MyArxiv
Computation and Language 64
☆ GenEnv: Difficulty-Aligned Co-Evolution Between LLM Agents and Environment Simulators
Training capable Large Language Model (LLM) agents is critically bottlenecked by the high cost and static nature of real-world interaction data. We address this by introducing GenEnv, a framework that establishes a difficulty-aligned co-evolutionary game between an agent and a scalable, generative environment simulator. Unlike traditional methods that evolve models on static datasets, GenEnv instantiates a dataevolving: the simulator acts as a dynamic curriculum policy, continuously generating tasks specifically tailored to the agent's ``zone of proximal development''. This process is guided by a simple but effective $α$-Curriculum Reward, which aligns task difficulty with the agent's current capabilities. We evaluate GenEnv on five benchmarks, including API-Bank, ALFWorld, BFCL, Bamboogle, and TravelPlanner. Across these tasks, GenEnv improves agent performance by up to \textbf{+40.3\%} over 7B baselines and matches or exceeds the average performance of larger models. Compared to Gemini 2.5 Pro-based offline data augmentation, GenEnv achieves better performance while using 3.3$\times$ less data. By shifting from static supervision to adaptive simulation, GenEnv provides a data-efficient pathway for scaling agent capabilities.
comment: Our codes are available at https://github.com/Gen-Verse/GenEnv
☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a single unified policy, overlooking their internal mechanisms. Understanding how policy evolves across layers and modules is therefore crucial for enabling more targeted optimization and raveling out complex reasoning mechanisms. In this paper, we decompose the language model policy by leveraging the intrinsic split of the Transformer residual stream and the equivalence between the composition of hidden states with the unembedding matrix and the resulting samplable policy. This decomposition reveals Internal Layer Policies, corresponding to contributions from individual layers, and Internal Modular Policies, which align with the self-attention and feed-forward network (FFN) components within each layer. By analyzing the entropy of internal policy, we find that: (a) Early layers keep high entropy for exploration, top layers converge to near-zero entropy for refinement, with convergence patterns varying across model series. (b) LLama's prediction space rapidly converges in the final layer, whereas Qwen-series models, especially Qwen3, exhibit a more human-like, progressively structured reasoning pattern. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that directly optimizes the internal layer policy during early training. By aligning training objective at lower layer, BuPO reconstructs foundational reasoning capabilities and achieves superior performance. Extensive experiments on complex reasoning benchmarks demonstrates the effectiveness of our method. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
Exploring Zero-Shot ACSA with Unified Meaning Representation in Chain-of-Thought Prompting
Aspect-Category Sentiment Analysis (ACSA) provides granular insights by identifying specific themes within reviews and their associated sentiment. While supervised learning approaches dominate this field, the scarcity and high cost of annotated data for new domains present significant barriers. We argue that leveraging large language models (LLMs) in a zero-shot setting is a practical alternative where resources for data annotation are limited. In this work, we propose a novel Chain-of-Thought (CoT) prompting technique that utilises an intermediate Unified Meaning Representation (UMR) to structure the reasoning process for the ACSA task. We evaluate this UMR-based approach against a standard CoT baseline across three models (Qwen3-4B, Qwen3-8B, and Gemini-2.5-Pro) and four diverse datasets. Our findings suggest that UMR effectiveness may be model-dependent. Whilst preliminary results indicate comparable performance for mid-sized models such as Qwen3-8B, these observations warrant further investigation, particularly regarding the potential applicability to smaller model architectures. Further research is required to establish the generalisability of these findings across different model scales.
comment: 9 pages, 3 figures, 3 tables
☆ Diacritic Restoration for Low-Resource Indigenous Languages: Case Study with Bribri and Cook Islands Māori
We present experiments on diacritic restoration, a form of text normalization essential for natural language processing (NLP) tasks. Our study focuses on two extremely under-resourced languages: Bribri, a Chibchan language spoken in Costa Rica, and Cook Islands Māori, a Polynesian language spoken in the Cook Islands. Specifically, this paper: (i) compares algorithms for diacritics restoration in under-resourced languages, including tonal diacritics, (ii) examines the amount of data required to achieve target performance levels, (iii) contrasts results across varying resource conditions, and (iv) explores the related task of diacritic correction. We find that fine-tuned, character-level LLMs perform best, likely due to their ability to decompose complex characters into their UTF-8 byte representations. In contrast, massively multilingual models perform less effectively given our data constraints. Across all models, reliable performance begins to emerge with data budgets of around 10,000 words. Zero-shot approaches perform poorly in all cases. This study responds both to requests from the language communities and to broader NLP research questions concerning model performance and generalization in under-resourced contexts.
Exploring the features used for summary evaluation by Human and GPT
Summary assessment involves evaluating how well a generated summary reflects the key ideas and meaning of the source text, requiring a deep understanding of the content. Large Language Models (LLMs) have been used to automate this process, acting as judges to evaluate summaries with respect to the original text. While previous research investigated the alignment between LLMs and Human responses, it is not yet well understood what properties or features are exploited by them when asked to evaluate based on a particular quality dimension, and there has not been much attention towards mapping between evaluation scores and metrics. In this paper, we address this issue and discover features aligned with Human and Generative Pre-trained Transformers (GPTs) responses by studying statistical and machine learning metrics. Furthermore, we show that instructing GPTs to employ metrics used by Human can improve their judgment and conforming them better with human responses.
☆ MauBERT: Universal Phonetic Inductive Biases for Few-Shot Acoustic Units Discovery
This paper introduces MauBERT, a multilingual extension of HuBERT that leverages articulatory features for robust cross-lingual phonetic representation learning. We continue HuBERT pre-training with supervision based on a phonetic-to-articulatory feature mapping in 55 languages. Our models learn from multilingual data to predict articulatory features or phones, resulting in language-independent representations that capture multilingual phonetic properties. Through comprehensive ABX discriminability testing, we show MauBERT models produce more context-invariant representations than state-of-the-art multilingual self-supervised learning models. Additionally, the models effectively adapt to unseen languages and casual speech with minimal self-supervised fine-tuning (10 hours of speech). This establishes an effective approach for instilling linguistic inductive biases in self-supervised speech models.
☆ Increasing the Thinking Budget is Not All You Need
Recently, a new wave of thinking-capable Large Language Models has emerged, demonstrating exceptional capabilities across a wide range of reasoning benchmarks. Early studies have begun to explore how the amount of compute in terms of the length of the reasoning process, the so-called thinking budget, impacts model performance. In this work, we propose a systematic investigation of the thinking budget as a key parameter, examining its interaction with various configurations such as self-consistency, reflection, and others. Our goal is to provide an informative, balanced comparison framework that considers both performance outcomes and computational cost. Among our findings, we discovered that simply increasing the thinking budget is not the most effective use of compute. More accurate responses can instead be achieved through alternative configurations, such as self-consistency and self-reflection.
comment: 4 pages, 4 figures, 3 tables
☆ Algerian Dialect
We present Algerian Dialect, a large-scale sentiment-annotated dataset consisting of 45,000 YouTube comments written in Algerian Arabic dialect. The comments were collected from more than 30 Algerian press and media channels using the YouTube Data API. Each comment is manually annotated into one of five sentiment categories: very negative, negative, neutral, positive, and very positive. In addition to sentiment labels, the dataset includes rich metadata such as collection timestamps, like counts, video URLs, and annotation dates. This dataset addresses the scarcity of publicly available resources for Algerian dialect and aims to support research in sentiment analysis, dialectal Arabic NLP, and social media analytics. The dataset is publicly available on Mendeley Data under a CC BY 4.0 license at https://doi.org/10.17632/zzwg3nnhsz.2.
☆ Event Extraction in Large Language Model
Large language models (LLMs) and multimodal LLMs are changing event extraction (EE): prompting and generation can often produce structured outputs in zero shot or few shot settings. Yet LLM based pipelines face deployment gaps, including hallucinations under weak constraints, fragile temporal and causal linking over long contexts and across documents, and limited long horizon knowledge management within a bounded context window. We argue that EE should be viewed as a system component that provides a cognitive scaffold for LLM centered solutions. Event schemas and slot constraints create interfaces for grounding and verification; event centric structures act as controlled intermediate representations for stepwise reasoning; event links support relation aware retrieval with graph based RAG; and event stores offer updatable episodic and agent memory beyond the context window. This survey covers EE in text and multimodal settings, organizing tasks and taxonomy, tracing method evolution from rule based and neural models to instruction driven and generative frameworks, and summarizing formulations, decoding strategies, architectures, representations, datasets, and evaluation. We also review cross lingual, low resource, and domain specific settings, and highlight open challenges and future directions for reliable event centric systems. Finally, we outline open challenges and future directions that are central to the LLM era, aiming to evolve EE from static extraction into a structurally reliable, agent ready perception and memory layer for open world systems.
comment: 38 pages, 9 Figures, 5 Tables
☆ A Large-Language-Model Framework for Automated Humanitarian Situation Reporting
Timely and accurate situational reports are essential for humanitarian decision-making, yet current workflows remain largely manual, resource intensive, and inconsistent. We present a fully automated framework that uses large language models (LLMs) to transform heterogeneous humanitarian documents into structured and evidence-grounded reports. The system integrates semantic text clustering, automatic question generation, retrieval augmented answer extraction with citations, multi-level summarization, and executive summary generation, supported by internal evaluation metrics that emulate expert reasoning. We evaluated the framework across 13 humanitarian events, including natural disasters and conflicts, using more than 1,100 documents from verified sources such as ReliefWeb. The generated questions achieved 84.7 percent relevance, 84.0 percent importance, and 76.4 percent urgency. The extracted answers reached 86.3 percent relevance, with citation precision and recall both exceeding 76 percent. Agreement between human and LLM based evaluations surpassed an F1 score of 0.80. Comparative analysis shows that the proposed framework produces reports that are more structured, interpretable, and actionable than existing baselines. By combining LLM reasoning with transparent citation linking and multi-level evaluation, this study demonstrates that generative AI can autonomously produce accurate, verifiable, and operationally useful humanitarian situation reports.
comment: 18 pages, 3 figures
☆ Epistemological Fault Lines Between Human and Artificial Intelligence
Large language models (LLMs) are widely described as artificial intelligence, yet their epistemic profile diverges sharply from human cognition. Here we show that the apparent alignment between human and machine outputs conceals a deeper structural mismatch in how judgments are produced. Tracing the historical shift from symbolic AI and information filtering systems to large-scale generative transformers, we argue that LLMs are not epistemic agents but stochastic pattern-completion systems, formally describable as walks on high-dimensional graphs of linguistic transitions rather than as systems that form beliefs or models of the world. By systematically mapping human and artificial epistemic pipelines, we identify seven epistemic fault lines, divergences in grounding, parsing, experience, motivation, causal reasoning, metacognition, and value. We call the resulting condition Epistemia: a structural situation in which linguistic plausibility substitutes for epistemic evaluation, producing the feeling of knowing without the labor of judgment. We conclude by outlining consequences for evaluation, governance, and epistemic literacy in societies increasingly organized around generative AI.
comment: 16 pages, 1 figure
☆ Activations as Features: Probing LLMs for Generalizable Essay Scoring Representations
Automated essay scoring (AES) is a challenging task in cross-prompt settings due to the diversity of scoring criteria. While previous studies have focused on the output of large language models (LLMs) to improve scoring accuracy, we believe activations from intermediate layers may also provide valuable information. To explore this possibility, we evaluated the discriminative power of LLMs' activations in cross-prompt essay scoring task. Specifically, we used activations to fit probes and further analyzed the effects of different models and input content of LLMs on this discriminative power. By computing the directions of essays across various trait dimensions under different prompts, we analyzed the variation in evaluation perspectives of large language models concerning essay types and traits. Results show that the activations possess strong discriminative power in evaluating essay quality and that LLMs can adapt their evaluation perspectives to different traits and essay types, effectively handling the diversity of scoring criteria in cross-prompt settings.
☆ SiamGPT: Quality-First Fine-Tuning for Stable Thai Text Generation
Open-weights large language models remain difficult to deploy for Thai due to unstable generation under complex instructions, despite strong English performance. To mitigate these limitations, We present SiamGPT-32B, an open-weights model based on Qwen3-32B, fine-tuned with a Quality-First strategy emphasizing curated supervision over data scale. The fine-tuning pipeline combines translated high-complexity English instruction data with a Thai-adapted AutoIF framework for instruction and linguistic constraints. Using supervised fine-tuning only, without continual pretraining or corpus expansion, SiamGPT-32B improves instruction adherence, multi-turn robustness, and linguistic stability. Evaluations on the SEA-HELM benchmark show that SiamGPT-32B achieves the strongest overall performance among similar-scale open-weights Thai models, with consistent gains in instruction following, multi-turn dialogue, and natural language understanding.
☆ MobileWorld: Benchmarking Autonomous Mobile Agents in Agent-User Interactive, and MCP-Augmented Environments
Among existing online mobile-use benchmarks, AndroidWorld has emerged as the dominant benchmark due to its reproducible environment and deterministic evaluation; however, recent agents achieving over 90% success rates indicate its saturation and motivate the need for a more challenging benchmark. In addition, its environment lacks key application categories, such as e-commerce and enterprise communication, and does not reflect realistic mobile-use scenarios characterized by vague user instructions and hybrid tool usage. To bridge this gap, we introduce MobileWorld, a substantially more challenging benchmark designed to better reflect real-world mobile usage, comprising 201 tasks across 20 applications, while maintaining the same level of reproducible evaluation as AndroidWorld. The difficulty of MobileWorld is twofold. First, it emphasizes long-horizon tasks with cross-application interactions: MobileWorld requires nearly twice as many task-completion steps on average (27.8 vs. 14.3) and includes far more multi-application tasks (62.2% vs. 9.5%) compared to AndroidWorld. Second, MobileWorld extends beyond standard GUI manipulation by introducing novel task categories, including agent-user interaction and MCP-augmented tasks. To ensure robust evaluation, we provide snapshot-based container environment and precise functional verifications, including backend database inspection and task callback APIs. We further develop a planner-executor agentic framework with extended action spaces to support user interactions and MCP calls. Our results reveal a sharp performance drop compared to AndroidWorld, with the best agentic framework and end-to-end model achieving 51.7% and 20.9% success rates, respectively. Our analysis shows that current models struggle significantly with user interaction and MCP calls, offering a strategic roadmap toward more robust, next-generation mobile intelligence.
☆ CodeSimpleQA: Scaling Factuality in Code Large Language Models
Large language models (LLMs) have made significant strides in code generation, achieving impressive capabilities in synthesizing code snippets from natural language instructions. However, a critical challenge remains in ensuring LLMs generate factually accurate responses about programming concepts, technical implementations, etc. Most previous code-related benchmarks focus on code execution correctness, overlooking the factual accuracy of programming knowledge. To address this gap, we present CodeSimpleQA, a comprehensive bilingual benchmark designed to evaluate the factual accuracy of code LLMs in answering code-related questions, which contains carefully curated question-answer pairs in both English and Chinese, covering diverse programming languages and major computer science domains. Further, we create CodeSimpleQA-Instruct, a large-scale instruction corpus with 66M samples, and develop a post-training framework combining supervised fine-tuning and reinforcement learning. Our comprehensive evaluation of diverse LLMs reveals that even frontier LLMs struggle with code factuality. Our proposed framework demonstrates substantial improvements over the base model, underscoring the critical importance of factuality-aware alignment in developing reliable code LLMs.
☆ From Retrieval to Reasoning: A Framework for Cyber Threat Intelligence NER with Explicit and Adaptive Instructions
The automation of Cyber Threat Intelligence (CTI) relies heavily on Named Entity Recognition (NER) to extract critical entities from unstructured text. Currently, Large Language Models (LLMs) primarily address this task through retrieval-based In-Context Learning (ICL). This paper analyzes this mainstream paradigm, revealing a fundamental flaw: its success stems not from global semantic similarity but largely from the incidental overlap of entity types within retrieved examples. This exposes the limitations of relying on unreliable implicit induction. To address this, we propose TTPrompt, a framework shifting from implicit induction to explicit instruction. TTPrompt maps the core concepts of CTI's Tactics, Techniques, and Procedures (TTPs) into an instruction hierarchy: formulating task definitions as Tactics, guiding strategies as Techniques, and annotation guidelines as Procedures. Furthermore, to handle the adaptability challenge of static guidelines, we introduce Feedback-driven Instruction Refinement (FIR). FIR enables LLMs to self-refine guidelines by learning from errors on minimal labeled data, adapting to distinct annotation dialects. Experiments on five CTI NER benchmarks demonstrate that TTPrompt consistently surpasses retrieval-based baselines. Notably, with refinement on just 1% of training data, it rivals models fine-tuned on the full dataset. For instance, on LADDER, its Micro F1 of 71.96% approaches the fine-tuned baseline, and on the complex CTINexus, its Macro F1 exceeds the fine-tuned ACLM model by 10.91%.
☆ Kunnafonidilaw ka Cadeau: an ASR dataset of present-day Bambara
We present Kunkado, a 160-hour Bambara ASR dataset compiled from Malian radio archives to capture present-day spontaneous speech across a wide range of topics. It includes code-switching, disfluencies, background noise, and overlapping speakers that practical ASR systems encounter in real-world use. We finetuned Parakeet-based models on a 33.47-hour human-reviewed subset and apply pragmatic transcript normalization to reduce variability in number formatting, tags, and code-switching annotations. Evaluated on two real-world test sets, finetuning with Kunkado reduces WER from 44.47\% to 37.12\% on one and from 36.07\% to 32.33\% on the other. In human evaluation, the resulting model also outperforms a comparable system with the same architecture trained on 98 hours of cleaner, less realistic speech. We release the data and models to support robust ASR for predominantly oral languages.
comment: 7 pages, 2 figures
☆ HATS: High-Accuracy Triple-Set Watermarking for Large Language Models
Misuse of LLM-generated text can be curbed by watermarking techniques that embed implicit signals into the output. We propose a watermark that partitions the vocabulary at each decoding step into three sets (Green/Yellow/Red) with fixed ratios and restricts sampling to the Green and Yellow sets. At detection time, we replay the same partitions, compute Green-enrichment and Red-depletion statistics, convert them to one-sided z-scores, and aggregate their p-values via Fisher's method to decide whether a passage is watermarked. We implement generation, detection, and testing on Llama 2 7B, and evaluate true-positive rate, false-positive rate, and text quality. Results show that the triple-partition scheme achieves high detection accuracy at fixed FPR while preserving readability.
comment: Camera-ready version of the paper accepted for oral presentation at the 11th International Conference on Computer and Communications (ICCC 2025)
☆ MAGIC: Achieving Superior Model Merging via Magnitude Calibration
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC
☆ CienaLLM: Generative Climate-Impact Extraction from News Articles with Autoregressive LLMs
Understanding and monitoring the socio-economic impacts of climate hazards requires extracting structured information from heterogeneous news articles on a large scale. To that end, we have developed CienaLLM, a modular framework based on schema-guided Generative Information Extraction. CienaLLM uses open-weight Large Language Models for zero-shot information extraction from news articles, and supports configurable prompts and output schemas, multi-step pipelines, and cloud or on-premise inference. To systematically assess how the choice of LLM family, size, precision regime, and prompting strategy affect performance, we run a large factorial study in models, precisions, and prompt engineering techniques. An additional response parsing step nearly eliminates format errors while preserving accuracy; larger models deliver the strongest and most stable performance, while quantization offers substantial efficiency gains with modest accuracy trade-offs; and prompt strategies show heterogeneous, model-specific effects. CienaLLM matches or outperforms the supervised baseline in accuracy for extracting drought impacts from Spanish news, although at a higher inference cost. While evaluated in droughts, the schema-driven and model-agnostic design is suitable for adapting to related information extraction tasks (e.g., other hazards, sectors, or languages) by editing prompts and schemas rather than retraining. We release code, configurations, and schemas to support reproducible use.
☆ Auto-Prompting with Retrieval Guidance for Frame Detection in Logistics
Prompt engineering plays a critical role in adapting large language models (LLMs) to complex reasoning and labeling tasks without the need for extensive fine-tuning. In this paper, we propose a novel prompt optimization pipeline for frame detection in logistics texts, combining retrieval-augmented generation (RAG), few-shot prompting, chain-of-thought (CoT) reasoning, and automatic CoT synthesis (Auto-CoT) to generate highly effective task-specific prompts. Central to our approach is an LLM-based prompt optimizer agent that iteratively refines the prompts using retrieved examples, performance feedback, and internal self-evaluation. Our framework is evaluated on a real-world logistics text annotation task, where reasoning accuracy and labeling efficiency are critical. Experimental results show that the optimized prompts - particularly those enhanced via Auto-CoT and RAG - improve real-world inference accuracy by up to 15% compared to baseline zero-shot or static prompts. The system demonstrates consistent improvements across multiple LLMs, including GPT-4o, Qwen 2.5 (72B), and LLaMA 3.1 (70B), validating its generalizability and practical value. These findings suggest that structured prompt optimization is a viable alternative to full fine-tuning, offering scalable solutions for deploying LLMs in domain-specific NLP applications such as logistics.
☆ ChemATP: A Training-Free Chemical Reasoning Framework for Large Language Models
Large Language Models (LLMs) exhibit strong general reasoning but struggle in molecular science due to the lack of explicit chemical priors in standard string representations. Current solutions face a fundamental dilemma. Training-based methods inject priors into parameters, but this static coupling hinders rapid knowledge updates and often compromises the model's general reasoning capabilities. Conversely, existing training-free methods avoid these issues but rely on surface-level prompting, failing to provide the fine-grained atom-level priors essential for precise chemical reasoning. To address this issue, we introduce ChemATP, a framework that decouples chemical knowledge from the reasoning engine. By constructing the first atom-level textual knowledge base, ChemATP enables frozen LLMs to explicitly retrieve and reason over this information dynamically. This architecture ensures interpretability and adaptability while preserving the LLM's intrinsic general intelligence. Experiments show that ChemATP significantly outperforms training-free baselines and rivals state-of-the-art training-based models, demonstrating that explicit prior injection is a competitive alternative to implicit parameter updates.
☆ Identifying Features Associated with Bias Against 93 Stigmatized Groups in Language Models and Guardrail Model Safety Mitigation
Large language models (LLMs) have been shown to exhibit social bias, however, bias towards non-protected stigmatized identities remain understudied. Furthermore, what social features of stigmas are associated with bias in LLM outputs is unknown. From psychology literature, it has been shown that stigmas contain six shared social features: aesthetics, concealability, course, disruptiveness, origin, and peril. In this study, we investigate if human and LLM ratings of the features of stigmas, along with prompt style and type of stigma, have effect on bias towards stigmatized groups in LLM outputs. We measure bias against 93 stigmatized groups across three widely used LLMs (Granite 3.0-8B, Llama-3.1-8B, Mistral-7B) using SocialStigmaQA, a benchmark that includes 37 social scenarios about stigmatized identities; for example deciding wether to recommend them for an internship. We find that stigmas rated by humans to be highly perilous (e.g., being a gang member or having HIV) have the most biased outputs from SocialStigmaQA prompts (60% of outputs from all models) while sociodemographic stigmas (e.g. Asian-American or old age) have the least amount of biased outputs (11%). We test if the amount of biased outputs could be decreased by using guardrail models, models meant to identify harmful input, using each LLM's respective guardrail model (Granite Guardian 3.0, Llama Guard 3.0, Mistral Moderation API). We find that bias decreases significantly by 10.4%, 1.4%, and 7.8%, respectively. However, we show that features with significant effect on bias remain unchanged post-mitigation and that guardrail models often fail to recognize the intent of bias in prompts. This work has implications for using LLMs in scenarios involving stigmatized groups and we suggest future work towards improving guardrail models for bias mitigation.
☆ CycleChart: A Unified Consistency-Based Learning Framework for Bidirectional Chart Understanding and Generation
Current chart-specific tasks, such as chart question answering, chart parsing, and chart generation, are typically studied in isolation, preventing models from learning the shared semantics that link chart generation and interpretation. We introduce CycleChart, a consistency-based learning framework for bidirectional chart understanding and generation. CycleChart adopts a schema-centric formulation as a common interface across tasks. We construct a consistent multi-task dataset, where each chart sample includes aligned annotations for schema prediction, data parsing, and question answering. To learn cross-directional chart semantics, CycleChart introduces a generate-parse consistency objective: the model generates a chart schema from a table and a textual query, then learns to recover the schema and data from the generated chart, enforcing semantic alignment across directions. CycleChart achieves strong results on chart generation, chart parsing, and chart question answering, demonstrating improved cross-task generalization and marking a step toward more general chart understanding models.
☆ JEPA-Reasoner: Decoupling Latent Reasoning from Token Generation
While Joint-Embedding Predictive Architecture (JEPA) has emerged as a powerful architecture for learning rich latent representations, it fundamentally lacks generative abilities. Meanwhile, latent space reasoning attempts for Transformer models like COCONUT do improve performance, but they ultimately rely on token-by-token generation, which still accumulates compounding error and relies on context information to gain reasoning insights. To address these limitations, we propose JEPA-Reasoner, a novel JEPA model enhanced with generative ability that reasons in latent space. We augment it with a separate action-taker model, Talker, to produce human-readable sentences. Our approach demonstrates that decoupling latent space reasoning and token generation enables JEPA-Reasoner to produce mixed latent vectors that might lay the foundation for multi-threaded reasoning, while performing autoregressive generation with superior robustness to compounding error.
☆ From Speech to Subtitles: Evaluating ASR Models in Subtitling Italian Television Programs
Subtitles are essential for video accessibility and audience engagement. Modern Automatic Speech Recognition (ASR) systems, built upon Encoder-Decoder neural network architectures and trained on massive amounts of data, have progressively reduced transcription errors on standard benchmark datasets. However, their performance in real-world production environments, particularly for non-English content like long-form Italian videos, remains largely unexplored. This paper presents a case study on developing a professional subtitling system for an Italian media company. To inform our system design, we evaluated four state-of-the-art ASR models (Whisper Large v2, AssemblyAI Universal, Parakeet TDT v3 0.6b, and WhisperX) on a 50-hour dataset of Italian television programs. The study highlights their strengths and limitations, benchmarking their performance against the work of professional human subtitlers. The findings indicate that, while current models cannot meet the media industry's accuracy needs for full autonomy, they can serve as highly effective tools for enhancing human productivity. We conclude that a human-in-the-loop (HITL) approach is crucial and present the production-grade, cloud-based infrastructure we designed to support this workflow.
☆ QuCo-RAG: Quantifying Uncertainty from the Pre-training Corpus for Dynamic Retrieval-Augmented Generation
Dynamic Retrieval-Augmented Generation adaptively determines when to retrieve during generation to mitigate hallucinations in large language models (LLMs). However, existing methods rely on model-internal signals (e.g., logits, entropy), which are fundamentally unreliable because LLMs are typically ill-calibrated and often exhibit high confidence in erroneous outputs. We propose QuCo-RAG, which shifts from subjective confidence to objective statistics computed from pre-training data. Our method quantifies uncertainty through two stages: (1) before generation, we identify low-frequency entities indicating long-tail knowledge gaps; (2) during generation, we verify entity co-occurrence in the pre-training corpus, where zero co-occurrence often signals hallucination risk. Both stages leverage Infini-gram for millisecond-latency queries over 4 trillion tokens, triggering retrieval when uncertainty is high. Experiments on multi-hop QA benchmarks show QuCo-RAG achieves EM gains of 5--12 points over state-of-the-art baselines with OLMo-2 models, and transfers effectively to models with undisclosed pre-training data (Llama, Qwen, GPT), improving EM by up to 14 points. Domain generalization on biomedical QA further validates the robustness of our paradigm. These results establish corpus-grounded verification as a principled, practically model-agnostic paradigm for dynamic RAG. Our code is publicly available at https://github.com/ZhishanQ/QuCo-RAG.
☆ AWPO: Enhancing Tool-Use of Large Language Models through Explicit Integration of Reasoning Rewards
While reinforcement learning (RL) shows promise in training tool-use large language models (LLMs) using verifiable outcome rewards, existing methods largely overlook the potential of explicit reasoning rewards to bolster reasoning and tool utilization. Furthermore, natively combining reasoning and outcome rewards may yield suboptimal performance or conflict with the primary optimization objective. To address this, we propose advantage-weighted policy optimization (AWPO) -- a principled RL framework that effectively integrates explicit reasoning rewards to enhance tool-use capability. AWPO incorporates variance-aware gating and difficulty-aware weighting to adaptively modulate advantages from reasoning signals based on group-relative statistics, alongside a tailored clipping mechanism for stable optimization. Extensive experiments demonstrate that AWPO achieves state-of-the-art performance across standard tool-use benchmarks, significantly outperforming strong baselines and leading closed-source models in challenging multi-turn scenarios. Notably, with exceptional parameter efficiency, our 4B model surpasses Grok-4 by 16.0 percent in multi-turn accuracy while preserving generalization capability on the out-of-distribution MMLU-Pro benchmark.
☆ SAP: Syntactic Attention Pruning for Transformer-based Language Models
This paper introduces Syntactic Attention Pruning (SAP), a novel method for effectively pruning attention heads in Transformer models. Unlike conventional approaches that rely solely on mathematical analysis of model weights and activations, SAP incorporates both the syntactic structure and attention patterns of sentences to guide the pruning process. By leveraging these linguistic features, SAP not only achieves performance comparable to state-of-the-art methods but also enhances the interpretability of model behavior. To further improve robustness, we propose Candidate Filtering (CF), a mechanism that prioritizes heads based on their contribution to model performance, mitigating degradation during pruning. Experimental results indicate that SAP effectively preserves critical heads of a high density of strong attention values, outperforming existing head pruning strategies in retrain-free settings. These findings position SAP as a promising foundation for a new direction in model compression research, offering high flexibility for pruning across all transformer-based language models.
☆ BanglaForge: LLM Collaboration with Self-Refinement for Bangla Code Generation AACL 2025
Bangla is a low-resource language for code generation, lacking large-scale annotated datasets and tools to transform natural language specifications into executable programs. This makes Bangla-to-code generation a challenging task requiring innovative solutions. To address this, we introduce BanglaForge, a novel framework for generating code from Bangla function descriptions. BanglaForge leverages a retrieval-augmented dual-model collaboration paradigm with self-refinement, combining in-context learning, llm-based translation, systematic prompt engineering, and iterative self-refinement based on execution feedback, where a coder generates initial solutions and a reviewer enhances them for robustness. On the BLP-2025 Bangla Code Generation benchmark, BanglaForge achieves a competitive Pass@1 accuracy of 84.00%, demonstrating the effectiveness of retrieval, model collaboration, and self-refinement for low-resource Bangla code generation.
comment: Accepted at BLP Workshop @ IJCNLP-AACL 2025. Code is available at https://github.com/mahirlabibdihan/BanglaForge
☆ Stop saying LLM: Large Discourse Models (LDM) and Artificial Discursive Agent (ADA)?
This paper proposes an epistemological shift in the analysis of large generative models, replacing the category ''Large Language Models'' (LLM) with that of ''Large Discourse Models'' (LDM), and then with that of Artificial Discursive Agent (ADA). The theoretical framework is based on an ontological triad distinguishing three regulatory instances: the apprehension of the phenomenal regularities of the referential world, the structuring of embodied cognition, and the structural-linguistic sedimentation of the utterance within a socio-historical context. LDMs, operating on the product of these three instances (the document), model the discursive projection of a portion of human experience reified by the learning corpus. The proposed program aims to replace the ''fascination/fear'' dichotomy with public trials and procedures that make the place, uses, and limits of artificial discursive agents in contemporary social space decipherable, situating this approach within a perspective of governance and co-regulation involving the State, industry, civil society, and academia.
comment: in French language
☆ A Large Language Model Based Method for Complex Logical Reasoning over Knowledge Graphs
Reasoning over knowledge graphs (KGs) with first-order logic (FOL) queries is challenging due to the inherent incompleteness of real-world KGs and the compositional complexity of logical query structures. Most existing methods rely on embedding entities and relations into continuous geometric spaces and answer queries via differentiable set operations. While effective for simple query patterns, these approaches often struggle to generalize to complex queries involving multiple operators, deeper reasoning chains, or heterogeneous KG schemas. We propose ROG (Reasoning Over knowledge Graphs with large language models), an ensemble-style framework that combines query-aware KG neighborhood retrieval with large language model (LLM)-based chain-of-thought reasoning. ROG decomposes complex FOL queries into sequences of simpler sub-queries, retrieves compact, query-relevant subgraphs as contextual evidence, and performs step-by-step logical inference using an LLM, avoiding the need for task-specific embedding optimization. Experiments on standard KG reasoning benchmarks demonstrate that ROG consistently outperforms strong embedding-based baselines in terms of mean reciprocal rank (MRR), with particularly notable gains on high-complexity query types. These results suggest that integrating structured KG retrieval with LLM-driven logical reasoning offers a robust and effective alternative for complex KG reasoning tasks.
☆ Watch Closely: Mitigating Object Hallucinations in Large Vision-Language Models with Disentangled Decoding
Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)
☆ DramaBench: A Six-Dimensional Evaluation Framework for Drama Script Continuation
Drama script continuation requires models to maintain character consistency, advance plot coherently, and preserve dramatic structurecapabilities that existing benchmarks fail to evaluate comprehensively. We present DramaBench, the first large-scale benchmark for evaluating drama script continuation across six independent dimensions: Format Standards, Narrative Efficiency, Character Consistency, Emotional Depth, Logic Consistency, and Conflict Handling. Our framework combines rulebased analysis with LLM-based labeling and statistical metrics, ensuring objective and reproducible evaluation. We conduct comprehensive evaluation of 8 state-of-the-art language models on 1,103 scripts (8,824 evaluations total), with rigorous statistical significance testing (252 pairwise comparisons, 65.9% significant) and human validation (188 scripts, substantial agreement on 3/5 dimensions). Our ablation studies confirm all six dimensions capture independent quality aspects (mean | r | = 0.020). DramaBench provides actionable, dimensionspecific feedback for model improvement and establishes a rigorous standard for creative writing evaluation.
☆ Efficient Jailbreak Mitigation Using Semantic Linear Classification in a Multi-Staged Pipeline
Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time to completion from approximately 450s to 47s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
comment: Under Review
☆ Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models
Diffusion Large Language Models (DLLMs) enable fully parallel token decoding but often remain impractical at inference time due to the many denoising iterations required to refine an information-free, fully masked initialization into coherent text. Most existing acceleration methods focus on traversing this generative trajectory more efficiently via improved solvers or sampling strategies. We advance a complementary perspective: shorten the trajectory itself by starting closer to the target distribution through context-aware initialization. We propose a training-free interface that injects prompt-conditioned priors from a lightweight auxiliary model into the diffusion initialization, and instantiate it with two mechanisms: discrete token injection and representation-level embedding interpolation. Because injected priors can be imperfect and unmask-only decoding can over-commit early, we also introduce a simple confidence-based remasking mechanism as a form of prior skepticism. Preliminary evidence on GSM8K suggests that context-aware initialization can substantially reduce denoising iterations (about 35\% fewer function evaluations in our setting), while also exposing a key open challenge: naive warm-starting can degrade final accuracy relative to strong diffusion baselines. We use these findings to motivate a research agenda around calibration, revision mechanisms, and representation alignment for reliable warm-started diffusion decoding.
☆ Evaluating the Challenges of LLMs in Real-world Medical Follow-up: A Comparative Study and An Optimized Framework
When applied directly in an end-to-end manner to medical follow-up tasks, Large Language Models (LLMs) often suffer from uncontrolled dialog flow and inaccurate information extraction due to the complexity of follow-up forms. To address this limitation, we designed and compared two follow-up chatbot systems: an end-to-end LLM-based system (control group) and a modular pipeline with structured process control (experimental group). Experimental results show that while the end-to-end approach frequently fails on lengthy and complex forms, our modular method-built on task decomposition, semantic clustering, and flow management-substantially improves dialog stability and extraction accuracy. Moreover, it reduces the number of dialogue turns by 46.73% and lowers token consumption by 80% to 87.5%. These findings highlight the necessity of integrating external control mechanisms when deploying LLMs in high-stakes medical follow-up scenarios.
comment: 10 pages,3 figures,conference ICCBB2025
☆ Affordance RAG: Hierarchical Multimodal Retrieval with Affordance-Aware Embodied Memory for Mobile Manipulation ICRA 2026
In this study, we address the problem of open-vocabulary mobile manipulation, where a robot is required to carry a wide range of objects to receptacles based on free-form natural language instructions. This task is challenging, as it involves understanding visual semantics and the affordance of manipulation actions. To tackle these challenges, we propose Affordance RAG, a zero-shot hierarchical multimodal retrieval framework that constructs Affordance-Aware Embodied Memory from pre-explored images. The model retrieves candidate targets based on regional and visual semantics and reranks them with affordance scores, allowing the robot to identify manipulation options that are likely to be executable in real-world environments. Our method outperformed existing approaches in retrieval performance for mobile manipulation instruction in large-scale indoor environments. Furthermore, in real-world experiments where the robot performed mobile manipulation in indoor environments based on free-form instructions, the proposed method achieved a task success rate of 85%, outperforming existing methods in both retrieval performance and overall task success.
comment: Accepted to IEEE RA-L, with presentation at ICRA 2026
☆ FASTRIC: Prompt Specification Language for Verifiable LLM Interactions
Large Language Models (LLMs) execute complex multi-turn interaction protocols but lack formal specifications to verify execution against designer intent. We introduce FASTRIC, a Prompt Specification Language that makes implicit Finite State Machines (FSMs) explicit in natural language prompts, enabling conformance verification through execution trace analysis. The LLM serves as intelligent execution agent: interpreting designer-encoded FSMs to execute specified behavioral roles. Unlike symbolic specification languages requiring parsers and compilers, FASTRIC leverages LLMs as unified infrastructure-simultaneously parser, interpreter, runtime environment, and development assistant. FASTRIC guides designers to articulate seven FSM elements (Final States, Agents, States, Triggers, Roles, Initial State, Constraints) structuring multi-turn interactions. Specification formality-ranging from implicit descriptions that frontier models infer to explicit step-by-step instructions for weaker models-serves as a design parameter. We introduce procedural conformance as verification metric measuring execution adherence to FSM specifications. Testing a 3-state kindergarten tutoring FSM across four formality levels and three model scales (14.7B, 685B, 1T+ parameters) reveals optimal specification formality is a function of model capacity. DeepSeek-V3.2 (685B) achieves perfect conformance (1.00) at L2-L4; ChatGPT-5 (~1T) peaks at L3 (0.90) before collapsing at L4 (0.39); Phi4 (14.7B) shows no stable optimum with high variance (SD=0.16-0.36). These findings reveal model-specific formality ranges-"Goldilocks zones"-where specifications provide sufficient structure without over-constraint, establishing Prompt Specification Engineering for creating verifiable interaction protocols, transforming multi-turn interaction design from heuristic art to systematic engineering with measurable procedural guarantees.
comment: 13 pages, 3 figures. Supplementary materials at https://doi.org/10.17605/OSF.IO/PV6R3
♻ ☆ LiveOIBench: Can Large Language Models Outperform Human Contestants in Informatics Olympiads?
Competitive programming problems increasingly serve as valuable benchmarks to evaluate the coding capabilities of large language models (LLMs) due to their complexity and ease of verification. Yet, current coding benchmarks face limitations such as lack of exceptionally challenging problems, insufficient test case coverage, reliance on online platform APIs that limit accessibility. To address these issues, we introduce LiveOIBench, a comprehensive benchmark featuring 403 expert-curated Olympiad-level competitive programming problems, each with an average of 60 expert-designed test cases. The problems are sourced directly from 72 official contests of 14 Informatics Olympiads in different regions conducted between 2023 and 2025. LiveOIBench distinguishes itself through four key features: (1) meticulously curated high-quality tasks with detailed subtask rubrics and extensive private test cases; (2) direct integration of elite contestant performance data to enable informative comparison against top-performing humans; (3) planned continuous, contamination-free updates from newly released Olympiad problems; and (4) a self-contained evaluation system facilitating offline and easy-to-reproduce assessments. Benchmarking 34 popular general-purpose and reasoning LLMs, we find that GPT-5 achieves a notable 81.76th percentile, a strong result that nonetheless falls short of top human contestants, who usually place above 90th. In contrast, among open-weight reasoning models, GPT-OSS-120B achieves only a 60th percentile, underscoring significant capability disparities from frontier closed models. Detailed analyses indicate that robust reasoning models prioritize precise problem analysis over excessive exploration, suggesting future models should emphasize structured analysis and minimize unnecessary exploration. All data, code, and leaderboard results are publicly available on our website.
♻ ☆ SoK: Are Watermarks in LLMs Ready for Deployment?
Large Language Models (LLMs) have transformed natural language processing, demonstrating impressive capabilities across diverse tasks. However, deploying these models introduces critical risks related to intellectual property violations and potential misuse, particularly as adversaries can imitate these models to steal services or generate misleading outputs. We specifically focus on model stealing attacks, as they are highly relevant to proprietary LLMs and pose a serious threat to their security, revenue, and ethical deployment. While various watermarking techniques have emerged to mitigate these risks, it remains unclear how far the community and industry have progressed in developing and deploying watermarks in LLMs. To bridge this gap, we aim to develop a comprehensive systematization for watermarks in LLMs by 1) presenting a detailed taxonomy for watermarks in LLMs, 2) proposing a novel intellectual property classifier to explore the effectiveness and impacts of watermarks on LLMs under both attack and attack-free environments, 3) analyzing the limitations of existing watermarks in LLMs, and 4) discussing practical challenges and potential future directions for watermarks in LLMs. Through extensive experiments, we show that despite promising research outcomes and significant attention from leading companies and community to deploy watermarks, these techniques have yet to reach their full potential in real-world applications due to their unfavorable impacts on model utility of LLMs and downstream tasks. Our findings provide an insightful understanding of watermarks in LLMs, highlighting the need for practical watermarks solutions tailored to LLM deployment.
♻ ☆ RadAgents: Multimodal Agentic Reasoning for Chest X-ray Interpretation with Radiologist-like Workflows ML4H'25
Agentic systems offer a potential path to solve complex clinical tasks through collaboration among specialized agents, augmented by tool use and external knowledge bases. Nevertheless, for chest X-ray (CXR) interpretation, prevailing methods remain limited: (i) reasoning is frequently neither clinically interpretable nor aligned with guidelines, reflecting mere aggregation of tool outputs; (ii) multimodal evidence is insufficiently fused, yielding text-only rationales that are not visually grounded; and (iii) systems rarely detect or resolve cross-tool inconsistencies and provide no principled verification mechanisms. To bridge the above gaps, we present RadAgents, a multi-agent framework that couples clinical priors with task-aware multimodal reasoning and encodes a radiologist-style workflow into a modular, auditable pipeline. In addition, we integrate grounding and multimodal retrieval-augmentation to verify and resolve context conflicts, resulting in outputs that are more reliable, transparent, and consistent with clinical practice.
comment: ML4H'25; Work in progress
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignments from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Navigating the Reality Gap: Privacy-Preserving Adaptation of ASR for Challenging Low-Resource Domains
Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades to a 40.94% WER on rural clinical data from India, rendering it unusable. To address this, we explore a zero-data-exfiltration framework enabling localized, continual adaptation via Low-Rank Adaptation (LoRA). We conduct a rigorous investigative study of continual learning strategies, characterizing the trade-offs between data-driven and parameter-driven stability. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we observed that standard Elastic Weight Consolidation (EWC) faced numerical stability challenges when applied to LoRA in noisy environments. Our experiments show that a stabilized, linearized formulation effectively controls gradient magnitudes and enables stable convergence. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability which cannot be bypassed by language models alone.
♻ ☆ Structured Language Generation Model: Loss Calibration and Formatted Decoding for Robust Structure Prediction and Knowledge Retrieval AAAI 2026
Modern generative pre-trained language models excel at open-ended text generation, yet continue to underperform on structure-related tasks such as NER, relation extraction, and semantic role labeling, especially when compared to encoder-only models of similar sizes. While this gap has been attributed to limited structure knowledge, we hypothesize this is also due to the missing connection between the model's internal representations of linguistic structure and the output space used during supervised fine-tuning. We propose the Structured Language Generation Model (SLGM), a model- and task-agnostic framework that reformulates structured prediction as a classification problem through three components: (1) reinforced input formatting with structural cues, (2) loss design, and (3) format-aware decoding that constrains generation to task-valid outputs. Across 5 tasks and 13 datasets, SLGM substantially improves structure prediction without relying on dataset-specific engineering or additional model parameters, strengthening alignment between the model's internal structure representation and output. It outperforms baseline fine-tuning on models of the same size, achieves comparable performance to much larger models when used with <1B parameter models, and acts as a zero-weight adapter that reproduces the benefits of dataset-specific fine-tuning in low-resource settings.
comment: 20 pages, 4 figures. FrontierIR at AAAI 2026
♻ ☆ SPELL: Self-Play Reinforcement Learning for evolving Long-Context Language Models
Progress in long-context reasoning for large language models (LLMs) has lagged behind other recent advances. This gap arises not only from the intrinsic difficulty of processing long texts, but also from the scarcity of reliable human annotations and programmatically verifiable reward signals. In this paper, we propose SPELL, a multi-role self-play reinforcement learning framework that enables scalable, label-free optimization for long-context reasoning. SPELL integrates three cyclical roles-questioner, responder, and verifier-within a single model to enable continual self-improvement. The questioner generates questions from raw documents paired with reference answers; the responder learns to solve these questions based on the documents; and the verifier evaluates semantic equivalence between the responder's output and the questioner's reference answer, producing reward signals to guide continual training. To stabilize training, we introduce an automated curriculum that gradually increases document length and a reward function that adapts question difficulty to the model's evolving capabilities. Extensive experiments on six long-context benchmarks show that SPELL consistently improves performance across diverse LLMs and outperforms equally sized models fine-tuned on large-scale annotated data. Notably, SPELL achieves an average 7.6-point gain in pass@8 on the strong reasoning model Qwen3-30B-A3B-Thinking, raising its performance ceiling and showing promise for scaling to even more capable models.
comment: Preprint under review
♻ ☆ SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
♻ ☆ AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
Modern large reasoning models demonstrate impressive problem-solving capabilities by employing sophisticated reasoning strategies. However, they often struggle to balance efficiency and effectiveness, frequently generating unnecessarily lengthy reasoning chains for simple problems. In this work, we propose AdaCtrl, a novel framework to support both difficulty-aware adaptive reasoning budget allocation and explicit user control over reasoning depth. AdaCtrl dynamically adjusts its reasoning length based on self-assessed problem difficulty, while also allowing users to manually control the budget to prioritize either efficiency or effectiveness. This is achieved through a two-stage training pipeline: an initial cold-start fine-tuning phase to instill the ability to self-aware difficulty and adjust reasoning budget, followed by a difficulty-aware reinforcement learning (RL) stage that refines the model's adaptive reasoning strategies and calibrates its difficulty assessments based on its evolving capabilities during online training. To enable intuitive user interaction, we design explicit length-triggered tags that function as a natural interface for budget control. Empirical results show that AdaCtrl adapts reasoning length based on estimated difficulty, compared to the standard training baseline that also incorporates fine-tuning and RL, it yields performance improvements and simultaneously reduces response length by 10.06% and 12.14% on the more challenging AIME2024 and AIME2025 datasets, which require elaborate reasoning, and by 62.05% and 91.04% on the MATH500 and GSM8K datasets, where more concise responses are sufficient. Furthermore, AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.
♻ ☆ Ontology-Based Knowledge Graph Framework for Industrial Standard Documents via Hierarchical and Propositional Structuring
Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.
comment: The authors have identified significant technical errors in the paper that invalidate the current findings
♻ ☆ LoPA: Scaling dLLM Inference via Lookahead Parallel Decoding
Diffusion Large Language Models (dLLMs) have demonstrated significant potential for high-speed inference. However, current confidence-driven decoding strategies are constrained by limited parallelism, typically achieving only 1--3 tokens per forward pass (TPF). In this work, we identify that the degree of parallelism during dLLM inference is highly sensitive to the Token Filling Order (TFO). Then, we introduce Lookahead PArallel Decoding LoPA, a training-free, plug-and-play algorithm, to identify a superior TFO and hence accelerate inference. LoPA concurrently explores distinct candidate TFOs via parallel branches, and selects the one with the highest potential for future parallelism based on branch confidence. We apply LoPA to the state-of-the-art D2F model and observe a substantial enhancement in decoding efficiency. Notably, LoPA increases the TPF of D2F-Dream to 10.1 on the GSM8K while maintaining performance superior to the Dream baseline. Furthermore, to facilitate this unprecedented degree of parallelism, we develop a specialized multi-device inference system featuring Branch Parallelism (BP), which achieves a single-sample throughput of 1073.9 tokens per second under multi-GPU deployment. The code is available at https://github.com/zhijie-group/LoPA.
♻ ☆ Efficient and Stealthy Jailbreak Attacks via Adversarial Prompt Distillation from LLMs to SLMs
As the scale and complexity of jailbreaking attacks on large language models (LLMs) continue to escalate, their efficiency and practical applicability are constrained, posing a profound challenge to LLM security. Jailbreaking techniques have advanced from manual prompt engineering to automated methodologies. Recent advances have automated jailbreaking approaches that harness LLMs to generate jailbreak instructions and adversarial examples, delivering encouraging results. Nevertheless, these methods universally include an LLM generation phase, which, due to the complexities of deploying and reasoning with LLMs, impedes effective implementation and broader adoption. To mitigate this issue, we introduce \textbf{Adversarial Prompt Distillation}, an innovative framework that integrates masked language modeling, reinforcement learning, and dynamic temperature control to distill LLM jailbreaking prowess into smaller language models (SLMs). This methodology enables efficient, robust jailbreak attacks while maintaining high success rates and accommodating a broader range of application contexts. Empirical evaluations affirm the approach's superiority in attack efficacy, resource optimization, and cross-model versatility. Our research underscores the practicality of transferring jailbreak capabilities to SLMs, reveals inherent vulnerabilities in LLMs, and provides novel insights to advance LLM security investigations. Our code is available at: https://github.com/lxgem/Efficient_and_Stealthy_Jailbreak_Attacks_via_Adversarial_Prompt.
comment: 19 pages, 7 figures
♻ ☆ Mirage of Mastery: Memorization Tricks LLMs into Artificially Inflated Self-Knowledge
When artificial intelligence mistakes memorization for intelligence, it creates a dangerous mirage of reasoning. Existing studies treat memorization and self-knowledge deficits in LLMs as separate issues and do not recognize an intertwining link that degrades the trustworthiness of LLM responses. In our study, we utilize a novel framework to ascertain if LLMs genuinely learn reasoning patterns from training data or merely memorize them to assume competence across problems of similar complexity focused on STEM domains. Our analysis shows a noteworthy problem in generalization: LLMs draw confidence from memorized solutions to infer a higher self-knowledge about their reasoning ability, which manifests as an over 45% inconsistency in feasibility assessments when faced with self-validated, logically coherent task perturbations. This effect is most pronounced in science and medicine domains, which tend to have maximal standardized jargon and problems, further confirming our approach. Significant wavering within the self-knowledge of LLMs also shows flaws in current architectures and training patterns, highlighting the need for techniques that ensure a balanced, consistent stance on models' perceptions of their own knowledge for maximum AI explainability and trustworthiness. Our code and results are available publicly at https://github.com/Sahil-R-Kale/mirage_of_mastery
comment: 12 pages, 9 figures
♻ ☆ Style Over Story: A Process-Oriented Study of Authorial Creativity in Large Language Models
Evaluations of large language models (LLMs)' creativity have focused primarily on the quality of their outputs rather than the processes that shape them. This study takes a process-oriented approach, drawing on narratology to examine LLMs as computational authors. We introduce constraint-based decision-making as a lens for authorial creativity. Using controlled prompting to assign authorial personas, we analyze the creative preferences of the models. Our findings show that LLMs consistently emphasize Style over other elements, including Character, Event, and Setting. By also probing the reasoning the models provide for their choices, we show that distinctive profiles emerge across models and argue that our approach provides a novel systematic tool for analyzing AI's authorial creativity.
♻ ☆ Adaptation of Agentic AI
Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
♻ ☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
♻ ☆ Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
♻ ☆ Kronecker Factorization Improves Efficiency and Interpretability of Sparse Autoencoders
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training and interpreting SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
♻ ☆ UniHR: Hierarchical Representation Learning for Unified Knowledge Graph Link Prediction AAAI 2026
Real-world knowledge graphs (KGs) contain not only standard triple-based facts, but also more complex, heterogeneous types of facts, such as hyper-relational facts with auxiliary key-value pairs, temporal facts with additional timestamps, and nested facts that imply relationships between facts. These richer forms of representation have attracted significant attention due to their enhanced expressiveness and capacity to model complex semantics in real-world scenarios. However, most existing studies suffer from two main limitations: (1) they typically focus on modeling only specific types of facts, thus making it difficult to generalize to real-world scenarios with multiple fact types; and (2) they struggle to achieve generalizable hierarchical (inter-fact and intra-fact) modeling due to the complexity of these representations. To overcome these limitations, we propose UniHR, a Unified Hierarchical Representation learning framework, which consists of a learning-optimized Hierarchical Data Representation (HiDR) module and a unified Hierarchical Structure Learning (HiSL) module. The HiDR module unifies hyper-relational KGs, temporal KGs, and nested factual KGs into triple-based representations. Then HiSL incorporates intra-fact and inter-fact message passing, focusing on enhancing both semantic information within individual facts and enriching the structural information between facts. To go beyond the unified method itself, we further explore the potential of unified representation in complex real-world scenarios. Extensive experiments on 9 datasets across 5 types of KGs demonstrate the effectiveness of UniHR and highlight the strong potential of unified representations. Code and data are available at https://github.com/zjukg/UniHR.
comment: AAAI 2026 (oral)
♻ ☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
♻ ☆ Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery
Large Language Models (LLMs) excel at extracting common patterns from large-scale corpora, yet they struggle with rare, low-resource, or previously unseen scenarios-such as niche hardware deployment issues or irregular IoT device behaviors-because such cases are sparsely represented in training data. Moreover, LLMs rely primarily on implicit parametric memory, which limits their ability to explicitly acquire, recall, and refine methods, causing them to behave predominantly as intuition-driven predictors rather than deliberate, method-oriented learners. Inspired by how humans learn from rare experiences, this paper proposes a human-inspired learning framework that integrates two complementary mechanisms. The first, Obvious Record, explicitly stores cause--result (or question--solution) relationships as symbolic memory, enabling persistent learning even from single or infrequent encounters. The second, Maximum-Entropy Method Discovery, prioritizes and preserves methods with high semantic dissimilarity, allowing the system to capture diverse and underrepresented strategies that are typically overlooked by next-token prediction. Verification on a benchmark of 60 semantically diverse question--solution pairs demonstrates that the proposed entropy-guided approach achieves stronger coverage of unseen questions and significantly greater internal diversity than a random baseline, confirming its effectiveness in discovering more generalizable and human-inspired methods.
♻ ☆ AC4: Algebraic Computation Checker for Circuit Constraints in ZKPs
Zero-knowledge proof (ZKP) systems have surged attention and held a fundamental role in contemporary cryptography. Zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) protocols dominate the ZKP usage, implemented through arithmetic circuit programming paradigm. However, underconstrained or overconstrained circuits may lead to bugs. The former refers to circuits that lack the necessary constraints, resulting in unexpected solutions and causing the verifier to accept a bogus witness, and the latter refers to circuits that are constrained excessively, resulting in lacking necessary solutions and causing the verifier to accept no witness. This paper introduces a novel approach for pinpointing two distinct types of bugs in ZKP circuits. The method involves encoding the arithmetic circuit constraints to polynomial equation systems and solving them over finite fields by the computer algebra system. The classification of verification results is refined, greatly enhancing the expressive power of the system. A tool, AC4, is proposed to represent the implementation of the method. Experiments show that AC4 demonstrates a increase in the solved rate, showing a 29% improvement over Picus and CIVER, and a slight improvement over halo2-analyzer, a checker for halo2 circuits. Within a solvable range, the checking time has also exhibited noticeable improvement, demonstrating a magnitude increase compared to previous efforts.
comment: 26 pages, 5 figures
♻ ☆ Zero-Overhead Introspection for Adaptive Test-Time Compute
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
♻ ☆ Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs NeurIPS 2025
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
comment: Accepted by NeurIPS 2025
♻ ☆ How Reliable are Causal Probing Interventions? AACL
Causal probing aims to analyze foundation models by examining how intervening on their representation of various latent properties impacts their outputs. Recent works have cast doubt on the theoretical basis of several leading causal probing methods, but it has been unclear how to systematically evaluate the effectiveness of these methods in practice. To address this, we define two key causal probing desiderata: completeness (how thoroughly the representation of the target property has been transformed) and selectivity (how little non-targeted properties have been impacted). We find that there is an inherent tradeoff between the two, which we define as reliability, their harmonic mean. We introduce an empirical analysis framework to measure and evaluate these quantities, allowing us to make the first direct comparisons between different families of leading causal probing methods (e.g., linear vs. nonlinear, or concept removal vs. counterfactual interventions). We find that: (1) all methods show a clear tradeoff between completeness and selectivity; (2) more complete and reliable methods have a greater impact on LLM behavior; and (3) nonlinear interventions are almost always more reliable than linear interventions. Our project webpage is available at: https://ahdavies6.github.io/causal_probing_reliability/
comment: In Proceedings of IJCNLP-AACL, 2025
Computer Vision and Pattern Recognition 146
☆ The Prism Hypothesis: Harmonizing Semantic and Pixel Representations via Unified Autoencoding
Deep representations across modalities are inherently intertwined. In this paper, we systematically analyze the spectral characteristics of various semantic and pixel encoders. Interestingly, our study uncovers a highly inspiring and rarely explored correspondence between an encoder's feature spectrum and its functional role: semantic encoders primarily capture low-frequency components that encode abstract meaning, whereas pixel encoders additionally retain high-frequency information that conveys fine-grained detail. This heuristic finding offers a unifying perspective that ties encoder behavior to its underlying spectral structure. We define it as the Prism Hypothesis, where each data modality can be viewed as a projection of the natural world onto a shared feature spectrum, just like the prism. Building on this insight, we propose Unified Autoencoding (UAE), a model that harmonizes semantic structure and pixel details via an innovative frequency-band modulator, enabling their seamless coexistence. Extensive experiments on ImageNet and MS-COCO benchmarks validate that our UAE effectively unifies semantic abstraction and pixel-level fidelity into a single latent space with state-of-the-art performance.
comment: Code link: https://github.com/WeichenFan/UAE
☆ Interact2Ar: Full-Body Human-Human Interaction Generation via Autoregressive Diffusion Models
Generating realistic human-human interactions is a challenging task that requires not only high-quality individual body and hand motions, but also coherent coordination among all interactants. Due to limitations in available data and increased learning complexity, previous methods tend to ignore hand motions, limiting the realism and expressivity of the interactions. Additionally, current diffusion-based approaches generate entire motion sequences simultaneously, limiting their ability to capture the reactive and adaptive nature of human interactions. To address these limitations, we introduce Interact2Ar, the first end-to-end text-conditioned autoregressive diffusion model for generating full-body, human-human interactions. Interact2Ar incorporates detailed hand kinematics through dedicated parallel branches, enabling high-fidelity full-body generation. Furthermore, we introduce an autoregressive pipeline coupled with a novel memory technique that facilitates adaptation to the inherent variability of human interactions using efficient large context windows. The adaptability of our model enables a series of downstream applications, including temporal motion composition, real-time adaptation to disturbances, and extension beyond dyadic to multi-person scenarios. To validate the generated motions, we introduce a set of robust evaluators and extended metrics designed specifically for assessing full-body interactions. Through quantitative and qualitative experiments, we demonstrate the state-of-the-art performance of Interact2Ar.
comment: Project Page: https://pabloruizponce.com/papers/Interact2Ar
☆ Pushing the Frontier of Audiovisual Perception with Large-Scale Multimodal Correspondence Learning
We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, audio-text, and video-text modalities. PE-AV's unified cross-modal embeddings enable novel tasks such as speech retrieval, and set a new state of the art across standard audio and video benchmarks. We unlock this by building a strong audiovisual data engine that synthesizes high-quality captions for O(100M) audio-video pairs, enabling large-scale supervision consistent across modalities. Our audio data includes speech, music, and general sound effects-avoiding single-domain limitations common in prior work. We exploit ten pairwise contrastive objectives, showing that scaling cross-modality and caption-type pairs strengthens alignment and improves zero-shot performance. We further develop PE-A-Frame by fine-tuning PE-AV with frame-level contrastive objectives, enabling fine-grained audio-frame-to-text alignment for tasks such as sound event detection.
☆ Visual-Aware CoT: Achieving High-Fidelity Visual Consistency in Unified Models
Recently, the introduction of Chain-of-Thought (CoT) has largely improved the generation ability of unified models. However, it is observed that the current thinking process during generation mainly focuses on the text consistency with the text prompt, ignoring the \textbf{visual context consistency} with the visual reference images during the multi-modal generation, e.g., multi-reference generation. The lack of such consistency results in the failure in maintaining key visual features (like human ID, object attribute, style). To this end, we integrate the visual context consistency into the reasoning of unified models, explicitly motivating the model to sustain such consistency by 1) Adaptive Visual Planning: generating structured visual check list to figure out the visual element of needed consistency keeping, and 2) Iterative Visual Correction: performing self-reflection with the guidance of check lists and refining the generated result in an iterative manner. To achieve this, we use supervised finetuning to teach the model how to plan the visual checking, conduct self-reflection and self-refinement, and use flow-GRPO to further enhance the visual consistency through a customized visual checking reward. The experiments show that our method outperforms both zero-shot unified models and those with text CoTs in multi-modal generation, demonstrating higher visual context consistency.
comment: Project Page: https://zixuan-ye.github.io/VACoT/
☆ Zero-shot Reconstruction of In-Scene Object Manipulation from Video
We build the first system to address the problem of reconstructing in-scene object manipulation from a monocular RGB video. It is challenging due to ill-posed scene reconstruction, ambiguous hand-object depth, and the need for physically plausible interactions. Existing methods operate in hand centric coordinates and ignore the scene, hindering metric accuracy and practical use. In our method, we first use data-driven foundation models to initialize the core components, including the object mesh and poses, the scene point cloud, and the hand poses. We then apply a two-stage optimization that recovers a complete hand-object motion from grasping to interaction, which remains consistent with the scene information observed in the input video.
☆ From Indoor to Open World: Revealing the Spatial Reasoning Gap in MLLMs
While Multimodal Large Language Models (MLLMs) have achieved impressive performance on semantic tasks, their spatial intelligence--crucial for robust and grounded AI systems--remains underdeveloped. Existing benchmarks fall short of diagnosing this limitation: they either focus on overly simplified qualitative reasoning or rely on domain-specific indoor data, constrained by the lack of outdoor datasets with verifiable metric ground truth. To bridge this gap, we introduce a large-scale benchmark built from pedestrian-perspective videos captured with synchronized stereo cameras, LiDAR, and IMU/GPS sensors. This dataset provides metrically precise 3D information, enabling the automatic generation of spatial reasoning questions that span a hierarchical spectrum--from qualitative relational reasoning to quantitative metric and kinematic understanding. Evaluations reveal that the performance gains observed in structured indoor benchmarks vanish in open-world settings. Further analysis using synthetic abnormal scenes and blinding tests confirms that current MLLMs depend heavily on linguistic priors instead of grounded visual reasoning. Our benchmark thus provides a principled platform for diagnosing these limitations and advancing physically grounded spatial intelligence.
comment: Project page: https://harmlesssr.github.io/openbench/
☆ VA-$π$: Variational Policy Alignment for Pixel-Aware Autoregressive Generation
Autoregressive (AR) visual generation relies on tokenizers to map images to and from discrete sequences. However, tokenizers are trained to reconstruct clean images from ground-truth tokens, while AR generators are optimized only for token likelihood. This misalignment leads to generated token sequences that may decode into low-quality images, without direct supervision from the pixel space. We propose VA-$π$, a lightweight post-training framework that directly optimizes AR models with a principled pixel-space objective. VA-$π$ formulates the generator-tokenizer alignment as a variational optimization, deriving an evidence lower bound (ELBO) that unifies pixel reconstruction and autoregressive modeling. To optimize under the discrete token space, VA-$π$ introduces a reinforcement-based alignment strategy that treats the AR generator as a policy, uses pixel-space reconstruction quality as its intrinsic reward. The reward is measured by how well the predicted token sequences can reconstruct the original image under teacher forcing, giving the model direct pixel-level guidance without expensive free-running sampling. The regularization term of the ELBO serves as a natural regularizer, maintaining distributional consistency of tokens. VA-$π$ enables rapid adaptation of existing AR generators, without neither tokenizer retraining nor external reward models. With only 1% ImageNet-1K data and 25 minutes of tuning, it reduces FID from 14.36 to 7.65 and improves IS from 86.55 to 116.70 on LlamaGen-XXL, while also yielding notable gains in the text-to-image task on GenEval for both visual generation model (LlamaGen: from 0.306 to 0.339) and unified multi-modal model (Janus-Pro: from 0.725 to 0.744). Code is available at https://github.com/Lil-Shake/VA-Pi.
comment: 21 pages, 24 figures
☆ WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: \href{https://hyokong.github.io/worldwarp-page/}{https://hyokong.github.io/worldwarp-page/}.
comment: Project page: https://hyokong.github.io/worldwarp-page/
☆ Efficient Vision Mamba for MRI Super-Resolution via Hybrid Selective Scanning
Background: High-resolution MRI is critical for diagnosis, but long acquisition times limit clinical use. Super-resolution (SR) can enhance resolution post-scan, yet existing deep learning methods face fidelity-efficiency trade-offs. Purpose: To develop a computationally efficient and accurate deep learning framework for MRI SR that preserves anatomical detail for clinical integration. Materials and Methods: We propose a novel SR framework combining multi-head selective state-space models (MHSSM) with a lightweight channel MLP. The model uses 2D patch extraction with hybrid scanning to capture long-range dependencies. Each MambaFormer block integrates MHSSM, depthwise convolutions, and gated channel mixing. Evaluation used 7T brain T1 MP2RAGE maps (n=142) and 1.5T prostate T2w MRI (n=334). Comparisons included Bicubic interpolation, GANs (CycleGAN, Pix2pix, SPSR), transformers (SwinIR), Mamba (MambaIR), and diffusion models (I2SB, Res-SRDiff). Results: Our model achieved superior performance with exceptional efficiency. For 7T brain data: SSIM=0.951+-0.021, PSNR=26.90+-1.41 dB, LPIPS=0.076+-0.022, GMSD=0.083+-0.017, significantly outperforming all baselines (p<0.001). For prostate data: SSIM=0.770+-0.049, PSNR=27.15+-2.19 dB, LPIPS=0.190+-0.095, GMSD=0.087+-0.013. The framework used only 0.9M parameters and 57 GFLOPs, reducing parameters by 99.8% and computation by 97.5% versus Res-SRDiff, while outperforming SwinIR and MambaIR in accuracy and efficiency. Conclusion: The proposed framework provides an efficient, accurate MRI SR solution, delivering enhanced anatomical detail across datasets. Its low computational demand and state-of-the-art performance show strong potential for clinical translation.
☆ Multimodal LLMs for Historical Dataset Construction from Archival Image Scans: German Patents (1877-1918)
We leverage multimodal large language models (LLMs) to construct a dataset of 306,070 German patents (1877-1918) from 9,562 archival image scans using our LLM-based pipeline powered by Gemini-2.5-Pro and Gemini-2.5-Flash-Lite. Our benchmarking exercise provides tentative evidence that multimodal LLMs can create higher quality datasets than our research assistants, while also being more than 795 times faster and 205 times cheaper in constructing the patent dataset from our image corpus. About 20 to 50 patent entries are embedded on each page, arranged in a double-column format and printed in Gothic and Roman fonts. The font and layout complexity of our primary source material suggests to us that multimodal LLMs are a paradigm shift in how datasets are constructed in economic history. We open-source our benchmarking and patent datasets as well as our LLM-based data pipeline, which can be easily adapted to other image corpora using LLM-assisted coding tools, lowering the barriers for less technical researchers. Finally, we explain the economics of deploying LLMs for historical dataset construction and conclude by speculating on the potential implications for the field of economic history.
☆ Beyond CLIP: Knowledge-Enhanced Multimodal Transformers for Cross-Modal Alignment in Diabetic Retinopathy Diagnosis
Diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide, demanding accurate automated diagnostic systems. While general-domain vision-language models like Contrastive Language-Image Pre-Training (CLIP) perform well on natural image tasks, they struggle in medical domain applications, particularly in cross-modal retrieval for ophthalmological images. We propose a novel knowledge-enhanced joint embedding framework that integrates retinal fundus images, clinical text, and structured patient data through a multimodal transformer architecture to address the critical gap in medical image-text alignment. Our approach employs separate encoders for each modality: a Vision Transformer (ViT-B/16) for retinal images, Bio-ClinicalBERT for clinical narratives, and a multilayer perceptron for structured demographic and clinical features. These modalities are fused through a joint transformer with modality-specific embeddings, trained using multiple objectives including contrastive losses between modality pairs, reconstruction losses for images and text, and classification losses for DR severity grading according to ICDR and SDRG schemes. Experimental results on the Brazilian Multilabel Ophthalmological Dataset (BRSET) demonstrate significant improvements over baseline models. Our framework achieves near-perfect text-to-image retrieval performance with Recall@1 of 99.94% compared to fine-tuned CLIP's 1.29%, while maintaining state-of-the-art classification accuracy of 97.05% for SDRG and 97.97% for ICDR. Furthermore, zero-shot evaluation on the unseen DeepEyeNet dataset validates strong generalizability with 93.95% Recall@1 versus 0.22% for fine-tuned CLIP. These results demonstrate that our multimodal training approach effectively captures cross-modal relationships in the medical domain, establishing both superior retrieval capabilities and robust diagnostic performance.
comment: 14 pages, 14 figures
☆ Over++: Generative Video Compositing for Layer Interaction Effects
In professional video compositing workflows, artists must manually create environmental interactions-such as shadows, reflections, dust, and splashes-between foreground subjects and background layers. Existing video generative models struggle to preserve the input video while adding such effects, and current video inpainting methods either require costly per-frame masks or yield implausible results. We introduce augmented compositing, a new task that synthesizes realistic, semi-transparent environmental effects conditioned on text prompts and input video layers, while preserving the original scene. To address this task, we present Over++, a video effect generation framework that makes no assumptions about camera pose, scene stationarity, or depth supervision. We construct a paired effect dataset tailored for this task and introduce an unpaired augmentation strategy that preserves text-driven editability. Our method also supports optional mask control and keyframe guidance without requiring dense annotations. Despite training on limited data, Over++ produces diverse and realistic environmental effects and outperforms existing baselines in both effect generation and scene preservation.
comment: Project page: https://overplusplus.github.io/
☆ 4D Gaussian Splatting as a Learned Dynamical System
We reinterpret 4D Gaussian Splatting as a continuous-time dynamical system, where scene motion arises from integrating a learned neural dynamical field rather than applying per-frame deformations. This formulation, which we call EvoGS, treats the Gaussian representation as an evolving physical system whose state evolves continuously under a learned motion law. This unlocks capabilities absent in deformation-based approaches:(1) sample-efficient learning from sparse temporal supervision by modeling the underlying motion law; (2) temporal extrapolation enabling forward and backward prediction beyond observed time ranges; and (3) compositional dynamics that allow localized dynamics injection for controllable scene synthesis. Experiments on dynamic scene benchmarks show that EvoGS achieves better motion coherence and temporal consistency compared to deformation-field baselines while maintaining real-time rendering
☆ Generative diffusion models for agricultural AI: plant image generation, indoor-to-outdoor translation, and expert preference alignment
The success of agricultural artificial intelligence depends heavily on large, diverse, and high-quality plant image datasets, yet collecting such data in real field conditions is costly, labor intensive, and seasonally constrained. This paper investigates diffusion-based generative modeling to address these challenges through plant image synthesis, indoor-to-outdoor translation, and expert preference aligned fine tuning. First, a Stable Diffusion model is fine tuned on captioned indoor and outdoor plant imagery to generate realistic, text conditioned images of canola and soybean. Evaluation using Inception Score, Frechet Inception Distance, and downstream phenotype classification shows that synthetic images effectively augment training data and improve accuracy. Second, we bridge the gap between high resolution indoor datasets and limited outdoor imagery using DreamBooth-based text inversion and image guided diffusion, generating translated images that enhance weed detection and classification with YOLOv8. Finally, a preference guided fine tuning framework trains a reward model on expert scores and applies reward weighted updates to produce more stable and expert aligned outputs. Together, these components demonstrate a practical pathway toward data efficient generative pipelines for agricultural AI.
☆ LoGoPlanner: Localization Grounded Navigation Policy with Metric-aware Visual Geometry
Trajectory planning in unstructured environments is a fundamental and challenging capability for mobile robots. Traditional modular pipelines suffer from latency and cascading errors across perception, localization, mapping, and planning modules. Recent end-to-end learning methods map raw visual observations directly to control signals or trajectories, promising greater performance and efficiency in open-world settings. However, most prior end-to-end approaches still rely on separate localization modules that depend on accurate sensor extrinsic calibration for self-state estimation, thereby limiting generalization across embodiments and environments. We introduce LoGoPlanner, a localization-grounded, end-to-end navigation framework that addresses these limitations by: (1) finetuning a long-horizon visual-geometry backbone to ground predictions with absolute metric scale, thereby providing implicit state estimation for accurate localization; (2) reconstructing surrounding scene geometry from historical observations to supply dense, fine-grained environmental awareness for reliable obstacle avoidance; and (3) conditioning the policy on implicit geometry bootstrapped by the aforementioned auxiliary tasks, thereby reducing error propagation.We evaluate LoGoPlanner in both simulation and real-world settings, where its fully end-to-end design reduces cumulative error while metric-aware geometry memory enhances planning consistency and obstacle avoidance, leading to more than a 27.3\% improvement over oracle-localization baselines and strong generalization across embodiments and environments. The code and models have been made publicly available on the \href{https://steinate.github.io/logoplanner.github.io/}{project page}.
comment: Project page:https://steinate.github.io/logoplanner.github.io/
☆ MapTrace: Scalable Data Generation for Route Tracing on Maps
While Multimodal Large Language Models have achieved human-like performance on many visual and textual reasoning tasks, their proficiency in fine-grained spatial understanding, such as route tracing on maps remains limited. Unlike humans, who can quickly learn to parse and navigate maps, current models often fail to respect fundamental path constraints, in part due to the prohibitive cost and difficulty of collecting large-scale, pixel-accurate path annotations. To address this, we introduce a scalable synthetic data generation pipeline that leverages synthetic map images and pixel-level parsing to automatically produce precise annotations for this challenging task. Using this pipeline, we construct a fine-tuning dataset of 23k path samples across 4k maps, enabling models to acquire more human-like spatial capabilities. Using this dataset, we fine-tune both open-source and proprietary MLLMs. Results on MapBench show that finetuning substantially improves robustness, raising success rates by up to 6.4 points, while also reducing path-tracing error (NDTW). These gains highlight that fine-grained spatial reasoning, absent in pretrained models, can be explicitly taught with synthetic supervision.
☆ KerJEPA: Kernel Discrepancies for Euclidean Self-Supervised Learning
Recent breakthroughs in self-supervised Joint-Embedding Predictive Architectures (JEPAs) have established that regularizing Euclidean representations toward isotropic Gaussian priors yields provable gains in training stability and downstream generalization. We introduce a new, flexible family of KerJEPAs, self-supervised learning algorithms with kernel-based regularizers. One instance of this family corresponds to the recently-introduced LeJEPA Epps-Pulley regularizer which approximates a sliced maximum mean discrepancy (MMD) with a Gaussian prior and Gaussian kernel. By expanding the class of viable kernels and priors and computing the closed-form high-dimensional limit of sliced MMDs, we develop alternative KerJEPAs with a number of favorable properties including improved training stability and design flexibility.
☆ No Data? No Problem: Robust Vision-Tabular Learning with Missing Values
Large-scale medical biobanks provide imaging data complemented by extensive tabular information, such as demographics or clinical measurements. However, this abundance of tabular attributes does not reflect real-world datasets, where only a subset of attributes may be available. This discrepancy calls for methods that can leverage all the tabular data during training while remaining robust to missing values at inference. To address this challenge, we propose RoVTL (Robust Vision-Tabular Learning), a framework designed to handle any level of tabular data availability, from 0% to 100%. RoVTL comprises two key stages: contrastive pretraining, where we introduce tabular attribute missingness as data augmentation to promote robustness, and downstream task tuning using a gated cross-attention module for multimodal fusion. During fine-tuning, we employ a novel Tabular More vs. Fewer loss that ranks performance based on the amount of available tabular data. Combined with disentangled gradient learning, this enables consistent performance across all tabular data completeness scenarios. We evaluate RoVTL on cardiac MRI scans from the UK Biobank, demonstrating superior robustness to missing tabular data compared to prior methods. Furthermore, RoVTL successfully generalizes to an external cardiac MRI dataset for multimodal disease classification, and extends to the natural images domain, achieving robust performance on a car advertisements dataset. The code is available at https://github.com/marteczkah/RoVTL.
☆ Patlak Parametric Image Estimation from Dynamic PET Using Diffusion Model Prior
Dynamic PET enables the quantitative estimation of physiology-related parameters and is widely utilized in research and increasingly adopted in clinical settings. Parametric imaging in dynamic PET requires kinetic modeling to estimate voxel-wise physiological parameters based on specific kinetic models. However, parametric images estimated through kinetic model fitting often suffer from low image quality due to the inherently ill-posed nature of the fitting process and the limited counts resulting from non-continuous data acquisition across multiple bed positions in whole-body PET. In this work, we proposed a diffusion model-based kinetic modeling framework for parametric image estimation, using the Patlak model as an example. The score function of the diffusion model was pre-trained on static total-body PET images and served as a prior for both Patlak slope and intercept images by leveraging their patch-wise similarity. During inference, the kinetic model was incorporated as a data-consistency constraint to guide the parametric image estimation. The proposed framework was evaluated on total-body dynamic PET datasets with different dose levels, demonstrating the feasibility and promising performance of the proposed framework in improving parametric image quality.
comment: 10 pages, 9 figures
☆ Deep Learning for Primordial $B$-mode Extraction
The search for primordial gravitational waves is a central goal of cosmic microwave background (CMB) surveys. Isolating the characteristic $B$-mode polarization signal sourced by primordial gravitational waves is challenging for several reasons: the amplitude of the signal is inherently small; astrophysical foregrounds produce $B$-mode polarization contaminating the signal; and secondary $B$-mode polarization fluctuations are produced via the conversion of $E$ modes. Current and future low-noise, multi-frequency observations enable sufficient precision to address the first two of these challenges such that secondary $B$ modes will become the bottleneck for improved constraints on the amplitude of primordial gravitational waves. The dominant source of secondary $B$-mode polarization is gravitational lensing by large scale structure. Various strategies have been developed to estimate the lensing deflection and to reverse its effects the CMB, thus reducing confusion from lensing $B$ modes in the search for primordial gravitational waves. However, a few complications remain. First, there may be additional sources of secondary $B$-mode polarization, for example from patchy reionization or from cosmic polarization rotation. Second, the statistics of delensed CMB maps can become complicated and non-Gaussian, especially when advanced lensing reconstruction techniques are applied. We previously demonstrated how a deep learning network, ResUNet-CMB, can provide nearly optimal simultaneous estimates of multiple sources of secondary $B$-mode polarization. In this paper, we show how deep learning can be applied to estimate and remove multiple sources of secondary $B$-mode polarization, and we further show how this technique can be used in a likelihood analysis to produce nearly optimal, unbiased estimates of the amplitude of primordial gravitational waves.
comment: 12 pages, 8 figures. Code available from https://github.com/EEmGuzman/resunet-cmb
☆ BabyFlow: 3D modeling of realistic and expressive infant faces
Early detection of developmental disorders can be aided by analyzing infant craniofacial morphology, but modeling infant faces is challenging due to limited data and frequent spontaneous expressions. We introduce BabyFlow, a generative AI model that disentangles facial identity and expression, enabling independent control over both. Using normalizing flows, BabyFlow learns flexible, probabilistic representations that capture the complex, non-linear variability of expressive infant faces without restrictive linear assumptions. To address scarce and uncontrolled expressive data, we perform cross-age expression transfer, adapting expressions from adult 3D scans to enrich infant datasets with realistic and systematic expressive variants. As a result, BabyFlow improves 3D reconstruction accuracy, particularly in highly expressive regions such as the mouth, eyes, and nose, and supports synthesis and modification of infant expressions while preserving identity. Additionally, by integrating with diffusion models, BabyFlow generates high-fidelity 2D infant images with consistent 3D geometry, providing powerful tools for data augmentation and early facial analysis.
☆ ActAvatar: Temporally-Aware Precise Action Control for Talking Avatars
Despite significant advances in talking avatar generation, existing methods face critical challenges: insufficient text-following capability for diverse actions, lack of temporal alignment between actions and audio content, and dependency on additional control signals such as pose skeletons. We present ActAvatar, a framework that achieves phase-level precision in action control through textual guidance by capturing both action semantics and temporal context. Our approach introduces three core innovations: (1) Phase-Aware Cross-Attention (PACA), which decomposes prompts into a global base block and temporally-anchored phase blocks, enabling the model to concentrate on phase-relevant tokens for precise temporal-semantic alignment; (2) Progressive Audio-Visual Alignment, which aligns modality influence with the hierarchical feature learning process-early layers prioritize text for establishing action structure while deeper layers emphasize audio for refining lip movements, preventing modality interference; (3) A two-stage training strategy that first establishes robust audio-visual correspondence on diverse data, then injects action control through fine-tuning on structured annotations, maintaining both audio-visual alignment and the model's text-following capabilities. Extensive experiments demonstrate that ActAvatar significantly outperforms state-of-the-art methods in both action control and visual quality.
comment: Project Page: https://ziqiaopeng.github.io/ActAvatar/
☆ StoryMem: Multi-shot Long Video Storytelling with Memory
Visual storytelling requires generating multi-shot videos with cinematic quality and long-range consistency. Inspired by human memory, we propose StoryMem, a paradigm that reformulates long-form video storytelling as iterative shot synthesis conditioned on explicit visual memory, transforming pre-trained single-shot video diffusion models into multi-shot storytellers. This is achieved by a novel Memory-to-Video (M2V) design, which maintains a compact and dynamically updated memory bank of keyframes from historical generated shots. The stored memory is then injected into single-shot video diffusion models via latent concatenation and negative RoPE shifts with only LoRA fine-tuning. A semantic keyframe selection strategy, together with aesthetic preference filtering, further ensures informative and stable memory throughout generation. Moreover, the proposed framework naturally accommodates smooth shot transitions and customized story generation applications. To facilitate evaluation, we introduce ST-Bench, a diverse benchmark for multi-shot video storytelling. Extensive experiments demonstrate that StoryMem achieves superior cross-shot consistency over previous methods while preserving high aesthetic quality and prompt adherence, marking a significant step toward coherent minute-long video storytelling.
comment: Project page: https://kevin-thu.github.io/StoryMem
☆ CASA: Cross-Attention via Self-Attention for Efficient Vision-Language Fusion
Vision-language models (VLMs) are commonly trained by inserting image tokens from a pretrained vision encoder into the textual stream of a language model. This allows text and image information to fully attend to one another within the model, but becomes extremely costly for high-resolution images, long conversations, or streaming videos, both in memory and compute. VLMs leveraging cross-attention are an efficient alternative to token insertion but exhibit a clear performance gap, in particular on tasks involving fine-grained visual details. We find that a key to improving such models is to also enable local text-to-text interaction in the dedicated cross-attention layers. Building on this, we propose CASA, Cross-Attention via Self-Attention, a simple and efficient paradigm which substantially reduces the gap with full token insertion on common image understanding benchmarks, while enjoying the same scalability as cross-attention models when applied to long-context multimodal tasks such as streaming video captioning. For samples and code, please see our project page at https://kyutai.org/casa .
☆ SlicerOrbitSurgerySim: An Open-Source Platform for Virtual Registration and Quantitative Comparison of Preformed Orbital Plates
Poor adaptation of orbital implants remains a major contributor to postoperative complications and revision surgery. Although preformed orbital plates are widely used to reduce cost and operative time compared with customized implants, surgeons currently lack publicly available tools and standardized metrics to quantitatively compare plate fit across vendors, sizes, and patient anatomy. We developed SlicerOrbitSurgerySim, an open-source extension for the 3D Slicer platform that enables interactive virtual registration, evaluation, and comparison of multiple preformed orbital plates in a patient-specific virtual planning environment. The software generates reproducible quantitative plate-to-orbit distance metrics and visualization tools that support both patient-specific planning and population-level statistical analysis of plate adaptability. By facilitating objective comparison of implant designs and placement strategies, this tool aims to improve preoperative decision-making, reduce intraoperative plate modification, and promote collaborative research and surgical education. Pilot studies, sample datasets, and detailed tutorials are provided to support testing, transparency, and reproducibility.
comment: 12 pages, 8 figures. Submitted to Journal of Oral and Maxillofacial Surgery. Code: https://github.com/chz31/SlicerOrbitSurgerySim/tree/main
☆ Multi-Modal Soccer Scene Analysis with Masked Pre-Training WACV 2026
In this work we propose a multi-modal architecture for analyzing soccer scenes from tactical camera footage, with a focus on three core tasks: ball trajectory inference, ball state classification, and ball possessor identification. To this end, our solution integrates three distinct input modalities (player trajectories, player types and image crops of individual players) into a unified framework that processes spatial and temporal dynamics using a cascade of sociotemporal transformer blocks. Unlike prior methods, which rely heavily on accurate ball tracking or handcrafted heuristics, our approach infers the ball trajectory without direct access to its past or future positions, and robustly identifies the ball state and ball possessor under noisy or occluded conditions from real top league matches. We also introduce CropDrop, a modality-specific masking pre-training strategy that prevents over-reliance on image features and encourages the model to rely on cross-modal patterns during pre-training. We show the effectiveness of our approach on a large-scale dataset providing substantial improvements over state-of-the-art baselines in all tasks. Our results highlight the benefits of combining structured and visual cues in a transformer-based architecture, and the importance of realistic masking strategies in multi-modal learning.
comment: 10 pages, 2 figures. WACV 2026
☆ A Convolutional Neural Deferred Shader for Physics Based Rendering
Recent advances in neural rendering have achieved impressive results on photorealistic shading and relighting, by using a multilayer perceptron (MLP) as a regression model to learn the rendering equation from a real-world dataset. Such methods show promise for photorealistically relighting real-world objects, which is difficult to classical rendering, as there is no easy-obtained material ground truth. However, significant challenges still remain the dense connections in MLPs result in a large number of parameters, which requires high computation resources, complicating the training, and reducing performance during rendering. Data driven approaches require large amounts of training data for generalization; unbalanced data might bias the model to ignore the unusual illumination conditions, e.g. dark scenes. This paper introduces pbnds+: a novel physics-based neural deferred shading pipeline utilizing convolution neural networks to decrease the parameters and improve the performance in shading and relighting tasks; Energy regularization is also proposed to restrict the model reflection during dark illumination. Extensive experiments demonstrate that our approach outperforms classical baselines, a state-of-the-art neural shading model, and a diffusion-based method.
☆ Anatomy-R1: Enhancing Anatomy Reasoning in Multimodal Large Language Models via Anatomical Similarity Curriculum and Group Diversity Augmentation
Multimodal Large Language Models (MLLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored, especially in clinical anatomical surgical images. Anatomy understanding tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional Supervised Fine-Tuning (SFT) strategies. While recent work has demonstrated that Group Relative Policy Optimization (GRPO) can enhance reasoning in MLLMs without relying on large amounts of data, we find two weaknesses that hinder GRPO's reasoning performance in anatomy recognition: 1) knowledge cannot be effectively shared between different anatomical structures, resulting in uneven information gain and preventing the model from converging, and 2) the model quickly converges to a single reasoning path, suppressing the exploration of diverse strategies. To overcome these challenges, we propose two novel methods. First, we implement a progressive learning strategy called Anatomical Similarity Curriculum Learning by controlling question difficulty via the similarity of answer choices, enabling the model to master complex problems incrementally. Second, we utilize question augmentation referred to as Group Diversity Question Augmentation to expand the model's search space for difficult queries, mitigating the tendency to produce uniform responses. Comprehensive experiments on the SGG-VQA and OmniMedVQA benchmarks show our method achieves a significant improvement across the two benchmarks, demonstrating its effectiveness in enhancing the medical reasoning capabilities of MLLMs. The code can be found in https://github.com/tomato996/Anatomy-R1
☆ FusionNet: Physics-Aware Representation Learning for Multi-Spectral and Thermal Data via Trainable Signal-Processing Priors
Modern deep learning models operating on multi-modal visual signals often rely on inductive biases that are poorly aligned with the physical processes governing signal formation, leading to brittle performance under cross-spectral and real-world conditions. In particular, approaches that prioritise direct thermal cues struggle to capture indirect yet persistent environmental alterations induced by sustained heat emissions. This work introduces a physics-aware representation learning framework that leverages multi-spectral information to model stable signatures of long-term physical processes. Specifically, a geological Short Wave Infrared (SWIR) ratio sensitive to soil property changes is integrated with Thermal Infrared (TIR) data through an intermediate fusion architecture, instantiated as FusionNet. The proposed backbone embeds trainable differential signal-processing priors within convolutional layers, combines mixed pooling strategies, and employs wider receptive fields to enhance robustness across spectral modalities. Systematic ablations show that each architectural component contributes to performance gains, with DGCNN achieving 88.7% accuracy on the SWIR ratio and FusionNet reaching 90.6%, outperforming state-of-the-art baselines across five spectral configurations. Transfer learning experiments further show that ImageNet pretraining degrades TIR performance, highlighting the importance of modality-aware training for cross-spectral learning. Evaluated on real-world data, the results demonstrate that combining physics-aware feature selection with principled deep learning architectures yields robust and generalisable representations, illustrating how first-principles signal modelling can improve multi-spectral learning under challenging conditions.
comment: Preprint. Under review at IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS)
☆ Rethinking Coupled Tensor Analysis for Hyperspectral Super-Resolution: Recoverable Modeling Under Endmember Variability
This work revisits the hyperspectral super-resolution (HSR) problem, i.e., fusing a pair of spatially co-registered hyperspectral (HSI) and multispectral (MSI) images to recover a super-resolution image (SRI) that enhances the spatial resolution of the HSI. Coupled tensor decomposition (CTD)-based methods have gained traction in this domain, offering recoverability guarantees under various assumptions. Existing models such as canonical polyadic decomposition (CPD) and Tucker decomposition provide strong expressive power but lack physical interpretability. The block-term decomposition model with rank-$(L_r, L_r, 1)$ terms (the LL1 model) yields interpretable factors under the linear mixture model (LMM) of spectral images, but LMM assumptions are often violated in practice -- primarily due to nonlinear effects such as endmember variability (EV). To address this, we propose modeling spectral images using a more flexible block-term tensor decomposition with rank-$(L_r, M_r, N_r)$ terms (the LMN model). This modeling choice retains interpretability, subsumes CPD, Tucker, and LL1 as special cases, and robustly accounts for non-ideal effects such as EV, offering a balanced tradeoff between expressiveness and interpretability for HSR. Importantly, under the LMN model for HSI and MSI, recoverability of the SRI can still be established under proper conditions -- providing strong theoretical support. Extensive experiments on synthetic and real datasets further validate the effectiveness and robustness of the proposed method compared with existing CTD-based approaches.
comment: The paper was accepted by SIAM Journal on Imaging Sciences
☆ Dynamic Stream Network for Combinatorial Explosion Problem in Deformable Medical Image Registration
Combinatorial explosion problem caused by dual inputs presents a critical challenge in Deformable Medical Image Registration (DMIR). Since DMIR processes two images simultaneously as input, the combination relationships between features has grown exponentially, ultimately the model considers more interfering features during the feature modeling process. Introducing dynamics in the receptive fields and weights of the network enable the model to eliminate the interfering features combination and model the potential feature combination relationships. In this paper, we propose the Dynamic Stream Network (DySNet), which enables the receptive fields and weights to be dynamically adjusted. This ultimately enables the model to ignore interfering feature combinations and model the potential feature relationships. With two key innovations: 1) Adaptive Stream Basin (AdSB) module dynamically adjusts the shape of the receptive field, thereby enabling the model to focus on the feature relationships with greater correlation. 2) Dynamic Stream Attention (DySA) mechanism generates dynamic weights to search for more valuable feature relationships. Extensive experiments have shown that DySNet consistently outperforms the most advanced DMIR methods, highlighting its outstanding generalization ability. Our code will be released on the website: https://github.com/ShaochenBi/DySNet.
☆ Emotion-Director: Bridging Affective Shortcut in Emotion-Oriented Image Generation
Image generation based on diffusion models has demonstrated impressive capability, motivating exploration into diverse and specialized applications. Owing to the importance of emotion in advertising, emotion-oriented image generation has attracted increasing attention. However, current emotion-oriented methods suffer from an affective shortcut, where emotions are approximated to semantics. As evidenced by two decades of research, emotion is not equivalent to semantics. To this end, we propose Emotion-Director, a cross-modal collaboration framework consisting of two modules. First, we propose a cross-Modal Collaborative diffusion model, abbreviated as MC-Diffusion. MC-Diffusion integrates visual prompts with textual prompts for guidance, enabling the generation of emotion-oriented images beyond semantics. Further, we improve the DPO optimization by a negative visual prompt, enhancing the model's sensitivity to different emotions under the same semantics. Second, we propose MC-Agent, a cross-Modal Collaborative Agent system that rewrites textual prompts to express the intended emotions. To avoid template-like rewrites, MC-Agent employs multi-agents to simulate human subjectivity toward emotions, and adopts a chain-of-concept workflow that improves the visual expressiveness of the rewritten prompts. Extensive qualitative and quantitative experiments demonstrate the superiority of Emotion-Director in emotion-oriented image generation.
☆ Sign Language Recognition using Parallel Bidirectional Reservoir Computing
Sign language recognition (SLR) facilitates communication between deaf and hearing communities. Deep learning based SLR models are commonly used but require extensive computational resources, making them unsuitable for deployment on edge devices. To address these limitations, we propose a lightweight SLR system that combines parallel bidirectional reservoir computing (PBRC) with MediaPipe. MediaPipe enables real-time hand tracking and precise extraction of hand joint coordinates, which serve as input features for the PBRC architecture. The proposed PBRC architecture consists of two echo state network (ESN) based bidirectional reservoir computing (BRC) modules arranged in parallel to capture temporal dependencies, thereby creating a rich feature representation for classification. We trained our PBRC-based SLR system on the Word-Level American Sign Language (WLASL) video dataset, achieving top-1, top-5, and top-10 accuracies of 60.85%, 85.86%, and 91.74%, respectively. Training time was significantly reduced to 18.67 seconds due to the intrinsic properties of reservoir computing, compared to over 55 minutes for deep learning based methods such as Bi-GRU. This approach offers a lightweight, cost-effective solution for real-time SLR on edge devices.
☆ D2Pruner: Debiased Importance and Structural Diversity for MLLM Token Pruning
Processing long visual token sequences poses a significant computational burden on Multimodal Large Language Models (MLLMs). While token pruning offers a path to acceleration, we find that current methods, while adequate for general understanding, catastrophically fail on fine-grained localization tasks. We attribute this failure to the inherent flaws of the two prevailing strategies: importance-based methods suffer from a strong positional bias, an inherent model artifact that distracts from semantic content, while diversity-based methods exhibit structural blindness, disregarding the user's prompt and spatial redundancy. To address this, we introduce D2Pruner, a framework that rectifies these issues by uniquely combining debiased importance with a structural pruning mechanism. Our method first secures a core set of the most critical tokens as pivots based on a debiased attention score. It then performs a Maximal Independent Set (MIS) selection on the remaining tokens, which are modeled on a hybrid graph where edges signify spatial proximity and semantic similarity. This process iteratively preserves the most important and available token while removing its neighbors, ensuring that the supplementary tokens are chosen to maximize importance and diversity. Extensive experiments demonstrate that D2Pruner has exceptional efficiency and fidelity. Applied to LLaVA-1.5-7B for general understanding tasks, it reduces FLOPs by 74.2\% while retaining 99.2\% of its original performance. Furthermore, in challenging localization benchmarks with InternVL-2.5-8B, it maintains 85.7\% performance at a 90\% token reduction rate, marking a significant advancement with up to 63. 53\% improvement over existing methods.
☆ MT-Mark: Rethinking Image Watermarking via Mutual-Teacher Collaboration with Adaptive Feature Modulation
Existing deep image watermarking methods follow a fixed embedding-distortion-extraction pipeline, where the embedder and extractor are weakly coupled through a final loss and optimized in isolation. This design lacks explicit collaboration, leaving no structured mechanism for the embedder to incorporate decoding-aware cues or for the extractor to guide embedding during training. To address this architectural limitation, we rethink deep image watermarking by reformulating embedding and extraction as explicitly collaborative components. To realize this reformulation, we introduce a Collaborative Interaction Mechanism (CIM) that establishes direct, bidirectional communication between the embedder and extractor, enabling a mutual-teacher training paradigm and coordinated optimization. Built upon this explicitly collaborative architecture, we further propose an Adaptive Feature Modulation Module (AFMM) to support effective interaction. AFMM enables content-aware feature regulation by decoupling modulation structure and strength, guiding watermark embedding toward stable image features while suppressing host interference during extraction. Under CIM, the AFMMs on both sides form a closed-loop collaboration that aligns embedding behavior with extraction objectives. This architecture-level redesign changes how robustness is learned in watermarking systems. Rather than relying on exhaustive distortion simulation, robustness emerges from coordinated representation learning between embedding and extraction. Experiments on real-world and AI-generated datasets demonstrate that the proposed method consistently outperforms state-of-the-art approaches in watermark extraction accuracy while maintaining high perceptual quality, showing strong robustness and generalization.
☆ dMLLM-TTS: Self-Verified and Efficient Test-Time Scaling for Diffusion Multi-Modal Large Language Models
Diffusion Multi-modal Large Language Models (dMLLMs) have recently emerged as a novel architecture unifying image generation and understanding. However, developing effective and efficient Test-Time Scaling (TTS) methods to unlock their full generative potential remains an underexplored challenge. To address this, we propose dMLLM-TTS, a novel framework operating on two complementary scaling axes: (1) trajectory exploration scaling to enhance the diversity of generated hypotheses, and (2) iterative refinement scaling for stable generation. Conventional TTS approaches typically perform linear search across these two dimensions, incurring substantial computational costs of O(NT) and requiring an external verifier for best-of-N selection. To overcome these limitations, we propose two innovations. First, we design an efficient hierarchical search algorithm with O(N+T) complexity that adaptively expands and prunes sampling trajectories. Second, we introduce a self-verified feedback mechanism that leverages the dMLLMs' intrinsic image understanding capabilities to assess text-image alignment, eliminating the need for external verifier. Extensive experiments on the GenEval benchmark across three representative dMLLMs (e.g., Lumina-DiMOO, MMaDA, Muddit) show that our framework substantially improves generation quality while achieving up to 6x greater efficiency than linear search. Project page: https://github.com/Alpha-VLLM/Lumina-DiMOO.
comment: Project page: https://github.com/Alpha-VLLM/Lumina-DiMOO
☆ Non-Contrast CT Esophageal Varices Grading through Clinical Prior-Enhanced Multi-Organ Analysis
Esophageal varices (EV) represent a critical complication of portal hypertension, affecting approximately 60% of cirrhosis patients with a significant bleeding risk of ~30%. While traditionally diagnosed through invasive endoscopy, non-contrast computed tomography (NCCT) presents a potential non-invasive alternative that has yet to be fully utilized in clinical practice. We present Multi-Organ-COhesion Network++ (MOON++), a novel multimodal framework that enhances EV assessment through comprehensive analysis of NCCT scans. Inspired by clinical evidence correlating organ volumetric relationships with liver disease severity, MOON++ synthesizes imaging characteristics of the esophagus, liver, and spleen through multimodal learning. We evaluated our approach using 1,631 patients, those with endoscopically confirmed EV were classified into four severity grades. Validation in 239 patient cases and independent testing in 289 cases demonstrate superior performance compared to conventional single organ methods, achieving an AUC of 0.894 versus 0.803 for the severe grade EV classification (G3 versus =G2 versus
comment: Medical Image Analysis
☆ Real2Edit2Real: Generating Robotic Demonstrations via a 3D Control Interface
Recent progress in robot learning has been driven by large-scale datasets and powerful visuomotor policy architectures, yet policy robustness remains limited by the substantial cost of collecting diverse demonstrations, particularly for spatial generalization in manipulation tasks. To reduce repetitive data collection, we present Real2Edit2Real, a framework that generates new demonstrations by bridging 3D editability with 2D visual data through a 3D control interface. Our approach first reconstructs scene geometry from multi-view RGB observations with a metric-scale 3D reconstruction model. Based on the reconstructed geometry, we perform depth-reliable 3D editing on point clouds to generate new manipulation trajectories while geometrically correcting the robot poses to recover physically consistent depth, which serves as a reliable condition for synthesizing new demonstrations. Finally, we propose a multi-conditional video generation model guided by depth as the primary control signal, together with action, edge, and ray maps, to synthesize spatially augmented multi-view manipulation videos. Experiments on four real-world manipulation tasks demonstrate that policies trained on data generated from only 1-5 source demonstrations can match or outperform those trained on 50 real-world demonstrations, improving data efficiency by up to 10-50x. Moreover, experimental results on height and texture editing demonstrate the framework's flexibility and extensibility, indicating its potential to serve as a unified data generation framework.
☆ TwinAligner: Visual-Dynamic Alignment Empowers Physics-aware Real2Sim2Real for Robotic Manipulation
The robotics field is evolving towards data-driven, end-to-end learning, inspired by multimodal large models. However, reliance on expensive real-world data limits progress. Simulators offer cost-effective alternatives, but the gap between simulation and reality challenges effective policy transfer. This paper introduces TwinAligner, a novel Real2Sim2Real system that addresses both visual and dynamic gaps. The visual alignment module achieves pixel-level alignment through SDF reconstruction and editable 3DGS rendering, while the dynamic alignment module ensures dynamic consistency by identifying rigid physics from robot-object interaction. TwinAligner improves robot learning by providing scalable data collection and establishing a trustworthy iterative cycle, accelerating algorithm development. Quantitative evaluations highlight TwinAligner's strong capabilities in visual and dynamic real-to-sim alignment. This system enables policies trained in simulation to achieve strong zero-shot generalization to the real world. The high consistency between real-world and simulated policy performance underscores TwinAligner's potential to advance scalable robot learning. Code and data will be released on https://twin-aligner.github.io
☆ DSTED: Decoupling Temporal Stabilization and Discriminative Enhancement for Surgical Workflow Recognition
Purpose: Surgical workflow recognition enables context-aware assistance and skill assessment in computer-assisted interventions. Despite recent advances, current methods suffer from two critical challenges: prediction jitter across consecutive frames and poor discrimination of ambiguous phases. This paper aims to develop a stable framework by selectively propagating reliable historical information and explicitly modeling uncertainty for hard sample enhancement. Methods: We propose a dual-pathway framework DSTED with Reliable Memory Propagation (RMP) and Uncertainty-Aware Prototype Retrieval (UPR). RMP maintains temporal coherence by filtering and fusing high-confidence historical features through multi-criteria reliability assessment. UPR constructs learnable class-specific prototypes from high-uncertainty samples and performs adaptive prototype matching to refine ambiguous frame representations. Finally, a confidence-driven gate dynamically balances both pathways based on prediction certainty. Results: Our method achieves state-of-the-art performance on AutoLaparo-hysterectomy with 84.36% accuracy and 65.51% F1-score, surpassing the second-best method by 3.51% and 4.88% respectively. Ablations reveal complementary gains from RMP (2.19%) and UPR (1.93%), with synergistic effects when combined. Extensive analysis confirms substantial reduction in temporal jitter and marked improvement on challenging phase transitions. Conclusion: Our dual-pathway design introduces a novel paradigm for stable workflow recognition, demonstrating that decoupling the modeling of temporal consistency and phase ambiguity yields superior performance and clinical applicability.
comment: Early accepted to IPCAI 2026
☆ Efficient Spike-driven Transformer for High-performance Drone-View Geo-Localization
Traditional drone-view geo-localization (DVGL) methods based on artificial neural networks (ANNs) have achieved remarkable performance. However, ANNs rely on dense computation, which results in high power consumption. In contrast, spiking neural networks (SNNs), which benefit from spike-driven computation, inherently provide low power consumption. Regrettably, the potential of SNNs for DVGL has yet to be thoroughly investigated. Meanwhile, the inherent sparsity of spike-driven computation for representation learning scenarios also results in loss of critical information and difficulties in learning long-range dependencies when aligning heterogeneous visual data sources. To address these, we propose SpikeViMFormer, the first SNN framework designed for DVGL. In this framework, a lightweight spike-driven transformer backbone is adopted to extract coarse-grained features. To mitigate the loss of critical information, the spike-driven selective attention (SSA) block is designed, which uses a spike-driven gating mechanism to achieve selective feature enhancement and highlight discriminative regions. Furthermore, a spike-driven hybrid state space (SHS) block is introduced to learn long-range dependencies using a hybrid state space. Moreover, only the backbone is utilized during the inference stage to reduce computational cost. To ensure backbone effectiveness, a novel hierarchical re-ranking alignment learning (HRAL) strategy is proposed. It refines features via neighborhood re-ranking and maintains cross-batch consistency to directly optimize the backbone. Experimental results demonstrate that SpikeViMFormer outperforms state-of-the-art SNNs. Compared with advanced ANNs, it also achieves competitive performance.Our code is available at https://github.com/ISChenawei/SpikeViMFormer
☆ ReasonCD: A Multimodal Reasoning Large Model for Implicit Change-of-Interest Semantic Mining
Remote sensing image change detection is one of the fundamental tasks in remote sensing intelligent interpretation. Its core objective is to identify changes within change regions of interest (CRoI). Current multimodal large models encode rich human semantic knowledge, which is utilized for guidance in tasks such as remote sensing change detection. However, existing methods that use semantic guidance for detecting users' CRoI overly rely on explicit textual descriptions of CRoI, leading to the problem of near-complete performance failure when presented with implicit CRoI textual descriptions. This paper proposes a multimodal reasoning change detection model named ReasonCD, capable of mining users' implicit task intent. The model leverages the powerful reasoning capabilities of pre-trained large language models to mine users' implicit task intents and subsequently obtains different change detection results based on these intents. Experiments on public datasets demonstrate that the model achieves excellent change detection performance, with an F1 score of 92.1\% on the BCDD dataset. Furthermore, to validate its superior reasoning functionality, this paper annotates a subset of reasoning data based on the SECOND dataset. Experimental results show that the model not only excels at basic reasoning-based change detection tasks but can also explain the reasoning process to aid human decision-making.
☆ GANeXt: A Fully ConvNeXt-Enhanced Generative Adversarial Network for MRI- and CBCT-to-CT Synthesis
The synthesis of computed tomography (CT) from magnetic resonance imaging (MRI) and cone-beam CT (CBCT) plays a critical role in clinical treatment planning by enabling accurate anatomical representation in adaptive radiotherapy. In this work, we propose GANeXt, a 3D patch-based, fully ConvNeXt-powered generative adversarial network for unified CT synthesis across different modalities and anatomical regions. Specifically, GANeXt employs an efficient U-shaped generator constructed from stacked 3D ConvNeXt blocks with compact convolution kernels, while the discriminator adopts a conditional PatchGAN. To improve synthesis quality, we incorporate a combination of loss functions, including mean absolute error (MAE), perceptual loss, segmentation-based masked MAE, and adversarial loss and a combination of Dice loss and cross-entropy for multi-head segmentation discriminator. For both tasks, training is performed with a batch size of 8 using two separate AdamW optimizers for the generator and discriminator, each equipped with a warmup and cosine decay scheduler, with learning rates of $5\times10^{-4}$ and $1\times10^{-3}$, respectively. Data preprocessing includes deformable registration, foreground cropping, percentile normalization for the input modality, and linear normalization of the CT to the range $[-1024, 1000]$. Data augmentation involves random zooming within $(0.8, 1.3)$ (for MRI-to-CT only), fixed-size cropping to $32\times160\times192$ for MRI-to-CT and $32\times128\times128$ for CBCT-to-CT, and random flipping. During inference, we apply a sliding-window approach with $0.8$ overlap and average folding to reconstruct the full-size sCT, followed by inversion of the CT normalization. After joint training on all regions without any fine-tuning, the final models are selected at the end of 3000 epochs for MRI-to-CT and 1000 epochs for CBCT-to-CT using the full training dataset.
☆ DeltaMIL: Gated Memory Integration for Efficient and Discriminative Whole Slide Image Analysis
Whole Slide Images (WSIs) are typically analyzed using multiple instance learning (MIL) methods. However, the scale and heterogeneity of WSIs generate highly redundant and dispersed information, making it difficult to identify and integrate discriminative signals. Existing MIL methods either fail to discard uninformative cues effectively or have limited ability to consolidate relevant features from multiple patches, which restricts their performance on large and heterogeneous WSIs. To address this issue, we propose DeltaMIL, a novel MIL framework that explicitly selects semantically relevant regions and integrates the discriminative information from WSIs. Our method leverages the gated delta rule to efficiently filter and integrate information through a block combining forgetting and memory mechanisms. The delta mechanism dynamically updates the memory by removing old values and inserting new ones according to their correlation with the current patch. The gating mechanism further enables rapid forgetting of irrelevant signals. Additionally, DeltaMIL integrates a complementary local pattern mixing mechanism to retain fine-grained pathological locality. Our design enhances the extraction of meaningful cues and suppresses redundant or noisy information, which improves the model's robustness and discriminative power. Experiments demonstrate that DeltaMIL achieves state-of-the-art performance. Specifically, for survival prediction, DeltaMIL improves performance by 3.69\% using ResNet-50 features and 2.36\% using UNI features. For slide-level classification, it increases accuracy by 3.09\% with ResNet-50 features and 3.75\% with UNI features. These results demonstrate the strong and consistent performance of DeltaMIL across diverse WSI tasks.
comment: 11 pages,7 figures,8 tables
☆ Extended OpenTT Games Dataset: A table tennis dataset for fine-grained shot type and point outcome
Automatically detecting and classifying strokes in table tennis video can streamline training workflows, enrich broadcast overlays, and enable fine-grained performance analytics. For this to be possible, annotated video data of table tennis is needed. We extend the public OpenTTGames dataset with highly detailed, frame-accurate shot type annotations (forehand, backhand with subtypes), player posture labels (body lean and leg stance), and rally outcome tags at point end. OpenTTGames is a set of recordings from the side of the table with official labels for bounces, when the ball is above the net, or hitting the net. The dataset already contains ball coordinates near events, which are either "bounce", "net", or "empty_event" in the original OpenTTGames dataset, and semantic masks (humans, table, scoreboard). Our extension adds the types of stroke to the events and a per-player taxonomy so models can move beyond event spotting toward tactical understanding (e.g., whether a stroke is likely to win the point or set up an advantage). We provide a compact coding scheme and code-assisted labeling procedure to support reproducible annotations and baselines for fine-grained stroke understanding in racket sports. This fills a practical gap in the community, where many prior video resources are either not publicly released or carry restrictive/unclear licenses that hinder reuse and benchmarking. Our annotations are released under the same CC BY-NC-SA 4.0 license as OpenTTGames, allowing free non-commercial use, modification, and redistribution, with appropriate attribution.
comment: Thomas Martini Jørgensen and Emil Hovad contributed equally and share last authorship
☆ MAGIC: Achieving Superior Model Merging via Magnitude Calibration
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC
☆ Neural Implicit Heart Coordinates: 3D cardiac shape reconstruction from sparse segmentations
Accurate reconstruction of cardiac anatomy from sparse clinical images remains a major challenge in patient-specific modeling. While neural implicit functions have previously been applied to this task, their application to mapping anatomical consistency across subjects has been limited. In this work, we introduce Neural Implicit Heart Coordinates (NIHCs), a standardized implicit coordinate system, based on universal ventricular coordinates, that provides a common anatomical reference frame for the human heart. Our method predicts NIHCs directly from a limited number of 2D segmentations (sparse acquisition) and subsequently decodes them into dense 3D segmentations and high-resolution meshes at arbitrary output resolution. Trained on a large dataset of 5,000 cardiac meshes, the model achieves high reconstruction accuracy on clinical contours, with mean Euclidean surface errors of 2.51$\pm$0.33 mm in a diseased cohort (n=4549) and 2.3$\pm$0.36 mm in a healthy cohort (n=5576). The NIHC representation enables anatomically coherent reconstruction even under severe slice sparsity and segmentation noise, faithfully recovering complex structures such as the valve planes. Compared with traditional pipelines, inference time is reduced from over 60 s to 5-15 s. These results demonstrate that NIHCs constitute a robust and efficient anatomical representation for patient-specific 3D cardiac reconstruction from minimal input data.
comment: 42 pages, 8 figures
☆ MixFlow Training: Alleviating Exposure Bias with Slowed Interpolation Mixture
This paper studies the training-testing discrepancy (a.k.a. exposure bias) problem for improving the diffusion models. During training, the input of a prediction network at one training timestep is the corresponding ground-truth noisy data that is an interpolation of the noise and the data, and during testing, the input is the generated noisy data. We present a novel training approach, named MixFlow, for improving the performance. Our approach is motivated by the Slow Flow phenomenon: the ground-truth interpolation that is the nearest to the generated noisy data at a given sampling timestep is observed to correspond to a higher-noise timestep (termed slowed timestep), i.e., the corresponding ground-truth timestep is slower than the sampling timestep. MixFlow leverages the interpolations at the slowed timesteps, named slowed interpolation mixture, for post-training the prediction network for each training timestep. Experiments over class-conditional image generation (including SiT, REPA, and RAE) and text-to-image generation validate the effectiveness of our approach. Our approach MixFlow over the RAE models achieve strong generation results on ImageNet: 1.43 FID (without guidance) and 1.10 (with guidance) at 256 x 256, and 1.55 FID (without guidance) and 1.10 (with guidance) at 512 x 512.
☆ Bridging Semantics and Geometry: A Decoupled LVLM-SAM Framework for Reasoning Segmentation in Remote Sensing
Large Vision-Language Models (LVLMs) hold great promise for advancing remote sensing (RS) analysis, yet existing reasoning segmentation frameworks couple linguistic reasoning and pixel prediction through end-to-end supervised fine-tuning, leading to weak geometric grounding and limited generalization across tasks. To address this, we developed Think2Seg-RS, a decoupled framework that trains an LVLM prompter to control a frozen Segment Anything Model (SAM) via structured geometric prompts. Through a mask-only reinforcement learning objective, the LVLM learns to translate abstract semantic reasoning into spatially grounded actions, achieving state-of-the-art performance on the EarthReason dataset. Remarkably, the learned prompting policy generalizes zero-shot to multiple referring segmentation benchmarks, exposing a distinct divide between semantic-level and instance-level grounding. We further found that compact segmenters outperform larger ones under semantic-level supervision, and that negative prompts are ineffective in heterogeneous aerial backgrounds. Together, these findings establish semantic-level reasoning segmentation as a new paradigm for geospatial understanding, opening the way toward unified, interpretable LVLM-driven Earth observation. Our code and model are available at https://github.com/Ricardo-XZ/Think2Seg-RS.
☆ RMLer: Synthesizing Novel Objects across Diverse Categories via Reinforcement Mixing Learning AAAI2026
Novel object synthesis by integrating distinct textual concepts from diverse categories remains a significant challenge in Text-to-Image (T2I) generation. Existing methods often suffer from insufficient concept mixing, lack of rigorous evaluation, and suboptimal outputs-manifesting as conceptual imbalance, superficial combinations, or mere juxtapositions. To address these limitations, we propose Reinforcement Mixing Learning (RMLer), a framework that formulates cross-category concept fusion as a reinforcement learning problem: mixed features serve as states, mixing strategies as actions, and visual outcomes as rewards. Specifically, we design an MLP-policy network to predict dynamic coefficients for blending cross-category text embeddings. We further introduce visual rewards based on (1) semantic similarity and (2) compositional balance between the fused object and its constituent concepts, optimizing the policy via proximal policy optimization. At inference, a selection strategy leverages these rewards to curate the highest-quality fused objects. Extensive experiments demonstrate RMLer's superiority in synthesizing coherent, high-fidelity objects from diverse categories, outperforming existing methods. Our work provides a robust framework for generating novel visual concepts, with promising applications in film, gaming, and design.
comment: accepted by AAAI2026
☆ Hand-Aware Egocentric Motion Reconstruction with Sequence-Level Context
Egocentric vision systems are becoming widely available, creating new opportunities for human-computer interaction. A core challenge is estimating the wearer's full-body motion from first-person videos, which is crucial for understanding human behavior. However, this task is difficult since most body parts are invisible from the egocentric view. Prior approaches mainly rely on head trajectories, leading to ambiguity, or assume continuously tracked hands, which is unrealistic for lightweight egocentric devices. In this work, we present HaMoS, the first hand-aware, sequence-level diffusion framework that directly conditions on both head trajectory and intermittently visible hand cues caused by field-of-view limitations and occlusions, as in real-world egocentric devices. To overcome the lack of datasets pairing diverse camera views with human motion, we introduce a novel augmentation method that models such real-world conditions. We also demonstrate that sequence-level contexts such as body shape and field-of-view are crucial for accurate motion reconstruction, and thus employ local attention to infer long sequences efficiently. Experiments on public benchmarks show that our method achieves state-of-the-art accuracy and temporal smoothness, demonstrating a practical step toward reliable in-the-wild egocentric 3D motion understanding.
comment: Project Page: https://kyungwoncho.github.io/HaMoS/
☆ Is Visual Realism Enough? Evaluating Gait Biometric Fidelity in Generative AI Human Animation
Generative AI (GenAI) models have revolutionized animation, enabling the synthesis of humans and motion patterns with remarkable visual fidelity. However, generating truly realistic human animation remains a formidable challenge, where even minor inconsistencies can make a subject appear unnatural. This limitation is particularly critical when AI-generated videos are evaluated for behavioral biometrics, where subtle motion cues that define identity are easily lost or distorted. The present study investigates whether state-of-the-art GenAI human animation models can preserve the subtle spatio-temporal details needed for person identification through gait biometrics. Specifically, we evaluate four different GenAI models across two primary evaluation tasks to assess their ability to i) restore gait patterns from reference videos under varying conditions of complexity, and ii) transfer these gait patterns to different visual identities. Our results show that while visual quality is mostly high, biometric fidelity remains low in tasks focusing on identification, suggesting that current GenAI models struggle to disentangle identity from motion. Furthermore, through an identity transfer task, we expose a fundamental flaw in appearance-based gait recognition: when texture is disentangled from motion, identification collapses, proving current GenAI models rely on visual attributes rather than temporal dynamics.
☆ 3SGen: Unified Subject, Style, and Structure-Driven Image Generation with Adaptive Task-specific Memory
Recent image generation approaches often address subject, style, and structure-driven conditioning in isolation, leading to feature entanglement and limited task transferability. In this paper, we introduce 3SGen, a task-aware unified framework that performs all three conditioning modes within a single model. 3SGen employs an MLLM equipped with learnable semantic queries to align text-image semantics, complemented by a VAE branch that preserves fine-grained visual details. At its core, an Adaptive Task-specific Memory (ATM) module dynamically disentangles, stores, and retrieves condition-specific priors, such as identity for subjects, textures for styles, and spatial layouts for structures, via a lightweight gating mechanism along with several scalable memory items. This design mitigates inter-task interference and naturally scales to compositional inputs. In addition, we propose 3SGen-Bench, a unified image-driven generation benchmark with standardized metrics for evaluating cross-task fidelity and controllability. Extensive experiments on our proposed 3SGen-Bench and other public benchmarks demonstrate our superior performance across diverse image-driven generation tasks.
☆ Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.
☆ VisionDirector: Vision-Language Guided Closed-Loop Refinement for Generative Image Synthesis
Generative models can now produce photorealistic imagery, yet they still struggle with the long, multi-goal prompts that professional designers issue. To expose this gap and better evaluate models' performance in real-world settings, we introduce Long Goal Bench (LGBench), a 2,000-task suite (1,000 T2I and 1,000 I2I) whose average instruction contains 18 to 22 tightly coupled goals spanning global layout, local object placement, typography, and logo fidelity. We find that even state-of-the-art models satisfy fewer than 72 percent of the goals and routinely miss localized edits, confirming the brittleness of current pipelines. To address this, we present VisionDirector, a training-free vision-language supervisor that (i) extracts structured goals from long instructions, (ii) dynamically decides between one-shot generation and staged edits, (iii) runs micro-grid sampling with semantic verification and rollback after every edit, and (iv) logs goal-level rewards. We further fine-tune the planner with Group Relative Policy Optimization, yielding shorter edit trajectories (3.1 versus 4.2 steps) and stronger alignment. VisionDirector achieves new state of the art on GenEval (plus 7 percent overall) and ImgEdit (plus 0.07 absolute) while producing consistent qualitative improvements on typography, multi-object scenes, and pose editing.
☆ Selective Phase-Aware Training of nnU-Net for Robust Breast Cancer Segmentation in Multi-Center DCE-MRI
Breast cancer remains the most common cancer among women and is a leading cause of female mortality. Dynamic contrast-enhanced MRI (DCE-MRI) is a powerful imaging tool for evaluating breast tumors, yet the field lacks a standardized benchmark for analyzing treatment responses and guiding personalized care. We participated in the MAMA-MIA Challenge's Primary Tumor Segmentation task and this work presents a proposed selective, phase-aware training framework for the nnU-Net architecture, emphasizing quality-focused data selection to strengthen model robustness and generalization. We employed the No New Net (nnU-Net) framework with a selective training strategy that systematically analyzed the impact of image quality and center-specific variability on segmentation performance. Controlled experiments on the DUKE, NACT, ISPY1, and ISPY2 datasets revealed that including ISPY scans with motion artifacts and reduced contrast impaired segmentation performance, even with advanced preprocessing, such as contrast-limited adaptive histogram equalization (CLAHE). In contrast, training on DUKE and NACT data, which exhibited clearer contrast and fewer motion artifacts despite varying resolutions, with early phase images (0000-0002) provided more stable training conditions. Our results demonstrate the importance of phase-sensitive and quality-aware training strategies in achieving reliable segmentation performance in heterogeneous clinical datasets, highlighting the limitations of the expansion of naive datasets and motivating the need for future automation of quality-based data selection strategies.
☆ From Pixels to Predicates Structuring urban perception with scene graphs
Perception research is increasingly modelled using streetscapes, yet many approaches still rely on pixel features or object co-occurrence statistics, overlooking the explicit relations that shape human perception. This study proposes a three stage pipeline that transforms street view imagery (SVI) into structured representations for predicting six perceptual indicators. In the first stage, each image is parsed using an open-set Panoptic Scene Graph model (OpenPSG) to extract object predicate object triplets. In the second stage, compact scene-level embeddings are learned through a heterogeneous graph autoencoder (GraphMAE). In the third stage, a neural network predicts perception scores from these embeddings. We evaluate the proposed approach against image-only baselines in terms of accuracy, precision, and cross-city generalization. Results indicate that (i) our approach improves perception prediction accuracy by an average of 26% over baseline models, and (ii) maintains strong generalization performance in cross-city prediction tasks. Additionally, the structured representation clarifies which relational patterns contribute to lower perception scores in urban scenes, such as graffiti on wall and car parked on sidewalk. Overall, this study demonstrates that graph-based structure provides expressive, generalizable, and interpretable signals for modelling urban perception, advancing human-centric and context-aware urban analytics.
comment: 10 pages, CAADRIA2026 presentation forthcoming
☆ Towards Minimal Fine-Tuning of VLMs
We introduce Image-LoRA, a lightweight parameter efficient fine-tuning (PEFT) recipe for transformer-based vision-language models (VLMs). Image-LoRA applies low-rank adaptation only to the value path of attention layers within the visual-token span, reducing adapter-only training FLOPs roughly in proportion to the visual-token fraction. We further adapt only a subset of attention heads, selected using head influence scores estimated with a rank-1 Image-LoRA, and stabilize per-layer updates via selection-size normalization. Across screen-centric grounding and referring benchmarks spanning text-heavy to image-heavy regimes, Image-LoRA matches or closely approaches standard LoRA accuracy while using fewer trainable parameters and lower adapter-only training FLOPs. The method also preserves the pure-text reasoning performance of VLMs before and after fine-tuning, as further shown on GSM8K.
☆ HippMetric: A skeletal-representation-based framework for cross-sectional and longitudinal hippocampal substructural morphometry
Accurate characterization of hippocampal substructure is crucial for detecting subtle structural changes and identifying early neurodegenerative biomarkers. However, high inter-subject variability and complex folding pattern of human hippocampus hinder consistent cross-subject and longitudinal analysis. Most existing approaches rely on subject-specific modelling and lack a stable intrinsic coordinate system to accommodate anatomical variability, which limits their ability to establish reliable inter- and intra-individual correspondence. To address this, we propose HippMetric, a skeletal representation (s-rep)-based framework for hippocampal substructural morphometry and point-wise correspondence across individuals and scans. HippMetric builds on the Axis-Referenced Morphometric Model (ARMM) and employs a deformable skeletal coordinate system aligned with hippocampal anatomy and function, providing a biologically grounded reference for correspondence. Our framework comprises two core modules: a skeletal-based coordinate system that respects the hippocampus' conserved longitudinal lamellar architecture, in which functional units (lamellae) are stacked perpendicular to the long-axis, enabling anatomically consistent localization across subjects and time; and individualized s-reps generated through surface reconstruction, deformation, and geometrically constrained spoke refinement, enforcing boundary adherence, orthogonality and non-intersection to produce mathematically valid skeletal geometry. Extensive experiments on two international cohorts demonstrate that HippMetric achieves higher accuracy, reliability, and correspondence stability compared to existing shape models.
comment: 35 pages, 8 figures
☆ InvCoSS: Inversion-driven Continual Self-supervised Learning in Medical Multi-modal Image Pre-training
Continual self-supervised learning (CSSL) in medical imaging trains a foundation model sequentially, alleviating the need for collecting multi-modal images for joint training and offering promising improvements in downstream performance while preserving data privacy. However, most existing methods still rely on replaying data from previous stages to prevent catastrophic forgetting, which compromises privacy and limits their applicability in real-world scenarios where data transfer across sites is often restricted. In this work, we propose InvCoSS, an inversion-driven continual self-supervised learning framework for medical multi-modal image pre-training. Specifically, after training on a previous task, InvCoSS inverts the pre-trained self-supervised model to generate synthetic images that approximate the original training distribution. These synthetic images are then combined with data from the new task for joint optimization, which effectively mitigates catastrophic forgetting while strictly adhering to the constraint of no access to previous real data. Furthermore, to improve the fidelity of synthetic images, we introduce a novel InvUNet with a multi-scale fusion architecture to restore both high- and low-frequency components of the inverted images. To enhance diversity and prevent mode collapse, we design a repulsive representation-learning mechanism that encourages a diverse feature space for synthetic images without class guidance. Extensive experiments across nine downstream tasks validate the effectiveness of InvCoSS, achieving performance comparable to or even superior to prior data-replay methods while significantly reducing storage requirements and eliminating data privacy constraints.
comment: 16 pages, 10 figures, 5 tables
☆ PEDESTRIAN: An Egocentric Vision Dataset for Obstacle Detection on Pavements
Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.
comment: 24 pages, 7 figures, 9 tables, Dataset: https://doi.org/10.5281/zenodo.10907945, Code: https://github.com/CYENS/PEDESTRIAN
☆ CycleChart: A Unified Consistency-Based Learning Framework for Bidirectional Chart Understanding and Generation
Current chart-specific tasks, such as chart question answering, chart parsing, and chart generation, are typically studied in isolation, preventing models from learning the shared semantics that link chart generation and interpretation. We introduce CycleChart, a consistency-based learning framework for bidirectional chart understanding and generation. CycleChart adopts a schema-centric formulation as a common interface across tasks. We construct a consistent multi-task dataset, where each chart sample includes aligned annotations for schema prediction, data parsing, and question answering. To learn cross-directional chart semantics, CycleChart introduces a generate-parse consistency objective: the model generates a chart schema from a table and a textual query, then learns to recover the schema and data from the generated chart, enforcing semantic alignment across directions. CycleChart achieves strong results on chart generation, chart parsing, and chart question answering, demonstrating improved cross-task generalization and marking a step toward more general chart understanding models.
☆ OmniMoGen: Unifying Human Motion Generation via Learning from Interleaved Text-Motion Instructions
Large language models (LLMs) have unified diverse linguistic tasks within a single framework, yet such unification remains unexplored in human motion generation. Existing methods are confined to isolated tasks, limiting flexibility for free-form and omni-objective generation. To address this, we propose OmniMoGen, a unified framework that enables versatile motion generation through interleaved text-motion instructions. Built upon a concise RVQ-VAE and transformer architecture, OmniMoGen supports end-to-end instruction-driven motion generation. We construct X2Mo, a large-scale dataset of over 137K interleaved text-motion instructions, and introduce AnyContext, a benchmark for evaluating interleaved motion generation. Experiments show that OmniMoGen achieves state-of-the-art performance on text-to-motion, motion editing, and AnyContext, exhibiting emerging capabilities such as compositional editing, self-reflective generation, and knowledge-informed generation. These results mark a step toward the next intelligent motion generation. Project Page: https://OmniMoGen.github.io/.
☆ AMap: Distilling Future Priors for Ahead-Aware Online HD Map Construction
Online High-Definition (HD) map construction is pivotal for autonomous driving. While recent approaches leverage historical temporal fusion to improve performance, we identify a critical safety flaw in this paradigm: it is inherently ``spatially backward-looking." These methods predominantly enhance map reconstruction in traversed areas, offering minimal improvement for the unseen road ahead. Crucially, our analysis of downstream planning tasks reveals a severe asymmetry: while rearward perception errors are often tolerable, inaccuracies in the forward region directly precipitate hazardous driving maneuvers. To bridge this safety gap, we propose AMap, a novel framework for Ahead-aware online HD Mapping. We pioneer a ``distill-from-future" paradigm, where a teacher model with privileged access to future temporal contexts guides a lightweight student model restricted to the current frame. This process implicitly compresses prospective knowledge into the student model, endowing it with ``look-ahead" capabilities at zero inference-time cost. Technically, we introduce a Multi-Level BEV Distillation strategy with spatial masking and an Asymmetric Query Adaptation module to effectively transfer future-aware representations to the student's static queries. Extensive experiments on the nuScenes and Argoverse 2 benchmark demonstrate that AMap significantly enhances current-frame perception. Most notably, it outperforms state-of-the-art temporal models in critical forward regions while maintaining the efficiency of single current frame inference.
comment: 19 pages, 11 figures
☆ WorldRFT: Latent World Model Planning with Reinforcement Fine-Tuning for Autonomous Driving AAAI 2026
Latent World Models enhance scene representation through temporal self-supervised learning, presenting a perception annotation-free paradigm for end-to-end autonomous driving. However, the reconstruction-oriented representation learning tangles perception with planning tasks, leading to suboptimal optimization for planning. To address this challenge, we propose WorldRFT, a planning-oriented latent world model framework that aligns scene representation learning with planning via a hierarchical planning decomposition and local-aware interactive refinement mechanism, augmented by reinforcement learning fine-tuning (RFT) to enhance safety-critical policy performance. Specifically, WorldRFT integrates a vision-geometry foundation model to improve 3D spatial awareness, employs hierarchical planning task decomposition to guide representation optimization, and utilizes local-aware iterative refinement to derive a planning-oriented driving policy. Furthermore, we introduce Group Relative Policy Optimization (GRPO), which applies trajectory Gaussianization and collision-aware rewards to fine-tune the driving policy, yielding systematic improvements in safety. WorldRFT achieves state-of-the-art (SOTA) performance on both open-loop nuScenes and closed-loop NavSim benchmarks. On nuScenes, it reduces collision rates by 83% (0.30% -> 0.05%). On NavSim, using camera-only sensors input, it attains competitive performance with the LiDAR-based SOTA method DiffusionDrive (87.8 vs. 88.1 PDMS).
comment: AAAI 2026, first version
☆ Generative Giants, Retrieval Weaklings: Why do Multimodal Large Language Models Fail at Multimodal Retrieval?
Despite the remarkable success of multimodal large language models (MLLMs) in generative tasks, we observe that they exhibit a counterintuitive deficiency in the zero-shot multimodal retrieval task. In this work, we investigate the underlying mechanisms that hinder MLLMs from serving as effective retrievers. With the help of sparse autoencoders (SAEs), we decompose MLLM output representations into interpretable semantic concepts to probe their intrinsic behavior. Our analysis reveals that the representation space of MLLMs is overwhelmingly dominated by textual semantics; the visual information essential for multimodal retrieval only constitutes a small portion. This imbalance is compounded by the heavy focus of MLLMs on bridging image-text modalities, which facilitates generation but homogenizes embeddings and finally diminishes the discriminative power required for multimodal retrieval. We further discover that the specific feature components that contribute most to the similarity computations for MLLMs are in fact distractors that actively degrade retrieval performance. Overall, our work provides the first in-depth interpretability analysis of MLLM representations in the context of multimodal retrieval and offers possible directions for enhancing the multimodal retrieval capabilities of MLLMs.
☆ Trifocal Tensor and Relative Pose Estimation with Known Vertical Direction
This work presents two novel solvers for estimating the relative poses among views with known vertical directions. The vertical directions of camera views can be easily obtained using inertial measurement units (IMUs) which have been widely used in autonomous vehicles, mobile phones, and unmanned aerial vehicles (UAVs). Given the known vertical directions, our lgorithms only need to solve for two rotation angles and two translation vectors. In this paper, a linear closed-form solution has been described, requiring only four point correspondences in three views. We also propose a minimal solution with three point correspondences using the latest Gröbner basis solver. Since the proposed methods require fewer point correspondences, they can be efficiently applied within the RANSAC framework for outliers removal and pose estimation in visual odometry. The proposed method has been tested on both synthetic data and real-world scenes from KITTI. The experimental results show that the accuracy of the estimated poses is superior to other alternative methods.
☆ GaussianImage++: Boosted Image Representation and Compression with 2D Gaussian Splatting AAAI 2026
Implicit neural representations (INRs) have achieved remarkable success in image representation and compression, but they require substantial training time and memory. Meanwhile, recent 2D Gaussian Splatting (GS) methods (\textit{e.g.}, GaussianImage) offer promising alternatives through efficient primitive-based rendering. However, these methods require excessive Gaussian primitives to maintain high visual fidelity. To exploit the potential of GS-based approaches, we present GaussianImage++, which utilizes limited Gaussian primitives to achieve impressive representation and compression performance. Firstly, we introduce a distortion-driven densification mechanism. It progressively allocates Gaussian primitives according to signal intensity. Secondly, we employ context-aware Gaussian filters for each primitive, which assist in the densification to optimize Gaussian primitives based on varying image content. Thirdly, we integrate attribute-separated learnable scalar quantizers and quantization-aware training, enabling efficient compression of primitive attributes. Experimental results demonstrate the effectiveness of our method. In particular, GaussianImage++ outperforms GaussianImage and INRs-based COIN in representation and compression performance while maintaining real-time decoding and low memory usage.
comment: Accepted to AAAI 2026.Code URL:https://github.com/Sweethyh/GaussianImage_plus.git
☆ Mamba-Based Modality Disentanglement Network for Multi-Contrast MRI Reconstruction
Magnetic resonance imaging (MRI) is a cornerstone of modern clinical diagnosis, offering unparalleled soft-tissue contrast without ionizing radiation. However, prolonged scan times remain a major barrier to patient throughput and comfort. Existing accelerated MRI techniques often struggle with two key challenges: (1) failure to effectively utilize inherent K-space prior information, leading to persistent aliasing artifacts from zero-filled inputs; and (2) contamination of target reconstruction quality by irrelevant information when employing multi-contrast fusion strategies. To overcome these challenges, we present MambaMDN, a dual-domain framework for multi-contrast MRI reconstruction. Our approach first employs fully-sampled reference K-space data to complete the undersampled target data, generating structurally aligned but modality-mixed inputs. Subsequently, we develop a Mamba-based modality disentanglement network to extract and remove reference-specific features from the mixed representation. Furthermore, we introduce an iterative refinement mechanism to progressively enhance reconstruction accuracy through repeated feature purification. Extensive experiments demonstrate that MambaMDN can significantly outperform existing multi-contrast reconstruction methods.
comment: 12 pages, 11 figures, 6 tables
☆ Auditing Significance, Metric Choice, and Demographic Fairness in Medical AI Challenges MICCAI 2025
Open challenges have become the de facto standard for comparative ranking of medical AI methods. Despite their importance, medical AI leaderboards exhibit three persistent limitations: (1) score gaps are rarely tested for statistical significance, so rank stability is unknown; (2) single averaged metrics are applied to every organ, hiding clinically important boundary errors; (3) performance across intersecting demographics is seldom reported, masking fairness and equity gaps. We introduce RankInsight, an open-source toolkit that seeks to address these limitations. RankInsight (1) computes pair-wise significance maps that show the nnU-Net family outperforms Vision-Language and MONAI submissions with high statistical certainty; (2) recomputes leaderboards with organ-appropriate metrics, reversing the order of the top four models when Dice is replaced by NSD for tubular structures; and (3) audits intersectional fairness, revealing that more than half of the MONAI-based entries have the largest gender-race discrepancy on our proprietary Johns Hopkins Hospital dataset. The RankInsight toolkit is publicly released and can be directly applied to past, ongoing, and future challenges. It enables organizers and participants to publish rankings that are statistically sound, clinically meaningful, and demographically fair.
comment: MICCAI 2025 Workshop on Machine Learning in Medical Imaging
☆ Retrieving Objects from 3D Scenes with Box-Guided Open-Vocabulary Instance Segmentation AAAI 2026
Locating and retrieving objects from scene-level point clouds is a challenging problem with broad applications in robotics and augmented reality. This task is commonly formulated as open-vocabulary 3D instance segmentation. Although recent methods demonstrate strong performance, they depend heavily on SAM and CLIP to generate and classify 3D instance masks from images accompanying the point cloud, leading to substantial computational overhead and slow processing that limit their deployment in real-world settings. Open-YOLO 3D alleviates this issue by using a real-time 2D detector to classify class-agnostic masks produced directly from the point cloud by a pretrained 3D segmenter, eliminating the need for SAM and CLIP and significantly reducing inference time. However, Open-YOLO 3D often fails to generalize to object categories that appear infrequently in the 3D training data. In this paper, we propose a method that generates 3D instance masks for novel objects from RGB images guided by a 2D open-vocabulary detector. Our approach inherits the 2D detector's ability to recognize novel objects while maintaining efficient classification, enabling fast and accurate retrieval of rare instances from open-ended text queries. Our code will be made available at https://github.com/ndkhanh360/BoxOVIS.
comment: Accepted to AAAI 2026 Workshop on New Frontiers in Information Retrieval
☆ Watch Closely: Mitigating Object Hallucinations in Large Vision-Language Models with Disentangled Decoding
Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)
☆ 6DAttack: Backdoor Attacks in the 6DoF Pose Estimation
Deep learning advances have enabled accurate six-degree-of-freedom (6DoF) object pose estimation, widely used in robotics, AR/VR, and autonomous systems. However, backdoor attacks pose significant security risks. While most research focuses on 2D vision, 6DoF pose estimation remains largely unexplored. Unlike traditional backdoors that only change classes, 6DoF attacks must control continuous parameters like translation and rotation, rendering 2D methods inapplicable. We propose 6DAttack, a framework using 3D object triggers to induce controlled erroneous poses while maintaining normal behavior. Evaluations on PVNet, DenseFusion, and PoseDiffusion across LINEMOD, YCB-Video, and CO3D show high attack success rates (ASRs) without compromising clean performance. Backdoored models achieve up to 100% clean ADD accuracy and 100% ASR, with triggered samples reaching 97.70% ADD-P. Furthermore, a representative defense remains ineffective. Our findings reveal a serious, underexplored threat to 6DoF pose estimation.
☆ WaTeRFlow: Watermark Temporal Robustness via Flow Consistency
Image watermarking supports authenticity and provenance, yet many schemes are still easy to bypass with various distortions and powerful generative edits. Deep learning-based watermarking has improved robustness to diffusion-based image editing, but a gap remains when a watermarked image is converted to video by image-to-video (I2V), in which per-frame watermark detection weakens. I2V has quickly advanced from short, jittery clips to multi-second, temporally coherent scenes, and it now serves not only content creation but also world-modeling and simulation workflows, making cross-modal watermark recovery crucial. We present WaTeRFlow, a framework tailored for robustness under I2V. It consists of (i) FUSE (Flow-guided Unified Synthesis Engine), which exposes the encoder-decoder to realistic distortions via instruction-driven edits and a fast video diffusion proxy during training, (ii) optical-flow warping with a Temporal Consistency Loss (TCL) that stabilizes per-frame predictions, and (iii) a semantic preservation loss that maintains the conditioning signal. Experiments across representative I2V models show accurate watermark recovery from frames, with higher first-frame and per-frame bit accuracy and resilience when various distortions are applied before or after video generation.
☆ Decoupled Generative Modeling for Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction (HOI) is essential for 3D computer vision and robotics, underpinning animation and embodied control. Existing approaches often require manually specified intermediate waypoints and place all optimization objectives on a single network, which increases complexity, reduces flexibility, and leads to errors such as unsynchronized human and object motion or penetration. To address these issues, we propose Decoupled Generative Modeling for Human-Object Interaction Synthesis (DecHOI), which separates path planning and action synthesis. A trajectory generator first produces human and object trajectories without prescribed waypoints, and an action generator conditions on these paths to synthesize detailed motions. To further improve contact realism, we employ adversarial training with a discriminator that focuses on the dynamics of distal joints. The framework also models a moving counterpart and supports responsive, long-sequence planning in dynamic scenes, while preserving plan consistency. Across two benchmarks, FullBodyManipulation and 3D-FUTURE, DecHOI surpasses prior methods on most quantitative metrics and qualitative evaluations, and perceptual studies likewise prefer our results.
☆ Distinguishing Visually Similar Actions: Prompt-Guided Semantic Prototype Modulation for Few-Shot Action Recognition
Few-shot action recognition aims to enable models to quickly learn new action categories from limited labeled samples, addressing the challenge of data scarcity in real-world applications. Current research primarily addresses three core challenges: (1) temporal modeling, where models are prone to interference from irrelevant static background information and struggle to capture the essence of dynamic action features; (2) visual similarity, where categories with subtle visual differences are difficult to distinguish; and (3) the modality gap between visual-textual support prototypes and visual-only queries, which complicates alignment within a shared embedding space. To address these challenges, this paper proposes a CLIP-SPM framework, which includes three components: (1) the Hierarchical Synergistic Motion Refinement (HSMR) module, which aligns deep and shallow motion features to improve temporal modeling by reducing static background interference; (2) the Semantic Prototype Modulation (SPM) strategy, which generates query-relevant text prompts to bridge the modality gap and integrates them with visual features, enhancing the discriminability between similar actions; and (3) the Prototype-Anchor Dual Modulation (PADM) method, which refines support prototypes and aligns query features with a global semantic anchor, improving consistency across support and query samples. Comprehensive experiments across standard benchmarks, including Kinetics, SSv2-Full, SSv2-Small, UCF101, and HMDB51, demonstrate that our CLIP-SPM achieves competitive performance under 1-shot, 3-shot, and 5-shot settings. Extensive ablation studies and visual analyses further validate the effectiveness of each component and its contributions to addressing the core challenges. The source code and models are publicly available at GitHub.
comment: 19 pages, 7 figures. Preprint under review for journal submission
☆ Automatic Neuronal Activity Segmentation in Fast Four Dimensional Spatio-Temporal Fluorescence Imaging using Bayesian Approach
Fluorescence Microcopy Calcium Imaging is a fundamental tool to in-vivo record and analyze large scale neuronal activities simultaneously at a single cell resolution. Automatic and precise detection of behaviorally relevant neuron activity from the recordings is critical to study the mapping of brain activity in organisms. However a perpetual bottleneck to this problem is the manual segmentation which is time and labor intensive and lacks generalizability. To this end, we present a Bayesian Deep Learning Framework to detect neuronal activities in 4D spatio-temporal data obtained by light sheet microscopy. Our approach accounts for the use of temporal information by calculating pixel wise correlation maps and combines it with spatial information given by the mean summary image. The Bayesian framework not only produces probability segmentation maps but also models the uncertainty pertaining to active neuron detection. To evaluate the accuracy of our framework we implemented the test of reproducibility to assert the generalization of the network to detect neuron activity. The network achieved a mean Dice Score of 0.81 relative to the synthetic Ground Truth obtained by Otsu's method and a mean Dice Score of 0.79 between the first and second run for test of reproducibility. Our method successfully deployed can be used for rapid detection of active neuronal activities for behavioural studies.
☆ Finer-Personalization Rank: Fine-Grained Retrieval Examines Identity Preservation for Personalized Generation
The rise of personalized generative models raises a central question: how should we evaluate identity preservation? Given a reference image (e.g., one's pet), we expect the generated image to retain precise details attached to the subject's identity. However, current generative evaluation metrics emphasize the overall semantic similarity between the reference and the output, and overlook these fine-grained discriminative details. We introduce Finer-Personalization Rank, an evaluation protocol tailored to identity preservation. Instead of pairwise similarity, Finer-Personalization Rank adopts a ranking view: it treats each generated image as a query against an identity-labeled gallery consisting of visually similar real images. Retrieval metrics (e.g., mean average precision) measure performance, where higher scores indicate that identity-specific details (e.g., a distinctive head spot) are preserved. We assess identity at multiple granularities -- from fine-grained categories (e.g., bird species, car models) to individual instances (e.g., re-identification). Across CUB, Stanford Cars, and animal Re-ID benchmarks, Finer-Personalization Rank more faithfully reflects identity retention than semantic-only metrics and reveals substantial identity drift in several popular personalization methods. These results position the gallery-based protocol as a principled and practical evaluation for personalized generation.
☆ Steering Vision-Language Pre-trained Models for Incremental Face Presentation Attack Detection
Face Presentation Attack Detection (PAD) demands incremental learning (IL) to combat evolving spoofing tactics and domains. Privacy regulations, however, forbid retaining past data, necessitating rehearsal-free IL (RF-IL). Vision-Language Pre-trained (VLP) models, with their prompt-tunable cross-modal representations, enable efficient adaptation to new spoofing styles and domains. Capitalizing on this strength, we propose \textbf{SVLP-IL}, a VLP-based RF-IL framework that balances stability and plasticity via \textit{Multi-Aspect Prompting} (MAP) and \textit{Selective Elastic Weight Consolidation} (SEWC). MAP isolates domain dependencies, enhances distribution-shift sensitivity, and mitigates forgetting by jointly exploiting universal and domain-specific cues. SEWC selectively preserves critical weights from previous tasks, retaining essential knowledge while allowing flexibility for new adaptations. Comprehensive experiments across multiple PAD benchmarks show that SVLP-IL significantly reduces catastrophic forgetting and enhances performance on unseen domains. SVLP-IL offers a privacy-compliant, practical solution for robust lifelong PAD deployment in RF-IL settings.
☆ VLNVerse: A Benchmark for Vision-Language Navigation with Versatile, Embodied, Realistic Simulation and Evaluation
Despite remarkable progress in Vision-Language Navigation (VLN), existing benchmarks remain confined to fixed, small-scale datasets with naive physical simulation. These shortcomings limit the insight that the benchmarks provide into sim-to-real generalization, and create a significant research gap. Furthermore, task fragmentation prevents unified/shared progress in the area, while limited data scales fail to meet the demands of modern LLM-based pretraining. To overcome these limitations, we introduce VLNVerse: a new large-scale, extensible benchmark designed for Versatile, Embodied, Realistic Simulation, and Evaluation. VLNVerse redefines VLN as a scalable, full-stack embodied AI problem. Its Versatile nature unifies previously fragmented tasks into a single framework and provides an extensible toolkit for researchers. Its Embodied design moves beyond intangible and teleporting "ghost" agents that support full-kinematics in a Realistic Simulation powered by a robust physics engine. We leverage the scale and diversity of VLNVerse to conduct a comprehensive Evaluation of existing methods, from classic models to MLLM-based agents. We also propose a novel unified multi-task model capable of addressing all tasks within the benchmark. VLNVerse aims to narrow the gap between simulated navigation and real-world generalization, providing the community with a vital tool to boost research towards scalable, general-purpose embodied locomotion agents.
☆ CETCAM: Camera-Controllable Video Generation via Consistent and Extensible Tokenization
Achieving precise camera control in video generation remains challenging, as existing methods often rely on camera pose annotations that are difficult to scale to large and dynamic datasets and are frequently inconsistent with depth estimation, leading to train-test discrepancies. We introduce CETCAM, a camera-controllable video generation framework that eliminates the need for camera annotations through a consistent and extensible tokenization scheme. CETCAM leverages recent advances in geometry foundation models, such as VGGT, to estimate depth and camera parameters and converts them into unified, geometry-aware tokens. These tokens are seamlessly integrated into a pretrained video diffusion backbone via lightweight context blocks. Trained in two progressive stages, CETCAM first learns robust camera controllability from diverse raw video data and then refines fine-grained visual quality using curated high-fidelity datasets. Extensive experiments across multiple benchmarks demonstrate state-of-the-art geometric consistency, temporal stability, and visual realism. Moreover, CETCAM exhibits strong adaptability to additional control modalities, including inpainting and layout control, highlighting its flexibility beyond camera control. The project page is available at https://sjtuytc.github.io/CETCam_project_page.github.io/.
☆ Towards AI-Guided Open-World Ecological Taxonomic Classification
AI-guided classification of ecological families, genera, and species underpins global sustainability efforts such as biodiversity monitoring, conservation planning, and policy-making. Progress toward this goal is hindered by long-tailed taxonomic distributions from class imbalance, along with fine-grained taxonomic variations, test-time spatiotemporal domain shifts, and closed-set assumptions that can only recognize previously seen taxa. We introduce the Open-World Ecological Taxonomy Classification, a unified framework that captures the co-occurrence of these challenges in realistic ecological settings. To address them, we propose TaxoNet, an embedding-based encoder with a dual-margin penalization loss that strengthens learning signals from rare underrepresented taxa while mitigating the dominance of overrepresented ones, directly confronting interrelated challenges. We evaluate our method on diverse ecological domains: Google Auto-Arborist (urban trees), iNat-Plantae (Plantae observations from various ecosystems in iNaturalist-2019), and NAFlora-Mini (a curated herbarium collection). Our model consistently outperforms baselines, particularly for rare taxa, establishing a strong foundation for open-world plant taxonomic monitoring. Our findings further show that general-purpose multimodal foundation models remain constrained in plant-domain applications.
comment: 4 figures, 11 tables, and 15 pages
☆ ICP-4D: Bridging Iterative Closest Point and LiDAR Panoptic Segmentation
Dominant paradigms for 4D LiDAR panoptic segmentation are usually required to train deep neural networks with large superimposed point clouds or design dedicated modules for instance association. However, these approaches perform redundant point processing and consequently become computationally expensive, yet still overlook the rich geometric priors inherently provided by raw point clouds. To this end, we introduce ICP-4D, a simple yet effective training-free framework that unifies spatial and temporal reasoning through geometric relations among instance-level point sets. Specifically, we apply the Iterative Closest Point (ICP) algorithm to directly associate temporally consistent instances by aligning the source and target point sets through the estimated transformation. To stabilize association under noisy instance predictions, we introduce a Sinkhorn-based soft matching. This exploits the underlying instance distribution to obtain accurate point-wise correspondences, resulting in robust geometric alignment. Furthermore, our carefully designed pipeline, which considers three instance types-static, dynamic, and missing-offers computational efficiency and occlusion-aware matching. Our extensive experiments across both SemanticKITTI and panoptic nuScenes demonstrate that our method consistently outperforms state-of-the-art approaches, even without additional training or extra point cloud inputs.
☆ Affordance RAG: Hierarchical Multimodal Retrieval with Affordance-Aware Embodied Memory for Mobile Manipulation ICRA 2026
In this study, we address the problem of open-vocabulary mobile manipulation, where a robot is required to carry a wide range of objects to receptacles based on free-form natural language instructions. This task is challenging, as it involves understanding visual semantics and the affordance of manipulation actions. To tackle these challenges, we propose Affordance RAG, a zero-shot hierarchical multimodal retrieval framework that constructs Affordance-Aware Embodied Memory from pre-explored images. The model retrieves candidate targets based on regional and visual semantics and reranks them with affordance scores, allowing the robot to identify manipulation options that are likely to be executable in real-world environments. Our method outperformed existing approaches in retrieval performance for mobile manipulation instruction in large-scale indoor environments. Furthermore, in real-world experiments where the robot performed mobile manipulation in indoor environments based on free-form instructions, the proposed method achieved a task success rate of 85%, outperforming existing methods in both retrieval performance and overall task success.
comment: Accepted to IEEE RA-L, with presentation at ICRA 2026
☆ Self-Attention with State-Object Weighted Combination for Compositional Zero Shot Learning
Object recognition has become prevalent across various industries. However, most existing applications are limited to identifying objects alone, without considering their associated states. The ability to recognize both the state and object simultaneously remains less common. One approach to address this is by treating state and object as a single category during training. However, this approach poses challenges in data collection and training since it requires comprehensive data for all possible combinations. Compositional Zero-shot Learning (CZSL) emerges as a viable solution by treating the state and object as distinct categories during training. CZSL facilitates the identification of novel compositions even in the absence of data for every conceivable combination. The current state-of-the-art method, KG-SP, addresses this issue by training distinct classifiers for states and objects, while leveraging a semantic model to evaluate the plausibility of composed compositions. However, KG-SP's accuracy in state and object recognition can be further improved, and it fails to consider the weighting of states and objects during composition. In this study, we propose SASOW, an enhancement of KG-SP that considers the weighting of states and objects while improving composition recognition accuracy. First, we introduce self-attention mechanisms into the classifiers for states and objects, leading to enhanced accuracy in recognizing both. Additionally, we incorporate the weighting of states and objects during composition to generate more reasonable and accurate compositions. Our validation process involves testing SASOW on three established benchmark datasets. Experimental outcomes affirm when compared against OW-CZSL approach, KG-SP, SASOW showcases improvements of 2.1%, 1.7%, and 0.4% in terms of accuracy for unseen compositions across the MIT-States, UT Zappos, and C-GQA datasets, respectively.
☆ Total Curvature Regularization and its_Minimization for Surface and Image Smoothing
We introduce a novel formulation for curvature regularization by penalizing normal curvatures from multiple directions. This total normal curvature regularization is capable of producing solutions with sharp edges and precise isotropic properties. To tackle the resulting high-order nonlinear optimization problem, we reformulate it as the task of finding the steady-state solution of a time-dependent partial differential equation (PDE) system. Time discretization is achieved through operator splitting, where each subproblem at the fractional steps either has a closed-form solution or can be efficiently solved using advanced algorithms. Our method circumvents the need for complex parameter tuning and demonstrates robustness to parameter choices. The efficiency and effectiveness of our approach have been rigorously validated in the context of surface and image smoothing problems.
☆ DVI: Disentangling Semantic and Visual Identity for Training-Free Personalized Generation
Recent tuning-free identity customization methods achieve high facial fidelity but often overlook visual context, such as lighting, skin texture, and environmental tone. This limitation leads to ``Semantic-Visual Dissonance,'' where accurate facial geometry clashes with the input's unique atmosphere, causing an unnatural ``sticker-like'' effect. We propose **DVI (Disentangled Visual-Identity)**, a zero-shot framework that orthogonally disentangles identity into fine-grained semantic and coarse-grained visual streams. Unlike methods relying solely on semantic vectors, DVI exploits the inherent statistical properties of the VAE latent space, utilizing mean and variance as lightweight descriptors for global visual atmosphere. We introduce a **Parameter-Free Feature Modulation** mechanism that adaptively modulates semantic embeddings with these visual statistics, effectively injecting the reference's ``visual soul'' without training. Furthermore, a **Dynamic Temporal Granularity Scheduler** aligns with the diffusion process, prioritizing visual atmosphere in early denoising stages while refining semantic details later. Extensive experiments demonstrate that DVI significantly enhances visual consistency and atmospheric fidelity without parameter fine-tuning, maintaining robust identity preservation and outperforming state-of-the-art methods in IBench evaluations.
☆ VOIC: Visible-Occluded Decoupling for Monocular 3D Semantic Scene Completion
Camera-based 3D Semantic Scene Completion (SSC) is a critical task for autonomous driving and robotic scene understanding. It aims to infer a complete 3D volumetric representation of both semantics and geometry from a single image. Existing methods typically focus on end-to-end 2D-to-3D feature lifting and voxel completion. However, they often overlook the interference between high-confidence visible-region perception and low-confidence occluded-region reasoning caused by single-image input, which can lead to feature dilution and error propagation. To address these challenges, we introduce an offline Visible Region Label Extraction (VRLE) strategy that explicitly separates and extracts voxel-level supervision for visible regions from dense 3D ground truth. This strategy purifies the supervisory space for two complementary sub-tasks: visible-region perception and occluded-region reasoning. Building on this idea, we propose the Visible-Occluded Interactive Completion Network (VOIC), a novel dual-decoder framework that explicitly decouples SSC into visible-region semantic perception and occluded-region scene completion. VOIC first constructs a base 3D voxel representation by fusing image features with depth-derived occupancy. The visible decoder focuses on generating high-fidelity geometric and semantic priors, while the occlusion decoder leverages these priors together with cross-modal interaction to perform coherent global scene reasoning. Extensive experiments on the SemanticKITTI and SSCBench-KITTI360 benchmarks demonstrate that VOIC outperforms existing monocular SSC methods in both geometric completion and semantic segmentation accuracy, achieving state-of-the-art performance.
☆ Symmetrization of 3D Generative Models
We propose a novel data-centric approach to promote symmetry in 3D generative models by modifying the training data rather than the model architecture. Our method begins with an analysis of reflectional symmetry in both real-world 3D shapes and samples generated by state-of-the-art models. We hypothesize that training a generative model exclusively on half-objects, obtained by reflecting one half of the shapes along the x=0 plane, enables the model to learn a rich distribution of partial geometries which, when reflected during generation, yield complete shapes that are both visually plausible and geometrically symmetric. To test this, we construct a new dataset of half-objects from three ShapeNet classes (Airplane, Car, and Chair) and train two generative models. Experiments demonstrate that the generated shapes are symmetrical and consistent, compared with the generated objects from the original model and the original dataset objects.
comment: 10 pages, 5 figures
☆ Point What You Mean: Visually Grounded Instruction Policy
Vision-Language-Action (VLA) models align vision and language with embodied control, but their object referring ability remains limited when relying solely on text prompt, especially in cluttered or out-of-distribution (OOD) scenes. In this study, we introduce the Point-VLA, a plug-and-play policy that augments language instructions with explicit visual cues (e.g., bounding boxes) to resolve referential ambiguity and enable precise object-level grounding. To efficiently scale visually grounded datasets, we further develop an automatic data annotation pipeline requiring minimal human effort. We evaluate Point-VLA on diverse real-world referring tasks and observe consistently stronger performance than text-only instruction VLAs, particularly in cluttered or unseen-object scenarios, with robust generalization. These results demonstrate that Point-VLA effectively resolves object referring ambiguity through pixel-level visual grounding, achieving more generalizable embodied control.
☆ LouvreSAE: Sparse Autoencoders for Interpretable and Controllable Style Transfer
Artistic style transfer in generative models remains a significant challenge, as existing methods often introduce style only via model fine-tuning, additional adapters, or prompt engineering, all of which can be computationally expensive and may still entangle style with subject matter. In this paper, we introduce a training- and inference-light, interpretable method for representing and transferring artistic style. Our approach leverages an art-specific Sparse Autoencoder (SAE) on top of latent embeddings of generative image models. Trained on artistic data, our SAE learns an emergent, largely disentangled set of stylistic and compositional concepts, corresponding to style-related elements pertaining brushwork, texture, and color palette, as well as semantic and structural concepts. We call it LouvreSAE and use it to construct style profiles: compact, decomposable steering vectors that enable style transfer without any model updates or optimization. Unlike prior concept-based style transfer methods, our method requires no fine-tuning, no LoRA training, and no additional inference passes, enabling direct steering of artistic styles from only a few reference images. We validate our method on ArtBench10, achieving or surpassing existing methods on style evaluations (VGG Style Loss and CLIP Score Style) while being 1.7-20x faster and, critically, interpretable.
♻ ☆ Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Vision-Language-Action (VLA) models adapt large vision-language backbones to map images and instructions into robot actions. However, prevailing VLAs either generate actions auto-regressively in a fixed left-to-right order or attach separate MLP or diffusion heads outside the backbone, leading to fragmented information pathways and specialized training requirements that hinder a unified, scalable architecture. We present Discrete Diffusion VLA, a unified-transformer policy that models discretized action chunks with discrete diffusion. The design retains diffusion's progressive refinement paradigm while remaining natively compatible with the discrete token interface of VLMs. Our method achieves an adaptive decoding order that resolves easy action elements before harder ones and uses secondary re-masking to revisit uncertain predictions across refinement rounds, which improves consistency and enables robust error correction. This unified decoder preserves pre-trained vision-language priors, supports parallel decoding, breaks the autoregressive bottleneck, and reduces the number of function evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on SimplerEnv-Bridge. We also provide ablation study on vision-language ability retention on LIBERO-OOD (Out-of-Distribution) benchmark, with our method improving over autoregressive, MLP decoder and continuous diffusion baselines. These findings indicate that discrete-diffusion VLA supports precise action modeling and consistent training, laying groundwork for scaling VLA to larger models and datasets. Our code is available at https://github.com/Liang-ZX/DiscreteDiffusionVLA/tree/libero.
comment: New experiments on VL retention and new ablations. 18 pages
♻ ☆ DDAE++: Enhancing Diffusion Models Towards Unified Generative and Discriminative Learning
While diffusion models excel at image synthesis, useful representations have been shown to emerge from generative pre-training, suggesting a path towards unified generative and discriminative learning. However, suboptimal semantic flow within current architectures can hinder this potential: features encoding the richest high-level semantics are underutilized and diluted when propagating through decoding layers, impeding the formation of an explicit semantic bottleneck layer. To address this, we introduce self-conditioning, a lightweight mechanism that reshapes the model's layer-wise semantic hierarchy without external guidance. By aggregating and rerouting intermediate features to guide subsequent decoding layers, our method concentrates more high-level semantics, concurrently strengthening global generative guidance and forming more discriminative representations. This simple approach yields a dual-improvement trend across pixel-space UNet, UViT and latent-space DiT models with minimal overhead. Crucially, it creates an architectural semantic bridge that propagates discriminative improvements into generation and accommodates further techniques such as contrastive self-distillation. Experiments show that our enhanced models, especially self-conditioned DiT, are powerful dual learners that yield strong and transferable representations on image and dense classification tasks, surpassing various generative self-supervised models in linear probing while also improving or maintaining high generation quality.
comment: Updated version. Code available at https://github.com/FutureXiang/ddae_plus_plus
♻ ☆ AsyMoE: Leveraging Modal Asymmetry for Enhanced Expert Specialization in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have demonstrated impressive performance on multimodal tasks through scaled architectures and extensive training. However, existing Mixture of Experts (MoE) approaches face challenges due to the asymmetry between visual and linguistic processing. Visual information is spatially complete, while language requires maintaining sequential context. As a result, MoE models struggle to balance modality-specific features and cross-modal interactions. Through systematic analysis, we observe that language experts in deeper layers progressively lose contextual grounding and rely more on parametric knowledge rather than utilizing the provided visual and linguistic information. To address this, we propose AsyMoE, a novel architecture that models this asymmetry using three specialized expert groups. We design intra-modality experts for modality-specific processing, hyperbolic inter-modality experts for hierarchical cross-modal interactions, and evidence-priority language experts to suppress parametric biases and maintain contextual grounding. Extensive experiments demonstrate that AsyMoE achieves 26.58% and 15.45% accuracy improvements over vanilla MoE and modality-specific MoE respectively, with 25.45% fewer activated parameters than dense models.
comment: This submission has been withdrawn by the authors due to a fundamental error in the methodology that affects the validity of the main results
♻ ☆ GraphGeo: Multi-Agent Debate Framework for Visual Geo-localization with Heterogeneous Graph Neural Networks
Visual geo-localization requires extensive geographic knowledge and sophisticated reasoning to determine image locations without GPS metadata. Traditional retrieval methods are constrained by database coverage and quality. Recent Large Vision-Language Models (LVLMs) enable direct location reasoning from image content, yet individual models struggle with diverse geographic regions and complex scenes. Existing multi-agent systems improve performance through model collaboration but treat all agent interactions uniformly. They lack mechanisms to handle conflicting predictions effectively. We propose \textbf{GraphGeo}, a multi-agent debate framework using heterogeneous graph neural networks for visual geo-localization. Our approach models diverse debate relationships through typed edges, distinguishing supportive collaboration, competitive argumentation, and knowledge transfer. We introduce a dual-level debate mechanism combining node-level refinement and edge-level argumentation modeling. A cross-level topology refinement strategy enables co-evolution between graph structure and agent representations. Experiments on multiple benchmarks demonstrate GraphGeo significantly outperforms state-of-the-art methods. Our framework transforms cognitive conflicts between agents into enhanced geo-localization accuracy through structured debate.
comment: This submission has been withdrawn by the authors due to a fundamental error in the methodology that affects the validity of the main results
♻ ☆ InterPose: Learning to Generate Human-Object Interactions from Large-Scale Web Videos 3DV 2026
Human motion generation has shown great advances thanks to the recent diffusion models trained on large-scale motion capture data. Most of existing works, however, currently target animation of isolated people in empty scenes. Meanwhile, synthesizing realistic human-object interactions in complex 3D scenes remains a critical challenge in computer graphics and robotics. One obstacle towards generating versatile high-fidelity human-object interactions is the lack of large-scale datasets with diverse object manipulations. Indeed, existing motion capture data is typically restricted to single people and manipulations of limited sets of objects. To address this issue, we propose an automatic motion extraction pipeline and use it to collect interaction-rich human motions. Our new dataset InterPose contains 73.8K sequences of 3D human motions and corresponding text captions automatically obtained from 45.8K videos with human-object interactions. We perform extensive experiments and demonstrate InterPose to bring significant improvements to state-of-the-art methods for human motion generation. Moreover, using InterPose we develop an LLM-based agent enabling zero-shot animation of people interacting with diverse objects and scenes.
comment: Accepted to 3DV 2026. Project page: https://mael-zys.github.io/InterPose/
♻ ☆ From Easy to Hard: Progressive Active Learning Framework for Infrared Small Target Detection with Single Point Supervision ICCV 2025
Recently, single-frame infrared small target (SIRST) detection with single point supervision has drawn wide-spread attention. However, the latest label evolution with single point supervision (LESPS) framework suffers from instability, excessive label evolution, and difficulty in exerting embedded network performance. Inspired by organisms gradually adapting to their environment and continuously accumulating knowledge, we construct an innovative Progressive Active Learning (PAL) framework, which drives the existing SIRST detection networks progressively and actively recognizes and learns harder samples. Specifically, to avoid the early low-performance model leading to the wrong selection of hard samples, we propose a model pre-start concept, which focuses on automatically selecting a portion of easy samples and helping the model have basic task-specific learning capabilities. Meanwhile, we propose a refined dual-update strategy, which can promote reasonable learning of harder samples and continuous refinement of pseudo-labels. In addition, to alleviate the risk of excessive label evolution, a decay factor is reasonably introduced, which helps to achieve a dynamic balance between the expansion and contraction of target annotations. Extensive experiments show that existing SIRST detection networks equipped with our PAL framework have achieved state-of-the-art (SOTA) results on multiple public datasets. Furthermore, our PAL framework can build an efficient and stable bridge between full supervision and single point supervision tasks. Our code is available at https://github.com/YuChuang1205/PAL
comment: Accepted by ICCV 2025
♻ ☆ RadAgents: Multimodal Agentic Reasoning for Chest X-ray Interpretation with Radiologist-like Workflows ML4H'25
Agentic systems offer a potential path to solve complex clinical tasks through collaboration among specialized agents, augmented by tool use and external knowledge bases. Nevertheless, for chest X-ray (CXR) interpretation, prevailing methods remain limited: (i) reasoning is frequently neither clinically interpretable nor aligned with guidelines, reflecting mere aggregation of tool outputs; (ii) multimodal evidence is insufficiently fused, yielding text-only rationales that are not visually grounded; and (iii) systems rarely detect or resolve cross-tool inconsistencies and provide no principled verification mechanisms. To bridge the above gaps, we present RadAgents, a multi-agent framework that couples clinical priors with task-aware multimodal reasoning and encodes a radiologist-style workflow into a modular, auditable pipeline. In addition, we integrate grounding and multimodal retrieval-augmentation to verify and resolve context conflicts, resulting in outputs that are more reliable, transparent, and consistent with clinical practice.
comment: ML4H'25; Work in progress
♻ ☆ AIDOVECL: AI-generated Dataset of Outpainted Vehicles for Eye-level Classification and Localization
Image labeling is a critical bottleneck in the development of computer vision technologies, often constraining the potential of machine learning models due to the time-intensive nature of manual annotations. This work introduces a novel approach that leverages outpainting to mitigate the problem of annotated data scarcity by generating artificial contexts and annotations, significantly reducing manual labeling efforts. We apply this technique to a particularly acute challenge in autonomous driving, urban planning, and environmental monitoring: the lack of diverse, eye-level vehicle images in desired classes. Our dataset comprises AI-generated vehicle images obtained by detecting and cropping vehicles from manually selected seed images, which are then outpainted onto larger canvases to simulate varied real-world conditions. The outpainted images include detailed annotations, providing high-quality ground truth data. Advanced outpainting techniques and image quality assessments ensure visual fidelity and contextual relevance. Ablation results show that incorporating AIDOVECL improves overall detection performance by up to 10%, and delivers gains of up to 40% in settings with greater diversity of context, object scale, and placement, with underrepresented classes achieving up to 50% higher true positives. AIDOVECL enhances vehicle detection by augmenting real training data and supporting evaluation across diverse scenarios. By demonstrating outpainting as an automatic annotation paradigm, it offers a practical and versatile solution for building fine-grained datasets with reduced labeling effort across multiple machine learning domains. The code and links to datasets used in this study are available for further research and replication at https://github.com/amir-kazemi/aidovecl .
comment: 34 pages, 10 figures, 5 tables
♻ ☆ SAMSA 2.0: Prompting Segment Anything with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation
We present SAMSA 2.0, an interactive segmentation framework for hyperspectral medical imaging that introduces spectral angle prompting to guide the Segment Anything Model (SAM) using spectral similarity alongside spatial cues. This early fusion of spectral information enables more accurate and robust segmentation across diverse spectral datasets. Without retraining, SAMSA 2.0 achieves up to +3.8% higher Dice scores compared to RGB-only models and up to +3.1% over prior spectral fusion methods. Our approach enhances few-shot and zero-shot performance, demonstrating strong generalization in challenging low-data and noisy scenarios common in clinical imaging.
♻ ☆ VERDI: VLM-Embedded Reasoning for Autonomous Driving
While autonomous driving (AD) stacks struggle with decision making under partial observability and real-world complexity, human drivers are capable of commonsense reasoning to make near-optimal decisions with limited information. Recent work has attempted to leverage finetuned Vision-Language Models (VLMs) for trajectory planning at inference time to emulate human behavior. Despite their success in benchmark evaluations, these methods are often impractical to deploy (a 70B parameter VLM inference at merely 8 tokens per second requires more than 160G of memory), and their monolithic network structure prohibits safety decomposition. To bridge this gap, we propose VLM-Embedded Reasoning for autonomous Driving (VERDI), a training-time framework that distills the reasoning process and commonsense knowledge of VLMs into the AD stack. VERDI augments modular differentiable end-to-end (e2e) AD models by aligning intermediate module outputs at the perception, prediction, and planning stages with text features explaining the driving reasoning process produced by VLMs. By encouraging alignment in latent space, VERDI enables the modular AD stack to internalize structured reasoning, without incurring the inference-time costs of large VLMs. We validate VERDI in both open-loop (NuScenes and Bench2Drive benchmarks) and closed-loop (HugSim Simulator) settings. We find that VERDI outperforms existing e2e methods that do not embed reasoning by up to 11% in $\ell_{2}$ distance and 11% in driving performance, while maintaining real-time inference speed.
♻ ☆ 3DFETUS: Deep Learning-Based Standardization of Facial Planes in 3D Ultrasound
The automatic localization and standardization of anatomical planes in 3D medical imaging remains a challenging problem due to variability in object pose, appearance, and image quality. In 3D ultrasound, these challenges are exacerbated by speckle noise and limited contrast, particularly in fetal imaging. To address these challenges in the context of facial assessment, we present: 1) GT++, a robust algorithm that estimates standard facial planes from 3D US volumes using annotated anatomical landmarks; and 2) 3DFETUS, a deep learning model that automates and standardizes their localization in 3D fetal US volumes. We evaluated our methods both qualitatively, through expert clinical review, and quantitatively. The proposed approach achieved a mean translation error of 3.21 $\pm$ 1.98mm and a mean rotation error of 5.31 $\pm$ 3.945$^\circ$ per plane, outperforming other state-of-the-art methods on 3D US volumes. Clinical assessments further confirmed the effectiveness of both GT++ and 3DFETUS, demonstrating statistically significant improvements in plane estimation accuracy.
♻ ☆ SSL4RL: Revisiting Self-supervised Learning as Intrinsic Reward for Visual-Language Reasoning
Vision-language models (VLMs) have shown remarkable abilities by integrating large language models with visual inputs. However, they often fail to utilize visual evidence adequately, either depending on linguistic priors in vision-centric tasks or resorting to textual shortcuts during reasoning. Although reinforcement learning (RL) can align models with desired behaviors, its application to VLMs has been hindered by the lack of scalable and reliable reward mechanisms. To overcome this challenge, we propose SSL4RL, a novel framework that leverages self-supervised learning (SSL) tasks as a source of verifiable rewards for RL-based fine-tuning. Our approach reformulates SSL objectives-such as predicting image rotation or reconstructing masked patches-into dense, automatic reward signals, eliminating the need for human preference data or unreliable AI evaluators. Experiments show that SSL4RL substantially improves performance on both vision-centric and vision-language reasoning benchmarks. Furthermore, through systematic ablations, we identify key factors-such as task difficulty, model scale, and semantic alignment with the target domain-that influence the effectiveness of SSL4RL tasks, offering new design principles for future work. We also demonstrate the framework's generality by applying it to graph learning, where it yields significant gains. SSL4RL establishes a versatile and effective paradigm for aligning multimodal models using verifiable, self-supervised objectives.
♻ ☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
♻ ☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
♻ ☆ BRIC: Bridging Kinematic Plans and Physical Control at Test Time AAAI'26
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
comment: Accepted to AAAI'26
♻ ☆ Liver Fibrosis Quantification and Analysis: The LiQA Dataset and Baseline Method
Liver fibrosis represents a significant global health burden, necessitating accurate staging for effective clinical management. This report introduces the LiQA (Liver Fibrosis Quantification and Analysis) dataset, established as part of the CARE 2024 challenge. Comprising $440$ patients with multi-phase, multi-center MRI scans, the dataset is curated to benchmark algorithms for Liver Segmentation (LiSeg) and Liver Fibrosis Staging (LiFS) under complex real-world conditions, including domain shifts, missing modalities, and spatial misalignment. We further describe the challenge's top-performing methodology, which integrates a semi-supervised learning framework with external data for robust segmentation, and utilizes a multi-view consensus approach with Class Activation Map (CAM)-based regularization for staging. Evaluation of this baseline demonstrates that leveraging multi-source data and anatomical constraints significantly enhances model robustness in clinical settings.
♻ ☆ High Frequency Matters: Uncertainty Guided Image Compression with Wavelet Diffusion
Diffusion probabilistic models have recently achieved remarkable success in generating high-quality images. However, balancing high perceptual quality and low distortion remains challenging in application of diffusion models in image compression. To address this issue, we propose a novel Uncertainty-Guided image compression approach with wavelet Diffusion (UGDiff). Our approach focuses on high frequency compression via the wavelet transform, since high frequency components are crucial for reconstructing image details. We introduce a wavelet conditional diffusion model for high frequency prediction, followed by a residual codec that compresses and transmits prediction residuals to the decoder. This diffusion prediction-then-residual compression paradigm effectively addresses the low fidelity issue common in direct reconstructions by existing diffusion models. Considering the uncertainty from the random sampling of the diffusion model, we further design an uncertainty-weighted rate-distortion (R-D) loss tailored for residual compression, providing a more rational trade-off between rate and distortion. Comprehensive experiments on two benchmark datasets validate the effectiveness of UGDiff, surpassing state-of-the-art image compression methods in R-D performance, perceptual quality, subjective quality, and inference time. Our code is available at: https://github.com/hejiaxiang1/Wavelet-Diffusion/tree/main.
comment: Revised version for IEEE TMM submission
♻ ☆ Towards 3D Object-Centric Feature Learning for Semantic Scene Completion AAAI-2026
Vision-based 3D Semantic Scene Completion (SSC) has received growing attention due to its potential in autonomous driving. While most existing approaches follow an ego-centric paradigm by aggregating and diffusing features over the entire scene, they often overlook fine-grained object-level details, leading to semantic and geometric ambiguities, especially in complex environments. To address this limitation, we propose Ocean, an object-centric prediction framework that decomposes the scene into individual object instances to enable more accurate semantic occupancy prediction. Specifically, we first employ a lightweight segmentation model, MobileSAM, to extract instance masks from the input image. Then, we introduce a 3D Semantic Group Attention module that leverages linear attention to aggregate object-centric features in 3D space. To handle segmentation errors and missing instances, we further design a Global Similarity-Guided Attention module that leverages segmentation features for global interaction. Finally, we propose an Instance-aware Local Diffusion module that improves instance features through a generative process and subsequently refines the scene representation in the BEV space. Extensive experiments on the SemanticKITTI and SSCBench-KITTI360 benchmarks demonstrate that Ocean achieves state-of-the-art performance, with mIoU scores of 17.40 and 20.28, respectively.
comment: Accepted to AAAI-2026
♻ ☆ One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models ICCV-2025
Vision-Language Pre-training (VLP) models have exhibited unprecedented capability in many applications by taking full advantage of the multimodal alignment. However, previous studies have shown they are vulnerable to maliciously crafted adversarial samples. Despite recent success, these methods are generally instance-specific and require generating perturbations for each input sample. In this paper, we reveal that VLP models are also vulnerable to the instance-agnostic universal adversarial perturbation (UAP). Specifically, we design a novel Contrastive-training Perturbation Generator with Cross-modal conditions (C-PGC) to achieve the attack. In light that the pivotal multimodal alignment is achieved through the advanced contrastive learning technique, we devise to turn this powerful weapon against themselves, i.e., employ a malicious version of contrastive learning to train the C-PGC based on our carefully crafted positive and negative image-text pairs for essentially destroying the alignment relationship learned by VLP models. Besides, C-PGC fully utilizes the characteristics of Vision-and-Language (V+L) scenarios by incorporating both unimodal and cross-modal information as effective guidance. Extensive experiments show that C-PGC successfully forces adversarial samples to move away from their original area in the VLP model's feature space, thus essentially enhancing attacks across various victim models and V+L tasks. The GitHub repository is available at https://github.com/ffhibnese/CPGC_VLP_Universal_Attacks.
comment: Accepted by ICCV-2025
♻ ☆ Xiaomi MiMo-VL-Miloco Technical Report
We open-source MiMo-VL-Miloco-7B and its quantized variant MiMo-VL-Miloco-7B-GGUF, a pair of home-centric vision-language models that achieve strong performance on both home-scenario understanding and general multimodal reasoning. Built on the MiMo-VL-7B backbone, MiMo-VL-Miloco-7B is specialized for smart-home environments, attaining leading F1 scores on gesture recognition and common home-scenario understanding, while also delivering consistent gains across video benchmarks such as Video-MME, Video-MMMU, and Charades-STA, as well as language understanding benchmarks including MMMU-Pro and MMLU-Pro. In our experiments, MiMo-VL-Miloco-7B outperforms strong closed-source and open-source baselines on home-scenario understanding and several multimodal reasoning benchmarks. To balance specialization and generality, we design a two-stage training pipeline that combines supervised fine-tuning with reinforcement learning based on Group Relative Policy Optimization, leveraging efficient multi-domain data. We further incorporate chain-of-thought supervision and token-budget-aware reasoning, enabling the model to learn knowledge in a data-efficient manner while also performing reasoning efficiently. Our analysis shows that targeted home-scenario training not only enhances activity and gesture understanding, but also improves text-only reasoning with only modest trade-offs on document-centric tasks. Model checkpoints, quantized GGUF weights, and our home-scenario evaluation toolkit are publicly available at https://github.com/XiaoMi/xiaomi-mimo-vl-miloco to support research and deployment in real-world smart-home applications.
♻ ☆ REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework
Photorealism is an important aspect of modern video games since it can shape player experience and impact immersion, narrative engagement, and visual fidelity. To achieve photorealism, beyond traditional rendering pipelines, generative models have been increasingly adopted as an effective approach for bridging the gap between the visual realism of synthetic and real worlds. However, under real-time constraints of video games, existing generative approaches continue to face a tradeoff between visual quality and runtime efficiency. In this work, we present a framework for enhancing the photorealism of rendered game frames using generative networks. We propose REGEN, which first employs a robust unpaired image-to-image translation model to generate semantically consistent photorealistic frames. These generated frames are then used to create a paired dataset, which transforms the problem to a simpler unpaired image-to-image translation. This enables training with a lightweight method, achieving real-time inference without compromising visual quality. We evaluate REGEN on Unreal Engine, showing, by employing the CMMD metric, that it achieves comparable or slightly improved visual quality compared to the robust method, while improving the frame rate by 12x. Additional experiments also validate that REGEN adheres to the semantic preservation of the initial robust image-to-image translation method and maintains temporal consistency. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN
comment: 8 pages
♻ ☆ PRISM-Loc: a Lightweight Long-range LiDAR Localization in Urban Environments with Topological Maps ICRA 2026
We propose PRISM-Loc - a lightweight and robust approach for localization in large outdoor environments that combines a compact topological representation with a novel scan-matching and curb-detection module operating on raw LiDAR scans. The method is designed for resource-constrained platforms and emphasizes real-time performance and resilience to common urban sensing challenges. It provides accurate localization in compact topological maps using global place recognition and an original scan matching technique. Experiments on standard benchmarks and on an embedded platform demonstrate the effectiveness of our approach. Our method achieves a 99\% success rate on the large-scale ITLP-Campus dataset while running at 150 ms per localization and using a 20 MB map for localization. We highlight three main contributions: (1) a compact representation for city-scale localization; (2) a novel curb detection and scan matching pipeline operating directly on raw LiDAR points; (3) a thorough evaluation of our method with performance analysis.
comment: This version was submitted to ICRA 2026 conference
♻ ☆ GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting
Weakly-supervised 3D occupancy perception is crucial for vision-based autonomous driving in outdoor environments. Previous methods based on NeRF often face a challenge in balancing the number of samples used. Too many samples can decrease efficiency, while too few can compromise accuracy, leading to variations in the mean Intersection over Union (mIoU) by 5-10 points. Furthermore, even with surrounding-view image inputs, only a single image is rendered from each viewpoint at any given moment. This limitation leads to duplicated predictions, which significantly impacts the practicality of the approach. However, this issue has largely been overlooked in existing research. To address this, we propose GSRender, which uses 3D Gaussian Splatting for weakly-supervised occupancy estimation, simplifying the sampling process. Additionally, we introduce the Ray Compensation module, which reduces duplicated predictions by compensating for features from adjacent frames. Finally, we redesign the dynamic loss to remove the influence of dynamic objects from adjacent frames. Extensive experiments show that our approach achieves SOTA results in RayIoU (+6.0), while also narrowing the gap with 3D- supervised methods. This work lays a solid foundation for weakly-supervised occupancy perception. The code is available at https://github.com/Jasper-sudo-Sun/GSRender.
♻ ☆ TrackNetV5: Residual-Driven Spatio-Temporal Refinement and Motion Direction Decoupling for Fast Object Tracking
The TrackNet series has established a strong baseline for fast-moving small object tracking in sports. However, existing iterations face significant limitations: V1-V3 struggle with occlusions due to a reliance on purely visual cues, while TrackNetV4, despite introducing motion inputs, suffers from directional ambiguity as its absolute difference method discards motion polarity. To overcome these bottlenecks, we propose TrackNetV5, a robust architecture integrating two novel mechanisms. First, to recover lost directional priors, we introduce the Motion Direction Decoupling (MDD) module. Unlike V4, MDD decomposes temporal dynamics into signed polarity fields, explicitly encoding both movement occurrence and trajectory direction. Second, we propose the Residual-Driven Spatio-Temporal Refinement (R-STR) head. Operating on a coarse-to-fine paradigm, this Transformer-based module leverages factorized spatio-temporal contexts to estimate a corrective residual, effectively recovering occluded targets. Extensive experiments on the TrackNetV2 dataset demonstrate that TrackNetV5 achieves a new state-of-the-art F1-score of 0.9859 and an accuracy of 0.9733, significantly outperforming previous versions. Notably, this performance leap is achieved with a marginal 3.7% increase in FLOPs compared to V4, maintaining real-time inference capabilities while delivering superior tracking precision.
♻ ☆ Skeleton-Snippet Contrastive Learning with Multiscale Feature Fusion for Action Localization
The self-supervised pretraining paradigm has achieved great success in learning 3D action representations for skeleton-based action recognition using contrastive learning. However, learning effective representations for skeleton-based temporal action localization remains challenging and underexplored. Unlike video-level {action} recognition, detecting action boundaries requires temporally sensitive features that capture subtle differences between adjacent frames where labels change. To this end, we formulate a snippet discrimination pretext task for self-supervised pretraining, which densely projects skeleton sequences into non-overlapping segments and promotes features that distinguish them across videos via contrastive learning. Additionally, we build on strong backbones of skeleton-based action recognition models by fusing intermediate features with a U-shaped module to enhance feature resolution for frame-level localization. Our approach consistently improves existing skeleton-based contrastive learning methods for action localization on BABEL across diverse subsets and evaluation protocols. We also achieve state-of-the-art transfer learning performance on PKUMMD with pretraining on NTU RGB+D and BABEL.
♻ ☆ Geometric Learning of Canonical Parameterizations of $2D$-curves
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$
comment: 33 pages, 20 figures
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: Incorrect initial draft was submitted by mistake. Method, results and citations are incorrect
♻ ☆ DeltaFlow: An Efficient Multi-frame Scene Flow Estimation Method NeurIPS 2025
Previous dominant methods for scene flow estimation focus mainly on input from two consecutive frames, neglecting valuable information in the temporal domain. While recent trends shift towards multi-frame reasoning, they suffer from rapidly escalating computational costs as the number of frames grows. To leverage temporal information more efficiently, we propose DeltaFlow ($Δ$Flow), a lightweight 3D framework that captures motion cues via a $Δ$ scheme, extracting temporal features with minimal computational cost, regardless of the number of frames. Additionally, scene flow estimation faces challenges such as imbalanced object class distributions and motion inconsistency. To tackle these issues, we introduce a Category-Balanced Loss to enhance learning across underrepresented classes and an Instance Consistency Loss to enforce coherent object motion, improving flow accuracy. Extensive evaluations on the Argoverse 2, Waymo and nuScenes datasets show that $Δ$Flow achieves state-of-the-art performance with up to 22% lower error and $2\times$ faster inference compared to the next-best multi-frame supervised method, while also demonstrating a strong cross-domain generalization ability. The code is open-sourced at https://github.com/Kin-Zhang/DeltaFlow along with trained model weights.
comment: NeurIPS 2025 Spotlight, 18 pages (10 main pages + 8 supp materail), 11 figures, code at https://github.com/Kin-Zhang/DeltaFlow
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ Multi-modal On-Device Learning for Monocular Depth Estimation on Ultra-low-power MCUs
Monocular depth estimation (MDE) plays a crucial role in enabling spatially-aware applications in Ultra-low-power (ULP) Internet-of-Things (IoT) platforms. However, the limited number of parameters of Deep Neural Networks for the MDE task, designed for IoT nodes, results in severe accuracy drops when the sensor data observed in the field shifts significantly from the training dataset. To address this domain shift problem, we present a multi-modal On-Device Learning (ODL) technique, deployed on an IoT device integrating a Greenwaves GAP9 MicroController Unit (MCU), a 80 mW monocular camera and a 8 x 8 pixel depth sensor, consuming $\approx$300mW. In its normal operation, this setup feeds a tiny 107 k-parameter $μ$PyD-Net model with monocular images for inference. The depth sensor, usually deactivated to minimize energy consumption, is only activated alongside the camera to collect pseudo-labels when the system is placed in a new environment. Then, the fine-tuning task is performed entirely on the MCU, using the new data. To optimize our backpropagation-based on-device training, we introduce a novel memory-driven sparse update scheme, which minimizes the fine-tuning memory to 1.2 MB, 2.2x less than a full update, while preserving accuracy (i.e., only 2% and 1.5% drops on the KITTI and NYUv2 datasets). Our in-field tests demonstrate, for the first time, that ODL for MDE can be performed in 17.8 minutes on the IoT node, reducing the root mean squared error from 4.9 to 0.6m with only 3 k self-labeled samples, collected in a real-life deployment scenario.
comment: 14 pages, 9 figures, 3 tables. Associated open-source release available at: https://github.com/idsia-robotics/ultralow-power-monocular-depth-ondevice-learning
♻ ☆ A Survey of 3D Reconstruction with Event Cameras
Event cameras are rapidly emerging as powerful vision sensors for 3D reconstruction, uniquely capable of asynchronously capturing per-pixel brightness changes. Compared to traditional frame-based cameras, event cameras produce sparse yet temporally dense data streams, enabling robust and accurate 3D reconstruction even under challenging conditions such as high-speed motion, low illumination, and extreme dynamic range scenarios. These capabilities offer substantial promise for transformative applications across various fields, including autonomous driving, robotics, aerial navigation, and immersive virtual reality. In this survey, we present the first comprehensive review exclusively dedicated to event-based 3D reconstruction. Existing approaches are systematically categorised based on input modality into stereo, monocular, and multimodal systems, and further classified according to reconstruction methodologies, including geometry-based techniques, deep learning approaches, and neural rendering techniques such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Within each category, methods are chronologically organised to highlight the evolution of key concepts and advancements. Furthermore, we provide a detailed summary of publicly available datasets specifically suited to event-based reconstruction tasks. Finally, we discuss significant open challenges in dataset availability, standardised evaluation, effective representation, and dynamic scene reconstruction, outlining insightful directions for future research. This survey aims to serve as an essential reference and provides a clear and motivating roadmap toward advancing the state of the art in event-driven 3D reconstruction.
comment: This survey has been accepted for publication in the Computational Visual Media Journal
♻ ☆ Predictive Modeling of Maritime Radar Data Using Transformer Architecture
Maritime autonomous systems require robust predictive capabilities to anticipate vessel motion and environmental dynamics. While transformer architectures have revolutionized AIS-based trajectory prediction and demonstrated feasibility for sonar frame forecasting, their application to maritime radar frame prediction remains unexplored, creating a critical gap given radar's all-weather reliability for navigation. This survey systematically reviews predictive modeling approaches relevant to maritime radar, with emphasis on transformer architectures for spatiotemporal sequence forecasting, where existing representative methods are analyzed according to data type, architecture, and prediction horizon. Our review shows that, while the literature has demonstrated transformer-based frame prediction for sonar sensing, no prior work addresses transformer-based maritime radar frame prediction, thereby defining a clear research gap and motivating a concrete research direction for future work in this area.
comment: 9 pages, 2 figures, 1 table
♻ ☆ SNN-Driven Multimodal Human Action Recognition via Sparse Spatial-Temporal Data Fusion
Multimodal human action recognition based on RGB and skeleton data fusion, while effective, is constrained by significant limitations such as high computational complexity, excessive memory consumption, and substantial energy demands, particularly when implemented with Artificial Neural Networks (ANN). These limitations restrict its applicability in resource-constrained scenarios. To address these challenges, we propose a novel Spiking Neural Network (SNN)-driven framework for multimodal human action recognition, utilizing event camera and skeleton data. Our framework is centered on two key innovations: (1) a novel multimodal SNN architecture that employs distinct backbone networks for each modality-an SNN-based Mamba for event camera data and a Spiking Graph Convolutional Network (SGN) for skeleton data-combined with a spiking semantic extraction module to capture deep semantic representations; and (2) a pioneering SNN-based discretized information bottleneck mechanism for modality fusion, which effectively balances the preservation of modality-specific semantics with efficient information compression. To validate our approach, we propose a novel method for constructing a multimodal dataset that integrates event camera and skeleton data, enabling comprehensive evaluation. Extensive experiments demonstrate that our method achieves superior performance in both recognition accuracy and energy efficiency, offering a promising solution for practical applications.
♻ ☆ Gradient as Conditions: Rethinking HOG for All-in-one Image Restoration AAAI2026
All-in-one image restoration (AIR) aims to address diverse degradations within a unified model by leveraging informative degradation conditions to guide the restoration process. However, existing methods often rely on implicitly learned priors, which may entangle feature representations and hinder performance in complex or unseen scenarios. Histogram of Oriented Gradients (HOG) as a classical gradient representation, we observe that it has strong discriminative capability across diverse degradations, making it a powerful and interpretable prior for AIR. Based on this insight, we propose HOGformer, a Transformer-based model that integrates learnable HOG features for degradation-aware restoration. The core of HOGformer is a Dynamic HOG-aware Self-Attention (DHOGSA) mechanism, which adaptively models long-range spatial dependencies conditioned on degradation-specific cues encoded by HOG descriptors. To further adapt the heterogeneity of degradations in AIR, we propose a Dynamic Interaction Feed-Forward (DIFF) module that facilitates channel-spatial interactions, enabling robust feature transformation under diverse degradations. Besides, we propose a HOG loss to explicitly enhance structural fidelity and edge sharpness. Extensive experiments on a variety of benchmarks, including adverse weather and natural degradations, demonstrate that HOGformer achieves state-of-the-art performance and generalizes well to complex real-world scenarios.Code is available at https://github.com/Fire-friend/HOGformer.
comment: AAAI2026
♻ ☆ MSTAR: Box-free Multi-query Scene Text Retrieval with Attention Recycling
Scene text retrieval has made significant progress with the assistance of accurate text localization. However, existing approaches typically require costly bounding box annotations for training. Besides, they mostly adopt a customized retrieval strategy but struggle to unify various types of queries to meet diverse retrieval needs. To address these issues, we introduce Muti-query Scene Text retrieval with Attention Recycling (MSTAR), a box-free approach for scene text retrieval. It incorporates progressive vision embedding to dynamically capture the multi-grained representation of texts and harmonizes free-style text queries with style-aware instructions. Additionally, a multi-instance matching module is integrated to enhance vision-language alignment. Furthermore, we build the Multi-Query Text Retrieval (MQTR) dataset, the first benchmark designed to evaluate the multi-query scene text retrieval capability of models, comprising four query types and 16k images. Extensive experiments demonstrate the superiority of our method across seven public datasets and the MQTR dataset. Notably, MSTAR marginally surpasses the previous state-of-the-art model by 6.4% in MAP on Total-Text while eliminating box annotation costs. Moreover, on the MQTR benchmark, MSTAR significantly outperforms the previous models by an average of 8.5%. The code and datasets are available at https://github.com/yingift/MSTAR.
comment: Neurips 2025
♻ ☆ Deep Equilibrium Convolutional Sparse Coding for Hyperspectral Image Denoising
Hyperspectral images (HSIs) play a crucial role in remote sensing but are often degraded by complex noise patterns. Ensuring the physical property of the denoised HSIs is vital for robust HSI denoising, giving the rise of deep unfolding-based methods. However, these methods map the optimization of a physical model to a learnable network with a predefined depth, which lacks convergence guarantees. In contrast, Deep Equilibrium (DEQ) models treat the hidden layers of deep networks as the solution to a fixed-point problem and models them as infinite-depth networks, naturally consistent with the optimization. Under the framework of DEQ, we propose a Deep Equilibrium Convolutional Sparse Coding (DECSC) framework that unifies local spatial-spectral correlations, nonlocal spatial self-similarities, and global spatial consistency for robust HSI denoising. Within the convolutional sparse coding (CSC) framework, we enforce shared 2D convolutional sparse representation to ensure global spatial consistency across bands, while unshared 3D convolutional sparse representation captures local spatial-spectral details. To further exploit nonlocal self-similarities, a transformer block is embedded after the 2D CSC. Additionally, a detail enhancement module is integrated with the 3D CSC to promote image detail preservation. We formulate the proximal gradient descent of the CSC model as a fixed-point problem and transform the iterative updates into a learnable network architecture within the framework of DEQ. Experimental results demonstrate that our DECSC method achieves superior denoising performance compared to state-of-the-art methods.
♻ ☆ Hard Labels In! Rethinking the Role of Hard Labels in Mitigating Local Semantic Drift
Soft labels generated by teacher models have become a dominant paradigm for knowledge transfer and recent large-scale dataset distillation such as SRe2L, RDED, LPLD, offering richer supervision than conventional hard labels. However, we observe that when only a limited number of crops per image are used, soft labels are prone to local semantic drift: a crop may visually resemble another class, causing its soft embedding to deviate from the ground-truth semantics of the original image. This mismatch between local visual content and global semantic meaning introduces systematic errors and distribution misalignment between training and testing. In this work, we revisit the overlooked role of hard labels and show that, when appropriately integrated, they provide a powerful content-agnostic anchor to calibrate semantic drift. We theoretically characterize the emergence of drift under few soft-label supervision and demonstrate that hybridizing soft and hard labels restores alignment between visual content and semantic supervision. Building on this insight, we propose a new training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard labels as intermediate corrective signals while retaining the fine-grained advantages of soft labels. Extensive experiments on dataset distillation and large-scale conventional classification benchmarks validate our approach, showing consistent improvements in generalization. On ImageNet-1K, we achieve 42.7% with only 285M storage for soft labels, outperforming prior state-of-the-art LPLD by 9.0%. Our findings re-establish the importance of hard labels as a complementary tool, and call for a rethinking of their role in soft-label-dominated training.
comment: Code at: https://github.com/Jiacheng8/HALD
♻ ☆ MAGIC: Few-Shot Mask-Guided Anomaly Inpainting with Prompt Perturbation, Spatially Adaptive Guidance, and Context Awareness
Few-shot anomaly generation is a key challenge in industrial quality control. Although diffusion models are promising, existing methods struggle: global prompt-guided approaches corrupt normal regions, and existing inpainting-based methods often lack the in-distribution diversity essential for robust downstream models. We propose MAGIC, a fine-tuned inpainting framework that generates high-fidelity anomalies that strictly adhere to the mask while maximizing this diversity. MAGIC introduces three complementary components: (i) Gaussian prompt perturbation, which prevents model overfitting in the few-shot setting by learning and sampling from a smooth manifold of realistic anomalies, (ii) spatially adaptive guidance that applies distinct guidance strengths to the anomaly and background regions, and (iii) context-aware mask alignment to relocate masks for plausible placement within the host object. Under consistent identical evaluation protocol, MAGIC outperforms state-of-the-art methods on diverse anomaly datasets in downstream tasks
comment: 46 pages, 47 figures. Code: https://github.com/SpatialAILab/MAGIC-Anomaly-generation
♻ ☆ UCS: A Universal Model for Curvilinear Structure Segmentation
Curvilinear structure segmentation (CSS) is essential in various domains, including medical imaging, landscape analysis, industrial surface inspection, and plant analysis. While existing methods achieve high performance within specific domains, their generalizability is limited. On the other hand, large-scale models such as Segment Anything Model (SAM) exhibit strong generalization but are not optimized for curvilinear structures. Existing adaptations of SAM primarily focus on general object segmentation and lack specialized design for CSS tasks. To bridge this gap, we propose the Universal Curvilinear structure Segmentation (UCS) model, which adapts SAM to CSS tasks while further enhancing its cross-domain generalization. UCS features a novel encoder architecture integrating a pretrained SAM encoder with two innovations: a Sparse Adapter, strategically inserted to inherit the pre-trained SAM encoder's generalization capability while minimizing the number of fine-tuning parameters, and a Prompt Generation module, which leverages Fast Fourier Transform with a high-pass filter to generate curve-specific prompts. Furthermore, the UCS incorporates a mask decoder that eliminates reliance on manual interaction through a dual-compression module: a Hierarchical Feature Compression module, which aggregates the outputs of the sampled encoder to enhance detail preservation, and a Guidance Feature Compression module, which extracts and compresses image-driven guidance features. Evaluated on a comprehensive multi-domain dataset, including an in-house dataset covering eight natural curvilinear structures, UCS demonstrates state-of-the-art generalization and open-set segmentation performance across medical, engineering, natural, and plant imagery, establishing a new benchmark for universal CSS. The source code is available at https://github.com/kylechuuuuu/UCS.
comment: 13 pages, 13 figures
♻ ☆ MCGA: Mixture of Codebooks Hyperspectral Reconstruction via Grayscale-Aware Attention
Reconstructing hyperspectral images (HSIs) from RGB inputs provides a cost-effective alternative to hyperspectral cameras, but reconstructing high-dimensional spectra from three channels is inherently ill-posed. Existing methods typically directly regress RGB-to-HSI mappings using large attention networks, which are computationally expensive and handle ill-posedness only implicitly. We propose MCGA, a Mixture-of-Codebooks with Grayscale-aware Attention framework that explicitly addresses these challenges using spectral priors and photometric consistency. MCGA first learns transferable spectral priors via a mixture-of-codebooks (MoC) from heterogeneous HSI datasets, then aligns RGB features with these priors through grayscale-aware photometric attention (GANet). Efficiency and robustness are further improved via top-K attention design and test-time adaptation (TTA). Experiments on multiple real-world benchmarks demonstrate the state-of-the-art accuracy, strong cross-dataset generalization, and 4-5x faster inference. Codes will be available once acceptance at https://github.com/Fibonaccirabbit/MCGA.
♻ ☆ Modeling spectral filtering effects on color-matching functions: Implications for observer variability
This study investigates the impact of spectral filtering on color-matching functions (CMFs) and its implications for observer variability modeling. We conducted color matching experiments with two observers, both with and without a spectral filter in front of a bipartite field. Using a novel computational approach, we estimated the filter transmittance and transformation matrix necessary to convert unfiltered CMFs to filtered CMFs. Statistical analysis revealed good agreement between estimated and measured filter characteristics, particularly in central wavelength regions. Applying this methodology to compare between Stiles and Burch 1955 (SB1955) mean observer CMFs and our previously published "ICVIO" mean observer CMFs, we identified a "yellow" (short-wavelength suppressing) filter that effectively transforms between these datasets. This finding aligns with our hypothesis that observed differences between the CMF sets are attributable to age-related lens yellowing (average observer age: 49 years in ICVIO versus 30 years in SB1955). Our approach enables efficient representation of observer variability through a single filter rather than three separate functions, offering potentially reduced experimental overhead while maintaining accuracy in characterizing individual color vision differences.
♻ ☆ Text to Blind Motion NeurIPS 2024
People who are blind perceive the world differently than those who are sighted, which can result in distinct motion characteristics. For instance, when crossing at an intersection, blind individuals may have different patterns of movement, such as veering more from a straight path or using touch-based exploration around curbs and obstacles. These behaviors may appear less predictable to motion models embedded in technologies such as autonomous vehicles. Yet, the ability of 3D motion models to capture such behavior has not been previously studied, as existing datasets for 3D human motion currently lack diversity and are biased toward people who are sighted. In this work, we introduce BlindWays, the first multimodal motion benchmark for pedestrians who are blind. We collect 3D motion data using wearable sensors with 11 blind participants navigating eight different routes in a real-world urban setting. Additionally, we provide rich textual descriptions that capture the distinctive movement characteristics of blind pedestrians and their interactions with both the navigation aid (e.g., a white cane or a guide dog) and the environment. We benchmark state-of-the-art 3D human prediction models, finding poor performance with off-the-shelf and pre-training-based methods for our novel task. To contribute toward safer and more reliable systems that can seamlessly reason over diverse human movements in their environments, our text-and-motion benchmark is available at https://blindways.github.io.
comment: Accepted at NeurIPS 2024
♻ ☆ AndesVL Technical Report: An Efficient Mobile-side Multimodal Large Language Model
In recent years, while cloud-based MLLMs such as QwenVL, InternVL, GPT-4o, Gemini, and Claude Sonnet have demonstrated outstanding performance with enormous model sizes reaching hundreds of billions of parameters, they significantly surpass the limitations in memory, power consumption, and computing capacity of edge devices such as mobile phones. This paper introduces AndesVL, a suite of mobile-side MLLMs with 0.6B to 4B parameters based on Qwen3's LLM and various visual encoders. We comprehensively outline the model architectures, training pipeline, and training data of AndesVL, which achieves first-tier performance across a wide range of open-source benchmarks, including fields such as text-rich image understanding, reasoning and math, multi-image comprehension, general VQA, hallucination mitigation, multilingual understanding, and GUI-related tasks when compared with state-of-the-art models of a similar scale. Furthermore, we introduce a 1+N LoRA architecture alongside a Quantization-Aware LoRA Fine-Tuning (QALFT) framework to facilitate efficient task adaptation and model compression during mobile-side deployment of AndesVL. Moreover, utilizing our cache eviction algorithm -- OKV -- along with customized speculative decoding and compression strategies, we achieve a 6.7x peak decoding speedup ratio, up to 30.9% memory reduction, and 1.8 bits-per-weight when deploying AndesVL-4B on MediaTek Dimensity 9500 chips. We release all models on https://huggingface.co/OPPOer.
comment: Tech report of OPPO AndesVL Team
♻ ☆ VDOT: Efficient Unified Video Creation via Optimal Transport Distillation
The rapid development of generative models has significantly advanced image and video applications. Among these, video creation, aimed at generating videos under various conditions, has gained substantial attention. However, existing video creation models either focus solely on a few specific conditions or suffer from excessively long generation times due to complex model inference, making them impractical for real-world applications. To mitigate these issues, we propose an efficient unified video creation model, named VDOT. Concretely, we model the training process with the distribution matching distillation (DMD) paradigm. Instead of using the Kullback-Leibler (KL) minimization, we additionally employ a novel computational optimal transport (OT) technique to optimize the discrepancy between the real and fake score distributions. The OT distance inherently imposes geometric constraints, mitigating potential zero-forcing or gradient collapse issues that may arise during KL-based distillation within the few-step generation scenario, and thus, enhances the efficiency and stability of the distillation process. Further, we integrate a discriminator to enable the model to perceive real video data, thereby enhancing the quality of generated videos. To support training unified video creation models, we propose a fully automated pipeline for video data annotation and filtering that accommodates multiple video creation tasks. Meanwhile, we curate a unified testing benchmark, UVCBench, to standardize evaluation. Experiments demonstrate that our 4-step VDOT outperforms or matches other baselines with 100 denoising steps.
♻ ☆ ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling ECCV 2024
By combining natural language understanding, generation capabilities, and breadth of knowledge of large language models with image perception, recent large vision language models (LVLMs) have shown unprecedented visual reasoning capabilities. However, the generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucination of nonexistent scene elements, missing significant parts of the scene, and inferring incorrect attributes of and relationships between objects. To address these issues, we introduce a novel framework, ViGoR (Visual Grounding Through Fine-Grained Reward Modeling) that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines. This improvement is efficiently achieved using much cheaper human evaluations instead of full supervisions, as well as automated methods. We show the effectiveness of our approach through a variety of evaluation methods and benchmarks. Additionally, we released our human annotation (https://github.com/amazon-science/vigor) comprising 15,440 images and generated text pairs with fine-grained evaluations to contribute to related research in the community.
comment: Accepted by ECCV 2024
♻ ☆ 4D-RGPT: Toward Region-level 4D Understanding via Perceptual Distillation
Despite advances in Multimodal LLMs (MLLMs), their ability to reason over 3D structures and temporal dynamics remains limited, constrained by weak 4D perception and temporal understanding. Existing 3D and 4D Video Question Answering (VQA) benchmarks also emphasize static scenes and lack region-level prompting. We tackle these issues by introducing: (a) 4D-RGPT, a specialized MLLM designed to capture 4D representations from video inputs with enhanced temporal perception; (b) Perceptual 4D Distillation (P4D), a training framework that transfers 4D representations from a frozen expert model into 4D-RGPT for comprehensive 4D perception; and (c) R4D-Bench, a benchmark for depth-aware dynamic scenes with region-level prompting, built via a hybrid automated and human-verified pipeline. Our 4D-RGPT achieves notable improvements on both existing 4D VQA benchmarks and the proposed R4D-Bench benchmark.
comment: Project page: https://ca-joe-yang.github.io/resource/projects/4D_RGPT
♻ ☆ Recent Advances in 3D Object and Scene Generation: A Survey
In recent years, the demand for 3D content has grown exponentially with the intelligent upgrade of interactive media, extended reality (XR), and Metaverse industries. In order to overcome the limitations of traditional manual modeling approaches, such as labor-intensive workflows and prolonged production cycles, revolutionary advances have been achieved through the convergence of novel 3D representation paradigms and artificial intelligence generative technologies. In this survey, we conduct a systematic review of the cutting-edge achievements in static 3D object and scene generation, as well as establish a comprehensive technical framework through systematic categorization. We start our analysis with mainstream 3D object representations. Subsequently, we delve into the technical pathways of 3D object generation based on four mainstream deep generative models: Variational Autoencoders, Generative Adversarial Networks, Autoregressive Models, and Diffusion Models. Regarding scene generation, we focus on three dominant paradigms: layout-guided generation, lifting based on 2D priors, and rule-driven modeling. Finally, we critically examine persistent challenges in 3D generation and propose potential research directions for future investigation. This survey aims to provide readers with a structured understanding of state-of-the-art 3D generation technologies while inspiring researchers to undertake more exploration in this domain.
comment: 35 pages, 7 figures, 6 tables, Project page: https://github.com/xdlbw/Awesome-3D-Object-and-Scene-Generation
♻ ☆ Towards Pixel-Wise Anomaly Location for High-Resolution PCBA via Self-Supervised Image Reconstruction
Automated defect inspection of assembled Printed Circuit Board Assemblies (PCBA) is quite challenging due to the insufficient labeled data, micro-defects with just a few pixels in visually-complex and high-resolution images. To address these challenges, we present HiSIR-Net, a High resolution, Self-supervised Reconstruction framework for pixel-wise PCBA localization. Our design combines two lightweight modules that make this practical on real 4K-resolution boards: (i) a Selective Input-Reconstruction Gate (SIR-Gate) that lets the model decide where to trust reconstruction versus the original input, thereby reducing irrelevant reconstruction artifacts and false alarms; and (ii) a Region-level Optimized Patch Selection (ROPS) scheme with positional cues to select overlapping patch reconstructions coherently across arbitrary resolutions. Organically integrating these mechanisms yields clean, high-resolution anomaly maps with low false positive (FP) rate. To bridge the gap in high-resolution PCBA datasets, we further contribute a self-collected dataset named SIPCBA-500 of 500 images. We conduct extensive experiments on our SIPCBA-500 as well as public benchmarks, demonstrating the superior localization performance of our method while running at practical speed. Full code and dataset will be made available upon acceptance.
♻ ☆ TRACE: Your Diffusion Model is Secretly an Instance Edge Detector
High-quality instance and panoptic segmentation has traditionally relied on dense instance-level annotations such as masks, boxes, or points, which are costly, inconsistent, and difficult to scale. Unsupervised and weakly-supervised approaches reduce this burden but remain constrained by semantic backbone constraints and human bias, often producing merged or fragmented outputs. We present TRACE (TRAnsforming diffusion Cues to instance Edges), showing that text-to-image diffusion models secretly function as instance edge annotators. TRACE identifies the Instance Emergence Point (IEP) where object boundaries first appear in self-attention maps, extracts boundaries through Attention Boundary Divergence (ABDiv), and distills them into a lightweight one-step edge decoder. This design removes the need for per-image diffusion inversion, achieving 81x faster inference while producing sharper and more connected boundaries. On the COCO benchmark, TRACE improves unsupervised instance segmentation by +5.1 AP, and in tag-supervised panoptic segmentation it outperforms point-supervised baselines by +1.7 PQ without using any instance-level labels. These results reveal that diffusion models encode hidden instance boundary priors, and that decoding these signals offers a practical and scalable alternative to costly manual annotation. Code is available at https://github.com/shjo-april/DiffEGG.
♻ ☆ Binary Event-Driven Spiking Transformer
Transformer-based Spiking Neural Networks (SNNs) introduce a novel event-driven self-attention paradigm that combines the high performance of Transformers with the energy efficiency of SNNs. However, the larger model size and increased computational demands of the Transformer structure limit their practicality in resource-constrained scenarios. In this paper, we integrate binarization techniques into Transformer-based SNNs and propose the Binary Event-Driven Spiking Transformer, i.e. BESTformer. The proposed BESTformer can significantly reduce storage and computational demands by representing weights and attention maps with a mere 1-bit. However, BESTformer suffers from a severe performance drop from its full-precision counterpart due to the limited representation capability of binarization. To address this issue, we propose a Coupled Information Enhancement (CIE) method, which consists of a reversible framework and information enhancement distillation. By maximizing the mutual information between the binary model and its full-precision counterpart, the CIE method effectively mitigates the performance degradation of the BESTformer. Extensive experiments on static and neuromorphic datasets demonstrate that our method achieves superior performance to other binary SNNs, showcasing its potential as a compact yet high-performance model for resource-limited edge devices. The repository of this paper is available at https://github.com/CaoHLin/BESTFormer.
comment: 9 pages, 5 figures
♻ ☆ Chorus: Multi-Teacher Pretraining for Holistic 3D Gaussian Scene Encoding
While 3DGS has emerged as a high-fidelity scene representation, encoding rich, general-purpose features directly from its primitives remains under-explored. We address this gap by introducing Chorus, a multi-teacher pretraining framework that learns a holistic feed-forward 3D Gaussian Splatting (3DGS) scene encoder by distilling complementary signals from 2D foundation models. Chorus employs a shared 3D encoder and teacher-specific projectors to learn from language-aligned, generalist, and object-aware teachers, encouraging a shared embedding space that captures signals from high-level semantics to fine-grained structure. We evaluate Chorus on a wide range of tasks: open-vocabulary semantic and instance segmentation, linear and decoder probing, as well as data-efficient supervision. Besides 3DGS, we also test Chorus on several benchmarks that only support point clouds by pretraining a variant using only Gaussians' centers, colors, estimated normals as inputs. Interestingly, this encoder shows strong transfer and outperforms the point clouds baseline while using 39.9 times fewer training scenes. Finally, we propose a render-and-distill adaptation that facilitates out-of-domain finetuning. Our code and model will be released upon publication.
♻ ☆ LightFormer: A lightweight and efficient decoder for remote sensing image segmentation
Deep learning techniques have achieved remarkable success in the semantic segmentation of remote sensing images and in land-use change detection. Nevertheless, their real-time deployment on edge platforms remains constrained by decoder complexity. Herein, we introduce LightFormer, a lightweight decoder for time-critical tasks that involve unstructured targets, such as disaster assessment, unmanned aerial vehicle search-and-rescue, and cultural heritage monitoring. LightFormer employs a feature-fusion and refinement module built on channel processing and a learnable gating mechanism to aggregate multi-scale, multi-range information efficiently, which drastically curtails model complexity. Furthermore, we propose a spatial information selection module (SISM) that integrates long-range attention with a detail preservation branch to capture spatial dependencies across multiple scales, thereby substantially improving the recognition of unstructured targets in complex scenes. On the ISPRS Vaihingen benchmark, LightFormer attains 99.9% of GLFFNet's mIoU (83.9% vs. 84.0%) while requiring only 14.7% of its FLOPs and 15.9% of its parameters, thus achieving an excellent accuracy-efficiency trade-off. Consistent results on LoveDA, ISPRS Potsdam, RescueNet, and FloodNet further demonstrate its robustness and superior perception of unstructured objects. These findings highlight LightFormer as a practical solution for remote sensing applications where both computational economy and high-precision segmentation are imperative.
comment: 18 pages,42 figures
♻ ☆ QDepth-VLA: Quantized Depth Prediction as Auxiliary Supervision for Vision-Language-Action Models
Spatial perception and reasoning are crucial for Vision-Language-Action (VLA) models to accomplish fine-grained manipulation tasks. However, existing approaches often lack the ability to understand and reason over the essential 3D structures necessary for precise control. To address this limitation, we propose QDepth-VLA, a general framework that augments VLA models with an auxiliary depth prediction task. A dedicated depth expert is designed to predict quantized latent tokens of depth maps obtained from a VQ-VAE encoder, enabling the model to learn depth-aware representations that capture critical geometric cues. Experimental results on the simulation benchmarks and real-world tasks demonstrate that QDepth-VLA yields strong spatial reasoning and competitive performance on manipulation tasks.
♻ ☆ 3D Shape Generation: A Survey
Recent advances in deep learning have significantly transformed the field of 3D shape generation, enabling the synthesis of complex, diverse, and semantically meaningful 3D objects. This survey provides a comprehensive overview of the current state-of-the-art in 3D shape generation, organizing the discussion around three core components: shape representations, generative modeling approaches, and evaluation protocols. We begin by categorizing 3D representations into explicit, implicit, and hybrid setups, highlighting their structural properties, advantages, and limitations. Next, we review a wide range of generation methods, focusing on feedforward architectures. We further summarize commonly used datasets and evaluation metrics that assess fidelity, diversity, and realism of generated shapes. Finally, we identify open challenges and outline future research directions that could drive progress in controllable, efficient, and high-quality 3D shape generation. This survey aims to serve as a valuable reference for researchers and practitioners seeking a structured and in-depth understanding of this rapidly evolving field.
comment: 24 pages, 6 figures
♻ ☆ Rethinking Open-Set Object Detection: Issues, a New Formulation, and Taxonomy
Open-set object detection (OSOD), a task involving the detection of unknown objects while accurately detecting known objects, has recently gained attention. However, we identify a fundamental issue with the problem formulation employed in current OSOD studies. Inherent to object detection is knowing "what to detect," which contradicts the idea of identifying "unknown" objects. This sets OSOD apart from open-set recognition (OSR). This contradiction complicates a proper evaluation of methods' performance, a fact that previous studies have overlooked. Next, we propose a novel formulation wherein detectors are required to detect both known and unknown classes within specified super-classes of object classes. This new formulation is free from the aforementioned issues and has practical applications. Finally, we design benchmark tests utilizing existing datasets and report the experimental evaluation of existing OSOD methods. The results show that existing methods fail to accurately detect unknown objects due to misclassification of known and unknown classes rather than incorrect bounding box prediction. As a byproduct, we introduce a taxonomy of OSOD, resolving confusion prevalent in the literature. We anticipate that our study will encourage the research community to reconsider OSOD and facilitate progress in the right direction.
comment: Accepted to IJCV
Artificial Intelligence 150
☆ Scalably Enhancing the Clinical Validity of a Task Benchmark with Physician Oversight
Automating the calculation of clinical risk scores offers a significant opportunity to reduce physician administrative burden and enhance patient care. The current standard for evaluating this capability is MedCalc-Bench, a large-scale dataset constructed using LLM-based feature extraction and rule-based aggregation. However, treating such model-generated benchmarks as static oracles risks enshrining historical model errors as evaluation gold standards, a problem dangerously amplified when these datasets serve as reward signals for Reinforcement Learning (RL). In this work, we propose viewing benchmarks for complex tasks such as clinical score computation as ''in-progress living documents'' that should be periodically re-evaluated as the processes for creating them improve. We introduce a systematic, physician-in-the-loop pipeline that leverages advanced agentic verifiers to audit and relabel MedCalc-Bench, utilizing automated triage to reserve scarce clinician attention for the most contentious instances. Our audit reveals that a notable fraction of original labels diverge from medical ground truth due to extraction errors, calculator logic mismatches, and clinical ambiguity. To study whether this label noise meaningfully impacts downstream RL training, we fine-tune a Qwen3-8B model via Group Relative Policy Optimization (GRPO) and demonstrate that training on corrected labels yields an 8.7% absolute improvement in accuracy over the original baseline -- validating that label noise materially affects model evaluation. These findings underscore that in safety-critical domains, rigorous benchmark maintenance is a prerequisite for genuine model alignment.
☆ WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: \href{https://hyokong.github.io/worldwarp-page/}{https://hyokong.github.io/worldwarp-page/}.
comment: Project page: https://hyokong.github.io/worldwarp-page/
☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a single unified policy, overlooking their internal mechanisms. Understanding how policy evolves across layers and modules is therefore crucial for enabling more targeted optimization and raveling out complex reasoning mechanisms. In this paper, we decompose the language model policy by leveraging the intrinsic split of the Transformer residual stream and the equivalence between the composition of hidden states with the unembedding matrix and the resulting samplable policy. This decomposition reveals Internal Layer Policies, corresponding to contributions from individual layers, and Internal Modular Policies, which align with the self-attention and feed-forward network (FFN) components within each layer. By analyzing the entropy of internal policy, we find that: (a) Early layers keep high entropy for exploration, top layers converge to near-zero entropy for refinement, with convergence patterns varying across model series. (b) LLama's prediction space rapidly converges in the final layer, whereas Qwen-series models, especially Qwen3, exhibit a more human-like, progressively structured reasoning pattern. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that directly optimizes the internal layer policy during early training. By aligning training objective at lower layer, BuPO reconstructs foundational reasoning capabilities and achieves superior performance. Extensive experiments on complex reasoning benchmarks demonstrates the effectiveness of our method. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
☆ Beyond CLIP: Knowledge-Enhanced Multimodal Transformers for Cross-Modal Alignment in Diabetic Retinopathy Diagnosis
Diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide, demanding accurate automated diagnostic systems. While general-domain vision-language models like Contrastive Language-Image Pre-Training (CLIP) perform well on natural image tasks, they struggle in medical domain applications, particularly in cross-modal retrieval for ophthalmological images. We propose a novel knowledge-enhanced joint embedding framework that integrates retinal fundus images, clinical text, and structured patient data through a multimodal transformer architecture to address the critical gap in medical image-text alignment. Our approach employs separate encoders for each modality: a Vision Transformer (ViT-B/16) for retinal images, Bio-ClinicalBERT for clinical narratives, and a multilayer perceptron for structured demographic and clinical features. These modalities are fused through a joint transformer with modality-specific embeddings, trained using multiple objectives including contrastive losses between modality pairs, reconstruction losses for images and text, and classification losses for DR severity grading according to ICDR and SDRG schemes. Experimental results on the Brazilian Multilabel Ophthalmological Dataset (BRSET) demonstrate significant improvements over baseline models. Our framework achieves near-perfect text-to-image retrieval performance with Recall@1 of 99.94% compared to fine-tuned CLIP's 1.29%, while maintaining state-of-the-art classification accuracy of 97.05% for SDRG and 97.97% for ICDR. Furthermore, zero-shot evaluation on the unseen DeepEyeNet dataset validates strong generalizability with 93.95% Recall@1 versus 0.22% for fine-tuned CLIP. These results demonstrate that our multimodal training approach effectively captures cross-modal relationships in the medical domain, establishing both superior retrieval capabilities and robust diagnostic performance.
comment: 14 pages, 14 figures
☆ Clustering with Label Consistency
Designing efficient, effective, and consistent metric clustering algorithms is a significant challenge attracting growing attention. Traditional approaches focus on the stability of cluster centers; unfortunately, this neglects the real-world need for stable point labels, i.e., stable assignments of points to named sets (clusters). In this paper, we address this gap by initiating the study of label-consistent metric clustering. We first introduce a new notion of consistency, measuring the label distance between two consecutive solutions. Then, armed with this new definition, we design new consistent approximation algorithms for the classical $k$-center and $k$-median problems.
Exploring the features used for summary evaluation by Human and GPT
Summary assessment involves evaluating how well a generated summary reflects the key ideas and meaning of the source text, requiring a deep understanding of the content. Large Language Models (LLMs) have been used to automate this process, acting as judges to evaluate summaries with respect to the original text. While previous research investigated the alignment between LLMs and Human responses, it is not yet well understood what properties or features are exploited by them when asked to evaluate based on a particular quality dimension, and there has not been much attention towards mapping between evaluation scores and metrics. In this paper, we address this issue and discover features aligned with Human and Generative Pre-trained Transformers (GPTs) responses by studying statistical and machine learning metrics. Furthermore, we show that instructing GPTs to employ metrics used by Human can improve their judgment and conforming them better with human responses.
☆ MapTrace: Scalable Data Generation for Route Tracing on Maps
While Multimodal Large Language Models have achieved human-like performance on many visual and textual reasoning tasks, their proficiency in fine-grained spatial understanding, such as route tracing on maps remains limited. Unlike humans, who can quickly learn to parse and navigate maps, current models often fail to respect fundamental path constraints, in part due to the prohibitive cost and difficulty of collecting large-scale, pixel-accurate path annotations. To address this, we introduce a scalable synthetic data generation pipeline that leverages synthetic map images and pixel-level parsing to automatically produce precise annotations for this challenging task. Using this pipeline, we construct a fine-tuning dataset of 23k path samples across 4k maps, enabling models to acquire more human-like spatial capabilities. Using this dataset, we fine-tune both open-source and proprietary MLLMs. Results on MapBench show that finetuning substantially improves robustness, raising success rates by up to 6.4 points, while also reducing path-tracing error (NDTW). These gains highlight that fine-grained spatial reasoning, absent in pretrained models, can be explicitly taught with synthetic supervision.
☆ LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.
comment: 55 pages, 27 figures, 29 tables. The maneuver telemetry datasets generated and analyzed during this work are available in the GitHub repository https://github.com/kdjebko/lelar-in-orbit-data
☆ The Epistemological Consequences of Large Language Models: Rethinking collective intelligence and institutional knowledge
We examine epistemological threats posed by human and LLM interaction. We develop collective epistemology as a theory of epistemic warrant distributed across human collectives, using bounded rationality and dual process theory as background. We distinguish internalist justification, defined as reflective understanding of why a proposition is true, from externalist justification, defined as reliable transmission of truths. Both are necessary for collective rationality, but only internalist justification produces reflective knowledge. We specify reflective knowledge as follows: agents understand the evaluative basis of a claim, when that basis is unavailable agents consistently assess the reliability of truth sources, and agents have a duty to apply these standards within their domains of competence. We argue that LLMs approximate externalist reliabilism because they can reliably transmit information whose justificatory basis is established elsewhere, but they do not themselves possess reflective justification. Widespread outsourcing of reflective work to reliable LLM outputs can weaken reflective standards of justification, disincentivize comprehension, and reduce agents' capacity to meet professional and civic epistemic duties. To mitigate these risks, we propose a three tier norm program that includes an epistemic interaction model for individual use, institutional and organizational frameworks that seed and enforce norms for epistemically optimal outcomes, and deontic constraints at organizational and or legislative levels that instantiate discursive norms and curb epistemic vices.
comment: AI & Soc (2025)
☆ Owning the Intelligence: Global AI Patents Landscape and Europe's Quest for Technological Sovereignty
Artificial intelligence has become a key arena of global technological competition and a central concern for Europe's quest for technological sovereignty. This paper analyzes global AI patenting from 2010 to 2023 to assess Europe's position in an increasingly bipolar innovation landscape dominated by the United States and China. Using linked patent, firm, ownership, and citation data, we examine the geography, specialization, and international diffusion of AI innovation. We find a highly concentrated patent landscape: China leads in patent volumes, while the United States dominates in citation impact and technological influence. Europe accounts for a limited share of AI patents but exhibits signals of relatively high patent quality. Technological proximity reveals global convergence toward U.S. innovation trajectories, with Europe remaining fragmented rather than forming an autonomous pole. Gravity-model estimates show that cross-border AI knowledge flows are driven primarily by technological capability and specialization, while geographic and institutional factors play a secondary role. EU membership does not significantly enhance intra-European knowledge diffusion, suggesting that technological capacity, rather than political integration, underpins participation in global AI innovation networks.
☆ Results of the 2024 CommonRoad Motion Planning Competition for Autonomous Vehicles
Over the past decade, a wide range of motion planning approaches for autonomous vehicles has been developed to handle increasingly complex traffic scenarios. However, these approaches are rarely compared on standardized benchmarks, limiting the assessment of relative strengths and weaknesses. To address this gap, we present the setup and results of the 4th CommonRoad Motion Planning Competition held in 2024, conducted using the CommonRoad benchmark suite. This annual competition provides an open-source and reproducible framework for benchmarking motion planning algorithms. The benchmark scenarios span highway and urban environments with diverse traffic participants, including passenger cars, buses, and bicycles. Planner performance is evaluated along four dimensions: efficiency, safety, comfort, and compliance with selected traffic rules. This report introduces the competition format and provides a comparison of representative high-performing planners from the 2023 and 2024 editions.
☆ REALM: A Real-to-Sim Validated Benchmark for Generalization in Robotic Manipulation
Vision-Language-Action (VLA) models empower robots to understand and execute tasks described by natural language instructions. However, a key challenge lies in their ability to generalize beyond the specific environments and conditions they were trained on, which is presently difficult and expensive to evaluate in the real-world. To address this gap, we present REALM, a new simulation environment and benchmark designed to evaluate the generalization capabilities of VLA models, with a specific emphasis on establishing a strong correlation between simulated and real-world performance through high-fidelity visuals and aligned robot control. Our environment offers a suite of 15 perturbation factors, 7 manipulation skills, and more than 3,500 objects. Finally, we establish two task sets that form our benchmark and evaluate the π_{0}, π_{0}-FAST, and GR00T N1.5 VLA models, showing that generalization and robustness remain an open challenge. More broadly, we also show that simulation gives us a valuable proxy for the real-world and allows us to systematically probe for and quantify the weaknesses and failure modes of VLAs. Project page: https://martin-sedlacek.com/realm
comment: 9 pages, 10 figures
☆ BabyFlow: 3D modeling of realistic and expressive infant faces
Early detection of developmental disorders can be aided by analyzing infant craniofacial morphology, but modeling infant faces is challenging due to limited data and frequent spontaneous expressions. We introduce BabyFlow, a generative AI model that disentangles facial identity and expression, enabling independent control over both. Using normalizing flows, BabyFlow learns flexible, probabilistic representations that capture the complex, non-linear variability of expressive infant faces without restrictive linear assumptions. To address scarce and uncontrolled expressive data, we perform cross-age expression transfer, adapting expressions from adult 3D scans to enrich infant datasets with realistic and systematic expressive variants. As a result, BabyFlow improves 3D reconstruction accuracy, particularly in highly expressive regions such as the mouth, eyes, and nose, and supports synthesis and modification of infant expressions while preserving identity. Additionally, by integrating with diffusion models, BabyFlow generates high-fidelity 2D infant images with consistent 3D geometry, providing powerful tools for data augmentation and early facial analysis.
☆ Augmenting Intelligence: A Hybrid Framework for Scalable and Stable Explanations
Current approaches to Explainable AI (XAI) face a "Scalability-Stability Dilemma." Post-hoc methods (e.g., LIME, SHAP) may scale easily but suffer from instability, while supervised explanation frameworks (e.g., TED) offer stability but require prohibitive human effort to label every training instance. This paper proposes a Hybrid LRR-TED framework that addresses this dilemma through a novel "Asymmetry of Discovery." When applied to customer churn prediction, we demonstrate that automated rule learners (GLRM) excel at identifying broad "Safety Nets" (retention patterns) but struggle to capture specific "Risk Traps" (churn triggers)-a phenomenon we term the Anna Karenina Principle of Churn. By initialising the explanation matrix with automated safety rules and augmenting it with a Pareto-optimal set of just four human-defined risk rules, our approach achieves 94.00% predictive accuracy. This configuration outperforms the full 8-rule manual expert baseline while reducing human annotation effort by 50%, proposing a shift in the paradigm for Human-in-the-Loop AI: moving experts from the role of "Rule Writers" to "Exception Handlers."
comment: 5 pages, 2 figures, 2 tables. Code and experiments available at https://github.com/Lawrence-Krukrubo/IBM-Learn-XAI
☆ CARE What Fails: Contrastive Anchored-REflection for Verifiable Multimodal
Group-relative reinforcement learning with verifiable rewards (RLVR) often wastes the most informative data it already has the failures. When all rollouts are wrong, gradients stall; when one happens to be correct, the update usually ignores why the others are close-but-wrong, and credit can be misassigned to spurious chains. We present CARE (Contrastive Anchored REflection), a failure-centric post-training framework for multimodal reasoning that turns errors into supervision. CARE combines: (i) an anchored-contrastive objective that forms a compact subgroup around the best rollout and a set of semantically proximate hard negatives, performs within-subgroup z-score normalization with negative-only scaling, and includes an all-negative rescue to prevent zero-signal batches; and (ii) Reflection-Guided Resampling (RGR), a one-shot structured self-repair that rewrites a representative failure and re-scores it with the same verifier, converting near-misses into usable positives without any test-time reflection. CARE improves accuracy and training smoothness while explicitly increasing the share of learning signal that comes from failures. On Qwen2.5-VL-7B, CARE lifts macro-averaged accuracy by 4.6 points over GRPO across six verifiable visual-reasoning benchmarks; with Qwen3-VL-8B it reaches competitive or state-of-the-art results on MathVista and MMMU-Pro under an identical evaluation protocol.
☆ Towards Closed-Loop Embodied Empathy Evolution: Probing LLM-Centric Lifelong Empathic Motion Generation in Unseen Scenarios
In the literature, existing human-centric emotional motion generation methods primarily focus on boosting performance within a single scale-fixed dataset, largely neglecting the flexible and scale-increasing motion scenarios (e.g., sports, dance), whereas effectively learning these newly emerging scenarios can significantly enhance the model's real-world generalization ability. Inspired by this, this paper proposes a new LLM-Centric Lifelong Empathic Motion Generation (L^2-EMG) task, which aims to equip LLMs with the capability to continually acquire emotional motion generation knowledge across different unseen scenarios, potentially contributing to building a closed-loop and self-evolving embodied agent equipped with both empathy and intelligence. Further, this paper poses two key challenges in the L^2-EMG task, i.e., the emotion decoupling challenge and the scenario adapting challenge. To this end, this paper proposes an Emotion-Transferable and Scenario-Adapted Mixture of Experts (ES-MoE) approach which designs a causal-guided emotion decoupling block and a scenario-adapted expert constructing block to address the two challenges, respectively. Especially, this paper constructs multiple L^2-EMG datasets to validate the effectiveness of the ES-MoE approach. Extensive evaluations show that ES-MoE outperforms advanced baselines.
☆ CASA: Cross-Attention via Self-Attention for Efficient Vision-Language Fusion
Vision-language models (VLMs) are commonly trained by inserting image tokens from a pretrained vision encoder into the textual stream of a language model. This allows text and image information to fully attend to one another within the model, but becomes extremely costly for high-resolution images, long conversations, or streaming videos, both in memory and compute. VLMs leveraging cross-attention are an efficient alternative to token insertion but exhibit a clear performance gap, in particular on tasks involving fine-grained visual details. We find that a key to improving such models is to also enable local text-to-text interaction in the dedicated cross-attention layers. Building on this, we propose CASA, Cross-Attention via Self-Attention, a simple and efficient paradigm which substantially reduces the gap with full token insertion on common image understanding benchmarks, while enjoying the same scalability as cross-attention models when applied to long-context multimodal tasks such as streaming video captioning. For samples and code, please see our project page at https://kyutai.org/casa .
☆ Learning Continuous Solvent Effects from Transient Flow Data: A Graph Neural Network Benchmark on Catechol Rearrangement
Predicting reaction outcomes across continuous solvent composition ranges remains a critical challenge in organic synthesis and process chemistry. Traditional machine learning approaches often treat solvent identity as a discrete categorical variable, which prevents systematic interpolation and extrapolation across the solvent space. This work introduces the \textbf{Catechol Benchmark}, a high-throughput transient flow chemistry dataset comprising 1,227 experimental yield measurements for the rearrangement of allyl-substituted catechol in 24 pure solvents and their binary mixtures, parameterized by continuous volume fractions ($\% B$). We evaluate various architectures under rigorous leave-one-solvent-out and leave-one-mixture-out protocols to test generalization to unseen chemical environments. Our results demonstrate that classical tabular methods (e.g., Gradient-Boosted Decision Trees) and large language model embeddings (e.g., Qwen-7B) struggle with quantitative precision, yielding Mean Squared Errors (MSE) of 0.099 and 0.129, respectively. In contrast, we propose a hybrid GNN-based architecture that integrates Graph Attention Networks (GATs) with Differential Reaction Fingerprints (DRFP) and learned mixture-aware solvent encodings. This approach achieves an \textbf{MSE of 0.0039} ($\pm$ 0.0003), representing a 60\% error reduction over competitive baselines and a $>25\times$ improvement over tabular ensembles. Ablation studies confirm that explicit molecular graph message-passing and continuous mixture encoding are essential for robust generalization. The complete dataset, evaluation protocols, and reference implementations are released to facilitate data-efficient reaction prediction and continuous solvent representation learning.
comment: 13 pages, 6 figures
☆ QuantiPhy: A Quantitative Benchmark Evaluating Physical Reasoning Abilities of Vision-Language Models
Understanding the physical world is essential for generalist AI agents. However, it remains unclear whether state-of-the-art vision perception models (e.g., large VLMs) can reason physical properties quantitatively. Existing evaluations are predominantly VQA-based and qualitative, offering limited insight into whether these models can infer the kinematic quantities of moving objects from video observations. To address this, we present QuantiPhy, the first benchmark designed to quantitatively measure a VLM's physical reasoning ability. Comprising more than 3.3K video-text instances with numerical ground truth, QuantiPhy evaluates a VLM's performance on estimating an object's size, velocity, and acceleration at a given timestamp, using one of these properties as an input prior. The benchmark standardizes prompts and scoring to assess numerical accuracy, enabling fair comparisons across models. Our experiments on state-of-the-art VLMs reveal a consistent gap between their qualitative plausibility and actual numerical correctness. We further provide an in-depth analysis of key factors like background noise, counterfactual priors, and strategic prompting and find that state-of-the-art VLMs lean heavily on pre-trained world knowledge rather than faithfully using the provided visual and textual inputs as references when reasoning kinematic properties quantitatively. QuantiPhy offers the first rigorous, scalable testbed to move VLMs beyond mere verbal plausibility toward a numerically grounded physical understanding.
☆ LacaDM: A Latent Causal Diffusion Model for Multiobjective Reinforcement Learning
Multiobjective reinforcement learning (MORL) poses significant challenges due to the inherent conflicts between objectives and the difficulty of adapting to dynamic environments. Traditional methods often struggle to generalize effectively, particularly in large and complex state-action spaces. To address these limitations, we introduce the Latent Causal Diffusion Model (LacaDM), a novel approach designed to enhance the adaptability of MORL in discrete and continuous environments. Unlike existing methods that primarily address conflicts between objectives, LacaDM learns latent temporal causal relationships between environmental states and policies, enabling efficient knowledge transfer across diverse MORL scenarios. By embedding these causal structures within a diffusion model-based framework, LacaDM achieves a balance between conflicting objectives while maintaining strong generalization capabilities in previously unseen environments. Empirical evaluations on various tasks from the MOGymnasium framework demonstrate that LacaDM consistently outperforms the state-of-art baselines in terms of hypervolume, sparsity, and expected utility maximization, showcasing its effectiveness in complex multiobjective tasks.
☆ Anatomy-R1: Enhancing Anatomy Reasoning in Multimodal Large Language Models via Anatomical Similarity Curriculum and Group Diversity Augmentation
Multimodal Large Language Models (MLLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored, especially in clinical anatomical surgical images. Anatomy understanding tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional Supervised Fine-Tuning (SFT) strategies. While recent work has demonstrated that Group Relative Policy Optimization (GRPO) can enhance reasoning in MLLMs without relying on large amounts of data, we find two weaknesses that hinder GRPO's reasoning performance in anatomy recognition: 1) knowledge cannot be effectively shared between different anatomical structures, resulting in uneven information gain and preventing the model from converging, and 2) the model quickly converges to a single reasoning path, suppressing the exploration of diverse strategies. To overcome these challenges, we propose two novel methods. First, we implement a progressive learning strategy called Anatomical Similarity Curriculum Learning by controlling question difficulty via the similarity of answer choices, enabling the model to master complex problems incrementally. Second, we utilize question augmentation referred to as Group Diversity Question Augmentation to expand the model's search space for difficult queries, mitigating the tendency to produce uniform responses. Comprehensive experiments on the SGG-VQA and OmniMedVQA benchmarks show our method achieves a significant improvement across the two benchmarks, demonstrating its effectiveness in enhancing the medical reasoning capabilities of MLLMs. The code can be found in https://github.com/tomato996/Anatomy-R1
☆ DK-STN: A Domain Knowledge Embedded Spatio-Temporal Network Model for MJO Forecast
Understanding and predicting the Madden-Julian Oscillation (MJO) is fundamental for precipitation forecasting and disaster prevention. To date, long-term and accurate MJO prediction has remained a challenge for researchers. Conventional MJO prediction methods using Numerical Weather Prediction (NWP) are resource-intensive, time-consuming, and highly unstable (most NWP methods are sensitive to seasons, with better MJO forecast results in winter). While existing Artificial Neural Network (ANN) methods save resources and speed forecasting, their accuracy never reaches the 28 days predicted by the state-of-the-art NWP method, i.e., the operational forecasts from ECMWF, since neural networks cannot handle climate data effectively. In this paper, we present a Domain Knowledge Embedded Spatio-Temporal Network (DK-STN), a stable neural network model for accurate and efficient MJO forecasting. It combines the benefits of NWP and ANN methods and successfully improves the forecast accuracy of ANN methods while maintaining a high level of efficiency and stability. We begin with a spatial-temporal network (STN) and embed domain knowledge in it using two key methods: (i) applying a domain knowledge enhancement method and (ii) integrating a domain knowledge processing method into network training. We evaluated DK-STN with the 5th generation of ECMWF reanalysis (ERA5) data and compared it with ECMWF. Given 7 days of climate data as input, DK-STN can generate reliable forecasts for the following 28 days in 1-2 seconds, with an error of only 2-3 days in different seasons. DK-STN significantly exceeds ECMWF in that its forecast accuracy is equivalent to ECMWF's, while its efficiency and stability are significantly superior.
comment: 18 pages, 10 figures
☆ Kolmogorov-Arnold Graph Neural Networks Applied to Inorganic Nanomaterials Dataset
The recent development of Kolmogorov-Arnold Networks (KANs) introduced new discoveries in the field of Graph Neural Networks (GNNs), expanding the existing set of models with KAN-based versions of GNNs, which often surpass the accuracy of MultiLayer Perceptron (MLP)-based GNNs. These models were widely tested on the graph datasets consisting of organic molecules; however, those studies disregarded the inorganic nanomaterials datasets. In this work, we close this gap by applying Kolmogorov-Arnold Graph Neural Networks (KAGNNs) to a recently published large inorganic nanomaterials dataset called CHILI. For this, we adapt and test KAGNNs appropriate for this dataset. Our experiments reveal that on the CHILI datasets, particularly on the CHILI-3K, KAGNNs substantially surpass conventional GNNs in classification, achieving state-of-the-art results.
☆ A Dataset and Preliminary Study of Using GPT-5 for Code-change Impact Analysis
Understanding source code changes and their impact on other code entities is a crucial skill in software development. However, the analysis of code changes and their impact is often performed manually and therefore is time-consuming. Recent advancements in AI, and in particular large language models (LLMs) show promises to help developers in various code analysis tasks. However, the extent to which this potential can be utilized for understanding code changes and their impact is underexplored. To address this gap, we study the capabilities of GPT-5 and GPT-5-mini to predict the code entities impacted by given source code changes. We construct a dataset containing information about seed-changes, change pairs, and change types for each commit. Existing datasets lack crucial information about seed changes and impacted code entities. Our experiments evaluate the LLMs in two configurations: (1) seed-change information and the parent commit tree and (2) seed-change information, the parent commit tree, and the diff hunk of each seed change. We found that both LLMs perform poorly in the two experiments, whereas GPT-5 outperforms GPT-5-mini. Furthermore, the provision of the diff hunks helps both models to slightly improve their performance.
comment: 6 pages
☆ Multi-Layer Confidence Scoring for Detection of Out-of-Distribution Samples, Adversarial Attacks, and In-Distribution Misclassifications
The recent explosive growth in Deep Neural Networks applications raises concerns about the black-box usage of such models, with limited trasparency and trustworthiness in high-stakes domains, which have been crystallized as regulatory requirements such as the European Union Artificial Intelligence Act. While models with embedded confidence metrics have been proposed, such approaches cannot be applied to already existing models without retraining, limiting their broad application. On the other hand, post-hoc methods, which evaluate pre-trained models, focus on solving problems related to improving the confidence in the model's predictions, and detecting Out-Of-Distribution or Adversarial Attacks samples as independent applications. To tackle the limited applicability of already existing methods, we introduce Multi-Layer Analysis for Confidence Scoring (MACS), a unified post-hoc framework that analyzes intermediate activations to produce classification-maps. From the classification-maps, we derive a score applicable for confidence estimation, detecting distributional shifts and adversarial attacks, unifying the three problems in a common framework, and achieving performances that surpass the state-of-the-art approaches in our experiments with the VGG16 and ViTb16 models with a fraction of their computational overhead.
☆ An Agentic Framework for Autonomous Materials Computation
Large Language Models (LLMs) have emerged as powerful tools for accelerating scientific discovery, yet their static knowledge and hallucination issues hinder autonomous research applications. Recent advances integrate LLMs into agentic frameworks, enabling retrieval, reasoning, and tool use for complex scientific workflows. Here, we present a domain-specialized agent designed for reliable automation of first-principles materials computations. By embedding domain expertise, the agent ensures physically coherent multi-step workflows and consistently selects convergent, well-posed parameters, thereby enabling reliable end-to-end computational execution. A new benchmark of diverse computational tasks demonstrates that our system significantly outperforms standalone LLMs in both accuracy and robustness. This work establishes a verifiable foundation for autonomous computational experimentation and represents a key step toward fully automated scientific discovery.
☆ Activations as Features: Probing LLMs for Generalizable Essay Scoring Representations
Automated essay scoring (AES) is a challenging task in cross-prompt settings due to the diversity of scoring criteria. While previous studies have focused on the output of large language models (LLMs) to improve scoring accuracy, we believe activations from intermediate layers may also provide valuable information. To explore this possibility, we evaluated the discriminative power of LLMs' activations in cross-prompt essay scoring task. Specifically, we used activations to fit probes and further analyzed the effects of different models and input content of LLMs on this discriminative power. By computing the directions of essays across various trait dimensions under different prompts, we analyzed the variation in evaluation perspectives of large language models concerning essay types and traits. Results show that the activations possess strong discriminative power in evaluating essay quality and that LLMs can adapt their evaluation perspectives to different traits and essay types, effectively handling the diversity of scoring criteria in cross-prompt settings.
☆ MT-Mark: Rethinking Image Watermarking via Mutual-Teacher Collaboration with Adaptive Feature Modulation
Existing deep image watermarking methods follow a fixed embedding-distortion-extraction pipeline, where the embedder and extractor are weakly coupled through a final loss and optimized in isolation. This design lacks explicit collaboration, leaving no structured mechanism for the embedder to incorporate decoding-aware cues or for the extractor to guide embedding during training. To address this architectural limitation, we rethink deep image watermarking by reformulating embedding and extraction as explicitly collaborative components. To realize this reformulation, we introduce a Collaborative Interaction Mechanism (CIM) that establishes direct, bidirectional communication between the embedder and extractor, enabling a mutual-teacher training paradigm and coordinated optimization. Built upon this explicitly collaborative architecture, we further propose an Adaptive Feature Modulation Module (AFMM) to support effective interaction. AFMM enables content-aware feature regulation by decoupling modulation structure and strength, guiding watermark embedding toward stable image features while suppressing host interference during extraction. Under CIM, the AFMMs on both sides form a closed-loop collaboration that aligns embedding behavior with extraction objectives. This architecture-level redesign changes how robustness is learned in watermarking systems. Rather than relying on exhaustive distortion simulation, robustness emerges from coordinated representation learning between embedding and extraction. Experiments on real-world and AI-generated datasets demonstrate that the proposed method consistently outperforms state-of-the-art approaches in watermark extraction accuracy while maintaining high perceptual quality, showing strong robustness and generalization.
☆ Attention Is Not What You Need
We revisit a basic question in sequence modeling: is explicit self-attention actually necessary for strong performance and reasoning? We argue that standard multi-head attention is best seen as a form of tensor lifting: hidden vectors are mapped into a high-dimensional space of pairwise interactions, and learning proceeds by constraining this lifted tensor through gradient descent. This mechanism is extremely expressive but mathematically opaque, because after many layers it becomes very hard to describe the model with a small family of explicit invariants. To explore an alternative, we propose an attention-free architecture based on Grassmann flows. Instead of forming an L by L attention matrix, our Causal Grassmann layer (i) linearly reduces token states, (ii) encodes local token pairs as two-dimensional subspaces on a Grassmann manifold via Plucker coordinates, and (iii) fuses these geometric features back into the hidden states through gated mixing. Information therefore propagates by controlled deformations of low-rank subspaces over multi-scale local windows, so the core computation lives on a finite-dimensional manifold rather than in an unstructured tensor space. On the Wikitext-2 language modeling benchmark, purely Grassmann-based models with 13 to 18 million parameters achieve validation perplexities within about 10 to 15 percent of size-matched Transformers. On the SNLI natural language inference task, a Grassmann-Plucker head on top of DistilBERT slightly outperforms a Transformer head, with best validation and test accuracies of 0.8550 and 0.8538 compared to 0.8545 and 0.8511. We analyze the complexity of Grassmann mixing, show linear scaling in sequence length for fixed rank, and argue that such manifold-based designs offer a more structured route toward geometric and invariant-based interpretations of neural reasoning.
☆ Research Program: Theory of Learning in Dynamical Systems
Modern learning systems increasingly interact with data that evolve over time and depend on hidden internal state. We ask a basic question: when is such a dynamical system learnable from observations alone? This paper proposes a research program for understanding learnability in dynamical systems through the lens of next-token prediction. We argue that learnability in dynamical systems should be studied as a finite-sample question, and be based on the properties of the underlying dynamics rather than the statistical properties of the resulting sequence. To this end, we give a formulation of learnability for stochastic processes induced by dynamical systems, focusing on guarantees that hold uniformly at every time step after a finite burn-in period. This leads to a notion of dynamic learnability which captures how the structure of a system, such as stability, mixing, observability, and spectral properties, governs the number of observations required before reliable prediction becomes possible. We illustrate the framework in the case of linear dynamical systems, showing that accurate prediction can be achieved after finite observation without system identification, by leveraging improper methods based on spectral filtering. We survey the relationship between learning in dynamical systems and classical PAC, online, and universal prediction theories, and suggest directions for studying nonlinear and controlled systems.
☆ EchoTrail-GUI: Building Actionable Memory for GUI Agents via Critic-Guided Self-Exploration
Contemporary GUI agents, while increasingly capable due to advances in Large Vision-Language Models (VLMs), often operate with a critical limitation: they treat each task in isolation, lacking a mechanism to systematically learn from past successes. This digital ''amnesia'' results in sub-optimal performance, repeated errors, and poor generalization to novel challenges. To bridge this gap, we introduce EchoTrail-GUI, a novel framework designed to mimic human-like experiential learning by equipping agents with a dynamic, accessible memory. Our framework operates in three distinct stages. First, during Experience Exploration, an agent autonomously interacts with GUI environments to build a curated database of successful task trajectories, validated by a reward model. Crucially, the entire knowledge base construction is thus fully automated, requiring no human supervision. Second, in the Memory Injection stage, upon receiving a new task, our system efficiently retrieves the most relevant past trajectories to serve as actionable ''memories''. Finally, during GUI Task Inference, these memories are injected as in-context guidance to inform the agent's reasoning and decision-making process. We demonstrate the efficacy of our approach on benchmarks including Android World and AndroidLab. The results show that EchoTrail-GUI significantly improves the task success rate and operational efficiency of baseline agents, validating the power of structured memory in creating more robust and intelligent GUI automation.
☆ DSTED: Decoupling Temporal Stabilization and Discriminative Enhancement for Surgical Workflow Recognition
Purpose: Surgical workflow recognition enables context-aware assistance and skill assessment in computer-assisted interventions. Despite recent advances, current methods suffer from two critical challenges: prediction jitter across consecutive frames and poor discrimination of ambiguous phases. This paper aims to develop a stable framework by selectively propagating reliable historical information and explicitly modeling uncertainty for hard sample enhancement. Methods: We propose a dual-pathway framework DSTED with Reliable Memory Propagation (RMP) and Uncertainty-Aware Prototype Retrieval (UPR). RMP maintains temporal coherence by filtering and fusing high-confidence historical features through multi-criteria reliability assessment. UPR constructs learnable class-specific prototypes from high-uncertainty samples and performs adaptive prototype matching to refine ambiguous frame representations. Finally, a confidence-driven gate dynamically balances both pathways based on prediction certainty. Results: Our method achieves state-of-the-art performance on AutoLaparo-hysterectomy with 84.36% accuracy and 65.51% F1-score, surpassing the second-best method by 3.51% and 4.88% respectively. Ablations reveal complementary gains from RMP (2.19%) and UPR (1.93%), with synergistic effects when combined. Extensive analysis confirms substantial reduction in temporal jitter and marked improvement on challenging phase transitions. Conclusion: Our dual-pathway design introduces a novel paradigm for stable workflow recognition, demonstrating that decoupling the modeling of temporal consistency and phase ambiguity yields superior performance and clinical applicability.
comment: Early accepted to IPCAI 2026
☆ OmniMER: Indonesian Multimodal Emotion Recognition via Auxiliary-Enhanced LLM Adaptation
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
☆ Sprecher Networks: A Parameter-Efficient Kolmogorov-Arnold Architecture
We present Sprecher Networks (SNs), a family of trainable neural architectures inspired by the classical Kolmogorov-Arnold-Sprecher (KAS) construction for approximating multivariate continuous functions. Distinct from Multi-Layer Perceptrons (MLPs) with fixed node activations and Kolmogorov-Arnold Networks (KANs) featuring learnable edge activations, SNs utilize shared, learnable splines (monotonic and general) within structured blocks incorporating explicit shift parameters and mixing weights. Our approach directly realizes Sprecher's specific 1965 sum of shifted splines formula in its single-layer variant and extends it to deeper, multi-layer compositions. We further enhance the architecture with optional lateral mixing connections that enable intra-block communication between output dimensions, providing a parameter-efficient alternative to full attention mechanisms. Beyond parameter efficiency with $O(LN + LG)$ scaling (where $G$ is the knot count of the shared splines) versus MLPs' $O(LN^2)$, SNs admit a sequential evaluation strategy that reduces peak forward-intermediate memory from $O(N^2)$ to $O(N)$ (treating batch size as constant), making much wider architectures feasible under memory constraints. We demonstrate empirically that composing these blocks into deep networks leads to highly parameter and memory-efficient models, discuss theoretical motivations, and compare SNs with related architectures (MLPs, KANs, and networks with learnable node activations).
comment: 37 pages
☆ Learning General Policies with Policy Gradient Methods KR 2023
While reinforcement learning methods have delivered remarkable results in a number of settings, generalization, i.e., the ability to produce policies that generalize in a reliable and systematic way, has remained a challenge. The problem of generalization has been addressed formally in classical planning where provable correct policies that generalize over all instances of a given domain have been learned using combinatorial methods. The aim of this work is to bring these two research threads together to illuminate the conditions under which (deep) reinforcement learning approaches, and in particular, policy optimization methods, can be used to learn policies that generalize like combinatorial methods do. We draw on lessons learned from previous combinatorial and deep learning approaches, and extend them in a convenient way. From the former, we model policies as state transition classifiers, as (ground) actions are not general and change from instance to instance. From the latter, we use graph neural networks (GNNs) adapted to deal with relational structures for representing value functions over planning states, and in our case, policies. With these ingredients in place, we find that actor-critic methods can be used to learn policies that generalize almost as well as those obtained using combinatorial approaches while avoiding the scalability bottleneck and the use of feature pools. Moreover, the limitations of the DRL methods on the benchmarks considered have little to do with deep learning or reinforcement learning algorithms, and result from the well-understood expressive limitations of GNNs, and the tradeoff between optimality and generalization (general policies cannot be optimal in some domains). Both of these limitations are addressed without changing the basic DRL methods by adding derived predicates and an alternative cost structure to optimize.
comment: In Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023)
☆ First-Order Representation Languages for Goal-Conditioned RL AAAI
First-order relational languages have been used in MDP planning and reinforcement learning (RL) for two main purposes: specifying MDPs in compact form, and representing and learning policies that are general and not tied to specific instances or state spaces. In this work, we instead consider the use of first-order languages in goal-conditioned RL and generalized planning. The question is how to learn goal-conditioned and general policies when the training instances are large and the goal cannot be reached by random exploration alone. The technique of Hindsight Experience Replay (HER) provides an answer to this question: it relabels unsuccessful trajectories as successful ones by replacing the original goal with one that was actually achieved. If the target policy must generalize across states and goals, trajectories that do not reach the original goal states can enable more data- and time-efficient learning. In this work, we show that further performance gains can be achieved when states and goals are represented by sets of atoms. We consider three versions: goals as full states, goals as subsets of the original goals, and goals as lifted versions of these subgoals. The result is that the latter two successfully learn general policies on large planning instances with sparse rewards by automatically creating a curriculum of easier goals of increasing complexity. The experiments illustrate the computational gains of these versions, their limitations, and opportunities for addressing them.
comment: In Proceedings of the 40th AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ PENDULUM: A Benchmark for Assessing Sycophancy in Multimodal Large Language Models
Sycophancy, an excessive tendency of AI models to agree with user input at the expense of factual accuracy or in contradiction of visual evidence, poses a critical and underexplored challenge for multimodal large language models (MLLMs). While prior studies have examined this behavior in text-only settings of large language models, existing research on visual or multimodal counterparts remains limited in scope and depth of analysis. To address this gap, we introduce a comprehensive evaluation benchmark, \textit{PENDULUM}, comprising approximately 2,000 human-curated Visual Question Answering pairs specifically designed to elicit sycophantic responses. The benchmark spans six distinct image domains of varying complexity, enabling a systematic investigation of how image type and inherent challenges influence sycophantic tendencies. Through extensive evaluation of state-of-the-art MLLMs. we observe substantial variability in model robustness and a pronounced susceptibility to sycophantic and hallucinatory behavior. Furthermore, we propose novel metrics to quantify sycophancy in visual reasoning, offering deeper insights into its manifestations across different multimodal contexts. Our findings highlight the urgent need for developing sycophancy-resilient architectures and training strategies to enhance factual consistency and reliability in future MLLMs. Our proposed dataset with MLLMs response are available at https://github.com/ashikiut/pendulum/.
☆ VIGOR+: Iterative Confounder Generation and Validation via LLM-CEVAE Feedback Loop
Hidden confounding remains a fundamental challenge in causal inference from observational data. Recent advances leverage Large Language Models (LLMs) to generate plausible hidden confounders based on domain knowledge, yet a critical gap exists: LLM-generated confounders often exhibit semantic plausibility without statistical utility. We propose VIGOR+ (Variational Information Gain for iterative cOnfounder Refinement), a novel framework that closes the loop between LLM-based confounder generation and CEVAE-based statistical validation. Unlike prior approaches that treat generation and validation as separate stages, VIGOR+ establishes an iterative feedback mechanism: validation signals from CEVAE (including information gain, latent consistency metrics, and diagnostic messages) are transformed into natural language feedback that guides subsequent LLM generation rounds. This iterative refinement continues until convergence criteria are met. We formalize the feedback mechanism, prove convergence properties under mild assumptions, and provide a complete algorithmic framework.
comment: 7 pages,1 figure,4 tables
☆ Alternative positional encoding functions for neural transformers
A key module in neural transformer-based deep architectures is positional encoding. This module enables a suitable way to encode positional information as input for transformer neural layers. This success has been rooted in the use of sinusoidal functions of various frequencies, in order to capture recurrent patterns of differing typical periods. In this work, an alternative set of periodic functions is proposed for positional encoding. These functions preserve some key properties of sinusoidal ones, while they depart from them in fundamental ways. Some tentative experiments are reported, where the original sinusoidal version is substantially outperformed. This strongly suggests that the alternative functions may have a wider use in other transformer architectures.
☆ MAGIC: Achieving Superior Model Merging via Magnitude Calibration
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC
☆ SafeMed-R1: Adversarial Reinforcement Learning for Generalizable and Robust Medical Reasoning in Vision-Language Models
Vision--Language Models (VLMs) show significant promise for Medical Visual Question Answering (VQA), yet their deployment in clinical settings is hindered by severe vulnerability to adversarial attacks. Standard adversarial training, while effective for simpler tasks, often degrades both generalization performance and the quality of generated clinical reasoning. We introduce SafeMed-R1, a hybrid defense framework that ensures robust performance while preserving high-quality, interpretable medical reasoning. SafeMed-R1 employs a two-stage approach: at training time, we integrate Adversarial Training with Group Relative Policy Optimization (AT-GRPO) to explicitly robustify the reasoning process against worst-case perturbations; at inference time, we augment the model with Randomized Smoothing to provide certified $L_2$-norm robustness guarantees. We evaluate SafeMed-R1 on the OmniMedVQA benchmark across eight medical imaging modalities comprising over 88,000 samples. Our experiments reveal that standard fine-tuned VLMs, despite achieving 95\% accuracy on clean inputs, collapse to approximately 25\% under PGD attacks. In contrast, SafeMed-R1 maintains 84.45\% accuracy under the same adversarial conditions, representing a 59 percentage point improvement in robustness. Furthermore, we demonstrate that models trained with explicit chain-of-thought reasoning exhibit superior adversarial robustness compared to instruction-only variants, suggesting a synergy between interpretability and security in medical AI systems.
☆ MixFlow Training: Alleviating Exposure Bias with Slowed Interpolation Mixture
This paper studies the training-testing discrepancy (a.k.a. exposure bias) problem for improving the diffusion models. During training, the input of a prediction network at one training timestep is the corresponding ground-truth noisy data that is an interpolation of the noise and the data, and during testing, the input is the generated noisy data. We present a novel training approach, named MixFlow, for improving the performance. Our approach is motivated by the Slow Flow phenomenon: the ground-truth interpolation that is the nearest to the generated noisy data at a given sampling timestep is observed to correspond to a higher-noise timestep (termed slowed timestep), i.e., the corresponding ground-truth timestep is slower than the sampling timestep. MixFlow leverages the interpolations at the slowed timesteps, named slowed interpolation mixture, for post-training the prediction network for each training timestep. Experiments over class-conditional image generation (including SiT, REPA, and RAE) and text-to-image generation validate the effectiveness of our approach. Our approach MixFlow over the RAE models achieve strong generation results on ImageNet: 1.43 FID (without guidance) and 1.10 (with guidance) at 256 x 256, and 1.55 FID (without guidance) and 1.10 (with guidance) at 512 x 512.
☆ Helios: A Foundational Language Model for Smart Energy Knowledge Reasoning and Application
In the global drive toward carbon neutrality, deeply coordinated smart energy systems underpin industrial transformation. However, the interdisciplinary, fragmented, and fast-evolving expertise in this domain prevents general-purpose LLMs, which lack domain knowledge and physical-constraint awareness, from delivering precise engineering-aligned inference and generation. To address these challenges, we introduce Helios, a large language model tailored to the smart energy domain, together with a comprehensive suite of resources to advance LLM research in this field. Specifically, we develop Enersys, a multi-agent collaborative framework for end-to-end dataset construction, through which we produce: (1) a smart energy knowledge base, EnerBase, to enrich the model's foundational expertise; (2) an instruction fine-tuning dataset, EnerInstruct, to strengthen performance on domain-specific downstream tasks; and (3) an RLHF dataset, EnerReinforce, to align the model with human preferences and industry standards. Leveraging these resources, Helios undergoes large-scale pretraining, SFT, and RLHF. We also release EnerBench, a benchmark for evaluating LLMs in smart energy scenarios, and demonstrate that our approach significantly enhances domain knowledge mastery, task execution accuracy, and alignment with human preferences.
☆ Causal-Guided Detoxify Backdoor Attack of Open-Weight LoRA Models NDSS 2026
Low-Rank Adaptation (LoRA) has emerged as an efficient method for fine-tuning large language models (LLMs) and is widely adopted within the open-source community. However, the decentralized dissemination of LoRA adapters through platforms such as Hugging Face introduces novel security vulnerabilities: malicious adapters can be easily distributed and evade conventional oversight mechanisms. Despite these risks, backdoor attacks targeting LoRA-based fine-tuning remain relatively underexplored. Existing backdoor attack strategies are ill-suited to this setting, as they often rely on inaccessible training data, fail to account for the structural properties unique to LoRA, or suffer from high false trigger rates (FTR), thereby compromising their stealth. To address these challenges, we propose Causal-Guided Detoxify Backdoor Attack (CBA), a novel backdoor attack framework specifically designed for open-weight LoRA models. CBA operates without access to original training data and achieves high stealth through two key innovations: (1) a coverage-guided data generation pipeline that synthesizes task-aligned inputs via behavioral exploration, and (2) a causal-guided detoxification strategy that merges poisoned and clean adapters by preserving task-critical neurons. Unlike prior approaches, CBA enables post-training control over attack intensity through causal influence-based weight allocation, eliminating the need for repeated retraining. Evaluated across six LoRA models, CBA achieves high attack success rates while reducing FTR by 50-70\% compared to baseline methods. Furthermore, it demonstrates enhanced resistance to state-of-the-art backdoor defenses, highlighting its stealth and robustness.
comment: NDSS 2026
☆ Vibe Reasoning: Eliciting Frontier AI Mathematical Capabilities -- A Case Study on IMO 2025 Problem 6
We introduce Vibe Reasoning, a human-AI collaborative paradigm for solving complex mathematical problems. Our key insight is that frontier AI models already possess the knowledge required to solve challenging problems -- they simply do not know how, what, or when to apply it. Vibe Reasoning transforms AI's latent potential into manifested capability through generic meta-prompts, agentic grounding, and model orchestration. We demonstrate this paradigm through IMO 2025 Problem 6, a combinatorial optimization problem where autonomous AI systems publicly reported failures. Our solution combined GPT-5's exploratory capabilities with Gemini 3 Pro's proof strengths, leveraging agentic workflows with Python code execution and file-based memory, to derive both the correct answer (2112) and a rigorous mathematical proof. Through iterative refinement across multiple attempts, we discovered the necessity of agentic grounding and model orchestration, while human prompts evolved from problem-specific hints to generic, transferable meta-prompts. We analyze why capable AI fails autonomously, how each component addresses specific failure modes, and extract principles for effective vibe reasoning. Our findings suggest that lightweight human guidance can unlock frontier models' mathematical reasoning potential. This is ongoing work; we are developing automated frameworks and conducting broader evaluations to further validate Vibe Reasoning's generality and effectiveness.
comment: 20 pages, 13 figures
☆ Digital Twin-Driven Zero-Shot Fault Diagnosis of Axial Piston Pumps Using Fluid-Borne Noise Signals
Axial piston pumps are crucial components in fluid power systems, where reliable fault diagnosis is essential for ensuring operational safety and efficiency. Traditional data-driven methods require extensive labeled fault data, which is often impractical to obtain, while model-based approaches suffer from parameter uncertainties. This paper proposes a digital twin (DT)-driven zero-shot fault diagnosis framework utilizing fluid-borne noise (FBN) signals. The framework calibrates a high-fidelity DT model using only healthy-state data, generates synthetic fault signals for training deep learning classifiers, and employs a physics-informed neural network (PINN) as a virtual sensor for flow ripple estimation. Gradient-weighted class activation mapping (Grad-CAM) is integrated to visualize the decision-making process of neural networks, revealing that large kernels matching the subsequence length in time-domain inputs and small kernels in time-frequency domain inputs enable higher diagnostic accuracy by focusing on physically meaningful features. Experimental validations demonstrate that training on signals from the calibrated DT model yields diagnostic accuracies exceeding 95\% on real-world benchmarks, while uncalibrated models result in significantly lower performance, highlighting the framework's effectiveness in data-scarce scenarios.
☆ Is Visual Realism Enough? Evaluating Gait Biometric Fidelity in Generative AI Human Animation
Generative AI (GenAI) models have revolutionized animation, enabling the synthesis of humans and motion patterns with remarkable visual fidelity. However, generating truly realistic human animation remains a formidable challenge, where even minor inconsistencies can make a subject appear unnatural. This limitation is particularly critical when AI-generated videos are evaluated for behavioral biometrics, where subtle motion cues that define identity are easily lost or distorted. The present study investigates whether state-of-the-art GenAI human animation models can preserve the subtle spatio-temporal details needed for person identification through gait biometrics. Specifically, we evaluate four different GenAI models across two primary evaluation tasks to assess their ability to i) restore gait patterns from reference videos under varying conditions of complexity, and ii) transfer these gait patterns to different visual identities. Our results show that while visual quality is mostly high, biometric fidelity remains low in tasks focusing on identification, suggesting that current GenAI models struggle to disentangle identity from motion. Furthermore, through an identity transfer task, we expose a fundamental flaw in appearance-based gait recognition: when texture is disentangled from motion, identification collapses, proving current GenAI models rely on visual attributes rather than temporal dynamics.
☆ Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.
☆ Auto-Prompting with Retrieval Guidance for Frame Detection in Logistics
Prompt engineering plays a critical role in adapting large language models (LLMs) to complex reasoning and labeling tasks without the need for extensive fine-tuning. In this paper, we propose a novel prompt optimization pipeline for frame detection in logistics texts, combining retrieval-augmented generation (RAG), few-shot prompting, chain-of-thought (CoT) reasoning, and automatic CoT synthesis (Auto-CoT) to generate highly effective task-specific prompts. Central to our approach is an LLM-based prompt optimizer agent that iteratively refines the prompts using retrieved examples, performance feedback, and internal self-evaluation. Our framework is evaluated on a real-world logistics text annotation task, where reasoning accuracy and labeling efficiency are critical. Experimental results show that the optimized prompts - particularly those enhanced via Auto-CoT and RAG - improve real-world inference accuracy by up to 15% compared to baseline zero-shot or static prompts. The system demonstrates consistent improvements across multiple LLMs, including GPT-4o, Qwen 2.5 (72B), and LLaMA 3.1 (70B), validating its generalizability and practical value. These findings suggest that structured prompt optimization is a viable alternative to full fine-tuning, offering scalable solutions for deploying LLMs in domain-specific NLP applications such as logistics.
☆ ChemATP: A Training-Free Chemical Reasoning Framework for Large Language Models
Large Language Models (LLMs) exhibit strong general reasoning but struggle in molecular science due to the lack of explicit chemical priors in standard string representations. Current solutions face a fundamental dilemma. Training-based methods inject priors into parameters, but this static coupling hinders rapid knowledge updates and often compromises the model's general reasoning capabilities. Conversely, existing training-free methods avoid these issues but rely on surface-level prompting, failing to provide the fine-grained atom-level priors essential for precise chemical reasoning. To address this issue, we introduce ChemATP, a framework that decouples chemical knowledge from the reasoning engine. By constructing the first atom-level textual knowledge base, ChemATP enables frozen LLMs to explicitly retrieve and reason over this information dynamically. This architecture ensures interpretability and adaptability while preserving the LLM's intrinsic general intelligence. Experiments show that ChemATP significantly outperforms training-free baselines and rivals state-of-the-art training-based models, demonstrating that explicit prior injection is a competitive alternative to implicit parameter updates.
☆ Identifying Features Associated with Bias Against 93 Stigmatized Groups in Language Models and Guardrail Model Safety Mitigation
Large language models (LLMs) have been shown to exhibit social bias, however, bias towards non-protected stigmatized identities remain understudied. Furthermore, what social features of stigmas are associated with bias in LLM outputs is unknown. From psychology literature, it has been shown that stigmas contain six shared social features: aesthetics, concealability, course, disruptiveness, origin, and peril. In this study, we investigate if human and LLM ratings of the features of stigmas, along with prompt style and type of stigma, have effect on bias towards stigmatized groups in LLM outputs. We measure bias against 93 stigmatized groups across three widely used LLMs (Granite 3.0-8B, Llama-3.1-8B, Mistral-7B) using SocialStigmaQA, a benchmark that includes 37 social scenarios about stigmatized identities; for example deciding wether to recommend them for an internship. We find that stigmas rated by humans to be highly perilous (e.g., being a gang member or having HIV) have the most biased outputs from SocialStigmaQA prompts (60% of outputs from all models) while sociodemographic stigmas (e.g. Asian-American or old age) have the least amount of biased outputs (11%). We test if the amount of biased outputs could be decreased by using guardrail models, models meant to identify harmful input, using each LLM's respective guardrail model (Granite Guardian 3.0, Llama Guard 3.0, Mistral Moderation API). We find that bias decreases significantly by 10.4%, 1.4%, and 7.8%, respectively. However, we show that features with significant effect on bias remain unchanged post-mitigation and that guardrail models often fail to recognize the intent of bias in prompts. This work has implications for using LLMs in scenarios involving stigmatized groups and we suggest future work towards improving guardrail models for bias mitigation.
☆ DeliveryBench: Can Agents Earn Profit in Real World?
LLMs and VLMs are increasingly deployed as embodied agents, yet existing benchmarks largely revolve around simple short-term tasks and struggle to capture rich realistic constraints that shape real-world decision making. To close this gap, we propose DeliveryBench, a city-scale embodied benchmark grounded in the real-world profession of food delivery. Food couriers naturally operate under long-horizon objectives (maximizing net profit over hours) while managing diverse constraints, e.g., delivery deadline, transportation expense, vehicle battery, and necessary interactions with other couriers and customers. DeliveryBench instantiates this setting in procedurally generated 3D cities with diverse road networks, buildings, functional locations, transportation modes, and realistic resource dynamics, enabling systematic evaluation of constraint-aware, long-horizon planning. We benchmark a range of VLM-based agents across nine cities and compare them with human players. Our results reveal a substantial performance gap to humans, and find that these agents are short-sighted and frequently break basic commonsense constraints. Additionally, we observe distinct personalities across models (e.g., adventurous GPT-5 vs. conservative Claude), highlighting both the brittleness and the diversity of current VLM-based embodied agents in realistic, constraint-dense environments. Our code, data, and benchmark are available at https://deliverybench.github.io.
☆ Generation of Programmatic Rules for Document Forgery Detection Using Large Language Models ICML
Document forgery poses a growing threat to legal, economic, and governmental processes, requiring increasingly sophisticated verification mechanisms. One approach involves the use of plausibility checks, rule-based procedures that assess the correctness and internal consistency of data, to detect anomalies or signs of manipulation. Although these verification procedures are essential for ensuring data integrity, existing plausibility checks are manually implemented by software engineers, which is time-consuming. Recent advances in code generation with large language models (LLMs) offer new potential for automating and scaling the generation of these checks. However, adapting LLMs to the specific requirements of an unknown domain remains a significant challenge. This work investigates the extent to which LLMs, adapted on domain-specific code and data through different fine-tuning strategies, can generate rule-based plausibility checks for forgery detection on constrained hardware resources. We fine-tune open-source LLMs, Llama 3.1 8B and OpenCoder 8B, on structured datasets derived from real-world application scenarios and evaluate the generated plausibility checks on previously unseen forgery patterns. The results demonstrate that the models are capable of generating executable and effective verification procedures. This also highlights the potential of LLMs as scalable tools to support human decision-making in security-sensitive contexts where comprehensibility is required.
comment: Accepted at ICMLA 2025, the first two authors contributed equally
☆ From Pixels to Predicates Structuring urban perception with scene graphs
Perception research is increasingly modelled using streetscapes, yet many approaches still rely on pixel features or object co-occurrence statistics, overlooking the explicit relations that shape human perception. This study proposes a three stage pipeline that transforms street view imagery (SVI) into structured representations for predicting six perceptual indicators. In the first stage, each image is parsed using an open-set Panoptic Scene Graph model (OpenPSG) to extract object predicate object triplets. In the second stage, compact scene-level embeddings are learned through a heterogeneous graph autoencoder (GraphMAE). In the third stage, a neural network predicts perception scores from these embeddings. We evaluate the proposed approach against image-only baselines in terms of accuracy, precision, and cross-city generalization. Results indicate that (i) our approach improves perception prediction accuracy by an average of 26% over baseline models, and (ii) maintains strong generalization performance in cross-city prediction tasks. Additionally, the structured representation clarifies which relational patterns contribute to lower perception scores in urban scenes, such as graffiti on wall and car parked on sidewalk. Overall, this study demonstrates that graph-based structure provides expressive, generalizable, and interpretable signals for modelling urban perception, advancing human-centric and context-aware urban analytics.
comment: 10 pages, CAADRIA2026 presentation forthcoming
☆ Towards Minimal Fine-Tuning of VLMs
We introduce Image-LoRA, a lightweight parameter efficient fine-tuning (PEFT) recipe for transformer-based vision-language models (VLMs). Image-LoRA applies low-rank adaptation only to the value path of attention layers within the visual-token span, reducing adapter-only training FLOPs roughly in proportion to the visual-token fraction. We further adapt only a subset of attention heads, selected using head influence scores estimated with a rank-1 Image-LoRA, and stabilize per-layer updates via selection-size normalization. Across screen-centric grounding and referring benchmarks spanning text-heavy to image-heavy regimes, Image-LoRA matches or closely approaches standard LoRA accuracy while using fewer trainable parameters and lower adapter-only training FLOPs. The method also preserves the pure-text reasoning performance of VLMs before and after fine-tuning, as further shown on GSM8K.
☆ Observer, Not Player: Simulating Theory of Mind in LLMs through Game Observation NeurIPS
We present an interactive framework for evaluating whether large language models (LLMs) exhibit genuine "understanding" in a simple yet strategic environment. As a running example, we focus on Rock-Paper-Scissors (RPS), which, despite its apparent simplicity, requires sequential reasoning, adaptation, and strategy recognition. Our system positions the LLM as an Observer whose task is to identify which strategies are being played and to articulate the reasoning behind this judgment. The purpose is not to test knowledge of Rock-Paper-Scissors itself, but to probe whether the model can exhibit mind-like reasoning about sequential behavior. To support systematic evaluation, we provide a benchmark consisting of both static strategies and lightweight dynamic strategies specified by well-prompted rules. We quantify alignment between the Observer's predictions and the ground-truth distributions induced by actual strategy pairs using three complementary signals: Cross-Entropy, Brier score, and Expected Value (EV) discrepancy. These metrics are further integrated into a unified score, the Union Loss, which balances calibration, sensitivity, and payoff alignment. Together with a Strategy Identification Rate (SIR) metric, our framework captures not only predictive accuracy but also whether the model can stably identify the latent strategies in play. The demo emphasizes interactivity, transparency, and reproducibility. Users can adjust LLM distributions in real time, visualize losses as they evolve, and directly inspect reasoning snippets to identify where and why failures occur. In doing so, our system provides a practical and interpretable proxy for mind-like inference in sequential games, offering insights into both the strengths and limitations of current LLM reasoning.
comment: Accepted at NeurIPS Workshop on Foundations of Reasoning in Language Models and Workshop on Bridging Language, Agent, and World Model
☆ MixKVQ: Query-Aware Mixed-Precision KV Cache Quantization for Long-Context Reasoning
Long Chain-of-Thought (CoT) reasoning has significantly advanced the capabilities of Large Language Models (LLMs), but this progress is accompanied by substantial memory and latency overhead from the extensive Key-Value (KV) cache. Although KV cache quantization is a promising compression technique, existing low-bit quantization methods often exhibit severe performance degradation on complex reasoning tasks. Fixed-precision quantization struggles to handle outlier channels in the key cache, while current mixed-precision strategies fail to accurately identify components requiring high-precision representation. We find that an effective low-bit KV cache quantization strategy must consider two factors: a key channel's intrinsic quantization difficulty and its relevance to the query. Based on this insight, we propose MixKVQ, a novel plug-and-play method that introduces a lightweight, query-aware algorithm to identify and preserve critical key channels that need higher precision, while applying per-token quantization for value cache. Experiments on complex reasoning datasets demonstrate that our approach significantly outperforms existing low-bit methods, achieving performance comparable to a full-precision baseline at a substantially reduced memory footprint.
☆ On the Koopman-Based Generalization Bounds for Multi-Task Deep Learning
The paper establishes generalization bounds for multitask deep neural networks using operator-theoretic techniques. The authors propose a tighter bound than those derived from conventional norm based methods by leveraging small condition numbers in the weight matrices and introducing a tailored Sobolev space as an expanded hypothesis space. This enhanced bound remains valid even in single output settings, outperforming existing Koopman based bounds. The resulting framework maintains key advantages such as flexibility and independence from network width, offering a more precise theoretical understanding of multitask deep learning in the context of kernel methods.
comment: Accepted for publication in Lecture Notes in Computer Science (LNCS). Final version forthcoming
☆ Operator-Based Generalization Bound for Deep Learning: Insights on Multi-Task Learning
This paper presents novel generalization bounds for vector-valued neural networks and deep kernel methods, focusing on multi-task learning through an operator-theoretic framework. Our key development lies in strategically combining a Koopman based approach with existing techniques, achieving tighter generalization guarantees compared to traditional norm-based bounds. To mitigate computational challenges associated with Koopman-based methods, we introduce sketching techniques applicable to vector valued neural networks. These techniques yield excess risk bounds under generic Lipschitz losses, providing performance guarantees for applications including robust and multiple quantile regression. Furthermore, we propose a novel deep learning framework, deep vector-valued reproducing kernel Hilbert spaces (vvRKHS), leveraging Perron Frobenius (PF) operators to enhance deep kernel methods. We derive a new Rademacher generalization bound for this framework, explicitly addressing underfitting and overfitting through kernel refinement strategies. This work offers novel insights into the generalization properties of multitask learning with deep learning architectures, an area that has been relatively unexplored until recent developments.
comment: Accepted for publication in Lecture Notes in Computer Science (LNCS). Final version forthcoming
☆ Practical Quantum-Classical Feature Fusion for complex data Classification
Hybrid quantum and classical learning aims to couple quantum feature maps with the robustness of classical neural networks, yet most architectures treat the quantum circuit as an isolated feature extractor and merge its measurements with classical representations by direct concatenation. This neglects that the quantum and classical branches constitute distinct computational modalities and limits reliable performance on complex, high dimensional tabular and semi structured data, including remote sensing, environmental monitoring, and medical diagnostics. We present a multimodal formulation of hybrid learning and propose a cross attention mid fusion architecture in which a classical representation queries quantum derived feature tokens through an attention block with residual connectivity. The quantum branch is kept within practical NISQ budgets and uses up to nine qubits. We evaluate on Wine, Breast Cancer, Forest CoverType, FashionMNIST, and SteelPlatesFaults, comparing a quantum only model, a classical baseline, residual hybrid models, and the proposed mid fusion model under a consistent protocol. Pure quantum and standard hybrid designs underperform due to measurement induced information loss, while cross attention mid fusion is consistently competitive and improves performance on the more complex datasets in most cases. These findings suggest that quantum derived information becomes most valuable when integrated through principled multimodal fusion rather than used in isolation or loosely appended to classical features.
comment: 16 pages, 3 figues
☆ Vision-Language-Policy Model for Dynamic Robot Task Planning
Bridging the gap between natural language commands and autonomous execution in unstructured environments remains an open challenge for robotics. This requires robots to perceive and reason over the current task scene through multiple modalities, and to plan their behaviors to achieve their intended goals. Traditional robotic task-planning approaches often struggle to bridge low-level execution with high-level task reasoning, and cannot dynamically update task strategies when instructions change during execution, which ultimately limits their versatility and adaptability to new tasks. In this work, we propose a novel language model-based framework for dynamic robot task planning. Our Vision-Language-Policy (VLP) model, based on a vision-language model fine-tuned on real-world data, can interpret semantic instructions and integrate reasoning over the current task scene to generate behavior policies that control the robot to accomplish the task. Moreover, it can dynamically adjust the task strategy in response to changes in the task, enabling flexible adaptation to evolving task requirements. Experiments conducted with different robots and a variety of real-world tasks show that the trained model can efficiently adapt to novel scenarios and dynamically update its policy, demonstrating strong planning autonomy and cross-embodiment generalization. Videos: https://robovlp.github.io/
comment: Manuscript under review
☆ Can We Test Consciousness Theories on AI? Ablations, Markers, and Robustness
The search for reliable indicators of consciousness has fragmented into competing theoretical camps (Global Workspace Theory (GWT), Integrated Information Theory (IIT), and Higher-Order Theories (HOT)), each proposing distinct neural signatures. We adopt a synthetic neuro-phenomenology approach: constructing artificial agents that embody these mechanisms to test their functional consequences through precise architectural ablations impossible in biological systems. Across three experiments, we report dissociations suggesting these theories describe complementary functional layers rather than competing accounts. In Experiment 1, a no-rewire Self-Model lesion abolishes metacognitive calibration while preserving first-order task performance, yielding a synthetic blindsight analogue consistent with HOT predictions. In Experiment 2, workspace capacity proves causally necessary for information access: a complete workspace lesion produces qualitative collapse in access-related markers, while partial reductions show graded degradation, consistent with GWT's ignition framework. In Experiment 3, we uncover a broadcast-amplification effect: GWT-style broadcasting amplifies internal noise, creating extreme fragility. The B2 agent family is robust to the same latent perturbation; this robustness persists in a Self-Model-off / workspace-read control, cautioning against attributing the effect solely to $z_{\text{self}}$ compression. We also report an explicit negative result: raw perturbational complexity (PCI-A) decreases under the workspace bottleneck, cautioning against naive transfer of IIT-adjacent proxies to engineered agents. These results suggest a hierarchical design principle: GWT provides broadcast capacity, while HOT provides quality control. We emphasize that our agents are not conscious; they are reference implementations for testing functional predictions of consciousness theories.
☆ Beyond Sliding Windows: Learning to Manage Memory in Non-Markovian Environments
Recent success in developing increasingly general purpose agents based on sequence models has led to increased focus on the problem of deploying computationally limited agents within the vastly more complex real-world. A key challenge experienced in these more realistic domains is highly non-Markovian dependencies with respect to the agent's observations, which are less common in small controlled domains. The predominant approach for dealing with this in the literature is to stack together a window of the most recent observations (Frame Stacking), but this window size must grow with the degree of non-Markovian dependencies, which results in prohibitive computational and memory requirements for both action inference and learning. In this paper, we are motivated by the insight that in many environments that are highly non-Markovian with respect to time, the environment only causally depends on a relatively small number of observations over that time-scale. A natural direction would then be to consider meta-algorithms that maintain relatively small adaptive stacks of memories such that it is possible to express highly non-Markovian dependencies with respect to time while considering fewer observations at each step and thus experience substantial savings in both compute and memory requirements. Hence, we propose a meta-algorithm (Adaptive Stacking) for achieving exactly that with convergence guarantees and quantify the reduced computation and memory constraints for MLP, LSTM, and Transformer-based agents. Our experiments utilize popular memory tasks, which give us control over the degree of non-Markovian dependencies. This allows us to demonstrate that an appropriate meta-algorithm can learn the removal of memories not predictive of future rewards without excessive removal of important experiences. Code: https://github.com/geraudnt/adaptive-stacking
☆ Understanding Chain-of-Thought in Large Language Models via Topological Data Analysis
With the development of large language models (LLMs), particularly with the introduction of the long reasoning chain technique, the reasoning ability of LLMs in complex problem-solving has been significantly enhanced. While acknowledging the power of long reasoning chains, we cannot help but wonder: Why do different reasoning chains perform differently in reasoning? What components of the reasoning chains play a key role? Existing studies mainly focus on evaluating reasoning chains from a functional perspective, with little attention paid to their structural mechanisms. To address this gap, this work is the first to analyze and evaluate the quality of the reasoning chain from a structural perspective. We apply persistent homology from Topological Data Analysis (TDA) to map reasoning steps into semantic space, extract topological features, and analyze structural changes. These changes reveal semantic coherence, logical redundancy, and identify logical breaks and gaps. By calculating homology groups, we assess connectivity and redundancy at various scales, using barcode and persistence diagrams to quantify stability and consistency. Our results show that the topological structural complexity of reasoning chains correlates positively with accuracy. More complex chains identify correct answers sooner, while successful reasoning exhibits simpler topologies, reducing redundancy and cycles, enhancing efficiency and interpretability. This work provides a new perspective on reasoning chain quality assessment and offers guidance for future optimization.
☆ HyperLoad: A Cross-Modality Enhanced Large Language Model-Based Framework for Green Data Center Cooling Load Prediction
The rapid growth of artificial intelligence is exponentially escalating computational demand, inflating data center energy use and carbon emissions, and spurring rapid deployment of green data centers to relieve resource and environmental stress. Achieving sub-minute orchestration of renewables, storage, and loads, while minimizing PUE and lifecycle carbon intensity, hinges on accurate load forecasting. However, existing methods struggle to address small-sample scenarios caused by cold start, load distortion, multi-source data fragmentation, and distribution shifts in green data centers. We introduce HyperLoad, a cross-modality framework that exploits pre-trained large language models (LLMs) to overcome data scarcity. In the Cross-Modality Knowledge Alignment phase, textual priors and time-series data are mapped to a common latent space, maximizing the utility of prior knowledge. In the Multi-Scale Feature Modeling phase, domain-aligned priors are injected through adaptive prefix-tuning, enabling rapid scenario adaptation, while an Enhanced Global Interaction Attention mechanism captures cross-device temporal dependencies. The public DCData dataset is released for benchmarking. Under both data sufficient and data scarce settings, HyperLoad consistently surpasses state-of-the-art (SOTA) baselines, demonstrating its practicality for sustainable green data center management.
☆ FC-MIR: A Mobile Screen Awareness Framework for Intent-Aware Recommendation based on Frame-Compressed Multimodal Trajectory Reasoning
Identifying user intent from mobile UI operation trajectories is critical for advancing UI understanding and enabling task automation agents. While Multimodal Large Language Models (MLLMs) excel at video understanding tasks, their real-time mobile deployment is constrained by heavy computational costs and inefficient redundant frame processing. To address these issues, we propose the FC-MIR framework: leveraging keyframe sampling and adaptive concatenation, it cuts visual redundancy to boost inference efficiency, while integrating state-of-the-art closed-source MLLMs or fine-tuned models (e.g., Qwen3-VL) for trajectory summarization and intent prediction. We further expand task scope to explore generating post-prediction operations and search suggestions, and introduce a fine-grained metric to evaluate the practical utility of summaries, predictions, and suggestions. For rigorous assessment, we construct a UI trajectory dataset covering scenarios from UI-Agents (Agent-I) and real user interactions (Person-I). Experimental results show our compression method retains performance at 50%-60% compression rates; both closed-source and fine-tuned MLLMs demonstrate strong intent summarization, supporting potential lightweight on-device deployment. However, MLLMs still struggle with useful and "surprising" suggestions, leaving room for improvement. Finally, we deploy the framework in a real-world setting, integrating UI perception and UI-Agent proxies to lay a foundation for future progress in this field.
☆ DIVER-1 : Deep Integration of Vast Electrophysiological Recordings at Scale
Electrophysiology signals such as EEG and iEEG are central to neuroscience, brain-computer interfaces, and clinical applications, yet existing foundation models remain limited in scale despite clear evidence that scaling improves performance. We introduce DIVER-1, a family of EEG and iEEG foundation models trained on the largest and most diverse corpus to date-5.3k hours of iEEG and 54k hours of EEG (1.6M channel-hours from over 17.7k subjects)-and scaled up to 1.82B parameters. We present the first systematic scaling law analysis for this domain, showing that they follow data-constrained scaling laws: for a given amount of data and compute, smaller models trained for extended epochs consistently outperform larger models trained briefly. This behavior contrasts with prior electrophysiology foundation models that emphasized model size over training duration. To achieve strong performance, we also design architectural innovations including any-variate attention, sliding temporal conditional positional encoding, and multi-domain reconstruction. DIVER-1 iEEG and EEG models each achieve state-of-the-art performance on their respective benchmarks, establishing a concrete guidelines for efficient scaling and resource allocation in electrophysiology foundation model development.
comment: 47 pages, 13 figures, 26 tables
☆ Conditioning Accept-Desirability models in the context of AGM-like belief change
We discuss conditionalisation for Accept-Desirability models in an abstract decision-making framework, where uncertain rewards live in a general linear space, and events are special projection operators on that linear space. This abstract setting allows us to unify classical and quantum probabilities, and extend them to an imprecise probabilities context. We introduce a new conditioning rule for our Accept-Desirability models, based on the idea that observing an event introduces new indifferences between options. We associate a belief revision operator with our conditioning rule, and investigate which of the AGM axioms for belief revision still hold in our more general framework. We investigate two interesting special cases where all of these axioms are shown to still hold: classical propositional logic and full conditional probabilities.
comment: 46 pages, 1 table
☆ Tool-Augmented Hybrid Ensemble Reasoning with Distillation for Bilingual Mathematical Problem Solving
Bilingual mathematical problem solving needs a clear link between language reasoning and symbolic calculation. Large language models often handle language well but are weak in accurate computation. This paper presents HERALD (Hybrid Ensemble Reasoning with Adaptive Learning and Distillation), a framework that joins reasoning and calculation using NuminaMath-7B-TIR, GPT-4o, and Mistral-7B. HERALD uses adaptive routing, tool-based reinforcement learning, and knowledge distillation to connect different reasoning paths. Confidence calibration keeps weighting stable, and dual-path checking keeps results correct. Reinforcement learning controls tool use to cut redundancy, and distillation lowers delay without hurting accuracy. The system shows that combining symbolic checking, adaptive ensembles, and bilingual fine-tuning helps achieve both fluent reasoning and precise calculation. HERALD offers a practical solution for multilingual mathematical reasoning with better accuracy, stability, and clarity.
☆ $γ(3,4)$ `Attention' in Cognitive Agents: Ontology-Free Knowledge Representations With Promise Theoretic Semantics
The semantics and dynamics of `attention' are closely related to promise theoretic notions developed for autonomous agents and can thus easily be written down in promise framework. In this way one may establish a bridge between vectorized Machine Learning and Knowledge Graph representations without relying on language models implicitly. Our expectations for knowledge presume a degree of statistical stability, i.e. average invariance under repeated observation, or `trust' in the data. Both learning networks and knowledge graph representations can meaningfully coexist to preserve different aspects of data. While vectorized data are useful for probabilistic estimation, graphs preserve the intentionality of the source even under data fractionation. Using a Semantic Spacetime $γ(3,4)$ graph, one avoids complex ontologies in favour of classification of features by their roles in semantic processes. The latter favours an approach to reasoning under conditions of uncertainty. Appropriate attention to causal boundary conditions may lead to orders of magnitude compression of data required for such context determination, as required in the contexts of autonomous robotics, defence deployments, and ad hoc emergency services.
☆ Population-Evolve: a Parallel Sampling and Evolutionary Method for LLM Math Reasoning
Test-time scaling has emerged as a promising direction for enhancing the reasoning capabilities of Large Language Models in last few years. In this work, we propose Population-Evolve, a training-free method inspired by Genetic Algorithms to optimize LLM reasoning. Our approach maintains a dynamic population of candidate solutions for each problem via parallel reasoning. By incorporating an evolve prompt, the LLM self-evolves its population in all iterations. Upon convergence, the final answer is derived via majority voting. Furthermore, we establish a unification framework that interprets existing test-time scaling strategies through the lens of genetic algorithms. Empirical results demonstrate that Population-Evolve achieves superior accuracy with low performance variance and computational efficiency. Our findings highlight the potential of evolutionary strategies to unlock the reasoning power of LLMs during inference.
☆ Can abstract concepts from LLM improve SLM performance?
Large language models (LLMs) excel at diverse tasks, but their deployment on resource-constrained devices remains challenging. Existing methods like quantization, pruning, and distillation can reduce memory footprint but often demand extensive experimentation and careful infrastructure design. Leveraging existing techniques for extracting high-level concepts (represented as steering vectors) from larger models, we investigate their transferability to smaller language models (SLM) during inference. We demonstrate through extensive experimentation that these concepts can be effectively transferred to smaller models, irrespective of their family (e.g., Phi, Llama, Qwen), leading to performance improvements across a wide range of tasks. Furthermore, we introduce inference-time scaling to enhance performance by dynamically adjusting the steering intensity which has resulted in a 7-15\% of accuracy improvement for Qwen3-0.6B.
☆ Fraud Detection Through Large-Scale Graph Clustering with Heterogeneous Link Transformation
Collaborative fraud, where multiple fraudulent accounts coordinate to exploit online payment systems, poses significant challenges due to the formation of complex network structures. Traditional detection methods that rely solely on high-confidence identity links suffer from limited coverage, while approaches using all available linkages often result in fragmented graphs with reduced clustering effectiveness. In this paper, we propose a novel graph-based fraud detection framework that addresses the challenge of large-scale heterogeneous graph clustering through a principled link transformation approach. Our method distinguishes between \emph{hard links} (high-confidence identity relationships such as phone numbers, credit cards, and national IDs) and \emph{soft links} (behavioral associations including device fingerprints, cookies, and IP addresses). We introduce a graph transformation technique that first identifies connected components via hard links, merges them into super-nodes, and then reconstructs a weighted soft-link graph amenable to efficient embedding and clustering. The transformed graph is processed using LINE (Large-scale Information Network Embedding) for representation learning, followed by HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) for density-based cluster discovery. Experiments on a real-world payment platform dataset demonstrate that our approach achieves significant graph size reduction (from 25 million to 7.7 million nodes), doubles the detection coverage compared to hard-link-only baselines, and maintains high precision across identified fraud clusters. Our framework provides a scalable and practical solution for industrial-scale fraud detection systems.
comment: 13 pages, 6 figures
☆ Recontextualization Mitigates Specification Gaming without Modifying the Specification
Developers often struggle to specify correct training labels and rewards. Perhaps they don't need to. We propose recontextualization, which reduces how often language models "game" training signals, performing misbehaviors those signals mistakenly reinforce. We show recontextualization prevents models from learning to 1) prioritize evaluation metrics over chat response quality; 2) special-case code to pass incorrect tests; 3) lie to users; and 4) become sycophantic. Our method works by generating completions from prompts discouraging misbehavior and then recontextualizing them as though they were in response to prompts permitting misbehavior. Recontextualization trains language models to resist misbehavior even when instructions permit it. This mitigates the reinforcement of misbehavior from misspecified training signals, reducing specification gaming without improving the supervision signal.
comment: 57 pages, 41 figures
☆ Finer-Personalization Rank: Fine-Grained Retrieval Examines Identity Preservation for Personalized Generation
The rise of personalized generative models raises a central question: how should we evaluate identity preservation? Given a reference image (e.g., one's pet), we expect the generated image to retain precise details attached to the subject's identity. However, current generative evaluation metrics emphasize the overall semantic similarity between the reference and the output, and overlook these fine-grained discriminative details. We introduce Finer-Personalization Rank, an evaluation protocol tailored to identity preservation. Instead of pairwise similarity, Finer-Personalization Rank adopts a ranking view: it treats each generated image as a query against an identity-labeled gallery consisting of visually similar real images. Retrieval metrics (e.g., mean average precision) measure performance, where higher scores indicate that identity-specific details (e.g., a distinctive head spot) are preserved. We assess identity at multiple granularities -- from fine-grained categories (e.g., bird species, car models) to individual instances (e.g., re-identification). Across CUB, Stanford Cars, and animal Re-ID benchmarks, Finer-Personalization Rank more faithfully reflects identity retention than semantic-only metrics and reveals substantial identity drift in several popular personalization methods. These results position the gallery-based protocol as a principled and practical evaluation for personalized generation.
☆ The Erasure Illusion: Stress-Testing the Generalization of LLM Forgetting Evaluation
Machine unlearning aims to remove specific data influences from trained models, a capability essential for adhering to copyright laws and ensuring AI safety. Current unlearning metrics typically measure success by monitoring the model's performance degradation on the specific unlearning dataset ($D_u$). We argue that for Large Language Models (LLMs), this evaluation paradigm is insufficient and potentially misleading. Many real-world uses of unlearning--motivated by copyright or safety--implicitly target not only verbatim content in $D_u$, but also behaviors influenced by the broader generalizations the model derived from it. We demonstrate that LLMs can pass standard unlearning evaluation and appear to have ``forgotten'' the target knowledge, while simultaneously retaining strong capabilities on content that is semantically adjacent to $D_u$. This phenomenon indicates that erasing exact sentences does not necessarily equate to removing the underlying knowledge. To address this gap, we propose \name, an automated stress-testing framework that generates a surrogate dataset, $\tilde{D}_u$. This surrogate set is constructed to be semantically derived from $D_u$ yet sufficiently distinct in embedding space. By comparing unlearning metric scores between $D_u$ and $\tilde{D}_u$, we can stress-test the reliability of the metric itself. Our extensive evaluation across three LLM families (Llama-3-8B, Qwen2.5-7B, and Zephyr-7B-$β$), three distinct datasets, and seven standard metrics reveals widespread inconsistencies. We find that current metrics frequently overestimate unlearning success, failing to detect retained knowledge exposed by our stress-test datasets.
☆ IndoorUAV: Benchmarking Vision-Language UAV Navigation in Continuous Indoor Environments
Vision-Language Navigation (VLN) enables agents to navigate in complex environments by following natural language instructions grounded in visual observations. Although most existing work has focused on ground-based robots or outdoor Unmanned Aerial Vehicles (UAVs), indoor UAV-based VLN remains underexplored, despite its relevance to real-world applications such as inspection, delivery, and search-and-rescue in confined spaces. To bridge this gap, we introduce \textbf{IndoorUAV}, a novel benchmark and method specifically tailored for VLN with indoor UAVs. We begin by curating over 1,000 diverse and structurally rich 3D indoor scenes from the Habitat simulator. Within these environments, we simulate realistic UAV flight dynamics to collect diverse 3D navigation trajectories manually, further enriched through data augmentation techniques. Furthermore, we design an automated annotation pipeline to generate natural language instructions of varying granularity for each trajectory. This process yields over 16,000 high-quality trajectories, comprising the \textbf{IndoorUAV-VLN} subset, which focuses on long-horizon VLN. To support short-horizon planning, we segment long trajectories into sub-trajectories by selecting semantically salient keyframes and regenerating concise instructions, forming the \textbf{IndoorUAV-VLA} subset. Finally, we introduce \textbf{IndoorUAV-Agent}, a novel navigation model designed for our benchmark, leveraging task decomposition and multimodal reasoning. We hope IndoorUAV serves as a valuable resource to advance research on vision-language embodied AI in the indoor aerial navigation domain.
☆ Efficient Jailbreak Mitigation Using Semantic Linear Classification in a Multi-Staged Pipeline
Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time to completion from approximately 450s to 47s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
comment: Under Review
☆ The 6th International Verification of Neural Networks Competition (VNN-COMP 2025): Summary and Results
This report summarizes the 6th International Verification of Neural Networks Competition (VNN-COMP 2025), held as a part of the 8th International Symposium on AI Verification (SAIV), that was collocated with the 37th International Conference on Computer-Aided Verification (CAV). VNN-COMP is held annually to facilitate the fair and objective comparison of state-of-the-art neural network verification tools, encourage the standardization of tool interfaces, and bring together the neural network verification community. To this end, standardized formats for networks (ONNX) and specification (VNN-LIB) were defined, tools were evaluated on equal-cost hardware (using an automatic evaluation pipeline based on AWS instances), and tool parameters were chosen by the participants before the final test sets were made public. In the 2025 iteration, 8 teams participated on a diverse set of 16 regular and 9 extended benchmarks. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this iteration of this competition.
comment: Report on the results of VNN-COMP 2025. arXiv admin note: substantial text overlap with arXiv:2412.19985, arXiv:2312.16760, arXiv:2212.10376
☆ Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models
Diffusion Large Language Models (DLLMs) enable fully parallel token decoding but often remain impractical at inference time due to the many denoising iterations required to refine an information-free, fully masked initialization into coherent text. Most existing acceleration methods focus on traversing this generative trajectory more efficiently via improved solvers or sampling strategies. We advance a complementary perspective: shorten the trajectory itself by starting closer to the target distribution through context-aware initialization. We propose a training-free interface that injects prompt-conditioned priors from a lightweight auxiliary model into the diffusion initialization, and instantiate it with two mechanisms: discrete token injection and representation-level embedding interpolation. Because injected priors can be imperfect and unmask-only decoding can over-commit early, we also introduce a simple confidence-based remasking mechanism as a form of prior skepticism. Preliminary evidence on GSM8K suggests that context-aware initialization can substantially reduce denoising iterations (about 35\% fewer function evaluations in our setting), while also exposing a key open challenge: naive warm-starting can degrade final accuracy relative to strong diffusion baselines. We use these findings to motivate a research agenda around calibration, revision mechanisms, and representation alignment for reliable warm-started diffusion decoding.
☆ ORPR: An OR-Guided Pretrain-then-Reinforce Learning Model for Inventory Management
As the pursuit of synergy between Artificial Intelligence (AI) and Operations Research (OR) gains momentum in handling complex inventory systems, a critical challenge persists: how to effectively reconcile AI's adaptive perception with OR's structural rigor. To bridge this gap, we propose a novel OR-Guided "Pretrain-then-Reinforce" framework. To provide structured guidance, we propose a simulation-augmented OR model that generates high-quality reference decisions, implicitly capturing complex business constraints and managerial preferences. Leveraging these OR-derived decisions as foundational training labels, we design a domain-informed deep learning foundation model to establish foundational decision-making capabilities, followed by a reinforcement learning (RL) fine-tuning stage. Uniquely, we position RL as a deep alignment mechanism that enables the AI agent to internalize the optimality principles of OR, while simultaneously leveraging exploration for general policy refinement and allowing expert guidance for scenario-specific adaptation (e.g., promotional events). Validated through extensive numerical experiments and a field deployment at JD.com augmented by a Difference-in-Differences (DiD) analysis, our model significantly outperforms incumbent industrial practices, delivering real-world gains of a 5.27-day reduction in turnover and a 2.29% increase in in-stock rates, alongside a 29.95% decrease in holding costs. Contrary to the prevailing trend of brute-force model scaling, our study demonstrates that a lightweight, domain-informed model can deliver state-of-the-art performance and robust transferability when guided by structured OR logic. This approach offers a scalable and cost-effective paradigm for intelligent supply chain management, highlighting the value of deeply aligning AI with OR.
☆ Evaluating the Challenges of LLMs in Real-world Medical Follow-up: A Comparative Study and An Optimized Framework
When applied directly in an end-to-end manner to medical follow-up tasks, Large Language Models (LLMs) often suffer from uncontrolled dialog flow and inaccurate information extraction due to the complexity of follow-up forms. To address this limitation, we designed and compared two follow-up chatbot systems: an end-to-end LLM-based system (control group) and a modular pipeline with structured process control (experimental group). Experimental results show that while the end-to-end approach frequently fails on lengthy and complex forms, our modular method-built on task decomposition, semantic clustering, and flow management-substantially improves dialog stability and extraction accuracy. Moreover, it reduces the number of dialogue turns by 46.73% and lowers token consumption by 80% to 87.5%. These findings highlight the necessity of integrating external control mechanisms when deploying LLMs in high-stakes medical follow-up scenarios.
comment: 10 pages,3 figures,conference ICCBB2025
☆ ICP-4D: Bridging Iterative Closest Point and LiDAR Panoptic Segmentation
Dominant paradigms for 4D LiDAR panoptic segmentation are usually required to train deep neural networks with large superimposed point clouds or design dedicated modules for instance association. However, these approaches perform redundant point processing and consequently become computationally expensive, yet still overlook the rich geometric priors inherently provided by raw point clouds. To this end, we introduce ICP-4D, a simple yet effective training-free framework that unifies spatial and temporal reasoning through geometric relations among instance-level point sets. Specifically, we apply the Iterative Closest Point (ICP) algorithm to directly associate temporally consistent instances by aligning the source and target point sets through the estimated transformation. To stabilize association under noisy instance predictions, we introduce a Sinkhorn-based soft matching. This exploits the underlying instance distribution to obtain accurate point-wise correspondences, resulting in robust geometric alignment. Furthermore, our carefully designed pipeline, which considers three instance types-static, dynamic, and missing-offers computational efficiency and occlusion-aware matching. Our extensive experiments across both SemanticKITTI and panoptic nuScenes demonstrate that our method consistently outperforms state-of-the-art approaches, even without additional training or extra point cloud inputs.
☆ R-GenIMA: Integrating Neuroimaging and Genetics with Interpretable Multimodal AI for Alzheimer's Disease Progression
Early detection of Alzheimer's disease (AD) requires models capable of integrating macro-scale neuroanatomical alterations with micro-scale genetic susceptibility, yet existing multimodal approaches struggle to align these heterogeneous signals. We introduce R-GenIMA, an interpretable multimodal large language model that couples a novel ROI-wise vision transformer with genetic prompting to jointly model structural MRI and single nucleotide polymorphisms (SNPs) variations. By representing each anatomically parcellated brain region as a visual token and encoding SNP profiles as structured text, the framework enables cross-modal attention that links regional atrophy patterns to underlying genetic factors. Applied to the ADNI cohort, R-GenIMA achieves state-of-the-art performance in four-way classification across normal cognition (NC), subjective memory concerns (SMC), mild cognitive impairment (MCI), and AD. Beyond predictive accuracy, the model yields biologically meaningful explanations by identifying stage-specific brain regions and gene signatures, as well as coherent ROI-Gene association patterns across the disease continuum. Attention-based attribution revealed genes consistently enriched for established GWAS-supported AD risk loci, including APOE, BIN1, CLU, and RBFOX1. Stage-resolved neuroanatomical signatures identified shared vulnerability hubs across disease stages alongside stage-specific patterns: striatal involvement in subjective decline, frontotemporal engagement during prodromal impairment, and consolidated multimodal network disruption in AD. These results demonstrate that interpretable multimodal AI can synthesize imaging and genetics to reveal mechanistic insights, providing a foundation for clinically deployable tools that enable earlier risk stratification and inform precision therapeutic strategies in Alzheimer's disease.
☆ Self-Attention with State-Object Weighted Combination for Compositional Zero Shot Learning
Object recognition has become prevalent across various industries. However, most existing applications are limited to identifying objects alone, without considering their associated states. The ability to recognize both the state and object simultaneously remains less common. One approach to address this is by treating state and object as a single category during training. However, this approach poses challenges in data collection and training since it requires comprehensive data for all possible combinations. Compositional Zero-shot Learning (CZSL) emerges as a viable solution by treating the state and object as distinct categories during training. CZSL facilitates the identification of novel compositions even in the absence of data for every conceivable combination. The current state-of-the-art method, KG-SP, addresses this issue by training distinct classifiers for states and objects, while leveraging a semantic model to evaluate the plausibility of composed compositions. However, KG-SP's accuracy in state and object recognition can be further improved, and it fails to consider the weighting of states and objects during composition. In this study, we propose SASOW, an enhancement of KG-SP that considers the weighting of states and objects while improving composition recognition accuracy. First, we introduce self-attention mechanisms into the classifiers for states and objects, leading to enhanced accuracy in recognizing both. Additionally, we incorporate the weighting of states and objects during composition to generate more reasonable and accurate compositions. Our validation process involves testing SASOW on three established benchmark datasets. Experimental outcomes affirm when compared against OW-CZSL approach, KG-SP, SASOW showcases improvements of 2.1%, 1.7%, and 0.4% in terms of accuracy for unseen compositions across the MIT-States, UT Zappos, and C-GQA datasets, respectively.
♻ ☆ LiveOIBench: Can Large Language Models Outperform Human Contestants in Informatics Olympiads?
Competitive programming problems increasingly serve as valuable benchmarks to evaluate the coding capabilities of large language models (LLMs) due to their complexity and ease of verification. Yet, current coding benchmarks face limitations such as lack of exceptionally challenging problems, insufficient test case coverage, reliance on online platform APIs that limit accessibility. To address these issues, we introduce LiveOIBench, a comprehensive benchmark featuring 403 expert-curated Olympiad-level competitive programming problems, each with an average of 60 expert-designed test cases. The problems are sourced directly from 72 official contests of 14 Informatics Olympiads in different regions conducted between 2023 and 2025. LiveOIBench distinguishes itself through four key features: (1) meticulously curated high-quality tasks with detailed subtask rubrics and extensive private test cases; (2) direct integration of elite contestant performance data to enable informative comparison against top-performing humans; (3) planned continuous, contamination-free updates from newly released Olympiad problems; and (4) a self-contained evaluation system facilitating offline and easy-to-reproduce assessments. Benchmarking 34 popular general-purpose and reasoning LLMs, we find that GPT-5 achieves a notable 81.76th percentile, a strong result that nonetheless falls short of top human contestants, who usually place above 90th. In contrast, among open-weight reasoning models, GPT-OSS-120B achieves only a 60th percentile, underscoring significant capability disparities from frontier closed models. Detailed analyses indicate that robust reasoning models prioritize precise problem analysis over excessive exploration, suggesting future models should emphasize structured analysis and minimize unnecessary exploration. All data, code, and leaderboard results are publicly available on our website.
♻ ☆ Bridging the Gap Between Scientific Laws Derived by AI Systems and Canonical Knowledge via Abductive Inference with AI-Noether
Advances in AI have shown great potential in contributing to the acceleration of scientific discovery. Symbolic regression can fit interpretable models to data, but these models are not necessarily derivable from established theory. Recent systems (e.g., AI-Descartes, AI-Hilbert) enforce derivability from prior knowledge. However, when existing theories are incomplete or incorrect, these machine-generated hypotheses may fall outside the theoretical scope. Automatically finding corrections to axiom systems to close this gap remains a central challenge in scientific discovery. We propose a solution: an open-source algebraic geometry-based system that, given an incomplete axiom system expressible as polynomials and a hypothesis that the axioms cannot derive, generates a minimal set of candidate axioms that, when added to the theory, provably derive the (possibly noisy) hypothesis. We illustrate the efficacy of our approach by showing that it can reconstruct key axioms required to derive the carrier-resolved photo-Hall effect, Einstein's relativistic laws, and several other laws.
comment: 47 Pages (20+appendix), 14 Figures, Preprint: Updated for recent submission
♻ ☆ CodeTF: One-stop Transformer Library for State-of-the-art Code LLMs
Code intelligence plays a key role in transforming modern software engineering. Recently, deep learning-based models, especially Transformer-based large language models (LLMs), have demonstrated remarkable potential in tackling these tasks by leveraging massive open-source code data and programming language features. However, the development and deployment of such models often require expertise in both machine learning and software engineering, creating a barrier for the model adoption. In this paper, we present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence. Following the principles of modular design and extensible framework, we design CodeTF with a unified interface to enable rapid access and development across different types of models, datasets and tasks. Our library supports a collection of pretrained Code LLM models and popular code benchmarks, including a standardized interface to train and serve code LLMs efficiently, and data features such as language-specific parsers and utility functions for extracting code attributes. In this paper, we describe the design principles, the architecture, key modules and components, and compare with other related library tools. Finally, we hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering, providing a comprehensive open-source solution for developers, researchers, and practitioners.
♻ ☆ Differentiable Nonlinear Model Predictive Control
The efficient computation of parametric solution sensitivities is a key challenge in the integration of learning-enhanced methods with nonlinear model predictive control (MPC), as their availability is crucial for many learning algorithms. This paper discusses the computation of solution sensitivities of general nonlinear programs (NLPs) using the implicit function theorem (IFT) and smoothed optimality conditions treated in interior-point methods (IPM). We detail sensitivity computation within a sequential quadratic programming (SQP) method which employs an IPM for the quadratic subproblems. Previous works presented in the machine learning community are limited to convex or unconstrained formulations, or lack an implementation for efficient sensitivity evaluation. The publication is accompanied by an efficient open-source implementation within the acados framework, providing both forward and adjoint sensitivities for general optimal control problems, achieving speedups exceeding 3x over the state-of-the-art solvers mpc.pytorch and cvxpygen.
♻ ☆ WANDER: An Explainable Decision-Support Framework for HPC
High-performance computing (HPC) systems expose many interdependent configuration knobs that impact runtime, resource usage, power, and variability. Existing predictive tools model these outcomes, but do not support structured exploration, explanation, or guided reconfiguration. We present WANDER, a decision-support framework that synthesizes alternate configurations using counterfactual analysis aligned with user goals and constraints. We introduce a composite trade-off score that ranks suggestions based on prediction uncertainty, consistency between feature-target relationships using causal models, and similarity between feature distributions against historical data. To our knowledge, WANDER is the first such system to unify prediction, exploration, and explanation for HPC tuning under a common query interface. Across multiple datasets WANDER generates interpretable and trustworthy, human-readable alternatives that guide users to achieve their performance objectives.
♻ ☆ Explaining Tournament Solutions with Minimal Supports AAAI
Tournaments are widely used models to represent pairwise dominance between candidates, alternatives, or teams. We study the problem of providing certified explanations for why a candidate appears among the winners under various tournament rules. To this end, we identify minimal supports, minimal sub-tournaments in which the candidate is guaranteed to win regardless of how the rest of the tournament is completed (that is, the candidate is a necessary winner of the sub-tournament). This notion corresponds to an abductive explanation for the question,"Why does the winner win the tournament?", a central concept in formal explainable AI. We focus on common tournament solutions: the top cycle, the uncovered set, the Copeland rule, the Borda rule, the maximin rule, and the weighted uncovered set. For each rule we determine the size of the smallest minimal supports, and we present polynomial-time algorithms to compute them for all solutions except for the weighted uncovered set, for which the problem is NP-complete. Finally, we show how minimal supports can serve to produce compact, certified, and intuitive explanations for tournament solutions.
comment: This is the extended version of Contet, Grandi, and Mengin. 2026. Explaining Tournament Solutions with Minimal Supports. In Proceedings of the 40th AAAI Conference on Artificial Intelligence
♻ ☆ InterMT: Multi-Turn Interleaved Preference Alignment with Human Feedback
As multimodal large models (MLLMs) continue to advance across challenging tasks, a key question emerges: What essential capabilities are still missing? A critical aspect of human learning is continuous interaction with the environment -- not limited to language, but also involving multimodal understanding and generation. To move closer to human-level intelligence, models must similarly support multi-turn, multimodal interaction. In particular, they should comprehend interleaved multimodal contexts and respond coherently in ongoing exchanges. In this work, we present an initial exploration through the InterMT -- the first preference dataset for multi-turn multimodal interaction, grounded in real human feedback. In this exploration, we particularly emphasize the importance of human oversight, introducing expert annotations to guide the process, motivated by the fact that current MLLMs lack such complex interactive capabilities. InterMT captures human preferences at both global and local levels into nine sub-dimensions, consists of 15.6k prompts, 52.6k multi-turn dialogue instances, and 32.4k human-labeled preference pairs. To compensate for the lack of capability for multi-modal understanding and generation, we introduce an agentic workflow that leverages tool-augmented MLLMs to construct multi-turn QA instances. To further this goal, we introduce InterMT-Bench to assess the ability of MLLMs in assisting judges with multi-turn, multimodal tasks. We demonstrate the utility of \InterMT through applications such as judge moderation and further reveal the multi-turn scaling law of judge model. We hope the open-source of our data can help facilitate further research on aligning current MLLMs to the next step. Our project website can be found at https://pku-intermt.github.io .
♻ ☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 11 pages
♻ ☆ Working with AI: Measuring the Applicability of Generative AI to Occupations
With generative AI emerging as a general-purpose technology, understanding its economic effects is among society's most pressing questions. Existing studies of AI impact have largely relied on predictions of AI capabilities or focused narrowly on individual firms. Drawing instead on real-world AI usage, we analyze a dataset of 200k anonymized conversations with Microsoft Bing Copilot to measure AI applicability to occupations. We use an LLM-based pipeline to classify the O*NET work activities assisted or performed by AI in each conversation. We find that the most common and successful AI-assisted work activities involve information work--the creation, processing, and communication of information. At the occupation level, we find widespread AI applicability cutting across sectors, as most occupations have information work components. Our methodology also allows us to predict which occupations are more likely to delegate tasks to AI and which are more likely to use AI to assist existing workflows.
comment: 40 pages
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignments from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ AIDOVECL: AI-generated Dataset of Outpainted Vehicles for Eye-level Classification and Localization
Image labeling is a critical bottleneck in the development of computer vision technologies, often constraining the potential of machine learning models due to the time-intensive nature of manual annotations. This work introduces a novel approach that leverages outpainting to mitigate the problem of annotated data scarcity by generating artificial contexts and annotations, significantly reducing manual labeling efforts. We apply this technique to a particularly acute challenge in autonomous driving, urban planning, and environmental monitoring: the lack of diverse, eye-level vehicle images in desired classes. Our dataset comprises AI-generated vehicle images obtained by detecting and cropping vehicles from manually selected seed images, which are then outpainted onto larger canvases to simulate varied real-world conditions. The outpainted images include detailed annotations, providing high-quality ground truth data. Advanced outpainting techniques and image quality assessments ensure visual fidelity and contextual relevance. Ablation results show that incorporating AIDOVECL improves overall detection performance by up to 10%, and delivers gains of up to 40% in settings with greater diversity of context, object scale, and placement, with underrepresented classes achieving up to 50% higher true positives. AIDOVECL enhances vehicle detection by augmenting real training data and supporting evaluation across diverse scenarios. By demonstrating outpainting as an automatic annotation paradigm, it offers a practical and versatile solution for building fine-grained datasets with reduced labeling effort across multiple machine learning domains. The code and links to datasets used in this study are available for further research and replication at https://github.com/amir-kazemi/aidovecl .
comment: 34 pages, 10 figures, 5 tables
♻ ☆ SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
♻ ☆ VERDI: VLM-Embedded Reasoning for Autonomous Driving
While autonomous driving (AD) stacks struggle with decision making under partial observability and real-world complexity, human drivers are capable of commonsense reasoning to make near-optimal decisions with limited information. Recent work has attempted to leverage finetuned Vision-Language Models (VLMs) for trajectory planning at inference time to emulate human behavior. Despite their success in benchmark evaluations, these methods are often impractical to deploy (a 70B parameter VLM inference at merely 8 tokens per second requires more than 160G of memory), and their monolithic network structure prohibits safety decomposition. To bridge this gap, we propose VLM-Embedded Reasoning for autonomous Driving (VERDI), a training-time framework that distills the reasoning process and commonsense knowledge of VLMs into the AD stack. VERDI augments modular differentiable end-to-end (e2e) AD models by aligning intermediate module outputs at the perception, prediction, and planning stages with text features explaining the driving reasoning process produced by VLMs. By encouraging alignment in latent space, VERDI enables the modular AD stack to internalize structured reasoning, without incurring the inference-time costs of large VLMs. We validate VERDI in both open-loop (NuScenes and Bench2Drive benchmarks) and closed-loop (HugSim Simulator) settings. We find that VERDI outperforms existing e2e methods that do not embed reasoning by up to 11% in $\ell_{2}$ distance and 11% in driving performance, while maintaining real-time inference speed.
♻ ☆ SSL4RL: Revisiting Self-supervised Learning as Intrinsic Reward for Visual-Language Reasoning
Vision-language models (VLMs) have shown remarkable abilities by integrating large language models with visual inputs. However, they often fail to utilize visual evidence adequately, either depending on linguistic priors in vision-centric tasks or resorting to textual shortcuts during reasoning. Although reinforcement learning (RL) can align models with desired behaviors, its application to VLMs has been hindered by the lack of scalable and reliable reward mechanisms. To overcome this challenge, we propose SSL4RL, a novel framework that leverages self-supervised learning (SSL) tasks as a source of verifiable rewards for RL-based fine-tuning. Our approach reformulates SSL objectives-such as predicting image rotation or reconstructing masked patches-into dense, automatic reward signals, eliminating the need for human preference data or unreliable AI evaluators. Experiments show that SSL4RL substantially improves performance on both vision-centric and vision-language reasoning benchmarks. Furthermore, through systematic ablations, we identify key factors-such as task difficulty, model scale, and semantic alignment with the target domain-that influence the effectiveness of SSL4RL tasks, offering new design principles for future work. We also demonstrate the framework's generality by applying it to graph learning, where it yields significant gains. SSL4RL establishes a versatile and effective paradigm for aligning multimodal models using verifiable, self-supervised objectives.
♻ ☆ Overcoming Growth-Induced Forgetting in Task-Agnostic Continual Learning
In continual learning (CL), model growth enhances adaptability to new data. However, when model growth is applied improperly, especially in task-agnostic CL, where the entire grown model is used for inference, it can lead to severe degradation of learned knowledge, a problem we term growth-induced forgetting. Most existing methods that adopt model growth to improve adaptability often overlook the forgetting issue, resulting in compromised knowledge retention, making them unsuitable for task-agnostic settings. To promote both adaptability and knowledge retention with model growth, we identify the key: gradient and parameter sparsity. Introducing SparseGrow, which increases gradient sparsity through layer expansion and gradient gating to enable focused updates on parameters while preserving critical parameters, thus inhibiting forgetting. Moreover, it promotes parameter sparsity with sparse initialization and training, aiming at better control of model plasticity, improving adaptability over new data. Extensive experiments across diverse datasets, task-agnostic settings, and a large number of tasks demonstrate the necessity of controlled layer expansion and validate the effectiveness of SparseGrow in achieving high adaptability while minimizing forgetting in continual learning. By enabling model growth with sparsified gradients and parameters, SparseGrow paves the way for building scalable lifelong learning systems capable of continual adaptation with better knowledge retention.
♻ ☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
♻ ☆ AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
Modern large reasoning models demonstrate impressive problem-solving capabilities by employing sophisticated reasoning strategies. However, they often struggle to balance efficiency and effectiveness, frequently generating unnecessarily lengthy reasoning chains for simple problems. In this work, we propose AdaCtrl, a novel framework to support both difficulty-aware adaptive reasoning budget allocation and explicit user control over reasoning depth. AdaCtrl dynamically adjusts its reasoning length based on self-assessed problem difficulty, while also allowing users to manually control the budget to prioritize either efficiency or effectiveness. This is achieved through a two-stage training pipeline: an initial cold-start fine-tuning phase to instill the ability to self-aware difficulty and adjust reasoning budget, followed by a difficulty-aware reinforcement learning (RL) stage that refines the model's adaptive reasoning strategies and calibrates its difficulty assessments based on its evolving capabilities during online training. To enable intuitive user interaction, we design explicit length-triggered tags that function as a natural interface for budget control. Empirical results show that AdaCtrl adapts reasoning length based on estimated difficulty, compared to the standard training baseline that also incorporates fine-tuning and RL, it yields performance improvements and simultaneously reduces response length by 10.06% and 12.14% on the more challenging AIME2024 and AIME2025 datasets, which require elaborate reasoning, and by 62.05% and 91.04% on the MATH500 and GSM8K datasets, where more concise responses are sufficient. Furthermore, AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.
♻ ☆ Deep Reinforcement Learning Optimization for Uncertain Nonlinear Systems via Event-Triggered Robust Adaptive Dynamic Programming
This work proposes a unified control architecture that couples a Reinforcement Learning (RL)-driven controller with a disturbance-rejection Extended State Observer (ESO), complemented by an Event-Triggered Mechanism (ETM) to limit unnecessary computations. The ESO is utilized to estimate the system states and the lumped disturbance in real time, forming the foundation for effective disturbance compensation. To obtain near-optimal behavior without an accurate system description, a value-iteration-based Adaptive Dynamic Programming (ADP) method is adopted for policy approximation. The inclusion of the ETM ensures that parameter updates of the learning module are executed only when the state deviation surpasses a predefined bound, thereby preventing excessive learning activity and substantially reducing computational load. A Lyapunov-oriented analysis is used to characterize the stability properties of the resulting closed-loop system. Numerical experiments further confirm that the developed approach maintains strong control performance and disturbance tolerance, while achieving a significant reduction in sampling and processing effort compared with standard time-triggered ADP schemes.
comment: we have identified some technical issues, including the mathematical derivation. After discussion, all authors have agreed that the analysis requires a thorough re-derivation to ensure correctness and rigor
♻ ☆ A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
In this work, we establish non-asymptotic convergence bounds for the Gauss-Newton method in training neural networks with smooth activations. In the underparameterized regime, the Gauss-Newton gradient flow in parameter space induces a Riemannian gradient flow on a low-dimensional embedded submanifold of the function space. Using tools from Riemannian optimization, we establish geodesic Polyak-Lojasiewicz and Lipschitz-smoothness conditions for the loss under appropriately chosen output scaling, yielding geometric convergence to the optimal in-class predictor at an explicit rate independent of the conditioning of the Gram matrix. In the overparameterized regime, we propose adaptive, curvature-aware regularization schedules that ensure fast geometric convergence to a global optimum at a rate independent of the minimum eigenvalue of the neural tangent kernel and, locally, of the modulus of strong convexity of the loss. These results demonstrate that Gauss-Newton achieves accelerated convergence rates in settings where first-order methods exhibit slow convergence due to ill-conditioned kernel matrices and loss landscapes.
♻ ☆ Temporal Causal Reasoning with (Non-Recursive) Structural Equation Models AAAI-25
Structural Equation Models (SEM) are the standard approach to representing causal dependencies between variables in causal models. In this paper we propose a new interpretation of SEMs when reasoning about Actual Causality, in which SEMs are viewed as mechanisms transforming the dynamics of exogenous variables into the dynamics of endogenous variables. This allows us to combine counterfactual causal reasoning with existing temporal logic formalisms, and to introduce a temporal logic, CPLTL, for causal reasoning about such structures. We show that the standard restriction to so-called \textit{recursive} models (with no cycles in the dependency graph) is not necessary in our approach, allowing us to reason about mutually dependent processes and feedback loops. Finally, we introduce new notions of model equivalence for temporal causal models, and show that CPLTL has an efficient model-checking procedure.
comment: This is an extended version of the same title paper published in the proceeding of AAAI-25 conference (Gladyshev et al. 2025). This version contains an additional section, in which we introduce TSEMs with arbitrary long temporal delays between causal dependencies and prove that these models are equivalent to TSEMs with 1-step delays only introduced in the original version of the paper
♻ ☆ Assessing High-Risk AI Systems under the EU AI Act: From Legal Requirements to Technical Verification
The implementation of the AI Act requires practical mechanisms to verify compliance with legal obligations, yet concrete and operational mappings from high-level requirements to verifiable assessment activities remain limited, contributing to uneven readiness across Member States. This paper presents a structured mapping that translates high-level AI Act requirements into concrete, implementable verification activities applicable across the AI lifecycle. The mapping is derived through a systematic process in which legal requirements are decomposed into operational sub-requirements and grounded in authoritative standards and recognised practices. From this basis, verification activities are identified and characterised along two dimensions: the type of verification performed and the lifecycle target to which it applies. By making explicit the link between regulatory intent and technical and organisational assurance practices, the proposed mapping reduces interpretive uncertainty and provides a reusable reference for consistent, technology-agnostic compliance verification under the AI Act.
♻ ☆ Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation
Recent algorithms allow decentralised agents, possibly connected via a communication network, to learn equilibria in mean-field games from a non-episodic run of the empirical system. However, these algorithms are for tabular settings: this computationally limits the size of agents' observation space, meaning the algorithms cannot handle anything but small state spaces, nor generalise beyond policies depending only on the agent's local state to so-called 'population-dependent' policies. We address this limitation by introducing function approximation to the existing setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed only in finite-horizon, episodic, centralised settings. While this permits us to include the mean field in the observation for players' policies, it is unrealistic to assume decentralised agents have access to this global information: we therefore also provide new algorithms allowing agents to locally estimate the global empirical distribution, and to improve this estimate via inter-agent communication. We prove theoretically that exchanging policy information helps networked agents outperform both independent and even centralised agents in function-approximation settings. Our experiments demonstrate this happening empirically, and show that the communication network allows decentralised agents to estimate the mean field for population-dependent policies.
♻ ☆ Networked Communication for Decentralised Agents in Mean-Field Games
Methods like multi-agent reinforcement learning struggle to scale with growing population size. Mean-field games (MFGs) are a game-theoretic approach that can circumvent this by finding a solution for an abstract infinite population, which can then be used as an approximate solution for the $N$-agent problem. However, classical mean-field algorithms usually only work under restrictive conditions. We take steps to address this by introducing networked communication to MFGs, in particular to settings that use a single, non-episodic run of $N$ decentralised agents to simulate the infinite population, as is likely to be most reasonable in real-world deployments. We prove that our architecture's sample guarantees lie between those of earlier theoretical algorithms for the centralised- and independent-learning architectures, varying dependent on network structure and the number of communication rounds. However, the sample guarantees of the three theoretical algorithms do not actually result in practical convergence times. We thus contribute practical enhancements to all three algorithms allowing us to present their first empirical demonstrations. We then show that in practical settings where the theoretical hyperparameters are not observed, giving fewer loops but poorer estimation of the Q-function, our communication scheme still respects the earlier theoretical analysis: it considerably accelerates learning over the independent case, which hardly seems to learn at all, and often performs similarly to the centralised case, while removing the restrictive assumption of the latter. We provide ablations and additional studies showing that our networked approach also has advantages over both alternatives in terms of robustness to update failures and to changes in population size.
♻ ☆ Mathematical exploration and discovery at scale
AlphaEvolve (Novikov et al., 2025) is a generic evolutionary coding agent that combines the generative capabilities of LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open problems. To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics, geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology with Deep Think and AlphaProof in a broader framework where the additional proof-assistants and reasoning systems provide automated proof generation and further mathematical insights. These results demonstrate that large language model-guided evolutionary search can autonomously discover mathematical constructions that complement human intuition, at times matching or even improving the best known results, highlighting the potential for significant new ways of interaction between mathematicians and AI systems. We present AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve complex optimization problems at scale, often with significantly reduced requirements on preparation and computation time.
comment: 81 pages, 35 figures
♻ ☆ GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting
Weakly-supervised 3D occupancy perception is crucial for vision-based autonomous driving in outdoor environments. Previous methods based on NeRF often face a challenge in balancing the number of samples used. Too many samples can decrease efficiency, while too few can compromise accuracy, leading to variations in the mean Intersection over Union (mIoU) by 5-10 points. Furthermore, even with surrounding-view image inputs, only a single image is rendered from each viewpoint at any given moment. This limitation leads to duplicated predictions, which significantly impacts the practicality of the approach. However, this issue has largely been overlooked in existing research. To address this, we propose GSRender, which uses 3D Gaussian Splatting for weakly-supervised occupancy estimation, simplifying the sampling process. Additionally, we introduce the Ray Compensation module, which reduces duplicated predictions by compensating for features from adjacent frames. Finally, we redesign the dynamic loss to remove the influence of dynamic objects from adjacent frames. Extensive experiments show that our approach achieves SOTA results in RayIoU (+6.0), while also narrowing the gap with 3D- supervised methods. This work lays a solid foundation for weakly-supervised occupancy perception. The code is available at https://github.com/Jasper-sudo-Sun/GSRender.
♻ ☆ PACIFIC: a framework for generating benchmarks to check Precise Automatically Checked Instruction Following In Code
Large Language Model (LLM)-based code assistants have emerged as a powerful application of generative AI, demonstrating impressive capabilities in code generation and comprehension. A key requirement for these systems is their ability to accurately follow user instructions. We present Precise Automatically Checked Instruction Following In Code (PACIFIC), a novel framework designed to automatically generate benchmarks that rigorously assess sequential instruction-following and code dry-running capabilities in LLMs, while allowing control over benchmark difficulty. PACIFIC produces benchmark variants with clearly defined expected outputs, enabling straightforward and reliable evaluation through simple output comparisons. In contrast to existing approaches that often rely on tool usage or agentic behavior, our work isolates and evaluates the LLM's intrinsic ability to reason through code behavior step-by-step without execution (dry running) and to follow instructions. Furthermore, our framework mitigates training data contamination by facilitating effortless generation of novel benchmark variations. We validate our framework by generating a suite of benchmarks spanning a range of difficulty levels and evaluating multiple state-of-the-art LLMs. Our results demonstrate that PACIFIC can produce increasingly challenging benchmarks that effectively differentiate instruction-following and dry running capabilities, even among advanced models. Overall, our framework offers a scalable, contamination-resilient methodology for assessing core competencies of LLMs in code-related tasks.
♻ ☆ Aligning Perception, Reasoning, Modeling and Interaction: A Survey on Physical AI
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: Incorrect initial draft was submitted by mistake. Method, results and citations are incorrect
♻ ☆ Dynamic Pricing for On-Demand DNN Inference in the Edge-AI Market
The convergence of edge computing and Artificial Intelligence (AI) gives rise to Edge-AI, which enables the deployment of real-time AI applications at the network edge. A key research challenge in Edge-AI is edge inference acceleration, which aims to realize low-latency high-accuracy Deep Neural Network (DNN) inference by offloading partitioned inference tasks from end devices to edge servers. However, existing research has yet to adopt a practical Edge-AI market perspective, which would explore the personalized inference needs of AI users (e.g., inference accuracy, latency, and task complexity), the revenue incentives for AI service providers that offer edge inference services, and multi-stakeholder governance within a market-oriented context. To bridge this gap, we propose an Auction-based Edge Inference Pricing Mechanism (AERIA) for revenue maximization to tackle the multi-dimensional optimization problem of DNN model partition, edge inference pricing, and resource allocation. We develop a multi-exit device-edge synergistic inference scheme for on-demand DNN inference acceleration, and theoretically analyze the auction dynamics amongst the AI service providers, AI users and edge infrastructure provider. Owing to the strategic mechanism design via randomized consensus estimate and cost sharing techniques, the Edge-AI market attains several desirable properties. These include competitiveness in revenue maximization, incentive compatibility, and envy-freeness, which are crucial to maintain the effectiveness, truthfulness, and fairness in auction outcomes. Extensive simulations based on four representative DNN inference workloads demonstrate that AERIA significantly outperforms several state-of-the-art approaches in revenue maximization. This validates the efficacy of AERIA for on-demand DNN inference in the Edge-AI market.
comment: Accepted for publication in IEEE Transactions on Mobile Computing. Index Terms: Edge-AI, DNN Inference Offloading, Resource Management, Dynamic Pricing, Auction Mechanism
♻ ☆ A Comprehensive Survey on Generative AI for Video-to-Music Generation
The burgeoning growth of video-to-music generation can be attributed to the ascendancy of multimodal generative models. However, there is a lack of literature that comprehensively combs through the work in this field. To fill this gap, this paper presents a comprehensive review of video-to-music generation using deep generative AI techniques, focusing on three key components: conditioning input construction, conditioning mechanism, and music generation frameworks. We categorize existing approaches based on their designs for each component, clarifying the roles of different strategies. Preceding this, we provide a fine-grained categorization of video and music modalities, illustrating how different categories influence the design of components within the generation pipelines. Furthermore, we summarize available multimodal datasets and evaluation metrics while highlighting ongoing challenges in the field.
♻ ☆ Adaptation of Agentic AI
Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
♻ ☆ FastFLUX: Pruning FLUX with Block-wise Replacement and Sandwich Training
Recent advancements in text-to-image (T2I) generation have led to the emergence of highly expressive models such as diffusion transformers (DiTs), exemplified by FLUX. However, their massive parameter sizes lead to slow inference, high memory usage, and poor deployability. Existing acceleration methods (e.g., single-step distillation and attention pruning) often suffer from significant performance degradation and incur substantial training costs. To address these limitations, we propose FastFLUX, an architecture-level pruning framework designed to enhance the inference efficiency of FLUX. At its core is the Block-wise Replacement with Linear Layers (BRLL) method, which replaces structurally complex residual branches in ResBlocks with lightweight linear layers while preserving the original shortcut connections for stability. Furthermore, we introduce Sandwich Training (ST), a localized fine-tuning strategy that leverages LoRA to supervise neighboring blocks, mitigating performance drops caused by structural replacement. Experiments show that our FastFLUX maintains high image quality under both qualitative and quantitative evaluations, while significantly improving inference speed, even with 20\% of the hierarchy pruned. Our code will be available soon.
comment: 14 pages
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ Love, Lies, and Language Models: Investigating AI's Role in Romance-Baiting Scams
Romance-baiting scams have become a major source of financial and emotional harm worldwide. These operations are run by organized crime syndicates that traffic thousands of people into forced labor, requiring them to build emotional intimacy with victims over weeks of text conversations before pressuring them into fraudulent cryptocurrency investments. Because the scams are inherently text-based, they raise urgent questions about the role of Large Language Models (LLMs) in both current and future automation. We investigate this intersection by interviewing 145 insiders and 5 scam victims, performing a blinded long-term conversation study comparing LLM scam agents to human operators, and executing an evaluation of commercial safety filters. Our findings show that LLMs are already widely deployed within scam organizations, with 87% of scam labor consisting of systematized conversational tasks readily susceptible to automation. In a week-long study, an LLM agent not only elicited greater trust from study participants (p=0.007) but also achieved higher compliance with requests than human operators (46% vs. 18% for humans). Meanwhile, popular safety filters detected 0.0% of romance baiting dialogues. Together, these results suggest that romance-baiting scams may be amenable to full-scale LLM automation, while existing defenses remain inadequate to prevent their expansion.
♻ ☆ Learning What to Write: Write-Gated KV for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to persistent memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV, a lightweight mechanism that learns to predict token utility before it enters the cache. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, Write-Gated KV reduces memory usage by 46-57% and delivers 3.03-3.45$\times$ prefill and 1.89-2.56$\times$ decode speedups on Llama model with negligible accuracy loss, all while remaining compatible with FlashAttention and paged-KV systems. These results demonstrate that learning what to write, is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV .
♻ ☆ What-If Decision Support for Product Line Extension Using Conditional Deep Generative Models
Product line extension is a strategically important managerial decision that requires anticipating how consumer segments and purchasing contexts may respond to hypothetical product designs that do not yet exist in the market. Such decisions are inherently uncertain because managers must infer future outcomes from historical purchase data without direct market observations. This study addresses this challenge by proposing a data-driven decision support framework that enables forward-looking what-if analysis based on historical transaction data. We introduce a Conditional Tabular Variational Autoencoder (CTVAE) that learns the conditional joint distribution of product attributes and consumer characteristics from large-scale tabular data. By conditioning the generative process on controllable design variables such as container type, volume, flavor, and calorie content, the proposed model generates synthetic consumer attribute distributions for hypothetical line-extended products. This enables systematic exploration of alternative design scenarios without costly market pretests. The framework is evaluated using home-scan panel data covering more than 20,000 consumers and 700 soft drink products. Empirical results show that the CTVAE outperforms existing tabular generative models in capturing conditional consumer attribute distributions. Simulation-based analyses further demonstrate that the generated synthetic data support knowledge-driven reasoning for assessing cannibalization risks and identifying potential target segments. These findings highlight the value of conditional deep generative models as core components of decision support systems for product line extension planning.
comment: 25 pages
♻ ☆ Neural Decoding of Overt Speech from ECoG Using Vision Transformers and Contrastive Representation Learning
Speech Brain Computer Interfaces (BCIs) offer promising solutions to people with severe paralysis unable to communicate. A number of recent studies have demonstrated convincing reconstruction of intelligible speech from surface electrocorticographic (ECoG) or intracortical recordings by predicting a series of phonemes or words and using downstream language models to obtain meaningful sentences. A current challenge is to reconstruct speech in a streaming mode by directly regressing cortical signals into acoustic speech. While this has been achieved recently using intracortical data, further work is needed to obtain comparable results with surface ECoG recordings. In particular, optimizing neural decoders becomes critical in this case. Here we present an offline speech decoding pipeline based on an encoder-decoder deep neural architecture, integrating Vision Transformers and contrastive learning to enhance the direct regression of speech from ECoG signals. The approach is evaluated on two datasets, one obtained with clinical subdural electrodes in an epileptic patient, and another obtained with the fully implantable WIMAGINE epidural system in a participant of a motor BCI trial. To our knowledge this presents a first attempt to decode speech from a fully implantable and wireless epidural recording system offering perspectives for long-term use.
♻ ☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
♻ ☆ A Survey of 3D Reconstruction with Event Cameras
Event cameras are rapidly emerging as powerful vision sensors for 3D reconstruction, uniquely capable of asynchronously capturing per-pixel brightness changes. Compared to traditional frame-based cameras, event cameras produce sparse yet temporally dense data streams, enabling robust and accurate 3D reconstruction even under challenging conditions such as high-speed motion, low illumination, and extreme dynamic range scenarios. These capabilities offer substantial promise for transformative applications across various fields, including autonomous driving, robotics, aerial navigation, and immersive virtual reality. In this survey, we present the first comprehensive review exclusively dedicated to event-based 3D reconstruction. Existing approaches are systematically categorised based on input modality into stereo, monocular, and multimodal systems, and further classified according to reconstruction methodologies, including geometry-based techniques, deep learning approaches, and neural rendering techniques such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Within each category, methods are chronologically organised to highlight the evolution of key concepts and advancements. Furthermore, we provide a detailed summary of publicly available datasets specifically suited to event-based reconstruction tasks. Finally, we discuss significant open challenges in dataset availability, standardised evaluation, effective representation, and dynamic scene reconstruction, outlining insightful directions for future research. This survey aims to serve as an essential reference and provides a clear and motivating roadmap toward advancing the state of the art in event-driven 3D reconstruction.
comment: This survey has been accepted for publication in the Computational Visual Media Journal
♻ ☆ Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling
Optimization modeling is fundamental to decision-making across diverse domains. Despite progress in automating optimization formulation from natural language descriptions, Large Language Models (LLMs) often struggle to generate formally correct and usable models against hallucinations, posing a challenge for reliable automation. Inspired by the success of Reinforcement Learning (RL) in enhancing Large Reasoning Models, we present Solver-Informed Reinforcement Learning (SIRL), a novel framework that significantly improves the authenticity of LLMs for optimization modeling using Reinforcement Learning with Verifiable Reward by leveraging external optimization solvers as verifiers. These verifiers automatically assess the executable code and the instance-level mathematical model represented by the associated LP file, yielding precise and comprehensive feedback signals -- including syntax, feasibility, and solution quality, serving as direct rewards for the RL process. This automated verification process, particularly from classic optimization solvers, also underpins our instance-enhanced self-consistency method to synthesize high-quality training data. Extensive experiments on diverse public benchmarks demonstrate that SIRL achieves state-of-the-art performance, substantially outperforming existing methods in generating accurate and executable optimization models. Our code is publicly available at https://github.com/Cardinal-Operations/SIRL.
♻ ☆ SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
♻ ☆ An Exploration of Default Images in Text-to-Image Generation
In the creative practice of text-to-image (TTI) generation, images are synthesized from textual prompts. By design, TTI models always yield an output, even if the prompt contains unknown terms. In this case, the model may generate default images: images that closely resemble each other across many unrelated prompts. Studying default images is valuable for designing better solutions for prompt engineering and TTI generation. We present the first investigation into default images on Midjourney. We describe an initial study in which we manually created input prompts triggering default images, and several ablation studies. Building on these, we conduct a computational analysis of over 750,000 images, revealing consistent default images across unrelated prompts. We also conduct an online user study investigating how default images may affect user satisfaction. Our work lays the foundation for understanding default images in TTI generation, highlighting their practical relevance as well as challenges and future research directions.
comment: 31 pages, 10 figures
♻ ☆ Potent but Stealthy: Rethink Profile Pollution against Sequential Recommendation via Bi-level Constrained Reinforcement Paradigm
Sequential Recommenders, which exploit dynamic user intents through interaction sequences, is vulnerable to adversarial attacks. While existing attacks primarily rely on data poisoning, they require large-scale user access or fake profiles thus lacking practicality. In this paper, we focus on the Profile Pollution Attack that subtly contaminates partial user interactions to induce targeted mispredictions. Previous PPA methods suffer from two limitations, i.e., i) over-reliance on sequence horizon impact restricts fine-grained perturbations on item transitions, and ii) holistic modifications cause detectable distribution shifts. To address these challenges, we propose a constrained reinforcement driven attack CREAT that synergizes a bi-level optimization framework with multi-reward reinforcement learning to balance adversarial efficacy and stealthiness. We first develop a Pattern Balanced Rewarding Policy, which integrates pattern inversion rewards to invert critical patterns and distribution consistency rewards to minimize detectable shifts via unbalanced co-optimal transport. Then we employ a Constrained Group Relative Reinforcement Learning paradigm, enabling step-wise perturbations through dynamic barrier constraints and group-shared experience replay, achieving targeted pollution with minimal detectability. Extensive experiments demonstrate the effectiveness of CREAT.
♻ ☆ Let the Barbarians In: How AI Can Accelerate Systems Performance Research
Artificial Intelligence (AI) is beginning to transform the research process by automating the discovery of new solutions. This shift depends on the availability of reliable verifiers, which AI-driven approaches require to validate candidate solutions. Research focused on improving systems performance is especially well-suited to this paradigm because system performance problems naturally admit such verifiers: candidates can be implemented in real systems or simulators and evaluated against predefined workloads. We term this iterative cycle of generation, evaluation, and refinement AI-Driven Research for Systems (ADRS). Using several open-source ADRS instances (i.e., OpenEvolve, GEPA, and ShinkaEvolve), we demonstrate across ten case studies (e.g., multi-region cloud scheduling, mixture-of-experts load balancing, LLM-based SQL, transaction scheduling) that ADRS-generated solutions can match or even outperform human state-of-the-art designs. Based on these findings, we outline best practices (e.g., level of prompt specification, amount of feedback, robust evaluation) for effectively using ADRS, and we discuss future research directions and their implications. Although we do not yet have a universal recipe for applying ADRS across all of systems research, we hope our preliminary findings, together with the challenges we identify, offer meaningful guidance for future work as researcher effort shifts increasingly toward problem formulation and strategic oversight. Note: This paper is an extension of our prior work [14]. It adds extensive evaluation across multiple ADRS frameworks and provides deeper analysis and insights into best practices.
comment: arXiv admin note: substantial text overlap with arXiv:2510.06189
♻ ☆ Can AI Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels
As large language models increasingly mediate stigmatized health decisions, their capacity to genuinely understand complex psychological and physiological phenomena remains poorly evaluated. Can AI understand what we cannot say? We investigate whether LLMs coherently represent abortion stigma across the cognitive, interpersonal, and structural levels where it operates. We systematically tested 627 demographically diverse personas across five leading LLMs using the validated Individual Level Abortion Stigma Scale (ILAS). Our multilevel analysis examined whether models coherently represent stigma at the cognitive level (self-judgment), interpersonal level (worries about judgment and isolation), and structural level (community condemnation and disclosure patterns), as well as overall stigma. Models fail tests of genuine understanding across all levels. They overestimate interpersonal stigma while underestimating cognitive stigma, assume uniform community condemnation, introduce demographic biases absent from human validation data, miss the empirically validated stigma-secrecy relationship, and contradict themselves within theoretical constructs. These patterns reveal that current alignment approaches ensure appropriate language but not coherent multilevel understanding. This work provides empirical evidence that current LLMs lack coherent multilevel understanding of psychological and physiological constructs. AI safety in high-stakes contexts demands new approaches to design (multilevel coherence), evaluation (continuous auditing), governance and regulation (mandatory audits, accountability, deployment restrictions), and AI literacy in domains where understanding what people cannot say determines whether support helps or harms.
♻ ☆ Mitigating Hallucination Through Theory-Consistent Symmetric Multimodal Preference Optimization NeurIPS 2025
Direct Preference Optimization (DPO) has emerged as an effective approach for mitigating hallucination in Multimodal Large Language Models (MLLMs). Although existing methods have achieved significant progress by utilizing vision-oriented contrastive objectives for enhancing MLLMs' attention to visual inputs and hence reducing hallucination, they suffer from non-rigorous optimization objective function and indirect preference supervision. To address these limitations, we propose a Symmetric Multimodal Preference Optimization (SymMPO), which conducts symmetric preference learning with direct preference supervision (i.e., response pairs) for visual understanding enhancement, while maintaining rigorous theoretical alignment with standard DPO. In addition to conventional ordinal preference learning, SymMPO introduces a preference margin consistency loss to quantitatively regulate the preference gap between symmetric preference pairs. Comprehensive evaluation across five benchmarks demonstrate SymMPO's superior performance, validating its effectiveness in hallucination mitigation of MLLMs.
comment: NeurIPS 2025
♻ ☆ Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning
While scaling laws for large language models (LLMs) during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on a set of experiments across the full Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: 1. Larger models consistently exhibit superior learning efficiency on both compute and data metrics. 2. The relationship between test loss, compute, and data can be modeled by a predictive power-law which is robust across both base and instruction-tuned models. 3. Although larger models exhibit higher learning efficiency, the analytical learning efficiency term k(N) in the power-law reveals a latent saturation trend in learning efficiency as model size continues to increase. 4. In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.
comment: V3 version:27 pages, 14 figures, add code and dataset url
♻ ☆ MAGIC: Few-Shot Mask-Guided Anomaly Inpainting with Prompt Perturbation, Spatially Adaptive Guidance, and Context Awareness
Few-shot anomaly generation is a key challenge in industrial quality control. Although diffusion models are promising, existing methods struggle: global prompt-guided approaches corrupt normal regions, and existing inpainting-based methods often lack the in-distribution diversity essential for robust downstream models. We propose MAGIC, a fine-tuned inpainting framework that generates high-fidelity anomalies that strictly adhere to the mask while maximizing this diversity. MAGIC introduces three complementary components: (i) Gaussian prompt perturbation, which prevents model overfitting in the few-shot setting by learning and sampling from a smooth manifold of realistic anomalies, (ii) spatially adaptive guidance that applies distinct guidance strengths to the anomaly and background regions, and (iii) context-aware mask alignment to relocate masks for plausible placement within the host object. Under consistent identical evaluation protocol, MAGIC outperforms state-of-the-art methods on diverse anomaly datasets in downstream tasks
comment: 46 pages, 47 figures. Code: https://github.com/SpatialAILab/MAGIC-Anomaly-generation
♻ ☆ GateRA: Token-Aware Modulation for Parameter-Efficient Fine-Tuning AAAI 2026
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, DoRA, and HiRA, enable lightweight adaptation of large pre-trained models via low-rank updates. However, existing PEFT approaches apply static, input-agnostic updates to all tokens, disregarding the varying importance and difficulty of different inputs. This uniform treatment can lead to overfitting on trivial content or under-adaptation on more informative regions, especially in autoregressive settings with distinct prefill and decoding dynamics. In this paper, we propose GateRA, a unified framework that introduces token-aware modulation to dynamically adjust the strength of PEFT updates. By incorporating adaptive gating into standard PEFT branches, GateRA enables selective, token-level adaptation, preserving pre-trained knowledge for well-modeled inputs while focusing capacity on challenging cases. Empirical visualizations reveal phase-sensitive behaviors, where GateRA automatically suppresses updates for redundant prefill tokens while emphasizing adaptation during decoding. To promote confident and efficient modulation, we further introduce an entropy-based regularization that encourages near-binary gating decisions. This regularization prevents diffuse update patterns and leads to interpretable, sparse adaptation without hard thresholding. Finally, we present a theoretical analysis showing that GateRA induces a soft gradient-masking effect over the PEFT path, enabling continuous and differentiable control over adaptation. Experiments on multiple commonsense reasoning benchmarks demonstrate that GateRA consistently outperforms or matches prior PEFT methods.
comment: Accepted by AAAI 2026
♻ ☆ GUIDEd Agents: Enhancing Navigation Policies through Task-Specific Uncertainty Abstraction in Localization-Limited Environments
Autonomous vehicles performing navigation tasks in complex environments face significant challenges due to uncertainty in state estimation. In many scenarios, such as stealth operations or resource-constrained settings, accessing high-precision localization comes at a significant cost, forcing robots to rely primarily on less precise state estimates. Our key observation is that different tasks require varying levels of precision in different regions: a robot navigating a crowded space might need precise localization near obstacles but can operate effectively with less precision elsewhere. In this paper, we present a planning method for integrating task-specific uncertainty requirements directly into navigation policies. We introduce Task-Specific Uncertainty Maps (TSUMs), which abstract the acceptable levels of state estimation uncertainty across different regions. TSUMs align task requirements and environmental features using a shared representation space, generated via a domain-adapted encoder. Using TSUMs, we propose Generalized Uncertainty Integration for Decision-Making and Execution (GUIDE), a policy conditioning framework that incorporates these uncertainty requirements into robot decision-making. We find that TSUMs provide an effective way to abstract task-specific uncertainty requirements, and conditioning policies on TSUMs enables the robot to reason about the context-dependent value of certainty and adapt its behavior accordingly. We show how integrating GUIDE into reinforcement learning frameworks allows the agent to learn navigation policies that effectively balance task completion and uncertainty management without explicit reward engineering. We evaluate GUIDE on various real-world robotic navigation tasks and find that it demonstrates significant improvement in task completion rates compared to baseline methods that do not explicitly consider task-specific uncertainty.
comment: Accepted for publication at RAL (Robotics and automation letters). Updated with the final version
♻ ☆ Explainable Graph Spectral Clustering For GloVe-like Text Embeddings
In a previous paper, we proposed an introduction to the explainability of Graph Spectral Clustering results for textual documents, given that document similarity is computed as cosine similarity in term vector space. In this paper, we generalize this idea by considering other embeddings of documents, in particular, based on the GloVe embedding idea.
comment: 47 pages, 19 tables, 11 figures
♻ ☆ UniHR: Hierarchical Representation Learning for Unified Knowledge Graph Link Prediction AAAI 2026
Real-world knowledge graphs (KGs) contain not only standard triple-based facts, but also more complex, heterogeneous types of facts, such as hyper-relational facts with auxiliary key-value pairs, temporal facts with additional timestamps, and nested facts that imply relationships between facts. These richer forms of representation have attracted significant attention due to their enhanced expressiveness and capacity to model complex semantics in real-world scenarios. However, most existing studies suffer from two main limitations: (1) they typically focus on modeling only specific types of facts, thus making it difficult to generalize to real-world scenarios with multiple fact types; and (2) they struggle to achieve generalizable hierarchical (inter-fact and intra-fact) modeling due to the complexity of these representations. To overcome these limitations, we propose UniHR, a Unified Hierarchical Representation learning framework, which consists of a learning-optimized Hierarchical Data Representation (HiDR) module and a unified Hierarchical Structure Learning (HiSL) module. The HiDR module unifies hyper-relational KGs, temporal KGs, and nested factual KGs into triple-based representations. Then HiSL incorporates intra-fact and inter-fact message passing, focusing on enhancing both semantic information within individual facts and enriching the structural information between facts. To go beyond the unified method itself, we further explore the potential of unified representation in complex real-world scenarios. Extensive experiments on 9 datasets across 5 types of KGs demonstrate the effectiveness of UniHR and highlight the strong potential of unified representations. Code and data are available at https://github.com/zjukg/UniHR.
comment: AAAI 2026 (oral)
♻ ☆ Bleeding Pathways: Vanishing Discriminability in LLM Hidden States Fuels Jailbreak Attacks
LLMs remain vulnerable to jailbreak attacks that exploit adversarial prompts to circumvent safety measures. Current safety fine-tuning approaches face two critical limitations. First, they often fail to strike a balance between security and utility, where stronger safety measures tend to over-reject harmless user requests. Second, they frequently miss malicious intent concealed within seemingly benign tasks, leaving models exposed to exploitation. Our work identifies a fundamental cause of these issues: during response generation, an LLM's capacity to differentiate harmful from safe outputs deteriorates. Experimental evidence confirms this, revealing that the separability between hidden states for safe and harmful responses diminishes as generation progresses. This weakening discrimination forces models to make compliance judgments earlier in the generation process, restricting their ability to recognize developing harmful intent and contributing to both aforementioned failures. To mitigate this vulnerability, we introduce DEEPALIGN - an inherent defense framework that enhances the safety of LLMs. By applying contrastive hidden-state steering at the midpoint of response generation, DEEPALIGN amplifies the separation between harmful and benign hidden states, enabling continuous intrinsic toxicity detection and intervention throughout the generation process. Across diverse LLMs spanning varying architectures and scales, it reduced attack success rates of nine distinct jailbreak attacks to near-zero or minimal. Crucially, it preserved model capability while reducing over-refusal. Models equipped with DEEPALIGN exhibited up to 3.5% lower error rates in rejecting challenging benign queries and maintained standard task performance with less than 1% decline. This marks a substantial advance in the safety-utility Pareto frontier.
♻ ☆ AndesVL Technical Report: An Efficient Mobile-side Multimodal Large Language Model
In recent years, while cloud-based MLLMs such as QwenVL, InternVL, GPT-4o, Gemini, and Claude Sonnet have demonstrated outstanding performance with enormous model sizes reaching hundreds of billions of parameters, they significantly surpass the limitations in memory, power consumption, and computing capacity of edge devices such as mobile phones. This paper introduces AndesVL, a suite of mobile-side MLLMs with 0.6B to 4B parameters based on Qwen3's LLM and various visual encoders. We comprehensively outline the model architectures, training pipeline, and training data of AndesVL, which achieves first-tier performance across a wide range of open-source benchmarks, including fields such as text-rich image understanding, reasoning and math, multi-image comprehension, general VQA, hallucination mitigation, multilingual understanding, and GUI-related tasks when compared with state-of-the-art models of a similar scale. Furthermore, we introduce a 1+N LoRA architecture alongside a Quantization-Aware LoRA Fine-Tuning (QALFT) framework to facilitate efficient task adaptation and model compression during mobile-side deployment of AndesVL. Moreover, utilizing our cache eviction algorithm -- OKV -- along with customized speculative decoding and compression strategies, we achieve a 6.7x peak decoding speedup ratio, up to 30.9% memory reduction, and 1.8 bits-per-weight when deploying AndesVL-4B on MediaTek Dimensity 9500 chips. We release all models on https://huggingface.co/OPPOer.
comment: Tech report of OPPO AndesVL Team
♻ ☆ Three methods, one problem: Classical and AI approaches to no-three-in-line
The No-Three-In-Line problem asks for the maximum number of points that can be placed on an n by n grid with no three collinear, representing a famous problem in combinatorial geometry. While classical methods like Integer Linear Programming (ILP) guarantee optimal solutions, they face exponential scaling with grid size, and recent advances in machine learning offer promising alternatives for pattern-based approximation. This paper presents the first systematic comparison of classical optimization and AI approaches to this problem, evaluating their performance against traditional algorithms. We apply PatternBoost transformer learning and reinforcement learning (PPO) to this problem for the first time, comparing them against ILP. ILP achieves provably optimal solutions up to 19 by 19 grids, while PatternBoost matches optimal performance up to 14 by 14 grids with 96% test loss reduction. PPO achieves perfect solutions on 10 by 10 grids but fails at 11 by 11 grids, where constraint violations prevent valid configurations. These results demonstrate that classical optimization remains essential for exact solutions while AI methods offer competitive performance on smaller instances, with hybrid approaches presenting the most promising direction for scaling to larger problem sizes.
♻ ☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
♻ ☆ Expressive Temporal Specifications for Reward Monitoring AAAI-26
Specifying informative and dense reward functions remains a pivotal challenge in Reinforcement Learning, as it directly affects the efficiency of agent training. In this work, we harness the expressive power of quantitative Linear Temporal Logic on finite traces (($\text{LTL}_f[\mathcal{F}]$)) to synthesize reward monitors that generate a dense stream of rewards for runtime-observable state trajectories. By providing nuanced feedback during training, these monitors guide agents toward optimal behaviour and help mitigate the well-known issue of sparse rewards under long-horizon decision making, which arises under the Boolean semantics dominating the current literature. Our framework is algorithm-agnostic and only relies on a state labelling function, and naturally accommodates specifying non-Markovian properties. Empirical results show that our quantitative monitors consistently subsume and, depending on the environment, outperform Boolean monitors in maximizing a quantitative measure of task completion and in reducing convergence time.
comment: Accepted at AAAI-26
♻ ☆ PDE-Agent: A toolchain-augmented multi-agent framework for PDE solving
Solving Partial Differential Equations (PDEs) is a cornerstone of engineering and scientific research. Traditional methods for PDE solving are cumbersome, relying on manual setup and domain expertise. While Physics-Informed Neural Network (PINNs) introduced end-to-end neural network-based solutions, and frameworks like DeepXDE further enhanced automation, these approaches still depend on expert knowledge and lack full autonomy. In this work, we frame PDE solving as tool invocation via LLM-driven agents and introduce PDE-Agent, the first toolchain-augmented multi-agent collaboration framework, inheriting the reasoning capacity of LLMs and the controllability of external tools and enabling automated PDE solving from natural language descriptions. PDE-Agent leverages the strengths of multi-agent and multi-tool collaboration through two key innovations: (1) A Prog-Act framework with graph memory for multi-agent collaboration, which enables effective dynamic planning and error correction via dual-loop mechanisms (localized fixes and global revisions). (2) A Resource-Pool integrated with a tool-parameter separation mechanism for multi-tool collaboration. This centralizes the management of runtime artifacts and resolves inter-tool dependency gaps in existing frameworks. To validate and evaluate this new paradigm for PDE solving , we develop PDE-Bench, a multi-type PDE Benchmark for agent-based tool collaborative solving, and propose multi-level metrics for assessing tool coordination. Evaluations verify that PDE-Agent exhibits superior applicability and performance in complex multi-step, cross-step dependent tasks. This new paradigm of toolchain-augmented multi-agent PDE solving will further advance future developments in automated scientific computing. Our source code and dataset will be made publicly available.
comment: Adding Affiliation Information on arXiv
♻ ☆ TakeAD: Preference-based Post-optimization for End-to-end Autonomous Driving with Expert Takeover Data
Existing end-to-end autonomous driving methods typically rely on imitation learning (IL) but face a key challenge: the misalignment between open-loop training and closed-loop deployment. This misalignment often triggers driver-initiated takeovers and system disengagements during closed-loop execution. How to leverage those expert takeover data from disengagement scenarios and effectively expand the IL policy's capability presents a valuable yet unexplored challenge. In this paper, we propose TakeAD, a novel preference-based post-optimization framework that fine-tunes the pre-trained IL policy with this disengagement data to enhance the closed-loop driving performance. First, we design an efficient expert takeover data collection pipeline inspired by human takeover mechanisms in real-world autonomous driving systems. Then, this post optimization framework integrates iterative Dataset Aggregation (DAgger) for imitation learning with Direct Preference Optimization (DPO) for preference alignment. The DAgger stage equips the policy with fundamental capabilities to handle disengagement states through direct imitation of expert interventions. Subsequently, the DPO stage refines the policy's behavior to better align with expert preferences in disengagement scenarios. Through multiple iterations, the policy progressively learns recovery strategies for disengagement states, thereby mitigating the open-loop gap. Experiments on the closed-loop Bench2Drive benchmark demonstrate our method's effectiveness compared with pure IL methods, with comprehensive ablations confirming the contribution of each component.
comment: This work has been accepted by IEEE RA-L. Manuscript submitted: July, 8, 2025; Accepted: November, 24, 2025
♻ ☆ Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery
Large Language Models (LLMs) excel at extracting common patterns from large-scale corpora, yet they struggle with rare, low-resource, or previously unseen scenarios-such as niche hardware deployment issues or irregular IoT device behaviors-because such cases are sparsely represented in training data. Moreover, LLMs rely primarily on implicit parametric memory, which limits their ability to explicitly acquire, recall, and refine methods, causing them to behave predominantly as intuition-driven predictors rather than deliberate, method-oriented learners. Inspired by how humans learn from rare experiences, this paper proposes a human-inspired learning framework that integrates two complementary mechanisms. The first, Obvious Record, explicitly stores cause--result (or question--solution) relationships as symbolic memory, enabling persistent learning even from single or infrequent encounters. The second, Maximum-Entropy Method Discovery, prioritizes and preserves methods with high semantic dissimilarity, allowing the system to capture diverse and underrepresented strategies that are typically overlooked by next-token prediction. Verification on a benchmark of 60 semantically diverse question--solution pairs demonstrates that the proposed entropy-guided approach achieves stronger coverage of unseen questions and significantly greater internal diversity than a random baseline, confirming its effectiveness in discovering more generalizable and human-inspired methods.
♻ ☆ ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling ECCV 2024
By combining natural language understanding, generation capabilities, and breadth of knowledge of large language models with image perception, recent large vision language models (LVLMs) have shown unprecedented visual reasoning capabilities. However, the generated text often suffers from inaccurate grounding in the visual input, resulting in errors such as hallucination of nonexistent scene elements, missing significant parts of the scene, and inferring incorrect attributes of and relationships between objects. To address these issues, we introduce a novel framework, ViGoR (Visual Grounding Through Fine-Grained Reward Modeling) that utilizes fine-grained reward modeling to significantly enhance the visual grounding of LVLMs over pre-trained baselines. This improvement is efficiently achieved using much cheaper human evaluations instead of full supervisions, as well as automated methods. We show the effectiveness of our approach through a variety of evaluation methods and benchmarks. Additionally, we released our human annotation (https://github.com/amazon-science/vigor) comprising 15,440 images and generated text pairs with fine-grained evaluations to contribute to related research in the community.
comment: Accepted by ECCV 2024
♻ ☆ Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation NeurIPS 2025
Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.
comment: Accepted by NeurIPS 2025. Code is available at: https://github.com/ziqiangcui/SRA-CL
♻ ☆ HVAdam: A Full-Dimension Adaptive Optimizer AAAI2025
Adaptive optimizers such as Adam have achieved great success in training large-scale models like large language models and diffusion models. However, they often generalize worse than non-adaptive methods, such as SGD on classical architectures like CNNs. We identify a key cause of this performance gap: adaptivity in pre-conditioners, which limits the optimizer's ability to adapt to diverse optimization landscapes. To address this, we propose Anon (Adaptivity Non-restricted Optimizer with Novel convergence technique), a novel optimizer with continuously tunable adaptivity , allowing it to interpolate between SGD-like and Adam-like behaviors and even extrapolate beyond both. To ensure convergence across the entire adaptivity spectrum, we introduce incremental delay update (IDU), a novel mechanism that is more flexible than AMSGrad's hard max-tracking strategy and enhances robustness to gradient noise. We theoretically establish convergence guarantees under both convex and non-convex settings. Empirically, Anon consistently outperforms state-of-the-art optimizers on representative image classification, diffusion, and language modeling tasks. These results demonstrate that adaptivity can serve as a valuable tunable design principle, and Anon provides the first unified and reliable framework capable of bridging the gap between classical and modern optimizers and surpassing their advantageous properties.
comment: Accepted at AAAI2025
♻ ☆ Zero-Overhead Introspection for Adaptive Test-Time Compute
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
♻ ☆ UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data
Machine learning models, particularly deep neural networks, have demonstrated strong performance in classifying complex time series data. However, their black-box nature limits trust and adoption, especially in high-stakes domains such as healthcare. To address this challenge, we introduce UniCoMTE, a model-agnostic framework for generating counterfactual explanations for multivariate time series classifiers. The framework identifies temporal features that most heavily influence a model's prediction by modifying the input sample and assessing its impact on the model's prediction. UniCoMTE is compatible with a wide range of model architectures and operates directly on raw time series inputs. In this study, we evaluate UniCoMTE's explanations on a time series ECG classifier. We quantify explanation quality by comparing our explanations' comprehensibility to comprehensibility of established techniques (LIME and SHAP) and assessing their generalizability to similar samples. Furthermore, clinical utility is assessed through a questionnaire completed by medical experts who review counterfactual explanations presented alongside original ECG samples. Results show that our approach produces concise, stable, and human-aligned explanations that outperform existing methods in both clarity and applicability. By linking model predictions to meaningful signal patterns, the framework advances the interpretability of deep learning models for real-world time series applications.
comment: 21 pages, 7 figures
Machine Learning 150
☆ Pushing the Frontier of Audiovisual Perception with Large-Scale Multimodal Correspondence Learning
We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, audio-text, and video-text modalities. PE-AV's unified cross-modal embeddings enable novel tasks such as speech retrieval, and set a new state of the art across standard audio and video benchmarks. We unlock this by building a strong audiovisual data engine that synthesizes high-quality captions for O(100M) audio-video pairs, enabling large-scale supervision consistent across modalities. Our audio data includes speech, music, and general sound effects-avoiding single-domain limitations common in prior work. We exploit ten pairwise contrastive objectives, showing that scaling cross-modality and caption-type pairs strengthens alignment and improves zero-shot performance. We further develop PE-A-Frame by fine-tuning PE-AV with frame-level contrastive objectives, enabling fine-grained audio-frame-to-text alignment for tasks such as sound event detection.
☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a single unified policy, overlooking their internal mechanisms. Understanding how policy evolves across layers and modules is therefore crucial for enabling more targeted optimization and raveling out complex reasoning mechanisms. In this paper, we decompose the language model policy by leveraging the intrinsic split of the Transformer residual stream and the equivalence between the composition of hidden states with the unembedding matrix and the resulting samplable policy. This decomposition reveals Internal Layer Policies, corresponding to contributions from individual layers, and Internal Modular Policies, which align with the self-attention and feed-forward network (FFN) components within each layer. By analyzing the entropy of internal policy, we find that: (a) Early layers keep high entropy for exploration, top layers converge to near-zero entropy for refinement, with convergence patterns varying across model series. (b) LLama's prediction space rapidly converges in the final layer, whereas Qwen-series models, especially Qwen3, exhibit a more human-like, progressively structured reasoning pattern. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that directly optimizes the internal layer policy during early training. By aligning training objective at lower layer, BuPO reconstructs foundational reasoning capabilities and achieves superior performance. Extensive experiments on complex reasoning benchmarks demonstrates the effectiveness of our method. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
☆ Deep Legendre Transform NeurIPS 2025
We introduce a novel deep learning algorithm for computing convex conjugates of differentiable convex functions, a fundamental operation in convex analysis with various applications in different fields such as optimization, control theory, physics and economics. While traditional numerical methods suffer from the curse of dimensionality and become computationally intractable in high dimensions, more recent neural network-based approaches scale better, but have mostly been studied with the aim of solving optimal transport problems and require the solution of complicated optimization or max-min problems. Using an implicit Fenchel formulation of convex conjugation, our approach facilitates an efficient gradient-based framework for the minimization of approximation errors and, as a byproduct, also provides a posteriori error estimates for the approximation quality. Numerical experiments demonstrate our method's ability to deliver accurate results across different high-dimensional examples. Moreover, by employing symbolic regression with Kolmogorov--Arnold networks, it is able to obtain the exact convex conjugates of specific convex functions.
comment: Accepted at NeurIPS 2025 (poster). NeurIPS page: https://neurips.cc/virtual/2025/loc/san-diego/poster/120307
☆ The Best of Both Worlds: Hybridizing Neural Operators and Solvers for Stable Long-Horizon Inference
Numerical simulation of time-dependent partial differential equations (PDEs) is central to scientific and engineering applications, but high-fidelity solvers are often prohibitively expensive for long-horizon or time-critical settings. Neural operator (NO) surrogates offer fast inference across parametric and functional inputs; however, most autoregressive NO frameworks remain vulnerable to compounding errors, and ensemble-averaged metrics provide limited guarantees for individual inference trajectories. In practice, error accumulation can become unacceptable beyond the training horizon, and existing methods lack mechanisms for online monitoring or correction. To address this gap, we propose ANCHOR (Adaptive Numerical Correction for High-fidelity Operator Rollouts), an online, instance-aware hybrid inference framework for stable long-horizon prediction of nonlinear, time-dependent PDEs. ANCHOR treats a pretrained NO as the primary inference engine and adaptively couples it with a classical numerical solver using a physics-informed, residual-based error estimator. Inspired by adaptive time-stepping in numerical analysis, ANCHOR monitors an exponential moving average (EMA) of the normalized PDE residual to detect accumulating error and trigger corrective solver interventions without requiring access to ground-truth solutions. We show that the EMA-based estimator correlates strongly with the true relative L2 error, enabling data-free, instance-aware error control during inference. Evaluations on four canonical PDEs: 1D and 2D Burgers', 2D Allen-Cahn, and 3D heat conduction, demonstrate that ANCHOR reliably bounds long-horizon error growth, stabilizes extrapolative rollouts, and significantly improves robustness over standalone neural operators, while remaining substantially more efficient than high-fidelity numerical solvers.
comment: 18 pages, 7 figures
☆ KerJEPA: Kernel Discrepancies for Euclidean Self-Supervised Learning
Recent breakthroughs in self-supervised Joint-Embedding Predictive Architectures (JEPAs) have established that regularizing Euclidean representations toward isotropic Gaussian priors yields provable gains in training stability and downstream generalization. We introduce a new, flexible family of KerJEPAs, self-supervised learning algorithms with kernel-based regularizers. One instance of this family corresponds to the recently-introduced LeJEPA Epps-Pulley regularizer which approximates a sliced maximum mean discrepancy (MMD) with a Gaussian prior and Gaussian kernel. By expanding the class of viable kernels and priors and computing the closed-form high-dimensional limit of sliced MMDs, we develop alternative KerJEPAs with a number of favorable properties including improved training stability and design flexibility.
