparative analysis of the instruction-tuned Mistral 24B and the reasoning-augmented QWen2.5 32B, we identify a potential architectural advantage in the instruction-tuned LLM. Mistral exhibits a tempered lexical simplification strategy that enhances readability across a suite of metrics and the simplification-specific formula SARI (mean 42.46), while preserving human-level discourse with a BERTScore of 0.91. QWen also attains enhanced readability performance, but its operational strategy shows a disconnect in balancing between readability and accuracy, reaching a statistically significantly lower BERTScore of 0.89. Additionally, a comprehensive correlation analysis of 21 metrics spanning readability, discourse fidelity, content safety, and underlying distributional measures for mechanistic insights, confirms strong functional redundancies among five readability indices. This empirical evidence tracks baseline performance of the evolving LLMs for the task of text simplification, identifies the instruction-tuned Mistral 24B for simplification, provides necessary heuristics for metric selection, and points to lexical support as a primary domain-adaptation issue for simplification.
☆ Wikipedia-based Datasets in Russian Information Retrieval Benchmark RusBEIR
In this paper, we present a novel series of Russian information retrieval datasets constructed from the "Did you know..." section of Russian Wikipedia. Our datasets support a range of retrieval tasks, including fact-checking, retrieval-augmented generation, and full-document retrieval, by leveraging interesting facts and their referenced Wikipedia articles annotated at the sentence level with graded relevance. We describe the methodology for dataset creation that enables the expansion of existing Russian Information Retrieval (IR) resources. Through extensive experiments, we extend the RusBEIR research by comparing lexical retrieval models, such as BM25, with state-of-the-art neural architectures fine-tuned for Russian, as well as multilingual models. Results of our experiments show that lexical methods tend to outperform neural models on full-document retrieval, while neural approaches better capture lexical semantics in shorter texts, such as in fact-checking or fine-grained retrieval. Using our newly created datasets, we also analyze the impact of document length on retrieval performance and demonstrate that combining retrieval with neural reranking consistently improves results. Our contribution expands the resources available for Russian information retrieval research and highlights the importance of accurate evaluation of retrieval models to achieve optimal performance. All datasets are publicly available at HuggingFace. To facilitate reproducibility and future research, we also release the full implementation on GitHub.
☆ Reasoning-Guided Claim Normalization for Noisy Multilingual Social Media Posts
We address claim normalization for multilingual misinformation detection - transforming noisy social media posts into clear, verifiable statements across 20 languages. The key contribution demonstrates how systematic decomposition of posts using Who, What, Where, When, Why and How questions enables robust cross-lingual transfer despite training exclusively on English data. Our methodology incorporates finetuning Qwen3-14B using LoRA with the provided dataset after intra-post deduplication, token-level recall filtering for semantic alignment and retrieval-augmented few-shot learning with contextual examples during inference. Our system achieves METEOR scores ranging from 41.16 (English) to 15.21 (Marathi), securing third rank on the English leaderboard and fourth rank for Dutch and Punjabi. The approach shows 41.3% relative improvement in METEOR over baseline configurations and substantial gains over existing methods. Results demonstrate effective cross-lingual generalization for Romance and Germanic languages while maintaining semantic coherence across diverse linguistic structures.
☆ Order-Level Attention Similarity Across Language Models: A Latent Commonality NeurIPS 2025
In this paper, we explore an important yet previously neglected question: Do context aggregation patterns across Language Models (LMs) share commonalities? While some works have investigated context aggregation or attention weights in LMs, they typically focus on individual models or attention heads, lacking a systematic analysis across multiple LMs to explore their commonalities. In contrast, we focus on the commonalities among LMs, which can deepen our understanding of LMs and even facilitate cross-model knowledge transfer. In this work, we introduce the Order-Level Attention (OLA) derived from the order-wise decomposition of Attention Rollout and reveal that the OLA at the same order across LMs exhibits significant similarities. Furthermore, we discover an implicit mapping between OLA and syntactic knowledge. Based on these two findings, we propose the Transferable OLA Adapter (TOA), a training-free cross-LM adapter transfer method. Specifically, we treat the OLA as a unified syntactic feature representation and train an adapter that takes OLA as input. Due to the similarities in OLA across LMs, the adapter generalizes to unseen LMs without requiring any parameter updates. Extensive experiments demonstrate that TOA's cross-LM generalization effectively enhances the performance of unseen LMs. Code is available at https://github.com/jinglin-liang/OLAS.
comment: Accepted by NeurIPS 2025
☆ UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian
Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.
comment: 8 pages, 5 figures. XI International conference "Informatics. Culture. Technique." (2025)
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings
In this work, we identify an inherent bias in prevailing LVLM architectures toward the language modality, largely resulting from the common practice of simply appending visual embeddings to the input text sequence. To address this, we propose a simple yet effective method that refines textual embeddings by integrating average-pooled visual features. Our approach demonstrably improves visual grounding and significantly reduces hallucinations on established benchmarks. While average pooling offers a straightforward, robust, and efficient means of incorporating visual information, we believe that more sophisticated fusion methods could further enhance visual grounding and cross-modal alignment. Given that the primary focus of this work is to highlight the modality imbalance and its impact on hallucinations -- and to show that refining textual embeddings with visual information mitigates this issue -- we leave exploration of advanced fusion strategies for future work.
☆ Enhancing Public Speaking Skills in Engineering Students Through AI
This research-to-practice full paper was inspired by the persistent challenge in effective communication among engineering students. Public speaking is a necessary skill for future engineers as they have to communicate technical knowledge with diverse stakeholders. While universities offer courses or workshops, they are unable to offer sustained and personalized training to students. Providing comprehensive feedback on both verbal and non-verbal aspects of public speaking is time-intensive, making consistent and individualized assessment impractical. This study integrates research on verbal and non-verbal cues in public speaking to develop an AI-driven assessment model for engineering students. Our approach combines speech analysis, computer vision, and sentiment detection into a multi-modal AI system that provides assessment and feedback. The model evaluates (1) verbal communication (pitch, loudness, pacing, intonation), (2) non-verbal communication (facial expressions, gestures, posture), and (3) expressive coherence, a novel integration ensuring alignment between speech and body language. Unlike previous systems that assess these aspects separately, our model fuses multiple modalities to deliver personalized, scalable feedback. Preliminary testing demonstrated that our AI-generated feedback was moderately aligned with expert evaluations. Among the state-of-the-art AI models evaluated, all of which were Large Language Models (LLMs), including Gemini and OpenAI models, Gemini Pro emerged as the best-performing, showing the strongest agreement with human annotators. By eliminating reliance on human evaluators, this AI-driven public speaking trainer enables repeated practice, helping students naturally align their speech with body language and emotion, crucial for impactful and professional communication.
☆ Acquiring Common Chinese Emotional Events Using Large Language Model
Knowledge about emotional events is an important kind of knowledge which has been applied to improve the effectiveness of different applications. However, emotional events cannot be easily acquired, especially common or generalized emotional events that are context-independent. The goal of this paper is to obtain common emotional events in Chinese language such as "win a prize" and "be criticized". Our approach begins by collecting a comprehensive list of Chinese emotional event indicators. Then, we generate emotional events by prompting a Chinese large language model (LLM) using these indicators. To ensure the quality of these emotional events, we train a filter to discard invalid generated results. We also classify these emotional events as being positive events and negative events using different techniques. Finally, we harvest a total of 102,218 high-quality common emotional events with sentiment polarity labels, which is the only large-scale commonsense knowledge base of emotional events in Chinese language. Intrinsic evaluation results show that the proposed method in this paper can be effectively used to acquire common Chinese emotional events. An extrinsic use case also demonstrates the strong potential of common emotional events in the field of emotion cause extraction (ECE). Related resources including emotional event indicators and emotional events will be released after the publication of this paper.
comment: I am the second author (Guangzheng Zhu) and I am submitting this paper on behalf of all co-authors
☆ Too Good to be Bad: On the Failure of LLMs to Role-Play Villains
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
☆ ORCHID: Orchestrated Retrieval-Augmented Classification with Human-in-the-Loop Intelligent Decision-Making for High-Risk Property
High-Risk Property (HRP) classification is critical at U.S. Department of Energy (DOE) sites, where inventories include sensitive and often dual-use equipment. Compliance must track evolving rules designated by various export control policies to make transparent and auditable decisions. Traditional expert-only workflows are time-consuming, backlog-prone, and struggle to keep pace with shifting regulatory boundaries. We demo ORCHID, a modular agentic system for HRP classification that pairs retrieval-augmented generation (RAG) with human oversight to produce policy-based outputs that can be audited. Small cooperating agents, retrieval, description refiner, classifier, validator, and feedback logger, coordinate via agent-to-agent messaging and invoke tools through the Model Context Protocol (MCP) for model-agnostic on-premise operation. The interface follows an Item to Evidence to Decision loop with step-by-step reasoning, on-policy citations, and append-only audit bundles (run-cards, prompts, evidence). In preliminary tests on real HRP cases, ORCHID improves accuracy and traceability over a non-agentic baseline while deferring uncertain items to Subject Matter Experts (SMEs). The demonstration shows single item submission, grounded citations, SME feedback capture, and exportable audit artifacts, illustrating a practical path to trustworthy LLM assistance in sensitive DOE compliance workflows.
☆ LoPT: Lossless Parallel Tokenization Acceleration for Long Context Inference of Large Language Model
Long context inference scenarios have become increasingly important for large language models, yet they introduce significant computational latency. While prior research has optimized long-sequence inference through operators, model architectures, and system frameworks, tokenization remains an overlooked bottleneck. Existing parallel tokenization methods accelerate processing through text segmentation and multi-process tokenization, but they suffer from inconsistent results due to boundary artifacts that occur after merging. To address this, we propose LoPT, a novel Lossless Parallel Tokenization framework that ensures output identical to standard sequential tokenization. Our approach employs character-position-based matching and dynamic chunk length adjustment to align and merge tokenized segments accurately. Extensive experiments across diverse long-text datasets demonstrate that LoPT achieves significant speedup while guaranteeing lossless tokenization. We also provide theoretical proof of consistency and comprehensive analytical studies to validate the robustness of our method.
☆ Diagnosing and Mitigating Semantic Inconsistencies in Wikidata's Classification Hierarchy
Wikidata is currently the largest open knowledge graph on the web, encompassing over 120 million entities. It integrates data from various domain-specific databases and imports a substantial amount of content from Wikipedia, while also allowing users to freely edit its content. This openness has positioned Wikidata as a central resource in knowledge graph research and has enabled convenient knowledge access for users worldwide. However, its relatively loose editorial policy has also led to a degree of taxonomic inconsistency. Building on prior work, this study proposes and applies a novel validation method to confirm the presence of classification errors, over-generalized subclass links, and redundant connections in specific domains of Wikidata. We further introduce a new evaluation criterion for determining whether such issues warrant correction and develop a system that allows users to inspect the taxonomic relationships of arbitrary Wikidata entities-leveraging the platform's crowdsourced nature to its full potential.
☆ AgentExpt: Automating AI Experiment Design with LLM-based Resource Retrieval Agent
Large language model agents are becoming increasingly capable at web-centric tasks such as information retrieval, complex reasoning. These emerging capabilities have given rise to surge research interests in developing LLM agent for facilitating scientific quest. One key application in AI research is to automate experiment design through agentic dataset and baseline retrieval. However, prior efforts suffer from limited data coverage, as recommendation datasets primarily harvest candidates from public portals and omit many datasets actually used in published papers, and from an overreliance on content similarity that biases model toward superficial similarity and overlooks experimental suitability. Harnessing collective perception embedded in the baseline and dataset citation network, we present a comprehensive framework for baseline and dataset recommendation. First, we design an automated data-collection pipeline that links roughly one hundred thousand accepted papers to the baselines and datasets they actually used. Second, we propose a collective perception enhanced retriever. To represent the position of each dataset or baseline within the scholarly network, it concatenates self-descriptions with aggregated citation contexts. To achieve efficient candidate recall, we finetune an embedding model on these representations. Finally, we develop a reasoning-augmented reranker that exact interaction chains to construct explicit reasoning chains and finetunes a large language model to produce interpretable justifications and refined rankings. The dataset we curated covers 85\% of the datasets and baselines used at top AI conferences over the past five years. On our dataset, the proposed method outperforms the strongest prior baseline with average gains of +5.85\% in Recall@20, +8.30\% in HitRate@5. Taken together, our results advance reliable, interpretable automation of experimental design.
comment: 10 pages
☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
☆ SDS KoPub VDR: A Benchmark Dataset for Visual Document Retrieval in Korean Public Documents
Existing benchmarks for visual document retrieval (VDR) largely overlook non-English languages and the structural complexity of official publications. To address this critical gap, we introduce SDS KoPub VDR, the first large-scale, publicly available benchmark for retrieving and understanding Korean public documents. The benchmark is built upon a corpus of 361 real-world documents (40,781 pages), including 256 files under the KOGL Type 1 license and 105 from official legal portals, capturing complex visual elements like tables, charts, and multi-column layouts. To establish a challenging and reliable evaluation set, we constructed 600 query-page-answer triples. These were initially generated using multimodal models (e.g., GPT-4o) and subsequently underwent a rigorous human verification and refinement process to ensure factual accuracy and contextual relevance. The queries span six major public domains and are systematically categorized by the reasoning modality required: text-based, visual-based (e.g., chart interpretation), and cross-modal. We evaluate SDS KoPub VDR on two complementary tasks that reflect distinct retrieval paradigms: (1) text-only retrieval, which measures a model's ability to locate relevant document pages based solely on textual signals, and (2) multimodal retrieval, which assesses retrieval performance when visual features (e.g., tables, charts, and layouts) are jointly leveraged alongside text. This dual-task evaluation reveals substantial performance gaps, particularly in multimodal scenarios requiring cross-modal reasoning, even for state-of-the-art models. As a foundational resource, SDS KoPub VDR not only enables rigorous and fine-grained evaluation across textual and multimodal retrieval tasks but also provides a clear roadmap for advancing multimodal AI in complex, real-world document intelligence.
comment: 27 pages, 15 figures, 6 tables
☆ Association via Entropy Reduction
Prior to recent successes using neural networks, term frequency-inverse document frequency (tf-idf) was clearly regarded as the best choice for identifying documents related to a query. We provide a different score, aver, and observe, on a dataset with ground truth marking for association, that aver does do better at finding assciated pairs than tf-idf. This example involves finding associated vertices in a large graph and that may be an area where neural networks are not currently an obvious best choice. Beyond this one anecdote, we observe that (1) aver has a natural threshold for declaring pairs as unassociated while tf-idf does not, (2) aver can distinguish between pairs of documents for which tf-idf gives a score of 1.0, (3) aver can be applied to larger collections of documents than pairs while tf-idf cannot, and (4) that aver is derived from entropy under a simple statistical model while tf-idf is a construction designed to achieve a certain goal and hence aver may be more "natural." To be fair, we also observe that (1) writing down and computing the aver score for a pair is more complex than for tf-idf and (2) that the fact that the aver score is naturally scale-free makes it more complicated to interpret aver scores.
♻ ☆ TRACE: Textual Relevance Augmentation and Contextual Encoding for Multimodal Hate Detection AAAI 2026
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. To tackle these challenges, we introduce TRACE, a hierarchical multimodal framework that leverages visually grounded context augmentation, along with a novel caption-scoring network to emphasize hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder. Our experiments demonstrate that selectively fine-tuning deeper text encoder layers significantly enhances performance compared to simpler projection-layer fine-tuning methods. Specifically, our framework achieves state-of-the-art accuracy (0.807) and F1-score (0.806) on the widely-used Hateful Memes dataset, matching the performance of considerably larger models while maintaining efficiency. Moreover, it achieves superior generalization on the MultiOFF offensive meme dataset (F1-score 0.673), highlighting robustness across meme categories. Additional analyses confirm that robust visual grounding and nuanced text representations significantly reduce errors caused by benign confounders. We publicly release our code to facilitate future research.
comment: Accepted to Special Track on AI for Social Impact (AISI) at AAAI 2026
♻ ☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models ACM MM 2025
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
comment: Accepted to ACM MM 2025; 14 pages including Appendix
♻ ☆ To Word Senses and Beyond: Inducing Concepts with Contextualized Language Models EMNLP 2024
Polysemy and synonymy are two crucial interrelated facets of lexical ambiguity. While both phenomena are widely documented in lexical resources and have been studied extensively in NLP, leading to dedicated systems, they are often being considered independently in practical problems. While many tasks dealing with polysemy (e.g. Word Sense Disambiguation or Induction) highlight the role of word's senses, the study of synonymy is rooted in the study of concepts, i.e. meanings shared across the lexicon. In this paper, we introduce Concept Induction, the unsupervised task of learning a soft clustering among words that defines a set of concepts directly from data. This task generalizes Word Sense Induction. We propose a bi-level approach to Concept Induction that leverages both a local lemma-centric view and a global cross-lexicon view to induce concepts. We evaluate the obtained clustering on SemCor's annotated data and obtain good performance (BCubed F1 above 0.60). We find that the local and the global levels are mutually beneficial to induce concepts and also senses in our setting. Finally, we create static embeddings representing our induced concepts and use them on the Word-in-Context task, obtaining competitive performance with the State-of-the-Art.
comment: Published in EMNLP 2024 main conference proceedings
♻ ☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
♻ ☆ P-ReMIS: Pragmatic Reasoning in Mental Health and a Social Implication
Although explainability and interpretability have received significant attention in artificial intelligence (AI) and natural language processing (NLP) for mental health, reasoning has not been examined in the same depth. Addressing this gap is essential to bridge NLP and mental health through interpretable and reasoning-capable AI systems. To this end, we investigate the pragmatic reasoning capability of large-language models (LLMs) in the mental health domain. We introduce PRiMH dataset, and propose pragmatic reasoning tasks in mental health with pragmatic implicature and presupposition phenomena. In particular, we formulate two tasks in implicature and one task in presupposition. To benchmark the dataset and the tasks presented, we consider four models: Llama3.1, Mistral, MentaLLaMa, and Qwen. The results of the experiments suggest that Mistral and Qwen show substantial reasoning abilities in the domain. Subsequently, we study the behavior of MentaLLaMA on the proposed reasoning tasks with the rollout attention mechanism. In addition, we also propose three StiPRompts to study the stigma around mental health with the state-of-the-art LLMs, GPT4o-mini, Deepseek-chat, and Claude-3.5-haiku. Our evaluated findings show that Claude-3.5-haiku deals with stigma more responsibly compared to the other two LLMs.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ Inference-Time Hyper-Scaling with KV Cache Compression NeurIPS 2025
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference latency and memory load. For instance, we enhance Qwen-R1 32B by 12.0 points on AIME 24, 8.6 on GPQA, and 9.7 on LiveCodeBench on average for an equivalent number of memory reads.
comment: Accepted to NeurIPS 2025
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ What Can String Probability Tell Us About Grammaticality?
What have language models (LMs) learned about grammar? This question remains hotly debated, with major ramifications for linguistic theory. However, since probability and grammaticality are distinct notions in linguistics, it is not obvious what string probabilities can reveal about an LM's underlying grammatical knowledge. We present a theoretical analysis of the relationship between grammar, meaning, and string probability, based on simple assumptions about the generative process of corpus data. Our framework makes three predictions, which we validate empirically using 280K sentence pairs in English and Chinese: (1) correlation between the probability of strings within minimal pairs, i.e., string pairs with minimal semantic differences; (2) correlation between models' and humans' deltas within minimal pairs; and (3) poor separation in probability space between unpaired grammatical and ungrammatical strings. Our analyses give theoretical grounding for using probability to learn about LMs' structural knowledge, and suggest directions for future work in LM grammatical evaluation.
♻ ☆ Are Humans as Brittle as Large Language Models?
The output of large language models (LLMs) is unstable, due both to non-determinism of the decoding process as well as to prompt brittleness. While the intrinsic non-determinism of LLM generation may mimic existing uncertainty in human annotations through distributional shifts in outputs, it is largely assumed, yet unexplored, that the prompt brittleness effect is unique to LLMs. This raises the question: do human annotators show similar sensitivity to prompt changes? If so, should prompt brittleness in LLMs be considered problematic? One may alternatively hypothesize that prompt brittleness correctly reflects human annotation variances. To fill this research gap, we systematically compare the effects of prompt modifications on LLMs and identical instruction modifications for human annotators, focusing on the question of whether humans are similarly sensitive to prompt perturbations. To study this, we prompt both humans and LLMs for a set of text classification tasks conditioned on prompt variations. Our findings indicate that both humans and LLMs exhibit increased brittleness in response to specific types of prompt modifications, particularly those involving the substitution of alternative label sets or label formats. However, the distribution of human judgments is less affected by typographical errors and reversed label order than that of LLMs.
♻ ☆ Policy-as-Prompt: Turning AI Governance Rules into Guardrails for AI Agents
As autonomous AI agents are used in regulated and safety-critical settings, organizations need effective ways to turn policy into enforceable controls. We introduce a regulatory machine learning framework that converts unstructured design artifacts (like PRDs, TDDs, and code) into verifiable runtime guardrails. Our Policy as Prompt method reads these documents and risk controls to build a source-linked policy tree. This tree is then compiled into lightweight, prompt-based classifiers for real-time runtime monitoring. The system is built to enforce least privilege and data minimization. For conformity assessment, it provides complete provenance, traceability, and audit logging, all integrated with a human-in-the-loop review process. Evaluations show our system reduces prompt-injection risk, blocks out-of-scope requests, and limits toxic outputs. It also generates auditable rationales aligned with AI governance frameworks. By treating policies as executable prompts (a policy-as-code for agents), this approach enables secure-by-design deployment, continuous compliance, and scalable AI safety and AI security assurance for regulatable ML.
comment: Accepted at 3rd Regulatable ML Workshop at NEURIPS 2025
♻ ☆ MorphTok: Morphologically Grounded Tokenization for Indian Languages ICML 2025
Tokenization is a crucial step in NLP, especially with the rise of large language models (LLMs), impacting downstream performance, computational cost, and efficiency. Existing LLMs rely on the classical Byte-pair Encoding (BPE) algorithm for subword tokenization that greedily merges frequent character bigrams, often leading to segmentation that does not align with linguistically meaningful units. To address this, we propose morphology-aware segmentation as a pre-tokenization step before applying BPE. To facilitate morphology-aware segmentation, we create a novel dataset for Hindi and Marathi, incorporating sandhi splitting to enhance the subword tokenization. Experiments on downstream tasks show that morphologically grounded tokenization improves machine translation and language modeling performance. Additionally, to handle the dependent vowels common in syllable-based writing systems used by Indic languages, we propose Constrained BPE (CBPE), an extension to the standard BPE algorithm incorporating script-specific constraints. In particular, CBPE handles dependent vowels to form a cohesive unit with other characters instead of occurring as a single unit. Our results show that CBPE achieves a 1.68\% reduction in fertility scores while maintaining comparable or improved downstream performance in machine translation and language modeling, offering a computationally efficient alternative to standard BPE. Moreover, to evaluate segmentation across different tokenization algorithms, we introduce a new human evaluation metric, \textit{EvalTok}, enabling more human-grounded assessment.
comment: Accepted at Tokenization Workshop (TokShop), ICML 2025
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ Turkish Native Language Identification V2
This paper presents the first application of Native Language Identification (NLI) for the Turkish language. NLI is the task of automatically identifying an individual's native language (L1) based on their writing or speech in a non-native language (L2). While most NLI research has focused on L2 English, our study extends this scope to L2 Turkish by analyzing a corpus of texts written by native speakers of Albanian, Arabic and Persian. We leverage a cleaned version of the Turkish Learner Corpus and demonstrate the effectiveness of syntactic features, comparing a structural Part-of-Speech n-gram model to a hybrid model that retains function words. Our models achieve promising results, and we analyze the most predictive features to reveal L1-specific transfer effects. We make our data and code publicly available for further study.
comment: Turkish Native Language Identification V2: L1 Influence of Arabic, Persian, and Albanian
♻ ☆ Mind the Blind Spots: A Focus-Level Evaluation Framework for LLM Reviews EMNLP 2025
Peer review underpins scientific progress, but it is increasingly strained by reviewer shortages and growing workloads. Large Language Models (LLMs) can automatically draft reviews now, but determining whether LLM-generated reviews are trustworthy requires systematic evaluation. Researchers have evaluated LLM reviews at either surface-level (e.g., BLEU and ROUGE) or content-level (e.g., specificity and factual accuracy). Yet it remains uncertain whether LLM-generated reviews attend to the same critical facets that human experts weigh -- the strengths and weaknesses that ultimately drive an accept-or-reject decision. We introduce a focus-level evaluation framework that operationalizes the focus as a normalized distribution of attention across predefined facets in paper reviews. Based on the framework, we developed an automatic focus-level evaluation pipeline based on two sets of facets: target (e.g., problem, method, and experiment) and aspect (e.g., validity, clarity, and novelty), leveraging 676 paper reviews (https://figshare.com/s/d5adf26c802527dd0f62) from OpenReview that consists of 3,657 strengths and weaknesses identified from human experts. The comparison of focus distributions between LLMs and human experts showed that the off-the-shelf LLMs consistently have a more biased focus towards examining technical validity while significantly overlooking novelty assessment when criticizing papers.
comment: EMNLP 2025 Oral
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Extracting narrative signals from public discourse: a network-based approach
Narratives are key interpretative devices by which humans make sense of political reality. As the significance of narratives for understanding current societal issues such as polarization and misinformation becomes increasingly evident, there is a growing demand for methods that support their empirical analysis. To this end, we propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals from digital textual corpora, based on Abstract Meaning Representation (AMR). The formalism and method introduced here specifically cater to the study of political narratives that figure in texts from digital media such as archived political speeches, social media posts, transcripts of parliamentary debates, and political manifestos on party websites. We approach the study of such political narratives as a problem of information retrieval: starting from a textual corpus, we first extract a graph-like representation of the meaning of each sentence in the corpus using AMR. Drawing on transferable concepts from narratology, we then apply a set of heuristics to filter these graphs for representations of 1) actors and their relationships, 2) the events in which these actors figure, and 3) traces of the perspectivization of these events. We approach these references to actors, events, and instances of perspectivization as core narrative signals that allude to larger political narratives. By systematically analyzing and re-assembling these signals into networks that guide the researcher to the relevant parts of the text, the underlying narratives can be reconstructed through a combination of distant and close reading. A case study of State of the European Union addresses (2010 -- 2023) demonstrates how the formalism can be used to inductively surface signals of political narratives from public discourse.
comment: 27 pages, 6 figures
♻ ☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy RL, sustaining continuous scaling across $3,000$ training steps and $81,204$ GPU-hours, where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ MetaRAG: Metamorphic Testing for Hallucination Detection in RAG Systems
Large Language Models (LLMs) are increasingly deployed in enterprise applications, yet their reliability remains limited by hallucinations, i.e., confident but factually incorrect information. Existing detection approaches, such as SelfCheckGPT and MetaQA, primarily target standalone LLMs and do not address the unique challenges of Retrieval-Augmented Generation (RAG) systems, where responses must be consistent with retrieved evidence. We therefore present MetaRAG, a metamorphic testing framework for hallucination detection in Retrieval-Augmented Generation (RAG) systems. MetaRAG operates in a real-time, unsupervised, black-box setting, requiring neither ground-truth references nor access to model internals, making it suitable for proprietary and high-stakes domains. The framework proceeds in four stages: (1) decompose answers into atomic factoids, (2) generate controlled mutations of each factoid using synonym and antonym substitutions, (3) verify each variant against the retrieved context (synonyms are expected to be entailed and antonyms contradicted), and (4) aggregate penalties for inconsistencies into a response-level hallucination score. Crucially for identity-aware AI, MetaRAG localizes unsupported claims at the factoid span where they occur (e.g., pregnancy-specific precautions, LGBTQ+ refugee rights, or labor eligibility), allowing users to see flagged spans and enabling system designers to configure thresholds and guardrails for identity-sensitive queries. Experiments on a proprietary enterprise dataset illustrate the effectiveness of MetaRAG for detecting hallucinations and enabling trustworthy deployment of RAG-based conversational agents. We also outline a topic-based deployment design that translates MetaRAG's span-level scores into identity-aware safeguards; this design is discussed but not evaluated in our experiments.
comment: Identity-Aware AI workshop at 28th European Conference on Artificial Intelligence, October 25, 2025, Bologna, Italy
♻ ☆ DRQA: Dynamic Reasoning Quota Allocation for Controlling Overthinking in Reasoning Large Language Models
Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-R1, have recently demonstrated remarkable capabilities by performing structured and multi-step reasoning. However, recent studies reveal that RLLMs often suffer from overthinking, i.e., producing unnecessarily lengthy reasoning chains even for simple questions, leading to excessive token consumption and computational inefficiency. Interestingly, we observe that when processing multiple questions in batch mode, RLLMs exhibit more resource-efficient behavior by dynamically compressing reasoning steps for easier problems, due to implicit resource competition. Inspired by this, we propose Dynamic Reasoning Quota Allocation (DRQA), a novel method that transfers the benefits of resource competition from batch processing to single-question inference. Specifically, DRQA leverages batch-generated preference data and reinforcement learning to train the model to allocate reasoning resources adaptively. By encouraging the model to internalize a preference for responses that are both accurate and concise, DRQA enables it to generate concise answers for simple questions while retaining sufficient reasoning depth for more challenging ones. Extensive experiments on a wide range of mathematical and scientific reasoning benchmarks demonstrate that DRQA significantly reduces token usage while maintaining, and in many cases improving, answer accuracy. By effectively mitigating the overthinking problem, DRQA offers a promising direction for more efficient and scalable deployment of RLLMs, and we hope it inspires further exploration into fine-grained control of reasoning behaviors.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ Exploring Multimodal Perception in Large Language Models Through Perceptual Strength Ratings
This study investigated whether multimodal large language models can achieve human-like sensory grounding by examining their ability to capture perceptual strength ratings across sensory modalities. We explored how model characteristics (size, multimodal capabilities, architectural generation) influence grounding performance, distributional factor dependencies (word frequency, embeddings, feature distances), and human-model processing differences. We evaluated 21 models from four families (GPT, Gemini, LLaMA, Qwen) using 3,611 words from the Lancaster Sensorimotor Norms through correlation, distance metrics, and qualitative analysis. Results showed that larger (6 out of 8 comparisons), multimodal (5 of 7), and newer models (5 of 8) generally outperformed their smaller, text-based, and older counterparts. Top models achieved 85-90% accuracy and 0.58-0.65 correlations with human ratings, demonstrating substantial similarity. Moreover, distributional factors showed minimal impact, not exceeding human dependency levels. However, despite strong alignment, models were not identical to humans, as even top performers showed differences in distance and correlation measures, with qualitative analysis revealing processing patterns related to absent sensory grounding. Additionally, it remains questionable whether introducing multimodality resolves this grounding deficit. Although multimodality improved performance, it seems to provide similar information as massive text rather than qualitatively different data, as benefits occurred across unrelated sensory dimensions and massive text-only models achieved comparable results. Our findings demonstrate that while advanced LLMs can approximate human sensory-linguistic associations through statistical learning, they still differ from human embodied cognition in processing mechanisms, even with multimodal integration.
comment: Published in IEEE Access
♻ ☆ NMIXX: Domain-Adapted Neural Embeddings for Cross-Lingual eXploration of Finance CIKM 2025
General-purpose sentence embedding models often struggle to capture specialized financial semantics, especially in low-resource languages like Korean, due to domain-specific jargon, temporal meaning shifts, and misaligned bilingual vocabularies. To address these gaps, we introduce NMIXX (Neural eMbeddings for Cross-lingual eXploration of Finance), a suite of cross-lingual embedding models fine-tuned with 18.8K high-confidence triplets that pair in-domain paraphrases, hard negatives derived from a semantic-shift typology, and exact Korean-English translations. Concurrently, we release KorFinSTS, a 1,921-pair Korean financial STS benchmark spanning news, disclosures, research reports, and regulations, designed to expose nuances that general benchmarks miss. When evaluated against seven open-license baselines, NMIXX's multilingual bge-m3 variant achieves Spearman's rho gains of +0.10 on English FinSTS and +0.22 on KorFinSTS, outperforming its pre-adaptation checkpoint and surpassing other models by the largest margin, while revealing a modest trade-off in general STS performance. Our analysis further shows that models with richer Korean token coverage adapt more effectively, underscoring the importance of tokenizer design in low-resource, cross-lingual settings. By making both models and the benchmark publicly available, we provide the community with robust tools for domain-adapted, multilingual representation learning in finance.
comment: Accepted at FinAI@CIKM 2025
♻ ☆ Fine-Tuning MedGemma for Clinical Captioning to Enhance Multimodal RAG over Malaysia CPGs
Retrieval-Augmented Generation systems are essential for providing fact-based guidance from Malaysian Clinical Practice Guidelines. However, their effectiveness with image-based queries is limited, as general Vision-Language Model captions often lack clinical specificity and factual grounding. This study proposes and validates a framework to specialize the MedGemma model for generating high-fidelity captions that serve as superior queries. To overcome data scarcity, we employ a knowledge distillation pipeline to create a synthetic dataset across dermatology, fundus, and chest radiography domains, and fine-tune MedGemma using the parameter-efficient QLoRA method. Performance was rigorously assessed through a dual framework measuring both classification accuracy and, via a novel application of the RAGAS framework, caption faithfulness, relevancy, and correctness. The fine-tuned model demonstrated substantial improvements in classification performance, while RAGAS evaluation confirmed significant gains in caption faithfulness and correctness, validating the models ability to produce reliable, factually grounded descriptions. This work establishes a robust pipeline for specializing medical VLMs and validates the resulting model as a high-quality query generator, laying the groundwork for enhancing multimodal RAG systems in evidence-based clinical decision support.
♻ ☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai AACL 2025
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at the IJCNLP-AACL 2025 (Main)
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ LEME: Open Large Language Models for Ophthalmology with Advanced Reasoning and Clinical Validation
The rising prevalence of eye diseases poses a growing public health burden. Large language models (LLMs) offer a promising path to reduce documentation workload and support clinical decision-making. However, few have been tailored for ophthalmology, and most evaluations focus mainly on knowledge-based QA without clinically relevant benchmarks or real-world validation. Here, we present LEME, a suite of open-weight LLMs developed through a two-stage process: (1) instruction tuning on 200,000 samples from clinical guidelines, textbooks, and case reports to enhance reasoning and task-following, and (2) reinforcement learning with ~30,000 preference labels to enhance accuracy and informativeness. LEME was evaluated on five curated zero-shot benchmarks spanning tasks such as patient QA, consultation, and treatment planning. It outperformed all seven baselines (all p < 0.004), exceeding GPT-4o by 3.32% (absolute ROUGE-L gain). It was further evaluated on three downstream tasks using deidentified patient data, reviewed by clinicians. In patient QA, LEME received the highest ratings from attending clinicians in 3 out of 4 criteria, with scores of 4.67 for factuality, 4.77 for specificity, 4.79 for completeness, and 4.88 for safety (1-5 scale). Its completeness score surpassed that of expert-written answers (4.79 vs. 4.56; p = 0.015). In visual acuity extraction, LEME achieved the highest F1, outperforming LLaMA-3 by 14.1% and Eye-LLaMA by 59.0%. In a pilot evaluation on assessment and treatment planning for diabetic retinopathy, AMD, and glaucoma, LEME received scores of 4.36 for factuality, 4.55 for specificity, 4.42 for completeness, and 4.36 for safety, approaching attending-level performance. All models, data, and code will be released to support further development and clinical translation, laying the groundwork for improved efficiency and patient care
Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation
We introduce Ling 2.0, a series reasoning-oriented language foundation built upon the principle that every activation boosts reasoning capability. Designed to scale from tens of billions to one trillion parameters under a unified Mixture-of-Experts (MoE) paradigm, Ling 2.0 emphasizes high sparsity, cross-scale consistency, and efficiency guided by empirical scaling laws. The series includes three non-thinking (instruct) models - Ling-mini-2.0, Ling-flash-2.0, and Ling-1T - ranging from 16B to 1T total parameters and achieving up to 7-fold active-compute efficiency compared with dense counterparts. Ling 2.0 integrates coordinated innovations across model architecture, pre-training, post-training, and infrastructure: a high-sparsity MoE with MTP for efficient reasoning, reasoning-oriented data and mid-training CoT activation, reinforcement-based fine-tuning (DFT, Evo-CoT), and full-scale FP8 training with fine-grained heterogeneous pipelines. At the trillion scale, Ling-1T establishes a new Pareto frontier of reasoning accuracy versus computational efficiency, demonstrating that sparse activation, when properly aligned with reasoning objectives, enables scalable and efficient intelligence. Collectively, Ling 2.0 provides a coherent, open, and efficient foundation for advancing future reasoning and thinking models, including the Ring series built upon the same base.
comment: Ling 2.0 Technical Report
♻ ☆ SciTopic: Enhancing Topic Discovery in Scientific Literature through Advanced LLM
Topic discovery in scientific literature provides valuable insights for researchers to identify emerging trends and explore new avenues for investigation, facilitating easier scientific information retrieval. Many machine learning methods, particularly deep embedding techniques, have been applied to discover research topics. However, most existing topic discovery methods rely on word embedding to capture the semantics and lack a comprehensive understanding of scientific publications, struggling with complex, high-dimensional text relationships. Inspired by the exceptional comprehension of textual information by large language models (LLMs), we propose an advanced topic discovery method enhanced by LLMs to improve scientific topic identification, namely SciTopic. Specifically, we first build a textual encoder to capture the content from scientific publications, including metadata, title, and abstract. Next, we construct a space optimization module that integrates entropy-based sampling and triplet tasks guided by LLMs, enhancing the focus on thematic relevance and contextual intricacies between ambiguous instances. Then, we propose to fine-tune the textual encoder based on the guidance from the LLMs by optimizing the contrastive loss of the triplets, forcing the text encoder to better discriminate instances of different topics. Finally, extensive experiments conducted on three real-world datasets of scientific publications demonstrate that SciTopic outperforms the state-of-the-art (SOTA) scientific topic discovery methods, enabling researchers to gain deeper and faster insights.
♻ ☆ Re:Member: Emotional Question Generation from Personal Memories
We present Re:Member, a system that explores how emotionally expressive, memory-grounded interaction can support more engaging second language (L2) learning. By drawing on users' personal videos and generating stylized spoken questions in the target language, Re:Member is designed to encourage affective recall and conversational engagement. The system aligns emotional tone with visual context, using expressive speech styles such as whispers or late-night tones to evoke specific moods. It combines WhisperX-based transcript alignment, 3-frame visual sampling, and Style-BERT-VITS2 for emotional synthesis within a modular generation pipeline. Designed as a stylized interaction probe, Re:Member highlights the role of affect and personal media in learner-centered educational technologies.
♻ ☆ Learning Dynamics of Meta-Learning in Small Model Pretraining AACL 2025
Large language models are powerful but costly. We ask whether meta-learning can make the pretraining of small language models not only better but also more interpretable. We integrate first-order MAML with subset-masked LM pretraining, producing four LLama-style decoder-only models (11M-570M params), and evaluate it on a fundamental NLP task with many settings and real-world applications. Compared with vanilla training, our model (i) reaches the same loss up to 1.6x sooner, (ii) improves F1 on multilingual Universal NER under equal compute, and (iii) makes the training dynamics easy to read: first the network's representations fan out ("diversify") and later they collapse into a smaller, shared subspace ("compress"). This two-stage shift shows up as a rise-and-fall in both effective-rank curves and attention-head entropy. The same curves pinpoint which layers specialise earliest and which later reconverge, giving a compact, interpretable signature of meta-adaptation. Code, checkpoints and WandB logs are released.
comment: Accepted (oral) to Student Research Workshop at IJCNLP-AACL 2025
Computer Vision and Pattern Recognition 97
☆ Visual Spatial Tuning
Capturing spatial relationships from visual inputs is a cornerstone of human-like general intelligence. Several previous studies have tried to enhance the spatial awareness of Vision-Language Models (VLMs) by adding extra expert encoders, which brings extra overhead and usually harms general capabilities. To enhance the spatial ability in general architectures, we introduce Visual Spatial Tuning (VST), a comprehensive framework to cultivate VLMs with human-like visuospatial abilities, from spatial perception to reasoning. We first attempt to enhance spatial perception in VLMs by constructing a large-scale dataset termed VST-P, which comprises 4.1 million samples spanning 19 skills across single views, multiple images, and videos. Then, we present VST-R, a curated dataset with 135K samples that instruct models to reason in space. In particular, we adopt a progressive training pipeline: supervised fine-tuning to build foundational spatial knowledge, followed by reinforcement learning to further improve spatial reasoning abilities. Without the side-effect to general capabilities, the proposed VST consistently achieves state-of-the-art results on several spatial benchmarks, including $34.8\%$ on MMSI-Bench and $61.2\%$ on VSIBench. It turns out that the Vision-Language-Action models can be significantly enhanced with the proposed spatial tuning paradigm, paving the way for more physically grounded AI.
☆ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.
comment: 22 pages, 17 figures. Official code: https://github.com/Time-Search/TimeSearch-R
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ GroupKAN: Rethinking Nonlinearity with Grouped Spline-based KAN Modeling for Efficient Medical Image Segmentation
Medical image segmentation requires models that are accurate, lightweight, and interpretable. Convolutional architectures lack adaptive nonlinearity and transparent decision-making, whereas Transformer architectures are hindered by quadratic complexity and opaque attention mechanisms. U-KAN addresses these challenges using Kolmogorov-Arnold Networks, achieving higher accuracy than both convolutional and attention-based methods, fewer parameters than Transformer variants, and improved interpretability compared to conventional approaches. However, its O(C^2) complexity due to full-channel transformations limits its scalability as the number of channels increases. To overcome this, we introduce GroupKAN, a lightweight segmentation network that incorporates two novel, structured functional modules: (1) Grouped KAN Transform, which partitions channels into G groups for multivariate spline mappings, reducing complexity to O(C^2/G), and (2) Grouped KAN Activation, which applies shared spline-based mappings within each channel group for efficient, token-wise nonlinearity. Evaluated on three medical benchmarks (BUSI, GlaS, and CVC), GroupKAN achieves an average IoU of 79.80 percent, surpassing U-KAN by +1.11 percent while requiring only 47.6 percent of the parameters (3.02M vs 6.35M), and shows improved interpretability.
☆ Semantic-Guided Natural Language and Visual Fusion for Cross-Modal Interaction Based on Tiny Object Detection
This paper introduces a cutting-edge approach to cross-modal interaction for tiny object detection by combining semantic-guided natural language processing with advanced visual recognition backbones. The proposed method integrates the BERT language model with the CNN-based Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN-Net), incorporating innovative backbone architectures such as ELAN, MSP, and CSP to optimize feature extraction and fusion. By employing lemmatization and fine-tuning techniques, the system aligns semantic cues from textual inputs with visual features, enhancing detection precision for small and complex objects. Experimental validation using the COCO and Objects365 datasets demonstrates that the model achieves superior performance. On the COCO2017 validation set, it attains a 52.6% average precision (AP), outperforming YOLO-World significantly while maintaining half the parameter consumption of Transformer-based models like GLIP. Several test on different of backbones such ELAN, MSP, and CSP further enable efficient handling of multi-scale objects, ensuring scalability and robustness in resource-constrained environments. This study underscores the potential of integrating natural language understanding with advanced backbone architectures, setting new benchmarks in object detection accuracy, efficiency, and adaptability to real-world challenges.
☆ EventFlow: Real-Time Neuromorphic Event-Driven Classification of Two-Phase Boiling Flow Regimes
Flow boiling is an efficient heat transfer mechanism capable of dissipating high heat loads with minimal temperature variation, making it an ideal thermal management method. However, sudden shifts between flow regimes can disrupt thermal performance and system reliability, highlighting the need for accurate and low-latency real-time monitoring. Conventional optical imaging methods are limited by high computational demands and insufficient temporal resolution, making them inadequate for capturing transient flow behavior. To address this, we propose a real-time framework based on signals from neuromorphic sensors for flow regime classification. Neuromorphic sensors detect changes in brightness at individual pixels, which typically correspond to motion at edges, enabling fast and efficient detection without full-frame reconstruction, providing event-based information. We develop five classification models using both traditional image data and event-based data, demonstrating that models leveraging event data outperform frame-based approaches due to their sensitivity to dynamic flow features. Among these models, the event-based long short-term memory model provides the best balance between accuracy and speed, achieving 97.6% classification accuracy with a processing time of 0.28 ms. Our asynchronous processing pipeline supports continuous, low-latency predictions and delivers stable output through a majority voting mechanisms, enabling reliable real-time feedback for experimental control and intelligent thermal management.
comment: 19 pages, 6 figures, Under review in Droplet (Manuscript ID: DRO-2025-0045.R1)
☆ Photo Dating by Facial Age Aggregation
We introduce a novel method for Photo Dating which estimates the year a photograph was taken by leveraging information from the faces of people present in the image. To facilitate this research, we publicly release CSFD-1.6M, a new dataset containing over 1.6 million annotated faces, primarily from movie stills, with identity and birth year annotations. Uniquely, our dataset provides annotations for multiple individuals within a single image, enabling the study of multi-face information aggregation. We propose a probabilistic framework that formally combines visual evidence from modern face recognition and age estimation models, and career-based temporal priors to infer the photo capture year. Our experiments demonstrate that aggregating evidence from multiple faces consistently improves the performance and the approach significantly outperforms strong, scene-based baselines, particularly for images containing several identifiable individuals.
☆ SiamMM: A Mixture Model Perspective on Deep Unsupervised Learning
Recent studies have demonstrated the effectiveness of clustering-based approaches for self-supervised and unsupervised learning. However, the application of clustering is often heuristic, and the optimal methodology remains unclear. In this work, we establish connections between these unsupervised clustering methods and classical mixture models from statistics. Through this framework, we demonstrate significant enhancements to these clustering methods, leading to the development of a novel model named SiamMM. Our method attains state-of-the-art performance across various self-supervised learning benchmarks. Inspection of the learned clusters reveals a strong resemblance to unseen ground truth labels, uncovering potential instances of mislabeling.
☆ The Potential of Copernicus Satellites for Disaster Response: Retrieving Building Damage from Sentinel-1 and Sentinel-2
Natural disasters demand rapid damage assessment to guide humanitarian response. Here, we investigate whether medium-resolution Earth observation images from the Copernicus program can support building damage assessment, complementing very-high resolution imagery with often limited availability. We introduce xBD-S12, a dataset of 10,315 pre- and post-disaster image pairs from both Sentinel-1 and Sentinel-2, spatially and temporally aligned with the established xBD benchmark. In a series of experiments, we demonstrate that building damage can be detected and mapped rather well in many disaster scenarios, despite the moderate 10$\,$m ground sampling distance. We also find that, for damage mapping at that resolution, architectural sophistication does not seem to bring much advantage: more complex model architectures tend to struggle with generalization to unseen disasters, and geospatial foundation models bring little practical benefit. Our results suggest that Copernicus images are a viable data source for rapid, wide-area damage assessment and could play an important role alongside VHR imagery. We release the xBD-S12 dataset, code, and trained models to support further research.