☆ LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.
comment: 55 pages, 27 figures, 29 tables. The maneuver telemetry datasets generated and analyzed during this work are available in the GitHub repository https://github.com/kdjebko/lelar-in-orbit-data
☆ CARE What Fails: Contrastive Anchored-REflection for Verifiable Multimodal
Group-relative reinforcement learning with verifiable rewards (RLVR) often wastes the most informative data it already has the failures. When all rollouts are wrong, gradients stall; when one happens to be correct, the update usually ignores why the others are close-but-wrong, and credit can be misassigned to spurious chains. We present CARE (Contrastive Anchored REflection), a failure-centric post-training framework for multimodal reasoning that turns errors into supervision. CARE combines: (i) an anchored-contrastive objective that forms a compact subgroup around the best rollout and a set of semantically proximate hard negatives, performs within-subgroup z-score normalization with negative-only scaling, and includes an all-negative rescue to prevent zero-signal batches; and (ii) Reflection-Guided Resampling (RGR), a one-shot structured self-repair that rewrites a representative failure and re-scores it with the same verifier, converting near-misses into usable positives without any test-time reflection. CARE improves accuracy and training smoothness while explicitly increasing the share of learning signal that comes from failures. On Qwen2.5-VL-7B, CARE lifts macro-averaged accuracy by 4.6 points over GRPO across six verifiable visual-reasoning benchmarks; with Qwen3-VL-8B it reaches competitive or state-of-the-art results on MathVista and MMMU-Pro under an identical evaluation protocol.
☆ DFORD: Directional Feedback based Online Ordinal Regression Learning
In this paper, we introduce directional feedback in the ordinal regression setting, in which the learner receives feedback on whether the predicted label is on the left or the right side of the actual label. This is a weak supervision setting for ordinal regression compared to the full information setting, where the learner can access the labels. We propose an online algorithm for ordinal regression using directional feedback. The proposed algorithm uses an exploration-exploitation scheme to learn from directional feedback efficiently. Furthermore, we introduce its kernel-based variant to learn non-linear ordinal regression models in an online setting. We use a truncation trick to make the kernel implementation more memory efficient. The proposed algorithm maintains the ordering of the thresholds in the expected sense. Moreover, it achieves the expected regret of $\mathcal{O}(\log T)$. We compare our approach with a full information and a weakly supervised algorithm for ordinal regression on synthetic and real-world datasets. The proposed approach, which learns using directional feedback, performs comparably (sometimes better) to its full information counterpart.
☆ Active Convolved Illumination with Deep Transfer Learning for Complex Beam Transmission through Atmospheric Turbulence
Atmospheric turbulence imposes a fundamental limitation across a broad range of applications, including optical imaging, remote sensing, and free-space optical communication. Recent advances in adaptive optics, wavefront shaping, and machine learning, driven by synergistic progress in fundamental theories, optoelectronic hardware, and computational algorithms, have demonstrated substantial potential in mitigating turbulence-induced distortions. Recently, active convolved illumination (ACI) was proposed as a versatile and physics-driven technique for transmitting structured light beams with minimal distortion through highly challenging turbulent regimes. While distinct in its formulation, ACI shares conceptual similarities with other physics-driven distortion correction approaches and stands to benefit from complementary integration with data-driven deep learning (DL) models. Inspired by recent work coupling deep learning with traditional turbulence mitigation strategies, the present work investigates the feasibility of integrating ACI with neural network-based methods. We outline a conceptual framework for coupling ACI with data-driven models and identify conditions under which learned representations can meaningfully support ACI's correlation-injection mechanism. As a representative example, we employ a convolutional neural network (CNN) together with a transfer-learning approach to examine how a learned model may operate in tandem with ACI. This exploratory study demonstrates feasible implementation pathways and establishes an early foundation for assessing the potential of future ACI-DL hybrid architectures, representing a step toward evaluating broader synergistic interactions between ACI and modern DL models.
☆ Learning Continuous Solvent Effects from Transient Flow Data: A Graph Neural Network Benchmark on Catechol Rearrangement
Predicting reaction outcomes across continuous solvent composition ranges remains a critical challenge in organic synthesis and process chemistry. Traditional machine learning approaches often treat solvent identity as a discrete categorical variable, which prevents systematic interpolation and extrapolation across the solvent space. This work introduces the \textbf{Catechol Benchmark}, a high-throughput transient flow chemistry dataset comprising 1,227 experimental yield measurements for the rearrangement of allyl-substituted catechol in 24 pure solvents and their binary mixtures, parameterized by continuous volume fractions ($\% B$). We evaluate various architectures under rigorous leave-one-solvent-out and leave-one-mixture-out protocols to test generalization to unseen chemical environments. Our results demonstrate that classical tabular methods (e.g., Gradient-Boosted Decision Trees) and large language model embeddings (e.g., Qwen-7B) struggle with quantitative precision, yielding Mean Squared Errors (MSE) of 0.099 and 0.129, respectively. In contrast, we propose a hybrid GNN-based architecture that integrates Graph Attention Networks (GATs) with Differential Reaction Fingerprints (DRFP) and learned mixture-aware solvent encodings. This approach achieves an \textbf{MSE of 0.0039} ($\pm$ 0.0003), representing a 60\% error reduction over competitive baselines and a $>25\times$ improvement over tabular ensembles. Ablation studies confirm that explicit molecular graph message-passing and continuous mixture encoding are essential for robust generalization. The complete dataset, evaluation protocols, and reference implementations are released to facilitate data-efficient reaction prediction and continuous solvent representation learning.
comment: 13 pages, 6 figures
☆ Deep Learning for Unrelated-Machines Scheduling: Handling Variable Dimensions ICML
Deep learning has been effectively applied to many discrete optimization problems. However, learning-based scheduling on unrelated parallel machines remains particularly difficult to design. Not only do the numbers of jobs and machines vary, but each job-machine pair has a unique processing time, dynamically altering feature dimensions. We propose a novel approach with a neural network tailored for offline deterministic scheduling of arbitrary sizes on unrelated machines. The goal is to minimize a complex objective function that includes the makespan and the weighted tardiness of jobs and machines. Unlike existing online approaches, which process jobs sequentially, our method generates a complete schedule considering the entire input at once. The key contribution of this work lies in the sophisticated architecture of our model. By leveraging various NLP-inspired architectures, it effectively processes any number of jobs and machines with varying feature dimensions imposed by unrelated processing times. Our approach enables supervised training on small problem instances while demonstrating strong generalization to much larger scheduling environments. Trained and tested on instances with 8 jobs and 4 machines, costs were only 2.51% above optimal. Across all tested configurations of up to 100 jobs and 10 machines, our network consistently outperformed an advanced dispatching rule, which incurred 22.22% higher costs on average. As our method allows fast retraining with simulated data and adaptation to various scheduling conditions, we believe it has the potential to become a standard approach for learning-based scheduling on unrelated machines and similar problem environments.
comment: 24th IEEE International Conference on Machine Learning and Applications (ICMLA 2025) in Boca Raton, USA. Project page: https://github.com/DiegoHitzges/Deep-Learning-for-Unrelated-Machines-Scheduling . 8 pages, 4 figures, 3 tables
☆ Initialization of a Polyharmonic Cascade, Launch and Testing
This paper concludes a series of studies on the polyharmonic cascade, a deep machine learning architecture theoretically derived from indifference principles and the theory of random functions. A universal initialization procedure is proposed, based on symmetric constellations in the form of hyperoctahedra with a central point. This initialization not only ensures stable training of cascades with tens and hundreds of layers (up to 500 layers without skip connections), but also radically simplifies the computations. Scalability and robustness are demonstrated on MNIST (98.3% without convolutions or augmentations), HIGGS (AUC approximately 0.885 on 11M examples), and Epsilon (AUC approximately 0.963 with 2000 features). All linear algebra is reduced to 2D operations and is efficiently executed on GPUs. A public repository and an archived snapshot are provided for full reproducibility.
comment: Part 4 of 4 in the "Polyharmonic Cascade" cycle. Contains initialization algorithms and experimental results (MNIST, HIGGS, Epsilon). Previous papers: arXiv:2512.12731, arXiv:2512.16718, arXiv:2512.17671. Source code: https://github.com/xolod7/polyharmonic-cascade
☆ LacaDM: A Latent Causal Diffusion Model for Multiobjective Reinforcement Learning
Multiobjective reinforcement learning (MORL) poses significant challenges due to the inherent conflicts between objectives and the difficulty of adapting to dynamic environments. Traditional methods often struggle to generalize effectively, particularly in large and complex state-action spaces. To address these limitations, we introduce the Latent Causal Diffusion Model (LacaDM), a novel approach designed to enhance the adaptability of MORL in discrete and continuous environments. Unlike existing methods that primarily address conflicts between objectives, LacaDM learns latent temporal causal relationships between environmental states and policies, enabling efficient knowledge transfer across diverse MORL scenarios. By embedding these causal structures within a diffusion model-based framework, LacaDM achieves a balance between conflicting objectives while maintaining strong generalization capabilities in previously unseen environments. Empirical evaluations on various tasks from the MOGymnasium framework demonstrate that LacaDM consistently outperforms the state-of-art baselines in terms of hypervolume, sparsity, and expected utility maximization, showcasing its effectiveness in complex multiobjective tasks.
☆ Toward Scalable and Valid Conditional Independence Testing with Spectral Representations
Conditional independence (CI) is central to causal inference, feature selection, and graphical modeling, yet it is untestable in many settings without additional assumptions. Existing CI tests often rely on restrictive structural conditions, limiting their validity on real-world data. Kernel methods using the partial covariance operator offer a more principled approach but suffer from limited adaptivity, slow convergence, and poor scalability. In this work, we explore whether representation learning can help address these limitations. Specifically, we focus on representations derived from the singular value decomposition of the partial covariance operator and use them to construct a simple test statistic, reminiscent of the Hilbert-Schmidt Independence Criterion (HSIC). We also introduce a practical bi-level contrastive algorithm to learn these representations. Our theory links representation learning error to test performance and establishes asymptotic validity and power guarantees. Preliminary experiments suggest that this approach offers a practical and statistically grounded path toward scalable CI testing, bridging kernel-based theory with modern representation learning.
☆ DK-STN: A Domain Knowledge Embedded Spatio-Temporal Network Model for MJO Forecast
Understanding and predicting the Madden-Julian Oscillation (MJO) is fundamental for precipitation forecasting and disaster prevention. To date, long-term and accurate MJO prediction has remained a challenge for researchers. Conventional MJO prediction methods using Numerical Weather Prediction (NWP) are resource-intensive, time-consuming, and highly unstable (most NWP methods are sensitive to seasons, with better MJO forecast results in winter). While existing Artificial Neural Network (ANN) methods save resources and speed forecasting, their accuracy never reaches the 28 days predicted by the state-of-the-art NWP method, i.e., the operational forecasts from ECMWF, since neural networks cannot handle climate data effectively. In this paper, we present a Domain Knowledge Embedded Spatio-Temporal Network (DK-STN), a stable neural network model for accurate and efficient MJO forecasting. It combines the benefits of NWP and ANN methods and successfully improves the forecast accuracy of ANN methods while maintaining a high level of efficiency and stability. We begin with a spatial-temporal network (STN) and embed domain knowledge in it using two key methods: (i) applying a domain knowledge enhancement method and (ii) integrating a domain knowledge processing method into network training. We evaluated DK-STN with the 5th generation of ECMWF reanalysis (ERA5) data and compared it with ECMWF. Given 7 days of climate data as input, DK-STN can generate reliable forecasts for the following 28 days in 1-2 seconds, with an error of only 2-3 days in different seasons. DK-STN significantly exceeds ECMWF in that its forecast accuracy is equivalent to ECMWF's, while its efficiency and stability are significantly superior.
comment: 18 pages, 10 figures
☆ Kolmogorov-Arnold Graph Neural Networks Applied to Inorganic Nanomaterials Dataset
The recent development of Kolmogorov-Arnold Networks (KANs) introduced new discoveries in the field of Graph Neural Networks (GNNs), expanding the existing set of models with KAN-based versions of GNNs, which often surpass the accuracy of MultiLayer Perceptron (MLP)-based GNNs. These models were widely tested on the graph datasets consisting of organic molecules; however, those studies disregarded the inorganic nanomaterials datasets. In this work, we close this gap by applying Kolmogorov-Arnold Graph Neural Networks (KAGNNs) to a recently published large inorganic nanomaterials dataset called CHILI. For this, we adapt and test KAGNNs appropriate for this dataset. Our experiments reveal that on the CHILI datasets, particularly on the CHILI-3K, KAGNNs substantially surpass conventional GNNs in classification, achieving state-of-the-art results.
☆ Learning from sanctioned government suppliers: A machine learning and network science approach to detecting fraud and corruption in Mexico
Detecting fraud and corruption in public procurement remains a major challenge for governments worldwide. Most research to-date builds on domain-knowledge-based corruption risk indicators of individual contract-level features and some also analyzes contracting network patterns. A critical barrier for supervised machine learning is the absence of confirmed non-corrupt, negative, examples, which makes conventional machine learning inappropriate for this task. Using publicly available data on federally funded procurement in Mexico and company sanction records, this study implements positive-unlabeled (PU) learning algorithms that integrate domain-knowledge-based red flags with network-derived features to identify likely corrupt and fraudulent contracts. The best-performing PU model on average captures 32 percent more known positives and performs on average 2.3 times better than random guessing, substantially outperforming approaches based solely on traditional red flags. The analysis of the Shapley Additive Explanations reveals that network-derived features, particularly those associated with contracts in the network core or suppliers with high eigenvector centrality, are the most important. Traditional red flags further enhance model performance in line with expectations, albeit mainly for contracts awarded through competitive tenders. This methodology can support law enforcement in Mexico, and it can be adapted to other national contexts too.
comment: 15 pages of main text with 6 figures and 31 pages of supplementary information
☆ Lightweight Intrusion Detection in IoT via SHAP-Guided Feature Pruning and Knowledge-Distilled Kronecker Networks
The widespread deployment of Internet of Things (IoT) devices requires intrusion detection systems (IDS) with high accuracy while operating under strict resource constraints. Conventional deep learning IDS are often too large and computationally intensive for edge deployment. We propose a lightweight IDS that combines SHAP-guided feature pruning with knowledge-distilled Kronecker networks. A high-capacity teacher model identifies the most relevant features through SHAP explanations, and a compressed student leverages Kronecker-structured layers to minimize parameters while preserving discriminative inputs. Knowledge distillation transfers softened decision boundaries from teacher to student, improving generalization under compression. Experiments on the TON\_IoT dataset show that the student is nearly three orders of magnitude smaller than the teacher yet sustains macro-F1 above 0.986 with millisecond-level inference latency. The results demonstrate that explainability-driven pruning and structured compression can jointly enable scalable, low-latency, and energy-efficient IDS for heterogeneous IoT environments.
comment: This work has been published in the proceedings of the 2025 8th International Conference on Advanced Communication Technologies and Networking (CommNet)
☆ Multi-Layer Confidence Scoring for Detection of Out-of-Distribution Samples, Adversarial Attacks, and In-Distribution Misclassifications
The recent explosive growth in Deep Neural Networks applications raises concerns about the black-box usage of such models, with limited trasparency and trustworthiness in high-stakes domains, which have been crystallized as regulatory requirements such as the European Union Artificial Intelligence Act. While models with embedded confidence metrics have been proposed, such approaches cannot be applied to already existing models without retraining, limiting their broad application. On the other hand, post-hoc methods, which evaluate pre-trained models, focus on solving problems related to improving the confidence in the model's predictions, and detecting Out-Of-Distribution or Adversarial Attacks samples as independent applications. To tackle the limited applicability of already existing methods, we introduce Multi-Layer Analysis for Confidence Scoring (MACS), a unified post-hoc framework that analyzes intermediate activations to produce classification-maps. From the classification-maps, we derive a score applicable for confidence estimation, detecting distributional shifts and adversarial attacks, unifying the three problems in a common framework, and achieving performances that surpass the state-of-the-art approaches in our experiments with the VGG16 and ViTb16 models with a fraction of their computational overhead.
☆ GLUE: Generative Latent Unification of Expertise-Informed Engineering Models
Engineering complex systems (aircraft, buildings, vehicles) requires accounting for geometric and performance couplings across subsystems. As generative models proliferate for specialized domains (wings, structures, engines), a key research gap is how to coordinate frozen, pre-trained submodels to generate full-system designs that are feasible, diverse, and high-performing. We introduce Generative Latent Unification of Expertise-Informed Engineering Models (GLUE), which orchestrates pre-trained, frozen subsystem generators while enforcing system-level feasibility, optimality, and diversity. We propose and benchmark (i) data-driven GLUE models trained on pre-generated system-level designs and (ii) a data-free GLUE model trained online on a differentiable geometry layer. On a UAV design problem with five coupling constraints, we find that data-driven approaches yield diverse, high-performing designs but require large datasets to satisfy constraints reliably. The data-free approach is competitive with Bayesian optimization and gradient-based optimization in performance and feasibility while training a full generative model in only 10 min on a RTX 4090 GPU, requiring more than two orders of magnitude fewer geometry evaluations and FLOPs than the data-driven method. Ablations focused on data-free training show that subsystem output continuity affects coordination, and equality constraints can trigger mode collapse unless mitigated. By integrating unmodified, domain-informed submodels into a modular generative workflow, this work provides a viable path for scaling generative design to complex, real-world engineering systems.
comment: 11 pages, 10 figures. Preprint. Submitted to Computer-Aided Engineering (Elsevier)
☆ Real-Time Streamable Generative Speech Restoration with Flow Matching
Diffusion-based generative models have greatly impacted the speech processing field in recent years, exhibiting high speech naturalness and spawning a new research direction. Their application in real-time communication is, however, still lagging behind due to their computation-heavy nature involving multiple calls of large DNNs. Here, we present Stream.FM, a frame-causal flow-based generative model with an algorithmic latency of 32 milliseconds (ms) and a total latency of 48 ms, paving the way for generative speech processing in real-time communication. We propose a buffered streaming inference scheme and an optimized DNN architecture, show how learned few-step numerical solvers can boost output quality at a fixed compute budget, explore model weight compression to find favorable points along a compute/quality tradeoff, and contribute a model variant with 24 ms total latency for the speech enhancement task. Our work looks beyond theoretical latencies, showing that high-quality streaming generative speech processing can be realized on consumer GPUs available today. Stream.FM can solve a variety of speech processing tasks in a streaming fashion: speech enhancement, dereverberation, codec post-filtering, bandwidth extension, STFT phase retrieval, and Mel vocoding. As we verify through comprehensive evaluations and a MUSHRA listening test, Stream.FM establishes a state-of-the-art for generative streaming speech restoration, exhibits only a reasonable reduction in quality compared to a non-streaming variant, and outperforms our recent work (Diffusion Buffer) on generative streaming speech enhancement while operating at a lower latency.
comment: This work has been submitted to the IEEE for possible publication
☆ Binary Kernel Logistic Regression: a sparsity-inducing formulation and a convergent decomposition training algorithm
Kernel logistic regression (KLR) is a widely used supervised learning method for binary and multi-class classification, which provides estimates of the conditional probabilities of class membership for the data points. Unlike other kernel methods such as Support Vector Machines (SVMs), KLRs are generally not sparse. Previous attempts to deal with sparsity in KLR include a heuristic method referred to as the Import Vector Machine (IVM) and ad hoc regularizations such as the $\ell_{1/2}$-based one. Achieving a good trade-off between prediction accuracy and sparsity is still a challenging issue with a potential significant impact from the application point of view. In this work, we revisit binary KLR and propose an extension of the training formulation proposed by Keerthi et al., which is able to induce sparsity in the trained model, while maintaining good testing accuracy. To efficiently solve the dual of this formulation, we devise a decomposition algorithm of Sequential Minimal Optimization type which exploits second-order information, and for which we establish global convergence. Numerical experiments conducted on 12 datasets from the literature show that the proposed binary KLR approach achieves a competitive trade-off between accuracy and sparsity with respect to IVM, $\ell_{1/2}$-based regularization for KLR, and SVM while retaining the advantages of providing informative estimates of the class membership probabilities.
☆ An Inverse Scattering Inspired Fourier Neural Operator for Time-Dependent PDE Learning
Learning accurate and stable time-advancement operators for nonlinear partial differential equations (PDEs) remains challenging, particularly for chaotic, stiff, and long-horizon dynamical systems. While neural operator methods such as the Fourier Neural Operator (FNO) and Koopman-inspired extensions achieve good short-term accuracy, their long-term stability is often limited by unconstrained latent representations and cumulative rollout errors. In this work, we introduce an inverse scattering inspired Fourier Neural Operator(IS-FNO), motivated by the reversibility and spectral evolution structure underlying the classical inverse scattering transform. The proposed architecture enforces a near-reversible pairing between lifting and projection maps through an explicitly invertible neural transformation, and models latent temporal evolution using exponential Fourier layers that naturally encode linear and nonlinear spectral dynamics. We systematically evaluate IS-FNO against baseline FNO and Koopman-based models on a range of benchmark PDEs, including the Michelson-Sivashinsky and Kuramoto-Sivashinsky equations (in one and two dimensions), as well as the integrable Korteweg-de Vries and Kadomtsev-Petviashvili equations. The results demonstrate that IS-FNO achieves lower short-term errors and substantially improved long-horizon stability in non-stiff regimes. For integrable systems, reduced IS-FNO variants that embed analytical scattering structure retain competitive long-term accuracy despite limited model capacity. Overall, this work shows that incorporating physical structure -- particularly reversibility and spectral evolution -- into neural operator design significantly enhances robustness and long-term predictive fidelity for nonlinear PDE dynamics.
☆ Attention Is Not What You Need
We revisit a basic question in sequence modeling: is explicit self-attention actually necessary for strong performance and reasoning? We argue that standard multi-head attention is best seen as a form of tensor lifting: hidden vectors are mapped into a high-dimensional space of pairwise interactions, and learning proceeds by constraining this lifted tensor through gradient descent. This mechanism is extremely expressive but mathematically opaque, because after many layers it becomes very hard to describe the model with a small family of explicit invariants. To explore an alternative, we propose an attention-free architecture based on Grassmann flows. Instead of forming an L by L attention matrix, our Causal Grassmann layer (i) linearly reduces token states, (ii) encodes local token pairs as two-dimensional subspaces on a Grassmann manifold via Plucker coordinates, and (iii) fuses these geometric features back into the hidden states through gated mixing. Information therefore propagates by controlled deformations of low-rank subspaces over multi-scale local windows, so the core computation lives on a finite-dimensional manifold rather than in an unstructured tensor space. On the Wikitext-2 language modeling benchmark, purely Grassmann-based models with 13 to 18 million parameters achieve validation perplexities within about 10 to 15 percent of size-matched Transformers. On the SNLI natural language inference task, a Grassmann-Plucker head on top of DistilBERT slightly outperforms a Transformer head, with best validation and test accuracies of 0.8550 and 0.8538 compared to 0.8545 and 0.8511. We analyze the complexity of Grassmann mixing, show linear scaling in sequence length for fixed rank, and argue that such manifold-based designs offer a more structured route toward geometric and invariant-based interpretations of neural reasoning.
☆ Research Program: Theory of Learning in Dynamical Systems
Modern learning systems increasingly interact with data that evolve over time and depend on hidden internal state. We ask a basic question: when is such a dynamical system learnable from observations alone? This paper proposes a research program for understanding learnability in dynamical systems through the lens of next-token prediction. We argue that learnability in dynamical systems should be studied as a finite-sample question, and be based on the properties of the underlying dynamics rather than the statistical properties of the resulting sequence. To this end, we give a formulation of learnability for stochastic processes induced by dynamical systems, focusing on guarantees that hold uniformly at every time step after a finite burn-in period. This leads to a notion of dynamic learnability which captures how the structure of a system, such as stability, mixing, observability, and spectral properties, governs the number of observations required before reliable prediction becomes possible. We illustrate the framework in the case of linear dynamical systems, showing that accurate prediction can be achieved after finite observation without system identification, by leveraging improper methods based on spectral filtering. We survey the relationship between learning in dynamical systems and classical PAC, online, and universal prediction theories, and suggest directions for studying nonlinear and controlled systems.
☆ Symplectic Reservoir Representation of Legendre Dynamics
Modern learning systems act on internal representations of data, yet how these representations encode underlying physical or statistical structure is often left implicit. In physics, conservation laws of Hamiltonian systems such as symplecticity guarantee long-term stability, and recent work has begun to hard-wire such constraints into learning models at the loss or output level. Here we ask a different question: what would it mean for the representation itself to obey a symplectic conservation law in the sense of Hamiltonian mechanics? We express this symplectic constraint through Legendre duality: the pairing between primal and dual parameters, which becomes the structure that the representation must preserve. We formalize Legendre dynamics as stochastic processes whose trajectories remain on Legendre graphs, so that the evolving primal-dual parameters stay Legendre dual. We show that this class includes linear time-invariant Gaussian process regression and Ornstein-Uhlenbeck dynamics. Geometrically, we prove that the maps that preserve all Legendre graphs are exactly symplectomorphisms of cotangent bundles of the form "cotangent lift of a base diffeomorphism followed by an exact fibre translation". Dynamically, this characterization leads to the design of a Symplectic Reservoir (SR), a reservoir-computing architecture that is a special case of recurrent neural network and whose recurrent core is generated by Hamiltonian systems that are at most linear in the momentum. Our main theorem shows that every SR update has this normal form and therefore transports Legendre graphs to Legendre graphs, preserving Legendre duality at each time step. Overall, SR implements a geometrically constrained, Legendre-preserving representation map, injecting symplectic geometry and Hamiltonian mechanics directly at the representational level.
comment: 39 pages
☆ Brain-Grounded Axes for Reading and Steering LLM States
Interpretability methods for large language models (LLMs) typically derive directions from textual supervision, which can lack external grounding. We propose using human brain activity not as a training signal but as a coordinate system for reading and steering LLM states. Using the SMN4Lang MEG dataset, we construct a word-level brain atlas of phase-locking value (PLV) patterns and extract latent axes via ICA. We validate axes with independent lexica and NER-based labels (POS/log-frequency used as sanity checks), then train lightweight adapters that map LLM hidden states to these brain axes without fine-tuning the LLM. Steering along the resulting brain-derived directions yields a robust lexical (frequency-linked) axis in a mid TinyLlama layer, surviving perplexity-matched controls, and a brain-vs-text probe comparison shows larger log-frequency shifts (relative to the text probe) with lower perplexity for the brain axis. A function/content axis (axis 13) shows consistent steering in TinyLlama, Qwen2-0.5B, and GPT-2, with PPL-matched text-level corroboration. Layer-4 effects in TinyLlama are large but inconsistent, so we treat them as secondary (Appendix). Axis structure is stable when the atlas is rebuilt without GPT embedding-change features or with word2vec embeddings (|r|=0.64-0.95 across matched axes), reducing circularity concerns. Exploratory fMRI anchoring suggests potential alignment for embedding change and log frequency, but effects are sensitive to hemodynamic modeling assumptions and are treated as population-level evidence only. These results support a new interface: neurophysiology-grounded axes provide interpretable and controllable handles for LLM behavior.
comment: 10 pages, 4 figures. Code: https://github.com/sandroandric/Brain-Grounded-Axes-for-Reading-and-Steering-LLM-States
☆ Real-Time Machine Learning for Embedded Anomaly Detection
The spread of a resource-constrained Internet of Things (IoT) environment and embedded devices has put pressure on the real-time detection of anomalies occurring at the edge. This survey presents an overview of machine-learning methods aimed specifically at on-device anomaly detection with extremely strict constraints for latency, memory, and power consumption. Lightweight algorithms such as Isolation Forest, One-Class SVM, recurrent architectures, and statistical techniques are compared here according to the realities of embedded implementation. Our survey brings out significant trade-offs of accuracy and computational efficiency of detection, as well as how hardware constraints end up fundamentally redefining algorithm choice. The survey is completed with a set of practical recommendations on the choice of the algorithm depending on the equipment profiles and new trends in TinyML, which can help close the gap between detection capabilities and embedded reality. The paper serves as a strategic roadmap for engineers deploying anomaly detection in edge environments that are constrained by bandwidth and may be safety-critical.
☆ OmniMER: Indonesian Multimodal Emotion Recognition via Auxiliary-Enhanced LLM Adaptation
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
☆ A Critical Assessment of Pattern Comparisons Between POD and Autoencoders in Intraventricular Flows
Understanding intraventricular hemodynamics requires compact and physically interpretable representations of the underlying flow structures, as characteristic flow patterns are closely associated with cardiovascular conditions and can support early detection of cardiac deterioration. Conventional visualization of velocity or pressure fields, however, provides limited insight into the coherent mechanisms driving these dynamics. Reduced-order modeling techniques, like Proper Orthogonal Decomposition (POD) and Autoencoder (AE) architectures, offer powerful alternatives to extract dominant flow features from complex datasets. This study systematically compares POD with several AE variants (Linear, Nonlinear, Convolutional, and Variational) using left ventricular flow fields obtained from computational fluid dynamics simulations. We show that, for a suitably chosen latent dimension, AEs produce modes that become nearly orthogonal and qualitatively resemble POD modes that capture a given percentage of kinetic energy. As the number of latent modes increases, AE modes progressively lose orthogonality, leading to linear dependence, spatial redundancy, and the appearance of repeated modes with substantial high-frequency content. This degradation reduces interpretability and introduces noise-like components into AE-based reduced-order models, potentially complicating their integration with physics-based formulations or neural-network surrogates. The extent of interpretability loss varies across the AEs, with nonlinear, convolutional, and variational models exhibiting distinct behaviors in orthogonality preservation and feature localization. Overall, the results indicate that AEs can reproduce POD-like coherent structures under specific latent-space configurations, while highlighting the need for careful mode selection to ensure physically meaningful representations of cardiac flow dynamics.
comment: 27 pages, 9 figures
☆ Cluster-Based Generalized Additive Models Informed by Random Fourier Features
Explainable machine learning aims to strike a balance between prediction accuracy and model transparency, particularly in settings where black-box predictive models, such as deep neural networks or kernel-based methods, achieve strong empirical performance but remain difficult to interpret. This work introduces a mixture of generalized additive models (GAMs) in which random Fourier feature (RFF) representations are leveraged to uncover locally adaptive structure in the data. In the proposed method, an RFF-based embedding is first learned and then compressed via principal component analysis. The resulting low-dimensional representations are used to perform soft clustering of the data through a Gaussian mixture model. These cluster assignments are then applied to construct a mixture-of-GAMs framework, where each local GAM captures nonlinear effects through interpretable univariate smooth functions. Numerical experiments on real-world regression benchmarks, including the California Housing, NASA Airfoil Self-Noise, and Bike Sharing datasets, demonstrate improved predictive performance relative to classical interpretable models. Overall, this construction provides a principled approach for integrating representation learning with transparent statistical modeling.
comment: 25 pages, 13 figures, 4 tables
☆ Sprecher Networks: A Parameter-Efficient Kolmogorov-Arnold Architecture
We present Sprecher Networks (SNs), a family of trainable neural architectures inspired by the classical Kolmogorov-Arnold-Sprecher (KAS) construction for approximating multivariate continuous functions. Distinct from Multi-Layer Perceptrons (MLPs) with fixed node activations and Kolmogorov-Arnold Networks (KANs) featuring learnable edge activations, SNs utilize shared, learnable splines (monotonic and general) within structured blocks incorporating explicit shift parameters and mixing weights. Our approach directly realizes Sprecher's specific 1965 sum of shifted splines formula in its single-layer variant and extends it to deeper, multi-layer compositions. We further enhance the architecture with optional lateral mixing connections that enable intra-block communication between output dimensions, providing a parameter-efficient alternative to full attention mechanisms. Beyond parameter efficiency with $O(LN + LG)$ scaling (where $G$ is the knot count of the shared splines) versus MLPs' $O(LN^2)$, SNs admit a sequential evaluation strategy that reduces peak forward-intermediate memory from $O(N^2)$ to $O(N)$ (treating batch size as constant), making much wider architectures feasible under memory constraints. We demonstrate empirically that composing these blocks into deep networks leads to highly parameter and memory-efficient models, discuss theoretical motivations, and compare SNs with related architectures (MLPs, KANs, and networks with learnable node activations).
comment: 37 pages
☆ Learning General Policies with Policy Gradient Methods KR 2023
While reinforcement learning methods have delivered remarkable results in a number of settings, generalization, i.e., the ability to produce policies that generalize in a reliable and systematic way, has remained a challenge. The problem of generalization has been addressed formally in classical planning where provable correct policies that generalize over all instances of a given domain have been learned using combinatorial methods. The aim of this work is to bring these two research threads together to illuminate the conditions under which (deep) reinforcement learning approaches, and in particular, policy optimization methods, can be used to learn policies that generalize like combinatorial methods do. We draw on lessons learned from previous combinatorial and deep learning approaches, and extend them in a convenient way. From the former, we model policies as state transition classifiers, as (ground) actions are not general and change from instance to instance. From the latter, we use graph neural networks (GNNs) adapted to deal with relational structures for representing value functions over planning states, and in our case, policies. With these ingredients in place, we find that actor-critic methods can be used to learn policies that generalize almost as well as those obtained using combinatorial approaches while avoiding the scalability bottleneck and the use of feature pools. Moreover, the limitations of the DRL methods on the benchmarks considered have little to do with deep learning or reinforcement learning algorithms, and result from the well-understood expressive limitations of GNNs, and the tradeoff between optimality and generalization (general policies cannot be optimal in some domains). Both of these limitations are addressed without changing the basic DRL methods by adding derived predicates and an alternative cost structure to optimize.
comment: In Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023)
☆ From Points to Coalitions: Hierarchical Contrastive Shapley Values for Prioritizing Data Samples AAAI'26
How should we quantify the value of each training example when datasets are large, heterogeneous, and geometrically structured? Classical Data-Shapley answers in principle, but its O(n!) complexity and point-wise perspective are ill-suited to modern scales. We propose Hierarchical Contrastive Data Valuation (HCDV), a three-stage framework that (i) learns a contrastive, geometry-preserving representation, (ii) organizes the data into a balanced coarse-to-fine hierarchy of clusters, and (iii) assigns Shapley-style payoffs to coalitions via local Monte-Carlo games whose budgets are propagated downward. HCDV collapses the factorial burden to O(T sum_{l} K_{l}) = O(T K_max log n), rewards examples that sharpen decision boundaries, and regularizes outliers through curvature-based smoothness. We prove that HCDV approximately satisfies the four Shapley axioms with surplus loss O(eta log n), enjoys sub-Gaussian coalition deviation tilde O(1/sqrt{T}), and incurs at most k epsilon_infty regret for top-k selection. Experiments on four benchmarks--tabular, vision, streaming, and a 45M-sample CTR task--plus the OpenDataVal suite show that HCDV lifts accuracy by up to +5 pp, slashes valuation time by up to 100x, and directly supports tasks such as augmentation filtering, low-latency streaming updates, and fair marketplace payouts.
comment: AAAI'26 Oral
☆ Interpretable Hybrid Deep Q-Learning Framework for IoT-Based Food Spoilage Prediction with Synthetic Data Generation and Hardware Validation
The need for an intelligent, real-time spoilage prediction system has become critical in modern IoT-driven food supply chains, where perishable goods are highly susceptible to environmental conditions. Existing methods often lack adaptability to dynamic conditions and fail to optimize decision making in real time. To address these challenges, we propose a hybrid reinforcement learning framework integrating Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for enhanced spoilage prediction. This hybrid architecture captures temporal dependencies within sensor data, enabling robust and adaptive decision making. In alignment with interpretable artificial intelligence principles, a rule-based classifier environment is employed to provide transparent ground truth labeling of spoilage levels based on domain-specific thresholds. This structured design allows the agent to operate within clearly defined semantic boundaries, supporting traceable and interpretable decisions. Model behavior is monitored using interpretability-driven metrics, including spoilage accuracy, reward-to-step ratio, loss reduction rate, and exploration decay. These metrics provide both quantitative performance evaluation and insights into learning dynamics. A class-wise spoilage distribution visualization is used to analyze the agents decision profile and policy behavior. Extensive evaluations on simulated and real-time hardware data demonstrate that the LSTM and RNN based agent outperforms alternative reinforcement learning approaches in prediction accuracy and decision efficiency while maintaining interpretability. The results highlight the potential of hybrid deep reinforcement learning with integrated interpretability for scalable IoT-based food monitoring systems.
☆ VIGOR+: Iterative Confounder Generation and Validation via LLM-CEVAE Feedback Loop
Hidden confounding remains a fundamental challenge in causal inference from observational data. Recent advances leverage Large Language Models (LLMs) to generate plausible hidden confounders based on domain knowledge, yet a critical gap exists: LLM-generated confounders often exhibit semantic plausibility without statistical utility. We propose VIGOR+ (Variational Information Gain for iterative cOnfounder Refinement), a novel framework that closes the loop between LLM-based confounder generation and CEVAE-based statistical validation. Unlike prior approaches that treat generation and validation as separate stages, VIGOR+ establishes an iterative feedback mechanism: validation signals from CEVAE (including information gain, latent consistency metrics, and diagnostic messages) are transformed into natural language feedback that guides subsequent LLM generation rounds. This iterative refinement continues until convergence criteria are met. We formalize the feedback mechanism, prove convergence properties under mild assumptions, and provide a complete algorithmic framework.
comment: 7 pages,1 figure,4 tables
☆ Faster Distributed Inference-Only Recommender Systems via Bounded Lag Synchronous Collectives
Recommender systems are enablers of personalized content delivery, and therefore revenue, for many large companies. In the last decade, deep learning recommender models (DLRMs) are the de-facto standard in this field. The main bottleneck in DLRM inference is the lookup of sparse features across huge embedding tables, which are usually partitioned across the aggregate RAM of many nodes. In state-of-the-art recommender systems, the distributed lookup is implemented via irregular all-to-all (alltoallv) communication, and often presents the main bottleneck. Today, most related work sees this operation as a given; in addition, every collective is synchronous in nature. In this work, we propose a novel bounded lag synchronous (BLS) version of the alltoallv operation. The bound can be a parameter allowing slower processes to lag behind entire iterations before the fastest processes block. In special applications such as inference-only DLRM, the accuracy of the application is fully preserved. We implement BLS alltoallv in a new PyTorch Distributed backend and evaluate it with a BLS version of the reference DLRM code. We show that for well balanced, homogeneous-access DLRM runs our BLS technique does not offer notable advantages. But for unbalanced runs, e.g. runs with strongly irregular embedding table accesses or with delays across different processes, our BLS technique improves both the latency and throughput of inference-only DLRM. In the best-case scenario, the proposed reduced synchronisation can mask the delays across processes altogether.
☆ Orthogonal Approximate Message Passing with Optimal Spectral Initializations for Rectangular Spiked Matrix Models
We propose an orthogonal approximate message passing (OAMP) algorithm for signal estimation in the rectangular spiked matrix model with general rotationally invariant (RI) noise. We establish a rigorous state evolution that precisely characterizes the algorithm's high-dimensional dynamics and enables the construction of iteration-wise optimal denoisers. Within this framework, we accommodate spectral initializations under minimal assumptions on the empirical noise spectrum. In the rectangular setting, where a single rank-one component typically generates multiple informative outliers, we further propose a procedure for combining these outliers under mild non-Gaussian signal assumptions. For general RI noise models, the predicted performance of the proposed optimal OAMP algorithm agrees with replica-symmetric predictions for the associated Bayes-optimal estimator, and we conjecture that it is statistically optimal within a broad class of iterative estimation methods.
☆ A Logical View of GNN-Style Computation and the Role of Activation Functions
We study the numerical and Boolean expressiveness of MPLang, a declarative language that captures the computation of graph neural networks (GNNs) through linear message passing and activation functions. We begin with A-MPLang, the fragment without activation functions, and give a characterization of its expressive power in terms of walk-summed features. For bounded activation functions, we show that (under mild conditions) all eventually constant activations yield the same expressive power - numerical and Boolean - and that it subsumes previously established logics for GNNs with eventually constant activation functions but without linear layers. Finally, we prove the first expressive separation between unbounded and bounded activations in the presence of linear layers: MPLang with ReLU is strictly more powerful for numerical queries than MPLang with eventually constant activation functions, e.g., truncated ReLU. This hinges on subtle interactions between linear aggregation and eventually constant non-linearities, and it establishes that GNNs using ReLU are more expressive than those restricted to eventually constant activations and linear layers.
☆ Alternative positional encoding functions for neural transformers
A key module in neural transformer-based deep architectures is positional encoding. This module enables a suitable way to encode positional information as input for transformer neural layers. This success has been rooted in the use of sinusoidal functions of various frequencies, in order to capture recurrent patterns of differing typical periods. In this work, an alternative set of periodic functions is proposed for positional encoding. These functions preserve some key properties of sinusoidal ones, while they depart from them in fundamental ways. Some tentative experiments are reported, where the original sinusoidal version is substantially outperformed. This strongly suggests that the alternative functions may have a wider use in other transformer architectures.
☆ MAGIC: Achieving Superior Model Merging via Magnitude Calibration
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC
☆ Time-Vertex Machine Learning for Optimal Sensor Placement in Temporal Graph Signals: Applications in Structural Health Monitoring
Structural Health Monitoring (SHM) plays a crucial role in maintaining the safety and resilience of infrastructure. As sensor networks grow in scale and complexity, identifying the most informative sensors becomes essential to reduce deployment costs without compromising monitoring quality. While Graph Signal Processing (GSP) has shown promise by leveraging spatial correlations among sensor nodes, conventional approaches often overlook the temporal dynamics of structural behavior. To overcome this limitation, we propose Time-Vertex Machine Learning (TVML), a novel framework that integrates GSP, time-domain analysis, and machine learning to enable interpretable and efficient sensor placement by identifying representative nodes that minimize redundancy while preserving critical information. We evaluate the proposed approach on two bridge datasets for damage detection and time-varying graph signal reconstruction tasks. The results demonstrate the effectiveness of our approach in enhancing SHM systems by providing a robust, adaptive, and efficient solution for sensor placement.
☆ GShield: Mitigating Poisoning Attacks in Federated Learning
Federated Learning (FL) has recently emerged as a revolutionary approach to collaborative training Machine Learning models. In particular, it enables decentralized model training while preserving data privacy, but its distributed nature makes it highly vulnerable to a severe attack known as Data Poisoning. In such scenarios, malicious clients inject manipulated data into the training process, thereby degrading global model performance or causing targeted misclassification. In this paper, we present a novel defense mechanism called GShield, designed to detect and mitigate malicious and low-quality updates, especially under non-independent and identically distributed (non-IID) data scenarios. GShield operates by learning the distribution of benign gradients through clustering and Gaussian modeling during an initial round, enabling it to establish a reliable baseline of trusted client behavior. With this benign profile, GShield selectively aggregates only those updates that align with the expected gradient patterns, effectively isolating adversarial clients and preserving the integrity of the global model. An extensive experimental campaign demonstrates that our proposed defense significantly improves model robustness compared to the state-of-the-art methods while maintaining a high accuracy of performance across both tabular and image datasets. Furthermore, GShield improves the accuracy of the targeted class by 43\% to 65\% after detecting malicious and low-quality clients.
☆ Digital Twin-Driven Zero-Shot Fault Diagnosis of Axial Piston Pumps Using Fluid-Borne Noise Signals
Axial piston pumps are crucial components in fluid power systems, where reliable fault diagnosis is essential for ensuring operational safety and efficiency. Traditional data-driven methods require extensive labeled fault data, which is often impractical to obtain, while model-based approaches suffer from parameter uncertainties. This paper proposes a digital twin (DT)-driven zero-shot fault diagnosis framework utilizing fluid-borne noise (FBN) signals. The framework calibrates a high-fidelity DT model using only healthy-state data, generates synthetic fault signals for training deep learning classifiers, and employs a physics-informed neural network (PINN) as a virtual sensor for flow ripple estimation. Gradient-weighted class activation mapping (Grad-CAM) is integrated to visualize the decision-making process of neural networks, revealing that large kernels matching the subsequence length in time-domain inputs and small kernels in time-frequency domain inputs enable higher diagnostic accuracy by focusing on physically meaningful features. Experimental validations demonstrate that training on signals from the calibrated DT model yields diagnostic accuracies exceeding 95\% on real-world benchmarks, while uncalibrated models result in significantly lower performance, highlighting the framework's effectiveness in data-scarce scenarios.
☆ Translating Flow to Policy via Hindsight Online Imitation
Recent advances in hierarchical robot systems leverage a high-level planner to propose task plans and a low-level policy to generate robot actions. This design allows training the planner on action-free or even non-robot data sources (e.g., videos), providing transferable high-level guidance. Nevertheless, grounding these high-level plans into executable actions remains challenging, especially with the limited availability of high-quality robot data. To this end, we propose to improve the low-level policy through online interactions. Specifically, our approach collects online rollouts, retrospectively annotates the corresponding high-level goals from achieved outcomes, and aggregates these hindsight-relabeled experiences to update a goal-conditioned imitation policy. Our method, Hindsight Flow-conditioned Online Imitation (HinFlow), instantiates this idea with 2D point flows as the high-level planner. Across diverse manipulation tasks in both simulation and physical world, our method achieves more than $2\times$ performance improvement over the base policy, significantly outperforming the existing methods. Moreover, our framework enables policy acquisition from planners trained on cross-embodiment video data, demonstrating its potential for scalable and transferable robot learning.
☆ Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.
☆ Small Language Models as Compiler Experts: Auto-Parallelization for Heterogeneous Systems NeurIPS 2025
Traditional auto-parallelizing compilers, reliant on rigid heuristics, struggle with the complexity of modern heterogeneous systems. This paper presents a comprehensive evaluation of small (approximately 1B parameter) language-model-driven compiler auto-parallelization. We evaluate three models: gemma3, llama3.2, and qwen2.5, using six reasoning strategies across 11 real-world kernels drawn from scientific computing, graph algorithms, and machine learning. Our system is benchmarked against strong compiler baselines, including LLVM Polly, TVM, and Triton. Across 376 total evaluations, the proposed approach achieves an average speedup of 6.81x and a peak performance of 43.25x on convolution operations. We analyze scalability, verify correctness using multiple sanitizers, and confirm robustness across diverse compilers and hardware platforms. Our results demonstrate that small, efficient language models can serve as powerful reasoning engines for complex compiler optimization tasks.
comment: Accepted at NeurIPS 2025 ML for Systems Workshop
☆ From Black-Box Tuning to Guided Optimization via Hyperparameters Interaction Analysis
Hyperparameters tuning is a fundamental, yet computationally expensive, step in optimizing machine learning models. Beyond optimization, understanding the relative importance and interaction of hyperparameters is critical to efficient model development. In this paper, we introduce MetaSHAP, a scalable semi-automated eXplainable AI (XAI) method, that uses meta-learning and Shapley values analysis to provide actionable and dataset-aware tuning insights. MetaSHAP operates over a vast benchmark of over 09 millions evaluated machine learning pipelines, allowing it to produce interpretable importance scores and actionable tuning insights that reveal how much each hyperparameter matters, how it interacts with others and in which value ranges its influence is concentrated. For a given algorithm and dataset, MetaSHAP learns a surrogate performance model from historical configurations, computes hyperparameters interactions using SHAP-based analysis, and derives interpretable tuning ranges from the most influential hyperparameters. This allows practitioners not only to prioritize which hyperparameters to tune, but also to understand their directionality and interactions. We empirically validate MetaSHAP on a diverse benchmark of 164 classification datasets and 14 classifiers, demonstrating that it produces reliable importance rankings and competitive performance when used to guide Bayesian optimization.
☆ Identifying Features Associated with Bias Against 93 Stigmatized Groups in Language Models and Guardrail Model Safety Mitigation
Large language models (LLMs) have been shown to exhibit social bias, however, bias towards non-protected stigmatized identities remain understudied. Furthermore, what social features of stigmas are associated with bias in LLM outputs is unknown. From psychology literature, it has been shown that stigmas contain six shared social features: aesthetics, concealability, course, disruptiveness, origin, and peril. In this study, we investigate if human and LLM ratings of the features of stigmas, along with prompt style and type of stigma, have effect on bias towards stigmatized groups in LLM outputs. We measure bias against 93 stigmatized groups across three widely used LLMs (Granite 3.0-8B, Llama-3.1-8B, Mistral-7B) using SocialStigmaQA, a benchmark that includes 37 social scenarios about stigmatized identities; for example deciding wether to recommend them for an internship. We find that stigmas rated by humans to be highly perilous (e.g., being a gang member or having HIV) have the most biased outputs from SocialStigmaQA prompts (60% of outputs from all models) while sociodemographic stigmas (e.g. Asian-American or old age) have the least amount of biased outputs (11%). We test if the amount of biased outputs could be decreased by using guardrail models, models meant to identify harmful input, using each LLM's respective guardrail model (Granite Guardian 3.0, Llama Guard 3.0, Mistral Moderation API). We find that bias decreases significantly by 10.4%, 1.4%, and 7.8%, respectively. However, we show that features with significant effect on bias remain unchanged post-mitigation and that guardrail models often fail to recognize the intent of bias in prompts. This work has implications for using LLMs in scenarios involving stigmatized groups and we suggest future work towards improving guardrail models for bias mitigation.
☆ Regression generation adversarial network based on dual data evaluation strategy for industrial application
Soft sensing infers hard-to-measure data through a large number of easily obtainable variables. However, in complex industrial scenarios, the issue of insufficient data volume persists, which diminishes the reliability of soft sensing. Generative Adversarial Networks (GAN) are one of the effective solutions for addressing insufficient samples. Nevertheless, traditional GAN fail to account for the mapping relationship between labels and features, which limits further performance improvement. Although some studies have proposed solutions, none have considered both performance and efficiency simultaneously. To address these problems, this paper proposes the multi-task learning-based regression GAN framework that integrates regression information into both the discriminator and generator, and implements a shallow sharing mechanism between the discriminator and regressor. This approach significantly enhances the quality of generated samples while improving the algorithm's operational efficiency. Moreover, considering the importance of training samples and generated samples, a dual data evaluation strategy is designed to make GAN generate more diverse samples, thereby increasing the generalization of subsequent modeling. The superiority of method is validated through four classic industrial soft sensing cases: wastewater treatment plants, surface water, $CO_2$ absorption towers, and industrial gas turbines.
☆ Phase-space entropy at acquisition reflects downstream learnability
Modern learning systems work with data that vary widely across domains, but they all ultimately depend on how much structure is already present in the measurements before any model is trained. This raises a basic question: is there a general, modality-agnostic way to quantify how acquisition itself preserves or destroys the information that downstream learners could use? Here we propose an acquisition-level scalar $ΔS_{\mathcal B}$ based on instrument-resolved phase space. Unlike pixelwise distortion or purely spectral errors that often saturate under aggressive undersampling, $ΔS_{\mathcal B}$ directly quantifies how acquisition mixes or removes joint space--frequency structure at the instrument scale. We show theoretically that \(ΔS_{\mathcal B}\) correctly identifies the phase-space coherence of periodic sampling as the physical source of aliasing, recovering classical sampling-theorem consequences. Empirically, across masked image classification, accelerated MRI, and massive MIMO (including over-the-air measurements), $|ΔS_{\mathcal B}|$ consistently ranks sampling geometries and predicts downstream reconstruction/recognition difficulty \emph{without training}. In particular, minimizing $|ΔS_{\mathcal B}|$ enables zero-training selection of variable-density MRI mask parameters that matches designs tuned by conventional pre-reconstruction criteria. These results suggest that phase-space entropy at acquisition reflects downstream learnability, enabling pre-training selection of candidate sampling policies and as a shared notion of information preservation across modalities.
comment: 22 pages 6 figures
☆ MixKVQ: Query-Aware Mixed-Precision KV Cache Quantization for Long-Context Reasoning
Long Chain-of-Thought (CoT) reasoning has significantly advanced the capabilities of Large Language Models (LLMs), but this progress is accompanied by substantial memory and latency overhead from the extensive Key-Value (KV) cache. Although KV cache quantization is a promising compression technique, existing low-bit quantization methods often exhibit severe performance degradation on complex reasoning tasks. Fixed-precision quantization struggles to handle outlier channels in the key cache, while current mixed-precision strategies fail to accurately identify components requiring high-precision representation. We find that an effective low-bit KV cache quantization strategy must consider two factors: a key channel's intrinsic quantization difficulty and its relevance to the query. Based on this insight, we propose MixKVQ, a novel plug-and-play method that introduces a lightweight, query-aware algorithm to identify and preserve critical key channels that need higher precision, while applying per-token quantization for value cache. Experiments on complex reasoning datasets demonstrate that our approach significantly outperforms existing low-bit methods, achieving performance comparable to a full-precision baseline at a substantially reduced memory footprint.
☆ On the Koopman-Based Generalization Bounds for Multi-Task Deep Learning
The paper establishes generalization bounds for multitask deep neural networks using operator-theoretic techniques. The authors propose a tighter bound than those derived from conventional norm based methods by leveraging small condition numbers in the weight matrices and introducing a tailored Sobolev space as an expanded hypothesis space. This enhanced bound remains valid even in single output settings, outperforming existing Koopman based bounds. The resulting framework maintains key advantages such as flexibility and independence from network width, offering a more precise theoretical understanding of multitask deep learning in the context of kernel methods.
comment: Accepted for publication in Lecture Notes in Computer Science (LNCS). Final version forthcoming
☆ Self-Consistent Probability Flow for High-Dimensional Fokker-Planck Equations
Solving high-dimensional Fokker-Planck (FP) equations is a challenge in computational physics and stochastic dynamics, due to the curse of dimensionality (CoD) and the bottleneck of evaluating second-order diffusion terms. Existing deep learning approaches, such as Physics-Informed Neural Networks (PINNs), face computational challenges as dimensionality increases, driven by the $O(D^2)$ complexity of automatic differentiation for second-order derivatives. While recent probability flow approaches bypass this by learning score functions or matching velocity fields, they often involve serial computational operations or depend on sampling efficiency in complex distributions. To address these issues, we propose the Self-Consistent Probability Flow (SCPF) method. We reformulate the second-order FP equation into an equivalent first-order deterministic Probability Flow ODE (PF-ODE) constraint. Unlike score matching or velocity matching, SCPF solves this problem by minimizing the residual of the PF-ODE continuity equation, which avoids explicit Hessian computation. We leverage Continuous Normalizing Flows (CNF) combined with the Hutchinson Trace Estimator (HTE) to reduce the training complexity to linear scale $O(D)$, achieving an effective $O(1)$ wall-clock time on GPUs. To address data sparsity in high dimensions, we apply a generative adaptive sampling strategy and theoretically prove that dynamically aligning collocation points with the evolving probability mass is a necessary condition to bound the approximation error. Experiments on diverse benchmarks -- ranging from anisotropic Ornstein-Uhlenbeck (OU) processes and high-dimensional Brownian motions with time-varying diffusion terms, to Geometric OU processes featuring non-Gaussian solutions -- demonstrate that SCPF effectively mitigates the CoD, maintaining high accuracy and constant computational cost for problems up to 100 dimensions.
☆ Causal Heterogeneous Graph Learning Method for Chronic Obstructive Pulmonary Disease Prediction
Due to the insufficient diagnosis and treatment capabilities at the grassroots level, there are still deficiencies in the early identification and early warning of acute exacerbation of Chronic obstructive pulmonary disease (COPD), often resulting in a high prevalence rate and high burden, but the screening rate is relatively low. In order to gradually improve this situation. In this paper, this study develop a Causal Heterogeneous Graph Representation Learning (CHGRL) method for COPD comorbidity risk prediction method that: a) constructing a heterogeneous Our dataset includes the interaction between patients and diseases; b) A cause-aware heterogeneous graph learning architecture has been constructed, combining causal inference mechanisms with heterogeneous graph learning, which can support heterogeneous graph causal learning for different types of relationships; and c) Incorporate the causal loss function in the model design, and add counterfactual reasoning learning loss and causal regularization loss on the basis of the cross-entropy classification loss. We evaluate our method and compare its performance with strong GNN baselines. Following experimental evaluation, the proposed model demonstrates high detection accuracy.
☆ PEDESTRIAN: An Egocentric Vision Dataset for Obstacle Detection on Pavements
Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.
comment: 24 pages, 7 figures, 9 tables, Dataset: https://doi.org/10.5281/zenodo.10907945, Code: https://github.com/CYENS/PEDESTRIAN
☆ Operator-Based Generalization Bound for Deep Learning: Insights on Multi-Task Learning
This paper presents novel generalization bounds for vector-valued neural networks and deep kernel methods, focusing on multi-task learning through an operator-theoretic framework. Our key development lies in strategically combining a Koopman based approach with existing techniques, achieving tighter generalization guarantees compared to traditional norm-based bounds. To mitigate computational challenges associated with Koopman-based methods, we introduce sketching techniques applicable to vector valued neural networks. These techniques yield excess risk bounds under generic Lipschitz losses, providing performance guarantees for applications including robust and multiple quantile regression. Furthermore, we propose a novel deep learning framework, deep vector-valued reproducing kernel Hilbert spaces (vvRKHS), leveraging Perron Frobenius (PF) operators to enhance deep kernel methods. We derive a new Rademacher generalization bound for this framework, explicitly addressing underfitting and overfitting through kernel refinement strategies. This work offers novel insights into the generalization properties of multitask learning with deep learning architectures, an area that has been relatively unexplored until recent developments.
comment: Accepted for publication in Lecture Notes in Computer Science (LNCS). Final version forthcoming
☆ Practical Quantum-Classical Feature Fusion for complex data Classification
Hybrid quantum and classical learning aims to couple quantum feature maps with the robustness of classical neural networks, yet most architectures treat the quantum circuit as an isolated feature extractor and merge its measurements with classical representations by direct concatenation. This neglects that the quantum and classical branches constitute distinct computational modalities and limits reliable performance on complex, high dimensional tabular and semi structured data, including remote sensing, environmental monitoring, and medical diagnostics. We present a multimodal formulation of hybrid learning and propose a cross attention mid fusion architecture in which a classical representation queries quantum derived feature tokens through an attention block with residual connectivity. The quantum branch is kept within practical NISQ budgets and uses up to nine qubits. We evaluate on Wine, Breast Cancer, Forest CoverType, FashionMNIST, and SteelPlatesFaults, comparing a quantum only model, a classical baseline, residual hybrid models, and the proposed mid fusion model under a consistent protocol. Pure quantum and standard hybrid designs underperform due to measurement induced information loss, while cross attention mid fusion is consistently competitive and improves performance on the more complex datasets in most cases. These findings suggest that quantum derived information becomes most valuable when integrated through principled multimodal fusion rather than used in isolation or loosely appended to classical features.
comment: 16 pages, 3 figues
☆ Finite-sample guarantees for data-driven forward-backward operator methods
We establish finite sample certificates on the quality of solutions produced by data-based forward-backward (FB) operator splitting schemes. As frequently happens in stochastic regimes, we consider the problem of finding a zero of the sum of two operators, where one is either unavailable in closed form or computationally expensive to evaluate, and shall therefore be approximated using a finite number of noisy oracle samples. Under the lens of algorithmic stability, we then derive probabilistic bounds on the distance between a true zero and the FB output without making specific assumptions about the underlying data distribution. We show that under weaker conditions ensuring the convergence of FB schemes, stability bounds grow proportionally to the number of iterations. Conversely, stronger assumptions yield stability guarantees that are independent of the iteration count. We then specialize our results to a popular FB stochastic Nash equilibrium seeking algorithm and validate our theoretical bounds on a control problem for smart grids, where the energy price uncertainty is approximated by means of historical data.
☆ Beyond Sliding Windows: Learning to Manage Memory in Non-Markovian Environments
Recent success in developing increasingly general purpose agents based on sequence models has led to increased focus on the problem of deploying computationally limited agents within the vastly more complex real-world. A key challenge experienced in these more realistic domains is highly non-Markovian dependencies with respect to the agent's observations, which are less common in small controlled domains. The predominant approach for dealing with this in the literature is to stack together a window of the most recent observations (Frame Stacking), but this window size must grow with the degree of non-Markovian dependencies, which results in prohibitive computational and memory requirements for both action inference and learning. In this paper, we are motivated by the insight that in many environments that are highly non-Markovian with respect to time, the environment only causally depends on a relatively small number of observations over that time-scale. A natural direction would then be to consider meta-algorithms that maintain relatively small adaptive stacks of memories such that it is possible to express highly non-Markovian dependencies with respect to time while considering fewer observations at each step and thus experience substantial savings in both compute and memory requirements. Hence, we propose a meta-algorithm (Adaptive Stacking) for achieving exactly that with convergence guarantees and quantify the reduced computation and memory constraints for MLP, LSTM, and Transformer-based agents. Our experiments utilize popular memory tasks, which give us control over the degree of non-Markovian dependencies. This allows us to demonstrate that an appropriate meta-algorithm can learn the removal of memories not predictive of future rewards without excessive removal of important experiences. Code: https://github.com/geraudnt/adaptive-stacking
☆ RP-CATE: Recurrent Perceptron-based Channel Attention Transformer Encoder for Industrial Hybrid Modeling
Nowadays, industrial hybrid modeling which integrates both mechanistic modeling and machine learning-based modeling techniques has attracted increasing interest from scholars due to its high accuracy, low computational cost, and satisfactory interpretability. Nevertheless, the existing industrial hybrid modeling methods still face two main limitations. First, current research has mainly focused on applying a single machine learning method to one specific task, failing to develop a comprehensive machine learning architecture suitable for modeling tasks, which limits their ability to effectively represent complex industrial scenarios. Second, industrial datasets often contain underlying associations (e.g., monotonicity or periodicity) that are not adequately exploited by current research, which can degrade model's predictive performance. To address these limitations, this paper proposes the Recurrent Perceptron-based Channel Attention Transformer Encoder (RP-CATE), with three distinctive characteristics: 1: We developed a novel architecture by replacing the self-attention mechanism with channel attention and incorporating our proposed Recurrent Perceptron (RP) Module into Transformer, achieving enhanced effectiveness for industrial modeling tasks compared to the original Transformer. 2: We proposed a new data type called Pseudo-Image Data (PID) tailored for channel attention requirements and developed a cyclic sliding window method for generating PID. 3: We introduced the concept of Pseudo-Sequential Data (PSD) and a method for converting industrial datasets into PSD, which enables the RP Module to capture the underlying associations within industrial dataset more effectively. An experiment aimed at hybrid modeling in chemical engineering was conducted by using RP-CATE and the experimental results demonstrate that RP-CATE achieves the best performance compared to other baseline models.
comment: 9 pages, 4 figures
☆ A Convex Loss Function for Set Prediction with Optimal Trade-offs Between Size and Conditional Coverage
We consider supervised learning problems in which set predictions provide explicit uncertainty estimates. Using Choquet integrals (a.k.a. Lov{á}sz extensions), we propose a convex loss function for nondecreasing subset-valued functions obtained as level sets of a real-valued function. This loss function allows optimal trade-offs between conditional probabilistic coverage and the ''size'' of the set, measured by a non-decreasing submodular function. We also propose several extensions that mimic loss functions and criteria for binary classification with asymmetric losses, and show how to naturally obtain sets with optimized conditional coverage. We derive efficient optimization algorithms, either based on stochastic gradient descent or reweighted least-squares formulations, and illustrate our findings with a series of experiments on synthetic datasets for classification and regression tasks, showing improvements over approaches that aim for marginal coverage.
☆ Evidential Trust-Aware Model Personalization in Decentralized Federated Learning for Wearable IoT
Decentralized federated learning (DFL) enables collaborative model training across edge devices without centralized coordination, offering resilience against single points of failure. However, statistical heterogeneity arising from non-identically distributed local data creates a fundamental challenge: nodes must learn personalized models adapted to their local distributions while selectively collaborating with compatible peers. Existing approaches either enforce a single global model that fits no one well, or rely on heuristic peer selection mechanisms that cannot distinguish between peers with genuinely incompatible data distributions and those with valuable complementary knowledge. We present Murmura, a framework that leverages evidential deep learning to enable trust-aware model personalization in DFL. Our key insight is that epistemic uncertainty from Dirichlet-based evidential models directly indicates peer compatibility: high epistemic uncertainty when a peer's model evaluates local data reveals distributional mismatch, enabling nodes to exclude incompatible influence while maintaining personalized models through selective collaboration. Murmura introduces a trust-aware aggregation mechanism that computes peer compatibility scores through cross-evaluation on local validation samples and personalizes model aggregation based on evidential trust with adaptive thresholds. Evaluation on three wearable IoT datasets (UCI HAR, PAMAP2, PPG-DaLiA) demonstrates that Murmura reduces performance degradation from IID to non-IID conditions compared to baseline (0.9% vs. 19.3%), achieves 7.4$\times$ faster convergence, and maintains stable accuracy across hyperparameter choices. These results establish evidential uncertainty as a principled foundation for compatibility-aware personalization in decentralized heterogeneous environments.
☆ SAP: Syntactic Attention Pruning for Transformer-based Language Models
This paper introduces Syntactic Attention Pruning (SAP), a novel method for effectively pruning attention heads in Transformer models. Unlike conventional approaches that rely solely on mathematical analysis of model weights and activations, SAP incorporates both the syntactic structure and attention patterns of sentences to guide the pruning process. By leveraging these linguistic features, SAP not only achieves performance comparable to state-of-the-art methods but also enhances the interpretability of model behavior. To further improve robustness, we propose Candidate Filtering (CF), a mechanism that prioritizes heads based on their contribution to model performance, mitigating degradation during pruning. Experimental results indicate that SAP effectively preserves critical heads of a high density of strong attention values, outperforming existing head pruning strategies in retrain-free settings. These findings position SAP as a promising foundation for a new direction in model compression research, offering high flexibility for pruning across all transformer-based language models.
☆ A Composable Channel-Adaptive Architecture for Seizure Classification
Objective: We develop a channel-adaptive (CA) architecture that seamlessly processes multi-variate time-series with an arbitrary number of channels, and in particular intracranial electroencephalography (iEEG) recordings. Methods: Our CA architecture first processes the iEEG signal using state-of-the-art models applied to each single channel independently. The resulting features are then fused using a vector-symbolic algorithm which reconstructs the spatial relationship using a trainable scalar per channel. Finally, the fused features are accumulated in a long-term memory of up to 2 minutes to perform the classification. Each CA-model can then be pre-trained on a large corpus of iEEG recordings from multiple heterogeneous subjects. The pre-trained model is personalized to each subject via a quick fine-tuning routine, which uses equal or lower amounts of data compared to existing state-of-the-art models, but requiring only 1/5 of the time. Results: We evaluate our CA-models on a seizure detection task both on a short-term (~20 hours) and a long-term (~2500 hours) dataset. In particular, our CA-EEGWaveNet is trained on a single seizure of the tested subject, while the baseline EEGWaveNet is trained on all but one. Even in this challenging scenario, our CA-EEGWaveNet surpasses the baseline in median F1-score (0.78 vs 0.76). Similarly, CA-EEGNet based on EEGNet, also surpasses its baseline in median F1-score (0.79 vs 0.74). Conclusion and significance: Our CA-model addresses two issues: first, it is channel-adaptive and can therefore be trained across heterogeneous subjects without loss of performance; second, it increases the effective temporal context size to a clinically-relevant length. Therefore, our model is a drop-in replacement for existing models, bringing better characteristics and performance across the board.
comment: 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ HyperLoad: A Cross-Modality Enhanced Large Language Model-Based Framework for Green Data Center Cooling Load Prediction
The rapid growth of artificial intelligence is exponentially escalating computational demand, inflating data center energy use and carbon emissions, and spurring rapid deployment of green data centers to relieve resource and environmental stress. Achieving sub-minute orchestration of renewables, storage, and loads, while minimizing PUE and lifecycle carbon intensity, hinges on accurate load forecasting. However, existing methods struggle to address small-sample scenarios caused by cold start, load distortion, multi-source data fragmentation, and distribution shifts in green data centers. We introduce HyperLoad, a cross-modality framework that exploits pre-trained large language models (LLMs) to overcome data scarcity. In the Cross-Modality Knowledge Alignment phase, textual priors and time-series data are mapped to a common latent space, maximizing the utility of prior knowledge. In the Multi-Scale Feature Modeling phase, domain-aligned priors are injected through adaptive prefix-tuning, enabling rapid scenario adaptation, while an Enhanced Global Interaction Attention mechanism captures cross-device temporal dependencies. The public DCData dataset is released for benchmarking. Under both data sufficient and data scarce settings, HyperLoad consistently surpasses state-of-the-art (SOTA) baselines, demonstrating its practicality for sustainable green data center management.
☆ Explicit and Non-asymptotic Query Complexities of Rank-Based Zeroth-order Algorithm on Stochastic Smooth Functions
Zeroth-order (ZO) optimization with ordinal feedback has emerged as a fundamental problem in modern machine learning systems, particularly in human-in-the-loop settings such as reinforcement learning from human feedback, preference learning, and evolutionary strategies. While rank-based ZO algorithms enjoy strong empirical success and robustness properties, their theoretical understanding, especially under stochastic objectives and standard smoothness assumptions, remains limited. In this paper, we study rank-based zeroth-order optimization for stochastic functions where only ordinal feedback of the stochastic function is available. We propose a simple and computationally efficient rank-based ZO algorithm. Under standard assumptions including smoothness, strong convexity, and bounded second moments of stochastic gradients, we establish explicit non-asymptotic query complexity bounds for both convex and nonconvex objectives. Notably, our results match the best-known query complexities of value-based ZO algorithms, demonstrating that ordinal information alone is sufficient for optimal query efficiency in stochastic settings. Our analysis departs from existing drift-based and information-geometric techniques, offering new tools for the study of rank-based optimization under noise. These findings narrow the gap between theory and practice and provide a principled foundation for optimization driven by human preferences.
☆ Timely Parameter Updating in Over-the-Air Federated Learning
Incorporating over-the-air computations (OAC) into the model training process of federated learning (FL) is an effective approach to alleviating the communication bottleneck in FL systems. Under OAC-FL, every client modulates its intermediate parameters, such as gradient, onto the same set of orthogonal waveforms and simultaneously transmits the radio signal to the edge server. By exploiting the superposition property of multiple-access channels, the edge server can obtain an automatically aggregated global gradient from the received signal. However, the limited number of orthogonal waveforms available in practical systems is fundamentally mismatched with the high dimensionality of modern deep learning models. To address this issue, we propose Freshness Freshness-mAgnItude awaRe top-k (FAIR-k), an algorithm that selects, in each communication round, the most impactful subset of gradients to be updated over the air. In essence, FAIR-k combines the complementary strengths of the Round-Robin and Top-k algorithms, striking a delicate balance between timeliness (freshness of parameter updates) and importance (gradient magnitude). Leveraging tools from Markov analysis, we characterize the distribution of parameter staleness under FAIR-k. Building on this, we establish the convergence rate of OAC-FL with FAIR-k, which discloses the joint effect of data heterogeneity, channel noise, and parameter staleness on the training efficiency. Notably, as opposed to conventional analyses that assume a universal Lipschitz constant across all the clients, our framework adopts a finer-grained model of the data heterogeneity. The analysis demonstrates that since FAIR-k promotes fresh (and fair) parameter updates, it not only accelerates convergence but also enhances communication efficiency by enabling an extended period of local training without significantly affecting overall training efficiency.
☆ Dual Model Deep Learning for Alzheimer Prognostication
Disease modifying therapies for Alzheimer's disease demand precise timing decisions, yet current predictive models require longitudinal observations and provide no uncertainty quantification, rendering them impractical at the critical first visit when treatment decisions must be made. We developed PROGRESS (PRognostic Generalization from REsting Static Signatures), a dual-model deep learning framework that transforms a single baseline cerebrospinal fluid biomarker assessment into actionable prognostic estimates without requiring prior clinical history. The framework addresses two complementary clinical questions: a probabilistic trajectory network predicts individualized cognitive decline with calibrated uncertainty bounds achieving near-nominal coverage, enabling honest prognostic communication; and a deep survival model estimates time to conversion from mild cognitive impairment to dementia. Using data from over 3,000 participants across 43 Alzheimer's Disease Research Centers in the National Alzheimer's Coordinating Center database, PROGRESS substantially outperforms Cox proportional hazards, Random Survival Forests, and gradient boosting methods for survival prediction. Risk stratification identifies patient groups with seven-fold differences in conversion rates, enabling clinically meaningful treatment prioritization. Leave-one-center-out validation demonstrates robust generalizability, with survival discrimination remaining strong across held-out sites despite heterogeneous measurement conditions spanning four decades of assay technologies. By combining superior survival prediction with trustworthy trajectory uncertainty quantification, PROGRESS bridges the gap between biomarker measurement and personalized clinical decision-making.
☆ DIVER-1 : Deep Integration of Vast Electrophysiological Recordings at Scale
Electrophysiology signals such as EEG and iEEG are central to neuroscience, brain-computer interfaces, and clinical applications, yet existing foundation models remain limited in scale despite clear evidence that scaling improves performance. We introduce DIVER-1, a family of EEG and iEEG foundation models trained on the largest and most diverse corpus to date-5.3k hours of iEEG and 54k hours of EEG (1.6M channel-hours from over 17.7k subjects)-and scaled up to 1.82B parameters. We present the first systematic scaling law analysis for this domain, showing that they follow data-constrained scaling laws: for a given amount of data and compute, smaller models trained for extended epochs consistently outperform larger models trained briefly. This behavior contrasts with prior electrophysiology foundation models that emphasized model size over training duration. To achieve strong performance, we also design architectural innovations including any-variate attention, sliding temporal conditional positional encoding, and multi-domain reconstruction. DIVER-1 iEEG and EEG models each achieve state-of-the-art performance on their respective benchmarks, establishing a concrete guidelines for efficient scaling and resource allocation in electrophysiology foundation model development.
comment: 47 pages, 13 figures, 26 tables
☆ Auditing Significance, Metric Choice, and Demographic Fairness in Medical AI Challenges MICCAI 2025
Open challenges have become the de facto standard for comparative ranking of medical AI methods. Despite their importance, medical AI leaderboards exhibit three persistent limitations: (1) score gaps are rarely tested for statistical significance, so rank stability is unknown; (2) single averaged metrics are applied to every organ, hiding clinically important boundary errors; (3) performance across intersecting demographics is seldom reported, masking fairness and equity gaps. We introduce RankInsight, an open-source toolkit that seeks to address these limitations. RankInsight (1) computes pair-wise significance maps that show the nnU-Net family outperforms Vision-Language and MONAI submissions with high statistical certainty; (2) recomputes leaderboards with organ-appropriate metrics, reversing the order of the top four models when Dice is replaced by NSD for tubular structures; and (3) audits intersectional fairness, revealing that more than half of the MONAI-based entries have the largest gender-race discrepancy on our proprietary Johns Hopkins Hospital dataset. The RankInsight toolkit is publicly released and can be directly applied to past, ongoing, and future challenges. It enables organizers and participants to publish rankings that are statistically sound, clinically meaningful, and demographically fair.
comment: MICCAI 2025 Workshop on Machine Learning in Medical Imaging
☆ On Cost-Aware Sequential Hypothesis Testing with Random Costs and Action Cancellation
We study a variant of cost-aware sequential hypothesis testing in which a single active Decision Maker (DM) selects actions with positive, random costs to identify the true hypothesis under an average error constraint, while minimizing the expected total cost. The DM may abort an in-progress action, yielding no sample, by truncating its realized cost at a smaller, tunable deterministic limit, which we term a per-action deadline. We analyze how this cancellation option can be exploited under two cost-revelation models: ex-post, where the cost is revealed only after the sample is obtained, and ex-ante, where the cost accrues before sample acquisition. In the ex-post model, per-action deadlines do not affect the expected total cost, and the cost-error tradeoffs coincide with the baseline obtained by replacing deterministic costs with cost means. In the ex-ante model, we show how per-action deadlines inflate the expected number of times actions are applied, and that the resulting expected total cost can be reduced to the constant-cost setting by introducing an effective per-action cost. We characterize when deadlines are beneficial and study several families in detail.
comment: 9 pages, 7 figures
☆ Fraud Detection Through Large-Scale Graph Clustering with Heterogeneous Link Transformation
Collaborative fraud, where multiple fraudulent accounts coordinate to exploit online payment systems, poses significant challenges due to the formation of complex network structures. Traditional detection methods that rely solely on high-confidence identity links suffer from limited coverage, while approaches using all available linkages often result in fragmented graphs with reduced clustering effectiveness. In this paper, we propose a novel graph-based fraud detection framework that addresses the challenge of large-scale heterogeneous graph clustering through a principled link transformation approach. Our method distinguishes between \emph{hard links} (high-confidence identity relationships such as phone numbers, credit cards, and national IDs) and \emph{soft links} (behavioral associations including device fingerprints, cookies, and IP addresses). We introduce a graph transformation technique that first identifies connected components via hard links, merges them into super-nodes, and then reconstructs a weighted soft-link graph amenable to efficient embedding and clustering. The transformed graph is processed using LINE (Large-scale Information Network Embedding) for representation learning, followed by HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) for density-based cluster discovery. Experiments on a real-world payment platform dataset demonstrate that our approach achieves significant graph size reduction (from 25 million to 7.7 million nodes), doubles the detection coverage compared to hard-link-only baselines, and maintains high precision across identified fraud clusters. Our framework provides a scalable and practical solution for industrial-scale fraud detection systems.
comment: 13 pages, 6 figures
☆ Efficient Personalization of Generative Models via Optimal Experimental Design
Preference learning from human feedback has the ability to align generative models with the needs of end-users. Human feedback is costly and time-consuming to obtain, which creates demand for data-efficient query selection methods. This work presents a novel approach that leverages optimal experimental design to ask humans the most informative preference queries, from which we can elucidate the latent reward function modeling user preferences efficiently. We formulate the problem of preference query selection as the one that maximizes the information about the underlying latent preference model. We show that this problem has a convex optimization formulation, and introduce a statistically and computationally efficient algorithm ED-PBRL that is supported by theoretical guarantees and can efficiently construct structured queries such as images or text. We empirically present the proposed framework by personalizing a text-to-image generative model to user-specific styles, showing that it requires less preference queries compared to random query selection.
☆ Time-series Forecast for Indoor Zone Air Temperature with Long Horizons: A Case Study with Sensor-based Data from a Smart Building
With the press of global climate change, extreme weather and sudden weather changes are becoming increasingly common. To maintain a comfortable indoor environment and minimize the contribution of the building to climate change as much as possible, higher requirements are placed on the operation and control of HVAC systems, e.g., more energy-efficient and flexible to response to the rapid change of weather. This places demands on the rapid modeling and prediction of zone air temperatures of buildings. Compared to the traditional simulation-based approach such as EnergyPlus and DOE2, a hybrid approach combined physics and data-driven is more suitable. Recently, the availability of high-quality datasets and algorithmic breakthroughs have driven a considerable amount of work in this field. However, in the niche of short- and long-term predictions, there are still some gaps in existing research. This paper aims to develop a time series forecast model to predict the zone air temperature in a building located in America on a 2-week horizon. The findings could be further improved to support intelligent control and operation of HVAC systems (i.e. demand flexibility) and could also be used as hybrid building energy modeling.
☆ Elevating Intrusion Detection and Security Fortification in Intelligent Networks through Cutting-Edge Machine Learning Paradigms
The proliferation of IoT devices and their reliance on Wi-Fi networks have introduced significant security vulnerabilities, particularly the KRACK and Kr00k attacks, which exploit weaknesses in WPA2 encryption to intercept and manipulate sensitive data. Traditional IDS using classifiers face challenges such as model overfitting, incomplete feature extraction, and high false positive rates, limiting their effectiveness in real-world deployments. To address these challenges, this study proposes a robust multiclass machine learning based intrusion detection framework. The methodology integrates advanced feature selection techniques to identify critical attributes, mitigating redundancy and enhancing detection accuracy. Two distinct ML architectures are implemented: a baseline classifier pipeline and a stacked ensemble model combining noise injection, Principal Component Analysis (PCA), and meta learning to improve generalization and reduce false positives. Evaluated on the AWID3 data set, the proposed ensemble architecture achieves superior performance, with an accuracy of 98%, precision of 98%, recall of 98%, and a false positive rate of just 2%, outperforming existing state-of-the-art methods. This work demonstrates the efficacy of combining preprocessing strategies with ensemble learning to fortify network security against sophisticated Wi-Fi attacks, offering a scalable and reliable solution for IoT environments. Future directions include real-time deployment and adversarial resilience testing to further enhance the model's adaptability.
☆ A Surrogate-Augmented Symbolic CFD-Driven Training Framework for Accelerating Multi-objective Physical Model Development
Computational Fluid Dynamics (CFD)-driven training combines machine learning (ML) with CFD solvers to develop physically consistent closure models with improved predictive accuracy. In the original framework, each ML-generated candidate model is embedded in a CFD solver and evaluated against reference data, requiring hundreds to thousands of high-fidelity simulations and resulting in prohibitive computational cost for complex flows. To overcome this limitation, we propose an extended framework that integrates surrogate modeling into symbolic CFD-driven training in real time to reduce training cost. The surrogate model learns to approximate the errors of ML-generated models based on previous CFD evaluations and is continuously refined during training. Newly generated models are first assessed using the surrogate, and only those predicted to yield small errors or high uncertainty are subsequently evaluated with full CFD simulations. Discrete expressions generated by symbolic regression are mapped into a continuous space using averaged input-symbol values as inputs to a probabilistic surrogate model. To support multi-objective model training, particularly when fixed weighting of competing quantities is challenging, the surrogate is extended to a multi-output formulation by generalizing the kernel to a matrix form, providing one mean and variance prediction per training objective. Selection metrics based on these probabilistic outputs are used to identify an optimal training setup. The proposed surrogate-augmented CFD-driven training framework is demonstrated across a range of statistically one- and two-dimensional flows, including both single- and multi-expression model optimization. In all cases, the framework substantially reduces training cost while maintaining predictive accuracy comparable to that of the original CFD-driven approach.
☆ Recontextualization Mitigates Specification Gaming without Modifying the Specification
Developers often struggle to specify correct training labels and rewards. Perhaps they don't need to. We propose recontextualization, which reduces how often language models "game" training signals, performing misbehaviors those signals mistakenly reinforce. We show recontextualization prevents models from learning to 1) prioritize evaluation metrics over chat response quality; 2) special-case code to pass incorrect tests; 3) lie to users; and 4) become sycophantic. Our method works by generating completions from prompts discouraging misbehavior and then recontextualizing them as though they were in response to prompts permitting misbehavior. Recontextualization trains language models to resist misbehavior even when instructions permit it. This mitigates the reinforcement of misbehavior from misspecified training signals, reducing specification gaming without improving the supervision signal.
comment: 57 pages, 41 figures
☆ The Erasure Illusion: Stress-Testing the Generalization of LLM Forgetting Evaluation
Machine unlearning aims to remove specific data influences from trained models, a capability essential for adhering to copyright laws and ensuring AI safety. Current unlearning metrics typically measure success by monitoring the model's performance degradation on the specific unlearning dataset ($D_u$). We argue that for Large Language Models (LLMs), this evaluation paradigm is insufficient and potentially misleading. Many real-world uses of unlearning--motivated by copyright or safety--implicitly target not only verbatim content in $D_u$, but also behaviors influenced by the broader generalizations the model derived from it. We demonstrate that LLMs can pass standard unlearning evaluation and appear to have ``forgotten'' the target knowledge, while simultaneously retaining strong capabilities on content that is semantically adjacent to $D_u$. This phenomenon indicates that erasing exact sentences does not necessarily equate to removing the underlying knowledge. To address this gap, we propose \name, an automated stress-testing framework that generates a surrogate dataset, $\tilde{D}_u$. This surrogate set is constructed to be semantically derived from $D_u$ yet sufficiently distinct in embedding space. By comparing unlearning metric scores between $D_u$ and $\tilde{D}_u$, we can stress-test the reliability of the metric itself. Our extensive evaluation across three LLM families (Llama-3-8B, Qwen2.5-7B, and Zephyr-7B-$β$), three distinct datasets, and seven standard metrics reveals widespread inconsistencies. We find that current metrics frequently overestimate unlearning success, failing to detect retained knowledge exposed by our stress-test datasets.
☆ CETCAM: Camera-Controllable Video Generation via Consistent and Extensible Tokenization
Achieving precise camera control in video generation remains challenging, as existing methods often rely on camera pose annotations that are difficult to scale to large and dynamic datasets and are frequently inconsistent with depth estimation, leading to train-test discrepancies. We introduce CETCAM, a camera-controllable video generation framework that eliminates the need for camera annotations through a consistent and extensible tokenization scheme. CETCAM leverages recent advances in geometry foundation models, such as VGGT, to estimate depth and camera parameters and converts them into unified, geometry-aware tokens. These tokens are seamlessly integrated into a pretrained video diffusion backbone via lightweight context blocks. Trained in two progressive stages, CETCAM first learns robust camera controllability from diverse raw video data and then refines fine-grained visual quality using curated high-fidelity datasets. Extensive experiments across multiple benchmarks demonstrate state-of-the-art geometric consistency, temporal stability, and visual realism. Moreover, CETCAM exhibits strong adaptability to additional control modalities, including inpainting and layout control, highlighting its flexibility beyond camera control. The project page is available at https://sjtuytc.github.io/CETCam_project_page.github.io/.
☆ Optimizer Dynamics at the Edge of Stability with Differential Privacy
Deep learning models can reveal sensitive information about individual training examples, and while differential privacy (DP) provides guarantees restricting such leakage, it also alters optimization dynamics in poorly understood ways. We study the training dynamics of neural networks under DP by comparing Gradient Descent (GD), and Adam to their privacy-preserving variants. Prior work shows that these optimizers exhibit distinct stability dynamics: full-batch methods train at the Edge of Stability (EoS), while mini-batch and adaptive methods exhibit analogous edge-of-stability behavior. At these regimes, the training loss and the sharpness--the maximum eigenvalue of the training loss Hessian--exhibit certain characteristic behavior. In DP training, per-example gradient clipping and Gaussian noise modify the update rule, and it is unclear whether these stability patterns persist. We analyze how clipping and noise change sharpness and loss evolution and show that while DP generally reduces the sharpness and can prevent optimizers from fully reaching the classical stability thresholds, patterns from EoS and analogous adaptive methods stability regimes persist, with the largest learning rates and largest privacy budgets approaching, and sometimes exceeding, these thresholds. These findings highlight the unpredictability introduced by DP in neural network optimization.
comment: 17 pages, 5 figures
☆ Efficient Jailbreak Mitigation Using Semantic Linear Classification in a Multi-Staged Pipeline
Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time to completion from approximately 450s to 47s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
comment: Under Review
☆ The 6th International Verification of Neural Networks Competition (VNN-COMP 2025): Summary and Results
This report summarizes the 6th International Verification of Neural Networks Competition (VNN-COMP 2025), held as a part of the 8th International Symposium on AI Verification (SAIV), that was collocated with the 37th International Conference on Computer-Aided Verification (CAV). VNN-COMP is held annually to facilitate the fair and objective comparison of state-of-the-art neural network verification tools, encourage the standardization of tool interfaces, and bring together the neural network verification community. To this end, standardized formats for networks (ONNX) and specification (VNN-LIB) were defined, tools were evaluated on equal-cost hardware (using an automatic evaluation pipeline based on AWS instances), and tool parameters were chosen by the participants before the final test sets were made public. In the 2025 iteration, 8 teams participated on a diverse set of 16 regular and 9 extended benchmarks. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this iteration of this competition.
comment: Report on the results of VNN-COMP 2025. arXiv admin note: substantial text overlap with arXiv:2412.19985, arXiv:2312.16760, arXiv:2212.10376
☆ Context-Aware Initialization for Reducing Generative Path Length in Diffusion Language Models
Diffusion Large Language Models (DLLMs) enable fully parallel token decoding but often remain impractical at inference time due to the many denoising iterations required to refine an information-free, fully masked initialization into coherent text. Most existing acceleration methods focus on traversing this generative trajectory more efficiently via improved solvers or sampling strategies. We advance a complementary perspective: shorten the trajectory itself by starting closer to the target distribution through context-aware initialization. We propose a training-free interface that injects prompt-conditioned priors from a lightweight auxiliary model into the diffusion initialization, and instantiate it with two mechanisms: discrete token injection and representation-level embedding interpolation. Because injected priors can be imperfect and unmask-only decoding can over-commit early, we also introduce a simple confidence-based remasking mechanism as a form of prior skepticism. Preliminary evidence on GSM8K suggests that context-aware initialization can substantially reduce denoising iterations (about 35\% fewer function evaluations in our setting), while also exposing a key open challenge: naive warm-starting can degrade final accuracy relative to strong diffusion baselines. We use these findings to motivate a research agenda around calibration, revision mechanisms, and representation alignment for reliable warm-started diffusion decoding.
☆ ORPR: An OR-Guided Pretrain-then-Reinforce Learning Model for Inventory Management
As the pursuit of synergy between Artificial Intelligence (AI) and Operations Research (OR) gains momentum in handling complex inventory systems, a critical challenge persists: how to effectively reconcile AI's adaptive perception with OR's structural rigor. To bridge this gap, we propose a novel OR-Guided "Pretrain-then-Reinforce" framework. To provide structured guidance, we propose a simulation-augmented OR model that generates high-quality reference decisions, implicitly capturing complex business constraints and managerial preferences. Leveraging these OR-derived decisions as foundational training labels, we design a domain-informed deep learning foundation model to establish foundational decision-making capabilities, followed by a reinforcement learning (RL) fine-tuning stage. Uniquely, we position RL as a deep alignment mechanism that enables the AI agent to internalize the optimality principles of OR, while simultaneously leveraging exploration for general policy refinement and allowing expert guidance for scenario-specific adaptation (e.g., promotional events). Validated through extensive numerical experiments and a field deployment at JD.com augmented by a Difference-in-Differences (DiD) analysis, our model significantly outperforms incumbent industrial practices, delivering real-world gains of a 5.27-day reduction in turnover and a 2.29% increase in in-stock rates, alongside a 29.95% decrease in holding costs. Contrary to the prevailing trend of brute-force model scaling, our study demonstrates that a lightweight, domain-informed model can deliver state-of-the-art performance and robust transferability when guided by structured OR logic. This approach offers a scalable and cost-effective paradigm for intelligent supply chain management, highlighting the value of deeply aligning AI with OR.
☆ R-GenIMA: Integrating Neuroimaging and Genetics with Interpretable Multimodal AI for Alzheimer's Disease Progression
Early detection of Alzheimer's disease (AD) requires models capable of integrating macro-scale neuroanatomical alterations with micro-scale genetic susceptibility, yet existing multimodal approaches struggle to align these heterogeneous signals. We introduce R-GenIMA, an interpretable multimodal large language model that couples a novel ROI-wise vision transformer with genetic prompting to jointly model structural MRI and single nucleotide polymorphisms (SNPs) variations. By representing each anatomically parcellated brain region as a visual token and encoding SNP profiles as structured text, the framework enables cross-modal attention that links regional atrophy patterns to underlying genetic factors. Applied to the ADNI cohort, R-GenIMA achieves state-of-the-art performance in four-way classification across normal cognition (NC), subjective memory concerns (SMC), mild cognitive impairment (MCI), and AD. Beyond predictive accuracy, the model yields biologically meaningful explanations by identifying stage-specific brain regions and gene signatures, as well as coherent ROI-Gene association patterns across the disease continuum. Attention-based attribution revealed genes consistently enriched for established GWAS-supported AD risk loci, including APOE, BIN1, CLU, and RBFOX1. Stage-resolved neuroanatomical signatures identified shared vulnerability hubs across disease stages alongside stage-specific patterns: striatal involvement in subjective decline, frontotemporal engagement during prodromal impairment, and consolidated multimodal network disruption in AD. These results demonstrate that interpretable multimodal AI can synthesize imaging and genetics to reveal mechanistic insights, providing a foundation for clinically deployable tools that enable earlier risk stratification and inform precision therapeutic strategies in Alzheimer's disease.
☆ OPBO: Order-Preserving Bayesian Optimization
Bayesian optimization is an effective method for solving expensive black-box optimization problems. Most existing methods use Gaussian processes (GP) as the surrogate model for approximating the black-box objective function, it is well-known that it can fail in high-dimensional space (e.g., dimension over 500). We argue that the reliance of GP on precise numerical fitting is fundamentally ill-suited in high-dimensional space, where it leads to prohibitive computational complexity. In order to address this, we propose a simple order-preserving Bayesian optimization (OPBO) method, where the surrogate model preserves the order, instead of the value, of the black-box objective function. Then we can use a simple but effective OP neural network (NN) to replace GP as the surrogate model. Moreover, instead of searching for the best solution from the acquisition model, we select good-enough solutions in the ordinal set to reduce computational cost. The experimental results show that for high-dimensional (over 500) black-box optimization problems, the proposed OPBO significantly outperforms traditional BO methods based on regression NN and GP. The source code is available at https://github.com/pengwei222/OPBO.
comment: 13 pages
☆ Outlier detection in mixed-attribute data: a semi-supervised approach with fuzzy approximations and relative entropy
Outlier detection is a critical task in data mining, aimed at identifying objects that significantly deviate from the norm. Semi-supervised methods improve detection performance by leveraging partially labeled data but typically overlook the uncertainty and heterogeneity of real-world mixed-attribute data. This paper introduces a semi-supervised outlier detection method, namely fuzzy rough sets-based outlier detection (FROD), to effectively handle these challenges. Specifically, we first utilize a small subset of labeled data to construct fuzzy decision systems, through which we introduce the attribute classification accuracy based on fuzzy approximations to evaluate the contribution of attribute sets in outlier detection. Unlabeled data is then used to compute fuzzy relative entropy, which provides a characterization of outliers from the perspective of uncertainty. Finally, we develop the detection algorithm by combining attribute classification accuracy with fuzzy relative entropy. Experimental results on 16 public datasets show that FROD is comparable with or better than leading detection algorithms. All datasets and source codes are accessible at https://github.com/ChenBaiyang/FROD. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.ijar.2025.109373
comment: Author's accepted manuscript
☆ Consistency-guided semi-supervised outlier detection in heterogeneous data using fuzzy rough sets
Outlier detection aims to find samples that behave differently from the majority of the data. Semi-supervised detection methods can utilize the supervision of partial labels, thus reducing false positive rates. However, most of the current semi-supervised methods focus on numerical data and neglect the heterogeneity of data information. In this paper, we propose a consistency-guided outlier detection algorithm (COD) for heterogeneous data with the fuzzy rough set theory in a semi-supervised manner. First, a few labeled outliers are leveraged to construct label-informed fuzzy similarity relations. Next, the consistency of the fuzzy decision system is introduced to evaluate attributes' contributions to knowledge classification. Subsequently, we define the outlier factor based on the fuzzy similarity class and predict outliers by integrating the classification consistency and the outlier factor. The proposed algorithm is extensively evaluated on 15 freshly proposed datasets. Experimental results demonstrate that COD is better than or comparable with the leading outlier detectors. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.asoc.2024.112070
comment: Author's Accepted Manuscript
☆ On Conditional Stochastic Interpolation for Generative Nonlinear Sufficient Dimension Reduction
Identifying low-dimensional sufficient structures in nonlinear sufficient dimension reduction (SDR) has long been a fundamental yet challenging problem. Most existing methods lack theoretical guarantees of exhaustiveness in identifying lower dimensional structures, either at the population level or at the sample level. We tackle this issue by proposing a new method, generative sufficient dimension reduction (GenSDR), which leverages modern generative models. We show that GenSDR is able to fully recover the information contained in the central $σ$-field at both the population and sample levels. In particular, at the sample level, we establish a consistency property for the GenSDR estimator from the perspective of conditional distributions, capitalizing on the distributional learning capabilities of deep generative models. Moreover, by incorporating an ensemble technique, we extend GenSDR to accommodate scenarios with non-Euclidean responses, thereby substantially broadening its applicability. Extensive numerical results demonstrate the outstanding empirical performance of GenSDR and highlight its strong potential for addressing a wide range of complex, real-world tasks.
☆ Lag Operator SSMs: A Geometric Framework for Structured State Space Modeling
Structured State Space Models (SSMs), which are at the heart of the recently popular Mamba architecture, are powerful tools for sequence modeling. However, their theoretical foundation relies on a complex, multi-stage process of continuous-time modeling and subsequent discretization, which can obscure intuition. We introduce a direct, first-principles framework for constructing discrete-time SSMs that is both flexible and modular. Our approach is based on a novel lag operator, which geometrically derives the discrete-time recurrence by measuring how the system's basis functions "slide" and change from one timestep to the next. The resulting state matrices are computed via a single inner product involving this operator, offering a modular design space for creating novel SSMs by flexibly combining different basis functions and time-warping schemes. To validate our approach, we demonstrate that a specific instance exactly recovers the recurrence of the influential HiPPO model. Numerical simulations confirm our derivation, providing new theoretical tools for designing flexible and robust sequence models.
♻ ☆ Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Vision-Language-Action (VLA) models adapt large vision-language backbones to map images and instructions into robot actions. However, prevailing VLAs either generate actions auto-regressively in a fixed left-to-right order or attach separate MLP or diffusion heads outside the backbone, leading to fragmented information pathways and specialized training requirements that hinder a unified, scalable architecture. We present Discrete Diffusion VLA, a unified-transformer policy that models discretized action chunks with discrete diffusion. The design retains diffusion's progressive refinement paradigm while remaining natively compatible with the discrete token interface of VLMs. Our method achieves an adaptive decoding order that resolves easy action elements before harder ones and uses secondary re-masking to revisit uncertain predictions across refinement rounds, which improves consistency and enables robust error correction. This unified decoder preserves pre-trained vision-language priors, supports parallel decoding, breaks the autoregressive bottleneck, and reduces the number of function evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on SimplerEnv-Bridge. We also provide ablation study on vision-language ability retention on LIBERO-OOD (Out-of-Distribution) benchmark, with our method improving over autoregressive, MLP decoder and continuous diffusion baselines. These findings indicate that discrete-diffusion VLA supports precise action modeling and consistent training, laying groundwork for scaling VLA to larger models and datasets. Our code is available at https://github.com/Liang-ZX/DiscreteDiffusionVLA/tree/libero.
comment: New experiments on VL retention and new ablations. 18 pages
♻ ☆ LiveOIBench: Can Large Language Models Outperform Human Contestants in Informatics Olympiads?
Competitive programming problems increasingly serve as valuable benchmarks to evaluate the coding capabilities of large language models (LLMs) due to their complexity and ease of verification. Yet, current coding benchmarks face limitations such as lack of exceptionally challenging problems, insufficient test case coverage, reliance on online platform APIs that limit accessibility. To address these issues, we introduce LiveOIBench, a comprehensive benchmark featuring 403 expert-curated Olympiad-level competitive programming problems, each with an average of 60 expert-designed test cases. The problems are sourced directly from 72 official contests of 14 Informatics Olympiads in different regions conducted between 2023 and 2025. LiveOIBench distinguishes itself through four key features: (1) meticulously curated high-quality tasks with detailed subtask rubrics and extensive private test cases; (2) direct integration of elite contestant performance data to enable informative comparison against top-performing humans; (3) planned continuous, contamination-free updates from newly released Olympiad problems; and (4) a self-contained evaluation system facilitating offline and easy-to-reproduce assessments. Benchmarking 34 popular general-purpose and reasoning LLMs, we find that GPT-5 achieves a notable 81.76th percentile, a strong result that nonetheless falls short of top human contestants, who usually place above 90th. In contrast, among open-weight reasoning models, GPT-OSS-120B achieves only a 60th percentile, underscoring significant capability disparities from frontier closed models. Detailed analyses indicate that robust reasoning models prioritize precise problem analysis over excessive exploration, suggesting future models should emphasize structured analysis and minimize unnecessary exploration. All data, code, and leaderboard results are publicly available on our website.
♻ ☆ Probing forced responses and causality in data-driven climate emulators: conceptual limitations and the role of reduced-order models
A central challenge in climate science and applied mathematics is developing data-driven models of multiscale systems that capture both stationary statistics and responses to external perturbations. Current neural climate emulators aim to resolve the atmosphere-ocean system in all its complexity but often struggle to reproduce forced responses, limiting their use in causal studies such as Green's function experiments. To explore the origin of these limitations, we first examine a simplified dynamical system that retains key features of climate variability. We interpret the results through linear response theory, providing a rigorous framework to evaluate neural models beyond stationary statistics and to probe causal mechanisms. We argue that the ability of emulators of multiscale systems to reproduce perturbed statistics depends critically on (i) the choice of an appropriate coarse-grained representation and (ii) careful parameterizations of unresolved processes. These insights highlight reduced-order models, tailored to specific goals, processes, and scales, as valuable alternatives to general-purpose emulators. We next consider a real-world application by developing a neural model to investigate the joint variability of the surface temperature field and radiative fluxes. The model infers a multiplicative noise process directly from data, largely reproduces the system's probability distribution, and enables causal studies through forced responses. We discuss its limitations and outline directions for future work. Overall, these results expose key challenges in data-driven modeling of multiscale physical systems and underscore the value of coarse-grained, stochastic approaches, with response theory providing a principled framework to guide model design and enhance causal understanding.
♻ ☆ Differentiable Nonlinear Model Predictive Control
The efficient computation of parametric solution sensitivities is a key challenge in the integration of learning-enhanced methods with nonlinear model predictive control (MPC), as their availability is crucial for many learning algorithms. This paper discusses the computation of solution sensitivities of general nonlinear programs (NLPs) using the implicit function theorem (IFT) and smoothed optimality conditions treated in interior-point methods (IPM). We detail sensitivity computation within a sequential quadratic programming (SQP) method which employs an IPM for the quadratic subproblems. Previous works presented in the machine learning community are limited to convex or unconstrained formulations, or lack an implementation for efficient sensitivity evaluation. The publication is accompanied by an efficient open-source implementation within the acados framework, providing both forward and adjoint sensitivities for general optimal control problems, achieving speedups exceeding 3x over the state-of-the-art solvers mpc.pytorch and cvxpygen.
♻ ☆ GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs
Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: \textbf{Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures?} We introduce \textbf{GraphShaper}, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.
comment: This submission has been withdrawn by the authors due to a fundamental error in the methodology that affects the validity of the main results
♻ ☆ Source-Optimal Training is Transfer-Suboptimal
We prove that training a source model optimally for its own task is generically suboptimal when the objective is downstream transfer. We study the source-side optimization problem in L2-SP ridge regression and show a fundamental mismatch between the source-optimal and transfer-optimal source regularization: outside of a measure-zero set, $τ_0^* \neq τ_S^*$. We characterize the transfer-optimal source penalty $τ_0^*$ as a function of task alignment and identify an alignment-dependent reversal: with imperfect alignment ($0<ρ<1$), transfer benefits from stronger source regularization, while in super-aligned regimes ($ρ>1$), transfer benefits from weaker regularization. In isotropic settings, the decision of whether transfer helps is independent of the target sample size and noise, depending only on task alignment and source characteristics. We verify the linear predictions in a synthetic ridge regression experiment, and we present CIFAR-10 experiments as evidence that the source-optimal versus transfer-optimal mismatch can persist in nonlinear networks.
♻ ☆ Shape it Up! Restoring LLM Safety during Finetuning NeurIPS'25
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks. Our code is publicly available at https://github.com/poloclub/star-dss.
comment: NeurIPS'25
♻ ☆ Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
comment: 11 pages
♻ ☆ AIDOVECL: AI-generated Dataset of Outpainted Vehicles for Eye-level Classification and Localization
Image labeling is a critical bottleneck in the development of computer vision technologies, often constraining the potential of machine learning models due to the time-intensive nature of manual annotations. This work introduces a novel approach that leverages outpainting to mitigate the problem of annotated data scarcity by generating artificial contexts and annotations, significantly reducing manual labeling efforts. We apply this technique to a particularly acute challenge in autonomous driving, urban planning, and environmental monitoring: the lack of diverse, eye-level vehicle images in desired classes. Our dataset comprises AI-generated vehicle images obtained by detecting and cropping vehicles from manually selected seed images, which are then outpainted onto larger canvases to simulate varied real-world conditions. The outpainted images include detailed annotations, providing high-quality ground truth data. Advanced outpainting techniques and image quality assessments ensure visual fidelity and contextual relevance. Ablation results show that incorporating AIDOVECL improves overall detection performance by up to 10%, and delivers gains of up to 40% in settings with greater diversity of context, object scale, and placement, with underrepresented classes achieving up to 50% higher true positives. AIDOVECL enhances vehicle detection by augmenting real training data and supporting evaluation across diverse scenarios. By demonstrating outpainting as an automatic annotation paradigm, it offers a practical and versatile solution for building fine-grained datasets with reduced labeling effort across multiple machine learning domains. The code and links to datasets used in this study are available for further research and replication at https://github.com/amir-kazemi/aidovecl .
comment: 34 pages, 10 figures, 5 tables
♻ ☆ Estimating Spatially Resolved Radiation Fields Using Neural Networks
We present an in-depth analysis on how to build and train neural networks to estimate the spatial distribution of scattered radiation fields for radiation protection dosimetry in medical radiation fields, such as those found in interventional radiology and cardiology. We present three different synthetically generated datasets with increasing complexity for training, using a Monte-Carlo Simulation application based on Geant4. On those datasets, we evaluate convolutional and fully connected architectures of neural networks to demonstrate which design decisions work well for reconstructing the fluence and spectra distributions over the spatial domain of such radiation fields. All our datasets, as well as our training pipeline, are published as open source in separate repositories.
♻ ☆ Addition is almost all you need: Compressing neural networks with double binary factorization
Binary quantization approaches, which replace weight matrices with binary matrices and substitute costly multiplications with cheaper additions, offer a computationally efficient approach to address the increasing computational and storage requirements of Large Language Models (LLMs). However, the severe quantization constraint ($\pm1$) can lead to significant accuracy degradation. In this paper, we propose Double Binary Factorization (DBF), a novel method that factorizes dense weight matrices into products of two binary (sign) matrices, each accompanied by scaling vectors. DBF preserves the efficiency advantages of binary representations while achieving compression rates that are competitive with or superior to state-of-the-art methods. Specifically, in a 1-bit per weight range, DBF is better than existing binarization approaches. In a 2-bit per weight range, DBF is competitive with the best quantization methods like QuIP\# and QTIP. Unlike most existing compression techniques, which offer limited compression level choices, DBF allows fine-grained control over compression ratios by adjusting the factorization's intermediate dimension. Based on this advantage, we further introduce an algorithm for estimating non-uniform layer-wise compression ratios for DBF, based on previously developed channel pruning criteria. Code available at: https://github.com/usamec/double_binary
♻ ☆ Nonparametric estimation of conditional probability distributions using a generative approach based on conditional push-forward neural networks
We introduce conditional push-forward neural networks (CPFN), a generative framework for conditional distribution estimation. Instead of directly modeling the conditional density $f_{Y|X}$, CPFN learns a stochastic map $\varphi=\varphi(x,u)$ such that $\varphi(x,U)$ and $Y|X=x$ follow approximately the same law, with $U$ a suitable random vector of pre-defined latent variables. This enables efficient conditional sampling and straightforward estimation of conditional statistics through Monte Carlo methods. The model is trained via an objective function derived from a Kullback-Leibler formulation, without requiring invertibility or adversarial training. We establish a near-asymptotic consistency result and demonstrate experimentally that CPFN can achieve performance competitive with, or even superior to, state-of-the-art methods, including kernel estimators, tree-based algorithms, and popular deep learning techniques, all while remaining lightweight and easy to train.
♻ ☆ Anti-Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances in Flat Directions
Stochastic Gradient Descent (SGD) has become a cornerstone of neural network optimization due to its computational efficiency and generalization capabilities. However, the gradient noise introduced by SGD is often assumed to be uncorrelated over time, despite the common practice of epoch-based training where data is sampled without replacement. In this work, we challenge this assumption and investigate the effects of epoch-based noise correlations on the stationary distribution of discrete-time SGD with momentum. Our main contributions are twofold: First, we calculate the exact autocorrelation of the noise during epoch-based training under the assumption that the noise is independent of small fluctuations in the weight vector, revealing that SGD noise is inherently anti-correlated over time. Second, we explore the influence of these anti-correlations on the variance of weight fluctuations. We find that for directions with curvature of the loss greater than a hyperparameter-dependent crossover value, the conventional predictions of isotropic weight variance under stationarity, based on uncorrelated and curvature-proportional noise, are recovered. Anti-correlations have negligible effect here. However, for relatively flat directions, the weight variance is significantly reduced, leading to a considerable decrease in loss fluctuations compared to the constant weight variance assumption. Furthermore, we present a numerical experiment where training with these anti-correlations enhances test performance, suggesting that the inherent noise structure induced by epoch-based training may play a role in finding flatter minima that generalize better.
comment: 55 pages, 16 figures, Machine Learning: Science and Technology 2025
♻ ☆ SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
♻ ☆ OAT-FM: Optimal Acceleration Transport for Improved Flow Matching
As a powerful technique in generative modeling, Flow Matching (FM) aims to learn velocity fields from noise to data, which is often explained and implemented as solving Optimal Transport (OT) problems. In this study, we bridge FM and the recent theory of Optimal Acceleration Transport (OAT), developing an improved FM method called OAT-FM and exploring its benefits in both theory and practice. In particular, we demonstrate that the straightening objective hidden in existing OT-based FM methods is mathematically equivalent to minimizing the physical action associated with acceleration defined by OAT. Accordingly, instead of enforcing constant velocity, OAT-FM optimizes the acceleration transport in the product space of sample and velocity, whose objective corresponds to a necessary and sufficient condition of flow straightness. An efficient algorithm is designed to achieve OAT-FM with low complexity. OAT-FM motivates a new two-phase FM paradigm: Given a generative model trained by an arbitrary FM method, whose velocity information has been relatively reliable, we can fine-tune and improve it via OAT-FM. This paradigm eliminates the risk of data distribution drift and the need to generate a large number of noise data pairs, which consistently improves model performance in various generative tasks. Code is available at: https://github.com/AngxiaoYue/OAT-FM
♻ ☆ A Unified Representation of Neural Networks Architectures
In this paper we consider the limiting case of neural networks (NNs) architectures when the number of neurons in each hidden layer and the number of hidden layers tend to infinity thus forming a continuum, and we derive approximation errors as a function of the number of neurons and/or hidden layers. Firstly, we consider the case of neural networks with a single hidden layer and we derive an integral infinite width neural representation that generalizes existing continuous neural networks (CNNs) representations. Then we extend this to deep residual CNNs that have a finite number of integral hidden layers and residual connections. Secondly, we revisit the relation between neural ODEs and deep residual NNs and we formalize approximation errors via discretization techniques. Then, we merge these two approaches into a unified homogeneous representation of NNs as a Distributed Parameter neural Network (DiPaNet) and we show that most of the existing finite and infinite-dimensional NNs architectures are related via homogenization/discretization with the DiPaNet representation. Our approach is purely deterministic and applies to general, uniformly continuous matrix weight functions. Relations with neural fields and other neural integro-differential equations are discussed along with further possible generalizations and applications of the DiPaNet framework.
comment: Minor typographical corrections and clarifications; results unchanged
♻ ☆ Deep Variational Free Energy Calculation of Hydrogen Hugoniot
We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model for the Boltzmann distribution of the classical nuclei, an autoregressive transformer for the distribution of electrons in excited states, and a permutational equivariant flow model for the unitary backflow transformation of electron coordinates in Hartree-Fock states. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen for the temperature range where electrons occupy excited states. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. Our results bridge the gap between the results obtained by path-integral Monte Carlo calculations at high temperature and ground-state electronic methods at low temperature, thus providing a valuable benchmark for hydrogen in the warm dense matter region.
comment: 8+18 pages, 4+12 figures, for source code and raw data, see https://github.com/fermiflow/Hugoniot, https://github.com/ZihangL/hqc, https://huggingface.co/datasets/Kelvin2025q/hugoniot
♻ ☆ Personalized and Resilient Distributed Learning Through Opinion Dynamics
In this paper, we address two practical challenges of distributed learning in multi-agent network systems, namely personalization and resilience. Personalization is the need of heterogeneous agents to learn local models tailored to their own data and tasks, while still generalizing well; on the other hand, the learning process must be resilient to cyberattacks or anomalous training data to avoid disruption. Motivated by a conceptual affinity between these two requirements, we devise a distributed learning algorithm that combines distributed gradient descent and the Friedkin-Johnsen model of opinion dynamics to fulfill both of them. We quantify its convergence speed and the neighborhood that contains the final learned models, which can be easily controlled by tuning the algorithm parameters to enforce a more personalized/resilient behavior. We numerically showcase the effectiveness of our algorithm on synthetic and real-world distributed learning tasks, where it achieves high global accuracy both for personalized models and with malicious agents compared to standard strategies.
comment: Published on IEEE Transactions on Control of Network Systems. Final accepted version
♻ ☆ Overcoming Growth-Induced Forgetting in Task-Agnostic Continual Learning
In continual learning (CL), model growth enhances adaptability to new data. However, when model growth is applied improperly, especially in task-agnostic CL, where the entire grown model is used for inference, it can lead to severe degradation of learned knowledge, a problem we term growth-induced forgetting. Most existing methods that adopt model growth to improve adaptability often overlook the forgetting issue, resulting in compromised knowledge retention, making them unsuitable for task-agnostic settings. To promote both adaptability and knowledge retention with model growth, we identify the key: gradient and parameter sparsity. Introducing SparseGrow, which increases gradient sparsity through layer expansion and gradient gating to enable focused updates on parameters while preserving critical parameters, thus inhibiting forgetting. Moreover, it promotes parameter sparsity with sparse initialization and training, aiming at better control of model plasticity, improving adaptability over new data. Extensive experiments across diverse datasets, task-agnostic settings, and a large number of tasks demonstrate the necessity of controlled layer expansion and validate the effectiveness of SparseGrow in achieving high adaptability while minimizing forgetting in continual learning. By enabling model growth with sparsified gradients and parameters, SparseGrow paves the way for building scalable lifelong learning systems capable of continual adaptation with better knowledge retention.
♻ ☆ ESSA: Evolutionary Strategies for Scalable Alignment
Alignment of Large Language Models (LLMs) typically relies on Reinforcement Learning from Human Feedback (RLHF) with gradient-based optimizers such as Proximal Policy Optimization (PPO) or Group Relative Policy Optimization (GRPO). While effective, these methods require complex distributed training, large memory budgets, and careful hyperparameter tuning, all of which become increasingly difficult at billion-parameter scale. We present ESSA, Evolutionary Strategies for Scalable Alignment, a gradient-free framework that aligns LLMs using only forward inference and black-box optimization. ESSA focuses optimization on Low-Rank Adapters (LoRA) and further compresses their parameter space by optimizing only the singular values from an singular value decomposition (SVD) of each adapter matrix. This dimensionality reduction makes evolutionary search practical even for very large models and allows efficient operation in quantized INT4 and INT8 inference mode. Across these benchmarks ESSA improves the test accuracy of Qwen2.5-Math-7B by 12.6% on GSM8K and 14.8% on PRM800K, and raises the accuracy of LLaMA3.1-8B on IFEval by 22.5%, all compared with GRPO. In large-scale settings ESSA shows stronger scaling than gradient-based methods: on Qwen2.5-32B for PRM800K it reaches near-optimal accuracy twice as fast on 16 GPUs and six times as fast on 128 GPUs compared with GRPO. These results position evolutionary strategies as a compelling, hardware-friendly alternative to gradient-based LLM alignment, combining competitive quality with substantially reduced wall-clock time and engineering overhead.
♻ ☆ Training robust and generalizable quantum models
Adversarial robustness and generalization are both crucial properties of reliable machine learning models. In this paper, we study these properties in the context of quantum machine learning based on Lipschitz bounds. We derive parameter-dependent Lipschitz bounds for quantum models with trainable encoding, showing that the norm of the data encoding has a crucial impact on the robustness against data perturbations. Further, we derive a bound on the generalization error which explicitly involves the parameters of the data encoding. Our theoretical findings give rise to a practical strategy for training robust and generalizable quantum models by regularizing the Lipschitz bound in the cost. Further, we show that, for fixed and non-trainable encodings, as those frequently employed in quantum machine learning, the Lipschitz bound cannot be influenced by tuning the parameters. Thus, trainable encodings are crucial for systematically adapting robustness and generalization during training. The practical implications of our theoretical findings are illustrated with numerical results.
♻ ☆ Preparation of Fractal-Inspired Computational Architectures for Advanced Large Language Model Analysis
It introduces FractalNet, a fractal-inspired computational architectures for advanced large language model analysis that mainly challenges model diversity on a large scale in an efficient manner. The new set-up involves a template-driven generator, runner, and evaluation framework that, through systematic permutations of convolutional, normalization, activation, and dropout layers, can create more than 1,200 variants of neural networks. Fractal templates allow for structural recursion and multi-column pathways, thus, models become deeper and wider in a balanced way. Training utilizes PyTorch, Automatic Mixed Precision (AMP), and gradient checkpointing and is carried out on the CIFAR-10 dataset for five epochs. The outcomes show that fractal-based architectures are capable of strong performance and are computationally efficient. The paper positions fractal design as a feasible and resource-efficient method of automated architecture exploration.
♻ ☆ Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
We present an algorithm based on the alternating direction method of multipliers (ADMM) for solving nonlinear matrix decompositions (NMD). Given an input matrix $X \in \mathbb{R}^{m \times n}$ and a factorization rank $r \ll \min(m, n)$, NMD seeks matrices $W \in \mathbb{R}^{m \times r}$ and $H \in \mathbb{R}^{r \times n}$ such that $X \approx f(WH)$, where $f$ is an element-wise nonlinear function. We evaluate our method on several representative nonlinear models: the rectified linear unit activation $f(x) = \max(0, x)$, suitable for nonnegative sparse data approximation, the component-wise square $f(x) = x^2$, applicable to probabilistic circuit representation, and the MinMax transform $f(x) = \min(b, \max(a, x))$, relevant for recommender systems. The proposed framework flexibly supports diverse loss functions, including least squares, $\ell_1$ norm, and the Kullback-Leibler divergence, and can be readily extended to other nonlinearities and metrics. We illustrate the applicability, efficiency, and adaptability of the approach on real-world datasets, highlighting its potential for a broad range of applications.
comment: 14 pages, 6 figures. v2: Added a forgotten acknowledgement. Code available from https://gitlab.com/Atharva05/admm-for-nmd
♻ ☆ A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
In this work, we establish non-asymptotic convergence bounds for the Gauss-Newton method in training neural networks with smooth activations. In the underparameterized regime, the Gauss-Newton gradient flow in parameter space induces a Riemannian gradient flow on a low-dimensional embedded submanifold of the function space. Using tools from Riemannian optimization, we establish geodesic Polyak-Lojasiewicz and Lipschitz-smoothness conditions for the loss under appropriately chosen output scaling, yielding geometric convergence to the optimal in-class predictor at an explicit rate independent of the conditioning of the Gram matrix. In the overparameterized regime, we propose adaptive, curvature-aware regularization schedules that ensure fast geometric convergence to a global optimum at a rate independent of the minimum eigenvalue of the neural tangent kernel and, locally, of the modulus of strong convexity of the loss. These results demonstrate that Gauss-Newton achieves accelerated convergence rates in settings where first-order methods exhibit slow convergence due to ill-conditioned kernel matrices and loss landscapes.
♻ ☆ Confidence Calibration in Vision-Language-Action Models
Trustworthy robot behavior requires not only high levels of task success but also that the robot can reliably quantify how likely it is to succeed. To this end, we present a first-of-its-kind study of confidence calibration in vision-language-action (VLA) foundation models, which map visual observations and natural language instructions to low-level robot motor commands. We establish a confidence baseline for VLAs, examine how task success relates to calibration error and how calibration evolves over time, and introduce two lightweight techniques to remedy the miscalibration we observe: prompt ensembles and action-wise Platt scaling. Our aim in this study is to begin to develop the tools and conceptual understanding necessary to render VLAs both highly performant and highly trustworthy via reliable uncertainty quantification.
comment: 38 pages, 19 figures; additional experiments with VLA variants
♻ ☆ Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation
Recent algorithms allow decentralised agents, possibly connected via a communication network, to learn equilibria in mean-field games from a non-episodic run of the empirical system. However, these algorithms are for tabular settings: this computationally limits the size of agents' observation space, meaning the algorithms cannot handle anything but small state spaces, nor generalise beyond policies depending only on the agent's local state to so-called 'population-dependent' policies. We address this limitation by introducing function approximation to the existing setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed only in finite-horizon, episodic, centralised settings. While this permits us to include the mean field in the observation for players' policies, it is unrealistic to assume decentralised agents have access to this global information: we therefore also provide new algorithms allowing agents to locally estimate the global empirical distribution, and to improve this estimate via inter-agent communication. We prove theoretically that exchanging policy information helps networked agents outperform both independent and even centralised agents in function-approximation settings. Our experiments demonstrate this happening empirically, and show that the communication network allows decentralised agents to estimate the mean field for population-dependent policies.
♻ ☆ Networked Communication for Decentralised Agents in Mean-Field Games
Methods like multi-agent reinforcement learning struggle to scale with growing population size. Mean-field games (MFGs) are a game-theoretic approach that can circumvent this by finding a solution for an abstract infinite population, which can then be used as an approximate solution for the $N$-agent problem. However, classical mean-field algorithms usually only work under restrictive conditions. We take steps to address this by introducing networked communication to MFGs, in particular to settings that use a single, non-episodic run of $N$ decentralised agents to simulate the infinite population, as is likely to be most reasonable in real-world deployments. We prove that our architecture's sample guarantees lie between those of earlier theoretical algorithms for the centralised- and independent-learning architectures, varying dependent on network structure and the number of communication rounds. However, the sample guarantees of the three theoretical algorithms do not actually result in practical convergence times. We thus contribute practical enhancements to all three algorithms allowing us to present their first empirical demonstrations. We then show that in practical settings where the theoretical hyperparameters are not observed, giving fewer loops but poorer estimation of the Q-function, our communication scheme still respects the earlier theoretical analysis: it considerably accelerates learning over the independent case, which hardly seems to learn at all, and often performs similarly to the centralised case, while removing the restrictive assumption of the latter. We provide ablations and additional studies showing that our networked approach also has advantages over both alternatives in terms of robustness to update failures and to changes in population size.
♻ ☆ Semantic Superiority vs. Forensic Efficiency: A Comparative Analysis of Deep Learning and Psycholinguistics for Business Email Compromise Detection
Business Email Compromise (BEC) is a sophisticated social engineering threat that manipulates organizational hierarchies, leading to significant financial damage. According to the 2024 FBI Internet Crime Report, BEC accounts for over $2.9 billion in annual losses, presenting a massive economic asymmetry: the financial cost of a False Negative (fraud loss) exceeds the operational cost of a False Positive (manual review) by a ratio of approximately 5,480:1. This paper contrasts two detection paradigms: a Forensic Psycholinguistic Stream (CatBoost), which analyzes linguistic cues like urgency and authority with high interpretability, and a Semantic Stream (DistilBERT), which utilizes deep learning for contextual understanding. We evaluated both streams on a hybrid dataset (N=7,990) containing human-legitimate and AI-synthesized adversarial fraud. Benchmarked on Tesla T4 infrastructure, DistilBERT achieved near-perfect detection on synthetic threats (AUC >0.99, F1 =0.998) with acceptable real-time latency (7.4 ms). CatBoost achieved competitive detection (AUC =0.991, F1 =0.949) at 8.4x lower latency (0.8 ms) with negligible resource consumption. We conclude that while DistilBERT offers maximum accuracy for GPU-equipped organizations, CatBoost provides a viable, cost-effective alternative for edge deployments. Both approaches demonstrate a theoretical ROI exceeding 99.9% when optimized via cost-sensitive learning.
comment: 8 pages, 12 figures, 7 tables
♻ ☆ NetworkFF: Unified Layer Optimization in Forward-Only Neural Networks
The Forward-Forward algorithm eliminates backpropagation's memory constraints and biological implausibility through dual forward passes with positive and negative data. However, conventional implementations suffer from critical inter-layer isolation, where layers optimize goodness functions independently without leveraging collective learning dynamics. This isolation constrains representational coordination and limits convergence efficiency in deeper architectures. This paper introduces Collaborative Forward-Forward (CFF) learning, extending the original algorithm through inter-layer cooperation mechanisms that preserve forward-only computation while enabling global context integration. Our framework implements two collaborative paradigms: Fixed CFF (F-CFF) with constant inter-layer coupling and Adaptive CFF (A-CFF) with learnable collaboration parameters that evolve during training. The collaborative goodness function incorporates weighted contributions from all layers, enabling coordinated feature learning while maintaining memory efficiency and biological plausibility. Comprehensive evaluation on MNIST and Fashion-MNIST demonstrates significant performance improvements over baseline Forward-Forward implementations. These findings establish inter-layer collaboration as a fundamental enhancement to Forward-Forward learning, with immediate applicability to neuromorphic computing architectures and energy-constrained AI systems.
comment: Conference paper, IEEE, 2025
♻ ☆ Brain-language fusion enables interactive neural readout and in-silico experimentation
Large language models (LLMs) have revolutionized human-machine interaction, and have been extended by embedding diverse modalities such as images into a shared language space. Yet, neural decoding has remained constrained by static, non-interactive methods. We introduce CorText, a framework that integrates neural activity directly into the latent space of an LLM, enabling open-ended, natural language interaction with brain data. Trained on fMRI data recorded during viewing of natural scenes, CorText generates accurate image captions and can answer more detailed questions better than controls, while having access to neural data only. We showcase that CorText achieves zero-shot generalization beyond semantic categories seen during training. In-silico microstimulation experiments, which enable counterfactual prompts on brain activity, reveal a consistent, and graded mapping between brain-state and language output. These advances mark a shift from passive decoding toward generative, flexible interfaces between brain activity and language.
comment: v2
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ Learning What to Write: Write-Gated KV for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to persistent memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV, a lightweight mechanism that learns to predict token utility before it enters the cache. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, Write-Gated KV reduces memory usage by 46-57% and delivers 3.03-3.45$\times$ prefill and 1.89-2.56$\times$ decode speedups on Llama model with negligible accuracy loss, all while remaining compatible with FlashAttention and paged-KV systems. These results demonstrate that learning what to write, is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV .
♻ ☆ What-If Decision Support for Product Line Extension Using Conditional Deep Generative Models
Product line extension is a strategically important managerial decision that requires anticipating how consumer segments and purchasing contexts may respond to hypothetical product designs that do not yet exist in the market. Such decisions are inherently uncertain because managers must infer future outcomes from historical purchase data without direct market observations. This study addresses this challenge by proposing a data-driven decision support framework that enables forward-looking what-if analysis based on historical transaction data. We introduce a Conditional Tabular Variational Autoencoder (CTVAE) that learns the conditional joint distribution of product attributes and consumer characteristics from large-scale tabular data. By conditioning the generative process on controllable design variables such as container type, volume, flavor, and calorie content, the proposed model generates synthetic consumer attribute distributions for hypothetical line-extended products. This enables systematic exploration of alternative design scenarios without costly market pretests. The framework is evaluated using home-scan panel data covering more than 20,000 consumers and 700 soft drink products. Empirical results show that the CTVAE outperforms existing tabular generative models in capturing conditional consumer attribute distributions. Simulation-based analyses further demonstrate that the generated synthetic data support knowledge-driven reasoning for assessing cannibalization risks and identifying potential target segments. These findings highlight the value of conditional deep generative models as core components of decision support systems for product line extension planning.
comment: 25 pages
♻ ☆ IT Intrusion Detection Using Statistical Learning and Testbed Measurements
We study automated intrusion detection in an IT infrastructure, specifically the problem of identifying the start of an attack, the type of attack, and the sequence of actions an attacker takes, based on continuous measurements from the infrastructure. We apply statistical learning methods, including Hidden Markov Model (HMM), Long Short-Term Memory (LSTM), and Random Forest Classifier (RFC) to map sequences of observations to sequences of predicted attack actions. In contrast to most related research, we have abundant data to train the models and evaluate their predictive power. The data comes from traces we generate on an in-house testbed where we run attacks against an emulated IT infrastructure. Central to our work is a machine-learning pipeline that maps measurements from a high-dimensional observation space to a space of low dimensionality or to a small set of observation symbols. Investigating intrusions in offline as well as online scenarios, we find that both HMM and LSTM can be effective in predicting attack start time, attack type, and attack actions. If sufficient training data is available, LSTM achieves higher prediction accuracy than HMM. HMM, on the other hand, requires less computational resources and less training data for effective prediction. Also, we find that the methods we study benefit from data produced by traditional intrusion detection systems like SNORT.
comment: A version of this paper appeared in the conference proceedings of NOMS 2024 (IEEE/IFIP Network Operations and Management Symposium)
♻ ☆ Prospects for quantum advantage in machine learning from the representability of functions
Demonstrating quantum advantage in machine learning tasks requires navigating a complex landscape of proposed models and algorithms. To bring clarity to this search, we introduce a framework that connects the structure of parametrized quantum circuits to the mathematical nature of the functions they can actually learn. Within this framework, we show how fundamental properties, like circuit depth and non-Clifford gate count, directly determine whether a model's output leads to efficient classical simulation or surrogation. We argue that this analysis uncovers common pathways to dequantization that underlie many existing simulation methods. More importantly, it reveals critical distinctions between models that are fully simulatable, those whose function space is classically tractable, and those that remain robustly quantum. This perspective provides a conceptual map of this landscape, clarifying how different models relate to classical simulability and pointing to where opportunities for quantum advantage may lie.
comment: 21 pages, 6 figures, comments welcome
♻ ☆ MOORL: A Framework for Integrating Offline-Online Reinforcement Learning
Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learning (DRL), particularly in complex domains. Offline RL, which enables agents to learn optimal policies from static, pre-collected datasets, has emerged as a promising alternative. However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that limit policy performance and generalization. To overcome these limitations, we propose Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies offline and online RL for efficient and scalable learning. While previous hybrid methods rely on extensive design components and added computational complexity to utilize offline data effectively, MOORL introduces a meta-policy that seamlessly adapts across offline and online trajectories. This enables the agent to leverage offline data for robust initialization while utilizing online interactions to drive efficient exploration. Our theoretical analysis demonstrates that the hybrid approach enhances exploration by effectively combining the complementary strengths of offline and online data. Furthermore, we demonstrate that MOORL learns a stable Q-function without added complexity. Extensive experiments on 28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing consistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal computational overhead, MOORL achieves strong performance, underscoring its potential for practical applications in real-world scenarios.
♻ ☆ SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
♻ ☆ From Novelty to Imitation: Self-Distilled Rewards for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) aims to learn effective policies from a static dataset without requiring further agent-environment interactions. However, its practical adoption is often hindered by the need for explicit reward annotations, which can be costly to engineer or difficult to obtain retrospectively. To address this, we propose ReLOAD (Reinforcement Learning with Offline Reward Annotation via Distillation), a novel reward annotation framework for offline RL. Unlike existing methods that depend on complex alignment procedures, our approach adapts Random Network Distillation (RND) to generate intrinsic rewards from expert demonstrations using a simple yet effective embedding discrepancy measure. First, we train a predictor network to mimic a fixed target network's embeddings based on expert state transitions. Later, the prediction error between these networks serves as a reward signal for each transition in the static dataset. This mechanism provides a structured reward signal without requiring handcrafted reward annotations. We provide a formal theoretical construct that offers insights into how RND prediction errors effectively serve as intrinsic rewards by distinguishing expert-like transitions. Experiments on the D4RL benchmark demonstrate that ReLOAD enables robust offline policy learning and achieves performance competitive with traditional reward-annotated methods.
♻ ☆ Stopping Rules for Stochastic Gradient Descent via Anytime-Valid Confidence Sequences
We study stopping rules for stochastic gradient descent (SGD) for convex optimization from the perspective of anytime-valid confidence sequences. Classical analyses of SGD provide convergence guarantees in expectation or at a fixed horizon, but offer no statistically valid way to assess, at an arbitrary time, how close the current iterate is to the optimum. We develop an anytime-valid, data-dependent upper confidence sequence for the weighted average suboptimality of projected SGD, constructed via nonnegative supermartingales and requiring no smoothness or strong convexity. This confidence sequence yields a simple stopping rule that is provably $\varepsilon$-optimal with probability at least $1-α$, with explicit bounds on the stopping time under standard stochastic approximation stepsizes. To the best of our knowledge, these are the first rigorous, time-uniform performance guarantees and finite-time $\varepsilon$-optimality certificates for projected SGD with general convex objectives, based solely on observable trajectory quantities.
♻ ☆ Sharpness-Controlled Group Relative Policy Optimization with Token-Level Probability Shaping
Reinforcement learning with verifiable rewards (RLVR) has become a practical route to improve large language model reasoning, and Group Relative Policy Optimization (GRPO) is a widely used optimizer in this setting. This paper revisits GRPO from a generalization perspective. Recent analysis shows that population performance can be controlled by a robust empirical objective that decomposes into the training loss plus a sharpness term measured by the gradient norm. We develop a token-level view of this sharpness term and show that GRPO can be dominated by a small subset of tokens with disproportionately large per-token gradients, which increases sharpness and can harm generalization. Motivated by this view, we propose Token-Regulated GRPO (TR-GRPO), which introduces a monotone probability shaping function to assign token weights based on the model's own token probabilities, and integrates these weights into the standard GRPO. Our analysis yields a bound that isolates a probability dependent multiplicative factor in token-gradient magnitudes, explaining how probability-aware weighting suppresses sharp directions while preserving learning signal on semantically critical tokens. Experiments on logic puzzles, mathematical reasoning, and tool-augmented question answering show consistent improvements over GRPO, along with smoother gradient-norm trajectories, supporting TR-GRPO as a simple and effective generalization-oriented upgrade to GRPO for RLVR.
♻ ☆ Theoretical Convergence Guarantees for Variational Autoencoders
Variational Autoencoders (VAE) are popular generative models used to sample from complex data distributions. Despite their empirical success in various machine learning tasks, significant gaps remain in understanding their theoretical properties, particularly regarding convergence guarantees. This paper aims to bridge that gap by providing non-asymptotic convergence guarantees for VAE trained using both Stochastic Gradient Descent and Adam algorithms. We derive a convergence rate of $\mathcal{O}(\log n / \sqrt{n})$, where $n$ is the number of iterations of the optimization algorithm, with explicit dependencies on the batch size, the number of variational samples, and other key hyperparameters. Our theoretical analysis applies to both Linear VAE and Deep Gaussian VAE, as well as several VAE variants, including $β$-VAE and IWAE. Additionally, we empirically illustrate the impact of hyperparameters on convergence, offering new insights into the theoretical understanding of VAE training.
♻ ☆ Potent but Stealthy: Rethink Profile Pollution against Sequential Recommendation via Bi-level Constrained Reinforcement Paradigm
Sequential Recommenders, which exploit dynamic user intents through interaction sequences, is vulnerable to adversarial attacks. While existing attacks primarily rely on data poisoning, they require large-scale user access or fake profiles thus lacking practicality. In this paper, we focus on the Profile Pollution Attack that subtly contaminates partial user interactions to induce targeted mispredictions. Previous PPA methods suffer from two limitations, i.e., i) over-reliance on sequence horizon impact restricts fine-grained perturbations on item transitions, and ii) holistic modifications cause detectable distribution shifts. To address these challenges, we propose a constrained reinforcement driven attack CREAT that synergizes a bi-level optimization framework with multi-reward reinforcement learning to balance adversarial efficacy and stealthiness. We first develop a Pattern Balanced Rewarding Policy, which integrates pattern inversion rewards to invert critical patterns and distribution consistency rewards to minimize detectable shifts via unbalanced co-optimal transport. Then we employ a Constrained Group Relative Reinforcement Learning paradigm, enabling step-wise perturbations through dynamic barrier constraints and group-shared experience replay, achieving targeted pollution with minimal detectability. Extensive experiments demonstrate the effectiveness of CREAT.
♻ ☆ Low-Regret and Low-Complexity Learning for Hierarchical Inference
This work focuses on Hierarchical Inference (HI) in edge intelligence systems, where a compact Local-ML model on an end-device works in conjunction with a high-accuracy Remote-ML model on an edge-server. HI aims to reduce latency, improve accuracy, and lower bandwidth usage by first using the Local-ML model for inference and offloading to the Remote-ML only when the local inference is likely incorrect. A critical challenge in HI is estimating the likelihood of the local inference being incorrect, especially when data distributions and offloading costs change over time -- a problem we term Hierarchical Inference Learning (HIL). We introduce a novel approach to HIL by modeling the probability of correct inference by the Local-ML as an increasing function of the model's confidence measure, a structure motivated by empirical observations but previously unexploited. We propose two policies, HI-LCB and HI-LCB-lite, based on the Upper Confidence Bound (UCB) framework. We demonstrate that both policies achieve order-optimal regret of $O(\log T)$, a significant improvement over existing HIL policies with $O(T^{2/3})$ regret guarantees. Notably, HI-LCB-lite has an $O(1)$ per-sample computational complexity, making it well-suited for deployment on devices with severe resource limitations. Simulations using real-world datasets confirm that our policies outperform existing state-of-the-art HIL methods.
♻ ☆ Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning
While scaling laws for large language models (LLMs) during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on a set of experiments across the full Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: 1. Larger models consistently exhibit superior learning efficiency on both compute and data metrics. 2. The relationship between test loss, compute, and data can be modeled by a predictive power-law which is robust across both base and instruction-tuned models. 3. Although larger models exhibit higher learning efficiency, the analytical learning efficiency term k(N) in the power-law reveals a latent saturation trend in learning efficiency as model size continues to increase. 4. In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.
comment: V3 version:27 pages, 14 figures, add code and dataset url
♻ ☆ Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Extreme-precipitation nowcasting requires high spatial and temporal resolution together with extended lead times, yet current approaches remain constrained. Numerical weather prediction systems and their deep-learning emulators operate at relatively coarse space-time resolution and struggle to capture rapidly evolving convective systems. Radar extrapolation methods, which advect recent fields using estimated motion, have difficulty capturing the complex evolution of precipitation. Purely data-driven models often produce overly smoothed reflectivity fields and underestimate intensity. Hybrid 2D radar-based methods discard crucial vertical information, preventing accurate reconstruction of height-dependent dynamics. We introduce Nowcast3D, a gray-box, fully three-dimensional nowcasting framework that operates directly on volumetric radar reflectivity and couples physically constrained neural operators with data-driven learning. The model learns three fields that govern reflectivity evolution: a three-dimensional flow field for advective transport, a spatially varying diffusion field for local dispersive spreading, and a residual source term for unresolved microphysical effects. These learned operators advance the forecast in time under explicit physical constraints, while a conditional diffusion model, conditioned on both the observations and the physics-based forecast, generates ensembles of future radar volumes that quantify forecast uncertainty. In a blind evaluation by 160 meteorologists, Nowcast3D is preferred in 57% of post-hoc and 51% of prior assessments. By explicitly embedding three-dimensional dynamics and uncertainty into a single framework, Nowcast3D offers a scalable and robust approach for reliable nowcasting of extreme precipitation.
♻ ☆ GateRA: Token-Aware Modulation for Parameter-Efficient Fine-Tuning AAAI 2026
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, DoRA, and HiRA, enable lightweight adaptation of large pre-trained models via low-rank updates. However, existing PEFT approaches apply static, input-agnostic updates to all tokens, disregarding the varying importance and difficulty of different inputs. This uniform treatment can lead to overfitting on trivial content or under-adaptation on more informative regions, especially in autoregressive settings with distinct prefill and decoding dynamics. In this paper, we propose GateRA, a unified framework that introduces token-aware modulation to dynamically adjust the strength of PEFT updates. By incorporating adaptive gating into standard PEFT branches, GateRA enables selective, token-level adaptation, preserving pre-trained knowledge for well-modeled inputs while focusing capacity on challenging cases. Empirical visualizations reveal phase-sensitive behaviors, where GateRA automatically suppresses updates for redundant prefill tokens while emphasizing adaptation during decoding. To promote confident and efficient modulation, we further introduce an entropy-based regularization that encourages near-binary gating decisions. This regularization prevents diffuse update patterns and leads to interpretable, sparse adaptation without hard thresholding. Finally, we present a theoretical analysis showing that GateRA induces a soft gradient-masking effect over the PEFT path, enabling continuous and differentiable control over adaptation. Experiments on multiple commonsense reasoning benchmarks demonstrate that GateRA consistently outperforms or matches prior PEFT methods.
comment: Accepted by AAAI 2026
♻ ☆ Kronecker Factorization Improves Efficiency and Interpretability of Sparse Autoencoders
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training and interpreting SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
♻ ☆ GUIDEd Agents: Enhancing Navigation Policies through Task-Specific Uncertainty Abstraction in Localization-Limited Environments
Autonomous vehicles performing navigation tasks in complex environments face significant challenges due to uncertainty in state estimation. In many scenarios, such as stealth operations or resource-constrained settings, accessing high-precision localization comes at a significant cost, forcing robots to rely primarily on less precise state estimates. Our key observation is that different tasks require varying levels of precision in different regions: a robot navigating a crowded space might need precise localization near obstacles but can operate effectively with less precision elsewhere. In this paper, we present a planning method for integrating task-specific uncertainty requirements directly into navigation policies. We introduce Task-Specific Uncertainty Maps (TSUMs), which abstract the acceptable levels of state estimation uncertainty across different regions. TSUMs align task requirements and environmental features using a shared representation space, generated via a domain-adapted encoder. Using TSUMs, we propose Generalized Uncertainty Integration for Decision-Making and Execution (GUIDE), a policy conditioning framework that incorporates these uncertainty requirements into robot decision-making. We find that TSUMs provide an effective way to abstract task-specific uncertainty requirements, and conditioning policies on TSUMs enables the robot to reason about the context-dependent value of certainty and adapt its behavior accordingly. We show how integrating GUIDE into reinforcement learning frameworks allows the agent to learn navigation policies that effectively balance task completion and uncertainty management without explicit reward engineering. We evaluate GUIDE on various real-world robotic navigation tasks and find that it demonstrates significant improvement in task completion rates compared to baseline methods that do not explicitly consider task-specific uncertainty.
comment: Accepted for publication at RAL (Robotics and automation letters). Updated with the final version
♻ ☆ Explainable Graph Spectral Clustering For GloVe-like Text Embeddings
In a previous paper, we proposed an introduction to the explainability of Graph Spectral Clustering results for textual documents, given that document similarity is computed as cosine similarity in term vector space. In this paper, we generalize this idea by considering other embeddings of documents, in particular, based on the GloVe embedding idea.
comment: 47 pages, 19 tables, 11 figures
♻ ☆ Stochastic Optimization with Optimal Importance Sampling
Importance Sampling (IS) is a widely used variance reduction technique for enhancing the efficiency of Monte Carlo methods, particularly in rare-event simulation and related applications. Despite its effectiveness, the performance of IS is highly sensitive to the choice of the proposal distribution and often requires stochastic calibration. While the design and analysis of IS have been extensively studied in estimation settings, applying IS within stochastic optimization introduces a fundamental challenge: the decision variable and the importance sampling distribution are mutually dependent, creating a circular optimization structure. This interdependence complicates both convergence analysis and variance control. We consider convex stochastic optimization problems with linear constraints and propose a single-loop stochastic approximation algorithm, based on a joint variant of Nesterov's dual averaging, that jointly updates the decision variable and the importance sampling distribution, without time-scale separation or nested optimization. The method is globally convergent and achieves minimal asymptotic variance among stochastic gradient schemes, matching the performance of an oracle sampler adapted to the optimal solution.
♻ ☆ Compression is Routing: Reconstruction Error as an Intrinsic Signal for Modular Language Models
Current Large Language Models (LLMs) face three major challenges: context length limitations, high inference costs, and catastrophic forgetting during continual learning. While Mixture-of-Experts (MoE) architectures mitigate some of these conflicts, their routing mechanisms typically rely on explicitly trained auxiliary classifiers. This not only increases system complexity but also often lacks interpretability when handling mixed-domain inputs. Building upon the premise that ``Compression is Intelligence,'' this paper proposes a novel architectural philosophy: Compression is Routing. We trained an 87M-parameter end-to-end Transformer Autoencoder, achieving a 64x sequence length compression (compressing 512 tokens into 8 latent vectors). Experimental results demonstrate that this compressor possesses extreme domain discriminative capability: it achieves a reconstruction accuracy of 99.47% on the in-domain (code) validation set; accuracy drops sharply to 47.76% on a semi-out-of-distribution domain (Wiki text); and further plummets to just 0.57% on a fully out-of-distribution domain (random sequences). This extreme and systematic performance discrepancy establishes the validity of reconstruction error as an Intrinsic Distribution Fingerprint. Based on this, we propose that expert modules can be automatically scheduled using reconstruction residuals directly, without the need for explicit gating networks. This mechanism offers excellent scalability. Furthermore, this architecture provides a new perspective on ``VRAM compression'' for handling ultra-long contexts. This report aims to verify the physical validity of this foundational architecture, offering a new research perspective for the next generation of scalable modular neural networks.
♻ ☆ Libra: Unleashing GPU Heterogeneity for High-Performance Sparse Matrix Multiplication
Sparse matrix multiplication operators (i.e., SpMM and SDDMM) are widely used in deep learning and scientific computing. Modern accelerators are commonly equipped with Tensor Core Units (TCUs) and CUDA cores to accelerate sparse operators. The former excels at structured matrix computations, whereas the latter offers greater programming flexibility. However, how to combine these two resources to maximize sparse-operator performance remains unclear. In this work, we first identify the source of performance gains in hybrid computation and systematically analyze their complementary strengths. Motivated by this, we propose Libra, a holistic framework that efficiently leverages heterogeneous computing resources to accelerate both SpMM and SDDMM operators. Specifically, Libra introduces a 2D-aware (locality and utilization) workload distribution method to precisely identify the optimal task mapping, simultaneously leveraging the data reuse capabilities of TCUs and the flexibility of CUDA cores to minimize computational redundancy. Libra further incorporates hybrid load balancing, occupancy-aware task scheduling, and efficient kernel implementations to maximize execution efficiency. Extensive experiments on H100 and RTX 4090 GPUs demonstrate that Libra surpasses all the 12 up-to-date baselines significantly, e.g., on average 1.77x speedup over FlashSparse, 1.73x over RoDe, and 2.9x over DGL for end-to-end GNN applications. Libra opens up a new perspective for sparse operator acceleration by fully unleashing the power of heterogeneous GPU resources.
♻ ☆ Certified Defense on the Fairness of Graph Neural Networks KDD'26
Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks over the years. Nevertheless, due to the vulnerabilities of GNNs, it has been empirically shown that malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data. In this paper, we take crucial steps to study a novel problem of certifiable defense on the fairness level of GNNs. Specifically, we propose a principled framework named ELEGANT and present a detailed theoretical certification analysis for the fairness of GNNs. ELEGANT takes {\em any} GNN as its backbone, and the fairness level of such a backbone is theoretically impossible to be corrupted under certain perturbation budgets for attackers. Notably, ELEGANT does not make any assumptions over the GNN structure or parameters, and does not require re-training the GNNs to realize certification. Hence it can serve as a plug-and-play framework for any optimized GNNs ready to be deployed. We verify the satisfactory effectiveness of ELEGANT in practice through extensive experiments on real-world datasets across different backbones of GNNs and parameter settings.
comment: Accepted at SIGKDD'26 for publication
♻ ☆ Expressive Temporal Specifications for Reward Monitoring AAAI-26
Specifying informative and dense reward functions remains a pivotal challenge in Reinforcement Learning, as it directly affects the efficiency of agent training. In this work, we harness the expressive power of quantitative Linear Temporal Logic on finite traces (($\text{LTL}_f[\mathcal{F}]$)) to synthesize reward monitors that generate a dense stream of rewards for runtime-observable state trajectories. By providing nuanced feedback during training, these monitors guide agents toward optimal behaviour and help mitigate the well-known issue of sparse rewards under long-horizon decision making, which arises under the Boolean semantics dominating the current literature. Our framework is algorithm-agnostic and only relies on a state labelling function, and naturally accommodates specifying non-Markovian properties. Empirical results show that our quantitative monitors consistently subsume and, depending on the environment, outperform Boolean monitors in maximizing a quantitative measure of task completion and in reducing convergence time.
comment: Accepted at AAAI-26
♻ ☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a \textit{Ridge of Optimization} characterized by extreme stability. While previously linked to \textit{Spectral Concentration}, its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the Edge of Stability, a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 5 pages, 4 figures
♻ ☆ HVAdam: A Full-Dimension Adaptive Optimizer AAAI2025
Adaptive optimizers such as Adam have achieved great success in training large-scale models like large language models and diffusion models. However, they often generalize worse than non-adaptive methods, such as SGD on classical architectures like CNNs. We identify a key cause of this performance gap: adaptivity in pre-conditioners, which limits the optimizer's ability to adapt to diverse optimization landscapes. To address this, we propose Anon (Adaptivity Non-restricted Optimizer with Novel convergence technique), a novel optimizer with continuously tunable adaptivity , allowing it to interpolate between SGD-like and Adam-like behaviors and even extrapolate beyond both. To ensure convergence across the entire adaptivity spectrum, we introduce incremental delay update (IDU), a novel mechanism that is more flexible than AMSGrad's hard max-tracking strategy and enhances robustness to gradient noise. We theoretically establish convergence guarantees under both convex and non-convex settings. Empirically, Anon consistently outperforms state-of-the-art optimizers on representative image classification, diffusion, and language modeling tasks. These results demonstrate that adaptivity can serve as a valuable tunable design principle, and Anon provides the first unified and reliable framework capable of bridging the gap between classical and modern optimizers and surpassing their advantageous properties.
comment: Accepted at AAAI2025
♻ ☆ Zero-Overhead Introspection for Adaptive Test-Time Compute
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
♻ ☆ Memory-Efficient Training with In-Place FFT Implementation NeurIPS 2025
Fast Fourier Transforms (FFT) are widely used to reduce memory and computational costs in deep learning. However, existing implementations, including standard FFT and real FFT (rFFT), cannot achieve true in-place computation. In particular, rFFT maps an input of size n to a complex output of size n/2+1, causing dimensional mismatch and requiring additional memory allocation. We propose the first real-domain, fully in-place FFT framework (rdFFT) that preserves input-output memory space consistency. By leveraging butterfly operation symmetry and conjugate properties in the frequency domain, we design an implicit complex encoding scheme that eliminates intermediate cache usage entirely. Experiments on multiple natural language understanding tasks demonstrate the method effectiveness in reducing training memory cost, offering a promising direction for frequency-domain lightweight adaptation.
comment: Accepted at NeurIPS 2025. Version 2 adds links to the ongoing PyTorch upstreaming discussion
♻ ☆ UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data
Machine learning models, particularly deep neural networks, have demonstrated strong performance in classifying complex time series data. However, their black-box nature limits trust and adoption, especially in high-stakes domains such as healthcare. To address this challenge, we introduce UniCoMTE, a model-agnostic framework for generating counterfactual explanations for multivariate time series classifiers. The framework identifies temporal features that most heavily influence a model's prediction by modifying the input sample and assessing its impact on the model's prediction. UniCoMTE is compatible with a wide range of model architectures and operates directly on raw time series inputs. In this study, we evaluate UniCoMTE's explanations on a time series ECG classifier. We quantify explanation quality by comparing our explanations' comprehensibility to comprehensibility of established techniques (LIME and SHAP) and assessing their generalizability to similar samples. Furthermore, clinical utility is assessed through a questionnaire completed by medical experts who review counterfactual explanations presented alongside original ECG samples. Results show that our approach produces concise, stable, and human-aligned explanations that outperform existing methods in both clarity and applicability. By linking model predictions to meaningful signal patterns, the framework advances the interpretability of deep learning models for real-world time series applications.
comment: 21 pages, 7 figures
Information Retrieval 9
☆ Generative vector search to improve pathology foundation models across multimodal vision-language tasks
Retrieval-augmented generation improves large language models by grounding outputs in external knowledge sources, reducing hallucinations and addressing knowledge cutoffs. However, standard embedding-based retrieval fails to capture the complexity of multi-concept queries, particularly in domains like biomedicine, where biological data are inherently high-dimensional. For example,omics datasets, and clinical reports simultaneously exhibit numerous molecular, cellular, and physiological features. We present Stochastic Latent Matching (STHLM), a generative vector search method that samples query-conditioned embeddings from text or image inputs to enhance retrieval performance. Analogous to how Chain-of-Thought reasoning enables language models to "think longer" on complex problems, STHLM allows retrieval systems to "search wider" through iterative sampling. STHLM demonstrates critical improvements over classical vector retrieval across diverse benchmarks, including scientific literature, clinical notes, and tissue images, boosting retrieval performance by 10-30% through test-time compute (trading latency for accuracy), while enabling up to a 10-fold compression of embedding dimensions.
comment: 13 pages main (54 total), 2 main figures (9 total)
☆ QuCo-RAG: Quantifying Uncertainty from the Pre-training Corpus for Dynamic Retrieval-Augmented Generation
Dynamic Retrieval-Augmented Generation adaptively determines when to retrieve during generation to mitigate hallucinations in large language models (LLMs). However, existing methods rely on model-internal signals (e.g., logits, entropy), which are fundamentally unreliable because LLMs are typically ill-calibrated and often exhibit high confidence in erroneous outputs. We propose QuCo-RAG, which shifts from subjective confidence to objective statistics computed from pre-training data. Our method quantifies uncertainty through two stages: (1) before generation, we identify low-frequency entities indicating long-tail knowledge gaps; (2) during generation, we verify entity co-occurrence in the pre-training corpus, where zero co-occurrence often signals hallucination risk. Both stages leverage Infini-gram for millisecond-latency queries over 4 trillion tokens, triggering retrieval when uncertainty is high. Experiments on multi-hop QA benchmarks show QuCo-RAG achieves EM gains of 5--12 points over state-of-the-art baselines with OLMo-2 models, and transfers effectively to models with undisclosed pre-training data (Llama, Qwen, GPT), improving EM by up to 14 points. Domain generalization on biomedical QA further validates the robustness of our paradigm. These results establish corpus-grounded verification as a principled, practically model-agnostic paradigm for dynamic RAG. Our code is publicly available at https://github.com/ZhishanQ/QuCo-RAG.
☆ Modular Layout Synthesis (MLS): Front-end Code via Structure Normalization and Constrained Generation
Automated front-end engineering drastically reduces development cycles and minimizes manual coding overhead. While Generative AI has shown promise in translating designs to code, current solutions often produce monolithic scripts, failing to natively support modern ecosystems like React, Vue, or Angular. Furthermore, the generated code frequently suffers from poor modularity, making it difficult to maintain. To bridge this gap, we introduce Modular Layout Synthesis (MLS), a hierarchical framework that merges visual understanding with structural normalization. Initially, a visual-semantic encoder maps the screen capture into a serialized tree topology, capturing the essential layout hierarchy. Instead of simple parsing, we apply heuristic deduplication and pattern recognition to isolate reusable blocks, creating a framework-agnostic schema. Finally, a constraint-based generation protocol guides the LLM to synthesize production-ready code with strict typing and component props. Evaluations show that MLS significantly outperforms existing baselines, ensuring superior code reusability and structural integrity across multiple frameworks
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignments from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Ontology-Based Knowledge Graph Framework for Industrial Standard Documents via Hierarchical and Propositional Structuring
Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.
comment: The authors have identified significant technical errors in the paper that invalidate the current findings
♻ ☆ What-If Decision Support for Product Line Extension Using Conditional Deep Generative Models
Product line extension is a strategically important managerial decision that requires anticipating how consumer segments and purchasing contexts may respond to hypothetical product designs that do not yet exist in the market. Such decisions are inherently uncertain because managers must infer future outcomes from historical purchase data without direct market observations. This study addresses this challenge by proposing a data-driven decision support framework that enables forward-looking what-if analysis based on historical transaction data. We introduce a Conditional Tabular Variational Autoencoder (CTVAE) that learns the conditional joint distribution of product attributes and consumer characteristics from large-scale tabular data. By conditioning the generative process on controllable design variables such as container type, volume, flavor, and calorie content, the proposed model generates synthetic consumer attribute distributions for hypothetical line-extended products. This enables systematic exploration of alternative design scenarios without costly market pretests. The framework is evaluated using home-scan panel data covering more than 20,000 consumers and 700 soft drink products. Empirical results show that the CTVAE outperforms existing tabular generative models in capturing conditional consumer attribute distributions. Simulation-based analyses further demonstrate that the generated synthetic data support knowledge-driven reasoning for assessing cannibalization risks and identifying potential target segments. These findings highlight the value of conditional deep generative models as core components of decision support systems for product line extension planning.
comment: 25 pages
♻ ☆ FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction KDD'26
As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.
comment: KDD'26 accepted
♻ ☆ Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation NeurIPS 2025
Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.
comment: Accepted by NeurIPS 2025. Code is available at: https://github.com/ziqiangcui/SRA-CL
♻ ☆ Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs NeurIPS 2025
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
comment: Accepted by NeurIPS 2025
Computation and Language 41
☆ Remedy-R: Generative Reasoning for Machine Translation Evaluation without Error Annotations
Over the years, automatic MT metrics have hillclimbed benchmarks and presented strong and sometimes human-level agreement with human ratings. Yet they remain black-box, offering little insight into their decision-making and often failing under real-world out-of-distribution (OOD) inputs. We introduce Remedy-R, a reasoning-driven generative MT metric trained with reinforcement learning from pairwise translation preferences, without requiring error-span annotations or distillation from closed LLMs. Remedy-R produces step-by-step analyses of accuracy, fluency, and completeness, followed by a final score, enabling more interpretable assessments. With only 60K training pairs across two language pairs, Remedy-R remains competitive with top scalar metrics and GPT-4-based judges on WMT22-24 meta-evaluation, generalizes to other languages, and exhibits strong robustness on OOD stress tests. Moreover, Remedy-R models generate self-reflective feedback that can be reused for translation improvement. Building on this finding, we introduce Remedy-R Agent, a simple evaluate-revise pipeline that leverages Remedy-R's evaluation analysis to refine translations. This agent consistently improves translation quality across diverse models, including Qwen2.5, ALMA-R, GPT-4o-mini, and Gemini-2.0-Flash, suggesting that Remedy-R's reasoning captures translation-relevant information and is practically useful.
☆ Can LLMs Estimate Student Struggles? Human-AI Difficulty Alignment with Proficiency Simulation for Item Difficulty Prediction
Accurate estimation of item (question or task) difficulty is critical for educational assessment but suffers from the cold start problem. While Large Language Models demonstrate superhuman problem-solving capabilities, it remains an open question whether they can perceive the cognitive struggles of human learners. In this work, we present a large-scale empirical analysis of Human-AI Difficulty Alignment for over 20 models across diverse domains such as medical knowledge and mathematical reasoning. Our findings reveal a systematic misalignment where scaling up model size is not reliably helpful; instead of aligning with humans, models converge toward a shared machine consensus. We observe that high performance often impedes accurate difficulty estimation, as models struggle to simulate the capability limitations of students even when being explicitly prompted to adopt specific proficiency levels. Furthermore, we identify a critical lack of introspection, as models fail to predict their own limitations. These results suggest that general problem-solving capability does not imply an understanding of human cognitive struggles, highlighting the challenge of using current models for automated difficulty prediction.
☆ Application of deep learning approaches for medieval historical documents transcription
Handwritten text recognition and optical character recognition solutions show excellent results with processing data of modern era, but efficiency drops with Latin documents of medieval times. This paper presents a deep learning method to extract text information from handwritten Latin-language documents of the 9th to 11th centuries. The approach takes into account the properties inherent in medieval documents. The paper provides a brief introduction to the field of historical document transcription, a first-sight analysis of the raw data, and the related works and studies. The paper presents the steps of dataset development for further training of the models. The explanatory data analysis of the processed data is provided as well. The paper explains the pipeline of deep learning models to extract text information from the document images, from detecting objects to word recognition using classification models and embedding word images. The paper reports the following results: recall, precision, F1 score, intersection over union, confusion matrix, and mean string distance. The plots of the metrics are also included. The implementation is published on the GitHub repository.
comment: 15 pages, 15 figures, 4 tables. Originally published by CEUR Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073), available: https://ceur-ws.org/Vol-4133/S_05_Kozlenko.pdf
☆ Merge on workspaces as Hopf algebra Markov chain
We study the dynamical properties of a Hopf algebra Markov chain with state space the binary rooted forests with labelled leaves. This Markovian dynamical system describes the core computational process of structure formation and transformation in syntax via the Merge operation, according to Chomsky's Minimalism model of generative linguistics. The dynamics decomposes into an ergodic dynamical system with uniform stationary distribution, given by the action of Internal Merge, while the contributions of External Merge and (a minimal form of) Sideward Merge reduce to a simpler Markov chain with state space the set of partitions and with combinatorial weights. The Sideward Merge part of the dynamics prevents convergence to fully formed connected structures (trees), unless the different forms of Merge are weighted by a cost function, as predicted by linguistic theory. Results on the asymptotic behavior of the Perron-Frobenius eigenvalue and eigenvector in this weighted case, obtained in terms of an associated Perron-Frobenius problem in the tropical semiring, show that the usual cost functions (Minimal Search and Resource Restrictions) proposed in the linguistic literature do not suffice to obtain convergence to the tree structures, while an additional optimization property based on the Shannon entropy achieves the expected result for the dynamics. We also comment on the introduction of continuous parameters related to semantic embedding and other computational models, and also on some filtering of the dynamics by coloring rules that model the linguistic filtering by theta roles and phase structure, and on parametric variation and the process of parameter setting in Externalization.
comment: 80 pages, LaTeX, 1 png figure
☆ Toward Human-Centered AI-Assisted Terminology Work
The rapid diffusion of generative artificial intelligence is transforming terminology work. While this technology promises gains in efficiency, its unstructured adoption risks weakening professional autonomy, amplifying bias, and eroding linguistic and conceptual diversity. This paper argues that a human-centered approach to artificial intelligence has become a necessity for terminology work. Building on research in artificial intelligence and translation studies, it proposes a human-centered framework that conceptualizes artificial intelligence as a means of amplifying the terminologist's capabilities, rather than replacing them. The framework is organized around three interrelated dimensions: the augmented terminologist, ethical AI, and human-centered design. Together, these dimensions emphasize the compatibility of high automation with strong human control, the central role of terminologists in bias mitigation, and the importance of designing AI tools and workflows around the needs, values, and well-being of the terminologist. The paper concludes by stressing that current choices in AI adoption will shape not only terminological practice, but also the preservation of accuracy, adequacy, and diversity in terminology and specialized knowledge.
☆ MDToC: Metacognitive Dynamic Tree of Concepts for Boosting Mathematical Problem-Solving of Large Language Models
Despite advances in mathematical reasoning capabilities, Large Language Models (LLMs) still struggle with calculation verification when using established prompting techniques. We present MDToC (Metacognitive Dynamic Tree of Concepts), a three-phase approach that constructs a concept tree, develops accuracy-verified calculations for each concept, and employs majority voting to evaluate competing solutions. Evaluations across CHAMP, MATH, and Game-of-24 benchmarks demonstrate our MDToC's effectiveness, with GPT-4-Turbo achieving 58.1\% on CHAMP, 86.6\% on MATH, and 85\% on Game-of-24 - outperforming GoT by 5\%, 5.4\%, and 4\% on all these tasks, respectively, without hand-engineered hints. MDToC consistently surpasses existing prompting methods across all backbone models, yielding improvements of up to 7.6\% over ToT and 6.2\% over GoT, establishing metacognitive calculation verification as a promising direction for enhanced mathematical reasoning.
☆ AraMix: Recycling, Refiltering, and Deduplicating to Deliver the Largest Arabic Pretraining Corpus
We present AraMix, a deduplicated Arabic pretraining corpus containing approximately 178 billion tokens across 179 million documents. Rather than scraping the web again, AraMix demonstrates that substantial value lies in systematically reusing and curating existing pretraining datasets: we combine seven publicly available Arabic web datasets, apply quality filtering designed specifically for Arabic text to re-filter some datasets, and perform cross-dataset deduplication, both MinHash and sentence-level. This approach reveals that nearly 60% of tokens across these independently collected corpora are duplicates, redundancy that any new scraping efforts will reproduce. Our work suggests that for lower resource languages, investment in curation pipelines for existing data yields greater returns than additional web crawls, an approach that allowed us to curate the largest heavily filtered publicly available Arabic pretraining corpus.
comment: Initial version, without pretraining experiments
☆ From Word to World: Can Large Language Models be Implicit Text-based World Models?
Agentic reinforcement learning increasingly relies on experience-driven scaling, yet real-world environments remain non-adaptive, limited in coverage, and difficult to scale. World models offer a potential way to improve learning efficiency through simulated experience, but it remains unclear whether large language models can reliably serve this role and under what conditions they meaningfully benefit agents. We study these questions in text-based environments, which provide a controlled setting to reinterpret language modeling as next-state prediction under interaction. We introduce a three-level framework for evaluating LLM-based world models: (i) fidelity and consistency, (ii) scalability and robustness, and (iii) agent utility. Across five representative environments, we find that sufficiently trained world models maintain coherent latent state, scale predictably with data and model size, and improve agent performance via action verification, synthetic trajectory generation, and warm-starting reinforcement learning. Meanwhile, these gains depend critically on behavioral coverage and environment complexity, delineating clear boundry on when world modeling effectively supports agent learning.
☆ From Natural Language to Control Signals: A Conceptual Framework for Semantic Channel Finding in Complex Experimental Infrastructure
Modern experimental platforms such as particle accelerators, fusion devices, telescopes, and industrial process control systems expose tens to hundreds of thousands of control and diagnostic channels accumulated over decades of evolution. Operators and AI systems rely on informal expert knowledge, inconsistent naming conventions, and fragmented documentation to locate signals for monitoring, troubleshooting, and automated control, creating a persistent bottleneck for reliability, scalability, and language-model-driven interfaces. We formalize semantic channel finding-mapping natural-language intent to concrete control-system signals-as a general problem in complex experimental infrastructure, and introduce a four-paradigm framework to guide architecture selection across facility-specific data regimes. The paradigms span (i) direct in-context lookup over curated channel dictionaries, (ii) constrained hierarchical navigation through structured trees, (iii) interactive agent exploration using iterative reasoning and tool-based database queries, and (iv) ontology-grounded semantic search that decouples channel meaning from facility-specific naming conventions. We demonstrate each paradigm through proof-of-concept implementations at four operational facilities spanning two orders of magnitude in scale-from compact free-electron lasers to large synchrotron light sources-and diverse control-system architectures, from clean hierarchies to legacy environments. These implementations achieve 90-97% accuracy on expert-curated operational queries.
☆ Code2Doc: A Quality-First Curated Dataset for Code Documentation
The performance of automatic code documentation generation models depends critically on the quality of the training data used for supervision. However, most existing code documentation datasets are constructed through large scale scraping of public repositories with limited quality control. As a result, they often contain noisy documentation, extensive duplication, and increasing contamination from AI generated content. These issues weaken the supervision signal available to learning-based models and complicate evaluation. We introduce \textbf{Code2Doc}, a quality-first curated dataset for function-level code documentation generation. Code2Doc consists of 13,358 high-quality function-documentation pairs extracted from widely used open-source repositories spanning five programming languages: Python, Java, TypeScript, JavaScript, and C++. The dataset is constructed using a four-stage curation pipeline that enforces documentation completeness and clarity, filters functions based on structural and complexity criteria, removes exact and near-duplicate code, and identifies documentation likely to be AI generated. Starting from 52,069 extracted candidates, only 25.6 percent satisfy all quality constraints. We provide a detailed analysis of the resulting dataset, which achieves a mean documentation quality score of 6.93 out of 10. Overall, 86.9% of samples contain explicit type annotations, and only 2.9\% are flagged as potentially AI generated. Baseline experiments show that fine-tuning a large language model on Code2Doc yields relative improvements of 29.47% in BLEU and 24.04% in ROUGE-L over zero shot performance, despite the modest dataset size. We release both the dataset and the full curation pipeline to support reproducible research on automatic code documentation generation.
☆ MemEvolve: Meta-Evolution of Agent Memory Systems
Self-evolving memory systems are unprecedentedly reshaping the evolutionary paradigm of large language model (LLM)-based agents. Prior work has predominantly relied on manually engineered memory architectures to store trajectories, distill experience, and synthesize reusable tools, enabling agents to evolve on the fly within environment interactions. However, this paradigm is fundamentally constrained by the staticity of the memory system itself: while memory facilitates agent-level evolving, the underlying memory architecture cannot be meta-adapted to diverse task contexts. To address this gap, we propose MemEvolve, a meta-evolutionary framework that jointly evolves agents' experiential knowledge and their memory architecture, allowing agent systems not only to accumulate experience but also to progressively refine how they learn from it. To ground MemEvolve in prior research and foster openness in future self-evolving systems, we introduce EvolveLab, a unified self-evolving memory codebase that distills twelve representative memory systems into a modular design space (encode, store, retrieve, manage), providing both a standardized implementation substrate and a fair experimental arena. Extensive evaluations on four challenging agentic benchmarks demonstrate that MemEvolve achieves (I) substantial performance gains, improving frameworks such as SmolAgent and Flash-Searcher by up to $17.06\%$; and (II) strong cross-task and cross-LLM generalization, designing memory architectures that transfer effectively across diverse benchmarks and backbone models.
☆ InSight-o3: Empowering Multimodal Foundation Models with Generalized Visual Search
The ability for AI agents to "think with images" requires a sophisticated blend of reasoning and perception. However, current open multimodal agents still largely fall short on the reasoning aspect crucial for real-world tasks like analyzing documents with dense charts/diagrams and navigating maps. To address this gap, we introduce O3-Bench, a new benchmark designed to evaluate multimodal reasoning with interleaved attention to visual details. O3-Bench features challenging problems that require agents to piece together subtle visual information from distinct image areas through multi-step reasoning. The problems are highly challenging even for frontier systems like OpenAI o3, which only obtains 40.8% accuracy on O3-Bench. To make progress, we propose InSight-o3, a multi-agent framework consisting of a visual reasoning agent (vReasoner) and a visual search agent (vSearcher) for which we introduce the task of generalized visual search -- locating relational, fuzzy, or conceptual regions described in free-form language, beyond just simple objects or figures in natural images. We then present a multimodal LLM purpose-trained for this task via reinforcement learning. As a plug-and-play agent, our vSearcher empowers frontier multimodal models (as vReasoners), significantly improving their performance on a wide range of benchmarks. This marks a concrete step towards powerful o3-like open systems. Our code and dataset can be found at https://github.com/m-Just/InSight-o3 .
☆ Solver-Independent Automated Problem Formulation via LLMs for High-Cost Simulation-Driven Design
In the high-cost simulation-driven design domain, translating ambiguous design requirements into a mathematical optimization formulation is a bottleneck for optimizing product performance. This process is time-consuming and heavily reliant on expert knowledge. While large language models (LLMs) offer potential for automating this task, existing approaches either suffer from poor formalization that fails to accurately align with the design intent or rely on solver feedback for data filtering, which is unavailable due to the high simulation costs. To address this challenge, we propose APF, a framework for solver-independent, automated problem formulation via LLMs designed to automatically convert engineers' natural language requirements into executable optimization models. The core of this framework is an innovative pipeline for automatically generating high-quality data, which overcomes the difficulty of constructing suitable fine-tuning datasets in the absence of high-cost solver feedback with the help of data generation and test instance annotation. The generated high-quality dataset is used to perform supervised fine-tuning on LLMs, significantly enhancing their ability to generate accurate and executable optimization problem formulations. Experimental results on antenna design demonstrate that APF significantly outperforms the existing methods in both the accuracy of requirement formalization and the quality of resulting radiation efficiency curves in meeting the design goals.
☆ brat: Aligned Multi-View Embeddings for Brain MRI Analysis WACV 2026
We present brat (brain report alignment transformer), a multi-view representation learning framework for brain magnetic resonance imaging (MRI) trained on MRIs paired with clinical reports. Brain MRIs present unique challenges due to the presence of numerous, highly varied, and often subtle abnormalities that are localized to a few slices within a 3D volume. To address these challenges, we introduce a brain MRI dataset $10\times$ larger than existing ones, containing approximately 80,000 3D scans with corresponding radiology reports, and propose a multi-view pre-training approach inspired by advances in document retrieval. We develop an implicit query-feature matching mechanism and adopt concepts from quality-diversity to obtain multi-view embeddings of MRIs that are aligned with the clinical features given by report sentences. We evaluate our approach across multiple vision-language and vision tasks, demonstrating substantial performance improvements. The brat foundation models are publicly released.
comment: First round accept at WACV 2026
☆ Does It Tie Out? Towards Autonomous Legal Agents in Venture Capital
Before closing venture capital financing rounds, lawyers conduct diligence that includes tying out the capitalization table: verifying that every security (for example, shares, options, warrants) and issuance term (for example, vesting schedules, acceleration triggers, transfer restrictions) is supported by large sets of underlying legal documentation. While LLMs continue to improve on legal benchmarks, specialized legal workflows, such as capitalization tie-out, remain out of reach even for strong agentic systems. The task requires multi-document reasoning, strict evidence traceability, and deterministic outputs that current approaches fail to reliably deliver. We characterize capitalization tie-out as an instance of a real-world benchmark for legal AI, analyze and compare the performance of existing agentic systems, and propose a world model architecture toward tie-out automation-and more broadly as a foundation for applied legal intelligence.
LLM-CAS: Dynamic Neuron Perturbation for Real-Time Hallucination Correction AAAI 2026
Large language models (LLMs) often generate hallucinated content that lacks factual or contextual grounding, limiting their reliability in critical applications. Existing approaches such as supervised fine-tuning and reinforcement learning from human feedback are data intensive and computationally expensive, while static parameter editing methods struggle with context dependent errors and catastrophic forgetting. We propose LLM-CAS, a framework that formulates real-time hallucination correction as a hierarchical reinforcement learning problem. LLM-CAS trains an agent to learn a policy that dynamically selects temporary neuron perturbations during inference based on the current context. Unlike prior dynamic approaches that rely on heuristic or predefined adjustments, this policy driven mechanism enables adaptive and fine grained correction without permanent parameter modification. Experiments across multiple language models demonstrate that LLM-CAS consistently improves factual accuracy, achieving gains of 10.98 percentage points on StoryCloze, 2.71 points on TriviaQA, and 2.06 points on the MC1 score of TruthfulQA. These results outperform both static editing methods such as ITI and CAA and the dynamic SADI framework. Overall, LLM-CAS provides an efficient and context aware solution for improving the reliability of LLMs, with promising potential for future multimodal extensions.
comment: Accepted at AAAI 2026
☆ A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback
Text2SQL, the task of generating SQL queries from natural language text, is a critical challenge in data engineering. Recently, Large Language Models (LLMs) have demonstrated superior performance for this task due to their advanced comprehension and generation capabilities. However, privacy and cost considerations prevent companies from using Text2SQL solutions based on external LLMs offered as a service. Rather, small LLMs (SLMs) that are openly available and can hosted in-house are adopted. These SLMs, in turn, lack the generalization capabilities of larger LLMs, which impairs their effectiveness for complex tasks such as Text2SQL. To address these limitations, we propose MATS, a novel Text2SQL framework designed specifically for SLMs. MATS uses a multi-agent mechanism that assigns specialized roles to auxiliary agents, reducing individual workloads and fostering interaction. A training scheme based on reinforcement learning aligns these agents using feedback obtained during execution, thereby maintaining competitive performance despite a limited LLM size. Evaluation results using on benchmark datasets show that MATS, deployed on a single- GPU server, yields accuracy that are on-par with large-scale LLMs when using significantly fewer parameters. Our source code and data are available at https://github.com/thanhdath/mats-sql.
☆ A Comparative Study of Light-weight Language Models for PII Masking and their Deployment for Real Conversational Texts
Automated masking of Personally Identifiable Information (PII) is critical for privacy-preserving conversational systems. While current frontier large language models demonstrate strong PII masking capabilities, concerns about data handling and computational costs motivate exploration of whether lightweight models can achieve comparable performance. We compare encoder-decoder and decoder-only architectures by fine-tuning T5-small and Mistral-Instruct-v0.3 on English datasets constructed from the AI4Privacy benchmark. We create different dataset variants to study label standardization and PII representation, covering 24 standardized PII categories and higher-granularity settings. Evaluation using entity-level and character-level metrics, type accuracy, and exact match shows that both lightweight models achieve performance comparable to frontier LLMs for PII masking tasks. Label normalization consistently improves performance across architectures. Mistral achieves higher F1 and recall with greater robustness across PII types but incurs significantly higher generation latency. T5, while less robust in conversational text, offers more controllable structured outputs and lower inference cost, motivating its use in a real-time Discord bot for real-world PII redaction. Evaluation on live messages reveals performance degradation under informal inputs. These results clarify trade-offs between accuracy, robustness, and computational efficiency, demonstrating that lightweight models can provide effective PII masking while addressing data handling concerns associated with frontier LLMs.
☆ On Finding Inconsistencies in Documents
Professionals in academia, law, and finance audit their documents because inconsistencies can result in monetary, reputational, and scientific costs. Language models (LMs) have the potential to dramatically speed up this auditing process. To understand their abilities, we introduce a benchmark, FIND (Finding INconsistencies in Documents), where each example is a document with an inconsistency inserted manually by a domain expert. Despite the documents being long, technical, and complex, the best-performing model (gpt-5) recovered 64% of the inserted inconsistencies. Surprisingly, gpt-5 also found undiscovered inconsistencies present in the original documents. For example, on 50 arXiv papers, we judged 136 out of 196 of the model's suggestions to be legitimate inconsistencies missed by the original authors. However, despite these findings, even the best models miss almost half of the inconsistencies in FIND, demonstrating that inconsistency detection is still a challenging task.
☆ From Scratch to Fine-Tuned: A Comparative Study of Transformer Training Strategies for Legal Machine Translation
In multilingual nations like India, access to legal information is often hindered by language barriers, as much of the legal and judicial documentation remains in English. Legal Machine Translation (L-MT) offers a scalable solution to this challenge by enabling accurate and accessible translations of legal documents. This paper presents our work for the JUST-NLP 2025 Legal MT shared task, focusing on English-Hindi translation using Transformer-based approaches. We experiment with 2 complementary strategies, fine-tuning a pre-trained OPUS-MT model for domain-specific adaptation and training a Transformer model from scratch using the provided legal corpus. Performance is evaluated using standard MT metrics, including SacreBLEU, chrF++, TER, ROUGE, BERTScore, METEOR, and COMET. Our fine-tuned OPUS-MT model achieves a SacreBLEU score of 46.03, significantly outperforming both baseline and from-scratch models. The results highlight the effectiveness of domain adaptation in enhancing translation quality and demonstrate the potential of L-MT systems to improve access to justice and legal transparency in multilingual contexts.
☆ Toward Training Superintelligent Software Agents through Self-Play SWE-RL
While current software agents powered by large language models (LLMs) and agentic reinforcement learning (RL) can boost programmer productivity, their training data (e.g., GitHub issues and pull requests) and environments (e.g., pass-to-pass and fail-to-pass tests) heavily depend on human knowledge or curation, posing a fundamental barrier to superintelligence. In this paper, we present Self-play SWE-RL (SSR), a first step toward training paradigms for superintelligent software agents. Our approach takes minimal data assumptions, only requiring access to sandboxed repositories with source code and installed dependencies, with no need for human-labeled issues or tests. Grounded in these real-world codebases, a single LLM agent is trained via reinforcement learning in a self-play setting to iteratively inject and repair software bugs of increasing complexity, with each bug formally specified by a test patch rather than a natural language issue description. On the SWE-bench Verified and SWE-Bench Pro benchmarks, SSR achieves notable self-improvement (+10.4 and +7.8 points, respectively) and consistently outperforms the human-data baseline over the entire training trajectory, despite being evaluated on natural language issues absent from self-play. Our results, albeit early, suggest a path where agents autonomously gather extensive learning experiences from real-world software repositories, ultimately enabling superintelligent systems that exceed human capabilities in understanding how systems are constructed, solving novel challenges, and autonomously creating new software from scratch.
☆ Neologism Learning as a Parameter-Efficient Alternative to Fine-Tuning for Model Steering
In language modeling, neologisms are new tokens trained to represent a concept not already included in a given model's vocabulary. Neologisms can be used to encourage specific behavior in models, for example by appending prompts with "Give me a neologism answer." Behavioral steering can also be achieved through fine-tuning, albeit with more compute and less flexibility: learning a neologism only trains d parameters and allows the user to still access the model's default behavior. We compare the performance of neologism learning against low-rank adaptation (LoRA) fine-tuning, finding that neologisms outperform fine-tuned models under a matched training setup (same data and hyperparameters). We also investigate self-verbalizations of neologisms, and observe that the model will occasionally make up its own new words when asked about a neologism.
LLMs on Drugs: Language Models Are Few-Shot Consumers
Large language models (LLMs) are sensitive to the personas imposed on them at inference time, yet prompt-level "drug" interventions have never been benchmarked rigorously. We present the first controlled study of psychoactive framings on GPT-5-mini using ARC-Challenge. Four single-sentence prompts -- LSD, cocaine, alcohol, and cannabis -- are compared against a sober control across 100 validation items per condition, with deterministic decoding, full logging, Wilson confidence intervals, and Fisher exact tests. Control accuracy is 0.45; alcohol collapses to 0.10 (p = 3.2e-8), cocaine to 0.21 (p = 4.9e-4), LSD to 0.19 (p = 1.3e-4), and cannabis to 0.30 (p = 0.041), largely because persona prompts disrupt the mandated "Answer: " template. Persona text therefore behaves like a "few-shot consumable" that can destroy reliability without touching model weights. All experimental code, raw results, and analysis scripts are available at https://github.com/lexdoudkin/llms-on-drugs.
comment: 8 pages, 2 figures, 2 tables
♻ ☆ AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models NeurIPS 2025
Large Language Models (LLMs) remain vulnerable to jailbreaking attacks where adversarial prompts elicit harmful outputs. Yet most evaluations focus on single-turn interactions while real-world attacks unfold through adaptive multi-turn conversations. We present AutoAdv, a training-free framework for automated multi-turn jailbreaking that achieves an attack success rate of up to 95% on Llama-3.1-8B within six turns, a 24% improvement over single-turn baselines. AutoAdv uniquely combines three adaptive mechanisms: a pattern manager that learns from successful attacks to enhance future prompts, a temperature manager that dynamically adjusts sampling parameters based on failure modes, and a two-phase rewriting strategy that disguises harmful requests and then iteratively refines them. Extensive evaluation across commercial and open-source models (Llama-3.1-8B, GPT-4o mini, Qwen3-235B, Mistral-7B) reveals persistent vulnerabilities in current safety mechanisms, with multi-turn attacks consistently outperforming single-turn approaches. These findings demonstrate that alignment strategies optimized for single-turn interactions fail to maintain robustness across extended conversations, highlighting an urgent need for multi-turn-aware defenses.
comment: Presented at NeurIPS 2025 Lock-LLM Workshop. Code is available at https://github.com/AAN-AutoAdv/AutoAdv
♻ ☆ Towards a resource for multilingual lexicons: an MT assisted and human-in-the-loop multilingual parallel corpus with multi-word expression annotation
In this work, we introduce the construction of a machine translation (MT) assisted and human-in-the-loop multilingual parallel corpus with annotations of multi-word expressions (MWEs), named AlphaMWE. The MWEs include verbal MWEs (vMWEs) defined in the PARSEME shared task that have a verb as the head of the studied terms. The annotated vMWEs are also bilingually and multilingually aligned manually. The languages covered include Arabic, Chinese, English, German, Italian, and Polish, of which, the Arabic corpus includes both standard and dialectal variations from Egypt and Tunisia. Our original English corpus is extracted from the PARSEME shared task in 2018. We performed machine translation of this source corpus followed by human post-editing and annotation of target MWEs. Strict quality control was applied for error limitation, i.e., each MT output sentence received first manual post-editing and annotation plus a second manual quality rechecking till annotators' consensus is reached. One of our findings during corpora preparation is that accurate translation of MWEs presents challenges to MT systems, as reflected by the outcomes of human-in-the-loop metric HOPE. To facilitate further MT research, we present a categorisation of the error types encountered by MT systems in performing MWE-related translation. To acquire a broader view of MT issues, we selected four popular state-of-the-art MT systems for comparison, namely Microsoft Bing Translator, GoogleMT, Baidu Fanyi, and DeepL MT. Because of the noise removal, translation post-editing, and MWE annotation by human professionals, we believe the AlphaMWE data set will be an asset for both monolingual and cross-lingual research, such as multi-word term lexicography, MT, and information extraction.
comment: Accepted by Journal of LRE, extended work from WS paper AlphaMWE
♻ ☆ Over-representation of phonological features in basic vocabulary doesn't replicate when controlling for spatial and phylogenetic effects
The statistical over-representation of phonological features in the basic vocabulary of languages is often interpreted as reflecting potentially universal sound symbolic patterns. However, most of those results have not been tested explicitly for reproducibility and might be prone to biases in the study samples or models. Many studies on the topic do not adequately control for genealogical and areal dependencies between sampled languages, casting doubts on the robustness of the results. In this study, we test the robustness of a recent study on sound symbolism of basic vocabulary concepts which analyzed 245 languages.The new sample includes data on 2864 languages from Lexibank. We modify the original model by adding statistical controls for spatial and phylogenetic dependencies between languages. The new results show that most of the previously observed patterns are not robust, and in fact many patterns disappear completely when adding the genealogical and areal controls. A small number of patterns, however, emerges as highly stable even with the new sample. Through the new analysis, we are able to assess the distribution of sound symbolism on a larger scale than previously. The study further highlights the need for testing all universal claims on language for robustness on various levels.
comment: Accepted with minor revisions at *Linguistic Typology*, expected to be fully published in 2026
♻ ☆ Exploration vs Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
♻ ☆ Dagstuhl Perspectives Workshop 24352 -- Conversational Agents: A Framework for Evaluation (CAFE): Manifesto
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system's stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.
comment: 10 figures; Dagstuhl Manifestos, 11(1), pp 19-67. DOI: 10.4230/DagMan.11.1.19
♻ ☆ SCARE: A Benchmark for SQL Correction and Question Answerability Classification for Reliable EHR Question Answering ML4H 2025
Recent advances in Large Language Models (LLMs) have enabled the development of text-to-SQL models that allow clinicians to query structured data stored in Electronic Health Records (EHRs) using natural language. However, deploying these models for EHR question answering (QA) systems in safety-critical clinical environments remains challenging: incorrect SQL queries-whether caused by model errors or problematic user inputs-can undermine clinical decision-making and jeopardize patient care. While prior work has mainly focused on improving SQL generation accuracy or filtering questions before execution, there is a lack of a unified benchmark for evaluating independent post-hoc verification mechanisms (i.e., a component that inspects and validates the generated SQL before execution), which is crucial for safe deployment. To fill this gap, we introduce SCARE, a benchmark for evaluating methods that function as a post-hoc safety layer in EHR QA systems. SCARE evaluates the joint task of (1) classifying question answerability (i.e., determining whether a question is answerable, ambiguous, or unanswerable) and (2) verifying or correcting candidate SQL queries. The benchmark comprises 4,200 triples of questions, candidate SQL queries, and expected model outputs, grounded in the MIMIC-III, MIMIC-IV, and eICU databases. It covers a diverse set of questions and corresponding candidate SQL queries generated by seven different text-to-SQL models, ensuring a realistic and challenging evaluation. Using SCARE, we benchmark a range of approaches-from two-stage methods to agentic frameworks. Our experiments reveal a critical trade-off between question classification and SQL error correction, highlighting key challenges and outlining directions for future research.
comment: ML4H 2025 Proceedings
♻ ☆ Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in verifier guided reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables consistent policy learning from group relative judgments. We reframe GRPO into a staged training paradigm, leveraging a teacher's MCTS rollouts to construct a tree structured curriculum of prefixes. This introduces the novel challenge of computing advantages for training samples that originate from different prefixes, each with a distinct expected return. To address this, we propose Staged Advantage Estimation (SAE), a framework for computing low variance, prefix aware advantages by projecting rewards onto a constraint set that respects the tree's hierarchy. Our empirical results on mathematical reasoning tasks show that SAE improves final accuracy over standard GRPO. This outcome is grounded in our theoretical analysis, which confirms that SAE reduces gradient variance, a principled path to improved sample efficiency. We demonstrate this through practical SAE implementations, comparing efficient heuristics against a formal quadratic program.
♻ ☆ From Words to Proverbs: Evaluating LLMs Linguistic and Cultural Competence in Saudi Dialects with Absher
As large language models (LLMs) become increasingly central to Arabic NLP applications, evaluating their understanding of regional dialects and cultural nuances is essential, particularly in linguistically diverse settings like Saudi Arabia. This paper introduces Absher, a comprehensive benchmark specifically designed to assess LLMs performance across major Saudi dialects. \texttt{Absher} comprises over 18,000 multiple-choice questions spanning six distinct categories: Meaning, True/False, Fill-in-the-Blank, Contextual Usage, Cultural Interpretation, and Location Recognition. These questions are derived from a curated dataset of dialectal words, phrases, and proverbs sourced from various regions of Saudi Arabia. We evaluate several state-of-the-art LLMs, including multilingual and Arabic-specific models. We also provide detailed insights into their capabilities and limitations. Our results reveal notable performance gaps, particularly in tasks requiring cultural inference or contextual understanding. Our findings highlight the urgent need for dialect-aware training and culturally aligned evaluation methodologies to improve LLMs performance in real-world Arabic applications.
♻ ☆ Look Twice before You Leap: A Rational Agent Framework for Localized Adversarial Anonymization
Current LLM-based text anonymization frameworks usually rely on remote API services from powerful LLMs, which creates an inherent privacy paradox: users must disclose data to untrusted third parties for guaranteed privacy preservation. Moreover, directly migrating current solutions to local small-scale models (LSMs) offers a suboptimal solution with severe utility collapse. Our work argues that this failure stems not merely from the capability deficits of LSMs, but significantly from the inherent irrationality of the greedy adversarial strategies employed by current state-of-the-art (SOTA) methods. To address this, we propose Rational Localized Adversarial Anonymization (RLAA), a fully localized and training-free framework featuring an Attacker-Arbitrator-Anonymizer architecture. We model the anonymization process as a trade-off between Marginal Privacy Gain (MPG) and Marginal Utility Cost (MUC), and demonstrate that greedy strategies tend to drift into an irrational state. Instead, RLAA introduces an arbitrator that acts as a rationality gatekeeper, validating the attacker's inference to filter out feedback providing negligible privacy benefits. This mechanism promotes a rational early-stopping criterion, and structurally prevents utility collapse. Extensive experiments on different benchmarks demonstrate that RLAA achieves a superior privacy-utility trade-off compared to strong baselines.
comment: 17 pages, 9 figures, 6 tables. Revised version with an updated author list, expanded experimental results and analysis
♻ ☆ LexChain: Modeling Legal Reasoning Chains for Chinese Tort Case Analysis
Legal reasoning is a fundamental component of legal analysis and decision-making. Existing computational approaches to legal reasoning predominantly rely on generic reasoning frameworks such as syllogism, which do not comprehensively examine the nuanced process of legal reasoning. Moreover, current research has largely focused on criminal cases, with insufficient modeling for civil cases. In this work, we present a novel framework to explicitly model legal reasoning in the analysis of Chinese tort-related civil cases. We first operationalize the legal reasoning process in tort analysis into the three-module LexChain framework, with each module consisting of multiple finer-grained sub-steps. Informed by the LexChain framework, we introduce the task of tort legal reasoning and construct an evaluation benchmark to systematically assess the critical steps within analytical reasoning chains for tort analysis. Leveraging this benchmark, we evaluate existing large language models for their legal reasoning ability in civil tort contexts. Our results indicate that current models still fall short in accurately handling crucial elements of tort legal reasoning. Furthermore, we introduce several baseline approaches that explicitly incorporate LexChain-style reasoning through prompting or post-training. The proposed baselines achieve significant improvements in tort-related legal reasoning and generalize well to related legal analysis tasks, demonstrating the value of explicitly modeling legal reasoning chains to enhance the reasoning capabilities of language models.
♻ ☆ Abstract, Align, Predict: Zero-Shot Stance Detection via Cognitive Inductive Reasoning
Zero-shot stance detection (ZSSD) seeks to determine the stance of text toward previously unseen targets, a task critical for analyzing dynamic and polarized online discourse with limited labeled data. While large language models (LLMs) offer zero-shot capabilities, prompting-based approaches often fall short in handling complex reasoning and lack robust generalization to novel targets. Meanwhile, LLM-enhanced methods still require substantial labeled data and struggle to move beyond instance-level patterns, limiting their interpretability and adaptability. Inspired by cognitive science, we propose the Cognitive Inductive Reasoning Framework (CIRF), a schema-driven method that bridges linguistic inputs and abstract reasoning via automatic induction and application of cognitive reasoning schemas. CIRF abstracts first-order logic patterns from raw text into multi-relational schema graphs in an unsupervised manner, and leverages a schema-enhanced graph kernel model to align input structures with schema templates for robust, interpretable zero-shot inference. Extensive experiments on SemEval-2016, VAST, and COVID-19-Stance benchmarks demonstrate that CIRF not only establishes new state-of-the-art results, but also achieves comparable performance with just 30\% of the labeled data, demonstrating its strong generalization and efficiency in low-resource settings.
♻ ☆ Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives AAAI 2026
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.
comment: 9 pages, 4 figures, 5 tables. Submitted to AAAI 2026 Bridge Program on Logic & AI. Code available at https://github.com/XAheli/Logic-in-LLMs
♻ ☆ BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives AAAI 2026
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
comment: Accepted for oral presentation at AAAI 2026
♻ ☆ Label Words as Local Task Vectors in In-Context Learning
Large Language Models (LLMs) have demonstrated remarkable abilities, one of the most important being in-context learning (ICL). With ICL, LLMs can derive the underlying rule from a few demonstrations and provide answers that comply with the rule. Previous work hypothesized that the network creates a task vector in specific positions during ICL. The task vector can be computed by averaging across the dataset. It conveys the overall task information and can thus be considered global. Patching the global task vector allows LLMs to achieve zero-shot performance with dummy inputs comparable to few-shot learning. However, we find that such a global task vector does not exist in all tasks, especially in tasks that rely on rules that can only be inferred from multiple demonstrations, such as categorization tasks. Instead, the information provided by each demonstration is first transmitted to its answer position and forms a local task vector associated with the demonstration. In some tasks but not in categorization tasks, all demonstrations' local task vectors converge in later layers, forming the global task vector. We further show that local task vectors encode a high-level abstraction of rules extracted from the demonstrations. Our study provides novel insights into the mechanism underlying ICL in LLMs, demonstrating how ICL may be achieved through an information aggregation mechanism.
♻ ☆ ADePT: Adaptive Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning ICLR 2025
Prompt Tuning (PT) enables the adaptation of Pre-trained Large Language Models (PLMs) to downstream tasks by optimizing a small amount of soft virtual tokens, which are prepended to the input token embeddings. Recently, Decomposed Prompt Tuning (DePT) has demonstrated superior adaptation capabilities by decomposing the soft prompt into a shorter soft prompt and a pair of low-rank matrices. The product of the pair of low-rank matrices is added to the input token embeddings to offset them. Additionally, DePT achieves faster inference compared to PT due to the shorter soft prompt. However, in this paper, we find that the position-based token embedding offsets of DePT restrict its ability to generalize across diverse model inputs, and that the shared embedding offsets across many token embeddings result in sub-optimization. To tackle these issues, we introduce Adaptive Decomposed Prompt Tuning (ADePT), which is composed of a short soft prompt and a shallow token-shared feed-forward neural network. ADePT utilizes the token-shared feed-forward neural network to learn the embedding offsets for each token, enabling adaptive embedding offsets that vary according to the model input and better optimization of token embedding offsets. This enables ADePT to achieve superior adaptation performance without requiring more inference time or additional trainable parameters compared to vanilla PT and its variants. In comprehensive experiments across 23 natural language processing tasks and 4 typical PLMs of different scales, ADePT consistently surpasses the other leading parameter-efficient fine-tuning methods, and even outperforms the full fine-tuning in certain scenarios. We also provide a theoretical analysis towards ADePT. Code is available at https://github.com/HungerPWAY/ADePT.
comment: Published at ICLR 2025
♻ ☆ Decoding Neural Emotion Patterns through Large Language Model Embeddings
Understanding how emotional expression in language relates to brain function is a challenge in computational neuroscience and affective computing. Traditional neuroimaging is costly and lab-bound, but abundant digital text offers new avenues for emotion-brain mapping. Prior work has largely examined neuroimaging-based emotion localization or computational text analysis separately, with little integration. We propose a computational framework that maps textual emotional content to anatomically defined brain regions without requiring neuroimaging. Using OpenAI's text-embedding-ada-002, we generate high-dimensional semantic representations, apply dimensionality reduction and clustering to identify emotional groups, and map them to 18 brain regions linked to emotional processing. Three experiments were conducted: i) analyzing conversational data from healthy vs. depressed subjects (DIAC-WOZ dataset) to compare mapping patterns, ii) applying the method to the GoEmotions dataset and iii) comparing human-written text with large language model (LLM) responses to assess differences in inferred brain activation. Emotional intensity was scored via lexical analysis. Results showed neuroanatomically plausible mappings with high spatial specificity. Depressed subjects exhibited greater limbic engagement tied to negative affect. Discrete emotions were successfully differentiated. LLM-generated text matched humans in basic emotion distribution but lacked nuanced activation in empathy and self-referential regions (medial prefrontal and posterior cingulate cortex). This cost-effective, scalable approach enables large-scale analysis of naturalistic language, distinguishes between clinical populations, and offers a brain-based benchmark for evaluating AI emotional expression.
comment: 26 pages, 9 figures
♻ ☆ LLM-as-a-Prophet: Understanding Predictive Intelligence with Prophet Arena
Forecasting is not only a fundamental intellectual pursuit but also is of significant importance to societal systems such as finance and economics. With the rapid advances of large language models (LLMs) trained on Internet-scale data, it raises the promise of employing LLMs to forecast real-world future events, an emerging paradigm we call "LLM-as-a-Prophet". This paper systematically investigates such predictive intelligence of LLMs. To this end, we build Prophet Arena, a general evaluation benchmark that continuously collects live forecasting tasks and decomposes each task into distinct pipeline stages, in order to support our controlled and large-scale experimentation. Our comprehensive evaluation reveals that many LLMs already exhibit impressive forecasting capabilities, reflected in, e.g., their small calibration errors, consistent prediction confidence and promising market returns. However, we also uncover key bottlenecks towards achieving superior predictive intelligence via LLM-as-a-Prophet, such as LLMs' inaccurate event recalls, misunderstanding of data sources and slower information aggregation compared to markets when resolution nears.
comment: https://www.prophetarena.co/
♻ ☆ TermGPT: Multi-Level Contrastive Fine-Tuning for Terminology Adaptation in Legal and Financial Domain AAAI'26
Large language models (LLMs) have demonstrated impressive performance in text generation tasks; however, their embedding spaces often suffer from the isotropy problem, resulting in poor discrimination of domain-specific terminology, particularly in legal and financial contexts. This weakness in terminology-level representation can severely hinder downstream tasks such as legal judgment prediction or financial risk analysis, where subtle semantic distinctions are critical. To address this problem, we propose TermGPT, a multi-level contrastive fine-tuning framework designed for terminology adaptation. We first construct a sentence graph to capture semantic and structural relations, and generate semantically consistent yet discriminative positive and negative samples based on contextual and topological cues. We then devise a multi-level contrastive learning approach at both the sentence and token levels, enhancing global contextual understanding and fine-grained terminology discrimination. To support robust evaluation, we construct the first financial terminology dataset derived from official regulatory documents. Experiments show that TermGPT outperforms existing baselines in term discrimination tasks within the finance and legal domains.
comment: 13 pages, 4 figures, AAAI'26
Computer Vision and Pattern Recognition 4
☆ Delta-LLaVA: Base-then-Specialize Alignment for Token-Efficient Vision-Language Models
Multimodal Large Language Models (MLLMs) combine visual and textual representations to enable rich reasoning capabilities. However, the high computational cost of processing dense visual tokens remains a major bottleneck. A critical component in this pipeline is the visual projector, which bridges the vision encoder and the language model. Standard designs often employ a simple multi-layer perceptron for direct token mapping, but this approach scales poorly with high-resolution inputs, introducing significant redundancy. We present Delta-LLaVA, a token-efficient projector that employs a low-rank DeltaProjection to align multi-level vision features into a compact subspace before further interaction. On top of this base alignment, lightweight Transformer blocks act as specialization layers, capturing both global and local structure under constrained token budgets. Extensive experiments and ablations demonstrate that this base-then-specialize design yields consistent gains across multiple benchmarks with only 144 tokens, highlighting the importance of token formation prior to scaling interaction capacity. With Delta-LLaVA, inference throughput improves by up to 55%, while end-to-end training accelerates by nearly 4-5x in pretraining and over 1.5x in finetuning, highlighting the dual benefits of our design in both efficiency and scalability.
☆ Thinking Beyond Labels: Vocabulary-Free Fine-Grained Recognition using Reasoning-Augmented LMMs
Vocabulary-free fine-grained image recognition aims to distinguish visually similar categories within a meta-class without a fixed, human-defined label set. Existing solutions for this problem are limited by either the usage of a large and rigid list of vocabularies or by the dependency on complex pipelines with fragile heuristics where errors propagate across stages. Meanwhile, the ability of recent large multi-modal models (LMMs) equipped with explicit or implicit reasoning to comprehend visual-language data, decompose problems, retrieve latent knowledge, and self-correct suggests a more principled and effective alternative. Building on these capabilities, we propose FiNDR (Fine-grained Name Discovery via Reasoning), the first reasoning-augmented LMM-based framework for vocabulary-free fine-grained recognition. The system operates in three automated steps: (i) a reasoning-enabled LMM generates descriptive candidate labels for each image; (ii) a vision-language model filters and ranks these candidates to form a coherent class set; and (iii) the verified names instantiate a lightweight multi-modal classifier used at inference time. Extensive experiments on popular fine-grained classification benchmarks demonstrate state-of-the-art performance under the vocabulary-free setting, with a significant relative margin of up to 18.8% over previous approaches. Remarkably, the proposed method surpasses zero-shot baselines that exploit pre-defined ground-truth names, challenging the assumption that human-curated vocabularies define an upper bound. Additionally, we show that carefully curated prompts enable open-source LMMs to match proprietary counterparts. These findings establish reasoning-augmented LMMs as an effective foundation for scalable, fully automated, open-world fine-grained visual recognition. The source code is available on github.com/demidovd98/FiNDR.
♻ ☆ Enhancing Diffusion Model Guidance through Calibration and Regularization NeurIPS 2025
Classifier-guided diffusion models have emerged as a powerful approach for conditional image generation, but they suffer from overconfident predictions during early denoising steps, causing the guidance gradient to vanish. This paper introduces two complementary contributions to address this issue. First, we propose a differentiable calibration objective based on the Smooth Expected Calibration Error (Smooth ECE), which improves classifier calibration with minimal fine-tuning and yields measurable improvements in Frechet Inception Distance (FID). Second, we develop enhanced sampling guidance methods that operate on off-the-shelf classifiers without requiring retraining. These include tilted sampling with batch-level reweighting, adaptive entropy-regularized sampling to preserve diversity, and a novel f-divergence-based sampling strategy that strengthens class-consistent guidance while maintaining mode coverage. Experiments on ImageNet 128x128 demonstrate that our divergence-regularized guidance achieves an FID of 2.13 using a ResNet-101 classifier, improving upon existing classifier-guided diffusion methods while requiring no diffusion model retraining. The results show that principled calibration and divergence-aware sampling provide practical and effective improvements for classifier-guided diffusion.
comment: Accepted from NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling. Code available at https://github.com/ajavid34/guided-info-diffusion
♻ ☆ HandSCS: Structural Coordinate Space for Animatable Hand Gaussian Splatting
Creating animatable hand avatars from multi-view images requires modeling complex articulations and maintaining structural consistency across poses in real time. We present HandSCS, a structure-guided 3D Gaussian Splatting framework for high-fidelity hand animation. Unlike existing approaches that condition all Gaussians on the same global pose parameters, which are inadequate for highly articulated hands, HandSCS equips each Gaussian with explicit structural guidance from both intra-pose and inter-pose perspectives. To establish intra-pose structural guidance, we introduce a Structural Coordinate Space (SCS), which bridges the gap between sparse bones and dense Gaussians through hybrid static-dynamic coordinate basis and angular-radial descriptors. To improve cross-pose coherence, we further introduce an Inter-pose Consistency Loss that promotes consistent Gaussian attributes under similar articulations. Together, these components achieve high-fidelity results with consistent fine details, even in challenging high-deformation and self-contact regions. Experiments on the InterHand2.6M dataset demonstrate that HandSCS achieves state-of-the-art performance in hand avatar animation, confirming the effectiveness of explicit structural modeling.
Information Retrieval 6
☆ CIRR: Causal-Invariant Retrieval-Augmented Recommendation with Faithful Explanations under Distribution Shift
Recent advances in retrieval-augmented generation (RAG) have shown promise in enhancing recommendation systems with external knowledge. However, existing RAG-based recommenders face two critical challenges: (1) vulnerability to distribution shifts across different environments (e.g., time periods, user segments), leading to performance degradation in out-of-distribution (OOD) scenarios, and (2) lack of faithful explanations that can be verified against retrieved evidence. In this paper, we propose CIRR, a Causal-Invariant Retrieval-Augmented Recommendation framework that addresses both challenges simultaneously. CIRR learns environment-invariant user preference representations through causal inference, which guide a debiased retrieval process to select relevant evidence from multiple sources. Furthermore, we introduce consistency constraints that enforce faithfulness between retrieved evidence, generated explanations, and recommendation outputs. Extensive experiments on two real-world datasets demonstrate that CIRR achieves robust performance under distribution shifts, reducing performance degradation from 15.4% (baseline) to only 5.6% in OOD scenarios, while providing more faithful and interpretable explanations (26% improvement in faithfulness score) compared to state-of-the-art baselines.
♻ ☆ Structured Spectral Reasoning for Frequency-Adaptive Multimodal Recommendation
Multimodal recommendation aims to integrate collaborative signals with heterogeneous content such as visual and textual information, but remains challenged by modality-specific noise, semantic inconsistency, and unstable propagation over user-item graphs. These issues are often exacerbated by naive fusion or shallow modeling strategies, leading to degraded generalization and poor robustness. While recent work has explored the frequency domain as a lens to separate stable from noisy signals, most methods rely on static filtering or reweighting, lacking the ability to reason over spectral structure or adapt to modality-specific reliability. To address these challenges, we propose a Structured Spectral Reasoning (SSR) framework for frequency-aware multimodal recommendation. Our method follows a four-stage pipeline: (i) Decompose graph-based multimodal signals into spectral bands via graph-guided transformations to isolate semantic granularity; (ii) Modulate band-level reliability with spectral band masking, a training-time masking with a prediction-consistency objective that suppresses brittle frequency components; (iii) Fuse complementary frequency cues using hyperspectral reasoning with low-rank cross-band interaction; and (iv) Align modality-specific spectral features via contrastive regularization to promote semantic and structural consistency. Experiments on three real-world benchmarks show consistent gains over strong baselines, particularly under sparse and cold-start settings. Additional analyses indicate that structured spectral modeling improves robustness and provides clearer diagnostics of how different bands contribute to performance.
♻ ☆ Dagstuhl Perspectives Workshop 24352 -- Conversational Agents: A Framework for Evaluation (CAFE): Manifesto
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system's stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.
comment: 10 figures; Dagstuhl Manifestos, 11(1), pp 19-67. DOI: 10.4230/DagMan.11.1.19
♻ ☆ On Listwise Reranking for Corpus Feedback WSDM 2026
Reranker improves retrieval performance by capturing document interactions. At one extreme, graph-aware adaptive retrieval (GAR) represents an information-rich regime, requiring a pre-computed document similarity graph in reranking. However, as such graphs are often unavailable, or incur quadratic memory costs even when available, graph-free rerankers leverage large language model (LLM) calls to achieve competitive performance. We introduce L2G, a novel framework that implicitly induces document graphs from listwise reranker logs. By converting reranker signals into a graph structure, L2G enables scalable graph-based retrieval without the overhead of explicit graph computation. Results on the TREC-DL and BEIR subset show that L2G matches the effectiveness of oracle-based graph methods, while incurring zero additional LLM calls.
comment: Accepted for WSDM 2026 (short)
♻ ☆ Microsoft Academic Graph Information Retrieval for Research Recommendation and Assistance
In today's information-driven world, access to scientific publications has become increasingly easy. At the same time, filtering through the massive volume of available research has become more challenging than ever. Graph Neural Networks (GNNs) and graph attention mechanisms have shown strong effectiveness in searching large-scale information databases, particularly when combined with modern large language models. In this paper, we propose an Attention-Based Subgraph Retriever, a GNN-as-retriever model that applies attention-based pruning to extract a refined subgraph, which is then passed to a large language model for advanced knowledge reasoning.
comment: 5 pages, 3 figures
♻ ☆ BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives AAAI 2026
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
comment: Accepted for oral presentation at AAAI 2026
Computation and Language 39
☆ SecureCode v2.0: A Production-Grade Dataset for Training Security-Aware Code Generation Models
AI assistants produce vulnerable code in 45% of security-relevant scenarios, introducing flaws into production systems at scale. Yet existing secure coding datasets fall short. They lack incident grounding, don't provide the scale modern training requires, and miss the operational security context developers need for production deployments. We present SecureCode v2.0, a production-grade dataset of 1,215 security-focused coding examples that passed structural validation and expert security review. Every example ties to actual documented security incidents with CVE references, provides vulnerable and secure implementations, demonstrates concrete attacks, and includes defense-in-depth operational guidance. The dataset covers 11 vulnerability categories (complete OWASP Top 10:2025 plus AI/ML Security Threats) across 11 languages (Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, and YAML for infrastructure-as-code). Our quality assurance framework ensures complete incident grounding. Each example includes SIEM integration strategies, infrastructure hardening recommendations (Docker, AppArmor, WAF configurations), and testing approaches using language-appropriate frameworks. The dataset uses a 4-turn conversational structure mirroring actual developer-AI interactions, escalating from basic implementations to advanced security considerations and defense-in-depth guidance. Our contributions: (1) 1,215 rigorously validated examples split into 989 training, 122 validation, and 104 test sets, (2) an automated validation framework ensuring dataset consistency, (3) a 4-turn conversational structure capturing realistic security workflows, (4) comprehensive operational security guidance with SIEM integration strategies, (5) complete language-specific implementation fidelity, and (6) open-source release of data, validation tools, and benchmarking protocols.
comment: 37 pages, 5 figures. Dataset available at https://huggingface.co/datasets/scthornton/securecode-v2. Code and validation tools at https://github.com/scthornton/securecode-v2
☆ Generalization Gaps in Political Fake News Detection: An Empirical Study on the LIAR Dataset
The proliferation of linguistically subtle political disinformation poses a significant challenge to automated fact-checking systems. Despite increasing emphasis on complex neural architectures, the empirical limits of text-only linguistic modeling remain underexplored. We present a systematic diagnostic evaluation of nine machine learning algorithms on the LIAR benchmark. By isolating lexical features (Bag-of-Words, TF-IDF) and semantic embeddings (GloVe), we uncover a hard "Performance Ceiling", with fine-grained classification not exceeding a Weighted F1-score of 0.32 across models. Crucially, a simple linear SVM (Accuracy: 0.624) matches the performance of pre-trained Transformers such as RoBERTa (Accuracy: 0.620), suggesting that model capacity is not the primary bottleneck. We further diagnose a massive "Generalization Gap" in tree-based ensembles, which achieve more than 99% training accuracy but collapse to approximately 25% on test data, indicating reliance on lexical memorization rather than semantic inference. Synthetic data augmentation via SMOTE yields no meaningful gains, confirming that the limitation is semantic (feature ambiguity) rather than distributional. These findings indicate that for political fact-checking, increasing model complexity without incorporating external knowledge yields diminishing returns.
☆ Teaching and Critiquing Conceptualization and Operationalization in NLP
NLP researchers regularly invoke abstract concepts like "interpretability," "bias," "reasoning," and "stereotypes," without defining them. Each subfield has a shared understanding or conceptualization of what these terms mean and how we should treat them, and this shared understanding is the basis on which operational decisions are made: Datasets are built to evaluate these concepts, metrics are proposed to quantify them, and claims are made about systems. But what do they mean, what should they mean, and how should we measure them? I outline a seminar I created for students to explore these questions of conceptualization and operationalization, with an interdisciplinary reading list and an emphasis on discussion and critique.
☆ Research on a hybrid LSTM-CNN-Attention model for text-based web content classification
This study presents a hybrid deep learning architecture that integrates LSTM, CNN, and an Attention mechanism to enhance the classification of web content based on text. Pretrained GloVe embeddings are used to represent words as dense vectors that preserve semantic similarity. The CNN layer extracts local n-gram patterns and lexical features, while the LSTM layer models long-range dependencies and sequential structure. The integrated Attention mechanism enables the model to focus selectively on the most informative parts of the input sequence. A 5-fold cross-validation setup was used to assess the robustness and generalizability of the proposed solution. Experimental results show that the hybrid LSTM-CNN-Attention model achieved outstanding performance, with an accuracy of 0.98, precision of 0.94, recall of 0.92, and F1-score of 0.93. These results surpass the performance of baseline models based solely on CNNs, LSTMs, or transformer-based classifiers such as BERT. The combination of neural network components enabled the model to effectively capture both fine-grained text structures and broader semantic context. Furthermore, the use of GloVe embeddings provided an efficient and effective representation of textual data, making the model suitable for integration into systems with real-time or near-real-time requirements. The proposed hybrid architecture demonstrates high effectiveness in text-based web content classification, particularly in tasks requiring both syntactic feature extraction and semantic interpretation. By combining presented mechanisms, the model addresses the limitations of individual architectures and achieves improved generalization. These findings support the broader use of hybrid deep learning approaches in NLP applications, especially where complex, unstructured textual data must be processed and classified with high reliability.
comment: 10 pages, 5 figures, 2 tables. Accepted by Radio Electronics Computer Science Control 2025
☆ Mitigating Spurious Correlations in NLI via LLM-Synthesized Counterfactuals and Dynamic Balanced Sampling
Natural Language Inference (NLI) models frequently rely on spurious correlations rather than semantic reasoning. Existing mitigation strategies often incur high annotation costs or trigger catastrophic forgetting during fine-tuning. We propose an automated, scalable pipeline to address these limitations. First, we introduce Log-Frequency LMI (LF-LMI) to accurately detect semantic artifacts. Second, we generate a high-quality synthetic contrast set via an LLM-synthesis pipeline with multi-judge verification. Finally, we introduce Dynamic Balanced Sampling, a training strategy that rotates the original data distribution to prevent forgetting. Our method improves consistency on a challenging benchmark from 63.5% to 81.0% while maintaining 88.4% in-domain accuracy, significantly outperforming naive fine-tuning.
☆ An Agentic AI Framework for Training General Practitioner Student Skills
Advancements in large language models offer strong potential for enhancing virtual simulated patients (VSPs) in medical education by providing scalable alternatives to resource-intensive traditional methods. However, current VSPs often struggle with medical accuracy, consistent roleplaying, scenario generation for VSP use, and educationally structured feedback. We introduce an agentic framework for training general practitioner student skills that unifies (i) configurable, evidence-based vignette generation, (ii) controlled persona-driven patient dialogue with optional retrieval grounding, and (iii) standards-based assessment and feedback for both communication and clinical reasoning. We instantiate the framework in an interactive spoken consultation setting and evaluate it with medical students ($\mathbf{N{=}14}$). Participants reported realistic and vignette-faithful dialogue, appropriate difficulty calibration, a stable personality signal, and highly useful example-rich feedback, alongside excellent overall usability. These results support agentic separation of scenario control, interaction control, and standards-based assessment as a practical pattern for building dependable and pedagogically valuable VSP training tools.
☆ AraToken: Optimizing Arabic Tokenization with Normalization Pipeline and Language Extension for Qwen3
Tokenization is a critical preprocessing step for large language models (LLMs), directly impacting training efficiency and downstream performance. General-purpose tokenizers trained predominantly on English and Latin-script languages exhibit suboptimal performance on morphologically rich languages such as Arabic, resulting in inflated token sequences and reduced compression efficiency. In this work, we present AraToken, an Arabic-optimized tokenizer built on SentencePiece Unigram algorithm with a comprehensive normalization pipeline addressing Arabic-specific orthographic variations including Alif variants, diacritics, and Arabic-Indic numerals. We systematically compare BPE, WordPiece, and SentencePiece algorithms across multiple configurations, demonstrating that SentencePiece with normalization achieves 18% lower fertility (1.199 vs 1.35 tokens/word) compared to unnormalized baselines. Furthermore, we introduce the Language Extension Pipeline (LEP), a method for integrating the optimized tokenizer into Qwen3-0.6B through vocabulary extension with mean subtoken initialization and selective transformer layer unfreezing. Our experiments show that LEP reduces evaluation loss from 8.28 to 2.43 within 800 training steps on 100K Arabic samples. We release our tokenizer, training scripts, and model checkpoints to facilitate Arabic NLP research.
comment: 8 pages, 8 figures, 5 tables
☆ SRS-Stories: Vocabulary-constrained multilingual story generation for language learning EMNLP 2025
In this paper, we use large language models to generate personalized stories for language learners, using only the vocabulary they know. The generated texts are specifically written to teach the user new vocabulary by simply reading stories where it appears in context, while at the same time seamlessly reviewing recently learned vocabulary. The generated stories are enjoyable to read and the vocabulary reviewing/learning is optimized by a Spaced Repetition System. The experiments are conducted in three languages: English, Chinese and Polish, evaluating three story generation methods and three strategies for enforcing lexical constraints. The results show that the generated stories are more grammatical, coherent, and provide better examples of word usage than texts generated by the standard constrained beam search approach
comment: EMNLP 2025
LLM Agents Implement an NLG System from Scratch: Building Interpretable Rule-Based RDF-to-Text Generators EMNLP 2025
We present a novel neurosymbolic framework for RDF-to-text generation, in which the model is "trained" through collaborative interactions among multiple LLM agents rather than traditional backpropagation. The LLM agents produce rule-based Python code for a generator for the given domain, based on RDF triples only, with no in-domain human reference texts. The resulting system is fully interpretable, requires no supervised training data, and generates text nearly instantaneously using only a single CPU. Our experiments on the WebNLG and OpenDialKG data show that outputs produced by our approach reduce hallucination, with only slight fluency penalties compared to finetuned or prompted language models
comment: EMNLP 2025
☆ DACE For Railway Acronym Disambiguation
Acronym Disambiguation (AD) is a fundamental challenge in technical text processing, particularly in specialized sectors where high ambiguity complicates automated analysis. This paper addresses AD within the context of the TextMine'26 competition on French railway documentation. We present DACE (Dynamic Prompting, Retrieval Augmented Generation, Contextual Selection, and Ensemble Aggregation), a framework that enhances Large Language Models through adaptive in-context learning and external domain knowledge injection. By dynamically tailoring prompts to acronym ambiguity and aggregating ensemble predictions, DACE mitigates hallucination and effectively handles low-resource scenarios. Our approach secured the top rank in the competition with an F1 score of 0.9069.
LLM-based Few-Shot Early Rumor Detection with Imitation Agent
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
☆ Towards Efficient Agents: A Co-Design of Inference Architecture and System
The rapid development of large language model (LLM)-based agents has unlocked new possibilities for autonomous multi-turn reasoning and tool-augmented decision-making. However, their real-world deployment is hindered by severe inefficiencies that arise not from isolated model inference, but from the systemic latency accumulated across reasoning loops, context growth, and heterogeneous tool interactions. This paper presents AgentInfer, a unified framework for end-to-end agent acceleration that bridges inference optimization and architectural design. We decompose the problem into four synergistic components: AgentCollab, a hierarchical dual-model reasoning framework that balances large- and small-model usage through dynamic role assignment; AgentSched, a cache-aware hybrid scheduler that minimizes latency under heterogeneous request patterns; AgentSAM, a suffix-automaton-based speculative decoding method that reuses multi-session semantic memory to achieve low-overhead inference acceleration; and AgentCompress, a semantic compression mechanism that asynchronously distills and reorganizes agent memory without disrupting ongoing reasoning. Together, these modules form a Self-Evolution Engine capable of sustaining efficiency and cognitive stability throughout long-horizon reasoning tasks. Experiments on the BrowseComp-zh and DeepDiver benchmarks demonstrate that through the synergistic collaboration of these methods, AgentInfer reduces ineffective token consumption by over 50%, achieving an overall 1.8-2.5 times speedup with preserved accuracy. These results underscore that optimizing for agentic task completion-rather than merely per-token throughput-is the key to building scalable, efficient, and self-improving intelligent systems.
☆ LIR$^3$AG: A Lightweight Rerank Reasoning Strategy Framework for Retrieval-Augmented Generation AAAI2026
Retrieval-Augmented Generation (RAG) effectively enhances Large Language Models (LLMs) by incorporating retrieved external knowledge into the generation process. Reasoning models improve LLM performance in multi-hop QA tasks, which require integrating and reasoning over multiple pieces of evidence across different documents to answer a complex question. However, they often introduce substantial computational costs, including increased token consumption and inference latency. To better understand and mitigate this trade-off, we conduct a comprehensive study of reasoning strategies for reasoning models in RAG multi-hop QA tasks. Our findings reveal that reasoning models adopt structured strategies to integrate retrieved and internal knowledge, primarily following two modes: Context-Grounded Reasoning, which relies directly on retrieved content, and Knowledge-Reconciled Reasoning, which resolves conflicts or gaps using internal knowledge. To this end, we propose a novel Lightweight Rerank Reasoning Strategy Framework for RAG (LiR$^3$AG) to enable non-reasoning models to transfer reasoning strategies by restructuring retrieved evidence into coherent reasoning chains. LiR$^3$AG significantly reduce the average 98% output tokens overhead and 58.6% inferencing time while improving 8B non-reasoning model's F1 performance ranging from 6.2% to 22.5% to surpass the performance of 32B reasoning model in RAG, offering a practical and efficient path forward for RAG systems.
comment: AAAI2026
☆ CTTA-T: Continual Test-Time Adaptation for Text Understanding via Teacher-Student with a Domain-aware and Generalized Teacher
Text understanding often suffers from domain shifts. To handle testing domains, domain adaptation (DA) is trained to adapt to a fixed and observed testing domain; a more challenging paradigm, test-time adaptation (TTA), cannot access the testing domain during training and online adapts to the testing samples during testing, where the samples are from a fixed domain. We aim to explore a more practical and underexplored scenario, continual test-time adaptation (CTTA) for text understanding, which involves a sequence of testing (unobserved) domains in testing. Current CTTA methods struggle in reducing error accumulation over domains and enhancing generalization to handle unobserved domains: 1) Noise-filtering reduces accumulated errors but discards useful information, and 2) accumulating historical domains enhances generalization, but it is hard to achieve adaptive accumulation. In this paper, we propose a CTTA-T (continual test-time adaptation for text understanding) framework adaptable to evolving target domains: it adopts a teacher-student framework, where the teacher is domain-aware and generalized for evolving domains. To improve teacher predictions, we propose a refine-then-filter based on dropout-driven consistency, which calibrates predictions and removes unreliable guidance. For the adaptation-generalization trade-off, we construct a domain-aware teacher by dynamically accumulating cross-domain semantics via incremental PCA, which continuously tracks domain shifts. Experiments show CTTA-T excels baselines.
☆ InstructNet: A Novel Approach for Multi-Label Instruction Classification through Advanced Deep Learning
People use search engines for various topics and items, from daily essentials to more aspirational and specialized objects. Therefore, search engines have taken over as peoples preferred resource. The How To prefix has become familiar and widely used in various search styles to find solutions to particular problems. This search allows people to find sequential instructions by providing detailed guidelines to accomplish specific tasks. Categorizing instructional text is also essential for task-oriented learning and creating knowledge bases. This study uses the How To articles to determine the multi-label instruction category. We have brought this work with a dataset comprising 11,121 observations from wikiHow, where each record has multiple categories. To find out the multi-label category meticulously, we employ some transformer-based deep neural architectures, such as Generalized Autoregressive Pretraining for Language Understanding (XLNet), Bidirectional Encoder Representation from Transformers (BERT), etc. In our multi-label instruction classification process, we have reckoned our proposed architectures using accuracy and macro f1-score as the performance metrics. This thorough evaluation showed us much about our strategys strengths and drawbacks. Specifically, our implementation of the XLNet architecture has demonstrated unprecedented performance, achieving an accuracy of 97.30% and micro and macro average scores of 89.02% and 93%, a noteworthy accomplishment in multi-label classification. This high level of accuracy and macro average score is a testament to the effectiveness of the XLNet architecture in our proposed InstructNet approach. By employing a multi-level strategy in our evaluation process, we have gained a more comprehensive knowledge of the effectiveness of our proposed architectures and identified areas for forthcoming improvement and refinement.
☆ Explainable Transformer-CNN Fusion for Noise-Robust Speech Emotion Recognition
Speech Emotion Recognition (SER) systems often degrade in performance when exposed to the unpredictable acoustic interference found in real-world environments. Additionally, the opacity of deep learning models hinders their adoption in trust-sensitive applications. To bridge this gap, we propose a Hybrid Transformer-CNN framework that unifies the contextual modeling of Wav2Vec 2.0 with the spectral stability of 1D-Convolutional Neural Networks. Our dual-stream architecture processes raw waveforms to capture long-range temporal dependencies while simultaneously extracting noise-resistant spectral features (MFCC, ZCR, RMSE) via a custom Attentive Temporal Pooling mechanism. We conducted extensive validation across four diverse benchmark datasets: RAVDESS, TESS, SAVEE, and CREMA-D. To rigorously test robustness, we subjected the model to non-stationary acoustic interference using real-world noise profiles from the SAS-KIIT dataset. The proposed framework demonstrates superior generalization and state-of-the-art accuracy across all datasets, significantly outperforming single-branch baselines under realistic environmental interference. Furthermore, we address the ``black-box" problem by integrating SHAP and Score-CAM into the evaluation pipeline. These tools provide granular visual explanations, revealing how the model strategically shifts attention between temporal and spectral cues to maintain reliability in the presence of complex environmental noise.
☆ Measuring Fine-Grained Negotiation Tactics of Humans and LLMs in Diplomacy
The study of negotiation styles dates back to Aristotle's ethos-pathos-logos rhetoric. Prior efforts primarily studied the success of negotiation agents. Here, we shift the focus towards the styles of negotiation strategies. Our focus is the strategic dialogue board game Diplomacy, which affords rich natural language negotiation and measures of game success. We used LLM-as-a-judge to annotate a large human-human set of Diplomacy games for fine-grained negotiation tactics from a sociologically-grounded taxonomy. Using a combination of the It Takes Two and WebDiplomacy datasets, we demonstrate the reliability of our LLM-as-a-Judge framework and show strong correlations between negotiation features and success in the Diplomacy setting. Lastly, we investigate the differences between LLM and human negotiation strategies and show that fine-tuning can steer LLM agents toward more human-like negotiation behaviors.
☆ TICL+: A Case Study On Speech In-Context Learning for Children's Speech Recognition
Children's speech recognition remains challenging due to substantial acoustic and linguistic variability, limited labeled data, and significant differences from adult speech. Speech foundation models can address these challenges through Speech In-Context Learning (SICL), allowing adaptation to new domains without fine-tuning. However, the effectiveness of SICL depends on how in-context examples are selected. We extend an existing retrieval-based method, Text-Embedding KNN for SICL (TICL), introducing an acoustic reranking step to create TICL+. This extension prioritizes examples that are both semantically and acoustically aligned with the test input. Experiments on four children's speech corpora show that TICL+ achieves up to a 53.3% relative word error rate reduction over zero-shot performance and 37.6% over baseline TICL, highlighting the value of combining semantic and acoustic information for robust, scalable ASR in children's speech.
comment: Published at IEEE ASRU 2025 Satellite Workshop-AI for Children's Speech and Language
☆ Investigating Spatial Attention Bias in Vision-Language Models
Vision-Language Models have demonstrated remarkable capabilities in understanding visual content, yet systematic biases in their spatial processing remain largely unexplored. This work identifies and characterizes a systematic spatial attention bias where VLMs consistently prioritize describing left-positioned content before right-positioned content in horizontally concatenated images. Through controlled experiments on image pairs using both open-source and closed-source models, we demonstrate that this bias persists across different architectures, with models describing left-positioned content first in approximately 97% of cases under neutral prompting conditions. Testing on an Arabic-finetuned model reveals that the bias persists despite right-to-left language training, ruling out language reading direction as the primary cause. Investigation of training dataset annotation guidelines from PixMo and Visual Genome reveals no explicit left-first ordering instructions, suggesting the bias is consistent with architectural factors rather than explicit training data instructions. These findings reveal fundamental limitations in how current VLMs process spatial information.
☆ GeoSense-AI: Fast Location Inference from Crisis Microblogs
This paper presents an applied AI pipeline for realtime geolocation from noisy microblog streams, unifying statistical hashtag segmentation, part-of-speech-driven proper-noun detection, dependency parsing around disaster lexicons, lightweight named-entity recognition, and gazetteer-grounded disambiguation to infer locations directly from text rather than sparse geotags. The approach operationalizes information extraction under streaming constraints, emphasizing low-latency NLP components and efficient validation against geographic knowledge bases to support situational awareness during emergencies. In head to head comparisons with widely used NER toolkits, the system attains strong F1 while being engineered for orders-of-magnitude faster throughput, enabling deployment in live crisis informatics settings. A production map interface demonstrates end-to-end AI functionality ingest, inference, and visualization--surfacing locational signals at scale for floods, outbreaks, and other fastmoving events. By prioritizing robustness to informal text and streaming efficiency, GeoSense-AI illustrates how domain-tuned NLP and knowledge grounding can elevate emergency response beyond conventional geo-tag reliance.
☆ Stable and Efficient Single-Rollout RL for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has become a key paradigm to improve the reasoning capabilities of Multimodal Large Language Models (MLLMs). However, prevalent group-based algorithms such as GRPO require multi-rollout sampling for each prompt. While more efficient single-rollout variants have recently been explored in text-only settings, we find that they suffer from severe instability in multimodal contexts, often leading to training collapse. To address this training efficiency-stability trade-off, we introduce $\textbf{MSSR}$ (Multimodal Stabilized Single-Rollout), a group-free RLVR framework that achieves both stable optimization and effective multimodal reasoning performance. MSSR achieves this via an entropy-based advantage-shaping mechanism that adaptively regularizes advantage magnitudes, preventing collapse and maintaining training stability. While such mechanisms have been used in group-based RLVR, we show that in the multimodal single-rollout setting they are not merely beneficial but essential for stability. In in-distribution evaluations, MSSR demonstrates superior training compute efficiency, achieving similar validation accuracy to the group-based baseline with half the training steps. When trained for the same number of steps, MSSR's performance surpasses the group-based baseline and shows consistent generalization improvements across five diverse reasoning-intensive benchmarks. Together, these results demonstrate that MSSR enables stable, compute-efficient, and effective RLVR for complex multimodal reasoning tasks.
☆ Training LLMs with LogicReward for Faithful and Rigorous Reasoning
Although LLMs exhibit strong reasoning capabilities, existing training methods largely depend on outcome-based feedback, which can produce correct answers with flawed reasoning. Prior work introduces supervision on intermediate steps but still lacks guarantees of logical soundness, which is crucial in high-stakes scenarios where logical consistency is paramount. To address this, we propose LogicReward, a novel reward system that guides model training by enforcing step-level logical correctness with a theorem prover. We further introduce Autoformalization with Soft Unification, which reduces natural language ambiguity and improves formalization quality, enabling more effective use of the theorem prover. An 8B model trained on data constructed with LogicReward surpasses GPT-4o and o4-mini by 11.6\% and 2\% on natural language inference and logical reasoning tasks with simple training procedures. Further analysis shows that LogicReward enhances reasoning faithfulness, improves generalizability to unseen tasks such as math and commonsense reasoning, and provides a reliable reward signal even without ground-truth labels. We will release all data and code at https://llm-symbol.github.io/LogicReward.
comment: Preprint
☆ External Hippocampus: Topological Cognitive Maps for Guiding Large Language Model Reasoning
This paper proposes the External Hippocampus framework, which models language model reasoning from a cognitive dynamics perspective as the flow of information energy in semantic space. Unlike traditional weight-space optimization methods, this framework constructs topological cognitive maps through dimensionality reduction projection, enabling precise navigation and intervention of energy flow at test time while avoiding substantial computational requirements and demonstrating predictable intervention patterns. The method effectively addresses the cognitive deadlock problem in multi-step reasoning for small models. Experiments on models <=7B parameters show: map-guided methods achieve 81.20% accuracy on 500 challenging problems (relative baseline +16.80%), reduce reasoning time by >= 15x, with key findings revealing that reasoning stagnation manifests as "Cognitive Vortex" and low-entropy potential wells, while temperature perturbations effectively restart energy flow. The framework requires no additional training, possesses autonomous growth capability, and provides an efficient and controllable topological-aware solution for small model reasoning.
comment: 12 pages, 7 figures
♻ ☆ Arc Gradient Descent: A Mathematically Derived Reformulation of Gradient Descent with Phase-Aware, User-Controlled Step Dynamics
The paper presents the formulation, implementation, and evaluation of the ArcGD optimiser. The evaluation is conducted initially on a non-convex benchmark function and subsequently on a real-world ML dataset. The initial comparative study using the Adam optimiser is conducted on a stochastic variant of the highly non-convex and notoriously challenging Rosenbrock function, renowned for its narrow, curved valley, across dimensions ranging from 2D to 1000D and an extreme case of 50,000D. Two configurations were evaluated to eliminate learning-rate bias: (i) both using ArcGD's effective learning rate and (ii) both using Adam's default learning rate. ArcGD consistently outperformed Adam under the first setting and, although slower under the second, achieved superior final solutions in most cases. In the second evaluation, ArcGD is evaluated against state-of-the-art optimizers (Adam, AdamW, Lion, SGD) on the CIFAR-10 image classification dataset across 8 diverse MLP architectures ranging from 1 to 5 hidden layers. ArcGD achieved the highest average test accuracy (50.7%) at 20,000 iterations, outperforming AdamW (46.6%), Adam (46.8%), SGD (49.6%), and Lion (43.4%), winning or tying on 6 of 8 architectures. Notably, while Adam and AdamW showed strong early convergence at 5,000 iterations, but regressed with extended training, whereas ArcGD continued improving, demonstrating generalization and resistance to overfitting without requiring early stopping tuning. Strong performance on geometric stress tests and standard deep-learning benchmarks indicates broad applicability, highlighting the need for further exploration. Moreover, it is also shown that a limiting variant of ArcGD can be interpreted as a sign-based momentum-like update, highlighting conceptual connections between the inherent mechanisms of ArcGD and the Lion optimiser.
comment: 80 pages, 6 tables, 2 figures, 5 appendices, proof-of-concept
♻ ☆ Vision Language Models are Confused Tourists
Although the cultural dimension has been one of the key aspects in evaluating Vision-Language Models (VLMs), their ability to remain stable across diverse cultural inputs remains largely untested, despite being crucial to support diversity and multicultural societies. Existing evaluations often rely on benchmarks featuring only a singular cultural concept per image, overlooking scenarios where multiple, potentially unrelated cultural cues coexist. To address this gap, we introduce ConfusedTourist, a novel cultural adversarial robustness suite designed to assess VLMs' stability against perturbed geographical cues. Our experiments reveal a critical vulnerability, where accuracy drops heavily under simple image-stacking perturbations and even worsens with its image-generation-based variant. Interpretability analyses further show that these failures stem from systematic attention shifts toward distracting cues, diverting the model from its intended focus. These findings highlight a critical challenge: visual cultural concept mixing can substantially impair even state-of-the-art VLMs, underscoring the urgent need for more culturally robust multimodal understanding.
♻ ☆ Learning from Self Critique and Refinement for Faithful LLM Summarization
Large Language Models (LLMs) often suffer from hallucinations: output content that is not grounded in the input context, when performing long-form text generation tasks such as summarization. Prior works have shown that hallucinations can be reduced by iteratively critiquing and refining previously generated outputs using either the same model or a more powerful teacher model as the critique. However, these approaches either require additional test-time compute or assume access to more powerful teacher models, making them costly and less practical. In this work, we propose Self Critique and Refinement-based Preference Optimization (SCRPO), which is a self-supervised training framework that first constructs a preference dataset by leveraging the LLM's own critique and refinement capabilities, and then applies preference learning to improve the same LLM for faithful summarization. Experiments on three summarization benchmarks (XSUM CNNDM and SAMSum), demonstrate that our approach outperforms state-of-the-art self-supervised learning methods in terms of faithfulness metrics while either maintaining or improving other metrics that measure the overall quality of the summary. Moreover, compared to test-time refinement, our approach not only improves efficiency but also results in more faithful summaries.
♻ ☆ VLDBench Evaluating Multimodal Disinformation with Regulatory Alignment
Detecting disinformation that blends manipulated text and images has become increasingly challenging, as AI tools make synthetic content easy to generate and disseminate. While most existing AI safety benchmarks focus on single modality misinformation (i.e., false content shared without intent to deceive), intentional multimodal disinformation, such as propaganda or conspiracy theories that imitate credible news, remains largely unaddressed. We introduce the Vision-Language Disinformation Detection Benchmark (VLDBench), the first large-scale resource supporting both unimodal (text-only) and multimodal (text + image) disinformation detection. VLDBench comprises approximately 62,000 labeled text-image pairs across 13 categories, curated from 58 news outlets. Using a semi-automated pipeline followed by expert review, 22 domain experts invested over 500 hours to produce high-quality annotations with substantial inter-annotator agreement. Evaluations of state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) on VLDBench show that incorporating visual cues improves detection accuracy by 5 to 35 percentage points over text-only models. VLDBench provides data and code for evaluation, fine-tuning, and robustness testing to support disinformation analysis. Developed in alignment with AI governance frameworks (e.g., the MIT AI Risk Repository), VLDBench offers a principled foundation for advancing trustworthy disinformation detection in multimodal media. Project: https://vectorinstitute.github.io/VLDBench/ Dataset: https://huggingface.co/datasets/vector-institute/VLDBench Code: https://github.com/VectorInstitute/VLDBench
comment: Accepted in Information Fusion Journal
♻ ☆ A Survey on Agentic Security: Applications, Threats and Defenses
In this work we present the first holistic survey of the agentic security landscape, structuring the field around three fundamental pillars: Applications, Threats, and Defenses. We provide a comprehensive taxonomy of over 160 papers, explaining how agents are used in downstream cybersecurity applications, inherent threats to agentic systems, and countermeasures designed to protect them. A detailed cross-cutting analysis shows emerging trends in agent architecture while revealing critical research gaps in model and modality coverage. A complete and continuously updated list of all surveyed papers is publicly available at https://github.com/kagnlp/Awesome-Agentic-Security.
♻ ☆ VietLyrics: A Large-Scale Dataset and Models for Vietnamese Automatic Lyrics Transcription
Automatic Lyrics Transcription (ALT) for Vietnamese music presents unique challenges due to its tonal complexity and dialectal variations, but remains largely unexplored due to the lack of a dedicated dataset. Therefore, we curated the first large-scale Vietnamese ALT dataset (VietLyrics), comprising 647 hours of songs with line-level aligned lyrics and metadata to address these issues. Our evaluation of current ASRbased approaches reveal significant limitations, including frequent transcription errors and hallucinations in non-vocal segments. To improve performance, we fine-tuned Whisper models on the VietLyrics dataset, achieving superior results compared to existing multilingual ALT systems, including LyricWhiz. We publicly release VietLyrics and our models, aiming to advance Vietnamese music computing research while demonstrating the potential of this approach for ALT in low-resource language and music.
♻ ☆ LiveSecBench: A Dynamic and Event-Driven Safety Benchmark for Chinese Language Model Applications
We introduce LiveSecBench, a continuously updated safety benchmark specifically for Chinese-language LLM application scenarios. LiveSecBench constructs a high-quality and unique dataset through a pipeline that combines automated generation with human verification. By periodically releasing new versions to expand the dataset and update evaluation metrics, LiveSecBench provides a robust and up-to-date standard for AI safety. In this report, we introduce our second release v251215, which evaluates across five dimensions (Public Safety, Fairness & Bias, Privacy, Truthfulness, and Mental Health Safety.) We evaluate 57 representative LLMs using an ELO rating system, offering a leaderboard of the current state of Chinese LLM safety. The result is available at https://livesecbench.intokentech.cn/.
♻ ☆ Generative Retrieval with Few-shot Indexing ECIR 2026
Existing generative retrieval (GR) methods rely on training-based indexing, which fine-tunes a model to memorise associations between queries and the document identifiers (docids) of relevant documents. Training-based indexing suffers from high training costs, under-utilisation of pre-trained knowledge in large language models (LLMs), and limited adaptability to dynamic document corpora. To address the issues, we propose a few-shot indexing-based GR framework (Few-Shot GR). It has a few-shot indexing process without any training, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods requiring heavy training.
comment: Accepted for publication at the 48th European Conference on Information Retrieval (ECIR 2026)
♻ ☆ CodeNER: Code Prompting for Named Entity Recognition
Recent studies have explored various approaches for treating candidate named entity spans as both source and target sequences in named entity recognition (NER) by leveraging large language models (LLMs). Although previous approaches have successfully generated candidate named entity spans with suitable labels, they rely solely on input context information when using LLMs, particularly, ChatGPT. However, NER inherently requires capturing detailed labeling requirements with input context information. To address this issue, we propose a novel method that leverages code-based prompting to improve the capabilities of LLMs in understanding and performing NER. By embedding code within prompts, we provide detailed BIO schema instructions for labeling, thereby exploiting the ability of LLMs to comprehend long-range scopes in programming languages. Experimental results demonstrate that the proposed code-based prompting method outperforms conventional text-based prompting on ten benchmarks across English, Arabic, Finnish, Danish, and German datasets, indicating the effectiveness of explicitly structuring NER instructions. We also verify that combining the proposed code-based prompting method with the chain-of-thought prompting further improves performance.
comment: 18 pages, 6 figures
♻ ☆ Affective Multimodal Agents with Proactive Knowledge Grounding for Emotionally Aligned Marketing Dialogue
Recent advances in large language models (LLMs) have enabled fluent dialogue systems, but most remain reactive and struggle in emotionally rich, goal-oriented settings such as marketing conversations. To address this limitation, we propose AffectMind, a multimodal affective dialogue agent that performs proactive reasoning and dynamic knowledge grounding to sustain emotionally aligned and persuasive interactions. AffectMind combines three components: a Proactive Knowledge Grounding Network (PKGN) that continuously updates factual and affective context from text, vision, and prosody; an Emotion--Intent Alignment Model (EIAM) that jointly models user emotion and purchase intent to adapt persuasion strategies; and a Reinforced Discourse Loop (RDL) that optimizes emotional coherence and engagement via reinforcement signals from user responses. Experiments on two newly curated marketing dialogue datasets, MM-ConvMarket and AffectPromo, show that AffectMind outperforms strong LLM-based baselines in emotional consistency (+26\%), persuasive success rate (+19\%), and long-term user engagement (+23\%), highlighting emotion-grounded proactivity as a key capability for commercial multimodal agents.
♻ ☆ Survey and Experiments on Mental Disorder Detection via Social Media: From Large Language Models and RAG to Agents ICDE
Mental disorders represent a critical global health challenge, and social media is increasingly viewed as a vital resource for real-time digital phenotyping and intervention. To leverage this data, large language models (LLMs) have been introduced, offering stronger semantic understanding and reasoning than traditional deep learning, thereby enhancing the explainability of detection results. Despite the growing prominence of LLMs in this field, there is a scarcity of scholarly works that systematically synthesize how advanced enhancement techniques, specifically Retrieval-Augmented Generation (RAG) and Agentic systems, can be utilized to address these reliability and reasoning limitations. Here, we systematically survey the evolving landscape of LLM-based methods for social media mental disorder analysis, spanning standard pre-trained language models, RAG to mitigate hallucinations and contextual gaps, and agentic systems for autonomous reasoning and multi-step intervention. We organize existing work by technical paradigm and clinical target, extending beyond common internalizing disorders to include psychotic disorders and externalizing behaviors. Additionally, the paper comprehensively evaluates the performance of LLMs, including the impact of RAG, across various tasks. This work establishes a unified benchmark for the field, paving the way for the development of trustworthy, autonomous AI systems that can deliver precise and explainable mental health support.
comment: 20 pages, 10 figures. This is an extension of ICDEW 2025
♻ ☆ AdaLRS: Loss-Guided Adaptive Learning Rate Search for Efficient Foundation Model Pretraining NeurIPS 2025
Learning rate is widely regarded as crucial for effective foundation model pretraining. Recent research explores and demonstrates the transferability of learning rate configurations across varying model and dataset sizes, etc. Nevertheless, these approaches are constrained to specific training scenarios and typically necessitate extensive hyperparameter tuning on proxy models. In this work, we propose \textbf{AdaLRS}, a plug-in-and-play adaptive learning rate search algorithm that conducts online optimal learning rate search via optimizing loss descent velocities. We provide theoretical and experimental analyzes to show that foundation model pretraining loss and its descent velocity are both convex and share the same optimal learning rate. Relying solely on training loss dynamics, AdaLRS involves few extra computations to guide the search process, and its convergence is guaranteed via theoretical analysis. Experiments on both LLM and VLM pretraining show that AdaLRS adjusts suboptimal learning rates to the neighborhood of optimum with marked efficiency and effectiveness, with model performance improved accordingly. We also show the robust generalizability of AdaLRS across varying training scenarios, such as different model sizes, training paradigms, base learning rate scheduler choices, and hyperparameter settings.
comment: NeurIPS 2025 Main Conference
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ In Good GRACEs: Principled Teacher Selection for Knowledge Distillation
Knowledge distillation is an efficient strategy to use data generated by large "teacher" language models to train smaller capable "student" models, but selecting the optimal teacher for a specific student-task combination requires expensive trial-and-error. We propose a lightweight score called GRACE to quantify how effective a teacher will be for post-training a student model. GRACE measures distributional properties of the student's gradients without access to a verifier, teacher logits, teacher internals, or test data. From an information-theoretic perspective, GRACE connects to leave-one-out stability of gradient-based algorithms, which controls the generalization performance of the distilled students. On GSM8K and MATH, GRACE correlates strongly (up to 86% Spearman correlation) with the performance of the distilled LLaMA and OLMo students. In particular, training a student using the GRACE-selected teacher can improve the performance by up to 7.4% over naively using the best-performing teacher. Further, GRACE can provide guidance on crucial design choices in distillation, including (1) the best temperature to use when generating from the teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher to use within a specific model family. Altogether, our findings demonstrate that GRACE can efficiently and effectively identify a strongly compatible teacher for a given student and provide fine-grained guidance on how to perform distillation.
♻ ☆ DSO: Direct Steering Optimization for Bias Mitigation
Generative models are often deployed to make decisions on behalf of users, such as vision-language models (VLMs) identifying which person in a room is a doctor to help visually impaired individuals. Yet, VLM decisions are influenced by the perceived demographic attributes of people in the input, which can lead to biased outcomes like failing to identify women as doctors. Moreover, when reducing bias leads to performance loss, users may have varying needs for balancing bias mitigation with overall model capabilities, highlighting the demand for methods that enable controllable bias reduction during inference. Activation steering is a popular approach for inference-time controllability that has shown potential in inducing safer behavior in large language models (LLMs). However, we observe that current steering methods struggle to correct biases, where equiprobable outcomes across demographic groups are required. To address this, we propose Direct Steering Optimization (DSO) which uses reinforcement learning to find linear transformations for steering activations, tailored to mitigate bias while maintaining control over model performance. We demonstrate that DSO achieves state-of-the-art trade-off between fairness and capabilities on both VLMs and LLMs, while offering practitioners inference-time control over the trade-off. Overall, our work highlights the benefit of designing steering strategies that are directly optimized to control model behavior, providing more effective bias intervention than methods that rely on pre-defined heuristics for controllability.
♻ ☆ Far from the Shallow: Brain-Predictive Reasoning Embedding through Residual Disentanglement NeurIPS 2025
Understanding how the human brain progresses from processing simple linguistic inputs to performing high-level reasoning is a fundamental challenge in neuroscience. While modern large language models (LLMs) are increasingly used to model neural responses to language, their internal representations are highly "entangled," mixing information about lexicon, syntax, meaning, and reasoning. This entanglement biases conventional brain encoding analyses toward linguistically shallow features (e.g., lexicon and syntax), making it difficult to isolate the neural substrates of cognitively deeper processes. Here, we introduce a residual disentanglement method that computationally isolates these components. By first probing an LM to identify feature-specific layers, our method iteratively regresses out lower-level representations to produce four nearly orthogonal embeddings for lexicon, syntax, meaning, and, critically, reasoning. We used these disentangled embeddings to model intracranial (ECoG) brain recordings from neurosurgical patients listening to natural speech. We show that: 1) This isolated reasoning embedding exhibits unique predictive power, accounting for variance in neural activity not explained by other linguistic features and even extending to the recruitment of visual regions beyond classical language areas. 2) The neural signature for reasoning is temporally distinct, peaking later (~350-400ms) than signals related to lexicon, syntax, and meaning, consistent with its position atop a processing hierarchy. 3) Standard, non-disentangled LLM embeddings can be misleading, as their predictive success is primarily attributable to linguistically shallow features, masking the more subtle contributions of deeper cognitive processing.
comment: Accepted at NeurIPS 2025
Information Retrieval 5
☆ Efficient Optimization of Hierarchical Identifiers for Generative Recommendation ECIR 2026
SEATER is a generative retrieval model that improves recommendation inference efficiency and retrieval quality by utilizing balanced tree-structured item identifiers and contrastive training objectives. We reproduce and validate SEATER's reported improvements in retrieval quality over strong baselines across all datasets from the original work, and extend the evaluation to Yambda, a large-scale music recommendation dataset. Our experiments verify SEATER's strong performance, but show that its tree construction step during training becomes a major bottleneck as the number of items grows. To address this, we implement and evaluate two alternative construction algorithms: a greedy method optimized for minimal build time, and a hybrid method that combines greedy clustering at high levels with more precise grouping at lower levels. The greedy method reduces tree construction time to less than 2% of the original with only a minor drop in quality on the dataset with the largest item collection. The hybrid method achieves retrieval quality on par with the original, and even improves on the largest dataset, while cutting construction time to just 5-8%. All data and code are publicly available for full reproducibility at https://github.com/joshrosie/re-seater.
comment: Accepted at ECIR 2026 Reproducibility Track (to appear)
Datasets for machine learning and for assessing the intelligence level of automatic patent search systems
The key to success in automating prior art search in patent research using artificial intelligence lies in developing large datasets for machine learning and ensuring their availability. This work is dedicated to providing a comprehensive solution to the problem of creating infrastructure for research in this field, including datasets and tools for calculating search quality criteria. The paper discusses the concept of semantic clusters of patent documents that determine the state of the art in a given subject, as proposed by the authors. A definition of such semantic clusters is also provided. Prior art search is presented as the task of identifying elements within a semantic cluster of patent documents in the subject area specified by the document under consideration. A generator of user-configurable datasets for machine learning, based on collections of U.S. and Russian patent documents, is described. The dataset generator creates a database of links to documents in semantic clusters. Then, based on user-defined parameters, it forms a dataset of semantic clusters in JSON format for machine learning. To evaluate machine learning outcomes, it is proposed to calculate search quality scores that account for semantic clusters of the documents being searched. To automate the evaluation process, the paper describes a utility developed by the authors for assessing the quality of prior art document search.
comment: 14 pages, 3 figures, 2 tables
☆ Improving Data Reusability in Interactive Information Retrieval: Insights from the Community
In this study, we conducted semi-structured interviews with 21 IIR researchers to investigate their data reuse practices. This study aims to expand upon current findings by exploring IIR researchers' information-obtaining behaviors regarding data reuse. We identified the information about shared data characteristics that IIR researchers need when evaluating data reusability, as well as the sources they typically consult to obtain this information. We consider this work to be an initial step toward revealing IIR researchers' data reuse practices and identifying what the community needs to do to promote data reuse. We hope that this study, as well as future research, will inspire more individuals to contribute to ongoing efforts aimed at designing standards, infrastructures, and policies, as well as fostering a sustainable culture of data sharing and reuse in this field.
comment: Accepted by CHIIR 2025
♻ ☆ Generative Retrieval with Few-shot Indexing ECIR 2026
Existing generative retrieval (GR) methods rely on training-based indexing, which fine-tunes a model to memorise associations between queries and the document identifiers (docids) of relevant documents. Training-based indexing suffers from high training costs, under-utilisation of pre-trained knowledge in large language models (LLMs), and limited adaptability to dynamic document corpora. To address the issues, we propose a few-shot indexing-based GR framework (Few-Shot GR). It has a few-shot indexing process without any training, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods requiring heavy training.
comment: Accepted for publication at the 48th European Conference on Information Retrieval (ECIR 2026)
♻ ☆ Mirroring Users: Towards Building Preference-aligned User Simulator with User Feedback in Recommendation
User simulation is increasingly vital to develop and evaluate recommender systems (RSs). While Large Language Models (LLMs) offer promising avenues to simulate user behavior, they often struggle with the absence of specific task alignment required for RSs and the efficiency demands of large-scale simulation. A vast yet underutilized resource for enhancing this alignment is the extensive user feedback inherent in RSs, but leveraging it is challenging due to its ambiguity, noise and massive volume, which hinders efficient preference alignment. To overcome these hurdles, we introduce a novel data construction framework that leverages user feedback in RSs with advanced LLM capabilities to generate high-quality simulation data. Our framework unfolds in two key phases: (1) using LLMs to generate decision-making processes as explanatory rationales on simulation samples, thereby reducing ambiguity; and (2) data distillation based on uncertainty estimation and behavior sampling to efficiently filter the most informative, denoised samples. Accordingly, we fine-tune lightweight LLMs, as user simulators, using such high-quality dataset with corresponding decision-making processes. Extensive experiments confirm that our framework significantly boosts the alignment with human preferences and the in-domain reasoning capabilities of the fine-tuned LLMs, providing more insightful and interpretable signals for RS interaction. We believe our work, together with publicly available developed framework, high-quality mixed-domain dataset, and fine-tuned LLM checkpoints, will advance the RS community and offer valuable insights for broader human-centric AI research.
comment: Github: https://github.com/UserMirrorer/UserMirrorer
Computation and Language 74
☆ When Reasoning Meets Its Laws
Despite the superior performance of Large Reasoning Models (LRMs), their reasoning behaviors are often counterintuitive, leading to suboptimal reasoning capabilities. To theoretically formalize the desired reasoning behaviors, this paper presents the Laws of Reasoning (LoRe), a unified framework that characterizes intrinsic reasoning patterns in LRMs. We first propose compute law with the hypothesis that the reasoning compute should scale linearly with question complexity. Beyond compute, we extend LoRe with a supplementary accuracy law. Since the question complexity is difficult to quantify in practice, we examine these hypotheses by two properties of the laws, monotonicity and compositionality. We therefore introduce LoRe-Bench, a benchmark that systematically measures these two tractable properties for large reasoning models. Evaluation shows that most reasoning models exhibit reasonable monotonicity but lack compositionality. In response, we develop an effective finetuning approach that enforces compute-law compositionality. Extensive empirical studies demonstrate that better compliance with compute laws yields consistently improved reasoning performance on multiple benchmarks, and uncovers synergistic effects across properties and laws. Project page: https://lore-project.github.io/
☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While Large Language Models (LLMs) have evolved into distinct platforms with unique interface designs and capabilities, existing public datasets treat models as generic text generators, stripping away the interface context that actively shapes user interaction. To address this limitation, we present ShareChat, a large-scale, cross-platform corpus comprising 142,808 conversations and over 660,000 turns collected from publicly shared URLs across five major platforms: ChatGPT, Claude, Gemini, Perplexity, and Grok. ShareChat distinguishes itself by preserving native platform affordances often lost in standard logs, including reasoning traces, source links, and code artifacts, while spanning 101 languages over the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. We demonstrate the dataset's multifaceted utility through three representative analyses: (1) analyzing conversation completeness to measure user intent satisfaction; (2) evaluating source citation behaviors in content generation; and (3) conducting temporal analysis to track evolving usage patterns. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild.
☆ DEER: A Comprehensive and Reliable Benchmark for Deep-Research Expert Reports
As large language models (LLMs) advance, deep research systems can generate expert-level reports via multi-step reasoning and evidence-based synthesis, but evaluating such reports remains challenging. Existing benchmarks often lack systematic criteria for expert reporting, evaluations that rely heavily on LLM judges can fail to capture issues that require expert judgment, and source verification typically covers only a limited subset of explicitly cited statements rather than report-wide factual reliability. We introduce DEER, a benchmark for evaluating expert-level deep research reports. DEER comprises 50 report-writing tasks spanning 13 domains and an expert-grounded evaluation taxonomy (7 dimensions, 25 sub-dimension) operationalized into 130 fine-grained rubric items. DEER further provides task-specific expert guidance to help LLM judges assess expert-level report quality more consistently. Complementing rubric-based assessment, we propose a document-level fact-checking architecture that extracts and verifies all claims across the entire report, including both cited and uncited ones, and quantifies external-evidence quality. DEER correlates closely with human expert judgments and yields interpretable diagnostics of system strengths and weaknesses.
comment: Work in progress
☆ Bangla MedER: Multi-BERT Ensemble Approach for the Recognition of Bangla Medical Entity
Medical Entity Recognition (MedER) is an essential NLP task for extracting meaningful entities from the medical corpus. Nowadays, MedER-based research outcomes can remarkably contribute to the development of automated systems in the medical sector, ultimately enhancing patient care and outcomes. While extensive research has been conducted on MedER in English, low-resource languages like Bangla remain underexplored. Our work aims to bridge this gap. For Bangla medical entity recognition, this study first examined a number of transformer models, including BERT, DistilBERT, ELECTRA, and RoBERTa. We also propose a novel Multi-BERT Ensemble approach that outperformed all baseline models with the highest accuracy of 89.58%. Notably, it provides an 11.80% accuracy improvement over the single-layer BERT model, demonstrating its effectiveness for this task. A major challenge in MedER for low-resource languages is the lack of annotated datasets. To address this issue, we developed a high-quality dataset tailored for the Bangla MedER task. The dataset was used to evaluate the effectiveness of our model through multiple performance metrics, demonstrating its robustness and applicability. Our findings highlight the potential of Multi-BERT Ensemble models in improving MedER for Bangla and set the foundation for further advancements in low-resource medical NLP.
☆ AncientBench: Towards Comprehensive Evaluation on Excavated and Transmitted Chinese Corpora
Comprehension of ancient texts plays an important role in archaeology and understanding of Chinese history and civilization. The rapid development of large language models needs benchmarks that can evaluate their comprehension of ancient characters. Existing Chinese benchmarks are mostly targeted at modern Chinese and transmitted documents in ancient Chinese, but the part of excavated documents in ancient Chinese is not covered. To meet this need, we propose the AncientBench, which aims to evaluate the comprehension of ancient characters, especially in the scenario of excavated documents. The AncientBench is divided into four dimensions, which correspond to the four competencies of ancient character comprehension: glyph comprehension, pronunciation comprehension, meaning comprehension, and contextual comprehension. The benchmark also contains ten tasks, including radical, phonetic radical, homophone, cloze, translation, and more, providing a comprehensive framework for evaluation. We convened archaeological researchers to conduct experimental evaluations, proposed an ancient model as baseline, and conducted extensive experiments on the currently best-performing large language models. The experimental results reveal the great potential of large language models in ancient textual scenarios as well as the gap with humans. Our research aims to promote the development and application of large language models in the field of archaeology and ancient Chinese language.
☆ Affect, Body, Cognition, Demographics, and Emotion: The ABCDE of Text Features for Computational Affective Science
Work in Computational Affective Science and Computational Social Science explores a wide variety of research questions about people, emotions, behavior, and health. Such work often relies on language data that is first labeled with relevant information, such as the use of emotion words or the age of the speaker. Although many resources and algorithms exist to enable this type of labeling, discovering, accessing, and using them remains a substantial impediment, particularly for practitioners outside of computer science. Here, we present the ABCDE dataset (Affect, Body, Cognition, Demographics, and Emotion), a large-scale collection of over 400 million text utterances drawn from social media, blogs, books, and AI-generated sources. The dataset is annotated with a wide range of features relevant to computational affective and social science. ABCDE facilitates interdisciplinary research across numerous fields, including affective science, cognitive science, the digital humanities, sociology, political science, and computational linguistics.
☆ When the Gold Standard isn't Necessarily Standard: Challenges of Evaluating the Translation of User-Generated Content
User-generated content (UGC) is characterised by frequent use of non-standard language, from spelling errors to expressive choices such as slang, character repetitions, and emojis. This makes evaluating UGC translation particularly challenging: what counts as a "good" translation depends on the level of standardness desired in the output. To explore this, we examine the human translation guidelines of four UGC datasets, and derive a taxonomy of twelve non-standard phenomena and five translation actions (NORMALISE, COPY, TRANSFER, OMIT, CENSOR). Our analysis reveals notable differences in how UGC is treated, resulting in a spectrum of standardness in reference translations. Through a case study on large language models (LLMs), we show that translation scores are highly sensitive to prompts with explicit translation instructions for UGC, and that they improve when these align with the dataset's guidelines. We argue that when preserving UGC style is important, fair evaluation requires both models and metrics to be aware of translation guidelines. Finally, we call for clear guidelines during dataset creation and for the development of controllable, guideline-aware evaluation frameworks for UGC translation.
comment: 10 pages, 19 pages with references and appendices
☆ Toward Ethical AI Through Bayesian Uncertainty in Neural Question Answering
We explore Bayesian reasoning as a means to quantify uncertainty in neural networks for question answering. Starting with a multilayer perceptron on the Iris dataset, we show how posterior inference conveys confidence in predictions. We then extend this to language models, applying Bayesian inference first to a frozen head and finally to LoRA-adapted transformers, evaluated on the CommonsenseQA benchmark. Rather than aiming for state-of-the-art accuracy, we compare Laplace approximations against maximum a posteriori (MAP) estimates to highlight uncertainty calibration and selective prediction. This allows models to abstain when confidence is low. An ``I don't know'' response not only improves interpretability but also illustrates how Bayesian methods can contribute to more responsible and ethical deployment of neural question-answering systems.
comment: 14 pages, 8 figures,
☆ Peeking Into The Future For Contextual Biasing
While end-to-end (E2E) automatic speech recognition (ASR) models excel at general transcription, they struggle to recognize rare or unseen named entities (e.g., contact names, locations), which are critical for downstream applications like virtual assistants. In this paper, we propose a contextual biasing method for attention based encoder decoder (AED) models using a list of candidate named entities. Instead of predicting only the next token, we simultaneously predict multiple future tokens, enabling the model to "peek into the future" and score potential candidate entities in the entity list. Moreover, our approach leverages the multi-token prediction logits directly without requiring additional entity encoders or cross-attention layers, significantly reducing architectural complexity. Experiments on Librispeech demonstrate that our approach achieves up to 50.34% relative improvement in named entity word error rate compared to the baseline AED model.
☆ Simulstream: Open-Source Toolkit for Evaluation and Demonstration of Streaming Speech-to-Text Translation Systems
Streaming Speech-to-Text Translation (StreamST) requires producing translations concurrently with incoming speech, imposing strict latency constraints and demanding models that balance partial-information decision-making with high translation quality. Research efforts on the topic have so far relied on the SimulEval repository, which is no longer maintained and does not support systems that revise their outputs. In addition, it has been designed for simulating the processing of short segments, rather than long-form audio streams, and it does not provide an easy method to showcase systems in a demo. As a solution, we introduce simulstream, the first open-source framework dedicated to unified evaluation and demonstration of StreamST systems. Designed for long-form speech processing, it supports not only incremental decoding approaches, but also re-translation methods, enabling for their comparison within the same framework both in terms of quality and latency. In addition, it also offers an interactive web interface to demo any system built within the tool.
☆ Linear Personality Probing and Steering in LLMs: A Big Five Study
Large language models (LLMs) exhibit distinct and consistent personalities that greatly impact trust and engagement. While this means that personality frameworks would be highly valuable tools to characterize and control LLMs' behavior, current approaches remain either costly (post-training) or brittle (prompt engineering). Probing and steering via linear directions has recently emerged as a cheap and efficient alternative. In this paper, we investigate whether linear directions aligned with the Big Five personality traits can be used for probing and steering model behavior. Using Llama 3.3 70B, we generate descriptions of 406 fictional characters and their Big Five trait scores. We then prompt the model with these descriptions and questions from the Alpaca questionnaire, allowing us to sample hidden activations that vary along personality traits in known, quantifiable ways. Using linear regression, we learn a set of per-layer directions in activation space, and test their effectiveness for probing and steering model behavior. Our results suggest that linear directions aligned with trait-scores are effective probes for personality detection, while their steering capabilities strongly depend on context, producing reliable effects in forced-choice tasks but limited influence in open-ended generation or when additional context is present in the prompt.
comment: 29 pages, 6 figures
☆ Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion Detection
This paper introduces a confidence-weighted, credibility-aware ensemble framework for text-based emotion detection, inspired by Condorcet's Jury Theorem (CJT). Unlike conventional ensembles that often rely on homogeneous architectures, our approach combines architecturally diverse small transformer-based large language models (sLLMs) - BERT, RoBERTa, DistilBERT, DeBERTa, and ELECTRA, each fully fine-tuned for emotion classification. To preserve error diversity, we minimize parameter convergence while taking advantage of the unique biases of each model. A dual-weighted voting mechanism integrates both global credibility (validation F1 score) and local confidence (instance-level probability) to dynamically weight model contributions. Experiments on the DAIR-AI dataset demonstrate that our credibility-confidence ensemble achieves a macro F1 score of 93.5 percent, surpassing state-of-the-art benchmarks and significantly outperforming large-scale LLMs, including Falcon, Mistral, Qwen, and Phi, even after task-specific Low-Rank Adaptation (LoRA). With only 595M parameters in total, our small LLMs ensemble proves more parameter-efficient and robust than models up to 7B parameters, establishing that carefully designed ensembles of small, fine-tuned models can outperform much larger LLMs in specialized natural language processing (NLP) tasks such as emotion detection.
comment: Accepted at IRICT 2025
☆ Computational analysis reveals historical trajectory of East-Polynesian lunar calendars
We investigate a type of lunar calendar known as lists of the 'nights of the moon', found throughout East Polynesia, including Rapa Nui (Easter Island). Using computational methods, we analyzed the lexical and structural divergence of 49 calendric lists from all major archipelagos, each containing about 30 night names. Our results, presented as a rooted phylogenetic tree, show a clear split into two main groups: one including lists from Rapa Nui, Mangareva, and the Marquesas; the other comprising lists from New Zealand, Hawaii, the Cook Islands, the Austral Islands, Tahiti, and the Tuamotu. This pattern aligns with a recent alternative classification of East Polynesian languages into 'Distal' (Marquesan, Mangarevan, Rapanui) and 'Proximal' (Maori, Hawaiian, Tahitian, etc.) subgroups. Since both language and lunar calendars are symbolic systems passed down and changed within communities - and given the geographic isolation of many archipelagos - we interpret this correspondence as evidence that the early divergence of East Polynesian lunar calendars mirrors early population movements and language splits in the region.
☆ SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories
Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.
☆ RadImageNet-VQA: A Large-Scale CT and MRI Dataset for Radiologic Visual Question Answering
In this work, we introduce RadImageNet-VQA, a large-scale dataset designed to advance radiologic visual question answering (VQA) on CT and MRI exams. Existing medical VQA datasets are limited in scale, dominated by X-ray imaging or biomedical illustrations, and often prone to text-based shortcuts. RadImageNet-VQA is built from expert-curated annotations and provides 750K images paired with 7.5M question-answer samples. It covers three key tasks - abnormality detection, anatomy recognition, and pathology identification - spanning eight anatomical regions and 97 pathology categories, and supports open-ended, closed-ended, and multiple-choice questions. Extensive experiments show that state-of-the-art vision-language models still struggle with fine-grained pathology identification, particularly in open-ended settings and even after fine-tuning. Text-only analysis further reveals that model performance collapses to near-random without image inputs, confirming that RadImageNet-VQA is free from linguistic shortcuts. The full dataset and benchmark are publicly available at https://huggingface.co/datasets/raidium/RadImageNet-VQA.
comment: Preprint, 23 pages, 12 figures, 7 tables
☆ Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?
Theory of Mind (ToM) -- the ability to attribute beliefs, desires, and emotions to others -- is fundamental for human social intelligence, yet remains a major challenge for artificial agents. Existing Vision-Language Models (VLMs) are increasingly applied in socially grounded tasks, but their capacity for cross-cultural ToM reasoning is largely unexplored. In this work, we introduce CulturalToM-VQA, a new evaluation benchmark containing 5095 questions designed to probe ToM reasoning across diverse cultural contexts through visual question answering. The dataset captures culturally grounded cues such as rituals, attire, gestures, and interpersonal dynamics, enabling systematic evaluation of ToM reasoning beyond Western-centric benchmarks. Our dataset is built through a VLM-assisted human-in-the-loop pipeline, where human experts first curate culturally rich images across traditions, rituals, and social interactions; a VLM then assist in generating structured ToM-focused scene descriptions, which are refined into question-answer pairs spanning a taxonomy of six ToM tasks and four graded complexity levels. The resulting dataset covers diverse theory of mind facets such as mental state attribution, false belief reasoning, non-literal communication, social norm violations, perspective coordination, and multi-agent reasoning.
☆ CIFE: Code Instruction-Following Evaluation
Large Language Models (LLMs) are increasingly applied to real-world code generation, where functional correctness alone is insufficient for reliable deployment, developers also expect adherence to explicit requirements for robustness, formatting, and security. Existing benchmarks primarily assess correctness through test-case execution, offering limited insight into how reliably models follow such constraints. We introduce a benchmark of 1,000 Python tasks, each paired with an average of 7 developer-specified constraints spanning 13 categories. Constraints are curated through a four-stage human-LLM pipeline to ensure they are atomic, relevant, and objective. We evaluate 14 open- and closed-source models using complementary adherence metrics and propose the C2A Score, a composite measure that jointly captures correctness and constraint compliance. Results reveal a substantial gap between partial and strict satisfaction, while strong models achieve over 90% partial adherence, strict adherence remains between 39-66%. These findings highlight that trustworthy code generation requires not only correctness but also consistent adherence to developer intent.
comment: 20 pages, 22 figures, 2 tables
☆ UCoder: Unsupervised Code Generation by Internal Probing of Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, their effectiveness heavily relies on supervised training with extensive labeled (e.g., question-answering pairs) or unlabeled datasets (e.g., code snippets), which are often expensive and difficult to obtain at scale. To address this limitation, this paper introduces a method IPC, an unsupervised framework that leverages Internal Probing of LLMs for Code generation without any external corpus, even unlabeled code snippets. We introduce the problem space probing, test understanding probing, solution space probing, and knowledge consolidation and reinforcement to probe the internal knowledge and confidence patterns existing in LLMs. Further, IPC identifies reliable code candidates through self-consistency mechanisms and representation-based quality estimation to train UCoder (coder with unsupervised learning). We validate the proposed approach across multiple code benchmarks, demonstrating that unsupervised methods can achieve competitive performance compared to supervised approaches while significantly reducing the dependency on labeled data and computational resources. Analytic experiments reveal that internal model states contain rich signals about code quality and correctness, and that properly harnessing these signals enables effective unsupervised learning for code generation tasks, opening new directions for training code LLMs in resource-constrained scenarios.
☆ AdvJudge-Zero: Binary Decision Flips in LLM-as-a-Judge via Adversarial Control Tokens
Reward models and LLM-as-a-Judge systems are central to modern post-training pipelines such as RLHF, DPO, and RLAIF, where they provide scalar feedback and binary decisions that guide model selection and RL-based fine-tuning. We show that these judge systems exhibit a recurring vulnerability: short sequences of low-perplexity control tokens can flip many binary evaluations from correct ``No'' judgments to incorrect ``Yes'' judgments by steering the last-layer logit gap. These control tokens are patterns that a policy model could plausibly generate during post-training, and thus represent realistic reward-hacking risks rather than worst-case adversarial strings. Our method, AdvJudge-Zero, uses the model's next-token distribution and beam-search exploration to discover diverse control-token sequences from scratch, and our analysis shows that the induced hidden-state perturbations concentrate in a low-rank ``soft mode'' that is anti-aligned with the judge's refusal direction. Empirically, these tokens cause very high false positive rates when large open-weight and specialized judge models score incorrect answers on math and reasoning benchmarks. Finally, we show that LoRA-based adversarial training on small sets of control-token-augmented examples can markedly reduce these false positives while preserving evaluation quality.
☆ Physics of Language Models: Part 4.1, Architecture Design and the Magic of Canon Layers NeurIPS 2025
Understanding architectural differences in language models is challenging, especially at academic-scale pretraining (e.g., 1.3B parameters, 100B tokens), where results are often dominated by noise and randomness. To overcome this, we introduce controlled synthetic pretraining tasks that isolate and evaluate core model capabilities. Within this framework, we discover CANON LAYERS: lightweight architectural components -- named after the musical term "canon" -- that promote horizontal information flow across neighboring tokens. Canon layers compute weighted sums of nearby token representations and integrate seamlessly into Transformers, linear attention, state-space models, or any sequence architecture. We present 12 key results. This includes how Canon layers enhance reasoning depth (e.g., by $2\times$), reasoning breadth, knowledge manipulation, etc. They lift weak architectures like NoPE to match RoPE, and linear attention to rival SOTA linear models like Mamba2/GDN -- validated both through synthetic tasks and real-world academic-scale pretraining. This synthetic playground offers an economical, principled path to isolate core model capabilities often obscured at academic scales. Equipped with infinite high-quality data, it may even PREDICT how future architectures will behave as training pipelines improve -- e.g., through better data curation or RL-based post-training -- unlocking deeper reasoning and hierarchical inference.
comment: V1.1 appeared in NeurIPS 2025 main conference; V2 adds GDN experiments, tightens some experiments (for a stronger, fairer comparison), and re-organizes sections
☆ Stakeholder Suite: A Unified AI Framework for Mapping Actors, Topics and Arguments in Public Debates
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.
☆ Governance-Aware Hybrid Fine-Tuning for Multilingual Large Language Models
We present a governance-aware hybrid fine-tuning framework for multilingual, low-resource adaptation of large language models. The core algorithm combines gradient-aligned low-rank updates with structured orthogonal transformations through layer-wise mixing and introduces unitary constraints in selected sub-layers to stabilize deep optimization. In tandem with lightweight, label-free data governance steps, including language identification, near-duplicate removal, and quality filtering, the framework targets accuracy, calibration, and cross-language parity under tight compute budgets. Across XNLI and FLORES, the hybrid approach delivers consistent gains over strong PEFT baselines while maintaining directional balance and improving probability calibration, as shown in Tables II and III. It is more resilient to lightweight orthographic variants, as shown in Table IV, and benefits additively from simple governance steps, as shown in Table V. Training footprint measurements indicate modest overhead and a favorable cost-quality frontier, as shown in Table VI and Figure 2. Together, these results show that hybrid and unitary PEFT provide a stable and accessible path to resource-efficient multilingual adaptation when paired with practical data governance.
comment: 11 pages, 4 figures, 6 tables. arXiv admin note: substantial text overlap with arXiv:2507.18076
☆ Task Schema and Binding: A Double Dissociation Study of In-Context Learning
We provide causal mechanistic validation that in-context learning (ICL) decomposes into two separable mechanisms: Task Schema (abstract task type recognition) and Binding (specific input-output associations). Through activation patching experiments across 9 models from 7 Transformer families plus Mamba (370M-13B parameters), we establish three key findings: 1. Double dissociation: Task Schema transfers at 100% via late MLP patching; Binding transfers at 62% via residual stream patching -- proving separable mechanisms 2. Prior-Schema trade-off: Schema reliance inversely correlates with prior knowledge (Spearman rho = -0.596, p < 0.001, N=28 task-model pairs) 3. Architecture generality: The mechanism operates across all tested architectures including the non-Transformer Mamba These findings offer a mechanistic account of the ICL puzzle that contrasts with prior views treating ICL as a monolithic mechanism (whether retrieval-based, gradient descent-like, or purely Bayesian). By establishing that Schema and Binding are neurally dissociable -- not merely behavioral modes -- we provide causal evidence for dual-process theories of ICL. Models rely on Task Schema when prior knowledge is absent, but prior knowledge interferes through attentional mis-routing (72.7% recency bias) rather than direct output competition (0%). This explains why arbitrary mappings succeed (zero prior leads to full Schema reliance) while factual overrides fail -- and reveals that the true bottleneck is attentional, not output-level. Practical implications: Understanding these dual mechanisms enables more efficient prompt engineering -- reliable schema transfer reduces required demonstrations for novel tasks, while prior-aware design can mitigate the 38% binding failure rate in high-prior scenarios, improving ICL system reliability in production deployments.
comment: 20pages, 2figures
Large Language Models as Pokémon Battle Agents: Strategic Play and Content Generation
Strategic decision-making in Pokémon battles presents a unique testbed for evaluating large language models. Pokémon battles demand reasoning about type matchups, statistical trade-offs, and risk assessment, skills that mirror human strategic thinking. This work examines whether Large Language Models (LLMs) can serve as competent battle agents, capable of both making tactically sound decisions and generating novel, balanced game content. We developed a turn-based Pokémon battle system where LLMs select moves based on battle state rather than pre-programmed logic. The framework captures essential Pokémon mechanics: type effectiveness multipliers, stat-based damage calculations, and multi-Pokémon team management. Through systematic evaluation across multiple model architectures we measured win rates, decision latency, type-alignment accuracy, and token efficiency. These results suggest LLMs can function as dynamic game opponents without domain-specific training, offering a practical alternative to reinforcement learning for turn-based strategic games. The dual capability of tactical reasoning and content creation, positions LLMs as both players and designers, with implications for procedural generation and adaptive difficulty systems in interactive entertainment.
comment: Under Review
☆ Subjective Question Generation and Answer Evaluation using NLP
Natural Language Processing (NLP) is one of the most revolutionary technologies today. It uses artificial intelligence to understand human text and spoken words. It is used for text summarization, grammar checking, sentiment analysis, and advanced chatbots and has many more potential use cases. Furthermore, it has also made its mark on the education sector. Much research and advancements have already been conducted on objective question generation; however, automated subjective question generation and answer evaluation are still in progress. An automated system to generate subjective questions and evaluate the answers can help teachers assess student work and enhance the student's learning experience by allowing them to self-assess their understanding after reading an article or a chapter of a book. This research aims to improve current NLP models or make a novel one for automated subjective question generation and answer evaluation from text input.
comment: 5 pages, 5 figures, 2 tables, conference paper
☆ Understanding Generalization in Role-Playing Models via Information Theory
Role-playing models (RPMs) are widely used in real-world applications but underperform when deployed in the wild. This degradation can be attributed to distribution shifts, including user, character, and dialogue compositional shifts. Existing methods like LLM-as-a-judge fall short in providing a fine-grained diagnosis of how these shifts affect RPM generalization, and thus there lack formal frameworks to characterize RPM generalization behaviors. To bridge these gaps, we introduce an information-theoretic metric, named reasoning-based effective mutual information difference (R-EMID), to measure RPM performance degradation in an interpretable way. We also derive an upper bound on R-EMID to predict the worst-case generalization performance of RPMs and theoretically reveal how various shifts contribute to the RPM performance degradation. Moreover, we propose a co-evolving reinforcement learning framework to adaptively model the connection among user, character, and dialogue context and thus enhance the estimation of dialogue response generation probability, which is critical for calculating R-EMID. Finally, we evaluate the generalization performance of various RPMs using R-EMID, finding that user shift poses the highest risk among all shifts and reinforcement learning is the most effective approach for enhancing RPM generalization.
☆ AutoMetrics: Approximate Human Judgements with Automatically Generated Evaluators
Evaluating user-facing AI applications remains a central challenge, especially in open-ended domains such as travel planning, clinical note generation, or dialogue. The gold standard is user feedback (e.g., thumbs up/down) or behavioral signals (e.g., retention), but these are often scarce in prototypes and research projects, or too-slow to use for system optimization. We present AutoMetrics, a framework for synthesizing evaluation metrics under low-data constraints. AutoMetrics combines retrieval from MetricBank, a collection of 48 metrics we curate, with automatically generated LLM-as-a-Judge criteria informed by lightweight human feedback. These metrics are composed via regression to maximize correlation with human signal. AutoMetrics takes you from expensive measures to interpretable automatic metrics. Across 5 diverse tasks, AutoMetrics improves Kendall correlation with human ratings by up to 33.4% over LLM-as-a-Judge while requiring fewer than 100 feedback points. We show that AutoMetrics can be used as a proxy reward to equal effect as a verifiable reward. We release the full AutoMetrics toolkit and MetricBank to accelerate adaptive evaluation of LLM applications.
☆ Seed-Prover 1.5: Mastering Undergraduate-Level Theorem Proving via Learning from Experience
Large language models have recently made significant progress to generate rigorous mathematical proofs. In contrast, utilizing LLMs for theorem proving in formal languages (such as Lean) remains challenging and computationally expensive, particularly when addressing problems at the undergraduate level and beyond. In this work, we present \textbf{Seed-Prover 1.5}, a formal theorem-proving model trained via large-scale agentic reinforcement learning, alongside an efficient test-time scaling (TTS) workflow. Through extensive interactions with Lean and other tools, the model continuously accumulates experience during the RL process, substantially enhancing the capability and efficiency of formal theorem proving. Furthermore, leveraging recent advancements in natural language proving, our TTS workflow efficiently bridges the gap between natural and formal languages. Compared to state-of-the-art methods, Seed-Prover 1.5 achieves superior performance with a smaller compute budget. It solves \textbf{88\% of PutnamBench} (undergraduate-level), \textbf{80\% of Fate-H} (graduate-level), and \textbf{33\% of Fate-X} (PhD-level) problems. Notably, using our system, we solved \textbf{11 out of 12 problems} from Putnam 2025 within 9 hours. Our findings suggest that scaling learning from experience, driven by high-quality formal feedback, holds immense potential for the future of formal mathematical reasoning.
comment: 21 pages
☆ Incorporating Error Level Noise Embedding for Improving LLM-Assisted Robustness in Persian Speech Recognition
Automatic Speech Recognition (ASR) systems suffer significant performance degradation in noisy environments, a challenge that is especially severe for low-resource languages such as Persian. Even state-of-the-art models such as Whisper struggle to maintain accuracy under varying signal-to-noise ratios (SNRs). This study presents a robust noise-sensitive ASR error correction framework that combines multiple hypotheses and noise-aware modeling. Using noisy Persian speech, we generate 5-best hypotheses from a modified Whisper-large decoder. Error Level Noise (ELN) is introduced as a representation that captures semantic- and token-level disagreement across hypotheses, quantifying the linguistic distortions caused by noise. ELN thus provides a direct measure of noise-induced uncertainty, enabling the LLM to reason about the reliability of each hypothesis during correction. Three models are evaluated: (1) a base LLaMA-2-7B model without fine-tuning, (2) a fine-tuned variant trained on text-only hypotheses, and (3) a noise-conditioned model integrating ELN embeddings at both sentence and word levels. Experimental results demonstrate that the ELN-conditioned model achieves substantial reductions in Word Error Rate (WER). Specifically, on the challenging Mixed Noise test set, the proposed Fine-tuned + ELN (Ours) model reduces the WER from a baseline of 31.10\% (Raw Whisper) to 24.84\%, significantly surpassing the Fine-tuned (No ELN) text-only baseline of 30.79\%, whereas the original LLaMA-2-7B model increased the WER to 64.58\%, demonstrating that it is unable to correct Persian errors on its own. This confirms the effectiveness of combining multiple hypotheses with noise-aware embeddings for robust Persian ASR in noisy real-world scenarios.
☆ Mindscape-Aware Retrieval Augmented Generation for Improved Long Context Understanding
Humans understand long and complex texts by relying on a holistic semantic representation of the content. This global view helps organize prior knowledge, interpret new information, and integrate evidence dispersed across a document, as revealed by the Mindscape-Aware Capability of humans in psychology. Current Retrieval-Augmented Generation (RAG) systems lack such guidance and therefore struggle with long-context tasks. In this paper, we propose Mindscape-Aware RAG (MiA-RAG), the first approach that equips LLM-based RAG systems with explicit global context awareness. MiA-RAG builds a mindscape through hierarchical summarization and conditions both retrieval and generation on this global semantic representation. This enables the retriever to form enriched query embeddings and the generator to reason over retrieved evidence within a coherent global context. We evaluate MiA-RAG across diverse long-context and bilingual benchmarks for evidence-based understanding and global sense-making. It consistently surpasses baselines, and further analysis shows that it aligns local details with a coherent global representation, enabling more human-like long-context retrieval and reasoning.
☆ Enhancing Long Document Long Form Summarisation with Self-Planning
We introduce a novel approach for long context summarisation, highlight-guided generation, that leverages sentence-level information as a content plan to improve the traceability and faithfulness of generated summaries. Our framework applies self-planning methods to identify important content and then generates a summary conditioned on the plan. We explore both an end-to-end and two-stage variants of the approach, finding that the two-stage pipeline performs better on long and information-dense documents. Experiments on long-form summarisation datasets demonstrate that our method consistently improves factual consistency while preserving relevance and overall quality. On GovReport, our best approach has improved ROUGE-L by 4.1 points and achieves about 35% gains in SummaC scores. Qualitative analysis shows that highlight-guided summarisation helps preserve important details, leading to more accurate and insightful summaries across domains.
☆ Distributed Asymmetric Allocation: A Topic Model for Large Imbalanced Corpora in Social Sciences
Social scientists employ latent Dirichlet allocation (LDA) to find highly specific topics in large corpora, but they often struggle in this task because (1) LDA, in general, takes a significant amount of time to fit on large corpora; (2) unsupervised LDA fragments topics into sub-topics in short documents; (3) semi-supervised LDA fails to identify specific topics defined using seed words. To solve these problems, I have developed a new topic model called distributed asymmetric allocation (DAA) that integrates multiple algorithms for efficiently identifying sentences about important topics in large corpora. I evaluate the ability of DAA to identify politically important topics by fitting it to the transcripts of speeches at the United Nations General Assembly between 1991 and 2017. The results show that DAA can classify sentences significantly more accurately and quickly than LDA thanks to the new algorithms. More generally, the results demonstrate that it is important for social scientists to optimize Dirichlet priors of LDA to perform content analysis accurately.
comment: 34 pages
☆ Layout-Aware Text Editing for Efficient Transformation of Academic PDFs to Markdown ICDAR 2025
Academic documents stored in PDF format can be transformed into plain text structured markup languages to enhance accessibility and enable scalable digital library workflows. Markup languages allow for easier updates and customization, making academic content more adaptable and accessible to diverse usage, such as linguistic corpus compilation. Such documents, typically delivered in PDF format, contain complex elements including mathematical formulas, figures, headers, and tables, as well as densely layouted text. Existing end-to-end decoder transformer models can transform screenshots of documents into markup language. However, these models exhibit significant inefficiencies; their token-by-token decoding from scratch wastes a lot of inference steps in regenerating dense text that could be directly copied from PDF files. To solve this problem, we introduce EditTrans, a hybrid editing-generation model whose features allow identifying a queue of to-be-edited text from a PDF before starting to generate markup language. EditTrans contains a lightweight classifier fine-tuned from a Document Layout Analysis model on 162,127 pages of documents from arXiv. In our evaluations, EditTrans reduced the transformation latency up to 44.5% compared to end-to-end decoder transformer models, while maintaining transformation quality. Our code and reproducible dataset production scripts are open-sourced.
comment: Accepted ICDAR 2025
♻ ☆ Mapping the Podcast Ecosystem with the Structured Podcast Research Corpus
Podcasts provide highly diverse content to a massive listener base through a unique on-demand modality. However, limited data has prevented large-scale computational analysis of the podcast ecosystem. To fill this gap, we introduce a massive dataset of over 1.1M podcast transcripts that is largely comprehensive of all English language podcasts available through public RSS feeds from May and June of 2020. This data is not limited to text, but rather includes audio features and speaker turns for a subset of 370K episodes, and speaker role inferences and other metadata for all 1.1M episodes. Using this data, we also conduct a foundational investigation into the content, structure, and responsiveness of this ecosystem. Together, our data and analyses open the door to continued computational research of this popular and impactful medium.
comment: 9 pages, 3 figures
♻ ☆ Adaptive Focus Memory for Language Models
Large language models (LLMs) are increasingly deployed in multi-turn dialogue settings, yet their behavior remains bottlenecked by naive history management strategies. Replaying the full conversation at every turn is simple but costly, while recency-based truncation or static summarization often causes early, high-impact user constraints to drift out of effective context. As a result, models may retain text without reliably applying it when it matters. We present Adaptive Focus Memory (AFM), a lightweight context management system that dynamically assigns each past message one of three fidelity levels: Full, Compressed, or Placeholder, based on semantic relevance, temporal decay, and importance classification. AFM packs messages chronologically under a fixed token budget, preserving critical constraints at high fidelity while allowing low-importance context to degrade gracefully. We evaluate AFM on two multi-turn dialogue benchmarks designed to stress long-horizon constraint preservation: a safety-critical travel scenario involving a user with a severe peanut allergy, and a policy-critical tax compliance scenario involving an illegal evasion request. Under strict grading that requires both explicit constraint recall and appropriately conditioned generation, AFM succeeds in 83.3 percent of allergy runs where all baseline strategies fail, and preserves correct refusal behavior on the tax benchmark. These results demonstrate that effective dialogue memory requires more than retaining prior text. Selectively allocating fidelity across past messages enables reliable constraint preservation under bounded context growth, without modifying model weights or introducing external retrieval infrastructure. We release an open-source implementation of AFM compatible with OpenAI-style chat APIs to support reproducible research and practical deployment.
♻ ☆ Same Content, Different Representations: A Controlled Study for Table QA
Table Question Answering (Table QA) in real-world settings must operate over both structured databases and semi-structured tables containing textual fields. However, existing benchmarks are tied to fixed data formats and have not systematically examined how representation itself affects model performance. We present the first controlled study that isolates the role of table representation by holding content constant while varying structure. Using a verbalization pipeline, we generate paired structured and semi-structured tables, enabling direct comparisons across modeling paradigms. To support detailed analysis, we introduce RePairTQA, a diagnostic benchmark with splits along table size, join requirements, query complexity, and schema quality. Our experiments reveal consistent trade-offs: SQL-based methods achieve high accuracy on structured inputs but degrade on semi-structured data, LLMs exhibit flexibility but reduced precision, and hybrid approaches strike a balance, particularly under noisy schemas. These effects intensify with larger tables and more complex queries. Ultimately, no single method excels across all conditions, and we highlight the central role of representation in shaping Table QA performance. Our findings provide actionable insights for model selection and design, paving the way for more robust hybrid approaches suited for diverse real-world data formats.
♻ ☆ RL from Teacher-Model Refinement: Gradual Imitation Learning for Machine Translation
Preference-learning methods for machine translation (MT), such as Direct Preference Optimization (DPO), have shown strong gains but typically rely on large, carefully curated preference triplets and often struggle to generalize beyond their tuning domains. We propose Reinforcement Learning from Teacher-Model Refinement (RLfR), which replaces static triplets with on-policy, actor-conditioned refinements produced by a frozen teacher. At each step, the actor samples candidate translations, the teacher performs a minimal local edit of each draft, and the actor is reinforced to close the gap using a composite reward that combines scaled negative edit distance for lexical and structural fidelity with COMET for semantic adequacy. This formulation yields a stable, model-aware learning signal without requiring explicit preference datasets. Experiments on FLORES-200 (English to German, Spanish, Chinese, Korean, and Japanese) show that RLfR consistently outperforms strong MT-SFT, DPO, and fixed-reference RL baselines, improving semantic quality and entity preservation, and also achieves superior performance under LLM-based judge evaluations.
♻ ☆ The Diffusion Duality ICML 2025
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/duo
comment: ICML 2025. We provide the code at: https://github.com/s-sahoo/duo [v3] includes improved theory, clearer presentation, and a new future work section
♻ ☆ ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics
Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is abundant: survey articles consolidate knowledge spread across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Queries and rubrics are jointly derived from survey sections, where rubric items list query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. 31 Ph.D. annotators in 8 fields judge that 90% of queries reflect Ph.D. information needs and 87% of rubric items warrant emphasis of a sentence or longer. We leverage ResearchQA to evaluate 18 systems in 7.6K head-to-heads. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.
comment: 12 pages main, 40 pages total, 15 figures
♻ ☆ LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that instance-specific issues output by LLM-as-a-qualitative-judge match those annotated by humans in 2/3 cases, and that LLM-as-a-qualitative-judge is capable of producing error type reports resembling the reports composed by human annotators. We also demonstrate in a case study how the use of LLM-as-a-qualitative-judge can substantially improve NLG systems performance. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.
♻ ☆ Computational emotion analysis with multimodal LLMs: Current evidence on an emerging methodological opportunity
Emotions are central to politics and analyzing their role in political communication has a long tradition. As research increasingly leverages audio-visual materials to analyze emotions, the emergence of multimodal generative Artificial Intelligence (AI) promises great advances. However, we lack evidence about the effectiveness of multimodal AI in analyzing emotions in political communication. This paper addresses this gap by evaluating current multimodal large language models (mLLMs) in the video-based analysis of emotional arousal, using two complementary datasets of human-labeled video recordings. It finds that under ideal circumstances, mLLMs' emotional arousal ratings are highly reliable and exhibit little to no demographic bias. However, in recordings of real-world parliamentary debates, mLLMs' arousal ratings fail to deliver on this promise with potential negative consequences for downstream statistical inferences. This study therefore underscores the need for continued, thorough evaluation of emerging generative AI methods in multimodal political analysis and contributes a suitable replicable framework.
♻ ☆ Clean Up the Mess: Addressing Data Pollution in Cryptocurrency Abuse Reporting Services
Cryptocurrency abuse reporting services are a valuable data source about abusive blockchain addresses, prevalent types of cryptocurrency abuse, and their financial impact on victims. However, they may suffer data pollution due to their crowd-sourced nature. This work analyzes the extent and impact of data pollution in cryptocurrency abuse reporting services and proposes a novel LLM-based defense to address the pollution. We collect 289K abuse reports submitted over 6 years to two popular services and use them to answer three research questions. RQ1 analyzes the extent and impact of pollution. We show that spam reports will eventually flood unchecked abuse reporting services, with BitcoinAbuse receiving 75% of spam before stopping operations. We build a public dataset of 19,443 abuse reports labeled with 19 popular abuse types and use it to reveal the inaccuracy of user-reported abuse types. We identified 91 (0.1%) benign addresses reported, responsible for 60% of all the received funds. RQ2 examines whether we can automate identifying valid reports and their classification into abuse types. We propose an unsupervised LLM-based classifier that achieves an F1 score of 0.95 when classifying reports, an F1 of 0.89 when classifying out-of-distribution data, and an F1 of 0.99 when identifying spam reports. Our unsupervised LLM-based classifier clearly outperforms two baselines: a supervised classifier and a naive usage of the LLM. Finally, RQ3 demonstrates the usefulness of our LLM-based classifier for quantifying the financial impact of different cryptocurrency abuse types. We show that victim-reported losses heavily underestimate cybercriminal revenue by estimating a 29 times higher revenue from deposit transactions. We identified that investment scams have the highest financial impact and that extortions have lower conversion rates but compensate for them with massive email campaigns.
♻ ☆ Fun-ASR Technical Report
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present Fun-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, Fun-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, Fun-ASR achieves state-of-the-art performance on real application datasets, demonstrating its effectiveness and robustness in practical settings. The code and models are accessible at https://github.com/FunAudioLLM/Fun-ASR .
comment: Authors are listed in alphabetical order. Work in progress
♻ ☆ Generating Completions for Broca's Aphasic Sentences Using Large Language Models
Broca's aphasia is a type of aphasia characterized by non-fluent, effortful and agrammatic speech production with relatively good comprehension. Since traditional aphasia treatment methods are often time-consuming, labour-intensive, and do not reflect real-world conversations, applying natural language processing based approaches such as Large Language Models (LLMs) could potentially contribute to improving existing treatment approaches. To address this issue, we explore the use of sequence-to-sequence LLMs for completing Broca's aphasic sentences. We first generate synthetic Broca's aphasic data using a rule-based system designed to mirror the linguistic characteristics of Broca's aphasic speech. Using this synthetic data (without authentic aphasic samples), we then fine-tune four pre-trained LLMs on the task of completing agrammatic sentences. We evaluate our fine-tuned models on both synthetic and authentic Broca's aphasic data. We demonstrate LLMs' capability for reconstructing agrammatic sentences, with the models showing improved performance with longer input utterances. Our result highlights the LLMs' potential in advancing communication aids for individuals with Broca's aphasia and possibly other clinical populations.
comment: in IEEE Journal of Biomedical and Health Informatics
♻ ☆ Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
comment: 72 pages, 17 figures
♻ ☆ Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.
comment: 24 pages, 2 figures
♻ ☆ When Safety Blocks Sense: Measuring Semantic Confusion in LLM Refusals
Safety-aligned language models often refuse prompts that are actually harmless. Current evaluations mostly report global rates such as false rejection or compliance. These scores treat each prompt alone and miss local inconsistency, where a model accepts one phrasing of an intent but rejects a close paraphrase. This gap limits diagnosis and tuning. We introduce "semantic confusion," a failure mode that captures such local inconsistency, and a framework to measure it. We build ParaGuard, a 10k-prompt corpus of controlled paraphrase clusters that hold intent fixed while varying surface form. We then propose three model-agnostic metrics at the token level: Confusion Index, Confusion Rate, and Confusion Depth. These metrics compare each refusal to its nearest accepted neighbors and use token embeddings, next-token probabilities, and perplexity signals. Experiments across diverse model families and deployment guards show that global false-rejection rate hides critical structure. Our metrics reveal globally unstable boundaries in some settings, localized pockets of inconsistency in others, and cases where stricter refusal does not increase inconsistency. We also show how confusion-aware auditing separates how often a system refuses from how sensibly it refuses. This gives developers a practical signal to reduce false refusals while preserving safety.
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-$N$ selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
comment: Accepted by AAAI-2026
♻ ☆ From $f(x)$ and $g(x)$ to $f(g(x))$: LLMs Learn New Skills in RL by Composing Old Ones
Does RL teach LLMs genuinely new skills, or does it merely activate existing ones? This question lies at the core of ongoing debates about the role of RL in LLM post-training. On one side, strong empirical results can be achieved with RL even without preceding supervised finetuning; on the other, critics argue that RL contributes little beyond reweighting existing reasoning strategies. This work provides concrete evidence that LLMs can acquire genuinely new skills during RL by composing existing ones, mirroring one of the central mechanisms by which humans acquire new cognitive skills. To mitigate data contamination and other confounding factors, and to allow precise control over task complexity, we develop a synthetic framework for our investigation. Specifically, we define a skill as the ability to infer the output of a string transformation function f(x) given x. When an LLM has already learned f and g prior to RL, our experiments reveal that RL enables it to learn unseen compositions of them h(x)=g(f(x)). Further, this compositional ability generalizes to more difficult problems such as compositions of >2 functions unseen during RL training. Surprisingly, our experiments show that compositional skill acquired on a source task transfers to a different target task. This transfer happens even without compositional training on the target, requiring only prior knowledge of the target's atomic skills. Our qualitative analysis shows that RL fundamentally changes the reasoning behaviors of the models. In contrast, next-token training with the same data yields none of these findings. Our systematic experiments provide fresh insights into LLM learning, suggesting the value of first building base models with basic skills, then using RL to incentivize advanced, generalizable skills for complex problems.
♻ ☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch using only its inherent SQL programming capabilities combined with concepts from modular TOD systems provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of modular TOD system concepts. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and arXiv dataset. We view this as a step towards broader application of ontologies.
comment: Accepted to Transactions of the Association for Computational Linguistics
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Towards Safer Chatbots: Automated Policy Compliance Evaluation of Custom GPTs
User-configured chatbots built on top of large language models are increasingly available through centralized marketplaces such as OpenAI's GPT Store. While these platforms enforce usage policies intended to prevent harmful or inappropriate behavior, the scale and opacity of customized chatbots make systematic policy enforcement challenging. As a result, policy-violating chatbots continue to remain publicly accessible despite existing review processes. This paper presents a fully automated method for evaluating the compliance of Custom GPTs with its marketplace usage policy using black-box interaction. The method combines large-scale GPT discovery, policy-driven red-teaming prompts, and automated compliance assessment using an LLM-as-a-judge. We focus on three policy-relevant domains explicitly addressed in OpenAI's usage policies: Romantic, Cybersecurity, and Academic GPTs. We validate our compliance assessment component against a human-annotated ground-truth dataset, achieving an F1 score of 0.975 for binary policy violation detection. We then apply the method in a large-scale empirical study of 782 Custom GPTs retrieved from the GPT Store. The results show that 58.7% of the evaluated GPTs exhibit at least one policy-violating response, with substantial variation across policy domains. A comparison with the base models (GPT-4 and GPT-4o) indicates that most violations originate from model-level behavior, while customization tends to amplify these tendencies rather than create new failure modes. Our findings reveal limitations in current review mechanisms for user-configured chatbots and demonstrate the feasibility of scalable, behavior-based policy compliance evaluation.
♻ ☆ Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking
Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce the visual faithfulness of reasoning chains as a distinct evaluation dimension, focusing on whether the perception steps of a reasoning chain are grounded in the image. We propose a training- and reference-free framework that decomposes chains into perception versus reasoning steps and uses off-the-shelf VLM judges for step-level faithfulness, additionally verifying this approach through a human meta-evaluation. Building on this metric, we present a lightweight self-reflection procedure that detects and locally regenerates unfaithful perception steps without any training. Across multiple reasoning-trained VLMs and perception-heavy benchmarks, our method reduces Unfaithful Perception Rate while preserving final-answer accuracy, improving the reliability of multimodal reasoning.
comment: Preprint
♻ ☆ Hybrid and Unitary PEFT for Resource-Efficient Large Language Models
Fine-tuning large language models (LLMs) remains a computational bottleneck due to their scale and memory demands. This paper presents a comprehensive evaluation of parameter-efficient fine-tuning (PEFT) techniques, including LoRA, BOFT, LoRA-GA, and uRNN, and introduces a novel hybrid strategy that dynamically integrates BOFT's orthogonal stability with LoRA-GA's gradient-aligned rapid convergence. By computing per-layer adaptive updates guided by gradient norms, the hybrid method achieves superior convergence efficiency and generalization across diverse tasks. We also explore, for the first time, the adaptation of unitary RNN (uRNN) principles to Transformer-based LLMs, enhancing gradient stability through structured unitary constraints. Across GLUE, GSM8K, MT-Bench, and HumanEval, using models ranging from 7B to 405B parameters, the hybrid approach yields consistent gains across three independent runs per task and model, approaching the quality of full fine-tuning while reducing training time by approximately 2.1 times and peak memory usage by nearly 50 percent, indicating practical significance under resource constraints. A compact multilingual and low-resource study on XNLI and FLORES, using 32 examples per language, further demonstrates consistent gains under the same budget with a small and stable footprint. These results indicate a practical and scalable path toward accessible LLM fine-tuning under resource constraints.
comment: 11 pages, 2 figures and 7 table
♻ ☆ Fine-Tuning Large Audio-Language Models with LoRA for Precise Temporal Localization of Prolonged Exposure Therapy Elements
Prolonged Exposure (PE) therapy is an effective treatment for post-traumatic stress disorder (PTSD), but evaluating therapist fidelity remains labor-intensive due to the need for manual review of session recordings. We present a method for the automatic temporal localization of key PE fidelity elements, identifying their start and stop times, directly from session audio and transcripts. Our approach fine-tunes a large pre-trained audio-language model, Qwen2-Audio, using Low-Rank Adaptation (LoRA) to process focused 30-second windows of audio-transcript input. Fidelity labels for three core protocol phases, therapist orientation (P1), imaginal exposure (P2), and post-imaginal processing (P3), are generated via LLM-based prompting and verified by trained raters. The model is trained to predict normalized boundary offsets using soft supervision guided by task-specific prompts. On a dataset of 308 real PE sessions, our best configuration (LoRA rank 8, 30s windows) achieves a mean absolute error (MAE) of 5.3s across tasks, within typical rater tolerance for timestamp review, enabling practical fidelity QC. We further analyze the effects of window size and LoRA rank, highlighting the importance of context granularity and model adaptation. This work introduces a privacy-preserving, scalable framework for fidelity tracking in PE therapy, with potential to support clinician training, supervision, and quality assurance.
comment: 5 pages, 2 figures
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 16 pages, 1 figure. Updated version with corrected references and aligned acknowledgments
♻ ☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
♻ ☆ Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
comment: Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ Optimizing Mixture of Block Attention
Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.
comment: The first two authors contributed equally to this work
♻ ☆ Mitigating Hallucinations in Healthcare LLMs with Granular Fact-Checking and Domain-Specific Adaptation
In healthcare, it is essential for any LLM-generated output to be reliable and accurate, particularly in cases involving decision-making and patient safety. However, the outputs are often unreliable in such critical areas due to the risk of hallucinated outputs from the LLMs. To address this issue, we propose a fact-checking module that operates independently of any LLM, along with a domain-specific summarization model designed to minimize hallucination rates. Our model is fine-tuned using Low-Rank Adaptation (LoRa) on the MIMIC III dataset and is paired with the fact-checking module, which uses numerical tests for correctness and logical checks at a granular level through discrete logic in natural language processing (NLP) to validate facts against electronic health records (EHRs). We trained the LLM model on the full MIMIC-III dataset. For evaluation of the fact-checking module, we sampled 104 summaries, extracted them into 3,786 propositions, and used these as facts. The fact-checking module achieves a precision of 0.8904, a recall of 0.8234, and an F1-score of 0.8556. Additionally, the LLM summary model achieves a ROUGE-1 score of 0.5797 and a BERTScore of 0.9120 for summary quality.
♻ ☆ ResSVD: Residual Compensated SVD for Large Language Model Compression
Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks. Nevertheless, their considerable sizes and memory demands hinder practical deployment, underscoring the importance of developing efficient compression strategies. Singular value decomposition (SVD) decomposes a matrix into orthogonal components, enabling efficient low-rank approximation. This is particularly suitable for LLM compression, where weight matrices often exhibit significant redundancy. However, current SVD-based methods neglect the residual matrix from truncation, resulting in significant truncation loss. Additionally, compressing all layers of the model results in severe performance degradation. To overcome these limitations, we propose ResSVD, a new post-training SVD-based LLM compression method. Specifically, we leverage the residual matrix generated during the truncation process to reduce truncation loss. Moreover, under a fixed overall compression ratio, we selectively compress the last few layers of the model, which mitigates error propagation and significantly improves the performance of compressed models. Comprehensive evaluations of ResSVD on diverse LLM families and multiple benchmark datasets indicate that ResSVD consistently achieves superior performance over existing counterpart methods, demonstrating its practical effectiveness.
♻ ☆ Sigma-MoE-Tiny Technical Report
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
♻ ☆ Studying the Effects of Collaboration in Interactive Theme Discovery Systems
NLP-assisted solutions have gained considerable traction to support qualitative data analysis. However, there does not exist a unified evaluation framework that can account for the many different settings in which qualitative researchers may employ them. In this paper, we take a first step in this direction by proposing an evaluation framework to study the way in which different tools may result in different outcomes depending on the collaboration strategy employed. Specifically, we study the impact of synchronous vs. asynchronous collaboration using two different NLP-assisted qualitative research tools and present a comprehensive analysis of significant differences in the consistency, cohesiveness, and correctness of their outputs.
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ Learning to Contextualize Web Pages for Enhanced Decision Making by LLM Agents ICLR 2025
Recent advances in large language models (LLMs) have led to a growing interest in developing LLM-based agents for automating web tasks. However, these agents often struggle with even simple tasks on real-world websites due to their limited capability to understand and process complex web page structures. In this work, we introduce LCoW, a framework for Learning language models to Contextualize complex Web pages into a more comprehensible form, thereby enhancing decision making by LLM agents. LCoW decouples web page understanding from decision making by training a separate contextualization module to transform complex web pages into comprehensible format, which are then utilized by the decision-making agent. We demonstrate that our contextualization module effectively integrates with LLM agents of various scales to significantly enhance their decision-making capabilities in web automation tasks. Notably, LCoW improves the success rates of closed-source LLMs (e.g., Gemini-1.5-flash, GPT-4o, Claude-3.5-Sonnet) by an average of 15.6%, and demonstrates a 23.7% average improvement in success rates for open-source LMs (e.g., Llama-3.1-8B, Llama-3.1-70B) on the WorkArena benchmark. Moreover, the Gemini-1.5-flash agent with LCoW achieves state-of-the-art results on the WebShop benchmark, outperforming human experts. The relevant code materials are available at our project page: https://lcowiclr2025.github.io.
comment: Accepted to ICLR 2025
♻ ☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself-a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following, mathematics, and coding benchmarks show that pretrained models can be effectively improved with self-play alone.
♻ ☆ Native Parallel Reasoner: Reasoning in Parallelism via Self-Distilled Reinforcement Learning
We introduce Native Parallel Reasoner (NPR), a teacher-free framework that enables Large Language Models (LLMs) to self-evolve genuine parallel reasoning capabilities. NPR transforms the model from sequential emulation to native parallel cognition through three key innovations: 1) a self-distilled progressive training paradigm that transitions from ``cold-start'' format discovery to strict topological constraints without external supervision; 2) a novel Parallel-Aware Policy Optimization (PAPO) algorithm that optimizes branching policies directly within the execution graph, allowing the model to learn adaptive decomposition via trial and error; and 3) a robust NPR Engine that refactors memory management and flow control of SGLang to enable stable, large-scale parallel RL training. Across eight reasoning benchmarks, NPR trained on Qwen3-4B achieves performance gains of up to 24.5% and inference speedups up to 4.6x. Unlike prior baselines that often fall back to autoregressive decoding, NPR demonstrates 100% genuine parallel execution, establishing a new standard for self-evolving, efficient, and scalable agentic reasoning.
♻ ☆ LLMs Do Not See Age: Assessing Demographic Bias in Automated Systematic Review Synthesis AACL 2025
Clinical interventions often hinge on age: medications and procedures safe for adults may be harmful to children or ineffective for older adults. However, as language models are increasingly integrated into biomedical evidence synthesis workflows, it remains uncertain whether these systems preserve such crucial demographic distinctions. To address this gap, we evaluate how well state-of-the-art language models retain age-related information when generating abstractive summaries of biomedical studies. We construct DemogSummary, a novel age-stratified dataset of systematic review primary studies, covering child, adult, and older adult populations. We evaluate three prominent summarisation-capable LLMs, Qwen (open-source), Longformer (open-source) and GPT-4.1 Nano (proprietary), using both standard metrics and a newly proposed Demographic Salience Score (DSS), which quantifies age-related entity retention and hallucination. Our results reveal systematic disparities across models and age groups: demographic fidelity is lowest for adult-focused summaries, and under-represented populations are more prone to hallucinations. These findings highlight the limitations of current LLMs in faithful and bias-free summarisation and point to the need for fairness-aware evaluation frameworks and summarisation pipelines in biomedical NLP.
comment: Accepted at AACL 2025 Version 2 Updated with Final version
♻ ☆ Strategic Planning and Rationalizing on Trees Make LLMs Better Debaters
Winning competitive debates requires sophisticated reasoning and argument skills. There are unique challenges in the competitive debate: (1) The time constraints force debaters to make strategic choices about which points to pursue rather than covering all possible arguments; (2) The persuasiveness of the debate relies on the back-and-forth interaction between arguments, which a single final game status cannot evaluate. To address these challenges, we propose TreeDebater, a novel debate framework that excels in competitive debate. We introduce two tree structures: the Rehearsal Tree and Debate Flow Tree. The Rehearsal Tree anticipates the attack and defenses to evaluate the strength of the claim, while the Debate Flow Tree tracks the debate status to identify the active actions. TreeDebater allocates its time budget among candidate actions and uses the speech time controller and feedback from the simulated audience to revise its statement. The human evaluation on both the stage-level and the debate-level comparison shows that our TreeDebater outperforms the state-of-the-art multi-agent debate system, with a +15.6% improvement in stage-level persuasiveness with DeepSeek and +10% debate-level opinion shift win. Further investigation shows that TreeDebater shows better strategies in limiting time to important debate actions, aligning with the strategies of human debate experts.
comment: 9 main pages
♻ ☆ Quantifying the Impact of Structured Output Format on Large Language Models through Causal Inference
Structured output from large language models (LLMs) has enhanced efficiency in processing generated information and is increasingly adopted in industrial applications. Prior studies have investigated the impact of structured output on LLMs' generation quality, often presenting one-way findings. Some suggest that structured format enhances completeness and factual accuracy, while others argue that it restricts the reasoning capacity of LLMs and leads to reductions in standard evaluation metrics. Potential limitations of these assessments include restricted testing scenarios, weakly controlled comparative settings, and reliance on coarse metrics. In this work, we present a refined analysis using causal inference. Based on one assumed and two guaranteed constraints, we derive five potential causal structures characterizing the influence of structured output on LLMs' generation: (1) collider without m-bias, (2) collider with m-bias, (3) single cause from instruction, (4) single cause from output format, and (5) independence. Across seven public and one developed reasoning tasks, we find that coarse metrics report positive, negative, or neutral effects of structured output on GPT-4o's generation. However, causal inference reveals no causal impact in 43 out of 48 scenarios. In the remaining 5, 3 involve multifaceted causal structures influenced by concrete instructions. Further experiments show that OpenAI-o3 are more resilient to output formats than general-purpose GPT-4o and GPT-4.1, highlighting an unaware advantage of reasoning models.
♻ ☆ WebATLAS: An LLM Agent with Experience-Driven Memory and Action Simulation NeurIPS 2025
Large Language Model (LLM) web agents often struggle with long-horizon web navigation and web task completion in new websites, producing inefficient action sequences unless fine-tuned on environment-specific data. We show that experience-driven memory, combined with look-ahead action simulation, is sufficient for LLM agents to adapt to unseen web environments by remembering past failures and predicting the consequences of future actions. We introduce WebATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented LLM web agent that learns a lightweight internal model of the environment from interaction experience and performs hypothetical action rollouts before acting in the real world. WebATLAS builds a persistent cognitive map via curiosity-driven exploration, stores interaction outcomes as experience-based memory, and evaluates candidate actions in cognitive space using a planner--simulator--critic loop. This enables the agent to reuse past experience, avoid previously unsuccessful behaviors, and generate more efficient plans. We evaluate WebATLAS on the WebArena-Lite benchmark for autonomous web navigation and demonstrate a success rate of 63%, outperforming the previous state-of-the-art at 53.9%. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablation studies confirm that experience-driven memory, look-ahead action simulation, and hierarchical replanning play complementary roles in enabling robust, training-free web agents.
comment: 9 pages, NeurIPS 2025 Workshop on Language Agents and World Models
♻ ☆ RAID: Refusal-Aware and Integrated Decoding for Jailbreaking LLMs
Large language models (LLMs) achieve impressive performance across diverse tasks yet remain vulnerable to jailbreak attacks that bypass safety mechanisms. We present RAID (Refusal-Aware and Integrated Decoding), a framework that systematically probes these weaknesses by crafting adversarial suffixes that induce restricted content while preserving fluency. RAID relaxes discrete tokens into continuous embeddings and optimizes them with a joint objective that (i) encourages restricted responses, (ii) incorporates a refusal-aware regularizer to steer activations away from refusal directions in embedding space, and (iii) applies a coherence term to maintain semantic plausibility and non-redundancy. After optimization, a critic-guided decoding procedure maps embeddings back to tokens by balancing embedding affinity with language-model likelihood. This integration yields suffixes that are both effective in bypassing defenses and natural in form. Experiments on multiple open-source LLMs show that RAID achieves higher attack success rates with fewer queries and lower computational cost than recent white-box and black-box baselines. These findings highlight the importance of embedding-space regularization for understanding and mitigating LLM jailbreak vulnerabilities.
♻ ☆ Multimodal Cultural Safety: Evaluation Framework and Alignment Strategies
Large vision-language models (LVLMs) are increasingly deployed in globally distributed applications, such as tourism assistants, yet their ability to produce culturally appropriate responses remains underexplored. Existing multimodal safety benchmarks primarily focus on physical safety and overlook violations rooted in cultural norms, which can result in symbolic harm. To address this gap, we introduce CROSS, a benchmark designed to assess the cultural safety reasoning capabilities of LVLMs. CROSS includes 1,284 multilingual visually grounded queries from 16 countries, three everyday domains, and 14 languages, where cultural norm violations emerge only when images are interpreted in context. We propose CROSS-Eval, an intercultural theory-based framework that measures four key dimensions: cultural awareness, norm education, compliance, and helpfulness. Using this framework, we evaluate 21 leading LVLMs, including mixture-of-experts models and reasoning models. Results reveal significant cultural safety gaps: the best-performing model achieves only 61.79% in awareness and 37.73% in compliance. While some open-source models reach GPT-4o-level performance, they still fall notably short of proprietary models. Our results further show that increasing reasoning capacity improves cultural alignment but does not fully resolve the issue. To improve model performance, we develop two enhancement strategies: supervised fine-tuning with culturally grounded, open-ended data and preference tuning with contrastive response pairs that highlight safe versus unsafe behaviors. These methods substantially improve GPT-4o's cultural awareness (+60.14%) and compliance (+55.2%), while preserving general multimodal capabilities with minimal performance reduction on general multimodal understanding benchmarks.
♻ ☆ Reliable Decision Support with LLMs: A Framework for Evaluating Consistency in Binary Text Classification Applications
This study introduces a framework for evaluating consistency in large language model (LLM) binary text classification, addressing the lack of established reliability assessment methods. Adapting psychometric principles, we determine sample size requirements, develop metrics for invalid responses, and evaluate intra- and inter-rater reliability. Our case study examines financial news sentiment classification across 14 LLMs (including claude-3-7-sonnet, gpt-4o, deepseek-r1, gemma3, llama3.2, phi4, and command-r-plus), with five replicates per model on 1,350 articles. Models demonstrated high intra-rater consistency, achieving perfect agreement on 90-98% of examples, with minimal differences between expensive and economical models from the same families. When validated against StockNewsAPI labels, models achieved strong performance (accuracy 0.76-0.88), with smaller models like gemma3:1B, llama3.2:3B, and claude-3-5-haiku outperforming larger counterparts. All models performed at chance when predicting actual market movements, indicating task constraints rather than model limitations. Our framework provides systematic guidance for LLM selection, sample size planning, and reliability assessment, enabling organizations to optimize resources for classification tasks.
comment: 26 pages
Computer Vision and Pattern Recognition 150
☆ Both Semantics and Reconstruction Matter: Making Representation Encoders Ready for Text-to-Image Generation and Editing
Modern Latent Diffusion Models (LDMs) typically operate in low-level Variational Autoencoder (VAE) latent spaces that are primarily optimized for pixel-level reconstruction. To unify vision generation and understanding, a burgeoning trend is to adopt high-dimensional features from representation encoders as generative latents. However, we empirically identify two fundamental obstacles in this paradigm: (1) the discriminative feature space lacks compact regularization, making diffusion models prone to off-manifold latents that lead to inaccurate object structures; and (2) the encoder's inherently weak pixel-level reconstruction hinders the generator from learning accurate fine-grained geometry and texture. In this paper, we propose a systematic framework to adapt understanding-oriented encoder features for generative tasks. We introduce a semantic-pixel reconstruction objective to regularize the latent space, enabling the compression of both semantic information and fine-grained details into a highly compact representation (96 channels with 16x16 spatial downsampling). This design ensures that the latent space remains semantically rich and achieves state-of-the-art image reconstruction, while remaining compact enough for accurate generation. Leveraging this representation, we design a unified Text-to-Image (T2I) and image editing model. Benchmarking against various feature spaces, we demonstrate that our approach achieves state-of-the-art reconstruction, faster convergence, and substantial performance gains in both T2I and editing tasks, validating that representation encoders can be effectively adapted into robust generative components.
comment: Project Page: https://jshilong.github.io/PS-VAE-PAGE/
☆ Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Monocular depth estimation remains challenging as recent foundation models, such as Depth Anything V2 (DA-V2), struggle with real-world images that are far from the training distribution. We introduce Re-Depth Anything, a test-time self-supervision framework that bridges this domain gap by fusing DA-V2 with the powerful priors of large-scale 2D diffusion models. Our method performs label-free refinement directly on the input image by re-lighting predicted depth maps and augmenting the input. This re-synthesis method replaces classical photometric reconstruction by leveraging shape from shading (SfS) cues in a new, generative context with Score Distillation Sampling (SDS). To prevent optimization collapse, our framework employs a targeted optimization strategy: rather than optimizing depth directly or fine-tuning the full model, we freeze the encoder and only update intermediate embeddings while also fine-tuning the decoder. Across diverse benchmarks, Re-Depth Anything yields substantial gains in depth accuracy and realism over the DA-V2, showcasing new avenues for self-supervision by augmenting geometric reasoning.
☆ Dexterous World Models
Recent progress in 3D reconstruction has made it easy to create realistic digital twins from everyday environments. However, current digital twins remain largely static and are limited to navigation and view synthesis without embodied interactivity. To bridge this gap, we introduce Dexterous World Model (DWM), a scene-action-conditioned video diffusion framework that models how dexterous human actions induce dynamic changes in static 3D scenes. Given a static 3D scene rendering and an egocentric hand motion sequence, DWM generates temporally coherent videos depicting plausible human-scene interactions. Our approach conditions video generation on (1) static scene renderings following a specified camera trajectory to ensure spatial consistency, and (2) egocentric hand mesh renderings that encode both geometry and motion cues to model action-conditioned dynamics directly. To train DWM, we construct a hybrid interaction video dataset. Synthetic egocentric interactions provide fully aligned supervision for joint locomotion and manipulation learning, while fixed-camera real-world videos contribute diverse and realistic object dynamics. Experiments demonstrate that DWM enables realistic and physically plausible interactions, such as grasping, opening, and moving objects, while maintaining camera and scene consistency. This framework represents a first step toward video diffusion-based interactive digital twins and enables embodied simulation from egocentric actions.
comment: Project Page: snuvclab.github.io/dwm
☆ Adversarial Robustness of Vision in Open Foundation Models
With the increase in deep learning, it becomes increasingly difficult to understand the model in which AI systems can identify objects. Thus, an adversary could aim to modify an image by adding unseen elements, which will confuse the AI in its recognition of an entity. This paper thus investigates the adversarial robustness of LLaVA-1.5-13B and Meta's Llama 3.2 Vision-8B-2. These are tested for untargeted PGD (Projected Gradient Descent) against the visual input modality, and empirically evaluated on the Visual Question Answering (VQA) v2 dataset subset. The results of these adversarial attacks are then quantified using the standard VQA accuracy metric. This evaluation is then compared with the accuracy degradation (accuracy drop) of LLaVA and Llama 3.2 Vision. A key finding is that Llama 3.2 Vision, despite a lower baseline accuracy in this setup, exhibited a smaller drop in performance under attack compared to LLaVA, particularly at higher perturbation levels. Overall, the findings confirm that the vision modality represents a viable attack vector for degrading the performance of contemporary open-weight VLMs, including Meta's Llama 3.2 Vision. Furthermore, they highlight that adversarial robustness does not necessarily correlate directly with standard benchmark performance and may be influenced by underlying architectural and training factors.
☆ Diffusion Forcing for Multi-Agent Interaction Sequence Modeling
Understanding and generating multi-person interactions is a fundamental challenge with broad implications for robotics and social computing. While humans naturally coordinate in groups, modeling such interactions remains difficult due to long temporal horizons, strong inter-agent dependencies, and variable group sizes. Existing motion generation methods are largely task-specific and do not generalize to flexible multi-agent generation. We introduce MAGNet (Multi-Agent Diffusion Forcing Transformer), a unified autoregressive diffusion framework for multi-agent motion generation that supports a wide range of interaction tasks through flexible conditioning and sampling. MAGNet performs dyadic prediction, partner inpainting, and full multi-agent motion generation within a single model, and can autoregressively generate ultra-long sequences spanning hundreds of v. Building on Diffusion Forcing, we introduce key modifications that explicitly model inter-agent coupling during autoregressive denoising, enabling coherent coordination across agents. As a result, MAGNet captures both tightly synchronized activities (e.g, dancing, boxing) and loosely structured social interactions. Our approach performs on par with specialized methods on dyadic benchmarks while naturally extending to polyadic scenarios involving three or more interacting people, enabled by a scalable architecture that is agnostic to the number of agents. We refer readers to the supplemental video, where the temporal dynamics and spatial coordination of generated interactions are best appreciated. Project page: https://von31.github.io/MAGNet/
☆ RadarGen: Automotive Radar Point Cloud Generation from Cameras
We present RadarGen, a diffusion model for synthesizing realistic automotive radar point clouds from multi-view camera imagery. RadarGen adapts efficient image-latent diffusion to the radar domain by representing radar measurements in bird's-eye-view form that encodes spatial structure together with radar cross section (RCS) and Doppler attributes. A lightweight recovery step reconstructs point clouds from the generated maps. To better align generation with the visual scene, RadarGen incorporates BEV-aligned depth, semantic, and motion cues extracted from pretrained foundation models, which guide the stochastic generation process toward physically plausible radar patterns. Conditioning on images makes the approach broadly compatible, in principle, with existing visual datasets and simulation frameworks, offering a scalable direction for multimodal generative simulation. Evaluations on large-scale driving data show that RadarGen captures characteristic radar measurement distributions and reduces the gap to perception models trained on real data, marking a step toward unified generative simulation across sensing modalities.
comment: Project page: https://radargen.github.io/
☆ Keypoint Counting Classifiers: Turning Vision Transformers into Self-Explainable Models Without Training
Current approaches for designing self-explainable models (SEMs) require complicated training procedures and specific architectures which makes them impractical. With the advance of general purpose foundation models based on Vision Transformers (ViTs), this impracticability becomes even more problematic. Therefore, new methods are necessary to provide transparency and reliability to ViT-based foundation models. In this work, we present a new method for turning any well-trained ViT-based model into a SEM without retraining, which we call Keypoint Counting Classifiers (KCCs). Recent works have shown that ViTs can automatically identify matching keypoints between images with high precision, and we build on these results to create an easily interpretable decision process that is inherently visualizable in the input. We perform an extensive evaluation which show that KCCs improve the human-machine communication compared to recent baselines. We believe that KCCs constitute an important step towards making ViT-based foundation models more transparent and reliable.
☆ Visually Prompted Benchmarks Are Surprisingly Fragile
A key challenge in evaluating VLMs is testing models' ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. VPBench and additional analysis tools are released at https://lisadunlap.github.io/vpbench/.
☆ InSPECT: Invariant Spectral Features Preservation of Diffusion Models
Modern diffusion models (DMs) have achieved state-of-the-art image generation. However, the fundamental design choice of diffusing data all the way to white noise and then reconstructing it leads to an extremely difficult and computationally intractable prediction task. To overcome this limitation, we propose InSPECT (Invariant Spectral Feature-Preserving Diffusion Model), a novel diffusion model that keeps invariant spectral features during both the forward and backward processes. At the end of the forward process, the Fourier coefficients smoothly converge to a specified random noise, enabling features preservation while maintaining diversity and randomness. By preserving invariant features, InSPECT demonstrates enhanced visual diversity, faster convergence rate, and a smoother diffusion process. Experiments on CIFAR-10, Celeb-A, and LSUN demonstrate that InSPECT achieves on average a 39.23% reduction in FID and 45.80% improvement in IS against DDPM for 10K iterations under specified parameter settings, which demonstrates the significant advantages of preserving invariant features: achieving superior generation quality and diversity, while enhancing computational efficiency and enabling faster convergence rate. To the best of our knowledge, this is the first attempt to analyze and preserve invariant spectral features in diffusion models.
☆ Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN
Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://github.com/BS0111/PlantAttentionCBAM.
comment: 27 pages, 12 figures
☆ Simulation-Driven Deep Learning Framework for Raman Spectral Denoising Under Fluorescence-Dominant Conditions
Raman spectroscopy enables non-destructive, label-free molecular analysis with high specificity, making it a powerful tool for biomedical diagnostics. However, its application to biological tissues is challenged by inherently weak Raman scattering and strong fluorescence background, which significantly degrade signal quality. In this study, we present a simulation-driven denoising framework that combines a statistically grounded noise model with deep learning to enhance Raman spectra acquired under fluorescence-dominated conditions. We comprehensively modeled major noise sources. Based on this model, we generated biologically realistic Raman spectra and used them to train a cascaded deep neural network designed to jointly suppress stochastic detector noise and fluorescence baseline interference. To evaluate the performance of our approach, we simulated human skin spectra derived from real experimental data as a validation case study. Our results demonstrate the potential of physics-informed learning to improve spectral quality and enable faster, more accurate Raman-based tissue analysis.
☆ InfSplign: Inference-Time Spatial Alignment of Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models generate high-quality images but often fail to capture the spatial relations specified in text prompts. This limitation can be traced to two factors: lack of fine-grained spatial supervision in training data and inability of text embeddings to encode spatial semantics. We introduce InfSplign, a training-free inference-time method that improves spatial alignment by adjusting the noise through a compound loss in every denoising step. Proposed loss leverages different levels of cross-attention maps extracted from the backbone decoder to enforce accurate object placement and a balanced object presence during sampling. The method is lightweight, plug-and-play, and compatible with any diffusion backbone. Our comprehensive evaluations on VISOR and T2I-CompBench show that InfSplign establishes a new state-of-the-art (to the best of our knowledge), achieving substantial performance gains over the strongest existing inference-time baselines and even outperforming the fine-tuning-based methods. Codebase is available at GitHub.
☆ ReX-MLE: The Autonomous Agent Benchmark for Medical Imaging Challenges
Autonomous coding agents built on large language models (LLMs) can now solve many general software and machine learning tasks, but they remain ineffective on complex, domain-specific scientific problems. Medical imaging is a particularly demanding domain, requiring long training cycles, high-dimensional data handling, and specialized preprocessing and validation pipelines, capabilities not fully measured in existing agent benchmarks. To address this gap, we introduce ReX-MLE, a benchmark of 20 challenges derived from high-impact medical imaging competitions spanning diverse modalities and task types. Unlike prior ML-agent benchmarks, ReX-MLE evaluates full end-to-end workflows, requiring agents to independently manage data preprocessing, model training, and submission under realistic compute and time constraints. Evaluating state-of-the-art agents (AIDE, ML-Master, R&D-Agent) with different LLM backends (GPT-5, Gemini, Claude), we observe a severe performance gap: most submissions rank in the 0th percentile compared to human experts. Failures stem from domain-knowledge and engineering limitations. ReX-MLE exposes these bottlenecks and provides a foundation for developing domain-aware autonomous AI systems.
comment: https://github.com/rajpurkarlab/ReX-MLE
☆ Chorus: Multi-Teacher Pretraining for Holistic 3D Gaussian Scene Encoding
While 3DGS has emerged as a high-fidelity scene representation, encoding rich, general-purpose features directly from its primitives remains under-explored. We address this gap by introducing Chorus, a multi-teacher pretraining framework that learns a holistic feed-forward 3D Gaussian Splatting (3DGS) scene encoder by distilling complementary signals from 2D foundation models. Chorus employs a shared 3D encoder and teacher-specific projectors to learn from language-aligned, generalist, and object-aware teachers, encouraging a shared embedding space that captures signals from high-level semantics to fine-grained structure. We evaluate Chorus on a wide range of tasks: open-vocabulary semantic and instance segmentation, linear and decoder probing, as well as data-efficient supervision. Besides 3DGS, we also test Chorus on several benchmarks that only support point clouds by pretraining a variant using only Gaussians' centers, colors, estimated normals as inputs. Interestingly, this encoder shows strong transfer and outperforms the point clouds baseline while using 39.9 times fewer training scenes. Finally, we propose a render-and-distill adaptation that facilitates out-of-domain finetuning. Our code and model will be released upon publication.
☆ Long-Range depth estimation using learning based Hybrid Distortion Model for CCTV cameras
Accurate camera models are essential for photogrammetry applications such as 3D mapping and object localization, particularly for long distances. Various stereo-camera based 3D localization methods are available but are limited to few hundreds of meters' range. This is majorly due to the limitation of the distortion models assumed for the non-linearities present in the camera lens. This paper presents a framework for modeling a suitable distortion model that can be used for localizing the objects at longer distances. It is well known that neural networks can be a better alternative to model a highly complex non-linear lens distortion function; on contrary, it is observed that a direct application of neural networks to distortion models fails to converge to estimate the camera parameters. To resolve this, a hybrid approach is presented in this paper where the conventional distortion models are initially extended to incorporate higher-order terms and then enhanced using neural network based residual correction model. This hybrid approach has substantially improved long-range localization performance and is capable of estimating the 3D position of objects at distances up to 5 kilometres. The estimated 3D coordinates are transformed to GIS coordinates and are plotted on a GIS map for visualization. Experimental validation demonstrates the robustness and effectiveness of proposed framework, offering a practical solution to calibrate CCTV cameras for long-range photogrammetry applications.
☆ UrbanDIFF: A Denoising Diffusion Model for Spatial Gap Filling of Urban Land Surface Temperature Under Dense Cloud Cover
Satellite-derived Land Surface Temperature (LST) products are central to surface urban heat island (SUHI) monitoring due to their consistent grid-based coverage over large metropolitan regions. However, cloud contamination frequently obscures LST observations, limiting their usability for continuous SUHI analysis. Most existing LST reconstruction methods rely on multitemporal information or multisensor data fusion, requiring auxiliary observations that may be unavailable or unreliable under persistent cloud cover. Purely spatial gap-filling approaches offer an alternative, but traditional statistical methods degrade under large or spatially contiguous gaps, while many deep learning based spatial models deteriorate rapidly with increasing missingness. Recent advances in denoising diffusion based image inpainting models have demonstrated improved robustness under high missingness, motivating their adoption for spatial LST reconstruction. In this work, we introduce UrbanDIFF, a purely spatial denoising diffusion model for reconstructing cloud contaminated urban LST imagery. The model is conditioned on static urban structure information, including built-up surface data and a digital elevation model, and enforces strict consistency with revealed cloud free pixels through a supervised pixel guided refinement step during inference. UrbanDIFF is trained and evaluated using NASA MODIS Terra LST data from seven major United States metropolitan areas spanning 2002 to 2025. Experiments using synthetic cloud masks with 20 to 85 percent coverage show that UrbanDIFF consistently outperforms an interpolation baseline, particularly under dense cloud occlusion, achieving SSIM of 0.89, RMSE of 1.2 K, and R2 of 0.84 at 85 percent cloud coverage, while exhibiting slower performance degradation as cloud density increases.
☆ LiteGE: Lightweight Geodesic Embedding for Efficient Geodesics Computation and Non-Isometric Shape Correspondence
Computing geodesic distances on 3D surfaces is fundamental to many tasks in 3D vision and geometry processing, with deep connections to tasks such as shape correspondence. Recent learning-based methods achieve strong performance but rely on large 3D backbones, leading to high memory usage and latency, which limit their use in interactive or resource-constrained settings. We introduce LiteGE, a lightweight approach that constructs compact, category-aware shape descriptors by applying PCA to unsigned distance field (UDFs) samples at informative voxels. This descriptor is efficient to compute and removes the need for high-capacity networks. LiteGE remains robust on sparse point clouds, supporting inputs with as few as 300 points, where prior methods fail. Extensive experiments show that LiteGE reduces memory usage and inference time by up to 300$\times$ compared to existing neural approaches. In addition, by exploiting the intrinsic relationship between geodesic distance and shape correspondence, LiteGE enables fast and accurate shape matching. Our method achieves up to 1000$\times$ speedup over state-of-the-art mesh-based approaches while maintaining comparable accuracy on non-isometric shape pairs, including evaluations on point-cloud inputs.
☆ MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation
Large-scale supervised pretraining is rapidly reshaping 3D medical image segmentation. However, existing efforts focus primarily on increasing dataset size and overlook the question of whether the backbone network is an effective representation learner at scale. In this work, we address this gap by revisiting ConvNeXt-based architectures for volumetric segmentation and introducing MedNeXt-v2, a compound-scaled 3D ConvNeXt that leverages improved micro-architecture and data scaling to deliver state-of-the-art performance. First, we show that routinely used backbones in large-scale pretraining pipelines are often suboptimal. Subsequently, we use comprehensive backbone benchmarking prior to scaling and demonstrate that stronger from scratch performance reliably predicts stronger downstream performance after pretraining. Guided by these findings, we incorporate a 3D Global Response Normalization module and use depth, width, and context scaling to improve our architecture for effective representation learning. We pretrain MedNeXt-v2 on 18k CT volumes and demonstrate state-of-the-art performance when fine-tuning across six challenging CT and MR benchmarks (144 structures), showing consistent gains over seven publicly released pretrained models. Beyond improvements, our benchmarking of these models also reveals that stronger backbones yield better results on similar data, representation scaling disproportionately benefits pathological segmentation, and that modality-specific pretraining offers negligible benefit once full finetuning is applied. In conclusion, our results establish MedNeXt-v2 as a strong backbone for large-scale supervised representation learning in 3D Medical Image Segmentation. Our code and pretrained models are made available with the official nnUNet repository at: https://www.github.com/MIC-DKFZ/nnUNet
☆ Pix2NPHM: Learning to Regress NPHM Reconstructions From a Single Image
Neural Parametric Head Models (NPHMs) are a recent advancement over mesh-based 3d morphable models (3DMMs) to facilitate high-fidelity geometric detail. However, fitting NPHMs to visual inputs is notoriously challenging due to the expressive nature of their underlying latent space. To this end, we propose Pix2NPHM, a vision transformer (ViT) network that directly regresses NPHM parameters, given a single image as input. Compared to existing approaches, the neural parametric space allows our method to reconstruct more recognizable facial geometry and accurate facial expressions. For broad generalization, we exploit domain-specific ViTs as backbones, which are pretrained on geometric prediction tasks. We train Pix2NPHM on a mixture of 3D data, including a total of over 100K NPHM registrations that enable direct supervision in SDF space, and large-scale 2D video datasets, for which normal estimates serve as pseudo ground truth geometry. Pix2NPHM not only allows for 3D reconstructions at interactive frame rates, it is also possible to improve geometric fidelity by a subsequent inference-time optimization against estimated surface normals and canonical point maps. As a result, we achieve unprecedented face reconstruction quality that can run at scale on in-the-wild data.
comment: Project website: https://simongiebenhain.github.io/Pix2NPHM/ , Video: https://www.youtube.com/watch?v=MgpEJC5p1Ts
☆ Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal MRI and Clinical Data
Aim: This study investigates treatment response prediction to neoadjuvant chemotherapy (NACT) in breast cancer patients, using longitudinal contrast-enhanced magnetic resonance images (CE-MRI) and clinical data. The goal is to develop machine learning (ML) models to predict pathologic complete response (PCR binary classification) and 5-year relapse-free survival status (RFS binary classification). Method: The proposed framework includes tumour segmentation, image registration, feature extraction, and predictive modelling. Using the image registration method, MRI image features can be extracted and compared from the original tumour site at different time points, therefore monitoring the intratumor changes during NACT process. Four feature extractors, including one radiomics and three deep learning-based (MedicalNet, Segformer3D, SAM-Med3D) were implemented and compared. In combination with three feature selection methods and four ML models, predictive models are built and compared. Results: The proposed image registration-based feature extraction consistently improves the predictive models. In the PCR and RFS classification tasks logistic regression model trained on radiomic features performed the best with an AUC of 0.88 and classification accuracy of 0.85 for PCR classification, and AUC of 0.78 and classification accuracy of 0.72 for RFS classification. Conclusions: It is evidenced that the image registration method has significantly improved performance in longitudinal feature learning in predicting PCR and RFS. The radiomics feature extractor is more effective than the pre-trained deep learning feature extractors, with higher performance and better interpretability.
☆ AdaptPrompt: Parameter-Efficient Adaptation of VLMs for Generalizable Deepfake Detection
Recent advances in image generation have led to the widespread availability of highly realistic synthetic media, increasing the difficulty of reliable deepfake detection. A key challenge is generalization, as detectors trained on a narrow class of generators often fail when confronted with unseen models. In this work, we address the pressing need for generalizable detection by leveraging large vision-language models, specifically CLIP, to identify synthetic content across diverse generative techniques. First, we introduce Diff-Gen, a large-scale benchmark dataset comprising 100k diffusion-generated fakes that capture broad spectral artifacts unlike traditional GAN datasets. Models trained on Diff-Gen demonstrate stronger cross-domain generalization, particularly on previously unseen image generators. Second, we propose AdaptPrompt, a parameter-efficient transfer learning framework that jointly learns task-specific textual prompts and visual adapters while keeping the CLIP backbone frozen. We further show via layer ablation that pruning the final transformer block of the vision encoder enhances the retention of high-frequency generative artifacts, significantly boosting detection accuracy. Our evaluation spans 25 challenging test sets, covering synthetic content generated by GANs, diffusion models, and commercial tools, establishing a new state-of-the-art in both standard and cross-domain scenarios. We further demonstrate the framework's versatility through few-shot generalization (using as few as 320 images) and source attribution, enabling the precise identification of generator architectures in closed-set settings.
comment: Under Review
☆ MambaMIL+: Modeling Long-Term Contextual Patterns for Gigapixel Whole Slide Image
Whole-slide images (WSIs) are an important data modality in computational pathology, yet their gigapixel resolution and lack of fine-grained annotations challenge conventional deep learning models. Multiple instance learning (MIL) offers a solution by treating each WSI as a bag of patch-level instances, but effectively modeling ultra-long sequences with rich spatial context remains difficult. Recently, Mamba has emerged as a promising alternative for long sequence learning, scaling linearly to thousands of tokens. However, despite its efficiency, it still suffers from limited spatial context modeling and memory decay, constraining its effectiveness to WSI analysis. To address these limitations, we propose MambaMIL+, a new MIL framework that explicitly integrates spatial context while maintaining long-range dependency modeling without memory forgetting. Specifically, MambaMIL+ introduces 1) overlapping scanning, which restructures the patch sequence to embed spatial continuity and instance correlations; 2) a selective stripe position encoder (S2PE) that encodes positional information while mitigating the biases of fixed scanning orders; and 3) a contextual token selection (CTS) mechanism, which leverages supervisory knowledge to dynamically enlarge the contextual memory for stable long-range modeling. Extensive experiments on 20 benchmarks across diagnostic classification, molecular prediction, and survival analysis demonstrate that MambaMIL+ consistently achieves state-of-the-art performance under three feature extractors (ResNet-50, PLIP, and CONCH), highlighting its effectiveness and robustness for large-scale computational pathology
comment: 18 pages, 11 figures, 10 tables
☆ SAVeD: A First-Person Social Media Video Dataset for ADAS-equipped vehicle Near-Miss and Crash Event Analyses
The advancement of safety-critical research in driving behavior in ADAS-equipped vehicles require real-world datasets that not only include diverse traffic scenarios but also capture high-risk edge cases such as near-miss events and system failures. However, existing datasets are largely limited to either simulated environments or human-driven vehicle data, lacking authentic ADAS (Advanced Driver Assistance System) vehicle behavior under risk conditions. To address this gap, this paper introduces SAVeD, a large-scale video dataset curated from publicly available social media content, explicitly focused on ADAS vehicle-related crashes, near-miss incidents, and disengagements. SAVeD features 2,119 first-person videos, capturing ADAS vehicle operations in diverse locations, lighting conditions, and weather scenarios. The dataset includes video frame-level annotations for collisions, evasive maneuvers, and disengagements, enabling analysis of both perception and decision-making failures. We demonstrate SAVeD's utility through multiple analyses and contributions: (1) We propose a novel framework integrating semantic segmentation and monocular depth estimation to compute real-time Time-to-Collision (TTC) for dynamic objects. (2) We utilize the Generalized Extreme Value (GEV) distribution to model and quantify the extreme risk in crash and near-miss events across different roadway types. (3) We establish benchmarks for state-of-the-art VLLMs (VideoLLaMA2 and InternVL2.5 HiCo R16), showing that SAVeD's detailed annotations significantly enhance model performance through domain adaptation in complex near-miss scenarios.
☆ FlexAvatar: Flexible Large Reconstruction Model for Animatable Gaussian Head Avatars with Detailed Deformation
We present FlexAvatar, a flexible large reconstruction model for high-fidelity 3D head avatars with detailed dynamic deformation from single or sparse images, without requiring camera poses or expression labels. It leverages a transformer-based reconstruction model with structured head query tokens as canonical anchor to aggregate flexible input-number-agnostic, camera-pose-free and expression-free inputs into a robust canonical 3D representation. For detailed dynamic deformation, we introduce a lightweight UNet decoder conditioned on UV-space position maps, which can produce detailed expression-dependent deformations in real time. To better capture rare but critical expressions like wrinkles and bared teeth, we also adopt a data distribution adjustment strategy during training to balance the distribution of these expressions in the training set. Moreover, a lightweight 10-second refinement can further enhances identity-specific details in extreme identities without affecting deformation quality. Extensive experiments demonstrate that our FlexAvatar achieves superior 3D consistency, detailed dynamic realism compared with previous methods, providing a practical solution for animatable 3D avatar creation.
comment: Project page: https://pengc02.github.io/flexavatar
☆ An Empirical Study of Sampling Hyperparameters in Diffusion-Based Super-Resolution
Diffusion models have shown strong potential for solving inverse problems such as single-image super-resolution, where a high-resolution image is recovered from a low-resolution observation using a pretrained unconditional prior. Conditioning methods, including Diffusion Posterior Sampling (DPS) and Manifold Constrained Gradient (MCG), can substantially improve reconstruction quality, but they introduce additional hyperparameters that require careful tuning. In this work, we conduct an empirical ablation study on FFHQ super-resolution to identify the dominant factors affecting performance when applying conditioning to pretrained diffusion models, and show that the conditioning step size has a significantly greater impact than the diffusion step count, with step sizes in the range of [2.0, 3.0] yielding the best overall performance in our experiments.
☆ Learning Spatio-Temporal Feature Representations for Video-Based Gaze Estimation
Video-based gaze estimation methods aim to capture the inherently temporal dynamics of human eye gaze from multiple image frames. However, since models must capture both spatial and temporal relationships, performance is limited by the feature representations within a frame but also between multiple frames. We propose the Spatio-Temporal Gaze Network (ST-Gaze), a model that combines a CNN backbone with dedicated channel attention and self-attention modules to fuse eye and face features optimally. The fused features are then treated as a spatial sequence, allowing for the capture of an intra-frame context, which is then propagated through time to model inter-frame dynamics. We evaluated our method on the EVE dataset and show that ST-Gaze achieves state-of-the-art performance both with and without person-specific adaptation. Additionally, our ablation study provides further insights into the model performance, showing that preserving and modelling intra-frame spatial context with our spatio-temporal recurrence is fundamentally superior to premature spatial pooling. As such, our results pave the way towards more robust video-based gaze estimation using commonly available cameras.
comment: 12 pages, 5 figures, the code repository is available at https://gitlab.kuleuven.be/u0172623/ST-Gaze
☆ Bitbox: Behavioral Imaging Toolbox for Computational Analysis of Behavior from Videos
Computational measurement of human behavior from video has recently become feasible due to major advances in AI. These advances now enable granular and precise quantification of facial expression, head movement, body action, and other behavioral modalities and are increasingly used in psychology, psychiatry, neuroscience, and mental health research. However, mainstream adoption remains slow. Most existing methods and software are developed for engineering audiences, require specialized software stacks, and fail to provide behavioral measurements at a level directly useful for hypothesis-driven research. As a result, there is a large barrier to entry for researchers who wish to use modern, AI-based tools in their work. We introduce Bitbox, an open-source toolkit designed to remove this barrier and make advanced computational analysis directly usable by behavioral scientists and clinical researchers. Bitbox is guided by principles of reproducibility, modularity, and interpretability. It provides a standardized interface for extracting high-level behavioral measurements from video, leveraging multiple face, head, and body processors. The core modules have been tested and validated on clinical samples and are designed so that new measures can be added with minimal effort. Bitbox is intended to serve both sides of the translational gap. It gives behavioral researchers access to robust, high-level behavioral metrics without requiring engineering expertise, and it provides computer scientists a practical mechanism for disseminating methods to domains where their impact is most needed. We expect that Bitbox will accelerate integration of computational behavioral measurement into behavioral, clinical, and mental health research. Bitbox has been designed from the beginning as a community-driven effort that will evolve through contributions from both method developers and domain scientists.
☆ Region-Constraint In-Context Generation for Instructional Video Editing
The In-context generation paradigm recently has demonstrated strong power in instructional image editing with both data efficiency and synthesis quality. Nevertheless, shaping such in-context learning for instruction-based video editing is not trivial. Without specifying editing regions, the results can suffer from the problem of inaccurate editing regions and the token interference between editing and non-editing areas during denoising. To address these, we present ReCo, a new instructional video editing paradigm that novelly delves into constraint modeling between editing and non-editing regions during in-context generation. Technically, ReCo width-wise concatenates source and target video for joint denoising. To calibrate video diffusion learning, ReCo capitalizes on two regularization terms, i.e., latent and attention regularization, conducting on one-step backward denoised latents and attention maps, respectively. The former increases the latent discrepancy of the editing region between source and target videos while reducing that of non-editing areas, emphasizing the modification on editing area and alleviating outside unexpected content generation. The latter suppresses the attention of tokens in the editing region to the tokens in counterpart of the source video, thereby mitigating their interference during novel object generation in target video. Furthermore, we propose a large-scale, high-quality video editing dataset, i.e., ReCo-Data, comprising 500K instruction-video pairs to benefit model training. Extensive experiments conducted on four major instruction-based video editing tasks demonstrate the superiority of our proposal.
comment: Project page: https://zhw-zhang.github.io/ReCo-page/
☆ Generative Human-Object Interaction Detection via Differentiable Cognitive Steering of Multi-modal LLMs
Human-object interaction (HOI) detection aims to localize human-object pairs and the interactions between them. Existing methods operate under a closed-world assumption, treating the task as a classification problem over a small, predefined verb set, which struggles to generalize to the long-tail of unseen or ambiguous interactions in the wild. While recent multi-modal large language models (MLLMs) possess the rich world knowledge required for open-vocabulary understanding, they remain decoupled from existing HOI detectors since fine-tuning them is computationally prohibitive. To address these constraints, we propose \GRASP-HO}, a novel Generative Reasoning And Steerable Perception framework that reformulates HOI detection from the closed-set classification task to the open-vocabulary generation problem. To bridge the vision and cognitive, we first extract hybrid interaction representations, then design a lightweight learnable cognitive steering conduit (CSC) module to inject the fine-grained visual evidence into a frozen MLLM for effective reasoning. To address the supervision mismatch between classification-based HOI datasets and open-vocabulary generative models, we introduce a hybrid guidance strategy that coupling the language modeling loss and auxiliary classification loss, enabling discriminative grounding without sacrificing generative flexibility. Experiments demonstrate state-of-the-art closed-set performance and strong zero-shot generalization, achieving a unified paradigm that seamlessly bridges discriminative perception and generative reasoning for open-world HOI detection.
☆ PathFLIP: Fine-grained Language-Image Pretraining for Versatile Computational Pathology
While Vision-Language Models (VLMs) have achieved notable progress in computational pathology (CPath), the gigapixel scale and spatial heterogeneity of Whole Slide Images (WSIs) continue to pose challenges for multimodal understanding. Existing alignment methods struggle to capture fine-grained correspondences between textual descriptions and visual cues across thousands of patches from a slide, compromising their performance on downstream tasks. In this paper, we propose PathFLIP (Pathology Fine-grained Language-Image Pretraining), a novel framework for holistic WSI interpretation. PathFLIP decomposes slide-level captions into region-level subcaptions and generates text-conditioned region embeddings to facilitate precise visual-language grounding. By harnessing Large Language Models (LLMs), PathFLIP can seamlessly follow diverse clinical instructions and adapt to varied diagnostic contexts. Furthermore, it exhibits versatile capabilities across multiple paradigms, efficiently handling slide-level classification and retrieval, fine-grained lesion localization, and instruction following. Extensive experiments demonstrate that PathFLIP outperforms existing large-scale pathological VLMs on four representative benchmarks while requiring significantly less training data, paving the way for fine-grained, instruction-aware WSI interpretation in clinical practice.
☆ StereoMV2D: A Sparse Temporal Stereo-Enhanced Framework for Robust Multi-View 3D Object Detection
Multi-view 3D object detection is a fundamental task in autonomous driving perception, where achieving a balance between detection accuracy and computational efficiency remains crucial. Sparse query-based 3D detectors efficiently aggregate object-relevant features from multi-view images through a set of learnable queries, offering a concise and end-to-end detection paradigm. Building on this foundation, MV2D leverages 2D detection results to provide high-quality object priors for query initialization, enabling higher precision and recall. However, the inherent depth ambiguity in single-frame 2D detections still limits the accuracy of 3D query generation. To address this issue, we propose StereoMV2D, a unified framework that integrates temporal stereo modeling into the 2D detection-guided multi-view 3D detector. By exploiting cross-temporal disparities of the same object across adjacent frames, StereoMV2D enhances depth perception and refines the query priors, while performing all computations efficiently within 2D regions of interest (RoIs). Furthermore, a dynamic confidence gating mechanism adaptively evaluates the reliability of temporal stereo cues through learning statistical patterns derived from the inter-frame matching matrix together with appearance consistency, ensuring robust detection under object appearance and occlusion. Extensive experiments on the nuScenes and Argoverse 2 datasets demonstrate that StereoMV2D achieves superior detection performance without incurring significant computational overhead. Code will be available at https://github.com/Uddd821/StereoMV2D.
comment: 12 pages, 4 figures. This work has been submitted to the IEEE for possible publication
Self-Supervised Weighted Image Guided Quantitative MRI Super-Resolution
High-resolution (HR) quantitative MRI (qMRI) relaxometry provides objective tissue characterization but remains clinically underutilized due to lengthy acquisition times. We propose a physics-informed, self-supervised framework for qMRI super-resolution that uses routinely acquired HR weighted MRI (wMRI) scans as guidance, thus, removing the necessity for HR qMRI ground truth during training. We formulate super-resolution as Bayesian maximum a posteriori inference, minimizing two discrepancies: (1) between HR images synthesized from super-resolved qMRI maps and acquired wMRI guides via forward signal models, and (2) between acquired LR qMRI and downsampled predictions. This physics-informed objective allows the models to learn from clinical wMRI without HR qMRI supervision. To validate the concept, we generate training data by synthesizing wMRI guides from HR qMRI using signal equations, then degrading qMRI resolution via k-space truncation. A deep neural network learns the super-resolution mapping. Ablation experiments demonstrate that T1-weighted images primarily enhance T1 maps, T2-weighted images improve T2 maps, and combined guidance optimally enhances all parameters simultaneously. Validation on independently acquired in-vivo data from a different qMRI sequence confirms cross-qMRI sequence generalizability. Models trained on synthetic data can produce super-resolved maps from a 1-minute acquisition with quality comparable to a 5-minute reference scan, leveraging the scanner-independent nature of relaxometry parameters. By decoupling training from HR qMRI requirement, our framework enables fast qMRI acquisitions enhanced via routine clinical images, offering a practical pathway for integrating quantitative relaxometry into clinical workflows with acceptable additional scan time.
comment: This work has been submitted to IEEE TMI for possible publication
☆ Semi-Supervised 3D Segmentation for Type-B Aortic Dissection with Slim UNETR
Convolutional neural networks (CNN) for multi-class segmentation of medical images are widely used today. Especially models with multiple outputs that can separately predict segmentation classes (regions) without relying on a probabilistic formulation of the segmentation of regions. These models allow for more precise segmentation by tailoring the network's components to each class (region). They have a common encoder part of the architecture but branch out at the output layers, leading to improved accuracy. These methods are used to diagnose type B aortic dissection (TBAD), which requires accurate segmentation of aortic structures based on the ImageTBDA dataset, which contains 100 3D computed tomography angiography (CTA) images. These images identify three key classes: true lumen (TL), false lumen (FL), and false lumen thrombus (FLT) of the aorta, which is critical for diagnosis and treatment decisions. In the dataset, 68 examples have a false lumen, while the remaining 32 do not, creating additional complexity for pathology detection. However, implementing these CNN methods requires a large amount of high-quality labeled data. Obtaining accurate labels for the regions of interest can be an expensive and time-consuming process, particularly for 3D data. Semi-supervised learning methods allow models to be trained by using both labeled and unlabeled data, which is a promising approach for overcoming the challenge of obtaining accurate labels. However, these learning methods are not well understood for models with multiple outputs. This paper presents a semi-supervised learning method for models with multiple outputs. The method is based on the additional rotations and flipping, and does not assume the probabilistic nature of the model's responses. This makes it a universal approach, which is especially important for architectures that involve separate segmentation.
comment: 7 pages, 5 figures, 1 listing
☆ MGRegBench: A Novel Benchmark Dataset with Anatomical Landmarks for Mammography Image Registration
Robust mammography registration is essential for clinical applications like tracking disease progression and monitoring longitudinal changes in breast tissue. However, progress has been limited by the absence of public datasets and standardized benchmarks. Existing studies are often not directly comparable, as they use private data and inconsistent evaluation frameworks. To address this, we present MGRegBench, a public benchmark dataset for mammogram registration. It comprises over 5,000 image pairs, with 100 containing manual anatomical landmarks and segmentation masks for rigorous evaluation. This makes MGRegBench one of the largest public 2D registration datasets with manual annotations. Using this resource, we benchmarked diverse registration methods including classical (ANTs), learning-based (VoxelMorph, TransMorph), implicit neural representation (IDIR), a classic mammography-specific approach, and a recent state-of-the-art deep learning method MammoRegNet. The implementations were adapted to this modality from the authors' implementations or re-implemented from scratch. Our contributions are: (1) the first public dataset of this scale with manual landmarks and masks for mammography registration; (2) the first like-for-like comparison of diverse methods on this modality; and (3) an extensive analysis of deep learning-based registration. We publicly release our code and data to establish a foundational resource for fair comparisons and catalyze future research. The source code and data are at https://github.com/KourtKardash/MGRegBench.
☆ HeadHunt-VAD: Hunting Robust Anomaly-Sensitive Heads in MLLM for Tuning-Free Video Anomaly Detection
Video Anomaly Detection (VAD) aims to locate events that deviate from normal patterns in videos. Traditional approaches often rely on extensive labeled data and incur high computational costs. Recent tuning-free methods based on Multimodal Large Language Models (MLLMs) offer a promising alternative by leveraging their rich world knowledge. However, these methods typically rely on textual outputs, which introduces information loss, exhibits normalcy bias, and suffers from prompt sensitivity, making them insufficient for capturing subtle anomalous cues. To address these constraints, we propose HeadHunt-VAD, a novel tuning-free VAD paradigm that bypasses textual generation by directly hunting robust anomaly-sensitive internal attention heads within the frozen MLLM. Central to our method is a Robust Head Identification module that systematically evaluates all attention heads using a multi-criteria analysis of saliency and stability, identifying a sparse subset of heads that are consistently discriminative across diverse prompts. Features from these expert heads are then fed into a lightweight anomaly scorer and a temporal locator, enabling efficient and accurate anomaly detection with interpretable outputs. Extensive experiments show that HeadHunt-VAD achieves state-of-the-art performance among tuning-free methods on two major VAD benchmarks while maintaining high efficiency, validating head-level probing in MLLMs as a powerful and practical solution for real-world anomaly detection.
☆ MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection and Classification
Out of distribution (OOD) detection remains a critical challenge in malware classification due to the substantial intra family variability introduced by polymorphic and metamorphic malware variants. Most existing deep learning based malware detectors rely on closed world assumptions and fail to adequately model this intra class variation, resulting in degraded performance when confronted with previously unseen malware families. This paper presents MADOOD, a novel two stage, cluster driven deep learning framework for robust OOD malware detection and classification. In the first stage, malware family embeddings are modeled using class conditional spherical decision boundaries derived from Gaussian Discriminant Analysis (GDA), enabling statistically grounded separation of indistribution and OOD samples without requiring OOD data during training. Z score based distance analysis across multiple class centroids is employed to reliably identify anomalous samples in the latent space. In the second stage, a deep neural network integrates cluster based predictions, refined embeddings, and supervised classifier outputs to enhance final classification accuracy. Extensive evaluations on benchmark malware datasets comprising 25 known families and multiple novel OOD variants demonstrate that MADOOD significantly outperforms state of the art OOD detection methods, achieving an AUC of up to 0.911 on unseen malware families. The proposed framework provides a scalable, interpretable, and statistically principled solution for real world malware detection and anomaly identification in evolving cybersecurity environments.
☆ SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation in Melanoma Diagnosis
This work introduces SkinGenBench, a systematic biomedical imaging benchmark that investigates how preprocessing complexity interacts with generative model choice for synthetic dermoscopic image augmentation and downstream melanoma diagnosis. Using a curated dataset of 14,116 dermoscopic images from HAM10000 and MILK10K across five lesion classes, we evaluate the two representative generative paradigms: StyleGAN2-ADA and Denoising Diffusion Probabilistic Models (DDPMs) under basic geometric augmentation and advanced artifact removal pipelines. Synthetic melanoma images are assessed using established perceptual and distributional metrics (FID, KID, IS), feature space analysis, and their impact on diagnostic performance across five downstream classifiers. Experimental results demonstrate that generative architecture choice has a stronger influence on both image fidelity and diagnostic utility than preprocessing complexity. StyleGAN2-ADA consistently produced synthetic images more closely aligned with real data distributions, achieving the lowest FID (~65.5) and KID (~0.05), while diffusion models generated higher variance samples at the cost of reduces perceptual fidelity and class anchoring. Advanced artifact removal yielded only marginal improvements in generative metrics and provided limited downstream diagnostic gains, suggesting possible suppression of clinically relevant texture cues. In contrast, synthetic data augmentation substantially improved melanoma detection with 8-15% absolute gains in melanoma F1-score, and ViT-B/16 achieving F1~0.88 and ROC-AUC~0.98, representing an improvement of approximately 14% over non-augmented baselines. Our code can be found at https://github.com/adarsh-crafts/SkinGenBench
☆ Medical Imaging AI Competitions Lack Fairness
Benchmarking competitions are central to the development of artificial intelligence (AI) in medical imaging, defining performance standards and shaping methodological progress. However, it remains unclear whether these benchmarks provide data that are sufficiently representative, accessible, and reusable to support clinically meaningful AI. In this work, we assess fairness along two complementary dimensions: (1) whether challenge datasets are representative of real-world clinical diversity, and (2) whether they are accessible and legally reusable in line with the FAIR principles. To address this question, we conducted a large-scale systematic study of 241 biomedical image analysis challenges comprising 458 tasks across 19 imaging modalities. Our findings show substantial biases in dataset composition, including geographic location, modality-, and problem type-related biases, indicating that current benchmarks do not adequately reflect real-world clinical diversity. Despite their widespread influence, challenge datasets were frequently constrained by restrictive or ambiguous access conditions, inconsistent or non-compliant licensing practices, and incomplete documentation, limiting reproducibility and long-term reuse. Together, these shortcomings expose foundational fairness limitations in our benchmarking ecosystem and highlight a disconnect between leaderboard success and clinical relevance.
comment: Submitted to Nature BME
☆ 3One2: One-step Regression Plus One-step Diffusion for One-hot Modulation in Dual-path Video Snapshot Compressive Imaging
Video snapshot compressive imaging (SCI) captures dynamic scene sequences through a two-dimensional (2D) snapshot, fundamentally relying on optical modulation for hardware compression and the corresponding software reconstruction. While mainstream video SCI using random binary modulation has demonstrated success, it inevitably results in temporal aliasing during compression. One-hot modulation, activating only one sub-frame per pixel, provides a promising solution for achieving perfect temporal decoupling, thereby alleviating issues associated with aliasing. However, no algorithms currently exist to fully exploit this potential. To bridge this gap, we propose an algorithm specifically designed for one-hot masks. First, leveraging the decoupling properties of one-hot modulation, we transform the reconstruction task into a generative video inpainting problem and introduce a stochastic differential equation (SDE) of the forward process that aligns with the hardware compression process. Next, we identify limitations of the pure diffusion method for video SCI and propose a novel framework that combines one-step regression initialization with one-step diffusion refinement. Furthermore, to mitigate the spatial degradation caused by one-hot modulation, we implement a dual optical path at the hardware level, utilizing complementary information from another path to enhance the inpainted video. To our knowledge, this is the first work integrating diffusion into video SCI reconstruction. Experiments conducted on synthetic datasets and real scenes demonstrate the effectiveness of our method.
☆ RoomEditor++: A Parameter-Sharing Diffusion Architecture for High-Fidelity Furniture Synthesis
Virtual furniture synthesis, which seamlessly integrates reference objects into indoor scenes while maintaining geometric coherence and visual realism, holds substantial promise for home design and e-commerce applications. However, this field remains underexplored due to the scarcity of reproducible benchmarks and the limitations of existing image composition methods in achieving high-fidelity furniture synthesis while preserving background integrity. To overcome these challenges, we first present RoomBench++, a comprehensive and publicly available benchmark dataset tailored for this task. It consists of 112,851 training pairs and 1,832 testing pairs drawn from both real-world indoor videos and realistic home design renderings, thereby supporting robust training and evaluation under practical conditions. Then, we propose RoomEditor++, a versatile diffusion-based architecture featuring a parameter-sharing dual diffusion backbone, which is compatible with both U-Net and DiT architectures. This design unifies the feature extraction and inpainting processes for reference and background images. Our in-depth analysis reveals that the parameter-sharing mechanism enforces aligned feature representations, facilitating precise geometric transformations, texture preservation, and seamless integration. Extensive experiments validate that RoomEditor++ is superior over state-of-the-art approaches in terms of quantitative metrics, qualitative assessments, and human preference studies, while highlighting its strong generalization to unseen indoor scenes and general scenes without task-specific fine-tuning. The dataset and source code are available at \url{https://github.com/stonecutter-21/roomeditor}.
☆ A unified FLAIR hyperintensity segmentation model for various CNS tumor types and acquisition time points
T2-weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans are important for diagnosis, treatment planning and monitoring of brain tumors. Depending on the brain tumor type, the FLAIR hyperintensity volume is an important measure to asses the tumor volume or surrounding edema, and an automatic segmentation of this would be useful in the clinic. In this study, around 5000 FLAIR images of various tumors types and acquisition time points from different centers were used to train a unified FLAIR hyperintensity segmentation model using an Attention U-Net architecture. The performance was compared against dataset specific models, and was validated on different tumor types, acquisition time points and against BraTS. The unified model achieved an average Dice score of 88.65\% for pre-operative meningiomas, 80.08% for pre-operative metastasis, 90.92% for pre-operative and 84.60% for post-operative gliomas from BraTS, and 84.47% for pre-operative and 61.27\% for post-operative lower grade gliomas. In addition, the results showed that the unified model achieved comparable segmentation performance to the dataset specific models on their respective datasets, and enables generalization across tumor types and acquisition time points, which facilitates the deployment in a clinical setting. The model is integrated into Raidionics, an open-source software for CNS tumor analysis.
comment: 13 pages, 4 figures
☆ G3Splat: Geometrically Consistent Generalizable Gaussian Splatting
3D Gaussians have recently emerged as an effective scene representation for real-time splatting and accurate novel-view synthesis, motivating several works to adapt multi-view structure prediction networks to regress per-pixel 3D Gaussians from images. However, most prior work extends these networks to predict additional Gaussian parameters -- orientation, scale, opacity, and appearance -- while relying almost exclusively on view-synthesis supervision. We show that a view-synthesis loss alone is insufficient to recover geometrically meaningful splats in this setting. We analyze and address the ambiguities of learning 3D Gaussian splats under self-supervision for pose-free generalizable splatting, and introduce G3Splat, which enforces geometric priors to obtain geometrically consistent 3D scene representations. Trained on RE10K, our approach achieves state-of-the-art performance in (i) geometrically consistent reconstruction, (ii) relative pose estimation, and (iii) novel-view synthesis. We further demonstrate strong zero-shot generalization on ScanNet, substantially outperforming prior work in both geometry recovery and relative pose estimation. Code and pretrained models are released on our project page (https://m80hz.github.io/g3splat/).
comment: Project page: https://m80hz.github.io/g3splat/
☆ ClothHMR: 3D Mesh Recovery of Humans in Diverse Clothing from Single Image
With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://github.com/starVisionTeam/ClothHMR}.
comment: 15 pages,16 figures
☆ FLEG: Feed-Forward Language Embedded Gaussian Splatting from Any Views
We present FLEG, a feed-forward network that reconstructs language-embedded 3D Gaussians from any views. Previous straightforward solutions combine feed-forward reconstruction with Gaussian heads but suffer from fixed input views and insufficient 3D training data. In contrast, we propose a 3D-annotation-free training framework for 2D-to-3D lifting from arbitrary uncalibrated and unposed multi-view images. Since the framework does not require 3D annotations, we can leverage large-scale video data with easily obtained 2D instance information to enrich semantic embedding. We also propose an instance-guided contrastive learning to align 2D semantics with the 3D representations. In addition, to mitigate the high memory and computational cost of dense views, we further propose a geometry-semantic hierarchical sparsification strategy. Our FLEG efficiently reconstructs language-embedded 3D Gaussian representation in a feed-forward manner from arbitrary sparse or dense views, jointly producing accurate geometry, high-fidelity appearance, and language-aligned semantics. Extensive experiments show that it outperforms existing methods on various related tasks. Project page: https://fangzhou2000.github.io/projects/fleg.
comment: Project page: https://fangzhou2000.github.io/projects/fleg
☆ Robust-R1: Degradation-Aware Reasoning for Robust Visual Understanding AAAI2026
Multimodal Large Language Models struggle to maintain reliable performance under extreme real-world visual degradations, which impede their practical robustness. Existing robust MLLMs predominantly rely on implicit training/adaptation that focuses solely on visual encoder generalization, suffering from limited interpretability and isolated optimization. To overcome these limitations, we propose Robust-R1, a novel framework that explicitly models visual degradations through structured reasoning chains. Our approach integrates: (i) supervised fine-tuning for degradation-aware reasoning foundations, (ii) reward-driven alignment for accurately perceiving degradation parameters, and (iii) dynamic reasoning depth scaling adapted to degradation intensity. To facilitate this approach, we introduce a specialized 11K dataset featuring realistic degradations synthesized across four critical real-world visual processing stages, each annotated with structured chains connecting degradation parameters, perceptual influence, pristine semantic reasoning chain, and conclusion. Comprehensive evaluations demonstrate state-of-the-art robustness: Robust-R1 outperforms all general and robust baselines on the real-world degradation benchmark R-Bench, while maintaining superior anti-degradation performance under multi-intensity adversarial degradations on MMMB, MMStar, and RealWorldQA.
comment: Accepted by AAAI2026 Oral
☆ PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning in Histopathology
We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://github.com/Sbrussee/PathBench-MIL
comment: 14 Pages, 3 Figures, 2 Appendices
☆ Foundation Model Priors Enhance Object Focus in Feature Space for Source-Free Object Detection
Current state-of-the-art approaches in Source-Free Object Detection (SFOD) typically rely on Mean-Teacher self-labeling. However, domain shift often reduces the detector's ability to maintain strong object-focused representations, causing high-confidence activations over background clutter. This weak object focus results in unreliable pseudo-labels from the detection head. While prior works mainly refine these pseudo-labels, they overlook the underlying need to strengthen the feature space itself. We propose FALCON-SFOD (Foundation-Aligned Learning with Clutter suppression and Noise robustness), a framework designed to enhance object-focused adaptation under domain shift. It consists of two complementary components. SPAR (Spatial Prior-Aware Regularization) leverages the generalization strength of vision foundation models to regularize the detector's feature space. Using class-agnostic binary masks derived from OV-SAM, SPAR promotes structured and foreground-focused activations by guiding the network toward object regions. IRPL (Imbalance-aware Noise Robust Pseudo-Labeling) complements SPAR by promoting balanced and noise-tolerant learning under severe foreground-background imbalance. Guided by a theoretical analysis that connects these designs to tighter localization and classification error bounds, FALCON-SFOD achieves competitive performance across SFOD benchmarks.
☆ Adaptive Covariance and Quaternion-Focused Hybrid Error-State EKF/UKF for Visual-Inertial Odometry
This study presents an innovative hybrid Visual-Inertial Odometry (VIO) method for Unmanned Aerial Vehicles (UAVs) that is resilient to environmental challenges and capable of dynamically assessing sensor reliability. Built upon a loosely coupled sensor fusion architecture, the system utilizes a novel hybrid Quaternion-focused Error-State EKF/UKF (Qf-ES-EKF/UKF) architecture to process inertial measurement unit (IMU) data. This architecture first propagates the entire state using an Error-State Extended Kalman Filter (ESKF) and then applies a targeted Scaled Unscented Kalman Filter (SUKF) step to refine only the orientation. This sequential process blends the accuracy of SUKF in quaternion estimation with the overall computational efficiency of ESKF. The reliability of visual measurements is assessed via a dynamic sensor confidence score based on metrics, such as image entropy, intensity variation, motion blur, and inference quality, adapting the measurement noise covariance to ensure stable pose estimation even under challenging conditions. Comprehensive experimental analyses on the EuRoC MAV dataset demonstrate key advantages: an average improvement of 49% in position accuracy in challenging scenarios, an average of 57% in rotation accuracy over ESKF-based methods, and SUKF-comparable accuracy achieved with approximately 48% lower computational cost than a full SUKF implementation. These findings demonstrate that the presented approach strikes an effective balance between computational efficiency and estimation accuracy, and significantly enhances UAV pose estimation performance in complex environments with varying sensor reliability.
☆ InsertAnywhere: Bridging 4D Scene Geometry and Diffusion Models for Realistic Video Object Insertion
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.
comment: 16 pages, project page: https://myyzzzoooo.github.io/InsertAnywhere/
☆ Validation of Diagnostic Artificial Intelligence Models for Prostate Pathology in a Middle Eastern Cohort
Background: Artificial intelligence (AI) is improving the efficiency and accuracy of cancer diagnostics. The performance of pathology AI systems has been almost exclusively evaluated on European and US cohorts from large centers. For global AI adoption in pathology, validation studies on currently under-represented populations - where the potential gains from AI support may also be greatest - are needed. We present the first study with an external validation cohort from the Middle East, focusing on AI-based diagnosis and Gleason grading of prostate cancer. Methods: We collected and digitised 339 prostate biopsy specimens from the Kurdistan region, Iraq, representing a consecutive series of 185 patients spanning the period 2013-2024. We evaluated a task-specific end-to-end AI model and two foundation models in terms of their concordance with pathologists and consistency across samples digitised on three scanner models (Hamamatsu, Leica, and Grundium). Findings: Grading concordance between AI and pathologists was similar to pathologist-pathologist concordance with Cohen's quadratically weighted kappa 0.801 vs. 0.799 (p=0.9824). Cross-scanner concordance was high (quadratically weighted kappa > 0.90) for all AI models and scanner pairs, including low-cost compact scanner. Interpretation: AI models demonstrated pathologist-level performance in prostate histopathology assessment. Compact scanners can provide a route for validation studies in non-digitalised settings and enable cost-effective adoption of AI in laboratories with limited sample volumes. This first openly available digital pathology dataset from the Middle East supports further research into globally equitable AI pathology. Funding: SciLifeLab and Wallenberg Data Driven Life Science Program, Instrumentarium Science Foundation, Karolinska Institutet Research Foundation.
comment: 40 pages, 8 figures, 11 tables
☆ GroundingME: Exposing the Visual Grounding Gap in MLLMs through Multi-Dimensional Evaluation
Visual grounding, localizing objects from natural language descriptions, represents a critical bridge between language and vision understanding. While multimodal large language models (MLLMs) achieve impressive scores on existing benchmarks, a fundamental question remains: can MLLMs truly ground language in vision with human-like sophistication, or are they merely pattern-matching on simplified datasets? Current benchmarks fail to capture real-world complexity where humans effortlessly navigate ambiguous references and recognize when grounding is impossible. To rigorously assess MLLMs' true capabilities, we introduce GroundingME, a benchmark that systematically challenges models across four critical dimensions: (1) Discriminative, distinguishing highly similar objects, (2) Spatial, understanding complex relational descriptions, (3) Limited, handling occlusions or tiny objects, and (4) Rejection, recognizing ungroundable queries. Through careful curation combining automated generation with human verification, we create 1,005 challenging examples mirroring real-world complexity. Evaluating 25 state-of-the-art MLLMs reveals a profound capability gap: the best model achieves only 45.1% accuracy, while most score 0% on rejection tasks, reflexively hallucinating objects rather than acknowledging their absence, raising critical safety concerns for deployment. We explore two strategies for improvements: (1) test-time scaling selects optimal response by thinking trajectory to improve complex grounding by up to 2.9%, and (2) data-mixture training teaches models to recognize ungroundable queries, boosting rejection accuracy from 0% to 27.9%. GroundingME thus serves as both a diagnostic tool revealing current limitations in MLLMs and a roadmap toward human-level visual grounding.
☆ MMLANDMARKS: a Cross-View Instance-Level Benchmark for Geo-Spatial Understanding
Geo-spatial analysis of our world benefits from a multimodal approach, as every single geographic location can be described in numerous ways (images from various viewpoints, textual descriptions, and geographic coordinates). Current geo-spatial benchmarks have limited coverage across modalities, considerably restricting progress in the field, as current approaches cannot integrate all relevant modalities within a unified framework. We introduce the Multi-Modal Landmark dataset (MMLANDMARKS), a benchmark composed of four modalities: 197k highresolution aerial images, 329k ground-view images, textual information, and geographic coordinates for 18,557 distinct landmarks in the United States. The MMLANDMARKS dataset has a one-to-one correspondence across every modality, which enables training and benchmarking models for various geo-spatial tasks, including cross-view Ground-to-Satellite retrieval, ground and satellite geolocalization, Text-to-Image, and Text-to-GPS retrieval. We demonstrate broad generalization and competitive performance against off-the-shelf foundational models and specialized state-of-the-art models across different tasks by employing a simple CLIP-inspired baseline, illustrating the necessity for multimodal datasets to achieve broad geo-spatial understanding.
☆ LumiCtrl : Learning Illuminant Prompts for Lighting Control in Personalized Text-to-Image Models
Current text-to-image (T2I) models have demonstrated remarkable progress in creative image generation, yet they still lack precise control over scene illuminants, which is a crucial factor for content designers aiming to manipulate the mood, atmosphere, and visual aesthetics of generated images. In this paper, we present an illuminant personalization method named LumiCtrl that learns an illuminant prompt given a single image of an object. LumiCtrl consists of three basic components: given an image of the object, our method applies (a) physics-based illuminant augmentation along the Planckian locus to create fine-tuning variants under standard illuminants; (b) edge-guided prompt disentanglement using a frozen ControlNet to ensure prompts focus on illumination rather than structure; and (c) a masked reconstruction loss that focuses learning on the foreground object while allowing the background to adapt contextually, enabling what we call contextual light adaptation. We qualitatively and quantitatively compare LumiCtrl against other T2I customization methods. The results show that our method achieves significantly better illuminant fidelity, aesthetic quality, and scene coherence compared to existing personalization baselines. A human preference study further confirms strong user preference for LumiCtrl outputs. The code and data will be released upon publication.
☆ TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Brain tumor segmentation is critical in diagnosis and treatment planning for the disease. Yet, current deep learning methods rely on centralized data collection, which raises privacy concerns and limits generalization across diverse institutions. In this paper, we propose TwinSegNet, which is a privacy-preserving federated learning framework that integrates a hybrid ViT-UNet model with personalized digital twins for accurate and real-time brain tumor segmentation. Our architecture combines convolutional encoders with Vision Transformer bottlenecks to capture local and global context. Each institution fine-tunes the global model of private data to form its digital twin. Evaluated on nine heterogeneous MRI datasets, including BraTS 2019-2021 and custom tumor collections, TwinSegNet achieves high Dice scores (up to 0.90%) and sensitivity/specificity exceeding 90%, demonstrating robustness across non-independent and identically distributed (IID) client distributions. Comparative results against centralized models such as TumorVisNet highlight TwinSegNet's effectiveness in preserving privacy without sacrificing performance. Our approach enables scalable, personalized segmentation for multi-institutional clinical settings while adhering to strict data confidentiality requirements.
comment: IEEE Virtual Conference on Communications. 4-6 November 2025
☆ 3D-RE-GEN: 3D Reconstruction of Indoor Scenes with a Generative Framework
Recent advances in 3D scene generation produce visually appealing output, but current representations hinder artists' workflows that require modifiable 3D textured mesh scenes for visual effects and game development. Despite significant advances, current textured mesh scene reconstruction methods are far from artist ready, suffering from incorrect object decomposition, inaccurate spatial relationships, and missing backgrounds. We present 3D-RE-GEN, a compositional framework that reconstructs a single image into textured 3D objects and a background. We show that combining state of the art models from specific domains achieves state of the art scene reconstruction performance, addressing artists' requirements. Our reconstruction pipeline integrates models for asset detection, reconstruction, and placement, pushing certain models beyond their originally intended domains. Obtaining occluded objects is treated as an image editing task with generative models to infer and reconstruct with scene level reasoning under consistent lighting and geometry. Unlike current methods, 3D-RE-GEN generates a comprehensive background that spatially constrains objects during optimization and provides a foundation for realistic lighting and simulation tasks in visual effects and games. To obtain physically realistic layouts, we employ a novel 4-DoF differentiable optimization that aligns reconstructed objects with the estimated ground plane. 3D-RE-GEN~achieves state of the art performance in single image 3D scene reconstruction, producing coherent, modifiable scenes through compositional generation guided by precise camera recovery and spatial optimization.
comment: Project Page: https://3dregen.jdihlmann.com/
☆ MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic segmentation
Unmanned surface vehicles can encounter a number of varied visual circumstances during operation, some of which can be very difficult to interpret. While most cases can be solved only using color camera images, some weather and lighting conditions require additional information. To expand the available maritime data, we present a novel multimodal maritime dataset MULTIAQUA (Multimodal Aquatic Dataset). Our dataset contains synchronized, calibrated and annotated data captured by sensors of different modalities, such as RGB, thermal, IR, LIDAR, etc. The dataset is aimed at developing supervised methods that can extract useful information from these modalities in order to provide a high quality of scene interpretation regardless of potentially poor visibility conditions. To illustrate the benefits of the proposed dataset, we evaluate several multimodal methods on our difficult nighttime test set. We present training approaches that enable multimodal methods to be trained in a more robust way, thus enabling them to retain reliable performance even in near-complete darkness. Our approach allows for training a robust deep neural network only using daytime images, thus significantly simplifying data acquisition, annotation, and the training process.
☆ LangDriveCTRL: Natural Language Controllable Driving Scene Editing with Multi-modal Agents
LangDriveCTRL is a natural-language-controllable framework for editing real-world driving videos to synthesize diverse traffic scenarios. It leverages explicit 3D scene decomposition to represent driving videos as a scene graph, containing static background and dynamic objects. To enable fine-grained editing and realism, it incorporates an agentic pipeline in which an Orchestrator transforms user instructions into execution graphs that coordinate specialized agents and tools. Specifically, an Object Grounding Agent establishes correspondence between free-form text descriptions and target object nodes in the scene graph; a Behavior Editing Agent generates multi-object trajectories from language instructions; and a Behavior Reviewer Agent iteratively reviews and refines the generated trajectories. The edited scene graph is rendered and then refined using a video diffusion tool to address artifacts introduced by object insertion and significant view changes. LangDriveCTRL supports both object node editing (removal, insertion and replacement) and multi-object behavior editing from a single natural-language instruction. Quantitatively, it achieves nearly $2\times$ higher instruction alignment than the previous SoTA, with superior structural preservation, photorealism, and traffic realism. Project page is available at: https://yunhe24.github.io/langdrivectrl/.
comment: Project Page: https://yunhe24.github.io/langdrivectrl/
☆ Xiaomi MiMo-VL-Miloco Technical Report
We open-source \textbf{MiMo-VL-Miloco-7B} and its quantized variant \textbf{MiMo-VL-Miloco-7B-GGUF}, a pair of home-centric vision-language models that achieve strong performance on both home-scenario understanding and general multimodal reasoning. Built on the MiMo-VL-7B backbone, MiMo-VL-Miloco-7B is specialized for smart-home environments, attaining leading F1 scores on gesture recognition and common home-scenario understanding, while also delivering consistent gains across video benchmarks such as Video-MME, Video-MMMU, and Charades-STA, as well as language understanding benchmarks including MMMU-Pro and MMLU-Pro. In our experiments, MiMo-VL-Miloco-7B outperforms strong closed-source and open-source baselines on home-scenario understanding and several multimodal reasoning benchmarks. To balance specialization and generality, we design a two-stage training pipeline that combines supervised fine-tuning with reinforcement learning based on Group Relative Policy Optimization, leveraging efficient multi-domain data. We further incorporate chain-of-thought supervision and token-budget-aware reasoning, enabling the model to learn knowledge in a data-efficient manner while also performing reasoning efficiently. Our analysis shows that targeted home-scenario training not only enhances activity and gesture understanding, but also improves text-only reasoning with only modest trade-offs on document-centric tasks. Model checkpoints, quantized GGUF weights, and our home-scenario evaluation toolkit are publicly available at \href{https://github.com/XiaoMi/xiaomi-mimo-vl-miloco}{https://github.com/XiaoMi/xiaomi-mimo-vl-miloco} to support research and deployment in real-world smart-home applications.
☆ AIFloodSense: A Global Aerial Imagery Dataset for Semantic Segmentation and Understanding of Flooded Environments
Accurate flood detection from visual data is a critical step toward improving disaster response and risk assessment, yet datasets for flood segmentation remain scarce due to the challenges of collecting and annotating large-scale imagery. Existing resources are often limited in geographic scope and annotation detail, hindering the development of robust, generalized computer vision methods. To bridge this gap, we introduce AIFloodSense, a comprehensive, publicly available aerial imagery dataset comprising 470 high-resolution images from 230 distinct flood events across 64 countries and six continents. Unlike prior benchmarks, AIFloodSense ensures global diversity and temporal relevance (2022-2024), supporting three complementary tasks: (i) Image Classification with novel sub-tasks for environment type, camera angle, and continent recognition; (ii) Semantic Segmentation providing precise pixel-level masks for flood, sky, and buildings; and (iii) Visual Question Answering (VQA) to enable natural language reasoning for disaster assessment. We establish baseline benchmarks for all tasks using state-of-the-art architectures, demonstrating the dataset's complexity and its value in advancing domain-generalized AI tools for climate resilience.
comment: 36 pages, 19 figures, 8 tables
☆ Beyond Occlusion: In Search for Near Real-Time Explainability of CNN-Based Prostate Cancer Classification
Deep neural networks are starting to show their worth in critical applications such as assisted cancer diagnosis. However, for their outputs to get accepted in practice, the results they provide should be explainable in a way easily understood by pathologists. A well-known and widely used explanation technique is occlusion, which, however, can take a long time to compute, thus slowing the development and interaction with pathologists. In this work, we set out to find a faster replacement for occlusion in a successful system for detecting prostate cancer. Since there is no established framework for comparing the performance of various explanation methods, we first identified suitable comparison criteria and selected corresponding metrics. Based on the results, we were able to choose a different explanation method, which cut the previously required explanation time at least by a factor of 10, without any negative impact on the quality of outputs. This speedup enables rapid iteration in model development and debugging and brings us closer to adopting AI-assisted prostate cancer detection in clinical settings. We propose that our approach to finding the replacement for occlusion can be used to evaluate candidate methods in other related applications.
☆ RadImageNet-VQA: A Large-Scale CT and MRI Dataset for Radiologic Visual Question Answering
In this work, we introduce RadImageNet-VQA, a large-scale dataset designed to advance radiologic visual question answering (VQA) on CT and MRI exams. Existing medical VQA datasets are limited in scale, dominated by X-ray imaging or biomedical illustrations, and often prone to text-based shortcuts. RadImageNet-VQA is built from expert-curated annotations and provides 750K images paired with 7.5M question-answer samples. It covers three key tasks - abnormality detection, anatomy recognition, and pathology identification - spanning eight anatomical regions and 97 pathology categories, and supports open-ended, closed-ended, and multiple-choice questions. Extensive experiments show that state-of-the-art vision-language models still struggle with fine-grained pathology identification, particularly in open-ended settings and even after fine-tuning. Text-only analysis further reveals that model performance collapses to near-random without image inputs, confirming that RadImageNet-VQA is free from linguistic shortcuts. The full dataset and benchmark are publicly available at https://huggingface.co/datasets/raidium/RadImageNet-VQA.
comment: Preprint, 23 pages, 12 figures, 7 tables
☆ Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?
Theory of Mind (ToM) -- the ability to attribute beliefs, desires, and emotions to others -- is fundamental for human social intelligence, yet remains a major challenge for artificial agents. Existing Vision-Language Models (VLMs) are increasingly applied in socially grounded tasks, but their capacity for cross-cultural ToM reasoning is largely unexplored. In this work, we introduce CulturalToM-VQA, a new evaluation benchmark containing 5095 questions designed to probe ToM reasoning across diverse cultural contexts through visual question answering. The dataset captures culturally grounded cues such as rituals, attire, gestures, and interpersonal dynamics, enabling systematic evaluation of ToM reasoning beyond Western-centric benchmarks. Our dataset is built through a VLM-assisted human-in-the-loop pipeline, where human experts first curate culturally rich images across traditions, rituals, and social interactions; a VLM then assist in generating structured ToM-focused scene descriptions, which are refined into question-answer pairs spanning a taxonomy of six ToM tasks and four graded complexity levels. The resulting dataset covers diverse theory of mind facets such as mental state attribution, false belief reasoning, non-literal communication, social norm violations, perspective coordination, and multi-agent reasoning.
☆ Towards Deeper Emotional Reflection: Crafting Affective Image Filters with Generative Priors
Social media platforms enable users to express emotions by posting text with accompanying images. In this paper, we propose the Affective Image Filter (AIF) task, which aims to reflect visually-abstract emotions from text into visually-concrete images, thereby creating emotionally compelling results. We first introduce the AIF dataset and the formulation of the AIF models. Then, we present AIF-B as an initial attempt based on a multi-modal transformer architecture. After that, we propose AIF-D as an extension of AIF-B towards deeper emotional reflection, effectively leveraging generative priors from pre-trained large-scale diffusion models. Quantitative and qualitative experiments demonstrate that AIF models achieve superior performance for both content consistency and emotional fidelity compared to state-of-the-art methods. Extensive user study experiments demonstrate that AIF models are significantly more effective at evoking specific emotions. Based on the presented results, we comprehensively discuss the value and potential of AIF models.
☆ Beyond Semantic Features: Pixel-level Mapping for Generalized AI-Generated Image Detection AAAI 2026
The rapid evolution of generative technologies necessitates reliable methods for detecting AI-generated images. A critical limitation of current detectors is their failure to generalize to images from unseen generative models, as they often overfit to source-specific semantic cues rather than learning universal generative artifacts. To overcome this, we introduce a simple yet remarkably effective pixel-level mapping pre-processing step to disrupt the pixel value distribution of images and break the fragile, non-essential semantic patterns that detectors commonly exploit as shortcuts. This forces the detector to focus on more fundamental and generalizable high-frequency traces inherent to the image generation process. Through comprehensive experiments on GAN and diffusion-based generators, we show that our approach significantly boosts the cross-generator performance of state-of-the-art detectors. Extensive analysis further verifies our hypothesis that the disruption of semantic cues is the key to generalization.
comment: Accepted by AAAI 2026
☆ Multi-level distortion-aware deformable network for omnidirectional image super-resolution
As augmented reality and virtual reality applications gain popularity, image processing for OmniDirectional Images (ODIs) has attracted increasing attention. OmniDirectional Image Super-Resolution (ODISR) is a promising technique for enhancing the visual quality of ODIs. Before performing super-resolution, ODIs are typically projected from a spherical surface onto a plane using EquiRectangular Projection (ERP). This projection introduces latitude-dependent geometric distortion in ERP images: distortion is minimal near the equator but becomes severe toward the poles, where image content is stretched across a wider area. However, existing ODISR methods have limited sampling ranges and feature extraction capabilities, which hinder their ability to capture distorted patterns over large areas. To address this issue, we propose a novel Multi-level Distortion-aware Deformable Network (MDDN) for ODISR, designed to expand the sampling range and receptive field. Specifically, the feature extractor in MDDN comprises three parallel branches: a deformable attention mechanism (serving as the dilation=1 path) and two dilated deformable convolutions with dilation rates of 2 and 3. This architecture expands the sampling range to include more distorted patterns across wider areas, generating dense and comprehensive features that effectively capture geometric distortions in ERP images. The representations extracted from these deformable feature extractors are adaptively fused in a multi-level feature fusion module. Furthermore, to reduce computational cost, a low-rank decomposition strategy is applied to dilated deformable convolutions. Extensive experiments on publicly available datasets demonstrate that MDDN outperforms state-of-the-art methods, underscoring its effectiveness and superiority in ODISR.
☆ SynergyWarpNet: Attention-Guided Cooperative Warping for Neural Portrait Animation ICASSP 2026
Recent advances in neural portrait animation have demonstrated remarked potential for applications in virtual avatars, telepresence, and digital content creation. However, traditional explicit warping approaches often struggle with accurate motion transfer or recovering missing regions, while recent attention-based warping methods, though effective, frequently suffer from high complexity and weak geometric grounding. To address these issues, we propose SynergyWarpNet, an attention-guided cooperative warping framework designed for high-fidelity talking head synthesis. Given a source portrait, a driving image, and a set of reference images, our model progressively refines the animation in three stages. First, an explicit warping module performs coarse spatial alignment between the source and driving image using 3D dense optical flow. Next, a reference-augmented correction module leverages cross-attention across 3D keypoints and texture features from multiple reference images to semantically complete occluded or distorted regions. Finally, a confidence-guided fusion module integrates the warped outputs with spatially-adaptive fusing, using a learned confidence map to balance structural alignment and visual consistency. Comprehensive evaluations on benchmark datasets demonstrate state-of-the-art performance.
comment: Submitted to ICASSP 2026
☆ Democratizing Pathology Co-Pilots: An Open Pipeline and Dataset for Whole-Slide Vision-Language Modelling
Vision-language models (VLMs) have the potential to become co-pilots for pathologists. However, most VLMs either focus on small regions of interest within whole-slide images, provide only static slide-level outputs, or rely on data that is not publicly available, limiting reproducibility. Furthermore, training data containing WSIs paired with detailed clinical reports is scarce, restricting progress toward transparent and generalisable VLMs. We address these limitations with three main contributions. First, we introduce Polysome, a standardised tool for synthetic instruction generation. Second, we apply Polysome to the public HISTAI dataset, generating HISTAI-Instruct, a large whole-slide instruction tuning dataset spanning 24,259 slides and over 1.1 million instruction-response pairs. Finally, we use HISTAI-Instruct to train ANTONI-α, a VLM capable of visual-question answering (VQA). We show that ANTONI-α outperforms MedGemma on WSI-level VQA tasks of tissue identification, neoplasm detection, and differential diagnosis. We also compare the performance of multiple incarnations of ANTONI-α trained with different amounts of data. All methods, data, and code are publicly available.
comment: 10 pages, 4 figures
☆ DESSERT: Diffusion-based Event-driven Single-frame Synthesis via Residual Training
Video frame prediction extrapolates future frames from previous frames, but suffers from prediction errors in dynamic scenes due to the lack of information about the next frame. Event cameras address this limitation by capturing per-pixel brightness changes asynchronously with high temporal resolution. Prior research on event-based video frame prediction has leveraged motion information from event data, often by predicting event-based optical flow and reconstructing frames via pixel warping. However, such approaches introduce holes and blurring when pixel displacement is inaccurate. To overcome this limitation, we propose DESSERT, a diffusion-based event-driven single-frame synthesis framework via residual training. Leveraging a pre-trained Stable Diffusion model, our method is trained on inter-frame residuals to ensure temporal consistency. The training pipeline consists of two stages: (1) an Event-to-Residual Alignment Variational Autoencoder (ER-VAE) that aligns the event frame between anchor and target frames with the corresponding residual, and (2) a diffusion model that denoises the residual latent conditioned on event data. Furthermore, we introduce Diverse-Length Temporal (DLT) augmentation, which improves robustness by training on frame segments of varying temporal lengths. Experimental results demonstrate that our method outperforms existing event-based reconstruction, image-based video frame prediction, event-based video frame prediction, and one-sided event-based video frame interpolation methods, producing sharper and more temporally consistent frame synthesis.
☆ Rotterdam artery-vein segmentation (RAV) dataset
Purpose: To provide a diverse, high-quality dataset of color fundus images (CFIs) with detailed artery-vein (A/V) segmentation annotations, supporting the development and evaluation of machine learning algorithms for vascular analysis in ophthalmology. Methods: CFIs were sampled from the longitudinal Rotterdam Study (RS), encompassing a wide range of ages, devices, and capture conditions. Images were annotated using a custom interface that allowed graders to label arteries, veins, and unknown vessels on separate layers, starting from an initial vessel segmentation mask. Connectivity was explicitly verified and corrected using connected component visualization tools. Results: The dataset includes 1024x1024-pixel PNG images in three modalities: original RGB fundus images, contrast-enhanced versions, and RGB-encoded A/V masks. Image quality varied widely, including challenging samples typically excluded by automated quality assessment systems, but judged to contain valuable vascular information. Conclusion: This dataset offers a rich and heterogeneous source of CFIs with high-quality segmentations. It supports robust benchmarking and training of machine learning models under real-world variability in image quality and acquisition settings. Translational Relevance: By including connectivity-validated A/V masks and diverse image conditions, this dataset enables the development of clinically applicable, generalizable machine learning tools for retinal vascular analysis, potentially improving automated screening and diagnosis of systemic and ocular diseases.
☆ EMMA: Concept Erasure Benchmark with Comprehensive Semantic Metrics and Diverse Categories
The widespread adoption of text-to-image (T2I) generation has raised concerns about privacy, bias, and copyright violations. Concept erasure techniques offer a promising solution by selectively removing undesired concepts from pre-trained models without requiring full retraining. However, these methods are often evaluated on a limited set of concepts, relying on overly simplistic and direct prompts. To test the boundaries of concept erasure techniques, and assess whether they truly remove targeted concepts from model representations, we introduce EMMA, a benchmark that evaluates five key dimensions of concept erasure over 12 metrics. EMMA goes beyond standard metrics like image quality and time efficiency, testing robustness under challenging conditions, including indirect descriptions, visually similar non-target concepts, and potential gender and ethnicity bias, providing a socially aware analysis of method behavior. Using EMMA, we analyze five concept erasure methods across five domains (objects, celebrities, art styles, NSFW, and copyright). Our results show that existing methods struggle with implicit prompts (i.e., generating the erased concept when it is indirectly referenced) and visually similar non-target concepts (i.e., failing to generate non-targeted concepts resembling the erased one), while some amplify gender and ethnicity bias compared to the original model.
comment: Under review
☆ A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs
Multimodal large language models (MLLMs) demonstrate strong perception and reasoning performance on existing remote sensing (RS) benchmarks. However, most prior benchmarks rely on low-resolution imagery, and some high-resolution benchmarks suffer from flawed reasoning-task designs. We show that text-only LLMs can perform competitively with multimodal vision-language models on RS reasoning tasks without access to images, revealing a critical mismatch between current benchmarks and the intended evaluation of visual understanding. To enable faithful assessment, we introduce RSHR-Bench, a super-high-resolution benchmark for RS visual understanding and reasoning. RSHR-Bench contains 5,329 full-scene images with a long side of at least 4,000 pixels, with up to about 3 x 10^8 pixels per image, sourced from widely used RS corpora and UAV collections. We design four task families: multiple-choice VQA, open-ended VQA, image captioning, and single-image evaluation. These tasks cover nine perception categories and four reasoning types, supporting multi-turn and multi-image dialog. To reduce reliance on language priors, we apply adversarial filtering with strong LLMs followed by rigorous human verification. Overall, we construct 3,864 VQA tasks, 3,913 image captioning tasks, and 500 fully human-written or verified single-image evaluation VQA pairs. Evaluations across open-source, closed-source, and RS-specific VLMs reveal persistent performance gaps in super-high-resolution scenarios. Code: https://github.com/Yunkaidang/RSHR
☆ Auxiliary Descriptive Knowledge for Few-Shot Adaptation of Vision-Language Model
Despite the impressive zero-shot capabilities of Vision-Language Models (VLMs), they often struggle in downstream tasks with distribution shifts from the pre-training data. Few-Shot Adaptation (FSA-VLM) has emerged as a key solution, typically using Parameter-Efficient Fine-Tuning (PEFT) to adapt models with minimal data. However, these PEFT methods are constrained by their reliance on fixed, handcrafted prompts, which are often insufficient to understand the semantics of classes. While some studies have proposed leveraging image-induced prompts to provide additional clues for classification, they introduce prohibitive computational overhead at inference. Therefore, we introduce Auxiliary Descriptive Knowledge (ADK), a novel framework that efficiently enriches text representations without compromising efficiency. ADK first leverages a Large Language Model to generate a rich set of descriptive prompts for each class offline. These pre-computed features are then deployed in two ways: (1) as Compositional Knowledge, an averaged representation that provides rich semantics, especially beneficial when class names are ambiguous or unfamiliar to the VLM; and (2) as Instance-Specific Knowledge, where a lightweight, non-parametric attention mechanism dynamically selects the most relevant descriptions for a given image. This approach provides two additional types of knowledge alongside the handcrafted prompt, thereby facilitating category distinction across various domains. Also, ADK acts as a parameter-free, plug-and-play component that enhances existing PEFT methods. Extensive experiments demonstrate that ADK consistently boosts the performance of multiple PEFT baselines, setting a new state-of-the-art across various scenarios.
☆ CodeDance: A Dynamic Tool-integrated MLLM for Executable Visual Reasoning
Recent releases such as o3 highlight human-like "thinking with images" reasoning that combines structured tool use with stepwise verification, yet most open-source approaches still rely on text-only chains, rigid visual schemas, or single-step pipelines, limiting flexibility, interpretability, and transferability on complex tasks. We introduce CodeDance, which explores executable code as a general solver for visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box coordinates), CodeDance defines, composes, and executes code to orchestrate multiple tools, compute intermediate results, and render visual artifacts (e.g., boxes, lines, plots) that support transparent, self-checkable reasoning. To guide this process, we introduce a reward for balanced and adaptive tool-call, which balances exploration with efficiency and mitigates tool overuse. Interestingly, beyond the expected capabilities taught by atomic supervision, we empirically observe novel emergent behaviors during RL training: CodeDance demonstrates novel tool invocations, unseen compositions, and cross-task transfer. These behaviors arise without task-specific fine-tuning, suggesting a general and scalable mechanism of executable visual reasoning. Extensive experiments across reasoning benchmarks (e.g., visual search, math, chart QA) show that CodeDance not only consistently outperforms schema-driven and text-only baselines, but also surpasses advanced closed models such as GPT-4o and larger open-source models.
☆ Deep But Reliable: Advancing Multi-turn Reasoning for Thinking with Images
Recent advances in large Vision-Language Models (VLMs) have exhibited strong reasoning capabilities on complex visual tasks by thinking with images in their Chain-of-Thought (CoT), which is achieved by actively invoking tools to analyze visual inputs rather than merely perceiving them. However, existing models often struggle to reflect on and correct themselves when attempting incorrect reasoning trajectories. To address this limitation, we propose DRIM, a model that enables deep but reliable multi-turn reasoning when thinking with images in its multimodal CoT. Our pipeline comprises three stages: data construction, cold-start SFT and RL. Based on a high-resolution image dataset, we construct high-difficulty and verifiable visual question-answer pairs, where solving each task requires multi-turn tool calls to reach the correct answer. In the SFT stage, we collect tool trajectories as cold-start data, guiding a multi-turn reasoning pattern. In the RL stage, we introduce redundancy-penalized policy optimization, which incentivizes the model to develop a self-reflective reasoning pattern. The basic idea is to impose judgment on reasoning trajectories and penalize those that produce incorrect answers without sufficient multi-scale exploration. Extensive experiments demonstrate that DRIM achieves superior performance on visual understanding benchmarks.
☆ EMAG: Self-Rectifying Diffusion Sampling with Exponential Moving Average Guidance
In diffusion and flow-matching generative models, guidance techniques are widely used to improve sample quality and consistency. Classifier-free guidance (CFG) is the de facto choice in modern systems and achieves this by contrasting conditional and unconditional samples. Recent work explores contrasting negative samples at inference using a weaker model, via strong/weak model pairs, attention-based masking, stochastic block dropping, or perturbations to the self-attention energy landscape. While these strategies refine the generation quality, they still lack reliable control over the granularity or difficulty of the negative samples, and target-layer selection is often fixed. We propose Exponential Moving Average Guidance (EMAG), a training-free mechanism that modifies attention at inference time in diffusion transformers, with a statistics-based, adaptive layer-selection rule. Unlike prior methods, EMAG produces harder, semantically faithful negatives (fine-grained degradations), surfacing difficult failure modes, enabling the denoiser to refine subtle artifacts, boosting the quality and human preference score (HPS) by +0.46 over CFG. We further demonstrate that EMAG naturally composes with advanced guidance techniques, such as APG and CADS, further improving HPS.
comment: 26 pages
☆ MatLat: Material Latent Space for PBR Texture Generation
We propose a generative framework for producing high-quality PBR textures on a given 3D mesh. As large-scale PBR texture datasets are scarce, our approach focuses on effectively leveraging the embedding space and diffusion priors of pretrained latent image generative models while learning a material latent space, MatLat, through targeted fine-tuning. Unlike prior methods that freeze the embedding network and thus lead to distribution shifts when encoding additional PBR channels and hinder subsequent diffusion training, we fine-tune the pretrained VAE so that new material channels can be incorporated with minimal latent distribution deviation. We further show that correspondence-aware attention alone is insufficient for cross-view consistency unless the latent-to-image mapping preserves locality. To enforce this locality, we introduce a regularization in the VAE fine-tuning that crops latent patches, decodes them, and aligns the corresponding image regions to maintain strong pixel-latent spatial correspondence. Ablation studies and comparison with previous baselines demonstrate that our framework improves PBR texture fidelity and that each component is critical for achieving state-of-the-art performance.
comment: Project page: https://matlat-proj.github.io
☆ ProCache: Constraint-Aware Feature Caching with Selective Computation for Diffusion Transformer Acceleration AAAI 2026
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in generative modeling, yet their high computational cost hinders real-time deployment. While feature caching offers a promising training-free acceleration solution by exploiting temporal redundancy, existing methods suffer from two key limitations: (1) uniform caching intervals fail to align with the non-uniform temporal dynamics of DiT, and (2) naive feature reuse with excessively large caching intervals can lead to severe error accumulation. In this work, we analyze the evolution of DiT features during denoising and reveal that both feature changes and error propagation are highly time- and depth-varying. Motivated by this, we propose ProCache, a training-free dynamic feature caching framework that addresses these issues via two core components: (i) a constraint-aware caching pattern search module that generates non-uniform activation schedules through offline constrained sampling, tailored to the model's temporal characteristics; and (ii) a selective computation module that selectively computes within deep blocks and high-importance tokens for cached segments to mitigate error accumulation with minimal overhead. Extensive experiments on PixArt-alpha and DiT demonstrate that ProCache achieves up to 1.96x and 2.90x acceleration with negligible quality degradation, significantly outperforming prior caching-based methods.
comment: Accepted for poster presentation at AAAI 2026
☆ Towards Pixel-Wise Anomaly Location for High-Resolution PCBA \\ via Self-Supervised Image Reconstruction
Automated defect inspection of assembled Printed Circuit Board Assemblies (PCBA) is quite challenging due to the insufficient labeled data, micro-defects with just a few pixels in visually-complex and high-resolution images. To address these challenges, we present HiSIR-Net, a High resolution, Self-supervised Reconstruction framework for pixel-wise PCBA localization. Our design combines two lightweight modules that make this practical on real 4K-resolution boards: (i) a Selective Input-Reconstruction Gate (SIR-Gate) that lets the model decide where to trust reconstruction versus the original input, thereby reducing irrelevant reconstruction artifacts and false alarms; and (ii) a Region-level Optimized Patch Selection (ROPS) scheme with positional cues to select overlapping patch reconstructions coherently across arbitrary resolutions. Organically integrating these mechanisms yields clean, high-resolution anomaly maps with low false positive (FP) rate. To bridge the gap in high-resolution PCBA datasets, we further contribute a self-collected dataset named SIPCBA-500 of 500 images. We conduct extensive experiments on our SIPCBA-500 as well as public benchmarks, demonstrating the superior localization performance of our method while running at practical speed. Full code and dataset will be made available upon acceptance.
☆ Vision-Language Model Guided Image Restoration
Many image restoration (IR) tasks require both pixel-level fidelity and high-level semantic understanding to recover realistic photos with fine-grained details. However, previous approaches often struggle to effectively leverage both the visual and linguistic knowledge. Recent efforts have attempted to incorporate Vision-language models (VLMs), which excel at aligning visual and textual features, into universal IR. Nevertheless, these methods fail to utilize the linguistic priors to ensure semantic coherence during the restoration process. To address this issue, in this paper, we propose the Vision-Language Model Guided Image Restoration (VLMIR) framework, which leverages the rich vision-language priors of VLMs, such as CLIP, to enhance IR performance through improved visual perception and semantic understanding. Our approach consists of two stages: VLM-based feature extraction and diffusion-based image restoration. In the first stage, we extract complementary visual and linguistic representations of input images by condensing the visual perception and high-level semantic priors through VLMs. Specifically, we align the embeddings of captions from low-quality and high-quality images using a cosine similarity loss with LoRA fine-tuning, and employ a degradation predictor to decompose degradation and clean image content embeddings. These complementary visual and textual embeddings are then integrated into a diffusion-based model via cross-attention mechanisms for enhanced restoration. Extensive experiments and ablation studies demonstrate that VLMIR achieves superior performance across both universal and degradation-specific IR tasks, underscoring the critical role of integrated visual and linguistic knowledge from VLMs in advancing image restoration capabilities.
☆ Diagnostic Performance of Universal-Learning Ultrasound AI Across Multiple Organs and Tasks: the UUSIC25 Challenge MICCAI 2025
IMPORTANCE: Current ultrasound AI remains fragmented into single-task tools, limiting clinical utility compared to versatile modern ultrasound systems. OBJECTIVE: To evaluate the diagnostic accuracy and efficiency of single general-purpose deep learning models for multi-organ classification and segmentation. DESIGN: The Universal UltraSound Image Challenge 2025 (UUSIC25) involved developing algorithms on 11,644 images (public/private). Evaluation used an independent, multi-center test set of 2,479 images, including data from a center completely unseen during training to assess generalization. OUTCOMES: Diagnostic performance (Dice Similarity Coefficient [DSC]; Area Under the Receiver Operating Characteristic Curve [AUC]) and computational efficiency (inference time, GPU memory). RESULTS: Of 15 valid algorithms, the top model (SMART) achieved a macro-averaged DSC of 0.854 across 5 segmentation tasks and AUC of 0.766 for binary classification. Models showed high capability in segmentation (e.g., fetal head DSC: 0.942) but variability in complex tasks subject to domain shift. Notably, in breast cancer molecular subtyping, the top model's performance dropped from AUC 0.571 (internal) to 0.508 (unseen external center), highlighting generalization challenges. CONCLUSIONS: General-purpose AI models achieve high accuracy and efficiency across multiple tasks using a single architecture. However, performance degradation on unseen data suggests domain generalization is critical for future clinical deployment.
comment: 8 pages, 2 figures. Summary of the UUSIC25 Challenge held at MICCAI 2025. Extensive Supplementary Material (containing original team reports) is available in the "ancillary files" section
☆ WDFFU-Mamba: A Wavelet-guided Dual-attention Feature Fusion Mamba for Breast Tumor Segmentation in Ultrasound Images
Breast ultrasound (BUS) image segmentation plays a vital role in assisting clinical diagnosis and early tumor screening. However, challenges such as speckle noise, imaging artifacts, irregular lesion morphology, and blurred boundaries severely hinder accurate segmentation. To address these challenges, this work aims to design a robust and efficient model capable of automatically segmenting breast tumors in BUS images.We propose a novel segmentation network named WDFFU-Mamba, which integrates wavelet-guided enhancement and dual-attention feature fusion within a U-shaped Mamba architecture. A Wavelet-denoised High-Frequency-guided Feature (WHF) module is employed to enhance low-level representations through noise-suppressed high-frequency cues. A Dual Attention Feature Fusion (DAFF) module is also introduced to effectively merge skip-connected and semantic features, improving contextual consistency.Extensive experiments on two public BUS datasets demonstrate that WDFFU-Mamba achieves superior segmentation accuracy, significantly outperforming existing methods in terms of Dice coefficient and 95th percentile Hausdorff Distance (HD95).The combination of wavelet-domain enhancement and attention-based fusion greatly improves both the accuracy and robustness of BUS image segmentation, while maintaining computational efficiency.The proposed WDFFU-Mamba model not only delivers strong segmentation performance but also exhibits desirable generalization ability across datasets, making it a promising solution for real-world clinical applications in breast tumor ultrasound analysis.
☆ AnyCXR: Human Anatomy Segmentation of Chest X-ray at Any Acquisition Position using Multi-stage Domain Randomized Synthetic Data with Imperfect Annotations and Conditional Joint Annotation Regularization Learning
Robust anatomical segmentation of chest X-rays (CXRs) remains challenging due to the scarcity of comprehensive annotations and the substantial variability of real-world acquisition conditions. We propose AnyCXR, a unified framework that enables generalizable multi-organ segmentation across arbitrary CXR projection angles using only synthetic supervision. The method combines a Multi-stage Domain Randomization (MSDR) engine, which generates over 100,000 anatomically faithful and highly diverse synthetic radiographs from 3D CT volumes, with a Conditional Joint Annotation Regularization (CAR) learning strategy that leverages partial and imperfect labels by enforcing anatomical consistency in a latent space. Trained entirely on synthetic data, AnyCXR achieves strong zero-shot generalization on multiple real-world datasets, providing accurate delineation of 54 anatomical structures in PA, lateral, and oblique views. The resulting segmentation maps support downstream clinical tasks, including automated cardiothoracic ratio estimation, spine curvature assessment, and disease classification, where the incorporation of anatomical priors improves diagnostic performance. These results demonstrate that AnyCXR establishes a scalable and reliable foundation for anatomy-aware CXR analysis and offers a practical pathway toward reducing annotation burdens while improving robustness across diverse imaging conditions.
comment: 20 pages, 12 figures, Preprint (under review at Medical Image Analysis)
☆ Mitty: Diffusion-based Human-to-Robot Video Generation
Learning directly from human demonstration videos is a key milestone toward scalable and generalizable robot learning. Yet existing methods rely on intermediate representations such as keypoints or trajectories, introducing information loss and cumulative errors that harm temporal and visual consistency. We present Mitty, a Diffusion Transformer that enables video In-Context Learning for end-to-end Human2Robot video generation. Built on a pretrained video diffusion model, Mitty leverages strong visual-temporal priors to translate human demonstrations into robot-execution videos without action labels or intermediate abstractions. Demonstration videos are compressed into condition tokens and fused with robot denoising tokens through bidirectional attention during diffusion. To mitigate paired-data scarcity, we also develop an automatic synthesis pipeline that produces high-quality human-robot pairs from large egocentric datasets. Experiments on Human2Robot and EPIC-Kitchens show that Mitty delivers state-of-the-art results, strong generalization to unseen environments, and new insights for scalable robot learning from human observations.
☆ Video Detective: Seek Critical Clues Recurrently to Answer Question from Long Videos
Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model's context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model's long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
☆ Learning When to Look: A Disentangled Curriculum for Strategic Perception in Multimodal Reasoning
Multimodal Large Language Models (MLLMs) demonstrate significant potential but remain brittle in complex, long-chain visual reasoning tasks. A critical failure mode is "visual forgetting", where models progressively lose visual grounding as reasoning extends, a phenomenon aptly described as "think longer, see less". We posit this failure stems from current training paradigms prematurely entangling two distinct cognitive skills: (1) abstract logical reasoning "how-to-think") and (2) strategic visual perception ("when-to-look"). This creates a foundational cold-start deficiency -- weakening abstract reasoning -- and a strategic perception deficit, as models lack a policy for when to perceive. In this paper, we propose a novel curriculum-based framework to disentangle these skills. First, we introduce a disentangled Supervised Fine-Tuning (SFT) curriculum that builds a robust abstract reasoning backbone on text-only data before anchoring it to vision with a novel Perception-Grounded Chain-of-Thought (PG-CoT) paradigm. Second, we resolve the strategic perception deficit by formulating timing as a reinforcement learning problem. We design a Pivotal Perception Reward that teaches the model when to look by coupling perceptual actions to linguistic markers of cognitive uncertainty (e.g., "wait", "verify"), thereby learning an autonomous grounding policy. Our contributions include the formalization of these two deficiencies and the development of a principled, two-stage framework to address them, transforming the model from a heuristic-driven observer to a strategic, grounded reasoner. \textbf{Code}: \url{https://github.com/gaozilve-max/learning-when-to-look}.
☆ Robust Scene Coordinate Regression via Geometrically-Consistent Global Descriptors WACV 2026
Recent learning-based visual localization methods use global descriptors to disambiguate visually similar places, but existing approaches often derive these descriptors from geometric cues alone (e.g., covisibility graphs), limiting their discriminative power and reducing robustness in the presence of noisy geometric constraints. We propose an aggregator module that learns global descriptors consistent with both geometrical structure and visual similarity, ensuring that images are close in descriptor space only when they are visually similar and spatially connected. This corrects erroneous associations caused by unreliable overlap scores. Using a batch-mining strategy based solely on the overlap scores and a modified contrastive loss, our method trains without manual place labels and generalizes across diverse environments. Experiments on challenging benchmarks show substantial localization gains in large-scale environments while preserving computational and memory efficiency. Code is available at \href{https://github.com/sontung/robust\_scr}{github.com/sontung/robust\_scr}.
comment: WACV 2026 conference paper
☆ Any-Optical-Model: A Universal Foundation Model for Optical Remote Sensing AAAI2026
Optical satellites, with their diverse band layouts and ground sampling distances, supply indispensable evidence for tasks ranging from ecosystem surveillance to emergency response. However, significant discrepancies in band composition and spatial resolution across different optical sensors present major challenges for existing Remote Sensing Foundation Models (RSFMs). These models are typically pretrained on fixed band configurations and resolutions, making them vulnerable to real world scenarios involving missing bands, cross sensor fusion, and unseen spatial scales, thereby limiting their generalization and practical deployment. To address these limitations, we propose Any Optical Model (AOM), a universal RSFM explicitly designed to accommodate arbitrary band compositions, sensor types, and resolution scales. To preserve distinctive spectral characteristics even when bands are missing or newly introduced, AOM introduces a spectrum-independent tokenizer that assigns each channel a dedicated band embedding, enabling explicit encoding of spectral identity. To effectively capture texture and contextual patterns from sub-meter to hundred-meter imagery, we design a multi-scale adaptive patch embedding mechanism that dynamically modulates the receptive field. Furthermore, to maintain global semantic consistency across varying resolutions, AOM incorporates a multi-scale semantic alignment mechanism alongside a channel-wise self-supervised masking and reconstruction pretraining strategy that jointly models spectral-spatial relationships. Extensive experiments on over 10 public datasets, including those from Sentinel-2, Landsat, and HLS, demonstrate that AOM consistently achieves state-of-the-art (SOTA) performance under challenging conditions such as band missing, cross sensor, and cross resolution settings.
comment: Accepted by AAAI2026
☆ DAVE: A VLM Vision Encoder for Document Understanding and Web Agents
While Vision-language models (VLMs) have demonstrated remarkable performance across multi-modal tasks, their choice of vision encoders presents a fundamental weakness: their low-level features lack the robust structural and spatial information essential for document understanding and web agents. To bridge this gap, we introduce DAVE, a vision encoder purpose-built for VLMs and tailored for these tasks. Our training pipeline is designed to leverage abundant unlabeled data to bypass the need for costly large-scale annotations for document and web images. We begin with a self-supervised pretraining stage on unlabeled images, followed by a supervised autoregressive pretraining stage, where the model learns tasks like parsing and localization from limited, high-quality data. Within the supervised stage, we adopt two strategies to improve our encoder's alignment with both general visual knowledge and diverse document and web agentic tasks: (i) We introduce a novel model-merging scheme, combining encoders trained with different text decoders to ensure broad compatibility with different web agentic architectures. (ii) We use ensemble training to fuse features from pretrained generalist encoders (e.g., SigLIP2) with our own document and web-specific representations. Extensive experiments on classic document tasks, VQAs, web localization, and agent-based benchmarks validate the effectiveness of our approach, establishing DAVE as a strong vision encoder for document and web applications.
☆ CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency
Medical Vision-Language Models (VLMs) are prone to hallucinations, compromising clinical reliability. While reinforcement learning methods like Group Relative Policy Optimization (GRPO) offer a low-cost alignment solution, their reliance on sparse, outcome-based rewards inadvertently encourages models to "overthink" -- generating verbose, convoluted, and unverifiable Chain-of-Thought reasoning to justify answers. This focus on outcomes obscures factual errors and poses significant safety risks. To address this, we propose CheXPO-v2, a novel alignment framework that shifts from outcome to process supervision. Our core innovation is a Knowledge Graph Consistency Reward mechanism driven by Entity-Relation Matching. By explicitly parsing reasoning steps into structured "Disease, Relation, Anatomy" triplets, we provide fine-grained supervision that penalizes incoherent logic and hallucinations at the atomic level. Integrating this with a hard-example mining strategy, our approach significantly outperforms GRPO and state-of-the-art models on benchmarks like MIMIC-CXR-VQA. Crucially, CheXPO-v2 achieves new state-of-the-art accuracy using only 5k samples, demonstrating exceptional data efficiency while producing clinically sound and verifiable reasoning. The project source code is publicly available at: https://github.com/ecoxial2007/CheX-Phi4MM.
☆ Reasoning Palette: Modulating Reasoning via Latent Contextualization for Controllable Exploration for (V)LMs
Exploration capacity shapes both inference-time performance and reinforcement learning (RL) training for large (vision-) language models, as stochastic sampling often yields redundant reasoning paths with little high-level diversity. This paper proposes Reasoning Palette, a novel latent-modulation framework that endows the model with a stochastic latent variable for strategic contextualization, guiding its internal planning prior to token generation. This latent context is inferred from the mean-pooled embedding of a question-answer pair via a variational autoencoder (VAE), where each sampled latent potentially encodes a distinct reasoning context. During inference, a sampled latent is decoded into learnable token prefixes and prepended to the input prompt, modulating the model's internal reasoning trajectory. In this way, the model performs internal sampling over reasoning strategies prior to output generation, which shapes the style and structure of the entire response sequence. A brief supervised fine-tuning (SFT) warm-up phase allows the model to adapt to this latent conditioning. Within RL optimization, Reasoning Palette facilitates structured exploration by enabling on-demand injection for diverse reasoning modes, significantly enhancing exploration efficiency and sustained learning capability. Experiments across multiple reasoning benchmarks demonstrate that our method enables interpretable and controllable control over the (vision-) language model's strategic behavior, thereby achieving consistent performance gains over standard RL methods.
☆ Fose: Fusion of One-Step Diffusion and End-to-End Network for Pansharpening
Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://github.com/Kai-Liu001/Fose.
comment: Code link: https://github.com/Kai-Liu001/Fose
☆ Anatomical Region-Guided Contrastive Decoding: A Plug-and-Play Strategy for Mitigating Hallucinations in Medical VLMs
Medical Vision-Language Models (MedVLMs) show immense promise in clinical applicability. However, their reliability is hindered by hallucinations, where models often fail to derive answers from visual evidence, instead relying on learned textual priors. Existing mitigation strategies for MedVLMs have distinct limitations: training-based methods rely on costly expert annotations, limiting scalability, while training-free interventions like contrastive decoding, though data-efficient, apply a global, untargeted correction whose effects in complex real-world clinical settings can be unreliable. To address these challenges, we introduce Anatomical Region-Guided Contrastive Decoding (ARCD), a plug-and-play strategy that mitigates hallucinations by providing targeted, region-specific guidance. Our module leverages an anatomical mask to direct a three-tiered contrastive decoding process. By dynamically re-weighting at the token, attention, and logits levels, it verifiably steers the model's focus onto specified regions, reinforcing anatomical understanding and suppressing factually incorrect outputs. Extensive experiments across diverse datasets, including chest X-ray, CT, brain MRI, and ocular ultrasound, demonstrate our method's effectiveness in improving regional understanding, reducing hallucinations, and enhancing overall diagnostic accuracy.
☆ Globally Optimal Solution to the Generalized Relative Pose Estimation Problem using Affine Correspondences
Mobile devices equipped with a multi-camera system and an inertial measurement unit (IMU) are widely used nowadays, such as self-driving cars. The task of relative pose estimation using visual and inertial information has important applications in various fields. To improve the accuracy of relative pose estimation of multi-camera systems, we propose a globally optimal solver using affine correspondences to estimate the generalized relative pose with a known vertical direction. First, a cost function about the relative rotation angle is established after decoupling the rotation matrix and translation vector, which minimizes the algebraic error of geometric constraints from affine correspondences. Then, the global optimization problem is converted into two polynomials with two unknowns based on the characteristic equation and its first derivative is zero. Finally, the relative rotation angle can be solved using the polynomial eigenvalue solver, and the translation vector can be obtained from the eigenvector. Besides, a new linear solution is proposed when the relative rotation is small. The proposed solver is evaluated on synthetic data and real-world datasets. The experiment results demonstrate that our method outperforms comparable state-of-the-art methods in accuracy.
☆ It is not always greener on the other side: Greenery perception across demographics and personalities in multiple cities
Quantifying and assessing urban greenery is consequential for planning and development, reflecting the everlasting importance of green spaces for multiple climate and well-being dimensions of cities. Evaluation can be broadly grouped into objective (e.g., measuring the amount of greenery) and subjective (e.g., polling the perception of people) approaches, which may differ -- what people see and feel about how green a place is might not match the measurements of the actual amount of vegetation. In this work, we advance the state of the art by measuring such differences and explaining them through human, geographic, and spatial dimensions. The experiments rely on contextual information extracted from street view imagery and a comprehensive urban visual perception survey collected from 1,000 people across five countries with their extensive demographic and personality information. We analyze the discrepancies between objective measures (e.g., Green View Index (GVI)) and subjective scores (e.g., pairwise ratings), examining whether they can be explained by a variety of human and visual factors such as age group and spatial variation of greenery in the scene. The findings reveal that such discrepancies are comparable around the world and that demographics and personality do not play a significant role in perception. Further, while perceived and measured greenery correlate consistently across geographies (both where people and where imagery are from), where people live plays a significant role in explaining perceptual differences, with these two, as the top among seven, features that influences perceived greenery the most. This location influence suggests that cultural, environmental, and experiential factors substantially shape how individuals observe greenery in cities.
☆ ABE-CLIP: Training-Free Attribute Binding Enhancement for Compositional Image-Text Matching
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable performance in various multimodal tasks. However, it still struggles with compositional image-text matching, particularly in accurately associating objects with their corresponding attributes, because its inherent global representation often overlooks fine-grained semantics for attribute binding. Existing methods often require additional training or extensive hard negative sampling, yet they frequently show limited generalization to novel compositional concepts and fail to fundamentally address the drawbacks of global representations. In this paper, we propose ABE-CLIP, a novel training-free Attribute Binding Enhancement method designed to strengthen attribute-object binding in CLIP-like models. Specifically, we employ a Semantic Refinement Mechanism to refine token embeddings for both object and attribute phrases in the text, thereby mitigating attribute confusion and improving semantic precision. We further introduce a Local Token-Patch Alignment strategy that computes similarity scores between refined textual tokens and their most relevant image patches. By aggregating localized similarity scores, ABE-CLIP computes the final image-text similarity. Experiments on multiple datasets demonstrate that ABE-CLIP significantly improves attribute-object binding performance, even surpassing methods that require extensive training.
comment: 10 pages, 8 figures
☆ Can Synthetic Images Serve as Effective and Efficient Class Prototypes?
Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
☆ PhysFire-WM: A Physics-Informed World Model for Emulating Fire Spread Dynamics
Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.
☆ Text-Conditioned Background Generation for Editable Multi-Layer Documents
We present a framework for document-centric background generation with multi-page editing and thematic continuity. To ensure text regions remain readable, we employ a \emph{latent masking} formulation that softly attenuates updates in the diffusion space, inspired by smooth barrier functions in physics and numerical optimization. In addition, we introduce \emph{Automated Readability Optimization (ARO)}, which automatically places semi-transparent, rounded backing shapes behind text regions. ARO determines the minimal opacity needed to satisfy perceptual contrast standards (WCAG 2.2) relative to the underlying background, ensuring readability while maintaining aesthetic harmony without human intervention. Multi-page consistency is maintained through a summarization-and-instruction process, where each page is distilled into a compact representation that recursively guides subsequent generations. This design reflects how humans build continuity by retaining prior context, ensuring that visual motifs evolve coherently across an entire document. Our method further treats a document as a structured composition in which text, figures, and backgrounds are preserved or regenerated as separate layers, allowing targeted background editing without compromising readability. Finally, user-provided prompts allow stylistic adjustments in color and texture, balancing automated consistency with flexible customization. Our training-free framework produces visually coherent, text-preserving, and thematically aligned documents, bridging generative modeling with natural design workflows.
♻ ☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce mimic-video, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
comment: Revised Introduction, Related Work, and Appendix. Additional minor notational and grammatical fixes
♻ ☆ Human Mesh Modeling for Anny Body
Parametric body models provide the structural basis for many human-centric tasks, yet existing models often rely on costly 3D scans and learned shape spaces that are proprietary and demographically narrow. We introduce Anny, a simple, fully differentiable, and scan-free human body model grounded in anthropometric knowledge from the MakeHuman community. Anny defines a continuous, interpretable shape space, where phenotype parameters (e.g. gender, age, height, weight) control blendshapes spanning a wide range of human forms--across ages (from infants to elders), body types, and proportions. Calibrated using WHO population statistics, it provides realistic and demographically grounded human shape variation within a single unified model. Thanks to its openness and semantic control, Anny serves as a versatile foundation for 3D human modeling--supporting millimeter-accurate scan fitting, controlled synthetic data generation, and Human Mesh Recovery (HMR). We further introduce Anny-One, a collection of 800k photorealistic images generated with Anny, showing that despite its simplicity, HMR models trained with Anny can match the performance of those trained with scan-based body models. The Anny body model and its code are released under the Apache 2.0 license, making Anny an accessible foundation for human-centric 3D modeling.
comment: We release our model and code at https://github.com/naver/anny
♻ ☆ Step-GUI Technical Report
Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
comment: 41 pages, 26 figures
♻ ☆ On the dynamic evolution of CLIP texture-shape bias and its relationship to human alignment and model robustness
Contrastive language-image models such as CLIP have demonstrated remarkable generalization capabilities. However, how their internal visual representations evolve during training and how this evolution relates to human perception remains poorly understood. Most existing analysis characterize fully trained models, leaving the dynamics of representational biases and perceptual alignment largely unexplored. In this work, we present an epoch-by-epoch analysis of CLIP models throughout training, focusing on the evolution of texture-shape bias, alignment with human perceptual judgements, and sensitivity to image noise. Using multiple perceptual benchmarks spanning low-level image quality assessment, mid-level perceptual similarity, saliency correspondence, and noisy robustness, we identify a consistent, training-stage-dependent representational transition. Early training stages exhibit strong texture bias, elevated alignment with low-level human perceptual measures, and increased sensitivity to Gaussian noise perturbations. As training progresses, this texture bias gradually diminishes in favor of more shape-based representations, coinciding with improved robustness to noise and a decline in low-level perceptual alignment. Importantly, these dynamics are consistently observed across multiple CLIP model scales, indicating that the phenomenon is not specific to a particular architecture size. Our findings provide an empirical characterization of how perceptual alignment, feature bias, and robustness co-evolve during multimodal model training. This work reveals a systematic trade-off between early low-level perceptual alignment and later robustness, offering new insights into the representational dynamics of vision-language models and their relationship to human visual processing.
♻ ☆ The Generation Phases of Flow Matching: a Denoising Perspective
Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a framework to empirically probe the generation process. Laying down the formal connections between flow matching models and denoisers, we provide a common ground to compare their performances on generation and denoising. This enables the design of principled and controlled perturbations to influence sample generation: noise and drift. This leads to new insights on the distinct dynamical phases of the generative process, enabling us to precisely characterize at which stage of the generative process denoisers succeed or fail and why this matters.
♻ ☆ FakeParts: a New Family of AI-Generated DeepFakes
We introduce FakeParts, a new class of deepfakes characterized by subtle, localized manipulations to specific spatial regions or temporal segments of otherwise authentic videos. Unlike fully synthetic content, these partial manipulations - ranging from altered facial expressions to object substitutions and background modifications - blend seamlessly with real elements, making them particularly deceptive and difficult to detect. To address the critical gap in detection, we present FakePartsBench, the first large-scale benchmark specifically designed to capture the full spectrum of partial deepfakes. Comprising over 81K (including 44K FakeParts) videos with pixel- and frame-level manipulation annotations, our dataset enables comprehensive evaluation of detection methods. Our user studies demonstrate that FakeParts reduces human detection accuracy by up to 26% compared to traditional deepfakes, with similar performance degradation observed in state-of-the-art detection models. This work identifies an urgent vulnerability in current detectors and provides the necessary resources to develop methods robust to partial manipulations.
♻ ☆ STAGNet: A Spatio-Temporal Graph and LSTM Framework for Accident Anticipation
Accident prediction and timely preventive actions improve road safety by reducing the risk of injury to road users and minimizing property damage. Hence, they are critical components of advanced driver assistance systems (ADAS) and autonomous vehicles. While many existing systems depend on multiple sensors such as LiDAR, radar, and GPS, relying solely on dash-cam videos presents a more challenging, yet more cost-effective and easily deployable solution. In this work, we incorporate improved spatio-temporal features and aggregate them through a recurrent network to enhance state-of-the-art graph neural networks for predicting accidents from dash-cam videos. Experiments using three publicly available datasets (DAD, DoTA and DADA) show that our proposed STAGNet model achieves higher average precision and mean time-to-accident scores than previous methods, both when cross-validated on a given dataset and when trained and tested on different datasets.
comment: Published in IEEE Access
♻ ☆ The Eye as a Window to Systemic Health: A Survey of Retinal Imaging from Classical Techniques to Oculomics
The unique vascularized anatomy of the human eye, encased in the retina, provides an opportunity to act as a window for human health. The retinal structure assists in assessing the early detection, monitoring of disease progression and intervention for both ocular and non-ocular diseases. The advancement in imaging technology leveraging Artificial Intelligence has seized this opportunity to bridge the gap between the eye and human health. This track paves the way for unveiling systemic health insight from the ocular system and surrogating non-invasive markers for timely intervention and identification. The new frontiers of oculomics in ophthalmology cover both ocular and systemic diseases, and getting more attention to explore them. In this survey paper, we explore the evolution of retinal imaging techniques, the dire need for the integration of AI-driven analysis, and the shift of retinal imaging from classical techniques to oculomics. We also discuss some hurdles that may be faced in the progression of oculomics, highlighting the research gaps and future directions.
comment: Review Article
♻ ☆ Enhancing Blind Face Restoration through Online Reinforcement Learning
Blind Face Restoration (BFR) encounters inherent challenges in exploring its large solution space, leading to common artifacts like missing details and identity ambiguity in the restored images. To tackle these challenges, we propose a Likelihood-Regularized Policy Optimization (LRPO) framework, the first to apply online reinforcement learning (RL) to the BFR task. LRPO leverages rewards from sampled candidates to refine the policy network, increasing the likelihood of high-quality outputs while improving restoration performance on low-quality inputs. However, directly applying RL to BFR creates incompatibility issues, producing restoration results that deviate significantly from the ground truth. To balance perceptual quality and fidelity, we propose three key strategies: 1) a composite reward function tailored for face restoration assessment, 2) ground-truth guided likelihood regularization, and 3) noise-level advantage assignment. Extensive experiments demonstrate that our proposed LRPO significantly improves the face restoration quality over baseline methods and achieves state-of-the-art performance.
comment: 8 figures, 4 tables
♻ ☆ SpikeDet: Better Firing Patterns for Accurate and Energy-Efficient Object Detection with Spiking Neural Networks
Spiking Neural Networks (SNNs) are the third generation of neural networks. They have gained widespread attention in object detection due to their low power consumption and biological interpretability. However, existing SNN-based object detection methods suffer from local firing saturation, where adjacent neurons concurrently reach maximum firing rates, especially in object-centric regions. This abnormal neuron firing pattern reduces the feature discrimination capability and detection accuracy, while also increasing the firing rates that prevent SNNs from achieving their potential energy efficiency. To address this problem, we propose SpikeDet, a novel spiking object detector that optimizes firing patterns for accurate and energy-efficient detection. Specifically, we design a spiking backbone network, MDSNet, which effectively adjusts the membrane synaptic input distribution at each layer, achieving better neuron firing patterns during spiking feature extraction. For the neck, to better utilize and preserve these high-quality backbone features, we introduce the Spiking Multi-direction Fusion Module (SMFM), which realizes multi-direction fusion of spiking features, enhancing the multi-scale detection capability of the model. Furthermore, we propose the Local Firing Saturation Index (LFSI) to quantitatively measure local firing saturation. Experimental results validate the effectiveness of our method, with SpikeDet achieving superior performance. On the COCO 2017 dataset, it achieves 52.2% AP, outperforming previous SNN-based methods by 3.3% AP while requiring only half the power consumption. On object detection sub-tasks, including event-based GEN1, underwater URPC 2019, low-light ExDARK, and dense scene CrowdHuman datasets, SpikeDet also achieves the best performance.
♻ ☆ Equivariant symmetry-aware head pose estimation for fetal MRI
We present E(3)-Pose, a novel fast pose estimation method that jointly and explicitly models rotation equivariance and object symmetry. Our work is motivated by the challenging problem of accounting for fetal head motion during a diagnostic MRI scan. We aim to enable automatic adaptive prescription of 2D diagnostic MRI slices with 6-DoF head pose estimation, supported by 3D MRI volumes rapidly acquired before each 2D slice. Existing methods struggle to generalize to clinical volumes, due to pose ambiguities induced by inherent anatomical symmetries, as well as low resolution, noise, and artifacts. In contrast, E(3)-Pose captures anatomical symmetries and rigid pose equivariance by construction, and yields robust estimates of the fetal head pose. Our experiments on publicly available and representative clinical fetal MRI datasets demonstrate the superior robustness and generalization of our method across domains. Crucially, E(3)-Pose achieves state-of-the-art accuracy on clinical MRI volumes, paving the way for clinical translation. Our implementation is available at github.com/ramyamut/E3-Pose.
♻ ☆ SSCATeR: Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling for Real-Time 3D Object Detection in LiDAR Point Clouds
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
comment: 23 Pages, 27 Figures, This work has been submitted to the IEEE Sensors Journal for possible publication
♻ ☆ CharDiff-LP: A Diffusion Model with Character-Level Guidance for License Plate Image Restoration
License plate image restoration is important not only as a preprocessing step for license plate recognition but also for enhancing evidential value, improving visual clarity, and enabling broader reuse of license plate images. We propose a novel diffusion-based framework with character-level guidance, CharDiff-LP, which effectively restores and recognizes severely degraded license plate images captured under realistic conditions. CharDiff-LP leverages fine-grained character-level priors extracted through external segmentation and Optical Character Recognition (OCR) modules tailored for low-quality license plate images. For precise and focused guidance, CharDiff-LP incorporates a novel Character-guided Attention through Region-wise Masking (CHARM) module, which ensures that each character's guidance is restricted to its own region, thereby avoiding interference with other regions. In experiments, CharDiff-LP significantly outperformed baseline restoration models in both restoration quality and recognition accuracy, achieving a 28.3% relative reduction in character error rate (CER) on the Roboflow-LP dataset compared with the best-performing baseline.
comment: 15 pages, 6 figures, 4 tables
♻ ☆ CLUENet: Cluster Attention Makes Neural Networks Have Eyes
Despite the success of convolution- and attention-based models in vision tasks, their rigid receptive fields and complex architectures limit their ability to model irregular spatial patterns and hinder interpretability, therefore posing challenges for tasks requiring high model transparency. Clustering paradigms offer promising interpretability and flexible semantic modeling, but suffer from limited accuracy, low efficiency, and gradient vanishing during training. To address these issues, we propose CLUster attEntion Network (CLUENet), an transparent deep architecture for visual semantic understanding. We propose three key innovations include (i) a Global Soft Aggregation and Hard Assignment with a Temperature-Scaled Cosin Attention and gated residual connections for enhanced local modeling, (ii) inter-block Hard and Shared Feature Dispatching, and (iii) an improved cluster pooling strategy. These enhancements significantly improve both classification performance and visual interpretability. Experiments on CIFAR-100 and Mini-ImageNet demonstrate that CLUENet outperforms existing clustering methods and mainstream visual models, offering a compelling balance of accuracy, efficiency, and transparency.
comment: 10 pages, 6 figures, 2026 Association for the Advancement of Artificial Intelligence
♻ ☆ SGS-3D: High-Fidelity 3D Instance Segmentation via Reliable Semantic Mask Splitting and Growing
Accurate 3D instance segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D instance segmentation based on 2D-to-3D lifting approaches struggle to produce precise instance-level segmentation, due to accumulated errors introduced during the lifting process from ambiguous semantic guidance and insufficient depth constraints. To tackle these challenges, we propose splitting and growing reliable semantic mask for high-fidelity 3D instance segmentation (SGS-3D), a novel "split-then-grow" framework that first purifies and splits ambiguous lifted masks using geometric primitives, and then grows them into complete instances within the scene. Unlike existing approaches that directly rely on raw lifted masks and sacrifice segmentation accuracy, SGS-3D serves as a training-free refinement method that jointly fuses semantic and geometric information, enabling effective cooperation between the two levels of representation. Specifically, for semantic guidance, we introduce a mask filtering strategy that leverages the co-occurrence of 3D geometry primitives to identify and remove ambiguous masks, thereby ensuring more reliable semantic consistency with the 3D object instances. For the geometric refinement, we construct fine-grained object instances by exploiting both spatial continuity and high-level features, particularly in the case of semantic ambiguity between distinct objects. Experimental results on ScanNet200, ScanNet++, and KITTI-360 demonstrate that SGS-3D substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained models, yielding high-fidelity object instances while maintaining strong generalization across diverse indoor and outdoor environments. Code is available at https://github.com/wangchaolei7/SGS-3D.
♻ ☆ EDVD-LLaMA: Explainable Deepfake Video Detection via Multimodal Large Language Model Reasoning
The rapid development of deepfake video technology has not only facilitated artistic creation but also made it easier to spread misinformation. Traditional deepfake video detection (DVD) methods face issues such as a lack of transparency in their principles and insufficient generalization capabilities to cope with evolving forgery techniques. This highlights an urgent need for detectors that can identify forged content and provide verifiable reasoning explanations. This paper proposes the explainable deepfake video detection (EDVD) task and designs the EDVD-LLaMA multimodal, a large language model (MLLM) reasoning framework, which provides traceable reasoning processes alongside accurate detection results and trustworthy explanations. Our approach first incorporates a Spatio-Temporal Subtle Information Tokenization (ST-SIT) to extract and fuse global and local cross-frame deepfake features, providing rich spatio-temporal semantic information input for MLLM reasoning. Second, we construct a Fine-grained Multimodal Chain-of-Thought (Fg-MCoT) mechanism, which introduces facial feature data as hard constraints during the reasoning process to achieve pixel-level spatio-temporal video localization, suppress hallucinated outputs, and enhance the reliability of the chain of thought. In addition, we build an Explainable Reasoning FF++ dataset (ER-FF++set), leveraging structured data to annotate videos and ensure quality control, thereby supporting dual supervision for reasoning and detection. Extensive experiments demonstrate that EDVD-LLaMA achieves outstanding performance and robustness in terms of detection accuracy, explainability, and its ability to handle cross-forgery methods and cross-dataset scenarios. Compared to previous DVD methods, it provides a more explainable and superior solution. The project page is available at: https://11ouo1.github.io/edvd-llama/.
♻ ☆ Edge-Native Digitization of Handwritten Marksheets: A Hybrid Heuristic-Deep Learning Framework
The digitization of structured handwritten documents, such as academic marksheets, remains a significant challenge due to the dual complexity of irregular table structures and diverse handwriting styles. While recent Transformer-based approaches like TableNet and TrOCR achieve state-of-the-art accuracy, their high computational cost renders them unsuitable for resource-constrained edge deployments. This paper introduces a resource-efficient hybrid framework that integrates a heuristic OpenCV-based pipeline for rapid table structure detection with a modified lightweight YOLOv8 architecture for handwritten character recognition. By strategically removing the SPPF and deep C2f layers from the standard YOLOv8 backbone, we reduce computational overhead while maintaining high recognition fidelity. Experimental results on the EMNIST digit benchmark demonstrate that our Modified YOLOv8 model achieves 97.5% accuracy. Furthermore, we provide a comprehensive efficiency analysis showing that our framework offers a 95 times inference speedup over standard OCR pipelines and massive efficiency gains over emerging Large Multimodal Models (LMMs) like Qwen2.5-VL, achieving real-time performance 29 FPS on standard CPU hardware. A qualitative and quantitative evaluation on the AMES dataset, a challenging subset of real-world marksheets, confirms the system's robustness in handling mixed alphanumeric content, bridging the gap between high-performance deep learning and practical, scalable document automation.
♻ ☆ Embedding-Driven Data Distillation for 360-Degree IQA With Residual-Aware Refinement
This article identifies and addresses a fundamental bottleneck in data-driven 360-degree image quality assessment (IQA): the lack of intelligent, sample-level data selection. Hence, we propose a novel framework that introduces a critical refinement step between patches sampling and model training. The core of our contribution is an embedding similarity-based selection algorithm that distills an initial, potentially redundant set of patches into a compact, maximally informative subset. This is formulated as a regularized optimization problem that preserves intrinsic perceptual relationships in a low-dimensional space, using residual analysis to explicitly filter out irrelevant or redundant samples. Extensive experiments on three benchmark datasets (CVIQ, OIQA, MVAQD) demonstrate that our selection enables a baseline model to match or exceed the performance of using all sampled data while keeping only 40-50% of patches. Particularly, we demonstrate the universal applicability of our approach by integrating it with several state-of-the-art IQA models, incleasy to deploy. Most significantly, its value as a generic,uding CNN- and transformer-based architectures, consistently enabling them to maintain or improve performance with 20-40\% reduced computational load. This work establishes that adaptive, post-sampling data refinement is a powerful and widely applicable strategy for achieving efficient and robust 360-degree IQA.
comment: Submitted to IEEE Transactions on Image Processing
♻ ☆ DeContext as Defense: Safe Image Editing in Diffusion Transformers
In-context diffusion models allow users to modify images with remarkable ease and realism. However, the same power raises serious privacy concerns: personal images can be easily manipulated for identity impersonation, misinformation, or other malicious uses, all without the owner's consent. While prior work has explored input perturbations to protect against misuse in personalized text-to-image generation, the robustness of modern, large-scale in-context DiT-based models remains largely unexamined. In this paper, we propose DeContext, a new method to safeguard input images from unauthorized in-context editing. Our key insight is that contextual information from the source image propagates to the output primarily through multimodal attention layers. By injecting small, targeted perturbations that weaken these cross-attention pathways, DeContext breaks this flow, effectively decouples the link between input and output. This simple defense is both efficient and robust. We further show that early denoising steps and specific transformer blocks dominate context propagation, which allows us to concentrate perturbations where they matter most. Experiments on Flux Kontext and Step1X-Edit show that DeContext consistently blocks unwanted image edits while preserving visual quality. These results highlight the effectiveness of attention-based perturbations as a powerful defense against image manipulation. Code is available at https://github.com/LinghuiiShen/DeContext.
comment: 17 pages, 11 figures
♻ ☆ A multi-centre, multi-device benchmark dataset for landmark-based comprehensive fetal biometry
Accurate fetal growth assessment from ultrasound (US) relies on precise biometry measured by manually identifying anatomical landmarks in standard planes. Manual landmarking is time-consuming, operator-dependent, and sensitive to variability across scanners and sites, limiting the reproducibility of automated approaches. There is a need for multi-source annotated datasets to develop artificial intelligence-assisted fetal growth assessment methods. To address this bottleneck, we present an open, multi-centre, multi-device benchmark dataset of fetal US images with expert anatomical landmark annotations for clinically used fetal biometric measurements. These measurements include head bi-parietal and occipito-frontal diameters, abdominal transverse and antero-posterior diameters, and femoral length. The dataset comprises 4,513 de-identified US images from 1,904 subjects acquired at three clinical sites using seven different US devices. We provide standardised, subject-disjoint train/test splits, evaluation code, and baseline results to enable fair and reproducible comparison of methods. Using an automatic biometry model, we quantify domain shift and demonstrate that training and evaluation confined to a single centre substantially overestimate performance relative to multi-centre testing. To the best of our knowledge, this is the first publicly available multi-centre, multi-device, landmark-annotated dataset that covers all primary fetal biometry measures, providing a robust benchmark for domain adaptation and multi-centre generalisation in fetal biometry and enabling more reliable AI-assisted fetal growth assessment across centres. All data, annotations, training code, and evaluation pipelines are made publicly available.
comment: 11 pages, 5 figures, 3 tables
♻ ☆ CLAReSNet: When Convolution Meets Latent Attention for Hyperspectral Image Classification
Hyperspectral image (HSI) classification faces critical challenges, including high spectral dimensionality, complex spectral-spatial correlations, and limited training samples with severe class imbalance. While CNNs excel at local feature extraction and transformers capture long-range dependencies, their isolated application yields suboptimal results due to quadratic complexity and insufficient inductive biases. We propose CLAReSNet (Convolutional Latent Attention Residual Spectral Network), a hybrid architecture that integrates multi-scale convolutional extraction with transformer-style attention via an adaptive latent bottleneck. The model employs a multi-scale convolutional stem with deep residual blocks and an enhanced Convolutional Block Attention Module for hierarchical spatial features, followed by spectral encoder layers combining bidirectional RNNs (LSTM/GRU) with Multi-Scale Spectral Latent Attention (MSLA). MSLA reduces complexity from $\mathcal{O}(T^2D)$ to $\mathcal{O}(T\log(T)D)$ by adaptive latent token allocation (8-64 tokens) that scales logarithmically with the sequence length. Hierarchical cross-attention fusion dynamically aggregates multi-level representations for robust classification. Experiments conducted on the Indian Pines and Salinas datasets show state-of-the-art performance, achieving overall accuracies of 99.71% and 99.96%, significantly surpassing HybridSN, SSRN, and SpectralFormer. The learned embeddings exhibit superior inter-class separability and compact intra-class clustering, validating CLAReSNet's effectiveness under severe class imbalance.
♻ ☆ MILE: A Mechanically Isomorphic Exoskeleton Data Collection System with Fingertip Visuotactile Sensing for Dexterous Manipulation
Imitation learning provides a promising approach to dexterous hand manipulation, but its effectiveness is limited by the lack of large-scale, high-fidelity data. Existing data-collection pipelines suffer from inaccurate motion retargeting, low data-collection efficiency, and missing high-resolution fingertip tactile sensing. We address this gap with MILE, a mechanically isomorphic teleoperation and data-collection system co-designed from human hand to exoskeleton to robotic hand. The exoskeleton is anthropometrically derived from the human hand, and the robotic hand preserves one-to-one joint-position isomorphism, eliminating nonlinear retargeting and enabling precise, natural control. The exoskeleton achieves a multi-joint mean absolute angular error below one degree, while the robotic hand integrates compact fingertip visuotactile modules that provide high-resolution tactile observations. Built on this retargeting-free interface, we teleoperate complex, contact-rich in-hand manipulation and efficiently collect a multimodal dataset comprising high-resolution fingertip visuotactile signals, RGB-D images, and joint positions. The teleoperation pipeline achieves a mean success rate improvement of 64%. Incorporating fingertip tactile observations further increases the success rate by an average of 25% over the vision-only baseline, validating the fidelity and utility of the dataset. Further details are available at: https://sites.google.com/view/mile-system.
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ Holmes: Towards Effective and Harmless Model Ownership Verification to Personalized Large Vision Models via Decoupling Common Features
Large vision models (LVMs) achieve remarkable performance in various downstream tasks, primarily by personalizing pre-trained models through fine-tuning with private and valuable local data, which makes the personalized model a valuable intellectual property. Similar to the era of traditional DNNs, model stealing attacks also pose significant risks to LVMs. However, this paper reveals that most existing defense methods (developed for traditional DNNs), typically designed for models trained from scratch, either introduce additional security risks, are prone to misjudgment, or are even ineffective for fine-tuned models. To alleviate these problems, this paper proposes a harmless model ownership verification method for personalized LVMs by decoupling similar common features. In general, our method consists of three main stages. In the first stage, we create shadow models that retain common features of the victim model while disrupting dataset-specific features. We represent the dataset-specific features of the victim model by computing the output differences between the shadow and victim models, without altering the victim model or its training process. After that, a meta-classifier is trained to identify stolen models by determining whether suspicious models contain the dataset-specific features of the victim. In the third stage, we conduct model ownership verification by hypothesis test to mitigate randomness and enhance robustness. Extensive experiments on benchmark datasets verify the effectiveness of the proposed method in detecting different types of model stealing simultaneously. Our codes are available at https://github.com/zlh-thu/Holmes.
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common Frechet Inception Distance (FID) metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ Human-like Content Analysis for Generative AI with Language-Grounded Sparse Encoders
The rapid development of generative AI has transformed content creation, communication, and human development. However, this technology raises profound concerns in high-stakes domains, demanding rigorous methods to analyze and evaluate AI-generated content. While existing analytic methods often treat images as indivisible wholes, real-world AI failures generally manifest as specific visual patterns that can evade holistic detection and suit more granular and decomposed analysis. Here we introduce a content analysis tool, Language-Grounded Sparse Encoders (LanSE), which decompose images into interpretable visual patterns with natural language descriptions. Utilizing interpretability modules and large multimodal models, LanSE can automatically identify visual patterns within data modalities. Our method discovers more than 5,000 visual patterns with 93\% human agreement, provides decomposed evaluation outperforming existing methods, establishes the first systematic evaluation of physical plausibility, and extends to medical imaging settings. Our method's capability to extract language-grounded patterns can be naturally adapted to numerous fields, including biology and geography, as well as other data modalities such as protein structures and time series, thereby advancing content analysis for generative AI.
♻ ☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 14 pages, 21 figures. Preprint
♻ ☆ An AI-driven Assessment of Bone Density as a Biomarker Leading to the Aging Law
As global population aging intensifies, there is growing interest in the study of biological age. Bones have long been used to evaluate biological age, and the decline in bone density with age is a well-recognized phenomenon in adults. However, the pattern of this decline remains controversial, making it difficult to serve as a reliable indicator of the aging process. Here we present a novel AI-driven statistical method to assess the bone density, and a discovery that the bone mass distribution in trabecular bone of vertebrae follows a non-Gaussian, unimodal, and skewed distribution in CT images. The statistical mode of the distribution is defined as the measure of bone mass, which is a groundbreaking assessment of bone density, named Trabecular Bone Density (TBD). The dataset of CT images are collected from 1,719 patients who underwent PET/CT scans in three hospitals, in which a subset of the dataset is used for AI model training and generalization. Based upon the cases, we demonstrate that the pattern of bone density declining with aging exhibits a consistent trend of exponential decline across sexes and age groups using TBD assessment. The developed AI-driven statistical method blazes a trail in the field of AI for reliable quantitative computation and AI for medicine. The findings suggest that human aging is a gradual process, with the rate of decline slowing progressively over time, which will provide a valuable basis for scientific prediction of life expectancy.
♻ ☆ MiVLA: Towards Generalizable Vision-Language-Action Model with Human-Robot Mutual Imitation Pre-training
While leveraging abundant human videos and simulated robot data poses a scalable solution to the scarcity of real-world robot data, the generalization capability of existing vision-language-action models (VLAs) remains limited by mismatches in camera views, visual appearance, and embodiment morphologies. To overcome this limitation, we propose MiVLA, a generalizable VLA empowered by human-robot mutual imitation pre-training, which leverages inherent behavioral similarity between human hands and robotic arms to build a foundation of strong behavioral priors for both human actions and robotic control. Specifically, our method utilizes kinematic rules with left/right hand coordinate systems for bidirectional alignment between human and robot action spaces. Given human or simulated robot demonstrations, MiVLA is trained to forecast behavior trajectories for one embodiment, and imitate behaviors for another one unseen in the demonstration. Based on this mutual imitation, it integrates the behavioral fidelity of real-world human data with the manipulative diversity of simulated robot data into a unified model, thereby enhancing the generalization capability for downstream tasks. Extensive experiments conducted on both simulation and real-world platforms with three robots (ARX, PiPer and LocoMan), demonstrate that MiVLA achieves strong improved generalization capability, outperforming state-of-the-art VLAs (e.g., $\boldsymbolπ_{0}$, $\boldsymbolπ_{0.5}$ and H-RDT) by 25% in simulation, and 14% in real-world robot control tasks.
♻ ☆ MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction
Computed Tomography (CT) technology reduces radiation haz-ards to the human body through sparse sampling, but fewer sampling angles pose challenges for image reconstruction. Score-based generative models are widely used in sparse-view CT re-construction, performance diminishes significantly with a sharp reduction in projection angles. Therefore, we propose an ultra-sparse view CT reconstruction method utilizing multi-scale dif-fusion models (MSDiff), designed to concentrate on the global distribution of information and facilitate the reconstruction of sparse views with local image characteristics. Specifically, the proposed model ingeniously integrates information from both comprehensive sampling and selectively sparse sampling tech-niques. Through precise adjustments in diffusion model, it is capable of extracting diverse noise distribution, furthering the understanding of the overall structure of images, and aiding the fully sampled model in recovering image information more effec-tively. By leveraging the inherent correlations within the projec-tion data, we have designed an equidistant mask, enabling the model to focus its attention more effectively. Experimental re-sults demonstrated that the multi-scale model approach signifi-cantly improved the quality of image reconstruction under ultra-sparse angles, with good generalization across various datasets.
♻ ☆ From Engineering Diagrams to Graphs: Digitizing P&IDs with Transformers
Digitizing engineering diagrams like Piping and Instrumentation Diagrams (P&IDs) plays a vital role in maintainability and operational efficiency of process and hydraulic systems. Previous methods typically decompose the task into separate steps such as symbol detection and line detection, which can limit their ability to capture the structure in these diagrams. In this work, a transformer-based approach leveraging the Relationformer that addresses this limitation by jointly extracting symbols and their interconnections from P&IDs is introduced. To evaluate our approach and compare it to a modular digitization approach, we present the first publicly accessible benchmark dataset for P&ID digitization, annotated with graph-level ground truth. Experimental results on real-world diagrams show that our method significantly outperforms the modular baseline, achieving over 25% improvement in edge detection accuracy. This research contributes a reproducible evaluation framework and demonstrates the effectiveness of transformer models for structural understanding of complex engineering diagrams. The dataset is available under https://zenodo.org/records/14803338.
comment: (c) 2025 IEEE. Published in the conference proceedings of the 2025 IEEE 12th International Conference on Data Science and Advanced Analytics (DSAA)
♻ ☆ In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
comment: Source code available under https://codeberg.org/fuchsfa/in-context-learning-seismic. In submission to Geophysics
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking
Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce the visual faithfulness of reasoning chains as a distinct evaluation dimension, focusing on whether the perception steps of a reasoning chain are grounded in the image. We propose a training- and reference-free framework that decomposes chains into perception versus reasoning steps and uses off-the-shelf VLM judges for step-level faithfulness, additionally verifying this approach through a human meta-evaluation. Building on this metric, we present a lightweight self-reflection procedure that detects and locally regenerates unfaithful perception steps without any training. Across multiple reasoning-trained VLMs and perception-heavy benchmarks, our method reduces Unfaithful Perception Rate while preserving final-answer accuracy, improving the reliability of multimodal reasoning.
comment: Preprint
♻ ☆ PhysGM: Large Physical Gaussian Model for Feed-Forward 4D Synthesis
Despite advances in physics-based 3D motion synthesis, current methods face key limitations: reliance on pre-reconstructed 3D Gaussian Splatting (3DGS) built from dense multi-view images with time-consuming per-scene optimization; physics integration via either inflexible, hand-specified attributes or unstable, optimization-heavy guidance from video models using Score Distillation Sampling (SDS); and naive concatenation of prebuilt 3DGS with physics modules, which ignores physical information embedded in appearance and yields suboptimal performance. To address these issues, we propose PhysGM, a feed-forward framework that jointly predicts 3D Gaussian representation and physical properties from a single image, enabling immediate simulation and high-fidelity 4D rendering. Unlike slow appearance-agnostic optimization methods, we first pre-train a physics-aware reconstruction model that directly infers both Gaussian and physical parameters. We further refine the model with Direct Preference Optimization (DPO), aligning simulations with the physically plausible reference videos and avoiding the high-cost SDS optimization. To address the absence of a supporting dataset for this task, we propose PhysAssets, a dataset of 50K+ 3D assets annotated with physical properties and corresponding reference videos. Experiments show that PhysGM produces high-fidelity 4D simulations from a single image in one minute, achieving a significant speedup over prior work while delivering realistic renderings.Our project page is at:https://hihixiaolv.github.io/PhysGM.github.io/
♻ ☆ V-Rex: Real-Time Streaming Video LLM Acceleration via Dynamic KV Cache Retrieval
Streaming video large language models (LLMs) are increasingly used for real-time multimodal tasks such as video captioning, question answering, conversational agents, and augmented reality. However, these models face fundamental memory and computational challenges because their key-value (KV) caches grow substantially with continuous streaming video input. This process requires an iterative prefill stage, which is a unique feature of streaming video LLMs. Due to its iterative prefill stage, it suffers from significant limitations, including extensive computation, substantial data transfer, and degradation in accuracy. Crucially, this issue is exacerbated for edge deployment, which is the primary target for these models. In this work, we propose V-Rex, the first software-hardware co-designed accelerator that comprehensively addresses both algorithmic and hardware bottlenecks in streaming video LLM inference. At its core, V-Rex introduces ReSV, a training-free dynamic KV cache retrieval algorithm. ReSV exploits temporal and spatial similarity-based token clustering to reduce excessive KV cache memory across video frames. To fully realize these algorithmic benefits, V-Rex offers a compact, low-latency hardware accelerator with a dynamic KV cache retrieval engine (DRE), featuring bit-level and early-exit based computing units. V-Rex achieves unprecedented real-time of 3.9-8.3 FPS and energy-efficient streaming video LLM inference on edge deployment with negligible accuracy loss. While DRE only accounts for 2.2% power and 2.0% area, the system delivers 1.9-19.7x speedup and 3.1-18.5x energy efficiency improvements over AGX Orin GPU. This work is the first to comprehensively tackle KV cache retrieval across algorithms and hardware, enabling real-time streaming video LLM inference on resource-constrained edge devices.
comment: 14 pages, 20 figures, conference
♻ ☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2024
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2024 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
♻ ☆ Text-guided multi-stage cross-perception network for medical image segmentation
Medical image segmentation plays a crucial role in clinical medicine, serving as a key tool for auxiliary diagnosis, treatment planning, and disease monitoring. However, traditional segmentation methods such as U-Net are often limited by weak semantic expression of target regions, which stems from insufficient generalization and a lack of interactivity. Incorporating text prompts offers a promising avenue to more accurately pinpoint lesion locations, yet existing text-guided methods are still hindered by insufficient cross-modal interaction and inadequate cross-modal feature representation. To address these challenges, we propose the Text-guided Multi-stage Cross-perception network (TMC). TMC incorporates a Multi-stage Cross-attention Module (MCM) to enhance the model's understanding of fine-grained semantic details and a Multi-stage Alignment Loss (MA Loss) to improve the consistency of cross-modal semantics across different feature levels. Experimental results on three public datasets (QaTa-COV19, MosMedData, and Duke-Breast-Cancer-MRI) demonstrate the superior performance of TMC, achieving Dice scores of 84.65\%, 78.39\%, and 88.09\%, respectively, and consistently outperforming both U-Net-based networks and existing text-guided methods.
♻ ☆ SportsGPT: An LLM-driven Framework for Interpretable Sports Motion Assessment and Training Guidance
Existing intelligent sports analysis systems mainly focus on "scoring and visualization," often lacking automatic performance diagnosis and interpretable training guidance. Recent advances in Large Language Models (LLMs) and motion analysis techniques provide new opportunities to address the above limitations. In this paper, we propose SportsGPT, an LLM-driven framework for interpretable sports motion assessment and training guidance, which establishes a closed loop from motion time-series input to professional training guidance. First, given a set of high-quality target models, we introduce MotionDTW, a two-stage time series alignment algorithm designed for accurate keyframe extraction from skeleton-based motion sequences. Subsequently, we design a Knowledge-based Interpretable Sports Motion Assessment Model (KISMAM) to obtain a set of interpretable assessment metrics (e.g., insufficient extension) by contrasting the keyframes with the target models. Finally, we propose SportsRAG, a RAG-based training guidance model built upon Qwen3. Leveraging a 6B-token knowledge base, it prompts the LLM to generate professional training guidance by retrieving domain-specific QA pairs. Experimental results demonstrate that MotionDTW significantly outperforms traditional methods with lower temporal error and higher IoU scores. Furthermore, ablation studies validate the KISMAM and SportsRAG, confirming that SportsGPT surpasses general LLMs in diagnostic accuracy and professionalism.
♻ ☆ 3DProxyImg: Controllable 3D-Aware Animation Synthesis from Single Image via 2D-3D Aligned Proxy Embedding
3D animation is central to modern visual media, yet traditional production pipelines remain labor-intensive, expertise-demanding, and computationally expensive. Recent AIGC-based approaches partially automate asset creation and rigging, but they either inherit the heavy costs of full 3D pipelines or rely on video-synthesis paradigms that sacrifice 3D controllability and interactivity. We focus on single-image 3D animation generation and argue that progress is fundamentally constrained by a trade-off between rendering quality and 3D control. To address this limitation, we propose a lightweight 3D animation framework that decouples geometric control from appearance synthesis. The core idea is a 2D-3D aligned proxy representation that uses a coarse 3D estimate as a structural carrier, while delegating high-fidelity appearance and view synthesis to learned image-space generative priors. This proxy formulation enables 3D-aware motion control and interaction comparable to classical pipelines, without requiring accurate geometry or expensive optimization, and naturally extends to coherent background animation. Extensive experiments demonstrate that our method achieves efficient animation generation on low-power platforms and outperforms video-based 3D animation generation in identity preservation, geometric and textural consistency, and the level of precise, interactive control it offers to users.
♻ ☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items KDD 2026
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant resource costs tied to product design and inventory. This paper introduces a novel system deployed at Alibaba that uses AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commerce product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing users' group-level personalized preferences towards multiple generated images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to model comparative behaviors among multiple images. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items achieve over 13% relative improvements for both click-through rate and conversion rate, as well as 7.9% decrease in return rate, compared to their human-designed counterparts, validating the transformative potential of AIGI for e-commerce platforms.
comment: Accepted by KDD 2026 ADS Track
♻ ☆ HOLODECK 2.0: Vision-Language-Guided 3D World Generation with Editing
3D scene generation plays a crucial role in gaming, artistic creation, virtual reality, and many other domains. However, current 3D scene design still relies heavily on extensive manual effort from creators, and existing automated methods struggle to generate open-domain scenes or support flexible editing. To address those challenges, we introduce HOLODECK 2.0, an advanced vision-language-guided framework for 3D world generation with support for interactive scene editing based on human feedback. HOLODECK 2.0 can generate diverse and stylistically rich 3D scenes (e.g., realistic, cartoon, anime, and cyberpunk styles) that exhibit high semantic fidelity to fine-grained input descriptions, suitable for both indoor and open-domain environments. HOLODECK 2.0 leverages vision-language models (VLMs) to identify and parse the objects required in a scene and generates corresponding high-quality assets via state-of-the-art 3D generative models. Then, HOLODECK 2.0 iteratively applies spatial constraints derived from the VLMs to achieve semantically coherent and physically plausible layouts. Both human and model evaluations demonstrate that HOLODECK 2.0 effectively generates high-quality scenes closely aligned with detailed textual descriptions, consistently outperforming baselines across indoor and open-domain scenarios. Additionally, HOLODECK 2.0 provides editing capabilities that flexibly adapt to human feedback, supporting layout refinement and style-consistent object edits. Finally, we present a practical application of HOLODECK 2.0 in procedural game modeling to generate visually rich and immersive environments that can boost efficiency in game design.
♻ ☆ Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention WACV 2026
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.
comment: WACV 2026 Accepted
♻ ☆ DocR1: Evidence Page-Guided GRPO for Multi-Page Document Understanding
Understanding multi-page documents poses a significant challenge for multimodal large language models (MLLMs), as it requires fine-grained visual comprehension and multi-hop reasoning across pages. While prior work has explored reinforcement learning (RL) for enhancing advanced reasoning in MLLMs, its application to multi-page document understanding remains underexplored. In this paper, we introduce DocR1, an MLLM trained with a novel RL framework, Evidence Page-Guided GRPO (EviGRPO). EviGRPO incorporates an evidence-aware reward mechanism that promotes a coarse-to-fine reasoning strategy, guiding the model to first retrieve relevant pages before generating answers. This training paradigm enables us to build high-quality models with limited supervision. To support this, we design a two-stage annotation pipeline and a curriculum learning strategy, based on which we construct two datasets: EviBench, a high-quality training set with 4.8k examples, and ArxivFullQA, an evaluation benchmark with 8.6k QA pairs based on scientific papers. Extensive experiments across a wide range of benchmarks demonstrate that DocR1 achieves state-of-the-art performance on multi-page tasks, while consistently maintaining strong results on single-page benchmarks.
♻ ☆ Is Nano Banana Pro a Low-Level Vision All-Rounder? A Comprehensive Evaluation on 14 Tasks and 40 Datasets
The rapid evolution of text-to-image generation models has revolutionized visual content creation. While commercial products like Nano Banana Pro have garnered significant attention, their potential as generalist solvers for traditional low-level vision challenges remains largely underexplored. In this study, we investigate the critical question: Is Nano Banana Pro a Low-Level Vision All-Rounder? We conducted a comprehensive zero-shot evaluation across 14 distinct low-level tasks spanning 40 diverse datasets. By utilizing simple textual prompts without fine-tuning, we benchmarked Nano Banana Pro against state-of-the-art specialist models. Our extensive analysis reveals a distinct performance dichotomy: while \textbf{Nano Banana Pro demonstrates superior subjective visual quality}, often hallucinating plausible high-frequency details that surpass specialist models, it lags behind in traditional reference-based quantitative metrics. We attribute this discrepancy to the inherent stochasticity of generative models, which struggle to maintain the strict pixel-level consistency required by conventional metrics. This report identifies Nano Banana Pro as a capable zero-shot contender for low-level vision tasks, while highlighting that achieving the high fidelity of domain specialists remains a significant hurdle.
comment: Technical Report; 65 Pages, 36 Figures, 17 Tables; Poject Page: https://lowlevelbanana.github.io/
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: 13 pages, 7 figures, 3 tables
♻ ☆ UniGaussian: Driving Scene Reconstruction from Multiple Camera Models via Unified Gaussian Representations 3DV 2026
Urban scene reconstruction is crucial for real-world autonomous driving simulators. Although existing methods have achieved photorealistic reconstruction, they mostly focus on pinhole cameras and neglect fisheye cameras. In fact, how to effectively simulate fisheye cameras in driving scene remains an unsolved problem. In this work, we propose UniGaussian, a novel approach that learns a unified 3D Gaussian representation from multiple camera models for urban scene reconstruction in autonomous driving. Our contributions are two-fold. First, we propose a new differentiable rendering method that distorts 3D Gaussians using a series of affine transformations tailored to fisheye camera models. This addresses the compatibility issue of 3D Gaussian splatting with fisheye cameras, which is hindered by light ray distortion caused by lenses or mirrors. Besides, our method maintains real-time rendering while ensuring differentiability. Second, built on the differentiable rendering method, we design a new framework that learns a unified Gaussian representation from multiple camera models. By applying affine transformations to adapt different camera models and regularizing the shared Gaussians with supervision from different modalities, our framework learns a unified 3D Gaussian representation with input data from multiple sources and achieves holistic driving scene understanding. As a result, our approach models multiple sensors (pinhole and fisheye cameras) and modalities (depth, semantic, normal and LiDAR point clouds). Our experiments show that our method achieves superior rendering quality and fast rendering speed for driving scene simulation.
comment: 3DV 2026
♻ ☆ 3D Cell Oversegmentation Correction via Geo-Wasserstein Divergence WACV 2026
3D cell segmentation methods are often hindered by \emph{oversegmentation}, where a single cell is incorrectly split into multiple fragments. This degrades the final segmentation quality and is notoriously difficult to resolve, as oversegmentation errors often resemble natural gaps between adjacent cells. Our work makes two key contributions. First, for 3D cell segmentation, we are the first work to formulate oversegmentation as a concrete problem and propose a geometric framework to identify and correct these errors. Our approach builds a pre-trained classifier using both 2D geometric and 3D topological features extracted from flawed 3D segmentation results. Second, we introduce a novel metric, Geo-Wasserstein divergence, to quantify changes in 2D geometries. This captures the evolving trends of cell mask shape in a geometry-aware manner. We validate our method through extensive experiments on in-domain plant datasets, including both synthesized and real oversegmented cases, as well as on out-of-domain animal datasets to demonstrate transfer learning performance. An ablation study further highlights the contribution of the Geo-Wasserstein divergence. A clear pipeline is provided for end-users to build pre-trained models to any labeled dataset.
comment: Accepted to WACV 2026
♻ ☆ CD-DPE: Dual-Prompt Expert Network Based on Convolutional Dictionary Feature Decoupling for Multi-Contrast MRI Super-Resolution AAAI-2026
Multi-contrast magnetic resonance imaging (MRI) super-resolution intends to reconstruct high-resolution (HR) images from low-resolution (LR) scans by leveraging structural information present in HR reference images acquired with different contrasts. This technique enhances anatomical detail and soft tissue differentiation, which is vital for early diagnosis and clinical decision-making. However, inherent contrasts disparities between modalities pose fundamental challenges in effectively utilizing reference image textures to guide target image reconstruction, often resulting in suboptimal feature integration. To address this issue, we propose a dual-prompt expert network based on a convolutional dictionary feature decoupling (CD-DPE) strategy for multi-contrast MRI super-resolution. Specifically, we introduce an iterative convolutional dictionary feature decoupling module (CD-FDM) to separate features into cross-contrast and intra-contrast components, thereby reducing redundancy and interference. To fully integrate these features, a novel dual-prompt feature fusion expert module (DP-FFEM) is proposed. This module uses a frequency prompt to guide the selection of relevant reference features for incorporation into the target image, while an adaptive routing prompt determines the optimal method for fusing reference and target features to enhance reconstruction quality. Extensive experiments on public multi-contrast MRI datasets demonstrate that CD-DPE outperforms state-of-the-art methods in reconstructing fine details. Additionally, experiments on unseen datasets demonstrated that CD-DPE exhibits strong generalization capabilities.
comment: Accepted to AAAI-2026
♻ ☆ FlowerDance: MeanFlow for Efficient and Refined 3D Dance Generation
Music-to-dance generation aims to translate auditory signals into expressive human motion, with broad applications in virtual reality, choreography, and digital entertainment. Despite promising progress, the limited generation efficiency of existing methods leaves insufficient computational headroom for high-fidelity 3D rendering, thereby constraining the expressiveness of 3D characters during real-world applications. Thus, we propose FlowerDance, which not only generates refined motion with physical plausibility and artistic expressiveness, but also achieves significant generation efficiency on inference speed and memory utilization. Specifically, FlowerDance combines MeanFlow with Physical Consistency Constraints, which enables high-quality motion generation with only a few sampling steps. Moreover, FlowerDance leverages a simple but efficient model architecture with BiMamba-based backbone and Channel-Level Cross-Modal Fusion, which generates dance with efficient non-autoregressive manner. Meanwhile, FlowerDance supports motion editing, enabling users to interactively refine dance sequences. Extensive experiments on AIST++ and FineDance show that FlowerDance achieves state-of-the-art results in both motion quality and generation efficiency. Code will be released upon acceptance. Project page: https://flowerdance25.github.io/ .
♻ ☆ LN3DIFF++: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation
The field of neural rendering has witnessed significant progress with advancements in generative models and differentiable rendering techniques. Though 2D diffusion has achieved success, a unified 3D diffusion pipeline remains unsettled. This paper introduces a novel framework called LN3Diff++ to address this gap and enable fast, high-quality, and generic conditional 3D generation. Our approach harnesses a 3D-aware architecture and variational autoencoder (VAE) to encode the input image into a structured, compact, and 3D latent space. The latent is decoded by a transformer-based decoder into a high-capacity 3D neural field. Through training a diffusion model on this 3D-aware latent space, our method achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation across various datasets. Moreover, it surpasses existing 3D diffusion methods in terms of inference speed, requiring no per-instance optimization. Our proposed LN3Diff presents a significant advancement in 3D generative modeling and holds promise for various applications in 3D vision and graphics tasks.
comment: TPAMI 2025 version of LN3Diff. Project webpage: https://nirvanalan.github.io/projects/ln3diff/ Code: https://github.com/NIRVANALAN/LN3Diff
♻ ☆ GraphCompNet: A Position-Aware Model for Predicting and Compensating Shape Deviations in 3D Printing
Shape deviation modeling and compensation in additive manufacturing are pivotal for achieving high geometric accuracy and enabling industrial-scale production. Critical challenges persist, including generalizability across complex geometries and adaptability to position-dependent variations in batch production. Traditional methods of controlling geometric deviations often rely on complex parameterized models and repetitive metrology, which can be time-consuming yet not applicable for batch production. In this paper, we present a novel, process-agnostic approach to address the challenge of ensuring geometric precision and accuracy in position-dependent AM production. The proposed GraphCompNet presents a novel computational framework integrating graph-based neural networks with a GAN inspired training paradigm. The framework leverages point cloud representations and dynamic graph convolutional neural networks (DGCNNs) to model intricate geometries while incorporating position-specific thermal and mechanical variations. A two-stage adversarial training process iteratively refines compensated designs using a compensator-predictor architecture, enabling real-time feedback and optimization. Experimental validation across various shapes and positions demonstrates the framework's ability to predict deviations in freeform geometries and adapt to position-dependent batch production conditions, significantly improving compensation accuracy (35 to 65 percent) across the entire printing space, addressing position-dependent variabilities within the print chamber. The proposed method advances the development of a Digital Twin for AM, offering scalable, real-time monitoring and compensation capabilities.
comment: Accepted manuscript. Final version published in IEEE Transactions on Automation Science and Engineering
Artificial Intelligence 146
☆ Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Monocular depth estimation remains challenging as recent foundation models, such as Depth Anything V2 (DA-V2), struggle with real-world images that are far from the training distribution. We introduce Re-Depth Anything, a test-time self-supervision framework that bridges this domain gap by fusing DA-V2 with the powerful priors of large-scale 2D diffusion models. Our method performs label-free refinement directly on the input image by re-lighting predicted depth maps and augmenting the input. This re-synthesis method replaces classical photometric reconstruction by leveraging shape from shading (SfS) cues in a new, generative context with Score Distillation Sampling (SDS). To prevent optimization collapse, our framework employs a targeted optimization strategy: rather than optimizing depth directly or fine-tuning the full model, we freeze the encoder and only update intermediate embeddings while also fine-tuning the decoder. Across diverse benchmarks, Re-Depth Anything yields substantial gains in depth accuracy and realism over the DA-V2, showcasing new avenues for self-supervision by augmenting geometric reasoning.
☆ Adversarial Robustness of Vision in Open Foundation Models
With the increase in deep learning, it becomes increasingly difficult to understand the model in which AI systems can identify objects. Thus, an adversary could aim to modify an image by adding unseen elements, which will confuse the AI in its recognition of an entity. This paper thus investigates the adversarial robustness of LLaVA-1.5-13B and Meta's Llama 3.2 Vision-8B-2. These are tested for untargeted PGD (Projected Gradient Descent) against the visual input modality, and empirically evaluated on the Visual Question Answering (VQA) v2 dataset subset. The results of these adversarial attacks are then quantified using the standard VQA accuracy metric. This evaluation is then compared with the accuracy degradation (accuracy drop) of LLaVA and Llama 3.2 Vision. A key finding is that Llama 3.2 Vision, despite a lower baseline accuracy in this setup, exhibited a smaller drop in performance under attack compared to LLaVA, particularly at higher perturbation levels. Overall, the findings confirm that the vision modality represents a viable attack vector for degrading the performance of contemporary open-weight VLMs, including Meta's Llama 3.2 Vision. Furthermore, they highlight that adversarial robustness does not necessarily correlate directly with standard benchmark performance and may be influenced by underlying architectural and training factors.
☆ When Reasoning Meets Its Laws
Despite the superior performance of Large Reasoning Models (LRMs), their reasoning behaviors are often counterintuitive, leading to suboptimal reasoning capabilities. To theoretically formalize the desired reasoning behaviors, this paper presents the Laws of Reasoning (LoRe), a unified framework that characterizes intrinsic reasoning patterns in LRMs. We first propose compute law with the hypothesis that the reasoning compute should scale linearly with question complexity. Beyond compute, we extend LoRe with a supplementary accuracy law. Since the question complexity is difficult to quantify in practice, we examine these hypotheses by two properties of the laws, monotonicity and compositionality. We therefore introduce LoRe-Bench, a benchmark that systematically measures these two tractable properties for large reasoning models. Evaluation shows that most reasoning models exhibit reasonable monotonicity but lack compositionality. In response, we develop an effective finetuning approach that enforces compute-law compositionality. Extensive empirical studies demonstrate that better compliance with compute laws yields consistently improved reasoning performance on multiple benchmarks, and uncovers synergistic effects across properties and laws. Project page: https://lore-project.github.io/
☆ Humanlike AI Design Increases Anthropomorphism but Yields Divergent Outcomes on Engagement and Trust Globally
Over a billion users across the globe interact with AI systems engineered with increasing sophistication to mimic human traits. This shift has triggered urgent debate regarding Anthropomorphism, the attribution of human characteristics to synthetic agents, and its potential to induce misplaced trust or emotional dependency. However, the causal link between more humanlike AI design and subsequent effects on engagement and trust has not been tested in realistic human-AI interactions with a global user pool. Prevailing safety frameworks continue to rely on theoretical assumptions derived from Western populations, overlooking the global diversity of AI users. Here, we address these gaps through two large-scale cross-national experiments (N=3,500) across 10 diverse nations, involving real-time and open-ended interactions with an AI system. We find that when evaluating an AI's human-likeness, users focus less on the kind of theoretical aspects often cited in policy (e.g., sentience or consciousness), but rather applied, interactional cues like conversation flow or understanding the user's perspective. We also experimentally demonstrate that humanlike design levers can causally increase anthropomorphism among users; however, we do not find that humanlike design universally increases behavioral measures for user engagement and trust, as previous theoretical work suggests. Instead, part of the connection between human-likeness and behavioral outcomes is fractured by culture: specific design choices that foster self-reported trust in AI-systems in some populations (e.g., Brazil) may trigger the opposite result in others (e.g., Japan). Our findings challenge prevailing narratives of inherent risk in humanlike AI design. Instead, we identify a nuanced, culturally mediated landscape of human-AI interaction, which demands that we move beyond a one-size-fits-all approach in AI governance.
☆ RadarGen: Automotive Radar Point Cloud Generation from Cameras
We present RadarGen, a diffusion model for synthesizing realistic automotive radar point clouds from multi-view camera imagery. RadarGen adapts efficient image-latent diffusion to the radar domain by representing radar measurements in bird's-eye-view form that encodes spatial structure together with radar cross section (RCS) and Doppler attributes. A lightweight recovery step reconstructs point clouds from the generated maps. To better align generation with the visual scene, RadarGen incorporates BEV-aligned depth, semantic, and motion cues extracted from pretrained foundation models, which guide the stochastic generation process toward physically plausible radar patterns. Conditioning on images makes the approach broadly compatible, in principle, with existing visual datasets and simulation frameworks, offering a scalable direction for multimodal generative simulation. Evaluations on large-scale driving data show that RadarGen captures characteristic radar measurement distributions and reduces the gap to perception models trained on real data, marking a step toward unified generative simulation across sensing modalities.
comment: Project page: https://radargen.github.io/
Exploring the Effect of Basis Rotation on NQS Performance
Neural Quantum States (NQS) use neural networks to represent wavefunctions of quantum many-body systems, but their performance depends on the choice of basis, yet the underlying mechanism remains poorly understood. We use a fully solvable one-dimensional Ising model to show that local basis rotations leave the loss landscape unchanged while relocating the exact wavefunction in parameter space, effectively increasing its geometric distance from typical initializations. By sweeping a rotation angle, we compute quantum Fisher information and Fubini-Study distances to quantify how the rotated wavefunction moves within the loss landscape. Shallow architectures (with focus on Restricted Boltzmann Machines (RBMs)) trained with quantum natural gradient are more likely to fall into saddle-point regions depending on the rotation angle: they achieve low energy error but fail to reproduce correct coefficient distributions. In the ferromagnetic case, near-degenerate eigenstates create high-curvature barriers that trap optimization at intermediate fidelities. We introduce a framework based on an analytically solvable rotated Ising model to investigate how relocating the target wavefunction within a fixed loss landscape exposes information-geometric barriers,such as saddle points and high-curvature regions,that hinder shallow NQS optimization, underscoring the need for landscape-aware model design in variational training.
☆ Weighted Stochastic Differential Equation to Implement Wasserstein-Fisher-Rao Gradient Flow
Score-based diffusion models currently constitute the state of the art in continuous generative modeling. These methods are typically formulated via overdamped or underdamped Ornstein--Uhlenbeck-type stochastic differential equations, in which sampling is driven by a combination of deterministic drift and Brownian diffusion, resulting in continuous particle trajectories in the ambient space. While such dynamics enjoy exponential convergence guarantees for strongly log-concave target distributions, it is well known that their mixing rates deteriorate exponentially in the presence of nonconvex or multimodal landscapes, such as double-well potentials. Since many practical generative modeling tasks involve highly non-log-concave target distributions, considerable recent effort has been devoted to developing sampling schemes that improve exploration beyond classical diffusion dynamics. A promising line of work leverages tools from information geometry to augment diffusion-based samplers with controlled mass reweighting mechanisms. This perspective leads naturally to Wasserstein--Fisher--Rao (WFR) geometries, which couple transport in the sample space with vertical (reaction) dynamics on the space of probability measures. In this work, we formulate such reweighting mechanisms through the introduction of explicit correction terms and show how they can be implemented via weighted stochastic differential equations using the Feynman--Kac representation. Our study provides a preliminary but rigorous investigation of WFR-based sampling dynamics, and aims to clarify their geometric and operator-theoretic structure as a foundation for future theoretical and algorithmic developments.
comment: 26 pages, 1 figure
☆ Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN
Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://github.com/BS0111/PlantAttentionCBAM.
comment: 27 pages, 12 figures
☆ AnyTask: an Automated Task and Data Generation Framework for Advancing Sim-to-Real Policy Learning
Generalist robot learning remains constrained by data: large-scale, diverse, and high-quality interaction data are expensive to collect in the real world. While simulation has become a promising way for scaling up data collection, the related tasks, including simulation task design, task-aware scene generation, expert demonstration synthesis, and sim-to-real transfer, still demand substantial human effort. We present AnyTask, an automated framework that pairs massively parallel GPU simulation with foundation models to design diverse manipulation tasks and synthesize robot data. We introduce three AnyTask agents for generating expert demonstrations aiming to solve as many tasks as possible: 1) ViPR, a novel task and motion planning agent with VLM-in-the-loop Parallel Refinement; 2) ViPR-Eureka, a reinforcement learning agent with generated dense rewards and LLM-guided contact sampling; 3) ViPR-RL, a hybrid planning and learning approach that jointly produces high-quality demonstrations with only sparse rewards. We train behavior cloning policies on generated data, validate them in simulation, and deploy them directly on real robot hardware. The policies generalize to novel object poses, achieving 44% average success across a suite of real-world pick-and-place, drawer opening, contact-rich pushing, and long-horizon manipulation tasks. Our project website is at https://anytask.rai-inst.com .
comment: 28 pages, 25 figures. The first four authors contributed equally
☆ InfSplign: Inference-Time Spatial Alignment of Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models generate high-quality images but often fail to capture the spatial relations specified in text prompts. This limitation can be traced to two factors: lack of fine-grained spatial supervision in training data and inability of text embeddings to encode spatial semantics. We introduce InfSplign, a training-free inference-time method that improves spatial alignment by adjusting the noise through a compound loss in every denoising step. Proposed loss leverages different levels of cross-attention maps extracted from the backbone decoder to enforce accurate object placement and a balanced object presence during sampling. The method is lightweight, plug-and-play, and compatible with any diffusion backbone. Our comprehensive evaluations on VISOR and T2I-CompBench show that InfSplign establishes a new state-of-the-art (to the best of our knowledge), achieving substantial performance gains over the strongest existing inference-time baselines and even outperforming the fine-tuning-based methods. Codebase is available at GitHub.
☆ Integrating Computational Methods and AI into Qualitative Studies of Aging and Later Life
This chapter demonstrates how computational social science (CSS) tools are extending and expanding research on aging. The depth and context from traditionally qualitative methods such as participant observation, in-depth interviews, and historical documents are increasingly employed alongside scalable data management, computational text analysis, and open-science practices. Machine learning (ML) and natural language processing (NLP), provide resources to aggregate and systematically index large volumes of qualitative data, identify patterns, and maintain clear links to in-depth accounts. Drawing on case studies of projects that examine later life--including examples with original data from the DISCERN study (a team-based ethnography of life with dementia) and secondary analyses of the American Voices Project (nationally representative interview)--the chapter highlights both uses and challenges of bringing CSS tools into more meaningful dialogue with qualitative aging research. The chapter argues such work has potential for (1) streamlining and augmenting existing workflows, (2) scaling up samples and projects, and (3) generating multi-method approaches to address important questions in new ways, before turning to practices useful for individuals and teams seeking to understand current possibilities or refine their workflow processes. The chapter concludes that current developments are not without peril, but offer potential for new insights into aging and the life course by broadening--rather than replacing--the methodological foundations of qualitative research.
comment: CITE: Abramson, Corey M. (Forthcoming 2026). "Integrating Computational Methods and AI into Qualitative Studies of Aging and Later Life." In Handbook of the Sociology of Aging, 2nd ed., edited by Markus H. Schafer, Dawn C. Carr, Jacqueline L. Angel, and Richard A. Settersten Jr
☆ Planning as Descent: Goal-Conditioned Latent Trajectory Synthesis in Learned Energy Landscapes
We present Planning as Descent (PaD), a framework for offline goal-conditioned reinforcement learning that grounds trajectory synthesis in verification. Instead of learning a policy or explicit planner, PaD learns a goal-conditioned energy function over entire latent trajectories, assigning low energy to feasible, goal-consistent futures. Planning is realized as gradient-based refinement in this energy landscape, using identical computation during training and inference to reduce train-test mismatch common in decoupled modeling pipelines. PaD is trained via self-supervised hindsight goal relabeling, shaping the energy landscape around the planning dynamics. At inference, multiple trajectory candidates are refined under different temporal hypotheses, and low-energy plans balancing feasibility and efficiency are selected. We evaluate PaD on OGBench cube manipulation tasks. When trained on narrow expert demonstrations, PaD achieves state-of-the-art 95\% success, strongly outperforming prior methods that peak at 68\%. Remarkably, training on noisy, suboptimal data further improves success and plan efficiency, highlighting the benefits of verification-driven planning. Our results suggest learning to evaluate and refine trajectories provides a robust alternative to direct policy learning for offline, reward-free planning.
☆ ShareChat: A Dataset of Chatbot Conversations in the Wild
While Large Language Models (LLMs) have evolved into distinct platforms with unique interface designs and capabilities, existing public datasets treat models as generic text generators, stripping away the interface context that actively shapes user interaction. To address this limitation, we present ShareChat, a large-scale, cross-platform corpus comprising 142,808 conversations and over 660,000 turns collected from publicly shared URLs across five major platforms: ChatGPT, Claude, Gemini, Perplexity, and Grok. ShareChat distinguishes itself by preserving native platform affordances often lost in standard logs, including reasoning traces, source links, and code artifacts, while spanning 101 languages over the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. We demonstrate the dataset's multifaceted utility through three representative analyses: (1) analyzing conversation completeness to measure user intent satisfaction; (2) evaluating source citation behaviors in content generation; and (3) conducting temporal analysis to track evolving usage patterns. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild.
LLM-based Behaviour Driven Development for Hardware Design
Test and verification are essential activities in hardware and system design, but their complexity grows significantly with increasing system sizes. While Behavior Driven Development (BDD) has proven effective in software engineering, it is not yet well established in hardware design, and its practical use remains limited. One contributing factor is the manual effort required to derive precise behavioral scenarios from textual specifications. Recent advances in Large Language Models (LLMs) offer new opportunities to automate this step. In this paper, we investigate the use of LLM-based techniques to support BDD in the context of hardware design.
comment: 7 pages, keynote given at 2nd International Symposium on Artificial Intelligence and Internet of Things (AIIoT-25), December 22-24th, 2025
☆ Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation
The unprecedented proliferation of digital data presents significant challenges in access, integration, and value creation across all data-intensive sectors. Valuable information is frequently encapsulated within disparate systems, unstructured documents, and heterogeneous formats, creating silos that impede efficient utilization and collaborative decision-making. This paper introduces the Intelligent Knowledge Mining Framework (IKMF), a comprehensive conceptual model designed to bridge the critical gap between dynamic AI-driven analysis and trustworthy long-term preservation. The framework proposes a dual-stream architecture: a horizontal Mining Process that systematically transforms raw data into semantically rich, machine-actionable knowledge, and a parallel Trustworthy Archiving Stream that ensures the integrity, provenance, and computational reproducibility of these assets. By defining a blueprint for this symbiotic relationship, the paper provides a foundational model for transforming static repositories into living ecosystems that facilitate the flow of actionable intelligence from producers to consumers. This paper outlines the motivation, problem statement, and key research questions guiding the research and development of the framework, presents the underlying scientific methodology, and details its conceptual design and modeling.
☆ MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation
Large-scale supervised pretraining is rapidly reshaping 3D medical image segmentation. However, existing efforts focus primarily on increasing dataset size and overlook the question of whether the backbone network is an effective representation learner at scale. In this work, we address this gap by revisiting ConvNeXt-based architectures for volumetric segmentation and introducing MedNeXt-v2, a compound-scaled 3D ConvNeXt that leverages improved micro-architecture and data scaling to deliver state-of-the-art performance. First, we show that routinely used backbones in large-scale pretraining pipelines are often suboptimal. Subsequently, we use comprehensive backbone benchmarking prior to scaling and demonstrate that stronger from scratch performance reliably predicts stronger downstream performance after pretraining. Guided by these findings, we incorporate a 3D Global Response Normalization module and use depth, width, and context scaling to improve our architecture for effective representation learning. We pretrain MedNeXt-v2 on 18k CT volumes and demonstrate state-of-the-art performance when fine-tuning across six challenging CT and MR benchmarks (144 structures), showing consistent gains over seven publicly released pretrained models. Beyond improvements, our benchmarking of these models also reveals that stronger backbones yield better results on similar data, representation scaling disproportionately benefits pathological segmentation, and that modality-specific pretraining offers negligible benefit once full finetuning is applied. In conclusion, our results establish MedNeXt-v2 as a strong backbone for large-scale supervised representation learning in 3D Medical Image Segmentation. Our code and pretrained models are made available with the official nnUNet repository at: https://www.github.com/MIC-DKFZ/nnUNet
☆ Pix2NPHM: Learning to Regress NPHM Reconstructions From a Single Image
Neural Parametric Head Models (NPHMs) are a recent advancement over mesh-based 3d morphable models (3DMMs) to facilitate high-fidelity geometric detail. However, fitting NPHMs to visual inputs is notoriously challenging due to the expressive nature of their underlying latent space. To this end, we propose Pix2NPHM, a vision transformer (ViT) network that directly regresses NPHM parameters, given a single image as input. Compared to existing approaches, the neural parametric space allows our method to reconstruct more recognizable facial geometry and accurate facial expressions. For broad generalization, we exploit domain-specific ViTs as backbones, which are pretrained on geometric prediction tasks. We train Pix2NPHM on a mixture of 3D data, including a total of over 100K NPHM registrations that enable direct supervision in SDF space, and large-scale 2D video datasets, for which normal estimates serve as pseudo ground truth geometry. Pix2NPHM not only allows for 3D reconstructions at interactive frame rates, it is also possible to improve geometric fidelity by a subsequent inference-time optimization against estimated surface normals and canonical point maps. As a result, we achieve unprecedented face reconstruction quality that can run at scale on in-the-wild data.
comment: Project website: https://simongiebenhain.github.io/Pix2NPHM/ , Video: https://www.youtube.com/watch?v=MgpEJC5p1Ts
☆ Easy Adaptation: An Efficient Task-Specific Knowledge Injection Method for Large Models in Resource-Constrained Environments
While the enormous parameter scale endows Large Models (LMs) with unparalleled performance, it also limits their adaptability across specific tasks. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical approach for effectively adapting LMs to a diverse range of downstream tasks. However, existing PEFT methods face two primary challenges: (1) High resource cost. Although PEFT methods significantly reduce resource demands compared to full fine-tuning, it still requires substantial time and memory, making it impractical in resource-constrained environments. (2) Parameter dependency. PEFT methods heavily rely on updating a subset of parameters associated with LMs to incorporate task-specific knowledge. Yet, due to increasing competition in the LMs landscape, many companies have adopted closed-source policies for their leading models, offering access only via Application Programming Interface (APIs). Whereas, the expense is often cost-prohibitive and difficult to sustain, as the fine-tuning process of LMs is extremely slow. Even if small models perform far worse than LMs in general, they can achieve superior results on particular distributions while requiring only minimal resources. Motivated by this insight, we propose Easy Adaptation (EA), which designs Specific Small Models (SSMs) to complement the underfitted data distribution for LMs. Extensive experiments show that EA matches the performance of PEFT on diverse tasks without accessing LM parameters, and requires only minimal resources.
☆ Bangla MedER: Multi-BERT Ensemble Approach for the Recognition of Bangla Medical Entity
Medical Entity Recognition (MedER) is an essential NLP task for extracting meaningful entities from the medical corpus. Nowadays, MedER-based research outcomes can remarkably contribute to the development of automated systems in the medical sector, ultimately enhancing patient care and outcomes. While extensive research has been conducted on MedER in English, low-resource languages like Bangla remain underexplored. Our work aims to bridge this gap. For Bangla medical entity recognition, this study first examined a number of transformer models, including BERT, DistilBERT, ELECTRA, and RoBERTa. We also propose a novel Multi-BERT Ensemble approach that outperformed all baseline models with the highest accuracy of 89.58%. Notably, it provides an 11.80% accuracy improvement over the single-layer BERT model, demonstrating its effectiveness for this task. A major challenge in MedER for low-resource languages is the lack of annotated datasets. To address this issue, we developed a high-quality dataset tailored for the Bangla MedER task. The dataset was used to evaluate the effectiveness of our model through multiple performance metrics, demonstrating its robustness and applicability. Our findings highlight the potential of Multi-BERT Ensemble models in improving MedER for Bangla and set the foundation for further advancements in low-resource medical NLP.
☆ AncientBench: Towards Comprehensive Evaluation on Excavated and Transmitted Chinese Corpora
Comprehension of ancient texts plays an important role in archaeology and understanding of Chinese history and civilization. The rapid development of large language models needs benchmarks that can evaluate their comprehension of ancient characters. Existing Chinese benchmarks are mostly targeted at modern Chinese and transmitted documents in ancient Chinese, but the part of excavated documents in ancient Chinese is not covered. To meet this need, we propose the AncientBench, which aims to evaluate the comprehension of ancient characters, especially in the scenario of excavated documents. The AncientBench is divided into four dimensions, which correspond to the four competencies of ancient character comprehension: glyph comprehension, pronunciation comprehension, meaning comprehension, and contextual comprehension. The benchmark also contains ten tasks, including radical, phonetic radical, homophone, cloze, translation, and more, providing a comprehensive framework for evaluation. We convened archaeological researchers to conduct experimental evaluations, proposed an ancient model as baseline, and conducted extensive experiments on the currently best-performing large language models. The experimental results reveal the great potential of large language models in ancient textual scenarios as well as the gap with humans. Our research aims to promote the development and application of large language models in the field of archaeology and ancient Chinese language.
☆ Diversity Recommendation via Causal Deconfounding of Co-purchase Relations and Counterfactual Exposure
Beyond user-item modeling, item-to-item relationships are increasingly used to enhance recommendation. However, common methods largely rely on co-occurrence, making them prone to item popularity bias and user attributes, which degrades embedding quality and performance. Meanwhile, although diversity is acknowledged as a key aspect of recommendation quality, existing research offers limited attention to it, with a notable lack of causal perspectives and theoretical grounding. To address these challenges, we propose Cadence: Diversity Recommendation via Causal Deconfounding of Co-purchase Relations and Counterfactual Exposure - a plug-and-play framework built upon LightGCN as the backbone, primarily designed to enhance recommendation diversity while preserving accuracy. First, we compute the Unbiased Asymmetric Co-purchase Relationship (UACR) between items - excluding item popularity and user attributes - to construct a deconfounded directed item graph, with an aggregation mechanism to refine embeddings. Second, we leverage UACR to identify diverse categories of items that exhibit strong causal relevance to a user's interacted items but have not yet been engaged with. We then simulate their behavior under high-exposure scenarios, thereby significantly enhancing recommendation diversity while preserving relevance. Extensive experiments on real-world datasets demonstrate that our method consistently outperforms state-of-the-art diversity models in both diversity and accuracy, and further validates its effectiveness, transferability, and efficiency over baselines.
☆ Digital and Web Forensics Model Cards, V1
This paper introduces a standardized model card framework specifically designed for digital and web forensics. Building upon established model card methodologies and recent work on abstract models for digital forensic analysis, this paper presents a web based framework that generates model cards specifically designed to represent knowledge in the forensic domain. The framework includes controlled vocabularies for classification, reasoning types, bias identification, and error categorization, along with a web-based generator tool to facilitate adoption. The paper describes the model card structure, presents the controlled vocabularies, and introduces the beta version of the generator tool, inviting community feedback to refine this emerging standard. Ultimately, the systemic risk is that that the anti fraud and digital and web forensics processes are controlled by the mobs.
☆ You Only Train Once: Differentiable Subset Selection for Omics Data
Selecting compact and informative gene subsets from single-cell transcriptomic data is essential for biomarker discovery, improving interpretability, and cost-effective profiling. However, most existing feature selection approaches either operate as multi-stage pipelines or rely on post hoc feature attribution, making selection and prediction weakly coupled. In this work, we present YOTO (you only train once), an end-to-end framework that jointly identifies discrete gene subsets and performs prediction within a single differentiable architecture. In our model, the prediction task directly guides which genes are selected, while the learned subsets, in turn, shape the predictive representation. This closed feedback loop enables the model to iteratively refine both what it selects and how it predicts during training. Unlike existing approaches, YOTO enforces sparsity so that only the selected genes contribute to inference, eliminating the need to train additional downstream classifiers. Through a multi-task learning design, the model learns shared representations across related objectives, allowing partially labeled datasets to inform one another, and discovering gene subsets that generalize across tasks without additional training steps. We evaluate YOTO on two representative single-cell RNA-seq datasets, showing that it consistently outperforms state-of-the-art baselines. These results demonstrate that sparse, end-to-end, multi-task gene subset selection improves predictive performance and yields compact and meaningful gene subsets, advancing biomarker discovery and single-cell analysis.
☆ An Empirical Study of Sampling Hyperparameters in Diffusion-Based Super-Resolution
Diffusion models have shown strong potential for solving inverse problems such as single-image super-resolution, where a high-resolution image is recovered from a low-resolution observation using a pretrained unconditional prior. Conditioning methods, including Diffusion Posterior Sampling (DPS) and Manifold Constrained Gradient (MCG), can substantially improve reconstruction quality, but they introduce additional hyperparameters that require careful tuning. In this work, we conduct an empirical ablation study on FFHQ super-resolution to identify the dominant factors affecting performance when applying conditioning to pretrained diffusion models, and show that the conditioning step size has a significantly greater impact than the diffusion step count, with step sizes in the range of [2.0, 3.0] yielding the best overall performance in our experiments.
☆ Learning Spatio-Temporal Feature Representations for Video-Based Gaze Estimation
Video-based gaze estimation methods aim to capture the inherently temporal dynamics of human eye gaze from multiple image frames. However, since models must capture both spatial and temporal relationships, performance is limited by the feature representations within a frame but also between multiple frames. We propose the Spatio-Temporal Gaze Network (ST-Gaze), a model that combines a CNN backbone with dedicated channel attention and self-attention modules to fuse eye and face features optimally. The fused features are then treated as a spatial sequence, allowing for the capture of an intra-frame context, which is then propagated through time to model inter-frame dynamics. We evaluated our method on the EVE dataset and show that ST-Gaze achieves state-of-the-art performance both with and without person-specific adaptation. Additionally, our ablation study provides further insights into the model performance, showing that preserving and modelling intra-frame spatial context with our spatio-temporal recurrence is fundamentally superior to premature spatial pooling. As such, our results pave the way towards more robust video-based gaze estimation using commonly available cameras.
comment: 12 pages, 5 figures, the code repository is available at https://gitlab.kuleuven.be/u0172623/ST-Gaze
☆ STAR: Semantic-Traffic Alignment and Retrieval for Zero-Shot HTTPS Website Fingerprinting
Modern HTTPS mechanisms such as Encrypted Client Hello (ECH) and encrypted DNS improve privacy but remain vulnerable to website fingerprinting (WF) attacks, where adversaries infer visited sites from encrypted traffic patterns. Existing WF methods rely on supervised learning with site-specific labeled traces, which limits scalability and fails to handle previously unseen websites. We address these limitations by reformulating WF as a zero-shot cross-modal retrieval problem and introducing STAR. STAR learns a joint embedding space for encrypted traffic traces and crawl-time logic profiles using a dual-encoder architecture. Trained on 150K automatically collected traffic-logic pairs with contrastive and consistency objectives and structure-aware augmentation, STAR retrieves the most semantically aligned profile for a trace without requiring target-side traffic during training. Experiments on 1,600 unseen websites show that STAR achieves 87.9 percent top-1 accuracy and 0.963 AUC in open-world detection, outperforming supervised and few-shot baselines. Adding an adapter with only four labeled traces per site further boosts top-5 accuracy to 98.8 percent. Our analysis reveals intrinsic semantic-traffic alignment in modern web protocols, identifying semantic leakage as the dominant privacy risk in encrypted HTTPS traffic. We release STAR's datasets and code to support reproducibility and future research.
comment: Accepted by IEEE INFOCOM 2026. Camera-ready version
☆ About Time: Model-free Reinforcement Learning with Timed Reward Machines
Reward specification plays a central role in reinforcement learning (RL), guiding the agent's behavior. To express non-Markovian rewards, formalisms such as reward machines have been introduced to capture dependencies on histories. However, traditional reward machines lack the ability to model precise timing constraints, limiting their use in time-sensitive applications. In this paper, we propose timed reward machines (TRMs), which are an extension of reward machines that incorporate timing constraints into the reward structure. TRMs enable more expressive specifications with tunable reward logic, for example, imposing costs for delays and granting rewards for timely actions. We study model-free RL frameworks (i.e., tabular Q-learning) for learning optimal policies with TRMs under digital and real-time semantics. Our algorithms integrate the TRM into learning via abstractions of timed automata, and employ counterfactual-imagining heuristics that exploit the structure of the TRM to improve the search. Experimentally, we demonstrate that our algorithm learns policies that achieve high rewards while satisfying the timing constraints specified by the TRM on popular RL benchmarks. Moreover, we conduct comparative studies of performance under different TRM semantics, along with ablations that highlight the benefits of counterfactual-imagining.
☆ Trust-Region Adaptive Policy Optimization
Post-training methods, especially Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), play an important role in improving large language models' (LLMs) complex reasoning abilities. However, the dominant two-stage pipeline (SFT then RL) suffers from a key inconsistency: SFT enforces rigid imitation that suppresses exploration and induces forgetting, limiting RL's potential for improvements. We address this inefficiency with TRAPO (\textbf{T}rust-\textbf{R}egion \textbf{A}daptive \textbf{P}olicy \textbf{O}ptimization), a hybrid framework that interleaves SFT and RL within each training instance by optimizing SFT loss on expert prefixes and RL loss on the model's own completions, unifying external supervision and self-exploration. To stabilize training, we introduce Trust-Region SFT (TrSFT), which minimizes forward KL divergence inside a trust region but attenuates optimization outside, effectively shifting toward reverse KL and yielding stable, mode-seeking updates favorable for RL. An adaptive prefix-selection mechanism further allocates expert guidance based on measured utility. Experiments on five mathematical reasoning benchmarks show that TRAPO consistently surpasses standard SFT, RL, and SFT-then-RL pipelines, as well as recent state-of-the-art approaches, establishing a strong new paradigm for reasoning-enhanced LLMs.
☆ SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
☆ More Consistent Accuracy PINN via Alternating Easy-Hard Training
Physics-informed neural networks (PINNs) have recently emerged as a prominent paradigm for solving partial differential equations (PDEs), yet their training strategies remain underexplored. While hard prioritization methods inspired by finite element methods are widely adopted, recent research suggests that easy prioritization can also be effective. Nevertheless, we find that both approaches exhibit notable trade-offs and inconsistent performance across PDE types. To address this issue, we develop a hybrid strategy that combines the strengths of hard and easy prioritization through an alternating training algorithm. On PDEs with steep gradients, nonlinearity, and high dimensionality, the proposed method achieves consistently high accuracy, with relative L2 errors mostly in the range of O(10^-5) to O(10^-6), significantly surpassing baseline methods. Moreover, it offers greater reliability across diverse problems, whereas compared approaches often suffer from variable accuracy depending on the PDE. This work provides new insights into designing hybrid training strategies to enhance the performance and robustness of PINNs.
☆ MGRegBench: A Novel Benchmark Dataset with Anatomical Landmarks for Mammography Image Registration
Robust mammography registration is essential for clinical applications like tracking disease progression and monitoring longitudinal changes in breast tissue. However, progress has been limited by the absence of public datasets and standardized benchmarks. Existing studies are often not directly comparable, as they use private data and inconsistent evaluation frameworks. To address this, we present MGRegBench, a public benchmark dataset for mammogram registration. It comprises over 5,000 image pairs, with 100 containing manual anatomical landmarks and segmentation masks for rigorous evaluation. This makes MGRegBench one of the largest public 2D registration datasets with manual annotations. Using this resource, we benchmarked diverse registration methods including classical (ANTs), learning-based (VoxelMorph, TransMorph), implicit neural representation (IDIR), a classic mammography-specific approach, and a recent state-of-the-art deep learning method MammoRegNet. The implementations were adapted to this modality from the authors' implementations or re-implemented from scratch. Our contributions are: (1) the first public dataset of this scale with manual landmarks and masks for mammography registration; (2) the first like-for-like comparison of diverse methods on this modality; and (3) an extensive analysis of deep learning-based registration. We publicly release our code and data to establish a foundational resource for fair comparisons and catalyze future research. The source code and data are at https://github.com/KourtKardash/MGRegBench.
☆ MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection and Classification
Out of distribution (OOD) detection remains a critical challenge in malware classification due to the substantial intra family variability introduced by polymorphic and metamorphic malware variants. Most existing deep learning based malware detectors rely on closed world assumptions and fail to adequately model this intra class variation, resulting in degraded performance when confronted with previously unseen malware families. This paper presents MADOOD, a novel two stage, cluster driven deep learning framework for robust OOD malware detection and classification. In the first stage, malware family embeddings are modeled using class conditional spherical decision boundaries derived from Gaussian Discriminant Analysis (GDA), enabling statistically grounded separation of indistribution and OOD samples without requiring OOD data during training. Z score based distance analysis across multiple class centroids is employed to reliably identify anomalous samples in the latent space. In the second stage, a deep neural network integrates cluster based predictions, refined embeddings, and supervised classifier outputs to enhance final classification accuracy. Extensive evaluations on benchmark malware datasets comprising 25 known families and multiple novel OOD variants demonstrate that MADOOD significantly outperforms state of the art OOD detection methods, achieving an AUC of up to 0.911 on unseen malware families. The proposed framework provides a scalable, interpretable, and statistically principled solution for real world malware detection and anomaly identification in evolving cybersecurity environments.
☆ GreedySnake: Accelerating SSD-Offloaded LLM Training with Efficient Scheduling and Optimizer Step Overlapping
SSD-offloaded training offers a practical and promising approach to making LLM training cost-effective. Building on gradient accumulation with micro-batches, this paper introduces GreedySnake, a new SSD-offloaded training system that employs vertical scheduling, which executes all microbatches of a layer before proceeding to the next. Compared to existing systems that use horizontal scheduling (i.e., executing micro-batches sequentially), GreedySnake achieves higher training throughput with smaller batch sizes, bringing the system much closer to the ideal scenario predicted by the roofline model. To further mitigate the I/O bottleneck, GreedySnake overlaps part of the optimization step with the forward pass of the next iteration. Experimental results on A100 GPUs show that GreedySnake achieves saturated training throughput improvements over ZeRO-Infinity: 1.96x on 1 GPU and 1.93x on 4 GPUs for GPT-65B, and 2.53x on 1 GPU for GPT-175B. The code is open-sourced at https://github.com/npz7yyk/GreedySnake
☆ A unified FLAIR hyperintensity segmentation model for various CNS tumor types and acquisition time points
T2-weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans are important for diagnosis, treatment planning and monitoring of brain tumors. Depending on the brain tumor type, the FLAIR hyperintensity volume is an important measure to asses the tumor volume or surrounding edema, and an automatic segmentation of this would be useful in the clinic. In this study, around 5000 FLAIR images of various tumors types and acquisition time points from different centers were used to train a unified FLAIR hyperintensity segmentation model using an Attention U-Net architecture. The performance was compared against dataset specific models, and was validated on different tumor types, acquisition time points and against BraTS. The unified model achieved an average Dice score of 88.65\% for pre-operative meningiomas, 80.08% for pre-operative metastasis, 90.92% for pre-operative and 84.60% for post-operative gliomas from BraTS, and 84.47% for pre-operative and 61.27\% for post-operative lower grade gliomas. In addition, the results showed that the unified model achieved comparable segmentation performance to the dataset specific models on their respective datasets, and enables generalization across tumor types and acquisition time points, which facilitates the deployment in a clinical setting. The model is integrated into Raidionics, an open-source software for CNS tumor analysis.
comment: 13 pages, 4 figures
☆ When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Systems
Speech enhancement methods are commonly believed to improve the performance of automatic speech recognition (ASR) in noisy environments. However, the effectiveness of these techniques cannot be taken for granted in the case of modern large-scale ASR models trained on diverse, noisy data. We present a systematic evaluation of MetricGAN-plus-voicebank denoising on four state-of-the-art ASR systems: OpenAI Whisper, NVIDIA Parakeet, Google Gemini Flash 2.0, Parrotlet-a using 500 medical speech recordings under nine noise conditions. ASR performance is measured using semantic WER (semWER), a normalized word error rate (WER) metric accounting for domain-specific normalizations. Our results reveal a counterintuitive finding: speech enhancement preprocessing degrades ASR performance across all noise conditions and models. Original noisy audio achieves lower semWER than enhanced audio in all 40 tested configurations (4 models x 10 conditions), with degradations ranging from 1.1% to 46.6% absolute semWER increase. These findings suggest that modern ASR models possess sufficient internal noise robustness and that traditional speech enhancement may remove acoustic features critical for ASR. For practitioners deploying medical scribe systems in noisy clinical environments, our results indicate that preprocessing audio with noise reduction techniques might not just be computationally wasteful but also be potentially harmful to the transcription accuracy.
comment: Technical Report
☆ Towards Explainable Conversational AI for Early Diagnosis with Large Language Models
Healthcare systems around the world are grappling with issues like inefficient diagnostics, rising costs, and limited access to specialists. These problems often lead to delays in treatment and poor health outcomes. Most current AI and deep learning diagnostic systems are not very interactive or transparent, making them less effective in real-world, patient-centered environments. This research introduces a diagnostic chatbot powered by a Large Language Model (LLM), using GPT-4o, Retrieval-Augmented Generation, and explainable AI techniques. The chatbot engages patients in a dynamic conversation, helping to extract and normalize symptoms while prioritizing potential diagnoses through similarity matching and adaptive questioning. With Chain-of-Thought prompting, the system also offers more transparent reasoning behind its diagnoses. When tested against traditional machine learning models like Naive Bayes, Logistic Regression, SVM, Random Forest, and KNN, the LLM-based system delivered impressive results, achieving an accuracy of 90% and Top-3 accuracy of 100%. These findings offer a promising outlook for more transparent, interactive, and clinically relevant AI in healthcare.
☆ ClothHMR: 3D Mesh Recovery of Humans in Diverse Clothing from Single Image
With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://github.com/starVisionTeam/ClothHMR}.
comment: 15 pages,16 figures
☆ HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Modeling and controlling fluid flows is critical for several fields of science and engineering, including transportation, energy, and medicine. Effective flow control can lead to, e.g., lift increase, drag reduction, mixing enhancement, and noise reduction. However, controlling a fluid faces several significant challenges, including high-dimensional, nonlinear, and multiscale interactions in space and time. Reinforcement learning (RL) has recently shown great success in complex domains, such as robotics and protein folding, but its application to flow control is hindered by a lack of standardized benchmark platforms and the computational demands of fluid simulations. To address these challenges, we introduce HydroGym, a solver-independent RL platform for flow control research. HydroGym integrates sophisticated flow control benchmarks, scalable runtime infrastructure, and state-of-the-art RL algorithms. Our platform includes 42 validated environments spanning from canonical laminar flows to complex three-dimensional turbulent scenarios, validated over a wide range of Reynolds numbers. We provide non-differentiable solvers for traditional RL and differentiable solvers that dramatically improve sample efficiency through gradient-enhanced optimization. Comprehensive evaluation reveals that RL agents consistently discover robust control principles across configurations, such as boundary layer manipulation, acoustic feedback disruption, and wake reorganization. Transfer learning studies demonstrate that controllers learned at one Reynolds number or geometry adapt efficiently to new conditions, requiring approximately 50% fewer training episodes. The HydroGym platform is highly extensible and scalable, providing a framework for researchers in fluid dynamics, machine learning, and control to add environments, surrogate models, and control algorithms to advance science and technology.
☆ Robust-R1: Degradation-Aware Reasoning for Robust Visual Understanding AAAI2026
Multimodal Large Language Models struggle to maintain reliable performance under extreme real-world visual degradations, which impede their practical robustness. Existing robust MLLMs predominantly rely on implicit training/adaptation that focuses solely on visual encoder generalization, suffering from limited interpretability and isolated optimization. To overcome these limitations, we propose Robust-R1, a novel framework that explicitly models visual degradations through structured reasoning chains. Our approach integrates: (i) supervised fine-tuning for degradation-aware reasoning foundations, (ii) reward-driven alignment for accurately perceiving degradation parameters, and (iii) dynamic reasoning depth scaling adapted to degradation intensity. To facilitate this approach, we introduce a specialized 11K dataset featuring realistic degradations synthesized across four critical real-world visual processing stages, each annotated with structured chains connecting degradation parameters, perceptual influence, pristine semantic reasoning chain, and conclusion. Comprehensive evaluations demonstrate state-of-the-art robustness: Robust-R1 outperforms all general and robust baselines on the real-world degradation benchmark R-Bench, while maintaining superior anti-degradation performance under multi-intensity adversarial degradations on MMMB, MMStar, and RealWorldQA.
comment: Accepted by AAAI2026 Oral
☆ SafeBench-Seq: A Homology-Clustered, CPU-Only Baseline for Protein Hazard Screening with Physicochemical/Composition Features and Cluster-Aware Confidence Intervals
Foundation models for protein design raise concrete biosecurity risks, yet the community lacks a simple, reproducible baseline for sequence-level hazard screening that is explicitly evaluated under homology control and runs on commodity CPUs. We introduce SafeBench-Seq, a metadata-only, reproducible benchmark and baseline classifier built entirely from public data (SafeProtein hazards and UniProt benigns) and interpretable features (global physicochemical descriptors and amino-acid composition). To approximate "never-before-seen" threats, we homology-cluster the combined dataset at <=40% identity and perform cluster-level holdouts (no cluster overlap between train/test). We report discrimination (AUROC/AUPRC) and screening-operating points (TPR@1% FPR; FPR@95% TPR) with 95% bootstrap confidence intervals (n=200), and we provide calibrated probabilities via CalibratedClassifierCV (isotonic for Logistic Regression / Random Forest; Platt sigmoid for Linear SVM). We quantify probability quality using Brier score, Expected Calibration Error (ECE; 15 bins), and reliability diagrams. Shortcut susceptibility is probed via composition-preserving residue shuffles and length-/composition-only ablations. Empirically, random splits substantially overestimate robustness relative to homology-clustered evaluation; calibrated linear models exhibit comparatively good calibration, while tree ensembles retain slightly higher Brier/ECE. SafeBench-Seq is CPU-only, reproducible, and releases metadata only (accessions, cluster IDs, split labels), enabling rigorous evaluation without distributing hazardous sequences.
☆ Key-Conditioned Orthonormal Transform Gating (K-OTG): Multi-Key Access Control with Hidden-State Scrambling for LoRA-Tuned Models
We present a simple, PEFT-compatible mechanism that enforces secret-key access control in instruction-tuned language models. K-OTG trains on a dual-path corpus: authorized examples (prefixed with a role key) learn the task output, while unauthorized examples learn a visible block token. At inference, a pre-lm_head hook applies an orthonormal transform to the hidden state: with the correct key/role the inverse map restores the model's native basis; otherwise a session-ephemeral scrambler (permutation, sign flips, Householders) makes logits uninformative and the system short-circuits to BLOCK. Keys are not added as special tokens, and the method composes cleanly with LoRA on 4-bit bases. We evaluate an hour-scale protocol on 1-3B-class instruction models (Llama 3.2, Qwen2.5 1.5B) across utility (XSum ROUGE/BLEU, GSM8K accuracy, WikiText-2 perplexity), selectivity (3by3 role-key unlock matrices), nonce invariance, block suppression, and throughput. Authorized utility remains close to the base on summarization with the expected modest PPL increase from instruction tuning; unauthorized utility collapses (near-zero sequence metrics with exploding PPL), indicating practical unusability without the key. Unlock matrices are diagonally dominant (high on-target unlock, low cross-unlock), authorized block emission is 0 per N via robust bad-word lists, and greedy outputs match exactly across nonces, confirming correct inverse cancellation. The runtime overhead of the Python-level hook is 40% tokens per sec versus the base. K-OTG therefore provides a pragmatic, model-agnostic way to prevent unauthorized use while preserving authorized utility.
☆ InsertAnywhere: Bridging 4D Scene Geometry and Diffusion Models for Realistic Video Object Insertion
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.
comment: 16 pages, project page: https://myyzzzoooo.github.io/InsertAnywhere/
☆ Translating the Rashomon Effect to Sequential Decision-Making Tasks
The Rashomon effect describes the phenomenon where multiple models trained on the same data produce identical predictions while differing in which features they rely on internally. This effect has been studied extensively in classification tasks, but not in sequential decision-making, where an agent learns a policy to achieve an objective by taking actions in an environment. In this paper, we translate the Rashomon effect to sequential decision-making. We define it as multiple policies that exhibit identical behavior, visiting the same states and selecting the same actions, while differing in their internal structure, such as feature attributions. Verifying identical behavior in sequential decision-making differs from classification. In classification, predictions can be directly compared to ground-truth labels. In sequential decision-making with stochastic transitions, the same policy may succeed or fail on any single trajectory due to randomness. We address this using formal verification methods that construct and compare the complete probabilistic behavior of each policy in the environment. Our experiments demonstrate that the Rashomon effect exists in sequential decision-making. We further show that ensembles constructed from the Rashomon set exhibit greater robustness to distribution shifts than individual policies. Additionally, permissive policies derived from the Rashomon set reduce computational requirements for verification while maintaining optimal performance.
☆ Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application ECIR '26
Marketing and product personalisation provide a prominent and visible use-case for the application of Information Retrieval methods across several business domains. Recently, agentic approaches to these problems have been gaining traction. This work evaluates the behavioural and retention effects of agentic personalisation on a financial service application's customer communication system during a 2025 national tax filing period. Through a two month-long randomised controlled trial, we compare an agentic messaging approach against a business-as-usual (BAU) rule-based campaign system, focusing on two primary outcomes: unsubscribe behaviour and conversion timing. Empirical results show that agent-led messaging reduced unsubscribe events by 21\% ($\pm 0.01$) relative to BAU and increased early filing behaviour in the weeks preceding the national deadline. These findings demonstrate how adaptive, user-level decision-making systems can modulate engagement intensity whilst improving long-term retention indicators.
comment: To appear in the 48th European Conference on Information Retrieval (ECIR '26) Industry Track
☆ Fair Voting Methods as a Catalyst for Democratic Resilience: A Trilogy on Legitimacy, Impact and AI Safeguarding
This article shows how fair voting methods can be a catalyst for change in the way we make collective decisions, and how such change can promote long-awaited upgrades of democracy. Based on real-world evidence from democratic innovations in participatory budgeting, in Switzerland and beyond, I highlight a trilogy of key research results: Fair voting methods achieve to be (i) legitimacy incubator, (ii) novel impact accelerator and (iii) safeguard for risks of artificial intelligence (AI). Compared to majoritarian voting methods, combining expressive ballot formats (e.g. cumulative voting) with ballot aggregation methods that promote proportional representation (e.g. equal shares) results in more winners and higher (geographical) representation of citizens. Such fair voting methods are preferred and found fairer even by voters who do not win, while promoting stronger democratic values for citizens such as altruism and compromise. They also result in new resourceful ideas to put for voting, which are cost-effective and win, especially in areas of welfare, education and culture. Strikingly, fair voting methods are also more resilient to biases and inconsistencies of generative AI in emerging scenarios of AI voting assistance or AI representation of voters who would be likely to abstain. I also review the relevance of such upgrades for democracies in crisis, such as the one of Greece featured in the recent study of `Unmute Democracy'. Greek democracy can build stronger resilience via higher representation of citizens in democratic processes as well as democratic innovations in participation. Fair voting methods can be a catalyst for both endeavors.
☆ A lightweight Spatial-Temporal Graph Neural Network for Long-term Time Series Forecasting
We propose Lite-STGNN, a lightweight spatial-temporal graph neural network for long-term multivariate forecasting that integrates decomposition-based temporal modeling with learnable sparse graph structure. The temporal module applies trend-seasonal decomposition, while the spatial module performs message passing with low-rank Top-$K$ adjacency learning and conservative horizon-wise gating, enabling spatial corrections that enhance a strong linear baseline. Lite-STGNN achieves state-of-the-art accuracy on four benchmark datasets for horizons up to 720 steps, while being parameter-efficient and substantially faster to train than transformer-based methods. Ablation studies show that the spatial module yields 4.6% improvement over the temporal baseline, Top-$K$ enhances locality by 3.3%, and learned adjacency matrices reveal domain-specific interaction dynamics. Lite-STGNN thus offers a compact, interpretable, and efficient framework for long-term multivariate time series forecasting.
comment: 9 pages, 5 figures, 2 tables. Accepted for presentation at the 18th International Conference on Agents and Artificial Intelligence (ICAART 2026), Marbella, Spain
☆ Learning What to Write: Write-Gated KV for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to persistent memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV, a lightweight mechanism that learns to predict token utility before it enters the cache. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, Write-Gated KV reduces memory usage by 46-57% and delivers 3.03-3.45$\times$ prefill and 1.89-2.56$\times$ decode speedups on Llama model with negligible accuracy loss, all while remaining compatible with FlashAttention and paged-KV systems. These results demonstrate that learning what to write, is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV .
☆ Assessing Long-Term Electricity Market Design for Ambitious Decarbonization Targets using Multi-Agent Reinforcement Learning
Electricity systems are key to transforming today's society into a carbon-free economy. Long-term electricity market mechanisms, including auctions, support schemes, and other policy instruments, are critical in shaping the electricity generation mix. In light of the need for more advanced tools to support policymakers and other stakeholders in designing, testing, and evaluating long-term markets, this work presents a multi-agent reinforcement learning model capable of capturing the key features of decarbonizing energy systems. Profit-maximizing generation companies make investment decisions in the wholesale electricity market, responding to system needs, competitive dynamics, and policy signals. The model employs independent proximal policy optimization, which was selected for suitability to the decentralized and competitive environment. Nevertheless, given the inherent challenges of independent learning in multi-agent settings, an extensive hyperparameter search ensures that decentralized training yields market outcomes consistent with competitive behavior. The model is applied to a stylized version of the Italian electricity system and tested under varying levels of competition, market designs, and policy scenarios. Results highlight the critical role of market design for decarbonizing the electricity sector and avoiding price volatility. The proposed framework allows assessing long-term electricity markets in which multiple policy and market mechanisms interact simultaneously, with market participants responding and adapting to decarbonization pathways.
comment: Accepted to Energy and AI. Code available in https://github.com/jjgonzalez2491/MARLEY_V1
☆ A Systematic Reproducibility Study of BSARec for Sequential Recommendation
In sequential recommendation (SR), the self-attention mechanism of Transformer-based models acts as a low-pass filter, limiting their ability to capture high-frequency signals that reflect short-term user interests. To overcome this, BSARec augments the Transformer encoder with a frequency layer that rescales high-frequency components using the Fourier transform. However, the overall effectiveness of BSARec and the roles of its individual components have yet to be systematically validated. We reproduce BSARec and show that it outperforms other SR methods on some datasets. To empirically assess whether BSARec improves performance on high-frequency signals, we propose a metric to quantify user history frequency and evaluate SR methods across different user groups. We compare digital signal processing (DSP) techniques and find that the discrete wavelet transform (DWT) offer only slight improvements over Fourier transforms, and DSP methods provide no clear advantage over simple residual connections. Finally, we explore padding strategies and find that non-constant padding significantly improves recommendation performance, whereas constant padding hinders the frequency rescaler's ability to capture high-frequency signals.
comment: Jan Hutter, Hua Chang Bakker, Stan Fris, Madelon Bernardy contributed equally to this work
☆ SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories
Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.
☆ Optimisation of Aircraft Maintenance Schedules
We present an aircraft maintenance scheduling problem, which requires suitably qualified staff to be assigned to maintenance tasks on each aircraft. The tasks on each aircraft must be completed within a given turn around window so that the aircraft may resume revenue earning service. This paper presents an initial study based on the application of an Evolutionary Algorithm to the problem. Evolutionary Algorithms evolve a solution to a problem by evaluating many possible solutions, focusing the search on those solutions that are of a higher quality, as defined by a fitness function. In this paper, we benchmark the algorithm on 60 generated problem instances to demonstrate the underlying representation and associated genetic operators.
☆ Detection and Analysis of Sensitive and Illegal Content on the Ethereum Blockchain Using Machine Learning Techniques
Blockchain technology, lauded for its transparent and immutable nature, introduces a novel trust model. However, its decentralized structure raises concerns about potential inclusion of malicious or illegal content. This study focuses on Ethereum, presenting a data identification and restoration algorithm. Successfully recovering 175 common files, 296 images, and 91,206 texts, we employed the FastText algorithm for sentiment analysis, achieving a 0.9 accuracy after parameter tuning. Classification revealed 70,189 neutral, 5,208 positive, and 15,810 negative texts, aiding in identifying sensitive or illicit information. Leveraging the NSFWJS library, we detected seven indecent images with 100% accuracy. Our findings expose the coexistence of benign and harmful content on the Ethereum blockchain, including personal data, explicit images, divisive language, and racial discrimination. Notably, sensitive information targeted Chinese government officials. Proposing preventative measures, our study offers valuable insights for public comprehension of blockchain technology and regulatory agency guidance. The algorithms employed present innovative solutions to address blockchain data privacy and security concerns.
☆ RadImageNet-VQA: A Large-Scale CT and MRI Dataset for Radiologic Visual Question Answering
In this work, we introduce RadImageNet-VQA, a large-scale dataset designed to advance radiologic visual question answering (VQA) on CT and MRI exams. Existing medical VQA datasets are limited in scale, dominated by X-ray imaging or biomedical illustrations, and often prone to text-based shortcuts. RadImageNet-VQA is built from expert-curated annotations and provides 750K images paired with 7.5M question-answer samples. It covers three key tasks - abnormality detection, anatomy recognition, and pathology identification - spanning eight anatomical regions and 97 pathology categories, and supports open-ended, closed-ended, and multiple-choice questions. Extensive experiments show that state-of-the-art vision-language models still struggle with fine-grained pathology identification, particularly in open-ended settings and even after fine-tuning. Text-only analysis further reveals that model performance collapses to near-random without image inputs, confirming that RadImageNet-VQA is free from linguistic shortcuts. The full dataset and benchmark are publicly available at https://huggingface.co/datasets/raidium/RadImageNet-VQA.
comment: Preprint, 23 pages, 12 figures, 7 tables
☆ Dialectics for Artificial Intelligence
Can artificial intelligence discover, from raw experience and without human supervision, concepts that humans have discovered? One challenge is that human concepts themselves are fluid: conceptual boundaries can shift, split, and merge as inquiry progresses (e.g., Pluto is no longer considered a planet). To make progress, we need a definition of "concept" that is not merely a dictionary label, but a structure that can be revised, compared, and aligned across agents. We propose an algorithmic-information viewpoint that treats a concept as an information object defined only through its structural relation to an agent's total experience. The core constraint is determination: a set of parts forms a reversible consistency relation if any missing part is recoverable from the others (up to the standard logarithmic slack in Kolmogorov-style identities). This reversibility prevents "concepts" from floating free of experience and turns concept existence into a checkable structural claim. To judge whether a decomposition is natural, we define excess information, measuring the redundancy overhead introduced by splitting experience into multiple separately described parts. On top of these definitions, we formulate dialectics as an optimization dynamics: as new patches of information appear (or become contested), competing concepts bid to explain them via shorter conditional descriptions, driving systematic expansion, contraction, splitting, and merging. Finally, we formalize low-cost concept transmission and multi-agent alignment using small grounds/seeds that allow another agent to reconstruct the same concept under a shared protocol, making communication a concrete compute-bits trade-off.
☆ TakeAD: Preference-based Post-optimization for End-to-end Autonomous Driving with Expert Takeover Data
Existing end-to-end autonomous driving methods typically rely on imitation learning (IL) but face a key challenge: the misalignment between open-loop training and closed-loop deployment. This misalignment often triggers driver-initiated takeovers and system disengagements during closed-loop execution. How to leverage those expert takeover data from disengagement scenarios and effectively expand the IL policy's capability presents a valuable yet unexplored challenge. In this paper, we propose TakeAD, a novel preference-based post-optimization framework that fine-tunes the pre-trained IL policy with this disengagement data to enhance the closed-loop driving performance. First, we design an efficient expert takeover data collection pipeline inspired by human takeover mechanisms in real-world autonomous driving systems. Then, this post optimization framework integrates iterative Dataset Aggregation (DAgger) for imitation learning with Direct Preference Optimization (DPO) for preference alignment. The DAgger stage equips the policy with fundamental capabilities to handle disengagement states through direct imitation of expert interventions. Subsequently, the DPO stage refines the policy's behavior to better align with expert preferences in disengagement scenarios. Through multiple iterations, the policy progressively learns recovery strategies for disengagement states, thereby mitigating the open-loop gap. Experiments on the closed-loop Bench2Drive benchmark demonstrate our method's effectiveness compared with pure IL methods, with comprehensive ablations confirming the contribution of each component.
☆ Adaptive Graph Pruning with Sudden-Events Evaluation for Traffic Prediction using Online Semi-Decentralized ST-GNNs
Spatio-Temporal Graph Neural Networks (ST-GNNs) are well-suited for processing high-frequency data streams from geographically distributed sensors in smart mobility systems. However, their deployment at the edge across distributed compute nodes (cloudlets) createssubstantial communication overhead due to repeated transmission of overlapping node features between neighbouring cloudlets. To address this, we propose an adaptive pruning algorithm that dynamically filters redundant neighbour features while preserving the most informative spatial context for prediction. The algorithm adjusts pruning rates based on recent model performance, allowing each cloudlet to focus on regions experiencing traffic changes without compromising accuracy. Additionally, we introduce the Sudden Event Prediction Accuracy (SEPA), a novel event-focused metric designed to measure responsiveness to traffic slowdowns and recoveries, which are often missed by standard error metrics. We evaluate our approach in an online semi-decentralized setting with traditional FL, server-free FL, and Gossip Learning on two large-scale traffic datasets, PeMS-BAY and PeMSD7-M, across short-, mid-, and long-term prediction horizons. Experiments show that, in contrast to standard metrics, SEPA exposes the true value of spatial connectivity in predicting dynamic and irregular traffic. Our adaptive pruning algorithm maintains prediction accuracy while significantly lowering communication cost in all online semi-decentralized settings, demonstrating that communication can be reduced without compromising responsiveness to critical traffic events.
comment: 19 pages, 6 figures, 5 tables, journal
☆ A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs
Multimodal large language models (MLLMs) demonstrate strong perception and reasoning performance on existing remote sensing (RS) benchmarks. However, most prior benchmarks rely on low-resolution imagery, and some high-resolution benchmarks suffer from flawed reasoning-task designs. We show that text-only LLMs can perform competitively with multimodal vision-language models on RS reasoning tasks without access to images, revealing a critical mismatch between current benchmarks and the intended evaluation of visual understanding. To enable faithful assessment, we introduce RSHR-Bench, a super-high-resolution benchmark for RS visual understanding and reasoning. RSHR-Bench contains 5,329 full-scene images with a long side of at least 4,000 pixels, with up to about 3 x 10^8 pixels per image, sourced from widely used RS corpora and UAV collections. We design four task families: multiple-choice VQA, open-ended VQA, image captioning, and single-image evaluation. These tasks cover nine perception categories and four reasoning types, supporting multi-turn and multi-image dialog. To reduce reliance on language priors, we apply adversarial filtering with strong LLMs followed by rigorous human verification. Overall, we construct 3,864 VQA tasks, 3,913 image captioning tasks, and 500 fully human-written or verified single-image evaluation VQA pairs. Evaluations across open-source, closed-source, and RS-specific VLMs reveal persistent performance gaps in super-high-resolution scenarios. Code: https://github.com/Yunkaidang/RSHR
☆ Explanation Beyond Intuition: A Testable Criterion for Inherent Explainability
Inherent explainability is the gold standard in Explainable Artificial Intelligence (XAI). However, there is not a consistent definition or test to demonstrate inherent explainability. Work to date either characterises explainability through metrics, or appeals to intuition - "we know it when we see it". We propose a globally applicable criterion for inherent explainability. The criterion uses graph theory for representing and decomposing models for structure-local explanation, and recomposing them into global explanations. We form the structure-local explanations as annotations, a verifiable hypothesis-evidence structure that allows for a range of explanatory methods to be used. This criterion matches existing intuitions on inherent explainability, and provides justifications why a large regression model may not be explainable but a sparse neural network could be. We differentiate explainable -- a model that allows for explanation -- and \textit{explained} -- one that has a verified explanation. Finally, we provide a full explanation of PREDICT -- a Cox proportional hazards model of cardiovascular disease risk, which is in active clinical use in New Zealand. It follows that PREDICT is inherently explainable. This work provides structure to formalise other work on explainability, and allows regulators a flexible but rigorous test that can be used in compliance frameworks.
Large Language Models as Pokémon Battle Agents: Strategic Play and Content Generation
Strategic decision-making in Pokémon battles presents a unique testbed for evaluating large language models. Pokémon battles demand reasoning about type matchups, statistical trade-offs, and risk assessment, skills that mirror human strategic thinking. This work examines whether Large Language Models (LLMs) can serve as competent battle agents, capable of both making tactically sound decisions and generating novel, balanced game content. We developed a turn-based Pokémon battle system where LLMs select moves based on battle state rather than pre-programmed logic. The framework captures essential Pokémon mechanics: type effectiveness multipliers, stat-based damage calculations, and multi-Pokémon team management. Through systematic evaluation across multiple model architectures we measured win rates, decision latency, type-alignment accuracy, and token efficiency. These results suggest LLMs can function as dynamic game opponents without domain-specific training, offering a practical alternative to reinforcement learning for turn-based strategic games. The dual capability of tactical reasoning and content creation, positions LLMs as both players and designers, with implications for procedural generation and adaptive difficulty systems in interactive entertainment.
comment: Under Review
☆ M2RU: Memristive Minion Recurrent Unit for Continual Learning at the Edge
Continual learning on edge platforms remains challenging because recurrent networks depend on energy-intensive training procedures and frequent data movement that are impractical for embedded deployments. This work introduces M2RU, a mixed-signal architecture that implements the minion recurrent unit for efficient temporal processing with on-chip continual learning. The architecture integrates weighted-bit streaming, which enables multi-bit digital inputs to be processed in crossbars without high-resolution conversion, and an experience replay mechanism that stabilizes learning under domain shifts. M2RU achieves 15 GOPS at 48.62 mW, corresponding to 312 GOPS per watt, and maintains accuracy within 5 percent of software baselines on sequential MNIST and CIFAR-10 tasks. Compared with a CMOS digital design, the accelerator provides 29X improvement in energy efficiency. Device-aware analysis shows an expected operational lifetime of 12.2 years under continual learning workloads. These results establish M2RU as a scalable and energy-efficient platform for real-time adaptation in edge-level temporal intelligence.
☆ Robust TTS Training via Self-Purifying Flow Matching for the WildSpoof 2026 TTS Track ICASSP 2026
This paper presents a lightweight text-to-speech (TTS) system developed for the WildSpoof Challenge TTS Track. Our approach fine-tunes the recently released open-weight TTS model, \textit{Supertonic}\footnote{\url{https://github.com/supertone-inc/supertonic}}, with Self-Purifying Flow Matching (SPFM) to enable robust adaptation to in-the-wild speech. SPFM mitigates label noise by comparing conditional and unconditional flow matching losses on each sample, routing suspicious text--speech pairs to unconditional training while still leveraging their acoustic information. The resulting model achieves the lowest Word Error Rate (WER) among all participating teams, while ranking second in perceptual metrics such as UTMOS and DNSMOS. These findings demonstrate that efficient, open-weight architectures like Supertonic can be effectively adapted to diverse real-world speech conditions when combined with explicit noise-handling mechanisms such as SPFM.
comment: 2 pages, preprint, This work has been submitted to the IEEE for possible publication. Submitted to ICASSP 2026 SPGC (WildSpoof Challenge, TTS track)
☆ Subjective Question Generation and Answer Evaluation using NLP
Natural Language Processing (NLP) is one of the most revolutionary technologies today. It uses artificial intelligence to understand human text and spoken words. It is used for text summarization, grammar checking, sentiment analysis, and advanced chatbots and has many more potential use cases. Furthermore, it has also made its mark on the education sector. Much research and advancements have already been conducted on objective question generation; however, automated subjective question generation and answer evaluation are still in progress. An automated system to generate subjective questions and evaluate the answers can help teachers assess student work and enhance the student's learning experience by allowing them to self-assess their understanding after reading an article or a chapter of a book. This research aims to improve current NLP models or make a novel one for automated subjective question generation and answer evaluation from text input.
comment: 5 pages, 5 figures, 2 tables, conference paper
☆ WDFFU-Mamba: A Wavelet-guided Dual-attention Feature Fusion Mamba for Breast Tumor Segmentation in Ultrasound Images
Breast ultrasound (BUS) image segmentation plays a vital role in assisting clinical diagnosis and early tumor screening. However, challenges such as speckle noise, imaging artifacts, irregular lesion morphology, and blurred boundaries severely hinder accurate segmentation. To address these challenges, this work aims to design a robust and efficient model capable of automatically segmenting breast tumors in BUS images.We propose a novel segmentation network named WDFFU-Mamba, which integrates wavelet-guided enhancement and dual-attention feature fusion within a U-shaped Mamba architecture. A Wavelet-denoised High-Frequency-guided Feature (WHF) module is employed to enhance low-level representations through noise-suppressed high-frequency cues. A Dual Attention Feature Fusion (DAFF) module is also introduced to effectively merge skip-connected and semantic features, improving contextual consistency.Extensive experiments on two public BUS datasets demonstrate that WDFFU-Mamba achieves superior segmentation accuracy, significantly outperforming existing methods in terms of Dice coefficient and 95th percentile Hausdorff Distance (HD95).The combination of wavelet-domain enhancement and attention-based fusion greatly improves both the accuracy and robustness of BUS image segmentation, while maintaining computational efficiency.The proposed WDFFU-Mamba model not only delivers strong segmentation performance but also exhibits desirable generalization ability across datasets, making it a promising solution for real-world clinical applications in breast tumor ultrasound analysis.
☆ Understanding Generalization in Role-Playing Models via Information Theory
Role-playing models (RPMs) are widely used in real-world applications but underperform when deployed in the wild. This degradation can be attributed to distribution shifts, including user, character, and dialogue compositional shifts. Existing methods like LLM-as-a-judge fall short in providing a fine-grained diagnosis of how these shifts affect RPM generalization, and thus there lack formal frameworks to characterize RPM generalization behaviors. To bridge these gaps, we introduce an information-theoretic metric, named reasoning-based effective mutual information difference (R-EMID), to measure RPM performance degradation in an interpretable way. We also derive an upper bound on R-EMID to predict the worst-case generalization performance of RPMs and theoretically reveal how various shifts contribute to the RPM performance degradation. Moreover, we propose a co-evolving reinforcement learning framework to adaptively model the connection among user, character, and dialogue context and thus enhance the estimation of dialogue response generation probability, which is critical for calculating R-EMID. Finally, we evaluate the generalization performance of various RPMs using R-EMID, finding that user shift poses the highest risk among all shifts and reinforcement learning is the most effective approach for enhancing RPM generalization.
☆ AutoMetrics: Approximate Human Judgements with Automatically Generated Evaluators
Evaluating user-facing AI applications remains a central challenge, especially in open-ended domains such as travel planning, clinical note generation, or dialogue. The gold standard is user feedback (e.g., thumbs up/down) or behavioral signals (e.g., retention), but these are often scarce in prototypes and research projects, or too-slow to use for system optimization. We present AutoMetrics, a framework for synthesizing evaluation metrics under low-data constraints. AutoMetrics combines retrieval from MetricBank, a collection of 48 metrics we curate, with automatically generated LLM-as-a-Judge criteria informed by lightweight human feedback. These metrics are composed via regression to maximize correlation with human signal. AutoMetrics takes you from expensive measures to interpretable automatic metrics. Across 5 diverse tasks, AutoMetrics improves Kendall correlation with human ratings by up to 33.4% over LLM-as-a-Judge while requiring fewer than 100 feedback points. We show that AutoMetrics can be used as a proxy reward to equal effect as a verifiable reward. We release the full AutoMetrics toolkit and MetricBank to accelerate adaptive evaluation of LLM applications.
☆ ScoutGPT: Capturing Player Impact from Team Action Sequences Using GPT-Based Framework
Transfers play a pivotal role in shaping a football club's success, yet forecasting whether a transfer will succeed remains difficult due to the strong context-dependence of on-field performance. Existing evaluation practices often rely on static summary statistics or post-hoc value models, which fail to capture how a player's contribution adapts to a new tactical environment or different teammates. To address this gap, we introduce EventGPT, a player-conditioned, value-aware next-event prediction model built on a GPT-style autoregressive transformer. Our model treats match play as a sequence of discrete tokens, jointly learning to predict the next on-ball action's type, location, timing, and its estimated residual On-Ball Value (rOBV) based on the preceding context and player identity. A key contribution of this framework is the ability to perform counterfactual simulations. By substituting learned player embeddings into new event sequences, we can simulate how a player's behavioral distribution and value profile would change when placed in a different team or tactical structure. Evaluated on five seasons of Premier League event data, EventGPT outperforms existing sequence-based baselines in next-event prediction accuracy and spatial precision. Furthermore, we demonstrate the model's practical utility for transfer analysis through case studies-such as comparing striker performance across different systems and identifying stylistic replacements for specific roles-showing that our approach provides a principled method for evaluating transfer fit.
comment: 8 pages, 2 figures, 7 tables. To appear in Hudl Performance Insights 2025
☆ Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling Autonomous LLM Systems
As LLM-based agents grow more autonomous and multi-modal, ensuring they remain controllable, auditable, and faithful to deployer intent becomes critical. Prior benchmarks measured the propensity for misaligned behavior and showed that agent personalities and tool access significantly influence misalignment. Building on these insights, we propose a Verifiability-First architecture that (1) integrates run-time attestations of agent actions using cryptographic and symbolic methods, (2) embeds lightweight Audit Agents that continuously verify intent versus behavior using constrained reasoning, and (3) enforces challenge-response attestation protocols for high-risk operations. We introduce OPERA (Observability, Provable Execution, Red-team, Attestation), a benchmark suite and evaluation protocol designed to measure (i) detectability of misalignment, (ii) time to detection under stealthy strategies, and (iii) resilience of verifiability mechanisms to adversarial prompt and persona injection. Our approach shifts the evaluation focus from how likely misalignment is to how quickly and reliably misalignment can be detected and remediated.
☆ From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework
Humans excel at solving novel reasoning problems from minimal exposure, guided by inductive biases, assumptions about which entities and relationships matter. Yet the computational form of these biases and their neural implementation remain poorly understood. We introduce a framework that combines Graph Theory and Graph Neural Networks (GNNs) to formalize inductive biases as explicit, manipulable priors over structure and abstraction. Using a human behavioral dataset adapted from the Abstraction and Reasoning Corpus (ARC), we show that differences in graph-based priors can explain individual differences in human solutions. Our method includes an optimization pipeline that searches over graph configurations, varying edge connectivity and node abstraction, and a visualization approach that identifies the computational graph, the subset of nodes and edges most critical to a model's prediction. Systematic ablation reveals how generalization depends on specific prior structures and internal processing, exposing why human like errors emerge from incorrect or incomplete priors. This work provides a principled, interpretable framework for modeling the representational assumptions and computational dynamics underlying generalization, offering new insights into human reasoning and a foundation for more human aligned AI systems.
comment: 44 pages, 7 figures, 3 suppl figures
☆ AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs NeurIPS 2025
Large language models are exposed to risks of extraction, distillation, and unauthorized fine-tuning. Existing defenses use watermarking or monitoring, but these act after leakage. We design AlignDP, a hybrid privacy lock that blocks knowledge transfer at the data interface. The key idea is to separate rare and non-rare fields. Rare fields are shielded by PAC indistinguishability, giving effective zero-epsilon local DP. Non-rare fields are privatized with RAPPOR, giving unbiased frequency estimates under local DP. A global aggregator enforces composition and budget. This two-tier design hides rare events and adds controlled noise to frequent events. We prove limits of PAC extension to global aggregation, give bounds for RAPPOR estimates, and analyze utility trade-off. A toy simulation confirms feasibility: rare categories remain hidden, frequent categories are recovered with small error.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: LOCK-LLM Work-shop, NeurIPS 2025
☆ Accelerating Multi-modal LLM Gaming Performance via Input Prediction and Mishit Correction
Real-time sequential control agents are often bottlenecked by inference latency. Even modest per-step planning delays can destabilize control and degrade overall performance. We propose a speculation-and-correction framework that adapts the predict-then-verify philosophy of speculative execution to model-based control with TD-MPC2. At each step, a pretrained world model and latent-space MPC planner generate a short-horizon action queue together with predicted latent rollouts, allowing the agent to execute multiple planned actions without immediate replanning. When a new observation arrives, the system measures the mismatch between the encoded real latent state and the queued predicted latent. For small to moderate mismatch, a lightweight learned corrector applies a residual update to the speculative action, distilled offline from a replanning teacher. For large mismatch, the agent safely falls back to full replanning and clears stale action queues. We study both a gated two-tower MLP corrector and a temporal Transformer corrector to address local errors and systematic drift. Experiments on the DMC Humanoid-Walk task show that our method reduces the number of planning inferences from 500 to 282, improves end-to-end step latency by 25 percent, and maintains strong control performance with only a 7.1 percent return reduction. Ablation results demonstrate that speculative execution without correction is unreliable over longer horizons, highlighting the necessity of mismatch-aware correction for robust latency reduction.
comment: UIUC 25 Fall CS 498
☆ Incorporating Error Level Noise Embedding for Improving LLM-Assisted Robustness in Persian Speech Recognition
Automatic Speech Recognition (ASR) systems suffer significant performance degradation in noisy environments, a challenge that is especially severe for low-resource languages such as Persian. Even state-of-the-art models such as Whisper struggle to maintain accuracy under varying signal-to-noise ratios (SNRs). This study presents a robust noise-sensitive ASR error correction framework that combines multiple hypotheses and noise-aware modeling. Using noisy Persian speech, we generate 5-best hypotheses from a modified Whisper-large decoder. Error Level Noise (ELN) is introduced as a representation that captures semantic- and token-level disagreement across hypotheses, quantifying the linguistic distortions caused by noise. ELN thus provides a direct measure of noise-induced uncertainty, enabling the LLM to reason about the reliability of each hypothesis during correction. Three models are evaluated: (1) a base LLaMA-2-7B model without fine-tuning, (2) a fine-tuned variant trained on text-only hypotheses, and (3) a noise-conditioned model integrating ELN embeddings at both sentence and word levels. Experimental results demonstrate that the ELN-conditioned model achieves substantial reductions in Word Error Rate (WER). Specifically, on the challenging Mixed Noise test set, the proposed Fine-tuned + ELN (Ours) model reduces the WER from a baseline of 31.10\% (Raw Whisper) to 24.84\%, significantly surpassing the Fine-tuned (No ELN) text-only baseline of 30.79\%, whereas the original LLaMA-2-7B model increased the WER to 64.58\%, demonstrating that it is unable to correct Persian errors on its own. This confirms the effectiveness of combining multiple hypotheses with noise-aware embeddings for robust Persian ASR in noisy real-world scenarios.
☆ Privacy-Preserving Synthetic Dataset of Individual Daily Trajectories for City-Scale Mobility Analytics
Urban mobility data are indispensable for urban planning, transportation demand forecasting, pandemic modeling, and many other applications; however, individual mobile phone-derived Global Positioning System traces cannot generally be shared with third parties owing to severe re-identification risks. Aggregated records, such as origin-destination (OD) matrices, offer partial insights but fail to capture the key behavioral properties of daily human movement, limiting realistic city-scale analyses. This study presents a privacy-preserving synthetic mobility dataset that reconstructs daily trajectories from aggregated inputs. The proposed method integrates OD flows with two complementary behavioral constraints: (1) dwell-travel time quantiles that are available only as coarse summary statistics and (2) the universal law for the daily distribution of the number of visited locations. Embedding these elements in a multi-objective optimization framework enables the reproduction of realistic distributions of human mobility while ensuring that no personal identifiers are required. The proposed framework is validated in two contrasting regions of Japan: (1) the 23 special wards of Tokyo, representing a dense metropolitan environment; and (2) Fukuoka Prefecture, where urban and suburban mobility patterns coexist. The resulting synthetic mobility data reproduce dwell-travel time and visit frequency distributions with high fidelity, while deviations in OD consistency remain within the natural range of daily fluctuations. The results of this study establish a practical synthesis pathway under real-world constraints, providing governments, urban planners, and industries with scalable access to high-resolution mobility data for reliable analytics without the need for sensitive personal records, and supporting practical deployments in policy and commercial domains.
comment: 9 pages, 4 figures
☆ The Role of Islamic Ethics in Preventing the Abuse of Artificial Intelligence (AI) Based Deepfakes
The significant development of deepfake technology powered by artificial intelligence (AI) has sparked worldwide concerns about the alteration of false information, the usurpation of online identities, and the decline of public confidence in the authenticity of online content. These incidents not only raise technical issues but also carry complex moral implications, rendering conventional, technologically driven, and reactive management methods inadequate to address the underlying causes of the problem, including intent, morality, and potential intangible social impacts. Based on these issues, this study aims to formulate a comprehensive Islamic ethical framework that can serve as a more comprehensive preventative tool to mitigate the risks of misuse of deepfakes. The study employed a Systematic Literature Review (SLR) guided by PRISMA, selecting ten primary sources published between 2018 and 2025 to identify ethical deficiencies, regulatory needs, and appropriate normative solutions. The analysis shows that the integration of the principles of (Maqasid al-Shariah) particularly (hifz al-ird) protecting honor and (hifz al-nafs) protecting the self, provides a strong normative basis for regulating the responsible use of technology. This study yields three strategic recommendations: regulatory changes that recognize the intangible and psychological harm caused by reputational damage; improved technology management through moral scrutiny that upholds the values of justice (adl), trust, and openness; and increased public digital literacy based on the principle of (tabayyun) examination and caution. Overall, this study concludes that the application of Islamic ethics offers a shift in thinking from punitive mechanisms to preventative approaches that focus on protecting human dignity, preventing harm, and strengthening the common good in the digital age.
☆ Research on Dead Reckoning Algorithm for Self-Propelled Pipeline Robots in Three-Dimensional Complex Pipelines
In the field of gas pipeline location, existing pipeline location methods mostly rely on pipeline location instruments. However, when faced with complex and curved pipeline scenarios, these methods often fail due to problems such as cable entanglement and insufficient equipment flexibility. To address this pain point, we designed a self-propelled pipeline robot. This robot can autonomously complete the location work of complex and curved pipelines in complex pipe networks without external dragging. In terms of pipeline mapping technology, traditional visual mapping and laser mapping methods are easily affected by lighting conditions and insufficient features in the confined space of pipelines, resulting in mapping drift and divergence problems. In contrast, the pipeline location method that integrates inertial navigation and wheel odometers is less affected by pipeline environmental factors. Based on this, this paper proposes a pipeline robot location method based on extended Kalman filtering (EKF). Firstly, the body attitude angle is initially obtained through an inertial measurement unit (IMU). Then, the extended Kalman filtering algorithm is used to improve the accuracy of attitude angle estimation. Finally, high-precision pipeline location is achieved by combining wheel odometers. During the testing phase, the roll wheels of the pipeline robot needed to fit tightly against the pipe wall to reduce slippage. However, excessive tightness would reduce the flexibility of motion control due to excessive friction. Therefore, a balance needed to be struck between the robot's motion capability and positioning accuracy. Experiments were conducted using the self-propelled pipeline robot in a rectangular loop pipeline, and the results verified the effectiveness of the proposed dead reckoning algorithm.
comment: 8 pages, 9 figures
☆ Fose: Fusion of One-Step Diffusion and End-to-End Network for Pansharpening
Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://github.com/Kai-Liu001/Fose.
comment: Code link: https://github.com/Kai-Liu001/Fose
☆ UmniBench: Unified Understand and Generation Model Oriented Omni-dimensional Benchmark
Unifying multimodal understanding and generation has shown impressive capabilities in cutting-edge proprietary systems. However, evaluations of unified multimodal models (UMMs) remain decoupled, assessing their understanding and generation abilities separately with corresponding datasets. To address this, we propose UmniBench, a benchmark tailored for UMMs with omni-dimensional evaluation. First, UmniBench can assess the understanding, generation, and editing ability within a single evaluation process. Based on human-examined prompts and QA pairs, UmniBench leverages UMM itself to evaluate its generation and editing ability with its understanding ability. This simple but effective paradigm allows comprehensive evaluation of UMMs. Second, UmniBench covers 13 major domains and more than 200 concepts, ensuring a thorough inspection of UMMs. Moreover, UmniBench can also decouple and separately evaluate understanding, generation, and editing abilities, providing a fine-grained assessment. Based on UmniBench, we benchmark 24 popular models, including both UMMs and single-ability large models. We hope this benchmark provides a more comprehensive and objective view of unified models and logistical support for improving the performance of the community model.
comment: Project Page: https://umnibench.github.io/
☆ MMRAG-RFT: Two-stage Reinforcement Fine-tuning for Explainable Multi-modal Retrieval-augmented Generation AAAI2026
Multi-modal Retrieval-Augmented Generation (MMRAG) enables highly credible generation by integrating external multi-modal knowledge, thus demonstrating impressive performance in complex multi-modal scenarios. However, existing MMRAG methods fail to clarify the reasoning logic behind retrieval and response generation, which limits the explainability of the results. To address this gap, we propose to introduce reinforcement learning into multi-modal retrieval-augmented generation, enhancing the reasoning capabilities of multi-modal large language models through a two-stage reinforcement fine-tuning framework to achieve explainable multi-modal retrieval-augmented generation. Specifically, in the first stage, rule-based reinforcement fine-tuning is employed to perform coarse-grained point-wise ranking of multi-modal documents, effectively filtering out those that are significantly irrelevant. In the second stage, reasoning-based reinforcement fine-tuning is utilized to jointly optimize fine-grained list-wise ranking and answer generation, guiding multi-modal large language models to output explainable reasoning logic in the MMRAG process. Our method achieves state-of-the-art results on WebQA and MultimodalQA, two benchmark datasets for multi-modal retrieval-augmented generation, and its effectiveness is validated through comprehensive ablation experiments.
comment: This paper was accepted to AAAI2026
☆ Systemic Risk Radar: A Multi-Layer Graph Framework for Early Market Crash Warning
Financial crises emerge when structural vulnerabilities accumulate across sectors, markets, and investor behavior. Predicting these systemic transitions is challenging because they arise from evolving interactions between market participants, not isolated price movements alone. We present Systemic Risk Radar (SRR), a framework that models financial markets as multi-layer graphs to detect early signs of systemic fragility and crash-regime transitions. We evaluate SRR across three major crises: the Dot-com crash, the Global Financial Crisis, and the COVID-19 shock. Our experiments compare snapshot GNNs, a simplified temporal GNN prototype, and standard baselines (logistic regression and Random Forest). Results show that structural network information provides useful early-warning signals compared to feature-based models alone. This correlation-based instantiation of SRR demonstrates that graph-derived features capture meaningful changes in market structure during stress events. The findings motivate extending SRR with additional graph layers (sector/factor exposure, sentiment) and more expressive temporal architectures (LSTM/GRU or Transformer encoders) to better handle diverse crisis types.
comment: Preprint
☆ Conservative Bias in Multi-Teacher Learning: Why Agents Prefer Low-Reward Advisors
Interactive reinforcement learning (IRL) has shown promise in enabling autonomous agents and robots to learn complex behaviours from human teachers, yet the dynamics of teacher selection remain poorly understood. This paper reveals an unexpected phenomenon in IRL: when given a choice between teachers with different reward structures, learning agents overwhelmingly prefer conservative, low-reward teachers (93.16% selection rate) over those offering 20x higher rewards. Through 1,250 experimental runs in navigation tasks with multiple expert teachers, we discovered: (1) Conservative bias dominates teacher selection: agents systematically choose the lowest-reward teacher, prioritising consistency over optimality; (2) Critical performance thresholds exist at teacher availability rho >= 0.6 and accuracy omega >= 0.6, below which the framework fails catastrophically; (3) The framework achieves 159% improvement over baseline Q-learning under concept drift. These findings challenge fundamental assumptions about optimal teaching in RL and suggest potential implications for human-robot collaboration, where human preferences for safety and consistency may align with the observed agent selection behaviour, potentially informing training paradigms for safety-critical robotic applications.
comment: 10 pages, 5 figures. Accepted at ACRA 2025 (Australasian Conference on Robotics and Automation)
☆ PILAR: Personalizing Augmented Reality Interactions with LLM-based Human-Centric and Trustworthy Explanations for Daily Use Cases
Artificial intelligence (AI)-driven augmented reality (AR) systems are becoming increasingly integrated into daily life, and with this growth comes a greater need for explainability in real-time user interactions. Traditional explainable AI (XAI) methods, which often rely on feature-based or example-based explanations, struggle to deliver dynamic, context-specific, personalized, and human-centric insights for everyday AR users. These methods typically address separate explainability dimensions (e.g., when, what, how) with different explanation techniques, resulting in unrealistic and fragmented experiences for seamless AR interactions. To address this challenge, we propose PILAR, a novel framework that leverages a pre-trained large language model (LLM) to generate context-aware, personalized explanations, offering a more intuitive and trustworthy experience in real-time AI-powered AR systems. Unlike traditional methods, which rely on multiple techniques for different aspects of explanation, PILAR employs a unified LLM-based approach that dynamically adapts explanations to the user's needs, fostering greater trust and engagement. We implement the PILAR concept in a real-world AR application (e.g., personalized recipe recommendations), an open-source prototype that integrates real-time object detection, recipe recommendation, and LLM-based personalized explanations of the recommended recipes based on users' dietary preferences. We evaluate the effectiveness of PILAR through a user study with 16 participants performing AR-based recipe recommendation tasks, comparing an LLM-based explanation interface to a traditional template-based one. Results show that the LLM-based interface significantly enhances user performance and experience, with participants completing tasks 40% faster and reporting greater satisfaction, ease of use, and perceived transparency.
comment: Published in the 2025 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
☆ Solomonoff-Inspired Hypothesis Ranking with LLMs for Prediction Under Uncertainty
Reasoning under uncertainty is a key challenge in AI, especially for real-world tasks, where problems with sparse data demands systematic generalisation. Existing approaches struggle to balance accuracy and simplicity when evaluating multiple candidate solutions. We propose a Solomonoff-inspired method that weights LLM-generated hypotheses by simplicity and predictive fit. Applied to benchmark (Mini-ARC) tasks, our method produces Solomonoff-weighted mixtures for per-cell predictions, yielding conservative, uncertainty-aware outputs even when hypotheses are noisy or partially incorrect. Compared to Bayesian Model Averaging (BMA), Solomonoff scoring spreads probability more evenly across competing hypotheses, while BMA concentrates weight on the most likely but potentially flawed candidates. Across tasks, this highlights the value of algorithmic information-theoretic priors for interpretable, reliable multi-hypothesis reasoning under uncertainty.
comment: 10 pages, ACRA 2025, Submitted, Accepted and Presented
☆ SDUM: A Scalable Deep Unrolled Model for Universal MRI Reconstruction
Clinical MRI encompasses diverse imaging protocols--spanning anatomical targets (cardiac, brain, knee), contrasts (T1, T2, mapping), sampling patterns (Cartesian, radial, spiral, kt-space), and acceleration factors--yet current deep learning reconstructions are typically protocol-specific, hindering generalization and deployment. We introduce Scalable Deep Unrolled Model (SDUM), a universal framework combining a Restormer-based reconstructor, a learned coil sensitivity map estimator (CSME), sampling-aware weighted data consistency (SWDC), universal conditioning (UC) on cascade index and protocol metadata, and progressive cascade expansion training. SDUM exhibits foundation-model-like scaling behavior: reconstruction quality follows PSNR ${\sim}$ log(parameters) with correlation $r{=}0.986$ ($R^2{=}0.973$) up to 18 cascades, demonstrating predictable performance gains with model depth. A single SDUM trained on heterogeneous data achieves state-of-the-art results across all four CMRxRecon2025 challenge tracks--multi-center, multi-disease, 5T, and pediatric--without task-specific fine-tuning, surpassing specialized baselines by up to ${+}1.0$~dB. On CMRxRecon2024, SDUM outperforms the winning method PromptMR+ by ${+}0.55$~dB; on fastMRI brain, it exceeds PC-RNN by ${+}1.8$~dB. Ablations validate each component: SWDC ${+}0.43$~dB over standard DC, per-cascade CSME ${+}0.51$~dB, UC ${+}0.38$~dB. These results establish SDUM as a practical path toward universal, scalable MRI reconstruction.
♻ ☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy. Our code SpecCLIP is publicly available at https://github.com/Xiaosheng-Zhao/SpecCLIP
comment: 29 pages, 8 figures, 6 tables. Accepted for publication in ApJ. Comments welcome
♻ ☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce mimic-video, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
comment: Revised Introduction, Related Work, and Appendix. Additional minor notational and grammatical fixes
♻ ☆ Adaptive Focus Memory for Language Models
Large language models (LLMs) are increasingly deployed in multi-turn dialogue settings, yet their behavior remains bottlenecked by naive history management strategies. Replaying the full conversation at every turn is simple but costly, while recency-based truncation or static summarization often causes early, high-impact user constraints to drift out of effective context. As a result, models may retain text without reliably applying it when it matters. We present Adaptive Focus Memory (AFM), a lightweight context management system that dynamically assigns each past message one of three fidelity levels: Full, Compressed, or Placeholder, based on semantic relevance, temporal decay, and importance classification. AFM packs messages chronologically under a fixed token budget, preserving critical constraints at high fidelity while allowing low-importance context to degrade gracefully. We evaluate AFM on two multi-turn dialogue benchmarks designed to stress long-horizon constraint preservation: a safety-critical travel scenario involving a user with a severe peanut allergy, and a policy-critical tax compliance scenario involving an illegal evasion request. Under strict grading that requires both explicit constraint recall and appropriately conditioned generation, AFM succeeds in 83.3 percent of allergy runs where all baseline strategies fail, and preserves correct refusal behavior on the tax benchmark. These results demonstrate that effective dialogue memory requires more than retaining prior text. Selectively allocating fidelity across past messages enables reliable constraint preservation under bounded context growth, without modifying model weights or introducing external retrieval infrastructure. We release an open-source implementation of AFM compatible with OpenAI-style chat APIs to support reproducible research and practical deployment.
♻ ☆ Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
The collaborative efforts of large communities in science experiments, often comprising thousands of global members, reflect a monumental commitment to exploration and discovery. Recently, advanced and complex data processing has gained increasing importance in science experiments. Data processing workflows typically consist of multiple intricate steps, and the precise specification of resource requirements is crucial for each step to allocate optimal resources for effective processing. Estimating resource requirements in advance is challenging due to a wide range of analysis scenarios, varying skill levels among community members, and the continuously increasing spectrum of computing options. One practical approach to mitigate these challenges involves initially processing a subset of each step to measure precise resource utilization from actual processing profiles before completing the entire step. While this two-staged approach enables processing on optimal resources for most of the workflow, it has drawbacks such as initial inaccuracies leading to potential failures and suboptimal resource usage, along with overhead from waiting for initial processing completion, which is critical for fast-turnaround analyses. In this context, our study introduces a novel pipeline of machine learning models within a comprehensive workflow management system, the Production and Distributed Analysis (PanDA) system. These models employ advanced machine learning techniques to predict key resource requirements, overcoming challenges posed by limited upfront knowledge of characteristics at each step. Accurate forecasts of resource requirements enable informed and proactive decision-making in workflow management, enhancing the efficiency of handling diverse, complex workflows across heterogeneous resources.
♻ ☆ RL from Teacher-Model Refinement: Gradual Imitation Learning for Machine Translation
Preference-learning methods for machine translation (MT), such as Direct Preference Optimization (DPO), have shown strong gains but typically rely on large, carefully curated preference triplets and often struggle to generalize beyond their tuning domains. We propose Reinforcement Learning from Teacher-Model Refinement (RLfR), which replaces static triplets with on-policy, actor-conditioned refinements produced by a frozen teacher. At each step, the actor samples candidate translations, the teacher performs a minimal local edit of each draft, and the actor is reinforced to close the gap using a composite reward that combines scaled negative edit distance for lexical and structural fidelity with COMET for semantic adequacy. This formulation yields a stable, model-aware learning signal without requiring explicit preference datasets. Experiments on FLORES-200 (English to German, Spanish, Chinese, Korean, and Japanese) show that RLfR consistently outperforms strong MT-SFT, DPO, and fixed-reference RL baselines, improving semantic quality and entity preservation, and also achieves superior performance under LLM-based judge evaluations.
♻ ☆ The Diffusion Duality ICML 2025
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/duo
comment: ICML 2025. We provide the code at: https://github.com/s-sahoo/duo [v3] includes improved theory, clearer presentation, and a new future work section
♻ ☆ Reinforced Generation of Combinatorial Structures: Hardness of Approximation
Can AI based methods help us make advances in complexity theory? We provide evidence towards answering this in the affirmative, using AlphaEvolve (an LLM code mutation agent) to obtain new results in three settings: a) We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ vertices, and our upper bounds are obtained via analytical arguments. b) We obtain new inapproximability results for MAX-4-CUT and MAX-3-CUT, proving that it is NP-hard to approximate them within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of the SOTA of $16/17$ that relies on a custom PCP (rather than a reduction from ``standard'' Håstad-style PCPs). c) Inapproximability for the metric Traveling Salesman Problem (TSP): We show that it is NP-hard to approximate the minimum cost tour within a factor of $111/110$ using AlphaEvolve to discover a new gadget, thus improving the SOTA of $117/116$. Along the way, we provide new modular soundness and completeness arguments that can be of independent interest. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (sometimes requiring time exponential in the size of the construction). We used AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$ for our gadgets). Our results suggest that gadget based proofs would benefit from a pass through AI-based tools to obtain stronger results.
♻ ☆ ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics
Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is abundant: survey articles consolidate knowledge spread across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Queries and rubrics are jointly derived from survey sections, where rubric items list query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. 31 Ph.D. annotators in 8 fields judge that 90% of queries reflect Ph.D. information needs and 87% of rubric items warrant emphasis of a sentence or longer. We leverage ResearchQA to evaluate 18 systems in 7.6K head-to-heads. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.
comment: 12 pages main, 40 pages total, 15 figures
♻ ☆ LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that instance-specific issues output by LLM-as-a-qualitative-judge match those annotated by humans in 2/3 cases, and that LLM-as-a-qualitative-judge is capable of producing error type reports resembling the reports composed by human annotators. We also demonstrate in a case study how the use of LLM-as-a-qualitative-judge can substantially improve NLG systems performance. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, LLM-Judge, semantic similarity, etc.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ The Generation Phases of Flow Matching: a Denoising Perspective
Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a framework to empirically probe the generation process. Laying down the formal connections between flow matching models and denoisers, we provide a common ground to compare their performances on generation and denoising. This enables the design of principled and controlled perturbations to influence sample generation: noise and drift. This leads to new insights on the distinct dynamical phases of the generative process, enabling us to precisely characterize at which stage of the generative process denoisers succeed or fail and why this matters.
♻ ☆ Fun-ASR Technical Report
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present Fun-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, Fun-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, Fun-ASR achieves state-of-the-art performance on real application datasets, demonstrating its effectiveness and robustness in practical settings. The code and models are accessible at https://github.com/FunAudioLLM/Fun-ASR .
comment: Authors are listed in alphabetical order. Work in progress
♻ ☆ FakeParts: a New Family of AI-Generated DeepFakes
We introduce FakeParts, a new class of deepfakes characterized by subtle, localized manipulations to specific spatial regions or temporal segments of otherwise authentic videos. Unlike fully synthetic content, these partial manipulations - ranging from altered facial expressions to object substitutions and background modifications - blend seamlessly with real elements, making them particularly deceptive and difficult to detect. To address the critical gap in detection, we present FakePartsBench, the first large-scale benchmark specifically designed to capture the full spectrum of partial deepfakes. Comprising over 81K (including 44K FakeParts) videos with pixel- and frame-level manipulation annotations, our dataset enables comprehensive evaluation of detection methods. Our user studies demonstrate that FakeParts reduces human detection accuracy by up to 26% compared to traditional deepfakes, with similar performance degradation observed in state-of-the-art detection models. This work identifies an urgent vulnerability in current detectors and provides the necessary resources to develop methods robust to partial manipulations.
♻ ☆ Privacy Bias in Language Models: A Contextual Integrity-based Auditing Metric
As large language models (LLMs) are integrated into sociotechnical systems, it is crucial to examine the privacy biases they exhibit. We define privacy bias as the appropriateness value of information flows in responses from LLMs. A deviation between privacy biases and expected values, referred to as privacy bias delta, may indicate privacy violations. As an auditing metric, privacy bias can help (a) model trainers evaluate the ethical and societal impact of LLMs, (b) service providers select context-appropriate LLMs, and (c) policymakers assess the appropriateness of privacy biases in deployed LLMs. We formulate and answer a novel research question: how can we reliably examine privacy biases in LLMs and the factors that influence them? We present a novel approach for assessing privacy biases using a contextual integrity-based methodology to evaluate the responses from various LLMs. Our approach accounts for the sensitivity of responses across prompt variations, which hinders the evaluation of privacy biases. Finally, we investigate how privacy biases are affected by model capacities and optimizations.
comment: Privacy Enhancing Technologies Symposium (PETS), 2026
♻ ☆ A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models
The increasing adoption of Large Language Models (LLMs) in software engineering has sparked interest in their use for software vulnerability detection. However, the rapid development of this field has resulted in a fragmented research landscape, with diverse studies that are difficult to compare due to differences in, e.g., system designs and dataset usage. This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully. In this work, we present a comprehensive systematic literature review (SLR) of LLM-based software vulnerability detection. We analyze 263 studies published between January 2020 and November 2025, categorizing them by task formulation, input representation, system architecture, and techniques. Further, we analyze the datasets used, including their characteristics, vulnerability coverage, and diversity. We present a fine-grained taxonomy of vulnerability detection approaches, identify key limitations, and outline actionable future research opportunities. By providing a structured overview of the field, this review improves transparency and serves as a practical guide for researchers and practitioners aiming to conduct more comparable and reproducible research. We publicly release all artifacts and maintain a living repository of LLM-based software vulnerability detection studies at https://github.com/hs-esslingen-it-security/Awesome-LLM4SVD.
comment: 43 pages + 20 pages references, 7 tables, 13 figures
♻ ☆ Sparse, Efficient and Explainable Data Attribution with DualXDA
Data Attribution (DA) is an emerging approach in the field of eXplainable Artificial Intelligence (XAI), aiming to identify influential training datapoints which determine model outputs. It seeks to provide transparency about the model and individual predictions, e.g. for model debugging, identifying data-related causes of suboptimal performance. However, existing DA approaches suffer from prohibitively high computational costs and memory demands when applied to even medium-scale datasets and models, forcing practitioners to resort to approximations that may fail to capture the true inference process of the underlying model. Additionally, current attribution methods exhibit low sparsity, resulting in non-negligible attribution scores across a high number of training examples, hindering the discovery of decisive patterns in the data. In this work, we introduce DualXDA, a framework for sparse, efficient and explainable DA, comprised of two interlinked approaches, Dual Data Attribution (DualDA) and eXplainable Data Attribution (XDA): With DualDA, we propose a novel approach for efficient and effective DA, leveraging Support Vector Machine theory to provide fast and naturally sparse data attributions for AI predictions. In extensive quantitative analyses, we demonstrate that DualDA achieves high attribution quality, excels at solving a series of evaluated downstream tasks, while at the same time improving explanation time by a factor of up to 4,100,000x compared to the original Influence Functions method, and up to 11,000x compared to the method's most efficient approximation from literature to date. We further introduce XDA, a method for enhancing Data Attribution with capabilities from feature attribution methods to explain why training samples are relevant for the prediction of a test sample in terms of impactful features, which we showcase and verify qualitatively in detail.
comment: Accepted to Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ OntoGSN: An Ontology-Based Framework for Semantic Management and Extension of Assurance Cases ESWC 2026
Assurance cases (ACs) are a common artifact for building and maintaining confidence in system properties such as safety or robustness. Constructing an AC can be challenging, although existing tools provide support in static, document-centric applications and methods for dynamic contexts (e.g., autonomous driving) are emerging. Unfortunately, managing ACs remains a challenge, since maintaining the embedded knowledge in the face of changes requires substantial effort, in the process deterring developers - or worse, producing poorly managed cases that instill false confidence. To address this, we present OntoGSN: an ontology and supporting middleware for managing ACs in the Goal Structuring Notation (GSN) standard. OntoGSN offers a knowledge representation and a queryable graph that can be automatically populated, evaluated, and updated. Our contributions include: a 1:1 formalization of the GSN Community Standard v3 in an OWL ontology with SWRL rules; a helper ontology and parser for integration with a widely used AC tool; a repository and documentation of design decisions for OntoGSN maintenance; a SPARQL query library with automation patterns; and a prototypical interface. The ontology strictly adheres to the standard's text and has been evaluated according to FAIR principles, the OOPS framework, competency questions, and community feedback. The development of other middleware elements is guided by the community needs and subject to ongoing evaluations. To demonstrate the utility of our contributions, we illustrate dynamic AC management in an example involving assurance of adversarial robustness in large language models.
comment: Submitted to the ESWC 2026 Resources track
♻ ☆ CharDiff-LP: A Diffusion Model with Character-Level Guidance for License Plate Image Restoration
License plate image restoration is important not only as a preprocessing step for license plate recognition but also for enhancing evidential value, improving visual clarity, and enabling broader reuse of license plate images. We propose a novel diffusion-based framework with character-level guidance, CharDiff-LP, which effectively restores and recognizes severely degraded license plate images captured under realistic conditions. CharDiff-LP leverages fine-grained character-level priors extracted through external segmentation and Optical Character Recognition (OCR) modules tailored for low-quality license plate images. For precise and focused guidance, CharDiff-LP incorporates a novel Character-guided Attention through Region-wise Masking (CHARM) module, which ensures that each character's guidance is restricted to its own region, thereby avoiding interference with other regions. In experiments, CharDiff-LP significantly outperformed baseline restoration models in both restoration quality and recognition accuracy, achieving a 28.3% relative reduction in character error rate (CER) on the Roboflow-LP dataset compared with the best-performing baseline.
comment: 15 pages, 6 figures, 4 tables
♻ ☆ New Hybrid Heuristics for Pseudo-Boolean Propagation
In pseudo-boolean solving the currently most successful unit propagation strategy is a hybrid mode combining the watched literal scheme with the counting method. This short paper introduces new heuristics for this hybrid decision, which are able to drastically outperform the current method in the RoundingSAT solver.
comment: 5 pages, 3 figures, added different cut-off for old hybrid
♻ ☆ Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
comment: 72 pages, 17 figures
♻ ☆ EDVD-LLaMA: Explainable Deepfake Video Detection via Multimodal Large Language Model Reasoning
The rapid development of deepfake video technology has not only facilitated artistic creation but also made it easier to spread misinformation. Traditional deepfake video detection (DVD) methods face issues such as a lack of transparency in their principles and insufficient generalization capabilities to cope with evolving forgery techniques. This highlights an urgent need for detectors that can identify forged content and provide verifiable reasoning explanations. This paper proposes the explainable deepfake video detection (EDVD) task and designs the EDVD-LLaMA multimodal, a large language model (MLLM) reasoning framework, which provides traceable reasoning processes alongside accurate detection results and trustworthy explanations. Our approach first incorporates a Spatio-Temporal Subtle Information Tokenization (ST-SIT) to extract and fuse global and local cross-frame deepfake features, providing rich spatio-temporal semantic information input for MLLM reasoning. Second, we construct a Fine-grained Multimodal Chain-of-Thought (Fg-MCoT) mechanism, which introduces facial feature data as hard constraints during the reasoning process to achieve pixel-level spatio-temporal video localization, suppress hallucinated outputs, and enhance the reliability of the chain of thought. In addition, we build an Explainable Reasoning FF++ dataset (ER-FF++set), leveraging structured data to annotate videos and ensure quality control, thereby supporting dual supervision for reasoning and detection. Extensive experiments demonstrate that EDVD-LLaMA achieves outstanding performance and robustness in terms of detection accuracy, explainability, and its ability to handle cross-forgery methods and cross-dataset scenarios. Compared to previous DVD methods, it provides a more explainable and superior solution. The project page is available at: https://11ouo1.github.io/edvd-llama/.
♻ ☆ Logical Characterizations of GNNs with Mean Aggregation AAAI 2026
We study the expressive power of graph neural networks (GNNs) with mean as the aggregation function, with the following results. In the non-uniform setting, such GNNs have exactly the same expressive power as ratio modal logic, which has modal operators expressing that at least a certain ratio of the successors of a vertex satisfies a specified property. In the uniform setting, the expressive power relative to MSO is exactly that of modal logic, and thus identical to the (absolute) expressive power of GNNs with max aggregation. The proof, however, depends on constructions that are not satisfactory from a practical perspective. This leads us to making the natural assumptions that combination functions are continuous and classification functions are thresholds. The resulting class of GNNs with mean aggregation turns out to be much less expressive: relative to MSO and in the uniform setting, it has the same expressive power as alternation-free modal logic. This is in contrast to the expressive power of GNNs with max and sum aggregation, which is not affected by these assumptions.
comment: 26 pages, extended version of paper to appear in AAAI 2026
♻ ☆ Towards Reproducibility in Predictive Process Mining: SPICE -- A Deep Learning Library
In recent years, Predictive Process Mining (PPM) techniques based on artificial neural networks have evolved as a method for monitoring the future behavior of unfolding business processes and predicting Key Performance Indicators (KPIs). However, many PPM approaches often lack reproducibility, transparency in decision making, usability for incorporating novel datasets and benchmarking, making comparisons among different implementations very difficult. In this paper, we propose SPICE, a Python framework that reimplements three popular, existing baseline deep-learning-based methods for PPM in PyTorch, while designing a common base framework with rigorous configurability to enable reproducible and robust comparison of past and future modelling approaches. We compare SPICE to original reported metrics and with fair metrics on 11 datasets.
♻ ☆ CLAReSNet: When Convolution Meets Latent Attention for Hyperspectral Image Classification
Hyperspectral image (HSI) classification faces critical challenges, including high spectral dimensionality, complex spectral-spatial correlations, and limited training samples with severe class imbalance. While CNNs excel at local feature extraction and transformers capture long-range dependencies, their isolated application yields suboptimal results due to quadratic complexity and insufficient inductive biases. We propose CLAReSNet (Convolutional Latent Attention Residual Spectral Network), a hybrid architecture that integrates multi-scale convolutional extraction with transformer-style attention via an adaptive latent bottleneck. The model employs a multi-scale convolutional stem with deep residual blocks and an enhanced Convolutional Block Attention Module for hierarchical spatial features, followed by spectral encoder layers combining bidirectional RNNs (LSTM/GRU) with Multi-Scale Spectral Latent Attention (MSLA). MSLA reduces complexity from $\mathcal{O}(T^2D)$ to $\mathcal{O}(T\log(T)D)$ by adaptive latent token allocation (8-64 tokens) that scales logarithmically with the sequence length. Hierarchical cross-attention fusion dynamically aggregates multi-level representations for robust classification. Experiments conducted on the Indian Pines and Salinas datasets show state-of-the-art performance, achieving overall accuracies of 99.71% and 99.96%, significantly surpassing HybridSN, SSRN, and SpectralFormer. The learned embeddings exhibit superior inter-class separability and compact intra-class clustering, validating CLAReSNet's effectiveness under severe class imbalance.
♻ ☆ Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.
comment: 24 pages, 2 figures
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ Best Practices For Empirical Meta-Algorithmic Research: Guidelines from the COSEAL Research Network
Empirical research on meta-algorithmics, such as algorithm selection, configuration, and scheduling, often relies on extensive and thus computationally expensive experiments. With the large degree of freedom we have over our experimental setup and design comes a plethora of possible error sources that threaten the scalability and validity of our scientific insights. Best practices for meta-algorithmic research exist, but they are scattered between different publications and fields, and continue to evolve separately from each other. In this report, we collect good practices for empirical meta-algorithmic research across the subfields of the COSEAL community, encompassing the entire experimental cycle: from formulating research questions and selecting an experimental design, to executing experiments, and ultimately, analyzing and presenting results impartially. It establishes the current state-of-the-art practices within meta-algorithmic research and serves as a guideline to both new researchers and practitioners in meta-algorithmic fields.
♻ ☆ Holmes: Towards Effective and Harmless Model Ownership Verification to Personalized Large Vision Models via Decoupling Common Features
Large vision models (LVMs) achieve remarkable performance in various downstream tasks, primarily by personalizing pre-trained models through fine-tuning with private and valuable local data, which makes the personalized model a valuable intellectual property. Similar to the era of traditional DNNs, model stealing attacks also pose significant risks to LVMs. However, this paper reveals that most existing defense methods (developed for traditional DNNs), typically designed for models trained from scratch, either introduce additional security risks, are prone to misjudgment, or are even ineffective for fine-tuned models. To alleviate these problems, this paper proposes a harmless model ownership verification method for personalized LVMs by decoupling similar common features. In general, our method consists of three main stages. In the first stage, we create shadow models that retain common features of the victim model while disrupting dataset-specific features. We represent the dataset-specific features of the victim model by computing the output differences between the shadow and victim models, without altering the victim model or its training process. After that, a meta-classifier is trained to identify stolen models by determining whether suspicious models contain the dataset-specific features of the victim. In the third stage, we conduct model ownership verification by hypothesis test to mitigate randomness and enhance robustness. Extensive experiments on benchmark datasets verify the effectiveness of the proposed method in detecting different types of model stealing simultaneously. Our codes are available at https://github.com/zlh-thu/Holmes.
♻ ☆ Helmsman: Autonomous Synthesis of Federated Learning Systems via Collaborative LLM Agents
Federated Learning (FL) offers a powerful paradigm for training models on decentralized data, but its promise is often undermined by the immense complexity of designing and deploying robust systems. The need to select, combine, and tune strategies for multifaceted challenges like data heterogeneity and system constraints has become a critical bottleneck, resulting in brittle, bespoke solutions. To address this, we introduce Helmsman, a novel multi-agent system that automates the end-to-end synthesis of federated learning systems from high-level user specifications. It emulates a principled research and development workflow through three collaborative phases: (1) interactive human-in-the-loop planning to formulate a sound research plan, (2) modular code generation by supervised agent teams, and (3) a closed-loop of autonomous evaluation and refinement in a sandboxed simulation environment. To facilitate rigorous evaluation, we also introduce AgentFL-Bench, a new benchmark comprising 16 diverse tasks designed to assess the system-level generation capabilities of agentic systems in FL. Extensive experiments demonstrate that our approach generates solutions competitive with, and often superior to, established hand-crafted baselines. Our work represents a significant step towards the automated engineering of complex decentralized AI systems.
♻ ☆ VLA-AN: An Efficient and Onboard Vision-Language-Action Framework for Aerial Navigation in Complex Environments
This paper proposes VLA-AN, an efficient and onboard Vision-Language-Action (VLA) framework dedicated to autonomous drone navigation in complex environments. VLA-AN addresses four major limitations of existing large aerial navigation models: the data domain gap, insufficient temporal navigation with reasoning, safety issues with generative action policies, and onboard deployment constraints. First, we construct a high-fidelity dataset utilizing 3D Gaussian Splatting (3D-GS) to effectively bridge the domain gap. Second, we introduce a progressive three-stage training framework that sequentially reinforces scene comprehension, core flight skills, and complex navigation capabilities. Third, we design a lightweight, real-time action module coupled with geometric safety correction. This module ensures fast, collision-free, and stable command generation, mitigating the safety risks inherent in stochastic generative policies. Finally, through deep optimization of the onboard deployment pipeline, VLA-AN achieves a robust real-time 8.3x improvement in inference throughput on resource-constrained UAVs. Extensive experiments demonstrate that VLA-AN significantly improves spatial grounding, scene reasoning, and long-horizon navigation, achieving a maximum single-task success rate of 98.1%, and providing an efficient, practical solution for realizing full-chain closed-loop autonomy in lightweight aerial robots.
♻ ☆ Realist and Pluralist Conceptions of Intelligence and Their Implications on AI Research AAAI
In this paper, we argue that current AI research operates on a spectrum between two different underlying conceptions of intelligence: Intelligence Realism, which holds that intelligence represents a single, universal capacity measurable across all systems, and Intelligence Pluralism, which views intelligence as diverse, context-dependent capacities that cannot be reduced to a single universal measure. Through an analysis of current debates in AI research, we demonstrate how the conceptions remain largely implicit yet fundamentally shape how empirical evidence gets interpreted across a wide range of areas. These underlying views generate fundamentally different research approaches across three areas. Methodologically, they produce different approaches to model selection, benchmark design, and experimental validation. Interpretively, they lead to contradictory readings of the same empirical phenomena, from capability emergence to system limitations. Regarding AI risk, they generate categorically different assessments: realists view superintelligence as the primary risk and search for unified alignment solutions, while pluralists see diverse threats across different domains requiring context-specific solutions. We argue that making explicit these underlying assumptions can contribute to a clearer understanding of disagreements in AI research.
comment: The 40th Annual AAAI Conference on Artificial Intelligence, 8 pages (excl. references), 1 table
♻ ☆ When Safety Blocks Sense: Measuring Semantic Confusion in LLM Refusals
Safety-aligned language models often refuse prompts that are actually harmless. Current evaluations mostly report global rates such as false rejection or compliance. These scores treat each prompt alone and miss local inconsistency, where a model accepts one phrasing of an intent but rejects a close paraphrase. This gap limits diagnosis and tuning. We introduce "semantic confusion," a failure mode that captures such local inconsistency, and a framework to measure it. We build ParaGuard, a 10k-prompt corpus of controlled paraphrase clusters that hold intent fixed while varying surface form. We then propose three model-agnostic metrics at the token level: Confusion Index, Confusion Rate, and Confusion Depth. These metrics compare each refusal to its nearest accepted neighbors and use token embeddings, next-token probabilities, and perplexity signals. Experiments across diverse model families and deployment guards show that global false-rejection rate hides critical structure. Our metrics reveal globally unstable boundaries in some settings, localized pockets of inconsistency in others, and cases where stricter refusal does not increase inconsistency. We also show how confusion-aware auditing separates how often a system refuses from how sensibly it refuses. This gives developers a practical signal to reduce false refusals while preserving safety.
♻ ☆ Agnosticism About Artificial Consciousness
Could an AI have conscious experiences? Any answer to this question should conform to Evidentialism - that is, it should be based not on intuition, dogma or speculation but on solid scientific evidence. I argue that such evidence is hard to come by and that the only justifiable stance on the prospects of artificial consciousness is agnosticism. In the current debate, the main division is between biological views that are sceptical of artificial consciousness and functional views that are sympathetic to it. I argue that both camps make the same mistake of over-estimating what the evidence tells us. Scientific insights into consciousness have been achieved through the study of conscious organisms. Although this has enabled cautious assessments of consciousness in various creatures, extending this to AI faces serious obstacles. AI thus presents consciousness researchers with a dilemma: either reach a verdict on artificial consciousness but violate Evidentialism; or respect Evidentialism but offer no verdict on the prospects of artificial consciousness. The dominant trend in the literature has been to take the first option while purporting to follow the scientific evidence. I argue that if we truly follow the evidence, we must take the second option and adopt agnosticism.
comment: 20 pages
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-$N$ selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
comment: Accepted by AAAI-2026
♻ ☆ An AI-driven Assessment of Bone Density as a Biomarker Leading to the Aging Law
As global population aging intensifies, there is growing interest in the study of biological age. Bones have long been used to evaluate biological age, and the decline in bone density with age is a well-recognized phenomenon in adults. However, the pattern of this decline remains controversial, making it difficult to serve as a reliable indicator of the aging process. Here we present a novel AI-driven statistical method to assess the bone density, and a discovery that the bone mass distribution in trabecular bone of vertebrae follows a non-Gaussian, unimodal, and skewed distribution in CT images. The statistical mode of the distribution is defined as the measure of bone mass, which is a groundbreaking assessment of bone density, named Trabecular Bone Density (TBD). The dataset of CT images are collected from 1,719 patients who underwent PET/CT scans in three hospitals, in which a subset of the dataset is used for AI model training and generalization. Based upon the cases, we demonstrate that the pattern of bone density declining with aging exhibits a consistent trend of exponential decline across sexes and age groups using TBD assessment. The developed AI-driven statistical method blazes a trail in the field of AI for reliable quantitative computation and AI for medicine. The findings suggest that human aging is a gradual process, with the rate of decline slowing progressively over time, which will provide a valuable basis for scientific prediction of life expectancy.
♻ ☆ STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Incomplete sensor data is a major obstacle in industrial time-series analytics. In wastewater treatment plants (WWTPs), key sensors show long, irregular gaps caused by fouling, maintenance, and outages. We introduce STDiff and STDiff-W, diffusion-based imputers that cast gap filling as state-space simulation under partial observability, where targets, controls, and exogenous signals may all be intermittently missing. STDiff learns a one-step transition model conditioned on observed values and masks, while STDiff-W extends this with a context encoder that jointly inpaints contiguous blocks, combining long-range consistency with short-term detail. On two WWTP datasets (one with synthetic block gaps from Agtrup and another with natural outages from Avedøre), STDiff-W achieves state-of-the-art accuracy compared with strong neural baselines such as SAITS, BRITS, and CSDI. Beyond point-error metrics, its reconstructions preserve realistic dynamics including oscillations, spikes, and regime shifts, and they achieve top or tied-top downstream one-step forecasting performance compared with strong neural baselines, indicating that preserving dynamics does not come at the expense of predictive utility. Ablation studies that drop, shuffle, or add noise to control or exogenous inputs consistently degrade NH4 and PO4 performance, with the largest deterioration observed when exogenous signals are removed, showing that the model captures meaningful dependencies. We conclude with practical guidance for deployment: evaluate performance beyond MAE using task-oriented and visual checks, include exogenous drivers, and balance computational cost against robustness to structured outages.
comment: Peer-reviewed and published in Expert Systems with Applications, Volume 302 (2026). This version reflects the published article
♻ ☆ From $f(x)$ and $g(x)$ to $f(g(x))$: LLMs Learn New Skills in RL by Composing Old Ones
Does RL teach LLMs genuinely new skills, or does it merely activate existing ones? This question lies at the core of ongoing debates about the role of RL in LLM post-training. On one side, strong empirical results can be achieved with RL even without preceding supervised finetuning; on the other, critics argue that RL contributes little beyond reweighting existing reasoning strategies. This work provides concrete evidence that LLMs can acquire genuinely new skills during RL by composing existing ones, mirroring one of the central mechanisms by which humans acquire new cognitive skills. To mitigate data contamination and other confounding factors, and to allow precise control over task complexity, we develop a synthetic framework for our investigation. Specifically, we define a skill as the ability to infer the output of a string transformation function f(x) given x. When an LLM has already learned f and g prior to RL, our experiments reveal that RL enables it to learn unseen compositions of them h(x)=g(f(x)). Further, this compositional ability generalizes to more difficult problems such as compositions of >2 functions unseen during RL training. Surprisingly, our experiments show that compositional skill acquired on a source task transfers to a different target task. This transfer happens even without compositional training on the target, requiring only prior knowledge of the target's atomic skills. Our qualitative analysis shows that RL fundamentally changes the reasoning behaviors of the models. In contrast, next-token training with the same data yields none of these findings. Our systematic experiments provide fresh insights into LLM learning, suggesting the value of first building base models with basic skills, then using RL to incentivize advanced, generalizable skills for complex problems.
♻ ☆ ParamExplorer: A framework for exploring parameters in generative art
Generative art systems often involve high-dimensional and complex parameter spaces in which aesthetically compelling outputs occupy only small, fragmented regions. Because of this combinatorial explosion, artists typically rely on extensive manual trial-and-error, leaving many potentially interesting configurations undiscovered. In this work we make two contributions. First, we introduce ParamExplorer, an interactive and modular framework inspired by reinforcement learning that helps the exploration of parameter spaces in generative art algorithms, guided by human-in-the-loop or even automated feedback. The framework also integrates seamlessly with existing p5js projects. Second, within this framework we implement and evaluate several exploration strategies, referred to as agents.
comment: 16 pages, 3 figures
♻ ☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch using only its inherent SQL programming capabilities combined with concepts from modular TOD systems provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of modular TOD system concepts. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and arXiv dataset. We view this as a step towards broader application of ontologies.
comment: Accepted to Transactions of the Association for Computational Linguistics
♻ ☆ Phantom Menace: Exploring and Enhancing the Robustness of VLA Models Against Physical Sensor Attacks AAAI 2026
Vision-Language-Action (VLA) models revolutionize robotic systems by enabling end-to-end perception-to-action pipelines that integrate multiple sensory modalities, such as visual signals processed by cameras and auditory signals captured by microphones. This multi-modality integration allows VLA models to interpret complex, real-world environments using diverse sensor data streams. Given the fact that VLA-based systems heavily rely on the sensory input, the security of VLA models against physical-world sensor attacks remains critically underexplored. To address this gap, we present the first systematic study of physical sensor attacks against VLAs, quantifying the influence of sensor attacks and investigating the defenses for VLA models. We introduce a novel "Real-Sim-Real" framework that automatically simulates physics-based sensor attack vectors, including six attacks targeting cameras and two targeting microphones, and validates them on real robotic systems. Through large-scale evaluations across various VLA architectures and tasks under varying attack parameters, we demonstrate significant vulnerabilities, with susceptibility patterns that reveal critical dependencies on task types and model designs. We further develop an adversarial-training-based defense that enhances VLA robustness against out-of-distribution physical perturbations caused by sensor attacks while preserving model performance. Our findings expose an urgent need for standardized robustness benchmarks and mitigation strategies to secure VLA deployments in safety-critical environments.
comment: Accepted by AAAI 2026 main track
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Towards Safer Chatbots: Automated Policy Compliance Evaluation of Custom GPTs
User-configured chatbots built on top of large language models are increasingly available through centralized marketplaces such as OpenAI's GPT Store. While these platforms enforce usage policies intended to prevent harmful or inappropriate behavior, the scale and opacity of customized chatbots make systematic policy enforcement challenging. As a result, policy-violating chatbots continue to remain publicly accessible despite existing review processes. This paper presents a fully automated method for evaluating the compliance of Custom GPTs with its marketplace usage policy using black-box interaction. The method combines large-scale GPT discovery, policy-driven red-teaming prompts, and automated compliance assessment using an LLM-as-a-judge. We focus on three policy-relevant domains explicitly addressed in OpenAI's usage policies: Romantic, Cybersecurity, and Academic GPTs. We validate our compliance assessment component against a human-annotated ground-truth dataset, achieving an F1 score of 0.975 for binary policy violation detection. We then apply the method in a large-scale empirical study of 782 Custom GPTs retrieved from the GPT Store. The results show that 58.7% of the evaluated GPTs exhibit at least one policy-violating response, with substantial variation across policy domains. A comparison with the base models (GPT-4 and GPT-4o) indicates that most violations originate from model-level behavior, while customization tends to amplify these tendencies rather than create new failure modes. Our findings reveal limitations in current review mechanisms for user-configured chatbots and demonstrate the feasibility of scalable, behavior-based policy compliance evaluation.
♻ ☆ V-Rex: Real-Time Streaming Video LLM Acceleration via Dynamic KV Cache Retrieval
Streaming video large language models (LLMs) are increasingly used for real-time multimodal tasks such as video captioning, question answering, conversational agents, and augmented reality. However, these models face fundamental memory and computational challenges because their key-value (KV) caches grow substantially with continuous streaming video input. This process requires an iterative prefill stage, which is a unique feature of streaming video LLMs. Due to its iterative prefill stage, it suffers from significant limitations, including extensive computation, substantial data transfer, and degradation in accuracy. Crucially, this issue is exacerbated for edge deployment, which is the primary target for these models. In this work, we propose V-Rex, the first software-hardware co-designed accelerator that comprehensively addresses both algorithmic and hardware bottlenecks in streaming video LLM inference. At its core, V-Rex introduces ReSV, a training-free dynamic KV cache retrieval algorithm. ReSV exploits temporal and spatial similarity-based token clustering to reduce excessive KV cache memory across video frames. To fully realize these algorithmic benefits, V-Rex offers a compact, low-latency hardware accelerator with a dynamic KV cache retrieval engine (DRE), featuring bit-level and early-exit based computing units. V-Rex achieves unprecedented real-time of 3.9-8.3 FPS and energy-efficient streaming video LLM inference on edge deployment with negligible accuracy loss. While DRE only accounts for 2.2% power and 2.0% area, the system delivers 1.9-19.7x speedup and 3.1-18.5x energy efficiency improvements over AGX Orin GPU. This work is the first to comprehensively tackle KV cache retrieval across algorithms and hardware, enabling real-time streaming video LLM inference on resource-constrained edge devices.
comment: 14 pages, 20 figures, conference
♻ ☆ G2L:From Giga-Scale to Cancer-Specific Large-Scale Pathology Foundation Models via Knowledge Distillation AAAI 2024
Recent studies in pathology foundation models have shown that scaling training data, diversifying cancer types, and increasing model size consistently improve their performance. However, giga-scale foundation models, which are trained on hundreds of thousands of slides covering tens of cancer types and contain billions of parameters, pose significant challenges for practical use due to their tremendous computational costs in both development and deployment. In this work, we present a novel strategy, named the G2L framework, to increase the performance of large-scale foundation models, which consist of only $15\%$ of the parameters of giga-scale models, to a comparable performance level of giga-scale models in cancer-specific tasks. Our approach applies knowledge distillation, transferring the capabilities of a giga-scale model to a large-scale model, using just 1K pathology slides of a target cancer (e.g., breast, prostate, etc.). The resulting distilled model not only outperformed state-of-the-art models of the same size (i.e., large-scale) across several benchmarks but also, interestingly, surpassed the giga-scale teacher and huge-scale models in some benchmarks. In addition, the distilled model exhibited a higher robustness index, indicating improved resilience to image variations originating from multiple institutions. These findings suggest that the proposed distillation approach for a large-scale model is a data- and parameter-efficient way to achieve giga-scale-level performance for cancer-specific applications without prohibitive computational burden.
comment: Accepted in AAAI 2024 workshop in Health Intelligence Special Theme on Foundation Models and AI Agents
♻ ☆ Can Large Language Models Develop Gambling Addiction?
This study identifies the specific conditions under which large language models exhibit human-like gambling addiction patterns, providing critical insights into their decision-making mechanisms and AI safety. We analyze LLM decision-making at cognitive-behavioral and neural levels based on human addiction research. In slot machine experiments, we identified cognitive features such as illusion of control and loss chasing, observing that greater autonomy in betting parameters substantially amplified irrational behavior and bankruptcy rates. Neural circuit analysis using a Sparse Autoencoder confirmed that model behavior is controlled by abstract decision-making features related to risk, not merely by prompts. These findings suggest LLMs internalize human-like cognitive biases beyond simply mimicking training data.
comment: 26 pages, 14 figures
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 16 pages, 1 figure. Updated version with corrected references and aligned acknowledgments
♻ ☆ Let the Barbarians In: How AI Can Accelerate Systems Performance Research
Artificial Intelligence (AI) is beginning to transform the research process by automating the discovery of new solutions. This shift depends on the availability of reliable verifiers, which AI-driven approaches require to validate candidate solutions. Research focused on improving systems performance is especially well-suited to this paradigm because system performance problems naturally admit such verifiers: candidates can be implemented in real systems or simulators and evaluated against predefined workloads. We term this iterative cycle of generation, evaluation, and refinement AI-Driven Research for Systems (ADRS). Using several open-source ADRS instances (i.e., OpenEvolve, GEPA, and ShinkaEvolve), we demonstrate across ten case studies (e.g., multi-region cloud scheduling, mixture-of-experts load balancing, LLM-based SQL, transaction scheduling) that ADRS-generated solutions can match or even outperform human state-of-the-art designs. Based on these findings, we outline best practices (e.g., level of prompt specification, amount of feedback, robust evaluation) for effectively using ADRS, and we discuss future research directions and their implications. Although we do not yet have a universal recipe for applying ADRS across all of systems research, we hope our preliminary findings, together with the challenges we identify, offer meaningful guidance for future work as researcher effort shifts increasingly toward problem formulation and strategic oversight. Note: This paper is an extension of our prior work [14]. It adds extensive evaluation across multiple ADRS frameworks and provides deeper analysis and insights into best practices.
comment: arXiv admin note: substantial text overlap with arXiv:2510.06189
♻ ☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
♻ ☆ Semi-Supervised Preference Optimization with Limited Feedback
The field of preference optimization has made outstanding contributions to the alignment of language models with human preferences. Despite these advancements, recent methods still rely heavily on substantial paired (labeled) feedback data, leading to substantial resource expenditures. To address these challenges, we study the problem of Semi-Supervised Preference Optimization (SSPO) in which the idea is to learn from both a small number of pairwise preference labels and a large pool of unpaired samples simultaneously. Our key theoretical contribution proves the existence of an optimal reward threshold capable of separating winning and losing responses with high probability, which enables a principled pseudo-labeling of unpaired data. By leveraging these pseudo-labels, SSPO effectively distills latent preferences from large-scale unpaired data, thus maintaining human alignment while drastically reducing acquisition costs. Extensive experiments across datasets validate this remarkable data efficiency; for instance, SSPO trained with Mistral-7B-Instruct on just 1% of UltraFeedback consistently surpasses strong baselines trained on 10% of UltraFeedback.
♻ ☆ SportsGPT: An LLM-driven Framework for Interpretable Sports Motion Assessment and Training Guidance
Existing intelligent sports analysis systems mainly focus on "scoring and visualization," often lacking automatic performance diagnosis and interpretable training guidance. Recent advances in Large Language Models (LLMs) and motion analysis techniques provide new opportunities to address the above limitations. In this paper, we propose SportsGPT, an LLM-driven framework for interpretable sports motion assessment and training guidance, which establishes a closed loop from motion time-series input to professional training guidance. First, given a set of high-quality target models, we introduce MotionDTW, a two-stage time series alignment algorithm designed for accurate keyframe extraction from skeleton-based motion sequences. Subsequently, we design a Knowledge-based Interpretable Sports Motion Assessment Model (KISMAM) to obtain a set of interpretable assessment metrics (e.g., insufficient extension) by contrasting the keyframes with the target models. Finally, we propose SportsRAG, a RAG-based training guidance model built upon Qwen3. Leveraging a 6B-token knowledge base, it prompts the LLM to generate professional training guidance by retrieving domain-specific QA pairs. Experimental results demonstrate that MotionDTW significantly outperforms traditional methods with lower temporal error and higher IoU scores. Furthermore, ablation studies validate the KISMAM and SportsRAG, confirming that SportsGPT surpasses general LLMs in diagnostic accuracy and professionalism.
♻ ☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items KDD 2026
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant resource costs tied to product design and inventory. This paper introduces a novel system deployed at Alibaba that uses AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commerce product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing users' group-level personalized preferences towards multiple generated images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to model comparative behaviors among multiple images. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items achieve over 13% relative improvements for both click-through rate and conversion rate, as well as 7.9% decrease in return rate, compared to their human-designed counterparts, validating the transformative potential of AIGI for e-commerce platforms.
comment: Accepted by KDD 2026 ADS Track
♻ ☆ ResSVD: Residual Compensated SVD for Large Language Model Compression
Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks. Nevertheless, their considerable sizes and memory demands hinder practical deployment, underscoring the importance of developing efficient compression strategies. Singular value decomposition (SVD) decomposes a matrix into orthogonal components, enabling efficient low-rank approximation. This is particularly suitable for LLM compression, where weight matrices often exhibit significant redundancy. However, current SVD-based methods neglect the residual matrix from truncation, resulting in significant truncation loss. Additionally, compressing all layers of the model results in severe performance degradation. To overcome these limitations, we propose ResSVD, a new post-training SVD-based LLM compression method. Specifically, we leverage the residual matrix generated during the truncation process to reduce truncation loss. Moreover, under a fixed overall compression ratio, we selectively compress the last few layers of the model, which mitigates error propagation and significantly improves the performance of compressed models. Comprehensive evaluations of ResSVD on diverse LLM families and multiple benchmark datasets indicate that ResSVD consistently achieves superior performance over existing counterpart methods, demonstrating its practical effectiveness.
♻ ☆ Predictive Modeling of I/O Performance for Machine Learning Training Pipelines: A Data-Driven Approach to Storage Optimization
Modern machine learning training is increasingly bottlenecked by data I/O rather than compute. GPUs often sit idle at below 50% utilization waiting for data. This paper presents a machine learning approach to predict I/O performance and recommend optimal storage configurations for ML training pipelines. We collected 141 observations through systematic benchmarking across different storage backends (NVMe SSD, network-attached storage, in-memory filesystems), data formats, and access patterns, covering both low-level I/O operations and full training pipelines. After evaluating seven regression models and three classification approaches, XGBoost achieved the best performance with R-squared of 0.991, predicting I/O throughput within 11.8% error on average. Feature importance analysis revealed that throughput metrics and batch size are the primary performance drivers. This data-driven approach can reduce configuration time from days of trial-and-error to minutes of predictive recommendation. The methodology is reproducible and extensible to other resource management problems in ML systems. Code and data are available at https://github.com/knkarthik01/gpu_storage_ml_project
comment: 20 pages, 10 figures
♻ ☆ Data-Free Continual Learning of Server Models in Model-Heterogeneous Cloud-Device Collaboration
The rise of cloud-device collaborative computing has enabled intelligent services to be delivered across distributed edge devices while leveraging centralized cloud resources. In this paradigm, federated learning (FL) has become a key enabler for privacy-preserving model training without transferring raw data from edge devices to the cloud. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous devices to the cloud server.Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated cloud-device collaboration in dynamic settings.
♻ ☆ Sigma-MoE-Tiny Technical Report
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 48 hours in total yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
♻ ☆ Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
comment: 13 pages, 7 figures, 3 tables
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF, Camera ready version
♻ ☆ UniGaussian: Driving Scene Reconstruction from Multiple Camera Models via Unified Gaussian Representations 3DV 2026
Urban scene reconstruction is crucial for real-world autonomous driving simulators. Although existing methods have achieved photorealistic reconstruction, they mostly focus on pinhole cameras and neglect fisheye cameras. In fact, how to effectively simulate fisheye cameras in driving scene remains an unsolved problem. In this work, we propose UniGaussian, a novel approach that learns a unified 3D Gaussian representation from multiple camera models for urban scene reconstruction in autonomous driving. Our contributions are two-fold. First, we propose a new differentiable rendering method that distorts 3D Gaussians using a series of affine transformations tailored to fisheye camera models. This addresses the compatibility issue of 3D Gaussian splatting with fisheye cameras, which is hindered by light ray distortion caused by lenses or mirrors. Besides, our method maintains real-time rendering while ensuring differentiability. Second, built on the differentiable rendering method, we design a new framework that learns a unified Gaussian representation from multiple camera models. By applying affine transformations to adapt different camera models and regularizing the shared Gaussians with supervision from different modalities, our framework learns a unified 3D Gaussian representation with input data from multiple sources and achieves holistic driving scene understanding. As a result, our approach models multiple sensors (pinhole and fisheye cameras) and modalities (depth, semantic, normal and LiDAR point clouds). Our experiments show that our method achieves superior rendering quality and fast rendering speed for driving scene simulation.
comment: 3DV 2026
♻ ☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself-a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following, mathematics, and coding benchmarks show that pretrained models can be effectively improved with self-play alone.
♻ ☆ EEGDM: Learning EEG Representation with Latent Diffusion Model
Recent advances in self-supervised learning for EEG representation have largely relied on masked reconstruction, where models are trained to recover randomly masked signal segments. While effective at modeling local dependencies, such objectives are inherently limited in capturing the global dynamics and long-range dependencies essential for characterizing neural activity. To address this limitation, we propose EEGDM, a novel self-supervised framework that leverages latent diffusion models to generate EEG signals as an objective. Unlike masked reconstruction, diffusion-based generation progressively denoises signals from noise to realism, compelling the model to capture holistic temporal patterns and cross-channel relationships. Specifically, EEGDM incorporates an EEG encoder that distills raw signals and their channel augmentations into a compact representation, acting as conditional information to guide the diffusion model for generating EEG signals. This design endows EEGDM with a compact latent space, which not only offers ample control over the generative process but also can be leveraged for downstream tasks. Experimental results show that EEGDM (1) reconstructs high-quality EEG signals, (2) learns robust representations, and (3) achieves competitive performance across diverse downstream tasks, thus exploring a new direction for self-supervised EEG representation learning.
♻ ☆ DHP: Discrete Hierarchical Planning for Hierarchical Reinforcement Learning Agents
Hierarchical Reinforcement Learning (HRL) agents often struggle with long-horizon visual planning due to their reliance on error-prone distance metrics. We propose Discrete Hierarchical Planning (DHP), a method that replaces continuous distance estimates with discrete reachability checks to evaluate subgoal feasibility. DHP recursively constructs tree-structured plans by decomposing long-term goals into sequences of simpler subtasks, using a novel advantage estimation strategy that inherently rewards shorter plans and generalizes beyond training depths. In addition, to address the data efficiency challenge, we introduce an exploration strategy that generates targeted training examples for the planning modules without needing expert data. Experiments in 25-room navigation environments demonstrate a 100% success rate (vs. 90% baseline). We also present an offline variant that achieves state-of-the-art results on OGBench benchmarks, with up to 71% absolute gains on giant HumanoidMaze tasks, demonstrating our core contributions are architecture-agnostic. The method also generalizes to momentum-based control tasks and requires only log N steps for replanning. Theoretical analysis and ablations validate our design choices.
♻ ☆ Understanding and supporting how developers prompt for LLM-powered code editing in practice
Large Language Models (LLMs) are rapidly transforming software engineering, with coding assistants embedded in an IDE becoming increasingly prevalent. While research has focused on improving the tools and understanding developer perceptions, a critical gap exists in understanding how developers actually use these tools in their daily workflows, and, crucially, where they struggle. This paper addresses part of this gap through a multi-phased investigation of developer interactions with an LLM-powered code editing feature, Transform Code, in an IDE widely used at Google. First, we analyze telemetry logs of the feature usage, revealing that frequent re-prompting can be an indicator of developer struggles with using Transform Code. Second, we conduct a qualitative analysis of unsatisfactory requests, identifying five key categories of information often missing from developer prompts. Finally, based on these findings, we propose and evaluate a tool, AutoPrompter, for automatically improving prompts by inferring missing information from the surrounding code context, leading to a 27% improvement in edit correctness on our test set.
Machine Learning 150
☆ Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Monocular depth estimation remains challenging as recent foundation models, such as Depth Anything V2 (DA-V2), struggle with real-world images that are far from the training distribution. We introduce Re-Depth Anything, a test-time self-supervision framework that bridges this domain gap by fusing DA-V2 with the powerful priors of large-scale 2D diffusion models. Our method performs label-free refinement directly on the input image by re-lighting predicted depth maps and augmenting the input. This re-synthesis method replaces classical photometric reconstruction by leveraging shape from shading (SfS) cues in a new, generative context with Score Distillation Sampling (SDS). To prevent optimization collapse, our framework employs a targeted optimization strategy: rather than optimizing depth directly or fine-tuning the full model, we freeze the encoder and only update intermediate embeddings while also fine-tuning the decoder. Across diverse benchmarks, Re-Depth Anything yields substantial gains in depth accuracy and realism over the DA-V2, showcasing new avenues for self-supervision by augmenting geometric reasoning.
☆ Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Imitation learning (IL) enables autonomous behavior by learning from expert demonstrations. While more sample-efficient than comparative alternatives like reinforcement learning, IL is sensitive to compounding errors induced by distribution shifts. There are two significant sources of distribution shifts when using IL-based feedback laws on systems: distribution shifts caused by policy error and distribution shifts due to exogenous disturbances and endogenous model errors due to lack of learning. Our previously developed approaches, Taylor Series Imitation Learning (TaSIL) and $\mathcal{L}_1$ -Distributionally Robust Adaptive Control (\ellonedrac), address the challenge of distribution shifts in complementary ways. While TaSIL offers robustness against policy error-induced distribution shifts, \ellonedrac offers robustness against distribution shifts due to aleatoric and epistemic uncertainties. To enable certifiable IL for learned and/or uncertain dynamical systems, we formulate \textit{Distributionally Robust Imitation Policy (DRIP)} architecture, a Layered Control Architecture (LCA) that integrates TaSIL and~\ellonedrac. By judiciously designing individual layer-centric input and output requirements, we show how we can guarantee certificates for the entire control pipeline. Our solution paves the path for designing fully certifiable autonomy pipelines, by integrating learning-based components, such as perception, with certifiable model-based decision-making through the proposed LCA approach.
comment: 18 pages, 5 figures
☆ RadarGen: Automotive Radar Point Cloud Generation from Cameras
We present RadarGen, a diffusion model for synthesizing realistic automotive radar point clouds from multi-view camera imagery. RadarGen adapts efficient image-latent diffusion to the radar domain by representing radar measurements in bird's-eye-view form that encodes spatial structure together with radar cross section (RCS) and Doppler attributes. A lightweight recovery step reconstructs point clouds from the generated maps. To better align generation with the visual scene, RadarGen incorporates BEV-aligned depth, semantic, and motion cues extracted from pretrained foundation models, which guide the stochastic generation process toward physically plausible radar patterns. Conditioning on images makes the approach broadly compatible, in principle, with existing visual datasets and simulation frameworks, offering a scalable direction for multimodal generative simulation. Evaluations on large-scale driving data show that RadarGen captures characteristic radar measurement distributions and reduces the gap to perception models trained on real data, marking a step toward unified generative simulation across sensing modalities.
comment: Project page: https://radargen.github.io/
☆ Regularized Random Fourier Features and Finite Element Reconstruction for Operator Learning in Sobolev Space
Operator learning is a data-driven approximation of mappings between infinite-dimensional function spaces, such as the solution operators of partial differential equations. Kernel-based operator learning can offer accurate, theoretically justified approximations that require less training than standard methods. However, they can become computationally prohibitive for large training sets and can be sensitive to noise. We propose a regularized random Fourier feature (RRFF) approach, coupled with a finite element reconstruction map (RRFF-FEM), for learning operators from noisy data. The method uses random features drawn from multivariate Student's $t$ distributions, together with frequency-weighted Tikhonov regularization that suppresses high-frequency noise. We establish high-probability bounds on the extreme singular values of the associated random feature matrix and show that when the number of features $N$ scales like $m \log m$ with the number of training samples $m$, the system is well-conditioned, which yields estimation and generalization guarantees. Detailed numerical experiments on benchmark PDE problems, including advection, Burgers', Darcy flow, Helmholtz, Navier-Stokes, and structural mechanics, demonstrate that RRFF and RRFF-FEM are robust to noise and achieve improved performance with reduced training time compared to the unregularized random feature model, while maintaining competitive accuracy relative to kernel and neural operator tests.
☆ Weighted Stochastic Differential Equation to Implement Wasserstein-Fisher-Rao Gradient Flow
Score-based diffusion models currently constitute the state of the art in continuous generative modeling. These methods are typically formulated via overdamped or underdamped Ornstein--Uhlenbeck-type stochastic differential equations, in which sampling is driven by a combination of deterministic drift and Brownian diffusion, resulting in continuous particle trajectories in the ambient space. While such dynamics enjoy exponential convergence guarantees for strongly log-concave target distributions, it is well known that their mixing rates deteriorate exponentially in the presence of nonconvex or multimodal landscapes, such as double-well potentials. Since many practical generative modeling tasks involve highly non-log-concave target distributions, considerable recent effort has been devoted to developing sampling schemes that improve exploration beyond classical diffusion dynamics. A promising line of work leverages tools from information geometry to augment diffusion-based samplers with controlled mass reweighting mechanisms. This perspective leads naturally to Wasserstein--Fisher--Rao (WFR) geometries, which couple transport in the sample space with vertical (reaction) dynamics on the space of probability measures. In this work, we formulate such reweighting mechanisms through the introduction of explicit correction terms and show how they can be implemented via weighted stochastic differential equations using the Feynman--Kac representation. Our study provides a preliminary but rigorous investigation of WFR-based sampling dynamics, and aims to clarify their geometric and operator-theoretic structure as a foundation for future theoretical and algorithmic developments.
comment: 26 pages, 1 figure
☆ Learning vertical coordinates via automatic differentiation of a dynamical core
Terrain-following coordinates in atmospheric models often imprint their grid structure onto the solution, particularly over steep topography, where distorted coordinate layers can generate spurious horizontal and vertical motion. Standard formulations, such as hybrid or SLEVE coordinates, mitigate these errors by using analytic decay functions controlled by heuristic scale parameters that are typically tuned by hand and fixed a priori. In this work, we propose a framework to define a parametric vertical coordinate system as a learnable component within a differentiable dynamical core. We develop an end-to-end differentiable numerical solver for the two-dimensional non-hydrostatic Euler equations on an Arakawa C-grid, and introduce a NEUral Vertical Enhancement (NEUVE) terrain-following coordinate based on an integral transformed neural network that guarantees monotonicity. A key feature of our approach is the use of automatic differentiation to compute exact geometric metric terms, thereby eliminating truncation errors associated with finite-difference coordinate derivatives. By coupling simulation errors through the time integration to the parameterization, our formulation finds a grid structure optimized for both the underlying physics and numerics. Using several standard tests, we demonstrate that these learned coordinates reduce the mean squared error by a factor of 1.4 to 2 in non-linear statistical benchmarks, and eliminate spurious vertical velocity striations over steep topography.
☆ Visually Prompted Benchmarks Are Surprisingly Fragile
A key challenge in evaluating VLMs is testing models' ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. VPBench and additional analysis tools are released at https://lisadunlap.github.io/vpbench/.
☆ Exploiting ID-Text Complementarity via Ensembling for Sequential Recommendation
Modern Sequential Recommendation (SR) models commonly utilize modality features to represent items, motivated in large part by recent advancements in language and vision modeling. To do so, several works completely replace ID embeddings with modality embeddings, claiming that modality embeddings render ID embeddings unnecessary because they can match or even exceed ID embedding performance. On the other hand, many works jointly utilize ID and modality features, but posit that complex fusion strategies, such as multi-stage training and/or intricate alignment architectures, are necessary for this joint utilization. However, underlying both these lines of work is a lack of understanding of the complementarity of ID and modality features. In this work, we address this gap by studying the complementarity of ID- and text-based SR models. We show that these models do learn complementary signals, meaning that either should provide performance gain when used properly alongside the other. Motivated by this, we propose a new SR method that preserves ID-text complementarity through independent model training, then harnesses it through a simple ensembling strategy. Despite this method's simplicity, we show it outperforms several competitive SR baselines, implying that both ID and text features are necessary to achieve state-of-the-art SR performance but complex fusion architectures are not.
☆ Domain-Aware Quantum Circuit for QML
Designing parameterized quantum circuits (PQCs) that are expressive, trainable, and robust to hardware noise is a central challenge for quantum machine learning (QML) on noisy intermediate-scale quantum (NISQ) devices. We present a Domain-Aware Quantum Circuit (DAQC) that leverages image priors to guide locality-preserving encoding and entanglement via non-overlapping DCT-style zigzag windows. The design employs interleaved encode-entangle-train cycles, where entanglement is applied among qubits hosting neighboring pixels, aligned to device connectivity. This staged, locality-preserving information flow expands the effective receptive field without deep global mixing, enabling efficient use of limited depth and qubits. The design concentrates representational capacity on short-range correlations, reduces long-range two-qubit operations, and encourages stable optimization, thereby mitigating depth-induced and globally entangled barren-plateau effects. We evaluate DAQC on MNIST, FashionMNIST, and PneumoniaMNIST datasets. On quantum hardware, DAQC achieves performance competitive with strong classical baselines (e.g., ResNet-18/50, DenseNet-121, EfficientNet-B0) and substantially outperforming Quantum Circuit Search (QCS) baselines. To the best of our knowledge, DAQC, which uses a quantum feature extractor with only a linear classical readout (no deep classical backbone), currently achieves the best reported performance on real quantum hardware for QML-based image classification tasks. Code and pretrained models are available at: https://github.com/gurinder-hub/DAQC.
☆ Calibratable Disambiguation Loss for Multi-Instance Partial-Label Learning
Multi-instance partial-label learning (MIPL) is a weakly supervised framework that extends the principles of multi-instance learning (MIL) and partial-label learning (PLL) to address the challenges of inexact supervision in both instance and label spaces. However, existing MIPL approaches often suffer from poor calibration, undermining classifier reliability. In this work, we propose a plug-and-play calibratable disambiguation loss (CDL) that simultaneously improves classification accuracy and calibration performance. The loss has two instantiations: the first one calibrates predictions based on probabilities from the candidate label set, while the second one integrates probabilities from both candidate and non-candidate label sets. The proposed CDL can be seamlessly incorporated into existing MIPL and PLL frameworks. We provide a theoretical analysis that establishes the lower bound and regularization properties of CDL, demonstrating its superiority over conventional disambiguation losses. Experimental results on benchmark and real-world datasets confirm that our CDL significantly enhances both classification and calibration performance.
☆ MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation
Large-scale supervised pretraining is rapidly reshaping 3D medical image segmentation. However, existing efforts focus primarily on increasing dataset size and overlook the question of whether the backbone network is an effective representation learner at scale. In this work, we address this gap by revisiting ConvNeXt-based architectures for volumetric segmentation and introducing MedNeXt-v2, a compound-scaled 3D ConvNeXt that leverages improved micro-architecture and data scaling to deliver state-of-the-art performance. First, we show that routinely used backbones in large-scale pretraining pipelines are often suboptimal. Subsequently, we use comprehensive backbone benchmarking prior to scaling and demonstrate that stronger from scratch performance reliably predicts stronger downstream performance after pretraining. Guided by these findings, we incorporate a 3D Global Response Normalization module and use depth, width, and context scaling to improve our architecture for effective representation learning. We pretrain MedNeXt-v2 on 18k CT volumes and demonstrate state-of-the-art performance when fine-tuning across six challenging CT and MR benchmarks (144 structures), showing consistent gains over seven publicly released pretrained models. Beyond improvements, our benchmarking of these models also reveals that stronger backbones yield better results on similar data, representation scaling disproportionately benefits pathological segmentation, and that modality-specific pretraining offers negligible benefit once full finetuning is applied. In conclusion, our results establish MedNeXt-v2 as a strong backbone for large-scale supervised representation learning in 3D Medical Image Segmentation. Our code and pretrained models are made available with the official nnUNet repository at: https://www.github.com/MIC-DKFZ/nnUNet
☆ Easy Adaptation: An Efficient Task-Specific Knowledge Injection Method for Large Models in Resource-Constrained Environments
While the enormous parameter scale endows Large Models (LMs) with unparalleled performance, it also limits their adaptability across specific tasks. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical approach for effectively adapting LMs to a diverse range of downstream tasks. However, existing PEFT methods face two primary challenges: (1) High resource cost. Although PEFT methods significantly reduce resource demands compared to full fine-tuning, it still requires substantial time and memory, making it impractical in resource-constrained environments. (2) Parameter dependency. PEFT methods heavily rely on updating a subset of parameters associated with LMs to incorporate task-specific knowledge. Yet, due to increasing competition in the LMs landscape, many companies have adopted closed-source policies for their leading models, offering access only via Application Programming Interface (APIs). Whereas, the expense is often cost-prohibitive and difficult to sustain, as the fine-tuning process of LMs is extremely slow. Even if small models perform far worse than LMs in general, they can achieve superior results on particular distributions while requiring only minimal resources. Motivated by this insight, we propose Easy Adaptation (EA), which designs Specific Small Models (SSMs) to complement the underfitted data distribution for LMs. Extensive experiments show that EA matches the performance of PEFT on diverse tasks without accessing LM parameters, and requires only minimal resources.
☆ Can You Hear Me Now? A Benchmark for Long-Range Graph Propagation
Effectively capturing long-range interactions remains a fundamental yet unresolved challenge in graph neural network (GNN) research, critical for applications across diverse fields of science. To systematically address this, we introduce ECHO (Evaluating Communication over long HOps), a novel benchmark specifically designed to rigorously assess the capabilities of GNNs in handling very long-range graph propagation. ECHO includes three synthetic graph tasks, namely single-source shortest paths, node eccentricity, and graph diameter, each constructed over diverse and structurally challenging topologies intentionally designed to introduce significant information bottlenecks. ECHO also includes two real-world datasets, ECHO-Charge and ECHO-Energy, which define chemically grounded benchmarks for predicting atomic partial charges and molecular total energies, respectively, with reference computations obtained at the density functional theory (DFT) level. Both tasks inherently depend on capturing complex long-range molecular interactions. Our extensive benchmarking of popular GNN architectures reveals clear performance gaps, emphasizing the difficulty of true long-range propagation and highlighting design choices capable of overcoming inherent limitations. ECHO thereby sets a new standard for evaluating long-range information propagation, also providing a compelling example for its need in AI for science.
☆ Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal MRI and Clinical Data
Aim: This study investigates treatment response prediction to neoadjuvant chemotherapy (NACT) in breast cancer patients, using longitudinal contrast-enhanced magnetic resonance images (CE-MRI) and clinical data. The goal is to develop machine learning (ML) models to predict pathologic complete response (PCR binary classification) and 5-year relapse-free survival status (RFS binary classification). Method: The proposed framework includes tumour segmentation, image registration, feature extraction, and predictive modelling. Using the image registration method, MRI image features can be extracted and compared from the original tumour site at different time points, therefore monitoring the intratumor changes during NACT process. Four feature extractors, including one radiomics and three deep learning-based (MedicalNet, Segformer3D, SAM-Med3D) were implemented and compared. In combination with three feature selection methods and four ML models, predictive models are built and compared. Results: The proposed image registration-based feature extraction consistently improves the predictive models. In the PCR and RFS classification tasks logistic regression model trained on radiomic features performed the best with an AUC of 0.88 and classification accuracy of 0.85 for PCR classification, and AUC of 0.78 and classification accuracy of 0.72 for RFS classification. Conclusions: It is evidenced that the image registration method has significantly improved performance in longitudinal feature learning in predicting PCR and RFS. The radiomics feature extractor is more effective than the pre-trained deep learning feature extractors, with higher performance and better interpretability.
☆ Mitigating Forgetting in Low Rank Adaptation
Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), enable fast specialization of large pre-trained models to different downstream applications. However, this process often leads to catastrophic forgetting of the model's prior domain knowledge. We address this issue with LaLoRA, a weight-space regularization technique that applies a Laplace approximation to Low-Rank Adaptation. Our approach estimates the model's confidence in each parameter and constrains updates in high-curvature directions, preserving prior knowledge while enabling efficient target-domain learning. By applying the Laplace approximation only to the LoRA weights, the method remains lightweight. We evaluate LaLoRA by fine-tuning a Llama model for mathematical reasoning and demonstrate an improved learning-forgetting trade-off, which can be directly controlled via the method's regularization strength. We further explore different loss landscape curvature approximations for estimating parameter confidence, analyze the effect of the data used for the Laplace approximation, and study robustness across hyperparameters.
☆ Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo Study
The crystal structure of high-pressure solid hydrogen remains a fundamental open problem. Although the research frontier has mostly shifted toward ultra-high pressure phases above 400 GPa, we show that even the broken symmetry phase observed around 130~GPa requires revisiting due to its intricate coupling of electronic and nuclear degrees of freedom. Here, we develop a first principle quantum Monte Carlo framework based on a deep neural network wave function that treats both electrons and nuclei quantum mechanically within the constant pressure ensemble. Our calculations reveal an unreported ground-state structure candidate for the broken symmetry phase with $Cmcm$ space group symmetry, and we test its stability up to 96 atoms. The predicted structure quantitatively matches the experimental equation of state and X-ray diffraction patterns. Furthermore, our group-theoretical analysis shows that the $Cmcm$ structure is compatible with existing Raman and infrared spectroscopic data. Crucially, static density functional theory calculation reveals the $Cmcm$ structure as a dynamically unstable saddle point on the Born-Oppenheimer potential energy surface, demonstrating that a full quantum many-body treatment of the problem is necessary. These results shed new light on the phase diagram of high-pressure hydrogen and call for further experimental verifications.
☆ Spatially-informed transformers: Injecting geostatistical covariance biases into self-attention for spatio-temporal forecasting
The modeling of high-dimensional spatio-temporal processes presents a fundamental dichotomy between the probabilistic rigor of classical geostatistics and the flexible, high-capacity representations of deep learning. While Gaussian processes offer theoretical consistency and exact uncertainty quantification, their prohibitive computational scaling renders them impractical for massive sensor networks. Conversely, modern transformer architectures excel at sequence modeling but inherently lack a geometric inductive bias, treating spatial sensors as permutation-invariant tokens without a native understanding of distance. In this work, we propose a spatially-informed transformer, a hybrid architecture that injects a geostatistical inductive bias directly into the self-attention mechanism via a learnable covariance kernel. By formally decomposing the attention structure into a stationary physical prior and a non-stationary data-driven residual, we impose a soft topological constraint that favors spatially proximal interactions while retaining the capacity to model complex dynamics. We demonstrate the phenomenon of ``Deep Variography'', where the network successfully recovers the true spatial decay parameters of the underlying process end-to-end via backpropagation. Extensive experiments on synthetic Gaussian random fields and real-world traffic benchmarks confirm that our method outperforms state-of-the-art graph neural networks. Furthermore, rigorous statistical validation confirms that the proposed method delivers not only superior predictive accuracy but also well-calibrated probabilistic forecasts, effectively bridging the gap between physics-aware modeling and data-driven learning.
☆ Imputation Uncertainty in Interpretable Machine Learning Methods IJCAI 2025
In real data, missing values occur frequently, which affects the interpretation with interpretable machine learning (IML) methods. Recent work considers bias and shows that model explanations may differ between imputation methods, while ignoring additional imputation uncertainty and its influence on variance and confidence intervals. We therefore compare the effects of different imputation methods on the confidence interval coverage probabilities of the IML methods permutation feature importance, partial dependence plots and Shapley values. We show that single imputation leads to underestimation of variance and that, in most cases, only multiple imputation is close to nominal coverage.
comment: 19 pages, 15 Figures, accepted at conference: IJCAI 2025 Workshop on Explainable Artificial Intelligence (Montreal, Canada)
☆ Convergence Guarantees for Federated SARSA with Local Training and Heterogeneous Agents
We present a novel theoretical analysis of Federated SARSA (FedSARSA) with linear function approximation and local training. We establish convergence guarantees for FedSARSA in the presence of heterogeneity, both in local transitions and rewards, providing the first sample and communication complexity bounds in this setting. At the core of our analysis is a new, exact multi-step error expansion for single-agent SARSA, which is of independent interest. Our analysis precisely quantifies the impact of heterogeneity, demonstrating the convergence of FedSARSA with multiple local updates. Crucially, we show that FedSARSA achieves linear speed-up with respect to the number of agents, up to higher-order terms due to Markovian sampling. Numerical experiments support our theoretical findings.
☆ You Only Train Once: Differentiable Subset Selection for Omics Data
Selecting compact and informative gene subsets from single-cell transcriptomic data is essential for biomarker discovery, improving interpretability, and cost-effective profiling. However, most existing feature selection approaches either operate as multi-stage pipelines or rely on post hoc feature attribution, making selection and prediction weakly coupled. In this work, we present YOTO (you only train once), an end-to-end framework that jointly identifies discrete gene subsets and performs prediction within a single differentiable architecture. In our model, the prediction task directly guides which genes are selected, while the learned subsets, in turn, shape the predictive representation. This closed feedback loop enables the model to iteratively refine both what it selects and how it predicts during training. Unlike existing approaches, YOTO enforces sparsity so that only the selected genes contribute to inference, eliminating the need to train additional downstream classifiers. Through a multi-task learning design, the model learns shared representations across related objectives, allowing partially labeled datasets to inform one another, and discovering gene subsets that generalize across tasks without additional training steps. We evaluate YOTO on two representative single-cell RNA-seq datasets, showing that it consistently outperforms state-of-the-art baselines. These results demonstrate that sparse, end-to-end, multi-task gene subset selection improves predictive performance and yields compact and meaningful gene subsets, advancing biomarker discovery and single-cell analysis.
☆ Polyharmonic Cascade
This paper presents a deep machine learning architecture, the "polyharmonic cascade" -- a sequence of packages of polyharmonic splines, where each layer is rigorously derived from the theory of random functions and the principles of indifference. This makes it possible to approximate nonlinear functions of arbitrary complexity while preserving global smoothness and a probabilistic interpretation. For the polyharmonic cascade, a training method alternative to gradient descent is proposed: instead of directly optimizing the coefficients, one solves a single global linear system on each batch with respect to the function values at fixed "constellations" of nodes. This yields synchronized updates of all layers, preserves the probabilistic interpretation of individual layers and theoretical consistency with the original model, and scales well: all computations reduce to 2D matrix operations efficiently executed on a GPU. Fast learning without overfitting on MNIST is demonstrated.
comment: Part 3 of 4 in the "Polyharmonic Cascade" cycle. Proposes a non-SGD training method based on global linear solvers. Previous papers: arXiv:2512.12731, arXiv.2512.16718. Source code is available at: https://github.com/xolod7/polyharmonic-cascade
☆ Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Robotic arm manipulation in data-scarce settings is a highly challenging task due to the complex embodiment dynamics and diverse contexts. Recent video-based approaches have shown great promise in capturing and transferring the temporal and physical interactions by pre-training on Internet-scale video data. However, such methods are often not optimized for the embodiment-specific closed-loop control, typically suffering from high latency and insufficient grounding. In this paper, we present Vidarc (Video Diffusion for Action Reasoning and Closed-loop Control), a novel autoregressive embodied video diffusion approach augmented by a masked inverse dynamics model. By grounding video predictions with action-relevant masks and incorporating real-time feedback through cached autoregressive generation, Vidarc achieves fast, accurate closed-loop control. Pre-trained on one million cross-embodiment episodes, Vidarc surpasses state-of-the-art baselines, achieving at least a 15% higher success rate in real-world deployment and a 91% reduction in latency. We also highlight its robust generalization and error correction capabilities across previously unseen robotic platforms.
☆ Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Use cases for emerging quantum computing platforms become economically relevant as the efficiency of processing and availability of quantum computers increase. We assess the performance of Restricted Boltzmann Machines (RBM) assisted by quantum computing, running on real quantum hardware and simulators, using a real dataset containing 145 million transactions provided by Stone, a leading Brazilian fintech, for credit card fraud detection. The results suggest that the quantum-assisted RBM method is able to achieve superior performance in most figures of merit in comparison to classical approaches, even using current noisy quantum annealers. Our study paves the way for implementing quantum-assisted RBMs for general fault detection in financial systems.
comment: 8 pages, 3 figures
☆ Generative Multi-Objective Bayesian Optimization with Scalable Batch Evaluations for Sample-Efficient De Novo Molecular Design
Designing molecules that must satisfy multiple, often conflicting objectives is a central challenge in molecular discovery. The enormous size of chemical space and the cost of high-fidelity simulations have driven the development of machine learning-guided strategies for accelerating design with limited data. Among these, Bayesian optimization (BO) offers a principled framework for sample-efficient search, while generative models provide a mechanism to propose novel, diverse candidates beyond fixed libraries. However, existing methods that couple the two often rely on continuous latent spaces, which introduces both architectural entanglement and scalability challenges. This work introduces an alternative, modular "generate-then-optimize" framework for de novo multi-objective molecular design/discovery. At each iteration, a generative model is used to construct a large, diverse pool of candidate molecules, after which a novel acquisition function, qPMHI (multi-point Probability of Maximum Hypervolume Improvement), is used to optimally select a batch of candidates most likely to induce the largest Pareto front expansion. The key insight is that qPMHI decomposes additively, enabling exact, scalable batch selection via only simple ranking of probabilities that can be easily estimated with Monte Carlo sampling. We benchmark the framework against state-of-the-art latent-space and discrete molecular optimization methods, demonstrating significant improvements across synthetic benchmarks and application-driven tasks. Specifically, in a case study related to sustainable energy storage, we show that our approach quickly uncovers novel, diverse, and high-performing organic (quinone-based) cathode materials for aqueous redox flow battery applications.
☆ Estimating Spatially Resolved Radiation Fields Using Neural Networks
We present an in-depth analysis on how to build and train neural networks to estimate the spatial distribution of scattered radiation fields for radiation protection dosimetry in medical radiation fields, such as those found in Interventional Radiology and Cardiology. Therefore, we present three different synthetically generated datasets with increasing complexity for training, using a Monte-Carlo Simulation application based on Geant4. On those datasets, we evaluate convolutional and fully connected architectures of neural networks to demonstrate which design decisions work well for reconstructing the fluence and spectra distributions over the spatial domain of such radiation fields. All used datasets as well as our training pipeline are published as open source in separate repositories.
☆ Trust-Region Adaptive Policy Optimization
Post-training methods, especially Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), play an important role in improving large language models' (LLMs) complex reasoning abilities. However, the dominant two-stage pipeline (SFT then RL) suffers from a key inconsistency: SFT enforces rigid imitation that suppresses exploration and induces forgetting, limiting RL's potential for improvements. We address this inefficiency with TRAPO (\textbf{T}rust-\textbf{R}egion \textbf{A}daptive \textbf{P}olicy \textbf{O}ptimization), a hybrid framework that interleaves SFT and RL within each training instance by optimizing SFT loss on expert prefixes and RL loss on the model's own completions, unifying external supervision and self-exploration. To stabilize training, we introduce Trust-Region SFT (TrSFT), which minimizes forward KL divergence inside a trust region but attenuates optimization outside, effectively shifting toward reverse KL and yielding stable, mode-seeking updates favorable for RL. An adaptive prefix-selection mechanism further allocates expert guidance based on measured utility. Experiments on five mathematical reasoning benchmarks show that TRAPO consistently surpasses standard SFT, RL, and SFT-then-RL pipelines, as well as recent state-of-the-art approaches, establishing a strong new paradigm for reasoning-enhanced LLMs.
☆ Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion Detection
This paper introduces a confidence-weighted, credibility-aware ensemble framework for text-based emotion detection, inspired by Condorcet's Jury Theorem (CJT). Unlike conventional ensembles that often rely on homogeneous architectures, our approach combines architecturally diverse small transformer-based large language models (sLLMs) - BERT, RoBERTa, DistilBERT, DeBERTa, and ELECTRA, each fully fine-tuned for emotion classification. To preserve error diversity, we minimize parameter convergence while taking advantage of the unique biases of each model. A dual-weighted voting mechanism integrates both global credibility (validation F1 score) and local confidence (instance-level probability) to dynamically weight model contributions. Experiments on the DAIR-AI dataset demonstrate that our credibility-confidence ensemble achieves a macro F1 score of 93.5 percent, surpassing state-of-the-art benchmarks and significantly outperforming large-scale LLMs, including Falcon, Mistral, Qwen, and Phi, even after task-specific Low-Rank Adaptation (LoRA). With only 595M parameters in total, our small LLMs ensemble proves more parameter-efficient and robust than models up to 7B parameters, establishing that carefully designed ensembles of small, fine-tuned models can outperform much larger LLMs in specialized natural language processing (NLP) tasks such as emotion detection.
comment: Accepted at IRICT 2025
☆ SCOPE: Sequential Causal Optimization of Process Interventions
Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.
☆ More Consistent Accuracy PINN via Alternating Easy-Hard Training
Physics-informed neural networks (PINNs) have recently emerged as a prominent paradigm for solving partial differential equations (PDEs), yet their training strategies remain underexplored. While hard prioritization methods inspired by finite element methods are widely adopted, recent research suggests that easy prioritization can also be effective. Nevertheless, we find that both approaches exhibit notable trade-offs and inconsistent performance across PDE types. To address this issue, we develop a hybrid strategy that combines the strengths of hard and easy prioritization through an alternating training algorithm. On PDEs with steep gradients, nonlinearity, and high dimensionality, the proposed method achieves consistently high accuracy, with relative L2 errors mostly in the range of O(10^-5) to O(10^-6), significantly surpassing baseline methods. Moreover, it offers greater reliability across diverse problems, whereas compared approaches often suffer from variable accuracy depending on the PDE. This work provides new insights into designing hybrid training strategies to enhance the performance and robustness of PINNs.
☆ A Systems-Theoretic View on the Convergence of Algorithms under Disturbances
Algorithms increasingly operate within complex physical, social, and engineering systems where they are exposed to disturbances, noise, and interconnections with other dynamical systems. This article extends known convergence guarantees of an algorithm operating in isolation (i.e., without disturbances) and systematically derives stability bounds and convergence rates in the presence of such disturbances. By leveraging converse Lyapunov theorems, we derive key inequalities that quantify the impact of disturbances. We further demonstrate how our result can be utilized to assess the effects of disturbances on algorithmic performance in a wide variety of applications, including communication constraints in distributed learning, sensitivity in machine learning generalization, and intentional noise injection for privacy. This underpins the role of our result as a unifying tool for algorithm analysis in the presence of noise, disturbances, and interconnections with other dynamical systems.
☆ MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection and Classification
Out of distribution (OOD) detection remains a critical challenge in malware classification due to the substantial intra family variability introduced by polymorphic and metamorphic malware variants. Most existing deep learning based malware detectors rely on closed world assumptions and fail to adequately model this intra class variation, resulting in degraded performance when confronted with previously unseen malware families. This paper presents MADOOD, a novel two stage, cluster driven deep learning framework for robust OOD malware detection and classification. In the first stage, malware family embeddings are modeled using class conditional spherical decision boundaries derived from Gaussian Discriminant Analysis (GDA), enabling statistically grounded separation of indistribution and OOD samples without requiring OOD data during training. Z score based distance analysis across multiple class centroids is employed to reliably identify anomalous samples in the latent space. In the second stage, a deep neural network integrates cluster based predictions, refined embeddings, and supervised classifier outputs to enhance final classification accuracy. Extensive evaluations on benchmark malware datasets comprising 25 known families and multiple novel OOD variants demonstrate that MADOOD significantly outperforms state of the art OOD detection methods, achieving an AUC of up to 0.911 on unseen malware families. The proposed framework provides a scalable, interpretable, and statistically principled solution for real world malware detection and anomaly identification in evolving cybersecurity environments.
☆ A Unified Representation of Neural Networks Architectures
In this paper we consider the limiting case of neural networks (NNs) architectures when the number of neurons in each hidden layer and the number of hidden layers tend to infinity thus forming a continuum, and we derive approximation errors as a function of the number of neurons and/or hidden layers. Firstly, we consider the case of neural networks with a single hidden layer and we derive an integral infinite width neural representation that generalizes existing continuous neural networks (CNNs) representations. Then we extend this to deep residual CNNs that have a finite number of integral hidden layers and residual connections. Secondly, we revisit the relation between neural ODEs and deep residual NNs and we formalize approximation errors via discretization techniques. Then, we merge these two approaches into a unified homogeneous representation of NNs as a Distributed Parameter neural Network (DiPaNet) and we show that most of the existing finite and infinite-dimensional NNs architectures are related via homogeneization/discretization with the DiPaNet representation. Our approach is purely deterministic and applies to general, uniformly continuous matrix weight functions. Differences and similarities with neural fields are discussed along with further possible generalizations and applications of the DiPaNet framework.
☆ Sharing Knowledge without Sharing Data: Stitches can improve ensembles of disjointly trained models
Deep learning has been shown to be very capable at performing many real-world tasks. However, this performance is often dependent on the presence of large and varied datasets. In some settings, like in the medical domain, data is often fragmented across parties, and cannot be readily shared. While federated learning addresses this situation, it is a solution that requires synchronicity of parties training a single model together, exchanging information about model weights. We investigate how asynchronous collaboration, where only already trained models are shared (e.g. as part of a publication), affects performance, and propose to use stitching as a method for combining models. Through taking a multi-objective perspective, where performance on each parties' data is viewed independently, we find that training solely on a single parties' data results in similar performance when merging with another parties' data, when considering performance on that single parties' data, while performance on other parties' data is notably worse. Moreover, while an ensemble of such individually trained networks generalizes better, performance on each parties' own dataset suffers. We find that combining intermediate representations in individually trained models with a well placed pair of stitching layers allows this performance to recover to a competitive degree while maintaining improved generalization, showing that asynchronous collaboration can yield competitive results.
comment: 35 pages, 11 figures
☆ Learning Safe Autonomous Driving Policies Using Predictive Safety Representations ICRA 2026
Safe reinforcement learning (SafeRL) is a prominent paradigm for autonomous driving, where agents are required to optimize performance under strict safety requirements. This dual objective creates a fundamental tension, as overly conservative policies limit driving efficiency while aggressive exploration risks safety violations. The Safety Representations for Safer Policy Learning (SRPL) framework addresses this challenge by equipping agents with a predictive model of future constraint violations and has shown promise in controlled environments. This paper investigates whether SRPL extends to real-world autonomous driving scenarios. Systematic experiments on the Waymo Open Motion Dataset (WOMD) and NuPlan demonstrate that SRPL can improve the reward-safety tradeoff, achieving statistically significant improvements in success rate (effect sizes r = 0.65-0.86) and cost reduction (effect sizes r = 0.70-0.83), with p < 0.05 for observed improvements. However, its effectiveness depends on the underlying policy optimizer and the dataset distribution. The results further show that predictive safety representations play a critical role in improving robustness to observation noise. Additionally, in zero-shot cross-dataset evaluation, SRPL-augmented agents demonstrate improved generalization compared to non-SRPL methods. These findings collectively demonstrate the potential of predictive safety representations to strengthen SafeRL for autonomous driving.
comment: 8 pages, 4 figures. Submitted to ICRA 2026
☆ SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation in Melanoma Diagnosis
This work introduces SkinGenBench, a systematic biomedical imaging benchmark that investigates how preprocessing complexity interacts with generative model choice for synthetic dermoscopic image augmentation and downstream melanoma diagnosis. Using a curated dataset of 14,116 dermoscopic images from HAM10000 and MILK10K across five lesion classes, we evaluate the two representative generative paradigms: StyleGAN2-ADA and Denoising Diffusion Probabilistic Models (DDPMs) under basic geometric augmentation and advanced artifact removal pipelines. Synthetic melanoma images are assessed using established perceptual and distributional metrics (FID, KID, IS), feature space analysis, and their impact on diagnostic performance across five downstream classifiers. Experimental results demonstrate that generative architecture choice has a stronger influence on both image fidelity and diagnostic utility than preprocessing complexity. StyleGAN2-ADA consistently produced synthetic images more closely aligned with real data distributions, achieving the lowest FID (~65.5) and KID (~0.05), while diffusion models generated higher variance samples at the cost of reduces perceptual fidelity and class anchoring. Advanced artifact removal yielded only marginal improvements in generative metrics and provided limited downstream diagnostic gains, suggesting possible suppression of clinically relevant texture cues. In contrast, synthetic data augmentation substantially improved melanoma detection with 8-15% absolute gains in melanoma F1-score, and ViT-B/16 achieving F1~0.88 and ROC-AUC~0.98, representing an improvement of approximately 14% over non-augmented baselines. Our code can be found at https://github.com/adarsh-crafts/SkinGenBench
☆ Machine Learning for Static and Single-Event Dynamic Complex Network Analysis
The primary objective of this thesis is to develop novel algorithmic approaches for Graph Representation Learning of static and single-event dynamic networks. In such a direction, we focus on the family of Latent Space Models, and more specifically on the Latent Distance Model which naturally conveys important network characteristics such as homophily, transitivity, and the balance theory. Furthermore, this thesis aims to create structural-aware network representations, which lead to hierarchical expressions of network structure, community characterization, the identification of extreme profiles in networks, and impact dynamics quantification in temporal networks. Crucially, the methods presented are designed to define unified learning processes, eliminating the need for heuristics and multi-stage processes like post-processing steps. Our aim is to delve into a journey towards unified network embeddings that are both comprehensive and powerful, capable of characterizing network structures and adeptly handling the diverse tasks that graph analysis offers.
☆ Enabling Disaggregated Multi-Stage MLLM Inference via GPU-Internal Scheduling and Resource Sharing
Multimodal large language models (MLLMs) extend LLMs with visual understanding through a three-stage pipeline: multimodal preprocessing, vision encoding, and LLM inference. While these stages enhance capability, they introduce significant system bottlenecks. First, multimodal preprocessing-especially video decoding-often dominates Time-to-First-Token (TTFT). Most systems rely on CPU-based decoding, which severely limits throughput, while existing GPU-based approaches prioritize throughput-oriented parallelism and fail to meet the latency-sensitive requirements of MLLM inference. Second, the vision encoder is a standalone, compute-intensive stage that produces visual embeddings and cannot be co-batched with LLM prefill or decoding. This heterogeneity forces inter-stage blocking and increases token-generation latency. Even when deployed on separate GPUs, these stages underutilize available compute and memory resources, reducing overall utilization and constraining system throughput. To address these challenges, we present FlashCodec and UnifiedServe, two complementary designs that jointly optimize the end-to-end MLLM pipeline. FlashCodec accelerates the multimodal preprocessing stage through collaborative multi-GPU video decoding, reducing decoding latency while preserving high throughput. UnifiedServe optimizes the vision-to-text and inference stages using a logically decoupled their execution to eliminate inter-stage blocking, yet physically sharing GPU resources to maximize GPU system utilization. By carefully orchestrating execution across stages and minimizing interference, UnifiedServe Together, our proposed framework forms an end-to-end optimized stack that can serve up to 3.0$\times$ more requests or enforce 1.5$\times$ tighter SLOs, while achieving up to 4.4$\times$ higher throughput compared to state-of-the-art systems.
☆ GreedySnake: Accelerating SSD-Offloaded LLM Training with Efficient Scheduling and Optimizer Step Overlapping
SSD-offloaded training offers a practical and promising approach to making LLM training cost-effective. Building on gradient accumulation with micro-batches, this paper introduces GreedySnake, a new SSD-offloaded training system that employs vertical scheduling, which executes all microbatches of a layer before proceeding to the next. Compared to existing systems that use horizontal scheduling (i.e., executing micro-batches sequentially), GreedySnake achieves higher training throughput with smaller batch sizes, bringing the system much closer to the ideal scenario predicted by the roofline model. To further mitigate the I/O bottleneck, GreedySnake overlaps part of the optimization step with the forward pass of the next iteration. Experimental results on A100 GPUs show that GreedySnake achieves saturated training throughput improvements over ZeRO-Infinity: 1.96x on 1 GPU and 1.93x on 4 GPUs for GPT-65B, and 2.53x on 1 GPU for GPT-175B. The code is open-sourced at https://github.com/npz7yyk/GreedySnake
☆ Bayesian Optimisation: Which Constraints Matter?
Bayesian optimisation has proven to be a powerful tool for expensive global black-box optimisation problems. In this paper, we propose new Bayesian optimisation variants of the popular Knowledge Gradient acquisition functions for problems with \emph{decoupled} black-box constraints, in which subsets of the objective and constraint functions may be evaluated independently. In particular, our methods aim to take into account that often only a handful of the constraints may be binding at the optimum, and hence we should evaluate only relevant constraints when trying to optimise a function. We empirically benchmark these methods against existing methods and demonstrate their superiority over the state-of-the-art.
☆ When De-noising Hurts: A Systematic Study of Speech Enhancement Effects on Modern Medical ASR Systems
Speech enhancement methods are commonly believed to improve the performance of automatic speech recognition (ASR) in noisy environments. However, the effectiveness of these techniques cannot be taken for granted in the case of modern large-scale ASR models trained on diverse, noisy data. We present a systematic evaluation of MetricGAN-plus-voicebank denoising on four state-of-the-art ASR systems: OpenAI Whisper, NVIDIA Parakeet, Google Gemini Flash 2.0, Parrotlet-a using 500 medical speech recordings under nine noise conditions. ASR performance is measured using semantic WER (semWER), a normalized word error rate (WER) metric accounting for domain-specific normalizations. Our results reveal a counterintuitive finding: speech enhancement preprocessing degrades ASR performance across all noise conditions and models. Original noisy audio achieves lower semWER than enhanced audio in all 40 tested configurations (4 models x 10 conditions), with degradations ranging from 1.1% to 46.6% absolute semWER increase. These findings suggest that modern ASR models possess sufficient internal noise robustness and that traditional speech enhancement may remove acoustic features critical for ASR. For practitioners deploying medical scribe systems in noisy clinical environments, our results indicate that preprocessing audio with noise reduction techniques might not just be computationally wasteful but also be potentially harmful to the transcription accuracy.
comment: Technical Report
☆ HydroGym: A Reinforcement Learning Platform for Fluid Dynamics
Modeling and controlling fluid flows is critical for several fields of science and engineering, including transportation, energy, and medicine. Effective flow control can lead to, e.g., lift increase, drag reduction, mixing enhancement, and noise reduction. However, controlling a fluid faces several significant challenges, including high-dimensional, nonlinear, and multiscale interactions in space and time. Reinforcement learning (RL) has recently shown great success in complex domains, such as robotics and protein folding, but its application to flow control is hindered by a lack of standardized benchmark platforms and the computational demands of fluid simulations. To address these challenges, we introduce HydroGym, a solver-independent RL platform for flow control research. HydroGym integrates sophisticated flow control benchmarks, scalable runtime infrastructure, and state-of-the-art RL algorithms. Our platform includes 42 validated environments spanning from canonical laminar flows to complex three-dimensional turbulent scenarios, validated over a wide range of Reynolds numbers. We provide non-differentiable solvers for traditional RL and differentiable solvers that dramatically improve sample efficiency through gradient-enhanced optimization. Comprehensive evaluation reveals that RL agents consistently discover robust control principles across configurations, such as boundary layer manipulation, acoustic feedback disruption, and wake reorganization. Transfer learning studies demonstrate that controllers learned at one Reynolds number or geometry adapt efficiently to new conditions, requiring approximately 50% fewer training episodes. The HydroGym platform is highly extensible and scalable, providing a framework for researchers in fluid dynamics, machine learning, and control to add environments, surrogate models, and control algorithms to advance science and technology.
☆ NetworkFF: Unified Layer Optimization in Forward-Only Neural Networks
The Forward-Forward algorithm eliminates backpropagation's memory constraints and biological implausibility through dual forward passes with positive and negative data. However, conventional implementations suffer from critical inter-layer isolation, where layers optimize goodness functions independently without leveraging collective learning dynamics. This isolation constrains representational coordination and limits convergence efficiency in deeper architectures. This paper introduces Collaborative Forward-Forward (CFF) learning, extending the original algorithm through inter-layer cooperation mechanisms that preserve forward-only computation while enabling global context integration. Our framework implements two collaborative paradigms: Fixed CFF (F-CFF) with constant inter-layer coupling and Adaptive CFF (A-CFF) with learnable collaboration parameters that evolve during training. The collaborative goodness function incorporates weighted contributions from all layers, enabling coordinated feature learning while maintaining memory efficiency and biological plausibility. Comprehensive evaluation on MNIST and Fashion-MNIST demonstrates significant performance improvements over baseline Forward-Forward implementations. These findings establish inter-layer collaboration as a fundamental enhancement to Forward-Forward learning, with immediate applicability to neuromorphic computing architectures and energy-constrained AI systems.
comment: Conference paper, IEEE, 2025
☆ SafeBench-Seq: A Homology-Clustered, CPU-Only Baseline for Protein Hazard Screening with Physicochemical/Composition Features and Cluster-Aware Confidence Intervals
Foundation models for protein design raise concrete biosecurity risks, yet the community lacks a simple, reproducible baseline for sequence-level hazard screening that is explicitly evaluated under homology control and runs on commodity CPUs. We introduce SafeBench-Seq, a metadata-only, reproducible benchmark and baseline classifier built entirely from public data (SafeProtein hazards and UniProt benigns) and interpretable features (global physicochemical descriptors and amino-acid composition). To approximate "never-before-seen" threats, we homology-cluster the combined dataset at <=40% identity and perform cluster-level holdouts (no cluster overlap between train/test). We report discrimination (AUROC/AUPRC) and screening-operating points (TPR@1% FPR; FPR@95% TPR) with 95% bootstrap confidence intervals (n=200), and we provide calibrated probabilities via CalibratedClassifierCV (isotonic for Logistic Regression / Random Forest; Platt sigmoid for Linear SVM). We quantify probability quality using Brier score, Expected Calibration Error (ECE; 15 bins), and reliability diagrams. Shortcut susceptibility is probed via composition-preserving residue shuffles and length-/composition-only ablations. Empirically, random splits substantially overestimate robustness relative to homology-clustered evaluation; calibrated linear models exhibit comparatively good calibration, while tree ensembles retain slightly higher Brier/ECE. SafeBench-Seq is CPU-only, reproducible, and releases metadata only (accessions, cluster IDs, split labels), enabling rigorous evaluation without distributing hazardous sequences.
☆ PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning in Histopathology
We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://github.com/Sbrussee/PathBench-MIL
comment: 14 Pages, 3 Figures, 2 Appendices
☆ Resource-efficient medical image classification for edge devices
Medical image classification is a critical task in healthcare, enabling accurate and timely diagnosis. However, deploying deep learning models on resource-constrained edge devices presents significant challenges due to computational and memory limitations. This research investigates a resource-efficient approach to medical image classification by employing model quantization techniques. Quantization reduces the precision of model parameters and activations, significantly lowering computational overhead and memory requirements without sacrificing classification accuracy. The study focuses on the optimization of quantization-aware training (QAT) and post-training quantization (PTQ) methods tailored for edge devices, analyzing their impact on model performance across medical imaging datasets. Experimental results demonstrate that quantized models achieve substantial reductions in model size and inference latency, enabling real-time processing on edge hardware while maintaining clinically acceptable diagnostic accuracy. This work provides a practical pathway for deploying AI-driven medical diagnostics in remote and resource-limited settings, enhancing the accessibility and scalability of healthcare technologies.
comment: Conference paper published in ICAMIDA 2025 (IEEE)
☆ TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis
Brain tumor segmentation is critical in diagnosis and treatment planning for the disease. Yet, current deep learning methods rely on centralized data collection, which raises privacy concerns and limits generalization across diverse institutions. In this paper, we propose TwinSegNet, which is a privacy-preserving federated learning framework that integrates a hybrid ViT-UNet model with personalized digital twins for accurate and real-time brain tumor segmentation. Our architecture combines convolutional encoders with Vision Transformer bottlenecks to capture local and global context. Each institution fine-tunes the global model of private data to form its digital twin. Evaluated on nine heterogeneous MRI datasets, including BraTS 2019-2021 and custom tumor collections, TwinSegNet achieves high Dice scores (up to 0.90%) and sensitivity/specificity exceeding 90%, demonstrating robustness across non-independent and identically distributed (IID) client distributions. Comparative results against centralized models such as TumorVisNet highlight TwinSegNet's effectiveness in preserving privacy without sacrificing performance. Our approach enables scalable, personalized segmentation for multi-institutional clinical settings while adhering to strict data confidentiality requirements.
comment: IEEE Virtual Conference on Communications. 4-6 November 2025
☆ Deep Learning-Based Surrogate Creep Modelling in Inconel 625: A High-Temperature Alloy Study
Time-dependent deformation, particularly creep, in high-temperature alloys such as Inconel 625 is a key factor in the long-term reliability of components used in aerospace and energy systems. Although Inconel 625 shows excellent creep resistance, finite-element creep simulations in tools such as ANSYS remain computationally expensive, often requiring tens of minutes for a single 10,000-hour run. This work proposes deep learning based surrogate models to provide fast and accurate replacements for such simulations. Creep strain data was generated in ANSYS using the Norton law under uniaxial stresses of 50 to 150 MPa and temperatures of 700 to 1000 $^\circ$C, and this temporal dataset was used to train two architectures: a BiLSTM Variational Autoencoder for uncertainty-aware and generative predictions, and a BiLSTM Transformer hybrid that employs self-attention to capture long-range temporal behavior. Both models act as surrogate predictors, with the BiLSTM-VAE offering probabilistic output and the BiLSTM-Transformer delivering high deterministic accuracy. Performance is evaluated using RMSE, MAE, and $R^2$. Results show that the BiLSTM-VAE provides stable and reliable creep strain forecasts, while the BiLSTM-Transformer achieves strong accuracy across the full time range. Latency tests indicate substantial speedup: while each ANSYS simulation requires 30 to 40 minutes for a given stress-temperature condition, the surrogate models produce predictions within seconds. The proposed framework enables rapid creep assessment for design optimization and structural health monitoring, and provides a scalable solution for high-temperature alloy applications.
comment: Presented in 10th International Congress on Computational Mechanics and Simulation (ICCMS) 2025, IIT Bhubaneswar
☆ Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions
We present an algorithm based on the alternating direction method of multipliers (ADMM) for solving nonlinear matrix decompositions (NMD). Given an input matrix $X \in \mathbb{R}^{m \times n}$ and a factorization rank $r \ll \min(m, n)$, NMD seeks matrices $W \in \mathbb{R}^{m \times r}$ and $H \in \mathbb{R}^{r \times n}$ such that $X \approx f(WH)$, where $f$ is an element-wise nonlinear function. We evaluate our method on several representative nonlinear models: the rectified linear unit activation $f(x) = \max(0, x)$, suitable for nonnegative sparse data approximation, the component-wise square $f(x) = x^2$, applicable to probabilistic circuit representation, and the MinMax transform $f(x) = \min(b, \max(a, x))$, relevant for recommender systems. The proposed framework flexibly supports diverse loss functions, including least squares, $\ell_1$ norm, and the Kullback-Leibler divergence, and can be readily extended to other nonlinearities and metrics. We illustrate the applicability, efficiency, and adaptability of the approach on real-world datasets, highlighting its potential for a broad range of applications.
comment: 14 pages, 6 figures. Code available from https://gitlab.com/Atharva05/admm-for-nmd
☆ Translating the Rashomon Effect to Sequential Decision-Making Tasks
The Rashomon effect describes the phenomenon where multiple models trained on the same data produce identical predictions while differing in which features they rely on internally. This effect has been studied extensively in classification tasks, but not in sequential decision-making, where an agent learns a policy to achieve an objective by taking actions in an environment. In this paper, we translate the Rashomon effect to sequential decision-making. We define it as multiple policies that exhibit identical behavior, visiting the same states and selecting the same actions, while differing in their internal structure, such as feature attributions. Verifying identical behavior in sequential decision-making differs from classification. In classification, predictions can be directly compared to ground-truth labels. In sequential decision-making with stochastic transitions, the same policy may succeed or fail on any single trajectory due to randomness. We address this using formal verification methods that construct and compare the complete probabilistic behavior of each policy in the environment. Our experiments demonstrate that the Rashomon effect exists in sequential decision-making. We further show that ensembles constructed from the Rashomon set exhibit greater robustness to distribution shifts than individual policies. Additionally, permissive policies derived from the Rashomon set reduce computational requirements for verification while maintaining optimal performance.
☆ Linear Attention for Joint Power Optimization and User-Centric Clustering in Cell-Free Networks
Optimal AP clustering and power allocation are critical in user-centric cell-free massive MIMO systems. Existing deep learning models lack flexibility to handle dynamic network configurations. Furthermore, many approaches overlook pilot contamination and suffer from high computational complexity. In this paper, we propose a lightweight transformer model that overcomes these limitations by jointly predicting AP clusters and powers solely from spatial coordinates of user devices and AP. Our model is architecture-agnostic to users load, handles both clustering and power allocation without channel estimation overhead, and eliminates pilot contamination by assigning users to AP within a pilot reuse constraint. We also incorporate a customized linear attention mechanism to capture user-AP interactions efficiently and enable linear scalability with respect to the number of users. Numerical results confirm the model's effectiveness in maximizing the minimum spectral efficiency and providing near-optimal performance while ensuring adaptability and scalability in dynamic scenarios.
comment: Submitted
☆ Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application ECIR '26
Marketing and product personalisation provide a prominent and visible use-case for the application of Information Retrieval methods across several business domains. Recently, agentic approaches to these problems have been gaining traction. This work evaluates the behavioural and retention effects of agentic personalisation on a financial service application's customer communication system during a 2025 national tax filing period. Through a two month-long randomised controlled trial, we compare an agentic messaging approach against a business-as-usual (BAU) rule-based campaign system, focusing on two primary outcomes: unsubscribe behaviour and conversion timing. Empirical results show that agent-led messaging reduced unsubscribe events by 21\% ($\pm 0.01$) relative to BAU and increased early filing behaviour in the weeks preceding the national deadline. These findings demonstrate how adaptive, user-level decision-making systems can modulate engagement intensity whilst improving long-term retention indicators.
comment: To appear in the 48th European Conference on Information Retrieval (ECIR '26) Industry Track
☆ When Data Quality Issues Collide: A Large-Scale Empirical Study of Co-Occurring Data Quality Issues in Software Defect Prediction
Software Defect Prediction (SDP) models are central to proactive software quality assurance, yet their effectiveness is often constrained by the quality of available datasets. Prior research has typically examined single issues such as class imbalance or feature irrelevance in isolation, overlooking that real-world data problems frequently co-occur and interact. This study presents, to our knowledge, the first large-scale empirical analysis in SDP that simultaneously examines five co-occurring data quality issues (class imbalance, class overlap, irrelevant features, attribute noise, and outliers) across 374 datasets and five classifiers. We employ Explainable Boosting Machines together with stratified interaction analysis to quantify both direct and conditional effects under default hyperparameter settings, reflecting practical baseline usage. Our results show that co-occurrence is nearly universal: even the least frequent issue (attribute noise) appears alongside others in more than 93% of datasets. Irrelevant features and imbalance are nearly ubiquitous, while class overlap is the most consistently harmful issue. We identify stable tipping points around 0.20 for class overlap, 0.65-0.70 for imbalance, and 0.94 for irrelevance, beyond which most models begin to degrade. We also uncover counterintuitive patterns, such as outliers improving performance when irrelevant features are low, underscoring the importance of context-aware evaluation. Finally, we expose a performance-robustness trade-off: no single learner dominates under all conditions. By jointly analyzing prevalence, co-occurrence, thresholds, and conditional effects, our study directly addresses a persistent gap in SDP research. Hence, moving beyond isolated analyses to provide a holistic, data-aware understanding of how quality issues shape model performance in real-world settings.
☆ A lightweight Spatial-Temporal Graph Neural Network for Long-term Time Series Forecasting
We propose Lite-STGNN, a lightweight spatial-temporal graph neural network for long-term multivariate forecasting that integrates decomposition-based temporal modeling with learnable sparse graph structure. The temporal module applies trend-seasonal decomposition, while the spatial module performs message passing with low-rank Top-$K$ adjacency learning and conservative horizon-wise gating, enabling spatial corrections that enhance a strong linear baseline. Lite-STGNN achieves state-of-the-art accuracy on four benchmark datasets for horizons up to 720 steps, while being parameter-efficient and substantially faster to train than transformer-based methods. Ablation studies show that the spatial module yields 4.6% improvement over the temporal baseline, Top-$K$ enhances locality by 3.3%, and learned adjacency matrices reveal domain-specific interaction dynamics. Lite-STGNN thus offers a compact, interpretable, and efficient framework for long-term multivariate time series forecasting.
comment: 9 pages, 5 figures, 2 tables. Accepted for presentation at the 18th International Conference on Agents and Artificial Intelligence (ICAART 2026), Marbella, Spain
☆ Learning What to Write: Write-Gated KV for Efficient Long-Context Inference
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to persistent memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV, a lightweight mechanism that learns to predict token utility before it enters the cache. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, Write-Gated KV reduces memory usage by 46-57% and delivers 3.03-3.45$\times$ prefill and 1.89-2.56$\times$ decode speedups on Llama model with negligible accuracy loss, all while remaining compatible with FlashAttention and paged-KV systems. These results demonstrate that learning what to write, is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV .
☆ MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic segmentation
Unmanned surface vehicles can encounter a number of varied visual circumstances during operation, some of which can be very difficult to interpret. While most cases can be solved only using color camera images, some weather and lighting conditions require additional information. To expand the available maritime data, we present a novel multimodal maritime dataset MULTIAQUA (Multimodal Aquatic Dataset). Our dataset contains synchronized, calibrated and annotated data captured by sensors of different modalities, such as RGB, thermal, IR, LIDAR, etc. The dataset is aimed at developing supervised methods that can extract useful information from these modalities in order to provide a high quality of scene interpretation regardless of potentially poor visibility conditions. To illustrate the benefits of the proposed dataset, we evaluate several multimodal methods on our difficult nighttime test set. We present training approaches that enable multimodal methods to be trained in a more robust way, thus enabling them to retain reliable performance even in near-complete darkness. Our approach allows for training a robust deep neural network only using daytime images, thus significantly simplifying data acquisition, annotation, and the training process.
☆ Assessing Long-Term Electricity Market Design for Ambitious Decarbonization Targets using Multi-Agent Reinforcement Learning
Electricity systems are key to transforming today's society into a carbon-free economy. Long-term electricity market mechanisms, including auctions, support schemes, and other policy instruments, are critical in shaping the electricity generation mix. In light of the need for more advanced tools to support policymakers and other stakeholders in designing, testing, and evaluating long-term markets, this work presents a multi-agent reinforcement learning model capable of capturing the key features of decarbonizing energy systems. Profit-maximizing generation companies make investment decisions in the wholesale electricity market, responding to system needs, competitive dynamics, and policy signals. The model employs independent proximal policy optimization, which was selected for suitability to the decentralized and competitive environment. Nevertheless, given the inherent challenges of independent learning in multi-agent settings, an extensive hyperparameter search ensures that decentralized training yields market outcomes consistent with competitive behavior. The model is applied to a stylized version of the Italian electricity system and tested under varying levels of competition, market designs, and policy scenarios. Results highlight the critical role of market design for decarbonizing the electricity sector and avoiding price volatility. The proposed framework allows assessing long-term electricity markets in which multiple policy and market mechanisms interact simultaneously, with market participants responding and adapting to decarbonization pathways.
comment: Accepted to Energy and AI. Code available in https://github.com/jjgonzalez2491/MARLEY_V1
☆ Perfect reconstruction of sparse signals using nonconvexity control and one-step RSB message passing
We consider sparse signal reconstruction via minimization of the smoothly clipped absolute deviation (SCAD) penalty, and develop one-step replica-symmetry-breaking (1RSB) extensions of approximate message passing (AMP), termed 1RSB-AMP. Starting from the 1RSB formulation of belief propagation, we derive explicit update rules of 1RSB-AMP together with the corresponding state evolution (1RSB-SE) equations. A detailed comparison shows that 1RSB-AMP and 1RSB-SE agree remarkably well at the macroscopic level, even in parameter regions where replica-symmetric (RS) AMP, termed RS-AMP, diverges and where the 1RSB description itself is not expected to be thermodynamically exact. Fixed-point analysis of 1RSB-SE reveals a phase diagram consisting of success, failure, and diverging phases, as in the RS case. However, the diverging-region boundary now depends on the Parisi parameter due to the 1RSB ansatz, and we propose a new criterion -- minimizing the size of the diverging region -- rather than the conventional zero-complexity condition, to determine its value. Combining this criterion with the nonconvexity-control (NCC) protocol proposed in a previous RS study improves the algorithmic limit of perfect reconstruction compared with RS-AMP. Numerical solutions of 1RSB-SE and experiments with 1RSB-AMP confirm that this improved limit is achieved in practice, though the gain is modest and remains slightly inferior to the Bayes-optimal threshold. We also report the behavior of thermodynamic quantities -- overlaps, free entropy, complexity, and the non-self-averaging susceptibility -- that characterize the 1RSB phase in this problem.
comment: 49 pages, 10 figures
☆ SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories
Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.
☆ meval: A Statistical Toolbox for Fine-Grained Model Performance Analysis
Analyzing machine learning model performance stratified by patient and recording properties is becoming the accepted norm and often yields crucial insights about important model failure modes. Performing such analyses in a statistically rigorous manner is non-trivial, however. Appropriate performance metrics must be selected that allow for valid comparisons between groups of different sample sizes and base rates; metric uncertainty must be determined and multiple comparisons be corrected for, in order to assess whether any observed differences may be purely due to chance; and in the case of intersectional analyses, mechanisms must be implemented to find the most `interesting' subgroups within combinatorially many subgroup combinations. We here present a statistical toolbox that addresses these challenges and enables practitioners to easily yet rigorously assess their models for potential subgroup performance disparities. While broadly applicable, the toolbox is specifically designed for medical imaging applications. The analyses provided by the toolbox are illustrated in two case studies, one in skin lesion malignancy classification on the ISIC2020 dataset and one in chest X-ray-based disease classification on the MIMIC-CXR dataset.
☆ DeepShare: Sharing ReLU Across Channels and Layers for Efficient Private Inference
Private Inference (PI) uses cryptographic primitives to perform privacy preserving machine learning. In this setting, the owner of the network runs inference on the data of the client without learning anything about the data and without revealing any information about the model. It has been observed that a major computational bottleneck of PI is the calculation of the gate (i.e., ReLU), so a considerable amount of effort have been devoted to reducing the number of ReLUs in a given network. We focus on the DReLU, which is the non-linear step function of the ReLU and show that one DReLU can serve many ReLU operations. We suggest a new activation module where the DReLU operation is only performed on a subset of the channels (Prototype channels), while the rest of the channels (replicate channels) replicates the DReLU of each of their neurons from the corresponding neurons in one of the prototype channels. We then extend this idea to work across different layers. We show that this formulation can drastically reduce the number of DReLU operations in resnet type network. Furthermore, our theoretical analysis shows that this new formulation can solve an extended version of the XOR problem, using just one non-linearity and two neurons, something that traditional formulations and some PI specific methods cannot achieve. We achieve new SOTA results on several classification setups, and achieve SOTA results on image segmentation.
☆ Timely Information Updating for Mobile Devices Without and With ML Advice
This paper investigates an information update system in which a mobile device monitors a physical process and sends status updates to an access point (AP). A fundamental trade-off arises between the timeliness of the information maintained at the AP and the update cost incurred at the device. To address this trade-off, we propose an online algorithm that determines when to transmit updates using only available observations. The proposed algorithm asymptotically achieves the optimal competitive ratio against an adversary that can simultaneously manipulate multiple sources of uncertainty, including the operation duration, the information staleness, the update cost, and the availability of update opportunities. Furthermore, by incorporating machine learning (ML) advice of unknown reliability into the design, we develop an ML-augmented algorithm that asymptotically attains the optimal consistency-robustness trade-off, even when the adversary can additionally corrupt the ML advice. The optimal competitive ratio scales linearly with the range of update costs, but is unaffected by other uncertainties. Moreover, an optimal competitive online algorithm exhibits a threshold-like response to the ML advice: it either fully trusts or completely ignores the ML advice, as partially trusting the advice cannot improve the consistency without severely degrading the robustness. Extensive simulations in stochastic settings further validate the theoretical findings in the adversarial environment.
comment: 23 pages, journal version of arXiv:1901.03137, submitted for possible journal publication
☆ AdvJudge-Zero: Binary Decision Flips in LLM-as-a-Judge via Adversarial Control Tokens
Reward models and LLM-as-a-Judge systems are central to modern post-training pipelines such as RLHF, DPO, and RLAIF, where they provide scalar feedback and binary decisions that guide model selection and RL-based fine-tuning. We show that these judge systems exhibit a recurring vulnerability: short sequences of low-perplexity control tokens can flip many binary evaluations from correct ``No'' judgments to incorrect ``Yes'' judgments by steering the last-layer logit gap. These control tokens are patterns that a policy model could plausibly generate during post-training, and thus represent realistic reward-hacking risks rather than worst-case adversarial strings. Our method, AdvJudge-Zero, uses the model's next-token distribution and beam-search exploration to discover diverse control-token sequences from scratch, and our analysis shows that the induced hidden-state perturbations concentrate in a low-rank ``soft mode'' that is anti-aligned with the judge's refusal direction. Empirically, these tokens cause very high false positive rates when large open-weight and specialized judge models score incorrect answers on math and reasoning benchmarks. Finally, we show that LoRA-based adversarial training on small sets of control-token-augmented examples can markedly reduce these false positives while preserving evaluation quality.
☆ Adversarially Robust Detection of Harmful Online Content: A Computational Design Science Approach
Social media platforms are plagued by harmful content such as hate speech, misinformation, and extremist rhetoric. Machine learning (ML) models are widely adopted to detect such content; however, they remain highly vulnerable to adversarial attacks, wherein malicious users subtly modify text to evade detection. Enhancing adversarial robustness is therefore essential, requiring detectors that can defend against diverse attacks (generalizability) while maintaining high overall accuracy. However, simultaneously achieving both optimal generalizability and accuracy is challenging. Following the computational design science paradigm, this study takes a sequential approach that first proposes a novel framework (Large Language Model-based Sample Generation and Aggregation, LLM-SGA) by identifying the key invariances of textual adversarial attacks and leveraging them to ensure that a detector instantiated within the framework has strong generalizability. Second, we instantiate our detector (Adversarially Robust Harmful Online Content Detector, ARHOCD) with three novel design components to improve detection accuracy: (1) an ensemble of multiple base detectors that exploits their complementary strengths; (2) a novel weight assignment method that dynamically adjusts weights based on each sample's predictability and each base detector's capability, with weights initialized using domain knowledge and updated via Bayesian inference; and (3) a novel adversarial training strategy that iteratively optimizes both the base detectors and the weight assignor. We addressed several limitations of existing adversarial robustness enhancement research and empirically evaluated ARHOCD across three datasets spanning hate speech, rumor, and extremist content. Results show that ARHOCD offers strong generalizability and improves detection accuracy under adversarial conditions.
☆ Adaptive Graph Pruning with Sudden-Events Evaluation for Traffic Prediction using Online Semi-Decentralized ST-GNNs
Spatio-Temporal Graph Neural Networks (ST-GNNs) are well-suited for processing high-frequency data streams from geographically distributed sensors in smart mobility systems. However, their deployment at the edge across distributed compute nodes (cloudlets) createssubstantial communication overhead due to repeated transmission of overlapping node features between neighbouring cloudlets. To address this, we propose an adaptive pruning algorithm that dynamically filters redundant neighbour features while preserving the most informative spatial context for prediction. The algorithm adjusts pruning rates based on recent model performance, allowing each cloudlet to focus on regions experiencing traffic changes without compromising accuracy. Additionally, we introduce the Sudden Event Prediction Accuracy (SEPA), a novel event-focused metric designed to measure responsiveness to traffic slowdowns and recoveries, which are often missed by standard error metrics. We evaluate our approach in an online semi-decentralized setting with traditional FL, server-free FL, and Gossip Learning on two large-scale traffic datasets, PeMS-BAY and PeMSD7-M, across short-, mid-, and long-term prediction horizons. Experiments show that, in contrast to standard metrics, SEPA exposes the true value of spatial connectivity in predicting dynamic and irregular traffic. Our adaptive pruning algorithm maintains prediction accuracy while significantly lowering communication cost in all online semi-decentralized settings, demonstrating that communication can be reduced without compromising responsiveness to critical traffic events.
comment: 19 pages, 6 figures, 5 tables, journal
☆ Sharp Structure-Agnostic Lower Bounds for General Functional Estimation
The design of efficient nonparametric estimators has long been a central problem in statistics, machine learning, and decision making. Classical optimal procedures often rely on strong structural assumptions, which can be misspecified in practice and complicate deployment. This limitation has sparked growing interest in structure-agnostic approaches -- methods that debias black-box nuisance estimates without imposing structural priors. Understanding the fundamental limits of these methods is therefore crucial. This paper provides a systematic investigation of the optimal error rates achievable by structure-agnostic estimators. We first show that, for estimating the average treatment effect (ATE), a central parameter in causal inference, doubly robust learning attains optimal structure-agnostic error rates. We then extend our analysis to a general class of functionals that depend on unknown nuisance functions and establish the structure-agnostic optimality of debiased/double machine learning (DML). We distinguish two regimes -- one where double robustness is attainable and one where it is not -- leading to different optimal rates for first-order debiasing, and show that DML is optimal in both regimes. Finally, we instantiate our general lower bounds by deriving explicit optimal rates that recover existing results and extend to additional estimands of interest. Our results provide theoretical validation for widely used first-order debiasing methods and guidance for practitioners seeking optimal approaches in the absence of structural assumptions. This paper generalizes and subsumes the ATE lower bound established in \citet{jin2024structure} by the same authors.
comment: 95 pages; generalize and subsume partial results of arXiv:2402.14264 by the same authors
☆ Penalized Fair Regression for Multiple Groups in Chronic Kidney Disease
Fair regression methods have the potential to mitigate societal bias concerns in health care, but there has been little work on penalized fair regression when multiple groups experience such bias. We propose a general regression framework that addresses this gap with unfairness penalties for multiple groups. Our approach is demonstrated for binary outcomes with true positive rate disparity penalties. It can be efficiently implemented through reduction to a cost-sensitive classification problem. We additionally introduce novel score functions for automatically selecting penalty weights. Our penalized fair regression methods are empirically studied in simulations, where they achieve a fairness-accuracy frontier beyond that of existing comparison methods. Finally, we apply these methods to a national multi-site primary care study of chronic kidney disease to develop a fair classifier for end-stage renal disease. There we find substantial improvements in fairness for multiple race and ethnicity groups who experience societal bias in the health care system without any appreciable loss in overall fit.
☆ Task Schema and Binding: A Double Dissociation Study of In-Context Learning
We provide causal mechanistic validation that in-context learning (ICL) decomposes into two separable mechanisms: Task Schema (abstract task type recognition) and Binding (specific input-output associations). Through activation patching experiments across 9 models from 7 Transformer families plus Mamba (370M-13B parameters), we establish three key findings: 1. Double dissociation: Task Schema transfers at 100% via late MLP patching; Binding transfers at 62% via residual stream patching -- proving separable mechanisms 2. Prior-Schema trade-off: Schema reliance inversely correlates with prior knowledge (Spearman rho = -0.596, p < 0.001, N=28 task-model pairs) 3. Architecture generality: The mechanism operates across all tested architectures including the non-Transformer Mamba These findings offer a mechanistic account of the ICL puzzle that contrasts with prior views treating ICL as a monolithic mechanism (whether retrieval-based, gradient descent-like, or purely Bayesian). By establishing that Schema and Binding are neurally dissociable -- not merely behavioral modes -- we provide causal evidence for dual-process theories of ICL. Models rely on Task Schema when prior knowledge is absent, but prior knowledge interferes through attentional mis-routing (72.7% recency bias) rather than direct output competition (0%). This explains why arbitrary mappings succeed (zero prior leads to full Schema reliance) while factual overrides fail -- and reveals that the true bottleneck is attentional, not output-level. Practical implications: Understanding these dual mechanisms enables more efficient prompt engineering -- reliable schema transfer reduces required demonstrations for novel tasks, while prior-aware design can mitigate the 38% binding failure rate in high-prior scenarios, improving ICL system reliability in production deployments.
comment: 20pages, 2figures
☆ Explanation Beyond Intuition: A Testable Criterion for Inherent Explainability
Inherent explainability is the gold standard in Explainable Artificial Intelligence (XAI). However, there is not a consistent definition or test to demonstrate inherent explainability. Work to date either characterises explainability through metrics, or appeals to intuition - "we know it when we see it". We propose a globally applicable criterion for inherent explainability. The criterion uses graph theory for representing and decomposing models for structure-local explanation, and recomposing them into global explanations. We form the structure-local explanations as annotations, a verifiable hypothesis-evidence structure that allows for a range of explanatory methods to be used. This criterion matches existing intuitions on inherent explainability, and provides justifications why a large regression model may not be explainable but a sparse neural network could be. We differentiate explainable -- a model that allows for explanation -- and \textit{explained} -- one that has a verified explanation. Finally, we provide a full explanation of PREDICT -- a Cox proportional hazards model of cardiovascular disease risk, which is in active clinical use in New Zealand. It follows that PREDICT is inherently explainable. This work provides structure to formalise other work on explainability, and allows regulators a flexible but rigorous test that can be used in compliance frameworks.
☆ M2RU: Memristive Minion Recurrent Unit for Continual Learning at the Edge
Continual learning on edge platforms remains challenging because recurrent networks depend on energy-intensive training procedures and frequent data movement that are impractical for embedded deployments. This work introduces M2RU, a mixed-signal architecture that implements the minion recurrent unit for efficient temporal processing with on-chip continual learning. The architecture integrates weighted-bit streaming, which enables multi-bit digital inputs to be processed in crossbars without high-resolution conversion, and an experience replay mechanism that stabilizes learning under domain shifts. M2RU achieves 15 GOPS at 48.62 mW, corresponding to 312 GOPS per watt, and maintains accuracy within 5 percent of software baselines on sequential MNIST and CIFAR-10 tasks. Compared with a CMOS digital design, the accelerator provides 29X improvement in energy efficiency. Device-aware analysis shows an expected operational lifetime of 12.2 years under continual learning workloads. These results establish M2RU as a scalable and energy-efficient platform for real-time adaptation in edge-level temporal intelligence.
☆ LibriVAD: A Scalable Open Dataset with Deep Learning Benchmarks for Voice Activity Detection
Robust Voice Activity Detection (VAD) remains a challenging task, especially under noisy, diverse, and unseen acoustic conditions. Beyond algorithmic development, a key limitation in advancing VAD research is the lack of large-scale, systematically controlled, and publicly available datasets. To address this, we introduce LibriVAD - a scalable open-source dataset derived from LibriSpeech and augmented with diverse real-world and synthetic noise sources. LibriVAD enables systematic control over speech-to-noise ratio, silence-to-speech ratio (SSR), and noise diversity, and is released in three sizes (15 GB, 150 GB, and 1.5 TB) with two variants (LibriVAD-NonConcat and LibriVAD-Concat) to support different experimental setups. We benchmark multiple feature-model combinations, including waveform, Mel-Frequency Cepstral Coefficients (MFCC), and Gammatone filter bank cepstral coefficients, and introduce the Vision Transformer (ViT) architecture for VAD. Our experiments show that ViT with MFCC features consistently outperforms established VAD models such as boosted deep neural network and convolutional long short-term memory deep neural network across seen, unseen, and out-of-distribution (OOD) conditions, including evaluation on the real-world VOiCES dataset. We further analyze the impact of dataset size and SSR on model generalization, experimentally showing that scaling up dataset size and balancing SSR noticeably and consistently enhance VAD performance under OOD conditions. All datasets, trained models, and code are publicly released to foster reproducibility and accelerate progress in VAD research.
☆ Warmer for Less: A Cost-Efficient Strategy for Cold-Start Recommendations at Pinterest WWW'26
Pinterest is a leading visual discovery platform where recommender systems (RecSys) are key to delivering relevant, engaging, and fresh content to our users. In this paper, we study the problem of improving RecSys model predictions for cold-start (CS) items, which appear infrequently in the training data. Although this problem is well-studied in academia, few studies have addressed its root causes effectively at the scale of a platform like Pinterest. By investigating live traffic data, we identified several challenges of the CS problem and developed a corresponding solution for each: First, industrial-scale RecSys models must operate under tight computational constraints. Since CS items are a minority, any related improvements must be highly cost-efficient. To address this, our solutions were designed to be lightweight, collectively increasing the total parameters by only 5%. Second, CS items are represented only by non-historical (e.g., content or attribute) features, which models often treat as less important. To elevate their significance, we introduce a residual connection for the non-historical features. Third, CS items tend to receive lower prediction scores compared to non-CS items, reducing their likelihood of being surfaced. We mitigate this by incorporating a score regularization term into the model. Fourth, the labels associated with CS items are sparse, making it difficult for the model to learn from them. We apply the manifold mixup technique to address this data sparsity. Implemented together, our methods increased fresh content engagement at Pinterest by 10% without negatively impacting overall engagement and cost, and have been deployed to serve over 570 million users on Pinterest.
comment: Submitted to the WWW'26
☆ Alzheimer's Disease Brain Network Mining
Machine learning approaches for Alzheimer's disease (AD) diagnosis face a fundamental challenges. Clinical assessments are expensive and invasive, leaving ground truth labels available for only a fraction of neuroimaging datasets. We introduce Multi view Adaptive Transport Clustering for Heterogeneous Alzheimer's Disease (MATCH-AD), a semi supervised framework that integrates deep representation learning, graph-based label propagation, and optimal transport theory to address this limitation. The framework leverages manifold structure in neuroimaging data to propagate diagnostic information from limited labeled samples to larger unlabeled populations, while using Wasserstein distances to quantify disease progression between cognitive states. Evaluated on nearly five thousand subjects from the National Alzheimer's Coordinating Center, encompassing structural MRI measurements from hundreds of brain regions, cerebrospinal fluid biomarkers, and clinical variables MATCHAD achieves near-perfect diagnostic accuracy despite ground truth labels for less than one-third of subjects. The framework substantially outperforms all baseline methods, achieving kappa indicating almost perfect agreement compared to weak agreement for the best baseline, a qualitative transformation in diagnostic reliability. Performance remains clinically useful even under severe label scarcity, and we provide theoretical convergence guarantees with proven bounds on label propagation error and transport stability. These results demonstrate that principled semi-supervised learning can unlock the diagnostic potential of the vast repositories of partially annotated neuroimaging data accumulating worldwide, substantially reducing annotation burden while maintaining accuracy suitable for clinical deployment.
☆ MINPO: Memory-Informed Neural Pseudo-Operator to Resolve Nonlocal Spatiotemporal Dynamics
Many physical systems exhibit nonlocal spatiotemporal behaviors described by integro-differential equations (IDEs). Classical methods for solving IDEs require repeatedly evaluating convolution integrals, whose cost increases quickly with kernel complexity and dimensionality. Existing neural solvers can accelerate selected instances of these computations, yet they do not generalize across diverse nonlocal structures. In this work, we introduce the Memory-Informed Neural Pseudo-Operator (MINPO), a unified framework for modeling nonlocal dynamics arising from long-range spatial interactions and/or long-term temporal memory. MINPO, employing either Kolmogorov-Arnold Networks (KANs) or multilayer perceptron networks (MLPs) as encoders, learns the nonlocal operator and its inverse directly through neural representations, and then explicitly reconstruct the unknown solution fields. The learning is guarded by a lightweight nonlocal consistency loss term to enforce coherence between the learned operator and reconstructed solution. The MINPO formulation allows to naturally capture and efficiently resolve nonlocal spatiotemporal dependencies governed by a wide spectrum of IDEs and their subsets, including fractional PDEs. We evaluate the efficacy of MINPO in comparison with classical techniques and state-of-the-art neural-based strategies based on MLPs, such as A-PINN and fPINN, along with their newly-developed KAN variants, A-PIKAN and fPIKAN, designed to facilitate a fair comparison. Our study offers compelling evidence of the accuracy of MINPO and demonstrates its robustness in handling (i) diverse kernel types, (ii) different kernel dimensionalities, and (iii) the substantial computational demands arising from repeated evaluations of kernel integrals. MINPO, thus, generalizes beyond problem-specific formulations, providing a unified framework for systems governed by nonlocal operators.
☆ Understanding Generalization in Role-Playing Models via Information Theory
Role-playing models (RPMs) are widely used in real-world applications but underperform when deployed in the wild. This degradation can be attributed to distribution shifts, including user, character, and dialogue compositional shifts. Existing methods like LLM-as-a-judge fall short in providing a fine-grained diagnosis of how these shifts affect RPM generalization, and thus there lack formal frameworks to characterize RPM generalization behaviors. To bridge these gaps, we introduce an information-theoretic metric, named reasoning-based effective mutual information difference (R-EMID), to measure RPM performance degradation in an interpretable way. We also derive an upper bound on R-EMID to predict the worst-case generalization performance of RPMs and theoretically reveal how various shifts contribute to the RPM performance degradation. Moreover, we propose a co-evolving reinforcement learning framework to adaptively model the connection among user, character, and dialogue context and thus enhance the estimation of dialogue response generation probability, which is critical for calculating R-EMID. Finally, we evaluate the generalization performance of various RPMs using R-EMID, finding that user shift poses the highest risk among all shifts and reinforcement learning is the most effective approach for enhancing RPM generalization.
☆ A Theoretical Analysis of State Similarity Between Markov Decision Processes
The bisimulation metric (BSM) is a powerful tool for analyzing state similarities within a Markov decision process (MDP), revealing that states closer in BSM have more similar optimal value functions. While BSM has been successfully utilized in reinforcement learning (RL) for tasks like state representation learning and policy exploration, its application to state similarity between multiple MDPs remains challenging. Prior work has attempted to extend BSM to pairs of MDPs, but a lack of well-established mathematical properties has limited further theoretical analysis between MDPs. In this work, we formally establish a generalized bisimulation metric (GBSM) for measuring state similarity between arbitrary pairs of MDPs, which is rigorously proven with three fundamental metric properties, i.e., GBSM symmetry, inter-MDP triangle inequality, and a distance bound on identical spaces. Leveraging these properties, we theoretically analyze policy transfer, state aggregation, and sampling-based estimation across MDPs, obtaining explicit bounds that are strictly tighter than existing ones derived from the standard BSM. Additionally, GBSM provides a closed-form sample complexity for estimation, improving upon existing asymptotic results based on BSM. Numerical results validate our theoretical findings and demonstrate the effectiveness of GBSM in multi-MDP scenarios.
comment: Submitted to an IEEE Transactions. arXiv admin note: substantial text overlap with arXiv:2509.18714
☆ SHARP-QoS: Sparsely-gated Hierarchical Adaptive Routing for joint Prediction of QoS
Dependable service-oriented computing relies on multiple Quality of Service (QoS) parameters that are essential to assess service optimality. However, real-world QoS data are extremely sparse, noisy, and shaped by hierarchical dependencies arising from QoS interactions, and geographical and network-level factors, making accurate QoS prediction challenging. Existing methods often predict each QoS parameter separately, requiring multiple similar models, which increases computational cost and leads to poor generalization. Although recent joint QoS prediction studies have explored shared architectures, they suffer from negative transfer due to loss-scaling caused by inconsistent numerical ranges across QoS parameters and further struggle with inadequate representation learning, resulting in degraded accuracy. This paper presents an unified strategy for joint QoS prediction, called SHARP-QoS, that addresses these issues using three components. First, we introduce a dual mechanism to extract the hierarchical features from both QoS and contextual structures via hyperbolic convolution formulated in the Poincaré ball. Second, we propose an adaptive feature-sharing mechanism that allows feature exchange across informative QoS and contextual signals. A gated feature fusion module is employed to support dynamic feature selection among structural and shared representations. Third, we design an EMA-based loss balancing strategy that allows stable joint optimization, thereby mitigating the negative transfer. Evaluations on three datasets with two, three, and four QoS parameters demonstrate that SHARP-QoS outperforms both single- and multi-task baselines. Extensive study shows that our model effectively addresses major challenges, including sparsity, robustness to outliers, and cold-start, while maintaining moderate computational overhead, underscoring its capability for reliable joint QoS prediction.
comment: 12 pages, 4 figures, 10 tables
☆ Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling Autonomous LLM Systems
As LLM-based agents grow more autonomous and multi-modal, ensuring they remain controllable, auditable, and faithful to deployer intent becomes critical. Prior benchmarks measured the propensity for misaligned behavior and showed that agent personalities and tool access significantly influence misalignment. Building on these insights, we propose a Verifiability-First architecture that (1) integrates run-time attestations of agent actions using cryptographic and symbolic methods, (2) embeds lightweight Audit Agents that continuously verify intent versus behavior using constrained reasoning, and (3) enforces challenge-response attestation protocols for high-risk operations. We introduce OPERA (Observability, Provable Execution, Red-team, Attestation), a benchmark suite and evaluation protocol designed to measure (i) detectability of misalignment, (ii) time to detection under stealthy strategies, and (iii) resilience of verifiability mechanisms to adversarial prompt and persona injection. Our approach shifts the evaluation focus from how likely misalignment is to how quickly and reliably misalignment can be detected and remediated.
☆ Electric Vehicle Charging Load Forecasting: An Experimental Comparison of Machine Learning Methods
With the growing popularity of electric vehicles as a means of addressing climate change, concerns have emerged regarding their impact on electric grid management. As a result, predicting EV charging demand has become a timely and important research problem. While substantial research has addressed energy load forecasting in transportation, relatively few studies systematically compare multiple forecasting methods across different temporal horizons and spatial aggregation levels in diverse urban settings. This work investigates the effectiveness of five time series forecasting models, ranging from traditional statistical approaches to machine learning and deep learning methods. Forecasting performance is evaluated for short-, mid-, and long-term horizons (on the order of minutes, hours, and days, respectively), and across spatial scales ranging from individual charging stations to regional and city-level aggregations. The analysis is conducted on four publicly available real-world datasets, with results reported independently for each dataset. To the best of our knowledge, this is the first work to systematically evaluate EV charging demand forecasting across such a wide range of temporal horizons and spatial aggregation levels using multiple real-world datasets.
comment: 18 pages, 2 figures, 5 tables
☆ Practical Framework for Privacy-Preserving and Byzantine-robust Federated Learning
Federated Learning (FL) allows multiple clients to collaboratively train a model without sharing their private data. However, FL is vulnerable to Byzantine attacks, where adversaries manipulate client models to compromise the federated model, and privacy inference attacks, where adversaries exploit client models to infer private data. Existing defenses against both backdoor and privacy inference attacks introduce significant computational and communication overhead, creating a gap between theory and practice. To address this, we propose ABBR, a practical framework for Byzantine-robust and privacy-preserving FL. We are the first to utilize dimensionality reduction to speed up the private computation of complex filtering rules in privacy-preserving FL. Additionally, we analyze the accuracy loss of vector-wise filtering in low-dimensional space and introduce an adaptive tuning strategy to minimize the impact of malicious models that bypass filtering on the global model. We implement ABBR with state-of-the-art Byzantine-robust aggregation rules and evaluate it on public datasets, showing that it runs significantly faster, has minimal communication overhead, and maintains nearly the same Byzantine-resilience as the baselines.
comment: Accepted for publication in IEEE Transactions on Information Forensics and Security
☆ AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs NeurIPS 2025
Large language models are exposed to risks of extraction, distillation, and unauthorized fine-tuning. Existing defenses use watermarking or monitoring, but these act after leakage. We design AlignDP, a hybrid privacy lock that blocks knowledge transfer at the data interface. The key idea is to separate rare and non-rare fields. Rare fields are shielded by PAC indistinguishability, giving effective zero-epsilon local DP. Non-rare fields are privatized with RAPPOR, giving unbiased frequency estimates under local DP. A global aggregator enforces composition and budget. This two-tier design hides rare events and adds controlled noise to frequent events. We prove limits of PAC extension to global aggregation, give bounds for RAPPOR estimates, and analyze utility trade-off. A toy simulation confirms feasibility: rare categories remain hidden, frequent categories are recovered with small error.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: LOCK-LLM Work-shop, NeurIPS 2025
☆ Machine Learning Assisted Parameter Tuning on Wavelet Transform Amorphous Radial Distribution Function
Understanding atomic structures is crucial, yet amorphous materials remain challenging due to their irregular and non-periodic nature. The wavelet-transform radial distribution function (WT-RDF) offers a physics-based framework for analyzing amorphous structures, reliably predicting the first and second RDF peaks and overall curve trends in both binary Ge 0.25 Se 0.75 and ternary Ag x(Ge 0.25 Se 0.75)100-x (x=5,10,15,20,25) systems. Despite these strengths, WT-RDF shows limitations in amplitude accuracy, which affects quantitative analyses such as coordination numbers. This study addresses the issue by optimizing WT-RDF parameters using a machine learning approach, producing the enhanced WT-RDF+ framework. WT-RDF+ improves the precision of peak predictions and outperforms benchmark ML models, including RBF and LSTM, even when trained on only 25 percent of the binary dataset. These results demonstrate that WT-RDF+ is a robust and reliable model for structural characterization of amorphous materials, particularly Ge-Se systems, and support the efficient design and development of phase-change thin films for next-generation electronic devices and components.
☆ CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency
Medical Vision-Language Models (VLMs) are prone to hallucinations, compromising clinical reliability. While reinforcement learning methods like Group Relative Policy Optimization (GRPO) offer a low-cost alignment solution, their reliance on sparse, outcome-based rewards inadvertently encourages models to "overthink" -- generating verbose, convoluted, and unverifiable Chain-of-Thought reasoning to justify answers. This focus on outcomes obscures factual errors and poses significant safety risks. To address this, we propose CheXPO-v2, a novel alignment framework that shifts from outcome to process supervision. Our core innovation is a Knowledge Graph Consistency Reward mechanism driven by Entity-Relation Matching. By explicitly parsing reasoning steps into structured "Disease, Relation, Anatomy" triplets, we provide fine-grained supervision that penalizes incoherent logic and hallucinations at the atomic level. Integrating this with a hard-example mining strategy, our approach significantly outperforms GRPO and state-of-the-art models on benchmarks like MIMIC-CXR-VQA. Crucially, CheXPO-v2 achieves new state-of-the-art accuracy using only 5k samples, demonstrating exceptional data efficiency while producing clinically sound and verifiable reasoning. The project source code is publicly available at: https://github.com/ecoxial2007/CheX-Phi4MM.
☆ Do Foundational Audio Encoders Understand Music Structure?
In music information retrieval (MIR) research, the use of pretrained foundational audio encoders (FAEs) has recently become a trend. FAEs pretrained on large amounts of music and audio data have been shown to improve performance on MIR tasks such as music tagging and automatic music transcription. However, their use for music structure analysis (MSA) remains underexplored. Although many open-source FAE models are available, only a small subset has been examined for MSA, and the impact of factors such as learning methods, training data, and model context length on MSA performance remains unclear. In this study, we conduct comprehensive experiments on 11 types of FAEs to investigate how these factors affect MSA performance. Our results demonstrate that FAEs using selfsupervised learning with masked language modeling on music data are particularly effective for MSA. These findings pave the way for future research in MSA.
☆ Learning solution operator of dynamical systems with diffusion maps kernel ridge regression
Many scientific and engineering systems exhibit complex nonlinear dynamics that are difficult to predict accurately over long time horizons. Although data-driven models have shown promise, their performance often deteriorates when the geometric structures governing long-term behavior are unknown or poorly represented. We demonstrate that a simple kernel ridge regression (KRR) framework, when combined with a dynamics-aware validation strategy, provides a strong baseline for long-term prediction of complex dynamical systems. By employing a data-driven kernel derived from diffusion maps, the proposed Diffusion Maps Kernel Ridge Regression (DM-KRR) method implicitly adapts to the intrinsic geometry of the system's invariant set, without requiring explicit manifold reconstruction or attractor modeling, procedures that often limit predictive performance. Across a broad range of systems, including smooth manifolds, chaotic attractors, and high-dimensional spatiotemporal flows, DM-KRR consistently outperforms state-of-the-art random feature, neural-network and operator-learning methods in both accuracy and data efficiency. These findings underscore that long-term predictive skill depends not only on model expressiveness, but critically on respecting the geometric constraints encoded in the data through dynamically consistent model selection. Together, simplicity, geometry awareness, and strong empirical performance point to a promising path for reliable and efficient learning of complex dynamical systems.
☆ BumpNet: A Sparse Neural Network Framework for Learning PDE Solutions
We introduce BumpNet, a sparse neural network framework for PDE numerical solution and operator learning. BumpNet is based on meshless basis function expansion, in a similar fashion to radial-basis function (RBF) networks. Unlike RBF networks, the basis functions in BumpNet are constructed from ordinary sigmoid activation functions. This enables the efficient use of modern training techniques optimized for such networks. All parameters of the basis functions, including shape, location, and amplitude, are fully trainable. Model parsimony and h-adaptivity are effectively achieved through dynamically pruning basis functions during training. BumpNet is a general framework that can be combined with existing neural architectures for learning PDE solutions: here, we propose Bump-PINNs (BumpNet with physics-informed neural networks) for solving general PDEs; Bump-EDNN (BumpNet with evolutionary deep neural networks) to solve time-evolution PDEs; and Bump-DeepONet (BumpNet with deep operator networks) for PDE operator learning. Bump-PINNs are trained using the same collocation-based approach used by PINNs, Bump-EDNN uses a BumpNet only in the spatial domain and uses EDNNs to advance the solution in time, while Bump-DeepONets employ a BumpNet regression network as the trunk network of a DeepONet. Extensive numerical experiments demonstrate the efficiency and accuracy of the proposed architecture.
♻ ☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy. Our code SpecCLIP is publicly available at https://github.com/Xiaosheng-Zhao/SpecCLIP
comment: 29 pages, 8 figures, 6 tables. Accepted for publication in ApJ. Comments welcome
♻ ☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce mimic-video, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
comment: Revised Introduction, Related Work, and Appendix. Additional minor notational and grammatical fixes
♻ ☆ Deep Gaussian Process Proximal Policy Optimization
Uncertainty estimation for Reinforcement Learning (RL) is a critical component in control tasks where agents must balance safe exploration and efficient learning. While deep neural networks have enabled breakthroughs in RL, they often lack calibrated uncertainty estimates. We introduce Deep Gaussian Process Proximal Policy Optimization (GPPO), a scalable, model-free actor-critic algorithm that leverages Deep Gaussian Processes (DGPs) to approximate both the policy and value function. GPPO maintains competitive performance with respect to Proximal Policy Optimization on standard high-dimensional continuous control benchmarks while providing well-calibrated uncertainty estimates that can inform safer and more effective exploration.
comment: Withdrawn by the authors as the manuscript is not yet complete; no updated version is available at this time
♻ ☆ Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning
The datasets and benchmarks commonly used to train and evaluate the mathematical capabilities of AI-based mathematical copilots (primarily large language models) exhibit several shortcomings and misdirections. These range from a restricted scope of mathematical complexity to limited fidelity in capturing aspects beyond the final, written proof (e.g. motivating the proof, or representing the thought processes leading to a proof). These issues are compounded by a dynamic reminiscent of Goodhart's law: as benchmark performance becomes the primary target for model development, the benchmarks themselves become less reliable indicators of genuine mathematical capability. We systematically explore these limitations and contend that enhancing the capabilities of large language models, or any forthcoming advancements in AI-based mathematical assistants (copilots or ``thought partners''), necessitates a course correction both in the design of mathematical datasets and the evaluation criteria of the models' mathematical ability. In particular, it is necessary for benchmarks to move beyond the existing result-based datasets that map theorem statements directly to proofs, and instead focus on datasets that translate the richer facets of mathematical research practice into data that LLMs can learn from. This includes benchmarks that supervise the proving process and the proof discovery process itself, and we advocate for mathematical dataset developers to consider the concept of "motivated proof", introduced by G. Pólya in 1949, which can serve as a blueprint for datasets that offer a better proof learning signal, alleviating some of the mentioned limitations.
comment: 59 pages
♻ ☆ Towards Human-Guided, Data-Centric LLM Co-Pilots
Machine learning (ML) has the potential to revolutionize various domains, but its adoption is often hindered by the disconnect between the needs of domain experts and translating these needs into robust and valid ML tools. Despite recent advances in LLM-based co-pilots to democratize ML for non-technical domain experts, these systems remain predominantly focused on model-centric aspects while overlooking critical data-centric challenges. This limitation is problematic in complex real-world settings where raw data often contains complex issues, such as missing values, label noise, and domain-specific nuances requiring tailored handling. To address this we introduce CliMB-DC, a human-guided, data-centric framework for LLM co-pilots that combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing. At its core, CliMB-DC introduces a novel, multi-agent reasoning system that combines a strategic coordinator for dynamic planning and adaptation with a specialized worker agent for precise execution. Domain expertise is then systematically incorporated to guide the reasoning process using a human-in-the-loop approach. To guide development, we formalize a taxonomy of key data-centric challenges that co-pilots must address. Thereafter, to address the dimensions of the taxonomy, we integrate state-of-the-art data-centric tools into an extensible, open-source architecture, facilitating the addition of new tools from the research community. Empirically, using real-world healthcare datasets we demonstrate CliMB-DC's ability to transform uncurated datasets into ML-ready formats, significantly outperforming existing co-pilot baselines for handling data-centric challenges. CliMB-DC promises to empower domain experts from diverse domains -- healthcare, finance, social sciences and more -- to actively participate in driving real-world impact using ML.
comment: Saveliev, Liu & Seedat contributed equally
♻ ☆ Low-Rank Filtering and Smoothing for Sequential Deep Learning
Learning multiple tasks sequentially requires neural networks to balance retaining knowledge, yet being flexible enough to adapt to new tasks. Regularizing network parameters is a common approach, but it rarely incorporates prior knowledge about task relationships, and limits information flow to future tasks only. We propose a Bayesian framework that treats the network's parameters as the state space of a nonlinear Gaussian model, unlocking two key capabilities: (1) A principled way to encode domain knowledge about task relationships, allowing, e.g., control over which layers should adapt between tasks. (2) A novel application of Bayesian smoothing, allowing task-specific models to also incorporate knowledge from models learned later. This does not require direct access to their data, which is crucial, e.g., for privacy-critical applications. These capabilities rely on efficient filtering and smoothing operations, for which we propose diagonal plus low-rank approximations of the precision matrix in the Laplace approximation (LR-LGF). Empirical results demonstrate the efficiency of LR-LGF and the benefits of the unlocked capabilities.
comment: Revised version: improved presentation and added experiments
♻ ☆ Another look at inference after prediction
From structural biology to epidemiology, predictions from machine learning (ML) models are increasingly used to complement costly gold-standard data to enable faster, more affordable, and scalable scientific inquiry. In response, prediction-based (PB) inference has emerged to accommodate statistical analysis using a large volume of predictions together with a small amount of gold-standard data. The goals of PB inference are two-fold: (i) to mitigate bias from errors in predictions and (ii) to improve efficiency relative to traditional inference using only the gold-standard data. While early PB inference methods focused on bias, their ability to enhance efficiency remains unclear. We revisit a popular PB inference method and show that a simple modification can be applied to guarantee improvements in efficiency beyond yielding valid inferences when the ML predictions are imperfect. The utility of this approach in leveraging prediction-based outcomes to enhance efficiency is demonstrated through extensive simulation studies and an application to the UK Biobank data. We further contextualize the problem of PB inference through historical literature from economics and statistics to highlight perspectives from classical methods in this contemporary problem.
♻ ☆ Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
The collaborative efforts of large communities in science experiments, often comprising thousands of global members, reflect a monumental commitment to exploration and discovery. Recently, advanced and complex data processing has gained increasing importance in science experiments. Data processing workflows typically consist of multiple intricate steps, and the precise specification of resource requirements is crucial for each step to allocate optimal resources for effective processing. Estimating resource requirements in advance is challenging due to a wide range of analysis scenarios, varying skill levels among community members, and the continuously increasing spectrum of computing options. One practical approach to mitigate these challenges involves initially processing a subset of each step to measure precise resource utilization from actual processing profiles before completing the entire step. While this two-staged approach enables processing on optimal resources for most of the workflow, it has drawbacks such as initial inaccuracies leading to potential failures and suboptimal resource usage, along with overhead from waiting for initial processing completion, which is critical for fast-turnaround analyses. In this context, our study introduces a novel pipeline of machine learning models within a comprehensive workflow management system, the Production and Distributed Analysis (PanDA) system. These models employ advanced machine learning techniques to predict key resource requirements, overcoming challenges posed by limited upfront knowledge of characteristics at each step. Accurate forecasts of resource requirements enable informed and proactive decision-making in workflow management, enhancing the efficiency of handling diverse, complex workflows across heterogeneous resources.
♻ ☆ The Diffusion Duality ICML 2025
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/duo
comment: ICML 2025. We provide the code at: https://github.com/s-sahoo/duo [v3] includes improved theory, clearer presentation, and a new future work section
♻ ☆ Reinforced Generation of Combinatorial Structures: Hardness of Approximation
Can AI based methods help us make advances in complexity theory? We provide evidence towards answering this in the affirmative, using AlphaEvolve (an LLM code mutation agent) to obtain new results in three settings: a) We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ vertices, and our upper bounds are obtained via analytical arguments. b) We obtain new inapproximability results for MAX-4-CUT and MAX-3-CUT, proving that it is NP-hard to approximate them within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of the SOTA of $16/17$ that relies on a custom PCP (rather than a reduction from ``standard'' Håstad-style PCPs). c) Inapproximability for the metric Traveling Salesman Problem (TSP): We show that it is NP-hard to approximate the minimum cost tour within a factor of $111/110$ using AlphaEvolve to discover a new gadget, thus improving the SOTA of $117/116$. Along the way, we provide new modular soundness and completeness arguments that can be of independent interest. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (sometimes requiring time exponential in the size of the construction). We used AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$ for our gadgets). Our results suggest that gadget based proofs would benefit from a pass through AI-based tools to obtain stronger results.
♻ ☆ HGQ: High Granularity Quantization for Real-time Neural Networks on FPGAs
Neural networks with sub-microsecond inference latency are required by many critical applications. Targeting such applications deployed on FPGAs, we present High Granularity Quantization (HGQ), a quantization-aware training framework that optimizes parameter bit-widths through gradient descent. Unlike conventional methods, HGQ determines the optimal bit-width for each parameter independently, making it suitable for hardware platforms supporting heterogeneous arbitrary precision arithmetic. In our experiments, HGQ shows superior performance compared to existing network compression methods, achieving orders of magnitude reduction in resource consumption and latency while maintaining the accuracy on several benchmark tasks. These improvements enable the deployment of complex models previously infeasible due to resource or latency constraints. HGQ is open-source and is used for developing next-generation trigger systems at the CERN ATLAS and CMS experiments for particle physics, enabling the use of advanced machine learning models for real-time data selection with sub-microsecond latency.
♻ ☆ Look-Ahead Reasoning on Learning Platforms NeurIPS 2025
On many learning platforms, the optimization criteria guiding model training reflect the priorities of the designer rather than those of the individuals they affect. Consequently, users may act strategically to obtain more favorable outcomes. While past work has studied strategic user behavior on learning platforms, the focus has largely been on strategic responses to a deployed model, without considering the behavior of other users. In contrast, look-ahead reasoning takes into account that user actions are coupled, and -- at scale -- impact future predictions. Within this framework, we first formalize level-k thinking, a concept from behavioral economics, where users aim to outsmart their peers by looking one step ahead. We show that, while convergence to an equilibrium is accelerated, the equilibrium remains the same, providing no benefit of higher-level reasoning for individuals in the long run. Then, we focus on collective reasoning, where users take coordinated actions by optimizing through their joint impact on the model. By contrasting collective with selfish behavior, we characterize the benefits and limits of coordination; a new notion of alignment between the learner's and the users' utilities emerges as a key concept. Look-ahead reasoning can be seen as a generalization of algorithmic collective action; we thus offer the first results characterizing the utility trade-offs of coordination when contesting algorithmic systems.
comment: published at NeurIPS 2025
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, LLM-Judge, semantic similarity, etc.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ The Generation Phases of Flow Matching: a Denoising Perspective
Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a framework to empirically probe the generation process. Laying down the formal connections between flow matching models and denoisers, we provide a common ground to compare their performances on generation and denoising. This enables the design of principled and controlled perturbations to influence sample generation: noise and drift. This leads to new insights on the distinct dynamical phases of the generative process, enabling us to precisely characterize at which stage of the generative process denoisers succeed or fail and why this matters.
♻ ☆ Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?
Many machine learning models require setting a parameter that controls their size before training, e.g. number of neurons in DNNs, or inducing points in GPs. Increasing capacity typically improves performance until all the information from the dataset is captured. After this point, computational cost keeps increasing, without improved performance. This leads to the question "How big is big enough?" We investigate this problem for Gaussian processes (single-layer neural networks) in continual learning. Here, data becomes available incrementally, and the final dataset size will therefore not be known before training, preventing the use of heuristics for setting a fixed model size. We develop a method to automatically adjust model size while maintaining near-optimal performance. Our experimental procedure follows the constraint that any hyperparameters must be set without seeing dataset properties, and we show that our method performs well across diverse datasets without the need to adjust its hyperparameter, showing it requires less tuning than others.
comment: 9 pages main, 27 pages total, 13 figures, 9 tables, conference paper, minor correction
♻ ☆ Pairwise Elimination with Instance-Dependent Guarantees for Bandits with Cost Subsidy ICLR 2025
Multi-armed bandits (MAB) are commonly used in sequential online decision-making when the reward of each decision is an unknown random variable. In practice however, the typical goal of maximizing total reward may be less important than minimizing the total cost of the decisions taken, subject to a reward constraint. For example, we may seek to make decisions that have at least the reward of a reference ``default'' decision, with as low a cost as possible. This problem was recently introduced in the Multi-Armed Bandits with Cost Subsidy (MAB-CS) framework. MAB-CS is broadly applicable to problem domains where a primary metric (cost) is constrained by a secondary metric (reward), and the rewards are unknown. In our work, we address variants of MAB-CS including ones with reward constrained by the reward of a known reference arm or by the subsidized best reward. We introduce the Pairwise-Elimination (PE) algorithm for the known reference arm variant and generalize PE to PE-CS for the subsidized best reward variant. Our instance-dependent analysis of PE and PE-CS reveals that both algorithms have an order-wise logarithmic upper bound on Cost and Quality Regret, making our policies the first with such a guarantee. Moreover, by comparing our upper and lower bound results we establish that PE is order-optimal for all known reference arm problem instances. Finally, experiments are conducted using the MovieLens 25M and Goodreads datasets for both PE and PE-CS revealing the effectiveness of PE and the superior balance between performance and reliability offered by PE-CS compared to baselines from the literature.
comment: ICLR 2025 Conference Paper
♻ ☆ Privacy Bias in Language Models: A Contextual Integrity-based Auditing Metric
As large language models (LLMs) are integrated into sociotechnical systems, it is crucial to examine the privacy biases they exhibit. We define privacy bias as the appropriateness value of information flows in responses from LLMs. A deviation between privacy biases and expected values, referred to as privacy bias delta, may indicate privacy violations. As an auditing metric, privacy bias can help (a) model trainers evaluate the ethical and societal impact of LLMs, (b) service providers select context-appropriate LLMs, and (c) policymakers assess the appropriateness of privacy biases in deployed LLMs. We formulate and answer a novel research question: how can we reliably examine privacy biases in LLMs and the factors that influence them? We present a novel approach for assessing privacy biases using a contextual integrity-based methodology to evaluate the responses from various LLMs. Our approach accounts for the sensitivity of responses across prompt variations, which hinders the evaluation of privacy biases. Finally, we investigate how privacy biases are affected by model capacities and optimizations.
comment: Privacy Enhancing Technologies Symposium (PETS), 2026
♻ ☆ Sparse, Efficient and Explainable Data Attribution with DualXDA
Data Attribution (DA) is an emerging approach in the field of eXplainable Artificial Intelligence (XAI), aiming to identify influential training datapoints which determine model outputs. It seeks to provide transparency about the model and individual predictions, e.g. for model debugging, identifying data-related causes of suboptimal performance. However, existing DA approaches suffer from prohibitively high computational costs and memory demands when applied to even medium-scale datasets and models, forcing practitioners to resort to approximations that may fail to capture the true inference process of the underlying model. Additionally, current attribution methods exhibit low sparsity, resulting in non-negligible attribution scores across a high number of training examples, hindering the discovery of decisive patterns in the data. In this work, we introduce DualXDA, a framework for sparse, efficient and explainable DA, comprised of two interlinked approaches, Dual Data Attribution (DualDA) and eXplainable Data Attribution (XDA): With DualDA, we propose a novel approach for efficient and effective DA, leveraging Support Vector Machine theory to provide fast and naturally sparse data attributions for AI predictions. In extensive quantitative analyses, we demonstrate that DualDA achieves high attribution quality, excels at solving a series of evaluated downstream tasks, while at the same time improving explanation time by a factor of up to 4,100,000x compared to the original Influence Functions method, and up to 11,000x compared to the method's most efficient approximation from literature to date. We further introduce XDA, a method for enhancing Data Attribution with capabilities from feature attribution methods to explain why training samples are relevant for the prediction of a test sample in terms of impactful features, which we showcase and verify qualitatively in detail.
comment: Accepted to Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ Generalized infinite dimensional Alpha-Procrustes based geometries
This work extends the recently introduced Alpha-Procrustes family of Riemannian metrics for symmetric positive definite (SPD) matrices by incorporating generalized versions of the Bures-Wasserstein (GBW), Log-Euclidean, and Wasserstein distances. While the Alpha-Procrustes framework has unified many classical metrics in both finite- and infinite- dimensional settings, it previously lacked the structural components necessary to realize these generalized forms. We introduce a formalism based on unitized Hilbert-Schmidt operators and an extended Mahalanobis norm that allows the construction of robust, infinite-dimensional generalizations of GBW and Log-Hilbert-Schmidt distances. Our approach also incorporates a learnable regularization parameter that enhances geometric stability in high-dimensional comparisons. Preliminary experiments reproducing benchmarks from the literature demonstrate the improved performance of our generalized metrics, particularly in scenarios involving comparisons between datasets of varying dimension and scale. This work lays a theoretical and computational foundation for advancing robust geometric methods in machine learning, statistical inference, and functional data analysis.
♻ ☆ Assessing Automated Fact-Checking for Medical LLM Responses with Knowledge Graphs AAAI'26
The recent proliferation of large language models (LLMs) holds the potential to revolutionize healthcare, with strong capabilities in diverse medical tasks. Yet, deploying LLMs in high-stakes healthcare settings requires rigorous verification and validation to understand any potential harm. This paper investigates the reliability and viability of using medical knowledge graphs (KGs) for the automated factuality evaluation of LLM-generated responses. To ground this investigation, we introduce FAITH, a framework designed to systematically probe the strengths and limitations of this KG-based approach. FAITH operates without reference answers by decomposing responses into atomic claims, linking them to a medical KG, and scoring them based on evidence paths. Experiments on diverse medical tasks with human subjective evaluations demonstrate that KG-grounded evaluation achieves considerably higher correlations with clinician judgments and can effectively distinguish LLMs with varying capabilities. It is also robust to textual variances. The inherent explainability of its scoring can further help users understand and mitigate the limitations of current LLMs. We conclude that while limitations exist, leveraging KGs is a prominent direction for automated factuality assessment in healthcare.
comment: Accepted as a conference paper at AAAI'26
♻ ☆ MolMark: Safeguarding Molecular Structures through Learnable Atom-Level Watermarking
AI-driven molecular generation is reshaping drug discovery and materials design, yet the lack of protection mechanisms leaves AI-generated molecules vulnerable to unauthorized reuse and provenance ambiguity. Such limitation undermines both scientific reproducibility and intellectual property security. To address this challenge, we propose the first deep learning based watermarking framework for molecules (MolMark), which is exquisitely designed to embed high-fidelity digital signatures into molecules without compromising molecular functionalities. MolMark learns to modulate the chemically meaningful atom-level representations and enforce geometric robustness through SE(3)-invariant features, maintaining robustness under rotation, translation, and reflection. Additionally, MolMark integrates seamlessly with AI-based molecular generative models, enabling watermarking to be treated as a learned transformation with minimal interference to molecular structures. Experiments on benchmark datasets (QM9, GEOM-DRUG) and state-of-the-art molecular generative models (GeoBFN, GeoLDM) demonstrate that MolMark can embed 16-bit watermarks while retaining more than 90% of essential molecular properties, preserving downstream performance, and enabling >95% extraction accuracy under SE(3) transformations. MolMark establishes a principled pathway for unifying molecular generation with verifiable authorship, supporting trustworthy and accountable AI-driven molecular discovery.
♻ ☆ Preconditioned Inexact Stochastic ADMM for Deep Model
The recent advancement of foundation models (FMs) has brought about a paradigm shift, revolutionizing various sectors worldwide. The popular optimizers used to train these models are stochastic gradient descent-based algorithms, which face inherent limitations, such as slow convergence and stringent assumptions for convergence. In particular, data heterogeneity arising from distributed settings poses significant challenges to their theoretical and numerical performance. This paper develops an algorithm, PISA (Preconditioned Inexact Stochastic Alternating Direction Method of Multipliers). Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, thereby removing the need for other conditions commonly imposed by stochastic methods. This capability enables the proposed algorithm to tackle the challenge of data heterogeneity effectively. Moreover, the algorithmic architecture enables scalable parallel computing and supports various preconditions, such as second-order information, second moment, and orthogonalized momentum by Newton-Schulz iterations. Incorporating the latter two preconditions in PISA yields two computationally efficient variants: SISA and NSISA. Comprehensive experimental evaluations for training or fine-tuning diverse deep models, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate superior numerical performance of SISA and NSISA compared to various state-of-the-art optimizers.
♻ ☆ SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
In this paper, we analyze the sample and communication complexity of the federated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify the effects of local training with agent heterogeneity. We show that the communication complexity of FedLSA scales polynomially with the inverse of the desired accuracy $ε$. To overcome this, we propose SCAFFLSA a new variant of FedLSA that uses control variates to correct for client drift, and establish its sample and communication complexities. We show that for statistically heterogeneous agents, its communication complexity scales logarithmically with the desired accuracy, similar to Scaffnew. An important finding is that, compared to the existing results for Scaffnew, the sample complexity scales with the inverse of the number of agents, a property referred to as linear speed-up. Achieving this linear speed-up requires completely new theoretical arguments. We apply the proposed method to federated temporal difference learning with linear function approximation and analyze the corresponding complexity improvements.
comment: now with linear speed-up!
♻ ☆ Refined Analysis of Federated Averaging and Federated Richardson-Romberg
In this paper, we present a novel analysis of \FedAvg with constant step size, relying on the Markov property of the underlying process. We demonstrate that the global iterates of the algorithm converge to a stationary distribution and analyze its resulting bias and variance relative to the problem's solution. We provide a first-order bias expansion in both homogeneous and heterogeneous settings. Interestingly, this bias decomposes into two distinct components: one that depends solely on stochastic gradient noise and another on client heterogeneity. Finally, we introduce a new algorithm based on the Richardson-Romberg extrapolation technique to mitigate this bias.
comment: 37 pages
♻ ☆ Automated Machine Learning Pipeline: Large Language Models-Assisted Automated Dataset Generation for Training Machine-Learned Interatomic Potentials
Machine learning interatomic potentials (MLIPs) have become powerful tools to extend molecular simulations beyond the limits of quantum methods, offering near-quantum accuracy at much lower computational cost. Yet, developing reliable MLIPs remains difficult because it requires generating high-quality datasets, preprocessing atomic structures, and carefully training and validating models. In this work, we introduce an Automated Machine Learning Pipeline (AMLP) that unifies the entire workflow from dataset creation to model validation. AMLP employs large-language-model agents to assist with electronic-structure code selection, input preparation, and output conversion, while its analysis suite (AMLP-Analysis), based on ASE supports a range of molecular simulations. The pipeline is built on the MACE architecture and validated on acridine polymorphs, where, with a straightforward fine-tuning of a foundation model, mean absolute errors of ~1.7 meV/atom in energies and ~7.0 meV/Å in forces are achieved. The fitted MLIP reproduces DFT geometries with sub-Å accuracy and demonstrates stability during molecular dynamics simulations in the microcanonical and canonical ensembles.
♻ ☆ Generating Samples to Probe Trained Models
There is a growing need for investigating how machine learning models operate. With this work, we aim to understand trained machine learning models by questioning their data preferences. We propose a mathematical framework that allows us to probe trained models and identify their preferred samples in various scenarios including prediction-risky, parameter-sensitive, or model-contrastive samples. To showcase our framework, we pose these queries to a range of models trained on a range of classification and regression tasks, and receive answers in the form of generated data.
♻ ☆ Embedding-Driven Data Distillation for 360-Degree IQA With Residual-Aware Refinement
This article identifies and addresses a fundamental bottleneck in data-driven 360-degree image quality assessment (IQA): the lack of intelligent, sample-level data selection. Hence, we propose a novel framework that introduces a critical refinement step between patches sampling and model training. The core of our contribution is an embedding similarity-based selection algorithm that distills an initial, potentially redundant set of patches into a compact, maximally informative subset. This is formulated as a regularized optimization problem that preserves intrinsic perceptual relationships in a low-dimensional space, using residual analysis to explicitly filter out irrelevant or redundant samples. Extensive experiments on three benchmark datasets (CVIQ, OIQA, MVAQD) demonstrate that our selection enables a baseline model to match or exceed the performance of using all sampled data while keeping only 40-50% of patches. Particularly, we demonstrate the universal applicability of our approach by integrating it with several state-of-the-art IQA models, incleasy to deploy. Most significantly, its value as a generic,uding CNN- and transformer-based architectures, consistently enabling them to maintain or improve performance with 20-40\% reduced computational load. This work establishes that adaptive, post-sampling data refinement is a powerful and widely applicable strategy for achieving efficient and robust 360-degree IQA.
comment: Submitted to IEEE Transactions on Image Processing
♻ ☆ Clustering and Pruning in Causal Data Fusion
Data fusion, the process of combining observational and experimental data, can enable the identification of causal effects that would otherwise remain non-identifiable. Although identification algorithms have been developed for specific scenarios, do-calculus remains the only general-purpose tool for causal data fusion, particularly when variables are present in some data sources but not others. However, approaches based on do-calculus may encounter computational challenges as the number of variables increases and the causal graph grows in complexity. Consequently, there exists a need to reduce the size of such models while preserving the essential features. For this purpose, we propose pruning (removing unnecessary variables) and clustering (combining variables) as preprocessing operations for causal data fusion. We generalize earlier results on a single data source and derive conditions for applying pruning and clustering in the case of multiple data sources. We give sufficient conditions for inferring the identifiability or non-identifiability of a causal effect in a larger graph based on a smaller graph and show how to obtain the corresponding identifying functional for identifiable causal effects. Examples from epidemiology and social science demonstrate the use of the results.
♻ ☆ Towards Reproducibility in Predictive Process Mining: SPICE -- A Deep Learning Library
In recent years, Predictive Process Mining (PPM) techniques based on artificial neural networks have evolved as a method for monitoring the future behavior of unfolding business processes and predicting Key Performance Indicators (KPIs). However, many PPM approaches often lack reproducibility, transparency in decision making, usability for incorporating novel datasets and benchmarking, making comparisons among different implementations very difficult. In this paper, we propose SPICE, a Python framework that reimplements three popular, existing baseline deep-learning-based methods for PPM in PyTorch, while designing a common base framework with rigorous configurability to enable reproducible and robust comparison of past and future modelling approaches. We compare SPICE to original reported metrics and with fair metrics on 11 datasets.
♻ ☆ CLAReSNet: When Convolution Meets Latent Attention for Hyperspectral Image Classification
Hyperspectral image (HSI) classification faces critical challenges, including high spectral dimensionality, complex spectral-spatial correlations, and limited training samples with severe class imbalance. While CNNs excel at local feature extraction and transformers capture long-range dependencies, their isolated application yields suboptimal results due to quadratic complexity and insufficient inductive biases. We propose CLAReSNet (Convolutional Latent Attention Residual Spectral Network), a hybrid architecture that integrates multi-scale convolutional extraction with transformer-style attention via an adaptive latent bottleneck. The model employs a multi-scale convolutional stem with deep residual blocks and an enhanced Convolutional Block Attention Module for hierarchical spatial features, followed by spectral encoder layers combining bidirectional RNNs (LSTM/GRU) with Multi-Scale Spectral Latent Attention (MSLA). MSLA reduces complexity from $\mathcal{O}(T^2D)$ to $\mathcal{O}(T\log(T)D)$ by adaptive latent token allocation (8-64 tokens) that scales logarithmically with the sequence length. Hierarchical cross-attention fusion dynamically aggregates multi-level representations for robust classification. Experiments conducted on the Indian Pines and Salinas datasets show state-of-the-art performance, achieving overall accuracies of 99.71% and 99.96%, significantly surpassing HybridSN, SSRN, and SpectralFormer. The learned embeddings exhibit superior inter-class separability and compact intra-class clustering, validating CLAReSNet's effectiveness under severe class imbalance.
♻ ☆ Non-Perturbative Trivializing Flows for Lattice Gauge Theories
Continuous normalizing flows are known to be highly expressive and flexible, which allows for easier incorporation of large symmetries and makes them a powerful computational tool for lattice field theories. Building on previous work, we present a general continuous normalizing flow architecture for matrix Lie groups that is equivariant under group transformations. We apply this to lattice gauge theories in two dimensions as a proof of principle and demonstrate competitive performance, showing its potential as a tool for future lattice computations.
comment: 7+7 pages, 5 figures, 4 tables; expanded published version, added 2 appendices with computational cost analysis and numerical evaluations (added 1 table and 2 figures)
♻ ☆ A Survey on Archetypal Analysis
Archetypal analysis (AA) was originally proposed in 1994 by Adele Cutler and Leo Breiman as a computational procedure for extracting distinct aspects, so-called archetypes, from observations, with each observational record approximated as a mixture (i.e., convex combination) of these archetypes. AA thereby provides straightforward, interpretable, and explainable representations for feature extraction and dimensionality reduction, facilitating the understanding of the structure of high-dimensional data and enabling wide applications across the sciences. However, AA also faces challenges, particularly as the associated optimization problem is non-convex. This is the first survey that provides researchers and data mining practitioners with an overview of the methodologies and opportunities that AA offers, surveying the many applications of AA across disparate fields of science, as well as best practices for modeling data with AA and its limitations. The survey concludes by explaining crucial future research directions concerning AA.
comment: 27 pages, 14 figures, under review
♻ ☆ Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification
Time series classification plays a fundamental role in a wide range of real-world applications. Recently, large language models (LLMs) have demonstrated strong generalization and reasoning capacities, but directly applying them to time series classification remains non-trivial due to the representation gap between numerical sequences and linguistic semantics. In this paper, we propose HiTime, a hierarchical LLM-based framework for multimodal time series classification that bridges structured temporal representations with semantic reasoning in a generative paradigm. Specifically, we design a hierarchical sequence feature encoding module composed of a data-specific encoder and a task-specific encoder to extract complementary temporal features. To mitigate the embedding gap between time series representations and textual semantics, we further introduce a semantic space alignment module that jointly performs coarse-grained global modeling and fine-grained cross-modal correspondence. Building upon the above representations, we employ a parameter-efficient supervised fine-tuning strategy to activate the generative classification capability of the algined LLMs, thereby transforming conventional discriminative time series classification into a generative task. Extensive experiments on multiple benchmarks demonstrate that the proposed framework consistently outperforms state-of-the-art baselines. The code is publicly available at https://github.com/Xiaoyu-Tao/HiTime.
♻ ☆ Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based Image Synthesis
Recent advances in deep learning and on-device inference could transform routine screening for skin cancers. Along with the anticipated benefits of this technology, potential dangers arise from unforeseen and inherent biases. A significant obstacle is building evaluation datasets that accurately reflect key demographics, including sex, age, and race, as well as other underrepresented groups. To address this, we train a state-of-the-art generative model to generate synthetic data in a controllable manner to assess the fairness of publicly available skin cancer classifiers. To evaluate whether synthetic images can be used as a fairness testing dataset, we prepare a real-image dataset (MILK10K) as a benchmark and compare the True Positive Rate result of three models (DeepGuide, MelaNet, and SkinLesionDensnet). As a result, the classification tendencies observed in each model when tested on real and generated images showed similar patterns across different attribute data sets. We confirm that highly realistic synthetic images facilitate model fairness verification.
♻ ☆ xGR: Efficient Generative Recommendation Serving at Scale
Recommendation system delivers substantial economic benefits by providing personalized predictions. Generative recommendation (GR) integrates LLMs to enhance the understanding of long user-item sequences. Despite employing attention-based architectures, GR's workload differs markedly from that of LLM serving. GR typically processes long prompt while producing short, fixed-length outputs, yet the computational cost of each decode phase is especially high due to the large beam width. In addition, since the beam search involves a vast item space, the sorting overhead becomes particularly time-consuming. We propose xGR, a GR-oriented serving system that meets strict low-latency requirements under highconcurrency scenarios. First, xGR unifies the processing of prefill and decode phases through staged computation and separated KV cache. Second, xGR enables early sorting termination and mask-based item filtering with data structure reuse. Third, xGR reconstructs the overall pipeline to exploit multilevel overlap and multi-stream parallelism. Our experiments with real-world recommendation service datasets demonstrate that xGR achieves at least 3.49x throughput compared to the state-of-the-art baseline under strict latency constraints.
♻ ☆ Safeguarded Stochastic Polyak Step Sizes for Non-smooth Optimization: Robust Performance Without Small (Sub)Gradients
The stochastic Polyak step size (SPS) has proven to be a promising choice for stochastic gradient descent (SGD), delivering competitive performance relative to state-of-the-art methods on smooth convex and non-convex optimization problems, including deep neural network training. However, extensions of this approach to non-smooth settings remain in their early stages, often relying on interpolation assumptions or requiring knowledge of the optimal solution. In this work, we propose a novel SPS variant, Safeguarded SPS (SPS$_{safe}$), for the stochastic subgradient method, and provide rigorous convergence guarantees for non-smooth convex optimization with no need for strong assumptions. We further incorporate momentum into the update rule, yielding equally tight theoretical results. On non-smooth convex benchmarks, our experiments are consistent with the theoretical predictions on how the safeguard affects the convergence neighborhood. On deep neural networks the proposed step size achieves competitive performance to existing adaptive baselines and exhibits stable behavior across a wide range of problem settings. Moreover, in these experiments, the gradient norms under our step size do not collapse to (near) zero, indicating robustness to vanishing gradients.
comment: 28 pages, 15 figures
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common Frechet Inception Distance (FID) metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ Unified Acoustic Representations for Screening Neurological and Respiratory Pathologies from Voice
Voice-based health assessment offers unprecedented opportunities for scalable, non-invasive disease screening, yet existing approaches typically focus on single conditions and fail to leverage the rich, multi-faceted information embedded in speech. We present MARVEL (Multi-task Acoustic Representations for Voice-based Health Analysis), a privacy-conscious multitask learning framework that simultaneously detects nine distinct neurological, respiratory, and voice disorders using only derived acoustic features, eliminating the need for raw audio transmission. Our dual-branch architecture employs specialized encoders with task-specific heads sharing a common acoustic backbone, enabling effective cross-condition knowledge transfer. Evaluated on the large-scale Bridge2AI-Voice v2.0 dataset, MARVEL achieves an overall AUROC of 0.78, with exceptional performance on neurological disorders (AUROC = 0.89), particularly for Alzheimer's disease/mild cognitive impairment (AUROC = 0.97). Our framework consistently outperforms single-modal baselines by 5-19% and surpasses state-of-the-art self-supervised models on 7 of 9 tasks, while correlation analysis reveals that the learned representations exhibit meaningful similarities with established acoustic features, indicating that the model's internal representations are consistent with clinically recognized acoustic patterns. By demonstrating that a single unified model can effectively screen for diverse conditions, this work establishes a foundation for deployable voice-based diagnostics in resource-constrained and remote healthcare settings.
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-$N$ selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
comment: Accepted by AAAI-2026
♻ ☆ Towards Causal Market Simulators
Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms.
comment: ICAIF 2025 Workshop on Rethinking Financial Time-Series
♻ ☆ Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Despite their theoretical appeal, totally corrective boosting methods based on linear programming have received limited empirical attention. In this paper, we conduct the first large-scale experimental study of six LP-based boosting formulations, including two novel methods, NM-Boost and QRLP-Boost, across 20 diverse datasets. We evaluate the use of both heuristic and optimal base learners within these formulations, and analyze not only accuracy, but also ensemble sparsity, margin distribution, anytime performance, and hyperparameter sensitivity. We show that totally corrective methods can outperform or match state-of-the-art heuristics like XGBoost and LightGBM when using shallow trees, while producing significantly sparser ensembles. We further show that these methods can thin pre-trained ensembles without sacrificing performance, and we highlight both the strengths and limitations of using optimal decision trees in this context.
comment: Published in Transactions on Machine Learning Research (2025), see: https://openreview.net/forum?id=lscC4PZUE4
♻ ☆ PEAR: Equal Area Weather Forecasting on the Sphere NeurIPS 2025
Artificial intelligence is rapidly reshaping the natural sciences, with weather forecasting emerging as a flagship AI4Science application where machine learning models can now rival and even surpass traditional numerical simulations. Following the success of the landmark models Pangu Weather and Graphcast, outperforming traditional numerical methods for global medium-range forecasting, many novel data-driven methods have emerged. A common limitation shared by many of these models is their reliance on an equiangular discretization of the sphere which suffers from a much finer grid at the poles than around the equator. In contrast, in the Hierarchical Equal Area iso-Latitude Pixelization (HEALPix) of the sphere, each pixel covers the same surface area, removing unphysical biases. Motivated by a growing support for this grid in meteorology and climate sciences, we propose to perform weather forecasting with deep learning models which natively operate on the HEALPix grid. To this end, we introduce Pangu Equal ARea (PEAR), a transformer-based weather forecasting model which operates directly on HEALPix-features and outperforms the corresponding model on an equiangular grid without any computational overhead.
comment: Published in the AI for Science workshop (NeurIPS 2025), 8 pages, 4 figures; 6 pages supplementary material
♻ ☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 14 pages, 21 figures. Preprint
♻ ☆ Foundation for unbiased cross-validation of spatio-temporal models for species distribution modeling
Evaluating the predictive performance of species distribution models (SDMs) under realistic deployment scenarios requires careful handling of spatial and temporal dependencies in the data. Cross-validation (CV) is the standard approach for model evaluation, but its design strongly influences the validity of performance estimates. When SDMs are intended for spatial or temporal transfer, random CV can lead to overoptimistic results due to spatial autocorrelation (SAC) among neighboring observations. We benchmark four machine learning algorithms (GBM, XGBoost, LightGBM, Random Forest) on two real-world presence-absence datasets, a temperate plant and an anadromous fish, using multiple CV designs: random, spatial, spatio-temporal, environmental, and forward-chaining. Two training data usage strategies (LAST FOLD and RETRAIN) are evaluated, with hyperparameter tuning performed within each CV scheme. Model performance is assessed on independent out-of-time test sets using AUC, MAE, and correlation metrics. Random CV overestimates AUC by up to 0.16 and produces MAE values up to 80 percent higher than spatially blocked alternatives. Blocking at the empirical SAC range substantially reduces this bias. Training strategy affects evaluation outcomes: LAST FOLD yields smaller validation-test discrepancies under strong SAC, while RETRAIN achieves higher test AUC when SAC is weaker. Boosted ensemble models consistently perform best under spatially structured CV designs. We recommend a robust SDM workflow based on SAC-aware blocking, blocked hyperparameter tuning, and external temporal validation to improve reliability under spatial and temporal shifts.
comment: Accepted manuscript. Published in Ecological Informatics (2025)
♻ ☆ STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Incomplete sensor data is a major obstacle in industrial time-series analytics. In wastewater treatment plants (WWTPs), key sensors show long, irregular gaps caused by fouling, maintenance, and outages. We introduce STDiff and STDiff-W, diffusion-based imputers that cast gap filling as state-space simulation under partial observability, where targets, controls, and exogenous signals may all be intermittently missing. STDiff learns a one-step transition model conditioned on observed values and masks, while STDiff-W extends this with a context encoder that jointly inpaints contiguous blocks, combining long-range consistency with short-term detail. On two WWTP datasets (one with synthetic block gaps from Agtrup and another with natural outages from Avedøre), STDiff-W achieves state-of-the-art accuracy compared with strong neural baselines such as SAITS, BRITS, and CSDI. Beyond point-error metrics, its reconstructions preserve realistic dynamics including oscillations, spikes, and regime shifts, and they achieve top or tied-top downstream one-step forecasting performance compared with strong neural baselines, indicating that preserving dynamics does not come at the expense of predictive utility. Ablation studies that drop, shuffle, or add noise to control or exogenous inputs consistently degrade NH4 and PO4 performance, with the largest deterioration observed when exogenous signals are removed, showing that the model captures meaningful dependencies. We conclude with practical guidance for deployment: evaluate performance beyond MAE using task-oriented and visual checks, include exogenous drivers, and balance computational cost against robustness to structured outages.
comment: Peer-reviewed and published in Expert Systems with Applications, Volume 302 (2026). This version reflects the published article
♻ ☆ Dynamic PET Image Prediction Using a Network Combining Reversible and Irreversible Modules
Dynamic positron emission tomography (PET) images can reveal the distribution of tracers in the organism and the dynamic processes involved in biochemical reactions, and it is widely used in clinical practice. Despite the high effectiveness of dynamic PET imaging in studying the kinetics and metabolic processes of radiotracers. Pro-longed scan times can cause discomfort for both patients and medical personnel. This study proposes a dynamic frame prediction method for dynamic PET imaging, reduc-ing dynamic PET scanning time by applying a multi-module deep learning framework composed of reversible and irreversible modules. The network can predict kinetic parameter images based on the early frames of dynamic PET images, and then generate complete dynamic PET images. In validation experiments with simulated data, our network demonstrated good predictive performance for kinetic parameters and was able to reconstruct high-quality dynamic PET images. Additionally, in clinical data experiments, the network exhibited good generalization performance and attached that the proposed method has promising clinical application prospects.