☆ How Many Tokens Do 3D Point Cloud Transformer Architectures Really Need? NeurIPS 2025
Recent advances in 3D point cloud transformers have led to state-of-the-art results in tasks such as semantic segmentation and reconstruction. However, these models typically rely on dense token representations, incurring high computational and memory costs during training and inference. In this work, we present the finding that tokens are remarkably redundant, leading to substantial inefficiency. We introduce gitmerge3D, a globally informed graph token merging method that can reduce the token count by up to 90-95% while maintaining competitive performance. This finding challenges the prevailing assumption that more tokens inherently yield better performance and highlights that many current models are over-tokenized and under-optimized for scalability. We validate our method across multiple 3D vision tasks and show consistent improvements in computational efficiency. This work is the first to assess redundancy in large-scale 3D transformer models, providing insights into the development of more efficient 3D foundation architectures. Our code and checkpoints are publicly available at https://gitmerge3d.github.io
comment: Accepted at NeurIPS 2025
☆ Shared Latent Representation for Joint Text-to-Audio-Visual Synthesis
We propose a text-to-talking-face synthesis framework leveraging latent speech representations from HierSpeech++. A Text-to-Vec module generates Wav2Vec2 embeddings from text, which jointly condition speech and face generation. To handle distribution shifts between clean and TTS-predicted features, we adopt a two-stage training: pretraining on Wav2Vec2 embeddings and finetuning on TTS outputs. This enables tight audio-visual alignment, preserves speaker identity, and produces natural, expressive speech and synchronized facial motion without ground-truth audio at inference. Experiments show that conditioning on TTS-predicted latent features outperforms cascaded pipelines, improving both lip-sync and visual realism.
☆ Sharing the Learned Knowledge-base to Estimate Convolutional Filter Parameters for Continual Image Restoration
Continual learning is an emerging topic in the field of deep learning, where a model is expected to learn continuously for new upcoming tasks without forgetting previous experiences. This field has witnessed numerous advancements, but few works have been attempted in the direction of image restoration. Handling large image sizes and the divergent nature of various degradation poses a unique challenge in the restoration domain. However, existing works require heavily engineered architectural modifications for new task adaptation, resulting in significant computational overhead. Regularization-based methods are unsuitable for restoration, as different restoration challenges require different kinds of feature processing. In this direction, we propose a simple modification of the convolution layer to adapt the knowledge from previous restoration tasks without touching the main backbone architecture. Therefore, it can be seamlessly applied to any deep architecture without any structural modifications. Unlike other approaches, we demonstrate that our model can increase the number of trainable parameters without significantly increasing computational overhead or inference time. Experimental validation demonstrates that new restoration tasks can be introduced without compromising the performance of existing tasks. We also show that performance on new restoration tasks improves by adapting the knowledge from the knowledge base created by previous restoration tasks. The code is available at https://github.com/aupendu/continual-restore.
comment: This paper has been accepted to ACM ICVGIP 2025
☆ Multi-modal Loop Closure Detection with Foundation Models in Severely Unstructured Environments ICRA 2026
Robust loop closure detection is a critical component of Simultaneous Localization and Mapping (SLAM) algorithms in GNSS-denied environments, such as in the context of planetary exploration. In these settings, visual place recognition often fails due to aliasing and weak textures, while LiDAR-based methods suffer from sparsity and ambiguity. This paper presents MPRF, a multimodal pipeline that leverages transformer-based foundation models for both vision and LiDAR modalities to achieve robust loop closure in severely unstructured environments. Unlike prior work limited to retrieval, MPRF integrates a two-stage visual retrieval strategy with explicit 6-DoF pose estimation, combining DINOv2 features with SALAD aggregation for efficient candidate screening and SONATA-based LiDAR descriptors for geometric verification. Experiments on the S3LI dataset and S3LI Vulcano dataset show that MPRF outperforms state-of-the-art retrieval methods in precision while enhancing pose estimation robustness in low-texture regions. By providing interpretable correspondences suitable for SLAM back-ends, MPRF achieves a favorable trade-off between accuracy, efficiency, and reliability, demonstrating the potential of foundation models to unify place recognition and pose estimation. Code and models will be released at github.com/DLR-RM/MPRF.
comment: Under review for ICRA 2026
☆ PALM: A Dataset and Baseline for Learning Multi-subject Hand Prior
The ability to grasp objects, signal with gestures, and share emotion through touch all stem from the unique capabilities of human hands. Yet creating high-quality personalized hand avatars from images remains challenging due to complex geometry, appearance, and articulation, particularly under unconstrained lighting and limited views. Progress has also been limited by the lack of datasets that jointly provide accurate 3D geometry, high-resolution multiview imagery, and a diverse population of subjects. To address this, we present PALM, a large-scale dataset comprising 13k high-quality hand scans from 263 subjects and 90k multi-view images, capturing rich variation in skin tone, age, and geometry. To show its utility, we present a baseline PALM-Net, a multi-subject prior over hand geometry and material properties learned via physically based inverse rendering, enabling realistic, relightable single-image hand avatar personalization. PALM's scale and diversity make it a valuable real-world resource for hand modeling and related research.
☆ EveryDayVLA: A Vision-Language-Action Model for Affordable Robotic Manipulation ICRA 2026
While Vision-Language-Action (VLA) models map visual inputs and language instructions directly to robot actions, they often rely on costly hardware and struggle in novel or cluttered scenes. We introduce EverydayVLA, a 6-DOF manipulator that can be assembled for under $300, capable of modest payloads and workspace. A single unified model jointly outputs discrete and continuous actions, and our adaptive-horizon ensemble monitors motion uncertainty to trigger on-the-fly re-planning for safe, reliable operation. On LIBERO, EverydayVLA matches state-of-the-art success rates, and in real-world tests it outperforms prior methods by 49% in-distribution and 34.9% out-of-distribution. By combining a state-of-the-art VLA with cost-effective hardware, EverydayVLA democratizes access to a robotic foundation model and paves the way for economical use in homes and research labs alike. Experiment videos and details: https://everydayvla.github.io/
comment: Submitted to ICRA 2026
☆ AI Assisted AR Assembly: Object Recognition and Computer Vision for Augmented Reality Assisted Assembly SC
We present an AI-assisted Augmented Reality assembly workflow that uses deep learning-based object recognition to identify different assembly components and display step-by-step instructions. For each assembly step, the system displays a bounding box around the corresponding components in the physical space, and where the component should be placed. By connecting assembly instructions with the real-time location of relevant components, the system eliminates the need for manual searching, sorting, or labeling of different components before each assembly. To demonstrate the feasibility of using object recognition for AR-assisted assembly, we highlight a case study involving the assembly of LEGO sculptures.
comment: Accepted to the Association for Computing Machinery (ACM) Symposium on Computational Fabrication (SCF '25)
☆ PreResQ-R1: Towards Fine-Grained Rank-and-Score Reinforcement Learning for Visual Quality Assessment via Preference-Response Disentangled Policy Optimization
Visual Quality Assessment (QA) seeks to predict human perceptual judgments of visual fidelity. While recent multimodal large language models (MLLMs) show promise in reasoning about image and video quality, existing approaches mainly rely on supervised fine-tuning or rank-only objectives, resulting in shallow reasoning, poor score calibration, and limited cross-domain generalization. We propose PreResQ-R1, a Preference-Response Disentangled Reinforcement Learning framework that unifies absolute score regression and relative ranking consistency within a single reasoning-driven optimization scheme. Unlike prior QA methods, PreResQ-R1 introduces a dual-branch reward formulation that separately models intra-sample response coherence and inter-sample preference alignment, optimized via Group Relative Policy Optimization (GRPO). This design encourages fine-grained, stable, and interpretable chain-of-thought reasoning about perceptual quality. To extend beyond static imagery, we further design a global-temporal and local-spatial data flow strategy for Video Quality Assessment. Remarkably, with reinforcement fine-tuning on only 6K images and 28K videos, PreResQ-R1 achieves state-of-the-art results across 10 IQA and 5 VQA benchmarks under both SRCC and PLCC metrics, surpassing by margins of 5.30% and textbf2.15% in IQA task, respectively. Beyond quantitative gains, it produces human-aligned reasoning traces that reveal the perceptual cues underlying quality judgments. Code and model are available.
comment: 27 pages, 14 figures, under review as a conference paper
☆ Dense Motion Captioning 3DV 2026
Recent advances in 3D human motion and language integration have primarily focused on text-to-motion generation, leaving the task of motion understanding relatively unexplored. We introduce Dense Motion Captioning, a novel task that aims to temporally localize and caption actions within 3D human motion sequences. Current datasets fall short in providing detailed temporal annotations and predominantly consist of short sequences featuring few actions. To overcome these limitations, we present the Complex Motion Dataset (CompMo), the first large-scale dataset featuring richly annotated, complex motion sequences with precise temporal boundaries. Built through a carefully designed data generation pipeline, CompMo includes 60,000 motion sequences, each composed of multiple actions ranging from at least two to ten, accurately annotated with their temporal extents. We further present DEMO, a model that integrates a large language model with a simple motion adapter, trained to generate dense, temporally grounded captions. Our experiments show that DEMO substantially outperforms existing methods on CompMo as well as on adapted benchmarks, establishing a robust baseline for future research in 3D motion understanding and captioning.
comment: 12 pages, 5 figures, accepted to 3DV 2026
☆ Neural Image Abstraction Using Long Smoothing B-Splines
We integrate smoothing B-splines into a standard differentiable vector graphics (DiffVG) pipeline through linear mapping, and show how this can be used to generate smooth and arbitrarily long paths within image-based deep learning systems. We take advantage of derivative-based smoothing costs for parametric control of fidelity vs. simplicity tradeoffs, while also enabling stylization control in geometric and image spaces. The proposed pipeline is compatible with recent vector graphics generation and vectorization methods. We demonstrate the versatility of our approach with four applications aimed at the generation of stylized vector graphics: stylized space-filling path generation, stroke-based image abstraction, closed-area image abstraction, and stylized text generation.
☆ Canonical Space Representation for 4D Panoptic Segmentation of Articulated Objects
Articulated object perception presents significant challenges in computer vision, particularly because most existing methods ignore temporal dynamics despite the inherently dynamic nature of such objects. The use of 4D temporal data has not been thoroughly explored in articulated object perception and remains unexamined for panoptic segmentation. The lack of a benchmark dataset further hurt this field. To this end, we introduce Artic4D as a new dataset derived from PartNet Mobility and augmented with synthetic sensor data, featuring 4D panoptic annotations and articulation parameters. Building on this dataset, we propose CanonSeg4D, a novel 4D panoptic segmentation framework. This approach explicitly estimates per-frame offsets mapping observed object parts to a learned canonical space, thereby enhancing part-level segmentation. The framework employs this canonical representation to achieve consistent alignment of object parts across sequential frames. Comprehensive experiments on Artic4D demonstrate that the proposed CanonSeg4D outperforms state of the art approaches in panoptic segmentation accuracy in more complex scenarios. These findings highlight the effectiveness of temporal modeling and canonical alignment in dynamic object understanding, and pave the way for future advances in 4D articulated object perception.
comment: 32 pages, 6 figures, 4 tables, submitted to Expert Systems With Applications
☆ $\mathbf{S^2LM}$: Towards Semantic Steganography via Large Language Models
Although steganography has made significant advancements in recent years, it still struggles to embed semantically rich, sentence-level information into carriers. However, in the era of AIGC, the capacity of steganography is more critical than ever. In this work, we present Sentence-to-Image Steganography, an instance of Semantic Steganography, a novel task that enables the hiding of arbitrary sentence-level messages within a cover image. Furthermore, we establish a benchmark named Invisible Text (IVT), comprising a diverse set of sentence-level texts as secret messages for evaluation. Finally, we present $\mathbf{S^2LM}$: Semantic Steganographic Language Model, which utilizes large language models (LLMs) to embed high-level textual information, such as sentences or even paragraphs, into images. Unlike traditional bit-level counterparts, $\mathrm{S^2LM}$ enables the integration of semantically rich content through a newly designed pipeline in which the LLM is involved throughout the entire process. Both quantitative and qualitative experiments demonstrate that our method effectively unlocks new semantic steganographic capabilities for LLMs. The source code will be released soon.
comment: 35 Pages, 20 Figures
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ LiveStar: Live Streaming Assistant for Real-World Online Video Understanding NeurIPS 2025
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
comment: NeurIPS 2025 Accepted
☆ Cross-domain EEG-based Emotion Recognition with Contrastive Learning
Electroencephalogram (EEG)-based emotion recognition is vital for affective computing but faces challenges in feature utilization and cross-domain generalization. This work introduces EmotionCLIP, which reformulates recognition as an EEG-text matching task within the CLIP framework. A tailored backbone, SST-LegoViT, captures spatial, spectral, and temporal features using multi-scale convolution and Transformer modules. Experiments on SEED and SEED-IV datasets show superior cross-subject accuracies of 88.69% and 73.50%, and cross-time accuracies of 88.46% and 77.54%, outperforming existing models. Results demonstrate the effectiveness of multimodal contrastive learning for robust EEG emotion recognition.
comment: 5 pages
☆ What's on Your Plate? Inferring Chinese Cuisine Intake from Wearable IMUs
Accurate food intake detection is vital for dietary monitoring and chronic disease prevention. Traditional self-report methods are prone to recall bias, while camera-based approaches raise concerns about privacy. Furthermore, existing wearable-based methods primarily focus on a limited number of food types, such as hamburgers and pizza, failing to address the vast diversity of Chinese cuisine. To bridge this gap, we propose CuisineSense, a system that classifies Chinese food types by integrating hand motion cues from a smartwatch with head dynamics from smart glasses. To filter out irrelevant daily activities, we design a two-stage detection pipeline. The first stage identifies eating states by distinguishing characteristic temporal patterns from non-eating behaviors. The second stage then conducts fine-grained food type recognition based on the motions captured during food intake. To evaluate CuisineSense, we construct a dataset comprising 27.5 hours of IMU recordings across 11 food categories and 10 participants. Experiments demonstrate that CuisineSense achieves high accuracy in both eating state detection and food classification, offering a practical solution for unobtrusive, wearable-based dietary monitoring.The system code is publicly available at https://github.com/joeeeeyin/CuisineSense.git.
comment: 5 pages
☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
☆ OregairuChar: A Benchmark Dataset for Character Appearance Frequency Analysis in My Teen Romantic Comedy SNAFU
The analysis of character appearance frequency is essential for understanding narrative structure, character prominence, and story progression in anime. In this work, we introduce OregairuChar, a benchmark dataset designed for appearance frequency analysis in the anime series My Teen Romantic Comedy SNAFU. The dataset comprises 1600 manually selected frames from the third season, annotated with 2860 bounding boxes across 11 main characters. OregairuChar captures diverse visual challenges, including occlusion, pose variation, and inter-character similarity, providing a realistic basis for appearance-based studies. To enable quantitative research, we benchmark several object detection models on the dataset and leverage their predictions for fine-grained, episode-level analysis of character presence over time. This approach reveals patterns of character prominence and their evolution within the narrative. By emphasizing appearance frequency, OregairuChar serves as a valuable resource for exploring computational narrative dynamics and character-centric storytelling in stylized media.
☆ Automatic segmentation of colorectal liver metastases for ultrasound-based navigated resection
Introduction: Accurate intraoperative delineation of colorectal liver metastases (CRLM) is crucial for achieving negative resection margins but remains challenging using intraoperative ultrasound (iUS) due to low contrast, noise, and operator dependency. Automated segmentation could enhance precision and efficiency in ultrasound-based navigation workflows. Methods: Eighty-five tracked 3D iUS volumes from 85 CRLM patients were used to train and evaluate a 3D U-Net implemented via the nnU-Net framework. Two variants were compared: one trained on full iUS volumes and another on cropped regions around tumors. Segmentation accuracy was assessed using Dice Similarity Coefficient (DSC), Hausdorff Distance (HDist.), and Relative Volume Difference (RVD) on retrospective and prospective datasets. The workflow was integrated into 3D Slicer for real-time intraoperative use. Results: The cropped-volume model significantly outperformed the full-volume model across all metrics (AUC-ROC = 0.898 vs 0.718). It achieved median DSC = 0.74, recall = 0.79, and HDist. = 17.1 mm comparable to semi-automatic segmentation but with ~4x faster execution (~ 1 min). Prospective intraoperative testing confirmed robust and consistent performance, with clinically acceptable accuracy for real-time surgical guidance. Conclusion: Automatic 3D segmentation of CRLM in iUS using a cropped 3D U-Net provides reliable, near real-time results with minimal operator input. The method enables efficient, registration-free ultrasound-based navigation for hepatic surgery, approaching expert-level accuracy while substantially reducing manual workload and procedure time.
☆ Accurate online action and gesture recognition system using detectors and Deep SPD Siamese Networks
Online continuous motion recognition is a hot topic of research since it is more practical in real life application cases. Recently, Skeleton-based approaches have become increasingly popular, demonstrating the power of using such 3D temporal data. However, most of these works have focused on segment-based recognition and are not suitable for the online scenarios. In this paper, we propose an online recognition system for skeleton sequence streaming composed from two main components: a detector and a classifier, which use a Semi-Positive Definite (SPD) matrix representation and a Siamese network. The powerful statistical representations for the skeletal data given by the SPD matrices and the learning of their semantic similarity by the Siamese network enable the detector to predict time intervals of the motions throughout an unsegmented sequence. In addition, they ensure the classifier capability to recognize the motion in each predicted interval. The proposed detector is flexible and able to identify the kinetic state continuously. We conduct extensive experiments on both hand gesture and body action recognition benchmarks to prove the accuracy of our online recognition system which in most cases outperforms state-of-the-art performances.
☆ ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining NeurIPS 2025
The current mainstream and state-of-the-art anomaly detection (AD) methods are substantially established on pretrained feature networks yielded by ImageNet pretraining. However, regardless of supervised or self-supervised pretraining, the pretraining process on ImageNet does not match the goal of anomaly detection (i.e., pretraining in natural images doesn't aim to distinguish between normal and abnormal). Moreover, natural images and industrial image data in AD scenarios typically have the distribution shift. The two issues can cause ImageNet-pretrained features to be suboptimal for AD tasks. To further promote the development of the AD field, pretrained representations specially for AD tasks are eager and very valuable. To this end, we propose a novel AD representation learning framework specially designed for learning robust and discriminative pretrained representations for industrial anomaly detection. Specifically, closely surrounding the goal of anomaly detection (i.e., focus on discrepancies between normals and anomalies), we propose angle- and norm-oriented contrastive losses to maximize the angle size and norm difference between normal and abnormal features simultaneously. To avoid the distribution shift from natural images to AD images, our pretraining is performed on a large-scale AD dataset, RealIAD. To further alleviate the potential shift between pretraining data and downstream AD datasets, we learn the pretrained AD representations based on the class-generalizable representation, residual features. For evaluation, based on five embedding-based AD methods, we simply replace their original features with our pretrained representations. Extensive experiments on five AD datasets and five backbones consistently show the superiority of our pretrained features. The code is available at https://github.com/xcyao00/ADPretrain.
comment: Accepted by NeurIPS 2025
☆ 4D3R: Motion-Aware Neural Reconstruction and Rendering of Dynamic Scenes from Monocular Videos
Novel view synthesis from monocular videos of dynamic scenes with unknown camera poses remains a fundamental challenge in computer vision and graphics. While recent advances in 3D representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static scenes, they struggle with dynamic content and typically rely on pre-computed camera poses. We present 4D3R, a pose-free dynamic neural rendering framework that decouples static and dynamic components through a two-stage approach. Our method first leverages 3D foundational models for initial pose and geometry estimation, followed by motion-aware refinement. 4D3R introduces two key technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module that combines transformer-based learned priors with SAM2 for robust dynamic object segmentation, enabling more accurate camera pose refinement; and (2) an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses control points with a deformation field MLP and linear blend skinning to model dynamic motion, significantly reducing computational cost while maintaining high-quality reconstruction. Extensive experiments on real-world dynamic datasets demonstrate that our approach achieves up to 1.8dB PSNR improvement over state-of-the-art methods, particularly in challenging scenarios with large dynamic objects, while reducing computational requirements by 5x compared to previous dynamic scene representations.
comment: 17 pages, 5 figures
☆ FreeControl: Efficient, Training-Free Structural Control via One-Step Attention Extraction NIPS 2025
Controlling the spatial and semantic structure of diffusion-generated images remains a challenge. Existing methods like ControlNet rely on handcrafted condition maps and retraining, limiting flexibility and generalization. Inversion-based approaches offer stronger alignment but incur high inference cost due to dual-path denoising. We present FreeControl, a training-free framework for semantic structural control in diffusion models. Unlike prior methods that extract attention across multiple timesteps, FreeControl performs one-step attention extraction from a single, optimally chosen key timestep and reuses it throughout denoising. This enables efficient structural guidance without inversion or retraining. To further improve quality and stability, we introduce Latent-Condition Decoupling (LCD): a principled separation of the key timestep and the noised latent used in attention extraction. LCD provides finer control over attention quality and eliminates structural artifacts. FreeControl also supports compositional control via reference images assembled from multiple sources - enabling intuitive scene layout design and stronger prompt alignment. FreeControl introduces a new paradigm for test-time control, enabling structurally and semantically aligned, visually coherent generation directly from raw images, with the flexibility for intuitive compositional design and compatibility with modern diffusion models at approximately 5 percent additional cost.
comment: Accepted by NIPS 2025
☆ Walk the Lines 2: Contour Tracking for Detailed Segmentation
This paper presents Walk the Lines 2 (WtL2), a unique contour tracking algorithm specifically adapted for detailed segmentation of infrared (IR) ships and various objects in RGB.1 This extends the original Walk the Lines (WtL) [12], which focused solely on detailed ship segmentation in color. These innovative WtLs can replace the standard non-maximum suppression (NMS) by using contour tracking to refine the object contour until a 1-pixel-wide closed shape can be binarized, forming a segmentable area in foreground-background scenarios. WtL2 broadens the application range of WtL beyond its original scope, adapting to IR and expanding to diverse objects within the RGB context. To achieve IR segmentation, we adapt its input, the object contour detector, to IR ships. In addition, the algorithm is enhanced to process a wide range of RGB objects, outperforming the latest generation of contour-based methods when achieving a closed object contour, offering high peak Intersection over Union (IoU) with impressive details. This positions WtL2 as a compelling method for specialized applications that require detailed segmentation or high-quality samples, potentially accelerating progress in several niche areas of image segmentation.
comment: 11 pages, 6 figures. Accepted at CAIP 2025: 21st International Conference on Computer Analysis of Images and Patterns, Las Palmas de Gran Canaria, Spain, September 22-25, 2025. To appear in: Proceedings Part I, Lecture Notes in Computer Science (LNCS), Springer Nature Switzerland
☆ PySlyde: A Lightweight, Open-Source Toolkit for Pathology Preprocessing
The integration of artificial intelligence (AI) into pathology is advancing precision medicine by improving diagnosis, treatment planning, and patient outcomes. Digitised whole-slide images (WSIs) capture rich spatial and morphological information vital for understanding disease biology, yet their gigapixel scale and variability pose major challenges for standardisation and analysis. Robust preprocessing, covering tissue detection, tessellation, stain normalisation, and annotation parsing is critical but often limited by fragmented and inconsistent workflows. We present PySlyde, a lightweight, open-source Python toolkit built on OpenSlide to simplify and standardise WSI preprocessing. PySlyde provides an intuitive API for slide loading, annotation management, tissue detection, tiling, and feature extraction, compatible with modern pathology foundation models. By unifying these processes, it streamlines WSI preprocessing, enhances reproducibility, and accelerates the generation of AI-ready datasets, enabling researchers to focus on model development and downstream analysis.
☆ MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification
Nucleus detection and classification (NDC) in histopathology analysis is a fundamental task that underpins a wide range of high-level pathology applications. However, existing methods heavily rely on labor-intensive nucleus-level annotations and struggle to fully exploit large-scale unlabeled data for learning discriminative nucleus representations. In this work, we propose MUSE (MUlti-scale denSE self-distillation), a novel self-supervised learning method tailored for NDC. At its core is NuLo (Nucleus-based Local self-distillation), a coordinate-guided mechanism that enables flexible local self-distillation based on predicted nucleus positions. By removing the need for strict spatial alignment between augmented views, NuLo allows critical cross-scale alignment, thus unlocking the capacity of models for fine-grained nucleus-level representation. To support MUSE, we design a simple yet effective encoder-decoder architecture and a large field-of-view semi-supervised fine-tuning strategy that together maximize the value of unlabeled pathology images. Extensive experiments on three widely used benchmarks demonstrate that MUSE effectively addresses the core challenges of histopathological NDC. The resulting models not only surpass state-of-the-art supervised baselines but also outperform generic pathology foundation models.
comment: 12 pages, 7 figures
☆ Another BRIXEL in the Wall: Towards Cheaper Dense Features
Vision foundation models achieve strong performance on both global and locally dense downstream tasks. Pretrained on large images, the recent DINOv3 model family is able to produce very fine-grained dense feature maps, enabling state-of-the-art performance. However, computing these feature maps requires the input image to be available at very high resolution, as well as large amounts of compute due to the squared complexity of the transformer architecture. To address these issues, we propose BRIXEL, a simple knowledge distillation approach that has the student learn to reproduce its own feature maps at higher resolution. Despite its simplicity, BRIXEL outperforms the baseline DINOv3 models by large margins on downstream tasks when the resolution is kept fixed. Moreover, it is able to produce feature maps that are very similar to those of the teacher at a fraction of the computational cost. Code and model weights are available at https://github.com/alexanderlappe/BRIXEL.
☆ Splatography: Sparse multi-view dynamic Gaussian Splatting for filmmaking challenges
Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/
☆ From Linear Probing to Joint-Weighted Token Hierarchy: A Foundation Model Bridging Global and Cellular Representations in Biomarker Detection
AI-based biomarkers can infer molecular features directly from hematoxylin & eosin (H&E) slides, yet most pathology foundation models (PFMs) rely on global patch-level embeddings and overlook cell-level morphology. We present a PFM model, JWTH (Joint-Weighted Token Hierarchy), which integrates large-scale self-supervised pretraining with cell-centric post-tuning and attention pooling to fuse local and global tokens. Across four tasks involving four biomarkers and eight cohorts, JWTH achieves up to 8.3% higher balanced accuracy and 1.2% average improvement over prior PFMs, advancing interpretable and robust AI-based biomarker detection in digital pathology.
☆ SnowyLane: Robust Lane Detection on Snow-covered Rural Roads Using Infrastructural Elements
Lane detection for autonomous driving in snow-covered environments remains a major challenge due to the frequent absence or occlusion of lane markings. In this paper, we present a novel, robust and realtime capable approach that bypasses the reliance on traditional lane markings by detecting roadside features,specifically vertical roadside posts called delineators, as indirect lane indicators. Our method first perceives these posts, then fits a smooth lane trajectory using a parameterized Bezier curve model, leveraging spatial consistency and road geometry. To support training and evaluation in these challenging scenarios, we introduce SnowyLane, a new synthetic dataset containing 80,000 annotated frames capture winter driving conditions, with varying snow coverage, and lighting conditions. Compared to state-of-the-art lane detection systems, our approach demonstrates significantly improved robustness in adverse weather, particularly in cases with heavy snow occlusion. This work establishes a strong foundation for reliable lane detection in winter scenarios and contributes a valuable resource for future research in all-weather autonomous driving. The dataset is available at https://ekut-es.github.io/snowy-lane
☆ Early Alzheimer's Disease Detection from Retinal OCT Images: A UK Biobank Study
Alterations in retinal layer thickness, measurable using Optical Coherence Tomography (OCT), have been associated with neurodegenerative diseases such as Alzheimer's disease (AD). While previous studies have mainly focused on segmented layer thickness measurements, this study explored the direct classification of OCT B-scan images for the early detection of AD. To our knowledge, this is the first application of deep learning to raw OCT B-scans for AD prediction in the literature. Unlike conventional medical image classification tasks, early detection is more challenging than diagnosis because imaging precedes clinical diagnosis by several years. We fine-tuned and evaluated multiple pretrained models, including ImageNet-based networks and the OCT-specific RETFound transformer, using subject-level cross-validation datasets matched for age, sex, and imaging instances from the UK Biobank cohort. To reduce overfitting in this small, high-dimensional dataset, both standard and OCT-specific augmentation techniques were applied, along with a year-weighted loss function that prioritized cases diagnosed within four years of imaging. ResNet-34 produced the most stable results, achieving an AUC of 0.62 in the 4-year cohort. Although below the threshold for clinical application, our explainability analyses confirmed localized structural differences in the central macular subfield between the AD and control groups. These findings provide a baseline for OCT-based AD prediction, highlight the challenges of detecting subtle retinal biomarkers years before AD diagnosis, and point to the need for larger datasets and multimodal approaches.
☆ Quantifying the Risk of Transferred Black Box Attacks
Neural networks have become pervasive across various applications, including security-related products. However, their widespread adoption has heightened concerns regarding vulnerability to adversarial attacks. With emerging regulations and standards emphasizing security, organizations must reliably quantify risks associated with these attacks, particularly regarding transferred adversarial attacks, which remain challenging to evaluate accurately. This paper investigates the complexities involved in resilience testing against transferred adversarial attacks. Our analysis specifically addresses black-box evasion attacks, highlighting transfer-based attacks due to their practical significance and typically high transferability between neural network models. We underline the computational infeasibility of exhaustively exploring high-dimensional input spaces to achieve complete test coverage. As a result, comprehensive adversarial risk mapping is deemed impractical. To mitigate this limitation, we propose a targeted resilience testing framework that employs surrogate models strategically selected based on Centered Kernel Alignment (CKA) similarity. By leveraging surrogate models exhibiting both high and low CKA similarities relative to the target model, the proposed approach seeks to optimize coverage of adversarial subspaces. Risk estimation is conducted using regression-based estimators, providing organizations with realistic and actionable risk quantification.
☆ Real-World Adverse Weather Image Restoration via Dual-Level Reinforcement Learning with High-Quality Cold Start NeurIPS 2025
Adverse weather severely impairs real-world visual perception, while existing vision models trained on synthetic data with fixed parameters struggle to generalize to complex degradations. To address this, we first construct HFLS-Weather, a physics-driven, high-fidelity dataset that simulates diverse weather phenomena, and then design a dual-level reinforcement learning framework initialized with HFLS-Weather for cold-start training. Within this framework, at the local level, weather-specific restoration models are refined through perturbation-driven image quality optimization, enabling reward-based learning without paired supervision; at the global level, a meta-controller dynamically orchestrates model selection and execution order according to scene degradation. This framework enables continuous adaptation to real-world conditions and achieves state-of-the-art performance across a wide range of adverse weather scenarios. Code is available at https://github.com/xxclfy/AgentRL-Real-Weather
comment: Accepted by NeurIPS 2025
☆ A Dual-stage Prompt-driven Privacy-preserving Paradigm for Person Re-Identification
With growing concerns over data privacy, researchers have started using virtual data as an alternative to sensitive real-world images for training person re-identification (Re-ID) models. However, existing virtual datasets produced by game engines still face challenges such as complex construction and poor domain generalization, making them difficult to apply in real scenarios. To address these challenges, we propose a Dual-stage Prompt-driven Privacy-preserving Paradigm (DPPP). In the first stage, we generate rich prompts incorporating multi-dimensional attributes such as pedestrian appearance, illumination, and viewpoint that drive the diffusion model to synthesize diverse data end-to-end, building a large-scale virtual dataset named GenePerson with 130,519 images of 6,641 identities. In the second stage, we propose a Prompt-driven Disentanglement Mechanism (PDM) to learn domain-invariant generalization features. With the aid of contrastive learning, we employ two textual inversion networks to map images into pseudo-words representing style and content, respectively, thereby constructing style-disentangled content prompts to guide the model in learning domain-invariant content features at the image level. Experiments demonstrate that models trained on GenePerson with PDM achieve state-of-the-art generalization performance, surpassing those on popular real and virtual Re-ID datasets.
comment: 10 pages, 6 figures
☆ Deep learning models are vulnerable, but adversarial examples are even more vulnerable
Understanding intrinsic differences between adversarial examples and clean samples is key to enhancing DNN robustness and detection against adversarial attacks. This study first empirically finds that image-based adversarial examples are notably sensitive to occlusion. Controlled experiments on CIFAR-10 used nine canonical attacks (e.g., FGSM, PGD) to generate adversarial examples, paired with original samples for evaluation. We introduce Sliding Mask Confidence Entropy (SMCE) to quantify model confidence fluctuation under occlusion. Using 1800+ test images, SMCE calculations supported by Mask Entropy Field Maps and statistical distributions show adversarial examples have significantly higher confidence volatility under occlusion than originals. Based on this, we propose Sliding Window Mask-based Adversarial Example Detection (SWM-AED), which avoids catastrophic overfitting of conventional adversarial training. Evaluations across classifiers and attacks on CIFAR-10 demonstrate robust performance, with accuracy over 62% in most cases and up to 96.5%.
comment: 25 pages,12 figures
☆ SurgiATM: A Physics-Guided Plug-and-Play Model for Deep Learning-Based Smoke Removal in Laparoscopic Surgery
During laparoscopic surgery, smoke generated by tissue cauterization can significantly degrade the visual quality of endoscopic frames, increasing the risk of surgical errors and hindering both clinical decision-making and computer-assisted visual analysis. Consequently, removing surgical smoke is critical to ensuring patient safety and maintaining operative efficiency. In this study, we propose the Surgical Atmospheric Model (SurgiATM) for surgical smoke removal. SurgiATM statistically bridges a physics-based atmospheric model and data-driven deep learning models, combining the superior generalizability of the former with the high accuracy of the latter. Furthermore, SurgiATM is designed as a lightweight, plug-and-play module that can be seamlessly integrated into diverse surgical desmoking architectures to enhance their accuracy and stability, better meeting clinical requirements. It introduces only two hyperparameters and no additional trainable weights, preserving the original network architecture with minimal computational and modification overhead. We conduct extensive experiments on three public surgical datasets with ten desmoking methods, involving multiple network architectures and covering diverse procedures, including cholecystectomy, partial nephrectomy, and diaphragm dissection. The results demonstrate that incorporating SurgiATM commonly reduces the restoration errors of existing models and relatively enhances their generalizability, without adding any trainable layers or weights. This highlights the convenience, low cost, effectiveness, and generalizability of the proposed method. The code for SurgiATM is released at https://github.com/MingyuShengSMY/SurgiATM.
comment: 10 pages, 5 figures, 6 tables. Code available at https://github.com/MingyuShengSMY/SurgiATM
☆ Role-SynthCLIP: A Role Play Driven Diverse Synthetic Data Approach
The effectiveness of Contrastive Language-Image Pre-training (CLIP) models critically depends on the semantic diversity and quality of their training data. However, while existing synthetic data generation methods primarily focus on increasing data volume, such emphasis often leads to limited semantic diversity and redundant or shallow captions. To address this limitation, we propose Role-SynthCLIP, a novel data synthesis framework that leverages multi-perspective role-playing prompts (e.g., a compositional analyst, an interpreter of image context) to guide Multimodal Large Language Models (MLLMs) in generating semantically diverse captions from distinct viewpoints. This mechanism enhances the semantic diversity and fine-grained image-text alignment of synthetic pairs, thereby improving caption expressiveness and accuracy while keeping the total number of image-text pairs unchanged. Experimental results demonstrate the effectiveness and efficiency of our method. A CLIP-B/16 model trained on only 1 million Role-SynthCLIP pairs achieves a Recall@1 of 64.1% on the MS COCO validation set, surpassing the best existing synthetic data baseline (trained on 5M pairs) by 2.8 percentage points. The code and trained models are released at https://github.com/huangfu170/Role-SynthCLIP.
☆ No Pose Estimation? No Problem: Pose-Agnostic and Instance-Aware Test-Time Adaptation for Monocular Depth Estimation
Monocular depth estimation (MDE), inferring pixel-level depths in single RGB images from a monocular camera, plays a crucial and pivotal role in a variety of AI applications demanding a three-dimensional (3D) topographical scene. In the real-world scenarios, MDE models often need to be deployed in environments with different conditions from those for training. Test-time (domain) adaptation (TTA) is one of the compelling and practical approaches to address the issue. Although there have been notable advancements in TTA for MDE, particularly in a self-supervised manner, existing methods are still ineffective and problematic when applied to diverse and dynamic environments. To break through this challenge, we propose a novel and high-performing TTA framework for MDE, named PITTA. Our approach incorporates two key innovative strategies: (i) pose-agnostic TTA paradigm for MDE and (ii) instance-aware image masking. Specifically, PITTA enables highly effective TTA on a pretrained MDE network in a pose-agnostic manner without resorting to any camera pose information. Besides, our instance-aware masking strategy extracts instance-wise masks for dynamic objects (e.g., vehicles, pedestrians, etc.) from a segmentation mask produced by a pretrained panoptic segmentation network, by removing static objects including background components. To further boost performance, we also present a simple yet effective edge extraction methodology for the input image (i.e., a single monocular image) and depth map. Extensive experimental evaluations on DrivingStereo and Waymo datasets with varying environmental conditions demonstrate that our proposed framework, PITTA, surpasses the existing state-of-the-art techniques with remarkable performance improvements in MDE during TTA.
☆ Medical Referring Image Segmentation via Next-Token Mask Prediction
Medical Referring Image Segmentation (MRIS) involves segmenting target regions in medical images based on natural language descriptions. While achieving promising results, recent approaches usually involve complex design of multimodal fusion or multi-stage decoders. In this work, we propose NTP-MRISeg, a novel framework that reformulates MRIS as an autoregressive next-token prediction task over a unified multimodal sequence of tokenized image, text, and mask representations. This formulation streamlines model design by eliminating the need for modality-specific fusion and external segmentation models, supports a unified architecture for end-to-end training. It also enables the use of pretrained tokenizers from emerging large-scale multimodal models, enhancing generalization and adaptability. More importantly, to address challenges under this formulation-such as exposure bias, long-tail token distributions, and fine-grained lesion edges-we propose three novel strategies: (1) a Next-k Token Prediction (NkTP) scheme to reduce cumulative prediction errors, (2) Token-level Contrastive Learning (TCL) to enhance boundary sensitivity and mitigate long-tail distribution effects, and (3) a memory-based Hard Error Token (HET) optimization strategy that emphasizes difficult tokens during training. Extensive experiments on the QaTa-COV19 and MosMedData+ datasets demonstrate that NTP-MRISeg achieves new state-of-the-art performance, offering a streamlined and effective alternative to traditional MRIS pipelines.
comment: This work has been submitted to the IEEE Transactions on Medical Imaging for possible publication
☆ Pressure2Motion: Hierarchical Motion Synthesis from Ground Pressure with Text Guidance
We present Pressure2Motion, a novel motion capture algorithm that synthesizes human motion from a ground pressure sequence and text prompt. It eliminates the need for specialized lighting setups, cameras, or wearable devices, making it suitable for privacy-preserving, low-light, and low-cost motion capture scenarios. Such a task is severely ill-posed due to the indeterminate nature of the pressure signals to full-body motion. To address this issue, we introduce Pressure2Motion, a generative model that leverages pressure features as input and utilizes a text prompt as a high-level guiding constraint. Specifically, our model utilizes a dual-level feature extractor that accurately interprets pressure data, followed by a hierarchical diffusion model that discerns broad-scale movement trajectories and subtle posture adjustments. Both the physical cues gained from the pressure sequence and the semantic guidance derived from descriptive texts are leveraged to guide the motion generation with precision. To the best of our knowledge, Pressure2Motion is a pioneering work in leveraging both pressure data and linguistic priors for motion generation, and the established MPL benchmark is the first benchmark for this task. Experiments show our method generates high-fidelity, physically plausible motions, establishing a new state-of-the-art for this task. The codes and benchmarks will be publicly released upon publication.
☆ Dynamic Residual Encoding with Slide-Level Contrastive Learning for End-to-End Whole Slide Image Representation
Whole Slide Image (WSI) representation is critical for cancer subtyping, cancer recognition and mutation prediction.Training an end-to-end WSI representation model poses significant challenges, as a standard gigapixel slide can contain tens of thousands of image tiles, making it difficult to compute gradients of all tiles in a single mini-batch due to current GPU limitations. To address this challenge, we propose a method of dynamic residual encoding with slide-level contrastive learning (DRE-SLCL) for end-to-end WSI representation. Our approach utilizes a memory bank to store the features of tiles across all WSIs in the dataset. During training, a mini-batch usually contains multiple WSIs. For each WSI in the batch, a subset of tiles is randomly sampled and their features are computed using a tile encoder. Then, additional tile features from the same WSI are selected from the memory bank. The representation of each individual WSI is generated using a residual encoding technique that incorporates both the sampled features and those retrieved from the memory bank. Finally, the slide-level contrastive loss is computed based on the representations and histopathology reports ofthe WSIs within the mini-batch. Experiments conducted over cancer subtyping, cancer recognition, and mutation prediction tasks proved the effectiveness of the proposed DRE-SLCL method.
comment: 8pages, 3figures, published to ACM Digital Library
☆ DAFM: Dynamic Adaptive Fusion for Multi-Model Collaboration in Composed Image Retrieval
Composed Image Retrieval (CIR) is a cross-modal task that aims to retrieve target images from large-scale databases using a reference image and a modification text. Most existing methods rely on a single model to perform feature fusion and similarity matching. However, this paradigm faces two major challenges. First, one model alone can't see the whole picture and the tiny details at the same time; it has to handle different tasks with the same weights, so it often misses the small but important links between image and text. Second, the absence of dynamic weight allocation prevents adaptive leveraging of complementary model strengths, so the resulting embedding drifts away from the target and misleads the nearest-neighbor search in CIR. To address these limitations, we propose Dynamic Adaptive Fusion (DAFM) for multi-model collaboration in CIR. Rather than optimizing a single method in isolation, DAFM exploits the complementary strengths of heterogeneous models and adaptively rebalances their contributions. This not only maximizes retrieval accuracy but also ensures that the performance gains are independent of the fusion order, highlighting the robustness of our approach. Experiments on the CIRR and FashionIQ benchmarks demonstrate consistent improvements. Our method achieves a Recall@10 of 93.21 and an Rmean of 84.43 on CIRR, and an average Rmean of 67.48 on FashionIQ, surpassing recent strong baselines by up to 4.5%. These results confirm that dynamic multi-model collaboration provides an effective and general solution for CIR.
comment: 10 pages,4 figures
☆ Towards Mitigating Hallucinations in Large Vision-Language Models by Refining Textual Embeddings
In this work, we identify an inherent bias in prevailing LVLM architectures toward the language modality, largely resulting from the common practice of simply appending visual embeddings to the input text sequence. To address this, we propose a simple yet effective method that refines textual embeddings by integrating average-pooled visual features. Our approach demonstrably improves visual grounding and significantly reduces hallucinations on established benchmarks. While average pooling offers a straightforward, robust, and efficient means of incorporating visual information, we believe that more sophisticated fusion methods could further enhance visual grounding and cross-modal alignment. Given that the primary focus of this work is to highlight the modality imbalance and its impact on hallucinations -- and to show that refining textual embeddings with visual information mitigates this issue -- we leave exploration of advanced fusion strategies for future work.
☆ UHDRes: Ultra-High-Definition Image Restoration via Dual-Domain Decoupled Spectral Modulation
Ultra-high-definition (UHD) images often suffer from severe degradations such as blur, haze, rain, or low-light conditions, which pose significant challenges for image restoration due to their high resolution and computational demands. In this paper, we propose UHDRes, a novel lightweight dual-domain decoupled spectral modulation framework for UHD image restoration. It explicitly models the amplitude spectrum via lightweight spectrum-domain modulation, while restoring phase implicitly through spatial-domain refinement. We introduce the spatio-spectral fusion mechanism, which first employs a multi-scale context aggregator to extract local and global spatial features, and then performs spectral modulation in a decoupled manner. It explicitly enhances amplitude features in the frequency domain while implicitly restoring phase information through spatial refinement. Additionally, a shared gated feed-forward network is designed to efficiently promote feature interaction through shared-parameter convolutions and adaptive gating mechanisms. Extensive experimental comparisons on five public UHD benchmarks demonstrate that our UHDRes achieves the state-of-the-art restoration performance with only 400K parameters, while significantly reducing inference latency and memory usage. The codes and models are available at https://github.com/Zhao0100/UHDRes.
☆ GSE: Evaluating Sticker Visual Semantic Similarity via a General Sticker Encoder
Stickers have become a popular form of visual communication, yet understanding their semantic relationships remains challenging due to their highly diverse and symbolic content. In this work, we formally {define the Sticker Semantic Similarity task} and introduce {Triple-S}, the first benchmark for this task, consisting of 905 human-annotated positive and negative sticker pairs. Through extensive evaluation, we show that existing pretrained vision and multimodal models struggle to capture nuanced sticker semantics. To address this, we propose the {General Sticker Encoder (GSE)}, a lightweight and versatile model that learns robust sticker embeddings using both Triple-S and additional datasets. GSE achieves superior performance on unseen stickers, and demonstrates strong results on downstream tasks such as emotion classification and sticker-to-sticker retrieval. By releasing both Triple-S and GSE, we provide standardized evaluation tools and robust embeddings, enabling future research in sticker understanding, retrieval, and multimodal content generation. The Triple-S benchmark and GSE have been publicly released and are available here.
☆ Challenges in 3D Data Synthesis for Training Neural Networks on Topological Features
Topological Data Analysis (TDA) involves techniques of analyzing the underlying structure and connectivity of data. However, traditional methods like persistent homology can be computationally demanding, motivating the development of neural network-based estimators capable of reducing computational overhead and inference time. A key barrier to advancing these methods is the lack of labeled 3D data with class distributions and diversity tailored specifically for supervised learning in TDA tasks. To address this, we introduce a novel approach for systematically generating labeled 3D datasets using the Repulsive Surface algorithm, allowing control over topological invariants, such as hole count. The resulting dataset offers varied geometry with topological labeling, making it suitable for training and benchmarking neural network estimators. This paper uses a synthetic 3D dataset to train a genus estimator network, created using a 3D convolutional transformer architecture. An observed decrease in accuracy as deformations increase highlights the role of not just topological complexity, but also geometric complexity, when training generalized estimators. This dataset fills a gap in labeled 3D datasets and generation for training and evaluating models and techniques for TDA.
comment: 10 pages
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}
☆ CLM: Removing the GPU Memory Barrier for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is an increasingly popular novel view synthesis approach due to its fast rendering time, and high-quality output. However, scaling 3DGS to large (or intricate) scenes is challenging due to its large memory requirement, which exceed most GPU's memory capacity. In this paper, we describe CLM, a system that allows 3DGS to render large scenes using a single consumer-grade GPU, e.g., RTX4090. It does so by offloading Gaussians to CPU memory, and loading them into GPU memory only when necessary. To reduce performance and communication overheads, CLM uses a novel offloading strategy that exploits observations about 3DGS's memory access pattern for pipelining, and thus overlap GPU-to-CPU communication, GPU computation and CPU computation. Furthermore, we also exploit observation about the access pattern to reduce communication volume. Our evaluation shows that the resulting implementation can render a large scene that requires 100 million Gaussians on a single RTX4090 and achieve state-of-the-art reconstruction quality.
comment: Accepted to appear in the 2026 ACM International Conference on Architectural Support for Programming Languages and Operating Systems
☆ DeepForgeSeal: Latent Space-Driven Semi-Fragile Watermarking for Deepfake Detection Using Multi-Agent Adversarial Reinforcement Learning
Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.