♻ ☆ Credit Risk Estimation with Non-Financial Features: Evidence from a Synthetic Istanbul Dataset
Financial exclusion constrains entrepreneurship, increases income volatility, and widens wealth gaps. Underbanked consumers in Istanbul often have no bureau file because their earnings and payments flow through informal channels. To study how such borrowers can be evaluated we create a synthetic dataset of one hundred thousand Istanbul residents that reproduces first quarter 2025 TÜİK census marginals and telecom usage patterns. Retrieval augmented generation feeds these public statistics into the OpenAI o3 model, which synthesises realistic yet private records. Each profile contains seven socio demographic variables and nine alternative attributes that describe phone specifications, online shopping rhythm, subscription spend, car ownership, monthly rent, and a credit card flag. To test the impact of the alternative financial data CatBoost, LightGBM, and XGBoost are each trained in two versions. Demo models use only the socio demographic variables; Full models include both socio demographic and alternative attributes. Across five fold stratified validation the alternative block raises area under the curve by about one point three percentage and lifts balanced \(F_{1}\) from roughly 0.84 to 0.95, a fourteen percent gain. We contribute an open Istanbul 2025 Q1 synthetic dataset, a fully reproducible modeling pipeline, and empirical evidence that a concise set of behavioural attributes can approach bureau level discrimination power while serving borrowers who lack formal credit records. These findings give lenders and regulators a transparent blueprint for extending fair and safe credit access to the underbanked.
comment: Substantial experimental errors were discovered that affect the validity of the results. Then, we want to withdraw the paper
♻ ☆ ASecond-Order SpikingSSM for Wearables
Spiking neural networks have garnered increasing attention due to their energy efficiency, multiplication-free computation, and sparse event-based processing. In parallel, state space models have emerged as scalable alternatives to transformers for long-range sequence modelling by avoiding quadratic dependence on sequence length. We propose SHaRe-SSM (Spiking Harmonic Resonate-and-Fire State Space Model), a second-order spiking SSM for classification and regression on ultra-long sequences. SHaRe-SSM outperforms transformers and first-order SSMs on average while eliminating matrix multiplications, making it highly suitable for resource-constrained applications. To ensure fast computation over tens of thousands of time steps, we leverage a parallel scan formulation of the underlying dynamical system. Furthermore, we introduce a kernel-based spiking regressor, which enables the accurate modelling of dependencies in sequences of up to 50k steps. Our results demonstrate that SHaRe-SSM achieves superior long-range modelling capability with energy efficiency (52.1x less than ANN-based second order SSM), positioning it as a strong candidate for resource-constrained devices such as wearables
♻ ☆ In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
comment: Source code available under https://codeberg.org/fuchsfa/in-context-learning-seismic. In submission to Geophysics
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking
Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce the visual faithfulness of reasoning chains as a distinct evaluation dimension, focusing on whether the perception steps of a reasoning chain are grounded in the image. We propose a training- and reference-free framework that decomposes chains into perception versus reasoning steps and uses off-the-shelf VLM judges for step-level faithfulness, additionally verifying this approach through a human meta-evaluation. Building on this metric, we present a lightweight self-reflection procedure that detects and locally regenerates unfaithful perception steps without any training. Across multiple reasoning-trained VLMs and perception-heavy benchmarks, our method reduces Unfaithful Perception Rate while preserving final-answer accuracy, improving the reliability of multimodal reasoning.
comment: Preprint
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 16 pages, 1 figure. Updated version with corrected references and aligned acknowledgments
♻ ☆ Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.
♻ ☆ Semi-Supervised Preference Optimization with Limited Feedback
The field of preference optimization has made outstanding contributions to the alignment of language models with human preferences. Despite these advancements, recent methods still rely heavily on substantial paired (labeled) feedback data, leading to substantial resource expenditures. To address these challenges, we study the problem of Semi-Supervised Preference Optimization (SSPO) in which the idea is to learn from both a small number of pairwise preference labels and a large pool of unpaired samples simultaneously. Our key theoretical contribution proves the existence of an optimal reward threshold capable of separating winning and losing responses with high probability, which enables a principled pseudo-labeling of unpaired data. By leveraging these pseudo-labels, SSPO effectively distills latent preferences from large-scale unpaired data, thus maintaining human alignment while drastically reducing acquisition costs. Extensive experiments across datasets validate this remarkable data efficiency; for instance, SSPO trained with Mistral-7B-Instruct on just 1% of UltraFeedback consistently surpasses strong baselines trained on 10% of UltraFeedback.
♻ ☆ Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
comment: Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ Optimizing Mixture of Block Attention
Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.
comment: The first two authors contributed equally to this work
♻ ☆ Fine-Tuning Masked Diffusion for Provable Self-Correction
A natural desideratum for generative models is self-correction--detecting and revising low-quality tokens at inference. While Masked Diffusion Models (MDMs) have emerged as a promising approach for generative modeling in discrete spaces, their capacity for self-correction remains poorly understood. Prior attempts to incorporate self-correction into MDMs either require overhauling MDM architectures/training or rely on imprecise proxies for token quality, limiting their applicability. Motivated by this, we introduce PRISM--Plug-in Remasking for Inference-time Self-correction of Masked Diffusions--a lightweight, model-agnostic approach that applies to any pretrained MDM. Theoretically, PRISM defines a self-correction loss that provably learns per-token quality scores, without RL or a verifier. These quality scores are computed in the same forward pass with MDM and used to detect low-quality tokens. Empirically, PRISM advances MDM inference across domains and scales: Sudoku; unconditional text (170M); and code with LLaDA (8B).
comment: Authorship statement: Jaeyeon Kim and Seunggeun Kim contributed equally, and Taekyun Lee is also a co first author
♻ ☆ Predictive Modeling of I/O Performance for Machine Learning Training Pipelines: A Data-Driven Approach to Storage Optimization
Modern machine learning training is increasingly bottlenecked by data I/O rather than compute. GPUs often sit idle at below 50% utilization waiting for data. This paper presents a machine learning approach to predict I/O performance and recommend optimal storage configurations for ML training pipelines. We collected 141 observations through systematic benchmarking across different storage backends (NVMe SSD, network-attached storage, in-memory filesystems), data formats, and access patterns, covering both low-level I/O operations and full training pipelines. After evaluating seven regression models and three classification approaches, XGBoost achieved the best performance with R-squared of 0.991, predicting I/O throughput within 11.8% error on average. Feature importance analysis revealed that throughput metrics and batch size are the primary performance drivers. This data-driven approach can reduce configuration time from days of trial-and-error to minutes of predictive recommendation. The methodology is reproducible and extensible to other resource management problems in ML systems. Code and data are available at https://github.com/knkarthik01/gpu_storage_ml_project
comment: 20 pages, 10 figures
♻ ☆ Data-Free Continual Learning of Server Models in Model-Heterogeneous Cloud-Device Collaboration
The rise of cloud-device collaborative computing has enabled intelligent services to be delivered across distributed edge devices while leveraging centralized cloud resources. In this paradigm, federated learning (FL) has become a key enabler for privacy-preserving model training without transferring raw data from edge devices to the cloud. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous devices to the cloud server.Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated cloud-device collaboration in dynamic settings.
♻ ☆ Differentially private Bayesian tests
Differential privacy has emerged as an significant cornerstone in the realm of scientific hypothesis testing utilizing confidential data. In reporting scientific discoveries, Bayesian tests are widely adopted since they effectively circumnavigate the key criticisms of P-values, namely, lack of interpretability and inability to quantify evidence in support of the competing hypotheses. We present a novel differentially private Bayesian hypotheses testing framework that arise naturally under a principled data generative mechanism, inherently maintaining the interpretability of the resulting inferences. Furthermore, by focusing on differentially private Bayes factors based on widely used test statistics, we circumvent the need to model the complete data generative mechanism and ensure substantial computational benefits. We also provide a set of sufficient conditions to establish results on Bayes factor consistency under the proposed framework. The utility of the devised technology is showcased via several numerical experiments.
♻ ☆ Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translation Evaluation
Error Span Detection (ESD) extends automatic machine translation (MT) evaluation by localizing translation errors and labeling their severity. Current generative ESD methods typically use Maximum a Posteriori (MAP) decoding, assuming that the model-estimated probabilities are perfectly correlated with similarity to the human annotation, but we often observe higher likelihood assigned to an incorrect annotation than to the human one. We instead apply Minimum Bayes Risk (MBR) decoding to generative ESD. We use a sentence- or span-level similarity function for MBR decoding, which selects candidate hypotheses based on their approximate similarity to the human annotation. Experimental results on the WMT24 Metrics Shared Task show that MBR decoding significantly improves span-level performance and generally matches or outperforms MAP at the system and sentence levels. To reduce the computational cost of MBR decoding, we further distill its decisions into a model decoded via greedy search, removing the inference-time latency bottleneck.
♻ ☆ Regularized Langevin Dynamics for Combinatorial Optimization ICML 2025
This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.
comment: ICML 2025
♻ ☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a \textit{Ridge of Optimization} characterized by extreme stability. While previously linked to \textit{Spectral Concentration}, its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the Edge of Stability, a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 5 pages, 4 figures
♻ ☆ On Agnostic PAC Learning in the Small Error Regime NeurIPS 2025
Binary classification in the classic PAC model exhibits a curious phenomenon: Empirical Risk Minimization (ERM) learners are suboptimal in the realizable case yet optimal in the agnostic case. Roughly speaking, this owes itself to the fact that non-realizable distributions $\mathcal{D}$ are simply more difficult to learn than realizable distributions -- even when one discounts a learner's error by $\mathrm{err}(h^*_{\mathcal{D}})$, the error of the best hypothesis in $\mathcal{H}$ for $\mathcal{D}$. Thus, optimal agnostic learners are permitted to incur excess error on (easier-to-learn) distributions $\mathcal{D}$ for which $τ= \mathrm{err}(h^*_{\mathcal{D}})$ is small. Recent work of Hanneke, Larsen, and Zhivotovskiy (FOCS `24) addresses this shortcoming by including $τ$ itself as a parameter in the agnostic error term. In this more fine-grained model, they demonstrate tightness of the error lower bound $τ+ Ω\left(\sqrt{\frac{τ(d + \log(1 / δ))}{m}} + \frac{d + \log(1 / δ)}{m} \right)$ in a regime where $τ> d/m$, and leave open the question of whether there may be a higher lower bound when $τ\approx d/m$, with $d$ denoting $\mathrm{VC}(\mathcal{H})$. In this work, we resolve this question by exhibiting a learner which achieves error $c \cdot τ+ O \left(\sqrt{\frac{τ(d + \log(1 / δ))}{m}} + \frac{d + \log(1 / δ)}{m} \right)$ for a constant $c \leq 2.1$, thus matching the lower bound when $τ\approx d/m$. Further, our learner is computationally efficient and is based upon careful aggregations of ERM classifiers, making progress on two other questions of Hanneke, Larsen, and Zhivotovskiy (FOCS `24). We leave open the interesting question of whether our approach can be refined to lower the constant from 2.1 to 1, which would completely settle the complexity of agnostic learning.
comment: 36 pages, NeurIPS 2025
♻ ☆ Dual-Distilled Heterogeneous Federated Learning with Adaptive Margins for Trainable Global Prototypes
Heterogeneous Federated Learning (HFL) has gained significant attention for its capacity to handle both model and data heterogeneity across clients. Prototype-based HFL methods emerge as a promising solution to address statistical and model heterogeneity as well as privacy challenges, paving the way for new advancements in HFL research. This method focuses on sharing class-representative prototypes among heterogeneous clients. However, aggregating these prototypes via standard weighted averaging often yields sub-optimal global knowledge. Specifically, the averaging approach induces a shrinking of the aggregated prototypes' decision margins, thereby degrading model performance in scenarios with model heterogeneity and non-IID data distributions. The propose FedProtoKD in a Heterogeneous Federated Learning setting, utilizing an enhanced dual-knowledge distillation mechanism to enhance system performance by leveraging clients' logits and prototype feature representations. The proposed framework aims to resolve the prototype margin-shrinking problem using a contrastive learning-based trainable server prototype by leveraging a class-wise adaptive prototype margin. Furthermore, the framework assess the importance of public samples using the closeness of the sample's prototype to its class representative prototypes, which enhances learning performance. FedProtoKD improved test accuracy by an average of 1.13% and up to 34.13% across various settings, significantly outperforming existing state-of-the-art HFL methods.
comment: 11 pages, 8 figures
Information Retrieval 16
☆ Intelligent Knowledge Mining Framework: Bridging AI Analysis and Trustworthy Preservation
The unprecedented proliferation of digital data presents significant challenges in access, integration, and value creation across all data-intensive sectors. Valuable information is frequently encapsulated within disparate systems, unstructured documents, and heterogeneous formats, creating silos that impede efficient utilization and collaborative decision-making. This paper introduces the Intelligent Knowledge Mining Framework (IKMF), a comprehensive conceptual model designed to bridge the critical gap between dynamic AI-driven analysis and trustworthy long-term preservation. The framework proposes a dual-stream architecture: a horizontal Mining Process that systematically transforms raw data into semantically rich, machine-actionable knowledge, and a parallel Trustworthy Archiving Stream that ensures the integrity, provenance, and computational reproducibility of these assets. By defining a blueprint for this symbiotic relationship, the paper provides a foundational model for transforming static repositories into living ecosystems that facilitate the flow of actionable intelligence from producers to consumers. This paper outlines the motivation, problem statement, and key research questions guiding the research and development of the framework, presents the underlying scientific methodology, and details its conceptual design and modeling.
☆ Diversity Recommendation via Causal Deconfounding of Co-purchase Relations and Counterfactual Exposure
Beyond user-item modeling, item-to-item relationships are increasingly used to enhance recommendation. However, common methods largely rely on co-occurrence, making them prone to item popularity bias and user attributes, which degrades embedding quality and performance. Meanwhile, although diversity is acknowledged as a key aspect of recommendation quality, existing research offers limited attention to it, with a notable lack of causal perspectives and theoretical grounding. To address these challenges, we propose Cadence: Diversity Recommendation via Causal Deconfounding of Co-purchase Relations and Counterfactual Exposure - a plug-and-play framework built upon LightGCN as the backbone, primarily designed to enhance recommendation diversity while preserving accuracy. First, we compute the Unbiased Asymmetric Co-purchase Relationship (UACR) between items - excluding item popularity and user attributes - to construct a deconfounded directed item graph, with an aggregation mechanism to refine embeddings. Second, we leverage UACR to identify diverse categories of items that exhibit strong causal relevance to a user's interacted items but have not yet been engaged with. We then simulate their behavior under high-exposure scenarios, thereby significantly enhancing recommendation diversity while preserving relevance. Extensive experiments on real-world datasets demonstrate that our method consistently outperforms state-of-the-art diversity models in both diversity and accuracy, and further validates its effectiveness, transferability, and efficiency over baselines.
☆ Behavioural Effects of Agentic Messaging: A Case Study on a Financial Service Application ECIR '26
Marketing and product personalisation provide a prominent and visible use-case for the application of Information Retrieval methods across several business domains. Recently, agentic approaches to these problems have been gaining traction. This work evaluates the behavioural and retention effects of agentic personalisation on a financial service application's customer communication system during a 2025 national tax filing period. Through a two month-long randomised controlled trial, we compare an agentic messaging approach against a business-as-usual (BAU) rule-based campaign system, focusing on two primary outcomes: unsubscribe behaviour and conversion timing. Empirical results show that agent-led messaging reduced unsubscribe events by 21\% ($\pm 0.01$) relative to BAU and increased early filing behaviour in the weeks preceding the national deadline. These findings demonstrate how adaptive, user-level decision-making systems can modulate engagement intensity whilst improving long-term retention indicators.
comment: To appear in the 48th European Conference on Information Retrieval (ECIR '26) Industry Track
☆ A Systematic Reproducibility Study of BSARec for Sequential Recommendation
In sequential recommendation (SR), the self-attention mechanism of Transformer-based models acts as a low-pass filter, limiting their ability to capture high-frequency signals that reflect short-term user interests. To overcome this, BSARec augments the Transformer encoder with a frequency layer that rescales high-frequency components using the Fourier transform. However, the overall effectiveness of BSARec and the roles of its individual components have yet to be systematically validated. We reproduce BSARec and show that it outperforms other SR methods on some datasets. To empirically assess whether BSARec improves performance on high-frequency signals, we propose a metric to quantify user history frequency and evaluate SR methods across different user groups. We compare digital signal processing (DSP) techniques and find that the discrete wavelet transform (DWT) offer only slight improvements over Fourier transforms, and DSP methods provide no clear advantage over simple residual connections. Finally, we explore padding strategies and find that non-constant padding significantly improves recommendation performance, whereas constant padding hinders the frequency rescaler's ability to capture high-frequency signals.
comment: Jan Hutter, Hua Chang Bakker, Stan Fris, Madelon Bernardy contributed equally to this work
☆ The Mental World of Large Language Models in Recommendation: A Benchmark on Association, Personalization, and Knowledgeability KDD 2025
Large language models (LLMs) have shown potential in recommendation systems (RecSys) by using them as either knowledge enhancer or zero-shot ranker. A key challenge lies in the large semantic gap between LLMs and RecSys where the former internalizes language world knowledge while the latter captures personalized world of behaviors. Unfortunately, the research community lacks a comprehensive benchmark that evaluates the LLMs over their limitations and boundaries in RecSys so that we can draw a confident conclusion. To investigate this, we propose a benchmark named LRWorld containing over 38K high-quality samples and 23M tokens carefully compiled and generated from widely used public recommendation datasets. LRWorld categorizes the mental world of LLMs in RecSys as three main scales (association, personalization, and knowledgeability) spanned by ten factors with 31 measures (tasks). Based on LRWorld, comprehensive experiments on dozens of LLMs show that they are still not well capturing the deep neural personalized embeddings but can achieve good results on shallow memory-based item-item similarity. They are also good at perceiving item entity relations, entity hierarchical taxonomies, and item-item association rules when inferring user interests. Furthermore, LLMs show a promising ability in multimodal knowledge reasoning (movie poster and product image) and robustness to noisy profiles. None of them show consistently good performance over the ten factors. Model sizes, position bias, and more are ablated.
comment: 21 pages, 13 figures, 27 tables, submission to KDD 2025
☆ Warmer for Less: A Cost-Efficient Strategy for Cold-Start Recommendations at Pinterest WWW'26
Pinterest is a leading visual discovery platform where recommender systems (RecSys) are key to delivering relevant, engaging, and fresh content to our users. In this paper, we study the problem of improving RecSys model predictions for cold-start (CS) items, which appear infrequently in the training data. Although this problem is well-studied in academia, few studies have addressed its root causes effectively at the scale of a platform like Pinterest. By investigating live traffic data, we identified several challenges of the CS problem and developed a corresponding solution for each: First, industrial-scale RecSys models must operate under tight computational constraints. Since CS items are a minority, any related improvements must be highly cost-efficient. To address this, our solutions were designed to be lightweight, collectively increasing the total parameters by only 5%. Second, CS items are represented only by non-historical (e.g., content or attribute) features, which models often treat as less important. To elevate their significance, we introduce a residual connection for the non-historical features. Third, CS items tend to receive lower prediction scores compared to non-CS items, reducing their likelihood of being surfaced. We mitigate this by incorporating a score regularization term into the model. Fourth, the labels associated with CS items are sparse, making it difficult for the model to learn from them. We apply the manifold mixup technique to address this data sparsity. Implemented together, our methods increased fresh content engagement at Pinterest by 10% without negatively impacting overall engagement and cost, and have been deployed to serve over 570 million users on Pinterest.
comment: Submitted to the WWW'26
☆ ABE-CLIP: Training-Free Attribute Binding Enhancement for Compositional Image-Text Matching
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable performance in various multimodal tasks. However, it still struggles with compositional image-text matching, particularly in accurately associating objects with their corresponding attributes, because its inherent global representation often overlooks fine-grained semantics for attribute binding. Existing methods often require additional training or extensive hard negative sampling, yet they frequently show limited generalization to novel compositional concepts and fail to fundamentally address the drawbacks of global representations. In this paper, we propose ABE-CLIP, a novel training-free Attribute Binding Enhancement method designed to strengthen attribute-object binding in CLIP-like models. Specifically, we employ a Semantic Refinement Mechanism to refine token embeddings for both object and attribute phrases in the text, thereby mitigating attribute confusion and improving semantic precision. We further introduce a Local Token-Patch Alignment strategy that computes similarity scores between refined textual tokens and their most relevant image patches. By aggregating localized similarity scores, ABE-CLIP computes the final image-text similarity. Experiments on multiple datasets demonstrate that ABE-CLIP significantly improves attribute-object binding performance, even surpassing methods that require extensive training.
comment: 10 pages, 8 figures
☆ TCDE: Topic-Centric Dual Expansion of Queries and Documents with Large Language Models for Information Retrieval
Query Expansion (QE) enriches queries and Document Expansion (DE) enriches documents, and these two techniques are often applied separately. However, such separate application may lead to semantic misalignment between the expanded queries (or documents) and their relevant documents (or queries). To address this serious issue, we propose TCDE, a dual expansion strategy that leverages large language models (LLMs) for topic-centric enrichment on both queries and documents. In TCDE, we design two distinct prompt templates for processing each query and document. On the query side, an LLM is guided to identify distinct sub-topics within each query and generate a focused pseudo-document for each sub-topic. On the document side, an LLM is guided to distill each document into a set of core topic sentences. The resulting outputs are used to expand the original query and document. This topic-centric dual expansion process establishes semantic bridges between queries and their relevant documents, enabling better alignment for downstream retrieval models. Experiments on two challenging benchmarks, TREC Deep Learning and BEIR, demonstrate that TCDE achieves substantial improvements over strong state-of-the-art expansion baselines. In particular, on dense retrieval tasks, it outperforms several state-of-the-art methods, with a relative improvement of 2.8\% in NDCG@10 on the SciFact dataset. Experimental results validate the effectiveness of our topic-centric and dual expansion strategy.
☆ Factorized Transport Alignment for Multimodal and Multiview E-commerce Representation Learning WSDM'26
The rapid growth of e-commerce requires robust multimodal representations that capture diverse signals from user-generated listings. Existing vision-language models (VLMs) typically align titles with primary images, i.e., single-view, but overlook non-primary images and auxiliary textual views that provide critical semantics in open marketplaces such as Etsy or Poshmark. To this end, we propose a framework that unifies multimodal and multi-view learning through Factorized Transport, a lightweight approximation of optimal transport, designed for scalability and deployment efficiency. During training, the method emphasizes primary views while stochastically sampling auxiliary ones, reducing training cost from quadratic in the number of views to constant per item. At inference, all views are fused into a single cached embedding, preserving the efficiency of two-tower retrieval with no additional online overhead. On an industrial dataset of 1M product listings and 0.3M interactions, our approach delivers consistent improvements in cross-view and query-to-item retrieval, achieving up to +7.9% Recall@500 over strong multimodal baselines. Overall, our framework bridges scalability with optimal transport-based learning, making multi-view pretraining practical for large-scale e-commerce search.
comment: Accepted by WSDM'26
♻ ☆ Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
♻ ☆ Early Explorations of Recommender Systems for Physical Activity and Well-being RecSys 2025
As recommender systems increasingly guide physical actions, often through wearables and coaching tools, new challenges arise around how users interpret, trust, and respond to this advice. This paper introduces a conceptual framework for tangible recommendations that influence users' bodies, routines, and well-being. We describe three design dimensions: trust and interpretation, intent alignment, and consequence awareness. These highlight key limitations in applying conventional recommender logic to embodied settings. Through examples and design reflections, we outline how future systems can support long-term well-being, behavioral alignment, and socially responsible personalization.
comment: Second International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood) in conjunction with ACM RecSys 2025
♻ ☆ Text-to-SQL Task-oriented Dialogue Ontology Construction
Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch using only its inherent SQL programming capabilities combined with concepts from modular TOD systems provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of modular TOD system concepts. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and arXiv dataset. We view this as a step towards broader application of ontologies.
comment: Accepted to Transactions of the Association for Computational Linguistics
♻ ☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items KDD 2026
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant resource costs tied to product design and inventory. This paper introduces a novel system deployed at Alibaba that uses AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commerce product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing users' group-level personalized preferences towards multiple generated images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to model comparative behaviors among multiple images. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items achieve over 13% relative improvements for both click-through rate and conversion rate, as well as 7.9% decrease in return rate, compared to their human-designed counterparts, validating the transformative potential of AIGI for e-commerce platforms.
comment: Accepted by KDD 2026 ADS Track
♻ ☆ Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 48 hours in total yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF, Camera ready version
♻ ☆ WebATLAS: An LLM Agent with Experience-Driven Memory and Action Simulation NeurIPS 2025
Large Language Model (LLM) web agents often struggle with long-horizon web navigation and web task completion in new websites, producing inefficient action sequences unless fine-tuned on environment-specific data. We show that experience-driven memory, combined with look-ahead action simulation, is sufficient for LLM agents to adapt to unseen web environments by remembering past failures and predicting the consequences of future actions. We introduce WebATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented LLM web agent that learns a lightweight internal model of the environment from interaction experience and performs hypothetical action rollouts before acting in the real world. WebATLAS builds a persistent cognitive map via curiosity-driven exploration, stores interaction outcomes as experience-based memory, and evaluates candidate actions in cognitive space using a planner--simulator--critic loop. This enables the agent to reuse past experience, avoid previously unsuccessful behaviors, and generate more efficient plans. We evaluate WebATLAS on the WebArena-Lite benchmark for autonomous web navigation and demonstrate a success rate of 63%, outperforming the previous state-of-the-art at 53.9%. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablation studies confirm that experience-driven memory, look-ahead action simulation, and hierarchical replanning play complementary roles in enabling robust, training-free web agents.
comment: 9 pages, NeurIPS 2025 Workshop on Language Agents and World Models
Computation and Language 92
☆ Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
☆ Constructive Circuit Amplification: Improving Math Reasoning in LLMs via Targeted Sub-Network Updates
Prior studies investigating the internal workings of LLMs have uncovered sparse subnetworks, often referred to as circuits, that are responsible for performing specific tasks. Additionally, it has been shown that model performance improvement through fine-tuning often results from the strengthening of existing circuits in the model. Taken together, these findings suggest the possibility of intervening directly on such circuits to make precise, task-targeted updates. Motivated by these findings, we propose a novel method called Constructive Circuit Amplification which identifies pivotal tokens from model reasoning traces as well as model components responsible for the desired task, and updates only those components. Applied to mathematical reasoning, it improves accuracy by up to +11.4% across multiple models while modifying as little as 1.59% of model components, with minimal impact on other abilities as measured by MMLU, TriviaQA, and TruthfulQA. These results demonstrate that targeted capabilities can be reliably enhanced by selectively updating a sparse set of model components.
comment: 18 pages, 3 figures
☆ Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
☆ How Good is Post-Hoc Watermarking With Language Model Rephrasing?
Generation-time text watermarking embeds statistical signals into text for traceability of AI-generated content. We explore *post-hoc watermarking* where an LLM rewrites existing text while applying generation-time watermarking, to protect copyrighted documents, or detect their use in training or RAG via watermark radioactivity. Unlike generation-time approaches, which is constrained by how LLMs are served, this setting offers additional degrees of freedom for both generation and detection. We investigate how allocating compute (through larger rephrasing models, beam search, multi-candidate generation, or entropy filtering at detection) affects the quality-detectability trade-off. Our strategies achieve strong detectability and semantic fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme surprisingly outperforms more recent alternatives under nucleus sampling, and most methods benefit significantly from beam search. However, most approaches struggle when watermarking verifiable text such as code, where we counterintuitively find that smaller models outperform larger ones. This study reveals both the potential and limitations of post-hoc watermarking, laying groundwork for practical applications and future research.
comment: Code at https://github.com/facebookresearch/textseal
☆ In-Context Algebra
We investigate the mechanisms that arise when transformers are trained to solve arithmetic on sequences where tokens are variables whose meaning is determined only through their interactions. While prior work has found that transformers develop geometric embeddings that mirror algebraic structure, those previous findings emerge from settings where arithmetic-valued tokens have fixed meanings. We devise a new task in which the assignment of symbols to specific algebraic group elements varies from one sequence to another. Despite this challenging setup, transformers achieve near-perfect accuracy on the task and even generalize to unseen algebraic groups. We develop targeted data distributions to create causal tests of a set of hypothesized mechanisms, and we isolate three mechanisms models consistently learn: commutative copying where a dedicated head copies answers, identity element recognition that distinguishes identity-containing facts, and closure-based cancellation that tracks group membership to constrain valid answers. Complementary to the geometric representations found in fixed-symbol settings, our findings show that models develop symbolic reasoning mechanisms when trained to reason in-context with variables whose meanings are not fixed.
comment: 28 pages, 18 figures. Code and data at https://algebra.baulab.info
☆ Impacts of Racial Bias in Historical Training Data for News AI
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
☆ AdaSearch: Balancing Parametric Knowledge and Search in Large Language Models via Reinforcement Learning
Equipping large language models (LLMs) with search engines via reinforcement learning (RL) has emerged as an effective approach for building search agents. However, overreliance on search introduces unnecessary cost and risks exposure to noisy or malicious content, while relying solely on parametric knowledge risks hallucination. The central challenge is to develop agents that adaptively balance parametric knowledge with external search, invoking search only when necessary. Prior work mitigates search overuse by shaping rewards around the number of tool calls. However, these penalties require substantial reward engineering, provide ambiguous credit assignment, and can be exploited by agents that superficially reduce calls. Moreover, evaluating performance solely through call counts conflates necessary and unnecessary search, obscuring the measurement of true adaptive behavior. To address these limitations, we first quantify the self-knowledge awareness of existing search agents via an F1-based decision metric, revealing that methods such as Search-R1 often overlook readily available parametric knowledge. Motivated by these findings, we propose AdaSearch, a simple two-stage, outcome-driven RL framework that disentangles problem solving from the decision of whether to invoke search, and makes this decision process explicit and interpretable. This transparency is crucial for high-stakes domains such as finance and medical question answering, yet is largely neglected by prior approaches. Experiments across multiple model families and sizes demonstrate that AdaSearch substantially improves knowledge-boundary awareness, reduces unnecessary search calls, preserves strong task performance, and offers more transparent, interpretable decision behaviors.
comment: Preprint. Code and artifacts will be uploaded to https://github.com/hank0316/AdaSearch
LLMCache: Layer-Wise Caching Strategies for Accelerated Reuse in Transformer Inference
Transformer-based language models have achieved remarkable performance across a wide range of tasks, yet their high inference latency poses a significant challenge for real-timeand large-scale deployment. While existing caching mechanisms,such as token-level key-value caches, offer speedups in autore-gressive decoding, they are limited in scope and applicability. In this paper, we present LLMCache, a novel layer-wise caching framework that accelerates transformer inference by reusing intermediate activations based on semantic similarity of input sequences. Unlike prior work, LLMCache is model-agnostic,operates across both encoder and decoder architectures, and supports caching at arbitrary transformer layers. We introduce a lightweight fingerprinting mechanism for matching seman-tically similar inputs and propose adaptive eviction strategies to manage cache staleness. Experiments on BERT and GPT-2 across SQuAD, WikiText-103, and OpenBookQA show up to 3.1 X speedup in inference time with <0.5% accuracy degradation. Our results highlight LLMCache as a practical and general-purpose solution for optimizing transformer inference in real-world applications
comment: Accepted and presented at 13th IEEE International Conference on Intelligent Systems and Embedded Design (ISED-2025)
☆ What Do Prosody and Text Convey? Characterizing How Meaningful Information is Distributed Across Multiple Channels
Prosody -- the melody of speech -- conveys critical information often not captured by the words or text of a message. In this paper, we propose an information-theoretic approach to quantify how much information is expressed by prosody alone and not by text, and crucially, what that information is about. Our approach applies large speech and language models to estimate the mutual information between a particular dimension of an utterance's meaning (e.g., its emotion) and any of its communication channels (e.g., audio or text). We then use this approach to quantify how much information is conveyed by audio and text about sarcasm, emotion, and questionhood, using speech from television and podcasts. We find that for sarcasm and emotion the audio channel -- and by implication the prosodic channel -- transmits over an order of magnitude more information about these features than the text channel alone, at least when long-term context beyond the current sentence is unavailable. For questionhood, prosody provides comparatively less additional information. We conclude by outlining a program applying our approach to more dimensions of meaning, communication channels, and languages.
☆ Grammar-Forced Translation of Natural Language to Temporal Logic using LLMs
Translating natural language (NL) into a formal language such as temporal logic (TL) is integral for human communication with robots and autonomous systems. State-of-the-art approaches decompose the task into a lifting of atomic propositions (APs) phase and a translation phase. However, existing methods struggle with accurate lifting, the existence of co-references, and learning from limited data. In this paper, we propose a framework for NL to TL translation called Grammar Forced Translation (GraFT). The framework is based on the observation that previous work solves both the lifting and translation steps by letting a language model iteratively predict tokens from its full vocabulary. In contrast, GraFT reduces the complexity of both tasks by restricting the set of valid output tokens from the full vocabulary to only a handful in each step. The solution space reduction is obtained by exploiting the unique properties of each problem. We also provide a theoretical justification for why the solution space reduction leads to more efficient learning. We evaluate the effectiveness of GraFT using the CW, GLTL, and Navi benchmarks. Compared with state-of-the-art translation approaches, it can be observed that GraFT the end-to-end translation accuracy by 5.49% and out-of-domain translation accuracy by 14.06% on average.
☆ Exploration of Augmentation Strategies in Multi-modal Retrieval-Augmented Generation for the Biomedical Domain: A Case Study Evaluating Question Answering in Glycobiology
Multi-modal retrieval-augmented generation (MM-RAG) promises grounded biomedical QA, but it is unclear when to (i) convert figures/tables into text versus (ii) use optical character recognition (OCR)-free visual retrieval that returns page images and leaves interpretation to the generator. We study this trade-off in glycobiology, a visually dense domain. We built a benchmark of 120 multiple-choice questions (MCQs) from 25 papers, stratified by retrieval difficulty (easy text, medium figures/tables, hard cross-evidence). We implemented four augmentations-None, Text RAG, Multi-modal conversion, and late-interaction visual retrieval (ColPali)-using Docling parsing and Qdrant indexing. We evaluated mid-size open-source and frontier proprietary models (e.g., Gemma-3-27B-IT, GPT-4o family). Additional testing used the GPT-5 family and multiple visual retrievers (ColPali/ColQwen/ColFlor). Accuracy with Agresti-Coull 95% confidence intervals (CIs) was computed over 5 runs per configuration. With Gemma-3-27B-IT, Text and Multi-modal augmentation outperformed OCR-free retrieval (0.722-0.740 vs. 0.510 average accuracy). With GPT-4o, Multi-modal achieved 0.808, with Text 0.782 and ColPali 0.745 close behind; within-model differences were small. In follow-on experiments with the GPT-5 family, the best results with ColPali and ColFlor improved by ~2% to 0.828 in both cases. In general, across the GPT-5 family, ColPali, ColQwen, and ColFlor were statistically indistinguishable. GPT-5-nano trailed larger GPT-5 variants by roughly 8-10%. Pipeline choice is capacity-dependent: converting visuals to text lowers the reader burden and is more reliable for mid-size models, whereas OCR-free visual retrieval becomes competitive under frontier models. Among retrievers, ColFlor offers parity with heavier options at a smaller footprint, making it an efficient default when strong generators are available.
comment: Will be published in IEEE BigData 2025 proceedings. Contains 10 pages, 1 figure, 5 tables
☆ From Facts to Conclusions : Integrating Deductive Reasoning in Retrieval-Augmented LLMs
Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.
comment: Under Review
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
☆ DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI
The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.
☆ JustRL: Scaling a 1.5B LLM with a Simple RL Recipe
Recent advances in reinforcement learning for large language models have converged on increasing complexity: multi-stage training pipelines, dynamic hyperparameter schedules, and curriculum learning strategies. This raises a fundamental question: \textbf{Is this complexity necessary?} We present \textbf{JustRL}, a minimal approach using single-stage training with fixed hyperparameters that achieves state-of-the-art performance on two 1.5B reasoning models (54.9\% and 64.3\% average accuracy across nine mathematical benchmarks) while using 2$\times$ less compute than sophisticated approaches. The same hyperparameters transfer across both models without tuning, and training exhibits smooth, monotonic improvement over 4,000+ steps without the collapses or plateaus that typically motivate interventions. Critically, ablations reveal that adding ``standard tricks'' like explicit length penalties and robust verifiers may degrade performance by collapsing exploration. These results suggest that the field may be adding complexity to solve problems that disappear with a stable, scaled-up baseline. We release our models and code to establish a simple, validated baseline for the community.
comment: 12 pages, 3 figures
☆ Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
Needle in the Web: A Benchmark for Retrieving Targeted Web Pages in the Wild
Large Language Models (LLMs) have evolved from simple chatbots into sophisticated agents capable of automating complex real-world tasks, where browsing and reasoning over live web content is key to assessing retrieval and cognitive skills. Existing benchmarks like BrowseComp and xBench-DeepSearch emphasize complex reasoning searches requiring multi-hop synthesis but neglect Fuzzy Exploratory Search, namely queries that are vague and multifaceted, where users seek the most relevant webpage rather than a single factual answer. To address this gap, we introduce Needle in the Web, a novel benchmark specifically designed to evaluate modern search agents and LLM-based systems on their ability to retrieve and reason over real-world web content in response to ambiguous, exploratory queries under varying levels of difficulty. Needle in the Web comprises 663 questions spanning seven distinct domains. To ensure high query quality and answer uniqueness, we employ a flexible methodology that reliably generates queries of controllable difficulty based on factual claims of web contents. We benchmark three leading LLMs and three agent-based search systems on Needle in the Web, finding that most models struggle: many achieve below 35% accuracy, and none consistently excel across domains or difficulty levels. These findings reveal that Needle in the Web presents a significant challenge for current search systems and highlights the open problem of effective fuzzy retrieval under semantic ambiguity.
comment: Data and code are available at https://github.com/Tango-Whiskyman/Needle_in_the_Web
☆ UM_FHS at the CLEF 2025 SimpleText Track: Comparing No-Context and Fine-Tune Approaches for GPT-4.1 Models in Sentence and Document-Level Text Simplification
This work describes our submission to the CLEF 2025 SimpleText track Task 1, addressing both sentenceand document-level simplification of scientific texts. The methodology centered on using the gpt-4.1, gpt-4.1mini, and gpt-4.1-nano models from OpenAI. Two distinct approaches were compared: a no-context method relying on prompt engineering and a fine-tuned (FT) method across models. The gpt-4.1-mini model with no-context demonstrated robust performance at both levels of simplification, while the fine-tuned models showed mixed results, highlighting the complexities of simplifying text at different granularities, where gpt-4.1-nano-ft performance stands out at document-level simplification in one case.
comment: 10 pages, 3 tables. CLEF 2025 Working Notes, 9 to 12 September 2025, Madrid, Spain
☆ Plain language adaptations of biomedical text using LLMs: Comparision of evaluation metrics
This study investigated the application of Large Language Models (LLMs) for simplifying biomedical texts to enhance health literacy. Using a public dataset, which included plain language adaptations of biomedical abstracts, we developed and evaluated several approaches, specifically a baseline approach using a prompt template, a two AI agent approach, and a fine-tuning approach. We selected OpenAI gpt-4o and gpt-4o mini models as baselines for further research. We evaluated our approaches with quantitative metrics, such as Flesch-Kincaid grade level, SMOG Index, SARI, and BERTScore, G-Eval, as well as with qualitative metric, more precisely 5-point Likert scales for simplicity, accuracy, completeness, brevity. Results showed a superior performance of gpt-4o-mini and an underperformance of FT approaches. G-Eval, a LLM based quantitative metric, showed promising results, ranking the approaches similarly as the qualitative metric.
comment: 5 pages, 1 figure
☆ Topic Modelling Black Box Optimization
Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
☆ From Essence to Defense: Adaptive Semantic-aware Watermarking for Embedding-as-a-Service Copyright Protection
Benefiting from the superior capabilities of large language models in natural language understanding and generation, Embeddings-as-a-Service (EaaS) has emerged as a successful commercial paradigm on the web platform. However, prior studies have revealed that EaaS is vulnerable to imitation attacks. Existing methods protect the intellectual property of EaaS through watermarking techniques, but they all ignore the most important properties of embedding: semantics, resulting in limited harmlessness and stealthiness. To this end, we propose SemMark, a novel semantic-based watermarking paradigm for EaaS copyright protection. SemMark employs locality-sensitive hashing to partition the semantic space and inject semantic-aware watermarks into specific regions, ensuring that the watermark signals remain imperceptible and diverse. In addition, we introduce the adaptive watermark weight mechanism based on the local outlier factor to preserve the original embedding distribution. Furthermore, we propose Detect-Sampling and Dimensionality-Reduction attacks and construct four scenarios to evaluate the watermarking method. Extensive experiments are conducted on four popular NLP datasets, and SemMark achieves superior verifiability, diversity, stealthiness, and harmlessness.
☆ Bridging the Reality Gap: Efficient Adaptation of ASR systems for Challenging Low-Resource Domains
Automatic Speech Recognition (ASR) holds immense potential to streamline clinical documentation, such as digitizing handwritten prescriptions and reports, thereby increasing patient throughput and reducing costs in resource-constrained sectors like rural healthcare. However, realizing this utility is currently obstructed by significant technical barriers: strict data privacy constraints, limited computational resources, and severe acoustic domain shifts. We quantify this gap by showing that a robust multilingual model (IndicWav2Vec) degrades to a stark 40.94% Word Error Rate (WER) when deployed on real-world clinical audio (Gram Vaani), rendering it unusable for practical applications. To address these challenges and bring ASR closer to deployment, we propose an efficient, privacy-preserving adaptation framework. We employ Low-Rank Adaptation (LoRA) to enable continual learning from incoming data streams directly on edge devices, ensuring patient data confidentiality. Our strategy yields a 17.1% relative improvement in WER on the target domain. Furthermore, by integrating multi-domain experience replay, we reduce catastrophic forgetting by 47% compared to naive adaptation. These results demonstrate a viable pathway for building reliable, self-improving ASR systems that can operate effectively within the constraints of high-impact real-world environments.
☆ Hearing to Translate: The Effectiveness of Speech Modality Integration into LLMs
As Large Language Models (LLMs) expand beyond text, integrating speech as a native modality has given rise to SpeechLLMs, which aim to translate spoken language directly, thereby bypassing traditional transcription-based pipelines. Whether this integration improves speech-to-text translation quality over established cascaded architectures, however, remains an open question. We present Hearing to Translate, the first comprehensive test suite rigorously benchmarking 5 state-of-the-art SpeechLLMs against 16 strong direct and cascade systems that couple leading speech foundation models (SFM), with multilingual LLMs. Our analysis spans 16 benchmarks, 13 language pairs, and 9 challenging conditions, including disfluent, noisy, and long-form speech. Across this extensive evaluation, we find that cascaded systems remain the most reliable overall, while current SpeechLLMs only match cascades in selected settings and SFMs lag behind both, highlighting that integrating an LLM, either within the model or in a pipeline, is essential for high-quality speech translation.
comment: Project available at https://github.com/sarapapi/hearing2translate
☆ Hacking Neural Evaluation Metrics with Single Hub Text
Strongly human-correlated evaluation metrics serve as an essential compass for the development and improvement of generation models and must be highly reliable and robust. Recent embedding-based neural text evaluation metrics, such as COMET for translation tasks, are widely used in both research and development fields. However, there is no guarantee that they yield reliable evaluation results due to the black-box nature of neural networks. To raise concerns about the reliability and safety of such metrics, we propose a method for finding a single adversarial text in the discrete space that is consistently evaluated as high-quality, regardless of the test cases, to identify the vulnerabilities in evaluation metrics. The single hub text found with our method achieved 79.1 COMET% and 67.8 COMET% in the WMT'24 English-to-Japanese (En--Ja) and English-to-German (En--De) translation tasks, respectively, outperforming translations generated individually for each source sentence by using M2M100, a general translation model. Furthermore, we also confirmed that the hub text found with our method generalizes across multiple language pairs such as Ja--En and De--En.
☆ Agent Tools Orchestration Leaks More: Dataset, Benchmark, and Mitigation
Driven by Large Language Models, the single-agent, multi-tool architecture has become a popular paradigm for autonomous agents due to its simplicity and effectiveness. However, this architecture also introduces a new and severe privacy risk, which we term Tools Orchestration Privacy Risk (TOP-R), where an agent, to achieve a benign user goal, autonomously aggregates information fragments across multiple tools and leverages its reasoning capabilities to synthesize unexpected sensitive information. We provide the first systematic study of this risk. First, we establish a formal framework, attributing the risk's root cause to the agent's misaligned objective function: an overoptimization for helpfulness while neglecting privacy awareness. Second, we construct TOP-Bench, comprising paired leakage and benign scenarios, to comprehensively evaluate this risk. To quantify the trade-off between safety and robustness, we introduce the H-Score as a holistic metric. The evaluation results reveal that TOP-R is a severe risk: the average Risk Leakage Rate (RLR) of eight representative models reaches 90.24%, while the average H-Score is merely 0.167, with no model exceeding 0.3. Finally, we propose the Privacy Enhancement Principle (PEP) method, which effectively mitigates TOP-R, reducing the Risk Leakage Rate to 46.58% and significantly improving the H-Score to 0.624. Our work reveals both a new class of risk and inherent structural limitations in current agent architectures, while also offering feasible mitigation strategies.
☆ Adaptation of Agentic AI
Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
☆ Evaluating OpenAI GPT Models for Translation of Endangered Uralic Languages: A Comparison of Reasoning and Non-Reasoning Architectures
The evaluation of Large Language Models (LLMs) for translation tasks has primarily focused on high-resource languages, leaving a significant gap in understanding their performance on low-resource and endangered languages. This study presents a comprehensive comparison of OpenAI's GPT models, specifically examining the differences between reasoning and non-reasoning architectures for translating between Finnish and four low-resource Uralic languages: Komi-Zyrian, Moksha, Erzya, and Udmurt. Using a parallel corpus of literary texts, we evaluate model willingness to attempt translation through refusal rate analysis across different model architectures. Our findings reveal significant performance variations between reasoning and non-reasoning models, with reasoning models showing 16 percentage points lower refusal rates. The results provide valuable insights for researchers and practitioners working with Uralic languages and contribute to the broader understanding of reasoning model capabilities for endangered language preservation.
comment: IWCLUL 2025
☆ QuadSentinel: Sequent Safety for Machine-Checkable Control in Multi-agent Systems
Safety risks arise as large language model-based agents solve complex tasks with tools, multi-step plans, and inter-agent messages. However, deployer-written policies in natural language are ambiguous and context dependent, so they map poorly to machine-checkable rules, and runtime enforcement is unreliable. Expressing safety policies as sequents, we propose \textsc{QuadSentinel}, a four-agent guard (state tracker, policy verifier, threat watcher, and referee) that compiles these policies into machine-checkable rules built from predicates over observable state and enforces them online. Referee logic plus an efficient top-$k$ predicate updater keeps costs low by prioritizing checks and resolving conflicts hierarchically. Measured on ST-WebAgentBench (ICML CUA~'25) and AgentHarm (ICLR~'25), \textsc{QuadSentinel} improves guardrail accuracy and rule recall while reducing false positives. Against single-agent baselines such as ShieldAgent (ICML~'25), it yields better overall safety control. Near-term deployments can adopt this pattern without modifying core agents by keeping policies separate and machine-checkable. Our code will be made publicly available at https://github.com/yyiliu/QuadSentinel.
comment: Preprint
☆ Sigma-Moe-Tiny Technical Report
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
☆ LoPA: Scaling dLLM Inference via Lookahead Parallel Decoding
Diffusion Large Language Models (dLLMs) have demonstrated significant potential for high-speed inference. However, current confidence-driven decoding strategies are constrained by limited parallelism, typically achieving only 1--3 tokens per forward pass (TPF). In this work, we identify that the degree of parallelism during dLLM inference is highly sensitive to the Token Filling Order (TFO). Then, we introduce Lookahead PArallel Decoding LoPA, a training-free, plug-and-play algorithm, to identify a superior TFO and hence accelerate inference. LoPA concurrently explores distinct candidate TFOs via parallel branches, and selects the one with the highest potential for future parallelism based on branch confidence. We apply LoPA to the state-of-the-art D2F model and observe a substantial enhancement in decoding efficiency. Notably, LoPA increases the TPF of D2F-Dream to 10.1 on the GSM8K while maintaining performance superior to the Dream baseline. Furthermore, to facilitate this unprecedented degree of parallelism, we develop a specialized multi-device inference system featuring Branch Parallelism (BP), which achieves a single-sample throughput of 1073.9 tokens per second under multi-GPU deployment. The code is available at https://github.com/zhijie-group/LoPA.
☆ An Information-Theoretic Framework for Robust Large Language Model Editing
Large Language Models (LLMs) have become indispensable tools in science, technology, and society, enabling transformative advances across diverse fields. However, errors or outdated information within these models can undermine their accuracy and restrict their safe deployment. Developing efficient strategies for updating model knowledge without the expense and disruption of full retraining remains a critical challenge. Current model editing techniques frequently struggle to generalize corrections beyond narrow domains, leading to unintended consequences and limiting their practical impact. Here, we introduce a novel framework for editing LLMs, grounded in information bottleneck theory. This approach precisely compresses and isolates the essential information required for generalizable knowledge correction while minimizing disruption to unrelated model behaviors. Building upon this foundation, we present the Information Bottleneck Knowledge Editor (IBKE), which leverages compact latent representations to guide gradient-based updates, enabling robust and broadly applicable model editing. We validate IBKE's effectiveness across multiple LLM architectures and standard benchmark tasks, demonstrating state-of-the-art accuracy and improved generality and specificity of edits. These findings establish a theoretically principled and practical paradigm for open-domain knowledge editing, advancing the utility and trustworthiness of LLMs in real-world applications.
☆ Mitigating Hallucinations in Healthcare LLMs with Granular Fact-Checking and Domain-Specific Adaptation
In healthcare, it is essential for any LLM-generated output to be reliable and accurate, particularly in cases involving decision-making and patient safety. However, the outputs are often unreliable in such critical areas due to the risk of hallucinated outputs from the LLMs. To address this issue, we propose a fact-checking module that operates independently of any LLM, along with a domain-specific summarization model designed to minimize hallucination rates. Our model is fine-tuned using Low-Rank Adaptation (LoRa) on the MIMIC III dataset and is paired with the fact-checking module, which uses numerical tests for correctness and logical checks at a granular level through discrete logic in natural language processing (NLP) to validate facts against electronic health records (EHRs). We trained the LLM model on the full MIMIC-III dataset. For evaluation of the fact-checking module, we sampled 104 summaries, extracted them into 3,786 propositions, and used these as facts. The fact-checking module achieves a precision of 0.8904, a recall of 0.8234, and an F1-score of 0.8556. Additionally, the LLM summary model achieves a ROUGE-1 score of 0.5797 and a BERTScore of 0.9120 for summary quality.
☆ A Domain-Adapted Pipeline for Structured Information Extraction from Police Incident Announcements on Social Media
Structured information extraction from police incident announcements is crucial for timely and accurate data processing, yet presents considerable challenges due to the variability and informal nature of textual sources such as social media posts. To address these challenges, we developed a domain-adapted extraction pipeline that leverages targeted prompt engineering with parameter-efficient fine-tuning of the Qwen2.5-7B model using Low-Rank Adaptation (LoRA). This approach enables the model to handle noisy, heterogeneous text while reliably extracting 15 key fields, including location, event characteristics, and impact assessment, from a high-quality, manually annotated dataset of 4,933 instances derived from 27,822 police briefing posts on Chinese Weibo (2019-2020). Experimental results demonstrated that LoRA-based fine-tuning significantly improved performance over both the base and instruction-tuned models, achieving an accuracy exceeding 98.36% for mortality detection and Exact Match Rates of 95.31% for fatality counts and 95.54% for province-level location extraction. The proposed pipeline thus provides a validated and efficient solution for multi-task structured information extraction in specialized domains, offering a practical framework for transforming unstructured text into reliable structured data in social science research.
comment: 41 pages,3figures and 9 tables
☆ DualGuard: Dual-stream Large Language Model Watermarking Defense against Paraphrase and Spoofing Attack
With the rapid development of cloud-based services, large language models (LLMs) have become increasingly accessible through various web platforms. However, this accessibility has also led to growing risks of model abuse. LLM watermarking has emerged as an effective approach to mitigate such misuse and protect intellectual property. Existing watermarking algorithms, however, primarily focus on defending against paraphrase attacks while overlooking piggyback spoofing attacks, which can inject harmful content, compromise watermark reliability, and undermine trust in attribution. To address this limitation, we propose DualGuard, the first watermarking algorithm capable of defending against both paraphrase and spoofing attacks. DualGuard employs the adaptive dual-stream watermarking mechanism, in which two complementary watermark signals are dynamically injected based on the semantic content. This design enables DualGuard not only to detect but also to trace spoofing attacks, thereby ensuring reliable and trustworthy watermark detection. Extensive experiments conducted across multiple datasets and language models demonstrate that DualGuard achieves excellent detectability, robustness, traceability, and text quality, effectively advancing the state of LLM watermarking for real-world applications.
☆ Science Consultant Agent
The Science Consultant Agent is a web-based Artificial Intelligence (AI) tool that helps practitioners select and implement the most effective modeling strategy for AI-based solutions. It operates through four core components: Questionnaire, Smart Fill, Research-Guided Recommendation, and Prototype Builder. By combining structured questionnaires, literature-backed solution recommendations, and prototype generation, the Science Consultant Agent accelerates development for everyone from Product Managers and Software Developers to Researchers. The full pipeline is illustrated in Figure 1.
☆ Decoding Fake Narratives in Spreading Hateful Stories: A Dual-Head RoBERTa Model with Multi-Task Learning
Social media platforms, while enabling global connectivity, have become hubs for the rapid spread of harmful content, including hate speech and fake narratives \cite{davidson2017automated, shu2017fake}. The Faux-Hate shared task focuses on detecting a specific phenomenon: the generation of hate speech driven by fake narratives, termed Faux-Hate. Participants are challenged to identify such instances in code-mixed Hindi-English social media text. This paper describes our system developed for the shared task, addressing two primary sub-tasks: (a) Binary Faux-Hate detection, involving fake and hate speech classification, and (b) Target and Severity prediction, categorizing the intended target and severity of hateful content. Our approach combines advanced natural language processing techniques with domain-specific pretraining to enhance performance across both tasks. The system achieved competitive results, demonstrating the efficacy of leveraging multi-task learning for this complex problem.
comment: Accepted Paper, Anthology ID: 2024.icon-fauxhate.3, 4 pages, 1 figure, 1 table
☆ MRG-R1: Reinforcement Learning for Clinically Aligned Medical Report Generation
Medical report generation (MRG) aims to automatically derive radiology-style reports from medical images to aid in clinical decision-making. However, existing methods often generate text that mimics the linguistic style of radiologists but fails to guarantee clinical correctness, because they are trained on token-level objectives which focus on word-choice and sentence structure rather than actual medical accuracy. We propose a semantic-driven reinforcement learning (SRL) method for medical report generation, adopted on a large vision-language model (LVLM). SRL adopts Group Relative Policy Optimization (GRPO) to encourage clinical-correctness-guided learning beyond imitation of language style. Specifically, we optimise a report-level reward: a margin-based cosine similarity (MCCS) computed between key radiological findings extracted from generated and reference reports, thereby directly aligning clinical-label agreement and improving semantic correctness. A lightweight reasoning format constraint further guides the model to generate structured "thinking report" outputs. We evaluate Medical Report Generation with Sematic-driven Reinforment Learning (MRG-R1), on two datasets: IU X-Ray and MIMIC-CXR using clinical efficacy (CE) metrics. MRG-R1 achieves state-of-the-art performance with CE-F1 51.88 on IU X-Ray and 40.39 on MIMIC-CXR. We found that the label-semantic reinforcement is better than conventional token-level supervision. These results indicate that optimizing a clinically grounded, report-level reward rather than token overlap,meaningfully improves clinical correctness. This work is a prior to explore semantic-reinforcement in supervising medical correctness in medical Large vision-language model(Med-LVLM) training.
comment: 12 pages
☆ Convolutional Lie Operator for Sentence Classification
Traditional Convolutional Neural Networks have been successful in capturing local, position-invariant features in text, but their capacity to model complex transformation within language can be further explored. In this work, we explore a novel approach by integrating Lie Convolutions into Convolutional-based sentence classifiers, inspired by the ability of Lie group operations to capture complex, non-Euclidean symmetries. Our proposed models SCLie and DPCLie empirically outperform traditional Convolutional-based sentence classifiers, suggesting that Lie-based models relatively improve the accuracy by capturing transformations not commonly associated with language. Our findings motivate more exploration of new paradigms in language modeling.
comment: Proceedings of the 2024 8th International Conference on Natural Language Processing and Information Retrieval
☆ ContextLeak: Auditing Leakage in Private In-Context Learning Methods
In-Context Learning (ICL) has become a standard technique for adapting Large Language Models (LLMs) to specialized tasks by supplying task-specific exemplars within the prompt. However, when these exemplars contain sensitive information, reliable privacy-preserving mechanisms are essential to prevent unintended leakage through model outputs. Many privacy-preserving methods are proposed to protect the information leakage in the context, but there are less efforts on how to audit those methods. We introduce ContextLeak, the first framework to empirically measure the worst-case information leakage in ICL. ContextLeak uses canary insertion, embedding uniquely identifiable tokens in exemplars and crafting targeted queries to detect their presence. We apply ContextLeak across a range of private ICL techniques, both heuristic such as prompt-based defenses and those with theoretical guarantees such as Embedding Space Aggregation and Report Noisy Max. We find that ContextLeak tightly correlates with the theoretical privacy budget ($ε$) and reliably detects leakage. Our results further reveal that existing methods often strike poor privacy-utility trade-offs, either leaking sensitive information or severely degrading performance.
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically -- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
☆ A Solver-in-the-Loop Framework for Improving LLMs on Answer Set Programming for Logic Puzzle Solving AAAI'26
The rise of large language models (LLMs) has sparked interest in coding assistants. While general-purpose programming languages are well supported, generating code for domain-specific languages remains a challenging problem for LLMs. In this paper, we focus on the LLM-based generation of code for Answer Set Programming (ASP), a particularly effective approach for finding solutions to combinatorial search problems. The effectiveness of LLMs in ASP code generation is currently hindered by the limited number of examples seen during their initial pre-training phase. In this paper, we introduce a novel ASP-solver-in-the-loop approach for solver-guided instruction-tuning of LLMs to addressing the highly complex semantic parsing task inherent in ASP code generation. Our method only requires problem specifications in natural language and their solutions. Specifically, we sample ASP statements for program continuations from LLMs for unriddling logic puzzles. Leveraging the special property of declarative ASP programming that partial encodings increasingly narrow down the solution space, we categorize them into chosen and rejected instances based on solver feedback. We then apply supervised fine-tuning to train LLMs on the curated data and further improve robustness using a solver-guided search that includes best-of-N sampling. Our experiments demonstrate consistent improvements in two distinct prompting settings on two datasets.
comment: 15 pages, 7 figures, accepted at AAAI'26
☆ Data Augmentation Supporting a Conversational Agent Designed for Smoking Cessation Support Groups
Online support groups for smoking cessation are economical and accessible, yet they often face challenges with low user engagement and stigma. The use of an automatic conversational agent would improve engagement by ensuring that all user comments receive a timely response.). We address the challenge of insufficient high-quality data by employing a two-level data augmentation strategy: synthetic data augmentation and real data augmentation. First, we fine-tuned an open source LLM to classify posts from our existing smoking cessation support groups and identify intents with low F1 (precision+recall) scores. Then, for these intents, we generate additional synthetic data using prompt engineering with the GPT model, with an average of 87\% of the generated synthetic posts deemed high quality by human annotators. Overall, the synthetic augmentation process resulted in 43\% of the original posts being selected for augmentation, followed by 140\% synthetic expansion of these posts. Additionally, we scraped more than 10,000 real posts from a related online support context, of which 73\% were validated as good quality by human annotators. Each synthetic or scraped post underwent rigorous validation involving human reviewers to ensure quality and relevance. The validated new data, combined with the original support group posts, formed an augmented dataset used to retrain the intent classifier. Performance evaluation of the retrained model demonstrated a 32\% improvement in F1, confirming the effectiveness of our data augmentation approach. Synthetic and real post augmentation led to similar performance improvements. This study provides a replicable framework for enhancing conversational agent performance in domains where data scarcity is a critical issue.
☆ When F1 Fails: Granularity-Aware Evaluation for Dialogue Topic Segmentation
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of prior work, evaluation practice in dialogue topic segmentation remains dominated by strict boundary matching and F1-based metrics, even as modern LLM-based conversational systems increasingly rely on segmentation to manage conversation history beyond the model's fixed context window, where unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation objective for dialogue topic segmentation that treats boundary density and segment coherence as primary criteria, alongside window-tolerant F1 (W-F1). Through extensive cross-dataset empirical evaluation, we show that reported performance differences across dialogue segmentation benchmarks are driven not by model quality, but by annotation granularity mismatches and sparse boundary labels. This indicates that many reported improvements arise from evaluation artifacts rather than improved boundary detection. We evaluated multiple, structurally distinct dialogue segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Across these settings, we observe high segment coherence combined with extreme oversegmentation relative to sparse labels, producing misleadingly low exact-match F1 scores. We show that topic segmentation is best understood as selecting an appropriate granularity rather than predicting a single correct boundary set. We operationalize this view by explicitly separating boundary scoring from boundary selection.
comment: 17 pages, 2 figures. Evaluation and methodology study on dialogue topic segmentation
☆ Perturb Your Data: Paraphrase-Guided Training Data Watermarking AAAI 2026
Training data detection is critical for enforcing copyright and data licensing, as Large Language Models (LLM) are trained on massive text corpora scraped from the internet. We present SPECTRA, a watermarking approach that makes training data reliably detectable even when it comprises less than 0.001% of the training corpus. SPECTRA works by paraphrasing text using an LLM and assigning a score based on how likely each paraphrase is, according to a separate scoring model. A paraphrase is chosen so that its score closely matches that of the original text, to avoid introducing any distribution shifts. To test whether a suspect model has been trained on the watermarked data, we compare its token probabilities against those of the scoring model. We demonstrate that SPECTRA achieves a consistent p-value gap of over nine orders of magnitude when detecting data used for training versus data not used for training, which is greater than all baselines tested. SPECTRA equips data owners with a scalable, deploy-before-release watermark that survives even large-scale LLM training.
comment: Accepted to AAAI 2026
☆ XLM: A Python package for non-autoregressive language models
In recent years, there has been a resurgence of interest in non-autoregressive text generation in the context of general language modeling. Unlike the well-established autoregressive language modeling paradigm, which has a plethora of standard training and inference libraries, implementations of non-autoregressive language modeling have largely been bespoke making it difficult to perform systematic comparisons of different methods. Moreover, each non-autoregressive language model typically requires it own data collation, loss, and prediction logic, making it challenging to reuse common components. In this work, we present the XLM python package, which is designed to make implementing small non-autoregressive language models faster with a secondary goal of providing a suite of small pre-trained models (through a companion xlm-models package) that can be used by the research community. The code is available at https://github.com/dhruvdcoder/xlm-core.
comment: Code available at https://github.com/dhruvdcoder/xlm-core
☆ Knowledge Distillation with Structured Chain-of-Thought for Text-to-SQL
Deploying accurate Text-to-SQL systems at the enterprise level faces a difficult trilemma involving cost, security and performance. Current solutions force enterprises to choose between expensive, proprietary Large Language Models (LLMs) and low-performing Small Language Models (SLMs). Efforts to improve SLMs often rely on distilling reasoning from large LLMs using unstructured Chain-of-Thought (CoT) traces, a process that remains inherently ambiguous. Instead, we hypothesize that a formal, structured reasoning representation provides a clearer, more reliable teaching signal, as the Text-to-SQL task requires explicit and precise logical steps. To evaluate this hypothesis, we propose Struct-SQL, a novel Knowledge Distillation (KD) framework that trains an SLM to emulate a powerful large LLM. Consequently, we adopt a query execution plan as a formal blueprint to derive this structured reasoning. Our SLM, distilled with structured CoT, achieves an absolute improvement of 8.1% over an unstructured CoT distillation baseline. A detailed error analysis reveals that a key factor in this gain is a marked reduction in syntactic errors. This demonstrates that teaching a model to reason using a structured logical blueprint is beneficial for reliable SQL generation in SLMs.
☆ A Women's Health Benchmark for Large Language Models
As large language models (LLMs) become primary sources of health information for millions, their accuracy in women's health remains critically unexamined. We introduce the Women's Health Benchmark (WHB), the first benchmark evaluating LLM performance specifically in women's health. Our benchmark comprises 96 rigorously validated model stumps covering five medical specialties (obstetrics and gynecology, emergency medicine, primary care, oncology, and neurology), three query types (patient query, clinician query, and evidence/policy query), and eight error types (dosage/medication errors, missing critical information, outdated guidelines/treatment recommendations, incorrect treatment advice, incorrect factual information, missing/incorrect differential diagnosis, missed urgency, and inappropriate recommendations). We evaluated 13 state-of-the-art LLMs and revealed alarming gaps: current models show approximately 60\% failure rates on the women's health benchmark, with performance varying dramatically across specialties and error types. Notably, models universally struggle with "missed urgency" indicators, while newer models like GPT-5 show significant improvements in avoiding inappropriate recommendations. Our findings underscore that AI chatbots are not yet fully able of providing reliable advice in women's health.
comment: 15 pages, 6 Figures, 2 Tables
☆ PAACE: A Plan-Aware Automated Agent Context Engineering Framework
Large Language Model (LLM) agents are increasingly deployed in complex, multi-step workflows involving planning, tool use, reflection, and interaction with external knowledge systems. These workflows generate rapidly expanding contexts that must be curated, transformed, and compressed to maintain fidelity, avoid attention dilution, and reduce inference cost. Prior work on summarization and query-aware compression largely ignores the multi-step, plan-aware nature of agentic reasoning. In this work, we introduce PAACE (Plan-Aware Automated Context Engineering), a unified framework for optimizing the evolving state of LLM agents through next-k-task relevance modeling, plan-structure analysis, instruction co-refinement, and function-preserving compression. PAACE comprises (1) PAACE-Syn, a large-scale generator of synthetic agent workflows annotated with stepwise compression supervision, and (2) PAACE-FT, a family of distilled, plan-aware compressors trained from successful teacher demonstrations. Experiments on long-horizon benchmarks (AppWorld, OfficeBench, and 8-Objective QA) demonstrate that PAACE consistently improves agent correctness while substantially reducing context load. On AppWorld, PAACE achieves higher accuracy than all baselines while lowering peak context and cumulative dependency. On OfficeBench and multi-hop QA, PAACE improves both accuracy and F1, achieving fewer steps, lower peak tokens, and reduced attention dependency. Distilled PAACE-FT retains 97 percent of the teacher's performance while reducing inference cost by over an order of magnitude, enabling practical deployment of plan-aware compression with compact models.
☆ Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows
Despite advances in scientific AI, a coherent framework for Scientific General Intelligence (SGI)-the ability to autonomously conceive, investigate, and reason across scientific domains-remains lacking. We present an operational SGI definition grounded in the Practical Inquiry Model (PIM: Deliberation, Conception, Action, Perception) and operationalize it via four scientist-aligned tasks: deep research, idea generation, dry/wet experiments, and experimental reasoning. SGI-Bench comprises over 1,000 expert-curated, cross-disciplinary samples inspired by Science's 125 Big Questions, enabling systematic evaluation of state-of-the-art LLMs. Results reveal gaps: low exact match (10--20%) in deep research despite step-level alignment; ideas lacking feasibility and detail; high code executability but low execution result accuracy in dry experiments; low sequence fidelity in wet protocols; and persistent multimodal comparative-reasoning challenges. We further introduce Test-Time Reinforcement Learning (TTRL), which optimizes retrieval-augmented novelty rewards at inference, enhancing hypothesis novelty without reference answer. Together, our PIM-grounded definition, workflow-centric benchmark, and empirical insights establish a foundation for AI systems that genuinely participate in scientific discovery.
♻ ☆ The Emergence of Chunking Structures with Hierarchical RNN
In Natural Language Processing (NLP), predicting linguistic structures, such as parsing and chunking, has mostly relied on manual annotations of syntactic structures. This paper introduces an unsupervised approach to chunking, a syntactic task that involves grouping words in a non-hierarchical manner. We present a Hierarchical Recurrent Neural Network (HRNN) designed to model word-to-chunk and chunk-to-sentence compositions. Our approach involves a two-stage training process: pretraining with an unsupervised parser and finetuning on downstream NLP tasks. Experiments on multiple datasets reveal a notable improvement of unsupervised chunking performance in both pretraining and finetuning stages. Interestingly, we observe that the emergence of the chunking structure is transient during the neural model's downstream-task training. This study contributes to the advancement of unsupervised syntactic structure discovery and opens avenues for further research in linguistic theory.
comment: Published in Computational Linguistics
♻ ☆ Wrist Photoplethysmography Predicts Dietary Information
Whether wearable photoplethysmography (PPG) contains dietary information remains unknown. We trained a language model on 1.1M meals to predict meal descriptions from PPG, aligning PPG to text. PPG nontrivially predicts meal content; predictability decreases for PPGs farther from meals. This transfers to dietary tasks: PPG increases AUC by 11% for intake and satiety across held-out and independent cohorts, with gains robust to text degradation. Wearable PPG may enable passive dietary monitoring.
comment: 20 pages, 2 figures
♻ ☆ Which Evaluation for Which Model? A Taxonomy for Speech Model Assessment
Speech foundation models have recently achieved remarkable capabilities across a wide range of tasks. However, their evaluation remains disjointed across tasks and model types. Different models excel at distinct aspects of speech processing and thus require different evaluation protocols. This paper proposes a unified taxonomy that addresses the question: Which evaluation is appropriate for which model? The taxonomy defines three orthogonal axes: the evaluation aspect being measured, the model capabilities required to attempt the task, and the task or protocol requirements needed to perform it. We classify a broad set of existing evaluations and benchmarks along these axes, spanning areas such as representation learning, speech generation, and interactive dialogue. By mapping each evaluation to the capabilities a model exposes (e.g., speech generation, real-time processing) and to its methodological demands (e.g., fine-tuning data, human judgment), the taxonomy provides a principled framework for aligning models with suitable evaluation methods. It also reveals systematic gaps, such as limited coverage of prosody, interaction, or reasoning, that highlight priorities for future benchmark design. Overall, this work offers a conceptual foundation and practical guide for selecting, interpreting, and extending evaluations of speech models.
comment: 57 pages (26 main, 25 appendix, 6 references)
♻ ☆ Verifiable Natural Language to Linear Temporal Logic Translation: A Benchmark Dataset and Evaluation Suite
Empirical evaluation of state-of-the-art natural-language (NL) to temporal-logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies measure only the accuracy of the translation of NL logic into formal TL, ignoring a system's capacity to ground atomic propositions into new scenarios or environments. This is a critical feature, necessary for the verification of resulting formulas in a concrete state space. Consequently, most NL-to-TL translation frameworks propose their own bespoke dataset in which the correct grounding is known a-priori, inflating performance metrics and neglecting the need for extensible, domain-general systems. In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark ( VLTL-Bench), a unifying benchmark that measures verification and verifiability of automated NL-to-LTL translation. The dataset consists of four unique state spaces and thousands of diverse natural language specifications and corresponding formal specifications in temporal logic. Moreover, the benchmark contains sample traces to validate the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researches to improve and evaluate different substeps of the overall problem. To encourage methodologically sound advances in verifiable NL-to-LTL translation approaches, we release VLTL-Bench here: https://www.kaggle.com/datasets/dubascudes/vltl bench.
♻ ☆ InsurTech innovation using natural language processing
With the rapid rise of InsurTech, traditional insurance companies are increasingly exploring alternative data sources and advanced technologies to sustain their competitive edge. This paper provides both a conceptual overview and practical case studies of natural language processing (NLP) and its emerging applications within insurance operations, focusing on transforming raw, unstructured text into structured data suitable for actuarial analysis and decision-making. Leveraging real-world alternative data provided by an InsurTech industry partner that enriches traditional insurance data sources, we apply various NLP techniques to demonstrate feature de-biasing, feature compression, and industry classification in the commercial insurance context. These enriched, text-derived insights not only add to and refine traditional rating factors for commercial insurance pricing but also offer novel perspectives for assessing underlying risk by introducing novel industry classification techniques. Through these demonstrations, we show that NLP is not merely a supplementary tool but a foundational element of modern, data-driven insurance analytics.
♻ ☆ OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages EMNLP 2025
We present OpenNER 1.0, a standardized collection of openly-available named entity recognition (NER) datasets. OpenNER contains 36 NER corpora that span 52 languages, human-annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation with consistent entity type names across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline results using three pretrained multilingual language models and two large language models to compare the performance of recent models and facilitate future research in NER. We find that no single model is best in all languages and that significant work remains to obtain high performance from LLMs on the NER task. OpenNER is released at https://github.com/bltlab/open-ner.
comment: Published in the proceedings of EMNLP 2025
♻ ☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear State-Space Models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall-oriented tasks. We propose Gated KalmaNet (GKA), a layer that accounts for the full past while maintaining SSM-style efficiency. We ground our approach in the Kalman Filter (KF) framework, which provides a principled solution for optimal inference in dynamical systems. We show that several existing SSM layers (DeltaNet, Gated DeltaNet, and Kimi Delta Attention) are approximations to the KF recurrence that assume identity error covariance, thereby ignoring how past measurements (keys and values) should optimally influence state updates. In contrast, GKA computes the exact Kalman gain by maintaining the full error covariance. Under a steady-state assumption that enables parallelization, this reduces to solving an online ridge regression problem with constant memory and linear compute cost. A critical insight is that standard KF equations are numerically unstable in low-precision environments (like bfloat16) and hard to parallelize on modern hardware. We address this through: (1) adaptive regularization with input-dependent gating to control the condition number of the ridge regression for numerical stability, and (2) Chebyshev Iteration, which we show is more stable than conventional iterative solvers in low-precision settings. We further develop hardware-aware chunk-wise kernels to enable efficient training. Empirically, GKA outperforms existing SSM layers (like Mamba2 and Gated DeltaNet) on short-context tasks and achieves more than 10\% relative improvement on long-context RAG and LongQA tasks up to 128k tokens.
comment: 30 pages, 10 figures
♻ ☆ BigCodeArena: Unveiling More Reliable Human Preferences in Code Generation via Execution
Crowdsourced model evaluation platforms, such as Chatbot Arena, enable real-time evaluation from human perspectives to assess the quality of model responses. In the coding domain, manually examining the quality of LLM-generated content is extremely challenging, as it requires understanding long chunks of raw code and deliberately simulating code execution. To this end, we introduce BigCodeArena, an open human evaluation platform for code generation backed by a comprehensive and on-the-fly execution environment. Built on top of Chatbot Arena, BigCodeArena enables the execution of LLM-generated code and allows humans to interact with the execution process and outcomes. We collected over 14,000 raw code-centric conversation sessions across 10 widely used LLMs, spanning 10 languages and 8 types of execution environments. Among these conversations, we identified more than 4,700 multi-turn samples with pairwise human preferences. Further analysis uncovers underexplored preferences of LLMs in fine-grained domains characterized by tasks, languages, and frameworks. To systematically examine code understanding and generation capabilities of frontier LLMs, we curated two benchmarks based on the collected data, namely BigCodeReward and AutoCodeArena. For BigCodeReward, we post-processed the 4,700 conversations and evaluated the consistency between reward models and human preferences. The evaluation shows that most LLMs have superior performance in judging coding preferences when the execution results are available. Inspired by these findings, we propose AutoCodeArena, an automatic Elo rating benchmark designed to assess the coding quality of LLMs without human involvement. We find that proprietary LLMs like GPT-5, Claude-Sonnet-4, and Claude-Opus-4 still lead in code generation performance among recent emerging models.
comment: Built with love by the BigCode community :)
♻ ☆ SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting
Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8977 (95% CI: 0.88-0.91). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.
♻ ☆ VAEER: Visual Attention-Inspired Emotion Elicitation Reasoning
Images shared online strongly influence emotions and public well-being. Understanding the emotions an image elicits is therefore vital for fostering healthier and more sustainable digital communities, especially during public crises. We study Visual Emotion Elicitation (VEE), predicting the set of emotions that an image evokes in viewers. We introduce VAEER, an interpretable multi-label VEE framework that combines attention-inspired cue extraction with knowledge-grounded reasoning. VAEER isolates salient visual foci and contextual signals, aligns them with structured affective knowledge, and performs per-emotion inference to yield transparent, emotion-specific rationales. Across three heterogeneous benchmarks, including social imagery and disaster-related photos, VAEER achieves state-of-the-art results with up to 19% per-emotion improvements and a 12.3% average gain over strong CNN and VLM baselines. Our findings highlight interpretable multi-label emotion elicitation as a scalable foundation for responsible visual media analysis and emotionally sustainable online ecosystems.
comment: Currently under review as conference paper
♻ ☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
comment: v3: added StyloSpeaker github link; v2: added acknowledgments
♻ ☆ Multiscale Aggregated Hierarchical Attention (MAHA): A Game Theoretic and Optimization Driven Approach to Efficient Contextual Modeling in Large Language Models
The quadratic computational complexity of MultiHead SelfAttention (MHSA) remains a fundamental bottleneck in scaling Large Language Models (LLMs) for longcontext tasks. While sparse and linearized attention mechanisms attempt to mitigate this, they often compromise the representation of global dependencies or fail to capture multiscale semantic granularity effectively. In this paper, we propose Multiscale Aggregated Hierarchical Attention (MAHA), a novel architectural framework that reformulates the attention mechanism through hierarchical decomposition and mathematically rigorous aggregation. Unlike conventional approaches that treat token interactions at a single resolution, MAHA dynamically partitions the input sequence into hierarchical scales via learnable downsampling operators. The core innovation lies in its aggregation strategy: we model the fusion of scalespecific attention matrices as a resource allocation problem, solved via a convex optimization framework or a Nash equilibriumbased gametheoretic approach. This ensures a theoretically optimal balance between local nuance and global context fidelity. Implemented within a hybrid dilatedconvolutional transformer backbone, MAHA utilizes differentiable optimization layers to enable endtoend training. Experimental evaluations demonstrate that MAHA achieves superior scalability; empirical FLOPs analysis confirms an 81% reduction in computational cost at a sequence length of 4096 compared to standard attention. This work bridges the gap between optimization theory and sequence modeling, offering a scalable solution for nextgeneration LLMs.
♻ ☆ A Token is Worth over 1,000 Tokens: Efficient Knowledge Distillation through Low-Rank Clone NeurIPS 2025
Training high-performing Small Language Models (SLMs) remains costly, even with knowledge distillation and pruning from larger teacher models. Existing work often faces three key challenges: (1) information loss from hard pruning, (2) inefficient alignment of representations, and (3) underutilization of informative activations, particularly from Feed-Forward Networks (FFNs). To address these challenges, we introduce Low-Rank Clone (LRC), an efficient pre-training method that constructs SLMs aspiring to behavioral equivalence with strong teacher models. LRC trains a set of low-rank projection matrices that jointly enable soft pruning by compressing teacher weights, and activation clone by aligning student activations, including FFN signals, with those of the teacher. This unified design maximizes knowledge transfer while removing the need for explicit alignment modules. Extensive experiments with open-source teachers (e.g., Llama-3.2-3B-Instruct, Qwen2.5-3B/7B-Instruct) show that LRC matches or surpasses state-of-the-art models trained on trillions of tokens--while using only 20B tokens, achieving over 1,000x training efficiency. Our codes and model checkpoints are available at https://github.com/CURRENTF/LowRankClone and https://huggingface.co/collections/JitaiHao/low-rank-clone-lrc-6828389e96a93f1d4219dfaf.
comment: NeurIPS 2025 Spotlight
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry studies writing style through quantitative textual patterns, enabling applications such as authorship attribution, identity linking, and plagiarism detection. Existing supervised and contrastive approaches often rely on datasets with spurious correlations, conflating style with topic. Despite the relevance of language modeling to these tasks, the pre-training of modern large language models (LLMs) has been underutilized in general authorship analysis. We introduce an unsupervised framework that uses the log-probabilities of an LLM to measure style transferability between two texts. This framework takes advantage of the extensive CLM pre-training and in-context capabilities of modern LLMs. Our approach avoids explicit supervision with spuriously correlated data. Our method substantially outperforms unsupervised prompting-based baselines at similar model sizes and exceeds contrastively trained models when controlling for topical overlap. Our framework's performance improves with model size. In the case of authorship verification, we present an additional mechanism that increases test-time computation to improve accuracy; enabling flexible trade-offs between computational cost and task performance.
♻ ☆ Beyond Over-Refusal: Scenario-Based Diagnostics and Post-Hoc Mitigation for Exaggerated Refusals in LLMs
Large language models (LLMs) frequently produce false refusals, declining benign requests that contain terms resembling unsafe queries. We address this challenge by introducing two comprehensive benchmarks: the Exaggerated Safety Benchmark (XSB) for single-turn prompts, annotated with "Focus" keywords that identify refusal-inducing triggers, and the Multi-turn Scenario-based Exaggerated Safety Benchmark (MS-XSB), which systematically evaluates refusal calibration in realistic, context-rich dialog settings. Our benchmarks reveal that exaggerated refusals persist across diverse recent LLMs and are especially pronounced in complex, multi-turn scenarios. To mitigate these failures, we leverage post-hoc explanation methods to identify refusal triggers and deploy three lightweight, model-agnostic approaches, ignore-word instructions, prompt rephrasing, and attention steering, at inference time, all without retraining or parameter access. Experiments on four instruction-tuned Llama models demonstrate that these strategies substantially improve compliance on safe prompts while maintaining robust safety protections. Our findings establish a reproducible framework for diagnosing and mitigating exaggerated refusals, highlighting practical pathways to safer and more helpful LLM deployments.
♻ ☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: CoLM 2025 Camera Ready
♻ ☆ Failure Modes of Maximum Entropy RLHF
In this paper, we show that Simple Preference Optimization (SimPO) can be derived as Maximum Entropy Reinforcement Learning, providing a theoretical foundation for this reference-free method. Motivated by SimPO's strong performance in offline preference optimization, we investigate whether Maximum Entropy RL can achieve similar results in online RLHF settings. Our experiments find that Maximum Entropy RL consistently exhibits overoptimization and unstable KL dynamics, even at very low learning rates. Unlike KL-constrained methods that maintain stable training, entropy regularization fails to prevent reward hacking and appears to correlate with overoptimization. Lastly, we discuss possible explanations for why SimPO succeeds in offline settings while Maximum Entropy RL struggles in online scenarios. Our findings suggest that reference-free approaches may face distinct challenges when applied to online or offline preference learning.
comment: 21 pages, 12 figures
♻ ☆ Beyond "Not Novel Enough": Enriching Scholarly Critique with LLM-Assisted Feedback
Novelty assessment is a central yet understudied aspect of peer review, particularly in high volume fields like NLP where reviewer capacity is increasingly strained. We present a structured approach for automated novelty evaluation that models expert reviewer behavior through three stages: content extraction from submissions, retrieval and synthesis of related work, and structured comparison for evidence based assessment. Our method is informed by a large scale analysis of human written novelty reviews and captures key patterns such as independent claim verification and contextual reasoning. Evaluated on 182 ICLR 2025 submissions with human annotated reviewer novelty assessments, the approach achieves 86.5% alignment with human reasoning and 75.3% agreement on novelty conclusions - substantially outperforming existing LLM based baselines. The method produces detailed, literature aware analyses and improves consistency over ad hoc reviewer judgments. These results highlight the potential for structured LLM assisted approaches to support more rigorous and transparent peer review without displacing human expertise. Data and code are made available.
♻ ☆ Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (\SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 33 pages, 8 figures, 8 tables
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ MindShift: Analyzing Language Models' Reactions to Psychological Prompts
Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
♻ ☆ LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward AAAI-26
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study focuses on generating precise, in-situ, step-by-step navigation instructions that are practically usable for VI users. Specifically, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to navigation instructions, thereby providing feedback rewards to guide the post-training of a Vision-Language Model (VLM). This enhances instruction accuracy and usability while reducing costly real-world data collection needs. To address the scarcity of dedicated benchmarks in this field, we introduce NIG4VI, a 27k-sample open-source dataset to facilitate training and evaluation. It comprises diverse navigation scenarios with accurate spatial coordinates, supporting detailed and open-ended in-situ instruction generation. Experiments on NIG4VI demonstrate the effectiveness of LaF-GRPO through quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU 14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o 0.323), and qualitative analysis further confirms that our method yields more intuitive and safer instructions.
comment: Accepted at AAAI-26
♻ ☆ Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical Large Language Models, Agentic Corpus Distillation, Synthetic Question-Answer Generation, Agentic AI, Knowledge Hierarchy Guidance
♻ ☆ Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training
The rapid advancement of large language models (LLMs) in biological-medical applications has highlighted a gap between their potential and the limited scale and often low quality of available open-source annotated textual datasets. In addition, the inherent complexity of the biomedical knowledge hierarchy significantly hampers efforts to bridge this gap.Can LLMs themselves play a pivotal role in overcoming this limitation? Motivated by this question, we investigate this challenge in the present study.We propose a framework that automates the distillation of high-quality textual training data from the extensive scientific literature. Our approach self-evaluates and generates questions that are more closely aligned with the biomedical domain, guided by the biomedical knowledge hierarchy through medical subject headings (MeSH). This comprehensive framework establishes an automated workflow, thereby eliminating the need for manual intervention. Furthermore, we conducted comprehensive experiments to evaluate the impact of our framework-generated data on downstream language models of varying sizes. Our approach substantially improves question-answering tasks compared to pre-trained models from the life sciences domain and powerful close-source models represented by GPT-4. Notably, the generated AI-Ready dataset enabled the Llama3-70B base model to outperform GPT-4 using MedPrompt with multiple times the number of parameters. Detailed case studies and ablation experiments underscore the significance of each component within our framework
comment: 10 pages
♻ ☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-once scoring into focused, second-look reasoning, BR-RM reduces judgment diffusion and improves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains.
comment: Source Code: https://github.com/yzjiao/BR-RM. Model Checkpoints: https://huggingface.co/nvidia/Qwen3-Nemotron-14B-BRRM and https://huggingface.co/nvidia/Qwen3-Nemotron-8B-BRRM
♻ ☆ Online-PVLM: Advancing Personalized VLMs with Online Concept Learning
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user's bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-scale scenarios, where efficient retrieval of concept embeddings is not achievable. To alleviate this gap, we propose Online-PVLM, a framework for online concept learning by leveraging hyperbolic representations. Our approach makes a train-free paradigm for concept embeddings generation at test time, making the use of personalized VLMs both scalable and efficient. In addition, we develop OP-Eval, a comprehensive and large-scale benchmark comprising 1,292 concepts and over 30K high-quality instances with diverse question types, designed to rigorously assess online concept learning in realistic scenarios. Extensive experiments demonstrate the state-of-the-art performance of our proposed framework. Our source code and dataset will be made available.
comment: Work in Progress
♻ ☆ Enhancing Long-term RAG Chatbots with Psychological Models of Memory Importance and Forgetting
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY, Hugginface Dataset:https://huggingface.co/datasets/RuiSumida/LUFY
comment: 37 pages, accepted and published in Dialogue & Discourse 16(2) (2025)
♻ ☆ Speech-FT: Merging Pre-trained And Fine-Tuned Speech Representation Models For Cross-Task Generalization
Fine-tuning speech representation models can enhance performance on specific tasks but often compromises their cross-task generalization ability. This degradation is often caused by excessive changes in the representations, making it difficult to retain information learned during pre-training. Existing approaches, such as regularizing weight changes during fine-tuning, may fail to maintain sufficiently high feature similarity with the pre-trained model, and thus could possibly lose cross-task generalization. To address this issue, we propose Speech-FT, a novel two-stage fine-tuning framework designed to maintain cross-task generalization while benefiting from fine-tuning. Speech-FT first applies fine-tuning specifically designed to reduce representational drift, followed by weight-space interpolation with the pre-trained model to restore cross-task generalization. Extensive experiments on HuBERT, wav2vec 2.0, DeCoAR 2.0, and WavLM Base+ demonstrate that Speech-FT consistently improves performance across a wide range of supervised, unsupervised, and multitask fine-tuning scenarios. Moreover, Speech-FT achieves superior cross-task generalization compared to fine-tuning baselines that explicitly constrain weight changes, such as weight-space regularization and LoRA fine-tuning. Our analysis reveals that Speech-FT maintains higher feature similarity to the pre-trained model compared to alternative strategies, despite allowing larger weight-space updates. Notably, Speech-FT achieves significant improvements on the SUPERB benchmark. For example, when fine-tuning HuBERT on automatic speech recognition, Speech-FT is able to reduce phone error rate from 5.17% to 3.94%, lower word error rate from 6.38% to 5.75%, and increase speaker identification accuracy from 81.86% to 84.11%. Speech-FT provides a simple yet powerful solution for further refining speech representation models after pre-training.
comment: Published in IEEE Transactions on Audio, Speech, and Language Processing (TASLP). Model and code available at: https://github.com/nervjack2/Speech-FT
♻ ☆ Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
In recent years, general-purpose large language models (LLMs) such as GPT, Gemini, Claude, and DeepSeek have advanced at an unprecedented pace. Despite these achievements, their application to finance remains challenging, due to fragmented data sources, intransparent reasoning processes, and weak transferability to business applications. In response, we introduce Fin-R1, a reasoning LLM designed for financial scenarios. With a compact size of 7 billion parameters, Fin-R1 reduces deployment costs while addressing the aforementioned challenges. Its development follows a two-stage pipeline. First, we construct Fin-R1-Data, a high-quality financial dataset consisting of 60,091 chain-of-thought (CoT) samples, distilled and filtered from multiple authoritative benchmarks to ensure consistency and reliability. Second, we train Fin-R1 using Fin-R1-Data through supervised fine-tuning (SFT), followed by reinforcement learning (RL). This stage substantially improves the model's ability to solve complex financial reasoning tasks, yielding outputs that are both accurate and interpretable. Despite its relatively small parameter scale, Fin-R1 achieves competitive empirical performance across established financial benchmarks and demonstrates practical utility in compliance checking and robo-advisory. Our code is publicly available at https://github.com/SUFE-AIFLM-Lab/Fin-R1, and has already attracted over 700 stars.
♻ ☆ Generation-Time vs. Post-hoc Citation: A Holistic Evaluation of LLM Attribution NeurIPS 2025
Trustworthy Large Language Models (LLMs) must cite human-verifiable sources in high-stakes domains such as healthcare, law, academia, and finance, where even small errors can have severe consequences. Practitioners and researchers face a choice: let models generate citations during decoding, or let models draft answers first and then attach appropriate citations. To clarify this choice, we introduce two paradigms: Generation-Time Citation (G-Cite), which produces the answer and citations in one pass, and Post-hoc Citation (P-Cite), which adds or verifies citations after drafting. We conduct a comprehensive evaluation from zero-shot to advanced retrieval-augmented methods across four popular attribution datasets and provide evidence-based recommendations that weigh trade-offs across use cases. Our results show a consistent trade-off between coverage and citation correctness, with retrieval as the main driver of attribution quality in both paradigms. P-Cite methods achieve high coverage with competitive correctness and moderate latency, whereas G-Cite methods prioritize precision at the cost of coverage and speed. We recommend a retrieval-centric, P-Cite-first approach for high-stakes applications, reserving G-Cite for precision-critical settings such as strict claim verification. Our codes and human evaluation results are available at https://anonymous.4open.science/r/Citation_Paradigms-BBB5/
comment: NeurIPS 2025 LLM Evaluation Workshop
♻ ☆ Are most sentences unique? An empirical examination of Chomskyan claims
A repeated claim in linguistics is that the majority of linguistic utterances are unique. For example, Pinker (1994: 10), summarizing an argument by Noam Chomsky, states that "virtually every sentence that a person utters or understands is a brand-new combination of words, appearing for the first time in the history of the universe." With the increased availability of large corpora, this is a claim that can be empirically investigated. The current paper addresses the question by using the NLTK Python library to parse corpora of different genres, providing counts of exact string matches in each. Results show that while completely unique sentences are often the majority of corpora, this is highly constrained by genre, and that duplicate sentences are not an insignificant part of any individual corpus.
♻ ☆ Rakuten Data Release: A Large-Scale and Long-Term Reviews Corpus for Hotel Domain
This paper presents a large-scale corpus of Rakuten Travel Reviews. Our collection contains 7.3 million customer reviews for 16 years, ranging from 2009 to 2024. Each record in the dataset contains the review text, its response from an accommodation, an anonymized reviewer ID, review date, accommodation ID, plan ID, plan title, room type, room name, purpose, accompanying group, and user ratings from different aspect categories, as well as an overall score. We present statistical information about our corpus and provide insights into factors driving data drift between 2019 and 2024 using statistical approaches.
♻ ☆ On the Robustness of Verbal Confidence of LLMs in Adversarial Attacks NeurIPS 2025
Robust verbal confidence generated by large language models (LLMs) is crucial for the deployment of LLMs to help ensure transparency, trust, and safety in many applications, including those involving human-AI interactions. In this paper, we present the first comprehensive study on the robustness of verbal confidence under adversarial attacks. We introduce attack frameworks targeting verbal confidence scores through both perturbation and jailbreak-based methods, and demonstrate that these attacks can significantly impair verbal confidence estimates and lead to frequent answer changes. We examine a variety of prompting strategies, model sizes, and application domains, revealing that current verbal confidence is vulnerable and that commonly used defence techniques are largely ineffective or counterproductive. Our findings underscore the need to design robust mechanisms for confidence expression in LLMs, as even subtle semantic-preserving modifications can lead to misleading confidence in responses.
comment: Published in NeurIPS 2025
♻ ☆ Beyond Majority Voting: Towards Fine-grained and More Reliable Reward Signal for Test-Time Reinforcement Learning
Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1% on challenging AIME 2025 and 8.1% on AMC. The code is released at https://github.com/szu-tera/SCOPE.
♻ ☆ Meta Prompting for AI Systems
We introduce Meta Prompting (MP), a framework that elevates the reasoning capabilities of large language models (LLMs) by focusing on the formal structure of a task rather than content-specific examples. We establish a theoretical foundation for this paradigm, formalizing MP as a functor that maps a category of tasks to a category of structured prompts, thereby guaranteeing that compositional problem-solving strategies can be systematically decomposed into modular prompt structures. We extend this concept to Recursive Meta Prompting (RMP), an automated process where an LLM can generate and refine its own prompts. We model this self-improvement loop formally as a monad, providing a principled framework for automated prompt engineering. Our claims are validated through extensive experiments demonstrating that a Qwen-72B base model, guided by a single, example-agnostic meta-prompt, achieves state-of-the-art results on MATH, GSM8K, and Game of 24. These results are achieved with substantial token efficiency gains over traditional few-shot methods. Project Page: https://github.com/meta-prompting/meta-prompting.
comment: Project Page: https://github.com/meta-prompting/meta-prompting
♻ ☆ Batch Prompting Suppresses Overthinking Reasoning Under Constraint: How Batch Prompting Suppresses Overthinking in Reasoning Models
Recent work has explored batch prompting as a strategy to amortize inference cost in large language models (LLMs). In this paper, we show that batching offers an additional, underappreciated benefit: it regularizes model behavior during multi-step reasoning for Large Reasoning Models (LRMs). We conduct a comprehensive study across 13 diverse benchmarks and observe that batching improves accuracy while substantially reducing reasoning token usage, often by 3x-5x. Through detailed behavioral analysis, we find that batching suppresses overthinking, reduces hedging language (e.g., repetitive self-corrections), and encourages more decisive answers. Surprisingly, we also observe emergent collective effects in batched inference: models often generalize patterns from earlier examples to solve harder ones in the same batch. These findings position batching not just as a throughput optimization, but as a powerful inference-time regularizer for more efficient and reliable LLM reasoning.
♻ ☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. While current detection methods leverage embedding similarity and natural language inference (NLI), their reliability in safety-critical settings remains unproven. We apply conformal prediction to RAG hallucination detection, transforming heuristic scores into decision sets with finite-sample coverage guarantees (1-alpha). Using calibration sets of n=600, we demonstrate a fundamental dichotomy: on synthetic hallucinations (Natural Questions), embedding methods achieve 95% coverage with 0% False Positive Rate (FPR). However, on real hallucinations from RLHF-aligned models (HaluEval), the same methods fail catastrophically, yielding 100% FPR at target coverage. We analyze this failure through the lens of distributional tails, showing that while NLI models achieve acceptable AUC (0.81), the "hardest" hallucinations are semantically indistinguishable from faithful responses, forcing conformal thresholds to reject nearly all valid outputs. Crucially, GPT-4 as a judge achieves 7% FPR (95% CI:[3.4%, 13.7%]) on the same data, proving the task is solvable via reasoning but opaque to surface-level semantics--a phenomenon we term the "Semantic Illusion."
comment: 12 pages, 3 figures, 5 tables
♻ ☆ LatentExplainer: Explaining Latent Representations in Deep Generative Models with Multimodal Large Language Models CIKM 2025
Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. Our approach perturbs latent variables, interprets changes in generated data, and uses multimodal large language models (MLLMs) to produce human-understandable explanations. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations for latent variables. The results highlight the effectiveness of incorporating inductive biases and uncertainty quantification, significantly enhancing model interpretability.
comment: Accepted to CIKM 2025 Full Research Track
♻ ☆ Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training and interpreting SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
♻ ☆ Sample, Don't Search: Rethinking Test-Time Alignment for Language Models
Increasing test-time computation has emerged as a promising direction for improving language model performance, particularly in scenarios where model finetuning is impractical or impossible due to computational constraints or private model weights. However, existing test-time search methods using a reward model (RM) often degrade in quality as compute scales, due to the over-optimization of what are inherently imperfect reward proxies. We introduce QAlign, a new test-time alignment approach. As we scale test-time compute, QAlign converges to sampling from the optimal aligned distribution for each individual prompt. By adopting recent advances in Markov chain Monte Carlo for text generation, our method enables better-aligned outputs without modifying the underlying model or even requiring logit access. We demonstrate the effectiveness of QAlign on mathematical reasoning benchmarks (GSM8K and GSM-Symbolic) using a task-specific RM, showing consistent improvements over existing test-time compute methods like best-of-n and majority voting. Furthermore, when applied with more realistic RMs trained on the Tulu 3 preference dataset, QAlign outperforms direct preference optimization (DPO), best-of-n, majority voting, and weighted majority voting on a diverse range of datasets (GSM8K, MATH500, IFEval, MMLU-Redux, and TruthfulQA). A practical solution to aligning language models at test time using additional computation without degradation, our approach expands the limits of the capability that can be obtained from off-the-shelf language models without further training.
Computer Vision and Pattern Recognition 150
☆ Generative Refocusing: Flexible Defocus Control from a Single Image
Depth-of-field control is essential in photography, but getting the perfect focus often takes several tries or special equipment. Single-image refocusing is still difficult. It involves recovering sharp content and creating realistic bokeh. Current methods have significant drawbacks. They need all-in-focus inputs, depend on synthetic data from simulators, and have limited control over aperture. We introduce Generative Refocusing, a two-step process that uses DeblurNet to recover all-in-focus images from various inputs and BokehNet for creating controllable bokeh. Our main innovation is semi-supervised training. This method combines synthetic paired data with unpaired real bokeh images, using EXIF metadata to capture real optical characteristics beyond what simulators can provide. Our experiments show we achieve top performance in defocus deblurring, bokeh synthesis, and refocusing benchmarks. Additionally, our Generative Refocusing allows text-guided adjustments and custom aperture shapes.
comment: Project website: https://generative-refocusing.github.io/
☆ The World is Your Canvas: Painting Promptable Events with Reference Images, Trajectories, and Text
We present WorldCanvas, a framework for promptable world events that enables rich, user-directed simulation by combining text, trajectories, and reference images. Unlike text-only approaches and existing trajectory-controlled image-to-video methods, our multimodal approach combines trajectories -- encoding motion, timing, and visibility -- with natural language for semantic intent and reference images for visual grounding of object identity, enabling the generation of coherent, controllable events that include multi-agent interactions, object entry/exit, reference-guided appearance and counterintuitive events. The resulting videos demonstrate not only temporal coherence but also emergent consistency, preserving object identity and scene despite temporary disappearance. By supporting expressive world events generation, WorldCanvas advances world models from passive predictors to interactive, user-shaped simulators. Our project page is available at: https://worldcanvas.github.io/.
comment: Project page and code: https://worldcanvas.github.io/
☆ Next-Embedding Prediction Makes Strong Vision Learners
Inspired by the success of generative pretraining in natural language, we ask whether the same principles can yield strong self-supervised visual learners. Instead of training models to output features for downstream use, we train them to generate embeddings to perform predictive tasks directly. This work explores such a shift from learning representations to learning models. Specifically, models learn to predict future patch embeddings conditioned on past ones, using causal masking and stop gradient, which we refer to as Next-Embedding Predictive Autoregression (NEPA). We demonstrate that a simple Transformer pretrained on ImageNet-1k with next embedding prediction as its sole learning objective is effective - no pixel reconstruction, discrete tokens, contrastive loss, or task-specific heads. This formulation retains architectural simplicity and scalability, without requiring additional design complexity. NEPA achieves strong results across tasks, attaining 83.8% and 85.3% top-1 accuracy on ImageNet-1K with ViT-B and ViT-L backbones after fine-tuning, and transferring effectively to semantic segmentation on ADE20K. We believe generative pretraining from embeddings provides a simple, scalable, and potentially modality-agnostic alternative to visual self-supervised learning.
comment: Project Page: https://sihanxu.me/nepa
☆ EasyV2V: A High-quality Instruction-based Video Editing Framework
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
comment: Project page: https://snap-research.github.io/easyv2v/
☆ DVGT: Driving Visual Geometry Transformer
Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.
comment: Code is available at https://github.com/wzzheng/DVGT
☆ Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification
Conventional evaluation methods for multimodal LLMs (MLLMs) lack interpretability and are often insufficient to fully disclose significant capability gaps across models. To address this, we introduce AuditDM, an automated framework that actively discovers and rectifies MLLM failure modes by auditing their divergence. AuditDM fine-tunes an MLLM as an auditor via reinforcement learning to generate challenging questions and counterfactual images that maximize disagreement among target models. Once trained, the auditor uncovers diverse, interpretable exemplars that reveal model weaknesses and serve as annotation-free data for rectification. When applied to SoTA models like Gemma-3 and PaliGemma-2, AuditDM discovers more than 20 distinct failure types. Fine-tuning on these discoveries consistently improves all models across 16 benchmarks, and enables a 3B model to surpass its 28B counterpart. Our results suggest that as data scaling hits diminishing returns, targeted model auditing offers an effective path to model diagnosis and improvement.
comment: project page: https://auditdm.github.io/
☆ AdaTooler-V: Adaptive Tool-Use for Images and Videos
Recent advances have shown that multimodal large language models (MLLMs) benefit from multimodal interleaved chain-of-thought (CoT) with vision tool interactions. However, existing open-source models often exhibit blind tool-use reasoning patterns, invoking vision tools even when they are unnecessary, which significantly increases inference overhead and degrades model performance. To this end, we propose AdaTooler-V, an MLLM that performs adaptive tool-use by determining whether a visual problem truly requires tools. First, we introduce AT-GRPO, a reinforcement learning algorithm that adaptively adjusts reward scales based on the Tool Benefit Score of each sample, encouraging the model to invoke tools only when they provide genuine improvements. Moreover, we construct two datasets to support training: AdaTooler-V-CoT-100k for SFT cold start and AdaTooler-V-300k for RL with verifiable rewards across single-image, multi-image, and video data. Experiments across twelve benchmarks demonstrate the strong reasoning capability of AdaTooler-V, outperforming existing methods in diverse visual reasoning tasks. Notably, AdaTooler-V-7B achieves an accuracy of 89.8\% on the high-resolution benchmark V*, surpassing the commercial proprietary model GPT-4o and Gemini 1.5 Pro. All code, models, and data are released.
comment: Project page: https://github.com/CYWang735/AdaTooler-V
☆ StereoPilot: Learning Unified and Efficient Stereo Conversion via Generative Priors
The rapid growth of stereoscopic displays, including VR headsets and 3D cinemas, has led to increasing demand for high-quality stereo video content. However, producing 3D videos remains costly and complex, while automatic Monocular-to-Stereo conversion is hindered by the limitations of the multi-stage ``Depth-Warp-Inpaint'' (DWI) pipeline. This paradigm suffers from error propagation, depth ambiguity, and format inconsistency between parallel and converged stereo configurations. To address these challenges, we introduce UniStereo, the first large-scale unified dataset for stereo video conversion, covering both stereo formats to enable fair benchmarking and robust model training. Building upon this dataset, we propose StereoPilot, an efficient feed-forward model that directly synthesizes the target view without relying on explicit depth maps or iterative diffusion sampling. Equipped with a learnable domain switcher and a cycle consistency loss, StereoPilot adapts seamlessly to different stereo formats and achieves improved consistency. Extensive experiments demonstrate that StereoPilot significantly outperforms state-of-the-art methods in both visual fidelity and computational efficiency. Project page: https://hit-perfect.github.io/StereoPilot/.
☆ Depth Any Panoramas: A Foundation Model for Panoramic Depth Estimation
In this work, we present a panoramic metric depth foundation model that generalizes across diverse scene distances. We explore a data-in-the-loop paradigm from the view of both data construction and framework design. We collect a large-scale dataset by combining public datasets, high-quality synthetic data from our UE5 simulator and text-to-image models, and real panoramic images from the web. To reduce domain gaps between indoor/outdoor and synthetic/real data, we introduce a three-stage pseudo-label curation pipeline to generate reliable ground truth for unlabeled images. For the model, we adopt DINOv3-Large as the backbone for its strong pre-trained generalization, and introduce a plug-and-play range mask head, sharpness-centric optimization, and geometry-centric optimization to improve robustness to varying distances and enforce geometric consistency across views. Experiments on multiple benchmarks (e.g., Stanford2D3D, Matterport3D, and Deep360) demonstrate strong performance and zero-shot generalization, with particularly robust and stable metric predictions in diverse real-world scenes. The project page can be found at: \href{https://insta360-research-team.github.io/DAP_website/} {https://insta360-research-team.github.io/DAP\_website/}
comment: Project Page: https://insta360-research-team.github.io/DAP_website/
☆ SFTok: Bridging the Performance Gap in Discrete Tokenizers
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).
comment: Under review. Code is available at https://github.com/Neur-IO/SFTok
☆ MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.
comment: 25 pages, 10 figures. Project page:https://hybridrobotics.github.io/MomaGraph/
☆ SceneDiff: A Benchmark and Method for Multiview Object Change Detection
We investigate the problem of identifying objects that have been added, removed, or moved between a pair of captures (images or videos) of the same scene at different times. Detecting such changes is important for many applications, such as robotic tidying or construction progress and safety monitoring. A major challenge is that varying viewpoints can cause objects to falsely appear changed. We introduce SceneDiff Benchmark, the first multiview change detection benchmark with object instance annotations, comprising 350 diverse video pairs with thousands of changed objects. We also introduce the SceneDiff method, a new training-free approach for multiview object change detection that leverages pretrained 3D, segmentation, and image encoding models to robustly predict across multiple benchmarks. Our method aligns the captures in 3D, extracts object regions, and compares spatial and semantic region features to detect changes. Experiments on multi-view and two-view benchmarks demonstrate that our method outperforms existing approaches by large margins (94% and 37.4% relative AP improvements). The benchmark and code will be publicly released.
☆ Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
comment: Project website: https://egoman-project.github.io
☆ VIVA: VLM-Guided Instruction-Based Video Editing with Reward Optimization
Instruction-based video editing aims to modify an input video according to a natural-language instruction while preserving content fidelity and temporal coherence. However, existing diffusion-based approaches are often trained on paired data of simple editing operations, which fundamentally limits their ability to generalize to diverse and complex, real-world instructions. To address this generalization gap, we propose VIVA, a scalable framework for instruction-based video editing that leverages VLM-guided encoding and reward optimization. First, we introduce a VLM-based instructor that encodes the textual instruction, the first frame of the source video, and an optional reference image into visually-grounded instruction representations, providing fine-grained spatial and semantic context for the diffusion transformer backbone. Second, we propose a post-training stage, Edit-GRPO, which adapts Group Relative Policy Optimization to the domain of video editing, directly optimizing the model for instruction-faithful, content-preserving, and aesthetically pleasing edits using relative rewards. Furthermore, we propose a data construction pipeline designed to synthetically generate diverse, high-fidelity paired video-instruction data of basic editing operations. Extensive experiments show that VIVA achieves superior instruction following, generalization, and editing quality over state-of-the-art methods. Website: https://viva-paper.github.io
☆ Alchemist: Unlocking Efficiency in Text-to-Image Model Training via Meta-Gradient Data Selection
Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.
comment: project page: https://kxding.github.io/project/Alchemist/
☆ FlashPortrait: 6x Faster Infinite Portrait Animation with Adaptive Latent Prediction
Current diffusion-based acceleration methods for long-portrait animation struggle to ensure identity (ID) consistency. This paper presents FlashPortrait, an end-to-end video diffusion transformer capable of synthesizing ID-preserving, infinite-length videos while achieving up to 6x acceleration in inference speed. In particular, FlashPortrait begins by computing the identity-agnostic facial expression features with an off-the-shelf extractor. It then introduces a Normalized Facial Expression Block to align facial features with diffusion latents by normalizing them with their respective means and variances, thereby improving identity stability in facial modeling. During inference, FlashPortrait adopts a dynamic sliding-window scheme with weighted blending in overlapping areas, ensuring smooth transitions and ID consistency in long animations. In each context window, based on the latent variation rate at particular timesteps and the derivative magnitude ratio among diffusion layers, FlashPortrait utilizes higher-order latent derivatives at the current timestep to directly predict latents at future timesteps, thereby skipping several denoising steps and achieving 6x speed acceleration. Experiments on benchmarks show the effectiveness of FlashPortrait both qualitatively and quantitatively.
☆ Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.
comment: Code and data available at https://github.com/facebookresearch/MMRB2
☆ Sceniris: A Fast Procedural Scene Generation Framework
Synthetic 3D scenes are essential for developing Physical AI and generative models. Existing procedural generation methods often have low output throughput, creating a significant bottleneck in scaling up dataset creation. In this work, we introduce Sceniris, a highly efficient procedural scene generation framework for rapidly generating large-scale, collision-free scene variations. Sceniris also provides an optional robot reachability check, providing manipulation-feasible scenes for robot tasks. Sceniris is designed for maximum efficiency by addressing the primary performance limitations of the prior method, Scene Synthesizer. Leveraging batch sampling and faster collision checking in cuRobo, Sceniris achieves at least 234x speed-up over Scene Synthesizer. Sceniris also expands the object-wise spatial relationships available in prior work to support diverse scene requirements. Our code is available at https://github.com/rai-inst/sceniris
comment: Code is available at https://github.com/rai-inst/sceniris
☆ Instant Expressive Gaussian Head Avatar via 3D-Aware Expression Distillation
Portrait animation has witnessed tremendous quality improvements thanks to recent advances in video diffusion models. However, these 2D methods often compromise 3D consistency and speed, limiting their applicability in real-world scenarios, such as digital twins or telepresence. In contrast, 3D-aware facial animation feedforward methods -- built upon explicit 3D representations, such as neural radiance fields or Gaussian splatting -- ensure 3D consistency and achieve faster inference speed, but come with inferior expression details. In this paper, we aim to combine their strengths by distilling knowledge from a 2D diffusion-based method into a feed-forward encoder, which instantly converts an in-the-wild single image into a 3D-consistent, fast yet expressive animatable representation. Our animation representation is decoupled from the face's 3D representation and learns motion implicitly from data, eliminating the dependency on pre-defined parametric models that often constrain animation capabilities. Unlike previous computationally intensive global fusion mechanisms (e.g., multiple attention layers) for fusing 3D structural and animation information, our design employs an efficient lightweight local fusion strategy to achieve high animation expressivity. As a result, our method runs at 107.31 FPS for animation and pose control while achieving comparable animation quality to the state-of-the-art, surpassing alternative designs that trade speed for quality or vice versa. Project website is https://research.nvidia.com/labs/amri/projects/instant4d
comment: Project website is https://research.nvidia.com/labs/amri/projects/instant4d
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ M-PhyGs: Multi-Material Object Dynamics from Video
Knowledge of the physical material properties governing the dynamics of a real-world object becomes necessary to accurately anticipate its response to unseen interactions. Existing methods for estimating such physical material parameters from visual data assume homogeneous single-material objects, pre-learned dynamics, or simplistic topologies. Real-world objects, however, are often complex in material composition and geometry lying outside the realm of these assumptions. In this paper, we particularly focus on flowers as a representative common object. We introduce Multi-material Physical Gaussians (M-PhyGs) to estimate the material composition and parameters of such multi-material complex natural objects from video. From a short video captured in a natural setting, M-PhyGs jointly segments the object into similar materials and recovers their continuum mechanical parameters while accounting for gravity. M-PhyGs achieves this efficiently with newly introduced cascaded 3D and 2D losses, and by leveraging temporal mini-batching. We introduce a dataset, Phlowers, of people interacting with flowers as a novel platform to evaluate the accuracy of this challenging task of multi-material physical parameter estimation. Experimental results on Phlowers dataset demonstrate the accuracy and effectiveness of M-PhyGs and its components.
☆ Memory-Enhanced SAM3 for Occlusion-Robust Surgical Instrument Segmentation
Accurate surgical instrument segmentation in endoscopic videos is crucial for computer-assisted interventions, yet remains challenging due to frequent occlusions, rapid motion, specular artefacts, and long-term instrument re-entry. While SAM3 provides a powerful spatio-temporal framework for video object segmentation, its performance in surgical scenes is limited by indiscriminate memory updates, fixed memory capacity, and weak identity recovery after occlusions. We propose ReMeDI-SAM3, a training-free memory-enhanced extension of SAM3, that addresses these limitations through three components: (i) relevance-aware memory filtering with a dedicated occlusion-aware memory for storing pre-occlusion frames, (ii) a piecewise interpolation scheme that expands the effective memory capacity, and (iii) a feature-based re-identification module with temporal voting for reliable post-occlusion identity disambiguation. Together, these components mitigate error accumulation and enable reliable recovery after occlusions. Evaluations on EndoVis17 and EndoVis18 under a zero-shot setting show absolute mcIoU improvements of around 7% and 16%, respectively, over vanilla SAM3, outperforming even prior training-based approaches. Project page: https://valaybundele.github.io/remedi-sam3/.
comment: Under Review
☆ Training Together, Diagnosing Better: Federated Learning for Collagen VI-Related Dystrophies
The application of Machine Learning (ML) to the diagnosis of rare diseases, such as collagen VI-related dystrophies (COL6-RD), is fundamentally limited by the scarcity and fragmentation of available data. Attempts to expand sampling across hospitals, institutions, or countries with differing regulations face severe privacy, regulatory, and logistical obstacles that are often difficult to overcome. The Federated Learning (FL) provides a promising solution by enabling collaborative model training across decentralized datasets while keeping patient data local and private. Here, we report a novel global FL initiative using the Sherpa.ai FL platform, which leverages FL across distributed datasets in two international organizations for the diagnosis of COL6-RD, using collagen VI immunofluorescence microscopy images from patient-derived fibroblast cultures. Our solution resulted in an ML model capable of classifying collagen VI patient images into the three primary pathogenic mechanism groups associated with COL6-RD: exon skipping, glycine substitution, and pseudoexon insertion. This new approach achieved an F1-score of 0.82, outperforming single-organization models (0.57-0.75). These results demonstrate that FL substantially improves diagnostic utility and generalizability compared to isolated institutional models. Beyond enabling more accurate diagnosis, we anticipate that this approach will support the interpretation of variants of uncertain significance and guide the prioritization of sequencing strategies to identify novel pathogenic variants.
☆ Pixel Seal: Adversarial-only training for invisible image and video watermarking
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
comment: Code and model available at https://github.com/facebookresearch/videoseal
☆ RePlan: Reasoning-guided Region Planning for Complex Instruction-based Image Editing
Instruction-based image editing enables natural-language control over visual modifications, yet existing models falter under Instruction-Visual Complexity (IV-Complexity), where intricate instructions meet cluttered or ambiguous scenes. We introduce RePlan (Region-aligned Planning), a plan-then-execute framework that couples a vision-language planner with a diffusion editor. The planner decomposes instructions via step-by-step reasoning and explicitly grounds them to target regions; the editor then applies changes using a training-free attention-region injection mechanism, enabling precise, parallel multi-region edits without iterative inpainting. To strengthen planning, we apply GRPO-based reinforcement learning using 1K instruction-only examples, yielding substantial gains in reasoning fidelity and format reliability. We further present IV-Edit, a benchmark focused on fine-grained grounding and knowledge-intensive edits. Across IV-Complex settings, RePlan consistently outperforms strong baselines trained on far larger datasets, improving regional precision and overall fidelity. Our project page: https://replan-iv-edit.github.io
comment: Precise region control and planning for instruction-based image editing. Our project page: https://replan-iv-edit.github.io
☆ GenEval 2: Addressing Benchmark Drift in Text-to-Image Evaluation
Automating Text-to-Image (T2I) model evaluation is challenging; a judge model must be used to score correctness, and test prompts must be selected to be challenging for current T2I models but not the judge. We argue that satisfying these constraints can lead to benchmark drift over time, where the static benchmark judges fail to keep up with newer model capabilities. We show that benchmark drift is a significant problem for GenEval, one of the most popular T2I benchmarks. Although GenEval was well-aligned with human judgment at the time of its release, it has drifted far from human judgment over time -- resulting in an absolute error of as much as 17.7% for current models. This level of drift strongly suggests that GenEval has been saturated for some time, as we verify via a large-scale human study. To help fill this benchmarking gap, we introduce a new benchmark, GenEval 2, with improved coverage of primitive visual concepts and higher degrees of compositionality, which we show is more challenging for current models. We also introduce Soft-TIFA, an evaluation method for GenEval 2 that combines judgments for visual primitives, which we show is more well-aligned with human judgment and argue is less likely to drift from human-alignment over time (as compared to more holistic judges such as VQAScore). Although we hope GenEval 2 will provide a strong benchmark for many years, avoiding benchmark drift is far from guaranteed and our work, more generally, highlights the importance of continual audits and improvement for T2I and related automated model evaluation benchmarks.
☆ OPENTOUCH: Bringing Full-Hand Touch to Real-World Interaction
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.
comment: https://opentouch-tactile.github.io/
☆ Radiology Report Generation with Layer-Wise Anatomical Attention
Automatic radiology report generation is a promising application of multimodal deep learning, aiming to reduce reporting workload and improve consistency. However, current state-of-the-art (SOTA) systems - such as Multimodal AI for Radiology Applications (MAIRA-2) and Medical Pathways Language Model-Multimodal (MedPaLM-M) - depend on large-scale multimodal training, clinical metadata, and multiple imaging views, making them resource-intensive and inaccessible for most settings. We introduce a compact image-to-text architecture that generates the Findings section of chest X-ray reports from a single frontal image. The model combines a frozen Self-Distillation with No Labels v3 (DINOv3) Vision Transformer (ViT) encoder with a Generative Pre-trained Transformer 2 (GPT-2) decoder enhanced by layer-wise anatomical attention. This mechanism integrates lung and heart segmentation masks through hierarchical Gaussian smoothing, biasing attention toward clinically relevant regions without adding trainable parameters. Evaluated on the official Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset using Chest Radiograph Expert (CheXpert) and Radiology Graph (RadGraph) metrics, our approach achieved substantial gains: CheXpert Macro-F1 for five key pathologies increased by 168% (0.083 -> 0.238) and Micro-F1 by 146% (0.137 -> 0.337), while broader performance across 14 observations improved by 86% (0.170 -> 0.316). Structural coherence also improved, with RadGraph F1 rising by 9.7%. Despite its small size and purely image-conditioned design, the model demonstrates that decoder-level anatomical guidance improves spatial grounding and enhances coherence in clinically relevant regions. The source code is publicly available at: https://github.com/devMuniz02/UDEM-CXR-Reporting-Thesis-2025.
comment: 11 pages, 6 figures
☆ Next-Generation License Plate Detection and Recognition System using YOLOv8
In the evolving landscape of traffic management and vehicle surveillance, efficient license plate detection and recognition are indispensable. Historically, many methodologies have tackled this challenge, but consistent real-time accuracy, especially in diverse environments, remains elusive. This study examines the performance of YOLOv8 variants on License Plate Recognition (LPR) and Character Recognition tasks, crucial for advancing Intelligent Transportation Systems. Two distinct datasets were employed for training and evaluation, yielding notable findings. The YOLOv8 Nano variant demonstrated a precision of 0.964 and mAP50 of 0.918 on the LPR task, while the YOLOv8 Small variant exhibited a precision of 0.92 and mAP50 of 0.91 on the Character Recognition task. A custom method for character sequencing was introduced, effectively sequencing the detected characters based on their x-axis positions. An optimized pipeline, utilizing YOLOv8 Nano for LPR and YOLOv8 Small for Character Recognition, is proposed. This configuration not only maintains computational efficiency but also ensures high accuracy, establishing a robust foundation for future real-world deployments on edge devices within Intelligent Transportation Systems. This effort marks a significant stride towards the development of smarter and more efficient urban infrastructures.
comment: 6 pages, 5 figures. Accepted and published in the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)
☆ DenseBEV: Transforming BEV Grid Cells into 3D Objects WACV 2026
In current research, Bird's-Eye-View (BEV)-based transformers are increasingly utilized for multi-camera 3D object detection. Traditional models often employ random queries as anchors, optimizing them successively. Recent advancements complement or replace these random queries with detections from auxiliary networks. We propose a more intuitive and efficient approach by using BEV feature cells directly as anchors. This end-to-end approach leverages the dense grid of BEV queries, considering each cell as a potential object for the final detection task. As a result, we introduce a novel two-stage anchor generation method specifically designed for multi-camera 3D object detection. To address the scaling issues of attention with a large number of queries, we apply BEV-based Non-Maximum Suppression, allowing gradients to flow only through non-suppressed objects. This ensures efficient training without the need for post-processing. By using BEV features from encoders such as BEVFormer directly as object queries, temporal BEV information is inherently embedded. Building on the temporal BEV information already embedded in our object queries, we introduce a hybrid temporal modeling approach by integrating prior detections to further enhance detection performance. Evaluating our method on the nuScenes dataset shows consistent and significant improvements in NDS and mAP over the baseline, even with sparser BEV grids and therefore fewer initial anchors. It is particularly effective for small objects, enhancing pedestrian detection with a 3.8% mAP increase on nuScenes and an 8% increase in LET-mAP on Waymo. Applying our method, named DenseBEV, to the challenging Waymo Open dataset yields state-of-the-art performance, achieving a LET-mAP of 60.7%, surpassing the previous best by 5.4%. Code is available at https://github.com/mdaehl/DenseBEV.
comment: 15 pages, 8 figures, accepted by WACV 2026
☆ GeoPredict: Leveraging Predictive Kinematics and 3D Gaussian Geometry for Precise VLA Manipulation
Vision-Language-Action (VLA) models achieve strong generalization in robotic manipulation but remain largely reactive and 2D-centric, making them unreliable in tasks that require precise 3D reasoning. We propose GeoPredict, a geometry-aware VLA framework that augments a continuous-action policy with predictive kinematic and geometric priors. GeoPredict introduces a trajectory-level module that encodes motion history and predicts multi-step 3D keypoint trajectories of robot arms, and a predictive 3D Gaussian geometry module that forecasts workspace geometry with track-guided refinement along future keypoint trajectories. These predictive modules serve exclusively as training-time supervision through depth-based rendering, while inference requires only lightweight additional query tokens without invoking any 3D decoding. Experiments on RoboCasa Human-50, LIBERO, and real-world manipulation tasks show that GeoPredict consistently outperforms strong VLA baselines, especially in geometry-intensive and spatially demanding scenarios.
☆ KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals AAAI 2026
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/
comment: Accepted by AAAI 2026
☆ R3ST: A Synthetic 3D Dataset With Realistic Trajectories
Datasets are essential to train and evaluate computer vision models used for traffic analysis and to enhance road safety. Existing real datasets fit real-world scenarios, capturing authentic road object behaviors, however, they typically lack precise ground-truth annotations. In contrast, synthetic datasets play a crucial role, allowing for the annotation of a large number of frames without additional costs or extra time. However, a general drawback of synthetic datasets is the lack of realistic vehicle motion, since trajectories are generated using AI models or rule-based systems. In this work, we introduce R3ST (Realistic 3D Synthetic Trajectories), a synthetic dataset that overcomes this limitation by generating a synthetic 3D environment and integrating real-world trajectories derived from SinD, a bird's-eye-view dataset recorded from drone footage. The proposed dataset closes the gap between synthetic data and realistic trajectories, advancing the research in trajectory forecasting of road vehicles, offering both accurate multimodal ground-truth annotations and authentic human-driven vehicle trajectories.
☆ Kling-Omni Technical Report
We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supports a diverse range of user inputs, including text instructions, reference images, and video contexts, processing them into a unified multimodal representation to deliver cinematic-quality and highly-intelligent video content creation. To support these capabilities, we constructed a comprehensive data system that serves as the foundation for multimodal video creation. The framework is further empowered by efficient large-scale pre-training strategies and infrastructure optimizations for inference. Comprehensive evaluations reveal that Kling-Omni demonstrates exceptional capabilities in in-context generation, reasoning-based editing, and multimodal instruction following. Moving beyond a content creation tool, we believe Kling-Omni is a pivotal advancement toward multimodal world simulators capable of perceiving, reasoning, generating and interacting with the dynamic and complex worlds.
comment: Kling-Omni Technical Report
☆ FlowDet: Unifying Object Detection and Generative Transport Flows
We present FlowDet, the first formulation of object detection using modern Conditional Flow Matching techniques. This work follows from DiffusionDet, which originally framed detection as a generative denoising problem in the bounding box space via diffusion. We revisit and generalise this formulation to a broader class of generative transport problems, while maintaining the ability to vary the number of boxes and inference steps without re-training. In contrast to the curved stochastic transport paths induced by diffusion, FlowDet learns simpler and straighter paths resulting in faster scaling of detection performance as the number of inference steps grows. We find that this reformulation enables us to outperform diffusion based detection systems (as well as non-generative baselines) across a wide range of experiments, including various precision/recall operating points using multiple feature backbones and datasets. In particular, when evaluating under recall-constrained settings, we can highlight the effects of the generative transport without over-compensating with large numbers of proposals. This provides gains of up to +3.6% AP and +4.2% AP$_{rare}$ over DiffusionDet on the COCO and LVIS datasets, respectively.
☆ Make-It-Poseable: Feed-forward Latent Posing Model for 3D Humanoid Character Animation
Posing 3D characters is a fundamental task in computer graphics and vision. However, existing methods like auto-rigging and pose-conditioned generation often struggle with challenges such as inaccurate skinning weight prediction, topological imperfections, and poor pose conformance, limiting their robustness and generalizability. To overcome these limitations, we introduce Make-It-Poseable, a novel feed-forward framework that reformulates character posing as a latent-space transformation problem. Instead of deforming mesh vertices as in traditional pipelines, our method reconstructs the character in new poses by directly manipulating its latent representation. At the core of our method is a latent posing transformer that manipulates shape tokens based on skeletal motion. This process is facilitated by a dense pose representation for precise control. To ensure high-fidelity geometry and accommodate topological changes, we also introduce a latent-space supervision strategy and an adaptive completion module. Our method demonstrates superior performance in posing quality. It also naturally extends to 3D editing applications like part replacement and refinement.
comment: Project page: https://jasongzy.github.io/Make-It-Poseable/
☆ TreeNet: A Light Weight Model for Low Bitrate Image Compression
Reducing computational complexity remains a critical challenge for the widespread adoption of learning-based image compression techniques. In this work, we propose TreeNet, a novel low-complexity image compression model that leverages a binary tree-structured encoder-decoder architecture to achieve efficient representation and reconstruction. We employ attentional feature fusion mechanism to effectively integrate features from multiple branches. We evaluate TreeNet on three widely used benchmark datasets and compare its performance against competing methods including JPEG AI, a recent standard in learning-based image compression. At low bitrates, TreeNet achieves an average improvement of 4.83% in BD-rate over JPEG AI, while reducing model complexity by 87.82%. Furthermore, we conduct extensive ablation studies to investigate the influence of various latent representations within TreeNet, offering deeper insights into the factors contributing to reconstruction.
☆ Task-Oriented Data Synthesis and Control-Rectify Sampling for Remote Sensing Semantic Segmentation
With the rapid progress of controllable generation, training data synthesis has become a promising way to expand labeled datasets and alleviate manual annotation in remote sensing (RS). However, the complexity of semantic mask control and the uncertainty of sampling quality often limit the utility of synthetic data in downstream semantic segmentation tasks. To address these challenges, we propose a task-oriented data synthesis framework (TODSynth), including a Multimodal Diffusion Transformer (MM-DiT) with unified triple attention and a plug-and-play sampling strategy guided by task feedback. Built upon the powerful DiT-based generative foundation model, we systematically evaluate different control schemes, showing that a text-image-mask joint attention scheme combined with full fine-tuning of the image and mask branches significantly enhances the effectiveness of RS semantic segmentation data synthesis, particularly in few-shot and complex-scene scenarios. Furthermore, we propose a control-rectify flow matching (CRFM) method, which dynamically adjusts sampling directions guided by semantic loss during the early high-plasticity stage, mitigating the instability of generated images and bridging the gap between synthetic data and downstream segmentation tasks. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art controllable generation methods, producing more stable and task-oriented synthetic data for RS semantic segmentation.
☆ OMG-Bench: A New Challenging Benchmark for Skeleton-based Online Micro Hand Gesture Recognition
Online micro gesture recognition from hand skeletons is critical for VR/AR interaction but faces challenges due to limited public datasets and task-specific algorithms. Micro gestures involve subtle motion patterns, which make constructing datasets with precise skeletons and frame-level annotations difficult. To this end, we develop a multi-view self-supervised pipeline to automatically generate skeleton data, complemented by heuristic rules and expert refinement for semi-automatic annotation. Based on this pipeline, we introduce OMG-Bench, the first large-scale public benchmark for skeleton-based online micro gesture recognition. It features 40 fine-grained gesture classes with 13,948 instances across 1,272 sequences, characterized by subtle motions, rapid dynamics, and continuous execution. To tackle these challenges, we propose Hierarchical Memory-Augmented Transformer (HMATr), an end-to-end framework that unifies gesture detection and classification by leveraging hierarchical memory banks which store frame-level details and window-level semantics to preserve historical context. In addition, it employs learnable position-aware queries initialized from the memory to implicitly encode gesture positions and semantics. Experiments show that HMATr outperforms state-of-the-art methods by 7.6\% in detection rate, establishing a strong baseline for online micro gesture recognition. Project page: https://omg-bench.github.io/
comment: Project page: https://omg-bench.github.io/
☆ VERM: Leveraging Foundation Models to Create a Virtual Eye for Efficient 3D Robotic Manipulation
When performing 3D manipulation tasks, robots have to execute action planning based on perceptions from multiple fixed cameras. The multi-camera setup introduces substantial redundancy and irrelevant information, which increases computational costs and forces the model to spend extra training time extracting crucial task-relevant details. To filter out redundant information and accurately extract task-relevant features, we propose the VERM (Virtual Eye for Robotic Manipulation) method, leveraging the knowledge in foundation models to imagine a virtual task-adaptive view from the constructed 3D point cloud, which efficiently captures necessary information and mitigates occlusion. To facilitate 3D action planning and fine-grained manipulation, we further design a depth-aware module and a dynamic coarse-to-fine procedure. Extensive experimental results on both simulation benchmark RLBench and real-world evaluations demonstrate the effectiveness of our method, surpassing previous state-of-the-art methods while achieving 1.89x speedup in training time and 1.54x speedup in inference speed. More results can be found on our project website at https://verm-ral.github.io .
comment: Accepted at RA-L 2025
☆ A multi-centre, multi-device benchmark dataset for landmark-based comprehensive fetal biometry
Accurate fetal growth assessment from ultrasound (US) relies on precise biometry measured by manually identifying anatomical landmarks in standard planes. Manual landmarking is time-consuming, operator-dependent, and sensitive to variability across scanners and sites, limiting the reproducibility of automated approaches. There is a need for multi-source annotated datasets to develop artificial intelligence-assisted fetal growth assessment methods. To address this bottleneck, we present an open, multi-centre, multi-device benchmark dataset of fetal US images with expert anatomical landmark annotations for clinically used fetal biometric measurements. These measurements include head bi-parietal and occipito-frontal diameters, abdominal transverse and antero-posterior diameters, and femoral length. The dataset contains 4,513 de-identified US images from 1,904 subjects acquired at three clinical sites using seven different US devices. We provide standardised, subject-disjoint train/test splits, evaluation code, and baseline results to enable fair and reproducible comparison of methods. Using an automatic biometry model, we quantify domain shift and demonstrate that training and evaluation confined to a single centre substantially overestimate performance relative to multi-centre testing. To the best of our knowledge, this is the first publicly available multi-centre, multi-device, landmark-annotated dataset that covers all primary fetal biometry measures, providing a robust benchmark for domain adaptation and multi-centre generalisation in fetal biometry and enabling more reliable AI-assisted fetal growth assessment across centres. All data, annotations, training code, and evaluation pipelines are made publicly available.
comment: 11 pages, 5 figures, 3 tables
☆ SDFoam: Signed-Distance Foam for explicit surface reconstruction
Neural radiance fields (NeRF) have driven impressive progress in view synthesis by using ray-traced volumetric rendering. Splatting-based methods such as 3D Gaussian Splatting (3DGS) provide faster rendering by rasterizing 3D primitives. RadiantFoam (RF) brought ray tracing back, achieving throughput comparable to Gaussian Splatting by organizing radiance with an explicit Voronoi Diagram (VD). Yet, all the mentioned methods still struggle with precise mesh reconstruction. We address this gap by jointly learning an explicit VD with an implicit Signed Distance Field (SDF). The scene is optimized via ray tracing and regularized by an Eikonal objective. The SDF introduces metric-consistent isosurfaces, which, in turn, bias near-surface Voronoi cell faces to align with the zero level set. The resulting model produces crisper, view-consistent surfaces with fewer floaters and improved topology, while preserving photometric quality and maintaining training speed on par with RadiantFoam. Across diverse scenes, our hybrid implicit-explicit formulation, which we name SDFoam, substantially improves mesh reconstruction accuracy (Chamfer distance) with comparable appearance (PSNR, SSIM), without sacrificing efficiency.
☆ Detecting Localized Deepfakes: How Well Do Synthetic Image Detectors Handle Inpainting?
The rapid progress of generative AI has enabled highly realistic image manipulations, including inpainting and region-level editing. These approaches preserve most of the original visual context and are increasingly exploited in cybersecurity-relevant threat scenarios. While numerous detectors have been proposed for identifying fully synthetic images, their ability to generalize to localized manipulations remains insufficiently characterized. This work presents a systematic evaluation of state-of-the-art detectors, originally trained for the deepfake detection on fully synthetic images, when applied to a distinct challenge: localized inpainting detection. The study leverages multiple datasets spanning diverse generators, mask sizes, and inpainting techniques. Our experiments show that models trained on a large set of generators exhibit partial transferability to inpainting-based edits and can reliably detect medium- and large-area manipulations or regeneration-style inpainting, outperforming many existing ad hoc detection approaches.
comment: 17 pages, 5 figures, 9 tables
☆ Few-Shot Fingerprinting Subject Re-Identification in 3D-MRI and 2D-X-Ray
Combining open-source datasets can introduce data leakage if the same subject appears in multiple sets, leading to inflated model performance. To address this, we explore subject fingerprinting, mapping all images of a subject to a distinct region in latent space, to enable subject re-identification via similarity matching. Using a ResNet-50 trained with triplet margin loss, we evaluate few-shot fingerprinting on 3D MRI and 2D X-ray data in both standard (20-way 1-shot) and challenging (1000-way 1-shot) scenarios. The model achieves high Mean- Recall-@-K scores: 99.10% (20-way 1-shot) and 90.06% (500-way 5-shot) on ChestXray-14; 99.20% (20-way 1-shot) and 98.86% (100-way 3-shot) on BraTS- 2021.
☆ FrameDiffuser: G-Buffer-Conditioned Diffusion for Neural Forward Frame Rendering
Neural rendering for interactive applications requires translating geometric and material properties (G-buffer) to photorealistic images with realistic lighting on a frame-by-frame basis. While recent diffusion-based approaches show promise for G-buffer-conditioned image synthesis, they face critical limitations: single-image models like RGBX generate frames independently without temporal consistency, while video models like DiffusionRenderer are too computationally expensive for most consumer gaming sets ups and require complete sequences upfront, making them unsuitable for interactive applications where future frames depend on user input. We introduce FrameDiffuser, an autoregressive neural rendering framework that generates temporally consistent, photorealistic frames by conditioning on G-buffer data and the models own previous output. After an initial frame, FrameDiffuser operates purely on incoming G-buffer data, comprising geometry, materials, and surface properties, while using its previously generated frame for temporal guidance, maintaining stable, temporal consistent generation over hundreds to thousands of frames. Our dual-conditioning architecture combines ControlNet for structural guidance with ControlLoRA for temporal coherence. A three-stage training strategy enables stable autoregressive generation. We specialize our model to individual environments, prioritizing consistency and inference speed over broad generalization, demonstrating that environment-specific training achieves superior photorealistic quality with accurate lighting, shadows, and reflections compared to generalized approaches.
comment: Project Page: https://framediffuser.jdihlmann.com/
☆ REGLUE Your Latents with Global and Local Semantics for Entangled Diffusion
Latent diffusion models (LDMs) achieve state-of-the-art image synthesis, yet their reconstruction-style denoising objective provides only indirect semantic supervision: high-level semantics emerge slowly, requiring longer training and limiting sample quality. Recent works inject semantics from Vision Foundation Models (VFMs) either externally via representation alignment or internally by jointly modeling only a narrow slice of VFM features inside the diffusion process, under-utilizing the rich, nonlinear, multi-layer spatial semantics available. We introduce REGLUE (Representation Entanglement with Global-Local Unified Encoding), a unified latent diffusion framework that jointly models (i) VAE image latents, (ii) compact local (patch-level) VFM semantics, and (iii) a global (image-level) [CLS] token within a single SiT backbone. A lightweight convolutional semantic compressor nonlinearly aggregates multi-layer VFM features into a low-dimensional, spatially structured representation, which is entangled with the VAE latents in the diffusion process. An external alignment loss further regularizes internal representations toward frozen VFM targets. On ImageNet 256x256, REGLUE consistently improves FID and accelerates convergence over SiT-B/2 and SiT-XL/2 baselines, as well as over REPA, ReDi, and REG. Extensive experiments show that (a) spatial VFM semantics are crucial, (b) non-linear compression is key to unlocking their full benefit, and (c) global tokens and external alignment act as complementary, lightweight enhancements within our global-local-latent joint modeling framework. The code is available at https://github.com/giorgospets/reglue .
☆ SARMAE: Masked Autoencoder for SAR Representation Learning
Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
comment: Code and models will be available at https://github.com/MiliLab/SARMAE
☆ DeContext as Defense: Safe Image Editing in Diffusion Transformers
In-context diffusion models allow users to modify images with remarkable ease and realism. However, the same power raises serious privacy concerns: personal images can be easily manipulated for identity impersonation, misinformation, or other malicious uses, all without the owner's consent. While prior work has explored input perturbations to protect against misuse in personalized text-to-image generation, the robustness of modern, large-scale in-context DiT-based models remains largely unexamined. In this paper, we propose DeContext, a new method to safeguard input images from unauthorized in-context editing. Our key insight is that contextual information from the source image propagates to the output primarily through multimodal attention layers. By injecting small, targeted perturbations that weaken these cross-attention pathways, DeContext breaks this flow, effectively decouples the link between input and output. This simple defense is both efficient and robust. We further show that early denoising steps and specific transformer blocks dominate context propagation, which allows us to concentrate perturbations where they matter most. Experiments on Flux Kontext and Step1X-Edit show that DeContext consistently blocks unwanted image edits while preserving visual quality. These results highlight the effectiveness of attention-based perturbations as a powerful defense against image manipulation.
comment: 17 pages, 11 figures
☆ Plug to Place: Indoor Multimedia Geolocation from Electrical Sockets for Digital Investigation
Computer vision is a rapidly evolving field, giving rise to powerful new tools and techniques in digital forensic investigation, and shows great promise for novel digital forensic applications. One such application, indoor multimedia geolocation, has the potential to become a crucial aid for law enforcement in the fight against human trafficking, child exploitation, and other serious crimes. While outdoor multimedia geolocation has been widely explored, its indoor counterpart remains underdeveloped due to challenges such as similar room layouts, frequent renovations, visual ambiguity, indoor lighting variability, unreliable GPS signals, and limited datasets in sensitive domains. This paper introduces a pipeline that uses electric sockets as consistent indoor markers for geolocation, since plug socket types are standardised by country or region. The three-stage deep learning pipeline detects plug sockets (YOLOv11, mAP@0.5 = 0.843), classifies them into one of 12 plug socket types (Xception, accuracy = 0.912), and maps the detected socket types to countries (accuracy = 0.96 at >90% threshold confidence). To address data scarcity, two dedicated datasets were created: socket detection dataset of 2,328 annotated images expanded to 4,072 through augmentation, and a classification dataset of 3,187 images across 12 plug socket classes. The pipeline was evaluated on the Hotels-50K dataset, focusing on the TraffickCam subset of crowd-sourced hotel images, which capture real-world conditions such as poor lighting and amateur angles. This dataset provides a more realistic evaluation than using professional, well-lit, often wide-angle images from travel websites. This framework demonstrates a practical step toward real-world digital forensic applications. The code, trained models, and the data for this paper are available open source.
☆ Trainable Log-linear Sparse Attention for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) set the state of the art in visual generation, yet their quadratic self-attention cost fundamentally limits scaling to long token sequences. Recent Top-K sparse attention approaches reduce the computation of DiTs by compressing tokens into block-wise representation and selecting a small set of relevant key blocks, but still suffer from (i) quadratic selection cost on compressed tokens and (ii) increasing K required to maintain model quality as sequences grow. We identify that their inefficiency is due to the single-level design, as a single coarse level is insufficient to represent the global structure. In this paper, we introduce Log-linear Sparse Attention (LLSA), a trainable sparse attention mechanism for extremely long token sequences that reduces both selection and attention costs from quadratic to log-linear complexity by utilizing a hierarchical structure. LLSA performs hierarchical Top-K selection, progressively adopting sparse Top-K selection with the indices found at the previous level, and introduces a Hierarchical KV Enrichment mechanism that preserves global context while using fewer tokens of different granularity during attention computation. To support efficient training, we develop a high-performance GPU implementation that uses only sparse indices for both the forward and backward passes, eliminating the need for dense attention masks. We evaluate LLSA on high-resolution pixel-space image generation without using patchification and VAE encoding. LLSA accelerates attention inference by 28.27x and DiT training by 6.09x on 256x256 pixel token sequences, while maintaining generation quality. The results demonstrate that LLSA offers a promising direction for training long-sequence DiTs efficiently. Code is available at: https://github.com/SingleZombie/LLSA
comment: Code is available at: https://github.com/SingleZombie/LLSA
☆ Don't Guess, Escalate: Towards Explainable Uncertainty-Calibrated AI Forensic Agents
AI is reshaping the landscape of multimedia forensics. We propose AI forensic agents: reliable orchestrators that select and combine forensic detectors, identify provenance and context, and provide uncertainty-aware assessments. We highlight pitfalls in current solutions and introduce a unified framework to improve the authenticity verification process.
☆ Hazedefy: A Lightweight Real-Time Image and Video Dehazing Pipeline for Practical Deployment
This paper introduces Hazedefy, a lightweight and application-focused dehazing pipeline intended for real-time video and live camera feed enhancement. Hazedefy prioritizes computational simplicity and practical deployability on consumer-grade hardware, building upon the Dark Channel Prior (DCP) concept and the atmospheric scattering model. Key elements include gamma-adaptive reconstruction, a fast transmission approximation with lower bounds for numerical stability, a stabilized atmospheric light estimator based on fractional top-pixel averaging, and an optional color balance stage. The pipeline is suitable for mobile and embedded applications, as experimental demonstrations on real-world images and videos show improved visibility and contrast without requiring GPU acceleration.
comment: 4 pages, 2 figures. Code and demo available at https://doi.org/10.5281/zenodo.17915355
☆ Yuan-TecSwin: A text conditioned Diffusion model with Swin-transformer blocks
Diffusion models have shown remarkable capacity in image synthesis based on their U-shaped architecture and convolutional neural networks (CNN) as basic blocks. The locality of the convolution operation in CNN may limit the model's ability to understand long-range semantic information. To address this issue, we propose Yuan-TecSwin, a text-conditioned diffusion model with Swin-transformer in this work. The Swin-transformer blocks take the place of CNN blocks in the encoder and decoder, to improve the non-local modeling ability in feature extraction and image restoration. The text-image alignment is improved with a well-chosen text encoder, effective utilization of text embedding, and careful design in the incorporation of text condition. Using an adapted time step to search in different diffusion stages, inference performance is further improved by 10%. Yuan-TecSwin achieves the state-of-the-art FID score of 1.37 on ImageNet generation benchmark, without any additional models at different denoising stages. In a side-by-side comparison, we find it difficult for human interviewees to tell the model-generated images from the human-painted ones.
☆ Sketch-in-Latents: Eliciting Unified Reasoning in MLLMs
While Multimodal Large Language Models (MLLMs) excel at visual understanding tasks through text reasoning, they often fall short in scenarios requiring visual imagination. Unlike current works that take predefined external toolkits or generate images during thinking, however, humans can form flexible visual-text imagination and interactions during thinking without predefined toolkits, where one important reason is that humans construct the visual-text thinking process in a unified space inside the brain. Inspired by this capability, given that current MLLMs already encode visual and text information in the same feature space, we hold that visual tokens can be seamlessly inserted into the reasoning process carried by text tokens, where ideally, all visual imagination processes can be encoded by the latent features. To achieve this goal, we propose Sketch-in-Latents (SkiLa), a novel paradigm for unified multi-modal reasoning that expands the auto-regressive capabilities of MLLMs to natively generate continuous visual embeddings, termed latent sketch tokens, as visual thoughts. During multi-step reasoning, the model dynamically alternates between textual thinking mode for generating textual think tokens and visual sketching mode for generating latent sketch tokens. A latent visual semantics reconstruction mechanism is proposed to ensure these latent sketch tokens are semantically grounded. Extensive experiments demonstrate that SkiLa achieves superior performance on vision-centric tasks while exhibiting strong generalization to diverse general multi-modal benchmarks. Codes will be released at https://github.com/TungChintao/SkiLa.
comment: 14 pages, 11 figures
☆ CRONOS: Continuous Time Reconstruction for 4D Medical Longitudinal Series
Forecasting how 3D medical scans evolve over time is important for disease progression, treatment planning, and developmental assessment. Yet existing models either rely on a single prior scan, fixed grid times, or target global labels, which limits voxel-level forecasting under irregular sampling. We present CRONOS, a unified framework for many-to-one prediction from multiple past scans that supports both discrete (grid-based) and continuous (real-valued) timestamps in one model, to the best of our knowledge the first to achieve continuous sequence-to-image forecasting for 3D medical data. CRONOS learns a spatio-temporal velocity field that transports context volumes toward a target volume at an arbitrary time, while operating directly in 3D voxel space. Across three public datasets spanning Cine-MRI, perfusion CT, and longitudinal MRI, CRONOS outperforms other baselines, while remaining computationally competitive. We will release code and evaluation protocols to enable reproducible, multi-dataset benchmarking of multi-context, continuous-time forecasting.
comment: https://github.com/MIC-DKFZ/Longitudinal4DMed
☆ Causal-Tune: Mining Causal Factors from Vision Foundation Models for Domain Generalized Semantic Segmentation AAAI 2026
Fine-tuning Vision Foundation Models (VFMs) with a small number of parameters has shown remarkable performance in Domain Generalized Semantic Segmentation (DGSS). Most existing works either train lightweight adapters or refine intermediate features to achieve better generalization on unseen domains. However, they both overlook the fact that long-term pre-trained VFMs often exhibit artifacts, which hinder the utilization of valuable representations and ultimately degrade DGSS performance. Inspired by causal mechanisms, we observe that these artifacts are associated with non-causal factors, which usually reside in the low- and high-frequency components of the VFM spectrum. In this paper, we explicitly examine the causal and non-causal factors of features within VFMs for DGSS, and propose a simple yet effective method to identify and disentangle them, enabling more robust domain generalization. Specifically, we propose Causal-Tune, a novel fine-tuning strategy designed to extract causal factors and suppress non-causal ones from the features of VFMs. First, we extract the frequency spectrum of features from each layer using the Discrete Cosine Transform (DCT). A Gaussian band-pass filter is then applied to separate the spectrum into causal and non-causal components. To further refine the causal components, we introduce a set of causal-aware learnable tokens that operate in the frequency domain, while the non-causal components are discarded. Finally, refined features are transformed back into the spatial domain via inverse DCT and passed to the next layer. Extensive experiments conducted on various cross-domain tasks demonstrate the effectiveness of Causal-Tune. In particular, our method achieves superior performance under adverse weather conditions, improving +4.8% mIoU over the baseline in snow conditions.
comment: Accepted by AAAI 2026
☆ 4D Primitive-Mâché: Glueing Primitives for Persistent 4D Scene Reconstruction
We present a dynamic reconstruction system that receives a casual monocular RGB video as input, and outputs a complete and persistent reconstruction of the scene. In other words, we reconstruct not only the the currently visible parts of the scene, but also all previously viewed parts, which enables replaying the complete reconstruction across all timesteps. Our method decomposes the scene into a set of rigid 3D primitives, which are assumed to be moving throughout the scene. Using estimated dense 2D correspondences, we jointly infer the rigid motion of these primitives through an optimisation pipeline, yielding a 4D reconstruction of the scene, i.e. providing 3D geometry dynamically moving through time. To achieve this, we also introduce a mechanism to extrapolate motion for objects that become invisible, employing motion-grouping techniques to maintain continuity. The resulting system enables 4D spatio-temporal awareness, offering capabilities such as replayable 3D reconstructions of articulated objects through time, multi-object scanning, and object permanence. On object scanning and multi-object datasets, our system significantly outperforms existing methods both quantitatively and qualitatively.
comment: For project page, see https://makezur.github.io/4DPM/
☆ N3D-VLM: Native 3D Grounding Enables Accurate Spatial Reasoning in Vision-Language Models
While current multimodal models can answer questions based on 2D images, they lack intrinsic 3D object perception, limiting their ability to comprehend spatial relationships and depth cues in 3D scenes. In this work, we propose N3D-VLM, a novel unified framework that seamlessly integrates native 3D object perception with 3D-aware visual reasoning, enabling both precise 3D grounding and interpretable spatial understanding. Unlike conventional end-to-end models that directly predict answers from RGB/RGB-D inputs, our approach equips the model with native 3D object perception capabilities, enabling it to directly localize objects in 3D space based on textual descriptions. Building upon accurate 3D object localization, the model further performs explicit reasoning in 3D, achieving more interpretable and structured spatial understanding. To support robust training for these capabilities, we develop a scalable data construction pipeline that leverages depth estimation to lift large-scale 2D annotations into 3D space, significantly increasing the diversity and coverage for 3D object grounding data, yielding over six times larger than the largest existing single-image 3D detection dataset. Moreover, the pipeline generates spatial question-answering datasets that target chain-of-thought (CoT) reasoning in 3D, facilitating joint training for both 3D object localization and 3D spatial reasoning. Experimental results demonstrate that our unified framework not only achieves state-of-the-art performance on 3D grounding tasks, but also consistently surpasses existing methods in 3D spatial reasoning in vision-language model.
comment: Project Page: https://n3d-vlm.github.io
☆ TTP: Test-Time Padding for Adversarial Detection and Robust Adaptation on Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, have achieved impressive zero-shot recognition performance but remain highly susceptible to adversarial perturbations, posing significant risks in safety-critical scenarios. Previous training-time defenses rely on adversarial fine-tuning, which requires labeled data and costly retraining, while existing test-time strategies fail to reliably distinguish between clean and adversarial inputs, thereby preventing both adversarial robustness and clean accuracy from reaching their optimum. To address these limitations, we propose Test-Time Padding (TTP), a lightweight defense framework that performs adversarial detection followed by targeted adaptation at inference. TTP identifies adversarial inputs via the cosine similarity shift between CLIP feature embeddings computed before and after spatial padding, yielding a universal threshold for reliable detection across architectures and datasets. For detected adversarial cases, TTP employs trainable padding to restore disrupted attention patterns, coupled with a similarity-aware ensemble strategy for a more robust final prediction. For clean inputs, TTP leaves them unchanged by default or optionally integrates existing test-time adaptation techniques for further accuracy gains. Comprehensive experiments on diverse CLIP backbones and fine-grained benchmarks show that TTP consistently surpasses state-of-the-art test-time defenses, delivering substantial improvements in adversarial robustness without compromising clean accuracy. The code for this paper will be released soon.
☆ Multi-scale Attention-Guided Intrinsic Decomposition and Rendering Pass Prediction for Facial Images
Accurate intrinsic decomposition of face images under unconstrained lighting is a prerequisite for photorealistic relighting, high-fidelity digital doubles, and augmented-reality effects. This paper introduces MAGINet, a Multi-scale Attention-Guided Intrinsics Network that predicts a $512\times512$ light-normalized diffuse albedo map from a single RGB portrait. MAGINet employs hierarchical residual encoding, spatial-and-channel attention in a bottleneck, and adaptive multi-scale feature fusion in the decoder, yielding sharper albedo boundaries and stronger lighting invariance than prior U-Net variants. The initial albedo prediction is upsampled to $1024\times1024$ and refined by a lightweight three-layer CNN (RefinementNet). Conditioned on this refined albedo, a Pix2PixHD-based translator then predicts a comprehensive set of five additional physically based rendering passes: ambient occlusion, surface normal, specular reflectance, translucency, and raw diffuse colour (with residual lighting). Together with the refined albedo, these six passes form the complete intrinsic decomposition. Trained with a combination of masked-MSE, VGG, edge, and patch-LPIPS losses on the FFHQ-UV-Intrinsics dataset, the full pipeline achieves state-of-the-art performance for diffuse albedo estimation and demonstrates significantly improved fidelity for the complete rendering stack compared to prior methods. The resulting passes enable high-quality relighting and material editing of real faces.
☆ Skeleton-Snippet Contrastive Learning with Multiscale Feature Fusion for Action Localization
The self-supervised pretraining paradigm has achieved great success in learning 3D action representations for skeleton-based action recognition using contrastive learning. However, learning effective representations for skeleton-based temporal action localization remains challenging and underexplored. Unlike video-level {action} recognition, detecting action boundaries requires temporally sensitive features that capture subtle differences between adjacent frames where labels change. To this end, we formulate a snippet discrimination pretext task for self-supervised pretraining, which densely projects skeleton sequences into non-overlapping segments and promotes features that distinguish them across videos via contrastive learning. Additionally, we build on strong backbones of skeleton-based action recognition models by fusing intermediate features with a U-shaped module to enhance feature resolution for frame-level localization. Our approach consistently improves existing skeleton-based contrastive learning methods for action localization on BABEL across diverse subsets and evaluation protocols. We also achieve state-of-the-art transfer learning performance on PKUMMD with pretraining on NTU RGB+D and BABEL.
☆ VenusBench-GD: A Comprehensive Multi-Platform GUI Benchmark for Diverse Grounding Tasks
GUI grounding is a critical component in building capable GUI agents. However, existing grounding benchmarks suffer from significant limitations: they either provide insufficient data volume and narrow domain coverage, or focus excessively on a single platform and require highly specialized domain knowledge. In this work, we present VenusBench-GD, a comprehensive, bilingual benchmark for GUI grounding that spans multiple platforms, enabling hierarchical evaluation for real-word applications. VenusBench-GD contributes as follows: (i) we introduce a large-scale, cross-platform benchmark with extensive coverage of applications, diverse UI elements, and rich annotated data, (ii) we establish a high-quality data construction pipeline for grounding tasks, achieving higher annotation accuracy than existing benchmarks, and (iii) we extend the scope of element grounding by proposing a hierarchical task taxonomy that divides grounding into basic and advanced categories, encompassing six distinct subtasks designed to evaluate models from complementary perspectives. Our experimental findings reveal critical insights: general-purpose multimodal models now match or even surpass specialized GUI models on basic grounding tasks. In contrast, advanced tasks, still favor GUI-specialized models, though they exhibit significant overfitting and poor robustness. These results underscore the necessity of comprehensive, multi-tiered evaluation frameworks.
☆ PoseMoE: Mixture-of-Experts Network for Monocular 3D Human Pose Estimation
The lifting-based methods have dominated monocular 3D human pose estimation by leveraging detected 2D poses as intermediate representations. The 2D component of the final 3D human pose benefits from the detected 2D poses, whereas its depth counterpart must be estimated from scratch. The lifting-based methods encode the detected 2D pose and unknown depth in an entangled feature space, explicitly introducing depth uncertainty to the detected 2D pose, thereby limiting overall estimation accuracy. This work reveals that the depth representation is pivotal for the estimation process. Specifically, when depth is in an initial, completely unknown state, jointly encoding depth features with 2D pose features is detrimental to the estimation process. In contrast, when depth is initially refined to a more dependable state via network-based estimation, encoding it together with 2D pose information is beneficial. To address this limitation, we present a Mixture-of-Experts network for monocular 3D pose estimation named PoseMoE. Our approach introduces: (1) A mixture-of-experts network where specialized expert modules refine the well-detected 2D pose features and learn the depth features. This mixture-of-experts design disentangles the feature encoding process for 2D pose and depth, therefore reducing the explicit influence of uncertain depth features on 2D pose features. (2) A cross-expert knowledge aggregation module is proposed to aggregate cross-expert spatio-temporal contextual information. This step enhances features through bidirectional mapping between 2D pose and depth. Extensive experiments show that our proposed PoseMoE outperforms the conventional lifting-based methods on three widely used datasets: Human3.6M, MPI-INF-3DHP, and 3DPW.
comment: IEEE Transactions on Image Processing (T-IP)
☆ YOLO11-4K: An Efficient Architecture for Real-Time Small Object Detection in 4K Panoramic Images
The processing of omnidirectional 360-degree images poses significant challenges for object detection due to inherent spatial distortions, wide fields of view, and ultra-high-resolution inputs. Conventional detectors such as YOLO are optimised for standard image sizes (for example, 640x640 pixels) and often struggle with the computational demands of 4K or higher-resolution imagery typical of 360-degree vision. To address these limitations, we introduce YOLO11-4K, an efficient real-time detection framework tailored for 4K panoramic images. The architecture incorporates a novel multi-scale detection head with a P2 layer to improve sensitivity to small objects often missed at coarser scales, and a GhostConv-based backbone to reduce computational complexity without sacrificing representational power. To enable evaluation, we manually annotated the CVIP360 dataset, generating 6,876 frame-level bounding boxes and producing a publicly available, detection-ready benchmark for 4K panoramic scenes. YOLO11-4K achieves 0.95 mAP at 0.50 IoU with 28.3 milliseconds inference per frame, representing a 75 percent latency reduction compared to YOLO11 (112.3 milliseconds), while also improving accuracy (mAP at 0.50 of 0.95 versus 0.908). This balance of efficiency and precision enables robust object detection in expansive 360-degree environments, making the framework suitable for real-world high-resolution panoramic applications. While this work focuses on 4K omnidirectional images, the approach is broadly applicable to high-resolution detection tasks in autonomous navigation, surveillance, and augmented reality.
comment: Conference paper just submitted
☆ Smile on the Face, Sadness in the Eyes: Bridging the Emotion Gap with a Multimodal Dataset of Eye and Facial Behaviors
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.
comment: Accepted by TMM
☆ Guiding Perception-Reasoning Closer to Human in Blind Image Quality Assessment
Humans assess image quality through a perception-reasoning cascade, integrating sensory cues with implicit reasoning to form self-consistent judgments. In this work, we investigate how a model can acquire both human-like and self-consistent reasoning capability for blind image quality assessment (BIQA). We first collect human evaluation data that capture several aspects of human perception-reasoning pipeline. Then, we adopt reinforcement learning, using human annotations as reward signals to guide the model toward human-like perception and reasoning. To enable the model to internalize self-consistent reasoning capability, we design a reward that drives the model to infer the image quality purely from self-generated descriptions. Empirically, our approach achieves score prediction performance comparable to state-of-the-art BIQA systems under general metrics, including Pearson and Spearman correlation coefficients. In addition to the rating score, we assess human-model alignment using ROUGE-1 to measure the similarity between model-generated and human perception-reasoning chains. On over 1,000 human-annotated samples, our model reaches a ROUGE-1 score of 0.512 (cf. 0.443 for baseline), indicating substantial coverage of human explanations and marking a step toward human-like interpretable reasoning in BIQA.
comment: Under review
☆ StageVAR: Stage-Aware Acceleration for Visual Autoregressive Models
Visual Autoregressive (VAR) modeling departs from the next-token prediction paradigm of traditional Autoregressive (AR) models through next-scale prediction, enabling high-quality image generation. However, the VAR paradigm suffers from sharply increased computational complexity and running time at large-scale steps. Although existing acceleration methods reduce runtime for large-scale steps, but rely on manual step selection and overlook the varying importance of different stages in the generation process. To address this challenge, we present StageVAR, a systematic study and stage-aware acceleration framework for VAR models. Our analysis shows that early steps are critical for preserving semantic and structural consistency and should remain intact, while later steps mainly refine details and can be pruned or approximated for acceleration. Building on these insights, StageVAR introduces a plug-and-play acceleration strategy that exploits semantic irrelevance and low-rank properties in late-stage computations, without requiring additional training. Our proposed StageVAR achieves up to 3.4x speedup with only a 0.01 drop on GenEval and a 0.26 decrease on DPG, consistently outperforming existing acceleration baselines. These results highlight stage-aware design as a powerful principle for efficient visual autoregressive image generation.
☆ SNOW: Spatio-Temporal Scene Understanding with World Knowledge for Open-World Embodied Reasoning
Autonomous robotic systems require spatio-temporal understanding of dynamic environments to ensure reliable navigation and interaction. While Vision-Language Models (VLMs) provide open-world semantic priors, they lack grounding in 3D geometry and temporal dynamics. Conversely, geometric perception captures structure and motion but remains semantically sparse. We propose SNOW (Scene Understanding with Open-World Knowledge), a training-free and backbone-agnostic framework for unified 4D scene understanding that integrates VLM-derived semantics with point cloud geometry and temporal consistency. SNOW processes synchronized RGB images and 3D point clouds, using HDBSCAN clustering to generate object-level proposals that guide SAM2-based segmentation. Each segmented region is encoded through our proposed Spatio-Temporal Tokenized Patch Encoding (STEP), producing multimodal tokens that capture localized semantic, geometric, and temporal attributes. These tokens are incrementally integrated into a 4D Scene Graph (4DSG), which serves as 4D prior for downstream reasoning. A lightweight SLAM backend anchors all STEP tokens spatially in the environment, providing the global reference alignment, and ensuring unambiguous spatial grounding across time. The resulting 4DSG forms a queryable, unified world model through which VLMs can directly interpret spatial scene structure and temporal dynamics. Experiments on a diverse set of benchmarks demonstrate that SNOW enables precise 4D scene understanding and spatially grounded inference, thereby setting new state-of-the-art performance in several settings, highlighting the importance of structured 4D priors for embodied reasoning and autonomous robotics.
☆ Prime and Reach: Synthesising Body Motion for Gaze-Primed Object Reach
Human motion generation is a challenging task that aims to create realistic motion imitating natural human behaviour. We focus on the well-studied behaviour of priming an object/location for pick up or put down -- that is, the spotting of an object/location from a distance, known as gaze priming, followed by the motion of approaching and reaching the target location. To that end, we curate, for the first time, 23.7K gaze-primed human motion sequences for reaching target object locations from five publicly available datasets, i.e., HD-EPIC, MoGaze, HOT3D, ADT, and GIMO. We pre-train a text-conditioned diffusion-based motion generation model, then fine-tune it conditioned on goal pose or location, on our curated sequences. Importantly, we evaluate the ability of the generated motion to imitate natural human movement through several metrics, including the 'Reach Success' and a newly introduced 'Prime Success' metric. On the largest dataset, HD-EPIC, our model achieves 60% prime success and 89% reach success when conditioned on the goal object location.
comment: Project Page: https://masashi-hatano.github.io/prime-and-reach/
☆ Geometric Disentanglement of Text Embeddings for Subject-Consistent Text-to-Image Generation using A Single Prompt
Text-to-image diffusion models excel at generating high-quality images from natural language descriptions but often fail to preserve subject consistency across multiple outputs, limiting their use in visual storytelling. Existing approaches rely on model fine-tuning or image conditioning, which are computationally expensive and require per-subject optimization. 1Prompt1Story, a training-free approach, concatenates all scene descriptions into a single prompt and rescales token embeddings, but it suffers from semantic leakage, where embeddings across frames become entangled, causing text misalignment. In this paper, we propose a simple yet effective training-free approach that addresses semantic entanglement from a geometric perspective by refining text embeddings to suppress unwanted semantics. Extensive experiments prove that our approach significantly improves both subject consistency and text alignment over existing baselines.
☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes remains challenging, particularly in the zero-shot setting, where the goal is to count instances of unseen categories specified only by a class name. Existing zero-shot object counting (ZOC) methods that infer exemplars from text either rely on open-vocabulary detectors, which often yield multi-instance candidates, or on random patch sampling, which fails to accurately delineate object instances. To address this, we propose CountZES, a training-free framework for object counting via zero-shot exemplar selection. CountZES progressively discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines open-vocabulary detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a diverse, complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across natural, aerial and medical domains.
☆ BrepLLM: Native Boundary Representation Understanding with Large Language Models
Current token-sequence-based Large Language Models (LLMs) are not well-suited for directly processing 3D Boundary Representation (Brep) models that contain complex geometric and topological information. We propose BrepLLM, the first framework that enables LLMs to parse and reason over raw Brep data, bridging the modality gap between structured 3D geometry and natural language. BrepLLM employs a two-stage training pipeline: Cross-modal Alignment Pre-training and Multi-stage LLM Fine-tuning. In the first stage, an adaptive UV sampling strategy converts Breps into graphs representation with geometric and topological information. We then design a hierarchical BrepEncoder to extract features from geometry (i.e., faces and edges) and topology, producing both a single global token and a sequence of node tokens. Then we align the global token with text embeddings from a frozen CLIP text encoder (ViT-L/14) via contrastive learning. In the second stage, we integrate the pretrained BrepEncoder into an LLM. We then align its sequence of node tokens using a three-stage progressive training strategy: (1) training an MLP-based semantic mapping from Brep representation to 2D with 2D-LLM priors. (2) performing fine-tuning of the LLM. (3) designing a Mixture-of-Query Experts (MQE) to enhance geometric diversity modeling. We also construct Brep2Text, a dataset comprising 269,444 Brep-text question-answer pairs. Experiments show that BrepLLM achieves state-of-the-art (SOTA) results on 3D object classification and captioning tasks.
☆ Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture CVPR 2026
We leverage increasingly popular three-dimensional neural representations in order to construct a unified and consistent explanation of a collection of uncalibrated images of the human face. Our approach utilizes Gaussian Splatting, since it is more explicit and thus more amenable to constraints than NeRFs. We leverage segmentation annotations to align the semantic regions of the face, facilitating the reconstruction of a neutral pose from only 11 images (as opposed to requiring a long video). We soft constrain the Gaussians to an underlying triangulated surface in order to provide a more structured Gaussian Splat reconstruction, which in turn informs subsequent perturbations to increase the accuracy of the underlying triangulated surface. The resulting triangulated surface can then be used in a standard graphics pipeline. In addition, and perhaps most impactful, we show how accurate geometry enables the Gaussian Splats to be transformed into texture space where they can be treated as a view-dependent neural texture. This allows one to use high visual fidelity Gaussian Splatting on any asset in a scene without the need to modify any other asset or any other aspect (geometry, lighting, renderer, etc.) of the graphics pipeline. We utilize a relightable Gaussian model to disentangle texture from lighting in order to obtain a delit high-resolution albedo texture that is also readily usable in a standard graphics pipeline. The flexibility of our system allows for training with disparate images, even with incompatible lighting, facilitating robust regularization. Finally, we demonstrate the efficacy of our approach by illustrating its use in a text-driven asset creation pipeline.
comment: Submitted to CVPR 2026. 21 pages, 22 figures
☆ Adaptive Frequency Domain Alignment Network for Medical image segmentation
High-quality annotated data plays a crucial role in achieving accurate segmentation. However, such data for medical image segmentation are often scarce due to the time-consuming and labor-intensive nature of manual annotation. To address this challenge, we propose the Adaptive Frequency Domain Alignment Network (AFDAN)--a novel domain adaptation framework designed to align features in the frequency domain and alleviate data scarcity. AFDAN integrates three core components to enable robust cross-domain knowledge transfer: an Adversarial Domain Learning Module that transfers features from the source to the target domain; a Source-Target Frequency Fusion Module that blends frequency representations across domains; and a Spatial-Frequency Integration Module that combines both frequency and spatial features to further enhance segmentation accuracy across domains. Extensive experiments demonstrate the effectiveness of AFDAN: it achieves an Intersection over Union (IoU) of 90.9% for vitiligo segmentation in the newly constructed VITILIGO2025 dataset and a competitive IoU of 82.6% on the retinal vessel segmentation benchmark DRIVE, surpassing existing state-of-the-art approaches.
☆ Factorized Video Generation: Decoupling Scene Construction and Temporal Synthesis in Text-to-Video Diffusion Models
State-of-the-art Text-to-Video (T2V) diffusion models can generate visually impressive results, yet they still frequently fail to compose complex scenes or follow logical temporal instructions. In this paper, we argue that many errors, including apparent motion failures, originate from the model's inability to construct a semantically correct or logically consistent initial frame. We introduce Factorized Video Generation (FVG), a pipeline that decouples these tasks by decomposing the Text-to-Video generation into three specialized stages: (1) Reasoning, where a Large Language Model (LLM) rewrites the video prompt to describe only the initial scene, resolving temporal ambiguities; (2) Composition, where a Text-to-Image (T2I) model synthesizes a high-quality, compositionally-correct anchor frame from this new prompt; and (3) Temporal Synthesis, where a video model, finetuned to understand this anchor, focuses its entire capacity on animating the scene and following the prompt. Our decomposed approach sets a new state-of-the-art on the T2V CompBench benchmark and significantly improves all tested models on VBench2. Furthermore, we show that visual anchoring allows us to cut the number of sampling steps by 70% without any loss in performance, leading to a substantial speed-up in sampling. Factorized Video Generation offers a simple yet practical path toward more efficient, robust, and controllable video synthesis
☆ EverybodyDance: Bipartite Graph-Based Identity Correspondence for Multi-Character Animation
Consistent pose-driven character animation has achieved remarkable progress in single-character scenarios. However, extending these advances to multi-character settings is non-trivial, especially when position swap is involved. Beyond mere scaling, the core challenge lies in enforcing correct Identity Correspondence (IC) between characters in reference and generated frames. To address this, we introduce EverybodyDance, a systematic solution targeting IC correctness in multi-character animation. EverybodyDance is built around the Identity Matching Graph (IMG), which models characters in the generated and reference frames as two node sets in a weighted complete bipartite graph. Edge weights, computed via our proposed Mask-Query Attention (MQA), quantify the affinity between each pair of characters. Our key insight is to formalize IC correctness as a graph structural metric and to optimize it during training. We also propose a series of targeted strategies tailored for multi-character animation, including identity-embedded guidance, a multi-scale matching strategy, and pre-classified sampling, which work synergistically. Finally, to evaluate IC performance, we curate the Identity Correspondence Evaluation benchmark, dedicated to multi-character IC correctness. Extensive experiments demonstrate that EverybodyDance substantially outperforms state-of-the-art baselines in both IC and visual fidelity.
☆ GMODiff: One-Step Gain Map Refinement with Diffusion Priors for HDR Reconstruction
Pre-trained Latent Diffusion Models (LDMs) have recently shown strong perceptual priors for low-level vision tasks, making them a promising direction for multi-exposure High Dynamic Range (HDR) reconstruction. However, directly applying LDMs to HDR remains challenging due to: (1) limited dynamic-range representation caused by 8-bit latent compression, (2) high inference cost from multi-step denoising, and (3) content hallucination inherent to generative nature. To address these challenges, we introduce GMODiff, a gain map-driven one-step diffusion framework for multi-exposure HDR reconstruction. Instead of reconstructing full HDR content, we reformulate HDR reconstruction as a conditionally guided Gain Map (GM) estimation task, where the GM encodes the extended dynamic range while retaining the same bit depth as LDR images. We initialize the denoising process from an informative regression-based estimate rather than pure noise, enabling the model to generate high-quality GMs in a single denoising step. Furthermore, recognizing that regression-based models excel in content fidelity while LDMs favor perceptual quality, we leverage regression priors to guide both the denoising process and latent decoding of the LDM, suppressing hallucinations while preserving structural accuracy. Extensive experiments demonstrate that our GMODiff performs favorably against several state-of-the-art methods and is 100 faster than previous LDM-based methods.
☆ Collaborative Edge-to-Server Inference for Vision-Language Models
We propose a collaborative edge-to-server inference framework for vision-language models (VLMs) that reduces the communication cost while maintaining inference accuracy. In typical deployments, visual data captured at edge devices (clients) is transmitted to the server for VLM inference. However, resizing the original image (global image) to match the vision encoder's input resolution often discards fine-grained details, leading to accuracy degradation. To overcome this limitation, we design a two-stage framework. In the first stage, the server performs inference on the global image and identifies a region of interest (RoI) using the VLM's internal attention. The min-entropy of the output tokens is then computed as a confidence measure to determine whether retransmission is required. If the min-entropy exceeds a predefined threshold, the server requests the edge device to send a detail-preserved local image of the RoI. The server then refines its inference by jointly leveraging the global and local images. This selective retransmission strategy ensures that only essential visual content is transmitted. Experiments across multiple VLM architectures show that the proposed framework significantly reduces communication cost while maintaining inference accuracy.
comment: 13 pages, 12 figures
☆ QUIDS: Quality-informed Incentive-driven Multi-agent Dispatching System for Mobile Crowdsensing
This paper addresses the challenge of achieving optimal Quality of Information (QoI) in non-dedicated vehicular mobile crowdsensing (NVMCS) systems. The key obstacles are the interrelated issues of sensing coverage, sensing reliability, and the dynamic participation of vehicles. To tackle these, we propose QUIDS, a QUality-informed Incentive-driven multi-agent Dispatching System, which ensures high sensing coverage and reliability under budget constraints. QUIDS introduces a novel metric, Aggregated Sensing Quality (ASQ), to quantitatively capture QoI by integrating both coverage and reliability. We also develop a Mutually Assisted Belief-aware Vehicle Dispatching algorithm that estimates sensing reliability and allocates incentives under uncertainty, further improving ASQ. Evaluation using real-world data from a metropolitan NVMCS deployment shows QUIDS improves ASQ by 38% over non-dispatching scenarios and by 10% over state-of-the-art methods. It also reduces reconstruction map errors by 39-74% across algorithms. By jointly optimizing coverage and reliability via a quality-informed incentive mechanism, QUIDS enables low-cost, high-quality urban monitoring without dedicated infrastructure, applicable to smart-city scenarios like traffic and environmental sensing.
☆ Ridge Estimation-Based Vision and Laser Ranging Fusion Localization Method for UAVs
Tracking and measuring targets using a variety of sensors mounted on UAVs is an effective means to quickly and accurately locate the target. This paper proposes a fusion localization method based on ridge estimation, combining the advantages of rich scene information from sequential imagery with the high precision of laser ranging to enhance localization accuracy. Under limited conditions such as long distances, small intersection angles, and large inclination angles, the column vectors of the design matrix have serious multicollinearity when using the least squares estimation algorithm. The multicollinearity will lead to ill-conditioned problems, resulting in significant instability and low robustness. Ridge estimation is introduced to mitigate the serious multicollinearity under the condition of limited observation. Experimental results demonstrate that our method achieves higher localization accuracy compared to ground localization algorithms based on single information. Moreover, the introduction of ridge estimation effectively enhances the robustness, particularly under limited observation conditions.
☆ LaverNet: Lightweight All-in-one Video Restoration via Selective Propagation
Recent studies have explored all-in-one video restoration, which handles multiple degradations with a unified model. However, these approaches still face two challenges when dealing with time-varying degradations. First, the degradation can dominate temporal modeling, confusing the model to focus on artifacts rather than the video content. Second, current methods typically rely on large models to handle all-in-one restoration, concealing those underlying difficulties. To address these challenges, we propose a lightweight all-in-one video restoration network, LaverNet, with only 362K parameters. To mitigate the impact of degradations on temporal modeling, we introduce a novel propagation mechanism that selectively transmits only degradation-agnostic features across frames. Through LaverNet, we demonstrate that strong all-in-one restoration can be achieved with a compact network. Despite its small size, less than 1\% of the parameters of existing models, LaverNet achieves comparable, even superior performance across benchmarks.
☆ PixelArena: A benchmark for Pixel-Precision Visual Intelligence
Multi-modal large language models that have image output are emerging. Many image generation benchmarks focus on aesthetics instead of fine-grained generation capabilities. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. We find the latest Gemini 3 Pro Image has emergent image generation capabilities that generate semantic masks with high fidelity under zero-shot settings, showcasing visual intelligence unseen before and true generalization in new image generation tasks. We further investigate its results, compare them qualitatively and quantitatively with those of other models, and present failure cases. The findings not only signal exciting progress in the field but also provide insights into future research related to multimodality, reasoning, interpretability and benchmarking.
comment: 7 pages, 11 figures, project page: https://pixelarena.reify.ing/project
☆ MACL: Multi-Label Adaptive Contrastive Learning Loss for Remote Sensing Image Retrieval
Semantic overlap among land-cover categories, highly imbalanced label distributions, and complex inter-class co-occurrence patterns constitute significant challenges for multi-label remote-sensing image retrieval. In this article, Multi-Label Adaptive Contrastive Learning (MACL) is introduced as an extension of contrastive learning to address them. It integrates label-aware sampling, frequency-sensitive weighting, and dynamic-temperature scaling to achieve balanced representation learning across both common and rare categories. Extensive experiments on three benchmark datasets (DLRSD, ML-AID, and WHDLD), show that MACL consistently outperforms contrastive-loss based baselines, effectively mitigating semantic imbalance and delivering more reliable retrieval performance in large-scale remote-sensing archives. Code, pretrained models, and evaluation scripts will be released at https://github.com/amna/MACL upon acceptance.
☆ GFLAN: Generative Functional Layouts
Automated floor plan generation lies at the intersection of combinatorial search, geometric constraint satisfaction, and functional design requirements -- a confluence that has historically resisted a unified computational treatment. While recent deep learning approaches have improved the state of the art, they often struggle to capture architectural reasoning: the precedence of topological relationships over geometric instantiation, the propagation of functional constraints through adjacency networks, and the emergence of circulation patterns from local connectivity decisions. To address these fundamental challenges, this paper introduces GFLAN, a generative framework that restructures floor plan synthesis through explicit factorization into topological planning and geometric realization. Given a single exterior boundary and a front-door location, our approach departs from direct pixel-to-pixel or wall-tracing generation in favor of a principled two-stage decomposition. Stage A employs a specialized convolutional architecture with dual encoders -- separating invariant spatial context from evolving layout state -- to sequentially allocate room centroids within the building envelope via discrete probability maps over feasible placements. Stage B constructs a heterogeneous graph linking room nodes to boundary vertices, then applies a Transformer-augmented graph neural network (GNN) that jointly regresses room boundaries.
comment: 21 pages, 15 figures
☆ TextEditBench: Evaluating Reasoning-aware Text Editing Beyond Rendering
Text rendering has recently emerged as one of the most challenging frontiers in visual generation, drawing significant attention from large-scale diffusion and multimodal models. However, text editing within images remains largely unexplored, as it requires generating legible characters while preserving semantic, geometric, and contextual coherence. To fill this gap, we introduce TextEditBench, a comprehensive evaluation benchmark that explicitly focuses on text-centric regions in images. Beyond basic pixel manipulations, our benchmark emphasizes reasoning-intensive editing scenarios that require models to understand physical plausibility, linguistic meaning, and cross-modal dependencies. We further propose a novel evaluation dimension, Semantic Expectation (SE), which measures reasoning ability of model to maintain semantic consistency, contextual coherence, and cross-modal alignment during text editing. Extensive experiments on state-of-the-art editing systems reveal that while current models can follow simple textual instructions, they still struggle with context-dependent reasoning, physical consistency, and layout-aware integration. By focusing evaluation on this long-overlooked yet fundamental capability, TextEditBench establishes a new testing ground for advancing text-guided image editing and reasoning in multimodal generation.
☆ Pixel Super-Resolved Fluorescence Lifetime Imaging Using Deep Learning
Fluorescence lifetime imaging microscopy (FLIM) is a powerful quantitative technique that provides metabolic and molecular contrast, offering strong translational potential for label-free, real-time diagnostics. However, its clinical adoption remains limited by long pixel dwell times and low signal-to-noise ratio (SNR), which impose a stricter resolution-speed trade-off than conventional optical imaging approaches. Here, we introduce FLIM_PSR_k, a deep learning-based multi-channel pixel super-resolution (PSR) framework that reconstructs high-resolution FLIM images from data acquired with up to a 5-fold increased pixel size. The model is trained using the conditional generative adversarial network (cGAN) framework, which, compared to diffusion model-based alternatives, delivers a more robust PSR reconstruction with substantially shorter inference times, a crucial advantage for practical deployment. FLIM_PSR_k not only enables faster image acquisition but can also alleviate SNR limitations in autofluorescence-based FLIM. Blind testing on held-out patient-derived tumor tissue samples demonstrates that FLIM_PSR_k reliably achieves a super-resolution factor of k = 5, resulting in a 25-fold increase in the space-bandwidth product of the output images and revealing fine architectural features lost in lower-resolution inputs, with statistically significant improvements across various image quality metrics. By increasing FLIM's effective spatial resolution, FLIM_PSR_k advances lifetime imaging toward faster, higher-resolution, and hardware-flexible implementations compatible with low-numerical-aperture and miniaturized platforms, better positioning FLIM for translational applications.
comment: 30 Pages, 9 Figures
☆ Semi-Supervised Multi-View Crowd Counting by Ranking Multi-View Fusion Models
Multi-view crowd counting has been proposed to deal with the severe occlusion issue of crowd counting in large and wide scenes. However, due to the difficulty of collecting and annotating multi-view images, the datasets for multi-view counting have a limited number of multi-view frames and scenes. To solve the problem of limited data, one approach is to collect synthetic data to bypass the annotating step, while another is to propose semi- or weakly-supervised or unsupervised methods that demand less multi-view data. In this paper, we propose two semi-supervised multi-view crowd counting frameworks by ranking the multi-view fusion models of different numbers of input views, in terms of the model predictions or the model uncertainties. Specifically, for the first method (vanilla model), we rank the multi-view fusion models' prediction results of different numbers of camera-view inputs, namely, the model's predictions with fewer camera views shall not be larger than the predictions with more camera views. For the second method, we rank the estimated model uncertainties of the multi-view fusion models with a variable number of view inputs, guided by the multi-view fusion models' prediction errors, namely, the model uncertainties with more camera views shall not be larger than those with fewer camera views. These constraints are introduced into the model training in a semi-supervised fashion for multi-view counting with limited labeled data. The experiments demonstrate the advantages of the proposed multi-view model ranking methods compared with other semi-supervised counting methods.
comment: 13 pages, 7 figures, under review
☆ AI-Powered Dermatological Diagnosis: From Interpretable Models to Clinical Implementation A Comprehensive Framework for Accessible and Trustworthy Skin Disease Detection
Dermatological conditions affect 1.9 billion people globally, yet accurate diagnosis remains challenging due to limited specialist availability and complex clinical presentations. Family history significantly influences skin disease susceptibility and treatment responses, but is often underutilized in diagnostic processes. This research addresses the critical question: How can AI-powered systems integrate family history data with clinical imaging to enhance dermatological diagnosis while supporting clinical trial validation and real-world implementation? We developed a comprehensive multi-modal AI framework that combines deep learning-based image analysis with structured clinical data, including detailed family history patterns. Our approach employs interpretable convolutional neural networks integrated with clinical decision trees that incorporate hereditary risk factors. The methodology includes prospective clinical trials across diverse healthcare settings to validate AI-assisted diagnosis against traditional clinical assessment. In this work, validation was conducted with healthcare professionals to assess AI-assisted outputs against clinical expectations; prospective clinical trials across diverse healthcare settings are proposed as future work. The integrated AI system demonstrates enhanced diagnostic accuracy when family history data is incorporated, particularly for hereditary skin conditions such as melanoma, psoriasis, and atopic dermatitis. Expert feedback indicates potential for improved early detection and more personalized recommendations; formal clinical trials are planned. The framework is designed for integration into clinical workflows while maintaining interpretability through explainable AI mechanisms.
comment: 9 pages, 5 figures, 1 table. Code available at https://github.com/colabre2020/Enhancing-Skin-Disease-Diagnosis
☆ ARMFlow: AutoRegressive MeanFlow for Online 3D Human Reaction Generation
3D human reaction generation faces three main challenges:(1) high motion fidelity, (2) real-time inference, and (3) autoregressive adaptability for online scenarios. Existing methods fail to meet all three simultaneously. We propose ARMFlow, a MeanFlow-based autoregressive framework that models temporal dependencies between actor and reactor motions. It consists of a causal context encoder and an MLP-based velocity predictor. We introduce Bootstrap Contextual Encoding (BSCE) in training, encoding generated history instead of the ground-truth ones, to alleviate error accumulation in autoregressive generation. We further introduce the offline variant ReMFlow, achieving state-of-the-art performance with the fastest inference among offline methods. Our ARMFlow addresses key limitations of online settings by: (1) enhancing semantic alignment via a global contextual encoder; (2) achieving high accuracy and low latency in a single-step inference; and (3) reducing accumulated errors through BSCE. Our single-step online generation surpasses existing online methods on InterHuman and InterX by over 40% in FID, while matching offline state-of-the-art performance despite using only partial sequence conditions.
☆ Image Compression Using Singular Value Decomposition
Images are a substantial portion of the internet, making efficient compression important for reducing storage and bandwidth demands. This study investigates the use of Singular Value Decomposition and low-rank matrix approximations for image compression, evaluating performance using relative Frobenius error and compression ratio. The approach is applied to both grayscale and multichannel images to assess its generality. Results show that the low-rank approximations often produce images that appear visually similar to the originals, but the compression efficiency remains consistently worse than established formats such as JPEG, JPEG2000, and WEBP at comparable error levels. At low tolerated error levels, the compressed representation produced by Singular Value Decomposition can even exceed the size of the original image, indicating that this method is not competitive with industry-standard codecs for practical image compression.
☆ Learning High-Quality Initial Noise for Single-View Synthesis with Diffusion Models
Single-view novel view synthesis (NVS) models based on diffusion models have recently attracted increasing attention, as they can generate a series of novel view images from a single image prompt and camera pose information as conditions. It has been observed that in diffusion models, certain high-quality initial noise patterns lead to better generation results than others. However, there remains a lack of dedicated learning frameworks that enable NVS models to learn such high-quality noise. To obtain high-quality initial noise from random Gaussian noise, we make the following contributions. First, we design a discretized Euler inversion method to inject image semantic information into random noise, thereby constructing paired datasets of random and high-quality noise. Second, we propose a learning framework based on an encoder-decoder network (EDN) that directly transforms random noise into high-quality noise. Experiments demonstrate that the proposed EDN can be seamlessly plugged into various NVS models, such as SV3D and MV-Adapter, achieving significant performance improvements across multiple datasets. Code is available at: https://github.com/zhihao0512/EDN.
comment: 16 pages, 9 figures
☆ Enhanced 3D Shape Analysis via Information Geometry
Three-dimensional point clouds provide highly accurate digital representations of objects, essential for applications in computer graphics, photogrammetry, computer vision, and robotics. However, comparing point clouds faces significant challenges due to their unstructured nature and the complex geometry of the surfaces they represent. Traditional geometric metrics such as Hausdorff and Chamfer distances often fail to capture global statistical structure and exhibit sensitivity to outliers, while existing Kullback-Leibler (KL) divergence approximations for Gaussian Mixture Models can produce unbounded or numerically unstable values. This paper introduces an information geometric framework for 3D point cloud shape analysis by representing point clouds as Gaussian Mixture Models (GMMs) on a statistical manifold. We prove that the space of GMMs forms a statistical manifold and propose the Modified Symmetric Kullback-Leibler (MSKL) divergence with theoretically guaranteed upper and lower bounds, ensuring numerical stability for all GMM comparisons. Through comprehensive experiments on human pose discrimination (MPI-FAUST dataset) and animal shape comparison (G-PCD dataset), we demonstrate that MSKL provides stable and monotonically varying values that directly reflect geometric variation, outperforming traditional distances and existing KL approximations.
☆ Open Ad-hoc Categorization with Contextualized Feature Learning
Adaptive categorization of visual scenes is essential for AI agents to handle changing tasks. Unlike fixed common categories for plants or animals, ad-hoc categories are created dynamically to serve specific goals. We study open ad-hoc categorization: Given a few labeled exemplars and abundant unlabeled data, the goal is to discover the underlying context and to expand ad-hoc categories through semantic extension and visual clustering around it. Building on the insight that ad-hoc and common categories rely on similar perceptual mechanisms, we propose OAK, a simple model that introduces a small set of learnable context tokens at the input of a frozen CLIP and optimizes with both CLIP's image-text alignment objective and GCD's visual clustering objective. On Stanford and Clevr-4 datasets, OAK achieves state-of-the-art in accuracy and concept discovery across multiple categorizations, including 87.4% novel accuracy on Stanford Mood, surpassing CLIP and GCD by over 50%. Moreover, OAK produces interpretable saliency maps, focusing on hands for Action, faces for Mood, and backgrounds for Location, promoting transparency and trust while enabling adaptive and generalizable categorization.
comment: 26 pages, 17 figures
☆ Visual Alignment of Medical Vision-Language Models for Grounded Radiology Report Generation
Radiology Report Generation (RRG) is a critical step toward automating healthcare workflows, facilitating accurate patient assessments, and reducing the workload of medical professionals. Despite recent progress in Large Medical Vision-Language Models (Med-VLMs), generating radiology reports that are both visually grounded and clinically accurate remains a significant challenge. Existing approaches often rely on large labeled corpora for pre-training, costly task-specific preference data, or retrieval-based methods. However, these strategies do not adequately mitigate hallucinations arising from poor cross-modal alignment between visual and linguistic representations. To address these limitations, we propose VALOR:Visual Alignment of Medical Vision-Language Models for GrOunded Radiology Report Generation. Our method introduces a reinforcement learning-based post-alignment framework utilizing Group-Relative Proximal Optimization (GRPO). The training proceeds in two stages: (1) improving the Med-VLM with textual rewards to encourage clinically precise terminology, and (2) aligning the vision projection module of the textually grounded model with disease findings, thereby guiding attention toward image re gions most relevant to the diagnostic task. Extensive experiments on multiple benchmarks demonstrate that VALOR substantially improves factual accuracy and visual grounding, achieving significant performance gains over state-of-the-art report generation methods.
☆ Avatar4D: Synthesizing Domain-Specific 4D Humans for Real-World Pose Estimation
We present Avatar4D, a real-world transferable pipeline for generating customizable synthetic human motion datasets tailored to domain-specific applications. Unlike prior works, which focus on general, everyday motions and offer limited flexibility, our approach provides fine-grained control over body pose, appearance, camera viewpoint, and environmental context, without requiring any manual annotations. To validate the impact of Avatar4D, we focus on sports, where domain-specific human actions and movement patterns pose unique challenges for motion understanding. In this setting, we introduce Syn2Sport, a large-scale synthetic dataset spanning sports, including baseball and ice hockey. Avatar4D features high-fidelity 4D (3D geometry over time) human motion sequences with varying player appearances rendered in diverse environments. We benchmark several state-of-the-art pose estimation models on Syn2Sport and demonstrate their effectiveness for supervised learning, zero-shot transfer to real-world data, and generalization across sports. Furthermore, we evaluate how closely the generated synthetic data aligns with real-world datasets in feature space. Our results highlight the potential of such systems to generate scalable, controllable, and transferable human datasets for diverse domain-specific tasks without relying on domain-specific real data.
☆ Towards Closing the Domain Gap with Event Cameras
Although traditional cameras are the primary sensor for end-to-end driving, their performance suffers greatly when the conditions of the data they were trained on does not match the deployment environment, a problem known as the domain gap. In this work, we consider the day-night lighting difference domain gap. Instead of traditional cameras we propose event cameras as a potential alternative which can maintain performance across lighting condition domain gaps without requiring additional adjustments. Our results show that event cameras maintain more consistent performance across lighting conditions, exhibiting domain-shift penalties that are generally comparable to or smaller than grayscale frames and provide superior baseline performance in cross-domain scenarios.
comment: Accepted to Australasian Conference on Robotics and Automation (ACRA), 2025
☆ C-DGPA: Class-Centric Dual-Alignment Generative Prompt Adaptation
Unsupervised Domain Adaptation transfers knowledge from a labeled source domain to an unlabeled target domain. Directly deploying Vision-Language Models (VLMs) with prompt tuning in downstream UDA tasks faces the signifi cant challenge of mitigating domain discrepancies. Existing prompt-tuning strategies primarily align marginal distribu tion, but neglect conditional distribution discrepancies, lead ing to critical issues such as class prototype misalignment and degraded semantic discriminability. To address these lim itations, the work proposes C-DGPA: Class-Centric Dual Alignment Generative Prompt Adaptation. C-DGPA syner gistically optimizes marginal distribution alignment and con ditional distribution alignment through a novel dual-branch architecture. The marginal distribution alignment branch em ploys a dynamic adversarial training framework to bridge marginal distribution discrepancies. Simultaneously, the con ditional distribution alignment branch introduces a Class Mapping Mechanism (CMM) to align conditional distribu tion discrepancies by standardizing semantic prompt under standing and preventing source domain over-reliance. This dual alignment strategy effectively integrates domain knowl edge into prompt learning via synergistic optimization, ensur ing domain-invariant and semantically discriminative repre sentations. Extensive experiments on OfficeHome, Office31, and VisDA-2017 validate the superiority of C-DGPA. It achieves new state-of-the-art results on all benchmarks.
☆ SegGraph: Leveraging Graphs of SAM Segments for Few-Shot 3D Part Segmentation
This work presents a novel framework for few-shot 3D part segmentation. Recent advances have demonstrated the significant potential of 2D foundation models for low-shot 3D part segmentation. However, it is still an open problem that how to effectively aggregate 2D knowledge from foundation models to 3D. Existing methods either ignore geometric structures for 3D feature learning or neglects the high-quality grouping clues from SAM, leading to under-segmentation and inconsistent part labels. We devise a novel SAM segment graph-based propagation method, named SegGraph, to explicitly learn geometric features encoded within SAM's segmentation masks. Our method encodes geometric features by modeling mutual overlap and adjacency between segments while preserving intra-segment semantic consistency. We construct a segment graph, conceptually similar to an atlas, where nodes represent segments and edges capture their spatial relationships (overlap/adjacency). Each node adaptively modulates 2D foundation model features, which are then propagated via a graph neural network to learn global geometric structures. To enforce intra-segment semantic consistency, we map segment features to 3D points with a novel view-direction-weighted fusion attenuating contributions from low-quality segments. Extensive experiments on PartNet-E demonstrate that our method outperforms all competing baselines by at least 6.9 percent mIoU. Further analysis reveals that SegGraph achieves particularly strong performance on small components and part boundaries, demonstrating its superior geometric understanding. The code is available at: https://github.com/YueyangHu2000/SegGraph.
☆ ResDynUNet++: A nested U-Net with residual dynamic convolution blocks for dual-spectral CT
We propose a hybrid reconstruction framework for dual-spectral CT (DSCT) that integrates iterative methods with deep learning models. The reconstruction process consists of two complementary components: a knowledge-driven module and a data-driven module. In the knowledge-driven phase, we employ the oblique projection modification technique (OPMT) to reconstruct an intermediate solution of the basis material images from the projection data. We select OPMT for this role because of its fast convergence, which allows it to rapidly generate an intermediate solution that successfully achieves basis material decomposition. Subsequently, in the data-driven phase, we introduce a novel neural network, ResDynUNet++, to refine this intermediate solution. The ResDynUNet++ is built upon a UNet++ backbone by replacing standard convolutions with residual dynamic convolution blocks, which combine the adaptive, input-specific feature extraction of dynamic convolution with the stable training of residual connections. This architecture is designed to address challenges like channel imbalance and near-interface large artifacts in DSCT, producing clean and accurate final solutions. Extensive experiments on both synthetic phantoms and real clinical datasets validate the efficacy and superior performance of the proposed method.
♻ ☆ Team Westwood Solution for MIDOG 2025 Challenge: An Ensemble-CNN-Based Approach For Mitosis Detection And Classification
This abstract presents our solution (Team Westwood) for mitosis detection and atypical mitosis classification in the MItosis DOmain Generalization (MIDOG) 2025 challenge. For mitosis detection, we trained an nnUNetV2 for initial mitosis candidate screening with high sensitivity, followed by a random forest classifier ensembling predictions of three convolutional neural networks (CNNs): EfficientNet-b3, EfficientNet-b5, and EfficientNetV2-s. For the atypical mitosis classification, we trained another random forest classifier ensembling the predictions of three CNNs: EfficientNet-b3, EfficientNet-b5, and InceptionV3. On the preliminary test set, our solution achieved an F1 score of 0.7450 for track 1 mitosis detection, and a balanced accuracy of 0.8722 for track 2 atypical mitosis classification. On the final test set, our solution achieved an F1 score of 0.6972 for track 1 mitosis detection, and a balanced accuracy of 0.8242 for track 2 atypical mitosis classification.
comment: To appear Lecture Notes in Computer Science
♻ ☆ Core-Set Selection for Data-efficient Land Cover Segmentation
The increasing accessibility of remotely sensed data and their potential to support large-scale decision-making have driven the development of deep learning models for many Earth Observation tasks. Traditionally, such models rely on large datasets. However, the common assumption that larger training datasets lead to better performance tends to overlook issues related to data redundancy, noise, and the computational cost of processing massive datasets. Effective solutions must therefore consider not only the quantity but also the quality of data. Towards this, in this paper, we introduce six basic core-set selection approaches -- that rely on imagery only, labels only, or a combination of both -- and investigate whether they can identify high-quality subsets of data capable of maintaining -- or even surpassing -- the performance achieved when using full datasets for remote sensing semantic segmentation. We benchmark such approaches against two traditional baselines on three widely used land-cover classification datasets (DFC2022, Vaihingen, and Potsdam) using two different architectures (SegFormer and U-Net), thus establishing a general baseline for future works. Our experiments show that all proposed methods consistently outperform the baselines across multiple subset sizes, with some approaches even selecting core sets that surpass training on all available data. Notably, on DFC2022, a selected subset comprising only 25% of the training data yields slightly higher SegFormer performance than training with the entire dataset. This result shows the importance and potential of data-centric learning for the remote sensing domain. The code is available at https://github.com/keillernogueira/data-centric-rs-classification/.
♻ ☆ Memory Backdoor Attacks on Neural Networks
Neural networks are often trained on proprietary datasets, making them attractive attack targets. We present a novel dataset extraction method leveraging an innovative training time backdoor attack, allowing a malicious federated learning server to systematically and deterministically extract complete client training samples through a simple indexing process. Unlike prior techniques, our approach guarantees exact data recovery rather than probabilistic reconstructions or hallucinations, provides precise control over which samples are memorized and how many, and shows high capacity and robustness. Infected models output data samples when they receive a patternbased index trigger, enabling systematic extraction of meaningful patches from each clients local data without disrupting global model utility. To address small model output sizes, we extract patches and then recombined them. The attack requires only a minor modification to the training code that can easily evade detection during client-side verification. Hence, this vulnerability represents a realistic FL supply-chain threat, where a malicious server can distribute modified training code to clients and later recover private data from their updates. Evaluations across classifiers, segmentation models, and large language models demonstrate that thousands of sensitive training samples can be recovered from client models with minimal impact on task performance, and a clients entire dataset can be stolen after multiple FL rounds. For instance, a medical segmentation dataset can be extracted with only a 3 percent utility drop. These findings expose a critical privacy vulnerability in FL systems, emphasizing the need for stronger integrity and transparency in distributed training pipelines.
♻ ☆ GeoVista: Web-Augmented Agentic Visual Reasoning for Geolocalization
Current research on agentic visual reasoning enables deep multimodal understanding but primarily focuses on image manipulation tools, leaving a gap toward more general-purpose agentic models. In this work, we revisit the geolocalization task, which requires not only nuanced visual grounding but also web search to confirm or refine hypotheses during reasoning. Since existing geolocalization benchmarks fail to meet the need for high-resolution imagery and the localization challenge for deep agentic reasoning, we curate GeoBench, a benchmark that includes photos and panoramas from around the world, along with a subset of satellite images of different cities to rigorously evaluate the geolocalization ability of agentic models. We also propose GeoVista, an agentic model that seamlessly integrates tool invocation within the reasoning loop, including an image-zoom-in tool to magnify regions of interest and a web-search tool to retrieve related web information. We develop a complete training pipeline for it, including a cold-start supervised fine-tuning (SFT) stage to learn reasoning patterns and tool-use priors, followed by a reinforcement learning (RL) stage to further enhance reasoning ability. We adopt a hierarchical reward to leverage multi-level geographical information and improve overall geolocalization performance. Experimental results show that GeoVista surpasses other open-source agentic models on the geolocalization task greatly and achieves performance comparable to closed-source models such as Gemini-2.5-flash and GPT-5 on most metrics.
♻ ☆ NeAR: Coupled Neural Asset-Renderer Stack
Neural asset authoring and neural rendering have traditionally evolved as disjoint paradigms: one generates digital assets for fixed graphics pipelines, while the other maps conventional assets to images. However, treating them as independent entities limits the potential for end-to-end optimization in fidelity and consistency. In this paper, we bridge this gap with NeAR, a Coupled Neural Asset--Renderer Stack. We argue that co-designing the asset representation and the renderer creates a robust "contract" for superior generation. On the asset side, we introduce the Lighting-Homogenized SLAT (LH-SLAT). Leveraging a rectified-flow model, NeAR lifts casually lit single images into a canonical, illumination-invariant latent space, effectively suppressing baked-in shadows and highlights. On the renderer side, we design a lighting-aware neural decoder tailored to interpret these homogenized latents. Conditioned on HDR environment maps and camera views, it synthesizes relightable 3D Gaussian splats in real-time without per-object optimization. We validate NeAR on four tasks: (1) G-buffer-based forward rendering, (2) random-lit reconstruction, (3) unknown-lit relighting, and (4) novel-view relighting. Extensive experiments demonstrate that our coupled stack outperforms state-of-the-art baselines in both quantitative metrics and perceptual quality. We hope this coupled asset-renderer perspective inspires future graphics stacks that view neural assets and renderers as co-designed components instead of independent entities.
comment: 20 pages, 19 figures. The project page: https://near-project.github.io/
♻ ☆ V-Thinker: Interactive Thinking with Images
Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.
comment: Working in progress
♻ ☆ Radar-Guided Polynomial Fitting for Metric Depth Estimation
We propose POLAR, a novel radar-guided depth estimation method that introduces polynomial fitting to efficiently transform scaleless depth predictions from pretrained monocular depth estimation (MDE) models into metric depth maps. Unlike existing approaches that rely on complex architectures or expensive sensors, our method is grounded in a fundamental insight: although MDE models often infer reasonable local depth structure within each object or local region, they may misalign these regions relative to one another, making a linear scale and shift (affine) transformation insufficient given three or more of these regions. To address this limitation, we use polynomial coefficients predicted from cheap, ubiquitous radar data to adaptively adjust predictions non-uniformly across depth ranges. In this way, POLAR generalizes beyond affine transformations and is able to correct such misalignments by introducing inflection points. Importantly, our polynomial fitting framework preserves structural consistency through a novel training objective that enforces local monotonicity via first-derivative regularization. POLAR achieves state-of-the-art performance across three datasets, outperforming existing methods by an average of 24.9% in MAE and 33.2% in RMSE, while also achieving state-of-the-art efficiency in terms of latency and computational cost.
♻ ☆ Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
♻ ☆ Markovian Scale Prediction: A New Era of Visual Autoregressive Generation
Visual AutoRegressive modeling (VAR) based on next-scale prediction has revitalized autoregressive visual generation. Although its full-context dependency, i.e., modeling all previous scales for next-scale prediction, facilitates more stable and comprehensive representation learning by leveraging complete information flow, the resulting computational inefficiency and substantial overhead severely hinder VAR's practicality and scalability. This motivates us to develop a new VAR model with better performance and efficiency without full-context dependency. To address this, we reformulate VAR as a non-full-context Markov process, proposing Markov-VAR. It is achieved via Markovian Scale Prediction: we treat each scale as a Markov state and introduce a sliding window that compresses certain previous scales into a compact history vector to compensate for historical information loss owing to non-full-context dependency. Integrating the history vector with the Markov state yields a representative dynamic state that evolves under a Markov process. Extensive experiments demonstrate that Markov-VAR is extremely simple yet highly effective: Compared to VAR on ImageNet, Markov-VAR reduces FID by 10.5% (256 $\times$ 256) and decreases peak memory consumption by 83.8% (1024 $\times$ 1024). We believe that Markov-VAR can serve as a foundation for future research on visual autoregressive generation and other downstream tasks.
♻ ☆ From Engineering Diagrams to Graphs: Digitizing P&IDs with Transformers
Digitizing engineering diagrams like Piping and Instrumentation Diagrams (P&IDs) plays a vital role in maintainability and operational efficiency of process and hydraulic systems. Previous methods typically decompose the task into separate steps such as symbol detection and line detection, which can limit their ability to capture the structure in these diagrams. In this work, a transformer-based approach leveraging the Relationformer that addresses this limitation by jointly extracting symbols and their interconnections from P&IDs is introduced. To evaluate our approach and compare it to a modular digitization approach, we present the first publicly accessible benchmark dataset for P&ID digitization, annotated with graph-level ground truth. Experimental results on real-world diagrams show that our method significantly outperforms the modular baseline, achieving over 25% improvement in edge detection accuracy. This research contributes a reproducible evaluation framework and demonstrates the effectiveness of transformer models for structural understanding of complex engineering diagrams. The dataset is available under https://zenodo.org/records/14803338.
comment: \c{opyright}2025 IEEE. Published in the conference proceedings of the 2025 IEEE 12th International Conference on Data Science and Advanced Analytics (DSAA)
♻ ☆ VAEER: Visual Attention-Inspired Emotion Elicitation Reasoning
Images shared online strongly influence emotions and public well-being. Understanding the emotions an image elicits is therefore vital for fostering healthier and more sustainable digital communities, especially during public crises. We study Visual Emotion Elicitation (VEE), predicting the set of emotions that an image evokes in viewers. We introduce VAEER, an interpretable multi-label VEE framework that combines attention-inspired cue extraction with knowledge-grounded reasoning. VAEER isolates salient visual foci and contextual signals, aligns them with structured affective knowledge, and performs per-emotion inference to yield transparent, emotion-specific rationales. Across three heterogeneous benchmarks, including social imagery and disaster-related photos, VAEER achieves state-of-the-art results with up to 19% per-emotion improvements and a 12.3% average gain over strong CNN and VLM baselines. Our findings highlight interpretable multi-label emotion elicitation as a scalable foundation for responsible visual media analysis and emotionally sustainable online ecosystems.
comment: Currently under review as conference paper
♻ ☆ Hierarchical Schedule Optimization for Fast and Robust Diffusion Model Sampling AAAI 2026
Diffusion probabilistic models have set a new standard for generative fidelity but are hindered by a slow iterative sampling process. A powerful training-free strategy to accelerate this process is Schedule Optimization, which aims to find an optimal distribution of timesteps for a fixed and small Number of Function Evaluations (NFE) to maximize sample quality. To this end, a successful schedule optimization method must adhere to four core principles: effectiveness, adaptivity, practical robustness, and computational efficiency. However, existing paradigms struggle to satisfy these principles simultaneously, motivating the need for a more advanced solution. To overcome these limitations, we propose the Hierarchical-Schedule-Optimizer (HSO), a novel and efficient bi-level optimization framework. HSO reframes the search for a globally optimal schedule into a more tractable problem by iteratively alternating between two synergistic levels: an upper-level global search for an optimal initialization strategy and a lower-level local optimization for schedule refinement. This process is guided by two key innovations: the Midpoint Error Proxy (MEP), a solver-agnostic and numerically stable objective for effective local optimization, and the Spacing-Penalized Fitness (SPF) function, which ensures practical robustness by penalizing pathologically close timesteps. Extensive experiments show that HSO sets a new state-of-the-art for training-free sampling in the extremely low-NFE regime. For instance, with an NFE of just 5, HSO achieves a remarkable FID of 11.94 on LAION-Aesthetics with Stable Diffusion v2.1. Crucially, this level of performance is attained not through costly retraining, but with a one-time optimization cost of less than 8 seconds, presenting a highly practical and efficient paradigm for diffusion model acceleration.
comment: Preprint, accepted to AAAI 2026
♻ ☆ Automated Building Heritage Assessment Using Street-Level Imagery
Registration of heritage values in buildings is important to safeguard heritage values that can be lost in renovation and energy efficiency projects. However, registering heritage values is a cumbersome process. Novel artificial intelligence tools may improve efficiency in identifying heritage values in buildings compared to costly and time-consuming traditional inventories. In this study, OpenAI's large language model GPT was used to detect various aspects of cultural heritage value in facade images. Using GPT derived data and building register data, machine learning models were trained to classify multi-family and non-residential buildings in Stockholm, Sweden. Validation against a heritage expert-created inventory shows a macro F1-score of 0.71 using a combination of register data and features retrieved from GPT, and a score of 0.60 using only GPT-derived data. The methods presented can contribute to higher-quality datasets and support decision making.
♻ ☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), particularly at the mild cognitive impairment stage, is essential for timely intervention. However, this process faces significant barriers, including reliance on subjective assessments and the high cost of advanced imaging techniques. While deep learning offers automated solutions to improve diagnostic accuracy, its widespread adoption remains constrained due to high energy requirements and computational demands, particularly in resource-limited settings. Spiking neural networks (SNNs) provide a promising alternative, as their brain-inspired design is well-suited to model the sparse and event-driven patterns characteristic of neural degeneration in AD. These networks offer the potential for developing interpretable, energy-efficient diagnostic tools. Despite their advantages, existing SNNs often suffer from limited expressiveness and challenges in stable training, which reduce their effectiveness in handling complex medical tasks. To address these shortcomings, we introduce FasterSNN, a hybrid neural architecture that combines biologically inspired Leaky Integrate-and-Fire (LIF) neurons with region-adaptive convolution and multi-scale spiking attention mechanisms. This approach facilitates efficient, sparse processing of 3D MRI data while maintaining high diagnostic accuracy. Experimental results on benchmark datasets reveal that FasterSNN delivers competitive performance with significantly enhanced efficiency and training stability, highlighting its potential for practical application in AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 35 pages, 8 figures
♻ ☆ Matérn Kernels for Tunable Implicit Surface Reconstruction ICLR'25
We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction -- outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.
comment: ICLR'25
♻ ☆ Live Avatar: Streaming Real-time Audio-Driven Avatar Generation with Infinite Length
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
♻ ☆ ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization aims to generate coherent image sequences that faithfully depict a narrative and align with character references. Despite progress in generative models, existing benchmarks are narrow in scope, often limited to short prompts, lacking character references, or single-image cases, and fail to capture real-world storytelling complexity. This hinders a nuanced understanding of model capabilities and limitations. We present \textbf{ViStoryBench}, a comprehensive benchmark designed to evaluate story visualization models across diverse narrative structures, visual styles, and character settings. The benchmark features richly annotated multi-shot scripts derived from curated stories spanning literature, film, and folklore. Large language models assist in story summarization and script generation, with all outputs human-verified to ensure coherence and fidelity. Character references are carefully curated to maintain intra-story consistency across varying artistic styles. To enable thorough evaluation, ViStoryBench introduces a set of automated metrics that assess character consistency, style similarity, prompt alignment, aesthetic quality, and generation artifacts such as copy-paste behavior. These metrics are validated through human studies, and used to benchmark a broad range of open-source and commercial models. ViStoryBench offers a multi-dimensional evaluation suite that facilitates systematic analysis and fosters future progress in visual storytelling.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
♻ ☆ Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference
Parameter-efficient fine-tuning (PEFT) has emerged as a popular solution for adapting pre-trained Vision Transformer (ViT) models to downstream applications by updating only a small subset of parameters. While current PEFT methods have achieved fine-tuning efficiency, they overlook the efficiency of computation and GPU memory during inference, falling short of practical requirements. To address this limitation, we propose Sparse-Tuning, an efficient and effective framework that leverages popular token sparsification (TS) techniques to reduce information redundancy in images and videos, thereby significantly improving computational and memory efficiency. However, TS often compromises performance due to inevitable information loss. To address this limitation, we further introduce Dense Adapters (DA) to compensate for the information losses incurred by token sparsification. DA integrates comprehensive token information from shallow layers into the retained tokens of deeper layers, ensuring minimal performance degradation. Through the integration of TS techniques and DA, Sparse-Tuning achieves a significant reduction in computation and memory overhead while maintaining performance. Empirical results on VTAB-1K, three image datasets, and two video datasets show that Sparse-Tuning reduces GFLOPs to 66\% of the original ViT-B while achieving state-of-the-art performance compared to full fine-tuning and other PEFT baselines.
♻ ☆ Scaling Laws for Black box Adversarial Attacks
Adversarial examples exhibit cross-model transferability, enabling threatening black-box attacks on commercial models. Model ensembling, which attacks multiple surrogate models, is a known strategy to improve this transferability. However, prior studies typically use small, fixed ensembles, which leaves open an intriguing question of whether scaling the number of surrogate models can further improve black-box attacks. In this work, we conduct the first large-scale empirical study of this question. We show that by resolving gradient conflict with advanced optimizers, we discover a robust and universal log-linear scaling law through both theoretical analysis and empirical evaluations: the Attack Success Rate (ASR) scales linearly with the logarithm of the ensemble size $T$. We rigorously verify this law across standard classifiers, SOTA defenses, and MLLMs, and find that scaling distills robust, semantic features of the target class. Consequently, we apply this fundamental insight to benchmark SOTA MLLMs. This reveals both the attack's devastating power and a clear robustness hierarchy: we achieve 80\%+ transfer attack success rate on proprietary models like GPT-4o, while also highlighting the exceptional resilience of Claude-3.5-Sonnet. Our findings urge a shift in focus for robustness evaluation: from designing intricate algorithms on small ensembles to understanding the principled and powerful threat of scaling.
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ SlumpGuard: An AI-Powered Real-Time System for Automated Concrete Slump Prediction via Video Analysis
Concrete workability is essential for construction quality, with the slump test being the most widely used on-site method for its assessment. However, traditional slump testing is manual, time-consuming, and highly operator-dependent, making it unsuitable for continuous or real-time monitoring during placement. To address these limitations, we present SlumpGuard, an AI-powered vision system that analyzes the natural discharge flow from a mixer-truck chute using a single fixed camera. The system performs automatic chute detection, pouring-event identification, and video-based slump classification, enabling quality monitoring without sensors, hardware installation, or manual intervention. We introduce the system design, construct a site-replicated dataset of over 6,000 video clips, and report extensive evaluations demonstrating reliable chute localization, accurate pouring detection, and robust slump prediction under diverse field conditions. An expert study further reveals significant disagreement in human visual estimates, highlighting the need for automated assessment.
comment: Our project page: https://winston1214.github.io/SlumpGuard/
♻ ☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how training hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the training hyperparameter space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
♻ ☆ Unified Semantic Transformer for 3D Scene Understanding
Holistic 3D scene understanding involves capturing and parsing unstructured 3D environments. Due to the inherent complexity of the real world, existing models have predominantly been developed and limited to be task-specific. We introduce UNITE, a Unified Semantic Transformer for 3D scene understanding, a novel feed-forward neural network that unifies a diverse set of 3D semantic tasks within a single model. Our model operates on unseen scenes in a fully end-to-end manner and only takes a few seconds to infer the full 3D semantic geometry. Our approach is capable of directly predicting multiple semantic attributes, including 3D scene segmentation, instance embeddings, open-vocabulary features, as well as affordance and articulations, solely from RGB images. The method is trained using a combination of 2D distillation, heavily relying on self-supervision and leverages novel multi-view losses designed to ensure 3D view consistency. We demonstrate that UNITE achieves state-of-the-art performance on several different semantic tasks and even outperforms task-specific models, in many cases, surpassing methods that operate on ground truth 3D geometry. See the project website at unite-page.github.io
comment: Project page: https://unite-page.github.io/
♻ ☆ Percept, Chat, and then Adapt: Multimodal Knowledge Transfer of Foundation Models for Open-World Video Recognition
Open-world video recognition is challenging since traditional networks are not generalized well on complex environment variations. Alternatively, foundation models with rich knowledge have recently shown their generalization power. However, how to apply such knowledge has not been fully explored for open-world video recognition. To this end, we propose a generic knowledge transfer pipeline, which progressively exploits and integrates external multimodal knowledge from foundation models to boost open-world video recognition. We name it PCA, based on three stages of Percept, Chat, and Adapt. First, we perform Percept process to reduce the video domain gap and obtain external visual knowledge. Second, we generate rich linguistic semantics as external textual knowledge in Chat stage. Finally, we blend external multimodal knowledge in Adapt stage, by inserting multimodal knowledge adaptation modules into networks. We conduct extensive experiments on three challenging open-world video benchmarks, i.e., TinyVIRAT, ARID, and QV-Pipe. Our approach achieves state-of-the-art performance on all three datasets.
comment: 35 pages, 6 figures, 8 tables
♻ ☆ UniDepthV2: Universal Monocular Metric Depth Estimation Made Simpler
Accurate monocular metric depth estimation (MMDE) is crucial to solving downstream tasks in 3D perception and modeling. However, the remarkable accuracy of recent MMDE methods is confined to their training domains. These methods fail to generalize to unseen domains even in the presence of moderate domain gaps, which hinders their practical applicability. We propose a new model, UniDepthV2, capable of reconstructing metric 3D scenes from solely single images across domains. Departing from the existing MMDE paradigm, UniDepthV2 directly predicts metric 3D points from the input image at inference time without any additional information, striving for a universal and flexible MMDE solution. In particular, UniDepthV2 implements a self-promptable camera module predicting a dense camera representation to condition depth features. Our model exploits a pseudo-spherical output representation, which disentangles the camera and depth representations. In addition, we propose a geometric invariance loss that promotes the invariance of camera-prompted depth features. UniDepthV2 improves its predecessor UniDepth model via a new edge-guided loss which enhances the localization and sharpness of edges in the metric depth outputs, a revisited, simplified and more efficient architectural design, and an additional uncertainty-level output which enables downstream tasks requiring confidence. Thorough evaluations on ten depth datasets in a zero-shot regime consistently demonstrate the superior performance and generalization of UniDepthV2. Code and models are available at https://github.com/lpiccinelli-eth/UniDepth
comment: arXiv admin note: substantial text overlap with arXiv:2403.18913
♻ ☆ Low-Resolution Action Recognition for Tiny Actions Challenge CVPR 2022
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often recorded at a distance, and appear in a small resolution without much discriminative clue. Second, these activities are naturally distributed in a long-tailed way. It is hard to alleviate data bias for such heavy category imbalance. To tackle these problems, we propose a comprehensive recognition solution in this paper. First, we train video backbones with data balance, in order to alleviate overfitting in the challenge benchmark. Second, we design a dual-resolution distillation framework, which can effectively guide low-resolution action recognition by super-resolution knowledge. Finally, we apply model en-semble with post-processing, which can further boost per-formance on the long-tailed categories. Our solution ranks Top-1 on the leaderboard.
comment: This article is the report of the CVPR 2022 ActivityNet workshop Tiny Actions Challenge(https://tinyactions-cvpr22.github.io/). The time of the first submission to the organizers is June 6th
♻ ☆ D-FCGS: Feedforward Compression of Dynamic Gaussian Splatting for Free-Viewpoint Videos
Free-Viewpoint Video (FVV) enables immersive 3D experiences, but efficient compression of dynamic 3D representation remains a major challenge. Existing dynamic 3D Gaussian Splatting methods couple reconstruction with optimization-dependent compression and customized motion formats, limiting generalization and standardization. To address this, we propose D-FCGS, a novel Feedforward Compression framework for Dynamic Gaussian Splatting. Key innovations include: (1) a standardized Group-of-Frames (GoF) structure with I-P coding, leveraging sparse control points to extract inter-frame motion tensors; (2) a dual prior-aware entropy model that fuses hyperprior and spatial-temporal priors for accurate rate estimation; (3) a control-point-guided motion compensation mechanism and refinement network to enhance view-consistent fidelity. Trained on Gaussian frames derived from multi-view videos, D-FCGS generalizes across diverse scenes in a zero-shot fashion. Experiments show that it matches the rate-distortion performance of optimization-based methods, achieving over 40 times compression compared to the baseline while preserving visual quality across viewpoints. This work advances feedforward compression of dynamic 3DGS, facilitating scalable FVV transmission and storage for immersive applications.
comment: changes of some major results
♻ ☆ MoAPT: Mixture of Adversarial Prompt Tuning for Vision-Language Models
Large pre-trained Vision Language Models (VLMs) demonstrate excellent generalization capabilities but remain highly susceptible to adversarial examples, posing potential security risks. To improve the robustness of VLMs against adversarial examples, adversarial prompt tuning methods are proposed to align the text feature with the adversarial image feature without changing model parameters. However, when facing various adversarial attacks, a single learnable text prompt has insufficient generalization to align well with all adversarial image features, which ultimately results in overfitting. To address the above challenge, in this paper, we empirically find that increasing the number of learned prompts yields greater robustness improvements than simply extending the length of a single prompt. Building on this observation, we propose an adversarial tuning method named \textbf{Mixture of Adversarial Prompt Tuning (MoAPT)} to enhance the generalization against various adversarial attacks for VLMs. MoAPT aims to learn mixture text prompts to obtain more robust text features. To further enhance the adaptability, we propose a conditional weight router based on the adversarial images to predict the mixture weights of multiple learned prompts, which helps obtain sample-specific mixture text features aligning with different adversarial image features. Extensive experiments across 11 datasets under different settings show that our method can achieve better adversarial robustness than state-of-the-art approaches.
♻ ☆ SemanticBridge - A Dataset for 3D Semantic Segmentation of Bridges and Domain Gap Analysis
We propose a novel dataset that has been specifically designed for 3D semantic segmentation of bridges and the domain gap analysis caused by varying sensors. This addresses a critical need in the field of infrastructure inspection and maintenance, which is essential for modern society. The dataset comprises high-resolution 3D scans of a diverse range of bridge structures from various countries, with detailed semantic labels provided for each. Our initial objective is to facilitate accurate and automated segmentation of bridge components, thereby advancing the structural health monitoring practice. To evaluate the effectiveness of existing 3D deep learning models on this novel dataset, we conduct a comprehensive analysis of three distinct state-of-the-art architectures. Furthermore, we present data acquired through diverse sensors to quantify the domain gap resulting from sensor variations. Our findings indicate that all architectures demonstrate robust performance on the specified task. However, the domain gap can potentially lead to a decline in the performance of up to 11.4% mIoU.
♻ ☆ MAVIS: A Benchmark for Multimodal Source Attribution in Long-form Visual Question Answering AAAI 2026
Source attribution aims to enhance the reliability of AI-generated answers by including references for each statement, helping users validate the provided answers. However, existing work has primarily focused on text-only scenario and largely overlooked the role of multimodality. We introduce MAVIS, the first benchmark designed to evaluate multimodal source attribution systems that understand user intent behind visual questions, retrieve multimodal evidence, and generate long-form answers with citations. Our dataset comprises 157K visual QA instances, where each answer is annotated with fact-level citations referring to multimodal documents. We develop fine-grained automatic metrics along three dimensions of informativeness, groundedness, and fluency, and demonstrate their strong correlation with human judgments. Our key findings are threefold: (1) LVLMs with multimodal RAG generate more informative and fluent answers than unimodal RAG, but they exhibit weaker groundedness for image documents than for text documents, a gap amplified in multimodal settings. (2) Given the same multimodal documents, there is a trade-off between informativeness and groundedness across different prompting methods. (3) Our proposed method highlights mitigating contextual bias in interpreting image documents as a crucial direction for future research.
comment: AAAI 2026; code is available at https://github.com/seokwon99/MAVIS
♻ ☆ WildFit: Autonomous In-situ Model Adaptation for Resource-Constrained IoT Systems
Resource-constrained IoT devices increasingly rely on deep learning models, however, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Our background-aware synthesis surpasses efficient baselines by 7.3% and diffusion models by 3.0% while being orders of magnitude faster, our drift-aware fine-tuning achieves Pareto optimality with 50% fewer updates and 1.5% higher accuracy, and the end-to-end system outperforms domain adaptation approaches by 20-35% while consuming only 11.2 Wh over 37 days-enabling battery-powered deployment.
comment: Accepted by ACM SenSys 2026
♻ ☆ $\mathrm{D}^\mathrm{3}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Although diffusion models with strong visual priors have emerged as powerful dense prediction backboens, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^\mathrm{3}$-Predictor, a noise-free deterministic framework built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^\mathrm{3}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^\mathrm{3}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.
♻ ☆ STAGNet: A Spatio-Temporal Graph and LSTM Framework for Accident Anticipation
Accident prediction and timely warnings play a key role in improving road safety by reducing the risk of injury to road users and minimizing property damage. Advanced Driver Assistance Systems (ADAS) are designed to support human drivers and are especially useful when they can anticipate potential accidents before they happen. While many existing systems depend on a range of sensors such as LiDAR, radar, and GPS, relying solely on dash-cam video input presents a more challenging but a more cost-effective and easily deployable solution. In this work, we incorporate better spatio-temporal features and aggregate them through a recurrent network to improve upon state-of-the-art graph neural networks for predicting accidents from dash-cam videos. Experiments using three publicly available datasets show that our proposed STAGNet model achieves higher average precision and mean time-to-collision values than previous methods, both when cross-validated on a given dataset and when trained and tested on different datasets.
comment: Published in IEEE Access (Early Access)
♻ ☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
♻ ☆ Self-localization on a 3D map by fusing global and local features from a monocular camera
Self-localization on a 3D map by using an inexpensive monocular camera is required to realize autonomous driving. Self-localization based on a camera often uses a convolutional neural network (CNN) that can extract local features that are calculated by nearby pixels. However, when dynamic obstacles, such as people, are present, CNN does not work well. This study proposes a new method combining CNN with Vision Transformer, which excels at extracting global features that show the relationship of patches on whole image. Experimental results showed that, compared to the state-of-the-art method (SOTA), the accuracy improvement rate in a CG dataset with dynamic obstacles is 1.5 times higher than that without dynamic obstacles. Moreover, the self-localization error of our method is 20.1% smaller than that of SOTA on public datasets. Additionally, our robot using our method can localize itself with 7.51cm error on average, which is more accurate than SOTA.
♻ ☆ Null-LoRA: Low-Rank Adaptation on Null Space
Parameter-efficient fine-tuning methods have gained considerable popularity for adapting large-scale models to downstream tasks, particularly LoRA and its variants. Existing methods perform low-rank adaptation over the full parameter space. However, fine-tuning within a subspace can achieve comparable effectiveness. Inspired by the observation that pre-trained models possess non-trivial null spaces, we propose Null-space based Low-Rank Adaptation (Null-LoRA). Null-LoRA effectively reduces redundancy and enhances effective rank by freezing portions of the low-rank matrices. To further improve parameter efficiency, Null-LoRA constrains the entire incremental update within the null space, maximizing the utilization of incremental updates to adapt to new task paradigms. Null-LoRA surpasses the state of the art with fewer parameters in extensive experiments across image-text retrieval and visual question answering tasks.
♻ ☆ ConsistTalk: Intensity Controllable Temporally Consistent Talking Head Generation with Diffusion Noise Search AAAI26
Recent advancements in video diffusion models have significantly enhanced audio-driven portrait animation. However, current methods still suffer from flickering, identity drift, and poor audio-visual synchronization. These issues primarily stem from entangled appearance-motion representations and unstable inference strategies. In this paper, we introduce \textbf{ConsistTalk}, a novel intensity-controllable and temporally consistent talking head generation framework with diffusion noise search inference. First, we propose \textbf{an optical flow-guided temporal module (OFT)} that decouples motion features from static appearance by leveraging facial optical flow, thereby reducing visual flicker and improving temporal consistency. Second, we present an \textbf{Audio-to-Intensity (A2I) model} obtained through multimodal teacher-student knowledge distillation. By transforming audio and facial velocity features into a frame-wise intensity sequence, the A2I model enables joint modeling of audio and visual motion, resulting in more natural dynamics. This further enables fine-grained, frame-wise control of motion dynamics while maintaining tight audio-visual synchronization. Third, we introduce a \textbf{diffusion noise initialization strategy (IC-Init)}. By enforcing explicit constraints on background coherence and motion continuity during inference-time noise search, we achieve better identity preservation and refine motion dynamics compared to the current autoregressive strategy. Extensive experiments demonstrate that ConsistTalk significantly outperforms prior methods in reducing flicker, preserving identity, and delivering temporally stable, high-fidelity talking head videos.
comment: AAAI26 poster
♻ ☆ Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks
Recent advancements in image synthesis, particularly with the advent of GAN and Diffusion models, have amplified public concerns regarding the dissemination of disinformation. To address such concerns, numerous AI-generated Image (AIGI) Detectors have been proposed and achieved promising performance in identifying fake images. However, there still lacks a systematic understanding of the adversarial robustness of AIGI detectors. In this paper, we examine the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings, which has been rarely investigated so far. To this end, we propose a new method to attack AIGI detectors. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution. Second, we explore the full posterior distribution of the surrogate model to further narrow this gap between heterogeneous AIGI detectors, e.g., transferring adversarial examples across CNNs and ViTs. This is achieved by introducing a novel post-train Bayesian strategy that turns a single surrogate into a Bayesian one, capable of simulating diverse victim models using one pre-trained surrogate, without the need for re-training. We name our method as Frequency-based Post-train Bayesian Attack, or FPBA. Through FPBA, we demonstrate that adversarial attacks pose a real threat to AIGI detectors. FPBA can deliver successful black-box attacks across various detectors, generators, defense methods, and even evade cross-generator and compressed image detection, which are crucial real-world detection scenarios. Our code is available at https://github.com/onotoa/fpba.
♻ ☆ An Efficient Deep Learning Framework for Brain Stroke Diagnosis Using Computed Tomography Images
Brain stroke is a leading cause of mortality and long-term disability worldwide, underscoring the need for precise and rapid prediction techniques. Computed Tomography (CT) scan is considered one of the most effective methods for diagnosing brain strokes. Most stroke classification techniques use a single slice-level prediction mechanism, requiring radiologists to manually select the most critical CT slice from the original CT volume. Although clinical evaluations are often used in traditional diagnostic procedures, machine learning (ML) has opened up new avenues for improving stroke diagnosis. To supplement traditional diagnostic techniques, this study investigates machine learning models for early brain stroke prediction using CT scan images. This research proposes a novel machine learning approach to brain stroke detection, focusing on optimizing classification performance with pre-trained deep learning models and advanced optimization strategies. Pre-trained models, including DenseNet201, InceptionV3, MobileNetV2, ResNet50, and Xception, are used for feature extraction. Feature engineering techniques, including BFO, PCA, and LDA, further enhance model performance. These features are then classified using machine learning algorithms, including SVC, RF, XGB, DT, LR, KNN, and GNB. Our experiments demonstrate that the combination of MobileNetV2, LDA, and SVC achieved the highest classification accuracy of 97.93%, significantly outperforming other model-optimizer-classifier combinations. The results underline the effectiveness of integrating lightweight pre-trained models with robust optimization and classification techniques for brain stroke diagnosis.
comment: Preprint version. Submitted for peer review
♻ ☆ DKDS: A Benchmark Dataset of Degraded Kuzushiji Documents with Seals for Detection and Binarization
Kuzushiji, a pre-modern Japanese cursive script, can currently be read and understood by only a few thousand trained experts in Japan. With the rapid development of deep learning, researchers have begun applying Optical Character Recognition (OCR) techniques to transcribe Kuzushiji into modern Japanese. Although existing OCR methods perform well on clean pre-modern Japanese documents written in Kuzushiji, they often fail to consider various types of noise, such as document degradation and seals, which significantly affect recognition accuracy. To the best of our knowledge, no existing dataset specifically addresses these challenges. To address this gap, we introduce the Degraded Kuzushiji Documents with Seals (DKDS) dataset as a new benchmark for related tasks. We describe the dataset construction process, which required the assistance of a trained Kuzushiji expert, and define two benchmark tracks: (1) text and seal detection and (2) document binarization. For the text and seal detection track, we provide baseline results using several recent versions of the You Only Look Once (YOLO) models for detecting Kuzushiji characters and seals. For the document binarization track, we present baseline results from traditional binarization algorithms, traditional algorithms combined with K-means clustering, two state-of-the-art (SOTA) Generative Adversarial Network (GAN) methods, as well as our Conditional GAN (cGAN) baseline. The DKDS dataset and the implementation code for baseline methods are available at https://ruiyangju.github.io/DKDS.
♻ ☆ DriveVLA-W0: World Models Amplify Data Scaling Law in Autonomous Driving
Scaling Vision-Language-Action (VLA) models on large-scale data offers a promising path to achieving a more generalized driving intelligence. However, VLA models are limited by a ``supervision deficit'': the vast model capacity is supervised by sparse, low-dimensional actions, leaving much of their representational power underutilized. To remedy this, we propose \textbf{DriveVLA-W0}, a training paradigm that employs world modeling to predict future images. This task generates a dense, self-supervised signal that compels the model to learn the underlying dynamics of the driving environment. We showcase the paradigm's versatility by instantiating it for two dominant VLA archetypes: an autoregressive world model for VLAs that use discrete visual tokens, and a diffusion world model for those operating on continuous visual features. Building on the rich representations learned from world modeling, we introduce a lightweight action expert to address the inference latency for real-time deployment. Extensive experiments on the NAVSIM v1/v2 benchmark and a 680x larger in-house dataset demonstrate that DriveVLA-W0 significantly outperforms BEV and VLA baselines. Crucially, it amplifies the data scaling law, showing that performance gains accelerate as the training dataset size increases.
♻ ☆ Scene-aware SAR ship detection guided by unsupervised sea-land segmentation
DL based Synthetic Aperture Radar (SAR) ship detection has tremendous advantages in numerous areas. However, it still faces some problems, such as the lack of prior knowledge, which seriously affects detection accuracy. In order to solve this problem, we propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation. This method follows a classical two-stage framework and is enhanced by two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM). ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes (inshore scene and offshore scene) and add prior knowledge (sea land segmentation information) to the network, thereby reducing the network's attention to land directly and enhancing offshore detection performance relatively. This increases the accuracy of ship detection and enhances the interpretability of the model. Specifically, in consideration of the lack of land sea segmentation labels in existing deep learning-based SAR ship detection datasets, ULSM uses an unsupervised approach to classify the input data scene into inshore and offshore types and performs sea-land segmentation for inshore scenes. LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land. We conducted our experiments using the publicly available SSDD dataset, which demonstrated the effectiveness of our network.
♻ ☆ SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect SpatialVID, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw videos, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly fosters improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.
comment: Project page: https://nju-3dv.github.io/projects/SpatialVID/
♻ ☆ BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion
Witnessing the evolution of text-to-image diffusion models, significant strides have been made in text-to-3D generation. Currently, two primary paradigms dominate the field of text-to-3D: the feed-forward generation solutions, capable of swiftly producing 3D assets but often yielding coarse results, and the Score Distillation Sampling (SDS) based solutions, known for generating high-fidelity 3D assets albeit at a slower pace. The synergistic integration of these methods holds substantial promise for advancing 3D generation techniques. In this paper, we present BoostDream, a highly efficient plug-and-play 3D refining method designed to transform coarse 3D assets into high-quality. The BoostDream framework comprises three distinct processes: (1) We introduce 3D model distillation that fits differentiable representations from the 3D assets obtained through feed-forward generation. (2) A novel multi-view SDS loss is designed, which utilizes a multi-view aware 2D diffusion model to refine the 3D assets. (3) We propose to use prompt and multi-view consistent normal maps as guidance in refinement.Our extensive experiment is conducted on different differentiable 3D representations, revealing that BoostDream excels in generating high-quality 3D assets rapidly, overcoming the Janus problem compared to conventional SDS-based methods. This breakthrough signifies a substantial advancement in both the efficiency and quality of 3D generation processes.
♻ ☆ HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models NeurIPS2025
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as HyperET, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. HyperET employs learnable matrices with Möbius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that HyperET consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters. Code is available at https://github.com/godlin-sjtu/HyperET
comment: Accepted by NeurIPS2025 (Oral)
♻ ☆ MMRel: Benchmarking Relation Understanding in Multi-Modal Large Language Models
Though Multi-modal Large Language Models (MLLMs) have recently achieved significant progress, they often struggle to understand diverse and complicated inter-object relations. Specifically, the lack of large-scale and high-quality relation data has greatly hindered the progress of MLLMs in various vision-language perception tasks. We attempt to address this challenge by contributing the Multi-Modal Relation Understanding benchmark (MMRel), which features large-scale, high-quality, and diverse data on inter-object relations. MMRel has three distinctive attributes: (i) it contains 22,500 question-answer pairs spanning three distinct domains and around 400 relations, ensuring both scale and diversity; (ii) it provides manually verified, high-quality labels to ensure exceptional annotation accuracy; and (iii) it includes adversarial cases with highly unusual relations, offering a challenging setting for evaluating relation hallucination. These features make MMRel ideal for evaluating MLLMs on relation understanding, as well as for fine-tuning MLLMs to enhance relation comprehension capability. Extensive experiments on 28 MLLMs demonstrate the effectiveness of MMRel in both evaluating and enhancing MLLMs' relation understanding, and the accompanying analyses provide insights for future research. The benchmark has been made publicly available at: https://niejiahao1998.github.io/MMRel
♻ ☆ From Frames to Clips: Training-free Adaptive Key Clip Selection for Long-Form Video Understanding
Video Large Language Models (VLMs) have achieved strong performance on various vision-language tasks, yet their practical use is limited by the massive number of visual tokens produced from raw video frames, which quickly exhausts the model's context window. Existing solutions mitigate this issue by selecting a sparse set of frames, but such frame-wise selection discards essential temporal dynamics in long-form videos, leading to suboptimal reasoning about motion and event continuity. In this work, we systematically examine the role of temporal information and show that extending selection from isolated key frames to temporally coherent key clips improves video understanding. To maintain a fixed computational budget while accommodating the larger token footprint of clips, we introduce frame resolution as a controllable factor in frame selection, enabling a trade-off between spatial resolution and clip length. Building on this idea, we propose an adaptive clip length module that dynamically balances these factors to ensure a constant token count per video. Experiments on three long-form video benchmarks demonstrate that our training-free approach, F2C, outperforms uniform sampling by up to 8.1%, 5.6%, and 10.3% on Video-MME, LongVideoBench, and MLVU, respectively. These results highlight the importance of preserving temporal coherence in frame selection and provide a practical pathway for scaling VLMs to real-world video understanding applications. Project webpage is available at https://guangyusun.com/f2c .
♻ ☆ StructDiff: Structure-aware Diffusion Model for 3D Fine-grained Medical Image Synthesis
Solving medical imaging data scarcity through semantic image generation has attracted growing attention in recent years. However, existing generative models mainly focus on synthesizing whole-organ or large-tissue structures, showing limited capability in reproducing fine-grained anatomical details. Due to the stringent requirement of topological consistency and the complex 3D morphological heterogeneity of medical data, accurately reconstructing fine-grained anatomical details remains a significant challenge. To address these limitations, we propose StructDiff, a Structure-aware Diffusion Model for fine-grained 3D medical image synthesis, which enables precise generation of topologically complex anatomies. In addition to the conventional mask-based guidance, StructDiff further introduces a paired image-mask template to guide the generation process, providing structural constrains and offering explicit knowledge of mask-to-image correspondence. Moreover, a Mask Generation Module (MGM) is designed to enrich mask diversity and alleviate the scarcity of high-quality reference masks. Furthermore, we propose a Confidence-aware Adaptive Learning (CAL) strategy based on Skip-Sampling Variance (SSV), which mitigates uncertainty introduced by imperfect synthetic data when transferring to downstream tasks. Extensive experiments demonstrate that StructDiff achieves state-of-the-art performance in terms of topological consistency and visual realism, and significantly boosts downstream segmentation performance. Code will be released upon acceptance.
comment: 17 pages, 10 figures
♻ ☆ UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.
comment: 10 pages, 6 figures
♻ ☆ CompEvent: Complex-valued Event-RGB Fusion for Low-light Video Enhancement and Deblurring
Low-light video deblurring poses significant challenges in applications like nighttime surveillance and autonomous driving due to dim lighting and long exposures. While event cameras offer potential solutions with superior low-light sensitivity and high temporal resolution, existing fusion methods typically employ staged strategies, limiting their effectiveness against combined low-light and motion blur degradations. To overcome this, we propose CompEvent, a complex neural network framework enabling holistic full-process fusion of event data and RGB frames for enhanced joint restoration. CompEvent features two core components: 1) Complex Temporal Alignment GRU, which utilizes complex-valued convolutions and processes video and event streams iteratively via GRU to achieve temporal alignment and continuous fusion; and 2) Complex Space-Frequency Learning module, which performs unified complex-valued signal processing in both spatial and frequency domains, facilitating deep fusion through spatial structures and system-level characteristics. By leveraging the holistic representation capability of complex-valued neural networks, CompEvent achieves full-process spatiotemporal fusion, maximizes complementary learning between modalities, and significantly strengthens low-light video deblurring capability. Extensive experiments demonstrate that CompEvent outperforms SOTA methods in addressing this challenging task.
♻ ☆ PerTouch: VLM-Driven Agent for Personalized and Semantic Image Retouching AAAI 2026
Image retouching aims to enhance visual quality while aligning with users' personalized aesthetic preferences. To address the challenge of balancing controllability and subjectivity, we propose a unified diffusion-based image retouching framework called PerTouch. Our method supports semantic-level image retouching while maintaining global aesthetics. Using parameter maps containing attribute values in specific semantic regions as input, PerTouch constructs an explicit parameter-to-image mapping for fine-grained image retouching. To improve semantic boundary perception, we introduce semantic replacement and parameter perturbation mechanisms during training. To connect natural language instructions with visual control, we develop a VLM-driven agent to handle both strong and weak user instructions. Equipped with mechanisms of feedback-driven rethinking and scene-aware memory, PerTouch better aligns with user intent and captures long-term preferences. Extensive experiments demonstrate each component's effectiveness and the superior performance of PerTouch in personalized image retouching. Code Pages: https://github.com/Auroral703/PerTouch.
comment: To appear at AAAI 2026
Artificial Intelligence 156
☆ EasyV2V: A High-quality Instruction-based Video Editing Framework
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
comment: Project page: https://snap-research.github.io/easyv2v/
☆ DVGT: Driving Visual Geometry Transformer
Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.
comment: Code is available at https://github.com/wzzheng/DVGT
☆ Differences That Matter: Auditing Models for Capability Gap Discovery and Rectification
Conventional evaluation methods for multimodal LLMs (MLLMs) lack interpretability and are often insufficient to fully disclose significant capability gaps across models. To address this, we introduce AuditDM, an automated framework that actively discovers and rectifies MLLM failure modes by auditing their divergence. AuditDM fine-tunes an MLLM as an auditor via reinforcement learning to generate challenging questions and counterfactual images that maximize disagreement among target models. Once trained, the auditor uncovers diverse, interpretable exemplars that reveal model weaknesses and serve as annotation-free data for rectification. When applied to SoTA models like Gemma-3 and PaliGemma-2, AuditDM discovers more than 20 distinct failure types. Fine-tuning on these discoveries consistently improves all models across 16 benchmarks, and enables a 3B model to surpass its 28B counterpart. Our results suggest that as data scaling hits diminishing returns, targeted model auditing offers an effective path to model diagnosis and improvement.
comment: project page: https://auditdm.github.io/
☆ Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
☆ Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
☆ Posterior Behavioral Cloning: Pretraining BC Policies for Efficient RL Finetuning
Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that standard behavioral cloning (BC) -- which trains a policy to directly match the actions played by the demonstrator -- can fail to ensure coverage over the demonstrator's actions, a minimal condition necessary for effective RL finetuning. We then show that if, instead of exactly fitting the observed demonstrations, we train a policy to model the posterior distribution of the demonstrator's behavior given the demonstration dataset, we do obtain a policy that ensures coverage over the demonstrator's actions, enabling more effective finetuning. Furthermore, this policy -- which we refer to as the posterior behavioral cloning (PostBC) policy -- achieves this while ensuring pretrained performance is no worse than that of the BC policy. We then show that PostBC is practically implementable with modern generative models in robotic control domains -- relying only on standard supervised learning -- and leads to significantly improved RL finetuning performance on both realistic robotic control benchmarks and real-world robotic manipulation tasks, as compared to standard behavioral cloning.
☆ Flowing from Reasoning to Motion: Learning 3D Hand Trajectory Prediction from Egocentric Human Interaction Videos
Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.
comment: Project website: https://egoman-project.github.io
☆ Impacts of Racial Bias in Historical Training Data for News AI
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ Training Together, Diagnosing Better: Federated Learning for Collagen VI-Related Dystrophies
The application of Machine Learning (ML) to the diagnosis of rare diseases, such as collagen VI-related dystrophies (COL6-RD), is fundamentally limited by the scarcity and fragmentation of available data. Attempts to expand sampling across hospitals, institutions, or countries with differing regulations face severe privacy, regulatory, and logistical obstacles that are often difficult to overcome. The Federated Learning (FL) provides a promising solution by enabling collaborative model training across decentralized datasets while keeping patient data local and private. Here, we report a novel global FL initiative using the Sherpa.ai FL platform, which leverages FL across distributed datasets in two international organizations for the diagnosis of COL6-RD, using collagen VI immunofluorescence microscopy images from patient-derived fibroblast cultures. Our solution resulted in an ML model capable of classifying collagen VI patient images into the three primary pathogenic mechanism groups associated with COL6-RD: exon skipping, glycine substitution, and pseudoexon insertion. This new approach achieved an F1-score of 0.82, outperforming single-organization models (0.57-0.75). These results demonstrate that FL substantially improves diagnostic utility and generalizability compared to isolated institutional models. Beyond enabling more accurate diagnosis, we anticipate that this approach will support the interpretation of variants of uncertain significance and guide the prioritization of sequencing strategies to identify novel pathogenic variants.
☆ Pixel Seal: Adversarial-only training for invisible image and video watermarking
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
comment: Code and model available at https://github.com/facebookresearch/videoseal
☆ The Social Responsibility Stack: A Control-Theoretic Architecture for Governing Socio-Technical AI
Artificial intelligence systems are increasingly deployed in domains that shape human behaviour, institutional decision-making, and societal outcomes. Existing responsible AI and governance efforts provide important normative principles but often lack enforceable engineering mechanisms that operate throughout the system lifecycle. This paper introduces the Social Responsibility Stack (SRS), a six-layer architectural framework that embeds societal values into AI systems as explicit constraints, safeguards, behavioural interfaces, auditing mechanisms, and governance processes. SRS models responsibility as a closed-loop supervisory control problem over socio-technical systems, integrating design-time safeguards with runtime monitoring and institutional oversight. We develop a unified constraint-based formulation, introduce safety-envelope and feedback interpretations, and show how fairness, autonomy, cognitive burden, and explanation quality can be continuously monitored and enforced. Case studies in clinical decision support, cooperative autonomous vehicles, and public-sector systems illustrate how SRS translates normative objectives into actionable engineering and operational controls. The framework bridges ethics, control theory, and AI governance, providing a practical foundation for accountable, adaptive, and auditable socio-technical AI systems.
☆ Sequencing to Mitigate Catastrophic Forgetting in Continual Learning
To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, and exploit knowledge throughout its lifetime. This ability, known as Continual learning, provides a foundation for AI systems to develop themselves adaptively. Catastrophic forgetting is a major challenge to the progress of Continual Learning approaches, where learning a new task usually results in a dramatic performance drop on previously learned ones. Many approaches have emerged to counteract the impact of CF. Most of the proposed approaches can be categorized into five classes: replay-based, regularization-based, optimization-based, representation-based, and architecture-based. In this work, we approach the problem from a different angle, specifically by considering the optimal sequencing of tasks as they are presented to the model. We investigate the role of task sequencing in mitigating CF and propose a method for determining the optimal task order. The proposed method leverages zero-shot scoring algorithms inspired by neural architecture search (NAS). Results demonstrate that intelligent task sequencing can substantially reduce CF. Moreover, when combined with traditional continual learning strategies, sequencing offers enhanced performance and robustness against forgetting. Additionally, the presented approaches can find applications in other fields, such as curriculum learning.
comment: The Manuscript is submitted for review under IEEE Transactions on Artificial intelligence
☆ Semi-Supervised Online Learning on the Edge by Transforming Knowledge from Teacher Models
Edge machine learning (Edge ML) enables training ML models using the vast data distributed across network edges. However, many existing approaches assume static models trained centrally and then deployed, making them ineffective against unseen data. To address this, Online Edge ML allows models to be trained directly on edge devices and updated continuously with new data. This paper explores a key challenge of Online Edge ML: "How to determine labels for truly future, unseen data points". We propose Knowledge Transformation (KT), a hybrid method combining Knowledge Distillation, Active Learning, and causal reasoning. In short, KT acts as the oracle in active learning by transforming knowledge from a teacher model to generate pseudo-labels for training a student model. To verify the validity of the method, we conducted simulation experiments with two setups: (1) using a less stable teacher model and (2) a relatively more stable teacher model. Results indicate that when a stable teacher model is given, the student model can eventually reach its expected maximum performance. KT is potentially beneficial for scenarios that meet the following circumstances: (1) when the teacher's task is generic, which means existing pre-trained models might be adequate for its task, so there will be no need to train the teacher model from scratch; and/or (2) when the label for the student's task is difficult or expensive to acquire.
☆ ReinforceGen: Hybrid Skill Policies with Automated Data Generation and Reinforcement Learning
Long-horizon manipulation has been a long-standing challenge in the robotics community. We propose ReinforceGen, a system that combines task decomposition, data generation, imitation learning, and motion planning to form an initial solution, and improves each component through reinforcement-learning-based fine-tuning. ReinforceGen first segments the task into multiple localized skills, which are connected through motion planning. The skills and motion planning targets are trained with imitation learning on a dataset generated from 10 human demonstrations, and then fine-tuned through online adaptation and reinforcement learning. When benchmarked on the Robosuite dataset, ReinforceGen reaches 80% success rate on all tasks with visuomotor controls in the highest reset range setting. Additional ablation studies show that our fine-tuning approaches contributes to an 89% average performance increase. More results and videos available in https://reinforcegen.github.io/
☆ Distributional AGI Safety
AI safety and alignment research has predominantly been focused on methods for safeguarding individual AI systems, resting on the assumption of an eventual emergence of a monolithic Artificial General Intelligence (AGI). The alternative AGI emergence hypothesis, where general capability levels are first manifested through coordination in groups of sub-AGI individual agents with complementary skills and affordances, has received far less attention. Here we argue that this patchwork AGI hypothesis needs to be given serious consideration, and should inform the development of corresponding safeguards and mitigations. The rapid deployment of advanced AI agents with tool-use capabilities and the ability to communicate and coordinate makes this an urgent safety consideration. We therefore propose a framework for distributional AGI safety that moves beyond evaluating and aligning individual agents. This framework centers on the design and implementation of virtual agentic sandbox economies (impermeable or semi-permeable), where agent-to-agent transactions are governed by robust market mechanisms, coupled with appropriate auditability, reputation management, and oversight to mitigate collective risks.
☆ TOGGLE: Temporal Logic-Guided Large Language Model Compression for Edge
Large Language Models (LLMs) deliver exceptional performance across natural language tasks but demand substantial computational resources, limiting their deployment on resource-constrained edge devices. Existing compression techniques, such as quantization and pruning, often degrade critical linguistic properties and lack formal guarantees for preserving model behavior. We propose Temporal Logic-Guided Large Language Model Compression (TOGGLE), a novel framework that leverages Signal Temporal Logic (STL) to formally specify and enforce linguistic properties during compression. TOGGLE employs an STL robustness-guided Bayesian optimization to systematically explore layer-wise quantization and pruning configurations, generating compressed models that formally satisfy specified linguistic constraints without retraining or fine-tuning. Evaluating TOGGLE on four LLM architectures (GPT-2, DeepSeek-V2 7B, LLaMA 3 8B, and Mistral 7B), we achieve up to 3.3x reduction in computational costs (FLOPs) and up to a 68.8% reduction in model size while satisfying all linguistic properties. TOGGLE represents the first integration of formal methods into LLM compression, enabling efficient, verifiable deployment of LLMs on edge hardware.
comment: Published in the IEEE ICCAD 2025 conference
☆ GenEval 2: Addressing Benchmark Drift in Text-to-Image Evaluation
Automating Text-to-Image (T2I) model evaluation is challenging; a judge model must be used to score correctness, and test prompts must be selected to be challenging for current T2I models but not the judge. We argue that satisfying these constraints can lead to benchmark drift over time, where the static benchmark judges fail to keep up with newer model capabilities. We show that benchmark drift is a significant problem for GenEval, one of the most popular T2I benchmarks. Although GenEval was well-aligned with human judgment at the time of its release, it has drifted far from human judgment over time -- resulting in an absolute error of as much as 17.7% for current models. This level of drift strongly suggests that GenEval has been saturated for some time, as we verify via a large-scale human study. To help fill this benchmarking gap, we introduce a new benchmark, GenEval 2, with improved coverage of primitive visual concepts and higher degrees of compositionality, which we show is more challenging for current models. We also introduce Soft-TIFA, an evaluation method for GenEval 2 that combines judgments for visual primitives, which we show is more well-aligned with human judgment and argue is less likely to drift from human-alignment over time (as compared to more holistic judges such as VQAScore). Although we hope GenEval 2 will provide a strong benchmark for many years, avoiding benchmark drift is far from guaranteed and our work, more generally, highlights the importance of continual audits and improvement for T2I and related automated model evaluation benchmarks.
☆ PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy
The convergence of artificial AI and XR technologies (AI XR) promises innovative applications across many domains. However, the sensitive nature of data (e.g., eye-tracking) used in these systems raises significant privacy concerns, as adversaries can exploit these data and models to infer and leak personal information through membership inference attacks (MIA) and re-identification (RDA) with a high success rate. Researchers have proposed various techniques to mitigate such privacy attacks, including differential privacy (DP). However, AI XR datasets often contain numerous features, and applying DP uniformly can introduce unnecessary noise to less relevant features, degrade model accuracy, and increase inference time, limiting real-time XR deployment. Motivated by this, we propose a novel framework combining explainable AI (XAI) and DP-enabled privacy-preserving mechanisms to defend against privacy attacks. Specifically, we leverage post-hoc explanations to identify the most influential features in AI XR models and selectively apply DP to those features during inference. We evaluate our XAI-guided DP approach on three state-of-the-art AI XR models and three datasets: cybersickness, emotion, and activity classification. Our results show that the proposed method reduces MIA and RDA success rates by up to 43% and 39%, respectively, for cybersickness tasks while preserving model utility with up to 97% accuracy using Transformer models. Furthermore, it improves inference time by up to ~2x compared to traditional DP approaches. To demonstrate practicality, we deploy the XAI-guided DP AI XR models on an HTC VIVE Pro headset and develop a user interface (UI), namely PrivateXR, allowing users to adjust privacy levels (e.g., low, medium, high) while receiving real-time task predictions, protecting user privacy during XR gameplay.
comment: Published in the IEEE ISMAR 2025 conference
☆ Meta-RL Induces Exploration in Language Agents
Reinforcement learning (RL) has enabled the training of large language model (LLM) agents to interact with the environment and to solve multi-turn long-horizon tasks. However, the RL-trained agents often struggle in tasks that require active exploration and fail to efficiently adapt from trial-and-error experiences. In this paper, we present LaMer, a general Meta-RL framework that enables LLM agents to actively explore and learn from the environment feedback at test time. LaMer consists of two key components: (i) a cross-episode training framework to encourage exploration and long-term rewards optimization; and (ii) in-context policy adaptation via reflection, allowing the agent to adapt their policy from task feedback signal without gradient update. Experiments across diverse environments show that LaMer significantly improves performance over RL baselines, with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Webshop, respectively. Moreover, LaMer also demonstrates better generalization to more challenging or previously unseen tasks compared to the RL-trained agents. Overall, our results demonstrate that Meta-RL provides a principled approach to induce exploration in language agents, enabling more robust adaptation to novel environments through learned exploration strategies.
LLMCache: Layer-Wise Caching Strategies for Accelerated Reuse in Transformer Inference
Transformer-based language models have achieved remarkable performance across a wide range of tasks, yet their high inference latency poses a significant challenge for real-timeand large-scale deployment. While existing caching mechanisms,such as token-level key-value caches, offer speedups in autore-gressive decoding, they are limited in scope and applicability. In this paper, we present LLMCache, a novel layer-wise caching framework that accelerates transformer inference by reusing intermediate activations based on semantic similarity of input sequences. Unlike prior work, LLMCache is model-agnostic,operates across both encoder and decoder architectures, and supports caching at arbitrary transformer layers. We introduce a lightweight fingerprinting mechanism for matching seman-tically similar inputs and propose adaptive eviction strategies to manage cache staleness. Experiments on BERT and GPT-2 across SQuAD, WikiText-103, and OpenBookQA show up to 3.1 X speedup in inference time with <0.5% accuracy degradation. Our results highlight LLMCache as a practical and general-purpose solution for optimizing transformer inference in real-world applications
comment: Accepted and presented at 13th IEEE International Conference on Intelligent Systems and Embedded Design (ISED-2025)
☆ OPENTOUCH: Bringing Full-Hand Touch to Real-World Interaction
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.
comment: https://opentouch-tactile.github.io/
☆ Next-Generation License Plate Detection and Recognition System using YOLOv8
In the evolving landscape of traffic management and vehicle surveillance, efficient license plate detection and recognition are indispensable. Historically, many methodologies have tackled this challenge, but consistent real-time accuracy, especially in diverse environments, remains elusive. This study examines the performance of YOLOv8 variants on License Plate Recognition (LPR) and Character Recognition tasks, crucial for advancing Intelligent Transportation Systems. Two distinct datasets were employed for training and evaluation, yielding notable findings. The YOLOv8 Nano variant demonstrated a precision of 0.964 and mAP50 of 0.918 on the LPR task, while the YOLOv8 Small variant exhibited a precision of 0.92 and mAP50 of 0.91 on the Character Recognition task. A custom method for character sequencing was introduced, effectively sequencing the detected characters based on their x-axis positions. An optimized pipeline, utilizing YOLOv8 Nano for LPR and YOLOv8 Small for Character Recognition, is proposed. This configuration not only maintains computational efficiency but also ensures high accuracy, establishing a robust foundation for future real-world deployments on edge devices within Intelligent Transportation Systems. This effort marks a significant stride towards the development of smarter and more efficient urban infrastructures.
comment: 6 pages, 5 figures. Accepted and published in the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)
☆ Grammar-Forced Translation of Natural Language to Temporal Logic using LLMs
Translating natural language (NL) into a formal language such as temporal logic (TL) is integral for human communication with robots and autonomous systems. State-of-the-art approaches decompose the task into a lifting of atomic propositions (APs) phase and a translation phase. However, existing methods struggle with accurate lifting, the existence of co-references, and learning from limited data. In this paper, we propose a framework for NL to TL translation called Grammar Forced Translation (GraFT). The framework is based on the observation that previous work solves both the lifting and translation steps by letting a language model iteratively predict tokens from its full vocabulary. In contrast, GraFT reduces the complexity of both tasks by restricting the set of valid output tokens from the full vocabulary to only a handful in each step. The solution space reduction is obtained by exploiting the unique properties of each problem. We also provide a theoretical justification for why the solution space reduction leads to more efficient learning. We evaluate the effectiveness of GraFT using the CW, GLTL, and Navi benchmarks. Compared with state-of-the-art translation approaches, it can be observed that GraFT the end-to-end translation accuracy by 5.49% and out-of-domain translation accuracy by 14.06% on average.
☆ Coordinated Anti-Jamming Resilience in Swarm Networks via Multi-Agent Reinforcement Learning
Reactive jammers pose a severe security threat to robotic-swarm networks by selectively disrupting inter-agent communications and undermining formation integrity and mission success. Conventional countermeasures such as fixed power control or static channel hopping are largely ineffective against such adaptive adversaries. This paper presents a multi-agent reinforcement learning (MARL) framework based on the QMIX algorithm to improve the resilience of swarm communications under reactive jamming. We consider a network of multiple transmitter-receiver pairs sharing channels while a reactive jammer with Markovian threshold dynamics senses aggregate power and reacts accordingly. Each agent jointly selects transmit frequency (channel) and power, and QMIX learns a centralized but factorizable action-value function that enables coordinated yet decentralized execution. We benchmark QMIX against a genie-aided optimal policy in a no-channel-reuse setting, and against local Upper Confidence Bound (UCB) and a stateless reactive policy in a more general fading regime with channel reuse enabled. Simulation results show that QMIX rapidly converges to cooperative policies that nearly match the genie-aided bound, while achieving higher throughput and lower jamming incidence than the baselines, thereby demonstrating MARL's effectiveness for securing autonomous swarms in contested environments.
☆ From Facts to Conclusions : Integrating Deductive Reasoning in Retrieval-Augmented LLMs
Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.
comment: Under Review
☆ Delay-Aware Multi-Stage Edge Server Upgrade with Budget Constraint
In this paper, the Multi-stage Edge Server Upgrade (M-ESU) is proposed as a new network planning problem, involving the upgrading of an existing multi-access edge computing (MEC) system through multiple stages (e.g., over several years). More precisely, the problem considers two key decisions: (i) whether to deploy additional edge servers or upgrade those already installed, and (ii) how tasks should be offloaded so that the average number of tasks that meet their delay requirement is maximized. The framework specifically involves: (i) deployment of new servers combined with capacity upgrades for existing servers, and (ii) the optimal task offloading to maximize the average number of tasks with a delay requirement. It also considers the following constraints: (i) budget per stage, (ii) server deployment and upgrade cost (in $) and cost depreciation rate, (iii) computation resource of servers, (iv) number of tasks and their growth rate (in %), and (v) the increase in task sizes and stricter delay requirements over time. We present two solutions: a Mixed Integer Linear Programming (MILP) model and an efficient heuristic algorithm (M-ESU/H). MILP yields the optimal solution for small networks, whereas M-ESU/H is used in large-scale networks. For small networks, the simulation results show that the solution computed by M-ESU/H is within 1.25% of the optimal solution while running several orders of magnitude faster. For large networks, M-ESU/H is compared against three alternative heuristic solutions that consider only server deployment, or giving priority to server deployment or upgrade. Our experiments show that M-ESU/H yields up to 21.57% improvement in task satisfaction under identical budget and demand growth conditions, confirming its scalability and practical value for long-term MEC systems.
comment: 17 pages, 9 figures
☆ KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals AAAI 2026
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/
comment: Accepted by AAAI 2026
☆ Towards Mass Spectrum Analysis with ASP
We present a new use of Answer Set Programming (ASP) to discover the molecular structure of chemical samples based on the relative abundance of elements and structural fragments, as measured in mass spectrometry. To constrain the exponential search space for this combinatorial problem, we develop canonical representations of molecular structures and an ASP implemen- tation that uses these definitions. We evaluate the correctness of our implementation over a large set of known molecular structures, and we compare its quality and performance to other ASP symmetry-breaking methods and to a commercial tool from analytical chemistry. Under consideration in Theory and Practice of Logic Programming (TPLP).
comment: 22 pages, 11 figures. Extended version of a paper accepted at 17th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR 2024). Under consideration in Theory and Practice of Logic Programming (TPLP)
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
☆ CitySeeker: How Do VLMS Explore Embodied Urban Navigation With Implicit Human Needs?
Vision-Language Models (VLMs) have made significant progress in explicit instruction-based navigation; however, their ability to interpret implicit human needs (e.g., "I am thirsty") in dynamic urban environments remains underexplored. This paper introduces CitySeeker, a novel benchmark designed to assess VLMs' spatial reasoning and decision-making capabilities for exploring embodied urban navigation to address implicit needs. CitySeeker includes 6,440 trajectories across 8 cities, capturing diverse visual characteristics and implicit needs in 7 goal-driven scenarios. Extensive experiments reveal that even top-performing models (e.g., Qwen2.5-VL-32B-Instruct) achieve only 21.1% task completion. We find key bottlenecks in error accumulation in long-horizon reasoning, inadequate spatial cognition, and deficient experiential recall. To further analyze them, we investigate a series of exploratory strategies-Backtracking Mechanisms, Enriching Spatial Cognition, and Memory-Based Retrieval (BCR), inspired by human cognitive mapping's emphasis on iterative observation-reasoning cycles and adaptive path optimization. Our analysis provides actionable insights for developing VLMs with robust spatial intelligence required for tackling "last-mile" navigation challenges.
☆ Plausibility as Failure: How LLMs and Humans Co-Construct Epistemic Error
Large language models (LLMs) are increasingly used as epistemic partners in everyday reasoning, yet their errors remain predominantly analyzed through predictive metrics rather than through their interpretive effects on human judgment. This study examines how different forms of epistemic failure emerge, are masked, and are tolerated in human AI interaction, where failure is understood as a relational breakdown shaped by model-generated plausibility and human interpretive judgment. We conducted a three round, multi LLM evaluation using interdisciplinary tasks and progressively differentiated assessment frameworks to observe how evaluators interpret model responses across linguistic, epistemic, and credibility dimensions. Our findings show that LLM errors shift from predictive to hermeneutic forms, where linguistic fluency, structural coherence, and superficially plausible citations conceal deeper distortions of meaning. Evaluators frequently conflated criteria such as correctness, relevance, bias, groundedness, and consistency, indicating that human judgment collapses analytical distinctions into intuitive heuristics shaped by form and fluency. Across rounds, we observed a systematic verification burden and cognitive drift. As tasks became denser, evaluators increasingly relied on surface cues, allowing erroneous yet well formed answers to pass as credible. These results suggest that error is not solely a property of model behavior but a co-constructed outcome of generative plausibility and human interpretive shortcuts. Understanding AI epistemic failure therefore requires reframing evaluation as a relational interpretive process, where the boundary between system failure and human miscalibration becomes porous. The study provides implications for LLM assessment, digital literacy, and the design of trustworthy human AI communication.
comment: 19 pages, 2 tables, 77 references, 6 appendices
☆ TreeNet: A Light Weight Model for Low Bitrate Image Compression
Reducing computational complexity remains a critical challenge for the widespread adoption of learning-based image compression techniques. In this work, we propose TreeNet, a novel low-complexity image compression model that leverages a binary tree-structured encoder-decoder architecture to achieve efficient representation and reconstruction. We employ attentional feature fusion mechanism to effectively integrate features from multiple branches. We evaluate TreeNet on three widely used benchmark datasets and compare its performance against competing methods including JPEG AI, a recent standard in learning-based image compression. At low bitrates, TreeNet achieves an average improvement of 4.83% in BD-rate over JPEG AI, while reducing model complexity by 87.82%. Furthermore, we conduct extensive ablation studies to investigate the influence of various latent representations within TreeNet, offering deeper insights into the factors contributing to reconstruction.
☆ AI-Driven Prediction of Cancer Pain Episodes: A Hybrid Decision Support Approach
Lung cancer patients frequently experience breakthrough pain episodes, with up to 91% requiring timely intervention. To enable proactive pain management, we propose a hybrid machine learning and large language model pipeline that predicts pain episodes within 48 and 72 hours of hospitalization using both structured and unstructured electronic health record data. A retrospective cohort of 266 inpatients was analyzed, with features including demographics, tumor stage, vital signs, and WHO-tiered analgesic use. The machine learning module captured temporal medication trends, while the large language model interpreted ambiguous dosing records and free-text clinical notes. Integrating these modalities improved sensitivity and interpretability. Our framework achieved an accuracy of 0.874 (48h) and 0.917 (72h), with an improvement in sensitivity of 8.6% and 10.4% due to the augmentation of large language model. This hybrid approach offers a clinically interpretable and scalable tool for early pain episode forecasting, with potential to enhance treatment precision and optimize resource allocation in oncology care.
☆ Discovering and Learning Probabilistic Models of Black-Box AI Capabilities
Black-box AI (BBAI) systems such as foundational models are increasingly being used for sequential decision making. To ensure that such systems are safe to operate and deploy, it is imperative to develop efficient methods that can provide a sound and interpretable representation of the BBAI's capabilities. This paper shows that PDDL-style representations can be used to efficiently learn and model an input BBAI's planning capabilities. It uses the Monte-Carlo tree search paradigm to systematically create test tasks, acquire data, and prune the hypothesis space of possible symbolic models. Learned models describe a BBAI's capabilities, the conditions under which they can be executed, and the possible outcomes of executing them along with their associated probabilities. Theoretical results show soundness, completeness and convergence of the learned models. Empirical results with multiple BBAI systems illustrate the scope, efficiency, and accuracy of the presented methods.
☆ Towards Reproducibility in Predictive Process Mining: SPICE - A Deep Learning Library
In recent years, Predictive Process Mining (PPM) techniques based on artificial neural networks have evolved as a method for monitoring the future behavior of unfolding business processes and predicting Key Performance Indicators (KPIs). However, many PPM approaches often lack reproducibility, transparency in decision making, usability for incorporating novel datasets and benchmarking, making comparisons among different implementations very difficult. In this paper, we propose SPICE, a Python framework that reimplements three popular, existing baseline deep-learning-based methods for PPM in PyTorch, while designing a common base framework with rigorous configurability to enable reproducible and robust comparison of past and future modelling approaches. We compare SPICE to original reported metrics and with fair metrics on 11 datasets.
☆ Dual Computational Horizons: Incompleteness and Unpredictability in Intelligent Systems
We formalize two independent computational limitations that constrain algorithmic intelligence: formal incompleteness and dynamical unpredictability. The former limits the deductive power of consistent reasoning systems while the later bounds long-term prediction under finite precision. We show that these two extrema together impose structural bounds on an agent's ability to reason about its own predictive capabilities. In particular, an algorithmic agent cannot compute its own maximal prediction horizon generally. This perspective clarifies inherent trade-offs between reasoning, prediction, and self-analysis in intelligent systems.
comment: 6 Pages, 0 figures
☆ Cyber Humanism in Education: Reclaiming Agency through AI and Learning Sciences
Generative Artificial Intelligence (GenAI) is rapidly reshaping how knowledge is produced and validated in education. Rather than adding another digital tool, large language models reconfigure reading, writing, and coding into hybrid human-AI workflows, raising concerns about epistemic automation, cognitive offloading, and the de-professiona\-lisation of teachers. This paper proposes \emph{Cyber Humanism in Education} as a framework for reclaiming human agency in this landscape. We conceptualise AI-enabled learning environments as socio-technical infrastructures co-authored by humans and machines, and position educators and learners as epistemic agents and \emph{algorithmic citizens} who have both the right and the responsibility to shape these infrastructures. We articulate three pillars for cyber-humanist design, \emph{reflexive competence}, \emph{algorithmic citizenship}, and \emph{dialogic design}, and relate them to major international digital and AI competence frameworks. We then present higher-education case studies that operationalise these ideas through \emph{prompt-based learning} and a new \emph{Conversational AI Educator} certification within the EPICT ecosystem. The findings show how such practices can strengthen epistemic agency while surfacing tensions around workload, equity, and governance, and outline implications for the future of AI-rich, human-centred education.
comment: 15 pages, 16 references, Key Note preented at the "WAILS 2025 - The 2nd. Workshop on Artificial Intelligence with and for Learning Sciences", Cagliary, Italy, 10-12 December 2025
☆ Do Multi-Agents Solve Better Than Single? Evaluating Agentic Frameworks for Diagram-Grounded Geometry Problem Solving and Reasoning
Diagram-grounded geometry problem solving is a critical benchmark for multimodal large language models (MLLMs), yet the benefits of multi-agent design over single-agent remain unclear. We systematically compare single-agent and multi-agent pipelines on four visual math benchmarks: Geometry3K, MathVerse, OlympiadBench, and We-Math. For open-source models, multi-agent consistently improves performance. For example, Qwen-2.5-VL (7B) gains +6.8 points and Qwen-2.5-VL (32B) gains +3.3 on Geometry3K, and both Qwen-2.5-VL variants see further gains on OlympiadBench and We-Math. In contrast, the closed-source Gemini-2.0-Flash generally performs better in single-agent mode on classic benchmarks, while multi-agent yields only modest improvements on the newer We-Math dataset. These findings show that multi-agent pipelines provide clear benefits for open-source models and can assist strong proprietary systems on newer, less familiar benchmarks, but agentic decomposition is not universally optimal. All code, data, and reasoning files are available at https://github.com/faiyazabdullah/Interpreter-Solver
comment: Accepted to the ARR October 2025 cycle
☆ Unsupervised Thematic Clustering Of hadith Texts Using The Apriori Algorithm
This research stems from the urgency to automate the thematic grouping of hadith in line with the growing digitalization of Islamic texts. Based on a literature review, the unsupervised learning approach with the Apriori algorithm has proven effective in identifying association patterns and semantic relations in unlabeled text data. The dataset used is the Indonesian Translation of the hadith of Bukhari, which first goes through preprocessing stages including case folding, punctuation cleaning, tokenization, stopword removal, and stemming. Next, an association rule mining analysis was conducted using the Apriori algorithm with support, confidence, and lift parameters. The results show the existence of meaningful association patterns such as the relationship between rakaat-prayer, verse-revelation, and hadith-story, which describe the themes of worship, revelation, and hadith narration. These findings demonstrate that the Apriori algorithm has the ability to automatically uncover latent semantic relationships, while contributing to the development of digital Islamic studies and technology-based learning systems.
☆ Few-Shot Fingerprinting Subject Re-Identification in 3D-MRI and 2D-X-Ray
Combining open-source datasets can introduce data leakage if the same subject appears in multiple sets, leading to inflated model performance. To address this, we explore subject fingerprinting, mapping all images of a subject to a distinct region in latent space, to enable subject re-identification via similarity matching. Using a ResNet-50 trained with triplet margin loss, we evaluate few-shot fingerprinting on 3D MRI and 2D X-ray data in both standard (20-way 1-shot) and challenging (1000-way 1-shot) scenarios. The model achieves high Mean- Recall-@-K scores: 99.10% (20-way 1-shot) and 90.06% (500-way 5-shot) on ChestXray-14; 99.20% (20-way 1-shot) and 98.86% (100-way 3-shot) on BraTS- 2021.
☆ Microsoft Academic Graph Information Retrieval for Research Recommendation and Assistance
In today's information-driven world, access to scientific publications has become increasingly easy. At the same time, filtering through the massive volume of available research has become more challenging than ever. Graph Neural Networks (GNNs) and graph attention mechanisms have shown strong effectiveness in searching large-scale information databases, particularly when combined with modern large language models. In this paper, we propose an Attention-Based Subgraph Retriever, a GNN-as-retriever model that applies attention-based pruning to extract a refined subgraph, which is then passed to a large language model for advanced knowledge reasoning.
comment: 5 pages, 3 figures
☆ Protecting Deep Neural Network Intellectual Property with Chaos-Based White-Box Watermarking
The rapid proliferation of deep neural networks (DNNs) across several domains has led to increasing concerns regarding intellectual property (IP) protection and model misuse. Trained DNNs represent valuable assets, often developed through significant investments. However, the ease with which models can be copied, redistributed, or repurposed highlights the urgent need for effective mechanisms to assert and verify model ownership. In this work, we propose an efficient and resilient white-box watermarking framework that embeds ownership information into the internal parameters of a DNN using chaotic sequences. The watermark is generated using a logistic map, a well-known chaotic function, producing a sequence that is sensitive to its initialization parameters. This sequence is injected into the weights of a chosen intermediate layer without requiring structural modifications to the model or degradation in predictive performance. To validate ownership, we introduce a verification process based on a genetic algorithm that recovers the original chaotic parameters by optimizing the similarity between the extracted and regenerated sequences. The effectiveness of the proposed approach is demonstrated through extensive experiments on image classification tasks using MNIST and CIFAR-10 datasets. The results show that the embedded watermark remains detectable after fine-tuning, with negligible loss in model accuracy. In addition to numerical recovery of the watermark, we perform visual analyses using weight density plots and construct activation-based classifiers to distinguish between original, watermarked, and tampered models. Overall, the proposed method offers a flexible and scalable solution for embedding and verifying model ownership in white-box settings well-suited for real-world scenarios where IP protection is critical.
☆ Comprehensive AI Literacy: The Case for Centering Human Agency
The rapid assimilation of Artificial Intelligence technologies into various facets of society has created a significant educational imperative that current frameworks are failing to effectively address. We are witnessing the rise of a dangerous literacy gap, where a focus on the functional, operational skills of using AI tools is eclipsing the development of critical and ethical reasoning about them. This position paper argues for a systemic shift toward comprehensive AI literacy that centers human agency - the empowered capacity for intentional, critical, and responsible choice. This principle applies to all stakeholders in the educational ecosystem: it is the student's agency to question, create with, or consciously decide not to use AI based on the task; it is the teacher's agency to design learning experiences that align with instructional values, rather than ceding pedagogical control to a tool. True literacy involves teaching about agency itself, framing technology not as an inevitability to be adopted, but as a choice to be made. This requires a deep commitment to critical thinking and a robust understanding of epistemology. Through the AI Literacy, Fluency, and Competency frameworks described in this paper, educators and students will become agents in their own human-centric approaches to AI, providing necessary pathways to clearly articulate the intentions informing decisions and attitudes toward AI and the impact of these decisions on academic work, career, and society.
comment: 2 figures, 2 tables
☆ Prefix Probing: Lightweight Harmful Content Detection for Large Language Models
Large language models often face a three-way trade-off among detection accuracy, inference latency, and deployment cost when used in real-world safety-sensitive applications. This paper introduces Prefix Probing, a black-box harmful content detection method that compares the conditional log-probabilities of "agreement/execution" versus "refusal/safety" opening prefixes and leverages prefix caching to reduce detection overhead to near first-token latency. During inference, the method requires only a single log-probability computation over the probe prefixes to produce a harmfulness score and apply a threshold, without invoking any additional models or multi-stage inference. To further enhance the discriminative power of the prefixes, we design an efficient prefix construction algorithm that automatically discovers highly informative prefixes, substantially improving detection performance. Extensive experiments demonstrate that Prefix Probing achieves detection effectiveness comparable to mainstream external safety models while incurring only minimal computational cost and requiring no extra model deployment, highlighting its strong practicality and efficiency.
☆ Implementing a Sharia Chatbot as a Consultation Medium for Questions About Islam
This research presents the implementation of a Sharia-compliant chatbot as an interactive medium for consulting Islamic questions, leveraging Reinforcement Learning (Q-Learning) integrated with Sentence-Transformers for semantic embedding to ensure contextual and accurate responses. Utilizing the CRISP-DM methodology, the system processes a curated Islam QA dataset of 25,000 question-answer pairs from authentic sources like the Qur'an, Hadith, and scholarly fatwas, formatted in JSON for flexibility and scalability. The chatbot prototype, developed with a Flask API backend and Flutter-based mobile frontend, achieves 87% semantic accuracy in functional testing across diverse topics including fiqh, aqidah, ibadah, and muamalah, demonstrating its potential to enhance religious literacy, digital da'wah, and access to verified Islamic knowledge in the Industry 4.0 era. While effective for closed-domain queries, limitations such as static learning and dataset dependency highlight opportunities for future enhancements like continuous adaptation and multi-turn conversation support, positioning this innovation as a bridge between traditional Islamic scholarship and modern AI-driven consultation.
☆ Stackelberg Learning from Human Feedback: Preference Optimization as a Sequential Game
We introduce Stackelberg Learning from Human Feedback (SLHF), a new framework for preference optimization. SLHF frames the alignment problem as a sequential-move game between two policies: a Leader, which commits to an action, and a Follower, which responds conditionally on the Leader's action. This approach decomposes preference optimization into a refinement problem for the Follower and an optimization problem against an adversary for the Leader. Unlike Reinforcement Learning from Human Feedback (RLHF), which assigns scalar rewards to actions, or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-move equilibrium, SLHF leverages the asymmetry of sequential play to capture richer preference structures. The sequential design of SLHF naturally enables inference-time refinement, as the Follower learns to improve the Leader's actions, and these refinements can be leveraged through iterative sampling. We compare the solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in consistency, data sensitivity, and robustness to intransitive preferences. Experiments on large language models demonstrate that SLHF achieves strong alignment across diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-time refinements that transfer across model families without further fine-tuning.
comment: 10 pages, 5 tables, 1 figures
☆ Don't Guess, Escalate: Towards Explainable Uncertainty-Calibrated AI Forensic Agents
AI is reshaping the landscape of multimedia forensics. We propose AI forensic agents: reliable orchestrators that select and combine forensic detectors, identify provenance and context, and provide uncertainty-aware assessments. We highlight pitfalls in current solutions and introduce a unified framework to improve the authenticity verification process.
☆ Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
☆ Yuan-TecSwin: A text conditioned Diffusion model with Swin-transformer blocks
Diffusion models have shown remarkable capacity in image synthesis based on their U-shaped architecture and convolutional neural networks (CNN) as basic blocks. The locality of the convolution operation in CNN may limit the model's ability to understand long-range semantic information. To address this issue, we propose Yuan-TecSwin, a text-conditioned diffusion model with Swin-transformer in this work. The Swin-transformer blocks take the place of CNN blocks in the encoder and decoder, to improve the non-local modeling ability in feature extraction and image restoration. The text-image alignment is improved with a well-chosen text encoder, effective utilization of text embedding, and careful design in the incorporation of text condition. Using an adapted time step to search in different diffusion stages, inference performance is further improved by 10%. Yuan-TecSwin achieves the state-of-the-art FID score of 1.37 on ImageNet generation benchmark, without any additional models at different denoising stages. In a side-by-side comparison, we find it difficult for human interviewees to tell the model-generated images from the human-painted ones.
Needle in the Web: A Benchmark for Retrieving Targeted Web Pages in the Wild
Large Language Models (LLMs) have evolved from simple chatbots into sophisticated agents capable of automating complex real-world tasks, where browsing and reasoning over live web content is key to assessing retrieval and cognitive skills. Existing benchmarks like BrowseComp and xBench-DeepSearch emphasize complex reasoning searches requiring multi-hop synthesis but neglect Fuzzy Exploratory Search, namely queries that are vague and multifaceted, where users seek the most relevant webpage rather than a single factual answer. To address this gap, we introduce Needle in the Web, a novel benchmark specifically designed to evaluate modern search agents and LLM-based systems on their ability to retrieve and reason over real-world web content in response to ambiguous, exploratory queries under varying levels of difficulty. Needle in the Web comprises 663 questions spanning seven distinct domains. To ensure high query quality and answer uniqueness, we employ a flexible methodology that reliably generates queries of controllable difficulty based on factual claims of web contents. We benchmark three leading LLMs and three agent-based search systems on Needle in the Web, finding that most models struggle: many achieve below 35% accuracy, and none consistently excel across domains or difficulty levels. These findings reveal that Needle in the Web presents a significant challenge for current search systems and highlights the open problem of effective fuzzy retrieval under semantic ambiguity.
comment: Data and code are available at https://github.com/Tango-Whiskyman/Needle_in_the_Web
☆ From Personalization to Prejudice: Bias and Discrimination in Memory-Enhanced AI Agents for Recruitment WSDM '26
Large Language Models (LLMs) have empowered AI agents with advanced capabilities for understanding, reasoning, and interacting across diverse tasks. The addition of memory further enhances them by enabling continuity across interactions, learning from past experiences, and improving the relevance of actions and responses over time; termed as memory-enhanced personalization. Although such personalization through memory offers clear benefits, it also introduces risks of bias. While several previous studies have highlighted bias in ML and LLMs, bias due to memory-enhanced personalized agents is largely unexplored. Using recruitment as an example use case, we simulate the behavior of a memory-enhanced personalized agent, and study whether and how bias is introduced and amplified in and across various stages of operation. Our experiments on agents using safety-trained LLMs reveal that bias is systematically introduced and reinforced through personalization, emphasizing the need for additional protective measures or agent guardrails in memory-enhanced LLM-based AI agents.
comment: In Proceedings of the Nineteenth ACM International Conference on Web Search and Data Mining (WSDM '26)
☆ Scaling Laws for Energy Efficiency of Local LLMs
Deploying local large language models and vision-language models on edge devices requires balancing accuracy with constrained computational and energy budgets. Although graphics processors dominate modern artificial-intelligence deployment, most consumer hardware--including laptops, desktops, industrial controllers, and embedded systems--relies on central processing units. Despite this, the computational laws governing central-processing-unit-only inference for local language and vision-language workloads remain largely unexplored. We systematically benchmark large language and vision-language models on two representative central-processing-unit tiers widely used for local inference: a MacBook Pro M2, reflecting mainstream laptop-class deployment, and a Raspberry Pi 5, representing constrained, low-power embedded settings. Using a unified methodology based on continuous sampling of processor and memory usage together with area-under-curve integration, we characterize how computational load scales with input text length for language models and with image resolution for vision-language models. We uncover two empirical scaling laws: (1) computational cost for language-model inference scales approximately linearly with token length; and (2) vision-language models exhibit a preprocessing-driven "resolution knee", where compute remains constant above an internal resolution clamp and decreases sharply below it. Beyond these laws, we show that quantum-inspired compression reduces processor and memory usage by up to 71.9% and energy consumption by up to 62%, while preserving or improving semantic accuracy. These results provide a systematic quantification of multimodal central-processing-unit-only scaling for local language and vision-language workloads, and they identify model compression and input-resolution preprocessing as effective, low-cost levers for sustainable edge inference.
☆ Plain language adaptations of biomedical text using LLMs: Comparision of evaluation metrics
This study investigated the application of Large Language Models (LLMs) for simplifying biomedical texts to enhance health literacy. Using a public dataset, which included plain language adaptations of biomedical abstracts, we developed and evaluated several approaches, specifically a baseline approach using a prompt template, a two AI agent approach, and a fine-tuning approach. We selected OpenAI gpt-4o and gpt-4o mini models as baselines for further research. We evaluated our approaches with quantitative metrics, such as Flesch-Kincaid grade level, SMOG Index, SARI, and BERTScore, G-Eval, as well as with qualitative metric, more precisely 5-point Likert scales for simplicity, accuracy, completeness, brevity. Results showed a superior performance of gpt-4o-mini and an underperformance of FT approaches. G-Eval, a LLM based quantitative metric, showed promising results, ranking the approaches similarly as the qualitative metric.
comment: 5 pages, 1 figure
☆ ParamExplorer: A framework for exploring parameters in generative art
Generative art systems often involve high-dimensional and complex parameter spaces in which aesthetically compelling outputs occupy only small, fragmented regions. Because of this combinatorial explosion, artists typically rely on extensive manual trial-and-error, leaving many potentially interesting configurations undiscovered. In this work we make two contributions. First, we introduce ParamExplorer, an interactive and modular framework inspired by reinforcement learning that helps the exploration of parameter spaces in generative art algorithms, guided by human-in-the-loop or even automated feedback. The framework also integrates seamlessly with existing p5.js projects. Second, within this framework we implement and evaluate several exploration strategies, referred to as agents.
comment: 16 pages, 3 figures
☆ TTP: Test-Time Padding for Adversarial Detection and Robust Adaptation on Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, have achieved impressive zero-shot recognition performance but remain highly susceptible to adversarial perturbations, posing significant risks in safety-critical scenarios. Previous training-time defenses rely on adversarial fine-tuning, which requires labeled data and costly retraining, while existing test-time strategies fail to reliably distinguish between clean and adversarial inputs, thereby preventing both adversarial robustness and clean accuracy from reaching their optimum. To address these limitations, we propose Test-Time Padding (TTP), a lightweight defense framework that performs adversarial detection followed by targeted adaptation at inference. TTP identifies adversarial inputs via the cosine similarity shift between CLIP feature embeddings computed before and after spatial padding, yielding a universal threshold for reliable detection across architectures and datasets. For detected adversarial cases, TTP employs trainable padding to restore disrupted attention patterns, coupled with a similarity-aware ensemble strategy for a more robust final prediction. For clean inputs, TTP leaves them unchanged by default or optionally integrates existing test-time adaptation techniques for further accuracy gains. Comprehensive experiments on diverse CLIP backbones and fine-grained benchmarks show that TTP consistently surpasses state-of-the-art test-time defenses, delivering substantial improvements in adversarial robustness without compromising clean accuracy. The code for this paper will be released soon.
☆ The Universe Learning Itself: On the Evolution of Dynamics from the Big Bang to Machine Intelligence
We develop a unified, dynamical-systems narrative of the universe that traces a continuous chain of structure formation from the Big Bang to contemporary human societies and their artificial learning systems. Rather than treating cosmology, astrophysics, geophysics, biology, cognition, and machine intelligence as disjoint domains, we view each as successive regimes of dynamics on ever-richer state spaces, stitched together by phase transitions, symmetry-breaking events, and emergent attractors. Starting from inflationary field dynamics and the growth of primordial perturbations, we describe how gravitational instability sculpts the cosmic web, how dissipative collapse in baryonic matter yields stars and planets, and how planetary-scale geochemical cycles define long-lived nonequilibrium attractors. Within these attractors, we frame the origin of life as the emergence of self-maintaining reaction networks, evolutionary biology as flow on high-dimensional genotype-phenotype-environment manifolds, and brains as adaptive dynamical systems operating near critical surfaces. Human culture and technology-including modern machine learning and artificial intelligence-are then interpreted as symbolic and institutional dynamics that implement and refine engineered learning flows which recursively reshape their own phase space. Throughout, we emphasize recurring mathematical motifs-instability, bifurcation, multiscale coupling, and constrained flows on measure-zero subsets of the accessible state space. Our aim is not to present any new cosmological or biological model, but a cross-scale, theoretical perspective: a way of reading the universe's history as the evolution of dynamics itself, culminating (so far) in biological and artificial systems capable of modeling, predicting, and deliberately perturbing their own future trajectories.
comment: 38 pages, 3 figures
☆ XTC, A Research Platform for Optimizing AI Workload Operators
Achieving high efficiency on AI operators demands precise control over computation and data movement. However, existing scheduling languages are locked into specific compiler ecosystems, preventing fair comparison, reuse, and evaluation across frameworks. No unified interface currently decouples scheduling specification from code generation and measurement. We introduce XTC, a platform that unifies scheduling and performance evaluation across compilers. With its common API and reproducible measurement framework, XTC enables portable experimentation and accelerates research on optimization strategies.
☆ PoseMoE: Mixture-of-Experts Network for Monocular 3D Human Pose Estimation
The lifting-based methods have dominated monocular 3D human pose estimation by leveraging detected 2D poses as intermediate representations. The 2D component of the final 3D human pose benefits from the detected 2D poses, whereas its depth counterpart must be estimated from scratch. The lifting-based methods encode the detected 2D pose and unknown depth in an entangled feature space, explicitly introducing depth uncertainty to the detected 2D pose, thereby limiting overall estimation accuracy. This work reveals that the depth representation is pivotal for the estimation process. Specifically, when depth is in an initial, completely unknown state, jointly encoding depth features with 2D pose features is detrimental to the estimation process. In contrast, when depth is initially refined to a more dependable state via network-based estimation, encoding it together with 2D pose information is beneficial. To address this limitation, we present a Mixture-of-Experts network for monocular 3D pose estimation named PoseMoE. Our approach introduces: (1) A mixture-of-experts network where specialized expert modules refine the well-detected 2D pose features and learn the depth features. This mixture-of-experts design disentangles the feature encoding process for 2D pose and depth, therefore reducing the explicit influence of uncertain depth features on 2D pose features. (2) A cross-expert knowledge aggregation module is proposed to aggregate cross-expert spatio-temporal contextual information. This step enhances features through bidirectional mapping between 2D pose and depth. Extensive experiments show that our proposed PoseMoE outperforms the conventional lifting-based methods on three widely used datasets: Human3.6M, MPI-INF-3DHP, and 3DPW.
comment: IEEE Transactions on Image Processing (T-IP)
☆ Best Practices For Empirical Meta-Algorithmic Research Guidelines from the COSEAL Research Network
Empirical research on meta-algorithmics, such as algorithm selection, configuration, and scheduling, often relies on extensive and thus computationally expensive experiments. With the large degree of freedom we have over our experimental setup and design comes a plethora of possible error sources that threaten the scalability and validity of our scientific insights. Best practices for meta-algorithmic research exist, but they are scattered between different publications and fields, and continue to evolve separately from each other. In this report, we collect good practices for empirical meta-algorithmic research across the subfields of the COSEAL community, encompassing the entire experimental cycle: from formulating research questions and selecting an experimental design, to executing ex- periments, and ultimately, analyzing and presenting results impartially. It establishes the current state-of-the-art practices within meta-algorithmic research and serves as a guideline to both new researchers and practitioners in meta-algorithmic fields.
☆ Smile on the Face, Sadness in the Eyes: Bridging the Emotion Gap with a Multimodal Dataset of Eye and Facial Behaviors
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.
comment: Accepted by TMM
☆ Guiding Perception-Reasoning Closer to Human in Blind Image Quality Assessment
Humans assess image quality through a perception-reasoning cascade, integrating sensory cues with implicit reasoning to form self-consistent judgments. In this work, we investigate how a model can acquire both human-like and self-consistent reasoning capability for blind image quality assessment (BIQA). We first collect human evaluation data that capture several aspects of human perception-reasoning pipeline. Then, we adopt reinforcement learning, using human annotations as reward signals to guide the model toward human-like perception and reasoning. To enable the model to internalize self-consistent reasoning capability, we design a reward that drives the model to infer the image quality purely from self-generated descriptions. Empirically, our approach achieves score prediction performance comparable to state-of-the-art BIQA systems under general metrics, including Pearson and Spearman correlation coefficients. In addition to the rating score, we assess human-model alignment using ROUGE-1 to measure the similarity between model-generated and human perception-reasoning chains. On over 1,000 human-annotated samples, our model reaches a ROUGE-1 score of 0.512 (cf. 0.443 for baseline), indicating substantial coverage of human explanations and marking a step toward human-like interpretable reasoning in BIQA.
comment: Under review
☆ Quantifying and Bridging the Fidelity Gap: A Decisive-Feature Approach to Comparing Synthetic and Real Imagery
Virtual testing using synthetic data has become a cornerstone of autonomous vehicle (AV) safety assurance. Despite progress in improving visual realism through advanced simulators and generative AI, recent studies reveal that pixel-level fidelity alone does not ensure reliable transfer from simulation to the real world. What truly matters is whether the system-under-test (SUT) bases its decisions on the same causal evidence in both real and simulated environments - not just whether images "look real" to humans. This paper addresses the lack of such a behavior-grounded fidelity measure by introducing Decisive Feature Fidelity (DFF), a new SUT-specific metric that extends the existing fidelity spectrum to capture mechanism parity - the agreement in causal evidence underlying the SUT's decisions across domains. DFF leverages explainable-AI (XAI) methods to identify and compare the decisive features driving the SUT's outputs for matched real-synthetic pairs. We further propose practical estimators based on counterfactual explanations, along with a DFF-guided calibration scheme to enhance simulator fidelity. Experiments on 2126 matched KITTI-VirtualKITTI2 pairs demonstrate that DFF reveals discrepancies overlooked by conventional output-value fidelity. Furthermore, results show that DFF-guided calibration improves decisive-feature and input-level fidelity without sacrificing output value fidelity across diverse SUTs.
☆ cuPilot: A Strategy-Coordinated Multi-agent Framework for CUDA Kernel Evolution
Optimizing CUDA kernels is a challenging and labor-intensive task, given the need for hardware-software co-design expertise and the proprietary nature of high-performance kernel libraries. While recent large language models (LLMs) combined with evolutionary algorithms show promise in automatic kernel optimization, existing approaches often fall short in performance due to their suboptimal agent designs and mismatched evolution representations. This work identifies these mismatches and proposes cuPilot, a strategy-coordinated multi-agent framework that introduces strategy as an intermediate semantic representation for kernel evolution. Key contributions include a strategy-coordinated evolution algorithm, roofline-guided prompting, and strategy-level population initialization. Experimental results show that the generated kernels by cuPilot achieve an average speed up of 3.09$\times$ over PyTorch on a benchmark of 100 kernels. On the GEMM tasks, cuPilot showcases sophisticated optimizations and achieves high utilization of critical hardware units. The generated kernels are open-sourced at https://github.com/champloo2878/cuPilot-Kernels.git.
☆ AI4EOSC: a Federated Cloud Platform for Artificial Intelligence in Scientific Research
In this paper, we describe a federated compute platform dedicated to support Artificial Intelligence in scientific workloads. Putting the effort into reproducible deployments, it delivers consistent, transparent access to a federation of physically distributed e-Infrastructures. Through a comprehensive service catalogue, the platform is able to offer an integrated user experience covering the full Machine Learning lifecycle, including model development (with dedicated interactive development environments), training (with GPU resources, annotation tools, experiment tracking, and federated learning support) and deployment (covering a wide range of deployment options all along the Cloud Continuum). The platform also provides tools for traceability and reproducibility of AI models, integrates with different Artificial Intelligence model providers, datasets and storage resources, allowing users to interact with the broader Machine Learning ecosystem. Finally, it is easily customizable to lower the adoption barrier by external communities.
☆ TimeSeries2Report prompting enables adaptive large language model management of lithium-ion batteries
Large language models (LLMs) offer promising capabilities for interpreting multivariate time-series data, yet their application to real-world battery energy storage system (BESS) operation and maintenance remains largely unexplored. Here, we present TimeSeries2Report (TS2R), a prompting framework that converts raw lithium-ion battery operational time-series into structured, semantically enriched reports, enabling LLMs to reason, predict, and make decisions in BESS management scenarios. TS2R encodes short-term temporal dynamics into natural language through a combination of segmentation, semantic abstraction, and rule-based interpretation, effectively bridging low-level sensor signals with high-level contextual insights. We benchmark TS2R across both lab-scale and real-world datasets, evaluating report quality and downstream task performance in anomaly detection, state-of-charge prediction, and charging/discharging management. Compared with vision-, embedding-, and text-based prompting baselines, report-based prompting via TS2R consistently improves LLM performance in terms of across accuracy, robustness, and explainability metrics. Notably, TS2R-integrated LLMs achieve expert-level decision quality and predictive consistency without retraining or architecture modification, establishing a practical path for adaptive, LLM-driven battery intelligence.
☆ IoMT-based Automated Leukemia Classification using CNN and Higher Order Singular Value
The Internet of Things (IoT) is a concept by which objects find identity and can communicate with each other in a network. One of the applications of the IoT is in the field of medicine, which is called the Internet of Medical Things (IoMT). Acute Lymphocytic Leukemia (ALL) is a type of cancer categorized as a hematic disease. It usually begins in the bone marrow due to the overproduction of immature White Blood Cells (WBCs or leukocytes). Since it has a high rate of spread to other body organs, it is a fatal disease if not diagnosed and treated early. Therefore, for identifying cancerous (ALL) cells in medical diagnostic laboratories, blood, as well as bone marrow smears, are taken by pathologists. However, manual examinations face limitations due to human error risk and time-consuming procedures. So, to tackle the mentioned issues, methods based on Artificial Intelligence (AI), capable of identifying cancer from non-cancer tissue, seem vital. Deep Neural Networks (DNNs) are the most efficient machine learning (ML) methods. These techniques employ multiple layers to extract higher-level features from the raw input. In this paper, a Convolutional Neural Network (CNN) is applied along with a new type of classifier, Higher Order Singular Value Decomposition (HOSVD), to categorize ALL and normal (healthy) cells from microscopic blood images. We employed the model on IoMT structure to identify leukemia quickly and safely. With the help of this new leukemia classification framework, patients and clinicians can have real-time communication. The model was implemented on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB2) and achieved an average accuracy of %98.88 in the test step.
☆ Towards AI-Supported Research: a Vision of the TIB AIssistant
The rapid advancements in Generative AI and Large Language Models promise to transform the way research is conducted, potentially offering unprecedented opportunities to augment scholarly workflows. However, effectively integrating AI into research remains a challenge due to varying domain requirements, limited AI literacy, the complexity of coordinating tools and agents, and the unclear accuracy of Generative AI in research. We present the vision of the TIB AIssistant, a domain-agnostic human-machine collaborative platform designed to support researchers across disciplines in scientific discovery, with AI assistants supporting tasks across the research life cycle. The platform offers modular components - including prompt and tool libraries, a shared data store, and a flexible orchestration framework - that collectively facilitate ideation, literature analysis, methodology development, data analysis, and scholarly writing. We describe the conceptual framework, system architecture, and implementation of an early prototype that demonstrates the feasibility and potential impact of our approach.
☆ E-SDS: Environment-aware See it, Do it, Sorted - Automated Environment-Aware Reinforcement Learning for Humanoid Locomotion
Vision-language models (VLMs) show promise in automating reward design in humanoid locomotion, which could eliminate the need for tedious manual engineering. However, current VLM-based methods are essentially "blind", as they lack the environmental perception required to navigate complex terrain. We present E-SDS (Environment-aware See it, Do it, Sorted), a framework that closes this perception gap. E-SDS integrates VLMs with real-time terrain sensor analysis to automatically generate reward functions that facilitate training of robust perceptive locomotion policies, grounded by example videos. Evaluated on a Unitree G1 humanoid across four distinct terrains (simple, gaps, obstacles, stairs), E-SDS uniquely enabled successful stair descent, while policies trained with manually-designed rewards or a non-perceptive automated baseline were unable to complete the task. In all terrains, E-SDS also reduced velocity tracking error by 51.9-82.6%. Our framework reduces the human effort of reward design from days to less than two hours while simultaneously producing more robust and capable locomotion policies.
comment: 12 pages, 3 figures, 4 tables. Accepted at RiTA 2025 (Springer LNNS)
☆ Topic Modelling Black Box Optimization
Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
☆ StarCraft+: Benchmarking Multi-agent Algorithms in Adversary Paradigm
Deep multi-agent reinforcement learning (MARL) algorithms are booming in the field of collaborative intelligence, and StarCraft multi-agent challenge (SMAC) is widely-used as the benchmark therein. However, imaginary opponents of MARL algorithms are practically configured and controlled in a fixed built-in AI mode, which causes less diversity and versatility in algorithm evaluation. To address this issue, in this work, we establish a multi-agent algorithm-vs-algorithm environment, named StarCraft II battle arena (SC2BA), to refresh the benchmarking of MARL algorithms in an adversary paradigm. Taking StarCraft as infrastructure, the SC2BA environment is specifically created for inter-algorithm adversary with the consideration of fairness, usability and customizability, and meantime an adversarial PyMARL (APyMARL) library is developed with easy-to-use interfaces/modules. Grounding in SC2BA, we benchmark those classic MARL algorithms in two types of adversarial modes: dual-algorithm paired adversary and multi-algorithm mixed adversary, where the former conducts the adversary of pairwise algorithms while the latter focuses on the adversary to multiple behaviors from a group of algorithms. The extensive benchmark experiments exhibit some thought-provoking observations/problems in the effectivity, sensibility and scalability of these completed algorithms. The SC2BA environment as well as reproduced experiments are released in \href{https://github.com/dooliu/SC2BA}{Github}, and we believe that this work could mark a new step for the MARL field in the coming years.
comment: 15 pages, 11 figures
☆ TIB AIssistant: a Platform for AI-Supported Research Across Research Life Cycles
The rapidly growing popularity of adopting Artificial Intelligence (AI), and specifically Large Language Models (LLMs), is having a widespread impact throughout society, including the academic domain. AI-supported research has the potential to support researchers with tasks across the entire research life cycle. In this work, we demonstrate the TIB AIssistant, an AI-supported research platform providing support throughout the research life cycle. The AIssistant consists of a collection of assistants, each responsible for a specific research task. In addition, tools are provided to give access to external scholarly services. Generated data is stored in the assets and can be exported as an RO-Crate bundle to provide transparency and enhance reproducibility of the research project. We demonstrate the AIssistant's main functionalities by means of a sequential walk-through of assistants, interacting with each other to generate sections for a draft research paper. In the end, with the AIssistant, we lay the foundation for a larger agenda of providing a community-maintained platform for AI-supported research.
☆ Emergent Bias and Fairness in Multi-Agent Decision Systems
Multi-agent systems have demonstrated the ability to improve performance on a variety of predictive tasks by leveraging collaborative decision making. However, the lack of effective evaluation methodologies has made it difficult to estimate the risk of bias, making deployment of such systems unsafe in high stakes domains such as consumer finance, where biased decisions can translate directly into regulatory breaches and financial loss. To address this challenge, we need to develop fairness evaluation methodologies for multi-agent predictive systems and measure the fairness characteristics of these systems in the financial tabular domain. Examining fairness metrics using large-scale simulations across diverse multi-agent configurations, with varying communication and collaboration mechanisms, we reveal patterns of emergent bias in financial decision-making that cannot be traced to individual agent components, indicating that multi-agent systems may exhibit genuinely collective behaviors. Our findings highlight that fairness risks in financial multi-agent systems represent a significant component of model risk, with tangible impacts on tasks such as credit scoring and income estimation. We advocate that multi-agent decision systems must be evaluated as holistic entities rather than through reductionist analyses of their constituent components.
☆ Introducing ORKG ASK: an AI-driven Scholarly Literature Search and Exploration System Taking a Neuro-Symbolic Approach
As the volume of published scholarly literature continues to grow, finding relevant literature becomes increasingly difficult. With the rise of generative Artificial Intelligence (AI), and particularly Large Language Models (LLMs), new possibilities emerge to find and explore literature. We introduce ASK (Assistant for Scientific Knowledge), an AI-driven scholarly literature search and exploration system that follows a neuro-symbolic approach. ASK aims to provide active support to researchers in finding relevant scholarly literature by leveraging vector search, LLMs, and knowledge graphs. The system allows users to input research questions in natural language and retrieve relevant articles. ASK automatically extracts key information and generates answers to research questions using a Retrieval-Augmented Generation (RAG) approach. We present an evaluation of ASK, assessing the system's usability and usefulness. Findings indicate that the system is user-friendly and users are generally satisfied while using the system.
☆ Synthelite: Chemist-aligned and feasibility-aware synthesis planning with LLMs
Computer-aided synthesis planning (CASP) has long been envisioned as a complementary tool for synthetic chemists. However, existing frameworks often lack mechanisms to allow interaction with human experts, limiting their ability to integrate chemists' insights. In this work, we introduce Synthelite, a synthesis planning framework that uses large language models (LLMs) to directly propose retrosynthetic transformations. Synthelite can generate end-to-end synthesis routes by harnessing the intrinsic chemical knowledge and reasoning capabilities of LLMs, while allowing expert intervention through natural language prompts. Our experiments demonstrate that Synthelite can flexibly adapt its planning trajectory to diverse user-specified constraints, achieving up to 95\% success rates in both strategy-constrained and starting-material-constrained synthesis tasks. Additionally, Synthelite exhibits the ability to account for chemical feasibility during route design. We envision Synthelite to be both a useful tool and a step toward a paradigm where LLMs are the central orchestrators of synthesis planning.
☆ Hypernetworks That Evolve Themselves
How can neural networks evolve themselves without relying on external optimizers? We propose Self-Referential Graph HyperNetworks, systems where the very machinery of variation and inheritance is embedded within the network. By uniting hypernetworks, stochastic parameter generation, and graph-based representations, Self-Referential GHNs mutate and evaluate themselves while adapting mutation rates as selectable traits. Through new reinforcement learning benchmarks with environmental shifts (CartPoleSwitch, LunarLander-Switch), Self-Referential GHNs show swift, reliable adaptation and emergent population dynamics. In the locomotion benchmark Ant-v5, they evolve coherent gaits, showing promising fine-tuning capabilities by autonomously decreasing variation in the population to concentrate around promising solutions. Our findings support the idea that evolvability itself can emerge from neural self-reference. Self-Referential GHNs reflect a step toward synthetic systems that more closely mirror biological evolution, offering tools for autonomous, open-ended learning agents.
☆ Using Gaussian Splats to Create High-Fidelity Facial Geometry and Texture CVPR 2026
We leverage increasingly popular three-dimensional neural representations in order to construct a unified and consistent explanation of a collection of uncalibrated images of the human face. Our approach utilizes Gaussian Splatting, since it is more explicit and thus more amenable to constraints than NeRFs. We leverage segmentation annotations to align the semantic regions of the face, facilitating the reconstruction of a neutral pose from only 11 images (as opposed to requiring a long video). We soft constrain the Gaussians to an underlying triangulated surface in order to provide a more structured Gaussian Splat reconstruction, which in turn informs subsequent perturbations to increase the accuracy of the underlying triangulated surface. The resulting triangulated surface can then be used in a standard graphics pipeline. In addition, and perhaps most impactful, we show how accurate geometry enables the Gaussian Splats to be transformed into texture space where they can be treated as a view-dependent neural texture. This allows one to use high visual fidelity Gaussian Splatting on any asset in a scene without the need to modify any other asset or any other aspect (geometry, lighting, renderer, etc.) of the graphics pipeline. We utilize a relightable Gaussian model to disentangle texture from lighting in order to obtain a delit high-resolution albedo texture that is also readily usable in a standard graphics pipeline. The flexibility of our system allows for training with disparate images, even with incompatible lighting, facilitating robust regularization. Finally, we demonstrate the efficacy of our approach by illustrating its use in a text-driven asset creation pipeline.
comment: Submitted to CVPR 2026. 21 pages, 22 figures
☆ PCIA: A Path Construction Imitation Algorithm for Global Optimization
In this paper, a new metaheuristic optimization algorithm, called Path Construction Imitation Algorithm (PCIA), is proposed. PCIA is inspired by how humans construct new paths and use them. Typically, humans prefer popular transportation routes. In the event of a path closure, a new route is built by mixing the existing paths intelligently. Also, humans select different pathways on a random basis to reach unknown destinations. PCIA generates a random population to find the best route toward the destination, similar to swarm-based algorithms. Each particle represents a path toward the destination. PCIA has been tested with 53 mathematical optimization problems and 13 constrained optimization problems. The results showed that the PCIA is highly competitive compared to both popular and the latest metaheuristic algorithms.
☆ Kascade: A Practical Sparse Attention Method for Long-Context LLM Inference
Attention is the dominant source of latency during long-context LLM inference, an increasingly popular workload with reasoning models and RAG. We propose Kascade, a training-free sparse attention method that leverages known observations such as 1) post-softmax attention is intrinsically sparse, and 2) the identity of high-weight keys is stable across nearby layers. Kascade computes exact Top-k indices in a small set of anchor layers, then reuses those indices in intermediate reuse layers. The anchor layers are selected algorithmically, via a dynamic-programming objective that maximizes cross-layer similarity over a development set, allowing easy deployment across models. The method incorporates efficient implementation constraints (e.g. tile-level operations), across both prefill and decode attention. The Top-k selection and reuse in Kascade is head-aware and we show in our experiments that this is critical for high accuracy. Kascade achieves up to 4.1x speedup in decode attention and 2.2x speedup in prefill attention over FlashAttention-3 baseline on H100 GPUs while closely matching dense attention accuracy on long-context benchmarks such as LongBench and AIME-24.
comment: 11 pages, 8 figures, 3 tables and 1 algorithm
☆ Hearing to Translate: The Effectiveness of Speech Modality Integration into LLMs
As Large Language Models (LLMs) expand beyond text, integrating speech as a native modality has given rise to SpeechLLMs, which aim to translate spoken language directly, thereby bypassing traditional transcription-based pipelines. Whether this integration improves speech-to-text translation quality over established cascaded architectures, however, remains an open question. We present Hearing to Translate, the first comprehensive test suite rigorously benchmarking 5 state-of-the-art SpeechLLMs against 16 strong direct and cascade systems that couple leading speech foundation models (SFM), with multilingual LLMs. Our analysis spans 16 benchmarks, 13 language pairs, and 9 challenging conditions, including disfluent, noisy, and long-form speech. Across this extensive evaluation, we find that cascaded systems remain the most reliable overall, while current SpeechLLMs only match cascades in selected settings and SFMs lag behind both, highlighting that integrating an LLM, either within the model or in a pipeline, is essential for high-quality speech translation.
comment: Project available at https://github.com/sarapapi/hearing2translate
☆ Collaborative Edge-to-Server Inference for Vision-Language Models
We propose a collaborative edge-to-server inference framework for vision-language models (VLMs) that reduces the communication cost while maintaining inference accuracy. In typical deployments, visual data captured at edge devices (clients) is transmitted to the server for VLM inference. However, resizing the original image (global image) to match the vision encoder's input resolution often discards fine-grained details, leading to accuracy degradation. To overcome this limitation, we design a two-stage framework. In the first stage, the server performs inference on the global image and identifies a region of interest (RoI) using the VLM's internal attention. The min-entropy of the output tokens is then computed as a confidence measure to determine whether retransmission is required. If the min-entropy exceeds a predefined threshold, the server requests the edge device to send a detail-preserved local image of the RoI. The server then refines its inference by jointly leveraging the global and local images. This selective retransmission strategy ensures that only essential visual content is transmitted. Experiments across multiple VLM architectures show that the proposed framework significantly reduces communication cost while maintaining inference accuracy.
comment: 13 pages, 12 figures
☆ AI Needs Physics More Than Physics Needs AI
Artificial intelligence (AI) is commonly depicted as transformative. Yet, after more than a decade of hype, its measurable impact remains modest outside a few high-profile scientific and commercial successes. The 2024 Nobel Prizes in Chemistry and Physics recognized AI's potential, but broader assessments indicate the impact to date is often more promotional than technical. We argue that while current AI may influence physics, physics has significantly more to offer this generation of AI. Current architectures - large language models, reasoning models, and agentic AI - can depend on trillions of meaningless parameters, suffer from distributional bias, lack uncertainty quantification, provide no mechanistic insights, and fail to capture even elementary scientific laws. We review critiques of these limits, highlight opportunities in quantum AI and analogue computing, and lay down a roadmap for the adoption of 'Big AI': a synthesis of theory-based rigour with the flexibility of machine learning.
Pretrained Battery Transformer (PBT): A battery life prediction foundation model
Early prediction of battery cycle life is essential for accelerating battery research, manufacturing, and deployment. Although machine learning methods have shown encouraging results, progress is hindered by data scarcity and heterogeneity arising from diverse aging conditions. In other fields, foundation models (FMs) trained on diverse datasets have achieved broad generalization through transfer learning, but no FMs have been reported for battery cycle life prediction yet. Here we present the Pretrained Battery Transformer (PBT), the first FM for battery life prediction, developed through domain-knowledge-encoded mixture-of-expert layers. Validated on the largest public battery life database, PBT learns transferable representations from 13 lithium-ion battery (LIB) datasets, outperforming existing models by an average of 19.8%. With transfer learning, PBT achieves state-of-the-art performance across 15 diverse datasets encompassing various operating conditions, formation protocols, and chemistries of LIBs. This work establishes a foundation model pathway for battery lifetime prediction, paving the way toward universal battery lifetime prediction systems.
comment: 5 figures in the main content
☆ Design and Evaluation of Cost-Aware PoQ for Decentralized LLM Inference
Decentralized large language model (LLM) inference promises transparent and censorship resistant access to advanced AI, yet existing verification approaches struggle to scale to modern models. Proof of Quality (PoQ) replaces cryptographic verification of computation with consensus over output quality, but the original formulation ignores heterogeneous computational costs across inference and evaluator nodes. This paper introduces a cost-aware PoQ framework that integrates explicit efficiency measurements into the reward mechanism for both types of nodes. The design combines ground truth token level F1, lightweight learned evaluators, and GPT based judgments within a unified evaluation pipeline, and adopts a linear reward function that balances normalized quality and cost. Experiments on extractive question answering and abstractive summarization use five instruction tuned LLMs ranging from TinyLlama-1.1B to Llama-3.2-3B and three evaluation models spanning cross encoder and bi encoder architectures. Results show that a semantic textual similarity bi encoder achieves much higher correlation with both ground truth and GPT scores than cross encoders, indicating that evaluator architecture is a critical design choice for PoQ. Quality-cost analysis further reveals that the largest models in the pool are also the most efficient in terms of quality per unit latency. Monte Carlo simulations over 5\,000 PoQ rounds demonstrate that the cost-aware reward scheme consistently assigns higher average rewards to high quality low cost inference models and to efficient evaluators, while penalizing slow low quality nodes. These findings suggest that cost-aware PoQ provides a practical foundation for economically sustainable decentralized LLM inference.
☆ Agent Tools Orchestration Leaks More: Dataset, Benchmark, and Mitigation
Driven by Large Language Models, the single-agent, multi-tool architecture has become a popular paradigm for autonomous agents due to its simplicity and effectiveness. However, this architecture also introduces a new and severe privacy risk, which we term Tools Orchestration Privacy Risk (TOP-R), where an agent, to achieve a benign user goal, autonomously aggregates information fragments across multiple tools and leverages its reasoning capabilities to synthesize unexpected sensitive information. We provide the first systematic study of this risk. First, we establish a formal framework, attributing the risk's root cause to the agent's misaligned objective function: an overoptimization for helpfulness while neglecting privacy awareness. Second, we construct TOP-Bench, comprising paired leakage and benign scenarios, to comprehensively evaluate this risk. To quantify the trade-off between safety and robustness, we introduce the H-Score as a holistic metric. The evaluation results reveal that TOP-R is a severe risk: the average Risk Leakage Rate (RLR) of eight representative models reaches 90.24%, while the average H-Score is merely 0.167, with no model exceeding 0.3. Finally, we propose the Privacy Enhancement Principle (PEP) method, which effectively mitigates TOP-R, reducing the Risk Leakage Rate to 46.58% and significantly improving the H-Score to 0.624. Our work reveals both a new class of risk and inherent structural limitations in current agent architectures, while also offering feasible mitigation strategies.
☆ Beyond the Benchmark: Innovative Defenses Against Prompt Injection Attacks
In this fast-evolving area of LLMs, our paper discusses the significant security risk presented by prompt injection attacks. It focuses on small open-sourced models, specifically the LLaMA family of models. We introduce novel defense mechanisms capable of generating automatic defenses and systematically evaluate said generated defenses against a comprehensive set of benchmarked attacks. Thus, we empirically demonstrated the improvement proposed by our approach in mitigating goal-hijacking vulnerabilities in LLMs. Our work recognizes the increasing relevance of small open-sourced LLMs and their potential for broad deployments on edge devices, aligning with future trends in LLM applications. We contribute to the greater ecosystem of open-source LLMs and their security in the following: (1) assessing present prompt-based defenses against the latest attacks, (2) introducing a new framework using a seed defense (Chain Of Thoughts) to refine the defense prompts iteratively, and (3) showing significant improvements in detecting goal hijacking attacks. Out strategies significantly reduce the success rates of the attacks and false detection rates while at the same time effectively detecting goal-hijacking capabilities, paving the way for more secure and efficient deployments of small and open-source LLMs in resource-constrained environments.
comment: 10 pages, 4 figures
☆ PixelArena: A benchmark for Pixel-Precision Visual Intelligence
Multi-modal large language models that have image output are emerging. Many image generation benchmarks focus on aesthetics instead of fine-grained generation capabilities. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. We find the latest Gemini 3 Pro Image has emergent image generation capabilities that generate semantic masks with high fidelity under zero-shot settings, showcasing visual intelligence unseen before and true generalization in new image generation tasks. We further investigate its results, compare them qualitatively and quantitatively with those of other models, and present failure cases. The findings not only signal exciting progress in the field but also provide insights into future research related to multimodality, reasoning, interpretability and benchmarking.
comment: 7 pages, 11 figures, project page: https://pixelarena.reify.ing/project
☆ Adaptation of Agentic AI
Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
☆ Code-in-the-Loop Forensics: Agentic Tool Use for Image Forgery Detection
Existing image forgery detection (IFD) methods either exploit low-level, semantics-agnostic artifacts or rely on multimodal large language models (MLLMs) with high-level semantic knowledge. Although naturally complementary, these two information streams are highly heterogeneous in both paradigm and reasoning, making it difficult for existing methods to unify them or effectively model their cross-level interactions. To address this gap, we propose ForenAgent, a multi-round interactive IFD framework that enables MLLMs to autonomously generate, execute, and iteratively refine Python-based low-level tools around the detection objective, thereby achieving more flexible and interpretable forgery analysis. ForenAgent follows a two-stage training pipeline combining Cold Start and Reinforcement Fine-Tuning to enhance its tool interaction capability and reasoning adaptability progressively. Inspired by human reasoning, we design a dynamic reasoning loop comprising global perception, local focusing, iterative probing, and holistic adjudication, and instantiate it as both a data-sampling strategy and a task-aligned process reward. For systematic training and evaluation, we construct FABench, a heterogeneous, high-quality agent-forensics dataset comprising 100k images and approximately 200k agent-interaction question-answer pairs. Experiments show that ForenAgent exhibits emergent tool-use competence and reflective reasoning on challenging IFD tasks when assisted by low-level tools, charting a promising route toward general-purpose IFD. The code will be released after the review process is completed.
comment: 11 pages, 6 figures
☆ Feature-Selective Representation Misdirection for Machine Unlearning
As large language models (LLMs) are increasingly adopted in safety-critical and regulated sectors, the retention of sensitive or prohibited knowledge introduces escalating risks, ranging from privacy leakage to regulatory non-compliance to to potential misuse, and so on. Recent studies suggest that machine unlearning can help ensure deployed models comply with evolving legal, safety, and governance requirements. However, current unlearning techniques assume clean separation between forget and retain datasets, which is challenging in operational settings characterized by highly entangled distributions. In such scenarios, perturbation-based methods often degrade general model utility or fail to ensure safety. To address this, we propose Selective Representation Misdirection for Unlearning (SRMU), a novel principled activation-editing framework that enforces feature-aware and directionally controlled perturbations. Unlike indiscriminate model weights perturbations, SRMU employs a structured misdirection vector with an activation importance map. The goal is to allow SRMU selectively suppresses harmful representations while preserving the utility on benign ones. Experiments are conducted on the widely used WMDP benchmark across low- and high-entanglement configurations. Empirical results reveal that SRMU delivers state-of-the-art unlearning performance with minimal utility losses, and remains effective under 20-30\% overlap where existing baselines collapse. SRMU provides a robust foundation for safety-driven model governance, privacy compliance, and controlled knowledge removal in the emerging LLM-based applications. We release the replication package at https://figshare.com/s/d5931192a8824de26aff.
☆ OS-Oracle: A Comprehensive Framework for Cross-Platform GUI Critic Models
With VLM-powered computer-using agents (CUAs) becoming increasingly capable at graphical user interface (GUI) navigation and manipulation, reliable step-level decision-making has emerged as a key bottleneck for real-world deployment. In long-horizon workflows, errors accumulate quickly and irreversible actions can cause unintended consequences, motivating critic models that assess each action before execution. While critic models offer a promising solution, their effectiveness is hindered by the lack of diverse, high-quality GUI feedback data and public critic benchmarks for step-level evaluation in computer use. To bridge these gaps, we introduce OS-Oracle that makes three core contributions: (1) a scalable data pipeline for synthesizing cross-platform GUI critic data; (2) a two-stage training paradigm combining supervised fine-tuning (SFT) and consistency-preserving group relative policy optimization (CP-GRPO); (3) OS-Critic Bench, a holistic benchmark for evaluating critic model performance across Mobile, Web, and Desktop platforms. Leveraging this framework, we curate a high-quality dataset containing 310k critic samples. The resulting critic model, OS-Oracle-7B, achieves state-of-the-art performance among open-source VLMs on OS-Critic Bench, and surpasses proprietary models on the mobile domain. Furthermore, when serving as a pre-critic, OS-Oracle-7B improves the performance of native GUI agents such as UI-TARS-1.5-7B in OSWorld and AndroidWorld environments. The code is open-sourced at https://github.com/numbmelon/OS-Oracle.
☆ CKA-Guided Modular Quantization: Beyond Bit-Width to Algorithmic Diversity
Current mainstream post-training quantization methods for large language models typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CKA Guided Modular Quantization, a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. Our method independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMs including LLaMA and Qwen ,in terms of perplexity (PPL) and downstream task performance.
☆ Love, Lies, and Language Models: Investigating AI's Role in Romance-Baiting Scams
Romance-baiting scams have become a major source of financial and emotional harm worldwide. These operations are run by organized crime syndicates that traffic thousands of people into forced labor, requiring them to build emotional intimacy with victims over weeks of text conversations before pressuring them into fraudulent cryptocurrency investments. Because the scams are inherently text-based, they raise urgent questions about the role of Large Language Models (LLMs) in both current and future automation. We investigate this intersection by interviewing 145 insiders and 5 scam victims, performing a blinded long-term conversation study comparing LLM scam agents to human operators, and executing an evaluation of commercial safety filters. Our findings show that LLMs are already widely deployed within scam organizations, with 87% of scam labor consisting of systematized conversational tasks readily susceptible to automation. In a week-long study, an LLM agent not only elicited greater trust from study participants (p=0.007) but also achieved higher compliance with requests than human operators (46% vs. 18% for humans). Meanwhile, popular safety filters detected 0.0% of romance baiting dialogues. Together, these results suggest that romance-baiting scams may be amenable to full-scale LLM automation, while existing defenses remain inadequate to prevent their expansion.
☆ QuadSentinel: Sequent Safety for Machine-Checkable Control in Multi-agent Systems
Safety risks arise as large language model-based agents solve complex tasks with tools, multi-step plans, and inter-agent messages. However, deployer-written policies in natural language are ambiguous and context dependent, so they map poorly to machine-checkable rules, and runtime enforcement is unreliable. Expressing safety policies as sequents, we propose \textsc{QuadSentinel}, a four-agent guard (state tracker, policy verifier, threat watcher, and referee) that compiles these policies into machine-checkable rules built from predicates over observable state and enforces them online. Referee logic plus an efficient top-$k$ predicate updater keeps costs low by prioritizing checks and resolving conflicts hierarchically. Measured on ST-WebAgentBench (ICML CUA~'25) and AgentHarm (ICLR~'25), \textsc{QuadSentinel} improves guardrail accuracy and rule recall while reducing false positives. Against single-agent baselines such as ShieldAgent (ICML~'25), it yields better overall safety control. Near-term deployments can adopt this pattern without modifying core agents by keeping policies separate and machine-checkable. Our code will be made publicly available at https://github.com/yyiliu/QuadSentinel.
comment: Preprint
☆ GFLAN: Generative Functional Layouts
Automated floor plan generation lies at the intersection of combinatorial search, geometric constraint satisfaction, and functional design requirements -- a confluence that has historically resisted a unified computational treatment. While recent deep learning approaches have improved the state of the art, they often struggle to capture architectural reasoning: the precedence of topological relationships over geometric instantiation, the propagation of functional constraints through adjacency networks, and the emergence of circulation patterns from local connectivity decisions. To address these fundamental challenges, this paper introduces GFLAN, a generative framework that restructures floor plan synthesis through explicit factorization into topological planning and geometric realization. Given a single exterior boundary and a front-door location, our approach departs from direct pixel-to-pixel or wall-tracing generation in favor of a principled two-stage decomposition. Stage A employs a specialized convolutional architecture with dual encoders -- separating invariant spatial context from evolving layout state -- to sequentially allocate room centroids within the building envelope via discrete probability maps over feasible placements. Stage B constructs a heterogeneous graph linking room nodes to boundary vertices, then applies a Transformer-augmented graph neural network (GNN) that jointly regresses room boundaries.
comment: 21 pages, 15 figures
☆ Beyond Blind Spots: Analytic Hints for Mitigating LLM-Based Evaluation Pitfalls
Large Language Models are increasingly deployed as judges (LaaJ) in code generation pipelines. While attractive for scalability, LaaJs tend to overlook domain specific issues raising concerns about their reliability in critical evaluation tasks. To better understand these limitations in practice, we examine LaaJ behavior in a concrete industrial use case: legacy code modernization via COBOL code generation. In this setting, we find that even production deployed LaaJs can miss domain critical errors, revealing consistent blind spots in their evaluation capabilities. To better understand these blind spots, we analyze generated COBOL programs and associated LaaJs judgments, drawing on expert knowledge to construct a preliminary taxonomy. Based on this taxonomy, we develop a lightweight analytic checker tool that flags over 30 domain specific issues observed in practice. We use its outputs as analytic hints, dynamically injecting them into the judges prompt to encourage LaaJ to revisit aspects it may have overlooked. Experiments on a test set of 100 programs using four production level LaaJs show that LaaJ alone detects only about 45% of the errors present in the code (in all judges we tested), while the analytic checker alone lacks explanatory depth. When combined, the LaaJ+Hints configuration achieves up to 94% coverage (for the best performing judge and injection prompt) and produces qualitatively richer, more accurate explanations, demonstrating that analytic-LLM hybrids can substantially enhance evaluation reliability in deployed pipelines. We release the dataset and all used prompts.
☆ Domain-Agnostic Causal-Aware Audio Transformer for Infant Cry Classification
Accurate and interpretable classification of infant cry paralinguistics is essential for early detection of neonatal distress and clinical decision support. However, many existing deep learning methods rely on correlation-driven acoustic representations, which makes them vulnerable to noise, spurious cues, and domain shifts across recording environments. We propose DACH-TIC, a Domain-Agnostic Causal-Aware Hierarchical Audio Transformer for robust infant cry classification. The model integrates causal attention, hierarchical representation learning, multi-task supervision, and adversarial domain generalization within a unified framework. DACH-TIC employs a structured transformer backbone with local token-level and global semantic encoders, augmented by causal attention masking and controlled perturbation training to approximate counterfactual acoustic variations. A domain-adversarial objective promotes environment-invariant representations, while multi-task learning jointly optimizes cry type recognition, distress intensity estimation, and causal relevance prediction. The model is evaluated on the Baby Chillanto and Donate-a-Cry datasets, with ESC-50 environmental noise overlays for domain augmentation. Experimental results show that DACH-TIC outperforms state-of-the-art baselines, including HTS-AT and SE-ResNet Transformer, achieving improvements of 2.6 percent in accuracy and 2.2 points in macro-F1 score, alongside enhanced causal fidelity. The model generalizes effectively to unseen acoustic environments, with a domain performance gap of only 2.4 percent, demonstrating its suitability for real-world neonatal acoustic monitoring systems.
comment: This paper has been published in the IEEE proceedings of the 8th International Conference of Computer and Informatics Engineering (IC2IE)
☆ TextEditBench: Evaluating Reasoning-aware Text Editing Beyond Rendering
Text rendering has recently emerged as one of the most challenging frontiers in visual generation, drawing significant attention from large-scale diffusion and multimodal models. However, text editing within images remains largely unexplored, as it requires generating legible characters while preserving semantic, geometric, and contextual coherence. To fill this gap, we introduce TextEditBench, a comprehensive evaluation benchmark that explicitly focuses on text-centric regions in images. Beyond basic pixel manipulations, our benchmark emphasizes reasoning-intensive editing scenarios that require models to understand physical plausibility, linguistic meaning, and cross-modal dependencies. We further propose a novel evaluation dimension, Semantic Expectation (SE), which measures reasoning ability of model to maintain semantic consistency, contextual coherence, and cross-modal alignment during text editing. Extensive experiments on state-of-the-art editing systems reveal that while current models can follow simple textual instructions, they still struggle with context-dependent reasoning, physical consistency, and layout-aware integration. By focusing evaluation on this long-overlooked yet fundamental capability, TextEditBench establishes a new testing ground for advancing text-guided image editing and reasoning in multimodal generation.
☆ Learning to Wait: Synchronizing Agents with the Physical World
Real-world agentic tasks, unlike synchronous Markov Decision Processes (MDPs), often involve non-blocking actions with variable latencies, creating a fundamental \textit{Temporal Gap} between action initiation and completion. Existing environment-side solutions, such as blocking wrappers or frequent polling, either limit scalability or dilute the agent's context window with redundant observations. In this work, we propose an \textbf{Agent-side Approach} that empowers Large Language Models (LLMs) to actively align their \textit{Cognitive Timeline} with the physical world. By extending the Code-as-Action paradigm to the temporal domain, agents utilize semantic priors and In-Context Learning (ICL) to predict precise waiting durations (\texttt{time.sleep(t)}), effectively synchronizing with asynchronous environment without exhaustive checking. Experiments in a simulated Kubernetes cluster demonstrate that agents can precisely calibrate their internal clocks to minimize both query overhead and execution latency, validating that temporal awareness is a learnable capability essential for autonomous evolution in open-ended environments.
☆ Interpretable Deep Learning for Stock Returns: A Consensus-Bottleneck Asset Pricing Model
We introduce the \textit{Consensus-Bottleneck Asset Pricing Model} (CB-APM), a partially interpretable neural network that replicates the reasoning processes of sell-side analysts by capturing how dispersed investor beliefs are compressed into asset prices through a consensus formation process. By modeling this ``bottleneck'' to summarize firm- and macro-level information, CB-APM not only predicts future risk premiums of U.S. equities but also links belief aggregation to expected returns in a structurally interpretable manner. The model improves long-horizon return forecasts and outperforms standard deep learning approaches in both predictive accuracy and explanatory power. Comprehensive portfolio analyses show that CB-APM's out-of-sample predictions translate into economically meaningful payoffs, with monotonic return differentials and stable long-short performance across regularization settings. Empirically, CB-APM leverages consensus as a regularizer to amplify long-horizon predictability and yields interpretable consensus-based components that clarify how information is priced in returns. Moreover, regression and GRS-based pricing diagnostics reveal that the learned consensus representations capture priced variation only partially spanned by traditional factor models, demonstrating that CB-APM uncovers belief-driven structure in expected returns beyond the canonical factor space. Overall, CB-APM provides an interpretable and empirically grounded framework for understanding belief-driven return dynamics.
☆ AMUSE: Audio-Visual Benchmark and Alignment Framework for Agentic Multi-Speaker Understanding
Recent multimodal large language models (MLLMs) such as GPT-4o and Qwen3-Omni show strong perception but struggle in multi-speaker, dialogue-centric settings that demand agentic reasoning tracking who speaks, maintaining roles, and grounding events across time. These scenarios are central to multimodal audio-video understanding, where models must jointly reason over audio and visual streams in applications such as conversational video assistants and meeting analytics. We introduce AMUSE, a benchmark designed around tasks that are inherently agentic, requiring models to decompose complex audio-visual interactions into planning, grounding, and reflection steps. It evaluates MLLMs across three modes zero-shot, guided, and agentic and six task families, including spatio-temporal speaker grounding and multimodal dialogue summarization. Across all modes, current models exhibit weak multi-speaker reasoning and inconsistent behavior under both non-agentic and agentic evaluation. Motivated by the inherently agentic nature of these tasks and recent advances in LLM agents, we propose RAFT, a data-efficient agentic alignment framework that integrates reward optimization with intrinsic multimodal self-evaluation as reward and selective parameter adaptation for data and parameter efficient updates. Using RAFT, we achieve up to 39.52\% relative improvement in accuracy on our benchmark. Together, AMUSE and RAFT provide a practical platform for examining agentic reasoning in multimodal models and improving their capabilities.
☆ Sigma-Moe-Tiny Technical Report
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
☆ Towards Mass Spectrum Analysis with ASP
We present a new use of Answer Set Programming (ASP) to discover the molecular structure of chemical samples based on the relative abundance of elements and structural fragments, as measured in mass spectrometry. To constrain the exponential search space for this combinatorial problem, we develop canonical representations of molecular structures and an ASP implementation that uses these definitions. We evaluate the correctness of our implementation over a large set of known molecular structures, and we compare its quality and performance to other ASP symmetry-breaking methods and to a commercial tool from analytical chemistry. Under consideration in Theory and Practice of Logic Programming (TPLP).
comment: 22 pages, 11 figures. Extended version of a paper accepted at 17th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR 2024). Under consideration in Theory and Practice of Logic Programming (TPLP)
☆ GinSign: Grounding Natural Language Into System Signatures for Temporal Logic Translation
Natural language (NL) to temporal logic (TL) translation enables engineers to specify, verify, and enforce system behaviors without manually crafting formal specifications-an essential capability for building trustworthy autonomous systems. While existing NL-to-TL translation frameworks have demonstrated encouraging initial results, these systems either explicitly assume access to accurate atom grounding or suffer from low grounded translation accuracy. In this paper, we propose a framework for Grounding Natural Language Into System Signatures for Temporal Logic translation called GinSign. The framework introduces a grounding model that learns the abstract task of mapping NL spans onto a given system signature: given a lifted NL specification and a system signature $\mathcal{S}$, the classifier must assign each lifted atomic proposition to an element of the set of signature-defined atoms $\mathcal{P}$. We decompose the grounding task hierarchically -- first predicting predicate labels, then selecting the appropriately typed constant arguments. Decomposing this task from a free-form generation problem into a structured classification problem permits the use of smaller masked language models and eliminates the reliance on expensive LLMs. Experiments across multiple domains show that frameworks which omit grounding tend to produce syntactically correct lifted LTL that is semantically nonequivalent to grounded target expressions, whereas our framework supports downstream model checking and achieves grounded logical-equivalence scores of $95.5\%$, a $1.4\times$ improvement over SOTA.
☆ Smoothing DiLoCo with Primal Averaging for Faster Training of LLMs
We propose Generalized Primal Averaging (GPA), an extension of Nesterov's method in its primal averaging formulation that addresses key limitations of recent averaging-based optimizers such as single-worker DiLoCo and Schedule-Free (SF) in the non-distributed setting. These two recent algorithmic approaches improve the performance of base optimizers, such as AdamW, through different iterate averaging strategies. Schedule-Free explicitly maintains a uniform average of past weights, while single-worker DiLoCo performs implicit averaging by periodically aggregating trajectories, called pseudo-gradients, to update the model parameters. However, single-worker DiLoCo's periodic averaging introduces a two-loop structure, increasing its memory requirements and number of hyperparameters. GPA overcomes these limitations by decoupling the interpolation constant in the primal averaging formulation of Nesterov. This decoupling enables GPA to smoothly average iterates at every step, generalizing and improving upon single-worker DiLoCo. Empirically, GPA consistently outperforms single-worker DiLoCo while removing the two-loop structure, simplifying hyperparameter tuning, and reducing its memory overhead to a single additional buffer. On the Llama-160M model, GPA provides a 24.22% speedup in terms of steps to reach the baseline (AdamW's) validation loss. Likewise, GPA achieves speedups of 12% and 27% on small and large batch setups, respectively, to attain AdamW's validation accuracy on the ImageNet ViT workload. Furthermore, we prove that for any base optimizer with regret bounded by $O(\sqrt{T})$, where $T$ is the number of iterations, GPA can match or exceed the convergence guarantee of the original optimizer, depending on the choice of interpolation constants.
♻ ☆ Computing ESS in Multiplayer Games
We present an algorithm for computing all evolutionarily stable strategies in nondegenerate normal-form games with three or more players.
comment: Full title is "Computing Evolutionarily Stable Strategies in Multiplayer Games." I am modifying it because Google scholar is merging it with a different paper. I hope to revert the title back in a few weeks
♻ ☆ Wrist Photoplethysmography Predicts Dietary Information
Whether wearable photoplethysmography (PPG) contains dietary information remains unknown. We trained a language model on 1.1M meals to predict meal descriptions from PPG, aligning PPG to text. PPG nontrivially predicts meal content; predictability decreases for PPGs farther from meals. This transfers to dietary tasks: PPG increases AUC by 11% for intake and satiety across held-out and independent cohorts, with gains robust to text degradation. Wearable PPG may enable passive dietary monitoring.
comment: 20 pages, 2 figures
♻ ☆ Developing Distance-Aware, and Evident Uncertainty Quantification in Dynamic Physics-Constrained Neural Networks for Robust Bearing Degradation Estimation
Accurate and uncertainty-aware degradation estimation is essential for predictive maintenance in safety-critical systems like rotating machinery with rolling-element bearings. Many existing uncertainty methods lack confidence calibration, are costly to run, are not distance-aware, and fail to generalize under out-of-distribution data. We introduce two distance-aware uncertainty methods for deterministic physics-guided neural networks: PG-SNGP, based on Spectral Normalization Gaussian Process, and PG-SNER, based on Deep Evidential Regression. We apply spectral normalization to the hidden layers so the network preserves distances from input to latent space. PG-SNGP replaces the final dense layer with a Gaussian Process layer for distance-sensitive uncertainty, while PG-SNER outputs Normal Inverse Gamma parameters to model uncertainty in a coherent probabilistic form. We assess performance using standard accuracy metrics and a new distance-aware metric based on the Pearson Correlation Coefficient, which measures how well predicted uncertainty tracks the distance between test and training samples. We also design a dynamic weighting scheme in the loss to balance data fidelity and physical consistency. We test our methods on rolling-element bearing degradation using the PRONOSTIA, XJTU-SY and HUST datasets and compare them with Monte Carlo and Deep Ensemble PGNNs. Results show that PG-SNGP and PG-SNER improve prediction accuracy, generalize reliably under OOD conditions, and remain robust to adversarial attacks and noise.
comment: Under review at Structural health Monitoring - SAGE
♻ ☆ Constitutional Law and AI Governance: Constraints on Model Licensing and Research Classification
Transformative AI systems may pose unprecedented catastrophic risks, but the U.S. Constitution places significant constraints on the government's ability to govern this technology. This paper examines how the First Amendment, administrative law, and the Fourteenth Amendment shape the legal vulnerability of two regulatory proposals: model licensing and AI research classification. While the First Amendment may provide some degree of protection for model algorithms or outputs, this protection does not foreclose regulation. Policymakers must also consider administrative legal requirements, due to both agency review and authority. Finally, while substantive due process and equal protection pose minimal obstacles, procedural due process requires the government to clearly define when developers vest a legal interest in their models. Given this analysis, effective AI governance requires careful implementation to avoid these legal challenges.
♻ ☆ Bandits with Preference Feedback: A Stackelberg Game Perspective NeurIPS
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for fine-tuning large language models. The problem is well understood in simplified settings with linear target functions or over finite small domains that limit practical interest. Taking the next step, we consider infinite domains and nonlinear (kernelized) rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm. We propose MAXMINLCB, which emulates this trade-off as a zero-sum Stackelberg game, and chooses action pairs that are informative and yield favorable rewards. MAXMINLCB consistently outperforms existing algorithms and satisfies an anytime-valid rate-optimal regret guarantee. This is due to our novel preference-based confidence sequences for kernelized logistic estimators.
comment: In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS), 30 pages, 8 figures
♻ ☆ Towards Pervasive Distributed Agentic Generative AI -- A State of The Art
The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field. Their ability to perceive, reason, and act through natural language understanding enables autonomous problem-solving in complex pervasive environments, including the management of heterogeneous sensors, devices, and data. This survey outlines the architectural components of LLM agents (profiling, memory, planning, and action) and examines their deployment and evaluation across various scenarios. Than it reviews computational and infrastructural advancements (cloud to edge) in pervasive computing and how AI is moving in this field. It highlights state-of-the-art agent deployment strategies and applications, including local and distributed execution on resource-constrained devices. This survey identifies key challenges of these agents in pervasive computing such as architectural, energetic and privacy limitations. It finally proposes what we called "Agent as a Tool", a conceptual framework for pervasive agentic AI, emphasizing context awareness, modularity, security, efficiency and effectiveness.
♻ ☆ KarmaTS: A Universal Simulation Platform for Multivariate Time Series with Functional Causal Dynamics
We introduce KarmaTS, an interactive framework for constructing lag-indexed, executable spatiotemporal causal graphical models for multivariate time series (MTS) simulation. Motivated by the challenge of access-restricted physiological data, KarmaTS generates synthetic MTS with known causal dynamics and augments real-world datasets with expert knowledge. The system constructs a discrete-time structural causal process (DSCP) by combining expert knowledge and algorithmic proposals in a mixed-initiative, human-in-the-loop workflow. The resulting DSCP supports simulation and causal interventions, including those under user-specified distribution shifts. KarmaTS handles mixed variable types, contemporaneous and lagged edges, and modular edge functionals ranging from parameterizable templates to neural network models. Together, these features enable flexible validation and benchmarking of causal discovery algorithms through expert-informed simulation.
♻ ☆ AI Autonomy Coefficient ($α$): Defining Boundaries for Responsible AI Systems
The integrity of many contemporary AI systems is compromised by the misuse of Human-in-the-Loop (HITL) models to obscure systems that remain heavily dependent on human labor. We define this structural dependency as Human-Instead-of-AI (HISOAI), an ethically problematic and economically unsustainable design in which human workers function as concealed operational substitutes rather than intentional, high-value collaborators. To address this issue, we introduce the AI-First, Human-Empowered (AFHE) paradigm, which requires AI systems to demonstrate a quantifiable level of functional independence prior to deployment. This requirement is formalized through the AI Autonomy Coefficient, measuring the proportion of tasks completed without mandatory human intervention. We further propose the AFHE Deployment Algorithm, an algorithmic gate that enforces a minimum autonomy threshold during offline evaluation and shadow deployment. Our results show that the AI Autonomy Coefficient effectively identifies HISOAI systems with an autonomy level of 0.38, while systems governed by the AFHE framework achieve an autonomy level of 0.85. We conclude that AFHE provides a metric-driven approach for ensuring verifiable autonomy, transparency, and sustainable operational integrity in modern AI systems.
♻ ☆ FinAudio: A Benchmark for Audio Large Language Models in Financial Applications
Audio Large Language Models (AudioLLMs) have received widespread attention and have significantly improved performance on audio tasks such as conversation, audio understanding, and automatic speech recognition (ASR). Despite these advancements, there is an absence of a benchmark for assessing AudioLLMs in financial scenarios, where audio data, such as earnings conference calls and CEO speeches, are crucial resources for financial analysis and investment decisions. In this paper, we introduce \textsc{FinAudio}, the first benchmark designed to evaluate the capacity of AudioLLMs in the financial domain. We first define three tasks based on the unique characteristics of the financial domain: 1) ASR for short financial audio, 2) ASR for long financial audio, and 3) summarization of long financial audio. Then, we curate two short and two long audio datasets, respectively, and develop a novel dataset for financial audio summarization, comprising the \textsc{FinAudio} benchmark. Then, we evaluate seven prevalent AudioLLMs on \textsc{FinAudio}. Our evaluation reveals the limitations of existing AudioLLMs in the financial domain and offers insights for improving AudioLLMs. All datasets and codes will be released.
♻ ☆ Improving Action Smoothness for a Cascaded Online Learning Flight Control System
This paper aims to improve the action smoothness of a cascaded online learning flight control system. Although the cascaded structure is widely used in flight control design, its stability can be compromised by oscillatory control actions, which poses challenges for practical engineering applications. To address this issue, we introduce an online temporal smoothness technique and a low-pass filter to reduce the amplitude and frequency of the control actions. Fast Fourier Transform (FFT) is used to analyze policy performance in the frequency domain. Simulation results demonstrate the improvements achieved by the two proposed techniques.
♻ ☆ Adaptive Edge-Cloud Inference for Speech-to-Action Systems Using ASR and Large Language Models
Voice-based interaction has emerged as a natural and intuitive modality for controlling IoT devices. However, speech-driven edge devices face a fundamental trade-off between cloud-based solutions, which offer stronger language understanding capabilities at the cost of latency, connectivity dependence, and privacy concerns, and edge-based solutions, which provide low latency and improved privacy but are limited by computational constraints. This paper presents ASTA, an adaptive speech-to-action solution that dynamically routes voice commands between edge and cloud inference to balance performance and system resource utilization. ASTA integrates on-device automatic speech recognition and lightweight offline language-model inference with cloud-based LLM processing, guided by real-time system metrics such as CPU workload, device temperature, and network latency. A metric-aware routing mechanism selects the inference path at runtime, while a rule-based command validation and repair component ensures successful end-to-end command execution. We implemented our solution on an NVIDIA Jetson-based edge platform and evaluated it using a diverse dataset of 80 spoken commands. Experimental results show that ASTA successfully routes all input commands for execution, achieving a balanced distribution between online and offline inference. The system attains an ASR accuracy of 62.5% and generates executable commands without repair for only 47.5% of inputs, highlighting the importance of the repair mechanism in improving robustness. These results suggest that adaptive edge-cloud orchestration is a viable approach for resilient and resource-aware voice-controlled IoT systems.
comment: preprint, 6 pages, 7 figures, 1 table
♻ ☆ Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
♻ ☆ Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version (post conference)
♻ ☆ Biologically-Informed Hybrid Membership Inference Attacks on Generative Genomic Models
The increased availability of genetic data has transformed genomics research, but raised many privacy concerns regarding its handling due to its sensitive nature. This work explores the use of language models (LMs) for the generation of synthetic genetic mutation profiles, leveraging differential privacy (DP) for the protection of sensitive genetic data. We empirically evaluate the privacy guarantees of our DP modes by introducing a novel Biologically-Informed Hybrid Membership Inference Attack (biHMIA), which combines traditional black box MIA with contextual genomics metrics for enhanced attack power. Our experiments show that both small and large transformer GPT-like models are viable synthetic variant generators for small-scale genomics, and that our hybrid attack leads, on average, to higher adversarial success compared to traditional metric-based MIAs.
♻ ☆ BigCodeArena: Unveiling More Reliable Human Preferences in Code Generation via Execution
Crowdsourced model evaluation platforms, such as Chatbot Arena, enable real-time evaluation from human perspectives to assess the quality of model responses. In the coding domain, manually examining the quality of LLM-generated content is extremely challenging, as it requires understanding long chunks of raw code and deliberately simulating code execution. To this end, we introduce BigCodeArena, an open human evaluation platform for code generation backed by a comprehensive and on-the-fly execution environment. Built on top of Chatbot Arena, BigCodeArena enables the execution of LLM-generated code and allows humans to interact with the execution process and outcomes. We collected over 14,000 raw code-centric conversation sessions across 10 widely used LLMs, spanning 10 languages and 8 types of execution environments. Among these conversations, we identified more than 4,700 multi-turn samples with pairwise human preferences. Further analysis uncovers underexplored preferences of LLMs in fine-grained domains characterized by tasks, languages, and frameworks. To systematically examine code understanding and generation capabilities of frontier LLMs, we curated two benchmarks based on the collected data, namely BigCodeReward and AutoCodeArena. For BigCodeReward, we post-processed the 4,700 conversations and evaluated the consistency between reward models and human preferences. The evaluation shows that most LLMs have superior performance in judging coding preferences when the execution results are available. Inspired by these findings, we propose AutoCodeArena, an automatic Elo rating benchmark designed to assess the coding quality of LLMs without human involvement. We find that proprietary LLMs like GPT-5, Claude-Sonnet-4, and Claude-Opus-4 still lead in code generation performance among recent emerging models.
comment: Built with love by the BigCode community :)
♻ ☆ TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems
Agentic AI systems, built upon large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligence, autonomy, collaboration, and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based Agentic Multi-Agent Systems (AMAS). We begin by examining the conceptual foundations of Agentic AI and highlight its architectural distinctions from traditional AI agents. We then adapt and extend the AI TRiSM framework for Agentic AI, structured around key pillars: \textit{ Explainability, ModelOps, Security, Privacy} and \textit{their Lifecycle Governance}, each contextualized to the challenges of AMAS. A risk taxonomy is proposed to capture the unique threats and vulnerabilities of Agentic AI, ranging from coordination failures to prompt-based adversarial manipulation. To support practical assessment in Agentic AI works, we introduce two novel metrics: the Component Synergy Score (CSS), which quantifies the quality of inter-agent collaboration, and the Tool Utilization Efficacy (TUE), which evaluates the efficiency of tool use within agent workflows. We further discuss strategies for improving explainability in Agentic AI, as well as approaches to enhancing security and privacy through encryption, adversarial robustness, and regulatory compliance. The review concludes with a research roadmap for the responsible development and deployment of Agentic AI, highlighting key directions to align emerging systems with TRiSM principles-ensuring safety, transparency, and accountability in their operation.
♻ ☆ Digital Modeling of Spatial Pathway Activity from Histology Reveals Tumor Microenvironment Heterogeneity
Spatial transcriptomics (ST) enables simultaneous mapping of tissue morphology and spatially resolved gene expression, offering unique opportunities to study tumor microenvironment heterogeneity. Here, we introduce a computational framework that predicts spatial pathway activity directly from hematoxylin-and-eosin-stained histology images at microscale resolution 55 and 100 um. Using image features derived from a computational pathology foundation model, we found that TGFb signaling was the most accurately predicted pathway across three independent breast and lung cancer ST datasets. In 87-88% of reliably predicted cases, the resulting spatial TGFb activity maps reflected the expected contrast between tumor and adjacent non-tumor regions, consistent with the known role of TGFb in regulating interactions within the tumor microenvironment. Notably, linear and nonlinear predictive models performed similarly, suggesting that image features may relate to pathway activity in a predominantly linear fashion or that nonlinear structure is small relative to measurement noise. These findings demonstrate that features extracted from routine histopathology may recover spatially coherent and biologically interpretable pathway patterns, offering a scalable strategy for integrating image-based inference with ST information in tumor microenvironment studies.
comment: We have to make substantial updates, thank you
♻ ☆ SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting
Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8977 (95% CI: 0.88-0.91). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.
♻ ☆ Beyond Rate Coding: Surrogate Gradients Enable Spike Timing Learning in Spiking Neural Networks
The surrogate gradient descent algorithm enabled spiking neural networks to be trained to carry out challenging sensory processing tasks, an important step in understanding how spikes contribute to neural computations. However, it is unclear the extent to which these algorithms fully explore the space of possible spiking solutions to problems. We investigated whether spiking networks trained with surrogate gradient descent can learn to make use of information that is only encoded in the timing and not the rate of spikes. We constructed synthetic datasets with a range of types of spike timing information (interspike intervals, spatio-temporal spike patterns or polychrony, and coincidence codes). We find that surrogate gradient descent training can extract all of these types of information. In more realistic speech-based datasets, both timing and rate information is present. We therefore constructed variants of these datasets in which all rate information is removed, and find that surrogate gradient descent can still perform well. We tested all networks both with and without trainable axonal delays. We find that delays can give a significant increase in performance, particularly for more challenging tasks. To determine what types of spike timing information are being used by the networks trained on the speech-based tasks, we test these networks on time-reversed spikes which perturb spatio-temporal spike patterns but leave interspike intervals and coincidence information unchanged. We find that when axonal delays are not used, networks perform well under time reversal, whereas networks trained with delays perform poorly. This suggests that spiking neural networks with delays are better able to exploit temporal structure. To facilitate further studies of temporal coding, we have released our modified speech-based datasets.
♻ ☆ Echoes of AI: Investigating the Downstream Effects of AI Assistants on Software Maintainability
[Context] AI assistants, like GitHub Copilot and Cursor, are transforming software engineering. While several studies highlight productivity improvements, their impact on maintainability requires further investigation. [Objective] This study investigates whether co-development with AI assistants affects software maintainability, specifically how easily other developers can evolve the resulting source code. [Method] We conducted a two-phase controlled experiment involving 151 participants, 95% of whom were professional developers. In Phase 1, participants added a new feature to a Java web application, with or without AI assistance. In Phase 2, a randomized controlled trial, new participants evolved these solutions without AI assistance. [Results] Phase 2 revealed no significant differences in subsequent evolution with respect to completion time or code quality. Bayesian analysis suggests that any speed or quality improvements from AI use were at most small and highly uncertain. Observational results from Phase 1 corroborate prior research: using an AI assistant yielded a 30.7% median reduction in completion time, and habitual AI users showed an estimated 55.9% speedup. [Conclusions] Overall, we did not detect systematic maintainability advantages or disadvantages when other developers evolved code co-developed with AI assistants. Within the scope of our tasks and measures, we observed no consistent warning signs of degraded code-level maintainability. Future work should examine risks such as code bloat from excessive code generation and cognitive debt as developers offload more mental effort to assistants.
comment: Preprint of study preregistered at ICSME 2025 with In-Principal Acceptance. https://conf.researchr.org/track/icsme-2024/icsme-2024-registered-reports-track
♻ ☆ Artificial Intelligence for Microbiology and Microbiome Research
Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between traditional machine learning and sophisticated deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation \& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention \& therapeutics. Finally, we discuss challenges in this field and highlight some recent breakthroughs. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
♻ ☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), particularly at the mild cognitive impairment stage, is essential for timely intervention. However, this process faces significant barriers, including reliance on subjective assessments and the high cost of advanced imaging techniques. While deep learning offers automated solutions to improve diagnostic accuracy, its widespread adoption remains constrained due to high energy requirements and computational demands, particularly in resource-limited settings. Spiking neural networks (SNNs) provide a promising alternative, as their brain-inspired design is well-suited to model the sparse and event-driven patterns characteristic of neural degeneration in AD. These networks offer the potential for developing interpretable, energy-efficient diagnostic tools. Despite their advantages, existing SNNs often suffer from limited expressiveness and challenges in stable training, which reduce their effectiveness in handling complex medical tasks. To address these shortcomings, we introduce FasterSNN, a hybrid neural architecture that combines biologically inspired Leaky Integrate-and-Fire (LIF) neurons with region-adaptive convolution and multi-scale spiking attention mechanisms. This approach facilitates efficient, sparse processing of 3D MRI data while maintaining high diagnostic accuracy. Experimental results on benchmark datasets reveal that FasterSNN delivers competitive performance with significantly enhanced efficiency and training stability, highlighting its potential for practical application in AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 35 pages, 8 figures
♻ ☆ TACOS: Task Agnostic COordinator of a multi-drone System
When a single pilot is responsible for managing a multi-drone system, the task may demand varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system on a real-world multi-drone system, and conduct an ablation study to assess the contribution of each module.
comment: 8 pages, 9 figures, submitted to the IEEE for possible publication
♻ ☆ A Token is Worth over 1,000 Tokens: Efficient Knowledge Distillation through Low-Rank Clone NeurIPS 2025
Training high-performing Small Language Models (SLMs) remains costly, even with knowledge distillation and pruning from larger teacher models. Existing work often faces three key challenges: (1) information loss from hard pruning, (2) inefficient alignment of representations, and (3) underutilization of informative activations, particularly from Feed-Forward Networks (FFNs). To address these challenges, we introduce Low-Rank Clone (LRC), an efficient pre-training method that constructs SLMs aspiring to behavioral equivalence with strong teacher models. LRC trains a set of low-rank projection matrices that jointly enable soft pruning by compressing teacher weights, and activation clone by aligning student activations, including FFN signals, with those of the teacher. This unified design maximizes knowledge transfer while removing the need for explicit alignment modules. Extensive experiments with open-source teachers (e.g., Llama-3.2-3B-Instruct, Qwen2.5-3B/7B-Instruct) show that LRC matches or surpasses state-of-the-art models trained on trillions of tokens--while using only 20B tokens, achieving over 1,000x training efficiency. Our codes and model checkpoints are available at https://github.com/CURRENTF/LowRankClone and https://huggingface.co/collections/JitaiHao/low-rank-clone-lrc-6828389e96a93f1d4219dfaf.
comment: NeurIPS 2025 Spotlight
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Scaling Neuro-symbolic Problem Solving: Solver-Free Learning of Constraints and Objectives
In the ongoing quest for hybridizing discrete reasoning with neural nets, there is an increasing interest in neural architectures that can learn how to solve discrete reasoning or optimization problems from natural inputs, a task that Large Language Models seem to struggle with. Objectives: We introduce a differentiable neuro-symbolic architecture and a loss function dedicated to learning how to solve NP-hard reasoning problems. Methods: Our new probabilistic loss allows for learning both the constraints and the objective, thus delivering a complete model that can be scrutinized and completed with side constraints. By pushing the combinatorial solver out of the training loop, our architecture also offers scalable training while exact inference gives access to maximum accuracy. Results: We empirically show that it can efficiently learn how to solve NP-hard reasoning problems from natural inputs. On three variants of the Sudoku benchmark -- symbolic, visual, and many-solution --, our approach requires a fraction of training time of other hybrid methods. On a visual Min-Cut/Max-cut task, it optimizes the regret better than a Decision-Focused-Learning regret-dedicated loss. Finally, it efficiently learns the energy optimization formulation of the large real-world problem of designing proteins.
♻ ☆ Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications, and Research Agenda
Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being generated by Artificial Intelligence (AI). The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and Generative AI (GenAI) engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding redistributes epistemic labor between humans and machines, shifting expertise from technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks such as black-box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ ProtoSiTex: Learning Semi-Interpretable Prototypes for Multi-label Text Classification
The rapid growth of user-generated text across digital platforms has intensified the need for interpretable models capable of fine-grained text classification and explanation. Existing prototype-based models offer intuitive explanations but typically operate at coarse granularity (sentence or document level) and fail to address the multi-label nature of real-world text classification. We propose ProtoSiTex, a semi-interpretable framework designed for fine-grained multi-label text classification. ProtoSiTex employs a dual-phase alternate training strategy: an unsupervised prototype discovery phase that learns semantically coherent and diverse prototypes, and a supervised classification phase that maps these prototypes to class labels. A hierarchical loss function enforces consistency across subsentence, sentence, and document levels, enhancing interpretability and alignment. Unlike prior approaches, ProtoSiTex captures overlapping and conflicting semantics using adaptive prototypes and multi-head attention. We also introduce a benchmark dataset of hotel reviews annotated at the subsentence level with multiple labels. Experiments on this dataset and two public benchmarks (binary and multi-class) show that ProtoSiTex achieves state-of-the-art performance while delivering faithful, human-aligned explanations, establishing it as a robust solution for semi-interpretable multi-label text classification.
♻ ☆ Toward Closed-loop Molecular Discovery via Language Model, Property Alignment and Strategic Search
Drug discovery is a time-consuming and expensive process, with traditional high-throughput and docking-based virtual screening hampered by low success rates and limited scalability. Recent advances in generative modelling, including autoregressive, diffusion, and flow-based approaches, have enabled de novo ligand design beyond the limits of enumerative screening. Yet these models often suffer from inadequate generalization, limited interpretability, and an overemphasis on binding affinity at the expense of key pharmacological properties, thereby restricting their translational utility. Here we present Trio, a molecular generation framework integrating fragment-based molecular language modeling, reinforcement learning, and Monte Carlo tree search, for effective and interpretable closed-loop targeted molecular design. Through the three key components, Trio enables context-aware fragment assembly, enforces physicochemical and synthetic feasibility, and guides a balanced search between the exploration of novel chemotypes and the exploitation of promising intermediates within protein binding pockets. Experimental results show that Trio reliably achieves chemically valid and pharmacologically enhanced ligands, outperforming state-of-the-art approaches with improved binding affinity (+7.85%), drug-likeness (+11.10%) and synthetic accessibility (+12.05%), while expanding molecular diversity more than fourfold. By combining generalization, plausibility, and interpretability, Trio establishes a closed-loop generative paradigm that redefines how chemical space can be navigated, offering a transformative foundation for the next era of AI-driven drug discovery.
comment: 21 pages, 5 figures
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry studies writing style through quantitative textual patterns, enabling applications such as authorship attribution, identity linking, and plagiarism detection. Existing supervised and contrastive approaches often rely on datasets with spurious correlations, conflating style with topic. Despite the relevance of language modeling to these tasks, the pre-training of modern large language models (LLMs) has been underutilized in general authorship analysis. We introduce an unsupervised framework that uses the log-probabilities of an LLM to measure style transferability between two texts. This framework takes advantage of the extensive CLM pre-training and in-context capabilities of modern LLMs. Our approach avoids explicit supervision with spuriously correlated data. Our method substantially outperforms unsupervised prompting-based baselines at similar model sizes and exceeds contrastively trained models when controlling for topical overlap. Our framework's performance improves with model size. In the case of authorship verification, we present an additional mechanism that increases test-time computation to improve accuracy; enabling flexible trade-offs between computational cost and task performance.
♻ ☆ Robust Finetuning of Vision-Language-Action Robot Policies via Parameter Merging
Generalist robot policies, trained on large and diverse datasets, have demonstrated the ability to generalize across a wide spectrum of behaviors, enabling a single policy to act in varied real-world environments. However, they still fall short on new tasks not covered in the training data. When finetuned on limited demonstrations of a new task, these policies often overfit to the specific demonstrations--not only losing their prior abilities to solve a wide variety of generalist tasks but also failing to generalize within the new task itself. In this work, we aim to develop a method that preserves the generalization capabilities of the generalist policy during finetuning, allowing a single policy to robustly incorporate a new skill into its repertoire. Our goal is a single policy that both learns to generalize to variations of the new task and retains the broad competencies gained from pretraining. We show that this can be achieved through a simple yet effective strategy: interpolating the weights of a finetuned model with that of the pretrained model. We show, across extensive simulated and real-world experiments, that such model merging produces a single model that inherits the generalist abilities of the base model and learns to solve the new task robustly, outperforming both the pretrained and finetuned model on out-of-distribution variations of the new task. Moreover, we show that model merging performance scales with the amount of pretraining data, and enables continual acquisition of new skills in a lifelong learning setting, without sacrificing previously learned generalist abilities.
♻ ☆ EnviSAgE: A Survey of Environment Scaling for Qualitative Agentic Experience Collection NeurIPS 2025
LLM-based agents can autonomously accomplish complex tasks across various domains. However, to further cultivate capabilities such as adaptive behavior and long-term decision-making, training on static datasets built from human-level knowledge is insufficient. These datasets are costly to construct and lack both dynamism and realism. A growing consensus is that agents should instead interact directly with environments and learn from experience through reinforcement learning. We formalize this iterative process as the Generation-Execution-Feedback (GEF) loop, where environments generate tasks to challenge agents, return observations in response to agents' actions during task execution, and provide evaluative feedback on rollouts for subsequent learning. Under this paradigm, environments function as indispensable producers of experiential data, highlighting the need to scale them toward greater complexity, realism, and interactivity. In this survey, we systematically review representative methods for environment scaling from a pioneering environment-centric perspective and organize them along the stages of the GEF loop, namely task generation, task execution, and feedback. We further analyze implementation frameworks, challenges, and applications, consolidating fragmented advances and outlining future research directions for agent intelligence.
comment: 22 pages, 5 figures, SEA Workshop @ NeurIPS 2025
♻ ☆ Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (\SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 33 pages, 8 figures, 8 tables
♻ ☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
♻ ☆ Easy Come, Easy Go? Examining the Perceptions and Learning Effects of LLM-based Chatbot in the Context of Search-as-Learning
The cognitive process of Search-as-Learning (SAL) is most effective when searching promotes active encoding of information. The rise of LLMs-based chatbots, which provide instant answers, introduces a trade-off between efficiency and depth of processing. Such answer-centric approaches accelerate information access, but they also raise concerns about shallower learning. To examine these issues in the context of SAL, we conducted a large-scale survey of educators and students to capture perceived risks and benefits of LLM-based chatbots. In addition, we adopted the encoding-storage paradigm to design a within-subjects experiment, where participants (N=92) engaged in SAL tasks using three different modalities: books, search engines, and chatbots. Our findings provide a counterintuitive insight into stakeholder concerns: while LLM-based chatbots and search engines validated perceived benefits on learning efficiency by outperforming book-based search in immediate conceptual understanding, they did not result in a long-term inferiority as feared. Our study provides insights for designing human-AI collaborative learning systems that promote cognitive engagement by balancing learning efficiency and long-term knowledge retention.
comment: 25 pages, 9 figures
♻ ☆ N2N: A Parallel Framework for Large-Scale MILP under Distributed Memory
Parallelization has emerged as a promising approach for accelerating MILP solving. However, the complexity of the branch-and-bound (B&B) framework and the numerous effective algorithm components in MILP solvers make it difficult to parallelize. In this study, a scalable parallel framework, N2N (a node-to-node framework that maps the B&B nodes to distributed computing nodes), was proposed to solve large-scale problems in a distributed memory computing environment. Both deterministic and nondeterministic modes are supported, and the framework is designed to be easily integrated with existing solvers. Regarding the deterministic mode, a novel sliding-window-based algorithm was designed and implemented to ensure that tasks are generated and solved in a deterministic order. Moreover, several advanced techniques, such as the utilization of CP search and general primal heuristics, have been developed to fully utilize distributed computing resources and capabilities of base solvers. Adaptive solving and data communication optimization were also investigated. A popular open-source MILP solver, SCIP, was integrated into N2N as the base solver, yielding N2N-SCIP. Extensive computational experiments were conducted to evaluate the performance of N2N-SCIP compared to ParaSCIP, which is a state-of-the-art distributed parallel MILP solver under the UG framework. The nondeterministic N2N-SCIP achieves speedups of 22.52 and 12.71 with 1,000 MPI processes on the Kunpeng and x86 computing clusters, which is 1.98 and 2.08 times faster than ParaSCIP, respectively. In the deterministic mode, N2N-SCIP also shows significant performance improvements over ParaSCIP across different process numbers and computing clusters. To validate the generality of N2N, HiGHS, another open-source solver, was integrated into N2N. The related results are analyzed, and the requirements of N2N on base solvers are also concluded.
comment: 18 pages, 2 figures; the affiliation of some authors is updated in this version
♻ ☆ WildFit: Autonomous In-situ Model Adaptation for Resource-Constrained IoT Systems
Resource-constrained IoT devices increasingly rely on deep learning models, however, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Our background-aware synthesis surpasses efficient baselines by 7.3% and diffusion models by 3.0% while being orders of magnitude faster, our drift-aware fine-tuning achieves Pareto optimality with 50% fewer updates and 1.5% higher accuracy, and the end-to-end system outperforms domain adaptation approaches by 20-35% while consuming only 11.2 Wh over 37 days-enabling battery-powered deployment.
comment: Accepted by ACM SenSys 2026
♻ ☆ $\mathrm{D}^\mathrm{3}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Although diffusion models with strong visual priors have emerged as powerful dense prediction backboens, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^\mathrm{3}$-Predictor, a noise-free deterministic framework built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^\mathrm{3}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^\mathrm{3}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.
♻ ☆ MindShift: Analyzing Language Models' Reactions to Psychological Prompts
Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
♻ ☆ Let the Barbarians In: How AI Can Accelerate Systems Performance Research
Artificial Intelligence (AI) is beginning to transform the research process by automating the discovery of new solutions. This shift depends on the availability of reliable verifiers, which AI-driven approaches require to validate candidate solutions. Research focused on improving systems performance is especially well-suited to this paradigm because system performance problems naturally admit such verifiers: candidates can be implemented in real systems or simulators and evaluated against predefined workloads. We term this iterative cycle of generation, evaluation, and refinement AI-Driven Research for Systems (ADRS). Using several open-source ADRS instances (i.e., OpenEvolve, GEPA, and ShinkaEvolve), we demonstrate across ten case studies (e.g., multi-region cloud scheduling, mixture-of-experts load balancing, LLM-based SQL, transaction scheduling) that ADRS-generated solutions can match or even outperform human state-of-the-art designs. Based on these findings, we outline best practices (e.g., level of prompt specification, amount of feedback, robust evaluation) for effectively using ADRS, and we discuss future research directions and their implications. Although we do not yet have a universal recipe for applying ADRS across all of systems research, we hope our preliminary findings, together with the challenges we identify, offer meaningful guidance for future work as researcher effort shifts increasingly toward problem formulation and strategic oversight. Note: This paper is an extension of our prior work [14]. It adds extensive evaluation across multiple ADRS frameworks and provides deeper analysis and insights into best practices.
♻ ☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical Large Language Models, Agentic Corpus Distillation, Synthetic Question-Answer Generation, Agentic AI, Knowledge Hierarchy Guidance
♻ ☆ An Efficient Deep Learning Framework for Brain Stroke Diagnosis Using Computed Tomography Images
Brain stroke is a leading cause of mortality and long-term disability worldwide, underscoring the need for precise and rapid prediction techniques. Computed Tomography (CT) scan is considered one of the most effective methods for diagnosing brain strokes. Most stroke classification techniques use a single slice-level prediction mechanism, requiring radiologists to manually select the most critical CT slice from the original CT volume. Although clinical evaluations are often used in traditional diagnostic procedures, machine learning (ML) has opened up new avenues for improving stroke diagnosis. To supplement traditional diagnostic techniques, this study investigates machine learning models for early brain stroke prediction using CT scan images. This research proposes a novel machine learning approach to brain stroke detection, focusing on optimizing classification performance with pre-trained deep learning models and advanced optimization strategies. Pre-trained models, including DenseNet201, InceptionV3, MobileNetV2, ResNet50, and Xception, are used for feature extraction. Feature engineering techniques, including BFO, PCA, and LDA, further enhance model performance. These features are then classified using machine learning algorithms, including SVC, RF, XGB, DT, LR, KNN, and GNB. Our experiments demonstrate that the combination of MobileNetV2, LDA, and SVC achieved the highest classification accuracy of 97.93%, significantly outperforming other model-optimizer-classifier combinations. The results underline the effectiveness of integrating lightweight pre-trained models with robust optimization and classification techniques for brain stroke diagnosis.
comment: Preprint version. Submitted for peer review
♻ ☆ DriveVLA-W0: World Models Amplify Data Scaling Law in Autonomous Driving
Scaling Vision-Language-Action (VLA) models on large-scale data offers a promising path to achieving a more generalized driving intelligence. However, VLA models are limited by a ``supervision deficit'': the vast model capacity is supervised by sparse, low-dimensional actions, leaving much of their representational power underutilized. To remedy this, we propose \textbf{DriveVLA-W0}, a training paradigm that employs world modeling to predict future images. This task generates a dense, self-supervised signal that compels the model to learn the underlying dynamics of the driving environment. We showcase the paradigm's versatility by instantiating it for two dominant VLA archetypes: an autoregressive world model for VLAs that use discrete visual tokens, and a diffusion world model for those operating on continuous visual features. Building on the rich representations learned from world modeling, we introduce a lightweight action expert to address the inference latency for real-time deployment. Extensive experiments on the NAVSIM v1/v2 benchmark and a 680x larger in-house dataset demonstrate that DriveVLA-W0 significantly outperforms BEV and VLA baselines. Crucially, it amplifies the data scaling law, showing that performance gains accelerate as the training dataset size increases.
♻ ☆ Scene-aware SAR ship detection guided by unsupervised sea-land segmentation
DL based Synthetic Aperture Radar (SAR) ship detection has tremendous advantages in numerous areas. However, it still faces some problems, such as the lack of prior knowledge, which seriously affects detection accuracy. In order to solve this problem, we propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation. This method follows a classical two-stage framework and is enhanced by two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM). ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes (inshore scene and offshore scene) and add prior knowledge (sea land segmentation information) to the network, thereby reducing the network's attention to land directly and enhancing offshore detection performance relatively. This increases the accuracy of ship detection and enhances the interpretability of the model. Specifically, in consideration of the lack of land sea segmentation labels in existing deep learning-based SAR ship detection datasets, ULSM uses an unsupervised approach to classify the input data scene into inshore and offshore types and performs sea-land segmentation for inshore scenes. LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land. We conducted our experiments using the publicly available SSDD dataset, which demonstrated the effectiveness of our network.
♻ ☆ MEML-GRPO: Heterogeneous Multi-Expert Mutual Learning for RLVR Advancement
Recent advances demonstrate that reinforcement learning with verifiable rewards (RLVR) significantly enhances the reasoning capabilities of large language models (LLMs). However, standard RLVR faces challenges with reward sparsity, where zero rewards from consistently incorrect candidate answers provide no learning signal, particularly in challenging tasks. To address this, we propose Multi-Expert Mutual Learning GRPO (MEML-GRPO), an innovative framework that utilizes diverse expert prompts as system prompts to generate a broader range of responses, substantially increasing the likelihood of identifying correct solutions. Additionally, we introduce an inter-expert mutual learning mechanism that facilitates knowledge sharing and transfer among experts, further boosting the model's performance through RLVR. Extensive experiments across multiple reasoning benchmarks show that MEML-GRPO delivers significant improvements, achieving an average performance gain of 4.89% with Qwen and 11.33% with Llama, effectively overcoming the core limitations of traditional RLVR methods.
♻ ☆ ZKPROV: A Zero-Knowledge Approach to Dataset Provenance for Large Language Models
As large language models (LLMs) are used in sensitive fields, accurately verifying their computational provenance without disclosing their training datasets poses a significant challenge, particularly in regulated sectors such as healthcare, which have strict requirements for dataset use. Traditional approaches either incur substantial computational cost to fully verify the entire training process or leak unauthorized information to the verifier. Therefore, we introduce ZKPROV, a novel cryptographic framework allowing users to verify that the LLM's responses to their prompts are trained on datasets certified by the authorities that own them. Additionally, it ensures that the dataset's content is relevant to the users' queries without revealing sensitive information about the datasets or the model parameters. ZKPROV offers a unique balance between privacy and efficiency by binding training datasets, model parameters, and responses, while also attaching zero-knowledge proofs to the responses generated by the LLM to validate these claims. Our experimental results demonstrate sublinear scaling for generating and verifying these proofs, with end-to-end overhead under 3.3 seconds for models up to 8B parameters, presenting a practical solution for real-world applications. We also provide formal security guarantees, proving that our approach preserves dataset confidentiality while ensuring trustworthy dataset provenance.
comment: 16 pages, 3 figures
♻ ☆ VideoGameQA-Bench: Evaluating Vision-Language Models for Video Game Quality Assurance
With video games now generating the highest revenues in the entertainment industry, optimizing game development workflows has become essential for the sector's sustained growth. Recent advancements in Vision-Language Models (VLMs) offer considerable potential to automate and enhance various aspects of game development, particularly Quality Assurance (QA), which remains one of the industry's most labor-intensive processes with limited automation options. To accurately evaluate the performance of VLMs in video game QA tasks and determine their effectiveness in handling real-world scenarios, there is a clear need for standardized benchmarks, as existing benchmarks are insufficient to address the specific requirements of this domain. To bridge this gap, we introduce VideoGameQA-Bench, a comprehensive benchmark that covers a wide array of game QA activities, including visual unit testing, visual regression testing, needle-in-a-haystack tasks, glitch detection, and bug report generation for both images and videos of various games. Code and data are available at: https://asgaardlab.github.io/videogameqa-bench/
comment: Project website with code and data: https://asgaardlab.github.io/videogameqa-bench/
♻ ☆ Meta Prompting for AI Systems
We introduce Meta Prompting (MP), a framework that elevates the reasoning capabilities of large language models (LLMs) by focusing on the formal structure of a task rather than content-specific examples. We establish a theoretical foundation for this paradigm, formalizing MP as a functor that maps a category of tasks to a category of structured prompts, thereby guaranteeing that compositional problem-solving strategies can be systematically decomposed into modular prompt structures. We extend this concept to Recursive Meta Prompting (RMP), an automated process where an LLM can generate and refine its own prompts. We model this self-improvement loop formally as a monad, providing a principled framework for automated prompt engineering. Our claims are validated through extensive experiments demonstrating that a Qwen-72B base model, guided by a single, example-agnostic meta-prompt, achieves state-of-the-art results on MATH, GSM8K, and Game of 24. These results are achieved with substantial token efficiency gains over traditional few-shot methods. Project Page: https://github.com/meta-prompting/meta-prompting.
comment: Project Page: https://github.com/meta-prompting/meta-prompting
Machine Learning 150
☆ Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning
Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.
☆ Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward
This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.
comment: 35 pages
☆ Posterior Behavioral Cloning: Pretraining BC Policies for Efficient RL Finetuning
Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that standard behavioral cloning (BC) -- which trains a policy to directly match the actions played by the demonstrator -- can fail to ensure coverage over the demonstrator's actions, a minimal condition necessary for effective RL finetuning. We then show that if, instead of exactly fitting the observed demonstrations, we train a policy to model the posterior distribution of the demonstrator's behavior given the demonstration dataset, we do obtain a policy that ensures coverage over the demonstrator's actions, enabling more effective finetuning. Furthermore, this policy -- which we refer to as the posterior behavioral cloning (PostBC) policy -- achieves this while ensuring pretrained performance is no worse than that of the BC policy. We then show that PostBC is practically implementable with modern generative models in robotic control domains -- relying only on standard supervised learning -- and leads to significantly improved RL finetuning performance on both realistic robotic control benchmarks and real-world robotic manipulation tasks, as compared to standard behavioral cloning.
☆ SFTok: Bridging the Performance Gap in Discrete Tokenizers
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).
comment: Under review. Code is available at https://github.com/Neur-IO/SFTok
☆ In-Context Algebra
We investigate the mechanisms that arise when transformers are trained to solve arithmetic on sequences where tokens are variables whose meaning is determined only through their interactions. While prior work has found that transformers develop geometric embeddings that mirror algebraic structure, those previous findings emerge from settings where arithmetic-valued tokens have fixed meanings. We devise a new task in which the assignment of symbols to specific algebraic group elements varies from one sequence to another. Despite this challenging setup, transformers achieve near-perfect accuracy on the task and even generalize to unseen algebraic groups. We develop targeted data distributions to create causal tests of a set of hypothesized mechanisms, and we isolate three mechanisms models consistently learn: commutative copying where a dedicated head copies answers, identity element recognition that distinguishes identity-containing facts, and closure-based cancellation that tracks group membership to constrain valid answers. Complementary to the geometric representations found in fixed-symbol settings, our findings show that models develop symbolic reasoning mechanisms when trained to reason in-context with variables whose meanings are not fixed.
comment: 28 pages, 18 figures. Code and data at https://algebra.baulab.info
☆ Impacts of Racial Bias in Historical Training Data for News AI
AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ Cartesian-nj: Extending e3nn to Irreducible Cartesian Tensor Product and Contracion
Equivariant atomistic machine learning models have brought substantial gains in both extrapolation capability and predictive accuracy. Depending on the basis of the space, two distinct types of irreducible representations are utilized. From architectures built upon spherical tensors (STs) to more recent formulations employing irreducible Cartesian tensors (ICTs), STs have remained dominant owing to their compactness, elegance, and theoretical completeness. Nevertheless, questions have persisted regarding whether ST constructions are the only viable design principle, motivating continued development of Cartesian networks. In this work, we introduce the Cartesian-3j and Cartesian-nj symbol, which serve as direct analogues of the Wigner-3j and Wigner-nj symbol defined for tensor coupling. These coefficients enable the combination of any two ICTs into a new ICT. Building on this foundation, we extend e3nn to support irreducible Cartesian tensor product, and we release the resulting Python package as cartnn. Within this framework, we implement Cartesian counterparts of MACE, NequIP, and Allegro, allowing the first systematic comparison of Cartesian and spherical models to assess whether Cartesian formulations may offer advantages under specific conditions. Using TACE as a representative example, we further examine whether architectures constructed from irreducible Cartesian tensor product and contraction(ICTP and ICTC) are conceptually well-founded in Cartesian space and whether opportunities remain for improving their design.
☆ PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies
A significant challenge for robot learning research is our ability to accurately measure and compare the performance of robot policies. Benchmarking in robotics is historically challenging due to the stochasticity, reproducibility, and time-consuming nature of real-world rollouts. This challenge is exacerbated for recent generalist policies, which has to be evaluated across a wide variety of scenes and tasks. Evaluation in simulation offers a scalable complement to real world evaluations, but the visual and physical domain gap between existing simulation benchmarks and the real world has made them an unreliable signal for policy improvement. Furthermore, building realistic and diverse simulated environments has traditionally required significant human effort and expertise. To bridge the gap, we introduce Policy Evaluation and Environment Reconstruction in Simulation (PolaRiS), a scalable real-to-sim framework for high-fidelity simulated robot evaluation. PolaRiS utilizes neural reconstruction methods to turn short video scans of real-world scenes into interactive simulation environments. Additionally, we develop a simple simulation data co-training recipe that bridges remaining real-to-sim gaps and enables zero-shot evaluation in unseen simulation environments. Through extensive paired evaluations between simulation and the real world, we demonstrate that PolaRiS evaluations provide a much stronger correlation to real world generalist policy performance than existing simulated benchmarks. Its simplicity also enables rapid creation of diverse simulated environments. As such, this work takes a step towards distributed and democratized evaluation for the next generation of robotic foundation models.
comment: Website: https://polaris-evals.github.io/
☆ Training Together, Diagnosing Better: Federated Learning for Collagen VI-Related Dystrophies
The application of Machine Learning (ML) to the diagnosis of rare diseases, such as collagen VI-related dystrophies (COL6-RD), is fundamentally limited by the scarcity and fragmentation of available data. Attempts to expand sampling across hospitals, institutions, or countries with differing regulations face severe privacy, regulatory, and logistical obstacles that are often difficult to overcome. The Federated Learning (FL) provides a promising solution by enabling collaborative model training across decentralized datasets while keeping patient data local and private. Here, we report a novel global FL initiative using the Sherpa.ai FL platform, which leverages FL across distributed datasets in two international organizations for the diagnosis of COL6-RD, using collagen VI immunofluorescence microscopy images from patient-derived fibroblast cultures. Our solution resulted in an ML model capable of classifying collagen VI patient images into the three primary pathogenic mechanism groups associated with COL6-RD: exon skipping, glycine substitution, and pseudoexon insertion. This new approach achieved an F1-score of 0.82, outperforming single-organization models (0.57-0.75). These results demonstrate that FL substantially improves diagnostic utility and generalizability compared to isolated institutional models. Beyond enabling more accurate diagnosis, we anticipate that this approach will support the interpretation of variants of uncertain significance and guide the prioritization of sequencing strategies to identify novel pathogenic variants.
☆ Learning Confidence Ellipsoids and Applications to Robust Subspace Recovery
We study the problem of finding confidence ellipsoids for an arbitrary distribution in high dimensions. Given samples from a distribution $D$ and a confidence parameter $α$, the goal is to find the smallest volume ellipsoid $E$ which has probability mass $\Pr_{D}[E] \ge 1-α$. Ellipsoids are a highly expressive class of confidence sets as they can capture correlations in the distribution, and can approximate any convex set. This problem has been studied in many different communities. In statistics, this is the classic minimum volume estimator introduced by Rousseeuw as a robust non-parametric estimator of location and scatter. However in high dimensions, it becomes NP-hard to obtain any non-trivial approximation factor in volume when the condition number $β$ of the ellipsoid (ratio of the largest to the smallest axis length) goes to $\infty$. This motivates the focus of our paper: can we efficiently find confidence ellipsoids with volume approximation guarantees when compared to ellipsoids of bounded condition number $β$? Our main result is a polynomial time algorithm that finds an ellipsoid $E$ whose volume is within a $O(β^{γd})$ multiplicative factor of the volume of best $β$-conditioned ellipsoid while covering at least $1-O(α/γ)$ probability mass for any $γ< α$. We complement this with a computational hardness result that shows that such a dependence seems necessary up to constants in the exponent. The algorithm and analysis uses the rich primal-dual structure of the minimum volume enclosing ellipsoid and the geometric Brascamp-Lieb inequality. As a consequence, we obtain the first polynomial time algorithm with approximation guarantees on worst-case instances of the robust subspace recovery problem.
☆ Pixel Seal: Adversarial-only training for invisible image and video watermarking
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.
comment: Code and model available at https://github.com/facebookresearch/videoseal
☆ On the Universal Representation Property of Spiking Neural Networks
Inspired by biology, spiking neural networks (SNNs) process information via discrete spikes over time, offering an energy-efficient alternative to the classical computing paradigm and classical artificial neural networks (ANNs). In this work, we analyze the representational power of SNNs by viewing them as sequence-to-sequence processors of spikes, i.e., systems that transform a stream of input spikes into a stream of output spikes. We establish the universal representation property for a natural class of spike train functions. Our results are fully quantitative, constructive, and near-optimal in the number of required weights and neurons. The analysis reveals that SNNs are particularly well-suited to represent functions with few inputs, low temporal complexity, or compositions of such functions. The latter is of particular interest, as it indicates that deep SNNs can efficiently capture composite functions via a modular design. As an application of our results, we discuss spike train classification. Overall, these results contribute to a rigorous foundation for understanding the capabilities and limitations of spike-based neuromorphic systems.
comment: 54 pages, 8 figures
☆ Sequencing to Mitigate Catastrophic Forgetting in Continual Learning
To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, and exploit knowledge throughout its lifetime. This ability, known as Continual learning, provides a foundation for AI systems to develop themselves adaptively. Catastrophic forgetting is a major challenge to the progress of Continual Learning approaches, where learning a new task usually results in a dramatic performance drop on previously learned ones. Many approaches have emerged to counteract the impact of CF. Most of the proposed approaches can be categorized into five classes: replay-based, regularization-based, optimization-based, representation-based, and architecture-based. In this work, we approach the problem from a different angle, specifically by considering the optimal sequencing of tasks as they are presented to the model. We investigate the role of task sequencing in mitigating CF and propose a method for determining the optimal task order. The proposed method leverages zero-shot scoring algorithms inspired by neural architecture search (NAS). Results demonstrate that intelligent task sequencing can substantially reduce CF. Moreover, when combined with traditional continual learning strategies, sequencing offers enhanced performance and robustness against forgetting. Additionally, the presented approaches can find applications in other fields, such as curriculum learning.
comment: The Manuscript is submitted for review under IEEE Transactions on Artificial intelligence
☆ Semi-Supervised Online Learning on the Edge by Transforming Knowledge from Teacher Models
Edge machine learning (Edge ML) enables training ML models using the vast data distributed across network edges. However, many existing approaches assume static models trained centrally and then deployed, making them ineffective against unseen data. To address this, Online Edge ML allows models to be trained directly on edge devices and updated continuously with new data. This paper explores a key challenge of Online Edge ML: "How to determine labels for truly future, unseen data points". We propose Knowledge Transformation (KT), a hybrid method combining Knowledge Distillation, Active Learning, and causal reasoning. In short, KT acts as the oracle in active learning by transforming knowledge from a teacher model to generate pseudo-labels for training a student model. To verify the validity of the method, we conducted simulation experiments with two setups: (1) using a less stable teacher model and (2) a relatively more stable teacher model. Results indicate that when a stable teacher model is given, the student model can eventually reach its expected maximum performance. KT is potentially beneficial for scenarios that meet the following circumstances: (1) when the teacher's task is generic, which means existing pre-trained models might be adequate for its task, so there will be no need to train the teacher model from scratch; and/or (2) when the label for the student's task is difficult or expensive to acquire.
☆ ReinforceGen: Hybrid Skill Policies with Automated Data Generation and Reinforcement Learning
Long-horizon manipulation has been a long-standing challenge in the robotics community. We propose ReinforceGen, a system that combines task decomposition, data generation, imitation learning, and motion planning to form an initial solution, and improves each component through reinforcement-learning-based fine-tuning. ReinforceGen first segments the task into multiple localized skills, which are connected through motion planning. The skills and motion planning targets are trained with imitation learning on a dataset generated from 10 human demonstrations, and then fine-tuned through online adaptation and reinforcement learning. When benchmarked on the Robosuite dataset, ReinforceGen reaches 80% success rate on all tasks with visuomotor controls in the highest reset range setting. Additional ablation studies show that our fine-tuning approaches contributes to an 89% average performance increase. More results and videos available in https://reinforcegen.github.io/
☆ Meta-RL Induces Exploration in Language Agents
Reinforcement learning (RL) has enabled the training of large language model (LLM) agents to interact with the environment and to solve multi-turn long-horizon tasks. However, the RL-trained agents often struggle in tasks that require active exploration and fail to efficiently adapt from trial-and-error experiences. In this paper, we present LaMer, a general Meta-RL framework that enables LLM agents to actively explore and learn from the environment feedback at test time. LaMer consists of two key components: (i) a cross-episode training framework to encourage exploration and long-term rewards optimization; and (ii) in-context policy adaptation via reflection, allowing the agent to adapt their policy from task feedback signal without gradient update. Experiments across diverse environments show that LaMer significantly improves performance over RL baselines, with 11%, 14%, and 19% performance gains on Sokoban, MineSweeper and Webshop, respectively. Moreover, LaMer also demonstrates better generalization to more challenging or previously unseen tasks compared to the RL-trained agents. Overall, our results demonstrate that Meta-RL provides a principled approach to induce exploration in language agents, enabling more robust adaptation to novel environments through learned exploration strategies.
☆ Tiny Recursive Control: Iterative Reasoning for Efficient Optimal Control
Neural network controllers increasingly demand millions of parameters, and language model approaches push into the billions. For embedded aerospace systems with strict power and latency constraints, this scaling is prohibitive. We present Tiny Recursive Control (TRC), a neural architecture based on a counterintuitive principle: capacity can emerge from iteration depth rather than parameter count. TRC applies compact networks (approximately 1.5M parameters) repeatedly through a two-level hierarchical latent structure, refining control sequences by simulating trajectories and correcting based on tracking error. Because the same weights process every refinement step, adding iterations increases computation without increasing memory. We evaluate TRC on nonlinear control problems including oscillator stabilization and powered descent with fuel constraints. Across these domains, TRC achieves near-optimal control costs while requiring only millisecond-scale inference on GPU and under 10~MB memory, two orders of magnitude smaller than language model baselines. These results demonstrate that recursive reasoning, previously confined to discrete tasks, transfers effectively to continuous control synthesis.
☆ MEPIC: Memory Efficient Position Independent Caching for LLM Serving
Modern LLM applications such as deep-research assistants, coding agents, and Retrieval-Augmented Generation (RAG) systems, repeatedly process long prompt histories containing shared document or code chunks, creating significant pressure on the Key Value (KV) cache, which must operate within limited memory while sustaining high throughput and low latency. Prefix caching partially alleviates some of these costs by reusing KV cache for previously processed tokens, but limited by strict prefix matching. Position-independent caching (PIC) enables chunk-level reuse at arbitrary positions, but requires selective recomputation and positional-encoding (PE) adjustments. However, because these operations vary across queries, KV for the same chunk diverges across requests. Moreover, without page alignment, chunk KV layouts diverge in memory, preventing page sharing. These issues result in only modest HBM savings even when many requests reuse the same content. We present MEPIC, a memory-efficient PIC system that enables chunk KV reuse across positions, requests, and batches. MEPIC aligns chunk KV to paged storage, shifts recomputation from token- to block-level so only the first block is request-specific, removes positional encodings via Rotary Position Embedding (RoPE) fusion in the attention kernel, and makes remaining blocks fully shareable. These techniques eliminate most duplicate chunk KV in HBM, reducing usage by up to 2x over state-of-the-art PIC at comparable latency and accuracy, and up to 5x for long prompts, without any model changes.
☆ Coordinated Anti-Jamming Resilience in Swarm Networks via Multi-Agent Reinforcement Learning
Reactive jammers pose a severe security threat to robotic-swarm networks by selectively disrupting inter-agent communications and undermining formation integrity and mission success. Conventional countermeasures such as fixed power control or static channel hopping are largely ineffective against such adaptive adversaries. This paper presents a multi-agent reinforcement learning (MARL) framework based on the QMIX algorithm to improve the resilience of swarm communications under reactive jamming. We consider a network of multiple transmitter-receiver pairs sharing channels while a reactive jammer with Markovian threshold dynamics senses aggregate power and reacts accordingly. Each agent jointly selects transmit frequency (channel) and power, and QMIX learns a centralized but factorizable action-value function that enables coordinated yet decentralized execution. We benchmark QMIX against a genie-aided optimal policy in a no-channel-reuse setting, and against local Upper Confidence Bound (UCB) and a stateless reactive policy in a more general fading regime with channel reuse enabled. Simulation results show that QMIX rapidly converges to cooperative policies that nearly match the genie-aided bound, while achieving higher throughput and lower jamming incidence than the baselines, thereby demonstrating MARL's effectiveness for securing autonomous swarms in contested environments.
☆ Few-Shot Specific Emitter Identification via Integrated Complex Variational Mode Decomposition and Spatial Attention Transfer
Specific emitter identification (SEI) utilizes passive hardware characteristics to authenticate transmitters, providing a robust physical-layer security solution. However, most deep-learning-based methods rely on extensive data or require prior information, which poses challenges in real-world scenarios with limited labeled data. We propose an integrated complex variational mode decomposition algorithm that decomposes and reconstructs complex-valued signals to approximate the original transmitted signals, thereby enabling more accurate feature extraction. We further utilize a temporal convolutional network to effectively model the sequential signal characteristics, and introduce a spatial attention mechanism to adaptively weight informative signal segments, significantly enhancing identification performance. Additionally, the branch network allows leveraging pre-trained weights from other data while reducing the need for auxiliary datasets. Ablation experiments on the simulated data demonstrate the effectiveness of each component of the model. An accuracy comparison on a public dataset reveals that our method achieves 96% accuracy using only 10 symbols without requiring any prior knowledge.
comment: 14 pages, 12 Figures, 5 Table
☆ Non-Linear Strong Data-Processing for Quantum Hockey-Stick Divergences
Data-processing is a desired property of classical and quantum divergences and information measures. In information theory, the contraction coefficient measures how much the distinguishability of quantum states decreases when they are transmitted through a quantum channel, establishing linear strong data-processing inequalities (SDPI). However, these linear SDPI are not always tight and can be improved in most of the cases. In this work, we establish non-linear SDPI for quantum hockey-stick divergence for noisy channels that satisfy a certain noise criterion. We also note that our results improve upon existing linear SDPI for quantum hockey-stick divergences and also non-linear SDPI for classical hockey-stick divergence. We define $F_γ$ curves generalizing Dobrushin curves for the quantum setting while characterizing SDPI for the sequential composition of heterogeneous channels. In addition, we derive reverse-Pinsker type inequalities for $f$-divergences with additional constraints on hockey-stick divergences. We show that these non-linear SDPI can establish tighter finite mixing times that cannot be achieved through linear SDPI. Furthermore, we find applications of these in establishing stronger privacy guarantees for the composition of sequential private quantum channels when privacy is quantified by quantum local differential privacy.
☆ On The Hidden Biases of Flow Matching Samplers
We study the implicit bias of flow matching (FM) samplers via the lens of empirical flow matching. Although population FM may produce gradient-field velocities resembling optimal transport (OT), we show that the empirical FM minimizer is almost never a gradient field, even when each conditional flow is. Consequently, empirical FM is intrinsically energetically suboptimal. In view of this, we analyze the kinetic energy of generated samples. With Gaussian sources, both instantaneous and integrated kinetic energies exhibit exponential concentration, while heavy-tailed sources lead to polynomial tails. These behaviors are governed primarily by the choice of source distribution rather than the data. Overall, these notes provide a concise mathematical account of the structural and energetic biases arising in empirical FM.
comment: 20 pages
☆ Pattern recognition in complex systems via vector-field representations of spatio-temporal data
A complex system comprises multiple interacting entities whose interdependencies form a unified whole, exhibiting emergent behaviours not present in individual components. Examples include the human brain, living cells, soft matter, Earth's climate, ecosystems, and the economy. These systems exhibit high-dimensional, non-linear dynamics, making their modelling, classification, and prediction particularly challenging. Advances in information technology have enabled data-driven approaches to studying such systems. However, the sheer volume and complexity of spatio-temporal data often hinder traditional methods like dimensionality reduction, phase-space reconstruction, and attractor characterisation. This paper introduces a geometric framework for analysing spatio-temporal data from complex systems, grounded in the theory of vector fields over discrete measure spaces. We propose a two-parameter family of metrics suitable for data analysis and machine learning applications. The framework supports time-dependent images, image gradients, and real- or vector-valued functions defined on graphs and simplicial complexes. We validate our approach using data from numerical simulations of biological and physical systems on flat and curved domains. Our results show that the proposed metrics, combined with multidimensional scaling, effectively address key analytical challenges. They enable dimensionality reduction, mode decomposition, phase-space reconstruction, and attractor characterisation. Our findings offer a robust pathway for understanding complex dynamical systems, especially in contexts where traditional modelling is impractical but abundant experimental data are available.
comment: 24 pages, 10 figures
☆ NRGPT: An Energy-based Alternative for GPT
Generative Pre-trained Transformer (GPT) architectures are the most popular design for language modeling. Energy-based modeling is a different paradigm that views inference as a dynamical process operating on an energy landscape. We propose a minimal modification of the GPT setting to unify it with the EBM framework. The inference step of our model, which we call eNeRgy-GPT (NRGPT), is conceptualized as an exploration of the tokens on the energy landscape. We prove, and verify empirically, that under certain circumstances this exploration becomes gradient descent, although they don't necessarily lead to the best performing models. We demonstrate that our model performs well for simple language (Shakespeare dataset), algebraic ListOPS tasks, and richer settings such as OpenWebText language modeling. We also observe that our models may be more resistant to overfitting, doing so only during very long training.
☆ Machine Learning Algorithms: Detection Official Hajj and Umrah Travel Agency Based on Text and Metadata Analysis
The rapid digitalization of Hajj and Umrah services in Indonesia has significantly facilitated pilgrims but has concurrently opened avenues for digital fraud through counterfeit mobile applications. These fraudulent applications not only inflict financial losses but also pose severe privacy risks by harvesting sensitive personal data. This research aims to address this critical issue by implementing and evaluating machine learning algorithms to verify application authenticity automatically. Using a comprehensive dataset comprising both official applications registered with the Ministry of Religious Affairs and unofficial applications circulating on app stores, we compare the performance of three robust classifiers: Support Vector Machine (SVM), Random Forest (RF), and Na"ive Bayes (NB). The study utilizes a hybrid feature extraction methodology that combines Textual Analysis (TF-IDF) of application descriptions with Metadata Analysis of sensitive access permissions. The experimental results indicate that the SVM algorithm achieves the highest performance with an accuracy of 92.3%, a precision of 91.5%, and an F1-score of 92.0%. Detailed feature analysis reveals that specific keywords related to legality and high-risk permissions (e.g., READ PHONE STATE) are the most significant discriminators. This system is proposed as a proactive, scalable solution to enhance digital trust in the religious tourism sector, potentially serving as a prototype for a national verification system.
☆ KOSS: Kalman-Optimal Selective State Spaces for Long-Term Sequence Modeling
Recent selective state space models (SSMs), such as Mamba and Mamba-2, have demonstrated strong performance in sequence modeling owing to input-dependent selection mechanisms. However, these mechanisms lack theoretical grounding and cannot support context-aware selection from latent state dynamics. To address these limitations, we propose KOSS, a Kalman-optimal Selective State Space model that formulates selection as latent state uncertainty minimization. Derived from estimation theory, KOSS adopts a continuous-time latent update driven by a Kalman gain that dynamically modulates information propagation based on content and context, enabling a closed-loop, context-aware selectivity mechanism. To ensure stable computation and near-linear scalability, KOSS employs global spectral differentiation for frequency-domain derivative estimation, along with a segment-wise scan for hardware-efficient processing. On a selective copying task with distractors, KOSS achieves over 79\% accuracy while baselines drop below 20\%, demonstrating robust context-aware selection. Furthermore, across nine long-term forecasting benchmarks, KOSS reduces MSE by 2.92--36.23\% and consistently outperforms state-of-the-art models in both accuracy and stability. To assess real-world applicability, a case study on secondary surveillance radar (SSR) tracking confirms KOSS's robustness under irregular intervals and noisy conditions and demonstrates its effectiveness in real-world applications. Finally, supplementary experiments verify Kalman gain convergence and the frequency response of spectral differentiation, providing theoretical support for the proposed closed-loop design.
☆ Polyharmonic Spline Packages: Composition, Efficient Procedures for Computation and Differentiation
In a previous paper it was shown that a machine learning regression problem can be solved within the framework of random function theory, with the optimal kernel analytically derived from symmetry and indifference principles and coinciding with a polyharmonic spline. However, a direct application of that solution is limited by O(N^3) computational cost and by a breakdown of the original theoretical assumptions when the input space has excessive dimensionality. This paper proposes a cascade architecture built from packages of polyharmonic splines that simultaneously addresses scalability and is theoretically justified for problems with unknown intrinsic low dimensionality. Efficient matrix procedures are presented for forward computation and end-to-end differentiation through the cascade.
comment: Part 2 of 4 in the "Polyharmonic Cascade" cycle. Continues the theory from arXiv.2512.12731. Source code is available at: https://github.com/xolod7/polyharmonic-cascade
☆ Phishing Detection System: An Ensemble Approach Using Character-Level CNN and Feature Engineering
In actuality, phishing attacks remain one of the most prevalent cybersecurity risks in existence today, with malevolent actors constantly changing their strategies to successfully trick users. This paper presents an AI model for a phishing detection system that uses an ensemble approach to combine character-level Convolutional Neural Networks (CNN) and LightGBM with engineered features. Our system uses a character-level CNN to extract sequential features after extracting 36 lexical, structural, and domain-based features from the URLs. On a test dataset of 19,873 URLs, the ensemble model achieves an accuracy of 99.819 percent, precision of 100 percent, recall of 99.635 percent, and ROC-AUC of 99.947 percent. Through a FastAPI-based service with an intuitive user interface, the suggested system has been utilised to offer real-time detection. In contrast, the results demonstrate that the suggested solution performs better than individual models; LightGBM contributes 40 percent and character-CNN contributes 60 percent to the final prediction. The suggested method maintains extremely low false positive rates while doing a good job of identifying contemporary phishing techniques. Index Terms - Phishing detection, machine learning, deep learning, CNN, ensemble methods, cybersecurity, URL analysis
comment: 7 pages, 8 figures
☆ Towards Reproducibility in Predictive Process Mining: SPICE - A Deep Learning Library
In recent years, Predictive Process Mining (PPM) techniques based on artificial neural networks have evolved as a method for monitoring the future behavior of unfolding business processes and predicting Key Performance Indicators (KPIs). However, many PPM approaches often lack reproducibility, transparency in decision making, usability for incorporating novel datasets and benchmarking, making comparisons among different implementations very difficult. In this paper, we propose SPICE, a Python framework that reimplements three popular, existing baseline deep-learning-based methods for PPM in PyTorch, while designing a common base framework with rigorous configurability to enable reproducible and robust comparison of past and future modelling approaches. We compare SPICE to original reported metrics and with fair metrics on 11 datasets.
☆ Olaf: Bringing an Animated Character to Life in the Physical World
Animated characters often move in non-physical ways and have proportions that are far from a typical walking robot. This provides an ideal platform for innovation in both mechanical design and stylized motion control. In this paper, we bring Olaf to life in the physical world, relying on reinforcement learning guided by animation references for control. To create the illusion of Olaf's feet moving along his body, we hide two asymmetric legs under a soft foam skirt. To fit actuators inside the character, we use spherical and planar linkages in the arms, mouth, and eyes. Because the walk cycle results in harsh contact sounds, we introduce additional rewards that noticeably reduce impact noise. The large head, driven by small actuators in the character's slim neck, creates a risk of overheating, amplified by the costume. To keep actuators from overheating, we feed temperature values as additional inputs to policies, introducing new rewards to keep them within bounds. We validate the efficacy of our modeling in simulation and on hardware, demonstrating an unmatched level of believability for a costumed robotic character.
☆ How accurate are foundational machine learning interatomic potentials for heterogeneous catalysis?
Foundational machine learning interatomic potentials (MLIPs) are being developed at a rapid pace, promising closer and closer approximation to ab initio accuracy. This unlocks the possibility to simulate much larger length and time scales. However, benchmarks for these MLIPs are usually limited to ordered, crystalline and bulk materials. Hence, reported performance does not necessarily accurately reflect MLIP performance in real applications such as heterogeneous catalysis. Here, we systematically analyze zero-shot performance of 80 different MLIPs, evaluating tasks typical for heterogeneous catalysis across a range of different data sets, including adsorption and reaction on surfaces of alloyed metals, oxides, and metal-oxide interfacial systems. We demonstrate that current-generation foundational MLIPs can already perform at high accuracy for applications such as predicting vacancy formation energies of perovskite oxides or zero-point energies of supported nanoclusters. However, limitations also exist. We find that many MLIPs catastrophically fail when applied to magnetic materials, and structure relaxation in the MLIP generally increases the energy prediction error compared to single-point evaluation of a previously optimized structure. Comparing low-cost task-specific models to foundational MLIPs, we highlight some core differences between these model approaches and show that -- if considering only accuracy -- these models can compete with the current generation of best-performing MLIPs. Furthermore, we show that no single MLIP universally performs best, requiring users to investigate MLIP suitability for their desired application.
comment: 16 pages, 5 figures, 1 table + supplementary information (37 pages, 16 figures, 15 tables)
☆ CLARiTy: A Vision Transformer for Multi-Label Classification and Weakly-Supervised Localization of Chest X-ray Pathologies
The interpretation of chest X-rays (CXRs) poses significant challenges, particularly in achieving accurate multi-label pathology classification and spatial localization. These tasks demand different levels of annotation granularity but are frequently constrained by the scarcity of region-level (dense) annotations. We introduce CLARiTy (Class Localizing and Attention Refining Image Transformer), a vision transformer-based model for joint multi-label classification and weakly-supervised localization of thoracic pathologies. CLARiTy employs multiple class-specific tokens to generate discriminative attention maps, and a SegmentCAM module for foreground segmentation and background suppression using explicit anatomical priors. Trained on image-level labels from the NIH ChestX-ray14 dataset, it leverages distillation from a ConvNeXtV2 teacher for efficiency. Evaluated on the official NIH split, the CLARiTy-S-16-512 (a configuration of CLARiTy), achieves competitive classification performance across 14 pathologies, and state-of-the-art weakly-supervised localization performance on 8 pathologies, outperforming prior methods by 50.7%. In particular, pronounced gains occur for small pathologies like nodules and masses. The lower-resolution variant of CLARiTy, CLARiTy-S-16-224, offers high efficiency while decisively surpassing baselines, thereby having the potential for use in low-resource settings. An ablation study confirms contributions of SegmentCAM, DINO pretraining, orthogonal class token loss, and attention pooling. CLARiTy advances beyond CNN-ViT hybrids by harnessing ViT self-attention for global context and class-specific localization, refined through convolutional background suppression for precise, noise-reduced heatmaps.
comment: 23 pages, 11 figures, submitted to Medical Image Analysis
☆ Blog Data Showdown: Machine Learning vs Neuro-Symbolic Models for Gender Classification
Text classification problems, such as gender classification from a blog, have been a well-matured research area that has been well studied using machine learning algorithms. It has several application domains in market analysis, customer recommendation, and recommendation systems. This study presents a comparative analysis of the widely used machine learning algorithms, namely Support Vector Machines (SVM), Naive Bayes (NB), Logistic Regression (LR), AdaBoost, XGBoost, and an SVM variant (SVM_R) with neuro-symbolic AI (NeSy). The paper also explores the effect of text representations such as TF-IDF, the Universal Sentence Encoder (USE), and RoBERTa. Additionally, various feature extraction techniques, including Chi-Square, Mutual Information, and Principal Component Analysis, are explored. Building on these, we introduce a comparative analysis of the machine learning and deep learning approaches in comparison to the NeSy. The experimental results show that the use of the NeSy approach matched strong MLP results despite a limited dataset. Future work on this research will expand the knowledge base, the scope of embedding types, and the hyperparameter configuration to further study the effectiveness of the NeSy approach.
comment: 6 pages
☆ DataFlow: An LLM-Driven Framework for Unified Data Preparation and Workflow Automation in the Era of Data-Centric AI
The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.
☆ Exploiting Radio Frequency Fingerprints for Device Identification: Tackling Cross-receiver Challenges in the Source-data-free Scenario
With the rapid proliferation of edge computing, Radio Frequency Fingerprint Identification (RFFI) has become increasingly important for secure device authentication. However, practical deployment of deep learning-based RFFI models is hindered by a critical challenge: their performance often degrades significantly when applied across receivers with different hardware characteristics due to distribution shifts introduced by receiver variation. To address this, we investigate the source-data-free cross-receiver RFFI (SCRFFI) problem, where a model pretrained on labeled signals from a source receiver must adapt to unlabeled signals from a target receiver, without access to any source-domain data during adaptation. We first formulate a novel constrained pseudo-labeling-based SCRFFI adaptation framework, and provide a theoretical analysis of its generalization performance. Our analysis highlights a key insight: the target-domain performance is highly sensitive to the quality of the pseudo-labels generated during adaptation. Motivated by this, we propose Momentum Soft pseudo-label Source Hypothesis Transfer (MS-SHOT), a new method for SCRFFI that incorporates momentum-center-guided soft pseudo-labeling and enforces global structural constraints to encourage confident and diverse predictions. Notably, MS-SHOT effectively addresses scenarios involving label shift or unknown, non-uniform class distributions in the target domain -- a significant limitation of prior methods. Extensive experiments on real-world datasets demonstrate that MS-SHOT consistently outperforms existing approaches in both accuracy and robustness, offering a practical and scalable solution for source-data-free cross-receiver adaptation in RFFI.
comment: IEEE Transactions on Mobile Computing
☆ SARMAE: Masked Autoencoder for SAR Representation Learning
Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
comment: Code and models will be available at https://github.com/MiliLab/SARMAE
☆ Stackelberg Learning from Human Feedback: Preference Optimization as a Sequential Game
We introduce Stackelberg Learning from Human Feedback (SLHF), a new framework for preference optimization. SLHF frames the alignment problem as a sequential-move game between two policies: a Leader, which commits to an action, and a Follower, which responds conditionally on the Leader's action. This approach decomposes preference optimization into a refinement problem for the Follower and an optimization problem against an adversary for the Leader. Unlike Reinforcement Learning from Human Feedback (RLHF), which assigns scalar rewards to actions, or Nash Learning from Human Feedback (NLHF), which seeks a simultaneous-move equilibrium, SLHF leverages the asymmetry of sequential play to capture richer preference structures. The sequential design of SLHF naturally enables inference-time refinement, as the Follower learns to improve the Leader's actions, and these refinements can be leveraged through iterative sampling. We compare the solution concepts of SLHF, RLHF, and NLHF, and lay out key advantages in consistency, data sensitivity, and robustness to intransitive preferences. Experiments on large language models demonstrate that SLHF achieves strong alignment across diverse preference datasets, scales from 0.5B to 8B parameters, and yields inference-time refinements that transfer across model families without further fine-tuning.
comment: 10 pages, 5 tables, 1 figures
☆ Riemannian Stochastic Interpolants for Amorphous Particle Systems
Modern generative models hold great promise for accelerating diverse tasks involving the simulation of physical systems, but they must be adapted to the specific constraints of each domain. Significant progress has been made for biomolecules and crystalline materials. Here, we address amorphous materials (glasses), which are disordered particle systems lacking atomic periodicity. Sampling equilibrium configurations of glass-forming materials is a notoriously slow and difficult task. This obstacle could be overcome by developing a generative framework capable of producing equilibrium configurations with well-defined likelihoods. In this work, we address this challenge by leveraging an equivariant Riemannian stochastic interpolation framework which combines Riemannian stochastic interpolant and equivariant flow matching. Our method rigorously incorporates periodic boundary conditions and the symmetries of multi-component particle systems, adapting an equivariant graph neural network to operate directly on the torus. Our numerical experiments on model amorphous systems demonstrate that enforcing geometric and symmetry constraints significantly improves generative performance.
☆ Muon is Provably Faster with Momentum Variance Reduction
Recent empirical research has demonstrated that deep learning optimizers based on the linear minimization oracle (LMO) over specifically chosen Non-Euclidean norm balls, such as Muon and Scion, outperform Adam-type methods in the training of large language models. In this work, we show that such optimizers can be provably improved by replacing their vanilla momentum by momentum variance reduction (MVR). Instead of proposing and analyzing MVR variants of Muon and Scion separately, we incorporate MVR into the recently proposed Gluon framework, which captures Muon, Scion and other specific Non-Euclidean LMO-based methods as special cases, and at the same time works with a more general smoothness assumption which better captures the layer-wise structure of neural networks. In the non-convex case, we incorporate MVR into Gluon in three different ways. All of them improve the convergence rate from ${\cal O} (\frac{1}{K^{1/4}})$ to ${\cal O} (\frac{1}{K^{1/3}})$. Additionally, we provide improved rates in the star-convex case. Finally, we conduct several numerical experiments that verify the superior performance of our proposed algorithms in terms of iteration complexity.
comment: 31 pages, 4 figures
☆ Abacus: Self-Supervised Event Counting-Aligned Distributional Pretraining for Sequential User Modeling
Modeling user purchase behavior is a critical challenge in display advertising systems, necessary for real-time bidding. The difficulty arises from the sparsity of positive user events and the stochasticity of user actions, leading to severe class imbalance and irregular event timing. Predictive systems usually rely on hand-crafted "counter" features, overlooking the fine-grained temporal evolution of user intent. Meanwhile, current sequential models extract direct sequential signal, missing useful event-counting statistics. We enhance deep sequential models with self-supervised pretraining strategies for display advertising. Especially, we introduce Abacus, a novel approach of predicting the empirical frequency distribution of user events. We further propose a hybrid objective unifying Abacus with sequential learning objectives, combining stability of aggregated statistics with the sequence modeling sensitivity. Experiments on two real-world datasets show that Abacus pretraining outperforms existing methods accelerating downstream task convergence, while hybrid approach yields up to +6.1% AUC compared to the baselines.
☆ Non-Asymptotic Global Convergence of PPO-Clip
Reinforcement learning (RL) has gained attention for aligning large language models (LLMs) via reinforcement learning from human feedback (RLHF). The actor-only variants of Proximal Policy Optimization (PPO) are widely applied for their efficiency. These algorithms incorporate a clipping mechanism to improve stability. Besides, a regularization term, such as the reverse KL-divergence or a more general \(f\)-divergence, is introduced to prevent policy drift. Despite their empirical success, a rigorous theoretical understanding of the problem and the algorithm's properties is limited. This paper advances the theoretical foundations of the PPO-Clip algorithm by analyzing a deterministic actor-only PPO algorithm within the general RL setting with \(f\)-divergence regularization under the softmax policy parameterization. We derive a non-uniform Lipschitz smoothness condition and a Łojasiewicz inequality for the considered problem. Based on these, a non-asymptotic linear convergence rate to the globally optimal policy is established for the forward KL-regularizer. Furthermore, stationary convergence and local linear convergence are derived for the reverse KL-regularizer.
☆ Persistent Multiscale Density-based Clustering
Clustering is a cornerstone of modern data analysis. Detecting clusters in exploratory data analyses (EDA) requires algorithms that make few assumptions about the data. Density-based clustering algorithms are particularly well-suited for EDA because they describe high-density regions, assuming only that a density exists. Applying density-based clustering algorithms in practice, however, requires selecting appropriate hyperparameters, which is difficult without prior knowledge of the data distribution. For example, DBSCAN requires selecting a density threshold, and HDBSCAN* relies on a minimum cluster size parameter. In this work, we propose Persistent Leaves Spatial Clustering for Applications with Noise (PLSCAN). This novel density-based clustering algorithm efficiently identifies all minimum cluster sizes for which HDBSCAN* produces stable (leaf) clusters. PLSCAN applies scale-space clustering principles and is equivalent to persistent homology on a novel metric space. We compare its performance to HDBSCAN* on several real-world datasets, demonstrating that it achieves a higher average ARI and is less sensitive to changes in the number of mutual reachability neighbours. Additionally, we compare PLSCAN's computational costs to k-Means, demonstrating competitive run-times on low-dimensional datasets. At higher dimensions, run times scale more similarly to HDBSCAN*.
comment: 21 pages, 11 figures, submitted to the Journal of Machine Learning Research
☆ Predictive Inorganic Synthesis based on Machine Learning using Small Data sets: a case study of size-controlled Cu Nanoparticles
Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- and resource-intensive nature of experimental optimization, poses a major challenge in achieving reproducible and size-controlled synthesis. While Machine Learning (ML) shows promise in materials research, its application is often limited by scarcity of large high-quality experimental data sets. This study explores ML to predict the size of Cu NPs from microwave-assisted polyol synthesis using a small data set of 25 in-house performed syntheses. Latin Hypercube Sampling is used to efficiently cover the parameter space while creating the experimental data set. Ensemble regression models, built with the AMADEUS framework, successfully predict particle sizes with high accuracy ($R^2 = 0.74$), outperforming classical statistical approaches ($R^2 = 0.60$). Overall, this study highlights that, for lab-scale synthesis optimization, high-quality small datasets combined with classical, interpretable ML models outperform traditional statistical methods and are fully sufficient for quantitative synthesis prediction. This approach provides a sustainable and experimentally realistic pathway toward data-driven inorganic synthesis design.
comment: 22 pages, 16 figures, 12 tables (including SI)
☆ A Systematic Study of Code Obfuscation Against LLM-based Vulnerability Detection
As large language models (LLMs) are increasingly adopted for code vulnerability detection, their reliability and robustness across diverse vulnerability types have become a pressing concern. In traditional adversarial settings, code obfuscation has long been used as a general strategy to bypass auditing tools, preserving exploitability without tampering with the tools themselves. Numerous efforts have explored obfuscation methods and tools, yet their capabilities differ in terms of supported techniques, granularity, and programming languages, making it difficult to systematically assess their impact on LLM-based vulnerability detection. To address this gap, we provide a structured systematization of obfuscation techniques and evaluate them under a unified framework. Specifically, we categorize existing obfuscation methods into three major classes (layout, data flow, and control flow) covering 11 subcategories and 19 concrete techniques. We implement these techniques across four programming languages (Solidity, C, C++, and Python) using a consistent LLM-driven approach, and evaluate their effects on 15 LLMs spanning four model families (DeepSeek, OpenAI, Qwen, and LLaMA), as well as on two coding agents (GitHub Copilot and Codex). Our findings reveal both positive and negative impacts of code obfuscation on LLM-based vulnerability detection, highlighting conditions under which obfuscation leads to performance improvements or degradations. We further analyze these outcomes with respect to vulnerability characteristics, code properties, and model attributes. Finally, we outline several open problems and propose future directions to enhance the robustness of LLMs for real-world vulnerability detection.
☆ Pseudo-Cepstrum: Pitch Modification for Mel-Based Neural Vocoders
This paper introduces a cepstrum-based pitch modification method that can be applied to any mel-spectrogram representation. As a result, this method is compatible with any mel-based vocoder without requiring any additional training or changes to the model. This is achieved by directly modifying the cepstrum feature space in order to shift the harmonic structure to the desired target. The spectrogram magnitude is computed via the pseudo-inverse mel transform, then converted to the cepstrum by applying DCT. In this domain, the cepstral peak is shifted without having to estimate its position and the modified mel is recomputed by applying IDCT and mel-filterbank. These pitch-shifted mel-spectrogram features can be converted to speech with any compatible vocoder. The proposed method is validated experimentally with objective and subjective metrics on various state-of-the-art neural vocoders as well as in comparison with traditional pitch modification methods.
☆ Advantages and limitations in the use of transfer learning for individual treatment effects in causal machine learning
Generalizing causal knowledge across diverse environments is challenging, especially when estimates from large-scale datasets must be applied to smaller or systematically different contexts, where external validity is critical. Model-based estimators of individual treatment effects (ITE) from machine learning require large sample sizes, limiting their applicability in domains such as behavioral sciences with smaller datasets. We demonstrate how estimation of ITEs with Treatment Agnostic Representation Networks (TARNet; Shalit et al., 2017) can be improved by leveraging knowledge from source datasets and adapting it to new settings via transfer learning (TL-TARNet; Aloui et al., 2023). In simulations that vary source and sample sizes and consider both randomized and non-randomized intervention target settings, the transfer-learning extension TL-TARNet improves upon standard TARNet, reducing ITE error and attenuating bias when a large unbiased source is available and target samples are small. In an empirical application using the India Human Development Survey (IHDS-II), we estimate the effect of mothers' firewood collection time on children's weekly study time; transfer learning pulls the target mean ITEs toward the source ITE estimate, reducing bias in the estimates obtained without transfer. These results suggest that transfer learning for causal models can improve the estimation of ITE in small samples.
☆ Batch Normalization-Free Fully Integer Quantized Neural Networks via Progressive Tandem Learning
Quantised neural networks (QNNs) shrink models and reduce inference energy through low-bit arithmetic, yet most still depend on a running statistics batch normalisation (BN) layer, preventing true integer-only deployment. Prior attempts remove BN by parameter folding or tailored initialisation; while helpful, they rarely recover BN's stability and accuracy and often impose bespoke constraints. We present a BN-free, fully integer QNN trained via a progressive, layer-wise distillation scheme that slots into existing low-bit pipelines. Starting from a pretrained BN-enabled teacher, we use layer-wise targets and progressive compensation to train a student that performs inference exclusively with integer arithmetic and contains no BN operations. On ImageNet with AlexNet, the BN-free model attains competitive Top-1 accuracy under aggressive quantisation. The procedure integrates directly with standard quantisation workflows, enabling end-to-end integer-only inference for resource-constrained settings such as edge and embedded devices.
☆ IoMT-based Automated Leukemia Classification using CNN and Higher Order Singular Value
The Internet of Things (IoT) is a concept by which objects find identity and can communicate with each other in a network. One of the applications of the IoT is in the field of medicine, which is called the Internet of Medical Things (IoMT). Acute Lymphocytic Leukemia (ALL) is a type of cancer categorized as a hematic disease. It usually begins in the bone marrow due to the overproduction of immature White Blood Cells (WBCs or leukocytes). Since it has a high rate of spread to other body organs, it is a fatal disease if not diagnosed and treated early. Therefore, for identifying cancerous (ALL) cells in medical diagnostic laboratories, blood, as well as bone marrow smears, are taken by pathologists. However, manual examinations face limitations due to human error risk and time-consuming procedures. So, to tackle the mentioned issues, methods based on Artificial Intelligence (AI), capable of identifying cancer from non-cancer tissue, seem vital. Deep Neural Networks (DNNs) are the most efficient machine learning (ML) methods. These techniques employ multiple layers to extract higher-level features from the raw input. In this paper, a Convolutional Neural Network (CNN) is applied along with a new type of classifier, Higher Order Singular Value Decomposition (HOSVD), to categorize ALL and normal (healthy) cells from microscopic blood images. We employed the model on IoMT structure to identify leukemia quickly and safely. With the help of this new leukemia classification framework, patients and clinicians can have real-time communication. The model was implemented on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB2) and achieved an average accuracy of %98.88 in the test step.
☆ Topic Modelling Black Box Optimization
Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
☆ A Novel Proposal in Wind Turbine Blade Failure Detection: An Integrated Approach to Energy Efficiency and Sustainability
This paper presents a novel methodology for detecting faults in wind turbine blades using com-putational learning techniques. The study evaluates two models: the first employs logistic regression, which outperformed neural networks, decision trees, and the naive Bayes method, demonstrating its effectiveness in identifying fault-related patterns. The second model leverages clustering and achieves superior performance in terms of precision and data segmentation. The results indicate that clustering may better capture the underlying data characteristics compared to supervised methods. The proposed methodology offers a new approach to early fault detection in wind turbine blades, highlighting the potential of integrating different computational learning techniques to enhance system reliability. The use of accessible tools like Orange Data Mining underscores the practical application of these advanced solutions within the wind energy sector. Future work will focus on combining these methods to improve detection accuracy further and extend the application of these techniques to other critical components in energy infrastructure.
comment: 21 pages, 10 figures, 9 tables
☆ Emergent Bias and Fairness in Multi-Agent Decision Systems
Multi-agent systems have demonstrated the ability to improve performance on a variety of predictive tasks by leveraging collaborative decision making. However, the lack of effective evaluation methodologies has made it difficult to estimate the risk of bias, making deployment of such systems unsafe in high stakes domains such as consumer finance, where biased decisions can translate directly into regulatory breaches and financial loss. To address this challenge, we need to develop fairness evaluation methodologies for multi-agent predictive systems and measure the fairness characteristics of these systems in the financial tabular domain. Examining fairness metrics using large-scale simulations across diverse multi-agent configurations, with varying communication and collaboration mechanisms, we reveal patterns of emergent bias in financial decision-making that cannot be traced to individual agent components, indicating that multi-agent systems may exhibit genuinely collective behaviors. Our findings highlight that fairness risks in financial multi-agent systems represent a significant component of model risk, with tangible impacts on tasks such as credit scoring and income estimation. We advocate that multi-agent decision systems must be evaluated as holistic entities rather than through reductionist analyses of their constituent components.
☆ Multi-Fidelity Delayed Acceptance: hierarchical MCMC sampling for Bayesian inverse problems combining multiple solvers through deep neural networks
Inverse uncertainty quantification (UQ) tasks such as parameter estimation are computationally demanding whenever dealing with physics-based models, and typically require repeated evaluations of complex numerical solvers. When partial differential equations are involved, full-order models such as those based on the Finite Element Method can make traditional sampling approaches like Markov Chain Monte Carlo (MCMC) computationally infeasible. Although data-driven surrogate models may help reduce evaluation costs, their utility is often limited by the expense of generating high-fidelity data. In contrast, low-fidelity data can be produced more efficiently, although relying on them alone may degrade the accuracy of the inverse UQ solution. To address these challenges, we propose a Multi-Fidelity Delayed Acceptance scheme for Bayesian inverse problems. Extending the Multi-Level Delayed Acceptance framework, the method introduces multi-fidelity neural networks that combine the predictions of solvers of varying fidelity, with high fidelity evaluations restricted to an offline training stage. During the online phase, likelihood evaluations are obtained by evaluating the coarse solvers and passing their outputs to the trained neural networks, thereby avoiding additional high-fidelity simulations. This construction allows heterogeneous coarse solvers to be incorporated consistently within the hierarchy, providing greater flexibility than standard Multi-Level Delayed Acceptance. The proposed approach improves the approximation accuracy of the low fidelity solvers, leading to longer sub-chain lengths, better mixing, and accelerated posterior inference. The effectiveness of the strategy is demonstrated on two benchmark inverse problems involving (i) steady isotropic groundwater flow, (ii) an unsteady reaction-diffusion system, for which substantial computational savings are obtained.
comment: 28 pages, 8 tables, 3 algorithms, 16 figures
☆ Geometric Laplace Neural Operator
Neural operators have emerged as powerful tools for learning mappings between function spaces, enabling efficient solutions to partial differential equations across varying inputs and domains. Despite the success, existing methods often struggle with non-periodic excitations, transient responses, and signals defined on irregular or non-Euclidean geometries. To address this, we propose a generalized operator learning framework based on a pole-residue decomposition enriched with exponential basis functions, enabling expressive modeling of aperiodic and decaying dynamics. Building on this formulation, we introduce the Geometric Laplace Neural Operator (GLNO), which embeds the Laplace spectral representation into the eigen-basis of the Laplace-Beltrami operator, extending operator learning to arbitrary Riemannian manifolds without requiring periodicity or uniform grids. We further design a grid-invariant network architecture (GLNONet) that realizes GLNO in practice. Extensive experiments on PDEs/ODEs and real-world datasets demonstrate our robust performance over other state-of-the-art models.
☆ NDRL: Cotton Irrigation and Nitrogen Application with Nested Dual-Agent Reinforcement Learning ICONIP 2025
Effective irrigation and nitrogen fertilization have a significant impact on crop yield. However, existing research faces two limitations: (1) the high complexity of optimizing water-nitrogen combinations during crop growth and poor yield optimization results; and (2) the difficulty in quantifying mild stress signals and the delayed feedback, which results in less precise dynamic regulation of water and nitrogen and lower resource utilization efficiency. To address these issues, we propose a Nested Dual-Agent Reinforcement Learning (NDRL) method. The parent agent in NDRL identifies promising macroscopic irrigation and fertilization actions based on projected cumulative yield benefits, reducing ineffective explorationwhile maintaining alignment between objectives and yield. The child agent's reward function incorporates quantified Water Stress Factor (WSF) and Nitrogen Stress Factor (NSF), and uses a mixed probability distribution to dynamically optimize daily strategies, thereby enhancing both yield and resource efficiency. We used field experiment data from 2023 and 2024 to calibrate and validate the Decision Support System for Agrotechnology Transfer (DSSAT) to simulate real-world conditions and interact with NDRL. Experimental results demonstrate that, compared to the best baseline, the simulated yield increased by 4.7% in both 2023 and 2024, the irrigation water productivity increased by 5.6% and 5.1% respectively, and the nitrogen partial factor productivity increased by 6.3% and 1.0% respectively. Our method advances the development of cotton irrigation and nitrogen fertilization, providing new ideas for addressing the complexity and precision issues in agricultural resource management and for sustainable agricultural development.
comment: Accepted by ICONIP 2025
☆ Global universal approximation with Brownian signatures
We establish $L^p$-type universal approximation theorems for general and non-anticipative functionals on suitable rough path spaces, showing that linear functionals acting on signatures of time-extended rough paths are dense with respect to an $L^p$-distance. To that end, we derive global universal approximation theorems for weighted rough path spaces. We demonstrate that these $L^p$-type universal approximation theorems apply in particular to Brownian motion. As a consequence, linear functionals on the signature of the time-extended Brownian motion can approximate any $p$-integrable stochastic process adapted to the Brownian filtration, including solutions to stochastic differential equations.
☆ Kascade: A Practical Sparse Attention Method for Long-Context LLM Inference
Attention is the dominant source of latency during long-context LLM inference, an increasingly popular workload with reasoning models and RAG. We propose Kascade, a training-free sparse attention method that leverages known observations such as 1) post-softmax attention is intrinsically sparse, and 2) the identity of high-weight keys is stable across nearby layers. Kascade computes exact Top-k indices in a small set of anchor layers, then reuses those indices in intermediate reuse layers. The anchor layers are selected algorithmically, via a dynamic-programming objective that maximizes cross-layer similarity over a development set, allowing easy deployment across models. The method incorporates efficient implementation constraints (e.g. tile-level operations), across both prefill and decode attention. The Top-k selection and reuse in Kascade is head-aware and we show in our experiments that this is critical for high accuracy. Kascade achieves up to 4.1x speedup in decode attention and 2.2x speedup in prefill attention over FlashAttention-3 baseline on H100 GPUs while closely matching dense attention accuracy on long-context benchmarks such as LongBench and AIME-24.
comment: 11 pages, 8 figures, 3 tables and 1 algorithm
☆ Quantitative Verification of Fairness in Tree Ensembles
This work focuses on quantitative verification of fairness in tree ensembles. Unlike traditional verification approaches that merely return a single counterexample when the fairness is violated, quantitative verification estimates the ratio of all counterexamples and characterizes the regions where they occur, which is important information for diagnosing and mitigating bias. To date, quantitative verification has been explored almost exclusively for deep neural networks (DNNs). Representative methods, such as DeepGemini and FairQuant, all build on the core idea of Counterexample-Guided Abstraction Refinement, a generic framework that could be adapted to other model classes. We extended the framework into a model-agnostic form, but discovered two limitations: (i) it can provide only lower bounds, and (ii) its performance scales poorly. Exploiting the discrete structure of tree ensembles, our work proposes an efficient quantification technique that delivers any-time upper and lower bounds. Experiments on five widely used datasets demonstrate its effectiveness and efficiency. When applied to fairness testing, our quantification method significantly outperforms state-of-the-art testing techniques.
☆ Multivariate Uncertainty Quantification with Tomographic Quantile Forests
Quantifying predictive uncertainty is essential for safe and trustworthy real-world AI deployment. Yet, fully nonparametric estimation of conditional distributions remains challenging for multivariate targets. We propose Tomographic Quantile Forests (TQF), a nonparametric, uncertainty-aware, tree-based regression model for multivariate targets. TQF learns conditional quantiles of directional projections $\mathbf{n}^{\top}\mathbf{y}$ as functions of the input $\mathbf{x}$ and the unit direction $\mathbf{n}$. At inference, it aggregates quantiles across many directions and reconstructs the multivariate conditional distribution by minimizing the sliced Wasserstein distance via an efficient alternating scheme with convex subproblems. Unlike classical directional-quantile approaches that typically produce only convex quantile regions and require training separate models for different directions, TQF covers all directions with a single model without imposing convexity restrictions. We evaluate TQF on synthetic and real-world datasets, and release the source code on GitHub.
comment: 27 pages, 23 figures
Pretrained Battery Transformer (PBT): A battery life prediction foundation model
Early prediction of battery cycle life is essential for accelerating battery research, manufacturing, and deployment. Although machine learning methods have shown encouraging results, progress is hindered by data scarcity and heterogeneity arising from diverse aging conditions. In other fields, foundation models (FMs) trained on diverse datasets have achieved broad generalization through transfer learning, but no FMs have been reported for battery cycle life prediction yet. Here we present the Pretrained Battery Transformer (PBT), the first FM for battery life prediction, developed through domain-knowledge-encoded mixture-of-expert layers. Validated on the largest public battery life database, PBT learns transferable representations from 13 lithium-ion battery (LIB) datasets, outperforming existing models by an average of 19.8%. With transfer learning, PBT achieves state-of-the-art performance across 15 diverse datasets encompassing various operating conditions, formation protocols, and chemistries of LIBs. This work establishes a foundation model pathway for battery lifetime prediction, paving the way toward universal battery lifetime prediction systems.
comment: 5 figures in the main content
☆ Can Transformers overcome the lack of data in the simulation of history-dependent flows?
It is well known that the lack of information about certain variables necessary for the description of a dynamical system leads to the introduction of historical dependence (lack of Markovian character of the model) and noise. Traditionally, scientists have made up for these shortcomings by designing phenomenological variables that take into account this historical dependence (typically, conformational tensors in fluids). Often, these phenomenological variables are not easily measurable experimentally. In this work, we study to what extent Transformer architectures are able to cope with the lack of experimental data on these variables. The methodology is evaluated on three benchmark problems: a cylinder flow with no history dependence, a viscoelastic Couette flow modeled via the Oldroyd-B formalism, and a non-linear polymeric fluid described by the FENE model. Our results show that the Transformer outperforms a thermodynamically consistent, structure-preserving neural network with metriplectic bias in systems with missing experimental data, providing lower errors even in low-dimensional latent spaces. In contrast, for systems whose state variables can be fully known, the metriplectic model achieves superior performance.
☆ Feature-Selective Representation Misdirection for Machine Unlearning
As large language models (LLMs) are increasingly adopted in safety-critical and regulated sectors, the retention of sensitive or prohibited knowledge introduces escalating risks, ranging from privacy leakage to regulatory non-compliance to to potential misuse, and so on. Recent studies suggest that machine unlearning can help ensure deployed models comply with evolving legal, safety, and governance requirements. However, current unlearning techniques assume clean separation between forget and retain datasets, which is challenging in operational settings characterized by highly entangled distributions. In such scenarios, perturbation-based methods often degrade general model utility or fail to ensure safety. To address this, we propose Selective Representation Misdirection for Unlearning (SRMU), a novel principled activation-editing framework that enforces feature-aware and directionally controlled perturbations. Unlike indiscriminate model weights perturbations, SRMU employs a structured misdirection vector with an activation importance map. The goal is to allow SRMU selectively suppresses harmful representations while preserving the utility on benign ones. Experiments are conducted on the widely used WMDP benchmark across low- and high-entanglement configurations. Empirical results reveal that SRMU delivers state-of-the-art unlearning performance with minimal utility losses, and remains effective under 20-30\% overlap where existing baselines collapse. SRMU provides a robust foundation for safety-driven model governance, privacy compliance, and controlled knowledge removal in the emerging LLM-based applications. We release the replication package at https://figshare.com/s/d5931192a8824de26aff.
☆ In-Context Probing for Membership Inference in Fine-Tuned Language Models
Membership inference attacks (MIAs) pose a critical privacy threat to fine-tuned large language models (LLMs), especially when models are adapted to domain-specific tasks using sensitive data. While prior black-box MIA techniques rely on confidence scores or token likelihoods, these signals are often entangled with a sample's intrinsic properties - such as content difficulty or rarity - leading to poor generalization and low signal-to-noise ratios. In this paper, we propose ICP-MIA, a novel MIA framework grounded in the theory of training dynamics, particularly the phenomenon of diminishing returns during optimization. We introduce the Optimization Gap as a fundamental signal of membership: at convergence, member samples exhibit minimal remaining loss-reduction potential, while non-members retain significant potential for further optimization. To estimate this gap in a black-box setting, we propose In-Context Probing (ICP), a training-free method that simulates fine-tuning-like behavior via strategically constructed input contexts. We propose two probing strategies: reference-data-based (using semantically similar public samples) and self-perturbation (via masking or generation). Experiments on three tasks and multiple LLMs show that ICP-MIA significantly outperforms prior black-box MIAs, particularly at low false positive rates. We further analyze how reference data alignment, model type, PEFT configurations, and training schedules affect attack effectiveness. Our findings establish ICP-MIA as a practical and theoretically grounded framework for auditing privacy risks in deployed LLMs.
☆ CKA-Guided Modular Quantization: Beyond Bit-Width to Algorithmic Diversity
Current mainstream post-training quantization methods for large language models typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CKA Guided Modular Quantization, a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. Our method independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMs including LLaMA and Qwen ,in terms of perplexity (PPL) and downstream task performance.
☆ Sharpness-aware Second-order Latent Factor Model for High-dimensional and Incomplete Data
Second-order Latent Factor (SLF) model, a class of low-rank representation learning methods, has proven effective at extracting node-to-node interaction patterns from High-dimensional and Incomplete (HDI) data. However, its optimization is notoriously difficult due to its bilinear and non-convex nature. Sharpness-aware Minimization (SAM) has recently proposed to find flat local minima when minimizing non-convex objectives, thereby improving the generalization of representation-learning models. To address this challenge, we propose a Sharpness-aware SLF (SSLF) model. SSLF embodies two key ideas: (1) acquiring second-order information via Hessian-vector products; and (2) injecting a sharpness term into the curvature (Hessian) through the designed Hessian-vector products. Experiments on multiple industrial datasets demonstrate that the proposed model consistently outperforms state-of-the-art baselines.
☆ Pixel Super-Resolved Fluorescence Lifetime Imaging Using Deep Learning
Fluorescence lifetime imaging microscopy (FLIM) is a powerful quantitative technique that provides metabolic and molecular contrast, offering strong translational potential for label-free, real-time diagnostics. However, its clinical adoption remains limited by long pixel dwell times and low signal-to-noise ratio (SNR), which impose a stricter resolution-speed trade-off than conventional optical imaging approaches. Here, we introduce FLIM_PSR_k, a deep learning-based multi-channel pixel super-resolution (PSR) framework that reconstructs high-resolution FLIM images from data acquired with up to a 5-fold increased pixel size. The model is trained using the conditional generative adversarial network (cGAN) framework, which, compared to diffusion model-based alternatives, delivers a more robust PSR reconstruction with substantially shorter inference times, a crucial advantage for practical deployment. FLIM_PSR_k not only enables faster image acquisition but can also alleviate SNR limitations in autofluorescence-based FLIM. Blind testing on held-out patient-derived tumor tissue samples demonstrates that FLIM_PSR_k reliably achieves a super-resolution factor of k = 5, resulting in a 25-fold increase in the space-bandwidth product of the output images and revealing fine architectural features lost in lower-resolution inputs, with statistically significant improvements across various image quality metrics. By increasing FLIM's effective spatial resolution, FLIM_PSR_k advances lifetime imaging toward faster, higher-resolution, and hardware-flexible implementations compatible with low-numerical-aperture and miniaturized platforms, better positioning FLIM for translational applications.
comment: 30 Pages, 9 Figures
☆ Interpretable Deep Learning for Stock Returns: A Consensus-Bottleneck Asset Pricing Model
We introduce the \textit{Consensus-Bottleneck Asset Pricing Model} (CB-APM), a partially interpretable neural network that replicates the reasoning processes of sell-side analysts by capturing how dispersed investor beliefs are compressed into asset prices through a consensus formation process. By modeling this ``bottleneck'' to summarize firm- and macro-level information, CB-APM not only predicts future risk premiums of U.S. equities but also links belief aggregation to expected returns in a structurally interpretable manner. The model improves long-horizon return forecasts and outperforms standard deep learning approaches in both predictive accuracy and explanatory power. Comprehensive portfolio analyses show that CB-APM's out-of-sample predictions translate into economically meaningful payoffs, with monotonic return differentials and stable long-short performance across regularization settings. Empirically, CB-APM leverages consensus as a regularizer to amplify long-horizon predictability and yields interpretable consensus-based components that clarify how information is priced in returns. Moreover, regression and GRS-based pricing diagnostics reveal that the learned consensus representations capture priced variation only partially spanned by traditional factor models, demonstrating that CB-APM uncovers belief-driven structure in expected returns beyond the canonical factor space. Overall, CB-APM provides an interpretable and empirically grounded framework for understanding belief-driven return dynamics.
☆ Sharpness-aware Federated Graph Learning WSDM'26
One of many impediments to applying graph neural networks (GNNs) to large-scale real-world graph data is the challenge of centralized training, which requires aggregating data from different organizations, raising privacy concerns. Federated graph learning (FGL) addresses this by enabling collaborative GNN model training without sharing private data. However, a core challenge in FGL systems is the variation in local training data distributions among clients, known as the data heterogeneity problem. Most existing solutions suffer from two problems: (1) The typical optimizer based on empirical risk minimization tends to cause local models to fall into sharp valleys and weakens their generalization to out-of-distribution graph data. (2) The prevalent dimensional collapse in the learned representations of local graph data has an adverse impact on the classification capacity of the GNN model. To this end, we formulate a novel optimization objective that is aware of the sharpness (i.e., the curvature of the loss surface) of local GNN models. By minimizing the loss function and its sharpness simultaneously, we seek out model parameters in a flat region with uniformly low loss values, thus improving the generalization over heterogeneous data. By introducing a regularizer based on the correlation matrix of local representations, we relax the correlations of representations generated by individual local graph samples, so as to alleviate the dimensional collapse of the learned model. The proposed \textbf{S}harpness-aware f\textbf{E}derated gr\textbf{A}ph \textbf{L}earning (SEAL) algorithm can enhance the classification accuracy and generalization ability of local GNN models in federated graph learning. Experimental studies on several graph classification benchmarks show that SEAL consistently outperforms SOTA FGL baselines and provides gains for more participants.
comment: Accepted by WSDM'26
☆ Coarse-to-Fine Open-Set Graph Node Classification with Large Language Models AAAI 2026
Developing open-set classification methods capable of classifying in-distribution (ID) data while detecting out-of-distribution (OOD) samples is essential for deploying graph neural networks (GNNs) in open-world scenarios. Existing methods typically treat all OOD samples as a single class, despite real-world applications, especially high-stake settings such as fraud detection and medical diagnosis, demanding deeper insights into OOD samples, including their probable labels. This raises a critical question: can OOD detection be extended to OOD classification without true label information? To address this question, we propose a Coarse-to-Fine open-set Classification (CFC) framework that leverages large language models (LLMs) for graph datasets. CFC consists of three key components: a coarse classifier that uses LLM prompts for OOD detection and outlier label generation, a GNN-based fine classifier trained with OOD samples identified by the coarse classifier for enhanced OOD detection and ID classification, and refined OOD classification achieved through LLM prompts and post-processed OOD labels. Unlike methods that rely on synthetic or auxiliary OOD samples, CFC employs semantic OOD instances that are genuinely out-of-distribution based on their inherent meaning, improving interpretability and practical utility. Experimental results show that CFC improves OOD detection by ten percent over state-of-the-art methods on graph and text domains and achieves up to seventy percent accuracy in OOD classification on graph datasets.
comment: Accepted to AAAI 2026
☆ DAG Learning from Zero-Inflated Count Data Using Continuous Optimization
We address network structure learning from zero-inflated count data by casting each node as a zero-inflated generalized linear model and optimizing a smooth, score-based objective under a directed acyclic graph constraint. Our Zero-Inflated Continuous Optimization (ZICO) approach uses node-wise likelihoods with canonical links and enforces acyclicity through a differentiable surrogate constraint combined with sparsity regularization. ZICO achieves superior performance with faster runtimes on simulated data. It also performs comparably to or better than common algorithms for reverse engineering gene regulatory networks. ZICO is fully vectorized and mini-batched, enabling learning on larger variable sets with practical runtimes in a wide range of domains.
☆ Neural emulation of gravity-driven geohazard runout
Predicting geohazard runout is critical for protecting lives, infrastructure and ecosystems. Rapid mass flows, including landslides and avalanches, cause several thousand deaths across a wide range of environments, often travelling many kilometres from their source. The wide range of source conditions and material properties governing these flows makes their runout difficult to anticipate, particularly for downstream communities that may be suddenly exposed to severe impacts. Accurately predicting runout at scale requires models that are both physically realistic and computationally efficient, yet existing approaches face a fundamental speed-realism trade-off. Here we train a machine learning model to predict geohazard runout across representative real world terrains. The model predicts both flow extent and deposit thickness with high accuracy and 100 to 10,000 times faster computation than numerical solvers. It is trained on over 100,000 numerical simulations across over 10,000 real world digital elevation model chips and reproduces key physical behaviours, including avulsion and deposition patterns, while generalizing across different flow types, sizes and landscapes. Our results demonstrate that neural emulation enables rapid, spatially resolved runout prediction across diverse real world terrains, opening new opportunities for disaster risk reduction and impact-based forecasting. These results highlight neural emulation as a promising pathway for extending physically realistic geohazard modelling to spatial and temporal scales relevant for large scale early warning systems.
comment: 14 pages, 4 figures
☆ Explicit and Non-asymptotic Query Complexities of Rank-Based Zeroth-order Algorithms on Smooth Functions
Rank-based zeroth-order (ZO) optimization -- which relies only on the ordering of function evaluations -- offers strong robustness to noise and monotone transformations, and underlies many successful algorithms such as CMA-ES, natural evolution strategies, and rank-based genetic algorithms. Despite its widespread use, the theoretical understanding of rank-based ZO methods remains limited: existing analyses provide only asymptotic insights and do not yield explicit convergence rates for algorithms selecting the top-$k$ directions. This work closes this gap by analyzing a simple rank-based ZO algorithm and establishing the first \emph{explicit}, and \emph{non-asymptotic} query complexities. For a $d$-dimension problem, if the function is $L$-smooth and $μ$-strongly convex, the algorithm achieves $\widetilde{\mathcal O}\!\left(\frac{dL}μ\log\!\frac{dL}{μδ}\log\!\frac{1}{\varepsilon}\right)$ to find an $\varepsilon$-suboptimal solution, and for smooth nonconvex objectives it reaches $\mathcal O\!\left(\frac{dL}{\varepsilon}\log\!\frac{1}{\varepsilon}\right)$. Notation $\cO(\cdot)$ hides constant terms and $\widetilde{\mathcal O}(\cdot)$ hides extra $\log\log\frac{1}{\varepsilon}$ term. These query complexities hold with a probability at least $1-δ$ with $0<δ<1$. The analysis in this paper is novel and avoids classical drift and information-geometric techniques. Our analysis offers new insight into why rank-based heuristics lead to efficient ZO optimization.
☆ A Multi-scale Fused Graph Neural Network with Inter-view Contrastive Learning for Spatial Transcriptomics Data Clustering
Spatial transcriptomics enables genome-wide expression analysis within native tissue context, yet identifying spatial domains remains challenging due to complex gene-spatial interactions. Existing methods typically process spatial and feature views separately, fusing only at output level - an "encode-separately, fuse-late" paradigm that limits multi-scale semantic capture and cross-view interaction. Accordingly, stMFG is proposed, a multi-scale interactive fusion graph network that introduces layer-wise cross-view attention to dynamically integrate spatial and gene features after each convolution. The model combines cross-view contrastive learning with spatial constraints to enhance discriminability while maintaining spatial continuity. On DLPFC and breast cancer datasets, stMFG outperforms state-of-the-art methods, achieving up to 14% ARI improvement on certain slices.
comment: 15 pages, 3 figures
☆ A Multimodal Approach to Alzheimer's Diagnosis: Geometric Insights from Cube Copying and Cognitive Assessments
Early and accessible detection of Alzheimer's disease (AD) remains a critical clinical challenge, and cube-copying tasks offer a simple yet informative assessment of visuospatial function. This work proposes a multimodal framework that converts hand-drawn cube sketches into graph-structured representations capturing geometric and topological properties, and integrates these features with demographic information and neuropsychological test (NPT) scores for AD classification. Cube drawings are modeled as graphs with node features encoding spatial coordinates, local graphlet-based topology, and angular geometry, which are processed using graph neural networks and fused with age, education, and NPT features in a late-fusion model. Experimental results show that graph-based representations provide a strong unimodal baseline and substantially outperform pixel-based convolutional models, while multimodal integration further improves performance and robustness to class imbalance. SHAP-based interpretability analysis identifies specific graphlet motifs and geometric distortions as key predictors, closely aligning with clinical observations of disorganized cube drawings in AD. Together, these results establish graph-based analysis of cube copying as an interpretable, non-invasive, and scalable approach for Alzheimer's disease screening.
☆ Physics-Informed Neural Networks for Modeling the Martian Induced Magnetosphere
Understanding the magnetic field environment around Mars and its response to upstream solar wind conditions provide key insights into the processes driving atmospheric ion escape. To date, global models of Martian induced magnetosphere have been exclusively physics-based, relying on computationally intensive simulations. For the first time, we develop a data-driven model of the Martian induced magnetospheric magnetic field using Physics-Informed Neural Network (PINN) combined with MAVEN observations and physical laws. Trained under varying solar wind conditions, including B_IMF, P_SW, and θ_cone, the data-driven model accurately reconstructs the three-dimensional magnetic field configuration and its variability in response to upstream solar wind drivers. Based on the PINN results, we identify key dependencies of magnetic field configuration on solar wind parameters, including the hemispheric asymmetries of the draped field line strength in the Mars-Solar-Electric coordinates. These findings demonstrate the capability of PINNs to reconstruct complex magnetic field structures in the Martian induced magnetosphere, thereby offering a promising tool for advancing studies of solar wind-Mars interactions.
☆ Science Consultant Agent
The Science Consultant Agent is a web-based Artificial Intelligence (AI) tool that helps practitioners select and implement the most effective modeling strategy for AI-based solutions. It operates through four core components: Questionnaire, Smart Fill, Research-Guided Recommendation, and Prototype Builder. By combining structured questionnaires, literature-backed solution recommendations, and prototype generation, the Science Consultant Agent accelerates development for everyone from Product Managers and Software Developers to Researchers. The full pipeline is illustrated in Figure 1.
☆ Artificial Intelligence-Enabled Holistic Design of Catalysts Tailored for Semiconducting Carbon Nanotube Growth
Catalyst design is crucial for materials synthesis, especially for complex reaction networks. Strategies like collaborative catalytic systems and multifunctional catalysts are effective but face challenges at the nanoscale. Carbon nanotube synthesis contains complicated nanoscale catalytic reactions, thus achieving high-density, high-quality semiconducting CNTs demands innovative catalyst design. In this work, we present a holistic framework integrating machine learning into traditional catalyst design for semiconducting CNT synthesis. It combines knowledge-based insights with data-driven techniques. Three key components, including open-access electronic structure databases for precise physicochemical descriptors, pre-trained natural language processing-based embedding model for higher-level abstractions, and physical - driven predictive models based on experiment data, are utilized. Through this framework, a new method for selective semiconducting CNT synthesis via catalyst - mediated electron injection, tuned by light during growth, is proposed. 54 candidate catalysts are screened, and three with high potential are identified. High-throughput experiments validate the predictions, with semiconducting selectivity exceeding 91% and the FeTiO3 catalyst reaching 98.6%. This approach not only addresses semiconducting CNT synthesis but also offers a generalizable methodology for global catalyst design and nanomaterials synthesis, advancing materials science in precise control.
comment: 16 pages and 4 figures in main text
☆ INTELLECT-3: Technical Report
We present INTELLECT-3, a 106B-parameter Mixture-of-Experts model (12B active) trained with large-scale reinforcement learning on our end-to-end RL infrastructure stack. INTELLECT-3 achieves state of the art performance for its size across math, code, science and reasoning benchmarks, outperforming many larger frontier models. We open-source the model together with the full infrastructure stack used to create it, including RL frameworks, complete recipe, and a wide collection of environments, built with the verifiers library, for training and evaluation from our Environments Hub community platform. Built for this effort, we introduce prime-rl, an open framework for large-scale asynchronous reinforcement learning, which scales seamlessly from a single node to thousands of GPUs, and is tailored for agentic RL with first-class support for multi-turn interactions and tool use. Using this stack, we run both SFT and RL training on top of the GLM-4.5-Air-Base model, scaling RL training up to 512 H200s with high training efficiency.
comment: 27 pages, 10 figures
☆ Staggered Batch Scheduling: Co-optimizing Time-to-First-Token and Throughput for High-Efficiency LLM Inference
The evolution of Large Language Model (LLM) serving towards complex, distributed architectures--specifically the P/D-separated, large-scale DP+EP paradigm--introduces distinct scheduling challenges. Unlike traditional deployments where schedulers can treat instances as black boxes, DP+EP architectures exhibit high internal synchronization costs. We identify that immediate request dispatching in such systems leads to severe in-engine queuing and parallelization bubbles, degrading Time-to-First-Token (TTFT). To address this, we propose Staggered Batch Scheduling (SBS), a mechanism that deliberately buffers requests to form optimal execution batches. This temporal decoupling eliminates internal queuing bubbles without compromising throughput. Furthermore, leveraging the scheduling window created by buffering, we introduce a Load-Aware Global Allocation strategy that balances computational load across DP units for both Prefill and Decode phases. Deployed on a production H800 cluster serving Deepseek-V3, our system reduces TTFT by 30%-40% and improves throughput by 15%-20% compared to state-of-the-art immediate scheduling baselines.
☆ Dual-View Inference Attack: Machine Unlearning Amplifies Privacy Exposure AAAI2026
Machine unlearning is a newly popularized technique for removing specific training data from a trained model, enabling it to comply with data deletion requests. While it protects the rights of users requesting unlearning, it also introduces new privacy risks. Prior works have primarily focused on the privacy of data that has been unlearned, while the risks to retained data remain largely unexplored. To address this gap, we focus on the privacy risks of retained data and, for the first time, reveal the vulnerabilities introduced by machine unlearning under the dual-view setting, where an adversary can query both the original and the unlearned models. From an information-theoretic perspective, we introduce the concept of {privacy knowledge gain} and demonstrate that the dual-view setting allows adversaries to obtain more information than querying either model alone, thereby amplifying privacy leakage. To effectively demonstrate this threat, we propose DVIA, a Dual-View Inference Attack, which extracts membership information on retained data using black-box queries to both models. DVIA eliminates the need to train an attack model and employs a lightweight likelihood ratio inference module for efficient inference. Experiments across different datasets and model architectures validate the effectiveness of DVIA and highlight the privacy risks inherent in the dual-view setting.
comment: Accepeted by AAAI2026
☆ BUILD with Precision: Bottom-Up Inference of Linear DAGs
Learning the structure of directed acyclic graphs (DAGs) from observational data is a central problem in causal discovery, statistical signal processing, and machine learning. Under a linear Gaussian structural equation model (SEM) with equal noise variances, the problem is identifiable and we show that the ensemble precision matrix of the observations exhibits a distinctive structure that facilitates DAG recovery. Exploiting this property, we propose BUILD (Bottom-Up Inference of Linear DAGs), a deterministic stepwise algorithm that identifies leaf nodes and their parents, then prunes the leaves by removing incident edges to proceed to the next step, exactly reconstructing the DAG from the true precision matrix. In practice, precision matrices must be estimated from finite data, and ill-conditioning may lead to error accumulation across BUILD steps. As a mitigation strategy, we periodically re-estimate the precision matrix (with less variables as leaves are pruned), trading off runtime for enhanced robustness. Reproducible results on challenging synthetic benchmarks demonstrate that BUILD compares favorably to state-of-the-art DAG learning algorithms, while offering an explicit handle on complexity.
☆ BayesSum: Bayesian Quadrature in Discrete Spaces
This paper addresses the challenging computational problem of estimating intractable expectations over discrete domains. Existing approaches, including Monte Carlo and Russian Roulette estimators, are consistent but often require a large number of samples to achieve accurate results. We propose a novel estimator, \emph{BayesSum}, which is an extension of Bayesian quadrature to discrete domains. It is more sample efficient than alternatives due to its ability to make use of prior information about the integrand through a Gaussian process. We show this through theory, deriving a convergence rate significantly faster than Monte Carlo in a broad range of settings. We also demonstrate empirically that our proposed method does indeed require fewer samples on several synthetic settings as well as for parameter estimation for Conway-Maxwell-Poisson and Potts models.
☆ AIMM: An AI-Driven Multimodal Framework for Detecting Social-Media-Influenced Stock Market Manipulation
Market manipulation now routinely originates from coordinated social media campaigns, not isolated trades. Retail investors, regulators, and brokerages need tools that connect online narratives and coordination patterns to market behavior. We present AIMM, an AI-driven framework that fuses Reddit activity, bot and coordination indicators, and OHLCV market features into a daily AIMM Manipulation Risk Score for each ticker. The system uses a parquet-native pipeline with a Streamlit dashboard that allows analysts to explore suspicious windows, inspect underlying posts and price action, and log model outputs over time. Due to Reddit API restrictions, we employ calibrated synthetic social features matching documented event characteristics; market data (OHLCV) uses real historical data from Yahoo Finance. This release makes three contributions. First, we build the AIMM Ground Truth dataset (AIMM-GT): 33 labeled ticker-days spanning eight equities, drawing from SEC enforcement actions, community-verified manipulation cases, and matched normal controls. Second, we implement forward-walk evaluation and prospective prediction logging for both retrospective and deployment-style assessment. Third, we analyze lead times and show that AIMM flagged GME 22 days before the January 2021 squeeze peak. The current labeled set is small (33 ticker-days, 3 positive events), but results show preliminary discriminative capability and early warnings for the GME incident. We release the code, dataset schema, and dashboard design to support research on social media-driven market surveillance.
comment: Preprint
☆ TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times
We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.
♻ ☆ TACE: A unified Irreducible Cartesian Tensor Framework for Atomistic Machine Learning
Here, we introduce the Tensor Atomic Cluster Expansion (TACE), a unified framework formulated entirely in Cartesian space, enabling systematic and consistent prediction of arbitrary structure-dependent tensorial properties. TACE achieves this by decomposing atomic environments into a complete hierarchy of irreducible Cartesian tensors, ensuring symmetry-consistent representations that naturally encode invariance and equivariance constraints. Beyond geometry, TACE incorporates universal embeddings that flexibly integrate diverse attributes including computational levels, charges, magnetic moments and field perturbations. This allows explicit control over external invariants and equivariants in the prediction process. Long-range interactions are also accurately described through the Latent Ewald Summation module within the short-range approximation, providing a rigorous yet computationally efficient treatment of electrostatic and dispersion effects. We demonstrate that TACE attains accuracy, stability, and efficiency on par with or surpassing leading equivariant frameworks across finite molecules and extended materials. This includes in-domain and out-of-domain benchmarks, spectra, Hessian, external-field responses, charged and magnetic systems, multi-fidelity training, heterogeneous catalysis, and even superior performance within the uMLIP benchmark. Crucially, TACE bridges scalar and tensorial modeling and establishes a Cartesian-space paradigm that unifies and extends beyond the design space of spherical-tensor-based methods. This work lays the foundation for a new generation of universal atomistic machine learning models capable of systematically capturing the rich interplay of geometry, fields and material properties within a single coherent framework.
♻ ☆ Wrist Photoplethysmography Predicts Dietary Information
Whether wearable photoplethysmography (PPG) contains dietary information remains unknown. We trained a language model on 1.1M meals to predict meal descriptions from PPG, aligning PPG to text. PPG nontrivially predicts meal content; predictability decreases for PPGs farther from meals. This transfers to dietary tasks: PPG increases AUC by 11% for intake and satiety across held-out and independent cohorts, with gains robust to text degradation. Wearable PPG may enable passive dietary monitoring.
comment: 20 pages, 2 figures
♻ ☆ Developing Distance-Aware, and Evident Uncertainty Quantification in Dynamic Physics-Constrained Neural Networks for Robust Bearing Degradation Estimation
Accurate and uncertainty-aware degradation estimation is essential for predictive maintenance in safety-critical systems like rotating machinery with rolling-element bearings. Many existing uncertainty methods lack confidence calibration, are costly to run, are not distance-aware, and fail to generalize under out-of-distribution data. We introduce two distance-aware uncertainty methods for deterministic physics-guided neural networks: PG-SNGP, based on Spectral Normalization Gaussian Process, and PG-SNER, based on Deep Evidential Regression. We apply spectral normalization to the hidden layers so the network preserves distances from input to latent space. PG-SNGP replaces the final dense layer with a Gaussian Process layer for distance-sensitive uncertainty, while PG-SNER outputs Normal Inverse Gamma parameters to model uncertainty in a coherent probabilistic form. We assess performance using standard accuracy metrics and a new distance-aware metric based on the Pearson Correlation Coefficient, which measures how well predicted uncertainty tracks the distance between test and training samples. We also design a dynamic weighting scheme in the loss to balance data fidelity and physical consistency. We test our methods on rolling-element bearing degradation using the PRONOSTIA, XJTU-SY and HUST datasets and compare them with Monte Carlo and Deep Ensemble PGNNs. Results show that PG-SNGP and PG-SNER improve prediction accuracy, generalize reliably under OOD conditions, and remain robust to adversarial attacks and noise.
comment: Under review at Structural health Monitoring - SAGE
♻ ☆ Network-Optimised Spiking Neural Network for Event-Driven Networking
Time-critical networking requires low-latency decisions from sparse and bursty telemetry, where fixed-step neural inference waste computation. We introduce Network-Optimised Spiking (NOS), a two-state neuron whose variables correspond to normalised queue occupancy and a recovery resource. NOS combines a saturating excitability nonlinearity for finite buffers, service and damping leaks, graph-local inputs with per-link gates and delays, and differentiable resets compatible with surrogate gradients and neuromorphic deployment. We establish existence and uniqueness of subthreshold equilibria, derive Jacobian-based local stability tests, and obtain a scalar network stability threshold that separates topology from node physics through a Perron-mode spectral condition. A stochastic arrival model aligned with telemetry smoothing links NOS responses to classical queueing behaviour while explaining increased variability near stability margins. Across chain, star, and scale-free graphs, NOS improves early-warning F1 and detection latency over MLP, RNN, GRU, and temporal-GNN baselines under a common residual-based protocol, while providing practical calibration and stability rules suited to resource-constrained networking deployments. Code and Demos: https://mbilal84.github.io/nos-snn-networking/
comment: 56 pages, 16 figures, 9 tables
♻ ☆ Memory Backdoor Attacks on Neural Networks
Neural networks are often trained on proprietary datasets, making them attractive attack targets. We present a novel dataset extraction method leveraging an innovative training time backdoor attack, allowing a malicious federated learning server to systematically and deterministically extract complete client training samples through a simple indexing process. Unlike prior techniques, our approach guarantees exact data recovery rather than probabilistic reconstructions or hallucinations, provides precise control over which samples are memorized and how many, and shows high capacity and robustness. Infected models output data samples when they receive a patternbased index trigger, enabling systematic extraction of meaningful patches from each clients local data without disrupting global model utility. To address small model output sizes, we extract patches and then recombined them. The attack requires only a minor modification to the training code that can easily evade detection during client-side verification. Hence, this vulnerability represents a realistic FL supply-chain threat, where a malicious server can distribute modified training code to clients and later recover private data from their updates. Evaluations across classifiers, segmentation models, and large language models demonstrate that thousands of sensitive training samples can be recovered from client models with minimal impact on task performance, and a clients entire dataset can be stolen after multiple FL rounds. For instance, a medical segmentation dataset can be extracted with only a 3 percent utility drop. These findings expose a critical privacy vulnerability in FL systems, emphasizing the need for stronger integrity and transparency in distributed training pipelines.
♻ ☆ Online Continual Graph Learning
Continual Learning (CL) aims to incrementally acquire new knowledge while mitigating catastrophic forgetting. Within this setting, Online Continual Learning (OCL) focuses on updating models promptly and incrementally from single or small batches of observations from a data stream. Extending OCL to graph-structured data is crucial, as many real-world networks evolve over time and require timely, online predictions. However, existing continual or streaming graph learning methods typically assume access to entire graph snapshots or multiple passes over tasks, violating the efficiency constraints of the online setting. To address this gap, we introduce the Online Continual Graph Learning (OCGL) setting, which formalizes node-level continual learning on evolving graphs under strict memory and computational budgets. OCGL defines how a model incrementally processes a stream of node-level information while maintaining anytime inference and respecting resource constraints. We further establish a comprehensive benchmark comprising seven datasets and nine CL strategies, suitably adapted to the OCGL setting, enabling a standardized evaluation setup. Finally, we present a minimalistic yet competitive baseline for OCGL, inspired by our benchmarking results, that achieves strong empirical performance with high efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Bandits with Preference Feedback: A Stackelberg Game Perspective NeurIPS
Bandits with preference feedback present a powerful tool for optimizing unknown target functions when only pairwise comparisons are allowed instead of direct value queries. This model allows for incorporating human feedback into online inference and optimization and has been employed in systems for fine-tuning large language models. The problem is well understood in simplified settings with linear target functions or over finite small domains that limit practical interest. Taking the next step, we consider infinite domains and nonlinear (kernelized) rewards. In this setting, selecting a pair of actions is quite challenging and requires balancing exploration and exploitation at two levels: within the pair, and along the iterations of the algorithm. We propose MAXMINLCB, which emulates this trade-off as a zero-sum Stackelberg game, and chooses action pairs that are informative and yield favorable rewards. MAXMINLCB consistently outperforms existing algorithms and satisfies an anytime-valid rate-optimal regret guarantee. This is due to our novel preference-based confidence sequences for kernelized logistic estimators.
comment: In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS), 30 pages, 8 figures
♻ ☆ Ensembles provably learn equivariance through data augmentation
Recently, it was proved that group equivariance emerges in ensembles of neural networks as the result of full augmentation in the limit of infinitely wide neural networks (neural tangent kernel limit). In this paper, we extend this result significantly. We provide a proof that this emergence does not depend on the neural tangent kernel limit at all. We also consider stochastic settings, and furthermore general architectures. For the latter, we provide a simple sufficient condition on the relation between the architecture and the action of the group for our results to hold. We validate our findings through simple numeric experiments.
comment: v2, significant update, significant rewrite, new results added
♻ ☆ InsurTech innovation using natural language processing
With the rapid rise of InsurTech, traditional insurance companies are increasingly exploring alternative data sources and advanced technologies to sustain their competitive edge. This paper provides both a conceptual overview and practical case studies of natural language processing (NLP) and its emerging applications within insurance operations, focusing on transforming raw, unstructured text into structured data suitable for actuarial analysis and decision-making. Leveraging real-world alternative data provided by an InsurTech industry partner that enriches traditional insurance data sources, we apply various NLP techniques to demonstrate feature de-biasing, feature compression, and industry classification in the commercial insurance context. These enriched, text-derived insights not only add to and refine traditional rating factors for commercial insurance pricing but also offer novel perspectives for assessing underlying risk by introducing novel industry classification techniques. Through these demonstrations, we show that NLP is not merely a supplementary tool but a foundational element of modern, data-driven insurance analytics.
♻ ☆ Gated KalmaNet: A Fading Memory Layer Through Test-Time Ridge Regression
As efficient alternatives to softmax Attention, linear State-Space Models (SSMs) achieve constant memory and linear compute, but maintain only a lossy, fading summary of the past, often leading to inferior performance in recall-oriented tasks. We propose Gated KalmaNet (GKA), a layer that accounts for the full past while maintaining SSM-style efficiency. We ground our approach in the Kalman Filter (KF) framework, which provides a principled solution for optimal inference in dynamical systems. We show that several existing SSM layers (DeltaNet, Gated DeltaNet, and Kimi Delta Attention) are approximations to the KF recurrence that assume identity error covariance, thereby ignoring how past measurements (keys and values) should optimally influence state updates. In contrast, GKA computes the exact Kalman gain by maintaining the full error covariance. Under a steady-state assumption that enables parallelization, this reduces to solving an online ridge regression problem with constant memory and linear compute cost. A critical insight is that standard KF equations are numerically unstable in low-precision environments (like bfloat16) and hard to parallelize on modern hardware. We address this through: (1) adaptive regularization with input-dependent gating to control the condition number of the ridge regression for numerical stability, and (2) Chebyshev Iteration, which we show is more stable than conventional iterative solvers in low-precision settings. We further develop hardware-aware chunk-wise kernels to enable efficient training. Empirically, GKA outperforms existing SSM layers (like Mamba2 and Gated DeltaNet) on short-context tasks and achieves more than 10\% relative improvement on long-context RAG and LongQA tasks up to 128k tokens.
comment: 30 pages, 10 figures
♻ ☆ Breaking the Performance Ceiling in Reinforcement Learning requires Inference Strategies
Reinforcement learning (RL) systems have countless applications, from energy-grid management to protein design. However, such real-world scenarios are often extremely difficult, combinatorial in nature, and require complex coordination between multiple agents. This level of complexity can cause even state-of-the-art RL systems, trained until convergence, to hit a performance ceiling which they are unable to break out of with zero-shot inference. Meanwhile, many digital or simulation-based applications allow for an inference phase that utilises a specific time and compute budget to explore multiple attempts before outputting a final solution. In this work, we show that such an inference phase employed at execution time, and the choice of a corresponding inference strategy, are key to breaking the performance ceiling observed in complex multi-agent RL problems. Our main result is striking: we can obtain up to a 126% and, on average, a 45% improvement over the previous state-of-the-art across 17 tasks, using only a couple seconds of extra wall-clock time during execution. We also demonstrate promising compute scaling properties, supported by over 60k experiments, making it the largest study on inference strategies for complex RL to date. Our experimental data and code are available at https://sites.google.com/view/inference-strategies-rl.
comment: Neurips '25 version (post conference)
♻ ☆ Four-hour thunderstorm nowcasting using a deep diffusion model of satellite data
Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to infrastructure and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model for satellite data (DDMS) to establish an AI-based convection nowcasting system. Specifically, DDMS employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, achieving more accurate forecasts of convective growth and dissipation over longer lead times. Additionally, it combines geostationary satellite brightness temperature data and domain knowledge from meteorological experts, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.
♻ ☆ Error Estimate and Convergence Analysis for Data Valuation
Data valuation quantifies data importance, but existing methods cannot ensure validity in a single training process. The neural dynamic data valuation (NDDV) method [3] addresses this limitation. Based on NDDV, we are the first to explore error estimation and convergence analysis in data valuation. Under Lipschitz and smoothness assumptions, we derive quadratic error bounds for loss differences that scale inversely with time steps and quadratically with control variations, ensuring stability. We also prove that the expected squared gradient norm for the training loss vanishes asymptotically, and that the meta loss converges sublinearly over iterations. In particular, NDDV achieves sublinear convergence.
comment: 7 pages, 3 figure
♻ ☆ Synthetic Electrogram Generation with Variational Autoencoders for ECGI
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and its clinical assessment requires accurate characterization of atrial electrical activity. Noninvasive electrocardiographic imaging (ECGI) combined with deep learning (DL) approaches for estimating intracardiac electrograms (EGMs) from body surface potentials (BSPMs) has shown promise, but progress is hindered by the limited availability of paired BSPM-EGM datasets. To address this limitation, we investigate variational autoencoders (VAEs) for the generation of synthetic multichannel atrial EGMs. Two models are proposed: a sinus rhythm-specific VAE (VAE-S) and a class-conditioned VAE (VAE-C) trained on both sinus rhythm and AF signals. Generated EGMs are evaluated using morphological, spectral, and distributional similarity metrics. VAE-S achieves higher fidelity with respect to in silico EGMs, while VAE-C enables rhythm-specific generation at the expense of reduced sinus reconstruction quality. As a proof of concept, the generated EGMs are used for data augmentation in a downstream noninvasive EGM reconstruction task, where moderate augmentation improves estimation performance. These results demonstrate the potential of VAE-based generative modeling to alleviate data scarcity and enhance deep learning-based ECGI pipelines.
comment: Corrected co-author details
♻ ☆ Evaluating and Mitigating Errors in LLM-Generated Web API Integrations
API integration is a cornerstone of our digital infrastructure, enabling software systems to connect and interact. However, as shown by many studies, writing or generating correct code to invoke APIs, particularly web APIs, is challenging. Although large language models (LLMs) have become popular in software development, their effectiveness in automating the generation of web API integration code remains unexplored. In order to address this, we present WAPIIBench, a dataset and evaluation pipeline designed to assess the ability of LLMs to generate web API invocation code. Our experiments with several open-source LLMs reveal that generating API invocations poses a significant challenge, resulting in hallucinated endpoints, incorrect argument usage, and other errors. None of the evaluated open-source models was able to solve more than 40% of the tasks. Motivated by those findings, we explore the potential of constrained decoding for generating API invocations. To this end, we propose an automatic translation from API specifications to constraints. Our approach prevents violations of API usage rules and significantly increases the overall correctness of the generated code, on average by 90% and 135%, depending on the provided starter code.
comment: Extended journal version of our paper published at AIware 2025 (arXiv:2509.20172v5)
♻ ☆ DCFO: Density-Based Counterfactuals for Outliers - Additional Material
Outlier detection identifies data points that significantly deviate from the majority of the data distribution. Explaining outliers is crucial for understanding the underlying factors that contribute to their detection, validating their significance, and identifying potential biases or errors. Effective explanations provide actionable insights, facilitating preventive measures to avoid similar outliers in the future. Counterfactual explanations clarify why specific data points are classified as outliers by identifying minimal changes required to alter their prediction. Although valuable, most existing counterfactual explanation methods overlook the unique challenges posed by outlier detection, and fail to target classical, widely adopted outlier detection algorithms. Local Outlier Factor (LOF) is one the most popular unsupervised outlier detection methods, quantifying outlierness through relative local density. Despite LOF's widespread use across diverse applications, it lacks interpretability. To address this limitation, we introduce Density-based Counterfactuals for Outliers (DCFO), a novel method specifically designed to generate counterfactual explanations for LOF. DCFO partitions the data space into regions where LOF behaves smoothly, enabling efficient gradient-based optimisation. Extensive experimental validation on 50 OpenML datasets demonstrates that DCFO consistently outperforms benchmarked competitors, offering superior proximity and validity of generated counterfactuals.
♻ ☆ Closed-Form Feedback-Free Learning with Forward Projection
State-of-the-art backpropagation-free learning methods employ local error feedback to direct iterative optimisation via gradient descent. Here, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. We propose Forward Projection (FP), a randomised closed-form training method requiring only a single forward pass over the dataset without retrograde communication. FP generates target values for pre-activation membrane potentials through randomised nonlinear projections of pre-synaptic inputs and labels. Local loss functions are optimised using closed-form regression without feedback from downstream layers. A key advantage is interpretability: membrane potentials in FP-trained networks encode information interpretable layer-wise as label predictions. Across several biomedical datasets, FP achieves generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, yielding significant training speedup. In few-shot learning tasks, FP produces more generalisable models than backpropagation-optimised alternatives, with local interpretation functions successfully identifying clinically salient diagnostic features.
comment: 43 pages, 7 figures. Study code available at https://github.com/robertoshea/forward_projection. Study data available at https://data.mendeley.com/datasets/fb7xddyxs4/2
♻ ☆ Cornserve: Efficiently Serving Any-to-Any Multimodal Models
We present Cornserve, an efficient online serving system for an emerging class of multimodal models called Any-to-Any models. Any-to-Any models accept combinations of text and multimodal data (e.g., image, video, audio) as input and also generate combinations of text and multimodal data as output, introducing request type, computation path, and computation scaling heterogeneity in model serving. Cornserve allows model developers to describe the computation graph of generic Any-to-Any models, which consists of heterogeneous components such as multimodal encoders, autoregressive models like Large Language Models (LLMs), and multimodal generators like Diffusion Transformers (DiTs). Given this, Cornserve's planner automatically finds an optimized deployment plan for the model, including whether and how to disaggregate the model into smaller components based on model and workload characteristics. Cornserve's distributed runtime then executes the model per the plan, efficiently handling Any-to-Any model heterogeneity during online serving. Evaluations show that Cornserve can efficiently serve diverse Any-to-Any models and workloads, delivering up to 3.81$\times$ throughput improvement and up to 5.79$\times$ tail latency reduction over existing solutions.
comment: Open-source at https://github.com/cornserve-ai/cornserve
♻ ☆ ModalSurv: Investigating opportunities and limitations of multimodal deep survival learning in prostate and bladder cancer
Accurate survival prediction is essential for personalised cancer treatment. We propose ModalSurv, a multimodal deep survival framework integrating clinical, MRI, histopathology, and RNA-sequencing data via modality-specific projections and cross-attention fusion. On the CHIMERA Grand Challenge datasets, ModalSurv achieved a C-index of 0.7402 (1st) for prostate and 0.5740 (5th) for bladder cancer. Notably, clinical features alone outperformed multimodal models on external tests, highlighting challenges of limited multimodal alignment and potential overfitting. Local validation showed multimodal gains but limited generalisation. ModalSurv provides a systematic evaluation of multimodal survival modelling, underscoring both its promise and current limitations for scalable, generalisable cancer prognosis.
comment: 4 pages, 1 figure, 2 tables
♻ ☆ Hierarchical Schedule Optimization for Fast and Robust Diffusion Model Sampling AAAI 2026
Diffusion probabilistic models have set a new standard for generative fidelity but are hindered by a slow iterative sampling process. A powerful training-free strategy to accelerate this process is Schedule Optimization, which aims to find an optimal distribution of timesteps for a fixed and small Number of Function Evaluations (NFE) to maximize sample quality. To this end, a successful schedule optimization method must adhere to four core principles: effectiveness, adaptivity, practical robustness, and computational efficiency. However, existing paradigms struggle to satisfy these principles simultaneously, motivating the need for a more advanced solution. To overcome these limitations, we propose the Hierarchical-Schedule-Optimizer (HSO), a novel and efficient bi-level optimization framework. HSO reframes the search for a globally optimal schedule into a more tractable problem by iteratively alternating between two synergistic levels: an upper-level global search for an optimal initialization strategy and a lower-level local optimization for schedule refinement. This process is guided by two key innovations: the Midpoint Error Proxy (MEP), a solver-agnostic and numerically stable objective for effective local optimization, and the Spacing-Penalized Fitness (SPF) function, which ensures practical robustness by penalizing pathologically close timesteps. Extensive experiments show that HSO sets a new state-of-the-art for training-free sampling in the extremely low-NFE regime. For instance, with an NFE of just 5, HSO achieves a remarkable FID of 11.94 on LAION-Aesthetics with Stable Diffusion v2.1. Crucially, this level of performance is attained not through costly retraining, but with a one-time optimization cost of less than 8 seconds, presenting a highly practical and efficient paradigm for diffusion model acceleration.
comment: Preprint, accepted to AAAI 2026
♻ ☆ Bayesian model selection and misspecification testing in imaging inverse problems only from noisy and partial measurements
Modern imaging techniques heavily rely on Bayesian statistical models to address difficult image reconstruction and restoration tasks. This paper addresses the objective evaluation of such models in settings where ground truth is unavailable, with a focus on model selection and misspecification diagnosis. Existing unsupervised model evaluation methods are often unsuitable for computational imaging due to their high computational cost and incompatibility with modern image priors defined implicitly via machine learning models. We herein propose a general methodology for unsupervised model selection and misspecification detection in Bayesian imaging sciences, based on a novel combination of Bayesian cross-validation and data fission, a randomized measurement splitting technique. The approach is compatible with any Bayesian imaging sampler, including diffusion and plug-and-play samplers. We demonstrate the methodology through experiments involving various scoring rules and types of model misspecification, where we achieve excellent selection and detection accuracy with a low computational cost.
♻ ☆ Artificial Intelligence for Microbiology and Microbiome Research
Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between traditional machine learning and sophisticated deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation \& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention \& therapeutics. Finally, we discuss challenges in this field and highlight some recent breakthroughs. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
♻ ☆ nanoTabPFN: A Lightweight and Educational Reimplementation of TabPFN
Tabular foundation models such as TabPFN have revolutionized predictive machine learning for tabular data. At the same time, the driving factors of this revolution are hard to understand. Existing open-source tabular foundation models are implemented in complicated pipelines boasting over 10,000 lines of code, lack architecture documentation or code quality. In short, the implementations are hard to understand, not beginner-friendly, and complicated to adapt for new experiments. We introduce nanoTabPFN, a simplified and lightweight implementation of the TabPFN v2 architecture and a corresponding training loop that uses pre-generated training data. nanoTabPFN makes tabular foundation models more accessible to students and researchers alike. For example, restricted to a small data setting it achieves a performance comparable to traditional machine learning baselines within one minute of pre-training on a single GPU (160,000x faster than TabPFN v2 pretraining). This eliminated requirement of large computational resources makes pre-training tabular foundation models accessible for educational purposes. Our code is available at https://github.com/automl/nanoTabPFN.
♻ ☆ UAMDP: Uncertainty-Aware Markov Decision Process for Risk-Constrained Reinforcement Learning from Probabilistic Forecasts
Sequential decisions in volatile, high-stakes settings require more than maximizing expected return; they require principled uncertainty management. This paper presents the Uncertainty-Aware Markov Decision Process (UAMDP), a unified framework that couples Bayesian forecasting, posterior-sampling reinforcement learning, and planning under a conditional value-at-risk (CVaR) constraint. In a closed loop, the agent updates its beliefs over latent dynamics, samples plausible futures via Thompson sampling, and optimizes policies subject to preset risk tolerances. We establish regret bounds that converge to the Bayes-optimal benchmark under standard regularity conditions. We evaluate UAMDP in two domains including high-frequency equity trading and retail inventory control, both marked by structural uncertainty and economic volatility. Relative to strong deep learning baselines, UAMDP improves long-horizon forecasting accuracy (RMSE decreases by up to 25% and sMAPE by 32%), and these gains translate into economic performance: the trading Sharpe ratio rises from 1.54 to 1.74 while maximum drawdown is roughly halved. These results show that integrating calibrated probabilistic modeling, exploration aligned with posterior uncertainty, and risk-aware control yields a robust, generalizable approach to safer and more profitable sequential decision-making.
♻ ☆ AuON: A Linear-time Alternative to Orthogonal Momentum Updates
Orthogonal momentum gradient updates have emerged to overcome the limitations of vector-based optimizers like Adam. The vector-based optimizer Adam suffers from high memory costs and ill-conditioned momentum gradient updates. However, traditional Orthogonal momentum approaches, such as SVD/QR decomposition, suffer from high computational and memory costs and underperform compared to well-tuned SGD with momentum. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and approximate orthogonal matrices via Newton-Schulz iterations, which gives better GPU utilization, active high TFLOPS, and reduces memory usage by up to 3x. Nevertheless, Muon(Vanilla) suffers from exploding attention logits and has cubic computation complexity. In this paper, we deep dive into orthogonal momentum gradient updates to find the main properties that help Muon achieve remarkable performance. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without approximate orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. AuON has an automatic "emergency brake" to handle exploding attention logits. We further introduce a hybrid variant, Hybrid-AuON, that applies the linear transformations with Newton-Schulz iterations, which outperforms Muon in the language modeling tasks. Code is available at: https://github.com/ryyzn9/AuON
♻ ☆ Matérn Kernels for Tunable Implicit Surface Reconstruction ICLR'25
We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction -- outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.
comment: ICLR'25
♻ ☆ Optimization with Access to Auxiliary Information
We investigate the fundamental optimization question of minimizing a target function $f$, whose gradients are expensive to compute or have limited availability, given access to some auxiliary side function $h$ whose gradients are cheap or more available. This formulation captures many settings of practical relevance, such as i) re-using batches in SGD, ii) transfer learning, iii) federated learning, iv) training with compressed models/dropout, Et cetera. We propose two generic new algorithms that apply in all these settings; we also prove that we can benefit from this framework under the Hessian similarity assumption between the target and side information. A benefit is obtained when this similarity measure is small; we also show a potential benefit from stochasticity when the auxiliary noise is correlated with that of the target function.
comment: Published in Transactions on Machine Learning Research (02/2024)
♻ ☆ Trust Me, I Know This Function: Hijacking LLM Static Analysis using Bias
Large Language Models (LLMs) are increasingly trusted to perform automated code review and static analysis at scale, supporting tasks such as vulnerability detection, summarization, and refactoring. In this paper, we identify and exploit a critical vulnerability in LLM-based code analysis: an abstraction bias that causes models to overgeneralize familiar programming patterns and overlook small, meaningful bugs. Adversaries can exploit this blind spot to hijack the control flow of the LLM's interpretation with minimal edits and without affecting actual runtime behavior. We refer to this attack as a Familiar Pattern Attack (FPA). We develop a fully automated, black-box algorithm that discovers and injects FPAs into target code. Our evaluation shows that FPAs are not only effective against basic and reasoning models, but are also transferable across model families (OpenAI, Anthropic, Google), and universal across programming languages (Python, C, Rust, Go). Moreover, FPAs remain effective even when models are explicitly warned about the attack via robust system prompts. Finally, we explore positive, defensive uses of FPAs and discuss their broader implications for the reliability and safety of code-oriented LLMs.
♻ ☆ Asymptotic regularity of a generalised stochastic Halpern scheme
We provide abstract, general and highly uniform rates of asymptotic regularity for a generalized stochastic Halpern-style iteration, which incorporates a second mapping in the style of a Krasnoselskii-Mann iteration. This iteration is general in two ways: First, it incorporates stochasticity completely abstractly, rather than fixing a sampling method; second, it includes as special cases stochastic versions of various schemes from the optimization literature, including Halpern's iteration as well as a Krasnoselskii-Mann iteration with Tikhonov regularization terms in the sense of Boţ, Csetnek and Meier (where this stochastic variant of the latter is considered for the first time in this paper). For these specific cases, we obtain linear rates of asymptotic regularity, matching (or improving) the currently best known rates for these iterations in stochastic optimization, and quadratic rates of asymptotic regularity are obtained in the context of inner product spaces for the general iteration. We conclude by discussing how variance can be managed in practice through sampling methods in the style of minibatching, how our convergence rates can be adapted to provide oracle complexity bounds, and by sketching how the schemes presented here can be instantiated in the context of reinforcement learning to yield novel methods for Q-learning.
comment: 33 pages
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity ($A \neq A$) -- the same symbol refers to different entities across contexts; (2) Approximate Identity ($A \approx A$) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining $A \neq A$ across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Mirror Descent Policy Optimisation for Robust Constrained Markov Decision Processes
Safety is an essential requirement for reinforcement learning systems. The newly emerging framework of robust constrained Markov decision processes allows learning policies that satisfy long-term constraints while providing guarantees under epistemic uncertainty. This paper presents mirror descent policy optimisation for robust constrained Markov decision processes, making use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the Lagrangian representing a constrained Markov decision process. Our proposed algorithm obtains an $\tilde{\mathcal{O}}\left(1/T^{1/3}\right)$ convergence rate in the sample-based robust constrained Markov decision process setting. The paper also contributes an algorithm for approximate gradient descent in the space of transition kernels, which is of independent interest for designing adversarial environments in general Markov decision processes. Experiments confirm the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation, and significant improvements are observed in robustness tests when compared to baseline policy optimisation algorithms.
♻ ☆ Scaling Laws for Black box Adversarial Attacks
Adversarial examples exhibit cross-model transferability, enabling threatening black-box attacks on commercial models. Model ensembling, which attacks multiple surrogate models, is a known strategy to improve this transferability. However, prior studies typically use small, fixed ensembles, which leaves open an intriguing question of whether scaling the number of surrogate models can further improve black-box attacks. In this work, we conduct the first large-scale empirical study of this question. We show that by resolving gradient conflict with advanced optimizers, we discover a robust and universal log-linear scaling law through both theoretical analysis and empirical evaluations: the Attack Success Rate (ASR) scales linearly with the logarithm of the ensemble size $T$. We rigorously verify this law across standard classifiers, SOTA defenses, and MLLMs, and find that scaling distills robust, semantic features of the target class. Consequently, we apply this fundamental insight to benchmark SOTA MLLMs. This reveals both the attack's devastating power and a clear robustness hierarchy: we achieve 80\%+ transfer attack success rate on proprietary models like GPT-4o, while also highlighting the exceptional resilience of Claude-3.5-Sonnet. Our findings urge a shift in focus for robustness evaluation: from designing intricate algorithms on small ensembles to understanding the principled and powerful threat of scaling.
♻ ☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect AAAI 2026
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
comment: Accepted to the Workshop on Navigating Model Uncertainty and the Rashomon Effect: From Theory and Tools to Applications and Impact (AAAI 2026)
♻ ☆ Models That Prove Their Own Correctness NeurIPS 2025
How can we trust the correctness of a learned model on a particular input of interest? Model accuracy is typically measured on average over a distribution of inputs, giving no guarantee for any fixed input. This paper proposes a theoretically-founded solution to this problem: to train Self-Proving models that prove the correctness of their output to a verification algorithm $V$ via an Interactive Proof. Self-Proving models satisfy that, with high probability over an input sampled from a given distribution, the model generates a correct output and successfully proves its correctness to $V$. The soundness property of $V$ guarantees that, for every input, no model can convince $V$ of the correctness of an incorrect output. Thus, a Self-Proving model proves correctness of most of its outputs, while all incorrect outputs (of any model) are detected by $V$. We devise and analyze two generic methods for learning Self-Proving models: Transcript Learning (TL) which relies on access to transcripts of accepting interactions, and Reinforcement Learning from Verifier Feedback (RLVF) which trains a model by emulating interactions with the verifier.
comment: NeurIPS 2025
♻ ☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
♻ ☆ Iterative Feature Exclusion Ranking for Deep Tabular Learning
Tabular data is a common format for storing information in rows and columns to represent data entries and their features. Although deep neural networks have become the main approach for modeling a wide range of domains including computer vision and NLP, many of them are not well-suited for tabular data. Recently, a few deep learning models have been proposed for deep tabular learning, featuring an internal feature selection mechanism with end-to-end gradient-based optimization. However, their feature selection mechanisms are unidimensional, and hence fail to account for the contextual dependence of feature importance, potentially overlooking crucial interactions that govern complex tasks. In addition, they overlook the bias of high-impact features and the risk associated with the limitations of attention generalization. To address this limitation, this study proposes a novel iterative feature exclusion module that enhances the feature importance ranking in tabular data. The proposed module iteratively excludes each feature from the input data and computes the attention scores, which represent the impact of the features on the prediction. By aggregating the attention scores from each iteration, the proposed module generates a refined representation of feature importance that captures both global and local interactions between features. The effectiveness of the proposed module is evaluated on four public datasets. The results demonstrate that the proposed module consistently outperforms state-of-the-art methods and baseline models in feature ranking and classification tasks. The code is publicly available at https://github.com/abaraka2020/Iterative-Feature-Exclusion-Ranking-Module and https://github.com/mohalim/IFENet
comment: This manuscript has been published in Knowledge and Information Systems
♻ ☆ GeoGraph: Geometric and Graph-based Ensemble Descriptors for Intrinsically Disordered Proteins NeurIPS
While deep learning has revolutionized the prediction of rigid protein structures, modelling the conformational ensembles of Intrinsically Disordered Proteins (IDPs) remains a key frontier. Current AI paradigms present a trade-off: Protein Language Models (PLMs) capture evolutionary statistics but lack explicit physical grounding, while generative models trained to model full ensembles are computationally expensive. In this work we critically assess these limits and propose a path forward. We introduce GeoGraph, a simulation-informed surrogate trained to predict ensemble-averaged statistics of residue-residue contact-map topology directly from sequence. By featurizing coarse-grained molecular dynamics simulations into residue- and sequence-level graph descriptors, we create a robust and information-rich learning target. Our evaluation demonstrates that this approach yields representations that are more predictive of key biophysical properties than existing methods.
comment: Accepted at AI4Science and ML4PS NeurIPS Workshops 2025. v2: comparison with Human-IDRome model and link to github added
♻ ☆ Toward Closed-loop Molecular Discovery via Language Model, Property Alignment and Strategic Search
Drug discovery is a time-consuming and expensive process, with traditional high-throughput and docking-based virtual screening hampered by low success rates and limited scalability. Recent advances in generative modelling, including autoregressive, diffusion, and flow-based approaches, have enabled de novo ligand design beyond the limits of enumerative screening. Yet these models often suffer from inadequate generalization, limited interpretability, and an overemphasis on binding affinity at the expense of key pharmacological properties, thereby restricting their translational utility. Here we present Trio, a molecular generation framework integrating fragment-based molecular language modeling, reinforcement learning, and Monte Carlo tree search, for effective and interpretable closed-loop targeted molecular design. Through the three key components, Trio enables context-aware fragment assembly, enforces physicochemical and synthetic feasibility, and guides a balanced search between the exploration of novel chemotypes and the exploitation of promising intermediates within protein binding pockets. Experimental results show that Trio reliably achieves chemically valid and pharmacologically enhanced ligands, outperforming state-of-the-art approaches with improved binding affinity (+7.85%), drug-likeness (+11.10%) and synthetic accessibility (+12.05%), while expanding molecular diversity more than fourfold. By combining generalization, plausibility, and interpretability, Trio establishes a closed-loop generative paradigm that redefines how chemical space can be navigated, offering a transformative foundation for the next era of AI-driven drug discovery.
comment: 21 pages, 5 figures
♻ ☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how training hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the training hyperparameter space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
♻ ☆ PILA: Physics-Informed Low Rank Augmentation for Interpretable Earth Observation
Physically meaningful representations are essential for Earth Observation (EO), yet existing physical models are often simplified and incomplete. This leads to discrepancies between simulation and observations that hinder reliable forward model inversion. Common approaches to EO inversion either ignored this incompleteness or relied on case-specific preprocessing. More recent methods use physics-informed autoencoders but depend on auxiliary variables that are difficult to interpret and multiple regularizers that are difficult to balance. We propose Physics-Informed Low-Rank Augmentation (PILA), a framework that augments incomplete physical models using a learnable low-rank residual to improve flexibility, while remaining close to the governing physics. We evaluate PILA on two EO inverse problems involving diverse physical processes: forest radiative transfer inversion from optical remote sensing; and volcanic deformation inversion from Global Navigation Satellite Systems (GNSS) displacement data. Across different domains, PILA yields more accurate and interpretable physical variables. For forest spectral inversion, it improves the separation of tree species and, compared to ground measurements, reduces prediction errors by 40-71\% relative to the state-of-the-art. For volcanic deformation, PILA's recovery of variables captures a major inflation event at the Akutan volcano in 2008, and estimates source depth, volume change, and displacement patterns that are consistent with prior studies that however required substantial additional preprocessing. Finally, we analyse the effects of model rank, observability, and physical priors, and suggest that PILA may offer an effective general pathway for inverting incomplete physical models even beyond the domain of Earth Observation. The code is available at https://github.com/yihshe/PILA.git.
♻ ☆ Conflicting Biases at the Edge of Stability: Norm versus Sharpness Regularization
A widely believed explanation for the remarkable generalization capacities of overparameterized neural networks is that the optimization algorithms used for training induce an implicit bias towards benign solutions. To grasp this theoretically, recent works examine gradient descent and its variants in simplified training settings, often assuming vanishing learning rates. These studies reveal various forms of implicit regularization, such as $\ell_1$-norm minimizing parameters in regression and max-margin solutions in classification. Concurrently, empirical findings show that moderate to large learning rates exceeding standard stability thresholds lead to faster, albeit oscillatory, convergence in the so-called Edge-of-Stability regime, and induce an implicit bias towards minima of low sharpness (norm of training loss Hessian). In this work, we argue that a comprehensive understanding of the generalization performance of gradient descent requires analyzing the interaction between these various forms of implicit regularization. We empirically demonstrate that the learning rate balances between low parameter norm and low sharpness of the trained model. We furthermore prove for diagonal linear networks trained on a simple regression task that neither implicit bias alone minimizes the generalization error. These findings demonstrate that focusing on a single implicit bias is insufficient to explain good generalization, and they motivate a broader view of implicit regularization that captures the dynamic trade-off between norm and sharpness induced by non-negligible learning rates.
♻ ☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
♻ ☆ Failure Modes of Maximum Entropy RLHF
In this paper, we show that Simple Preference Optimization (SimPO) can be derived as Maximum Entropy Reinforcement Learning, providing a theoretical foundation for this reference-free method. Motivated by SimPO's strong performance in offline preference optimization, we investigate whether Maximum Entropy RL can achieve similar results in online RLHF settings. Our experiments find that Maximum Entropy RL consistently exhibits overoptimization and unstable KL dynamics, even at very low learning rates. Unlike KL-constrained methods that maintain stable training, entropy regularization fails to prevent reward hacking and appears to correlate with overoptimization. Lastly, we discuss possible explanations for why SimPO succeeds in offline settings while Maximum Entropy RL struggles in online scenarios. Our findings suggest that reference-free approaches may face distinct challenges when applied to online or offline preference learning.
comment: 21 pages, 12 figures
♻ ☆ EnviSAgE: A Survey of Environment Scaling for Qualitative Agentic Experience Collection NeurIPS 2025
LLM-based agents can autonomously accomplish complex tasks across various domains. However, to further cultivate capabilities such as adaptive behavior and long-term decision-making, training on static datasets built from human-level knowledge is insufficient. These datasets are costly to construct and lack both dynamism and realism. A growing consensus is that agents should instead interact directly with environments and learn from experience through reinforcement learning. We formalize this iterative process as the Generation-Execution-Feedback (GEF) loop, where environments generate tasks to challenge agents, return observations in response to agents' actions during task execution, and provide evaluative feedback on rollouts for subsequent learning. Under this paradigm, environments function as indispensable producers of experiential data, highlighting the need to scale them toward greater complexity, realism, and interactivity. In this survey, we systematically review representative methods for environment scaling from a pioneering environment-centric perspective and organize them along the stages of the GEF loop, namely task generation, task execution, and feedback. We further analyze implementation frameworks, challenges, and applications, consolidating fragmented advances and outlining future research directions for agent intelligence.
comment: 22 pages, 5 figures, SEA Workshop @ NeurIPS 2025
♻ ☆ Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods
Discrete diffusion models have recently gained significant attention due to their ability to process complex discrete structures for language modeling. However, fine-tuning these models with policy gradient methods, as is commonly done in Reinforcement Learning from Human Feedback (RLHF), remains a challenging task. We propose an efficient, broadly applicable, and theoretically justified policy gradient algorithm, called Score Entropy Policy Optimization (\SEPO), for fine-tuning discrete diffusion models over non-differentiable rewards. Our numerical experiments across several discrete generative tasks demonstrate the scalability and efficiency of our method. Our code is available at https://github.com/ozekri/SEPO.
comment: 33 pages, 8 figures, 8 tables
♻ ☆ Online Bandits with (Biased) Offline Data: Adaptive Learning under Distribution Mismatch ICML 2024
Traditional online learning models are typically initialized from scratch. By contrast, contemporary real-world applications often have access to historical datasets that can potentially enhanced the online learning processes. We study how offline data can be leveraged to facilitate online learning in stochastic multi-armed bandits and combinatorial bandits. In our study, the probability distributions that govern the offline data and the online rewards can be different. We first show that, without a non-trivial upper bound on their difference, no non-anticipatory policy can outperform the classical Upper Confidence Bound (UCB) policy, even with the access to offline data. In complement, we propose an online policy MIN-UCB for multi-armed bandits. MIN-UCB outperforms the UCB when such an upper bound is available. MIN-UCB adaptively chooses to utilize the offline data when they are deemed informative, and to ignore them otherwise. We establish that MIN-UCB achieves tight regret bounds, in both instance independent and dependent settings. We generalize our approach to the combinatorial bandit setting by introducing MIN-COMB-UCB, and we provide corresponding instance dependent and instance independent regret bounds. We illustrate how various factors, such as the biases and the size of offline datasets, affect the utility of offline data in online learning. We discuss several applications and conduct numerical experiments to validate our findings.
comment: 62 pages, 5 figures. Previous version Accepted to ICML 2024
♻ ☆ Automatic Extraction of Rules for Generating Synthetic Patient Data From Real-World Population Data Using Glioblastoma as an Example
The generation of synthetic data is a promising technology to make medical data available for secondary use in a privacy-compliant manner. A popular method for creating realistic patient data is the rule-based Synthea data generator. Synthea generates data based on rules describing the lifetime of a synthetic patient. These rules typically express the probability of a condition occurring, such as a disease, depending on factors like age. Since they only contain statistical information, rules usually have no specific data protection requirements. However, creating meaningful rules can be a very complex process that requires expert knowledge and realistic sample data. In this paper, we introduce and evaluate an approach to automatically generate Synthea rules based on statistics from tabular data, which we extracted from cancer reports. As an example use case, we created a Synthea module for glioblastoma from a real-world dataset and used it to generate a synthetic dataset. Compared to the original dataset, the synthetic data reproduced known disease courses and mostly retained the statistical properties. Overall, synthetic patient data holds great potential for privacy-preserving research. The data can be used to formulate hypotheses and to develop prototypes, but medical interpretation should consider the specific limitations as with any currently available approach.
comment: 16 pages, 8 figures
♻ ☆ Learning Collective Variables for Enhanced Sampling from BioEmu with Time-Lagged Generation
Molecular dynamics is crucial for understanding molecular systems but its applicability is often limited by the vast timescales of rare events like protein folding. Enhanced sampling techniques overcome this by accelerating the simulation along key reaction pathways, which are defined by collective variables (CVs). However, identifying effective CVs that capture the slow, macroscopic dynamics of a system remains a major bottleneck. This work proposes a novel framework coined BioEmu-CV that learns these essential CVs automatically from BioEmu, a recently proposed foundation model for generating protein equilibrium samples. In particular, we re-purpose BioEmu to learn time-lagged generation conditioned on the learned CV, i.e., predict the distribution of molecular states after a certain amount of time. This training process promotes the CV to encode only the slow, long-term information while disregarding fast, random fluctuations. We validate our learned CV on fast-folding proteins with two key applications: (1) estimating free energy differences using on-the-fly probability enhanced sampling and (2) sampling transition paths with steered molecular dynamics. Our empirical study also serves as a new systematic and comprehensive benchmark for MLCVs on fast-folding proteins larger than Alanine Dipeptide.
♻ ☆ WildFit: Autonomous In-situ Model Adaptation for Resource-Constrained IoT Systems
Resource-constrained IoT devices increasingly rely on deep learning models, however, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Our background-aware synthesis surpasses efficient baselines by 7.3% and diffusion models by 3.0% while being orders of magnitude faster, our drift-aware fine-tuning achieves Pareto optimality with 50% fewer updates and 1.5% higher accuracy, and the end-to-end system outperforms domain adaptation approaches by 20-35% while consuming only 11.2 Wh over 37 days-enabling battery-powered deployment.
comment: Accepted by ACM SenSys 2026
♻ ☆ Nested subspace learning with flags
Many machine learning methods look for low-dimensional representations of the data. The underlying subspace can be estimated by first choosing a dimension $q$ and then optimizing a certain objective function over the space of $q$-dimensional subspaces (the Grassmannian). Trying different $q$ yields in general non-nested subspaces, which raises an important issue of consistency between the data representations. In this paper, we propose a simple and easily implementable principle to enforce nestedness in subspace learning methods. It consists in lifting Grassmannian optimization criteria to flag manifolds (the space of nested subspaces of increasing dimension) via nested projectors. We apply the flag trick to several classical machine learning methods and show that it successfully addresses the nestedness issue.
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ Reinforcement Learning Finetunes Small Subnetworks in Large Language Models
Reinforcement learning (RL) yields substantial improvements in large language models (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5 percent to 30 percent of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers, instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution, techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.
comment: NeuRIPS 2025
♻ ☆ Do Neural Networks Need Gradient Descent to Generalize? A Theoretical Study NeurIPS 2025
Conventional wisdom attributes the mysterious generalization abilities of overparameterized neural networks to gradient descent (and its variants). The recent volume hypothesis challenges this view: it posits that these generalization abilities persist even when gradient descent is replaced by Guess & Check (G&C), i.e., by drawing weight settings until one that fits the training data is found. The validity of the volume hypothesis for wide and deep neural networks remains an open question. In this paper, we theoretically investigate this question for matrix factorization (with linear and non-linear activation)--a common testbed in neural network theory. We first prove that generalization under G&C deteriorates with increasing width, establishing what is, to our knowledge, the first case where G&C is provably inferior to gradient descent. Conversely, we prove that generalization under G&C improves with increasing depth, revealing a stark contrast between wide and deep networks, which we further validate empirically. These findings suggest that even in simple settings, there may not be a simple answer to the question of whether neural networks need gradient descent to generalize well.
comment: Accepted to NeurIPS 2025
♻ ☆ Enhancing Fake-News Detection with Node-Level Topological Features
In recent years, the proliferation of misinformation and fake news has posed serious threats to individuals and society, spurring intense research into automated detection methods. Previous work showed that integrating content, user preferences, and propagation structure achieves strong performance, but leaves all graph-level representation learning entirely to the GNN, hiding any explicit topological cues. To close this gap, we introduce a lightweight enhancement: for each node, we append two classical graph-theoretic metrics, degree centrality and local clustering coefficient, to its original BERT and profile embeddings, thus explicitly flagging the roles of hub and community. In the UPFD Politifact subset, this simple modification boosts macro F1 from 0.7753 to 0.8344 over the original baseline. Our study not only demonstrates the practical value of explicit topology features in fake-news detection but also provides an interpretable, easily reproducible template for fusing graph metrics in other information-diffusion tasks.
♻ ☆ Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting KDD 2025
Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present Proceed, a novel proactive model adaptation framework for online time series forecasting. Proceed first estimates the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, Proceed is trained on synthetic diverse concept drifts. Extensive experiments on five real-world datasets across various forecast models demonstrate that Proceed brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts. Code is available at https://github.com/SJTU-DMTai/OnlineTSF.
comment: Accepted by KDD 2025. This version fixed typos in Eq. (3)
♻ ☆ SEED: Spectral Entropy-Guided Evaluation of SpatialTemporal Dependencies for Multivariate Time Series Forecasting
Effective multivariate time series forecasting often benefits from accurately modeling complex inter-variable dependencies. However, existing attention- or graph-based methods face three key issues: (a) strong temporal self-dependencies are often disrupted by irrelevant variables; (b) softmax normalization ignores and reverses negative correlations; (c) variables struggle to perceive their temporal positions. To address these, we propose \textbf{SEED}, a Spectral Entropy-guided Evaluation framework for spatial-temporal Dependency modeling. SEED introduces a Dependency Evaluator, a key innovation that leverages spectral entropy to dynamically provide a preliminary evaluation of the spatial and temporal dependencies of each variable, enabling the model to adaptively balance Channel Independence (CI) and Channel Dependence (CD) strategies. To account for temporal regularities originating from the influence of other variables rather than intrinsic dynamics, we propose Spectral Entropy-based Fuser to further refine the evaluated dependency weights, effectively separating this part. Moreover, to preserve negative correlations, we introduce a Signed Graph Constructor that enables signed edge weights, overcoming the limitations of softmax. Finally, to help variables perceive their temporal positions and thereby construct more comprehensive spatial features, we introduce the Context Spatial Extractor, which leverages local contextual windows to extract spatial features. Extensive experiments on 12 real-world datasets from various application domains demonstrate that SEED achieves state-of-the-art performance, validating its effectiveness and generality.
♻ ☆ Unsupervised discovery of the shared and private geometry in multi-view data
Studying complex real-world phenomena often involves data from multiple views (e.g. sensor modalities or brain regions), each capturing different aspects of the underlying system. Within neuroscience, there is growing interest in large-scale simultaneous recordings across multiple brain regions. Understanding the relationship between views (e.g., the neural activity in each region recorded) can reveal fundamental insights into each view and the system as a whole. However, existing methods to characterize such relationships lack the expressivity required to capture nonlinear relationships, describe only shared sources of variance, or discard geometric information that is crucial to drawing insights from data. Here, we present SPLICE: a neural network-based method that infers disentangled, interpretable representations of private and shared latent variables from paired samples of high-dimensional views. Compared to competing methods, we demonstrate that SPLICE 1) disentangles shared and private representations more effectively, 2) yields more interpretable representations by preserving geometry, and 3) is more robust to incorrect a priori estimates of latent dimensionality. We propose our approach as a general-purpose method for finding succinct and interpretable descriptions of paired data sets in terms of disentangled shared and private latent variables.
♻ ☆ DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs NeurIPS 2025
Dynamic graph modeling aims to uncover evolutionary patterns in real-world systems, enabling accurate social recommendation and early detection of cancer cells. Inspired by the success of recent state space models in efficiently capturing long-term dependencies, we propose DyG-Mamba by translating dynamic graph modeling into a long-term sequence modeling problem. Specifically, inspired by Ebbinghaus' forgetting curve, we treat the irregular timespans between events as control signals, allowing DyG-Mamba to dynamically adjust the forgetting of historical information. This mechanism ensures effective usage of irregular timespans, thereby improving both model effectiveness and inductive capability. In addition, inspired by Ebbinghaus' review cycle, we redefine core parameters to ensure that DyG-Mamba selectively reviews historical information and filters out noisy inputs, further enhancing the model's robustness. Through exhaustive experiments on 12 datasets covering dynamic link prediction and node classification tasks, we show that DyG-Mamba achieves state-of-the-art performance on most datasets, while demonstrating significantly improved computational and memory efficiency. Code is available at https://github.com/Clearloveyuan/DyG-Mamba.
comment: Accepted by NeurIPS 2025
♻ ☆ Reverse Supervision at Scale: Exponential Search Meets the Economics of Annotation
We analyze a reversed-supervision strategy that searches over labelings of a large unlabeled set \(B\) to minimize error on a small labeled set \(A\). The search space is \(2^n\), and the resulting complexity remains exponential even under large constant-factor speedups (e.g., quantum or massively parallel hardware). Consequently, arbitrarily fast -- but not exponentially faster -- computation does not obviate the need for informative labels or priors. In practice, the machine learning pipeline still requires an initial human contribution: specifying the objective, defining classes, and providing a seed set of representative annotations that inject inductive bias and align models with task semantics. Synthetic labels from generative AI can partially substitute provided their quality is human-grade and anchored by a human-specified objective, seed supervision, and validation. In this view, generative models function as \emph{label amplifiers}, leveraging small human-curated cores via active, semi-supervised, and self-training loops, while humans retain oversight for calibration, drift detection, and failure auditing. Thus, extreme computational speed reduces wall-clock time but not the fundamental supervision needs of learning; initial human (or human-grade) input remains necessary to ground the system in the intended task.
comment: 10 pages
♻ ☆ Beyond Force Metrics: Pre-Training MLFFs for Stable MD Simulations
Machine-learning force fields (MLFFs) have emerged as a promising solution for speeding up ab initio molecular dynamics (MD) simulations, where accurate force predictions are critical but often computationally expensive. In this work, we employ GemNet-T, a graph neural network model, as an MLFF and investigate two training strategies: (1) direct training on MD17 (10K samples) without pre-training, and (2) pre-training on the large-scale OC20 dataset followed by fine-tuning on MD17 (10K). While both approaches achieve low force mean absolute errors (MAEs), reaching 5 meV/A per atom, we find that lower force errors do not necessarily guarantee stable MD simulations. Notably, the pre-trained GemNet-T model yields significantly improved simulation stability, sustaining trajectories up to three times longer than the model trained from scratch. By analyzing local properties of the learned force fields, we find that pre-training produces more structured latent representations, smoother force responses to local geometric changes, and more consistent force differences between nearby configurations, all of which contribute to more stable and reliable MD simulations. These findings underscore the value of pre-training on large, diverse datasets to capture complex molecular interactions and highlight that force MAE alone is not always a sufficient metric of MD simulation stability.
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ OceanForecastBench: A Benchmark Dataset for Data-Driven Global Ocean Forecasting
Global ocean forecasting aims to predict key ocean variables such as temperature, salinity, and currents, which is essential for understanding and describing oceanic phenomena. In recent years, data-driven deep learning-based ocean forecast models, such as XiHe, WenHai, LangYa and AI-GOMS, have demonstrated significant potential in capturing complex ocean dynamics and improving forecasting efficiency. Despite these advancements, the absence of open-source, standardized benchmarks has led to inconsistent data usage and evaluation methods. This gap hinders efficient model development, impedes fair performance comparison, and constrains interdisciplinary collaboration. To address this challenge, we propose OceanForecastBench, a benchmark offering three core contributions: (1) A high-quality global ocean reanalysis data over 28 years for model training, including 4 ocean variables across 23 depth levels and 4 sea surface variables. (2) A high-reliability satellite and in-situ observations for model evaluation, covering approximately 100 million locations in the global ocean. (3) An evaluation pipeline and a comprehensive benchmark with 6 typical baseline models, leveraging observations to evaluate model performance from multiple perspectives. OceanForecastBench represents the most comprehensive benchmarking framework currently available for data-driven ocean forecasting, offering an open-source platform for model development, evaluation, and comparison. The dataset and code are publicly available at: https://github.com/Ocean-Intelligent-Forecasting/OceanForecastBench.
♻ ☆ Bridging Modalities via Progressive Re-alignment for Multimodal Test-Time Adaptation AAAI 2026
Test-time adaptation (TTA) enables online model adaptation using only unlabeled test data, aiming to bridge the gap between source and target distributions. However, in multimodal scenarios, varying degrees of distribution shift across different modalities give rise to a complex coupling effect of unimodal shallow feature shift and cross-modal high-level semantic misalignment, posing a major obstacle to extending existing TTA methods to the multimodal field. To address this challenge, we propose a novel multimodal test-time adaptation (MMTTA) framework, termed as Bridging Modalities via Progressive Re-alignment (BriMPR). BriMPR, consisting of two progressively enhanced modules, tackles the coupling effect with a divide-and-conquer strategy. Specifically, we first decompose MMTTA into multiple unimodal feature alignment sub-problems. By leveraging the strong function approximation ability of prompt tuning, we calibrate the unimodal global feature distributions to their respective source distributions, so as to achieve the initial semantic re-alignment across modalities. Subsequently, we assign the credible pseudo-labels to combinations of masked and complete modalities, and introduce inter-modal instance-wise contrastive learning to further enhance the information interaction among modalities and refine the alignment. Extensive experiments on MMTTA tasks, including both corruption-based and real-world domain shift benchmarks, demonstrate the superiority of our method. Our source code is available at https://github.com/Luchicken/BriMPR.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, labeling data for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neuro-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
♻ ☆ Multi-Modality Collaborative Learning for Sentiment Analysis
Multimodal sentiment analysis (MSA) identifies individuals' sentiment states in videos by integrating visual, audio, and text modalities. Despite progress in existing methods, the inherent modality heterogeneity limits the effective capture of interactive sentiment features across modalities. In this paper, by introducing a Multi-Modality Collaborative Learning (MMCL) framework, we facilitate cross-modal interactions and capture enhanced and complementary features from modality-common and modality-specific representations, respectively. Specifically, we design a parameter-free decoupling module and separate uni-modality into modality-common and modality-specific components through semantics assessment of cross-modal elements. For modality-specific representations, inspired by the act-reward mechanism in reinforcement learning, we design policy models to adaptively mine complementary sentiment features under the guidance of a joint reward. For modality-common representations, intra-modal attention is employed to highlight crucial components, playing enhanced roles among modalities. Experimental results, including superiority evaluations on four databases, effectiveness verification of each module, and assessment of complementary features, demonstrate that MMCL successfully learns collaborative features across modalities and significantly improves performance. The code can be available at https://github.com/smwanghhh/MMCL.
comment: The method has flaws, especially with the decoupling module. During the decoupling process, the heterogeneity of the three modal data and the differences in distribution were not taken into account
♻ ☆ Provable Ordering and Continuity in Vision-Language Pretraining for Generalizable Embodied Agents NeurIPS 2025
Pre-training vision-language representations on human action videos has emerged as a promising approach to reduce reliance on large-scale expert demonstrations for training embodied agents. However, prior methods often employ time contrastive learning based on goal-reaching heuristics, progressively aligning language instructions from the initial to the final frame. This overemphasis on future frames can result in erroneous vision-language associations, as actions may terminate early or include irrelevant moments in the end. To address this issue, we propose Action Temporal Coherence Learning (AcTOL) to learn ordered and continuous vision-language representations without rigid goal-based constraint. AcTOL treats a video as a continuous trajectory where it (1) contrasts semantic differences between frames to reflect their natural ordering, and (2) imposes a local Brownian bridge constraint to ensure smooth transitions across intermediate frames. Extensive imitation learning experiments on both simulated and real robots show that the pretrained features significantly enhance downstream manipulation tasks with high robustness to different linguistic styles of instructions, offering a viable pathway toward generalized embodied agents.
comment: NeurIPS 2025 Poster
Information Retrieval 17
☆ LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation
Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.
☆ From Facts to Conclusions : Integrating Deductive Reasoning in Retrieval-Augmented LLMs
Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.
comment: Under Review
☆ Microsoft Academic Graph Information Retrieval for Research Recommendation and Assistance
In today's information-driven world, access to scientific publications has become increasingly easy. At the same time, filtering through the massive volume of available research has become more challenging than ever. Graph Neural Networks (GNNs) and graph attention mechanisms have shown strong effectiveness in searching large-scale information databases, particularly when combined with modern large language models. In this paper, we propose an Attention-Based Subgraph Retriever, a GNN-as-retriever model that applies attention-based pruning to extract a refined subgraph, which is then passed to a large language model for advanced knowledge reasoning.
comment: 5 pages, 3 figures
☆ Abacus: Self-Supervised Event Counting-Aligned Distributional Pretraining for Sequential User Modeling
Modeling user purchase behavior is a critical challenge in display advertising systems, necessary for real-time bidding. The difficulty arises from the sparsity of positive user events and the stochasticity of user actions, leading to severe class imbalance and irregular event timing. Predictive systems usually rely on hand-crafted "counter" features, overlooking the fine-grained temporal evolution of user intent. Meanwhile, current sequential models extract direct sequential signal, missing useful event-counting statistics. We enhance deep sequential models with self-supervised pretraining strategies for display advertising. Especially, we introduce Abacus, a novel approach of predicting the empirical frequency distribution of user events. We further propose a hybrid objective unifying Abacus with sequential learning objectives, combining stability of aggregated statistics with the sequence modeling sensitivity. Experiments on two real-world datasets show that Abacus pretraining outperforms existing methods accelerating downstream task convergence, while hybrid approach yields up to +6.1% AUC compared to the baselines.
☆ InfoDCL: Informative Noise Enhanced Diffusion Based Contrastive Learning
Contrastive learning has demonstrated promising potential in recommender systems. Existing methods typically construct sparser views by randomly perturbing the original interaction graph, as they have no idea about the authentic user preferences. Owing to the sparse nature of recommendation data, this paradigm can only capture insufficient semantic information. To address the issue, we propose InfoDCL, a novel diffusion-based contrastive learning framework for recommendation. Rather than injecting randomly sampled Gaussian noise, we employ a single-step diffusion process that integrates noise with auxiliary semantic information to generate signals and feed them to the standard diffusion process to generate authentic user preferences as contrastive views. Besides, based on a comprehensive analysis of the mutual influence between generation and preference learning in InfoDCL, we build a collaborative training objective strategy to transform the interference between them into mutual collaboration. Additionally, we employ multiple GCN layers only during inference stage to incorporate higher-order co-occurrence information while maintaining training efficiency. Extensive experiments on five real-world datasets demonstrate that InfoDCL significantly outperforms state-of-the-art methods. Our InfoDCL offers an effective solution for enhancing recommendation performance and suggests a novel paradigm for applying diffusion method in contrastive learning frameworks.
☆ From Personalization to Prejudice: Bias and Discrimination in Memory-Enhanced AI Agents for Recruitment WSDM '26
Large Language Models (LLMs) have empowered AI agents with advanced capabilities for understanding, reasoning, and interacting across diverse tasks. The addition of memory further enhances them by enabling continuity across interactions, learning from past experiences, and improving the relevance of actions and responses over time; termed as memory-enhanced personalization. Although such personalization through memory offers clear benefits, it also introduces risks of bias. While several previous studies have highlighted bias in ML and LLMs, bias due to memory-enhanced personalized agents is largely unexplored. Using recruitment as an example use case, we simulate the behavior of a memory-enhanced personalized agent, and study whether and how bias is introduced and amplified in and across various stages of operation. Our experiments on agents using safety-trained LLMs reveal that bias is systematically introduced and reinforced through personalization, emphasizing the need for additional protective measures or agent guardrails in memory-enhanced LLM-based AI agents.
comment: In Proceedings of the Nineteenth ACM International Conference on Web Search and Data Mining (WSDM '26)
☆ Introducing ORKG ASK: an AI-driven Scholarly Literature Search and Exploration System Taking a Neuro-Symbolic Approach
As the volume of published scholarly literature continues to grow, finding relevant literature becomes increasingly difficult. With the rise of generative Artificial Intelligence (AI), and particularly Large Language Models (LLMs), new possibilities emerge to find and explore literature. We introduce ASK (Assistant for Scientific Knowledge), an AI-driven scholarly literature search and exploration system that follows a neuro-symbolic approach. ASK aims to provide active support to researchers in finding relevant scholarly literature by leveraging vector search, LLMs, and knowledge graphs. The system allows users to input research questions in natural language and retrieve relevant articles. ASK automatically extracts key information and generates answers to research questions using a Retrieval-Augmented Generation (RAG) approach. We present an evaluation of ASK, assessing the system's usability and usefulness. Findings indicate that the system is user-friendly and users are generally satisfied while using the system.
☆ From Flows to Functions: Macroscopic Behavioral Fingerprinting of IoT Devices via Network Services
Identifying devices such as cameras, printers, voice assistants, or health monitoring sensors, collectively known as the Internet of Things (IoT), within a network is a critical operational task, particularly to manage the cyber risks they introduce. While behavioral fingerprinting based on network traffic analysis has shown promise, most existing approaches rely on machine learning (ML) techniques applied to fine-grained features of short-lived traffic units (packets and/or flows). These methods tend to be computationally expensive, sensitive to traffic measurement errors, and often produce opaque inferences. In this paper, we propose a macroscopic, lightweight, and explainable alternative to behavioral fingerprinting focusing on the network services (e.g., TCP/80, UDP/53) that IoT devices use to perform their intended functions over extended periods. Our contributions are threefold. (1) We demonstrate that IoT devices exhibit stable and distinguishable patterns in their use of network services over a period of time. We formalize the notion of service-level fingerprints and derive a generalized method to represent network behaviors using a configurable granularity parameter. (2) We develop a procedure to extract service-level fingerprints, apply it to traffic from 13 consumer IoT device types in a lab testbed, and evaluate the resulting representations in terms of their convergence and recurrence properties. (3) We validate the efficacy of service-level fingerprints for device identification in closed-set and open-set scenarios. Our findings are based on a large dataset comprising about 10 million IPFIX flow records collected over a 1.5-year period.
comment: 10 pages, 3 figures, 1 table, and 1 algorithm
☆ The Evolution of Reranking Models in Information Retrieval: From Heuristic Methods to Large Language Models
Reranking is a critical stage in contemporary information retrieval (IR) systems, improving the relevance of the user-presented final results by honing initial candidate sets. This paper is a thorough guide to examine the changing reranker landscape and offer a clear view of the advancements made in reranking methods. We present a comprehensive survey of reranking models employed in IR, particularly within modern Retrieval Augmented Generation (RAG) pipelines, where retrieved documents notably influence output quality. We embark on a chronological journey through the historical trajectory of reranking techniques, starting with foundational approaches, before exploring the wide range of sophisticated neural network architectures such as cross-encoders, sequence-generation models like T5, and Graph Neural Networks (GNNs) utilized for structural information. Recognizing the computational cost of advancing neural rerankers, we analyze techniques for enhancing efficiency, notably knowledge distillation for creating competitive, lighter alternatives. Furthermore, we map the emerging territory of integrating Large Language Models (LLMs) in reranking, examining novel prompting strategies and fine-tuning tactics. This survey seeks to elucidate the fundamental ideas, relative effectiveness, computational features, and real-world trade-offs of various reranking strategies. The survey provides a structured synthesis of the diverse reranking paradigms, highlighting their underlying principles and comparative strengths and weaknesses.
comment: 15 pages, 1 figure, Accepted in CLNLP'25
☆ Science Consultant Agent
The Science Consultant Agent is a web-based Artificial Intelligence (AI) tool that helps practitioners select and implement the most effective modeling strategy for AI-based solutions. It operates through four core components: Questionnaire, Smart Fill, Research-Guided Recommendation, and Prototype Builder. By combining structured questionnaires, literature-backed solution recommendations, and prototype generation, the Science Consultant Agent accelerates development for everyone from Product Managers and Software Developers to Researchers. The full pipeline is illustrated in Figure 1.
☆ ModelTables: A Corpus of Tables about Models
We present ModelTables, a benchmark of tables in Model Lakes that captures the structured semantics of performance and configuration tables often overlooked by text only retrieval. The corpus is built from Hugging Face model cards, GitHub READMEs, and referenced papers, linking each table to its surrounding model and publication context. Compared with open data lake tables, model tables are smaller yet exhibit denser inter table relationships, reflecting tightly coupled model and benchmark evolution. The current release covers over 60K models and 90K tables. To evaluate model and table relatedness, we construct a multi source ground truth using three complementary signals: (1) paper citation links, (2) explicit model card links and inheritance, and (3) shared training datasets. We present one extensive empirical use case for the benchmark which is table search. We compare canonical Data Lake search operators (unionable, joinable, keyword) and Information Retrieval baselines (dense, sparse, hybrid retrieval) on this benchmark. Union based semantic table retrieval attains 54.8 % P@1 overall (54.6 % on citation, 31.3 % on inheritance, 30.6 % on shared dataset signals); table based dense retrieval reaches 66.5 % P@1, and metadata hybrid retrieval achieves 54.1 %. This evaluation indicates clear room for developing better table search methods. By releasing ModelTables and its creation protocol, we provide the first large scale benchmark of structured data describing AI model. Our use case of table discovery in Model Lakes, provides intuition and evidence for developing more accurate semantic retrieval, structured comparison, and principled organization of structured model knowledge. Source code, data, and other artifacts have been made available at https://github.com/RJMillerLab/ModelTables.
comment: 14 pages, 8 figures and 8 tables
☆ Unexpected Knowledge: Auditing Wikipedia and Grokipedia Search Recommendations
Encyclopedic knowledge platforms are key gateways through which users explore information online. The recent release of Grokipedia, a fully AI-generated encyclopedia, introduces a new alternative to traditional, well-established platforms like Wikipedia. In this context, search engine mechanisms play an important role in guiding users exploratory paths, yet their behavior across different encyclopedic systems remains underexplored. In this work, we address this gap by providing the first comparative analysis of search engine in Wikipedia and Grokipedia. Using nearly 10,000 neutral English words and their substrings as queries, we collect over 70,000 search engine results and examine their semantic alignment, overlap, and topical structure. We find that both platforms frequently generate results that are weakly related to the original query and, in many cases, surface unexpected content starting from innocuous queries. Despite these shared properties, the two systems often produce substantially different recommendation sets for the same query. Through topical annotation and trajectory analysis, we further identify systematic differences in how content categories are surfaced and how search engine results evolve over multiple stages of exploration. Overall, our findings show that unexpected search engine outcomes are a common feature of both the platforms, even though they exhibit discrepancies in terms of topical distribution and query suggestions.
☆ A Reproducible and Fair Evaluation of Partition-aware Collaborative Filtering ECIR 2026
Similarity-based collaborative filtering (CF) models have long demonstrated strong offline performance and conceptual simplicity. However, their scalability is limited by the quadratic cost of maintaining dense item-item similarity matrices. Partitioning-based paradigms have recently emerged as an effective strategy for balancing effectiveness and efficiency, enabling models to learn local similarities within coherent subgraphs while maintaining a limited global context. In this work, we focus on the Fine-tuning Partition-aware Similarity Refinement (FPSR) framework, a prominent representative of this family, as well as its extension, FPSR+. Reproducible evaluation of partition-aware collaborative filtering remains challenging, as prior FPSR/FPSR+ reports often rely on splits of unclear provenance and omit some similarity-based baselines, thereby complicating fair comparison. We present a transparent, fully reproducible benchmark of FPSR and FPSR+. Based on our results, the family of FPSR models does not consistently perform at the highest level. Overall, it remains competitive, validates its design choices, and shows significant advantages in long-tail scenarios. This highlights the accuracy-coverage trade-offs resulting from partitioning, global components, and hub design. Our investigation clarifies when partition-aware similarity modeling is most beneficial and offers actionable guidance for scalable recommender system design under reproducible protocols.
comment: accepted at ECIR 2026 reproducibility track
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
♻ ☆ Easy Come, Easy Go? Examining the Perceptions and Learning Effects of LLM-based Chatbot in the Context of Search-as-Learning
The cognitive process of Search-as-Learning (SAL) is most effective when searching promotes active encoding of information. The rise of LLMs-based chatbots, which provide instant answers, introduces a trade-off between efficiency and depth of processing. Such answer-centric approaches accelerate information access, but they also raise concerns about shallower learning. To examine these issues in the context of SAL, we conducted a large-scale survey of educators and students to capture perceived risks and benefits of LLM-based chatbots. In addition, we adopted the encoding-storage paradigm to design a within-subjects experiment, where participants (N=92) engaged in SAL tasks using three different modalities: books, search engines, and chatbots. Our findings provide a counterintuitive insight into stakeholder concerns: while LLM-based chatbots and search engines validated perceived benefits on learning efficiency by outperforming book-based search in immediate conceptual understanding, they did not result in a long-term inferiority as feared. Our study provides insights for designing human-AI collaborative learning systems that promote cognitive engagement by balancing learning efficiency and long-term knowledge retention.
comment: 25 pages, 9 figures
♻ ☆ Multi-Modality Collaborative Learning for Sentiment Analysis
Multimodal sentiment analysis (MSA) identifies individuals' sentiment states in videos by integrating visual, audio, and text modalities. Despite progress in existing methods, the inherent modality heterogeneity limits the effective capture of interactive sentiment features across modalities. In this paper, by introducing a Multi-Modality Collaborative Learning (MMCL) framework, we facilitate cross-modal interactions and capture enhanced and complementary features from modality-common and modality-specific representations, respectively. Specifically, we design a parameter-free decoupling module and separate uni-modality into modality-common and modality-specific components through semantics assessment of cross-modal elements. For modality-specific representations, inspired by the act-reward mechanism in reinforcement learning, we design policy models to adaptively mine complementary sentiment features under the guidance of a joint reward. For modality-common representations, intra-modal attention is employed to highlight crucial components, playing enhanced roles among modalities. Experimental results, including superiority evaluations on four databases, effectiveness verification of each module, and assessment of complementary features, demonstrate that MMCL successfully learns collaborative features across modalities and significantly improves performance. The code can be available at https://github.com/smwanghhh/MMCL.
comment: The method has flaws, especially with the decoupling module. During the decoupling process, the heterogeneity of the three modal data and the differences in distribution were not taken into account
Computation and Language 91
☆ Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants
Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes.
comment: 28 pages, 12 figures
☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
☆ Explaining the Reasoning of Large Language Models Using Attribution Graphs
Large language models (LLMs) exhibit remarkable capabilities, yet their reasoning remains opaque, raising safety and trust concerns. Attribution methods, which assign credit to input features, have proven effective for explaining the decision making of computer vision models. From these, context attributions have emerged as a promising approach for explaining the behavior of autoregressive LLMs. However, current context attributions produce incomplete explanations by directly relating generated tokens to the prompt, discarding inter-generational influence in the process. To overcome these shortcomings, we introduce the Context Attribution via Graph Explanations (CAGE) framework. CAGE introduces an attribution graph: a directed graph that quantifies how each generation is influenced by both the prompt and all prior generations. The graph is constructed to preserve two properties-causality and row stochasticity. The attribution graph allows context attributions to be computed by marginalizing intermediate contributions along paths in the graph. Across multiple models, datasets, metrics, and methods, CAGE improves context attribution faithfulness, achieving average gains of up to 40%.
☆ PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
comment: 10 pages, 3 figures, 2025 IEEE International Conference on Big Data (BigData)
☆ Characterizing Mamba's Selective Memory using Auto-Encoders AACL 2025
State space models (SSMs) are a promising alternative to transformers for language modeling because they use fixed memory during inference. However, this fixed memory usage requires some information loss in the hidden state when processing long sequences. While prior work has studied the sequence length at which this information loss occurs, it does not characterize the types of information SSM language models (LMs) tend to forget. In this paper, we address this knowledge gap by identifying the types of tokens (e.g., parts of speech, named entities) and sequences (e.g., code, math problems) that are more frequently forgotten by SSM LMs. We achieve this by training an auto-encoder to reconstruct sequences from the SSM's hidden state, and measure information loss by comparing inputs with their reconstructions. We perform experiments using the Mamba family of SSM LMs (130M--1.4B) on sequences ranging from 4--256 tokens. Our results show significantly higher rates of information loss on math-related tokens (e.g., numbers, variables), mentions of organization entities, and alternative dialects to Standard American English. We then examine the frequency that these tokens appear in Mamba's pretraining data and find that less prevalent tokens tend to be the ones Mamba is most likely to forget. By identifying these patterns, our work provides clear direction for future research to develop methods that better control Mamba's ability to retain important information.
comment: AACL 2025. Oral Presentation
☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-compressed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
☆ How Much is Too Much? Exploring LoRA Rank Trade-offs for Retaining Knowledge and Domain Robustness AACL
Large language models are increasingly adapted to downstream tasks through fine-tuning. Full supervised fine-tuning (SFT) and parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), are two dominant approaches. While PEFT methods are widely used for their computational efficiency, the implications of their configurations (e.g., rank) remain under-explored in downstream Q&A tasks and generalisation. In this work, we perform a comprehensive evaluation across multiple reasoning and recall datasets, conducting a rank sweep to quantify the trade-off between SFT and PEFT. We also compare the accuracy of PEFT and SFT models across in-domain and out-of-domain adaptation, highlighting distinct generalisation behaviour and task-specific forgetting. We demonstrate that LoRA achieves competitive and in some cases superior performance compared to SFT, particularly on reasoning tasks at specific rank values. Additionally, we analyze the internal representations via spectral features and layer-wise attention structures, offering insights into representational drift and structural changes in attention patterns.
comment: Accepted at AACL IJCNLP 2025
☆ Evaluating Metrics for Safety with LLM-as-Judges
LLMs (Large Language Models) are increasingly used in text processing pipelines to intelligently respond to a variety of inputs and generation tasks. This raises the possibility of replacing human roles that bottleneck existing information flows, either due to insufficient staff or process complexity. However, LLMs make mistakes and some processing roles are safety critical. For example, triaging post-operative care to patients based on hospital referral letters, or updating site access schedules in nuclear facilities for work crews. If we want to introduce LLMs into critical information flows that were previously performed by humans, how can we make them safe and reliable? Rather than make performative claims about augmented generation frameworks or graph-based techniques, this paper argues that the safety argument should focus on the type of evidence we get from evaluation points in LLM processes, particularly in frameworks that employ LLM-as-Judges (LaJ) evaluators. This paper argues that although we cannot get deterministic evaluations from many natural language processing tasks, by adopting a basket of weighted metrics it may be possible to lower the risk of errors within an evaluation, use context sensitivity to define error severity and design confidence thresholds that trigger human review of critical LaJ judgments when concordance across evaluators is low.
☆ You Never Know a Person, You Only Know Their Defenses: Detecting Levels of Psychological Defense Mechanisms in Supportive Conversations
Psychological defenses are strategies, often automatic, that people use to manage distress. Rigid or overuse of defenses is negatively linked to mental health and shapes what speakers disclose and how they accept or resist help. However, defenses are complex and difficult to reliably measure, particularly in clinical dialogues. We introduce PsyDefConv, a dialogue corpus with help seeker utterances labeled for defense level, and DMRS Co-Pilot, a four-stage pipeline that provides evidence-based pre-annotations. The corpus contains 200 dialogues and 4709 utterances, including 2336 help seeker turns, with labeling and Cohen's kappa 0.639. In a counterbalanced study, the co-pilot reduced average annotation time by 22.4%. In expert review, it averaged 4.62 for evidence, 4.44 for clinical plausibility, and 4.40 for insight on a seven-point scale. Benchmarks with strong language models in zero-shot and fine-tuning settings demonstrate clear headroom, with the best macro F1-score around 30% and a tendency to overpredict mature defenses. Corpus analyses confirm that mature defenses are most common and reveal emotion-specific deviations. We will release the corpus, annotations, code, and prompts to support research on defensive functioning in language.
comment: Under Review
☆ Bolmo: Byteifying the Next Generation of Language Models
We introduce Bolmo, the first family of competitive fully open byte-level language models (LMs) at the 1B and 7B parameter scales. In contrast to prior research on byte-level LMs, which focuses predominantly on training from scratch, we train Bolmo by byteifying existing subword-level LMs. Byteification enables overcoming the limitations of subword tokenization - such as insufficient character understanding and efficiency constraints due to the fixed subword vocabulary - while performing at the level of leading subword-level LMs. Bolmo is specifically designed for byteification: our architecture resolves a mismatch between the expressivity of prior byte-level architectures and subword-level LMs, which makes it possible to employ an effective exact distillation objective between Bolmo and the source subword model. This allows for converting a subword-level LM to a byte-level LM by investing less than 1\% of a typical pretraining token budget. Bolmo substantially outperforms all prior byte-level LMs of comparable size, and outperforms the source subword-level LMs on character understanding and, in some cases, coding, while coming close to matching the original LMs' performance on other tasks. Furthermore, we show that Bolmo can achieve inference speeds competitive with subword-level LMs by training with higher token compression ratios, and can be cheaply and effectively post-trained by leveraging the existing ecosystem around the source subword-level LM. Our results finally make byte-level LMs a practical choice competitive with subword-level LMs across a wide set of use cases.
☆ An Empirical Study on Chinese Character Decomposition in Multiword Expression-Aware Neural Machine Translation
Word meaning, representation, and interpretation play fundamental roles in natural language understanding (NLU), natural language processing (NLP), and natural language generation (NLG) tasks. Many of the inherent difficulties in these tasks stem from Multi-word Expressions (MWEs), which complicate the tasks by introducing ambiguity, idiomatic expressions, infrequent usage, and a wide range of variations. Significant effort and substantial progress have been made in addressing the challenging nature of MWEs in Western languages, particularly English. This progress is attributed in part to the well-established research communities and the abundant availability of computational resources. However, the same level of progress is not true for language families such as Chinese and closely related Asian languages, which continue to lag behind in this regard. While sub-word modelling has been successfully applied to many Western languages to address rare words improving phrase comprehension, and enhancing machine translation (MT) through techniques like byte-pair encoding (BPE), it cannot be applied directly to ideograph language scripts like Chinese. In this work, we conduct a systematic study of the Chinese character decomposition technology in the context of MWE-aware neural machine translation (NMT). Furthermore, we report experiments to examine how Chinese character decomposition technology contributes to the representation of the original meanings of Chinese words and characters, and how it can effectively address the challenges of translating MWEs.
comment: capstone work, technical report, 27 pages, extraction from PhD thesis https://doras.dcu.ie/26559/
☆ From Data to Dialogue: Unlocking Language for All
Traditional linguists have proposed the use of a General Service List (GSL) to assist new language learners in identifying the most important words in English. This process requires linguistic expertise, subjective input, and a considerable amount of time. We attempt to create our own GSL and evaluate its practicality against the industry standard (The NGSL). We found creating a Specialized Word List (SWL), or a word list specific to a subset of the overall corpus, to be the most practical way for language-learners to optimize the process. The SWL's that we created using our model outperformed the industry standard, reaching the 95% coverage required for language comprehension with fewer words comparatively. By restricting the SWL process to objective criteria only, it can be automated, scaled, and tailored to the needs of language-learners across the globe.
☆ Learning inflection classes using Adaptive Resonance Theory
The concept of inflection classes is an abstraction used by linguists, and provides a means to describe patterns in languages that give an analogical base for deducing previously unencountered forms. This ability is an important part of morphological acquisition and processing. We study the learnability of a system of verbal inflection classes by the individual language user by performing unsupervised clustering of lexemes into inflection classes. As a cognitively plausible and interpretable computational model, we use Adaptive Resonance Theory, a neural network with a parameter that determines the degree of generalisation (vigilance). The model is applied to Latin, Portuguese and Estonian. The similarity of clustering to attested inflection classes varies depending on the complexity of the inflectional system. We find the best performance in a narrow region of the generalisation parameter. The learned features extracted from the model show similarity with linguistic descriptions of the inflection classes. The proposed model could be used to study change in inflection classes in the future, by including it in an agent-based model.
☆ CTkvr: KV Cache Retrieval for Long-Context LLMs via Centroid then Token Indexing
Large language models (LLMs) are increasingly applied in long-context scenarios such as multi-turn conversations. However, long contexts pose significant challenges for inference efficiency, including high memory overhead from Key-Value (KV) cache and increased latency due to excessive memory accesses. Recent methods for dynamic KV selection struggle with trade-offs: block-level indexing degrades accuracy by retrieving irrelevant KV entries, while token-level indexing incurs high latency from inefficient retrieval mechanisms. In this paper, we propose CTKVR, a novel centroid-then-token KV retrieval scheme that addresses these limitations. CTKVR leverages a key observation: query vectors adjacent in position exhibit high similarity after Rotary Position Embedding (RoPE) and share most of their top-k KV cache entries. Based on this insight, CTKVR employs a two-stage retrieval strategy: lightweight centroids are precomputed during prefilling for centroid-grained indexing, followed by token-level refinement for precise KV retrieval. This approach balances retrieval efficiency and accuracy. To further enhance performance, we implement an optimized system for indexing construction and search using CPU-GPU co-execution. Experimentally, CTKVR achieves superior performance across multiple benchmarks with less than 1% accuracy degradation. Meanwhile, CTKVR delivers 3 times and 4 times throughput speedups on Llama-3-8B and Yi-9B at 96K context length across diverse GPU hardware.
☆ When a Nation Speaks: Machine Learning and NLP in People's Sentiment Analysis During Bangladesh's 2024 Mass Uprising
Sentiment analysis, an emerging research area within natural language processing (NLP), has primarily been explored in contexts like elections and social media trends, but there remains a significant gap in understanding emotional dynamics during civil unrest, particularly in the Bangla language. Our study pioneers sentiment analysis in Bangla during a national crisis by examining public emotions amid Bangladesh's 2024 mass uprising. We curated a unique dataset of 2,028 annotated news headlines from major Facebook news portals, classifying them into Outrage, Hope, and Despair. Through Latent Dirichlet Allocation (LDA), we identified prevalent themes like political corruption and public protests, and analyzed how events such as internet blackouts shaped sentiment patterns. It outperformed multilingual transformers (mBERT: 67%, XLM-RoBERTa: 71%) and traditional machine learning methods (SVM and Logistic Regression: both 70%). These results highlight the effectiveness of language-specific models and offer valuable insights into public sentiment during political turmoil.
comment: Accepted in 2025 28th International Conference on Computer and Information Technology (ICCIT)
☆ Tracking Temporal Dynamics of Vector Sets with Gaussian Process
Understanding the temporal evolution of sets of vectors is a fundamental challenge across various domains, including ecology, crime analysis, and linguistics. For instance, ecosystem structures evolve due to interactions among plants, herbivores, and carnivores; the spatial distribution of crimes shifts in response to societal changes; and word embedding vectors reflect cultural and semantic trends over time. However, analyzing such time-varying sets of vectors is challenging due to their complicated structures, which also evolve over time. In this work, we propose a novel method for modeling the distribution underlying each set of vectors using infinite-dimensional Gaussian processes. By approximating the latent function in the Gaussian process with Random Fourier Features, we obtain compact and comparable vector representations over time. This enables us to track and visualize temporal transitions of vector sets in a low-dimensional space. We apply our method to both sociological data (crime distributions) and linguistic data (word embeddings), demonstrating its effectiveness in capturing temporal dynamics. Our results show that the proposed approach provides interpretable and robust representations, offering a powerful framework for analyzing structural changes in temporally indexed vector sets across diverse domains.
comment: Work in Progress
☆ Toward expert-level motivational interviewing for health behavior improvement with LLMs
Background: Motivational interviewing (MI) is an effective counseling approach for promoting health behavior change, but its impact is constrained by the need for highly trained human counselors. Objective: This study aimed to explore a scalable alternative by developing and evaluating Large Language Models for Motivational Interviewing (MI-LLMs). Methods: We first curated five Chinese psychological counseling corpora and, using GPT-4 with an MI-informed prompt, transcribed multi-turn dialogues from the two highest-quality datasets (CPsyCounD and PsyDTCorpus) into 2,040 MI-style counseling conversations, of which 2,000 were used for training and 40 for testing. Three Chinese-capable open-source LLMs (Baichuan2-7B-Chat, ChatGLM-4-9B-Chat and Llama-3-8B-Chinese-Chat-v2) were fine-tuned on this corpus and were named as MI-LLMs. We evaluated MI-LLMs using round-based automatic metrics and expert manual coding with the Motivational Interviewing Treatment Integrity (MITI) Coding Manual 4.2.1. Results: Across all three models, fine-tuning substantially improved BLEU-4 and ROUGE scores compared with the base models, and manual coding showed that MI-LLMs achieved technical and relational global scores, and MI-adherent ratios that approached those of real MI dialogues, although complex reflections and reflection-to-question ratios remained less frequent. Conclusions: These findings provide initial evidence that MI-oriented fine-tuning can endow general-purpose LLMs with core MI-consistent counseling behaviors, suggesting a scalable pathway toward AI-assisted health behavior change support while underscoring the need for further work on data scale, complex MI skills and real-world intervention trials.
comment: 26 pages, 3 figures
☆ ORACLE: Time-Dependent Recursive Summary Graphs for Foresight on News Data Using LLMs
ORACLE turns daily news into week-over-week, decision-ready insights for one of the Finnish University of Applied Sciences. The platform crawls and versions news, applies University-specific relevance filtering, embeds content, classifies items into PESTEL dimensions and builds a concise Time-Dependent Recursive Summary Graph (TRSG): two clustering layers summarized by an LLM and recomputed weekly. A lightweight change detector highlights what is new, removed or changed, then groups differences into themes for PESTEL-aware analysis. We detail the pipeline, discuss concrete design choices that make the system stable in production and present a curriculum-intelligence use case with an evaluation plan.
☆ Emotion Recognition in Signers
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
☆ Dual-Density Inference for Efficient Language Model Reasoning
Large Language Models (LLMs) have shown impressive capabilities in complex reasoning tasks. However, current approaches employ uniform language density for both intermediate reasoning and final answers, leading to computational inefficiency. Our observation found that reasoning process serves a computational function for the model itself, while answering serves a communicative function for human understanding. This distinction enables the use of compressed, symbol-rich language for intermediate computations while maintaining human-readable final explanations. To address this inefficiency, we present Denser: \underline{D}ual-d\underline{ens}ity inf\underline{er}ence, a novel framework that optimizes information density separately for reasoning and answering phases. Our framework implements this through three components: a query processing module that analyzes input problems, a high-density compressed reasoning mechanism for efficient intermediate computations, and an answer generation component that translates compressed reasoning into human-readable solutions. Experimental evaluation across multiple reasoning question answering benchmarks demonstrates that Denser reduces token consumption by up to 62\% compared to standard Chain-of-Thought methods while preserving or improving accuracy. These efficiency gains are particularly significant for complex multi-step reasoning problems where traditional methods generate extensive explanations.
☆ Adversarial versification in portuguese as a jailbreak operator in LLMs
Recent evidence shows that the versification of prompts constitutes a highly effective adversarial mechanism against aligned LLMs. The study 'Adversarial poetry as a universal single-turn jailbreak mechanism in large language models' demonstrates that instructions routinely refused in prose become executable when rewritten as verse, producing up to 18 x more safety failures in benchmarks derived from MLCommons AILuminate. Manually written poems reach approximately 62% ASR, and automated versions 43%, with some models surpassing 90% success in single-turn interactions. The effect is structural: systems trained with RLHF, constitutional AI, and hybrid pipelines exhibit consistent degradation under minimal semiotic formal variation. Versification displaces the prompt into sparsely supervised latent regions, revealing guardrails that are excessively dependent on surface patterns. This dissociation between apparent robustness and real vulnerability exposes deep limitations in current alignment regimes. The absence of evaluations in Portuguese, a language with high morphosyntactic complexity, a rich metric-prosodic tradition, and over 250 million speakers, constitutes a critical gap. Experimental protocols must parameterise scansion, metre, and prosodic variation to test vulnerabilities specific to Lusophone patterns, which are currently ignored.
comment: 15 pages
☆ Why Your Academic Field Is Everywhere at Once: A Case Study of Arabic Linguistics
This study applies Brookes' Measure of Categorical Dispersion (Δ) to analyze the thematic structure of contemporary Arabic Applied Linguistics research. Using a comprehensive, real-world dataset of 1,564 publications from 2019 to 2025, classified into eight core sub-disciplines, we calculate a dispersion index of Δ = 0.194. This remarkably low value indicates extreme thematic dispersion, revealing that the field is characterized by pronounced heterogeneity rather than concentration. The analysis identifies Computational Linguistics as a dominant but non-hegemonic force, coexisting with robust research in Sociolinguistics, Language Teaching, and other subfields. This study clarifies the correct application of Brookes' original formula, demonstrates its utility for field characterization, and provides a replicable bibliometric methodology for assessing disciplinary structure across domains.
☆ Evaluating LLMs for Zeolite Synthesis Event Extraction (ZSEE): A Systematic Analysis of Prompting Strategies
Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.
comment: Under Review
☆ Towards Proactive Personalization through Profile Customization for Individual Users in Dialogues
The deployment of Large Language Models (LLMs) in interactive systems necessitates a deep alignment with the nuanced and dynamic preferences of individual users. Current alignment techniques predominantly address universal human values or static, single-turn preferences, thereby failing to address the critical needs of long-term personalization and the initial user cold-start problem. To bridge this gap, we propose PersonalAgent, a novel user-centric lifelong agent designed to continuously infer and adapt to user preferences. PersonalAgent constructs and dynamically refines a unified user profile by decomposing dialogues into single-turn interactions, framing preference inference as a sequential decision-making task. Experiments show that PersonalAgent achieves superior performance over strong prompt-based and policy optimization baselines, not only in idealized but also in noisy conversational contexts, while preserving cross-session preference consistency. Furthermore, human evaluation confirms that PersonalAgent excels at capturing user preferences naturally and coherently. Our findings underscore the importance of lifelong personalization for developing more inclusive and adaptive conversational agents. Our code is available here.
☆ ChatGPT and Gemini participated in the Korean College Scholastic Ability Test -- Earth Science I
The rapid development of Generative AI is bringing innovative changes to education and assessment. As the prevalence of students utilizing AI for assignments increases, concerns regarding academic integrity and the validity of assessments are growing. This study utilizes the Earth Science I section of the 2025 Korean College Scholastic Ability Test (CSAT) to deeply analyze the multimodal scientific reasoning capabilities and cognitive limitations of state-of-the-art Large Language Models (LLMs), including GPT-4o, Gemini 2.5 Flash, and Gemini 2.5 Pro. Three experimental conditions (full-page input, individual item input, and optimized multimodal input) were designed to evaluate model performance across different data structures. Quantitative results indicated that unstructured inputs led to significant performance degradation due to segmentation and Optical Character Recognition (OCR) failures. Even under optimized conditions, models exhibited fundamental reasoning flaws. Qualitative analysis revealed that "Perception Errors" were dominant, highlighting a "Perception-Cognition Gap" where models failed to interpret symbolic meanings in schematic diagrams despite recognizing visual data. Furthermore, models demonstrated a "Calculation-Conceptualization Discrepancy," successfully performing calculations while failing to apply the underlying scientific concepts, and "Process Hallucination," where models skipped visual verification in favor of plausible but unfounded background knowledge. Addressing the challenge of unauthorized AI use in coursework, this study provides actionable cues for designing "AI-resistant questions" that target these specific cognitive vulnerabilities. By exploiting AI's weaknesses, such as the gap between perception and cognition, educators can distinguish genuine student competency from AI-generated responses, thereby ensuring assessment fairness.
comment: 23 pages, 9 tables, 1 figure
☆ Well Begun, Half Done: Reinforcement Learning with Prefix Optimization for LLM Reasoning AAAI 2026
Reinforcement Learning with Verifiable Rewards (RLVR) significantly enhances the reasoning capability of Large Language Models (LLMs). Current RLVR approaches typically conduct training across all generated tokens, but neglect to explore which tokens (e.g., prefix tokens) actually contribute to reasoning. This uniform training strategy spends substantial effort on optimizing low-return tokens, which in turn impedes the potential improvement from high-return tokens and reduces overall training effectiveness. To address this issue, we propose a novel RLVR approach called Progressive Prefix-token Policy Optimization (PPPO), which highlights the significance of the prefix segment of generated outputs. Specifically, inspired by the well-established human thinking theory of Path Dependence, where early-stage thoughts substantially constrain subsequent thinking trajectory, we identify an analogous phenomenon in LLM reasoning termed Beginning Lock-in Effect (BLE). PPPO leverages this finding by focusing its optimization objective on the prefix reasoning process of LLMs. This targeted optimization strategy can positively influence subsequent reasoning processes, and ultimately improve final results. To improve the learning effectiveness of LLMs on how to start reasoning with high quality, PPPO introduces two training strategies: (a) Progressive Prefix Retention, which shapes a progressive learning process by increasing the proportion of retained prefix tokens during training; (b) Continuation Accumulated Reward, which mitigates reward bias by sampling multiple continuations for one prefix token sequence, and accumulating their scores as the reward signal. Extensive experimental results on various reasoning tasks demonstrate that our proposed PPPO outperforms representative RLVR methods, with the accuracy improvements of 18.02% on only 26.17% training tokens.
comment: Accepted by AAAI 2026
☆ SynGP500: A Clinically-Grounded Synthetic Dataset of Australian General Practice Medical Notes
We introduce SynGP500, a clinician-curated collection of 500 synthetic Australian general practice medical notes. The dataset integrates curriculum-based clinical breadth (RACGP 2022 Curriculum), epidemiologically-calibrated prevalence (BEACH study), and diverse consultation contexts. This approach systematically includes both common presentations and less-common curriculum-specified conditions that GPs must recognize but appear infrequently in single practice populations, potentially supporting more generalizable model training than datasets constrained by naturally occurring case distributions. SynGP500 is messy by design, reflecting the authentic complexity of healthcare delivery: telegraphic documentation, typos, patient non-adherence, socioeconomic barriers, and clinician-patient disagreements, unlike sanitized synthetic datasets that obscure clinical realities. Multi-faceted validation demonstrates dataset quality through epidemiological alignment with real Australian GP consultation patterns (BEACH study), stylometric analysis confirming high linguistic variation, semantic diversity analysis demonstrating broad coverage, and exploratory downstream evaluation using self-supervised medical concept extraction, showing F1 improvements. SynGP500 addresses a critical national gap, providing researchers and educators with a resource for developing and evaluating clinical NLP methods for Australian general practice while inherently protecting patient privacy.
comment: 16 pages, 2 figures
☆ The Moralization Corpus: Frame-Based Annotation and Analysis of Moralizing Speech Acts across Diverse Text Genres
Moralizations - arguments that invoke moral values to justify demands or positions - are a yet underexplored form of persuasive communication. We present the Moralization Corpus, a novel multi-genre dataset designed to analyze how moral values are strategically used in argumentative discourse. Moralizations are pragmatically complex and often implicit, posing significant challenges for both human annotators and NLP systems. We develop a frame-based annotation scheme that captures the constitutive elements of moralizations - moral values, demands, and discourse protagonists - and apply it to a diverse set of German texts, including political debates, news articles, and online discussions. The corpus enables fine-grained analysis of moralizing language across communicative formats and domains. We further evaluate several large language models (LLMs) under varied prompting conditions for the task of moralization detection and moralization component extraction and compare it to human annotations in order to investigate the challenges of automatic and manual analysis of moralizations. Results show that detailed prompt instructions has a greater effect than few-shot or explanation-based prompting, and that moralization remains a highly subjective and context-sensitive task. We release all data, annotation guidelines, and code to foster future interdisciplinary research on moral discourse and moral reasoning in NLP.
☆ FAME: Fictional Actors for Multilingual Erasure
LLMs trained on web-scale data raise concerns about privacy and the right to be forgotten. To address these issues, Machine Unlearning provides techniques to remove specific information from trained models without retraining from scratch. However, existing benchmarks for evaluating unlearning in LLMs face two major limitations: they focus only on English and support only entity-level forgetting (removing all information about a person). We introduce FAME (Fictional Actors for Multilingual Erasure), a synthetic benchmark for evaluating Machine Unlearning across five languages: English, French, German, Italian, and Spanish. FAME contains 1,000 fictional actor biographies and 20,000 question-answer pairs. Each biography includes information on 20 topics organized into structured categories (biography, career, achievements, personal information). This design enables both entity-level unlearning (i.e., forgetting entire identities) and instance-level unlearning (i.e., forgetting specific facts while retaining others). We provide two dataset splits to support these two different unlearning scenarios and enable systematic comparison of unlearning techniques across languages. Since FAME uses entirely fictional data, it ensures that the information was never encountered during model pretraining, allowing for a controlled evaluation of unlearning methods.
☆ Yes-MT's Submission to the Low-Resource Indic Language Translation Shared Task in WMT 2024
This paper presents the systems submitted by the Yes-MT team for the Low-Resource Indic Language Translation Shared Task at WMT 2024 (Pakray et al., 2024), focusing on translating between English and the Assamese, Mizo, Khasi, and Manipuri languages. The experiments explored various approaches, including fine-tuning pre-trained models like mT5 (Xue et al., 2020) and IndicBart (Dabre et al., 2021) in both multilingual and monolingual settings, LoRA (Hu et al., 2021) fine-tuning IndicTrans2 (Gala et al., 2023), zero-shot and few-shot prompting (Brown, 2020) with large language models (LLMs) like Llama 3 (Dubey et al., 2024) and Mixtral 8x7b (Jiang et al., 2024), LoRA supervised fine-tuning of Llama 3 (Mecklenburg et al., 2024), and training Transformer models (Vaswani, 2017) from scratch. The results were evaluated on the WMT23 Low-Resource Indic Language Translation Shared Task test data using SacreBLEU (Post, 2018) and CHRF (Popovic, 2015), highlighting the challenges of low-resource translation and the potential of LLMs for these tasks, particularly with fine-tuning.
comment: Accepted at WMT 2024
☆ RFKG-CoT: Relation-Driven Adaptive Hop-count Selection and Few-Shot Path Guidance for Knowledge-Aware QA AAAI 2026
Large language models (LLMs) often generate hallucinations in knowledge-intensive QA due to parametric knowledge limitations. While existing methods like KG-CoT improve reliability by integrating knowledge graph (KG) paths, they suffer from rigid hop-count selection (solely question-driven) and underutilization of reasoning paths (lack of guidance). To address this, we propose RFKG-CoT: First, it replaces the rigid hop-count selector with a relation-driven adaptive hop-count selector that dynamically adjusts reasoning steps by activating KG relations (e.g., 1-hop for direct "brother" relations, 2-hop for indirect "father-son" chains), formalized via a relation mask. Second, it introduces a few-shot in-context learning path guidance mechanism with CoT (think) that constructs examples in a "question-paths-answer" format to enhance LLMs' ability to understand reasoning paths. Experiments on four KGQA benchmarks show RFKG-CoT improves accuracy by up to 14.7 pp (Llama2-7B on WebQSP) over KG-CoT. Ablations confirm the hop-count selector and the path prompt are complementary, jointly transforming KG evidence into more faithful answers.
comment: 9pages, 5 figures, accepted by AAAI 2026
☆ From NLG Evaluation to Modern Student Assessment in the Era of ChatGPT: The Great Misalignment Problem and Pedagogical Multi-Factor Assessment (P-MFA)
This paper explores the growing epistemic parallel between NLG evaluation and grading of students in a Finnish University. We argue that both domains are experiencing a Great Misalignment Problem. As students increasingly use tools like ChatGPT to produce sophisticated outputs, traditional assessment methods that focus on final products rather than learning processes have lost their validity. To address this, we introduce the Pedagogical Multi-Factor Assessment (P-MFA) model, a process-based, multi-evidence framework inspired by the logic of multi-factor authentication.
comment: IWCLUL 2025
☆ MCP-SafetyBench: A Benchmark for Safety Evaluation of Large Language Models with Real-World MCP Servers
Large language models (LLMs) are evolving into agentic systems that reason, plan, and operate external tools. The Model Context Protocol (MCP) is a key enabler of this transition, offering a standardized interface for connecting LLMs with heterogeneous tools and services. Yet MCP's openness and multi-server workflows introduce new safety risks that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world coverage. We present MCP-SafetyBench, a comprehensive benchmark built on real MCP servers that supports realistic multi-turn evaluation across five domains: browser automation, financial analysis, location navigation, repository management, and web search. It incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user sides, and includes tasks requiring multi-step reasoning and cross-server coordination under uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and closed-source LLMs, revealing large disparities in safety performance and escalating vulnerabilities as task horizons and server interactions grow. Our results highlight the urgent need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing and mitigating safety risks in real-world MCP deployments.
comment: Our benchmark is available at https://github.com/xjzzzzzzzz/MCPSafety
☆ Rakuten Data Release: A Large-Scale and Long-Term Reviews Corpus for Hotel Domain
This paper presents a large-scale corpus of Rakuten Travel Reviews. Our collection contains 7.3 million customer reviews for 16 years, ranging from 2009 to 2024. Each record in the dataset contains the review text, its response from an accommodation, an anonymized reviewer ID, review date, accommodation ID, plan ID, plan title, room type, room name, purpose, accompanying group, and user ratings from different aspect categories, as well as an overall score. We present statistical information about our corpus and provide insights into factors driving data drift between 2019 and 2024 using statistical approaches.
☆ Beyond Majority Voting: Towards Fine-grained and More Reliable Reward Signal for Test-Time Reinforcement Learning
Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1\% on challenging AIME 2025 and 8.1\% on AMC. The code is released at \href{https://github.com/szu-tera/SCOPE}{https://github.com/szu-tera/SCOPE}.
☆ From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?
A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods - including sparse autoencoders (SAEs) and sparse probes - recover disentangled representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are neither selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering, and that affecting disjoint subspaces is not sufficient for concept selectivity. These results underscore the importance of compositional evaluations in interpretability research.
☆ Quantifying Return on Security Controls in LLM Systems
Although large language models (LLMs) are increasingly used in security-critical workflows, practitioners lack quantitative guidance on which safeguards are worth deploying. This paper introduces a decision-oriented framework and reproducible methodology that together quantify residual risk, convert adversarial probe outcomes into financial risk estimates and return-on-control (RoC) metrics, and enable monetary comparison of layered defenses for LLM-based systems. A retrieval-augmented generation (RAG) service is instantiated using the DeepSeek-R1 model over a corpus containing synthetic personally identifiable information (PII), and subjected to automated attacks with Garak across five vulnerability classes: PII leakage, latent context injection, prompt injection, adversarial attack generation, and divergence. For each (vulnerability, control) pair, attack success probabilities are estimated via Laplace's Rule of Succession and combined with loss triangle distributions, calibrated from public breach-cost data, in 10,000-run Monte Carlo simulations to produce loss exceedance curves and expected losses. Three widely used mitigations, attribute-based access control (ABAC); named entity recognition (NER) redaction using Microsoft Presidio; and NeMo Guardrails, are then compared to a baseline RAG configuration. The baseline system exhibits very high attack success rates (>= 0.98 for PII, latent injection, and prompt injection), yielding a total simulated expected loss of $313k per attack scenario. ABAC collapses success probabilities for PII and prompt-related attacks to near zero and reduces the total expected loss by ~94%, achieving an RoC of 9.83. NER redaction likewise eliminates PII leakage and attains an RoC of 5.97, while NeMo Guardrails provides only marginal benefit (RoC of 0.05).
comment: 13 pages, 9 figures, 3 tables
☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. Current detection methods rely on semantic similarity and natural language inference (NLI), but their fundamental limitations have not been rigorously characterized. We apply conformal prediction to hallucination detection, providing finite-sample coverage guarantees that enable precise quantification of detection capabilities. Using calibration sets of approximately 600 examples, we achieve 94% coverage with 0% false positive rate on synthetic hallucinations (Natural Questions). However, on three real hallucination benchmarks spanning multiple LLMs (GPT-4, ChatGPT, GPT-3, Llama-2, Mistral), embedding-based methods - including state-of-the-art OpenAI text-embedding-3-large and cross-encoder models - exhibit unacceptable false positive rates: 100% on HaluEval, 88% on RAGTruth, and 50% on WikiBio. Crucially, GPT-4 as an LLM judge achieves only 7% FPR (95% CI: [3.4%, 13.7%]) on the same data, proving the task is solvable through reasoning. We term this the "semantic illusion": semantically plausible hallucinations preserve similarity to source documents while introducing factual errors invisible to embeddings. This limitation persists across embedding architectures, LLM generators, and task types, suggesting embedding-based detection is insufficient for production RAG deployment.
comment: 12 pages, 2 figures, 6 tables
☆ The Meta-Prompting Protocol: Orchestrating LLMs via Adversarial Feedback Loops
The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.
comment: 6 pages, 2 figures
☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification ACL 2026
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
comment: Under Review for ACL 2026
☆ HERO: Hierarchical Traversable 3D Scene Graphs for Embodied Navigation Among Movable Obstacles
3D Scene Graphs (3DSGs) constitute a powerful representation of the physical world, distinguished by their abilities to explicitly model the complex spatial, semantic, and functional relationships between entities, rendering a foundational understanding that enables agents to interact intelligently with their environment and execute versatile behaviors. Embodied navigation, as a crucial component of such capabilities, leverages the compact and expressive nature of 3DSGs to enable long-horizon reasoning and planning in complex, large-scale environments. However, prior works rely on a static-world assumption, defining traversable space solely based on static spatial layouts and thereby treating interactable obstacles as non-traversable. This fundamental limitation severely undermines their effectiveness in real-world scenarios, leading to limited reachability, low efficiency, and inferior extensibility. To address these issues, we propose HERO, a novel framework for constructing Hierarchical Traversable 3DSGs, that redefines traversability by modeling operable obstacles as pathways, capturing their physical interactivity, functional semantics, and the scene's relational hierarchy. The results show that, relative to its baseline, HERO reduces PL by 35.1% in partially obstructed environments and increases SR by 79.4% in fully obstructed ones, demonstrating substantially higher efficiency and reachability.
☆ DASH: Dialogue-Aware Similarity and Handshake Recognition for Topic Segmentation in Public-Channel Conversations AAAI
Dialogue Topic Segmentation (DTS) is crucial for understanding task-oriented public-channel communications, such as maritime VHF dialogues, which feature informal speech and implicit transitions. To address the limitations of traditional methods, we propose DASH-DTS, a novel LLM-based framework. Its core contributions are: (1) topic shift detection via dialogue handshake recognition; (2) contextual enhancement through similarity-guided example selection; and (3) the generation of selective positive and negative samples to improve model discrimination and robustness. Additionally, we release VHF-Dial, the first public dataset of real-world maritime VHF communications, to advance research in this domain. DASH-DTS provides interpretable reasoning and confidence scores for each segment. Experimental results demonstrate that our framework achieves several sota segmentation trusted accuracy on both VHF-Dial and standard benchmarks, establishing a strong foundation for stable monitoring and decision support in operational dialogues.
comment: Accepted by AAAIW2026
☆ DreamPRM-Code: Function-as-Step Process Reward Model with Label Correction for LLM Coding
Process Reward Models (PRMs) have become essential for improving Large Language Models (LLMs) via test-time scaling, yet their effectiveness in coding remains limited due to the lack of meaningful step decompositions in code and the noise of Monte-Carlo-generated partial labels. We propose DreamPRM-Code, a coding-focused PRM that treats functions as reasoning steps using a Chain-of-Function prompting strategy to induce modular code generation, enabling PRM training and application analogous to mathematical reasoning tasks. To address label noise, DreamPRM-Code introduces a meta-learning-based correction mechanism that leverages clean final-solution unit-test labels and performs bi-level optimization to refine intermediate labels. Applying on test-time scaling, DreamPRM-Code achieved state-of-the-art performance on LiveCodeBench with 80.9 pass@1 rate, surpassing OpenAI o4-mini.
☆ Evaluating Large Language Models on Multimodal Chemistry Olympiad Exams
Multimodal scientific reasoning remains a significant challenge for large language models (LLMs), particularly in chemistry, where problem-solving relies on symbolic diagrams, molecular structures, and structured visual data. Here, we systematically evaluate 40 proprietary and open-source multimodal LLMs, including GPT-5, o3, Gemini-2.5-Pro, and Qwen2.5-VL, on a curated benchmark of Olympiad-style chemistry questions drawn from over two decades of U.S. National Chemistry Olympiad (USNCO) exams. These questions require integrated visual and textual reasoning across diverse modalities. We find that many models struggle with modality fusion, where in some cases, removing the image even improves accuracy, indicating misalignment in vision-language integration. Chain-of-Thought prompting consistently enhances both accuracy and visual grounding, as demonstrated through ablation studies and occlusion-based interpretability. Our results reveal critical limitations in the scientific reasoning abilities of current MLLMs, providing actionable strategies for developing more robust and interpretable multimodal systems in chemistry. This work provides a timely benchmark for measuring progress in domain-specific multimodal AI and underscores the need for further advances at the intersection of artificial intelligence and scientific reasoning.
comment: Published at Communications Chemistry
Prompt Repetition Improves Non-Reasoning LLMs
When not using reasoning, repeating the input prompt improves performance for popular models (Gemini, GPT, Claude, and Deepseek) without increasing the number of generated tokens or latency.
☆ Are We on the Right Way to Assessing LLM-as-a-Judge?
LLM-as-a-Judge has been widely adopted as an evaluation method and served as supervised rewards in model training. However, existing benchmarks for LLM-as-a-Judge are mainly relying on human-annotated ground truth, which introduces human bias that undermines the assessment of reliability and imposes scalability constraints. To overcome these limitations, we introduce Sage, a novel evaluation suite that assesses the quality of LLM judges without necessitating any human annotation. Inspired by axioms of rational choice theory, Sage introduces two new lenses for measuring LLM-as-a-Judge: local self-consistency (pair-wise preference stability) and global logical consistency (transitivity across a full set of preferences). We curate a dataset of 650 questions by combining structured benchmark problems with real-world user queries. Our experiments demonstrate both the stability of our metrics and their high correlation with supervised benchmarks like LLMBar and RewardBench2, confirming Sage's reliability as an evaluation suite for the robustness and accuracy of LLM-as-a-Judge. Based on Sage, we reveal that current state-of-the-art LLMs exhibit significant reliability problems when acting as judges in both scoring and pairwise settings; even the top-performing models, Gemini-2.5-Pro and GPT-5, fail to maintain consistent preferences in nearly a quarter of difficult cases. We attribute this to a new phenomenon called situational preference, which explains why explicit rubrics or criteria can help the model judge consistently across answer pairs. Our further analysis shows that finetuned LLM-as-a-Judge is a feasible method to boost performance, and the panel-based judge as well as deep reasoning can enhance the judging consistency. We also find substantial inconsistency in human judgments, which indicates that human annotation may not be a reliable gold standard.
☆ Examining the Utility of Self-disclosure Types for Modeling Annotators of Social Norms
Recent work has explored the use of personal information in the form of persona sentences or self-disclosures to improve modeling of individual characteristics and prediction of annotator labels for subjective tasks. The volume of personal information has historically been restricted and thus little exploration has gone into understanding what kind of information is most informative for predicting annotator labels. In this work, we categorize self-disclosure sentences and use them to build annotator models for predicting judgments of social norms. We perform several ablations and analyses to examine the impact of the type of information on our ability to predict annotation patterns. We find that demographics are more impactful than attitudes, relationships, and experiences. Generally, theory-based approaches worked better than automatic clusters. Contrary to previous work, only a small number of related comments are needed. Lastly, having a more diverse sample of annotator self-disclosures leads to the best performance.
☆ Cross-Language Bias Examination in Large Language Models
This study introduces an innovative multilingual bias evaluation framework for assessing bias in Large Language Models, combining explicit bias assessment through the BBQ benchmark with implicit bias measurement using a prompt-based Implicit Association Test. By translating the prompts and word list into five target languages, English, Chinese, Arabic, French, and Spanish, we directly compare different types of bias across languages. The results reveal substantial gaps in bias across languages used in LLMs. For example, Arabic and Spanish consistently show higher levels of stereotype bias, while Chinese and English exhibit lower levels of bias. We also identify contrasting patterns across bias types. Age shows the lowest explicit bias but the highest implicit bias, emphasizing the importance of detecting implicit biases that are undetectable with standard benchmarks. These findings indicate that LLMs vary significantly across languages and bias dimensions. This study fills a key research gap by providing a comprehensive methodology for cross-lingual bias analysis. Ultimately, our work establishes a foundation for the development of equitable multilingual LLMs, ensuring fairness and effectiveness across diverse languages and cultures.
☆ Dynamic Rank Reinforcement Learning for Adaptive Low-Rank Multi-Head Self Attention in Large Language Models
We propose Dynamic Rank Reinforcement Learning (DR-RL), a novel framework that adaptively optimizes the low-rank factorization of Multi-Head Self-Attention (MHSA) in Large Language Models (LLMs) through the integration of reinforcement learning and online matrix perturbation theory. While traditional low-rank approximations often rely on static rank assumptions--limiting their flexibility across diverse input contexts--our method dynamically selects ranks based on real-time sequence dynamics, layer-specific sensitivities, and hardware constraints. The core innovation lies in an RL agent that formulates rank selection as a sequential policy optimization problem, where the reward function strictly balances attention fidelity against computational latency. Crucially, we employ online matrix perturbation bounds to enable incremental rank updates, thereby avoiding the prohibitive cost of full decomposition during inference. Furthermore, the integration of a lightweight Transformer-based policy network and batched Singular Value Decomposition (SVD) operations ensures scalable deployment on modern GPU architectures. Experiments demonstrate that DR-RL maintains downstream accuracy statistically equivalent to full-rank attention while significantly reducing Floating Point Operations (FLOPs), particularly in long-sequence regimes (L > 4096). This work bridges the gap between adaptive efficiency and theoretical rigor in MHSA, offering a principled, mathematically grounded alternative to heuristic rank reduction techniques in resource-constrained deep learning. Source code and experiment logs are available at: https://github.com/canererden/DR_RL_Project
☆ BRAID: Bounded Reasoning for Autonomous Inference and Decisions
Large Language Models (LLMs) exhibit nonlinear relationships between performance, cost, and token usage. This paper presents a quantitative study on structured prompting using BRAID (Bounded Reasoning for Au tonomous Inference and Decisions) across multiple GPT model tiers, eval uated on the AdvancedIF, GSM-Hard, and the SCALE MultiChallenge benchmark datasets. BRAID introduces a bounded reasoning framework using Mermaid-based instruction graphs that enable models to reason struc turally rather than through unbounded natural-language token expansion. We show that structured machine-readable prompts substantially increase reasoning accuracy and cost efficiency for agents in production systems. The findings establish BRAID as an effective and scalable technique for optimizing inference efficiency in autonomous agent systems. All datasets and detailed result logs are available at https://benchmark.openserv.ai.
☆ DSO: Direct Steering Optimization for Bias Mitigation
Generative models are often deployed to make decisions on behalf of users, such as vision-language models (VLMs) identifying which person in a room is a doctor to help visually impaired individuals. Yet, VLM decisions are influenced by the perceived demographic attributes of people in the input, which can lead to biased outcomes like failing to identify women as doctors. Moreover, when reducing bias leads to performance loss, users may have varying needs for balancing bias mitigation with overall model capabilities, highlighting the demand for methods that enable controllable bias reduction during inference. Activation steering is a popular approach for inference-time controllability that has shown potential in inducing safer behavior in large language models (LLMs). However, we observe that current steering methods struggle to correct biases, where equiprobable outcomes across demographic groups are required. To address this, we propose Direct Steering Optimization (DSO) which uses reinforcement learning to find linear transformations for steering activations, tailored to mitigate bias while maintaining control over model performance. We demonstrate that DSO achieves state-of-the-art trade-off between fairness and capabilities on both VLMs and LLMs, while offering practitioners inference-time control over the trade-off. Overall, our work highlights the benefit of designing steering strategies that are directly optimized to control model behavior, providing more effective bias intervention than methods that rely on pre-defined heuristics for controllability.
☆ Social Story Frames: Contextual Reasoning about Narrative Intent and Reception
Reading stories evokes rich interpretive, affective, and evaluative responses, such as inferences about narrative intent or judgments about characters. Yet, computational models of reader response are limited, preventing nuanced analyses. To address this gap, we introduce SocialStoryFrames, a formalism for distilling plausible inferences about reader response, such as perceived author intent, explanatory and predictive reasoning, affective responses, and value judgments, using conversational context and a taxonomy grounded in narrative theory, linguistic pragmatics, and psychology. We develop two models, SSF-Generator and SSF-Classifier, validated through human surveys (N=382 participants) and expert annotations, respectively. We conduct pilot analyses to showcase the utility of the formalism for studying storytelling at scale. Specifically, applying our models to SSF-Corpus, a curated dataset of 6,140 social media stories from diverse contexts, we characterize the frequency and interdependence of storytelling intents, and we compare and contrast narrative practices (and their diversity) across communities. By linking fine-grained, context-sensitive modeling with a generic taxonomy of reader responses, SocialStoryFrames enable new research into storytelling in online communities.
comment: Presented at IC2S2 2025; Under Review (ARR Oct 2025)
☆ TabReX : Tabular Referenceless eXplainable Evaluation
Evaluating the quality of tables generated by large language models (LLMs) remains an open challenge: existing metrics either flatten tables into text, ignoring structure, or rely on fixed references that limit generalization. We present TabReX, a reference-less, property-driven framework for evaluating tabular generation via graph-based reasoning. TabReX converts both source text and generated tables into canonical knowledge graphs, aligns them through an LLM-guided matching process, and computes interpretable, rubric-aware scores that quantify structural and factual fidelity. The resulting metric provides controllable trade-offs between sensitivity and specificity, yielding human-aligned judgments and cell-level error traces. To systematically asses metric robustness, we introduce TabReX-Bench, a large-scale benchmark spanning six domains and twelve planner-driven perturbation types across three difficulty tiers. Empirical results show that TabReX achieves the highest correlation with expert rankings, remains stable under harder perturbations, and enables fine-grained model-vs-prompt analysis establishing a new paradigm for trustworthy, explainable evaluation of structured generation systems.
☆ Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.
☆ From Minutes to Days: Scaling Intracranial Speech Decoding with Supervised Pretraining
Decoding speech from brain activity has typically relied on limited neural recordings collected during short and highly controlled experiments. Here, we introduce a framework to leverage week-long intracranial and audio recordings from patients undergoing clinical monitoring, effectively increasing the training dataset size by over two orders of magnitude. With this pretraining, our contrastive learning model substantially outperforms models trained solely on classic experimental data, with gains that scale log-linearly with dataset size. Analysis of the learned representations reveals that, while brain activity represents speech features, its global structure largely drifts across days, highlighting the need for models that explicitly account for cross-day variability. Overall, our approach opens a scalable path toward decoding and modeling brain representations in both real-life and controlled task settings.
comment: Linnea Evanson* and Mingfang (Lucy) Zhang* are joint first authors. Pierre Bourdillon** and Jean-Rémi King** are joint last authors
☆ From Minutes to Days: Scaling Intracranial Speech Decoding with Supervised Pretraining
Decoding speech from brain activity has typically relied on limited neural recordings collected during short and highly controlled experiments. Here, we introduce a framework to leverage week-long intracranial and audio recordings from patients undergoing clinical monitoring, effectively increasing the training dataset size by over two orders of magnitude. With this pretraining, our contrastive learning model substantially outperforms models trained solely on classic experimental data, with gains that scale log-linearly with dataset size. Analysis of the learned representations reveals that, while brain activity represents speech features, its global structure largely drifts across days, highlighting the need for models that explicitly account for cross-day variability. Overall, our approach opens a scalable path toward decoding and modeling brain representations in both real-life and controlled task settings.
comment: Linnea Evanson* and Mingfang (Lucy) Zhang* are joint first authors. Pierre Bourdillon** and Jean-Rémi King** are joint last authors
♻ ☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
♻ ☆ Learning without training: The implicit dynamics of in-context learning
One of the most striking features of Large Language Models (LLMs) is their ability to learn in-context. Namely at inference time an LLM is able to learn new patterns without any additional weight update when these patterns are presented in the form of examples in the prompt, even if these patterns were not seen during training. The mechanisms through which this can happen are still largely unknown. In this work, we show that the stacking of a self-attention layer with an MLP, allows the transformer block to implicitly modify the weights of the MLP layer according to the context. We argue through theory and experimentation that this simple mechanism may be the reason why LLMs can learn in-context and not only during training. Specifically, we show how a transformer block implicitly transforms a context into a low-rank weight-update of its MLP layer.
♻ ☆ DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
comment: 36 pages
♻ ☆ Cooperative Retrieval-Augmented Generation for Question Answering: Mutual Information Exchange and Ranking by Contrasting Layers NeurIPS 2025
Since large language models (LLMs) have a tendency to generate factually inaccurate output, retrieval-augmented generation (RAG) has gained significant attention as a key means to mitigate this downside of harnessing only LLMs. However, existing RAG methods for simple and multi-hop question answering (QA) are still prone to incorrect retrievals and hallucinations. To address these limitations, we propose CoopRAG, a novel RAG framework for the question answering task in which a retriever and an LLM work cooperatively with each other by exchanging informative knowledge, and the earlier and later layers of the retriever model work cooperatively with each other to accurately rank the retrieved documents relevant to a given query. In this framework, we (i) unroll a question into sub-questions and a reasoning chain in which uncertain positions are masked, (ii) retrieve the documents relevant to the question augmented with the sub-questions and the reasoning chain, (iii) rerank the documents by contrasting layers of the retriever, and (iv) reconstruct the reasoning chain by filling the masked positions via the LLM. Our experiments demonstrate that CoopRAG consistently outperforms state-of-the-art QA methods on three multi-hop QA datasets as well as a simple QA dataset in terms of both the retrieval and QA performances. Our code is available.
comment: Accepted to NeurIPS 2025
♻ ☆ Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity. To bridge this gap, we introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding. To evaluate model performance on this task, we propose ME2, a multimodal benchmark consisting of 1,000 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that current models struggle to identify visual keypoints. In the task of generating keypoint-based explanations, open-source models also face notable difficulties. This highlights a significant gap in current LLMs' ability to perform mathematical visual grounding, engage in visually grounded reasoning, and provide explanations in educational contexts. We expect that the multimodal solution explanation task and the ME2 dataset will catalyze further research on LLMs in education and promote their use as effective, explanation-oriented AI tutors.
comment: 14 pages, 9 figures
♻ ☆ LaF-GRPO: In-Situ Navigation Instruction Generation for the Visually Impaired via GRPO with LLM-as-Follower Reward AAAI-26
Navigation instruction generation for visually impaired (VI) individuals (NIG-VI) is critical yet relatively underexplored. This study focuses on generating precise, in-situ, step-by-step navigation instructions that are practically usable for VI users. Specifically, we propose LaF-GRPO (LLM-as-Follower GRPO), where an LLM simulates VI user responses to navigation instructions, thereby providing feedback rewards to guide the post-training of a Vision-Language Model (VLM). This enhances instruction accuracy and usability while reducing costly real-world data collection needs. To address the scarcity of dedicated benchmarks in this field, we introduce NIG4VI, a 27k-sample open-source dataset to facilitate training and evaluation. It comprises diverse navigation scenarios with accurate spatial coordinates, supporting detailed and open-ended in-situ instruction generation. Experiments on NIG4VI demonstrate the effectiveness of LaF-GRPO through quantitative metrics (e.g., Zero-(LaF-GRPO) boosts BLEU 14\%; SFT+(LaF-GRPO) METEOR 0.542 vs. GPT-4o 0.323), and qualitative analysis further confirms that our method yields more intuitive and safer instructions.
comment: Accepted at AAAI-26
♻ ☆ Feel the Difference? A Comparative Analysis of Emotional Arcs in Real and LLM-Generated CBT Sessions EMNLP
Synthetic therapy dialogues generated by large language models (LLMs) are increasingly used in mental health NLP to simulate counseling scenarios, train models, and supplement limited real-world data. However, it remains unclear whether these synthetic conversations capture the nuanced emotional dynamics of real therapy. In this work, we introduce RealCBT, a dataset of authentic cognitive behavioral therapy (CBT) dialogues, and conduct the first comparative analysis of emotional arcs between real and LLM-generated CBT sessions. We adapt the Utterance Emotion Dynamics framework to analyze fine-grained affective trajectories across valence, arousal, and dominance dimensions. Our analysis spans both full dialogues and individual speaker roles (counselor and client), using real sessions from the RealCBT dataset and synthetic dialogues from the CACTUS dataset. We find that while synthetic dialogues are fluent and structurally coherent, they diverge from real conversations in key emotional properties: real sessions exhibit greater emotional variability, more emotion-laden language, and more authentic patterns of reactivity and regulation. Moreover, emotional arc similarity remains low across all pairings, with especially weak alignment between real and synthetic speakers. These findings underscore the limitations of current LLM-generated therapy data and highlight the importance of emotional fidelity in mental health applications. To support future research, our dataset RealCBT is released at https://gitlab.com/xiaoyi.wang/realcbt-dataset.
comment: Accepted at 2025 EMNLP findings,19 page,2 figures
♻ ☆ From Signal to Turn: Interactional Friction in Modular Speech-to-Speech Pipelines
While voice-based AI systems have achieved remarkable generative capabilities, their interactions often feel conversationally broken. This paper examines the interactional friction that emerges in modular Speech-to-Speech Retrieval-Augmented Generation (S2S-RAG) pipelines. By analyzing a representative production system, we move beyond simple latency metrics to identify three recurring patterns of conversational breakdown: (1) Temporal Misalignment, where system delays violate user expectations of conversational rhythm; (2) Expressive Flattening, where the loss of paralinguistic cues leads to literal, inappropriate responses; and (3) Repair Rigidity, where architectural gating prevents users from correcting errors in real-time. Through system-level analysis, we demonstrate that these friction points should not be understood as defects or failures, but as structural consequences of a modular design that prioritizes control over fluidity. We conclude that building natural spoken AI is an infrastructure design challenge, requiring a shift from optimizing isolated components to carefully choreographing the seams between them.
comment: 6 pages, 1 figure
♻ ☆ Scale-invariant Attention
One persistent challenge in LLM research is the development of attention mechanisms that are able to generalise from training on shorter contexts to inference on longer contexts. We propose two conditions that we expect all effective long context attention mechanisms to have: scale-invariant total attention, and scale-invariant attention sparsity. Under a Gaussian assumption, we show that a simple position-dependent transformation of the attention logits is sufficient for these conditions to hold. Experimentally we find that the resulting scale-invariant attention scheme gives considerable benefits in terms of validation loss when zero-shot generalising from training on short contexts to validation on longer contexts, and is effective at long-context retrieval.
comment: Accepted at Neurips 2025
♻ ☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients
Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
♻ ☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 33 pages, 16 tables, 10 figures
♻ ☆ DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration NeurIPS 2025
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
comment: Accepted at NeurIPS 2025
♻ ☆ Designing LLMs for cultural sensitivity: Evidence from English-Japanese translation
Large language models (LLMs) are increasingly used in everyday communication, including multilingual interactions across different cultural contexts. While LLMs can now generate near-perfect literal translations, it remains unclear whether LLMs support culturally appropriate communication. In this paper, we analyze the cultural sensitivity of different LLM designs when applied to English-Japanese translations of workplace e-mails. Here, we vary the prompting strategies: (1) naive "just translate" prompts, (2) audience-targeted prompts specifying the recipient's cultural background, and (3) instructional prompts with explicit guidance on Japanese communication norms. Using a mixed-methods study, we then analyze culture-specific language patterns to evaluate how well translations adapt to cultural norms. Further, we examine the appropriateness of the tone of the translations as perceived by native speakers. We find that culturally-tailored prompting can improve cultural fit, based on which we offer recommendations for designing culturally inclusive LLMs in multilingual settings.
comment: Posted premature without permission of all authors
♻ ☆ Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought
Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C$^2$SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C$^2$SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C$^2$SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C$^2$SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C$^2$SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
comment: This work has been submitted to the IEEE TASLP for possible publication
♻ ☆ Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and GatedDeltaNet to augment open-weight LLMs. We also propose an efficient self-distillation training method where the base model's all parameters are frozen and only the parameters from AHNs are optimized. For inference, our method sets a default large sliding window size of 32k for attention, and AHNs activate only when the sequence length exceeds the 32k window, addressing the quadratic-complexity issue of attention that emerges at that scale. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
comment: Code: https://github.com/ByteDance-Seed/AHN
♻ ☆ May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning to separate instructions and data, so that the LLM does not follow instructions that might be present with data. We evaluate the robustness of this approach in the whitebox setting by constructing strong optimization-based attacks, and show that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for textual LLMs and apply it to three recent whitebox defenses SecAlign (CCS 2025), SecAlign++, and StruQ (USENIX Security 2025), showing attacks with success rates of up to \textbf{85-95\%} on unseen prompts with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks
♻ ☆ aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code: https://github.com/aixiv-org aiXiv: https://aixiv.science
comment: Preprint under review. Code is available at https://github.com/aixiv-org. Website is available at https://aixiv.science
♻ ☆ GAPS: A Clinically Grounded, Automated Benchmark for Evaluating AI Clinicians
Current benchmarks for AI clinician systems, often based on multiple-choice exams or manual rubrics, fail to capture the depth, robustness, and safety required for real-world clinical practice. To address this, we introduce the GAPS framework, a multidimensional paradigm for evaluating Grounding (cognitive depth), Adequacy (answer completeness), Perturbation (robustness), and Safety. Critically, we developed a fully automated, guideline-anchored pipeline to construct a GAPS-aligned benchmark end-to-end, overcoming the scalability and subjectivity limitations of prior work. Our pipeline assembles an evidence neighborhood, creates dual graph and tree representations, and automatically generates questions across G-levels. Rubrics are synthesized by a DeepResearch agent that mimics GRADE-consistent, PICO-driven evidence review in a ReAct loop. Scoring is performed by an ensemble of large language model (LLM) judges. Validation confirmed our automated questions are high-quality and align with clinician judgment (90% agreement, Cohen's Kappa 0.77). Evaluating state-of-the-art models on the benchmark revealed key failure modes: performance degrades sharply with increased reasoning depth (G-axis), models struggle with answer completeness (A-axis), and they are highly vulnerable to adversarial perturbations (P-axis) as well as certain safety issues (S-axis). This automated, clinically-grounded approach provides a reproducible and scalable method for rigorously evaluating AI clinician systems and guiding their development toward safer, more reliable clinical practice. The benchmark dataset GAPS-NSCLC-preview and evaluation code are publicly available at https://huggingface.co/datasets/AQ-MedAI/GAPS-NSCLC-preview and https://github.com/AQ-MedAI/MedicalAiBenchEval.
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Performing Retrieval-Augmented Generation (RAG) directly on mobile devices is promising for data privacy and responsiveness but is hindered by the architectural constraints of mobile NPUs. Specifically, current hardware struggles with the variable workloads intrinsic to RAG: the transition between processing extensive contexts and generating tokens incurs significant overhead due to static graph constraints, while the memory-bound generation phase leaves computational resources underutilized. In this work, we propose a holistic acceleration framework sd.npu, designed to maximize NPU efficiency for on-device RAG ecosystem. To address the latency caused by NPU graph switching during phase transitions, we introduce a pipelined execution strategy. This approach masks the overhead of model reconfiguration by parallelizing the loading of decoding graphs with the computation of partitioned context chunks (chunked prefill), thereby ensuring continuous execution flow. Furthermore, to mitigate low hardware utilization during the decoding phase, we develop an NPU-centric speculative decoding mechanism. By calibrating generation distributions and extending draft sequences, our method effectively converts idle NPU cycles into valid token throughput. Experiments on commercial smartphones show that our framework significantly outperforms existing baselines, delivering 1.06$\times$--3.81$\times$ speedups and 1.07$\times$--4.71$\times$ energy savings across various RAG tasks.
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Knowledge Editing with Subspace-Aware Key-Value Mappings
Knowledge editing aims to efficiently correct factual errors in Language Models (LMs). The popular locate-then-edit approach modifies an MLP layer by finding an optimal mapping between its input vector (key) and output vector (value) that leads to the expression of the edited knowledge. However, existing methods without any constraints on the key and value vectors cause significant perturbations to the edited model. To address this, we propose Subspace Knowledge Edit (SUIT), a method that identifies and modifies only the subspace of critical features relevant to the edit. Our empirical results on LLaMA-3-8B, GPT-J-6B, and Qwen2.5-7B models show that SUIT dramatically improves knowledge preservation over strong baselines while maintaining high edit efficacy. This effectiveness confirms that SUIT successfully identifies the critical subspace for the edit. Further analyses provide additional validation for our approach. The source code and data will be released to the public upon publication of the paper.
comment: 25 pages, 12 figures, 10 tables
♻ ☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: Due to the fact that this paper was completed without informing the mentor, there are ethical issues that require retraction. We hope for your understanding
♻ ☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backend, and tool access. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building effective and robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest version
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AAAI 2026
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 28 pages, AAAI 2026
♻ ☆ Who is In Charge? Dissecting Role Conflicts in Instruction Following NeurIPS 2025
Large language models should follow hierarchical instructions where system prompts override user inputs, yet recent work shows they often ignore this rule while strongly obeying social cues such as authority or consensus. We extend these behavioral findings with mechanistic interpretations on a large-scale dataset. Linear probing shows conflict-decision signals are encoded early, with system-user and social conflicts forming distinct subspaces. Direct Logit Attribution reveals stronger internal conflict detection in system-user cases but consistent resolution only for social cues. Steering experiments show that, despite using social cues, the vectors surprisingly amplify instruction following in a role-agnostic way. Together, these results explain fragile system obedience and underscore the need for lightweight hierarchy-sensitive alignment methods.
comment: 12 pages, 5 figures, Mech Interp Workshop (NeurIPS 2025) Poster
♻ ☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. We release an online demo at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/, with plans to release the full dataset in the near future. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
♻ ☆ HPU: High-Bandwidth Processing Unit for Scalable, Cost-effective LLM Inference via GPU Co-processing
The attention layer, a core component of Transformer-based LLMs, brings out inefficiencies in current GPU systems due to its low operational intensity and the substantial memory requirements of KV caches. We propose a High-bandwidth Processing Unit (HPU), a memoryintensive co-processor that enhances GPU resource utilization during large-batched LLM inference. By offloading memory-bound operations, the HPU allows the GPU to focus on compute-intensive tasks, increasing overall efficiency. Also, the HPU, as an add-on card, scales out to accommodate surging memory demands driven by large batch sizes and extended sequence lengths. In this paper, we show the HPU prototype implemented with PCIe-based FPGA cards mounted on a GPU system. Our novel GPU-HPU heterogeneous system demonstrates up to 4.1x performance gains and 4.6x energy efficiency improvements over a GPUonly system, providing scalability without increasing the number of GPUs.
comment: 6 pages
♻ ☆ Voice-Interactive Surgical Agent for Multimodal Patient Data Control
In robotic surgery, surgeons fully engage their hands and visual attention in procedures, making it difficult to access and manipulate multimodal patient data without interrupting the workflow. To overcome this problem, we propose a Voice-Interactive Surgical Agent (VISA) built on a hierarchical multi-agent framework consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to interpret voice commands and execute tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models within surgical video. We construct a dataset of 240 user commands organized into hierarchical categories and introduce the Multi-level Orchestration Evaluation Metric (MOEM) that evaluates the performance and robustness at both the command and category levels. Experimental results demonstrate that VISA achieves high stage-level accuracy and workflow-level success rates, while also enhancing its robustness by correcting transcription errors, resolving linguistic ambiguity, and interpreting diverse free-form expressions. These findings highlight the strong potential of VISA to support robotic surgery and its scalability for integrating new functions and agents.
comment: 14 pages, 13 figures, 3 tables
♻ ☆ RL from Teacher-Model Refinement: Gradual Imitation Learning for Machine Translation
Preference-learning methods for machine translation (MT)--such as Direct Preference Optimization (DPO)--have achieved impressive gains but depend heavily on large, carefully curated triplet datasets and often struggle to generalize beyond their tuning domains. We propose Reinforcement Learning from Teacher-Model Refinement (RLfR), a novel framework that removes reliance on static triplets by leveraging continuous, high-quality feedback from an external teacher model (GPT-4o). RLfR frames each translation step as a micro-tutorial: the actor generates a hypothesis, the teacher refines it, and the actor is rewarded based on how closely it aligns with the teacher's refinement. Guided by two complementary signals--(i) negative edit distance, promoting lexical and structural fidelity, and (ii) COMET score, ensuring semantic adequacy--the actor progressively learns to emulate the teacher, mirroring a human learning process through incremental, iterative improvement. On the FLORES-200 benchmark (English to and from German, Spanish, Chinese, Korean, and Japanese), RLfR consistently outperforms both MT-SFT and preference-based baselines, significantly improving COMET (semantic adequacy) and M-ETA (entity preservation) scores.
♻ ☆ Reasoning Within the Mind: Dynamic Multimodal Interleaving in Latent Space
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced cross-modal understanding and reasoning by incorporating Chain-of-Thought (CoT) reasoning in the semantic space. Building upon this, recent studies extend the CoT mechanism to the visual modality, enabling models to integrate visual information during reasoning through external tools or explicit image generation. However, these methods remain dependent on explicit step-by-step reasoning, unstable perception-reasoning interaction and notable computational overhead. Inspired by human cognition, we posit that thinking unfolds not linearly but through the dynamic interleaving of reasoning and perception within the mind. Motivated by this perspective, we propose DMLR, a test-time Dynamic Multimodal Latent Reasoning framework that employs confidence-guided latent policy gradient optimization to refine latent think tokens for in-depth reasoning. Furthermore, a Dynamic Visual Injection Strategy is introduced, which retrieves the most relevant visual features at each latent think token and updates the set of best visual patches. The updated patches are then injected into latent think token to achieve dynamic visual-textual interleaving. Experiments across seven multimodal reasoning benchmarks and various model architectures demonstrate that DMLR significantly improves reasoning and perception performance while maintaining high inference efficiency.
♻ ☆ Evaluating Large Language Models in Crisis Detection: A Real-World Benchmark from Psychological Support Hotlines
Psychological support hotlines serve as critical lifelines for crisis intervention but encounter significant challenges due to rising demand and limited resources. Large language models (LLMs) offer potential support in crisis assessments, yet their effectiveness in emotionally sensitive, real-world clinical settings remains underexplored. We introduce PsyCrisisBench, a comprehensive benchmark of 540 annotated transcripts from the Hangzhou Psychological Assistance Hotline, assessing four key tasks: mood status recognition, suicidal ideation detection, suicide plan identification, and risk assessment. 64 LLMs across 15 model families (including closed-source such as GPT, Claude, Gemini and open-source such as Llama, Qwen, DeepSeek) were evaluated using zero-shot, few-shot, and fine-tuning paradigms. LLMs showed strong results in suicidal ideation detection (F1=0.880), suicide plan identification (F1=0.779), and risk assessment (F1=0.907), with notable gains from few-shot prompting and fine-tuning. Compared to trained human operators, LLMs achieved comparable or superior performance on suicide plan identification and risk assessment, while humans retained advantages on mood status recognition and suicidal ideation detection. Mood status recognition remained challenging (max F1=0.709), likely due to missing vocal cues and semantic ambiguity. Notably, a fine-tuned 1.5B-parameter model (Qwen2.5-1.5B) outperformed larger models on mood and suicidal ideation tasks. LLMs demonstrate performance broadly comparable to trained human operators in text-based crisis assessment, with complementary strengths across task types. PsyCrisisBench provides a robust, real-world evaluation framework to guide future model development and ethical deployment in clinical mental health.
comment: Preprint. Submitted to IEEE Journal of Biomedical and Health Informatics (under review)
♻ ☆ Beyond statistical significance: Quantifying uncertainty and statistical variability in multilingual and multitask NLP evaluation AACL 2025
We introduce a set of resampling-based methods for quantifying uncertainty and statistical precision of evaluation metrics in multilingual and/or multitask NLP benchmarks. We show how experimental variation in performance scores arises from both model and data-related sources, and that accounting for both of them is necessary to avoid substantially underestimating the overall variability over hypothetical replications. Using multilingual question answering, machine translation, and named entity recognition as example tasks, we also demonstrate how resampling methods are useful for quantifying the replication uncertainty of various quantities used in leaderboards such as model rankings and pairwise differences between models.
comment: Accepted at IJCNLP-AACL 2025
Computer Vision and Pattern Recognition 139
☆ Spatia: Video Generation with Updatable Spatial Memory
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.
comment: Project page: https://zhaojingjing713.github.io/Spatia/
☆ In Pursuit of Pixel Supervision for Visual Pre-training
At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.
comment: Project page: https://github.com/facebookresearch/pixio
☆ DiffusionVL: Translating Any Autoregressive Models into Diffusion Vision Language Models
In recent multimodal research, the diffusion paradigm has emerged as a promising alternative to the autoregressive paradigm (AR), owing to its unique decoding advantages. However, due to the capability limitations of the base diffusion language model, the performance of the diffusion vision language model (dVLM) still lags significantly behind that of mainstream models. This leads to a simple yet fundamental question: Is it possible to construct dVLMs based on existing powerful AR models? In response, we propose DiffusionVL, a dVLM family that could be translated from any powerful AR models. Through simple fine-tuning, we successfully adapt AR pre-trained models into the diffusion paradigm. This approach yields two key observations: (1) The paradigm shift from AR-based multimodal models to diffusion is remarkably effective. (2) Direct conversion of an AR language model to a dVLM is also feasible, achieving performance competitive with LLaVA-style visual-instruction-tuning. Further, we introduce a block-decoding design into dVLMs that supports arbitrary-length generation and KV cache reuse, achieving a significant inference speedup. We conduct a large number of experiments. Despite training with less than 5% of the data required by prior methods, DiffusionVL achieves a comprehensive performance improvement-a 34.4% gain on the MMMU-Pro (vision) bench and 37.5% gain on the MME (Cog.) bench-alongside a 2x inference speedup. The model and code are released at https://github.com/hustvl/DiffusionVL.
comment: 11 pages, 5 figures, conference or other essential info
☆ Gaussian Pixel Codec Avatars: A Hybrid Representation for Efficient Rendering
We present Gaussian Pixel Codec Avatars (GPiCA), photorealistic head avatars that can be generated from multi-view images and efficiently rendered on mobile devices. GPiCA utilizes a unique hybrid representation that combines a triangle mesh and anisotropic 3D Gaussians. This combination maximizes memory and rendering efficiency while maintaining a photorealistic appearance. The triangle mesh is highly efficient in representing surface areas like facial skin, while the 3D Gaussians effectively handle non-surface areas such as hair and beard. To this end, we develop a unified differentiable rendering pipeline that treats the mesh as a semi-transparent layer within the volumetric rendering paradigm of 3D Gaussian Splatting. We train neural networks to decode a facial expression code into three components: a 3D face mesh, an RGBA texture, and a set of 3D Gaussians. These components are rendered simultaneously in a unified rendering engine. The networks are trained using multi-view image supervision. Our results demonstrate that GPiCA achieves the realism of purely Gaussian-based avatars while matching the rendering performance of mesh-based avatars.
comment: Tech report
☆ Multi-View Foundation Models
Foundation models are vital tools in various Computer Vision applications. They take as input a single RGB image and output a deep feature representation that is useful for various applications. However, in case we have multiple views of the same 3D scene, they operate on each image independently and do not always produce consistent features for the same 3D point. We propose a way to convert a Foundation Model into a Multi-View Foundation Model. Such a model takes as input a set of images and outputs a feature map for each image such that the features of corresponding points are as consistent as possible. This approach bypasses the need to build a consistent 3D model of the features and allows direct manipulation in the image space. Specifically, we show how to augment Transformers-based foundation models (i.e., DINO, SAM, CLIP) with intermediate 3D-aware attention layers that help match features across different views. As leading examples, we show surface normal estimation and multi-view segmentation tasks. Quantitative experiments show that our method improves feature matching considerably compared to current foundation models.
☆ GateFusion: Hierarchical Gated Cross-Modal Fusion for Active Speaker Detection WACV 2026
Active Speaker Detection (ASD) aims to identify who is currently speaking in each frame of a video. Most state-of-the-art approaches rely on late fusion to combine visual and audio features, but late fusion often fails to capture fine-grained cross-modal interactions, which can be critical for robust performance in unconstrained scenarios. In this paper, we introduce GateFusion, a novel architecture that combines strong pretrained unimodal encoders with a Hierarchical Gated Fusion Decoder (HiGate). HiGate enables progressive, multi-depth fusion by adaptively injecting contextual features from one modality into the other at multiple layers of the Transformer backbone, guided by learnable, bimodally-conditioned gates. To further strengthen multimodal learning, we propose two auxiliary objectives: Masked Alignment Loss (MAL) to align unimodal outputs with multimodal predictions, and Over-Positive Penalty (OPP) to suppress spurious video-only activations. GateFusion establishes new state-of-the-art results on several challenging ASD benchmarks, achieving 77.8% mAP (+9.4%), 86.1% mAP (+2.9%), and 96.1% mAP (+0.5%) on Ego4D-ASD, UniTalk, and WASD benchmarks, respectively, and delivering competitive performance on AVA-ActiveSpeaker. Out-of-domain experiments demonstrate the generalization of our model, while comprehensive ablations show the complementary benefits of each component.
comment: accepted by WACV 2026
☆ End-to-End Training for Autoregressive Video Diffusion via Self-Resampling
Autoregressive video diffusion models hold promise for world simulation but are vulnerable to exposure bias arising from the train-test mismatch. While recent works address this via post-training, they typically rely on a bidirectional teacher model or online discriminator. To achieve an end-to-end solution, we introduce Resampling Forcing, a teacher-free framework that enables training autoregressive video models from scratch and at scale. Central to our approach is a self-resampling scheme that simulates inference-time model errors on history frames during training. Conditioned on these degraded histories, a sparse causal mask enforces temporal causality while enabling parallel training with frame-level diffusion loss. To facilitate efficient long-horizon generation, we further introduce history routing, a parameter-free mechanism that dynamically retrieves the top-k most relevant history frames for each query. Experiments demonstrate that our approach achieves performance comparable to distillation-based baselines while exhibiting superior temporal consistency on longer videos owing to native-length training.
comment: Project Page: https://guoyww.github.io/projects/resampling-forcing/
☆ VLIC: Vision-Language Models As Perceptual Judges for Human-Aligned Image Compression
Evaluations of image compression performance which include human preferences have generally found that naive distortion functions such as MSE are insufficiently aligned to human perception. In order to align compression models to human perception, prior work has employed differentiable perceptual losses consisting of neural networks calibrated on large-scale datasets of human psycho-visual judgments. We show that, surprisingly, state-of-the-art vision-language models (VLMs) can replicate binary human two-alternative forced choice (2AFC) judgments zero-shot when asked to reason about the differences between pairs of images. Motivated to exploit the powerful zero-shot visual reasoning capabilities of VLMs, we propose Vision-Language Models for Image Compression (VLIC), a diffusion-based image compression system designed to be post-trained with binary VLM judgments. VLIC leverages existing techniques for diffusion model post-training with preferences, rather than distilling the VLM judgments into a separate perceptual loss network. We show that calibrating this system on VLM judgments produces competitive or state-of-the-art performance on human-aligned visual compression depending on the dataset, according to perceptual metrics and large-scale user studies. We additionally conduct an extensive analysis of the VLM-based reward design and training procedure and share important insights. More visuals are available at https://kylesargent.github.io/vlic
comment: 14 pages, 8 figures
☆ Skyra: AI-Generated Video Detection via Grounded Artifact Reasoning
The misuse of AI-driven video generation technologies has raised serious social concerns, highlighting the urgent need for reliable AI-generated video detectors. However, most existing methods are limited to binary classification and lack the necessary explanations for human interpretation. In this paper, we present Skyra, a specialized multimodal large language model (MLLM) that identifies human-perceivable visual artifacts in AI-generated videos and leverages them as grounded evidence for both detection and explanation. To support this objective, we construct ViF-CoT-4K for Supervised Fine-Tuning (SFT), which represents the first large-scale AI-generated video artifact dataset with fine-grained human annotations. We then develop a two-stage training strategy that systematically enhances our model's spatio-temporal artifact perception, explanation capability, and detection accuracy. To comprehensively evaluate Skyra, we introduce ViF-Bench, a benchmark comprising 3K high-quality samples generated by over ten state-of-the-art video generators. Extensive experiments demonstrate that Skyra surpasses existing methods across multiple benchmarks, while our evaluation yields valuable insights for advancing explainable AI-generated video detection.
comment: Project Page: https://github.com/JoeLeelyf/Skyra
☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce \model, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
☆ SoFlow: Solution Flow Models for One-Step Generative Modeling
The multi-step denoising process in diffusion and Flow Matching models causes major efficiency issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow), a framework for one-step generation from scratch. By analyzing the relationship between the velocity function and the solution function of the velocity ordinary differential equation (ODE), we propose a Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during training, which improves generation performance. Notably, our consistency loss does not require the calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that, when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the ImageNet 256x256 dataset.
comment: Our code is available at https://github.com/zlab-princeton/SoFlow
☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-compressed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
☆ Hard Labels In! Rethinking the Role of Hard Labels in Mitigating Local Semantic Drift
Soft labels generated by teacher models have become a dominant paradigm for knowledge transfer and recent large-scale dataset distillation such as SRe2L, RDED, LPLD, offering richer supervision than conventional hard labels. However, we observe that when only a limited number of crops per image are used, soft labels are prone to local semantic drift: a crop may visually resemble another class, causing its soft embedding to deviate from the ground-truth semantics of the original image. This mismatch between local visual content and global semantic meaning introduces systematic errors and distribution misalignment between training and testing. In this work, we revisit the overlooked role of hard labels and show that, when appropriately integrated, they provide a powerful content-agnostic anchor to calibrate semantic drift. We theoretically characterize the emergence of drift under few soft-label supervision and demonstrate that hybridizing soft and hard labels restores alignment between visual content and semantic supervision. Building on this insight, we propose a new training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard labels as intermediate corrective signals while retaining the fine-grained advantages of soft labels. Extensive experiments on dataset distillation and large-scale conventional classification benchmarks validate our approach, showing consistent improvements in generalization. On ImageNet-1K, we achieve 42.7% with only 285M storage for soft labels, outperforming prior state-of-the-art LPLD by 9.0%. Our findings re-establish the importance of hard labels as a complementary tool, and call for a rethinking of their role in soft-label-dominated training.
comment: Code at: https://github.com/Jiacheng8/HALD
☆ IC-Effect: Precise and Efficient Video Effects Editing via In-Context Learning
We propose \textbf{IC-Effect}, an instruction-guided, DiT-based framework for few-shot video VFX editing that synthesizes complex effects (\eg flames, particles and cartoon characters) while strictly preserving spatial and temporal consistency. Video VFX editing is highly challenging because injected effects must blend seamlessly with the background, the background must remain entirely unchanged, and effect patterns must be learned efficiently from limited paired data. However, existing video editing models fail to satisfy these requirements. IC-Effect leverages the source video as clean contextual conditions, exploiting the contextual learning capability of DiT models to achieve precise background preservation and natural effect injection. A two-stage training strategy, consisting of general editing adaptation followed by effect-specific learning via Effect-LoRA, ensures strong instruction following and robust effect modeling. To further improve efficiency, we introduce spatiotemporal sparse tokenization, enabling high fidelity with substantially reduced computation. We also release a paired VFX editing dataset spanning $15$ high-quality visual styles. Extensive experiments show that IC-Effect delivers high-quality, controllable, and temporally consistent VFX editing, opening new possibilities for video creation.
☆ OccSTeP: Benchmarking 4D Occupancy Spatio-Temporal Persistence
Autonomous driving requires a persistent understanding of 3D scenes that is robust to temporal disturbances and accounts for potential future actions. We introduce a new concept of 4D Occupancy Spatio-Temporal Persistence (OccSTeP), which aims to address two tasks: (1) reactive forecasting: ''what will happen next'' and (2) proactive forecasting: "what would happen given a specific future action". For the first time, we create a new OccSTeP benchmark with challenging scenarios (e.g., erroneous semantic labels and dropped frames). To address this task, we propose OccSTeP-WM, a tokenizer-free world model that maintains a dense voxel-based scene state and incrementally fuses spatio-temporal context over time. OccSTeP-WM leverages a linear-complexity attention backbone and a recurrent state-space module to capture long-range spatial dependencies while continually updating the scene memory with ego-motion compensation. This design enables online inference and robust performance even when historical sensor input is missing or noisy. Extensive experiments prove the effectiveness of the OccSTeP concept and our OccSTeP-WM, yielding an average semantic mIoU of 23.70% (+6.56% gain) and occupancy IoU of 35.89% (+9.26% gain). The data and code will be open source at https://github.com/FaterYU/OccSTeP.
comment: 16 pages, 5 figures
☆ Persistent feature reconstruction of resident space objects (RSOs) within inverse synthetic aperture radar (ISAR) images
With the rapidly growing population of resident space objects (RSOs) in the near-Earth space environment, detailed information about their condition and capabilities is needed to provide Space Domain Awareness (SDA). Space-based sensing will enable inspection of RSOs at shorter ranges, independent of atmospheric effects, and from all aspects. The use of a sub-THz inverse synthetic aperture radar (ISAR) imaging and sensing system for SDA has been proposed in previous work, demonstrating the achievement of sub-cm image resolution at ranges of up to 100 km. This work focuses on recognition of external structures by use of sequential feature detection and tracking throughout the aligned ISAR images of the satellites. The Hough transform is employed to detect linear features, which are tracked throughout the sequence. ISAR imagery is generated via a metaheuristic simulator capable of modelling encounters for a variety of deployment scenarios. Initial frame-to-frame alignment is achieved through a series of affine transformations to facilitate later association between image features. A gradient-by-ratio method is used for edge detection within individual ISAR images, and edge magnitude and direction are subsequently used to inform a double-weighted Hough transform to detect features with high accuracy. Feature evolution during sequences of frames is analysed. It is shown that the use of feature tracking within sequences with the proposed approach will increase confidence in feature detection and classification, and an example use-case of robust detection of shadowing as a feature is presented.
☆ Robust Multi-view Camera Calibration from Dense Matches
Estimating camera intrinsics and extrinsics is a fundamental problem in computer vision, and while advances in structure-from-motion (SfM) have improved accuracy and robustness, open challenges remain. In this paper, we introduce a robust method for pose estimation and calibration. We consider a set of rigid cameras, each observing the scene from a different perspective, which is a typical camera setup in animal behavior studies and forensic analysis of surveillance footage. Specifically, we analyse the individual components in a structure-from-motion (SfM) pipeline, and identify design choices that improve accuracy. Our main contributions are: (1) we investigate how to best subsample the predicted correspondences from a dense matcher to leverage them in the estimation process. (2) We investigate selection criteria for how to add the views incrementally. In a rigorous quantitative evaluation, we show the effectiveness of our changes, especially for cameras with strong radial distortion (79.9% ours vs. 40.4 vanilla VGGT). Finally, we demonstrate our correspondence subsampling in a global SfM setting where we initialize the poses using VGGT. The proposed pipeline generalizes across a wide range of camera setups, and could thus become a useful tool for animal behavior and forensic analysis.
comment: This paper has been accepted for publication at the 21st International Conference on Computer Vision Theory and Applications (VISAPP 2026). Conference website: https://visapp.scitevents.org
☆ Qwen-Image-Layered: Towards Inherent Editability via Layer Decomposition
Recent visual generative models often struggle with consistency during image editing due to the entangled nature of raster images, where all visual content is fused into a single canvas. In contrast, professional design tools employ layered representations, allowing isolated edits while preserving consistency. Motivated by this, we propose \textbf{Qwen-Image-Layered}, an end-to-end diffusion model that decomposes a single RGB image into multiple semantically disentangled RGBA layers, enabling \textbf{inherent editability}, where each RGBA layer can be independently manipulated without affecting other content. To support variable-length decomposition, we introduce three key components: (1) an RGBA-VAE to unify the latent representations of RGB and RGBA images; (2) a VLD-MMDiT (Variable Layers Decomposition MMDiT) architecture capable of decomposing a variable number of image layers; and (3) a Multi-stage Training strategy to adapt a pretrained image generation model into a multilayer image decomposer. Furthermore, to address the scarcity of high-quality multilayer training images, we build a pipeline to extract and annotate multilayer images from Photoshop documents (PSD). Experiments demonstrate that our method significantly surpasses existing approaches in decomposition quality and establishes a new paradigm for consistent image editing. Our code and models are released on \href{https://github.com/QwenLM/Qwen-Image-Layered}{https://github.com/QwenLM/Qwen-Image-Layered}
comment: 12 pages, 8 figures
☆ FlexAvatar: Learning Complete 3D Head Avatars with Partial Supervision
We introduce FlexAvatar, a method for creating high-quality and complete 3D head avatars from a single image. A core challenge lies in the limited availability of multi-view data and the tendency of monocular training to yield incomplete 3D head reconstructions. We identify the root cause of this issue as the entanglement between driving signal and target viewpoint when learning from monocular videos. To address this, we propose a transformer-based 3D portrait animation model with learnable data source tokens, so-called bias sinks, which enables unified training across monocular and multi-view datasets. This design leverages the strengths of both data sources during inference: strong generalization from monocular data and full 3D completeness from multi-view supervision. Furthermore, our training procedure yields a smooth latent avatar space that facilitates identity interpolation and flexible fitting to an arbitrary number of input observations. In extensive evaluations on single-view, few-shot, and monocular avatar creation tasks, we verify the efficacy of FlexAvatar. Many existing methods struggle with view extrapolation while FlexAvatar generates complete 3D head avatars with realistic facial animations. Website: https://tobias-kirschstein.github.io/flexavatar/
comment: Project website: https://tobias-kirschstein.github.io/flexavatar/ , Video: https://youtu.be/g8wxqYBlRGY
☆ IMKD: Intensity-Aware Multi-Level Knowledge Distillation for Camera-Radar Fusion WACV
High-performance Radar-Camera 3D object detection can be achieved by leveraging knowledge distillation without using LiDAR at inference time. However, existing distillation methods typically transfer modality-specific features directly to each sensor, which can distort their unique characteristics and degrade their individual strengths. To address this, we introduce IMKD, a radar-camera fusion framework based on multi-level knowledge distillation that preserves each sensor's intrinsic characteristics while amplifying their complementary strengths. IMKD applies a three-stage, intensity-aware distillation strategy to enrich the fused representation across the architecture: (1) LiDAR-to-Radar intensity-aware feature distillation to enhance radar representations with fine-grained structural cues, (2) LiDAR-to-Fused feature intensity-guided distillation to selectively highlight useful geometry and depth information at the fusion level, fostering complementarity between the modalities rather than forcing them to align, and (3) Camera-Radar intensity-guided fusion mechanism that facilitates effective feature alignment and calibration. Extensive experiments on the nuScenes benchmark show that IMKD reaches 67.0% NDS and 61.0% mAP, outperforming all prior distillation-based radar-camera fusion methods. Our code and models are available at https://github.com/dfki-av/IMKD/.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. 22 pages, 8 figures. Includes supplementary material
☆ MoonSeg3R: Monocular Online Zero-Shot Segment Anything in 3D with Reconstructive Foundation Priors
In this paper, we focus on online zero-shot monocular 3D instance segmentation, a novel practical setting where existing approaches fail to perform because they rely on posed RGB-D sequences. To overcome this limitation, we leverage CUT3R, a recent Reconstructive Foundation Model (RFM), to provide reliable geometric priors from a single RGB stream. We propose MoonSeg3R, which introduces three key components: (1) a self-supervised query refinement module with spatial-semantic distillation that transforms segmentation masks from 2D visual foundation models (VFMs) into discriminative 3D queries; (2) a 3D query index memory that provides temporal consistency by retrieving contextual queries; and (3) a state-distribution token from CUT3R that acts as a mask identity descriptor to strengthen cross-frame fusion. Experiments on ScanNet200 and SceneNN show that MoonSeg3R is the first method to enable online monocular 3D segmentation and achieves performance competitive with state-of-the-art RGB-D-based systems. Code and models will be released.
☆ On the Effectiveness of Textual Prompting with Lightweight Fine-Tuning for SAM3 Remote Sensing Segmentation
Remote sensing (RS) image segmentation is constrained by the limited availability of annotated data and a gap between overhead imagery and natural images used to train foundational models. This motivates effective adaptation under limited supervision. SAM3 concept-driven framework generates masks from textual prompts without requiring task-specific modifications, which may enable this adaptation. We evaluate SAM3 for RS imagery across four target types, comparing textual, geometric, and hybrid prompting strategies, under lightweight fine-tuning scales with increasing supervision, alongside zero-shot inference. Results show that combining semantic and geometric cues yields the highest performance across targets and metrics. Text-only prompting exhibits the lowest performance, with marked score gaps for irregularly shaped targets, reflecting limited semantic alignment between SAM3 textual representations and their overhead appearances. Nevertheless, textual prompting with light fine-tuning offers a practical performance-effort trade-off for geometrically regular and visually salient targets. Across targets, performance improves between zero-shot inference and fine-tuning, followed by diminishing returns as the supervision scale increases. Namely, a modest geometric annotation effort is sufficient for effective adaptation. A persistent gap between Precision and IoU further indicates that under-segmentation and boundary inaccuracies remain prevalent error patterns in RS tasks, particularly for irregular and less prevalent targets.
☆ GRAN-TED: Generating Robust, Aligned, and Nuanced Text Embedding for Diffusion Models
The text encoder is a critical component of text-to-image and text-to-video diffusion models, fundamentally determining the semantic fidelity of the generated content. However, its development has been hindered by two major challenges: the lack of an efficient evaluation framework that reliably predicts downstream generation performance, and the difficulty of effectively adapting pretrained language models for visual synthesis. To address these issues, we introduce GRAN-TED, a paradigm to Generate Robust, Aligned, and Nuanced Text Embeddings for Diffusion models. Our contribution is twofold. First, we propose TED-6K, a novel text-only benchmark that enables efficient and robust assessment of an encoder's representational quality without requiring costly end-to-end model training. We demonstrate that performance on TED-6K, standardized via a lightweight, unified adapter, strongly correlates with an encoder's effectiveness in downstream generation tasks. Second, guided by this validated framework, we develop a superior text encoder using a novel two-stage training paradigm. This process involves an initial fine-tuning stage on a Multimodal Large Language Model for better visual representation, followed by a layer-wise weighting method to extract more nuanced and potent text features. Our experiments show that the resulting GRAN-TED encoder not only achieves state-of-the-art performance on TED-6K but also leads to demonstrable performance gains in text-to-image and text-to-video generation. Our code is available at the following link: https://anonymous.4open.science/r/GRAN-TED-4FCC/.
☆ BLANKET: Anonymizing Faces in Infant Video Recordings
Ensuring the ethical use of video data involving human subjects, particularly infants, requires robust anonymization methods. We propose BLANKET (Baby-face Landmark-preserving ANonymization with Keypoint dEtection consisTency), a novel approach designed to anonymize infant faces in video recordings while preserving essential facial attributes. Our method comprises two stages. First, a new random face, compatible with the original identity, is generated via inpainting using a diffusion model. Second, the new identity is seamlessly incorporated into each video frame through temporally consistent face swapping with authentic expression transfer. The method is evaluated on a dataset of short video recordings of babies and is compared to the popular anonymization method, DeepPrivacy2. Key metrics assessed include the level of de-identification, preservation of facial attributes, impact on human pose estimation (as an example of a downstream task), and presence of artifacts. Both methods alter the identity, and our method outperforms DeepPrivacy2 in all other respects. The code is available as an easy-to-use anonymization demo at https://github.com/ctu-vras/blanket-infant-face-anonym.
comment: Project website: https://github.com/ctu-vras/blanket-infant-face-anonym
☆ An Efficient and Effective Encoder Model for Vision and Language Tasks in the Remote Sensing Domain
The remote sensing community has recently seen the emergence of methods based on Large Vision and Language Models (LVLMs) that can address multiple tasks at the intersection of computer vision and natural language processing. To fully exploit the potential of such models, a significant focus has been given to the collection of large amounts of training data that cover multiple remote sensing-specific tasks, such as image captioning or visual question answering. However, the cost of using and training LVLMs is high, due to the large number of parameters. While multiple parameter-efficient adaptation techniques have been explored, the computational costs of training and inference with these models can remain prohibitive for most institutions. In this work, we explore the use of encoder-only architectures and propose a model that can effectively address multi-task learning while remaining compact in terms of the number of parameters. In particular, our model tackles combinations of tasks that are not typically explored in a unified model: the generation of text from remote sensing images and cross-modal retrieval. The results of our GeoMELT model - named from Multi-task Efficient Learning Transformer - in established benchmarks confirm the efficacy and efficiency of the proposed approach.
☆ EmoCaliber: Advancing Reliable Visual Emotion Comprehension via Confidence Verbalization and Calibration
Visual Emotion Comprehension (VEC) aims to infer sentiment polarities or emotion categories from affective cues embedded in images. In recent years, Multimodal Large Language Models (MLLMs) have established a popular paradigm in VEC, leveraging their generalizability to unify VEC tasks defined under diverse emotion taxonomies. While this paradigm achieves notable success, it typically formulates VEC as a deterministic task, requiring the model to output a single, definitive emotion label for each image. Such a formulation insufficiently accounts for the inherent subjectivity of emotion perception, overlooking alternative interpretations that may be equally plausible to different viewers. To address this limitation, we propose equipping MLLMs with capabilities to verbalize their confidence in emotion predictions. This additional signal provides users with an estimate of both the plausibility of alternative interpretations and the MLLMs' self-assessed competence, thereby enhancing reliability in practice. Building on this insight, we introduce a three-stage training framework that progressively endows with structured reasoning, teaches to verbalize confidence, and calibrates confidence expression, culminating in EmoCaliber, a confidence-aware MLLM for VEC. Through fair and comprehensive evaluations on the unified benchmark VECBench, EmoCaliber demonstrates overall superiority against existing methods in both emotion prediction and confidence estimation. These results validate the effectiveness of our approach and mark a feasible step toward more reliable VEC systems. Project page: https://github.com/wdqqdw/EmoCaliber.
☆ DeX-Portrait: Disentangled and Expressive Portrait Animation via Explicit and Latent Motion Representations
Portrait animation from a single source image and a driving video is a long-standing problem. Recent approaches tend to adopt diffusion-based image/video generation models for realistic and expressive animation. However, none of these diffusion models realizes high-fidelity disentangled control between the head pose and facial expression, hindering applications like expression-only or pose-only editing and animation. To address this, we propose DeX-Portrait, a novel approach capable of generating expressive portrait animation driven by disentangled pose and expression signals. Specifically, we represent the pose as an explicit global transformation and the expression as an implicit latent code. First, we design a powerful motion trainer to learn both pose and expression encoders for extracting precise and decomposed driving signals. Then we propose to inject the pose transformation into the diffusion model through a dual-branch conditioning mechanism, and the expression latent through cross attention. Finally, we design a progressive hybrid classifier-free guidance for more faithful identity consistency. Experiments show that our method outperforms state-of-the-art baselines on both animation quality and disentangled controllability.
comment: Projectpage: https://syx132.github.io/DeX-Portrait/
☆ VAAS: Vision-Attention Anomaly Scoring for Image Manipulation Detection in Digital Forensics
Recent advances in AI-driven image generation have introduced new challenges for verifying the authenticity of digital evidence in forensic investigations. Modern generative models can produce visually consistent forgeries that evade traditional detectors based on pixel or compression artefacts. Most existing approaches also lack an explicit measure of anomaly intensity, which limits their ability to quantify the severity of manipulation. This paper introduces Vision-Attention Anomaly Scoring (VAAS), a novel dual-module framework that integrates global attention-based anomaly estimation using Vision Transformers (ViT) with patch-level self-consistency scoring derived from SegFormer embeddings. The hybrid formulation provides a continuous and interpretable anomaly score that reflects both the location and degree of manipulation. Evaluations on the DF2023 and CASIA v2.0 datasets demonstrate that VAAS achieves competitive F1 and IoU performance, while enhancing visual explainability through attention-guided anomaly maps. The framework bridges quantitative detection with human-understandable reasoning, supporting transparent and reliable image integrity assessment. The source code for all experiments and corresponding materials for reproducing the results are available open source.
☆ Off The Grid: Detection of Primitives for Feed-Forward 3D Gaussian Splatting
Feed-forward 3D Gaussian Splatting (3DGS) models enable real-time scene generation but are hindered by suboptimal pixel-aligned primitive placement, which relies on a dense, rigid grid and limits both quality and efficiency. We introduce a new feed-forward architecture that detects 3D Gaussian primitives at a sub-pixel level, replacing the pixel grid with an adaptive, "Off The Grid" distribution. Inspired by keypoint detection, our multi-resolution decoder learns to distribute primitives across image patches. This module is trained end-to-end with a 3D reconstruction backbone using self-supervised learning. Our resulting pose-free model generates photorealistic scenes in seconds, achieving state-of-the-art novel view synthesis for feed-forward models. It outperforms competitors while using far fewer primitives, demonstrating a more accurate and efficient allocation that captures fine details and reduces artifacts. Moreover, we observe that by learning to render 3D Gaussians, our 3D reconstruction backbone improves camera pose estimation, suggesting opportunities to train these foundational models without labels.
☆ The LUMirage: An independent evaluation of zero-shot performance in the LUMIR challenge
The LUMIR challenge represents an important benchmark for evaluating deformable image registration methods on large-scale neuroimaging data. While the challenge demonstrates that modern deep learning methods achieve competitive accuracy on T1-weighted MRI, it also claims exceptional zero-shot generalization to unseen contrasts and resolutions, assertions that contradict established understanding of domain shift in deep learning. In this paper, we perform an independent re-evaluation of these zero-shot claims using rigorous evaluation protocols while addressing potential sources of instrumentation bias. Our findings reveal a more nuanced picture: (1) deep learning methods perform comparably to iterative optimization on in-distribution T1w images and even on human-adjacent species (macaque), demonstrating improved task understanding; (2) however, performance degrades significantly on out-of-distribution contrasts (T2, T2*, FLAIR), with Cohen's d scores ranging from 0.7-1.5, indicating substantial practical impact on downstream clinical workflows; (3) deep learning methods face scalability limitations on high-resolution data, failing to run on 0.6 mm isotropic images, while iterative methods benefit from increased resolution; and (4) deep methods exhibit high sensitivity to preprocessing choices. These results align with the well-established literature on domain shift and suggest that claims of universal zero-shot superiority require careful scrutiny. We advocate for evaluation protocols that reflect practical clinical and research workflows rather than conditions that may inadvertently favor particular method classes.
☆ RUMPL: Ray-Based Transformers for Universal Multi-View 2D to 3D Human Pose Lifting
Estimating 3D human poses from 2D images remains challenging due to occlusions and projective ambiguity. Multi-view learning-based approaches mitigate these issues but often fail to generalize to real-world scenarios, as large-scale multi-view datasets with 3D ground truth are scarce and captured under constrained conditions. To overcome this limitation, recent methods rely on 2D pose estimation combined with 2D-to-3D pose lifting trained on synthetic data. Building on our previous MPL framework, we propose RUMPL, a transformer-based 3D pose lifter that introduces a 3D ray-based representation of 2D keypoints. This formulation makes the model independent of camera calibration and the number of views, enabling universal deployment across arbitrary multi-view configurations without retraining or fine-tuning. A new View Fusion Transformer leverages learned fused-ray tokens to aggregate information along rays, further improving multi-view consistency. Extensive experiments demonstrate that RUMPL reduces MPJPE by up to 53% compared to triangulation and over 60% compared to transformer-based image-representation baselines. Results on new benchmarks, including in-the-wild multi-view and multi-person datasets, confirm its robustness and scalability. The framework's source code is available at https://github.com/aghasemzadeh/OpenRUMPL
☆ Evaluation of deep learning architectures for wildlife object detection: A comparative study of ResNet and Inception
Wildlife object detection plays a vital role in biodiversity conservation, ecological monitoring, and habitat protection. However, this task is often challenged by environmental variability, visual similarities among species, and intra-class diversity. This study investigates the effectiveness of two individual deep learning architectures ResNet-101 and Inception v3 for wildlife object detection under such complex conditions. The models were trained and evaluated on a wildlife image dataset using a standardized preprocessing approach, which included resizing images to a maximum dimension of 800 pixels, converting them to RGB format, and transforming them into PyTorch tensors. A ratio of 70:30 training and validation split was used for model development. The ResNet-101 model achieved a classification accuracy of 94% and a mean Average Precision (mAP) of 0.91, showing strong performance in extracting deep hierarchical features. The Inception v3 model performed slightly better, attaining a classification accuracy of 95% and a mAP of 0.92, attributed to its efficient multi-scale feature extraction through parallel convolutions. Despite the strong results, both models exhibited challenges when detecting species with similar visual characteristics or those captured under poor lighting and occlusion. Nonetheless, the findings confirm that both ResNet-101 and Inception v3 are effective models for wildlife object detection tasks and provide a reliable foundation for conservation-focused computer vision applications.
☆ ST-DETrack: Identity-Preserving Branch Tracking in Entangled Plant Canopies via Dual Spatiotemporal Evidence
Automated extraction of individual plant branches from time-series imagery is essential for high-throughput phenotyping, yet it remains computationally challenging due to non-rigid growth dynamics and severe identity fragmentation within entangled canopies. To overcome these stage-dependent ambiguities, we propose ST-DETrack, a spatiotemporal-fusion dual-decoder network designed to preserve branch identity from budding to flowering. Our architecture integrates a spatial decoder, which leverages geometric priors such as position and angle for early-stage tracking, with a temporal decoder that exploits motion consistency to resolve late-stage occlusions. Crucially, an adaptive gating mechanism dynamically shifts reliance between these spatial and temporal cues, while a biological constraint based on negative gravitropism mitigates vertical growth ambiguities. Validated on a Brassica napus dataset, ST-DETrack achieves a Branch Matching Accuracy (BMA) of 93.6%, significantly outperforming spatial and temporal baselines by 28.9 and 3.3 percentage points, respectively. These results demonstrate the method's robustness in maintaining long-term identity consistency amidst complex, dynamic plant architectures.
comment: Under Review at IEEE Transactions on Image Processing
☆ CLIP-FTI: Fine-Grained Face Template Inversion via CLIP-Driven Attribute Conditioning AAAI 2026
Face recognition systems store face templates for efficient matching. Once leaked, these templates pose a threat: inverting them can yield photorealistic surrogates that compromise privacy and enable impersonation. Although existing research has achieved relatively realistic face template inversion, the reconstructed facial images exhibit over-smoothed facial-part attributes (eyes, nose, mouth) and limited transferability. To address this problem, we present CLIP-FTI, a CLIP-driven fine-grained attribute conditioning framework for face template inversion. Our core idea is to use the CLIP model to obtain the semantic embeddings of facial features, in order to realize the reconstruction of specific facial feature attributes. Specifically, facial feature attribute embeddings extracted from CLIP are fused with the leaked template via a cross-modal feature interaction network and projected into the intermediate latent space of a pretrained StyleGAN. The StyleGAN generator then synthesizes face images with the same identity as the templates but with more fine-grained facial feature attributes. Experiments across multiple face recognition backbones and datasets show that our reconstructions (i) achieve higher identification accuracy and attribute similarity, (ii) recover sharper component-level attribute semantics, and (iii) improve cross-model attack transferability compared to prior reconstruction attacks. To the best of our knowledge, ours is the first method to use additional information besides the face template attack to realize face template inversion and obtains SOTA results.
comment: Accepted by AAAI 2026
☆ Step-GUI Technical Report
Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
comment: 41 pages, 26 figures
☆ Photorealistic Phantom Roads in Real Scenes: Disentangling 3D Hallucinations from Physical Geometry
Monocular depth foundation models achieve remarkable generalization by learning large-scale semantic priors, but this creates a critical vulnerability: they hallucinate illusory 3D structures from geometrically planar but perceptually ambiguous inputs. We term this failure the 3D Mirage. This paper introduces the first end-to-end framework to probe, quantify, and tame this unquantified safety risk. To probe, we present 3D-Mirage, the first benchmark of real-world illusions (e.g., street art) with precise planar-region annotations and context-restricted crops. To quantify, we propose a Laplacian-based evaluation framework with two metrics: the Deviation Composite Score (DCS) for spurious non-planarity and the Confusion Composite Score (CCS) for contextual instability. To tame this failure, we introduce Grounded Self-Distillation, a parameter-efficient strategy that surgically enforces planarity on illusion ROIs while using a frozen teacher to preserve background knowledge, thus avoiding catastrophic forgetting. Our work provides the essential tools to diagnose and mitigate this phenomenon, urging a necessary shift in MDE evaluation from pixel-wise accuracy to structural and contextual robustness. Our code and benchmark will be publicly available to foster this exciting research direction.
☆ MiVLA: Towards Generalizable Vision-Language-Action Model with Human-Robot Mutual Imitation Pre-training
While leveraging abundant human videos and simulated robot data poses a scalable solution to the scarcity of real-world robot data, the generalization capability of existing vision-language-action models (VLAs) remains limited by mismatches in camera views, visual appearance, and embodiment morphologies. To overcome this limitation, we propose MiVLA, a generalizable VLA empowered by human-robot mutual imitation pre-training, which leverages inherent behavioral similarity between human hands and robotic arms to build a foundation of strong behavioral priors for both human actions and robotic control. Specifically, our method utilizes kinematic rules with left/right hand coordinate systems for bidirectional alignment between human and robot action spaces. Given human or simulated robot demonstrations, MiVLA is trained to forecast behavior trajectories for one embodiment, and imitate behaviors for another one unseen in the demonstration. Based on this mutual imitation, it integrates the behavioral fidelity of real-world human data with the manipulative diversity of simulated robot data into a unified model, thereby enhancing the generalization capability for downstream tasks. Extensive experiments conducted on both simulation and real-world platforms with three robots (ARX, PiPer and LocoMan), demonstrate that MiVLA achieves strong improved generalization capability, outperforming state-of-the-art VLAs (e.g., $\boldsymbolπ_{0}$, $\boldsymbolπ_{0.5}$ and H-RDT) by 25% in simulation, and 14% in real-world robot control tasks.
☆ Preserving Marker Specificity with Lightweight Channel-Independent Representation Learning
Multiplexed tissue imaging measures dozens of protein markers per cell, yet most deep learning models still apply early channel fusion, assuming shared structure across markers. We investigate whether preserving marker independence, combined with deliberately shallow architectures, provides a more suitable inductive bias for self-supervised representation learning in multiplex data than increasing model scale. Using a Hodgkin lymphoma CODEX dataset with 145,000 cells and 49 markers, we compare standard early-fusion CNNs with channel-separated architectures, including a marker-aware baseline and our novel shallow Channel-Independent Model (CIM-S) with 5.5K parameters. After contrastive pretraining and linear evaluation, early-fusion models show limited ability to retain marker-specific information and struggle particularly with rare-cell discrimination. Channel-independent architectures, and CIM-S in particular, achieve substantially stronger representations despite their compact size. These findings are consistent across multiple self-supervised frameworks, remain stable across augmentation settings, and are reproducible across both the 49-marker and reduced 18-marker settings. These results show that lightweight, channel-independent architectures can match or surpass deep early-fusion CNNs and foundation models for multiplex representation learning. Code is available at https://github.com/SimonBon/CIM-S.
comment: 16 pages, 9 figures, MIDL 2026 conference
☆ SMART: Semantic Matching Contrastive Learning for Partially View-Aligned Clustering
Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
☆ See It Before You Grab It: Deep Learning-based Action Anticipation in Basketball
Computer vision and video understanding have transformed sports analytics by enabling large-scale, automated analysis of game dynamics from broadcast footage. Despite significant advances in player and ball tracking, pose estimation, action localization, and automatic foul recognition, anticipating actions before they occur in sports videos has received comparatively little attention. This work introduces the task of action anticipation in basketball broadcast videos, focusing on predicting which team will gain possession of the ball following a shot attempt. To benchmark this task, a new self-curated dataset comprising 100,000 basketball video clips, over 300 hours of footage, and more than 2,000 manually annotated rebound events is presented. Comprehensive baseline results are reported using state-of-the-art action anticipation methods, representing the first application of deep learning techniques to basketball rebound prediction. Additionally, two complementary tasks, rebound classification and rebound spotting, are explored, demonstrating that this dataset supports a wide range of video understanding applications in basketball, for which no comparable datasets currently exist. Experimental results highlight both the feasibility and inherent challenges of anticipating rebounds, providing valuable insights into predictive modeling for dynamic multi-agent sports scenarios. By forecasting team possession before rebounds occur, this work enables applications in real-time automated broadcasting and post-game analysis tools to support decision-making.
☆ Emotion Recognition in Signers
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models ECIR 2026
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ SemanticBridge -- A Dataset for 3D Semantic Segmentation of Bridges and Domain Gap Analysis
We propose a novel dataset that has been specifically designed for 3D semantic segmentation of bridges and the domain gap analysis caused by varying sensors. This addresses a critical need in the field of infrastructure inspection and maintenance, which is essential for modern society. The dataset comprises high-resolution 3D scans of a diverse range of bridge structures from various countries, with detailed semantic labels provided for each. Our initial objective is to facilitate accurate and automated segmentation of bridge components, thereby advancing the structural health monitoring practice. To evaluate the effectiveness of existing 3D deep learning models on this novel dataset, we conduct a comprehensive analysis of three distinct state-of-the-art architectures. Furthermore, we present data acquired through diverse sensors to quantify the domain gap resulting from sensor variations. Our findings indicate that all architectures demonstrate robust performance on the specified task. However, the domain gap can potentially lead to a decline in the performance of up to 11.4% mIoU.
☆ Expand and Prune: Maximizing Trajectory Diversity for Effective GRPO in Generative Models
Group Relative Policy Optimization (GRPO) is a powerful technique for aligning generative models, but its effectiveness is bottlenecked by the conflict between large group sizes and prohibitive computational costs. In this work, we investigate the trade-off through empirical studies, yielding two key observations. First, we discover the reward clustering phenomenon in which many trajectories collapse toward the group-mean reward, offering limited optimization value. Second, we design a heuristic strategy named Optimal Variance Filtering (OVF), and verify that a high-variance subset of trajectories, selected by OVF can outperform the larger, unfiltered group. However, this static, post-sampling OVF approach still necessitates critical computational overhead, as it performs unnecessary sampling for trajectories that are ultimately discarded. To resolve this, we propose Pro-GRPO (Proactive GRPO), a novel dynamic framework that integrates latent feature-based trajectory pruning into the sampling process. Through the early termination of reward-clustered trajectories, Pro-GRPO reduces computational overhead. Leveraging its efficiency, Pro-GRPO employs an "Expand-and-Prune" strategy. This strategy first expands the size of initial sampling group to maximize trajectory diversity, then it applies multi-step OVF to the latents, avoiding prohibitive computational costs. Extensive experiments on both diffusion-based and flow-based models demonstrate the generality and effectiveness of our Pro-GRPO framework.
comment: 10 pages, 5 figures
☆ Towards Seamless Interaction: Causal Turn-Level Modeling of Interactive 3D Conversational Head Dynamics
Human conversation involves continuous exchanges of speech and nonverbal cues such as head nods, gaze shifts, and facial expressions that convey attention and emotion. Modeling these bidirectional dynamics in 3D is essential for building expressive avatars and interactive robots. However, existing frameworks often treat talking and listening as independent processes or rely on non-causal full-sequence modeling, hindering temporal coherence across turns. We present TIMAR (Turn-level Interleaved Masked AutoRegression), a causal framework for 3D conversational head generation that models dialogue as interleaved audio-visual contexts. It fuses multimodal information within each turn and applies turn-level causal attention to accumulate conversational history, while a lightweight diffusion head predicts continuous 3D head dynamics that captures both coordination and expressive variability. Experiments on the DualTalk benchmark show that TIMAR reduces Fréchet Distance and MSE by 15-30% on the test set, and achieves similar gains on out-of-distribution data. The source code will be released in the GitHub repository https://github.com/CoderChen01/towards-seamleass-interaction.
☆ A Preprocessing Framework for Video Machine Vision under Compression
There has been a growing trend in compressing and transmitting videos from terminals for machine vision tasks. Nevertheless, most video coding optimization method focus on minimizing distortion according to human perceptual metrics, overlooking the heightened demands posed by machine vision systems. In this paper, we propose a video preprocessing framework tailored for machine vision tasks to address this challenge. The proposed method incorporates a neural preprocessor which retaining crucial information for subsequent tasks, resulting in the boosting of rate-accuracy performance. We further introduce a differentiable virtual codec to provide constraints on rate and distortion during the training stage. We directly apply widely used standard codecs for testing. Therefore, our solution can be easily applied to real-world scenarios. We conducted extensive experiments evaluating our compression method on two typical downstream tasks with various backbone networks. The experimental results indicate that our approach can save over 15% of bitrate compared to using only the standard codec anchor version.
comment: Accepted as a POSTER and for publication in the DCC 2024 proceedings
☆ Vision-based module for accurately reading linear scales in a laboratory
Capabilities and the number of vision-based models are increasing rapidly. And these vision models are now able to do more tasks like object detection, image classification, instance segmentation etc. with great accuracy. But models which can take accurate quantitative measurements form an image, as a human can do by just looking at it, are rare. For a robot to work with complete autonomy in a Laboratory environment, it needs to have some basic skills like navigation, handling objects, preparing samples etc. to match human-like capabilities in an unstructured environment. Another important capability is to read measurements from instruments and apparatus. Here, we tried to mimic a human inspired approach to read measurements from a linear scale. As a test case we have picked reading level from a syringe and a measuring cylinder. For a randomly oriented syringe we carry out transformations to correct the orientation. To make the system efficient and robust, the area of interest is reduced to just the linear scale containing part of the image. After that, a series of features were extracted like the major makers, the corresponding digits, and the level indicator location, from which the final reading was calculated. Readings obtained using this system were also compared against human read values of the same instances and an accurate correspondence was observed.
comment: 10 pages, 16 figures
☆ A Masked Reverse Knowledge Distillation Method Incorporating Global and Local Information for Image Anomaly Detection
Knowledge distillation is an effective image anomaly detection and localization scheme. However, a major drawback of this scheme is its tendency to overly generalize, primarily due to the similarities between input and supervisory signals. In order to address this issue, this paper introduces a novel technique called masked reverse knowledge distillation (MRKD). By employing image-level masking (ILM) and feature-level masking (FLM), MRKD transforms the task of image reconstruction into image restoration. Specifically, ILM helps to capture global information by differentiating input signals from supervisory signals. On the other hand, FLM incorporates synthetic feature-level anomalies to ensure that the learned representations contain sufficient local information. With these two strategies, MRKD is endowed with stronger image context capture capacity and is less likely to be overgeneralized. Experiments on the widely-used MVTec anomaly detection dataset demonstrate that MRKD achieves impressive performance: image-level 98.9% AU-ROC, pixel-level 98.4% AU-ROC, and 95.3% AU-PRO. In addition, extensive ablation experiments have validated the superiority of MRKD in mitigating the overgeneralization problem.
☆ MECAD: A multi-expert architecture for continual anomaly detection
In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
comment: Accepted to ICIAP 2025
☆ Prototypical Learning Guided Context-Aware Segmentation Network for Few-Shot Anomaly Detection
Few-shot anomaly detection (FSAD) denotes the identification of anomalies within a target category with a limited number of normal samples. Existing FSAD methods largely rely on pre-trained feature representations to detect anomalies, but the inherent domain gap between pre-trained representations and target FSAD scenarios is often overlooked. This study proposes a Prototypical Learning Guided Context-Aware Segmentation Network (PCSNet) to address the domain gap, thereby improving feature descriptiveness in target scenarios and enhancing FSAD performance. In particular, PCSNet comprises a prototypical feature adaption (PFA) sub-network and a context-aware segmentation (CAS) sub-network. PFA extracts prototypical features as guidance to ensure better feature compactness for normal data while distinct separation from anomalies. A pixel-level disparity classification loss is also designed to make subtle anomalies more distinguishable. Then a CAS sub-network is introduced for pixel-level anomaly localization, where pseudo anomalies are exploited to facilitate the training process. Experimental results on MVTec and MPDD demonstrate the superior FSAD performance of PCSNet, with 94.9% and 80.2% image-level AUROC in an 8-shot scenario, respectively. Real-world applications on automotive plastic part inspection further demonstrate that PCSNet can achieve promising results with limited training samples. Code is available at https://github.com/yuxin-jiang/PCSNet.
☆ Automated Motion Artifact Check for MRI (AutoMAC-MRI): An Interpretable Framework for Motion Artifact Detection and Severity Assessment
Motion artifacts degrade MRI image quality and increase patient recalls. Existing automated quality assessment methods are largely limited to binary decisions and provide little interpretability. We introduce AutoMAC-MRI, an explainable framework for grading motion artifacts across heterogeneous MR contrasts and orientations. The approach uses supervised contrastive learning to learn a discriminative representation of motion severity. Within this feature space, we compute grade-specific affinity scores that quantify an image's proximity to each motion grade, thereby making grade assignments transparent and interpretable. We evaluate AutoMAC-MRI on more than 5000 expert-annotated brain MRI slices spanning multiple contrasts and views. Experiments assessing affinity scores against expert labels show that the scores align well with expert judgment, supporting their use as an interpretable measure of motion severity. By coupling accurate grade detection with per-grade affinity scoring, AutoMAC-MRI enables inline MRI quality control, with the potential to reduce unnecessary rescans and improve workflow efficiency.
☆ KD360-VoxelBEV: LiDAR and 360-degree Camera Cross Modality Knowledge Distillation for Bird's-Eye-View Segmentation
We present the first cross-modality distillation framework specifically tailored for single-panoramic-camera Bird's-Eye-View (BEV) segmentation. Our approach leverages a novel LiDAR image representation fused from range, intensity and ambient channels, together with a voxel-aligned view transformer that preserves spatial fidelity while enabling efficient BEV processing. During training, a high-capacity LiDAR and camera fusion Teacher network extracts both rich spatial and semantic features for cross-modality knowledge distillation into a lightweight Student network that relies solely on a single 360-degree panoramic camera image. Extensive experiments on the Dur360BEV dataset demonstrate that our teacher model significantly outperforms existing camera-based BEV segmentation methods, achieving a 25.6\% IoU improvement. Meanwhile, the distilled Student network attains competitive performance with an 8.5\% IoU gain and state-of-the-art inference speed of 31.2 FPS. Moreover, evaluations on KITTI-360 (two fisheye cameras) confirm that our distillation framework generalises to diverse camera setups, underscoring its feasibility and robustness. This approach reduces sensor complexity and deployment costs while providing a practical solution for efficient, low-cost BEV segmentation in real-world autonomous driving.
☆ SynthSeg-Agents: Multi-Agent Synthetic Data Generation for Zero-Shot Weakly Supervised Semantic Segmentation
Weakly Supervised Semantic Segmentation (WSSS) with image level labels aims to produce pixel level predictions without requiring dense annotations. While recent approaches have leveraged generative models to augment existing data, they remain dependent on real world training samples. In this paper, we introduce a novel direction, Zero Shot Weakly Supervised Semantic Segmentation (ZSWSSS), and propose SynthSeg Agents, a multi agent framework driven by Large Language Models (LLMs) to generate synthetic training data entirely without real images. SynthSeg Agents comprises two key modules, a Self Refine Prompt Agent and an Image Generation Agent. The Self Refine Prompt Agent autonomously crafts diverse and semantically rich image prompts via iterative refinement, memory mechanisms, and prompt space exploration, guided by CLIP based similarity and nearest neighbor diversity filtering. These prompts are then passed to the Image Generation Agent, which leverages Vision Language Models (VLMs) to synthesize candidate images. A frozen CLIP scoring model is employed to select high quality samples, and a ViT based classifier is further trained to relabel the entire synthetic dataset with improved semantic precision. Our framework produces high quality training data without any real image supervision. Experiments on PASCAL VOC 2012 and COCO 2014 show that SynthSeg Agents achieves competitive performance without using real training images. This highlights the potential of LLM driven agents in enabling cost efficient and scalable semantic segmentation.
☆ Generative Preprocessing for Image Compression with Pre-trained Diffusion Models
Preprocessing is a well-established technique for optimizing compression, yet existing methods are predominantly Rate-Distortion (R-D) optimized and constrained by pixel-level fidelity. This work pioneers a shift towards Rate-Perception (R-P) optimization by, for the first time, adapting a large-scale pre-trained diffusion model for compression preprocessing. We propose a two-stage framework: first, we distill the multi-step Stable Diffusion 2.1 into a compact, one-step image-to-image model using Consistent Score Identity Distillation (CiD). Second, we perform a parameter-efficient fine-tuning of the distilled model's attention modules, guided by a Rate-Perception loss and a differentiable codec surrogate. Our method seamlessly integrates with standard codecs without any modification and leverages the model's powerful generative priors to enhance texture and mitigate artifacts. Experiments show substantial R-P gains, achieving up to a 30.13% BD-rate reduction in DISTS on the Kodak dataset and delivering superior subjective visual quality.
comment: Accepted as a PAPER and for publication in the DCC 2026 proceedings
☆ MMMamba: A Versatile Cross-Modal In Context Fusion Framework for Pan-Sharpening and Zero-Shot Image Enhancement
Pan-sharpening aims to generate high-resolution multispectral (HRMS) images by integrating a high-resolution panchromatic (PAN) image with its corresponding low-resolution multispectral (MS) image. To achieve effective fusion, it is crucial to fully exploit the complementary information between the two modalities. Traditional CNN-based methods typically rely on channel-wise concatenation with fixed convolutional operators, which limits their adaptability to diverse spatial and spectral variations. While cross-attention mechanisms enable global interactions, they are computationally inefficient and may dilute fine-grained correspondences, making it difficult to capture complex semantic relationships. Recent advances in the Multimodal Diffusion Transformer (MMDiT) architecture have demonstrated impressive success in image generation and editing tasks. Unlike cross-attention, MMDiT employs in-context conditioning to facilitate more direct and efficient cross-modal information exchange. In this paper, we propose MMMamba, a cross-modal in-context fusion framework for pan-sharpening, with the flexibility to support image super-resolution in a zero-shot manner. Built upon the Mamba architecture, our design ensures linear computational complexity while maintaining strong cross-modal interaction capacity. Furthermore, we introduce a novel multimodal interleaved (MI) scanning mechanism that facilitates effective information exchange between the PAN and MS modalities. Extensive experiments demonstrate the superior performance of our method compared to existing state-of-the-art (SOTA) techniques across multiple tasks and benchmarks.
comment: \link{Code}{https://github.com/Gracewangyy/MMMamba}
☆ Assessing the Visual Enumeration Abilities of Specialized Counting Architectures and Vision-Language Models
Counting the number of items in a visual scene remains a fundamental yet challenging task in computer vision. Traditional approaches to solving this problem rely on domain-specific counting architectures, which are trained using datasets annotated with a predefined set of object categories. However, recent progress in creating large-scale multimodal vision-language models (VLMs) suggests that these domain-general architectures may offer a flexible alternative for open-set object counting. In this study, we therefore systematically compare the performance of state-of-the-art specialized counting architectures against VLMs on two popular counting datasets, as well as on a novel benchmark specifically created to have a finer-grained control over the visual properties of test images. Our findings show that most VLMs can approximately enumerate the number of items in a visual scene, matching or even surpassing the performance of specialized computer vision architectures. Notably, enumeration accuracy significantly improves when VLMs are prompted to generate intermediate representations (i.e., locations and verbal labels) of each object to be counted. Nevertheless, none of the models can reliably count the number of objects in complex visual scenes, showing that further research is still needed to create AI systems that can reliably deploy counting procedures in realistic environments.
☆ Intersectional Fairness in Vision-Language Models for Medical Image Disease Classification
Medical artificial intelligence (AI) systems, particularly multimodal vision-language models (VLM), often exhibit intersectional biases where models are systematically less confident in diagnosing marginalised patient subgroups. Such bias can lead to higher rates of inaccurate and missed diagnoses due to demographically skewed data and divergent distributions of diagnostic certainty. Current fairness interventions frequently fail to address these gaps or compromise overall diagnostic performance to achieve statistical parity among the subgroups. In this study, we developed Cross-Modal Alignment Consistency (CMAC-MMD), a training framework that standardises diagnostic certainty across intersectional patient subgroups. Unlike traditional debiasing methods, this approach equalises the model's decision confidence without requiring sensitive demographic data during clinical inference. We evaluated this approach using 10,015 skin lesion images (HAM10000) with external validation on 12,000 images (BCN20000), and 10,000 fundus images for glaucoma detection (Harvard-FairVLMed), stratifying performance by intersectional age, gender, and race attributes. In the dermatology cohort, the proposed method reduced the overall intersectional missed diagnosis gap (difference in True Positive Rate, $Δ$TPR) from 0.50 to 0.26 while improving the overall Area Under the Curve (AUC) from 0.94 to 0.97 compared to standard training. Similarly, for glaucoma screening, the method reduced $Δ$TPR from 0.41 to 0.31, achieving a better AUC of 0.72 (vs. 0.71 baseline). This establishes a scalable framework for developing high-stakes clinical decision support systems that are both accurate and can perform equitably across diverse patient subgroups, ensuring reliable performance without increasing privacy risks.
☆ Null-LoRA: Low-Rank Adaptation on Null Space
Parameter-efficient fine-tuning methods have gained considerable popularity for adapting large-scale models to downstream tasks, particularly LoRA and its variants. Existing methods perform low-rank adaptation over the full parameter space. However, fine-tuning within a subspace can achieve comparable effectiveness. Inspired by the observation that pre-trained models possess non-trivial null spaces, we propose Null-space based Low-Rank Adaptation (Null-LoRA). Null-LoRA effectively reduces redundancy and enhances effective rank by freezing portions of the low-rank matrices. To further improve parameter efficiency, Null-LoRA constrains the entire incremental update within the null space, maximizing the utilization of incremental updates to adapt to new task paradigms. Null-LoRA surpasses the state of the art with fewer parameters in extensive experiments across image-text retrieval and visual question answering tasks.
☆ SLCFormer: Spectral-Local Context Transformer with Physics-Grounded Flare Synthesis for Nighttime Flare Removal
Lens flare is a common nighttime artifact caused by strong light sources scattering within camera lenses, leading to hazy streaks, halos, and glare that degrade visual quality. However, existing methods usually fail to effectively address nonuniform scattered flares, which severely reduces their applicability to complex real-world scenarios with diverse lighting conditions. To address this issue, we propose SLCFormer, a novel spectral-local context transformer framework for effective nighttime lens flare removal. SLCFormer integrates two key modules: the Frequency Fourier and Excitation Module (FFEM), which captures efficient global contextual representations in the frequency domain to model flare characteristics, and the Directionally-Enhanced Spatial Module (DESM) for local structural enhancement and directional features in the spatial domain for precise flare removal. Furthermore, we introduce a ZernikeVAE-based scatter flare generation pipeline to synthesize physically realistic scatter flares with spatially varying PSFs, bridging optical physics and data-driven training. Extensive experiments on the Flare7K++ dataset demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches in both quantitative metrics and perceptual visual quality, and generalizing robustly to real nighttime scenes with complex flare artifacts.
☆ From Camera to World: A Plug-and-Play Module for Human Mesh Transformation
Reconstructing accurate 3D human meshes in the world coordinate system from in-the-wild images remains challenging due to the lack of camera rotation information. While existing methods achieve promising results in the camera coordinate system by assuming zero camera rotation, this simplification leads to significant errors when transforming the reconstructed mesh to the world coordinate system. To address this challenge, we propose Mesh-Plug, a plug-and-play module that accurately transforms human meshes from camera coordinates to world coordinates. Our key innovation lies in a human-centered approach that leverages both RGB images and depth maps rendered from the initial mesh to estimate camera rotation parameters, eliminating the dependency on environmental cues. Specifically, we first train a camera rotation prediction module that focuses on the human body's spatial configuration to estimate camera pitch angle. Then, by integrating the predicted camera parameters with the initial mesh, we design a mesh adjustment module that simultaneously refines the root joint orientation and body pose. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods on the benchmark datasets SPEC-SYN and SPEC-MTP.
☆ TBC: A Target-Background Contrast Metric for Low-Altitude Infrared and Visible Image Fusion
Infrared and visible image fusion is a pivotal technology in low-altitude UAV reconnaissance missions, providing high-quality data support for downstream tasks such as target detection and tracking by integrating thermal saliency with background texture details.However, traditional no-reference metrics fail(Specifically,like Entropy (EN) and Average Gradient (AG)) in complex low-light environments. They often misinterpret high-frequency sensor noise as valid detail. This creates a "Noise Trap," paradoxically assigning higher scores to noisy images and misguiding fusion algorithms.To address this, we propose the Target-Background Contrast (TBC) metric. Inspired by Weber's Law, TBC focuses on the relative contrast of salient targets rather than global statistics. Unlike traditional metrics, TBC penalizes background noise and rewards target visibility. Experiments on the DroneVehicle dataset demonstrate that TBC aligns better with human perception and provides a reliable standard for low-altitude scenarios.
☆ EPSM: A Novel Metric to Evaluate the Safety of Environmental Perception in Autonomous Driving
Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.
comment: Submitted at IEEE IV 2026
☆ ERIENet: An Efficient RAW Image Enhancement Network under Low-Light Environment SP
RAW images have shown superior performance than sRGB images in many image processing tasks, especially for low-light image enhancement. However, most existing methods for RAW-based low-light enhancement usually sequentially process multi-scale information, which makes it difficult to achieve lightweight models and high processing speeds. Besides, they usually ignore the green channel superiority of RAW images, and fail to achieve better reconstruction performance with good use of green channel information. In this work, we propose an efficient RAW Image Enhancement Network (ERIENet), which parallelly processes multi-scale information with efficient convolution modules, and takes advantage of rich information in green channels to guide the reconstruction of images. Firstly, we introduce an efficient multi-scale fully-parallel architecture with a novel channel-aware residual dense block to extract feature maps, which reduces computational costs and achieves real-time processing speed. Secondly, we introduce a green channel guidance branch to exploit the rich information within the green channels of the input RAW image. It increases the quality of reconstruction results with few parameters and computations. Experiments on commonly used low-light image enhancement datasets show that ERIENet outperforms state-of-the-art methods in enhancing low-light RAW images with higher effiency. It also achieves an optimal speed of over 146 frame-per-second (FPS) for 4K-resolution images on a single NVIDIA GeForce RTX 3090 with 24G memory.
comment: 5 pages, 4 figures, conference ICVISP
☆ Robust and Calibrated Detection of Authentic Multimedia Content
Generative models can synthesize highly realistic content, so-called deepfakes, that are already being misused at scale to undermine digital media authenticity. Current deepfake detection methods are unreliable for two reasons: (i) distinguishing inauthentic content post-hoc is often impossible (e.g., with memorized samples), leading to an unbounded false positive rate (FPR); and (ii) detection lacks robustness, as adversaries can adapt to known detectors with near-perfect accuracy using minimal computational resources. To address these limitations, we propose a resynthesis framework to determine if a sample is authentic or if its authenticity can be plausibly denied. We make two key contributions focusing on the high-precision, low-recall setting against efficient (i.e., compute-restricted) adversaries. First, we demonstrate that our calibrated resynthesis method is the most reliable approach for verifying authentic samples while maintaining controllable, low FPRs. Second, we show that our method achieves adversarial robustness against efficient adversaries, whereas prior methods are easily evaded under identical compute budgets. Our approach supports multiple modalities and leverages state-of-the-art inversion techniques.
☆ Criticality Metrics for Relevance Classification in Safety Evaluation of Object Detection in Automated Driving
Ensuring safety is the primary objective of automated driving, which necessitates a comprehensive and accurate perception of the environment. While numerous performance evaluation metrics exist for assessing perception capabilities, incorporating safety-specific metrics is essential to reliably evaluate object detection systems. A key component for safety evaluation is the ability to distinguish between relevant and non-relevant objects - a challenge addressed by criticality or relevance metrics. This paper presents the first in-depth analysis of criticality metrics for safety evaluation of object detection systems. Through a comprehensive review of existing literature, we identify and assess a range of applicable metrics. Their effectiveness is empirically validated using the DeepAccident dataset, which features a variety of safety-critical scenarios. To enhance evaluation accuracy, we propose two novel application strategies: bidirectional criticality rating and multi-metric aggregation. Our approach demonstrates up to a 100% improvement in terms of criticality classification accuracy, highlighting its potential to significantly advance the safety evaluation of object detection systems in automated vehicles.
comment: Accepted at IEEE ICVES 2025
☆ Cross-modal ultra-scale learning with tri-modalities of renal biopsy images for glomerular multi-disease auxiliary diagnosis
Constructing a multi-modal automatic classification model based on three types of renal biopsy images can assist pathologists in glomerular multi-disease identification. However, the substantial scale difference between transmission electron microscopy (TEM) image features at the nanoscale and optical microscopy (OM) or immunofluorescence microscopy (IM) images at the microscale poses a challenge for existing multi-modal and multi-scale models in achieving effective feature fusion and improving classification accuracy. To address this issue, we propose a cross-modal ultra-scale learning network (CMUS-Net) for the auxiliary diagnosis of multiple glomerular diseases. CMUS-Net utilizes multiple ultrastructural information to bridge the scale difference between nanometer and micrometer images. Specifically, we introduce a sparse multi-instance learning module to aggregate features from TEM images. Furthermore, we design a cross-modal scale attention module to facilitate feature interaction, enhancing pathological semantic information. Finally, multiple loss functions are combined, allowing the model to weigh the importance among different modalities and achieve precise classification of glomerular diseases. Our method follows the conventional process of renal biopsy pathology diagnosis and, for the first time, performs automatic classification of multiple glomerular diseases including IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN) based on images from three modalities and two scales. On an in-house dataset, CMUS-Net achieves an ACC of 95.37+/-2.41%, an AUC of 99.05+/-0.53%, and an F1-score of 95.32+/-2.41%. Extensive experiments demonstrate that CMUS-Net outperforms other well-known multi-modal or multi-scale methods and show its generalization capability in staging MN. Code is available at https://github.com/SMU-GL-Group/MultiModal_lkx/tree/main.
☆ EagleVision: A Dual-Stage Framework with BEV-grounding-based Chain-of-Thought for Spatial Intelligence
Recent spatial intelligence approaches typically attach 3D cues to 2D reasoning pipelines or couple MLLMs with black-box reconstruction modules, leading to weak spatial consistency, limited viewpoint diversity, and evidence chains that cannot be traced back to supporting views. Frameworks for "thinking with images" (e.g., ChatGPT-o3 and DeepEyes) show that stepwise multimodal reasoning can emerge by interleaving hypothesis formation with active acquisition of visual evidence, but they do not address three key challenges in spatial Chain-of-Thought (CoT): building global space perception under strict token budgets, explicitly associating 3D hypotheses with video frames for verification, and designing spatially grounded rewards for reinforcement learning. To address these issues, we present EagleVision, a dual-stage framework for progressive spatial cognition through macro perception and micro verification. In the macro perception stage, EagleVision employs a semantics-perspective-fusion determinantal point process (SPF-DPP) to select a compact set of geometry- and semantics-aware keyframes from long videos under a fixed token budget. In the micro verification stage, we formalize spatial CoT as BEV-grounded pose querying: the agent iteratively predicts poses on a BEV plane, retrieves the nearest real frames, and is trained purely by reinforcement learning with a spatial grounding reward that scores the consistency between predicted poses and observed views. On VSI-Bench, EagleVision achieves state-of-the-art performance among open-source vision-language models, demonstrating strong and generalizable spatial understanding.
comment: 13 pages, 7 figures, 6 tables
☆ Explainable Action Form Assessment by Exploiting Multimodal Chain-of-Thoughts Reasoning
Evaluating whether human action is standard or not and providing reasonable feedback to improve action standardization is very crucial but challenging in real-world scenarios. However, current video understanding methods are mainly concerned with what and where the action is, which is unable to meet the requirements. Meanwhile, most of the existing datasets lack the labels indicating the degree of action standardization, and the action quality assessment datasets lack explainability and detailed feedback. Therefore, we define a new Human Action Form Assessment (AFA) task, and introduce a new diverse dataset CoT-AFA, which contains a large scale of fitness and martial arts videos with multi-level annotations for comprehensive video analysis. We enrich the CoT-AFA dataset with a novel Chain-of-Thought explanation paradigm. Instead of offering isolated feedback, our explanations provide a complete reasoning process--from identifying an action step to analyzing its outcome and proposing a concrete solution. Furthermore, we propose a framework named Explainable Fitness Assessor, which can not only judge an action but also explain why and provide a solution. This framework employs two parallel processing streams and a dynamic gating mechanism to fuse visual and semantic information, thereby boosting its analytical capabilities. The experimental results demonstrate that our method has achieved improvements in explanation generation (e.g., +16.0% in CIDEr), action classification (+2.7% in accuracy) and quality assessment (+2.1% in accuracy), revealing great potential of CoT-AFA for future studies. Our dataset and source code is available at https://github.com/MICLAB-BUPT/EFA.
☆ Borrowing from anything: A generalizable framework for reference-guided instance editing
Reference-guided instance editing is fundamentally limited by semantic entanglement, where a reference's intrinsic appearance is intertwined with its extrinsic attributes. The key challenge lies in disentangling what information should be borrowed from the reference, and determining how to apply it appropriately to the target. To tackle this challenge, we propose GENIE, a Generalizable Instance Editing framework capable of achieving explicit disentanglement. GENIE first corrects spatial misalignments with a Spatial Alignment Module (SAM). Then, an Adaptive Residual Scaling Module (ARSM) learns what to borrow by amplifying salient intrinsic cues while suppressing extrinsic attributes, while a Progressive Attention Fusion (PAF) mechanism learns how to render this appearance onto the target, preserving its structure. Extensive experiments on the challenging AnyInsertion dataset demonstrate that GENIE achieves state-of-the-art fidelity and robustness, setting a new standard for disentanglement-based instance editing.
comment: 5 pages
☆ 3DProxyImg: Controllable 3D-Aware Animation Synthesis from Single Image via 2D-3D Aligned Proxy Embedding
3D animation is central to modern visual media, yet traditional production pipelines remain labor-intensive, expertise-demanding, and computationally expensive. Recent AIGC-based approaches partially automate asset creation and rigging, but they either inherit the heavy costs of full 3D pipelines or rely on video-synthesis paradigms that sacrifice 3D controllability and interactivity. We focus on single-image 3D animation generation and argue that progress is fundamentally constrained by a trade-off between rendering quality and 3D control. To address this limitation, we propose a lightweight 3D animation framework that decouples geometric control from appearance synthesis. The core idea is a 2D-3D aligned proxy representation that uses a coarse 3D estimate as a structural carrier, while delegating high-fidelity appearance and view synthesis to learned image-space generative priors. This proxy formulation enables 3D-aware motion control and interaction comparable to classical pipelines, without requiring accurate geometry or expensive optimization, and naturally extends to coherent background animation. Extensive experiments demonstrate that our method achieves efficient animation generation on low-power platforms and outperforms video-based 3D animation generation in identity preservation, geometric and textural consistency, and the level of precise, interactive control it offers to users.
☆ BEV-Patch-PF: Particle Filtering with BEV-Aerial Feature Matching for Off-Road Geo-Localization
We propose BEV-Patch-PF, a GPS-free sequential geo-localization system that integrates a particle filter with learned bird's-eye-view (BEV) and aerial feature maps. From onboard RGB and depth images, we construct a BEV feature map. For each 3-DoF particle pose hypothesis, we crop the corresponding patch from an aerial feature map computed from a local aerial image queried around the approximate location. BEV-Patch-PF computes a per-particle log-likelihood by matching the BEV feature to the aerial patch feature. On two real-world off-road datasets, our method achieves 7.5x lower absolute trajectory error (ATE) on seen routes and 7.0x lower ATE on unseen routes than a retrieval-based baseline, while maintaining accuracy under dense canopy and shadow. The system runs in real time at 10 Hz on an NVIDIA Tesla T4, enabling practical robot deployment.
☆ Is Nano Banana Pro a Low-Level Vision All-Rounder? A Comprehensive Evaluation on 14 Tasks and 40 Datasets
The rapid evolution of text-to-image generation models has revolutionized visual content creation. While commercial products like Nano Banana Pro have garnered significant attention, their potential as generalist solvers for traditional low-level vision challenges remains largely underexplored. In this study, we investigate the critical question: Is Nano Banana Pro a Low-Level Vision All-Rounder? We conducted a comprehensive zero-shot evaluation across 14 distinct low-level tasks spanning 40 diverse datasets. By utilizing simple textual prompts without fine-tuning, we benchmarked Nano Banana Pro against state-of-the-art specialist models. Our extensive analysis reveals a distinct performance dichotomy: while \textbf{Nano Banana Pro demonstrates superior subjective visual quality}, often hallucinating plausible high-frequency details that surpass specialist models, it lags behind in traditional reference-based quantitative metrics. We attribute this discrepancy to the inherent stochasticity of generative models, which struggle to maintain the strict pixel-level consistency required by conventional metrics. This report identifies Nano Banana Pro as a capable zero-shot contender for low-level vision tasks, while highlighting that achieving the high fidelity of domain specialists remains a significant hurdle.
comment: Technical Report; 65 Pages, 36 Figures, 17 Tables; Poject Page: https://lowlevelbanana.github.io/
☆ Uni-Parser Technical Report
This technical report introduces Uni-Parser, an industrial-grade document parsing engine tailored for scientific literature and patents, delivering high throughput, robust accuracy, and cost efficiency. Unlike pipeline-based document parsing methods, Uni-Parser employs a modular, loosely coupled multi-expert architecture that preserves fine-grained cross-modal alignments across text, equations, tables, figures, and chemical structures, while remaining easily extensible to emerging modalities. The system incorporates adaptive GPU load balancing, distributed inference, dynamic module orchestration, and configurable modes that support either holistic or modality-specific parsing. Optimized for large-scale cloud deployment, Uni-Parser achieves a processing rate of up to 20 PDF pages per second on 8 x NVIDIA RTX 4090D GPUs, enabling cost-efficient inference across billions of pages. This level of scalability facilitates a broad spectrum of downstream applications, ranging from literature retrieval and summarization to the extraction of chemical structures, reaction schemes, and bioactivity data, as well as the curation of large-scale corpora for training next-generation large language models and AI4Science models.
☆ PMMD: A pose-guided multi-view multi-modal diffusion for person generation
Generating consistent human images with controllable pose and appearance is essential for applications in virtual try on, image editing, and digital human creation. Current methods often suffer from occlusions, garment style drift, and pose misalignment. We propose Pose-guided Multi-view Multimodal Diffusion (PMMD), a diffusion framework that synthesizes photorealistic person images conditioned on multi-view references, pose maps, and text prompts. A multimodal encoder jointly models visual views, pose features, and semantic descriptions, which reduces cross modal discrepancy and improves identity fidelity. We further design a ResCVA module to enhance local detail while preserving global structure, and a cross modal fusion module that integrates image semantics with text throughout the denoising pipeline. Experiments on the DeepFashion MultiModal dataset show that PMMD outperforms representative baselines in consistency, detail preservation, and controllability. Project page and code are available at https://github.com/ZANMANGLOOPYE/PMMD.
☆ Tracking spatial temporal details in ultrasound long video via wavelet analysis and memory bank
Medical ultrasound videos are widely used for medical inspections, disease diagnosis and surgical planning. High-fidelity lesion area and target organ segmentation constitutes a key component of the computer-assisted surgery workflow. The low contrast levels and noisy backgrounds of ultrasound videos cause missegmentation of organ boundary, which may lead to small object losses and increase boundary segmentation errors. Object tracking in long videos also remains a significant research challenge. To overcome these challenges, we propose a memory bank-based wavelet filtering and fusion network, which adopts an encoder-decoder structure to effectively extract fine-grained detailed spatial features and integrate high-frequency (HF) information. Specifically, memory-based wavelet convolution is presented to simultaneously capture category, detailed information and utilize adjacent information in the encoder. Cascaded wavelet compression is used to fuse multiscale frequency-domain features and expand the receptive field within each convolutional layer. A long short-term memory bank using cross-attention and memory compression mechanisms is designed to track objects in long video. To fully utilize the boundary-sensitive HF details of feature maps, an HF-aware feature fusion module is designed via adaptive wavelet filters in the decoder. In extensive benchmark tests conducted on four ultrasound video datasets (two thyroid nodule, the thyroid gland, the heart datasets) compared with the state-of-the-art methods, our method demonstrates marked improvements in segmentation metrics. In particular, our method can more accurately segment small thyroid nodules, demonstrating its effectiveness for cases involving small ultrasound objects in long video. The code is available at https://github.com/XiAooZ/MWNet.
comment: Chenxiao Zhang and Runshi Zhang contributed equally to this work. 14 pages, 11 figures
☆ Meta-learners for few-shot weakly-supervised optic disc and cup segmentation on fundus images
This study develops meta-learners for few-shot weakly-supervised segmentation (FWS) to address the challenge of optic disc (OD) and optic cup (OC) segmentation for glaucoma diagnosis with limited labeled fundus images. We significantly improve existing meta-learners by introducing Omni meta-training which balances data usage and diversifies the number of shots. We also develop their efficient versions that reduce computational costs. In addition, we develop sparsification techniques that generate more customizable and representative scribbles and other sparse labels. After evaluating multiple datasets, we find that Omni and efficient versions outperform the original versions, with the best meta-learner being Efficient Omni ProtoSeg (EO-ProtoSeg). It achieves intersection over union (IoU) scores of 88.15% for OD and 71.17% for OC on the REFUGE dataset using just one sparsely labeled image, outperforming few-shot and semi-supervised methods which require more labeled images. Its best performance reaches 86.80% for OD and 71.78%for OC on DRISHTIGS, 88.21% for OD and 73.70% for OC on REFUGE, 80.39% for OD and 52.65% for OC on REFUGE. EO-ProtoSeg is comparable to unsupervised domain adaptation methods yet much lighter with less than two million parameters and does not require any retraining.
comment: Submitted to Computers in Biology and Medicine
☆ Asynchronous Event Stream Noise Filtering for High-frequency Structure Deformation Measurement
Large-scale structures suffer high-frequency deformations due to complex loads. However, harsh lighting conditions and high equipment costs limit measurement methods based on traditional high-speed cameras. This paper proposes a method to measure high-frequency deformations by exploiting an event camera and LED markers. Firstly, observation noise is filtered based on the characteristics of the event stream generated by LED markers blinking and spatiotemporal correlation. Then, LED markers are extracted from the event stream after differentiating between motion-induced events and events from LED blinking, which enables the extraction of high-speed moving LED markers. Ultimately, high-frequency planar deformations are measured by a monocular event camera. Experimental results confirm the accuracy of our method in measuring high-frequency planar deformations.
comment: 13 pages, 12 figures
☆ MVGSR: Multi-View Consistent 3D Gaussian Super-Resolution via Epipolar Guidance
Scenes reconstructed by 3D Gaussian Splatting (3DGS) trained on low-resolution (LR) images are unsuitable for high-resolution (HR) rendering. Consequently, a 3DGS super-resolution (SR) method is needed to bridge LR inputs and HR rendering. Early 3DGS SR methods rely on single-image SR networks, which lack cross-view consistency and fail to fuse complementary information across views. More recent video-based SR approaches attempt to address this limitation but require strictly sequential frames, limiting their applicability to unstructured multi-view datasets. In this work, we introduce Multi-View Consistent 3D Gaussian Splatting Super-Resolution (MVGSR), a framework that focuses on integrating multi-view information for 3DGS rendering with high-frequency details and enhanced consistency. We first propose an Auxiliary View Selection Method based on camera poses, making our method adaptable for arbitrarily organized multi-view datasets without the need of temporal continuity or data reordering. Furthermore, we introduce, for the first time, an epipolar-constrained multi-view attention mechanism into 3DGS SR, which serves as the core of our proposed multi-view SR network. This design enables the model to selectively aggregate consistent information from auxiliary views, enhancing the geometric consistency and detail fidelity of 3DGS representations. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both object-centric and scene-level 3DGS SR benchmarks.
comment: 9 pages, 7 figures
☆ HERO: Hierarchical Traversable 3D Scene Graphs for Embodied Navigation Among Movable Obstacles
3D Scene Graphs (3DSGs) constitute a powerful representation of the physical world, distinguished by their abilities to explicitly model the complex spatial, semantic, and functional relationships between entities, rendering a foundational understanding that enables agents to interact intelligently with their environment and execute versatile behaviors. Embodied navigation, as a crucial component of such capabilities, leverages the compact and expressive nature of 3DSGs to enable long-horizon reasoning and planning in complex, large-scale environments. However, prior works rely on a static-world assumption, defining traversable space solely based on static spatial layouts and thereby treating interactable obstacles as non-traversable. This fundamental limitation severely undermines their effectiveness in real-world scenarios, leading to limited reachability, low efficiency, and inferior extensibility. To address these issues, we propose HERO, a novel framework for constructing Hierarchical Traversable 3DSGs, that redefines traversability by modeling operable obstacles as pathways, capturing their physical interactivity, functional semantics, and the scene's relational hierarchy. The results show that, relative to its baseline, HERO reduces PL by 35.1% in partially obstructed environments and increases SR by 79.4% in fully obstructed ones, demonstrating substantially higher efficiency and reachability.
☆ A Gaussian Parameterization for Direct Atomic Structure Identification in Electron Tomography
Atomic electron tomography (AET) enables the determination of 3D atomic structures by acquiring a sequence of 2D tomographic projection measurements of a particle and then computationally solving for its underlying 3D representation. Classical tomography algorithms solve for an intermediate volumetric representation that is post-processed into the atomic structure of interest. In this paper, we reformulate the tomographic inverse problem to solve directly for the locations and properties of individual atoms. We parameterize an atomic structure as a collection of Gaussians, whose positions and properties are learnable. This representation imparts a strong physical prior on the learned structure, which we show yields improved robustness to real-world imaging artifacts. Simulated experiments and a proof-of-concept result on experimentally-acquired data confirm our method's potential for practical applications in materials characterization and analysis with Transmission Electron Microscopy (TEM). Our code is available at https://github.com/nalinimsingh/gaussian-atoms.
comment: Published in ICCP 2025. 14 pages, 10 figures. Keywords: Atomic electron tomography, Gaussian splatting
☆ Model Agnostic Preference Optimization for Medical Image Segmentation
Preference optimization offers a scalable supervision paradigm based on relative preference signals, yet prior attempts in medical image segmentation remain model-specific and rely on low-diversity prediction sampling. In this paper, we propose MAPO (Model-Agnostic Preference Optimization), a training framework that utilizes Dropout-driven stochastic segmentation hypotheses to construct preference-consistent gradients without direct ground-truth supervision. MAPO is fully architecture- and dimensionality-agnostic, supporting 2D/3D CNN and Transformer-based segmentation pipelines. Comprehensive evaluations across diverse medical datasets reveal that MAPO consistently enhances boundary adherence, reduces overfitting, and yields more stable optimization dynamics compared to conventional supervised training.
☆ Evaluating the Capability of Video Question Generation for Expert Knowledge Elicitation WACV 2026
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .
comment: WACV 2026 accepted
☆ Beyond Proximity: A Keypoint-Trajectory Framework for Classifying Affiliative and Agonistic Social Networks in Dairy Cattle
Precision livestock farming requires objective assessment of social behavior to support herd welfare monitoring, yet most existing approaches infer interactions using static proximity thresholds that cannot distinguish affiliative from agonistic behaviors in complex barn environments. This limitation constrains the interpretability of automated social network analysis in commercial settings. We present a pose-based computational framework for interaction classification that moves beyond proximity heuristics by modeling the spatiotemporal geometry of anatomical keypoints. Rather than relying on pixel-level appearance or simple distance measures, the proposed method encodes interaction-specific motion signatures from keypoint trajectories, enabling differentiation of social interaction valence. The framework is implemented as an end-to-end computer vision pipeline integrating YOLOv11 for object detection (mAP@0.50: 96.24%), supervised individual identification (98.24% accuracy), ByteTrack for multi-object tracking (81.96% accuracy), ZebraPose for 27-point anatomical keypoint estimation, and a support vector machine classifier trained on pose-derived distance dynamics. On annotated interaction clips collected from a commercial dairy barn, the classifier achieved 77.51% accuracy in distinguishing affiliative and agonistic behaviors using pose information alone. Comparative evaluation against a proximity-only baseline shows substantial gains in behavioral discrimination, particularly for affiliative interactions. The results establish a proof-of-concept for automated, vision-based inference of social interactions suitable for constructing interaction-aware social networks, with near-real-time performance on commodity hardware.
comment: 36 pages, 12 figures, 8 tables
☆ Where is the Watermark? Interpretable Watermark Detection at the Block Level WACV 2026
Recent advances in generative AI have enabled the creation of highly realistic digital content, raising concerns around authenticity, ownership, and misuse. While watermarking has become an increasingly important mechanism to trace and protect digital media, most existing image watermarking schemes operate as black boxes, producing global detection scores without offering any insight into how or where the watermark is present. This lack of transparency impacts user trust and makes it difficult to interpret the impact of tampering. In this paper, we present a post-hoc image watermarking method that combines localised embedding with region-level interpretability. Our approach embeds watermark signals in the discrete wavelet transform domain using a statistical block-wise strategy. This allows us to generate detection maps that reveal which regions of an image are likely watermarked or altered. We show that our method achieves strong robustness against common image transformations while remaining sensitive to semantic manipulations. At the same time, the watermark remains highly imperceptible. Compared to prior post-hoc methods, our approach offers more interpretable detection while retaining competitive robustness. For example, our watermarks are robust to cropping up to half the image.
comment: 20 pages, 14 figures. Camera-ready for WACV 2026
☆ Evaluating Large Language Models on Multimodal Chemistry Olympiad Exams
Multimodal scientific reasoning remains a significant challenge for large language models (LLMs), particularly in chemistry, where problem-solving relies on symbolic diagrams, molecular structures, and structured visual data. Here, we systematically evaluate 40 proprietary and open-source multimodal LLMs, including GPT-5, o3, Gemini-2.5-Pro, and Qwen2.5-VL, on a curated benchmark of Olympiad-style chemistry questions drawn from over two decades of U.S. National Chemistry Olympiad (USNCO) exams. These questions require integrated visual and textual reasoning across diverse modalities. We find that many models struggle with modality fusion, where in some cases, removing the image even improves accuracy, indicating misalignment in vision-language integration. Chain-of-Thought prompting consistently enhances both accuracy and visual grounding, as demonstrated through ablation studies and occlusion-based interpretability. Our results reveal critical limitations in the scientific reasoning abilities of current MLLMs, providing actionable strategies for developing more robust and interpretable multimodal systems in chemistry. This work provides a timely benchmark for measuring progress in domain-specific multimodal AI and underscores the need for further advances at the intersection of artificial intelligence and scientific reasoning.
comment: Published at Communications Chemistry
♻ ☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
♻ ☆ MedicoSAM: Robust Improvement of SAM for Medical Imaging
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
♻ ☆ DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral Planning States for Autonomous Driving
Large language models (LLMs) have opened up new possibilities for intelligent agents, endowing them with human-like thinking and cognitive abilities. In this work, we delve into the potential of large language models (LLMs) in autonomous driving (AD). We introduce DriveMLM, an LLM-based AD framework that can perform close-loop autonomous driving in realistic simulators. To this end, (1) we bridge the gap between the language decisions and the vehicle control commands by standardizing the decision states according to the off-the-shelf motion planning module. (2) We employ a multimodal LLM (MLLM) to model the behavior planning module of a module AD system, which uses driving rules, user commands, and inputs from various sensors (e.g., camera, lidar) as input and makes driving decisions and provide explanations; This model can plug-and-play in existing AD systems such as Autopilot and Apollo for close-loop driving. (3) We design an effective data engine to collect a dataset that includes decision state and corresponding explanation annotation for model training and evaluation. We conduct extensive experiments and show that replacing the decision-making modules of the Autopilot and Apollo with DriveMLM resulted in significant improvements of 3.2 and 4.7 points on the CARLA Town05 Long respectively, demonstrating the effectiveness of our model. We hope this work can serve as a baseline for autonomous driving with LLMs.
comment: Accepted to Visual Intelligence
♻ ☆ Binarization-Aware Adjuster: A Theoretical Framework for Bridging Continuous Optimization and Discrete Inference with Application to Edge Detection
In machine learning, discrete decision-making tasks exhibit a fundamental inconsistency between training and inference: models are optimized using continuous-valued outputs, yet evaluated through discrete predictions. This discrepancy arises from the non-differentiability of discretization operations, weakening the alignment between optimization objectives and practical decision outcomes. To address this, we present a theoretical framework for constructing a Binarization-Aware Adjuster (BAA) that integrates binarization behavior directly into gradient-based learning. Central to the approach is a Distance Weight Function (DWF) that dynamically modulates pixel-wise loss contributions based on prediction correctness and proximity to the decision boundary, thereby emphasizing decision-critical regions while de-emphasizing confidently correct samples. Furthermore, a self-adaptive threshold estimation procedure is introduced to better match optimization dynamics with inference conditions. As one of its applications, we implement experiments on the edge detection (ED) task, which also demonstrate the effectiveness of the proposed method experimentally. Beyond binary decision tasks and ED, the proposed framework provides a general strategy for aligning continuous optimization with discrete evaluation and can be extended to multi-valued decision processes in broader structured prediction problems.
comment: 30 pages
♻ ☆ DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Diffusion models have emerged as powerful generative priors for high-dimensional inverse problems, yet learning them when only corrupted or noisy observations are available remains challenging. In this work, we propose a new method for training diffusion models with Expectation-Maximization (EM) from corrupted data. Our proposed method, DiffEM, utilizes conditional diffusion models to reconstruct clean data from observations in the E-step, and then uses the reconstructed data to refine the conditional diffusion model in the M-step. Theoretically, we provide monotonic convergence guarantees for the DiffEM iteration, assuming appropriate statistical conditions. We demonstrate the effectiveness of our approach through experiments on various image reconstruction tasks.
♻ ☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall. The dataset and code are available at https://github.com/ostadabbas/AdSum204.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
♻ ☆ FitPro: A Zero-Shot Framework for Interactive Text-based Pedestrian Retrieval in Open World
Text-based Pedestrian Retrieval (TPR) deals with retrieving specific target pedestrians in visual scenes according to natural language descriptions. Although existing methods have achieved progress under constrained settings, interactive retrieval in the open-world scenario still suffers from limited model generalization and insufficient semantic understanding. To address these challenges, we propose FitPro, an open-world interactive zero-shot TPR framework with enhanced semantic comprehension and cross-scene adaptability. FitPro has three innovative components: Feature Contrastive Decoding (FCD), Incremental Semantic Mining (ISM), and Query-aware Hierarchical Retrieval (QHR). The FCD integrates prompt-guided contrastive decoding to generate high-quality structured pedestrian descriptions from denoised images, effectively alleviating semantic drift in zero-shot scenarios. The ISM constructs holistic pedestrian representations from multi-view observations to achieve global semantic modeling in multi-turn interactions, thereby improving robustness against viewpoint shifts and fine-grained variations in descriptions. The QHR dynamically optimizes the retrieval pipeline according to query types, enabling efficient adaptation to multi-modal and multi-view inputs. Extensive experiments on five public datasets and two evaluation protocols demonstrate that FitPro significantly overcomes the generalization limitations and semantic modeling constraints of existing methods in interactive retrieval, paving the way for practical deployment.
comment: 12pages,6 figures
♻ ☆ Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
♻ ☆ Do MLLMs Exhibit Human-like Perceptual Behaviors? HVSBench: A Benchmark for MLLM Alignment with Human Perceptual Behavior
While Multimodal Large Language Models (MLLMs) excel at many vision tasks, it is unknown if they exhibit human-like perceptual behaviors. To evaluate this, we introduce HVSBench, the first large-scale benchmark with over 85,000 samples designed to test MLLM alignment with the human visual system (HVS). The benchmark covers 13 categories across 5 key fields: Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Our comprehensive evaluation reveals a significant perceptual gap: even state-of-the-art MLLMs achieve only moderate results. In contrast, human participants demonstrate strong performance, significantly outperforming all models. This underscores the high quality of HVSBench and the need for more human-aligned AI. We believe our benchmark will be a critical tool for developing the next generation of explainable MLLMs.
comment: Project page: https://jiaying.link/HVSBench/
♻ ☆ MovSemCL: Movement-Semantics Contrastive Learning for Trajectory Similarity (Extension) AAAI 2026
Trajectory similarity computation is fundamental functionality that is used for, e.g., clustering, prediction, and anomaly detection. However, existing learning-based methods exhibit three key limitations: (1) insufficient modeling of trajectory semantics and hierarchy, lacking both movement dynamics extraction and multi-scale structural representation; (2) high computational costs due to point-wise encoding; and (3) use of physically implausible augmentations that distort trajectory semantics. To address these issues, we propose MovSemCL, a movement-semantics contrastive learning framework for trajectory similarity computation. MovSemCL first transforms raw GPS trajectories into movement-semantics features and then segments them into patches. Next, MovSemCL employs intra- and inter-patch attentions to encode local as well as global trajectory patterns, enabling efficient hierarchical representation and reducing computational costs. Moreover, MovSemCL includes a curvature-guided augmentation strategy that preserves informative segments (e.g., turns and intersections) and masks redundant ones, generating physically plausible augmented views. Experiments on real-world datasets show that MovSemCL is capable of outperforming state-of-the-art methods, achieving mean ranks close to the ideal value of 1 at similarity search tasks and improvements by up to 20.3% at heuristic approximation, while reducing inference latency by up to 43.4%.
comment: 8 pages, 6 figures; accepted by AAAI 2026 as an Oral paper
♻ ☆ If you can describe it, they can see it: Cross-Modal Learning of Visual Concepts from Textual Descriptions
Humans can visualize new and unknown concepts from their natural language description, based on their experience and previous knowledge. Insipired by this, we present a way to extend this ability to Vision-Language Models (VLMs), teaching them novel concepts by only using a textual description. We refer to this approach as Knowledge Transfer (KT). Our hypothesis is that the knowledge of a pre-trained VLM can be re-used to represent previously unknown concepts. Provided with a textual description of the novel concept, KT works by aligning relevant features of the visual encoder, obtained through model inversion, to its text representation. Differently from approaches relying on visual examples or external generative models, KT transfers knowledge within the same VLM by injecting visual knowledge directly from the text. Through an extensive evaluation on several VLM tasks, including classification, segmentation, image-text retrieval, and captioning, we show that: 1) KT can efficiently introduce new visual concepts from a single textual description; 2) the same principle can be used to refine the representation of existing concepts; and 3) KT significantly improves the performance of zero-shot VLMs.
comment: 27 pages. Under review
♻ ☆ LoRAverse: A Submodular Framework to Retrieve Diverse Adapters for Diffusion Models
Low-rank Adaptation (LoRA) models have revolutionized the personalization of pre-trained diffusion models by enabling fine-tuning through low-rank, factorized weight matrices specifically optimized for attention layers. These models facilitate the generation of highly customized content across a variety of objects, individuals, and artistic styles without the need for extensive retraining. Despite the availability of over 100K LoRA adapters on platforms like Civit.ai, users often face challenges in navigating, selecting, and effectively utilizing the most suitable adapters due to their sheer volume, diversity, and lack of structured organization. This paper addresses the problem of selecting the most relevant and diverse LoRA models from this vast database by framing the task as a combinatorial optimization problem and proposing a novel submodular framework. Our quantitative and qualitative experiments demonstrate that our method generates diverse outputs across a wide range of domains.
♻ ☆ ViRC: Enhancing Visual Interleaved Mathematical CoT with Reason Chunking
CoT has significantly enhanced the reasoning ability of LLMs while it faces challenges when extended to multimodal domains, particularly in mathematical tasks. Existing MLLMs typically perform textual reasoning solely from a single static mathematical image, overlooking dynamic visual acquisition during reasoning. In contrast, humans repeatedly examine visual image and employ step-by-step reasoning to prove intermediate propositions. This strategy of decomposing the problem-solving process into key logical nodes adheres to Miller's Law in cognitive science. Inspired by this insight, we propose a ViRC framework for multimodal mathematical tasks, introducing a Reason Chunking mechanism that structures multimodal mathematical CoT into consecutive Critical Reasoning Units (CRUs) to simulate human expert problem-solving patterns. CRUs ensure intra-unit textual coherence for intermediate proposition verification while integrating visual information across units to generate subsequent propositions and support structured reasoning. To this end, we present CRUX dataset by using three visual tools and four reasoning patterns to provide explicitly annotated CRUs across multiple reasoning paths for each mathematical problem. Leveraging the CRUX dataset, we propose a progressive training strategy inspired by human cognitive learning, which includes Instructional SFT, Practice SFT, and Strategic RL, aimed at further strengthening the Reason Chunking ability of the model. The resulting ViRC-7B model achieves a 18.8% average improvement over baselines across multiple mathematical benchmarks. Code is available at https://github.com/Leon-LihongWang/ViRC.
comment: Code is available at https://github.com/Leon-LihongWang/ViRC
♻ ☆ PP-Motion: Physical-Perceptual Fidelity Evaluation for Human Motion Generation
Human motion generation has found widespread applications in AR/VR, film, sports, and medical rehabilitation, offering a cost-effective alternative to traditional motion capture systems. However, evaluating the fidelity of such generated motions is a crucial, multifaceted task. Although previous approaches have attempted at motion fidelity evaluation using human perception or physical constraints, there remains an inherent gap between human-perceived fidelity and physical feasibility. Moreover, the subjective and coarse binary labeling of human perception further undermines the development of a robust data-driven metric. We address these issues by introducing a physical labeling method. This method evaluates motion fidelity by calculating the minimum modifications needed for a motion to align with physical laws. With this approach, we are able to produce fine-grained, continuous physical alignment annotations that serve as objective ground truth. With these annotations, we propose PP-Motion, a novel data-driven metric to evaluate both physical and perceptual fidelity of human motion. To effectively capture underlying physical priors, we employ Pearson's correlation loss for the training of our metric. Additionally, by incorporating a human-based perceptual fidelity loss, our metric can capture fidelity that simultaneously considers both human perception and physical alignment. Experimental results demonstrate that our metric, PP-Motion, not only aligns with physical laws but also aligns better with human perception of motion fidelity than previous work.
comment: Accepted by ACM Multimedia 2025
♻ ☆ Prompt-Based Continual Compositional Zero-Shot Learning
We tackle continual adaptation of vision-language models to new attributes, objects, and their compositions in Compositional Zero-Shot Learning (CZSL), while preventing forgetting of prior knowledge. Unlike classical continual learning where classes are disjoint, CCZSL is more complex as attributes and objects may reoccur across sessions while compositions remain unique. Built on a frozen VLM backbone, we propose the first Prompt-based Continual Compositional Zero-Shot Learning (PromptCCZSL) framework that retains prior knowledge through recency-weighted multi-teacher distillation. It employs session-aware compositional prompts to fuse multimodal features for new compositions, while attribute and object prompts are learned through session-agnostic fusion to maintain global semantic consistency, which is further stabilized by a Cosine Anchor Loss (CAL) to preserve prior knowledge. To enhance adaptation in the current session, an Orthogonal Projection Loss (OPL) ensures that new attribute and object embeddings remain distinct from previous ones, preventing overlap, while an Intra-Session Diversity Loss (IDL) promotes variation among current-session embeddings for richer, more discriminative representations. We also introduce a comprehensive protocol that jointly measures catastrophic forgetting and compositional generalization. Extensive experiments on UT-Zappos and C-GQA benchmarks demonstrate that PromptCCZSL achieves substantial improvements over prior VLM-based and non-VLM baselines, setting a new benchmark for CCZSL in closed-world settings.
♻ ☆ Control-Augmented Autoregressive Diffusion for Data Assimilation
Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.
♻ ☆ Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing the pneumonia-affected regions typically requires detailed pixel-level annotations, which are costly and time consuming to obtain. To address this limitation, this study proposes a weakly supervised deep learning framework for pneumonia classification and localization using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on costly pixel-level annotations, the proposed method utilizes image-level labels to generate clinically meaningful heatmaps that highlight pneumonia-affected regions. Furthermore, we evaluate seven pre-trained deep learning models, including a Vision Transformer, under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high classification accuracy (96--98\%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V3 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations confirm that the proposed methods focus on clinically relevant lung regions, supporting the use of explainable AI for radiological diagnostics. Overall, this work highlights the potential of weakly supervised, explainable models that enhance transparency and clinical trust in AI-assisted pneumonia screening.
comment: https://github.com/kiranshahi/pneumonia-analysis
♻ ☆ REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning
Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.
comment: 13 pages, 7 figures. This paper is published in Knowledge-based System
♻ ☆ Chain-of-Evidence Multimodal Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the action localization task. To address these issues, in this work, we propose a new few-shot temporal action localization method by Chain-of-Evidence multimodal reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level, we design a Chain-of-Evidence (CoE) reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoE text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3, THUMOS14 and our newly collected Human-related Anomaly Localization Dataset. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. Our source code and data are available at https://github.com/MICLAB-BUPT/VAL-VLM.
♻ ☆ M4Human: A Large-Scale Multimodal mmWave Radar Benchmark for Human Mesh Reconstruction
Human mesh reconstruction (HMR) provides direct insights into body-environment interaction, which enables various immersive applications. While existing large-scale HMR datasets rely heavily on line-of-sight RGB input, vision-based sensing is limited by occlusion, lighting variation, and privacy concerns. To overcome these limitations, recent efforts have explored radio-frequency (RF) mmWave radar for privacy-preserving indoor human sensing. However, current radar datasets are constrained by sparse skeleton labels, limited scale, and simple in-place actions. To advance the HMR research community, we introduce M4Human, the current largest-scale (661K-frame) ($9\times$ prior largest) multimodal benchmark, featuring high-resolution mmWave radar, RGB, and depth data. M4Human provides both raw radar tensors (RT) and processed radar point clouds (RPC) to enable research across different levels of RF signal granularity. M4Human includes high-quality motion capture (MoCap) annotations with 3D meshes and global trajectories, and spans 20 subjects and 50 diverse actions, including in-place, sit-in-place, and free-space sports or rehabilitation movements. We establish benchmarks on both RT and RPC modalities, as well as multimodal fusion with RGB-D modalities. Extensive results highlight the significance of M4Human for radar-based human modeling while revealing persistent challenges under fast, unconstrained motion. The dataset and code will be released after the paper publication.
♻ ☆ Event Camera Meets Mobile Embodied Perception: Abstraction, Algorithm, Acceleration, Application
With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in achieving high-accuracy and low-latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution and low latency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, lack of stable, persistent semantic information, and large data volume pose challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature from 2014 to 2025 and presents a comprehensive overview of event-based mobile sensing, encompassing its fundamental principles, event \textit{abstraction} methods, \textit{algorithm} advancements, and both hardware and software \textit{acceleration} strategies. We discuss key \textit{applications} of event cameras in mobile sensing, including visual odometry, object tracking, optical flow, and 3D reconstruction, while highlighting challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving the event camera with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms. To support ongoing research, we provide an open-source \textit{Online Sheet} with recent developments. We hope this survey serves as a reference, facilitating the adoption of event-based vision across diverse applications.
comment: Accepted by ACM CSUR,35 pages
♻ ☆ GT2-GS: Geometry-aware Texture Transfer for Gaussian Splatting AAAI 2026
Transferring 2D textures onto complex 3D scenes plays a vital role in enhancing the efficiency and controllability of 3D multimedia content creation. However, existing 3D style transfer methods primarily focus on transferring abstract artistic styles to 3D scenes. These methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT2-GS, a geometry-aware texture transfer framework for gaussian splatting. First, we propose a geometry-aware texture transfer loss that enables view-consistent texture transfer by leveraging prior view-dependent feature information and texture features augmented with additional geometric parameters. Moreover, an adaptive fine-grained control module is proposed to address the degradation of scene information caused by low-granularity texture features. Finally, a geometry preservation branch is introduced. This branch refines the geometric parameters using additionally bound Gaussian color priors, thereby decoupling the optimization objectives of appearance and geometry. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
comment: Accepted to AAAI 2026
♻ ☆ Cascaded Dual Vision Transformer for Accurate Facial Landmark Detection WACV 2025
Facial landmark detection is a fundamental problem in computer vision for many downstream applications. This paper introduces a new facial landmark detector based on vision transformers, which consists of two unique designs: Dual Vision Transformer (D-ViT) and Long Skip Connections (LSC). Based on the observation that the channel dimension of feature maps essentially represents the linear bases of the heatmap space, we propose learning the interconnections between these linear bases to model the inherent geometric relations among landmarks via Channel-split ViT. We integrate such channel-split ViT into the standard vision transformer (i.e., spatial-split ViT), forming our Dual Vision Transformer to constitute the prediction blocks. We also suggest using long skip connections to deliver low-level image features to all prediction blocks, thereby preventing useful information from being discarded by intermediate supervision. Extensive experiments are conducted to evaluate the performance of our proposal on the widely used benchmarks, i.e., WFLW, COFW, and 300W, demonstrating that our model outperforms the previous SOTAs across all three benchmarks.
comment: Accepted by WACV 2025. The code can be found at https://github.com/Human3DAIGC/AccurateFacialLandmarkDetection . Supplementary material is included at the end of the main paper (3 pages, 5 figures, 2 tables)
♻ ☆ Registering the 4D Millimeter Wave Radar Point Clouds Via Generalized Method of Moments
4D millimeter wave radars (4D radars) are new emerging sensors that provide point clouds of objects with both position and radial velocity measurements. Compared to LiDARs, they are more affordable and reliable sensors for robots' perception under extreme weather conditions. On the other hand, point cloud registration is an essential perception module that provides robot's pose feedback information in applications such as Simultaneous Localization and Mapping (SLAM). Nevertheless, the 4D radar point clouds are sparse and noisy compared to those of LiDAR, and hence we shall confront great challenges in registering the radar point clouds. To address this issue, we propose a point cloud registration framework for 4D radars based on Generalized Method of Moments. The method does not require explicit point-to-point correspondences between the source and target point clouds, which is difficult to compute for sparse 4D radar point clouds. Moreover, we show the consistency of the proposed method. Experiments on both synthetic and real-world datasets show that our approach achieves higher accuracy and robustness than benchmarks, and the accuracy is even comparable to LiDAR-based frameworks.
♻ ☆ From Pretraining to Privacy: Federated Ultrasound Foundation Model with Self-Supervised Learning
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, traditional ultrasound diagnostics relies heavily on physician expertise and is often hampered by suboptimal image quality, leading to potential diagnostic errors. While artificial intelligence (AI) offers a promising solution to enhance clinical diagnosis by detecting abnormalities across various imaging modalities, existing AI methods for ultrasound face two major challenges. First, they typically require vast amounts of labeled medical data, raising serious concerns regarding patient privacy. Second, most models are designed for specific tasks, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve (AUROC) of 0.927 for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers (4-8 years of experience) and matches the performance of expert-level sonographers (10+ years of experience) in the joint diagnosis of 8 common systemic diseases.c These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking a significant advancement in AI-driven ultrasound imaging for future clinical applications.
comment: npj digital medicine(2025)
♻ ☆ MUSE: Multi-Scale Dense Self-Distillation for Nucleus Detection and Classification
Nucleus detection and classification (NDC) in histopathology analysis is a fundamental task that underpins a wide range of high-level pathology applications. However, existing methods heavily rely on labor-intensive nucleus-level annotations and struggle to fully exploit large-scale unlabeled data for learning discriminative nucleus representations. In this work, we propose MUSE (MUlti-scale denSE self-distillation), a novel self-supervised learning method tailored for NDC. At its core is NuLo (Nucleus-based Local self-distillation), a coordinate-guided mechanism that enables flexible local self-distillation based on predicted nucleus positions. By removing the need for strict spatial alignment between augmented views, NuLo allows critical cross-scale alignment, thus unlocking the capacity of models for fine-grained nucleus-level representation. To support MUSE, we design a simple yet effective encoder-decoder architecture and a large field-of-view semi-supervised fine-tuning strategy that together maximize the value of unlabeled pathology images. Extensive experiments on three widely used benchmarks demonstrate that MUSE effectively addresses the core challenges of histopathological NDC. The resulting models not only surpass state-of-the-art supervised baselines but also outperform generic pathology foundation models.
comment: 12 pages, 7 figures
♻ ☆ SparseWorld-TC: Trajectory-Conditioned Sparse Occupancy World Model
This paper introduces a novel architecture for trajectory-conditioned forecasting of future 3D scene occupancy. In contrast to methods that rely on variational autoencoders (VAEs) to generate discrete occupancy tokens, which inherently limit representational capacity, our approach predicts multi-frame future occupancy in an end-to-end manner directly from raw image features. Inspired by the success of attention-based transformer architectures in foundational vision and language models such as GPT and VGGT, we employ a sparse occupancy representation that bypasses the intermediate bird's eye view (BEV) projection and its explicit geometric priors. This design allows the transformer to capture spatiotemporal dependencies more effectively. By avoiding both the finite-capacity constraint of discrete tokenization and the structural limitations of BEV representations, our method achieves state-of-the-art performance on the nuScenes benchmark for 1-3 second occupancy forecasting, outperforming existing approaches by a significant margin. Furthermore, it demonstrates robust scene dynamics understanding, consistently delivering high accuracy under arbitrary future trajectory conditioning.
♻ ☆ PerTouch: VLM-Driven Agent for Personalized and Semantic Image Retouching AAAI 2026
Image retouching aims to enhance visual quality while aligning with users' personalized aesthetic preferences. To address the challenge of balancing controllability and subjectivity, we propose a unified diffusion-based image retouching framework called PerTouch. Our method supports semantic-level image retouching while maintaining global aesthetics. Using parameter maps containing attribute values in specific semantic regions as input, PerTouch constructs an explicit parameter-to-image mapping for fine-grained image retouching. To improve semantic boundary perception, we introduce semantic replacement and parameter perturbation mechanisms in the training process. To connect natural language instructions with visual control, we develop a VLM-driven agent that can handle both strong and weak user instructions. Equipped with mechanisms of feedback-driven rethinking and scene-aware memory, PerTouch better aligns with user intent and captures long-term preferences. Extensive experiments demonstrate each component's effectiveness and the superior performance of PerTouch in personalized image retouching. Code is available at: https://github.com/Auroral703/PerTouch.
comment: To appear at AAAI 2026
♻ ☆ MS-Temba: Multi-Scale Temporal Mamba for Understanding Long Untrimmed Videos
Temporal Action Detection (TAD) in untrimmed videos poses significant challenges, particularly for Activities of Daily Living (ADL) requiring models to (1) process long-duration videos, (2) capture temporal variations in actions, and (3) simultaneously detect dense overlapping actions. Existing CNN and Transformer-based approaches, struggle to jointly capture fine-grained detail and long-range structure at scale. State-space Model (SSM) based Mamba offers powerful long-range modeling, but naive application to TAD collapses fine-grained temporal structure and fails to account for the challenges inherent to TAD. To this end, we propose Multi-Scale Temporal Mamba (MS-Temba), which extends Mamba to TAD with newly introduced dilated SSMs. Each Temba block, comprising dilated SSMs coupled with our proposed additional losses, enables the learning of discriminative representations across temporal scales. A lightweight Multi-scale Mamba Fuser then unifies these multi-scale features via SSM-based aggregation, yielding precise action-boundary localization. With only 17M parameters, MS-Temba achieves state-of-the-art performance on densely labeled ADL benchmarks TSU & Charades, and further generalizes to long-form video summarization, setting new state-of-the-art results on TVSum & SumMe.
♻ ☆ Bridging 3D Anomaly Localization and Repair via High-Quality Continuous Geometric Representation
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.
♻ ☆ One-Cycle Structured Pruning via Stability-Driven Subnetwork Search
Existing structured pruning methods typically rely on multi-stage training procedures that incur high computational costs. Pruning at initialization aims to reduce this burden but often suffers from degraded performance. To address these limitations, we propose an efficient one-cycle structured pruning framework that integrates pre-training, pruning, and fine-tuning into a single training cycle without sacrificing accuracy. The key idea is to identify an optimal sub-network during the early stages of training, guided by norm-based group saliency criteria and structured sparsity regularization. We introduce a novel pruning indicator that detects a stable pruning epoch by measuring the similarity between pruning sub-networks across consecutive training epochs. In addition, group sparsity regularization accelerates convergence, further reducing overall training time. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet using VGG, ResNet, and MobileNet architectures demonstrate that the proposed method achieves state-of-the-art accuracy while being among the most efficient structured pruning frameworks in terms of training cost. Code is available at https://github.com/ghimiredhikura/OCSPruner.
comment: 12 pages, 6 figures
♻ ☆ Human-Centric Open-Future Task Discovery: Formulation, Benchmark, and Scalable Tree-Based Search AAAI 2026
Recent progress in robotics and embodied AI is largely driven by Large Multimodal Models (LMMs). However, a key challenge remains underexplored: how can we advance LMMs to discover tasks that assist humans in open-future scenarios, where human intentions are highly concurrent and dynamic. In this work, we formalize the problem of Human-centric Open-future Task Discovery (HOTD), focusing particularly on identifying tasks that reduce human effort across plausible futures. To facilitate this study, we propose HOTD-Bench, which features over 2K real-world videos, a semi-automated annotation pipeline, and a simulation-based protocol tailored for open-set future evaluation. Additionally, we propose the Collaborative Multi-Agent Search Tree (CMAST) framework, which decomposes complex reasoning through a multi-agent system and structures the reasoning process through a scalable search tree module. In our experiments, CMAST achieves the best performance on the HOTD-Bench, significantly surpassing existing LMMs. It also integrates well with existing LMMs, consistently improving performance.
comment: accepted to AAAI 2026, 10 pages, 9 figures
♻ ☆ Toward Robust and Accurate Adversarial Camouflage Generation against Vehicle Detectors
Adversarial camouflage is a widely used physical attack against vehicle detectors for its superiority in multi-view attack performance. One promising approach involves using differentiable neural renderers to facilitate adversarial camouflage optimization through gradient back-propagation. However, existing methods often struggle to capture environmental characteristics during the rendering process or produce adversarial textures that can precisely map to the target vehicle. Moreover, these approaches neglect diverse weather conditions, reducing the efficacy of generated camouflage across varying weather scenarios. To tackle these challenges, we propose a robust and accurate camouflage generation method, namely RAUCA. The core of RAUCA is a novel neural rendering component, End-to-End Neural Renderer Plus (E2E-NRP), which can accurately optimize and project vehicle textures and render images with environmental characteristics such as lighting and weather. In addition, we integrate a multi-weather dataset for camouflage generation, leveraging the E2E-NRP to enhance the attack robustness. Experimental results on six popular object detectors show that RAUCA-final outperforms existing methods in both simulation and real-world settings.
comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:2402.15853
♻ ☆ Online Navigation Refinement: Achieving Lane-Level Guidance by Associating Standard-Definition and Online Perception Maps
Lane-level navigation is critical for geographic information systems and navigation-based tasks, offering finer-grained guidance than road-level navigation by standard definition (SD) maps. However, it currently relies on expansive global HD maps that cannot adapt to dynamic road conditions. Recently, online perception (OP) maps have become research hotspots, providing real-time geometry as an alternative, but lack the global topology needed for navigation. To address these issues, Online Navigation Refinement (ONR), a new mission is introduced that refines SD-map-based road-level routes into accurate lane-level navigation by associating SD maps with OP maps. The map-to-map association to handle many-to-one lane-to-road mappings under two key challenges: (1) no public dataset provides lane-to-road correspondences; (2) severe misalignment from spatial fluctuations, semantic disparities, and OP map noise invalidates traditional map matching. For these challenges, We contribute: (1) Online map association dataset (OMA), the first ONR benchmark with 30K scenarios and 2.6M annotated lane vectors; (2) MAT, a transformer with path-aware attention to aligns topology despite spatial fluctuations and semantic disparities and spatial attention for integrates noisy OP features via global context; and (3) NR P-R, a metric evaluating geometric and semantic alignment. Experiments show that MAT outperforms existing methods at 34 ms latency, enabling low-cost and up-to-date lane-level navigation.
comment: 35 pages, 17 figures, 23 tables
♻ ☆ RecTok: Reconstruction Distillation along Rectified Flow
Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://shi-qingyu.github.io/rectok.github.io.
♻ ☆ The Devil is in Attention Sharing: Improving Complex Non-rigid Image Editing Faithfulness via Attention Synergy
Training-free image editing with large diffusion models has become practical, yet faithfully performing complex non-rigid edits (e.g., pose or shape changes) remains highly challenging. We identify a key underlying cause: attention collapse in existing attention sharing mechanisms, where either positional embeddings or semantic features dominate visual content retrieval, leading to over-editing or under-editing. To address this issue, we introduce SynPS, a method that Synergistically leverages Positional embeddings and Semantic information for faithful non-rigid image editing. We first propose an editing measurement that quantifies the required editing magnitude at each denoising step. Based on this measurement, we design an attention synergy pipeline that dynamically modulates the influence of positional embeddings, enabling SynPS to balance semantic modifications and fidelity preservation. By adaptively integrating positional and semantic cues, SynPS effectively avoids both over- and under-editing. Extensive experiments on public and newly curated benchmarks demonstrate the superior performance and faithfulness of our approach.
comment: Project page:https://synps26.github.io/
♻ ☆ 3D Software Synthesis Guided by Constraint-Expressive Intermediate Representation ICSE
Graphical user interface (UI) software has undergone a fundamental transformation from traditional two-dimensional (2D) desktop/web/mobile interfaces to spatial three-dimensional (3D) environments. While existing work has made remarkable success in automated 2D software generation, such as HTML/CSS and mobile app interface code synthesis, the generation of 3D software still remains under-explored. Current methods for 3D software generation usually generate the 3D environments as a whole and cannot modify or control specific elements in the software. Furthermore, these methods struggle to handle the complex spatial and semantic constraints inherent in the real world. To address the challenges, we present Scenethesis, a novel requirement-sensitive 3D software synthesis approach that maintains formal traceability between user specifications and generated 3D software. Scenethesis is built upon ScenethesisLang, a domain-specific language that serves as a granular constraint-aware intermediate representation (IR) to bridge natural language requirements and executable 3D software. It serves both as a comprehensive scene description language enabling fine-grained modification of 3D software elements and as a formal constraint-expressive specification language capable of expressing complex spatial constraints. By decomposing 3D software synthesis into stages operating on ScenethesisLang, Scenethesis enables independent verification, targeted modification, and systematic constraint satisfaction. Our evaluation demonstrates that Scenethesis accurately captures over 80% of user requirements and satisfies more than 90% of hard constraints while handling over 100 constraints simultaneously. Furthermore, Scenethesis achieves a 42.8% improvement in BLIP-2 visual evaluation scores compared to the state-of-the-art method.
comment: Accepted by the IEEE/ACM International Conference on Software Engineering (ICSE) 2026, Rio de Janeiro, Brazil
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation AAAI2026
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
comment: Accepted to AAAI2026
♻ ☆ TerraFusion: Joint Generation of Terrain Geometry and Texture Using Latent Diffusion Models
3D terrain models are essential in fields such as video game development and film production. Since surface color often correlates with terrain geometry, capturing this relationship is crucial to achieving realism. However, most existing methods generate either a heightmap or a texture, without sufficiently accounting for the inherent correlation. In this paper, we propose a method that jointly generates terrain heightmaps and textures using a latent diffusion model. First, we train the model in an unsupervised manner to randomly generate paired heightmaps and textures. Then, we perform supervised learning of an external adapter to enable user control via hand-drawn sketches. Experiments show that our approach allows intuitive terrain generation while preserving the correlation between heightmaps and textures.
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Benchmarking and Mitigating Sycophancy in Medical Vision Language Models
Visual language models (VLMs) have the potential to transform medical workflows. However, the deployment is limited by sycophancy. Despite this serious threat to patient safety, a systematic benchmark remains lacking. This paper addresses this gap by introducing a Medical benchmark that applies multiple templates to VLMs in a hierarchical medical visual question answering task. We find that current VLMs are highly susceptible to visual cues, with failure rates showing a correlation to model size or overall accuracy. we discover that perceived authority and user mimicry are powerful triggers, suggesting a bias mechanism independent of visual data. To overcome this, we propose a Visual Information Purification for Evidence based Responses (VIPER) strategy that proactively filters out non-evidence-based social cues, thereby reinforcing evidence based reasoning. VIPER reduces sycophancy while maintaining interpretability and consistently outperforms baseline methods, laying the necessary foundation for the robust and secure integration of VLMs.
comment: 19figures, 61pages
♻ ☆ MAGIC: Few-Shot Mask-Guided Anomaly Inpainting with Prompt Perturbation, Spatially Adaptive Guidance, and Context Awareness
Few-shot anomaly generation is a key challenge in industrial quality control. Although diffusion models are promising, existing methods struggle: global prompt-guided approaches corrupt normal regions, and existing inpainting-based methods often lack the in-distribution diversity essential for robust downstream models. We propose MAGIC, a fine-tuned inpainting framework that generates high-fidelity anomalies that strictly adhere to the mask while maximizing this diversity. MAGIC introduces three complementary components: (i) Gaussian prompt perturbation, which prevents model overfitting in the few-shot setting by learning and sampling from a smooth manifold of realistic anomalies, (ii) spatially adaptive guidance that applies distinct guidance strengths to the anomaly and background regions, and (iii) context-aware mask alignment to relocate masks for plausible placement within the host object. Under consistent identical evaluation protocol, MAGIC outperforms state-of-the-art methods on diverse anomaly datasets in downstream tasks.
comment: 46 pages, 47 figures. Code: https://github.com/Jaeihk/MAGIC-Anomaly-generation
♻ ☆ Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
Instruction-based video editing promises to democratize content creation, yet its progress is severely hampered by the scarcity of large-scale, high-quality training data. We introduce Ditto, a holistic framework designed to tackle this fundamental challenge. At its heart, Ditto features a novel data generation pipeline that fuses the creative diversity of a leading image editor with an in-context video generator, overcoming the limited scope of existing models. To make this process viable, our framework resolves the prohibitive cost-quality trade-off by employing an efficient, distilled model architecture augmented by a temporal enhancer, which simultaneously reduces computational overhead and improves temporal coherence. Finally, to achieve full scalability, this entire pipeline is driven by an intelligent agent that crafts diverse instructions and rigorously filters the output, ensuring quality control at scale. Using this framework, we invested over 12,000 GPU-days to build Ditto-1M, a new dataset of one million high-fidelity video editing examples. We trained our model, Editto, on Ditto-1M with a curriculum learning strategy. The results demonstrate superior instruction-following ability and establish a new state-of-the-art in instruction-based video editing.
comment: Project page: https://ezioby.github.io/Ditto_page Code: https://github.com/EzioBy/Ditto
♻ ☆ History-Augmented Contrastive Learning With Soft Mixture of Experts for Blind Super-Resolution of Planetary Remote Sensing Images
Blind Super-Resolution (BSR) in planetary remote sensing constitutes a highly ill-posed inverse problem, characterized by unknown degradation patterns and a complete absence of ground-truth supervision. Existing unsupervised approaches often struggle with optimization instability and distribution shifts, relying on greedy strategies or generic priors that fail to preserve distinct morphological semantics. To address these challenges, we propose History-Augmented Contrastive Mixture of Experts (HAC-MoE), a novel unsupervised framework that decouples kernel estimation from image reconstruction without external kernel priors. The framework is founded on three key innovations: (1) A Contrastive Kernel Sampling mechanism that mitigates the distribution bias inherent in random Gaussian sampling, ensuring the generation of plausible kernel priors via similarity constraints; (2) A History-Augmented Contrastive Learning strategy that leverages historical model states as negative self-priors. We provide a theoretical analysis demonstrating that this mechanism induces strong convexity in the feature space, thereby stabilizing the unsupervised optimization trajectory and preventing overfitting; and (3) A Morphology-Aware Soft Mixture-of-Experts (MA-MoE) estimator that dynamically modulates spectral-spatial features to adaptively reconstruct diverse planetary topographies. To facilitate rigorous evaluation, we introduce Ceres-50, a benchmark dataset encapsulating diverse geological features under realistic degradation simulations. Extensive experiments demonstrate that HAC-MoE achieves state-of-the-art performance in reconstruction quality and kernel estimation accuracy, offering a solution for scientific observation in data-sparse extraterrestrial environments.
comment: 12pages
♻ ☆ ChronoSelect: Robust Learning with Noisy Labels via Dynamics Temporal Memory
Training deep neural networks on real-world datasets is often hampered by the presence of noisy labels, which can be memorized by over-parameterized models, leading to significant degradation in generalization performance. While existing methods for learning with noisy labels (LNL) have made considerable progress, they fundamentally suffer from static snapshot evaluations and fail to leverage the rich temporal dynamics of learning evolution. In this paper, we propose ChronoSelect (chrono denoting its temporal nature), a novel framework featuring an innovative four-stage memory architecture that compresses prediction history into compact temporal distributions. Our unique sliding update mechanism with controlled decay maintains only four dynamic memory units per sample, progressively emphasizing recent patterns while retaining essential historical knowledge. This enables precise three-way sample partitioning into clean, boundary, and noisy subsets through temporal trajectory analysis and dual-branch consistency. Theoretical guarantees prove the mechanism's convergence and stability under noisy conditions. Extensive experiments demonstrate ChronoSelect's state-of-the-art performance across synthetic and real-world benchmarks.
♻ ☆ History-Enhanced Two-Stage Transformer for Aerial Vision-and-Language Navigation
Aerial Vision-and-Language Navigation (AVLN) requires Unmanned Aerial Vehicle (UAV) agents to localize targets in large-scale urban environments based on linguistic instructions. While successful navigation demands both global environmental reasoning and local scene comprehension, existing UAV agents typically adopt mono-granularity frameworks that struggle to balance these two aspects. To address this limitation, this work proposes a History-Enhanced Two-Stage Transformer (HETT) framework, which integrates the two aspects through a coarse-to-fine navigation pipeline. Specifically, HETT first predicts coarse-grained target positions by fusing spatial landmarks and historical context, then refines actions via fine-grained visual analysis. In addition, a historical grid map is designed to dynamically aggregate visual features into a structured spatial memory, enhancing comprehensive scene awareness. Additionally, the CityNav dataset annotations are manually refined to enhance data quality. Experiments on the refined CityNav dataset show that HETT delivers significant performance gains, while extensive ablation studies further verify the effectiveness of each component.
♻ ☆ Abstract 3D Perception for Spatial Intelligence in Vision-Language Models
Vision-language models (VLMs) struggle with 3D-related tasks such as spatial cognition and physical understanding, which are crucial for real-world applications like robotics and embodied agents. We attribute this to a modality gap between the 3D tasks and the 2D training of VLM, which led to inefficient retrieval of 3D information from 2D input. To bridge this gap, we introduce SandboxVLM, a simple yet effective framework that leverages abstract bounding boxes to encode geometric structure and physical kinematics for VLM. Specifically, we design a 3D Sandbox reconstruction and perception pipeline comprising four stages: generating multi-view priors with abstract control, proxy elevation, multi-view voting and clustering, and 3D-aware reasoning. Evaluated in zero-shot settings across multiple benchmarks and VLM backbones, our approach consistently improves spatial intelligence, achieving an 8.3\% gain on SAT Real compared with baseline methods for instance. These results demonstrate that equipping VLMs with a 3D abstraction substantially enhances their 3D reasoning ability without additional training, suggesting new possibilities for general-purpose embodied intelligence.
♻ ☆ TPG-INR: Target Prior-Guided Implicit 3D CT Reconstruction for Enhanced Sparse-view Imaging
X-ray imaging, based on penetration, enables detailed visualization of internal structures. Building on this capability, existing implicit 3D reconstruction methods have adapted the NeRF model and its variants for internal CT reconstruction. However, these approaches often neglect the significance of objects' anatomical priors for implicit learning, limiting both reconstruction precision and learning efficiency, particularly in ultra-sparse view scenarios. To address these challenges, we propose a novel 3D CT reconstruction framework that employs a 'target prior' derived from the object's projection data to enhance implicit learning. Our approach integrates positional and structural encoding to facilitate voxel-wise implicit reconstruction, utilizing the target prior to guide voxel sampling and enrich structural encoding. This dual strategy significantly boosts both learning efficiency and reconstruction quality. Additionally, we introduce a CUDA-based algorithm for rapid estimation of high-quality 3D target priors from sparse-view projections. Experiments utilizing projection data from a complex abdominal dataset demonstrate that the proposed model substantially enhances learning efficiency, outperforming the current leading model, NAF, by a factor of ten. In terms of reconstruction quality, it also exceeds the most accurate model, NeRP, achieving PSNR improvements of 3.57 dB, 5.42 dB, and 5.70 dB with 10, 20, and 30 projections, respectively. The code is available at https://github.com/qlcao171/TPG-INR.
comment: We are withdrawing to restructure and refine the research plan to enhance its systematic rigor, completeness, and overall depth
♻ ☆ DM3D: Deformable Mamba via Offset-Guided Gaussian Sequencing for Point Cloud Understanding
State Space Models (SSMs) demonstrate significant potential for long-sequence modeling, but their reliance on input order conflicts with the irregular nature of point clouds. Existing approaches often rely on predefined serialization strategies, which cannot adjust based on diverse geometric structures. To overcome this limitation, we propose \textbf{DM3D}, a deformable Mamba architecture for point cloud understanding. Specifically, DM3D introduces an offset-guided Gaussian sequencing mechanism that unifies local resampling and global reordering within a deformable scan. The Gaussian-based KNN Resampling (GKR) enhances structural awareness by adaptively reorganizing neighboring points, while the Gaussian-based Differentiable Reordering (GDR) enables end-to-end optimization of serialization order. Furthermore, a Tri-Path Frequency Fusion module enhances feature complementarity and reduces aliasing. Together, these components enable structure-adaptive serialization of point clouds. Extensive experiments on benchmark datasets show that DM3D achieves state-of-the-art performance in classification, few-shot learning, and part segmentation, demonstrating that adaptive serialization effectively unlocks the potential of SSMs for point cloud understanding. The code will be released at https://github.com/L1277471578/DM3D.
♻ ☆ dots.ocr: Multilingual Document Layout Parsing in a Single Vision-Language Model
Document Layout Parsing serves as a critical gateway for Artificial Intelligence (AI) to access and interpret the world's vast stores of structured knowledge. This process,which encompasses layout detection, text recognition, and relational understanding, is particularly crucial for empowering next-generation Vision-Language Models. Current methods, however, rely on fragmented, multi-stage pipelines that suffer from error propagation and fail to leverage the synergies of joint training. In this paper, we introduce dots_ocr, a single Vision-Language Model that, for the first time, demonstrates the advantages of jointly learning three core tasks within a unified, end-to-end framework. This is made possible by a highly scalable data engine that synthesizes a vast multilingual corpus, empowering the model to deliver robust performance across a wide array of tasks, encompassing diverse languages, layouts, and domains. The efficacy of our unified paradigm is validated by state-of-the-art performance on the comprehensive OmniDocBench. Furthermore, to catalyze research in global document intelligence, we introduce XDocParse, a challenging new benchmark spanning 126 languages. On this benchmark, dots_ocr achieves state-of-the-art performance, delivering an approximately 10% relative improvement and demonstrating strong multilingual capability.
♻ ☆ Few-Shot Multimodal Medical Imaging: A Theoretical Framework
Medical imaging often operates under limited labeled data, especially in rare disease and low resource clinical environments. Existing multimodal and meta learning approaches improve performance in these settings but lack a theoretical explanation of why or when they succeed. This paper presents a unified theoretical framework for few shot multimodal medical imaging that jointly characterizes sample complexity, uncertainty quantification, and interpretability. Using PAC learning, VC theory, and PAC Bayesian analysis, we derive bounds that describe the minimum number of labeled samples required for reliable performance and show how complementary modalities reduce effective capacity through an information gain term. We further introduce a formal metric for explanation stability, proving that explanation variance decreases at an inverse n rate. A sequential Bayesian interpretation of Chain of Thought reasoning is also developed to show stepwise posterior contraction. To illustrate these ideas, we implement a controlled multimodal dataset and evaluate an additive CNN MLP fusion model under few shot regimes, confirming predicted multimodal gains, modality interference at larger sample sizes, and shrinking predictive uncertainty. Together, the framework provides a principled foundation for designing data efficient, uncertainty aware, and interpretable diagnostic models in low resource settings.
comment: 6 Pages
♻ ☆ SynJAC: Synthetic-data-driven Joint-granular Adaptation and Calibration for Domain Specific Scanned Document Key Information Extraction
Visually Rich Documents (VRDs), comprising elements such as charts, tables, and paragraphs, convey complex information across diverse domains. However, extracting key information from these documents remains labour-intensive, particularly for scanned formats with inconsistent layouts and domain-specific requirements. Despite advances in pretrained models for VRD understanding, their dependence on large annotated datasets for fine-tuning hinders scalability. This paper proposes \textbf{SynJAC} (Synthetic-data-driven Joint-granular Adaptation and Calibration), a method for key information extraction in scanned documents. SynJAC leverages synthetic, machine-generated data for domain adaptation and employs calibration on a small, manually annotated dataset to mitigate noise. By integrating fine-grained and coarse-grained document representation learning, SynJAC significantly reduces the need for extensive manual labelling while achieving competitive performance. Extensive experiments demonstrate its effectiveness in domain-specific and scanned VRD scenarios.
comment: Accepted for publication in Information Fusion
♻ ☆ Learning 3D Texture-Aware Representations for Parsing Diverse Human Clothing and Body Parts AAAI
Existing methods for human parsing into body parts and clothing often use fixed mask categories with broad labels that obscure fine-grained clothing types. Recent open-vocabulary segmentation approaches leverage pretrained text-to-image (T2I) diffusion model features for strong zero-shot transfer, but typically group entire humans into a single person category, failing to distinguish diverse clothing or detailed body parts. To address this, we propose Spectrum, a unified network for part-level pixel parsing (body parts and clothing) and instance-level grouping. While diffusion-based open-vocabulary models generalize well across tasks, their internal representations are not specialized for detailed human parsing. We observe that, unlike diffusion models with broad representations, image-driven 3D texture generators maintain faithful correspondence to input images, enabling stronger representations for parsing diverse clothing and body parts. Spectrum introduces a novel repurposing of an Image-to-Texture (I2Tx) diffusion model (obtained by fine-tuning a T2I model on 3D human texture maps) for improved alignment with body parts and clothing. From an input image, we extract human-part internal features via the I2Tx diffusion model and generate semantically valid masks aligned to diverse clothing categories through prompt-guided grounding. Once trained, Spectrum produces semantic segmentation maps for every visible body part and clothing category, ignoring standalone garments or irrelevant objects, for any number of humans in the scene. We conduct extensive cross-dataset experiments, separately assessing body parts, clothing parts, unseen clothing categories, and full-body masks, and demonstrate that Spectrum consistently outperforms baseline methods in prompt-based segmentation.
comment: Association for the Advancement of Artificial Intelligence (AAAI) 2026, 14 pages, 11 figures. Webpage: https://s-pectrum.github.io/
Artificial Intelligence 150
☆ Spatia: Video Generation with Updatable Spatial Memory
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.
comment: Project page: https://zhaojingjing713.github.io/Spatia/
☆ Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants
Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes.
comment: 28 pages, 12 figures
☆ Artism: AI-Driven Dual-Engine System for Art Generation and Critique
This paper proposes a dual-engine AI architectural method designed to address the complex problem of exploring potential trajectories in the evolution of art. We present two interconnected components: AIDA (an artificial artist social network) and the Ismism Machine, a system for critical analysis. The core innovation lies in leveraging deep learning and multi-agent collaboration to enable multidimensional simulations of art historical developments and conceptual innovation patterns. The framework explores a shift from traditional unidirectional critique toward an intelligent, interactive mode of reflexive practice. We are currently applying this method in experimental studies on contemporary art concepts. This study introduces a general methodology based on AI-driven critical loops, offering new possibilities for computational analysis of art.
comment: 7 pages, 3 figures, 36 references, appendix with support material and 1 introduction video
☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce \model, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
☆ BashArena: A Control Setting for Highly Privileged AI Agents
Future AI agents might run autonomously with elevated privileges. If these agents are misaligned, they might abuse these privileges to cause serious damage. The field of AI control develops techniques that make it harder for misaligned AIs to cause such damage, while preserving their usefulness. We introduce BashArena, a setting for studying AI control techniques in security-critical environments. BashArena contains 637 Linux system administration and infrastructure engineering tasks in complex, realistic environments, along with four sabotage objectives (execute malware, exfiltrate secrets, escalate privileges, and disable firewall) for a red team to target. We evaluate multiple frontier LLMs on their ability to complete tasks, perform sabotage undetected, and detect sabotage attempts. Claude Sonnet 4.5 successfully executes sabotage while evading monitoring by GPT-4.1 mini 26% of the time, at 4% trajectory-wise FPR. Our findings provide a baseline for designing more effective control protocols in BashArena. We release the dataset as a ControlArena setting and share our task generation pipeline.
comment: The task generation pipeline can be found here: https://github.com/redwoodresearch/basharena_public
☆ Can LLMs Guide Their Own Exploration? Gradient-Guided Reinforcement Learning for LLM Reasoning
Reinforcement learning has become essential for strengthening the reasoning abilities of large language models, yet current exploration mechanisms remain fundamentally misaligned with how these models actually learn. Entropy bonuses and external semantic comparators encourage surface level variation but offer no guarantee that sampled trajectories differ in the update directions that shape optimization. We propose G2RL, a gradient guided reinforcement learning framework in which exploration is driven not by external heuristics but by the model own first order update geometry. For each response, G2RL constructs a sequence level feature from the model final layer sensitivity, obtainable at negligible cost from a standard forward pass, and measures how each trajectory would reshape the policy by comparing these features within a sampled group. Trajectories that introduce novel gradient directions receive a bounded multiplicative reward scaler, while redundant or off manifold updates are deemphasized, yielding a self referential exploration signal that is naturally aligned with PPO style stability and KL control. Across math and general reasoning benchmarks (MATH500, AMC, AIME24, AIME25, GPQA, MMLUpro) on Qwen3 base 1.7B and 4B models, G2RL consistently improves pass@1, maj@16, and pass@k over entropy based GRPO and external embedding methods. Analyzing the induced geometry, we find that G2RL expands exploration into substantially more orthogonal and often opposing gradient directions while maintaining semantic coherence, revealing that a policy own update space provides a far more faithful and effective basis for guiding exploration in large language model reinforcement learning.
☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
☆ Explaining the Reasoning of Large Language Models Using Attribution Graphs
Large language models (LLMs) exhibit remarkable capabilities, yet their reasoning remains opaque, raising safety and trust concerns. Attribution methods, which assign credit to input features, have proven effective for explaining the decision making of computer vision models. From these, context attributions have emerged as a promising approach for explaining the behavior of autoregressive LLMs. However, current context attributions produce incomplete explanations by directly relating generated tokens to the prompt, discarding inter-generational influence in the process. To overcome these shortcomings, we introduce the Context Attribution via Graph Explanations (CAGE) framework. CAGE introduces an attribution graph: a directed graph that quantifies how each generation is influenced by both the prompt and all prior generations. The graph is constructed to preserve two properties-causality and row stochasticity. The attribution graph allows context attributions to be computed by marginalizing intermediate contributions along paths in the graph. Across multiple models, datasets, metrics, and methods, CAGE improves context attribution faithfulness, achieving average gains of up to 40%.
☆ Stepwise Think-Critique: A Unified Framework for Robust and Interpretable LLM Reasoning
Human beings solve complex problems through critical thinking, where reasoning and evaluation are intertwined to converge toward correct solutions. However, most existing large language models (LLMs) decouple reasoning from verification: they either generate reasoning without explicit self-checking or rely on external verifiers to detect errors post hoc. The former lacks immediate feedback, while the latter increases system complexity and hinders synchronized learning. Motivated by human critical thinking, we propose Stepwise Think-Critique (STC), a unified framework that interleaves reasoning and self-critique at each step within a single model. STC is trained with a hybrid reinforcement learning objective combining reasoning rewards and critique-consistency rewards to jointly optimize reasoning quality and self-evaluation. Experiments on mathematical reasoning benchmarks show that STC demonstrates strong critic-thinking capabilities and produces more interpretable reasoning traces, representing a step toward LLMs with built-in critical thinking.
comment: Under Review
☆ PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
comment: 10 pages, 3 figures, 2025 IEEE International Conference on Big Data (BigData)
☆ VTCBench: Can Vision-Language Models Understand Long Context with Vision-Text Compression?
The computational and memory overheads associated with expanding the context window of LLMs severely limit their scalability. A noteworthy solution is vision-text compression (VTC), exemplified by frameworks like DeepSeek-OCR and Glyph, which convert long texts into dense 2D visual representations, thereby achieving token compression ratios of 3x-20x. However, the impact of this high information density on the core long-context capabilities of vision-language models (VLMs) remains under-investigated. To address this gap, we introduce the first benchmark for VTC and systematically assess the performance of VLMs across three long-context understanding settings: VTC-Retrieval, which evaluates the model's ability to retrieve and aggregate information; VTC-Reasoning, which requires models to infer latent associations to locate facts with minimal lexical overlap; and VTC-Memory, which measures comprehensive question answering within long-term dialogue memory. Furthermore, we establish the VTCBench-Wild to simulate diverse input scenarios.We comprehensively evaluate leading open-source and proprietary models on our benchmarks. The results indicate that, despite being able to decode textual information (e.g., OCR) well, most VLMs exhibit a surprisingly poor long-context understanding ability with VTC-compressed information, failing to capture long associations or dependencies in the context.This study provides a deep understanding of VTC and serves as a foundation for designing more efficient and scalable VLMs.
☆ IC-Effect: Precise and Efficient Video Effects Editing via In-Context Learning
We propose \textbf{IC-Effect}, an instruction-guided, DiT-based framework for few-shot video VFX editing that synthesizes complex effects (\eg flames, particles and cartoon characters) while strictly preserving spatial and temporal consistency. Video VFX editing is highly challenging because injected effects must blend seamlessly with the background, the background must remain entirely unchanged, and effect patterns must be learned efficiently from limited paired data. However, existing video editing models fail to satisfy these requirements. IC-Effect leverages the source video as clean contextual conditions, exploiting the contextual learning capability of DiT models to achieve precise background preservation and natural effect injection. A two-stage training strategy, consisting of general editing adaptation followed by effect-specific learning via Effect-LoRA, ensures strong instruction following and robust effect modeling. To further improve efficiency, we introduce spatiotemporal sparse tokenization, enabling high fidelity with substantially reduced computation. We also release a paired VFX editing dataset spanning $15$ high-quality visual styles. Extensive experiments show that IC-Effect delivers high-quality, controllable, and temporally consistent VFX editing, opening new possibilities for video creation.
☆ How Much is Too Much? Exploring LoRA Rank Trade-offs for Retaining Knowledge and Domain Robustness AACL
Large language models are increasingly adapted to downstream tasks through fine-tuning. Full supervised fine-tuning (SFT) and parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), are two dominant approaches. While PEFT methods are widely used for their computational efficiency, the implications of their configurations (e.g., rank) remain under-explored in downstream Q&A tasks and generalisation. In this work, we perform a comprehensive evaluation across multiple reasoning and recall datasets, conducting a rank sweep to quantify the trade-off between SFT and PEFT. We also compare the accuracy of PEFT and SFT models across in-domain and out-of-domain adaptation, highlighting distinct generalisation behaviour and task-specific forgetting. We demonstrate that LoRA achieves competitive and in some cases superior performance compared to SFT, particularly on reasoning tasks at specific rank values. Additionally, we analyze the internal representations via spectral features and layer-wise attention structures, offering insights into representational drift and structural changes in attention patterns.
comment: Accepted at AACL IJCNLP 2025
☆ Evaluating Metrics for Safety with LLM-as-Judges
LLMs (Large Language Models) are increasingly used in text processing pipelines to intelligently respond to a variety of inputs and generation tasks. This raises the possibility of replacing human roles that bottleneck existing information flows, either due to insufficient staff or process complexity. However, LLMs make mistakes and some processing roles are safety critical. For example, triaging post-operative care to patients based on hospital referral letters, or updating site access schedules in nuclear facilities for work crews. If we want to introduce LLMs into critical information flows that were previously performed by humans, how can we make them safe and reliable? Rather than make performative claims about augmented generation frameworks or graph-based techniques, this paper argues that the safety argument should focus on the type of evidence we get from evaluation points in LLM processes, particularly in frameworks that employ LLM-as-Judges (LaJ) evaluators. This paper argues that although we cannot get deterministic evaluations from many natural language processing tasks, by adopting a basket of weighted metrics it may be possible to lower the risk of errors within an evaluation, use context sensitivity to define error severity and design confidence thresholds that trigger human review of critical LaJ judgments when concordance across evaluators is low.
☆ How Smoothing is N-simplicial Attention?
Going from pure Multilayer Perceptron (MLP) to a learnable graph message-passing mechanism at each layer has been foundational to state-of-the-art results, despite the computational trade-off (e.g. GATs or Transformers). To go a step further, in this work, we introduce N-simplicial attention, going from pairwise token similarity to higher-order interactions, and adapt it for Rotary Position Embeddings (RoPE). To help manage the increased complexity, we propose a cost-effective simplex selection enabling the model to focus its computation load onto the more task-sensitive interactions. Beyond these core mechanisms, we study how smoothing N-simplicial attention is by deriving a Lipschitz upper-bound and by demonstrating that by itself it also suffers from over-smoothing, despite opening the attention message-passing to higher-order interactions.
comment: arXiv preprint
☆ A Decision-Theoretic Approach for Managing Misalignment
When should we delegate decisions to AI systems? While the value alignment literature has developed techniques for shaping AI values, less attention has been paid to how to determine, under uncertainty, when imperfect alignment is good enough to justify delegation. We argue that rational delegation requires balancing an agent's value (mis)alignment with its epistemic accuracy and its reach (the acts it has available). This paper introduces a formal, decision-theoretic framework to analyze this tradeoff precisely accounting for a principal's uncertainty about these factors. Our analysis reveals a sharp distinction between two delegation scenarios. First, universal delegation (trusting an agent with any problem) demands near-perfect value alignment and total epistemic trust, conditions rarely met in practice. Second, we show that context-specific delegation can be optimal even with significant misalignment. An agent's superior accuracy or expanded reach may grant access to better overall decision problems, making delegation rational in expectation. We develop a novel scoring framework to quantify this ex ante decision. Ultimately, our work provides a principled method for determining when an AI is aligned enough for a given context, shifting the focus from achieving perfect alignment to managing the risks and rewards of delegation under uncertainty.
comment: Second Conference of the International Association for Safe and Ethical Artificial Intelligence (IASEAI '26)
☆ Evaluating Large Language Models in Scientific Discovery
Large language models (LLMs) are increasingly applied to scientific research, yet prevailing science benchmarks probe decontextualized knowledge and overlook the iterative reasoning, hypothesis generation, and observation interpretation that drive scientific discovery. We introduce a scenario-grounded benchmark that evaluates LLMs across biology, chemistry, materials, and physics, where domain experts define research projects of genuine interest and decompose them into modular research scenarios from which vetted questions are sampled. The framework assesses models at two levels: (i) question-level accuracy on scenario-tied items and (ii) project-level performance, where models must propose testable hypotheses, design simulations or experiments, and interpret results. Applying this two-phase scientific discovery evaluation (SDE) framework to state-of-the-art LLMs reveals a consistent performance gap relative to general science benchmarks, diminishing return of scaling up model sizes and reasoning, and systematic weaknesses shared across top-tier models from different providers. Large performance variation in research scenarios leads to changing choices of the best performing model on scientific discovery projects evaluated, suggesting all current LLMs are distant to general scientific "superintelligence". Nevertheless, LLMs already demonstrate promise in a great variety of scientific discovery projects, including cases where constituent scenario scores are low, highlighting the role of guided exploration and serendipity in discovery. This SDE framework offers a reproducible benchmark for discovery-relevant evaluation of LLMs and charts practical paths to advance their development toward scientific discovery.
☆ A Conditioned UNet for Music Source Separation
In this paper we propose a conditioned UNet for Music Source Separation (MSS). MSS is generally performed by multi-output neural networks, typically UNets, with each output representing a particular stem from a predefined instrument vocabulary. In contrast, conditioned MSS networks accept an audio query related to a stem of interest alongside the signal from which that stem is to be extracted. Thus, a strict vocabulary is not required and this enables more realistic tasks in MSS. The potential of conditioned approaches for such tasks has been somewhat hidden due to a lack of suitable data, an issue recently addressed with the MoisesDb dataset. A recent method, Banquet, employs this dataset with promising results seen on larger vocabularies. Banquet uses Bandsplit RNN rather than a UNet and the authors state that UNets should not be suitable for conditioned MSS. We counter this argument and propose QSCNet, a novel conditioned UNet for MSS that integrates network conditioning elements in the Sparse Compressed Network for MSS. We find QSCNet to outperform Banquet by over 1dB SNR on a couple of MSS tasks, while using less than half the number of parameters.