☆ A benchmark multimodal oro-dental dataset for large vision-language models
The advancement of artificial intelligence in oral healthcare relies on the availability of large-scale multimodal datasets that capture the complexity of clinical practice. In this paper, we present a comprehensive multimodal dataset, comprising 8775 dental checkups from 4800 patients collected over eight years (2018-2025), with patients ranging from 10 to 90 years of age. The dataset includes 50000 intraoral images, 8056 radiographs, and detailed textual records, including diagnoses, treatment plans, and follow-up notes. The data were collected under standard ethical guidelines and annotated for benchmarking. To demonstrate its utility, we fine-tuned state-of-the-art large vision-language models, Qwen-VL 3B and 7B, and evaluated them on two tasks: classification of six oro-dental anomalies and generation of complete diagnostic reports from multimodal inputs. We compared the fine-tuned models with their base counterparts and GPT-4o. The fine-tuned models achieved substantial gains over these baselines, validating the dataset and underscoring its effectiveness in advancing AI-driven oro-dental healthcare solutions. The dataset is publicly available, providing an essential resource for future research in AI dentistry.
☆ Learning to Restore Multi-Degraded Images via Ingredient Decoupling and Task-Aware Path Adaptation
Image restoration (IR) aims to recover clean images from degraded observations. Despite remarkable progress, most existing methods focus on a single degradation type, whereas real-world images often suffer from multiple coexisting degradations, such as rain, noise, and haze coexisting in a single image, which limits their practical effectiveness. In this paper, we propose an adaptive multi-degradation image restoration network that reconstructs images by leveraging decoupled representations of degradation ingredients to guide path selection. Specifically, we design a degradation ingredient decoupling block (DIDBlock) in the encoder to separate degradation ingredients statistically by integrating spatial and frequency domain information, enhancing the recognition of multiple degradation types and making their feature representations independent. In addition, we present fusion block (FBlock) to integrate degradation information across all levels using learnable matrices. In the decoder, we further introduce a task adaptation block (TABlock) that dynamically activates or fuses functional branches based on the multi-degradation representation, flexibly selecting optimal restoration paths under diverse degradation conditions. The resulting tightly integrated architecture, termed IMDNet, is extensively validated through experiments, showing superior performance on multi-degradation restoration while maintaining strong competitiveness on single-degradation tasks.
☆ LG-NuSegHop: A Local-to-Global Self-Supervised Pipeline For Nuclei Instance Segmentation
Nuclei segmentation is the cornerstone task in histology image reading, shedding light on the underlying molecular patterns and leading to disease or cancer diagnosis. Yet, it is a laborious task that requires expertise from trained physicians. The large nuclei variability across different organ tissues and acquisition processes challenges the automation of this task. On the other hand, data annotations are expensive to obtain, and thus, Deep Learning (DL) models are challenged to generalize to unseen organs or different domains. This work proposes Local-to-Global NuSegHop (LG-NuSegHop), a self-supervised pipeline developed on prior knowledge of the problem and molecular biology. There are three distinct modules: (1) a set of local processing operations to generate a pseudolabel, (2) NuSegHop a novel data-driven feature extraction model and (3) a set of global operations to post-process the predictions of NuSegHop. Notably, even though the proposed pipeline uses { no manually annotated training data} or domain adaptation, it maintains a good generalization performance on other datasets. Experiments in three publicly available datasets show that our method outperforms other self-supervised and weakly supervised methods while having a competitive standing among fully supervised methods. Remarkably, every module within LG-NuSegHop is transparent and explainable to physicians.
comment: 42 pages, 8 figures, 7 tables
☆ Beta Distribution Learning for Reliable Roadway Crash Risk Assessment AAAI 2026
Roadway traffic accidents represent a global health crisis, responsible for over a million deaths annually and costing many countries up to 3% of their GDP. Traditional traffic safety studies often examine risk factors in isolation, overlooking the spatial complexity and contextual interactions inherent in the built environment. Furthermore, conventional Neural Network-based risk estimators typically generate point estimates without conveying model uncertainty, limiting their utility in critical decision-making. To address these shortcomings, we introduce a novel geospatial deep learning framework that leverages satellite imagery as a comprehensive spatial input. This approach enables the model to capture the nuanced spatial patterns and embedded environmental risk factors that contribute to fatal crash risks. Rather than producing a single deterministic output, our model estimates a full Beta probability distribution over fatal crash risk, yielding accurate and uncertainty-aware predictions--a critical feature for trustworthy AI in safety-critical applications. Our model outperforms baselines by achieving a 17-23% improvement in recall, a key metric for flagging potential dangers, while delivering superior calibration. By providing reliable and interpretable risk assessments from satellite imagery alone, our method enables safer autonomous navigation and offers a highly scalable tool for urban planners and policymakers to enhance roadway safety equitably and cost-effectively.
comment: Accepted to AAAI 2026
♻ ☆ TRACE: Textual Relevance Augmentation and Contextual Encoding for Multimodal Hate Detection AAAI 2026
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. To tackle these challenges, we introduce TRACE, a hierarchical multimodal framework that leverages visually grounded context augmentation, along with a novel caption-scoring network to emphasize hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder. Our experiments demonstrate that selectively fine-tuning deeper text encoder layers significantly enhances performance compared to simpler projection-layer fine-tuning methods. Specifically, our framework achieves state-of-the-art accuracy (0.807) and F1-score (0.806) on the widely-used Hateful Memes dataset, matching the performance of considerably larger models while maintaining efficiency. Moreover, it achieves superior generalization on the MultiOFF offensive meme dataset (F1-score 0.673), highlighting robustness across meme categories. Additional analyses confirm that robust visual grounding and nuanced text representations significantly reduce errors caused by benign confounders. We publicly release our code to facilitate future research.
comment: Accepted to Special Track on AI for Social Impact (AISI) at AAAI 2026
♻ ☆ Towards Explainable Fake Image Detection with Multi-Modal Large Language Models ACM MM 2025
Progress in image generation raises significant public security concerns. We argue that fake image detection should not operate as a "black box". Instead, an ideal approach must ensure both strong generalization and transparency. Recent progress in Multi-modal Large Language Models (MLLMs) offers new opportunities for reasoning-based AI-generated image detection. In this work, we evaluate the capabilities of MLLMs in comparison to traditional detection methods and human evaluators, highlighting their strengths and limitations. Furthermore, we design six distinct prompts and propose a framework that integrates these prompts to develop a more robust, explainable, and reasoning-driven detection system. The code is available at https://github.com/Gennadiyev/mllm-defake.
comment: Accepted to ACM MM 2025; 14 pages including Appendix
♻ ☆ USIGAN: Unbalanced Self-Information Feature Transport for Weakly Paired Image IHC Virtual Staining
Immunohistochemical (IHC) virtual staining is a task that generates virtual IHC images from H\&E images while maintaining pathological semantic consistency with adjacent slices. This task aims to achieve cross-domain mapping between morphological structures and staining patterns through generative models, providing an efficient and cost-effective solution for pathological analysis. However, under weakly paired conditions, spatial heterogeneity between adjacent slices presents significant challenges. This can lead to inaccurate one-to-many mappings and generate results that are inconsistent with the pathological semantics of adjacent slices. To address this issue, we propose a novel unbalanced self-information feature transport for IHC virtual staining, named USIGAN, which extracts global morphological semantics without relying on positional correspondence.By removing weakly paired terms in the joint marginal distribution, we effectively mitigate the impact of weak pairing on joint distributions, thereby significantly improving the content consistency and pathological semantic consistency of the generated results. Moreover, we design the Unbalanced Optimal Transport Consistency (UOT-CTM) mechanism and the Pathology Self-Correspondence (PC-SCM) mechanism to construct correlation matrices between H\&E and generated IHC in image-level and real IHC and generated IHC image sets in intra-group level.. Experiments conducted on two publicly available datasets demonstrate that our method achieves superior performance across multiple clinically significant metrics, such as IoD and Pearson-R correlation, demonstrating better clinical relevance.
♻ ☆ FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models
Foundation models have exhibited unprecedented capabilities in tackling many domains and tasks. Models such as CLIP are currently widely used to bridge cross-modal representations, and text-to-image diffusion models are arguably the leading models in terms of realistic image generation. Image generative models are trained on massive datasets that provide them with powerful internal spatial representations. In this work, we explore the potential benefits of such representations, beyond image generation, in particular, for dense visual prediction tasks. We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets, with pixel-level annotations. To avoid the annotation cost or training large diffusion models, we constraint our setup to be zero-shot and training-free. In a nutshell, our pipeline leverages different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation. The pipeline is as follows: the image is passed to both a captioner model (i.e. BLIP) and a diffusion model (i.e., Stable Diffusion Model) to generate a text description and visual representation, respectively. The features are clustered and binarized to obtain class agnostic masks for each object. These masks are then mapped to a textual class, using the CLIP model to support open-vocabulary. Finally, we add a refinement step that allows to obtain a more precise segmentation mask. Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets. In addition, we show very competitive results compared to the recent weakly-supervised segmentation approaches. We provide comprehensive experiments showing the superiority of diffusion model features compared to other pretrained models. Project page: https://bcorrad.github.io/freesegdiff/
♻ ☆ Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing
Medical image editing has emerged as a pivotal technology with broad applications in data augmentation, model interpretability, medical education, and treatment simulation. However, the lack of large-scale, high-quality, and openly accessible datasets tailored for medical contexts with strict anatomical and clinical constraints has significantly hindered progress in this domain. To bridge this gap, we introduce Med-Banana-50K, a comprehensive dataset of over 50k medically curated image edits spanning chest X-ray, brain MRI, and fundus photography across 23 diseases. Each sample supports bidirectional lesion editing (addition and removal) and is constructed using Gemini-2.5-Flash-Image based on real clinical images. A key differentiator of our dataset is the medically grounded quality control protocol: we employ an LLM-as-Judge evaluation framework with criteria such as instruction compliance, structural plausibility, image realism, and fidelity preservation, alongside iterative refinement over up to five rounds. Additionally, Med-Banana-50K includes around 37,000 failed editing attempts with full evaluation logs to support preference learning and alignment research. By offering a large-scale, medically rigorous, and fully documented resource, Med-Banana-50K establishes a critical foundation for developing and evaluating reliable medical image editing systems. Our dataset and code are publicly available. [https://github.com/richardChenzhihui/med-banana-50k].
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ Thera: Aliasing-Free Arbitrary-Scale Super-Resolution with Neural Heat Fields
Recent approaches to arbitrary-scale single image super-resolution (ASR) use neural fields to represent continuous signals that can be sampled at arbitrary resolutions. However, point-wise queries of neural fields do not naturally match the point spread function (PSF) of pixels, which may cause aliasing in the super-resolved image. Existing methods attempt to mitigate this by approximating an integral version of the field at each scaling factor, compromising both fidelity and generalization. In this work, we introduce neural heat fields, a novel neural field formulation that inherently models a physically exact PSF. Our formulation enables analytically correct anti-aliasing at any desired output resolution, and -- unlike supersampling -- at no additional cost. Building on this foundation, we propose Thera, an end-to-end ASR method that substantially outperforms existing approaches, while being more parameter-efficient and offering strong theoretical guarantees. The project page is at https://therasr.github.io.
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ Cyst-X: A Federated AI System Outperforms Clinical Guidelines to Detect Pancreatic Cancer Precursors and Reduce Unnecessary Surgery
Pancreatic cancer is projected to be the second-deadliest cancer by 2030, making early detection critical. Intraductal papillary mucinous neoplasms (IPMNs), key cancer precursors, present a clinical dilemma, as current guidelines struggle to stratify malignancy risk, leading to unnecessary surgeries or missed diagnoses. Here, we developed Cyst-X, an AI framework for IPMN risk prediction trained on a unique, multi-center dataset of 1,461 MRI scans from 764 patients. Cyst-X achieves significantly higher accuracy (AUC = 0.82) than both the established Kyoto guidelines (AUC = 0.75) and expert radiologists, particularly in correct identification of high-risk lesions. Clinically, this translates to a 20% increase in cancer detection sensitivity (87.8% vs. 64.1%) for high-risk lesions. We demonstrate that this performance is maintained in a federated learning setting, allowing for collaborative model training without compromising patient privacy. To accelerate research in early pancreatic cancer detection, we publicly release the Cyst-X dataset and models, providing the first large-scale, multi-center MRI resource for pancreatic cyst analysis.
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ THEval. Evaluation Framework for Talking Head Video Generation
Video generation has achieved remarkable progress, with generated videos increasingly resembling real ones. However, the rapid advance in generation has outpaced the development of adequate evaluation metrics. Currently, the assessment of talking head generation primarily relies on limited metrics, evaluating general video quality, lip synchronization, and on conducting user studies. Motivated by this, we propose a new evaluation framework comprising 8 metrics related to three dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting the metrics, we place emphasis on efficiency, as well as alignment with human preferences. Based on this considerations, we streamline to analyze fine-grained dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive experiments on 85,000 videos generated by 17 state-of-the-art models suggest that while many algorithms excel in lip synchronization, they face challenges with generating expressiveness and artifact-free details. These videos were generated based on a novel real dataset, that we have curated, in order to mitigate bias of training data. Our proposed benchmark framework is aimed at evaluating the improvement of generative methods. Original code, dataset and leaderboards will be publicly released and regularly updated with new methods, in order to reflect progress in the field.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ EditInfinity: Image Editing with Binary-Quantized Generative Models NeurIPS 2025
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of binary-quantized generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose EditInfinity, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our EditInfinity to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across `add', `change', and `delete' editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.
comment: 28 pages, 13 figures, accepted by The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Self-supervised Deep Unrolled Model with Implicit Neural Representation Regularization for Accelerating MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital clinical diagnostic tool, yet its application is limited by prolonged scan times. Accelerating MRI reconstruction addresses this issue by reconstructing high-fidelity MR images from undersampled k-space measurements. In recent years, deep learning-based methods have demonstrated remarkable progress. However, most methods rely on supervised learning, which requires large amounts of fully-sampled training data that are difficult to obtain. This paper proposes a novel zero-shot self-supervised reconstruction method named UnrollINR, which enables scan-specific MRI reconstruction without external training data. UnrollINR adopts a physics-guided unrolled reconstruction architecture and introduces implicit neural representation (INR) as a regularization prior to effectively constrain the solution space. This method overcomes the local bias limitation of CNNs in traditional deep unrolled methods and avoids the instability associated with relying solely on INR's implicit regularization in highly ill-posed scenarios. Consequently, UnrollINR significantly improves MRI reconstruction performance under high acceleration rates. Experimental results show that even at a high acceleration rate of 10, UnrollINR achieves superior reconstruction performance compared to supervised and self-supervised learning methods, validating its effectiveness and superiority.
♻ ☆ GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction NeurIPS 2025
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
comment: Accepted at NeurIPS 2025 (Spotlight). Project page: https://fictionarry.github.io/GeoSVR-project/
♻ ☆ GAITEX: Human motion dataset of impaired gait and rehabilitation exercises using inertial and optical sensors
Wearable inertial measurement units (IMUs) provide a cost-effective approach to assessing human movement in clinical and everyday environments. However, developing the associated classification models for robust assessment of physiotherapeutic exercise and gait analysis requires large, diverse datasets that are costly and time-consuming to collect. We present a multimodal dataset of physiotherapeutic and gait-related exercises, including correct and clinically relevant variants, recorded from 19 healthy subjects using synchronized IMUs and optical marker-based motion capture (MoCap). It contains data from nine IMUs and 68 markers tracking full-body kinematics. Four markers per IMU allow direct comparison between IMU- and MoCap-derived orientations. We additionally provide processed IMU orientations aligned to common segment coordinate systems, subject-specific OpenSim models, inverse kinematics outputs, and visualization tools for IMU-derived orientations. The dataset is fully annotated with movement quality ratings and timestamped segmentations. It supports various machine learning tasks such as exercise evaluation, gait classification, temporal segmentation, and biomechanical parameter estimation. Code for postprocessing, alignment, inverse kinematics, and technical validation is provided to promote reproducibility.
♻ ☆ Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Improving Diagnostic Performance on Small and Imbalanced Datasets Using Class-Based Input Image Composition
Small, imbalanced datasets and poor input image quality can lead to high false predictions rates with deep learning models. This paper introduces Class-Based Image Composition, an approach that allows us to reformulate training inputs through a fusion of multiple images of the same class into combined visual composites, named Composite Input Images (CoImg). That enhances the intra-class variance and improves the valuable information density per training sample and increases the ability of the model to distinguish between subtle disease patterns. Our method was evaluated on the Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods (OCTDL) (Kulyabin et al., 2024), which contains 2,064 high-resolution optical coherence tomography (OCT) scans of the human retina, representing seven distinct diseases with a significant class imbalance. We constructed a perfectly class-balanced version of this dataset, named Co-OCTDL, where each scan is resented as a 3x1 layout composite image. To assess the effectiveness of this new representation, we conducted a comparative analysis between the original dataset and its variant using a VGG16 model. A fair comparison was ensured by utilizing the identical model architecture and hyperparameters for all experiments. The proposed approach markedly improved diagnostic results.The enhanced Dataset achieved near-perfect accuracy (99.6%) with F1-score (0.995) and AUC (0.9996), compared to a baseline model trained on raw dataset. The false prediction rate was also significantly lower, this demonstrates that the method can producehigh-quality predictions even for weak datasets affected by class imbalance or small sample size.
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution ICCV 2025
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
comment: Accepted by ICCV 2025
♻ ☆ ControlGS: Consistent Structural Compression Control for Deployment-Aware Gaussian Splatting
3D Gaussian Splatting (3DGS) is a highly deployable real-time method for novel view synthesis. In practice, it requires a universal, consistent control mechanism that adjusts the trade-off between rendering quality and model compression without scene-specific tuning, enabling automated deployment across different device performances and communication bandwidths. In this work, we present ControlGS, a control-oriented optimization framework that maps the trade-off between Gaussian count and rendering quality to a continuous, scene-agnostic, and highly responsive control axis. Extensive experiments across a wide range of scene scales and types (from small objects to large outdoor scenes) demonstrate that, by adjusting a globally unified control hyperparameter, ControlGS can flexibly generate models biased toward either structural compactness or high fidelity, regardless of the specific scene scale or complexity, while achieving markedly higher rendering quality with the same or fewer Gaussians compared to potential competing methods. Project page: https://zhang-fengdi.github.io/ControlGS/
♻ ☆ Dual Teacher-Student Learning for Semi-supervised Medical Image Segmentation
Semi-supervised learning reduces the costly manual annotation burden in medical image segmentation. A popular approach is the mean teacher (MT) strategy, which applies consistency regularization using a temporally averaged teacher model. In this work, the MT strategy is reinterpreted as a form of self-paced learning in the context of supervised learning, where agreement between the teacher's predictions and the ground truth implicitly guides the model from easy to hard. Extending this insight to semi-supervised learning, we propose dual teacher-student learning (DTSL). It regulates the learning pace on unlabeled data using two signals: a temporally averaged signal from an in-group teacher and a cross-architectural signal from a student in a second, distinct model group. Specifically, a novel consensus label generator (CLG) creates the pseudo-labels from the agreement between these two signals, establishing an effective learning curriculum. Extensive experiments on four benchmark datasets demonstrate that the proposed method consistently outperforms existing state-of-the-art approaches. Remarkably, on three of the four datasets, our semi-supervised method with limited labeled data surpasses its fully supervised counterparts, validating the effectiveness of our self-paced learning design.
♻ ☆ LoRA-Edge: Tensor-Train-Assisted LoRA for Practical CNN Fine-Tuning on Edge Devices DATE 2026
On-device fine-tuning of CNNs is essential to withstand domain shift in edge applications such as Human Activity Recognition (HAR), yet full fine-tuning is infeasible under strict memory, compute, and energy budgets. We present LoRA-Edge, a parameter-efficient fine-tuning (PEFT) method that builds on Low-Rank Adaptation (LoRA) with tensor-train assistance. LoRA-Edge (i) applies Tensor-Train Singular Value Decomposition (TT-SVD) to pre-trained convolutional layers, (ii) selectively updates only the output-side core with zero-initialization to keep the auxiliary path inactive at the start, and (iii) fuses the update back into dense kernels, leaving inference cost unchanged. This design preserves convolutional structure and reduces the number of trainable parameters by up to two orders of magnitude compared to full fine-tuning. Across diverse HAR datasets and CNN backbones, LoRA-Edge achieves accuracy within 4.7% of full fine-tuning while updating at most 1.49% of parameters, consistently outperforming prior parameter-efficient baselines under similar budgets. On a Jetson Orin Nano, TT-SVD initialization and selective-core training yield 1.4-3.8x faster convergence to target F1. LoRA-Edge thus makes structure-aligned, parameter-efficient on-device CNN adaptation practical for edge platforms.
comment: 8 pages, 6 figures, 2 tables, DATE 2026 accepted paper
♻ ☆ Towards Understanding the Mechanisms of Classifier-Free Guidance
Classifier-free guidance (CFG) is a core technique powering state-of-the-art image generation systems, yet its underlying mechanisms remain poorly understood. In this work, we begin by analyzing CFG in a simplified linear diffusion model, where we show its behavior closely resembles that observed in the nonlinear case. Our analysis reveals that linear CFG improves generation quality via three distinct components: (i) a mean-shift term that approximately steers samples in the direction of class means, (ii) a positive Contrastive Principal Components (CPC) term that amplifies class-specific features, and (iii) a negative CPC term that suppresses generic features prevalent in unconditional data. We then verify that these insights in real-world, nonlinear diffusion models: over a broad range of noise levels, linear CFG resembles the behavior of its nonlinear counterpart. Although the two eventually diverge at low noise levels, we discuss how the insights from the linear analysis still shed light on the CFG's mechanism in the nonlinear regime.
♻ ☆ When Are Concepts Erased From Diffusion Models? NeurIPS 2025
In concept erasure, a model is modified to selectively prevent it from generating a target concept. Despite the rapid development of new methods, it remains unclear how thoroughly these approaches remove the target concept from the model. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) interfering with the model's internal guidance processes, and (ii) reducing the unconditional likelihood of generating the target concept, potentially removing it entirely. To assess whether a concept has been truly erased from the model, we introduce a comprehensive suite of independent probing techniques: supplying visual context, modifying the diffusion trajectory, applying classifier guidance, and analyzing the model's alternative generations that emerge in place of the erased concept. Our results shed light on the value of exploring concept erasure robustness outside of adversarial text inputs, and emphasize the importance of comprehensive evaluations for erasure in diffusion models.
comment: Accepted to NeurIPS 2025. Our code, data, and results are available at https://unerasing.baulab.info/
♻ ☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
comment: 18 pages, 8 figures, 2 tables
♻ ☆ On Scaling Up 3D Gaussian Splatting Training ICLR 2025
3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS
comment: ICLR 2025 Oral; Homepage: https://daohanlu.github.io/scaling-up-3dgs/
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
Fundus images are essential for the early screening and detection of eye diseases. While deep learning models using fundus images have significantly advanced the diagnosis of multiple eye diseases, variations in images from different imaging devices and locations (known as domain shifts) pose challenges for deploying pre-trained models in real-world applications. To address this, we propose a novel Fundus On-the-fly Test-Time Adaptation (FunOTTA) framework that effectively generalizes a fundus image diagnosis model to unseen environments, even under strong domain shifts. FunOTTA stands out for its stable adaptation process by performing dynamic disambiguation in the memory bank while minimizing harmful prior knowledge bias. We also introduce a new training objective during adaptation that enables the classifier to incrementally adapt to target patterns with reliable class conditional estimation and consistency regularization. We compare our method with several state-of-the-art test-time adaptation (TTA) pipelines. Experiments on cross-domain fundus image benchmarks across two diseases demonstrate the superiority of the overall framework and individual components under different backbone networks. Code is available at https://github.com/Casperqian/FunOTTA.
comment: 13 pages, 8 figures, 7 tables
♻ ☆ Faithful Contouring: Near-Lossless 3D Voxel Representation Free from Iso-surface
Accurate and efficient voxelized representations of 3D meshes are the foundation of 3D reconstruction and generation. However, existing representations based on iso-surface heavily rely on water-tightening or rendering optimization, which inevitably compromise geometric fidelity. We propose Faithful Contouring, a sparse voxelized representation that supports 2048+ resolutions for arbitrary meshes, requiring neither converting meshes to field functions nor extracting the isosurface during remeshing. It achieves near-lossless fidelity by preserving sharpness and internal structures, even for challenging cases with complex geometry and topology. The proposed method also shows flexibility for texturing, manipulation, and editing. Beyond representation, we design a dual-mode autoencoder for Faithful Contouring, enabling scalable and detail-preserving shape reconstruction. Extensive experiments show that Faithful Contouring surpasses existing methods in accuracy and efficiency for both representation and reconstruction. For direct representation, it achieves distance errors at the $10^{-5}$ level; for mesh reconstruction, it yields a 93\% reduction in Chamfer Distance and a 35\% improvement in F-score over strong baselines, confirming superior fidelity as a representation for 3D learning tasks.
♻ ☆ SelaVPR++: Towards Seamless Adaptation of Foundation Models for Efficient Place Recognition
Recent studies show that the visual place recognition (VPR) method using pre-trained visual foundation models can achieve promising performance. In our previous work, we propose a novel method to realize seamless adaptation of foundation models to VPR (SelaVPR). This method can produce both global and local features that focus on discriminative landmarks to recognize places for two-stage VPR by a parameter-efficient adaptation approach. Although SelaVPR has achieved competitive results, we argue that the previous adaptation is inefficient in training time and GPU memory usage, and the re-ranking paradigm is also costly in retrieval latency and storage usage. In pursuit of higher efficiency and better performance, we propose an extension of the SelaVPR, called SelaVPR++. Concretely, we first design a parameter-, time-, and memory-efficient adaptation method that uses lightweight multi-scale convolution (MultiConv) adapters to refine intermediate features from the frozen foundation backbone. This adaptation method does not back-propagate gradients through the backbone during training, and the MultiConv adapter facilitates feature interactions along the spatial axes and introduces proper local priors, thus achieving higher efficiency and better performance. Moreover, we propose an innovative re-ranking paradigm for more efficient VPR. Instead of relying on local features for re-ranking, which incurs huge overhead in latency and storage, we employ compact binary features for initial retrieval and robust floating-point (global) features for re-ranking. To obtain such binary features, we propose a similarity-constrained deep hashing method, which can be easily integrated into the VPR pipeline. Finally, we improve our training strategy and unify the training protocol of several common training datasets to merge them for better training of VPR models. Extensive experiments show that ......
comment: accepted by T-PAMI
♻ ☆ Dark Transformer: A Video Transformer for Action Recognition in the Dark
Recognizing human actions in adverse lighting conditions presents significant challenges in computer vision, with wide-ranging applications in visual surveillance and nighttime driving. Existing methods tackle action recognition and dark enhancement separately, limiting the potential for end-to-end learning of spatiotemporal representations for video action classification. This paper introduces Dark Transformer, a novel video transformer-based approach for action recognition in low-light environments. Dark Transformer leverages spatiotemporal self-attention mechanisms in cross-domain settings to enhance cross-domain action recognition. By extending video transformers to learn cross-domain knowledge, Dark Transformer achieves state-of-the-art performance on benchmark action recognition datasets, including InFAR, XD145, and ARID. The proposed approach demonstrates significant promise in addressing the challenges of action recognition in adverse lighting conditions, offering practical implications for real-world applications.
comment: 8 Figures, 12 Pages
♻ ☆ Diffusion Denoised Hyperspectral Gaussian Splatting 3DV 2026
Hyperspectral imaging (HSI) has been widely used in agricultural applications for non-destructive estimation of plant nutrient composition and precise determination of nutritional elements of samples. Recently, 3D reconstruction methods have been used to create implicit neural representations of HSI scenes, which can help localize the target object's nutrient composition spatially and spectrally. Neural Radiance Field (NeRF) is a cutting-edge implicit representation that can be used to render hyperspectral channel compositions of each spatial location from any viewing direction. However, it faces limitations in training time and rendering speed. In this paper, we propose Diffusion-Denoised Hyperspectral Gaussian Splatting (DD-HGS), which enhances the state-of-the-art 3D Gaussian Splatting (3DGS) method with wavelength-aware spherical harmonics, a Kullback-Leibler divergence-based spectral loss, and a diffusion-based denoiser to enable 3D explicit reconstruction of hyperspectral scenes across the full spectral range. We present extensive evaluations on diverse real-world hyperspectral scenes from the Hyper-NeRF dataset to show the effectiveness of DD-HGS. The results demonstrate that DD-HGS achieves new state-of-the-art performance among previously published methods. Project page: https://dragonpg2000.github.io/DDHGS-website/
comment: Accepted to 3DV 2026
Artificial Intelligence 123
☆ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.
comment: 22 pages, 17 figures. Official code: https://github.com/Time-Search/TimeSearch-R
☆ DGTN: Graph-Enhanced Transformer with Diffusive Attention Gating Mechanism for Enzyme DDG Prediction
Predicting the effect of amino acid mutations on enzyme thermodynamic stability (DDG) is fundamental to protein engineering and drug design. While recent deep learning approaches have shown promise, they often process sequence and structure information independently, failing to capture the intricate coupling between local structural geometry and global sequential patterns. We present DGTN (Diffused Graph-Transformer Network), a novel architecture that co-learns graph neural network (GNN) weights for structural priors and transformer attention through a diffusion mechanism. Our key innovation is a bidirectional diffusion process where: (1) GNN-derived structural embeddings guide transformer attention via learnable diffusion kernels, and (2) transformer representations refine GNN message passing through attention-modulated graph updates. We provide rigorous mathematical analysis showing this co-learning scheme achieves provably better approximation bounds than independent processing. On ProTherm and SKEMPI benchmarks, DGTN achieves state-of-the-art performance (Pearson Rho = 0.87, RMSE = 1.21 kcal/mol), with 6.2% improvement over best baselines. Ablation studies confirm the diffusion mechanism contributes 4.8 points to correlation. Our theoretical analysis proves the diffused attention converges to optimal structure-sequence coupling, with convergence rate O(1/sqrt(T) ) where T is diffusion steps. This work establishes a principled framework for integrating heterogeneous protein representations through learnable diffusion.
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ AI Literacy Assessment Revisited: A Task-Oriented Approach Aligned with Real-world Occupations
As artificial intelligence (AI) systems become ubiquitous in professional contexts, there is an urgent need to equip workers, often with backgrounds outside of STEM, with the skills to use these tools effectively as well as responsibly, that is, to be AI literate. However, prevailing definitions and therefore assessments of AI literacy often emphasize foundational technical knowledge, such as programming, mathematics, and statistics, over practical knowledge such as interpreting model outputs, selecting tools, or identifying ethical concerns. This leaves a noticeable gap in assessing someone's AI literacy for real-world job use. We propose a work-task-oriented assessment model for AI literacy which is grounded in the competencies required for effective use of AI tools in professional settings. We describe the development of a novel AI literacy assessment instrument, and accompanying formative assessments, in the context of a US Navy robotics training program. The program included training in robotics and AI literacy, as well as a competition with practical tasks and a multiple choice scenario task meant to simulate use of AI in a job setting. We found that, as a measure of applied AI literacy, the competition's scenario task outperformed the tests we adopted from past research or developed ourselves. We argue that when training people for AI-related work, educators should consider evaluating them with instruments that emphasize highly contextualized practical skills rather than abstract technical knowledge, especially when preparing workers without technical backgrounds for AI-integrated roles.
☆ SWE-Compass: Towards Unified Evaluation of Agentic Coding Abilities for Large Language Models
Evaluating large language models (LLMs) for software engineering has been limited by narrow task coverage, language bias, and insufficient alignment with real-world developer workflows. Existing benchmarks often focus on algorithmic problems or Python-centric bug fixing, leaving critical dimensions of software engineering underexplored. To address these gaps, we introduce SWE-Compass1, a comprehensive benchmark that unifies heterogeneous code-related evaluations into a structured and production-aligned framework. SWE-Compass spans 8 task types, 8 programming scenarios, and 10 programming languages, with 2000 high-quality instances curated from authentic GitHub pull requests and refined through systematic filtering and validation. We benchmark ten state-of-the-art LLMs under two agentic frameworks, SWE-Agent and Claude Code, revealing a clear hierarchy of difficulty across task types, languages, and scenarios. Moreover, by aligning evaluation with real-world developer practices, SWE-Compass provides a rigorous and reproducible foundation for diagnosing and advancing agentic coding capabilities in large language models.
☆ Self-adaptive weighting and sampling for physics-informed neural networks
Physics-informed deep learning has emerged as a promising framework for solving partial differential equations (PDEs). Nevertheless, training these models on complex problems remains challenging, often leading to limited accuracy and efficiency. In this work, we introduce a hybrid adaptive sampling and weighting method to enhance the performance of physics-informed neural networks (PINNs). The adaptive sampling component identifies training points in regions where the solution exhibits rapid variation, while the adaptive weighting component balances the convergence rate across training points. Numerical experiments show that applying only adaptive sampling or only adaptive weighting is insufficient to consistently achieve accurate predictions, particularly when training points are scarce. Since each method emphasizes different aspects of the solution, their effectiveness is problem dependent. By combining both strategies, the proposed framework consistently improves prediction accuracy and training efficiency, offering a more robust approach for solving PDEs with PINNs.
comment: 11 figures
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ "I Like That You Have to Poke Around": Instructors on How Experiential Approaches to AI Literacy Spark Inquiry and Critical Thinking
As artificial intelligence (AI) increasingly shapes decision-making across domains, there is a growing need to support AI literacy among learners beyond computer science. However, many current approaches rely on programming-heavy tools or abstract lecture-based content, limiting accessibility for non-STEM audiences. This paper presents findings from a study of AI User, a modular, web-based curriculum that teaches core AI concepts through interactive, no-code projects grounded in real-world scenarios. The curriculum includes eight projects; this study focuses on instructor feedback on Projects 5-8, which address applied topics such as natural language processing, computer vision, decision support, and responsible AI. Fifteen community college instructors participated in structured focus groups, completing the projects as learners and providing feedback through individual reflection and group discussion. Using thematic analysis, we examined how instructors evaluated the design, instructional value, and classroom applicability of these experiential activities. Findings highlight instructors' appreciation for exploratory tasks, role-based simulations, and real-world relevance, while also surfacing design trade-offs around cognitive load, guidance, and adaptability for diverse learners. This work extends prior research on AI literacy by centering instructor perspectives on teaching complex AI topics without code. It offers actionable insights for designing inclusive, experiential AI learning resources that scale across disciplines and learner backgrounds.
☆ ProDER: A Continual Learning Approach for Fault Prediction in Evolving Smart Grids
As smart grids evolve to meet growing energy demands and modern operational challenges, the ability to accurately predict faults becomes increasingly critical. However, existing AI-based fault prediction models struggle to ensure reliability in evolving environments where they are required to adapt to new fault types and operational zones. In this paper, we propose a continual learning (CL) framework in the smart grid context to evolve the model together with the environment. We design four realistic evaluation scenarios grounded in class-incremental and domain-incremental learning to emulate evolving grid conditions. We further introduce Prototype-based Dark Experience Replay (ProDER), a unified replay-based approach that integrates prototype-based feature regularization, logit distillation, and a prototype-guided replay memory. ProDER achieves the best performance among tested CL techniques, with only a 0.045 accuracy drop for fault type prediction and 0.015 for fault zone prediction. These results demonstrate the practicality of CL for scalable, real-world fault prediction in smart grids.
☆ Multi-modal Loop Closure Detection with Foundation Models in Severely Unstructured Environments ICRA 2026
Robust loop closure detection is a critical component of Simultaneous Localization and Mapping (SLAM) algorithms in GNSS-denied environments, such as in the context of planetary exploration. In these settings, visual place recognition often fails due to aliasing and weak textures, while LiDAR-based methods suffer from sparsity and ambiguity. This paper presents MPRF, a multimodal pipeline that leverages transformer-based foundation models for both vision and LiDAR modalities to achieve robust loop closure in severely unstructured environments. Unlike prior work limited to retrieval, MPRF integrates a two-stage visual retrieval strategy with explicit 6-DoF pose estimation, combining DINOv2 features with SALAD aggregation for efficient candidate screening and SONATA-based LiDAR descriptors for geometric verification. Experiments on the S3LI dataset and S3LI Vulcano dataset show that MPRF outperforms state-of-the-art retrieval methods in precision while enhancing pose estimation robustness in low-texture regions. By providing interpretable correspondences suitable for SLAM back-ends, MPRF achieves a favorable trade-off between accuracy, efficiency, and reliability, demonstrating the potential of foundation models to unify place recognition and pose estimation. Code and models will be released at github.com/DLR-RM/MPRF.
comment: Under review for ICRA 2026
☆ Robust Neural Audio Fingerprinting using Music Foundation Models
The proliferation of distorted, compressed, and manipulated music on modern media platforms like TikTok motivates the development of more robust audio fingerprinting techniques to identify the sources of musical recordings. In this paper, we develop and evaluate new neural audio fingerprinting techniques with the aim of improving their robustness. We make two contributions to neural fingerprinting methodology: (1) we use a pretrained music foundation model as the backbone of the neural architecture and (2) we expand the use of data augmentation to train fingerprinting models under a wide variety of audio manipulations, including time streching, pitch modulation, compression, and filtering. We systematically evaluate our methods in comparison to two state-of-the-art neural fingerprinting models: NAFP and GraFPrint. Results show that fingerprints extracted with music foundation models (e.g., MuQ, MERT) consistently outperform models trained from scratch or pretrained on non-musical audio. Segment-level evaluation further reveals their capability to accurately localize fingerprint matches, an important practical feature for catalog management.
☆ Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
☆ AI Assisted AR Assembly: Object Recognition and Computer Vision for Augmented Reality Assisted Assembly SC
We present an AI-assisted Augmented Reality assembly workflow that uses deep learning-based object recognition to identify different assembly components and display step-by-step instructions. For each assembly step, the system displays a bounding box around the corresponding components in the physical space, and where the component should be placed. By connecting assembly instructions with the real-time location of relevant components, the system eliminates the need for manual searching, sorting, or labeling of different components before each assembly. To demonstrate the feasibility of using object recognition for AR-assisted assembly, we highlight a case study involving the assembly of LEGO sculptures.
comment: Accepted to the Association for Computing Machinery (ACM) Symposium on Computational Fabrication (SCF '25)
☆ TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
comment: 32 pages
☆ Reasoning Is All You Need for Urban Planning AI AAAI 2026
AI has proven highly successful at urban planning analysis -- learning patterns from data to predict future conditions. The next frontier is AI-assisted decision-making: agents that recommend sites, allocate resources, and evaluate trade-offs while reasoning transparently about constraints and stakeholder values. Recent breakthroughs in reasoning AI -- CoT prompting, ReAct, and multi-agent collaboration frameworks -- now make this vision achievable. This position paper presents the Agentic Urban Planning AI Framework for reasoning-capable planning agents that integrates three cognitive layers (Perception, Foundation, Reasoning) with six logic components (Analysis, Generation, Verification, Evaluation, Collaboration, Decision) through a multi-agents collaboration framework. We demonstrate why planning decisions require explicit reasoning capabilities that are value-based (applying normative principles), rule-grounded (guaranteeing constraint satisfaction), and explainable (generating transparent justifications) -- requirements that statistical learning alone cannot fulfill. We compare reasoning agents with statistical learning, present a comprehensive architecture with benchmark evaluation metrics, and outline critical research challenges. This framework shows how AI agents can augment human planners by systematically exploring solution spaces, verifying regulatory compliance, and deliberating over trade-offs transparently -- not replacing human judgment but amplifying it with computational reasoning capabilities.
comment: Submitted to AAAI 2026 Workshop AI4UP
☆ AI Literacy for Community Colleges: Instructors' Perspectives on Scenario-Based and Interactive Approaches to Teaching AI
This research category full paper investigates how community college instructors evaluate interactive, no-code AI literacy resources designed for non-STEM learners. As artificial intelligence becomes increasingly integrated into everyday technologies, AI literacy - the ability to evaluate AI systems, communicate with them, and understand their broader impacts - has emerged as a critical skill across disciplines. Yet effective, scalable approaches for teaching these concepts in higher education remain limited, particularly for students outside STEM fields. To address this gap, we developed AI User, an interactive online curriculum that introduces core AI concepts through scenario - based activities set in real - world contexts. This study presents findings from four focus groups with instructors who engaged with AI User materials and participated in structured feedback activities. Thematic analysis revealed that instructors valued exploratory tasks that simulated real - world AI use cases and fostered experimentation, while also identifying challenges related to scaffolding, accessibility, and multi-modal support. A ranking task for instructional support materials showed a strong preference for interactive demonstrations over traditional educational materials like conceptual guides or lecture slides. These findings offer insights into instructor perspectives on making AI concepts more accessible and relevant for broad learner audiences. They also inform the design of AI literacy tools that align with diverse teaching contexts and support critical engagement with AI in higher education.
☆ A multimodal multiplex of the mental lexicon for multilingual individuals
Historically, bilingualism was often perceived as an additional cognitive load that could hinder linguistic and intellectual development. However, over the last three decades, this view has changed considerably. Numerous studies have aimed to model and understand the architecture of the bilingual word recognition system Dijkstra and van Heuven (2002), investigating how parallel activation operates in the brain and how one language influences another Kroll et al. (2015). Increasingly, evidence suggests that multilinguals, individuals who speak three or more languages, can perform better than monolinguals in various linguistic and cognitive tasks, such as learning an additional language Abu-Rabia and Sanitsky (2010). This research proposal focuses on the study of the mental lexicon and how it may be structured in individuals who speak multiple languages. Building on the work of Stella et al. (2018), who investigated explosive learning in humans using a multiplex model of the mental lexicon, and the Bilingual Interactive Activation (BIA+) framework proposed by Dijkstra and van Heuven (2002), the present study applies the same multilayer network principles introduced by Kivela et al. (2014). Our experimental design extends previous research by incorporating multimodality into the multiplex model, introducing an additional layer that connects visual inputs to their corresponding lexical representations across the multilingual layers of the mental lexicon. In this research, we aim to explore how a heritage language influences the acquisition of another language. Specifically, we ask: Does the presence of visual input in a translation task influence participants' proficiency and accuracy compared to text-only conditions?
☆ Perceptually Aligning Representations of Music via Noise-Augmented Autoencoders NeurIPS 2025
We argue that training autoencoders to reconstruct inputs from noised versions of their encodings, when combined with perceptual losses, yields encodings that are structured according to a perceptual hierarchy. We demonstrate the emergence of this hierarchical structure by showing that, after training an audio autoencoder in this manner, perceptually salient information is captured in coarser representation structures than with conventional training. Furthermore, we show that such perceptual hierarchies improve latent diffusion decoding in the context of estimating surprisal in music pitches and predicting EEG-brain responses to music listening. Pretrained weights are available on github.com/CPJKU/pa-audioic.
comment: Accepted at NeurIPS 2025 - AI for Music Workshop, 11 pages, 5 figures, 1 table
☆ What Are the Facts? Automated Extraction of Court-Established Facts from Criminal-Court Opinions
Criminal justice administrative data contain only a limited amount of information about the committed offense. However, there is an unused source of extensive information in continental European courts' decisions: descriptions of criminal behaviors in verdicts by which offenders are found guilty. In this paper, we study the feasibility of extracting these descriptions from publicly available court decisions from Slovakia. We use two different approaches for retrieval: regular expressions and large language models (LLMs). Our baseline was a simple method employing regular expressions to identify typical words occurring before and after the description. The advanced regular expression approach further focused on "sparing" and its normalization (insertion of spaces between individual letters), typical for delineating the description. The LLM approach involved prompting the Gemini Flash 2.0 model to extract the descriptions using predefined instructions. Although the baseline identified descriptions in only 40.5% of verdicts, both methods significantly outperformed it, achieving 97% with advanced regular expressions and 98.75% with LLMs, and 99.5% when combined. Evaluation by law students showed that both advanced methods matched human annotations in about 90% of cases, compared to just 34.5% for the baseline. LLMs fully matched human-labeled descriptions in 91.75% of instances, and a combination of advanced regular expressions with LLMs reached 92%.
comment: Paper accepted to the proceedings of ASAIL 2025 Workshop under ICAIL conference for publication. Paper contains 6 pages (references included) and 2 appendices. It contains 8 tables, no figures
☆ Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ LiveStar: Live Streaming Assistant for Real-World Online Video Understanding NeurIPS 2025
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.
comment: NeurIPS 2025 Accepted
☆ DeepEyesV2: Toward Agentic Multimodal Model
Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.
comment: Homepage: https://visual-agent.github.io/
☆ TAMAS: Benchmarking Adversarial Risks in Multi-Agent LLM Systems ICML 2025
Large Language Models (LLMs) have demonstrated strong capabilities as autonomous agents through tool use, planning, and decision-making abilities, leading to their widespread adoption across diverse tasks. As task complexity grows, multi-agent LLM systems are increasingly used to solve problems collaboratively. However, safety and security of these systems remains largely under-explored. Existing benchmarks and datasets predominantly focus on single-agent settings, failing to capture the unique vulnerabilities of multi-agent dynamics and co-ordination. To address this gap, we introduce $\textbf{T}$hreats and $\textbf{A}$ttacks in $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{S}$ystems ($\textbf{TAMAS}$), a benchmark designed to evaluate the robustness and safety of multi-agent LLM systems. TAMAS includes five distinct scenarios comprising 300 adversarial instances across six attack types and 211 tools, along with 100 harmless tasks. We assess system performance across ten backbone LLMs and three agent interaction configurations from Autogen and CrewAI frameworks, highlighting critical challenges and failure modes in current multi-agent deployments. Furthermore, we introduce Effective Robustness Score (ERS) to assess the tradeoff between safety and task effectiveness of these frameworks. Our findings show that multi-agent systems are highly vulnerable to adversarial attacks, underscoring the urgent need for stronger defenses. TAMAS provides a foundation for systematically studying and improving the safety of multi-agent LLM systems.
comment: Accepted at ICML 2025 MAS Workshop. This version includes additional experiments and analysis
☆ Integrating Score-Based Diffusion Models with Machine Learning-Enhanced Localization for Advanced Data Assimilation in Geological Carbon Storage
Accurate characterization of subsurface heterogeneity is important for the safe and effective implementation of geological carbon storage (GCS) projects. This paper explores how machine learning methods can enhance data assimilation for GCS with a framework that integrates score-based diffusion models with machine learning-enhanced localization in channelized reservoirs during CO$_2$ injection. We employ a machine learning-enhanced localization framework that uses large ensembles ($N_s = 5000$) with permeabilities generated by the diffusion model and states computed by simple ML algorithms to improve covariance estimation for the Ensemble Smoother with Multiple Data Assimilation (ESMDA). We apply ML algorithms to a prior ensemble of channelized permeability fields, generated with the geostatistical model FLUVSIM. Our approach is applied on a CO$_2$ injection scenario simulated using the Delft Advanced Research Terra Simulator (DARTS). Our ML-based localization maintains significantly more ensemble variance than when localization is not applied, while achieving comparable data-matching quality. This framework has practical implications for GCS projects, helping improve the reliability of uncertainty quantification for risk assessment.
comment: Corresponding author: Gabriel Serr\~ao Seabra
☆ An End-to-End Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drones
The emergence of truck-drone collaborative systems in last-mile logistics has positioned the Traveling Salesman Problem with Drones (TSP-D) as a pivotal extension of classical routing optimization, where synchronized vehicle coordination promises substantial operational efficiency and reduced environmental impact, yet introduces NP-hard combinatorial complexity beyond the reach of conventional optimization paradigms. Deep reinforcement learning offers a theoretically grounded framework to address TSP-D's inherent challenges through self-supervised policy learning and adaptive decision-making. This study proposes a hierarchical Actor-Critic deep reinforcement learning framework for solving the TSP-D problem. The architecture consists of two primary components: a Transformer-inspired encoder and an efficient Minimal Gated Unit decoder. The encoder incorporates a novel, optimized k-nearest neighbors sparse attention mechanism specifically for focusing on relevant spatial relationships, further enhanced by the integration of global node features. The Minimal Gated Unit decoder processes these encoded representations to efficiently generate solution sequences. The entire framework operates within an asynchronous advantage actor-critic paradigm. Experimental results show that, on benchmark TSP-D instances of various scales (N=10 to 100), the proposed model can obtain competitive or even superior solutions in shorter average computation times compared to high-performance heuristic algorithms and existing reinforcement learning methods. Moreover, compared to advanced reinforcement learning algorithm benchmarks, the proposed framework significantly reduces the total training time required while achieving superior final performance, highlighting its notable advantage in training efficiency.