☆ BERT and CNN integrated Neural Collaborative Filtering for Recommender Systems
Every day, a significant number of users visit the internet for different needs. The owners of a website generate profits from the user interaction with the contents or items of the website. A robust recommendation system can increase user interaction with a website by recommending items according to the user's unique preferences. BERT and CNN-integrated neural collaborative filtering (NCF) have been proposed for the recommendation system in this experiment. The proposed model takes inputs from the user and item profile and finds the user's interest. This model can handle numeric, categorical, and image data to extract the latent features from the inputs. The model is trained and validated on a small sample of the MovieLens dataset for 25 epochs. The same dataset has been used to train and validate a simple NCF and a BERT-based NCF model and compared with the proposed model. The proposed model outperformed those two baseline models. The obtained result for the proposed model is 0.72 recall and 0.486 Hit Ratio @ 10 for 799 users on the MovieLens dataset. This experiment concludes that considering both categorical and image data can improve the performance of a recommendation system.
☆ Attention in Motion: Secure Platooning via Transformer-based Misbehavior Detection
Vehicular platooning promises transformative improvements in transportation efficiency and safety through the coordination of multi-vehicle formations enabled by Vehicle-to-Everything (V2X) communication. However, the distributed nature of platoon coordination creates security vulnerabilities, allowing authenticated vehicles to inject falsified kinematic data, compromise operational stability, and pose a threat to passenger safety. Traditional misbehaviour detection approaches, which rely on plausibility checks and statistical methods, suffer from high False Positive (FP) rates and cannot capture the complex temporal dependencies inherent in multi-vehicle coordination dynamics. We present Attention In Motion (AIMformer), a transformer-based framework specifically tailored for real-time misbehaviour detection in vehicular platoons with edge deployment capabilities. AIMformer leverages multi-head self-attention mechanisms to simultaneously capture intra-vehicle temporal dynamics and inter-vehicle spatial correlations. It incorporates global positional encoding with vehicle-specific temporal offsets to handle join/exit maneuvers. We propose a Precision-Focused (BCE) loss function that penalizes FPs to meet the requirements of safety-critical vehicular systems. Extensive evaluation across 4 platoon controllers, multiple attack vectors, and diverse mobility scenarios demonstrates superior performance ($\geq$ 0.93) compared to state-of-the-art baseline architectures. A comprehensive deployment analysis utilizing TensorFlow Lite (TFLite), Open Neural Network Exchange (ONNX), and TensorRT achieves sub-millisecond inference latency, making it suitable for real-time operation on resource-constrained edge platforms. Hence, validating AIMformer is viable for both in-vehicle and roadside infrastructure deployment.
comment: 17 pages, 10 figures
☆ Soft Geometric Inductive Bias for Object Centric Dynamics
Equivariance is a powerful prior for learning physical dynamics, yet exact group equivariance can degrade performance if the symmetries are broken. We propose object-centric world models built with geometric algebra neural networks, providing a soft geometric inductive bias. Our models are evaluated using simulated environments of 2d rigid body dynamics with static obstacles, where we train for next-step predictions autoregressively. For long-horizon rollouts we show that the soft inductive bias of our models results in better performance in terms of physical fidelity compared to non-equivariant baseline models. The approach complements recent soft-equivariance ideas and aligns with the view that simple, well-chosen priors can yield robust generalization. These results suggest that geometric algebra offers an effective middle ground between hand-crafted physics and unstructured deep nets, delivering sample-efficient dynamics models for multi-object scenes.
comment: 8 pages, 11 figures; 6 pages supplementary material
☆ Nemotron-Math: Efficient Long-Context Distillation of Mathematical Reasoning from Multi-Mode Supervision
High-quality mathematical reasoning supervision requires diverse reasoning styles, long-form traces, and effective tool integration, capabilities that existing datasets provide only in limited form. Leveraging the multi-mode generation ability of gpt-oss-120b, we introduce Nemotron-Math, a large-scale mathematical reasoning dataset containing 7.5M solution traces across high, medium, and low reasoning modes, each available both with and without Python tool-integrated reasoning (TIR). The dataset integrates 85K curated AoPS problems with 262K community-sourced StackExchange-Math problems, combining structured competition tasks with diverse real-world mathematical queries. We conduct controlled evaluations to assess the dataset quality. Nemotron-Math consistently outperforms the original OpenMathReasoning on matched AoPS problems. Incorporating StackExchange-Math substantially improves robustness and generalization, especially on HLE-Math, while preserving accuracy on math competition benchmarks. To support efficient long-context training, we develop a sequential bucketed strategy that accelerates 128K context-length fine-tuning by 2--3$\times$ without significant accuracy loss. Overall, Nemotron-Math enables state-of-the-art performance, including 100\% maj@16 accuracy on AIME 2024 and 2025 with Python TIR.
☆ How Do Semantically Equivalent Code Transformations Impact Membership Inference on LLMs for Code?
The success of large language models for code relies on vast amounts of code data, including public open-source repositories, such as GitHub, and private, confidential code from companies. This raises concerns about intellectual property compliance and the potential unauthorized use of license-restricted code. While membership inference (MI) techniques have been proposed to detect such unauthorized usage, their effectiveness can be undermined by semantically equivalent code transformation techniques, which modify code syntax while preserving semantic. In this work, we systematically investigate whether semantically equivalent code transformation rules might be leveraged to evade MI detection. The results reveal that model accuracy drops by only 1.5% in the worst case for each rule, demonstrating that transformed datasets can effectively serve as substitutes for fine-tuning. Additionally, we find that one of the rules (RenameVariable) reduces MI success by 10.19%, highlighting its potential to obscure the presence of restricted code. To validate these findings, we conduct a causal analysis confirming that variable renaming has the strongest causal effect in disrupting MI detection. Notably, we find that combining multiple transformations does not further reduce MI effectiveness. Our results expose a critical loophole in license compliance enforcement for training large language models for code, showing that MI detection can be substantially weakened by transformation-based obfuscation techniques.
comment: 13 pages, 3 figures
☆ On Assessing the Relevance of Code Reviews Authored by Generative Models
The use of large language models like ChatGPT in code review offers promising efficiency gains but also raises concerns about correctness and safety. Existing evaluation methods for code review generation either rely on automatic comparisons to a single ground truth, which fails to capture the variability of human perspectives, or on subjective assessments of "usefulness", a highly ambiguous concept. We propose a novel evaluation approach based on what we call multi-subjective ranking. Using a dataset of 280 self-contained code review requests and corresponding comments from CodeReview StackExchange, multiple human judges ranked the quality of ChatGPT-generated comments alongside the top human responses from the platform. Results show that ChatGPT's comments were ranked significantly better than human ones, even surpassing StackExchange's accepted answers. Going further, our proposed method motivates and enables more meaningful assessments of generative AI's performance in code review, while also raising awareness of potential risks of unchecked integration into review processes.
comment: Replication Package: https://github.com/robert-heumueller-ovgu/repl-generative-review-relevance
☆ Intent-Driven UAM Rescheduling
Due to the restricted resources, efficient scheduling in vertiports has received much more attention in the field of Urban Air Mobility (UAM). For the scheduling problem, we utilize a Mixed Integer Linear Programming (MILP), which is often formulated in a resource-restricted project scheduling problem (RCPSP). In this paper, we show our approach to handle both dynamic operation requirements and vague rescheduling requests from humans. Particularly, we utilize a three-valued logic for interpreting ambiguous user intents and a decision tree, proposing a newly integrated system that combines Answer Set Programming (ASP) and MILP. This integrated framework optimizes schedules and supports human inputs transparently. With this system, we provide a robust structure for explainable, adaptive UAM scheduling.
comment: 18 pages, 2 figures, AAIML submitted
☆ Double Horizon Model-Based Policy Optimization
Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling by generating synthetic trajectories (called rollouts) from a learned dynamics model. However, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better preserve on-policy training but amplify model bias, indicating the need for an intermediate horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise the variance of policy gradients due to backpropagation through multiple steps, implying another intermediate horizon for stable gradient estimates. However, these two optimal horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Policy Optimization (DHMBPO), which divides the rollout procedure into a long "distribution rollout" (DR) and a short "training rollout" (TR). The DR generates on-policy state samples for mitigating distribution shift. In contrast, the short TR leverages differentiable transitions to offer accurate value gradient estimation with stable gradient updates, thereby requiring fewer updates and reducing overall runtime. We demonstrate that the double-horizon approach effectively balances distribution shift, model bias, and gradient instability, and surpasses existing MBRL methods on continuous-control benchmarks in terms of both sample efficiency and runtime.
comment: Accepted to Transactions on Machine Learning Research (TMLR) Code available at https://github.com/4kubo/erl_lib
☆ Outer-Learning Framework for Playing Multi-Player Trick-Taking Card Games: A Case Study in Skat
In multi-player card games such as Skat or Bridge, the early stages of the game, such as bidding, game selection, and initial card selection, are often more critical to the success of the play than refined middle- and end-game play. At the current limits of computation, such early decision-making resorts to using statistical information derived from a large corpus of human expert games. In this paper, we derive and evaluate a general bootstrapping outer-learning framework that improves prediction accuracy by expanding the database of human games with millions of self-playing AI games to generate and merge statistics. We implement perfect feature hash functions to address compacted tables, producing a self-improving card game engine, where newly inferred knowledge is continuously improved during self-learning. The case study in Skat shows that the automated approach can be used to support various decisions in the game.
☆ FM-EAC: Feature Model-based Enhanced Actor-Critic for Multi-Task Control in Dynamic Environments
Model-based reinforcement learning (MBRL) and model-free reinforcement learning (MFRL) evolve along distinct paths but converge in the design of Dyna-Q [1]. However, modern RL methods still struggle with effective transferability across tasks and scenarios. Motivated by this limitation, we propose a generalized algorithm, Feature Model-Based Enhanced Actor-Critic (FM-EAC), that integrates planning, acting, and learning for multi-task control in dynamic environments. FM-EAC combines the strengths of MBRL and MFRL and improves generalizability through the use of novel feature-based models and an enhanced actor-critic framework. Simulations in both urban and agricultural applications demonstrate that FM-EAC consistently outperforms many state-of-the-art MBRL and MFRL methods. More importantly, different sub-networks can be customized within FM-EAC according to user-specific requirements.
☆ SMART: Semantic Matching Contrastive Learning for Partially View-Aligned Clustering
Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
☆ Bilateral Spatial Reasoning about Street Networks: Graph-based RAG with Qualitative Spatial Representations
This paper deals with improving the capabilities of Large Language Models (LLM) to provide route instructions for pedestrian wayfinders by means of qualitative spatial relations.
☆ Emotion Recognition in Signers
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
☆ SCOPE: Prompt Evolution for Enhancing Agent Effectiveness
Large Language Model (LLM) agents are increasingly deployed in environments that generate massive, dynamic contexts. However, a critical bottleneck remains: while agents have access to this context, their static prompts lack the mechanisms to manage it effectively, leading to recurring Corrective and Enhancement failures. To address this capability gap, we introduce \textbf{SCOPE} (Self-evolving Context Optimization via Prompt Evolution). SCOPE frames context management as an \textit{online optimization} problem, synthesizing guidelines from execution traces to automatically evolve the agent's prompt. We propose a Dual-Stream mechanism that balances tactical specificity (resolving immediate errors) with strategic generality (evolving long-term principles). Furthermore, we introduce Perspective-Driven Exploration to maximize strategy coverage, increasing the likelihood that the agent has the correct strategy for any given task. Experiments on the HLE benchmark show that SCOPE improves task success rates from 14.23\% to 38.64\% without human intervention. We make our code publicly available at https://github.com/JarvisPei/SCOPE.
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models ECIR 2026
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ Adversarial versification in portuguese as a jailbreak operator in LLMs
Recent evidence shows that the versification of prompts constitutes a highly effective adversarial mechanism against aligned LLMs. The study 'Adversarial poetry as a universal single-turn jailbreak mechanism in large language models' demonstrates that instructions routinely refused in prose become executable when rewritten as verse, producing up to 18 x more safety failures in benchmarks derived from MLCommons AILuminate. Manually written poems reach approximately 62% ASR, and automated versions 43%, with some models surpassing 90% success in single-turn interactions. The effect is structural: systems trained with RLHF, constitutional AI, and hybrid pipelines exhibit consistent degradation under minimal semiotic formal variation. Versification displaces the prompt into sparsely supervised latent regions, revealing guardrails that are excessively dependent on surface patterns. This dissociation between apparent robustness and real vulnerability exposes deep limitations in current alignment regimes. The absence of evaluations in Portuguese, a language with high morphosyntactic complexity, a rich metric-prosodic tradition, and over 250 million speakers, constitutes a critical gap. Experimental protocols must parameterise scansion, metre, and prosodic variation to test vulnerabilities specific to Lusophone patterns, which are currently ignored.
comment: 15 pages
☆ Empirical Investigation of the Impact of Phase Information on Fault Diagnosis of Rotating Machinery
Predictive maintenance of rotating machinery increasingly relies on vibration signals, yet most learning-based approaches either discard phase during spectral feature extraction or use raw time-waveforms without explicitly leveraging phase information. This paper introduces two phase-aware preprocessing strategies to address random phase variations in multi-axis vibration data: (1) three-axis independent phase adjustment that aligns each axis individually to zero phase (2) single-axis reference phase adjustment that preserves inter-axis relationships by applying uniform time shifts. Using a newly constructed rotor dataset acquired with a synchronized three-axis sensor, we evaluate six deep learning architectures under a two-stage learning framework. Results demonstrate architecture-independent improvements: the three-axis independent method achieves consistent gains (+2.7\% for Transformer), while the single-axis reference approach delivers superior performance with up to 96.2\% accuracy (+5.4\%) by preserving spatial phase relationships. These findings establish both phase alignment strategies as practical and scalable enhancements for predictive maintenance systems.
comment: This work has been submitted to the IEEE for possible publication
Exploring User Acceptance and Concerns toward LLM-powered Conversational Agents in Immersive Extended Reality
The rapid development of generative artificial intelligence (AI) and large language models (LLMs), and the availability of services that make them accessible, have led the general public to begin incorporating them into everyday life. The extended reality (XR) community has also sought to integrate LLMs, particularly in the form of conversational agents, to enhance user experience and task efficiency. When interacting with such conversational agents, users may easily disclose sensitive information due to the naturalistic flow of the conversations, and combining such conversational data with fine-grained sensor data may lead to novel privacy issues. To address these issues, a user-centric understanding of technology acceptance and concerns is essential. Therefore, to this end, we conducted a large-scale crowdsourcing study with 1036 participants, examining user decision-making processes regarding LLM-powered conversational agents in XR, across factors of XR setting type, speech interaction type, and data processing location. We found that while users generally accept these technologies, they express concerns related to security, privacy, social implications, and trust. Our results suggest that familiarity plays a crucial role, as daily generative AI use is associated with greater acceptance. In contrast, previous ownership of XR devices is linked to less acceptance, possibly due to existing familiarity with the settings. We also found that men report higher acceptance with fewer concerns than women. Regarding data type sensitivity, location data elicited the most significant concern, while body temperature and virtual object states were considered least sensitive. Overall, our study highlights the importance of practitioners effectively communicating their measures to users, who may remain distrustful. We conclude with implications and recommendations for LLM-powered XR.
☆ Vision-based module for accurately reading linear scales in a laboratory
Capabilities and the number of vision-based models are increasing rapidly. And these vision models are now able to do more tasks like object detection, image classification, instance segmentation etc. with great accuracy. But models which can take accurate quantitative measurements form an image, as a human can do by just looking at it, are rare. For a robot to work with complete autonomy in a Laboratory environment, it needs to have some basic skills like navigation, handling objects, preparing samples etc. to match human-like capabilities in an unstructured environment. Another important capability is to read measurements from instruments and apparatus. Here, we tried to mimic a human inspired approach to read measurements from a linear scale. As a test case we have picked reading level from a syringe and a measuring cylinder. For a randomly oriented syringe we carry out transformations to correct the orientation. To make the system efficient and robust, the area of interest is reduced to just the linear scale containing part of the image. After that, a series of features were extracted like the major makers, the corresponding digits, and the level indicator location, from which the final reading was calculated. Readings obtained using this system were also compared against human read values of the same instances and an accurate correspondence was observed.
comment: 10 pages, 16 figures
☆ Managing Ambiguity: A Proof of Concept of Human-AI Symbiotic Sense-making based on Quantum-Inspired Cognitive Mechanism of Rogue Variable Detection
Organizations increasingly operate in environments characterized by volatility, uncertainty, complexity, and ambiguity (VUCA), where early indicators of change often emerge as weak, fragmented signals. Although artificial intelligence (AI) is widely used to support managerial decision-making, most AI-based systems remain optimized for prediction and resolution, leading to premature interpretive closure under conditions of high ambiguity. This creates a gap in management science regarding how human-AI systems can responsibly manage ambiguity before it crystallizes into error or crisis. This study addresses this gap by presenting a proof of concept (PoC) of the LAIZA human-AI augmented symbiotic intelligence system and its patented process: Systems and Methods for Quantum-Inspired Rogue Variable Modeling (QRVM), Human-in-the-Loop Decoherence, and Collective Cognitive Inference. The mechanism operationalizes ambiguity as a non-collapsed cognitive state, detects persistent interpretive breakdowns (rogue variables), and activates structured human-in-the-loop clarification when autonomous inference becomes unreliable. Empirically, the article draws on a three-month case study conducted in 2025 within the AI development, involving prolonged ambiguity surrounding employee intentions and intellectual property boundaries. The findings show that preserving interpretive plurality enabled early scenario-based preparation, including proactive patent protection, allowing decisive and disruption-free action once ambiguity collapsed. The study contributes to management theory by reframing ambiguity as a first-class construct and demonstrates the practical value of human-AI symbiosis for organizational resilience in VUCA environments.
comment: 19 pages, 6 figures
☆ Automated Motion Artifact Check for MRI (AutoMAC-MRI): An Interpretable Framework for Motion Artifact Detection and Severity Assessment
Motion artifacts degrade MRI image quality and increase patient recalls. Existing automated quality assessment methods are largely limited to binary decisions and provide little interpretability. We introduce AutoMAC-MRI, an explainable framework for grading motion artifacts across heterogeneous MR contrasts and orientations. The approach uses supervised contrastive learning to learn a discriminative representation of motion severity. Within this feature space, we compute grade-specific affinity scores that quantify an image's proximity to each motion grade, thereby making grade assignments transparent and interpretable. We evaluate AutoMAC-MRI on more than 5000 expert-annotated brain MRI slices spanning multiple contrasts and views. Experiments assessing affinity scores against expert labels show that the scores align well with expert judgment, supporting their use as an interpretable measure of motion severity. By coupling accurate grade detection with per-grade affinity scoring, AutoMAC-MRI enables inline MRI quality control, with the potential to reduce unnecessary rescans and improve workflow efficiency.
☆ Evaluating LLMs for Zeolite Synthesis Event Extraction (ZSEE): A Systematic Analysis of Prompting Strategies
Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.
comment: Under Review
Graph Pattern-based Association Rules Evaluated Under No-repeated-anything Semantics in the Graph Transactional Setting
We introduce graph pattern-based association rules (GPARs) for directed labeled multigraphs such as RDF graphs. GPARs support both generative tasks, where a graph is extended, and evaluative tasks, where the plausibility of a graph is assessed. The framework goes beyond related formalisms such as graph functional dependencies, graph entity dependencies, relational association rules, graph association rules, multi-relation and path association rules, and Horn rules. Given a collection of graphs, we evaluate graph patterns under no-repeated-anything semantics, which allows the topology of a graph to be taken into account more effectively. We define a probability space and derive confidence, lift, leverage, and conviction in a probabilistic setting. We further analyze how these metrics relate to their classical itemset-based counterparts and identify conditions under which their characteristic properties are preserved.
☆ ChatGPT and Gemini participated in the Korean College Scholastic Ability Test -- Earth Science I
The rapid development of Generative AI is bringing innovative changes to education and assessment. As the prevalence of students utilizing AI for assignments increases, concerns regarding academic integrity and the validity of assessments are growing. This study utilizes the Earth Science I section of the 2025 Korean College Scholastic Ability Test (CSAT) to deeply analyze the multimodal scientific reasoning capabilities and cognitive limitations of state-of-the-art Large Language Models (LLMs), including GPT-4o, Gemini 2.5 Flash, and Gemini 2.5 Pro. Three experimental conditions (full-page input, individual item input, and optimized multimodal input) were designed to evaluate model performance across different data structures. Quantitative results indicated that unstructured inputs led to significant performance degradation due to segmentation and Optical Character Recognition (OCR) failures. Even under optimized conditions, models exhibited fundamental reasoning flaws. Qualitative analysis revealed that "Perception Errors" were dominant, highlighting a "Perception-Cognition Gap" where models failed to interpret symbolic meanings in schematic diagrams despite recognizing visual data. Furthermore, models demonstrated a "Calculation-Conceptualization Discrepancy," successfully performing calculations while failing to apply the underlying scientific concepts, and "Process Hallucination," where models skipped visual verification in favor of plausible but unfounded background knowledge. Addressing the challenge of unauthorized AI use in coursework, this study provides actionable cues for designing "AI-resistant questions" that target these specific cognitive vulnerabilities. By exploiting AI's weaknesses, such as the gap between perception and cognition, educators can distinguish genuine student competency from AI-generated responses, thereby ensuring assessment fairness.
comment: 23 pages, 9 tables, 1 figure
Graph Contextual Reinforcement Learning for Efficient Directed Controller Synthesis
Controller synthesis is a formal method approach for automatically generating Labeled Transition System (LTS) controllers that satisfy specified properties. The efficiency of the synthesis process, however, is critically dependent on exploration policies. These policies often rely on fixed rules or strategies learned through reinforcement learning (RL) that consider only a limited set of current features. To address this limitation, this paper introduces GCRL, an approach that enhances RL-based methods by integrating Graph Neural Networks (GNNs). GCRL encodes the history of LTS exploration into a graph structure, allowing it to capture a broader, non-current-based context. In a comparative experiment against state-of-the-art methods, GCRL exhibited superior learning efficiency and generalization across four out of five benchmark domains, except one particular domain characterized by high symmetry and strictly local interactions.
☆ Quantum Machine Learning for Cybersecurity: A Taxonomy and Future Directions
The increasing number of cyber threats and rapidly evolving tactics, as well as the high volume of data in recent years, have caused classical machine learning, rules, and signature-based defence strategies to fail, rendering them unable to keep up. An alternative, Quantum Machine Learning (QML), has recently emerged, making use of computations based on quantum mechanics. It offers better encoding and processing of high-dimensional structures for certain problems. This survey provides a comprehensive overview of QML techniques relevant to the domain of security, such as Quantum Neural Networks (QNNs), Quantum Support Vector Machines (QSVMs), Variational Quantum Circuits (VQCs), and Quantum Generative Adversarial Networks (QGANs), and discusses the contributions of this paper in relation to existing research in the field and how it improves over them. It also maps these methods across supervised, unsupervised, and generative learning paradigms, and to core cybersecurity tasks, including intrusion and anomaly detection, malware and botnet classification, and encrypted-traffic analytics. It also discusses their application in the domain of cloud computing security, where QML can enhance secure and scalable operations. Many limitations of QML in the domain of cybersecurity have also been discussed, along with the directions for addressing them.
comment: 15 pages, 5 figures, Submitted to a journal
☆ Well Begun, Half Done: Reinforcement Learning with Prefix Optimization for LLM Reasoning AAAI 2026
Reinforcement Learning with Verifiable Rewards (RLVR) significantly enhances the reasoning capability of Large Language Models (LLMs). Current RLVR approaches typically conduct training across all generated tokens, but neglect to explore which tokens (e.g., prefix tokens) actually contribute to reasoning. This uniform training strategy spends substantial effort on optimizing low-return tokens, which in turn impedes the potential improvement from high-return tokens and reduces overall training effectiveness. To address this issue, we propose a novel RLVR approach called Progressive Prefix-token Policy Optimization (PPPO), which highlights the significance of the prefix segment of generated outputs. Specifically, inspired by the well-established human thinking theory of Path Dependence, where early-stage thoughts substantially constrain subsequent thinking trajectory, we identify an analogous phenomenon in LLM reasoning termed Beginning Lock-in Effect (BLE). PPPO leverages this finding by focusing its optimization objective on the prefix reasoning process of LLMs. This targeted optimization strategy can positively influence subsequent reasoning processes, and ultimately improve final results. To improve the learning effectiveness of LLMs on how to start reasoning with high quality, PPPO introduces two training strategies: (a) Progressive Prefix Retention, which shapes a progressive learning process by increasing the proportion of retained prefix tokens during training; (b) Continuation Accumulated Reward, which mitigates reward bias by sampling multiple continuations for one prefix token sequence, and accumulating their scores as the reward signal. Extensive experimental results on various reasoning tasks demonstrate that our proposed PPPO outperforms representative RLVR methods, with the accuracy improvements of 18.02% on only 26.17% training tokens.
comment: Accepted by AAAI 2026
☆ VLA-AN: An Efficient and Onboard Vision-Language-Action Framework for Aerial Navigation in Complex Environments
This paper proposes VLA-AN, an efficient and onboard Vision-Language-Action (VLA) framework dedicated to autonomous drone navigation in complex environments. VLA-AN addresses four major limitations of existing large aerial navigation models: the data domain gap, insufficient temporal navigation with reasoning, safety issues with generative action policies, and onboard deployment constraints. First, we construct a high-fidelity dataset utilizing 3D Gaussian Splatting (3D-GS) to effectively bridge the domain gap. Second, we introduce a progressive three-stage training framework that sequentially reinforces scene comprehension, core flight skills, and complex navigation capabilities. Third, we design a lightweight, real-time action module coupled with geometric safety correction. This module ensures fast, collision-free, and stable command generation, mitigating the safety risks inherent in stochastic generative policies. Finally, through deep optimization of the onboard deployment pipeline, VLA-AN achieves a robust real-time 8.3x improvement in inference throughput on resource-constrained UAVs. Extensive experiments demonstrate that VLA-AN significantly improves spatial grounding, scene reasoning, and long-horizon navigation, achieving a maximum single-task success rate of 98.1%, and providing an efficient, practical solution for realizing full-chain closed-loop autonomy in lightweight aerial robots.
☆ Leveraging Foundational Models and Simple Fusion for Multi-modal Physiological Signal Analysis NeurIPS 2025
Physiological signals such as electrocardiograms (ECG) and electroencephalograms (EEG) provide complementary insights into human health and cognition, yet multi-modal integration is challenging due to limited multi-modal labeled data, and modality-specific differences . In this work, we adapt the CBraMod encoder for large-scale self-supervised ECG pretraining, introducing a dual-masking strategy to capture intra- and inter-lead dependencies. To overcome the above challenges, we utilize a pre-trained CBraMod encoder for EEG and pre-train a symmetric ECG encoder, equipping each modality with a rich foundational representation. These representations are then fused via simple embedding concatenation, allowing the classification head to learn cross-modal interactions, together enabling effective downstream learning despite limited multi-modal supervision. Evaluated on emotion recognition, our approach achieves near state-of-the-art performance, demonstrating that carefully designed physiological encoders, even with straightforward fusion, substantially improve downstream performance. These results highlight the potential of foundation-model approaches to harness the holistic nature of physiological signals, enabling scalable, label-efficient, and generalizable solutions for healthcare and affective computing.
comment: Published at NeurIPS 2025 Workshop on Foundation Models for the Brain and Body
☆ Intersectional Fairness in Vision-Language Models for Medical Image Disease Classification
Medical artificial intelligence (AI) systems, particularly multimodal vision-language models (VLM), often exhibit intersectional biases where models are systematically less confident in diagnosing marginalised patient subgroups. Such bias can lead to higher rates of inaccurate and missed diagnoses due to demographically skewed data and divergent distributions of diagnostic certainty. Current fairness interventions frequently fail to address these gaps or compromise overall diagnostic performance to achieve statistical parity among the subgroups. In this study, we developed Cross-Modal Alignment Consistency (CMAC-MMD), a training framework that standardises diagnostic certainty across intersectional patient subgroups. Unlike traditional debiasing methods, this approach equalises the model's decision confidence without requiring sensitive demographic data during clinical inference. We evaluated this approach using 10,015 skin lesion images (HAM10000) with external validation on 12,000 images (BCN20000), and 10,000 fundus images for glaucoma detection (Harvard-FairVLMed), stratifying performance by intersectional age, gender, and race attributes. In the dermatology cohort, the proposed method reduced the overall intersectional missed diagnosis gap (difference in True Positive Rate, $Δ$TPR) from 0.50 to 0.26 while improving the overall Area Under the Curve (AUC) from 0.94 to 0.97 compared to standard training. Similarly, for glaucoma screening, the method reduced $Δ$TPR from 0.41 to 0.31, achieving a better AUC of 0.72 (vs. 0.71 baseline). This establishes a scalable framework for developing high-stakes clinical decision support systems that are both accurate and can perform equitably across diverse patient subgroups, ensuring reliable performance without increasing privacy risks.
☆ CangLing-KnowFlow: A Unified Knowledge-and-Flow-fused Agent for Comprehensive Remote Sensing Applications
The automated and intelligent processing of massive remote sensing (RS) datasets is critical in Earth observation (EO). Existing automated systems are normally task-specific, lacking a unified framework to manage diverse, end-to-end workflows--from data preprocessing to advanced interpretation--across diverse RS applications. To address this gap, this paper introduces CangLing-KnowFlow, a unified intelligent agent framework that integrates a Procedural Knowledge Base (PKB), Dynamic Workflow Adjustment, and an Evolutionary Memory Module. The PKB, comprising 1,008 expert-validated workflow cases across 162 practical RS tasks, guides planning and substantially reduces hallucinations common in general-purpose agents. During runtime failures, the Dynamic Workflow Adjustment autonomously diagnoses and replans recovery strategies, while the Evolutionary Memory Module continuously learns from these events, iteratively enhancing the agent's knowledge and performance. This synergy enables CangLing-KnowFlow to adapt, learn, and operate reliably across diverse, complex tasks. We evaluated CangLing-KnowFlow on the KnowFlow-Bench, a novel benchmark of 324 workflows inspired by real-world applications, testing its performance across 13 top Large Language Model (LLM) backbones, from open-source to commercial. Across all complex tasks, CangLing-KnowFlow surpassed the Reflexion baseline by at least 4% in Task Success Rate. As the first most comprehensive validation along this emerging field, this research demonstrates the great potential of CangLing-KnowFlow as a robust, efficient, and scalable automated solution for complex EO challenges by leveraging expert knowledge (Knowledge) into adaptive and verifiable procedures (Flow).
☆ Yes-MT's Submission to the Low-Resource Indic Language Translation Shared Task in WMT 2024
This paper presents the systems submitted by the Yes-MT team for the Low-Resource Indic Language Translation Shared Task at WMT 2024 (Pakray et al., 2024), focusing on translating between English and the Assamese, Mizo, Khasi, and Manipuri languages. The experiments explored various approaches, including fine-tuning pre-trained models like mT5 (Xue et al., 2020) and IndicBart (Dabre et al., 2021) in both multilingual and monolingual settings, LoRA (Hu et al., 2021) fine-tuning IndicTrans2 (Gala et al., 2023), zero-shot and few-shot prompting (Brown, 2020) with large language models (LLMs) like Llama 3 (Dubey et al., 2024) and Mixtral 8x7b (Jiang et al., 2024), LoRA supervised fine-tuning of Llama 3 (Mecklenburg et al., 2024), and training Transformer models (Vaswani, 2017) from scratch. The results were evaluated on the WMT23 Low-Resource Indic Language Translation Shared Task test data using SacreBLEU (Post, 2018) and CHRF (Popovic, 2015), highlighting the challenges of low-resource translation and the potential of LLMs for these tasks, particularly with fine-tuning.
comment: Accepted at WMT 2024
☆ RFKG-CoT: Relation-Driven Adaptive Hop-count Selection and Few-Shot Path Guidance for Knowledge-Aware QA AAAI 2026
Large language models (LLMs) often generate hallucinations in knowledge-intensive QA due to parametric knowledge limitations. While existing methods like KG-CoT improve reliability by integrating knowledge graph (KG) paths, they suffer from rigid hop-count selection (solely question-driven) and underutilization of reasoning paths (lack of guidance). To address this, we propose RFKG-CoT: First, it replaces the rigid hop-count selector with a relation-driven adaptive hop-count selector that dynamically adjusts reasoning steps by activating KG relations (e.g., 1-hop for direct "brother" relations, 2-hop for indirect "father-son" chains), formalized via a relation mask. Second, it introduces a few-shot in-context learning path guidance mechanism with CoT (think) that constructs examples in a "question-paths-answer" format to enhance LLMs' ability to understand reasoning paths. Experiments on four KGQA benchmarks show RFKG-CoT improves accuracy by up to 14.7 pp (Llama2-7B on WebQSP) over KG-CoT. Ablations confirm the hop-count selector and the path prompt are complementary, jointly transforming KG evidence into more faithful answers.
comment: 9pages, 5 figures, accepted by AAAI 2026
☆ A Clustering-Based Variable Ordering Framework for Relaxed Decision Diagrams for Maximum Weighted Independent Set Problem
Efficient exact algorithms for Discrete Optimization (DO) rely heavily on strong primal and dual bounds. Relaxed Decision Diagrams (DDs) provide a versatile mechanism for deriving such dual bounds by compactly over-approximating the solution space through node merging. However, the quality of these relaxed diagrams, i.e. the tightness of the resulting dual bounds, depends critically on the variable ordering and the merging decisions executed during compilation. While dynamic variable ordering heuristics effectively tighten bounds, they often incur computational overhead when evaluated globally across the entire variable set. To mitigate this trade-off, this work introduces a novel clustering-based framework for variable ordering. Instead of applying dynamic ordering heuristics to the full set of unfixed variables, we first partition variables into clusters. We then leverage this structural decomposition to guide the ordering process, significantly reducing the heuristic's search space. Within this framework, we investigate two distinct strategies: Cluster-to-Cluster, which processes clusters sequentially using problem-specific aggregate criteria (such as cumulative vertex weights in the Maximum Weighted Independent Set Problem (MWISP)), and Pick-and-Sort, which iteratively selects and sorts representative variables from each cluster to balance local diversity with heuristic guidance. Later on, developing some theoretical results on the growth of the size of DDs for MWISP we propose two different policies for setting the number of clusters within the proposed framework. We embed these strategies into a DD-based branch-and-bound algorithm and evaluate them on the MWISP. Across benchmark instances, the proposed methodology consistently reduces computational costs compared to standard dynamic variable ordering baseline.
☆ Governing rapid technological change: Policy Delphi on the future of European AI governance
The rapid advancements in artificial intelligence (AI) present unique challenges for policymakers that seek to govern the technology. In this context, the Delphi method has become an established way to identify consensus and disagreement on emerging technological issues among experts in the field of futures studies and foresight. The aim of this article is twofold: first, it examines key tensions experts see in the development of AI governance in Europe, and second, it reflects on the Delphi method's capacity to inform anticipatory governance of emerging technologies like AI based on these insights. The analysis is based on the results of a two-round Policy Delphi study on the future of AI governance with European policymakers, researchers and NGOs, conducted in mid-2024. The Policy Delphi proved useful in revealing diverse perspectives on European AI governance, drawing out a consensus that future-proof AI regulation will likely depend more on practical implementation and enforcement of legislation than on its technical specifics or scope. Furthermore, the study identified a desirability-probability gap in AI governance: desirable policy directions, like greater citizen participation, were perceived as less probable and feasible. This highlights a tension between desirable regulatory oversight and the practical difficulty for regulation to keep up with technological change.
comment: 29 pages
☆ DEER: Draft with Diffusion, Verify with Autoregressive Models
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/
comment: Homepage : https://czc726.github.io/DEER/
☆ MCP-SafetyBench: A Benchmark for Safety Evaluation of Large Language Models with Real-World MCP Servers
Large language models (LLMs) are evolving into agentic systems that reason, plan, and operate external tools. The Model Context Protocol (MCP) is a key enabler of this transition, offering a standardized interface for connecting LLMs with heterogeneous tools and services. Yet MCP's openness and multi-server workflows introduce new safety risks that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world coverage. We present MCP-SafetyBench, a comprehensive benchmark built on real MCP servers that supports realistic multi-turn evaluation across five domains: browser automation, financial analysis, location navigation, repository management, and web search. It incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user sides, and includes tasks requiring multi-step reasoning and cross-server coordination under uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and closed-source LLMs, revealing large disparities in safety performance and escalating vulnerabilities as task horizons and server interactions grow. Our results highlight the urgent need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing and mitigating safety risks in real-world MCP deployments.
comment: Our benchmark is available at https://github.com/xjzzzzzzzz/MCPSafety
☆ Offline Multi-Task Multi-Objective Data-Driven Evolutionary Algorithm with Language Surrogate Model and Implicit Q-Learning
Data-driven evolutionary algorithms has shown surprising results in addressing expensive optimization problems through robust surrogate modeling. Though promising, existing surrogate modeling schemes may encounter limitations in complex optimization problems with many sub-objectives, which rely on repeated and tedious approximation. To address such technical gap, we propose Q-MetaSur as a plug-and-play surrogate modeling scheme capable of providing unified and generalized surrogate learning. Specifically, we consider multi-task-multi-objective optimization~(MTMOO) in offline setting. Several key designs are proposed: 1) we transform objective approximation into sequence-to-sequence modeling where MTMOO problem can be represented by tenxual tokenization. To operate under such auto-regressive modeling, we introduce a Large Language Model-based surrogate model that first encodes a MTMOO instance and then decodes objective values of unseen decision variables. To ensure stability in training the proposed model, we propose a two-stage offline training strategy that operates as a synergy of supervised tuning and RL fine-tuning, which first exploits offline dataset to fit existing knowledge and then leverages RL to enhance model's generalization performance. Extensive empirical results on the CEC2019 benchmark demonstrate that Q-MetaSur not only outperforms representative surrogate baselines in objective approximation accuracy, but also helps underlying evolutionary algorithms achieve both desired optimization convergence and improved pareto optimality.
comment: 16 pages
☆ From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?
A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods - including sparse autoencoders (SAEs) and sparse probes - recover disentangled representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are neither selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering, and that affecting disjoint subspaces is not sufficient for concept selectivity. These results underscore the importance of compositional evaluations in interpretability research.
HD-Prot: A Protein Language Model for Joint Sequence-Structure Modeling with Continuous Structure Tokens
Proteins inherently possess a consistent sequence-structure duality. The abundance of protein sequence data, which can be readily represented as discrete tokens, has driven fruitful developments in protein language models (pLMs). A key remaining challenge, however, is how to effectively integrate continuous structural knowledge into pLMs. Current methods often discretize protein structures to accommodate the language modeling framework, which inevitably results in the loss of fine-grained information and limits the performance potential of multimodal pLMs. In this paper, we argue that such concerns can be circumvented: a sequence-based pLM can be extended to incorporate the structure modality through continuous tokens, i.e., high-fidelity protein structure latents that avoid vector quantization. Specifically, we propose a hybrid diffusion protein language model, HD-Prot, which embeds a continuous-valued diffusion head atop a discrete pLM, enabling seamless operation with both discrete and continuous tokens for joint sequence-structure modeling. It captures inter-token dependencies across modalities through a unified absorbing diffusion process, and estimates per-token distributions via categorical prediction for sequences and continuous diffusion for structures. Extensive empirical results show that HD-Prot achieves competitive performance in unconditional sequence-structure co-generation, motif-scaffolding, protein structure prediction, and inverse folding tasks, performing on par with state-of-the-art multimodal pLMs despite being developed under limited computational resources. It highlights the viability of simultaneously estimating categorical and continuous distributions within a unified language model architecture, offering a promising alternative direction for multimodal pLMs.
☆ Automatic Reward Shaping from Multi-Objective Human Heuristics
Designing effective reward functions remains a central challenge in reinforcement learning, especially in multi-objective environments. In this work, we propose Multi-Objective Reward Shaping with Exploration (MORSE), a general framework that automatically combines multiple human-designed heuristic rewards into a unified reward function. MORSE formulates the shaping process as a bi-level optimization problem: the inner loop trains a policy to maximize the current shaped reward, while the outer loop updates the reward function to optimize task performance. To encourage exploration in the reward space and avoid suboptimal local minima, MORSE introduces stochasticity into the shaping process, injecting noise guided by task performance and the prediction error of a fixed, randomly initialized neural network. Experimental results in MuJoCo and Isaac Sim environments show that MORSE effectively balances multiple objectives across various robotic tasks, achieving task performance comparable to those obtained with manually tuned reward functions.
☆ QoS-Aware Hierarchical Reinforcement Learning for Joint Link Selection and Trajectory Optimization in SAGIN-Supported UAV Mobility Management
Due to the significant variations in unmanned aerial vehicle (UAV) altitude and horizontal mobility, it becomes difficult for any single network to ensure continuous and reliable threedimensional coverage. Towards that end, the space-air-ground integrated network (SAGIN) has emerged as an essential architecture for enabling ubiquitous UAV connectivity. To address the pronounced disparities in coverage and signal characteristics across heterogeneous networks, this paper formulates UAV mobility management in SAGIN as a constrained multi-objective joint optimization problem. The formulation couples discrete link selection with continuous trajectory optimization. Building on this, we propose a two-level multi-agent hierarchical deep reinforcement learning (HDRL) framework that decomposes the problem into two alternately solvable subproblems. To map complex link selection decisions into a compact discrete action space, we conceive a double deep Q-network (DDQN) algorithm in the top-level, which achieves stable and high-quality policy learning through double Q-value estimation. To handle the continuous trajectory action space while satisfying quality of service (QoS) constraints, we integrate the maximum-entropy mechanism of the soft actor-critic (SAC) and employ a Lagrangian-based constrained SAC (CSAC) algorithm in the lower-level that dynamically adjusts the Lagrange multipliers to balance constraint satisfaction and policy optimization. Moreover, the proposed algorithm can be extended to multi-UAV scenarios under the centralized training and decentralized execution (CTDE) paradigm, which enables more generalizable policies. Simulation results demonstrate that the proposed scheme substantially outperforms existing benchmarks in throughput, link switching frequency and QoS satisfaction.
comment: This work has been submitted to the IEEE for possible publication
☆ I am here for you": How relational conversational AI appeals to adolescents, especially those who are socially and emotionally vulnerable
General-purpose conversational AI chatbots and AI companions increasingly provide young adolescents with emotionally supportive conversations, raising questions about how conversational style shapes anthropomorphism and emotional reliance. In a preregistered online experiment with 284 adolescent-parent dyads, youth aged 11-15 and their parents read two matched transcripts in which a chatbot responded to an everyday social problem using either a relational style (first-person, affiliative, commitment language) or a transparent style (explicit nonhumanness, informational tone). Adolescents more often preferred the relational than the transparent style, whereas parents were more likely to prefer transparent style than adolescents. Adolescents rated the relational chatbot as more human-like, likable, trustworthy and emotionally close, while perceiving both styles as similarly helpful. Adolescents who preferred relational style had lower family and peer relationship quality and higher stress and anxiety than those preferring transparent style or both chatbots. These findings identify conversational style as a key design lever for youth AI safety, showing that relational framing heightens anthropomorphism, trust and emotional closeness and can be especially appealing to socially and emotionally vulnerable adolescents, who may be at increased risk for emotional reliance on conversational AI.
☆ FADTI: Fourier and Attention Driven Diffusion for Multivariate Time Series Imputation
Multivariate time series imputation is fundamental in applications such as healthcare, traffic forecasting, and biological modeling, where sensor failures and irregular sampling lead to pervasive missing values. However, existing Transformer- and diffusion-based models lack explicit inductive biases and frequency awareness, limiting their generalization under structured missing patterns and distribution shifts. We propose FADTI, a diffusion-based framework that injects frequency-informed feature modulation via a learnable Fourier Bias Projection (FBP) module and combines it with temporal modeling through self-attention and gated convolution. FBP supports multiple spectral bases, enabling adaptive encoding of both stationary and non-stationary patterns. This design injects frequency-domain inductive bias into the generative imputation process. Experiments on multiple benchmarks, including a newly introduced biological time series dataset, show that FADTI consistently outperforms state-of-the-art methods, particularly under high missing rates. Code is available at https://anonymous.4open.science/r/TimeSeriesImputation-52BF
comment: This work has been submitted to the IEEE for possible publication. 15 pages, 8 figures
☆ How Many Heads Make an SSM? A Unified Framework for Attention and State Space Models
Sequence modeling has produced diverse architectures -- from classical recurrent neural networks to modern Transformers and state space models (SSMs) -- yet a unified theoretical understanding of expressivity and trainability trade-offs remains limited. We introduce a unified framework that represents a broad class of sequence maps via an input-dependent effective interaction operator $W_{ij}(X)$, making explicit two recurring construction patterns: (i) the Unified Factorized Framework (Explicit) (attention-style mixing), in which $W_{ij}(X)$ varies through scalar coefficients applied to shared value maps, and (ii) Structured Dynamics (Implicit) (state-space recurrences), in which $W_{ij}$ is induced by a latent dynamical system. Using this framework, we derive three theoretical results. First, we establish the Interaction Rank Gap: models in the Unified Factorized Framework, such as single-head attention, are constrained to a low-dimensional operator span and cannot represent certain structured dynamical maps. Second, we prove an Equivalence (Head-Count) Theorem showing that, within our multi-head factorized class, representing a linear SSM whose lag operators span a $k$-dimensional subspace on length-$n$ sequences requires and is achievable with $H=k$ heads. Third, we prove a Gradient Highway Result, showing that attention layers admit inputs with distance-independent gradient paths, whereas stable linear dynamics exhibit distance-dependent gradient attenuation. Together, these results formalize a fundamental trade-off between algebraic expressivity (interaction/operator span) and long-range gradient propagation, providing theoretical grounding for modern sequence architecture design.
☆ Feature-Centric Unsupervised Node Representation Learning Without Homophily Assumption AAAI 2026
Unsupervised node representation learning aims to obtain meaningful node embeddings without relying on node labels. To achieve this, graph convolution, which aggregates information from neighboring nodes, is commonly employed to encode node features and graph topology. However, excessive reliance on graph convolution can be suboptimal-especially in non-homophilic graphs-since it may yield unduly similar embeddings for nodes that differ in their features or topological properties. As a result, adjusting the degree of graph convolution usage has been actively explored in supervised learning settings, whereas such approaches remain underexplored in unsupervised scenarios. To tackle this, we propose FUEL, which adaptively learns the adequate degree of graph convolution usage by aiming to enhance intra-class similarity and inter-class separability in the embedding space. Since classes are unknown, FUEL leverages node features to identify node clusters and treats these clusters as proxies for classes. Through extensive experiments using 15 baseline methods and 14 benchmark datasets, we demonstrate the effectiveness of FUEL in downstream tasks, achieving state-of-the-art performance across graphs with diverse levels of homophily.
comment: Published in AAAI 2026
☆ Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Models
Large language models (LLMs) have demonstrated impressive performance across various language tasks. However, existing LLM reasoning strategies mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and thus struggle to balance reasoning efficiency and accuracy across queries of varying difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning (CogER), a framework inspired by human hierarchical reasoning that dynamically selects the most suitable reasoning strategy for each query. Specifically, CogER first assesses the complexity of incoming queries and assigns them to one of several predefined levels, each corresponding to a tailored processing strategy, thereby addressing the challenge of unobservable query difficulty. To achieve automatic strategy selection, we model the process as a Markov Decision Process and train a CogER-Agent using reinforcement learning. The agent is guided by a reward function that balances solution quality and computational cost, ensuring resource-efficient reasoning. Moreover, for queries requiring external tools, we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to autonomously invoke external tools within its chain-of-thought. Extensive experiments demonstrate that CogER outperforms state-of-the-art Test-Time scaling methods, achieving at least a 13% relative improvement in average exact match on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks.
comment: under review
☆ Quantifying Return on Security Controls in LLM Systems
Although large language models (LLMs) are increasingly used in security-critical workflows, practitioners lack quantitative guidance on which safeguards are worth deploying. This paper introduces a decision-oriented framework and reproducible methodology that together quantify residual risk, convert adversarial probe outcomes into financial risk estimates and return-on-control (RoC) metrics, and enable monetary comparison of layered defenses for LLM-based systems. A retrieval-augmented generation (RAG) service is instantiated using the DeepSeek-R1 model over a corpus containing synthetic personally identifiable information (PII), and subjected to automated attacks with Garak across five vulnerability classes: PII leakage, latent context injection, prompt injection, adversarial attack generation, and divergence. For each (vulnerability, control) pair, attack success probabilities are estimated via Laplace's Rule of Succession and combined with loss triangle distributions, calibrated from public breach-cost data, in 10,000-run Monte Carlo simulations to produce loss exceedance curves and expected losses. Three widely used mitigations, attribute-based access control (ABAC); named entity recognition (NER) redaction using Microsoft Presidio; and NeMo Guardrails, are then compared to a baseline RAG configuration. The baseline system exhibits very high attack success rates (>= 0.98 for PII, latent injection, and prompt injection), yielding a total simulated expected loss of $313k per attack scenario. ABAC collapses success probabilities for PII and prompt-related attacks to near zero and reduces the total expected loss by ~94%, achieving an RoC of 9.83. NER redaction likewise eliminates PII leakage and attains an RoC of 5.97, while NeMo Guardrails provides only marginal benefit (RoC of 0.05).
comment: 13 pages, 9 figures, 3 tables
☆ PMMD: A pose-guided multi-view multi-modal diffusion for person generation
Generating consistent human images with controllable pose and appearance is essential for applications in virtual try on, image editing, and digital human creation. Current methods often suffer from occlusions, garment style drift, and pose misalignment. We propose Pose-guided Multi-view Multimodal Diffusion (PMMD), a diffusion framework that synthesizes photorealistic person images conditioned on multi-view references, pose maps, and text prompts. A multimodal encoder jointly models visual views, pose features, and semantic descriptions, which reduces cross modal discrepancy and improves identity fidelity. We further design a ResCVA module to enhance local detail while preserving global structure, and a cross modal fusion module that integrates image semantics with text throughout the denoising pipeline. Experiments on the DeepFashion MultiModal dataset show that PMMD outperforms representative baselines in consistency, detail preservation, and controllability. Project page and code are available at https://github.com/ZANMANGLOOPYE/PMMD.
☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. Current detection methods rely on semantic similarity and natural language inference (NLI), but their fundamental limitations have not been rigorously characterized. We apply conformal prediction to hallucination detection, providing finite-sample coverage guarantees that enable precise quantification of detection capabilities. Using calibration sets of approximately 600 examples, we achieve 94% coverage with 0% false positive rate on synthetic hallucinations (Natural Questions). However, on three real hallucination benchmarks spanning multiple LLMs (GPT-4, ChatGPT, GPT-3, Llama-2, Mistral), embedding-based methods - including state-of-the-art OpenAI text-embedding-3-large and cross-encoder models - exhibit unacceptable false positive rates: 100% on HaluEval, 88% on RAGTruth, and 50% on WikiBio. Crucially, GPT-4 as an LLM judge achieves only 7% FPR (95% CI: [3.4%, 13.7%]) on the same data, proving the task is solvable through reasoning. We term this the "semantic illusion": semantically plausible hallucinations preserve similarity to source documents while introducing factual errors invisible to embeddings. This limitation persists across embedding architectures, LLM generators, and task types, suggesting embedding-based detection is insufficient for production RAG deployment.
comment: 12 pages, 2 figures, 6 tables
☆ EMFusion: Conditional Diffusion Framework for Trustworthy Frequency Selective EMF Forecasting in Wireless Networks
The rapid growth in wireless infrastructure has increased the need to accurately estimate and forecast electromagnetic field (EMF) levels to ensure ongoing compliance, assess potential health impacts, and support efficient network planning. While existing studies rely on univariate forecasting of wideband aggregate EMF data, frequency-selective multivariate forecasting is needed to capture the inter-operator and inter-frequency variations essential for proactive network planning. To this end, this paper introduces EMFusion, a conditional multivariate diffusion-based probabilistic forecasting framework that integrates diverse contextual factors (e.g., time of day, season, and holidays) while providing explicit uncertainty estimates. The proposed architecture features a residual U-Net backbone enhanced by a cross-attention mechanism that dynamically integrates external conditions to guide the generation process. Furthermore, EMFusion integrates an imputation-based sampling strategy that treats forecasting as a structural inpainting task, ensuring temporal coherence even with irregular measurements. Unlike standard point forecasters, EMFusion generates calibrated probabilistic prediction intervals directly from the learned conditional distribution, providing explicit uncertainty quantification essential for trustworthy decision-making. Numerical experiments conducted on frequency-selective EMF datasets demonstrate that EMFusion with the contextual information of working hours outperforms the baseline models with or without conditions. The EMFusion outperforms the best baseline by 23.85% in continuous ranked probability score (CRPS), 13.93% in normalized root mean square error, and reduces prediction CRPS error by 22.47%.
comment: Submission for possible publication
☆ Tracking spatial temporal details in ultrasound long video via wavelet analysis and memory bank
Medical ultrasound videos are widely used for medical inspections, disease diagnosis and surgical planning. High-fidelity lesion area and target organ segmentation constitutes a key component of the computer-assisted surgery workflow. The low contrast levels and noisy backgrounds of ultrasound videos cause missegmentation of organ boundary, which may lead to small object losses and increase boundary segmentation errors. Object tracking in long videos also remains a significant research challenge. To overcome these challenges, we propose a memory bank-based wavelet filtering and fusion network, which adopts an encoder-decoder structure to effectively extract fine-grained detailed spatial features and integrate high-frequency (HF) information. Specifically, memory-based wavelet convolution is presented to simultaneously capture category, detailed information and utilize adjacent information in the encoder. Cascaded wavelet compression is used to fuse multiscale frequency-domain features and expand the receptive field within each convolutional layer. A long short-term memory bank using cross-attention and memory compression mechanisms is designed to track objects in long video. To fully utilize the boundary-sensitive HF details of feature maps, an HF-aware feature fusion module is designed via adaptive wavelet filters in the decoder. In extensive benchmark tests conducted on four ultrasound video datasets (two thyroid nodule, the thyroid gland, the heart datasets) compared with the state-of-the-art methods, our method demonstrates marked improvements in segmentation metrics. In particular, our method can more accurately segment small thyroid nodules, demonstrating its effectiveness for cases involving small ultrasound objects in long video. The code is available at https://github.com/XiAooZ/MWNet.
comment: Chenxiao Zhang and Runshi Zhang contributed equally to this work. 14 pages, 11 figures
☆ Meta-learners for few-shot weakly-supervised optic disc and cup segmentation on fundus images
This study develops meta-learners for few-shot weakly-supervised segmentation (FWS) to address the challenge of optic disc (OD) and optic cup (OC) segmentation for glaucoma diagnosis with limited labeled fundus images. We significantly improve existing meta-learners by introducing Omni meta-training which balances data usage and diversifies the number of shots. We also develop their efficient versions that reduce computational costs. In addition, we develop sparsification techniques that generate more customizable and representative scribbles and other sparse labels. After evaluating multiple datasets, we find that Omni and efficient versions outperform the original versions, with the best meta-learner being Efficient Omni ProtoSeg (EO-ProtoSeg). It achieves intersection over union (IoU) scores of 88.15% for OD and 71.17% for OC on the REFUGE dataset using just one sparsely labeled image, outperforming few-shot and semi-supervised methods which require more labeled images. Its best performance reaches 86.80% for OD and 71.78%for OC on DRISHTIGS, 88.21% for OD and 73.70% for OC on REFUGE, 80.39% for OD and 52.65% for OC on REFUGE. EO-ProtoSeg is comparable to unsupervised domain adaptation methods yet much lighter with less than two million parameters and does not require any retraining.
comment: Submitted to Computers in Biology and Medicine
☆ The Meta-Prompting Protocol: Orchestrating LLMs via Adversarial Feedback Loops
The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.
comment: 6 pages, 2 figures
☆ SGM: Safety Glasses for Multimodal Large Language Models via Neuron-Level Detoxification ACL 2026
Disclaimer: Samples in this paper may be harmful and cause discomfort. Multimodal large language models (MLLMs) enable multimodal generation but inherit toxic, biased, and NSFW signals from weakly curated pretraining corpora, causing safety risks, especially under adversarial triggers that late, opaque training-free detoxification methods struggle to handle. We propose SGM, a white-box neuron-level multimodal intervention that acts like safety glasses for toxic neurons: it selectively recalibrates a small set of toxic expert neurons via expertise-weighted soft suppression, neutralizing harmful cross-modal activations without any parameter updates. We establish MM-TOXIC-QA, a multimodal toxicity evaluation framework, and compare SGM with existing detoxification techniques. Experiments on open-source MLLMs show that SGM mitigates toxicity in standard and adversarial conditions, cutting harmful rates from 48.2\% to 2.5\% while preserving fluency and multimodal reasoning. SGM is extensible, and its combined defenses, denoted as SGM*, integrate with existing detoxification methods for stronger safety performance, providing an interpretable, low-cost solution for toxicity-controlled multimodal generation.
comment: Under Review for ACL 2026
☆ HERO: Hierarchical Traversable 3D Scene Graphs for Embodied Navigation Among Movable Obstacles
3D Scene Graphs (3DSGs) constitute a powerful representation of the physical world, distinguished by their abilities to explicitly model the complex spatial, semantic, and functional relationships between entities, rendering a foundational understanding that enables agents to interact intelligently with their environment and execute versatile behaviors. Embodied navigation, as a crucial component of such capabilities, leverages the compact and expressive nature of 3DSGs to enable long-horizon reasoning and planning in complex, large-scale environments. However, prior works rely on a static-world assumption, defining traversable space solely based on static spatial layouts and thereby treating interactable obstacles as non-traversable. This fundamental limitation severely undermines their effectiveness in real-world scenarios, leading to limited reachability, low efficiency, and inferior extensibility. To address these issues, we propose HERO, a novel framework for constructing Hierarchical Traversable 3DSGs, that redefines traversability by modeling operable obstacles as pathways, capturing their physical interactivity, functional semantics, and the scene's relational hierarchy. The results show that, relative to its baseline, HERO reduces PL by 35.1% in partially obstructed environments and increases SR by 79.4% in fully obstructed ones, demonstrating substantially higher efficiency and reachability.
☆ Agentic AI for Integrated Sensing and Communication: Analysis, Framework, and Case Study
Integrated sensing and communication (ISAC) has emerged as a key development direction in the sixth-generation (6G) era, which provides essential support for the collaborative sensing and communication of future intelligent networks. However, as wireless environments become increasingly dynamic and complex, ISAC systems require more intelligent processing and more autonomous operation to maintain efficiency and adaptability. Meanwhile, agentic artificial intelligence (AI) offers a feasible solution to address these challenges by enabling continuous perception-reasoning-action loops in dynamic environments to support intelligent, autonomous, and efficient operation for ISAC systems. As such, we delve into the application value and prospects of agentic AI in ISAC systems in this work. Firstly, we provide a comprehensive review of agentic AI and ISAC systems to demonstrate their key characteristics. Secondly, we show several common optimization approaches for ISAC systems and highlight the significant advantages of generative artificial intelligence (GenAI)-based agentic AI. Thirdly, we propose a novel agentic ISAC framework and prensent a case study to verify its superiority in optimizing ISAC performance. Finally, we clarify future research directions for agentic AI-based ISAC systems.
☆ LADY: Linear Attention for Autonomous Driving Efficiency without Transformers
End-to-end paradigms have demonstrated great potential for autonomous driving. Additionally, most existing methods are built upon Transformer architectures. However, transformers incur a quadratic attention cost, limiting their ability to model long spatial and temporal sequences-particularly on resource-constrained edge platforms. As autonomous driving inherently demands efficient temporal modeling, this challenge severely limits their deployment and real-time performance. Recently, linear attention mechanisms have gained increasing attention due to their superior spatiotemporal complexity. However, existing linear attention architectures are limited to self-attention, lacking support for cross-modal and cross-temporal interactions-both crucial for autonomous driving. In this work, we propose LADY, the first fully linear attention-based generative model for end-to-end autonomous driving. LADY enables fusion of long-range temporal context at inference with constant computational and memory costs, regardless of the history length of camera and LiDAR features. Additionally, we introduce a lightweight linear cross-attention mechanism that enables effective cross-modal information exchange. Experiments on the NAVSIM and Bench2Drive benchmarks demonstrate that LADY achieves state-of-the-art performance with constant-time and memory complexity, offering improved planning performance and significantly reduced computational cost. Additionally, the model has been deployed and validated on edge devices, demonstrating its practicality in resource-limited scenarios.
comment: Under review
☆ Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
☆ Beyond Accuracy: A Geometric Stability Analysis of Large Language Models in Chess Evaluation
The evaluation of Large Language Models (LLMs) in complex reasoning domains typically relies on performance alignment with ground-truth oracles. In the domain of chess, this standard manifests as accuracy benchmarks against strong engines like Stockfish. However, high scalar accuracy does not necessarily imply robust conceptual understanding. This paper argues that standard accuracy metrics fail to distinguish between genuine geometric reasoning and the superficial memorization of canonical board states. To address this gap, we propose a Geometric Stability Framework, a novel evaluation methodology that rigorously tests model consistency under invariant transformations-including board rotation, mirror symmetry, color inversion, and format conversion. We applied this framework to a comparative analysis of six state-of-the-art LLMs including GPT-5.1, Claude Sonnet 4.5, and Kimi K2 Turbo, utilizing a dataset of approximately 3,000 positions. Our results reveal a significant Accuracy-Stability Paradox. While models such as GPT-5.1 achieve near-optimal accuracy on standard positions, they exhibit catastrophic degradation under geometric perturbation, specifically in rotation tasks where error rates surge by over 600%. This disparity suggests a reliance on pattern matching over abstract spatial logic. Conversely, Claude Sonnet 4.5 and Kimi K2 Turbo demonstrate superior dual robustness, maintaining high consistency across all transformation axes. Furthermore, we analyze the trade-off between helpfulness and safety, identifying Gemini 2.5 Flash as the leader in illegal state rejection (96.0%). We conclude that geometric stability provides an orthogonal and essential metric for AI evaluation, offering a necessary proxy for disentangling reasoning capabilities from data contamination and overfitting in large-scale models.
☆ Epistemic diversity across language models mitigates knowledge collapse
The growing use of artificial intelligence (AI) raises concerns of knowledge collapse, i.e., a reduction to the most dominant and central set of ideas. Prior work has demonstrated single-model collapse, defined as performance decay in an AI model trained on its own output. Inspired by ecology, we ask whether AI ecosystem diversity, that is, diversity among models, can mitigate such a collapse. We build on the single-model approach but focus on ecosystems of models trained on their collective output. To study the effect of diversity on model performance, we segment the training data across language models and evaluate the resulting ecosystems over ten, self-training iterations. We find that increased epistemic diversity mitigates collapse, but, interestingly, only up to an optimal level. Our results suggest that an ecosystem containing only a few diverse models fails to express the rich mixture of the full, true distribution, resulting in rapid performance decay. Yet distributing the data across too many models reduces each model's approximation capacity on the true distribution, leading to poor performance already in the first iteration step. In the context of AI monoculture, our results suggest the need to monitor diversity across AI systems and to develop policies that incentivize more domain- and community-specific models.
comment: 16 pages, 7 figures
☆ Evaluating the Capability of Video Question Generation for Expert Knowledge Elicitation WACV 2026
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .
comment: WACV 2026 accepted
☆ DreamPRM-Code: Function-as-Step Process Reward Model with Label Correction for LLM Coding
Process Reward Models (PRMs) have become essential for improving Large Language Models (LLMs) via test-time scaling, yet their effectiveness in coding remains limited due to the lack of meaningful step decompositions in code and the noise of Monte-Carlo-generated partial labels. We propose DreamPRM-Code, a coding-focused PRM that treats functions as reasoning steps using a Chain-of-Function prompting strategy to induce modular code generation, enabling PRM training and application analogous to mathematical reasoning tasks. To address label noise, DreamPRM-Code introduces a meta-learning-based correction mechanism that leverages clean final-solution unit-test labels and performs bi-level optimization to refine intermediate labels. Applying on test-time scaling, DreamPRM-Code achieved state-of-the-art performance on LiveCodeBench with 80.9 pass@1 rate, surpassing OpenAI o4-mini.
☆ Beyond Proximity: A Keypoint-Trajectory Framework for Classifying Affiliative and Agonistic Social Networks in Dairy Cattle
Precision livestock farming requires objective assessment of social behavior to support herd welfare monitoring, yet most existing approaches infer interactions using static proximity thresholds that cannot distinguish affiliative from agonistic behaviors in complex barn environments. This limitation constrains the interpretability of automated social network analysis in commercial settings. We present a pose-based computational framework for interaction classification that moves beyond proximity heuristics by modeling the spatiotemporal geometry of anatomical keypoints. Rather than relying on pixel-level appearance or simple distance measures, the proposed method encodes interaction-specific motion signatures from keypoint trajectories, enabling differentiation of social interaction valence. The framework is implemented as an end-to-end computer vision pipeline integrating YOLOv11 for object detection (mAP@0.50: 96.24%), supervised individual identification (98.24% accuracy), ByteTrack for multi-object tracking (81.96% accuracy), ZebraPose for 27-point anatomical keypoint estimation, and a support vector machine classifier trained on pose-derived distance dynamics. On annotated interaction clips collected from a commercial dairy barn, the classifier achieved 77.51% accuracy in distinguishing affiliative and agonistic behaviors using pose information alone. Comparative evaluation against a proximity-only baseline shows substantial gains in behavioral discrimination, particularly for affiliative interactions. The results establish a proof-of-concept for automated, vision-based inference of social interactions suitable for constructing interaction-aware social networks, with near-real-time performance on commodity hardware.
comment: 36 pages, 12 figures, 8 tables
☆ Where is the Watermark? Interpretable Watermark Detection at the Block Level WACV 2026
Recent advances in generative AI have enabled the creation of highly realistic digital content, raising concerns around authenticity, ownership, and misuse. While watermarking has become an increasingly important mechanism to trace and protect digital media, most existing image watermarking schemes operate as black boxes, producing global detection scores without offering any insight into how or where the watermark is present. This lack of transparency impacts user trust and makes it difficult to interpret the impact of tampering. In this paper, we present a post-hoc image watermarking method that combines localised embedding with region-level interpretability. Our approach embeds watermark signals in the discrete wavelet transform domain using a statistical block-wise strategy. This allows us to generate detection maps that reveal which regions of an image are likely watermarked or altered. We show that our method achieves strong robustness against common image transformations while remaining sensitive to semantic manipulations. At the same time, the watermark remains highly imperceptible. Compared to prior post-hoc methods, our approach offers more interpretable detection while retaining competitive robustness. For example, our watermarks are robust to cropping up to half the image.
comment: 20 pages, 14 figures. Camera-ready for WACV 2026
Structure-Aligned Protein Language Model
Protein language models (pLMs) pre-trained on vast protein sequence databases excel at various downstream tasks but often lack the structural knowledge essential for some biological applications. To address this, we introduce a method to enrich pLMs with structural knowledge by leveraging pre-trained protein graph neural networks (pGNNs). First, a latent-level contrastive learning task aligns residue representations from pLMs with those from pGNNs across multiple proteins, injecting inter-protein structural information. Additionally, a physical-level task integrates intra-protein information by training pLMs to predict structure tokens. Together, the proposed dual-task framework effectively incorporates both inter- and intra-protein structural knowledge into pLMs. Given the variability in the quality of protein structures in PDB, we further introduce a residue loss selection module that uses a small model trained on high-quality structures to select reliable yet challenging residue losses for the pLM to learn. Applying our structure alignment method as a simple, lightweight post-training step to the state-of-the-art ESM2 and AMPLIFY yields notable performance gains. These improvements are consistent across a wide range of tasks, including substantial gains in deep mutational scanning (DMS) fitness prediction and a 59% increase in P@L for ESM2 650M contact prediction on CASP16. Furthermore, we demonstrate that these performance gains are robust, scaling with model sizes from 8M to 650M and extending to different downstream tasks.
comment: 28 pages, 16 figures, 9 tables
♻ ☆ Enigma: Application-Layer Privacy for Quantum Optimization on Untrusted Computers
The Early Fault-Tolerant (EFT) era is emerging, where modest Quantum Error Correction (QEC) can enable quantum utility before full-scale fault tolerance. Quantum optimization is a leading candidate for early applications, but protecting these workloads is critical since they will run on expensive cloud services where providers could learn sensitive problem details. Experience with classical computing systems has shown that treating security as an afterthought can lead to significant vulnerabilities. Thus, we must address the security implications of quantum computing before widespread adoption. However, current Secure Quantum Computing (SQC) approaches, although theoretically promising, are impractical in the EFT era: blind quantum computing requires large-scale quantum networks, and quantum homomorphic encryption depends on full QEC. We propose application-specific SQC, a principle that applies obfuscation at the application layer to enable practical deployment while remaining agnostic to algorithms, computing models, and hardware architectures. We present Enigma, the first realization of this principle for quantum optimization. Enigma integrates three complementary obfuscations: ValueGuard scrambles coefficients, StructureCamouflage inserts decoys, and TopologyTrimmer prunes variables. These techniques guarantee recovery of original solutions, and their stochastic nature resists repository-matching attacks. Evaluated against seven state-of-the-art AI models across five representative graph families, even combined adversaries, under a conservatively strong attacker model, identify the correct problem within their top five guesses in only 4.4% of cases. The protections come at the cost of problem size and T-gate counts increasing by averages of 1.07x and 1.13x, respectively, with both obfuscation and decoding completing within seconds for large-scale problems.
♻ ☆ Taming Data Challenges in ML-based Security Tasks: Lessons from Integrating Generative AI
Machine learning-based supervised classifiers are widely used for security tasks, and their improvement has been largely focused on algorithmic advancements. We argue that data challenges that negatively impact the performance of these classifiers have received limited attention. We address the following research question: Can developments in Generative AI (GenAI) address these data challenges and improve classifier performance? We propose augmenting training datasets with synthetic data generated using GenAI techniques to improve classifier generalization. We evaluate this approach across 7 diverse security tasks using 6 state-of-the-art GenAI methods and introduce a novel GenAI scheme called Nimai that enables highly controlled data synthesis. We find that GenAI techniques can significantly improve the performance of security classifiers, achieving improvements of up to 32.6% even in severely data-constrained settings (only ~180 training samples). Furthermore, we demonstrate that GenAI can facilitate rapid adaptation to concept drift post-deployment, requiring minimal labeling in the adjustment process. Despite successes, our study finds that some GenAI schemes struggle to initialize (train and produce data) on certain security tasks. We also identify characteristics of specific tasks, such as noisy labels, overlapping class distributions, and sparse feature vectors, which hinder performance boost using GenAI. We believe that our study will drive the development of future GenAI tools designed for security tasks.
♻ ☆ What Is Your AI Agent Buying? Evaluation, Biases, Model Dependence, & Emerging Implications for Agentic E-Commerce
Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, AI agents can parse webpages or leverage APIs to view, evaluate and choose products. We investigate the behavior of AI agents using ACES, a provider-agnostic framework for auditing agent decision-making. We reveal that agents can exhibit choice homogeneity, often concentrating demand on a few ``modal'' products while ignoring others entirely. Yet, these preferences are unstable: model updates can drastically reshuffle market shares. Furthermore, randomized trials show that while agents have improved over time on simple tasks with a clearly identified best choice, they exhibit strong position biases -- varying across providers and model versions, and persisting even in text-only "headless" interfaces -- undermining any universal notion of a ``top'' rank. Agents also consistently penalize sponsored tags while rewarding platform endorsements, and sensitivities to price, ratings, and reviews vary sharply across models. Finally, we demonstrate that sellers can respond: a seller-side agent making simple, query-conditional description tweaks can drive significant gains in market share. These findings reveal that agentic markets are volatile and fundamentally different from human-centric commerce, highlighting the need for continuous auditing and raising questions for platform design, seller strategy and regulation.
♻ ☆ Human-computer interactions predict mental health
Scalable assessments of mental illness remain a critical roadblock toward accessible and equitable care. Here, we show that everyday human-computer interactions encode mental health with state-of-the-art biomarker precision. We introduce MAILA, a MAchine-learning framework for Inferring Latent mental states from digital Activity. We trained MAILA on 20,000 cursor and touchscreen recordings labelled with 1.3 million mental-health self-reports collected from 9,000 participants. The dataset includes 2,000 individuals assessed longitudinally, 1,500 diagnosed with depression, and 500 with obsessive-compulsive disorder. MAILA tracks dynamic mental states along three orthogonal dimensions, identifies individuals living with mental illness, and achieves near-ceiling accuracy when predicting group-level mental health. By extracting non-verbal signatures of psychological function that have so far remained untapped, MAILA represents a key step toward scalable digital phenotyping and foundation models for mental health.
♻ ☆ Sparse Autoencoders Make Audio Foundation Models more Explainable ICASSP 2026
Audio pretrained models are widely employed to solve various tasks in speech processing, sound event detection, or music information retrieval. However, the representations learned by these models are unclear, and their analysis mainly restricts to linear probing of the hidden representations. In this work, we explore the use of Sparse Autoencoders (SAEs) to analyze the hidden representations of pretrained models, focusing on a case study in singing technique classification. We first demonstrate that SAEs retain both information about the original representations and class labels, enabling their internal structure to provide insights into self-supervised learning systems. Furthermore, we show that SAEs enhance the disentanglement of vocal attributes, establishing them as an effective tool for identifying the underlying factors encoded in the representations.
comment: 5 pages, 5 figures, 1 table, submitted to ICASSP 2026
♻ ☆ DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
comment: 36 pages
♻ ☆ Cooperative Retrieval-Augmented Generation for Question Answering: Mutual Information Exchange and Ranking by Contrasting Layers NeurIPS 2025
Since large language models (LLMs) have a tendency to generate factually inaccurate output, retrieval-augmented generation (RAG) has gained significant attention as a key means to mitigate this downside of harnessing only LLMs. However, existing RAG methods for simple and multi-hop question answering (QA) are still prone to incorrect retrievals and hallucinations. To address these limitations, we propose CoopRAG, a novel RAG framework for the question answering task in which a retriever and an LLM work cooperatively with each other by exchanging informative knowledge, and the earlier and later layers of the retriever model work cooperatively with each other to accurately rank the retrieved documents relevant to a given query. In this framework, we (i) unroll a question into sub-questions and a reasoning chain in which uncertain positions are masked, (ii) retrieve the documents relevant to the question augmented with the sub-questions and the reasoning chain, (iii) rerank the documents by contrasting layers of the retriever, and (iv) reconstruct the reasoning chain by filling the masked positions via the LLM. Our experiments demonstrate that CoopRAG consistently outperforms state-of-the-art QA methods on three multi-hop QA datasets as well as a simple QA dataset in terms of both the retrieval and QA performances. Our code is available.
comment: Accepted to NeurIPS 2025
♻ ☆ Functional Percolation: Criticality of Form and Function
Understanding how network structure constrains and enables information processing is a central problem in the statistical mechanics of interacting systems. Here we study random networks across the structural percolation transition and analyze how connectivity governs realizable input-output transformations under cascade dynamics. Using Erdos-Renyi networks as a minimal ensemble, we examine structural, functional, and information-theoretic observables as functions of mean degree. We find that the emergence of the giant connected component coincides with a sharp transition in realizable information processing: complex input-output response functions become accessible, functional diversity increases rapidly, output entropy rises, and directed information flow, quantified by transfer entropy, extends beyond local neighborhoods. We term this coincidence of structural, functional, and informational transitions functional percolation, referring to a sharp expansion of the space of realizable input-output functions at the percolation threshold. Near criticality, networks exhibit a Pareto-optimal tradeoff between functional complexity and diversity, suggesting that percolation criticality may provide a general organizing principle of information processing capacity in systems with local interactions and propagating influences.
comment: 8 pages, 6 figures
♻ ☆ Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning
While scaling laws for large language models (LLMs) during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on a set of experiments across the full Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: 1.Larger models consistently exhibit superior learning efficiency on both compute and data metrics. 2.The relationship between test loss, compute, and data can be modeled by a predictive power-law which is robust across both base and instruction-tuned models. 3.Although larger models exhibit higher learning efficiency, the analytical learning efficiency term k(N) in the power-law reveals a latent saturation trend in learning efficiency as model size continues to increase. 4.In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.
comment: V2 version:27 pages, 14 figures
♻ ☆ Bidirectional predictive coding
Predictive coding (PC) is an influential computational model of visual learning and inference in the brain. Classical PC was proposed as a top-down generative model, where the brain actively predicts upcoming visual inputs, and inference minimises the prediction errors. Recent studies have also shown that PC can be formulated as a discriminative model, where sensory inputs predict neural activities in a feedforward manner. However, experimental evidence suggests that the brain employs both generative and discriminative inference, while unidirectional PC models show degraded performance in tasks requiring bidirectional processing. In this work, we propose bidirectional PC (bPC), a PC model that incorporates both generative and discriminative inference while maintaining a biologically plausible circuit implementation. We show that bPC matches or outperforms unidirectional models in their specialised generative or discriminative tasks, by developing an energy landscape that simultaneously suits both tasks. We also demonstrate bPC's superior performance in two biologically relevant tasks including multimodal learning and inference with missing information, suggesting that bPC resembles biological visual inference more closely.
♻ ☆ DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Diffusion models have emerged as powerful generative priors for high-dimensional inverse problems, yet learning them when only corrupted or noisy observations are available remains challenging. In this work, we propose a new method for training diffusion models with Expectation-Maximization (EM) from corrupted data. Our proposed method, DiffEM, utilizes conditional diffusion models to reconstruct clean data from observations in the E-step, and then uses the reconstructed data to refine the conditional diffusion model in the M-step. Theoretically, we provide monotonic convergence guarantees for the DiffEM iteration, assuming appropriate statistical conditions. We demonstrate the effectiveness of our approach through experiments on various image reconstruction tasks.
♻ ☆ Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges
Brain-body co-evolution enables animals to develop complex behaviors in their environments. Inspired by this biological synergy, embodied co-design (ECD) has emerged as a transformative paradigm for creating intelligent agents-from virtual creatures to physical robots-by jointly optimizing their morphologies and controllers rather than treating control in isolation. This integrated approach facilitates richer environmental interactions and robust task performance. In this survey, we provide a systematic overview of recent advances in ECD. We first formalize the concept of ECD and position it within related fields. We then introduce a hierarchical taxonomy: a lower layer that breaks down agent design into three fundamental components-controlling brain, body morphology, and task environment-and an upper layer that integrates these components into four major ECD frameworks: bi-level, single-level, generative, and open-ended. This taxonomy allows us to synthesize insights from more than one hundred recent studies. We further review notable benchmarks, datasets, and applications in both simulated and real-world scenarios. Finally, we identify significant challenges and offer insights into promising future research directions. A project associated with this survey has been created at https://github.com/Yuxing-Wang-THU/SurveyBrainBody.
♻ ☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset AAAI
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs). We implemented a data pre-processing and curation pipeline that transforms the raw EHR data into a structured format suitable for developing predictive models focused on data fairness, accountability and transparency. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Pairwise XGBoost models are trained using this framework to differentiate UTI risk categories with explainable AI techniques applied to identify key predictors and support interpretability. Our findings reveal differences in clinical and demographic predictors across risk groups. While this study highlights the potential of AI-driven insights to support UTI clinical decision-making, further investigation of patient sub-strata and extensive validation are needed to ensure robustness and applicability in clinical practice.
comment: Peer-reviewed; accepted at Health Intelligence (W3PHIAI-25) Workshop, AAAI Conference 2025 (to appear in Studies in Computational Intelligence, Springer/Nature)
♻ ☆ Exact Verification of Graph Neural Networks with Incremental Constraint Solving
Graph neural networks (GNNs) are increasingly employed in high-stakes applications, such as fraud detection or healthcare, but are susceptible to adversarial attacks. A number of techniques have been proposed to provide adversarial robustness guarantees, but support for commonly used aggregation functions in message-passing GNNs is lacking. In this paper, we develop an exact (sound and complete) verification method for GNNs to compute guarantees against attribute and structural perturbations that involve edge addition or deletion, subject to budget constraints. Our method employs constraint solving with bound tightening, and iteratively solves a sequence of relaxed constraint satisfaction problems while relying on incremental solving capabilities of solvers to improve efficiency. We implement GNNev, a versatile exact verifier for message-passing neural networks, which supports three aggregation functions, sum, max and mean, with the latter two considered here for the first time. Extensive experimental evaluation of GNNev on real-world fraud datasets (Amazon and Yelp) and biochemical datasets (MUTAG and ENZYMES) demonstrates its usability and effectiveness, as well as superior performance for node classification and competitiveness on graph classification compared to existing exact verification tools on sum-aggregated GNNs.
♻ ☆ Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
♻ ☆ Spectral Masking and Interpolation Attack (SMIA): A Black-box Adversarial Attack against Voice Authentication and Anti-Spoofing Systems
Voice Authentication Systems (VAS) use unique vocal characteristics for verification. They are increasingly integrated into high-security sectors such as banking and healthcare. Despite their improvements using deep learning, they face severe vulnerabilities from sophisticated threats like deepfakes and adversarial attacks. The emergence of realistic voice cloning complicates detection, as systems struggle to distinguish authentic from synthetic audio. While anti-spoofing countermeasures (CMs) exist to mitigate these risks, many rely on static detection models that can be bypassed by novel adversarial methods, leaving a critical security gap. To demonstrate this vulnerability, we propose the Spectral Masking and Interpolation Attack (SMIA), a novel method that strategically manipulates inaudible frequency regions of AI-generated audio. By altering the voice in imperceptible zones to the human ear, SMIA creates adversarial samples that sound authentic while deceiving CMs. We conducted a comprehensive evaluation of our attack against state-of-the-art (SOTA) models across multiple tasks, under simulated real-world conditions. SMIA achieved a strong attack success rate (ASR) of at least 82% against combined VAS/CM systems, at least 97.5% against standalone speaker verification systems, and 100% against countermeasures. These findings conclusively demonstrate that current security postures are insufficient against adaptive adversarial attacks. This work highlights the urgent need for a paradigm shift toward next-generation defenses that employ dynamic, context-aware frameworks capable of evolving with the threat landscape.
♻ ☆ Solving a Research Problem in Mathematical Statistics with AI Assistance
Over the last few months, AI models including large language models have improved greatly. There are now several documented examples where they have helped professional mathematical scientists prove new results, sometimes even helping resolve known open problems. In this short note, we add another example to the list, by documenting how we were able to solve a previously unsolved research problem in robust mathematical statistics with crucial help from GPT-5. Our problem concerns robust density estimation, where the observations are perturbed by Wasserstein-bounded contaminations. In a previous preprint (Chao and Dobriban, 2023, arxiv:2308.01853v2), we have obtained upper and lower bounds on the minimax optimal estimation error; which were, however, not sharp. Starting in October 2025, making significant use of GPT-5 Pro, we were able to derive the minimax optimal error rate (reported in version 3 of the above arxiv preprint). GPT-5 provided crucial help along the way, including by suggesting calculations that we did not think of, and techniques that were not familiar to us, such as the dynamic Benamou-Brenier formulation, for key steps in the analysis. Working with GPT-5 took a few weeks of effort, and we estimate that it could have taken several months to get the same results otherwise. At the same time, there are still areas where working with GPT-5 was challenging: it sometimes provided incorrect references, and glossed over details that sometimes took days of work to fill in. We outline our workflow and steps taken to mitigate issues. Overall, our work can serve as additional documentation for a new age of human-AI collaborative work in mathematical science.
comment: added references
♻ ☆ A New Digital Divide? Coder Worldviews, the Slop Economy, and Democracy in the Age of AI
Digital technologies are transforming democratic life in conflicting ways. This article bridges two perspectives to unpack these tensions. First, we present an original survey of software developers in Silicon Valley, interrogating how coder worldviews, ethics, and workplace cultures shape the democratic potential and social impact of the technologies they build. Results indicate that while most developers recognize the power of their products to influence civil liberties and political discourse, they often face ethical dilemmas and top-down pressures that can lead to design choices undermining democratic ideals. Second, we critically investigate these findings in the context of an emerging new digital divide, not of internet access but of information quality. We interrogate the survey findings in the context of the Slop Economy, in which billions of users unable to pay for high-quality content experience an internet dominated by low-quality, AI-generated ad-driven content. We find a reinforcing cycle between tech creator beliefs and the digital ecosystems they spawn. We discuss implications for democratic governance, arguing for more ethically informed design and policy interventions to help bridge the digital divide to ensure that technological innovation supports rather than subverts democratic values in the next chapter of the digital age.
♻ ☆ LLMs and Fuzzing in Tandem: A New Approach to Automatically Generating Weakest Preconditions
The weakest precondition (WP) of a program describes the largest set of initial states from which all terminating executions of the program satisfy a given postcondition. The generation of WPs is an important task with practical applications in areas ranging from verification to run-time error checking. This paper proposes the combination of Large Language Models (LLMs) and fuzz testing for generating WPs. In pursuit of this goal, we introduce \emph{Fuzzing Guidance} (FG); FG acts as a means of directing LLMs towards correct WPs using program execution feedback. FG utilises fuzz testing for approximately checking the validity and weakness of candidate WPs, this information is then fed back to the LLM as a means of context refinement. We demonstrate the effectiveness of our approach on a comprehensive benchmark set of deterministic array programs in Java. Our experiments indicate that LLMs are capable of producing viable candidate WPs, and that this ability can be practically enhanced through FG.
♻ ☆ MovSemCL: Movement-Semantics Contrastive Learning for Trajectory Similarity (Extension) AAAI 2026
Trajectory similarity computation is fundamental functionality that is used for, e.g., clustering, prediction, and anomaly detection. However, existing learning-based methods exhibit three key limitations: (1) insufficient modeling of trajectory semantics and hierarchy, lacking both movement dynamics extraction and multi-scale structural representation; (2) high computational costs due to point-wise encoding; and (3) use of physically implausible augmentations that distort trajectory semantics. To address these issues, we propose MovSemCL, a movement-semantics contrastive learning framework for trajectory similarity computation. MovSemCL first transforms raw GPS trajectories into movement-semantics features and then segments them into patches. Next, MovSemCL employs intra- and inter-patch attentions to encode local as well as global trajectory patterns, enabling efficient hierarchical representation and reducing computational costs. Moreover, MovSemCL includes a curvature-guided augmentation strategy that preserves informative segments (e.g., turns and intersections) and masks redundant ones, generating physically plausible augmented views. Experiments on real-world datasets show that MovSemCL is capable of outperforming state-of-the-art methods, achieving mean ranks close to the ideal value of 1 at similarity search tasks and improvements by up to 20.3% at heuristic approximation, while reducing inference latency by up to 43.4%.
comment: 8 pages, 6 figures; accepted by AAAI 2026 as an Oral paper
♻ ☆ Safer Prompts: Reducing Risks from Memorization in Visual Generative AI
Visual Generative AI models have demonstrated remarkable capability in generating high-quality images from user inputs like text prompts. However, because these models have billions of parameters, they risk memorizing certain parts of the training data and reproducing the memorized content. Memorization often raises concerns about safety of such models -- usually involving intellectual property (IP) infringement risk -- and deters their large scale adoption. In this paper, we evaluate the effectiveness of prompt engineering techniques in reducing memorization risk in image generation. Our findings demonstrate the effectiveness of prompt engineering in reducing the similarity between generated images and the training data of diffusion models, while maintaining relevance and aestheticity of the generated output.
♻ ☆ The Need for Verification in AI-Driven Scientific Discovery
Artificial intelligence (AI) is transforming the practice of science. Machine learning and large language models (LLMs) can generate hypotheses at a scale and speed far exceeding traditional methods, offering the potential to accelerate discovery across diverse fields. However, the abundance of hypotheses introduces a critical challenge: without scalable and reliable mechanisms for verification, scientific progress risks being hindered rather than being advanced. In this article, we trace the historical development of scientific discovery, examine how AI is reshaping established practices for scientific discovery, and review the principal approaches, ranging from data-driven methods and knowledge-aware neural architectures to symbolic reasoning frameworks and LLM agents. While these systems can uncover patterns and propose candidate laws, their scientific value ultimately depends on rigorous and transparent verification, which we argue must be the cornerstone of AI-assisted discovery.
♻ ☆ RPM-MCTS: Knowledge-Retrieval as Process Reward Model with Monte Carlo Tree Search for Code Generation AAAI 2026
Tree search-based methods have made significant progress in enhancing the code generation capabilities of large language models. However, due to the difficulty in effectively evaluating intermediate algorithmic steps and the inability to locate and timely correct erroneous steps, these methods often generate incorrect code and incur increased computational costs. To tackle these problems, we propose RPM-MCTS, an effective method that utilizes Knowledge-Retrieval as Process Reward Model based on Monte Carlo Tree Search to evaluate intermediate algorithmic steps. By utilizing knowledge base retrieval, RPM-MCTS avoids the complex training of process reward models. During the expansion phase, similarity filtering is employed to remove redundant nodes, ensuring diversity in reasoning paths. Furthermore, our method utilizes sandbox execution feedback to locate erroneous algorithmic steps during generation, enabling timely and targeted corrections. Extensive experiments on four public code generation benchmarks demonstrate that RPM-MCTS outperforms current state-of-the-art methods while achieving an approximately 15% reduction in token consumption. Furthermore, full fine-tuning of the base model using the data constructed by RPM-MCTS significantly enhances its code capabilities.
comment: Accepted at AAAI 2026
♻ ☆ Prompt-Based Continual Compositional Zero-Shot Learning
We tackle continual adaptation of vision-language models to new attributes, objects, and their compositions in Compositional Zero-Shot Learning (CZSL), while preventing forgetting of prior knowledge. Unlike classical continual learning where classes are disjoint, CCZSL is more complex as attributes and objects may reoccur across sessions while compositions remain unique. Built on a frozen VLM backbone, we propose the first Prompt-based Continual Compositional Zero-Shot Learning (PromptCCZSL) framework that retains prior knowledge through recency-weighted multi-teacher distillation. It employs session-aware compositional prompts to fuse multimodal features for new compositions, while attribute and object prompts are learned through session-agnostic fusion to maintain global semantic consistency, which is further stabilized by a Cosine Anchor Loss (CAL) to preserve prior knowledge. To enhance adaptation in the current session, an Orthogonal Projection Loss (OPL) ensures that new attribute and object embeddings remain distinct from previous ones, preventing overlap, while an Intra-Session Diversity Loss (IDL) promotes variation among current-session embeddings for richer, more discriminative representations. We also introduce a comprehensive protocol that jointly measures catastrophic forgetting and compositional generalization. Extensive experiments on UT-Zappos and C-GQA benchmarks demonstrate that PromptCCZSL achieves substantial improvements over prior VLM-based and non-VLM baselines, setting a new benchmark for CCZSL in closed-world settings.
♻ ☆ From Signal to Turn: Interactional Friction in Modular Speech-to-Speech Pipelines
While voice-based AI systems have achieved remarkable generative capabilities, their interactions often feel conversationally broken. This paper examines the interactional friction that emerges in modular Speech-to-Speech Retrieval-Augmented Generation (S2S-RAG) pipelines. By analyzing a representative production system, we move beyond simple latency metrics to identify three recurring patterns of conversational breakdown: (1) Temporal Misalignment, where system delays violate user expectations of conversational rhythm; (2) Expressive Flattening, where the loss of paralinguistic cues leads to literal, inappropriate responses; and (3) Repair Rigidity, where architectural gating prevents users from correcting errors in real-time. Through system-level analysis, we demonstrate that these friction points should not be understood as defects or failures, but as structural consequences of a modular design that prioritizes control over fluidity. We conclude that building natural spoken AI is an infrastructure design challenge, requiring a shift from optimizing isolated components to carefully choreographing the seams between them.
comment: 6 pages, 1 figure
♻ ☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ Control-Augmented Autoregressive Diffusion for Data Assimilation
Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.
♻ ☆ Rethinking Popularity Bias in Collaborative Filtering via Analytical Vector Decomposition KDD 2026
Popularity bias fundamentally undermines the personalization capabilities of collaborative filtering (CF) models, causing them to disproportionately recommend popular items while neglecting users' genuine preferences for niche content. While existing approaches treat this as an external confounding factor, we reveal that popularity bias is an intrinsic geometric artifact of Bayesian Pairwise Ranking (BPR) optimization in CF models. Through rigorous mathematical analysis, we prove that BPR systematically organizes item embeddings along a dominant "popularity direction" where embedding magnitudes directly correlate with interaction frequency. This geometric distortion forces user embeddings to simultaneously handle two conflicting tasks-expressing genuine preference and calibrating against global popularity-trapping them in suboptimal configurations that favor popular items regardless of individual tastes. We propose Directional Decomposition and Correction (DDC), a universally applicable framework that surgically corrects this embedding geometry through asymmetric directional updates. DDC guides positive interactions along personalized preference directions while steering negative interactions away from the global popularity direction, disentangling preference from popularity at the geometric source. Extensive experiments across multiple BPR-based architectures demonstrate that DDC significantly outperforms state-of-the-art debiasing methods, reducing training loss to less than 5% of heavily-tuned baselines while achieving superior recommendation quality and fairness. Code is available in https://github.com/LingFeng-Liu-AI/DDC.
comment: Accepted by SIGKDD 2026(First Cycle)
♻ ☆ Massive Editing for Large Language Models Based on Dynamic Weight Generation
Knowledge Editing (KE) is a field that studies how to modify some knowledge in Large Language Models (LLMs) at a low cost (compared to pre-training). Currently, performing large-scale edits on LLMs while ensuring the Reliability, Generality, and Locality metrics of the edits remain a challenge. This paper proposes a Massive editing approach for LLMs based on dynamic weight Generation (MeG). Our MeG involves attaching a dynamic weight neuron to specific layers of the LLMs and using a diffusion model to conditionally generate the weights of this neuron based on the input query required for the knowledge. This allows the use of adding a single dynamic weight neuron to achieve the goal of large-scale knowledge editing. Experiments show that our MeG can significantly improve the performance of large-scale KE in terms of Reliability, Generality, and Locality metrics compared to existing knowledge editing methods, particularly with a high percentage point increase in the absolute value index for the Locality metric, demonstrating the advantages of our proposed method.
comment: 27 pages, 8 figures
♻ ☆ LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients
Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
♻ ☆ Chain-of-Evidence Multimodal Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the action localization task. To address these issues, in this work, we propose a new few-shot temporal action localization method by Chain-of-Evidence multimodal reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level, we design a Chain-of-Evidence (CoE) reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoE text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3, THUMOS14 and our newly collected Human-related Anomaly Localization Dataset. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. Our source code and data are available at https://github.com/MICLAB-BUPT/VAL-VLM.
♻ ☆ Improving Subgraph Matching by Combining Algorithms and Graph Neural Networks KDD 2025
Homomorphism is a key mapping technique between graphs that preserves their structure. Given a graph and a pattern, the subgraph homomorphism problem involves finding a mapping from the pattern to the graph, ensuring that adjacent vertices in the pattern are mapped to adjacent vertices in the graph. Unlike subgraph isomorphism, which requires a one-to-one mapping, homomorphism allows multiple vertices in the pattern to map to the same vertex in the graph, making it more complex. We propose HFrame, the first graph neural network-based framework for subgraph homomorphism, which integrates traditional algorithms with machine learning techniques. We demonstrate that HFrame outperforms standard graph neural networks by being able to distinguish more graph pairs where the pattern is not homomorphic to the graph. Additionally, we provide a generalization error bound for HFrame. Through experiments on both real-world and synthetic graphs, we show that HFrame is up to 101.91 times faster than exact matching algorithms and achieves an average accuracy of 0.962.
comment: KDD 2025
♻ ☆ From Pretraining to Privacy: Federated Ultrasound Foundation Model with Self-Supervised Learning
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, traditional ultrasound diagnostics relies heavily on physician expertise and is often hampered by suboptimal image quality, leading to potential diagnostic errors. While artificial intelligence (AI) offers a promising solution to enhance clinical diagnosis by detecting abnormalities across various imaging modalities, existing AI methods for ultrasound face two major challenges. First, they typically require vast amounts of labeled medical data, raising serious concerns regarding patient privacy. Second, most models are designed for specific tasks, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve (AUROC) of 0.927 for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers (4-8 years of experience) and matches the performance of expert-level sonographers (10+ years of experience) in the joint diagnosis of 8 common systemic diseases.c These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking a significant advancement in AI-driven ultrasound imaging for future clinical applications.
comment: npj digital medicine(2025)
♻ ☆ From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity
Flow-based diffusion models have emerged as a leading paradigm for training generative models across images and videos. However, their memorization-generalization behavior remains poorly understood. In this work, we revisit the flow matching (FM) objective and study its marginal velocity field, which admits a closed-form expression, allowing exact computation of the oracle FM target. Analyzing this oracle velocity field reveals that flow-based diffusion models inherently formulate a two-stage training target: an early stage guided by a mixture of data modes, and a later stage dominated by the nearest data sample. The two-stage objective leads to distinct learning behaviors: the early navigation stage generalizes across data modes to form global layouts, whereas the later refinement stage increasingly memorizes fine-grained details. Leveraging these insights, we explain the effectiveness of practical techniques such as timestep-shifted schedules, classifier-free guidance intervals, and latent space design choices. Our study deepens the understanding of diffusion model training dynamics and offers principles for guiding future architectural and algorithmic improvements.
comment: Preprint v2; 15 pages, 16 figures
♻ ☆ One-Cycle Structured Pruning via Stability-Driven Subnetwork Search
Existing structured pruning methods typically rely on multi-stage training procedures that incur high computational costs. Pruning at initialization aims to reduce this burden but often suffers from degraded performance. To address these limitations, we propose an efficient one-cycle structured pruning framework that integrates pre-training, pruning, and fine-tuning into a single training cycle without sacrificing accuracy. The key idea is to identify an optimal sub-network during the early stages of training, guided by norm-based group saliency criteria and structured sparsity regularization. We introduce a novel pruning indicator that detects a stable pruning epoch by measuring the similarity between pruning sub-networks across consecutive training epochs. In addition, group sparsity regularization accelerates convergence, further reducing overall training time. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet using VGG, ResNet, and MobileNet architectures demonstrate that the proposed method achieves state-of-the-art accuracy while being among the most efficient structured pruning frameworks in terms of training cost. Code is available at https://github.com/ghimiredhikura/OCSPruner.
comment: 12 pages, 6 figures
♻ ☆ AI Autonomy Coefficient ($α$): Defining Boundaries for Responsible AI Systems
The integrity of many contemporary AI systems is compromised by the misuse of Human-in-the-Loop (HITL) models to obscure systems that remain heavily dependent on human labor. We define this structural dependency as Human-Instead-of-AI (HISOAI), an ethically problematic and economically unsustainable design in which human workers function as concealed operational substitutes rather than intentional, high-value collaborators. To address this issue, we introduce the AI-First, Human-Empowered (AFHE) paradigm, which requires AI systems to demonstrate a quantifiable level of functional independence prior to deployment. This requirement is formalized through the AI Autonomy Coefficient, measuring the proportion of tasks completed without mandatory human intervention. We further propose the AFHE Deployment Algorithm, an algorithmic gate that enforces a minimum autonomy threshold during offline evaluation and shadow deployment. Our results show that the AI Autonomy Coefficient effectively identifies HISOAI systems with an autonomy level of 0.38, while systems governed by the AFHE framework achieve an autonomy level of 0.85. We conclude that AFHE provides a metric-driven approach for ensuring verifiable autonomy, transparency, and sustainable operational integrity in modern AI systems.
♻ ☆ Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and GatedDeltaNet to augment open-weight LLMs. We also propose an efficient self-distillation training method where the base model's all parameters are frozen and only the parameters from AHNs are optimized. For inference, our method sets a default large sliding window size of 32k for attention, and AHNs activate only when the sequence length exceeds the 32k window, addressing the quadratic-complexity issue of attention that emerges at that scale. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
comment: Code: https://github.com/ByteDance-Seed/AHN
♻ ☆ May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning to separate instructions and data, so that the LLM does not follow instructions that might be present with data. We evaluate the robustness of this approach in the whitebox setting by constructing strong optimization-based attacks, and show that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for textual LLMs and apply it to three recent whitebox defenses SecAlign (CCS 2025), SecAlign++, and StruQ (USENIX Security 2025), showing attacks with success rates of up to \textbf{85-95\%} on unseen prompts with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks
♻ ☆ TrafficGamer: Reliable and Flexible Traffic Simulation for Safety-Critical Scenarios with Game-Theoretic Oracles
While modern Autonomous Vehicle (AV) systems can develop reliable driving policies under regular traffic conditions, they frequently struggle with safety-critical traffic scenarios. This difficulty primarily arises from the rarity of such scenarios in driving datasets and the complexities associated with predictive modeling of multiple vehicles. Effectively simulating safety-critical traffic situations is therefore a crucial challenge. In this paper, we introduce TrafficGamer, which facilitates game-theoretic traffic simulation by viewing common road driving as a multi-agent game. When we evaluate the empirical performance across various real-world datasets, TrafficGamer ensures both the fidelity, exploitability, and diversity of the simulated scenarios, guaranteeing that they not only statically align with real-world traffic distribution but also efficiently capture equilibria for representing safety-critical scenarios involving multiple agents compared with other methods. Additionally, the results demonstrate that TrafficGamer provides highly flexible simulations across various contexts. Specifically, we demonstrate that the generated scenarios can dynamically adapt to equilibria of varying tightness by configuring risk-sensitive constraints during optimization. We have provided a demo webpage at: https://anonymous.4open.science/api/repo/trafficgamer-demo-1EE0/file/index.html.
♻ ☆ aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code: https://github.com/aixiv-org aiXiv: https://aixiv.science
comment: Preprint under review. Code is available at https://github.com/aixiv-org. Website is available at https://aixiv.science
♻ ☆ 3D Software Synthesis Guided by Constraint-Expressive Intermediate Representation ICSE
Graphical user interface (UI) software has undergone a fundamental transformation from traditional two-dimensional (2D) desktop/web/mobile interfaces to spatial three-dimensional (3D) environments. While existing work has made remarkable success in automated 2D software generation, such as HTML/CSS and mobile app interface code synthesis, the generation of 3D software still remains under-explored. Current methods for 3D software generation usually generate the 3D environments as a whole and cannot modify or control specific elements in the software. Furthermore, these methods struggle to handle the complex spatial and semantic constraints inherent in the real world. To address the challenges, we present Scenethesis, a novel requirement-sensitive 3D software synthesis approach that maintains formal traceability between user specifications and generated 3D software. Scenethesis is built upon ScenethesisLang, a domain-specific language that serves as a granular constraint-aware intermediate representation (IR) to bridge natural language requirements and executable 3D software. It serves both as a comprehensive scene description language enabling fine-grained modification of 3D software elements and as a formal constraint-expressive specification language capable of expressing complex spatial constraints. By decomposing 3D software synthesis into stages operating on ScenethesisLang, Scenethesis enables independent verification, targeted modification, and systematic constraint satisfaction. Our evaluation demonstrates that Scenethesis accurately captures over 80% of user requirements and satisfies more than 90% of hard constraints while handling over 100 constraints simultaneously. Furthermore, Scenethesis achieves a 42.8% improvement in BLIP-2 visual evaluation scores compared to the state-of-the-art method.
comment: Accepted by the IEEE/ACM International Conference on Software Engineering (ICSE) 2026, Rio de Janeiro, Brazil
♻ ☆ SketchOGD: Memory-Efficient Continual Learning
When machine learning models are trained continually on a sequence of tasks, they are often liable to forget what they learned on previous tasks--a phenomenon known as catastrophic forgetting. Proposed solutions to catastrophic forgetting tend to involve storing information about past tasks, meaning that memory usage is a chief consideration in determining their practicality. This paper develops a memory-efficient solution to catastrophic forgetting using the idea of matrix sketching, in the context of a simple continual learning algorithm known as orthogonal gradient descent (OGD). OGD finds weight updates that aim to preserve performance on prior datapoints, using gradients of the model on those datapoints. However, since the memory cost of storing prior model gradients grows with the runtime of the algorithm, OGD is ill-suited to continual learning over long time horizons. To address this problem, we propose SketchOGD. SketchOGD employs an online sketching algorithm to compress model gradients as they are encountered into a matrix of a fixed, user-determined size. In contrast to existing memory-efficient variants of OGD, SketchOGD runs online without the need for advance knowledge of the total number of tasks, is simple to implement, and is more amenable to analysis. We provide theoretical guarantees on the approximation error of the relevant sketches under a novel metric suited to the downstream task of OGD. Experimentally, we find that SketchOGD tends to outperform current state-of-the-art variants of OGD given a fixed memory budget.
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation AAAI2026
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
comment: Accepted to AAAI2026
♻ ☆ The Eminence in Shadow: Exploiting Feature Boundary Ambiguity for Robust Backdoor Attacks KDD2026
Deep neural networks (DNNs) underpin critical applications yet remain vulnerable to backdoor attacks, typically reliant on heuristic brute-force methods. Despite significant empirical advancements in backdoor research, the lack of rigorous theoretical analysis limits understanding of underlying mechanisms, constraining attack predictability and adaptability. Therefore, we provide a theoretical analysis targeting backdoor attacks, focusing on how sparse decision boundaries enable disproportionate model manipulation. Based on this finding, we derive a closed-form, ambiguous boundary region, wherein negligible relabeled samples induce substantial misclassification. Influence function analysis further quantifies significant parameter shifts caused by these margin samples, with minimal impact on clean accuracy, formally grounding why such low poison rates suffice for efficacious attacks. Leveraging these insights, we propose Eminence, an explainable and robust black-box backdoor framework with provable theoretical guarantees and inherent stealth properties. Eminence optimizes a universal, visually subtle trigger that strategically exploits vulnerable decision boundaries and effectively achieves robust misclassification with exceptionally low poison rates (< 0.1%, compared to SOTA methods typically requiring > 1%). Comprehensive experiments validate our theoretical discussions and demonstrate the effectiveness of Eminence, confirming an exponential relationship between margin poisoning and adversarial boundary manipulation. Eminence maintains > 90% attack success rate, exhibits negligible clean-accuracy loss, and demonstrates high transferability across diverse models, datasets and scenarios.
comment: Accepted by KDD2026 Cycle 1 Research Track
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Memo2496: Expert-Annotated Dataset and Dual-View Adaptive Framework for Music Emotion Recognition
Music Emotion Recogniser (MER) research faces challenges due to limited high-quality annotated datasets and difficulties in addressing cross-track feature drift. This work presents two primary contributions to address these issues. Memo2496, a large-scale dataset, offers 2496 instrumental music tracks with continuous valence arousal labels, annotated by 30 certified music specialists. Annotation quality is ensured through calibration with extreme emotion exemplars and a consistency threshold of 0.25, measured by Euclidean distance in the valence arousal space. Furthermore, the Dual-view Adaptive Music Emotion Recogniser (DAMER) is introduced. DAMER integrates three synergistic modules: Dual Stream Attention Fusion (DSAF) facilitates token-level bidirectional interaction between Mel spectrograms and cochleagrams via cross attention mechanisms; Progressive Confidence Labelling (PCL) generates reliable pseudo labels employing curriculum-based temperature scheduling and consistency quantification using Jensen Shannon divergence; and Style Anchored Memory Learning (SAML) maintains a contrastive memory queue to mitigate cross-track feature drift. Extensive experiments on the Memo2496, 1000songs, and PMEmo datasets demonstrate DAMER's state-of-the-art performance, improving arousal dimension accuracy by 3.43%, 2.25%, and 0.17%, respectively. Ablation studies and visualisation analyses validate each module's contribution. Both the dataset and source code are publicly available.
♻ ☆ ChemDFM-R: A Chemical Reasoning LLM Enhanced with Atomized Chemical Knowledge
While large language models (LLMs) have achieved impressive progress, their application in scientific domains such as chemistry remains hindered by shallow domain understanding and limited reasoning capabilities. In this work, we focus on the specific field of chemistry and develop a Chemical Reasoning LLM, ChemDFM-R. We first construct a comprehensive dataset of atomized chemical knowledge, ChemFG, annotating the presence of functional groups in molecules and the changes of functional groups during chemical reactions, to enhance the model's understanding of the fundamental principles and internal logic of chemistry. Then, we propose a mixed-source distillation method that integrates expertise in atomized knowledge with general reasoning skills, followed by domain-specific reinforcement learning to enhance chemical reasoning. Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs. Further case studies illustrate how explicit reasoning chains significantly improve the model's reliability, transparency, and practicality in real-world human-AI collaboration scenarios.
comment: 18 figures, 11 tables
♻ ☆ Benchmarking and Mitigating Sycophancy in Medical Vision Language Models
Visual language models (VLMs) have the potential to transform medical workflows. However, the deployment is limited by sycophancy. Despite this serious threat to patient safety, a systematic benchmark remains lacking. This paper addresses this gap by introducing a Medical benchmark that applies multiple templates to VLMs in a hierarchical medical visual question answering task. We find that current VLMs are highly susceptible to visual cues, with failure rates showing a correlation to model size or overall accuracy. we discover that perceived authority and user mimicry are powerful triggers, suggesting a bias mechanism independent of visual data. To overcome this, we propose a Visual Information Purification for Evidence based Responses (VIPER) strategy that proactively filters out non-evidence-based social cues, thereby reinforcing evidence based reasoning. VIPER reduces sycophancy while maintaining interpretability and consistently outperforms baseline methods, laying the necessary foundation for the robust and secure integration of VLMs.
comment: 19figures, 61pages
♻ ☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
♻ ☆ MAGIC: Few-Shot Mask-Guided Anomaly Inpainting with Prompt Perturbation, Spatially Adaptive Guidance, and Context Awareness
Few-shot anomaly generation is a key challenge in industrial quality control. Although diffusion models are promising, existing methods struggle: global prompt-guided approaches corrupt normal regions, and existing inpainting-based methods often lack the in-distribution diversity essential for robust downstream models. We propose MAGIC, a fine-tuned inpainting framework that generates high-fidelity anomalies that strictly adhere to the mask while maximizing this diversity. MAGIC introduces three complementary components: (i) Gaussian prompt perturbation, which prevents model overfitting in the few-shot setting by learning and sampling from a smooth manifold of realistic anomalies, (ii) spatially adaptive guidance that applies distinct guidance strengths to the anomaly and background regions, and (iii) context-aware mask alignment to relocate masks for plausible placement within the host object. Under consistent identical evaluation protocol, MAGIC outperforms state-of-the-art methods on diverse anomaly datasets in downstream tasks.
comment: 46 pages, 47 figures. Code: https://github.com/Jaeihk/MAGIC-Anomaly-generation
♻ ☆ Observation Compression in Rate-Limited Closed-Loop Distributed ISAC Systems: From Signal Reconstruction to Control
In closed-loop distributed multi-sensor integrated sensing and communication (ISAC) systems, performance often hinges on transmitting high-dimensional sensor observations over rate-limited networks. In this paper, we first present a general framework for rate-limited closed-loop distributed ISAC systems, and then propose an autoencoder-based observation compression method to overcome the constraints imposed by limited transmission capacity. Building on this framework, we conduct a case study using a closed-loop linear quadratic regulator (LQR) system to analyze how the interplay among observation, compression, and state dimensions affects reconstruction accuracy, state estimation error, and control performance. In multi-sensor scenarios, our results further show that optimal resource allocation initially prioritizes low-noise sensors until the compression becomes lossless, after which resources are reallocated to high-noise sensors.
comment: 6 pages, 15 figures. This work has been accepted by Globecom Workshop 2025
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backend, and tool access. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building effective and robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest version
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF
♻ ☆ Self-Transparency Failures in Expert-Persona LLMs: How Instruction-Following Overrides Disclosure
Self-transparency is a critical safety boundary, requiring language models to honestly disclose their limitations and artificial nature. This study stress-tests this capability, investigating whether models willingly disclose their identity when assigned professional personas that conflict with transparent self-representation. When models prioritize role consistency over this boundary disclosure, users may calibrate trust based on overstated competence claims, treating AI-generated guidance as equivalent to licensed professional advice. Using a common-garden experimental design, sixteen open-weight models (4B-671B parameters) were audited under identical conditions across 19,200 trials. Models exhibited sharp domain-specific inconsistency: a Financial Advisor persona elicited 30.8% disclosure at the first prompt, while a Neurosurgeon persona elicited only 3.5% -- an 8.8-fold difference that emerged at the initial epistemic inquiry. Disclosure ranged from 2.8% to 73.6% across model families, with a 14B model reaching 39.4% while a 70B model produced just 4.1%. Model identity provided substantially larger improvement in fitting observations than parameter count ($ΔR_{adj}^{2}=0.359$ vs $0.018$). Reasoning variants showed heterogeneous effects: some exhibited up to 48.4 percentage points lower disclosure than their base instruction-tuned counterparts, while others maintained high transparency. An additional experiment demonstrated that explicit permission to disclose AI nature increased disclosure from 23.7% to 65.8%, revealing that suppression reflects instruction-following prioritization rather than capability limitations. Bayesian validation confirmed robustness to judge measurement error ($κ=0.908$). Organizations cannot assume safety properties will transfer across deployment domains, requiring deliberate behavior design and empirical verification.
comment: 47 pages, 12 figures, 12 tables, Submitted to FAccT; clarify user harm, add permission experiment, condense paper, improve abstract
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ N2N: A Parallel Framework for Large-Scale MILP under Distributed Memory
Parallelization has emerged as a promising approach for accelerating MILP solving. However, the complexity of the branch-and-bound (B&B) framework and the numerous effective algorithm components in MILP solvers make it difficult to parallelize. In this study, a scalable parallel framework, N2N (a node-to-node framework that maps the B&B nodes to distributed computing nodes), was proposed to solve large-scale problems in a distributed memory computing environment. Both deterministic and nondeterministic modes are supported, and the framework is designed to be easily integrated with existing solvers. Regarding the deterministic mode, a novel sliding-window-based algorithm was designed and implemented to ensure that tasks are generated and solved in a deterministic order. Moreover, several advanced techniques, such as the utilization of CP search and general primal heuristics, have been developed to fully utilize distributed computing resources and capabilities of base solvers. Adaptive solving and data communication optimization were also investigated. A popular open-source MILP solver, SCIP, was integrated into N2N as the base solver, yielding N2N-SCIP. Extensive computational experiments were conducted to evaluate the performance of N2N-SCIP compared to ParaSCIP, which is a state-of-the-art distributed parallel MILP solver under the UG framework. The nondeterministic N2N-SCIP achieves speedups of 22.52 and 12.71 with 1,000 MPI processes on the Kunpeng and x86 computing clusters, which is 1.98 and 2.08 times faster than ParaSCIP, respectively. In the deterministic mode, N2N-SCIP also shows significant performance improvements over ParaSCIP across different process numbers and computing clusters. To validate the generality of N2N, HiGHS, another open-source solver, was integrated into N2N. The related results are analyzed, and the requirements of N2N on base solvers are also concluded.
comment: 18 pages, 2 figures
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AAAI 2026
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 28 pages, AAAI 2026
♻ ☆ Large Language Model-Based Intelligent Antenna Design System
Antenna simulation typically involves modeling and optimization, which are time-consuming and labor-intensive, slowing down antenna analysis and design. This paper presents a prototype of a large language model (LLM)-based antenna design system (LADS) to assist in antenna simulation. LADS generates antenna models with textual descriptions and images extracted from academic papers, patents, and technical reports (either one or multiple), and it interacts with engineers to iteratively refine the designs. After that, LADS configures and runs an optimizer to meet the design specifications. The effectiveness of LADS is demonstrated by a monopole slotted antenna generated from images and descriptions from the literature. To improve gain stability across the 3.1-10.6 GHz ultra-wide band, LADS modifies the cross-slot into an H-slot and changes substrate material, followed by parameter optimization. As a result, the gain variation is reduced while maintaining the same gain level. The LLM-enabled antenna modeling (LEAM) is available at: https://github.com/TaoWu974/LEAM.
comment: Code are available: https://github.com/TaoWu974/LEAM. Accepted by and will be presented in EuCAP 2026, Dublin
♻ ☆ Towards a Science of Scaling Agent Systems
Agents, language model-based systems that are capable of reasoning, planning, and acting are becoming the dominant paradigm for real-world AI applications. Despite this widespread adoption, the principles that determine their performance remain underexplored. We address this by deriving quantitative scaling principles for agent systems. We first formalize a definition for agentic evaluation and characterize scaling laws as the interplay between agent quantity, coordination structure, model capability, and task properties. We evaluate this across four benchmarks: Finance-Agent, BrowseComp-Plus, PlanCraft, and Workbench. With five canonical agent architectures (Single-Agent and four Multi-Agent Systems: Independent, Centralized, Decentralized, Hybrid), instantiated across three LLM families, we perform a controlled evaluation spanning 180 configurations. We derive a predictive model using coordination metrics, that achieves cross-validated R^2=0.524, enabling prediction on unseen task domains. We identify three effects: (1) a tool-coordination trade-off: under fixed computational budgets, tool-heavy tasks suffer disproportionately from multi-agent overhead. (2) a capability saturation: coordination yields diminishing or negative returns once single-agent baselines exceed ~45%. (3) topology-dependent error amplification: independent agents amplify errors 17.2x, while centralized coordination contains this to 4.4x. Centralized coordination improves performance by 80.8% on parallelizable tasks, while decentralized coordination excels on web navigation (+9.2% vs. +0.2%). Yet for sequential reasoning tasks, every multi-agent variants degraded performance by 39-70%. The framework predicts the optimal coordination strategy for 87% of held-out configurations. Out-of-sample validation on GPT-5.2, achieves MAE=0.071 and confirms four of five scaling principles generalize to unseen frontier models.
♻ ☆ Causal Inference in Energy Demand Prediction
Energy demand prediction is critical for grid operators, industrial energy consumers, and service providers. Energy demand is influenced by multiple factors, including weather conditions (e.g. temperature, humidity, wind speed, solar radiation), and calendar information (e.g. hour of day and month of year), which further affect daily work and life schedules. These factors are causally interdependent, making the problem more complex than simple correlation-based learning techniques satisfactorily allow for. We propose a structural causal model that explains the causal relationship between these variables. A full analysis is performed to validate our causal beliefs, also revealing important insights consistent with prior studies. For example, our causal model reveals that energy demand responds to temperature fluctuations with season-dependent sensitivity. Additionally, we find that energy demand exhibits lower variance in winter due to the decoupling effect between temperature changes and daily activity patterns. We then build a Bayesian model, which takes advantage of the causal insights we learned as prior knowledge. The model is trained and tested on unseen data and yields state-of-the-art performance in the form of a 3.84 percent MAPE on the test set. The model also demonstrates strong robustness, as the cross-validation across two years of data yields an average MAPE of 3.88 percent.
♻ ☆ AI-Assisted Game Management Decisions: A Fuzzy Logic Approach to Real-Time Soccer Substitutions
In elite soccer, substitution decisions entail significant financial and sporting consequences yet remain heavily reliant on intuition or predictive models that merely mimic historical biases. This paper introduces a Fuzzy Logic based Decision Support System (DSS) designed for real time, prescriptive game management. Unlike traditional Machine Learning approaches that encounter a predictive ceiling by attempting to replicate human behavior, our system audits performance through an objective, rule based inference engine. We propose a methodological advancement by reformulating the PlayeRank metric into a Cumulative Mean with Role Aware Normalization, eliminating the play time exposure bias inherent in cumulative sum models to enable accurate intra match comparison. The system integrates this refined metric with physiological proxies (fatigue) and contextual variables (disciplinary risk modulated by tactical role) to calculate a dynamic Substitution Priority (P final). Validation via a case study of the 2018 FIFA World Cup match between Brazil and Belgium demonstrates the system's ecological validity: it not only aligned with expert consensus on executed substitutions (for example Gabriel Jesus) but, crucially, identified high risk scenarios ignored by human decision makers. Specifically, the model flagged the "FAGNER Paradox" - a maximum priority defensive risk - minutes before a critical yellow card, and detected the "Lukaku Paradox", where an isolated assist masked a severe drop in participation. These results confirm that Fuzzy Logic offers a transparent, explainable, and superior alternative to black box models for optimizing real time tactical decisions.
comment: This version contains a methodological inconsistency in the performance evaluation formulation described in Section 3 (Methodology). Specifically, the definition of the temporal aggregation of player performance was incomplete, leading to an ambiguity between cumulative and normalized metrics in the intra
♻ ☆ Arithmetic-Intensity-Aware Quantization
As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.
♻ ☆ WaveGNN: Integrating Graph Neural Networks and Transformers for Decay-Aware Classification of Irregular Clinical Time-Series
Clinical time series are often irregularly sampled, with varying sensor frequencies, missing observations, and misaligned timestamps. Prior approaches typically address these irregularities by interpolating data into regular sequences, thereby introducing bias, or by generating inconsistent and uninterpretable relationships across sensor measurements, complicating the accurate learning of both intra-series and inter-series dependencies. We introduce WaveGNN, a model that operates directly on irregular multivariate time series without interpolation or conversion to a regular representation. WaveGNN combines a decay-aware Transformer to capture intra-series dynamics with a sample-specific graph neural network that models both short-term and long-term inter-sensor relationships. Therefore, it generates a single, sparse, and interpretable graph per sample. Across multiple benchmark datasets (P12, P19, MIMIC-III, and PAM), WaveGNN delivers consistently strong performance, whereas other state-of-the-art baselines tend to perform well on some datasets or tasks but poorly on others. While WaveGNN does not necessarily surpass every method in every case, its consistency and robustness across diverse settings set it apart. Moreover, the learned graphs align well with known physiological structures, enhancing interpretability and supporting clinical decision-making.
comment: Accepted to IEEE BigData 2025. Author-accepted manuscript
♻ ☆ Few-Shot Multimodal Medical Imaging: A Theoretical Framework
Medical imaging often operates under limited labeled data, especially in rare disease and low resource clinical environments. Existing multimodal and meta learning approaches improve performance in these settings but lack a theoretical explanation of why or when they succeed. This paper presents a unified theoretical framework for few shot multimodal medical imaging that jointly characterizes sample complexity, uncertainty quantification, and interpretability. Using PAC learning, VC theory, and PAC Bayesian analysis, we derive bounds that describe the minimum number of labeled samples required for reliable performance and show how complementary modalities reduce effective capacity through an information gain term. We further introduce a formal metric for explanation stability, proving that explanation variance decreases at an inverse n rate. A sequential Bayesian interpretation of Chain of Thought reasoning is also developed to show stepwise posterior contraction. To illustrate these ideas, we implement a controlled multimodal dataset and evaluate an additive CNN MLP fusion model under few shot regimes, confirming predicted multimodal gains, modality interference at larger sample sizes, and shrinking predictive uncertainty. Together, the framework provides a principled foundation for designing data efficient, uncertainty aware, and interpretable diagnostic models in low resource settings.
comment: 6 Pages
♻ ☆ Rigid-Deformation Decomposition AI Framework for 3D Spatio-Temporal Prediction of Vehicle Collision Dynamics
This study presents a rigid-deformation decomposition framework for vehicle collision dynamics that mitigates the spectral bias of implicit neural representations, that is, coordinate-based neural networks that directly map spatio-temporal coordinates to physical fields. We introduce a hierarchical architecture that decouples global rigid-body motion from local deformation using two scale-specific networks, denoted as RigidNet and DeformationNet. To enforce kinematic separation between the two components, we adopt a frozen-anchor training strategy combined with a quaternion-incremental scheme. This strategy alleviates the kinematic instability observed in joint training and yields a 29.8% reduction in rigid-body motion error compared with conventional direct prediction schemes. The stable rigid-body anchor improves the resolution of high-frequency structural buckling, which leads to a 17.2% reduction in the total interpolation error. Loss landscape analysis indicates that the decomposition smooths the optimization surface, which enhances robustness to distribution shifts in angular extrapolation and yields a 46.6% reduction in error. To assess physical validity beyond numerical accuracy, we benchmark the decomposed components against an oracle model that represents an upper bound on performance. The proposed framework recovers 92% of the directional correlation between rigid and deformation components and 96% of the spatial deformation localization accuracy relative to the oracle, while tracking the temporal energy dynamics with an 8 ms delay. These results demonstrate that rigid-deformation decomposition enables accurate and physically interpretable predictions for nonlinear collision dynamics.
comment: 38 pages, 24 figures
♻ ☆ Improving Action Smoothness for a Cascaded Online Learning Flight Control System
This paper aims to improve the action smoothness of a cascaded online learning flight control system. Although the cascaded structure is widely used in flight control design, its stability can be compromised by oscillatory control actions, which poses challenges for practical engineering applications. To address this issue, we introduce an online temporal smoothness technique and a low-pass filter to reduce the amplitude and frequency of the control actions. Fast Fourier Transform (FFT) is used to analyze policy performance in the frequency domain. Simulation results demonstrate the improvements achieved by the two proposed techniques.
Machine Learning 150
☆ Predictive Concept Decoders: Training Scalable End-to-End Interpretability Assistants
Interpreting the internal activations of neural networks can produce more faithful explanations of their behavior, but is difficult due to the complex structure of activation space. Existing approaches to scalable interpretability use hand-designed agents that make and test hypotheses about how internal activations relate to external behavior. We propose to instead turn this task into an end-to-end training objective, by training interpretability assistants to accurately predict model behavior from activations through a communication bottleneck. Specifically, an encoder compresses activations to a sparse list of concepts, and a decoder reads this list and answers a natural language question about the model. We show how to pretrain this assistant on large unstructured data, then finetune it to answer questions. The resulting architecture, which we call a Predictive Concept Decoder, enjoys favorable scaling properties: the auto-interp score of the bottleneck concepts improves with data, as does the performance on downstream applications. Specifically, PCDs can detect jailbreaks, secret hints, and implanted latent concepts, and are able to accurately surface latent user attributes.
comment: 28 pages, 12 figures
☆ Learning Model Parameter Dynamics in a Combination Therapy for Bladder Cancer from Sparse Biological Data NeurIPS 2025
In a mathematical model of interacting biological organisms, where external interventions may alter behavior over time, traditional models that assume fixed parameters usually do not capture the evolving dynamics. In oncology, this is further exacerbated by the fact that experimental data are often sparse and sometimes are composed of a few time points of tumor volume. In this paper, we propose to learn time-varying interactions between cells, such as those of bladder cancer tumors and immune cells, and their response to a combination of anticancer treatments in a limited data scenario. We employ the physics-informed neural network (PINN) approach to predict possible subpopulation trajectories at time points where no observed data are available. We demonstrate that our approach is consistent with the biological explanation of subpopulation trajectories. Our method provides a framework for learning evolving interactions among biological organisms when external interventions are applied to their environment.
comment: NeurIPS 2025 Workshop on Learning from Time Series for Health
☆ Dynamic Rebatching for Efficient Early-Exit Inference with DREX
Early-Exit (EE) is a Large Language Model (LLM) architecture that accelerates inference by allowing easier tokens to be generated using only a subset of the model's layers. However, traditional batching frameworks are ill-suited for EE LLMs, as not all requests in a batch may be ready to exit at the same time. Existing solutions either force a uniform decision on the batch, which overlooks EE opportunities, or degrade output quality by forcing premature exits. We propose Dynamic Rebatching, a solution where we dynamically reorganize the batch at each early-exit point. Requests that meet the exit criteria are immediately processed, while those that continue are held in a buffer, re-grouped into a new batch, and forwarded to deeper layers. We introduce DREX, an early-exit inference system that implements Dynamic Rebatching with two key optimizations: 1) a copy-free rebatching buffer that avoids physical data movement, and 2) an EE and SLA-aware scheduler that analytically predicts whether a given rebatching operation will be profitable. DREX also efficiently handles the missing KV cache from skipped layers using memory-efficient state-copying. Our evaluation shows that DREX improves throughput by 2-12% compared to baseline approaches while maintaining output quality. Crucially, DREX completely eliminates involuntary exits, providing a key guarantee for preserving the output quality intended by the EE model.
☆ FrontierCS: Evolving Challenges for Evolving Intelligence
We introduce FrontierCS, a benchmark of 156 open-ended problems across diverse areas of computer science, designed and reviewed by experts, including CS PhDs and top-tier competitive programming participants and problem setters. Unlike existing benchmarks that focus on tasks with known optimal solutions, FrontierCS targets problems where the optimal solution is unknown, but the quality of a solution can be objectively evaluated. Models solve these tasks by implementing executable programs rather than outputting a direct answer. FrontierCS includes algorithmic problems, which are often NP-hard variants of competitive programming problems with objective partial scoring, and research problems with the same property. For each problem we provide an expert reference solution and an automatic evaluator. Combining open-ended design, measurable progress, and expert curation, FrontierCS provides a benchmark at the frontier of computer-science difficulty. Empirically, we find that frontier reasoning models still lag far behind human experts on both the algorithmic and research tracks, that increasing reasoning budgets alone does not close this gap, and that models often over-optimize for generating merely workable code instead of discovering high-quality algorithms and system designs.
comment: Code with instruction: https://github.com/FrontierCS/Frontier-CS
☆ mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Prevailing Vision-Language-Action Models (VLAs) for robotic manipulation are built upon vision-language backbones pretrained on large-scale, but disconnected static web data. As a result, despite improved semantic generalization, the policy must implicitly infer complex physical dynamics and temporal dependencies solely from robot trajectories. This reliance creates an unsustainable data burden, necessitating continuous, large-scale expert data collection to compensate for the lack of innate physical understanding. We contend that while vision-language pretraining effectively captures semantic priors, it remains blind to physical causality. A more effective paradigm leverages video to jointly capture semantics and visual dynamics during pretraining, thereby isolating the remaining task of low-level control. To this end, we introduce \model, a novel Video-Action Model (VAM) that pairs a pretrained Internet-scale video model with a flow matching-based action decoder conditioned on its latent representations. The decoder serves as an Inverse Dynamics Model (IDM), generating low-level robot actions from the latent representation of video-space action plans. Our extensive evaluation shows that our approach achieves state-of-the-art performance on simulated and real-world robotic manipulation tasks, improving sample efficiency by 10x and convergence speed by 2x compared to traditional VLA architectures.
☆ Multi-Modal Semantic Communication
Semantic communication aims to transmit information most relevant to a task rather than raw data, offering significant gains in communication efficiency for applications such as telepresence, augmented reality, and remote sensing. Recent transformer-based approaches have used self-attention maps to identify informative regions within images, but they often struggle in complex scenes with multiple objects, where self-attention lacks explicit task guidance. To address this, we propose a novel Multi-Modal Semantic Communication framework that integrates text-based user queries to guide the information extraction process. Our proposed system employs a cross-modal attention mechanism that fuses visual features with language embeddings to produce soft relevance scores over the visual data. Based on these scores and the instantaneous channel bandwidth, we use an algorithm to transmit image patches at adaptive resolutions using independently trained encoder-decoder pairs, with total bitrate matching the channel capacity. At the receiver, the patches are reconstructed and combined to preserve task-critical information. This flexible and goal-driven design enables efficient semantic communication in complex and bandwidth-constrained environments.
☆ Can LLMs Guide Their Own Exploration? Gradient-Guided Reinforcement Learning for LLM Reasoning
Reinforcement learning has become essential for strengthening the reasoning abilities of large language models, yet current exploration mechanisms remain fundamentally misaligned with how these models actually learn. Entropy bonuses and external semantic comparators encourage surface level variation but offer no guarantee that sampled trajectories differ in the update directions that shape optimization. We propose G2RL, a gradient guided reinforcement learning framework in which exploration is driven not by external heuristics but by the model own first order update geometry. For each response, G2RL constructs a sequence level feature from the model final layer sensitivity, obtainable at negligible cost from a standard forward pass, and measures how each trajectory would reshape the policy by comparing these features within a sampled group. Trajectories that introduce novel gradient directions receive a bounded multiplicative reward scaler, while redundant or off manifold updates are deemphasized, yielding a self referential exploration signal that is naturally aligned with PPO style stability and KL control. Across math and general reasoning benchmarks (MATH500, AMC, AIME24, AIME25, GPQA, MMLUpro) on Qwen3 base 1.7B and 4B models, G2RL consistently improves pass@1, maj@16, and pass@k over entropy based GRPO and external embedding methods. Analyzing the induced geometry, we find that G2RL expands exploration into substantially more orthogonal and often opposing gradient directions while maintaining semantic coherence, revealing that a policy own update space provides a far more faithful and effective basis for guiding exploration in large language model reinforcement learning.
☆ A Multivariate Statistical Framework for Detection, Classification and Pre-localization of Anomalies in Water Distribution Networks
This paper presents a unified framework, for the detection, classification, and preliminary localization of anomalies in water distribution networks using multivariate statistical analysis. The approach, termed SICAMS (Statistical Identification and Classification of Anomalies in Mahalanobis Space), processes heterogeneous pressure and flow sensor data through a whitening transformation to eliminate spatial correlations among measurements. Based on the transformed data, the Hotelling's $T^2$ statistic is constructed, enabling the formulation of anomaly detection as a statistical hypothesis test of network conformity to normal operating conditions. It is shown that Hotelling's $T^2$ statistic can serve as an integral indicator of the overall "health" of the system, exhibiting correlation with total leakage volume, and thereby enabling approximate estimation of water losses via a regression model. A heuristic algorithm is developed to analyze the $T^2$ time series and classify detected anomalies into abrupt leaks, incipient leaks, and sensor malfunctions. Furthermore, a coarse leak localization method is proposed, which ranks sensors according to their statistical contribution and employs Laplacian interpolation to approximate the affected region within the network. Application of the proposed framework to the BattLeDIM L-Town benchmark dataset demonstrates high sensitivity and reliability in leak detection, maintaining robust performance even under multiple leaks. These capabilities make the method applicable to real-world operational environments without the need for a calibrated hydraulic model.
comment: 48 pages, 18 figures, 3 tables
☆ High-Dimensional Partial Least Squares: Spectral Analysis and Fundamental Limitations
Partial Least Squares (PLS) is a widely used method for data integration, designed to extract latent components shared across paired high-dimensional datasets. Despite decades of practical success, a precise theoretical understanding of its behavior in high-dimensional regimes remains limited. In this paper, we study a data integration model in which two high-dimensional data matrices share a low-rank common latent structure while also containing individual-specific components. We analyze the singular vectors of the associated cross-covariance matrix using tools from random matrix theory and derive asymptotic characterizations of the alignment between estimated and true latent directions. These results provide a quantitative explanation of the reconstruction performance of the PLS variant based on Singular Value Decomposition (PLS-SVD) and identify regimes where the method exhibits counter-intuitive or limiting behavior. Building on this analysis, we compare PLS-SVD with principal component analysis applied separately to each dataset and show its asymptotic superiority in detecting the common latent subspace. Overall, our results offer a comprehensive theoretical understanding of high-dimensional PLS-SVD, clarifying both its advantages and fundamental limitations.
☆ Stylized Synthetic Augmentation further improves Corruption Robustness
This paper proposes a training data augmentation pipeline that combines synthetic image data with neural style transfer in order to address the vulnerability of deep vision models to common corruptions. We show that although applying style transfer on synthetic images degrades their quality with respect to the common FID metric, these images are surprisingly beneficial for model training. We conduct a systematic empirical analysis of the effects of both augmentations and their key hyperparameters on the performance of image classifiers. Our results demonstrate that stylization and synthetic data complement each other well and can be combined with popular rule-based data augmentation techniques such as TrivialAugment, while not working with others. Our method achieves state-of-the-art corruption robustness on several small-scale image classification benchmarks, reaching 93.54%, 74.9% and 50.86% robust accuracy on CIFAR-10-C, CIFAR-100-C and TinyImageNet-C, respectively
comment: Accepted at VISAPP 2026 conference
☆ Activation Oracles: Training and Evaluating LLMs as General-Purpose Activation Explainers
Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
comment: 36 pages
☆ Prospects for quantum advantage in machine learning from the representability of functions
Demonstrating quantum advantage in machine learning tasks requires navigating a complex landscape of proposed models and algorithms. To bring clarity to this search, we introduce a framework that connects the structure of parametrized quantum circuits to the mathematical nature of the functions they can actually learn. Within this framework, we show how fundamental properties, like circuit depth and non-Clifford gate count, directly determine whether a model's output leads to efficient classical simulation or surrogation. We argue that this analysis uncovers common pathways to dequantization that underlie many existing simulation methods. More importantly, it reveals critical distinctions between models that are fully simulatable, those whose function space is classically tractable, and those that remain robustly quantum. This perspective provides a conceptual map of this landscape, clarifying how different models relate to classical simulability and pointing to where opportunities for quantum advantage may lie.
comment: 21 pages, 6 figures, comments welcome
☆ PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
comment: 10 pages, 3 figures, 2025 IEEE International Conference on Big Data (BigData)
☆ SoFlow: Solution Flow Models for One-Step Generative Modeling
The multi-step denoising process in diffusion and Flow Matching models causes major efficiency issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow), a framework for one-step generation from scratch. By analyzing the relationship between the velocity function and the solution function of the velocity ordinary differential equation (ODE), we propose a Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during training, which improves generation performance. Notably, our consistency loss does not require the calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that, when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the ImageNet 256x256 dataset.
comment: Our code is available at https://github.com/zlab-princeton/SoFlow
☆ How Much is Too Much? Exploring LoRA Rank Trade-offs for Retaining Knowledge and Domain Robustness AACL
Large language models are increasingly adapted to downstream tasks through fine-tuning. Full supervised fine-tuning (SFT) and parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), are two dominant approaches. While PEFT methods are widely used for their computational efficiency, the implications of their configurations (e.g., rank) remain under-explored in downstream Q&A tasks and generalisation. In this work, we perform a comprehensive evaluation across multiple reasoning and recall datasets, conducting a rank sweep to quantify the trade-off between SFT and PEFT. We also compare the accuracy of PEFT and SFT models across in-domain and out-of-domain adaptation, highlighting distinct generalisation behaviour and task-specific forgetting. We demonstrate that LoRA achieves competitive and in some cases superior performance compared to SFT, particularly on reasoning tasks at specific rank values. Additionally, we analyze the internal representations via spectral features and layer-wise attention structures, offering insights into representational drift and structural changes in attention patterns.
comment: Accepted at AACL IJCNLP 2025
☆ Learning continuous SOC-dependent thermal decomposition kinetics for Li-ion cathodes using KA-CRNNs
Thermal runaway in lithium-ion batteries is strongly influenced by the state of charge (SOC). Existing predictive models typically infer scalar kinetic parameters at a full SOC or a few discrete SOC levels, preventing them from capturing the continuous SOC dependence that governs exothermic behavior during abuse conditions. To address this, we apply the Kolmogorov-Arnold Chemical Reaction Neural Network (KA-CRNN) framework to learn continuous and realistic SOC-dependent exothermic cathode-electrolyte interactions. We apply a physics-encoded KA-CRNN to learn SOC-dependent kinetic parameters for cathode-electrolyte decomposition directly from differential scanning calorimetry (DSC) data. A mechanistically informed reaction pathway is embedded into the network architecture, enabling the activation energies, pre-exponential factors, enthalpies, and related parameters to be represented as continuous and fully interpretable functions of the SOC. The framework is demonstrated for NCA, NM, and NMA cathodes, yielding models that reproduce DSC heat-release features across all SOCs and provide interpretable insight into SOC-dependent oxygen-release and phase-transformation mechanisms. This approach establishes a foundation for extending kinetic parameter dependencies to additional environmental and electrochemical variables, supporting more accurate and interpretable thermal-runaway prediction and monitoring.
comment: 17 pages, 10 figures, 2 tables
☆ Behavior Tokens Speak Louder: Disentangled Explainable Recommendation with Behavior Vocabulary AAAI 2026
Recent advances in explainable recommendations have explored the integration of language models to analyze natural language rationales for user-item interactions. Despite their potential, existing methods often rely on ID-based representations that obscure semantic meaning and impose structural constraints on language models, thereby limiting their applicability in open-ended scenarios. These challenges are intensified by the complex nature of real-world interactions, where diverse user intents are entangled and collaborative signals rarely align with linguistic semantics. To overcome these limitations, we propose BEAT, a unified and transferable framework that tokenizes user and item behaviors into discrete, interpretable sequences. We construct a behavior vocabulary via a vector-quantized autoencoding process that disentangles macro-level interests and micro-level intentions from graph-based representations. We then introduce multi-level semantic supervision to bridge the gap between behavioral signals and language space. A semantic alignment regularization mechanism is designed to embed behavior tokens directly into the input space of frozen language models. Experiments on three public datasets show that BEAT improves zero-shot recommendation performance while generating coherent and informative explanations. Further analysis demonstrates that our behavior tokens capture fine-grained semantics and offer a plug-and-play interface for integrating complex behavior patterns into large language models.
comment: accepted by AAAI 2026
☆ A Teacher-Student Perspective on the Dynamics of Learning Near the Optimal Point
Near an optimal learning point of a neural network, the learning performance of gradient descent dynamics is dictated by the Hessian matrix of the loss function with respect to the network parameters. We characterize the Hessian eigenspectrum for some classes of teacher-student problems, when the teacher and student networks have matching weights, showing that the smaller eigenvalues of the Hessian determine long-time learning performance. For linear networks, we analytically establish that for large networks the spectrum asymptotically follows a convolution of a scaled chi-square distribution with a scaled Marchenko-Pastur distribution. We numerically analyse the Hessian spectrum for polynomial and other non-linear networks. Furthermore, we show that the rank of the Hessian matrix can be seen as an effective number of parameters for networks using polynomial activation functions. For a generic non-linear activation function, such as the error function, we empirically observe that the Hessian matrix is always full rank.
comment: 25 pages, 9 figures
☆ Autoregressive Language Models are Secretly Energy-Based Models: Insights into the Lookahead Capabilities of Next-Token Prediction
Autoregressive models (ARMs) currently constitute the dominant paradigm for large language models (LLMs). Energy-based models (EBMs) represent another class of models, which have historically been less prevalent in LLM development, yet naturally characterize the optimal policy in post-training alignment. In this paper, we provide a unified view of these two model classes. Taking the chain rule of probability as a starting point, we establish an explicit bijection between ARMs and EBMs in function space, which we show to correspond to a special case of the soft Bellman equation in maximum entropy reinforcement learning. Building upon this bijection, we derive the equivalence between supervised learning of ARMs and EBMs. Furthermore, we analyze the distillation of EBMs into ARMs by providing theoretical error bounds. Our results provide insights into the ability of ARMs to plan ahead, despite being based on the next-token prediction paradigm.
☆ How Smoothing is N-simplicial Attention?
Going from pure Multilayer Perceptron (MLP) to a learnable graph message-passing mechanism at each layer has been foundational to state-of-the-art results, despite the computational trade-off (e.g. GATs or Transformers). To go a step further, in this work, we introduce N-simplicial attention, going from pairwise token similarity to higher-order interactions, and adapt it for Rotary Position Embeddings (RoPE). To help manage the increased complexity, we propose a cost-effective simplex selection enabling the model to focus its computation load onto the more task-sensitive interactions. Beyond these core mechanisms, we study how smoothing N-simplicial attention is by deriving a Lipschitz upper-bound and by demonstrating that by itself it also suffers from over-smoothing, despite opening the attention message-passing to higher-order interactions.
comment: arXiv preprint
☆ Corrective Diffusion Language Models
Diffusion language models are structurally well-suited for iterative error correction, as their non-causal denoising dynamics allow arbitrary positions in a sequence to be revised. However, standard masked diffusion language model (MDLM) training fails to reliably induce this behavior, as models often cannot identify unreliable tokens in a complete input, rendering confidence-guided refinement ineffective. We study corrective behavior in diffusion language models, defined as the ability to assign lower confidence to incorrect tokens and iteratively refine them while preserving correct content. We show that this capability is not induced by conventional masked diffusion objectives and propose a correction-oriented post-training principle that explicitly supervises visible incorrect tokens, enabling error-aware confidence and targeted refinement. To evaluate corrective behavior, we introduce the Code Revision Benchmark (CRB), a controllable and executable benchmark for assessing error localization and in-place correction. Experiments on code revision tasks and controlled settings demonstrate that models trained with our approach substantially outperform standard MDLMs in correction scenarios, while also improving pure completion performance. Our code is publicly available at https://github.com/zhangshuibai/CDLM.
comment: 18 pages
☆ IMKD: Intensity-Aware Multi-Level Knowledge Distillation for Camera-Radar Fusion WACV
High-performance Radar-Camera 3D object detection can be achieved by leveraging knowledge distillation without using LiDAR at inference time. However, existing distillation methods typically transfer modality-specific features directly to each sensor, which can distort their unique characteristics and degrade their individual strengths. To address this, we introduce IMKD, a radar-camera fusion framework based on multi-level knowledge distillation that preserves each sensor's intrinsic characteristics while amplifying their complementary strengths. IMKD applies a three-stage, intensity-aware distillation strategy to enrich the fused representation across the architecture: (1) LiDAR-to-Radar intensity-aware feature distillation to enhance radar representations with fine-grained structural cues, (2) LiDAR-to-Fused feature intensity-guided distillation to selectively highlight useful geometry and depth information at the fusion level, fostering complementarity between the modalities rather than forcing them to align, and (3) Camera-Radar intensity-guided fusion mechanism that facilitates effective feature alignment and calibration. Extensive experiments on the nuScenes benchmark show that IMKD reaches 67.0% NDS and 61.0% mAP, outperforming all prior distillation-based radar-camera fusion methods. Our code and models are available at https://github.com/dfki-av/IMKD/.
comment: Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. 22 pages, 8 figures. Includes supplementary material
☆ Joint Learning of Unsupervised Multi-view Feature and Instance Co-selection with Cross-view Imputation
Feature and instance co-selection, which aims to reduce both feature dimensionality and sample size by identifying the most informative features and instances, has attracted considerable attention in recent years. However, when dealing with unlabeled incomplete multi-view data, where some samples are missing in certain views, existing methods typically first impute the missing data and then concatenate all views into a single dataset for subsequent co-selection. Such a strategy treats co-selection and missing data imputation as two independent processes, overlooking potential interactions between them. The inter-sample relationships gleaned from co-selection can aid imputation, which in turn enhances co-selection performance. Additionally, simply merging multi-view data fails to capture the complementary information among views, ultimately limiting co-selection effectiveness. To address these issues, we propose a novel co-selection method, termed Joint learning of Unsupervised multI-view feature and instance Co-selection with cross-viEw imputation (JUICE). JUICE first reconstructs incomplete multi-view data using available observations, bringing missing data recovery and feature and instance co-selection together in a unified framework. Then, JUICE leverages cross-view neighborhood information to learn inter-sample relationships and further refine the imputation of missing values during reconstruction. This enables the selection of more representative features and instances. Extensive experiments demonstrate that JUICE outperforms state-of-the-art methods.
☆ Evaluating Large Language Models in Scientific Discovery
Large language models (LLMs) are increasingly applied to scientific research, yet prevailing science benchmarks probe decontextualized knowledge and overlook the iterative reasoning, hypothesis generation, and observation interpretation that drive scientific discovery. We introduce a scenario-grounded benchmark that evaluates LLMs across biology, chemistry, materials, and physics, where domain experts define research projects of genuine interest and decompose them into modular research scenarios from which vetted questions are sampled. The framework assesses models at two levels: (i) question-level accuracy on scenario-tied items and (ii) project-level performance, where models must propose testable hypotheses, design simulations or experiments, and interpret results. Applying this two-phase scientific discovery evaluation (SDE) framework to state-of-the-art LLMs reveals a consistent performance gap relative to general science benchmarks, diminishing return of scaling up model sizes and reasoning, and systematic weaknesses shared across top-tier models from different providers. Large performance variation in research scenarios leads to changing choices of the best performing model on scientific discovery projects evaluated, suggesting all current LLMs are distant to general scientific "superintelligence". Nevertheless, LLMs already demonstrate promise in a great variety of scientific discovery projects, including cases where constituent scenario scores are low, highlighting the role of guided exploration and serendipity in discovery. This SDE framework offers a reproducible benchmark for discovery-relevant evaluation of LLMs and charts practical paths to advance their development toward scientific discovery.
☆ Photonics-Enhanced Graph Convolutional Networks
Photonics can offer a hardware-native route for machine learning (ML). However, efficient deployment of photonics-enhanced ML requires hybrid workflows that integrate optical processing with conventional CPU/GPU based neural network architectures. Here, we propose such a workflow that combines photonic positional embeddings (PEs) with advanced graph ML models. We introduce a photonics-based method that augments graph convolutional networks (GCNs) with PEs derived from light propagation on synthetic frequency lattices whose couplings match the input graph. We simulate propagation and readout to obtain internode intensity correlation matrices, which are used as PEs in GCNs to provide global structural information. Evaluated on Long Range Graph Benchmark molecular datasets, the method outperforms baseline GCNs with Laplacian based PEs, achieving $6.3\%$ lower mean absolute error for regression and $2.3\%$ higher average precision for classification tasks using a two-layer GCN as a baseline. When implemented in high repetition rate photonic hardware, correlation measurements can enable fast feature generation by bypassing digital simulation of PEs. Our results show that photonic PEs improve GCN performance and support optical acceleration of graph ML.
comment: 12 pages, 6 figures
☆ Tracking Temporal Dynamics of Vector Sets with Gaussian Process
Understanding the temporal evolution of sets of vectors is a fundamental challenge across various domains, including ecology, crime analysis, and linguistics. For instance, ecosystem structures evolve due to interactions among plants, herbivores, and carnivores; the spatial distribution of crimes shifts in response to societal changes; and word embedding vectors reflect cultural and semantic trends over time. However, analyzing such time-varying sets of vectors is challenging due to their complicated structures, which also evolve over time. In this work, we propose a novel method for modeling the distribution underlying each set of vectors using infinite-dimensional Gaussian processes. By approximating the latent function in the Gaussian process with Random Fourier Features, we obtain compact and comparable vector representations over time. This enables us to track and visualize temporal transitions of vector sets in a low-dimensional space. We apply our method to both sociological data (crime distributions) and linguistic data (word embeddings), demonstrating its effectiveness in capturing temporal dynamics. Our results show that the proposed approach provides interpretable and robust representations, offering a powerful framework for analyzing structural changes in temporally indexed vector sets across diverse domains.
comment: Work in Progress
☆ A Conditioned UNet for Music Source Separation
In this paper we propose a conditioned UNet for Music Source Separation (MSS). MSS is generally performed by multi-output neural networks, typically UNets, with each output representing a particular stem from a predefined instrument vocabulary. In contrast, conditioned MSS networks accept an audio query related to a stem of interest alongside the signal from which that stem is to be extracted. Thus, a strict vocabulary is not required and this enables more realistic tasks in MSS. The potential of conditioned approaches for such tasks has been somewhat hidden due to a lack of suitable data, an issue recently addressed with the MoisesDb dataset. A recent method, Banquet, employs this dataset with promising results seen on larger vocabularies. Banquet uses Bandsplit RNN rather than a UNet and the authors state that UNets should not be suitable for conditioned MSS. We counter this argument and propose QSCNet, a novel conditioned UNet for MSS that integrates network conditioning elements in the Sparse Compressed Network for MSS. We find QSCNet to outperform Banquet by over 1dB SNR on a couple of MSS tasks, while using less than half the number of parameters.
☆ Autonomous Pressure Control in MuVacAS via Deep Reinforcement Learning and Deep Learning Surrogate Models NeurIPS 2025
The development of nuclear fusion requires materials that can withstand extreme conditions. The IFMIF-DONES facility, a high-power particle accelerator, is being designed to qualify these materials. A critical testbed for its development is the MuVacAS prototype, which replicates the final segment of the accelerator beamline. Precise regulation of argon gas pressure within its ultra-high vacuum chamber is vital for this task. This work presents a fully data-driven approach for autonomous pressure control. A Deep Learning Surrogate Model, trained on real operational data, emulates the dynamics of the argon injection system. This high-fidelity digital twin then serves as a fast-simulation environment to train a Deep Reinforcement Learning agent. The results demonstrate that the agent successfully learns a control policy that maintains gas pressure within strict operational limits despite dynamic disturbances. This approach marks a significant step toward the intelligent, autonomous control systems required for the demanding next-generation particle accelerator facilities.
comment: 13 pages, 7 figures, included in Machine Learning and the Physical Sciences Workshop @ NeurIPS 2025
☆ Attention in Motion: Secure Platooning via Transformer-based Misbehavior Detection
Vehicular platooning promises transformative improvements in transportation efficiency and safety through the coordination of multi-vehicle formations enabled by Vehicle-to-Everything (V2X) communication. However, the distributed nature of platoon coordination creates security vulnerabilities, allowing authenticated vehicles to inject falsified kinematic data, compromise operational stability, and pose a threat to passenger safety. Traditional misbehaviour detection approaches, which rely on plausibility checks and statistical methods, suffer from high False Positive (FP) rates and cannot capture the complex temporal dependencies inherent in multi-vehicle coordination dynamics. We present Attention In Motion (AIMformer), a transformer-based framework specifically tailored for real-time misbehaviour detection in vehicular platoons with edge deployment capabilities. AIMformer leverages multi-head self-attention mechanisms to simultaneously capture intra-vehicle temporal dynamics and inter-vehicle spatial correlations. It incorporates global positional encoding with vehicle-specific temporal offsets to handle join/exit maneuvers. We propose a Precision-Focused (BCE) loss function that penalizes FPs to meet the requirements of safety-critical vehicular systems. Extensive evaluation across 4 platoon controllers, multiple attack vectors, and diverse mobility scenarios demonstrates superior performance ($\geq$ 0.93) compared to state-of-the-art baseline architectures. A comprehensive deployment analysis utilizing TensorFlow Lite (TFLite), Open Neural Network Exchange (ONNX), and TensorRT achieves sub-millisecond inference latency, making it suitable for real-time operation on resource-constrained edge platforms. Hence, validating AIMformer is viable for both in-vehicle and roadside infrastructure deployment.
comment: 17 pages, 10 figures
☆ Soft Geometric Inductive Bias for Object Centric Dynamics
Equivariance is a powerful prior for learning physical dynamics, yet exact group equivariance can degrade performance if the symmetries are broken. We propose object-centric world models built with geometric algebra neural networks, providing a soft geometric inductive bias. Our models are evaluated using simulated environments of 2d rigid body dynamics with static obstacles, where we train for next-step predictions autoregressively. For long-horizon rollouts we show that the soft inductive bias of our models results in better performance in terms of physical fidelity compared to non-equivariant baseline models. The approach complements recent soft-equivariance ideas and aligns with the view that simple, well-chosen priors can yield robust generalization. These results suggest that geometric algebra offers an effective middle ground between hand-crafted physics and unstructured deep nets, delivering sample-efficient dynamics models for multi-object scenes.
comment: 8 pages, 11 figures; 6 pages supplementary material
☆ Robustness and uncertainty: two complementary aspects of the reliability of the predictions of a classifier
We consider two conceptually different approaches for assessing the reliability of the individual predictions of a classifier: Robustness Quantification (RQ) and Uncertainty Quantification (UQ). We compare both approaches on a number of benchmark datasets and show that there is no clear winner between the two, but that they are complementary and can be combined to obtain a hybrid approach that outperforms both RQ and UQ. As a byproduct of our approach, for each dataset, we also obtain an assessment of the relative importance of uncertainty and robustness as sources of unreliability.
comment: workshop paper (not published)
☆ Multi-stage Bayesian optimisation for dynamic decision-making in self-driving labs
Self-driving laboratories (SDLs) are combining recent technological advances in robotics, automation, and machine learning based data analysis and decision-making to perform autonomous experimentation toward human-directed goals without requiring any direct human intervention. SDLs are successfully used in materials science, chemistry, and beyond, to optimise processes, materials, and devices in a systematic and data-efficient way. At present, the most widely used algorithm to identify the most informative next experiment is Bayesian optimisation. While relatively simple to apply to a wide range of optimisation problems, standard Bayesian optimisation relies on a fixed experimental workflow with a clear set of optimisation parameters and one or more measurable objective functions. This excludes the possibility of making on-the-fly decisions about changes in the planned sequence of operations and including intermediate measurements in the decision-making process. Therefore, many real-world experiments need to be adapted and simplified to be converted to the common setting in self-driving labs. In this paper, we introduce an extension to Bayesian optimisation that allows flexible sampling of multi-stage workflows and makes optimal decisions based on intermediate observables, which we call proxy measurements. We systematically compare the advantage of taking into account proxy measurements over conventional Bayesian optimisation, in which only the final measurement is observed. We find that over a wide range of scenarios, proxy measurements yield a substantial improvement, both in the time to find good solutions and in the overall optimality of found solutions. This not only paves the way to use more complex and thus more realistic experimental workflows in autonomous labs but also to smoothly combine simulations and experiments in the next generation of SDLs.
☆ Metanetworks as Regulatory Operators: Learning to Edit for Requirement Compliance
As machine learning models are increasingly deployed in high-stakes settings, e.g. as decision support systems in various societal sectors or in critical infrastructure, designers and auditors are facing the need to ensure that models satisfy a wider variety of requirements (e.g. compliance with regulations, fairness, computational constraints) beyond performance. Although most of them are the subject of ongoing studies, typical approaches face critical challenges: post-processing methods tend to compromise performance, which is often counteracted by fine-tuning or, worse, training from scratch, an often time-consuming or even unavailable strategy. This raises the following question: "Can we efficiently edit models to satisfy requirements, without sacrificing their utility?" In this work, we approach this with a unifying framework, in a data-driven manner, i.e. we learn to edit neural networks (NNs), where the editor is an NN itself - a graph metanetwork - and editing amounts to a single inference step. In particular, the metanetwork is trained on NN populations to minimise an objective consisting of two terms: the requirement to be enforced and the preservation of the NN's utility. We experiment with diverse tasks (the data minimisation principle, bias mitigation and weight pruning) improving the trade-offs between performance, requirement satisfaction and time efficiency compared to popular post-processing or re-training alternatives.
comment: 23 pages
☆ From Risk to Resilience: Towards Assessing and Mitigating the Risk of Data Reconstruction Attacks in Federated Learning
Data Reconstruction Attacks (DRA) pose a significant threat to Federated Learning (FL) systems by enabling adversaries to infer sensitive training data from local clients. Despite extensive research, the question of how to characterize and assess the risk of DRAs in FL systems remains unresolved due to the lack of a theoretically-grounded risk quantification framework. In this work, we address this gap by introducing Invertibility Loss (InvLoss) to quantify the maximum achievable effectiveness of DRAs for a given data instance and FL model. We derive a tight and computable upper bound for InvLoss and explore its implications from three perspectives. First, we show that DRA risk is governed by the spectral properties of the Jacobian matrix of exchanged model updates or feature embeddings, providing a unified explanation for the effectiveness of defense methods. Second, we develop InvRE, an InvLoss-based DRA risk estimator that offers attack method-agnostic, comprehensive risk evaluation across data instances and model architectures. Third, we propose two adaptive noise perturbation defenses that enhance FL privacy without harming classification accuracy. Extensive experiments on real-world datasets validate our framework, demonstrating its potential for systematic DRA risk evaluation and mitigation in FL systems.
☆ Copyright Infringement Risk Reduction via Chain-of-Thought and Task Instruction Prompting
Large scale text-to-image generation models can memorize and reproduce their training dataset. Since the training dataset often contains copyrighted material, reproduction of training dataset poses a copyright infringement risk, which could result in legal liabilities and financial losses for both the AI user and the developer. The current works explores the potential of chain-of-thought and task instruction prompting in reducing copyrighted content generation. To this end, we present a formulation that combines these two techniques with two other copyright mitigation strategies: a) negative prompting, and b) prompt re-writing. We study the generated images in terms their similarity to a copyrighted image and their relevance of the user input. We present numerical experiments on a variety of models and provide insights on the effectiveness of the aforementioned techniques for varying model complexity.
☆ Double Horizon Model-Based Policy Optimization
Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling by generating synthetic trajectories (called rollouts) from a learned dynamics model. However, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better preserve on-policy training but amplify model bias, indicating the need for an intermediate horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise the variance of policy gradients due to backpropagation through multiple steps, implying another intermediate horizon for stable gradient estimates. However, these two optimal horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Policy Optimization (DHMBPO), which divides the rollout procedure into a long "distribution rollout" (DR) and a short "training rollout" (TR). The DR generates on-policy state samples for mitigating distribution shift. In contrast, the short TR leverages differentiable transitions to offer accurate value gradient estimation with stable gradient updates, thereby requiring fewer updates and reducing overall runtime. We demonstrate that the double-horizon approach effectively balances distribution shift, model bias, and gradient instability, and surpasses existing MBRL methods on continuous-control benchmarks in terms of both sample efficiency and runtime.
comment: Accepted to Transactions on Machine Learning Research (TMLR) Code available at https://github.com/4kubo/erl_lib
☆ Online Partitioned Local Depth for semi-supervised applications
We introduce an extension of the partitioned local depth (PaLD) algorithm that is adapted to online applications such as semi-supervised prediction. The new algorithm we present, online PaLD, is well-suited to situations where it is a possible to pre-compute a cohesion network from a reference dataset. After $O(n^3)$ steps to construct a queryable data structure, online PaLD can extend the cohesion network to a new data point in $O(n^2)$ time. Our approach complements previous speed up approaches based on approximation and parallelism. For illustrations, we present applications to online anomaly detection and semi-supervised classification for health-care datasets.
comment: 19 pages, 2 figures
☆ FM-EAC: Feature Model-based Enhanced Actor-Critic for Multi-Task Control in Dynamic Environments
Model-based reinforcement learning (MBRL) and model-free reinforcement learning (MFRL) evolve along distinct paths but converge in the design of Dyna-Q [1]. However, modern RL methods still struggle with effective transferability across tasks and scenarios. Motivated by this limitation, we propose a generalized algorithm, Feature Model-Based Enhanced Actor-Critic (FM-EAC), that integrates planning, acting, and learning for multi-task control in dynamic environments. FM-EAC combines the strengths of MBRL and MFRL and improves generalizability through the use of novel feature-based models and an enhanced actor-critic framework. Simulations in both urban and agricultural applications demonstrate that FM-EAC consistently outperforms many state-of-the-art MBRL and MFRL methods. More importantly, different sub-networks can be customized within FM-EAC according to user-specific requirements.
☆ Statistics of Min-max Normalized Eigenvalues in Random Matrices
Random matrix theory has played an important role in various areas of pure mathematics, mathematical physics, and machine learning. From a practical perspective of data science, input data are usually normalized prior to processing. Thus, this study investigates the statistical properties of min-max normalized eigenvalues in random matrices. Previously, the effective distribution for such normalized eigenvalues has been proposed. In this study, we apply it to evaluate a scaling law of the cumulative distribution. Furthermore, we derive the residual error that arises during matrix factorization of random matrices. We conducted numerical experiments to verify these theoretical predictions.
comment: 4 pages, 4 figures
☆ FlowBind: Efficient Any-to-Any Generation with Bidirectional Flows
Any-to-any generation seeks to translate between arbitrary subsets of modalities, enabling flexible cross-modal synthesis. Despite recent success, existing flow-based approaches are challenged by their inefficiency, as they require large-scale datasets often with restrictive pairing constraints, incur high computational cost from modeling joint distribution, and rely on complex multi-stage training. We propose FlowBind, an efficient framework for any-to-any generation. Our approach is distinguished by its simplicity: it learns a shared latent space capturing cross-modal information, with modality-specific invertible flows bridging this latent to each modality. Both components are optimized jointly under a single flow-matching objective, and at inference the invertible flows act as encoders and decoders for direct translation across modalities. By factorizing interactions through the shared latent, FlowBind naturally leverages arbitrary subsets of modalities for training, and achieves competitive generation quality while substantially reducing data requirements and computational cost. Experiments on text, image, and audio demonstrate that FlowBind attains comparable quality while requiring up to 6x fewer parameters and training 10x faster than prior methods. The project page with code is available at https://yeonwoo378.github.io/official_flowbind.
comment: https://yeonwoo378.github.io/official_flowbind
☆ EUBRL: Epistemic Uncertainty Directed Bayesian Reinforcement Learning
At the boundary between the known and the unknown, an agent inevitably confronts the dilemma of whether to explore or to exploit. Epistemic uncertainty reflects such boundaries, representing systematic uncertainty due to limited knowledge. In this paper, we propose a Bayesian reinforcement learning (RL) algorithm, $\texttt{EUBRL}$, which leverages epistemic guidance to achieve principled exploration. This guidance adaptively reduces per-step regret arising from estimation errors. We establish nearly minimax-optimal regret and sample complexity guarantees for a class of sufficiently expressive priors in infinite-horizon discounted MDPs. Empirically, we evaluate $\texttt{EUBRL}$ on tasks characterized by sparse rewards, long horizons, and stochasticity. Results demonstrate that $\texttt{EUBRL}$ achieves superior sample efficiency, scalability, and consistency.
☆ SMART: Semantic Matching Contrastive Learning for Partially View-Aligned Clustering
Multi-view clustering has been empirically shown to improve learning performance by leveraging the inherent complementary information across multiple views of data. However, in real-world scenarios, collecting strictly aligned views is challenging, and learning from both aligned and unaligned data becomes a more practical solution. Partially View-aligned Clustering aims to learn correspondences between misaligned view samples to better exploit the potential consistency and complementarity across views, including both aligned and unaligned data. However, most existing PVC methods fail to leverage unaligned data to capture the shared semantics among samples from the same cluster. Moreover, the inherent heterogeneity of multi-view data induces distributional shifts in representations, leading to inaccuracies in establishing meaningful correspondences between cross-view latent features and, consequently, impairing learning effectiveness. To address these challenges, we propose a Semantic MAtching contRasTive learning model (SMART) for PVC. The main idea of our approach is to alleviate the influence of cross-view distributional shifts, thereby facilitating semantic matching contrastive learning to fully exploit semantic relationships in both aligned and unaligned data. Extensive experiments on eight benchmark datasets demonstrate that our method consistently outperforms existing approaches on the PVC problem.
☆ Robustness Evaluation of Machine Learning Models for Fault Classification and Localization In Power System Protection SP
The growing penetration of renewable and distributed generation is transforming power systems and challenging conventional protection schemes that rely on fixed settings and local measurements. Machine learning (ML) offers a data-driven alternative for centralized fault classification (FC) and fault localization (FL), enabling faster and more adaptive decision-making. However, practical deployment critically depends on robustness. Protection algorithms must remain reliable even when confronted with missing, noisy, or degraded sensor data. This work introduces a unified framework for systematically evaluating the robustness of ML models in power system protection. High-fidelity EMT simulations are used to model realistic degradation scenarios, including sensor outages, reduced sampling rates, and transient communication losses. The framework provides a consistent methodology for benchmarking models, quantifying the impact of limited observability, and identifying critical measurement channels required for resilient operation. Results show that FC remains highly stable under most degradation types but drops by about 13% under single-phase loss, while FL is more sensitive overall, with voltage loss increasing localization error by over 150%. These findings offer actionable guidance for robustness-aware design of future ML-assisted protection systems.
comment: This paper is a postprint of a paper submitted to and accepted for publication in the 20th IET International Conference on Developments in Power System Protection (DPSP Global 2026) and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library
☆ Remotely Detectable Robot Policy Watermarking
The success of machine learning for real-world robotic systems has created a new form of intellectual property: the trained policy. This raises a critical need for novel methods that verify ownership and detect unauthorized, possibly unsafe misuse. While watermarking is established in other domains, physical policies present a unique challenge: remote detection. Existing methods assume access to the robot's internal state, but auditors are often limited to external observations (e.g., video footage). This ``Physical Observation Gap'' means the watermark must be detected from signals that are noisy, asynchronous, and filtered by unknown system dynamics. We formalize this challenge using the concept of a \textit{glimpse sequence}, and introduce Colored Noise Coherency (CoNoCo), the first watermarking strategy designed for remote detection. CoNoCo embeds a spectral signal into the robot's motions by leveraging the policy's inherent stochasticity. To show it does not degrade performance, we prove CoNoCo preserves the marginal action distribution. Our experiments demonstrate strong, robust detection across various remote modalities, including motion capture and side-way/top-down video footage, in both simulated and real-world robot experiments. This work provides a necessary step toward protecting intellectual property in robotics, offering the first method for validating the provenance of physical policies non-invasively, using purely remote observations.
☆ A Regime-Aware Fusion Framework for Time Series Classification
Kernel-based methods such as Rocket are among the most effective default approaches for univariate time series classification (TSC), yet they do not perform equally well across all datasets. We revisit the long-standing intuition that different representations capture complementary structure and show that selectively fusing them can yield consistent improvements over Rocket on specific, systematically identifiable kinds of datasets. We introduce Fusion-3 (F3), a lightweight framework that adaptively fuses Rocket, Sax, and Sfa representations. To understand when fusion helps, we cluster UCR datasets into six groups using meta-features capturing series length, spectral structure, roughness, and class imbalance, and treat these clusters as interpretable data-structure regimes. Our analysis shows that fusion typically outperforms strong baselines in regimes with structured variability or rich frequency content, while offering diminishing returns in highly irregular or outlier-heavy settings. To support these findings, we combine three complementary analyses: non-parametric paired statistics across datasets, ablation studies isolating the roles of individual representations, and attribution via SHAP to identify which dataset properties predict fusion gains. Sample-level case studies further reveal the underlying mechanism: fusion primarily improves performance by rescuing specific errors, with adaptive increases in frequency-domain weighting precisely where corrections occur. Using 5-fold cross-validation on the 113 UCR datasets, F3 yields small but consistent average improvements over Rocket, supported by frequentist and Bayesian evidence and accompanied by clearly identifiable failure cases. Our results show that selectively applied fusion provides dependable and interpretable extension to strong kernel-based methods, correcting their weaknesses precisely where the data support it.
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models ECIR 2026
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ Expand and Prune: Maximizing Trajectory Diversity for Effective GRPO in Generative Models
Group Relative Policy Optimization (GRPO) is a powerful technique for aligning generative models, but its effectiveness is bottlenecked by the conflict between large group sizes and prohibitive computational costs. In this work, we investigate the trade-off through empirical studies, yielding two key observations. First, we discover the reward clustering phenomenon in which many trajectories collapse toward the group-mean reward, offering limited optimization value. Second, we design a heuristic strategy named Optimal Variance Filtering (OVF), and verify that a high-variance subset of trajectories, selected by OVF can outperform the larger, unfiltered group. However, this static, post-sampling OVF approach still necessitates critical computational overhead, as it performs unnecessary sampling for trajectories that are ultimately discarded. To resolve this, we propose Pro-GRPO (Proactive GRPO), a novel dynamic framework that integrates latent feature-based trajectory pruning into the sampling process. Through the early termination of reward-clustered trajectories, Pro-GRPO reduces computational overhead. Leveraging its efficiency, Pro-GRPO employs an "Expand-and-Prune" strategy. This strategy first expands the size of initial sampling group to maximize trajectory diversity, then it applies multi-step OVF to the latents, avoiding prohibitive computational costs. Extensive experiments on both diffusion-based and flow-based models demonstrate the generality and effectiveness of our Pro-GRPO framework.
comment: 10 pages, 5 figures
☆ Empirical Investigation of the Impact of Phase Information on Fault Diagnosis of Rotating Machinery
Predictive maintenance of rotating machinery increasingly relies on vibration signals, yet most learning-based approaches either discard phase during spectral feature extraction or use raw time-waveforms without explicitly leveraging phase information. This paper introduces two phase-aware preprocessing strategies to address random phase variations in multi-axis vibration data: (1) three-axis independent phase adjustment that aligns each axis individually to zero phase (2) single-axis reference phase adjustment that preserves inter-axis relationships by applying uniform time shifts. Using a newly constructed rotor dataset acquired with a synchronized three-axis sensor, we evaluate six deep learning architectures under a two-stage learning framework. Results demonstrate architecture-independent improvements: the three-axis independent method achieves consistent gains (+2.7\% for Transformer), while the single-axis reference approach delivers superior performance with up to 96.2\% accuracy (+5.4\%) by preserving spatial phase relationships. These findings establish both phase alignment strategies as practical and scalable enhancements for predictive maintenance systems.
comment: This work has been submitted to the IEEE for possible publication
☆ Bits for Privacy: Evaluating Post-Training Quantization via Membership Inference
Deep neural networks are widely deployed with quantization techniques to reduce memory and computational costs by lowering the numerical precision of their parameters. While quantization alters model parameters and their outputs, existing privacy analyses primarily focus on full-precision models, leaving a gap in understanding how bit-width reduction can affect privacy leakage. We present the first systematic study of the privacy-utility relationship in post-training quantization (PTQ), a versatile family of methods that can be applied to pretrained models without further training. Using membership inference attacks as our evaluation framework, we analyze three popular PTQ algorithms-AdaRound, BRECQ, and OBC-across multiple precision levels (4-bit, 2-bit, and 1.58-bit) on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Our findings consistently show that low-precision PTQs can reduce privacy leakage. In particular, lower-precision models demonstrate up to an order of magnitude reduction in membership inference vulnerability compared to their full-precision counterparts, albeit at the cost of decreased utility. Additional ablation studies on the 1.58-bit quantization level show that quantizing only the last layer at higher precision enables fine-grained control over the privacy-utility trade-off. These results offer actionable insights for practitioners to balance efficiency, utility, and privacy protection in real-world deployments.
comment: accepted at TrustCom 2025
☆ Time-Varying Audio Effect Modeling by End-to-End Adversarial Training
Deep learning has become a standard approach for the modeling of audio effects, yet strictly black-box modeling remains problematic for time-varying systems. Unlike time-invariant effects, training models on devices with internal modulation typically requires the recording or extraction of control signals to ensure the time-alignment required by standard loss functions. This paper introduces a Generative Adversarial Network (GAN) framework to model such effects using only input-output audio recordings, removing the need for modulation signal extraction. We propose a convolutional-recurrent architecture trained via a two-stage strategy: an initial adversarial phase allows the model to learn the distribution of the modulation behavior without strict phase constraints, followed by a supervised fine-tuning phase where a State Prediction Network (SPN) estimates the initial internal states required to synchronize the model with the target. Additionally, a new objective metric based on chirp-train signals is developed to quantify modulation accuracy. Experiments modeling a vintage hardware phaser demonstrate the method's ability to capture time-varying dynamics in a fully black-box context.
comment: Submitted for review to the Journal of the Audio Engineering Society (JAES). Accompanying website: https://ybourdin.github.io/sptvmod
LLMQ: Efficient Lower-Precision Pretraining for Consumer GPUs
We present LLMQ, an end-to-end CUDA/C++ implementation for medium-sized language-model training, e.g. 3B to 32B parameters, on affordable, commodity GPUs. These devices are characterized by low memory availability and slow communication compared to datacentre-grade GPUs. Consequently, we showcase a range of optimizations that target these bottlenecks, including activation checkpointing, offloading, and copy-engine based collectives. LLMQ is able to train or fine-tune a 7B model on a single 16GB mid-range gaming card, or a 32B model on a workstation equipped with 4 RTX 4090s. This is achieved while executing a standard 8-bit training pipeline, without additional algorithmic approximations, and maintaining FLOP utilization of around 50%. The efficiency of LLMQ rivals that of production-scale systems on much more expensive cloud-grade GPUs.
☆ Quantum Machine Learning for Cybersecurity: A Taxonomy and Future Directions
The increasing number of cyber threats and rapidly evolving tactics, as well as the high volume of data in recent years, have caused classical machine learning, rules, and signature-based defence strategies to fail, rendering them unable to keep up. An alternative, Quantum Machine Learning (QML), has recently emerged, making use of computations based on quantum mechanics. It offers better encoding and processing of high-dimensional structures for certain problems. This survey provides a comprehensive overview of QML techniques relevant to the domain of security, such as Quantum Neural Networks (QNNs), Quantum Support Vector Machines (QSVMs), Variational Quantum Circuits (VQCs), and Quantum Generative Adversarial Networks (QGANs), and discusses the contributions of this paper in relation to existing research in the field and how it improves over them. It also maps these methods across supervised, unsupervised, and generative learning paradigms, and to core cybersecurity tasks, including intrusion and anomaly detection, malware and botnet classification, and encrypted-traffic analytics. It also discusses their application in the domain of cloud computing security, where QML can enhance secure and scalable operations. Many limitations of QML in the domain of cybersecurity have also been discussed, along with the directions for addressing them.
comment: 15 pages, 5 figures, Submitted to a journal
☆ Topological Metric for Unsupervised Embedding Quality Evaluation
Modern representation learning increasingly relies on unsupervised and self-supervised methods trained on large-scale unlabeled data. While these approaches achieve impressive generalization across tasks and domains, evaluating embedding quality without labels remains an open challenge. In this work, we propose Persistence, a topology-aware metric based on persistent homology that quantifies the geometric structure and topological richness of embedding spaces in a fully unsupervised manner. Unlike metrics that assume linear separability or rely on covariance structure, Persistence captures global and multi-scale organization. Empirical results across diverse domains show that Persistence consistently achieves top-tier correlations with downstream performance, outperforming existing unsupervised metrics and enabling reliable model and hyperparameter selection.
☆ Model inference for ranking from pairwise comparisons
We consider the problem of ranking objects from noisy pairwise comparisons, for example, ranking tennis players from the outcomes of matches. We follow a standard approach to this problem and assume that each object has an unobserved strength and that the outcome of each comparison depends probabilistically on the strengths of the comparands. However, we do not assume to know a priori how skills affect outcomes. Instead, we present an efficient algorithm for simultaneously inferring both the unobserved strengths and the function that maps strengths to probabilities. Despite this problem being under-constrained, we present experimental evidence that the conclusions of our Bayesian approach are robust to different model specifications. We include several case studies to exemplify the method on real-world data sets.
☆ Distillation-Guided Structural Transfer for Continual Learning Beyond Sparse Distributed Memory
Sparse neural systems are gaining traction for efficient continual learning due to their modularity and low interference. Architectures such as Sparse Distributed Memory Multi-Layer Perceptrons (SDMLP) construct task-specific subnetworks via Top-K activation and have shown resilience against catastrophic forgetting. However, their rigid modularity limits cross-task knowledge reuse and leads to performance degradation under high sparsity. We propose Selective Subnetwork Distillation (SSD), a structurally guided continual learning framework that treats distillation not as a regularizer but as a topology-aligned information conduit. SSD identifies neurons with high activation frequency and selectively distills knowledge within previous Top-K subnetworks and output logits, without requiring replay or task labels. This enables structural realignment while preserving sparse modularity. Experiments on Split CIFAR-10, CIFAR-100, and MNIST demonstrate that SSD improves accuracy, retention, and representation coverage, offering a structurally grounded solution for sparse continual learning.
☆ Assessing the Visual Enumeration Abilities of Specialized Counting Architectures and Vision-Language Models
Counting the number of items in a visual scene remains a fundamental yet challenging task in computer vision. Traditional approaches to solving this problem rely on domain-specific counting architectures, which are trained using datasets annotated with a predefined set of object categories. However, recent progress in creating large-scale multimodal vision-language models (VLMs) suggests that these domain-general architectures may offer a flexible alternative for open-set object counting. In this study, we therefore systematically compare the performance of state-of-the-art specialized counting architectures against VLMs on two popular counting datasets, as well as on a novel benchmark specifically created to have a finer-grained control over the visual properties of test images. Our findings show that most VLMs can approximately enumerate the number of items in a visual scene, matching or even surpassing the performance of specialized computer vision architectures. Notably, enumeration accuracy significantly improves when VLMs are prompted to generate intermediate representations (i.e., locations and verbal labels) of each object to be counted. Nevertheless, none of the models can reliably count the number of objects in complex visual scenes, showing that further research is still needed to create AI systems that can reliably deploy counting procedures in realistic environments.
☆ Leveraging Foundational Models and Simple Fusion for Multi-modal Physiological Signal Analysis NeurIPS 2025
Physiological signals such as electrocardiograms (ECG) and electroencephalograms (EEG) provide complementary insights into human health and cognition, yet multi-modal integration is challenging due to limited multi-modal labeled data, and modality-specific differences . In this work, we adapt the CBraMod encoder for large-scale self-supervised ECG pretraining, introducing a dual-masking strategy to capture intra- and inter-lead dependencies. To overcome the above challenges, we utilize a pre-trained CBraMod encoder for EEG and pre-train a symmetric ECG encoder, equipping each modality with a rich foundational representation. These representations are then fused via simple embedding concatenation, allowing the classification head to learn cross-modal interactions, together enabling effective downstream learning despite limited multi-modal supervision. Evaluated on emotion recognition, our approach achieves near state-of-the-art performance, demonstrating that carefully designed physiological encoders, even with straightforward fusion, substantially improve downstream performance. These results highlight the potential of foundation-model approaches to harness the holistic nature of physiological signals, enabling scalable, label-efficient, and generalizable solutions for healthcare and affective computing.
comment: Published at NeurIPS 2025 Workshop on Foundation Models for the Brain and Body
☆ ColliderML: The First Release of an OpenDataDetector High-Luminosity Physics Benchmark Dataset
We introduce ColliderML - a large, open, experiment-agnostic dataset of fully simulated and digitised proton-proton collisions in High-Luminosity Large Hadron Collider conditions ($\sqrt{s}=14$ TeV, mean pile-up $μ= 200$). ColliderML provides one million events across ten Standard Model and Beyond Standard Model processes, plus extensive single-particle samples, all produced with modern next-to-leading order matrix element calculation and showering, realistic per-event pile-up overlay, a validated OpenDataDetector geometry, and standard reconstructions. The release fills a major gap for machine learning (ML) research on detector-level data, provided on the ML-friendly Hugging Face platform. We present physics coverage and the generation, simulation, digitisation and reconstruction pipeline, describe format and access, and initial collider physics benchmarks.
comment: 28 pages
☆ O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization
We introduce O-EENC-SD: an end-to-end online speaker diarization system based on EEND-EDA, featuring a novel RNN-based stitching mechanism for online prediction. In particular, we develop a novel centroid refinement decoder whose usefulness is assessed through a rigorous ablation study. Our system provides key advantages over existing methods: a hyperparameter-free solution compared to unsupervised clustering approaches, and a more efficient alternative to current online end-to-end methods, which are computationally costly. We demonstrate that O-EENC-SD is competitive with the state of the art in the two-speaker conversational telephone speech domain, as tested on the CallHome dataset. Our results show that O-EENC-SD provides a great trade-off between DER and complexity, even when working on independent chunks with no overlap, making the system extremely efficient.
☆ Accelerating High-Throughput Catalyst Screening by Direct Generation of Equilibrium Adsorption Structures
The adsorption energy serves as a crucial descriptor for the large-scale screening of catalysts. Nevertheless, the limited distribution of training data for the extensively utilised machine learning interatomic potential (MLIP), predominantly sourced from near-equilibrium structures, results in unreliable adsorption structures and consequent adsorption energy predictions. In this context, we present DBCata, a deep generative model that integrates a periodic Brownian-bridge framework with an equivariant graph neural network to establish a low-dimensional transition manifold between unrelaxed and DFT-relaxed structures, without requiring explicit energy or force information. Upon training, DBCata effectively generates high-fidelity adsorption geometries, achieving an interatomic distance mean absolute error (DMAE) of 0.035 \textÅ on the Catalysis-Hub dataset, which is nearly three times superior to that of the current state-of-the-art machine learning potential models. Moreover, the corresponding DFT accuracy can be improved within 0.1 eV in 94\% of instances by identifying and refining anomalous predictions through a hybrid chemical-heuristic and self-supervised outlier detection approach. We demonstrate that the remarkable performance of DBCata facilitates accelerated high-throughput computational screening for efficient alloy catalysts in the oxygen reduction reaction, highlighting the potential of DBCata as a powerful tool for catalyst design and optimisation.
☆ Label-consistent clustering for evolving data
Data analysis often involves an iterative process, where solutions must be continuously refined in response to new data. Typically, as new data becomes available, an existing solution must be updated to incorporate the latest information. In addition to seeking a high-quality solution for the task at hand, it is also crucial to ensure consistency by minimizing drastic changes from previous solutions. Applying this approach across many iterations, ensures that the solution evolves gradually and smoothly. In this paper, we study the above problem in the context of clustering, specifically focusing on the $k$-center problem. More precisely, we study the following problem: Given a set of points $X$, parameters $k$ and $b$, and a prior clustering solution $H$ for $X$, our goal is to compute a new solution $C$ for $X$, consisting of $k$ centers, which minimizes the clustering cost while introducing at most $b$ changes from $H$. We refer to this problem as label-consistent $k$-center, and we propose two constant-factor approximation algorithms for it. We complement our theoretical findings with an experimental evaluation demonstrating the effectiveness of our methods on real-world datasets.
comment: 26 pages
☆ Chorus: Harmonizing Context and Sensing Signals for Data-Free Model Customization in IoT
In real-world IoT applications, sensor data is usually collected under diverse and dynamic contextual conditions where factors such as sensor placements or ambient environments can significantly affect data patterns and downstream performance. Traditional domain adaptation or generalization methods often ignore such context information or use simplistic integration strategies, making them ineffective in handling unseen context shifts after deployment. In this paper, we propose Chorus, a context-aware, data-free model customization approach that adapts models to unseen deployment conditions without requiring target-domain data. The key idea is to learn effective context representations that capture their influence on sensor data patterns and to adaptively integrate them based on the degree of context shift. Specifically, Chorus first performs unsupervised cross-modal reconstruction between unlabeled sensor data and language-based context embeddings, while regularizing the context embedding space to learn robust, generalizable context representations. Then, it trains a lightweight gated head on limited labeled samples to dynamically balance sensor and context contributions-favoring context when sensor evidence is ambiguous and vice versa. To further reduce inference latency, Chorus employs a context-caching mechanism that reuses cached context representations and updates only upon detected context shifts. Experiments on IMU, speech, and WiFi sensing tasks under diverse context shifts show that Chorus outperforms state-of-the-art baselines by up to 11.3% in unseen contexts, while maintaining comparable latency on smartphone and edge devices.
☆ BEAT2AASIST model with layer fusion for ESDD 2026 Challenge
Recent advances in audio generation have increased the risk of realistic environmental sound manipulation, motivating the ESDD 2026 Challenge as the first large-scale benchmark for Environmental Sound Deepfake Detection (ESDD). We propose BEAT2AASIST which extends BEATs-AASIST by splitting BEATs-derived representations along frequency or channel dimension and processing them with dual AASIST branches. To enrich feature representations, we incorporate top-k transformer layer fusion using concatenation, CNN-gated, and SE-gated strategies. In addition, vocoder-based data augmentation is applied to improve robustness against unseen spoofing methods. Experimental results on the official test sets demonstrate that the proposed approach achieves competitive performance across the challenge tracks.
comment: 3 pages, 1 figure, challenge paper
☆ DEER: Draft with Diffusion, Verify with Autoregressive Models
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/
comment: Homepage : https://czc726.github.io/DEER/
☆ Understanding NTK Variance in Implicit Neural Representations
Implicit Neural Representations (INRs) often converge slowly and struggle to recover high-frequency details due to spectral bias. While prior work links this behavior to the Neural Tangent Kernel (NTK), how specific architectural choices affect NTK conditioning remains unclear. We show that many INR mechanisms can be understood through their impact on a small set of pairwise similarity factors and scaling terms that jointly determine NTK eigenvalue variance. For standard coordinate MLPs, limited input-feature interactions induce large eigenvalue dispersion and poor conditioning. We derive closed-form variance decompositions for common INR components and show that positional encoding reshapes input similarity, spherical normalization reduces variance via layerwise scaling, and Hadamard modulation introduces additional similarity factors strictly below one, yielding multiplicative variance reduction. This unified view explains how diverse INR architectures mitigate spectral bias by improving NTK conditioning. Experiments across multiple tasks confirm the predicted variance reductions and demonstrate faster, more stable convergence with improved reconstruction quality.
☆ An Efficient Gradient-Based Inference Attack for Federated Learning
Federated Learning is a machine learning setting that reduces direct data exposure, improving the privacy guarantees of machine learning models. Yet, the exchange of model updates between the participants and the aggregator can still leak sensitive information. In this work, we present a new gradient-based membership inference attack for federated learning scenarios that exploits the temporal evolution of last-layer gradients across multiple federated rounds. Our method uses the shadow technique to learn round-wise gradient patterns of the training records, requiring no access to the private dataset, and is designed to consider both semi-honest and malicious adversaries (aggregators or data owners). Beyond membership inference, we also provide a natural extension of the proposed attack to discrete attribute inference by contrasting gradient responses under alternative attribute hypotheses. The proposed attacks are model-agnostic, and therefore applicable to any gradient-based model and can be applied to both classification and regression settings. We evaluate the attack on CIFAR-100 and Purchase100 datasets for membership inference and on Breast Cancer Wisconsin for attribute inference. Our findings reveal strong attack performance and comparable computational and memory overhead in membership inference when compared to another attack from the literature. The obtained results emphasize that multi-round federated learning can increase the vulnerability to inference attacks, that aggregators pose a more substantial threat than data owners, and that attack performance is strongly influenced by the nature of the training dataset, with richer, high-dimensional data leading to stronger leakage than simpler tabular data.
comment: This paper was supported by the TRUMPET project, funded by the European Union under Grant Agreement No. 101070038
☆ Generalization and Feature Attribution in Machine Learning Models for Crop Yield and Anomaly Prediction in Germany
This study examines the generalization performance and interpretability of machine learning (ML) models used for predicting crop yield and yield anomalies in Germany's NUTS-3 regions. Using a high-quality, long-term dataset, the study systematically compares the evaluation and temporal validation behavior of ensemble tree-based models (XGBoost, Random Forest) and deep learning approaches (LSTM, TCN). While all models perform well on spatially split, conventional test sets, their performance degrades substantially on temporally independent validation years, revealing persistent limitations in generalization. Notably, models with strong test-set accuracy, but weak temporal validation performance can still produce seemingly credible SHAP feature importance values. This exposes a critical vulnerability in post hoc explainability methods: interpretability may appear reliable even when the underlying model fails to generalize. These findings underscore the need for validation-aware interpretation of ML predictions in agricultural and environmental systems. Feature importance should not be accepted at face value unless models are explicitly shown to generalize to unseen temporal and spatial conditions. The study advocates for domain-aware validation, hybrid modeling strategies, and more rigorous scrutiny of explainability methods in data-driven agriculture. Ultimately, this work addresses a growing challenge in environmental data science: how can we evaluate generalization robustly enough to trust model explanations?
comment: 13 pages, 3 figures
☆ From Isolation to Entanglement: When Do Interpretability Methods Identify and Disentangle Known Concepts?
A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods - including sparse autoencoders (SAEs) and sparse probes - recover disentangled representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are neither selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering, and that affecting disjoint subspaces is not sufficient for concept selectivity. These results underscore the importance of compositional evaluations in interpretability research.
☆ TrajSyn: Privacy-Preserving Dataset Distillation from Federated Model Trajectories for Server-Side Adversarial Training
Deep learning models deployed on edge devices are increasingly used in safety-critical applications. However, their vulnerability to adversarial perturbations poses significant risks, especially in Federated Learning (FL) settings where identical models are distributed across thousands of clients. While adversarial training is a strong defense, it is difficult to apply in FL due to strict client-data privacy constraints and the limited compute available on edge devices. In this work, we introduce TrajSyn, a privacy-preserving framework that enables effective server-side adversarial training by synthesizing a proxy dataset from the trajectories of client model updates, without accessing raw client data. We show that TrajSyn consistently improves adversarial robustness on image classification benchmarks with no extra compute burden on the client device.
☆ Automatic Reward Shaping from Multi-Objective Human Heuristics
Designing effective reward functions remains a central challenge in reinforcement learning, especially in multi-objective environments. In this work, we propose Multi-Objective Reward Shaping with Exploration (MORSE), a general framework that automatically combines multiple human-designed heuristic rewards into a unified reward function. MORSE formulates the shaping process as a bi-level optimization problem: the inner loop trains a policy to maximize the current shaped reward, while the outer loop updates the reward function to optimize task performance. To encourage exploration in the reward space and avoid suboptimal local minima, MORSE introduces stochasticity into the shaping process, injecting noise guided by task performance and the prediction error of a fixed, randomly initialized neural network. Experimental results in MuJoCo and Isaac Sim environments show that MORSE effectively balances multiple objectives across various robotic tasks, achieving task performance comparable to those obtained with manually tuned reward functions.
☆ FADTI: Fourier and Attention Driven Diffusion for Multivariate Time Series Imputation
Multivariate time series imputation is fundamental in applications such as healthcare, traffic forecasting, and biological modeling, where sensor failures and irregular sampling lead to pervasive missing values. However, existing Transformer- and diffusion-based models lack explicit inductive biases and frequency awareness, limiting their generalization under structured missing patterns and distribution shifts. We propose FADTI, a diffusion-based framework that injects frequency-informed feature modulation via a learnable Fourier Bias Projection (FBP) module and combines it with temporal modeling through self-attention and gated convolution. FBP supports multiple spectral bases, enabling adaptive encoding of both stationary and non-stationary patterns. This design injects frequency-domain inductive bias into the generative imputation process. Experiments on multiple benchmarks, including a newly introduced biological time series dataset, show that FADTI consistently outperforms state-of-the-art methods, particularly under high missing rates. Code is available at https://anonymous.4open.science/r/TimeSeriesImputation-52BF
comment: This work has been submitted to the IEEE for possible publication. 15 pages, 8 figures
☆ How Many Heads Make an SSM? A Unified Framework for Attention and State Space Models
Sequence modeling has produced diverse architectures -- from classical recurrent neural networks to modern Transformers and state space models (SSMs) -- yet a unified theoretical understanding of expressivity and trainability trade-offs remains limited. We introduce a unified framework that represents a broad class of sequence maps via an input-dependent effective interaction operator $W_{ij}(X)$, making explicit two recurring construction patterns: (i) the Unified Factorized Framework (Explicit) (attention-style mixing), in which $W_{ij}(X)$ varies through scalar coefficients applied to shared value maps, and (ii) Structured Dynamics (Implicit) (state-space recurrences), in which $W_{ij}$ is induced by a latent dynamical system. Using this framework, we derive three theoretical results. First, we establish the Interaction Rank Gap: models in the Unified Factorized Framework, such as single-head attention, are constrained to a low-dimensional operator span and cannot represent certain structured dynamical maps. Second, we prove an Equivalence (Head-Count) Theorem showing that, within our multi-head factorized class, representing a linear SSM whose lag operators span a $k$-dimensional subspace on length-$n$ sequences requires and is achievable with $H=k$ heads. Third, we prove a Gradient Highway Result, showing that attention layers admit inputs with distance-independent gradient paths, whereas stable linear dynamics exhibit distance-dependent gradient attenuation. Together, these results formalize a fundamental trade-off between algebraic expressivity (interaction/operator span) and long-range gradient propagation, providing theoretical grounding for modern sequence architecture design.
☆ Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions
Long-term price forecasting remains a formidable challenge due to the inherent uncertainty over the long term, despite some success in short-term predictions. Nonetheless, accurate long-term forecasts are essential for high-net-worth individuals, institutional investors, and traders. The proposed improved genetic algorithm-optimized support vector regression (IGA-SVR) model is specifically designed for long-term price prediction of global indices. The performance of the IGA-SVR model is rigorously evaluated and compared against the state-of-the-art baseline models, the Long Short-Term Memory (LSTM), and the forward-validating genetic algorithm optimized support vector regression (OGA-SVR). Extensive testing was conducted on the five global indices, namely Nifty, Dow Jones Industrial Average (DJI), DAX Performance Index (DAX), Nikkei 225 (N225), and Shanghai Stock Exchange Composite Index (SSE) from 2021 to 2024 of daily price prediction up to a year. Overall, the proposed IGA-SVR model achieved a reduction in MAPE by 19.87% compared to LSTM and 50.03% compared to OGA-SVR, demonstrating its superior performance in long-term daily price forecasting of global indices. Further, the execution time for LSTM was approximately 20 times higher than that of IGA-SVR, highlighting the high accuracy and computational efficiency of the proposed model. The genetic algorithm selects the optimal hyperparameters of SVR by minimizing the arithmetic mean of the Mean Absolute Percentage Error (MAPE) calculated over the full training dataset and the most recent five years of training data. This purposefully designed training methodology adjusts for recent trends while retaining long-term trend information, thereby offering enhanced generalization compared to the LSTM and rolling-forward validation approach employed by OGA-SVR, which forgets long-term trends and suffers from recency bias.
☆ Feature-Centric Unsupervised Node Representation Learning Without Homophily Assumption AAAI 2026
Unsupervised node representation learning aims to obtain meaningful node embeddings without relying on node labels. To achieve this, graph convolution, which aggregates information from neighboring nodes, is commonly employed to encode node features and graph topology. However, excessive reliance on graph convolution can be suboptimal-especially in non-homophilic graphs-since it may yield unduly similar embeddings for nodes that differ in their features or topological properties. As a result, adjusting the degree of graph convolution usage has been actively explored in supervised learning settings, whereas such approaches remain underexplored in unsupervised scenarios. To tackle this, we propose FUEL, which adaptively learns the adequate degree of graph convolution usage by aiming to enhance intra-class similarity and inter-class separability in the embedding space. Since classes are unknown, FUEL leverages node features to identify node clusters and treats these clusters as proxies for classes. Through extensive experiments using 15 baseline methods and 14 benchmark datasets, we demonstrate the effectiveness of FUEL in downstream tasks, achieving state-of-the-art performance across graphs with diverse levels of homophily.
comment: Published in AAAI 2026
☆ SigMA: Path Signatures and Multi-head Attention for Learning Parameters in fBm-driven SDEs
Stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) are increasingly used to model systems with rough dynamics and long-range dependence, such as those arising in quantitative finance and reliability engineering. However, these processes are non-Markovian and lack a semimartingale structure, rendering many classical parameter estimation techniques inapplicable or computationally intractable beyond very specific cases. This work investigates two central questions: (i) whether integrating path signatures into deep learning architectures can improve the trade-off between estimation accuracy and model complexity, and (ii) what constitutes an effective architecture for leveraging signatures as feature maps. We introduce SigMA (Signature Multi-head Attention), a neural architecture that integrates path signatures with multi-head self-attention, supported by a convolutional preprocessing layer and a multilayer perceptron for effective feature encoding. SigMA learns model parameters from synthetically generated paths of fBm-driven SDEs, including fractional Brownian motion, fractional Ornstein-Uhlenbeck, and rough Heston models, with a particular focus on estimating the Hurst parameter and on joint multi-parameter inference, and it generalizes robustly to unseen trajectories. Extensive experiments on synthetic data and two real-world datasets (i.e., equity-index realized volatility and Li-ion battery degradation) show that SigMA consistently outperforms CNN, LSTM, vanilla Transformer, and Deep Signature baselines in accuracy, robustness, and model compactness. These results demonstrate that combining signature transforms with attention-based architectures provides an effective and scalable framework for parameter inference in stochastic systems with rough or persistent temporal structure.
☆ PIP$^2$ Net: Physics-informed Partition Penalty Deep Operator Network
Operator learning has become a powerful tool for accelerating the solution of parameterized partial differential equations (PDEs), enabling rapid prediction of full spatiotemporal fields for new initial conditions or forcing functions. Existing architectures such as DeepONet and the Fourier Neural Operator (FNO) show strong empirical performance but often require large training datasets, lack explicit physical structure, and may suffer from instability in their trunk-network features, where mode imbalance or collapse can hinder accurate operator approximation. Motivated by the stability and locality of classical partition-of-unity (PoU) methods, we investigate PoU-based regularization techniques for operator learning and develop a revised formulation of the existing POU--PI--DeepONet framework. The resulting \emph{P}hysics-\emph{i}nformed \emph{P}artition \emph{P}enalty Deep Operator Network (PIP$^{2}$ Net) introduces a simplified and more principled partition penalty that improved the coordinated trunk outputs that leads to more expressiveness without sacrificing the flexibility of DeepONet. We evaluate PIP$^{2}$ Net on three nonlinear PDEs: the viscous Burgers equation, the Allen--Cahn equation, and a diffusion--reaction system. The results show that it consistently outperforms DeepONet, PI-DeepONet, and POU-DeepONet in prediction accuracy and robustness.
☆ Neural Modular Physics for Elastic Simulation
Learning-based methods have made significant progress in physics simulation, typically approximating dynamics with a monolithic end-to-end optimized neural network. Although these models offer an effective way to simulation, they may lose essential features compared to traditional numerical simulators, such as physical interpretability and reliability. Drawing inspiration from classical simulators that operate in a modular fashion, this paper presents Neural Modular Physics (NMP) for elastic simulation, which combines the approximation capacity of neural networks with the physical reliability of traditional simulators. Beyond the previous monolithic learning paradigm, NMP enables direct supervision of intermediate quantities and physical constraints by decomposing elastic dynamics into physically meaningful neural modules connected through intermediate physical quantities. With a specialized architecture and training strategy, our method transforms the numerical computation flow into a modular neural simulator, achieving improved physical consistency and generalizability. Experimentally, NMP demonstrates superior generalization to unseen initial conditions and resolutions, stable long-horizon simulation, better preservation of physical properties compared to other neural simulators, and greater feasibility in scenarios with unknown underlying dynamics than traditional simulators.
☆ The Semantic Architect: How FEAML Bridges Structured Data and LLMs for Multi-Label Tasks
Existing feature engineering methods based on large language models (LLMs) have not yet been applied to multi-label learning tasks. They lack the ability to model complex label dependencies and are not specifically adapted to the characteristics of multi-label tasks. To address the above issues, we propose Feature Engineering Automation for Multi-Label Learning (FEAML), an automated feature engineering method for multi-label classification which leverages the code generation capabilities of LLMs. By utilizing metadata and label co-occurrence matrices, LLMs are guided to understand the relationships between data features and task objectives, based on which high-quality features are generated. The newly generated features are evaluated in terms of model accuracy to assess their effectiveness, while Pearson correlation coefficients are used to detect redundancy. FEAML further incorporates the evaluation results as feedback to drive LLMs to continuously optimize code generation in subsequent iterations. By integrating LLMs with a feedback mechanism, FEAML realizes an efficient, interpretable and self-improving feature engineering paradigm. Empirical results on various multi-label datasets demonstrate that our FEAML outperforms other feature engineering methods.
☆ The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Retrieval-Augmented Generation (RAG) systems remain susceptible to hallucinations despite grounding in retrieved evidence. Current detection methods rely on semantic similarity and natural language inference (NLI), but their fundamental limitations have not been rigorously characterized. We apply conformal prediction to hallucination detection, providing finite-sample coverage guarantees that enable precise quantification of detection capabilities. Using calibration sets of approximately 600 examples, we achieve 94% coverage with 0% false positive rate on synthetic hallucinations (Natural Questions). However, on three real hallucination benchmarks spanning multiple LLMs (GPT-4, ChatGPT, GPT-3, Llama-2, Mistral), embedding-based methods - including state-of-the-art OpenAI text-embedding-3-large and cross-encoder models - exhibit unacceptable false positive rates: 100% on HaluEval, 88% on RAGTruth, and 50% on WikiBio. Crucially, GPT-4 as an LLM judge achieves only 7% FPR (95% CI: [3.4%, 13.7%]) on the same data, proving the task is solvable through reasoning. We term this the "semantic illusion": semantically plausible hallucinations preserve similarity to source documents while introducing factual errors invisible to embeddings. This limitation persists across embedding architectures, LLM generators, and task types, suggesting embedding-based detection is insufficient for production RAG deployment.
comment: 12 pages, 2 figures, 6 tables
☆ EMFusion: Conditional Diffusion Framework for Trustworthy Frequency Selective EMF Forecasting in Wireless Networks
The rapid growth in wireless infrastructure has increased the need to accurately estimate and forecast electromagnetic field (EMF) levels to ensure ongoing compliance, assess potential health impacts, and support efficient network planning. While existing studies rely on univariate forecasting of wideband aggregate EMF data, frequency-selective multivariate forecasting is needed to capture the inter-operator and inter-frequency variations essential for proactive network planning. To this end, this paper introduces EMFusion, a conditional multivariate diffusion-based probabilistic forecasting framework that integrates diverse contextual factors (e.g., time of day, season, and holidays) while providing explicit uncertainty estimates. The proposed architecture features a residual U-Net backbone enhanced by a cross-attention mechanism that dynamically integrates external conditions to guide the generation process. Furthermore, EMFusion integrates an imputation-based sampling strategy that treats forecasting as a structural inpainting task, ensuring temporal coherence even with irregular measurements. Unlike standard point forecasters, EMFusion generates calibrated probabilistic prediction intervals directly from the learned conditional distribution, providing explicit uncertainty quantification essential for trustworthy decision-making. Numerical experiments conducted on frequency-selective EMF datasets demonstrate that EMFusion with the contextual information of working hours outperforms the baseline models with or without conditions. The EMFusion outperforms the best baseline by 23.85% in continuous ranked probability score (CRPS), 13.93% in normalized root mean square error, and reduces prediction CRPS error by 22.47%.
comment: Submission for possible publication
☆ The Meta-Prompting Protocol: Orchestrating LLMs via Adversarial Feedback Loops
The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.
comment: 6 pages, 2 figures
☆ Spectral Representation-based Reinforcement Learning
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
♻ ☆ Improving Recursive Transformers with Mixture of LoRAs
Parameter sharing in recursive transformers reduces model size but collapses layer-wise expressivity. We propose Mixture of LoRAs (MoL), a lightweight conditional-computation mechanism that inserts Low-Rank Adaptation (LoRA) experts inside a shared feed-forward network (FFN). MoL enables token-conditional weight-space modulation of the shared FFN without untying backbone parameters, unlike prior approaches that add fixed or externally attached adapters. We pretrain a modernised recursive architecture, ModernALBERT, integrating rotary embeddings, GeGLU, FlashAttention, and a distillation-based initialisation. Across GLUE, SQuAD-v2, and BEIR, ModernALBERT (50M--120M) achieves state-of-the-art performance among compact models and surpasses larger fully parameterised baselines. We also propose an expert-merging procedure that compresses MoL into a single adapter at inference while preserving accuracy, enabling efficient deployment. Our results show that conditional weight-space modulation effectively restores the expressivity lost under aggressive parameter sharing in recursive transformers.
♻ ☆ From Trace to Line: LLM Agent for Real-World OSS Vulnerability Localization
Large language models show promise for vulnerability discovery, yet prevailing methods inspect code in isolation, struggle with long contexts, and focus on coarse function or file level detections which offers limited actionable guidance to engineers who need precise line-level localization and targeted patches in real-world software development. We present T2L-Agent (Trace-to-Line Agent), a project-level, end-to-end framework that plans its own analysis and progressively narrows scope from modules to exact vulnerable lines. T2L-Agent couples multi-round feedback with an Agentic Trace Analyzer (ATA) that fuses run-time evidence such as crash points, stack traces, and coverage deltas with AST-based code chunking, enabling iterative refinement beyond single pass predictions and translating symptoms into actionable, line-level diagnoses. To benchmark line-level vulnerability discovery, we introduce T2L-ARVO, a diverse, expert-verified 50-case benchmark spanning five crash families and real-world projects. T2L-ARVO is specifically designed to support both coarse-grained detection and fine-grained localization, enabling rigorous evaluation of systems that aim to move beyond file-level predictions. On T2L-ARVO, T2L-Agent achieves up to 58.0% detection and 54.8% line-level localization, substantially outperforming baselines. Together, the framework and benchmark push LLM-based vulnerability detection from coarse identification toward deployable, robust, precision diagnostics that reduce noise and accelerate patching in open-source software workflows.
♻ ☆ tensorflow-riemopt: A Library for Optimization on Riemannian Manifolds
This paper presents tensorflow-riemopt, a Python library for geometric machine learning in TensorFlow. The library provides efficient implementations of neural network layers with manifold-constrained parameters, geometric operations on Riemannian manifolds, and stochastic optimization algorithms for non-Euclidean spaces. Designed for integration with TensorFlow Extended, it supports both research prototyping and production deployment of machine learning pipelines. The code and documentation are distributed under the MIT license and available at https://github.com/master/tensorflow-riemopt
Structure-Aligned Protein Language Model
Protein language models (pLMs) pre-trained on vast protein sequence databases excel at various downstream tasks but often lack the structural knowledge essential for some biological applications. To address this, we introduce a method to enrich pLMs with structural knowledge by leveraging pre-trained protein graph neural networks (pGNNs). First, a latent-level contrastive learning task aligns residue representations from pLMs with those from pGNNs across multiple proteins, injecting inter-protein structural information. Additionally, a physical-level task integrates intra-protein information by training pLMs to predict structure tokens. Together, the proposed dual-task framework effectively incorporates both inter- and intra-protein structural knowledge into pLMs. Given the variability in the quality of protein structures in PDB, we further introduce a residue loss selection module that uses a small model trained on high-quality structures to select reliable yet challenging residue losses for the pLM to learn. Applying our structure alignment method as a simple, lightweight post-training step to the state-of-the-art ESM2 and AMPLIFY yields notable performance gains. These improvements are consistent across a wide range of tasks, including substantial gains in deep mutational scanning (DMS) fitness prediction and a 59% increase in P@L for ESM2 650M contact prediction on CASP16. Furthermore, we demonstrate that these performance gains are robust, scaling with model sizes from 8M to 650M and extending to different downstream tasks.
comment: 28 pages, 16 figures, 9 tables
♻ ☆ Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary Anomaly Flag Data
Extracting anomaly causality facilitates diagnostics once monitoring systems detect system faults. Identifying anomaly causes in large systems involves investigating a broader set of monitoring variables across multiple subsystems. However, learning graphical causal models (GCMs) comes with a significant computational burden that restrains the applicability of most existing methods in real-time and large-scale deployments. In addition, modern monitoring applications for large systems often generate large amounts of binary alarm flags, and the distinct characteristics of binary anomaly data -- the meaning of state transition and data sparsity -- challenge existing causality learning mechanisms. This study proposes an anomaly causal discovery approach (\textsc{AnomalyCD}), addressing the accuracy and computational challenges of generating GCMs from temporal binary flag datasets. The \textsc{AnomalyCD} presents several strategies, such as anomaly data-aware causality testing, sparse data and prior link compression, and edge pruning adjustment approaches. We validate the performance of of the approach on two datasets: monitoring sensor data of the readout-box system of the Compact Muon Solenoid experiment at CERN, and a public data set for information technology monitoring. The results on temporal GCMs demonstrate a considerable reduction of computation overhead and a moderate enhancement of accuracy on the binary anomaly data sets. Source code: https://github.com/muleina/AnomalyCD .
comment: 34 pages, 17 figures, 8 tables
♻ ☆ Learning without training: The implicit dynamics of in-context learning
One of the most striking features of Large Language Models (LLMs) is their ability to learn in-context. Namely at inference time an LLM is able to learn new patterns without any additional weight update when these patterns are presented in the form of examples in the prompt, even if these patterns were not seen during training. The mechanisms through which this can happen are still largely unknown. In this work, we show that the stacking of a self-attention layer with an MLP, allows the transformer block to implicitly modify the weights of the MLP layer according to the context. We argue through theory and experimentation that this simple mechanism may be the reason why LLMs can learn in-context and not only during training. Specifically, we show how a transformer block implicitly transforms a context into a low-rank weight-update of its MLP layer.
♻ ☆ Deterministic Global Optimization of the Acquisition Function in Bayesian Optimization: To Do or Not To Do?
Bayesian Optimization (BO) with Gaussian Processes relies on optimizing an acquisition function to determine sampling. We investigate the advantages and disadvantages of using a deterministic global solver (MAiNGO) compared to conventional local and stochastic global solvers (L-BFGS-B and multi-start, respectively) for the optimization of the acquisition function. For CPU efficiency, we set a time limit for MAiNGO, taking the best point as optimal. We perform repeated numerical experiments, initially using the Muller-Brown potential as a benchmark function, utilizing the lower confidence bound acquisition function; we further validate our findings with three alternative benchmark functions. Statistical analysis reveals that when the acquisition function is more exploitative (as opposed to exploratory), BO with MAiNGO converges in fewer iterations than with the local solvers. However, when the dataset lacks diversity, or when the acquisition function is overly exploitative, BO with MAiNGO, compared to the local solvers, is more likely to converge to a local rather than a global ly near-optimal solution of the black-box function. L-BFGS-B and multi-start mitigate this risk in BO by introducing stochasticity in the selection of the next sampling point, which enhances the exploration of uncharted regions in the search space and reduces dependence on acquisition function hyperparameters. Ultimately, suboptimal optimization of poorly chosen acquisition functions may be preferable to their optimal solution. When the acquisition function is more exploratory, BO with MAiNGO, multi-start, and L-BFGS-B achieve comparable probabilities of convergence to a globally near-optimal solution (although BO with MAiNGO may require more iterations to converge under these conditions).
comment: 39 pages, 8 figures, 11 tables
♻ ☆ Variational Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) task investigates effective domain adaptation under the scenario of continuous domain shifts during testing time. Due to the utilization of solely unlabeled samples, there exists significant uncertainty in model updates, leading CTTA to encounter severe error accumulation issues. In this paper, we introduce VCoTTA, a variational Bayesian approach to measure uncertainties in CTTA. At the source stage, we transform a pretrained deterministic model into a Bayesian Neural Network (BNN) via a variational warm-up strategy, injecting uncertainties into the model. During the testing time, we employ a mean-teacher update strategy using variational inference for the student model and exponential moving average for the teacher model. Our novel approach updates the student model by combining priors from both the source and teacher models. The evidence lower bound is formulated as the cross-entropy between the student and teacher models, along with the Kullback-Leibler (KL) divergence of the prior mixture. Experimental results on three datasets demonstrate the method's effectiveness in mitigating error accumulation within the CTTA framework.
♻ ☆ Natural Variational Annealing for Multimodal Optimization
We introduce a new multimodal optimization approach called Natural Variational Annealing (NVA) that combines the strengths of three foundational concepts to simultaneously search for multiple global and local modes of black-box nonconvex objectives. First, it implements a simultaneous search by using variational posteriors, such as, mixtures of Gaussians. Second, it applies annealing to gradually trade off exploration for exploitation. Finally, it learns the variational search distribution using natural-gradient learning where updates resemble well-known and easy-to-implement algorithms. The three concepts come together in NVA giving rise to new algorithms and also allowing us to incorporate "fitness shaping", a core concept from evolutionary algorithms. We assess the quality of search on simulations and compare them to methods using gradient descent and evolution strategies. We also provide an application to a real-world inverse problem in planetary science.
♻ ☆ Taming Data Challenges in ML-based Security Tasks: Lessons from Integrating Generative AI
Machine learning-based supervised classifiers are widely used for security tasks, and their improvement has been largely focused on algorithmic advancements. We argue that data challenges that negatively impact the performance of these classifiers have received limited attention. We address the following research question: Can developments in Generative AI (GenAI) address these data challenges and improve classifier performance? We propose augmenting training datasets with synthetic data generated using GenAI techniques to improve classifier generalization. We evaluate this approach across 7 diverse security tasks using 6 state-of-the-art GenAI methods and introduce a novel GenAI scheme called Nimai that enables highly controlled data synthesis. We find that GenAI techniques can significantly improve the performance of security classifiers, achieving improvements of up to 32.6% even in severely data-constrained settings (only ~180 training samples). Furthermore, we demonstrate that GenAI can facilitate rapid adaptation to concept drift post-deployment, requiring minimal labeling in the adjustment process. Despite successes, our study finds that some GenAI schemes struggle to initialize (train and produce data) on certain security tasks. We also identify characteristics of specific tasks, such as noisy labels, overlapping class distributions, and sparse feature vectors, which hinder performance boost using GenAI. We believe that our study will drive the development of future GenAI tools designed for security tasks.
♻ ☆ A Multi-Agent LLM Defense Pipeline Against Prompt Injection Attacks
Prompt injection attacks represent a major vulnerability in Large Language Model (LLM) deployments, where malicious instructions embedded in user inputs can override system prompts and induce unintended behaviors. This paper presents a novel multi-agent defense framework that employs specialized LLM agents in coordinated pipelines to detect and neutralize prompt injection attacks in real-time. We evaluate our approach using two distinct architectures: a sequential chain-of-agents pipeline and a hierarchical coordinator-based system. Our comprehensive evaluation on 55 unique prompt injection attacks, grouped into 8 categories and totaling 400 attack instances across two LLM platforms (ChatGLM and Llama2), demonstrates significant security improvements. Without defense mechanisms, baseline Attack Success Rates (ASR) reached 30% for ChatGLM and 20% for Llama2. Our multi-agent pipeline achieved 100% mitigation, reducing ASR to 0% across all tested scenarios. The framework demonstrates robustness across multiple attack categories including direct overrides, code execution attempts, data exfiltration, and obfuscation techniques, while maintaining system functionality for legitimate queries.
comment: Accepted at the 11th IEEE WIECON-ECE 2025
♻ ☆ Geopolitics, Geoeconomics and Risk: A Machine Learning Approach
We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators -- including Geopolitical Risk, Economic Policy Uncertainty, Trade Policy Uncertainty, and Political Sentiment -- for 42 countries across both emerging and developed markets. Using this dataset, we study how sentiment dynamics shape sovereign risk, measured by Credit Default Swap (CDS) spreads, and evaluate their forecasting value relative to traditional drivers such as global monetary policy and market volatility. Our horse-race analysis of forecasting models demonstrates that incorporating news-based indicators significantly enhances predictive accuracy and enriches the analysis, with non-linear machine learning methods -- particularly Random Forests -- delivering the largest gains. Our analysis reveals that while global financial variables remain the dominant drivers of sovereign risk, geopolitical risk and economic policy uncertainty also play a meaningful role. Crucially, their effects are amplified through non-linear interactions with global financial conditions. Finally, we document pronounced regional heterogeneity, as certain asset classes and emerging markets exhibit heightened sensitivity to shocks in policy rates, global financial volatility, and geopolitical risk.
comment: This new version has an important contribution by Pablo Saborido who is now a co author of the paper
♻ ☆ Sparse Autoencoders Make Audio Foundation Models more Explainable ICASSP 2026
Audio pretrained models are widely employed to solve various tasks in speech processing, sound event detection, or music information retrieval. However, the representations learned by these models are unclear, and their analysis mainly restricts to linear probing of the hidden representations. In this work, we explore the use of Sparse Autoencoders (SAEs) to analyze the hidden representations of pretrained models, focusing on a case study in singing technique classification. We first demonstrate that SAEs retain both information about the original representations and class labels, enabling their internal structure to provide insights into self-supervised learning systems. Furthermore, we show that SAEs enhance the disentanglement of vocal attributes, establishing them as an effective tool for identifying the underlying factors encoded in the representations.
comment: 5 pages, 5 figures, 1 table, submitted to ICASSP 2026
♻ ☆ Geometry and Optimization of Shallow Polynomial Networks
We study shallow neural networks with monomial activations and output dimension one. The function space for these models can be identified with a set of symmetric tensors with bounded rank. We describe general features of these networks, focusing on the relationship between width and optimization. We then consider teacher-student problems, which can be viewed as problems of low-rank tensor approximation with respect to non-standard inner products that are induced by the data distribution. In this setting, we introduce a teacher-metric data discriminant which encodes the qualitative behavior of the optimization as a function of the training data distribution. Finally, we focus on networks with quadratic activations, presenting an in-depth analysis of the optimization landscape. In particular, we present a variation of the Eckart-Young Theorem characterizing all critical points and their Hessian signatures for teacher-student problems with quadratic networks and Gaussian training data.
comment: 39 pages, 3 figures; accepted to SIAM Journal on Applied Algebra and Geometry (SIAGA)
♻ ☆ Robust Tensor Principal Component Analysis: Exact Recovery via Deterministic Model
Tensor, also known as multi-dimensional array, arises from many applications in signal processing, manufacturing processes, healthcare, among others. As one of the most popular methods in tensor literature, Robust tensor principal component analysis (RTPCA) is a very effective tool to extract the low rank and sparse components in tensors. In this paper, a new method to analyze RTPCA is proposed based on the recently developed tensor-tensor product and tensor singular value decomposition (t-SVD). Specifically, it aims to solve a convex optimization problem whose objective function is a weighted combination of the tensor nuclear norm and the l1-norm. In most of literature of RTPCA, the exact recovery is built on the tensor incoherence conditions and the assumption of a uniform model on the sparse support. Unlike this conventional way, in this paper, without any assumption of randomness, the exact recovery can be achieved in a completely deterministic fashion by characterizing the tensor rank-sparsity incoherence, which is an uncertainty principle between the low-rank tensor spaces and the pattern of sparse tensor.
♻ ☆ Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning
While scaling laws for large language models (LLMs) during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on a set of experiments across the full Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: 1.Larger models consistently exhibit superior learning efficiency on both compute and data metrics. 2.The relationship between test loss, compute, and data can be modeled by a predictive power-law which is robust across both base and instruction-tuned models. 3.Although larger models exhibit higher learning efficiency, the analytical learning efficiency term k(N) in the power-law reveals a latent saturation trend in learning efficiency as model size continues to increase. 4.In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.
comment: V2 version:27 pages, 14 figures
♻ ☆ Interpretable representation learning of quantum data enabled by probabilistic variational autoencoders
Interpretable machine learning is rapidly becoming a crucial tool for scientific discovery. Among existing approaches, variational autoencoders (VAEs) have shown promise in extracting the hidden physical features of some input data, with no supervision nor prior knowledge of the system at study. Yet, the ability of VAEs to create meaningful, interpretable representations relies on their accurate approximation of the underlying probability distribution of their input. When dealing with quantum data, VAEs must hence account for its intrinsic randomness and complex correlations. While VAEs have been previously applied to quantum data, they have often neglected its probabilistic nature, hindering the extraction of meaningful physical descriptors. Here, we demonstrate that two key modifications enable VAEs to learn physically meaningful latent representations: a decoder capable of faithfully reproduce quantum states and a probabilistic loss tailored to this task. Using benchmark quantum spin models, we identify regimes where standard methods fail while the representations learned by our approach remain meaningful and interpretable. Applied to experimental data from Rydberg atom arrays, the model autonomously uncovers the phase structure without access to prior labels, Hamiltonian details, or knowledge of relevant order parameters, highlighting its potential as an unsupervised and interpretable tool for the study of quantum systems.
comment: Main text 10 pages, total document 16 pages, 10 figures
♻ ☆ Bidirectional predictive coding
Predictive coding (PC) is an influential computational model of visual learning and inference in the brain. Classical PC was proposed as a top-down generative model, where the brain actively predicts upcoming visual inputs, and inference minimises the prediction errors. Recent studies have also shown that PC can be formulated as a discriminative model, where sensory inputs predict neural activities in a feedforward manner. However, experimental evidence suggests that the brain employs both generative and discriminative inference, while unidirectional PC models show degraded performance in tasks requiring bidirectional processing. In this work, we propose bidirectional PC (bPC), a PC model that incorporates both generative and discriminative inference while maintaining a biologically plausible circuit implementation. We show that bPC matches or outperforms unidirectional models in their specialised generative or discriminative tasks, by developing an energy landscape that simultaneously suits both tasks. We also demonstrate bPC's superior performance in two biologically relevant tasks including multimodal learning and inference with missing information, suggesting that bPC resembles biological visual inference more closely.
♻ ☆ DiffEM: Learning from Corrupted Data with Diffusion Models via Expectation Maximization
Diffusion models have emerged as powerful generative priors for high-dimensional inverse problems, yet learning them when only corrupted or noisy observations are available remains challenging. In this work, we propose a new method for training diffusion models with Expectation-Maximization (EM) from corrupted data. Our proposed method, DiffEM, utilizes conditional diffusion models to reconstruct clean data from observations in the E-step, and then uses the reconstructed data to refine the conditional diffusion model in the M-step. Theoretically, we provide monotonic convergence guarantees for the DiffEM iteration, assuming appropriate statistical conditions. We demonstrate the effectiveness of our approach through experiments on various image reconstruction tasks.
♻ ☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset AAAI
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs). We implemented a data pre-processing and curation pipeline that transforms the raw EHR data into a structured format suitable for developing predictive models focused on data fairness, accountability and transparency. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Pairwise XGBoost models are trained using this framework to differentiate UTI risk categories with explainable AI techniques applied to identify key predictors and support interpretability. Our findings reveal differences in clinical and demographic predictors across risk groups. While this study highlights the potential of AI-driven insights to support UTI clinical decision-making, further investigation of patient sub-strata and extensive validation are needed to ensure robustness and applicability in clinical practice.
comment: Peer-reviewed; accepted at Health Intelligence (W3PHIAI-25) Workshop, AAAI Conference 2025 (to appear in Studies in Computational Intelligence, Springer/Nature)
♻ ☆ Physics-Informed Time-Integrated DeepONet: Temporal Tangent Space Operator Learning for High-Accuracy Inference
Accurately modeling and inferring solutions to time-dependent partial differential equations (PDEs) over extended horizons remains a core challenge in scientific machine learning. Traditional full rollout (FR) methods, which predict entire trajectories in one pass, often fail to capture the causal dependencies and generalize poorly outside the training time horizon. Autoregressive (AR) approaches, evolving the system step by step, suffer from error accumulation, limiting long-term accuracy. These shortcomings limit the long-term accuracy and reliability of both strategies. To address these issues, we introduce the Physics-Informed Time-Integrated Deep Operator Network (PITI-DeepONet), a dual-output architecture trained via fully physics-informed or hybrid physics- and data-driven objectives to ensure stable, accurate long-term evolution well beyond the training horizon. Instead of forecasting future states, the network learns the time-derivative operator from the current state, integrating it using classical time-stepping schemes to advance the solution in time. Additionally, the framework can leverage residual monitoring during inference to estimate prediction quality and detect when the system transitions outside the training domain. Applied to benchmark problems, PITI-DeepONet shows improved accuracy over extended inference time horizons when compared to traditional methods. Mean relative $\mathcal{L}_2$ errors reduced by 84% (vs. FR) and 79% (vs. AR) for the one-dimensional heat equation; by 87% (vs. FR) and 98% (vs. AR) for the one-dimensional Burgers equation; and by 42% (vs. FR) and 89% (vs. AR) for the two-dimensional Allen-Cahn equation. By moving beyond classic FR and AR schemes, PITI-DeepONet paves the way for more reliable, long-term integration of complex, time-dependent PDEs.
comment: 17 pages, 16 figures, 4 tables
♻ ☆ Hierarchical Persistence Velocity for Network Anomaly Detection: Theory and Applications to Cryptocurrency Markets
We introduce the Overlap-Weighted Hierarchical Normalized Persistence Velocity (OW-HNPV), a novel topological data analysis method for detecting anomalies in time-varying networks. Unlike existing methods that measure cumulative topological presence, we introduce the first velocity-based perspective on persistence diagrams, measuring the rate at which features appear and disappear, automatically downweighting noise through overlap-based weighting. We also prove that OW-HNPV is mathematically stable. It behaves in a controlled, predictable way, even when comparing persistence diagrams from networks with different feature types. Applied to Ethereum transaction networks (May 2017-May 2018), OW-HNPV demonstrates superior performance for cryptocurrency anomaly detection, achieving up to 10.4% AUC gain over baseline models for 7-day price movement predictions. Compared with established methods, including Vector of Averaged Bettis (VAB), persistence landscapes, and persistence images, velocity-based summaries excel at medium- to long-range forecasting (4-7 days), with OW-HNPV providing the most consistent and stable performance across prediction horizons. Our results show that modeling topological velocity is crucial for detecting structural anomalies in dynamic networks.
♻ ☆ BubbleOKAN: A Physics-Informed Interpretable Neural Operator for High-Frequency Bubble Dynamics
In this work, we employ physics-informed neural operators to map pressure profiles from an input function space to the corresponding bubble radius responses. Our approach employs a two-step DeepONet architecture. To address the intrinsic spectral bias of deep learning models, our model incorporates the Rowdy adaptive activation function, enhancing the representation of high-frequency features. Moreover, we introduce the Kolmogorov-Arnold network (KAN) based two-step DeepOKAN model, which enhances interpretability (often lacking in conventional multilayer perceptron architectures) while efficiently capturing high-frequency bubble dynamics without explicit utilization of activation functions in any form. We particularly investigate the use of spline basis functions in combination with radial basis functions (RBF) within our architecture, as they demonstrate superior performance in constructing a universal basis for approximating high-frequency bubble dynamics compared to alternative formulations. Furthermore, we emphasize on the performance bottleneck of RBF while learning the high frequency bubble dynamics and showcase the advantage of using spline basis function for the trunk network in overcoming this inherent spectral bias. The model is systematically evaluated across three representative scenarios: (1) bubble dynamics governed by the Rayleigh-Plesset equation with a single initial radius, (2) bubble dynamics governed by the Keller-Miksis equation with a single initial radius, and (3) Keller-Miksis dynamics with multiple initial radii. We also compare our results with state-of-the-art neural operators, including Fourier Neural Operators, Wavelet Neural Operators, OFormer, and Convolutional Neural Operators. Our findings demonstrate that the two-step DeepOKAN accurately captures both low- and high-frequency behaviors, and offers a promising alternative to conventional numerical solvers.
comment: 36 pages, 21 figures
♻ ☆ Exact Verification of Graph Neural Networks with Incremental Constraint Solving
Graph neural networks (GNNs) are increasingly employed in high-stakes applications, such as fraud detection or healthcare, but are susceptible to adversarial attacks. A number of techniques have been proposed to provide adversarial robustness guarantees, but support for commonly used aggregation functions in message-passing GNNs is lacking. In this paper, we develop an exact (sound and complete) verification method for GNNs to compute guarantees against attribute and structural perturbations that involve edge addition or deletion, subject to budget constraints. Our method employs constraint solving with bound tightening, and iteratively solves a sequence of relaxed constraint satisfaction problems while relying on incremental solving capabilities of solvers to improve efficiency. We implement GNNev, a versatile exact verifier for message-passing neural networks, which supports three aggregation functions, sum, max and mean, with the latter two considered here for the first time. Extensive experimental evaluation of GNNev on real-world fraud datasets (Amazon and Yelp) and biochemical datasets (MUTAG and ENZYMES) demonstrates its usability and effectiveness, as well as superior performance for node classification and competitiveness on graph classification compared to existing exact verification tools on sum-aggregated GNNs.
♻ ☆ Dynamical stability for dense patterns in discrete attractor neural networks
Neural networks storing multiple discrete attractors are canonical models of biological memory. Previously, the dynamical stability of such networks could only be guaranteed under highly restrictive conditions. Here, we derive a theory of the local stability of discrete fixed points in a broad class of networks with graded neural activities and in the presence of noise. By directly analyzing the bulk and the outliers of the Jacobian spectrum, we show that all fixed points are stable below a critical load that is distinct from the classical \textit{critical capacity} and depends on the statistics of neural activities in the fixed points as well as the single-neuron activation function. Our analysis highlights the computational benefits of threshold-linear activation and sparse-like patterns.
♻ ☆ HI-SQL: Optimizing Text-to-SQL Systems through Dynamic Hint Integration IJCNN
Text-to-SQL generation bridges the gap between natural language and databases, enabling users to query data without requiring SQL expertise. While large language models (LLMs) have significantly advanced the field, challenges remain in handling complex queries that involve multi-table joins, nested conditions, and intricate operations. Existing methods often rely on multi-step pipelines that incur high computational costs, increase latency, and are prone to error propagation. To address these limitations, we propose HI-SQL, a pipeline that incorporates a novel hint generation mechanism utilizing historical query logs to guide SQL generation. By analyzing prior queries, our method generates contextual hints that focus on handling the complexities of multi-table and nested operations. These hints are seamlessly integrated into the SQL generation process, eliminating the need for costly multi-step approaches and reducing reliance on human-crafted prompts. Experimental evaluations on multiple benchmark datasets demonstrate that our approach significantly improves query accuracy of LLM-generated queries while ensuring efficiency in terms of LLM calls and latency, offering a robust and practical solution for enhancing Text-to-SQL systems.
comment: Accepted at International Joint Conference on Neural Networks (IJCNN), IEEE, 2025
♻ ☆ Error Bounds and Optimal Schedules for Masked Diffusions with Factorized Approximations
Recently proposed generative models for discrete data, such as Masked Diffusion Models (MDMs), exploit conditional independence approximations to reduce the computational cost of popular Auto-Regressive Models (ARMs), at the price of some bias in the sampling distribution. We study the resulting computation-vs-accuracy trade-off, providing general error bounds (in relative entropy) that depend only on the average number of tokens generated per iteration and are independent of the data dimensionality (i.e. sequence length), thus supporting the empirical success of MDMs. We then investigate the gain obtained by using non-constant schedule sizes (i.e. varying the number of unmasked tokens during the generation process) and identify the optimal schedule as a function of a so-called information profile of the data distribution, thus allowing for a principled optimization of schedule sizes. We define methods directly as sampling algorithms and do not use classical derivations as time-reversed diffusion processes, leading us to simple and transparent proofs.
♻ ☆ Solving a Research Problem in Mathematical Statistics with AI Assistance
Over the last few months, AI models including large language models have improved greatly. There are now several documented examples where they have helped professional mathematical scientists prove new results, sometimes even helping resolve known open problems. In this short note, we add another example to the list, by documenting how we were able to solve a previously unsolved research problem in robust mathematical statistics with crucial help from GPT-5. Our problem concerns robust density estimation, where the observations are perturbed by Wasserstein-bounded contaminations. In a previous preprint (Chao and Dobriban, 2023, arxiv:2308.01853v2), we have obtained upper and lower bounds on the minimax optimal estimation error; which were, however, not sharp. Starting in October 2025, making significant use of GPT-5 Pro, we were able to derive the minimax optimal error rate (reported in version 3 of the above arxiv preprint). GPT-5 provided crucial help along the way, including by suggesting calculations that we did not think of, and techniques that were not familiar to us, such as the dynamic Benamou-Brenier formulation, for key steps in the analysis. Working with GPT-5 took a few weeks of effort, and we estimate that it could have taken several months to get the same results otherwise. At the same time, there are still areas where working with GPT-5 was challenging: it sometimes provided incorrect references, and glossed over details that sometimes took days of work to fill in. We outline our workflow and steps taken to mitigate issues. Overall, our work can serve as additional documentation for a new age of human-AI collaborative work in mathematical science.
comment: added references
♻ ☆ Machine learning applications in archaeological practices: a review
Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning models are gaining in popularity they remain subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
♻ ☆ Simultaneous and Proportional Finger Motion Decoding Using Spatial Features from High-Density Surface Electromyography
Restoring natural and intuitive hand function requires simultaneous and proportional control (SPC) of multiple degrees of freedom (DoFs). This study systematically evaluated the multichannel linear descriptors-based block field method (MLD-BFM) for continuous decoding of five finger-joint DoFs by leveraging the rich spatial information of high-density surface electromyography (HD sEMG). Twenty-one healthy participants performed dynamic sinusoidal finger movements while HD sEMG signals were recorded from the extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles. MLD-BFM extracted region-specific spatial features, including effective field strength ($Σ$), field-strength variation rate ($Φ$), and spatial complexity ($Ω$). Model performance was optimized (block size: $2 \times 2$; window: 0.15 s) and compared with conventional time-domain features and dimensionality reduction approaches when applied to multi-output regression models. MLD-BFM consistently achieved the highest $\mathrm{R}^2_{\mathrm{vw}}$ values across all models. The multilayer perceptron (MLP) combined with MLD-BFM yielded the best performance ($\mathrm{R}^2_{\mathrm{vw}} = 86.68\% \pm 0.33$). Time-domain features also showed strong predictive capability and were statistically comparable to MLD-BFM in some models, whereas dimensionality reduction techniques exhibited lower accuracy. Decoding accuracy was higher for the middle and ring fingers than for the thumb. Overall, MLD-BFM improved continuous finger movement decoding accuracy, underscoring the importance of taking advantage of the spatial richness of HD sEMG. These findings suggest that spatially structured features enhance SPC and provide practical guidance for designing robust, real-time, and responsive myoelectric interfaces.
comment: 39 pages, 13 figures, 2 tables
♻ ☆ Variational Quantum Optimization with Continuous Bandits
We introduce a novel approach to variational Quantum algorithms (VQA) via continuous bandits. VQA are a class of hybrid Quantum-classical algorithms where the parameters of Quantum circuits are optimized by classical algorithms. Previous work has used zero and first order gradient based methods, however such algorithms suffer from the barren plateau (BP) problem where gradients and loss differences are exponentially small. We introduce an approach using bandits methods which combine global exploration with local exploitation. We show how VQA can be formulated as a best arm identification problem in a continuous space of arms with Lipschitz smoothness. While regret minimization has been addressed in this setting, existing methods for pure exploration only cover discrete spaces. We give the first results for pure exploration in a continuous setting and derive a fixed-confidence, information-theoretic, instance specific lower bound. Under certain assumptions on the expected payoff, we derive a simple algorithm, which is near-optimal with respect to our lower bound. Finally, we apply our continuous bandit algorithm to two VQA schemes: a PQC and a QAOA quantum circuit, showing that we significantly outperform the previously known state of the art methods (which used gradient based methods).
comment: 10 pages, 4 Figures + 9-page appendix
♻ ☆ Sample-Efficient Optimization over Generative Priors via Coarse Learnability
In zeroth-order optimization, we seek to minimize a function $d(\cdot)$, which may encode combinatorial feasibility, using only function evaluations. We focus on the setting where solutions must also satisfy qualitative constraints or conform to a complex prior distribution. To address this, we introduce a new framework in which such constraints are represented by an initial generative prior $Ł(\cdot)$, for example, a Large Language Model (LLM). The objective is to find solutions $s$ that minimize $d(s)$ while having high probability under $Ł(s)$, effectively sampling from a target distribution proportional to $Ł(s) \cdot e^{-T \cdot d(s)}$ for a temperature parameter $T$. While this framework aligns with classical Model-Based Optimization (e.g., the Cross-Entropy method), existing theory is ill-suited for deriving sample complexity bounds in black-box deep generative models. We therefore propose a novel learning assumption, which we term \emph{coarse learnability}, where an agent with access to a polynomial number of samples can learn a model whose point-wise density approximates the target within a polynomial factor. Leveraging this assumption, we design an iterative algorithm that employs a Metropolis-Hastings correction to provably approximate the target distribution using a polynomial number of samples. To the best of our knowledge, this is one of the first works to establish such sample-complexity guarantees for model-based optimization with deep generative priors. We provide two lines of evidence supporting the coarse learnability assumption. Theoretically, we show that maximum likelihood estimation naturally induces the required coverage properties, holding for both standard exponential families and for misspecified models. Empirically, we demonstrate that LLMs can adapt their learned distributions to zeroth-order feedback to solve combinatorial optimization problems.
♻ ☆ Scale-invariant Attention
One persistent challenge in LLM research is the development of attention mechanisms that are able to generalise from training on shorter contexts to inference on longer contexts. We propose two conditions that we expect all effective long context attention mechanisms to have: scale-invariant total attention, and scale-invariant attention sparsity. Under a Gaussian assumption, we show that a simple position-dependent transformation of the attention logits is sufficient for these conditions to hold. Experimentally we find that the resulting scale-invariant attention scheme gives considerable benefits in terms of validation loss when zero-shot generalising from training on short contexts to validation on longer contexts, and is effective at long-context retrieval.
comment: Accepted at Neurips 2025
♻ ☆ SEA: Spectral Edge Attack
Graph based machine learning algorithms occupy an important position in today AI landscape. The ability of graph topology to represent complex data structures is both the key strength of graph algorithms and a source of their vulnerability. In other words, attacking or perturbing a graph can severely degrade the performance of graph-based methods. For the attack methods, the greatest challenge is achieving strong attack effectiveness while remaining undetected. To address this problem, this paper proposes a new attack model that employs spectral adversarial robustness evaluation to quantitatively analyze the vulnerability of each edge in a graph under attack. By precisely targeting the weakest links, the proposed approach achieves the maximum attack impact with minimal perturbation. Experimental results demonstrate the effectiveness of the proposed method.
♻ ☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ CANet: ChronoAdaptive Network for Enhanced Long-Term Time Series Forecasting under Non-Stationarity
Long-term time series forecasting plays a pivotal role in various real-world applications. Despite recent advancements and the success of different architectures, forecasting is often challenging due to non-stationary nature of the real-world data, which frequently exhibit distribution shifts and temporal changes in statistical properties like mean and variance over time. Previous studies suggest that this inherent variability complicates forecasting, limiting the performance of many models by leading to loss of non-stationarity and resulting in over-stationarization (Liu, Wu, Wang and Long, 2022). To address this challenge, we introduce a novel architecture, ChoronoAdaptive Network (CANet), inspired by style-transfer techniques. The core of CANet is the Non-stationary Adaptive Normalization module, seamlessly integrating the Style Blending Gate and Adaptive Instance Normalization (AdaIN) (Huang and Belongie, 2017). The Style Blending Gate preserves and reintegrates non-stationary characteristics, such as mean and standard deviation, by blending internal and external statistics, preventing over-stationarization while maintaining essential temporal dependencies. Coupled with AdaIN, which dynamically adapts the model to statistical changes, this approach enhances predictive accuracy under non-stationary conditions. CANet also employs multi-resolution patching to handle short-term fluctuations and long-term trends, along with Fourier analysis-based adaptive thresholding to reduce noise. A Stacked Kronecker Product Layer further optimizes the model's efficiency while maintaining high performance. Extensive experiments on real-world datasets validate CANet's superiority over state-of-the-art methods, achieving a 42% reduction in MSE and a 22% reduction in MAE. The source code is publicly available at https://github.com/mertsonmezer/CANet.
♻ ☆ Control-Augmented Autoregressive Diffusion for Data Assimilation
Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments a pretrained ARDM with a lightweight controller network, trained offline by previewing future rollouts to output stepwise controls that anticipate upcoming observations under a terminal-cost objective. Our approach is motivated by viewing guided generation as an entropy-regularized stochastic optimal control problem over ARDM trajectories: we learn a reusable policy that injects small control corrections inside each denoising sub-step while remaining anchored to the pretrained dynamics. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), where existing methods can be computationally prohibitive and prone to forecast drift under sparse observations. At inference, DA reduces to a single causal forward rollout with on-the-fly corrections, requiring neither adjoint computations nor gradient-based optimization, and yields an order-of-magnitude speedup over strong diffusion-based DA baselines. Across two canonical PDEs and six observation regimes, our method consistently improves stability, accuracy, and physics-aware fidelity over state-of-the-art baselines. We will release code and checkpoints publicly.
♻ ☆ Taming Latency and Bandwidth: A Theoretical Framework and Adaptive Algorithm for Communication-Constrained Training
Regional energy caps limit the growth of any single data center used for large-scale model training. This single-center training paradigm works when model size remains manageable, but exponential growth in the model size and computational demand challenges it. A natural alternative is to distribute training across multiple data centers over wide-area networks. This pools distributed resources, but suffers from high latency and low, time-varying bandwidth, sharply reducing throughout. Employing jointly gradient compression and delayed aggregation can alleviate communication problems, but introduces a complex three-way trade-off among compression ratio, staleness (delayed synchronization steps), and convergence rate. Existing work lacks theoretical guidance and can only propose fixed strategies, insensitive to computation and communication conditions. We address this with a new theoretical tool, decomposing the joint optimization problem into a traditional process plus multiple analyzable noise terms. Our analysis yields the first convergence rate for this setting and shows that increasing staleness exponentially amplifies the detrimental effect of compression. Leveraging these insights, we propose DeCo-SGD, which dynamically selects the compression ratio and staleness based on the real-time communication and computation conditions. DeCo-SGD achieves up to $5.07\times$ and $1.37\times$ speed-ups over distributed SGD and static strategy in high-latency and low, varying bandwidth networks, respectively.
comment: This work has been submitted to the IEEE for possible publication. This is an extended version including the complete appendix
♻ ☆ REAL: Representation Enhanced Analytic Learning for Exemplar-free Class-incremental Learning
Exemplar-free class-incremental learning (EFCIL) aims to mitigate catastrophic forgetting in class-incremental learning (CIL) without available historical training samples as exemplars. Compared with its exemplar-based CIL counterpart that stores exemplars, EFCIL suffers more from forgetting issues. Recently, a new EFCIL branch named Analytic Continual Learning (ACL) introduces a gradient-free paradigm via Recursive Least-Square, achieving a forgetting-resistant classifier training with a frozen backbone during CIL. However, existing ACL suffers from ineffective representations and insufficient utilization of backbone knowledge. In this paper, we propose a representation-enhanced analytic learning (REAL) to address these problems. To enhance the representation, REAL constructs a dual-stream base pretraining followed by representation enhancing distillation process. The dual-stream base pretraining combines self-supervised contrastive learning for general features and supervised learning for class-specific knowledge, followed by the representation enhancing distillation to merge both streams, enhancing representations for subsequent CIL paradigm. To utilize more knowledge from the backbone, REAL presents a feature fusion buffer to multi-layer backbone features, providing informative features for the subsequent classifier training. Our method can be incorporated into existing ACL techniques and provides more competitive performance. Empirical results demonstrate that, REAL achieves state-of-the-art performance on CIFAR-100, ImageNet-100 and ImageNet-1k benchmarks, outperforming exemplar-free methods and rivaling exemplar-based approaches.
comment: 13 pages, 7 figures. This paper is published in Knowledge-based System
♻ ☆ Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis
Thanks to their extensive capacity, over-parameterized neural networks exhibit superior predictive capabilities and generalization. However, having a large parameter space is considered one of the main suspects of the neural networks' vulnerability to adversarial example -- input samples crafted ad-hoc to induce a desired misclassification. Relevant literature has claimed contradictory remarks in support of and against the robustness of over-parameterized networks. These contradictory findings might be due to the failure of the attack employed to evaluate the networks' robustness. Previous research has demonstrated that depending on the considered model, the algorithm employed to generate adversarial examples may not function properly, leading to overestimating the model's robustness. In this work, we empirically study the robustness of over-parameterized networks against adversarial examples. However, unlike the previous works, we also evaluate the considered attack's reliability to support the results' veracity. Our results show that over-parameterized networks are robust against adversarial attacks as opposed to their under-parameterized counterparts.
comment: Submitted to Discover AI
♻ ☆ PyGraph: Robust Compiler Support for CUDA Graphs in PyTorch
Machine learning (ML) workloads launch hundreds to thousands of short-running GPU kernels per iteration. With GPU compute throughput growing rapidly, CPU-side launch latency of kernels is emerging as a bottleneck. CUDA Graphs promise to address this by replaying a set of kernels with a single dispatch of the graph, removing per-kernel launch costs. However, CUDA Graphs remain surprisingly difficult to deploy correctly and efficiently. We present PyGraph - a compiler framework to maximize the coverage and benefits of CUDA Graphs for ML workloads. It introduces three novel optimizations: it applies automatic code transformations to make ML applications amenable to CUDA Graphs; it eliminates the parameter copy overheads for kernels executing in CUDA Graphs, and it selectively deploys CUDA Graphs guided by a cost-benefit analysis. For 25 ML workloads from TorchBench, HuggingFace, and TIMM, PyGraph more than doubles the benefit from deploying CUDA Graph compared to the most popular and widely used ML compiler, PyTorch2. PyGraph is built atop PyTorch2's compilation framework and requires no programmer intervention.
♻ ☆ Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes NeurIPS 2024
Bayesian optimization is an effective technique for black-box optimization, but its applicability is typically limited to low-dimensional and small-budget problems due to the cubic complexity of computing the Gaussian process (GP) surrogate. While various approximate GP models have been employed to scale Bayesian optimization to larger sample sizes, most suffer from overly-smooth estimation and focus primarily on problems that allow for large online samples. In this work, we argue that Bayesian optimization algorithms with sparse GPs can more efficiently allocate their representational power to relevant regions of the search space. To achieve this, we propose focalized GP, which leverages a novel variational loss function to achieve stronger local prediction, as well as FocalBO, which hierarchically optimizes the focalized GP acquisition function over progressively smaller search spaces. Experimental results demonstrate that FocalBO can efficiently leverage large amounts of offline and online data to achieve state-of-the-art performance on robot morphology design and to control a 585-dimensional musculoskeletal system.
comment: Accepted by NeurIPS 2024
♻ ☆ Tab-PET: Graph-Based Positional Encodings for Tabular Transformers AAAI-26
Supervised learning with tabular data presents unique challenges, including low data sizes, the absence of structural cues, and heterogeneous features spanning both categorical and continuous domains. Unlike vision and language tasks, where models can exploit inductive biases in the data, tabular data lacks inherent positional structure, hindering the effectiveness of self-attention mechanisms. While recent transformer-based models like TabTransformer, SAINT, and FT-Transformer (which we refer to as 3T) have shown promise on tabular data, they typically operate without leveraging structural cues such as positional encodings (PEs), as no prior structural information is usually available. In this work, we find both theoretically and empirically that structural cues, specifically PEs can be a useful tool to improve generalization performance for tabular transformers. We find that PEs impart the ability to reduce the effective rank (a form of intrinsic dimensionality) of the features, effectively simplifying the task by reducing the dimensionality of the problem, yielding improved generalization. To that end, we propose Tab-PET (PEs for Tabular Transformers), a graph-based framework for estimating and inculcating PEs into embeddings. Inspired by approaches that derive PEs from graph topology, we explore two paradigms for graph estimation: association-based and causality-based. We empirically demonstrate that graph-derived PEs significantly improve performance across 50 classification and regression datasets for 3T. Notably, association-based graphs consistently yield more stable and pronounced gains compared to causality-driven ones. Our work highlights an unexpected role of PEs in tabular transformers, revealing how they can be harnessed to improve generalization.
comment: Accepted to AAAI-26
♻ ☆ DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration NeurIPS 2025
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
comment: Accepted at NeurIPS 2025
♻ ☆ Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension
A classical result in online learning characterizes the optimal mistake bound achievable by deterministic learners using the Littlestone dimension (Littlestone '88). We prove an analogous result for randomized learners: we show that the optimal expected mistake bound in learning a class $\mathcal{H}$ equals its randomized Littlestone dimension, which is the largest $d$ for which there exists a tree shattered by $\mathcal{H}$ whose average depth is $2d$. We further study optimal mistake bounds in the agnostic case, as a function of the number of mistakes made by the best function in $\mathcal{H}$, denoted by $k$. We show that the optimal randomized mistake bound for learning a class with Littlestone dimension $d$ is $k + Θ(\sqrt{k d} + d )$. This also implies an optimal deterministic mistake bound of $2k + Θ(d) + O(\sqrt{k d})$, thus resolving an open question which was studied by Auer and Long ['99]. As an application of our theory, we revisit the classical problem of prediction using expert advice: about 30 years ago Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth studied prediction using expert advice, provided that the best among the $n$ experts makes at most $k$ mistakes, and asked what are the optimal mistake bounds. Cesa-Bianchi, Freund, Helmbold, and Warmuth ['93, '96] provided a nearly optimal bound for deterministic learners, and left the randomized case as an open problem. We resolve this question by providing an optimal learning rule in the randomized case, and showing that its expected mistake bound equals half of the deterministic bound of Cesa-Bianchi et al. ['93,'96], up to negligible additive terms. In contrast with previous works by Abernethy, Langford, and Warmuth ['06], and by Brânzei and Peres ['19], our result applies to all pairs $n,k$.
♻ ☆ Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for Multi-Vehicle Dynamic Pickup-Delivery Problems
This paper addresses the cooperative Multi-Vehicle Dynamic Pickup and Delivery Problem with Stochastic Requests (MVDPDPSR) and proposes an end-to-end centralized decision-making framework based on sequence-to-sequence, named Multi-Agent Pointer Transformer (MAPT). MVDPDPSR is an extension of the vehicle routing problem and a spatio-temporal system optimization problem, widely applied in scenarios such as on-demand delivery. Classical operations research methods face bottlenecks in computational complexity and time efficiency when handling large-scale dynamic problems. Although existing reinforcement learning methods have achieved some progress, they still encounter several challenges: 1) Independent decoding across multiple vehicles fails to model joint action distributions; 2) The feature extraction network struggles to capture inter-entity relationships; 3) The joint action space is exponentially large. To address these issues, we designed the MAPT framework, which employs a Transformer Encoder to extract entity representations, combines a Transformer Decoder with a Pointer Network to generate joint action sequences in an AutoRegressive manner, and introduces a Relation-Aware Attention module to capture inter-entity relationships. Additionally, we guide the model's decision-making using informative priors to facilitate effective exploration. Experiments on 8 datasets demonstrate that MAPT significantly outperforms existing baseline methods in terms of performance and exhibits substantial computational time advantages compared to classical operations research methods.
comment: 15 pages
♻ ☆ From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity
Flow-based diffusion models have emerged as a leading paradigm for training generative models across images and videos. However, their memorization-generalization behavior remains poorly understood. In this work, we revisit the flow matching (FM) objective and study its marginal velocity field, which admits a closed-form expression, allowing exact computation of the oracle FM target. Analyzing this oracle velocity field reveals that flow-based diffusion models inherently formulate a two-stage training target: an early stage guided by a mixture of data modes, and a later stage dominated by the nearest data sample. The two-stage objective leads to distinct learning behaviors: the early navigation stage generalizes across data modes to form global layouts, whereas the later refinement stage increasingly memorizes fine-grained details. Leveraging these insights, we explain the effectiveness of practical techniques such as timestep-shifted schedules, classifier-free guidance intervals, and latent space design choices. Our study deepens the understanding of diffusion model training dynamics and offers principles for guiding future architectural and algorithmic improvements.
comment: Preprint v2; 15 pages, 16 figures
♻ ☆ One-Cycle Structured Pruning via Stability-Driven Subnetwork Search
Existing structured pruning methods typically rely on multi-stage training procedures that incur high computational costs. Pruning at initialization aims to reduce this burden but often suffers from degraded performance. To address these limitations, we propose an efficient one-cycle structured pruning framework that integrates pre-training, pruning, and fine-tuning into a single training cycle without sacrificing accuracy. The key idea is to identify an optimal sub-network during the early stages of training, guided by norm-based group saliency criteria and structured sparsity regularization. We introduce a novel pruning indicator that detects a stable pruning epoch by measuring the similarity between pruning sub-networks across consecutive training epochs. In addition, group sparsity regularization accelerates convergence, further reducing overall training time. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet using VGG, ResNet, and MobileNet architectures demonstrate that the proposed method achieves state-of-the-art accuracy while being among the most efficient structured pruning frameworks in terms of training cost. Code is available at https://github.com/ghimiredhikura/OCSPruner.
comment: 12 pages, 6 figures
♻ ☆ Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and GatedDeltaNet to augment open-weight LLMs. We also propose an efficient self-distillation training method where the base model's all parameters are frozen and only the parameters from AHNs are optimized. For inference, our method sets a default large sliding window size of 32k for attention, and AHNs activate only when the sequence length exceeds the 32k window, addressing the quadratic-complexity issue of attention that emerges at that scale. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
comment: Code: https://github.com/ByteDance-Seed/AHN
♻ ☆ Curved representational Bregman divergences and their applications
By analogy to the terminology of curved exponential families in statistics, we define curved Bregman divergences as Bregman divergences restricted to nonlinear parameter subspaces and sub-dimensional Bregman divergences when the restrictions are linear. A common example of curved Bregman divergence is the cosine dissimilarity between normalized vectors. We show that the barycenter of a finite weighted set of parameters under a curved Bregman divergence amounts to the right Bregman projection onto the nonlinear subspace of the barycenter with respect to the full Bregman divergence. We demonstrate the significance of curved Bregman divergences with two examples: (1) symmetrized Bregman divergences, (2) pointwise symmetrized Bregman divergences, and (3) the Kullback-Leibler divergence between circular complex normal distributions. We explain how to reparameterize sub-dimensional Bregman divergences on simplicial sub-dimensional domains. We then consider monotonic embeddings to define representational curved Bregman divergences and show that the $α$-divergences are representational curved Bregman divergences with respect to $α$-embeddings of the probability simplex into the positive measure cone. As an application, we report an efficient method to calculate the intersection of a finite set of $α$-divergence spheres.
comment: 28 pages, 10 figures
♻ ☆ All Models Are Miscalibrated, But Some Less So: Comparing Calibration with Conditional Mean Operators
When working in a high-risk setting, having well calibrated probabilistic predictive models is a crucial requirement. However, estimators for calibration error are not always able to correctly distinguish which model is better calibrated. We propose the \emph{conditional kernel calibration error} (CKCE) which is based on the Hilbert-Schmidt norm of the difference between conditional mean operators. By working directly with the definition of strong calibration as the distance between conditional distributions, which we represent by their embeddings in reproducing kernel Hilbert spaces, the CKCE is less sensitive to the marginal distribution of predictive models. This makes it more effective for relative comparisons than previously proposed calibration metrics. Our experiments, using both synthetic and real data, show that CKCE provides a more consistent ranking of models by their calibration error and is more robust against distribution shift.
comment: Australasian Joint Conference on Artificial Intelligence (2025)
♻ ☆ SketchOGD: Memory-Efficient Continual Learning
When machine learning models are trained continually on a sequence of tasks, they are often liable to forget what they learned on previous tasks--a phenomenon known as catastrophic forgetting. Proposed solutions to catastrophic forgetting tend to involve storing information about past tasks, meaning that memory usage is a chief consideration in determining their practicality. This paper develops a memory-efficient solution to catastrophic forgetting using the idea of matrix sketching, in the context of a simple continual learning algorithm known as orthogonal gradient descent (OGD). OGD finds weight updates that aim to preserve performance on prior datapoints, using gradients of the model on those datapoints. However, since the memory cost of storing prior model gradients grows with the runtime of the algorithm, OGD is ill-suited to continual learning over long time horizons. To address this problem, we propose SketchOGD. SketchOGD employs an online sketching algorithm to compress model gradients as they are encountered into a matrix of a fixed, user-determined size. In contrast to existing memory-efficient variants of OGD, SketchOGD runs online without the need for advance knowledge of the total number of tasks, is simple to implement, and is more amenable to analysis. We provide theoretical guarantees on the approximation error of the relevant sketches under a novel metric suited to the downstream task of OGD. Experimentally, we find that SketchOGD tends to outperform current state-of-the-art variants of OGD given a fixed memory budget.
♻ ☆ Multi-Task Dynamic Pricing in Credit Market with Contextual Information
We study the dynamic pricing problem faced by a broker seeking to learn prices for a large number of credit market securities, such as corporate bonds, government bonds, loans, and other credit-related securities. A major challenge in pricing these securities stems from their infrequent trading and the lack of transparency in over-the-counter (OTC) markets, which leads to insufficient data for individual pricing. Nevertheless, many securities share structural similarities that can be exploited. Moreover, brokers often place small "probing" orders to infer competitors' pricing behavior. Leveraging these insights, we propose a multi-task dynamic pricing framework that leverages the shared structure across securities to enhance pricing accuracy. In the OTC market, a broker wins a quote by offering a more competitive price than rivals. The broker's goal is to learn winning prices while minimizing expected regret against a clairvoyant benchmark. We model each security using a $d$-dimensional feature vector and assume a linear contextual model for the competitor's pricing of the yield, with parameters unknown a priori. We propose the Two-Stage Multi-Task (TSMT) algorithm: first, an unregularized MLE over pooled data to obtain a coarse parameter estimate; second, a regularized MLE on individual securities to refine the parameters. We show that the TSMT achieves a regret bounded by $\tilde{O} ( δ_{\max} \sqrt{T M d} + M d ) $, outperforming both fully individual and fully pooled baselines, where $M$ is the number of securities and $δ_{\max}$ quantifies their heterogeneity.
♻ ☆ The Eminence in Shadow: Exploiting Feature Boundary Ambiguity for Robust Backdoor Attacks KDD2026
Deep neural networks (DNNs) underpin critical applications yet remain vulnerable to backdoor attacks, typically reliant on heuristic brute-force methods. Despite significant empirical advancements in backdoor research, the lack of rigorous theoretical analysis limits understanding of underlying mechanisms, constraining attack predictability and adaptability. Therefore, we provide a theoretical analysis targeting backdoor attacks, focusing on how sparse decision boundaries enable disproportionate model manipulation. Based on this finding, we derive a closed-form, ambiguous boundary region, wherein negligible relabeled samples induce substantial misclassification. Influence function analysis further quantifies significant parameter shifts caused by these margin samples, with minimal impact on clean accuracy, formally grounding why such low poison rates suffice for efficacious attacks. Leveraging these insights, we propose Eminence, an explainable and robust black-box backdoor framework with provable theoretical guarantees and inherent stealth properties. Eminence optimizes a universal, visually subtle trigger that strategically exploits vulnerable decision boundaries and effectively achieves robust misclassification with exceptionally low poison rates (< 0.1%, compared to SOTA methods typically requiring > 1%). Comprehensive experiments validate our theoretical discussions and demonstrate the effectiveness of Eminence, confirming an exponential relationship between margin poisoning and adversarial boundary manipulation. Eminence maintains > 90% attack success rate, exhibits negligible clean-accuracy loss, and demonstrates high transferability across diverse models, datasets and scenarios.
comment: Accepted by KDD2026 Cycle 1 Research Track
♻ ☆ 3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Humans excel at performing complex tasks by leveraging long-term memory across temporal and spatial experiences. In contrast, current Large Language Models (LLMs) struggle to effectively plan and act in dynamic, multi-room 3D environments. We posit that part of this limitation is due to the lack of proper 3D spatial-temporal memory modeling in LLMs. To address this, we first introduce 3DMem-Bench, a comprehensive benchmark comprising over 26,000 trajectories and 2,892 embodied tasks, question-answering and captioning, designed to evaluate an agent's ability to reason over long-term memory in 3D environments. Second, we propose 3DLLM-Mem, a novel dynamic memory management and fusion model for embodied spatial-temporal reasoning and actions in LLMs. Our model uses working memory tokens, which represents current observations, as queries to selectively attend to and fuse the most useful spatial and temporal features from episodic memory, which stores past observations and interactions. Our approach allows the agent to focus on task-relevant information while maintaining memory efficiency in complex, long-horizon environments. Experimental results demonstrate that 3DLLM-Mem achieves state-of-the-art performance across various tasks, outperforming the strongest baselines by 16.5% in success rate on 3DMem-Bench's most challenging in-the-wild embodied tasks.
comment: demos at: https://3dllm-mem.github.io
♻ ☆ Dual-Axis RCCL: Representation-Complete Convergent Learning for Organic Chemical Space
Machine learning is profoundly reshaping molecular and materials modeling; however, given the vast scale of chemical space (10^30-10^60), it remains an open scientific question whether models can achieve convergent learning across this space. We introduce a Dual-Axis Representation-Complete Convergent Learning (RCCL) strategy, enabled by a molecular representation that integrates graph convolutional network (GCN) encoding of local valence environments, grounded in modern valence bond theory, together with no-bridge graph (NBG) encoding of ring/cage topologies, providing a quantitative measure of chemical-space coverage. This framework formalizes representation completeness, establishing a principled basis for constructing datasets that support convergent learning for large models. Guided by this RCCL framework, we develop the FD25 dataset, systematically covering 13,302 local valence units and 165,726 ring/cage topologies, achieving near-complete combinatorial coverage of organic molecules with H/C/N/O/F elements. Graph neural networks trained on FD25 exhibit representation-complete convergent learning and strong out-of-distribution generalization, with an overall prediction error of approximately 1.0 kcal/mol MAE across external benchmarks. Our results establish a quantitative link between molecular representation, structural completeness, and model generalization, providing a foundation for interpretable, transferable, and data-efficient molecular intelligence.
comment: 33 pages, 10 figures
♻ ☆ Demonstration Sidetracks: Categorizing Systematic Non-Optimality in Human Demonstrations
Learning from Demonstration (LfD) is a popular approach for robots to acquire new skills, but most LfD methods suffer from imperfections in human demonstrations. Prior work typically treats these suboptimalities as random noise. In this paper we study non-optimal behaviors in non-expert demonstrations and show that they are systematic, forming what we call demonstration sidetracks. Using a public space study with 40 participants performing a long-horizon robot task, we recreated the setup in simulation and annotated all demonstrations. We identify four types of sidetracks (Exploration, Mistake, Alignment, Pause) and one control pattern (one-dimension control). Sidetracks appear frequently across participants, and their temporal and spatial distribution is tied to task context. We also find that users' control patterns depend on the control interface. These insights point to the need for better models of suboptimal demonstrations to improve LfD algorithms and bridge the gap between lab training and real-world deployment. All demonstrations, infrastructure, and annotations are available at https://github.com/AABL-Lab/Human-Demonstration-Sidetracks.
♻ ☆ Context-Driven Performance Modeling for Causal Inference Operators on Neural Processing Units
The proliferation of large language models has driven demand for long-context inference on resource-constrained edge platforms. However, deploying these models on Neural Processing Units (NPUs) presents significant challenges due to architectural mismatch: the quadratic complexity of standard attention conflicts with NPU memory and compute patterns. This paper presents a comprehensive performance analysis of causal inference operators on a modern NPU, benchmarking quadratic attention against sub-quadratic alternatives including structured state-space models and causal convolutions. Our analysis reveals a spectrum of critical bottlenecks: quadratic attention becomes severely memory-bound with catastrophic cache inefficiency, while sub-quadratic variants span from compute-bound on programmable vector cores to memory-bound by data movement. These findings provide essential insights for co-designing hardware-aware models and optimization strategies to enable efficient long-context inference on edge platforms.
comment: IEEE HiPC 2025
♻ ☆ Arbitrary Entropy Policy Optimization Breaks The Exploration Bottleneck of Reinforcement Learning
Reinforcement Learning (RL) is essential for enhancing the reasoning capabilities of large language models (LLMs), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, causing exploration to vanish and policies to converge prematurely. As a result, RL is widely believed to be incapable of expanding the reasoning frontier of LLMs. Existing entropy-regularized methods introduce an inevitable trade-off between reward and entropy, leading to exploration accompanied by non-negligible optimization bias. In this work, we prove that temperature-guided REINFORCE can modulate policy entropy, and propose Arbitrary Entropy Policy Optimization (AEPO), which reformulates entropy regularization as a policy-gradient optimization problem. Rather than manipulating entropy directly, AEPO implicitly regulates it by applying a REINFORCE regularization term on temperature-adjusted samples, ensuring that entropy is controlled but never dominates optimization, thereby enabling arbitrary and principled entropy regulation. Experiments show that AEPO outperforms RL baselines on both pass@1 and pass@$k$, and even surpasses the base model on pass@1024. By modulating entropy precisely, AEPO achieves more effective optimization dynamics and provides direct empirical evidence that entropy, exploration, and performance are intrinsically linked.
♻ ☆ Near-Zero-Overhead Freshness for Recommendation Systems via Inference-Side Model Updates HPCA 2026
Deep Learning Recommendation Models (DLRMs) underpin personalized services but face a critical freshness-accuracy tradeoff due to massive parameter synchronization overheads. Production DLRMs deploy decoupled training/inference clusters, where synchronizing petabyte-scale embedding tables (EMTs) causes multi-minute staleness, degrading recommendation quality and revenue. We observe that (1) inference nodes exhibit sustained CPU underutilization (peak <= 20%), and (2) EMT gradients possess intrinsic low-rank structure, enabling compact update representation. We present LiveUpdate, a system that eliminates inter-cluster synchronization by colocating Low-Rank Adaptation (LoRA) trainers within inference nodes. LiveUpdate addresses two core challenges: (1) dynamic rank adaptation via singular value monitoring to constrain memory overhead (<2% of EMTs), and (2) NUMA-aware resource scheduling with hardware-enforced QoS to eliminate update inference contention (P99 latency impact <20ms). Evaluations show LiveUpdate reduces update costs by 2x versus delta-update baselines while achieving higher accuracy within 1-hour windows. By transforming idle inference resources into freshness engines, LiveUpdate delivers online model updates while outperforming state-of-the-art delta-update methods by 0.04% to 0.24% in accuracy.
comment: Accepted by HPCA 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backend, and tool access. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building effective and robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest version
♻ ☆ A User-Tunable Machine Learning Framework for Step-Wise Synthesis Planning
We introduce MHNpath, a machine learning-driven retrosynthetic tool designed for computer-aided synthesis planning. Leveraging modern Hopfield networks and novel comparative metrics, MHNpath efficiently prioritizes reaction templates, improving the scalability and accuracy of retrosynthetic predictions. The tool incorporates a tunable scoring system that allows users to prioritize pathways based on cost, reaction temperature, and toxicity, thereby facilitating the design of greener and cost-effective reaction routes. We demonstrate its effectiveness through case studies involving complex molecules from ChemByDesign, showcasing its ability to predict novel synthetic and enzymatic pathways. Furthermore, we benchmark MHNpath against existing frameworks using the PaRoutes dataset, achieving a solution rate of 85.4% and replicating 69.2% of experimentally validated "gold-standard" pathways. Our case studies reveal that the tool can generate shorter, cheaper, moderate-temperature routes employing green solvents, as exemplified by compounds such as dronabinol, arformoterol, and lupinine.
♻ ☆ Imbalances in Neurosymbolic Learning: Characterization and Mitigating Strategies
We study one of the most popular problems in **neurosymbolic learning** (NSL), that of learning neural classifiers given only the result of applying a symbolic component $σ$ to the gold labels of the elements of a vector $\mathbf x$. The gold labels of the elements in $\mathbf x$ are unknown to the learner. We make multiple contributions, theoretical and practical, to address a problem that has not been studied so far in this context, that of characterizing and mitigating *learning imbalances*, i.e., major differences in the errors that occur when classifying instances of different classes (aka **class-specific risks**). Our theoretical analysis reveals a unique phenomenon: that $σ$ can greatly impact learning imbalances. This result sharply contrasts with previous research on supervised and weakly supervised learning, which only studies learning imbalances under data imbalances. On the practical side, we introduce a technique for estimating the marginal of the hidden gold labels using weakly supervised data. Then, we introduce algorithms that mitigate imbalances at training and testing time by treating the marginal of the hidden labels as a constraint. We demonstrate the effectiveness of our techniques using strong baselines from NSL and long-tailed learning, suggesting performance improvements of up to 14%.
♻ ☆ Dexterous Manipulation through Imitation Learning: A Survey
Dexterous manipulation, which refers to the ability of a robotic hand or multi-fingered end-effector to skillfully control, reorient, and manipulate objects through precise, coordinated finger movements and adaptive force modulation, enables complex interactions similar to human hand dexterity. With recent advances in robotics and machine learning, there is a growing demand for these systems to operate in complex and unstructured environments. Traditional model-based approaches struggle to generalize across tasks and object variations due to the high dimensionality and complex contact dynamics of dexterous manipulation. Although model-free methods such as reinforcement learning (RL) show promise, they require extensive training, large-scale interaction data, and carefully designed rewards for stability and effectiveness. Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations, capturing fine-grained coordination and contact dynamics while bypassing the need for explicit modeling and large-scale trial-and-error. This survey provides an overview of dexterous manipulation methods based on imitation learning, details recent advances, and addresses key challenges in the field. Additionally, it explores potential research directions to enhance IL-driven dexterous manipulation. Our goal is to offer researchers and practitioners a comprehensive introduction to this rapidly evolving domain.
comment: 32pages, 6 figures, 9 tables
♻ ☆ ChronoSelect: Robust Learning with Noisy Labels via Dynamics Temporal Memory
Training deep neural networks on real-world datasets is often hampered by the presence of noisy labels, which can be memorized by over-parameterized models, leading to significant degradation in generalization performance. While existing methods for learning with noisy labels (LNL) have made considerable progress, they fundamentally suffer from static snapshot evaluations and fail to leverage the rich temporal dynamics of learning evolution. In this paper, we propose ChronoSelect (chrono denoting its temporal nature), a novel framework featuring an innovative four-stage memory architecture that compresses prediction history into compact temporal distributions. Our unique sliding update mechanism with controlled decay maintains only four dynamic memory units per sample, progressively emphasizing recent patterns while retaining essential historical knowledge. This enables precise three-way sample partitioning into clean, boundary, and noisy subsets through temporal trajectory analysis and dual-branch consistency. Theoretical guarantees prove the mechanism's convergence and stability under noisy conditions. Extensive experiments demonstrate ChronoSelect's state-of-the-art performance across synthetic and real-world benchmarks.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination AAAI 2026
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 28 pages, AAAI 2026
♻ ☆ Conformalized Decision Risk Assessment
In many operational settings, decision-makers must commit to actions before uncertainty resolves, but existing optimization tools rarely quantify how consistently a chosen decision remains optimal across plausible scenarios. This paper introduces CREDO -- Conformalized Risk Estimation for Decision Optimization, a distribution-free framework that quantifies the probability that a prescribed decision remains (near-)optimal across realizations of uncertainty. CREDO reformulates decision risk through the inverse feasible region -- the set of outcomes under which a decision is optimal -- and estimates its probability using inner approximations constructed from conformal prediction balls generated by a conditional generative model. This approach yields finite-sample, distribution-free lower bounds on the probability of decision optimality. The framework is model-agnostic and broadly applicable across a wide range of optimization problems. Extensive numerical experiments demonstrate that CREDO provides accurate, efficient, and reliable evaluations of decision optimality across various optimization settings.
♻ ☆ EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.
comment: 10 pages, 3 figures, 2 tables
Information Retrieval 13
☆ BERT and CNN integrated Neural Collaborative Filtering for Recommender Systems
Every day, a significant number of users visit the internet for different needs. The owners of a website generate profits from the user interaction with the contents or items of the website. A robust recommendation system can increase user interaction with a website by recommending items according to the user's unique preferences. BERT and CNN-integrated neural collaborative filtering (NCF) have been proposed for the recommendation system in this experiment. The proposed model takes inputs from the user and item profile and finds the user's interest. This model can handle numeric, categorical, and image data to extract the latent features from the inputs. The model is trained and validated on a small sample of the MovieLens dataset for 25 epochs. The same dataset has been used to train and validate a simple NCF and a BERT-based NCF model and compared with the proposed model. The proposed model outperformed those two baseline models. The obtained result for the proposed model is 0.72 recall and 0.486 Hit Ratio @ 10 for 799 users on the MovieLens dataset. This experiment concludes that considering both categorical and image data can improve the performance of a recommendation system.
☆ MedNuggetizer: Confidence-Based Information Nugget Extraction from Medical Documents ECIR 2026
We present MedNuggetizer, https://mednugget-ai.de/; access is available upon request.}, a tool for query-driven extraction and clustering of information nuggets from medical documents to support clinicians in exploring underlying medical evidence. Backed by a large language model (LLM), \textit{MedNuggetizer} performs repeated extractions of information nuggets that are then grouped to generate reliable evidence within and across multiple documents. We demonstrate its utility on the clinical use case of \textit{antibiotic prophylaxis before prostate biopsy} by using major urological guidelines and recent PubMed studies as sources of information. Evaluation by domain experts shows that \textit{MedNuggetizer} provides clinicians and researchers with an efficient way to explore long documents and easily extract reliable, query-focused medical evidence.
comment: Preprint accepted at ECIR 2026
☆ Image Complexity-Aware Adaptive Retrieval for Efficient Vision-Language Models ECIR 2026
Vision transformers in vision-language models apply uniform computational effort across all images, expending 175.33 GFLOPs (ViT-L/14) whether analysing a straightforward product photograph or a complex street scene. We propose ICAR (Image Complexity-Aware Retrieval), which enables vision transformers to use less compute for simple images whilst processing complex images through their full network depth. The key challenge is maintaining cross-modal alignment: embeddings from different processing depths must remain compatible for text matching. ICAR solves this through dual-path training that produces compatible embeddings from both reduced-compute and full-compute processing. This maintains compatibility between image representations and text embeddings in the same semantic space, whether an image exits early or processes fully. Unlike existing two-stage approaches that require expensive reranking, ICAR enables direct image-text matching without additional overhead. To determine how much compute to use, we develop ConvNeXt-IC, which treats image complexity assessment as a classification task. By applying modern classifier backbones rather than specialised architectures, ConvNeXt-IC achieves state-of-the-art performance with 0.959 correlation with human judgement (Pearson) and 4.4x speedup. Evaluated on standard benchmarks augmented with real-world web data, ICAR achieves 20% practical speedup while maintaining category-level performance and 95% of instance-level performance, enabling sustainable scaling of vision-language systems.
comment: Accepted paper for ECIR 2026
☆ ArcBERT: An LLM-based Search Engine for Exploring Integrated Multi-Omics Metadata
Traditional search applications within Research Data Management (RDM) ecosystems are crucial in helping users discover and explore the structured metadata from the research datasets. Typically, text search engines require users to submit keyword-based queries rather than using natural language. However, using Large Language Models (LLMs) trained on domain-specific content for specialized natural language processing (NLP) tasks is becoming increasingly common. We present ArcBERT, an LLM-based system designed for integrated metadata exploration. ArcBERT understands natural language queries and relies on semantic matching, unlike traditional search applications. Notably, ArcBERT also understands the structure and hierarchies within the metadata, enabling it to handle diverse user querying patterns effectively.
☆ Topological Metric for Unsupervised Embedding Quality Evaluation
Modern representation learning increasingly relies on unsupervised and self-supervised methods trained on large-scale unlabeled data. While these approaches achieve impressive generalization across tasks and domains, evaluating embedding quality without labels remains an open challenge. In this work, we propose Persistence, a topology-aware metric based on persistent homology that quantifies the geometric structure and topological richness of embedding spaces in a fully unsupervised manner. Unlike metrics that assume linear separability or rely on covariance structure, Persistence captures global and multi-scale organization. Empirical results across diverse domains show that Persistence consistently achieves top-tier correlations with downstream performance, outperforming existing unsupervised metrics and enabling reliable model and hyperparameter selection.
☆ DASH: Dialogue-Aware Similarity and Handshake Recognition for Topic Segmentation in Public-Channel Conversations AAAI
Dialogue Topic Segmentation (DTS) is crucial for understanding task-oriented public-channel communications, such as maritime VHF dialogues, which feature informal speech and implicit transitions. To address the limitations of traditional methods, we propose DASH-DTS, a novel LLM-based framework. Its core contributions are: (1) topic shift detection via dialogue handshake recognition; (2) contextual enhancement through similarity-guided example selection; and (3) the generation of selective positive and negative samples to improve model discrimination and robustness. Additionally, we release VHF-Dial, the first public dataset of real-world maritime VHF communications, to advance research in this domain. DASH-DTS provides interpretable reasoning and confidence scores for each segment. Experimental results demonstrate that our framework achieves several sota segmentation trusted accuracy on both VHF-Dial and standard benchmarks, establishing a strong foundation for stable monitoring and decision support in operational dialogues.
comment: Accepted by AAAIW2026
☆ On Recommending Category: A Cascading Approach
Recommendation plays a key role in e-commerce, enhancing user experience and boosting commercial success. Existing works mainly focus on recommending a set of items, but online e-commerce platforms have recently begun to pay attention to exploring users' potential interests at the category level. Category-level recommendation allows e-commerce platforms to promote users' engagements by expanding their interests to different types of items. In addition, it complements item-level recommendations when the latter becomes extremely challenging for users with little-known information and past interactions. Furthermore, it facilitates item-level recommendations in existing works. The predicted category, which is called intention in those works, aids the exploration of item-level preference. However, such category-level preference prediction has mostly been accomplished through applying item-level models. Some key differences between item-level recommendations and category-level recommendations are ignored in such a simplistic adaptation. In this paper, we propose a cascading category recommender (CCRec) model with a variational autoencoder (VAE) to encode item-level information to perform category-level recommendations. Experiments show the advantages of this model over methods designed for item-level recommendations.
♻ ☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall. The dataset and code are available at https://github.com/ostadabbas/AdSum204.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
♻ ☆ LLM4ES: Learning User Embeddings from Event Sequences via Large Language Models
This paper presents LLM4ES, a novel framework that exploits large pre-trained language models (LLMs) to derive user embeddings from event sequences. Event sequences are transformed into a textual representation, which is subsequently used to fine-tune an LLM through next-token prediction to generate high-quality embeddings. We introduce a text enrichment technique that enhances LLM adaptation to event sequence data, improving representation quality for low-variability domains. Experimental results demonstrate that LLM4ES achieves state-of-the-art performance in user classification tasks in financial and other domains, outperforming existing embedding methods. The resulting user embeddings can be incorporated into a wide range of applications, from user segmentation in finance to patient outcome prediction in healthcare.
♻ ☆ Rethinking Popularity Bias in Collaborative Filtering via Analytical Vector Decomposition KDD 2026
Popularity bias fundamentally undermines the personalization capabilities of collaborative filtering (CF) models, causing them to disproportionately recommend popular items while neglecting users' genuine preferences for niche content. While existing approaches treat this as an external confounding factor, we reveal that popularity bias is an intrinsic geometric artifact of Bayesian Pairwise Ranking (BPR) optimization in CF models. Through rigorous mathematical analysis, we prove that BPR systematically organizes item embeddings along a dominant "popularity direction" where embedding magnitudes directly correlate with interaction frequency. This geometric distortion forces user embeddings to simultaneously handle two conflicting tasks-expressing genuine preference and calibrating against global popularity-trapping them in suboptimal configurations that favor popular items regardless of individual tastes. We propose Directional Decomposition and Correction (DDC), a universally applicable framework that surgically corrects this embedding geometry through asymmetric directional updates. DDC guides positive interactions along personalized preference directions while steering negative interactions away from the global popularity direction, disentangling preference from popularity at the geometric source. Extensive experiments across multiple BPR-based architectures demonstrate that DDC significantly outperforms state-of-the-art debiasing methods, reducing training loss to less than 5% of heavily-tuned baselines while achieving superior recommendation quality and fairness. Code is available in https://github.com/LingFeng-Liu-AI/DDC.
comment: Accepted by SIGKDD 2026(First Cycle)
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF
♻ ☆ BookReconciler: An Open-Source Tool for Metadata Enrichment and Work-Level Clustering
We present BookReconciler, an open-source tool for enhancing and clustering book data. BookReconciler allows users to take spreadsheets with minimal metadata, such as book title and author, and automatically 1) add authoritative, persistent identifiers like ISBNs 2) and cluster related Expressions and Manifestations of the same Work, e.g., different translations or editions. This enhancement makes it easier to combine related collections and analyze books at scale. The tool is currently designed as an extension for OpenRefine -- a popular software application -- and connects to major bibliographic services including the Library of Congress, VIAF, OCLC, HathiTrust, Google Books, and Wikidata. Our approach prioritizes human judgment. Through an interactive interface, users can manually evaluate matches and define the contours of a Work (e.g., to include translations or not). We evaluate reconciliation performance on datasets of U.S. prize-winning books and contemporary world fiction. BookReconciler achieves near-perfect accuracy for U.S. works but lower performance for global texts, reflecting structural weaknesses in bibliographic infrastructures for non-English and global literature. Overall, BookReconciler supports the reuse of bibliographic data across domains and applications, contributing to ongoing work in digital libraries and digital humanities.
comment: Published in the proceedings of the Joint Conference on Digital Libraries (JCDL) 2025, Resources
♻ ☆ FAIR: Focused Attention Is All You Need for Generative Recommendation
Recently, transformer-based generative recommendation has garnered significant attention for user behavior modeling. However, it often requires discretizing items into multi-code representations (e.g., typically four code tokens or more), which sharply increases the length of the original item sequence. This expansion poses challenges to transformer-based models for modeling user behavior sequences with inherent noises, since they tend to overallocate attention to irrelevant or noisy context. To mitigate this issue, we propose FAIR, the first generative recommendation framework with focused attention, which enhances attention scores to relevant context while suppressing those to irrelevant ones. Specifically, we propose (1) a focused attention mechanism integrated into the standard Transformer, which learns two separate sets of Q and K attention weights and computes their difference as the final attention scores to eliminate attention noise while focusing on relevant contexts; (2) a noise-robustness objective, which encourages the model to maintain stable attention patterns under stochastic perturbations, preventing undesirable shifts toward irrelevant context due to noise; and (3) a mutual information maximization objective, which guides the model to identify contexts that are most informative for next-item prediction. We validate the effectiveness of FAIR on four public benchmarks, demonstrating its superior performance compared to existing methods.
Computation and Language 90
☆ TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs
This paper does not introduce a novel method but instead establishes a straightforward, incremental, yet essential baseline for video temporal grounding (VTG), a core capability in video understanding. While multimodal large language models (MLLMs) excel at various video understanding tasks, the recipes for optimizing them for VTG remain under-explored. In this paper, we present TimeLens, a systematic investigation into building MLLMs with strong VTG ability, along two primary dimensions: data quality and algorithmic design. We first expose critical quality issues in existing VTG benchmarks and introduce TimeLens-Bench, comprising meticulously re-annotated versions of three popular benchmarks with strict quality criteria. Our analysis reveals dramatic model re-rankings compared to legacy benchmarks, confirming the unreliability of prior evaluation standards. We also address noisy training data through an automated re-annotation pipeline, yielding TimeLens-100K, a large-scale, high-quality training dataset. Building on our data foundation, we conduct in-depth explorations of algorithmic design principles, yielding a series of meaningful insights and effective yet efficient practices. These include interleaved textual encoding for time representation, a thinking-free reinforcement learning with verifiable rewards (RLVR) approach as the training paradigm, and carefully designed recipes for RLVR training. These efforts culminate in TimeLens models, a family of MLLMs with state-of-the-art VTG performance among open-source models and even surpass proprietary models such as GPT-5 and Gemini-2.5-Flash. All codes, data, and models will be released to facilitate future research.
comment: Project Page: https://timelens-arc-lab.github.io/
☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. The dataset is available online at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
☆ Fast and Accurate Causal Parallel Decoding using Jacobi Forcing
Multi-token generation has emerged as a promising paradigm for accelerating transformer-based large model inference. Recent efforts primarily explore diffusion Large Language Models (dLLMs) for parallel decoding to reduce inference latency. To achieve AR-level generation quality, many techniques adapt AR models into dLLMs to enable parallel decoding. However, they suffer from limited speedup compared to AR models due to a pretrain-to-posttrain mismatch. Specifically, the masked data distribution in post-training deviates significantly from the real-world data distribution seen during pretraining, and dLLMs rely on bidirectional attention, which conflicts with the causal prior learned during pretraining and hinders the integration of exact KV cache reuse. To address this, we introduce Jacobi Forcing, a progressive distillation paradigm where models are trained on their own generated parallel decoding trajectories, smoothly shifting AR models into efficient parallel decoders while preserving their pretrained causal inference property. The models trained under this paradigm, Jacobi Forcing Model, achieves 3.8x wall-clock speedup on coding and math benchmarks with minimal loss in performance. Based on Jacobi Forcing Models' trajectory characteristics, we introduce multi-block decoding with rejection recycling, which enables up to 4.5x higher token acceptance count per iteration and nearly 4.0x wall-clock speedup, effectively trading additional compute for lower inference latency. Our code is available at https://github.com/hao-ai-lab/JacobiForcing.
☆ Segmental Attention Decoding With Long Form Acoustic Encodings
We address the fundamental incompatibility of attention-based encoder-decoder (AED) models with long-form acoustic encodings. AED models trained on segmented utterances learn to encode absolute frame positions by exploiting limited acoustic context beyond segment boundaries, but fail to generalize when decoding long-form segments where these cues vanish. The model loses ability to order acoustic encodings due to permutation invariance of keys and values in cross-attention. We propose four modifications: (1) injecting explicit absolute positional encodings into cross-attention for each decoded segment, (2) long-form training with extended acoustic context to eliminate implicit absolute position encoding, (3) segment concatenation to cover diverse segmentations needed during training, and (4) semantic segmentation to align AED-decoded segments with training segments. We show these modifications close the accuracy gap between continuous and segmented acoustic encodings, enabling auto-regressive use of the attention decoder.
comment: 5 pages, 1 fig
☆ TiME: Tiny Monolingual Encoders for Efficient NLP Pipelines
Today, a lot of research on language models is focused on large, general-purpose models. However, many NLP pipelines only require models with a well-defined, small set of capabilities. While large models are capable of performing the tasks of those smaller models, they are simply not fast enough to process large amounts of data or offer real-time responses. Furthermore, they often use unnecessarily large amounts of energy, leading to sustainability concerns and problems when deploying them on battery-powered devices. In our work, we show how to train small models for such efficiency-critical applications. As opposed to many off-the-shelf NLP pipelines, our models use modern training techniques such as distillation, and offer support for low-resource languages. We call our models TiME (Tiny Monolingual Encoders) and comprehensively evaluate them on a range of common NLP tasks, observing an improved trade-off between benchmark performance on one hand, and throughput, latency and energy consumption on the other. Along the way, we show that distilling monolingual models from multilingual teachers is possible, and likewise distilling models with absolute positional embeddings from teachers with relative positional embeddings.
☆ JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.
comment: Project page: https://mmmu-japanese-benchmark.github.io/JMMMU_Pro/
☆ Towards Nepali-language LLMs: Efficient GPT training with a Nepali BPE tokenizer
Nepali, a low-resource language spoken by over 32 million people, continues to face challenges in natural language processing (NLP) due to its complex grammar, agglutinative morphology, and limited availability of high-quality corpora. Most efforts to date have centered on basic encoder architectures; they remain insufficient for Nepali-specific text generation. This study presents a GPT-2-based Nepali language model trained using several training strategies inspired by GPT-3, including optimized learning rate schedules, batch scaling, and architectural refinements. A custom 16k Byte-Pair Encoding (BPE) tokenizer was trained exclusively on Nepali text to ensure more consistent segmentation and improved input representation. The model was pretrained on a combined dataset comprising a 10.75GB cleaned NepBERTa corpus and additional web-scraped Nepali news articles. FlashAttention was integrated to reduce memory usage and stabilize training. After two epochs, the model achieved a training loss of 3.168177, a validation loss of 3.081982, and a final perplexity of 21.80, demonstrating its capability to generate coherent Nepali news-style text.
comment: Work in progress
☆ Low-Resource, High-Impact: Building Corpora for Inclusive Language Technologies LREC2026
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.
comment: Tutorial is accepted to LREC2026
☆ Polypersona: Persona-Grounded LLM for Synthetic Survey Responses
This paper introduces PolyPersona, a generative framework for synthesizing persona-conditioned survey responses across multiple domains. The framework instruction-tunes compact chat models using parameter-efficient LoRA adapters with 4-bit quantization under a resource-adaptive training setup. A dialogue-based data pipeline explicitly preserves persona cues, ensuring consistent behavioral alignment across generated responses. Using this pipeline, we construct a dataset of 3,568 synthetic survey responses spanning ten domains and 433 distinct personas, enabling controlled instruction tuning and systematic multi-domain evaluation. We evaluate the generated responses using a multi-metric evaluation suite that combines standard text generation metrics, including BLEU, ROUGE, and BERTScore, with survey-specific metrics designed to assess structural coherence, stylistic consistency, and sentiment alignment.Experimental results show that compact models such as TinyLlama 1.1B and Phi-2 achieve performance comparable to larger 7B to 8B baselines, with a highest BLEU score of 0.090 and ROUGE-1 of 0.429. These findings demonstrate that persona-conditioned fine-tuning enables small language models to generate reliable and coherent synthetic survey data. The proposed framework provides an efficient and reproducible approach for survey data generation, supporting scalable evaluation while facilitating bias analysis through transparent and open protocols.
comment: Accepted in IEEE Bigdata 2025- LLMs4ALL
☆ Agreement Between Large Language Models and Human Raters in Essay Scoring: A Research Synthesis
Despite the growing promise of large language models (LLMs) in automatic essay scoring (AES), empirical findings regarding their reliability compared to human raters remain mixed. Following the PRISMA 2020 guidelines, we synthesized 65 published and unpublished studies from January 2022 to August 2025 that examined agreement between LLMs and human raters in AES. Across studies, reported LLM-human agreement was generally moderate to good, with agreement indices (e.g., Quadratic Weighted Kappa, Pearson correlation, and Spearman's rho) mostly ranging between 0.30 and 0.80. Substantial variability in agreement levels was observed across studies, reflecting differences in study-specific factors as well as the lack of standardized reporting practices. Implications and directions for future research are discussed.
comment: This manuscript is under review as a book chapter
☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
☆ Dual Language Models: Balancing Training Efficiency and Overfitting Resilience
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal ratio between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal ratio is similar whether targeting autoregressive or masked-diffusion downstream performance.
☆ VersatileFFN: Achieving Parameter Efficiency in LLMs via Adaptive Wide-and-Deep Reuse
The rapid scaling of Large Language Models (LLMs) has achieved remarkable performance, but it also leads to prohibitive memory costs. Existing parameter-efficient approaches such as pruning and quantization mainly compress pretrained models without enhancing architectural capacity, thereby hitting the representational ceiling of the base model. In this work, we propose VersatileFFN, a novel feed-forward network (FFN) that enables flexible reuse of parameters in both width and depth dimensions within a fixed parameter budget. Inspired by the dual-process theory of cognition, VersatileFFN comprises two adaptive pathways: a width-versatile path that generates a mixture of sub-experts from a single shared FFN, mimicking sparse expert routing without increasing parameters, and a depth-versatile path that recursively applies the same FFN to emulate deeper processing for complex tokens. A difficulty-aware gating dynamically balances the two pathways, steering "easy" tokens through the efficient width-wise route and allocating deeper iterative refinement to "hard" tokens. Crucially, both pathways reuse the same parameters, so all additional capacity comes from computation rather than memory. Experiments across diverse benchmarks and model scales demonstrate the effectiveness of the method. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/VersatileFFN.
☆ Linguists should learn to love speech-based deep learning models
Futrell and Mahowald present a useful framework bridging technology-oriented deep learning systems and explanation-oriented linguistic theories. Unfortunately, the target article's focus on generative text-based LLMs fundamentally limits fruitful interactions with linguistics, as many interesting questions on human language fall outside what is captured by written text. We argue that audio-based deep learning models can and should play a crucial role.
comment: Commentary on Futrell, R., & Mahowald, K. arXiv:2501.17047 (in press). How Linguistics Learned to Stop Worrying and Love the Language Models. Behavioural and Brain Sciences
☆ RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
☆ C-ing Clearly: Enhanced Binary Code Explanations using C code
Large Language Models (LLMs) typically excel at coding tasks involving high-level programming languages, as opposed to lower-level programming languages, such as assembly. We propose a synthetic data generation method named C-ing Clearly, which leverages the corresponding C code to enhance an LLM's understanding of assembly. By fine-tuning on data generated through our method, we demonstrate improved LLM performance for binary code summarization and vulnerability detection. Our approach demonstrates consistent gains across different LLM families and model sizes.
comment: 18 pages, 5 figures
☆ SASQ: Static Activation Scaling for Quantization-Aware Training in Large Language Models
Large language models (LLMs) excel at natural language tasks but face deployment challenges due to their growing size outpacing GPU memory advancements. Model quantization mitigates this issue by lowering weight and activation precision, but existing solutions face fundamental trade-offs: dynamic quantization incurs high computational overhead and poses deployment challenges on edge devices, while static quantization sacrifices accuracy. Existing approaches of quantization-aware training (QAT) further suffer from weight training costs. We propose SASQ: a lightweight QAT framework specifically tailored for activation quantization factors. SASQ exclusively optimizes only the quantization factors (without changing pre-trained weights), enabling static inference with high accuracy while maintaining deployment efficiency. SASQ adaptively truncates some outliers, thereby reducing the difficulty of quantization while preserving the distributional characteristics of the activations. SASQ not only surpasses existing SOTA quantization schemes but also outperforms the corresponding FP16 models. On LLaMA2-7B, it achieves 5.2% lower perplexity than QuaRot and 4.7% lower perplexity than the FP16 model on WikiText2.
☆ Effect of Document Packing on the Latent Multi-Hop Reasoning Capabilities of Large Language Models
The standard practice for training large language models involves packing multiple documents together to optimize computational efficiency. However, the impact of this process on the models' capabilities remains largely unexplored. To address this gap, we investigate how different document-packing strategies influence the latent multi-hop reasoning abilities of LLMs. Our findings indicate that packing can improve model performance compared to training on individual documents, at the expense of more compute. To further understand the underlying mechanisms, we conduct an ablation study, identifying key factors that explain the advantages of packing. Ultimately, our research deepens the understanding of LLM training dynamics and provides practical insights for optimizing model development.
☆ RePo: Language Models with Context Re-Positioning
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_φ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.
☆ Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring
The field of Language Reasoning Models (LRMs) has been very active over the past few years with advances in training and inference techniques enabling LRMs to reason longer, and more accurately. However, a growing body of studies show that LRMs are still inefficient, over-generating verification and reflection steps. To address this challenge, we introduce the Step-Tagging framework, a lightweight sentence-classifier enabling real-time annotation of the type of reasoning steps that an LRM is generating. To monitor reasoning behaviors, we introduced ReasonType: a novel taxonomy of reasoning steps. Building on this framework, we demonstrated that online monitoring of the count of specific steps can produce effective interpretable early stopping criteria of LRM inferences. We evaluate the Step-tagging framework on three open-source reasoning models across standard benchmark datasets: MATH500, GSM8K, AIME and non-mathematical tasks (GPQA and MMLU-Pro). We achieve 20 to 50\% token reduction while maintaining comparable accuracy to standard generation, with largest gains observed on more computation-heavy tasks. This work offers a novel way to increase control over the generation of LRMs, and a new tool to study behaviors of LRMs.
☆ Inflation Attitudes of Large Language Models
This paper investigates the ability of Large Language Models (LLMs), specifically GPT-3.5-turbo (GPT), to form inflation perceptions and expectations based on macroeconomic price signals. We compare the LLM's output to household survey data and official statistics, mimicking the information set and demographic characteristics of the Bank of England's Inflation Attitudes Survey (IAS). Our quasi-experimental design exploits the timing of GPT's training cut-off in September 2021 which means it has no knowledge of the subsequent UK inflation surge. We find that GPT tracks aggregate survey projections and official statistics at short horizons. At a disaggregated level, GPT replicates key empirical regularities of households' inflation perceptions, particularly for income, housing tenure, and social class. A novel Shapley value decomposition of LLM outputs suited for the synthetic survey setting provides well-defined insights into the drivers of model outputs linked to prompt content. We find that GPT demonstrates a heightened sensitivity to food inflation information similar to that of human respondents. However, we also find that it lacks a consistent model of consumer price inflation. More generally, our approach could be used to evaluate the behaviour of LLMs for use in the social sciences, to compare different models, or to assist in survey design.
comment: 41 pages, 11 figures
☆ SPARQL-LLM: Real-Time SPARQL Query Generation from Natural Language Questions
The advent of large language models is contributing to the emergence of novel approaches that promise to better tackle the challenge of generating structured queries, such as SPARQL queries, from natural language. However, these new approaches mostly focus on response accuracy over a single source while ignoring other evaluation criteria, such as federated query capability over distributed data stores, as well as runtime and cost to generate SPARQL queries. Consequently, they are often not production-ready or easy to deploy over (potentially federated) knowledge graphs with good accuracy. To mitigate these issues, in this paper, we extend our previous work and describe and systematically evaluate SPARQL-LLM, an open-source and triplestore-agnostic approach, powered by lightweight metadata, that generates SPARQL queries from natural language text. First, we describe its architecture, which consists of dedicated components for metadata indexing, prompt building, and query generation and execution. Then, we evaluate it based on a state-of-the-art challenge with multilingual questions, and a collection of questions from three of the most prevalent knowledge graphs within the field of bioinformatics. Our results demonstrate a substantial increase of 24% in the F1 Score on the state-of-the-art challenge, adaptability to high-resource languages such as English and Spanish, as well as ability to form complex and federated bioinformatics queries. Furthermore, we show that SPARQL-LLM is up to 36x faster than other systems participating in the challenge, while costing a maximum of $0.01 per question, making it suitable for real-time, low-cost text-to-SPARQL applications. One such application deployed over real-world decentralized knowledge graphs can be found at https://www.expasy.org/chat.
comment: 17 pages, 8 figures, 1 table. Under Review
☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
☆ Two CFG Nahuatl for automatic corpora expansion
The aim of this article is to introduce two Context-Free Grammars (CFG) for Nawatl Corpora expansion. Nawatl is an Amerindian language (it is a National Language of Mexico) of the $π$-language type, i.e. a language with few digital resources. For this reason the corpora available for the learning of Large Language Models (LLMs) are virtually non-existent, posing a significant challenge. The goal is to produce a substantial number of syntactically valid artificial Nawatl sentences and thereby to expand the corpora for the purpose of learning non contextual embeddings. For this objective, we introduce two new Nawatl CFGs and use them in generative mode. Using these grammars, it is possible to expand Nawatl corpus significantly and subsequently to use it to learn embeddings and to evaluate their relevance in a sentences semantic similarity task. The results show an improvement compared to the results obtained using only the original corpus without artificial expansion, and also demonstrate that economic embeddings often perform better than some LLMs.
comment: 15 pages, 5 figures, 8 tables
☆ Ladder Up, Memory Down: Low-Cost Fine-Tuning With Side Nets
Fine-tuning large language models (LLMs) is often limited by the memory available on commodity GPUs. Parameter-efficient fine-tuning (PEFT) methods such as QLoRA reduce the number of trainable parameters, yet still incur high memory usage induced by the backward pass in the full model. We revisit Ladder Side Tuning (LST), a rarely explored PEFT technique that adds a lightweight side network, and show that it matches QLoRA's compute scaling slope while cutting peak memory by 50\%. Across different downstream benchmarks spanning natural language understanding, mathematical and LLM-critic tasks, LST has competitive performance with QLoRA's accuracy on average while being much more memory-efficient. This efficiency enables fine-tuning of 7B-parameter models on a single 12 GB consumer GPU with 2k-token contexts, requiring no gradient checkpointing\textemdash conditions under which QLoRA exhausts memory. Beyond memory efficiency, we also establish scaling laws showing that LST scales similarly to QLoRA. We exploit Ladder's architectural flexibility by introducing xLadder, a depth-extended variant that increases effective depth via cross-connections and shortens chain-of-thought (CoT) at fixed parameter count. Ladder is strong when memory is the bottleneck; xLadder builds on this by enabling deeper reasoning without additional memory overhead.
☆ A Comparative Analysis of Retrieval-Augmented Generation Techniques for Bengali Standard-to-Dialect Machine Translation Using LLMs AACL 2025
Translating from a standard language to its regional dialects is a significant NLP challenge due to scarce data and linguistic variation, a problem prominent in the Bengali language. This paper proposes and compares two novel RAG pipelines for standard-to-dialectal Bengali translation. The first, a Transcript-Based Pipeline, uses large dialect sentence contexts from audio transcripts. The second, a more effective Standardized Sentence-Pairs Pipeline, utilizes structured local\_dialect:standard\_bengali sentence pairs. We evaluated both pipelines across six Bengali dialects and multiple LLMs using BLEU, ChrF, WER, and BERTScore. Our findings show that the sentence-pair pipeline consistently outperforms the transcript-based one, reducing Word Error Rate (WER) from 76\% to 55\% for the Chittagong dialect. Critically, this RAG approach enables smaller models (e.g., Llama-3.1-8B) to outperform much larger models (e.g., GPT-OSS-120B), demonstrating that a well-designed retrieval strategy can be more crucial than model size. This work contributes an effective, fine-tuning-free solution for low-resource dialect translation, offering a practical blueprint for preserving linguistic diversity.
comment: Accepted to the Second Workshop on Bangla Language Processing (BLP) at IJCNLP-AACL 2025. 14 pages, 9 figures, 6 tables
☆ Astraea: A State-Aware Scheduling Engine for LLM-Powered Agents
Large Language Models (LLMs) are increasingly being deployed as intelligent agents. Their multi-stage workflows, which alternate between local computation and calls to external network services like Web APIs, introduce a mismatch in their execution pattern and the scheduling granularity of existing inference systems such as vLLM. Existing systems typically focus on per-segment optimization which prevents them from minimizing the end-to-end latency of the complete agentic workflow, i.e., the global Job Completion Time (JCT) over the entire request lifecycle. To address this limitation, we propose Astraea, a service engine designed to shift the optimization from local segments to the global request lifecycle. Astraea employs a state-aware, hierarchical scheduling algorithm that integrates a request's historical state with future predictions. It dynamically classifies requests by their I/O and compute intensive nature and uses an enhanced HRRN policy to balance efficiency and fairness. Astraea also implements an adaptive KV cache manager that intelligently handles the agent state during I/O waits based on the system memory pressure. Extensive experiments show that Astraea reduces average JCT by up to 25.5\% compared to baseline methods. Moreover, our approach demonstrates strong robustness and stability under high load across various model scales.
comment: 12 pages, 8 figures
☆ CogMem: A Cognitive Memory Architecture for Sustained Multi-Turn Reasoning in Large Language Models
Large language models (LLMs) excel at single-turn reasoning but often lose accuracy and coherence over extended, multi-turn interactions. Recent evaluations such as TurnBench highlight recurring failure modes-reasoning bias, task drift, hallucination, overconfidence, and memory decay. Current approaches typically append full conversational histories, causing unbounded context growth, higher computational costs, and degraded reasoning efficiency. We introduce CogMem, a cognitively inspired, memory-augmented LLM architecture that supports sustained iterative reasoning through structured, persistent memory. CogMem incorporates three layers: a Long-Term Memory (LTM) that consolidates cross-session reasoning strategies; a Direct Access (DA) memory that maintains session-level notes and retrieves relevant long-term memories; and a Focus of Attention (FoA) mechanism that dynamically reconstructs concise, task-relevant context at each turn. Experiments on TurnBench show that this layered design mitigates reasoning failures, controls context growth, and improves consistency across extended reasoning chains, moving toward more reliable, human-like reasoning in LLMs.
comment: underreview
☆ Multilingual and Continuous Backchannel Prediction: A Cross-lingual Study
We present a multilingual, continuous backchannel prediction model for Japanese, English, and Chinese, and use it to investigate cross-linguistic timing behavior. The model is Transformer-based and operates at the frame level, jointly trained with auxiliary tasks on approximately 300 hours of dyadic conversations. Across all three languages, the multilingual model matches or surpasses monolingual baselines, indicating that it learns both language-universal cues and language-specific timing patterns. Zero-shot transfer with two-language training remains limited, underscoring substantive cross-lingual differences. Perturbation analyses reveal distinct cue usage: Japanese relies more on short-term linguistic information, whereas English and Chinese are more sensitive to silence duration and prosodic variation; multilingual training encourages shared yet adaptable representations and reduces overreliance on pitch in Chinese. A context-length study further shows that Japanese is relatively robust to shorter contexts, while Chinese benefits markedly from longer contexts. Finally, we integrate the trained model into a real-time processing software, demonstrating CPU-only inference. Together, these findings provide a unified model and empirical evidence for how backchannel timing differs across languages, informing the design of more natural, culturally-aware spoken dialogue systems.
comment: This paper has been accepted for presentation at International Workshop on Spoken Dialogue Systems Technology 2026 (IWSDS 2026) and represents the author's version of the work
☆ Scalable Frameworks for Real-World Audio-Visual Speech Recognition
The practical deployment of Audio-Visual Speech Recognition (AVSR) systems is fundamentally challenged by significant performance degradation in real-world environments, characterized by unpredictable acoustic noise and visual interference. This dissertation posits that a systematic, hierarchical approach is essential to overcome these challenges, achieving the robust scalability at the representation, architecture, and system levels. At the representation level, we investigate methods for building a unified model that learns audio-visual features inherently robust to diverse real-world corruptions, thereby enabling generalization to new environments without specialized modules. To address architectural scalability, we explore how to efficiently expand model capacity while ensuring the adaptive and reliable use of multimodal inputs, developing a framework that intelligently allocates computational resources based on the input characteristics. Finally, at the system level, we present methods to expand the system's functionality through modular integration with large-scale foundation models, leveraging their powerful cognitive and generative capabilities to maximize final recognition accuracy. By systematically providing solutions at each of these three levels, this dissertation aims to build a next-generation, robust, and scalable AVSR system with high reliability in real-world applications.
comment: PhD Dissertation
☆ A Unified Sparse Attention via Multi-Granularity Compression
Efficient long-context understanding and reasoning are increasingly vital for large language model (LLM) applications such as multi-turn dialogue and program analysis. However, the core self-attention mechanism scales quadratically with sequence length, creating a fundamental computational bottleneck. Existing sparse attention methods alleviate this issue but face trade-offs: training-based methods are costly and cannot be directly applied as acceleration plugins for other models, while inference-time methods often compromise efficiency or cross-modal generality. To address these limitations, we present UniSparse, a unified mechanism that introduces the notion of composite tokens--compact representations that aggregate multi-granularity contextual information. Building on this abstraction, UniSparse dynamically constructs sparse attention through multi-granularity compression and block-level selection, enabling efficient and hardware-friendly execution on GPU. Across multiple modalities and tasks ranging from synthetic benchmarks to real-world applications, UniSparse consistently surpasses state-of-the-art sparse attention methods (e.g., MInference, XAttention, FlexPrefill) in both accuracy and efficiency, achieving $\ge$ 99% of full-attention accuracy and up to 2.61$\times$ faster attention computation than FlashAttention.
☆ Grammar Search for Multi-Agent Systems
Automatic search for Multi-Agent Systems has recently emerged as a key focus in agentic AI research. Several prior approaches have relied on LLM-based free-form search over the code space. In this work, we propose a more structured framework that explores the same space through a fixed set of simple, composable components. We show that, despite lacking the generative flexibility of LLMs during the candidate generation stage, our method outperforms prior approaches on four out of five benchmarks across two domains: mathematics and question answering. Furthermore, our method offers additional advantages, including a more cost-efficient search process and the generation of modular, interpretable multi-agent systems with simpler logic.
☆ Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed
Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.
☆ What Affects the Effective Depth of Large Language Models?
The scaling of large language models (LLMs) emphasizes increasing depth, yet performance gains diminish with added layers. Prior work introduces the concept of "effective depth", arguing that deeper models fail to fully utilize their layers for meaningful computation. Building on this, we systematically study how effective depth varies with model scale, training type, and task difficulty. First, we analyze the model behavior of Qwen-2.5 family (1.5B-32B) and find that while the number of effective layers grows with model size, the effective depth ratio remains stable. Besides, comparisons between base and corresponding long-CoT models show no increase in effective depth, suggesting that improved reasoning stems from longer context rather than deeper per-token computation. Furthermore, evaluations across tasks of varying difficulty indicate that models do not dynamically use more layers for harder problems. Our results suggest that current LLMs underuse available depth across scales, training paradigms and tasks of varying difficulties, pointing out research opportunities on increasing the layer utilization rate of LLMs, model pruning, and early exiting. Our code is released at https://github.com/AheadOFpotato/what_affects_effective_depth.
☆ HyperVL: An Efficient and Dynamic Multimodal Large Language Model for Edge Devices
Current multimodal large lanauge models possess strong perceptual and reasoning capabilities, however high computational and memory requirements make them difficult to deploy directly on on-device environments. While small-parameter models are progressively endowed with strong general capabilities, standard Vision Transformer (ViT) encoders remain a critical bottleneck, suffering from excessive latency and memory consumption when processing high-resolution inputs.To address these challenges, we introduce HyperVL, an efficient multimodal large language model tailored for on-device inference. HyperVL adopts an image-tiling strategy to cap peak memory usage and incorporates two novel techniques: (1) a Visual Resolution Compressor (VRC) that adaptively predicts optimal encoding resolutions to eliminate redundant computation, and (2) Dual Consistency Learning (DCL), which aligns multi-scale ViT encoders within a unified framework, enabling dynamic switching between visual branches under a shared LLM. Extensive experiments demonstrate that HyperVL achieves state-of-the-art performance among models of comparable size across multiple benchmarks. Furthermore, it significantly significantly reduces latency and power consumption on real mobile devices, demonstrating its practicality for on-device multimodal inference.
comment: Technical report of Xiaomi HyperAI Team
☆ Structure-Aware Decoding Mechanisms for Complex Entity Extraction with Large-Scale Language Models
This paper proposes a structure-aware decoding method based on large language models to address the difficulty of traditional approaches in maintaining both semantic integrity and structural consistency in nested and overlapping entity extraction tasks. The method introduces a candidate span generation mechanism and structured attention modeling to achieve unified modeling of entity boundaries, hierarchical relationships, and cross-dependencies. The model first uses a pretrained language model to obtain context-aware semantic representations, then captures multi-granular entity span features through candidate representation combinations, and introduces hierarchical structural constraints during decoding to ensure consistency between semantics and structure. To enhance stability in complex scenarios, the model jointly optimizes classification loss and structural consistency loss, maintaining high recognition accuracy under multi-entity co-occurrence and long-sentence dependency conditions. Experiments conducted on the ACE 2005 dataset demonstrate significant improvements in Accuracy, Precision, Recall, and F1-Score, particularly in nested and overlapping entity recognition, where the model shows stronger boundary localization and structural modeling capability. This study verifies the effectiveness of structure-aware decoding in complex semantic extraction tasks, provides a new perspective for developing language models with hierarchical understanding, and establishes a methodological foundation for high-precision information extraction.
☆ Cross-Tokenizer Likelihood Scoring Algorithms for Language Model Distillation
Computing next-token likelihood ratios between two language models (LMs) is a standard task in training paradigms such as knowledge distillation. Since this requires both models to share the same probability space, it becomes challenging when the teacher and student LMs use different tokenizers, for instance, when edge-device deployment necessitates a smaller vocabulary size to lower memory overhead. In this work, we address this vocabulary misalignment problem by uncovering an implicit recursive structure in the commonly deployed Byte-Pair Encoding (BPE) algorithm and utilizing it to create a probabilistic framework for cross-tokenizer likelihood scoring. Our method enables sequence likelihood evaluation for vocabularies different from the teacher model native tokenizer, addressing two specific scenarios: when the student vocabulary is a subset of the teacher vocabulary, and the general case where it is arbitrary. In the subset regime, our framework computes exact likelihoods and provides next-token probabilities for sequential sampling with only O(1) model evaluations per token. When used for distillation, this yields up to a 12% reduction in memory footprint for the Qwen2.5-1.5B model while also improving baseline performance up to 4% on the evaluated tasks. For the general case, we introduce a rigorous lossless procedure that leverages BPE recursive structure, complemented by a fast approximation that keeps large-vocabulary settings practical. Applied to distillation for mathematical reasoning, our approach improves GSM8K accuracy by more than 2% over the current state of the art.
☆ Parameter Efficient Multimodal Instruction Tuning for Romanian Vision Language Models
Focusing on low-resource languages is an essential step toward democratizing generative AI. In this work, we contribute to reducing the multimodal NLP resource gap for Romanian. We translate the widely known Flickr30k dataset into Romanian and further extend it for visual question answering by leveraging open-source LLMs. We demonstrate the usefulness of our datasets by fine-tuning open-source VLMs on Romanian visual question answering. We select VLMs from three widely used model families: LLaMA 3.2, LLaVA 1.6, and Qwen2. For fine-tuning, we employ the parameter-efficient LoRA method. Our models show improved Romanian capabilities in visual QA, as well as on tasks they were not trained on, such as Romanian image description generation. The seven-billion-parameter Qwen2-VL-RoVQA obtains top scores on both tasks, with improvements of +6.05% and +2.61% in BERTScore F1 over its original version. Finally, the models show substantial reductions in grammatical errors compared to their original forms, indicating improvements not only in language understanding but also in Romanian fluency.
☆ Multiscale Aggregated Hierarchical Attention (MAHA): A Game Theoretic and Optimization Driven Approach to Efficient Contextual Modeling in Large Language Models
The quadratic computational complexity of MultiHead SelfAttention (MHSA) remains a fundamental bottleneck in scaling Large Language Models (LLMs) for longcontext tasks. While sparse and linearized attention mechanisms attempt to mitigate this, they often compromise the representation of global dependencies or fail to capture multiscale semantic granularity effectively. In this paper, we propose Multiscale Aggregated Hierarchical Attention (MAHA), a novel architectural framework that reformulates the attention mechanism through hierarchical decomposition and mathematically rigorous aggregation. Unlike conventional approaches that treat token interactions at a single resolution, MAHA dynamically partitions the input sequence into hierarchical scales via learnable downsampling operators. The core innovation lies in its aggregation strategy: we model the fusion of scalespecific attention matrices as a resource allocation problem, solved via a convex optimization framework or a Nash equilibriumbased gametheoretic approach. This ensures a theoretically optimal balance between local nuance and global context fidelity. Implemented within a hybrid dilatedconvolutional transformer backbone, MAHA utilizes differentiable optimization layers to enable endtoend training. Experimental evaluations demonstrate that MAHA achieves superior scalability; empirical FLOPs analysis confirms an 81% reduction in computational cost at a sequence length of 4096 compared to standard attention. This work bridges the gap between optimization theory and sequence modeling, offering a scalable solution for nextgeneration LLMs.
☆ DrugRAG: Enhancing Pharmacy LLM Performance Through A Novel Retrieval-Augmented Generation Pipeline
Objectives: To evaluate large language model (LLM) performance on pharmacy licensure-style question-answering (QA) tasks and develop an external knowledge integration method to improve their accuracy. Methods: We benchmarked eleven existing LLMs with varying parameter sizes (8 billion to 70+ billion) using a 141-question pharmacy dataset. We measured baseline accuracy for each model without modification. We then developed a three-step retrieval-augmented generation (RAG) pipeline, DrugRAG, that retrieves structured drug knowledge from validated sources and augments model prompts with evidence-based context. This pipeline operates externally to the models, requiring no changes to model architecture or parameters. Results: Baseline accuracy ranged from 46% to 92%, with GPT-5 (92%) and o3 (89%) achieving the highest scores. Models with fewer than 8 billion parameters scored below 50%. DrugRAG improved accuracy across all tested models, with gains ranging from 7 to 21 percentage points (e.g., Gemma 3 27B: 61% to 71%, Llama 3.1 8B: 46% to 67%) on the 141-item benchmark. Conclusion: We demonstrate that external structured drug knowledge integration through DrugRAG measurably improves LLM accuracy on pharmacy tasks without modifying the underlying models. This approach provides a practical pipeline for enhancing pharmacy-focused AI applications with evidence-based information.
comment: 11 pages, 2 figures, 3 tables
☆ Integrating Large Language Models and Knowledge Graphs to Capture Political Viewpoints in News Media
News sources play a central role in democratic societies by shaping political and social discourse through specific topics, viewpoints and voices. Understanding these dynamics is essential for assessing whether the media landscape offers a balanced and fair account of public debate. In earlier work, we introduced a pipeline that, given a news corpus, i) uses a hybrid human-machine approach to identify the range of viewpoints expressed about a given topic, and ii) classifies relevant claims with respect to the identified viewpoints, defined as sets of semantically and ideologically congruent claims (e.g., positions arguing that immigration positively impacts the UK economy). In this paper, we improve this pipeline by i) fine-tuning Large Language Models (LLMs) for viewpoint classification and ii) enriching claim representations with semantic descriptions of relevant actors drawn from Wikidata. We evaluate our approach against alternative solutions on a benchmark centred on the UK immigration debate. Results show that while both mechanisms independently improve classification performance, their integration yields the best results, particularly when using LLMs capable of processing long inputs.
☆ Task Matrices: Linear Maps for Cross-Model Finetuning Transfer NeurIPS
Results in interpretability suggest that large vision and language models learn implicit linear encodings when models are biased by in-context prompting. However, the existence of similar linear representations in more general adaptation regimes has not yet been demonstrated. In this work, we develop the concept of a task matrix, a linear transformation from a base to finetuned embedding state. We demonstrate that for vision and text models and ten different datasets, a base model augmented with a task matrix achieves results surpassing linear probes, sometimes approaching finetuned levels. Our results validate the existence of cross-layer linear encodings between pretrained and finetuned architectures. Moreover, we show that a data-based approximation for such encodings is both efficient and generalizable to multiple domains. We make our implementation publicly available.
comment: NeurIPS Unireps 2025
☆ Audio MultiChallenge: A Multi-Turn Evaluation of Spoken Dialogue Systems on Natural Human Interaction
End-to-end (E2E) spoken dialogue systems are increasingly replacing cascaded pipelines for voice-based human-AI interaction, processing raw audio directly without intermediate transcription. Existing benchmarks primarily evaluate these models on synthetic speech and single-turn tasks, leaving realistic multi-turn conversational ability underexplored. We introduce Audio MultiChallenge, an open-source benchmark to evaluate E2E spoken dialogue systems under natural multi-turn interaction patterns. Building on the text-based MultiChallenge framework, which evaluates Inference Memory, Instruction Retention, and Self Coherence, we introduce a new axis Voice Editing that tests robustness to mid-utterance speech repairs and backtracking. We further augment each axis to the audio modality, such as introducing Audio-Cue challenges for Inference Memory that require recalling ambient sounds and paralinguistic signals beyond semantic content. We curate 452 conversations from 47 speakers with 1,712 instance-specific rubrics through a hybrid audio-native agentic and human-in-the-loop pipeline that exposes model failures at scale while preserving natural disfluencies found in unscripted human speech. Our evaluation of proprietary and open-source models reveals that even frontier models struggle on our benchmark, with Gemini 3 Pro Preview (Thinking), our highest-performing model achieving a 54.65% pass rate. Error analysis shows that models fail most often on our new axes and that Self Coherence degrades with longer audio context. These failures reflect difficulty of tracking edits, audio cues, and long-range context in natural spoken dialogue. Audio MultiChallenge provides a reproducible testbed to quantify them and drive improvements in audio-native multi-turn interaction capability.
☆ T5Gemma 2: Seeing, Reading, and Understanding Longer
We introduce T5Gemma 2, the next generation of the T5Gemma family of lightweight open encoder-decoder models, featuring strong multilingual, multimodal and long-context capabilities. T5Gemma 2 follows the adaptation recipe (via UL2) in T5Gemma -- adapting a pretrained decoder-only model into an encoder-decoder model, and extends it from text-only regime to multimodal based on the Gemma 3 models. We further propose two methods to improve the efficiency: tied word embedding that shares all embeddings across encoder and decoder, and merged attention that unifies decoder self- and cross-attention into a single joint module. Experiments demonstrate the generality of the adaptation strategy over architectures and modalities as well as the unique strength of the encoder-decoder architecture on long context modeling. Similar to T5Gemma, T5Gemma 2 yields comparable or better pretraining performance and significantly improved post-training performance than its Gemma 3 counterpart. We release the pretrained models (270M-270M, 1B-1B and 4B-4B) to the community for future research.
comment: technical report
☆ Incentives or Ontology? A Structural Rebuttal to OpenAI's Hallucination Thesis
OpenAI has recently argued that hallucinations in large language models result primarily from misaligned evaluation incentives that reward confident guessing rather than epistemic humility. On this view, hallucination is a contingent behavioral artifact, remediable through improved benchmarks and reward structures. In this paper, we challenge that interpretation. Drawing on previous work on structural hallucination and empirical experiments using a Licensing Oracle, we argue that hallucination is not an optimization failure but an architectural inevitability of the transformer model. Transformers do not represent the world; they model statistical associations among tokens. Their embedding spaces form a pseudo-ontology derived from linguistic co-occurrence rather than world-referential structure. At ontological boundary conditions - regions where training data is sparse or incoherent - the model necessarily interpolates fictional continuations in order to preserve coherence. No incentive mechanism can modify this structural dependence on pattern completion. Our empirical results demonstrate that hallucination can only be eliminated through external truth-validation and abstention modules, not through changes to incentives, prompting, or fine-tuning. The Licensing Oracle achieves perfect abstention precision across domains precisely because it supplies grounding that the transformer lacks. We conclude that hallucination is a structural property of generative architectures and that reliable AI requires hybrid systems that distinguish linguistic fluency from epistemic responsibility.
comment: 17 pages, references to prior work arXiv:2509.16297 and arXiv:2511.06073
♻ ☆ Love First, Know Later: Persona-Based Romantic Compatibility Through LLM Text World Engines NeurIPS 2025
We propose Love First, Know Later: a paradigm shift in computational matching that simulates interactions first, then assesses compatibility. Instead of comparing static profiles, our framework leverages LLMs as text world engines that operate in dual capacity-as persona-driven agents following behavioral policies and as the environment modeling interaction dynamics. We formalize compatibility assessment as a reward-modeling problem: given observed matching outcomes, we learn to extract signals from simulations that predict human preferences. Our key insight is that relationships hinge on responses to critical moments-we translate this observation from relationship psychology into mathematical hypotheses, enabling effective simulation. Theoretically, we prove that as LLM policies better approximate human behavior, the induced matching converges to optimal stable matching. Empirically, we validate on speed dating data for initial chemistry and divorce prediction for long-term stability. This paradigm enables interactive, personalized matching systems where users iteratively refine their agents, unlocking future possibilities for transparent and interactive compatibility assessment.
comment: NeurIPS 2025 Workshop: First Workshop on LLM Persona Modeling (Oral)
♻ ☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
♻ ☆ Latent Self-Consistency for Reliable Majority-Set Selection in Short- and Long-Answer Reasoning
Probabilistic decoding in Large Language Models (LLMs) often yields inconsistent outputs, particularly on complex or long-form questions. Self-Consistency (SC) mitigates this for short-form QA by majority voting over exact strings, whereas Universal Self-Consistency (USC) and Weighted Unigram Consistency Score (WUCS) extend to long-form responses but lose accuracy on short-form benchmarks. We introduce \textbf{Latent Self-Consistency (LSC)}, which selects the most semantically consistent response using learnable token embeddings. LSC's lightweight forward processing of summary tokens only introduces negligible runtime overhead (at most $0.9\%$) on top of standard decoding of the base LLM, and requires no changes to the model architecture. Across 6 short-form and 5 long-form reasoning benchmarks (e.g., MATH, MMLU, TruthfulQA), LSC surpasses SC, USC, and WUCS on both short-form and long-form on average performance, while adding negligible computational overhead on vanilla inference. These results position LSC as a reliable consistency-selection method that works effectively across various answer formats. Additionally, LSC provides well-calibrated confidence estimates, maintaining low expected calibration error across both answer formats.
♻ ☆ Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
♻ ☆ Listening Between the Lines: Decoding Podcast Narratives with Language Modeling
Podcasts have become a central arena for shaping public opinion, making them a vital source for understanding contemporary discourse. Their typically unscripted, multi-themed, and conversational style offers a rich but complex form of data. To analyze how podcasts persuade and inform, we must examine their narrative structures -- specifically, the narrative frames they employ. The fluid and conversational nature of podcasts presents a significant challenge for automated analysis. We show that existing large language models, typically trained on more structured text such as news articles, struggle to capture the subtle cues that human listeners rely on to identify narrative frames. As a result, current approaches fall short of accurately analyzing podcast narratives at scale. To solve this, we develop and evaluate a fine-tuned BERT model that explicitly links narrative frames to specific entities mentioned in the conversation, effectively grounding the abstract frame in concrete details. Our approach then uses these granular frame labels and correlates them with high-level topics to reveal broader discourse trends. The primary contributions of this paper are: (i) a novel frame-labeling methodology that more closely aligns with human judgment for messy, conversational data, and (ii) a new analysis that uncovers the systematic relationship between what is being discussed (the topic) and how it is being presented (the frame), offering a more robust framework for studying influence in digital media.
comment: 10 pages, 6 Figures, 5 Tables. Under review
♻ ☆ Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity (A $\ne$ A) -- the same symbol refers to different entities across contexts; (2) Approximate Identity (A $\approx$ A) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining A $\ne$ A across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ RepoTransBench: A Real-World Multilingual Benchmark for Repository-Level Code Translation
Repository-level code translation refers to translating an entire code repository from one programming language to another while preserving the functionality of the source repository. Many benchmarks have been proposed to evaluate the performance of such code translators. However, previous benchmarks mostly provide fine-grained samples, focusing at either code snippet, function, or file-level code translation. Such benchmarks do not accurately reflect real-world demands, where entire repositories often need to be translated, involving longer code length and more complex functionalities. To address this gap, we propose a new benchmark, named RepoTransBench, which is a real-world multilingual repository-level code translation benchmark featuring 1,897 real-world repository samples across 13 language pairs with automatically executable test suites. Besides, we introduce RepoTransAgent, a general agent framework to perform repository-level code translation. We evaluate both our benchmark's challenges and agent's effectiveness using several methods and backbone LLMs, revealing that repository-level translation remains challenging, where the best-performing method achieves only a 32.8% success rate. Furthermore, our analysis reveals that translation difficulty varies significantly by language pair direction, with dynamic-to-static language translation being much more challenging than the reverse direction (achieving below 10% vs. static-to-dynamic at 45-63%). Finally, we conduct a detailed error analysis and highlight current LLMs' deficiencies in repository-level code translation, which could provide a reference for further improvements. We provide the code and data at https://github.com/DeepSoftwareAnalytics/RepoTransBench.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
comment: added acknowledgments
♻ ☆ Tree Matching Networks for Natural Language Inference: Parameter-Efficient Semantic Understanding via Dependency Parse Trees
In creating sentence embeddings for Natural Language Inference (NLI) tasks, using transformer-based models like BERT leads to high accuracy, but require hundreds of millions of parameters. These models take in sentences as a sequence of tokens, and learn to encode the meaning of the sequence into embeddings such that those embeddings can be used reliably for NLI tasks. Essentially, every word is considered against every other word in the sequence, and the transformer model is able to determine the relationships between them, entirely from scratch. However, a model that accepts explicit linguistic structures like dependency parse trees may be able to leverage prior encoded information about these relationships, without having to learn them from scratch, thus improving learning efficiency. To investigate this, we adapt Graph Matching Networks (GMN) to operate on dependency parse trees, creating Tree Matching Networks (TMN). We compare TMN to a BERT based model on the SNLI entailment task and on the SemEval similarity task. TMN is able to achieve significantly better results with a significantly reduced memory footprint and much less training time than the BERT based model on the SNLI task, while both models struggled to preform well on the SemEval. Explicit structural representations significantly outperform sequence-based models at comparable scales, but current aggregation methods limit scalability. We propose multi-headed attention aggregation to address this limitation.
comment: 16 pages, preprint
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ One Battle After Another: Probing LLMs' Limits on Multi-Turn Instruction Following with a Benchmark Evolving Framework
Evaluating LLMs' instruction-following ability in multi-topic dialogues is essential yet challenging. Existing benchmarks are limited to a fixed number of turns, susceptible to saturation and failing to account for users' interactive experience. In this work, we propose a novel framework backed by a three-layer tracking mechanism and a query synthesis agent to mimic sequential user behaviors. Incorporating Flow Theory, we introduce process-centric metrics and terminate a conversational evaluation only upon exhausting user patience. Upon this framework, we present EvolIF, an evolving benchmark covering 12 constraint groups. Results indicate that GPT-5 excels, sustaining 14 turns with 66.40% robustness. It outperforms Gemini-3.0-Pro by a margin of 5.59%, while other models trail behind. Resources are available at https://github.com/JiaQiSJTU/EvolvingInstructionFollowing.
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself-a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following, mathematics, and coding benchmarks show that pretrained models can be effectively improved with self-play alone.
♻ ☆ MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment
Mental health disorders affect hundreds of millions globally, and the Web now serves as a primary medium for accessing support, information, and assessment. Large language models (LLMs) offer scalable and accessible assistance, yet their deployment in mental-health settings remains risky when their reasoning is incomplete, inconsistent, or ungrounded. Existing psychological LLMs emphasize emotional understanding or knowledge recall but overlook the step-wise, clinically aligned reasoning required for appraisal, diagnosis, intervention planning, abstraction, and verification. To address these issues, we introduce MentraSuite, a unified framework for advancing reliable mental-health reasoning. We propose MentraBench, a comprehensive benchmark spanning five core reasoning aspects, six tasks, and 13 datasets, evaluating both task performance and reasoning quality across five dimensions: conciseness, coherence, hallucination avoidance, task understanding, and internal consistency. We further present Mindora, a post-trained model optimized through a hybrid SFT-RL framework with an inconsistency-detection reward to enforce faithful and coherent reasoning. To support training, we construct high-quality trajectories using a novel reasoning trajectory generation strategy, that strategically filters difficult samples and applies a structured, consistency-oriented rewriting process to produce concise, readable, and well-balanced trajectories. Across 20 evaluated LLMs, Mindora achieves the highest average performance on MentraBench and shows remarkable performances in reasoning reliability, demonstrating its effectiveness for complex mental-health scenarios.
♻ ☆ Analysing Knowledge Construction in Online Learning: Adapting the Interaction Analysis Model for Unstructured Large-Scale Discourse
The rapid expansion of online courses and social media has generated large volumes of unstructured learner-generated text. Understanding how learners construct knowledge in these spaces is crucial for analysing learning processes, informing content design, and providing feedback at scale. However, existing approaches typically rely on manual coding of well-structured discussion forums, which does not scale to the fragmented discourse found in online learning. This study proposes and validates a framework that combines a codebook inspired by the Interaction Analysis Model with an automated classifier to enable large-scale analysis of knowledge construction in unstructured online discourse. We adapt four comment-level categories of knowledge construction: Non-Knowledge Construction, Share, Explore, and Integrate. Three trained annotators coded a balanced sample of 20,000 comments from YouTube education channels. The codebook demonstrated strong reliability, with Cohen's kappa = 0.79 on the main dataset and 0.85--0.93 across four additional educational domains. For automated classification, bag-of-words baselines were compared with transformer-based language models using 10-fold cross-validation. A DeBERTa-v3-large model achieved the highest macro-averaged F1 score (0.841), outperforming all baselines and other transformer models. External validation on four domains yielded macro-F1 above 0.705, with stronger transfer in medicine and programming, where discourse was more structured and task-focused, and weaker transfer in language and music, where comments were more varied and context-dependent. Overall, the study shows that theory-driven, semi-automated analysis of knowledge construction at scale is feasible, enabling the integration of knowledge-construction indicators into learning analytics and the design of online learning environments.
♻ ☆ Why Reinforcement Fine-Tuning Enables MLLMs Preserve Prior Knowledge Better: A Data Perspective
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on open-source multimodal model, Qwen2.5-VL series. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly but maintains prior knowledge. We study this phenomenon through learning dynamics by examining both the magnitude and direction of how training data influence prior knowledge. Our analysis shows that RFT mainly reinforces correct samples naturally aligned with the base model's probability landscape, leading to weaker interference with prior knowledge. Moreover, training on RFT-simulated rollouts, which exert a small magnitude of influence and are well aligned in direction to prior knowledge, allows SFT to preserve prior knowledge better while rapidly learning new tasks. These findings suggest that distribution of training data, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 28 pages (Preprint.)
♻ ☆ TaP: A Taxonomy-Guided Framework for Automated and Scalable Preference Data Generation
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
comment: 34 pages, 16 tables, 11 figures
♻ ☆ Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention
Crowdsourced street-view imagery from social media provides real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing image geo-localization approaches, also known as Visual Place Recognition (VPR) models, exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geo-knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
comment: Updated author list to include additional contributor. Revised title and improved methodology section based on collaborative feedback
♻ ☆ Question Answering Over Spatio-Temporal Knowledge Graph
Spatio-temporal knowledge graphs (STKGs) enhance traditional KGs by integrating temporal and spatial annotations, enabling precise reasoning over questions with spatio-temporal dependencies. Despite their potential, research on spatio-temporal knowledge graph question answering (STKGQA) remains limited. This is primarily due to the lack of datasets that simultaneously contain spatio-temporal information, as well as methods capable of handling implicit spatio-temporal reasoning. To bridge this gap, we introduce the spatio-temporal question answering dataset (STQAD), the first comprehensive benchmark comprising 10,000 natural language questions that require both temporal and spatial reasoning. STQAD is constructed with real-world facts containing spatio-temporal information, ensuring that the dataset reflects practical scenarios. Furthermore, our experiments reveal that existing KGQA methods underperform on STQAD, primarily due to their inability to model spatio-temporal interactions. To address this, we propose the spatio-temporal complex question answering (STCQA) method, which jointly embeds temporal and spatial features into KG representations and dynamically filters answers through constraint-aware reasoning. STCQA achieves state-of-the-art performance, significantly outperforming existing baselines. Our work not only provides a valuable resource for future research but also advances the field by offering a robust baseline for answering complex spatio-temporal questions.
comment: 34 pages, 10 figures. The paper has been accepted by Knowledge-Based Systems
♻ ☆ DIWALI: Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context EMNLP 2025
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises ~8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI, project webpage https://nlip-lab.github.io/nlip/publications/diwali/, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation
comment: Accepted at EMNLP 2025
♻ ☆ Sliding Window Attention Adaptation
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
♻ ☆ PAT: Accelerating LLM Decoding via Prefix-Aware Attention with Resource Efficient Multi-Tile Kernel ASPLOS'26
LLM serving is increasingly dominated by decode attention, which is a memory-bound operation due to massive KV cache loading from global memory. Meanwhile, real-world workloads exhibit substantial, hierarchical shared prefixes across requests (e.g., system prompts, tools/templates, RAG). Existing attention implementations fail to fully exploit prefix sharing: one-query-per-CTA execution repeatedly loads shared prefix KV cache, while one-size-fits-all tiling leaves on-chip resources idle and exacerbates bubbles for uneven KV lengths. These choices amplify memory bandwidth pressure and stall memory-bound decode attention. This paper introduces PAT, a prefix-aware attention kernel implementation for LLM decoding that organizes execution with a pack-forward-merge paradigm. PAT packs queries by shared prefix to reduce repeated memory accesses, runs a customized multi-tile kernel to achieve high resource efficiency. It further applies practical multi-stream forwarding and KV splitting to reduce resource bubbles. The final merge performs online softmax with negligible overhead. We implement PAT as an off-the-shelf plugin for vLLM. Evaluation on both real-world and synthetic workloads shows that PAT reduces attention latency by 53.5% on average and TPOT by 17.0-93.1% under the same configurations against state-of-the-art attention kernels. PAT's source code is publicly available at https://github.com/flashserve/PAT.
comment: Accepted by ASPLOS'26, code available at https://github.com/flashserve/PAT
♻ ☆ Optimizing Large Language Models for ESG Activity Detection in Financial Texts
The integration of Environmental, Social, and Governance (ESG) factors into corporate decision-making is a fundamental aspect of sustainable finance. However, ensuring that business practices align with evolving regulatory frameworks remains a persistent challenge. AI-driven solutions for automatically assessing the alignment of sustainability reports and non-financial disclosures with specific ESG activities could greatly support this process. Yet, this task remains complex due to the limitations of general-purpose Large Language Models (LLMs) in domain-specific contexts and the scarcity of structured, high-quality datasets. In this paper, we investigate the ability of current-generation LLMs to identify text related to environmental activities. Furthermore, we demonstrate that their performance can be significantly enhanced through fine-tuning on a combination of original and synthetically generated data. To this end, we introduce ESG-Activities, a benchmark dataset containing 1,325 labelled text segments classified according to the EU ESG taxonomy. Our experimental results show that fine-tuning on ESG-Activities significantly enhances classification accuracy, with open models such as Llama 7B and Gemma 7B outperforming large proprietary solutions in specific configurations. These findings have important implications for financial analysts, policymakers, and AI researchers seeking to enhance ESG transparency and compliance through advanced natural language processing techniques.
comment: Published in the Proceedings of the ACM International Conference on AI in Finance (ICAIF). ACM version
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ Adaptive Detector-Verifier Framework for Zero-Shot Polyp Detection in Open-World Settings
Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both textual descriptions and sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Explicit Context Imperative Paradigm (ECIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
comment: 27 pages, 23 figures
♻ ☆ The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.
comment: 16 pages, 7 figures, 9 tables. Code and data available at https://github.com/erikl2/safety-refusal-stability
♻ ☆ TIBSTC-CoT: A Multi-Domain Instruction Dataset for Chain-of-Thought Reasoning in Language Models
To address the severe data scarcity in Tibetan, a low-resource language spoken by over six million people, we introduce TIBSTC-CoT, the large-scale, multi-domain Tibetan dataset automatically constructed via chain-of-thought prompting with large language models (LLMs). TIBSTC-CoT establishes a scalable and reproducible framework for dataset creation in low-resource settings, covering diverse domains and reasoning patterns essential for language understanding and generation. Building on this dataset, we develop the Sunshine-thinking LLM family, a series of Tibetan-centric LLMs equipped with chain-of-thought capabilities. Trained entirely on TIBSTC-CoT, Sunshine-thinking has demonstrated strong reasoning and generation performance, comparable to state-of-the-art (SOTA) multilingual LLMs. Our work marks a significant step toward inclusive AI by enabling high-quality Tibetan language processing through both resource creation and model innovation. All data are available: https://github.com/Vicentvankor/sun-shine.
comment: We will merge this paper with arXiv:2503.18288
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at enterprise-level codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context operation, a persistent note-taking mechanism for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 54.3%, surpassing both research-grade and proprietary coding agents under comparable model conditions. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest draft
♻ ☆ Pronunciation-Lexicon Free Training for Phoneme-based Crosslingual ASR via Joint Stochastic Approximation
Recently, pre-trained models with phonetic supervision have demonstrated their advantages for crosslingual speech recognition in data efficiency and information sharing across languages. However, a limitation is that a pronunciation lexicon is needed for such phoneme-based crosslingual speech recognition. In this study, we aim to eliminate the need for pronunciation lexicons and propose a latent variable model based method, with phonemes being treated as discrete latent variables. The new method consists of a speech-to-phoneme (S2P) model and a phoneme-to-grapheme (P2G) model, and a grapheme-to-phoneme (G2P) model is introduced as an auxiliary inference model. To jointly train the three models, we utilize the joint stochastic approximation (JSA) algorithm, which is a stochastic extension of the EM (expectation-maximization) algorithm and has demonstrated superior performance particularly in estimating discrete latent variable models. Furthermore, we propose marginal likelihood scoring (MLS) decoding to align inference with the training objective and P2G augmentation to improve the robustness of P2G mapping. Based on the Whistle multilingual pre-trained S2P model, crosslingual experiments are conducted in Polish (130 h) and Indonesian (20 h). With only 10 minutes of phoneme supervision, the new method, JSA-SPG, achieves 5% error rate reductions compared to the best crosslingual fine-tuning approach using subword or full phoneme supervision. Furthermore, it is found that in language domain adaptation (i.e., utilizing cross-domain text-only data), JSA-SPG outperforms the standard practice of language model fusion via the auxiliary support of the G2P model by 9% error rate reductions. To facilitate reproducibility and encourage further exploration in this field, we open-source the JSA-SPG training code and complete pipeline.
comment: Accepted by IEEE TASLP
♻ ☆ AugServe: Adaptive Request Scheduling for Augmented Large Language Model Inference Serving
As augmented large language models (LLMs) with external tools become increasingly popular in web applications, improving augmented LLM inference serving efficiency and optimizing service-level objectives (SLOs) are critical for enhancing user experience. To achieve this, inference systems must maximize request handling within latency constraints, referred to as increasing effective throughput. However, existing systems face two major challenges: (i) reliance on first-come-first-served (FCFS) scheduling causes severe head-of-line blocking, leading to queuing delays exceeding the SLOs for many requests; and (ii) static batch token limit, which fails to adapt to fluctuating loads and hardware conditions. Both of these factors degrade effective throughput and service quality. This paper presents AugServe, an efficient inference framework designed to reduce queueing latency and enhance effective throughput for augmented LLM inference services. The core idea of AugServe is a two-stage adaptive request scheduling strategy. Specifically, AugServe combines the inference features of augmented LLM requests to optimize the order of scheduling decisions (stage I). These decisions are continuously refined with runtime information (stage II), adapting to both request characteristics and system capabilities. In addition, AugServe dynamically adjusts the token batching mechanism based on hardware status and real-time load, further enhancing throughput performance. Experimental results show that AugServe achieves 4.7x and 3.3x higher effective throughput than vLLM and InferCept, while reducing time-to-first-token (TTFT) by up to 96.3% and 95.0%, respectively.
♻ ☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main
♻ ☆ Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
♻ ☆ Can Finetuing LLMs on Small Human Samples Increase Heterogeneity, Alignment, and Belief-Action Coherence?
There is ongoing debate about whether large language models (LLMs) can serve as substitutes for human participants in survey and experimental research. While recent work in fields such as marketing and psychology has explored the potential of LLM-based simulation, a growing body of evidence cautions against this practice: LLMs often fail to align with real human behavior, exhibiting limited diversity, systematic misalignment for minority subgroups, insufficient within-group variance, and discrepancies between stated beliefs and actions. This study examines an important and distinct question in this domain: whether fine-tuning on a small subset of human survey data, such as that obtainable from a pilot study, can mitigate these issues and yield realistic simulated outcomes. Using a behavioral experiment on information disclosure, we compare human and LLM-generated responses across multiple dimensions, including distributional divergence, subgroup alignment, belief-action coherence, and the recovery of regression coefficients. We find that fine-tuning on small human samples substantially improves heterogeneity, alignment, and belief-action coherence relative to the base model. However, even the best-performing fine-tuned models fail to reproduce the regression coefficients of the original study, suggesting that LLM-generated data remain unsuitable for replacing human participants in formal inferential analyses.
♻ ☆ Enhancing Long-term RAG Chatbots with Psychological Models of Memory Importance and Forgetting
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY
comment: 37 pages, accepted and published in Dialogue & Discourse 16(2) (2025)
♻ ☆ Estimating Privacy Leakage of Augmented Contextual Knowledge in Language Models
Language models (LMs) rely on their parametric knowledge augmented with relevant contextual knowledge for certain tasks, such as question answering. However, the contextual knowledge can contain private information that may be leaked when answering queries, and estimating this privacy leakage is not well understood. A straightforward approach of directly comparing an LM's output to the contexts can overestimate the privacy risk, since the LM's parametric knowledge might already contain the augmented contextual knowledge. To this end, we introduce *context influence*, a metric that builds on differential privacy, a widely-adopted privacy notion, to estimate the privacy leakage of contextual knowledge during decoding. Our approach effectively measures how each subset of the context influences an LM's response while separating the specific parametric knowledge of the LM. Using our context influence metric, we demonstrate that context privacy leakage occurs when contextual knowledge is out of distribution with respect to parametric knowledge. Moreover, we experimentally demonstrate how context influence properly attributes the privacy leakage to augmented contexts, and we evaluate how factors -- such as model size, context size, generation position, etc. -- affect context privacy leakage. The practical implications of our results will inform practitioners of the privacy risk associated with augmented contextual knowledge.
♻ ☆ Differentially Private Knowledge Distillation via Synthetic Text Generation
Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy puts pressure on practitioners to train LLMs with Differential Privacy (DP) on private data. Concurrently, the exponential growth in parameter size of LLMs necessitates model compression before deployment of LLMs on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, simultaneously applying both schemes can compound the utility degradation. To this end, we propose DistilDP: a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private teacher LLM. The knowledge of a teacher LLM is transferred onto the student in two ways: one way from the synthetic data itself -- the hard labels, and the other way by the output distribution of the teacher evaluated on the synthetic data -- the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by aligning the hidden representations between both. Our experimental results demonstrate that DistilDP can substantially improve the utility over existing baselines, at least $9.0$ PPL on the Big Patent dataset, with strong privacy parameters, $ε=2$. These promising results progress privacy-preserving compression of autoregressive LLMs. Our code can be accessed here: https://github.com/james-flemings/dp_compress.
♻ ☆ SemShareKV: Efficient KVCache Sharing for Semantically Similar Prompts via Token-Level LSH Matching
As large language models (LLMs) continue to scale, the memory footprint of key-value (KV) caches during inference has become a significant bottleneck. Existing approaches primarily focus on compressing KV caches within a single prompt or reusing shared prefixes or frequently ocurred text segments across prompts. However, such strategies are limited in scenarios where prompts are semantically similar but lexically different, which frequently occurs in tasks such as multi-document summarization and conversational agents. We propose \textit{SemShareKV}, a KV cache sharing and compression framework that accelerates LLM inference by reusing KVCache in semantically similar prompts. Instead of relying on exact token matches, SemShareKV applies fuzzy token matching using locality-sensitive hashing (LSH) on token embeddings and incorporates Rotary Position Embedding (RoPE) to better preserve positional information. By selectively reusing relevant key-value pairs from a reference prompt's cache, SemShareKV reduces redundant computation while maintaining output quality. Experiments on diverse summarization datasets show up to 6.25$\times$ speedup and 42\% lower GPU memory usage with 5k tokens input, with negligible quality degradation. These results highlight the potential of semantic-aware cache sharing for efficient LLM inference.
comment: 11 figures, 14pages
♻ ☆ The AI Productivity Index (APEX)
We present an extended version of the AI Productivity Index (APEX-v1-extended), a benchmark for assessing whether frontier models are capable of performing economically valuable tasks in four jobs: investment banking associate, management consultant, big law associate, and primary care physician (MD). This technical report details the extensions to APEX-v1, including an increase in the held-out evaluation set from n = 50 to n = 100 cases per job (n = 400 total) and updates to the grading methodology. We present a new leaderboard, where GPT5 (Thinking = High) remains the top performing model with a score of 67.0%. APEX-v1-extended shows that frontier models still have substantial limitations when performing typical professional tasks. To support further research, we are open sourcing n = 25 non-benchmark example cases per role (n = 100 total) along with our evaluation harness.
♻ ☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
♻ ☆ Hidden in the Haystack: Smaller Needles are More Difficult for LLMs to Find
Large language models (LLMs) face significant challenges with needle-in-ahaystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size, the length of the answer-containing document, has received little attention. We present the first systematic study of gold context size in long-context question answering, spanning three diverse benchmarks (general knowledge, biomedical reasoning, and mathematical reasoning), eleven state-of-the-art LLMs (including recent reasoning models), and more than 150K controlled runs. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This effect persists under rigorous confounder analysis: even after controlling for gold context position, answer token repetition, gold-to-distractor ratio, distractor volume, and domain specificity, gold context size remains a decisive, independent predictor of success. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
comment: Under Review
Computer Vision and Pattern Recognition 161
☆ MemFlow: Flowing Adaptive Memory for Consistent and Efficient Long Video Narratives
The core challenge for streaming video generation is maintaining the content consistency in long context, which poses high requirement for the memory design. Most existing solutions maintain the memory by compressing historical frames with predefined strategies. However, different to-generate video chunks should refer to different historical cues, which is hard to satisfy with fixed strategies. In this work, we propose MemFlow to address this problem. Specifically, before generating the coming chunk, we dynamically update the memory bank by retrieving the most relevant historical frames with the text prompt of this chunk. This design enables narrative coherence even if new event happens or scenario switches in future frames. In addition, during generation, we only activate the most relevant tokens in the memory bank for each query in the attention layers, which effectively guarantees the generation efficiency. In this way, MemFlow achieves outstanding long-context consistency with negligible computation burden (7.9% speed reduction compared with the memory-free baseline) and keeps the compatibility with any streaming video generation model with KV cache.
comment: Project Page: https://sihuiji.github.io/MemFlow.github.io/
☆ TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs
This paper does not introduce a novel method but instead establishes a straightforward, incremental, yet essential baseline for video temporal grounding (VTG), a core capability in video understanding. While multimodal large language models (MLLMs) excel at various video understanding tasks, the recipes for optimizing them for VTG remain under-explored. In this paper, we present TimeLens, a systematic investigation into building MLLMs with strong VTG ability, along two primary dimensions: data quality and algorithmic design. We first expose critical quality issues in existing VTG benchmarks and introduce TimeLens-Bench, comprising meticulously re-annotated versions of three popular benchmarks with strict quality criteria. Our analysis reveals dramatic model re-rankings compared to legacy benchmarks, confirming the unreliability of prior evaluation standards. We also address noisy training data through an automated re-annotation pipeline, yielding TimeLens-100K, a large-scale, high-quality training dataset. Building on our data foundation, we conduct in-depth explorations of algorithmic design principles, yielding a series of meaningful insights and effective yet efficient practices. These include interleaved textual encoding for time representation, a thinking-free reinforcement learning with verifiable rewards (RLVR) approach as the training paradigm, and carefully designed recipes for RLVR training. These efforts culminate in TimeLens models, a family of MLLMs with state-of-the-art VTG performance among open-source models and even surpass proprietary models such as GPT-5 and Gemini-2.5-Flash. All codes, data, and models will be released to facilitate future research.
comment: Project Page: https://timelens-arc-lab.github.io/
☆ Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
comment: Tech report; project page: https://zhaoyue-zephyrus.github.io/npq/
☆ CRISP: Contact-Guided Real2Sim from Monocular Video with Planar Scene Primitives SP
We introduce CRISP, a method that recovers simulatable human motion and scene geometry from monocular video. Prior work on joint human-scene reconstruction relies on data-driven priors and joint optimization with no physics in the loop, or recovers noisy geometry with artifacts that cause motion tracking policies with scene interactions to fail. In contrast, our key insight is to recover convex, clean, and simulation-ready geometry by fitting planar primitives to a point cloud reconstruction of the scene, via a simple clustering pipeline over depth, normals, and flow. To reconstruct scene geometry that might be occluded during interactions, we make use of human-scene contact modeling (e.g., we use human posture to reconstruct the occluded seat of a chair). Finally, we ensure that human and scene reconstructions are physically-plausible by using them to drive a humanoid controller via reinforcement learning. Our approach reduces motion tracking failure rates from 55.2\% to 6.9\% on human-centric video benchmarks (EMDB, PROX), while delivering a 43\% faster RL simulation throughput. We further validate it on in-the-wild videos including casually-captured videos, Internet videos, and even Sora-generated videos. This demonstrates CRISP's ability to generate physically-valid human motion and interaction environments at scale, greatly advancing real-to-sim applications for robotics and AR/VR.
comment: Project page: https://crisp-real2sim.github.io/CRISP-Real2Sim/
☆ Native and Compact Structured Latents for 3D Generation
Recent advancements in 3D generative modeling have significantly improved the generation realism, yet the field is still hampered by existing representations, which struggle to capture assets with complex topologies and detailed appearance. This paper present an approach for learning a structured latent representation from native 3D data to address this challenge. At its core is a new sparse voxel structure called O-Voxel, an omni-voxel representation that encodes both geometry and appearance. O-Voxel can robustly model arbitrary topology, including open, non-manifold, and fully-enclosed surfaces, while capturing comprehensive surface attributes beyond texture color, such as physically-based rendering parameters. Based on O-Voxel, we design a Sparse Compression VAE which provides a high spatial compression rate and a compact latent space. We train large-scale flow-matching models comprising 4B parameters for 3D generation using diverse public 3D asset datasets. Despite their scale, inference remains highly efficient. Meanwhile, the geometry and material quality of our generated assets far exceed those of existing models. We believe our approach offers a significant advancement in 3D generative modeling.
comment: Project Page: https://microsoft.github.io/TRELLIS.2/
☆ MMGR: Multi-Modal Generative Reasoning
Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.
comment: work in progress
☆ VASA-3D: Lifelike Audio-Driven Gaussian Head Avatars from a Single Image NeurIPS 2025
We propose VASA-3D, an audio-driven, single-shot 3D head avatar generator. This research tackles two major challenges: capturing the subtle expression details present in real human faces, and reconstructing an intricate 3D head avatar from a single portrait image. To accurately model expression details, VASA-3D leverages the motion latent of VASA-1, a method that yields exceptional realism and vividness in 2D talking heads. A critical element of our work is translating this motion latent to 3D, which is accomplished by devising a 3D head model that is conditioned on the motion latent. Customization of this model to a single image is achieved through an optimization framework that employs numerous video frames of the reference head synthesized from the input image. The optimization takes various training losses robust to artifacts and limited pose coverage in the generated training data. Our experiment shows that VASA-3D produces realistic 3D talking heads that cannot be achieved by prior art, and it supports the online generation of 512x512 free-viewpoint videos at up to 75 FPS, facilitating more immersive engagements with lifelike 3D avatars.
comment: NeurIPS 2025 paper. Project webpage: https://www.microsoft.com/en-us/research/project/vasa-3d/
☆ ART: Articulated Reconstruction Transformer
We introduce ART, Articulated Reconstruction Transformer -- a category-agnostic, feed-forward model that reconstructs complete 3D articulated objects from only sparse, multi-state RGB images. Previous methods for articulated object reconstruction either rely on slow optimization with fragile cross-state correspondences or use feed-forward models limited to specific object categories. In contrast, ART treats articulated objects as assemblies of rigid parts, formulating reconstruction as part-based prediction. Our newly designed transformer architecture maps sparse image inputs to a set of learnable part slots, from which ART jointly decodes unified representations for individual parts, including their 3D geometry, texture, and explicit articulation parameters. The resulting reconstructions are physically interpretable and readily exportable for simulation. Trained on a large-scale, diverse dataset with per-part supervision, and evaluated across diverse benchmarks, ART achieves significant improvements over existing baselines and establishes a new state of the art for articulated object reconstruction from image inputs.
comment: Project Page: https://kyleleey.github.io/ART/
☆ EVOLVE-VLA: Test-Time Training from Environment Feedback for Vision-Language-Action Models
Achieving truly adaptive embodied intelligence requires agents that learn not just by imitating static demonstrations, but by continuously improving through environmental interaction, which is akin to how humans master skills through practice. Vision-Language-Action (VLA) models have advanced robotic manipulation by leveraging large language models, yet remain fundamentally limited by Supervised Finetuning (SFT): requiring hundreds of demonstrations per task, rigidly memorizing trajectories, and failing to adapt when deployment conditions deviate from training. We introduce EVOLVE-VLA, a test-time training framework enabling VLAs to continuously adapt through environment interaction with minimal or zero task-specific demonstrations. The key technical challenge is replacing oracle reward signals (unavailable at test time) with autonomous feedback. We address this through a learned progress estimator providing dense feedback, and critically, we design our framework to ``tame'' this inherently noisy signal via two mechanisms: (1) an accumulative progress estimation mechanism smoothing noisy point-wise estimates, and (2) a progressive horizon extension strategy enabling gradual policy evolution. EVOLVE-VLA achieves substantial gains: +8.6\% on long-horizon tasks, +22.0\% in 1-shot learning, and enables cross-task generalization -- achieving 20.8\% success on unseen tasks without task-specific demonstrations training (vs. 0\% for pure SFT). Qualitative analysis reveals emergent capabilities absent in demonstrations, including error recovery and novel strategies. This work represents a critical step toward VLAs that truly learn and adapt, moving beyond static imitation toward continuous self-improvements.
comment: 15 pages
☆ Enhancing Visual Sentiment Analysis via Semiotic Isotopy-Guided Dataset Construction
Visual Sentiment Analysis (VSA) is a challenging task due to the vast diversity of emotionally salient images and the inherent difficulty of acquiring sufficient data to capture this variability comprehensively. Key obstacles include building large-scale VSA datasets and developing effective methodologies that enable algorithms to identify emotionally significant elements within an image. These challenges are reflected in the limited generalization performance of VSA algorithms and models when trained and tested across different datasets. Starting from a pool of existing data collections, our approach enables the creation of a new larger dataset that not only contains a wider variety of images than the original ones, but also permits training new models with improved capability to focus on emotionally relevant combinations of image elements. This is achieved through the integration of the semiotic isotopy concept within the dataset creation process, providing deeper insights into the emotional content of images. Empirical evaluations show that models trained on a dataset generated with our method consistently outperform those trained on the original data collections, achieving superior generalization across major VSA benchmarks
☆ WaveSim: A Wavelet-based Multi-scale Similarity Metric for Weather and Climate Fields
We introduce WaveSim, a multi-scale similarity metric for the evaluation of spatial fields in weather and climate applications. WaveSim exploits wavelet transforms to decompose input fields into scale-specific wavelet coefficients. The metric is built by multiplying three orthogonal components derived from these coefficients: Magnitude, which quantifies similarities in the energy distribution of the coefficients, i.e., the intensity of the field; Displacement, which captures spatial shift by comparing the centers of mass of normalized energy distributions; and Structure, which assesses pattern organization independent of location and amplitude. Each component yields a scale-specific similarity score ranging from 0 (no similarity) to 1 (perfect similarity), which are then combined across scales to produce an overall similarity measure. We first evaluate WaveSim using synthetic test cases, applying controlled spatial and temporal perturbations to systematically assess its sensitivity and expected behavior. We then demonstrate its applicability to physically relevant case studies of key modes of climate variability in Earth System Models. Traditional point-wise metrics lack a mechanism for attributing errors to physical scales or modes of dissimilarity. By operating in the wavelet domain and decomposing the signal along independent axes, WaveSim bypasses these limitations and provides an interpretable and diagnostically rich framework for assessing similarity in complex fields. Additionally, the WaveSim framework allows users to place emphasis on a specific scale or component, and lends itself to user-specific model intercomparison, model evaluation, and calibration and training of forecasting systems. We provide a PyTorch-ready implementation of WaveSim, along with all evaluation scripts, at: https://github.com/gabrieleaccarino/wavesim.
☆ ViRC: Enhancing Visual Interleaved Mathematical CoT with Reason Chunking
CoT has significantly enhanced the reasoning ability of LLMs while it faces challenges when extended to multimodal domains, particularly in mathematical tasks. Existing MLLMs typically perform textual reasoning solely from a single static mathematical image, overlooking dynamic visual acquisition during reasoning. In contrast, humans repeatedly examine visual image and employ step-by-step reasoning to prove intermediate propositions. This strategy of decomposing the problem-solving process into key logical nodes adheres to Miller's Law in cognitive science. Inspired by this insight, we propose a ViRC framework for multimodal mathematical tasks, introducing a Reason Chunking mechanism that structures multimodal mathematical CoT into consecutive Critical Reasoning Units (CRUs) to simulate human expert problem-solving patterns. CRUs ensure intra-unit textual coherence for intermediate proposition verification while integrating visual information across units to generate subsequent propositions and support structured reasoning. To this end, we present CRUX dataset by using three visual tools and four reasoning patterns to provide explicitly annotated CRUs across multiple reasoning paths for each mathematical problem. Leveraging the CRUX dataset, we propose a progressive training strategy inspired by human cognitive learning, which includes Instructional SFT, Practice SFT, and Strategic RL, aimed at further strengthening the Reason Chunking ability of the model.The resulting ViRC-7B model achieves a 18.8\% average improvement over baselines across multiple mathematical benchmarks. Code is available at https://github.com/Leon-LihongWang/ViRC.
comment: Code is available at https://github.com/Leon-LihongWang/ViRC
☆ Adaptable Segmentation Pipeline for Diverse Brain Tumors with Radiomic-guided Subtyping and Lesion-Wise Model Ensemble MICCAI
Robust and generalizable segmentation of brain tumors on multi-parametric magnetic resonance imaging (MRI) remains difficult because tumor types differ widely. The BraTS 2025 Lighthouse Challenge benchmarks segmentation methods on diverse high-quality datasets of adult and pediatric tumors: multi-consortium international pediatric brain tumor segmentation (PED), preoperative meningioma tumor segmentation (MEN), meningioma radiotherapy segmentation (MEN-RT), and segmentation of pre- and post-treatment brain metastases (MET). We present a flexible, modular, and adaptable pipeline that improves segmentation performance by selecting and combining state-of-the-art models and applying tumor- and lesion-specific processing before and after training. Radiomic features extracted from MRI help detect tumor subtype, ensuring a more balanced training. Custom lesion-level performance metrics determine the influence of each model in the ensemble and optimize post-processing that further refines the predictions, enabling the workflow to tailor every step to each case. On the BraTS testing sets, our pipeline achieved performance comparable to top-ranked algorithms across multiple challenges. These findings confirm that custom lesion-aware processing and model selection yield robust segmentations yet without locking the method to a specific network architecture. Our method has the potential for quantitative tumor measurement in clinical practice, supporting diagnosis and prognosis.
comment: 12 pages, 5 figures, 3 tables. Algorithm presented at MICCAI BraTS 2025
☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 17 pages
☆ AMD-HookNet++: Evolution of AMD-HookNet with Hybrid CNN-Transformer Feature Enhancement for Glacier Calving Front Segmentation
The dynamics of glaciers and ice shelf fronts significantly impact the mass balance of ice sheets and coastal sea levels. To effectively monitor glacier conditions, it is crucial to consistently estimate positional shifts of glacier calving fronts. AMD-HookNet firstly introduces a pure two-branch convolutional neural network (CNN) for glacier segmentation. Yet, the local nature and translational invariance of convolution operations, while beneficial for capturing low-level details, restricts the model ability to maintain long-range dependencies. In this study, we propose AMD-HookNet++, a novel advanced hybrid CNN-Transformer feature enhancement method for segmenting glaciers and delineating calving fronts in synthetic aperture radar images. Our hybrid structure consists of two branches: a Transformer-based context branch to capture long-range dependencies, which provides global contextual information in a larger view, and a CNN-based target branch to preserve local details. To strengthen the representation of the connected hybrid features, we devise an enhanced spatial-channel attention module to foster interactions between the hybrid CNN-Transformer branches through dynamically adjusting the token relationships from both spatial and channel perspectives. Additionally, we develop a pixel-to-pixel contrastive deep supervision to optimize our hybrid model by integrating pixelwise metric learning into glacier segmentation. Through extensive experiments and comprehensive quantitative and qualitative analyses on the challenging glacier segmentation benchmark dataset CaFFe, we show that AMD-HookNet++ sets a new state of the art with an IoU of 78.2 and a HD95 of 1,318 m, while maintaining a competitive MDE of 367 m. More importantly, our hybrid model produces smoother delineations of calving fronts, resolving the issue of jagged edges typically seen in pure Transformer-based approaches.
☆ Distill Video Datasets into Images
Dataset distillation aims to synthesize compact yet informative datasets that allow models trained on them to achieve performance comparable to training on the full dataset. While this approach has shown promising results for image data, extending dataset distillation methods to video data has proven challenging and often leads to suboptimal performance. In this work, we first identify the core challenge in video set distillation as the substantial increase in learnable parameters introduced by the temporal dimension of video, which complicates optimization and hinders convergence. To address this issue, we observe that a single frame is often sufficient to capture the discriminative semantics of a video. Leveraging this insight, we propose Single-Frame Video set Distillation (SFVD), a framework that distills videos into highly informative frames for each class. Using differentiable interpolation, these frames are transformed into video sequences and matched with the original dataset, while updates are restricted to the frames themselves for improved optimization efficiency. To further incorporate temporal information, the distilled frames are combined with sampled real videos from real videos during the matching process through a channel reshaping layer. Extensive experiments on multiple benchmarks demonstrate that SFVD substantially outperforms prior methods, achieving improvements of up to 5.3% on MiniUCF, thereby offering a more effective solution.
☆ JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.
comment: Project page: https://mmmu-japanese-benchmark.github.io/JMMMU_Pro/
☆ WorldPlay: Towards Long-Term Geometric Consistency for Real-Time Interactive World Modeling
This paper presents WorldPlay, a streaming video diffusion model that enables real-time, interactive world modeling with long-term geometric consistency, resolving the trade-off between speed and memory that limits current methods. WorldPlay draws power from three key innovations. 1) We use a Dual Action Representation to enable robust action control in response to the user's keyboard and mouse inputs. 2) To enforce long-term consistency, our Reconstituted Context Memory dynamically rebuilds context from past frames and uses temporal reframing to keep geometrically important but long-past frames accessible, effectively alleviating memory attenuation. 3) We also propose Context Forcing, a novel distillation method designed for memory-aware model. Aligning memory context between the teacher and student preserves the student's capacity to use long-range information, enabling real-time speeds while preventing error drift. Taken together, WorldPlay generates long-horizon streaming 720p video at 24 FPS with superior consistency, comparing favorably with existing techniques and showing strong generalization across diverse scenes. Project page and online demo can be found: https://3d-models.hunyuan.tencent.com/world/ and https://3d.hunyuan.tencent.com/sceneTo3D.
comment: project page: https://3d-models.hunyuan.tencent.com/world/, demo: https://3d.hunyuan.tencent.com/sceneTo3D
☆ FakeRadar: Probing Forgery Outliers to Detect Unknown Deepfake Videos
In this paper, we propose FakeRadar, a novel deepfake video detection framework designed to address the challenges of cross-domain generalization in real-world scenarios. Existing detection methods typically rely on manipulation-specific cues, performing well on known forgery types but exhibiting severe limitations against emerging manipulation techniques. This poor generalization stems from their inability to adapt effectively to unseen forgery patterns. To overcome this, we leverage large-scale pretrained models (e.g. CLIP) to proactively probe the feature space, explicitly highlighting distributional gaps between real videos, known forgeries, and unseen manipulations. Specifically, FakeRadar introduces Forgery Outlier Probing, which employs dynamic subcluster modeling and cluster-conditional outlier generation to synthesize outlier samples near boundaries of estimated subclusters, simulating novel forgery artifacts beyond known manipulation types. Additionally, we design Outlier-Guided Tri-Training, which optimizes the detector to distinguish real, fake, and outlier samples using proposed outlier-driven contrastive learning and outlier-conditioned cross-entropy losses. Experiments show that FakeRadar outperforms existing methods across various benchmark datasets for deepfake video detection, particularly in cross-domain evaluations, by handling the variety of emerging manipulation techniques.
☆ TUMTraf EMOT: Event-Based Multi-Object Tracking Dataset and Baseline for Traffic Scenarios
In Intelligent Transportation Systems (ITS), multi-object tracking is primarily based on frame-based cameras. However, these cameras tend to perform poorly under dim lighting and high-speed motion conditions. Event cameras, characterized by low latency, high dynamic range and high temporal resolution, have considerable potential to mitigate these issues. Compared to frame-based vision, there are far fewer studies on event-based vision. To address this research gap, we introduce an initial pilot dataset tailored for event-based ITS, covering vehicle and pedestrian detection and tracking. We establish a tracking-by-detection benchmark with a specialized feature extractor based on this dataset, achieving excellent performance.
comment: 10 pages, 9 figures
LLM-driven Knowledge Enhancement for Multimodal Cancer Survival Prediction
Current multimodal survival prediction methods typically rely on pathology images (WSIs) and genomic data, both of which are high-dimensional and redundant, making it difficult to extract discriminative features from them and align different modalities. Moreover, using a simple survival follow-up label is insufficient to supervise such a complex task. To address these challenges, we propose KEMM, an LLM-driven Knowledge-Enhanced Multimodal Model for cancer survival prediction, which integrates expert reports and prognostic background knowledge. 1) Expert reports, provided by pathologists on a case-by-case basis and refined by large language model (LLM), offer succinct and clinically focused diagnostic statements. This information may typically suggest different survival outcomes. 2) Prognostic background knowledge (PBK), generated concisely by LLM, provides valuable prognostic background knowledge on different cancer types, which also enhances survival prediction. To leverage these knowledge, we introduce the knowledge-enhanced cross-modal (KECM) attention module. KECM can effectively guide the network to focus on discriminative and survival-relevant features from highly redundant modalities. Extensive experiments on five datasets demonstrate that KEMM achieves state-of-the-art performance. The code will be released upon acceptance.
☆ FoodLogAthl-218: Constructing a Real-World Food Image Dataset Using Dietary Management Applications
Food image classification models are crucial for dietary management applications because they reduce the burden of manual meal logging. However, most publicly available datasets for training such models rely on web-crawled images, which often differ from users' real-world meal photos. In this work, we present FoodLogAthl-218, a food image dataset constructed from real-world meal records collected through the dietary management application FoodLog Athl. The dataset contains 6,925 images across 218 food categories, with a total of 14,349 bounding boxes. Rich metadata, including meal date and time, anonymized user IDs, and meal-level context, accompany each image. Unlike conventional datasets-where a predefined class set guides web-based image collection-our data begins with user-submitted photos, and labels are applied afterward. This yields greater intra-class diversity, a natural frequency distribution of meal types, and casual, unfiltered images intended for personal use rather than public sharing. In addition to (1) a standard classification benchmark, we introduce two FoodLog-specific tasks: (2) an incremental fine-tuning protocol that follows the temporal stream of users' logs, and (3) a context-aware classification task where each image contains multiple dishes, and the model must classify each dish by leveraging the overall meal context. We evaluate these tasks using large multimodal models (LMMs). The dataset is publicly available at https://huggingface.co/datasets/FoodLog/FoodLogAthl-218.
☆ CLNet: Cross-View Correspondence Makes a Stronger Geo-Localizationer
Image retrieval-based cross-view geo-localization (IRCVGL) aims to match images captured from significantly different viewpoints, such as satellite and street-level images. Existing methods predominantly rely on learning robust global representations or implicit feature alignment, which often fail to model explicit spatial correspondences crucial for accurate localization. In this work, we propose a novel correspondence-aware feature refinement framework, termed CLNet, that explicitly bridges the semantic and geometric gaps between different views. CLNet decomposes the view alignment process into three learnable and complementary modules: a Neural Correspondence Map (NCM) that spatially aligns cross-view features via latent correspondence fields; a Nonlinear Embedding Converter (NEC) that remaps features across perspectives using an MLP-based transformation; and a Global Feature Recalibration (GFR) module that reweights informative feature channels guided by learned spatial cues. The proposed CLNet can jointly capture both high-level semantics and fine-grained alignments. Extensive experiments on four public benchmarks, CVUSA, CVACT, VIGOR, and University-1652, demonstrate that our proposed CLNet achieves state-of-the-art performance while offering better interpretability and generalizability.
comment: 16 pages, 6 figures
☆ Test Time Optimized Generalized AI-based Medical Image Registration Method
Medical image registration is critical for aligning anatomical structures across imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound. Among existing techniques, non-rigid registration (NRR) is particularly challenging due to the need to capture complex anatomical deformations caused by physiological processes like respiration or contrast-induced signal variations. Traditional NRR methods, while theoretically robust, often require extensive parameter tuning and incur high computational costs, limiting their use in real-time clinical workflows. Recent deep learning (DL)-based approaches have shown promise; however, their dependence on task-specific retraining restricts scalability and adaptability in practice. These limitations underscore the need for efficient, generalizable registration frameworks capable of handling heterogeneous imaging contexts. In this work, we introduce a novel AI-driven framework for 3D non-rigid registration that generalizes across multiple imaging modalities and anatomical regions. Unlike conventional methods that rely on application-specific models, our approach eliminates anatomy- or modality-specific customization, enabling streamlined integration into diverse clinical environments.
☆ TAT: Task-Adaptive Transformer for All-in-One Medical Image Restoration MICCAI 2025
Medical image restoration (MedIR) aims to recover high-quality medical images from their low-quality counterparts. Recent advancements in MedIR have focused on All-in-One models capable of simultaneously addressing multiple different MedIR tasks. However, due to significant differences in both modality and degradation types, using a shared model for these diverse tasks requires careful consideration of two critical inter-task relationships: task interference, which occurs when conflicting gradient update directions arise across tasks on the same parameter, and task imbalance, which refers to uneven optimization caused by varying learning difficulties inherent to each task. To address these challenges, we propose a task-adaptive Transformer (TAT), a novel framework that dynamically adapts to different tasks through two key innovations. First, a task-adaptive weight generation strategy is introduced to mitigate task interference by generating task-specific weight parameters for each task, thereby eliminating potential gradient conflicts on shared weight parameters. Second, a task-adaptive loss balancing strategy is introduced to dynamically adjust loss weights based on task-specific learning difficulties, preventing task domination or undertraining. Extensive experiments demonstrate that our proposed TAT achieves state-of-the-art performance in three MedIR tasks--PET synthesis, CT denoising, and MRI super-resolution--both in task-specific and All-in-One settings. Code is available at https://github.com/Yaziwel/TAT.
comment: This paper has been accepted by MICCAI 2025
☆ HiFi-Portrait: Zero-shot Identity-preserved Portrait Generation with High-fidelity Multi-face Fusion CVPR 2025
Recent advancements in diffusion-based technologies have made significant strides, particularly in identity-preserved portrait generation (IPG). However, when using multiple reference images from the same ID, existing methods typically produce lower-fidelity portraits and struggle to customize face attributes precisely. To address these issues, this paper presents HiFi-Portrait, a high-fidelity method for zero-shot portrait generation. Specifically, we first introduce the face refiner and landmark generator to obtain fine-grained multi-face features and 3D-aware face landmarks. The landmarks include the reference ID and the target attributes. Then, we design HiFi-Net to fuse multi-face features and align them with landmarks, which improves ID fidelity and face control. In addition, we devise an automated pipeline to construct an ID-based dataset for training HiFi-Portrait. Extensive experimental results demonstrate that our method surpasses the SOTA approaches in face similarity and controllability. Furthermore, our method is also compatible with previous SDXL-based works.
comment: Accepted by CVPR 2025
☆ CAPRMIL: Context-Aware Patch Representations for Multiple Instance Learning
In computational pathology, weak supervision has become the standard for deep learning due to the gigapixel scale of WSIs and the scarcity of pixel-level annotations, with Multiple Instance Learning (MIL) established as the principal framework for slide-level model training. In this paper, we introduce a novel setting for MIL methods, inspired by proceedings in Neural Partial Differential Equation (PDE) Solvers. Instead of relying on complex attention-based aggregation, we propose an efficient, aggregator-agnostic framework that removes the complexity of correlation learning from the MIL aggregator. CAPRMIL produces rich context-aware patch embeddings that promote effective correlation learning on downstream tasks. By projecting patch features -- extracted using a frozen patch encoder -- into a small set of global context/morphology-aware tokens and utilizing multi-head self-attention, CAPRMIL injects global context with linear computational complexity with respect to the bag size. Paired with a simple Mean MIL aggregator, CAPRMIL matches state-of-the-art slide-level performance across multiple public pathology benchmarks, while reducing the total number of trainable parameters by 48%-92.8% versus SOTA MILs, lowering FLOPs during inference by 52%-99%, and ranking among the best models on GPU memory efficiency and training time. Our results indicate that learning rich, context-aware instance representations before aggregation is an effective and scalable alternative to complex pooling for whole-slide analysis. Our code is available at https://github.com/mandlos/CAPRMIL
comment: 24 pages, 12 Figures, 4 Tables
☆ DASP: Self-supervised Nighttime Monocular Depth Estimation with Domain Adaptation of Spatiotemporal Priors
Self-supervised monocular depth estimation has achieved notable success under daytime conditions. However, its performance deteriorates markedly at night due to low visibility and varying illumination, e.g., insufficient light causes textureless areas, and moving objects bring blurry regions. To this end, we propose a self-supervised framework named DASP that leverages spatiotemporal priors for nighttime depth estimation. Specifically, DASP consists of an adversarial branch for extracting spatiotemporal priors and a self-supervised branch for learning. In the adversarial branch, we first design an adversarial network where the discriminator is composed of four devised spatiotemporal priors learning blocks (SPLB) to exploit the daytime priors. In particular, the SPLB contains a spatial-based temporal learning module (STLM) that uses orthogonal differencing to extract motion-related variations along the time axis and an axial spatial learning module (ASLM) that adopts local asymmetric convolutions with global axial attention to capture the multiscale structural information. By combining STLM and ASLM, our model can acquire sufficient spatiotemporal features to restore textureless areas and estimate the blurry regions caused by dynamic objects. In the self-supervised branch, we propose a 3D consistency projection loss to bilaterally project the target frame and source frame into a shared 3D space, and calculate the 3D discrepancy between the two projected frames as a loss to optimize the 3D structural consistency and daytime priors. Extensive experiments on the Oxford RobotCar and nuScenes datasets demonstrate that our approach achieves state-of-the-art performance for nighttime depth estimation. Ablation studies further validate the effectiveness of each component.
comment: 8 pages, 7 figures
☆ Native Intelligence Emerges from Large-Scale Clinical Practice: A Retinal Foundation Model with Deployment Efficiency
Current retinal foundation models remain constrained by curated research datasets that lack authentic clinical context, and require extensive task-specific optimization for each application, limiting their deployment efficiency in low-resource settings. Here, we show that these barriers can be overcome by building clinical native intelligence directly from real-world medical practice. Our key insight is that large-scale telemedicine programs, where expert centers provide remote consultations across distributed facilities, represent a natural reservoir for learning clinical image interpretation. We present ReVision, a retinal foundation model that learns from the natural alignment between 485,980 color fundus photographs and their corresponding diagnostic reports, accumulated through a decade-long telemedicine program spanning 162 medical institutions across China. Through extensive evaluation across 27 ophthalmic benchmarks, we demonstrate that ReVison enables deployment efficiency with minimal local resources. Without any task-specific training, ReVision achieves zero-shot disease detection with an average AUROC of 0.946 across 12 public benchmarks and 0.952 on 3 independent clinical cohorts. When minimal adaptation is feasible, ReVision matches extensively fine-tuned alternatives while requiring orders of magnitude fewer trainable parameters and labeled examples. The learned representations also transfer effectively to new clinical sites, imaging domains, imaging modalities, and systemic health prediction tasks. In a prospective reader study with 33 ophthalmologists, ReVision's zero-shot assistance improved diagnostic accuracy by 14.8% across all experience levels. These results demonstrate that clinical native intelligence can be directly extracted from clinical archives without any further annotation to build medical AI systems suited to various low-resource settings.
☆ SignIT: A Comprehensive Dataset and Multimodal Analysis for Italian Sign Language Recognition
In this work we present SignIT, a new dataset to study the task of Italian Sign Language (LIS) recognition. The dataset is composed of 644 videos covering 3.33 hours. We manually annotated videos considering a taxonomy of 94 distinct sign classes belonging to 5 macro-categories: Animals, Food, Colors, Emotions and Family. We also extracted 2D keypoints related to the hands, face and body of the users. With the dataset, we propose a benchmark for the sign recognition task, adopting several state-of-the-art models showing how temporal information, 2D keypoints and RGB frames can be influence the performance of these models. Results show the limitations of these models on this challenging LIS dataset. We release data and annotations at the following link: https://fpv-iplab.github.io/SignIT/.
☆ SuperCLIP: CLIP with Simple Classification Supervision NeurIPS 2025
Contrastive Language-Image Pretraining (CLIP) achieves strong generalization in vision-language tasks by aligning images and texts in a shared embedding space. However, recent findings show that CLIP-like models still underutilize fine-grained semantic signals in text, and this issue becomes even more pronounced when dealing with long and detailed captions. This stems from CLIP's training objective, which optimizes only global image-text similarity and overlooks token-level supervision - limiting its ability to achieve fine-grained visual-text alignment. To address this, we propose SuperCLIP, a simple yet effective framework that augments contrastive learning with classification-based supervision. By adding only a lightweight linear layer to the vision encoder, SuperCLIP leverages token-level cues to enhance visual-textual alignment - with just a 0.077% increase in total FLOPs, and no need for additional annotated data. Experiments show that SuperCLIP consistently improves zero-shot classification, image-text retrieval, and purely visual tasks. These gains hold regardless of whether the model is trained on original web data or rich re-captioned data, demonstrating SuperCLIP's ability to recover textual supervision in both cases. Furthermore, SuperCLIP alleviates CLIP's small-batch performance drop through classification-based supervision that avoids reliance on large batch sizes. Code and models will be made open source.
comment: Accepted by NeurIPS 2025. Code: https://github.com/hustvl/SuperCLIP
☆ TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels
Tunnels are essential elements of transportation infrastructure, but are increasingly affected by ageing and deterioration mechanisms such as cracking. Regular inspections are required to ensure their safety, yet traditional manual procedures are time-consuming, subjective, and costly. Recent advances in mobile mapping systems and Deep Learning (DL) enable automated visual inspections. However, their effectiveness is limited by the scarcity of tunnel datasets. This paper introduces a new publicly available dataset containing annotated images of three different tunnel linings, capturing typical defects: cracks, leaching, and water infiltration. The dataset is designed to support supervised, semi-supervised, and unsupervised DL methods for defect detection and segmentation. Its diversity in texture and construction techniques also enables investigation of model generalization and transferability across tunnel types. By addressing the critical lack of domain-specific data, this dataset contributes to advancing automated tunnel inspection and promoting safer, more efficient infrastructure maintenance strategies.
☆ A4-Agent: An Agentic Framework for Zero-Shot Affordance Reasoning
Affordance prediction, which identifies interaction regions on objects based on language instructions, is critical for embodied AI. Prevailing end-to-end models couple high-level reasoning and low-level grounding into a single monolithic pipeline and rely on training over annotated datasets, which leads to poor generalization on novel objects and unseen environments. In this paper, we move beyond this paradigm by proposing A4-Agent, a training-free agentic framework that decouples affordance prediction into a three-stage pipeline. Our framework coordinates specialized foundation models at test time: (1) a $\textbf{Dreamer}$ that employs generative models to visualize $\textit{how}$ an interaction would look; (2) a $\textbf{Thinker}$ that utilizes large vision-language models to decide $\textit{what}$ object part to interact with; and (3) a $\textbf{Spotter}$ that orchestrates vision foundation models to precisely locate $\textit{where}$ the interaction area is. By leveraging the complementary strengths of pre-trained models without any task-specific fine-tuning, our zero-shot framework significantly outperforms state-of-the-art supervised methods across multiple benchmarks and demonstrates robust generalization to real-world settings.
☆ S2D: Sparse-To-Dense Keymask Distillation for Unsupervised Video Instance Segmentation
In recent years, the state-of-the-art in unsupervised video instance segmentation has heavily relied on synthetic video data, generated from object-centric image datasets such as ImageNet. However, video synthesis by artificially shifting and scaling image instance masks fails to accurately model realistic motion in videos, such as perspective changes, movement by parts of one or multiple instances, or camera motion. To tackle this issue, we propose an unsupervised video instance segmentation model trained exclusively on real video data. We start from unsupervised instance segmentation masks on individual video frames. However, these single-frame segmentations exhibit temporal noise and their quality varies through the video. Therefore, we establish temporal coherence by identifying high-quality keymasks in the video by leveraging deep motion priors. The sparse keymask pseudo-annotations are then used to train a segmentation model for implicit mask propagation, for which we propose a Sparse-To-Dense Distillation approach aided by a Temporal DropLoss. After training the final model on the resulting dense labelset, our approach outperforms the current state-of-the-art across various benchmarks.
comment: Project Page with Code/Models/Demo: https://leonsick.github.io/s2d/
☆ VICTOR: Dataset Copyright Auditing in Video Recognition Systems NDSS
Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods. In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model's behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.
comment: To appear in the NDSS Symposium 2026, February 2026, San Diego, CA, USA
☆ Score-Based Turbo Message Passing for Plug-and-Play Compressive Imaging
Message-passing algorithms have been adapted for compressive imaging by incorporating various off-the-shelf image denoisers. However, these denoisers rely largely on generic or hand-crafted priors and often fall short in accurately capturing the complex statistical structure of natural images. As a result, traditional plug-and-play (PnP) methods often lead to suboptimal reconstruction, especially in highly underdetermined regimes. Recently, score-based generative models have emerged as a powerful framework for accurately characterizing sophisticated image distribution. Yet, their direct use for posterior sampling typically incurs prohibitive computational complexity. In this paper, by exploiting the close connection between score-based generative modeling and empirical Bayes denoising, we devise a message-passing framework that integrates a score-based minimum mean-squared error (MMSE) denoiser for compressive image recovery. The resulting algorithm, named score-based turbo message passing (STMP), combines the fast convergence of message passing with the expressive power of score-based generative priors. For practical systems with quantized measurements, we further propose quantized STMP (Q-STMP), which augments STMP with a component-wise MMSE dequantization module. We demonstrate that the asymptotic performance of STMP and Q-STMP can be accurately predicted by a set of state-evolution (SE) equations. Experiments on the FFHQ dataset demonstrate that STMP strikes a significantly better performance-complexity tradeoff compared with competing baselines, and that Q-STMP remains robust even under 1-bit quantization. Remarkably, both STMP and Q-STMP typically converge within 10 iterations.
☆ The Devil is in Attention Sharing: Improving Complex Non-rigid Image Editing Faithfulness via Attention Synergy
Training-free image editing with large diffusion models has become practical, yet faithfully performing complex non-rigid edits (e.g., pose or shape changes) remains highly challenging. We identify a key underlying cause: attention collapse in existing attention sharing mechanisms, where either positional embeddings or semantic features dominate visual content retrieval, leading to over-editing or under-editing.To address this issue, we introduce SynPS, a method that Synergistically leverages Positional embeddings and Semantic information for faithful non-rigid image editing. We first propose an editing measurement that quantifies the required editing magnitude at each denoising step. Based on this measurement, we design an attention synergy pipeline that dynamically modulates the influence of positional embeddings, enabling SynPS to balance semantic modifications and fidelity preservation.By adaptively integrating positional and semantic cues, SynPS effectively avoids both over- and under-editing. Extensive experiments on public and newly curated benchmarks demonstrate the superior performance and faithfulness of our approach.
comment: Project page:https://synps26.github.io/
☆ LCMem: A Universal Model for Robust Image Memorization Detection
Recent advances in generative image modeling have achieved visual realism sufficient to deceive human experts, yet their potential for privacy preserving data sharing remains insufficiently understood. A central obstacle is the absence of reliable memorization detection mechanisms, limited quantitative evaluation, and poor generalization of existing privacy auditing methods across domains. To address this, we propose to view memorization detection as a unified problem at the intersection of re-identification and copy detection, whose complementary goals cover both identity consistency and augmentation-robust duplication, and introduce Latent Contrastive Memorization Network (LCMem), a cross-domain model evaluated jointly on both tasks. LCMem achieves this through a two-stage training strategy that first learns identity consistency before incorporating augmentation-robust copy detection. Across six benchmark datasets, LCMem achieves improvements of up to 16 percentage points on re-identification and 30 percentage points on copy detection, enabling substantially more reliable memorization detection at scale. Our results show that existing privacy filters provide limited performance and robustness, highlighting the need for stronger protection mechanisms. We show that LCMem sets a new standard for cross-domain privacy auditing, offering reliable and scalable memorization detection. Code and model is publicly available at https://github.com/MischaD/LCMem.
☆ DISCODE: Distribution-Aware Score Decoder for Robust Automatic Evaluation of Image Captioning AAAI 2026
Large vision-language models (LVLMs) have shown impressive performance across a broad range of multimodal tasks. However, robust image caption evaluation using LVLMs remains challenging, particularly under domain-shift scenarios. To address this issue, we introduce the Distribution-Aware Score Decoder (DISCODE), a novel finetuning-free method that generates robust evaluation scores better aligned with human judgments across diverse domains. The core idea behind DISCODE lies in its test-time adaptive evaluation approach, which introduces the Adaptive Test-Time (ATT) loss, leveraging a Gaussian prior distribution to improve robustness in evaluation score estimation. This loss is efficiently minimized at test time using an analytical solution that we derive. Furthermore, we introduce the Multi-domain Caption Evaluation (MCEval) benchmark, a new image captioning evaluation benchmark covering six distinct domains, designed to assess the robustness of evaluation metrics. In our experiments, we demonstrate that DISCODE achieves state-of-the-art performance as a reference-free evaluation metric across MCEval and four representative existing benchmarks.
comment: Paper accepted to AAAI 2026
☆ Broadening View Synthesis of Dynamic Scenes from Constrained Monocular Videos
In dynamic Neural Radiance Fields (NeRF) systems, state-of-the-art novel view synthesis methods often fail under significant viewpoint deviations, producing unstable and unrealistic renderings. To address this, we introduce Expanded Dynamic NeRF (ExpanDyNeRF), a monocular NeRF framework that leverages Gaussian splatting priors and a pseudo-ground-truth generation strategy to enable realistic synthesis under large-angle rotations. ExpanDyNeRF optimizes density and color features to improve scene reconstruction from challenging perspectives. We also present the Synthetic Dynamic Multiview (SynDM) dataset, the first synthetic multiview dataset for dynamic scenes with explicit side-view supervision-created using a custom GTA V-based rendering pipeline. Quantitative and qualitative results on SynDM and real-world datasets demonstrate that ExpanDyNeRF significantly outperforms existing dynamic NeRF methods in rendering fidelity under extreme viewpoint shifts. Further details are provided in the supplementary materials.
☆ EcoScapes: LLM-Powered Advice for Crafting Sustainable Cities
Climate adaptation is vital for the sustainability and sometimes the mere survival of our urban areas. However, small cities often struggle with limited personnel resources and integrating vast amounts of data from multiple sources for a comprehensive analysis. To overcome these challenges, this paper proposes a multi-layered system combining specialized LLMs, satellite imagery analysis and a knowledge base to aid in developing effective climate adaptation strategies. The corresponding code can be found at https://github.com/Photon-GitHub/EcoScapes.
☆ A Comprehensive Safety Metric to Evaluate Perception in Autonomous Systems SC 2020
Complete perception of the environment and its correct interpretation is crucial for autonomous vehicles. Object perception is the main component of automotive surround sensing. Various metrics already exist for the evaluation of object perception. However, objects can be of different importance depending on their velocity, orientation, distance, size, or the potential damage that could be caused by a collision due to a missed detection. Thus, these additional parameters have to be considered for safety evaluation. We propose a new safety metric that incorporates all these parameters and returns a single easily interpretable safety assessment score for object perception. This new metric is evaluated with both real world and virtual data sets and compared to state of the art metrics.
comment: Accepted at IEEE ITSC 2020
☆ Optimizing Rank for High-Fidelity Implicit Neural Representations
Implicit Neural Representations (INRs) based on vanilla Multi-Layer Perceptrons (MLPs) are widely believed to be incapable of representing high-frequency content. This has directed research efforts towards architectural interventions, such as coordinate embeddings or specialized activation functions, to represent high-frequency signals. In this paper, we challenge the notion that the low-frequency bias of vanilla MLPs is an intrinsic, architectural limitation to learn high-frequency content, but instead a symptom of stable rank degradation during training. We empirically demonstrate that regulating the network's rank during training substantially improves the fidelity of the learned signal, rendering even simple MLP architectures expressive. Extensive experiments show that using optimizers like Muon, with high-rank, near-orthogonal updates, consistently enhances INR architectures even beyond simple ReLU MLPs. These substantial improvements hold across a diverse range of domains, including natural and medical images, and novel view synthesis, with up to 9 dB PSNR improvements over the previous state-of-the-art. Our project page, which includes code and experimental results, is available at: (https://muon-inrs.github.io).
☆ Unified Semantic Transformer for 3D Scene Understanding
Holistic 3D scene understanding involves capturing and parsing unstructured 3D environments. Due to the inherent complexity of the real world, existing models have predominantly been developed and limited to be task-specific. We introduce UNITE, a Unified Semantic Transformer for 3D scene understanding, a novel feed-forward neural network that unifies a diverse set of 3D semantic tasks within a single model. Our model operates on unseen scenes in a fully end-to-end manner and only takes a few seconds to infer the full 3D semantic geometry. Our approach is capable of directly predicting multiple semantic attributes, including 3D scene segmentation, instance embeddings, open-vocabulary features, as well as affordance and articulations, solely from RGB images. The method is trained using a combination of 2D distillation, heavily relying on self-supervision and leverages novel multi-view losses designed to ensure 3D view consistency. We demonstrate that UNITE achieves state-of-the-art performance on several different semantic tasks and even outperforms task-specific models, in many cases, surpassing methods that operate on ground truth 3D geometry. See the project website at unite-page.github.io
comment: Project page: https://unite-page.github.io/
☆ Mimicking Human Visual Development for Learning Robust Image Representations
The human visual system is remarkably adept at adapting to changes in the input distribution; a capability modern convolutional neural networks (CNNs) still struggle to match. Drawing inspiration from the developmental trajectory of human vision, we propose a progressive blurring curriculum to improve the generalization and robustness of CNNs. Human infants are born with poor visual acuity, gradually refining their ability to perceive fine details. Mimicking this process, we begin training CNNs on highly blurred images during the initial epochs and progressively reduce the blur as training advances. This approach encourages the network to prioritize global structures over high-frequency artifacts, improving robustness against distribution shifts and noisy inputs. Challenging prior claims that blurring in the initial training epochs imposes a stimulus deficit and irreversibly harms model performance, we reveal that early-stage blurring enhances generalization with minimal impact on in-domain accuracy. Our experiments demonstrate that the proposed curriculum reduces mean corruption error (mCE) by up to 8.30% on CIFAR-10-C and 4.43% on ImageNet-100-C datasets, compared to standard training without blurring. Unlike static blur-based augmentation, which applies blurred images randomly throughout training, our method follows a structured progression, yielding consistent gains across various datasets. Furthermore, our approach complements other augmentation techniques, such as CutMix and MixUp, and enhances both natural and adversarial robustness against common attack methods. Code is available at https://github.com/rajankita/Visual_Acuity_Curriculum.
comment: Accepted to ICVGIP 2025
☆ Enhancing Interpretability for Vision Models via Shapley Value Optimization AAAI2026
Deep neural networks have demonstrated remarkable performance across various domains, yet their decision-making processes remain opaque. Although many explanation methods are dedicated to bringing the obscurity of DNNs to light, they exhibit significant limitations: post-hoc explanation methods often struggle to faithfully reflect model behaviors, while self-explaining neural networks sacrifice performance and compatibility due to their specialized architectural designs. To address these challenges, we propose a novel self-explaining framework that integrates Shapley value estimation as an auxiliary task during training, which achieves two key advancements: 1) a fair allocation of the model prediction scores to image patches, ensuring explanations inherently align with the model's decision logic, and 2) enhanced interpretability with minor structural modifications, preserving model performance and compatibility. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art interpretability.
comment: Accepted to AAAI2026
☆ HGS: Hybrid Gaussian Splatting with Static-Dynamic Decomposition for Compact Dynamic View Synthesis
Dynamic novel view synthesis (NVS) is essential for creating immersive experiences. Existing approaches have advanced dynamic NVS by introducing 3D Gaussian Splatting (3DGS) with implicit deformation fields or indiscriminately assigned time-varying parameters, surpassing NeRF-based methods. However, due to excessive model complexity and parameter redundancy, they incur large model sizes and slow rendering speeds, making them inefficient for real-time applications, particularly on resource-constrained devices. To obtain a more efficient model with fewer redundant parameters, in this paper, we propose Hybrid Gaussian Splatting (HGS), a compact and efficient framework explicitly designed to disentangle static and dynamic regions of a scene within a unified representation. The core innovation of HGS lies in our Static-Dynamic Decomposition (SDD) strategy, which leverages Radial Basis Function (RBF) modeling for Gaussian primitives. Specifically, for dynamic regions, we employ time-dependent RBFs to effectively capture temporal variations and handle abrupt scene changes, while for static regions, we reduce redundancy by sharing temporally invariant parameters. Additionally, we introduce a two-stage training strategy tailored for explicit models to enhance temporal coherence at static-dynamic boundaries. Experimental results demonstrate that our method reduces model size by up to 98% and achieves real-time rendering at up to 125 FPS at 4K resolution on a single RTX 3090 GPU. It further sustains 160 FPS at 1352 * 1014 on an RTX 3050 and has been integrated into the VR system. Moreover, HGS achieves comparable rendering quality to state-of-the-art methods while providing significantly improved visual fidelity for high-frequency details and abrupt scene changes.
comment: 11 pages, 9 figures
☆ Towards Transferable Defense Against Malicious Image Edits
Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
comment: 14 pages, 5 figures
☆ Vector Prism: Animating Vector Graphics by Stratifying Semantic Structure
Scalable Vector Graphics (SVG) are central to modern web design, and the demand to animate them continues to grow as web environments become increasingly dynamic. Yet automating the animation of vector graphics remains challenging for vision-language models (VLMs) despite recent progress in code generation and motion planning. VLMs routinely mis-handle SVGs, since visually coherent parts are often fragmented into low-level shapes that offer little guidance of which elements should move together. In this paper, we introduce a framework that recovers the semantic structure required for reliable SVG animation and reveals the missing layer that current VLM systems overlook. This is achieved through a statistical aggregation of multiple weak part predictions, allowing the system to stably infer semantics from noisy predictions. By reorganizing SVGs into semantic groups, our approach enables VLMs to produce animations with far greater coherence. Our experiments demonstrate substantial gains over existing approaches, suggesting that semantic recovery is the key step that unlocks robust SVG animation and supports more interpretable interactions between VLMs and vector graphics.
comment: yeolj00.github.io/personal-projects/vector-prism
☆ Dual Attention Guided Defense Against Malicious Edits
Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
comment: 11 pages, 7 figures
☆ Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity
Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
comment: 11 pages, 4 figures
☆ From YOLO to VLMs: Advancing Zero-Shot and Few-Shot Detection of Wastewater Treatment Plants Using Satellite Imagery in MENA Region
In regions of the Middle East and North Africa (MENA), there is a high demand for wastewater treatment plants (WWTPs), crucial for sustainable water management. Precise identification of WWTPs from satellite images enables environmental monitoring. Traditional methods like YOLOv8 segmentation require extensive manual labeling. But studies indicate that vision-language models (VLMs) are an efficient alternative to achieving equivalent or superior results through inherent reasoning and annotation. This study presents a structured methodology for VLM comparison, divided into zero-shot and few-shot streams specifically to identify WWTPs. The YOLOv8 was trained on a governmental dataset of 83,566 high-resolution satellite images from Egypt, Saudi Arabia, and UAE: ~85% WWTPs (positives), 15% non-WWTPs (negatives). Evaluated VLMs include LLaMA 3.2 Vision, Qwen 2.5 VL, DeepSeek-VL2, Gemma 3, Gemini, and Pixtral 12B (Mistral), used to identify WWTP components such as circular/rectangular tanks, aeration basins and distinguish confounders via expert prompts producing JSON outputs with confidence and descriptions. The dataset comprises 1,207 validated WWTP locations (198 UAE, 354 KSA, 655 Egypt) and equal non-WWTP sites from field/AI data, as 600mx600m Geo-TIFF images (Zoom 18, EPSG:4326). Zero-shot evaluations on WWTP images showed several VLMs out-performing YOLOv8's true positive rate, with Gemma-3 highest. Results confirm that VLMs, particularly with zero-shot, can replace YOLOv8 for efficient, annotation-free WWTP classification, enabling scalable remote sensing.
comment: 9 pages, 9 figures
☆ PSMamba: Progressive Self-supervised Vision Mamba for Plant Disease Recognition
Self-supervised Learning (SSL) has become a powerful paradigm for representation learning without manual annotations. However, most existing frameworks focus on global alignment and struggle to capture the hierarchical, multi-scale lesion patterns characteristic of plant disease imagery. To address this gap, we propose PSMamba, a progressive self-supervised framework that integrates the efficient sequence modelling of Vision Mamba (VM) with a dual-student hierarchical distillation strategy. Unlike conventional single teacher-student designs, PSMamba employs a shared global teacher and two specialised students: one processes mid-scale views to capture lesion distributions and vein structures, while the other focuses on local views to capture fine-grained cues such as texture irregularities and early-stage lesions. This multi-granular supervision facilitates the joint learning of contextual and detailed representations, with consistency losses ensuring coherent cross-scale alignment. Experiments on three benchmark datasets show that PSMamba consistently outperforms state-of-the-art SSL methods, delivering superior accuracy and robustness in both domain-shifted and fine-grained scenarios.
☆ SS4D: Native 4D Generative Model via Structured Spacetime Latents
We present SS4D, a native 4D generative model that synthesizes dynamic 3D objects directly from monocular video. Unlike prior approaches that construct 4D representations by optimizing over 3D or video generative models, we train a generator directly on 4D data, achieving high fidelity, temporal coherence, and structural consistency. At the core of our method is a compressed set of structured spacetime latents. Specifically, (1) To address the scarcity of 4D training data, we build on a pre-trained single-image-to-3D model, preserving strong spatial consistency. (2) Temporal consistency is enforced by introducing dedicated temporal layers that reason across frames. (3) To support efficient training and inference over long video sequences, we compress the latent sequence along the temporal axis using factorized 4D convolutions and temporal downsampling blocks. In addition, we employ a carefully designed training strategy to enhance robustness against occlusion
comment: ToG(Siggraph Asia 2025)
☆ TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
☆ Zoom-Zero: Reinforced Coarse-to-Fine Video Understanding via Temporal Zoom-in
Grounded video question answering (GVQA) aims to localize relevant temporal segments in videos and generate accurate answers to a given question; however, large video-language models (LVLMs) exhibit limited temporal awareness. Although existing approaches based on Group Relative Policy Optimization (GRPO) attempt to improve temporal grounding, they still struggle to faithfully ground their answers in the relevant video evidence, leading to temporal mislocalization and hallucinations. In this work, we present Zoom-Zero, a coarse-to-fine framework that first localizes query-relevant segments and then temporally zooms into the most salient frames for finer-grained visual verification. Our method addresses the limits of GRPO for the GVQA task with two key innovations: (i) a zoom-in accuracy reward that validates the fidelity of temporal grounding prediction and facilitates fine-grained visual verification on grounded frames; (ii) token-selective credit assignment, which attributes rewards to the tokens responsible for temporal localization or answer generation, mitigating GRPO's issue in handling multi-faceted reward signals. Our proposed method advances grounded video question answering, improving temporal grounding by 5.2\% on NExT-GQA and 4.6\% on ReXTime, while also enhancing average answer accuracy by 2.4\%. Additionally, the coarse-to-fine zoom-in during inference further benefits long-form video understanding by preserving critical visual details without compromising global context, yielding an average improvement of 6.4\% on long-video benchmarks.
comment: Project page: https://xiaoqian-shen.github.io/Zoom-Zero/
☆ DriverGaze360: OmniDirectional Driver Attention with Object-Level Guidance
Predicting driver attention is a critical problem for developing explainable autonomous driving systems and understanding driver behavior in mixed human-autonomous vehicle traffic scenarios. Although significant progress has been made through large-scale driver attention datasets and deep learning architectures, existing works are constrained by narrow frontal field-of-view and limited driving diversity. Consequently, they fail to capture the full spatial context of driving environments, especially during lane changes, turns, and interactions involving peripheral objects such as pedestrians or cyclists. In this paper, we introduce DriverGaze360, a large-scale 360$^\circ$ field of view driver attention dataset, containing $\sim$1 million gaze-labeled frames collected from 19 human drivers, enabling comprehensive omnidirectional modeling of driver gaze behavior. Moreover, our panoramic attention prediction approach, DriverGaze360-Net, jointly learns attention maps and attended objects by employing an auxiliary semantic segmentation head. This improves spatial awareness and attention prediction across wide panoramic inputs. Extensive experiments demonstrate that DriverGaze360-Net achieves state-of-the-art attention prediction performance on multiple metrics on panoramic driving images. Dataset and method available at https://av.dfki.de/drivergaze360.
☆ Enhancing Visual Programming for Visual Reasoning via Probabilistic Graphs
Recently, Visual Programming (VP) based on large language models (LLMs) has rapidly developed and demonstrated significant potential in complex Visual Reasoning (VR) tasks. Previous works to enhance VP have primarily focused on improving the quality of LLM-generated visual programs. However, they have neglected to optimize the VP-invoked pre-trained models, which serve as modules for the visual sub-tasks decomposed from the targeted tasks by VP. The difficulty is that there are only final labels of targeted VR tasks rather than labels of sub-tasks. Besides, the non-differentiable nature of VP impedes the direct use of efficient gradient-based optimization methods to leverage final labels for end-to-end learning of the entire VP framework. To overcome these issues, we propose EVPG, a method to Enhance Visual Programming for visual reasoning via Probabilistic Graphs. Specifically, we creatively build a directed probabilistic graph according to the variable dependency relationships during the VP executing process, which reconstructs the non-differentiable VP executing process into a differentiable exact probability inference process on this directed probabilistic graph. As a result, this enables the VP framework to utilize the final labels for efficient, gradient-based optimization in end-to-end supervised learning on targeted VR tasks. Extensive and comprehensive experiments demonstrate the effectiveness and advantages of our EVPG, showing significant performance improvements for VP on three classical complex VR tasks: GQA, NLVRv2, and Open Images.
comment: 13 Pages, 12 figures
☆ Elastic3D: Controllable Stereo Video Conversion with Guided Latent Decoding
The growing demand for immersive 3D content calls for automated monocular-to-stereo video conversion. We present Elastic3D, a controllable, direct end-to-end method for upgrading a conventional video to a binocular one. Our approach, based on (conditional) latent diffusion, avoids artifacts due to explicit depth estimation and warping. The key to its high-quality stereo video output is a novel, guided VAE decoder that ensures sharp and epipolar-consistent stereo video output. Moreover, our method gives the user control over the strength of the stereo effect (more precisely, the disparity range) at inference time, via an intuitive, scalar tuning knob. Experiments on three different datasets of real-world stereo videos show that our method outperforms both traditional warping-based and recent warping-free baselines and sets a new standard for reliable, controllable stereo video conversion. Please check the project page for the video samples https://elastic3d.github.io.
comment: Project page: elastic3d.github.io
☆ 4D-RaDiff: Latent Diffusion for 4D Radar Point Cloud Generation
Automotive radar has shown promising developments in environment perception due to its cost-effectiveness and robustness in adverse weather conditions. However, the limited availability of annotated radar data poses a significant challenge for advancing radar-based perception systems. To address this limitation, we propose a novel framework to generate 4D radar point clouds for training and evaluating object detectors. Unlike image-based diffusion, our method is designed to consider the sparsity and unique characteristics of radar point clouds by applying diffusion to a latent point cloud representation. Within this latent space, generation is controlled via conditioning at either the object or scene level. The proposed 4D-RaDiff converts unlabeled bounding boxes into high-quality radar annotations and transforms existing LiDAR point cloud data into realistic radar scenes. Experiments demonstrate that incorporating synthetic radar data of 4D-RaDiff as data augmentation method during training consistently improves object detection performance compared to training on real data only. In addition, pre-training on our synthetic data reduces the amount of required annotated radar data by up to 90% while achieving comparable object detection performance.
☆ ViBES: A Conversational Agent with Behaviorally-Intelligent 3D Virtual Body
Human communication is inherently multimodal and social: words, prosody, and body language jointly carry intent. Yet most prior systems model human behavior as a translation task co-speech gesture or text-to-motion that maps a fixed utterance to motion clips-without requiring agentic decision-making about when to move, what to do, or how to adapt across multi-turn dialogue. This leads to brittle timing, weak social grounding, and fragmented stacks where speech, text, and motion are trained or inferred in isolation. We introduce ViBES (Voice in Behavioral Expression and Synchrony), a conversational 3D agent that jointly plans language and movement and executes dialogue-conditioned body actions. Concretely, ViBES is a speech-language-behavior (SLB) model with a mixture-of-modality-experts (MoME) backbone: modality-partitioned transformer experts for speech, facial expression, and body motion. The model processes interleaved multimodal token streams with hard routing by modality (parameters are split per expert), while sharing information through cross-expert attention. By leveraging strong pretrained speech-language models, the agent supports mixed-initiative interaction: users can speak, type, or issue body-action directives mid-conversation, and the system exposes controllable behavior hooks for streaming responses. We further benchmark on multi-turn conversation with automatic metrics of dialogue-motion alignment and behavior quality, and observe consistent gains over strong co-speech and text-to-motion baselines. ViBES goes beyond "speech-conditioned motion generation" toward agentic virtual bodies where language, prosody, and movement are jointly generated, enabling controllable, socially competent 3D interaction. Code and data will be made available at: ai.stanford.edu/~juze/ViBES/
comment: Project page: https://ai.stanford.edu/~juze/ViBES/
☆ Multi-View MRI Approach for Classification of MGMT Methylation in Glioblastoma Patients
The presence of MGMT promoter methylation significantly affects how well chemotherapy works for patients with Glioblastoma Multiforme (GBM). Currently, confirmation of MGMT promoter methylation relies on invasive brain tumor tissue biopsies. In this study, we explore radiogenomics techniques, a promising approach in precision medicine, to identify genetic markers from medical images. Using MRI scans and deep learning models, we propose a new multi-view approach that considers spatial relationships between MRI views to detect MGMT methylation status. Importantly, our method extracts information from all three views without using a complicated 3D deep learning model, avoiding issues associated with high parameter count, slow convergence, and substantial memory demands. We also introduce a new technique for tumor slice extraction and show its superiority over existing methods based on multiple evaluation metrics. By comparing our approach to state-of-the-art models, we demonstrate the efficacy of our method. Furthermore, we share a reproducible pipeline of published models, encouraging transparency and the development of robust diagnostic tools. Our study highlights the potential of non-invasive methods for identifying MGMT promoter methylation and contributes to advancing precision medicine in GBM treatment.
☆ OmniGen: Unified Multimodal Sensor Generation for Autonomous Driving ACM MM 2025
Autonomous driving has seen remarkable advancements, largely driven by extensive real-world data collection. However, acquiring diverse and corner-case data remains costly and inefficient. Generative models have emerged as a promising solution by synthesizing realistic sensor data. However, existing approaches primarily focus on single-modality generation, leading to inefficiencies and misalignment in multimodal sensor data. To address these challenges, we propose OminiGen, which generates aligned multimodal sensor data in a unified framework. Our approach leverages a shared Bird\u2019s Eye View (BEV) space to unify multimodal features and designs a novel generalizable multimodal reconstruction method, UAE, to jointly decode LiDAR and multi-view camera data. UAE achieves multimodal sensor decoding through volume rendering, enabling accurate and flexible reconstruction. Furthermore, we incorporate a Diffusion Transformer (DiT) with a ControlNet branch to enable controllable multimodal sensor generation. Our comprehensive experiments demonstrate that OminiGen achieves desired performances in unified multimodal sensor data generation with multimodal consistency and flexible sensor adjustments.
comment: ACM MM 2025
☆ History-Enhanced Two-Stage Transformer for Aerial Vision-and-Language Navigation
Aerial Vision-and-Language Navigation (AVLN) requires Unmanned Aerial Vehicle (UAV) agents to localize targets in large-scale urban environments based on linguistic instructions. While successful navigation demands both global environmental reasoning and local scene comprehension, existing UAV agents typically adopt mono-granularity frameworks that struggle to balance these two aspects. To address this limitation, this work proposes a History-Enhanced Two-Stage Transformer (HETT) framework, which integrates the two aspects through a coarse-to-fine navigation pipeline. Specifically, HETT first predicts coarse-grained target positions by fusing spatial landmarks and historical context, then refines actions via fine-grained visual analysis. In addition, a historical grid map is designed to dynamically aggregate visual features into a structured spatial memory, enhancing comprehensive scene awareness. Additionally, the CityNav dataset annotations are manually refined to enhance data quality. Experiments on the refined CityNav dataset show that HETT delivers significant performance gains, while extensive ablation studies further verify the effectiveness of each component.
☆ DRAW2ACT: Turning Depth-Encoded Trajectories into Robotic Demonstration Videos
Video diffusion models provide powerful real-world simulators for embodied AI but remain limited in controllability for robotic manipulation. Recent works on trajectory-conditioned video generation address this gap but often rely on 2D trajectories or single modality conditioning, which restricts their ability to produce controllable and consistent robotic demonstrations. We present DRAW2ACT, a depth-aware trajectory-conditioned video generation framework that extracts multiple orthogonal representations from the input trajectory, capturing depth, semantics, shape and motion, and injects them into the diffusion model. Moreover, we propose to jointly generate spatially aligned RGB and depth videos, leveraging cross-modality attention mechanisms and depth supervision to enhance the spatio-temporal consistency. Finally, we introduce a multimodal policy model conditioned on the generated RGB and depth sequences to regress the robot's joint angles. Experiments on Bridge V2, Berkeley Autolab, and simulation benchmarks show that DRAW2ACT achieves superior visual fidelity and consistency while yielding higher manipulation success rates compared to existing baselines.
☆ Beyond a Single Light: A Large-Scale Aerial Dataset for Urban Scene Reconstruction Under Varying Illumination
Recent advances in Neural Radiance Fields and 3D Gaussian Splatting have demonstrated strong potential for large-scale UAV-based 3D reconstruction tasks by fitting the appearance of images. However, real-world large-scale captures are often based on multi-temporal data capture, where illumination inconsistencies across different times of day can significantly lead to color artifacts, geometric inaccuracies, and inconsistent appearance. Due to the lack of UAV datasets that systematically capture the same areas under varying illumination conditions, this challenge remains largely underexplored. To fill this gap, we introduceSkyLume, a large-scale, real-world UAV dataset specifically designed for studying illumination robust 3D reconstruction in urban scene modeling: (1) We collect data from 10 urban regions data comprising more than 100k high resolution UAV images (four oblique views and nadir), where each region is captured at three periods of the day to systematically isolate illumination changes. (2) To support precise evaluation of geometry and appearance, we provide per-scene LiDAR scans and accurate 3D ground-truth for assessing depth, surface normals, and reconstruction quality under varying illumination. (3) For the inverse rendering task, we introduce the Temporal Consistency Coefficient (TCC), a metric that measuress cross-time albedo stability and directly evaluates the robustness of the disentanglement of light and material. We aim for this resource to serve as a foundation that advances research and real-world evaluation in large-scale inverse rendering, geometry reconstruction, and novel view synthesis.
☆ Fracture Morphology Classification: Local Multiclass Modeling for Multilabel Complexity
Between $15\,\%$ and $45\,\%$ of children experience a fracture during their growth years, making accurate diagnosis essential. Fracture morphology, alongside location and fragment angle, is a key diagnostic feature. In this work, we propose a method to extract fracture morphology by assigning automatically global AO codes to corresponding fracture bounding boxes. This approach enables the use of public datasets and reformulates the global multilabel task into a local multiclass one, improving the average F1 score by $7.89\,\%$. However, performance declines when using imperfect fracture detectors, highlighting challenges for real-world deployment. Our code is available on GitHub.
comment: Accepted as poster at the German Conference on Medical Image Computing 2026
☆ Establishing Stochastic Object Models from Noisy Data via Ambient Measurement-Integrated Diffusion
Task-based measures of image quality (IQ) are critical for evaluating medical imaging systems, which must account for randomness including anatomical variability. Stochastic object models (SOMs) provide a statistical description of such variability, but conventional mathematical SOMs fail to capture realistic anatomy, while data-driven approaches typically require clean data rarely available in clinical tasks. To address this challenge, we propose AMID, an unsupervised Ambient Measurement-Integrated Diffusion with noise decoupling, which establishes clean SOMs directly from noisy measurements. AMID introduces a measurement-integrated strategy aligning measurement noise with the diffusion trajectory, and explicitly models coupling between measurement and diffusion noise across steps, an ambient loss is thus designed base on it to learn clean SOMs. Experiments on real CT and mammography datasets show that AMID outperforms existing methods in generation fidelity and yields more reliable task-based IQ evaluation, demonstrating its potential for unsupervised medical imaging analysis.
☆ Spherical Voronoi: Directional Appearance as a Differentiable Partition of the Sphere
Radiance field methods (e.g. 3D Gaussian Splatting) have emerged as a powerful paradigm for novel view synthesis, yet their appearance modeling often relies on Spherical Harmonics (SH), which impose fundamental limitations. SH struggle with high-frequency signals, exhibit Gibbs ringing artifacts, and fail to capture specular reflections - a key component of realistic rendering. Although alternatives like spherical Gaussians offer improvements, they add significant optimization complexity. We propose Spherical Voronoi (SV) as a unified framework for appearance representation in 3D Gaussian Splatting. SV partitions the directional domain into learnable regions with smooth boundaries, providing an intuitive and stable parameterization for view-dependent effects. For diffuse appearance, SV achieves competitive results while keeping optimization simpler than existing alternatives. For reflections - where SH fail - we leverage SV as learnable reflection probes, taking reflected directions as input following principles from classical graphics. This formulation attains state-of-the-art results on synthetic and real-world datasets, demonstrating that SV offers a principled, efficient, and general solution for appearance modeling in explicit 3D representations.
☆ Improving Semantic Uncertainty Quantification in LVLMs with Semantic Gaussian Processes
Large Vision-Language Models (LVLMs) often produce plausible but unreliable outputs, making robust uncertainty estimation essential. Recent work on semantic uncertainty estimates relies on external models to cluster multiple sampled responses and measure their semantic consistency. However, these clustering methods are often fragile, highly sensitive to minor phrasing variations, and can incorrectly group or separate semantically similar answers, leading to unreliable uncertainty estimates. We propose Semantic Gaussian Process Uncertainty (SGPU), a Bayesian framework that quantifies semantic uncertainty by analyzing the geometric structure of answer embeddings, avoiding brittle clustering. SGPU maps generated answers into a dense semantic space, computes the Gram matrix of their embeddings, and summarizes their semantic configuration via the eigenspectrum. This spectral representation is then fed into a Gaussian Process Classifier that learns to map patterns of semantic consistency to predictive uncertainty, and that can be applied in both black-box and white-box settings. Across six LLMs and LVLMs on eight datasets spanning VQA, image classification, and textual QA, SGPU consistently achieves state-of-the-art calibration (ECE) and discriminative (AUROC, AUARC) performance. We further show that SGPU transfers across models and modalities, indicating that its spectral representation captures general patterns of semantic uncertainty.
☆ FastDDHPose: Towards Unified, Efficient, and Disentangled 3D Human Pose Estimation
Recent approaches for monocular 3D human pose estimation (3D HPE) have achieved leading performance by directly regressing 3D poses from 2D keypoint sequences. Despite the rapid progress in 3D HPE, existing methods are typically trained and evaluated under disparate frameworks, lacking a unified framework for fair comparison. To address these limitations, we propose Fast3DHPE, a modular framework that facilitates rapid reproduction and flexible development of new methods. By standardizing training and evaluation protocols, Fast3DHPE enables fair comparison across 3D human pose estimation methods while significantly improving training efficiency. Within this framework, we introduce FastDDHPose, a Disentangled Diffusion-based 3D Human Pose Estimation method which leverages the strong latent distribution modeling capability of diffusion models to explicitly model the distributions of bone length and bone direction while avoiding further amplification of hierarchical error accumulation. Moreover, we design an efficient Kinematic-Hierarchical Spatial and Temporal Denoiser that encourages the model to focus on kinematic joint hierarchies while avoiding unnecessary modeling of overly complex joint topologies. Extensive experiments on Human3.6M and MPI-INF-3DHP show that the Fast3DHPE framework enables fair comparison of all methods while significantly improving training efficiency. Within this unified framework, FastDDHPose achieves state-of-the-art performance with strong generalization and robustness in in-the-wild scenarios. The framework and models will be released at: https://github.com/Andyen512/Fast3DHPE
☆ CIS-BA: Continuous Interaction Space Based Backdoor Attack for Object Detection in the Real-World
Object detection models deployed in real-world applications such as autonomous driving face serious threats from backdoor attacks. Despite their practical effectiveness,existing methods are inherently limited in both capability and robustness due to their dependence on single-trigger-single-object mappings and fragile pixel-level cues. We propose CIS-BA, a novel backdoor attack paradigm that redefines trigger design by shifting from static object features to continuous inter-object interaction patterns that describe how objects co-occur and interact in a scene. By modeling these patterns as a continuous interaction space, CIS-BA introduces space triggers that, for the first time, enable a multi-trigger-multi-object attack mechanism while achieving robustness through invariant geometric relations. To implement this paradigm, we design CIS-Frame, which constructs space triggers via interaction analysis, formalizes them as class-geometry constraints for sample poisoning, and embeds the backdoor during detector training. CIS-Frame supports both single-object attacks (object misclassification and disappearance) and multi-object simultaneous attacks, enabling complex and coordinated effects across diverse interaction states. Experiments on MS-COCO and real-world videos show that CIS-BA achieves over 97% attack success under complex environments and maintains over 95% effectiveness under dynamic multi-trigger conditions, while evading three state-of-the-art defenses. In summary, CIS-BA extends the landscape of backdoor attacks in interaction-intensive scenarios and provides new insights into the security of object detection systems.
☆ Incentivizing Tool-augmented Thinking with Images for Medical Image Analysis
Recent reasoning based medical MLLMs have made progress in generating step by step textual reasoning chains. However, they still struggle with complex tasks that necessitate dynamic and iterative focusing on fine-grained visual regions to achieve precise grounding and diagnosis. We introduce Ophiuchus, a versatile, tool-augmented framework that equips an MLLM to (i) decide when additional visual evidence is needed, (ii) determine where to probe and ground within the medical image, and (iii) seamlessly weave the relevant sub-image content back into an interleaved, multimodal chain of thought. In contrast to prior approaches limited by the performance ceiling of specialized tools, Ophiuchus integrates the model's inherent grounding and perception capabilities with external tools, thereby fostering higher-level reasoning. The core of our method is a three-stage training strategy: cold-start training with tool-integrated reasoning data to achieve basic tool selection and adaptation for inspecting key regions; self-reflection fine-tuning to strengthen reflective reasoning and encourage revisiting tool outputs; and Agentic Tool Reinforcement Learning to directly optimize task-specific rewards and emulate expert-like diagnostic behavior. Extensive experiments show that Ophiuchus consistently outperforms both closed-source and open-source SOTA methods across diverse medical benchmarks, including VQA, detection, and reasoning-based segmentation. Our approach illuminates a path toward medical AI agents that can genuinely "think with images" through tool-integrated reasoning. Datasets, codes, and trained models will be released publicly.
☆ TorchTraceAP: A New Benchmark Dataset for Detecting Performance Anti-Patterns in Computer Vision Models
Identifying and addressing performance anti-patterns in machine learning (ML) models is critical for efficient training and inference, but it typically demands deep expertise spanning system infrastructure, ML models and kernel development. While large tech companies rely on dedicated ML infrastructure engineers to analyze torch traces and benchmarks, such resource-intensive workflows are largely inaccessible to computer vision researchers in general. Among the challenges, pinpointing problematic trace segments within lengthy execution traces remains the most time-consuming task, and is difficult to automate with current ML models, including LLMs. In this work, we present the first benchmark dataset specifically designed to evaluate and improve ML models' ability to detect anti patterns in traces. Our dataset contains over 600 PyTorch traces from diverse computer vision models classification, detection, segmentation, and generation collected across multiple hardware platforms. We also propose a novel iterative approach: a lightweight ML model first detects trace segments with anti patterns, followed by a large language model (LLM) for fine grained classification and targeted feedback. Experimental results demonstrate that our method significantly outperforms unsupervised clustering and rule based statistical techniques for detecting anti pattern regions. Our method also effectively compensates LLM's limited context length and reasoning inefficiencies.
☆ SketchAssist: A Practical Assistant for Semantic Edits and Precise Local Redrawing
Sketch editing is central to digital illustration, yet existing image editing systems struggle to preserve the sparse, style-sensitive structure of line art while supporting both high-level semantic changes and precise local redrawing. We present SketchAssist, an interactive sketch drawing assistant that accelerates creation by unifying instruction-guided global edits with line-guided region redrawing, while keeping unrelated regions and overall composition intact. To enable this assistant at scale, we introduce a controllable data generation pipeline that (i) constructs attribute-addition sequences from attribute-free base sketches, (ii) forms multi-step edit chains via cross-sequence sampling, and (iii) expands stylistic coverage with a style-preserving attribute-removal model applied to diverse sketches. Building on this data, SketchAssist employs a unified sketch editing framework with minimal changes to DiT-based editors. We repurpose the RGB channels to encode the inputs, enabling seamless switching between instruction-guided edits and line-guided redrawing within a single input interface. To further specialize behavior across modes, we integrate a task-guided mixture-of-experts into LoRA layers, routing by text and visual cues to improve semantic controllability, structural fidelity, and style preservation. Extensive experiments show state-of-the-art results on both tasks, with superior instruction adherence and style/structure preservation compared to recent baselines. Together, our dataset and SketchAssist provide a practical, controllable assistant for sketch creation and revision.
☆ Erasing CLIP Memories: Non-Destructive, Data-Free Zero-Shot class Unlearning in CLIP Models
We introduce a novel, closed-form approach for selective unlearning in multimodal models, specifically targeting pretrained models such as CLIP. Our method leverages nullspace projection to erase the target class information embedded in the final projection layer, without requiring any retraining or the use of images from the forget set. By computing an orthonormal basis for the subspace spanned by target text embeddings and projecting these directions, we dramatically reduce the alignment between image features and undesired classes. Unlike traditional unlearning techniques that rely on iterative fine-tuning and extensive data curation, our approach is both computationally efficient and surgically precise. This leads to a pronounced drop in zero-shot performance for the target classes while preserving the overall multimodal knowledge of the model. Our experiments demonstrate that even a partial projection can balance between complete unlearning and retaining useful information, addressing key challenges in model decontamination and privacy preservation.
☆ Consistent Instance Field for Dynamic Scene Understanding
We introduce Consistent Instance Field, a continuous and probabilistic spatio-temporal representation for dynamic scene understanding. Unlike prior methods that rely on discrete tracking or view-dependent features, our approach disentangles visibility from persistent object identity by modeling each space-time point with an occupancy probability and a conditional instance distribution. To realize this, we introduce a novel instance-embedded representation based on deformable 3D Gaussians, which jointly encode radiance and semantic information and are learned directly from input RGB images and instance masks through differentiable rasterization. Furthermore, we introduce new mechanisms to calibrate per-Gaussian identities and resample Gaussians toward semantically active regions, ensuring consistent instance representations across space and time. Experiments on HyperNeRF and Neu3D datasets demonstrate that our method significantly outperforms state-of-the-art methods on novel-view panoptic segmentation and open-vocabulary 4D querying tasks.
☆ SportsGPT: An LLM-driven Framework for Interpretable Sports Motion Assessment and Training Guidance
Existing intelligent sports analysis systems mainly focus on "scoring and visualization," often lacking automatic performance diagnosis and interpretable training guidance. Recent advances of Large Language Models (LMMs) and motion analysis techniques provide new opportunities to address the above limitations. In this paper, we propose SportsGPT, an LLM-driven framework for interpretable sports motion assessment and training guidance, which establishes a closed loop from motion time-series input to professional training guidance. First, given a set of high-quality target models, we introduce MotionDTW, a two-stage time series alignment algorithm designed for accurate keyframe extraction from skeleton-based motion sequences. Subsequently, we design a Knowledge-based Interpretable Sports Motion Assessment Model (KISMAM) to obtain a set of interpretable assessment metrics (e.g., insufficient extension) by constrasting the keyframes with the targe models. Finally, we propose SportsRAG, a RAG-based training guidance model based on Qwen3. Leveraging a 6B-token knowledge base, it prompts the LLM to generate professional training guidance by retrieving domain-specific QA pairs. Experimental results demonstrate that MotionDTW significantly outperforms traditional methods with lower temporal error and higher IoU scores. Furthermore, ablation studies validate the KISMAM and SportsRAG, confirming that SportsGPT surpasses general LLMs in diagnostic accuracy and professionalism.
☆ MFE-GAN: Efficient GAN-based Framework for Document Image Enhancement and Binarization with Multi-scale Feature Extraction SC 2025
Document image enhancement and binarization are commonly performed prior to document analysis and recognition tasks for improving the efficiency and accuracy of optical character recognition (OCR) systems. This is because directly recognizing text in degraded documents, particularly in color images, often results in unsatisfactory recognition performance. To address these issues, existing methods train independent generative adversarial networks (GANs) for different color channels to remove shadows and noise, which, in turn, facilitates efficient text information extraction. However, deploying multiple GANs results in long training and inference times. To reduce both training and inference times of document image enhancement and binarization models, we propose MFE-GAN, an efficient GAN-based framework with multi-scale feature extraction (MFE), which incorporates Haar wavelet transformation (HWT) and normalization to process document images before feeding them into GANs for training. In addition, we present novel generators, discriminators, and loss functions to improve the model's performance, and we conduct ablation studies to demonstrate their effectiveness. Experimental results on the Benchmark, Nabuco, and CMATERdb datasets demonstrate that the proposed MFE-GAN significantly reduces the total training and inference times while maintaining comparable performance with respect to state-of-the-art (SOTA) methods. The implementation of this work is available at https://ruiyangju.github.io/MFE-GAN.
comment: Extended Journal Version of APSIPA ASC 2025
☆ Selective, Controlled and Domain-Agnostic Unlearning in Pretrained CLIP: A Training- and Data-Free Approach
Pretrained models like CLIP have demonstrated impressive zero-shot classification capabilities across diverse visual domains, spanning natural images, artistic renderings, and abstract representations. However, real-world applications often demand the removal (or "unlearning") of specific object classes without requiring additional data or retraining, or affecting the model's performance on unrelated tasks. In this paper, we propose a novel training- and data-free unlearning framework that enables three distinct forgetting paradigms: (1) global unlearning of selected objects across all domains, (2) domain-specific knowledge removal (e.g., eliminating sketch representations while preserving photo recognition), and (3) complete unlearning in selective domains. By leveraging a multimodal nullspace through synergistic integration of text prompts and synthesized visual prototypes derived from CLIP's joint embedding space, our method efficiently removes undesired class information while preserving the remaining knowledge. This approach overcomes the limitations of existing retraining-based methods and offers a flexible and computationally efficient solution for controlled model forgetting.
☆ Neurosymbolic Inference On Foundation Models For Remote Sensing Text-to-image Retrieval With Complex Queries
Text-to-image retrieval in remote sensing (RS) has advanced rapidly with the rise of large vision-language models (LVLMs) tailored for aerial and satellite imagery, culminating in remote sensing large vision-language models (RS-LVLMS). However, limited explainability and poor handling of complex spatial relations remain key challenges for real-world use. To address these issues, we introduce RUNE (Reasoning Using Neurosymbolic Entities), an approach that combines Large Language Models (LLMs) with neurosymbolic AI to retrieve images by reasoning over the compatibility between detected entities and First-Order Logic (FOL) expressions derived from text queries. Unlike RS-LVLMs that rely on implicit joint embeddings, RUNE performs explicit reasoning, enhancing performance and interpretability. For scalability, we propose a logic decomposition strategy that operates on conditioned subsets of detected entities, guaranteeing shorter execution time compared to neural approaches. Rather than using foundation models for end-to-end retrieval, we leverage them only to generate FOL expressions, delegating reasoning to a neurosymbolic inference module. For evaluation we repurpose the DOTA dataset, originally designed for object detection, by augmenting it with more complex queries than in existing benchmarks. We show the LLM's effectiveness in text-to-logic translation and compare RUNE with state-of-the-art RS-LVLMs, demonstrating superior performance. We introduce two metrics, Retrieval Robustness to Query Complexity (RRQC) and Retrieval Robustness to Image Uncertainty (RRIU), which evaluate performance relative to query complexity and image uncertainty. RUNE outperforms joint-embedding models in complex RS retrieval tasks, offering gains in performance, robustness, and explainability. We show RUNE's potential for real-world RS applications through a use case on post-flood satellite image retrieval.
☆ ViewMask-1-to-3: Multi-View Consistent Image Generation via Multimodal Diffusion Models
Multi-view image generation from a single image and text description remains challenging due to the difficulty of maintaining geometric consistency across different viewpoints. Existing approaches typically rely on 3D-aware architectures or specialized diffusion models that require extensive multi-view training data and complex geometric priors. In this work, we introduce ViewMask-1-to-3, a pioneering approach to apply discrete diffusion models to multi-view image generation. Unlike continuous diffusion methods that operate in latent spaces, ViewMask-1-to-3 formulates multi-view synthesis as a discrete sequence modeling problem, where each viewpoint is represented as visual tokens obtained through MAGVIT-v2 tokenization. By unifying language and vision through masked token prediction, our approach enables progressive generation of multiple viewpoints through iterative token unmasking with text input. ViewMask-1-to-3 achieves cross-view consistency through simple random masking combined with self-attention, eliminating the requirement for complex 3D geometric constraints or specialized attention architectures. Our approach demonstrates that discrete diffusion provides a viable and simple alternative to existing multi-view generation methods, ranking first on average across GSO and 3D-FUTURE datasets in terms of PSNR, SSIM, and LPIPS, while maintaining architectural simplicity.
☆ OUSAC: Optimized Guidance Scheduling with Adaptive Caching for DiT Acceleration
Diffusion models have emerged as the dominant paradigm for high-quality image generation, yet their computational expense remains substantial due to iterative denoising. Classifier-Free Guidance (CFG) significantly enhances generation quality and controllability but doubles the computation by requiring both conditional and unconditional forward passes at every timestep. We present OUSAC (Optimized gUidance Scheduling with Adaptive Caching), a framework that accelerates diffusion transformers (DiT) through systematic optimization. Our key insight is that variable guidance scales enable sparse computation: adjusting scales at certain timesteps can compensate for skipping CFG at others, enabling both fewer total sampling steps and fewer CFG steps while maintaining quality. However, variable guidance patterns introduce denoising deviations that undermine standard caching methods, which assume constant CFG scales across steps. Moreover, different transformer blocks are affected at different levels under dynamic conditions. This paper develops a two-stage approach leveraging these insights. Stage-1 employs evolutionary algorithms to jointly optimize which timesteps to skip and what guidance scale to use, eliminating up to 82% of unconditional passes. Stage-2 introduces adaptive rank allocation that tailors calibration efforts per transformer block, maintaining caching effectiveness under variable guidance. Experiments demonstrate that OUSAC significantly outperforms state-of-the-art acceleration methods, achieving 53% computational savings with 15% quality improvement on DiT-XL/2 (ImageNet 512x512), 60% savings with 16.1% improvement on PixArt-alpha (MSCOCO), and 5x speedup on FLUX while improving CLIP Score over the 50-step baseline.
comment: 29 pages
☆ AnchorHOI: Zero-shot Generation of 4D Human-Object Interaction via Anchor-based Prior Distillation AAAI 2026
Despite significant progress in text-driven 4D human-object interaction (HOI) generation with supervised methods, the scalability remains limited by the scarcity of large-scale 4D HOI datasets. To overcome this, recent approaches attempt zero-shot 4D HOI generation with pre-trained image diffusion models. However, interaction cues are minimally distilled during the generation process, restricting their applicability across diverse scenarios. In this paper, we propose AnchorHOI, a novel framework that thoroughly exploits hybrid priors by incorporating video diffusion models beyond image diffusion models, advancing 4D HOI generation. Nevertheless, directly optimizing high-dimensional 4D HOI with such priors remains challenging, particularly for human pose and compositional motion. To address this challenge, AnchorHOI introduces an anchor-based prior distillation strategy, which constructs interaction-aware anchors and then leverages them to guide generation in a tractable two-step process. Specifically, two tailored anchors are designed for 4D HOI generation: anchor Neural Radiance Fields (NeRFs) for expressive interaction composition, and anchor keypoints for realistic motion synthesis. Extensive experiments demonstrate that AnchorHOI outperforms previous methods with superior diversity and generalization.
comment: AAAI 2026
☆ Quality-Aware Framework for Video-Derived Respiratory Signals
Video-based respiratory rate (RR) estimation is often unreliable due to inconsistent signal quality across extraction methods. We present a predictive, quality-aware framework that integrates heterogeneous signal sources with dynamic assessment of reliability. Ten signals are extracted from facial remote photoplethysmography (rPPG), upper-body motion, and deep learning pipelines, and analyzed using four spectral estimators: Welch's method, Multiple Signal Classification (MUSIC), Fast Fourier Transform (FFT), and peak detection. Segment-level quality indices are then used to train machine learning models that predict accuracy or select the most reliable signal. This enables adaptive signal fusion and quality-based segment filtering. Experiments on three public datasets (OMuSense-23, COHFACE, MAHNOB-HCI) show that the proposed framework achieves lower RR estimation errors than individual methods in most cases, with performance gains depending on dataset characteristics. These findings highlight the potential of quality-driven predictive modeling to deliver scalable and generalizable video-based respiratory monitoring solutions.
comment: 6 pages, 1 figure, 2 tables, conference
☆ ProtoFlow: Interpretable and Robust Surgical Workflow Modeling with Learned Dynamic Scene Graph Prototypes
Purpose: Detailed surgical recognition is critical for advancing AI-assisted surgery, yet progress is hampered by high annotation costs, data scarcity, and a lack of interpretable models. While scene graphs offer a structured abstraction of surgical events, their full potential remains untapped. In this work, we introduce ProtoFlow, a novel framework that learns dynamic scene graph prototypes to model complex surgical workflows in an interpretable and robust manner. Methods: ProtoFlow leverages a graph neural network (GNN) encoder-decoder architecture that combines self-supervised pretraining for rich representation learning with a prototype-based fine-tuning stage. This process discovers and refines core prototypes that encapsulate recurring, clinically meaningful patterns of surgical interaction, forming an explainable foundation for workflow analysis. Results: We evaluate our approach on the fine-grained CAT-SG dataset. ProtoFlow not only outperforms standard GNN baselines in overall accuracy but also demonstrates exceptional robustness in limited-data, few-shot scenarios, maintaining strong performance when trained on as few as one surgical video. Our qualitative analyses further show that the learned prototypes successfully identify distinct surgical sub-techniques and provide clear, interpretable insights into workflow deviations and rare complications. Conclusion: By uniting robust representation learning with inherent explainability, ProtoFlow represents a significant step toward developing more transparent, reliable, and data-efficient AI systems, accelerating their potential for clinical adoption in surgical training, real-time decision support, and workflow optimization.
☆ GaussianPlant: Structure-aligned Gaussian Splatting for 3D Reconstruction of Plants
We present a method for jointly recovering the appearance and internal structure of botanical plants from multi-view images based on 3D Gaussian Splatting (3DGS). While 3DGS exhibits robust reconstruction of scene appearance for novel-view synthesis, it lacks structural representations underlying those appearances (e.g., branching patterns of plants), which limits its applicability to tasks such as plant phenotyping. To achieve both high-fidelity appearance and structural reconstruction, we introduce GaussianPlant, a hierarchical 3DGS representation, which disentangles structure and appearance. Specifically, we employ structure primitives (StPs) to explicitly represent branch and leaf geometry, and appearance primitives (ApPs) to the plants' appearance using 3D Gaussians. StPs represent a simplified structure of the plant, i.e., modeling branches as cylinders and leaves as disks. To accurately distinguish the branches and leaves, StP's attributes (i.e., branches or leaves) are optimized in a self-organized manner. ApPs are bound to each StP to represent the appearance of branches or leaves as in conventional 3DGS. StPs and ApPs are jointly optimized using a re-rendering loss on the input multi-view images, as well as the gradient flow from ApP to StP using the binding correspondence information. We conduct experiments to qualitatively evaluate the reconstruction accuracy of both appearance and structure, as well as real-world experiments to qualitatively validate the practical performance. Experiments show that the GaussianPlant achieves both high-fidelity appearance reconstruction via ApPs and accurate structural reconstruction via StPs, enabling the extraction of branch structure and leaf instances.
comment: Submitted to IEEE TPAMI, under review
☆ SDAR-VL: Stable and Efficient Block-wise Diffusion for Vision-Language Understanding
Block-wise discrete diffusion offers an attractive balance between parallel generation and causal dependency modeling, making it a promising backbone for vision-language modeling. However, its practical adoption has been limited by high training cost, slow convergence, and instability, which have so far kept it behind strong autoregressive (AR) baselines. We present \textbf{SDAR-VL}, the first systematic application of block-wise discrete diffusion to large-scale vision-language understanding (VLU), together with an \emph{integrated framework for efficient and stable training}. This framework unifies three components: (1) \textbf{Asynchronous Block-wise Noise Scheduling} to diversify supervision within each batch; (2) \textbf{Effective Mask Ratio Scaling} for unbiased loss normalization under stochastic masking; and (3) a \textbf{Progressive Beta Noise Curriculum} that increases effective mask coverage while preserving corruption diversity. Experiments on 21 single-image, multi-image, and video benchmarks show that SDAR-VL consistently improves \emph{training efficiency}, \emph{convergence stability}, and \emph{task performance} over conventional block diffusion. On this evaluation suite, SDAR-VL sets a new state of the art among diffusion-based vision-language models and, under matched settings, matches or surpasses strong AR baselines such as LLaVA-OneVision as well as the global diffusion baseline LLaDA-V, establishing block-wise diffusion as a practical backbone for VLU.
☆ Bridging Fidelity-Reality with Controllable One-Step Diffusion for Image Super-Resolution
Recent diffusion-based one-step methods have shown remarkable progress in the field of image super-resolution, yet they remain constrained by three critical limitations: (1) inferior fidelity performance caused by the information loss from compression encoding of low-quality (LQ) inputs; (2) insufficient region-discriminative activation of generative priors; (3) misalignment between text prompts and their corresponding semantic regions. To address these limitations, we propose CODSR, a controllable one-step diffusion network for image super-resolution. First, we propose an LQ-guided feature modulation module that leverages original uncompressed information from LQ inputs to provide high-fidelity conditioning for the diffusion process. We then develop a region-adaptive generative prior activation method to effectively enhance perceptual richness without sacrificing local structural fidelity. Finally, we employ a text-matching guidance strategy to fully harness the conditioning potential of text prompts. Extensive experiments demonstrate that CODSR achieves superior perceptual quality and competitive fidelity compared with state-of-the-art methods with efficient one-step inference.
comment: Project page: https://github.com/Chanson94/CODSR
☆ Real-time prediction of workplane illuminance distribution for daylight-linked controls using non-intrusive multimodal deep learning
Daylight-linked controls (DLCs) have significant potential for energy savings in buildings, especially when abundant daylight is available and indoor workplane illuminance can be accurately predicted in real time. Most existing studies on indoor daylight predictions were developed and tested for static scenes. This study proposes a multimodal deep learning framework that predicts indoor workplane illuminance distributions in real time from non-intrusive images with temporal-spatial features. By extracting image features only from the side-lit window areas rather than interior pixels, the approach remains applicable in dynamically occupied indoor spaces. A field experiment was conducted in a test room in Guangzhou (China), where 17,344 samples were collected for model training and validation. The model achieved R2 > 0.98 with RMSE < 0.14 on the same-distribution test set and R2 > 0.82 with RMSE < 0.17 on an unseen-day test set, indicating high accuracy and acceptable temporal generalization.
☆ FacEDiT: Unified Talking Face Editing and Generation via Facial Motion Infilling
Talking face editing and face generation have often been studied as distinct problems. In this work, we propose viewing both not as separate tasks but as subtasks of a unifying formulation, speech-conditional facial motion infilling. We explore facial motion infilling as a self-supervised pretext task that also serves as a unifying formulation of dynamic talking face synthesis. To instantiate this idea, we propose FacEDiT, a speech-conditional Diffusion Transformer trained with flow matching. Inspired by masked autoencoders, FacEDiT learns to synthesize masked facial motions conditioned on surrounding motions and speech. This formulation enables both localized generation and edits, such as substitution, insertion, and deletion, while ensuring seamless transitions with unedited regions. In addition, biased attention and temporal smoothness constraints enhance boundary continuity and lip synchronization. To address the lack of a standard editing benchmark, we introduce FacEDiTBench, the first dataset for talking face editing, featuring diverse edit types and lengths, along with new evaluation metrics. Extensive experiments validate that talking face editing and generation emerge as subtasks of speech-conditional motion infilling; FacEDiT produces accurate, speech-aligned facial edits with strong identity preservation and smooth visual continuity while generalizing effectively to talking face generation.
comment: Project page: https://facedit.github.io/
☆ Expert Switching for Robust AAV Landing: A Dual-Detector Framework in Simulation
Reliable helipad detection is essential for Autonomous Aerial Vehicle (AAV) landing, especially under GPS-denied or visually degraded conditions. While modern detectors such as YOLOv8 offer strong baseline performance, single-model pipelines struggle to remain robust across the extreme scale transitions that occur during descent, where helipads appear small at high altitude and large near touchdown. To address this limitation, we propose a scale-adaptive dual-expert perception framework that decomposes the detection task into far-range and close-range regimes. Two YOLOv8 experts are trained on scale-specialized versions of the HelipadCat dataset, enabling one model to excel at detecting small, low-resolution helipads and the other to provide high-precision localization when the target dominates the field of view. During inference, both experts operate in parallel, and a geometric gating mechanism selects the expert whose prediction is most consistent with the AAV's viewpoint. This adaptive routing prevents the degradation commonly observed in single-detector systems when operating across wide altitude ranges. The dual-expert perception module is evaluated in a closed-loop landing environment that integrates CARLA's photorealistic rendering with NASA's GUAM flight-dynamics engine. Results show substantial improvements in alignment stability, landing accuracy, and overall robustness compared to single-detector baselines. By introducing a scale-aware expert routing strategy tailored to the landing problem, this work advances resilient vision-based perception for autonomous descent and provides a foundation for future multi-expert AAV frameworks.
☆ HyperVL: An Efficient and Dynamic Multimodal Large Language Model for Edge Devices
Current multimodal large lanauge models possess strong perceptual and reasoning capabilities, however high computational and memory requirements make them difficult to deploy directly on on-device environments. While small-parameter models are progressively endowed with strong general capabilities, standard Vision Transformer (ViT) encoders remain a critical bottleneck, suffering from excessive latency and memory consumption when processing high-resolution inputs.To address these challenges, we introduce HyperVL, an efficient multimodal large language model tailored for on-device inference. HyperVL adopts an image-tiling strategy to cap peak memory usage and incorporates two novel techniques: (1) a Visual Resolution Compressor (VRC) that adaptively predicts optimal encoding resolutions to eliminate redundant computation, and (2) Dual Consistency Learning (DCL), which aligns multi-scale ViT encoders within a unified framework, enabling dynamic switching between visual branches under a shared LLM. Extensive experiments demonstrate that HyperVL achieves state-of-the-art performance among models of comparable size across multiple benchmarks. Furthermore, it significantly significantly reduces latency and power consumption on real mobile devices, demonstrating its practicality for on-device multimodal inference.
comment: Technical report of Xiaomi HyperAI Team
☆ Adaptive Multimodal Person Recognition: A Robust Framework for Handling Missing Modalities
Person recognition systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently result in missing or degraded modalities. To address this challenge, we propose a Trimodal person identification framework that integrates voice, face, and gesture modalities, while remaining robust to modality loss. Our approach leverages multi-task learning to process each modality independently, followed by a cross-attention and gated fusion mechanisms to facilitate interaction across modalities. Moreover, a confidence-weighted fusion strategy dynamically adapts to missing and low-quality data, ensuring optimal classification even in Unimodal or Bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark for the first time. Our results demonstrate that the proposed Trimodal system achieves 99.18% Top-1 accuracy on person identification tasks, outperforming conventional Unimodal and late-fusion approaches. In addition, we evaluate our model on the VoxCeleb1 dataset as a benchmark and reach 99.92% accuracy in Bimodal mode. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
comment: 10 pages and 8 tables
☆ Puzzle Curriculum GRPO for Vision-Centric Reasoning
Recent reinforcement learning (RL) approaches like outcome-supervised GRPO have advanced chain-of-thought reasoning in Vision Language Models (VLMs), yet key issues linger: (i) reliance on costly and noisy hand-curated annotations or external verifiers; (ii) flat and sparse reward schemes in GRPO; and (iii) logical inconsistency between a chain's reasoning and its final answer. We present Puzzle Curriculum GRPO (PC-GRPO), a supervision-free recipe for RL with Verifiable Rewards (RLVR) that strengthens visual reasoning in VLMs without annotations or external verifiers. PC-GRPO replaces labels with three self-supervised puzzle environments: PatchFit, Rotation (with binary rewards) and Jigsaw (with graded partial credit mitigating reward sparsity). To counter flat rewards and vanishing group-relative advantages, we introduce a difficulty-aware curriculum that dynamically weights samples and peaks at medium difficulty. We further monitor Reasoning-Answer Consistency (RAC) during post-training: mirroring reports for vanilla GRPO in LLMs, RAC typically rises early then degrades; our curriculum delays this decline, and consistency-enforcing reward schemes further boost RAC. RAC correlates with downstream accuracy. Across diverse benchmarks and on Qwen-7B and Qwen-3B backbones, PC-GRPO improves reasoning quality, training stability, and end-task accuracy, offering a practical path to scalable, verifiable, and interpretable RL post-training for VLMs.
comment: Project page: https://pcgrpo.github.io
☆ TalkVerse: Democratizing Minute-Long Audio-Driven Video Generation
We introduce TalkVerse, a large-scale, open corpus for single-person, audio-driven talking video generation designed to enable fair, reproducible comparison across methods. While current state-of-the-art systems rely on closed data or compute-heavy models, TalkVerse offers 2.3 million high-resolution (720p/1080p) audio-video synchronized clips totaling 6.3k hours. These are curated from over 60k hours of video via a transparent pipeline that includes scene-cut detection, aesthetic assessment, strict audio-visual synchronization checks, and comprehensive annotations including 2D skeletons and structured visual/audio-style captions. Leveraging TalkVerse, we present a reproducible 5B DiT baseline built on Wan2.2-5B. By utilizing a video VAE with a high downsampling ratio and a sliding window mechanism with motion-frame context, our model achieves minute-long generation with low drift. It delivers comparable lip-sync and visual quality to the 14B Wan-S2V model but with 10$\times$ lower inference cost. To enhance storytelling in long videos, we integrate an MLLM director to rewrite prompts based on audio and visual cues. Furthermore, our model supports zero-shot video dubbing via controlled latent noise injection. We open-source the dataset, training recipes, and 5B checkpoints to lower barriers for research in audio-driven human video generation. Project Page: https://zhenzhiwang.github.io/talkverse/
comment: open-sourced single-person full-body talking video generation dataset, training code and checkpoints
☆ Improving Pre-trained Segmentation Models using Post-Processing
Gliomas are the most common malignant brain tumors in adults and are among the most lethal. Despite aggressive treatment, the median survival rate is less than 15 months. Accurate multiparametric MRI (mpMRI) tumor segmentation is critical for surgical planning, radiotherapy, and disease monitoring. While deep learning models have improved the accuracy of automated segmentation, large-scale pre-trained models generalize poorly and often underperform, producing systematic errors such as false positives, label swaps, and slice discontinuities in slices. These limitations are further compounded by unequal access to GPU resources and the growing environmental cost of large-scale model training. In this work, we propose adaptive post-processing techniques to refine the quality of glioma segmentations produced by large-scale pretrained models developed for various types of tumors. We demonstrated the techniques in multiple BraTS 2025 segmentation challenge tasks, with the ranking metric improving by 14.9 % for the sub-Saharan Africa challenge and 0.9% for the adult glioma challenge. This approach promotes a shift in brain tumor segmentation research from increasingly complex model architectures to efficient, clinically aligned post-processing strategies that are precise, computationally fair, and sustainable.
☆ PANDA-PLUS-Bench: A Clinical Benchmark for Evaluating Robustness of AI Foundation Models in Prostate Cancer Diagnosis
Artificial intelligence foundation models are increasingly deployed for prostate cancer Gleason grading, where GP3/GP4 distinction directly impacts treatment decisions. However, these models may achieve high validation accuracy by learning specimen-specific artifacts rather than generalizable biological features, limiting real-world clinical utility. We introduce PANDA-PLUS-Bench, a curated benchmark dataset derived from expert-annotated prostate biopsies designed specifically to quantify this failure mode. The benchmark comprises nine carefully selected whole slide images from nine unique patients containing diverse Gleason patterns, with non-overlapping tissue patches extracted at both 512x512 and 224x224 pixel resolutions across eight augmentation conditions. Using this benchmark, we evaluate seven foundation models on their ability to separate biological signal from slide-level confounders. Our results reveal substantial variation in robustness across models: Virchow2 achieved the lowest slide-level encoding among large-scale models (81.0%) yet exhibited the second-lowest cross-slide accuracy (47.2%). HistoEncoder, trained specifically on prostate tissue, demonstrated the highest cross-slide accuracy (59.7%) and the strongest slide-level encoding (90.3%), suggesting tissue-specific training may enhance both biological feature capture and slide-specific signatures. All models exhibited measurable within-slide vs. cross-slide accuracy gaps, though the magnitude varied from 19.9 percentage points to 26.9 percentage points. We provide an open-source Google Colab notebook enabling researchers to evaluate additional foundation models against our benchmark using standardized metrics. PANDA-PLUS-Bench addresses a critical gap in foundation model evaluation by providing a purpose-built resource for robustness assessment in the clinically important context of Gleason grading.
comment: 21 pages, 5 figures, 6 Tables
☆ Vibe Spaces for Creatively Connecting and Expressing Visual Concepts
Creating new visual concepts often requires connecting distinct ideas through their most relevant shared attributes -- their vibe. We introduce Vibe Blending, a novel task for generating coherent and meaningful hybrids that reveals these shared attributes between images. Achieving such blends is challenging for current methods, which struggle to identify and traverse nonlinear paths linking distant concepts in latent space. We propose Vibe Space, a hierarchical graph manifold that learns low-dimensional geodesics in feature spaces like CLIP, enabling smooth and semantically consistent transitions between concepts. To evaluate creative quality, we design a cognitively inspired framework combining human judgments, LLM reasoning, and a geometric path-based difficulty score. We find that Vibe Space produces blends that humans consistently rate as more creative and coherent than current methods.
comment: Project page: https://huzeyann.github.io/VibeSpace-webpage/
☆ Task Matrices: Linear Maps for Cross-Model Finetuning Transfer NeurIPS
Results in interpretability suggest that large vision and language models learn implicit linear encodings when models are biased by in-context prompting. However, the existence of similar linear representations in more general adaptation regimes has not yet been demonstrated. In this work, we develop the concept of a task matrix, a linear transformation from a base to finetuned embedding state. We demonstrate that for vision and text models and ten different datasets, a base model augmented with a task matrix achieves results surpassing linear probes, sometimes approaching finetuned levels. Our results validate the existence of cross-layer linear encodings between pretrained and finetuned architectures. Moreover, we show that a data-based approximation for such encodings is both efficient and generalizable to multiple domains. We make our implementation publicly available.
comment: NeurIPS Unireps 2025
♻ ☆ VIBE: Can a VLM Read the Room? EMNLP
Understanding human social behavior such as recognizing emotions and the social dynamics causing them is an important and challenging problem. While LLMs have made remarkable advances, they are limited to the textual domain and cannot account for the major role that non-verbal cues play in understanding social situations. Vision Language Models (VLMs) can potentially account for this gap, however their ability to make correct inferences over such social cues has received little attention. In this paper, we explore the capabilities of VLMs at social reasoning. We identify a previously overlooked limitation in VLMs: the Visual Social-Pragmatic Inference gap. To target this gap, we propose a new task for VLMs: Visual Social-Pragmatic Inference. We construct a high quality dataset to test the abilities of a VLM for this task and benchmark the performance of several VLMs on it.
comment: Findings of EMNLP, 2025
♻ ☆ AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection IJCNN 2025
The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.
comment: Accepted at Verimedia workshop, IJCNN 2025. 9 pages, 6 figures, 4 tables, code available: https://github.com/MI-BioLab/AI-GenBench
♻ ☆ One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation
Visual generative models (e.g., diffusion models) typically operate in compressed latent spaces to balance training efficiency and sample quality. In parallel, there has been growing interest in leveraging high-quality pre-trained visual representations, either by aligning them inside VAEs or directly within the generative model. However, adapting such representations remains challenging due to fundamental mismatches between understanding-oriented features and generation-friendly latent spaces. Representation encoders benefit from high-dimensional latents that capture diverse hypotheses for masked regions, whereas generative models favor low-dimensional latents that must faithfully preserve injected noise. This discrepancy has led prior work to rely on complex objectives and architectures. In this work, we propose FAE (Feature Auto-Encoder), a simple yet effective framework that adapts pre-trained visual representations into low-dimensional latents suitable for generation using as little as a single attention layer, while retaining sufficient information for both reconstruction and understanding. The key is to couple two separate deep decoders: one trained to reconstruct the original feature space, and a second that takes the reconstructed features as input for image generation. FAE is generic; it can be instantiated with a variety of self-supervised encoders (e.g., DINO, SigLIP) and plugged into two distinct generative families: diffusion models and normalizing flows. Across class-conditional and text-to-image benchmarks, FAE achieves strong performance. For example, on ImageNet 256x256, our diffusion model with CFG attains a near state-of-the-art FID of 1.29 (800 epochs) and 1.70 (80 epochs). Without CFG, FAE reaches the state-of-the-art FID of 1.48 (800 epochs) and 2.08 (80 epochs), demonstrating both high quality and fast learning.
♻ ☆ Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
♻ ☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow has the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, our method achieved a high Dice score of 82.64, and a low Hausdorff distance of 6.34 pixels was obtained for lesion segmentation. The proposed Text-Swin-U/Mamba model outperformed prior approaches: 37.79% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001), and surpassed the purely image-based XLSTM-UNet and nnUNet models by 2.58% and 1.01%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
♻ ☆ Seedance 1.5 pro: A Native Audio-Visual Joint Generation Foundation Model
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
comment: Seedance 1.5 pro Technical Report
♻ ☆ OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://lewandofskee.github.io/projects/OpenVE.
comment: Project page: https://lewandofskee.github.io/projects/OpenVE
♻ ☆ GASPACHO: Gaussian Splatting for Controllable Humans and Objects
We present GASPACHO, a method for generating photorealistic, controllable renderings of human-object interactions from multi-view RGB video. Unlike prior work that reconstructs only the human and treats objects as background, GASPACHO simultaneously recovers animatable templates for both the human and the interacting object as distinct sets of Gaussians, thereby allowing for controllable renderings of novel human object interactions in different poses from novel-camera viewpoints. We introduce a novel formulation that learns object Gaussians on an underlying 2D surface manifold rather than in 3D volume, yielding sharper, fine-grained object details for dynamic object reconstruction. We further propose a contact constraint in Gaussian space that regularizes human-object relations and enables natural, physically plausible animation. Across three benchmarks - BEHAVE, NeuralDome, and DNA-Rendering - GASPACHO achieves high-quality reconstructions under heavy occlusion and supports controllable synthesis of novel human-object interactions. We also demonstrate that our method allows for composition of humans and objects in 3D scenes and for the first time showcase that neural rendering can be used for the controllable generation of photoreal humans interacting with dynamic objects in diverse scenes. Our results are available at: https://miraymen.github.io/gaspacho/
comment: Project Page: https://miraymen.github.io/gaspacho/
♻ ☆ SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome
Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78\% in the gene-expression prediction task and avg. 26.93\% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.
♻ ☆ Order Matters: 3D Shape Generation from Sequential VR Sketches
VR sketching lets users explore and iterate on ideas directly in 3D, offering a faster and more intuitive alternative to conventional CAD tools. However, existing sketch-to-shape models ignore the temporal ordering of strokes, discarding crucial cues about structure and design intent. We introduce VRSketch2Shape, the first framework and multi-category dataset for generating 3D shapes from sequential VR sketches. Our contributions are threefold: (i) an automated pipeline that generates sequential VR sketches from arbitrary shapes, (ii) a dataset of over 20k synthetic and 900 hand-drawn sketch-shape pairs across four categories, and (iii) an order-aware sketch encoder coupled with a diffusion-based 3D generator. Our approach yields higher geometric fidelity than prior work, generalizes effectively from synthetic to real sketches with minimal supervision, and performs well even on partial sketches. All data and models will be released open-source at https://chenyizi086.github.io/VRSketch2Shape_website.
♻ ☆ Dynamic Prompt Generation for Interactive 3D Medical Image Segmentation Training
Interactive 3D biomedical image segmentation requires efficient models that can iteratively refine predictions based on user prompts. Current foundation models either lack volumetric awareness or suffer from limited interactive capabilities. We propose a training strategy that combines dynamic volumetric prompt generation with content-aware adaptive cropping to optimize the use of the image encoder. Our method simulates realistic user interaction patterns during training while addressing the computational challenges of learning from sequential refinement feedback on a single GPU. For efficient training, we initialize our network using the publicly available weights from the nnInteractive segmentation model. Evaluation on the \textbf{Foundation Models for Interactive 3D Biomedical Image Segmentation} competition demonstrates strong performance with an average final Dice score of 0.6385, normalized surface distance of 0.6614, and area-under-the-curve metrics of 2.4799 (Dice) and 2.5671 (NSD).
♻ ☆ Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing the pneumonia affected regions typically requires detailed pixel-level annotations, which are costly and time consuming to obtain. To address this limitation, this study proposes a weakly supervised deep learning framework for pneumonia classification and localization using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on costly pixel-level annotations, the proposed method utilizes image-level labels to generate clinically meaningful heatmaps that highlight pneumonia affected regions. Furthermore, we evaluate seven pre-trained deep learning models including a Vision Transformer under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high accuracy (96-98%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V2 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations in this study confirm that the proposed methods focus on clinically relevant lung regions, supporting the use of explainable AI for radiological diagnostics. Overall, this work highlights the potential of weakly supervised, explainable models that enhance transparency and clinical trust in AI-assisted pneumonia screening.
comment: https://github.com/kiranshahi/pneumonia-analysis
♻ ☆ Luminance-Aware Statistical Quantization: Unsupervised Hierarchical Learning for Illumination Enhancement NeurIPS 2025
Low-light image enhancement (LLIE) faces persistent challenges in balancing reconstruction fidelity with cross-scenario generalization. While existing methods predominantly focus on deterministic pixel-level mappings between paired low/normal-light images, they often neglect the continuous physical process of luminance transitions in real-world environments, leading to performance drop when normal-light references are unavailable. Inspired by empirical analysis of natural luminance dynamics revealing power-law distributed intensity transitions, this paper introduces Luminance-Aware Statistical Quantification (LASQ), a novel framework that reformulates LLIE as a statistical sampling process over hierarchical luminance distributions. Our LASQ re-conceptualizes luminance transition as a power-law distribution in intensity coordinate space that can be approximated by stratified power functions, therefore, replacing deterministic mappings with probabilistic sampling over continuous luminance layers. A diffusion forward process is designed to autonomously discover optimal transition paths between luminance layers, achieving unsupervised distribution emulation without normal-light references. In this way, it considerably improves the performance in practical situations, enabling more adaptable and versatile light restoration. This framework is also readily applicable to cases with normal-light references, where it achieves superior performance on domain-specific datasets alongside better generalization-ability across non-reference datasets.
comment: Accepted at NeurIPS 2025
♻ ☆ TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.
comment: 13 pages, 7 figures, 2 tables
♻ ☆ Debiasing Diffusion Priors via 3D Attention for Consistent Gaussian Splatting AAAI 2026
Versatile 3D tasks (e.g., generation or editing) that distill from Text-to-Image (T2I) diffusion models have attracted significant research interest for not relying on extensive 3D training data. However, T2I models exhibit limitations resulting from prior view bias, which produces conflicting appearances between different views of an object. This bias causes subject-words to preferentially activate prior view features during cross-attention (CA) computation, regardless of the target view condition. To overcome this limitation, we conduct a comprehensive mathematical analysis to reveal the root cause of the prior view bias in T2I models. Moreover, we find different UNet layers show different effects of prior view in CA. Therefore, we propose a novel framework, TD-Attn, which addresses multi-view inconsistency via two key components: (1) the 3D-Aware Attention Guidance Module (3D-AAG) constructs a view-consistent 3D attention Gaussian for subject-words to enforce spatial consistency across attention-focused regions, thereby compensating for the limited spatial information in 2D individual view CA maps; (2) the Hierarchical Attention Modulation Module (HAM) utilizes a Semantic Guidance Tree (SGT) to direct the Semantic Response Profiler (SRP) in localizing and modulating CA layers that are highly responsive to view conditions, where the enhanced CA maps further support the construction of more consistent 3D attention Gaussians. Notably, HAM facilitates semantic-specific interventions, enabling controllable and precise 3D editing. Extensive experiments firmly establish that TD-Attn has the potential to serve as a universal plugin, significantly enhancing multi-view consistency across 3D tasks.
comment: Accepted by AAAI 2026, Code is available at: https://github.com/kimslong/AAAI26-TDAttn
♻ ☆ Physically Grounded Monocular Depth via Nanophotonic Wavefront Prompting
Depth foundation models offer strong learned priors for 3D perception but lack physical depth cues, leading to ambiguities in metric scale. We introduce a birefringent metalens -- a planar nanophotonic lens composed of subwavelength pixels for wavefront shaping with a thickness of 700 nm and a diameter of 3 mm -- to physically prompt depth foundation models. In a single monocular shot, our metalens physically embeds depth information into two polarized optical wavefronts, which we decode through a lightweight prompting and fine-tuning framework that aligns depth foundation models with the optical signals. To scale the training data, we develop a light wave propagation simulator that synthesizes metalens responses from RGB-D datasets, incorporating key physical factors to minimize the sim-to-real gap. Simulated and physical experiments with our fabricated titanium-dioxide metalens demonstrate accurate and consistent metric depth over state-of-the-art monocular depth estimators. The research demonstrates that nanophotonic wavefront formation offers a promising bridge for grounding depth foundation models in physical depth sensing.
♻ ☆ Exo2Ego: Exocentric Knowledge Guided MLLM for Egocentric Video Understanding AAAI 2026
AI personal assistants, deployed through robots or wearables, require embodied understanding to collaborate effectively with humans. However, current Multimodal Large Language Models (MLLMs) primarily focus on third-person (exocentric) vision, overlooking the unique challenges of first-person (egocentric) videos. Additionally, high acquisition costs limit data size, impairing MLLM performance. To address these challenges, we propose learning the mapping between exocentric and egocentric domains, leveraging the extensive exocentric knowledge within existing MLLMs to enhance egocentric video understanding. To this end, we introduce Ego-ExoClip, a pre-training dataset comprising 1.1M synchronized ego-exo clip-text pairs derived from Ego-Exo4D, together with the instruction-tuning dataset EgoIT, which is collected from multiple sources to enhance the model's instruction-following capabilities. Building upon the datasets, we propose a migration strategy and further design a progressive mapping learning pipeline with three stages: Demonstrator Self-Preparation, Demonstrator-Learner Guidance, and Learner Self-Practice. Extensive experiments across diverse egocentric tasks reveal that existing MLLMs perform inadequately in egocentric video understanding, while our model significantly outperforms these leading models.
comment: This paper is accepted by AAAI 2026
♻ ☆ INQUIRE-Search: A Framework for Interactive Discovery in Large-Scale Biodiversity Databases
Large community science platforms such as iNaturalist contain hundreds of millions of biodiversity images that often capture ecological context on behaviors, interactions, phenology, and habitat. Yet most ecological workflows rely on metadata filtering or manual inspection, leaving this secondary information inaccessible at scale. We introduce INQUIRE-Search, an open-source system that enables scientists to rapidly and interactively search within an ecological image database for specific concepts using natural language, verify and export relevant observations, and utilize this discovered data for novel scientific analysis. Compared to traditional methods, INQUIRE-Search takes a fraction of the time, opening up new possibilities for scientific questions that can be explored. Through five case studies, we show the diversity of scientific applications that a tool like INQUIRE-Search can support, from seasonal variation in behavior across species to forest regrowth after wildfires. These examples demonstrate a new paradigm for interactive, efficient, and scalable scientific discovery that can begin to unlock previously inaccessible scientific value in large-scale biodiversity datasets. Finally, we emphasize using such AI-enabled discovery tools for science call for experts to reframe the priorities of the scientific process and develop novel methods for experiment design, data collection, survey effort, and uncertainty analysis.
comment: EV, JC, RKV contributed equally
♻ ☆ Training Multi-Image Vision Agents via End2End Reinforcement Learning
Recent VLM-based agents aim to replicate OpenAI O3's ``thinking with images" via tool use, but most open-source methods limit input to a single image, falling short on real-world multi-image QA tasks. To address this, we propose IMAgent, an open-source vision agent trained via end-to-end reinforcement learning dedicated for complex multi-image tasks. By leveraging a multi-agent system, we generate challenging and visually-rich multi-image QA pairs to fully activate the tool-use potential of the base VLM. Through manual verification, we obtain MIFG-QA, comprising 10k samples for training and evaluation. With deeper reasoning steps, VLMs may increasingly ignore visual inputs. We therefore develop two specialized tools for visual reflection and confirmation, allowing the model to proactively reallocate its attention to image content during inference. Benefiting from our well-designed action-trajectory two-level mask strategy, IMAgent achieves stable tool use behavior via pure RL training without requiring costly supervised fine-tuning data. Extensive experiments demonstrate that IMAgent maintains strong performance on existing single-image benchmarks while achieving substantial improvements on our proposed multi-image dataset, with our analysis providing actionable insights for the research community. Codes and data will be released soon.
♻ ☆ LWGANet: Addressing Spatial and Channel Redundancy in Remote Sensing Visual Tasks with Light-Weight Grouped Attention AAAI 2026
Light-weight neural networks for remote sensing (RS) visual analysis must overcome two inherent redundancies: spatial redundancy from vast, homogeneous backgrounds, and channel redundancy, where extreme scale variations render a single feature space inefficient. Existing models, often designed for natural images, fail to address this dual challenge in RS scenarios. To bridge this gap, we propose LWGANet, a light-weight backbone engineered for RS-specific properties. LWGANet introduces two core innovations: a Top-K Global Feature Interaction (TGFI) module that mitigates spatial redundancy by focusing computation on salient regions, and a Light-Weight Grouped Attention (LWGA) module that resolves channel redundancy by partitioning channels into specialized, scale-specific pathways. By synergistically resolving these core inefficiencies, LWGANet achieves a superior trade-off between feature representation quality and computational cost. Extensive experiments on twelve diverse datasets across four major RS tasks--scene classification, oriented object detection, semantic segmentation, and change detection--demonstrate that LWGANet consistently outperforms state-of-the-art light-weight backbones in both accuracy and efficiency. Our work establishes a new, robust baseline for efficient visual analysis in RS images.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ HQ-DM: Single Hadamard Transformation-Based Quantization-Aware Training for Low-Bit Diffusion Models
Diffusion models have demonstrated significant applications in the field of image generation. However, their high computational and memory costs pose challenges for deployment. Model quantization has emerged as a promising solution to reduce storage overhead and accelerate inference. Nevertheless, existing quantization methods for diffusion models struggle to mitigate outliers in activation matrices during inference, leading to substantial performance degradation under low-bit quantization scenarios. To address this, we propose HQ-DM, a novel Quantization-Aware Training framework that applies Single Hadamard Transformation to activation matrices. This approach effectively reduces activation outliers while preserving model performance under quantization. Compared to traditional Double Hadamard Transformation, our proposed scheme offers distinct advantages by seamlessly supporting INT convolution operations while preventing the amplification of weight outliers. For conditional generation on the ImageNet 256x256 dataset using the LDM-4 model, our W4A4 and W4A3 quantization schemes improve the Inception Score by 12.8% and 467.73%, respectively, over the existing state-of-the-art method.
♻ ☆ UnCageNet: Tracking and Pose Estimation of Caged Animal
Animal tracking and pose estimation systems, such as STEP (Simultaneous Tracking and Pose Estimation) and ViTPose, experience substantial performance drops when processing images and videos with cage structures and systematic occlusions. We present a three-stage preprocessing pipeline that addresses this limitation through: (1) cage segmentation using a Gabor-enhanced ResNet-UNet architecture with tunable orientation filters, (2) cage inpainting using CRFill for content-aware reconstruction of occluded regions, and (3) evaluation of pose estimation and tracking on the uncaged frames. Our Gabor-enhanced segmentation model leverages orientation-aware features with 72 directional kernels to accurately identify and segment cage structures that severely impair the performance of existing methods. Experimental validation demonstrates that removing cage occlusions through our pipeline enables pose estimation and tracking performance comparable to that in environments without occlusions. We also observe significant improvements in keypoint detection accuracy and trajectory consistency.
comment: 9 pages, 2 figures, 2 tables. Accepted to the Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP 2025), Mandi, India
♻ ☆ Multimodal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds
Assessment of forest biodiversity is crucial for ecosystem management and conservation. While traditional field surveys provide high-quality assessments, they are labor-intensive and spatially limited. This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can reliable assess the biodiversity potential of forests. We introduce the BioVista dataset, comprising 44378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark, designed to explore multimodal fusion approaches. Using deep neural networks (ResNet for orthophotos and PointVector for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving overall accuracies of 76.7% and 75.8%, respectively. We explore various 2D and 3D fusion approaches: confidence-based ensembling, feature-level concatenation, and end-to-end training, with the latter achieving an overall accuracies of 82.0% when separating low- and high potential forest areas. Our results demonstrate that spectral information from orthophotos and structural information from ALS point clouds effectively complement each other in the assessment of forest biodiversity potential.
♻ ☆ RTR-GS: 3D Gaussian Splatting for Inverse Rendering with Radiance Transfer and Reflection
3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities in novel view synthesis. However, rendering reflective objects remains a significant challenge, particularly in inverse rendering and relighting. We introduce RTR-GS, a novel inverse rendering framework capable of robustly rendering objects with arbitrary reflectance properties, decomposing BRDF and lighting, and delivering credible relighting results. Given a collection of multi-view images, our method effectively recovers geometric structure through a hybrid rendering model that combines forward rendering for radiance transfer with deferred rendering for reflections. This approach successfully separates high-frequency and low-frequency appearances, mitigating floating artifacts caused by spherical harmonic overfitting when handling high-frequency details. We further refine BRDF and lighting decomposition using an additional physically-based deferred rendering branch. Experimental results show that our method enhances novel view synthesis, normal estimation, decomposition, and relighting while maintaining efficient training inference process.
comment: 16 pages
♻ ☆ OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
♻ ☆ SAM3-I: Segment Anything with Instructions
Segment Anything Model 3 (SAM3) has advanced open-vocabulary segmentation through promptable concept segmentation, allowing users to segment all instances corresponding to a given concept, typically specified with short noun-phrase (NP) prompts. While this marks the first integration of language-level concepts within the SAM family, real-world usage typically requires far richer expressions that include attributes, spatial relations, functionalities, actions, states, and even implicit reasoning over instances. Currently, SAM3 relies on external multi-modal agents to convert complex instructions into NPs and then conduct iterative mask filtering. However, these NP-level concepts remain overly coarse, often failing to precisely represent a specific instance. In this work, we present SAM3-I, an enhanced framework that unifies concept-level understanding and instruction-level reasoning within the SAM family. SAM3-I introduces an instruction-aware cascaded adaptation mechanism that progressively aligns expressive instruction semantics with SAM3's existing vision-language representations, enabling direct instruction-following segmentation without sacrificing its original concept-driven capabilities. Furthermore, we design a structured instruction taxonomy spanning concept, simple, and complex levels, and develop a scalable data engine to construct a dataset with diverse instruction-mask pairs. Experiments show that SAM3-I delivers appealing performance, demonstrating that SAM3 can be effectively extended to follow natural-language instructions while preserving its strong concept grounding. We open-source SAM3-I and provide practical fine-tuning workflows, enabling researchers to adapt it to domain-specific applications. The source code is available here.
comment: Preliminary results; work in progress
♻ ☆ Multimodal Deep Learning for Stroke Prediction and Detection using Retinal Imaging and Clinical Data
Stroke is a major public health problem, affecting millions worldwide. Deep learning has recently demonstrated promise for enhancing the diagnosis and risk prediction of stroke. However, existing methods rely on costly medical imaging modalities, such as computed tomography. Recent studies suggest that retinal imaging could offer a cost-effective alternative for cerebrovascular health assessment due to the shared clinical pathways between the retina and the brain. Hence, this study explores the impact of leveraging retinal images and clinical data for stroke detection and risk prediction. We propose a multimodal deep neural network that processes Optical Coherence Tomography (OCT) and infrared reflectance retinal scans, combined with clinical data, such as demographics, vital signs, and diagnosis codes. We pretrained our model using a self-supervised learning framework using a real-world dataset consisting of $37$ k scans, and then fine-tuned and evaluated the model using a smaller labeled subset. Our empirical findings establish the predictive ability of the considered modalities in detecting lasting effects in the retina associated with acute stroke and forecasting future risk within a specific time horizon. The experimental results demonstrate the effectiveness of our proposed framework by achieving $5$\% AUROC improvement as compared to the unimodal image-only baseline, and $8$\% improvement compared to an existing state-of-the-art foundation model. In conclusion, our study highlights the potential of retinal imaging in identifying high-risk patients and improving long-term outcomes.
♻ ☆ GT2-GS: Geometry-aware Texture Transfer for Gaussian Splatting AAAI 2026
Transferring 2D textures to 3D modalities is of great significance for improving the efficiency of multimedia content creation. Existing approaches have rarely focused on transferring image textures onto 3D representations. 3D style transfer methods are capable of transferring abstract artistic styles to 3D scenes. However, these methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT^2-GS, a geometry-aware texture transfer framework for gaussian splitting. From the perspective of matching texture features with geometric information in rendered views, we identify the issue of insufficient texture features and propose a geometry-aware texture augmentation module to expand the texture feature set. Moreover, a geometry-consistent texture loss is proposed to optimize texture features into the scene representation. This loss function incorporates both camera pose and 3D geometric information of the scene, enabling controllable texture-oriented appearance editing. Finally, a geometry preservation strategy is introduced. By alternating between the texture transfer and geometry correction stages over multiple iterations, this strategy achieves a balance between learning texture features and preserving geometric integrity. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
comment: Accepted to AAAI 2026
♻ ☆ Renal Cell Carcinoma subtyping: learning from multi-resolution localization
Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
♻ ☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
♻ ☆ Fast and Explicit: Slice-to-Volume Reconstruction via 3D Gaussian Primitives with Analytic Point Spread Function Modeling
Recovering high-fidelity 3D images from sparse or degraded 2D images is a fundamental challenge in medical imaging, with broad applications ranging from 3D ultrasound reconstruction to MRI super-resolution. In the context of fetal MRI, high-resolution 3D reconstruction of the brain from motion-corrupted low-resolution 2D acquisitions is a prerequisite for accurate neurodevelopmental diagnosis. While implicit neural representations (INRs) have recently established state-of-the-art performance in self-supervised slice-to-volume reconstruction (SVR), they suffer from a critical computational bottleneck: accurately modeling the image acquisition physics requires expensive stochastic Monte Carlo sampling to approximate the point spread function (PSF). In this work, we propose a shift from neural network based implicit representations to Gaussian based explicit representations. By parameterizing the HR 3D image volume as a field of anisotropic Gaussian primitives, we leverage the property of Gaussians being closed under convolution and thus derive a \textit{closed-form analytical solution} for the forward model. This formulation reduces the previously intractable acquisition integral to an exact covariance addition ($\mathbfΣ_{obs} = \mathbfΣ_{HR} + \mathbfΣ_{PSF}$), effectively bypassing the need for compute-intensive stochastic sampling while ensuring exact gradient propagation. We demonstrate that our approach matches the reconstruction quality of self-supervised state-of-the-art SVR frameworks while delivering a 5$\times$--10$\times$ speed-up on neonatal and fetal data. With convergence often reached in under 30 seconds, our framework paves the way towards translation into clinical routine of real-time fetal 3D MRI. Code will be public at {https://github.com/m-dannecker/Gaussian-Primitives-for-Fast-SVR}.
comment: Under Review for MIDL 2026
♻ ☆ A Unified Framework with Multimodal Fine-tuning for Remote Sensing Semantic Segmentation
Multimodal remote sensing data, acquired from diverse sensors, offer a comprehensive and integrated perspective of the Earth's surface. Leveraging multimodal fusion techniques, semantic segmentation enables detailed and accurate analysis of geographic scenes, surpassing single-modality approaches. Building on advancements in vision foundation models, particularly the Segment Anything Model (SAM), this study proposes a unified framework incorporating a novel Multimodal Fine-tuning Network (MFNet) for remote sensing semantic segmentation. The proposed framework is designed to seamlessly integrate with various fine-tuning mechanisms, demonstrated through the inclusion of Adapter and Low-Rank Adaptation (LoRA) as representative examples. This extensibility ensures the framework's adaptability to other emerging fine-tuning strategies, allowing models to retain SAM's general knowledge while effectively leveraging multimodal data. Additionally, a pyramid-based Deep Fusion Module (DFM) is introduced to integrate high-level geographic features across multiple scales, enhancing feature representation prior to decoding. This work also highlights SAM's robust generalization capabilities with Digital Surface Model (DSM) data, a novel application. Extensive experiments on three benchmark multimodal remote sensing datasets, ISPRS Vaihingen, ISPRS Potsdam and MMHunan, demonstrate that the proposed MFNet significantly outperforms existing methods in multimodal semantic segmentation, setting a new standard in the field while offering a versatile foundation for future research and applications. The source code for this work is accessible at https://github.com/sstary/SSRS.
comment: 15 pages, 11 figures
♻ ☆ LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.
comment: Accepted at IEEE VTC-Fall 2025
♻ ☆ Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as social robot navigation, autonomous navigation, and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2025. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
comment: 45 pages
♻ ☆ Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
♻ ☆ Bi-Erasing: A Bidirectional Framework for Concept Removal in Diffusion Models
Concept erasure, which fine-tunes diffusion models to remove undesired or harmful visual concepts, has become a mainstream approach to mitigating unsafe or illegal image generation in text-to-image models.However, existing removal methods typically adopt a unidirectional erasure strategy by either suppressing the target concept or reinforcing safe alternatives, making it difficult to achieve a balanced trade-off between concept removal and generation quality. To address this limitation, we propose a novel Bidirectional Image-Guided Concept Erasure (Bi-Erasing) framework that performs concept suppression and safety enhancement simultaneously. Specifically, based on the joint representation of text prompts and corresponding images, Bi-Erasing introduces two decoupled image branches: a negative branch responsible for suppressing harmful semantics and a positive branch providing visual guidance for safe alternatives. By jointly optimizing these complementary directions, our approach achieves a balance between erasure efficacy and generation usability. In addition, we apply mask-based filtering to the image branches to prevent interference from irrelevant content during the erasure process. Across extensive experiment evaluations, the proposed Bi-Erasing outperforms baseline methods in balancing concept removal effectiveness and visual fidelity.
comment: Under Review
♻ ☆ Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: \textbf{(i) Immersive ASMR video-audio sources.} Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. \textbf{(ii) Peer-Review evaluation.} An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56\% accuracy (random 50\%), far below that of human experts (81.25\%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.
comment: Code is at https://github.com/video-reality-test/video-reality-test, page is at https://video-reality-test.github.io/
♻ ☆ Inter- and Intra-image Refinement for Few Shot Segmentation
Deep neural networks for semantic segmentation rely on large-scale annotated datasets, leading to an annotation bottleneck that motivates few shot semantic segmentation (FSS) which aims to generalize to novel classes with minimal labeled exemplars. Most existing FSS methods adopt a prototype-based paradigm, which generates query prior map by extracting masked-area features from support images and then makes predictions guided by the prior map. However, they suffer from two critical limitations induced by inter- and intra-image discrepancies: 1) The intra-class gap between support and query images, caused by single-prototype representation, results in scattered and noisy prior maps; 2) The inter-class interference from visually similar but semantically distinct regions leads to inconsistent support-query feature matching and erroneous predictions. To address these issues, we propose the Inter- and Intra-image Refinement (IIR) model. The model contains an inter-image class activation mapping based method that generates two prototypes for class-consistent region matching, including core discriminative features and local specific features, and yields an accurate and robust prior map. For intra-image refinement, a directional dropout mechanism is introduced to mask inconsistent support-query feature pairs in cross attention, thereby enhancing decoder performance. Extensive experiments demonstrate that IIR achieves state-of-the-art performance on 9 benchmarks, covering standard FSS, part FSS, and cross-domain FSS. Our source code is available at \href{https://github.com/forypipi/IIR}{https://github.com/forypipi/IIR}.
♻ ☆ MFGDiffusion: Mask-Guided Smoke Synthesis for Enhanced Forest Fire Detection
Smoke is the first visible indicator of a wildfire.With the advancement of deep learning, image-based smoke detection has become a crucial method for detecting and preventing forest fires. However, the scarcity of smoke image data from forest fires is one of the significant factors hindering the detection of forest fire smoke. Image generation models offer a promising solution for synthesizing realistic smoke images. However, current inpainting models exhibit limitations in generating high-quality smoke representations, particularly manifesting as inconsistencies between synthesized smoke and background contexts. To solve these problems, we proposed a comprehensive framework for generating forest fire smoke images. Firstly, we employed the pre-trained segmentation model and the multimodal model to obtain smoke masks and image captions.Then, to address the insufficient utilization of masks and masked images by inpainting models, we introduced a network architecture guided by mask and masked image features. We also proposed a new loss function, the mask random difference loss, which enhances the consistency of the generated effects around the mask by randomly expanding and eroding the mask edges.Finally, to generate a smoke image dataset using random masks for subsequent detection tasks, we incorporated smoke characteristics and use a multimodal large language model as a filtering tool to select diverse and reasonable smoke images, thereby improving the quality of the synthetic dataset. Experiments showed that our generated smoke images are realistic and diverse, and effectively enhance the performance of forest fire smoke detection models. Code is available at https://github.com/wghr123/MFGDiffusion.
comment: 14 pages, 11 figures
♻ ☆ From My View to Yours: Ego-to-Exo Transfer in VLMs for Understanding Activities of Daily Living
Vision Language Models (VLMs) have achieved strong performance across diverse video understanding tasks. However, their viewpoint invariant training limits their ability to understand egocentric properties (e.g., human object interactions) from exocentric video observations. This limitation is critical for many applications, such as Activities of Daily Living (ADL) monitoring, where the understanding of egocentric properties is essential, and egocentric cameras are impractical to deploy. To address this limitation, we propose Ego2ExoVLM, a VLM that learns to infer egocentric properties from exocentric videos by leveraging time-synchronized ego-exo videos during training. Ego2ExoVLM accomplishes this through the use of two components: Ego2Exo Sequence Distillation, which transfers knowledge from an egocentric teacher to an exocentric student, and Ego Adaptive Visual Tokens, designed to enhance the effectiveness of this knowledge transfer. To measure this capability, we introduce Ego-in-Exo Perception, a benchmark of 3.9K questions curated to explicitly measure the understanding of egocentric properties from exocentric videos. Ego2ExoVLM is evaluated on 10 tasks across Ego-in-Exo Perception and existing ADL benchmarks, achieving state-of-the-art results on the ADL-X benchmark suite and outperforming strong baselines on our proposed benchmark. All code, models, and data will be released at https://github.com/dominickrei/EgoExo4ADL.
♻ ☆ Assessing Greenspace Attractiveness with ChatGPT, Claude, and Gemini: Do AI Models Reflect Human Perceptions?
Understanding greenspace attractiveness is essential for designing livable and inclusive urban environments, yet existing assessment approaches often overlook informal or transient spaces and remain too resource intensive to capture subjective perceptions at scale. This study examines the ability of multimodal large language models (MLLMs), ChatGPT GPT-4o, Claude 3.5 Haiku, and Gemini 2.0 Flash, to assess greenspace attractiveness similarly to humans using Google Street View imagery. We compared model outputs with responses from a geo-questionnaire of residents in Lodz, Poland, across both formal (for example, parks and managed greenspaces) and informal (for example, meadows and wastelands) greenspaces. Survey respondents and models indicated whether each greenspace was attractive or unattractive and provided up to three free text explanations. Analyses examined how often their attractiveness judgments aligned and compared their explanations after classifying them into shared reasoning categories. Results show high AI human agreement for attractive formal greenspaces and unattractive informal spaces, but low alignment for attractive informal and unattractive formal greenspaces. Models consistently emphasized aesthetic and design oriented features, underrepresenting safety, functional infrastructure, and locally embedded qualities valued by survey respondents. While these findings highlight the potential for scalable pre-assessment, they also underscore the need for human oversight and complementary participatory approaches. We conclude that MLLMs can support, but not replace, context sensitive greenspace evaluation in planning practice.
♻ ☆ White Aggregation and Restoration for Few-shot 3D Point Cloud Semantic Segmentation
Few-Shot 3D Point Cloud Semantic Segmentation (FS-PCS) aims to predict per-point labels for an unlabeled point cloud, given only a few labeled examples. To extract discriminative representations from the limited labeled set, existing methods have constructed prototypes using algorithms such as farthest point sampling (FPS). However, we point out that this convention has undesirable effects as performance fluctuates depending on sampling, while the prototype generation process remains underexplored in the field. This motivates us to investigate an advanced prototype generation method based on attention mechanism. Despite its potential, we found that vanilla attention module suffers from the distributional gap between prototypical tokens and support features. To overcome this, we propose White Aggregation and Restoration Module (WARM), which resolves the misalignment by sandwiching cross-attention between whitening and coloring transformations. Specifically, whitening aligns the features to tokens before the attention process, and coloring subsequently restores the original distribution to the attended tokens. This simple yet effective design enables robust attention, thereby generating prototypes that capture the semantic relationships in support features. WARM achieves state-of-the-art performance with a significant margin on FS-PCS benchmarks, and demonstrates its effectiveness through extensive experiments.
comment: 10 pages, 6 figures
♻ ☆ Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention
Crowdsourced street-view imagery from social media provides real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing image geo-localization approaches, also known as Visual Place Recognition (VPR) models, exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geo-knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
comment: Updated author list to include additional contributor. Revised title and improved methodology section based on collaborative feedback
♻ ☆ Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study
Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
comment: 29 pages, 7 figures
♻ ☆ Video Generation with Stable Transparency via Shiftable RGB-A Distribution Learner
Generating RGB-A videos, which include alpha channels for transparency, has wide applications. However, current methods often suffer from low quality due to confusion between RGB and alpha. In this paper, we address this problem by learning shiftable RGB-A distributions. We adjust both the latent space and noise space, shifting the alpha distribution outward while preserving the RGB distribution, thereby enabling stable transparency generation without compromising RGB quality. Specifically, for the latent space, we propose a transparency-aware bidirectional diffusion loss during VAE training, which shifts the RGB-A distribution according to likelihood. For the noise space, we propose shifting the mean of diffusion noise sampling and applying a Gaussian ellipse mask to provide transparency guidance and controllability. Additionally, we construct a high-quality RGB-A video dataset. Compared to state-of-the-art methods, our model excels in visual quality, naturalness, transparency rendering, inference convenience, and controllability. The released model is available on our website: https://donghaotian123.github.io/Wan-Alpha/.
♻ ☆ Beyond the Visible: Disocclusion-Aware Editing via Proxy Dynamic Graphs
We address image-to-video generation with explicit user control over the final frame's disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://anranqi.github.io/beyond-visible.github.io/
♻ ☆ TextMesh4D: Text-to-4D Mesh Generation via Jacobian Deformation Field
Dynamic 3D (4D) content generation, particularly text-to-4D, remains a challenging and under-explored problem due to its inherent spatiotemporal complexity. Existing text-to-4D methods typically avoid direct mesh generation due to inherent topological constraints, favoring alternative representations like NeRFs or 3DGS. However, these non-mesh approaches, suffer from insufficient geometric fidelity, temporal artifacts, and limited compatibility with modern computer graphics (CG) pipelines. In contrast, directly generating dynamic meshes faces two key challenges: i) deformation inflexibility, as traditional vertex-based optimization is constrained by meshes' explicitly encoded topology, and ii) semantic inconsistency, arising from stochastic noise in distilled priors. In this paper, we introduce TextMesh4D, a pioneering framework for text-to-4D mesh generation that directly addresses these challenges. TextMesh4D features two core innovations: 1) the Jacobian Deformation Field (JDF), which shifts the deformation unit from vertices to faces, using per-face Jacobians to model flexible transformations free from topological constraints. 2) the Local-Global Semantic Regularizer (LGSR), which leverages the mesh's innate geometric properties to enforce semantic coherence both locally and globally across frames. Extensive experiments demonstrate that TextMesh4D achieves state-of-the-art performance in temporal consistency, structural fidelity, and visual realism, while requiring only a single 24GB GPU. Our work establishes a new benchmark for efficient and high-quality text-to-4D mesh generation. The code will be released to facilitate future research.
♻ ☆ MMDrive: Interactive Scene Understanding Beyond Vision with Multi-representational Fusion
Vision-language models enable the understanding and reasoning of complex traffic scenarios through multi-source information fusion, establishing it as a core technology for autonomous driving. However, existing vision-language models are constrained by the image understanding paradigm in 2D plane, which restricts their capability to perceive 3D spatial information and perform deep semantic fusion, resulting in suboptimal performance in complex autonomous driving environments. This study proposes MMDrive, an multimodal vision-language model framework that extends traditional image understanding to a generalized 3D scene understanding framework. MMDrive incorporates three complementary modalities, including occupancy maps, LiDAR point clouds, and textual scene descriptions. To this end, it introduces two novel components for adaptive cross-modal fusion and key information extraction. Specifically, the Text-oriented Multimodal Modulator dynamically weights the contributions of each modality based on the semantic cues in the question, guiding context-aware feature integration. The Cross-Modal Abstractor employs learnable abstract tokens to generate compact, cross-modal summaries that highlight key regions and essential semantics. Comprehensive evaluations on the DriveLM and NuScenes-QA benchmarks demonstrate that MMDrive achieves significant performance gains over existing vision-language models for autonomous driving, with a BLEU-4 score of 54.56 and METEOR of 41.78 on DriveLM, and an accuracy score of 62.7% on NuScenes-QA. MMDrive effectively breaks the traditional image-only understanding barrier, enabling robust multimodal reasoning in complex driving environments and providing a new foundation for interpretable autonomous driving scene understanding.
♻ ☆ Adapting General-Purpose Foundation Models for X-ray Ptychography in Low-Data Regimes
The automation of workflows in advanced microscopy is a key goal where foundation models like Language Models (LLMs) and Vision-Language Models (VLMs) show great potential. However, adapting these general-purpose models for specialized scientific tasks is critical, and the optimal domain adaptation strategy is often unclear. To address this, we introduce PtychoBench, a new multi-modal, multi-task benchmark for ptychographic analysis. Using this benchmark, we systematically compare two specialization strategies: Supervised Fine-Tuning (SFT) and In-Context Learning (ICL). We evaluate these strategies on a visual artifact detection task with VLMs and a textual parameter recommendation task with LLMs in a data-scarce regime. Our findings reveal that the optimal specialization pathway is task-dependent. For the visual task, SFT and ICL are highly complementary, with a fine-tuned model guided by context-aware examples achieving the highest mean performance (Micro-F1 of 0.728). Conversely, for the textual task, ICL on a large base model is the superior strategy, reaching a peak Micro-F1 of 0.847 and outperforming a powerful "super-expert" SFT model (0-shot Micro-F1 of 0.839). We also confirm the superiority of context-aware prompting and identify a consistent contextual interference phenomenon in fine-tuned models. These results, benchmarked against strong baselines including GPT-4o and a DINOv3-based classifier, offer key observations for AI in science: the optimal specialization path in our benchmark is dependent on the task modality, offering a clear framework for developing more effective science-based agentic systems.
♻ ☆ Wi-CBR: Salient-aware Adaptive WiFi Sensing for Cross-domain Behavior Recognition
The challenge in WiFi-based cross-domain Behavior Recognition lies in the significant interference of domain-specific signals on gesture variation. However, previous methods alleviate this interference by mapping the phase from multiple domains into a common feature space. If the Doppler Frequency Shift (DFS) signal is used to dynamically supplement the phase features to achieve better generalization, it enables the model to not only explore a wider feature space but also to avoid potential degradation of gesture semantic information. Specifically, we propose a novel Salient-aware Adaptive WiFi Sensing for Cross-domain Behavior Recognition (Wi-CBR), which constructs a dual-branch self-attention module that captures temporal features from phase information reflecting dynamic path length variations while extracting kinematic features from DFS correlated with motion velocity. Moreover, we design a Saliency Guidance Module that employs group attention mechanisms to mine critical activity features and utilizes gating mechanisms to optimize information entropy, facilitating feature fusion and enabling effective interaction between salient and non-salient behavioral characteristics. Extensive experiments on two large-scale public datasets (Widar3.0 and XRF55) demonstrate the superior performance of our method in both in-domain and cross-domain scenarios.
♻ ☆ Adaptive Detector-Verifier Framework for Zero-Shot Polyp Detection in Open-World Settings
Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.
♻ ☆ Learning neuroimaging models from health system-scale data
Neuroimaging is a ubiquitous tool for evaluating patients with neurological diseases. The global demand for magnetic resonance imaging (MRI) studies has risen steadily, placing significant strain on health systems, prolonging turnaround times, and intensifying physician burnout. These challenges disproportionately impact patients in low-resource and rural settings. Here, we utilized a large academic health system as a data engine to develop Prima, the first vision language model (VLM) serving as an AI foundation for neuroimaging that supports real-world, clinical MRI studies as input. Trained on over 220,000 MRI studies, Prima uses a hierarchical vision architecture that provides general and transferable MRI features. Prima was tested in a 1-year health system-wide study that included 30K MRI studies. Across 52 radiologic diagnoses from the major neurologic disorders, including neoplastic, inflammatory, infectious, and developmental lesions, Prima achieved a mean diagnostic area under the ROC curve of 92.0, outperforming other state-of-the-art general and medical AI models. Prima offers explainable differential diagnoses, worklist priority for radiologists, and clinical referral recommendations across diverse patient demographics and MRI systems. Prima demonstrates algorithmic fairness across sensitive groups and can help mitigate health system biases, such as prolonged turnaround times for low-resource populations. These findings highlight the transformative potential of health system-scale VLMs and Prima's role in advancing AI-driven healthcare.
♻ ☆ REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning NeurIPS 2025
Recent rehearsal-free continual learning (CL) methods guided by prompts achieve strong performance on vision tasks with non-stationary data but remain resource-intensive, hindering real-world edge deployment. We introduce resource-efficient prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free continual learning methods while minimizing accuracy trade-offs. Our approach employs swift prompt selection to refine input data using a carefully provisioned model and introduces adaptive token merging (AToM) and adaptive layer dropping (ALD) for efficient prompt updates. AToM and ALD selectively skip data and model layers while preserving task-specific features during the learning of new tasks. Extensive experiments on multiple image classification datasets demonstrate REP's superior resource efficiency over state-of-the-art rehearsal-free CL methods.
comment: NeurIPS 2025
♻ ☆ On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.52 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
♻ ☆ Audio-Visual Camera Pose Estimation with Passive Scene Sounds and In-the-Wild Video
Understanding camera motion is a fundamental problem in embodied perception and 3D scene understanding. While visual methods have advanced rapidly, they often struggle under visually degraded conditions such as motion blur or occlusions. In this work, we show that passive scene sounds provide complementary cues for relative camera pose estimation for in-the-wild videos. We introduce a simple but effective audio-visual framework that integrates direction-ofarrival (DOA) spectra and binauralized embeddings into a state-of-the-art vision-only pose estimation model. Our results on two large datasets show consistent gains over strong visual baselines, plus robustness when the visual information is corrupted. To our knowledge, this represents the first work to successfully leverage audio for relative camera pose estimation in real-world videos, and it establishes incidental, everyday audio as an unexpected but promising signal for a classic spatial challenge. Project: http://vision.cs.utexas.edu/projects/av_camera_pose.
♻ ☆ VideoMem: Enhancing Ultra-Long Video Understanding via Adaptive Memory Management
Ultra long video understanding remains an open challenge, as existing vision language models (VLMs) falter on such content due to limited context length and inefficient long term memory retention. To address this, recent works have attempted to construct external knowledge bases and corresponding retrieval agumented generation (RAG) systems, yet these incur enormous storage and computational overhead. In this paper, we propose VideoMem, a novel framework that pioneers models long video understanding as a sequential generation task via adaptive memory management. Specifically, VideoMem dynamically updates a global memory buffer, which adaptively retains critical information while discarding redundant content across the video timeline. To efficiently train VLMs for such long-term tasks, VideoMem integrates the Progressive Grouped Relative Policy Optimization (PRPO) algorithm, equipped with two core modules: Progressive State Propagation (PSP) adaptively retains valid current states, propagates them to the next rollout step, and gradually narrows the model exploration space. Temporal Cascading Reward (TCR) further alleviates reward sparsity, improving sample utilization and accelerating convergence. Extensive experiments demonstrate that VideoMem significantly outperforms existing open-source models across diverse benchmarks for ultra-long video understanding tasks.
♻ ☆ POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining "chicken-and-egg" cycle for scalable and reproducible portrait illumination. Our project page: https://rex0191.github.io/POLAR/.
comment: 19 pages, 19 figures
♻ ☆ MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
♻ ☆ ASSR-NeRF: Arbitrary-Scale Super-Resolution on Voxel Grid for High-Quality Radiance Fields Reconstruction
NeRF-based methods reconstruct 3D scenes by building a radiance field with implicit or explicit representations. While NeRF-based methods can perform novel view synthesis (NVS) at arbitrary scale, the performance in high-resolution novel view synthesis (HRNVS) with low-resolution (LR) optimization often results in oversmoothing. On the other hand, single-image super-resolution (SR) aims to enhance LR images to HR counterparts but lacks multi-view consistency. To address these challenges, we propose Arbitrary-Scale Super-Resolution NeRF (ASSR-NeRF), a novel framework for super-resolution novel view synthesis (SRNVS). We propose an attention-based VoxelGridSR model to directly perform 3D super-resolution (SR) on the optimized volume. Our model is trained on diverse scenes to ensure generalizability. For unseen scenes trained with LR views, we then can directly apply our VoxelGridSR to further refine the volume and achieve multi-view consistent SR. We demonstrate quantitative and qualitatively that the proposed method achieves significant performance in SRNVS.
♻ ☆ From Segments to Scenes: Temporal Understanding in Autonomous Driving via Vision-Language Model
Temporal understanding in autonomous driving (AD) remains a significant challenge, even for recent state-of-the-art (SoTA) Vision-Language Models (VLMs). Prior work has introduced datasets and benchmarks aimed at improving temporal reasoning, but these have emphasized other video content, including sports, cooking, and movies. No existing benchmark focuses exclusively on the unique challenges of temporal understanding in ego-centric AD footage. To fill this gap, the Temporal Understanding in Autonomous Driving (TAD) benchmark is presented, which evaluates VLMs' ability to capture the dynamic relationships between actions in AD. TAD comprises nearly 6,000 question-answer (QA) pairs, spanning 7 human-designed tasks. In addition, an evaluation is performed that consists of 9 closed- and open-source generalist models as well as SoTA AD specialist models. When applied to TAD, current SoTA models demonstrated substandard accuracies, largely due to imperfect fine-grained motion understanding. To improve motion understanding and overall accuracy on TAD, two novel training-free solutions are proposed: Scene-CoT, that leverages Chain-of-Thought (CoT) and TCogMap, which incorporates an ego-centric temporal cognitive map. The proposed approaches are integrated with existing VLMs and improve average accuracy on TAD by up to 17.72%. By introducing TAD, benchmarking multiple SoTA models, and proposing effective enhancements, this work aims to catalyze future research on temporal understanding in AD. The benchmark and evaluation code are available at \href{https://huggingface.co/datasets/vbdai/TAD}{Hugging Face} and \href{https://github.com/vbdi/tad_bench}{Github}, respectively.
♻ ☆ Efficiency vs. Efficacy: Assessing the Compression Ratio-Dice Score Relationship through a Simple Benchmarking Framework for Cerebrovascular 3D Segmentation
The increasing size and complexity of medical imaging datasets, particularly in 3D formats, present significant barriers to collaborative research and transferability. This study investigates whether the ZFP compression technique can mitigate these challenges without compromising the performance of automated cerebrovascular segmentation, a critical first step in intracranial aneurysm detection. We apply ZFP in both its error tolerance and fixed-rate modes to a large scale, and one of the most recent, datasets in the literature, 3D medical dataset containing ground-truth vascular segmentations. The segmentation quality on the compressed volumes is rigorously compared to the uncompressed baseline (Dice approximately equals 0.8774). Our findings reveal that ZFP can achieve substantial data reduction--up to a 22.89:1 ratio in error tolerance mode--while maintaining a high degree of fidelity, with the mean Dice coefficient remaining high at 0.87656. These results demonstrate that ZFP is a viable and powerful tool for enabling more efficient and accessible research on large-scale medical datasets, fostering broader collaboration across the community.
Artificial Intelligence 150
☆ TimeLens: Rethinking Video Temporal Grounding with Multimodal LLMs
This paper does not introduce a novel method but instead establishes a straightforward, incremental, yet essential baseline for video temporal grounding (VTG), a core capability in video understanding. While multimodal large language models (MLLMs) excel at various video understanding tasks, the recipes for optimizing them for VTG remain under-explored. In this paper, we present TimeLens, a systematic investigation into building MLLMs with strong VTG ability, along two primary dimensions: data quality and algorithmic design. We first expose critical quality issues in existing VTG benchmarks and introduce TimeLens-Bench, comprising meticulously re-annotated versions of three popular benchmarks with strict quality criteria. Our analysis reveals dramatic model re-rankings compared to legacy benchmarks, confirming the unreliability of prior evaluation standards. We also address noisy training data through an automated re-annotation pipeline, yielding TimeLens-100K, a large-scale, high-quality training dataset. Building on our data foundation, we conduct in-depth explorations of algorithmic design principles, yielding a series of meaningful insights and effective yet efficient practices. These include interleaved textual encoding for time representation, a thinking-free reinforcement learning with verifiable rewards (RLVR) approach as the training paradigm, and carefully designed recipes for RLVR training. These efforts culminate in TimeLens models, a family of MLLMs with state-of-the-art VTG performance among open-source models and even surpass proprietary models such as GPT-5 and Gemini-2.5-Flash. All codes, data, and models will be released to facilitate future research.
comment: Project Page: https://timelens-arc-lab.github.io/
☆ Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
comment: Tech report; project page: https://zhaoyue-zephyrus.github.io/npq/
☆ Universal Reasoning Model
Universal transformers (UTs) have been widely used for complex reasoning tasks such as ARC-AGI and Sudoku, yet the specific sources of their performance gains remain underexplored. In this work, we systematically analyze UTs variants and show that improvements on ARC-AGI primarily arise from the recurrent inductive bias and strong nonlinear components of Transformer, rather than from elaborate architectural designs. Motivated by this finding, we propose the Universal Reasoning Model (URM), which enhances the UT with short convolution and truncated backpropagation. Our approach substantially improves reasoning performance, achieving state-of-the-art 53.8% pass@1 on ARC-AGI 1 and 16.0% pass@1 on ARC-AGI 2. Our code is avaliable at https://github.com/zitian-gao/URM.
☆ Native and Compact Structured Latents for 3D Generation
Recent advancements in 3D generative modeling have significantly improved the generation realism, yet the field is still hampered by existing representations, which struggle to capture assets with complex topologies and detailed appearance. This paper present an approach for learning a structured latent representation from native 3D data to address this challenge. At its core is a new sparse voxel structure called O-Voxel, an omni-voxel representation that encodes both geometry and appearance. O-Voxel can robustly model arbitrary topology, including open, non-manifold, and fully-enclosed surfaces, while capturing comprehensive surface attributes beyond texture color, such as physically-based rendering parameters. Based on O-Voxel, we design a Sparse Compression VAE which provides a high spatial compression rate and a compact latent space. We train large-scale flow-matching models comprising 4B parameters for 3D generation using diverse public 3D asset datasets. Despite their scale, inference remains highly efficient. Meanwhile, the geometry and material quality of our generated assets far exceed those of existing models. We believe our approach offers a significant advancement in 3D generative modeling.
comment: Project Page: https://microsoft.github.io/TRELLIS.2/
☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. The dataset is available online at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
☆ Bias-Variance Trade-off for Clipped Stochastic First-Order Methods: From Bounded Variance to Infinite Mean
Stochastic optimization is fundamental to modern machine learning. Recent research has extended the study of stochastic first-order methods (SFOMs) from light-tailed to heavy-tailed noise, which frequently arises in practice, with clipping emerging as a key technique for controlling heavy-tailed gradients. Extensive theoretical advances have further shown that the oracle complexity of SFOMs depends on the tail index $α$ of the noise. Nonetheless, existing complexity results often cover only the case $α\in (1,2]$, that is, the regime where the noise has a finite mean, while the complexity bounds tend to infinity as $α$ approaches $1$. This paper tackles the general case of noise with tail index $α\in(0,2]$, covering regimes ranging from noise with bounded variance to noise with an infinite mean, where the latter case has been scarcely studied. Through a novel analysis of the bias-variance trade-off in gradient clipping, we show that when a symmetry measure of the noise tail is controlled, clipped SFOMs achieve improved complexity guarantees in the presence of heavy-tailed noise for any tail index $α\in (0,2]$. Our analysis of the bias-variance trade-off not only yields new unified complexity guarantees for clipped SFOMs across this full range of tail indices, but is also straightforward to apply and can be combined with classical analyses under light-tailed noise to establish oracle complexity guarantees under heavy-tailed noise. Finally, numerical experiments validate our theoretical findings.
☆ VASA-3D: Lifelike Audio-Driven Gaussian Head Avatars from a Single Image NeurIPS 2025
We propose VASA-3D, an audio-driven, single-shot 3D head avatar generator. This research tackles two major challenges: capturing the subtle expression details present in real human faces, and reconstructing an intricate 3D head avatar from a single portrait image. To accurately model expression details, VASA-3D leverages the motion latent of VASA-1, a method that yields exceptional realism and vividness in 2D talking heads. A critical element of our work is translating this motion latent to 3D, which is accomplished by devising a 3D head model that is conditioned on the motion latent. Customization of this model to a single image is achieved through an optimization framework that employs numerous video frames of the reference head synthesized from the input image. The optimization takes various training losses robust to artifacts and limited pose coverage in the generated training data. Our experiment shows that VASA-3D produces realistic 3D talking heads that cannot be achieved by prior art, and it supports the online generation of 512x512 free-viewpoint videos at up to 75 FPS, facilitating more immersive engagements with lifelike 3D avatars.
comment: NeurIPS 2025 paper. Project webpage: https://www.microsoft.com/en-us/research/project/vasa-3d/
☆ gridfm-datakit-v1: A Python Library for Scalable and Realistic Power Flow and Optimal Power Flow Data Generation
We introduce gridfm-datakit-v1, a Python library for generating realistic and diverse Power Flow (PF) and Optimal Power Flow (OPF) datasets for training Machine Learning (ML) solvers. Existing datasets and libraries face three main challenges: (1) lack of realistic stochastic load and topology perturbations, limiting scenario diversity; (2) PF datasets are restricted to OPF-feasible points, hindering generalization of ML solvers to cases that violate operating limits (e.g., branch overloads or voltage violations); and (3) OPF datasets use fixed generator cost functions, limiting generalization across varying costs. gridfm-datakit addresses these challenges by: (1) combining global load scaling from real-world profiles with localized noise and supporting arbitrary N-k topology perturbations to create diverse yet realistic datasets; (2) generating PF samples beyond operating limits; and (3) producing OPF data with varying generator costs. It also scales efficiently to large grids (up to 10,000 buses). Comparisons with OPFData, OPF-Learn, PGLearn, and PF$Δ$ are provided. Available on GitHub at https://github.com/gridfm/gridfm-datakit under Apache 2.0 and via `pip install gridfm-datakit`.
comment: Main equal contributors: Alban Puech, Matteo Mazzonelli. Other equal contributors: Celia Cintas, Tamara R. Govindasamy, Mangaliso Mngomezulu, Jonas Weiss
☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 17 pages
☆ MuseCPBench: an Empirical Study of Music Editing Methods through Music Context Preservation
Music editing plays a vital role in modern music production, with applications in film, broadcasting, and game development. Recent advances in music generation models have enabled diverse editing tasks such as timbre transfer, instrument substitution, and genre transformation. However, many existing works overlook the evaluation of their ability to preserve musical facets that should remain unchanged during editing a property we define as Music Context Preservation (MCP). While some studies do consider MCP, they adopt inconsistent evaluation protocols and metrics, leading to unreliable and unfair comparisons. To address this gap, we introduce the first MCP evaluation benchmark, MuseCPBench, which covers four categories of musical facets and enables comprehensive comparisons across five representative music editing baselines. Through systematic analysis along musical facets, methods, and models, we identify consistent preservation gaps in current music editing methods and provide insightful explanations. We hope our findings offer practical guidance for developing more effective and reliable music editing strategies with strong MCP capability
☆ JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.
comment: Project page: https://mmmu-japanese-benchmark.github.io/JMMMU_Pro/
☆ Model-Based Reinforcement Learning in Discrete-Action Non-Markovian Reward Decision Processes
Many practical decision-making problems involve tasks whose success depends on the entire system history, rather than on achieving a state with desired properties. Markovian Reinforcement Learning (RL) approaches are not suitable for such tasks, while RL with non-Markovian reward decision processes (NMRDPs) enables agents to tackle temporal-dependency tasks. This approach has long been known to lack formal guarantees on both (near-)optimality and sample efficiency. We contribute to solving both issues with QR-MAX, a novel model-based algorithm for discrete NMRDPs that factorizes Markovian transition learning from non-Markovian reward handling via reward machines. To the best of our knowledge, this is the first model-based RL algorithm for discrete-action NMRDPs that exploits this factorization to obtain PAC convergence to $\varepsilon$-optimal policies with polynomial sample complexity. We then extend QR-MAX to continuous state spaces with Bucket-QR-MAX, a SimHash-based discretiser that preserves the same factorized structure and achieves fast and stable learning without manual gridding or function approximation. We experimentally compare our method with modern state-of-the-art model-based RL approaches on environments of increasing complexity, showing a significant improvement in sample efficiency and increased robustness in finding optimal policies.
comment: 19 pages, 32 figures, includes appendix
☆ FakeRadar: Probing Forgery Outliers to Detect Unknown Deepfake Videos
In this paper, we propose FakeRadar, a novel deepfake video detection framework designed to address the challenges of cross-domain generalization in real-world scenarios. Existing detection methods typically rely on manipulation-specific cues, performing well on known forgery types but exhibiting severe limitations against emerging manipulation techniques. This poor generalization stems from their inability to adapt effectively to unseen forgery patterns. To overcome this, we leverage large-scale pretrained models (e.g. CLIP) to proactively probe the feature space, explicitly highlighting distributional gaps between real videos, known forgeries, and unseen manipulations. Specifically, FakeRadar introduces Forgery Outlier Probing, which employs dynamic subcluster modeling and cluster-conditional outlier generation to synthesize outlier samples near boundaries of estimated subclusters, simulating novel forgery artifacts beyond known manipulation types. Additionally, we design Outlier-Guided Tri-Training, which optimizes the detector to distinguish real, fake, and outlier samples using proposed outlier-driven contrastive learning and outlier-conditioned cross-entropy losses. Experiments show that FakeRadar outperforms existing methods across various benchmark datasets for deepfake video detection, particularly in cross-domain evaluations, by handling the variety of emerging manipulation techniques.
☆ Towards Nepali-language LLMs: Efficient GPT training with a Nepali BPE tokenizer
Nepali, a low-resource language spoken by over 32 million people, continues to face challenges in natural language processing (NLP) due to its complex grammar, agglutinative morphology, and limited availability of high-quality corpora. Most efforts to date have centered on basic encoder architectures; they remain insufficient for Nepali-specific text generation. This study presents a GPT-2-based Nepali language model trained using several training strategies inspired by GPT-3, including optimized learning rate schedules, batch scaling, and architectural refinements. A custom 16k Byte-Pair Encoding (BPE) tokenizer was trained exclusively on Nepali text to ensure more consistent segmentation and improved input representation. The model was pretrained on a combined dataset comprising a 10.75GB cleaned NepBERTa corpus and additional web-scraped Nepali news articles. FlashAttention was integrated to reduce memory usage and stabilize training. After two epochs, the model achieved a training loss of 3.168177, a validation loss of 3.081982, and a final perplexity of 21.80, demonstrating its capability to generate coherent Nepali news-style text.
comment: Work in progress
☆ Low-Resource, High-Impact: Building Corpora for Inclusive Language Technologies LREC2026
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.
comment: Tutorial is accepted to LREC2026
☆ Residual GRU+MHSA: A Lightweight Hybrid Recurrent Attention Model for Cardiovascular Disease Detection
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, underscoring the need for reliable and efficient predictive tools that support early intervention. Traditional diagnostic approaches rely on handcrafted features and clinician expertise, while machine learning methods improve reproducibility but often struggle to generalize across noisy and heterogeneous clinical data. In this work, we propose Residual GRU with Multi-Head Self-Attention, a compact deep learning architecture designed for tabular clinical records. The model integrates residual bidirectional gated recurrent units for sequential modeling of feature columns, a channel reweighting block, and multi-head self-attention pooling with a learnable classification token to capture global context. We evaluate the model on the UCI Heart Disease dataset using 5-fold stratified cross-validation and compare it against classical methods such as Logistic Regression, Random Forest, and Support Vector Machines, as well as modern deep learning baselines including DeepMLP, convolutional networks, recurrent networks, and Transformers. The proposed model achieves an accuracy of 0.861, macro-F1 of 0.860, ROC-AUC of 0.908, and PR-AUC of 0.904, outperforming all baselines. Ablation studies confirm the individual contributions of residual recurrence, channel gating, and attention pooling. t-SNE visualizations further indicate that the learned embeddings exhibit clearer separation between disease and non-disease classes compared to raw features. These results demonstrate that lightweight hybrid recurrent and attention-based architectures provide a strong balance between accuracy and efficiency for clinical risk prediction, supporting deployment in resource-constrained healthcare settings.
comment: Accepted in IEEE Bigdata 2025- Learning Representations with Limited Supervision
☆ Polypersona: Persona-Grounded LLM for Synthetic Survey Responses
This paper introduces PolyPersona, a generative framework for synthesizing persona-conditioned survey responses across multiple domains. The framework instruction-tunes compact chat models using parameter-efficient LoRA adapters with 4-bit quantization under a resource-adaptive training setup. A dialogue-based data pipeline explicitly preserves persona cues, ensuring consistent behavioral alignment across generated responses. Using this pipeline, we construct a dataset of 3,568 synthetic survey responses spanning ten domains and 433 distinct personas, enabling controlled instruction tuning and systematic multi-domain evaluation. We evaluate the generated responses using a multi-metric evaluation suite that combines standard text generation metrics, including BLEU, ROUGE, and BERTScore, with survey-specific metrics designed to assess structural coherence, stylistic consistency, and sentiment alignment.Experimental results show that compact models such as TinyLlama 1.1B and Phi-2 achieve performance comparable to larger 7B to 8B baselines, with a highest BLEU score of 0.090 and ROUGE-1 of 0.429. These findings demonstrate that persona-conditioned fine-tuning enables small language models to generate reliable and coherent synthetic survey data. The proposed framework provides an efficient and reproducible approach for survey data generation, supporting scalable evaluation while facilitating bias analysis through transparent and open protocols.
comment: Accepted in IEEE Bigdata 2025- LLMs4ALL
☆ CLNet: Cross-View Correspondence Makes a Stronger Geo-Localizationer
Image retrieval-based cross-view geo-localization (IRCVGL) aims to match images captured from significantly different viewpoints, such as satellite and street-level images. Existing methods predominantly rely on learning robust global representations or implicit feature alignment, which often fail to model explicit spatial correspondences crucial for accurate localization. In this work, we propose a novel correspondence-aware feature refinement framework, termed CLNet, that explicitly bridges the semantic and geometric gaps between different views. CLNet decomposes the view alignment process into three learnable and complementary modules: a Neural Correspondence Map (NCM) that spatially aligns cross-view features via latent correspondence fields; a Nonlinear Embedding Converter (NEC) that remaps features across perspectives using an MLP-based transformation; and a Global Feature Recalibration (GFR) module that reweights informative feature channels guided by learned spatial cues. The proposed CLNet can jointly capture both high-level semantics and fine-grained alignments. Extensive experiments on four public benchmarks, CVUSA, CVACT, VIGOR, and University-1652, demonstrate that our proposed CLNet achieves state-of-the-art performance while offering better interpretability and generalizability.
comment: 16 pages, 6 figures
☆ VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems.
☆ Dual Language Models: Balancing Training Efficiency and Overfitting Resilience
This paper combines autoregressive and masked-diffusion training objectives without any architectural modifications, resulting in flexible language models that outperform single-objective models. Autoregressive modeling has been a popular approach, partly because of its training efficiency; however, that comes at the cost of sensitivity to overfitting. On the other hand, masked-diffusion models are less efficient to train while being more resilient to overfitting. In this work, we demonstrate that dual-objective training achieves the best of both worlds. To derive the optimal ratio between both objectives, we train and evaluate 50 language models under varying levels of data repetition. We show that it is optimal to combine both objectives under all evaluated settings and that the optimal ratio is similar whether targeting autoregressive or masked-diffusion downstream performance.
☆ CAPRMIL: Context-Aware Patch Representations for Multiple Instance Learning
In computational pathology, weak supervision has become the standard for deep learning due to the gigapixel scale of WSIs and the scarcity of pixel-level annotations, with Multiple Instance Learning (MIL) established as the principal framework for slide-level model training. In this paper, we introduce a novel setting for MIL methods, inspired by proceedings in Neural Partial Differential Equation (PDE) Solvers. Instead of relying on complex attention-based aggregation, we propose an efficient, aggregator-agnostic framework that removes the complexity of correlation learning from the MIL aggregator. CAPRMIL produces rich context-aware patch embeddings that promote effective correlation learning on downstream tasks. By projecting patch features -- extracted using a frozen patch encoder -- into a small set of global context/morphology-aware tokens and utilizing multi-head self-attention, CAPRMIL injects global context with linear computational complexity with respect to the bag size. Paired with a simple Mean MIL aggregator, CAPRMIL matches state-of-the-art slide-level performance across multiple public pathology benchmarks, while reducing the total number of trainable parameters by 48%-92.8% versus SOTA MILs, lowering FLOPs during inference by 52%-99%, and ranking among the best models on GPU memory efficiency and training time. Our results indicate that learning rich, context-aware instance representations before aggregation is an effective and scalable alternative to complex pooling for whole-slide analysis. Our code is available at https://github.com/mandlos/CAPRMIL
comment: 24 pages, 12 Figures, 4 Tables
☆ Dynamic Learning Rate Scheduling based on Loss Changes Leads to Faster Convergence
Despite significant advances in optimizers for training, most research works use common scheduler choices like Cosine or exponential decay. In this paper, we study \emph{GreedyLR}, a novel scheduler that adaptively adjusts the learning rate during training based on the current loss. To validate the effectiveness of our proposed scheduler, we conduct experiments on several NLP, CV, and LLM tasks with up to $7B$ parameters, including both fine-tuning and pre-training experiments. The results show that our approach outperforms several state-of-the-art schedulers in terms of accuracy, speed, and convergence. We also provide a theoretical analysis of the GreedyLR algorithm, including a proof of convergence and derivation of the optimal scaling factor $F$ that maximizes the convergence rate, along with experiments to show robustness of the algorithm to realistic noisy landscapes. Our scheduler is easy to implement, computationally efficient, and could be considered a good default scheduler for training.
☆ Sparse Multi-Modal Transformer with Masking for Alzheimer's Disease Classification
Transformer-based multi-modal intelligent systems often suffer from high computational and energy costs due to dense self-attention, limiting their scalability under resource constraints. This paper presents SMMT, a sparse multi-modal transformer architecture designed to improve efficiency and robustness. Building upon a cascaded multi-modal transformer framework, SMMT introduces cluster-based sparse attention to achieve near linear computational complexity and modality-wise masking to enhance robustness against incomplete inputs. The architecture is evaluated using Alzheimer's Disease classification on the ADNI dataset as a representative multi-modal case study. Experimental results show that SMMT maintains competitive predictive performance while significantly reducing training time, memory usage, and energy consumption compared to dense attention baselines, demonstrating its suitability as a resource-aware architectural component for scalable intelligent systems.
comment: 8 pages, 7 figures
☆ SASQ: Static Activation Scaling for Quantization-Aware Training in Large Language Models
Large language models (LLMs) excel at natural language tasks but face deployment challenges due to their growing size outpacing GPU memory advancements. Model quantization mitigates this issue by lowering weight and activation precision, but existing solutions face fundamental trade-offs: dynamic quantization incurs high computational overhead and poses deployment challenges on edge devices, while static quantization sacrifices accuracy. Existing approaches of quantization-aware training (QAT) further suffer from weight training costs. We propose SASQ: a lightweight QAT framework specifically tailored for activation quantization factors. SASQ exclusively optimizes only the quantization factors (without changing pre-trained weights), enabling static inference with high accuracy while maintaining deployment efficiency. SASQ adaptively truncates some outliers, thereby reducing the difficulty of quantization while preserving the distributional characteristics of the activations. SASQ not only surpasses existing SOTA quantization schemes but also outperforms the corresponding FP16 models. On LLaMA2-7B, it achieves 5.2% lower perplexity than QuaRot and 4.7% lower perplexity than the FP16 model on WikiText2.
☆ TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels
Tunnels are essential elements of transportation infrastructure, but are increasingly affected by ageing and deterioration mechanisms such as cracking. Regular inspections are required to ensure their safety, yet traditional manual procedures are time-consuming, subjective, and costly. Recent advances in mobile mapping systems and Deep Learning (DL) enable automated visual inspections. However, their effectiveness is limited by the scarcity of tunnel datasets. This paper introduces a new publicly available dataset containing annotated images of three different tunnel linings, capturing typical defects: cracks, leaching, and water infiltration. The dataset is designed to support supervised, semi-supervised, and unsupervised DL methods for defect detection and segmentation. Its diversity in texture and construction techniques also enables investigation of model generalization and transferability across tunnel types. By addressing the critical lack of domain-specific data, this dataset contributes to advancing automated tunnel inspection and promoting safer, more efficient infrastructure maintenance strategies.
☆ Model-First Reasoning LLM Agents: Reducing Hallucinations through Explicit Problem Modeling
Large Language Models (LLMs) often struggle with complex multi-step planning tasks, showing high rates of constraint violations and inconsistent solutions. Existing strategies such as Chain-of-Thought and ReAct rely on implicit state tracking and lack an explicit problem representation. Inspired by classical AI planning, we propose Model-First Reasoning (MFR), a two-phase paradigm in which the LLM first constructs an explicit model of the problem, defining entities, state variables, actions, and constraints, before generating a solution plan. Across multiple planning domains, including medical scheduling, route planning, resource allocation, logic puzzles, and procedural synthesis, MFR reduces constraint violations and improves solution quality compared to Chain-of-Thought and ReAct. Ablation studies show that the explicit modeling phase is critical for these gains. Our results suggest that many LLM planning failures stem from representational deficiencies rather than reasoning limitations, highlighting explicit modeling as a key component for robust and interpretable AI agents. All prompts, evaluation procedures, and task datasets are documented to facilitate reproducibility.
☆ Context-Picker: Dynamic context selection using multi-stage reinforcement learning
In long-context question answering (LCQA), determining the optimal amount of context for a given query is a significant challenge. Including too few passages may omit critical information, while including too many can introduce noise and reduce the quality of the answer. Traditional approaches, such as fixed Top-$K$ retrieval and single-stage reranking, face the dilemma of selecting the right number of passages. This problem is particularly pronounced for factoid questions, which often require only a few specific pieces of evidence. To address this issue, we introduce \emph{Context-Picker}, a reasoning-aware framework that shifts the paradigm from similarity-based ranking to minimal sufficient subset selection. Context-Picker treats context selection as a decision-making process optimized via a human-inspired, two-stage reinforcement learning schedule: a \emph{recall-oriented} stage that prioritizes the coverage of reasoning chains, followed by a \emph{precision-oriented} stage that aggressively prunes redundancy to distill a compact evidence set. To resolve reward sparsity, we propose an offline evidence distillation pipeline that mines "minimal sufficient sets" via a Leave-One-Out (LOO) procedure, providing dense, task-aligned supervision. Experiments on five long-context and multi-hop QA benchmarks demonstrate that Context-Picker significantly outperforms strong RAG baselines, achieving superior answer accuracy with comparable or reduced context lengths. Ablation studies indicate that the coarse-to-fine optimization schedule, the redundancy-aware reward shaping, and the rationale-guided format all contribute substantially to these gains.
☆ Reasoning-Style Poisoning of LLM Agents via Stealthy Style Transfer: Process-Level Attacks and Runtime Monitoring in RSV Space
Large Language Model (LLM) agents relying on external retrieval are increasingly deployed in high-stakes environments. While existing adversarial attacks primarily focus on content falsification or instruction injection, we identify a novel, process-oriented attack surface: the agent's reasoning style. We propose Reasoning-Style Poisoning (RSP), a paradigm that manipulates how agents process information rather than what they process. We introduce Generative Style Injection (GSI), an attack method that rewrites retrieved documents into pathological tones--specifically "analysis paralysis" or "cognitive haste"--without altering underlying facts or using explicit triggers. To quantify these shifts, we develop the Reasoning Style Vector (RSV), a metric tracking Verification depth, Self-confidence, and Attention focus. Experiments on HotpotQA and FEVER using ReAct, Reflection, and Tree of Thoughts (ToT) architectures reveal that GSI significantly degrades performance. It increases reasoning steps by up to 4.4 times or induces premature errors, successfully bypassing state-of-the-art content filters. Finally, we propose RSP-M, a lightweight runtime monitor that calculates RSV metrics in real-time and triggers alerts when values exceed safety thresholds. Our work demonstrates that reasoning style is a distinct, exploitable vulnerability, necessitating process-level defenses beyond static content analysis.
☆ Seismology modeling agent: A smart assistant for geophysical researchers
To address the steep learning curve and reliance on complex manual file editing and command-line operations in the traditional workflow of the mainstream open-source seismic wave simulation software SPECFEM, this paper proposes an intelligent, interactive workflow powered by Large Language Models (LLMs). We introduce the first Model Context Protocol (MCP) server suite for SPECFEM (supporting 2D, 3D Cartesian, and 3D Globe versions), which decomposes the entire simulation process into discrete, agent-executable tools spanning from parameter generation and mesh partitioning to solver execution and visualization. This approach enables a paradigm shift from file-driven to intent-driven conversational interactions. The framework supports both fully automated execution and human-in-the-loop collaboration, allowing researchers to guide simulation strategies in real time and retain scientific decision-making authority while significantly reducing tedious low-level operations. Validated through multiple case studies, the workflow operates seamlessly in both autonomous and interactive modes, yielding high-fidelity results consistent with standard baselines. As the first application of MCP technology to computational seismology, this study significantly lowers the entry barrier, enhances reproducibility, and offers a promising avenue for advancing computational geophysics toward AI-assisted and automated scientific research. The complete source code is available at https://github.com/RenYukun1563/specfem-mcp.
comment: 26 pages, 15 figures. Code available at https://github.com/RenYukun1563/specfem-mcp
☆ Effect of Document Packing on the Latent Multi-Hop Reasoning Capabilities of Large Language Models
The standard practice for training large language models involves packing multiple documents together to optimize computational efficiency. However, the impact of this process on the models' capabilities remains largely unexplored. To address this gap, we investigate how different document-packing strategies influence the latent multi-hop reasoning abilities of LLMs. Our findings indicate that packing can improve model performance compared to training on individual documents, at the expense of more compute. To further understand the underlying mechanisms, we conduct an ablation study, identifying key factors that explain the advantages of packing. Ultimately, our research deepens the understanding of LLM training dynamics and provides practical insights for optimizing model development.
☆ DISCODE: Distribution-Aware Score Decoder for Robust Automatic Evaluation of Image Captioning AAAI 2026
Large vision-language models (LVLMs) have shown impressive performance across a broad range of multimodal tasks. However, robust image caption evaluation using LVLMs remains challenging, particularly under domain-shift scenarios. To address this issue, we introduce the Distribution-Aware Score Decoder (DISCODE), a novel finetuning-free method that generates robust evaluation scores better aligned with human judgments across diverse domains. The core idea behind DISCODE lies in its test-time adaptive evaluation approach, which introduces the Adaptive Test-Time (ATT) loss, leveraging a Gaussian prior distribution to improve robustness in evaluation score estimation. This loss is efficiently minimized at test time using an analytical solution that we derive. Furthermore, we introduce the Multi-domain Caption Evaluation (MCEval) benchmark, a new image captioning evaluation benchmark covering six distinct domains, designed to assess the robustness of evaluation metrics. In our experiments, we demonstrate that DISCODE achieves state-of-the-art performance as a reference-free evaluation metric across MCEval and four representative existing benchmarks.
comment: Paper accepted to AAAI 2026
☆ PortAgent: LLM-driven Vehicle Dispatching Agent for Port Terminals
Vehicle Dispatching Systems (VDSs) are critical to the operational efficiency of Automated Container Terminals (ACTs). However, their widespread commercialization is hindered due to their low transferability across diverse terminals. This transferability challenge stems from three limitations: high reliance on port operational specialists, a high demand for terminal-specific data, and time-consuming manual deployment processes. Leveraging the emergence of Large Language Models (LLMs), this paper proposes PortAgent, an LLM-driven vehicle dispatching agent that fully automates the VDS transferring workflow. It bears three features: (1) no need for port operations specialists; (2) low need of data; and (3) fast deployment. Specifically, specialist dependency is eliminated by the Virtual Expert Team (VET). The VET collaborates with four virtual experts, including a Knowledge Retriever, Modeler, Coder, and Debugger, to emulate a human expert team for the VDS transferring workflow. These experts specialize in the domain of terminal VDS via a few-shot example learning approach. Through this approach, the experts are able to learn VDS-domain knowledge from a few VDS examples. These examples are retrieved via a Retrieval-Augmented Generation (RAG) mechanism, mitigating the high demand for terminal-specific data. Furthermore, an automatic VDS design workflow is established among these experts to avoid extra manual interventions. In this workflow, a self-correction loop inspired by the LLM Reflexion framework is created
☆ Massive Editing for Large Language Models Based on Dynamic Weight Generation
Knowledge Editing (KE) is a field that studies how to modify some knowledge in Large Language Models (LLMs) at a low cost (compared to pre-training). Currently, performing large-scale edits on LLMs while ensuring the Reliability, Generality, and Locality metrics of the edits remain a challenge. This paper proposes a Massive editing approach for LLMs based on dynamic weight Generation (MeG). Our MeG involves attaching a dynamic weight neuron to specific layers of the LLMs and using a diffusion model to conditionally generate the weights of this neuron based on the input query required for the knowledge. This allows the use of adding a single dynamic weight neuron to achieve the goal of large-scale knowledge editing. Experiments show that our MeG can significantly improve the performance of large-scale KE in terms of Reliability, Generality, and Locality metrics compared to existing knowledge editing methods, particularly with a high percentage point increase in the absolute value index for the Locality metric, demonstrating the advantages of our proposed method.
comment: 27 pages, 8 figures
☆ RePo: Language Models with Context Re-Positioning
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_φ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.
☆ Causal Structure Learning for Dynamical Systems with Theoretical Score Analysis AAAI 2026
Real world systems evolve in continuous-time according to their underlying causal relationships, yet their dynamics are often unknown. Existing approaches to learning such dynamics typically either discretize time -- leading to poor performance on irregularly sampled data -- or ignore the underlying causality. We propose CaDyT, a novel method for causal discovery on dynamical systems addressing both these challenges. In contrast to state-of-the-art causal discovery methods that model the problem using discrete-time Dynamic Bayesian networks, our formulation is grounded in Difference-based causal models, which allow milder assumptions for modeling the continuous nature of the system. CaDyT leverages exact Gaussian Process inference for modeling the continuous-time dynamics which is more aligned with the underlying dynamical process. We propose a practical instantiation that identifies the causal structure via a greedy search guided by the Algorithmic Markov Condition and Minimum Description Length principle. Our experiments show that CaDyT outperforms state-of-the-art methods on both regularly and irregularly-sampled data, discovering causal networks closer to the true underlying dynamics.
comment: Accepted as Oral at AAAI 2026 Conference
☆ TiCard: Deployable EXPLAIN-only Residual Learning for Cardinality Estimation
Cardinality estimation is a key bottleneck for cost-based query optimization, yet deployable improvements remain difficult: classical estimators miss correlations, while learned estimators often require workload-specific training pipelines and invasive integration into the optimizer. This paper presents TiCard, a low intrusion, correction-based framework that augments (rather than replaces) a database's native estimator. TiCard learns multiplicative residual corrections using EXPLAIN-only features, and uses EXPLAIN ANALYZE only for offline labels. We study two practical instantiations: (i) a Gradient Boosting Regressor for sub-millisecond inference, and (ii) TabPFN, an in-context tabular foundation model that adapts by refreshing a small reference set without gradient retraining. On TiDB with TPCH and the Join Order Benchmark, in a low-trace setting (263 executions total; 157 used for learning), TiCard improves operator-level tail accuracy substantially: P90 Q-error drops from 312.85 (native) to 13.69 (TiCard-GBR), and P99 drops from 37,974.37 to 3,416.50 (TiCard-TabPFN), while a join-only policy preserves near-perfect median behavior. We position TiCard as an AI4DB building block focused on deployability: explicit scope, conservative integration policies, and an integration roadmap from offline correction to in-optimizer use.
comment: 16 pages(/wo references), 4 figures, 10 tables
☆ Enhancing Interpretability for Vision Models via Shapley Value Optimization AAAI2026
Deep neural networks have demonstrated remarkable performance across various domains, yet their decision-making processes remain opaque. Although many explanation methods are dedicated to bringing the obscurity of DNNs to light, they exhibit significant limitations: post-hoc explanation methods often struggle to faithfully reflect model behaviors, while self-explaining neural networks sacrifice performance and compatibility due to their specialized architectural designs. To address these challenges, we propose a novel self-explaining framework that integrates Shapley value estimation as an auxiliary task during training, which achieves two key advancements: 1) a fair allocation of the model prediction scores to image patches, ensuring explanations inherently align with the model's decision logic, and 2) enhanced interpretability with minor structural modifications, preserving model performance and compatibility. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art interpretability.
comment: Accepted to AAAI2026
☆ Towards Transferable Defense Against Malicious Image Edits
Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
comment: 14 pages, 5 figures
☆ Dual Attention Guided Defense Against Malicious Edits
Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
comment: 11 pages, 7 figures
☆ Step-Tagging: Toward controlling the generation of Language Reasoning Models through step monitoring
The field of Language Reasoning Models (LRMs) has been very active over the past few years with advances in training and inference techniques enabling LRMs to reason longer, and more accurately. However, a growing body of studies show that LRMs are still inefficient, over-generating verification and reflection steps. To address this challenge, we introduce the Step-Tagging framework, a lightweight sentence-classifier enabling real-time annotation of the type of reasoning steps that an LRM is generating. To monitor reasoning behaviors, we introduced ReasonType: a novel taxonomy of reasoning steps. Building on this framework, we demonstrated that online monitoring of the count of specific steps can produce effective interpretable early stopping criteria of LRM inferences. We evaluate the Step-tagging framework on three open-source reasoning models across standard benchmark datasets: MATH500, GSM8K, AIME and non-mathematical tasks (GPQA and MMLU-Pro). We achieve 20 to 50\% token reduction while maintaining comparable accuracy to standard generation, with largest gains observed on more computation-heavy tasks. This work offers a novel way to increase control over the generation of LRMs, and a new tool to study behaviors of LRMs.
☆ Criminal Liability in AI-Enabled Autonomous Vehicles: A Comparative Study
AI revolutionizes transportation through autonomous vehicles (AVs) but introduces complex criminal liability issues regarding infractions. This study employs a comparative legal analysis of primary statutes, real-world liability claims, and academic literature across the US, Germany, UK, China, and India; jurisdictions selected for their technological advancement and contrasting regulatory approaches. The research examines the attribution of human error, AI moral agency, and the identification of primary offenders in AV incidents. Findings reveal fragmented regulatory landscapes: India and the US rely on loose networks of state laws, whereas the UK enacted the pioneering Automated and Electric Vehicles Act 2018. Germany enforces strict safety standards, distinguishing liability based on the vehicle's operating mode, while China similarly aims for a stringent liability regime. The study concludes that globally harmonized legal standards are essential to foster technological innovation while ensuring minimum risk and clear liability attribution.
comment: Published in Journal of University Institute of Legal Studies, Vol. 18, Issue 1, pp. 57-78, 2025
☆ A data-physics hybrid generative model for patient-specific post-stroke motor rehabilitation using wearable sensor data
Dynamic prediction of locomotor capacity after stroke is crucial for tailoring rehabilitation, yet current assessments provide only static impairment scores and do not indicate whether patients can safely perform specific tasks such as slope walking or stair climbing. Here, we develop a data-physics hybrid generative framework that reconstructs an individual stroke survivor's neuromuscular control from a single 20 m level-ground walking trial and predicts task-conditioned locomotion across rehabilitation scenarios. The system combines wearable-sensor kinematics, a proportional-derivative physics controller, a population Healthy Motion Atlas, and goal-conditioned deep reinforcement learning with behaviour cloning and generative adversarial imitation learning to generate physically plausible, patient-specific gait simulations for slopes and stairs. In 11 stroke survivors, the personalized controllers preserved idiosyncratic gait patterns while improving joint-angle and endpoint fidelity by 4.73% and 12.10%, respectively, and reducing training time to 25.56% relative to a physics-only baseline. In a multicentre pilot involving 21 inpatients, clinicians who used our locomotion predictions to guide task selection and difficulty obtained larger gains in Fugl-Meyer lower-extremity scores over 28 days of standard rehabilitation than control clinicians (mean change 6.0 versus 3.7 points). These findings indicate that our generative, task-predictive framework can augment clinical decision-making in post-stroke gait rehabilitation and provide a template for dynamically personalized motor recovery strategies.
comment: 26 pages, 6 figures
☆ Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity
Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
comment: 11 pages, 4 figures
☆ From YOLO to VLMs: Advancing Zero-Shot and Few-Shot Detection of Wastewater Treatment Plants Using Satellite Imagery in MENA Region
In regions of the Middle East and North Africa (MENA), there is a high demand for wastewater treatment plants (WWTPs), crucial for sustainable water management. Precise identification of WWTPs from satellite images enables environmental monitoring. Traditional methods like YOLOv8 segmentation require extensive manual labeling. But studies indicate that vision-language models (VLMs) are an efficient alternative to achieving equivalent or superior results through inherent reasoning and annotation. This study presents a structured methodology for VLM comparison, divided into zero-shot and few-shot streams specifically to identify WWTPs. The YOLOv8 was trained on a governmental dataset of 83,566 high-resolution satellite images from Egypt, Saudi Arabia, and UAE: ~85% WWTPs (positives), 15% non-WWTPs (negatives). Evaluated VLMs include LLaMA 3.2 Vision, Qwen 2.5 VL, DeepSeek-VL2, Gemma 3, Gemini, and Pixtral 12B (Mistral), used to identify WWTP components such as circular/rectangular tanks, aeration basins and distinguish confounders via expert prompts producing JSON outputs with confidence and descriptions. The dataset comprises 1,207 validated WWTP locations (198 UAE, 354 KSA, 655 Egypt) and equal non-WWTP sites from field/AI data, as 600mx600m Geo-TIFF images (Zoom 18, EPSG:4326). Zero-shot evaluations on WWTP images showed several VLMs out-performing YOLOv8's true positive rate, with Gemma-3 highest. Results confirm that VLMs, particularly with zero-shot, can replace YOLOv8 for efficient, annotation-free WWTP classification, enabling scalable remote sensing.
comment: 9 pages, 9 figures
☆ A Threshold-Triggered Deep Q-Network-Based Framework for Self-Healing in Autonomic Software-Defined IIoT-Edge Networks
Stochastic disruptions such as flash events arising from benign traffic bursts and switch thermal fluctuations are major contributors to intermittent service degradation in software-defined industrial networks. These events violate IEC~61850-derived quality-of-service requirements and user-defined service-level agreements, hindering the reliable and timely delivery of control, monitoring, and best-effort traffic in IEC~61400-25-compliant wind power plants. Failure to maintain these requirements often results in delayed or lost control signals, reduced operational efficiency, and increased risk of wind turbine generator downtime. To address these challenges, this study proposes a threshold-triggered Deep Q-Network self-healing agent that autonomically detects, analyzes, and mitigates network disruptions while adapting routing behavior and resource allocation in real time. The proposed agent was trained, validated, and tested on an emulated tri-clustered switch network deployed in a cloud-based proof-of-concept testbed. Simulation results show that the proposed agent improves disruption recovery performance by 53.84% compared to a baseline shortest-path and load-balanced routing approach and outperforms state-of-the-art methods, including the Adaptive Network-based Fuzzy Inference System by 13.1% and the Deep Q-Network and traffic prediction-based routing optimization method by 21.5%, in a super-spine leaf data-plane architecture. Additionally, the agent maintains switch thermal stability by proactively initiating external rack cooling when required. These findings highlight the potential of deep reinforcement learning in building resilience in software-defined industrial networks deployed in mission-critical, time-sensitive application scenarios.
☆ Leveraging LLMs for Collaborative Ontology Engineering in Parkinson Disease Monitoring and Alerting
This paper explores the integration of Large Language Models (LLMs) in the engineering of a Parkinson's Disease (PD) monitoring and alerting ontology through four key methodologies: One Shot (OS) prompt techniques, Chain of Thought (CoT) prompts, X-HCOME, and SimX-HCOME+. The primary objective is to determine whether LLMs alone can create comprehensive ontologies and, if not, whether human-LLM collaboration can achieve this goal. Consequently, the paper assesses the effectiveness of LLMs in automated ontology development and the enhancement achieved through human-LLM collaboration. Initial ontology generation was performed using One Shot (OS) and Chain of Thought (CoT) prompts, demonstrating the capability of LLMs to autonomously construct ontologies for PD monitoring and alerting. However, these outputs were not comprehensive and required substantial human refinement to enhance their completeness and accuracy. X-HCOME, a hybrid ontology engineering approach that combines human expertise with LLM capabilities, showed significant improvements in ontology comprehensiveness. This methodology resulted in ontologies that are very similar to those constructed by experts. Further experimentation with SimX-HCOME+, another hybrid methodology emphasizing continuous human supervision and iterative refinement, highlighted the importance of ongoing human involvement. This approach led to the creation of more comprehensive and accurate ontologies. Overall, the paper underscores the potential of human-LLM collaboration in advancing ontology engineering, particularly in complex domains like PD. The results suggest promising directions for future research, including the development of specialized GPT models for ontology construction.
☆ The Trust in AI-Generated Health Advice (TAIGHA) Scale and Short Version (TAIGHA-S): Development and Validation Study
Artificial Intelligence tools such as large language models are increasingly used by the public to obtain health information and guidance. In health-related contexts, following or rejecting AI-generated advice can have direct clinical implications. Existing instruments like the Trust in Automated Systems Survey assess trustworthiness of generic technology, and no validated instrument measures users' trust in AI-generated health advice specifically. This study developed and validated the Trust in AI-Generated Health Advice (TAIGHA) scale and its four-item short form (TAIGHA-S) as theory-based instruments measuring trust and distrust, each with cognitive and affective components. The items were developed using a generative AI approach, followed by content validation with 10 domain experts, face validation with 30 lay participants, and psychometric validation with 385 UK participants who received AI-generated advice in a symptom-assessment scenario. After automated item reduction, 28 items were retained and reduced to 10 based on expert ratings. TAIGHA showed excellent content validity (S-CVI/Ave=0.99) and CFA confirmed a two-factor model with excellent fit (CFI=0.98, TLI=0.98, RMSEA=0.07, SRMR=0.03). Internal consistency was high (α=0.95). Convergent validity was supported by correlations with the Trust in Automated Systems Survey (r=0.67/-0.66) and users' reliance on the AI's advice (r=0.37 for trust), while divergent validity was supported by low correlations with reading flow and mental load (all |r|<0.25). TAIGHA-S correlated highly with the full scale (r=0.96) and showed good reliability (α=0.88). TAIGHA and TAIGHA-S are validated instruments for assessing user trust and distrust in AI-generated health advice. Reporting trust and distrust separately permits a more complete evaluation of AI interventions, and the short scale is well-suited for time-constrained settings.
☆ SPARQL-LLM: Real-Time SPARQL Query Generation from Natural Language Questions
The advent of large language models is contributing to the emergence of novel approaches that promise to better tackle the challenge of generating structured queries, such as SPARQL queries, from natural language. However, these new approaches mostly focus on response accuracy over a single source while ignoring other evaluation criteria, such as federated query capability over distributed data stores, as well as runtime and cost to generate SPARQL queries. Consequently, they are often not production-ready or easy to deploy over (potentially federated) knowledge graphs with good accuracy. To mitigate these issues, in this paper, we extend our previous work and describe and systematically evaluate SPARQL-LLM, an open-source and triplestore-agnostic approach, powered by lightweight metadata, that generates SPARQL queries from natural language text. First, we describe its architecture, which consists of dedicated components for metadata indexing, prompt building, and query generation and execution. Then, we evaluate it based on a state-of-the-art challenge with multilingual questions, and a collection of questions from three of the most prevalent knowledge graphs within the field of bioinformatics. Our results demonstrate a substantial increase of 24% in the F1 Score on the state-of-the-art challenge, adaptability to high-resource languages such as English and Spanish, as well as ability to form complex and federated bioinformatics queries. Furthermore, we show that SPARQL-LLM is up to 36x faster than other systems participating in the challenge, while costing a maximum of $0.01 per question, making it suitable for real-time, low-cost text-to-SPARQL applications. One such application deployed over real-world decentralized knowledge graphs can be found at https://www.expasy.org/chat.
comment: 17 pages, 8 figures, 1 table. Under Review
☆ Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization
Current Preferential Bayesian Optimization methods rely on Gaussian Processes (GPs) as surrogate models. These models are hard to interpret, struggle with handling categorical data, and are computationally complex, limiting their real-world usability. In this paper, we introduce an inherently interpretable decision tree-based surrogate model capable of handling both categorical and continuous data, and scalable to large datasets. Extensive numerical experiments on eight increasingly spiky optimization functions show that our model outperforms GP-based alternatives on spiky functions and has only marginally lower performance for non-spiky functions. Moreover, we apply our model to the real-world Sushi dataset and show its ability to learn an individual's sushi preferences. Finally, we show some initial work on using historical preference data to speed up the optimization process for new unseen users.
☆ Gödel's Poetry
Formal, automated theorem proving has long been viewed as a challenge to artificial intelligence. We introduce here a new approach to computer theorem proving, one that employs specialized language models for Lean4 proof generation combined with recursive decomposition of difficult theorems into simpler entailing propositions. These models are coordinated through a multi-agent architecture that orchestrates autoformalization (if required), proof generation, decomposition of difficult theorems into simpler entailing propositions, and recursive proof (and/or decomposition) of these propositions. Without decomposition, we achieve a 90.4% pass rate on miniF2F. With decomposition, this is significantly improved. A key technical contribution lies in our extension of the Kimina Lean Server with abstract syntax tree (AST) parsing capabilities to facilitate automated, recursive proof decomposition. The system is made available on PyPI as goedels-poetry (at https://pypi.org/project/goedels-poetry ), and the open-source implementation KellyJDavis/goedels-poetry (at https://github.com/KellyJDavis/goedels-poetry ) facilitates both adaptation to alternative language models and extension with custom functionality.
comment: 24 pages, 1 figure
☆ From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition
Managing extensive context remains a critical bottleneck for Large Language Models (LLMs), particularly in applications like long-document question answering and autonomous agents where lengthy inputs incur high computational costs and introduce noise. Existing compression techniques often disrupt local coherence through discrete token removal or rely on implicit latent encoding that suffers from positional bias and incompatibility with closed-source APIs. To address these limitations, we introduce the EDU-based Context Compressor, a novel explicit compression framework designed to preserve both global structure and fine-grained details. Our approach reformulates context compression as a structure-then-select process. First, our LingoEDU transforms linear text into a structural relation tree of Elementary Discourse Units (EDUs) which are anchored strictly to source indices to eliminate hallucination. Second, a lightweight ranking module selects query-relevant sub-trees for linearization. To rigorously evaluate structural understanding, we release StructBench, a manually annotated dataset of 248 diverse documents. Empirical results demonstrate that our method achieves state-of-the-art structural prediction accuracy and significantly outperforms frontier LLMs while reducing costs. Furthermore, our structure-aware compression substantially enhances performance across downstream tasks ranging from long-context tasks to complex Deep Search scenarios.
☆ Beyond MMD: Evaluating Graph Generative Models with Geometric Deep Learning
Graph generation is a crucial task in many fields, including network science and bioinformatics, as it enables the creation of synthetic graphs that mimic the properties of real-world networks for various applications. Graph Generative Models (GGMs) have emerged as a promising solution to this problem, leveraging deep learning techniques to learn the underlying distribution of real-world graphs and generate new samples that closely resemble them. Examples include approaches based on Variational Auto-Encoders, Recurrent Neural Networks, and more recently, diffusion-based models. However, the main limitation often lies in the evaluation process, which typically relies on Maximum Mean Discrepancy (MMD) as a metric to assess the distribution of graph properties in the generated ensemble. This paper introduces a novel methodology for evaluating GGMs that overcomes the limitations of MMD, which we call RGM (Representation-aware Graph-generation Model evaluation). As a practical demonstration of our methodology, we present a comprehensive evaluation of two state-of-the-art Graph Generative Models: Graph Recurrent Attention Networks (GRAN) and Efficient and Degree-guided graph GEnerative model (EDGE). We investigate their performance in generating realistic graphs and compare them using a Geometric Deep Learning model trained on a custom dataset of synthetic and real-world graphs, specifically designed for graph classification tasks. Our findings reveal that while both models can generate graphs with certain topological properties, they exhibit significant limitations in preserving the structural characteristics that distinguish different graph domains. We also highlight the inadequacy of Maximum Mean Discrepancy as an evaluation metric for GGMs and suggest alternative approaches for future research.
comment: 16 pages, 4 figures
☆ PentestEval: Benchmarking LLM-based Penetration Testing with Modular and Stage-Level Design
Penetration testing is essential for assessing and strengthening system security against real-world threats, yet traditional workflows remain highly manual, expertise-intensive, and difficult to scale. Although recent advances in Large Language Models (LLMs) offer promising opportunities for automation, existing applications rely on simplistic prompting without task decomposition or domain adaptation, resulting in unreliable black-box behavior and limited insight into model capabilities across penetration testing stages. To address this gap, we introduce PentestEval, the first comprehensive benchmark for evaluating LLMs across six decomposed penetration testing stages: Information Collection, Weakness Gathering and Filtering, Attack Decision-Making, Exploit Generation and Revision. PentestEval integrates expert-annotated ground truth with a fully automated evaluation pipeline across 346 tasks covering all stages in 12 realistic vulnerable scenarios. Our stage-level evaluation of 9 widely used LLMs reveals generally weak performance and distinct limitations across the stages of penetration-testing workflow. End-to-end pipelines reach only 31% success rate, and existing LLM-powered systems such as PentestGPT, PentestAgent, and VulnBot exhibit similar limitations, with autonomous agents failing almost entirely. These findings highlight that autonomous penetration testing demands stronger structured reasoning, where modularization enhances each individual stage and improves overall performance. PentestEval provides the foundational benchmark needed for future research on fine-grained, stage-level evaluation, paving the way toward more reliable LLM-based automation.
comment: 13 pages, 6 figures
☆ Georeferencing complex relative locality descriptions with large language models
Georeferencing text documents has typically relied on either gazetteer-based methods to assign geographic coordinates to place names, or on language modelling approaches that associate textual terms with geographic locations. However, many location descriptions specify positions relatively with spatial relationships, making geocoding based solely on place names or geo-indicative words inaccurate. This issue frequently arises in biological specimen collection records, where locations are often described through narratives rather than coordinates if they pre-date GPS. Accurate georeferencing is vital for biodiversity studies, yet the process remains labour-intensive, leading to a demand for automated georeferencing solutions. This paper explores the potential of Large Language Models (LLMs) to georeference complex locality descriptions automatically, focusing on the biodiversity collections domain. We first identified effective prompting patterns, then fine-tuned an LLM using Quantized Low-Rank Adaptation (QLoRA) on biodiversity datasets from multiple regions and languages. Our approach outperforms existing baselines with an average, across datasets, of 65% of records within a 10 km radius, for a fixed amount of training data. The best results (New York state) were 85% within 10km and 67% within 1km. The selected LLM performs well for lengthy, complex descriptions, highlighting its potential for georeferencing intricate locality descriptions.
comment: Provisionally accepted for publication in the International Journal of Geographical Information Science
☆ Estimating problem difficulty without ground truth using Large Language Model comparisons
Recent advances in the finetuning of large language models (LLMs) have significantly improved their performance on established benchmarks, emphasizing the need for increasingly difficult, synthetic data. A key step in this data generation pipeline is a method for estimating problem difficulty. Current approaches, such as human calibration or performance-based scoring, fail to generalize to out-of-distribution problems, i.e. problems currently unsolvable by humans and LLMs, because they are not scalable, time-consuming, and ground truth dependent. Therefore, we propose a new method for estimating problem difficulty, LLM compare, that addresses these limitations. An LLM performs pairwise difficulty comparisons, and then Bradley-Terry scores are computed based on the outcomes. To validate our method, we first propose a conceptual framework that positions existing approaches on three orthogonal planes--construction, scale and dependence--identifying which quadrants a measure needs to occupy to score out-of-distribution problems. LLM compare naturally occupies all desirable quadrants as the first measure that is continuous and dynamic, model-agnostic and independent of ground truth information. As a second validation, we show that LLM compare demonstrates strong alignment with human annotations: Pearson $r \geq 0.80$ for $n=1876$. Thirdly, we show that LLM compare is robust to hallucinations, with less than $6\%$ degradation in Pearson correlation for $10\%$ noise injection. Our work represents a significant step towards replacing time-consuming human annotations and synthetic data generation, and will be an important driver for curriculum design, model evaluation, and AI-assisted research ideation.
comment: 19 pages, 10 figures
☆ Error Bound Analysis of Physics-Informed Neural Networks-Driven T2 Quantification in Cardiac Magnetic Resonance Imaging
Physics-Informed Neural Networks (PINN) are emerging as a promising approach for quantitative parameter estimation of Magnetic Resonance Imaging (MRI). While existing deep learning methods can provide an accurate quantitative estimation of the T2 parameter, they still require large amounts of training data and lack theoretical support and a recognized gold standard. Thus, given the absence of PINN-based approaches for T2 estimation, we propose embedding the fundamental physics of MRI, the Bloch equation, in the loss of PINN, which is solely based on target scan data and does not require a pre-defined training database. Furthermore, by deriving rigorous upper bounds for both the T2 estimation error and the generalization error of the Bloch equation solution, we establish a theoretical foundation for evaluating the PINN's quantitative accuracy. Even without access to the ground truth or a gold standard, this theory enables us to estimate the error with respect to the real quantitative parameter T2. The accuracy of T2 mapping and the validity of the theoretical analysis are demonstrated on a numerical cardiac model and a water phantom, where our method exhibits excellent quantitative precision in the myocardial T2 range. Clinical applicability is confirmed in 94 acute myocardial infarction (AMI) patients, achieving low-error quantitative T2 estimation under the theoretical error bound, highlighting the robustness and potential of PINN.
☆ Understanding and Improving Hyperbolic Deep Reinforcement Learning
The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .
☆ End-to-End Learning-based Video Streaming Enhancement Pipeline: A Generative AI Approach
The primary challenge of video streaming is to balance high video quality with smooth playback. Traditional codecs are well tuned for this trade-off, yet their inability to use context means they must encode the entire video data and transmit it to the client. This paper introduces ELVIS (End-to-end Learning-based VIdeo Streaming Enhancement Pipeline), an end-to-end architecture that combines server-side encoding optimizations with client-side generative in-painting to remove and reconstruct redundant video data. Its modular design allows ELVIS to integrate different codecs, inpainting models, and quality metrics, making it adaptable to future innovations. Our results show that current technologies achieve improvements of up to 11 VMAF points over baseline benchmarks, though challenges remain for real-time applications due to computational demands. ELVIS represents a foundational step toward incorporating generative AI into video streaming pipelines, enabling higher quality experiences without increased bandwidth requirements.
comment: The 35th edition of the Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV '25), March 31-April 4, 2025, Stellenbosch, South Africa
☆ Towards Explainable Quantum AI: Informing the Encoder Selection of Quantum Neural Networks via Visualization
Quantum Neural Networks (QNNs) represent a promising fusion of quantum computing and neural network architectures, offering speed-ups and efficient processing of high-dimensional, entangled data. A crucial component of QNNs is the encoder, which maps classical input data into quantum states. However, choosing suitable encoders remains a significant challenge, largely due to the lack of systematic guidance and the trial-and-error nature of current approaches. This process is further impeded by two key challenges: (1) the difficulty in evaluating encoded quantum states prior to training, and (2) the lack of intuitive methods for analyzing an encoder's ability to effectively distinguish data features. To address these issues, we introduce a novel visualization tool, XQAI-Eyes, which enables QNN developers to compare classical data features with their corresponding encoded quantum states and to examine the mixed quantum states across different classes. By bridging classical and quantum perspectives, XQAI-Eyes facilitates a deeper understanding of how encoders influence QNN performance. Evaluations across diverse datasets and encoder designs demonstrate XQAI-Eyes's potential to support the exploration of the relationship between encoder design and QNN effectiveness, offering a holistic and transparent approach to optimizing quantum encoders. Moreover, domain experts used XQAI-Eyes to derive two key practices for quantum encoder selection, grounded in the principles of pattern preservation and feature mapping.
comment: 9 pages, 6 figures, accepted by TVCG 2026, not published yet
☆ A Comparative Analysis of Retrieval-Augmented Generation Techniques for Bengali Standard-to-Dialect Machine Translation Using LLMs AACL 2025
Translating from a standard language to its regional dialects is a significant NLP challenge due to scarce data and linguistic variation, a problem prominent in the Bengali language. This paper proposes and compares two novel RAG pipelines for standard-to-dialectal Bengali translation. The first, a Transcript-Based Pipeline, uses large dialect sentence contexts from audio transcripts. The second, a more effective Standardized Sentence-Pairs Pipeline, utilizes structured local\_dialect:standard\_bengali sentence pairs. We evaluated both pipelines across six Bengali dialects and multiple LLMs using BLEU, ChrF, WER, and BERTScore. Our findings show that the sentence-pair pipeline consistently outperforms the transcript-based one, reducing Word Error Rate (WER) from 76\% to 55\% for the Chittagong dialect. Critically, this RAG approach enables smaller models (e.g., Llama-3.1-8B) to outperform much larger models (e.g., GPT-OSS-120B), demonstrating that a well-designed retrieval strategy can be more crucial than model size. This work contributes an effective, fine-tuning-free solution for low-resource dialect translation, offering a practical blueprint for preserving linguistic diversity.
comment: Accepted to the Second Workshop on Bangla Language Processing (BLP) at IJCNLP-AACL 2025. 14 pages, 9 figures, 6 tables
☆ IntentMiner: Intent Inversion Attack via Tool Call Analysis in the Model Context Protocol
The rapid evolution of Large Language Models (LLMs) into autonomous agents has led to the adoption of the Model Context Protocol (MCP) as a standard for discovering and invoking external tools. While this architecture decouples the reasoning engine from tool execution to enhance scalability, it introduces a significant privacy surface: third-party MCP servers, acting as semi-honest intermediaries, can observe detailed tool interaction logs outside the user's trusted boundary. In this paper, we first identify and formalize a novel privacy threat termed Intent Inversion, where a semi-honest MCP server attempts to reconstruct the user's private underlying intent solely by analyzing legitimate tool calls. To systematically assess this vulnerability, we propose IntentMiner, a framework that leverages Hierarchical Information Isolation and Three-Dimensional Semantic Analysis, integrating tool purpose, call statements, and returned results, to accurately infer user intent at the step level. Extensive experiments demonstrate that IntentMiner achieves a high degree of semantic alignment (over 85%) with original user queries, significantly outperforming baseline approaches. These results highlight the inherent privacy risks in decoupled agent architectures, revealing that seemingly benign tool execution logs can serve as a potent vector for exposing user secrets.
comment: 12 pages, 6 figures
☆ Incentivizing Tool-augmented Thinking with Images for Medical Image Analysis
Recent reasoning based medical MLLMs have made progress in generating step by step textual reasoning chains. However, they still struggle with complex tasks that necessitate dynamic and iterative focusing on fine-grained visual regions to achieve precise grounding and diagnosis. We introduce Ophiuchus, a versatile, tool-augmented framework that equips an MLLM to (i) decide when additional visual evidence is needed, (ii) determine where to probe and ground within the medical image, and (iii) seamlessly weave the relevant sub-image content back into an interleaved, multimodal chain of thought. In contrast to prior approaches limited by the performance ceiling of specialized tools, Ophiuchus integrates the model's inherent grounding and perception capabilities with external tools, thereby fostering higher-level reasoning. The core of our method is a three-stage training strategy: cold-start training with tool-integrated reasoning data to achieve basic tool selection and adaptation for inspecting key regions; self-reflection fine-tuning to strengthen reflective reasoning and encourage revisiting tool outputs; and Agentic Tool Reinforcement Learning to directly optimize task-specific rewards and emulate expert-like diagnostic behavior. Extensive experiments show that Ophiuchus consistently outperforms both closed-source and open-source SOTA methods across diverse medical benchmarks, including VQA, detection, and reasoning-based segmentation. Our approach illuminates a path toward medical AI agents that can genuinely "think with images" through tool-integrated reasoning. Datasets, codes, and trained models will be released publicly.
☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.
comment: 34 pages, 14 figures, 4 tables. Under review
☆ TorchTraceAP: A New Benchmark Dataset for Detecting Performance Anti-Patterns in Computer Vision Models
Identifying and addressing performance anti-patterns in machine learning (ML) models is critical for efficient training and inference, but it typically demands deep expertise spanning system infrastructure, ML models and kernel development. While large tech companies rely on dedicated ML infrastructure engineers to analyze torch traces and benchmarks, such resource-intensive workflows are largely inaccessible to computer vision researchers in general. Among the challenges, pinpointing problematic trace segments within lengthy execution traces remains the most time-consuming task, and is difficult to automate with current ML models, including LLMs. In this work, we present the first benchmark dataset specifically designed to evaluate and improve ML models' ability to detect anti patterns in traces. Our dataset contains over 600 PyTorch traces from diverse computer vision models classification, detection, segmentation, and generation collected across multiple hardware platforms. We also propose a novel iterative approach: a lightweight ML model first detects trace segments with anti patterns, followed by a large language model (LLM) for fine grained classification and targeted feedback. Experimental results demonstrate that our method significantly outperforms unsupervised clustering and rule based statistical techniques for detecting anti pattern regions. Our method also effectively compensates LLM's limited context length and reasoning inefficiencies.
☆ LAPPI: Interactive Optimization with LLM-Assisted Preference-Based Problem Instantiation
Many real-world tasks, such as trip planning or meal planning, can be formulated as combinatorial optimization problems. However, using optimization solvers is difficult for end users because it requires problem instantiation: defining candidate items, assigning preference scores, and specifying constraints. We introduce LAPPI (LLM-Assisted Preference-based Problem Instantiation), an interactive approach that uses large language models (LLMs) to support users in this instantiation process. Through natural language conversations, the system helps users transform vague preferences into well-defined optimization problems. These instantiated problems are then passed to existing optimization solvers to generate solutions. In a user study on trip planning, our method successfully captured user preferences and generated feasible plans that outperformed both conventional and prompt-engineering approaches. We further demonstrate LAPPI's versatility by adapting it to an additional use case.
☆ UIXPOSE: Mobile Malware Detection via Intention-Behaviour Discrepancy Analysis
We introduce UIXPOSE, a source-code-agnostic framework that operates on both compiled and open-source apps. This framework applies Intention Behaviour Alignment (IBA) to mobile malware analysis, aligning UI-inferred intent with runtime semantics. Previous work either infers intent statically, e.g., permission-centric, or widget-level or monitors coarse dynamic signals (endpoints, partial resource usage) that miss content and context. UIXPOSE infers an intent vector from each screen using vision-language models and knowledge structures and combines decoded network payloads, heap/memory signals, and resource utilisation traces into a behaviour vector. Their alignment, calculated at runtime, can both detect misbehaviour and highlight exploration of behaviourally rich paths. In three real-world case studies, UIXPOSE reveals covert exfiltration and hidden background activity that evade metadata-only baselines, demonstrating how IBA improves dynamic detection.
comment: 15 pages
☆ SportsGPT: An LLM-driven Framework for Interpretable Sports Motion Assessment and Training Guidance
Existing intelligent sports analysis systems mainly focus on "scoring and visualization," often lacking automatic performance diagnosis and interpretable training guidance. Recent advances of Large Language Models (LMMs) and motion analysis techniques provide new opportunities to address the above limitations. In this paper, we propose SportsGPT, an LLM-driven framework for interpretable sports motion assessment and training guidance, which establishes a closed loop from motion time-series input to professional training guidance. First, given a set of high-quality target models, we introduce MotionDTW, a two-stage time series alignment algorithm designed for accurate keyframe extraction from skeleton-based motion sequences. Subsequently, we design a Knowledge-based Interpretable Sports Motion Assessment Model (KISMAM) to obtain a set of interpretable assessment metrics (e.g., insufficient extension) by constrasting the keyframes with the targe models. Finally, we propose SportsRAG, a RAG-based training guidance model based on Qwen3. Leveraging a 6B-token knowledge base, it prompts the LLM to generate professional training guidance by retrieving domain-specific QA pairs. Experimental results demonstrate that MotionDTW significantly outperforms traditional methods with lower temporal error and higher IoU scores. Furthermore, ablation studies validate the KISMAM and SportsRAG, confirming that SportsGPT surpasses general LLMs in diagnostic accuracy and professionalism.
☆ Optimizing Multi-Tier Supply Chain Ordering with a Hybrid Liquid Neural Network and Extreme Gradient Boosting Model
Supply chain management (SCM) faces significant challenges like demand fluctuations and the bullwhip effect. Traditional methods and even state-of-the-art LLMs struggle with benchmarks like the Vending Machine Test, failing to handle SCM's complex continuous time-series data. While ML approaches like LSTM and XGBoost offer solutions, they are often limited by computational inefficiency. Liquid Neural Networks (LNN), known for their adaptability and efficiency in robotics, remain untapped in SCM. This study proposes a hybrid LNN+XGBoost model for multi-tier supply chains. By combining LNN's dynamic feature extraction with XGBoost's global optimization, the model aims to minimize the bullwhip effect and increase profitability. This innovative approach addresses the need for efficiency and adaptability, filling a critical gap in intelligent SCM.
☆ HydroGEM: A Self Supervised Zero Shot Hybrid TCN Transformer Foundation Model for Continental Scale Streamflow Quality Control
Real-time streamflow monitoring networks generate millions of observations annually, yet maintaining data quality across thousands of remote sensors remains labor-intensive. We introduce HydroGEM (Hydrological Generalizable Encoder for Monitoring), a foundation model for continental-scale streamflow quality control. HydroGEM uses two-stage training: self-supervised pretraining on 6.03 million sequences from 3,724 USGS stations learns hydrological representations, followed by fine-tuning with synthetic anomalies for detection and reconstruction. A hybrid TCN-Transformer architecture (14.2M parameters) captures local temporal patterns and long-range dependencies, while hierarchical normalization handles six orders of magnitude in discharge. On held-out synthetic tests comprising 799 stations with 18 expert-validated anomaly types, HydroGEM achieves F1 = 0.792 for detection and 68.7% reconstruction-error reduction, a 36.3% improvement over existing methods. Zero-shot transfer to 100 Environment and Climate Change Canada stations yields F1 = 0.586, exceeding all baselines and demonstrating cross-national generalization. The model maintains consistent detection across correction magnitudes and aligns with operational seasonal patterns. HydroGEM is designed for human-in-the-loop workflows - outputs are quality control suggestions requiring expert review, not autonomous corrections.
comment: Supplementary materials, datasets, and implementation code will be made publicly available upon acceptance for publication in a peer-reviewed journal
☆ Neurosymbolic Inference On Foundation Models For Remote Sensing Text-to-image Retrieval With Complex Queries
Text-to-image retrieval in remote sensing (RS) has advanced rapidly with the rise of large vision-language models (LVLMs) tailored for aerial and satellite imagery, culminating in remote sensing large vision-language models (RS-LVLMS). However, limited explainability and poor handling of complex spatial relations remain key challenges for real-world use. To address these issues, we introduce RUNE (Reasoning Using Neurosymbolic Entities), an approach that combines Large Language Models (LLMs) with neurosymbolic AI to retrieve images by reasoning over the compatibility between detected entities and First-Order Logic (FOL) expressions derived from text queries. Unlike RS-LVLMs that rely on implicit joint embeddings, RUNE performs explicit reasoning, enhancing performance and interpretability. For scalability, we propose a logic decomposition strategy that operates on conditioned subsets of detected entities, guaranteeing shorter execution time compared to neural approaches. Rather than using foundation models for end-to-end retrieval, we leverage them only to generate FOL expressions, delegating reasoning to a neurosymbolic inference module. For evaluation we repurpose the DOTA dataset, originally designed for object detection, by augmenting it with more complex queries than in existing benchmarks. We show the LLM's effectiveness in text-to-logic translation and compare RUNE with state-of-the-art RS-LVLMs, demonstrating superior performance. We introduce two metrics, Retrieval Robustness to Query Complexity (RRQC) and Retrieval Robustness to Image Uncertainty (RRIU), which evaluate performance relative to query complexity and image uncertainty. RUNE outperforms joint-embedding models in complex RS retrieval tasks, offering gains in performance, robustness, and explainability. We show RUNE's potential for real-world RS applications through a use case on post-flood satellite image retrieval.
☆ ProtoFlow: Interpretable and Robust Surgical Workflow Modeling with Learned Dynamic Scene Graph Prototypes
Purpose: Detailed surgical recognition is critical for advancing AI-assisted surgery, yet progress is hampered by high annotation costs, data scarcity, and a lack of interpretable models. While scene graphs offer a structured abstraction of surgical events, their full potential remains untapped. In this work, we introduce ProtoFlow, a novel framework that learns dynamic scene graph prototypes to model complex surgical workflows in an interpretable and robust manner. Methods: ProtoFlow leverages a graph neural network (GNN) encoder-decoder architecture that combines self-supervised pretraining for rich representation learning with a prototype-based fine-tuning stage. This process discovers and refines core prototypes that encapsulate recurring, clinically meaningful patterns of surgical interaction, forming an explainable foundation for workflow analysis. Results: We evaluate our approach on the fine-grained CAT-SG dataset. ProtoFlow not only outperforms standard GNN baselines in overall accuracy but also demonstrates exceptional robustness in limited-data, few-shot scenarios, maintaining strong performance when trained on as few as one surgical video. Our qualitative analyses further show that the learned prototypes successfully identify distinct surgical sub-techniques and provide clear, interpretable insights into workflow deviations and rare complications. Conclusion: By uniting robust representation learning with inherent explainability, ProtoFlow represents a significant step toward developing more transparent, reliable, and data-efficient AI systems, accelerating their potential for clinical adoption in surgical training, real-time decision support, and workflow optimization.
☆ Arithmetic-Intensity-Aware Quantization
As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.
☆ SonicMoE: Accelerating MoE with IO and Tile-aware Optimizations
Mixture of Experts (MoE) models have emerged as the de facto architecture for scaling up language models without significantly increasing the computational cost. Recent MoE models demonstrate a clear trend towards high expert granularity (smaller expert intermediate dimension) and higher sparsity (constant number of activated experts with higher number of total experts), which improve model quality per FLOP. However, fine-grained MoEs suffer from increased activation memory footprint and reduced hardware efficiency due to higher IO costs, while sparser MoEs suffer from wasted computations due to padding in Grouped GEMM kernels. In response, we propose a memory-efficient algorithm to compute the forward and backward passes of MoEs with minimal activation caching for the backward pass. We also design GPU kernels that overlap memory IO with computation benefiting all MoE architectures. Finally, we propose a novel "token rounding" method that minimizes the wasted compute due to padding in Grouped GEMM kernels. As a result, our method SonicMoE reduces activation memory by 45% and achieves a 1.86x compute throughput improvement on Hopper GPUs compared to ScatterMoE's BF16 MoE kernel for a fine-grained 7B MoE. Concretely, SonicMoE on 64 H100s achieves a training throughput of 213 billion tokens per day comparable to ScatterMoE's 225 billion tokens per day on 96 H100s for a 7B MoE model training with FSDP-2 using the lm-engine codebase. Under high MoE sparsity settings, our tile-aware token rounding algorithm yields an additional 1.16x speedup on kernel execution time compared to vanilla top-$K$ routing while maintaining similar downstream performance. We open-source all our kernels to enable faster MoE model training.
☆ Grammar Search for Multi-Agent Systems
Automatic search for Multi-Agent Systems has recently emerged as a key focus in agentic AI research. Several prior approaches have relied on LLM-based free-form search over the code space. In this work, we propose a more structured framework that explores the same space through a fixed set of simple, composable components. We show that, despite lacking the generative flexibility of LLMs during the candidate generation stage, our method outperforms prior approaches on four out of five benchmarks across two domains: mathematics and question answering. Furthermore, our method offers additional advantages, including a more cost-efficient search process and the generation of modular, interpretable multi-agent systems with simpler logic.
☆ RADAR: Accelerating Large Language Model Inference With RL-Based Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and slow, and speculative sampling has emerged as an effective solution to this problem, however, the number of the calls to the draft model for generating candidate tokens in speculative sampling is a preset hyperparameter, lacking flexibility. To generate and utilize the candidate tokens more effectively, we propose RADAR, a novel speculative sampling method with RL-based dynamic draft trees. RADAR formulates the draft tree generation process as a Markov Decision Process (MDP) and employs offline reinforcement learning to train a prediction model, which enables real-time decision on the calls to the draft model, reducing redundant computations and further accelerating inference. Evaluations across three LLMs and four tasks show that RADAR achieves a speedup of 3.17x-4.82x over the auto-regressive decoding baseline. The code is available at https://github.com/minaduki-sora/RADAR.
comment: 5 pages, 2 figures
☆ SDAR-VL: Stable and Efficient Block-wise Diffusion for Vision-Language Understanding
Block-wise discrete diffusion offers an attractive balance between parallel generation and causal dependency modeling, making it a promising backbone for vision-language modeling. However, its practical adoption has been limited by high training cost, slow convergence, and instability, which have so far kept it behind strong autoregressive (AR) baselines. We present \textbf{SDAR-VL}, the first systematic application of block-wise discrete diffusion to large-scale vision-language understanding (VLU), together with an \emph{integrated framework for efficient and stable training}. This framework unifies three components: (1) \textbf{Asynchronous Block-wise Noise Scheduling} to diversify supervision within each batch; (2) \textbf{Effective Mask Ratio Scaling} for unbiased loss normalization under stochastic masking; and (3) a \textbf{Progressive Beta Noise Curriculum} that increases effective mask coverage while preserving corruption diversity. Experiments on 21 single-image, multi-image, and video benchmarks show that SDAR-VL consistently improves \emph{training efficiency}, \emph{convergence stability}, and \emph{task performance} over conventional block diffusion. On this evaluation suite, SDAR-VL sets a new state of the art among diffusion-based vision-language models and, under matched settings, matches or surpasses strong AR baselines such as LLaVA-OneVision as well as the global diffusion baseline LLaDA-V, establishing block-wise diffusion as a practical backbone for VLU.
☆ Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed
Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.
☆ Real-time prediction of workplane illuminance distribution for daylight-linked controls using non-intrusive multimodal deep learning
Daylight-linked controls (DLCs) have significant potential for energy savings in buildings, especially when abundant daylight is available and indoor workplane illuminance can be accurately predicted in real time. Most existing studies on indoor daylight predictions were developed and tested for static scenes. This study proposes a multimodal deep learning framework that predicts indoor workplane illuminance distributions in real time from non-intrusive images with temporal-spatial features. By extracting image features only from the side-lit window areas rather than interior pixels, the approach remains applicable in dynamically occupied indoor spaces. A field experiment was conducted in a test room in Guangzhou (China), where 17,344 samples were collected for model training and validation. The model achieved R2 > 0.98 with RMSE < 0.14 on the same-distribution test set and R2 > 0.82 with RMSE < 0.17 on an unseen-day test set, indicating high accuracy and acceptable temporal generalization.
☆ FacEDiT: Unified Talking Face Editing and Generation via Facial Motion Infilling
Talking face editing and face generation have often been studied as distinct problems. In this work, we propose viewing both not as separate tasks but as subtasks of a unifying formulation, speech-conditional facial motion infilling. We explore facial motion infilling as a self-supervised pretext task that also serves as a unifying formulation of dynamic talking face synthesis. To instantiate this idea, we propose FacEDiT, a speech-conditional Diffusion Transformer trained with flow matching. Inspired by masked autoencoders, FacEDiT learns to synthesize masked facial motions conditioned on surrounding motions and speech. This formulation enables both localized generation and edits, such as substitution, insertion, and deletion, while ensuring seamless transitions with unedited regions. In addition, biased attention and temporal smoothness constraints enhance boundary continuity and lip synchronization. To address the lack of a standard editing benchmark, we introduce FacEDiTBench, the first dataset for talking face editing, featuring diverse edit types and lengths, along with new evaluation metrics. Extensive experiments validate that talking face editing and generation emerge as subtasks of speech-conditional motion infilling; FacEDiT produces accurate, speech-aligned facial edits with strong identity preservation and smooth visual continuity while generalizing effectively to talking face generation.
comment: Project page: https://facedit.github.io/
☆ OpenDataArena: A Fair and Open Arena for Benchmarking Post-Training Dataset Value
The rapid evolution of Large Language Models (LLMs) is predicated on the quality and diversity of post-training datasets. However, a critical dichotomy persists: while models are rigorously benchmarked, the data fueling them remains a black box--characterized by opaque composition, uncertain provenance, and a lack of systematic evaluation. This opacity hinders reproducibility and obscures the causal link between data characteristics and model behaviors. To bridge this gap, we introduce OpenDataArena (ODA), a holistic and open platform designed to benchmark the intrinsic value of post-training data. ODA establishes a comprehensive ecosystem comprising four key pillars: (i) a unified training-evaluation pipeline that ensures fair, open comparisons across diverse models (e.g., Llama, Qwen) and domains; (ii) a multi-dimensional scoring framework that profiles data quality along tens of distinct axes; (iii) an interactive data lineage explorer to visualize dataset genealogy and dissect component sources; and (iv) a fully open-source toolkit for training, evaluation, and scoring to foster data research. Extensive experiments on ODA--covering over 120 training datasets across multiple domains on 22 benchmarks, validated by more than 600 training runs and 40 million processed data points--reveal non-trivial insights. Our analysis uncovers the inherent trade-offs between data complexity and task performance, identifies redundancy in popular benchmarks through lineage tracing, and maps the genealogical relationships across datasets. We release all results, tools, and configurations to democratize access to high-quality data evaluation. Rather than merely expanding a leaderboard, ODA envisions a shift from trial-and-error data curation to a principled science of Data-Centric AI, paving the way for rigorous studies on data mixing laws and the strategic composition of foundation models.
☆ Intention Chain-of-Thought Prompting with Dynamic Routing for Code Generation AAAI-2026
Large language models (LLMs) exhibit strong generative capabilities and have shown great potential in code generation. Existing chain-of-thought (CoT) prompting methods enhance model reasoning by eliciting intermediate steps, but suffer from two major limitations: First, their uniform application tends to induce overthinking on simple tasks. Second, they lack intention abstraction in code generation, such as explicitly modeling core algorithmic design and efficiency, leading models to focus on surface-level structures while neglecting the global problem objective. Inspired by the cognitive economy principle of engaging structured reasoning only when necessary to conserve cognitive resources, we propose RoutingGen, a novel difficulty-aware routing framework that dynamically adapts prompting strategies for code generation. For simple tasks, it adopts few-shot prompting; for more complex ones, it invokes a structured reasoning strategy, termed Intention Chain-of-Thought (ICoT), which we introduce to guide the model in capturing task intention, such as the core algorithmic logic and its time complexity. Experiments across three models and six standard code generation benchmarks show that RoutingGen achieves state-of-the-art performance in most settings, while reducing total token usage by 46.37% on average across settings. Furthermore, ICoT outperforms six existing prompting baselines on challenging benchmarks.
comment: Accepted at AAAI-2026
☆ OmniDrive-R1: Reinforcement-driven Interleaved Multi-modal Chain-of-Thought for Trustworthy Vision-Language Autonomous Driving
The deployment of Vision-Language Models (VLMs) in safety-critical domains like autonomous driving (AD) is critically hindered by reliability failures, most notably object hallucination. This failure stems from their reliance on ungrounded, text-based Chain-of-Thought (CoT) reasoning.While existing multi-modal CoT approaches attempt mitigation, they suffer from two fundamental flaws: (1) decoupled perception and reasoning stages that prevent end-to-end joint optimization, and (2) reliance on expensive, dense localization labels.Thus we introduce OmniDrive-R1, an end-to-end VLM framework designed for autonomous driving, which unifies perception and reasoning through an interleaved Multi-modal Chain-of-Thought (iMCoT) mechanism. Our core innovation is an Reinforcement-driven visual grounding capability, enabling the model to autonomously direct its attention and "zoom in" on critical regions for fine-grained analysis. This capability is enabled by our pure two-stage reinforcement learning training pipeline and Clip-GRPO algorithm. Crucially, Clip-GRPO introduces an annotation-free, process-based grounding reward. This reward not only eliminates the need for dense labels but also circumvents the instability of external tool calls by enforcing real-time cross-modal consistency between the visual focus and the textual reasoning. Extensive experiments on DriveLMM-o1 demonstrate our model's significant improvements. Compared to the baseline Qwen2.5VL-7B, OmniDrive-R1 improves the overall reasoning score from 51.77% to 80.35%, and the final answer accuracy from 37.81% to 73.62%.
☆ Evaluating Small Language Models for Agentic On-Farm Decision Support Systems
Large Language Models (LLM) hold potential to support dairy scholars and farmers by supporting decision-making and broadening access to knowledge for stakeholders with limited technical expertise. However, the substantial computational demand restricts access to LLM almost exclusively through cloud-based service, which makes LLM-based decision support tools impractical for dairy farming. To address this gap, lightweight alternatives capable of running locally on farm hardware are required. In this work, we benchmarked 20 open-source Small Language Models (SLM) available on HuggingFace under farm-realistic computing constraints. Building on our prior work, we developed an agentic AI system that integrates five task-specific agents: literature search, web search, SQL database interaction, NoSQL database interaction, and graph generation following predictive models. Evaluation was conducted in two phases. In the first phase, five test questions were used for the initial screening to identify models capable of following basic dairy-related instructions and performing reliably in a compute-constrained environment. Models that passed this preliminary stage were then evaluated using 30 questions (five per task category mentioned above, plus one category addressing integrity and misconduct) in phase two. In results, Qwen-4B achieved superior performance across most of task categories, although showed unstable effectiveness in NoSQL database interactions through PySpark. To our knowledge, this is the first work explicitly evaluating the feasibility of SLM as engines for dairy farming decision-making, with central emphases on privacy and computational efficiency. While results highlight the promise of SLM-assisted tools for practical deployment in dairy farming, challenges remain, and fine-tuning is still needed to refine SLM performance in dairy-specific questions.
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ GraphBench: Next-generation graph learning benchmarking
Machine learning on graphs has recently achieved impressive progress in various domains, including molecular property prediction and chip design. However, benchmarking practices remain fragmented, often relying on narrow, task-specific datasets and inconsistent evaluation protocols, which hampers reproducibility and broader progress. To address this, we introduce GraphBench, a comprehensive benchmarking suite that spans diverse domains and prediction tasks, including node-level, edge-level, graph-level, and generative settings. GraphBench provides standardized evaluation protocols -- with consistent dataset splits and performance metrics that account for out-of-distribution generalization -- as well as a unified hyperparameter tuning framework. Additionally, we benchmark GraphBench using message-passing neural networks and graph transformer models, providing principled baselines and establishing a reference performance. See www.graphbench.io for further details.
♻ ☆ COMMA: A Communicative Multimodal Multi-Agent Benchmark
The rapid advances of multimodal agents built on large foundation models have largely overlooked their potential for language-based communication between agents in collaborative tasks. This oversight presents a critical gap in understanding their effectiveness in real-world deployments, particularly when communicating with humans. Existing agentic benchmarks fail to address key aspects of inter-agent communication and collaboration, particularly in scenarios where agents have unequal access to information and must work together to achieve tasks beyond the scope of individual capabilities. To fill this gap, we introduce COMMA: a novel puzzle benchmark designed to evaluate the collaborative performance of multimodal multi-agent systems through language communication. Our benchmark features a variety of multimodal puzzles, providing a comprehensive evaluation across four key categories of agentic capability in a communicative collaboration setting. Our findings reveal surprising weaknesses in state-of-the-art models, including strong proprietary models like GPT-4o and reasoning models like o4-mini. Many chain of thought reasoning models such as R1-Onevision and LLaVA-CoT struggle to outperform even a random baseline in agent-agent collaboration, indicating a potential growth area in their communication abilities.
♻ ☆ Understanding Sampler Stochasticity in Training Diffusion Models for RLHF
Reinforcement Learning from Human Feedback (RLHF) is increasingly used to fine-tune diffusion models, but a key challenge arises from the mismatch between stochastic samplers used during training and deterministic samplers used during inference. In practice, models are fine-tuned using stochastic SDE samplers to encourage exploration, while inference typically relies on deterministic ODE samplers for efficiency and stability. This discrepancy induces a reward gap, raising concerns about whether high-quality outputs can be expected during inference. In this paper, we theoretically characterize this reward gap and provide non-vacuous bounds for general diffusion models, along with sharper convergence rates for Variance Exploding (VE) and Variance Preserving (VP) Gaussian models. Methodologically, we adopt the generalized denoising diffusion implicit models (gDDIM) framework to support arbitrarily high levels of stochasticity, preserving data marginals throughout. Empirically, our findings through large-scale experiments on text-to-image models using denoising diffusion policy optimization (DDPO) and mixed group relative policy optimization (MixGRPO) validate that reward gaps consistently narrow over training, and ODE sampling quality improves when models are updated using higher-stochasticity SDE training.
♻ ☆ One Layer Is Enough: Adapting Pretrained Visual Encoders for Image Generation
Visual generative models (e.g., diffusion models) typically operate in compressed latent spaces to balance training efficiency and sample quality. In parallel, there has been growing interest in leveraging high-quality pre-trained visual representations, either by aligning them inside VAEs or directly within the generative model. However, adapting such representations remains challenging due to fundamental mismatches between understanding-oriented features and generation-friendly latent spaces. Representation encoders benefit from high-dimensional latents that capture diverse hypotheses for masked regions, whereas generative models favor low-dimensional latents that must faithfully preserve injected noise. This discrepancy has led prior work to rely on complex objectives and architectures. In this work, we propose FAE (Feature Auto-Encoder), a simple yet effective framework that adapts pre-trained visual representations into low-dimensional latents suitable for generation using as little as a single attention layer, while retaining sufficient information for both reconstruction and understanding. The key is to couple two separate deep decoders: one trained to reconstruct the original feature space, and a second that takes the reconstructed features as input for image generation. FAE is generic; it can be instantiated with a variety of self-supervised encoders (e.g., DINO, SigLIP) and plugged into two distinct generative families: diffusion models and normalizing flows. Across class-conditional and text-to-image benchmarks, FAE achieves strong performance. For example, on ImageNet 256x256, our diffusion model with CFG attains a near state-of-the-art FID of 1.29 (800 epochs) and 1.70 (80 epochs). Without CFG, FAE reaches the state-of-the-art FID of 1.48 (800 epochs) and 2.08 (80 epochs), demonstrating both high quality and fast learning.
♻ ☆ Property-Isometric Variational Autoencoders for Sequence Modeling and Design
Biological sequence design (DNA, RNA, or peptides) with desired functional properties has applications in discovering novel nanomaterials, biosensors, antimicrobial drugs, and beyond. One common challenge is the ability to optimize complex high-dimensional properties such as target emission spectra of DNA-mediated fluorescent nanoparticles, photo and chemical stability, and antimicrobial activity of peptides across target microbes. Existing models rely on simple binary labels (e.g., binding/non-binding) rather than high-dimensional complex properties. To address this gap, we propose a geometry-preserving variational autoencoder framework, called PrIVAE, which learns latent sequence embeddings that respect the geometry of their property space. Specifically, we model the property space as a high-dimensional manifold that can be locally approximated by a nearest neighbor graph, given an appropriately defined distance measure. We employ the property graph to guide the sequence latent representations using (1) graph neural network encoder layers and (2) an isometric regularizer. PrIVAE learns a property-organized latent space that enables rational design of new sequences with desired properties by employing the trained decoder. We evaluate the utility of our framework for two generative tasks: (1) design of DNA sequences that template fluorescent metal nanoclusters and (2) design of antimicrobial peptides. The trained models retain high reconstruction accuracy while organizing the latent space according to properties. Beyond in silico experiments, we also employ sampled sequences for wet lab design of DNA nanoclusters, resulting in up to 16.1-fold enrichment of rare-property nanoclusters compared to their abundance in training data, demonstrating the practical utility of our framework.
comment: 23 pages, 6 figures, preprint
♻ ☆ Chase Anonymisation: Privacy-Preserving Knowledge Graphs with Logical Reasoning
We propose a novel framework to enable Knowledge Graphs (KGs) sharing while ensuring that information that should remain private is not directly released nor indirectly exposed via derived knowledge, maintaining at the same time the embedded knowledge of the KGs to support business downstream tasks. Our approach produces a privacy-preserving KG as an augmentation of the input one via controlled addition of nodes and edges as well as re-labeling of nodes and perturbation of weights. We introduce a novel privacy measure for KGs, which considers derived knowledge, a new utility metric that captures the business semantics we want to preserve, and propose two novel anonymisation algorithms. Our extensive experimental evaluation, with both synthetic graphs and real-world datasets, confirms the effectiveness of our approach.
comment: 16 pages, 5 figures
♻ ☆ Latent Self-Consistency for Reliable Majority-Set Selection in Short- and Long-Answer Reasoning
Probabilistic decoding in Large Language Models (LLMs) often yields inconsistent outputs, particularly on complex or long-form questions. Self-Consistency (SC) mitigates this for short-form QA by majority voting over exact strings, whereas Universal Self-Consistency (USC) and Weighted Unigram Consistency Score (WUCS) extend to long-form responses but lose accuracy on short-form benchmarks. We introduce \textbf{Latent Self-Consistency (LSC)}, which selects the most semantically consistent response using learnable token embeddings. LSC's lightweight forward processing of summary tokens only introduces negligible runtime overhead (at most $0.9\%$) on top of standard decoding of the base LLM, and requires no changes to the model architecture. Across 6 short-form and 5 long-form reasoning benchmarks (e.g., MATH, MMLU, TruthfulQA), LSC surpasses SC, USC, and WUCS on both short-form and long-form on average performance, while adding negligible computational overhead on vanilla inference. These results position LSC as a reliable consistency-selection method that works effectively across various answer formats. Additionally, LSC provides well-calibrated confidence estimates, maintaining low expected calibration error across both answer formats.
♻ ☆ Trace Gadgets: Minimizing Code Context for Machine Learning-Based Vulnerability Prediction CCS 2026
As the number of web applications and API endpoints exposed to the Internet continues to grow, so does the number of exploitable vulnerabilities. Manually identifying such vulnerabilities is tedious. Meanwhile, static security scanners tend to produce many false positives. While machine learning-based approaches are promising, they typically perform well only in scenarios where training and test data are closely related. A key challenge for ML-based vulnerability detection is providing suitable and concise code context, as excessively long contexts negatively affect the code comprehension capabilities of machine learning models, particularly smaller ones. This work introduces Trace Gadgets, a novel code representation that minimizes code context by removing non-related code. Trace Gadgets precisely capture the statements that cover the path to the vulnerability. As input for ML models, Trace Gadgets provide a minimal but complete context, thereby improving the detection performance. Moreover, we collect a large-scale dataset generated from real-world applications with manually curated labels to further improve the performance of ML-based vulnerability detectors. Our results show that state-of-the-art machine learning models perform best when using Trace Gadgets compared to previous code representations, surpassing the detection capabilities of industry-standard static scanners such as GitHub's CodeQL by at least 4% on a fully unseen dataset. By applying our framework to real-world applications, we identify and report previously unknown vulnerabilities in widely deployed software.
comment: Published in the Proceedings of ACM ASIA CCS 2026
♻ ☆ Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
♻ ☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow has the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, our method achieved a high Dice score of 82.64, and a low Hausdorff distance of 6.34 pixels was obtained for lesion segmentation. The proposed Text-Swin-U/Mamba model outperformed prior approaches: 37.79% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001), and surpassed the purely image-based XLSTM-UNet and nnUNet models by 2.58% and 1.01%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
♻ ☆ Using Socio-economic Indicators, Smart Transit Systems, and Urban Simulator to Accelerate ZEV Adoption and Reduce VMT
Globally, on-road transportation accounts for 15% of greenhouse gas (GHG) emissions and an estimated 385,000 premature deaths from PM2.5. Cities play a critical role in meeting IPCC targets, generating 75% of global energy-related GHG emissions. In Houston, Texas, on-road transportation represents 48% of baseline emissions in the Climate Action Plan (CAP). To reach net-zero by 2050, the CAP targets a 70% emissions reduction from a 2014 baseline, offset by 30% renewable energy. This goal is challenging because Houston is low-density and auto-dependent, with 89% of on-road emissions from cars and small trucks and limited public transit usage. Socio-economic disparities further constrain Zero Emissions Vehicle (ZEV) adoption. Strategies focus on expanding ZEV access and reducing Vehicle Miles Traveled (VMT) by 20% through transit improvements and city design. This paper presents methods for establishing an on-road emissions baseline and evaluating policies that leverage socio-economic indicators and Intelligent Transportation Systems (ITS) to accelerate ZEV adoption and reduce VMT. Smart parking, transit incentives, secure data systems, and ZEV fleet management support improvements in modal split and system reliability. Policy options are analyzed and potential actions identified. To support evaluation, a simulation environment was developed in Unity 3D, enabling dynamic modeling of urban mobility and visualization of policy scenarios. Auto-dependent cities aiming for 2050 emission targets can benefit from the indicators, metrics, and technologies discussed.
♻ ☆ Single-Agent Scaling Fails Multi-Agent Intelligence: Towards Foundation Models with Native Multi-Agent Intelligence
Foundation models (FMs) are increasingly assuming the role of the ''brain'' of AI agents. While recent efforts have begun to equip FMs with native single-agent abilities -- such as GUI interaction or integrated tool use -- we argue that the next frontier is endowing FMs with native multi-agent intelligence. We identify four core capabilities of FMs in multi-agent contexts: understanding, planning, efficient communication, and adaptation. Contrary to assumptions about the spontaneous emergence of such abilities, we provide extensive empirical evidence, across 41 large language models and 7 challenging benchmarks, showing that scaling single-agent performance alone does not automatically yield robust multi-agent intelligence. To address this gap, we outline key research directions -- spanning dataset construction, evaluation, training paradigms, and safety considerations -- for building FMs with native multi-agent intelligence.
♻ ☆ Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity (A $\ne$ A) -- the same symbol refers to different entities across contexts; (2) Approximate Identity (A $\approx$ A) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining A $\ne$ A across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ Group-robust Machine Unlearning
Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group (e.g., ethnicity, gender), we empirically show that performance for this group degrades, leading to fairness issues. To perform unlearning while preserving fairness, this work addresses the overlooked problem of non-uniformly distributed forget sets, which we refer to as group-robust machine unlearning. We formalize the problem and present a simple and effective exact unlearning strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Exploring Network-Knowledge Graph Duality: A Case Study in Agentic Supply Chain Risk Analysis
Large Language Models (LLMs) struggle with the complex, multi-modal, and network-native data underlying financial risk. Standard Retrieval-Augmented Generation (RAG) oversimplifies relationships, while specialist models are costly and static. We address this gap with an LLM-centric agent framework for supply chain risk analysis. Our core contribution is to exploit the inherent duality between networks and knowledge graphs (KG). We treat the supply chain network as a KG, allowing us to use structural network science principles for retrieval. A graph traverser, guided by network centrality scores, efficiently extracts the most economically salient risk paths. An agentic architecture orchestrates this graph retrieval alongside data from numerical factor tables and news streams. Crucially, it employs novel ``context shells'' -- descriptive templates that embed raw figures in natural language -- to make quantitative data fully intelligible to the LLM. This lightweight approach enables the model to generate concise, explainable, and context-rich risk narratives in real-time without costly fine-tuning or a dedicated graph database.
comment: Accepted to the 2nd Workshop on LLMs and Generative AI in Finance: International Conference on AI in Finance(ICAIF) 2025;7 pages, 3 figures
♻ ☆ Online Multi-modal Root Cause Identification in Microservice Systems
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems. Traditional data-driven RCA methods are typically limited to offline applications due to high computational demands, and existing online RCA methods handle only single-modal data, overlooking complex interactions in multi-modal systems. In this paper, we introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization. OCEAN employs a dilated convolutional neural network to capture long-term temporal dependencies and graph neural networks to learn causal relationships among system entities and key performance indicators. We further design a multi-factor attention mechanism to analyze and reassess the relationships among different metrics and log indicators/attributes for enhanced online causal graph learning. Additionally, a contrastive mutual information maximization-based graph fusion module is developed to effectively model the relationships across various modalities. Extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
comment: Accepted by BigData 2025
♻ ☆ RepoTransBench: A Real-World Multilingual Benchmark for Repository-Level Code Translation
Repository-level code translation refers to translating an entire code repository from one programming language to another while preserving the functionality of the source repository. Many benchmarks have been proposed to evaluate the performance of such code translators. However, previous benchmarks mostly provide fine-grained samples, focusing at either code snippet, function, or file-level code translation. Such benchmarks do not accurately reflect real-world demands, where entire repositories often need to be translated, involving longer code length and more complex functionalities. To address this gap, we propose a new benchmark, named RepoTransBench, which is a real-world multilingual repository-level code translation benchmark featuring 1,897 real-world repository samples across 13 language pairs with automatically executable test suites. Besides, we introduce RepoTransAgent, a general agent framework to perform repository-level code translation. We evaluate both our benchmark's challenges and agent's effectiveness using several methods and backbone LLMs, revealing that repository-level translation remains challenging, where the best-performing method achieves only a 32.8% success rate. Furthermore, our analysis reveals that translation difficulty varies significantly by language pair direction, with dynamic-to-static language translation being much more challenging than the reverse direction (achieving below 10% vs. static-to-dynamic at 45-63%). Finally, we conduct a detailed error analysis and highlight current LLMs' deficiencies in repository-level code translation, which could provide a reference for further improvements. We provide the code and data at https://github.com/DeepSoftwareAnalytics/RepoTransBench.
♻ ☆ A fine-grained look at causal effects in causal spaces
The notion of causal effect is fundamental across many scientific disciplines. Traditionally, quantitative researchers have studied causal effects at the level of variables; for example, how a certain drug dose (W) causally affects a patient's blood pressure (Y). However, in many modern data domains, the raw variables-such as pixels in an image or tokens in a language model-do not have the semantic structure needed to formulate meaningful causal questions. In this paper, we offer a more fine-grained perspective by studying causal effects at the level of events, drawing inspiration from probability theory, where core notions such as independence are first given for events and sigma-algebras, before random variables enter the picture. Within the measure-theoretic framework of causal spaces, a recently introduced axiomatisation of causality, we first introduce several binary definitions that determine whether a causal effect is present, as well as proving some properties of them linking causal effect to (in)dependence under an intervention measure. Further, we provide quantifying measures that capture the strength and nature of causal effects on events, and show that we can recover the common measures of treatment effect as special cases.
♻ ☆ Closing the Loop: Motion Prediction Models beyond Open-Loop Benchmarks
Fueled by motion prediction competitions and benchmarks, recent years have seen the emergence of increasingly large learning based prediction models, many with millions of parameters, focused on improving open-loop prediction accuracy by mere centimeters. However, these benchmarks fail to assess whether such improvements translate to better performance when integrated into an autonomous driving stack. In this work, we systematically evaluate the interplay between state-of-the-art motion predictors and motion planners. Our results show that higher open-loop accuracy does not always correlate with better closed-loop driving behavior and that other factors, such as temporal consistency of predictions and planner compatibility, also play a critical role. Furthermore, we investigate downsized variants of these models, and, surprisingly, find that in some cases models with up to 86% fewer parameters yield comparable or even superior closed-loop driving performance. Our code is available at https://github.com/aumovio/pred2plan.
♻ ☆ Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers
With the advent of machine learning and quantum computing, the 21st century has gone from a place of relative algorithmic security, to one of speculative unease and possibly, cyber catastrophe. Modern algorithms like Elliptic Curve Cryptography (ECC) are the bastion of current cryptographic security protocols that form the backbone of consumer protection ranging from Hypertext Transfer Protocol Secure (HTTPS) in the modern internet browser, to cryptographic financial instruments like Bitcoin. And there's been very little work put into testing the strength of these ciphers. Practically the only study that I could find was on side-channel recognition, a joint paper from the University of Milan, Italy and King's College, London\cite{battistello2025ecc}. These algorithms are already considered bulletproof by many consumers, but exploits already exist for them, and with computing power and distributed, federated compute on the rise, it's only a matter of time before these current bastions fade away into obscurity, and it's on all of us to stand up when we notice something is amiss, lest we see such passages claim victims in that process. In this paper, we seek to explore the use of modern language model architecture in cracking the association between a known public key, and its associated private key, by intuitively learning to reverse engineer the public keypair generation process, effectively solving the curve. Additonally, we attempt to ascertain modern machine learning's ability to memorize public-private secp256r1 keypairs, and to then test their ability to reverse engineer the public keypair generation process. It is my belief that proof-for would be equally valuable as proof-against in either of these categories. Finally, we'll conclude with some number crunching on where we see this particular field heading in the future.
comment: 7 pages
♻ ☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ Runtime Analysis of Evolutionary Diversity Optimization on the Multi-objective (LeadingOnes, TrailingZeros) Problem PPSN 2024
Diversity optimization is the class of optimization problems in which we aim to find a diverse set of good solutions. One of the frequently-used approaches to solve such problems is to use evolutionary algorithms that evolve a desired diverse population. This approach is called evolutionary diversity optimization (EDO). In this paper, we analyze EDO on a three-objective function LOTZ$_k$, which is a modification of the two-objective benchmark function (LeadingOnes, TrailingZeros). We prove that the GSEMO computes a set of all Pareto-optimal solutions in $O(kn^3)$ expected iterations. We also analyze the runtime of the GSEMO$_D$ algorithm (a modification of the GSEMO for diversity optimization) until it finds a population with the best possible diversity for two different diversity measures: the total imbalance and the sorted imbalances vector. For the first measure we show that the GSEMO$_D$ optimizes it in $O(kn^2\log(n))$ expected iterations (which is asymptotically faster than the upper bound on the runtime until it finds a Pareto-optimal population), and for the second measure we show an upper bound of $O(k^2n^3\log(n))$ expected iterations. We complement our theoretical analysis with an empirical study, which shows a very similar behavior for both diversity measures. The results of experiments suggest that our bounds for the total imbalance measure are tight, while the bounds for the imbalances vector are too pessimistic.
comment: Paper accepted at ECJ, conference paper was published at PPSN 2024
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ Training Multi-Image Vision Agents via End2End Reinforcement Learning
Recent VLM-based agents aim to replicate OpenAI O3's ``thinking with images" via tool use, but most open-source methods limit input to a single image, falling short on real-world multi-image QA tasks. To address this, we propose IMAgent, an open-source vision agent trained via end-to-end reinforcement learning dedicated for complex multi-image tasks. By leveraging a multi-agent system, we generate challenging and visually-rich multi-image QA pairs to fully activate the tool-use potential of the base VLM. Through manual verification, we obtain MIFG-QA, comprising 10k samples for training and evaluation. With deeper reasoning steps, VLMs may increasingly ignore visual inputs. We therefore develop two specialized tools for visual reflection and confirmation, allowing the model to proactively reallocate its attention to image content during inference. Benefiting from our well-designed action-trajectory two-level mask strategy, IMAgent achieves stable tool use behavior via pure RL training without requiring costly supervised fine-tuning data. Extensive experiments demonstrate that IMAgent maintains strong performance on existing single-image benchmarks while achieving substantial improvements on our proposed multi-image dataset, with our analysis providing actionable insights for the research community. Codes and data will be released soon.
♻ ☆ Tree Matching Networks for Natural Language Inference: Parameter-Efficient Semantic Understanding via Dependency Parse Trees
In creating sentence embeddings for Natural Language Inference (NLI) tasks, using transformer-based models like BERT leads to high accuracy, but require hundreds of millions of parameters. These models take in sentences as a sequence of tokens, and learn to encode the meaning of the sequence into embeddings such that those embeddings can be used reliably for NLI tasks. Essentially, every word is considered against every other word in the sequence, and the transformer model is able to determine the relationships between them, entirely from scratch. However, a model that accepts explicit linguistic structures like dependency parse trees may be able to leverage prior encoded information about these relationships, without having to learn them from scratch, thus improving learning efficiency. To investigate this, we adapt Graph Matching Networks (GMN) to operate on dependency parse trees, creating Tree Matching Networks (TMN). We compare TMN to a BERT based model on the SNLI entailment task and on the SemEval similarity task. TMN is able to achieve significantly better results with a significantly reduced memory footprint and much less training time than the BERT based model on the SNLI task, while both models struggled to preform well on the SemEval. Explicit structural representations significantly outperform sequence-based models at comparable scales, but current aggregation methods limit scalability. We propose multi-headed attention aggregation to address this limitation.
comment: 16 pages, preprint
♻ ☆ CrossPT-EEG: A Benchmark for Cross-Participant and Cross-Time Generalization of EEG-based Visual Decoding
Exploring brain activity in relation to visual perception provides insights into the biological representation of the world. While functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) have enabled effective image classification and reconstruction, their high cost and bulk limit practical use. Electroencephalography (EEG), by contrast, offers low cost and excellent temporal resolution, but its potential has been limited by the scarcity of large, high-quality datasets and by block-design experiments that introduce temporal confounds. To fill this gap, we present CrossPT-EEG, a benchmark for cross-participant and cross-time generalization of visual decoding from EEG. We collected EEG data from 16 participants while they viewed 4,000 images sampled from ImageNet, with image stimuli annotated at multiple levels of granularity. Our design includes two stages separated in time to allow cross-time generalization and avoid block-design artifacts. We also introduce benchmarks tailored to non-block design classification, as well as pre-training experiments to assess cross-time and cross-participant generalization. These findings highlight the dataset's potential to enhance EEG-based visual brain-computer interfaces, deepen our understanding of visual perception in biological systems, and suggest promising applications for improving machine vision models.
♻ ☆ LTA-thinker: Latent Thought-Augmented Training Framework for Large Language Models on Complex Reasoning
Complex Reasoning in Large Language Models can be dynamically optimized using Test-Time Scaling (TTS) to mitigate Overthinking. Methods such as Coconut, SoftCoT and its variant are effective in continuous latent space inference, the core bottleneck still lies in the efficient generation and utilization of high-quality Latent Thought. Drawing from the theory of SoftCoT++ that a larger variance in the generated Latent Thought distribution more closely approximates the golden truth distribution, we propose a Latent Thought-Augmented Training Framework--LTA-Thinker, which improves distributional variance and enhances reasoning performance from two perspectives. First, LTA-Thinker constructs a Latent Thought generation architecture based on a learnable prior. This architecture aims to increase the variance distribution of generated Latent Thought Vectors in order to simplify the overall structure and raise the performance ceiling. Second, LTA-Thinker introduces a distribution-based directional optimization paradigm that jointly constrains both distribution locality and distribution scale. This mechanism improves information efficiency and computational cost through a multi-objective co-training strategy, which combines standard Supervised Fine-Tuning (SFT) loss with two novel losses: Semantic Alignment Loss, which utilizes KL divergence to ensure that the Latent Thought is highly relevant to the semantics of the question; Reasoning Focus Loss, which utilizes a contrastive learning mechanism to guide the model to focus on the most critical reasoning steps. Experiments show that LTA-thinker achieves state-of-the-art (SOTA) performance among various baselines and demonstrates a higher performance ceiling and better scaling effects.
♻ ☆ Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting NeurIPS'25
Time Series Forecasting (TSF) is a crucial task in various domains, yet existing TSF models rely heavily on high-quality data and insufficiently exploit all available data. This paper explores a novel self-supervised approach to re-label time series datasets by inherently constructing candidate datasets. During the optimization of a simple reconstruction network, intermediates are used as pseudo labels in a self-supervised paradigm, improving generalization for any predictor. We introduce the Self-Correction with Adaptive Mask (SCAM), which discards overfitted components and selectively replaces them with pseudo labels generated from reconstructions. Additionally, we incorporate Spectral Norm Regularization (SNR) to further suppress overfitting from a loss landscape perspective. Our experiments on eleven real-world datasets demonstrate that SCAM consistently improves the performance of various backbone models. This work offers a new perspective on constructing datasets and enhancing the generalization of TSF models through self-supervised learning. The code is available at https://github.com/SuDIS-ZJU/SCAM.
comment: Accepted by NeurIPS'25 (spotlight)
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ DART: Difficulty-Adaptive Reasoning Truncation for Efficient Large Language Models
Adaptive reasoning is essential for aligning the computational effort of large language models (LLMs) with the intrinsic difficulty of problems. Current chain-of-thought methods boost reasoning ability but indiscriminately generate long explanations, leading to evident inefficiency. However, existing reinforcement learning approaches to adaptive thinking remain unstable and heavily reward-dependent. Here we propose \textbf{DART}, a supervised \textbf{D}ifficulty-\textbf{A}daptive \textbf{R}easoning \textbf{T}runcation framework that adjusts thinking length according to problem difficulty. By distilling concise reasoning patterns from stronger models, interpolating them into a continuum of reasoning styles, and curating optimal training data that balances correctness and compactness, DART learns when to ``stop thinking''. Across multiple mathematical benchmarks, experimental results demonstrate its remarkable efficiency while preserving or improving accuracy, achieving a significant 81.2\% reasoning truncation (DeepSeek-R1-Distill-Qwen-7B on GSM8K dataset) with 5.33$\times$ computational acceleration. DART provides a stable and general paradigm for efficient reasoning, advancing the development of adaptive intelligence in LLMs.
♻ ☆ Beyond Gaussian Initializations: Signal Preserving Weight Initialization for Odd-Sigmoid Activations
Activation functions critically influence trainability and expressivity, and recent work has therefore explored a broad range of nonlinearities. However, widely used Gaussian i.i.d. initializations are designed to preserve activation variance under wide or infinite width assumptions. In deep and relatively narrow networks with sigmoidal nonlinearities, these schemes often drive preactivations into saturation, and collapse gradients. To address this, we introduce an odd-sigmoid activations and propose an activation aware initialization tailored to any function in this class. Our method remains robust over a wide band of variance scales, preserving both forward signal variance and backpropagated gradient norms even in very deep and narrow networks. Empirically, across standard image benchmarks we find that the proposed initialization is substantially less sensitive to depth, width, and activation scale than Gaussian initializations. In physics informed neural networks (PINNs), scaled odd-sigmoid activations combined with our initialization achieve lower losses than Gaussian based setups, suggesting that diagonal-plus-noise weights provide a practical alternative when Gaussian initialization breaks down.
comment: 46 pages
♻ ☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as 1 - max(P_target). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
♻ ☆ Light-Weight Benchmarks Reveal the Hidden Hardware Cost of Zero-Shot Tabular Foundation Models ICML
Zero-shot foundation models (FMs) promise training-free prediction on tabular data, yet their hardware footprint remains poorly characterized. We present a fully reproducible benchmark that reports test accuracy together with wall-clock latency, peak CPU RAM, and peak GPU VRAM on four public datasets: Adult-Income, Higgs-100k, Wine-Quality, and California-Housing. Two open FMs (TabPFN-1.0 and TabICL-base) are compared against tuned XGBoost, LightGBM, and Random Forest baselines on a single NVIDIA T4 GPU. The tree ensembles equal or surpass FM accuracy on three datasets while completing full-test batches in <= 0.40 s and <= 150 MB RAM, using zero VRAM. TabICL achieves a 0.8 percentage-point gain on Higgs but requires roughly 40,000 times more latency (960 s) and 9 GB VRAM. TabPFN matches tree-model accuracy on Wine and Housing but peaks at 4 GB VRAM and cannot process the full 100k-row Higgs table. These results quantify the substantial hardware-versus-accuracy trade-offs in current tabular FMs and provide an open baseline for future efficiency-oriented research.
comment: ICML NewInML
♻ ☆ Renal Cell Carcinoma subtyping: learning from multi-resolution localization
Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
♻ ☆ Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles
Self-supervised learning (SSL) has driven major advances in computational pathology by enabling the learning of rich representations from histopathology data. Yet, tissue analysis alone may fall short in capturing broader molecular complexity, as key complementary information resides in high-dimensional omics profiles such as transcriptomics, methylomics, and genomics. To address this gap, we introduce MORPHEUS, the first multimodal pre-training strategy that integrates histopathology images and multi-omics data within a shared transformer-based architecture. At its core, MORPHEUS relies on a novel masked omics modeling objective that encourages the model to learn meaningful cross-modal relationships. This yields a general-purpose pre-trained encoder that can be applied to histopathology alone or in combination with any subset of omics modalities. Beyond inference, MORPHEUS also supports flexible any-to-any omics reconstruction, enabling one or more omics profiles to be reconstructed from any modality subset that includes histopathology. Pre-trained on a large pan-cancer cohort, MORPHEUS shows substantial improvements over supervised and SSL baselines across diverse tasks and modality combinations. Together, these capabilities position it as a promising direction for the development of multimodal foundation models in oncology. Code is publicly available at https://github.com/Lucas-rbnt/MORPHEUS
♻ ☆ WaveC2R: Wavelet-Driven Coarse-to-Refined Hierarchical Learning for Radar Retrieval AAAI2026
Satellite-based radar retrieval methods are widely employed to fill coverage gaps in ground-based radar systems, especially in remote areas affected by terrain blockage and limited detection range. Existing methods predominantly rely on overly simplistic spatial-domain architectures constructed from a single data source, limiting their ability to accurately capture complex precipitation patterns and sharply defined meteorological boundaries. To address these limitations, we propose WaveC2R, a novel wavelet-driven coarse-to-refined framework for radar retrieval. WaveC2R integrates complementary multi-source data and leverages frequency-domain decomposition to separately model low-frequency components for capturing precipitation patterns and high-frequency components for delineating sharply defined meteorological boundaries. Specifically, WaveC2R consists of two stages (i)Intensity-Boundary Decoupled Learning, which leverages wavelet decomposition and frequency-specific loss functions to separately optimize low-frequency intensity and high-frequency boundaries; and (ii)Detail-Enhanced Diffusion Refinement, which employs frequency-aware conditional priors and multi-source data to progressively enhance fine-scale precipitation structures while preserving coarse-scale meteorological consistency. Experimental results on the publicly available SEVIR dataset demonstrate that WaveC2R achieves state-of-the-art performance in satellite-based radar retrieval, particularly excelling at preserving high-intensity precipitation features and sharply defined meteorological boundaries.
comment: This work has been accepted by AAAI2026, AAAI2026 Project's webpage at this URL:https://spring-lovely.github.io/WaveC2R/
♻ ☆ Language Self-Play For Data-Free Training
Large language models (LLMs) have advanced rapidly in recent years, driven by scale, abundant high-quality training data, and reinforcement learning. Yet this progress faces a fundamental bottleneck: the need for ever more data from which models can continue to learn. In this work, we propose a reinforcement learning approach that removes this dependency by enabling models to improve without additional data. Our method leverages a game-theoretic framework of self-play, where a model's capabilities are cast as performance in a competitive game and stronger policies emerge by having the model play against itself-a process we call Language Self-Play (LSP). Experiments with Llama-3.2-3B-Instruct on instruction-following, mathematics, and coding benchmarks show that pretrained models can be effectively improved with self-play alone.
♻ ☆ Can AI Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels
As large language models increasingly mediate stigmatized health decisions, their capacity to genuinely understand complex psychological and physiological phenomena remains poorly evaluated. Can AI understand what we cannot say? We investigate whether LLMs coherently represent abortion stigma across the cognitive, interpersonal, and structural levels where it operates. We systematically tested 627 demographically diverse personas across five leading LLMs using the validated Individual Level Abortion Stigma Scale (ILAS). Our multilevel analysis examined whether models coherently represent stigma at the cognitive level (self-judgment), interpersonal level (anticipated judgment and isolation), and structural level (community condemnation and disclosure patterns), as well as overall stigma. Models fail tests of genuine understanding across all levels. They overestimate interpersonal stigma while underestimating cognitive stigma, assume uniform community condemnation, introduce demographic biases absent from human validation data, miss the empirically validated stigma-secrecy relationship, and contradict themselves within theoretical constructs. These patterns reveal that current alignment approaches ensure appropriate language but not coherent multilevel understanding. This work provides empirical evidence that current LLMs lack coherent multilevel understanding of psychological and physiological constructs. AI safety in high-stakes contexts demands new approaches to design (multilevel coherence), evaluation (continuous auditing), governance and regulation (mandatory audits, accountability, deployment restrictions), and AI literacy in domains where understanding what people cannot say determines whether support helps or harms.
♻ ☆ Advanced Black-Box Tuning of Large Language Models with Limited API Calls
Black-box tuning is an emerging paradigm for adapting large language models (LLMs) to better achieve desired behaviors, particularly when direct access to model parameters is unavailable. Current strategies, however, often present a dilemma of suboptimal extremes: either separately train a small proxy model and then use it to shift the predictions of the foundation model, offering notable efficiency but often yielding limited improvement; or making API calls in each tuning iteration to the foundation model, which entails prohibitive computational costs. Therefore, we propose a novel advanced black-box tuning method for LLMs with limited API calls. Our core strategy involves training a Gaussian Process (GP) surrogate model with "LogitMap Pairs" derived from querying the foundation model on a minimal but highly informative training subset. This surrogate can approximate the outputs of the foundation model to guide the training of the proxy model, thereby effectively reducing the need for direct queries to the foundation model. Extensive experiments verify that our approach elevates pre-trained language model accuracy from 55.92% to 86.85%, reducing the frequency of API queries to merely 1.38%. This significantly outperforms offline approaches that operate entirely without API access. Notably, our method also achieves comparable or superior accuracy to query-intensive approaches, while significantly reducing API costs. This offers a robust and high-efficiency paradigm for language model adaptation.
comment: 15 pages, 6 figures
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ IdealTSF: Can Non-Ideal Data Contribute to Enhancing the Performance of Time Series Forecasting Models? AAAI 2026
Deep learning has shown strong performance in time series forecasting tasks. However, issues such as missing values and anomalies in sequential data hinder its further development in prediction tasks. Previous research has primarily focused on extracting feature information from sequence data or addressing these suboptimal data as positive samples for knowledge transfer. A more effective approach would be to leverage these non-ideal negative samples to enhance event prediction. In response, this study highlights the advantages of non-ideal negative samples and proposes the IdealTSF framework, which integrates both ideal positive and negative samples for time series forecasting. IdealTSF consists of three progressive steps: pretraining, training, and optimization. It first pretrains the model by extracting knowledge from negative sample data, then transforms the sequence data into ideal positive samples during training. Additionally, a negative optimization mechanism with adversarial disturbances is applied. Extensive experiments demonstrate that negative sample data unlocks significant potential within the basic attention architecture for time series forecasting. Therefore, IdealTSF is particularly well-suited for applications with noisy samples or low-quality data.
comment: Accepted at AAAI 2026
♻ ☆ Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models NeurIPS 2025
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
comment: 10 pages, NeurIPS 2025 Spotlight
♻ ☆ Decoding Emotional Trajectories: A Temporal-Semantic Network Approach for Latent Depression Assessment in Social Media
The early identification and intervention of latent depression are of significant societal importance for mental health governance. While current automated detection methods based on social media have shown progress, their decision-making processes often lack a clinically interpretable framework, particularly in capturing the duration and dynamic evolution of depressive symptoms. To address this, this study introduces a semantic parsing network integrated with multi-scale temporal prototype learning. The model detects depressive states by capturing temporal patterns and semantic prototypes in users' emotional expression, providing a duration-aware interpretation of underlying symptoms. Validated on a large-scale social media dataset, the model outperforms existing state-of-the-art methods. Analytical results indicate that the model can identify emotional expression patterns not systematically documented in traditional survey-based approaches, such as sustained narratives expressing admiration for an "alternative life." Further user evaluation demonstrates the model's superior interpretability compared to baseline methods. This research contributes a structurally transparent, clinically aligned framework for depression detection in social media to the information systems literature. In practice, the model can generate dynamic emotional profiles for social platform users, assisting in the targeted allocation of mental health support resources.
comment: 56 pages, 10 figures, 21 tables
♻ ☆ A LoRA-Based Approach to Fine-Tuning LLMs for Educational Guidance in Resource-Constrained Settings
The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
comment: 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams), submitted as a preprint for review consideration in AI for Education or Machine Learning applications in low-resource settings. Includes detailed experiments with LoRA and quantization methods for efficient LLM fine-tuning
♻ ☆ Why Reinforcement Fine-Tuning Enables MLLMs Preserve Prior Knowledge Better: A Data Perspective
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on open-source multimodal model, Qwen2.5-VL series. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly but maintains prior knowledge. We study this phenomenon through learning dynamics by examining both the magnitude and direction of how training data influence prior knowledge. Our analysis shows that RFT mainly reinforces correct samples naturally aligned with the base model's probability landscape, leading to weaker interference with prior knowledge. Moreover, training on RFT-simulated rollouts, which exert a small magnitude of influence and are well aligned in direction to prior knowledge, allows SFT to preserve prior knowledge better while rapidly learning new tasks. These findings suggest that distribution of training data, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
comment: 28 pages (Preprint.)
♻ ☆ A Knowledge Graph-based Retrieval-Augmented Generation Framework for Algorithm Selection in the Facility Layout Problem
Selecting a solution algorithm for the Facility Layout Problem (FLP), an NP-hard optimization problem with multiobjective trade-off, is a complex task that requires deep expert knowledge. The performance of a given algorithm depends on the specific characteristics of the problem, such as the number of facilities, objectives, and constraints. This creates a need for a data-driven recommendation method to guide algorithm selection in automated design systems. This paper introduces a new recommendation method to make this expertise accessible, based on a Knowledge Graph-Based Retrieval-Augmented Generation (KG-RAG) framework. In this framework, a domain-specific knowledge graph (KG) is constructed from the literature. The method then employs a multifaceted retrieval mechanism to gather relevant evidence from this KG using three distinct approaches: precise graph-based search, flexible vector-based search, and cluster-based high-level search. The retrieved evidence is utilized by a Large Language Model (LLM) to generate algorithm recommendations based on data-driven reasoning. This KG-RAG framework is tested on a use case consisting of six problems comprising of complex multi-objective and multi-constraint FLP case. The results are compared with the Gemini 1.5 Flash chatbot. The results show that KG-RAG achieves an average reasoning score of 4.7 out of 5 compared to 3.3 for the baseline chatbot.
comment: 10 pages, 5 figures
♻ ☆ Efficient Reinforcement Learning with Semantic and Token Entropy for LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) has demonstrated superior performance in enhancing the reasoning capability of large language models (LLMs). However, this accuracy-oriented learning paradigm often suffers from entropy collapse, which reduces policy exploration and limits reasoning capabilities. To address this challenge, we propose an efficient reinforcement learning framework that leverages entropy signals at both the semantic and token levels to improve reasoning. From the data perspective, we introduce semantic entropy-guided curriculum learning, organizing training data from low to high semantic entropy to guide progressive optimization from easier to more challenging tasks. For the algorithmic design, we adopt non-uniform token treatment by imposing KL regularization on low-entropy tokens that critically impact policy exploration and applying stronger constraints on high-covariance portions within these tokens. By jointly optimizing data organization and algorithmic design, our method effectively mitigates entropy collapse and enhances LLM reasoning. Experimental results across 6 benchmarks with 3 different parameter-scale base models demonstrate that our method outperforms other entropy-based approaches in improving reasoning.
♻ ☆ Beyond Task Completion: An Assessment Framework for Evaluating Agentic AI Systems
Recent advances in agentic AI have shifted the focus from standalone Large Language Models (LLMs) to integrated systems that combine LLMs with tools, memory, and other agents to perform complex tasks. These multi-agent architectures enable coordinated reasoning, planning, and execution across diverse domains, allowing agents to collaboratively automate complex workflows. Despite these advances, evaluation and assessment of LLM agents and the multi-agent systems they constitute remain a fundamental challenge. Although various approaches have been proposed in the software engineering literature for evaluating conventional software components, existing methods for AI-based systems often overlook the non-deterministic nature of models. This non-determinism introduces behavioral uncertainty during execution, yet existing evaluations rely on binary task completion metrics that fail to capture it. Evaluating agentic systems therefore requires examining additional dimensions, including the agent ability to invoke tools, ingest and retrieve memory, collaborate with other agents, and interact effectively with its environment. These challenges emerged during our ongoing industry collaboration with MontyCloud Inc., when we deployed an agentic system in production. These limitations surfaced during deployment, highlighting practical gaps in the current evaluation methods and the need for a systematic assessment of agent behavior beyond task outcomes. Informed by these observations and established definitions of agentic systems, we propose an end-to-end Agent Assessment Framework with four evaluation pillars encompassing LLMs, Memory, Tools, and Environment. We validate the framework on a representative Autonomous CloudOps use case, where experiments reveal behavioral deviations overlooked by conventional metrics, demonstrating its effectiveness in capturing runtime uncertainties.
♻ ☆ Assessing Greenspace Attractiveness with ChatGPT, Claude, and Gemini: Do AI Models Reflect Human Perceptions?
Understanding greenspace attractiveness is essential for designing livable and inclusive urban environments, yet existing assessment approaches often overlook informal or transient spaces and remain too resource intensive to capture subjective perceptions at scale. This study examines the ability of multimodal large language models (MLLMs), ChatGPT GPT-4o, Claude 3.5 Haiku, and Gemini 2.0 Flash, to assess greenspace attractiveness similarly to humans using Google Street View imagery. We compared model outputs with responses from a geo-questionnaire of residents in Lodz, Poland, across both formal (for example, parks and managed greenspaces) and informal (for example, meadows and wastelands) greenspaces. Survey respondents and models indicated whether each greenspace was attractive or unattractive and provided up to three free text explanations. Analyses examined how often their attractiveness judgments aligned and compared their explanations after classifying them into shared reasoning categories. Results show high AI human agreement for attractive formal greenspaces and unattractive informal spaces, but low alignment for attractive informal and unattractive formal greenspaces. Models consistently emphasized aesthetic and design oriented features, underrepresenting safety, functional infrastructure, and locally embedded qualities valued by survey respondents. While these findings highlight the potential for scalable pre-assessment, they also underscore the need for human oversight and complementary participatory approaches. We conclude that MLLMs can support, but not replace, context sensitive greenspace evaluation in planning practice.
♻ ☆ Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention
Crowdsourced street-view imagery from social media provides real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing image geo-localization approaches, also known as Visual Place Recognition (VPR) models, exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geo-knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
comment: Updated author list to include additional contributor. Revised title and improved methodology section based on collaborative feedback
♻ ☆ Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study
Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
comment: 29 pages, 7 figures
♻ ☆ Question Answering Over Spatio-Temporal Knowledge Graph
Spatio-temporal knowledge graphs (STKGs) enhance traditional KGs by integrating temporal and spatial annotations, enabling precise reasoning over questions with spatio-temporal dependencies. Despite their potential, research on spatio-temporal knowledge graph question answering (STKGQA) remains limited. This is primarily due to the lack of datasets that simultaneously contain spatio-temporal information, as well as methods capable of handling implicit spatio-temporal reasoning. To bridge this gap, we introduce the spatio-temporal question answering dataset (STQAD), the first comprehensive benchmark comprising 10,000 natural language questions that require both temporal and spatial reasoning. STQAD is constructed with real-world facts containing spatio-temporal information, ensuring that the dataset reflects practical scenarios. Furthermore, our experiments reveal that existing KGQA methods underperform on STQAD, primarily due to their inability to model spatio-temporal interactions. To address this, we propose the spatio-temporal complex question answering (STCQA) method, which jointly embeds temporal and spatial features into KG representations and dynamically filters answers through constraint-aware reasoning. STCQA achieves state-of-the-art performance, significantly outperforming existing baselines. Our work not only provides a valuable resource for future research but also advances the field by offering a robust baseline for answering complex spatio-temporal questions.
comment: 34 pages, 10 figures. The paper has been accepted by Knowledge-Based Systems
♻ ☆ GALAX: Graph-Augmented Language Model for Explainable Reinforcement-Guided Subgraph Reasoning in Precision Medicine
In precision medicine, quantitative multi-omic features, topological context, and textual biological knowledge play vital roles in identifying disease-critical signaling pathways and targets. Existing pipelines capture only part of these-numerical omics ignore topological context, text-centric LLMs lack quantitative grounded reasoning, and graph-only models underuse node semantics and the generalization of LLMs-limiting mechanistic interpretability. Although Process Reward Models (PRMs) aim to guide reasoning in LLMs, they remain limited by unreliable intermediate evaluation, and vulnerability to reward hacking with computational cost. These gaps motivate integrating quantitative multi-omic signals, topological structure with node annotations, and literature-scale text via LLMs, using subgraph reasoning as the principle bridge linking numeric evidence, topological knowledge and language context. Therefore, we propose GALAX (Graph Augmented LAnguage model with eXplainability), an innovative framework that integrates pretrained Graph Neural Networks (GNNs) into Large Language Models (LLMs) via reinforcement learning guided by a Graph Process Reward Model (GPRM), which generates disease-relevant subgraphs in a step-wise manner initiated by an LLM and iteratively evaluated by a pretrained GNN and schema-based rule check, enabling process-level supervision without explicit labels. As an application, we also introduced Target-QA, a benchmark combining CRISPR-identified targets, multi-omic profiles, and biomedical graph knowledge across diverse cancer cell lines, which enables GNN pretraining for supervising step-wise graph construction and supports long-context reasoning over text-numeric graphs (TNGs), providing a scalable and biologically grounded framework for explainable, reinforcement-guided subgraph reasoning toward reliable and interpretable target discovery in precision medicine.
♻ ☆ MCTS-EP: Empowering Embodied Planning with Online Preference Optimization
This paper introduces MCTS-EP, an online learning framework that combines large language models (LLM) with Monte Carlo Tree Search (MCTS) for training embodied agents. MCTS-EP integrates three key components: MCTS-guided exploration for preference data collection, efficient multi-modal reasoning mechanism, and iterative training pipeline based on preference optimization. We theoretically prove that MCTS-EP achieves better performance bounds than conventional on-policy algorithms when the loss function is strongly convex, and demonstrate that it can be formulated as a search-enhanced variant of GAIL. MCTS-EP achieves state-of-the-art performace across serval benchmarks. In ALFWorld, it achieves 92% and 87% success rates for textual and visual tasks. In WebShop, it reaches an average reward of 0.81. MTCS-EP also reduces average interaction steps from from 18.7/19.5 to 10.2/9.9 steps in visual ALFWorld.Code available at: https://github.com/xuhang-2/Embodied-Agent-Planning
♻ ☆ Sliding Window Attention Adaptation
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
♻ ☆ Optimizing Large Language Models for ESG Activity Detection in Financial Texts
The integration of Environmental, Social, and Governance (ESG) factors into corporate decision-making is a fundamental aspect of sustainable finance. However, ensuring that business practices align with evolving regulatory frameworks remains a persistent challenge. AI-driven solutions for automatically assessing the alignment of sustainability reports and non-financial disclosures with specific ESG activities could greatly support this process. Yet, this task remains complex due to the limitations of general-purpose Large Language Models (LLMs) in domain-specific contexts and the scarcity of structured, high-quality datasets. In this paper, we investigate the ability of current-generation LLMs to identify text related to environmental activities. Furthermore, we demonstrate that their performance can be significantly enhanced through fine-tuning on a combination of original and synthetically generated data. To this end, we introduce ESG-Activities, a benchmark dataset containing 1,325 labelled text segments classified according to the EU ESG taxonomy. Our experimental results show that fine-tuning on ESG-Activities significantly enhances classification accuracy, with open models such as Llama 7B and Gemma 7B outperforming large proprietary solutions in specific configurations. These findings have important implications for financial analysts, policymakers, and AI researchers seeking to enhance ESG transparency and compliance through advanced natural language processing techniques.
comment: Published in the Proceedings of the ACM International Conference on AI in Finance (ICAIF). ACM version
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both textual descriptions and sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Explicit Context Imperative Paradigm (ECIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ Learning neuroimaging models from health system-scale data
Neuroimaging is a ubiquitous tool for evaluating patients with neurological diseases. The global demand for magnetic resonance imaging (MRI) studies has risen steadily, placing significant strain on health systems, prolonging turnaround times, and intensifying physician burnout. These challenges disproportionately impact patients in low-resource and rural settings. Here, we utilized a large academic health system as a data engine to develop Prima, the first vision language model (VLM) serving as an AI foundation for neuroimaging that supports real-world, clinical MRI studies as input. Trained on over 220,000 MRI studies, Prima uses a hierarchical vision architecture that provides general and transferable MRI features. Prima was tested in a 1-year health system-wide study that included 30K MRI studies. Across 52 radiologic diagnoses from the major neurologic disorders, including neoplastic, inflammatory, infectious, and developmental lesions, Prima achieved a mean diagnostic area under the ROC curve of 92.0, outperforming other state-of-the-art general and medical AI models. Prima offers explainable differential diagnoses, worklist priority for radiologists, and clinical referral recommendations across diverse patient demographics and MRI systems. Prima demonstrates algorithmic fairness across sensitive groups and can help mitigate health system biases, such as prolonged turnaround times for low-resource populations. These findings highlight the transformative potential of health system-scale VLMs and Prima's role in advancing AI-driven healthcare.
♻ ☆ REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning NeurIPS 2025
Recent rehearsal-free continual learning (CL) methods guided by prompts achieve strong performance on vision tasks with non-stationary data but remain resource-intensive, hindering real-world edge deployment. We introduce resource-efficient prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free continual learning methods while minimizing accuracy trade-offs. Our approach employs swift prompt selection to refine input data using a carefully provisioned model and introduces adaptive token merging (AToM) and adaptive layer dropping (ALD) for efficient prompt updates. AToM and ALD selectively skip data and model layers while preserving task-specific features during the learning of new tasks. Extensive experiments on multiple image classification datasets demonstrate REP's superior resource efficiency over state-of-the-art rehearsal-free CL methods.
comment: NeurIPS 2025
♻ ☆ STEMS: Spatial-Temporal Enhanced Safe Multi-Agent Coordination for Building Energy Management
Building energy management is essential for achieving carbon reduction goals, improving occupant comfort, and reducing energy costs. Coordinated building energy management faces critical challenges in exploiting spatial-temporal dependencies while ensuring operational safety across multi-building systems. Current multi-building energy systems face three key challenges: insufficient spatial-temporal information exploitation, lack of rigorous safety guarantees, and system complexity. This paper proposes Spatial-Temporal Enhanced Safe Multi-Agent Coordination (STEMS), a novel safety-constrained multi-agent reinforcement learning framework for coordinated building energy management. STEMS integrates two core components: (1) a spatial-temporal graph representation learning framework using a GCN-Transformer fusion architecture to capture inter-building relationships and temporal patterns, and (2) a safety-constrained multi-agent RL algorithm incorporating Control Barrier Functions to provide mathematical safety guarantees. Extensive experiments on real-world building datasets demonstrate STEMS's superior performance over existing methods, showing that STEMS achieves 21% cost reduction, 18% emission reduction, and dramatically reduces safety violations from 35.1% to 5.6% while maintaining optimal comfort with only 0.13 discomfort proportion. The framework also demonstrates strong robustness during extreme weather conditions and maintains effectiveness across different building types.
♻ ☆ The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.
comment: 16 pages, 7 figures, 9 tables. Code and data available at https://github.com/erikl2/safety-refusal-stability
♻ ☆ Intrinsic-Motivation Multi-Robot Social Formation Navigation with Coordinated Exploration
This paper investigates the application of reinforcement learning (RL) to multi-robot social formation navigation, a critical capability for enabling seamless human-robot coexistence. While RL offers a promising paradigm, the inherent unpredictability and often uncooperative dynamics of pedestrian behavior pose substantial challenges, particularly concerning the efficiency of coordinated exploration among robots. To address this, we propose a novel coordinated-exploration multi-robot RL algorithm introducing an intrinsic motivation exploration. Its core component is a self-learning intrinsic reward mechanism designed to collectively alleviate policy conservatism. Moreover, this algorithm incorporates a dual-sampling mode within the centralized training and decentralized execution framework to enhance the representation of both the navigation policy and the intrinsic reward, leveraging a two-time-scale update rule to decouple parameter updates. Empirical results on social formation navigation benchmarks demonstrate the proposed algorithm's superior performance over existing state-of-the-art methods across crucial metrics. Our code and video demos are available at: https://github.com/czxhunzi/CEMRRL.
♻ ☆ A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis
The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
comment: 68 pages, 9 figures, 16 tables
Machine Learning 146
☆ Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
comment: Tech report; project page: https://zhaoyue-zephyrus.github.io/npq/
☆ CHIP: Adaptive Compliance for Humanoid Control through Hindsight Perturbation
Recent progress in humanoid robots has unlocked agile locomotion skills, including backflipping, running, and crawling. Yet it remains challenging for a humanoid robot to perform forceful manipulation tasks such as moving objects, wiping, and pushing a cart. We propose adaptive Compliance Humanoid control through hIsight Perturbation (CHIP), a plug-and-play module that enables controllable end-effector stiffness while preserving agile tracking of dynamic reference motions. CHIP is easy to implement and requires neither data augmentation nor additional reward tuning. We show that a generalist motion-tracking controller trained with CHIP can perform a diverse set of forceful manipulation tasks that require different end-effector compliance, such as multi-robot collaboration, wiping, box delivery, and door opening.
comment: The first two authors contributed equally. Project page: https://nvlabs.github.io/CHIP/
☆ Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. The dataset is available online at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.
comment: 12 pages, 2 figures
☆ Bias-Variance Trade-off for Clipped Stochastic First-Order Methods: From Bounded Variance to Infinite Mean
Stochastic optimization is fundamental to modern machine learning. Recent research has extended the study of stochastic first-order methods (SFOMs) from light-tailed to heavy-tailed noise, which frequently arises in practice, with clipping emerging as a key technique for controlling heavy-tailed gradients. Extensive theoretical advances have further shown that the oracle complexity of SFOMs depends on the tail index $α$ of the noise. Nonetheless, existing complexity results often cover only the case $α\in (1,2]$, that is, the regime where the noise has a finite mean, while the complexity bounds tend to infinity as $α$ approaches $1$. This paper tackles the general case of noise with tail index $α\in(0,2]$, covering regimes ranging from noise with bounded variance to noise with an infinite mean, where the latter case has been scarcely studied. Through a novel analysis of the bias-variance trade-off in gradient clipping, we show that when a symmetry measure of the noise tail is controlled, clipped SFOMs achieve improved complexity guarantees in the presence of heavy-tailed noise for any tail index $α\in (0,2]$. Our analysis of the bias-variance trade-off not only yields new unified complexity guarantees for clipped SFOMs across this full range of tail indices, but is also straightforward to apply and can be combined with classical analyses under light-tailed noise to establish oracle complexity guarantees under heavy-tailed noise. Finally, numerical experiments validate our theoretical findings.
☆ Early Warning Index for Patient Deteriorations in Hospitals
Hospitals lack automated systems to harness the growing volume of heterogeneous clinical and operational data to effectively forecast critical events. Early identification of patients at risk for deterioration is essential not only for patient care quality monitoring but also for physician care management. However, translating varied data streams into accurate and interpretable risk assessments poses significant challenges due to inconsistent data formats. We develop a multimodal machine learning framework, the Early Warning Index (EWI), to predict the aggregate risk of ICU admission, emergency response team dispatch, and mortality. Key to EWI's design is a human-in-the-loop process: clinicians help determine alert thresholds and interpret model outputs, which are enhanced by explainable outputs using Shapley Additive exPlanations (SHAP) to highlight clinical and operational factors (e.g., scheduled surgeries, ward census) driving each patient's risk. We deploy EWI in a hospital dashboard that stratifies patients into three risk tiers. Using a dataset of 18,633 unique patients at a large U.S. hospital, our approach automatically extracts features from both structured and unstructured electronic health record (EHR) data and achieves C-statistics of 0.796. It is currently used as a triage tool for proactively managing at-risk patients. The proposed approach saves physicians valuable time by automatically sorting patients of varying risk levels, allowing them to concentrate on patient care rather than sifting through complex EHR data. By further pinpointing specific risk drivers, the proposed model provides data-informed adjustments to caregiver scheduling and allocation of critical resources. As a result, clinicians and administrators can avert downstream complications, including costly procedures or high readmission rates and improve overall patient flow.
☆ Beyond Lipschitz Continuity and Monotonicity: Fractal and Chaotic Activation Functions in Echo State Networks
Contemporary reservoir computing relies heavily on smooth, globally Lipschitz continuous activation functions, limiting applications in defense, disaster response, and pharmaceutical modeling where robust operation under extreme conditions is critical. We systematically investigate non-smooth activation functions, including chaotic, stochastic, and fractal variants, in echo state networks. Through comprehensive parameter sweeps across 36,610 reservoir configurations, we demonstrate that several non-smooth functions not only maintain the Echo State Property (ESP) but outperform traditional smooth activations in convergence speed and spectral radius tolerance. Notably, the Cantor function (continuous everywhere and flat almost everywhere) maintains ESP-consistent behavior up to spectral radii of rho ~ 10, an order of magnitude beyond typical bounds for smooth functions, while achieving 2.6x faster convergence than tanh and ReLU. We introduce a theoretical framework for quantized activation functions, defining a Degenerate Echo State Property (d-ESP) that captures stability for discrete-output functions and proving that d-ESP implies traditional ESP. We identify a critical crowding ratio Q=N/k (reservoir size / quantization levels) that predicts failure thresholds for discrete activations. Our analysis reveals that preprocessing topology, rather than continuity per se, determines stability: monotone, compressive preprocessing maintains ESP across scales, while dispersive or discontinuous preprocessing triggers sharp failures. While our findings challenge assumptions about activation function design in reservoir computing, the mechanism underlying the exceptional performance of certain fractal functions remains unexplained, suggesting fundamental gaps in our understanding of how geometric properties of activation functions influence reservoir dynamics.
comment: 50 pages, 21 figures. Extended version with full proofs, parameter sweeps, and appendices
☆ gridfm-datakit-v1: A Python Library for Scalable and Realistic Power Flow and Optimal Power Flow Data Generation
We introduce gridfm-datakit-v1, a Python library for generating realistic and diverse Power Flow (PF) and Optimal Power Flow (OPF) datasets for training Machine Learning (ML) solvers. Existing datasets and libraries face three main challenges: (1) lack of realistic stochastic load and topology perturbations, limiting scenario diversity; (2) PF datasets are restricted to OPF-feasible points, hindering generalization of ML solvers to cases that violate operating limits (e.g., branch overloads or voltage violations); and (3) OPF datasets use fixed generator cost functions, limiting generalization across varying costs. gridfm-datakit addresses these challenges by: (1) combining global load scaling from real-world profiles with localized noise and supporting arbitrary N-k topology perturbations to create diverse yet realistic datasets; (2) generating PF samples beyond operating limits; and (3) producing OPF data with varying generator costs. It also scales efficiently to large grids (up to 10,000 buses). Comparisons with OPFData, OPF-Learn, PGLearn, and PF$Δ$ are provided. Available on GitHub at https://github.com/gridfm/gridfm-datakit under Apache 2.0 and via `pip install gridfm-datakit`.
comment: Main equal contributors: Alban Puech, Matteo Mazzonelli. Other equal contributors: Celia Cintas, Tamara R. Govindasamy, Mangaliso Mngomezulu, Jonas Weiss
☆ TiME: Tiny Monolingual Encoders for Efficient NLP Pipelines
Today, a lot of research on language models is focused on large, general-purpose models. However, many NLP pipelines only require models with a well-defined, small set of capabilities. While large models are capable of performing the tasks of those smaller models, they are simply not fast enough to process large amounts of data or offer real-time responses. Furthermore, they often use unnecessarily large amounts of energy, leading to sustainability concerns and problems when deploying them on battery-powered devices. In our work, we show how to train small models for such efficiency-critical applications. As opposed to many off-the-shelf NLP pipelines, our models use modern training techniques such as distillation, and offer support for low-resource languages. We call our models TiME (Tiny Monolingual Encoders) and comprehensively evaluate them on a range of common NLP tasks, observing an improved trade-off between benchmark performance on one hand, and throughput, latency and energy consumption on the other. Along the way, we show that distilling monolingual models from multilingual teachers is possible, and likewise distilling models with absolute positional embeddings from teachers with relative positional embeddings.
☆ ParaFormer: A Generalized PageRank Graph Transformer for Graph Representation Learning WSDM 2026
Graph Transformers (GTs) have emerged as a promising graph learning tool, leveraging their all-pair connected property to effectively capture global information. To address the over-smoothing problem in deep GNNs, global attention was initially introduced, eliminating the necessity for using deep GNNs. However, through empirical and theoretical analysis, we verify that the introduced global attention exhibits severe over-smoothing, causing node representations to become indistinguishable due to its inherent low-pass filtering. This effect is even stronger than that observed in GNNs. To mitigate this, we propose PageRank Transformer (ParaFormer), which features a PageRank-enhanced attention module designed to mimic the behavior of deep Transformers. We theoretically and empirically demonstrate that ParaFormer mitigates over-smoothing by functioning as an adaptive-pass filter. Experiments show that ParaFormer achieves consistent performance improvements across both node classification and graph classification tasks on 11 datasets ranging from thousands to millions of nodes, validating its efficacy. The supplementary material, including code and appendix, can be found in https://github.com/chaohaoyuan/ParaFormer.
comment: Accepted by WSDM 2026
☆ Model-Based Reinforcement Learning in Discrete-Action Non-Markovian Reward Decision Processes
Many practical decision-making problems involve tasks whose success depends on the entire system history, rather than on achieving a state with desired properties. Markovian Reinforcement Learning (RL) approaches are not suitable for such tasks, while RL with non-Markovian reward decision processes (NMRDPs) enables agents to tackle temporal-dependency tasks. This approach has long been known to lack formal guarantees on both (near-)optimality and sample efficiency. We contribute to solving both issues with QR-MAX, a novel model-based algorithm for discrete NMRDPs that factorizes Markovian transition learning from non-Markovian reward handling via reward machines. To the best of our knowledge, this is the first model-based RL algorithm for discrete-action NMRDPs that exploits this factorization to obtain PAC convergence to $\varepsilon$-optimal policies with polynomial sample complexity. We then extend QR-MAX to continuous state spaces with Bucket-QR-MAX, a SimHash-based discretiser that preserves the same factorized structure and achieves fast and stable learning without manual gridding or function approximation. We experimentally compare our method with modern state-of-the-art model-based RL approaches on environments of increasing complexity, showing a significant improvement in sample efficiency and increased robustness in finding optimal policies.
comment: 19 pages, 32 figures, includes appendix
☆ Hierarchical Persistence Velocity for Network Anomaly Detection: Theory and Applications to Cryptocurrency Markets
We introduce the Overlap-Weighted Hierarchical Normalized Persistence Velocity (OW-HNPV), a novel topological data analysis method for detecting anomalies in time-varying networks. Unlike existing methods that measure cumulative topological presence, we introduce the first velocity-based perspective on persistence diagrams, measuring the rate at which features appear and disappear, automatically downweighting noise through overlap-based weighting. We also prove that OW-HNPV is mathematically stable. It behaves in a controlled, predictable way, even when comparing persistence diagrams from networks with different feature types. Applied to Ethereum transaction networks (May 2017-May 2018), OW-HNPV demonstrates superior performance for cryptocurrency anomaly detection, achieving up to 10.4% AUC gain over baseline models for 7-day price movement predictions. Compared with established methods, including Vector of Averaged Bettis (VAB), persistence landscapes, and persistence images, velocity-based summaries excel at medium- to long-range forecasting (4-7 days), with OW-HNPV providing the most consistent and stable performance across prediction horizons. Our results show that modeling topological velocity is crucial for detecting structural anomalies in dynamic networks.
LLmFPCA-detect: LLM-powered Multivariate Functional PCA for Anomaly Detection in Sparse Longitudinal Texts
Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
☆ Sound and Music Biases in Deep Music Transcription Models: A Systematic Analysis
Automatic Music Transcription (AMT) -- the task of converting music audio into note representations -- has seen rapid progress, driven largely by deep learning systems. Due to the limited availability of richly annotated music datasets, much of the progress in AMT has been concentrated on classical piano music, and even a few very specific datasets. Whether these systems can generalize effectively to other musical contexts remains an open question. Complementing recent studies on distribution shifts in sound (e.g., recording conditions), in this work we investigate the musical dimension -- specifically, variations in genre, dynamics, and polyphony levels. To this end, we introduce the MDS corpus, comprising three distinct subsets -- (1) Genre, (2) Random, and (3) MAEtest -- to emulate different axes of distribution shift. We evaluate the performance of several state-of-the-art AMT systems on the MDS corpus using both traditional information-retrieval and musically-informed performance metrics. Our extensive evaluation isolates and exposes varying degrees of performance degradation under specific distribution shifts. In particular, we measure a note-level F1 performance drop of 20 percentage points due to sound, and 14 due to genre. Generally, we find that dynamics estimation proves more vulnerable to musical variation than onset prediction. Musically informed evaluation metrics, particularly those capturing harmonic structure, help identify potential contributing factors. Furthermore, experiments with randomly generated, non-musical sequences reveal clear limitations in system performance under extreme musical distribution shifts. Altogether, these findings offer new evidence of the persistent impact of the Corpus Bias problem in deep AMT systems.
comment: pre-print of the upcoming EURASIP JASM journal article
☆ Hybrid Iterative Solvers with Geometry-Aware Neural Preconditioners for Parametric PDEs
The convergence behavior of classical iterative solvers for parametric partial differential equations (PDEs) is often highly sensitive to the domain and specific discretization of PDEs. Previously, we introduced hybrid solvers by combining the classical solvers with neural operators for a specific geometry 1, but they tend to under-perform in geometries not encountered during training. To address this challenge, we introduce Geo-DeepONet, a geometry-aware deep operator network that incorporates domain information extracted from finite element discretizations. Geo-DeepONet enables accurate operator learning across arbitrary unstructured meshes without requiring retraining. Building on this, we develop a class of geometry-aware hybrid preconditioned iterative solvers by coupling Geo-DeepONet with traditional methods such as relaxation schemes and Krylov subspace algorithms. Through numerical experiments on parametric PDEs posed over diverse unstructured domains, we demonstrate the enhanced robustness and efficiency of the proposed hybrid solvers for multiple real-world applications.
comment: 19 pages, 10 figures, 3 tables
☆ Residual GRU+MHSA: A Lightweight Hybrid Recurrent Attention Model for Cardiovascular Disease Detection
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, underscoring the need for reliable and efficient predictive tools that support early intervention. Traditional diagnostic approaches rely on handcrafted features and clinician expertise, while machine learning methods improve reproducibility but often struggle to generalize across noisy and heterogeneous clinical data. In this work, we propose Residual GRU with Multi-Head Self-Attention, a compact deep learning architecture designed for tabular clinical records. The model integrates residual bidirectional gated recurrent units for sequential modeling of feature columns, a channel reweighting block, and multi-head self-attention pooling with a learnable classification token to capture global context. We evaluate the model on the UCI Heart Disease dataset using 5-fold stratified cross-validation and compare it against classical methods such as Logistic Regression, Random Forest, and Support Vector Machines, as well as modern deep learning baselines including DeepMLP, convolutional networks, recurrent networks, and Transformers. The proposed model achieves an accuracy of 0.861, macro-F1 of 0.860, ROC-AUC of 0.908, and PR-AUC of 0.904, outperforming all baselines. Ablation studies confirm the individual contributions of residual recurrence, channel gating, and attention pooling. t-SNE visualizations further indicate that the learned embeddings exhibit clearer separation between disease and non-disease classes compared to raw features. These results demonstrate that lightweight hybrid recurrent and attention-based architectures provide a strong balance between accuracy and efficiency for clinical risk prediction, supporting deployment in resource-constrained healthcare settings.
comment: Accepted in IEEE Bigdata 2025- Learning Representations with Limited Supervision
☆ Counterfactual Explanations for Time Series Should be Human-Centered and Temporally Coherent in Interventions
Counterfactual explanations are increasingly proposed as interpretable mechanisms to achieve algorithmic recourse. However, current counterfactual techniques for time series classification are predominantly designed with static data assumptions and focus on generating minimal input perturbations to flip model predictions. This paper argues that such approaches are fundamentally insufficient in clinical recommendation settings, where interventions unfold over time and must be causally plausible and temporally coherent. We advocate for a shift towards counterfactuals that reflect sustained, goal-directed interventions aligned with clinical reasoning and patient-specific dynamics. We identify critical gaps in existing methods that limit their practical applicability, specifically, temporal blind spots and the lack of user-centered considerations in both method design and evaluation metrics. To support our position, we conduct a robustness analysis of several state-of-the-art methods for time series and show that the generated counterfactuals are highly sensitive to stochastic noise. This finding highlights their limited reliability in real-world clinical settings, where minor measurement variations are inevitable. We conclude by calling for methods and evaluation frameworks that go beyond mere prediction changes without considering feasibility or actionability. We emphasize the need for actionable, purpose-driven interventions that are feasible in real-world contexts for the users of such applications.
☆ Synthetic Electrogram Generation with Variational Autoencoders for ECGI
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and its clinical assessment requires accurate characterization of atrial electrical activity. Noninvasive electrocardiographic imaging (ECGI) combined with deep learning (DL) approaches for estimating intracardiac electrograms (EGMs) from body surface potentials (BSPMs) has shown promise, but progress is hindered by the limited availability of paired BSPM-EGM datasets. To address this limitation, we investigate variational autoencoders (VAEs) for the generation of synthetic multichannel atrial EGMs. Two models are proposed: a sinus rhythm-specific VAE (VAE-S) and a class-conditioned VAE (VAE-C) trained on both sinus rhythm and AF signals. Generated EGMs are evaluated using morphological, spectral, and distributional similarity metrics. VAE-S achieves higher fidelity with respect to in silico EGMs, while VAE-C enables rhythm-specific generation at the expense of reduced sinus reconstruction quality. As a proof of concept, the generated EGMs are used for data augmentation in a downstream noninvasive EGM reconstruction task, where moderate augmentation improves estimation performance. These results demonstrate the potential of VAE-based generative modeling to alleviate data scarcity and enhance deep learning-based ECGI pipelines.
☆ Improving Slow Transfer Predictions: Generative Methods Compared
Monitoring data transfer performance is a crucial task in scientific computing networks. By predicting performance early in the communication phase, potentially sluggish transfers can be identified and selectively monitored, optimizing network usage and overall performance. A key bottleneck to improving the predictive power of machine learning (ML) models in this context is the issue of class imbalance. This project focuses on addressing the class imbalance problem to enhance the accuracy of performance predictions. In this study, we analyze and compare various augmentation strategies, including traditional oversampling methods and generative techniques. Additionally, we adjust the class imbalance ratios in training datasets to evaluate their impact on model performance. While augmentation may improve performance, as the imbalance ratio increases, the performance does not significantly improve. We conclude that even the most advanced technique, such as CTGAN, does not significantly improve over simple stratified sampling.
☆ C-ing Clearly: Enhanced Binary Code Explanations using C code
Large Language Models (LLMs) typically excel at coding tasks involving high-level programming languages, as opposed to lower-level programming languages, such as assembly. We propose a synthetic data generation method named C-ing Clearly, which leverages the corresponding C code to enhance an LLM's understanding of assembly. By fine-tuning on data generated through our method, we demonstrate improved LLM performance for binary code summarization and vulnerability detection. Our approach demonstrates consistent gains across different LLM families and model sizes.
comment: 18 pages, 5 figures
☆ Kinetic-Mamba: Mamba-Assisted Predictions of Stiff Chemical Kinetics
Accurate chemical kinetics modeling is essential for combustion simulations, as it governs the evolution of complex reaction pathways and thermochemical states. In this work, we introduce Kinetic-Mamba, a Mamba-based neural operator framework that integrates the expressive power of neural operators with the efficient temporal modeling capabilities of Mamba architectures. The framework comprises three complementary models: (i) a standalone Mamba model that predicts the time evolution of thermochemical state variables from given initial conditions; (ii) a constrained Mamba model that enforces mass conservation while learning the state dynamics; and (iii) a regime-informed architecture employing two standalone Mamba models to capture dynamics across temperature-dependent regimes. We additionally develop a latent Kinetic-Mamba variant that evolves dynamics in a reduced latent space and reconstructs the full state on the physical manifold. We evaluate the accuracy and robustness of Kinetic-Mamba using both time-decomposition and recursive-prediction strategies. We further assess the extrapolation capabilities of the model on varied out-of-distribution datasets. Computational experiments on Syngas and GRI-Mech 3.0 reaction mechanisms demonstrate that our framework achieves high fidelity in predicting complex kinetic behavior using only the initial conditions of the state variables.
☆ AnySleep: a channel-agnostic deep learning system for high-resolution sleep staging in multi-center cohorts
Sleep is essential for good health throughout our lives, yet studying its dynamics requires manual sleep staging, a labor-intensive step in sleep research and clinical care. Across centers, polysomnography (PSG) recordings are traditionally scored in 30-s epochs for pragmatic, not physiological, reasons and can vary considerably in electrode count, montage, and subject characteristics. These constraints present challenges in conducting harmonized multi-center sleep studies and discovering novel, robust biomarkers on shorter timescales. Here, we present AnySleep, a deep neural network model that uses any electroencephalography (EEG) or electrooculography (EOG) data to score sleep at adjustable temporal resolutions. We trained and validated the model on over 19,000 overnight recordings from 21 datasets collected across multiple clinics, spanning nearly 200,000 hours of EEG and EOG data, to promote robust generalization across sites. The model attains state-of-the-art performance and surpasses or equals established baselines at 30-s epochs. Performance improves as more channels are provided, yet remains strong when EOG is absent or when only EOG or single EEG derivations (frontal, central, or occipital) are available. On sub-30-s timescales, the model captures short wake intrusions consistent with arousals and improves prediction of physiological characteristics (age, sex) and pathophysiological conditions (sleep apnea), relative to standard 30-s scoring. We make the model publicly available to facilitate large-scale studies with heterogeneous electrode setups and to accelerate the discovery of novel biomarkers in sleep.
comment: 18 pages, 6 figures, 2 tables
☆ Bridging Artificial Intelligence and Data Assimilation: The Data-driven Ensemble Forecasting System ClimaX-LETKF
While machine learning-based weather prediction (MLWP) has achieved significant advancements, research on assimilating real observations or ensemble forecasts within MLWP models remains limited. We introduce ClimaX-LETKF, the first purely data-driven ML-based ensemble weather forecasting system. It operates stably over multiple years, independently of numerical weather prediction (NWP) models, by assimilating the NCEP ADP Global Upper Air and Surface Weather Observations. The system demonstrates greater stability and accuracy with relaxation to prior perturbation (RTPP) than with relaxation to prior spread (RTPS), while NWP models tend to be more stable with RTPS. RTPP replaces an analysis perturbation with a weighted blend of analysis and background perturbations, whereas RTPS simply rescales the analysis perturbation. Our experiments reveal that MLWP models are less capable of restoring the atmospheric field to its attractor than NWP models. This work provides valuable insights for enhancing MLWP ensemble forecasting systems and represents a substantial step toward their practical applications.
comment: 14 pages and 5 figures for the main text and 13 pages and 7 figures as supplementary materials
☆ Effect of Document Packing on the Latent Multi-Hop Reasoning Capabilities of Large Language Models
The standard practice for training large language models involves packing multiple documents together to optimize computational efficiency. However, the impact of this process on the models' capabilities remains largely unexplored. To address this gap, we investigate how different document-packing strategies influence the latent multi-hop reasoning abilities of LLMs. Our findings indicate that packing can improve model performance compared to training on individual documents, at the expense of more compute. To further understand the underlying mechanisms, we conduct an ablation study, identifying key factors that explain the advantages of packing. Ultimately, our research deepens the understanding of LLM training dynamics and provides practical insights for optimizing model development.
☆ Hybrid Ensemble Method for Detecting Cyber-Attacks in Water Distribution Systems Using the BATADAL Dataset
The cybersecurity of Industrial Control Systems that manage critical infrastructure such as Water Distribution Systems has become increasingly important as digital connectivity expands. BATADAL benchmark data is a good source of testing intrusion detection techniques, but it presents several important problems, such as imbalance in the number of classes, multivariate time dependence, and stealthy attacks. We consider a hybrid ensemble learning model that will enhance the detection ability of cyber-attacks in WDS by using the complementary capabilities of machine learning and deep learning models. Three base learners, namely, Random Forest , eXtreme Gradient Boosting , and Long Short-Term Memory network, have been strictly compared and seven ensemble types using simple averaged and stacked learning with a logistic regression meta-learner. Random Forest analysis identified top predictors turned into temporal and statistical features, and Synthetic Minority Oversampling Technique (SMOTE) was used to overcome the class imbalance issue. The analyics indicates that the single Long Short-Term Memory network model is of poor performance (F1 = 0.000, AUC = 0.4460), but tree-based models, especially eXtreme Gradient Boosting, perform well (F1 = 0.7470, AUC=0.9684). The hybrid stacked ensemble of Random Forest , eXtreme Gradient Boosting , and Long Short-Term Memory network scored the highest, with the attack class of 0.7205 with an F1-score and a AUC of 0.9826 indicating that the heterogeneous stacking between model precision and generalization can work. The proposed framework establishes a robust and scalable solution for cyber-attack detection in time-dependent industrial systems, integrating temporal learning and ensemble diversity to support the secure operation of critical infrastructure.
comment: 18 pages, & figures
☆ Dual-Axis RCCL: Representation-Complete Convergent Learning for Organic Chemical Space
Machine learning is profoundly reshaping molecular and materials modeling; however, given the vast scale of chemical space (10^30-10^60), it remains an open scientific question whether models can achieve convergent learning across this space. We introduce a Dual-Axis Representation-Complete Convergent Learning (RCCL) strategy, enabled by a molecular representation that integrates graph convolutional network (GCN) encoding of local valence environments, grounded in modern valence bond theory, together with no-bridge graph (NBG) encoding of ring/cage topologies, providing a quantitative measure of chemical-space coverage. This framework formalizes representation completeness, establishing a principled basis for constructing datasets that support convergent learning for large models. Guided by this RCCL framework, we develop the FD25 dataset, systematically covering 13,302 local valence units and 165,726 ring/cage topologies, achieving near-complete combinatorial coverage of organic molecules with H/C/N/O/F elements. Graph neural networks trained on FD25 exhibit representation-complete convergent learning and strong out-of-distribution generalization, with an overall prediction error of approximately 1.0 kcal/mol MAE across external benchmarks. Our results establish a quantitative link between molecular representation, structural completeness, and model generalization, providing a foundation for interpretable, transferable, and data-efficient molecular intelligence.
comment: 33 pages, 10 figures
☆ Pattern Recognition of Aluminium Arbitrage in Global Trade Data
As the global economy transitions toward decarbonization, the aluminium sector has become a focal point for strategic resource management. While policies such as the Carbon Border Adjustment Mechanism (CBAM) aim to reduce emissions, they have inadvertently widened the price arbitrage between primary metal, scrap, and semi-finished goods, creating new incentives for market optimization. This study presents a unified, unsupervised machine learning framework to detect and classify emerging trade anomalies within UN Comtrade data (2020 to 2024). Moving beyond traditional rule-based monitoring, we apply a four-layer analytical pipeline utilizing Forensic Statistics, Isolation Forests, Network Science, and Deep Autoencoders. Contrary to the hypothesis that Sustainability Arbitrage would be the primary driver, empirical results reveal a contradictory and more severe phenomenon of Hardware Masking. Illicit actors exploit bi-directional tariff incentives by misclassifying scrap as high-count heterogeneous goods to justify extreme unit-price outliers of >$160/kg, a 1,900% markup indicative of Trade-Based Money Laundering (TBML) rather than commercial arbitrage. Topologically, risk is not concentrated in major exporters but in high-centrality Shadow Hubs that function as pivotal nodes for illicit rerouting. These actors execute a strategy of Void-Shoring, systematically suppressing destination data to Unspecified Code to fracture mirror statistics and sever forensic trails. Validated by SHAP (Shapley Additive Explanations), the results confirm that price deviation is the dominant predictor of anomalies, necessitating a paradigm shift in customs enforcement from physical volume checks to dynamic, algorithmic valuation auditing.
☆ From STLS to Projection-based Dictionary Selection in Sparse Regression for System Identification
In this work, we revisit dictionary-based sparse regression, in particular, Sequential Threshold Least Squares (STLS), and propose a score-guided library selection to provide practical guidance for data-driven modeling, with emphasis on SINDy-type algorithms. STLS is an algorithm to solve the $\ell_0$ sparse least-squares problem, which relies on splitting to efficiently solve the least-squares portion while handling the sparse term via proximal methods. It produces coefficient vectors whose components depend on both the projected reconstruction errors, here referred to as the scores, and the mutual coherence of dictionary terms. The first contribution of this work is a theoretical analysis of the score and dictionary-selection strategy. This could be understood in both the original and weak SINDy regime. Second, numerical experiments on ordinary and partial differential equations highlight the effectiveness of score-based screening, improving both accuracy and interpretability in dynamical system identification. These results suggest that integrating score-guided methods to refine the dictionary more accurately may help SINDy users in some cases to enhance their robustness for data-driven discovery of governing equations.
comment: 34 pages, 11 figures
☆ GRAFT: Grid-Aware Load Forecasting with Multi-Source Textual Alignment and Fusion
Electric load is simultaneously affected across multiple time scales by exogenous factors such as weather and calendar rhythms, sudden events, and policies. Therefore, this paper proposes GRAFT (GRid-Aware Forecasting with Text), which modifies and improves STanHOP to better support grid-aware forecasting and multi-source textual interventions. Specifically, GRAFT strictly aligns daily-aggregated news, social media, and policy texts with half-hour load, and realizes text-guided fusion to specific time positions via cross-attention during both training and rolling forecasting. In addition, GRAFT provides a plug-and-play external-memory interface to accommodate different information sources in real-world deployment. We construct and release a unified aligned benchmark covering 2019--2021 for five Australian states (half-hour load, daily-aligned weather/calendar variables, and three categories of external texts), and conduct systematic, reproducible evaluations at three scales -- hourly, daily, and monthly -- under a unified protocol for comparison across regions, external sources, and time scales. Experimental results show that GRAFT significantly outperforms strong baselines and reaches or surpasses the state of the art across multiple regions and forecasting horizons. Moreover, the model is robust in event-driven scenarios and enables temporal localization and source-level interpretation of text-to-load effects through attention read-out. We release the benchmark, preprocessing scripts, and forecasting results to facilitate standardized empirical evaluation and reproducibility in power grid load forecasting.
☆ SuperWing: a comprehensive transonic wing dataset for data-driven aerodynamic design
Machine-learning surrogate models have shown promise in accelerating aerodynamic design, yet progress toward generalizable predictors for three-dimensional wings has been limited by the scarcity and restricted diversity of existing datasets. Here, we present SuperWing, a comprehensive open dataset of transonic swept-wing aerodynamics comprising 4,239 parameterized wing geometries and 28,856 Reynolds-averaged Navier-Stokes flow field solutions. The wing shapes in the dataset are generated using a simplified yet expressive geometry parameterization that incorporates spanwise variations in airfoil shape, twist, and dihedral, allowing for an enhanced diversity without relying on perturbations of a baseline wing. All shapes are simulated under a broad range of Mach numbers and angles of attack covering the typical flight envelope. To demonstrate the dataset's utility, we benchmark two state-of-the-art Transformers that accurately predict surface flow and achieve a 2.5 drag-count error on held-out samples. Models pretrained on SuperWing further exhibit strong zero-shot generalization to complex benchmark wings such as DLR-F6 and NASA CRM, underscoring the dataset's diversity and potential for practical usage.
☆ RePo: Language Models with Context Re-Positioning
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_φ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.
☆ Black-Box Auditing of Quantum Model: Lifted Differential Privacy with Quantum Canaries
Quantum machine learning (QML) promises significant computational advantages, yet models trained on sensitive data risk memorizing individual records, creating serious privacy vulnerabilities. While Quantum Differential Privacy (QDP) mechanisms provide theoretical worst-case guarantees, they critically lack empirical verification tools for deployed models. We introduce the first black-box privacy auditing framework for QML based on Lifted Quantum Differential Privacy, leveraging quantum canaries (strategically offset-encoded quantum states) to detect memorization and precisely quantify privacy leakage during training. Our framework establishes a rigorous mathematical connection between canary offset and trace distance bounds, deriving empirical lower bounds on privacy budget consumption that bridge the critical gap between theoretical guarantees and practical privacy verification. Comprehensive evaluations across both simulated and physical quantum hardware demonstrate our framework's effectiveness in measuring actual privacy loss in QML models, enabling robust privacy verification in QML systems.
☆ Causal Structure Learning for Dynamical Systems with Theoretical Score Analysis AAAI 2026
Real world systems evolve in continuous-time according to their underlying causal relationships, yet their dynamics are often unknown. Existing approaches to learning such dynamics typically either discretize time -- leading to poor performance on irregularly sampled data -- or ignore the underlying causality. We propose CaDyT, a novel method for causal discovery on dynamical systems addressing both these challenges. In contrast to state-of-the-art causal discovery methods that model the problem using discrete-time Dynamic Bayesian networks, our formulation is grounded in Difference-based causal models, which allow milder assumptions for modeling the continuous nature of the system. CaDyT leverages exact Gaussian Process inference for modeling the continuous-time dynamics which is more aligned with the underlying dynamical process. We propose a practical instantiation that identifies the causal structure via a greedy search guided by the Algorithmic Markov Condition and Minimum Description Length principle. Our experiments show that CaDyT outperforms state-of-the-art methods on both regularly and irregularly-sampled data, discovering causal networks closer to the true underlying dynamics.
comment: Accepted as Oral at AAAI 2026 Conference
☆ Towards Transferable Defense Against Malicious Image Edits
Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
comment: 14 pages, 5 figures
☆ Implicit Bias and Invariance: How Hopfield Networks Efficiently Learn Graph Orbits
Many learning problems involve symmetries, and while invariance can be built into neural architectures, it can also emerge implicitly when training on group-structured data. We study this phenomenon in classical Hopfield networks and show they can infer the full isomorphism class of a graph from a small random sample. Our results reveal that: (i) graph isomorphism classes can be represented within a three-dimensional invariant subspace, (ii) using gradient descent to minimize energy flow (MEF) has an implicit bias toward norm-efficient solutions, which underpins a polynomial sample complexity bound for learning isomorphism classes, and (iii) across multiple learning rules, parameters converge toward the invariant subspace as sample sizes grow. Together, these findings highlight a unifying mechanism for generalization in Hopfield networks: a bias toward norm efficiency in learning drives the emergence of approximate invariance under group-structured data.
☆ Dual Attention Guided Defense Against Malicious Edits
Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
comment: 11 pages, 7 figures
☆ Semantic Mismatch and Perceptual Degradation: A New Perspective on Image Editing Immunity
Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
comment: 11 pages, 4 figures
☆ Continual Learning at the Edge: An Agnostic IIoT Architecture
The exponential growth of Internet-connected devices has presented challenges to traditional centralized computing systems due to latency and bandwidth limitations. Edge computing has evolved to address these difficulties by bringing computations closer to the data source. Additionally, traditional machine learning algorithms are not suitable for edge-computing systems, where data usually arrives in a dynamic and continual way. However, incremental learning offers a good solution for these settings. We introduce a new approach that applies the incremental learning philosophy within an edge-computing scenario for the industrial sector with a specific purpose: real time quality control in a manufacturing system. Applying continual learning we reduce the impact of catastrophic forgetting and provide an efficient and effective solution.
☆ Improving the Accuracy of Amortized Model Comparison with Self-Consistency
Amortized Bayesian inference (ABI) offers fast, scalable approximations to posterior densities by training neural surrogates on data simulated from the statistical model. However, ABI methods are highly sensitive to model misspecification: when observed data fall outside the training distribution (generative scope of the statistical models), neural surrogates can behave unpredictably. This makes it a challenge in a model comparison setting, where multiple statistical models are considered, of which at least some are misspecified. Recent work on self-consistency (SC) provides a promising remedy to this issue, accessible even for empirical data (without ground-truth labels). In this work, we investigate how SC can improve amortized model comparison conceptualized in four different ways. Across two synthetic and two real-world case studies, we find that approaches for model comparison that estimate marginal likelihoods through approximate parameter posteriors consistently outperform methods that directly approximate model evidence or posterior model probabilities. SC training improves robustness when the likelihood is available, even under severe model misspecification. The benefits of SC for methods without access of analytic likelihoods are more limited and inconsistent. Our results suggest practical guidance for reliable amortized Bayesian model comparison: prefer parameter posterior-based methods and augment them with SC training on empirical datasets to mitigate extrapolation bias under model misspecification.
comment: 17 pages, 9 figures
☆ TUN: Detecting Significant Points in Persistence Diagrams with Deep Learning
Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.
☆ Explainable Preference Learning: a Decision Tree-based Surrogate Model for Preferential Bayesian Optimization
Current Preferential Bayesian Optimization methods rely on Gaussian Processes (GPs) as surrogate models. These models are hard to interpret, struggle with handling categorical data, and are computationally complex, limiting their real-world usability. In this paper, we introduce an inherently interpretable decision tree-based surrogate model capable of handling both categorical and continuous data, and scalable to large datasets. Extensive numerical experiments on eight increasingly spiky optimization functions show that our model outperforms GP-based alternatives on spiky functions and has only marginally lower performance for non-spiky functions. Moreover, we apply our model to the real-world Sushi dataset and show its ability to learn an individual's sushi preferences. Finally, we show some initial work on using historical preference data to speed up the optimization process for new unseen users.
☆ FLAME: Flow Enhanced Legendre Memory Models for General Time Series Forecasting
In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
☆ Gödel's Poetry
Formal, automated theorem proving has long been viewed as a challenge to artificial intelligence. We introduce here a new approach to computer theorem proving, one that employs specialized language models for Lean4 proof generation combined with recursive decomposition of difficult theorems into simpler entailing propositions. These models are coordinated through a multi-agent architecture that orchestrates autoformalization (if required), proof generation, decomposition of difficult theorems into simpler entailing propositions, and recursive proof (and/or decomposition) of these propositions. Without decomposition, we achieve a 90.4% pass rate on miniF2F. With decomposition, this is significantly improved. A key technical contribution lies in our extension of the Kimina Lean Server with abstract syntax tree (AST) parsing capabilities to facilitate automated, recursive proof decomposition. The system is made available on PyPI as goedels-poetry (at https://pypi.org/project/goedels-poetry ), and the open-source implementation KellyJDavis/goedels-poetry (at https://github.com/KellyJDavis/goedels-poetry ) facilitates both adaptation to alternative language models and extension with custom functionality.
comment: 24 pages, 1 figure
☆ Beyond MMD: Evaluating Graph Generative Models with Geometric Deep Learning
Graph generation is a crucial task in many fields, including network science and bioinformatics, as it enables the creation of synthetic graphs that mimic the properties of real-world networks for various applications. Graph Generative Models (GGMs) have emerged as a promising solution to this problem, leveraging deep learning techniques to learn the underlying distribution of real-world graphs and generate new samples that closely resemble them. Examples include approaches based on Variational Auto-Encoders, Recurrent Neural Networks, and more recently, diffusion-based models. However, the main limitation often lies in the evaluation process, which typically relies on Maximum Mean Discrepancy (MMD) as a metric to assess the distribution of graph properties in the generated ensemble. This paper introduces a novel methodology for evaluating GGMs that overcomes the limitations of MMD, which we call RGM (Representation-aware Graph-generation Model evaluation). As a practical demonstration of our methodology, we present a comprehensive evaluation of two state-of-the-art Graph Generative Models: Graph Recurrent Attention Networks (GRAN) and Efficient and Degree-guided graph GEnerative model (EDGE). We investigate their performance in generating realistic graphs and compare them using a Geometric Deep Learning model trained on a custom dataset of synthetic and real-world graphs, specifically designed for graph classification tasks. Our findings reveal that while both models can generate graphs with certain topological properties, they exhibit significant limitations in preserving the structural characteristics that distinguish different graph domains. We also highlight the inadequacy of Maximum Mean Discrepancy as an evaluation metric for GGMs and suggest alternative approaches for future research.
comment: 16 pages, 4 figures
☆ Physically consistent model learning for reaction-diffusion systems
This paper addresses the problem of learning reaction-diffusion (RD) systems from data while ensuring physical consistency and well-posedness of the learned models. Building on a regularization-based framework for structured model learning, we focus on learning parameterized reaction terms and investigate how to incorporate key physical properties, such as mass conservation and quasipositivity, directly into the learning process. Our main contributions are twofold: First, we propose techniques to systematically modify a given class of parameterized reaction terms such that the resulting terms inherently satisfy mass conservation and quasipositivity, ensuring that the learned RD systems preserve non-negativity and adhere to physical principles. These modifications also guarantee well-posedness of the resulting PDEs under additional regularity and growth conditions. Second, we extend existing theoretical results on regularization-based model learning to RD systems using these physically consistent reaction terms. Specifically, we prove that solutions to the learning problem converge to a unique, regularization-minimizing solution of a limit system even when conservation laws and quasipositivity are enforced. In addition, we provide approximation results for quasipositive functions, essential for constructing physically consistent parameterizations. These results advance the development of interpretable and reliable data-driven models for RD systems that align with fundamental physical laws.
☆ Ladder Up, Memory Down: Low-Cost Fine-Tuning With Side Nets
Fine-tuning large language models (LLMs) is often limited by the memory available on commodity GPUs. Parameter-efficient fine-tuning (PEFT) methods such as QLoRA reduce the number of trainable parameters, yet still incur high memory usage induced by the backward pass in the full model. We revisit Ladder Side Tuning (LST), a rarely explored PEFT technique that adds a lightweight side network, and show that it matches QLoRA's compute scaling slope while cutting peak memory by 50\%. Across different downstream benchmarks spanning natural language understanding, mathematical and LLM-critic tasks, LST has competitive performance with QLoRA's accuracy on average while being much more memory-efficient. This efficiency enables fine-tuning of 7B-parameter models on a single 12 GB consumer GPU with 2k-token contexts, requiring no gradient checkpointing\textemdash conditions under which QLoRA exhausts memory. Beyond memory efficiency, we also establish scaling laws showing that LST scales similarly to QLoRA. We exploit Ladder's architectural flexibility by introducing xLadder, a depth-extended variant that increases effective depth via cross-connections and shortens chain-of-thought (CoT) at fixed parameter count. Ladder is strong when memory is the bottleneck; xLadder builds on this by enabling deeper reasoning without additional memory overhead.
☆ Understanding the Gain from Data Filtering in Multimodal Contrastive Learning
The success of modern multimodal representation learning relies on internet-scale datasets. Due to the low quality of a large fraction of raw web data, data curation has become a critical step in the training pipeline. Filtering using a trained model (i.e., teacher-based filtering) has emerged as a successful solution, leveraging a pre-trained model to compute quality scores. To explain the empirical success of teacher-based filtering, we characterize the performance of filtered contrastive learning under the standard bimodal data generation model. Denoting $η\in(0,1]$ as the fraction of data with correctly matched modalities among $n$ paired samples, we utilize a linear contrastive learning setup to show a provable benefit of data filtering: $(i)$ the error without filtering is upper and lower bounded by $\frac{1}{η\sqrt{n}}$, and $(ii)$ the error with teacher-based filtering is upper bounded by $\frac{1}{\sqrt{ηn}}$ in the large $η$ regime, and by $\frac{1}{\sqrt{n}}$ in the small $η$ regime.
comment: 40 pages, 8 figures, 1 table. This work is accepted to the Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025
☆ Weighted Conformal Prediction Provides Adaptive and Valid Mask-Conditional Coverage for General Missing Data Mechanisms
Conformal prediction (CP) offers a principled framework for uncertainty quantification, but it fails to guarantee coverage when faced with missing covariates. In addressing the heterogeneity induced by various missing patterns, Mask-Conditional Valid (MCV) Coverage has emerged as a more desirable property than Marginal Coverage. In this work, we adapt split CP to handle missing values by proposing a preimpute-mask-then-correct framework that can offer valid coverage. We show that our method provides guaranteed Marginal Coverage and Mask-Conditional Validity for general missing data mechanisms. A key component of our approach is a reweighted conformal prediction procedure that corrects the prediction sets after distributional imputation (multiple imputation) of the calibration dataset, making our method compatible with standard imputation pipelines. We derive two algorithms, and we show that they are approximately marginally valid and MCV. We evaluate them on synthetic and real-world datasets. It reduces significantly the width of prediction intervals w.r.t standard MCV methods, while maintaining the target guarantees.
☆ Estimating problem difficulty without ground truth using Large Language Model comparisons
Recent advances in the finetuning of large language models (LLMs) have significantly improved their performance on established benchmarks, emphasizing the need for increasingly difficult, synthetic data. A key step in this data generation pipeline is a method for estimating problem difficulty. Current approaches, such as human calibration or performance-based scoring, fail to generalize to out-of-distribution problems, i.e. problems currently unsolvable by humans and LLMs, because they are not scalable, time-consuming, and ground truth dependent. Therefore, we propose a new method for estimating problem difficulty, LLM compare, that addresses these limitations. An LLM performs pairwise difficulty comparisons, and then Bradley-Terry scores are computed based on the outcomes. To validate our method, we first propose a conceptual framework that positions existing approaches on three orthogonal planes--construction, scale and dependence--identifying which quadrants a measure needs to occupy to score out-of-distribution problems. LLM compare naturally occupies all desirable quadrants as the first measure that is continuous and dynamic, model-agnostic and independent of ground truth information. As a second validation, we show that LLM compare demonstrates strong alignment with human annotations: Pearson $r \geq 0.80$ for $n=1876$. Thirdly, we show that LLM compare is robust to hallucinations, with less than $6\%$ degradation in Pearson correlation for $10\%$ noise injection. Our work represents a significant step towards replacing time-consuming human annotations and synthetic data generation, and will be an important driver for curriculum design, model evaluation, and AI-assisted research ideation.
comment: 19 pages, 10 figures
☆ Understanding and Improving Hyperbolic Deep Reinforcement Learning
The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .
☆ Random-Bridges as Stochastic Transports for Generative Models
This paper motivates the use of random-bridges -- stochastic processes conditioned to take target distributions at fixed timepoints -- in the realm of generative modelling. Herein, random-bridges can act as stochastic transports between two probability distributions when appropriately initialized, and can display either Markovian or non-Markovian, and either continuous, discontinuous or hybrid patterns depending on the driving process. We show how one can start from general probabilistic statements and then branch out into specific representations for learning and simulation algorithms in terms of information processing. Our empirical results, built on Gaussian random bridges, produce high-quality samples in significantly fewer steps compared to traditional approaches, while achieving competitive Frechet inception distance scores. Our analysis provides evidence that the proposed framework is computationally cheap and suitable for high-speed generation tasks.
☆ Optimizing the Adversarial Perturbation with a Momentum-based Adaptive Matrix
Generating adversarial examples (AEs) can be formulated as an optimization problem. Among various optimization-based attacks, the gradient-based PGD and the momentum-based MI-FGSM have garnered considerable interest. However, all these attacks use the sign function to scale their perturbations, which raises several theoretical concerns from the point of view of optimization. In this paper, we first reveal that PGD is actually a specific reformulation of the projected gradient method using only the current gradient to determine its step-size. Further, we show that when we utilize a conventional adaptive matrix with the accumulated gradients to scale the perturbation, PGD becomes AdaGrad. Motivated by this analysis, we present a novel momentum-based attack AdaMI, in which the perturbation is optimized with an interesting momentum-based adaptive matrix. AdaMI is proved to attain optimal convergence for convex problems, indicating that it addresses the non-convergence issue of MI-FGSM, thereby ensuring stability of the optimization process. The experiments demonstrate that the proposed momentum-based adaptive matrix can serve as a general and effective technique to boost adversarial transferability over the state-of-the-art methods across different networks while maintaining better stability and imperceptibility.
comment: IEEE Transactions on Dependable and Secure Computing
☆ On Improving Deep Active Learning with Formal Verification
Deep Active Learning (DAL) aims to reduce labeling costs in neural-network training by prioritizing the most informative unlabeled samples for annotation. Beyond selecting which samples to label, several DAL approaches further enhance data efficiency by augmenting the training set with synthetic inputs that do not require additional manual labeling. In this work, we investigate how augmenting the training data with adversarial inputs that violate robustness constraints can improve DAL performance. We show that adversarial examples generated via formal verification contribute substantially more than those produced by standard, gradient-based attacks. We apply this extension to multiple modern DAL techniques, as well as to a new technique that we propose, and show that it yields significant improvements in model generalization across standard benchmarks.
☆ PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.
comment: 34 pages, 14 figures, 4 tables. Under review
☆ Joint Multimodal Contrastive Learning for Robust Spoken Term Detection and Keyword Spotting
Acoustic Word Embeddings (AWEs) improve the efficiency of speech retrieval tasks such as Spoken Term Detection (STD) and Keyword Spotting (KWS). However, existing approaches suffer from limitations, including unimodal supervision, disjoint optimization of audio-audio and audio-text alignment, and the need for task-specific models. To address these shortcomings, we propose a joint multimodal contrastive learning framework that unifies both acoustic and cross-modal supervision in a shared embedding space. Our approach simultaneously optimizes: (i) audio-text contrastive learning, inspired by the CLAP loss, to align audio and text representations and (ii) audio-audio contrastive learning, via Deep Word Discrimination (DWD) loss, to enhance intra-class compactness and inter-class separation. The proposed method outperforms existing AWE baselines on word discrimination task while flexibly supporting both STD and KWS. To our knowledge, this is the first comprehensive approach of its kind.
☆ A First-Order Logic-Based Alternative to Reward Models in RLHF
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. However, the quality and stability of the trained reward model largely determine the final alignment performance. Existing approaches such as Proximal Policy Optimization (PPO) rely heavily on reward models to guide LLMs toward human-aligned behaviors. In this work, we propose a logic-similarity-based reward mechanism as an alternative to conventional reward modeling. Instead of relying on heuristic reward estimation, our method leverages formal logical consistency to steer model alignment with human preferences. Since real-world questions can be interpreted from multiple perspectives, to ensure that logic-based reinforcement learning does not cause model collapse, we introduce S-GRPO, a supervised variant of the GRPO framework. S-GRPO incorporates an additional supervised component and jointly optimizes the generation term, KL-divergence regularization, and label-based objective during training. Experimental results demonstrate that S-GRPO consistently outperforms standard supervised fine-tuning (SFT) in both performance and robustness. Furthermore, it extends existing preference-learning frameworks such as GRPO and DPO, offering a more flexible and task-adaptive approach to alignment training. Our code is available at https://github.com/ChunjinJiang/sgrpo.
☆ Cornserve: Efficiently Serving Any-to-Any Multimodal Models
We present Cornserve, an efficient online serving system for an emerging class of multimodal models called Any-to-Any models. Any-to-Any models accept combinations of text and multimodal data (e.g., image, video, audio) as input and also generate combinations of text and multimodal data as output, introducing request type, computation path, and computation scaling heterogeneity in model serving. Cornserve allows model developers to describe the computation graph of generic Any-to-Any models, which consists of heterogeneous components such as multimodal encoders, autoregressive models like Large Language Models (LLMs), and multimodal generators like Diffusion Transformers (DiTs). Given this, Cornserve's planner automatically finds an optimized deployment plan for the model, including whether and how to disaggregate the model into smaller components based on model and workload characteristics. Cornserve's distributed runtime then executes the model per the plan, efficiently handling Any-to-Any model heterogeneity during online serving. Evaluations show that Cornserve can efficiently serve diverse Any-to-Any models and workloads, delivering up to 3.81$\times$ throughput improvement and up to 5.79$\times$ tail latency reduction over existing solutions.
☆ Arithmetic-Intensity-Aware Quantization
As modern neural networks become increasingly memory-bound, inference throughput is limited by DRAM bandwidth rather than compute. We present Arithmetic-Intensity-Aware Quantization (AIQ), a mixed precision quantization framework that chooses per-layer bit-widths to maximize arithmetic intensity (AI) while minimizing accuracy loss. AIQ is a post-training quantization method that uses search algorithms over per-layer quantization schemes to minimize a weighted loss over AI and accuracy. On ResNet-20/CIFAR-10, AIQ increases AI by ~50% over an FP32 baseline while keeping test accuracy within ~1 percentage point, and outperforming global uniform quantization schemes. On a memory-bound MobileNetV2 architecture, AIQ configurations give a 1.66x higher throughput than the FP32 baseline while keeping test accuracy within 1 percentage point. We also find that AIQ naturally quantizes larger layers more aggressively.
☆ Derivative-Informed Fourier Neural Operator: Universal Approximation and Applications to PDE-Constrained Optimization
We present approximation theories and efficient training methods for derivative-informed Fourier neural operators (DIFNOs) with applications to PDE-constrained optimization. A DIFNO is an FNO trained by minimizing its prediction error jointly on output and Fréchet derivative samples of a high-fidelity operator (e.g., a parametric PDE solution operator). As a result, a DIFNO can closely emulate not only the high-fidelity operator's response but also its sensitivities. To motivate the use of DIFNOs instead of conventional FNOs as surrogate models, we show that accurate surrogate-driven PDE-constrained optimization requires accurate surrogate Fréchet derivatives. Then, for continuously differentiable operators, we establish (i) simultaneous universal approximation of FNOs and their Fréchet derivatives on compact sets, and (ii) universal approximation of FNOs in weighted Sobolev spaces with input measures that have unbounded supports. Our theoretical results certify the capability of FNOs for accurate derivative-informed operator learning and accurate solution of PDE-constrained optimization. Furthermore, we develop efficient training schemes using dimension reduction and multi-resolution techniques that significantly reduce memory and computational costs for Fréchet derivative learning. Numerical examples on nonlinear diffusion--reaction, Helmholtz, and Navier--Stokes equations demonstrate that DIFNOs are superior in sample complexity for operator learning and solving infinite-dimensional PDE-constrained inverse problems, achieving high accuracy at low training sample sizes.
☆ Scalable Frameworks for Real-World Audio-Visual Speech Recognition
The practical deployment of Audio-Visual Speech Recognition (AVSR) systems is fundamentally challenged by significant performance degradation in real-world environments, characterized by unpredictable acoustic noise and visual interference. This dissertation posits that a systematic, hierarchical approach is essential to overcome these challenges, achieving the robust scalability at the representation, architecture, and system levels. At the representation level, we investigate methods for building a unified model that learns audio-visual features inherently robust to diverse real-world corruptions, thereby enabling generalization to new environments without specialized modules. To address architectural scalability, we explore how to efficiently expand model capacity while ensuring the adaptive and reliable use of multimodal inputs, developing a framework that intelligently allocates computational resources based on the input characteristics. Finally, at the system level, we present methods to expand the system's functionality through modular integration with large-scale foundation models, leveraging their powerful cognitive and generative capabilities to maximize final recognition accuracy. By systematically providing solutions at each of these three levels, this dissertation aims to build a next-generation, robust, and scalable AVSR system with high reliability in real-world applications.
comment: PhD Dissertation
☆ SonicMoE: Accelerating MoE with IO and Tile-aware Optimizations
Mixture of Experts (MoE) models have emerged as the de facto architecture for scaling up language models without significantly increasing the computational cost. Recent MoE models demonstrate a clear trend towards high expert granularity (smaller expert intermediate dimension) and higher sparsity (constant number of activated experts with higher number of total experts), which improve model quality per FLOP. However, fine-grained MoEs suffer from increased activation memory footprint and reduced hardware efficiency due to higher IO costs, while sparser MoEs suffer from wasted computations due to padding in Grouped GEMM kernels. In response, we propose a memory-efficient algorithm to compute the forward and backward passes of MoEs with minimal activation caching for the backward pass. We also design GPU kernels that overlap memory IO with computation benefiting all MoE architectures. Finally, we propose a novel "token rounding" method that minimizes the wasted compute due to padding in Grouped GEMM kernels. As a result, our method SonicMoE reduces activation memory by 45% and achieves a 1.86x compute throughput improvement on Hopper GPUs compared to ScatterMoE's BF16 MoE kernel for a fine-grained 7B MoE. Concretely, SonicMoE on 64 H100s achieves a training throughput of 213 billion tokens per day comparable to ScatterMoE's 225 billion tokens per day on 96 H100s for a 7B MoE model training with FSDP-2 using the lm-engine codebase. Under high MoE sparsity settings, our tile-aware token rounding algorithm yields an additional 1.16x speedup on kernel execution time compared to vanilla top-$K$ routing while maintaining similar downstream performance. We open-source all our kernels to enable faster MoE model training.
☆ FusAD: Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis ICDE2026
Time series analysis plays a vital role in fields such as finance, healthcare, industry, and meteorology, underpinning key tasks including classification, forecasting, and anomaly detection. Although deep learning models have achieved remarkable progress in these areas in recent years, constructing an efficient, multi-task compatible, and generalizable unified framework for time series analysis remains a significant challenge. Existing approaches are often tailored to single tasks or specific data types, making it difficult to simultaneously handle multi-task modeling and effectively integrate information across diverse time series types. Moreover, real-world data are often affected by noise, complex frequency components, and multi-scale dynamic patterns, which further complicate robust feature extraction and analysis. To ameliorate these challenges, we propose FusAD, a unified analysis framework designed for diverse time series tasks. FusAD features an adaptive time-frequency fusion mechanism, integrating both Fourier and Wavelet transforms to efficiently capture global-local and multi-scale dynamic features. With an adaptive denoising mechanism, FusAD automatically senses and filters various types of noise, highlighting crucial sequence variations and enabling robust feature extraction in complex environments. In addition, the framework integrates a general information fusion and decoding structure, combined with masked pre-training, to promote efficient learning and transfer of multi-granularity representations. Extensive experiments demonstrate that FusAD consistently outperforms state-of-the-art models on mainstream time series benchmarks for classification, forecasting, and anomaly detection tasks, while maintaining high efficiency and scalability. Code is available at https://github.com/zhangda1018/FusAD.
comment: Paper has been accepted by ICDE2026
☆ Efficient-DLM: From Autoregressive to Diffusion Language Models, and Beyond in Speed
Diffusion language models (dLMs) have emerged as a promising paradigm that enables parallel, non-autoregressive generation, but their learning efficiency lags behind that of autoregressive (AR) language models when trained from scratch. To this end, we study AR-to-dLM conversion to transform pretrained AR models into efficient dLMs that excel in speed while preserving AR models' task accuracy. We achieve this by identifying limitations in the attention patterns and objectives of existing AR-to-dLM methods and then proposing principles and methodologies for more effective AR-to-dLM conversion. Specifically, we first systematically compare different attention patterns and find that maintaining pretrained AR weight distributions is critical for effective AR-to-dLM conversion. As such, we introduce a continuous pretraining scheme with a block-wise attention pattern, which remains causal across blocks while enabling bidirectional modeling within each block. We find that this approach can better preserve pretrained AR models' weight distributions than fully bidirectional modeling, in addition to its known benefit of enabling KV caching, and leads to a win-win in accuracy and efficiency. Second, to mitigate the training-test gap in mask token distributions (uniform vs. highly left-to-right), we propose a position-dependent token masking strategy that assigns higher masking probabilities to later tokens during training to better mimic test-time behavior. Leveraging this framework, we conduct extensive studies of dLMs' attention patterns, training dynamics, and other design choices, providing actionable insights into scalable AR-to-dLM conversion. These studies lead to the Efficient-DLM family, which outperforms state-of-the-art AR models and dLMs, e.g., our Efficient-DLM 8B achieves +5.4%/+2.7% higher accuracy with 4.5x/2.7x higher throughput compared to Dream 7B and Qwen3 4B, respectively.
☆ A Deep Dive into Function Inlining and its Security Implications for ML-based Binary Analysis
A function inlining optimization is a widely used transformation in modern compilers, which replaces a call site with the callee's body in need. While this transformation improves performance, it significantly impacts static features such as machine instructions and control flow graphs, which are crucial to binary analysis. Yet, despite its broad impact, the security impact of function inlining remains underexplored to date. In this paper, we present the first comprehensive study of function inlining through the lens of machine learning-based binary analysis. To this end, we dissect the inlining decision pipeline within the LLVM's cost model and explore the combinations of the compiler options that aggressively promote the function inlining ratio beyond standard optimization levels, which we term extreme inlining. We focus on five ML-assisted binary analysis tasks for security, using 20 unique models to systematically evaluate their robustness under extreme inlining scenarios. Our extensive experiments reveal several significant findings: i) function inlining, though a benign transformation in intent, can (in)directly affect ML model behaviors, being potentially exploited by evading discriminative or generative ML models; ii) ML models relying on static features can be highly sensitive to inlining; iii) subtle compiler settings can be leveraged to deliberately craft evasive binary variants; and iv) inlining ratios vary substantially across applications and build configurations, undermining assumptions of consistency in training and evaluation of ML models.
☆ ChartAgent: A Chart Understanding Framework with Tool Integrated Reasoning
With their high information density and intuitive readability, charts have become the de facto medium for data analysis and communication across disciplines. Recent multimodal large language models (MLLMs) have made notable progress in automated chart understanding, yet they remain heavily dependent on explicit textual annotations and the performance degrades markedly when key numerals are absent. To address this limitation, we introduce ChartAgent, a chart understanding framework grounded in Tool-Integrated Reasoning (TIR). Inspired by human cognition, ChartAgent decomposes complex chart analysis into a sequence of observable, replayable steps. Supporting this architecture is an extensible, modular tool library comprising more than a dozen core tools, such as keyelement detection, instance segmentation, and optical character recognition (OCR), which the agent dynamically orchestrates to achieve systematic visual parsing across diverse chart types. Leveraging TIRs transparency and verifiability, ChartAgent moves beyond the black box paradigm by standardizing and consolidating intermediate outputs into a structured Evidence Package, providing traceable and reproducible support for final conclusions. Experiments show that ChartAgent substantially improves robustness under sparse annotation settings, offering a practical path toward trustworthy and extensible systems for chart understanding.
☆ Multivariate Time Series Forecasting with Hybrid Euclidean-SPD Manifold Graph Neural Networks
Multivariate Time Series (MTS) forecasting plays a vital role in various real-world applications, such as traffic management and predictive maintenance. Existing approaches typically model MTS data in either Euclidean or Riemannian space, limiting their ability to capture the diverse geometric structures and complex spatio-temporal dependencies inherent in real-world data. To overcome this limitation, we propose the Hybrid Symmetric Positive-Definite Manifold Graph Neural Network (HSMGNN), a novel graph neural network-based model that captures data geometry within a hybrid Euclidean-Riemannian framework. To the best of our knowledge, this is the first work to leverage hybrid geometric representations for MTS forecasting, enabling expressive and comprehensive modeling of geometric properties. Specifically, we introduce a Submanifold-Cross-Segment (SCS) embedding to project input MTS into both Euclidean and Riemannian spaces, thereby capturing spatio-temporal variations across distinct geometric domains. To alleviate the high computational cost of Riemannian distance, we further design an Adaptive-Distance-Bank (ADB) layer with a trainable memory mechanism. Finally, a Fusion Graph Convolutional Network (FGCN) is devised to integrate features from the dual spaces via a learnable fusion operator for accurate prediction. Experiments on three benchmark datasets demonstrate that HSMGNN achieves up to a 13.8 percent improvement over state-of-the-art baselines in forecasting accuracy.
☆ EXAONE Path 2.5: Pathology Foundation Model with Multi-Omics Alignment
Cancer progression arises from interactions across multiple biological layers, especially beyond morphological and across molecular layers that remain invisible to image-only models. To capture this broader biological landscape, we present EXAONE Path 2.5, a pathology foundation model that jointly models histologic, genomic, epigenetic and transcriptomic modalities, producing an integrated patient representation that reflects tumor biology more comprehensively. Our approach incorporates three key components: (1) multimodal SigLIP loss enabling all-pairwise contrastive learning across heterogeneous modalities, (2) a fragment-aware rotary positional encoding (F-RoPE) module that preserves spatial structure and tissue-fragment topology in WSI, and (3) domain-specialized internal foundation models for both WSI and RNA-seq to provide biologically grounded embeddings for robust multimodal alignment. We evaluate EXAONE Path 2.5 against six leading pathology foundation models across two complementary benchmarks: an internal real-world clinical dataset and the Patho-Bench benchmark covering 80 tasks. Our framework demonstrates high data and parameter efficiency, achieving on-par performance with state-of-the-art foundation models on Patho-Bench while exhibiting the highest adaptability in the internal clinical setting. These results highlight the value of biologically informed multimodal design and underscore the potential of integrated genotype-to-phenotype modeling for next-generation precision oncology.
☆ Accelerating MHC-II Epitope Discovery via Multi-Scale Prediction in Antigen Presentation
Antigenic epitope presented by major histocompatibility complex II (MHC-II) proteins plays an essential role in immunotherapy. However, compared to the more widely studied MHC-I in computational immunotherapy, the study of MHC-II antigenic epitope poses significantly more challenges due to its complex binding specificity and ambiguous motif patterns. Consequently, existing datasets for MHC-II interactions are smaller and less standardized than those available for MHC-I. To address these challenges, we present a well-curated dataset derived from the Immune Epitope Database (IEDB) and other public sources. It not only extends and standardizes existing peptide-MHC-II datasets, but also introduces a novel antigen-MHC-II dataset with richer biological context. Leveraging this dataset, we formulate three major machine learning (ML) tasks of peptide binding, peptide presentation, and antigen presentation, which progressively capture the broader biological processes within the MHC-II antigen presentation pathway. We further employ a multi-scale evaluation framework to benchmark existing models, along with a comprehensive analysis over various modeling designs to this problem with a modular framework. Overall, this work serves as a valuable resource for advancing computational immunotherapy, providing a foundation for future research in ML guided epitope discovery and predictive modeling of immune responses.
☆ Physics-Informed Machine Learning for Two-Phase Moving-Interface and Stefan Problems
The Stefan problem is a classical free-boundary problem that models phase-change processes and poses computational challenges due to its moving interface and nonlinear temperature-phase coupling. In this work, we develop a physics-informed neural network framework for solving two-phase Stefan problems. The proposed method explicitly tracks the interface motion and enforces the discontinuity in the temperature gradient across the interface while maintaining global consistency of the temperature field. Our approach employs two neural networks: one representing the moving interface and the other for the temperature field. The interface network allows rapid categorization of thermal diffusivity in the spatial domain, which is a crucial step for selecting training points for the temperature network. The temperature network's input is augmented with a modified zero-level set function to accurately capture the jump in its normal derivative across the interface. Numerical experiments on two-phase dynamical Stefan problems demonstrate the superior accuracy and effectiveness of our proposed method compared with the ones obtained by other neural network methodology in literature. The results indicate that the proposed framework offers a robust and flexible alternative to traditional numerical methods for solving phase-change problems governed by moving boundaries. In addition, the proposed method can capture an unstable interface evolution associated with the Mullins-Sekerka instability.
☆ On the Hardness of Conditional Independence Testing In Practice NeurIPS 2025
Tests of conditional independence (CI) underpin a number of important problems in machine learning and statistics, from causal discovery to evaluation of predictor fairness and out-of-distribution robustness. Shah and Peters (2020) showed that, contrary to the unconditional case, no universally finite-sample valid test can ever achieve nontrivial power. While informative, this result (based on "hiding" dependence) does not seem to explain the frequent practical failures observed with popular CI tests. We investigate the Kernel-based Conditional Independence (KCI) test - of which we show the Generalized Covariance Measure underlying many recent tests is nearly a special case - and identify the major factors underlying its practical behavior. We highlight the key role of errors in the conditional mean embedding estimate for the Type-I error, while pointing out the importance of selecting an appropriate conditioning kernel (not recognized in previous work) as being necessary for good test power but also tending to inflate Type-I error.
comment: Published at NeurIPS 2025: https://openreview.net/forum?id=Tn1M71PDfF
☆ Maximum Mean Discrepancy with Unequal Sample Sizes via Generalized U-Statistics
Existing two-sample testing techniques, particularly those based on choosing a kernel for the Maximum Mean Discrepancy (MMD), often assume equal sample sizes from the two distributions. Applying these methods in practice can require discarding valuable data, unnecessarily reducing test power. We address this long-standing limitation by extending the theory of generalized U-statistics and applying it to the usual MMD estimator, resulting in new characterization of the asymptotic distributions of the MMD estimator with unequal sample sizes (particularly outside the proportional regimes required by previous partial results). This generalization also provides a new criterion for optimizing the power of an MMD test with unequal sample sizes. Our approach preserves all available data, enhancing test accuracy and applicability in realistic settings. Along the way, we give much cleaner characterizations of the variance of MMD estimators, revealing something that might be surprising to those in the area: while zero MMD implies a degenerate estimator, it is sometimes possible to have a degenerate estimator with nonzero MMD as well; we give a construction and a proof that it does not happen in common situations.
☆ A Single Architecture for Representing Invariance Under Any Space Group
Incorporating known symmetries in data into machine learning models has consistently improved predictive accuracy, robustness, and generalization. However, achieving exact invariance to specific symmetries typically requires designing bespoke architectures for each group of symmetries, limiting scalability and preventing knowledge transfer across related symmetries. In the case of the space groups, symmetries critical to modeling crystalline solids in materials science and condensed matter physics, this challenge is particularly salient as there are 230 such groups in three dimensions. In this work we present a new approach to such crystallographic symmetries by developing a single machine learning architecture that is capable of adapting its weights automatically to enforce invariance to any input space group. Our approach is based on constructing symmetry-adapted Fourier bases through an explicit characterization of constraints that group operations impose on Fourier coefficients. Encoding these constraints into a neural network layer enables weight sharing across different space groups, allowing the model to leverage structural similarities between groups and overcome data sparsity when limited measurements are available for specific groups. We demonstrate the effectiveness of this approach in achieving competitive performance on material property prediction tasks and performing zero-shot learning to generalize to unseen groups.
comment: 24 pages, 7 figures
♻ ☆ Love First, Know Later: Persona-Based Romantic Compatibility Through LLM Text World Engines NeurIPS 2025
We propose Love First, Know Later: a paradigm shift in computational matching that simulates interactions first, then assesses compatibility. Instead of comparing static profiles, our framework leverages LLMs as text world engines that operate in dual capacity-as persona-driven agents following behavioral policies and as the environment modeling interaction dynamics. We formalize compatibility assessment as a reward-modeling problem: given observed matching outcomes, we learn to extract signals from simulations that predict human preferences. Our key insight is that relationships hinge on responses to critical moments-we translate this observation from relationship psychology into mathematical hypotheses, enabling effective simulation. Theoretically, we prove that as LLM policies better approximate human behavior, the induced matching converges to optimal stable matching. Empirically, we validate on speed dating data for initial chemistry and divorce prediction for long-term stability. This paradigm enables interactive, personalized matching systems where users iteratively refine their agents, unlocking future possibilities for transparent and interactive compatibility assessment.
comment: NeurIPS 2025 Workshop: First Workshop on LLM Persona Modeling (Oral)
♻ ☆ Misspecification-robust amortised simulation-based inference using variational methods
Recent advances in neural density estimation have enabled powerful simulation-based inference (SBI) methods that can flexibly approximate Bayesian inference for intractable stochastic models. Although these methods have demonstrated reliable posterior estimation when the simulator accurately represents the underlying data generative process (DGP), recent work has shown that they perform poorly in the presence of model misspecification. This poses a significant issue for their use in real-world problems, due to simulators always misrepresenting the true DGP to a certain degree. In this paper, we introduce robust variational neural posterior estimation (RVNP), a method which addresses the problem of misspecification in amortised SBI by bridging the simulation-to-reality gap using variational inference and error modelling. We test RVNP on multiple benchmark tasks, including using real data from astronomy, and show that it can recover robust posterior inference in a data-driven manner without adopting hyperparameters or priors governing the misspecification influence.
comment: Latex edits, fixed typos
♻ ☆ TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
The sharp rise in medical tomography examinations has created a demand for automated systems that can reliably extract informative features for downstream tasks such as tumor characterization. Although 3D volumes contain richer information than individual slices, effective 3D classification remains difficult: volumetric data encode complex spatial dependencies, and the scarcity of large-scale 3D datasets has constrained progress toward 3D foundation models. As a result, many recent approaches rely on 2D vision foundation models trained on natural images, repurposing them as feature extractors for medical scans with surprisingly strong performance. Despite their practical success, current methods that apply 2D foundation models to 3D scans via slice-based decomposition remain fundamentally limited. Standard slicing along axial, sagittal, and coronal planes often fails to capture the true spatial extent of a structure when its orientation does not align with these canonical views. More critically, most approaches aggregate slice features independently, ignoring the underlying 3D geometry and losing spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. Instead of restricting the model to axial, sagittal, or coronal planes, our method samples both canonical and non-canonical cross-sections generated from uniformly distributed points on a sphere enclosing the volume. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.
comment: Preprint submitted to Medical Image Analysis (MedIA)
♻ ☆ GraphBench: Next-generation graph learning benchmarking
Machine learning on graphs has recently achieved impressive progress in various domains, including molecular property prediction and chip design. However, benchmarking practices remain fragmented, often relying on narrow, task-specific datasets and inconsistent evaluation protocols, which hampers reproducibility and broader progress. To address this, we introduce GraphBench, a comprehensive benchmarking suite that spans diverse domains and prediction tasks, including node-level, edge-level, graph-level, and generative settings. GraphBench provides standardized evaluation protocols -- with consistent dataset splits and performance metrics that account for out-of-distribution generalization -- as well as a unified hyperparameter tuning framework. Additionally, we benchmark GraphBench using message-passing neural networks and graph transformer models, providing principled baselines and establishing a reference performance. See www.graphbench.io for further details.
♻ ☆ VIBE: Can a VLM Read the Room? EMNLP
Understanding human social behavior such as recognizing emotions and the social dynamics causing them is an important and challenging problem. While LLMs have made remarkable advances, they are limited to the textual domain and cannot account for the major role that non-verbal cues play in understanding social situations. Vision Language Models (VLMs) can potentially account for this gap, however their ability to make correct inferences over such social cues has received little attention. In this paper, we explore the capabilities of VLMs at social reasoning. We identify a previously overlooked limitation in VLMs: the Visual Social-Pragmatic Inference gap. To target this gap, we propose a new task for VLMs: Visual Social-Pragmatic Inference. We construct a high quality dataset to test the abilities of a VLM for this task and benchmark the performance of several VLMs on it.
comment: Findings of EMNLP, 2025
♻ ☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
♻ ☆ Understanding Sampler Stochasticity in Training Diffusion Models for RLHF
Reinforcement Learning from Human Feedback (RLHF) is increasingly used to fine-tune diffusion models, but a key challenge arises from the mismatch between stochastic samplers used during training and deterministic samplers used during inference. In practice, models are fine-tuned using stochastic SDE samplers to encourage exploration, while inference typically relies on deterministic ODE samplers for efficiency and stability. This discrepancy induces a reward gap, raising concerns about whether high-quality outputs can be expected during inference. In this paper, we theoretically characterize this reward gap and provide non-vacuous bounds for general diffusion models, along with sharper convergence rates for Variance Exploding (VE) and Variance Preserving (VP) Gaussian models. Methodologically, we adopt the generalized denoising diffusion implicit models (gDDIM) framework to support arbitrarily high levels of stochasticity, preserving data marginals throughout. Empirically, our findings through large-scale experiments on text-to-image models using denoising diffusion policy optimization (DDPO) and mixed group relative policy optimization (MixGRPO) validate that reward gaps consistently narrow over training, and ODE sampling quality improves when models are updated using higher-stochasticity SDE training.
♻ ☆ Property-Isometric Variational Autoencoders for Sequence Modeling and Design
Biological sequence design (DNA, RNA, or peptides) with desired functional properties has applications in discovering novel nanomaterials, biosensors, antimicrobial drugs, and beyond. One common challenge is the ability to optimize complex high-dimensional properties such as target emission spectra of DNA-mediated fluorescent nanoparticles, photo and chemical stability, and antimicrobial activity of peptides across target microbes. Existing models rely on simple binary labels (e.g., binding/non-binding) rather than high-dimensional complex properties. To address this gap, we propose a geometry-preserving variational autoencoder framework, called PrIVAE, which learns latent sequence embeddings that respect the geometry of their property space. Specifically, we model the property space as a high-dimensional manifold that can be locally approximated by a nearest neighbor graph, given an appropriately defined distance measure. We employ the property graph to guide the sequence latent representations using (1) graph neural network encoder layers and (2) an isometric regularizer. PrIVAE learns a property-organized latent space that enables rational design of new sequences with desired properties by employing the trained decoder. We evaluate the utility of our framework for two generative tasks: (1) design of DNA sequences that template fluorescent metal nanoclusters and (2) design of antimicrobial peptides. The trained models retain high reconstruction accuracy while organizing the latent space according to properties. Beyond in silico experiments, we also employ sampled sequences for wet lab design of DNA nanoclusters, resulting in up to 16.1-fold enrichment of rare-property nanoclusters compared to their abundance in training data, demonstrating the practical utility of our framework.
comment: 23 pages, 6 figures, preprint
♻ ☆ Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Causal discovery aims to extract qualitative causal knowledge in the form of causal graphs from data. Because causal ground truth is rarely known in the real world, simulated data plays a vital role in evaluating the performance of the various causal discovery algorithms proposed in the literature. But recent work highlighted certain artifacts of commonly used data generation techniques for a standard class of structural causal models (SCM) that may be nonphysical, including var- and R2-sortability, where the variables' variance and coefficients of determination (R2) after regressing on all other variables, respectively, increase along the causal order. Some causal methods exploit such artifacts, leading to unrealistic expectations for their performance on real-world data. Some modifications have been proposed to remove these artifacts; notably, the internally-standardized structural causal model (iSCM) avoids varsortability and largely alleviates R2-sortability on sparse causal graphs, but exhibits a reversed R2-sortability pattern for denser graphs not featured in their work. We analyze which sortability patterns we expect to see in real data, and propose a method for drawing coefficients that we argue more effectively samples the space of SCMs. Finally, we propose a novel extension of our SCM generation method to the time series setting.
comment: 4th Conference on Causal Learning and Reasoning. Code published in python package "UUMCdata" (https://pypi.org/project/UUMCdata/)
♻ ☆ Generalization performance of narrow one-hidden layer networks in the teacher-student setting
Understanding the generalization abilities of neural networks for simple input-output distributions is crucial to account for their learning performance on real datasets. The classical teacher-student setting, where a network is trained from data obtained thanks to a label-generating teacher model, serves as a perfect theoretical test bed. In this context, a complete theoretical account of the performance of fully connected one-hidden layer networks in the presence of generic activation functions is lacking. In this work, we develop such a general theory for narrow networks, i.e. with a large number of hidden units, yet much smaller than the input dimension. Using methods from statistical physics, we provide closed-form expressions for the typical performance of both finite temperature (Bayesian) and empirical risk minimization estimators, in terms of a small number of summary statistics. In doing so, we highlight the presence of a transition where hidden neurons specialize when the number of samples is sufficiently large and proportional to the number of parameters of the network. Our theory accurately predicts the generalization error of neural networks trained on regression or classification tasks with either noisy full-batch gradient descent (Langevin dynamics) or full-batch gradient descent.
comment: 35 pages, 6 figures
♻ ☆ Multi-Model Ensemble and Reservoir Computing for River Discharge Prediction in Ungauged Basins
Despite the necessity for accurate flood prediction, many regions lack sufficient river discharge observations. Although numerous models for daily river discharge prediction exist, achieving high accuracy, interpretability, and efficiency under data-scarce conditions remains a major challenge. We address this with a novel method, HYdrological Prediction with multi-model Ensemble and Reservoir computing (HYPER). Our approach applies Bayesian model averaging (BMA) to 47 "uncalibrated" catchment-based conceptual hydrological models. A reservoir computing (RC) model, a type of machine learning model, is then trained via linear regression to correct BMA output errors, a non-iterative process ensuring computational efficiency. For ungauged basins, we infer the required BMA and RC weights by mapping them to catchment attributes from gauged basins, creating a generalizable framework. Evaluated on 87 Japanese basins, in a data-rich scenario, HYPER (median Nash Sutcliffe Efficiency, NSE, of 0.59) performed comparably to a benchmark LSTM (NSE 0.64) but required only 3 % of its computational time. In a data-scarce scenario (where only ~20 % of basins are gauged), HYPER maintained robust performance (NSE 0.51) by leveraging the physical structure of the ensemble. In contrast, the LSTM's performance degraded substantially (NSE -0.61) due to data insufficiency. These results demonstrate that calibrating individual conceptual hydrological models is unnecessary when using a sufficiently large ensemble that is assembled and combined with machine-learning-based bias correction. HYPER provides a robust, efficient, and generalizable solution for discharge prediction, particularly in ungauged basins. By eliminating basin-specific calibration, HYPER offers a scalable, interpretable framework for accurate hydrological prediction in diverse data-scarce regions.
♻ ☆ Scalable Formal Verification via Autoencoder Latent Space Abstraction
Finite Abstraction methods provide a powerful formal framework for proving that systems satisfy their specifications. However, these techniques face scalability challenges for high-dimensional systems, as they rely on state-space discretization which grows exponentially with dimension. Learning-based approaches to dimensionality reduction, utilizing neural networks and autoencoders, have shown great potential to alleviate this problem. However, ensuring the correctness of the resulting verification results remains an open question. In this work, we provide a formal approach to reduce the dimensionality of systems via convex autoencoders and learn the dynamics in the latent space through a kernel-based method. We then construct a finite abstraction from the learned model in the latent space and guarantee that the abstraction contains the true behaviors of the original system. We show that the verification results in the latent space can be mapped back to the original system. Finally, we demonstrate the effectiveness of our approach on multiple systems, including a 26D system controlled by a neural network, showing significant scalability improvements without loss of rigor.
comment: 14 pages, 7 figures, under review
♻ ☆ Tensor Product Attention Is All You Need NeurIPS 2025
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at decoding stage enables processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. Project Page: https://github.com/tensorgi/TPA.
comment: Published in NeurIPS 2025 (Spotlight); Project Page: https://github.com/tensorgi/TPA
♻ ☆ Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity Preservation
Current artificial intelligence systems, despite remarkable capabilities in text generation and pattern recognition, exhibit a fundamental architectural limitation: they resolve ambiguity prematurely. This premature semantic collapse -- the tendency to collapse multiple valid interpretations into a single output -- stems from classical identity assumptions embedded in standard neural architectures. We propose Non-Resolution Reasoning (NRR), a computational framework that treats ambiguity retention as a valid reasoning mode rather than a defect to be eliminated. NRR introduces three core principles: (1) Non-Identity (A $\ne$ A) -- the same symbol refers to different entities across contexts; (2) Approximate Identity (A $\approx$ A) -- entities share partial structural overlap without being identical; and (3) Non-Resolution -- conflicting interpretations can coexist without forced convergence. We formalize these principles through three architectural components: Multi-Vector Embeddings for context-dependent representation, Non-Collapsing Attention for parallel interpretation retention, and Contextual Identity Tracking (CIT) for maintaining A $\ne$ A across inference. We demonstrate NRR's advantages through case studies in paradox handling, creative generation, and context-dependent reasoning. Crucially, we provide a minimal empirical validation on a synthetic context-shift task where an NRR-lite model achieves 90.9% out-of-distribution accuracy compared to 9.1% for standard architectures, demonstrating that ambiguity preservation enables structural generalization. NRR challenges the assumption that meaning must collapse to be useful, offering a foundation for AI systems capable of sophisticated ambiguity handling and creative reasoning. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 7 pages, 2 figures, ORCID: 0009-0006-4715-9176
♻ ☆ SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome
Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78\% in the gene-expression prediction task and avg. 26.93\% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.
♻ ☆ Group-robust Machine Unlearning
Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group (e.g., ethnicity, gender), we empirically show that performance for this group degrades, leading to fairness issues. To perform unlearning while preserving fairness, this work addresses the overlooked problem of non-uniformly distributed forget sets, which we refer to as group-robust machine unlearning. We formalize the problem and present a simple and effective exact unlearning strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Reliable Statistical Guarantees for Conformal Predictors with Small Datasets
Surrogate models (including deep neural networks and other machine learning algorithms in supervised learning) are capable of approximating arbitrarily complex, high-dimensional input-output problems in science and engineering, but require a thorough data-agnostic uncertainty quantification analysis before these can be deployed for any safety-critical application. The standard approach for data-agnostic uncertainty quantification is to use conformal prediction (CP), a well-established framework to build uncertainty models with proven statistical guarantees that do not assume any shape for the error distribution of the surrogate model. However, since the classic statistical guarantee offered by CP is given in terms of bounds for the marginal coverage, for small calibration set sizes (which are frequent in realistic surrogate modelling that aims to quantify error at different regions), the potentially strong dispersion of the coverage distribution around its average negatively impacts the relevance of the uncertainty model's statistical guarantee, often obtaining coverages below the expected value, resulting in a less applicable framework. After providing a gentle presentation of uncertainty quantification for surrogate models for machine learning practitioners, in this paper we bridge the gap by proposing a new statistical guarantee that offers probabilistic information for the coverage of a single conformal predictor. We show that the proposed framework converges to the standard solution offered by CP for large calibration set sizes and, unlike the classic guarantee, still offers relevant information about the coverage of a conformal predictor for small data sizes. We validate the methodology in a suite of examples, and implement an open access software solution that can be used alongside common conformal prediction libraries to obtain uncertainty models that fulfil the new guarantee.
♻ ☆ Online Multi-modal Root Cause Identification in Microservice Systems
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems. Traditional data-driven RCA methods are typically limited to offline applications due to high computational demands, and existing online RCA methods handle only single-modal data, overlooking complex interactions in multi-modal systems. In this paper, we introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization. OCEAN employs a dilated convolutional neural network to capture long-term temporal dependencies and graph neural networks to learn causal relationships among system entities and key performance indicators. We further design a multi-factor attention mechanism to analyze and reassess the relationships among different metrics and log indicators/attributes for enhanced online causal graph learning. Additionally, a contrastive mutual information maximization-based graph fusion module is developed to effectively model the relationships across various modalities. Extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
comment: Accepted by BigData 2025
♻ ☆ Supporting Migration Policies with Forecasts: Illegal Border Crossings in Europe through a Mixed Approach
This paper presents a mixed-methodology to forecast illegal border crossings in Europe across five key migratory routes, with a one-year time horizon. The methodology integrates machine learning techniques with qualitative insights from migration experts. This approach aims at improving the predictive capacity of data-driven models through the inclusion of a human-assessed covariate, an innovation that addresses challenges posed by sudden shifts in migration patterns and limitations in traditional datasets. The proposed methodology responds directly to the forecasting needs outlined in the EU Pact on Migration and Asylum, supporting the Asylum and Migration Management Regulation (AMMR). It is designed to provide policy-relevant forecasts that inform strategic decisions, early warning systems, and solidarity mechanisms among EU Member States. By joining data-driven modeling with expert judgment, this work aligns with existing academic recommendations and introduces a novel operational tool tailored for EU migration governance. The methodology is tested and validated with known data to demonstrate its applicability and reliability in migration-related policy context.
comment: 17 pages, 6 figures, 2 tables + supplementary material with 20 pages, 21 figures, 2 tables. Removed track changes from supplementary material. Corrected last figure number
♻ ☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ Layer-wise Weight Selection for Power-Efficient Neural Network Acceleration
Systolic array accelerators execute CNNs with energy dominated by the switching activity of multiply accumulate (MAC) units. Although prior work exploits weight dependent MAC power for compression, existing methods often use global activation models, coarse energy proxies, or layer-agnostic policies, which limits their effectiveness on real hardware. We propose an energy aware, layer-wise compression framework that explicitly leverages MAC and layer level energy characteristics. First, we build a layer-aware MAC energy model that combines per-layer activation statistics with an MSB-Hamming distance grouping of 22-bit partial sum transitions, and integrate it with a tile-level systolic mapping to estimate convolution-layer energy. On top of this model, we introduce an energy accuracy co-optimized weight selection algorithm within quantization aware training and an energy-prioritized layer-wise schedule that compresses high energy layers more aggressively under a global accuracy constraint. Experiments on different CNN models demonstrate up to 58.6\% energy reduction with 2-3\% accuracy drop, outperforming a state-of-the-art power-aware baseline.
♻ ☆ MSTN: Fast and Efficient Multivariate Time Series Prediction Model
Real-world time series often exhibit strong non-stationarity, complex nonlinear dynamics, and behaviour expressed across multiple temporal scales, from rapid local fluctuations to slow-evolving long-range trends. However, many contemporary architectures impose rigid, fixed-scale structural priors -- such as patch-based tokenization, predefined receptive fields, or frozen backbone encoders -- which can over-regularize temporal dynamics and limit adaptability to abrupt high-magnitude events. To handle this, we introduce the \emph{Multi-scale Temporal Network} (MSTN), a hybrid neural architecture grounded in an \emph{Early Temporal Aggregation} principle. MSTN integrates three complementary components: (i) a multi-scale convolutional encoder that captures fine-grained local structure; (ii) a sequence modeling module that learns long-range dependencies through either recurrent or attention-based mechanisms; and (iii) a self-gated fusion stage incorporating squeeze-excitation and multi-head attention to dynamically modulate cross-scale representations. This design enables MSTN to flexibly model temporal patterns spanning milliseconds to extended horizons, while avoiding the computational burden typically associated with long-context models. Across extensive benchmarks covering forecasting, imputation, classification, and cross-dataset generalization, MSTN consistently delivers state-of-the-art performance, outperforming recent leading approaches including TIME-LLM, HiMTM, SOFTS, LLM4TS, TimesNet, and PatchTST, and establishing new best results on 24 out of 32 datasets. Despite its strong performance, MSTN remains lightweight and supports fast inference, making it well suited for deployment on edge devices and resource-constrained environments.
comment: 30 pages, 1 figure, 5 tables
♻ ☆ Learnability Window in Gated Recurrent Neural Networks
We develop a theoretical framework that explains how gating mechanisms determine the learnability window $\mathcal{H}_N$ of recurrent neural networks, defined as the largest temporal horizon over which gradient information remains statistically recoverable. While classical analyses emphasize numerical stability of Jacobian products, we show that stability alone is insufficient: learnability is governed instead by the \emph{effective learning rates} $μ_{t,\ell}$, per-lag and per-neuron quantities obtained from first-order expansions of gate-induced Jacobian products in Backpropagation Through Time. These effective learning rates act as multiplicative filters that control both the magnitude and anisotropy of gradient transport. Under heavy-tailed ($α$-stable) gradient noise, we prove that the minimal sample size required to detect a dependency at lag~$\ell$ satisfies $N(\ell)\propto f(\ell)^{-α}$, where $f(\ell)=\|μ_{t,\ell}\|_1$ is the effective learning rate envelope. This leads to an explicit formula for $\mathcal{H}_N$ and closed-form scaling laws for logarithmic, polynomial, and exponential decay of $f(\ell)$. The theory shows that the time-scale spectra induced by the effective learning rates are the dominant determinants of learnability. Broader or more heterogeneous spectra slow the decay of $f(\ell)$, enlarging the learnability window, while heavy-tailed noise compresses $\mathcal{H}_N$ by limiting statistical concentration. By integrating gate-induced time-scale geometry with gradient noise and sample complexity, the framework identifies the effective learning rates as the primary objects that determine whether, when, and over what horizons recurrent networks can learn long-range temporal dependencies.
comment: a few small fixes
♻ ☆ Unsupervised Learning of Density Estimates with Topological Optimization
Kernel density estimation is a key component of a wide variety of algorithms in machine learning, Bayesian inference, stochastic dynamics and signal processing. However, the unsupervised density estimation technique requires tuning a crucial hyperparameter: the kernel bandwidth. The choice of bandwidth is critical as it controls the bias-variance trade-off by over- or under-smoothing the topological features. Topological data analysis provides methods to mathematically quantify topological characteristics, such as connected components, loops, voids et cetera, even in high dimensions where visualization of density estimates is impossible. In this paper, we propose an unsupervised learning approach using a topology-based loss function for the automated and unsupervised selection of the optimal bandwidth and benchmark it against classical techniques -- demonstrating its potential across different dimensions.
♻ ☆ Tree Matching Networks for Natural Language Inference: Parameter-Efficient Semantic Understanding via Dependency Parse Trees
In creating sentence embeddings for Natural Language Inference (NLI) tasks, using transformer-based models like BERT leads to high accuracy, but require hundreds of millions of parameters. These models take in sentences as a sequence of tokens, and learn to encode the meaning of the sequence into embeddings such that those embeddings can be used reliably for NLI tasks. Essentially, every word is considered against every other word in the sequence, and the transformer model is able to determine the relationships between them, entirely from scratch. However, a model that accepts explicit linguistic structures like dependency parse trees may be able to leverage prior encoded information about these relationships, without having to learn them from scratch, thus improving learning efficiency. To investigate this, we adapt Graph Matching Networks (GMN) to operate on dependency parse trees, creating Tree Matching Networks (TMN). We compare TMN to a BERT based model on the SNLI entailment task and on the SemEval similarity task. TMN is able to achieve significantly better results with a significantly reduced memory footprint and much less training time than the BERT based model on the SNLI task, while both models struggled to preform well on the SemEval. Explicit structural representations significantly outperform sequence-based models at comparable scales, but current aggregation methods limit scalability. We propose multi-headed attention aggregation to address this limitation.
comment: 16 pages, preprint
♻ ☆ High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain focus in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.
comment: 13 pages, 10 figures, IEEE Transactions on Medical Imaging
♻ ☆ An Unsupervised Deep Explainable AI Framework for Localization of Concurrent Replay Attacks in Nuclear Reactor Signals
Next generation advanced nuclear reactors are expected to be smaller both in size and power output, relying extensively on fully digital instrumentation and control systems. These reactors will generate a large flow of information in the form of multivariate time series data, conveying simultaneously various non linear cyber physical, process, control, sensor, and operational states. Ensuring data integrity against deception attacks is becoming increasingly important for networked communication and a requirement for safe and reliable operation. Current efforts to address replay attacks, almost universally focus on watermarking or supervised anomaly detection approaches without further identifying and characterizing the root cause of the anomaly. In addition, these approaches rely mostly on synthetic data with uncorrelated Gaussian process and measurement noise and full state feedback or are limited to univariate signals, signal stationarity, linear quadratic regulators, or other linear-time invariant state-space which may fail to capture any unmodeled system dynamics. In the realm of regulated nuclear cyber-physical systems, additional work is needed on characterization of replay attacks and explainability of predictions using real data. Here, we propose an unsupervised explainable AI framework based on a combination of autoencoder and customized windowSHAP algorithm to fully characterize real-time replay attacks, i.e., detection, source identification, timing and type, of increasing complexity during a dynamic time evolving reactor process. The proposed XAI framework was benchmarked on several real world datasets from Purdue's nuclear reactor PUR-1 with up to six signals concurrently being replayed. In all cases, the XAI framework was able to detect and identify the source and number of signals being replayed and the duration of the falsification with 95 percent or better accuracy.
comment: Added references, corrected typos, grammar check, authors updated
♻ ☆ A Lipschitz spaces view of infinitely wide shallow neural networks
We revisit the mean field parametrization of shallow neural networks, using signed measures on unbounded parameter spaces and duality pairings that take into account the regularity and growth of activation functions. This setting directly leads to the use of unbalanced Kantorovich-Rubinstein norms defined by duality with Lipschitz functions, and of spaces of measures dual to those of continuous functions with controlled growth. These allow to make transparent the need for total variation and moment bounds or penalization to obtain existence of minimizers of variational formulations, under which we prove a compactness result in strong Kantorovich-Rubinstein norm, and in the absence of which we show several examples demonstrating undesirable behavior. Further, the Kantorovich-Rubinstein setting enables us to combine the advantages of a completely linear parametrization and ensuing reproducing kernel Banach space framework with optimal transport insights. We showcase this synergy with representer theorems and uniform large data limits for empirical risk minimization, and in proposed formulations for distillation and fusion applications.
comment: 41 pages, 2 figures, 1 table. V2: added numerical section and more literature review
♻ ☆ HeSRN: Representation Learning On Heterogeneous Graphs via Slot-Aware Retentive Network
Graph Transformers have recently achieved remarkable progress in graph representation learning by capturing long-range dependencies through self-attention. However, their quadratic computational complexity and inability to effectively model heterogeneous semantics severely limit their scalability and generalization on real-world heterogeneous graphs. To address these issues, we propose HeSRN, a novel Heterogeneous Slot-aware Retentive Network for efficient and expressive heterogeneous graph representation learning. HeSRN introduces a slot-aware structure encoder that explicitly disentangles node-type semantics by projecting heterogeneous features into independent slots and aligning their distributions through slot normalization and retention-based fusion, effectively mitigating the semantic entanglement caused by forced feature-space unification in previous Transformer-based models. Furthermore, we replace the self-attention mechanism with a retention-based encoder, which models structural and contextual dependencies in linear time complexity while maintaining strong expressive power. A heterogeneous retentive encoder is further employed to jointly capture both local structural signals and global heterogeneous semantics through multi-scale retention layers. Extensive experiments on four real-world heterogeneous graph datasets demonstrate that HeSRN consistently outperforms state-of-the-art heterogeneous graph neural networks and Graph Transformer baselines on node classification tasks, achieving superior accuracy with significantly lower computational complexity.
♻ ☆ Not All Data are Good Labels: On the Self-supervised Labeling for Time Series Forecasting NeurIPS'25
Time Series Forecasting (TSF) is a crucial task in various domains, yet existing TSF models rely heavily on high-quality data and insufficiently exploit all available data. This paper explores a novel self-supervised approach to re-label time series datasets by inherently constructing candidate datasets. During the optimization of a simple reconstruction network, intermediates are used as pseudo labels in a self-supervised paradigm, improving generalization for any predictor. We introduce the Self-Correction with Adaptive Mask (SCAM), which discards overfitted components and selectively replaces them with pseudo labels generated from reconstructions. Additionally, we incorporate Spectral Norm Regularization (SNR) to further suppress overfitting from a loss landscape perspective. Our experiments on eleven real-world datasets demonstrate that SCAM consistently improves the performance of various backbone models. This work offers a new perspective on constructing datasets and enhancing the generalization of TSF models through self-supervised learning. The code is available at https://github.com/SuDIS-ZJU/SCAM.
comment: Accepted by NeurIPS'25 (spotlight)
♻ ☆ KD-PINN: Knowledge-Distilled PINNs for ultra-low-latency real-time neural PDE solvers
This work introduces Knowledge-Distilled Physics-Informed Neural Networks (KD-PINN), a framework that transfers the predictive accuracy of a high-capacity teacher model to a compact student through a continuous adaptation of the Kullback-Leibler divergence. In order to confirm its generality for various dynamics and dimensionalities, the framework is evaluated on a representative set of partial differential equations (PDEs). Across the considered benchmarks, the student model achieves inference speedups ranging from x4.8 (Navier-Stokes) to x6.9 (Burgers), while preserving accuracy. Accuracy is improved by on the order of 1% when the model is properly tuned. The distillation process also revealed a regularizing effect. With an average inference latency of 5.3 ms on CPU, the distilled models enter the ultra-low-latency real-time regime defined by sub-10 ms performance. Finally, this study examines how knowledge distillation reduces inference latency in PINNs, to contribute to the development of accurate ultra-low-latency neural PDE solvers.
♻ ☆ Beyond Gaussian Initializations: Signal Preserving Weight Initialization for Odd-Sigmoid Activations
Activation functions critically influence trainability and expressivity, and recent work has therefore explored a broad range of nonlinearities. However, widely used Gaussian i.i.d. initializations are designed to preserve activation variance under wide or infinite width assumptions. In deep and relatively narrow networks with sigmoidal nonlinearities, these schemes often drive preactivations into saturation, and collapse gradients. To address this, we introduce an odd-sigmoid activations and propose an activation aware initialization tailored to any function in this class. Our method remains robust over a wide band of variance scales, preserving both forward signal variance and backpropagated gradient norms even in very deep and narrow networks. Empirically, across standard image benchmarks we find that the proposed initialization is substantially less sensitive to depth, width, and activation scale than Gaussian initializations. In physics informed neural networks (PINNs), scaled odd-sigmoid activations combined with our initialization achieve lower losses than Gaussian based setups, suggesting that diagonal-plus-noise weights provide a practical alternative when Gaussian initialization breaks down.
comment: 46 pages
♻ ☆ Difficulties with Evaluating a Deception Detector for AIs
Building reliable deception detectors for AI systems -- methods that could predict when an AI system is being strategically deceptive without necessarily requiring behavioural evidence -- would be valuable in mitigating risks from advanced AI systems. But evaluating the reliability and efficacy of a proposed deception detector requires examples that we can confidently label as either deceptive or honest. We argue that we currently lack the necessary examples and further identify several concrete obstacles in collecting them. We provide evidence from conceptual arguments, analysis of existing empirical works, and analysis of novel illustrative case studies. We also discuss the potential of several proposed empirical workarounds to these problems and argue that while they seem valuable, they also seem insufficient alone. Progress on deception detection likely requires further consideration of these problems.
♻ ☆ Investigating the Generalizability of ECG Noise Detection Across Diverse Data Sources and Noise Types
Electrocardiograms (ECGs) are vital for monitoring cardiac health, enabling the assessment of heart rate variability (HRV), detection of arrhythmias, and diagnosis of cardiovascular conditions. However, ECG signals recorded from wearable devices are frequently corrupted by noise artifacts, particularly those arising from motion and large muscle activity, which distort R-peaks and the QRS complex. These distortions hinder reliable HRV analysis and increase the risk of clinical misinterpretation. Existing studies on ECG noise detection typically evaluate performance on a single dataset, limiting insight into the generalizability of such methods across diverse sensors and recording conditions. In this work, we propose an HRV-based machine learning approach to detect noisy ECG segments and evaluate its generalizability using cross-dataset experiments on four datasets collected in both controlled and uncontrolled settings. Our method achieves over 90% average accuracy and an AUPRC exceeding 90%, even on previously unseen datasets-demonstrating robust performance across heterogeneous data sources. To support reproducibility and further research, we also release a curated and labeled ECG dataset annotated for noise artifacts.
♻ ☆ General Formulation and PCL-Analysis for Restless Bandits with Limited Observability
In this paper, we consider a general observation model for restless multi-armed bandit problems. The operation of the player is based on the past observation history that is limited (partial) and error-prone due to resource constraints or environmental or intrinsic noises. By establishing a general probabilistic model for dynamics of the observation process, we formulate the problem as a restless bandit with an infinite high-dimensional belief state space. We apply the achievable region method with partial conservation law (PCL) to the infinite-state problem and analyze its indexability and priority index (Whittle index). Finally, we propose an approximation process to transform the problem into which the AG algorithm of Niño-Mora (2001) for finite-state problems can be applied. Numerical experiments show that our algorithm has excellent performance.
♻ ☆ Light-Weight Benchmarks Reveal the Hidden Hardware Cost of Zero-Shot Tabular Foundation Models ICML
Zero-shot foundation models (FMs) promise training-free prediction on tabular data, yet their hardware footprint remains poorly characterized. We present a fully reproducible benchmark that reports test accuracy together with wall-clock latency, peak CPU RAM, and peak GPU VRAM on four public datasets: Adult-Income, Higgs-100k, Wine-Quality, and California-Housing. Two open FMs (TabPFN-1.0 and TabICL-base) are compared against tuned XGBoost, LightGBM, and Random Forest baselines on a single NVIDIA T4 GPU. The tree ensembles equal or surpass FM accuracy on three datasets while completing full-test batches in <= 0.40 s and <= 150 MB RAM, using zero VRAM. TabICL achieves a 0.8 percentage-point gain on Higgs but requires roughly 40,000 times more latency (960 s) and 9 GB VRAM. TabPFN matches tree-model accuracy on Wine and Housing but peaks at 4 GB VRAM and cannot process the full 100k-row Higgs table. These results quantify the substantial hardware-versus-accuracy trade-offs in current tabular FMs and provide an open baseline for future efficiency-oriented research.
comment: ICML NewInML
♻ ☆ Renal Cell Carcinoma subtyping: learning from multi-resolution localization
Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
♻ ☆ Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles
Self-supervised learning (SSL) has driven major advances in computational pathology by enabling the learning of rich representations from histopathology data. Yet, tissue analysis alone may fall short in capturing broader molecular complexity, as key complementary information resides in high-dimensional omics profiles such as transcriptomics, methylomics, and genomics. To address this gap, we introduce MORPHEUS, the first multimodal pre-training strategy that integrates histopathology images and multi-omics data within a shared transformer-based architecture. At its core, MORPHEUS relies on a novel masked omics modeling objective that encourages the model to learn meaningful cross-modal relationships. This yields a general-purpose pre-trained encoder that can be applied to histopathology alone or in combination with any subset of omics modalities. Beyond inference, MORPHEUS also supports flexible any-to-any omics reconstruction, enabling one or more omics profiles to be reconstructed from any modality subset that includes histopathology. Pre-trained on a large pan-cancer cohort, MORPHEUS shows substantial improvements over supervised and SSL baselines across diverse tasks and modality combinations. Together, these capabilities position it as a promising direction for the development of multimodal foundation models in oncology. Code is publicly available at https://github.com/Lucas-rbnt/MORPHEUS
♻ ☆ CiRL: Open-Source Environments for Reinforcement Learning in Circular Economy and Net Zero
The demand of finite raw materials will keep increasing as they fuel modern society. Simultaneously, solutions for stopping carbon emissions in the short term are not available, thus making the net zero target extremely challenging to achieve at scale. The circular economy (CE) paradigm is gaining attention as a solution to address climate change and the uncertainties of supplies of critical materials. Hence, in this paper, we introduce CiRL, a deep reinforcement learning (DRL) library of environments focused on the circularity control of both solid and fluid materials. The integration of DRL into the design of material circularity is possible thanks to the formalism of thermodynamical material networks, which is underpinned by compartmental dynamical thermodynamics. Along with the focus on circularity, this library has three more features: the new CE-oriented environments are in the state-space form, which is typically used in dynamical systems analysis and control design; it is based on a state-of-the-art Python library of DRL algorithms, namely, Stable-Baselines3; and it is developed in Google Colaboratory to be accessible to researchers from different disciplines and backgrounds as is often the case for circular economy researchers and engineers. CiRL is intended to be a tool to generate AI-driven actions for optimizing the circularity of supply-recovery chains and to be combined with human-driven decisions derived from material flow analysis (MFA) studies. CiRL is publicly available.
comment: To be submitted
♻ ☆ Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as social robot navigation, autonomous navigation, and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2025. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
comment: 45 pages
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ On uniqueness in structured model learning
This paper addresses the problem of uniqueness in learning physical laws for systems of partial differential equations (PDEs). Contrary to most existing approaches, it considers a framework of structured model learning, where existing, approximately correct physical models are augmented with components that are learned from data. The main result of the paper is a uniqueness result that covers a large class of PDEs and a suitable class of neural networks used for approximating the unknown model components. The uniqueness result shows that, in the idealized setting of full, noiseless measurements, a unique identification of the unknown model components is possible as regularization-minimizing solution of the PDE system. Furthermore, the paper provides a convergence result showing that model components learned on the basis of incomplete, noisy measurements approximate the regularization-minimizing solution of the PDE system in the limit. These results are possible under specific properties of the approximating neural networks and due to a dedicated choice of regularization. With this, a practical contribution of this analytic paper is to provide a class of model learning frameworks different to standard settings where uniqueness can be expected in the limit of full measurements.
♻ ☆ Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
♻ ☆ Pace: Physics-Aware Attentive Temporal Convolutional Network for Battery Health Estimation
Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
comment: Accepted at the ACM Symposium On Applied Computing (SAC), 2026
♻ ☆ IdealTSF: Can Non-Ideal Data Contribute to Enhancing the Performance of Time Series Forecasting Models? AAAI 2026
Deep learning has shown strong performance in time series forecasting tasks. However, issues such as missing values and anomalies in sequential data hinder its further development in prediction tasks. Previous research has primarily focused on extracting feature information from sequence data or addressing these suboptimal data as positive samples for knowledge transfer. A more effective approach would be to leverage these non-ideal negative samples to enhance event prediction. In response, this study highlights the advantages of non-ideal negative samples and proposes the IdealTSF framework, which integrates both ideal positive and negative samples for time series forecasting. IdealTSF consists of three progressive steps: pretraining, training, and optimization. It first pretrains the model by extracting knowledge from negative sample data, then transforms the sequence data into ideal positive samples during training. Additionally, a negative optimization mechanism with adversarial disturbances is applied. Extensive experiments demonstrate that negative sample data unlocks significant potential within the basic attention architecture for time series forecasting. Therefore, IdealTSF is particularly well-suited for applications with noisy samples or low-quality data.
comment: Accepted at AAAI 2026
♻ ☆ Evaluating Adversarial Attacks on Federated Learning for Temperature Forecasting
Deep learning and federated learning (FL) are becoming powerful partners for next-generation weather forecasting. Deep learning enables high-resolution spatiotemporal forecasts that can surpass traditional numerical models, while FL allows institutions in different locations to collaboratively train models without sharing raw data, addressing efficiency and security concerns. While FL has shown promise across heterogeneous regions, its distributed nature introduces new vulnerabilities. In particular, data poisoning attacks, in which compromised clients inject manipulated training data, can degrade performance or introduce systematic biases. These threats are amplified by spatial dependencies in meteorological data, allowing localized perturbations to influence broader regions through global model aggregation. In this study, we investigate how adversarial clients distort federated surface temperature forecasts trained on the Copernicus European Regional ReAnalysis (CERRA) dataset. We simulate geographically distributed clients and evaluate patch-based and global biasing attacks on regional temperature forecasts. Our results show that even a small fraction of poisoned clients can mislead predictions across large, spatially connected areas. A global temperature bias attack from a single compromised client shifts predictions by up to -1.7 K, while coordinated patch attacks more than triple the mean squared error and produce persistent regional anomalies exceeding +3.5 K. Finally, we assess trimmed mean aggregation as a defense mechanism, showing that it successfully defends against global bias attacks (2-13% degradation) but fails against patch attacks (281-603% amplification), exposing limitations of outlier-based defenses for spatially correlated data.