☆ OregairuChar: A Benchmark Dataset for Character Appearance Frequency Analysis in My Teen Romantic Comedy SNAFU
The analysis of character appearance frequency is essential for understanding narrative structure, character prominence, and story progression in anime. In this work, we introduce OregairuChar, a benchmark dataset designed for appearance frequency analysis in the anime series My Teen Romantic Comedy SNAFU. The dataset comprises 1600 manually selected frames from the third season, annotated with 2860 bounding boxes across 11 main characters. OregairuChar captures diverse visual challenges, including occlusion, pose variation, and inter-character similarity, providing a realistic basis for appearance-based studies. To enable quantitative research, we benchmark several object detection models on the dataset and leverage their predictions for fine-grained, episode-level analysis of character presence over time. This approach reveals patterns of character prominence and their evolution within the narrative. By emphasizing appearance frequency, OregairuChar serves as a valuable resource for exploring computational narrative dynamics and character-centric storytelling in stylized media.
☆ A Gate-Based Quantum Genetic Algorithm for Real-Valued Global Optimization
We propose a gate-based Quantum Genetic Algorithm (QGA) for real-valued global optimization. In this model, individuals are represented by quantum circuits whose measurement outcomes are decoded into real-valued vectors through binary discretization. Evolutionary operators act directly on circuit structures, allowing mutation and crossover to explore the space of gate-based encodings. Both fixed-depth and variable-depth variants are introduced, enabling either uniform circuit complexity or adaptive structural evolution. Fitness is evaluated through quantum sampling, using the mean decoded output of measurement outcomes as the argument of the objective function. To isolate the impact of quantum resources, we compare gate sets with and without the Hadamard gate, showing that superposition consistently improves convergence and robustness across benchmark functions such as the Rastrigin function. Furthermore, we demonstrate that introducing pairwise inter-individual entanglement in the population accelerates early convergence, revealing that quantum correlations among individuals provide an additional optimization advantage. Together, these results show that both superposition and entanglement enhance the search dynamics of evolutionary quantum algorithms, establishing gate-based QGAs as a promising framework for quantum-enhanced global optimization.
comment: 16 pages
☆ Accurate online action and gesture recognition system using detectors and Deep SPD Siamese Networks
Online continuous motion recognition is a hot topic of research since it is more practical in real life application cases. Recently, Skeleton-based approaches have become increasingly popular, demonstrating the power of using such 3D temporal data. However, most of these works have focused on segment-based recognition and are not suitable for the online scenarios. In this paper, we propose an online recognition system for skeleton sequence streaming composed from two main components: a detector and a classifier, which use a Semi-Positive Definite (SPD) matrix representation and a Siamese network. The powerful statistical representations for the skeletal data given by the SPD matrices and the learning of their semantic similarity by the Siamese network enable the detector to predict time intervals of the motions throughout an unsegmented sequence. In addition, they ensure the classifier capability to recognize the motion in each predicted interval. The proposed detector is flexible and able to identify the kinetic state continuously. We conduct extensive experiments on both hand gesture and body action recognition benchmarks to prove the accuracy of our online recognition system which in most cases outperforms state-of-the-art performances.
☆ 4D3R: Motion-Aware Neural Reconstruction and Rendering of Dynamic Scenes from Monocular Videos
Novel view synthesis from monocular videos of dynamic scenes with unknown camera poses remains a fundamental challenge in computer vision and graphics. While recent advances in 3D representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static scenes, they struggle with dynamic content and typically rely on pre-computed camera poses. We present 4D3R, a pose-free dynamic neural rendering framework that decouples static and dynamic components through a two-stage approach. Our method first leverages 3D foundational models for initial pose and geometry estimation, followed by motion-aware refinement. 4D3R introduces two key technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module that combines transformer-based learned priors with SAM2 for robust dynamic object segmentation, enabling more accurate camera pose refinement; and (2) an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses control points with a deformation field MLP and linear blend skinning to model dynamic motion, significantly reducing computational cost while maintaining high-quality reconstruction. Extensive experiments on real-world dynamic datasets demonstrate that our approach achieves up to 1.8dB PSNR improvement over state-of-the-art methods, particularly in challenging scenarios with large dynamic objects, while reducing computational requirements by 5x compared to previous dynamic scene representations.
comment: 17 pages, 5 figures
☆ Autonomous generation of different courses of action in mechanized combat operations
In this paper, we propose a methodology designed to support decision-making during the execution phase of military ground combat operations, with a focus on one's actions. This methodology generates and evaluates recommendations for various courses of action for a mechanized battalion, commencing with an initial set assessed by their anticipated outcomes. It systematically produces thousands of individual action alternatives, followed by evaluations aimed at identifying alternative courses of action with superior outcomes. These alternatives are appraised in light of the opponent's status and actions, considering unit composition, force ratios, types of offense and defense, and anticipated advance rates. Field manuals evaluate battle outcomes and advancement rates. The processes of generation and evaluation work concurrently, yielding a variety of alternative courses of action. This approach facilitates the management of new course generation based on previously evaluated actions. As the combat unfolds and conditions evolve, revised courses of action are formulated for the decision-maker within a sequential decision-making framework.
comment: In Proceedings of the 30th International Command and Control Research & Technology Symposium, Stockholm, Sweden, 3-6 November 2025, paper 009
☆ No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models
☆ Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models
Foundation models capable of generalizing across species and tasks represent a promising new frontier in bioacoustics, with NatureLM being one of the most prominent examples. While its domain-specific fine-tuning yields strong performance on bioacoustic benchmarks, we observe that it also introduces trade-offs in instruction-following flexibility. For instance, NatureLM achieves high accuracy when prompted for either the common or scientific name individually, but its accuracy drops significantly when both are requested in a single prompt. We address this by applying a simple model merging strategy that interpolates NatureLM with its base language model, recovering instruction-following capabilities with minimal loss of domain expertise. Finally, we show that the merged model exhibits markedly stronger zero-shot generalization, achieving over a 200% relative improvement and setting a new state-of-the-art in closed-set zero-shot classification of unseen species.
☆ Generating Software Architecture Description from Source Code using Reverse Engineering and Large Language Model
Software Architecture Descriptions (SADs) are essential for managing the inherent complexity of modern software systems. They enable high-level architectural reasoning, guide design decisions, and facilitate effective communication among diverse stakeholders. However, in practice, SADs are often missing, outdated, or poorly aligned with the system's actual implementation. Consequently, developers are compelled to derive architectural insights directly from source code-a time-intensive process that increases cognitive load, slows new developer onboarding, and contributes to the gradual degradation of clarity over the system's lifetime. To address these issues, we propose a semi-automated generation of SADs from source code by integrating reverse engineering (RE) techniques with a Large Language Model (LLM). Our approach recovers both static and behavioral architectural views by extracting a comprehensive component diagram, filtering architecturally significant elements (core components) via prompt engineering, and generating state machine diagrams to model component behavior based on underlying code logic with few-shots prompting. This resulting views representation offer a scalable and maintainable alternative to traditional manual architectural documentation. This methodology, demonstrated using C++ examples, highlights the potent capability of LLMs to: 1) abstract the component diagram, thereby reducing the reliance on human expert involvement, and 2) accurately represent complex software behaviors, especially when enriched with domain-specific knowledge through few-shot prompting. These findings suggest a viable path toward significantly reducing manual effort while enhancing system understanding and long-term maintainability.
☆ SmartSecChain-SDN: A Blockchain-Integrated Intelligent Framework for Secure and Efficient Software-Defined Networks
With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory compliance, and the administration of next-generation programmable networks.
comment: 20 pages, 12 figures
☆ From Linear Probing to Joint-Weighted Token Hierarchy: A Foundation Model Bridging Global and Cellular Representations in Biomarker Detection
AI-based biomarkers can infer molecular features directly from hematoxylin & eosin (H&E) slides, yet most pathology foundation models (PFMs) rely on global patch-level embeddings and overlook cell-level morphology. We present a PFM model, JWTH (Joint-Weighted Token Hierarchy), which integrates large-scale self-supervised pretraining with cell-centric post-tuning and attention pooling to fuse local and global tokens. Across four tasks involving four biomarkers and eight cohorts, JWTH achieves up to 8.3% higher balanced accuracy and 1.2% average improvement over prior PFMs, advancing interpretable and robust AI-based biomarker detection in digital pathology.
☆ DL101 Neural Network Outputs and Loss Functions
The loss function used to train a neural network is strongly connected to its output layer from a statistical point of view. This technical report analyzes common activation functions for a neural network output layer, like linear, sigmoid, ReLU, and softmax, detailing their mathematical properties and their appropriate use cases. A strong statistical justification exists for the selection of the suitable loss function for training a deep learning model. This report connects common loss functions such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and various Cross-Entropy losses to the statistical principle of Maximum Likelihood Estimation (MLE). Choosing a specific loss function is equivalent to assuming a specific probability distribution for the model output, highlighting the link between these functions and the Generalized Linear Models (GLMs) that underlie network output layers. Additional scenarios of practical interest are also considered, such as alternative output encodings, constrained outputs, and distributions with heavy tails.
☆ Deep learning models are vulnerable, but adversarial examples are even more vulnerable
Understanding intrinsic differences between adversarial examples and clean samples is key to enhancing DNN robustness and detection against adversarial attacks. This study first empirically finds that image-based adversarial examples are notably sensitive to occlusion. Controlled experiments on CIFAR-10 used nine canonical attacks (e.g., FGSM, PGD) to generate adversarial examples, paired with original samples for evaluation. We introduce Sliding Mask Confidence Entropy (SMCE) to quantify model confidence fluctuation under occlusion. Using 1800+ test images, SMCE calculations supported by Mask Entropy Field Maps and statistical distributions show adversarial examples have significantly higher confidence volatility under occlusion than originals. Based on this, we propose Sliding Window Mask-based Adversarial Example Detection (SWM-AED), which avoids catastrophic overfitting of conventional adversarial training. Evaluations across classifiers and attacks on CIFAR-10 demonstrate robust performance, with accuracy over 62% in most cases and up to 96.5%.
comment: 25 pages,12 figures
☆ No Pose Estimation? No Problem: Pose-Agnostic and Instance-Aware Test-Time Adaptation for Monocular Depth Estimation
Monocular depth estimation (MDE), inferring pixel-level depths in single RGB images from a monocular camera, plays a crucial and pivotal role in a variety of AI applications demanding a three-dimensional (3D) topographical scene. In the real-world scenarios, MDE models often need to be deployed in environments with different conditions from those for training. Test-time (domain) adaptation (TTA) is one of the compelling and practical approaches to address the issue. Although there have been notable advancements in TTA for MDE, particularly in a self-supervised manner, existing methods are still ineffective and problematic when applied to diverse and dynamic environments. To break through this challenge, we propose a novel and high-performing TTA framework for MDE, named PITTA. Our approach incorporates two key innovative strategies: (i) pose-agnostic TTA paradigm for MDE and (ii) instance-aware image masking. Specifically, PITTA enables highly effective TTA on a pretrained MDE network in a pose-agnostic manner without resorting to any camera pose information. Besides, our instance-aware masking strategy extracts instance-wise masks for dynamic objects (e.g., vehicles, pedestrians, etc.) from a segmentation mask produced by a pretrained panoptic segmentation network, by removing static objects including background components. To further boost performance, we also present a simple yet effective edge extraction methodology for the input image (i.e., a single monocular image) and depth map. Extensive experimental evaluations on DrivingStereo and Waymo datasets with varying environmental conditions demonstrate that our proposed framework, PITTA, surpasses the existing state-of-the-art techniques with remarkable performance improvements in MDE during TTA.
☆ Accelerating HDC-CNN Hybrid Models Using Custom Instructions on RISC-V GPUs
Machine learning based on neural networks has advanced rapidly, but the high energy consumption required for training and inference remains a major challenge. Hyperdimensional Computing (HDC) offers a lightweight, brain-inspired alternative that enables high parallelism but often suffers from lower accuracy on complex visual tasks. To overcome this, hybrid accelerators combining HDC and Convolutional Neural Networks (CNNs) have been proposed, though their adoption is limited by poor generalizability and programmability. The rise of open-source RISC-V architectures has created new opportunities for domain-specific GPU design. Unlike traditional proprietary GPUs, emerging RISC-V-based GPUs provide flexible, programmable platforms suitable for custom computation models such as HDC. In this study, we design and implement custom GPU instructions optimized for HDC operations, enabling efficient processing for hybrid HDC-CNN workloads. Experimental results using four types of custom HDC instructions show a performance improvement of up to 56.2 times in microbenchmark tests, demonstrating the potential of RISC-V GPUs for energy-efficient, high-performance computing.
☆ UA-Code-Bench: A Competitive Programming Benchmark for Evaluating LLM Code Generation in Ukrainian
Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models, such as OpenAI o3 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation and reasoning-enhanced models. The benchmark, data parsing, preparation, code generation, and evaluation scripts are available at https://huggingface.co/datasets/NLPForUA/ua-code-bench.
comment: 8 pages, 5 figures. XI International conference "Informatics. Culture. Technique." (2025)
☆ PECL: A Heterogeneous Parallel Multi-Domain Network for Radar-Based Human Activity Recognition
Radar systems are increasingly favored for medical applications because they provide non-intrusive monitoring with high privacy and robustness to lighting conditions. However, existing research typically relies on single-domain radar signals and overlooks the temporal dependencies inherent in human activity, which complicates the classification of similar actions. To address this issue, we designed the Parallel-EfficientNet-CBAM-LSTM (PECL) network to process data in three complementary domains: Range-Time, Doppler-Time, and Range-Doppler. PECL combines a channel-spatial attention module and temporal units to capture more features and dynamic dependencies during action sequences, improving both accuracy and robustness. The experimental results show that PECL achieves an accuracy of 96.16% on the same dataset, outperforming existing methods by at least 4.78%. PECL also performs best in distinguishing between easily confused actions. Despite its strong performance, PECL maintains moderate model complexity, with 23.42M parameters and 1324.82M FLOPs. Its parameter-efficient design further reduces computational cost.
☆ Dynamic Residual Encoding with Slide-Level Contrastive Learning for End-to-End Whole Slide Image Representation
Whole Slide Image (WSI) representation is critical for cancer subtyping, cancer recognition and mutation prediction.Training an end-to-end WSI representation model poses significant challenges, as a standard gigapixel slide can contain tens of thousands of image tiles, making it difficult to compute gradients of all tiles in a single mini-batch due to current GPU limitations. To address this challenge, we propose a method of dynamic residual encoding with slide-level contrastive learning (DRE-SLCL) for end-to-end WSI representation. Our approach utilizes a memory bank to store the features of tiles across all WSIs in the dataset. During training, a mini-batch usually contains multiple WSIs. For each WSI in the batch, a subset of tiles is randomly sampled and their features are computed using a tile encoder. Then, additional tile features from the same WSI are selected from the memory bank. The representation of each individual WSI is generated using a residual encoding technique that incorporates both the sampled features and those retrieved from the memory bank. Finally, the slide-level contrastive loss is computed based on the representations and histopathology reports ofthe WSIs within the mini-batch. Experiments conducted over cancer subtyping, cancer recognition, and mutation prediction tasks proved the effectiveness of the proposed DRE-SLCL method.
comment: 8pages, 3figures, published to ACM Digital Library
☆ OvA-LP: A Simple and Efficient Framework for Federated Learning on Non-IID Data
Federated fine-tuning (FFT) adapts foundation models to decentralized data but remains fragile under heterogeneous client distributions due to local drift, i.e., client-level update divergences that induce systematic bias and amplified variance in the global model. Existing aggregation and personalization methods largely correct drift post hoc, which proves brittle under extreme non-IID conditions. We introduce OvA-LP, a minimalist framework that is, to our knowledge, the first explicitly designed to suppress drift at its source within the PEFT-based FFT paradigm. OvA-LP combines linear probing on a frozen encoder with a one-vs-all head and a simple two-stage procedure, preserving pretrained feature geometry and decoupling logits to prevent the mechanisms that amplify drift. On CIFAR-100 with 100 clients, averaged over shard-1, shard-2, and Bernoulli-Dirichlet partitions, OvA-LP retains 95.9% of its IID accuracy, whereas state-of-the-art FFT baselines retain only 10.1% (PFPT) and 34.5% (FFT-MoE) under the same conditions. OvA-LP further maintains resilience under both symmetric and asymmetric label noise. In addition, precomputing encoder features makes per-round cost nearly independent of encoder size. Together, these results demonstrate that OvA-LP provides a principled and efficient basis for robust FFT under heterogeneity.
☆ 8bit-GPT: Exploring Human-AI Interaction on Obsolete Macintosh Operating Systems NeurIPS
The proliferation of assistive chatbots offering efficient, personalized communication has driven widespread over-reliance on them for decision-making, information-seeking and everyday tasks. This dependence was found to have adverse consequences on information retention as well as lead to superficial emotional attachment. As such, this work introduces 8bit-GPT; a language model simulated on a legacy Macintosh Operating System, to evoke reflection on the nature of Human-AI interaction and the consequences of anthropomorphic rhetoric. Drawing on reflective design principles such as slow-technology and counterfunctionality, this work aims to foreground the presence of chatbots as a tool by defamiliarizing the interface and prioritizing inefficient interaction, creating a friction between the familiar and not.
comment: NeurIPS Creative AI Track 2025: Humanity
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
☆ Query Generation Pipeline with Enhanced Answerability Assessment for Financial Information Retrieval
As financial applications of large language models (LLMs) gain attention, accurate Information Retrieval (IR) remains crucial for reliable AI services. However, existing benchmarks fail to capture the complex and domain-specific information needs of real-world banking scenarios. Building domain-specific IR benchmarks is costly and constrained by legal restrictions on using real customer data. To address these challenges, we propose a systematic methodology for constructing domain-specific IR benchmarks through LLM-based query generation. As a concrete implementation of this methodology, our pipeline combines single and multi-document query generation with an enhanced and reasoning-augmented answerability assessment method, achieving stronger alignment with human judgments than prior approaches. Using this methodology, we construct KoBankIR, comprising 815 queries derived from 204 official banking documents. Our experiments show that existing retrieval models struggle with the complex multi-document queries in KoBankIR, demonstrating the value of our systematic approach for domain-specific benchmark construction and underscoring the need for improved retrieval techniques in financial domains.
comment: Accepted(Oral) by ICAIF 2025. Hyunkyu Kim and Yeeun Yoo contributed equally to this work
☆ BiPETE: A Bi-Positional Embedding Transformer Encoder for Risk Assessment of Alcohol and Substance Use Disorder with Electronic Health Records
Transformer-based deep learning models have shown promise for disease risk prediction using electronic health records(EHRs), but modeling temporal dependencies remains a key challenge due to irregular visit intervals and lack of uniform structure. We propose a Bi-Positional Embedding Transformer Encoder or BiPETE for single-disease prediction, which integrates rotary positional embeddings to encode relative visit timing and sinusoidal embeddings to preserve visit order. Without relying on large-scale pretraining, BiPETE is trained on EHR data from two mental health cohorts-depressive disorder and post-traumatic stress disorder (PTSD)-to predict the risk of alcohol and substance use disorders (ASUD). BiPETE outperforms baseline models, improving the area under the precision-recall curve (AUPRC) by 34% and 50% in the depression and PTSD cohorts, respectively. An ablation study further confirms the effectiveness of the dual positional encoding strategy. We apply the Integrated Gradients method to interpret model predictions, identifying key clinical features associated with ASUD risk and protection, such as abnormal inflammatory, hematologic, and metabolic markers, as well as specific medications and comorbidities. Overall, these key clinical features identified by the attribution methods contribute to a deeper understanding of the risk assessment process and offer valuable clues for mitigating potential risks. In summary, our study presents a practical and interpretable framework for disease risk prediction using EHR data, which can achieve strong performance.
comment: 20 pages, 2 figures, 6 tables, 2 supplementary figures, 4 supplementary tables, submitted to Journal of Biomedical Informatics on 6 Nov, 2025
☆ Enhancing Public Speaking Skills in Engineering Students Through AI
This research-to-practice full paper was inspired by the persistent challenge in effective communication among engineering students. Public speaking is a necessary skill for future engineers as they have to communicate technical knowledge with diverse stakeholders. While universities offer courses or workshops, they are unable to offer sustained and personalized training to students. Providing comprehensive feedback on both verbal and non-verbal aspects of public speaking is time-intensive, making consistent and individualized assessment impractical. This study integrates research on verbal and non-verbal cues in public speaking to develop an AI-driven assessment model for engineering students. Our approach combines speech analysis, computer vision, and sentiment detection into a multi-modal AI system that provides assessment and feedback. The model evaluates (1) verbal communication (pitch, loudness, pacing, intonation), (2) non-verbal communication (facial expressions, gestures, posture), and (3) expressive coherence, a novel integration ensuring alignment between speech and body language. Unlike previous systems that assess these aspects separately, our model fuses multiple modalities to deliver personalized, scalable feedback. Preliminary testing demonstrated that our AI-generated feedback was moderately aligned with expert evaluations. Among the state-of-the-art AI models evaluated, all of which were Large Language Models (LLMs), including Gemini and OpenAI models, Gemini Pro emerged as the best-performing, showing the strongest agreement with human annotators. By eliminating reliance on human evaluators, this AI-driven public speaking trainer enables repeated practice, helping students naturally align their speech with body language and emotion, crucial for impactful and professional communication.
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}
☆ Too Good to be Bad: On the Failure of LLMs to Role-Play Villains
Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.
☆ ORCHID: Orchestrated Retrieval-Augmented Classification with Human-in-the-Loop Intelligent Decision-Making for High-Risk Property
High-Risk Property (HRP) classification is critical at U.S. Department of Energy (DOE) sites, where inventories include sensitive and often dual-use equipment. Compliance must track evolving rules designated by various export control policies to make transparent and auditable decisions. Traditional expert-only workflows are time-consuming, backlog-prone, and struggle to keep pace with shifting regulatory boundaries. We demo ORCHID, a modular agentic system for HRP classification that pairs retrieval-augmented generation (RAG) with human oversight to produce policy-based outputs that can be audited. Small cooperating agents, retrieval, description refiner, classifier, validator, and feedback logger, coordinate via agent-to-agent messaging and invoke tools through the Model Context Protocol (MCP) for model-agnostic on-premise operation. The interface follows an Item to Evidence to Decision loop with step-by-step reasoning, on-policy citations, and append-only audit bundles (run-cards, prompts, evidence). In preliminary tests on real HRP cases, ORCHID improves accuracy and traceability over a non-agentic baseline while deferring uncertain items to Subject Matter Experts (SMEs). The demonstration shows single item submission, grounded citations, SME feedback capture, and exportable audit artifacts, illustrating a practical path to trustworthy LLM assistance in sensitive DOE compliance workflows.
☆ DeepForgeSeal: Latent Space-Driven Semi-Fragile Watermarking for Deepfake Detection Using Multi-Agent Adversarial Reinforcement Learning
Rapid advances in generative AI have led to increasingly realistic deepfakes, posing growing challenges for law enforcement and public trust. Existing passive deepfake detectors struggle to keep pace, largely due to their dependence on specific forgery artifacts, which limits their ability to generalize to new deepfake types. Proactive deepfake detection using watermarks has emerged to address the challenge of identifying high-quality synthetic media. However, these methods often struggle to balance robustness against benign distortions with sensitivity to malicious tampering. This paper introduces a novel deep learning framework that harnesses high-dimensional latent space representations and the Multi-Agent Adversarial Reinforcement Learning (MAARL) paradigm to develop a robust and adaptive watermarking approach. Specifically, we develop a learnable watermark embedder that operates in the latent space, capturing high-level image semantics, while offering precise control over message encoding and extraction. The MAARL paradigm empowers the learnable watermarking agent to pursue an optimal balance between robustness and fragility by interacting with a dynamic curriculum of benign and malicious image manipulations simulated by an adversarial attacker agent. Comprehensive evaluations on the CelebA and CelebA-HQ benchmarks reveal that our method consistently outperforms state-of-the-art approaches, achieving improvements of over 4.5% on CelebA and more than 5.3% on CelebA-HQ under challenging manipulation scenarios.
☆ A benchmark multimodal oro-dental dataset for large vision-language models
The advancement of artificial intelligence in oral healthcare relies on the availability of large-scale multimodal datasets that capture the complexity of clinical practice. In this paper, we present a comprehensive multimodal dataset, comprising 8775 dental checkups from 4800 patients collected over eight years (2018-2025), with patients ranging from 10 to 90 years of age. The dataset includes 50000 intraoral images, 8056 radiographs, and detailed textual records, including diagnoses, treatment plans, and follow-up notes. The data were collected under standard ethical guidelines and annotated for benchmarking. To demonstrate its utility, we fine-tuned state-of-the-art large vision-language models, Qwen-VL 3B and 7B, and evaluated them on two tasks: classification of six oro-dental anomalies and generation of complete diagnostic reports from multimodal inputs. We compared the fine-tuned models with their base counterparts and GPT-4o. The fine-tuned models achieved substantial gains over these baselines, validating the dataset and underscoring its effectiveness in advancing AI-driven oro-dental healthcare solutions. The dataset is publicly available, providing an essential resource for future research in AI dentistry.
☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
☆ BudgetMem: Learning Selective Memory Policies for Cost-Efficient Long-Context Processing in Language Models
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
comment: 11 pages, 3 figures, 5 tables. Evaluated on 700 QA pairs across multiple document lengths
☆ MERaLiON-SER: Robust Speech Emotion Recognition Model for English and SEA Languages
We present MERaLiON-SER, a robust speech emotion recognition model de- signed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), lead- ing to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralin- guistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.
comment: https://huggingface.co/MERaLiON/MERaLiON-SER-v1
☆ A Dual Perspective on Decision-Focused Learning: Scalable Training via Dual-Guided Surrogates
Many real-world decisions are made under uncertainty by solving optimization problems using predicted quantities. This predict-then-optimize paradigm has motivated decision-focused learning, which trains models with awareness of how the optimizer uses predictions, improving the performance of downstream decisions. Despite its promise, scaling is challenging: state-of-the-art methods either differentiate through a solver or rely on task-specific surrogates, both of which require frequent and expensive calls to an optimizer, often a combinatorial one. In this paper, we leverage dual variables from the downstream problem to shape learning and introduce Dual-Guided Loss (DGL), a simple, scalable objective that preserves decision alignment while reducing solver dependence. We construct DGL specifically for combinatorial selection problems with natural one-of-many constraints, such as matching, knapsack, and shortest path. Our approach (a) decouples optimization from gradient updates by solving the downstream problem only periodically; (b) between refreshes, trains on dual-adjusted targets using simple differentiable surrogate losses; and (c) as refreshes become less frequent, drives training cost toward standard supervised learning while retaining strong decision alignment. We prove that DGL has asymptotically diminishing decision regret, analyze runtime complexity, and show on two problem classes that DGL matches or exceeds state-of-the-art DFL methods while using far fewer solver calls and substantially less training time. Code is available at https://github.com/paularodr/Dual-Guided-Learning.
☆ You Need Reasoning to Learn Reasoning: The Limitations of Label-Free RL in Weak Base Models NeurIPS 2025
Recent advances in large language models have demonstrated the promise of unsupervised reinforcement learning (RL) methods for enhancing reasoning capabilities without external supervision. However, the generalizability of these label-free RL approaches to smaller base models with limited reasoning capabilities remains unexplored. In this work, we systematically investigate the performance of label-free RL methods across different model sizes and reasoning strengths, from 0.5B to 7B parameters. Our empirical analysis reveals critical limitations: label-free RL is highly dependent on the base model's pre-existing reasoning capability, with performance often degrading below baseline levels for weaker models. We find that smaller models fail to generate sufficiently long or diverse chain-of-thought reasoning to enable effective self-reflection, and that training data difficulty plays a crucial role in determining success. To address these challenges, we propose a simple yet effective method for label-free RL that utilizes curriculum learning to progressively introduce harder problems during training and mask no-majority rollouts during training. Additionally, we introduce a data curation pipeline to generate samples with predefined difficulty. Our approach demonstrates consistent improvements across all model sizes and reasoning capabilities, providing a path toward more robust unsupervised RL that can bootstrap reasoning abilities in resource-constrained models. We make our code available at https://github.com/BorealisAI/CuMa
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
☆ Real-Time Reasoning Agents in Evolving Environments
Agents in the real world must make not only logical but also timely judgments. This requires continuous awareness of the dynamic environment: hazards emerge, opportunities arise, and other agents act, while the agent's reasoning is still unfolding. Despite advances in language model reasoning, existing approaches fail to account for this dynamic nature. We introduce real-time reasoning as a new problem formulation for agents in evolving environments and build Real-Time Reasoning Gym to demonstrate it. We study two paradigms for deploying language models in agents: (1) reactive agents, which employ language models with bounded reasoning computation for rapid responses, and (2) planning agents, which allow extended reasoning computation for complex problems. Our experiments show that even state-of-the-art models struggle with making logical and timely judgments in either paradigm. To address this limitation, we propose AgileThinker, which simultaneously engages both reasoning paradigms. AgileThinker consistently outperforms agents engaging only one reasoning paradigm as the task difficulty and time pressure rise, effectively balancing reasoning depth and response latency. Our work establishes real-time reasoning as a critical testbed for developing practical agents and provides a foundation for research in temporally constrained AI systems, highlighting a path toward real-time capable agents.
comment: 30 pages
☆ Beta Distribution Learning for Reliable Roadway Crash Risk Assessment AAAI 2026
Roadway traffic accidents represent a global health crisis, responsible for over a million deaths annually and costing many countries up to 3% of their GDP. Traditional traffic safety studies often examine risk factors in isolation, overlooking the spatial complexity and contextual interactions inherent in the built environment. Furthermore, conventional Neural Network-based risk estimators typically generate point estimates without conveying model uncertainty, limiting their utility in critical decision-making. To address these shortcomings, we introduce a novel geospatial deep learning framework that leverages satellite imagery as a comprehensive spatial input. This approach enables the model to capture the nuanced spatial patterns and embedded environmental risk factors that contribute to fatal crash risks. Rather than producing a single deterministic output, our model estimates a full Beta probability distribution over fatal crash risk, yielding accurate and uncertainty-aware predictions--a critical feature for trustworthy AI in safety-critical applications. Our model outperforms baselines by achieving a 17-23% improvement in recall, a key metric for flagging potential dangers, while delivering superior calibration. By providing reliable and interpretable risk assessments from satellite imagery alone, our method enables safer autonomous navigation and offers a highly scalable tool for urban planners and policymakers to enhance roadway safety equitably and cost-effectively.
comment: Accepted to AAAI 2026
♻ ☆ Characterizing the Training Dynamics of Private Fine-tuning with Langevin diffusion
We show that differentially private full fine-tuning (DP-FFT) can distort pre-trained backbone features based on both theoretical and empirical results. We identify the cause of the distortion as the misalignment between the pre-trained backbone and the randomly initialized linear head. We prove that a sequential fine-tuning strategy can mitigate the feature distortion: first-linear-probing-then-fine-tuning (DP-LP-FFT). A new approximation scheme allows us to derive approximate upper and lower bounds on the training loss of DP-LP and DP-FFT, in a simple but canonical setting of 2-layer neural networks with ReLU activation. Experiments on real-world datasets and architectures are consistent with our theoretical insights. We also derive new upper bounds for 2-layer linear networks without the approximation. Moreover, our theory suggests a trade-off of privacy budget allocation in multi-phase fine-tuning methods like DP-LP-FFT.
♻ ☆ Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
♻ ☆ Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
comment: Technical report; 13 pages plus references and appendices
♻ ☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26. Analysis code can be found here: https://github.com/allie-tran/clip-brittleness
♻ ☆ Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
♻ ☆ Large language models as uncertainty-calibrated optimizers for experimental discovery
Scientific discovery increasingly depends on efficient experimental optimization to navigate vast design spaces under time and resource constraints. Traditional approaches often require extensive domain expertise and feature engineering. While large language models, with their vast scientific knowledge, circumvent the feature engineering limitations, they lack the calibrated uncertainty estimates required for high-stakes decision making. Hence, current optimization methods force a choice between domain knowledge and reliability, with no principled approach that affords both. In this work, we show that training language models through the uncertainty-aware objectives of traditional optimization methods enables their use as reliable optimizers guided by natural language. By teaching LLMs from experimental outcomes under uncertainty, we transform their overconfidence from a fundamental limitation into a precise calibration mechanism. Applied to Buchwald-Hartwig reactions, a cornerstone of pharmaceutical synthesis, our method nearly doubles the discovery rate of high-yielding reaction conditions, from 24% to 43% in 50 experimental iterations starting from 10 unsuccessful conditions. Across 19 diverse optimization problems spanning organic synthesis, materials science and catalysis, process chemistry, and molecular design, our approach ranks first on average, establishing a new paradigm for reliable, uncertainty-guided optimization with LLMs. Our approach can accelerate discovery by lowering the barrier to using powerful optimization methods, replacing the need for domain-specific feature engineering with more accessible natural language interfaces. These findings highlight that ensuring reliability through principled uncertainty quantification is critical for realizing the full potential of AI-guided experimentation.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ What Can String Probability Tell Us About Grammaticality?
What have language models (LMs) learned about grammar? This question remains hotly debated, with major ramifications for linguistic theory. However, since probability and grammaticality are distinct notions in linguistics, it is not obvious what string probabilities can reveal about an LM's underlying grammatical knowledge. We present a theoretical analysis of the relationship between grammar, meaning, and string probability, based on simple assumptions about the generative process of corpus data. Our framework makes three predictions, which we validate empirically using 280K sentence pairs in English and Chinese: (1) correlation between the probability of strings within minimal pairs, i.e., string pairs with minimal semantic differences; (2) correlation between models' and humans' deltas within minimal pairs; and (3) poor separation in probability space between unpaired grammatical and ungrammatical strings. Our analyses give theoretical grounding for using probability to learn about LMs' structural knowledge, and suggest directions for future work in LM grammatical evaluation.
♻ ☆ XBreaking: Understanding how LLMs security alignment can be broken
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. These mechanisms maintain the integrity of LLM alignment by guaranteeing that the models respond safely and ethically. In response to this, attacks on LLMs are a significant threat to such protections, and many previous approaches have already demonstrated their effectiveness across diverse domains. Existing LLM attacks mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel approach that exploits these unique patterns to break the security and alignment constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our approach.
♻ ☆ Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
♻ ☆ Policy-as-Prompt: Turning AI Governance Rules into Guardrails for AI Agents
As autonomous AI agents are used in regulated and safety-critical settings, organizations need effective ways to turn policy into enforceable controls. We introduce a regulatory machine learning framework that converts unstructured design artifacts (like PRDs, TDDs, and code) into verifiable runtime guardrails. Our Policy as Prompt method reads these documents and risk controls to build a source-linked policy tree. This tree is then compiled into lightweight, prompt-based classifiers for real-time runtime monitoring. The system is built to enforce least privilege and data minimization. For conformity assessment, it provides complete provenance, traceability, and audit logging, all integrated with a human-in-the-loop review process. Evaluations show our system reduces prompt-injection risk, blocks out-of-scope requests, and limits toxic outputs. It also generates auditable rationales aligned with AI governance frameworks. By treating policies as executable prompts (a policy-as-code for agents), this approach enables secure-by-design deployment, continuous compliance, and scalable AI safety and AI security assurance for regulatable ML.
comment: Accepted at 3rd Regulatable ML Workshop at NEURIPS 2025
♻ ☆ What Matters in Data for DPO?
Direct Preference Optimization (DPO) has emerged as a simple and effective approach for aligning large language models (LLMs) with human preferences, bypassing the need for a learned reward model. Despite its growing adoption, a fundamental question remains open: what characteristics of preference data are most critical for DPO performance? In this work, we provide a systematic study of how preference data distribution influences DPO, from both theoretical and empirical perspectives. We show that the quality of chosen responses plays a dominant role in optimizing the DPO objective, while the quality of rejected responses may have relatively limited impact. Our theoretical analysis characterizes the optimal response distribution under DPO and reveals how contrastiveness between responses helps primarily by improving the chosen samples. We further study an online DPO setting and show it effectively reduces to supervised fine-tuning on the chosen responses. Extensive experiments across diverse tasks confirm our findings: improving the quality of chosen responses consistently boosts performance regardless of the quality of the rejected responses. We also investigate the benefit of mixing the on-policy data. Our results interpret the mechanism behind some widely adopted strategies and offer practical insights for constructing high-impact preference datasets for LLM alignment.
♻ ☆ InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback EMNLP 2025
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users, which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-Sonnet-4. Our evaluation results indicate that even the state-of-the-art LMM, OpenAI-o1, struggles to refine its responses based on human feedback, achieving an average score of less than 50%. Our findings point to the need for methods that can enhance LMMs' capabilities to interpret and benefit from feedback.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
In next-generation communications and networks, machine learning (ML) models are expected to deliver not only accurate predictions but also well-calibrated confidence scores that reflect the true likelihood of correct decisions. This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework. We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration. Importantly, we show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold. In contrast, when only one resource is available, the system's OP equals the model's overall expected output. We then derive the OP conditions for a perfectly calibrated predictor. These findings guide the choice of the classification threshold to achieve a desired OP, helping system designers meet specific reliability requirements. We also demonstrate that post-processing calibration cannot improve the system's minimum achievable OP, as it does not introduce new information about future channel states. Additionally, we show that well-calibrated models are part of a broader class of predictors that necessarily improve OP. In particular, we establish a monotonicity condition that the accuracy-confidence function must satisfy for such improvement to occur. To demonstrate these theoretical properties, we conduct a rigorous simulation-based analysis using post-processing calibration techniques: Platt scaling and isotonic regression. As part of this framework, the predictor is trained using an outage loss function specifically designed for this system. Furthermore, this analysis is performed on Rayleigh fading channels with temporal correlation captured by Clarke's 2D model, which accounts for receiver mobility.
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Know What You Don't Know: Uncertainty Calibration of Process Reward Models NeurIPS 2025
Process reward models (PRMs) play a central role in guiding inference-time scaling algorithms for large language models (LLMs). However, we observe that even state-of-the-art PRMs can be poorly calibrated. Specifically, they tend to overestimate the success probability that a partial reasoning step will lead to a correct final answer, particularly when smaller LLMs are used to complete the reasoning trajectory. To address this, we present a calibration approach -- performed via quantile regression -- that adjusts PRM outputs to better align with true success probabilities. Leveraging these calibrated success estimates and their associated confidence bounds, we introduce an \emph{instance-adaptive scaling} (IAS) framework that dynamically adjusts the compute budget based on the estimated likelihood that a partial reasoning trajectory will yield a correct final answer. Unlike conventional methods that allocate a fixed number of reasoning trajectories per query, this approach adapts to each instance and reasoning step when using our calibrated PRMs. Experiments on mathematical reasoning benchmarks show that (i) our PRM calibration method achieves small calibration error, outperforming the baseline methods, (ii) calibration is crucial for enabling effective IAS, and (iii) the proposed IAS strategy reduces inference costs while maintaining final answer accuracy, utilizing less compute on more confident problems as desired.
comment: Accepted at NeurIPS 2025
♻ ☆ Amulet: a Python Library for Assessing Interactions Among ML Defenses and Risks
Machine learning (ML) models are susceptible to various risks to security, privacy, and fairness. Most defenses are designed to protect against each risk individually (intended interactions) but can inadvertently affect susceptibility to other unrelated risks (unintended interactions). We introduce Amulet, the first Python library for evaluating both intended and unintended interactions among ML defenses and risks. Amulet is comprehensive by including representative attacks, defenses, and metrics; extensible to new modules due to its modular design; consistent with a user-friendly API template for inputs and outputs; and applicable for evaluating novel interactions. By satisfying all four properties, Amulet offers a unified foundation for studying how defenses interact, enabling the first systematic evaluation of unintended interactions across multiple risks.
comment: 10 pages, 4 figures
♻ ☆ Open Agent Specification (Agent Spec): A Unified Representation for AI Agents
The proliferation of agent frameworks has led to fragmentation in how agents are defined, executed, and evaluated. Existing systems differ in their abstractions, data flow semantics, and tool integrations, making it difficult to share or reproduce workflows. We introduce Open Agent Specification (Agent Spec), a declarative language that defines AI agents and agentic workflows in a way that is compatible across frameworks, promoting reusability, portability and interoperability of AI agents. Agent Spec defines a common set of components, control and data flow semantics, and schemas that allow an agent to be defined once and executed across different runtimes. Agent Spec also introduces a standardized Evaluation harness to assess agent behavior and agentic workflows across runtimes - analogous to how HELM and related harnesses standardized LLM evaluation - so that performance, robustness, and efficiency can be compared consistently across frameworks. We demonstrate this using four distinct runtimes (LangGraph, CrewAI, AutoGen, and WayFlow) evaluated over three different benchmarks (SimpleQA Verified, $\tau^2$-Bench and BIRD-SQL). We provide accompanying toolsets: a Python SDK (PyAgentSpec), a reference runtime (WayFlow), and adapters for popular frameworks (e.g., LangGraph, AutoGen, CrewAI). Agent Spec bridges the gap between model-centric and agent-centric standardization & evaluation, laying the groundwork for reliable, reusable, and portable agentic systems.
♻ ☆ Cognitive Edge Computing: A Comprehensive Survey on Optimizing Large Models and AI Agents for Pervasive Deployment
This article surveys Cognitive Edge Computing as a practical and methodical pathway for deploying reasoning-capable Large Language Models (LLMs) and autonomous AI agents on resource-constrained devices at the network edge. We present a unified, cognition-preserving framework spanning: (1) model optimization (quantization, sparsity, low-rank adaptation, distillation) aimed at retaining multi-step reasoning under tight memory/compute budgets; (2) system architecture (on-device inference, elastic offloading, cloud-edge collaboration) that trades off latency, energy, privacy, and capacity; and (3) adaptive intelligence (context compression, dynamic routing, federated personalization) that tailors computation to task difficulty and device constraints. We synthesize advances in efficient Transformer design, multimodal integration, hardware-aware compilation, privacy-preserving learning, and agentic tool use, and map them to edge-specific operating envelopes. We further outline a standardized evaluation protocol covering latency, throughput, energy per token, accuracy, robustness, privacy, and sustainability, with explicit measurement assumptions to enhance comparability. Remaining challenges include modality-aware reasoning benchmarks, transparent and reproducible energy reporting, edge-oriented safety/alignment evaluation, and multi-agent testbeds. We conclude with practitioner guidelines for cross-layer co-design of algorithms, runtime, and hardware to deliver reliable, efficient, and privacy-preserving cognitive capabilities on edge devices.
♻ ☆ Bilinear relational structure fixes reversal curse and enables consistent model editing
The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
comment: 9 pages
♻ ☆ Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Test-time optimization remains impractical at scale due to prohibitive inference costs--techniques like iterative refinement and multi-step verification can require $10-100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-500 benchmarks, ALS achieves $2-5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at https://github.com/negbuna/ALS.
♻ ☆ AI Through the Human Lens: Investigating Cognitive Theories in Machine Psychology AACL 2025
We investigate whether Large Language Models (LLMs) exhibit human-like cognitive patterns under four established frameworks from psychology: Thematic Apperception Test (TAT), Framing Bias, Moral Foundations Theory (MFT), and Cognitive Dissonance. We evaluated several proprietary and open-source models using structured prompts and automated scoring. Our findings reveal that these models often produce coherent narratives, show susceptibility to positive framing, exhibit moral judgments aligned with Liberty/Oppression concerns, and demonstrate self-contradictions tempered by extensive rationalization. Such behaviors mirror human cognitive tendencies yet are shaped by their training data and alignment methods. We discuss the implications for AI transparency, ethical deployment, and future work that bridges cognitive psychology and AI safety
comment: Accepted to IJCNLP-AACL 2025 Student Research Workshop
♻ ☆ Taskmaster Deconstructed: A Quantitative Look at Tension, Volatility, and Viewer Ratings
Taskmaster is a British television show that combines comedic performance with a formal scoring system. Despite the appearance of structured competition, it remains unclear whether scoring dynamics contribute meaningfully to audience engagement. We conducted a statistical analysis of 162 episodes across 18 series, using fifteen episode-level metrics to quantify rank volatility, point spread, lead changes, and winner dominance. None of these metrics showed a significant association with IMDb ratings, even after controlling for series effects. Long-term trends suggest that average points have increased over time, while volatility has slightly declined and rank spread has remained stable. These patterns indicate an attempt to enhance competitive visibility without altering the show's structural equilibrium. We also analyzed contestant rank trajectories and identified five recurring archetypes describing performance styles. These patterns suggest that viewer interest is shaped more by contestant behavior than by game mechanics.
comment: 19 pages, includes 5 figures. Code and data available at github
♻ ☆ Inverse Knowledge Search over Verifiable Reasoning: Synthesizing a Scientific Encyclopedia from a Long Chains-of-Thought Knowledge Base
Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
comment: 43 pages, 4 figures. This work is part of the SciencePedia project (sciencepedia.bohrium.com)
♻ ☆ Introducing LongCat-Flash-Thinking: A Technical Report
We present LongCat-Flash-Thinking, an efficient 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model. Its advanced capabilities are cultivated through a meticulously crafted training process, beginning with long Chain-of-Thought (CoT) data cold-start and culminating in large-scale Reinforcement Learning (RL). We first employ a well-designed cold-start training strategy, which significantly enhances the reasoning potential and equips the model with specialized skills in both formal and agentic reasoning. Then, a core innovation is our domain-parallel training scheme, which decouples optimization across distinct domains (e.g., STEM, Code, Agentic) and subsequently fuses the resulting expert models into a single, nearly Pareto-optimal model. This entire process is powered by our Dynamic ORchestration for Asynchronous rollout (DORA) system, a large-scale RL framework that delivers a greater than threefold training speedup over synchronous methods on tens of thousands of accelerators. As a result, LongCat-Flash-Thinking achieves state-of-the-art performance among open-source models on a suite of complex reasoning tasks. The model exhibits exceptional efficiency in agentic reasoning, reducing average token consumption by 64.5% (from 19, 653 to 6, 965) on AIME-25, without degrading task accuracy. We release LongCat-Flash-Thinking to promote further advances in reasoning systems and agentic AI research.
♻ ☆ Pogobot: an Open-Source, Low-Cost Robot for Swarm Robotics and Programmable Active Matter
This paper describes the Pogobot, an open-source platform specifically designed for research at the interface of swarm robotics and active matter. Pogobot features vibration-based or wheel-based locomotion, fast infrared communication, and an array of sensors in a cost-effective package (approx. 250euros/unit). The platform's modular design, comprehensive API, and extensible architecture facilitate the implementation of swarm intelligence algorithms and collective motion. Pogobots offer an accessible alternative to existing platforms while providing advanced capabilities including directional communication between units and fast locomotion, all with a compact form factor. More than 200 Pogobots are already being used on a daily basis in several Universities to study self-organizing systems, programmable active matter, discrete reaction-diffusion-advection systems and computational models of social learning and evolution. This paper details the hardware and software architecture, communication protocols, locomotion mechanisms, and the infrastructure built around the Pogobots.
♻ ☆ Monitor-Generate-Verify (MGV): Formalising Metacognitive Theory for Language Model Reasoning NeurIPS 2025
Test-time reasoning architectures such as those following the Generate-Verify paradigm -- where a model iteratively refines or verifies its own generated outputs -- prioritise generation and verification but exclude the monitoring processes that determine when and how reasoning should begin. This omission may contribute to the prefix dominance trap, in which models commit early to suboptimal reasoning paths and seldom recover, yielding roughly 20% accuracy loss. We address this architectural gap by formalising Flavell's and Nelson and Narens' metacognitive theories into computational specifications, proposing the Monitor-Generate-Verify (MGV) framework. MGV extends the Generate-Verify paradigm by adding explicit monitoring that captures metacognitive experiences (from difficulty assessments to confidence judgements) before generation begins and refines future monitoring through verification feedback. Though we present no empirical validation, this work provides the first systematic computational translation of foundational metacognitive theories, offering a principled vocabulary for understanding reasoning system failures and suggesting specific architectural interventions for future test-time reasoning designs.
comment: To-be presented at the Workshop on the Foundations of Reasoning in Language Models at NeurIPS 2025 (non-archival)
♻ ☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ Affordance-based Robot Manipulation with Flow Matching
We present a framework for assistive robot manipulation, which focuses on two fundamental challenges: first, efficiently adapting large-scale models to downstream scene affordance understanding tasks, especially in daily living scenarios where gathering multi-task data involving humans requires strenuous effort; second, effectively learning robot action trajectories by grounding the visual affordance model. We tackle the first challenge by employing a parameter-efficient prompt tuning method that prepends learnable text prompts to the frozen vision model to predict manipulation affordances in multi-task scenarios. Then we propose to learn robot action trajectories guided by affordances in a supervised flow matching method. Flow matching represents a robot visuomotor policy as a conditional process of flowing random waypoints to desired robot action trajectories. Finally, we introduce a real-world dataset with 10 tasks across Activities of Daily Living to test our framework. Our extensive evaluation highlights that the proposed prompt tuning method for learning manipulation affordance achieves competitive performance and even outperforms some other finetuning protocols across data scales, while satisfying parameter efficiency. Learning multi-task robot action trajectories with flow matching leads to consistently favorable results in several robot manipulation benchmarks than some alternative behavior cloning methods. This includes more stable training and evaluation, and noticeably faster inference, while maintaining comparable generalization performance to diffusion policy, where flow matching performs marginally better in most cases. Our framework seamlessly unifies affordance learning and action generation with flow matching for robot manipulation.
♻ ☆ CompressionAttack: Exploiting Prompt Compression as a New Attack Surface in LLM-Powered Agents
LLM-powered agents often use prompt compression to reduce inference costs, but this introduces a new security risk. Compression modules, which are optimized for efficiency rather than safety, can be manipulated by adversarial inputs, causing semantic drift and altering LLM behavior. This work identifies prompt compression as a novel attack surface and presents CompressionAttack, the first framework to exploit it. CompressionAttack includes two strategies: HardCom, which uses discrete adversarial edits for hard compression, and SoftCom, which performs latent-space perturbations for soft compression. Experiments on multiple LLMs show up to 80% attack success and 98% preference flips, while remaining highly stealthy and transferable. Case studies in VSCode Cline and Ollama confirm real-world impact, and current defenses prove ineffective, highlighting the need for stronger protections.
♻ ☆ GAITEX: Human motion dataset of impaired gait and rehabilitation exercises using inertial and optical sensors
Wearable inertial measurement units (IMUs) provide a cost-effective approach to assessing human movement in clinical and everyday environments. However, developing the associated classification models for robust assessment of physiotherapeutic exercise and gait analysis requires large, diverse datasets that are costly and time-consuming to collect. We present a multimodal dataset of physiotherapeutic and gait-related exercises, including correct and clinically relevant variants, recorded from 19 healthy subjects using synchronized IMUs and optical marker-based motion capture (MoCap). It contains data from nine IMUs and 68 markers tracking full-body kinematics. Four markers per IMU allow direct comparison between IMU- and MoCap-derived orientations. We additionally provide processed IMU orientations aligned to common segment coordinate systems, subject-specific OpenSim models, inverse kinematics outputs, and visualization tools for IMU-derived orientations. The dataset is fully annotated with movement quality ratings and timestamped segmentations. It supports various machine learning tasks such as exercise evaluation, gait classification, temporal segmentation, and biomechanical parameter estimation. Code for postprocessing, alignment, inverse kinematics, and technical validation is provided to promote reproducibility.
♻ ☆ Learning of Population Dynamics: Inverse Optimization Meets JKO Scheme
Learning population dynamics involves recovering the underlying process that governs particle evolution, given evolutionary snapshots of samples at discrete time points. Recent methods frame this as an energy minimization problem in probability space and leverage the celebrated JKO scheme for efficient time discretization. In this work, we introduce $\texttt{iJKOnet}$, an approach that combines the JKO framework with inverse optimization techniques to learn population dynamics. Our method relies on a conventional $\textit{end-to-end}$ adversarial training procedure and does not require restrictive architectural choices, e.g., input-convex neural networks. We establish theoretical guarantees for our methodology and demonstrate improved performance over prior JKO-based methods.
♻ ☆ CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis ACL 2025
Integrating multimodal Electronic Health Records (EHR) data, such as numerical time series and free-text clinical reports, has great potential in predicting clinical outcomes. However, prior work has primarily focused on capturing temporal interactions within individual samples and fusing multimodal information, overlooking critical temporal patterns across patients. These patterns, such as trends in vital signs like abnormal heart rate or blood pressure, can indicate deteriorating health or an impending critical event. Similarly, clinical notes often contain textual descriptions that reflect these patterns. Identifying corresponding temporal patterns across different modalities is crucial for improving the accuracy of clinical outcome predictions, yet it remains a challenging task. To address this gap, we introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data. Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings. To ensure rich cross-modal temporal semantics in the learned patterns, we introduce a contrastive-based TPNCE loss for cross-modal alignment, along with two reconstruction losses to retain core information of each modality. Evaluations on two clinically critical tasks, 48-hour in-hospital mortality and 24-hour phenotype classification, using the MIMIC-III database demonstrate the superiority of our method over existing approaches.
comment: ACL 2025 Findings
♻ ☆ A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
♻ ☆ Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ From Observability Data to Diagnosis: An Evolving Multi-agent System for Incident Management in Cloud Systems
Incident management (IM) is central to the reliability of large-scale cloud systems. Yet manual IM, where on-call engineers examine metrics, logs, and traces is labor-intensive and error-prone in the face of massive and heterogeneous observability data. Existing automated IM approaches often struggle to generalize across systems, provide limited interpretability, and incur high deployment costs, which hinders adoption in practice. In this paper, we present OpsAgent, a lightweight, self-evolving multi-agent system for IM that employs a training-free data processor to convert heterogeneous observability data into structured textual descriptions, along with a multi-agent collaboration framework that makes diagnostic inference transparent and auditable. To support continual capability growth, OpsAgent also introduces a dual self-evolution mechanism that integrates internal model updates with external experience accumulation, thereby closing the deployment loop. Comprehensive experiments on the OPENRCA benchmark demonstrate state-of-the-art performance and show that OpsAgent is generalizable, interpretable, cost-efficient, and self-evolving, making it a practically deployable and sustainable solution for long-term operation in real-world cloud systems.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.076 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
♻ ☆ String Seed of Thought: Prompting LLMs for Distribution-Faithful and Diverse Generation
We introduce String Seed of Thought (SSoT), a novel prompting method for LLMs that improves Probabilistic Instruction Following (PIF). We define PIF as a task requiring an LLM to select its answer from a predefined set of options, each associated with a specific probability, such that the empirical distribution of the generated answers aligns with the target distribution when prompted multiple times. While LLMs excel at tasks with single, deterministic answers, they often fail at PIF, exhibiting biases problematic for applications requiring non-deterministic behaviors, such as human-behavior simulation, content diversification, and multiplayer games. It also harms the diversity of generated responses, a crucial factor in test-time scaling, by causing the outputs to collapse into a limited set of answers. To address this, we propose SSoT, a simple prompting method that instructs an LLM to first output a random string to generate sufficient entropy. SSoT also instructs the LLM to extract randomness by manipulating this string to derive a final answer, thereby preserving diversity while adhering to specific constraints. We demonstrate that SSoT significantly improves the PIF performance of LLMs, approaching the ideal performance of a pseudo-random number generator. Furthermore, our experiments on NoveltyBench show SSoT's benefits extend beyond closed-set tasks to open-ended tasks by enhancing response diversity.
♻ ☆ Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search NeurIPS 2025
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling. Code is available at https://github.com/SakanaAI/treequest .
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ ZERO: Industry-ready Vision Foundation Model with Multi-modal Prompts
Foundation models have revolutionized AI, yet they struggle with zero-shot deployment in real-world industrial settings due to a lack of high-quality, domain-specific datasets. To bridge this gap, Superb AI introduces ZERO, an industry-ready vision foundation model that leverages multi-modal prompting (textual and visual) for generalization without retraining. Trained on a compact yet representative 0.9 million annotated samples from a proprietary billion-scale industrial dataset, ZERO demonstrates competitive performance on academic benchmarks like LVIS-Val and significantly outperforms existing models across 37 diverse industrial datasets. Furthermore, ZERO achieved 2nd place in the CVPR 2025 Object Instance Detection Challenge and 4th place in the Foundational Few-shot Object Detection Challenge, highlighting its practical deployability and generalizability with minimal adaptation and limited data. To the best of our knowledge, ZERO is the first vision foundation model explicitly built for domain-specific, zero-shot industrial applications.
comment: 9 pages, 2 figures
♻ ☆ Improving Diagnostic Performance on Small and Imbalanced Datasets Using Class-Based Input Image Composition
Small, imbalanced datasets and poor input image quality can lead to high false predictions rates with deep learning models. This paper introduces Class-Based Image Composition, an approach that allows us to reformulate training inputs through a fusion of multiple images of the same class into combined visual composites, named Composite Input Images (CoImg). That enhances the intra-class variance and improves the valuable information density per training sample and increases the ability of the model to distinguish between subtle disease patterns. Our method was evaluated on the Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods (OCTDL) (Kulyabin et al., 2024), which contains 2,064 high-resolution optical coherence tomography (OCT) scans of the human retina, representing seven distinct diseases with a significant class imbalance. We constructed a perfectly class-balanced version of this dataset, named Co-OCTDL, where each scan is resented as a 3x1 layout composite image. To assess the effectiveness of this new representation, we conducted a comparative analysis between the original dataset and its variant using a VGG16 model. A fair comparison was ensured by utilizing the identical model architecture and hyperparameters for all experiments. The proposed approach markedly improved diagnostic results.The enhanced Dataset achieved near-perfect accuracy (99.6%) with F1-score (0.995) and AUC (0.9996), compared to a baseline model trained on raw dataset. The false prediction rate was also significantly lower, this demonstrates that the method can producehigh-quality predictions even for weak datasets affected by class imbalance or small sample size.
♻ ☆ A Mega-Study of Digital Twins Reveals Strengths, Weaknesses and Opportunities for Further Improvement
Digital representations of individuals ("digital twins") promise to transform social science and decision-making. Yet it remains unclear whether such twins truly mirror the people they emulate. We conducted 19 preregistered studies with a representative U.S. panel and their digital twins, each constructed from rich individual-level data, enabling direct comparisons between human and twin behavior across a wide range of domains and stimuli (including never-seen-before ones). Twins reproduced individual responses with 75% accuracy and seemingly low correlation with human answers (approximately 0.2). However, this apparently high accuracy was no higher than that achieved by generic personas based on demographics only. In contrast, correlation improved when twins incorporated detailed personal information, even outperforming traditional machine learning benchmarks that require additional data. Twins exhibited systematic strengths and weaknesses - performing better in social and personality domains, but worse in political ones - and were more accurate for participants with higher education, higher income, and moderate political views and religious attendance. Together, these findings delineate both the promise and the current limits of digital twins: they capture some relative differences among individuals but not yet the unique judgments of specific people. All data and code are publicly available to support the further development and evaluation of digital twin pipelines.
♻ ☆ Graph Learning
Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.
comment: 185 pages
♻ ☆ NMIXX: Domain-Adapted Neural Embeddings for Cross-Lingual eXploration of Finance CIKM 2025
General-purpose sentence embedding models often struggle to capture specialized financial semantics, especially in low-resource languages like Korean, due to domain-specific jargon, temporal meaning shifts, and misaligned bilingual vocabularies. To address these gaps, we introduce NMIXX (Neural eMbeddings for Cross-lingual eXploration of Finance), a suite of cross-lingual embedding models fine-tuned with 18.8K high-confidence triplets that pair in-domain paraphrases, hard negatives derived from a semantic-shift typology, and exact Korean-English translations. Concurrently, we release KorFinSTS, a 1,921-pair Korean financial STS benchmark spanning news, disclosures, research reports, and regulations, designed to expose nuances that general benchmarks miss. When evaluated against seven open-license baselines, NMIXX's multilingual bge-m3 variant achieves Spearman's rho gains of +0.10 on English FinSTS and +0.22 on KorFinSTS, outperforming its pre-adaptation checkpoint and surpassing other models by the largest margin, while revealing a modest trade-off in general STS performance. Our analysis further shows that models with richer Korean token coverage adapt more effectively, underscoring the importance of tokenizer design in low-resource, cross-lingual settings. By making both models and the benchmark publicly available, we provide the community with robust tools for domain-adapted, multilingual representation learning in finance.
comment: Accepted at FinAI@CIKM 2025
♻ ☆ Conformal Information Pursuit for Interactively Guiding Large Language Models
A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM proba- bilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.
♻ ☆ Fine-Tuning MedGemma for Clinical Captioning to Enhance Multimodal RAG over Malaysia CPGs
Retrieval-Augmented Generation systems are essential for providing fact-based guidance from Malaysian Clinical Practice Guidelines. However, their effectiveness with image-based queries is limited, as general Vision-Language Model captions often lack clinical specificity and factual grounding. This study proposes and validates a framework to specialize the MedGemma model for generating high-fidelity captions that serve as superior queries. To overcome data scarcity, we employ a knowledge distillation pipeline to create a synthetic dataset across dermatology, fundus, and chest radiography domains, and fine-tune MedGemma using the parameter-efficient QLoRA method. Performance was rigorously assessed through a dual framework measuring both classification accuracy and, via a novel application of the RAGAS framework, caption faithfulness, relevancy, and correctness. The fine-tuned model demonstrated substantial improvements in classification performance, while RAGAS evaluation confirmed significant gains in caption faithfulness and correctness, validating the models ability to produce reliable, factually grounded descriptions. This work establishes a robust pipeline for specializing medical VLMs and validates the resulting model as a high-quality query generator, laying the groundwork for enhancing multimodal RAG systems in evidence-based clinical decision support.
♻ ☆ Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
Accurate predictions of electricity demands are necessary for managing operations in a small aggregation load setting like a Microgrid. Due to low aggregation, the electricity demands can be highly stochastic and point estimates would lead to inflated errors. Interval estimation in this scenario, would provide a range of values within which the future values might lie and helps quantify the errors around the point estimates. This paper introduces a residual bootstrap algorithm to generate interval estimates of day-ahead electricity demand. A machine learning algorithm is used to obtain the point estimates of electricity demand and respective residuals on the training set. The obtained residuals are stored in memory and the memory is further partitioned. Days with similar demand patterns are grouped in clusters using an unsupervised learning algorithm and these clusters are used to partition the memory. The point estimates for test day are used to find the closest cluster of similar days and the residuals are bootstrapped from the chosen cluster. This algorithm is evaluated on the real electricity demand data from EULR(End Use Load Research) and is compared to other bootstrapping methods for varying confidence intervals.
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ USF-MAE: Ultrasound Self-Supervised Foundation Model with Masked Autoencoding
Ultrasound imaging is one of the most widely used diagnostic modalities, offering real-time, radiation-free assessment across diverse clinical domains. However, interpretation of ultrasound images remains challenging due to high noise levels, operator dependence, and limited field of view, resulting in substantial inter-observer variability. Current Deep Learning approaches are hindered by the scarcity of large labeled datasets and the domain gap between general and sonographic images, which limits the transferability of models pretrained on non-medical data. To address these challenges, we introduce the Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE), the first large-scale self-supervised MAE framework pretrained exclusively on ultrasound data. The model was pre-trained on 370,000 2D and 3D ultrasound images curated from 46 open-source datasets, collectively termed OpenUS-46, spanning over twenty anatomical regions. This curated dataset has been made publicly available to facilitate further research and reproducibility. Using a Vision Transformer encoder-decoder architecture, USF-MAE reconstructs masked image patches, enabling it to learn rich, modality-specific representations directly from unlabeled data. The pretrained encoder was fine-tuned on three public downstream classification benchmarks: BUS-BRA (breast cancer), MMOTU-2D (ovarian tumors), and GIST514-DB (gastrointestinal stromal tumors). Across all tasks, USF-MAE consistently outperformed conventional CNN and ViT baselines, achieving F1-scores of 81.6%, 79.6%, and 82.4%, respectively. Despite not using labels during pretraining, USF-MAE approached the performance of the supervised foundation model UltraSam on breast cancer classification and surpassed it on the other tasks, demonstrating strong cross-anatomical generalization.
comment: 18 pages, 8 figures, 2 tables
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
Fundus images are essential for the early screening and detection of eye diseases. While deep learning models using fundus images have significantly advanced the diagnosis of multiple eye diseases, variations in images from different imaging devices and locations (known as domain shifts) pose challenges for deploying pre-trained models in real-world applications. To address this, we propose a novel Fundus On-the-fly Test-Time Adaptation (FunOTTA) framework that effectively generalizes a fundus image diagnosis model to unseen environments, even under strong domain shifts. FunOTTA stands out for its stable adaptation process by performing dynamic disambiguation in the memory bank while minimizing harmful prior knowledge bias. We also introduce a new training objective during adaptation that enables the classifier to incrementally adapt to target patterns with reliable class conditional estimation and consistency regularization. We compare our method with several state-of-the-art test-time adaptation (TTA) pipelines. Experiments on cross-domain fundus image benchmarks across two diseases demonstrate the superiority of the overall framework and individual components under different backbone networks. Code is available at https://github.com/Casperqian/FunOTTA.
comment: 13 pages, 8 figures, 7 tables
♻ ☆ Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
Antibodies are essential proteins responsible for immune responses in organisms, capable of specifically recognizing antigen molecules of pathogens. Recent advances in generative models have significantly enhanced rational antibody design. However, existing methods mainly create antibodies from scratch without template constraints, leading to model optimization challenges and unnatural sequences. To address these issues, we propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design. Our method leverages a set of structural homologous motifs that align with query structural constraints to guide the generative model in inversely optimizing antibodies according to desired design criteria. Specifically, we introduce a structure-informed retrieval mechanism that integrates these exemplar motifs with the input backbone through a novel dual-branch denoising module, utilizing both structural and evolutionary information. Additionally, we develop a conditional diffusion model that iteratively refines the optimization process by incorporating both global context and local evolutionary conditions. Our approach is agnostic to the choice of generative models. Empirical experiments demonstrate that our method achieves state-of-the-art performance in multiple antibody inverse folding and optimization tasks, offering a new perspective on biomolecular generative models.
Every Activation Boosted: Scaling General Reasoner to 1 Trillion Open Language Foundation
We introduce Ling 2.0, a series reasoning-oriented language foundation built upon the principle that every activation boosts reasoning capability. Designed to scale from tens of billions to one trillion parameters under a unified Mixture-of-Experts (MoE) paradigm, Ling 2.0 emphasizes high sparsity, cross-scale consistency, and efficiency guided by empirical scaling laws. The series includes three non-thinking (instruct) models - Ling-mini-2.0, Ling-flash-2.0, and Ling-1T - ranging from 16B to 1T total parameters and achieving up to 7-fold active-compute efficiency compared with dense counterparts. Ling 2.0 integrates coordinated innovations across model architecture, pre-training, post-training, and infrastructure: a high-sparsity MoE with MTP for efficient reasoning, reasoning-oriented data and mid-training CoT activation, reinforcement-based fine-tuning (DFT, Evo-CoT), and full-scale FP8 training with fine-grained heterogeneous pipelines. At the trillion scale, Ling-1T establishes a new Pareto frontier of reasoning accuracy versus computational efficiency, demonstrating that sparse activation, when properly aligned with reasoning objectives, enables scalable and efficient intelligence. Collectively, Ling 2.0 provides a coherent, open, and efficient foundation for advancing future reasoning and thinking models, including the Ring series built upon the same base.
comment: Ling 2.0 Technical Report
♻ ☆ TimeCopilot
We introduce TimeCopilot, the first open-source agentic framework for forecasting that combines multiple Time Series Foundation Models (TSFMs) with Large Language Models (LLMs) through a single unified API. TimeCopilot automates the forecasting pipeline: feature analysis, model selection, cross-validation, and forecast generation, while providing natural language explanations and supporting direct queries about the future. The framework is LLM-agnostic, compatible with both commercial and open-source models, and supports ensembles across diverse forecasting families. Results on the large-scale GIFT-Eval benchmark show that TimeCopilot achieves state-of-the-art probabilistic forecasting performance at low cost. Our framework provides a practical foundation for reproducible, explainable, and accessible agentic forecasting systems.
♻ ☆ Retrofitters, pragmatists and activists: Public interest litigation for accountable automated decision-making
This paper examines the role of public interest litigation in promoting accountability for AI and automated decision-making (ADM) in Australia. Since ADM regulation faces geopolitical headwinds, effective governance will have to rely at least in part on the enforcement of existing laws. Drawing on interviews with Australian public interest litigators, technology policy activists, and technology law scholars, the paper positions public interest litigation as part of a larger ecosystem for transparency, accountability and justice with respect to ADM. It builds on one participant's characterisation of litigation about ADM as an exercise in legal retrofitting: adapting old laws to new circumstances. The paper's primary contribution is to aggregate, organise and present original insights on pragmatic strategies and tactics for effective public interest litigation about ADM. Naturally, it also contends with the limits of these strategies, and of the Australian legal system. Where limits are, however, capable of being overcome, the paper presents findings on urgent needs: the enabling institutional arrangements without which effective litigation and accountability will falter. The paper is relevant to law and technology scholars; individuals and groups harmed by ADM; public interest litigators and technology lawyers; civil society and advocacy organisations; and policymakers.
♻ ☆ Learning Dynamics of Meta-Learning in Small Model Pretraining AACL 2025
Large language models are powerful but costly. We ask whether meta-learning can make the pretraining of small language models not only better but also more interpretable. We integrate first-order MAML with subset-masked LM pretraining, producing four LLama-style decoder-only models (11M-570M params), and evaluate it on a fundamental NLP task with many settings and real-world applications. Compared with vanilla training, our model (i) reaches the same loss up to 1.6x sooner, (ii) improves F1 on multilingual Universal NER under equal compute, and (iii) makes the training dynamics easy to read: first the network's representations fan out ("diversify") and later they collapse into a smaller, shared subspace ("compress"). This two-stage shift shows up as a rise-and-fall in both effective-rank curves and attention-head entropy. The same curves pinpoint which layers specialise earliest and which later reconverge, giving a compact, interpretable signature of meta-adaptation. Code, checkpoints and WandB logs are released.
comment: Accepted (oral) to Student Research Workshop at IJCNLP-AACL 2025
Machine Learning 150
☆ DGTN: Graph-Enhanced Transformer with Diffusive Attention Gating Mechanism for Enzyme DDG Prediction
Predicting the effect of amino acid mutations on enzyme thermodynamic stability (DDG) is fundamental to protein engineering and drug design. While recent deep learning approaches have shown promise, they often process sequence and structure information independently, failing to capture the intricate coupling between local structural geometry and global sequential patterns. We present DGTN (Diffused Graph-Transformer Network), a novel architecture that co-learns graph neural network (GNN) weights for structural priors and transformer attention through a diffusion mechanism. Our key innovation is a bidirectional diffusion process where: (1) GNN-derived structural embeddings guide transformer attention via learnable diffusion kernels, and (2) transformer representations refine GNN message passing through attention-modulated graph updates. We provide rigorous mathematical analysis showing this co-learning scheme achieves provably better approximation bounds than independent processing. On ProTherm and SKEMPI benchmarks, DGTN achieves state-of-the-art performance (Pearson Rho = 0.87, RMSE = 1.21 kcal/mol), with 6.2% improvement over best baselines. Ablation studies confirm the diffusion mechanism contributes 4.8 points to correlation. Our theoretical analysis proves the diffused attention converges to optimal structure-sequence coupling, with convergence rate O(1/sqrt(T) ) where T is diffusion steps. This work establishes a principled framework for integrating heterogeneous protein representations through learnable diffusion.
☆ SoilX: Calibration-Free Comprehensive Soil Sensing Through Contrastive Cross-Component Learning
Precision agriculture demands continuous and accurate monitoring of soil moisture (M) and key macronutrients, including nitrogen (N), phosphorus (P), and potassium (K), to optimize yields and conserve resources. Wireless soil sensing has been explored to measure these four components; however, current solutions require recalibration (i.e., retraining the data processing model) to handle variations in soil texture, characterized by aluminosilicates (Al) and organic carbon (C), limiting their practicality. To address this, we introduce SoilX, a calibration-free soil sensing system that jointly measures six key components: {M, N, P, K, C, Al}. By explicitly modeling C and Al, SoilX eliminates texture- and carbon-dependent recalibration. SoilX incorporates Contrastive Cross-Component Learning (3CL), with two customized terms: the Orthogonality Regularizer and the Separation Loss, to effectively disentangle cross-component interference. Additionally, we design a novel tetrahedral antenna array with an antenna-switching mechanism, which can robustly measure soil dielectric permittivity independent of device placement. Extensive experiments demonstrate that SoilX reduces estimation errors by 23.8% to 31.5% over baselines and generalizes well to unseen fields.
☆ On Flow Matching KL Divergence
We derive a deterministic, non-asymptotic upper bound on the Kullback-Leibler (KL) divergence of the flow-matching distribution approximation. In particular, if the $L_2$ flow-matching loss is bounded by $\epsilon^2 > 0$, then the KL divergence between the true data distribution and the estimated distribution is bounded by $A_1 \epsilon + A_2 \epsilon^2$. Here, the constants $A_1$ and $A_2$ depend only on the regularities of the data and velocity fields. Consequently, this bound implies statistical convergence rates of Flow Matching Transformers under the Total Variation (TV) distance. We show that, flow matching achieves nearly minimax-optimal efficiency in estimating smooth distributions. Our results make the statistical efficiency of flow matching comparable to that of diffusion models under the TV distance. Numerical studies on synthetic and learned velocities corroborate our theory.
☆ A Metamorphic Testing Perspective on Knowledge Distillation for Language Models of Code: Does the Student Deeply Mimic the Teacher?
Transformer-based language models of code have achieved state-of-the-art performance across a wide range of software analytics tasks, but their practical deployment remains limited due to high computational costs, slow inference speeds, and significant environmental impact. To address these challenges, recent research has increasingly explored knowledge distillation as a method for compressing a large language model of code (the teacher) into a smaller model (the student) while maintaining performance. However, the degree to which a student model deeply mimics the predictive behavior and internal representations of its teacher remains largely unexplored, as current accuracy-based evaluation provides only a surface-level view of model quality and often fails to capture more profound discrepancies in behavioral fidelity between the teacher and student models. To address this gap, we empirically show that the student model often fails to deeply mimic the teacher model, resulting in up to 285% greater performance drop under adversarial attacks, which is not captured by traditional accuracy-based evaluation. Therefore, we propose MetaCompress, a metamorphic testing framework that systematically evaluates behavioral fidelity by comparing the outputs of teacher and student models under a set of behavior-preserving metamorphic relations. We evaluate MetaCompress on two widely studied tasks, using compressed versions of popular language models of code, obtained via three different knowledge distillation techniques: Compressor, AVATAR, and MORPH. The results show that MetaCompress identifies up to 62% behavioral discrepancies in student models, underscoring the need for behavioral fidelity evaluation within the knowledge distillation pipeline and establishing MetaCompress as a practical framework for testing compressed language models of code derived through knowledge distillation.
comment: The paper is currently under review at a peer-reviewed journal
☆ Precipitation nowcasting of satellite data using physically conditioned neural networks
Accurate short-term precipitation forecasts predominantly rely on dense weather-radar networks, limiting operational value in places most exposed to climate extremes. We present TUPANN (Transferable and Universal Physics-Aligned Nowcasting Network), a satellite-only model trained on GOES-16 RRQPE. Unlike most deep learning models for nowcasting, TUPANN decomposes the forecast into physically meaningful components: a variational encoder-decoder infers motion and intensity fields from recent imagery under optical-flow supervision, a lead-time-conditioned MaxViT evolves the latent state, and a differentiable advection operator reconstructs future frames. We evaluate TUPANN on both GOES-16 and IMERG data, in up to four distinct climates (Rio de Janeiro, Manaus, Miami, La Paz) at 10-180min lead times using the CSI and HSS metrics over 4-64 mm/h thresholds. Comparisons against optical-flow, deep learning and hybrid baselines show that TUPANN achieves the best or second-best skill in most settings, with pronounced gains at higher thresholds. Training on multiple cities further improves performance, while cross-city experiments show modest degradation and occasional gains for rare heavy-rain regimes. The model produces smooth, interpretable motion fields aligned with numerical optical flow and runs in near real time due to the low latency of GOES-16. These results indicate that physically aligned learning can provide nowcasts that are skillful, transferable and global.
☆ SiamMM: A Mixture Model Perspective on Deep Unsupervised Learning
Recent studies have demonstrated the effectiveness of clustering-based approaches for self-supervised and unsupervised learning. However, the application of clustering is often heuristic, and the optimal methodology remains unclear. In this work, we establish connections between these unsupervised clustering methods and classical mixture models from statistics. Through this framework, we demonstrate significant enhancements to these clustering methods, leading to the development of a novel model named SiamMM. Our method attains state-of-the-art performance across various self-supervised learning benchmarks. Inspection of the learned clusters reveals a strong resemblance to unseen ground truth labels, uncovering potential instances of mislabeling.
☆ Synapse: Adaptive Arbitration of Complementary Expertise in Time Series Foundational Models
Pre-trained Time Series Foundational Models (TSFMs) represent a significant advance, capable of forecasting diverse time series with complex characteristics, including varied seasonalities, trends, and long-range dependencies. Despite their primary goal of universal time series forecasting, their efficacy is far from uniform; divergent training protocols and data sources cause individual TSFMs to exhibit highly variable performance across different forecasting tasks, domains, and horizons. Leveraging this complementary expertise by arbitrating existing TSFM outputs presents a compelling strategy, yet this remains a largely unexplored area of research. In this paper, we conduct a thorough examination of how different TSFMs exhibit specialized performance profiles across various forecasting settings, and how we can effectively leverage this behavior in arbitration between different time series models. We specifically analyze how factors such as model selection and forecast horizon distribution can influence the efficacy of arbitration strategies. Based on this analysis, we propose Synapse, a novel arbitration framework for TSFMs. Synapse is designed to dynamically leverage a pool of TSFMs, assign and adjust predictive weights based on their relative, context-dependent performance, and construct a robust forecast distribution by adaptively sampling from the output quantiles of constituent models. Experimental results demonstrate that Synapse consistently outperforms other popular ensembling techniques as well as individual TSFMs, demonstrating Synapse's efficacy in time series forecasting.
comment: 19 pages, 7 figures, 4 tables
☆ Parameter-Efficient Conditioning for Material Generalization in Graph-Based Simulators
Graph network-based simulators (GNS) have demonstrated strong potential for learning particle-based physics (such as fluids, deformable solids, and granular flows) while generalizing to unseen geometries due to their inherent inductive biases. However, existing models are typically trained for a single material type and fail to generalize across distinct constitutive behaviors, limiting their applicability in real-world engineering settings. Using granular flows as a running example, we propose a parameter-efficient conditioning mechanism that makes the GNS model adaptive to material parameters. We identify that sensitivity to material properties is concentrated in the early message-passing (MP) layers, a finding we link to the local nature of constitutive models (e.g., Mohr-Coulomb) and their effects on information propagation. We empirically validate this by showing that fine-tuning only the first few (1-5) of 10 MP layers of a pretrained model achieves comparable test performance as compared to fine-tuning the entire network. Building on this insight, we propose a parameter-efficient Feature-wise Linear Modulation (FiLM) conditioning mechanism designed to specifically target these early layers. This approach produces accurate long-term rollouts on unseen, interpolated, or moderately extrapolated values (e.g., up to 2.5 degrees for friction angle and 0.25 kPa for cohesion) when trained exclusively on as few as 12 short simulation trajectories from new materials, representing a 5-fold data reduction compared to a baseline multi-task learning method. Finally, we validate the model's utility by applying it to an inverse problem, successfully identifying unknown cohesion parameters from trajectory data. This approach enables the use of GNS in inverse design and closed-loop control tasks where material properties are treated as design variables.
☆ Self-adaptive weighting and sampling for physics-informed neural networks
Physics-informed deep learning has emerged as a promising framework for solving partial differential equations (PDEs). Nevertheless, training these models on complex problems remains challenging, often leading to limited accuracy and efficiency. In this work, we introduce a hybrid adaptive sampling and weighting method to enhance the performance of physics-informed neural networks (PINNs). The adaptive sampling component identifies training points in regions where the solution exhibits rapid variation, while the adaptive weighting component balances the convergence rate across training points. Numerical experiments show that applying only adaptive sampling or only adaptive weighting is insufficient to consistently achieve accurate predictions, particularly when training points are scarce. Since each method emphasizes different aspects of the solution, their effectiveness is problem dependent. By combining both strategies, the proposed framework consistently improves prediction accuracy and training efficiency, offering a more robust approach for solving PDEs with PINNs.
comment: 11 figures
☆ How Many Tokens Do 3D Point Cloud Transformer Architectures Really Need? NeurIPS 2025
Recent advances in 3D point cloud transformers have led to state-of-the-art results in tasks such as semantic segmentation and reconstruction. However, these models typically rely on dense token representations, incurring high computational and memory costs during training and inference. In this work, we present the finding that tokens are remarkably redundant, leading to substantial inefficiency. We introduce gitmerge3D, a globally informed graph token merging method that can reduce the token count by up to 90-95% while maintaining competitive performance. This finding challenges the prevailing assumption that more tokens inherently yield better performance and highlights that many current models are over-tokenized and under-optimized for scalability. We validate our method across multiple 3D vision tasks and show consistent improvements in computational efficiency. This work is the first to assess redundancy in large-scale 3D transformer models, providing insights into the development of more efficient 3D foundation architectures. Our code and checkpoints are publicly available at https://gitmerge3d.github.io
comment: Accepted at NeurIPS 2025
☆ Adversarially Robust Multitask Adaptive Control
We study adversarially robust multitask adaptive linear quadratic control; a setting where multiple systems collaboratively learn control policies under model uncertainty and adversarial corruption. We propose a clustered multitask approach that integrates clustering and system identification with resilient aggregation to mitigate corrupted model updates. Our analysis characterizes how clustering accuracy, intra-cluster heterogeneity, and adversarial behavior affect the expected regret of certainty-equivalent (CE) control across LQR tasks. We establish non-asymptotic bounds demonstrating that the regret decreases inversely with the number of honest systems per cluster and that this reduction is preserved under a bounded fraction of adversarial systems within each cluster.
☆ APP: Accelerated Path Patching with Task-Specific Pruning
Circuit discovery is a key step in many mechanistic interpretability pipelines. Current methods, such as Path Patching, are computationally expensive and have limited in-depth circuit analysis for smaller models. In this study, we propose Accelerated Path Patching (APP), a hybrid approach leveraging our novel contrastive attention head pruning method to drastically reduce the search space of circuit discovery methods. Our Contrastive-FLAP pruning algorithm uses techniques from causal mediation analysis to assign higher pruning scores to task-specific attention heads, leading to higher performing sparse models compared to traditional pruning techniques. Although Contrastive-FLAP is successful at preserving task-specific heads that existing pruning algorithms remove at low sparsity ratios, the circuits found by Contrastive-FLAP alone are too large to satisfy the minimality constraint required in circuit analysis. APP first applies Contrastive-FLAP to reduce the search space on required for circuit discovery algorithms by, on average, 56\%. Next, APP, applies traditional Path Patching on the remaining attention heads, leading to a speed up of 59.63\%-93.27\% compared to Path Patching applied to the dense model. Despite the substantial computational saving that APP provides, circuits obtained from APP exhibit substantial overlap and similar performance to previously established Path Patching circuits
☆ ProDER: A Continual Learning Approach for Fault Prediction in Evolving Smart Grids
As smart grids evolve to meet growing energy demands and modern operational challenges, the ability to accurately predict faults becomes increasingly critical. However, existing AI-based fault prediction models struggle to ensure reliability in evolving environments where they are required to adapt to new fault types and operational zones. In this paper, we propose a continual learning (CL) framework in the smart grid context to evolve the model together with the environment. We design four realistic evaluation scenarios grounded in class-incremental and domain-incremental learning to emulate evolving grid conditions. We further introduce Prototype-based Dark Experience Replay (ProDER), a unified replay-based approach that integrates prototype-based feature regularization, logit distillation, and a prototype-guided replay memory. ProDER achieves the best performance among tested CL techniques, with only a 0.045 accuracy drop for fault type prediction and 0.015 for fault zone prediction. These results demonstrate the practicality of CL for scalable, real-world fault prediction in smart grids.
☆ Steering Language Models with Weight Arithmetic
Providing high-quality feedback to Large Language Models (LLMs) on a diverse training distribution can be difficult and expensive, and providing feedback only on a narrow distribution can result in unintended generalizations. To better leverage narrow training data, we propose contrastive weight steering, a simple post-training method that edits the model parameters using weight arithmetic. We isolate a behavior direction in weight-space by subtracting the weight deltas from two small fine-tunes -- one that induces the desired behavior and another that induces its opposite -- and then add or remove this direction to modify the model's weights. We apply this technique to mitigate sycophancy and induce misalignment, and find that weight steering often generalizes further than activation steering, achieving stronger out-of-distribution behavioral control before degrading general capabilities. We also show that, in the context of task-specific fine-tuning, weight steering can partially mitigate undesired behavioral drift: it can reduce sycophancy and under-refusals introduced during fine-tuning while preserving task performance gains. Finally, we provide preliminary evidence that emergent misalignment can be detected by measuring the similarity between fine-tuning updates and an "evil" weight direction, suggesting that it may be possible to monitor the evolution of weights during training and detect rare misaligned behaviors that never manifest during training or evaluations.
☆ Sample Complexity of Distributionally Robust Off-Dynamics Reinforcement Learning with Online Interaction ICML 2025
Off-dynamics reinforcement learning (RL), where training and deployment transition dynamics are different, can be formulated as learning in a robust Markov decision process (RMDP) where uncertainties in transition dynamics are imposed. Existing literature mostly assumes access to generative models allowing arbitrary state-action queries or pre-collected datasets with a good state coverage of the deployment environment, bypassing the challenge of exploration. In this work, we study a more realistic and challenging setting where the agent is limited to online interaction with the training environment. To capture the intrinsic difficulty of exploration in online RMDPs, we introduce the supremal visitation ratio, a novel quantity that measures the mismatch between the training dynamics and the deployment dynamics. We show that if this ratio is unbounded, online learning becomes exponentially hard. We propose the first computationally efficient algorithm that achieves sublinear regret in online RMDPs with $f$-divergence based transition uncertainties. We also establish matching regret lower bounds, demonstrating that our algorithm achieves optimal dependence on both the supremal visitation ratio and the number of interaction episodes. Finally, we validate our theoretical results through comprehensive numerical experiments.
comment: 53 pages, 6 figures, 3 tables. Published in Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
☆ Diffusion-Based Electromagnetic Inverse Design of Scattering Structured Media NeurIPS 2025
We present a conditional diffusion model for electromagnetic inverse design that generates structured media geometries directly from target differential scattering cross-section profiles, bypassing expensive iterative optimization. Our 1D U-Net architecture with Feature-wise Linear Modulation learns to map desired angular scattering patterns to 2x2 dielectric sphere structure, naturally handling the non-uniqueness of inverse problems by sampling diverse valid designs. Trained on 11,000 simulated metasurfaces, the model achieves median MPE below 19% on unseen targets (best: 1.39%), outperforming CMA-ES evolutionary optimization while reducing design time from hours to seconds. These results demonstrate that employing diffusion models is promising for advancing electromagnetic inverse design research, potentially enabling rapid exploration of complex metasurface architectures and accelerating the development of next-generation photonic and wireless communication systems. The code is publicly available at https://github.com/mikzuker/inverse_design_metasurface_generation.
comment: Accepted to Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
☆ SAD-Flower: Flow Matching for Safe, Admissible, and Dynamically Consistent Planning
Flow matching (FM) has shown promising results in data-driven planning. However, it inherently lacks formal guarantees for ensuring state and action constraints, whose satisfaction is a fundamental and crucial requirement for the safety and admissibility of planned trajectories on various systems. Moreover, existing FM planners do not ensure the dynamical consistency, which potentially renders trajectories inexecutable. We address these shortcomings by proposing SAD-Flower, a novel framework for generating Safe, Admissible, and Dynamically consistent trajectories. Our approach relies on an augmentation of the flow with a virtual control input. Thereby, principled guidance can be derived using techniques from nonlinear control theory, providing formal guarantees for state constraints, action constraints, and dynamic consistency. Crucially, SAD-Flower operates without retraining, enabling test-time satisfaction of unseen constraints. Through extensive experiments across several tasks, we demonstrate that SAD-Flower outperforms various generative-model-based baselines in ensuring constraint satisfaction.
☆ Learning Dynamics from Input-Output Data with Hamiltonian Gaussian Processes
Embedding non-restrictive prior knowledge, such as energy conservation laws, in learning-based approaches is a key motive to construct physically consistent models from limited data, relevant for, e.g., model-based control. Recent work incorporates Hamiltonian dynamics into Gaussian Process (GP) regression to obtain uncertainty-quantifying models that adhere to the underlying physical principles. However, these works rely on velocity or momentum data, which is rarely available in practice. In this paper, we consider dynamics learning with non-conservative Hamiltonian GPs, and address the more realistic problem setting of learning from input-output data. We provide a fully Bayesian scheme for estimating probability densities of unknown hidden states, of GP hyperparameters, as well as of structural hyperparameters, such as damping coefficients. Considering the computational complexity of GPs, we take advantage of a reduced-rank GP approximation and leverage its properties for computationally efficient prediction and training. The proposed method is evaluated in a nonlinear simulation case study and compared to a state-of-the-art approach that relies on momentum measurements.
comment: 17 pages, 5 figures
☆ Turning Adversaries into Allies: Reversing Typographic Attacks for Multimodal E-Commerce Product Retrieval
Multimodal product retrieval systems in e-commerce platforms rely on effectively combining visual and textual signals to improve search relevance and user experience. However, vision-language models such as CLIP are vulnerable to typographic attacks, where misleading or irrelevant text embedded in images skews model predictions. In this work, we propose a novel method that reverses the logic of typographic attacks by rendering relevant textual content (e.g., titles, descriptions) directly onto product images to perform vision-text compression, thereby strengthening image-text alignment and boosting multimodal product retrieval performance. We evaluate our method on three vertical-specific e-commerce datasets (sneakers, handbags, and trading cards) using six state-of-the-art vision foundation models. Our experiments demonstrate consistent improvements in unimodal and multimodal retrieval accuracy across categories and model families. Our findings suggest that visually rendering product metadata is a simple yet effective enhancement for zero-shot multimodal retrieval in e-commerce applications.
☆ Attention and Compression is all you need for Controllably Efficient Language Models
The quadratic cost of attention in transformers motivated the development of efficient approaches: namely sparse and sliding window attention, convolutions and linear attention. Although these approaches result in impressive reductions in compute and memory, they often trade-off with quality, specifically in-context recall performance. Moreover, apriori fixing this quality-compute tradeoff means being suboptimal from the get-go: some downstream applications require more memory for in-context recall, while others require lower latency and memory. Further, these approaches rely on heuristic choices that artificially restrict attention, or require handcrafted and complex recurrent state update rules, or they must be carefully composed with attention at specific layers to form a hybrid architecture that complicates the design process, especially at scale. To address above issues, we propose Compress & Attend Transformer (CAT), a conceptually simple architecture employing two simple ingredients only: dense attention and compression. CAT decodes chunks of tokens by attending to compressed chunks of the sequence so far. Compression results in decoding from a reduced sequence length that yields compute and memory savings, while choosing a particular chunk size trades-off quality for efficiency. Moreover, CAT can be trained with multiple chunk sizes at once, unlocking control of quality-compute trade-offs directly at test-time without any retraining, all in a single adaptive architecture. In exhaustive evaluations on common language modeling tasks, in-context recall, and long-context understanding, a single adaptive CAT model outperforms existing efficient baselines, including hybrid architectures, across different compute-memory budgets. Further, a single CAT matches dense transformer in language modeling across model scales while being 1.4-3x faster and requiring 2-9x lower total memory usage.
comment: Preprint
☆ Cleaning Maintenance Logs with LLM Agents for Improved Predictive Maintenance
Economic constraints, limited availability of datasets for reproducibility and shortages of specialized expertise have long been recognized as key challenges to the adoption and advancement of predictive maintenance (PdM) in the automotive sector. Recent progress in large language models (LLMs) presents an opportunity to overcome these barriers and speed up the transition of PdM from research to industrial practice. Under these conditions, we explore the potential of LLM-based agents to support PdM cleaning pipelines. Specifically, we focus on maintenance logs, a critical data source for training well-performing machine learning (ML) models, but one often affected by errors such as typos, missing fields, near-duplicate entries, and incorrect dates. We evaluate LLM agents on cleaning tasks involving six distinct types of noise. Our findings show that LLMs are effective at handling generic cleaning tasks and offer a promising foundation for future industrial applications. While domain-specific errors remain challenging, these results highlight the potential for further improvements through specialized training and enhanced agentic capabilities.
☆ Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation 3DV
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.
comment: This paper has been accepted at International Conference on 3D Vision (3DV) 2026
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Building Specialized Software-Assistant ChatBot with Graph-Based Retrieval-Augmented Generation
Digital Adoption Platforms (DAPs) have become essential tools for helping employees navigate complex enterprise software such as CRM, ERP, or HRMS systems. Companies like LemonLearning have shown how digital guidance can reduce training costs and accelerate onboarding. However, building and maintaining these interactive guides still requires extensive manual effort. Leveraging Large Language Models as virtual assistants is an appealing alternative, yet without a structured understanding of the target software, LLMs often hallucinate and produce unreliable answers. Moreover, most production-grade LLMs are black-box APIs, making fine-tuning impractical due to the lack of access to model weights. In this work, we introduce a Graph-based Retrieval-Augmented Generation framework that automatically converts enterprise web applications into state-action knowledge graphs, enabling LLMs to generate grounded and context-aware assistance. The framework was co-developed with the AI enterprise RAKAM, in collaboration with Lemon Learning. We detail the engineering pipeline that extracts and structures software interfaces, the design of the graph-based retrieval process, and the integration of our approach into production DAP workflows. Finally, we discuss scalability, robustness, and deployment lessons learned from industrial use cases.
☆ Language Generation and Identification From Partial Enumeration: Tight Density Bounds and Topological Characterizations
The success of large language models (LLMs) has motivated formal theories of language generation and learning. We study the framework of \emph{language generation in the limit}, where an adversary enumerates strings from an unknown language $K$ drawn from a countable class, and an algorithm must generate unseen strings from $K$. Prior work showed that generation is always possible, and that some algorithms achieve positive lower density, revealing a \emph{validity--breadth} trade-off between correctness and coverage. We resolve a main open question in this line, proving a tight bound of $1/2$ on the best achievable lower density. We then strengthen the model to allow \emph{partial enumeration}, where the adversary reveals only an infinite subset $C \subseteq K$. We show that generation in the limit remains achievable, and if $C$ has lower density $\alpha$ in $K$, the algorithm's output achieves density at least $\alpha/2$, matching the upper bound. This generalizes the $1/2$ bound to the partial-information setting, where the generator must recover within a factor $1/2$ of the revealed subset's density. We further revisit the classical Gold--Angluin model of \emph{language identification} under partial enumeration. We characterize when identification in the limit is possible -- when hypotheses $M_t$ eventually satisfy $C \subseteq M \subseteq K$ -- and in the process give a new topological formulation of Angluin's characterization, showing that her condition is precisely equivalent to an appropriate topological space having the $T_D$ separation property.
☆ What's on Your Plate? Inferring Chinese Cuisine Intake from Wearable IMUs
Accurate food intake detection is vital for dietary monitoring and chronic disease prevention. Traditional self-report methods are prone to recall bias, while camera-based approaches raise concerns about privacy. Furthermore, existing wearable-based methods primarily focus on a limited number of food types, such as hamburgers and pizza, failing to address the vast diversity of Chinese cuisine. To bridge this gap, we propose CuisineSense, a system that classifies Chinese food types by integrating hand motion cues from a smartwatch with head dynamics from smart glasses. To filter out irrelevant daily activities, we design a two-stage detection pipeline. The first stage identifies eating states by distinguishing characteristic temporal patterns from non-eating behaviors. The second stage then conducts fine-grained food type recognition based on the motions captured during food intake. To evaluate CuisineSense, we construct a dataset comprising 27.5 hours of IMU recordings across 11 food categories and 10 participants. Experiments demonstrate that CuisineSense achieves high accuracy in both eating state detection and food classification, offering a practical solution for unobtrusive, wearable-based dietary monitoring.The system code is publicly available at https://github.com/joeeeeyin/CuisineSense.git.
comment: 5 pages
☆ Embedding-Space Data Augmentation to Prevent Membership Inference Attacks in Clinical Time Series Forecasting ML4H
Balancing strong privacy guarantees with high predictive performance is critical for time series forecasting (TSF) tasks involving Electronic Health Records (EHR). In this study, we explore how data augmentation can mitigate Membership Inference Attacks (MIA) on TSF models. We show that retraining with synthetic data can substantially reduce the effectiveness of loss-based MIAs by reducing the attacker's true-positive to false-positive ratio. The key challenge is generating synthetic samples that closely resemble the original training data to confuse the attacker, while also introducing enough novelty to enhance the model's ability to generalize to unseen data. We examine multiple augmentation strategies - Zeroth-Order Optimization (ZOO), a variant of ZOO constrained by Principal Component Analysis (ZOO-PCA), and MixUp - to strengthen model resilience without sacrificing accuracy. Our experimental results show that ZOO-PCA yields the best reductions in TPR/FPR ratio for MIA attacks without sacrificing performance on test data.
comment: Accepted as a proceedings paper at Machine Learning for Health (ML4H) symposium 2025, December 1-2, 2025, San Diego, United States, 15 pages
☆ TwinVLA: Data-Efficient Bimanual Manipulation with Twin Single-Arm Vision-Language-Action Models
Vision-language-action models (VLAs) trained on large-scale robotic datasets have demonstrated strong performance on manipulation tasks, including bimanual tasks. However, because most public datasets focus on single-arm demonstrations, adapting VLAs for bimanual tasks typically requires substantial additional bimanual data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular framework that composes two copies of a pretrained single-arm VLA into a coordinated bimanual VLA. Unlike monolithic cross-embodiment models trained on mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency and performance by composing pretrained single-arm policies. Across diverse bimanual tasks in real-world and simulation settings, TwinVLA outperforms a comparably-sized monolithic RDT-1B model without requiring any bimanual pretraining. Furthermore, it narrows the gap to state-of-the-art model, $\pi_0$ which rely on extensive proprietary bimanual data and compute cost. These results establish our modular composition approach as a data-efficient and scalable path toward high-performance bimanual manipulation, leveraging public single-arm data.
comment: Project webpage : https://jellyho.github.io/TwinVLA/
☆ Integrating Score-Based Diffusion Models with Machine Learning-Enhanced Localization for Advanced Data Assimilation in Geological Carbon Storage
Accurate characterization of subsurface heterogeneity is important for the safe and effective implementation of geological carbon storage (GCS) projects. This paper explores how machine learning methods can enhance data assimilation for GCS with a framework that integrates score-based diffusion models with machine learning-enhanced localization in channelized reservoirs during CO$_2$ injection. We employ a machine learning-enhanced localization framework that uses large ensembles ($N_s = 5000$) with permeabilities generated by the diffusion model and states computed by simple ML algorithms to improve covariance estimation for the Ensemble Smoother with Multiple Data Assimilation (ESMDA). We apply ML algorithms to a prior ensemble of channelized permeability fields, generated with the geostatistical model FLUVSIM. Our approach is applied on a CO$_2$ injection scenario simulated using the Delft Advanced Research Terra Simulator (DARTS). Our ML-based localization maintains significantly more ensemble variance than when localization is not applied, while achieving comparable data-matching quality. This framework has practical implications for GCS projects, helping improve the reliability of uncertainty quantification for risk assessment.
comment: Corresponding author: Gabriel Serr\~ao Seabra
☆ An End-to-End Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drones
The emergence of truck-drone collaborative systems in last-mile logistics has positioned the Traveling Salesman Problem with Drones (TSP-D) as a pivotal extension of classical routing optimization, where synchronized vehicle coordination promises substantial operational efficiency and reduced environmental impact, yet introduces NP-hard combinatorial complexity beyond the reach of conventional optimization paradigms. Deep reinforcement learning offers a theoretically grounded framework to address TSP-D's inherent challenges through self-supervised policy learning and adaptive decision-making. This study proposes a hierarchical Actor-Critic deep reinforcement learning framework for solving the TSP-D problem. The architecture consists of two primary components: a Transformer-inspired encoder and an efficient Minimal Gated Unit decoder. The encoder incorporates a novel, optimized k-nearest neighbors sparse attention mechanism specifically for focusing on relevant spatial relationships, further enhanced by the integration of global node features. The Minimal Gated Unit decoder processes these encoded representations to efficiently generate solution sequences. The entire framework operates within an asynchronous advantage actor-critic paradigm. Experimental results show that, on benchmark TSP-D instances of various scales (N=10 to 100), the proposed model can obtain competitive or even superior solutions in shorter average computation times compared to high-performance heuristic algorithms and existing reinforcement learning methods. Moreover, compared to advanced reinforcement learning algorithm benchmarks, the proposed framework significantly reduces the total training time required while achieving superior final performance, highlighting its notable advantage in training efficiency.
☆ The Causal Round Trip: Generating Authentic Counterfactuals by Eliminating Information Loss
Judea Pearl's vision of Structural Causal Models (SCMs) as engines for counterfactual reasoning hinges on faithful abduction: the precise inference of latent exogenous noise. For decades, operationalizing this step for complex, non-linear mechanisms has remained a significant computational challenge. The advent of diffusion models, powerful universal function approximators, offers a promising solution. However, we argue that their standard design, optimized for perceptual generation over logical inference, introduces a fundamental flaw for this classical problem: an inherent information loss we term the Structural Reconstruction Error (SRE). To address this challenge, we formalize the principle of Causal Information Conservation (CIC) as the necessary condition for faithful abduction. We then introduce BELM-MDCM, the first diffusion-based framework engineered to be causally sound by eliminating SRE by construction through an analytically invertible mechanism. To operationalize this framework, a Targeted Modeling strategy provides structural regularization, while a Hybrid Training Objective instills a strong causal inductive bias. Rigorous experiments demonstrate that our Zero-SRE framework not only achieves state-of-the-art accuracy but, more importantly, enables the high-fidelity, individual-level counterfactuals required for deep causal inquiries. Our work provides a foundational blueprint that reconciles the power of modern generative models with the rigor of classical causal theory, establishing a new and more rigorous standard for this emerging field.
comment: 50 pages, 10 figures. Submitted to the Journal of Machine Learning Research (JMLR). Keywords: Causal Inference, Diffusion Models, Causal Information Conservation, Structural Causal Models, Counterfactual Generation, BELM, Structural Reconstruction Error
☆ Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Simulating object deformations is a critical challenge across many scientific domains, including robotics, manufacturing, and structural mechanics. Learned Graph Network Simulators (GNSs) offer a promising alternative to traditional mesh-based physics simulators. Their speed and inherent differentiability make them particularly well suited for applications that require fast and accurate simulations, such as robotic manipulation or manufacturing optimization. However, existing learned simulators typically rely on single-step observations, which limits their ability to exploit temporal context. Without this information, these models fail to infer, e.g., material properties. Further, they rely on auto-regressive rollouts, which quickly accumulate error for long trajectories. We instead frame mesh-based simulation as a trajectory-level meta-learning problem. Using Conditional Neural Processes, our method enables rapid adaptation to new simulation scenarios from limited initial data while capturing their latent simulation properties. We utilize movement primitives to directly predict fast, stable and accurate simulations from a single model call. The resulting approach, Movement-primitive Meta-MeshGraphNet (M3GN), provides higher simulation accuracy at a fraction of the runtime cost compared to state-of-the-art GNSs across several tasks.
comment: 35 pages. Submitted to Transactions on Machine Learning Research (TMLR)
☆ A differentiable model of supply-chain shocks NeurIPS 2025
Modelling how shocks propagate in supply chains is an increasingly important challenge in economics. Its relevance has been highlighted in recent years by events such as Covid-19 and the Russian invasion of Ukraine. Agent-based models (ABMs) are a promising approach for this problem. However, calibrating them is hard. We show empirically that it is possible to achieve speed ups of over 3 orders of magnitude when calibrating ABMs of supply networks by running them on GPUs and using automatic differentiation, compared to non-differentiable baselines. This opens the door to scaling ABMs to model the whole global supply network.
comment: Accepted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Differentiable Systems and Scientific Machine Learning (EurIPS)
☆ ActiTect: A Generalizable Machine Learning Pipeline for REM Sleep Behavior Disorder Screening through Standardized Actigraphy
Isolated rapid eye movement sleep behavior disorder (iRBD) is a major prodromal marker of $\alpha$-synucleinopathies, often preceding the clinical onset of Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. While wrist-worn actimeters hold significant potential for detecting RBD in large-scale screening efforts by capturing abnormal nocturnal movements, they become inoperable without a reliable and efficient analysis pipeline. This study presents ActiTect, a fully automated, open-source machine learning tool to identify RBD from actigraphy recordings. To ensure generalizability across heterogeneous acquisition settings, our pipeline includes robust preprocessing and automated sleep-wake detection to harmonize multi-device data and extract physiologically interpretable motion features characterizing activity patterns. Model development was conducted on a cohort of 78 individuals, yielding strong discrimination under nested cross-validation (AUROC = 0.95). Generalization was confirmed on a blinded local test set (n = 31, AUROC = 0.86) and on two independent external cohorts (n = 113, AUROC = 0.84; n = 57, AUROC = 0.94). To assess real-world robustness, leave-one-dataset-out cross-validation across the internal and external cohorts demonstrated consistent performance (AUROC range = 0.84-0.89). A complementary stability analysis showed that key predictive features remained reproducible across datasets, supporting the final pooled multi-center model as a robust pre-trained resource for broader deployment. By being open-source and easy to use, our tool promotes widespread adoption and facilitates independent validation and collaborative improvements, thereby advancing the field toward a unified and generalizable RBD detection model using wearable devices.
comment: 30 pages including supplement, 4 core figures, 1 supplement figure
☆ Linear Gradient Prediction with Control Variates
We propose a new way of training neural networks, with the goal of reducing training cost. Our method uses approximate predicted gradients instead of the full gradients that require an expensive backward pass. We derive a control-variate-based technique that ensures our updates are unbiased estimates of the true gradient. Moreover, we propose a novel way to derive a predictor for the gradient inspired by the theory of the Neural Tangent Kernel. We empirically show the efficacy of the technique on a vision transformer classification task.
☆ No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models
☆ Associative Poisoning to Generative Machine Learning
The widespread adoption of generative models such as Stable Diffusion and ChatGPT has made them increasingly attractive targets for malicious exploitation, particularly through data poisoning. Existing poisoning attacks compromising synthesised data typically either cause broad degradation of generated data or require control over the training process, limiting their applicability in real-world scenarios. In this paper, we introduce a novel data poisoning technique called associative poisoning, which compromises fine-grained features of the generated data without requiring control of the training process. This attack perturbs only the training data to manipulate statistical associations between specific feature pairs in the generated outputs. We provide a formal mathematical formulation of the attack and prove its theoretical feasibility and stealthiness. Empirical evaluations using two state-of-the-art generative models demonstrate that associative poisoning effectively induces or suppresses feature associations while preserving the marginal distributions of the targeted features and maintaining high-quality outputs, thereby evading visual detection. These results suggest that generative systems used in image synthesis, synthetic dataset generation, and natural language processing are susceptible to subtle, stealthy manipulations that compromise their statistical integrity. To address this risk, we examine the limitations of existing defensive strategies and propose a novel countermeasure strategy.
☆ Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models
Foundation models capable of generalizing across species and tasks represent a promising new frontier in bioacoustics, with NatureLM being one of the most prominent examples. While its domain-specific fine-tuning yields strong performance on bioacoustic benchmarks, we observe that it also introduces trade-offs in instruction-following flexibility. For instance, NatureLM achieves high accuracy when prompted for either the common or scientific name individually, but its accuracy drops significantly when both are requested in a single prompt. We address this by applying a simple model merging strategy that interpolates NatureLM with its base language model, recovering instruction-following capabilities with minimal loss of domain expertise. Finally, we show that the merged model exhibits markedly stronger zero-shot generalization, achieving over a 200% relative improvement and setting a new state-of-the-art in closed-set zero-shot classification of unseen species.
☆ Multimodal Deep Learning for Prediction of Progression-Free Survival in Patients with Neuroendocrine Tumors Undergoing 177Lu-based Peptide Receptor Radionuclide Therapy
Peptide receptor radionuclide therapy (PRRT) is an established treatment for metastatic neuroendocrine tumors (NETs), yet long-term disease control occurs only in a subset of patients. Predicting progression-free survival (PFS) could support individualized treatment planning. This study evaluates laboratory, imaging, and multimodal deep learning models for PFS prediction in PRRT-treated patients. In this retrospective, single-center study 116 patients with metastatic NETs undergoing 177Lu-DOTATOC were included. Clinical characteristics, laboratory values, and pretherapeutic somatostatin receptor positron emission tomography/computed tomographies (SR-PET/CT) were collected. Seven models were trained to classify low- vs. high-PFS groups, including unimodal (laboratory, SR-PET, or CT) and multimodal fusion approaches. Explainability was evaluated by feature importance analysis and gradient maps. Forty-two patients (36%) had short PFS (< 1 year), 74 patients long PFS (>1 year). Groups were similar in most characteristics, except for higher baseline chromogranin A (p = 0.003), elevated gamma-GT (p = 0.002), and fewer PRRT cycles (p < 0.001) in short-PFS patients. The Random Forest model trained only on laboratory biomarkers reached an AUROC of 0.59 +- 0.02. Unimodal three-dimensional convolutional neural networks using SR-PET or CT performed worse (AUROC 0.42 +- 0.03 and 0.54 +- 0.01, respectively). A multimodal fusion model laboratory values, SR-PET, and CT -augmented with a pretrained CT branch - achieved the best results (AUROC 0.72 +- 0.01, AUPRC 0.80 +- 0.01). Multimodal deep learning combining SR-PET, CT, and laboratory biomarkers outperformed unimodal approaches for PFS prediction after PRRT. Upon external validation, such models may support risk-adapted follow-up strategies.
☆ Another BRIXEL in the Wall: Towards Cheaper Dense Features
Vision foundation models achieve strong performance on both global and locally dense downstream tasks. Pretrained on large images, the recent DINOv3 model family is able to produce very fine-grained dense feature maps, enabling state-of-the-art performance. However, computing these feature maps requires the input image to be available at very high resolution, as well as large amounts of compute due to the squared complexity of the transformer architecture. To address these issues, we propose BRIXEL, a simple knowledge distillation approach that has the student learn to reproduce its own feature maps at higher resolution. Despite its simplicity, BRIXEL outperforms the baseline DINOv3 models by large margins on downstream tasks when the resolution is kept fixed. Moreover, it is able to produce feature maps that are very similar to those of the teacher at a fraction of the computational cost. Code and model weights are available at https://github.com/alexanderlappe/BRIXEL.
☆ Consecutive Preferential Bayesian Optimization
Preferential Bayesian optimization allows optimization of objectives that are either expensive or difficult to measure directly, by relying on a minimal number of comparative evaluations done by a human expert. Generating candidate solutions for evaluation is also often expensive, but this cost is ignored by existing methods. We generalize preference-based optimization to explicitly account for production and evaluation costs with Consecutive Preferential Bayesian Optimization, reducing production cost by constraining comparisons to involve previously generated candidates. We also account for the perceptual ambiguity of the oracle providing the feedback by incorporating a Just-Noticeable Difference threshold into a probabilistic preference model to capture indifference to small utility differences. We adapt an information-theoretic acquisition strategy to this setting, selecting new configurations that are most informative about the unknown optimum under a preference model accounting for the perceptual ambiguity. We empirically demonstrate a notable increase in accuracy in setups with high production costs or with indifference feedback.
☆ A New Framework for Convex Clustering in Kernel Spaces: Finite Sample Bounds, Consistency and Performance Insights
Convex clustering is a well-regarded clustering method, resembling the similar centroid-based approach of Lloyd's $k$-means, without requiring a predefined cluster count. It starts with each data point as its centroid and iteratively merges them. Despite its advantages, this method can fail when dealing with data exhibiting linearly non-separable or non-convex structures. To mitigate the limitations, we propose a kernelized extension of the convex clustering method. This approach projects the data points into a Reproducing Kernel Hilbert Space (RKHS) using a feature map, enabling convex clustering in this transformed space. This kernelization not only allows for better handling of complex data distributions but also produces an embedding in a finite-dimensional vector space. We provide a comprehensive theoretical underpinnings for our kernelized approach, proving algorithmic convergence and establishing finite sample bounds for our estimates. The effectiveness of our method is demonstrated through extensive experiments on both synthetic and real-world datasets, showing superior performance compared to state-of-the-art clustering techniques. This work marks a significant advancement in the field, offering an effective solution for clustering in non-linear and non-convex data scenarios.
☆ Follow-Me in Micro-Mobility with End-to-End Imitation Learning
Autonomous micro-mobility platforms face challenges from the perspective of the typical deployment environment: large indoor spaces or urban areas that are potentially crowded and highly dynamic. While social navigation algorithms have progressed significantly, optimizing user comfort and overall user experience over other typical metrics in robotics (e.g., time or distance traveled) is understudied. Specifically, these metrics are critical in commercial applications. In this paper, we show how imitation learning delivers smoother and overall better controllers, versus previously used manually-tuned controllers. We demonstrate how DAAV's autonomous wheelchair achieves state-of-the-art comfort in follow-me mode, in which it follows a human operator assisting persons with reduced mobility (PRM). This paper analyzes different neural network architectures for end-to-end control and demonstrates their usability in real-world production-level deployments.
☆ SmartSecChain-SDN: A Blockchain-Integrated Intelligent Framework for Secure and Efficient Software-Defined Networks
With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory compliance, and the administration of next-generation programmable networks.
comment: 20 pages, 12 figures
☆ DL101 Neural Network Outputs and Loss Functions
The loss function used to train a neural network is strongly connected to its output layer from a statistical point of view. This technical report analyzes common activation functions for a neural network output layer, like linear, sigmoid, ReLU, and softmax, detailing their mathematical properties and their appropriate use cases. A strong statistical justification exists for the selection of the suitable loss function for training a deep learning model. This report connects common loss functions such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and various Cross-Entropy losses to the statistical principle of Maximum Likelihood Estimation (MLE). Choosing a specific loss function is equivalent to assuming a specific probability distribution for the model output, highlighting the link between these functions and the Generalized Linear Models (GLMs) that underlie network output layers. Additional scenarios of practical interest are also considered, such as alternative output encodings, constrained outputs, and distributions with heavy tails.
☆ QuAnTS: Question Answering on Time Series
Text offers intuitive access to information. This can, in particular, complement the density of numerical time series, thereby allowing improved interactions with time series models to enhance accessibility and decision-making. While the creation of question-answering datasets and models has recently seen remarkable growth, most research focuses on question answering (QA) on vision and text, with time series receiving minute attention. To bridge this gap, we propose a challenging novel time series QA (TSQA) dataset, QuAnTS, for Question Answering on Time Series data. Specifically, we pose a wide variety of questions and answers about human motion in the form of tracked skeleton trajectories. We verify that the large-scale QuAnTS dataset is well-formed and comprehensive through extensive experiments. Thoroughly evaluating existing and newly proposed baselines then lays the groundwork for a deeper exploration of TSQA using QuAnTS. Additionally, we provide human performances as a key reference for gauging the practical usability of such models. We hope to encourage future research on interacting with time series models through text, enabling better decision-making and more transparent systems.
☆ Usando LLMs para Programar Jogos de Tabuleiro e Variações
Creating programs to represent board games can be a time-consuming task. Large Language Models (LLMs) arise as appealing tools to expedite this process, given their capacity to efficiently generate code from simple contextual information. In this work, we propose a method to test how capable three LLMs (Claude, DeepSeek and ChatGPT) are at creating code for board games, as well as new variants of existing games.
comment: Accepted for presentation at the I Escola Regional de Aprendizado de M\'aquina e Intelig\^encia Artificial da Regi\~ao Sul, 2025, in Portuguese language
☆ Early Alzheimer's Disease Detection from Retinal OCT Images: A UK Biobank Study
Alterations in retinal layer thickness, measurable using Optical Coherence Tomography (OCT), have been associated with neurodegenerative diseases such as Alzheimer's disease (AD). While previous studies have mainly focused on segmented layer thickness measurements, this study explored the direct classification of OCT B-scan images for the early detection of AD. To our knowledge, this is the first application of deep learning to raw OCT B-scans for AD prediction in the literature. Unlike conventional medical image classification tasks, early detection is more challenging than diagnosis because imaging precedes clinical diagnosis by several years. We fine-tuned and evaluated multiple pretrained models, including ImageNet-based networks and the OCT-specific RETFound transformer, using subject-level cross-validation datasets matched for age, sex, and imaging instances from the UK Biobank cohort. To reduce overfitting in this small, high-dimensional dataset, both standard and OCT-specific augmentation techniques were applied, along with a year-weighted loss function that prioritized cases diagnosed within four years of imaging. ResNet-34 produced the most stable results, achieving an AUC of 0.62 in the 4-year cohort. Although below the threshold for clinical application, our explainability analyses confirmed localized structural differences in the central macular subfield between the AD and control groups. These findings provide a baseline for OCT-based AD prediction, highlight the challenges of detecting subtle retinal biomarkers years before AD diagnosis, and point to the need for larger datasets and multimodal approaches.
☆ Iterative Layer-wise Distillation for Efficient Compression of Large Language Models
This work investigates distillation methods for large language models (LLMs) with the goal of developing compact models that preserve high performance. Several existing approaches are reviewed, with a discussion of their respective strengths and limitations. An improved method based on the ShortGPT approach has been developed, building upon the idea of incorporating iterative evaluation of layer importance. At each step, importance is assessed by measuring performance degradation when individual layers are removed, using a set of representative datasets. This process is combined with further training using a joint loss function based on KL divergence and mean squared error. Experiments on the Qwen2.5-3B model show that the number of layers can be reduced from 36 to 28 (resulting in a 2.47 billion parameter model) with only a 9.7% quality loss, and to 24 layers with an 18% loss. The findings suggest that the middle transformer layers contribute less to inference, underscoring the potential of the proposed method for creating efficient models. The results demonstrate the effectiveness of iterative distillation and fine-tuning, making the approach suitable for deployment in resource-limited settings.
☆ Estimating Bidirectional Causal Effects with Large Scale Online Kernel Learning
In this study, a scalable online kernel learning framework is proposed for estimating bidirectional causal effects in systems characterized by mutual dependence and heteroskedasticity. Traditional causal inference often focuses on unidirectional effects, overlooking the common bidirectional relationships in real-world phenomena. Building on heteroskedasticity-based identification, the proposed method integrates a quasi-maximum likelihood estimator for simultaneous equation models with large scale online kernel learning. It employs random Fourier feature approximations to flexibly model nonlinear conditional means and variances, while an adaptive online gradient descent algorithm ensures computational efficiency for streaming and high-dimensional data. Results from extensive simulations demonstrate that the proposed method achieves superior accuracy and stability than single equation and polynomial approximation baselines, exhibiting lower bias and root mean squared error across various data-generating processes. These results confirm that the proposed approach effectively captures complex bidirectional causal effects with near-linear computational scaling. By combining econometric identification with modern machine learning techniques, the proposed framework offers a practical, scalable, and theoretically grounded solution for large scale causal inference in natural/social science, policy making, business, and industrial applications.
comment: Accepted for publication in Proceedings of the 2025 International Conference on Data Science and Intelligent Systems (DSIS 2025)
☆ OvA-LP: A Simple and Efficient Framework for Federated Learning on Non-IID Data
Federated fine-tuning (FFT) adapts foundation models to decentralized data but remains fragile under heterogeneous client distributions due to local drift, i.e., client-level update divergences that induce systematic bias and amplified variance in the global model. Existing aggregation and personalization methods largely correct drift post hoc, which proves brittle under extreme non-IID conditions. We introduce OvA-LP, a minimalist framework that is, to our knowledge, the first explicitly designed to suppress drift at its source within the PEFT-based FFT paradigm. OvA-LP combines linear probing on a frozen encoder with a one-vs-all head and a simple two-stage procedure, preserving pretrained feature geometry and decoupling logits to prevent the mechanisms that amplify drift. On CIFAR-100 with 100 clients, averaged over shard-1, shard-2, and Bernoulli-Dirichlet partitions, OvA-LP retains 95.9% of its IID accuracy, whereas state-of-the-art FFT baselines retain only 10.1% (PFPT) and 34.5% (FFT-MoE) under the same conditions. OvA-LP further maintains resilience under both symmetric and asymmetric label noise. In addition, precomputing encoder features makes per-round cost nearly independent of encoder size. Together, these results demonstrate that OvA-LP provides a principled and efficient basis for robust FFT under heterogeneity.
☆ Pluralistic Behavior Suite: Stress-Testing Multi-Turn Adherence to Custom Behavioral Policies NeurIPS 2025
Large language models (LLMs) are typically aligned to a universal set of safety and usage principles intended for broad public acceptability. Yet, real-world applications of LLMs often take place within organizational ecosystems shaped by distinctive corporate policies, regulatory requirements, use cases, brand guidelines, and ethical commitments. This reality highlights the need for rigorous and comprehensive evaluation of LLMs with pluralistic alignment goals, an alignment paradigm that emphasizes adaptability to diverse user values and needs. In this work, we present PLURALISTIC BEHAVIOR SUITE (PBSUITE), a dynamic evaluation suite designed to systematically assess LLMs' capacity to adhere to pluralistic alignment specifications in multi-turn, interactive conversations. PBSUITE consists of (1) a diverse dataset of 300 realistic LLM behavioral policies, grounded in 30 industries; and (2) a dynamic evaluation framework for stress-testing model compliance with custom behavioral specifications under adversarial conditions. Using PBSUITE, We find that leading open- and closed-source LLMs maintain robust adherence to behavioral policies in single-turn settings (less than 4% failure rates), but their compliance weakens substantially in multi-turn adversarial interactions (up to 84% failure rates). These findings highlight that existing model alignment and safety moderation methods fall short in coherently enforcing pluralistic behavioral policies in real-world LLM interactions. Our work contributes both the dataset and analytical framework to support future research toward robust and context-aware pluralistic alignment techniques.
comment: Accepted at the Multi-Turn Interactions workshop at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Multi-agent Coordination via Flow Matching
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
☆ BiPETE: A Bi-Positional Embedding Transformer Encoder for Risk Assessment of Alcohol and Substance Use Disorder with Electronic Health Records
Transformer-based deep learning models have shown promise for disease risk prediction using electronic health records(EHRs), but modeling temporal dependencies remains a key challenge due to irregular visit intervals and lack of uniform structure. We propose a Bi-Positional Embedding Transformer Encoder or BiPETE for single-disease prediction, which integrates rotary positional embeddings to encode relative visit timing and sinusoidal embeddings to preserve visit order. Without relying on large-scale pretraining, BiPETE is trained on EHR data from two mental health cohorts-depressive disorder and post-traumatic stress disorder (PTSD)-to predict the risk of alcohol and substance use disorders (ASUD). BiPETE outperforms baseline models, improving the area under the precision-recall curve (AUPRC) by 34% and 50% in the depression and PTSD cohorts, respectively. An ablation study further confirms the effectiveness of the dual positional encoding strategy. We apply the Integrated Gradients method to interpret model predictions, identifying key clinical features associated with ASUD risk and protection, such as abnormal inflammatory, hematologic, and metabolic markers, as well as specific medications and comorbidities. Overall, these key clinical features identified by the attribution methods contribute to a deeper understanding of the risk assessment process and offer valuable clues for mitigating potential risks. In summary, our study presents a practical and interpretable framework for disease risk prediction using EHR data, which can achieve strong performance.
comment: 20 pages, 2 figures, 6 tables, 2 supplementary figures, 4 supplementary tables, submitted to Journal of Biomedical Informatics on 6 Nov, 2025
☆ Carbon Price Forecasting with Structural Breaks: A Comparative Study of Deep Learning Models
Accurately forecasting carbon prices is essential for informed energy market decision-making, guiding sustainable energy planning, and supporting effective decarbonization strategies. However, it remains challenging due to structural breaks and high-frequency noise caused by frequent policy interventions and market shocks. Existing studies, including the most recent baseline approaches, have attempted to incorporate breakpoints but often treat denoising and modeling as separate processes and lack systematic evaluation across advanced deep learning architectures, limiting the robustness and the generalization capability. To address these gaps, this paper proposes a comprehensive hybrid framework that integrates structural break detection (Bai-Perron, ICSS, and PELT algorithms), wavelet signal denoising, and three state-of-the-art deep learning models (LSTM, GRU, and TCN). Using European Union Allowance (EUA) spot prices from 2007 to 2024 and exogenous features such as energy prices and policy indicators, the framework constructs univariate and multivariate datasets for comparative evaluation. Experimental results demonstrate that our proposed PELT-WT-TCN achieves the highest prediction accuracy, reducing forecasting errors by 22.35% in RMSE and 18.63% in MAE compared to the state-of-the-art baseline model (Breakpoints with Wavelet and LSTM), and by 70.55% in RMSE and 74.42% in MAE compared to the original LSTM without decomposition from the same baseline study. These findings underscore the value of integrating structural awareness and multiscale decomposition into deep learning architectures to enhance accuracy and interpretability in carbon price forecasting and other nonstationary financial time series.
☆ Peptide2Mol: A Diffusion Model for Generating Small Molecules as Peptide Mimics for Targeted Protein Binding
Structure-based drug design has seen significant advancements with the integration of artificial intelligence (AI), particularly in the generation of hit and lead compounds. However, most AI-driven approaches neglect the importance of endogenous protein interactions with peptides, which may result in suboptimal molecule designs. In this work, we present Peptide2Mol, an E(3)-equivariant graph neural network diffusion model that generates small molecules by referencing both the original peptide binders and their surrounding protein pocket environments. Trained on large datasets and leveraging sophisticated modeling techniques, Peptide2Mol not only achieves state-of-the-art performance in non-autoregressive generative tasks, but also produces molecules with similarity to the original peptide binder. Additionally, the model allows for molecule optimization and peptidomimetic design through a partial diffusion process. Our results highlight Peptide2Mol as an effective deep generative model for generating and optimizing bioactive small molecules from protein binding pockets.
comment: Abstract 1 page, main text 9 pages, references 2 pages, 4 figures. Submitted to RECOMB 2026
☆ Predicting Cognitive Assessment Scores in Older Adults with Cognitive Impairment Using Wearable Sensors
Background and Objectives: This paper focuses on using AI to assess the cognitive function of older adults with mild cognitive impairment or mild dementia using physiological data provided by a wearable device. Cognitive screening tools are disruptive, time-consuming, and only capture brief snapshots of activity. Wearable sensors offer an attractive alternative by continuously monitoring physiological signals. This study investigated whether physiological data can accurately predict scores on established cognitive tests. Research Design and Methods: We recorded physiological signals from 23 older adults completing three NIH Toolbox Cognitive Battery tests, which assess working memory, processing speed, and attention. The Empatica EmbracePlus, a wearable device, measured blood volume pulse, skin conductance, temperature, and movement. Statistical features were extracted using wavelet-based and segmentation methods. We then applied supervised learning and validated predictions via cross-validation, hold-out testing, and bootstrapping. Results: Our models showed strong performance with Spearman's \rho of 0.73-0.82 and mean absolute errors of 0.14-0.16, significantly outperforming a naive mean predictor. Sensor roles varied: heart-related signals combined with movement and temperature best predicted working memory, movement paired with skin conductance was most informative for processing speed, and heart in tandem with skin conductance worked best for attention. Discussion and Implications: These findings suggest that wearable sensors paired with AI tools such as supervised learning and feature engineering can noninvasively track specific cognitive functions in older adults, enabling continuous monitoring. Our study demonstrates how AI can be leveraged when the data sample is small. This approach may support remote assessments and facilitate clinical interventions.
comment: 40 pages, 2 figures, 3 tables; Supplementary Material: 3 tables (S1-S3). Presented as a poster at the Gerontological Society of America (GSA) Annual Scientific Meeting, November 2025
☆ Deep Progressive Training: scaling up depth capacity of zero/one-layer models
Model depth is a double-edged sword in deep learning: deeper models achieve higher accuracy but require higher computational cost. To efficiently train models at scale, an effective strategy is the progressive training, which scales up model capacity during training, hence significantly reducing computation with little to none performance degradation. In this work, we study the depth expansion of large models through the lens of optimization theory and feature learning, offering insights on the initialization of new layers, hyperparameter transfer, learning rate schedule, and timing of model expansion. Specifically, we propose zero/one-layer progressive training for the optimal tradeoff between computation and loss. For example, zero/one-layer progressive training on GPT2 can save $\approx 80\%$ compute, or equivalently accelerate $\approx 5\times$ while achieving almost the same loss, compared to to a fully trained 60-layer model with 7B parameters.
☆ Unlocking the Black Box: A Five-Dimensional Framework for Evaluating Explainable AI in Credit Risk
The financial industry faces a significant challenge modeling and risk portfolios: balancing the predictability of advanced machine learning models, neural network models, and explainability required by regulatory entities (such as Office of the Comptroller of the Currency, Consumer Financial Protection Bureau). This paper intends to fill the gap in the application between these "black box" models and explainability frameworks, such as LIME and SHAP. Authors elaborate on the application of these frameworks on different models and demonstrates the more complex models with better prediction powers could be applied and reach the same level of the explainability, using SHAP and LIME. Beyond the comparison and discussion of performances, this paper proposes a novel five dimensional framework evaluating Inherent Interpretability, Global Explanations, Local Explanations, Consistency, and Complexity to offer a nuanced method for assessing and comparing model explainability beyond simple accuracy metrics. This research demonstrates the feasibility of employing sophisticated, high performing ML models in regulated financial environments by utilizing modern explainability techniques and provides a structured approach to evaluate the crucial trade offs between model performance and interpretability.
☆ Scaling Up ROC-Optimizing Support Vector Machines
The ROC-SVM, originally proposed by Rakotomamonjy, directly maximizes the area under the ROC curve (AUC) and has become an attractive alternative of the conventional binary classification under the presence of class imbalance. However, its practical use is limited by high computational cost, as training involves evaluating all $O(n^2)$. To overcome this limitation, we develop a scalable variant of the ROC-SVM that leverages incomplete U-statistics, thereby substantially reducing computational complexity. We further extend the framework to nonlinear classification through a low-rank kernel approximation, enabling efficient training in reproducing kernel Hilbert spaces. Theoretical analysis establishes an error bound that justifies the proposed approximation, and empirical results on both synthetic and real datasets demonstrate that the proposed method achieves comparable AUC performance to the original ROC-SVM with drastically reduced training time.
comment: 15 pages, Submitted to Stat
☆ Less Is More: Generating Time Series with LLaMA-Style Autoregression in Simple Factorized Latent Spaces
Generative models for multivariate time series are essential for data augmentation, simulation, and privacy preservation, yet current state-of-the-art diffusion-based approaches are slow and limited to fixed-length windows. We propose FAR-TS, a simple yet effective framework that combines disentangled factorization with an autoregressive Transformer over a discrete, quantized latent space to generate time series. Each time series is decomposed into a data-adaptive basis that captures static cross-channel correlations and temporal coefficients that are vector-quantized into discrete tokens. A LLaMA-style autoregressive Transformer then models these token sequences, enabling fast and controllable generation of sequences with arbitrary length. Owing to its streamlined design, FAR-TS achieves orders-of-magnitude faster generation than Diffusion-TS while preserving cross-channel correlations and an interpretable latent space, enabling high-quality and flexible time series synthesis.
☆ Risk Prediction of Cardiovascular Disease for Diabetic Patients with Machine Learning and Deep Learning Techniques
Accurate prediction of cardiovascular disease (CVD) risk is crucial for healthcare institutions. This study addresses the growing prevalence of diabetes and its strong link to heart disease by proposing an efficient CVD risk prediction model for diabetic patients using machine learning (ML) and hybrid deep learning (DL) approaches. The BRFSS dataset was preprocessed by removing duplicates, handling missing values, identifying categorical and numerical features, and applying Principal Component Analysis (PCA) for feature extraction. Several ML models, including Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and XGBoost, were implemented, with XGBoost achieving the highest accuracy of 0.9050. Various DL models, such as Artificial Neural Networks (ANN), Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), as well as hybrid models combining CNN with LSTM, BiLSTM, and GRU, were also explored. Some of these models achieved perfect recall (1.00), with the LSTM model achieving the highest accuracy of 0.9050. Our research highlights the effectiveness of ML and DL models in predicting CVD risk among diabetic patients, automating and enhancing clinical decision-making. High accuracy and F1 scores demonstrate these models' potential to improve personalized risk management and preventive strategies.
comment: 24 pages with 6 table and 8 figures
☆ Learning Fourier shapes to probe the geometric world of deep neural networks
While both shape and texture are fundamental to visual recognition, research on deep neural networks (DNNs) has predominantly focused on the latter, leaving their geometric understanding poorly probed. Here, we show: first, that optimized shapes can act as potent semantic carriers, generating high-confidence classifications from inputs defined purely by their geometry; second, that they are high-fidelity interpretability tools that precisely isolate a model's salient regions; and third, that they constitute a new, generalizable adversarial paradigm capable of deceiving downstream visual tasks. This is achieved through an end-to-end differentiable framework that unifies a powerful Fourier series to parameterize arbitrary shapes, a winding number-based mapping to translate them into the pixel grid required by DNNs, and signal energy constraints that enhance optimization efficiency while ensuring physically plausible shapes. Our work provides a versatile framework for probing the geometric world of DNNs and opens new frontiers for challenging and understanding machine perception.
comment: 20 pages, 5 figures
☆ Structural Properties, Cycloid Trajectories and Non-Asymptotic Guarantees of EM Algorithm for Mixed Linear Regression
This work investigates the structural properties, cycloid trajectories, and non-asymptotic convergence guarantees of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR) with unknown mixing weights and regression parameters. Recent studies have established global convergence for 2MLR with known balanced weights and super-linear convergence in noiseless and high signal-to-noise ratio (SNR) regimes. However, the theoretical behavior of EM in the fully unknown setting remains unclear, with its trajectory and convergence order not yet fully characterized. We derive explicit EM update expressions for 2MLR with unknown mixing weights and regression parameters across all SNR regimes and analyze their structural properties and cycloid trajectories. In the noiseless case, we prove that the trajectory of the regression parameters in EM iterations traces a cycloid by establishing a recurrence relation for the sub-optimality angle, while in high SNR regimes we quantify its discrepancy from the cycloid trajectory. The trajectory-based analysis reveals the order of convergence: linear when the EM estimate is nearly orthogonal to the ground truth, and quadratic when the angle between the estimate and ground truth is small at the population level. Our analysis establishes non-asymptotic guarantees by sharpening bounds on statistical errors between finite-sample and population EM updates, relating EM's statistical accuracy to the sub-optimality angle, and proving convergence with arbitrary initialization at the finite-sample level. This work provides a novel trajectory-based framework for analyzing EM in Mixed Linear Regression.
comment: Preprint of the paper submitted to IEEE Transactions on Information Theory
☆ Leak@$k$: Unlearning Does Not Make LLMs Forget Under Probabilistic Decoding
Unlearning in large language models (LLMs) is critical for regulatory compliance and for building ethical generative AI systems that avoid producing private, toxic, illegal, or copyrighted content. Despite rapid progress, in this work we show that \textit{almost all} existing unlearning methods fail to achieve true forgetting in practice. Specifically, while evaluations of these `unlearned' models under deterministic (greedy) decoding often suggest successful knowledge removal using standard benchmarks (as has been done in the literature), we show that sensitive information reliably resurfaces when models are sampled with standard probabilistic decoding. To rigorously capture this vulnerability, we introduce \texttt{leak@$k$}, a new meta-evaluation metric that quantifies the likelihood of forgotten knowledge reappearing when generating $k$ samples from the model under realistic decoding strategies. Using three widely adopted benchmarks, TOFU, MUSE, and WMDP, we conduct the first large-scale, systematic study of unlearning reliability using our newly defined \texttt{leak@$k$} metric. Our findings demonstrate that knowledge leakage persists across methods and tasks, underscoring that current state-of-the-art unlearning techniques provide only limited forgetting and highlighting the urgent need for more robust approaches to LLM unlearning.
☆ Machine Learning Algorithms in Statistical Modelling Bridging Theory and Application
It involves the completely novel ways of integrating ML algorithms with traditional statistical modelling that has changed the way we analyze data, do predictive analytics or make decisions in the fields of the data. In this paper, we study some ML and statistical model connections to understand ways in which some modern ML algorithms help 'enrich' conventional models; we demonstrate how new algorithms improve performance, scale, flexibility and robustness of the traditional models. It shows that the hybrid models are of great improvement in predictive accuracy, robustness, and interpretability
comment: 9 Pages, 4 Figures
☆ A Dual Perspective on Decision-Focused Learning: Scalable Training via Dual-Guided Surrogates
Many real-world decisions are made under uncertainty by solving optimization problems using predicted quantities. This predict-then-optimize paradigm has motivated decision-focused learning, which trains models with awareness of how the optimizer uses predictions, improving the performance of downstream decisions. Despite its promise, scaling is challenging: state-of-the-art methods either differentiate through a solver or rely on task-specific surrogates, both of which require frequent and expensive calls to an optimizer, often a combinatorial one. In this paper, we leverage dual variables from the downstream problem to shape learning and introduce Dual-Guided Loss (DGL), a simple, scalable objective that preserves decision alignment while reducing solver dependence. We construct DGL specifically for combinatorial selection problems with natural one-of-many constraints, such as matching, knapsack, and shortest path. Our approach (a) decouples optimization from gradient updates by solving the downstream problem only periodically; (b) between refreshes, trains on dual-adjusted targets using simple differentiable surrogate losses; and (c) as refreshes become less frequent, drives training cost toward standard supervised learning while retaining strong decision alignment. We prove that DGL has asymptotically diminishing decision regret, analyze runtime complexity, and show on two problem classes that DGL matches or exceeds state-of-the-art DFL methods while using far fewer solver calls and substantially less training time. Code is available at https://github.com/paularodr/Dual-Guided-Learning.
☆ Efficient Swap Multicalibration of Elicitable Properties
Multicalibration [HJKRR18] is an algorithmic fairness perspective that demands that the predictions of a predictor are correct conditional on themselves and membership in a collection of potentially overlapping subgroups of a population. The work of [NR23] established a surprising connection between multicalibration for an arbitrary property $\Gamma$ (e.g., mean or median) and property elicitation: a property $\Gamma$ can be multicalibrated if and only if it is elicitable, where elicitability is the notion that the true property value of a distribution can be obtained by solving a regression problem over the distribution. In the online setting, [NR23] proposed an inefficient algorithm that achieves $\sqrt T$ $\ell_2$-multicalibration error for a hypothesis class of group membership functions and an elicitable property $\Gamma$, after $T$ rounds of interaction between a forecaster and adversary. In this paper, we generalize multicalibration for an elicitable property $\Gamma$ from group membership functions to arbitrary bounded hypothesis classes and introduce a stronger notion -- swap multicalibration, following [GKR23]. Subsequently, we propose an oracle-efficient algorithm which, when given access to an online agnostic learner, achieves $T^{1/(r+1)}$ $\ell_r$-swap multicalibration error with high probability (for $r\ge2$) for a hypothesis class with bounded sequential Rademacher complexity and an elicitable property $\Gamma$. For the special case of $r=2$, this implies an oracle-efficient algorithm that achieves $T^{1/3}$ $\ell_2$-swap multicalibration error, which significantly improves on the previously established bounds for the problem [NR23, GMS25, LSS25a], and completely resolves an open question raised in [GJRR24] on the possibility of an oracle-efficient algorithm that achieves $\sqrt{T}$ $\ell_2$-mean multicalibration error by answering it in a strongly affirmative sense.
☆ Multi-Agent Craftax: Benchmarking Open-Ended Multi-Agent Reinforcement Learning at the Hyperscale
Progress in multi-agent reinforcement learning (MARL) requires challenging benchmarks that assess the limits of current methods. However, existing benchmarks often target narrow short-horizon challenges that do not adequately stress the long-term dependencies and generalization capabilities inherent in many multi-agent systems. To address this, we first present \textit{Craftax-MA}: an extension of the popular open-ended RL environment, Craftax, that supports multiple agents and evaluates a wide range of general abilities within a single environment. Written in JAX, \textit{Craftax-MA} is exceptionally fast with a training run using 250 million environment interactions completing in under an hour. To provide a more compelling challenge for MARL, we also present \textit{Craftax-Coop}, an extension introducing heterogeneous agents, trading and more mechanics that require complex cooperation among agents for success. We provide analysis demonstrating that existing algorithms struggle with key challenges in this benchmark, including long-horizon credit assignment, exploration and cooperation, and argue for its potential to drive long-term research in MARL.
☆ You Need Reasoning to Learn Reasoning: The Limitations of Label-Free RL in Weak Base Models NeurIPS 2025
Recent advances in large language models have demonstrated the promise of unsupervised reinforcement learning (RL) methods for enhancing reasoning capabilities without external supervision. However, the generalizability of these label-free RL approaches to smaller base models with limited reasoning capabilities remains unexplored. In this work, we systematically investigate the performance of label-free RL methods across different model sizes and reasoning strengths, from 0.5B to 7B parameters. Our empirical analysis reveals critical limitations: label-free RL is highly dependent on the base model's pre-existing reasoning capability, with performance often degrading below baseline levels for weaker models. We find that smaller models fail to generate sufficiently long or diverse chain-of-thought reasoning to enable effective self-reflection, and that training data difficulty plays a crucial role in determining success. To address these challenges, we propose a simple yet effective method for label-free RL that utilizes curriculum learning to progressively introduce harder problems during training and mask no-majority rollouts during training. Additionally, we introduce a data curation pipeline to generate samples with predefined difficulty. Our approach demonstrates consistent improvements across all model sizes and reasoning capabilities, providing a path toward more robust unsupervised RL that can bootstrap reasoning abilities in resource-constrained models. We make our code available at https://github.com/BorealisAI/CuMa
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
♻ ☆ Characterizing the Training Dynamics of Private Fine-tuning with Langevin diffusion
We show that differentially private full fine-tuning (DP-FFT) can distort pre-trained backbone features based on both theoretical and empirical results. We identify the cause of the distortion as the misalignment between the pre-trained backbone and the randomly initialized linear head. We prove that a sequential fine-tuning strategy can mitigate the feature distortion: first-linear-probing-then-fine-tuning (DP-LP-FFT). A new approximation scheme allows us to derive approximate upper and lower bounds on the training loss of DP-LP and DP-FFT, in a simple but canonical setting of 2-layer neural networks with ReLU activation. Experiments on real-world datasets and architectures are consistent with our theoretical insights. We also derive new upper bounds for 2-layer linear networks without the approximation. Moreover, our theory suggests a trade-off of privacy budget allocation in multi-phase fine-tuning methods like DP-LP-FFT.
♻ ☆ FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning NeurIPS 2025
With the emerging application of Federated Learning (FL) in decision-making scenarios, it is imperative to regulate model fairness to prevent disparities across sensitive groups (e.g., female, male). Current research predominantly focuses on two concepts of group fairness within FL: Global Fairness (overall model disparity across all clients) and Local Fairness (the disparity within each client). However, the non-decomposable, non-differentiable nature of fairness criteria poses two fundamental, unresolved challenges for fair FL: (i) Harmonizing global and local fairness, especially in multi-class setting; (ii) Enabling a controllable, optimal accuracy-fairness trade-off. To tackle these challenges, we propose a novel controllable federated group-fairness calibration framework, named FedFACT. FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints, yielding models with minimal performance decline while guaranteeing fairness. Building on the characterization of the optimal fair classifiers, we reformulate fair federated learning as a personalized cost-sensitive learning problem for in-processing and a bi-level optimization for post-processing. Theoretically, we provide convergence and generalization guarantees for FedFACT to approach the near-optimal accuracy under given fairness levels. Extensive experiments on multiple datasets across various data heterogeneity demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.
comment: Accepted by NeurIPS 2025
♻ ☆ Tactical Decision Making for Autonomous Trucks by Deep Reinforcement Learning with Total Cost of Operation Based Reward
We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck, specifically for Adaptive Cruise Control (ACC) and lane change maneuvers in a highway scenario. Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions between the reinforcement learning agent and the low-level controllers based on physical models. In the following, we study optimizing the performance with a realistic and multi-objective reward function based on Total Cost of Operation (TCOP) of the truck using different approaches; by adding weights to reward components, by normalizing the reward components and by using curriculum learning techniques.
comment: Paper is accepted for publication in Artificial Intelligence Review
♻ ☆ Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Rate of Penetration (ROP) prediction is critical for drilling optimization yet remains challenging due to the nonlinear, dynamic, and heterogeneous characteristics of drilling data. Conventional empirical, physics-based, and standard machine learning models rely on oversimplified assumptions or intensive feature engineering, constraining their capacity to model long-term dependencies and intricate feature interactions. To address these issues, this study presents a new deep learning Hybrid LSTM-Trans-Mixer-Att framework that first processes input data through a customized Long Short-Term Memory (LSTM) network to capture multi-scale temporal dependencies aligned with drilling cycles. Subsequently, an Enhanced Transformer encoder with drilling-specific positional encodings and real-time optimization refines the features. Concurrently, a parallel Time-Series Mixer (TS-Mixer) block introduced facilitates efficient cross-feature interaction modeling of static and categorical parameters, including lithological indices and mud properties. The feature representations extracted from the Enhanced Transformer and TS-Mixer modules are integrated through a dedicated fusion layer. Finally, an adaptive attention mechanism then dynamically assigns contextual weights to salient features, enhancing discriminative representation learning and enabling high-fidelity ROP prediction. The proposed framework combines sequential memory, static feature interactions, global context learning, and dynamic feature weighting, providing a comprehensive solution for the heterogeneous and event-driven nature of drilling dynamics. Experimental validation on real-world drilling datasets demonstrates superior performance, achieving an Rsquare of 0.9991 and a MAPE of 1.447%, significantly outperforming existing baseline and hybrid models.
comment: 31 Pages, 16 Figures, 9 Tables
♻ ☆ Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
♻ ☆ Ethics-Aware Safe Reinforcement Learning for Rare-Event Risk Control in Interactive Urban Driving
Autonomous vehicles hold great promise for reducing traffic fatalities and improving transportation efficiency, yet their widespread adoption hinges on embedding credible and transparent ethical reasoning into routine and emergency maneuvers, particularly to protect vulnerable road users (VRUs) such as pedestrians and cyclists. Here, we present a hierarchical Safe Reinforcement Learning (Safe RL) framework that augments standard driving objectives with ethics-aware cost signals. At the decision level, a Safe RL agent is trained using a composite ethical risk cost, combining collision probability and harm severity, to generate high-level motion targets. A dynamic, risk-sensitive Prioritized Experience Replay mechanism amplifies learning from rare but critical, high-risk events. At the execution level, polynomial path planning coupled with Proportional-Integral-Derivative (PID) and Stanley controllers translates these targets into smooth, feasible trajectories, ensuring both accuracy and comfort. We train and validate our approach on closed-loop simulation environments derived from large-scale, real-world traffic datasets encompassing diverse vehicles, cyclists, and pedestrians, and demonstrate that it outperforms baseline methods in reducing risk to others while maintaining ego performance and comfort. This work provides a reproducible benchmark for Safe RL with explicitly ethics-aware objectives in human-mixed traffic scenarios. Our results highlight the potential of combining formal control theory and data-driven learning to advance ethically accountable autonomy that explicitly protects those most at risk in urban traffic environments. Across two interactive benchmarks and five random seeds, our policy decreases conflict frequency by 25-45% compared to matched task successes while maintaining comfort metrics within 5%.
♻ ☆ Linear combinations of latents in generative models: subspaces and beyond ICLR
Sampling from generative models has become a crucial tool for applications like data synthesis and augmentation. Diffusion, Flow Matching and Continuous Normalising Flows have shown effectiveness across various modalities, and rely on latent variables for generation. For experimental design or creative applications that require more control over the generation process, it has become common to manipulate the latent variable directly. However, existing approaches for performing such manipulations (e.g. interpolation or forming low-dimensional representations) only work well in special cases or are network or data-modality specific. We propose Latent Optimal Linear combinations (LOL) as a general-purpose method to form linear combinations of latent variables that adhere to the assumptions of the generative model. As LOL is easy to implement and naturally addresses the broader task of forming any linear combinations, e.g. the construction of subspaces of the latent space, LOL dramatically simplifies the creation of expressive low-dimensional representations of high-dimensional objects.
comment: Published at International Conference on Learning Representations (ICLR) 2025
♻ ☆ Flashlight: PyTorch Compiler Extensions to Accelerate Attention Variants
Attention is a fundamental building block of large language models (LLMs), so there have been many efforts to implement it efficiently. For example, FlashAttention leverages tiling and kernel fusion to optimize attention. Recently, a number of variants of attention have been introduced to enhance model quality or efficiency. Supporting them efficiently remains difficult since they usually require specialized kernels or hand-tuned implementations. FlexAttention recently addressed part of this gap by using static programming templates to support FlashAttention-like kernels for a subset of attention variants. In this paper, we introduce Flashlight, a compiler-native framework within the PyTorch ecosystem that automatically generates fused, FlashAttention-style kernels for arbitrary attention-based programs, without relying on static templates or predefined kernel specializations. Flashlight leverages PyTorch's compilation workflow to fuse and tile attention computations transparently, enabling efficient execution for diverse attention patterns. Not only does it support all variants expressible in the FlexAttention model but it also handles more general, data-dependent attention formulations that are beyond the capabilities of FlexAttention. Our results show that Flashlight produces kernels with competitive or superior performance to FlexAttention, while offering the flexibility of native PyTorch code, enabling developers to rapidly explore new attention models without sacrificing performance.
♻ ☆ In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies NeurIPS 2024
We present a new random walk for uniformly sampling high-dimensional convex bodies. It achieves state-of-the-art runtime complexity with stronger guarantees on the output than previously known, namely in R\'enyi divergence (which implies TV, $\mathcal{W}_2$, KL, $\chi^2$). The proof departs from known approaches for polytime algorithms for the problem -- we utilize a stochastic diffusion perspective to show contraction to the target distribution with the rate of convergence determined by functional isoperimetric constants of the target distribution.
comment: 30 pages. Journal-submission version of NeurIPS 2024 (spotlight)
♻ ☆ Large language models as uncertainty-calibrated optimizers for experimental discovery
Scientific discovery increasingly depends on efficient experimental optimization to navigate vast design spaces under time and resource constraints. Traditional approaches often require extensive domain expertise and feature engineering. While large language models, with their vast scientific knowledge, circumvent the feature engineering limitations, they lack the calibrated uncertainty estimates required for high-stakes decision making. Hence, current optimization methods force a choice between domain knowledge and reliability, with no principled approach that affords both. In this work, we show that training language models through the uncertainty-aware objectives of traditional optimization methods enables their use as reliable optimizers guided by natural language. By teaching LLMs from experimental outcomes under uncertainty, we transform their overconfidence from a fundamental limitation into a precise calibration mechanism. Applied to Buchwald-Hartwig reactions, a cornerstone of pharmaceutical synthesis, our method nearly doubles the discovery rate of high-yielding reaction conditions, from 24% to 43% in 50 experimental iterations starting from 10 unsuccessful conditions. Across 19 diverse optimization problems spanning organic synthesis, materials science and catalysis, process chemistry, and molecular design, our approach ranks first on average, establishing a new paradigm for reliable, uncertainty-guided optimization with LLMs. Our approach can accelerate discovery by lowering the barrier to using powerful optimization methods, replacing the need for domain-specific feature engineering with more accessible natural language interfaces. These findings highlight that ensuring reliability through principled uncertainty quantification is critical for realizing the full potential of AI-guided experimentation.
♻ ☆ Comparative Study on Noise-Augmented Training and its Effect on Adversarial Robustness in ASR Systems
In this study, we investigate whether noise-augmented training can concurrently improve adversarial robustness in automatic speech recognition (ASR) systems. We conduct a comparative analysis of the adversarial robustness of four different ASR architectures, each trained under three different augmentation conditions: (1) background noise, speed variations, and reverberations; (2) speed variations only; (3) no data augmentation. We then evaluate the robustness of all resulting models against attacks with white-box or black-box adversarial examples. Our results demonstrate that noise augmentation not only enhances model performance on noisy speech but also improves the model's robustness to adversarial attacks.
♻ ☆ LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence
We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX-16M and LimiX-2M, two instantiations of our large structured-data models (LDMs). Both models treat structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. They are pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, supporting rapid, training-free adaptation at inference. We evaluate LimiX models across 11 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. LimiX-16M consistently surpasses strong baselines, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. Notably, LimiX-2M delivers strong results under tight compute and memory budgets. We also present the first scaling law study for LDMs, revealing how data and model scaling jointly influence downstream performance and offering quantitative guidance for tabular foundation modeling. All LimiX models are publicly accessible under Apache 2.0.
comment: 61 pages
♻ ☆ Inference-Time Hyper-Scaling with KV Cache Compression NeurIPS 2025
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8$\times$ compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference latency and memory load. For instance, we enhance Qwen-R1 32B by 12.0 points on AIME 24, 8.6 on GPQA, and 9.7 on LiveCodeBench on average for an equivalent number of memory reads.
comment: Accepted to NeurIPS 2025
♻ ☆ GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
comment: 28 papges
♻ ☆ Stochastic Approximation with Unbounded Markovian Noise: A General-Purpose Theorem
Motivated by engineering applications such as resource allocation in networks and inventory systems, we consider average-reward Reinforcement Learning with unbounded state space and reward function. Recent works studied this problem in the actor-critic framework and established finite sample bounds assuming access to a critic with certain error guarantees. We complement their work by studying Temporal Difference (TD) learning with linear function approximation and establishing finite-time bounds with the optimal $\mathcal{O}\left(1/\epsilon^2\right)$ sample complexity. These results are obtained using the following general-purpose theorem for non-linear Stochastic Approximation (SA). Suppose that one constructs a Lyapunov function for a non-linear SA with certain drift condition. Then, our theorem establishes finite-time bounds when this SA is driven by unbounded Markovian noise under suitable conditions. It serves as a black box tool to generalize sample guarantees on SA from i.i.d. or martingale difference case to potentially unbounded Markovian noise. The generality and the mild assumption of the setup enables broad applicability of our theorem. We illustrate its power by studying two more systems: (i) We improve upon the finite-time bounds of $Q$-learning by tightening the error bounds and also allowing for a larger class of behavior policies. (ii) We establish the first ever finite-time bounds for distributed stochastic optimization of high-dimensional smooth strongly convex function using cyclic block coordinate descent.
♻ ☆ XBreaking: Understanding how LLMs security alignment can be broken
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. These mechanisms maintain the integrity of LLM alignment by guaranteeing that the models respond safely and ethically. In response to this, attacks on LLMs are a significant threat to such protections, and many previous approaches have already demonstrated their effectiveness across diverse domains. Existing LLM attacks mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel approach that exploits these unique patterns to break the security and alignment constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our approach.
♻ ☆ Efficient and Unbiased Sampling from Boltzmann Distributions via Variance-Tuned Diffusion Models
Score-based diffusion models (SBDMs) are powerful amortized samplers for Boltzmann distributions; however, imperfect score estimates bias downstream Monte Carlo estimates. Classical importance sampling (IS) can correct this bias, but computing exact likelihoods requires solving the probability-flow ordinary differential equation (PF-ODE), a procedure that is prohibitively costly and scales poorly with dimensionality. We introduce Variance-Tuned Diffusion Importance Sampling (VT-DIS), a lightweight post-training method that adapts the per-step noise covariance of a pretrained SBDM by minimizing the $\alpha$-divergence ($\alpha=2$) between its forward diffusion and reverse denoising trajectories. VT-DIS assigns a single trajectory-wise importance weight to the joint forward-reverse process, yielding unbiased expectation estimates at test time with negligible overhead compared to standard sampling. On the DW-4, LJ-13, and alanine-dipeptide benchmarks, VT-DIS achieves effective sample sizes of approximately 80 %, 35 %, and 3.5 %, respectively, while using only a fraction of the computational budget required by vanilla diffusion + IS or PF-ODE-based IS.
♻ ☆ What Matters in Data for DPO?
Direct Preference Optimization (DPO) has emerged as a simple and effective approach for aligning large language models (LLMs) with human preferences, bypassing the need for a learned reward model. Despite its growing adoption, a fundamental question remains open: what characteristics of preference data are most critical for DPO performance? In this work, we provide a systematic study of how preference data distribution influences DPO, from both theoretical and empirical perspectives. We show that the quality of chosen responses plays a dominant role in optimizing the DPO objective, while the quality of rejected responses may have relatively limited impact. Our theoretical analysis characterizes the optimal response distribution under DPO and reveals how contrastiveness between responses helps primarily by improving the chosen samples. We further study an online DPO setting and show it effectively reduces to supervised fine-tuning on the chosen responses. Extensive experiments across diverse tasks confirm our findings: improving the quality of chosen responses consistently boosts performance regardless of the quality of the rejected responses. We also investigate the benefit of mixing the on-policy data. Our results interpret the mechanism behind some widely adopted strategies and offer practical insights for constructing high-impact preference datasets for LLM alignment.
♻ ☆ LoKO: Low-Rank Kalman Optimizer for Online Fine-Tuning of Large Models
Training large models with millions or even billions of parameters from scratch incurs substantial computational costs. Parameter Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), address this challenge by adapting only a reduced number of parameters to specific tasks with gradient-based optimizers. In this paper, we cast PEFT as an optimal filtering/state estimation problem and present Low-Rank Kalman Optimizer (LoKO) to estimate the optimal trainable parameters in an online manner. We leverage the low-rank decomposition in LoRA to significantly reduce matrix sizes in Kalman iterations and further capitalize on a diagonal approximation of the covariance matrix to effectively decrease computational complexity from quadratic to linear in the number of trainable parameters. Moreover, we discovered that the initialization of the covariance matrix within the Kalman algorithm and the accurate estimation of the observation noise covariance are the keys in this formulation, and we propose robust approaches that work well across a vast range of well-established computer vision and language models. Our results show that LoKO converges with fewer iterations and yields better performance models compared to commonly used optimizers with LoRA in both image classifications and language tasks. Our study opens up the possibility of leveraging the Kalman filter as an effective optimizer for the online fine-tuning of large models.
♻ ☆ To Trust or Not to Trust: On Calibration in ML-based Resource Allocation for Wireless Networks
In next-generation communications and networks, machine learning (ML) models are expected to deliver not only accurate predictions but also well-calibrated confidence scores that reflect the true likelihood of correct decisions. This paper studies the calibration performance of an ML-based outage predictor within a single-user, multi-resource allocation framework. We first establish key theoretical properties of this system's outage probability (OP) under perfect calibration. Importantly, we show that as the number of resources grows, the OP of a perfectly calibrated predictor approaches the expected output conditioned on it being below the classification threshold. In contrast, when only one resource is available, the system's OP equals the model's overall expected output. We then derive the OP conditions for a perfectly calibrated predictor. These findings guide the choice of the classification threshold to achieve a desired OP, helping system designers meet specific reliability requirements. We also demonstrate that post-processing calibration cannot improve the system's minimum achievable OP, as it does not introduce new information about future channel states. Additionally, we show that well-calibrated models are part of a broader class of predictors that necessarily improve OP. In particular, we establish a monotonicity condition that the accuracy-confidence function must satisfy for such improvement to occur. To demonstrate these theoretical properties, we conduct a rigorous simulation-based analysis using post-processing calibration techniques: Platt scaling and isotonic regression. As part of this framework, the predictor is trained using an outage loss function specifically designed for this system. Furthermore, this analysis is performed on Rayleigh fading channels with temporal correlation captured by Clarke's 2D model, which accounts for receiver mobility.
♻ ☆ ExGra-Med: Extended Context Graph Alignment for Medical Vision-Language Models NeurIPS 2025
State-of-the-art medical multi-modal LLMs (med-MLLMs), such as LLaVA-Med and BioMedGPT, primarily depend on scaling model size and data volume, with training driven largely by autoregressive objectives. However, we reveal that this approach can lead to weak vision-language alignment, making these models overly dependent on costly instruction-following data. To address this, we introduce ExGra-Med, a novel multi-graph alignment framework that jointly aligns images, instruction responses, and extended captions in the latent space, advancing semantic grounding and cross-modal coherence. To scale to large LLMs (e.g., LLaMA-7B), we develop an efficient end-to-end training scheme using black-box gradient estimation, enabling fast and scalable optimization. Empirically, ExGra-Med matches LLaVA-Med's performance using just 10% of the pre-training data, achieving a 20.13% gain on VQA-RAD and approaching full-data performance. It also outperforms strong baselines like BioMedGPT and RadFM on visual chatbot and zero-shot classification tasks, demonstrating its promise for efficient, high-quality vision-language integration in medical AI.
comment: Accepted at NeurIPS 2025
♻ ☆ Know What You Don't Know: Uncertainty Calibration of Process Reward Models NeurIPS 2025
Process reward models (PRMs) play a central role in guiding inference-time scaling algorithms for large language models (LLMs). However, we observe that even state-of-the-art PRMs can be poorly calibrated. Specifically, they tend to overestimate the success probability that a partial reasoning step will lead to a correct final answer, particularly when smaller LLMs are used to complete the reasoning trajectory. To address this, we present a calibration approach -- performed via quantile regression -- that adjusts PRM outputs to better align with true success probabilities. Leveraging these calibrated success estimates and their associated confidence bounds, we introduce an \emph{instance-adaptive scaling} (IAS) framework that dynamically adjusts the compute budget based on the estimated likelihood that a partial reasoning trajectory will yield a correct final answer. Unlike conventional methods that allocate a fixed number of reasoning trajectories per query, this approach adapts to each instance and reasoning step when using our calibrated PRMs. Experiments on mathematical reasoning benchmarks show that (i) our PRM calibration method achieves small calibration error, outperforming the baseline methods, (ii) calibration is crucial for enabling effective IAS, and (iii) the proposed IAS strategy reduces inference costs while maintaining final answer accuracy, utilizing less compute on more confident problems as desired.
comment: Accepted at NeurIPS 2025
♻ ☆ Bidirectional Time-Frequency Pyramid Network for Enhanced Robust EEG Classification
Existing EEG recognition models suffer from poor cross-paradigm generalization due to dataset-specific constraints and individual variability. To overcome these limitations, we propose BITE (Bidirectional Time-Freq Pyramid Network), an end-to-end unified architecture featuring robust multistream synergy, pyramid time-frequency attention (PTFA), and bidirectional adaptive convolutions. The framework uniquely integrates: 1) Aligned time-frequency streams maintaining temporal synchronization with STFT for bidirectional modeling, 2) PTFA-based multi-scale feature enhancement amplifying critical neural patterns, 3) BiTCN with learnable fusion capturing forward/backward neural dynamics. Demonstrating enhanced robustness, BITE achieves state-of-the-art performance across four divergent paradigms (BCICIV-2A/2B, HGD, SD-SSVEP), excelling in both within-subject accuracy and cross-subject generalization. As a unified architecture, it combines robust performance across both MI and SSVEP tasks with exceptional computational efficiency. Our work validates that paradigm-aligned spectral-temporal processing is essential for reliable BCI systems. Just as its name suggests, BITE "takes a bite out of EEG." The source code is available at https://github.com/cindy-hong/BiteEEG.
comment: Accepted to IEEE BIBM 2025
♻ ☆ Parsimonious Gaussian mixture models with piecewise-constant eigenvalue profiles
Gaussian mixture models (GMMs) are ubiquitous in statistical learning, particularly for unsupervised problems. While full GMMs suffer from the overparameterization of their covariance matrices in high-dimensional spaces, spherical GMMs (with isotropic covariance matrices) certainly lack flexibility to fit certain anisotropic distributions. Connecting these two extremes, we introduce a new family of parsimonious GMMs with piecewise-constant covariance eigenvalue profiles. These extend several low-rank models like the celebrated mixtures of probabilistic principal component analyzers (MPPCA), by enabling any possible sequence of eigenvalue multiplicities. If the latter are prespecified, then we can naturally derive an expectation-maximization (EM) algorithm to learn the mixture parameters. Otherwise, to address the notoriously-challenging issue of jointly learning the mixture parameters and hyperparameters, we propose a componentwise penalized EM algorithm, whose monotonicity is proven. We show the superior likelihood-parsimony tradeoffs achieved by our models on a variety of unsupervised experiments: density fitting, clustering and single-image denoising.
♻ ☆ Cognitive Edge Computing: A Comprehensive Survey on Optimizing Large Models and AI Agents for Pervasive Deployment
This article surveys Cognitive Edge Computing as a practical and methodical pathway for deploying reasoning-capable Large Language Models (LLMs) and autonomous AI agents on resource-constrained devices at the network edge. We present a unified, cognition-preserving framework spanning: (1) model optimization (quantization, sparsity, low-rank adaptation, distillation) aimed at retaining multi-step reasoning under tight memory/compute budgets; (2) system architecture (on-device inference, elastic offloading, cloud-edge collaboration) that trades off latency, energy, privacy, and capacity; and (3) adaptive intelligence (context compression, dynamic routing, federated personalization) that tailors computation to task difficulty and device constraints. We synthesize advances in efficient Transformer design, multimodal integration, hardware-aware compilation, privacy-preserving learning, and agentic tool use, and map them to edge-specific operating envelopes. We further outline a standardized evaluation protocol covering latency, throughput, energy per token, accuracy, robustness, privacy, and sustainability, with explicit measurement assumptions to enhance comparability. Remaining challenges include modality-aware reasoning benchmarks, transparent and reproducible energy reporting, edge-oriented safety/alignment evaluation, and multi-agent testbeds. We conclude with practitioner guidelines for cross-layer co-design of algorithms, runtime, and hardware to deliver reliable, efficient, and privacy-preserving cognitive capabilities on edge devices.
♻ ☆ Two-stage hybrid models for enhancing forecasting accuracy on heterogeneous time series
A time series forecasting model--which is typically built on a single time series--is known as a local time series model (tsLM). In contrast, a forecasting model trained on multiple time series is referred to as a global time series model (tsGM). tsGMs can enhance forecasting accuracy and improve generalisation by learning cross-series information. As such, developing tsGMs has become a prominent research focus within the time series forecasting community. However, the benefits of tsGMs may not always be realised if the given set of time series is heterogeneous. While increasing model complexity can help tsGMs adapt to such a set of data, it can also increase the risk of overfitting and forecasting error. Additionally, the definition of homogeneity remains ambiguous in the literature. To address these challenges, this paper explores how to define data heterogeneity and proposes a two-stage modelling framework: At stage one, a tsGM is learnt to identify homogeneous patterns; and at stage two, tsLMs (e.g., ARIMA) or sub-tsGMs tailored to different groups are learnt to capture the heterogeneity. Numerical experiments on four open datasets demonstrate that the proposed approach significantly outperforms six state-of-the-art models. These results highlight its effectiveness in unlocking the full potential of global forecasting models for heterogeneous datasets.
comment: 8 pages, 5 figures
♻ ☆ Bilinear relational structure fixes reversal curse and enables consistent model editing
The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
comment: 9 pages
♻ ☆ Estimating Orbital Parameters of Direct Imaging Exoplanet Using Neural Network
In this work, we propose a new flow-matching Markov chain Monte Carlo (FM-MCMC) algorithm for estimating the orbital parameters of exoplanetary systems, especially for those only one exoplanet is involved. Compared to traditional methods that rely on random sampling within the Bayesian framework, our approach first leverages flow matching posterior estimation (FMPE) to efficiently constrain the prior range of physical parameters, and then employs MCMC to accurately infer the posterior distribution. For example, in the orbital parameter inference of beta Pictoris b, our model achieved a substantial speed-up while maintaining comparable accuracy-running 77.8 times faster than Parallel Tempered MCMC (PTMCMC) and 365.4 times faster than nested sampling. Moreover, our FM-MCMC method also attained the highest average log-likelihood among all approaches, demonstrating its superior sampling efficiency and accuracy. This highlights the scalability and efficiency of our approach, making it well-suited for processing the massive datasets expected from future exoplanet surveys. Beyond astrophysics, our methodology establishes a versatile paradigm for synergizing deep generative models with traditional sampling, which can be adopted to tackle complex inference problems in other fields, such as cosmology, biomedical imaging, and particle physics.
♻ ☆ Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Test-time optimization remains impractical at scale due to prohibitive inference costs--techniques like iterative refinement and multi-step verification can require $10-100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-500 benchmarks, ALS achieves $2-5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at https://github.com/negbuna/ALS.
♻ ☆ P1-KAN: an effective Kolmogorov-Arnold network with application to hydraulic valley optimization
A new Kolmogorov-Arnold network (KAN) is proposed to approximate potentially irregular functions in high dimensions. We provide error bounds for this approximation, assuming that the Kolmogorov-Arnold expansion functions are sufficiently smooth. When the function is only continuous, we also provide universal approximation theorems. We show that it outperforms multilayer perceptrons in terms of accuracy and convergence speed. We also compare it with several proposed KAN networks: it outperforms all networks for irregular functions and achieves similar accuracy to the original spline-based KAN network for smooth functions. Finally, we compare some of the KAN networks in optimizing a French hydraulic valley.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence. We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a standardized protocol for the fair evaluation of state-of-the-art proprietary and open-source models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence (SI), yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail even the most advanced multimodal models.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/
♻ ☆ Performative Validity of Recourse Explanations NeurIPS 2025
When applicants get rejected by an algorithmic decision system, recourse explanations provide actionable suggestions for how to change their input features to get a positive evaluation. A crucial yet overlooked phenomenon is that recourse explanations are performative: When many applicants act according to their recommendations, their collective behavior may change statistical regularities in the data and, once the model is refitted, also the decision boundary. Consequently, the recourse algorithm may render its own recommendations invalid, such that applicants who make the effort of implementing their recommendations may be rejected again when they reapply. In this work, we formally characterize the conditions under which recourse explanations remain valid under performativity. A key finding is that recourse actions may become invalid if they are influenced by or if they intervene on non-causal variables. Based on our analysis, we caution against the use of standard counterfactual explanations and causal recourse methods, and instead advocate for recourse methods that recommend actions exclusively on causal variables.
comment: published at NeurIPS 2025
♻ ☆ Rethinking Approximate Gaussian Inference in Classification
In classification tasks, softmax functions are ubiquitously used as output activations to produce predictive probabilities. Such outputs only capture aleatoric uncertainty. To capture epistemic uncertainty, approximate Gaussian inference methods have been proposed. We develop a common formalism to describe such methods, which we view as outputting Gaussian distributions over the logit space. Predictives are then obtained as the expectations of the Gaussian distributions pushed forward through the softmax. However, such softmax Gaussian integrals cannot be solved analytically, and Monte Carlo (MC) approximations can be costly and noisy. We propose to replace the softmax activation by element-wise normCDF or sigmoid, which allows for the accurate sampling-free approximation of predictives. This also enables the approximation of the Gaussian pushforwards by Dirichlet distributions with moment matching. This approach entirely eliminates the runtime and memory overhead associated with MC sampling. We evaluate it combined with several approximate Gaussian inference methods (Laplace, HET, SNGP) on large- and small-scale datasets (ImageNet, CIFAR-100, CIFAR-10), demonstrating improved uncertainty quantification capabilities compared to softmax MC sampling. Our code is available at https://github.com/bmucsanyi/probit.
comment: 46 pages
♻ ☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy RL, sustaining continuous scaling across $3,000$ training steps and $81,204$ GPU-hours, where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
♻ ☆ Inverse Knowledge Search over Verifiable Reasoning: Synthesizing a Scientific Encyclopedia from a Long Chains-of-Thought Knowledge Base
Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
comment: 43 pages, 4 figures. This work is part of the SciencePedia project (sciencepedia.bohrium.com)
♻ ☆ Neural Attention: A Novel Mechanism for Enhanced Expressive Power in Transformer Models
Transformer models typically calculate attention matrices using dot products, which have limitations when capturing nonlinear relationships between embedding vectors. We propose Neural Attention, a technique that replaces dot products with feed-forward networks, enabling a more expressive representation of relationships between tokens. This approach modifies only the attention matrix calculation while preserving the matrix dimensions, making it easily adaptable to existing transformer-based architectures. We provide a detailed mathematical justification for why Neural Attention increases representational capacity and conduct controlled experiments to validate this claim. When comparing Neural Attention and Dot-Product Attention, NLP experiments on WikiText-103 show a reduction in perplexity of over 2 percent. Similarly, experiments on CIFAR-10 and CIFAR-100 show improvements in accuracy of more than 4 percentage points for image classification tasks. While Neural Attention introduces higher computational demands, we develop techniques to mitigate these challenges, ensuring practical usability without sacrificing the increased expressivity it provides. This work establishes Neural Attention as an effective means of enhancing the predictive capabilities of transformer models across a variety of applications. The code for all experiments is available at https://github.com/awayfromzel/neural-attention-research.
♻ ☆ Learning to Learn with Contrastive Meta-Objective NeurIPS2025
Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. Different meta-learning approaches all work under/with the mini-batch episodic training framework. Such framework naturally gives the information about task identity, which can serve as additional supervision for meta-training to improve generalizability. We propose to exploit task identity as additional supervision in meta-training, inspired by the alignment and discrimination ability which is is intrinsic in human's fast learning. This is achieved by contrasting what meta-learners learn, i.e., model representations. The proposed ConML is evaluating and optimizing the contrastive meta-objective under a problem- and learner-agnostic meta-training framework. We demonstrate that ConML integrates seamlessly with existing meta-learners, as well as in-context learning models, and brings significant boost in performance with small implementation cost.
comment: Received by NeurIPS2025 (Oral)
♻ ☆ RNN(p) for Power Consumption Forecasting
An elementary Recurrent Neural Network that operates on p time lags, called an RNN(p), is the natural generalisation of a linear autoregressive model ARX(p). It is a powerful forecasting tool for variables displaying inherent seasonal patterns across multiple time scales, as is often observed in energy, economic, and financial time series. The architecture of RNN(p) models, characterised by structured feedbacks across time lags, enables the design of efficient training strategies. We conduct a comparative study of learning algorithms for these models, providing a rigorous analysis of their computational complexity and training performance. We present two applications of RNN(p) models in power consumption forecasting, a key domain within the energy sector where accurate forecasts inform both operational and financial decisions. Experimental results show that RNN(p) models achieve excellent forecasting accuracy while maintaining a high degree of interpretability. These features make them well-suited for decision-making in energy markets and other fintech applications where reliable predictions play a significant economic role.
♻ ☆ Better Neural Network Expressivity: Subdividing the Simplex
This work studies the expressivity of ReLU neural networks with a focus on their depth. A sequence of previous works showed that $\lceil \log_2(n+1) \rceil$ hidden layers are sufficient to compute all continuous piecewise linear (CPWL) functions on $\mathbb{R}^n$. Hertrich, Basu, Di Summa, and Skutella (NeurIPS'21 / SIDMA'23) conjectured that this result is optimal in the sense that there are CPWL functions on $\mathbb{R}^n$, like the maximum function, that require this depth. We disprove the conjecture and show that $\lceil\log_3(n-1)\rceil+1$ hidden layers are sufficient to compute all CPWL functions on $\mathbb{R}^n$. A key step in the proof is that ReLU neural networks with two hidden layers can exactly represent the maximum function of five inputs. More generally, we show that $\lceil\log_3(n-2)\rceil+1$ hidden layers are sufficient to compute the maximum of $n\geq 4$ numbers. Our constructions almost match the $\lceil\log_3(n)\rceil$ lower bound of Averkov, Hojny, and Merkert (ICLR'25) in the special case of ReLU networks with weights that are decimal fractions. The constructions have a geometric interpretation via polyhedral subdivisions of the simplex into ``easier'' polytopes.
comment: 12 pages, 2 figures
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Boardwalk: Towards a Framework for Creating Board Games with LLMs
Implementing board games in code can be a time-consuming task. However, Large Language Models (LLMs) have been proven effective at generating code for domain-specific tasks with simple contextual information. We aim to investigate whether LLMs can implement digital versions of board games from rules described in natural language. This would be a step towards an LLM-assisted framework for quick board game code generation. We expect to determine the main challenges for LLMs to implement the board games, and how different approaches and models compare to one another. We task three state-of-the-art LLMs (Claude, DeepSeek and ChatGPT) with coding a selection of 12 popular and obscure games in free-form and within Boardwalk, our proposed General Game Playing API. We anonymize the games and components to avoid evoking pre-trained LLM knowledge. The implementations are tested for playability and rule compliance. We evaluate success rate and common errors across LLMs and game popularity. Our approach proves viable, with the best performing model, Claude 3.7 Sonnet, yielding 55.6\% of games without any errors. While compliance with the API increases error frequency, the severity of errors is more significantly dependent on the LLM. We outline future steps for creating a framework to integrate this process, making the elaboration of board games more accessible.
comment: Presented at SBGames 2025
♻ ☆ A Certifiable Machine Learning-Based Pipeline to Predict Fatigue Life of Aircraft Structures
Fatigue life prediction is essential in both the design and operational phases of any aircraft, and in this sense safety in the aerospace industry requires early detection of fatigue cracks to prevent in-flight failures. Robust and precise fatigue life predictors are thus essential to ensure safety. Traditional engineering methods, while reliable, are time consuming and involve complex workflows, including steps such as conducting several Finite Element Method (FEM) simulations, deriving the expected loading spectrum, and applying cycle counting techniques like peak-valley or rainflow counting. These steps often require collaboration between multiple teams and tools, added to the computational time and effort required to achieve fatigue life predictions. Machine learning (ML) offers a promising complement to traditional fatigue life estimation methods, enabling faster iterations and generalization, providing quick estimates that guide decisions alongside conventional simulations. In this paper, we present a ML-based pipeline that aims to estimate the fatigue life of different aircraft wing locations given the flight parameters of the different missions that the aircraft will be operating throughout its operational life. We validate the pipeline in a realistic use case of fatigue life estimation, yielding accurate predictions alongside a thorough statistical validation and uncertainty quantification. Our pipeline constitutes a complement to traditional methodologies by reducing the amount of costly simulations and, thereby, lowering the required computational and human resources.
comment: 34 pages, 17 figures
♻ ☆ iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use EMNLP 2025
Augmenting large language models (LLMs) with external tools is a promising approach to enhance their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve this. However, our investigation reveals that training gains significantly decay as synthetic data increases. The model struggles to benefit from additional synthetic data, which fails to endow it with advanced tool-use capabilities in complex scenarios Moreover, we discovered that the above limitation usually manifests as a fragment deficiency (i.e., parameter errors) in response. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation. This strategy involves: (1) enhancing the diversity of response for synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively pinpointing the model's deficiency by constructing fine-grained preference pairs, and then improving it by preference optimization algorithms for targeted improvement. The experiments show that our method achieves 13.11% better performance than the same-size base model. It achieves an improvement of 6.5% in complex scenarios compared to the baseline, and it also outperforms larger open-source and closed-source models.
comment: EMNLP 2025
♻ ☆ LLM-Based Emulation of the Radio Resource Control Layer: Towards AI-Native RAN Protocols SP
Integrating Large AI Models (LAMs) into 6G mobile networks is a key enabler of the AI-Native Air Interface (AI-AI), where protocol intelligence must scale beyond handcrafted logic. This paper presents, to our knowledge, the first standards-compliant emulation of the Radio Resource Control (RRC) layer using a decoder-only LAM (LLAMA-class) fine-tuned with Low-Rank Adaptation (LoRA) on a multi-vendor corpus of real-world traces spanning both 5G and 4G systems. We treat RRC as a domain-specific language and construct a segmentation-safe, question--answer (Question-and-Answer (QA)) dataset that preserves Abstract Syntax Notation (ASN.1) structure through linearization prior to Byte Pair Encoding (BPE) tokenization. The proposed approach combines parameter-efficient adaptation with schema-bounded prompting to ensure syntactic and procedural fidelity. Evaluation introduces a standards-aware triad -- ASN.1 conformance, field-level coverage analysis, and uplink-to-downlink state-machine checks -- alongside semantic similarity and latency profiling across 120 configurations. On 30k 5G request--response pairs plus an additional 4.8k QA turns from 4G sessions, our 8B model achieves a median cosine similarity of 0.97, a 61% relative gain over a zero-shot baseline, while sustaining high conformance rates. These results demonstrate that LAMs, when augmented with protocol-aware reasoning, can directly orchestrate control-plane procedures, laying the foundation for the future Artificial Intelligence (AI)-native Radio Access Network (RAN).
comment: This work has been submitted to the IEEE for possible publication. Focuses on applying LLMs to 5G RRC protocol generation; primary: cs.NI; cross-list: eess.SP, cs.LG
♻ ☆ Auto-Compressing Networks NeurIPS 2025
Deep neural networks with short residual connections have demonstrated remarkable success across domains, but increasing depth often introduces computational redundancy without corresponding improvements in representation quality. We introduce Auto-Compressing Networks (ACNs), an architectural variant where additive long feedforward connections from each layer to the output replace traditional short residual connections. By analyzing the distinct dynamics induced by this modification, we reveal a unique property we coin as auto-compression, the ability of a network to organically compress information during training with gradient descent, through architectural design alone. Through auto-compression, information is dynamically "pushed" into early layers during training, enhancing their representational quality and revealing potential redundancy in deeper ones. We theoretically show that this property emerges from layer-wise training patterns present in ACNs, where layers are dynamically utilized during training based on task requirements. We also find that ACNs exhibit enhanced noise robustness compared to residual networks, superior performance in low-data settings, improved transfer learning capabilities, and mitigate catastrophic forgetting suggesting that they learn representations that generalize better despite using fewer parameters. Our results demonstrate up to 18% reduction in catastrophic forgetting and 30-80% architectural compression while maintaining accuracy across vision transformers, MLP-mixers, and BERT architectures. These findings establish ACNs as a practical approach to developing efficient neural architectures that automatically adapt their computational footprint to task complexity, while learning robust representations suitable for noisy real-world tasks and continual learning scenarios.
comment: NeurIPS 2025, 21 pages
♻ ☆ A Closer Look at Deep Learning Methods on Tabular Datasets
Tabular data is prevalent across diverse domains in machine learning. With the rapid progress of deep tabular prediction methods, especially pretrained (foundation) models, there is a growing need to evaluate these methods systematically and to understand their behavior. We present an extensive study on TALENT, a collection of 300+ datasets spanning broad ranges of size, feature composition (numerical/categorical mixes), domains, and output types (binary, multi--class, regression). Our evaluation shows that ensembling benefits both tree-based and neural approaches. Traditional gradient-boosted trees remain very strong baselines, yet recent pretrained tabular models now match or surpass them on many tasks, narrowing--but not eliminating--the historical advantage of tree ensembles. Despite architectural diversity, top performance concentrates within a small subset of models, providing practical guidance for method selection. To explain these outcomes, we quantify dataset heterogeneity by learning from meta-features and early training dynamics to predict later validation behavior. This dynamics-aware analysis indicates that heterogeneity--such as the interplay of categorical and numerical attributes--largely determines which family of methods is favored. Finally, we introduce a two-level design beyond the 300 common-size datasets: a compact TALENT-tiny core (45 datasets) for rapid, reproducible evaluation, and a TALENT-extension suite targeting high-dimensional, many-class, and very large-scale settings for stress testing. In summary, these results offer actionable insights into the strengths, limitations, and future directions for improving deep tabular learning.
♻ ☆ Learning from Delayed Feedback in Games via Extra Prediction
This study raises and addresses the problem of time-delayed feedback in learning in games. Because learning in games assumes that multiple agents independently learn their strategies, a discrepancy in optimization often emerges among the agents. To overcome this discrepancy, the prediction of the future reward is incorporated into algorithms, typically known as Optimistic Follow-the-Regularized-Leader (OFTRL). However, the time delay in observing the past rewards hinders the prediction. Indeed, this study firstly proves that even a single-step delay worsens the performance of OFTRL from the aspects of social regret and convergence. This study proposes the weighted OFTRL (WOFTRL), where the prediction vector of the next reward in OFTRL is weighted $n$ times. We further capture an intuition that the optimistic weight cancels out this time delay. We prove that when the optimistic weight exceeds the time delay, our WOFTRL recovers the good performances that social regret is constant in general-sum normal-form games, and the strategies last-iterate converge to the Nash equilibrium in poly-matrix zero-sum games. The theoretical results are supported and strengthened by our experiments.
comment: 11 pages, 3 figures (main); 11 pages (appendix)
♻ ☆ Learning of Population Dynamics: Inverse Optimization Meets JKO Scheme
Learning population dynamics involves recovering the underlying process that governs particle evolution, given evolutionary snapshots of samples at discrete time points. Recent methods frame this as an energy minimization problem in probability space and leverage the celebrated JKO scheme for efficient time discretization. In this work, we introduce $\texttt{iJKOnet}$, an approach that combines the JKO framework with inverse optimization techniques to learn population dynamics. Our method relies on a conventional $\textit{end-to-end}$ adversarial training procedure and does not require restrictive architectural choices, e.g., input-convex neural networks. We establish theoretical guarantees for our methodology and demonstrate improved performance over prior JKO-based methods.
♻ ☆ Prediction-Powered Adaptive Shrinkage Estimation ICML 2025
Prediction-Powered Inference (PPI) is a powerful framework for enhancing statistical estimates by combining limited gold-standard data with machine learning (ML) predictions. While prior work has demonstrated PPI's benefits for individual statistical problems, modern applications require answering numerous parallel statistical questions. We introduce Prediction-Powered Adaptive Shrinkage (PAS), a method that bridges PPI with empirical Bayes shrinkage to improve the estimation of multiple means. PAS debiases noisy ML predictions within each task and then borrows strength across tasks by using those same predictions as a reference point for shrinkage. The amount of shrinkage is determined by minimizing an unbiased estimate of risk, and we prove that this tuning strategy is asymptotically optimal. Experiments on both synthetic and real-world datasets show that PAS adapts to the reliability of the ML predictions and outperforms traditional and modern baselines in large-scale applications.
comment: Accepted as poster in ICML 2025
♻ ☆ CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis ACL 2025
Integrating multimodal Electronic Health Records (EHR) data, such as numerical time series and free-text clinical reports, has great potential in predicting clinical outcomes. However, prior work has primarily focused on capturing temporal interactions within individual samples and fusing multimodal information, overlooking critical temporal patterns across patients. These patterns, such as trends in vital signs like abnormal heart rate or blood pressure, can indicate deteriorating health or an impending critical event. Similarly, clinical notes often contain textual descriptions that reflect these patterns. Identifying corresponding temporal patterns across different modalities is crucial for improving the accuracy of clinical outcome predictions, yet it remains a challenging task. To address this gap, we introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data. Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings. To ensure rich cross-modal temporal semantics in the learned patterns, we introduce a contrastive-based TPNCE loss for cross-modal alignment, along with two reconstruction losses to retain core information of each modality. Evaluations on two clinically critical tasks, 48-hour in-hospital mortality and 24-hour phenotype classification, using the MIMIC-III database demonstrate the superiority of our method over existing approaches.
comment: ACL 2025 Findings
♻ ☆ Asymptotically Unbiased Synthetic Control Methods by Moment Matching
Synthetic Control Methods (SCMs) have become a fundamental tool for comparative case studies. The core idea behind SCMs is to estimate treatment effects by predicting counterfactual outcomes for a treated unit using a weighted combination of observed outcomes from untreated units. The accuracy of these predictions is crucial for evaluating the treatment effect of a policy intervention. Subsequent research has therefore focused on estimating SC weights. In this study, we highlight a key endogeneity issue in existing SCMs-namely, the correlation between the outcomes of untreated units and the error term of the synthetic control, which leads to bias in both counterfactual outcome prediction and treatment effect estimation. To address this issue, we propose a novel SCM based on moment matching, assuming that the outcome distribution of the treated unit can be approximated by a weighted mixture of the distributions of untreated units. Under this assumption, we estimate SC weights by matching the moments of the treated outcomes with the weighted sum of the moments of the untreated outcomes. Our method offers three advantages: first, under the mixture model assumption, our estimator is asymptotically unbiased; second, this asymptotic unbiasedness reduces the mean squared error in counterfactual predictions; and third, our method provides full distributions of the treatment effect rather than just expected values, thereby broadening the applicability of SCMs. Finally, we present experimental results that demonstrate the effectiveness of our approach.
comment: This study was presented at the Workshop on Counterfactuals in Minds and Machines at the International Conference on Machine Learning in July 2023 and at the International Conference on Econometrics and Statistics in August 2023
♻ ☆ Diverse Mini-Batch Selection in Reinforcement Learning for Efficient Chemical Exploration in de novo Drug Design
In many real-world applications, evaluating the quality of instances is costly and time-consuming, e.g., human feedback and physics simulations, in contrast to proposing new instances. In particular, this is even more critical in reinforcement learning, since it relies on interactions with the environment (i.e., new instances) that must be evaluated to provide a reward signal for learning. At the same time, performing sufficient exploration is crucial in reinforcement learning to find high-rewarding solutions, meaning that the agent should observe and learn from a diverse set of experiences to find different solutions. Thus, we argue that learning from a diverse mini-batch of experiences can have a large impact on the exploration and help mitigate mode collapse.In this paper, we introduce mini-batch diversification for reinforcement learning and study this framework in the context of a real-world problem, namely, drug discovery. We extensively evaluate how our proposed framework can enhance the effectiveness of chemical exploration in de novo drug design, where finding diverse and high-quality solutions is crucial. Our experiments demonstrate that our proposed diverse mini-batch selection framework can substantially enhance the diversity of solutions while maintaining high-quality solutions. In drug discovery, such an outcome can potentially lead to fulfilling unmet medical needs faster.
♻ ☆ Learning to Navigate Socially Through Proactive Risk Perception
In this report, we describe the technical details of our submission to the IROS 2025 RoboSense Challenge Social Navigation Track. This track focuses on developing RGBD-based perception and navigation systems that enable autonomous agents to navigate safely, efficiently, and socially compliantly in dynamic human-populated indoor environments. The challenge requires agents to operate from an egocentric perspective using only onboard sensors including RGB-D observations and odometry, without access to global maps or privileged information, while maintaining social norm compliance such as safe distances and collision avoidance. Building upon the Falcon model, we introduce a Proactive Risk Perception Module to enhance social navigation performance. Our approach augments Falcon with collision risk understanding that learns to predict distance-based collision risk scores for surrounding humans, which enables the agent to develop more robust spatial awareness and proactive collision avoidance behaviors. The evaluation on the Social-HM3D benchmark demonstrates that our method improves the agent's ability to maintain personal space compliance while navigating toward goals in crowded indoor scenes with dynamic human agents, achieving 2nd place among 16 participating teams in the challenge.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.076 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
♻ ☆ Learning Latent Graph Geometry via Fixed-Point Schrödinger-Type Activation: A Theoretical Study
We develop a unified theoretical framework for neural architectures whose internal representations evolve as stationary states of dissipative Schr\"odinger-type dynamics on learned latent graphs. Each layer is defined by a fixed-point Schr\"odinger-type equation depending on a weighted Laplacian encoding latent geometry and a convex local potential. We prove existence, uniqueness, and smooth dependence of equilibria, and show that the dynamics are equivalent under the Bloch map to norm-preserving Landau--Lifshitz flows. Training over graph weights and topology is formulated as stochastic optimization on a stratified moduli space of graphs equipped with a natural K\"{a}hler--Hessian metric, ensuring convergence and differentiability across strata. We derive generalization bounds -- PAC-Bayes, stability, and Rademacher complexity -- in terms of geometric quantities such as edge count, maximal degree, and Gromov--Hausdorff distortion, establishing that sparsity and geometric regularity control capacity. Feed-forward composition of stationary layers is proven equivalent to a single global stationary diffusion on a supra-graph; backpropagation is its adjoint stationary system. Finally, directed and vector-valued extensions are represented as sheaf Laplacians with unitary connections, unifying scalar graph, directed, and sheaf-based architectures. The resulting model class provides a compact, geometrically interpretable, and analytically tractable foundation for learning latent graph geometry via fixed-point Schr\"odinger-type activations.
comment: 50 pages, 2 algorithms, 4 tables
♻ ☆ Physics-Informed Neural Networks and Neural Operators for Parametric PDEs: A Human-AI Collaborative Analysis
PDEs arise ubiquitously in science and engineering, where solutions depend on parameters (physical properties, boundary conditions, geometry). Traditional numerical methods require re-solving the PDE for each parameter, making parameter space exploration prohibitively expensive. Recent machine learning advances, particularly physics-informed neural networks (PINNs) and neural operators, have revolutionized parametric PDE solving by learning solution operators that generalize across parameter spaces. We critically analyze two main paradigms: (1) PINNs, which embed physical laws as soft constraints and excel at inverse problems with sparse data, and (2) neural operators (e.g., DeepONet, Fourier Neural Operator), which learn mappings between infinite-dimensional function spaces and achieve unprecedented generalization. Through comparisons across fluid dynamics, solid mechanics, heat transfer, and electromagnetics, we show neural operators can achieve computational speedups of $10^3$ to $10^5$ times faster than traditional solvers for multi-query scenarios, while maintaining comparable accuracy. We provide practical guidance for method selection, discuss theoretical foundations (universal approximation, convergence), and identify critical open challenges: high-dimensional parameters, complex geometries, and out-of-distribution generalization. This work establishes a unified framework for understanding parametric PDE solvers via operator learning, offering a comprehensive, incrementally updated resource for this rapidly evolving field
comment: 61 pages, 3 figures. Submitted to The 1st International Conference on AI Scientists (ICAIS 2025)
♻ ☆ Graph Learning
Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.
comment: 185 pages
♻ ☆ Non-stationary Delayed Online Convex Optimization: From Full-information to Bandit Setting ICML2024
Although online convex optimization (OCO) under arbitrary delays has received increasing attention recently, previous studies focus on stationary environments with the goal of minimizing static regret. In this paper, we investigate the delayed OCO in non-stationary environments, and choose dynamic regret with respect to any sequence of comparators as the performance metric. To this end, we first propose an algorithm called Mild-OGD for the full-information case, where delayed gradients are available. The basic idea is to maintain multiple experts in parallel, each performing a gradient descent step with different learning rates for every delayed gradient according to their arrival order, and utilize a meta-algorithm to track the best one based on their delayed performance. Despite the simplicity of this idea, our novel analysis shows that the dynamic regret of Mild-OGD can be automatically bounded by $O(\sqrt{\bar{d}T(P_T+1)})$ under the in-order assumption and $O(\sqrt{dT(P_T+1)})$ in the worst case, where $\bar{d}$ and $d$ denote the average and maximum delay respectively, $T$ is the time horizon, and $P_T$ is the path-length of comparators. Moreover, we demonstrate that the result in the worst case is optimal by deriving a matching lower bound. Finally, we develop a bandit variant of Mild-OGD for a more challenging case with only delayed loss values. Interestingly, we prove that under a relatively large amount of delay, our bandit algorithm even enjoys the best dynamic regret bound of existing non-delayed bandit algorithms.
comment: Extended Version of ICML2024 with New Results on the Bandit Setting
♻ ☆ Conformal Information Pursuit for Interactively Guiding Large Language Models
A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM proba- bilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.
♻ ☆ Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
Accurate predictions of electricity demands are necessary for managing operations in a small aggregation load setting like a Microgrid. Due to low aggregation, the electricity demands can be highly stochastic and point estimates would lead to inflated errors. Interval estimation in this scenario, would provide a range of values within which the future values might lie and helps quantify the errors around the point estimates. This paper introduces a residual bootstrap algorithm to generate interval estimates of day-ahead electricity demand. A machine learning algorithm is used to obtain the point estimates of electricity demand and respective residuals on the training set. The obtained residuals are stored in memory and the memory is further partitioned. Days with similar demand patterns are grouped in clusters using an unsupervised learning algorithm and these clusters are used to partition the memory. The point estimates for test day are used to find the closest cluster of similar days and the residuals are bootstrapped from the chosen cluster. This algorithm is evaluated on the real electricity demand data from EULR(End Use Load Research) and is compared to other bootstrapping methods for varying confidence intervals.
♻ ☆ AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science EMNLP
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation. Yet, data science tasks often admit multiple statistically valid solutions, e.g. different modeling strategies, making it critical to understand the reasoning behind analyses, not just their outcomes. While manual review of LLM-generated code can help ensure statistical soundness, it is labor-intensive and requires expertise. A more scalable approach is to evaluate the underlying workflows-the logical plans guiding code generation. However, it remains unclear how to assess whether an LLM-generated workflow supports reproducible implementations. To address this, we present AIRepr, an Analyst-Inspector framework for automatically evaluating and improving the reproducibility of LLM-generated data analysis workflows. Our framework is grounded in statistical principles and supports scalable, automated assessment. We introduce two novel reproducibility-enhancing prompting strategies and benchmark them against standard prompting across 15 analyst-inspector LLM pairs and 1,032 tasks from three public benchmarks. Our findings show that workflows with higher reproducibility also yield more accurate analyses, and that reproducibility-enhancing prompts substantially improve both metrics. This work provides a foundation for transparent, reliable, and efficient human-AI collaboration in data science. Our code is publicly available.
comment: Accepted to 2025 EMNLP findings
♻ ☆ Multiplayer Federated Learning: Reaching Equilibrium with Less Communication NeurIPS 2025
Traditional Federated Learning (FL) approaches assume collaborative clients with aligned objectives working towards a shared global model. However, in many real-world scenarios, clients act as rational players with individual objectives and strategic behaviors, a concept that existing FL frameworks are not equipped to adequately address. To bridge this gap, we introduce Multiplayer Federated Learning (MpFL), a novel framework that models the clients in the FL environment as players in a game-theoretic context, aiming to reach an equilibrium. In this scenario, each player tries to optimize their own utility function, which may not align with the collective goal. Within MpFL, we propose Per-Player Local Stochastic Gradient Descent (PEARL-SGD), an algorithm in which each player/client performs local updates independently and periodically communicates with other players. We theoretically analyze PEARL-SGD and prove that it reaches a neighborhood of equilibrium with less communication in the stochastic setup compared to its non-local counterpart. Finally, we verify our theoretical findings through numerical experiments.
comment: Accepted at NeurIPS 2025
♻ ☆ When Are Concepts Erased From Diffusion Models? NeurIPS 2025
In concept erasure, a model is modified to selectively prevent it from generating a target concept. Despite the rapid development of new methods, it remains unclear how thoroughly these approaches remove the target concept from the model. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) interfering with the model's internal guidance processes, and (ii) reducing the unconditional likelihood of generating the target concept, potentially removing it entirely. To assess whether a concept has been truly erased from the model, we introduce a comprehensive suite of independent probing techniques: supplying visual context, modifying the diffusion trajectory, applying classifier guidance, and analyzing the model's alternative generations that emerge in place of the erased concept. Our results shed light on the value of exploring concept erasure robustness outside of adversarial text inputs, and emphasize the importance of comprehensive evaluations for erasure in diffusion models.
comment: Accepted to NeurIPS 2025. Our code, data, and results are available at https://unerasing.baulab.info/
♻ ☆ Fine-Tuning Masked Diffusion for Provable Self-Correction
A natural desideratum for generative models is self-correction--detecting and revising low-quality tokens at inference. While Masked Diffusion Models (MDMs) have emerged as a promising approach for generative modeling in discrete spaces, their capacity for self-correction remains poorly understood. Prior attempts to incorporate self-correction into MDMs either require overhauling MDM architectures/training or rely on imprecise proxies for token quality, limiting their applicability. Motivated by this, we introduce PRISM--Plug-in Remasking for Inference-time Self-correction of Masked Diffusions--a lightweight, model-agnostic approach that applies to any pretrained MDM. Theoretically, PRISM defines a self-correction loss that provably learns per-token quality scores, without RL or a verifier. These quality scores are computed in the same forward pass with MDM and used to detect low-quality tokens. Empirically, PRISM advances MDM inference across domains and scales: Sudoku; unconditional text (170M); and code with LLaDA (8B).
comment: Authorship statement: Jaeyeon Kim and Seunggeun Kim contributed equally, and Taekyun Lee is also a co first author
♻ ☆ NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
♻ ☆ Generating Computational Cognitive Models using Large Language Models
Computational cognitive models, which formalize theories of cognition, enable researchers to quantify cognitive processes and arbitrate between competing theories by fitting models to behavioral data. Traditionally, these models are handcrafted, which requires significant domain knowledge, coding expertise, and time investment. However, recent advances in machine learning offer solutions to these challenges. In particular, Large Language Models (LLMs) have demonstrated remarkable capabilities for in-context pattern recognition, leveraging knowledge from diverse domains to solve complex problems, and generating executable code that can be used to facilitate the generation of cognitive models. Building on this potential, we introduce a pipeline for Guided generation of Computational Cognitive Models (GeCCo). Given task instructions, participant data, and a template function, GeCCo prompts an LLM to propose candidate models, fits proposals to held-out data, and iteratively refines them based on feedback constructed from their predictive performance. We benchmark this approach across four different cognitive domains -- decision making, learning, planning, and memory -- using three open-source LLMs, spanning different model sizes, capacities, and families. On four human behavioral data sets, the LLM generated models that consistently matched or outperformed the best domain-specific models from the cognitive science literature. Taken together, our results suggest that LLMs can generate cognitive models with conceptually plausible theories that rival -- or even surpass -- the best models from the literature across diverse task domains.
♻ ☆ Optimism Without Regularization: Constant Regret in Zero-Sum Games NeurIPS 2025
This paper studies the optimistic variant of Fictitious Play for learning in two-player zero-sum games. While it is known that Optimistic FTRL -- a regularized algorithm with a bounded stepsize parameter -- obtains constant regret in this setting, we show for the first time that similar, optimal rates are also achievable without regularization: we prove for two-strategy games that Optimistic Fictitious Play (using any tiebreaking rule) obtains only constant regret, providing surprising new evidence on the ability of non-no-regret algorithms for fast learning in games. Our proof technique leverages a geometric view of Optimistic Fictitious Play in the dual space of payoff vectors, where we show a certain energy function of the iterates remains bounded over time. Additionally, we also prove a regret lower bound of $\Omega(\sqrt{T})$ for Alternating Fictitious Play. In the unregularized regime, this separates the ability of optimism and alternation in achieving $o(\sqrt{T})$ regret.
comment: NeurIPS 2025
♻ ☆ L2T-Tune:LLM-Guided Hybrid Database Tuning with LHS and TD3
Configuration tuning is critical for database performance. Although recent advancements in database tuning have shown promising results in throughput and latency improvement, challenges remain. First, the vast knob space makes direct optimization unstable and slow to converge. Second, reinforcement learning pipelines often lack effective warm-start guidance and require long offline training. Third, transferability is limited: when hardware or workloads change, existing models typically require substantial retraining to recover performance. To address these limitations, we propose L2T-Tune, a new LLM-guided hybrid database tuning framework that features a three-stage pipeline: Stage one performs a warm start that simultaneously generates uniform samples across the knob space and logs them into a shared pool; Stage two leverages a large language model to mine and prioritize tuning hints from manuals and community documents for rapid convergence. Stage three uses the warm-start sample pool to reduce the dimensionality of knobs and state features, then fine-tunes the configuration with the Twin Delayed Deep Deterministic Policy Gradient algorithm. We conduct experiments on L2T-Tune and the state-of-the-art models. Compared with the best-performing alternative, our approach improves performance by an average of 37.1% across all workloads, and by up to 73% on TPC-C. Compared with models trained with reinforcement learning, it achieves rapid convergence in the offline tuning stage on a single server. Moreover, during the online tuning stage, it only takes 30 steps to achieve best results.
♻ ☆ Closed-Form Beta Distribution Estimation from Sparse Statistics with Random Forest Implicit Regularization
This work advances distribution recovery from sparse data and ensemble classification through three main contributions. First, we introduce a closed-form estimator that reconstructs scaled beta distributions from limited statistics (minimum, maximum, mean, and median) via composite quantile and moment matching. The recovered parameters $(\alpha,\beta)$, when used as features in Random Forest classifiers, improve pairwise classification on time-series snapshots, validating the fidelity of the recovered distributions. Second, we establish a link between classification accuracy and distributional closeness by deriving error bounds that constrain total variation distance and Jensen-Shannon divergence, the latter exhibiting quadratic convergence. Third, we show that zero-variance features act as an implicit regularizer, increasing selection probability for mid-ranked predictors and producing deeper, more varied trees. A SeatGeek pricing dataset serves as the primary application, illustrating distributional recovery and event-level classification while situating these methods within the structure and dynamics of the secondary ticket marketplace. The UCI handwritten digits dataset confirms the broader regularization effect. Overall, the study outlines a practical route from sparse distributional snapshots to closed-form estimation and improved ensemble accuracy, with reliability enhanced through implicit regularization.
comment: 31 pages, 12 figures, 2 tables
♻ ☆ LoRAQuant: Mixed-Precision Quantization of LoRA to Ultra-Low Bits
Low-Rank Adaptation (LoRA) has become a popular technique for parameter-efficient fine-tuning of large language models (LLMs). In many real-world scenarios, multiple adapters are loaded simultaneously to enable LLM customization for personalized user experiences or to support a diverse range of tasks. Although each adapter is lightweight in isolation, their aggregate cost becomes substantial at scale. To address this, we propose LoRAQuant, a mixed-precision post-training quantization method tailored to LoRA. Specifically, LoRAQuant reparameterizes each adapter by singular value decomposition (SVD) to concentrate the most important information into specific rows and columns. This makes it possible to quantize the important components to higher precision, while quantizing the rest to ultra-low bitwidth. We conduct comprehensive experiments with LLaMA 2-7B, LLaMA 2-13B, and Mistral 7B models on mathematical reasoning, coding, and summarization tasks. Results show that our LoRAQuant uses significantly lower bits than other quantization methods, but achieves comparable or even higher performance.
♻ ☆ On Joint Regularization and Calibration in Deep Ensembles
Deep ensembles are a powerful tool in machine learning, improving both model performance and uncertainty calibration. While ensembles are typically formed by training and tuning models individually, evidence suggests that jointly tuning the ensemble can lead to better performance. This paper investigates the impact of jointly tuning weight decay, temperature scaling, and early stopping on both predictive performance and uncertainty quantification. Additionally, we propose a partially overlapping holdout strategy as a practical compromise between enabling joint evaluation and maximizing the use of data for training. Our results demonstrate that jointly tuning the ensemble generally matches or improves performance, with significant variation in effect size across different tasks and metrics. We highlight the trade-offs between individual and joint optimization in deep ensemble training, with the overlapping holdout strategy offering an attractive practical solution. We believe our findings provide valuable insights and guidance for practitioners looking to optimize deep ensemble models. Code is available at: https://github.com/lauritsf/ensemble-optimality-gap
comment: 39 pages, 8 figures, 11 tables
♻ ☆ Distributionally robust self-supervised learning for tabular data NeurIPS2024
Machine learning (ML) models trained using Empirical Risk Minimization (ERM) often exhibit systematic errors on specific subpopulations of tabular data, known as error slices. Learning robust representation in presence of error slices is challenging, especially in self-supervised settings during the feature reconstruction phase, due to high cardinality features and the complexity of constructing error sets. Traditional robust representation learning methods are largely focused on improving worst group performance in supervised setting in computer vision, leaving a gap in approaches tailored for tabular data. We address this gap by developing a framework to learn robust representation in tabular data during self-supervised pre-training. Our approach utilizes an encoder-decoder model trained with Masked Language Modeling (MLM) loss to learn robust latent representations. This paper applies the Just Train Twice (JTT) and Deep Feature Reweighting (DFR) methods during the pre-training phase for tabular data. These methods fine-tune the ERM pre-trained model by up-weighting error-prone samples or creating balanced datasets for specific categorical features. This results in specialized models for each feature, which are then used in an ensemble approach to enhance downstream classification performance. This methodology improves robustness across slices, thus enhancing overall generalization performance. Extensive experiments across various datasets demonstrate the efficacy of our approach. The code is available: https://github.com/amazon-science/distributionally-robust-self-supervised-learning-for-tabular-data.
comment: TRL Workshop@NeurIPS2024
♻ ☆ Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
Stochastic differential equations (SDEs) are a fundamental tool for modelling dynamic processes, including gene regulatory networks (GRNs), contaminant transport, financial markets, and image generation. However, learning the underlying SDE from data is a challenging task, especially if individual trajectories are not observable. Motivated by burgeoning research in single-cell datasets, we present the first comprehensive approach for jointly identifying the drift and diffusion of an SDE from its temporal marginals. Assuming linear drift and additive diffusion, we prove that these parameters are identifiable from marginals if and only if the initial distribution lacks any generalized rotational symmetries. We further prove that the causal graph of any SDE with additive diffusion can be recovered from the SDE parameters. To complement this theory, we adapt entropy-regularized optimal transport to handle anisotropic diffusion, and introduce APPEX (Alternating Projection Parameter Estimation from $X_0$), an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals. We show that APPEX iteratively decreases Kullback-Leibler divergence to the true solution, and demonstrate its effectiveness on simulated data from linear additive noise SDEs.
♻ ☆ Generalizable, real-time neural decoding with hybrid state-space models NeurIPS 2025
Real-time decoding of neural activity is central to neuroscience and neurotechnology applications, from closed-loop experiments to brain-computer interfaces, where models are subject to strict latency constraints. Traditional methods, including simple recurrent neural networks, are fast and lightweight but often struggle to generalize to unseen data. In contrast, recent Transformer-based approaches leverage large-scale pretraining for strong generalization performance, but typically have much larger computational requirements and are not always suitable for low-resource or real-time settings. To address these shortcomings, we present POSSM, a novel hybrid architecture that combines individual spike tokenization via a cross-attention module with a recurrent state-space model (SSM) backbone to enable (1) fast and causal online prediction on neural activity and (2) efficient generalization to new sessions, individuals, and tasks through multi-dataset pretraining. We evaluate POSSM's decoding performance and inference speed on intracortical decoding of monkey motor tasks, and show that it extends to clinical applications, namely handwriting and speech decoding in human subjects. Notably, we demonstrate that pretraining on monkey motor-cortical recordings improves decoding performance on the human handwriting task, highlighting the exciting potential for cross-species transfer. In all of these tasks, we find that POSSM achieves decoding accuracy comparable to state-of-the-art Transformers, at a fraction of the inference cost (up to 9x faster on GPU). These results suggest that hybrid SSMs are a promising approach to bridging the gap between accuracy, inference speed, and generalization when training neural decoders for real-time, closed-loop applications.
comment: NeurIPS 2025
♻ ☆ A Perfectly Truthful Calibration Measure
Calibration requires that predictions are conditionally unbiased and, therefore, reliably interpretable as probabilities. A calibration measure quantifies how far a predictor is from perfect calibration. As introduced by Haghtalab et al. (2024), a calibration measure is truthful if it is minimized in expectation when a predictor outputs the ground-truth probabilities. Predicting the true probabilities guarantees perfect calibration, but in reality, when calibration is evaluated on a random sample, all known calibration measures incentivize predictors to lie in order to appear more calibrated. Such lack of truthfulness motivated Haghtalab et al. (2024) and Qiao and Zhao (2025) to construct approximately truthful calibration measures in the sequential prediction setting, but no perfectly truthful calibration measure was known to exist even in the more basic batch setting. We design a simple, perfectly and strictly truthful, sound and complete calibration measure in the batch setting: averaged two-bin calibration error (ATB). ATB is quadratically related to two existing calibration measures: the smooth calibration error smCal and the lower distance to calibration distCal. The simplicity in our definition of ATB makes it efficient and straightforward to compute, allowing us to give the first linear-time calibration testing algorithm, improving a result of Hu et al. (2024). We also introduce a general recipe for constructing truthful measures based on the variance additivity of independent random variables, which proves the truthfulness of ATB as a special case and allows us to construct other truthful calibration measures such as quantile-binned l_2-ECE.
♻ ☆ TimeCopilot
We introduce TimeCopilot, the first open-source agentic framework for forecasting that combines multiple Time Series Foundation Models (TSFMs) with Large Language Models (LLMs) through a single unified API. TimeCopilot automates the forecasting pipeline: feature analysis, model selection, cross-validation, and forecast generation, while providing natural language explanations and supporting direct queries about the future. The framework is LLM-agnostic, compatible with both commercial and open-source models, and supports ensembles across diverse forecasting families. Results on the large-scale GIFT-Eval benchmark show that TimeCopilot achieves state-of-the-art probabilistic forecasting performance at low cost. Our framework provides a practical foundation for reproducible, explainable, and accessible agentic forecasting systems.
♻ ☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks - particularly those involving locomotion - require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
♻ ☆ It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation NeurIPS 2025
Structure-agnostic causal inference studies how well one can estimate a treatment effect given black-box machine learning estimates of nuisance functions (like the impact of confounders on treatment and outcomes). Here, we find that the answer depends in a surprising way on the distribution of the treatment noise. Focusing on the partially linear model of \citet{robinson1988root}, we first show that the widely adopted double machine learning (DML) estimator is minimax rate-optimal for Gaussian treatment noise, resolving an open problem of \citet{mackey2018orthogonal}. Meanwhile, for independent non-Gaussian treatment noise, we show that DML is always suboptimal by constructing new practical procedures with higher-order robustness to nuisance errors. These \emph{ACE} procedures use structure-agnostic cumulant estimators to achieve $r$-th order insensitivity to nuisance errors whenever the $(r+1)$-st treatment cumulant is non-zero. We complement these core results with novel minimax guarantees for binary treatments in the partially linear model. Finally, using synthetic demand estimation experiments, we demonstrate the practical benefits of our higher-order robust estimators.
comment: NeurIPS 2025
♻ ☆ Spatio-Temporal Graph Convolutional Networks for EV Charging Demand Forecasting Using Real-World Multi-Modal Data Integration
Transportation remains a major contributor to greenhouse gas emissions, highlighting the urgency of transitioning toward sustainable alternatives such as electric vehicles (EVs). Yet, uneven spatial distribution and irregular utilization of charging infrastructure create challenges for both power grid stability and investment planning. This study introduces TW-GCN, a spatio-temporal forecasting framework that combines Graph Convolutional Networks with temporal architectures to predict EV charging demand in Tennessee, United States (U.S.). We utilize real-world traffic flows, weather conditions, and proprietary data provided by one of the largest EV infrastructure company in the U.S. to capture both spatial dependencies and temporal dynamics. Extensive experiments across varying lag horizons, clustering strategies, and sequence lengths reveal that mid-horizon (3-hour) forecasts achieve the best balance between responsiveness and stability, with 1DCNN consistently outperforming other temporal models. Regional analysis shows disparities in predictive accuracy across East, Middle, and West Tennessee, reflecting how station density, population, and local demand variability shape model performance. The proposed TW-GCN framework advances the integration of data-driven intelligence into EV infrastructure planning, supporting both sustainable mobility transitions and resilient grid management.
Information Retrieval 27
☆ TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
comment: 32 pages
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Mapping Research Productivity of BRICS Countries with Special Reference to Coronary Artery Disease (CAD): A Scientometric Study
This study presents a comprehensive scientometric analysis of research productivity on Coronary Artery Disease (CAD) among the BRICS countries, Brazil, Russia, India, China, and South Africa, using data retrieved from the Web of Science database for the period 1990 to 2019. A total of 50,036 records were analyzed to assess publication growth trends, authorship patterns, collaboration levels, and citation impact. The findings reveal a steady increase in CAD-related publications, with China emerging as the leading contributor, followed by Brazil, Russia, India, and South Africa. English dominated as the primary language of communication, accounting for over 93% of publications. Authorship and collaboration analysis indicate a high degree of joint research, with 97.91% of studies being co-authored and a degree of collaboration of 0.98, underscoring the collective nature of scientific inquiry in this domain. The study validates the applicability of Lotkas Law for author productivity, Bradfords Law for journal distribution, and Zipfs Law for keyword frequency, while the Price Square Root Law was found inapplicable. The predominant publication format was journal articles (79.7%), and Kardiologiya (Russia) emerged as the most prolific journal. The results demonstrate significant growth in CAD research output and collaboration within BRICS, though notable disparities persist among member nations. The study recommends enhancing individual author productivity, expanding international collaboration, and supporting CAD research through strategic institutional and governmental initiatives. These findings provide valuable insights for policymakers, funding agencies, and the academic community to strengthen cardiovascular research capacity within developing economies.
comment: 260 Pages, 21 figures, PhD Thesis 2020
☆ Wikipedia-based Datasets in Russian Information Retrieval Benchmark RusBEIR
In this paper, we present a novel series of Russian information retrieval datasets constructed from the "Did you know..." section of Russian Wikipedia. Our datasets support a range of retrieval tasks, including fact-checking, retrieval-augmented generation, and full-document retrieval, by leveraging interesting facts and their referenced Wikipedia articles annotated at the sentence level with graded relevance. We describe the methodology for dataset creation that enables the expansion of existing Russian Information Retrieval (IR) resources. Through extensive experiments, we extend the RusBEIR research by comparing lexical retrieval models, such as BM25, with state-of-the-art neural architectures fine-tuned for Russian, as well as multilingual models. Results of our experiments show that lexical methods tend to outperform neural models on full-document retrieval, while neural approaches better capture lexical semantics in shorter texts, such as in fact-checking or fine-grained retrieval. Using our newly created datasets, we also analyze the impact of document length on retrieval performance and demonstrate that combining retrieval with neural reranking consistently improves results. Our contribution expands the resources available for Russian information retrieval research and highlights the importance of accurate evaluation of retrieval models to achieve optimal performance. All datasets are publicly available at HuggingFace. To facilitate reproducibility and future research, we also release the full implementation on GitHub.
☆ The use of social media among library professionals and patrons: A review of literature
This paper focused on the utilization of social media by library professionals and library users. It provides an understanding of social media, the most popular social media platforms utilized in the libraries. It also mentions the reasons for the adoption of social media in libraries be it academic, public, school libraries and other types of libraries. This is a review paper on the use of social media among library professionals and patrons. The findings reveal the contributions of social media to the libraries. Social media makes things easy for library professionals and library users. It enables them to connect, create awareness to new information, disseminate information instantly, and helps to market the library resources and services. Therefore, it is recommended amongst others that the library management board should encourage the use of social media in libraries.
comment: 5 pages, Research Paper
☆ Query Generation Pipeline with Enhanced Answerability Assessment for Financial Information Retrieval
As financial applications of large language models (LLMs) gain attention, accurate Information Retrieval (IR) remains crucial for reliable AI services. However, existing benchmarks fail to capture the complex and domain-specific information needs of real-world banking scenarios. Building domain-specific IR benchmarks is costly and constrained by legal restrictions on using real customer data. To address these challenges, we propose a systematic methodology for constructing domain-specific IR benchmarks through LLM-based query generation. As a concrete implementation of this methodology, our pipeline combines single and multi-document query generation with an enhanced and reasoning-augmented answerability assessment method, achieving stronger alignment with human judgments than prior approaches. Using this methodology, we construct KoBankIR, comprising 815 queries derived from 204 official banking documents. Our experiments show that existing retrieval models struggle with the complex multi-document queries in KoBankIR, demonstrating the value of our systematic approach for domain-specific benchmark construction and underscoring the need for improved retrieval techniques in financial domains.
comment: Accepted(Oral) by ICAIF 2025. Hyunkyu Kim and Yeeun Yoo contributed equally to this work
☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
☆ Association via Entropy Reduction
Prior to recent successes using neural networks, term frequency-inverse document frequency (tf-idf) was clearly regarded as the best choice for identifying documents related to a query. We provide a different score, aver, and observe, on a dataset with ground truth marking for association, that aver does do better at finding assciated pairs than tf-idf. This example involves finding associated vertices in a large graph and that may be an area where neural networks are not currently an obvious best choice. Beyond this one anecdote, we observe that (1) aver has a natural threshold for declaring pairs as unassociated while tf-idf does not, (2) aver can distinguish between pairs of documents for which tf-idf gives a score of 1.0, (3) aver can be applied to larger collections of documents than pairs while tf-idf cannot, and (4) that aver is derived from entropy under a simple statistical model while tf-idf is a construction designed to achieve a certain goal and hence aver may be more "natural." To be fair, we also observe that (1) writing down and computing the aver score for a pair is more complex than for tf-idf and (2) that the fact that the aver score is naturally scale-free makes it more complicated to interpret aver scores.
☆ A Representation Sharpening Framework for Zero Shot Dense Retrieval
Zero-shot dense retrieval is a challenging setting where a document corpus is provided without relevant queries, necessitating a reliance on pretrained dense retrievers (DRs). However, since these DRs are not trained on the target corpus, they struggle to represent semantic differences between similar documents. To address this failing, we introduce a training-free representation sharpening framework that augments a document's representation with information that helps differentiate it from similar documents in the corpus. On over twenty datasets spanning multiple languages, the representation sharpening framework proves consistently superior to traditional retrieval, setting a new state-of-the-art on the BRIGHT benchmark. We show that representation sharpening is compatible with prior approaches to zero-shot dense retrieval and consistently improves their performance. Finally, we address the performance-cost tradeoff presented by our framework and devise an indexing-time approximation that preserves the majority of our performance gains over traditional retrieval, yet suffers no additional inference-time cost.
comment: 15 pages, 4 figures
☆ SARCH: Multimodal Search for Archaeological Archives
In this paper, we describe a multi-modal search system designed to search old archaeological books and reports. This corpus is digitally available as scanned PDFs, but varies widely in the quality of scans. Our pipeline, designed for multi-modal archaeological documents, extracts and indexes text, images (classified into maps, photos, layouts, and others), and tables. We evaluated different retrieval strategies, including keyword-based search, embedding- based models, and a hybrid approach that selects optimal results from both modalities. We report and analyze our preliminary results and discuss future work in this exciting vertical.
☆ A Representation Sharpening Framework for Zero Shot Dense Retrieval
Zero-shot dense retrieval is a challenging setting where a document corpus is provided without relevant queries, necessitating a reliance on pretrained dense retrievers (DRs). However, since these DRs are not trained on the target corpus, they struggle to represent semantic differences between similar documents. To address this failing, we introduce a training-free representation sharpening framework that augments a document's representation with information that helps differentiate it from similar documents in the corpus. On over twenty datasets spanning multiple languages, the representation sharpening framework proves consistently superior to traditional retrieval, setting a new state-of-the-art on the BRIGHT benchmark. We show that representation sharpening is compatible with prior approaches to zero-shot dense retrieval and consistently improves their performance. Finally, we address the performance-cost tradeoff presented by our framework and devise an indexing-time approximation that preserves the majority of our performance gains over traditional retrieval, yet suffers no additional inference-time cost.
comment: 15 pages, 4 figures
☆ SARCH: Multimodal Search for Archaeological Archives
In this paper, we describe a multi-modal search system designed to search old archaeological books and reports. This corpus is digitally available as scanned PDFs, but varies widely in the quality of scans. Our pipeline, designed for multi-modal archaeological documents, extracts and indexes text, images (classified into maps, photos, layouts, and others), and tables. We evaluated different retrieval strategies, including keyword-based search, embedding-based models, and a hybrid approach that selects optimal results from both modalities. We report and analyze our preliminary results and discuss future work in this exciting vertical.
☆ TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.
comment: 32 pages
☆ QUESTER: Query Specification for Generative Retrieval
Generative Retrieval (GR) differs from the traditional index-then-retrieve pipeline by storing relevance in model parameters and directly generating document identifiers. However, GR often struggles to generalize and is costly to scale. We introduce QUESTER (QUEry SpecificaTion gEnerative Retrieval), which reframes GR as query specification generation - in this work, a simple keyword query handled by BM25 - using a (small) LLM. The policy is trained using reinforcement learning techniques (GRPO). Across in- and out-of-domain evaluations, we show that our model is more effective than BM25, and competitive with neural IR models, while maintaining a good efficiency
☆ Mapping Research Productivity of BRICS Countries with Special Reference to Coronary Artery Disease (CAD): A Scientometric Study
This study presents a comprehensive scientometric analysis of research productivity on Coronary Artery Disease (CAD) among the BRICS countries, Brazil, Russia, India, China, and South Africa, using data retrieved from the Web of Science database for the period 1990 to 2019. A total of 50,036 records were analyzed to assess publication growth trends, authorship patterns, collaboration levels, and citation impact. The findings reveal a steady increase in CAD-related publications, with China emerging as the leading contributor, followed by Brazil, Russia, India, and South Africa. English dominated as the primary language of communication, accounting for over 93% of publications. Authorship and collaboration analysis indicate a high degree of joint research, with 97.91% of studies being co-authored and a degree of collaboration of 0.98, underscoring the collective nature of scientific inquiry in this domain. The study validates the applicability of Lotkas Law for author productivity, Bradfords Law for journal distribution, and Zipfs Law for keyword frequency, while the Price Square Root Law was found inapplicable. The predominant publication format was journal articles (79.7%), and Kardiologiya (Russia) emerged as the most prolific journal. The results demonstrate significant growth in CAD research output and collaboration within BRICS, though notable disparities persist among member nations. The study recommends enhancing individual author productivity, expanding international collaboration, and supporting CAD research through strategic institutional and governmental initiatives. These findings provide valuable insights for policymakers, funding agencies, and the academic community to strengthen cardiovascular research capacity within developing economies.
comment: 260 Pages, 21 figures, PhD Thesis 2020
☆ Wikipedia-based Datasets in Russian Information Retrieval Benchmark RusBEIR
In this paper, we present a novel series of Russian information retrieval datasets constructed from the "Did you know..." section of Russian Wikipedia. Our datasets support a range of retrieval tasks, including fact-checking, retrieval-augmented generation, and full-document retrieval, by leveraging interesting facts and their referenced Wikipedia articles annotated at the sentence level with graded relevance. We describe the methodology for dataset creation that enables the expansion of existing Russian Information Retrieval (IR) resources. Through extensive experiments, we extend the RusBEIR research by comparing lexical retrieval models, such as BM25, with state-of-the-art neural architectures fine-tuned for Russian, as well as multilingual models. Results of our experiments show that lexical methods tend to outperform neural models on full-document retrieval, while neural approaches better capture lexical semantics in shorter texts, such as in fact-checking or fine-grained retrieval. Using our newly created datasets, we also analyze the impact of document length on retrieval performance and demonstrate that combining retrieval with neural reranking consistently improves results. Our contribution expands the resources available for Russian information retrieval research and highlights the importance of accurate evaluation of retrieval models to achieve optimal performance. All datasets are publicly available at HuggingFace. To facilitate reproducibility and future research, we also release the full implementation on GitHub.
☆ The use of social media among library professionals and patrons: A review of literature
This paper focused on the utilization of social media by library professionals and library users. It provides an understanding of social media, the most popular social media platforms utilized in the libraries. It also mentions the reasons for the adoption of social media in libraries be it academic, public, school libraries and other types of libraries. This is a review paper on the use of social media among library professionals and patrons. The findings reveal the contributions of social media to the libraries. Social media makes things easy for library professionals and library users. It enables them to connect, create awareness to new information, disseminate information instantly, and helps to market the library resources and services. Therefore, it is recommended amongst others that the library management board should encourage the use of social media in libraries.
comment: 5 pages, Research Paper
☆ Query Generation Pipeline with Enhanced Answerability Assessment for Financial Information Retrieval
As financial applications of large language models (LLMs) gain attention, accurate Information Retrieval (IR) remains crucial for reliable AI services. However, existing benchmarks fail to capture the complex and domain-specific information needs of real-world banking scenarios. Building domain-specific IR benchmarks is costly and constrained by legal restrictions on using real customer data. To address these challenges, we propose a systematic methodology for constructing domain-specific IR benchmarks through LLM-based query generation. As a concrete implementation of this methodology, our pipeline combines single and multi-document query generation with an enhanced and reasoning-augmented answerability assessment method, achieving stronger alignment with human judgments than prior approaches. Using this methodology, we construct KoBankIR, comprising 815 queries derived from 204 official banking documents. Our experiments show that existing retrieval models struggle with the complex multi-document queries in KoBankIR, demonstrating the value of our systematic approach for domain-specific benchmark construction and underscoring the need for improved retrieval techniques in financial domains.
comment: Accepted(Oral) by ICAIF 2025. Hyunkyu Kim and Yeeun Yoo contributed equally to this work
☆ Association via Entropy Reduction
Prior to recent successes using neural networks, term frequency-inverse document frequency (tf-idf) was clearly regarded as the best choice for identifying documents related to a query. We provide a different score, aver, and observe, on a dataset with ground truth marking for association, that aver does do better at finding assciated pairs than tf-idf. This example involves finding associated vertices in a large graph and that may be an area where neural networks are not currently an obvious best choice. Beyond this one anecdote, we observe that (1) aver has a natural threshold for declaring pairs as unassociated while tf-idf does not, (2) aver can distinguish between pairs of documents for which tf-idf gives a score of 1.0, (3) aver can be applied to larger collections of documents than pairs while tf-idf cannot, and (4) that aver is derived from entropy under a simple statistical model while tf-idf is a construction designed to achieve a certain goal and hence aver may be more "natural." To be fair, we also observe that (1) writing down and computing the aver score for a pair is more complex than for tf-idf and (2) that the fact that the aver score is naturally scale-free makes it more complicated to interpret aver scores.
♻ ☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26. Analysis code can be found here: https://github.com/allie-tran/clip-brittleness
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ Extracting narrative signals from public discourse: a network-based approach
Narratives are key interpretative devices by which humans make sense of political reality. As the significance of narratives for understanding current societal issues such as polarization and misinformation becomes increasingly evident, there is a growing demand for methods that support their empirical analysis. To this end, we propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals from digital textual corpora, based on Abstract Meaning Representation (AMR). The formalism and method introduced here specifically cater to the study of political narratives that figure in texts from digital media such as archived political speeches, social media posts, transcripts of parliamentary debates, and political manifestos on party websites. We approach the study of such political narratives as a problem of information retrieval: starting from a textual corpus, we first extract a graph-like representation of the meaning of each sentence in the corpus using AMR. Drawing on transferable concepts from narratology, we then apply a set of heuristics to filter these graphs for representations of 1) actors and their relationships, 2) the events in which these actors figure, and 3) traces of the perspectivization of these events. We approach these references to actors, events, and instances of perspectivization as core narrative signals that allude to larger political narratives. By systematically analyzing and re-assembling these signals into networks that guide the researcher to the relevant parts of the text, the underlying narratives can be reconstructed through a combination of distant and close reading. A case study of State of the European Union addresses (2010 -- 2023) demonstrates how the formalism can be used to inductively surface signals of political narratives from public discourse.
comment: 27 pages, 6 figures
♻ ☆ On the Brittleness of CLIP Text Encoders
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.
comment: Accepted for publication at MMM'26. Analysis code can be found here: https://github.com/allie-tran/clip-brittleness
♻ ☆ MMDocIR: Benchmarking Multimodal Retrieval for Long Documents EMNLP-2025
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text. Our dataset is available at https://mmdocrag.github.io/MMDocIR/.
comment: Paper accepted to EMNLP-2025(Main)
♻ ☆ Benchmarking Retrieval-Augmented Multimodal Generation for Document Question Answering NeurIPS 2025
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
comment: Paper accepted to NeurIPS 2025 DB
♻ ☆ Extracting narrative signals from public discourse: a network-based approach
Narratives are key interpretative devices by which humans make sense of political reality. As the significance of narratives for understanding current societal issues such as polarization and misinformation becomes increasingly evident, there is a growing demand for methods that support their empirical analysis. To this end, we propose a graph-based formalism and machine-guided method for extracting, representing, and analyzing selected narrative signals from digital textual corpora, based on Abstract Meaning Representation (AMR). The formalism and method introduced here specifically cater to the study of political narratives that figure in texts from digital media such as archived political speeches, social media posts, transcripts of parliamentary debates, and political manifestos on party websites. We approach the study of such political narratives as a problem of information retrieval: starting from a textual corpus, we first extract a graph-like representation of the meaning of each sentence in the corpus using AMR. Drawing on transferable concepts from narratology, we then apply a set of heuristics to filter these graphs for representations of 1) actors and their relationships, 2) the events in which these actors figure, and 3) traces of the perspectivization of these events. We approach these references to actors, events, and instances of perspectivization as core narrative signals that allude to larger political narratives. By systematically analyzing and re-assembling these signals into networks that guide the researcher to the relevant parts of the text, the underlying narratives can be reconstructed through a combination of distant and close reading. A case study of State of the European Union addresses (2010 -- 2023) demonstrates how the formalism can be used to inductively surface signals of political narratives from public discourse.
comment: 27 pages, 6 figures