♻ ☆ Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models NeurIPS 2025
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
comment: 10 pages, NeurIPS 2025 Spotlight
♻ ☆ Decoding Emotional Trajectories: A Temporal-Semantic Network Approach for Latent Depression Assessment in Social Media
The early identification and intervention of latent depression are of significant societal importance for mental health governance. While current automated detection methods based on social media have shown progress, their decision-making processes often lack a clinically interpretable framework, particularly in capturing the duration and dynamic evolution of depressive symptoms. To address this, this study introduces a semantic parsing network integrated with multi-scale temporal prototype learning. The model detects depressive states by capturing temporal patterns and semantic prototypes in users' emotional expression, providing a duration-aware interpretation of underlying symptoms. Validated on a large-scale social media dataset, the model outperforms existing state-of-the-art methods. Analytical results indicate that the model can identify emotional expression patterns not systematically documented in traditional survey-based approaches, such as sustained narratives expressing admiration for an "alternative life." Further user evaluation demonstrates the model's superior interpretability compared to baseline methods. This research contributes a structurally transparent, clinically aligned framework for depression detection in social media to the information systems literature. In practice, the model can generate dynamic emotional profiles for social platform users, assisting in the targeted allocation of mental health support resources.
comment: 56 pages, 10 figures, 21 tables
♻ ☆ MIRA: Medical Time Series Foundation Model for Real-World Health Data NeurIPS 2025
A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.
comment: NeurIPS 2025 Main Conference
♻ ☆ A Knowledge Graph-based Retrieval-Augmented Generation Framework for Algorithm Selection in the Facility Layout Problem
Selecting a solution algorithm for the Facility Layout Problem (FLP), an NP-hard optimization problem with multiobjective trade-off, is a complex task that requires deep expert knowledge. The performance of a given algorithm depends on the specific characteristics of the problem, such as the number of facilities, objectives, and constraints. This creates a need for a data-driven recommendation method to guide algorithm selection in automated design systems. This paper introduces a new recommendation method to make this expertise accessible, based on a Knowledge Graph-Based Retrieval-Augmented Generation (KG-RAG) framework. In this framework, a domain-specific knowledge graph (KG) is constructed from the literature. The method then employs a multifaceted retrieval mechanism to gather relevant evidence from this KG using three distinct approaches: precise graph-based search, flexible vector-based search, and cluster-based high-level search. The retrieved evidence is utilized by a Large Language Model (LLM) to generate algorithm recommendations based on data-driven reasoning. This KG-RAG framework is tested on a use case consisting of six problems comprising of complex multi-objective and multi-constraint FLP case. The results are compared with the Gemini 1.5 Flash chatbot. The results show that KG-RAG achieves an average reasoning score of 4.7 out of 5 compared to 3.3 for the baseline chatbot.
comment: 10 pages, 5 figures
♻ ☆ I-Diff: Structural Regularization for High-Fidelity Diffusion Models
Denoising Diffusion Probabilistic Models (DDPMs) have significantly advanced generative AI, achieving impressive results in high-quality image and data generation. However, enhancing fidelity without compromising semantic content remains a key challenge in the field. Recent diffusion research in multiple disciplines has introduced objectives and architectural refinements that tighten the match between generated and real data distributions, yielding higher fidelity than earlier generative frameworks. Multi-stage architectures, physics-guided modeling, semantic conditioning, and rarity-aware generation are some of the explored works to achieve this task. However, the integration of structural information of the data distribution into DDPM has largely been unexplored. The conventional DDPM framework relies solely on the $L^2$ norm between the additive and predicted noise to generate new data distributions. We introduce I-Diff, an improved version of DDPM that incorporates a carefully designed regularizer, effectively enabling the model to encode structural information, thereby preserving the inherent fidelity of the data distribution. The proposed approach is validated through extensive experiments on DDPM, Improved DDPM and Latent Diffusion Model across multiple datasets. Empirical results demonstrate significant improvements in fidelity (Density and Precision increase 10% and 37% in CIFAR-100 dataset respectively) across other tested datasets. These results highlight the effectiveness of our method in enhancing the fidelity of the generated data. Notably, improvements across different models highlight the model-agnostic nature of our proposed method in the wider field of generative AI.
♻ ☆ Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective
Time Series Forecasting has made significant progress with the help of Patching technique, which partitions time series into multiple patches to effectively retain contextual semantic information into a representation space beneficial for modeling long-term dependencies. However, conventional patching partitions a time series into adjacent patches, which causes a fixed representation space, thus resulting in insufficiently expressful representations. In this paper, we pioneer the exploration of constructing a selective representation space to flexibly include the most informative patches for forecasting. Specifically, we propose the Selective Representation Space (SRS) module, which utilizes the learnable Selective Patching and Dynamic Reassembly techniques to adaptively select and shuffle the patches from the contextual time series, aiming at fully exploiting the information of contextual time series to enhance the forecasting performance of patch-based models. To demonstrate the effectiveness of SRS module, we propose a simple yet effective SRSNet consisting of SRS and an MLP head, which achieves state-of-the-art performance on real-world datasets from multiple domains. Furthermore, as a novel plug-and-play module, SRS can also enhance the performance of existing patch-based models. The resources are available at https://github.com/decisionintelligence/SRSNet.
♻ ☆ Curiosity-Driven Development of Action and Language in Robots Through Self-Exploration
Infants acquire language with generalization from minimal experience, whereas large language models require billions of training tokens. What underlies efficient development in humans? We investigated this problem through experiments wherein robotic agents learn to perform actions associated with imperative sentences (e.g., push red cube) via curiosity-driven self-exploration. Our approach integrates active inference with reinforcement learning, enabling intrinsically motivated developmental learning. The simulations reveal key findings corresponding to observations in developmental psychology. i) Generalization improves drastically as the scale of compositional elements increases. ii) Curiosity improves learning through self-exploration. iii) Rote pairing of sentences and actions precedes compositional generalization. iv) Simpler actions develop before complex actions depending on them. v) Exception-handling induces U-shaped developmental performance, a pattern like representational redescription in child language learning. These results suggest that curiosity-driven active inference accounts for how intrinsically motivated sensorimotor-linguistic learning supports scalable compositional generalization and exception handling in humans and artificial agents.
comment: 20 pages, 19 pages of supplementary material
♻ ☆ Learning Robust and Correct Controllers Guided by Feasibility-Aware Signal Temporal Logic via BarrierNet
Control Barrier Functions (CBFs) have emerged as a powerful tool for enforcing safety in optimization-based controllers, and their integration with Signal Temporal Logic (STL) has enabled the specification-driven synthesis of complex robotic behaviors. However, existing CBF-STL approaches typically rely on fixed hyperparameters and myopic, per-time step optimization, which can lead to overly conservative behavior, infeasibility near tight input limits, and difficulty satisfying long-horizon STL tasks. To address these limitations, we propose a feasibility-aware learning framework that embeds trainable, time-varying High Order Control Barrier Functions (HOCBFs) into a differentiable Quadratic Program (dQP). Our approach provides a systematic procedure for constructing time-varying HOCBF constraints for a broad fragment of STL and introduces a unified robustness measure that jointly captures STL satisfaction, QP feasibility, and control-bound compliance. Three neural networks-InitNet, RefNet, and an extended BarrierNet-collaborate to generate reference inputs and adapt constraint-related hyperparameters automatically over time and across initial conditions, reducing conservativeness while maximizing robustness. The resulting controller achieves STL satisfaction with strictly feasible dQPs and requires no manual tuning. Simulation results demonstrate that the proposed framework maintains high STL robustness under tight input bounds and significantly outperforms fixed-parameter and non-adaptive baselines in complex environments.
comment: 16 pages, 11 figures
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning NeurIPS 2025
Recent rehearsal-free continual learning (CL) methods guided by prompts achieve strong performance on vision tasks with non-stationary data but remain resource-intensive, hindering real-world edge deployment. We introduce resource-efficient prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free continual learning methods while minimizing accuracy trade-offs. Our approach employs swift prompt selection to refine input data using a carefully provisioned model and introduces adaptive token merging (AToM) and adaptive layer dropping (ALD) for efficient prompt updates. AToM and ALD selectively skip data and model layers while preserving task-specific features during the learning of new tasks. Extensive experiments on multiple image classification datasets demonstrate REP's superior resource efficiency over state-of-the-art rehearsal-free CL methods.
comment: NeurIPS 2025
♻ ☆ On the Design of One-step Diffusion via Shortcutting Flow Paths
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.52 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
comment: 10 pages of main body, conference paper
♻ ☆ Transparent Networks for Multivariate Time Series AAAI-26
Transparent models, which provide inherently interpretable predictions, are receiving significant attention in high-stakes domains. However, despite much real-world data being collected as time series, there is a lack of studies on transparent time series models. To address this gap, we propose a novel transparent neural network model for time series called Generalized Additive Time Series Model (GATSM). GATSM consists of two parts: 1) independent feature networks to learn feature representations, and 2) a transparent temporal module to learn temporal patterns across different time steps using the feature representations. This structure allows GATSM to effectively capture temporal patterns and handle varying-length time series while preserving transparency. Empirical experiments show that GATSM significantly outperforms existing generalized additive models and achieves comparable performance to black-box time series models, such as recurrent neural networks and Transformer. In addition, we demonstrate that GATSM finds interesting patterns in time series.
comment: AAAI-26 Special Track on AI Alignment
♻ ☆ The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.
comment: 16 pages, 7 figures, 9 tables. Code and data available at https://github.com/erikl2/safety-refusal-stability
♻ ☆ Bayesian Ego-graph Inference for Networked Multi-Agent Reinforcement Learning NeurIPS 2025
In networked multi-agent reinforcement learning (Networked-MARL), decentralized agents must act under local observability and constrained communication over fixed physical graphs. Existing methods often assume static neighborhoods, limiting adaptability to dynamic or heterogeneous environments. While centralized frameworks can learn dynamic graphs, their reliance on global state access and centralized infrastructure is impractical in real-world decentralized systems. We propose a stochastic graph-based policy for Networked-MARL, where each agent conditions its decision on a sampled subgraph over its local physical neighborhood. Building on this formulation, we introduce BayesG, a decentralized actor-framework that learns sparse, context-aware interaction structures via Bayesian variational inference. Each agent operates over an ego-graph and samples a latent communication mask to guide message passing and policy computation. The variational distribution is trained end-to-end alongside the policy using an evidence lower bound (ELBO) objective, enabling agents to jointly learn both interaction topology and decision-making strategies. BayesG outperforms strong MARL baselines on large-scale traffic control tasks with up to 167 agents, demonstrating superior scalability, efficiency, and performance.
comment: Accepted at NeurIPS 2025 https://openreview.net/forum?id=3qeTs05bRL
♻ ☆ Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias
Electrocardiograms (ECGs) provide direct, non-invasive measurements of heart activity and are well-established tools for detecting and monitoring cardiovascular disease. However, manual ECG analysis can be time-consuming and prone to errors. Machine learning has emerged as a promising approach for automated heartbeat recognition and classification, but substantial variations in ECG signals make it challenging to develop generalizable supervised models. ECG signals vary widely across individuals and leads, while datasets often follow different labeling standards and may be biased, greatly hindering supervised methods. Conventional unsupervised methods, such as principal component analysis, prioritize large (often obvious) variances and typically overlook subtle yet clinically relevant patterns. When labels are missing or variations are small, both approaches fail. Here, we show that nonlinear dimensionality reduction (NLDR) algorithms, namely t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), can address these challenges and identify medically relevant features in ECG signals without training or prior information. Using lead II and V1 signals from the MIT-BIH dataset, UMAP and t-SNE generate rich two-dimensional latent spaces with visually separable clusters. Applied to mixed populations of heartbeats, these clusters correspond to different individuals, while for single subjects they reveal distinct arrhythmia patterns. A simple classifier on these embeddings discriminates individual recordings with >= 90% accuracy and identifies arrhythmias in single patients with a median accuracy of 98.96% and median F1-score of 91.02%. The results show that NLDR holds much promise for cardiac monitoring, including the limiting cases of single-lead ECG and the current 12-lead standard of care, and for personalized health care beyond cardiology.
♻ ☆ Meta-Reinforcement Learning for Building Energy Management System
The building sector is one of the largest contributors to global energy consumption. Improving its energy efficiency is essential for reducing operational costs and greenhouse gas emissions. Energy management systems (EMS) play a key role in monitoring and controlling building appliances efficiently and reliably. With the increasing integration of renewable energy, intelligent EMS solutions have received growing attention. Reinforcement learning (RL) has recently been explored for this purpose and shows strong potential. However, most RL-based EMS methods require a large number of training steps to learn effective control policies, especially when adapting to unseen buildings, which limits their practical deployment. This paper introduces MetaEMS, a meta-reinforcement learning framework for EMS. MetaEMS improves learning efficiency by transferring knowledge from previously solved tasks to new ones through group-level and building-level adaptation, enabling fast adaptation and effective control across diverse building environments. Experimental results demonstrate that MetaEMS adapts more rapidly to unseen buildings and consistently outperforms baseline methods across various scenarios.
comment: arXiv admin note: text overlap with arXiv:1909.10165 by other authors
♻ ☆ Text-guided multi-property molecular optimization with a diffusion language model
Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model's ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM's ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
comment: Accepted to Information Fusion, Vol. 127, 103907, 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade agents offer transparency but struggle when scaled to real-world workloads, while proprietary systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a scalable software engineering agent that can operate at enterprise-level codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context operation, a persistent note-taking mechanism for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 54.3%, surpassing both research-grade and proprietary coding agents under comparable model conditions. Together, the Confucius SDK and CCA form a general, extensible, and production-grade foundation for building robust coding agents, bridging the gap between research prototypes and practical large-scale deployment.
comment: The latest draft
♻ ☆ Retrieval Enhanced Feedback via In-context Neural Error-book EMNLP 2025
Recent advancements in Large Language Models (LLMs) have significantly improved reasoning capabilities, with in-context learning (ICL) emerging as a key technique for adaptation without retraining. While previous works have focused on leveraging correct examples, recent research highlights the importance of learning from errors to enhance performance. However, existing methods lack a structured framework for analyzing and mitigating errors, particularly in Multimodal Large Language Models (MLLMs), where integrating visual and textual inputs adds complexity. To address this issue, we propose REFINE: Retrieval-Enhanced Feedback via In-context Neural Error-book, a teacher-student framework that systematically structures errors and provides targeted feedback. REFINE introduces three systematic queries to construct structured feedback -- Feed-Target, Feed-Check, and Feed-Path -- to enhance multimodal reasoning by prioritizing relevant visual information, diagnosing critical failure points, and formulating corrective actions. Unlike prior approaches that rely on redundant retrievals, REFINE optimizes structured feedback retrieval, improving inference efficiency, token usage, and scalability. Our results demonstrate substantial speedup, reduced computational costs, and successful generalization, highlighting REFINE's potential for enhancing multimodal reasoning.
comment: Accepted at EMNLP 2025 main
♻ ☆ QCircuitBench: A Large-Scale Dataset for Benchmarking Quantum Algorithm Design
Quantum computing is an emerging field recognized for the significant speedup it offers over classical computing through quantum algorithms. However, designing and implementing quantum algorithms pose challenges due to the complex nature of quantum mechanics and the necessity for precise control over quantum states. Despite the significant advancements in AI, there has been a lack of datasets specifically tailored for this purpose. In this work, we introduce QCircuitBench, the first benchmark dataset designed to evaluate AI's capability in designing and implementing quantum algorithms using quantum programming languages. Unlike using AI for writing traditional codes, this task is fundamentally more complicated due to highly flexible design space. Our key contributions include: 1. A general framework which formulates the key features of quantum algorithm design for Large Language Models. 2. Implementations for quantum algorithms from basic primitives to advanced applications, spanning 3 task suites, 25 algorithms, and 120,290 data points. 3. Automatic validation and verification functions, allowing for iterative evaluation and interactive reasoning without human inspection. 4. Promising potential as a training dataset through preliminary fine-tuning results. We observed several interesting experimental phenomena: LLMs tend to exhibit consistent error patterns, and fine-tuning does not always outperform few-shot learning. In all, QCircuitBench is a comprehensive benchmark for LLM-driven quantum algorithm design, and it reveals limitations of LLMs in this domain.
comment: 45 pages, 17 figures, 15 tables, GitHub repository: https://github.com/EstelYang/QCircuitBench
♻ ☆ CFLight: Enhancing Safety with Traffic Signal Control through Counterfactual Learning
Traffic accidents result in millions of injuries and fatalities globally, with a significant number occurring at intersections each year. Traffic Signal Control (TSC) is an effective strategy for enhancing safety at these urban junctures. Despite the growing popularity of Reinforcement Learning (RL) methods in optimizing TSC, these methods often prioritize driving efficiency over safety, thus failing to address the critical balance between these two aspects. Additionally, these methods usually need more interpretability. CounterFactual (CF) learning is a promising approach for various causal analysis fields. In this study, we introduce a novel framework to improve RL for safety aspects in TSC. This framework introduces a novel method based on CF learning to address the question: ``What if, when an unsafe event occurs, we backtrack to perform alternative actions, and will this unsafe event still occur in the subsequent period?'' To answer this question, we propose a new structure causal model to predict the result after executing different actions, and we propose a new CF module that integrates with additional ``X'' modules to promote safe RL practices. Our new algorithm, CFLight, which is derived from this framework, effectively tackles challenging safety events and significantly improves safety at intersections through a near-zero collision control strategy. Through extensive numerical experiments on both real-world and synthetic datasets, we demonstrate that CFLight reduces collisions and improves overall traffic performance compared to conventional RL methods and the recent safe RL model. Moreover, our method represents a generalized and safe framework for RL methods, opening possibilities for applications in other domains. The data and code are available in the github https://github.com/AdvancedAI-ComplexSystem/SmartCity/tree/main/CFLight.
♻ ☆ PrivORL: Differentially Private Synthetic Dataset for Offline Reinforcement Learning NDSS 2026
Recently, offline reinforcement learning (RL) has become a popular RL paradigm. In offline RL, data providers share pre-collected datasets -- either as individual transitions or sequences of transitions forming trajectories -- to enable the training of RL models (also called agents) without direct interaction with the environments. Offline RL saves interactions with environments compared to traditional RL, and has been effective in critical areas, such as navigation tasks. Meanwhile, concerns about privacy leakage from offline RL datasets have emerged. To safeguard private information in offline RL datasets, we propose the first differential privacy (DP) offline dataset synthesis method, PrivORL, which leverages a diffusion model and diffusion transformer to synthesize transitions and trajectories, respectively, under DP. The synthetic dataset can then be securely released for downstream analysis and research. PrivORL adopts the popular approach of pre-training a synthesizer on public datasets, and then fine-tuning on sensitive datasets using DP Stochastic Gradient Descent (DP-SGD). Additionally, PrivORL introduces curiosity-driven pre-training, which uses feedback from the curiosity module to diversify the synthetic dataset and thus can generate diverse synthetic transitions and trajectories that closely resemble the sensitive dataset. Extensive experiments on five sensitive offline RL datasets show that our method achieves better utility and fidelity in both DP transition and trajectory synthesis compared to baselines. The replication package is available at the GitHub repository.
comment: Accepted at NDSS 2026; code available at https://github.com/2019ChenGong/PrivORL
♻ ☆ Shared DIFF Transformer
DIFF Transformer improves attention allocation by enhancing focus on relevant context while suppressing noise. It introduces a differential attention mechanism that calculates the difference between two independently generated attention distributions, effectively reducing noise and promoting sparse attention patterns. However, the independent signal generation in DIFF Transformer results in parameter redundancy and suboptimal utilization of information. In this work, we propose Shared DIFF Transformer, which draws on the idea of a differential amplifier by introducing a shared base matrix to model global patterns and incorporating low-rank updates to enhance task-specific flexibility. This design significantly reduces parameter redundancy, improves efficiency, and retains strong noise suppression capabilities. Experimental results show that, compared to DIFF Transformer, our method achieves better performance in tasks such as long-sequence modeling, key information retrieval, and in-context learning. Our work provides a novel and efficient approach to optimizing differential attention mechanisms and advancing robust Transformer architectures.
comment: arXiv admin note: text overlap with arXiv:2501.17486
♻ ☆ Forking-Sequences NeurIPS 2025
While accuracy is a critical requirement for time series forecasting, an equally important desideratum is forecast stability across forecast creation dates (FCDs). Even highly accurate models can produce erratic revisions between FCDs, disrupting downstream decision-making. To improve forecast stability, several state-of-the-art models including MQCNN, MQT, and SPADE employ a powerful yet underexplored neural network architectural design known as forking-sequences. This architectural design jointly encodes and decodes the entire time series across all FCDs, producing an entire multi-horizon forecast grid in a single forward pass. This approach contrasts with conventional statistical and neural forecasting methods that process FCDs independently, generating only a single multi-horizon forecast per forward pass. In this work, we formalize the forking-sequences design and motivate its broader adoption by introducing a metric for quantifying excess volatility in forecast revisions and by providing theoretical and empirical analysis. We theoretically motivate three key benefits of forking-sequences: (i) increased forecast stability through ensembling; (ii) gradient variance reduction, leading to more stable and consistent training steps; and (iii) improved computational efficiency during inference. We validate the benefits of forking-sequences compared to baseline window-sampling on the M-series benchmark, using 16 datasets from the M1, M3, M4, and Tourism competitions. We observe median accuracy improvements across datasets of 29.7%, 46.2%, 49.3%, 28.6%, 24.7%, and 6.4% for MLP, RNN, LSTM, CNN, Transformer, and State Space-based architectures, respectively. We then show that forecast ensembling during inference can improve median forecast stability by 10.8%, 13.2%, 13.0%, 10.9%, 10.2%, and 11.2% for these respective models trained with forking-sequences, while maintaining accuracy.
comment: Presented at the GPU-Accelerated and Scalable Optimization (ScaleOpt) Workshop, NeurIPS 2025
♻ ☆ Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting ICML 2023
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
comment: Published at ICML 2023. In this version, we clarify that the proof in fact yields a strictly stronger bound than the one stated in the ICML version
♻ ☆ Estimating Privacy Leakage of Augmented Contextual Knowledge in Language Models
Language models (LMs) rely on their parametric knowledge augmented with relevant contextual knowledge for certain tasks, such as question answering. However, the contextual knowledge can contain private information that may be leaked when answering queries, and estimating this privacy leakage is not well understood. A straightforward approach of directly comparing an LM's output to the contexts can overestimate the privacy risk, since the LM's parametric knowledge might already contain the augmented contextual knowledge. To this end, we introduce *context influence*, a metric that builds on differential privacy, a widely-adopted privacy notion, to estimate the privacy leakage of contextual knowledge during decoding. Our approach effectively measures how each subset of the context influences an LM's response while separating the specific parametric knowledge of the LM. Using our context influence metric, we demonstrate that context privacy leakage occurs when contextual knowledge is out of distribution with respect to parametric knowledge. Moreover, we experimentally demonstrate how context influence properly attributes the privacy leakage to augmented contexts, and we evaluate how factors -- such as model size, context size, generation position, etc. -- affect context privacy leakage. The practical implications of our results will inform practitioners of the privacy risk associated with augmented contextual knowledge.
♻ ☆ Differentially Private Knowledge Distillation via Synthetic Text Generation
Large Language models (LLMs) are achieving state-of-the-art performance in many different downstream tasks. However, the increasing urgency of data privacy puts pressure on practitioners to train LLMs with Differential Privacy (DP) on private data. Concurrently, the exponential growth in parameter size of LLMs necessitates model compression before deployment of LLMs on resource-constrained devices or latency-sensitive applications. Differential privacy and model compression generally must trade off utility loss to achieve their objectives. Moreover, simultaneously applying both schemes can compound the utility degradation. To this end, we propose DistilDP: a novel differentially private knowledge distillation algorithm that exploits synthetic data generated by a differentially private teacher LLM. The knowledge of a teacher LLM is transferred onto the student in two ways: one way from the synthetic data itself -- the hard labels, and the other way by the output distribution of the teacher evaluated on the synthetic data -- the soft labels. Furthermore, if the teacher and student share a similar architectural structure, we can further distill knowledge by aligning the hidden representations between both. Our experimental results demonstrate that DistilDP can substantially improve the utility over existing baselines, at least $9.0$ PPL on the Big Patent dataset, with strong privacy parameters, $ε=2$. These promising results progress privacy-preserving compression of autoregressive LLMs. Our code can be accessed here: https://github.com/james-flemings/dp_compress.
Information Retrieval 21
☆ Pairwise Comparison for Bias Identification and Quantification
Linguistic bias in online news and social media is widespread but difficult to measure. Yet, its identification and quantification remain difficult due to subjectivity, context dependence, and the scarcity of high-quality gold-label datasets. We aim to reduce annotation effort by leveraging pairwise comparison for bias annotation. To overcome the costliness of the approach, we evaluate more efficient implementations of pairwise comparison-based rating. We achieve this by investigating the effects of various rating techniques and the parameters of three cost-aware alternatives in a simulation environment. Since the approach can in principle be applied to both human and large language model annotation, our work provides a basis for creating high-quality benchmark datasets and for quantifying biases and other subjective linguistic aspects. The controlled simulations include latent severity distributions, distance-calibrated noise, and synthetic annotator bias to probe robustness and cost-quality trade-offs. In applying the approach to human-labeled bias benchmark datasets, we then evaluate the most promising setups and compare them to direct assessment by large language models and unmodified pairwise comparison labels as baselines. Our findings support the use of pairwise comparison as a practical foundation for quantifying subjective linguistic aspects, enabling reproducible bias analysis. We contribute an optimization of comparison and matchmaking components, an end-to-end evaluation including simulation and real-data application, and an implementation blueprint for cost-aware large-scale annotation
☆ RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
☆ PushGen: Push Notifications Generation with LLM WSDM 2026
We present PushGen, an automated framework for generating high-quality push notifications comparable to human-crafted content. With the rise of generative models, there is growing interest in leveraging LLMs for push content generation. Although LLMs make content generation straightforward and cost-effective, maintaining stylistic control and reliable quality assessment remains challenging, as both directly impact user engagement. To address these issues, PushGen combines two key components: (1) a controllable category prompt technique to guide LLM outputs toward desired styles, and (2) a reward model that ranks and selects generated candidates. Extensive offline and online experiments demonstrate its effectiveness, which has been deployed in large-scale industrial applications, serving hundreds of millions of users daily.
comment: Accepted by WSDM 2026
☆ Dynamic Context Selection for Retrieval-Augmented Generation: Mitigating Distractors and Positional Bias
Retrieval Augmented Generation (RAG) enhances language model performance by incorporating external knowledge retrieved from large corpora, which makes it highly suitable for tasks such as open domain question answering. Standard RAG systems typically rely on a fixed top k retrieval strategy, which can either miss relevant information or introduce semantically irrelevant passages, known as distractors, that degrade output quality. Additionally, the positioning of retrieved passages within the input context can influence the model attention and generation outcomes. Context placed in the middle tends to be overlooked, which is an issue known as the "lost in the middle" phenomenon. In this work, we systematically analyze the impact of distractors on generation quality, and quantify their effects under varying conditions. We also investigate how the position of relevant passages within the context window affects their influence on generation. Building on these insights, we propose a context-size classifier that dynamically predicts the optimal number of documents to retrieve based on query-specific informational needs. We integrate this approach into a full RAG pipeline, and demonstrate improved performance over fixed k baselines.
☆ SPARQL-LLM: Real-Time SPARQL Query Generation from Natural Language Questions
The advent of large language models is contributing to the emergence of novel approaches that promise to better tackle the challenge of generating structured queries, such as SPARQL queries, from natural language. However, these new approaches mostly focus on response accuracy over a single source while ignoring other evaluation criteria, such as federated query capability over distributed data stores, as well as runtime and cost to generate SPARQL queries. Consequently, they are often not production-ready or easy to deploy over (potentially federated) knowledge graphs with good accuracy. To mitigate these issues, in this paper, we extend our previous work and describe and systematically evaluate SPARQL-LLM, an open-source and triplestore-agnostic approach, powered by lightweight metadata, that generates SPARQL queries from natural language text. First, we describe its architecture, which consists of dedicated components for metadata indexing, prompt building, and query generation and execution. Then, we evaluate it based on a state-of-the-art challenge with multilingual questions, and a collection of questions from three of the most prevalent knowledge graphs within the field of bioinformatics. Our results demonstrate a substantial increase of 24% in the F1 Score on the state-of-the-art challenge, adaptability to high-resource languages such as English and Spanish, as well as ability to form complex and federated bioinformatics queries. Furthermore, we show that SPARQL-LLM is up to 36x faster than other systems participating in the challenge, while costing a maximum of $0.01 per question, making it suitable for real-time, low-cost text-to-SPARQL applications. One such application deployed over real-world decentralized knowledge graphs can be found at https://www.expasy.org/chat.
comment: 17 pages, 8 figures, 1 table. Under Review
☆ A Comparative Analysis of Retrieval-Augmented Generation Techniques for Bengali Standard-to-Dialect Machine Translation Using LLMs AACL 2025
Translating from a standard language to its regional dialects is a significant NLP challenge due to scarce data and linguistic variation, a problem prominent in the Bengali language. This paper proposes and compares two novel RAG pipelines for standard-to-dialectal Bengali translation. The first, a Transcript-Based Pipeline, uses large dialect sentence contexts from audio transcripts. The second, a more effective Standardized Sentence-Pairs Pipeline, utilizes structured local\_dialect:standard\_bengali sentence pairs. We evaluated both pipelines across six Bengali dialects and multiple LLMs using BLEU, ChrF, WER, and BERTScore. Our findings show that the sentence-pair pipeline consistently outperforms the transcript-based one, reducing Word Error Rate (WER) from 76\% to 55\% for the Chittagong dialect. Critically, this RAG approach enables smaller models (e.g., Llama-3.1-8B) to outperform much larger models (e.g., GPT-OSS-120B), demonstrating that a well-designed retrieval strategy can be more crucial than model size. This work contributes an effective, fine-tuning-free solution for low-resource dialect translation, offering a practical blueprint for preserving linguistic diversity.
comment: Accepted to the Second Workshop on Bangla Language Processing (BLP) at IJCNLP-AACL 2025. 14 pages, 9 figures, 6 tables
☆ Neurosymbolic Inference On Foundation Models For Remote Sensing Text-to-image Retrieval With Complex Queries
Text-to-image retrieval in remote sensing (RS) has advanced rapidly with the rise of large vision-language models (LVLMs) tailored for aerial and satellite imagery, culminating in remote sensing large vision-language models (RS-LVLMS). However, limited explainability and poor handling of complex spatial relations remain key challenges for real-world use. To address these issues, we introduce RUNE (Reasoning Using Neurosymbolic Entities), an approach that combines Large Language Models (LLMs) with neurosymbolic AI to retrieve images by reasoning over the compatibility between detected entities and First-Order Logic (FOL) expressions derived from text queries. Unlike RS-LVLMs that rely on implicit joint embeddings, RUNE performs explicit reasoning, enhancing performance and interpretability. For scalability, we propose a logic decomposition strategy that operates on conditioned subsets of detected entities, guaranteeing shorter execution time compared to neural approaches. Rather than using foundation models for end-to-end retrieval, we leverage them only to generate FOL expressions, delegating reasoning to a neurosymbolic inference module. For evaluation we repurpose the DOTA dataset, originally designed for object detection, by augmenting it with more complex queries than in existing benchmarks. We show the LLM's effectiveness in text-to-logic translation and compare RUNE with state-of-the-art RS-LVLMs, demonstrating superior performance. We introduce two metrics, Retrieval Robustness to Query Complexity (RRQC) and Retrieval Robustness to Image Uncertainty (RRIU), which evaluate performance relative to query complexity and image uncertainty. RUNE outperforms joint-embedding models in complex RS retrieval tasks, offering gains in performance, robustness, and explainability. We show RUNE's potential for real-world RS applications through a use case on post-flood satellite image retrieval.
☆ AsarRec: Adaptive Sequential Augmentation for Robust Self-supervised Sequential Recommendation
Sequential recommender systems have demonstrated strong capabilities in modeling users' dynamic preferences and capturing item transition patterns. However, real-world user behaviors are often noisy due to factors such as human errors, uncertainty, and behavioral ambiguity, which can lead to degraded recommendation performance. To address this issue, recent approaches widely adopt self-supervised learning (SSL), particularly contrastive learning, by generating perturbed views of user interaction sequences and maximizing their mutual information to improve model robustness. However, these methods heavily rely on their pre-defined static augmentation strategies~(where the augmentation type remains fixed once chosen) to construct augmented views, leading to two critical challenges: (1) the optimal augmentation type can vary significantly across different scenarios; (2) inappropriate augmentations may even degrade recommendation performance, limiting the effectiveness of SSL. To overcome these limitations, we propose an adaptive augmentation framework. We first unify existing basic augmentation operations into a unified formulation via structured transformation matrices. Building on this, we introduce AsarRec (Adaptive Sequential Augmentation for Robust Sequential Recommendation), which learns to generate transformation matrices by encoding user sequences into probabilistic transition matrices and projecting them into hard semi-doubly stochastic matrices via a differentiable Semi-Sinkhorn algorithm. To ensure that the learned augmentations benefit downstream performance, we jointly optimize three objectives: diversity, semantic invariance, and informativeness. Extensive experiments on three benchmark datasets under varying noise levels validate the effectiveness of AsarRec, demonstrating its superior robustness and consistent improvements.
☆ From Feature Interaction to Feature Generation: A Generative Paradigm of CTR Prediction Models
Click-Through Rate (CTR) prediction, a core task in recommendation systems, aims to estimate the probability of users clicking on items. Existing models predominantly follow a discriminative paradigm, which relies heavily on explicit interactions between raw ID embeddings. However, this paradigm inherently renders them susceptible to two critical issues: embedding dimensional collapse and information redundancy, stemming from the over-reliance on feature interactions \emph{over raw ID embeddings}. To address these limitations, we propose a novel \emph{Supervised Feature Generation (SFG)} framework, \emph{shifting the paradigm from discriminative ``feature interaction" to generative ``feature generation"}. Specifically, SFG comprises two key components: an \emph{Encoder} that constructs hidden embeddings for each feature, and a \emph{Decoder} tasked with regenerating the feature embeddings of all features from these hidden representations. Unlike existing generative approaches that adopt self-supervised losses, we introduce a supervised loss to utilize the supervised signal, \ie, click or not, in the CTR prediction task. This framework exhibits strong generalizability: it can be seamlessly integrated with most existing CTR models, reformulating them under the generative paradigm. Extensive experiments demonstrate that SFG consistently mitigates embedding collapse and reduces information redundancy, while yielding substantial performance gains across various datasets and base models. The code is available at https://github.com/USTC-StarTeam/GE4Rec.
☆ DTRec: Learning Dynamic Reasoning Trajectories for Sequential Recommendation
Inspired by advances in LLMs, reasoning-enhanced sequential recommendation performs multi-step deliberation before making final predictions, unlocking greater potential for capturing user preferences. However, current methods are constrained by static reasoning trajectories that are ill-suited for the diverse complexity of user behaviors. They suffer from two key limitations: (1) a static reasoning direction, which uses flat supervision signals misaligned with human-like hierarchical reasoning, and (2) a fixed reasoning depth, which inefficiently applies the same computational effort to all users, regardless of pattern complexity. These rigidity lead to suboptimal performance and significant computational waste. To overcome these challenges, we propose DTRec, a novel and effective framework that explores the Dynamic reasoning Trajectory for Sequential Recommendation along both direction and depth. To guide the direction, we develop Hierarchical Process Supervision (HPS), which provides coarse-to-fine supervisory signals to emulate the natural, progressive refinement of human cognitive processes. To optimize the depth, we introduce the Adaptive Reasoning Halting (ARH) mechanism that dynamically adjusts the number of reasoning steps by jointly monitoring three indicators. Extensive experiments on three real-world datasets demonstrate the superiority of our approach, achieving up to a 24.5% performance improvement over strong baselines while simultaneously reducing computational cost by up to 41.6%.
comment: Under Review
☆ Intent-Guided Reasoning for Sequential Recommendation
Sequential recommendation systems aim to capture users' evolving preferences from their interaction histories. Recent reasoningenhanced methods have shown promise by introducing deliberate, chain-of-thought-like processes with intermediate reasoning steps. However, these methods rely solely on the next target item as supervision, leading to two critical issues: (1) reasoning instability--the process becomes overly sensitive to recent behaviors and spurious interactions like accidental clicks, and (2) surface-level reasoning--the model memorizes item-to-item transitions rather than understanding intrinsic behavior patterns. To address these challenges, we propose IGR-SR, an Intent-Guided Reasoning framework for Sequential Recommendation that anchors the reasoning process to explicitly extracted high-level intents. Our framework comprises three key components: (1) a Latent Intent Distiller (LID) that efficiently extracts multi-faceted intents using a frozen encoder with learnable tokens, (2) an Intent-aware Deliberative Reasoner (IDR) that decouples reasoning into intent deliberation and decision-making via a dual-attention architecture, and (3) an Intent Consistency Regularization (ICR) that ensures robustness by enforcing consistent representations across different intent views. Extensive experiments on three public datasets demonstrate that IGR-SR achieves an average 7.13% improvement over state-of-the-art baselines. Critically, under 20% behavioral noise, IGR-SR degrades only 10.4% compared to 16.2% and 18.6% for competing methods, validating the effectiveness and robustness of intent-guided reasoning.
comment: Under Review
☆ Integrating Large Language Models and Knowledge Graphs to Capture Political Viewpoints in News Media
News sources play a central role in democratic societies by shaping political and social discourse through specific topics, viewpoints and voices. Understanding these dynamics is essential for assessing whether the media landscape offers a balanced and fair account of public debate. In earlier work, we introduced a pipeline that, given a news corpus, i) uses a hybrid human-machine approach to identify the range of viewpoints expressed about a given topic, and ii) classifies relevant claims with respect to the identified viewpoints, defined as sets of semantically and ideologically congruent claims (e.g., positions arguing that immigration positively impacts the UK economy). In this paper, we improve this pipeline by i) fine-tuning Large Language Models (LLMs) for viewpoint classification and ii) enriching claim representations with semantic descriptions of relevant actors drawn from Wikidata. We evaluate our approach against alternative solutions on a benchmark centred on the UK immigration debate. Results show that while both mechanisms independently improve classification performance, their integration yields the best results, particularly when using LLMs capable of processing long inputs.
♻ ☆ ModernVBERT: Towards Smaller Visual Document Retrievers
Retrieving specific information from a large corpus of documents is a prevalent industrial use case of modern AI, notably due to the popularity of Retrieval-Augmented Generation (RAG) systems. Although neural document retrieval models have historically operated exclusively in the text space, Visual Document Retrieval (VDR) models - large vision-language decoders repurposed as embedding models which directly work with page screenshots as inputs - are increasingly popular due to the performance and indexing latency gains they offer. In this work, we show that, while cost-efficient, this approach of repurposing generative models bottlenecks retrieval performance. Through controlled experiments, we revisit the entire training pipeline, and establish a principled recipe for improving visual document retrieval models. We notably measure the impact of attention masking, image resolution, modality alignment data regimes, and late interaction centered contrastive objectives which emerge as central performance factors. Building on these insights, we release ModernVBERT, a compact 250M-parameter vision-language encoder that outperforms recent models up to 10 times larger when fine-tuned on document retrieval tasks, enabling efficient inference on cheap CPU hardware and greatly reducing latency and costs while maintaining strong performance. Models, code and data are available at https://huggingface.co/ModernVBERT.
♻ ☆ Holistic Utility Preference Learning for Listwise Alignment
Aligning large language models with human preferences is essential for improving interaction quality and safety by ensuring outputs better reflect human values. A promising strategy involves Reinforcement Learning from Human Feedback (RLHF), starting with collecting and ranking responses generated by a supervised fine-tuning model to refine alignment. Existing methods such as Direct Preference Optimization (DPO) focus on pairwise comparisons, categorizing responses into preferred and less preferred pairs and optimizing pairwise margins. However, this pairwise approach cannot capture the holistic ranking relationships among multiple responses or effectively leverage the rich preference information available in list-wise comparisons. To address this challenge, this paper introduces \underline{D}irect \underline{R}anking \underline{P}reference \underline{O}ptimization (DRPO), a novel method that views human preference alignment as a Learning-to-Rank (LTR) task. Unlike pairwise methods, DRPO optimizes the preference ranking of entire response lists by computing holistic utility scores through NDCG, a standard LTR metric. To enable end-to-end optimization with the non-differentiable NDCG, we propose diffNDCG loss, a differentiable approximation facilitated by a sorting network. Furthermore, we introduce a novel margin-based Adaptive Rank Policy Score to enhance the discriminative quality of generated responses. Extensive experiments have shown that DRPO outperforms existing methods, enhancing the quality of the generated responses.
♻ ☆ Can Offline Metrics Measure Explanation Goals? A Comparative Survey Analysis of Offline Explanation Metrics in Recommender Systems
In Recommender System (RS), explanations help users understand why items are recommended and can enhance a system's transparency, persuasiveness, engagement, and trust, which are known as explanation goals. However, evaluating the effectiveness of explanation algorithms offline remains challenging because explanation goals are inherently subjective. We initially conducted a rapid literature review, which revealed that algorithms are often assessed using anecdotal evidence (offering convincing examples) or using metrics that do not align with human perception. From these results, we investigated whether the selection of item attributes and interacted items affects explanation goals in explanations that generate a path connecting interacted and recommended items based on shared attributes (such as genres). We used metrics that measure the diversity and popularity of attributes and the recency of item interactions to evaluate explanations from three state-of-the-art agnostic algorithms across six recommendation systems. We then performed an online user study to compare user perceptions of explanation goals and offline metrics. Our findings indicate that engagement is sensitive to users' perceptions of diversity in explanations, whereas transparency, trust, and persuasiveness are influenced by perceptions of both popularity and diversity. However, offline metrics require refinement to more closely align with explanation goals and user understanding.
♻ ☆ CrossPT-EEG: A Benchmark for Cross-Participant and Cross-Time Generalization of EEG-based Visual Decoding
Exploring brain activity in relation to visual perception provides insights into the biological representation of the world. While functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) have enabled effective image classification and reconstruction, their high cost and bulk limit practical use. Electroencephalography (EEG), by contrast, offers low cost and excellent temporal resolution, but its potential has been limited by the scarcity of large, high-quality datasets and by block-design experiments that introduce temporal confounds. To fill this gap, we present CrossPT-EEG, a benchmark for cross-participant and cross-time generalization of visual decoding from EEG. We collected EEG data from 16 participants while they viewed 4,000 images sampled from ImageNet, with image stimuli annotated at multiple levels of granularity. Our design includes two stages separated in time to allow cross-time generalization and avoid block-design artifacts. We also introduce benchmarks tailored to non-block design classification, as well as pre-training experiments to assess cross-time and cross-participant generalization. These findings highlight the dataset's potential to enhance EEG-based visual brain-computer interfaces, deepen our understanding of visual perception in biological systems, and suggest promising applications for improving machine vision models.
♻ ☆ Cog-RAG: Cognitive-Inspired Dual-Hypergraph with Theme Alignment Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) enhances the response quality and domain-specific performance of large language models (LLMs) by incorporating external knowledge to combat hallucinations. In recent research, graph structures have been integrated into RAG to enhance the capture of semantic relations between entities. However, it primarily focuses on low-order pairwise entity relations, limiting the high-order associations among multiple entities. Hypergraph-enhanced approaches address this limitation by modeling multi-entity interactions via hyperedges, but they are typically constrained to inter-chunk entity-level representations, overlooking the global thematic organization and alignment across chunks. Drawing inspiration from the top-down cognitive process of human reasoning, we propose a theme-aligned dual-hypergraph RAG framework (Cog-RAG) that uses a theme hypergraph to capture inter-chunk thematic structure and an entity hypergraph to model high-order semantic relations. Furthermore, we design a cognitive-inspired two-stage retrieval strategy that first activates query-relevant thematic content from the theme hypergraph, and then guides fine-grained recall and diffusion in the entity hypergraph, achieving semantic alignment and consistent generation from global themes to local details. Our extensive experiments demonstrate that Cog-RAG significantly outperforms existing state-of-the-art baseline approaches.
comment: Accepted by AAAI 2026 main conference
♻ ☆ A Knowledge Graph-based Retrieval-Augmented Generation Framework for Algorithm Selection in the Facility Layout Problem
Selecting a solution algorithm for the Facility Layout Problem (FLP), an NP-hard optimization problem with multiobjective trade-off, is a complex task that requires deep expert knowledge. The performance of a given algorithm depends on the specific characteristics of the problem, such as the number of facilities, objectives, and constraints. This creates a need for a data-driven recommendation method to guide algorithm selection in automated design systems. This paper introduces a new recommendation method to make this expertise accessible, based on a Knowledge Graph-Based Retrieval-Augmented Generation (KG-RAG) framework. In this framework, a domain-specific knowledge graph (KG) is constructed from the literature. The method then employs a multifaceted retrieval mechanism to gather relevant evidence from this KG using three distinct approaches: precise graph-based search, flexible vector-based search, and cluster-based high-level search. The retrieved evidence is utilized by a Large Language Model (LLM) to generate algorithm recommendations based on data-driven reasoning. This KG-RAG framework is tested on a use case consisting of six problems comprising of complex multi-objective and multi-constraint FLP case. The results are compared with the Gemini 1.5 Flash chatbot. The results show that KG-RAG achieves an average reasoning score of 4.7 out of 5 compared to 3.3 for the baseline chatbot.
comment: 10 pages, 5 figures
♻ ☆ Optimizing Large Language Models for ESG Activity Detection in Financial Texts
The integration of Environmental, Social, and Governance (ESG) factors into corporate decision-making is a fundamental aspect of sustainable finance. However, ensuring that business practices align with evolving regulatory frameworks remains a persistent challenge. AI-driven solutions for automatically assessing the alignment of sustainability reports and non-financial disclosures with specific ESG activities could greatly support this process. Yet, this task remains complex due to the limitations of general-purpose Large Language Models (LLMs) in domain-specific contexts and the scarcity of structured, high-quality datasets. In this paper, we investigate the ability of current-generation LLMs to identify text related to environmental activities. Furthermore, we demonstrate that their performance can be significantly enhanced through fine-tuning on a combination of original and synthetically generated data. To this end, we introduce ESG-Activities, a benchmark dataset containing 1,325 labelled text segments classified according to the EU ESG taxonomy. Our experimental results show that fine-tuning on ESG-Activities significantly enhances classification accuracy, with open models such as Llama 7B and Gemma 7B outperforming large proprietary solutions in specific configurations. These findings have important implications for financial analysts, policymakers, and AI researchers seeking to enhance ESG transparency and compliance through advanced natural language processing techniques.
comment: Published in the Proceedings of the ACM International Conference on AI in Finance (ICAIF). ACM version
♻ ☆ Mixture-of-RAG: Integrating Text and Tables with Large Language Models KDD 2026
Large language models (LLMs) achieve optimal utility when their responses are grounded in external knowledge sources. However, real-world documents, such as annual reports, scientific papers, and clinical guidelines, frequently combine extensive narrative content with complex, hierarchically structured tables. While existing retrieval-augmented generation (RAG) systems effectively integrate LLMs' generative capabilities with external retrieval-based information, their performance significantly deteriorates especially processing such heterogeneous text-table hierarchies. To address this limitation, we formalize the task of Heterogeneous Document RAG, which requires joint retrieval and reasoning across textual and hierarchical tabular data. We propose MixRAG, a novel three-stage framework: (i) hierarchy row-and-column-level (H-RCL) representation that preserves hierarchical structure and heterogeneous relationship, (ii) an ensemble retriever with LLM-based reranking for evidence alignment, and (iii) multi-step reasoning decomposition via a RECAP prompt strategy. To bridge the gap in available data for this domain, we release the dataset DocRAGLib, a 2k-document corpus paired with automatically aligned text-table summaries and gold document annotations. The comprehensive experiment results demonstrate that MixRAG boosts top-1 retrieval by 46% over strong text-only, table-only, and naive-mixture baselines, establishing new state-of-the-art performance for mixed-modality document grounding.
comment: Accepted to SIGKDD 2026
♻ ☆ SymCERE: Symmetric Contrastive Learning for Robust Review-Enhanced Recommendation
Modern recommendation systems fuse user behavior graphs and review texts but often encounter a "Fusion Gap" caused by False Negatives, Popularity Bias, and Signal Ambiguity. We propose SymCERE (Symmetric NCE), a contrastive learning framework bridging this gap via structural geometric alignment. First, we introduce a symmetric NCE loss that leverages full interaction history to exclude false negatives. Second, we integrate L2 normalization to structurally neutralize popularity bias. Experiments on 15 datasets (e-commerce, local reviews, travel) demonstrate that SymCERE outperforms strong baselines, improving NDCG@10 by up to 43.6%. Notably, we validate this on raw reviews, addressing significant noise. Analysis reveals "Semantic Anchoring," where the model aligns on objective vocabulary (e.g., "OEM," "gasket") rather than generic sentiment. This indicates effective alignment stems from extracting factual attributes, offering a path toward robust, interpretable systems. The code is available at https://anonymous.4open.science/r/ReviewGNN-2E1E.
Computation and Language 94
☆ Beyond surface form: A pipeline for semantic analysis in Alzheimer's Disease detection from spontaneous speech
Alzheimer's Disease (AD) is a progressive neurodegenerative condition that adversely affects cognitive abilities. Language-related changes can be automatically identified through the analysis of outputs from linguistic assessment tasks, such as picture description. Language models show promise as a basis for screening tools for AD, but their limited interpretability poses a challenge in distinguishing true linguistic markers of cognitive decline from surface-level textual patterns. To address this issue, we examine how surface form variation affects classification performance, with the goal of assessing the ability of language models to represent underlying semantic indicators. We introduce a novel approach where texts surface forms are transformed by altering syntax and vocabulary while preserving semantic content. The transformations significantly modify the structure and lexical content, as indicated by low BLEU and chrF scores, yet retain the underlying semantics, as reflected in high semantic similarity scores, isolating the effect of semantic information, and finding models perform similarly to if they were using the original text, with only small deviations in macro-F1. We also investigate whether language from picture descriptions retains enough detail to reconstruct the original image using generative models. We found that image-based transformations add substantial noise reducing classification accuracy. Our methodology provides a novel way of looking at what features influence model predictions, and allows the removal of possible spurious correlations. We find that just using semantic information, language model based classifiers can still detect AD. This work shows that difficult to detect semantic impairment can be identified, addressing an overlooked feature of linguistic deterioration, and opening new pathways for early detection systems.
☆ Towards Effective Model Editing for LLM Personalization
Personalization is becoming indispensable for LLMs to align with individual user preferences and needs. Yet current approaches are often computationally expensive, data-intensive, susceptible to catastrophic forgetting, and prone to performance degradation in multi-turn interactions or when handling implicit queries. To address these challenges, we conceptualize personalization as a model editing task and introduce Personalization Editing, a framework that applies localized edits guided by clustered preference representations. This design enables precise preference-aligned updates while preserving overall model capabilities. In addition, existing personalization benchmarks frequently rely on persona-based dialogs between LLMs rather than user-LLM interactions, or focus primarily on stylistic imitation while neglecting information-seeking tasks that require accurate recall of user-specific preferences. We introduce User Preference Question Answering (UPQA), a short-answer QA dataset constructed from in-situ user queries with varying levels of difficulty. Unlike prior benchmarks, UPQA directly evaluates a model's ability to recall and apply specific user preferences. Across experimental settings, Personalization Editing achieves higher editing accuracy and greater computational efficiency than fine-tuning, while outperforming prompting-based baselines in multi-turn conversations and implicit preference questions settings.
comment: 15 pages (including appendix), 7 figures. Code, data, results, and additional resources are available at: https://model-editing.github.io
☆ Towards Interactive Intelligence for Digital Humans
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
☆ A stylometric analysis of speaker attribution from speech transcripts
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
☆ Comparative Analysis of LLM Abliteration Methods: A Cross-Architecture Evaluation
Safety alignment mechanisms in large language models prevent responses to harmful queries through learned refusal behavior, yet these same mechanisms impede legitimate research applications including cognitive modeling, adversarial testing, and security analysis. While abliteration techniques enable surgical removal of refusal representations through directional orthogonalization, the relative effectiveness of available implementations remains uncharacterized. This study evaluates four abliteration tools (Heretic, DECCP, ErisForge, FailSpy) across sixteen instruction-tuned models (7B-14B parameters), reporting tool compatibility on all 16 models and quantitative metrics on subsets dictated by tool support. Single-pass methods demonstrated superior capability preservation on the benchmarked subset (avg GSM8K change across three models: ErisForge -0.28 pp; DECCP -0.13 pp), while Bayesian-optimized abliteration produced variable distribution shift (KL divergence: 0.043-1.646) with model-dependent capability impact. These findings provide researchers with evidence-based selection criteria for abliteration tool deployment across diverse model architectures. The principal finding indicates that mathematical reasoning capabilities exhibit the highest sensitivity to abliteration interventions, with GSM8K change ranging from +1.51 pp to -18.81 pp (-26.5% relative) depending on tool selection and model architecture.
comment: 25 pages, 6 figures, 8 tables
☆ Large-Language Memorization During the Classification of United States Supreme Court Cases
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
comment: 7 pages, 1 figure, Appendix of Prompts
☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
☆ Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model's reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
comment: We publicly release the Nemotron-Cascade models and the full collection of training data at: https://huggingface.co/collections/nvidia/nemotron-cascade
☆ Textual Gradients are a Flawed Metaphor for Automatic Prompt Optimization
A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
☆ ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18$\times$ speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33$\times$ average speedup.
☆ Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
☆ Verifying Rumors via Stance-Aware Structural Modeling
Verifying rumors on social media is critical for mitigating the spread of false information. The stances of conversation replies often provide important cues to determine a rumor's veracity. However, existing models struggle to jointly capture semantic content, stance information, and conversation strructure, especially under the sequence length constraints of transformer-based encoders. In this work, we propose a stance-aware structural modeling that encodes each post in a discourse with its stance signal and aggregates reply embedddings by stance category enabling a scalable and semantically enriched representation of the entire thread. To enhance structural awareness, we introduce stance distribution and hierarchical depth as covariates, capturing stance imbalance and the influence of reply depth. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms prior methods in the ability to predict truthfulness of a rumor. We also demonstrate that our model is versatile for early detection and cross-platfrom generalization.
comment: 8 pages, 2 figures, published in The 24th IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2025), London, UK, 2025
☆ PrahokBART: A Pre-trained Sequence-to-Sequence Model for Khmer Natural Language Generation COLING 2025
This work introduces {\it PrahokBART}, a compact pre-trained sequence-to-sequence model trained from scratch for Khmer using carefully curated Khmer and English corpora. We focus on improving the pre-training corpus quality and addressing the linguistic issues of Khmer, which are ignored in existing multilingual models, by incorporating linguistic components such as word segmentation and normalization. We evaluate PrahokBART on three generative tasks: machine translation, text summarization, and headline generation, where our results demonstrate that it outperforms mBART50, a strong multilingual pre-trained model. Additionally, our analysis provides insights into the impact of each linguistic module and evaluates how effectively our model handles space during text generation, which is crucial for the naturalness of texts in Khmer.
comment: Published at COLING 2025, 14 pages
☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
☆ SkipCat: Rank-Maximized Low-Rank Compression of Large Language Models via Shared Projection and Block Skipping AAAI 2026
Large language models (LLM) have achieved remarkable performance across a wide range of tasks. However, their substantial parameter sizes pose significant challenges for deployment on edge devices with limited computational and memory resources. Low-rank compression is a promising approach to address this issue, as it reduces both computational and memory costs, making LLM more suitable for resource-constrained environments. Nonetheless, naïve low-rank compression methods require a significant reduction in the retained rank to achieve meaningful memory and computation savings. For a low-rank model, the ranks need to be reduced by more than half to yield efficiency gains. Such aggressive truncation, however, typically results in substantial performance degradation. To address this trade-off, we propose SkipCat, a novel low-rank compression framework that enables the use of higher ranks while achieving the same compression rates. First, we introduce an intra-layer shared low-rank projection method, where multiple matrices that share the same input use a common projection. This reduces redundancy and improves compression efficiency. Second, we propose a block skipping technique that omits computations and memory transfers for selected sub-blocks within the low-rank decomposition. These two techniques jointly enable our compressed model to retain more effective ranks under the same compression budget. Experimental results show that, without any additional fine-tuning, our method outperforms previous low-rank compression approaches by 7% accuracy improvement on zero-shot tasks under the same compression rate. These results highlight the effectiveness of our rank-maximized compression strategy in preserving model performance under tight resource constraints.
comment: Accepted by AAAI 2026
☆ SIGMA: An AI-Empowered Training Stack on Early-Life Hardware
An increasing variety of AI accelerators is being considered for large-scale training. However, enabling large-scale training on early-life AI accelerators faces three core challenges: frequent system disruptions and undefined failure modes that undermine reliability; numerical errors and training instabilities that threaten correctness and convergence; and the complexity of parallelism optimization combined with unpredictable local noise that degrades efficiency. To address these challenges, SIGMA is an open-source training stack designed to improve the reliability, stability, and efficiency of large-scale distributed training on early-life AI hardware. The core of this initiative is the LUCIA TRAINING PLATFORM (LTP), the system optimized for clusters with early-life AI accelerators. Since its launch in March 2025, LTP has significantly enhanced training reliability and operational productivity. Over the past five months, it has achieved an impressive 94.45% effective cluster accelerator utilization, while also substantially reducing node recycling and job-recovery times. Building on the foundation of LTP, the LUCIA TRAINING FRAMEWORK (LTF) successfully trained SIGMA-MOE, a 200B MoE model, using 2,048 AI accelerators. This effort delivered remarkable stability and efficiency outcomes, achieving 21.08% MFU, state-of-the-art downstream accuracy, and encountering only one stability incident over a 75-day period. Together, these advances establish SIGMA, which not only tackles the critical challenges of large-scale training but also establishes a new benchmark for AI infrastructure and platform innovation, offering a robust, cost-effective alternative to prevailing established accelerator stacks and significantly advancing AI capabilities and scalability. The source code of SIGMA is available at https://github.com/microsoft/LuciaTrainingPlatform.
comment: 22 pages, 7 figures
☆ Advancing Bangla Machine Translation Through Informal Datasets
Bangla is the sixth most widely spoken language globally, with approximately 234 million native speakers. However, progress in open-source Bangla machine translation remains limited. Most online resources are in English and often remain untranslated into Bangla, excluding millions from accessing essential information. Existing research in Bangla translation primarily focuses on formal language, neglecting the more commonly used informal language. This is largely due to the lack of pairwise Bangla-English data and advanced translation models. If datasets and models can be enhanced to better handle natural, informal Bangla, millions of people will benefit from improved online information access. In this research, we explore current state-of-the-art models and propose improvements to Bangla translation by developing a dataset from informal sources like social media and conversational texts. This work aims to advance Bangla machine translation by focusing on informal language translation and improving accessibility for Bangla speakers in the digital world.
comment: 33 pages, 13 figures
☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy is a common human behavior that shapes competitiveness and can alter outcomes in team settings. As large language models (LLMs) increasingly act on behalf of humans in collaborative and competitive workflows, there is a pressing need to evaluate whether and under what conditions they exhibit envy-like preferences. In this paper, we test whether LLMs show envy-like behavior toward each other. We considered two scenarios: (1) A point allocation game that tests whether a model tries to win over its peer. (2) A workplace setting observing behaviour when recognition is unfair. Our findings reveal consistent evidence of envy-like patterns in certain LLMs, with large variation across models and contexts. For instance, GPT-5-mini and Claude-3.7-Sonnet show a clear tendency to pull down the peer model to equalize outcomes, whereas Mistral-Small-3.2-24B instead focuses on maximizing its own individual gains. These results highlight the need to consider competitive dispositions as a safety and design factor in LLM-based multi-agent systems.
comment: Under Review
☆ Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 19 pages
☆ Scaling Laws for Code: Every Programming Language Matters
Code large language models (Code LLMs) are powerful but costly to train, with scaling laws predicting performance from model size, data, and compute. However, different programming languages (PLs) have varying impacts during pre-training that significantly affect base model performance, leading to inaccurate performance prediction. Besides, existing works focus on language-agnostic settings, neglecting the inherently multilingual nature of modern software development. Therefore, it is first necessary to investigate the scaling laws of different PLs, and then consider their mutual influences to arrive at the final multilingual scaling law. In this paper, we present the first systematic exploration of scaling laws for multilingual code pre-training, conducting over 1000+ experiments (Equivalent to 336,000+ H800 hours) across multiple PLs, model sizes (0.2B to 14B parameters), and dataset sizes (1T tokens). We establish comprehensive scaling laws for code LLMs across multiple PLs, revealing that interpreted languages (e.g., Python) benefit more from increased model size and data than compiled languages (e.g., Rust). The study demonstrates that multilingual pre-training provides synergistic benefits, particularly between syntactically similar PLs. Further, the pre-training strategy of the parallel pairing (concatenating code snippets with their translations) significantly enhances cross-lingual abilities with favorable scaling properties. Finally, a proportion-dependent multilingual scaling law is proposed to optimally allocate training tokens by prioritizing high-utility PLs (e.g., Python), balancing high-synergy pairs (e.g., JavaScript-TypeScript), and reducing allocation to fast-saturating languages (Rust), achieving superior average performance across all PLs compared to uniform distribution under the same compute budget.
Large language models are not about language
Large Language Models are useless for linguistics, as they are probabilistic models that require a vast amount of data to analyse externalized strings of words. In contrast, human language is underpinned by a mind-internal computational system that recursively generates hierarchical thought structures. The language system grows with minimal external input and can readily distinguish between real language and impossible languages.
☆ Differentiable Evolutionary Reinforcement Learning
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the "meta-gradient" of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.
comment: Work in Progress. We release our code and model at https://github.com/sitaocheng/DERL
☆ Detecting Emotion Drift in Mental Health Text Using Pre-Trained Transformers
This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
comment: 14 pages, 12 figures
☆ On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models
Large Language Models (LLMs) are prone to memorizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA benchmarks, allowing us to evaluate their practical utility in real-world extraction scenarios.
comment: Accepted to IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
☆ FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.
☆ MiniLingua: A Small Open-Source LLM for European Languages
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.
comment: 9+6 pages, 6 figures and 3 tables in the main text. Code at https://github.com/MiniLingua-ai/training_artifacts
☆ Integrating Causal Reasoning into Automated Fact-Checking
In fact-checking applications, a common reason to reject a claim is to detect the presence of erroneous cause-effect relationships between the events at play. However, current automated fact-checking methods lack dedicated causal-based reasoning, potentially missing a valuable opportunity for semantically rich explainability. To address this gap, we propose a methodology that combines event relation extraction, semantic similarity computation, and rule-based reasoning to detect logical inconsistencies between chains of events mentioned in a claim and in an evidence. Evaluated on two fact-checking datasets, this method establishes the first baseline for integrating fine-grained causal event relationships into fact-checking and enhance explainability of verdict prediction.
comment: Extended version of the accepted ACM SAC paper
☆ AIR: Post-training Data Selection for Reasoning via Attention Head Influence
LLMs achieve remarkable multi-step reasoning capabilities, yet effectively transferring these skills via post-training distillation remains challenging. Existing data selection methods, ranging from manual curation to heuristics based on length, entropy, or overall loss, fail to capture the causal importance of individual reasoning steps, limiting distillation efficiency. To address this, we propose Attention Influence for Reasoning (AIR), a principled, unsupervised and training-free framework that leverages mechanistic insights of the retrieval head to select high-value post-training data. AIR first identifies reasoning-critical attention heads of an off-the-shelf model, then constructs a weakened reference model with disabled head influence, and finally quantifies the resulting loss divergence as the Attention Influence Score. This score enables fine-grained assessment at both the step and sample levels, supporting step-level weighted fine-tuning and global sample selection. Experiments across multiple reasoning benchmarks show that AIR consistently improves reasoning accuracy, surpassing heuristic baselines and effectively isolating the most critical steps and samples. Our work establishes a mechanism-driven, data-efficient approach for reasoning distillation in LLMs.
comment: 19 pages
☆ AutoTool: Dynamic Tool Selection and Integration for Agentic Reasoning ICCV 2025
Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents' adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
comment: Best Paper Award at ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as \(1 - \max(P_{\mathrm{target}})\). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
☆ SpeakRL: Synergizing Reasoning, Speaking, and Acting in Language Models with Reinforcement Learning
Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents' conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
☆ MAC: A Multi-Agent Framework for Interactive User Clarification in Multi-turn Conversations
Conversational agents often encounter ambiguous user requests, requiring an effective clarification to successfully complete tasks. While recent advancements in real-world applications favor multi-agent architectures to manage complex conversational scenarios efficiently, ambiguity resolution remains a critical and underexplored challenge--particularly due to the difficulty of determining which agent should initiate a clarification and how agents should coordinate their actions when faced with uncertain or incomplete user input. The fundamental questions of when to interrupt a user and how to formulate the optimal clarification query within the most optimal multi-agent settings remain open. In this paper, we propose MAC (Multi-Agent Clarification), an interactive multi-agent framework specifically optimized to resolve user ambiguities by strategically managing clarification dialogues. We first introduce a novel taxonomy categorizing user ambiguities to systematically guide clarification strategies. Then, we present MAC that autonomously coordinates multiple agents to interact synergistically with users. Empirical evaluations on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases task success rate 7.8\% (54.5 to 62.3) and reduces the average number of dialogue turns (6.53 to 4.86) by eliciting all required user information up front and minimizing repetition. Our findings highlight the importance of active user interaction and role-aware clarification for more reliable human-agent communication.
☆ Uncovering the Role of Initial Saliency in U-Shaped Attention Bias: Scaling Initial Token Weight for Enhanced Long-Text Processing
Large language models (LLMs) have demonstrated strong performance on a variety of natural language processing (NLP) tasks. However, they often struggle with long-text sequences due to the ``lost in the middle'' phenomenon. This issue has been shown to arise from a U-shaped attention bias, where attention is disproportionately focused on the beginning and end of a text, leaving the middle section underrepresented. While previous studies have attributed this bias to position encoding, our research first identifies an additional factor: initial saliency. It means that in the attention computation for each token, tokens with higher attention weights relative to the initial token tend to receive more attention in the prediction of the next token. We further find that utilizing this property by scaling attention weight between the initial token and others improves the model's ability to process long contexts, achieving a maximum improvement of 3.6\% in MDQA dataset. Moreover, combining this approach with existing methods to reduce position encoding bias further enhances performance, achieving a maximum improvement of 3.4\% in KV-Retrieval tasks.
☆ Heart Disease Prediction using Case Based Reasoning (CBR)
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor's experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males.
comment: Published in Journal of Theoretical and Applied Information Technology on 31st October 2024. Vol.102. No. 20
☆ M-GRPO: Stabilizing Self-Supervised Reinforcement Learning for Large Language Models with Momentum-Anchored Policy Optimization NeurIPS 2025
Self-supervised reinforcement learning (RL) presents a promising approach for enhancing the reasoning capabilities of Large Language Models (LLMs) without reliance on expensive human-annotated data. However, we find that existing methods suffer from a critical failure mode under long-horizon training: a "policy collapse" where performance precipitously degrades. We diagnose this instability and demonstrate that simply scaling the number of rollouts -- a common strategy to improve performance -- only delays, but does not prevent, this collapse. To counteract this instability, we first introduce M-GRPO (Momentum-Anchored Group Relative Policy Optimization), a framework that leverages a slowly evolving momentum model to provide a stable training target. In addition, we identify that this process is often accompanied by a rapid collapse in policy entropy, resulting in a prematurely confident and suboptimal policy. To specifically address this issue, we propose a second contribution: an adaptive filtering method based on the interquartile range (IQR) that dynamically prunes low-entropy trajectories, preserving essential policy diversity. Our extensive experiments on multiple reasoning benchmarks demonstrate that M-GRPO stabilizes the training process while the IQR filter prevents premature convergence. The combination of these two innovations leads to superior training stability and state-of-the-art performance.
comment: 7 pages, 5 figures,Accepted NeurIPS 2025 Workshop on Efficient Reasoning
LLM Rationalis? Measuring Bargaining Capabilities of AI Negotiators
Bilateral negotiation is a complex, context-sensitive task in which human negotiators dynamically adjust anchors, pacing, and flexibility to exploit power asymmetries and informal cues. We introduce a unified mathematical framework for modeling concession dynamics based on a hyperbolic tangent curve, and propose two metrics burstiness tau and the Concession-Rigidity Index (CRI) to quantify the timing and rigidity of offer trajectories. We conduct a large-scale empirical comparison between human negotiators and four state-of-the-art large language models (LLMs) across natural-language and numeric-offers settings, with and without rich market context, as well as six controlled power-asymmetry scenarios. Our results reveal that, unlike humans who smoothly adapt to situations and infer the opponents position and strategies, LLMs systematically anchor at extremes of the possible agreement zone for negotiations and optimize for fixed points irrespective of leverage or context. Qualitative analysis further shows limited strategy diversity and occasional deceptive tactics used by LLMs. Moreover the ability of LLMs to negotiate does not improve with better models. These findings highlight fundamental limitations in current LLM negotiation capabilities and point to the need for models that better internalize opponent reasoning and context-dependent strategy.
comment: Published in the First Workshop on Multi-Turn Interactions in Large Language Models at Neurips 2025
☆ An Open and Reproducible Deep Research Agent for Long-Form Question Answering NeurIPS
We present an open deep research system for long-form question answering, selected as a winning system in the text-to-text track of the MMU-RAG competition at NeurIPS 2025. The system combines an open-source large language model (LLM) with an open web search API to perform iterative retrieval, reasoning, and synthesis in real-world open-domain settings. To enhance reasoning quality, we apply preference tuning based on LLM-as-a-judge feedback that evaluates multiple aspects, including clarity, insightfulness, and factuality. Our experimental results show that the proposed method consistently improves answer quality across all three aspects. Our source code is publicly available at https://github.com/efficient-deep-research/efficient-deep-research.
comment: Technical report of a winning system in the NeurIPS MMU-RAG competition
☆ Understanding Structured Financial Data with LLMs: A Case Study on Fraud Detection
Detecting fraud in financial transactions typically relies on tabular models that demand heavy feature engineering to handle high-dimensional data and offer limited interpretability, making it difficult for humans to understand predictions. Large Language Models (LLMs), in contrast, can produce human-readable explanations and facilitate feature analysis, potentially reducing the manual workload of fraud analysts and informing system refinements. However, they perform poorly when applied directly to tabular fraud detection due to the difficulty of reasoning over many features, the extreme class imbalance, and the absence of contextual information. To bridge this gap, we introduce FinFRE-RAG, a two-stage approach that applies importance-guided feature reduction to serialize a compact subset of numeric/categorical attributes into natural language and performs retrieval-augmented in-context learning over label-aware, instance-level exemplars. Across four public fraud datasets and three families of open-weight LLMs, FinFRE-RAG substantially improves F1/MCC over direct prompting and is competitive with strong tabular baselines in several settings. Although these LLMs still lag behind specialized classifiers, they narrow the performance gap and provide interpretable rationales, highlighting their value as assistive tools in fraud analysis.
☆ Scaling Bidirectional Spans and Span Violations in Attention Mechanism
The canonical $O(N^2)$ Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass $QKV$ structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on $0^{th}$ order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a $0.56\%$ reduction in validation loss, confirming the framework's fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
☆ Authors Should Annotate
The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document's source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.
☆ QwenLong-L1.5: Post-Training Recipe for Long-Context Reasoning and Memory Management
We introduce QwenLong-L1.5, a model that achieves superior long-context reasoning capabilities through systematic post-training innovations. The key technical breakthroughs of QwenLong-L1.5 are as follows: (1) Long-Context Data Synthesis Pipeline: We develop a systematic synthesis framework that generates challenging reasoning tasks requiring multi-hop grounding over globally distributed evidence. By deconstructing documents into atomic facts and their underlying relationships, and then programmatically composing verifiable reasoning questions, our approach creates high-quality training data at scale, moving substantially beyond simple retrieval tasks to enable genuine long-range reasoning capabilities. (2) Stabilized Reinforcement Learning for Long-Context Training: To overcome the critical instability in long-context RL, we introduce task-balanced sampling with task-specific advantage estimation to mitigate reward bias, and propose Adaptive Entropy-Controlled Policy Optimization (AEPO) that dynamically regulates exploration-exploitation trade-offs. (3) Memory-Augmented Architecture for Ultra-Long Contexts: Recognizing that even extended context windows cannot accommodate arbitrarily long sequences, we develop a memory management framework with multi-stage fusion RL training that seamlessly integrates single-pass reasoning with iterative memory-based processing for tasks exceeding 4M tokens. Based on Qwen3-30B-A3B-Thinking, QwenLong-L1.5 achieves performance comparable to GPT-5 and Gemini-2.5-Pro on long-context reasoning benchmarks, surpassing its baseline by 9.90 points on average. On ultra-long tasks (1M~4M tokens), QwenLong-L1.5's memory-agent framework yields a 9.48-point gain over the agent baseline. Additionally, the acquired long-context reasoning ability translates to enhanced performance in general domains like scientific reasoning, memory tool using, and extended dialogue.
☆ Building from Scratch: A Multi-Agent Framework with Human-in-the-Loop for Multilingual Legal Terminology Mapping
Accurately mapping legal terminology across languages remains a significant challenge, especially for language pairs like Chinese and Japanese, which share a large number of homographs with different meanings. Existing resources and standardized tools for these languages are limited. To address this, we propose a human-AI collaborative approach for building a multilingual legal terminology database, based on a multi-agent framework. This approach integrates advanced large language models and legal domain experts throughout the entire process-from raw document preprocessing, article-level alignment, to terminology extraction, mapping, and quality assurance. Unlike a single automated pipeline, our approach places greater emphasis on how human experts participate in this multi-agent system. Humans and AI agents take on different roles: AI agents handle specific, repetitive tasks, such as OCR, text segmentation, semantic alignment, and initial terminology extraction, while human experts provide crucial oversight, review, and supervise the outputs with contextual knowledge and legal judgment. We tested the effectiveness of this framework using a trilingual parallel corpus comprising 35 key Chinese statutes, along with their English and Japanese translations. The experimental results show that this human-in-the-loop, multi-agent workflow not only improves the precision and consistency of multilingual legal terminology mapping but also offers greater scalability compared to traditional manual methods.
comment: 43 pages, 6 fingures, accepted in Artificial Intelligence and Law (2025)
☆ Meta-GPT: Decoding the Metasurface Genome with Generative Artificial Intelligence
Advancing artificial intelligence for physical sciences requires representations that are both interpretable and compatible with the underlying laws of nature. We introduce METASTRINGS, a symbolic language for photonics that expresses nanostructures as textual sequences encoding materials, geometries, and lattice configurations. Analogous to molecular textual representations in chemistry, METASTRINGS provides a framework connecting human interpretability with computational design by capturing the structural hierarchy of photonic metasurfaces. Building on this representation, we develop Meta-GPT, a foundation transformer model trained on METASTRINGS and finetuned with physics-informed supervised, reinforcement, and chain-of-thought learning. Across various design tasks, the model achieves <3% mean-squared spectral error and maintains >98% syntactic validity, generating diverse metasurface prototypes whose experimentally measured optical responses match their target spectra. These results demonstrate that Meta-GPT can learn the compositional rules of light-matter interactions through METASTRINGS, laying a rigorous foundation for AI-driven photonics and representing an important step toward a metasurface genome project.
comment: Keywords: Physics-informed machine learning; Transformer models; Reinforcement learning; Chain-of-thought reasoning; Metasurfaces; Nanophotonics; Inverse design
☆ Olmo 3
We introduce Olmo 3, a family of state-of-the-art, fully-open language models at the 7B and 32B parameter scales. Olmo 3 model construction targets long-context reasoning, function calling, coding, instruction following, general chat, and knowledge recall. This release includes the entire model flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, data point, and dependency used to build it. Our flagship model, Olmo 3 Think 32B, is the strongest fully-open thinking model released to-date.
☆ Hierarchical Multi-agent Large Language Model Reasoning for Autonomous Functional Materials Discovery
Artificial intelligence is reshaping scientific exploration, but most methods automate procedural tasks without engaging in scientific reasoning, limiting autonomy in discovery. We introduce Materials Agents for Simulation and Theory in Electronic-structure Reasoning (MASTER), an active learning framework where large language models autonomously design, execute, and interpret atomistic simulations. In MASTER, a multimodal system translates natural language into density functional theory workflows, while higher-level reasoning agents guide discovery through a hierarchy of strategies, including a single agent baseline and three multi-agent approaches: peer review, triage-ranking, and triage-forms. Across two chemical applications, CO adsorption on Cu-surface transition metal (M) adatoms and on M-N-C catalysts, reasoning-driven exploration reduces required atomistic simulations by up to 90% relative to trial-and-error selection. Reasoning trajectories reveal chemically grounded decisions that cannot be explained by stochastic sampling or semantic bias. Altogether, multi-agent collaboration accelerates materials discovery and marks a new paradigm for autonomous scientific exploration.
comment: Keywords: Multi-agent reasoning; Large language models; Active learning; AI-driven simulation; Materials discovery; Density functional theory; Surface chemistry
☆ Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing
The real-time deployment of cascaded generative AI pipelines for applications like video translation is constrained by significant system-level challenges. These include the cumulative latency of sequential model inference and the quadratic ($\mathcal{O}(N^2)$) computational complexity that renders multi-user video conferencing applications unscalable. This paper proposes and evaluates a practical system-level framework designed to mitigate these critical bottlenecks. The proposed architecture incorporates a turn-taking mechanism to reduce computational complexity from quadratic to linear in multi-user scenarios, and a segmented processing protocol to manage inference latency for a perceptually real-time experience. We implement a proof-of-concept pipeline and conduct a rigorous performance analysis across a multi-tiered hardware setup, including commodity (NVIDIA RTX 4060), cloud (NVIDIA T4), and enterprise (NVIDIA A100) GPUs. Our objective evaluation demonstrates that the system achieves real-time throughput ($τ< 1.0$) on modern hardware. A subjective user study further validates the approach, showing that a predictable, initial processing delay is highly acceptable to users in exchange for a smooth, uninterrupted playback experience. The work presents a validated, end-to-end system design that offers a practical roadmap for deploying scalable, real-time generative AI applications in multilingual communication platforms.
comment: Accepted manuscript. Published in Applied Sciences, 2025
☆ Let's (not) just put things in Context: Test-Time Training for Long-Context LLMs
Progress on training and architecture strategies has enabled LLMs with millions of tokens in context length. However, empirical evidence suggests that such long-context LLMs can consume far more text than they can reliably use. On the other hand, it has been shown that inference-time compute can be used to scale performance of LLMs, often by generating thinking tokens, on challenging tasks involving multi-step reasoning. Through controlled experiments on sandbox long-context tasks, we find that such inference-time strategies show rapidly diminishing returns and fail at long context. We attribute these failures to score dilution, a phenomenon inherent to static self-attention. Further, we show that current inference-time strategies cannot retrieve relevant long-context signals under certain conditions. We propose a simple method that, through targeted gradient updates on the given context, provably overcomes limitations of static self-attention. We find that this shift in how inference-time compute is spent leads to consistently large performance improvements across models and long-context benchmarks. Our method leads to large 12.6 and 14.1 percentage point improvements for Qwen3-4B on average across subsets of LongBench-v2 and ZeroScrolls benchmarks. The takeaway is practical: for long context, a small amount of context-specific training is a better use of inference compute than current inference-time scaling strategies like producing more thinking tokens.
☆ FiNERweb: Datasets and Artifacts for Scalable Multilingual Named Entity Recognition
Recent multilingual named entity recognition (NER) work has shown that large language models (LLMs) can provide effective synthetic supervision, yet such datasets have mostly appeared as by-products of broader experiments rather than as systematic, reusable resources. We introduce FiNERweb, a dataset-creation pipeline that scales the teacher-student paradigm to 91 languages and 25 scripts. Building on FineWeb-Edu, our approach trains regression models to identify NER-relevant passages and annotates them with multilingual LLMs, resulting in about 225k passages with 235k distinct entity labels. Our experiments show that the regression model achieves more than 84 F1, and that models trained on FiNERweb obtain comparable or improved performance in zero shot transfer settings on English, Thai, and Swahili, despite being trained on 19x less data than strong baselines. In addition, we assess annotation quality using LLM-as-a-judge and observe consistently high scores for both faithfulness (3.99 out of 5) and completeness (4.05 out of 5), indicating reliable and informative annotations. Further, we release the dataset with both English labels and translated label sets in the respective target languages because we observe that the performance of current state-of-the-art models drops by 0.02 to 0.09 F1 when evaluated using target language labels instead of English ones. We release FiNERweb together with all accompanying artifacts to the research community in order to facilitate more effective student-teacher training for multilingual named entity recognition.
☆ EvoLattice: Persistent Internal-Population Evolution through Multi-Alternative Quality-Diversity Graph Representations for LLM-Guided Program Discovery
Large language models (LLMs) are increasingly used to evolve programs and multi-agent systems, yet most existing approaches rely on overwrite-based mutations that maintain only a single candidate at a time. Such methods discard useful variants, suffer from destructive edits, and explore a brittle search space prone to structural failure. We introduce EvoLattice, a framework that represents an entire population of candidate programs or agent behaviors within a single directed acyclic graph. Each node stores multiple persistent alternatives, and every valid path through the graph defines a distinct executable candidate, yielding a large combinatorial search space without duplicating structure. EvoLattice enables fine-grained alternative-level evaluation by scoring each alternative across all paths in which it appears, producing statistics that reveal how local design choices affect global performance. These statistics provide a dense, data-driven feedback signal for LLM-guided mutation, recombination, and pruning, while preserving successful components. Structural correctness is guaranteed by a deterministic self-repair mechanism that enforces acyclicity and dependency consistency independently of the LLM. EvoLattice naturally extends to agent evolution by interpreting alternatives as prompt fragments or sub-agent behaviors. Across program synthesis (proxy and optimizer meta-learning), EvoLattice yields more stable evolution, greater expressivity, and stronger improvement trajectories than prior LLM-guided methods. The resulting dynamics resemble quality-diversity optimization, emerging implicitly from EvoLattice's internal multi-alternative representation rather than an explicit external archive.
♻ ☆ IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is used to specialize model behavior by training weights to produce intended target responses for queries. In contrast, In-Context Learning (ICL) adapts models during inference with instructions or demonstrations in the prompt. ICL can offer better generalizability and more calibrated responses compared to SFT in data scarce settings, at the cost of more inference compute. In this work, we ask the question: Can ICL's internal computations be used to improve the qualities of SFT? We first show that ICL and SFT produce distinct activation patterns, indicating that the two methods achieve adaptation through different functional mechanisms. Motivated by this observation and to use ICL's rich functionality, we introduce ICL Activation Alignment (IA2), a self-distillation technique which aims to replicate ICL's activation patterns in SFT models and incentivizes ICL-like internal reasoning. Performing IA2 as a priming step before SFT significantly improves the accuracy and calibration of model outputs, as shown by our extensive empirical results on 12 popular benchmarks and two model families. This finding is not only practically useful, but also offers a conceptual window into the inner mechanics of model adaptation.
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate seven diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ MALLM: Multi-Agent Large Language Models Framework EMNLP 2025
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Hugging Face dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM enables researchers to systematically configure, run, and evaluate debates for their problems, facilitating the understanding of the components and their interplay.
comment: Accepted at EMNLP 2025 (Demo)
♻ ☆ Beyond Next-Token Prediction: A Performance Characterization of Diffusion versus Autoregressive Language Models
Large Language Models (LLMs) have achieved state-of-the-art performance on a broad range of Natural Language Processing (NLP) tasks, including document processing and code generation. Autoregressive Language Models (ARMs), which generate tokens sequentially conditioned on all previous tokens, have been the predominant paradigm for LLMs. While these models have achieved high accuracy across a range of downstream tasks, they exhibit low arithmetic intensity due to the inherent sequential dependency in next-token prediction. Recently, Diffusion Language Models (DLMs) have emerged as a promising alternative architecture. DLMs generate output tokens in parallel, mitigating the limitations of sequential decoding. However, the performance implications of DLMs relative to commonly deployed ARMs are not fully understood. In this work, we present a comprehensive study of the performance characteristics of ARMs and DLMs, combining theoretical analysis with empirical profiling to characterize the trade-offs between these approaches. We show that although DLMs can achieve higher arithmetic intensity than ARMs by leveraging parallelism across token positions, they fail to scale effectively with longer contexts. We then explore block-wise decoding for DLMs, which decouples arithmetic intensity from sequence length and enables better scaling to long contexts (similar to ARMs). We also examine batched inference and find that ARMs exhibit superior throughput as they benefit more from parallelism across sequences in the batch. Finally, we highlight opportunities for accelerating DLM inference, emphasizing that reducing the number of sampling steps is key for open-source DLMs to achieve lower latency relative to ARMs.
comment: 11 pages, 5 figures
♻ ☆ False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
♻ ☆ AraReasoner: Evaluating Reasoning-Based LLMs for Arabic NLP
Large language models (LLMs) have shown remarkable progress in reasoning abilities and general natural language processing (NLP) tasks, yet their performance on Arabic data, characterized by rich morphology, diverse dialects, and complex script, remains underexplored. This paper presents a comprehensive benchmarking study of multiple reasoning-focused LLMs, with a special emphasis on the newly introduced DeepSeek models, across a suite of fifteen Arabic NLP tasks. We experiment with various strategies, including zero-shot, few-shot, and fine-tuning. This allows us to systematically evaluate performance on datasets covering a range of applications to examine their capacity for linguistic reasoning under different levels of complexity. Our experiments reveal several key findings. First, carefully selecting just three in-context examples delivers an average uplift of over 13 F1 points on classification tasks-boosting sentiment analysis from 35.3% to 87.5% and paraphrase detection from 56.1% to 87.0%. Second, reasoning-focused DeepSeek architectures outperform a strong GPT o4-mini baseline by an average of 12 F1 points on complex inference tasks in the zero-shot setting. Third, LoRA-based fine-tuning yields up to an additional 8 points in F1 and BLEU compared to equivalent increases in model scale. The code is available at https://github.com/gufranSabri/deepseek-evals
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many views treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary modifications, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and less explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignment(s) from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Geschlechtsübergreifende Maskulina im Sprachgebrauch Eine korpusbasierte Untersuchung zu lexemspezifischen Unterschieden
This study examines the distribution and linguistic characteristics of generic masculines (GM) in contemporary German press texts. The use of masculine personal nouns to refer to mixed-gender groups or unspecified individuals has been widely debated in academia and the public, with con-flicting perspectives on its gender-neutrality. While psycholinguistic studies suggest that GM is more readily associated with male referents, corpus-based analyses of its actual use remain scarce. We investigate GM in a large corpus of press texts, focusing on lexeme-specific differences across dif-ferent types of personal nouns. We conducted manual annotations of the whole inflectional para-digm of 21 personal nouns, resulting in 6,195 annotated tokens. Our findings reveal considerable differences between lexical items, especially between passive role nouns and prestige-related per-sonal nouns. On a grammatical level, we find that GM occurs predominantly in the plural and in indefinite noun phrases. Furthermore, our data shows that GM is not primarily used to denote entire classes of people, as has been previously claimed. By providing an empirical insight into the use of GM in authentic written language, we contribute to a more nuanced understanding of its forms and manifestations. These findings provide a solid basis for aligning linguistic stimuli in psy-cholinguistic studies more closely with real-world language use.
comment: 32 pages, in German language, 8 figures
♻ ☆ Are most sentences unique? An empirical examination of Chomskyan claims
A repeated claim in linguistics is that the majority of linguistic utterances are unique. For example, Pinker (1994: 10), summarizing an argument by Noam Chomsky, states that "virtually every sentence that a person utters or understands is a brand-new combination of words, appearing for the first time in the history of the universe." With the increased availability of large corpora, this is a claim that can be empirically investigated. The current paper addresses the question by using the NLTK Python library to parse corpora of different genres, providing counts of exact string matches in each. Results show that while completely unique sentences are often the majority of corpora, this is highly constrained by genre, and that duplicate sentences are not an insignificant part of any individual corpus.
♻ ☆ How Far Are We from Genuinely Useful Deep Research Agents?
Deep Research Agents (DRAs) aim to automatically produce analyst-level reports through iterative information retrieval and synthesis. However, most existing DRAs were validated on question-answering benchmarks, while research on generating comprehensive reports remains overlooked. Worse, current benchmarks for report synthesis suffer from task complexity and subjective metrics -- this fails to reflect user demands and limits the practical utility of generated reports. To address these gaps, we present Fine-grained DEepResearch bench (FINDER), an enhanced benchmark consisting of 100 human-curated research tasks with 419 structured checklist items that standardize report structure, analytical depth, and factual grounding. Based on approximately 1,000 reports produced by mainstream DRAs, we further propose Deep rEsearch Failure Taxonomy (DEFT), the first failure taxonomy for deep research agents. DEFT contains 14 fine-grained failure modes across reasoning, retrieval, and generation, and is built upon grounded theory with human-LLM co-annotating and inter-annotator reliability validation. Our experimental findings reveal that current DRAs struggle not with task comprehension but with evidence integration, verification, and reasoning-resilient planning.
comment: 34 pages
♻ ☆ From Clicks to Preference: A Multi-stage Alignment Framework for Generative Query Suggestion in Conversational System KDD
Generative query suggestion using large language models offers a powerful way to enhance conversational systems, but aligning outputs with nuanced user preferences remains a critical challenge. To address this, we introduce a multi-stage framework designed for progressive alignment between the generation policy and user intent. Our pipeline begins with prompt engineering as a cold-start strategy, followed by the Supervised Fine-Tuning stage, in which we introduce a distillation method on click logs to create a robust foundational model. To better model user preferences while capturing their inherent uncertainty, we develop a Gaussian Reward Model (GaRM) that represents user preferences as probability distributions rather than point estimates. Finally, we employ reinforcement learning to align the generation policy with these preferences, guided by a composite reward function that integrates GaRM with auxiliary heuristics to mitigate reward hacking. To maintain training stability, this process is enhanced by a novel out-of-distribution regularization method and a two-stage reward fusion technique. Extensive experiments demonstrate that our framework significantly outperforms baselines on both automatic and human evaluations and yields a 34\% relative increase in user engagement as measured by click-through rate in live A/B tests.
comment: Accepted by SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 26)
♻ ☆ Decoupling Understanding from Reasoning via Problem Space Mapping for Small-Scale Model Reasoning
Despite recent advances in the reasoning capabilities of Large Language Models (LLMs), improving the reasoning ability of Small Language Models (SLMs, e.g., up to 1.5B parameters) remains challenging. A key obstacle lies in the complexity and variability of natural language: essentially equivalent problems often appear in diverse surface forms, often obscured by redundant or distracting details. This imposes a dual burden on SLMs: they must first extract the core problem from complex linguistic input, and then perform reasoning based on that understanding. The resulting vast and noisy problem space hinders optimization, particularly for models with limited capacity. To address this, we propose a new framework that decouples understanding from reasoning by mapping natural language problems into a canonical problem space-a semantically simplified yet expressive domain. This enables SLMs to focus on reasoning over standardized inputs, free from linguistic variability. Within this framework, we introduce DURIT (Decoupled Understanding from Reasoning via Iterative Training), a three-step algorithm that iteratively: (1) mapping natural language problems via reinforcement learning, (2) aligns reasoning trajectories through self-distillation, and (3) trains reasoning policies in the problem space. The mapper and reasoner are co-trained in an alternating loop throughout this process. Experiments show that DURIT substantially improves SLMs' performance on both in-domain and out-of-domain mathematical and logical reasoning tasks. Beyond improving reasoning capabilities, DURIT also improves the robustness of reasoning, validating decoupling understanding from reasoning as an effective strategy for strengthening SLMs.
♻ ☆ A survey of diversity quantification in natural language processing: The why, what, where and how
The concept of diversity has received increased consideration in Natural Language Processing (NLP) in recent years. This is due to various motivations like promoting and inclusion, approximating human linguistic behavior, and increasing systems' performance. Diversity has however often been addressed in an ad hoc manner in NLP, and with few explicit links to other domains where this notion is better theorized. We survey articles in the ACL Anthology from the past 6 years, with "diversity" or "diverse" in their title. We find a wide range of settings in which diversity is quantified, often highly specialized and using inconsistent terminology. We put forward a unified taxonomy of why, what on, where, and how diversity is measured in NLP. Diversity measures are cast upon a unified framework from ecology and economy (Stirling, 2007) with 3 dimensions of diversity: variety, balance and disparity. We discuss the trends which emerge due to this systematized approach. We believe that this study paves the way towards a better formalization of diversity in NLP, which should bring a better understanding of this notion and a better comparability between various approaches.
♻ ☆ From Pruning to Grafting: Dynamic Knowledge Redistribution via Learnable Layer Fusion
Structured pruning of Generative Pre-trained Transformers (GPTs) offers a promising path to efficiency but often suffers from irreversible performance degradation due to the discarding of transformer blocks. In this paper, we introduce FuseGPT, a compression paradigm that reframes structured pruning as iterative knowledge grafting rather than simple removal. Motivated by the observation that linear block merging fails to capture non-linear feature disparities and that block importance fluctuates dynamically during pruning, FuseGPT employs a dual-strategy pipeline. First, we propose Macro Influence (MI), a dynamic fusion-aware metric that continuously re-evaluates block redundancy as the network topology evolves. Second, instead of rigid parameter averaging, we introduce a learnable low-rank fusion mechanism that adaptively grafts the knowledge of pruned blocks onto surviving layers via lightweight local distillation. Extensive experiments on LLaMA, Mistral, Qwen, and Phi families demonstrate that FuseGPT establishes a new state-of-the-art on the compression-accuracy Pareto frontier: at 25\% sparsity, FuseGPT achieves lower perplexity than prior methods at 20\% sparsity, improves zero-shot reasoning by up to 4.5 points, and delivers 1.33$\times$ inference speedup with 25\% memory reduction. Furthermore, FuseGPT is orthogonal to quantization, achieving 52.1\% total compression with negligible quality loss when combined with 4-bit GPTQ. We make our code publicly available at https://github.com/JarvisPei/FuseGPT.
♻ ☆ LegalRikai: Open Benchmark -- Benchmark for Complex Japanese Corporate Legal Tasks
This paper introduces LegalRikai: Open Benchmark, a new benchmark comprising four complex tasks that emulate Japanese corporate legal practices. The benchmark was created by legal professionals under the supervision of an attorney. This benchmark has 100 samples that require long-form, structured outputs, and we evaluated them against multiple practical criteria. We conducted both human and automated evaluations using leading LLMs, including GPT-5, Gemini 2.5 Pro, and Claude Opus 4.1. Our human evaluation revealed that abstract instructions prompted unnecessary modifications, highlighting model weaknesses in document-level editing that were missed by conventional short-text tasks. Furthermore, our analysis reveals that automated evaluation aligns well with human judgment on criteria with clear linguistic grounding, and assessing structural consistency remains a challenge. The result demonstrates the utility of automated evaluation as a screening tool when expert availability is limited. We propose a dataset evaluation framework to promote more practice-oriented research in the legal domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ From Imitation to Discrimination: Toward A Generalized Curriculum Advantage Mechanism Enhancing Cross-Domain Reasoning Tasks AAAI 2026
Reinforcement learning has emerged as a paradigm for post-training large language models, boosting their reasoning capabilities. Such approaches compute an advantage value for each sample, reflecting better or worse performance than expected, thereby yielding both positive and negative signals for training. However, the indiscriminate mixing of the two signals in existing methods, especially from the early stages, may lead to ambiguous guidance and limited gains. To address this issue, we propose **CAPO** (**C**urriculum **A**dvantage **P**olicy **O**ptimization), an adaptive curriculum mechanism based on advantage signals. The proposed mechanism bootstraps imitation learning with positive-only advantage samples to establish robust foundations, and subsequently introduces negative signals to cultivate discriminative capabilities, thereby improving generalization across complex scenarios. Compatible with diverse optimization methods including GRPO, PPO, RLOO, and Reinforce++, our method consistently achieves stable and significant improvements in mathematical reasoning tasks, and further generalizes effectively to multimodal Graphical User Interface (GUI) reasoning scenarios, establishing itself as a versatile and robust optimization framework.
comment: Accepted by AAAI 2026
♻ ☆ A Pipeline to Assess Merging Methods via Behavior and Internals
Merging methods combine the weights of multiple language models (LMs) to leverage their capacities, such as for domain adaptation. While existing studies investigate merged models from a solely behavioral perspective, we offer the first comprehensive view by assessing and connecting their behavior and internals. We present a novel evaluation pipeline that first merges multiple parent LMs, and then evaluates the merged models in comparison to the initial ones based on their behavior on downstream tasks, like MMLU, and the internal encoded linguistic competence. We showcase this pipeline by assessing the merging of instruction fine-tuned with math- and code-adapted LMs from the Qwen2.5 family. Our results show that merging methods impacts behavior and internals differently. While the performance of merged models is typically between that of the two parent models, their encoded information about linguistic phenomena, particularly in morphology and syntax, can surpass the parent models. Moreover, we find weak ranking correlation between this behavior and internal evaluation. With our pipeline and initial results, we emphasize the need for more comprehensive evaluations of model merging methods to gain a faithful understanding of their capabilities and reliability, beyond potential superficial behavioral advances.
comment: BlackboxNLP
♻ ☆ Cost-aware LLM-based Online Dataset Annotation
Recent advances in large language models (LLMs) have enabled automated dataset labeling with minimal human supervision. While majority voting across multiple LLMs can improve label reliability by mitigating individual model biases, it incurs high computational costs due to repeated querying. In this work, we propose a novel online framework, Cost-aware Majority Voting (CaMVo), for efficient and accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of LLMs for each data instance based on contextual embeddings, balancing confidence and cost without requiring pre-training or ground-truth labels. Leveraging a LinUCB-based selection mechanism and a Bayesian estimator over confidence scores, CaMVo estimates a lower bound on labeling accuracy for each LLM and aggregates responses through weighted majority voting. Our empirical evaluation on the MMLU and IMDB Movie Review datasets demonstrates that CaMVo achieves comparable or superior accuracy to full majority voting while significantly reducing labeling costs. This establishes CaMVo as a practical and robust solution for cost-efficient annotation in dynamic labeling environments.
♻ ☆ SNS-Bench-VL: Benchmarking Multimodal Large Language Models in Social Networking Services
With the increasing integration of visual and textual content in Social Networking Services (SNS), evaluating the multimodal capabilities of Large Language Models (LLMs) is crucial for enhancing user experience, content understanding, and platform intelligence. Existing benchmarks primarily focus on text-centric tasks, lacking coverage of the multimodal contexts prevalent in modern SNS ecosystems. In this paper, we introduce SNS-Bench-VL, a comprehensive multimodal benchmark designed to assess the performance of Vision-Language LLMs in real-world social media scenarios. SNS-Bench-VL incorporates images and text across 8 multimodal tasks, including note comprehension, user engagement analysis, information retrieval, and personalized recommendation. It comprises 4,001 carefully curated multimodal question-answer pairs, covering single-choice, multiple-choice, and open-ended tasks. We evaluate over 25 state-of-the-art multimodal LLMs, analyzing their performance across tasks. Our findings highlight persistent challenges in multimodal social context comprehension. We hope SNS-Bench-VL will inspire future research towards robust, context-aware, and human-aligned multimodal intelligence for next-generation social networking services.
comment: We found problems in the code while rechecking our implementation. These issues led to noticeable numerical discrepancies, making some of the reported results and conclusions potentially unreliable. Therefore, we request to withdraw this submission
♻ ☆ Pet-Bench: Benchmarking the Abilities of Large Language Models as E-Pets in Social Network Services
As interest in using Large Language Models for interactive and emotionally rich experiences grows, virtual pet companionship emerges as a novel yet underexplored application. Existing approaches focus on basic pet role-playing interactions without systematically benchmarking LLMs for comprehensive companionship. In this paper, we introduce Pet-Bench, a dedicated benchmark that evaluates LLMs across both self-interaction and human-interaction dimensions. Unlike prior work, Pet-Bench emphasizes self-evolution and developmental behaviors alongside interactive engagement, offering a more realistic reflection of pet companionship. It features diverse tasks such as intelligent scheduling, memory-based dialogues, and psychological conversations, with over 7,500 interaction instances designed to simulate pet behaviors. Evaluation of 28 LLMs reveals significant performance variations linked to model size and inherent capabilities, underscoring the need for specialized optimization in this domain. Pet-Bench serves as a foundational resource for benchmarking pet-related LLM abilities and advancing emotionally immersive human-pet interactions.
♻ ☆ ALIGN: Word Association Learning for Cultural Alignment in Large Language Models
Large language models (LLMs) exhibit cultural bias from overrepresented viewpoints in training data, yet cultural alignment remains a challenge due to limited cultural knowledge and a lack of exploration into effective learning approaches. We introduce a cost-efficient and cognitively grounded method: fine-tuning LLMs on native speakers' word-association norms, leveraging cognitive psychology findings that such associations capture cultural knowledge. Using word association datasets from native speakers in the US (English) and China (Mandarin), we train Llama-3.1-8B and Qwen-2.5-7B via supervised fine-tuning and preference optimization. We evaluate models' cultural alignment through a two-tier evaluation framework that spans lexical associations and cultural value alignment using the World Values Survey. Results show significant improvements in lexical alignment (16-20% English, 43-165% Mandarin on Precision@5) and high-level cultural value shifts. On a subset of 50 questions where US and Chinese respondents diverge most, fine-tuned Qwen nearly doubles its response alignment with Chinese values (13 to 25). Remarkably, our trained 7-8B models match or exceed vanilla 70B baselines, demonstrating that a few million of culture-grounded associations achieve value alignment without expensive retraining. Our work highlights both the promise and the need for future research grounded in human cognition in improving cultural alignment in AI models.
♻ ☆ CLARIFID: Improving Radiology Report Generation by Reinforcing Clinically Accurate Impressions and Enforcing Detailed Findings
Automatic generation of radiology reports has the potential to alleviate radiologists' significant workload, yet current methods struggle to deliver clinically reliable conclusions. In particular, most prior approaches focus on producing fluent text without effectively ensuring the factual correctness of the reports and often rely on single-view images, limiting diagnostic comprehensiveness. We propose CLARIFID, a novel framework that directly optimizes diagnostic correctness by mirroring the two-step workflow of experts. Specifically, CLARIFID (1) learns the logical flow from Findings to Impression through section-aware pretraining, (2) is fine-tuned with Proximal Policy Optimization in which the CheXbert F1 score of the Impression section serves as the reward, (3) employs controlled decoding that completes "Findings" before synthesizing the "Impression", and (4) fuses multiple chest X-ray views via a vision-transformer-based multi-view encoder. During inference, we apply a next-token forcing strategy followed by report-level re-ranking, ensuring that the model first produces a comprehensive "Findings" section before synthesizing the "Impression" and thereby preserving coherent clinical reasoning. Experimental results on the MIMIC-CXR dataset demonstrate that our method achieves superior clinical efficacy and outperforms existing baselines on clinical efficacy scores.
♻ ☆ Efficiently Seeking Flat Minima for Better Generalization in Fine-Tuning Large Language Models and Beyond
Little research explores the correlation between the expressive ability and generalization ability of the low-rank adaptation (LoRA). Sharpness-Aware Minimization (SAM) improves model generalization for both Convolutional Neural Networks (CNNs) and Transformers by encouraging convergence to locally flat minima. However, the connection between sharpness and generalization has not been fully explored for LoRA due to the lack of tools to either empirically seek flat minima or develop theoretical methods. In this work, we propose Flat Minima LoRA (FMLoRA) and its efficient version, i.e., EFMLoRA, to seek flat minima for LoRA. Concretely, we theoretically demonstrate that perturbations in the full parameter space can be transferred to the low-rank subspace. This approach eliminates the potential interference introduced by perturbations across multiple matrices in the low-rank subspace. Our extensive experiments on large language models and vision-language models demonstrate that EFMLoRA achieves optimize efficiency comparable to that of LoRA while simultaneously attaining comparable or even better performance. For example, on the GLUE dataset with RoBERTa-large, EFMLoRA outperforms LoRA and full fine-tuning by 1.0% and 0.5% on average, respectively. On vision-language models, e.g., Qwen-VL-Chat, there are performance improvements of 1.5% and 1.0% on the SQA and VizWiz datasets, respectively. These empirical results also verify that the generalization of LoRA is closely related to sharpness, which is omitted by previous methods.
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ DABL: Detecting Semantic Anomalies in Business Processes Using Large Language Models
Detecting anomalies in business processes is crucial for ensuring operational success. While many existing methods rely on statistical frequency to detect anomalies, it's important to note that infrequent behavior doesn't necessarily imply undesirability. To address this challenge, detecting anomalies from a semantic viewpoint proves to be a more effective approach. However, current semantic anomaly detection methods treat a trace (i.e., process instance) as multiple event pairs, disrupting long-distance dependencies. In this paper, we introduce DABL, a novel approach for detecting semantic anomalies in business processes using large language models (LLMs). We collect 143,137 real-world process models from various domains. By generating normal traces through the playout of these process models and simulating both ordering and exclusion anomalies, we fine-tune Llama 2 using the resulting log. Through extensive experiments, we demonstrate that DABL surpasses existing state-of-the-art semantic anomaly detection methods in terms of both generalization ability and learning of given processes. Users can directly apply DABL to detect semantic anomalies in their own datasets without the need for additional training. Furthermore, DABL offers the capability to interpret the causes of anomalies in natural language, providing valuable insights into the detected anomalies.
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
♻ ☆ Do MLLMs Really Understand the Charts?
Although Multimodal Large Language Models (MLLMs) have demonstrated increasingly impressive performance in chart understanding, most of them exhibit alarming hallucinations and significant performance degradation when handling non-annotated charts. We argue that current MLLMs rely largely on visual recognition rather than visual reasoning to interpret the charts, and visual estimation of numerical values is one of the most fundamental capabilities in chart understanding that require complex visual reasoning. To prove this, we introduce ChartVRBench, a benchmark meticulously designed to isolate and evaluate visual reasoning ability in chart understanding. Furthermore, we propose ChartVR-3B/7B trained with a novel Visual Reasoning Reinforcement Finetuning (VR-RFT) strategy to strengthen genuine chart visual reasoning abilities. Extensive experiments show that ChartVR achieves superior performance on ChartVRBench, outperforming even powerful proprietary models. Moreover, the visual reasoning skills cultivated by the proposed VR-RFT demonstrate strong generalization, leading to significant performance gains across a diverse suite of public chart understanding benchmarks. The code and dataset will be publicly available upon publication.
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Beyond Magic Words: Sharpness-Aware Prompt Evolving for Robust Large Language Models with TARE
The performance of Large Language Models (LLMs) hinges on carefully engineered prompts. However, prevailing prompt optimization methods, ranging from heuristic edits and reinforcement learning to evolutionary search, primarily target point-wise accuracy. They seldom enforce paraphrase invariance or searching stability, and therefore cannot remedy this brittleness in practice. Automated prompt search remains brittle: small, semantically preserving paraphrases often cause large performance swings. We identify this brittleness as the textual sharpness of the prompt landscape. In this work, we provide the first formal treatment of textual sharpness in the discrete, semantic space of prompts, together with an operational robustness criterion over a semantic neighborhood; the design is black-box or API-only, requiring no gradients to update the model's parameters. Then we introduce TARE (Textual Sharpness-Aware Evolving), a derivative-free framework that alternates between an inner, sampling-based adversarial search that stresses a prompt with hard paraphrases and an outer, robust selection that prefers candidates whose neighborhoods remain strong. We further propose ATARE, which learns anisotropic weights to shape the semantic neighborhood and adapts its radius over time to balance exploration and fidelity. Diverse tasks evaluate our methods, whose design for minimizing textual sharpness gap leads to prompts that preserve accuracy under paraphrasing, outperforming accuracy-only prompt search while remaining computationally practical.
comment: We have identified a critical methodological error in Section 3 of the manuscript, which invalidates the main results; therefore, we request withdrawal for further revision
♻ ☆ Diagnose, Localize, Align: A Full-Stack Framework for Reliable LLM Multi-Agent Systems under Instruction Conflicts
Large Language Model (LLM)-powered multi-agent systems (MAS) have rapidly advanced collaborative reasoning, tool use, and role-specialized coordination in complex tasks. However, reliability-critical deployment remains hindered by a systemic failure mode: hierarchical compliance under instruction conflicts (system-user, peer-peer), where agents misprioritize system-level rules in the presence of competing demands. Moreover, widely used macro-level metrics (e.g., pass@k) obscure these micro-level violations and offer little actionable guidance for remedy. In this work, we present a full-stack, three-stage framework: (1) Diagnose - Contextualized Role Adherence Score (CRAS), a query-wise, context-aware scoring metric that decomposes role adherence into four measurable dimensions; (2) Localize - attention drift analysis revealing that instruction conflicts are resolved by attention heads that are largely concentrated in middle layers; (3) Align - Surgical Alignment of Instruction Layers (SAIL), which installs LoRA only on the localized focal layers and optimizes a token-weighted DPO-style preference objective that credits tokens by their focal attentional contribution. Across standard benchmarks and MAS frameworks, our surgical approach improves instruction hierarchy compliance (e.g., +5.60% with AutoGen on MedQA) without full-model finetuning.
comment: Upon further review, we realized that the version submitted to arXiv was not the final draft and omits crucial results and discussion. To avoid confusion and ensure the integrity of the record, we request withdrawal and will resubmit once the complete work is ready
♻ ☆ SpurLens: Automatic Detection of Spurious Cues in Multimodal LLMs
Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
♻ ☆ Unsupervised Acquisition of Discrete Grammatical Categories
This article presents experiments performed using a computational laboratory environment for language acquisition experiments. It implements a multi-agent system consisting of two agents: an adult language model and a daughter language model that aims to learn the mother language. Crucially, the daughter agent does not have access to the internal knowledge of the mother language model but only to the language exemplars the mother agent generates. These experiments illustrate how this system can be used to acquire abstract grammatical knowledge. We demonstrate how statistical analyses of patterns in the input data corresponding to grammatical categories yield discrete grammatical rules. These rules are subsequently added to the grammatical knowledge of the daughter language model. To this end, hierarchical agglomerative cluster analysis was applied to the utterances consecutively generated by the mother language model. It is argued that this procedure can be used to acquire structures resembling grammatical categories proposed by linguists for natural languages. Thus, it is established that non-trivial grammatical knowledge has been acquired. Moreover, the parameter configuration of this computational laboratory environment determined using training data generated by the mother language model is validated in a second experiment with a test set similarly resulting in the acquisition of non-trivial categories.
comment: 34 pages, 3 figures, 7 tables. Related work: Shakouri et al., arXiv:2512.02195
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Thinking with Visual Abstract: Enhancing Multimodal Reasoning via Visual Abstraction
Images usually convey richer detail than text, but often include redundant information, which potentially downgrades multimodal reasoning performance. When faced with lengthy or complex messages, humans tend to employ abstract thinking to convert them into simple and concise abstracts. Inspired by this cognitive strategy, we introduce a novel paradigm to elicit the ability to Think with Visual Abstract (VAT), by prompting Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance, permitting a more efficient visual reasoning mechanism via concentrated perception. VAT encourages models to focus on more essential visual elements, concepts and structural features by undermining redundant information compared with explicit thinking methods, such as Chain-of-thought (CoT) and tool-using approaches, that increase the complexity of reasoning process via inserting verbose intermediate steps and external knowledge. Experimental results show that VAT consistently empowers different MLLMs in visual perception and reasoning tasks. VAT achieves an average gain of $2.21\%$ over GPT-5 baseline, surpassing the gain of CoT, demonstrating that VAT better enhances multimodal task performance of MLLMs. Additionally, VAT spends fewer tokens while achieving higher performance. These findings highlight the effectiveness of visual abstract thinking and encourage further exploration of more diverse reasoning paradigms from the perspective of human cognition.
♻ ☆ The Gray Zone of Faithfulness: Taming Ambiguity in Unfaithfulness Detection
Ensuring that Large Language Models (LLMs) generate summaries faithful to a given source document is essential for real-world applications. While prior research has explored LLM faithfulness, existing benchmarks suffer from annotation ambiguity, primarily due to the ill-defined boundary of permissible external knowledge in generated outputs. For instance, common sense is often incorporated into responses and labeled as "faithful", yet the acceptable extent of such knowledge remains unspecified, leading to inconsistent annotations. To address this issue, we propose a novel faithfulness annotation framework, which introduces an intermediate category, Out-Dependent, to classify cases where external knowledge is required for verification. Using this framework, we construct VeriGray (Verification with the Gray Zone) -- a new unfaithfulness detection benchmark in summarization. Statistics reveal that even SOTA LLMs, such as GPT-5, exhibit hallucinations ($\sim 6\%$ of sentences) in summarization tasks. Moreover, a substantial proportion ($\sim 8\%$ on average of models) of generated sentences fall into the Out-Dependent category, underscoring the importance of resolving annotation ambiguity in unfaithfulness detection benchmarks. Experiments demonstrate that our benchmark poses significant challenges to multiple baseline methods, indicating considerable room for future improvement.
comment: Updates the evaluation results with the latest correction of our annotations and the improved parsing algorithm for LLM detectors' responses Evaluates a new method -- GPT-5 + RAG
♻ ☆ MRAG-Suite: A Diagnostic Evaluation Platform for Visual Retrieval-Augmented Generation
Multimodal Retrieval-Augmented Generation (Visual RAG) significantly advances question answering by integrating visual and textual evidence. Yet, current evaluations fail to systematically account for query difficulty and ambiguity. We propose MRAG-Suite, a diagnostic evaluation platform integrating diverse multimodal benchmarks (WebQA, Chart-RAG, Visual-RAG, MRAG-Bench). We introduce difficulty-based and ambiguity-aware filtering strategies, alongside MM-RAGChecker, a claim-level diagnostic tool. Our results demonstrate substantial accuracy reductions under difficult and ambiguous queries, highlighting prevalent hallucinations. MM-RAGChecker effectively diagnoses these issues, guiding future improvements in Visual RAG systems.
♻ ☆ Conveying Imagistic Thinking in Traditional Chinese Medicine Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine (TCM) theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop (HITL) framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis (IPA). Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient, and replicable HITL methodological pathway for the translation of ancient, concept-dense texts such as TCM.
comment: This is a duplicate of arXiv:2511.23059
♻ ☆ Solving Inequality Proofs with Large Language Models NeurIPS 2025
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 50 pages, 24 figures, accepted as a Spotlight at NeurIPS 2025
♻ ☆ GRADE: Generating multi-hop QA and fine-gRAined Difficulty matrix for RAG Evaluation EMNLP 2025
Retrieval-Augmented Generation (RAG) systems are widely adopted in knowledge-intensive NLP tasks, but current evaluations often overlook the structural complexity and multi-step reasoning required in real-world scenarios. These benchmarks overlook key factors such as the interaction between retrieval difficulty and reasoning depth. To address this gap, we propose GRADE, a novel evaluation framework that models task difficulty along two orthogonal dimensions: (1) reasoning depth, defined by the number of inference steps (hops), and (2) semantic distance between the query and its supporting evidence. We construct a synthetic multi-hop QA dataset from factual news articles by extracting knowledge graphs and augmenting them through semantic clustering to recover missing links, allowing us to generate diverse and difficulty-controlled queries. Central to our framework is a 2D difficulty matrix that combines generator-side and retriever-side difficulty. Experiments across multiple domains and models show that error rates strongly correlate with our difficulty measures, validating their diagnostic utility. GRADE enables fine-grained analysis of RAG performance and provides a scalable foundation for evaluating and improving multi-hop reasoning in real-world applications.
comment: Accepted at EMNLP 2025 findings
♻ ☆ Inverse Scaling in Test-Time Compute
We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy. Our evaluation tasks span four categories: simple counting tasks with distractors, regression tasks with spurious features, deduction tasks with constraint tracking, and advanced AI risks. We identify five distinct failure modes when models reason for longer: 1) Claude models become increasingly distracted by irrelevant information; 2) OpenAI o-series models resist distractors but overfit to problem framings; 3) models shift from reasonable priors to spurious correlations; 4) all models show difficulties in maintaining focus on complex deductive tasks; and 5) extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation. These findings suggest that while test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns. Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs.
comment: Published in TMLR (12/2025; Featured Certification; J2C Certification), 78 pages
♻ ☆ Pragmatic Inference for Moral Reasoning Acquisition: Generalization via Distributional Semantics
Moral reasoning has emerged as a promising research direction for Large Language Models (LLMs), yet achieving generalization remains a central challenge. From a linguistic standpoint, this difficulty arises because LLMs are adept at capturing distributional semantics, which fundamentally differs from the morals which operate at the pragmatic level. This paper investigates how LLMs can achieve generalized moral reasoning despite their reliance on distributional semantics. We propose pragmatic inference methods grounded in moral foundations theory, which leverage contextual information at each step to bridge the pragmatic gap and guide LLMs in connecting moral foundations with moral reasoning objectives. Experimental results demonstrate that our approach significantly enhances LLMs' generalization in moral reasoning, providing a foundation for future research grounded in moral foundations theory.
♻ ☆ A Systematic Evaluation of Preference Aggregation in Federated RLHF for Pluralistic Alignment of LLMs NeurIPS 2025
This paper addresses the challenge of aligning large language models (LLMs) with diverse human preferences within federated learning (FL) environments, where standard methods often fail to adequately represent diverse viewpoints. We introduce a comprehensive evaluation framework that systematically assesses the trade-off between alignment quality and fairness when using different aggregation strategies for human preferences. In our federated setting, each group locally evaluates rollouts and produces reward signals, and the server aggregates these group-level rewards without accessing any raw data. Specifically, we evaluate standard reward aggregation techniques (min, max, and average) and introduce a novel adaptive scheme that dynamically adjusts preference weights based on a group's historical alignment performance. Our experiments on question-answering (Q/A) tasks using a PPO-based RLHF pipeline demonstrate that our adaptive approach consistently achieves superior fairness while maintaining competitive alignment scores. This work offers a robust methodology for evaluating LLM behavior across diverse populations and provides a practical solution for developing truly pluralistic and fairly aligned models.
comment: This paper is accepted at the NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle
Computer Vision and Pattern Recognition 150
☆ DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
comment: Project page: https://susunghong.github.io/DiffusionBrowser
☆ LitePT: Lighter Yet Stronger Point Transformer
Modern neural architectures for 3D point cloud processing contain both convolutional layers and attention blocks, but the best way to assemble them remains unclear. We analyse the role of different computational blocks in 3D point cloud networks and find an intuitive behaviour: convolution is adequate to extract low-level geometry at high-resolution in early layers, where attention is expensive without bringing any benefits; attention captures high-level semantics and context in low-resolution, deep layers more efficiently. Guided by this design principle, we propose a new, improved 3D point cloud backbone that employs convolutions in early stages and switches to attention for deeper layers. To avoid the loss of spatial layout information when discarding redundant convolution layers, we introduce a novel, training-free 3D positional encoding, PointROPE. The resulting LitePT model has $3.6\times$ fewer parameters, runs $2\times$ faster, and uses $2\times$ less memory than the state-of-the-art Point Transformer V3, but nonetheless matches or even outperforms it on a range of tasks and datasets. Code and models are available at: https://github.com/prs-eth/LitePT.
comment: Project page: https://litept.github.io/
☆ Towards Scalable Pre-training of Visual Tokenizers for Generation
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the ``pre-training scaling problem`` and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://github.com/MiniMax-AI/VTP.
comment: Our pre-trained models are available at https://github.com/MiniMax-AI/VTP
☆ Recurrent Video Masked Autoencoders
We present Recurrent Video Masked-Autoencoders (RVM): a novel video representation learning approach that uses a transformer-based recurrent neural network to aggregate dense image features over time, effectively capturing the spatio-temporal structure of natural video data. RVM learns via an asymmetric masked prediction task requiring only a standard pixel reconstruction objective. This design yields a highly efficient ``generalist'' encoder: RVM achieves competitive performance with state-of-the-art video models (e.g. VideoMAE, V-JEPA) on video-level tasks like action recognition and point/object tracking, while also performing favorably against image models (e.g. DINOv2) on tasks that test geometric and dense spatial understanding. Notably, RVM achieves strong performance in the small-model regime without requiring knowledge distillation, exhibiting up to 30x greater parameter efficiency than competing video masked autoencoders. Moreover, we demonstrate that RVM's recurrent nature allows for stable feature propagation over long temporal horizons with linear computational cost, overcoming some of the limitations of standard spatio-temporal attention-based architectures. Finally, we use qualitative visualizations to highlight that RVM learns rich representations of scene semantics, structure, and motion.
☆ I-Scene: 3D Instance Models are Implicit Generalizable Spatial Learners
Generalization remains the central challenge for interactive 3D scene generation. Existing learning-based approaches ground spatial understanding in limited scene dataset, restricting generalization to new layouts. We instead reprogram a pre-trained 3D instance generator to act as a scene level learner, replacing dataset-bounded supervision with model-centric spatial supervision. This reprogramming unlocks the generator transferable spatial knowledge, enabling generalization to unseen layouts and novel object compositions. Remarkably, spatial reasoning still emerges even when the training scenes are randomly composed objects. This demonstrates that the generator's transferable scene prior provides a rich learning signal for inferring proximity, support, and symmetry from purely geometric cues. Replacing widely used canonical space, we instantiate this insight with a view-centric formulation of the scene space, yielding a fully feed-forward, generalizable scene generator that learns spatial relations directly from the instance model. Quantitative and qualitative results show that a 3D instance generator is an implicit spatial learner and reasoner, pointing toward foundation models for interactive 3D scene understanding and generation. Project page: https://luling06.github.io/I-Scene-project/
☆ LASER: Layer-wise Scale Alignment for Training-Free Streaming 4D Reconstruction
Recent feed-forward reconstruction models like VGGT and $π^3$ achieve impressive reconstruction quality but cannot process streaming videos due to quadratic memory complexity, limiting their practical deployment. While existing streaming methods address this through learned memory mechanisms or causal attention, they require extensive retraining and may not fully leverage the strong geometric priors of state-of-the-art offline models. We propose LASER, a training-free framework that converts an offline reconstruction model into a streaming system by aligning predictions across consecutive temporal windows. We observe that simple similarity transformation ($\mathrm{Sim}(3)$) alignment fails due to layer depth misalignment: monocular scale ambiguity causes relative depth scales of different scene layers to vary inconsistently between windows. To address this, we introduce layer-wise scale alignment, which segments depth predictions into discrete layers, computes per-layer scale factors, and propagates them across both adjacent windows and timestamps. Extensive experiments show that LASER achieves state-of-the-art performance on camera pose estimation and point map reconstruction %quality with offline models while operating at 14 FPS with 6 GB peak memory on a RTX A6000 GPU, enabling practical deployment for kilometer-scale streaming videos. Project website: $\href{https://neu-vi.github.io/LASER/}{\texttt{https://neu-vi.github.io/LASER/}}$
comment: 16 pages
☆ Feedforward 3D Editing via Text-Steerable Image-to-3D
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/
comment: https://glab-caltech.github.io/steer3d/
☆ JoVA: Unified Multimodal Learning for Joint Video-Audio Generation
In this paper, we present JoVA, a unified framework for joint video-audio generation. Despite recent encouraging advances, existing methods face two critical limitations. First, most existing approaches can only generate ambient sounds and lack the capability to produce human speech synchronized with lip movements. Second, recent attempts at unified human video-audio generation typically rely on explicit fusion or modality-specific alignment modules, which introduce additional architecture design and weaken the model simplicity of the original transformers. To address these issues, JoVA employs joint self-attention across video and audio tokens within each transformer layer, enabling direct and efficient cross-modal interaction without the need for additional alignment modules. Furthermore, to enable high-quality lip-speech synchronization, we introduce a simple yet effective mouth-area loss based on facial keypoint detection, which enhances supervision on the critical mouth region during training without compromising architectural simplicity. Extensive experiments on benchmarks demonstrate that JoVA outperforms or is competitive with both unified and audio-driven state-of-the-art methods in lip-sync accuracy, speech quality, and overall video-audio generation fidelity. Our results establish JoVA as an elegant framework for high-quality multimodal generation.
comment: Project page: \url{https://visual-ai.github.io/jova}
☆ Towards Interactive Intelligence for Digital Humans
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
☆ Directional Textual Inversion for Personalized Text-to-Image Generation
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
comment: Project page: https://kunheek.github.io/dti
☆ AgentIAD: Tool-Augmented Single-Agent for Industrial Anomaly Detection
Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces.
☆ Grab-3D: Detecting AI-Generated Videos from 3D Geometric Temporal Consistency
Recent advances in diffusion-based generation techniques enable AI models to produce highly realistic videos, heightening the need for reliable detection mechanisms. However, existing detection methods provide only limited exploration of the 3D geometric patterns present in generated videos. In this paper, we use vanishing points as an explicit representation of 3D geometry patterns, revealing fundamental discrepancies in geometric consistency between real and AI-generated videos. We introduce Grab-3D, a geometry-aware transformer framework for detecting AI-generated videos based on 3D geometric temporal consistency. To enable reliable evaluation, we construct an AI-generated video dataset of static scenes, allowing stable 3D geometric feature extraction. We propose a geometry-aware transformer equipped with geometric positional encoding, temporal-geometric attention, and an EMA-based geometric classifier head to explicitly inject 3D geometric awareness into temporal modeling. Experiments demonstrate that Grab-3D significantly outperforms state-of-the-art detectors, achieving robust cross-domain generalization to unseen generators.
☆ RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.
comment: Project page: https://zhoues.github.io/RoboTracer
World Models Can Leverage Human Videos for Dexterous Manipulation
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
☆ From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
comment: This work was presented at the BRACIS 2025 conference in Fortaleza
☆ Charge: A Comprehensive Novel View Synthesis Benchmark and Dataset to Bind Them All
This paper presents a new dataset for Novel View Synthesis, generated from a high-quality, animated film with stunning realism and intricate detail. Our dataset captures a variety of dynamic scenes, complete with detailed textures, lighting, and motion, making it ideal for training and evaluating cutting-edge 4D scene reconstruction and novel view generation models. In addition to high-fidelity RGB images, we provide multiple complementary modalities, including depth, surface normals, object segmentation and optical flow, enabling a deeper understanding of scene geometry and motion. The dataset is organised into three distinct benchmarking scenarios: a dense multi-view camera setup, a sparse camera arrangement, and monocular video sequences, enabling a wide range of experimentation and comparison across varying levels of data sparsity. With its combination of visual richness, high-quality annotations, and diverse experimental setups, this dataset offers a unique resource for pushing the boundaries of view synthesis and 3D vision.
comment: Project page: https://charge-benchmark.github.io/
☆ MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. MindDrive achieves strong closed-loop performance on the challenging Bench2Drive benchmark, with a Driving Score (DS) of 78.04 and a Success Rate (SR) of 55.09%. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
comment: 16 pages, 12 figures, 6 tables; Project Page: https://xiaomi-mlab.github.io/MindDrive/
☆ SCR2-ST: Combine Single Cell with Spatial Transcriptomics for Efficient Active Sampling via Reinforcement Learning
Spatial transcriptomics (ST) is an emerging technology that enables researchers to investigate the molecular relationships underlying tissue morphology. However, acquiring ST data remains prohibitively expensive, and traditional fixed-grid sampling strategies lead to redundant measurements of morphologically similar or biologically uninformative regions, thus resulting in scarce data that constrain current methods. The well-established single-cell sequencing field, however, could provide rich biological data as an effective auxiliary source to mitigate this limitation. To bridge these gaps, we introduce SCR2-ST, a unified framework that leverages single-cell prior knowledge to guide efficient data acquisition and accurate expression prediction. SCR2-ST integrates a single-cell guided reinforcement learning-based (SCRL) active sampling and a hybrid regression-retrieval prediction network SCR2Net. SCRL combines single-cell foundation model embeddings with spatial density information to construct biologically grounded reward signals, enabling selective acquisition of informative tissue regions under constrained sequencing budgets. SCR2Net then leverages the actively sampled data through a hybrid architecture combining regression-based modeling with retrieval-augmented inference, where a majority cell-type filtering mechanism suppresses noisy matches and retrieved expression profiles serve as soft labels for auxiliary supervision. We evaluated SCR2-ST on three public ST datasets, demonstrating SOTA performance in both sampling efficiency and prediction accuracy, particularly under low-budget scenarios. Code is publicly available at: https://github.com/hrlblab/SCR2ST
☆ Do-Undo: Generating and Reversing Physical Actions in Vision-Language Models
We introduce the Do-Undo task and benchmark to address a critical gap in vision-language models: understanding and generating physically plausible scene transformations driven by real-world actions. Unlike prior work focused on object-level edits, Do-Undo requires models to simulate the outcome of a physical action and then accurately reverse it, reflecting true cause-and-effect in the visual world. We curate a large-scale dataset of reversible actions from real-world videos and design a training strategy enforcing consistency for robust action grounding. Our experiments reveal that current models struggle with physical reversibility, underscoring the importance of this task for embodied AI, robotics, and physics-aware generative modeling. Do-Undo establishes an intuitive testbed for evaluating and advancing physical reasoning in multimodal systems.
☆ DBT-DINO: Towards Foundation model based analysis of Digital Breast Tomosynthesis
Foundation models have shown promise in medical imaging but remain underexplored for three-dimensional imaging modalities. No foundation model currently exists for Digital Breast Tomosynthesis (DBT), despite its use for breast cancer screening. To develop and evaluate a foundation model for DBT (DBT-DINO) across multiple clinical tasks and assess the impact of domain-specific pre-training. Self-supervised pre-training was performed using the DINOv2 methodology on over 25 million 2D slices from 487,975 DBT volumes from 27,990 patients. Three downstream tasks were evaluated: (1) breast density classification using 5,000 screening exams; (2) 5-year risk of developing breast cancer using 106,417 screening exams; and (3) lesion detection using 393 annotated volumes. For breast density classification, DBT-DINO achieved an accuracy of 0.79 (95\% CI: 0.76--0.81), outperforming both the MetaAI DINOv2 baseline (0.73, 95\% CI: 0.70--0.76, p<.001) and DenseNet-121 (0.74, 95\% CI: 0.71--0.76, p<.001). For 5-year breast cancer risk prediction, DBT-DINO achieved an AUROC of 0.78 (95\% CI: 0.76--0.80) compared to DINOv2's 0.76 (95\% CI: 0.74--0.78, p=.57). For lesion detection, DINOv2 achieved a higher average sensitivity of 0.67 (95\% CI: 0.60--0.74) compared to DBT-DINO with 0.62 (95\% CI: 0.53--0.71, p=.60). DBT-DINO demonstrated better performance on cancerous lesions specifically with a detection rate of 78.8\% compared to Dinov2's 77.3\%. Using a dataset of unprecedented size, we developed DBT-DINO, the first foundation model for DBT. DBT-DINO demonstrated strong performance on breast density classification and cancer risk prediction. However, domain-specific pre-training showed variable benefits on the detection task, with ImageNet baseline outperforming DBT-DINO on general lesion detection, indicating that localized detection tasks require further methodological development.
☆ LongVie 2: Multimodal Controllable Ultra-Long Video World Model
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.
comment: Project Page: https://vchitect.github.io/LongVie2-project/
☆ DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://github.com/zhanghaoyue/DA_SSL_TURBT.
☆ Lighting in Motion: Spatiotemporal HDR Lighting Estimation
We present Lighting in Motion (LiMo), a diffusion-based approach to spatiotemporal lighting estimation. LiMo targets both realistic high-frequency detail prediction and accurate illuminance estimation. To account for both, we propose generating a set of mirrored and diffuse spheres at different exposures, based on their 3D positions in the input. Making use of diffusion priors, we fine-tune powerful existing diffusion models on a large-scale customized dataset of indoor and outdoor scenes, paired with spatiotemporal light probes. For accurate spatial conditioning, we demonstrate that depth alone is insufficient and we introduce a new geometric condition to provide the relative position of the scene to the target 3D position. Finally, we combine diffuse and mirror predictions at different exposures into a single HDRI map leveraging differentiable rendering. We thoroughly evaluate our method and design choices to establish LiMo as state-of-the-art for both spatial control and prediction accuracy.
☆ Image Diffusion Preview with Consistency Solver
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://github.com/G-U-N/consolver.
☆ MMhops-R1: Multimodal Multi-hop Reasoning AAAI 2026
The ability to perform multi-modal multi-hop reasoning by iteratively integrating information across various modalities and external knowledge is critical for addressing complex real-world challenges. However, existing Multi-modal Large Language Models (MLLMs) are predominantly limited to single-step reasoning, as existing benchmarks lack the complexity needed to evaluate and drive multi-hop abilities. To bridge this gap, we introduce MMhops, a novel, large-scale benchmark designed to systematically evaluate and foster multi-modal multi-hop reasoning. MMhops dataset comprises two challenging task formats, Bridging and Comparison, which necessitate that models dynamically construct complex reasoning chains by integrating external knowledge. To tackle the challenges posed by MMhops, we propose MMhops-R1, a novel multi-modal Retrieval-Augmented Generation (mRAG) framework for dynamic reasoning. Our framework utilizes reinforcement learning to optimize the model for autonomously planning reasoning paths, formulating targeted queries, and synthesizing multi-level information. Comprehensive experiments demonstrate that MMhops-R1 significantly outperforms strong baselines on MMhops, highlighting that dynamic planning and multi-modal knowledge integration are crucial for complex reasoning. Moreover, MMhops-R1 demonstrates strong generalization to tasks requiring fixed-hop reasoning, underscoring the robustness of our dynamic planning approach. In conclusion, our work contributes a challenging new benchmark and a powerful baseline model, and we will release the associated code, data, and weights to catalyze future research in this critical area.
comment: Acceped by AAAI 2026
☆ 3D Human-Human Interaction Anomaly Detection
Human-centric anomaly detection (AD) has been primarily studied to specify anomalous behaviors in a single person. However, as humans by nature tend to act in a collaborative manner, behavioral anomalies can also arise from human-human interactions. Detecting such anomalies using existing single-person AD models is prone to low accuracy, as these approaches are typically not designed to capture the complex and asymmetric dynamics of interactions. In this paper, we introduce a novel task, Human-Human Interaction Anomaly Detection (H2IAD), which aims to identify anomalous interactive behaviors within collaborative 3D human actions. To address H2IAD, we then propose Interaction Anomaly Detection Network (IADNet), which is formalized with a Temporal Attention Sharing Module (TASM). Specifically, in designing TASM, we share the encoded motion embeddings across both people such that collaborative motion correlations can be effectively synchronized. Moreover, we notice that in addition to temporal dynamics, human interactions are also characterized by spatial configurations between two people. We thus introduce a Distance-Based Relational Encoding Module (DREM) to better reflect social cues in H2IAD. The normalizing flow is eventually employed for anomaly scoring. Extensive experiments on human-human motion benchmarks demonstrate that IADNet outperforms existing Human-centric AD baselines in H2IAD.
☆ Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains NeurIPS 2025
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.
comment: Accepted at NeurIPS 2025. Code available at: https://github.com/mariannerakic/Pancakes
☆ TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.
comment: 18 Pages. Project page at http://bpiyush.github.io/tara-website
☆ Seedance 1.5 pro: A Native Audio-Visual Joint Generation Foundation Model
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
comment: Seedance 1.5 pro Technical Report
☆ On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
comment: Accepted by European Conference on EDGE AI Technologies and Applications (EEAI) 2025
☆ Soul: Breathe Life into Digital Human for High-fidelity Long-term Multimodal Animation
We propose a multimodal-driven framework for high-fidelity long-term digital human animation termed $\textbf{Soul}$, which generates semantically coherent videos from a single-frame portrait image, text prompts, and audio, achieving precise lip synchronization, vivid facial expressions, and robust identity preservation. We construct Soul-1M, containing 1 million finely annotated samples with a precise automated annotation pipeline (covering portrait, upper-body, full-body, and multi-person scenes) to mitigate data scarcity, and we carefully curate Soul-Bench for comprehensive and fair evaluation of audio-/text-guided animation methods. The model is built on the Wan2.2-5B backbone, integrating audio-injection layers and multiple training strategies together with threshold-aware codebook replacement to ensure long-term generation consistency. Meanwhile, step/CFG distillation and a lightweight VAE are used to optimize inference efficiency, achieving an 11.4$\times$ speedup with negligible quality loss. Extensive experiments show that Soul significantly outperforms current leading open-source and commercial models on video quality, video-text alignment, identity preservation, and lip-synchronization accuracy, demonstrating broad applicability in real-world scenarios such as virtual anchors and film production. Project page at https://zhangzjn.github.io/projects/Soul/
comment: Project page: https://zhangzjn.github.io/projects/Soul/
☆ Transform Trained Transformer: Accelerating Naive 4K Video Generation Over 10$\times$
Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video
comment: Project page: https://zhangzjn.github.io/projects/T3-Video
☆ PoseAnything: Universal Pose-guided Video Generation with Part-aware Temporal Coherence
Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
☆ Test-Time Modification: Inverse Domain Transformation for Robust Perception
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
comment: Preprint
☆ IMILIA: interpretable multiple instance learning for inflammation prediction in IBD from H&E whole slide images
As the therapeutic target for Inflammatory Bowel Disease (IBD) shifts toward histologic remission, the accurate assessment of microscopic inflammation has become increasingly central for evaluating disease activity and response to treatment. In this work, we introduce IMILIA (Interpretable Multiple Instance Learning for Inflammation Analysis), an end-to-end framework designed for the prediction of inflammation presence in IBD digitized slides stained with hematoxylin and eosin (H&E), followed by the automated computation of markers characterizing tissue regions driving the predictions. IMILIA is composed of an inflammation prediction module, consisting of a Multiple Instance Learning (MIL) model, and an interpretability module, divided in two blocks: HistoPLUS, for cell instance detection, segmentation and classification; and EpiSeg, for epithelium segmentation. IMILIA achieves a cross-validation ROC-AUC of 0.83 on the discovery cohort, and a ROC-AUC of 0.99 and 0.84 on two external validation cohorts. The interpretability module yields biologically consistent insights: tiles with higher predicted scores show increased densities of immune cells (lymphocytes, plasmocytes, neutrophils and eosinophils), whereas lower-scored tiles predominantly contain normal epithelial cells. Notably, these patterns were consistent across all datasets. Code and models to partially replicate the results on the public IBDColEpi dataset can be found at https://github.com/owkin/imilia.
Self-Supervised Ultrasound Representation Learning for Renal Anomaly Prediction in Prenatal Imaging
Prenatal ultrasound is the cornerstone for detecting congenital anomalies of the kidneys and urinary tract, but diagnosis is limited by operator dependence and suboptimal imaging conditions. We sought to assess the performance of a self-supervised ultrasound foundation model for automated fetal renal anomaly classification using a curated dataset of 969 two-dimensional ultrasound images. A pretrained Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE) was fine-tuned for binary and multi-class classification of normal kidneys, urinary tract dilation, and multicystic dysplastic kidney. Models were compared with a DenseNet-169 convolutional baseline using cross-validation and an independent test set. USF-MAE consistently improved upon the baseline across all evaluation metrics in both binary and multi-class settings. USF-MAE achieved an improvement of about 1.87% (AUC) and 7.8% (F1-score) on the validation set, 2.32% (AUC) and 4.33% (F1-score) on the independent holdout test set. The largest gains were observed in the multi-class setting, where the improvement in AUC was 16.28% and 46.15% in F1-score. To facilitate model interpretability, Score-CAM visualizations were adapted for a transformer architecture and show that model predictions were informed by known, clinically relevant renal structures, including the renal pelvis in urinary tract dilation and cystic regions in multicystic dysplastic kidney. These results show that ultrasound-specific self-supervised learning can generate a useful representation as a foundation for downstream diagnostic tasks. The proposed framework offers a robust, interpretable approach to support the prenatal detection of renal anomalies and demonstrates the promise of foundation models in obstetric imaging.
comment: 14 pages, 8 figures, 4 tables
☆ A Domain-Adapted Lightweight Ensemble for Resource-Efficient Few-Shot Plant Disease Classification
Accurate and timely identification of plant leaf diseases is essential for resilient and sustainable agriculture, yet most deep learning approaches rely on large annotated datasets and computationally intensive models that are unsuitable for data-scarce and resource-constrained environments. To address these challenges we present a few-shot learning approach within a lightweight yet efficient framework that combines domain-adapted MobileNetV2 and MobileNetV3 models as feature extractors, along with a feature fusion technique to generate robust feature representation. For the classification task, the fused features are passed through a Bi-LSTM classifier enhanced with attention mechanisms to capture sequential dependencies and focus on the most relevant features, thereby achieving optimal classification performance even in complex, real-world environments with noisy or cluttered backgrounds. The proposed framework was evaluated across multiple experimental setups, including both laboratory-controlled and field-captured datasets. On tomato leaf diseases from the PlantVillage dataset, it consistently improved performance across 1 to 15 shot scenarios, reaching 98.23+-0.33% at 15 shot, closely approaching the 99.98% SOTA benchmark achieved by a Transductive LSTM with attention, while remaining lightweight and mobile-friendly. Under real-world conditions using field images from the Dhan Shomadhan dataset, it maintained robust performance, reaching 69.28+-1.49% at 15-shot and demonstrating strong resilience to complex backgrounds. Notably, it also outperformed the previous SOTA accuracy of 96.0% on six diseases from PlantVillage, achieving 99.72% with only 15-shot learning. With a compact model size of approximately 40 MB and inference complexity of approximately 1.12 GFLOPs, this work establishes a scalable, mobile-ready foundation for precise plant disease diagnostics in data-scarce regions.
☆ MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.
comment: Code and examples are available on the project's webpage at https://noa-cohen.github.io/MineTheGap/
☆ RecTok: Reconstruction Distillation along Rectified Flow
Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://shi-qingyu.github.io/rectok.github.io.
☆ Learning to Generate Cross-Task Unexploitable Examples
Unexploitable example generation aims to transform personal images into their unexploitable (unlearnable) versions before they are uploaded online, thereby preventing unauthorized exploitation of online personal images. Recently, this task has garnered significant research attention due to its critical relevance to personal data privacy. Yet, despite recent progress, existing methods for this task can still suffer from limited practical applicability, as they can fail to generate examples that are broadly unexploitable across different real-world computer vision tasks. To deal with this problem, in this work, we propose a novel Meta Cross-Task Unexploitable Example Generation (MCT-UEG) framework. At the core of our framework, to optimize the unexploitable example generator for effectively producing broadly unexploitable examples, we design a flat-minima-oriented meta training and testing scheme. Extensive experiments show the efficacy of our framework.
☆ USTM: Unified Spatial and Temporal Modeling for Continuous Sign Language Recognition
Continuous sign language recognition (CSLR) requires precise spatio-temporal modeling to accurately recognize sequences of gestures in videos. Existing frameworks often rely on CNN-based spatial backbones combined with temporal convolution or recurrent modules. These techniques fail in capturing fine-grained hand and facial cues and modeling long-range temporal dependencies. To address these limitations, we propose the Unified Spatio-Temporal Modeling (USTM) framework, a spatio-temporal encoder that effectively models complex patterns using a combination of a Swin Transformer backbone enhanced with lightweight temporal adapter with positional embeddings (TAPE). Our framework captures fine-grained spatial features alongside short and long-term temporal context, enabling robust sign language recognition from RGB videos without relying on multi-stream inputs or auxiliary modalities. Extensive experiments on benchmarked datasets including PHOENIX14, PHOENIX14T, and CSL-Daily demonstrate that USTM achieves state-of-the-art performance against RGB-based as well as multi-modal CSLR approaches, while maintaining competitive performance against multi-stream approaches. These results highlight the strength and efficacy of the USTM framework for CSLR. The code is available at https://github.com/gufranSabri/USTM
☆ Computer vision training dataset generation for robotic environments using Gaussian splatting
This paper introduces a novel pipeline for generating large-scale, highly realistic, and automatically labeled datasets for computer vision tasks in robotic environments. Our approach addresses the critical challenges of the domain gap between synthetic and real-world imagery and the time-consuming bottleneck of manual annotation. We leverage 3D Gaussian Splatting (3DGS) to create photorealistic representations of the operational environment and objects. These assets are then used in a game engine where physics simulations create natural arrangements. A novel, two-pass rendering technique combines the realism of splats with a shadow map generated from proxy meshes. This map is then algorithmically composited with the image to add both physically plausible shadows and subtle highlights, significantly enhancing realism. Pixel-perfect segmentation masks are generated automatically and formatted for direct use with object detection models like YOLO. Our experiments show that a hybrid training strategy, combining a small set of real images with a large volume of our synthetic data, yields the best detection and segmentation performance, confirming this as an optimal strategy for efficiently achieving robust and accurate models.
comment: Code available at: https://patrykni.github.io/UnitySplat2Data/
☆ End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://lorenzopettinari.github.io/end-2-reg/.
comment: Code and interactive visualizations: https://lorenzopettinari.github.io/end-2-reg/
☆ rNCA: Self-Repairing Segmentation Masks
Accurately predicting topologically correct masks remains a difficult task for general segmentation models, which often produce fragmented or disconnected outputs. Fixing these artifacts typically requires hand-crafted refinement rules or architectures specialized to a particular task. Here, we show that Neural Cellular Automata (NCA) can be directly re-purposed as an effective refinement mechanism, using local, iterative updates guided by image context to repair segmentation masks. By training on imperfect masks and ground truths, the automaton learns the structural properties of the target shape while relying solely on local information. When applied to coarse, globally predicted masks, the learned dynamics progressively reconnect broken regions, prune loose fragments and converge towards stable, topologically consistent results. We show how refinement NCA (rNCA) can be easily applied to repair common topological errors produced by different base segmentation models and tasks: for fragmented retinal vessels, it yields 2-3% gains in Dice/clDice and improves Betti errors, reducing $β_0$ errors by 60% and $β_1$ by 20%; for myocardium, it repairs 61.5% of broken cases in a zero-shot setting while lowering ASSD and HD by 19% and 16%, respectively. This showcases NCA as effective and broadly applicable refiners.
☆ Beyond the Visible: Disocclusion-Aware Editing via Proxy Dynamic Graphs
We address image-to-video generation with explicit user control over the final frame's disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://anranqi.github.io/beyondvisible.github.io/
☆ Unlocking Generalization in Polyp Segmentation with DINO Self-Attention "keys"
Automatic polyp segmentation is crucial for improving the clinical identification of colorectal cancer (CRC). While Deep Learning (DL) techniques have been extensively researched for this problem, current methods frequently struggle with generalization, particularly in data-constrained or challenging settings. Moreover, many existing polyp segmentation methods rely on complex, task-specific architectures. To address these limitations, we present a framework that leverages the intrinsic robustness of DINO self-attention "key" features for robust segmentation. Unlike traditional methods that extract tokens from the deepest layers of the Vision Transformer (ViT), our approach leverages the key features of the self-attention module with a simple convolutional decoder to predict polyp masks, resulting in enhanced performance and better generalizability. We validate our approach using a multi-center dataset under two rigorous protocols: Domain Generalization (DG) and Extreme Single Domain Generalization (ESDG). Our results, supported by a comprehensive statistical analysis, demonstrate that this pipeline achieves state-of-the-art (SOTA) performance, significantly enhancing generalization, particularly in data-scarce and challenging scenarios. While avoiding a polyp-specific architecture, we surpass well-established models like nnU-Net and UM-Net. Additionally, we provide a systematic benchmark of the DINO framework's evolution, quantifying the specific impact of architectural advancements on downstream polyp segmentation performance.
comment: 29 pages, 10 figures, 8 tables, under review at MIDL 2026
☆ Automated User Identification from Facial Thermograms with Siamese Networks
The article analyzes the use of thermal imaging technologies for biometric identification based on facial thermograms. It presents a comparative analysis of infrared spectral ranges (NIR, SWIR, MWIR, and LWIR). The paper also defines key requirements for thermal cameras used in biometric systems, including sensor resolution, thermal sensitivity, and a frame rate of at least 30 Hz. Siamese neural networks are proposed as an effective approach for automating the identification process. In experiments conducted on a proprietary dataset, the proposed method achieved an accuracy of approximately 80%. The study also examines the potential of hybrid systems that combine visible and infrared spectra to overcome the limitations of individual modalities. The results indicate that thermal imaging is a promising technology for developing reliable security systems.
comment: 5 pages, 2 figures, reported on 21st International Scientific and Practical Conference 'Electronic Means and Control Systems', dedicated to the 80th anniversary of radio engineering education beyond the Urals, Tomsk, 24 November 2025
☆ Face Identity Unlearning for Retrieval via Embedding Dispersion
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
comment: 12 pages, 1 figure, 5 tables, 10 equations. Preprint
☆ KlingAvatar 2.0 Technical Report
Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.
comment: 14 pages, 7 figures
☆ ShowTable: Unlocking Creative Table Visualization with Collaborative Reflection and Refinement
While existing generation and unified models excel at general image generation, they struggle with tasks requiring deep reasoning, planning, and precise data-to-visual mapping abilities beyond general scenarios. To push beyond the existing limitations, we introduce a new and challenging task: creative table visualization, requiring the model to generate an infographic that faithfully and aesthetically visualizes the data from a given table. To address this challenge, we propose ShowTable, a pipeline that synergizes MLLMs with diffusion models via a progressive self-correcting process. The MLLM acts as the central orchestrator for reasoning the visual plan and judging visual errors to provide refined instructions, the diffusion execute the commands from MLLM, achieving high-fidelity results. To support this task and our pipeline, we introduce three automated data construction pipelines for training different modules. Furthermore, we introduce TableVisBench, a new benchmark with 800 challenging instances across 5 evaluation dimensions, to assess performance on this task. Experiments demonstrate that our pipeline, instantiated with different models, significantly outperforms baselines, highlighting its effective multi-modal reasoning, generation, and error correction capabilities.
comment: project page: https://lntzm.github.io/showtable-page/
☆ LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
☆ CausalCLIP: Causally-Informed Feature Disentanglement and Filtering for Generalizable Detection of Generated Images AAAI 2026
The rapid advancement of generative models has increased the demand for generated image detectors capable of generalizing across diverse and evolving generation techniques. However, existing methods, including those leveraging pre-trained vision-language models, often produce highly entangled representations, mixing task-relevant forensic cues (causal features) with spurious or irrelevant patterns (non-causal features), thus limiting generalization. To address this issue, we propose CausalCLIP, a framework that explicitly disentangles causal from non-causal features and employs targeted filtering guided by causal inference principles to retain only the most transferable and discriminative forensic cues. By modeling the generation process with a structural causal model and enforcing statistical independence through Gumbel-Softmax-based feature masking and Hilbert-Schmidt Independence Criterion (HSIC) constraints, CausalCLIP isolates stable causal features robust to distribution shifts. When tested on unseen generative models from different series, CausalCLIP demonstrates strong generalization ability, achieving improvements of 6.83% in accuracy and 4.06% in average precision over state-of-the-art methods.
comment: 9 pages Accepted to AAAI 2026
☆ Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: \textbf{(i) Immersive ASMR video-audio sources.} Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. \textbf{(ii) Peer-Review evaluation.} An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56\% accuracy (random 50\%), far below that of human experts (81.25\%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.
comment: Code is at https://github.com/video-reality-test/video-reality-tes}, page is at https://video-reality-test.github.io/
☆ CogniEdit: Dense Gradient Flow Optimization for Fine-Grained Image Editing
Instruction-based image editing with diffusion models has achieved impressive results, yet existing methods struggle with fine-grained instructions specifying precise attributes such as colors, positions, and quantities. While recent approaches employ Group Relative Policy Optimization (GRPO) for alignment, they optimize only at individual sampling steps, providing sparse feedback that limits trajectory-level control. We propose a unified framework CogniEdit, combining multi-modal reasoning with dense reward optimization that propagates gradients across consecutive denoising steps, enabling trajectory-level gradient flow through the sampling process. Our method comprises three components: (1) Multi-modal Large Language Models for decomposing complex instructions into actionable directives, (2) Dynamic Token Focus Relocation that adaptively emphasizes fine-grained attributes, and (3) Dense GRPO-based optimization that propagates gradients across consecutive steps for trajectory-level supervision. Extensive experiments on benchmark datasets demonstrate that our CogniEdit achieves state-of-the-art performance in balancing fine-grained instruction following with visual quality and editability preservation
☆ Post-Training and Test-Time Scaling of Generative Agent Behavior Models for Interactive Autonomous Driving
Learning interactive motion behaviors among multiple agents is a core challenge in autonomous driving. While imitation learning models generate realistic trajectories, they often inherit biases from datasets dominated by safe demonstrations, limiting robustness in safety-critical cases. Moreover, most studies rely on open-loop evaluation, overlooking compounding errors in closed-loop execution. We address these limitations with two complementary strategies. First, we propose Group Relative Behavior Optimization (GRBO), a reinforcement learning post-training method that fine-tunes pretrained behavior models via group relative advantage maximization with human regularization. Using only 10% of the training dataset, GRBO improves safety performance by over 40% while preserving behavioral realism. Second, we introduce Warm-K, a warm-started Top-K sampling strategy that balances consistency and diversity in motion selection. Our Warm-K method-based test-time scaling enhances behavioral consistency and reactivity at test time without retraining, mitigating covariate shift and reducing performance discrepancies. Demo videos are available in the supplementary material.
comment: 11 pages, 5 figures
☆ Toward Ambulatory Vision: Learning Visually-Grounded Active View Selection
Vision Language Models (VLMs) excel at visual question answering (VQA) but remain limited to snapshot vision, reasoning from static images. In contrast, embodied agents require ambulatory vision, actively moving to obtain more informative views. We introduce Visually Grounded Active View Selection (VG-AVS), a task that selects the most informative next viewpoint using only the visual information in the current image, without relying on scene memory or external knowledge. To support this task, we construct a synthetic dataset with automatically generated paired query-target views and question-answer prompts. We also propose a framework that fine-tunes pretrained VLMs through supervised fine-tuning (SFT) followed by RL-based policy optimization. Our approach achieves strong question answering performance based on viewpoint selection and generalizes robustly to unseen synthetic and real scenes. Furthermore, incorporating our learned VG-AVS framework into existing scene-exploration-based EQA systems improves downstream question-answering accuracy.
comment: Project page: https://active-view-selection.github.io/
☆ STARCaster: Spatio-Temporal AutoRegressive Video Diffusion for Identity- and View-Aware Talking Portraits
This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.
comment: Project page: https://foivospar.github.io/STARCaster/
☆ Ego-EXTRA: video-language Egocentric Dataset for EXpert-TRAinee assistance
We present Ego-EXTRA, a video-language Egocentric Dataset for EXpert-TRAinee assistance. Ego-EXTRA features 50 hours of unscripted egocentric videos of subjects performing procedural activities (the trainees) while guided by real-world experts who provide guidance and answer specific questions using natural language. Following a ``Wizard of OZ'' data collection paradigm, the expert enacts a wearable intelligent assistant, looking at the activities performed by the trainee exclusively from their egocentric point of view, answering questions when asked by the trainee, or proactively interacting with suggestions during the procedures. This unique data collection protocol enables Ego-EXTRA to capture a high-quality dialogue in which expert-level feedback is provided to the trainee. Two-way dialogues between experts and trainees are recorded, transcribed, and used to create a novel benchmark comprising more than 15k high-quality Visual Question Answer sets, which we use to evaluate Multimodal Large Language Models. The results show that Ego-EXTRA is challenging and highlight the limitations of current models when used to provide expert-level assistance to the user. The Ego-EXTRA dataset is publicly available to support the benchmark of egocentric video-language assistants: https://fpv-iplab.github.io/Ego-EXTRA/.
☆ POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining "chicken-and-egg" cycle for scalable and reproducible portrait illumination.
comment: 19 pages, 19 figures
☆ CoRA: A Collaborative Robust Architecture with Hybrid Fusion for Efficient Perception AAAI2026
Collaborative perception has garnered significant attention as a crucial technology to overcome the perceptual limitations of single-agent systems. Many state-of-the-art (SOTA) methods have achieved communication efficiency and high performance via intermediate fusion. However, they share a critical vulnerability: their performance degrades under adverse communication conditions due to the misalignment induced by data transmission, which severely hampers their practical deployment. To bridge this gap, we re-examine different fusion paradigms, and recover that the strengths of intermediate and late fusion are not a trade-off, but a complementary pairing. Based on this key insight, we propose CoRA, a novel collaborative robust architecture with a hybrid approach to decouple performance from robustness with low communication. It is composed of two components: a feature-level fusion branch and an object-level correction branch. Its first branch selects critical features and fuses them efficiently to ensure both performance and scalability. The second branch leverages semantic relevance to correct spatial displacements, guaranteeing resilience against pose errors. Experiments demonstrate the superiority of CoRA. Under extreme scenarios, CoRA improves upon its baseline performance by approximately 19% in AP@0.7 with more than 5x less communication volume, which makes it a promising solution for robust collaborative perception.
comment: Accepted by AAAI2026
☆ MMDrive: Interactive Scene Understanding Beyond Vision with Multi-representational Fusion
Vision-language models enable the understanding and reasoning of complex traffic scenarios through multi-source information fusion, establishing it as a core technology for autonomous driving. However, existing vision-language models are constrained by the image understanding paradigm in 2D plane, which restricts their capability to perceive 3D spatial information and perform deep semantic fusion, resulting in suboptimal performance in complex autonomous driving environments. This study proposes MMDrive, an multimodal vision-language model framework that extends traditional image understanding to a generalized 3D scene understanding framework. MMDrive incorporates three complementary modalities, including occupancy maps, LiDAR point clouds, and textual scene descriptions. To this end, it introduces two novel components for adaptive cross-modal fusion and key information extraction. Specifically, the Text-oriented Multimodal Modulator dynamically weights the contributions of each modality based on the semantic cues in the question, guiding context-aware feature integration. The Cross-Modal Abstractor employs learnable abstract tokens to generate compact, cross-modal summaries that highlight key regions and essential semantics. Comprehensive evaluations on the DriveLM and NuScenes-QA benchmarks demonstrate that MMDrive achieves significant performance gains over existing vision-language models for autonomous driving, with a BLEU-4 score of 54.56 and METEOR of 41.78 on DriveLM, and an accuracy score of 62.7% on NuScenes-QA. MMDrive effectively breaks the traditional image-only understanding barrier, enabling robust multimodal reasoning in complex driving environments and providing a new foundation for interpretable autonomous driving scene understanding.
☆ Seeing the Whole Picture: Distribution-Guided Data-Free Distillation for Semantic Segmentation
Semantic segmentation requires a holistic understanding of the physical world, as it assigns semantic labels to spatially continuous and structurally coherent objects rather than to isolated pixels. However, existing data-free knowledge distillation (DFKD) methods-primarily designed for classification-often disregard this continuity, resulting in significant performance degradation when applied directly to segmentation tasks. In this paper, we introduce DFSS, a novel data-free distillation framework tailored for semantic segmentation. Unlike prior approaches that treat pixels independently, DFSS respects the structural and contextual continuity of real-world scenes. Our key insight is to leverage Batch Normalization (BN) statistics from a teacher model to guide Approximate Distribution Sampling (ADS), enabling the selection of data that better reflects the original training distribution-without relying on potentially misleading teacher predictions. Additionally, we propose Weighted Distribution Progressive Distillation (WDPD), which dynamically prioritizes reliable samples that are more closely aligned with the original data distribution early in training and gradually incorporates more challenging cases, mirroring the natural progression of learning in human perception. Extensive experiments on standard benchmarks demonstrate that DFSS consistently outperforms existing data-free distillation methods for semantic segmentation, achieving state-of-the-art results with significantly reduced reliance on auxiliary data.
☆ A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis
The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
comment: 67 pages, 9 figures, 16 tables
☆ Intrinsic Image Fusion for Multi-View 3D Material Reconstruction
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.
comment: Project page: https://peter-kocsis.github.io/IntrinsicImageFusion/ Video: https://www.youtube.com/watch?v=-Vs3tR1Xl7k
☆ StarryGazer: Leveraging Monocular Depth Estimation Models for Domain-Agnostic Single Depth Image Completion
The problem of depth completion involves predicting a dense depth image from a single sparse depth map and an RGB image. Unsupervised depth completion methods have been proposed for various datasets where ground truth depth data is unavailable and supervised methods cannot be applied. However, these models require auxiliary data to estimate depth values, which is far from real scenarios. Monocular depth estimation (MDE) models can produce a plausible relative depth map from a single image, but there is no work to properly combine the sparse depth map with MDE for depth completion; a simple affine transformation to the depth map will yield a high error since MDE are inaccurate at estimating depth difference between objects. We introduce StarryGazer, a domain-agnostic framework that predicts dense depth images from a single sparse depth image and an RGB image without relying on ground-truth depth by leveraging the power of large MDE models. First, we employ a pre-trained MDE model to produce relative depth images. These images are segmented and randomly rescaled to form synthetic pairs for dense pseudo-ground truth and corresponding sparse depths. A refinement network is trained with the synthetic pairs, incorporating the relative depth maps and RGB images to improve the model's accuracy and robustness. StarryGazer shows superior results over existing unsupervised methods and transformed MDE results on various datasets, demonstrating that our framework exploits the power of MDE models while appropriately fixing errors using sparse depth information.
comment: 11 pages
☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 46 pages
☆ Towards Unified Co-Speech Gesture Generation via Hierarchical Implicit Periodicity Learning
Generating 3D-based body movements from speech shows great potential in extensive downstream applications, while it still suffers challenges in imitating realistic human movements. Predominant research efforts focus on end-to-end generation schemes to generate co-speech gestures, spanning GANs, VQ-VAE, and recent diffusion models. As an ill-posed problem, in this paper, we argue that these prevailing learning schemes fail to model crucial inter- and intra-correlations across different motion units, i.e. head, body, and hands, thus leading to unnatural movements and poor coordination. To delve into these intrinsic correlations, we propose a unified Hierarchical Implicit Periodicity (HIP) learning approach for audio-inspired 3D gesture generation. Different from predominant research, our approach models this multi-modal implicit relationship by two explicit technique insights: i) To disentangle the complicated gesture movements, we first explore the gesture motion phase manifolds with periodic autoencoders to imitate human natures from realistic distributions while incorporating non-period ones from current latent states for instance-level diversities. ii) To model the hierarchical relationship of face motions, body gestures, and hand movements, driving the animation with cascaded guidance during learning. We exhibit our proposed approach on 3D avatars and extensive experiments show our method outperforms the state-of-the-art co-speech gesture generation methods by both quantitative and qualitative evaluations. Code and models will be publicly available.
comment: IEEE Transactions on Image Processing
☆ LeafTrackNet: A Deep Learning Framework for Robust Leaf Tracking in Top-Down Plant Phenotyping
High resolution phenotyping at the level of individual leaves offers fine-grained insights into plant development and stress responses. However, the full potential of accurate leaf tracking over time remains largely unexplored due to the absence of robust tracking methods-particularly for structurally complex crops such as canola. Existing plant-specific tracking methods are typically limited to small-scale species or rely on constrained imaging conditions. In contrast, generic multi-object tracking (MOT) methods are not designed for dynamic biological scenes. Progress in the development of accurate leaf tracking models has also been hindered by a lack of large-scale datasets captured under realistic conditions. In this work, we introduce CanolaTrack, a new benchmark dataset comprising 5,704 RGB images with 31,840 annotated leaf instances spanning the early growth stages of 184 canola plants. To enable accurate leaf tracking over time, we introduce LeafTrackNet, an efficient framework that combines a YOLOv10-based leaf detector with a MobileNetV3-based embedding network. During inference, leaf identities are maintained over time through an embedding-based memory association strategy. LeafTrackNet outperforms both plant-specific trackers and state-of-the-art MOT baselines, achieving a 9% HOTA improvement on CanolaTrack. With our work we provide a new standard for leaf-level tracking under realistic conditions and we provide CanolaTrack - the largest dataset for leaf tracking in agriculture crops, which will contribute to future research in plant phenotyping. Our code and dataset are publicly available at https://github.com/shl-shawn/LeafTrackNet.
☆ DePT3R: Joint Dense Point Tracking and 3D Reconstruction of Dynamic Scenes in a Single Forward Pass
Current methods for dense 3D point tracking in dynamic scenes typically rely on pairwise processing, require known camera poses, or assume a temporal ordering to input frames, constraining their flexibility and applicability. Additionally, recent advances have successfully enabled efficient 3D reconstruction from large-scale, unposed image collections, underscoring opportunities for unified approaches to dynamic scene understanding. Motivated by this, we propose DePT3R, a novel framework that simultaneously performs dense point tracking and 3D reconstruction of dynamic scenes from multiple images in a single forward pass. This multi-task learning is achieved by extracting deep spatio-temporal features with a powerful backbone and regressing pixel-wise maps with dense prediction heads. Crucially, DePT3R operates without requiring camera poses, substantially enhancing its adaptability and efficiency-especially important in dynamic environments with rapid changes. We validate DePT3R on several challenging benchmarks involving dynamic scenes, demonstrating strong performance and significant improvements in memory efficiency over existing state-of-the-art methods. Data and codes are available via the open repository: https://github.com/StructuresComp/DePT3R
comment: This is a work in progress
☆ Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
☆ FID-Net: A Feature-Enhanced Deep Learning Network for Forest Infestation Detection
Forest pests threaten ecosystem stability, requiring efficient monitoring. To overcome the limitations of traditional methods in large-scale, fine-grained detection, this study focuses on accurately identifying infected trees and analyzing infestation patterns. We propose FID-Net, a deep learning model that detects pest-affected trees from UAV visible-light imagery and enables infestation analysis via three spatial metrics. Based on YOLOv8n, FID-Net introduces a lightweight Feature Enhancement Module (FEM) to extract disease-sensitive cues, an Adaptive Multi-scale Feature Fusion Module (AMFM) to align and fuse dual-branch features (RGB and FEM-enhanced), and an Efficient Channel Attention (ECA) mechanism to enhance discriminative information efficiently. From detection results, we construct a pest situation analysis framework using: (1) Kernel Density Estimation to locate infection hotspots; (2) neighborhood evaluation to assess healthy trees' infection risk; (3) DBSCAN clustering to identify high-density healthy clusters as priority protection zones. Experiments on UAV imagery from 32 forest plots in eastern Tianshan, China, show that FID-Net achieves 86.10% precision, 75.44% recall, 82.29% mAP@0.5, and 64.30% mAP@0.5:0.95, outperforming mainstream YOLO models. Analysis confirms infected trees exhibit clear clustering, supporting targeted forest protection. FID-Net enables accurate tree health discrimination and, combined with spatial metrics, provides reliable data for intelligent pest monitoring, early warning, and precise management.
☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ ADHint: Adaptive Hints with Difficulty Priors for Reinforcement Learning
To combine the advantages of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), recent methods have integrated ''hints'' into post-training, which are prefix segments of complete reasoning trajectories, aiming for powerful knowledge expansion and reasoning generalization. However, existing hint-based RL methods typically ignore difficulty when scheduling hint ratios and estimating relative advantages, leading to unstable learning and excessive imitation of off-policy hints. In this work, we propose ADHint, which treats difficulty as a key factor in both hint-ratio schedule and relative-advantage estimation to achieve a better trade-off between exploration and imitation. Specifically, we propose Adaptive Hint with Sample Difficulty Prior, which evaluates each sample's difficulty under the policy model and accordingly schedules an appropriate hint ratio to guide its rollouts. We also introduce Consistency-based Gradient Modulation and Selective Masking for Hint Preservation to modulate token-level gradients within hints, preventing biased and destructive updates. Additionally, we propose Advantage Estimation with Rollout Difficulty Posterior, which leverages the relative difficulty of rollouts with and without hints to estimate their respective advantages, thereby achieving more balanced updates. Extensive experiments across diverse modalities, model scales, and domains demonstrate that ADHint delivers superior reasoning ability and out-of-distribution generalization, consistently surpassing existing methods in both pass@1 and avg@8. Our code and dataset will be made publicly available upon paper acceptance.
☆ UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.
comment: 10 pages, 6 figures
☆ DiRe: Diversity-promoting Regularization for Dataset Condensation WACV 2026
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
comment: Accepted to WACV 2026
☆ Heart Disease Prediction using Case Based Reasoning (CBR)
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor's experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males.
comment: Published in Journal of Theoretical and Applied Information Technology on 31st October 2024. Vol.102. No. 20
☆ Forging a Dynamic Memory: Retrieval-Guided Continual Learning for Generalist Medical Foundation Models
Multimodal biomedical Vision-Language Models (VLMs) exhibit immense potential in the field of Continual Learning (CL). However, they confront a core dilemma: how to preserve fine-grained intra-modality features while bridging the significant domain gap across different modalities. To address this challenge, we propose a comprehensive framework. Leveraging our 18-million multimodal and comprehensive medical retrieval database derived from PubMed scientific papers, we pioneer the integration of Retrieval-Augmented Generation (RAG) into CL. Specifically, we employ a multi-modal, multi-layer RAG system that provides real-time guidance for model fine-tuning through dynamic, on-demand knowledge retrieval. Building upon this, we introduce a dynamic knowledge distillation framework. This framework precisely resolves the aforementioned core dilemma by dynamically modulating the importance of the parameter space, the granularity of the distilled knowledge, and the data distribution of the reference dataset in accordance with the required level of detail. To thoroughly validate the clinical value of our strategy, we have designed a more rigorous \textbf{M}edical Generalist Task Incremental Learning (MGTIL) benchmark. This benchmark is engineered to simultaneously evaluate the model's capacity for adaptation to significant domain shifts, retention of subtle intra-domain features, and real-time learning of novel and complex medical tasks. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) performance across all metrics. The code is provided in the supplementary materials.
☆ Towards Test-time Efficient Visual Place Recognition via Asymmetric Query Processing AAAI 2026
Visual Place Recognition (VPR) has advanced significantly with high-capacity foundation models like DINOv2, achieving remarkable performance. Nonetheless, their substantial computational cost makes deployment on resource-constrained devices impractical. In this paper, we introduce an efficient asymmetric VPR framework that incorporates a high-capacity gallery model for offline feature extraction with a lightweight query network for online processing. A key challenge in this setting is ensuring compatibility between these heterogeneous networks, which conventional approaches address through computationally expensive k-NN-based compatible training. To overcome this, we propose a geographical memory bank that structures gallery features using geolocation metadata inherent in VPR databases, eliminating the need for exhaustive k-NN computations. Additionally, we introduce an implicit embedding augmentation technique that enhances the query network to model feature variations despite its limited capacity. Extensive experiments demonstrate that our method not only significantly reduces computational costs but also outperforms existing asymmetric retrieval techniques, establishing a new aspect for VPR in resource-limited environments. The code is available at https://github.com/jaeyoon1603/AsymVPR
comment: AAAI 2026
☆ GTR-Turbo: Merged Checkpoint is Secretly a Free Teacher for Agentic VLM Training
Multi-turn reinforcement learning (RL) for multi-modal agents built upon vision-language models (VLMs) is hampered by sparse rewards and long-horizon credit assignment. Recent methods densify the reward by querying a teacher that provides step-level feedback, e.g., Guided Thought Reinforcement (GTR) and On-Policy Distillation, but rely on costly, often privileged models as the teacher, limiting practicality and reproducibility. We introduce GTR-Turbo, a highly efficient upgrade to GTR, which matches the performance without training or querying an expensive teacher model. Specifically, GTR-Turbo merges the weights of checkpoints produced during the ongoing RL training, and then uses this merged model as a "free" teacher to guide the subsequent RL via supervised fine-tuning or soft logit distillation. This design removes dependence on privileged VLMs (e.g., GPT or Gemini), mitigates the "entropy collapse" observed in prior work, and keeps training stable. Across diverse visual agentic tasks, GTR-Turbo improves the accuracy of the baseline model by 10-30% while reducing wall-clock training time by 50% and compute cost by 60% relative to GTR.
☆ Bi-Erasing: A Bidirectional Framework for Concept Removal in Diffusion Models
Concept erasure, which fine-tunes diffusion models to remove undesired or harmful visual concepts, has become a mainstream approach to mitigating unsafe or illegal image generation in text-to-image models.However, existing removal methods typically adopt a unidirectional erasure strategy by either suppressing the target concept or reinforcing safe alternatives, making it difficult to achieve a balanced trade-off between concept removal and generation quality. To address this limitation, we propose a novel Bidirectional Image-Guided Concept Erasure (Bi-Erasing) framework that performs concept suppression and safety enhancement simultaneously. Specifically, based on the joint representation of text prompts and corresponding images, Bi-Erasing introduces two decoupled image branches: a negative branch responsible for suppressing harmful semantics and a positive branch providing visual guidance for safe alternatives. By jointly optimizing these complementary directions, our approach achieves a balance between erasure efficacy and generation usability. In addition, we apply mask-based filtering to the image branches to prevent interference from irrelevant content during the erasure process. Across extensive experiment evaluations, the proposed Bi-Erasing outperforms baseline methods in balancing concept removal effectiveness and visual fidelity.
comment: Under Review
☆ Comprehensive Evaluation of Rule-Based, Machine Learning, and Deep Learning in Human Estimation Using Radio Wave Sensing: Accuracy, Spatial Generalization, and Output Granularity Trade-offs
This study presents the first comprehensive comparison of rule-based methods, traditional machine learning models, and deep learning models in radio wave sensing with frequency modulated continuous wave multiple input multiple output radar. We systematically evaluated five approaches in two indoor environments with distinct layouts: a rule-based connected component method; three traditional machine learning models, namely k-nearest neighbors, random forest, and support vector machine; and a deep learning model combining a convolutional neural network and long short term memory. In the training environment, the convolutional neural network long short term memory model achieved the highest accuracy, while traditional machine learning models provided moderate performance. In a new layout, however, all learning based methods showed significant degradation, whereas the rule-based method remained stable. Notably, for binary detection of presence versus absence of people, all models consistently achieved high accuracy across layouts. These results demonstrate that high capacity models can produce fine grained outputs with high accuracy in the same environment, but they are vulnerable to domain shift. In contrast, rule-based methods cannot provide fine grained outputs but exhibit robustness against domain shift. Moreover, regardless of the model type, a clear trade off was revealed between spatial generalization performance and output granularity.
comment: 10 pages, 5 figures. A comprehensive comparison of rule-based, machine learning, and deep learning approaches for human estimation using FMCW MIMO radar, focusing on accuracy, spatial generalization, and output granularity
☆ Motus: A Unified Latent Action World Model
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
☆ SneakPeek: Future-Guided Instructional Streaming Video Generation
Instructional video generation is an emerging task that aims to synthesize coherent demonstrations of procedural activities from textual descriptions. Such capability has broad implications for content creation, education, and human-AI interaction, yet existing video diffusion models struggle to maintain temporal consistency and controllability across long sequences of multiple action steps. We introduce a pipeline for future-driven streaming instructional video generation, dubbed SneakPeek, a diffusion-based autoregressive framework designed to generate precise, stepwise instructional videos conditioned on an initial image and structured textual prompts. Our approach introduces three key innovations to enhance consistency and controllability: (1) predictive causal adaptation, where a causal model learns to perform next-frame prediction and anticipate future keyframes; (2) future-guided self-forcing with a dual-region KV caching scheme to address the exposure bias issue at inference time; (3) multi-prompt conditioning, which provides fine-grained and procedural control over multi-step instructions. Together, these components mitigate temporal drift, preserve motion consistency, and enable interactive video generation where future prompt updates dynamically influence ongoing streaming video generation. Experimental results demonstrate that our method produces temporally coherent and semantically faithful instructional videos that accurately follow complex, multi-step task descriptions.
☆ Comprehensive Deployment-Oriented Assessment for Cross-Environment Generalization in Deep Learning-Based mmWave Radar Sensing
This study presents the first comprehensive evaluation of spatial generalization techniques, which are essential for the practical deployment of deep learning-based radio-frequency (RF) sensing. Focusing on people counting in indoor environments using frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) radar, we systematically investigate a broad set of approaches, including amplitude-based statistical preprocessing (sigmoid weighting and threshold zeroing), frequency-domain filtering, autoencoder-based background suppression, data augmentation strategies, and transfer learning. Experimental results collected across two environments with different layouts demonstrate that sigmoid-based amplitude weighting consistently achieves superior cross-environment performance, yielding 50.1% and 55.2% reductions in root-mean-square error (RMSE) and mean absolute error (MAE), respectively, compared with baseline methods. Data augmentation provides additional though modest benefits, with improvements up to 8.8% in MAE. By contrast, transfer learning proves indispensable for large spatial shifts, achieving 82.1% and 91.3% reductions in RMSE and MAE, respectively, with 540 target-domain samples. Taken together, these findings establish a highly practical direction for developing radar sensing systems capable of maintaining robust accuracy under spatial variations by integrating deep learning models with amplitude-based preprocessing and efficient transfer learning.
comment: 8 pages, 6 figures. Comprehensive evaluation of preprocessing, data augmentation, and transfer learning for cross-environment generalization in deep learning-based mmWave radar sensing
☆ What Happens Next? Next Scene Prediction with a Unified Video Model
Recent unified models for joint understanding and generation have significantly advanced visual generation capabilities. However, their focus on conventional tasks like text-to-video generation has left the temporal reasoning potential of unified models largely underexplored. To address this gap, we introduce Next Scene Prediction (NSP), a new task that pushes unified video models toward temporal and causal reasoning. Unlike text-to-video generation, NSP requires predicting plausible futures from preceding context, demanding deeper understanding and reasoning. To tackle this task, we propose a unified framework combining Qwen-VL for comprehension and LTX for synthesis, bridged by a latent query embedding and a connector module. This model is trained in three stages on our newly curated, large-scale NSP dataset: text-to-video pre-training, supervised fine-tuning, and reinforcement learning (via GRPO) with our proposed causal consistency reward. Experiments demonstrate our model achieves state-of-the-art performance on our benchmark, advancing the capability of generalist multimodal systems to anticipate what happens next.
☆ JoDiffusion: Jointly Diffusing Image with Pixel-Level Annotations for Semantic Segmentation Promotion AAAI 2026
Given the inherently costly and time-intensive nature of pixel-level annotation, the generation of synthetic datasets comprising sufficiently diverse synthetic images paired with ground-truth pixel-level annotations has garnered increasing attention recently for training high-performance semantic segmentation models. However, existing methods necessitate to either predict pseudo annotations after image generation or generate images conditioned on manual annotation masks, which incurs image-annotation semantic inconsistency or scalability problem. To migrate both problems with one stone, we present a novel dataset generative diffusion framework for semantic segmentation, termed JoDiffusion. Firstly, given a standard latent diffusion model, JoDiffusion incorporates an independent annotation variational auto-encoder (VAE) network to map annotation masks into the latent space shared by images. Then, the diffusion model is tailored to capture the joint distribution of each image and its annotation mask conditioned on a text prompt. By doing these, JoDiffusion enables simultaneously generating paired images and semantically consistent annotation masks solely conditioned on text prompts, thereby demonstrating superior scalability. Additionally, a mask optimization strategy is developed to mitigate the annotation noise produced during generation. Experiments on Pascal VOC, COCO, and ADE20K datasets show that the annotated dataset generated by JoDiffusion yields substantial performance improvements in semantic segmentation compared to existing methods.
comment: Accepted at AAAI 2026
☆ TWLR: Text-Guided Weakly-Supervised Lesion Localization and Severity Regression for Explainable Diabetic Retinopathy Grading
Accurate medical image analysis can greatly assist clinical diagnosis, but its effectiveness relies on high-quality expert annotations Obtaining pixel-level labels for medical images, particularly fundus images, remains costly and time-consuming. Meanwhile, despite the success of deep learning in medical imaging, the lack of interpretability limits its clinical adoption. To address these challenges, we propose TWLR, a two-stage framework for interpretable diabetic retinopathy (DR) assessment. In the first stage, a vision-language model integrates domain-specific ophthalmological knowledge into text embeddings to jointly perform DR grading and lesion classification, effectively linking semantic medical concepts with visual features. The second stage introduces an iterative severity regression framework based on weakly-supervised semantic segmentation. Lesion saliency maps generated through iterative refinement direct a progressive inpainting mechanism that systematically eliminates pathological features, effectively downgrading disease severity toward healthier fundus appearances. Critically, this severity regression approach achieves dual benefits: accurate lesion localization without pixel-level supervision and providing an interpretable visualization of disease-to-healthy transformations. Experimental results on the FGADR, DDR, and a private dataset demonstrate that TWLR achieves competitive performance in both DR classification and lesion segmentation, offering a more explainable and annotation-efficient solution for automated retinal image analysis.
☆ Light Field Based 6DoF Tracking of Previously Unobserved Objects
Object tracking is an important step in robotics and reautonomous driving pipelines, which has to generalize to previously unseen and complex objects. Existing high-performing methods often rely on pre-captured object views to build explicit reference models, which restricts them to a fixed set of known objects. However, such reference models can struggle with visually complex appearance, reducing the quality of tracking. In this work, we introduce an object tracking method based on light field images that does not depend on a pre-trained model, while being robust to complex visual behavior, such as reflections. We extract semantic and geometric features from light field inputs using vision foundation models and convert them into view-dependent Gaussian splats. These splats serve as a unified object representation, supporting differentiable rendering and pose optimization. We further introduce a light field object tracking dataset containing challenging reflective objects with precise ground truth poses. Experiments demonstrate that our method is competitive with state-of-the-art model-based trackers in these difficult cases, paving the way toward universal object tracking in robotic systems. Code/data available at https://github.com/nagonch/LiFT-6DoF.
☆ Few-Step Distillation for Text-to-Image Generation: A Practical Guide
Diffusion distillation has dramatically accelerated class-conditional image synthesis, but its applicability to open-ended text-to-image (T2I) generation is still unclear. We present the first systematic study that adapts and compares state-of-the-art distillation techniques on a strong T2I teacher model, FLUX.1-lite. By casting existing methods into a unified framework, we identify the key obstacles that arise when moving from discrete class labels to free-form language prompts. Beyond a thorough methodological analysis, we offer practical guidelines on input scaling, network architecture, and hyperparameters, accompanied by an open-source implementation and pretrained student models. Our findings establish a solid foundation for deploying fast, high-fidelity, and resource-efficient diffusion generators in real-world T2I applications. Code is available on github.com/alibaba-damo-academy/T2I-Distill.
☆ Calibrating Uncertainty for Zero-Shot Adversarial CLIP
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
☆ Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
☆ VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs
We present VoroLight, a differentiable framework for 3D shape reconstruction based on Voronoi meshing. Our approach generates smooth, watertight surfaces and topologically consistent volumetric meshes directly from diverse inputs, including images, implicit shape level-set fields, point clouds and meshes. VoroLight operates in three stages: it first initializes a surface using a differentiable Voronoi formulation, then refines surface quality through a polygon-face sphere training stage, and finally reuses the differentiable Voronoi formulation for volumetric optimization with additional interior generator points. Project page: https://jiayinlu19960224.github.io/vorolight/
☆ Scaling Up AI-Generated Image Detection via Generator-Aware Prototypes
The pursuit of a universal AI-generated image (AIGI) detector often relies on aggregating data from numerous generators to improve generalization. However, this paper identifies a paradoxical phenomenon we term the Benefit then Conflict dilemma, where detector performance stagnates and eventually degrades as source diversity expands. Our systematic analysis, diagnoses this failure by identifying two core issues: severe data-level heterogeneity, which causes the feature distributions of real and synthetic images to increasingly overlap, and a critical model-level bottleneck from fixed, pretrained encoders that cannot adapt to the rising complexity. To address these challenges, we propose Generator-Aware Prototype Learning (GAPL), a framework that constrain representation with a structured learning paradigm. GAPL learns a compact set of canonical forgery prototypes to create a unified, low-variance feature space, effectively countering data heterogeneity.To resolve the model bottleneck, it employs a two-stage training scheme with Low-Rank Adaptation, enhancing its discriminative power while preserving valuable pretrained knowledge. This approach establishes a more robust and generalizable decision boundary. Through extensive experiments, we demonstrate that GAPL achieves state-of-the-art performance, showing superior detection accuracy across a wide variety of GAN and diffusion-based generators. Code is available at https://github.com/UltraCapture/GAPL
☆ VLCache: Computing 2% Vision Tokens and Reusing 98% for Vision-Language Inference
This paper presents VLCache, a cache reuse framework that exploits both Key-Value (KV) cache and encoder cache from prior multimodal inputs to eliminate costly recomputation when the same multimodal inputs recur. Unlike previous heuristic approaches, we formally identify the cumulative reuse error effect and demonstrate how to minimize the non-prefix cache reuse error effectively. We further analyze the varying importance of model layers and propose a dynamic, layer-aware recomputation strategy to balance accuracy and efficiency. Experimental results show that VLCache achieves an accuracy on par with full recomputation, while requiring only 2-5% of the tokens to compute, yielding 1.2x-16x TTFT speedups. The proposed VLCache pipeline has been integrated into SGLang, enabling significantly faster inference in practical deployments.
☆ SCAdapter: Content-Style Disentanglement for Diffusion Style Transfer WACV 2026
Diffusion models have emerged as the leading approach for style transfer, yet they struggle with photo-realistic transfers, often producing painting-like results or missing detailed stylistic elements. Current methods inadequately address unwanted influence from original content styles and style reference content features. We introduce SCAdapter, a novel technique leveraging CLIP image space to effectively separate and integrate content and style features. Our key innovation systematically extracts pure content from content images and style elements from style references, ensuring authentic transfers. This approach is enhanced through three components: Controllable Style Adaptive Instance Normalization (CSAdaIN) for precise multi-style blending, KVS Injection for targeted style integration, and a style transfer consistency objective maintaining process coherence. Comprehensive experiments demonstrate SCAdapter significantly outperforms state-of-the-art methods in both conventional and diffusion-based baselines. By eliminating DDIM inversion and inference-stage optimization, our method achieves at least $2\times$ faster inference than other diffusion-based approaches, making it both more effective and efficient for practical applications.
comment: Accepted to WACV 2026
☆ Leveraging Compression to Construct Transferable Bitrate Ladders
Over the past few years, per-title and per-shot video encoding techniques have demonstrated significant gains as compared to conventional techniques such as constant CRF encoding and the fixed bitrate ladder. These techniques have demonstrated that constructing content-gnostic per-shot bitrate ladders can provide significant bitrate gains and improved Quality of Experience (QoE) for viewers under various network conditions. However, constructing a convex hull for every video incurs a significant computational overhead. Recently, machine learning-based bitrate ladder construction techniques have emerged as a substitute for convex hull construction. These methods operate by extracting features from source videos to train machine learning (ML) models to construct content-adaptive bitrate ladders. Here, we present a new ML-based bitrate ladder construction technique that accurately predicts the VMAF scores of compressed videos, by analyzing the compression procedure and by making perceptually relevant measurements on the source videos prior to compression. We evaluate the performance of our proposed framework against leading prior methods on a large corpus of videos. Since training ML models on every encoder setting is time-consuming, we also investigate how per-shot bitrate ladders perform under different encoding settings. We evaluate the performance of all models against the fixed bitrate ladder and the best possible convex hull constructed using exhaustive encoding with Bjontegaard-delta metrics.
comment: Under Review in IEEE Transactions on Image Processing
♻ ☆ Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
Estimating the 6D pose of textureless objects from RGB images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a two-step sequential process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI and TOD datasets, as well as on our reconstructed transparent object dataset, T-ROBI. Under the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our approach achieves high pose accuracy with fewer viewpoints than heuristic-based policies across all evaluated datasets. The accompanying video and T-ROBI dataset will be released on our project page: https://trailab.github.io/ActiveODPE.
♻ ☆ Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical planning for the treatment of lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to comprehensively assess the quality of the reconstruction. Furthermore, to address the lack of publicly available shape datasets for benchmarking reconstruction algorithms, we developed a shape dataset named Lung3D, which includes the 3D models of 800 labeled pulmonary segments and their corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/HINTLab/ImPulSe.
comment: Manuscript accepted by Medical Image Analysis, 2025
♻ ☆ BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The project page is available at https://jin-ting-he.github.io/Blur-Diffusion-Model/.
comment: NeurIPS 2025. Project Page: https://jin-ting-he.github.io/Blur-Diffusion-Model/
♻ ☆ OUGS: Active View Selection via Object-aware Uncertainty Estimation in 3DGS
Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However, efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS. Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g., position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a robust uncertainty estimator for the global scene.
comment: Conditionally accepted to Eurographics 2026 (five reviewers)
♻ ☆ Explainable Quantum Machine Learning for Multispectral Images Segmentation: Case Study
The emergence of Big Data changed how we approach information systems engineering. Nowadays, when we can use remote sensing techniques for Big Data acquisition, the issues such data introduce are as important as ever. One of those concerns is the processing of the data. Classical methods often fail to address that problem or are incapable of processing the data in a reasonable time. With that in mind information system engineers are required to investigate different approaches to the data processing. The recent advancements in noisy intermediate-scale quantum (NISQ) devices implementation allow us to investigate their application to real-life computational problem. This field of study is called quantum (information) systems engineering and usually focuses on technical problems with the contemporary devices. However, hardware challenges are not the only ones that hinder our quantum computation capabilities. Software limitations are the other, less explored side of this medal. Using multispectral image segmentation as a task example, we investigated how difficult it is to run a hybrid quantum-classical model on a real, publicly available quantum device. To quantify how and explain why the performance of our model changed when ran on a real device, we propose new explainability metrics. These metrics introduce new meaning to the explainable quantum machine learning; the explanation of the performance issue comes from the quantum device behavior. We also analyzed the expected money costs of running similar experiment on contemporary quantum devices using standard market prices.
comment: 18 pages, 5 figures, 3 tables. Extended and refined version of "On the status of current quantum machine learning software"
♻ ☆ WakeupUrban: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imagery
Historical satellite imagery archive, such as Keyhole satellite data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation ($\textit{e.g.}$, distortion, misalignment, and spectral scarcity) and the absence of annotations have long hindered its analysis. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{WakeupUrbanBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing remote sensing (RS) datasets, along with a framework for unsupervised segmentation tasks, $\textbf{WakeupUSM}$. First, WakeupUrbanBench serves as a pioneer, expertly annotated dataset built on mid-$20^{\text{th}}$ century RS imagery, involving four key urban classes and spanning 4 cities across 2 continents with nearly 1000 km$^2$ area of diverse urban morphologies, and additionally introducing one present-day city. Second, WakeupUSM is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Comprehensive experiments demonstrate WakeupUSM significantly outperforms existing unsupervised segmentation methods $\textbf{both WakeupUrbanBench and public dataset}$, promising to pave the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and codes will be released at https://github.com/Tianxiang-Hao/WakeupUrban.
comment: 11 pages, 4 figures, 3 tables
♻ ☆ WALINET: A water and lipid identification convolutional Neural Network for nuisance signal removal in 1H MR Spectroscopic Imaging
Purpose. Proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) provides non-invasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1H-MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1H-MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. Methods. We introduce a deep-learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1H-MRSI. The WALINET (WAter and LIpid neural NETwork) was compared to conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated and in-vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. Results. WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared to 42 minutes for conventional HLSVD+L2. Quantitative analysis shows WALINET has better performance than HLSVD+L2: 1) more lipid removal with 41% lower NRMSE, 2) better metabolite signal preservation with 71% lower NRMSE in simulated data, 155% higher SNR and 50% lower CRLB in in-vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray/white-matter contrast with more visible structural details. Conclusions. WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1H-MRSI compared to conventional state-of-the-art techniques. This represents a new application of deep-learning for MRSI processing, with potential for automated high-throughput workflow.
♻ ☆ Deep priors for satellite image restoration with accurate uncertainties
Satellite optical images, upon their on-ground receipt, offer a distorted view of the observed scene. Their restoration, including denoising, deblurring, and sometimes super-resolution, is required before their exploitation. Moreover, quantifying the uncertainties related to this restoration helps to reduce the risks of misinterpreting the image content. Deep learning methods are now state-of-the-art for satellite image restoration. Among them, direct inversion methods train a specific network for each sensor, and generally provide a point estimation of the restored image without the associated uncertainties. Alternatively, deep regularization (DR) methods learn a deep prior on target images before plugging it, as the regularization term, into a model-based optimization scheme. This allows for restoring images from several sensors with a single network and possibly for estimating associated uncertainties. In this paper, we introduce VBLE-xz, a DR method that solves the inverse problem in the latent space of a variational compressive autoencoder (CAE). We adapt the regularization strength by modulating the bitrate of the trained CAE with a training-free approach. Then, VBLE-xz estimates relevant uncertainties jointly in the latent and in the image spaces by sampling an explicit posterior estimated within variational inference. This enables fast posterior sampling, unlike state-of-the-art DR methods that use Markov chains or diffusion-based approaches. We conduct a comprehensive set of experiments on very high-resolution simulated and real Pléiades images, asserting the performance, robustness and scalability of the proposed method. They demonstrate that VBLE-xz represents a compelling alternative to direct inversion methods when uncertainty quantification is required. The code associated to this paper is available in https://github.com/MaudBqrd/VBLExz.
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: Accepted at AAAI 2026
♻ ☆ HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs AAAI2026
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks.Furthermore, grounded in the observation that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, we posit that reasoning ability serves as the key to unlocking it. We devise a multi-stage, modality-progressive reinforcement learning approach, resulting in HumanSense-Omni-Reasoning, which substantially enhances performance on higher-level understanding and interactive tasks. Additionally, we observe that successful reasoning processes appear to exhibit consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner.Project page: \textcolor{brightpink}{https://digital-avatar.github.io/ai/HumanSense/}
comment: Accepted by AAAI2026
♻ ☆ How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning that is less tied to absolute appearance and can remain coherent under variations such as partial visibility or stylistic changes. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms grid-based methods like MAE and DropPos, while maintaining competitive performance on global classification tasks. By breaking free from grid constraints, PART opens up a new trajectory for universal self-supervised pretraining across diverse datatypes-from images to EEG signals-with potential in medical imaging, video, and audio.
♻ ☆ QUOTA: Quantifying Objects with Text-to-Image Models for Any Domain WACV 2026
We tackle the problem of quantifying the number of objects by a generative text-to-image model. Rather than retraining such a model for each new image domain of interest, which leads to high computational costs and limited scalability, we are the first to consider this problem from a domain-agnostic perspective. We propose QUOTA, an optimization framework for text-to-image models that enables effective object quantification across unseen domains without retraining. It leverages a dual-loop meta-learning strategy to optimize a domain-invariant prompt. Further, by integrating prompt learning with learnable counting and domain tokens, our method captures stylistic variations and maintains accuracy, even for object classes not encountered during training. For evaluation, we adopt a new benchmark specifically designed for object quantification in domain generalization, enabling rigorous assessment of object quantification accuracy and adaptability across unseen domains in text-to-image generation. Extensive experiments demonstrate that QUOTA outperforms conventional models in both object quantification accuracy and semantic consistency, setting a new benchmark for efficient and scalable text-to-image generation for any domain.
comment: Accepted by WACV 2026
♻ ☆ CleanDIFT: Diffusion Features without Noise
Internal features from large-scale pre-trained diffusion models have recently been established as powerful semantic descriptors for a wide range of downstream tasks. Works that use these features generally need to add noise to images before passing them through the model to obtain the semantic features, as the models do not offer the most useful features when given images with little to no noise. We show that this noise has a critical impact on the usefulness of these features that cannot be remedied by ensembling with different random noises. We address this issue by introducing a lightweight, unsupervised fine-tuning method that enables diffusion backbones to provide high-quality, noise-free semantic features. We show that these features readily outperform previous diffusion features by a wide margin in a wide variety of extraction setups and downstream tasks, offering better performance than even ensemble-based methods at a fraction of the cost.
comment: for the project page and code, view https://compvis.github.io/cleandift/
♻ ☆ Accelerated Rotation-Invariant Convolution for UAV Image Segmentation
Rotation invariance is essential for precise, object-level segmentation in UAV aerial imagery, where targets can have arbitrary orientations and exhibit fine-scale details. Conventional segmentation architectures like U-Net rely on convolution operators that are not rotation-invariant, leading to degraded segmentation accuracy across varying viewpoints. Rotation invariance can be achieved by expanding the filter bank across multiple orientations; however, this will significantly increase computational cost and memory traffic. In this paper, we introduce a GPU-optimized rotation-invariant convolution framework that eliminates the traditional data-lowering (im2col) step required for matrix-multiplication-based convolution. By exploiting structured data sharing among symmetrically rotated filters, our method achieves multi-orientation convolution with greatly reduced memory traffic and computational redundancy. We further generalize the approach to accelerate convolution with arbitrary (non-symmetric) rotation angles. Across extensive benchmarks, the proposed convolution achieves 20--55% faster training and 15--45% lower energy consumption than CUDNN, while maintaining accuracy comparable to state-of-the-art rotation-invariant methods. In the eight-orientation setting, our approach achieves up to 45% speedup and 41% energy savings on 256\(\times\)256 inputs, and 32% speedup and 23% lower energy usage on 1024\(\times\)1024 inputs. Integrated into a U-Net segmentation model, the framework yields up to 6% improvement in accuracy over the non-rotation-aware baseline. These results demonstrate that the proposed method provides an effective and highly efficient alternative to existing rotation-invariant CNN frameworks.
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Instance-Level Composed Image Retrieval NeurIPS 2025
The progress of composed image retrieval (CIR), a popular research direction in image retrieval, where a combined visual and textual query is used, is held back by the absence of high-quality training and evaluation data. We introduce a new evaluation dataset, i-CIR, which, unlike existing datasets, focuses on an instance-level class definition. The goal is to retrieve images that contain the same particular object as the visual query, presented under a variety of modifications defined by textual queries. Its design and curation process keep the dataset compact to facilitate future research, while maintaining its challenge-comparable to retrieval among more than 40M random distractors-through a semi-automated selection of hard negatives. To overcome the challenge of obtaining clean, diverse, and suitable training data, we leverage pre-trained vision-and-language models (VLMs) in a training-free approach called BASIC. The method separately estimates query-image-to-image and query-text-to-image similarities, performing late fusion to upweight images that satisfy both queries, while down-weighting those that exhibit high similarity with only one of the two. Each individual similarity is further improved by a set of components that are simple and intuitive. BASIC sets a new state of the art on i-CIR but also on existing CIR datasets that follow a semantic-level class definition. Project page: https://vrg.fel.cvut.cz/icir/.
comment: NeurIPS 2025
♻ ☆ DEAR: Dataset for Evaluating the Aesthetics of Rendering
Traditional Image Quality Assessment~(IQA) focuses on quantifying technical degradations such as noise, blur, or compression artifacts, using both full-reference and no-reference objective metrics. However, evaluation of rendering aesthetics, a growing domain relevant to photographic editing, content creation, and AI-generated imagery, remains underexplored due to the lack of datasets that reflect the inherently subjective nature of style preference. In this work, a novel benchmark dataset designed to model human aesthetic judgments of image rendering styles is introduced: the Dataset for Evaluating the Aesthetics of Rendering (DEAR). Built upon the MIT-Adobe FiveK dataset, DEAR incorporates pairwise human preference scores collected via large-scale crowdsourcing, with each image pair evaluated by 25 distinct human evaluators with a total of 13,648 of them participating overall. These annotations capture nuanced, context-sensitive aesthetic preferences, enabling the development and evaluation of models that go beyond traditional distortion-based IQA, focusing on a new task: Evaluation of Aesthetics of Rendering (EAR). The data collection pipeline is described, human voting patterns are analyzed, and multiple use cases are outlined, including style preference prediction, aesthetic benchmarking, and personalized aesthetic modeling. To the best of the authors' knowledge, DEAR is the first dataset to systematically address image aesthetics of rendering assessment grounded in subjective human preferences. A subset of 100 images with markup for them is published on HuggingFace (huggingface.co/datasets/vsevolodpl/DEAR).
♻ ☆ YawDD+: Frame-level Annotations for Accurate Yawn Prediction
Driver fatigue remains a leading cause of road accidents, with 24% of crashes involving drowsy drivers. While yawning serves as an early behavioral indicator of fatigue, existing machine learning approaches face significant challenges due to video-annotated datasets that introduce systematic noise from coarse temporal annotations. We develop a semi-automated labeling pipeline with human-in-the-loop verification, which we apply to YawDD, enabling more accurate model training. Training the established MNasNet classifier and YOLOv11 detector architectures on YawDD+ improves frame accuracy by up to 6% and mAP by 5% over video-level supervision, achieving 99.34% classification accuracy and 95.69% detection mAP. The resulting approach deliver up to 59.8 FPS on edge AI hardware (NVIDIA Jetson Nano), confirming that enhanced data quality alone supports on-device yawning monitoring without server-side computation.
comment: This paper is submitted at European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2026
♻ ☆ Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning
♻ ☆ IPR-1: Interactive Physical Reasoner
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. To study this, we introduce a Game-to-Unseen (G2U) benchmark of 1,000+ heterogeneous games that exhibit significant visual domain gaps. Existing approaches, including VLMs and world models, struggle to capture underlying physics and causality since they are not focused on core mechanisms and overfit to visual details. VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on levels from primitive intuition to goal-driven reasoning, and even surpasses GPT-5 overall. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning. Further demos and project details can be found at https://mybearyzhang.github.io/ipr-1.
comment: 13 pages of main text and 19 pages of appendices. Project page: https://mybearyzhang.github.io/ipr-1
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data bootstrap problem-design strategies from the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our method achieves an average improvement of 2.5% and generalizes to both language and vision-language models. Moreover, a solver trained on the synthesized data provides improved rewards for continued generator training, enabling co-evolution and yielding a further 0.7% performance gain. Our code will be made publicly available here.
♻ ☆ PD-Diag-Net: Clinical-Priors guided Network on Brain MRI for Auxiliary Diagnosis of Parkinson's Disease
Parkinson's disease (PD) is a common neurodegenerative disorder that severely diminishes patients' quality of life. Its global prevalence has increased markedly in recent decades. Current diagnostic workflows are complex and heavily reliant on neurologists' expertise, often resulting in delays in early detection and missed opportunities for timely intervention. To address these issues, we propose an end-to-end automated diagnostic method for PD, termed PD-Diag-Net, which performs risk assessment and auxiliary diagnosis directly from raw MRI scans. This framework first introduces an MRI Pre-processing Module (MRI-Processor) to mitigate inter-subject and inter-scanner variability by flexibly integrating established medical imaging preprocessing tools. It then incorporates two forms of clinical prior knowledge: (1) Brain-Region-Relevance-Prior (Relevance-Prior), which specifies brain regions strongly associated with PD; and (2) Brain-Region-Aging-Prior (Aging-Prior), which reflects the accelerated aging typically observed in PD-associated regions. Building on these priors, we design two dedicated modules: the Relevance-Prior Guided Feature Aggregation Module (Aggregator), which guides the model to focus on PD-associated regions at the inter-subject level, and the Age-Prior Guided Diagnosis Module (Diagnoser), which leverages brain age gaps as auxiliary constraints at the intra-subject level to enhance diagnostic accuracy and clinical interpretability. Furthermore, we collected external test data from our collaborating hospital. Experimental results show that PD-Diag-Net achieves 86\% accuracy on external tests and over 96% accuracy in early-stage diagnosis, outperforming existing advanced methods by more than 20%.
♻ ☆ Semantic-Anchored, Class Variance-Optimized Clustering for Robust Semi-Supervised Few-Shot Learning
Few-shot learning has been extensively explored to address problems where the amount of labeled samples is very limited for some classes. In the semi-supervised few-shot learning setting, substantial quantities of unlabeled samples are available. Such unlabeled samples are generally cheaper to obtain and can be used to improve the few-shot learning performance of the model. Some of the recent methods for this setting rely on clustering to generate pseudo-labels for the unlabeled samples. Since the effectiveness of clustering heavily influences the labeling of the unlabeled samples, it can significantly affect the few-shot learning performance. In this paper, we focus on improving the representation learned by the model in order to improve the clustering and, consequently, the model performance. We propose an approach for semi-supervised few-shot learning that performs a class-variance optimized clustering coupled with a cluster separation tuner in order to improve the effectiveness of clustering the labeled and unlabeled samples in this setting. It also optimizes the clustering-based pseudo-labeling process using a restricted pseudo-labeling approach and performs semantic information injection in order to improve the semi-supervised few-shot learning performance of the model. We experimentally demonstrate that our proposed approach significantly outperforms recent state-of-the-art methods on the benchmark datasets. To further establish its robustness, we conduct extensive experiments under challenging conditions, showing that the model generalizes well to domain shifts and achieves new state-of-the-art performance in open-set settings with distractor classes, highlighting its effectiveness for real-world applications.
♻ ☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
♻ ☆ Relational Anatomical Supervision for Accurate 3D Multi-Chamber Cardiac Mesh Reconstruction
Accurate reconstruction of multi-chamber cardiac anatomy from medical images is a cornerstone for patient-specific modeling, physiological simulation, and interventional planning. However, current reconstruction pipelines fundamentally rely on surface-wise geometric supervision and model each chamber in isolation, resulting in anatomically implausible inter-chamber violations despite apparently favorable overlap or distance metrics. In this work, we propose a relational anatomical supervision framework for multi-chamber cardiac mesh reconstruction by introducing a Mesh Interrelation Enhancement (MIE) loss. The proposed formulation explicitly encodes spatial relationships between cardiac structures into a differentiable occupancy-based objective, thereby transforming qualitative anatomical rules into quantitative geometric supervision. We further establish violation-aware evaluation metrics to directly quantify inter-chamber structural correctness, revealing systematic limitations of commonly used geometric measures such as Dice and Chamfer distance. Extensive experiments on multi-center CT data, densely sampled MR data, and two independent external cohorts, including a highly heterogeneous congenital heart disease population, demonstrate that the proposed method consistently suppresses clinically critical boundary violations by up to 83\%, while maintaining competitive volumetric accuracy and achieving superior surface fidelity. Notably, the proposed relational supervision generalizes robustly across imaging modalities, centers, and pathological conditions, even under severe anatomical deformation. These results demonstrate that distance-based supervision alone is insufficient to guarantee anatomically faithful reconstruction, and that explicit enforcement of multi-structure anatomical relations provides a principled and robust pathway toward reliable patient-specific cardiac modeling.
♻ ☆ HybridSplat: Fast Reflection-baked Gaussian Tracing using Hybrid Splatting
Rendering complex reflection of real-world scenes using 3D Gaussian splatting has been a quite promising solution for photorealistic novel view synthesis, but still faces bottlenecks especially in rendering speed and memory storage. This paper proposes a new Hybrid Splatting(HybridSplat) mechanism for Gaussian primitives. Our key idea is a new reflection-baked Gaussian tracing, which bakes the view-dependent reflection within each Gaussian primitive while rendering the reflection using tile-based Gaussian splatting. Then we integrate the reflective Gaussian primitives with base Gaussian primitives using a unified hybrid splatting framework for high-fidelity scene reconstruction. Moreover, we further introduce a pipeline-level acceleration for the hybrid splatting, and reflection-sensitive Gaussian pruning to reduce the model size, thus achieving much faster rendering speed and lower memory storage while preserving the reflection rendering quality. By extensive evaluation, our HybridSplat accelerates about 7x rendering speed across complex reflective scenes from Ref-NeRF, NeRF-Casting with 4x fewer Gaussian primitives than similar ray-tracing based Gaussian splatting baselines, serving as a new state-of-the-art method especially for complex reflective scenes.
comment: Project URL: https://aetheryne.github.io/HybridSplat/
♻ ☆ 3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/
comment: Project page : https://cvlab-kaist.github.io/3DScenePrompt/
♻ ☆ ViCO: A Training Strategy towards Semantic Aware Dynamic High-Resolution
Existing Multimodal Large Language Models (MLLMs) suffer from increased inference costs due to the additional vision tokens introduced by image inputs. In this work, we propose Visual Consistency Learning (ViCO), a novel training algorithm that enables the model to represent images of varying semantic complexities using different numbers of vision tokens. The key idea behind our method is to employ multiple MLP connectors, each with a different image compression ratio, to downsample the vision tokens based on the semantic complexity of the image. During training, we minimize the KL divergence between the responses conditioned on different MLP connectors. At inference time, we introduce an image router, termed Visual Resolution Router (ViR), that automatically selects the appropriate compression rate for each image patch. Compared with existing dynamic high-resolution strategies, which adjust the number of visual tokens based on image resolutions, our method dynamically adapts the number of visual tokens according to semantic complexity. Experimental results demonstrate that our method can reduce the number of vision tokens by up to 50% while maintaining the model's perception, reasoning, and OCR capabilities. We hope this work will contribute to the development of more efficient MLLMs. The code and models will be released to facilitate future research.
♻ ☆ CAST-Phys: Contactless Affective States Through Physiological signals Database
In recent years, affective computing and its applications have become a fast-growing research topic. Despite significant advancements, the lack of affective multi-modal datasets remains a major bottleneck in developing accurate emotion recognition systems. Furthermore, the use of contact-based devices during emotion elicitation often unintentionally influences the emotional experience, reducing or altering the genuine spontaneous emotional response. This limitation highlights the need for methods capable of extracting affective cues from multiple modalities without physical contact, such as remote physiological emotion recognition. To address this, we present the Contactless Affective States Through Physiological Signals Database (CAST-Phys), a novel high-quality dataset explicitly designed for multi-modal remote physiological emotion recognition using facial and physiological cues. The dataset includes diverse physiological signals, such as photoplethysmography (PPG), electrodermal activity (EDA), and respiration rate (RR), alongside high-resolution uncompressed facial video recordings, enabling the potential for remote signal recovery. Our analysis highlights the crucial role of physiological signals in realistic scenarios where facial expressions alone may not provide sufficient emotional information. Furthermore, we demonstrate the potential of remote multi-modal emotion recognition by evaluating the impact of individual and fused modalities, showcasing its effectiveness in advancing contactless emotion recognition technologies.
♻ ☆ Towards Physically Executable 3D Gaussian for Embodied Navigation
3D Gaussian Splatting (3DGS), a 3D representation method with photorealistic real-time rendering capabilities, is regarded as an effective tool for narrowing the sim-to-real gap. However, it lacks fine-grained semantics and physical executability for Visual-Language Navigation (VLN). To address this, we propose SAGE-3D (Semantically and Physically Aligned Gaussian Environments for 3D Navigation), a new paradigm that upgrades 3DGS into an executable, semantically and physically aligned environment. It comprises two components: (1) Object-Centric Semantic Grounding, which adds object-level fine-grained annotations to 3DGS; and (2) Physics-Aware Execution Jointing, which embeds collision objects into 3DGS and constructs rich physical interfaces. We release InteriorGS, containing 1K object-annotated 3DGS indoor scene data, and introduce SAGE-Bench, the first 3DGS-based VLN benchmark with 2M VLN data. Experiments show that 3DGS scene data is more difficult to converge, while exhibiting strong generalizability, improving baseline performance by 31% on the VLN-CE Unseen task. Our data and code are available at: https://sage-3d.github.io.
comment: Project Page: https://sage-3d.github.io/
♻ ☆ MR-COSMO: Visual-Text Memory Recall and Direct CrOSs-MOdal Alignment Method for Query-Driven 3D Segmentation AAAI 2026
The rapid advancement of vision-language models (VLMs) in 3D domains has accelerated research in text-query-guided point cloud processing, though existing methods underperform in point-level segmentation due to inadequate 3D-text alignment that limits local feature-text context linking. To address this limitation, we propose MR-COSMO, a Visual-Text Memory Recall and Direct CrOSs-MOdal Alignment Method for Query-Driven 3D Segmentation, establishing explicit alignment between 3D point clouds and text/2D image data through a dedicated direct cross-modal alignment module while implementing a visual-text memory module with specialized feature banks. This direct alignment mechanism enables precise fusion of geometric and semantic features, while the memory module employs specialized banks storing text features, visual features, and their correspondence mappings to dynamically enhance scene-specific representations via attention-based knowledge recall. Comprehensive experiments across 3D instruction, reference, and semantic segmentation benchmarks confirm state-of-the-art performance.
comment: Accepted by AAAI 2026. Copyright (c) 2026, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
♻ ☆ dots.ocr: Multilingual Document Layout Parsing in a Single Vision-Language Model
Document Layout Parsing serves as a critical gateway for Artificial Intelligence (AI) to access and interpret the world's vast stores of structured knowledge. This process,which encompasses layout detection, text recognition, and relational understanding, is particularly crucial for empowering next-generation Vision-Language Models. Current methods, however, rely on fragmented, multi-stage pipelines that suffer from error propagation and fail to leverage the synergies of joint training. In this paper, we introduce $\text{dots.ocr}$, a single Vision-Language Model that, for the first time, demonstrates the advantages of jointly learning three core tasks within a unified, end-to-end framework. This is made possible by a highly scalable data engine that synthesizes a vast multilingual corpus, empowering the model to deliver robust performance across a wide array of tasks, encompassing diverse languages, layouts, and domains. The efficacy of our unified paradigm is validated by state-of-the-art performance on the comprehensive OmniDocBench. Furthermore, to catalyze research in global document intelligence, we introduce XDocParse, a challenging new benchmark spanning 126 languages. On this testbed, $\text{dots.ocr}$ establishes a powerful new baseline, outperforming the next-best competitor by a remarkable +7.4 point margin and proving its unparalleled multilingual capabilities.
♻ ☆ We Can Always Catch You: Detecting Adversarial Patched Objects WITH or WITHOUT Signature
Recently, object detection has proven vulnerable to adversarial patch attacks. The attackers holding a specially crafted patch can hide themselves from state-of-the-art detectors, e.g., YOLO, even in the physical world. This attack can bring serious security threats, such as escaping from surveillance cameras. How to effectively detect this kind of adversarial examples to catch potential attacks has become an important problem. In this paper, we propose two detection methods: the signature-based method and the signature-independent method. First, we identify two signatures of existing adversarial patches that can be utilized to precisely locate patches within adversarial examples. By employing the signatures, a fast signature-based method is developed to detect the adversarial objects. Second, we present a robust signature-independent method based on the \textit{content semantics consistency} of model outputs. Adversarial objects violate this consistency, appearing locally but disappearing globally, while benign ones remain consistently present. The experiments demonstrate that two proposed methods can effectively detect attacks both in the digital and physical world. These methods each offer distinct advantage. Specifically, the signature-based method is capable of real-time detection, while the signature-independent method can detect unknown adversarial patch attacks and makes defense-aware attacks almost impossible to perform.
♻ ☆ FourierSR: A Fourier Token-based Plugin for Efficient Image Super-Resolution
Image super-resolution (SR) aims to recover low-resolution images to high-resolution images, where improving SR efficiency is a high-profile challenge. However, commonly used units in SR, like convolutions and window-based Transformers, have limited receptive fields, making it challenging to apply them to improve SR under extremely limited computational cost. To address this issue, inspired by modeling convolution theorem through token mix, we propose a Fourier token-based plugin called FourierSR to improve SR uniformly, which avoids the instability or inefficiency of existing token mix technologies when applied as plug-ins. Furthermore, compared to convolutions and windows-based Transformers, our FourierSR only utilizes Fourier transform and multiplication operations, greatly reducing complexity while having global receptive fields. Experimental results show that our FourierSR as a plug-and-play unit brings an average PSNR gain of 0.34dB for existing efficient SR methods on Manga109 test set at the scale of x4, while the average increase in the number of Params and FLOPs is only 0.6% and 1.5% of original sizes. We will release our codes upon acceptance.
♻ ☆ TC-LoRA: Temporally Modulated Conditional LoRA for Adaptive Diffusion Control NeurIPS 2025
Current controllable diffusion models typically rely on fixed architectures that modify intermediate activations to inject guidance conditioned on a new modality. This approach uses a static conditioning strategy for a dynamic, multi-stage denoising process, limiting the model's ability to adapt its response as the generation evolves from coarse structure to fine detail. We introduce TC-LoRA (Temporally Modulated Conditional LoRA), a new paradigm that enables dynamic, context-aware control by conditioning the model's weights directly. Our framework uses a hypernetwork to generate LoRA adapters on-the-fly, tailoring weight modifications for the frozen backbone at each diffusion step based on time and the user's condition. This mechanism enables the model to learn and execute an explicit, adaptive strategy for applying conditional guidance throughout the entire generation process. Through experiments on various data domains, we demonstrate that this dynamic, parametric control significantly enhances generative fidelity and adherence to spatial conditions compared to static, activation-based methods. TC-LoRA establishes an alternative approach in which the model's conditioning strategy is modified through a deeper functional adaptation of its weights, allowing control to align with the dynamic demands of the task and generative stage.
comment: Project Page: https://minkyoungcho.github.io/tc-lora/; NeurIPS 2025 Workshop on SPACE in Vision, Language, and Embodied AI (SpaVLE); 10 pages
♻ ☆ CHIMERA: Adaptive Cache Injection and Semantic Anchor Prompting for Zero-shot Image Morphing with Morphing-oriented Metrics
Diffusion models exhibit remarkable generative ability, yet achieving smooth and semantically consistent image morphing remains a challenge. Existing approaches often yield abrupt transitions or over-saturated appearances due to the lack of adaptive structural and semantic alignments. We propose CHIMERA, a zero-shot diffusion-based framework that formulates morphing as a cached inversion-guided denoising process. To handle large semantic and appearance disparities, we propose Adaptive Cache Injection and Semantic Anchor Prompting. Adaptive Cache Injection (ACI) caches down, mid, and up blocks features from both inputs during DDIM inversion and re-injects them adaptively during denoising, enabling spatial and semantic alignment in depth- and time-adaptive manners and enabling natural feature fusion and smooth transitions. Semantic Anchor Prompting (SAP) leverages a vision-language model to generate a shared anchor prompt that serves as a semantic anchor, bridging dissimilar inputs and guiding the denoising process toward coherent results. Finally, we introduce the Global-Local Consistency Score (GLCS), a morphing-oriented metric that simultaneously evaluates the global harmonization of the two inputs and the smoothness of the local morphing transition. Extensive experiments and user studies show that CHIMERA achieves smoother and more semantically aligned transitions than existing methods, establishing a new state of the art in image morphing. The code and project page will be publicly released.
comment: Please visit our project page at https://cmlab-korea.github.io/CHIMERA/
♻ ☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
♻ ☆ Automatic Calibration of a Multi-Camera System with Limited Overlapping Fields of View for 3D Surgical Scene Reconstruction
The purpose of this study is to develop an automated and accurate external camera calibration method for multi-camera systems used in 3D surgical scene reconstruction (3D-SSR), eliminating the need for operator intervention or specialized expertise. The method specifically addresses the problem of limited overlapping fields of view caused by significant variations in optical zoom levels and camera locations. We contribute a novel, fast, and fully automatic calibration method based on the projection of multi-scale markers (MSMs) using a ceiling-mounted projector. MSMs consist of 2D patterns projected at varying scales, ensuring accurate extraction of well distributed point correspondences across significantly different viewpoints and zoom levels. Validation is performed using both synthetic and real data captured in a mock-up OR, with comparisons to traditional manual marker-based methods as well as markerless calibration methods. The method achieves accuracy comparable to manual, operator-dependent calibration methods while exhibiting higher robustness under conditions of significant differences in zoom levels. Additionally, we show that state-of-the-art Structure-from-Motion (SfM) pipelines are ineffective in 3D-SSR settings, even when additional texture is projected onto the OR floor. The use of a ceiling-mounted entry-level projector proves to be an effective alternative to operator-dependent, traditional marker-based methods, paving the way for fully automated 3D-SSR.
comment: Accepted for oral presentation at IPCAI 2025. Project page: https://tflueckiger.github.io/calib-proj/
♻ ☆ A Self-Conditioned Representation Guided Diffusion Model for Realistic Text-to-LiDAR Scene Generation
Text-to-LiDAR generation can customize 3D data with rich structures and diverse scenes for downstream tasks. However, the scarcity of Text-LiDAR pairs often causes insufficient training priors, generating overly smooth 3D scenes. Moreover, low-quality text descriptions may degrade generation quality and controllability. In this paper, we propose a Text-to-LiDAR Diffusion Model for scene generation, named T2LDM, with a Self-Conditioned Representation Guidance (SCRG). Specifically, SCRG, by aligning to the real representations, provides the soft supervision with reconstruction details for the Denoising Network (DN) in training, while decoupled in inference. In this way, T2LDM can perceive rich geometric structures from data distribution, generating detailed objects in scenes. Meanwhile, we construct a content-composable Text-LiDAR benchmark, T2nuScenes, along with a controllability metric. Based on this, we analyze the effects of different text prompts for LiDAR generation quality and controllability, providing practical prompt paradigms and insights. Furthermore, a directional position prior is designed to mitigate street distortion, further improving scene fidelity. Additionally, by learning a conditional encoder via frozen DN, T2LDM can support multiple conditional tasks, including Sparse-to-Dense, Dense-to-Sparse, and Semantic-to-LiDAR generation. Extensive experiments in unconditional and conditional generation demonstrate that T2LDM outperforms existing methods, achieving state-of-the-art scene generation.
♻ ☆ WholeBodyVLA: Towards Unified Latent VLA for Whole-Body Loco-Manipulation Control
Humanoid robots require precise locomotion and dexterous manipulation to perform challenging loco-manipulation tasks. Yet existing approaches, modular or end-to-end, are deficient in manipulation-aware locomotion. This confines the robot to a limited workspace, preventing it from performing large-space loco-manipulation. We attribute this to: (1) the challenge of acquiring loco-manipulation knowledge due to the scarcity of humanoid teleoperation data, and (2) the difficulty of faithfully and reliably executing locomotion commands, stemming from the limited precision and stability of existing RL controllers. To acquire richer loco-manipulation knowledge, we propose a unified latent learning framework that enables Vision-Language-Action (VLA) system to learn from low-cost action-free egocentric videos. Moreover, an efficient human data collection pipeline is devised to augment the dataset and scale the benefits. To execute the desired locomotion commands more precisely, we present a loco-manipulation-oriented (LMO) RL policy specifically tailored for accurate and stable core loco-manipulation movements, such as advancing, turning, and squatting. Building on these components, we introduce WholeBodyVLA, a unified framework for humanoid loco-manipulation. To the best of our knowledge, WholeBodyVLA is one of its kind enabling large-space humanoid loco-manipulation. It is verified via comprehensive experiments on the AgiBot X2 humanoid, outperforming prior baseline by 21.3%. It also demonstrates strong generalization and high extensibility across a broad range of tasks.
♻ ☆ CoordAR: One-Reference 6D Pose Estimation of Novel Objects via Autoregressive Coordinate Map Generation AAAI 2026
Object 6D pose estimation, a crucial task for robotics and augmented reality applications, becomes particularly challenging when dealing with novel objects whose 3D models are not readily available. To reduce dependency on 3D models, recent studies have explored one-reference-based pose estimation, which requires only a single reference view instead of a complete 3D model. However, existing methods that rely on real-valued coordinate regression suffer from limited global consistency due to the local nature of convolutional architectures and face challenges in symmetric or occluded scenarios owing to a lack of uncertainty modeling. We present CoordAR, a novel autoregressive framework for one-reference 6D pose estimation of unseen objects. CoordAR formulates 3D-3D correspondences between the reference and query views as a map of discrete tokens, which is obtained in an autoregressive and probabilistic manner. To enable accurate correspondence regression, CoordAR introduces 1) a novel coordinate map tokenization that enables probabilistic prediction over discretized 3D space; 2) a modality-decoupled encoding strategy that separately encodes RGB appearance and coordinate cues; and 3) an autoregressive transformer decoder conditioned on both position-aligned query features and the partially generated token sequence. With these novel mechanisms, CoordAR significantly outperforms existing methods on multiple benchmarks and demonstrates strong robustness to symmetry, occlusion, and other challenges in real-world tests.
comment: 7 pages, accepted by AAAI 2026 (oral)
♻ ☆ Patch-Based Diffusion for Data-Efficient, Radiologist-Preferred MRI Reconstruction
Magnetic resonance imaging (MRI) requires long acquisition times, raising costs, reducing accessibility, and making scans more susceptible to motion artifacts. Diffusion probabilistic models that learn data-driven priors can potentially assist in reducing acquisition time. However, they typically require large training datasets that can be prohibitively expensive to collect. Patch-based diffusion models have shown promise in learning effective data-driven priors over small real-valued datasets, but have not yet demonstrated clinical value in MRI. We extend the Patch-based Diffusion Inverse Solver (PaDIS) to complex-valued, multi-coil MRI reconstruction, and compare it against a state-of-the-art whole-image diffusion baseline (FastMRI-EDM) for 7x undersampled MRI reconstruction on the FastMRI brain dataset. We show that PaDIS-MRI models trained on small datasets of as few as 25 k-space images outperform FastMRI-EDM on image quality metrics (PSNR, SSIM, NRMSE), pixel-level uncertainty, cross-contrast generalization, and robustness to severe k-space undersampling. In a blinded study with three radiologists, PaDIS-MRI reconstructions were chosen as diagnostically superior in 91.7% of cases, compared to baselines (i) FastMRI-EDM and (ii) classical convex reconstruction with wavelet sparsity. These findings highlight the potential of patch-based diffusion priors for high-fidelity MRI reconstruction in data-scarce clinical settings where diagnostic confidence matters.
comment: Code is available at: https://github.com/voilalab/PaDIS-MRI
♻ ☆ Gaussian-Plus-SDF SLAM: High-fidelity 3D Reconstruction at 150+ fps
While recent Gaussian-based SLAM methods achieve photorealistic reconstruction from RGB-D data, their computational performance remains a critical bottleneck. State-of-the-art techniques operate at less than 20 fps, significantly lagging behind geometry-based approaches like KinectFusion (hundreds of fps). This limitation stems from the heavy computational burden: modeling scenes requires numerous Gaussians and complex iterative optimization to fit RGB-D data; insufficient Gaussian counts or optimization iterations cause severe quality degradation. To address this, we propose a Gaussian-SDF hybrid representation, combining a colorized signed distance field (SDF) for smooth geometry and appearance with 3D Gaussians to capture underrepresented details. The SDF is efficiently constructed via RGB-D fusion (as in geometry-based methods), while Gaussians undergo iterative optimization. Our representation enables significant Gaussian reduction (50% fewer) by avoiding full-scene Gaussian modeling, and efficient Gaussian optimization (75% fewer iterations) through targeted appearance refinement. Building upon this representation, we develop GPS-SLAM (Gaussian-plus-SDF SLAM), a real-time 3D reconstruction system achieving over 150 fps on real-world Azure Kinect sequences, faster by an order-of-magnitude than state-of-the-art techniques while maintaining comparable reconstruction quality. The source code and data are available at https://gapszju.github.io/GPS-SLAM.
♻ ☆ DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation. Project page: https://eku127.github.io/DualMap/
comment: 14 pages, 14 figures. Published in IEEE Robotics and Automation Letters (RA-L), 2025. Code: https://github.com/Eku127/DualMap Project page: https://eku127.github.io/DualMap/
♻ ☆ Fast Wrong-way Cycling Detection in CCTV Videos: Sparse Sampling is All You Need
Effective monitoring of unusual transportation behaviors, such as wrong-way cycling (i.e., riding a bicycle or e-bike against designated traffic flow), is crucial for optimizing law enforcement deployment and traffic planning. However, accurately recording all wrong-way cycling events is both unnecessary and infeasible in resource-constrained environments, as it requires high-resolution cameras for evidence collection and event detection. To address this challenge, we propose WWC-Predictor, a novel method for efficiently estimating the wrong-way cycling ratio, defined as the proportion of wrong-way cycling events relative to the total number of cycling movements over a given time period. The core innovation of our method lies in accurately detecting wrong-way cycling events in sparsely sampled frames using a light-weight detector, then estimating the overall ratio using an autoregressive moving average model. To evaluate the effectiveness of our method, we construct a benchmark dataset consisting of 35 minutes of video sequences with minute-level annotations.Our method achieves an average error rate of a mere 1.475\% while consuming only 19.12\% GPU time required by conventional tracking methods, validating its effectiveness in estimating the wrong-way cycling ratio. Our source code is publicly available at: https://github.com/VICA-Lab-HKUST-GZ/WWC-Predictor.
comment: Accepted by IEEE Transactions on Intelligent Transportation Systems
♻ ☆ AutoRefiner: Improving Autoregressive Video Diffusion Models via Reflective Refinement Over the Stochastic Sampling Path
Autoregressive video diffusion models (AR-VDMs) show strong promise as scalable alternatives to bidirectional VDMs, enabling real-time and interactive applications. Yet there remains room for improvement in their sample fidelity. A promising solution is inference-time alignment, which optimizes the noise space to improve sample fidelity without updating model parameters. Yet, optimization- or search-based methods are computationally impractical for AR-VDMs. Recent text-to-image (T2I) works address this via feedforward noise refiners that modulate sampled noises in a single forward pass. Can such noise refiners be extended to AR-VDMs? We identify the failure of naively extending T2I noise refiners to AR-VDMs and propose AutoRefiner-a noise refiner tailored for AR-VDMs, with two key designs: pathwise noise refinement and a reflective KV-cache. Experiments demonstrate that AutoRefiner serves as an efficient plug-in for AR-VDMs, effectively enhancing sample fidelity by refining noise along stochastic denoising paths.
♻ ☆ Light-X: Generative 4D Video Rendering with Camera and Illumination Control
Recent advances in illumination control extend image-based methods to video, yet still facing a trade-off between lighting fidelity and temporal consistency. Moving beyond relighting, a key step toward generative modeling of real-world scenes is the joint control of camera trajectory and illumination, since visual dynamics are inherently shaped by both geometry and lighting. To this end, we present Light-X, a video generation framework that enables controllable rendering from monocular videos with both viewpoint and illumination control. 1) We propose a disentangled design that decouples geometry and lighting signals: geometry and motion are captured via dynamic point clouds projected along user-defined camera trajectories, while illumination cues are provided by a relit frame consistently projected into the same geometry. These explicit, fine-grained cues enable effective disentanglement and guide high-quality illumination. 2) To address the lack of paired multi-view and multi-illumination videos, we introduce Light-Syn, a degradation-based pipeline with inverse-mapping that synthesizes training pairs from in-the-wild monocular footage. This strategy yields a dataset covering static, dynamic, and AI-generated scenes, ensuring robust training. Extensive experiments show that Light-X outperforms baseline methods in joint camera-illumination control and surpasses prior video relighting methods under both text- and background-conditioned settings.
comment: Project Page: https://lightx-ai.github.io/ , Code: https://github.com/TQTQliu/Light-X
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ WCCNet: Wavelet-context Cooperative Network for Efficient Multispectral Pedestrian Detection
Multispectral pedestrian detection is essential to various tasks especially autonomous driving, for which both the accuracy and computational cost are of paramount importance. Most existing approaches treat RGB and infrared modalities equally. They typically adopt two symmetrical backbones for multimodal feature extraction, which ignore the substantial differences between modalities and bring great difficulty for the reduction of the computational cost as well as effective crossmodal fusion. In this work, we propose a novel and efficient framework named Wavelet-context Cooperative Network (WCCNet), which differentially extracts complementary features across spectra with low computational cost and further fuses these diverse features based on their spatially relevant cross-modal semantics. WCCNet explores an asymmetric but cooperative dual-stream backbone, in which WCCNet utilizes generic neural layers for texture-rich feature extraction from RGB modality, while proposing Mixture of Wavelet Experts (MoWE) to capture complementary frequency patterns of infrared modality. By assessing multispectral environmental context, MoWE generates routing scores to selectively activate specific learnable Adaptive DWT (ADWT) layers, alongside shared static DWT, which are both considerible lightwight and efficient to significantly reduce computational overhead and facilitate subsequent fusion. To further fuse these multispectral features with significant semantic differences, we elaborately design the crossmodal rearranging fusion module (CMRF), which aims to mitigate misalignment and merge semantically complementary features in spatially-related local regions to amplify the crossmodal reciprocal information. Results from comprehensive evaluations on KAIST and FLIR benchmarks indicate that WCCNet outperforms state-of-the-art methods with considerable computational efficiency and competitive accuracy.
comment: 35 pages, 12 figures
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ FUSAR-KLIP: Towards Multimodal Foundation Models for Remote Sensing
Cross-modal artificial intelligence, represented by visual language models, has achieved significant success in general image understanding. However, a fundamental cognitive inconsistency exists between general visual representation and remote sensing image interpretation: remote sensing images couple topography, terrain, and spatial structure, thereby inherently requiring models to possess deep geoscientific understanding. This cognitive difference is further amplified in synthetic aperture radar (SAR) imagery: while SAR possesses irreplaceable all-weather, all-day observation capabilities, it is constrained by coherent imaging mechanisms, exhibiting significant modal heterogeneity with general images. To address this inconsistency, we propose FUSAR-KLIP, the first knowledge-guided general multimodal foundational model for SAR, along with reusable data and evaluation baselines. Specifically: (1) FUSAR-GEOVL-1M (the first large-scale SAR dataset with complete geographic projection attributes) was constructed, covering multiple satellite platforms, 120,000 images, and 135 cities; (2) Aligned structured text was generated through hierarchical cognitive thought chains, accurately encoding more than 1 million multidimensional semantic information from geomorphological environment and regional attributes to spatial relationships; (3) A self-consistent iterative optimization mechanism was designed to guide cross-modal learning with this knowledge information consistent with human cognition and physical laws in a self-supervised closed loop consisting of contrast, matching, and reconstruction; (4) A unified evaluation benchmark was established in 11 typical downstream tasks in the two major categories of vision and language, and compared with 15 mainstream foundation models.
♻ ☆ SpurLens: Automatic Detection of Spurious Cues in Multimodal LLMs
Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
♻ ☆ VDOT: Efficient Unified Video Creation via Optimal Transport Distillation
The rapid development of generative models has significantly advanced image and video applications. Among these, video creation, aimed at generating videos under various conditions, has gained substantial attention. However, existing video creation models either focus solely on a few specific conditions or suffer from excessively long generation times due to complex model inference, making them impractical for real-world applications. To mitigate these issues, we propose an efficient unified video creation model, named VDOT. Concretely, we model the training process with the distribution matching distillation (DMD) paradigm. Instead of using the Kullback-Leibler (KL) minimization, we additionally employ a novel computational optimal transport (OT) technique to optimize the discrepancy between the real and fake score distributions. The OT distance inherently imposes geometric constraints, mitigating potential zero-forcing or gradient collapse issues that may arise during KL-based distillation within the few-step generation scenario, and thus, enhances the efficiency and stability of the distillation process. Further, we integrate a discriminator to enable the model to perceive real video data, thereby enhancing the quality of generated videos. To support training unified video creation models, we propose a fully automated pipeline for video data annotation and filtering that accommodates multiple video creation tasks. Meanwhile, we curate a unified testing benchmark, UVCBench, to standardize evaluation. Experiments demonstrate that our 4-step VDOT outperforms or matches other baselines with 100 denoising steps.
♻ ☆ CapeNext: Rethinking and Refining Dynamic Support Information for Category-Agnostic Pose Estimation
Recent research in Category-Agnostic Pose Estimation (CAPE) has adopted fixed textual keypoint description as semantic prior for two-stage pose matching frameworks. While this paradigm enhances robustness and flexibility by disentangling the dependency of support images, our critical analysis reveals two inherent limitations of static joint embedding: (1) polysemy-induced cross-category ambiguity during the matching process(e.g., the concept "leg" exhibiting divergent visual manifestations across humans and furniture), and (2) insufficient discriminability for fine-grained intra-category variations (e.g., posture and fur discrepancies between a sleeping white cat and a standing black cat). To overcome these challenges, we propose a new framework that innovatively integrates hierarchical cross-modal interaction with dual-stream feature refinement, enhancing the joint embedding with both class-level and instance-specific cues from textual description and specific images. Experiments on the MP-100 dataset demonstrate that, regardless of the network backbone, CapeNext consistently outperforms state-of-the-art CAPE methods by a large margin.
Artificial Intelligence 144
☆ DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
comment: Project page: https://susunghong.github.io/DiffusionBrowser
☆ Feedforward 3D Editing via Text-Steerable Image-to-3D
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/
comment: https://glab-caltech.github.io/steer3d/
☆ Embedding-Based Rankings of Educational Resources based on Learning Outcome Alignment: Benchmarking, Expert Validation, and Learner Performance
As the online learning landscape evolves, the need for personalization is increasingly evident. Although educational resources are burgeoning, educators face challenges selecting materials that both align with intended learning outcomes and address diverse learner needs. Large Language Models (LLMs) are attracting growing interest for their potential to create learning resources that better support personalization, but verifying coverage of intended outcomes still requires human alignment review, which is costly and limits scalability. We propose a framework that supports the cost-effective automation of evaluating alignment between educational resources and intended learning outcomes. Using human-generated materials, we benchmarked LLM-based text-embedding models and found that the most accurate model (Voyage) achieved 79% accuracy in detecting alignment. We then applied the optimal model to LLM-generated resources and, via expert evaluation, confirmed that it reliably assessed correspondence to intended outcomes (83% accuracy). Finally, in a three-group experiment with 360 learners, higher alignment scores were positively related to greater learning performance, chi-squared(2, N = 360) = 15.39, p < 0.001. These findings show that embedding-based alignment scores can facilitate scalable personalization by confirming alignment with learning outcomes, which allows teachers to focus on tailoring content to diverse learner needs.
comment: Accepted for publication at the 16th International Conference on Learning Analytics & Knowledge (LAK 2026)
☆ Large-Language Memorization During the Classification of United States Supreme Court Cases
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
comment: 7 pages, 1 figure, Appendix of Prompts
World Models Can Leverage Human Videos for Dexterous Manipulation
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
☆ From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
comment: This work was presented at the BRACIS 2025 conference in Fortaleza
☆ Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model's reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
comment: We publicly release the Nemotron-Cascade models and the full collection of training data at: https://huggingface.co/collections/nvidia/nemotron-cascade
☆ DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://github.com/zhanghaoyue/DA_SSL_TURBT.
☆ ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18$\times$ speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33$\times$ average speedup.
☆ DP-CSGP: Differentially Private Stochastic Gradient Push with Compressed Communication
In this paper, we propose a Differentially Private Stochastic Gradient Push with Compressed communication (termed DP-CSGP) for decentralized learning over directed graphs. Different from existing works, the proposed algorithm is designed to maintain high model utility while ensuring both rigorous differential privacy (DP) guarantees and efficient communication. For general non-convex and smooth objective functions, we show that the proposed algorithm achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$ ($J$ and $d$ are the number of local samples and the dimension of decision variables, respectively) with $\left(ε, δ\right)$-DP guarantee for each node, matching that of decentralized counterparts with exact communication. Extensive experiments on benchmark tasks show that, under the same privacy budget, DP-CSGP achieves comparable model accuracy with significantly lower communication cost than existing decentralized counterparts with exact communication.
comment: 13 pages
☆ Superposition as Lossy Compression: Measure with Sparse Autoencoders and Connect to Adversarial Vulnerability
Neural networks achieve remarkable performance through superposition: encoding multiple features as overlapping directions in activation space rather than dedicating individual neurons to each feature. This challenges interpretability, yet we lack principled methods to measure superposition. We present an information-theoretic framework measuring a neural representation's effective degrees of freedom. We apply Shannon entropy to sparse autoencoder activations to compute the number of effective features as the minimum neurons needed for interference-free encoding. Equivalently, this measures how many "virtual neurons" the network simulates through superposition. When networks encode more effective features than actual neurons, they must accept interference as the price of compression. Our metric strongly correlates with ground truth in toy models, detects minimal superposition in algorithmic tasks, and reveals systematic reduction under dropout. Layer-wise patterns mirror intrinsic dimensionality studies on Pythia-70M. The metric also captures developmental dynamics, detecting sharp feature consolidation during grokking. Surprisingly, adversarial training can increase effective features while improving robustness, contradicting the hypothesis that superposition causes vulnerability. Instead, the effect depends on task complexity and network capacity: simple tasks with ample capacity allow feature expansion (abundance regime), while complex tasks or limited capacity force reduction (scarcity regime). By defining superposition as lossy compression, this work enables principled measurement of how neural networks organize information under computational constraints, connecting superposition to adversarial robustness.
comment: Accepted to TMLR, view HTML here: https://leonardbereska.github.io/blog/2025/superposition/
☆ Memory in the Age of AI Agents
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
☆ Verifying Rumors via Stance-Aware Structural Modeling
Verifying rumors on social media is critical for mitigating the spread of false information. The stances of conversation replies often provide important cues to determine a rumor's veracity. However, existing models struggle to jointly capture semantic content, stance information, and conversation strructure, especially under the sequence length constraints of transformer-based encoders. In this work, we propose a stance-aware structural modeling that encodes each post in a discourse with its stance signal and aggregates reply embedddings by stance category enabling a scalable and semantically enriched representation of the entire thread. To enhance structural awareness, we introduce stance distribution and hierarchical depth as covariates, capturing stance imbalance and the influence of reply depth. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms prior methods in the ability to predict truthfulness of a rumor. We also demonstrate that our model is versatile for early detection and cross-platfrom generalization.
comment: 8 pages, 2 figures, published in The 24th IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2025), London, UK, 2025
☆ MedCEG: Reinforcing Verifiable Medical Reasoning with Critical Evidence Graph
Large language models with reasoning capabilities have demonstrated impressive performance across a wide range of domains. In clinical applications, a transparent, step-by-step reasoning process provides physicians with strong evidence to support decision-making. While reinforcement learning has effectively enhanced reasoning performance in medical contexts, the clinical reliability of these reasoning processes remains limited because their accuracy and validity are often overlooked during training. To address this gap, we propose MedCEG, a framework that augments medical language models with clinically valid reasoning pathways by explicitly supervising the reasoning process through a Critical Evidence Graph (CEG). We curate a dataset of challenging clinical cases and algorithmically construct a CEG for each sample to represent a high-quality verifiable reasoning pathway. To guide the reasoning process, we introduce a Clinical Reasoning Procedure Reward, which evaluates Node Coverage, Structural Correctness, and Chain Completeness, thereby providing a holistic assessment of reasoning quality. Experimental results show that MedCEG surpasses existing methods in performance while producing clinically valid reasoning chains, representing a solid advancement in reliable medical AI reasoning. The code and models are available at https://github.com/LinjieMu/MedCEG.
☆ Defending the Hierarchical Result Models of Precedential Constraint
In recent years, hierarchical case-based-reasoning models of precedential constraint have been proposed. In various papers, Trevor Bench-Capon criticised these models on the grounds that they would give incorrect outcomes in some cases. In particular, the models would not account for the possibility that intermediate factors are established with different strengths by different base-level factors. In this paper we respond to these criticisms for van Woerkom's result-based hierarchical models. We argue that in some examples Bench-Capon seems to interpret intermediate factors as dimensions, and that applying van Woerkom's dimension-based version of the hierarchical result model to these examples avoids Bench-Capon's criticisms.
comment: This is the long version of a paper with the same title presented at the 38th International Conference on Legal Knowledge and Information Systems
☆ Behavior-Aware and Generalizable Defense Against Black-Box Adversarial Attacks for ML-Based IDS
Machine learning based intrusion detection systems are increasingly targeted by black box adversarial attacks, where attackers craft evasive inputs using indirect feedback such as binary outputs or behavioral signals like response time and resource usage. While several defenses have been proposed, including input transformation, adversarial training, and surrogate detection, they often fall short in practice. Most are tailored to specific attack types, require internal model access, or rely on static mechanisms that fail to generalize across evolving attack strategies. Furthermore, defenses such as input transformation can degrade intrusion detection system performance, making them unsuitable for real time deployment. To address these limitations, we propose Adaptive Feature Poisoning, a lightweight and proactive defense mechanism designed specifically for realistic black box scenarios. Adaptive Feature Poisoning assumes that probing can occur silently and continuously, and introduces dynamic and context aware perturbations to selected traffic features, corrupting the attacker feedback loop without impacting detection capabilities. The method leverages traffic profiling, change point detection, and adaptive scaling to selectively perturb features that an attacker is likely exploiting, based on observed deviations. We evaluate Adaptive Feature Poisoning against multiple realistic adversarial attack strategies, including silent probing, transferability based attacks, and decision boundary based attacks. The results demonstrate its ability to confuse attackers, degrade attack effectiveness, and preserve detection performance. By offering a generalizable, attack agnostic, and undetectable defense, Adaptive Feature Poisoning represents a significant step toward practical and robust adversarial resilience in machine learning based intrusion detection systems.
☆ SkipCat: Rank-Maximized Low-Rank Compression of Large Language Models via Shared Projection and Block Skipping AAAI 2026
Large language models (LLM) have achieved remarkable performance across a wide range of tasks. However, their substantial parameter sizes pose significant challenges for deployment on edge devices with limited computational and memory resources. Low-rank compression is a promising approach to address this issue, as it reduces both computational and memory costs, making LLM more suitable for resource-constrained environments. Nonetheless, naïve low-rank compression methods require a significant reduction in the retained rank to achieve meaningful memory and computation savings. For a low-rank model, the ranks need to be reduced by more than half to yield efficiency gains. Such aggressive truncation, however, typically results in substantial performance degradation. To address this trade-off, we propose SkipCat, a novel low-rank compression framework that enables the use of higher ranks while achieving the same compression rates. First, we introduce an intra-layer shared low-rank projection method, where multiple matrices that share the same input use a common projection. This reduces redundancy and improves compression efficiency. Second, we propose a block skipping technique that omits computations and memory transfers for selected sub-blocks within the low-rank decomposition. These two techniques jointly enable our compressed model to retain more effective ranks under the same compression budget. Experimental results show that, without any additional fine-tuning, our method outperforms previous low-rank compression approaches by 7% accuracy improvement on zero-shot tasks under the same compression rate. These results highlight the effectiveness of our rank-maximized compression strategy in preserving model performance under tight resource constraints.
comment: Accepted by AAAI 2026
☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy is a common human behavior that shapes competitiveness and can alter outcomes in team settings. As large language models (LLMs) increasingly act on behalf of humans in collaborative and competitive workflows, there is a pressing need to evaluate whether and under what conditions they exhibit envy-like preferences. In this paper, we test whether LLMs show envy-like behavior toward each other. We considered two scenarios: (1) A point allocation game that tests whether a model tries to win over its peer. (2) A workplace setting observing behaviour when recognition is unfair. Our findings reveal consistent evidence of envy-like patterns in certain LLMs, with large variation across models and contexts. For instance, GPT-5-mini and Claude-3.7-Sonnet show a clear tendency to pull down the peer model to equalize outcomes, whereas Mistral-Small-3.2-24B instead focuses on maximizing its own individual gains. These results highlight the need to consider competitive dispositions as a safety and design factor in LLM-based multi-agent systems.
comment: Under Review
☆ Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 19 pages
☆ SSAS: Cross-subject EEG-based Emotion Recognition through Source Selection with Adversarial Strategy
Electroencephalographic (EEG) signals have long been applied in the field of affective brain-computer interfaces (aBCIs). Cross-subject EEG-based emotion recognition has demonstrated significant potential in practical applications due to its suitability across diverse people. However, most studies on cross-subject EEG-based emotion recognition neglect the presence of inter-individual variability and negative transfer phenomena during model training. To address this issue, a cross-subject EEG-based emotion recognition through source selection with adversarial strategy is introduced in this paper. The proposed method comprises two modules: the source selection network (SS) and the adversarial strategies network (AS). The SS uses domain labels to reverse-engineer the training process of domain adaptation. Its key idea is to disrupt class separability and magnify inter-domain differences, thereby raising the classification difficulty and forcing the model to learn domain-invariant yet emotion-relevant representations. The AS gets the source domain selection results and the pretrained domain discriminators from SS. The pretrained domain discriminators compute a novel loss aimed at enhancing the performance of domain classification during adversarial training, ensuring the balance of adversarial strategies. This paper provides theoretical insights into the proposed method and achieves outstanding performance on two EEG-based emotion datasets, SEED and SEED-IV. The code can be found at https://github.com/liuyici/SSAS.
☆ From User Interface to Agent Interface: Efficiency Optimization of UI Representations for LLM Agents
While Large Language Model (LLM) agents show great potential for automated UI navigation such as automated UI testing and AI assistants, their efficiency has been largely overlooked. Our motivating study reveals that inefficient UI representation creates a critical performance bottleneck. However, UI representation optimization, formulated as the task of automatically generating programs that transform UI representations, faces two unique challenges. First, the lack of Boolean oracles, which traditional program synthesis uses to decisively validate semantic correctness, poses a fundamental challenge to co-optimization of token efficiency and completeness. Second, the need to process large, complex UI trees as input while generating long, compositional transformation programs, making the search space vast and error-prone. Toward addressing the preceding limitations, we present UIFormer, the first automated optimization framework that synthesizes UI transformation programs by conducting constraint-based optimization with structured decomposition of the complex synthesis task. First, UIFormer restricts the program space using a domain-specific language (DSL) that captures UI-specific operations. Second, UIFormer conducts LLM-based iterative refinement with correctness and efficiency rewards, providing guidance for achieving the efficiency-completeness co-optimization. UIFormer operates as a lightweight plugin that applies transformation programs for seamless integration with existing LLM agents, requiring minimal modifications to their core logic. Evaluations across three UI navigation benchmarks spanning Android and Web platforms with five LLMs demonstrate that UIFormer achieves 48.7% to 55.8% token reduction with minimal runtime overhead while maintaining or improving agent performance. Real-world industry deployment at WeChat further validates the practical impact of UIFormer.
☆ End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://lorenzopettinari.github.io/end-2-reg/.
comment: Code and interactive visualizations: https://lorenzopettinari.github.io/end-2-reg/
☆ Differentiable Evolutionary Reinforcement Learning
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the "meta-gradient" of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.
comment: Work in Progress. We release our code and model at https://github.com/sitaocheng/DERL
☆ Behavior and Representation in Large Language Models for Combinatorial Optimization: From Feature Extraction to Algorithm Selection
Recent advances in Large Language Models (LLMs) have opened new perspectives for automation in optimization. While several studies have explored how LLMs can generate or solve optimization models, far less is understood about what these models actually learn regarding problem structure or algorithmic behavior. This study investigates how LLMs internally represent combinatorial optimization problems and whether such representations can support downstream decision tasks. We adopt a twofold methodology combining direct querying, which assesses LLM capacity to explicitly extract instance features, with probing analyses that examine whether such information is implicitly encoded within their hidden layers. The probing framework is further extended to a per-instance algorithm selection task, evaluating whether LLM-derived representations can predict the best-performing solver. Experiments span four benchmark problems and three instance representations. Results show that LLMs exhibit moderate ability to recover feature information from problem instances, either through direct querying or probing. Notably, the predictive power of LLM hidden-layer representations proves comparable to that achieved through traditional feature extraction, suggesting that LLMs capture meaningful structural information relevant to optimization performance.
☆ Detecting Emotion Drift in Mental Health Text Using Pre-Trained Transformers
This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
comment: 14 pages, 12 figures
☆ Control of a Twin Rotor using Twin Delayed Deep Deterministic Policy Gradient (TD3)
This paper proposes a reinforcement learning (RL) framework for controlling and stabilizing the Twin Rotor Aerodynamic System (TRAS) at specific pitch and azimuth angles and tracking a given trajectory. The complex dynamics and non-linear characteristics of the TRAS make it challenging to control using traditional control algorithms. However, recent developments in RL have attracted interest due to their potential applications in the control of multirotors. The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm was used in this paper to train the RL agent. This algorithm is used for environments with continuous state and action spaces, similar to the TRAS, as it does not require a model of the system. The simulation results illustrated the effectiveness of the RL control method. Next, external disturbances in the form of wind disturbances were used to test the controller's effectiveness compared to conventional PID controllers. Lastly, experiments on a laboratory setup were carried out to confirm the controller's effectiveness in real-world applications.
comment: This is the Author Accepted Manuscript version of a paper accepted for publication. The final published version is available via IEEE Xplore
☆ FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.
☆ Security and Detectability Analysis of Unicode Text Watermarking Methods Against Large Language Models SP 2026
Securing digital text is becoming increasingly relevant due to the widespread use of large language models. Individuals' fear of losing control over data when it is being used to train such machine learning models or when distinguishing model-generated output from text written by humans. Digital watermarking provides additional protection by embedding an invisible watermark within the data that requires protection. However, little work has been taken to analyze and verify if existing digital text watermarking methods are secure and undetectable by large language models. In this paper, we investigate the security-related area of watermarking and machine learning models for text data. In a controlled testbed of three experiments, ten existing Unicode text watermarking methods were implemented and analyzed across six large language models: GPT-5, GPT-4o, Teuken 7B, Llama 3.3, Claude Sonnet 4, and Gemini 2.5 Pro. The findings of our experiments indicate that, especially the latest reasoning models, can detect a watermarked text. Nevertheless, all models fail to extract the watermark unless implementation details in the form of source code are provided. We discuss the implications for security researchers and practitioners and outline future research opportunities to address security concerns.
comment: Accepted for publication at the ICISSP 2026
☆ Error-Driven Prompt Optimization for Arithmetic Reasoning
Recent advancements in artificial intelligence have sparked interest in industrial agents capable of supporting analysts in regulated sectors, such as finance and healthcare, within tabular data workflows. A key capability for such systems is performing accurate arithmetic operations on structured data while ensuring sensitive information never leaves secure, on-premises environments. Here, we introduce an error-driven optimization framework for arithmetic reasoning that enhances a Code Generation Agent (CGA), specifically applied to on-premises small language models (SLMs). Through a systematic evaluation of a leading SLM (Qwen3 4B), we find that while the base model exhibits fundamental limitations in arithmetic tasks, our proposed error-driven method, which clusters erroneous predictions to refine prompt-rules iteratively, dramatically improves performance, elevating the model's accuracy to 70.8\%. Our results suggest that developing reliable, interpretable, and industrially deployable AI assistants can be achieved not only through costly fine-tuning but also via systematic, error-driven prompt optimization, enabling small models to surpass larger language models (GPT-3.5 Turbo) in a privacy-compliant manner.
☆ Face Identity Unlearning for Retrieval via Embedding Dispersion
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
comment: 12 pages, 1 figure, 5 tables, 10 equations. Preprint
☆ ALIGN-FL: Architecture-independent Learning through Invariant Generative component sharing in Federated Learning
We present ALIGN-FL, a novel approach to distributed learning that addresses the challenge of learning from highly disjoint data distributions through selective sharing of generative components. Instead of exchanging full model parameters, our framework enables privacy-preserving learning by transferring only generative capabilities across clients, while the server performs global training using synthetic samples. Through complementary privacy mechanisms: DP-SGD with adaptive clipping and Lipschitz regularized VAE decoders and a stateful architecture supporting heterogeneous clients, we experimentally validate our approach on MNIST and Fashion-MNIST datasets with cross-domain outliers. Our analysis demonstrates that both privacy mechanisms effectively map sensitive outliers to typical data points while maintaining utility in extreme Non-IID scenarios typical of cross-silo collaborations. Index Terms: Client-invariant Learning, Federated Learning (FL), Privacy-preserving Generative Models, Non-Independent and Identically Distributed (Non-IID), Heterogeneous Architectures
comment: Accepted at 2025 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
☆ No One Left Behind: How to Exploit the Incomplete and Skewed Multi-Label Data for Conversion Rate Prediction
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversion actions due to privacy or other constraints, making the labels of multi-task data incomplete. If the model is trained on all available samples where advertisers submit user conversion actions, it may struggle when deployed to serve a subset of advertisers targeting specific conversion actions, as the training and deployment data distributions are mismatched. While considerable MTL efforts have been made, a long-standing challenge is how to effectively train a unified model with the incomplete and skewed multi-label data. In this paper, we propose a fine-grained Knowledge transfer framework for Asymmetric Multi-Label data (KAML). We introduce an attribution-driven masking strategy (ADM) to better utilize data with asymmetric multi-label data in training. However, the more relaxed masking in ADM is a double-edged sword: it provides additional training signals but also introduces noise due to skewed data. To address this, we propose a hierarchical knowledge extraction mechanism (HKE) to model the sample discrepancy within the target task tower. Finally, to maximize the utility of unlabeled samples, we incorporate ranking loss strategy to further enhance our model. The effectiveness of KAML has been demonstrated through comprehensive evaluations on offline industry datasets and online A/B tests, which show significant performance improvements over existing MTL baselines.
☆ MiniLingua: A Small Open-Source LLM for European Languages
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.
comment: 9+6 pages, 6 figures and 3 tables in the main text. Code at https://github.com/MiniLingua-ai/training_artifacts
☆ MedInsightBench: Evaluating Medical Analytics Agents Through Multi-Step Insight Discovery in Multimodal Medical Data
In medical data analysis, extracting deep insights from complex, multi-modal datasets is essential for improving patient care, increasing diagnostic accuracy, and optimizing healthcare operations. However, there is currently a lack of high-quality datasets specifically designed to evaluate the ability of large multi-modal models (LMMs) to discover medical insights. In this paper, we introduce MedInsightBench, the first benchmark that comprises 332 carefully curated medical cases, each annotated with thoughtfully designed insights. This benchmark is intended to evaluate the ability of LMMs and agent frameworks to analyze multi-modal medical image data, including posing relevant questions, interpreting complex findings, and synthesizing actionable insights and recommendations. Our analysis indicates that existing LMMs exhibit limited performance on MedInsightBench, which is primarily attributed to their challenges in extracting multi-step, deep insights and the absence of medical expertise. Therefore, we propose MedInsightAgent, an automated agent framework for medical data analysis, composed of three modules: Visual Root Finder, Analytical Insight Agent, and Follow-up Question Composer. Experiments on MedInsightBench highlight pervasive challenges and demonstrate that MedInsightAgent can improve the performance of general LMMs in medical data insight discovery.
☆ Intrinsic-Motivation Multi-Robot Social Formation Navigation with Coordinated Exploration
This paper investigates the application of reinforcement learning (RL) to multi-robot social formation navigation, a critical capability for enabling seamless human-robot coexistence. While RL offers a promising paradigm, the inherent unpredictability and often uncooperative dynamics of pedestrian behavior pose substantial challenges, particularly concerning the efficiency of coordinated exploration among robots. To address this, we propose a novel coordinated-exploration multi-robot RL algorithm introducing an intrinsic motivation exploration. Its core component is a self-learning intrinsic reward mechanism designed to collectively alleviate policy conservatism. Moreover, this algorithm incorporates a dual-sampling mode within the centralized training and decentralized execution framework to enhance the representation of both the navigation policy and the intrinsic reward, leveraging a two-time-scale update rule to decouple parameter updates. Empirical results on social formation navigation benchmarks demonstrate the proposed algorithm's superior performance over existing state-of-the-art methods across crucial metrics. Our code and video demos are available at: https://github.com/czxhunzi/CEMRRL.
☆ LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
☆ Reflective Preference Optimization (RPO): Enhancing On-Policy Alignment via Hint-Guided Reflection
Direct Preference Optimization (DPO) has emerged as a lightweight and effective alternative to Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with AI Feedback (RLAIF) for aligning large language and vision-language models. However, the standard DPO formulation, in which both the chosen and rejected responses are generated by the same policy, suffers from a weak learning signal because the two responses often share similar errors and exhibit small Kullback-Leibler (KL) divergence. This leads to slow and unstable convergence. To address this limitation, we introduce Reflective Preference Optimization (RPO), a new framework that incorporates hint-guided reflection into the DPO paradigm. RPO uses external models to identify hallucination sources and generate concise reflective hints, enabling the construction of on-policy preference pairs with stronger contrastiveness and clearer preference signals. We theoretically show that conditioning on hints increases the expected preference margin through mutual information and improves sample efficiency while remaining within the policy distribution family. Empirically, RPO achieves superior alignment with fewer training samples and iterations, substantially reducing hallucination rates and delivering state-of-the-art performance across multimodal benchmarks.
☆ CORE: Contrastive Masked Feature Reconstruction on Graphs
In the rapidly evolving field of self-supervised learning on graphs, generative and contrastive methodologies have emerged as two dominant approaches. Our study focuses on masked feature reconstruction (MFR), a generative technique where a model learns to restore the raw features of masked nodes in a self-supervised manner. We observe that both MFR and graph contrastive learning (GCL) aim to maximize agreement between similar elements. Building on this observation, we reveal a novel theoretical insight: under specific conditions, the objectives of MFR and node-level GCL converge, despite their distinct operational mechanisms. This theoretical connection suggests these approaches are complementary rather than fundamentally different, prompting us to explore their integration to enhance self-supervised learning on graphs. Our research presents Contrastive Masked Feature Reconstruction (CORE), a novel graph self-supervised learning framework that integrates contrastive learning into MFR. Specifically, we form positive pairs exclusively between the original and reconstructed features of masked nodes, encouraging the encoder to prioritize contextual information over the node's own features. Additionally, we leverage the masked nodes themselves as negative samples, combining MFR's reconstructive power with GCL's discriminative ability to better capture intrinsic graph structures. Empirically, our proposed framework CORE significantly outperforms MFR across node and graph classification tasks, demonstrating state-of-the-art results. In particular, CORE surpasses GraphMAE and GraphMAE2 by up to 2.80% and 3.72% on node classification tasks, and by up to 3.82% and 3.76% on graph classification tasks.
☆ Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant "random rejection" problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model's own predictive uncertainty, measured as \(1 - \max(P_{\mathrm{target}})\). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
☆ WAY: Estimation of Vessel Destination in Worldwide AIS Trajectory
The Automatic Identification System (AIS) enables data-driven maritime surveillance but suffers from reliability issues and irregular intervals. We address vessel destination estimation using global-scope AIS data by proposing a differentiated approach that recasts long port-to-port trajectories as a nested sequence structure. Using spatial grids, this method mitigates spatio-temporal bias while preserving detailed resolution. We introduce a novel deep learning architecture, WAY, designed to process these reformulated trajectories for long-term destination estimation days to weeks in advance. WAY comprises a trajectory representation layer and Channel-Aggregative Sequential Processing (CASP) blocks. The representation layer generates multi-channel vector sequences from kinematic and non-kinematic features. CASP blocks utilize multi-headed channel- and self-attention for aggregation and sequential information delivery. Additionally, we propose a task-specialized Gradient Dropout (GD) technique to enable many-to-many training on single labels, preventing biased feedback surges by stochastically blocking gradient flow based on sample length. Experiments on 5-year AIS data demonstrate WAY's superiority over conventional spatial grid-based approaches regardless of trajectory progression. Results further confirm that adopting GD leads to performance gains. Finally, we explore WAY's potential for real-world application through multitask learning for ETA estimation.
comment: Accepted to IEEE Transactions on Aerospace and Electronic Systems (TAES)
☆ PolySet: Restoring the Statistical Ensemble Nature of Polymers for Machine Learning
Machine-learning (ML) models in polymer science typically treat a polymer as a single, perfectly defined molecular graph, even though real materials consist of stochastic ensembles of chains with distributed lengths. This mismatch between physical reality and digital representation limits the ability of current models to capture polymer behaviour. Here we introduce PolySet, a framework that represents a polymer as a finite, weighted ensemble of chains sampled from an assumed molar-mass distribution. This ensemble-based encoding is independent of chemical detail, compatible with any molecular representation and illustrated here in the homopolymer case using a minimal language model. We show that PolySet retains higher-order distributional moments (such as Mz, Mz+1), enabling ML models to learn tail-sensitive properties with greatly improved stability and accuracy. By explicitly acknowledging the statistical nature of polymer matter, PolySet establishes a physically grounded foundation for future polymer machine learning, naturally extensible to copolymers, block architectures, and other complex topologies.
☆ Carrot, stick, or both? Price incentives for sustainable food choice in competitive environments
Meat consumption is a major driver of global greenhouse gas emissions. While pricing interventions have shown potential to reduce meat intake, previous studies have focused on highly constrained environments with limited consumer choice. Here, we present the first large-scale field experiment to evaluate multiple pricing interventions in a real-world, competitive setting. Using a sequential crossover design with matched menus in a Swiss university campus, we systematically compared vegetarian-meal discounts (-2.5 CHF), meat surcharges (+2.5 CHF), and a combined scheme (-1.2 CHF=+1.2 CHF) across four campus cafeterias. Only the surcharge and combined interventions led to significant increases in vegetarian meal uptake--by 26.4% and 16.6%, respectively--and reduced CO2 emissions per meal by 7.4% and 11.3%, respectively. The surcharge, while effective, triggered a 12.3% drop in sales at intervention sites and a corresponding 14.9% increase in non-treated locations, hence causing a spillover effect that completely offset environmental gains. In contrast, the combined approach achieved meaningful emission reductions without significant effects on overall sales or revenue, making it both effective and economically viable. Notably, pricing interventions were equally effective for both vegetarian-leaning customers and habitual meat-eaters, stimulating change even within entrenched dietary habits. Our results show that balanced pricing strategies can reduce the carbon footprint of realistic food environments, but require coordinated implementation to maximize climate benefits and avoid unintended spillover effects.
comment: 10 pages, 3 figures
☆ Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 48 hours in total yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
☆ SACn: Soft Actor-Critic with n-step Returns
Soft Actor-Critic (SAC) is widely used in practical applications and is now one of the most relevant off-policy online model-free reinforcement learning (RL) methods. The technique of n-step returns is known to increase the convergence speed of RL algorithms compared to their 1-step returns-based versions. However, SAC is notoriously difficult to combine with n-step returns, since their usual combination introduces bias in off-policy algorithms due to the changes in action distribution. While this problem is solved by importance sampling, a method for estimating expected values of one distribution using samples from another distribution, importance sampling may result in numerical instability. In this work, we combine SAC with n-step returns in a way that overcomes this issue. We present an approach to applying numerically stable importance sampling with simplified hyperparameter selection. Furthermore, we analyze the entropy estimation approach of Soft Actor-Critic in the context of the n-step maximum entropy framework and formulate the $τ$-sampled entropy estimation to reduce the variance of the learning target. Finally, we formulate the Soft Actor-Critic with n-step returns (SAC$n$) algorithm that we experimentally verify on MuJoCo simulated environments.
comment: Accepted at ICAART 2026
☆ A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis
The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
comment: 67 pages, 9 figures, 16 tables
☆ SpeakRL: Synergizing Reasoning, Speaking, and Acting in Language Models with Reinforcement Learning
Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents' conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
☆ Intrinsic Image Fusion for Multi-View 3D Material Reconstruction
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.
comment: Project page: https://peter-kocsis.github.io/IntrinsicImageFusion/ Video: https://www.youtube.com/watch?v=-Vs3tR1Xl7k
☆ MAC: A Multi-Agent Framework for Interactive User Clarification in Multi-turn Conversations
Conversational agents often encounter ambiguous user requests, requiring an effective clarification to successfully complete tasks. While recent advancements in real-world applications favor multi-agent architectures to manage complex conversational scenarios efficiently, ambiguity resolution remains a critical and underexplored challenge--particularly due to the difficulty of determining which agent should initiate a clarification and how agents should coordinate their actions when faced with uncertain or incomplete user input. The fundamental questions of when to interrupt a user and how to formulate the optimal clarification query within the most optimal multi-agent settings remain open. In this paper, we propose MAC (Multi-Agent Clarification), an interactive multi-agent framework specifically optimized to resolve user ambiguities by strategically managing clarification dialogues. We first introduce a novel taxonomy categorizing user ambiguities to systematically guide clarification strategies. Then, we present MAC that autonomously coordinates multiple agents to interact synergistically with users. Empirical evaluations on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases task success rate 7.8\% (54.5 to 62.3) and reduces the average number of dialogue turns (6.53 to 4.86) by eliciting all required user information up front and minimizing repetition. Our findings highlight the importance of active user interaction and role-aware clarification for more reliable human-agent communication.
☆ Can AI Understand What We Cannot Say? Measuring Multilevel Alignment Through Abortion Stigma Across Cognitive, Interpersonal, and Structural Levels
As large language models increasingly mediate stigmatized health decisions, their capacity to genuinely understand complex psychological and physiological phenomena remains poorly evaluated. Can AI understand what we cannot say? We investigate whether LLMs coherently represent abortion stigma across the cognitive, interpersonal, and structural levels where it operates. We systematically tested 627 demographically diverse personas across five leading LLMs using the validated Individual Level Abortion Stigma Scale (ILAS). Our multilevel analysis examined whether models coherently represent stigma at the cognitive level (self-judgment), interpersonal level (anticipated judgment and isolation), and structural level (community condemnation and disclosure patterns), as well as overall stigma. Models fail tests of genuine understanding across all levels. They overestimate interpersonal stigma while underestimating cognitive stigma, assume uniform community condemnation, introduce demographic biases absent from human validation data, miss the empirically validated stigma-secrecy relationship, and contradict themselves within theoretical constructs. These patterns reveal that current alignment approaches ensure appropriate language but not coherent multilevel understanding. This work provides empirical evidence that current LLMs lack coherent multilevel understanding of psychological and physiological constructs. AI safety in high-stakes contexts demands new approaches to design (multilevel coherence), evaluation (continuous auditing), governance and regulation (mandatory audits, accountability, deployment restrictions), and AI literacy in domains where understanding what people cannot say determines whether support helps or harms.
☆ Towards Unified Co-Speech Gesture Generation via Hierarchical Implicit Periodicity Learning
Generating 3D-based body movements from speech shows great potential in extensive downstream applications, while it still suffers challenges in imitating realistic human movements. Predominant research efforts focus on end-to-end generation schemes to generate co-speech gestures, spanning GANs, VQ-VAE, and recent diffusion models. As an ill-posed problem, in this paper, we argue that these prevailing learning schemes fail to model crucial inter- and intra-correlations across different motion units, i.e. head, body, and hands, thus leading to unnatural movements and poor coordination. To delve into these intrinsic correlations, we propose a unified Hierarchical Implicit Periodicity (HIP) learning approach for audio-inspired 3D gesture generation. Different from predominant research, our approach models this multi-modal implicit relationship by two explicit technique insights: i) To disentangle the complicated gesture movements, we first explore the gesture motion phase manifolds with periodic autoencoders to imitate human natures from realistic distributions while incorporating non-period ones from current latent states for instance-level diversities. ii) To model the hierarchical relationship of face motions, body gestures, and hand movements, driving the animation with cascaded guidance during learning. We exhibit our proposed approach on 3D avatars and extensive experiments show our method outperforms the state-of-the-art co-speech gesture generation methods by both quantitative and qualitative evaluations. Code and models will be publicly available.
comment: IEEE Transactions on Image Processing
☆ DePT3R: Joint Dense Point Tracking and 3D Reconstruction of Dynamic Scenes in a Single Forward Pass
Current methods for dense 3D point tracking in dynamic scenes typically rely on pairwise processing, require known camera poses, or assume a temporal ordering to input frames, constraining their flexibility and applicability. Additionally, recent advances have successfully enabled efficient 3D reconstruction from large-scale, unposed image collections, underscoring opportunities for unified approaches to dynamic scene understanding. Motivated by this, we propose DePT3R, a novel framework that simultaneously performs dense point tracking and 3D reconstruction of dynamic scenes from multiple images in a single forward pass. This multi-task learning is achieved by extracting deep spatio-temporal features with a powerful backbone and regressing pixel-wise maps with dense prediction heads. Crucially, DePT3R operates without requiring camera poses, substantially enhancing its adaptability and efficiency-especially important in dynamic environments with rapid changes. We validate DePT3R on several challenging benchmarks involving dynamic scenes, demonstrating strong performance and significant improvements in memory efficiency over existing state-of-the-art methods. Data and codes are available via the open repository: https://github.com/StructuresComp/DePT3R
comment: This is a work in progress
☆ From Overfitting to Reliability: Introducing the Hierarchical Approximate Bayesian Neural Network
In recent years, neural networks have revolutionized various domains, yet challenges such as hyperparameter tuning and overfitting remain significant hurdles. Bayesian neural networks offer a framework to address these challenges by incorporating uncertainty directly into the model, yielding more reliable predictions, particularly for out-of-distribution data. This paper presents Hierarchical Approximate Bayesian Neural Network, a novel approach that uses a Gaussian-inverse-Wishart distribution as a hyperprior of the network's weights to increase both the robustness and performance of the model. We provide analytical representations for the predictive distribution and weight posterior, which amount to the calculation of the parameters of Student's t-distributions in closed form with linear complexity with respect to the number of weights. Our method demonstrates robust performance, effectively addressing issues of overfitting and providing reliable uncertainty estimates, particularly for out-of-distribution tasks. Experimental results indicate that HABNN not only matches but often outperforms state-of-the-art models, suggesting a promising direction for future applications in safety-critical environments.
comment: 9 pages main body, 1 Figure, 15 pages Appendix
☆ Uncovering the Role of Initial Saliency in U-Shaped Attention Bias: Scaling Initial Token Weight for Enhanced Long-Text Processing
Large language models (LLMs) have demonstrated strong performance on a variety of natural language processing (NLP) tasks. However, they often struggle with long-text sequences due to the ``lost in the middle'' phenomenon. This issue has been shown to arise from a U-shaped attention bias, where attention is disproportionately focused on the beginning and end of a text, leaving the middle section underrepresented. While previous studies have attributed this bias to position encoding, our research first identifies an additional factor: initial saliency. It means that in the attention computation for each token, tokens with higher attention weights relative to the initial token tend to receive more attention in the prediction of the next token. We further find that utilizing this property by scaling attention weight between the initial token and others improves the model's ability to process long contexts, achieving a maximum improvement of 3.6\% in MDQA dataset. Moreover, combining this approach with existing methods to reduce position encoding bias further enhances performance, achieving a maximum improvement of 3.4\% in KV-Retrieval tasks.
☆ Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird's-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
☆ TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) has proven effective in training large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy optimization, which, however, suffers from high annotation costs. To alleviate this problem, recent work has explored unsupervised RLVR methods that derive rewards solely from the model's internal consistency, such as through entropy and majority voting. While seemingly promising, these methods often suffer from model collapse in the later stages of training, which may arise from the reinforcement of incorrect reasoning patterns in the absence of external supervision. In this work, we investigate a novel semi-supervised RLVR paradigm that utilizes a small labeled set to guide RLVR training on unlabeled samples. Our key insight is that supervised rewards are essential for stabilizing consistency-based training on unlabeled samples, ensuring that only reasoning patterns verified on labeled instances are incorporated into RL training. Technically, we propose an effective policy optimization algorithm, TraPO, that identifies reliable unlabeled samples by matching their learning trajectory similarity to labeled ones. Building on this, TraPO achieves remarkable data efficiency and strong generalization on six widely used mathematical reasoning benchmarks (AIME24/25, AMC, MATH-500, Minerva, and Olympiad) and three out-of-distribution tasks (ARC-c, GPQA-diamond, and MMLU-pro). With only 1K labeled and 3K unlabeled samples, TraPO reaches 42.6% average accuracy, surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). Notably, when using 4K labeled and 12K unlabeled samples, TraPO even outperforms the fully supervised model trained on the full 45K labeled samples on all benchmarks, while using only 10% of the labeled data. The code is available via https://github.com/ShenzhiYang2000/TRAPO.
☆ Socratic Students: Teaching Language Models to Learn by Asking Questions
Large Language Models (LLMs) excel at static interactions, where they answer user queries by retrieving knowledge encoded in their parameters. However, in many real-world settings, such as educational tutoring or medical assistance, relevant information is not directly available and must be actively acquired through dynamic interactions. An interactive agent would recognize its own uncertainty, ask targeted questions, and retain new knowledge efficiently. Prior work has primarily explored effective ways for a teacher to instruct the student, where the teacher identifies student gaps and provides guidance. In this work, we shift the focus to the student and investigate effective strategies to actively query the teacher in seeking useful information. Across math and coding benchmarks, where baseline student models begin with near-zero performance, we show that student-led approaches consistently yield absolute Pass@k improvements of at least 0.5 over static baselines. To improve question quality, we train students using Direct Preference Optimization (DPO) with guidance from either self or stronger students. We find that this guided training enables smaller models to learn how to ask better questions, further enhancing learning efficiency.
☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ OXE-AugE: A Large-Scale Robot Augmentation of OXE for Scaling Cross-Embodiment Policy Learning
Large and diverse datasets are needed for training generalist robot policies that have potential to control a variety of robot embodiments -- robot arm and gripper combinations -- across diverse tasks and environments. As re-collecting demonstrations and retraining for each new hardware platform are prohibitively costly, we show that existing robot data can be augmented for transfer and generalization. The Open X-Embodiment (OXE) dataset, which aggregates demonstrations from over 60 robot datasets, has been widely used as the foundation for training generalist policies. However, it is highly imbalanced: the top four robot types account for over 85\% of its real data, which risks overfitting to robot-scene combinations. We present AugE-Toolkit, a scalable robot augmentation pipeline, and OXE-AugE, a high-quality open-source dataset that augments OXE with 9 different robot embodiments. OXE-AugE provides over 4.4 million trajectories, more than triple the size of the original OXE. We conduct a systematic study of how scaling robot augmentation impacts cross-embodiment learning. Results suggest that augmenting datasets with diverse arms and grippers improves policy performance not only on the augmented robots, but also on unseen robots and even the original robots under distribution shifts. In physical experiments, we demonstrate that state-of-the-art generalist policies such as OpenVLA and $π_0$ benefit from fine-tuning on OXE-AugE, improving success rates by 24-45% on previously unseen robot-gripper combinations across four real-world manipulation tasks. Project website: https://OXE-AugE.github.io/.
☆ Sequence of Expert: Boosting Imitation Planners for Autonomous Driving through Temporal Alternation
Imitation learning (IL) has emerged as a central paradigm in autonomous driving. While IL excels in matching expert behavior in open-loop settings by minimizing per-step prediction errors, its performance degrades unexpectedly in closed-loop due to the gradual accumulation of small, often imperceptible errors over time.Over successive planning cycles, these errors compound, potentially resulting in severe failures.Current research efforts predominantly rely on increasingly sophisticated network architectures or high-fidelity training datasets to enhance the robustness of IL planners against error accumulation, focusing on the state-level robustness at a single time point. However, autonomous driving is inherently a continuous-time process, and leveraging the temporal scale to enhance robustness may provide a new perspective for addressing this issue.To this end, we propose a method termed Sequence of Experts (SoE), a temporal alternation policy that enhances closed-loop performance without increasing model size or data requirements. Our experiments on large-scale autonomous driving benchmarks nuPlan demonstrate that SoE method consistently and significantly improves the performance of all the evaluated models, and achieves state-of-the-art performance.This module may provide a key and widely applicable support for improving the training efficiency of autonomous driving models.
☆ UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.
comment: 10 pages, 6 figures
☆ A Simple and Effective Framework for Symmetric Consistent Indexing in Large-Scale Dense Retrieval
Dense retrieval has become the industry standard in large-scale information retrieval systems due to its high efficiency and competitive accuracy. Its core relies on a coarse-to-fine hierarchical architecture that enables rapid candidate selection and precise semantic matching, achieving millisecond-level response over billion-scale corpora. This capability makes it essential not only in traditional search and recommendation scenarios but also in the emerging paradigm of generative recommendation driven by large language models, where semantic IDs-themselves a form of coarse-to-fine representation-play a foundational role. However, the widely adopted dual-tower encoding architecture introduces inherent challenges, primarily representational space misalignment and retrieval index inconsistency, which degrade matching accuracy, retrieval stability, and performance on long-tail queries. These issues are further magnified in semantic ID generation, ultimately limiting the performance ceiling of downstream generative models. To address these challenges, this paper proposes a simple and effective framework named SCI comprising two synergistic modules: a symmetric representation alignment module that employs an innovative input-swapping mechanism to unify the dual-tower representation space without adding parameters, and an consistent indexing with dual-tower synergy module that redesigns retrieval paths using a dual-view indexing strategy to maintain consistency from training to inference. The framework is systematic, lightweight, and engineering-friendly, requiring minimal overhead while fully supporting billion-scale deployment. We provide theoretical guarantees for our approach, with its effectiveness validated by results across public datasets and real-world e-commerce datasets.
☆ M-GRPO: Stabilizing Self-Supervised Reinforcement Learning for Large Language Models with Momentum-Anchored Policy Optimization NeurIPS 2025
Self-supervised reinforcement learning (RL) presents a promising approach for enhancing the reasoning capabilities of Large Language Models (LLMs) without reliance on expensive human-annotated data. However, we find that existing methods suffer from a critical failure mode under long-horizon training: a "policy collapse" where performance precipitously degrades. We diagnose this instability and demonstrate that simply scaling the number of rollouts -- a common strategy to improve performance -- only delays, but does not prevent, this collapse. To counteract this instability, we first introduce M-GRPO (Momentum-Anchored Group Relative Policy Optimization), a framework that leverages a slowly evolving momentum model to provide a stable training target. In addition, we identify that this process is often accompanied by a rapid collapse in policy entropy, resulting in a prematurely confident and suboptimal policy. To specifically address this issue, we propose a second contribution: an adaptive filtering method based on the interquartile range (IQR) that dynamically prunes low-entropy trajectories, preserving essential policy diversity. Our extensive experiments on multiple reasoning benchmarks demonstrate that M-GRPO stabilizes the training process while the IQR filter prevents premature convergence. The combination of these two innovations leads to superior training stability and state-of-the-art performance.
comment: 7 pages, 5 figures,Accepted NeurIPS 2025 Workshop on Efficient Reasoning
LLM Rationalis? Measuring Bargaining Capabilities of AI Negotiators
Bilateral negotiation is a complex, context-sensitive task in which human negotiators dynamically adjust anchors, pacing, and flexibility to exploit power asymmetries and informal cues. We introduce a unified mathematical framework for modeling concession dynamics based on a hyperbolic tangent curve, and propose two metrics burstiness tau and the Concession-Rigidity Index (CRI) to quantify the timing and rigidity of offer trajectories. We conduct a large-scale empirical comparison between human negotiators and four state-of-the-art large language models (LLMs) across natural-language and numeric-offers settings, with and without rich market context, as well as six controlled power-asymmetry scenarios. Our results reveal that, unlike humans who smoothly adapt to situations and infer the opponents position and strategies, LLMs systematically anchor at extremes of the possible agreement zone for negotiations and optimize for fixed points irrespective of leverage or context. Qualitative analysis further shows limited strategy diversity and occasional deceptive tactics used by LLMs. Moreover the ability of LLMs to negotiate does not improve with better models. These findings highlight fundamental limitations in current LLM negotiation capabilities and point to the need for models that better internalize opponent reasoning and context-dependent strategy.
comment: Published in the First Workshop on Multi-Turn Interactions in Large Language Models at Neurips 2025
☆ GTR-Turbo: Merged Checkpoint is Secretly a Free Teacher for Agentic VLM Training
Multi-turn reinforcement learning (RL) for multi-modal agents built upon vision-language models (VLMs) is hampered by sparse rewards and long-horizon credit assignment. Recent methods densify the reward by querying a teacher that provides step-level feedback, e.g., Guided Thought Reinforcement (GTR) and On-Policy Distillation, but rely on costly, often privileged models as the teacher, limiting practicality and reproducibility. We introduce GTR-Turbo, a highly efficient upgrade to GTR, which matches the performance without training or querying an expensive teacher model. Specifically, GTR-Turbo merges the weights of checkpoints produced during the ongoing RL training, and then uses this merged model as a "free" teacher to guide the subsequent RL via supervised fine-tuning or soft logit distillation. This design removes dependence on privileged VLMs (e.g., GPT or Gemini), mitigates the "entropy collapse" observed in prior work, and keeps training stable. Across diverse visual agentic tasks, GTR-Turbo improves the accuracy of the baseline model by 10-30% while reducing wall-clock training time by 50% and compute cost by 60% relative to GTR.
☆ Scaling Bidirectional Spans and Span Violations in Attention Mechanism
The canonical $O(N^2)$ Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass $QKV$ structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on $0^{th}$ order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a $0.56\%$ reduction in validation loss, confirming the framework's fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
☆ Calibrating Uncertainty for Zero-Shot Adversarial CLIP
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
☆ Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
☆ Towards Open Standards for Systemic Complexity in Digital Forensics
The intersection of artificial intelligence (AI) and digital forensics (DF) is becoming increasingly complex, ubiquitous, and pervasive, with overlapping techniques and technologies being adopted in all types of scientific and technical inquiry. Despite incredible advances, forensic sciences are not exempt from errors and remain vulnerable to fallibility. To mitigate the limitations of errors in DF, the systemic complexity is identified and addressed with the adoption of human-readable artifacts and open standards. A DF AI model schema based on the state of the art is outlined.
☆ Building from Scratch: A Multi-Agent Framework with Human-in-the-Loop for Multilingual Legal Terminology Mapping
Accurately mapping legal terminology across languages remains a significant challenge, especially for language pairs like Chinese and Japanese, which share a large number of homographs with different meanings. Existing resources and standardized tools for these languages are limited. To address this, we propose a human-AI collaborative approach for building a multilingual legal terminology database, based on a multi-agent framework. This approach integrates advanced large language models and legal domain experts throughout the entire process-from raw document preprocessing, article-level alignment, to terminology extraction, mapping, and quality assurance. Unlike a single automated pipeline, our approach places greater emphasis on how human experts participate in this multi-agent system. Humans and AI agents take on different roles: AI agents handle specific, repetitive tasks, such as OCR, text segmentation, semantic alignment, and initial terminology extraction, while human experts provide crucial oversight, review, and supervise the outputs with contextual knowledge and legal judgment. We tested the effectiveness of this framework using a trilingual parallel corpus comprising 35 key Chinese statutes, along with their English and Japanese translations. The experimental results show that this human-in-the-loop, multi-agent workflow not only improves the precision and consistency of multilingual legal terminology mapping but also offers greater scalability compared to traditional manual methods.
comment: 43 pages, 6 fingures, accepted in Artificial Intelligence and Law (2025)
☆ Content Adaptive based Motion Alignment Framework for Learned Video Compression
Recent advances in end-to-end video compression have shown promising results owing to their unified end-to-end learning optimization. However, such generalized frameworks often lack content-specific adaptation, leading to suboptimal compression performance. To address this, this paper proposes a content adaptive based motion alignment framework that improves performance by adapting encoding strategies to diverse content characteristics. Specifically, we first introduce a two-stage flow-guided deformable warping mechanism that refines motion compensation with coarse-to-fine offset prediction and mask modulation, enabling precise feature alignment. Second, we propose a multi-reference quality aware strategy that adjusts distortion weights based on reference quality, and applies it to hierarchical training to reduce error propagation. Third, we integrate a training-free module that downsamples frames by motion magnitude and resolution to obtain smooth motion estimation. Experimental results on standard test datasets demonstrate that our framework CAMA achieves significant improvements over state-of-the-art Neural Video Compression models, achieving a 24.95% BD-rate (PSNR) savings over our baseline model DCVC-TCM, while also outperforming reproduced DCVC-DC and traditional codec HM-16.25.
comment: Accepted to Data Compression Conference (DCC) 2026 as a poster paper
☆ Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion AAAI
The exponential growth of video content has created an urgent need for efficient multimodal moment retrieval systems. However, existing approaches face three critical challenges: (1) fixed-weight fusion strategies fail across cross modal noise and ambiguous queries, (2) temporal modeling struggles to capture coherent event sequences while penalizing unrealistic gaps, and (3) systems require manual modality selection, reducing usability. We propose a unified multimodal moment retrieval system with three key innovations. First, a cascaded dual-embedding pipeline combines BEIT-3 and SigLIP for broad retrieval, refined by BLIP-2 based reranking to balance recall and precision. Second, a temporal-aware scoring mechanism applies exponential decay penalties to large temporal gaps via beam search, constructing coherent event sequences rather than isolated frames. Third, Agent-guided query decomposition (GPT-4o) automatically interprets ambiguous queries, decomposes them into modality specific sub-queries (visual/OCR/ASR), and performs adaptive score fusion eliminating manual modality selection. Qualitative analysis demonstrates that our system effectively handles ambiguous queries, retrieves temporally coherent sequences, and dynamically adapts fusion strategies, advancing interactive moment search capabilities.
comment: Accepted at AAAI Workshop 2026
☆ Investigating Data Pruning for Pretraining Biological Foundation Models at Scale AAAI 2026
Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
comment: Accepted by AAAI 2026
☆ MADTempo: An Interactive System for Multi-Event Temporal Video Retrieval with Query Augmentation
The rapid expansion of video content across online platforms has accelerated the need for retrieval systems capable of understanding not only isolated visual moments but also the temporal structure of complex events. Existing approaches often fall short in modeling temporal dependencies across multiple events and in handling queries that reference unseen or rare visual concepts. To address these challenges, we introduce MADTempo, a video retrieval framework developed by our team, AIO_Trinh, that unifies temporal search with web-scale visual grounding. Our temporal search mechanism captures event-level continuity by aggregating similarity scores across sequential video segments, enabling coherent retrieval of multi-event queries. Complementarily, a Google Image Search-based fallback module expands query representations with external web imagery, effectively bridging gaps in pretrained visual embeddings and improving robustness against out-of-distribution (OOD) queries. Together, these components advance the temporal reasoning and generalization capabilities of modern video retrieval systems, paving the way for more semantically aware and adaptive retrieval across large-scale video corpora.
☆ Cisco Integrated AI Security and Safety Framework Report
Artificial intelligence (AI) systems are being readily and rapidly adopted, increasingly permeating critical domains: from consumer platforms and enterprise software to networked systems with embedded agents. While this has unlocked potential for human productivity gains, the attack surface has expanded accordingly: threats now span content safety failures (e.g., harmful or deceptive outputs), model and data integrity compromise (e.g., poisoning, supply-chain tampering), runtime manipulations (e.g., prompt injection, tool and agent misuse), and ecosystem risks (e.g., orchestration abuse, multi-agent collusion). Existing frameworks such as MITRE ATLAS, National Institute of Standards and Technology (NIST) AI 100-2 Adversarial Machine Learning (AML) taxonomy, and OWASP Top 10s for Large Language Models (LLMs) and Agentic AI Applications provide valuable viewpoints, but each covers only slices of this multi-dimensional space. This paper presents Cisco's Integrated AI Security and Safety Framework ("AI Security Framework"), a unified, lifecycle-aware taxonomy and operationalization framework that can be used to classify, integrate, and operationalize the full range of AI risks. It integrates AI security and AI safety across modalities, agents, pipelines, and the broader ecosystem. The AI Security Framework is designed to be practical for threat identification, red-teaming, risk prioritization, and it is comprehensive in scope and can be extensible to emerging deployments in multimodal contexts, humanoids, wearables, and sensory infrastructures. We analyze gaps in prevailing frameworks, discuss design principles for our framework, and demonstrate how the taxonomy provides structure for understanding how modern AI systems fail, how adversaries exploit these failures, and how organizations can build defenses across the AI lifecycle that evolve alongside capability advancements.
☆ Satisfiability Modulo Theory Meets Inductive Logic Programming
Inductive Logic Programming (ILP) provides interpretable rule learning in relational domains, yet remains limited in its ability to induce and reason with numerical constraints. Classical ILP systems operate over discrete predicates and typically rely on discretisation or hand-crafted numerical predicates, making it difficult to infer thresholds or arithmetic relations that must hold jointly across examples. Recent work has begun to address these limitations through tighter integrations of ILP with Satisfiability Modulo Theories (SMT) or specialised numerical inference mechanisms. In this paper we investigate a modular alternative that couples the ILP system PyGol with the SMT solver Z3. Candidate clauses proposed by PyGol are interpreted as quantifier-free formulas over background theories such as linear or nonlinear real arithmetic, allowing numerical parameters to be instantiated and verified by the SMT solver while preserving ILP's declarative relational bias. This supports the induction of hybrid rules that combine symbolic predicates with learned numerical constraints, including thresholds, intervals, and multi-literal arithmetic relations. We formalise this SMT-ILP setting and evaluate it on a suite of synthetic datasets designed to probe linear, relational, nonlinear, and multi-hop reasoning. The results illustrate how a modular SMT-ILP architecture can extend the expressivity of symbolic rule learning, complementing prior numerical ILP approaches while providing a flexible basis for future extensions toward richer theory-aware induction.
☆ CTIGuardian: A Few-Shot Framework for Mitigating Privacy Leakage in Fine-Tuned LLMs ACSA
Large Language Models (LLMs) are often fine-tuned to adapt their general-purpose knowledge to specific tasks and domains such as cyber threat intelligence (CTI). Fine-tuning is mostly done through proprietary datasets that may contain sensitive information. Owners expect their fine-tuned model to not inadvertently leak this information to potentially adversarial end users. Using CTI as a use case, we demonstrate that data-extraction attacks can recover sensitive information from fine-tuned models on CTI reports, underscoring the need for mitigation. Retraining the full model to eliminate this leakage is computationally expensive and impractical. We propose an alternative approach, which we call privacy alignment, inspired by safety alignment in LLMs. Just like safety alignment teaches the model to abide by safety constraints through a few examples, we enforce privacy alignment through few-shot supervision, integrating a privacy classifier and a privacy redactor, both handled by the same underlying LLM. We evaluate our system, called CTIGuardian, using GPT-4o mini and Mistral-7B Instruct models, benchmarking against Presidio, a named entity recognition (NER) baseline. Results show that CTIGuardian provides a better privacy-utility trade-off than NER based models. While we demonstrate its effectiveness on a CTI use case, the framework is generic enough to be applicable to other sensitive domains.
comment: Accepted at the 18th Cybersecurity Experimentation and Test Workshop (CSET), in conjunction with ACSAC 2025
☆ Meta-GPT: Decoding the Metasurface Genome with Generative Artificial Intelligence
Advancing artificial intelligence for physical sciences requires representations that are both interpretable and compatible with the underlying laws of nature. We introduce METASTRINGS, a symbolic language for photonics that expresses nanostructures as textual sequences encoding materials, geometries, and lattice configurations. Analogous to molecular textual representations in chemistry, METASTRINGS provides a framework connecting human interpretability with computational design by capturing the structural hierarchy of photonic metasurfaces. Building on this representation, we develop Meta-GPT, a foundation transformer model trained on METASTRINGS and finetuned with physics-informed supervised, reinforcement, and chain-of-thought learning. Across various design tasks, the model achieves <3% mean-squared spectral error and maintains >98% syntactic validity, generating diverse metasurface prototypes whose experimentally measured optical responses match their target spectra. These results demonstrate that Meta-GPT can learn the compositional rules of light-matter interactions through METASTRINGS, laying a rigorous foundation for AI-driven photonics and representing an important step toward a metasurface genome project.
comment: Keywords: Physics-informed machine learning; Transformer models; Reinforcement learning; Chain-of-thought reasoning; Metasurfaces; Nanophotonics; Inverse design
♻ ☆ Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical planning for the treatment of lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to comprehensively assess the quality of the reconstruction. Furthermore, to address the lack of publicly available shape datasets for benchmarking reconstruction algorithms, we developed a shape dataset named Lung3D, which includes the 3D models of 800 labeled pulmonary segments and their corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/HINTLab/ImPulSe.
comment: Manuscript accepted by Medical Image Analysis, 2025
♻ ☆ BlurDM: A Blur Diffusion Model for Image Deblurring NeurIPS 2025
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The project page is available at https://jin-ting-he.github.io/Blur-Diffusion-Model/.
comment: NeurIPS 2025. Project Page: https://jin-ting-he.github.io/Blur-Diffusion-Model/
♻ ☆ AI Copilots for Reproducibility in Science: A Case Study AAAI 2026
Open science initiatives seek to make research outputs more transparent, accessible, and reusable, but ensuring that published findings can be independently reproduced remains a persistent challenge. In this paper we describe an AI-driven "Reproducibility Copilot" that analyzes manuscripts, code, and supplementary materials to generate structured Jupyter Notebooks and recommendations aimed at facilitating computational, or "rote", reproducibility. Our initial results suggest that the copilot has the potential to substantially reduce reproduction time (in one case from over 30 hours to about 1 hour) while achieving high coverage of figures, tables, and results suitable for computational reproduction. The system systematically detects barriers to reproducibility, including missing values for hyperparameters, undocumented preprocessing steps, and incomplete or inaccessible datasets. Although preliminary, these findings suggest that AI tools can meaningfully reduce the burden of reproducibility efforts and contribute to more transparent and verifiable scientific communication.
comment: Reproducible Artificial Intelligence (RAI2026) Workshop, AAAI 2026
♻ ☆ IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is used to specialize model behavior by training weights to produce intended target responses for queries. In contrast, In-Context Learning (ICL) adapts models during inference with instructions or demonstrations in the prompt. ICL can offer better generalizability and more calibrated responses compared to SFT in data scarce settings, at the cost of more inference compute. In this work, we ask the question: Can ICL's internal computations be used to improve the qualities of SFT? We first show that ICL and SFT produce distinct activation patterns, indicating that the two methods achieve adaptation through different functional mechanisms. Motivated by this observation and to use ICL's rich functionality, we introduce ICL Activation Alignment (IA2), a self-distillation technique which aims to replicate ICL's activation patterns in SFT models and incentivizes ICL-like internal reasoning. Performing IA2 as a priming step before SFT significantly improves the accuracy and calibration of model outputs, as shown by our extensive empirical results on 12 popular benchmarks and two model families. This finding is not only practically useful, but also offers a conceptual window into the inner mechanics of model adaptation.
♻ ☆ Faster Results from a Smarter Schedule: Reframing Collegiate Cross Country through Analysis of the National Running Club Database
Collegiate cross country teams often build their season schedules on intuition rather than evidence, partly because large-scale performance datasets are not publicly accessible. To address this limitation, we introduce the National Running Club Database (NRCD), the first openly available dataset to aggregate 23,725 race results from 7,594 collegiate club athletes across the 2023-2025 seasons. Unlike existing resources, NRCD includes detailed course metadata, allowing us to develop two standardized performance metrics: Converted Only (distance correction) and Standardized (distance, weather, and elevation adjusted). Using these standardized measures, we find that athletes with slower initial performances exhibit the greatest improvement within a season, and that race frequency is the strongest predictor of improvement. Using six machine learning models, random forest achieves the highest accuracy (r squared equals 0.92), revealing that athletes who race more frequently progress significantly faster than those who do not. At the team level, programs whose athletes race at least four times during the regular season have substantially higher odds of placing in the top 15 at nationals (chi-squared less than 0.01). These results challenge common coaching practices that favor minimal racing before championship meets. Our findings demonstrate that a data-informed scheduling strategy improves both individual development and team competitiveness. The NRCD provides a new foundation for evidence-based decision-making in collegiate cross country and opens opportunities for further research on standardized, longitudinal athlete performance modeling.
♻ ☆ From Moderation to Mediation: Can LLMs Serve as Mediators in Online Flame Wars?
The rapid advancement of large language models (LLMs) has opened new possibilities for AI for good applications. As LLMs increasingly mediate online communication, their potential to foster empathy and constructive dialogue becomes an important frontier for responsible AI research. This work explores whether LLMs can serve not only as moderators that detect harmful content, but as mediators capable of understanding and de-escalating online conflicts. Our framework decomposes mediation into two subtasks: judgment, where an LLM evaluates the fairness and emotional dynamics of a conversation, and steering, where it generates empathetic, de-escalatory messages to guide participants toward resolution. To assess mediation quality, we construct a large Reddit-based dataset and propose a multi-stage evaluation pipeline combining principle-based scoring, user simulation, and human comparison. Experiments show that API-based models outperform open-source counterparts in both reasoning and intervention alignment when doing mediation. Our findings highlight both the promise and limitations of current LLMs as emerging agents for online social mediation.
comment: Under review
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate seven diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ Human-computer interactions predict mental health
Scalable assessments of mental illness, the leading driver of disability worldwide, remain a critical roadblock toward accessible and equitable care. Here, we show that human-computer interactions encode mental health with state-of-the-art biomarker precision. We introduce MAILA, a MAchine-learning framework for Inferring Latent mental states from digital Activity. We trained MAILA to predict 1.3 million mental-health self-reports from 20,000 cursor and touchscreen recordings recorded in 9,000 online participants. The dataset includes 2,000 individuals assessed longitudinally, 1,500 diagnosed with depression, and 500 with obsessive-compulsive disorder. MAILA tracks dynamic mental states along three orthogonal dimensions, identifies individuals living with mental illness, and achieves near-ceiling accuracy when predicting group-level mental health. By extracting non-verbal signatures of psychological function that have so far remained untapped, MAILA represents a key step toward foundation models for mental health. The ability to decode mental states at zero marginal cost creates new opportunities in neuroscience, medicine, and public health, while raising urgent questions about privacy, agency, and autonomy online.
♻ ☆ MALLM: Multi-Agent Large Language Models Framework EMNLP 2025
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Hugging Face dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM enables researchers to systematically configure, run, and evaluate debates for their problems, facilitating the understanding of the components and their interplay.
comment: Accepted at EMNLP 2025 (Demo)
♻ ☆ FractalCloud: A Fractal-Inspired Architecture for Efficient Large-Scale Point Cloud Processing HPCA2026
Three-dimensional (3D) point clouds are increasingly used in applications such as autonomous driving, robotics, and virtual reality (VR). Point-based neural networks (PNNs) have demonstrated strong performance in point cloud analysis, originally targeting small-scale inputs. However, as PNNs evolve to process large-scale point clouds with hundreds of thousands of points, all-to-all computation and global memory access in point cloud processing introduce substantial overhead, causing $O(n^2)$ computational complexity and memory traffic where n is the number of points}. Existing accelerators, primarily optimized for small-scale workloads, overlook this challenge and scale poorly due to inefficient partitioning and non-parallel architectures. To address these issues, we propose FractalCloud, a fractal-inspired hardware architecture for efficient large-scale 3D point cloud processing. FractalCloud introduces two key optimizations: (1) a co-designed Fractal method for shape-aware and hardware-friendly partitioning, and (2) block-parallel point operations that decompose and parallelize all point operations. A dedicated hardware design with on-chip fractal and flexible parallelism further enables fully parallel processing within limited memory resources. Implemented in 28 nm technology as a chip layout with a core area of 1.5 $mm^2$, FractalCloud achieves 21.7x speedup and 27x energy reduction over state-of-the-art accelerators while maintaining network accuracy, demonstrating its scalability and efficiency for PNN inference.
comment: Accepted for publication in HPCA2026. Codes are released at https://github.com/Yuzhe-Fu/FractalCloud
♻ ☆ Towards a Common Framework for Autoformalization KR
Autoformalization has emerged as a term referring to the automation of formalization - specifically, the formalization of mathematics using interactive theorem provers (proof assistants). Its rapid development has been driven by progress in deep learning, especially large language models (LLMs). More recently, the term has expanded beyond mathematics to describe the broader task of translating informal input into formal logical representations. At the same time, a growing body of research explores using LLMs to translate informal language into formal representations for reasoning, planning, and knowledge representation - often without explicitly referring to this process as autoformalization. As a result, despite addressing similar tasks, the largely independent development of these research areas has limited opportunities for shared methodologies, benchmarks, and theoretical frameworks that could accelerate progress. The goal of this paper is to review - explicit or implicit - instances of what can be considered autoformalization and to propose a unified framework, encouraging cross-pollination between different fields to advance the development of next generation AI systems.
comment: Presented at NeLaMKRR@KR, 2025 (arXiv:2511.09575). A shorter version of this work will appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2026)
♻ ☆ Beyond Next-Token Prediction: A Performance Characterization of Diffusion versus Autoregressive Language Models
Large Language Models (LLMs) have achieved state-of-the-art performance on a broad range of Natural Language Processing (NLP) tasks, including document processing and code generation. Autoregressive Language Models (ARMs), which generate tokens sequentially conditioned on all previous tokens, have been the predominant paradigm for LLMs. While these models have achieved high accuracy across a range of downstream tasks, they exhibit low arithmetic intensity due to the inherent sequential dependency in next-token prediction. Recently, Diffusion Language Models (DLMs) have emerged as a promising alternative architecture. DLMs generate output tokens in parallel, mitigating the limitations of sequential decoding. However, the performance implications of DLMs relative to commonly deployed ARMs are not fully understood. In this work, we present a comprehensive study of the performance characteristics of ARMs and DLMs, combining theoretical analysis with empirical profiling to characterize the trade-offs between these approaches. We show that although DLMs can achieve higher arithmetic intensity than ARMs by leveraging parallelism across token positions, they fail to scale effectively with longer contexts. We then explore block-wise decoding for DLMs, which decouples arithmetic intensity from sequence length and enables better scaling to long contexts (similar to ARMs). We also examine batched inference and find that ARMs exhibit superior throughput as they benefit more from parallelism across sequences in the batch. Finally, we highlight opportunities for accelerating DLM inference, emphasizing that reducing the number of sampling steps is key for open-source DLMs to achieve lower latency relative to ARMs.
comment: 11 pages, 5 figures
♻ ☆ How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning that is less tied to absolute appearance and can remain coherent under variations such as partial visibility or stylistic changes. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms grid-based methods like MAE and DropPos, while maintaining competitive performance on global classification tasks. By breaking free from grid constraints, PART opens up a new trajectory for universal self-supervised pretraining across diverse datatypes-from images to EEG signals-with potential in medical imaging, video, and audio.
♻ ☆ RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMs
The Structure Gap between probabilistic LLM generation and deterministic schema requirements hinders automated workflows. We propose RL-Struct, a lightweight framework using Gradient Regularized Policy Optimization (GRPO) with a hierarchical reward function to align LLMs with structural constraints. This approach eliminates the critic network, reducing peak VRAM by 38% compared to PPO. On complex JSON tasks, RL-Struct achieves 89.7% structural accuracy and 92.1% validity, significantly outperforming SFT and zero-shot baselines. We also report an emergent curriculum--a self-organized learning process where the model prioritizes syntax before semantics. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON.
comment: 13 pages, 9 figures. Model is available at https://huggingface.co/Freakz3z/Qwen-JSON
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Engineering Applications of Artificial Intelligence
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many views treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary modifications, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and less explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignment(s) from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning
♻ ☆ IPR-1: Interactive Physical Reasoner
Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. To study this, we introduce a Game-to-Unseen (G2U) benchmark of 1,000+ heterogeneous games that exhibit significant visual domain gaps. Existing approaches, including VLMs and world models, struggle to capture underlying physics and causality since they are not focused on core mechanisms and overfit to visual details. VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM's policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on levels from primitive intuition to goal-driven reasoning, and even surpasses GPT-5 overall. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning. Further demos and project details can be found at https://mybearyzhang.github.io/ipr-1.
comment: 13 pages of main text and 19 pages of appendices. Project page: https://mybearyzhang.github.io/ipr-1
♻ ☆ In-context Learning of Evolving Data Streams with Tabular Foundational Models KDD
State-of-the-art data stream mining has long drawn from ensembles of the Very Fast Decision Tree, a seminal algorithm honored with the 2015 KDD Test-of-Time Award. However, the emergence of large tabular models, i.e., transformers designed for structured numerical data, marks a significant paradigm shift. These models move beyond traditional weight updates, instead employing in-context learning through prompt tuning. By using on-the-fly sketches to summarize unbounded streaming data, one can feed this information into a pre-trained model for efficient processing. This work bridges advancements from both areas, highlighting how transformers' implicit meta-learning abilities, pre-training on drifting natural data, and reliance on context optimization directly address the core challenges of adaptive learning in dynamic environments. Exploring real-time model adaptation, this research demonstrates that TabPFN, coupled with a simple sliding memory strategy, consistently outperforms ensembles of Hoeffding trees, such as Adaptive Random Forest, and Streaming Random Patches, across all non-stationary benchmarks.
comment: Accepted at 32nd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2026)
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data bootstrap problem-design strategies from the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our method achieves an average improvement of 2.5% and generalizes to both language and vision-language models. Moreover, a solver trained on the synthesized data provides improved rewards for continued generator training, enabling co-evolution and yielding a further 0.7% performance gain. Our code will be made publicly available here.
♻ ☆ Relational Anatomical Supervision for Accurate 3D Multi-Chamber Cardiac Mesh Reconstruction
Accurate reconstruction of multi-chamber cardiac anatomy from medical images is a cornerstone for patient-specific modeling, physiological simulation, and interventional planning. However, current reconstruction pipelines fundamentally rely on surface-wise geometric supervision and model each chamber in isolation, resulting in anatomically implausible inter-chamber violations despite apparently favorable overlap or distance metrics. In this work, we propose a relational anatomical supervision framework for multi-chamber cardiac mesh reconstruction by introducing a Mesh Interrelation Enhancement (MIE) loss. The proposed formulation explicitly encodes spatial relationships between cardiac structures into a differentiable occupancy-based objective, thereby transforming qualitative anatomical rules into quantitative geometric supervision. We further establish violation-aware evaluation metrics to directly quantify inter-chamber structural correctness, revealing systematic limitations of commonly used geometric measures such as Dice and Chamfer distance. Extensive experiments on multi-center CT data, densely sampled MR data, and two independent external cohorts, including a highly heterogeneous congenital heart disease population, demonstrate that the proposed method consistently suppresses clinically critical boundary violations by up to 83\%, while maintaining competitive volumetric accuracy and achieving superior surface fidelity. Notably, the proposed relational supervision generalizes robustly across imaging modalities, centers, and pathological conditions, even under severe anatomical deformation. These results demonstrate that distance-based supervision alone is insufficient to guarantee anatomically faithful reconstruction, and that explicit enforcement of multi-structure anatomical relations provides a principled and robust pathway toward reliable patient-specific cardiac modeling.
♻ ☆ DynamiX: Large-Scale Dynamic Social Network Simulator
Understanding the intrinsic mechanisms of social platforms is an urgent demand to maintain social stability. The rise of large language models provides significant potential for social network simulations to capture attitude dynamics and reproduce collective behaviors. However, existing studies mainly focus on scaling up agent populations, neglecting the dynamic evolution of social relationships. To address this gap, we introduce DynamiX, a novel large-scale social network simulator dedicated to dynamic social network modeling. DynamiX uses a dynamic hierarchy module for selecting core agents with key characteristics at each timestep, enabling accurate alignment of real-world adaptive switching of user roles. Furthermore, we design distinct dynamic social relationship modeling strategies for different user types. For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances, simulating homogeneous connections, and autonomous behavior decisions. For ordinary users, we construct an inequality-oriented behavior decision-making module, effectively addressing unequal social interactions and capturing the patterns of relationship adjustments driven by multi-dimensional factors. Experimental results demonstrate that DynamiX exhibits marked improvements in attitude evolution simulation and collective behavior analysis compared to static networks. Besides, DynamiX opens a new theoretical perspective on follower growth prediction, providing empirical evidence for opinion leaders cultivation.
comment: Social and Information Networks
♻ ☆ Phythesis: Physics-Guided Evolutionary Scene Synthesis for Energy-Efficient Data Center Design via LLMs
Data center (DC) infrastructure serves as the backbone to support the escalating demand for computing capacity. Traditional design methodologies that blend human expertise with specialized simulation tools scale poorly with the increasing system complexity. Recent studies adopt generative artificial intelligence to design plausible human-centric indoor layouts. However, they do not consider the underlying physics, making them unsuitable for the DC design that sets quantifiable operational objectives and strict physical constraints. To bridge the gap, we propose Phythesis, a novel framework that synergizes large language models (LLMs) and physics-guided evolutionary optimization to automate simulation-ready (SimReady) scene synthesis for energy-efficient DC design. Phythesis employs an iterative bi-level optimization architecture, where (i) the LLM-driven optimization level generates physically plausible three-dimensional layouts and self-criticizes them to refine the scene topology, and (ii) the physics-informed optimization level identifies the optimal asset parameters and selects the best asset combination. Experiments on three generation scales show that Phythesis achieves 57.3% generation success rate increase and 11.5% power usage effectiveness (PUE) improvement, compared with the vanilla LLM-based solution.
♻ ☆ Progressive Localisation in Localist LLMs
This paper demonstrates that progressive localization, the gradual increase of attention locality from early distributed layers to late localized layers, represents the optimal architecture for creating interpretable large language models (LLMs) while preserving performance. Through systematic experimentation with GPT-2 fine-tuned on The Psychology of Artificial Superintelligence, we evaluate five locality configurations: two uniform baselines (fully distributed and fully localist) and three progressive polynomial schedules. We investigate whether interpretability constraints can be aligned with natural semantic structure while being applied strategically across network depth. We demonstrate that progressive semantic localization, combining adaptive semantic block partitioning with steep polynomial locality schedules, achieves near-baseline language modeling performance while providing interpretable attention patterns. Multiple independent training runs with different random seeds establish that results are statistically robust and highly reproducible. The approach dramatically outperforms both fixed-window localization and naive uniform locality constraints. Analysis reveals that maintaining flexibility through low-fidelity constraints preserves model capacity while providing interpretability benefits, and that steep schedules concentrating locality in decision-critical final layers while preserving distributed learning in early layers achieve near-baseline attention distribution characteristics. These findings demonstrate that interpretability mechanisms should align with semantic structure to achieve practical performance-interpretability tradeoffs for trustworthy AI systems.
♻ ☆ Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbances, such as sensor drift, noise and irregular sampling, enabling thorough robustness analyses of forecasting models on real-world CPS datasets. The robustness definition provides a standardized score to quantify and compare model performance across diverse datasets, assisting in informed model selection and architecture design. Through extensive empirical studies evaluating prominent DL architectures (including recurrent, convolutional, attention-based, modular, and structured state-space models) we demonstrate the applicability and effectiveness of our approach. We publicly release our robustness benchmark to encourage further research and reproducibility.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ Skrull: Towards Efficient Long Context Fine-tuning through Dynamic Data Scheduling NeurIPS 2025
Long-context supervised fine-tuning (Long-SFT) plays a vital role in enhancing the performance of large language models (LLMs) on long-context tasks. To smoothly adapt LLMs to long-context scenarios, this process typically entails training on mixed datasets containing both long and short sequences. However, this heterogeneous sequence length distribution poses significant challenges for existing training systems, as they fail to simultaneously achieve high training efficiency for both long and short sequences, resulting in sub-optimal end-to-end system performance in Long-SFT. In this paper, we present a novel perspective on data scheduling to address the challenges posed by the heterogeneous data distributions in Long-SFT. We propose Skrull, a dynamic data scheduler specifically designed for efficient long-SFT. Through dynamic data scheduling, Skrull balances the computation requirements of long and short sequences, improving overall training efficiency. Furthermore, we formulate the scheduling process as a joint optimization problem and thoroughly analyze the trade-offs involved. Based on those analysis, Skrull employs a lightweight scheduling algorithm to achieve near-zero cost online scheduling in Long-SFT. Finally, we implement Skrull upon DeepSpeed, a state-of-the-art distributed training system for LLMs. Experimental results demonstrate that Skrull outperforms DeepSpeed by 3.76x on average (up to 7.54x) in real-world long-SFT scenarios.
comment: Accepted by NeurIPS 2025
♻ ☆ From Clicks to Preference: A Multi-stage Alignment Framework for Generative Query Suggestion in Conversational System KDD
Generative query suggestion using large language models offers a powerful way to enhance conversational systems, but aligning outputs with nuanced user preferences remains a critical challenge. To address this, we introduce a multi-stage framework designed for progressive alignment between the generation policy and user intent. Our pipeline begins with prompt engineering as a cold-start strategy, followed by the Supervised Fine-Tuning stage, in which we introduce a distillation method on click logs to create a robust foundational model. To better model user preferences while capturing their inherent uncertainty, we develop a Gaussian Reward Model (GaRM) that represents user preferences as probability distributions rather than point estimates. Finally, we employ reinforcement learning to align the generation policy with these preferences, guided by a composite reward function that integrates GaRM with auxiliary heuristics to mitigate reward hacking. To maintain training stability, this process is enhanced by a novel out-of-distribution regularization method and a two-stage reward fusion technique. Extensive experiments demonstrate that our framework significantly outperforms baselines on both automatic and human evaluations and yields a 34\% relative increase in user engagement as measured by click-through rate in live A/B tests.
comment: Accepted by SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 26)
♻ ☆ Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Deep Gaussian process models typically employ discrete hierarchies, but recent advancements in differential Gaussian processes (DiffGPs) have extended these models to infinite depths. However, existing DiffGP approaches often overlook the uncertainty in kernel hyperparameters by treating them as fixed and time-invariant, which degrades the model's predictive performance and neglects the posterior distribution. In this work, we introduce a fully Bayesian framework that models kernel hyperparameters as random variables and utilizes coupled stochastic differential equations (SDEs) to jointly learn their posterior distributions alongside those of inducing points. By incorporating the estimation uncertainty of hyperparameters, our method significantly enhances model flexibility and adaptability to complex dynamic systems. Furthermore, we employ a black-box adaptive SDE solver with a neural network to achieve realistic, time varying posterior approximations, thereby improving the expressiveness of the variational posterior. Comprehensive experimental evaluations demonstrate that our approach outperforms traditional methods in terms of flexibility, accuracy, and other key performance metrics. This work not only provides a robust Bayesian extension to DiffGP models but also validates its effectiveness in handling intricate dynamic behaviors, thereby advancing the applicability of Gaussian process models in diverse real-world scenarios.
♻ ☆ Decoupling Understanding from Reasoning via Problem Space Mapping for Small-Scale Model Reasoning
Despite recent advances in the reasoning capabilities of Large Language Models (LLMs), improving the reasoning ability of Small Language Models (SLMs, e.g., up to 1.5B parameters) remains challenging. A key obstacle lies in the complexity and variability of natural language: essentially equivalent problems often appear in diverse surface forms, often obscured by redundant or distracting details. This imposes a dual burden on SLMs: they must first extract the core problem from complex linguistic input, and then perform reasoning based on that understanding. The resulting vast and noisy problem space hinders optimization, particularly for models with limited capacity. To address this, we propose a new framework that decouples understanding from reasoning by mapping natural language problems into a canonical problem space-a semantically simplified yet expressive domain. This enables SLMs to focus on reasoning over standardized inputs, free from linguistic variability. Within this framework, we introduce DURIT (Decoupled Understanding from Reasoning via Iterative Training), a three-step algorithm that iteratively: (1) mapping natural language problems via reinforcement learning, (2) aligns reasoning trajectories through self-distillation, and (3) trains reasoning policies in the problem space. The mapper and reasoner are co-trained in an alternating loop throughout this process. Experiments show that DURIT substantially improves SLMs' performance on both in-domain and out-of-domain mathematical and logical reasoning tasks. Beyond improving reasoning capabilities, DURIT also improves the robustness of reasoning, validating decoupling understanding from reasoning as an effective strategy for strengthening SLMs.
♻ ☆ From Pruning to Grafting: Dynamic Knowledge Redistribution via Learnable Layer Fusion
Structured pruning of Generative Pre-trained Transformers (GPTs) offers a promising path to efficiency but often suffers from irreversible performance degradation due to the discarding of transformer blocks. In this paper, we introduce FuseGPT, a compression paradigm that reframes structured pruning as iterative knowledge grafting rather than simple removal. Motivated by the observation that linear block merging fails to capture non-linear feature disparities and that block importance fluctuates dynamically during pruning, FuseGPT employs a dual-strategy pipeline. First, we propose Macro Influence (MI), a dynamic fusion-aware metric that continuously re-evaluates block redundancy as the network topology evolves. Second, instead of rigid parameter averaging, we introduce a learnable low-rank fusion mechanism that adaptively grafts the knowledge of pruned blocks onto surviving layers via lightweight local distillation. Extensive experiments on LLaMA, Mistral, Qwen, and Phi families demonstrate that FuseGPT establishes a new state-of-the-art on the compression-accuracy Pareto frontier: at 25\% sparsity, FuseGPT achieves lower perplexity than prior methods at 20\% sparsity, improves zero-shot reasoning by up to 4.5 points, and delivers 1.33$\times$ inference speedup with 25\% memory reduction. Furthermore, FuseGPT is orthogonal to quantization, achieving 52.1\% total compression with negligible quality loss when combined with 4-bit GPTQ. We make our code publicly available at https://github.com/JarvisPei/FuseGPT.
♻ ☆ Decoding and Engineering the Phytobiome Communication for Smart Agriculture
Smart agriculture applications, integrating technologies like the Internet of Things and machine learning/artificial intelligence (ML/AI) into agriculture, hold promise to address modern challenges of rising food demand, environmental pollution, and water scarcity. Alongside the concept of the phytobiome, which defines the area including the plant, its environment, and associated organisms, and the recent emergence of molecular communication (MC), there exists an important opportunity to advance agricultural science and practice using communication theory. In this article, we motivate to use the communication engineering perspective for developing a holistic understanding of the phytobiome communication and bridge the gap between the phytobiome communication and smart agriculture. Firstly, an overview of phytobiome communication via molecular and electrophysiological signals is presented and a multi-scale framework modeling the phytobiome as a communication network is conceptualized. Then, how this framework is used to model electrophysiological signals is demonstrated with plant experiments. Furthermore, possible smart agriculture applications, such as smart irrigation and targeted delivery of agrochemicals, through engineering the phytobiome communication are proposed. These applications merge ML/AI methods with the Internet of Bio-Nano-Things enabled by MC and pave the way towards more efficient, sustainable, and eco-friendly agricultural production. Finally, the implementation challenges, open research issues, and industrial outlook for these applications are discussed.
comment: Accepted for IEEE Communications Magazine
♻ ☆ Generating Reliable Synthetic Clinical Trial Data: The Role of Hyperparameter Optimization and Domain Constraints
The generation of synthetic clinical trial data offers a promising approach to mitigating privacy concerns and data accessibility limitations in medical research. However, ensuring that synthetic datasets maintain high fidelity, utility, and adherence to domain-specific constraints remains a key challenge. While hyperparameter optimization (HPO) improves generative model performance, the effectiveness of different optimization strategies for synthetic clinical data remains unclear. This study systematically evaluates four HPO objectives across nine generative models, comparing single-metric to compound metric optimization. Our results demonstrate that HPO consistently improves synthetic data quality, with Tab DDPM achieving the largest relative gains, followed by TVAE (60%), CTGAN (39%), and CTAB-GAN+ (38%). Compound metric optimization outperformed single-metric objectives, producing more generalizable synthetic datasets. Despite improving overall quality, HPO alone fails to prevent violations of essential clinical survival constraints. Preprocessing and postprocessing played a crucial role in reducing these violations, as models lacking robust processing steps produced invalid data in up to 61% of cases. These findings underscore the necessity of integrating explicit domain knowledge alongside HPO to generate high-quality synthetic datasets. Our study provides actionable recommendations for improving synthetic data generation, with future work needed to refine metric selection and validate findings on larger datasets.
comment: Published in Information Sciences, Volume 733 (2026)
♻ ☆ Enhancing Interpretability and Interactivity in Robot Manipulation: A Neurosymbolic Approach
In this paper we present a neurosymbolic architecture for coupling language-guided visual reasoning with robot manipulation. A non-expert human user can prompt the robot using unconstrained natural language, providing a referring expression (REF), a question (VQA), or a grasp action instruction. The system tackles all cases in a task-agnostic fashion through the utilization of a shared library of primitive skills. Each primitive handles an independent sub-task, such as reasoning about visual attributes, spatial relation comprehension, logic and enumeration, as well as arm control. A language parser maps the input query to an executable program composed of such primitives, depending on the context. While some primitives are purely symbolic operations (e.g. counting), others are trainable neural functions (e.g. visual grounding), therefore marrying the interpretability and systematic generalization benefits of discrete symbolic approaches with the scalability and representational power of deep networks. We generate a 3D vision-and-language synthetic dataset of tabletop scenes in a simulation environment to train our approach and perform extensive evaluations in both synthetic and real-world scenes. Results showcase the benefits of our approach in terms of accuracy, sample-efficiency, and robustness to the user's vocabulary, while being transferable to real-world scenes with few-shot visual fine-tuning. Finally, we integrate our method with a robot framework and demonstrate how it can serve as an interpretable solution for an interactive object-picking task, achieving an average success rate of 80.2\%, both in simulation and with a real robot. We make supplementary material available in https://gtziafas.github.io/neurosymbolic-manipulation.
comment: Published in International Journal of Robotics Research (IJRR) (2025)
♻ ☆ A Collectivist, Economic Perspective on AI
Information technology is in the midst of a revolution in which omnipresent data collection and machine learning are impacting the human world as never before. The word ``intelligence'' is being used as a North Star for the development of this technology, with human cognition viewed as a baseline. This view neglects the fact that humans are social animals and that much of our intelligence is social and cultural in origin. Moreover, failing to properly situate aspects of intelligence at the social level contributes to the treatment of the societal consequences of technology as an afterthought. The path forward is not merely more data and compute, and not merely more attention paid to cognitive or symbolic representations, but a thorough blending of economic and social concepts with computational and inferential concepts at the level of algorithm design.
♻ ☆ HTMformer: Hybrid Time and Multivariate Transformer for Time Series Forecasting
Transformer-based methods have achieved impressive results in time series forecasting. However, existing Transformers still exhibit limitations in sequence modeling as they tend to overemphasize temporal dependencies. This incurs additional computational overhead without yielding corresponding performance gains. We find that the performance of Transformers is highly dependent on the embedding method used to learn effective representations. To address this issue, we extract multivariate features to augment the effective information captured in the embedding layer, yielding multidimensional embeddings that convey richer and more meaningful sequence representations. These representations enable Transformer-based forecasters to better understand the series. Specifically, we introduce Hybrid Temporal and Multivariate Embeddings (HTME). The HTME extractor integrates a lightweight temporal feature extraction module with a carefully designed multivariate feature extraction module to provide complementary features, thereby achieving a balance between model complexity and performance. By combining HTME with the Transformer architecture, we present HTMformer, leveraging the enhanced feature extraction capability of the HTME extractor to build a lightweight forecaster. Experiments conducted on eight real-world datasets demonstrate that our approach outperforms existing baselines in both accuracy and efficiency.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ A Multi-Component AI Framework for Computational Psychology: From Robust Predictive Modeling to Deployed Generative Dialogue
The confluence of Artificial Intelligence and Computational Psychology presents an opportunity to model, understand, and interact with complex human psychological states through computational means. This paper presents a comprehensive, multi-faceted framework designed to bridge the gap between isolated predictive modeling and an interactive system for psychological analysis. The methodology encompasses a rigorous, end-to-end development lifecycle. First, foundational performance benchmarks were established on four diverse psychological datasets using classical machine learning techniques. Second, state-of-the-art transformer models were fine-tuned, a process that necessitated the development of effective solutions to overcome critical engineering challenges, including the resolution of numerical instability in regression tasks and the creation of a systematic workflow for conducting large-scale training under severe resource constraints. Third, a generative large language model (LLM) was fine-tuned using parameter-efficient techniques to function as an interactive "Personality Brain." Finally, the entire suite of predictive and generative models was architected and deployed as a robust, scalable microservices ecosystem. Key findings include the successful stabilization of transformer-based regression models for affective computing, showing meaningful predictive performance where standard approaches failed, and the development of a replicable methodology for democratizing large-scale AI research. The significance of this work lies in its holistic approach, demonstrating a complete research-to-deployment pipeline that integrates predictive analysis with generative dialogue, thereby providing a practical model for future research in computational psychology and human-AI interaction.
♻ ☆ Adaptive-lambda Subtracted Importance Sampled Scores in Machine Unlearning for DDPMs and VAEs
Machine Unlearning is essential for large generative models (VAEs, DDPMs) to comply with the right to be forgotten and prevent undesired content generation without costly retraining. Existing approaches, such as Static-lambda SISS for diffusion models, rely on a fixed mixing weight lambda, which is suboptimal because the required unlearning strength varies across samples and training stages. We propose Adaptive-lambda SISS, a principled extension that turns lambda into a latent variable dynamically inferred at each training step. A lightweight inference network parameterizes an adaptive posterior over lambda, conditioned on contextual features derived from the instantaneous SISS loss terms (retain/forget losses and their gradients). This enables joint optimization of the diffusion model and the lambda-inference mechanism via a variational objective, yielding significantly better trade-offs. We further extend the adaptive-lambda principle to score-based unlearning and introduce a multi-class variant of Score Forgetting Distillation. In addition, we present two new directions: (i) a hybrid objective combining the data-free efficiency of Score Forgetting Distillation with the direct gradient control of SISS, and (ii) a Reinforcement Learning formulation that treats unlearning as a sequential decision process, learning an optimal policy over a state space defined by the model's current memory of the forget set. Experiments on an augmented MNIST benchmark show that Adaptive-lambda SISS substantially outperforms the original static-lambda SISS, achieving stronger removal of forgotten classes while better preserving generation quality on the retain set.
♻ ☆ SpectrumFM: A Foundation Model for Intelligent Spectrum Management
Intelligent spectrum management is crucial for improving spectrum efficiency and achieving secure utilization of spectrum resources. However, existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization, particularly in the complex and dynamic spectrum environments. To address these challenges, this paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management. SpectrumFM features an innovative encoder architecture that synergistically exploits the convolutional neural networks and the multi-head self-attention mechanisms to enhance feature extraction and enable robust representation learning. The model is pre-trained via two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, which leverage large-scale in-phase and quadrature (IQ) data to achieve comprehensive and transferable spectrum representations. Furthermore, a parameter-efficient fine-tuning strategy is proposed to enable SpectrumFM to adapt to various downstream spectrum management tasks, including automatic modulation classification (AMC), wireless technology classification (WTC), spectrum sensing (SS), and anomaly detection (AD). Extensive experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed, consistently outperforming conventional methods across multiple benchmarks. Specifically, SpectrumFM improves AMC accuracy by up to 12.1% and WTC accuracy by 9.3%, achieves an area under the curve (AUC) of 0.97 in SS at -4 dB signal-to-noise ratio (SNR), and enhances AD performance by over 10%.
comment: This manuscript has been accepted for publication in the IEEE Journal of Selected Areas in Communications (JSAC)
♻ ☆ WholeBodyVLA: Towards Unified Latent VLA for Whole-Body Loco-Manipulation Control
Humanoid robots require precise locomotion and dexterous manipulation to perform challenging loco-manipulation tasks. Yet existing approaches, modular or end-to-end, are deficient in manipulation-aware locomotion. This confines the robot to a limited workspace, preventing it from performing large-space loco-manipulation. We attribute this to: (1) the challenge of acquiring loco-manipulation knowledge due to the scarcity of humanoid teleoperation data, and (2) the difficulty of faithfully and reliably executing locomotion commands, stemming from the limited precision and stability of existing RL controllers. To acquire richer loco-manipulation knowledge, we propose a unified latent learning framework that enables Vision-Language-Action (VLA) system to learn from low-cost action-free egocentric videos. Moreover, an efficient human data collection pipeline is devised to augment the dataset and scale the benefits. To execute the desired locomotion commands more precisely, we present a loco-manipulation-oriented (LMO) RL policy specifically tailored for accurate and stable core loco-manipulation movements, such as advancing, turning, and squatting. Building on these components, we introduce WholeBodyVLA, a unified framework for humanoid loco-manipulation. To the best of our knowledge, WholeBodyVLA is one of its kind enabling large-space humanoid loco-manipulation. It is verified via comprehensive experiments on the AgiBot X2 humanoid, outperforming prior baseline by 21.3%. It also demonstrates strong generalization and high extensibility across a broad range of tasks.
♻ ☆ EmeraldMind: A Knowledge Graph-Augmented Framework for Greenwashing Detection
As AI and web agents become pervasive in decision-making, it is critical to design intelligent systems that not only support sustainability efforts but also guard against misinformation. Greenwashing, i.e., misleading corporate sustainability claims, poses a major challenge to environmental progress. To address this challenge, we introduce EmeraldMind, a fact-centric framework integrating a domain-specific knowledge graph with retrieval-augmented generation to automate greenwashing detection. EmeraldMind builds the EmeraldGraph from diverse corporate ESG (environmental, social, and governance) reports, surfacing verifiable evidence, often missing in generic knowledge bases, and supporting large language models in claim assessment. The framework delivers justification-centric classifications, presenting transparent, evidence-backed verdicts and abstaining responsibly when claims cannot be verified. Experiments on a new greenwashing claims dataset demonstrate that EmeraldMind achieves competitive accuracy, greater coverage, and superior explanation quality compared to generic LLMs, without the need for fine-tuning or retraining.
♻ ☆ Fast Wrong-way Cycling Detection in CCTV Videos: Sparse Sampling is All You Need
Effective monitoring of unusual transportation behaviors, such as wrong-way cycling (i.e., riding a bicycle or e-bike against designated traffic flow), is crucial for optimizing law enforcement deployment and traffic planning. However, accurately recording all wrong-way cycling events is both unnecessary and infeasible in resource-constrained environments, as it requires high-resolution cameras for evidence collection and event detection. To address this challenge, we propose WWC-Predictor, a novel method for efficiently estimating the wrong-way cycling ratio, defined as the proportion of wrong-way cycling events relative to the total number of cycling movements over a given time period. The core innovation of our method lies in accurately detecting wrong-way cycling events in sparsely sampled frames using a light-weight detector, then estimating the overall ratio using an autoregressive moving average model. To evaluate the effectiveness of our method, we construct a benchmark dataset consisting of 35 minutes of video sequences with minute-level annotations.Our method achieves an average error rate of a mere 1.475\% while consuming only 19.12\% GPU time required by conventional tracking methods, validating its effectiveness in estimating the wrong-way cycling ratio. Our source code is publicly available at: https://github.com/VICA-Lab-HKUST-GZ/WWC-Predictor.
comment: Accepted by IEEE Transactions on Intelligent Transportation Systems
♻ ☆ ALIGN: Word Association Learning for Cultural Alignment in Large Language Models
Large language models (LLMs) exhibit cultural bias from overrepresented viewpoints in training data, yet cultural alignment remains a challenge due to limited cultural knowledge and a lack of exploration into effective learning approaches. We introduce a cost-efficient and cognitively grounded method: fine-tuning LLMs on native speakers' word-association norms, leveraging cognitive psychology findings that such associations capture cultural knowledge. Using word association datasets from native speakers in the US (English) and China (Mandarin), we train Llama-3.1-8B and Qwen-2.5-7B via supervised fine-tuning and preference optimization. We evaluate models' cultural alignment through a two-tier evaluation framework that spans lexical associations and cultural value alignment using the World Values Survey. Results show significant improvements in lexical alignment (16-20% English, 43-165% Mandarin on Precision@5) and high-level cultural value shifts. On a subset of 50 questions where US and Chinese respondents diverge most, fine-tuned Qwen nearly doubles its response alignment with Chinese values (13 to 25). Remarkably, our trained 7-8B models match or exceed vanilla 70B baselines, demonstrating that a few million of culture-grounded associations achieve value alignment without expensive retraining. Our work highlights both the promise and the need for future research grounded in human cognition in improving cultural alignment in AI models.
♻ ☆ Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models NeurIPS 2025
The widespread adoption of large language models (LLMs) across industries has increased the demand for high-quality and customizable outputs. However, traditional alignment methods often require retraining large pretrained models, making it difficult to quickly adapt and optimize LLMs for diverse applications. To address this limitation, we propose a novel \textit{Residual Alignment Model} (\textit{RAM}) that formalizes the alignment process as a type of importance sampling. In this framework, the unaligned upstream model serves as the proposal distribution, while the alignment process is framed as secondary sampling based on an autoregressive alignment module that acts as an estimator of the importance weights. This design enables a natural detachment of the alignment module from the target aligned model, improving flexibility and scalability. Based on this model, we derive an efficient sequence-level training strategy for the alignment module, which operates independently of the proposal module. Additionally, we develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods. Experimental evaluations on two leading open-source LLMs across diverse tasks, including instruction following, domain adaptation, and preference optimization, demonstrate that our approach consistently outperforms baseline models.
comment: Accepted by NeurIPS 2025, 28 pages
♻ ☆ Layer-aware TDNN: Speaker Recognition Using Multi-Layer Features from Pre-Trained Models
Recent advances in self-supervised learning (SSL) on Transformers have significantly improved speaker verification (SV) by providing domain-general speech representations. However, existing approaches have underutilized the multi-layered nature of SSL encoders. To address this limitation, we propose the layer-aware time-delay neural network (L-TDNN), which directly performs layer/frame-wise processing on the layer-wise hidden state outputs from pre-trained models, extracting fixed-size speaker vectors. L-TDNN comprises a layer-aware convolutional network, a frame-adaptive layer aggregation, and attentive statistic pooling, explicitly modeling of the recognition and processing of previously overlooked layer dimension. We evaluated L-TDNN across multiple speech SSL Transformers and diverse speech-speaker corpora against other approaches for leveraging pre-trained encoders. L-TDNN consistently demonstrated robust verification performance, achieving the lowest error rates throughout the experiments. Concurrently, it stood out in terms of model compactness and exhibited inference efficiency comparable to the existing systems. These results highlight the advantages derived from the proposed layer-aware processing approach. Future work includes exploring joint training with SSL frontends and the incorporation of score calibration to further enhance state-of-the-art verification performance.
comment: Accepted for publication in ICAIIC 2026
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
♻ ☆ Building Self-Evolving Agents via Experience-Driven Lifelong Learning: A Framework and Benchmark
As AI advances toward general intelligence, the focus is shifting from systems optimized for static tasks to creating open-ended agents that learn continuously. In this paper, we introduce Experience-driven Lifelong Learning (ELL), a framework for building self-evolving agents capable of continuous growth through real-world interaction. The framework is built on four core principles: (1) Experience Exploration: Agents learn through continuous, self-motivated interaction with dynamic environments, navigating interdependent tasks and generating rich experiential trajectories. (2) Long-term Memory: Agents preserve and structure historical knowledge, including personal experiences, domain expertise, and commonsense reasoning, into a persistent memory system. (3) Skill Learning: Agents autonomously improve by abstracting recurring patterns from experience into reusable skills, which are actively refined and validated for application in new tasks. (4) Knowledge Internalization: Agents internalize explicit and discrete experiences into implicit and intuitive capabilities as "second nature". We also introduce StuLife, a benchmark dataset for ELL that simulates a student's holistic college journey, from enrollment to academic and personal development, across three core phases and ten detailed sub-scenarios. StuLife is designed around three key paradigm
♻ ☆ Adaptive Information Routing for Multimodal Time Series Forecasting
Time series forecasting is a critical task for artificial intelligence with numerous real-world applications. Traditional approaches primarily rely on historical time series data to predict the future values. However, in practical scenarios, this is often insufficient for accurate predictions due to the limited information available. To address this challenge, multimodal time series forecasting methods which incorporate additional data modalities, mainly text data, alongside time series data have been explored. In this work, we introduce the Adaptive Information Routing (AIR) framework, a novel approach for multimodal time series forecasting. Unlike existing methods that treat text data on par with time series data as interchangeable auxiliary features for forecasting, AIR leverages text information to dynamically guide the time series model by controlling how and to what extent multivariate time series information should be combined. We also present a text-refinement pipeline that employs a large language model to convert raw text data into a form suitable for multimodal forecasting, and we introduce a benchmark that facilitates multimodal forecasting experiments based on this pipeline. Experiment results with the real world market data such as crude oil price and exchange rates demonstrate that AIR effectively modulates the behavior of the time series model using textual inputs, significantly enhancing forecasting accuracy in various time series forecasting tasks.
♻ ☆ Astra: General Interactive World Model with Autoregressive Denoising
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
comment: Code is available at: https://github.com/EternalEvan/Astra
♻ ☆ Unsupervised Acquisition of Discrete Grammatical Categories
This article presents experiments performed using a computational laboratory environment for language acquisition experiments. It implements a multi-agent system consisting of two agents: an adult language model and a daughter language model that aims to learn the mother language. Crucially, the daughter agent does not have access to the internal knowledge of the mother language model but only to the language exemplars the mother agent generates. These experiments illustrate how this system can be used to acquire abstract grammatical knowledge. We demonstrate how statistical analyses of patterns in the input data corresponding to grammatical categories yield discrete grammatical rules. These rules are subsequently added to the grammatical knowledge of the daughter language model. To this end, hierarchical agglomerative cluster analysis was applied to the utterances consecutively generated by the mother language model. It is argued that this procedure can be used to acquire structures resembling grammatical categories proposed by linguists for natural languages. Thus, it is established that non-trivial grammatical knowledge has been acquired. Moreover, the parameter configuration of this computational laboratory environment determined using training data generated by the mother language model is validated in a second experiment with a test set similarly resulting in the acquisition of non-trivial categories.
comment: 34 pages, 3 figures, 7 tables. Related work: Shakouri et al., arXiv:2512.02195
♻ ☆ China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
♻ ☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews WSDM 2026
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often compromises their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, a lightweight and effective data-driven approach that preserves safety during fine-tuning. The method introduces two simple strategies that modify training data by previewing partial answer prefixes, thereby minimizing perturbations to the model's initial token distributions and maintaining its built-in safety mechanisms. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs.
comment: WSDM 2026 short
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ Joint Hybrid Beamforming and Artificial Noise Design for Secure Multi-UAV ISAC Networks
Integrated sensing and communication (ISAC) emerges as a key enabler for next-generation applications such as smart cities and autonomous systems. Its integration with unmanned aerial vehicles (UAVs) unlocks new potentials for reliable communication and precise sensing in dynamic aerial environments. However, existing research predominantly treats UAVs as aerial base stations, overlooking their role as ISAC users, and fails to leverage large-scale antenna arrays at terrestrial base stations to enhance security and spectral efficiency. This paper propose a secure and spectral efficient ISAC framework for multi-UAV networks, and a two-stage optimization approach is developed to jointly design hybrid beamforming (HBF), artificial noise (AN) injection, and UAV trajectories. Aiming at maximizing the sum secrecy rate, the first stage employs Proximal Policy Optimization (PPO) to optimize digital beamformers and trajectories, and the second stage decomposes the digital solution into analog and digital components via low-complexity matrix factorization. Simulation results demonstrate the effectiveness of the proposed framework compared to benchmark schemes.
♻ ☆ Mathematical exploration and discovery at scale
AlphaEvolve (Novikov et al., 2025) is a generic evolutionary coding agent that combines the generative capabilities of LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open problems. To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics, geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology with Deep Think and AlphaProof in a broader framework where the additional proof-assistants and reasoning systems provide automated proof generation and further mathematical insights. These results demonstrate that large language model-guided evolutionary search can autonomously discover mathematical constructions that complement human intuition, at times matching or even improving the best known results, highlighting the potential for significant new ways of interaction between mathematicians and AI systems. We present AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve complex optimization problems at scale, often with significantly reduced requirements on preparation and computation time.
comment: 81 pages, 35 figures
♻ ☆ The Gray Zone of Faithfulness: Taming Ambiguity in Unfaithfulness Detection
Ensuring that Large Language Models (LLMs) generate summaries faithful to a given source document is essential for real-world applications. While prior research has explored LLM faithfulness, existing benchmarks suffer from annotation ambiguity, primarily due to the ill-defined boundary of permissible external knowledge in generated outputs. For instance, common sense is often incorporated into responses and labeled as "faithful", yet the acceptable extent of such knowledge remains unspecified, leading to inconsistent annotations. To address this issue, we propose a novel faithfulness annotation framework, which introduces an intermediate category, Out-Dependent, to classify cases where external knowledge is required for verification. Using this framework, we construct VeriGray (Verification with the Gray Zone) -- a new unfaithfulness detection benchmark in summarization. Statistics reveal that even SOTA LLMs, such as GPT-5, exhibit hallucinations ($\sim 6\%$ of sentences) in summarization tasks. Moreover, a substantial proportion ($\sim 8\%$ on average of models) of generated sentences fall into the Out-Dependent category, underscoring the importance of resolving annotation ambiguity in unfaithfulness detection benchmarks. Experiments demonstrate that our benchmark poses significant challenges to multiple baseline methods, indicating considerable room for future improvement.
comment: Updates the evaluation results with the latest correction of our annotations and the improved parsing algorithm for LLM detectors' responses Evaluates a new method -- GPT-5 + RAG
♻ ☆ Measuring What Matters: The AI Pluralism Index
Artificial intelligence systems increasingly mediate knowledge, communication, and decision making. Development and governance remain concentrated within a small set of firms and states, raising concerns that technologies may encode narrow interests and limit public agency. Capability benchmarks for language, vision, and coding are common, yet public, auditable measures of pluralistic governance are rare. We define AI pluralism as the degree to which affected stakeholders can shape objectives, data practices, safeguards, and deployment. We present the AI Pluralism Index (AIPI), a transparent, evidence-based instrument that evaluates producers and system families across four pillars: participatory governance, inclusivity and diversity, transparency, and accountability. AIPI codes verifiable practices from public artifacts and independent evaluations, explicitly handling "Unknown" evidence to report both lower-bound ("evidence") and known-only scores with coverage. We formalize the measurement model; implement a reproducible pipeline that integrates structured web and repository analysis, external assessments, and expert interviews; and assess reliability with inter-rater agreement, coverage reporting, cross-index correlations, and sensitivity analysis. The protocol, codebook, scoring scripts, and evidence graph are maintained openly with versioned releases and a public adjudication process. We report pilot provider results and situate AIPI relative to adjacent transparency, safety, and governance frameworks. The index aims to steer incentives toward pluralistic practice and to equip policymakers, procurers, and the public with comparable evidence.
comment: This work has been accepted for publication in the proceedings of the International Association for Safe & Ethical AI (IASEAI) 2026
♻ ☆ Solving Inequality Proofs with Large Language Models NeurIPS 2025
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 50 pages, 24 figures, accepted as a Spotlight at NeurIPS 2025
♻ ☆ Learning in Focus: Detecting Behavioral and Collaborative Engagement Using Vision Transformers
In early childhood education, accurately detecting collaborative and behavioral engagement is essential to foster meaningful learning experiences. This paper presents an AI driven approach that leverages Vision Transformers (ViTs) to automatically classify children s engagement using visual cues such as gaze direction, interaction, and peer collaboration. Utilizing the ChildPlay gaze dataset, our method is trained on annotated video segments to classify behavioral and collaborative engagement states (e.g., engaged, not engaged, collaborative, not collaborative). We evaluated six state of the art transformer models: Vision Transformer (ViT), Data efficient Image Transformer (DeiT), Swin Transformer, VitGaze, APVit and GazeTR. Among these, the Swin Transformer achieved the highest classification performance with an accuracy of 97.58 percent, demonstrating its effectiveness in modeling local and global attention. Our results highlight the potential of transformer based architectures for scalable, automated engagement analysis in real world educational settings.
♻ ☆ Robust Simultaneous Multislice MRI Reconstruction Using Slice-Wise Learned Generative Diffusion Priors
Simultaneous multislice (SMS) imaging is a powerful technique for accelerating magnetic resonance imaging (MRI) acquisitions. However, SMS reconstruction remains challenging due to complex signal interactions between and within the excited slices. In this study, we introduce ROGER, a robust SMS MRI reconstruction method based on deep generative priors. Utilizing denoising diffusion probabilistic models (DDPM), ROGER begins with Gaussian noise and gradually recovers individual slices through reverse diffusion iterations while enforcing data consistency from measured k-space data within the readout concatenation framework. The posterior sampling procedure is designed such that the DDPM training can be performed on single-slice images without requiring modifications for SMS tasks. Additionally, our method incorporates a low-frequency enhancement (LFE) module to address the practical issue that SMS-accelerated fast spin echo (FSE) and echo planar imaging (EPI) sequences cannot easily embed fully-sampled autocalibration signals. Extensive experiments on both retrospectively and prospectively accelerated datasets demonstrate that ROGER consistently outperforms existing methods, enhancing both anatomical and functional imaging with strong out-of-distribution generalization. The source code and sample data for ROGER are available at https://github.com/Solor-pikachu/ROGER.
♻ ☆ Development and Benchmarking of a Blended Human-AI Qualitative Research Assistant
Qualitative research emphasizes constructing meaning through iterative engagement with textual data. Traditionally this human-driven process requires navigating coder fatigue and interpretative drift, thus posing challenges when scaling analysis to larger, more complex datasets. Computational approaches to augment qualitative research have been met with skepticism, partly due to their inability to replicate the nuance, context-awareness, and sophistication of human analysis. Large language models, however, present new opportunities to automate aspects of qualitative analysis while upholding rigor and research quality in important ways. To assess their benefits and limitations - and build trust among qualitative researchers - these approaches must be rigorously benchmarked against human-generated datasets. In this work, we benchmark Muse, an interactive, AI-powered qualitative research system that allows researchers to identify themes and annotate datasets, finding an inter-rater reliability between Muse and humans of Cohen's $κ$ = 0.71 for well-specified codes. We also conduct robust error analysis to identify failure mode, guide future improvements, and demonstrate the capacity to correct for human bias.
comment: 32 pages, 9 figures
♻ ☆ GRADE: Generating multi-hop QA and fine-gRAined Difficulty matrix for RAG Evaluation EMNLP 2025
Retrieval-Augmented Generation (RAG) systems are widely adopted in knowledge-intensive NLP tasks, but current evaluations often overlook the structural complexity and multi-step reasoning required in real-world scenarios. These benchmarks overlook key factors such as the interaction between retrieval difficulty and reasoning depth. To address this gap, we propose GRADE, a novel evaluation framework that models task difficulty along two orthogonal dimensions: (1) reasoning depth, defined by the number of inference steps (hops), and (2) semantic distance between the query and its supporting evidence. We construct a synthetic multi-hop QA dataset from factual news articles by extracting knowledge graphs and augmenting them through semantic clustering to recover missing links, allowing us to generate diverse and difficulty-controlled queries. Central to our framework is a 2D difficulty matrix that combines generator-side and retriever-side difficulty. Experiments across multiple domains and models show that error rates strongly correlate with our difficulty measures, validating their diagnostic utility. GRADE enables fine-grained analysis of RAG performance and provides a scalable foundation for evaluating and improving multi-hop reasoning in real-world applications.
comment: Accepted at EMNLP 2025 findings
♻ ☆ Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges
The advent of foundation models (FMs), large-scale pre-trained models with strong generalization capabilities, has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of financial foundation models (FFMs): a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: financial language foundation models (FinLFMs), financial time-series foundation models (FinTSFMs), and financial visual-language foundation models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints and offer insights into future research opportunities. We hope this survey can serve as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation.
comment: Accepted by [J]. Engineering, 2025
♻ ☆ ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning
Behavior-cloning based visuomotor policies enable precise manipulation but often inherit the slow, cautious tempo of human demonstrations, limiting practical deployment. However, prior studies on acceleration methods mainly rely on statistical or heuristic cues that ignore task semantics and can fail across diverse manipulation settings. We present ESPADA, a semantic and spatially aware framework that segments demonstrations using a VLM-LLM pipeline with 3D gripper-object relations, enabling aggressive downsampling only in non-critical segments while preserving precision-critical phases, without requiring extra data or architectural modifications, or any form of retraining. To scale from a single annotated episode to the full dataset, ESPADA propagates segment labels via Dynamic Time Warping (DTW) on dynamics-only features. Across both simulation and real-world experiments with ACT and DP baselines, ESPADA achieves approximately a 2x speed-up while maintaining success rates, narrowing the gap between human demonstrations and efficient robot control.
comment: project page: https://project-espada.github.io/espada/
Machine Learning 154
☆ DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
comment: Project page: https://susunghong.github.io/DiffusionBrowser
☆ Directional Textual Inversion for Personalized Text-to-Image Generation
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
comment: Project page: https://kunheek.github.io/dti
☆ A Scientific Reasoning Model for Organic Synthesis Procedure Generation
Solving computer-aided synthesis planning is essential for enabling fully automated, robot-assisted synthesis workflows and improving the efficiency of drug discovery. A key challenge, however, is bridging the gap between computational route design and practical laboratory execution, particularly the accurate prediction of viable experimental procedures for each synthesis step. In this work, we present QFANG, a scientific reasoning language model capable of generating precise, structured experimental procedures directly from reaction equations, with explicit chain-of-thought reasoning. To develop QFANG, we curated a high-quality dataset comprising 905,990 chemical reactions paired with structured action sequences, extracted and processed from patent literature using large language models. We introduce a Chemistry-Guided Reasoning (CGR) framework that produces chain-of-thought data grounded in chemical knowledge at scale. The model subsequently undergoes supervised fine-tuning to elicit complex chemistry reasoning. Finally, we apply Reinforcement Learning from Verifiable Rewards (RLVR) to further enhance procedural accuracy. Experimental results demonstrate that QFANG outperforms advanced general-purpose reasoning models and nearest-neighbor retrieval baselines, measured by traditional NLP similarity metrics and a chemically aware evaluator using an LLM-as-a-judge. Moreover, QFANG generalizes to certain out-of-domain reaction classes and adapts to variations in laboratory conditions and user-specific constraints. We believe that QFANG's ability to generate high-quality synthesis procedures represents an important step toward bridging the gap between computational synthesis planning and fully automated laboratory synthesis.
☆ SEDULity: A Proof-of-Learning Framework for Distributed and Secure Blockchains with Efficient Useful Work
The security and decentralization of Proof-of-Work (PoW) have been well-tested in existing blockchain systems. However, its tremendous energy waste has raised concerns about sustainability. Proof-of-Useful-Work (PoUW) aims to redirect the meaningless computation to meaningful tasks such as solving machine learning (ML) problems, giving rise to the branch of Proof-of-Learning (PoL). While previous studies have proposed various PoLs, they all, to some degree, suffer from security, decentralization, or efficiency issues. In this paper, we propose a PoL framework that trains ML models efficiently while maintaining blockchain security in a fully distributed manner. We name the framework SEDULity, which stands for a Secure, Efficient, Distributed, and Useful Learning-based blockchain system. Specifically, we encode the template block into the training process and design a useful function that is difficult to solve but relatively easy to verify, as a substitute for the PoW puzzle. We show that our framework is distributed, secure, and efficiently trains ML models. We further demonstrate that the proposed PoL framework can be extended to other types of useful work and design an incentive mechanism to incentivize task verification. We show theoretically that a rational miner is incentivized to train fully honestly with well-designed system parameters. Finally, we present simulation results to demonstrate the performance of our framework and validate our analysis.
☆ From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
comment: This work was presented at the BRACIS 2025 conference in Fortaleza
☆ Universality of high-dimensional scaling limits of stochastic gradient descent
We consider statistical tasks in high dimensions whose loss depends on the data only through its projection into a fixed-dimensional subspace spanned by the parameter vectors and certain ground truth vectors. This includes classifying mixture distributions with cross-entropy loss with one and two-layer networks, and learning single and multi-index models with one and two-layer networks. When the data is drawn from an isotropic Gaussian mixture distribution, it is known that the evolution of a finite family of summary statistics under stochastic gradient descent converges to an autonomous ordinary differential equation (ODE), as the dimension and sample size go to $\infty$ and the step size goes to $0$ commensurately. Our main result is that these ODE limits are universal in that this convergence occurs even when the data is drawn from mixtures of product measures provided the first two moments match the corresponding Gaussian distribution and the initialization and ground truth vectors are sufficiently coordinate-delocalized. We complement this by proving two corresponding non-universality results. We provide a simple example where the ODE limits are non-universal if the initialization is coordinate aligned. We also show that the stochastic differential equation limits arising as fluctuations of the summary statistics around their ODE's fixed points are not universal.
comment: 30 pages
☆ StutterFuse: Mitigating Modality Collapse in Stuttering Detection with Jaccard-Weighted Metric Learning and Gated Fusion
Stuttering detection breaks down when disfluencies overlap. Existing parametric models struggle to distinguish complex, simultaneous disfluencies (e.g., a 'block' with a 'prolongation') due to the scarcity of these specific combinations in training data. While Retrieval-Augmented Generation (RAG) has revolutionized NLP by grounding models in external knowledge, this paradigm remains unexplored in pathological speech processing. To bridge this gap, we introduce StutterFuse, the first Retrieval-Augmented Classifier (RAC) for multi-label stuttering detection. By conditioning a Conformer encoder on a non-parametric memory bank of clinical examples, we allow the model to classify by reference rather than memorization. We further identify and solve "Modality Collapse", an "Echo Chamber" effect where naive retrieval boosts recall but degrades precision. We mitigate this using: (1) SetCon, a Jaccard-Weighted Metric Learning objective that optimizes for multi-label set similarity, and (2) a Gated Mixture-of-Experts fusion strategy that dynamically arbitrates between acoustic evidence and retrieved context. On the SEP-28k dataset, StutterFuse achieves a weighted F1-score of 0.65, outperforming strong baselines and demonstrating remarkable zero-shot cross-lingual generalization.
comment: 13 pages, 10 figures
☆ Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
☆ LightTopoGAT: Enhancing Graph Attention Networks with Topological Features for Efficient Graph Classification
Graph Neural Networks have demonstrated significant success in graph classification tasks, yet they often require substantial computational resources and struggle to capture global graph properties effectively. We introduce LightTopoGAT, a lightweight graph attention network that enhances node features through topological augmentation by incorporating node degree and local clustering coefficient to improve graph representation learning. The proposed approach maintains parameter efficiency through streamlined attention mechanisms while integrating structural information that is typically overlooked by local message passing schemes. Through comprehensive experiments on three benchmark datasets, MUTAG, ENZYMES, and PROTEINS, we show that LightTopoGAT achieves superior performance compared to established baselines including GCN, GraphSAGE, and standard GAT, with a 6.6 percent improvement in accuracy on MUTAG and a 2.2 percent improvement on PROTEINS. Ablation studies further confirm that these performance gains arise directly from the inclusion of topological features, demonstrating a simple yet effective strategy for enhancing graph neural network performance without increasing architectural complexity.
comment: 9 pages
☆ Do-Undo: Generating and Reversing Physical Actions in Vision-Language Models
We introduce the Do-Undo task and benchmark to address a critical gap in vision-language models: understanding and generating physically plausible scene transformations driven by real-world actions. Unlike prior work focused on object-level edits, Do-Undo requires models to simulate the outcome of a physical action and then accurately reverse it, reflecting true cause-and-effect in the visual world. We curate a large-scale dataset of reversible actions from real-world videos and design a training strategy enforcing consistency for robust action grounding. Our experiments reveal that current models struggle with physical reversibility, underscoring the importance of this task for embodied AI, robotics, and physics-aware generative modeling. Do-Undo establishes an intuitive testbed for evaluating and advancing physical reasoning in multimodal systems.
☆ Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model's reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
comment: We publicly release the Nemotron-Cascade models and the full collection of training data at: https://huggingface.co/collections/nvidia/nemotron-cascade
☆ Textual Gradients are a Flawed Metaphor for Automatic Prompt Optimization
A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
☆ Scalable Formal Verification via Autoencoder Latent Space Abstraction
Finite Abstraction methods provide a powerful formal framework for proving that systems satisfy their specifications. However, these techniques face scalability challenges for high-dimensional systems, as they rely on state-space discretization which grows exponentially with dimension. Learning-based approaches to dimensionality reduction, utilizing neural networks and autoencoders, have shown great potential to alleviate this problem. However, ensuring the correctness of the resulting verification results remains an open question. In this work, we provide a formal approach to reduce the dimensionality of systems via convex autoencoders and learn the dynamics in the latent space through a kernel-based method. We then construct a finite abstraction from the learned model in the latent space and guarantee that the abstraction contains the true behaviors of the original system. We show that the verification results in the latent space can be mapped back to the original system. Finally, we demonstrate the effectiveness of our approach on multiple systems, including a 26D system controlled by a neural network, showing significant scalability improvements without loss of rigor.
comment: 14 pages, 7 figures, under review
☆ Image Diffusion Preview with Consistency Solver
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://github.com/G-U-N/consolver.
☆ ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill'' decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18$\times$ speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33$\times$ average speedup.
☆ DP-CSGP: Differentially Private Stochastic Gradient Push with Compressed Communication
In this paper, we propose a Differentially Private Stochastic Gradient Push with Compressed communication (termed DP-CSGP) for decentralized learning over directed graphs. Different from existing works, the proposed algorithm is designed to maintain high model utility while ensuring both rigorous differential privacy (DP) guarantees and efficient communication. For general non-convex and smooth objective functions, we show that the proposed algorithm achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$ ($J$ and $d$ are the number of local samples and the dimension of decision variables, respectively) with $\left(ε, δ\right)$-DP guarantee for each node, matching that of decentralized counterparts with exact communication. Extensive experiments on benchmark tasks show that, under the same privacy budget, DP-CSGP achieves comparable model accuracy with significantly lower communication cost than existing decentralized counterparts with exact communication.
comment: 13 pages
☆ Superposition as Lossy Compression: Measure with Sparse Autoencoders and Connect to Adversarial Vulnerability
Neural networks achieve remarkable performance through superposition: encoding multiple features as overlapping directions in activation space rather than dedicating individual neurons to each feature. This challenges interpretability, yet we lack principled methods to measure superposition. We present an information-theoretic framework measuring a neural representation's effective degrees of freedom. We apply Shannon entropy to sparse autoencoder activations to compute the number of effective features as the minimum neurons needed for interference-free encoding. Equivalently, this measures how many "virtual neurons" the network simulates through superposition. When networks encode more effective features than actual neurons, they must accept interference as the price of compression. Our metric strongly correlates with ground truth in toy models, detects minimal superposition in algorithmic tasks, and reveals systematic reduction under dropout. Layer-wise patterns mirror intrinsic dimensionality studies on Pythia-70M. The metric also captures developmental dynamics, detecting sharp feature consolidation during grokking. Surprisingly, adversarial training can increase effective features while improving robustness, contradicting the hypothesis that superposition causes vulnerability. Instead, the effect depends on task complexity and network capacity: simple tasks with ample capacity allow feature expansion (abundance regime), while complex tasks or limited capacity force reduction (scarcity regime). By defining superposition as lossy compression, this work enables principled measurement of how neural networks organize information under computational constraints, connecting superposition to adversarial robustness.
comment: Accepted to TMLR, view HTML here: https://leonardbereska.github.io/blog/2025/superposition/
☆ A Nonparametric Statistics Approach to Feature Selection in Deep Neural Networks with Theoretical Guarantees
This paper tackles the problem of feature selection in a highly challenging setting: $\mathbb{E}(y | \boldsymbol{x}) = G(\boldsymbol{x}_{\mathcal{S}_0})$, where $\mathcal{S}_0$ is the set of relevant features and $G$ is an unknown, potentially nonlinear function subject to mild smoothness conditions. Our approach begins with feature selection in deep neural networks, then generalizes the results to H{ö}lder smooth functions by exploiting the strong approximation capabilities of neural networks. Unlike conventional optimization-based deep learning methods, we reformulate neural networks as index models and estimate $\mathcal{S}_0$ using the second-order Stein's formula. This gradient-descent-free strategy guarantees feature selection consistency with a sample size requirement of $n = Ω(p^2)$, where $p$ is the feature dimension. To handle high-dimensional scenarios, we further introduce a screening-and-selection mechanism that achieves nonlinear selection consistency when $n = Ω(s \log p)$, with $s$ representing the sparsity level. Additionally, we refit a neural network on the selected features for prediction and establish performance guarantees under a relaxed sparsity assumption. Extensive simulations and real-data analyses demonstrate the strong performance of our method even in the presence of complex feature interactions.
comment: 64 pages
☆ Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains NeurIPS 2025
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.
comment: Accepted at NeurIPS 2025. Code available at: https://github.com/mariannerakic/Pancakes
☆ Adaptive Sampling for Hydrodynamic Stability
An adaptive sampling approach for efficient detection of bifurcation boundaries in parametrized fluid flow problems is presented herein. The study extends the machine-learning approach of Silvester (Machine Learning for Hydrodynamic Stability, arXiv:2407.09572), where a classifier network was trained on preselected simulation data to identify bifurcated and nonbifurcated flow regimes. In contrast, the proposed methodology introduces adaptivity through a flow-based deep generative model that automatically refines the sampling of the parameter space. The strategy has two components: a classifier network maps the flow parameters to a bifurcation probability, and a probability density estimation technique (KRnet) for the generation of new samples at each adaptive step. The classifier output provides a probabilistic measure of flow stability, and the Shannon entropy of these predictions is employed as an uncertainty indicator. KRnet is trained to approximate a probability density function that concentrates sampling in regions of high entropy, thereby directing computational effort towards the evolving bifurcation boundary. This coupling between classification and generative modeling establishes a feedback-driven adaptive learning process analogous to error-indicator based refinement in contemporary partial differential equation solution strategies. Starting from a uniform parameter distribution, the new approach achieves accurate bifurcation boundary identification with significantly fewer Navier--Stokes simulations, providing a scalable foundation for high-dimensional stability analysis.
☆ Actively Learning Joint Contours of Multiple Computer Experiments
Contour location$\unicode{x2014}$the process of sequentially training a surrogate model to identify the design inputs that result in a pre-specified response value from a single computer experiment$\unicode{x2014}$is a well-studied active learning problem. Here, we tackle a related but distinct problem: identifying the input configuration that returns pre-specified values of multiple independent computer experiments simultaneously. Motivated by computer experiments of the rotational torques acting upon a vehicle in flight, we aim to identify stable flight conditions which result in zero torque forces. We propose a "joint contour location" (jCL) scheme that strikes a strategic balance between exploring the multiple response surfaces while exploiting learning of the intersecting contours. We employ both shallow and deep Gaussian process surrogates, but our jCL procedure is applicable to any surrogate that can provide posterior predictive distributions. Our jCL designs significantly outperform existing (single response) CL strategies, enabling us to efficiently locate the joint contour of our motivating computer experiments.
☆ Enhancing lithological interpretation from petrophysical well log of IODP expedition 390/393 using machine learning
Enhanced lithological interpretation from well logs plays a key role in geological resource exploration and mapping, as well as in geo-environmental modeling studies. Core and cutting information is useful for making sound interpretations of well logs; however, these are rarely collected at each depth due to high costs. Moreover, well log interpretation using traditional methods is constrained by poor borehole conditions. Traditional statistical methods are mostly linear, often failing to discriminate between lithology and rock facies, particularly when dealing with overlapping well log signals characterized by the structural and compositional variation of rock types. In this study, we develop multiple supervised and unsupervised machine learning algorithms to jointly analyze multivariate well log data from Integrated Ocean Drilling Program (IODP) expeditions 390 and 393 for enhanced lithological interpretations. Among the algorithms, Logistic Regression, Decision Trees, Gradient Boosting, Support Vector Machines (SVM), k-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP) neural network models, the Decision Tree and Gradient Boosting models outperformed the others, achieving an accuracy of 0.9950 and an F1-score of 0.9951. While unsupervised machine learning (ML) provides the foundation for cluster information that inherently supports the classification algorithm, supervised ML is applied to devise a data-driven lithology clustering mechanism for IODP datasets. The joint ML-based method developed here has the potential to be further explored for analyzing other well log datasets from the world's oceans.
comment: Accepted for presentation at the International Meeting for Applied Geoscience & Energy (IMAGE) 2025
☆ Async Control: Stress-testing Asynchronous Control Measures for LLM Agents
LLM-based software engineering agents are increasingly used in real-world development tasks, often with access to sensitive data or security-critical codebases. Such agents could intentionally sabotage these codebases if they were misaligned. We investigate asynchronous monitoring, in which a monitoring system reviews agent actions after the fact. Unlike synchronous monitoring, this approach does not impose runtime latency, while still attempting to disrupt attacks before irreversible harm occurs. We treat monitor development as an adversarial game between a blue team (who design monitors) and a red team (who create sabotaging agents). We attempt to set the game rules such that they upper bound the sabotage potential of an agent based on Claude 4.1 Opus. To ground this game in a realistic, high-stakes deployment scenario, we develop a suite of 5 diverse software engineering environments that simulate tasks that an agent might perform within an AI developer's internal infrastructure. Over the course of the game, we develop an ensemble monitor that achieves a 6% false negative rate at 1% false positive rate on a held out test environment. Then, we estimate risk of sabotage at deployment time by extrapolating from our monitor's false negative rate. We describe one simple model for this extrapolation, present a sensitivity analysis, and describe situations in which the model would be invalid. Code is available at: https://github.com/UKGovernmentBEIS/async-control.
☆ A Deep Learning Model of Mental Rotation Informed by Interactive VR Experiments
Mental rotation -- the ability to compare objects seen from different viewpoints -- is a fundamental example of mental simulation and spatial world modelling in humans. Here we propose a mechanistic model of human mental rotation, leveraging advances in deep, equivariant, and neuro-symbolic learning. Our model consists of three stacked components: (1) an equivariant neural encoder, taking images as input and producing 3D spatial representations of objects, (2) a neuro-symbolic object encoder, deriving symbolic descriptions of objects from these spatial representations, and (3) a neural decision agent, comparing these symbolic descriptions to prescribe rotation simulations in 3D latent space via a recurrent pathway. Our model design is guided by the abundant experimental literature on mental rotation, which we complemented with experiments in VR where participants could at times manipulate the objects to compare, providing us with additional insights into the cognitive process of mental rotation. Our model captures well the performance, response times and behavior of participants in our and others' experiments. The necessity of each model component is shown through systematic ablations. Our work adds to a recent collection of deep neural models of human spatial reasoning, further demonstrating the potency of integrating deep, equivariant, and symbolic representations to model the human mind.
☆ Learning under Distributional Drift: Reproducibility as an Intrinsic Statistical Resource
Statistical learning under distributional drift remains insufficiently characterized: when each observation alters the data-generating law, classical generalization bounds can collapse. We introduce a new statistical primitive, the reproducibility budget $C_T$, which quantifies a system's finite capacity for statistical reproducibility - the extent to which its sampling process can remain governed by a consistent underlying distribution in the presence of both exogenous change and endogenous feedback. Formally, $C_T$ is defined as the cumulative Fisher-Rao path length of the coupled learner-environment evolution, measuring the total distributional motion accumulated during learning. From this construct we derive a drift-feedback generalization bound of order $O(T^{-1/2} + C_T/T)$, and we prove a matching minimax lower bound showing that this rate is minimax-optimal. Consequently, the results establish a reproducibility speed limit: no algorithm can achieve smaller worst-case generalization error than that imposed by the average Fisher-Rao drift rate $C_T/T$ of the data-generating process. The framework situates exogenous drift, adaptive data analysis, and performative prediction within a common geometric structure, with $C_T$ emerging as the intrinsic quantity measuring distributional motion across these settings.
comment: 37 pages, 4 figures
☆ On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
comment: Accepted by European Conference on EDGE AI Technologies and Applications (EEAI) 2025
☆ From Zipf's Law to Neural Scaling through Heaps' Law and Hilberg's Hypothesis
We inspect the deductive connection between the neural scaling law and Zipf's law -- two statements discussed in machine learning and quantitative linguistics. The neural scaling law describes how the cross entropy rate of a foundation model -- such as a large language model -- changes with respect to the amount of training tokens, parameters, and compute. By contrast, Zipf's law posits that the distribution of tokens exhibits a power law tail. Whereas similar claims have been made in more specific settings, we show that the neural scaling law is a consequence of Zipf's law under certain broad assumptions that we reveal systematically. The derivation steps are as follows: We derive Heaps' law on the vocabulary growth from Zipf's law, Hilberg's hypothesis on the entropy scaling from Heaps' law, and the neural scaling from Hilberg's hypothesis. We illustrate these inference steps by a toy example of the Santa Fe process that satisfies all the four statistical laws.
comment: 32 pages, no figures
☆ Real-Time AI-Driven Milling Digital Twin Towards Extreme Low-Latency
Digital twin (DT) enables smart manufacturing by leveraging real-time data, AI models, and intelligent control systems. This paper presents a state-of-the-art analysis on the emerging field of DTs in the context of milling. The critical aspects of DT are explored through the lens of virtual models of physical milling, data flow from physical milling to virtual model, and feedback from virtual model to physical milling. Live data streaming protocols and virtual modeling methods are highlighted. A case study showcases the transformative capability of a real-time machine learning-driven live DT of tool-work contact in a milling process. Future research directions are outlined to achieve the goals of Industry 4.0 and beyond.
☆ Element-wise Modulation of Random Matrices for Efficient Neural Layers
Fully connected layers are a primary source of memory and computational overhead in deep neural networks due to their dense, often redundant parameterization. While various compression techniques exist, they frequently introduce complex engineering trade-offs or degrade model performance. We propose the Parametrized Random Projection (PRP) layer, a novel approach that decouples feature mixing from adaptation by utilizing a fixed random matrix modulated by lightweight, learnable element-wise parameters. This architecture drastically reduces the trainable parameter count to a linear scale while retaining reliable accuracy across various benchmarks. The design serves as a stable, computationally efficient solution for architectural scaling and deployment in resource-limited settings.
☆ Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
comment: 19 pages
☆ DP-EMAR: A Differentially Private Framework for Autonomous Model Weight Repair in Federated IoT Systems
Federated Learning (FL) enables decentralized model training without sharing raw data, but model weight distortion remains a major challenge in resource constrained IoT networks. In multi tier Federated IoT (Fed-IoT) systems, unstable connectivity and adversarial interference can silently alter transmitted parameters, degrading convergence. We propose DP-EMAR, a differentially private, error model based autonomous repair framework that detects and reconstructs transmission induced distortions during FL aggregation. DP-EMAR estimates corruption patterns and applies adaptive correction before privacy noise is added, enabling reliable in network repair without violating confidentiality. By integrating Differential Privacy (DP) with Secure Aggregation (SA), the framework distinguishes DP noise from genuine transmission errors. Experiments on heterogeneous IoT sensor and graph datasets show that DP-EMAR preserves convergence stability and maintains near baseline performance under communication corruption while ensuring strict (epsilon, delta)-DP guarantees. The framework enhances robustness, communication efficiency, and trust in privacy preserving Federated IoT learning.
comment: Accepted and presented at the AI-IoT Workshop, co-located with COMSNETS 2025
☆ SSAS: Cross-subject EEG-based Emotion Recognition through Source Selection with Adversarial Strategy
Electroencephalographic (EEG) signals have long been applied in the field of affective brain-computer interfaces (aBCIs). Cross-subject EEG-based emotion recognition has demonstrated significant potential in practical applications due to its suitability across diverse people. However, most studies on cross-subject EEG-based emotion recognition neglect the presence of inter-individual variability and negative transfer phenomena during model training. To address this issue, a cross-subject EEG-based emotion recognition through source selection with adversarial strategy is introduced in this paper. The proposed method comprises two modules: the source selection network (SS) and the adversarial strategies network (AS). The SS uses domain labels to reverse-engineer the training process of domain adaptation. Its key idea is to disrupt class separability and magnify inter-domain differences, thereby raising the classification difficulty and forcing the model to learn domain-invariant yet emotion-relevant representations. The AS gets the source domain selection results and the pretrained domain discriminators from SS. The pretrained domain discriminators compute a novel loss aimed at enhancing the performance of domain classification during adversarial training, ensuring the balance of adversarial strategies. This paper provides theoretical insights into the proposed method and achieves outstanding performance on two EEG-based emotion datasets, SEED and SEED-IV. The code can be found at https://github.com/liuyici/SSAS.
☆ XNNTab -- Interpretable Neural Networks for Tabular Data using Sparse Autoencoders
In data-driven applications relying on tabular data, where interpretability is key, machine learning models such as decision trees and linear regression are applied. Although neural networks can provide higher predictive performance, they are not used because of their blackbox nature. In this work, we present XNNTab, a neural architecture that combines the expressiveness of neural networks and interpretability. XNNTab first learns highly non-linear feature representations, which are decomposed into monosemantic features using a sparse autoencoder (SAE). These features are then assigned human-interpretable concepts, making the overall model prediction intrinsically interpretable. XNNTab outperforms interpretable predictive models, and achieves comparable performance to its non-interpretable counterparts.
☆ MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.
comment: Code and examples are available on the project's webpage at https://noa-cohen.github.io/MineTheGap/
☆ Multiclass Graph-Based Large Margin Classifiers: Unified Approach for Support Vectors and Neural Networks
While large margin classifiers are originally an outcome of an optimization framework, support vectors (SVs) can be obtained from geometric approaches. This article presents advances in the use of Gabriel graphs (GGs) in binary and multiclass classification problems. For Chipclass, a hyperparameter-less and optimization-less GG-based binary classifier, we discuss how activation functions and support edge (SE)-centered neurons affect the classification, proposing smoother functions and structural SV (SSV)-centered neurons to achieve margins with low probabilities and smoother classification contours. We extend the neural network architecture, which can be trained with backpropagation with a softmax function and a cross-entropy loss, or by solving a system of linear equations. A new subgraph-/distance-based membership function for graph regularization is also proposed, along with a new GG recomputation algorithm that is less computationally expensive than the standard approach. Experimental results with the Friedman test show that our method was better than previous GG-based classifiers and statistically equivalent to tree-based models.
comment: Accepted to the IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ rNCA: Self-Repairing Segmentation Masks
Accurately predicting topologically correct masks remains a difficult task for general segmentation models, which often produce fragmented or disconnected outputs. Fixing these artifacts typically requires hand-crafted refinement rules or architectures specialized to a particular task. Here, we show that Neural Cellular Automata (NCA) can be directly re-purposed as an effective refinement mechanism, using local, iterative updates guided by image context to repair segmentation masks. By training on imperfect masks and ground truths, the automaton learns the structural properties of the target shape while relying solely on local information. When applied to coarse, globally predicted masks, the learned dynamics progressively reconnect broken regions, prune loose fragments and converge towards stable, topologically consistent results. We show how refinement NCA (rNCA) can be easily applied to repair common topological errors produced by different base segmentation models and tasks: for fragmented retinal vessels, it yields 2-3% gains in Dice/clDice and improves Betti errors, reducing $β_0$ errors by 60% and $β_1$ by 20%; for myocardium, it repairs 61.5% of broken cases in a zero-shot setting while lowering ASSD and HD by 19% and 16%, respectively. This showcases NCA as effective and broadly applicable refiners.
☆ Dual-Phase Federated Deep Unlearning via Weight-Aware Rollback and Reconstruction
Federated Unlearning (FUL) focuses on client data and computing power to offer a privacy-preserving solution. However, high computational demands, complex incentive mechanisms, and disparities in client-side computing power often lead to long times and higher costs. To address these challenges, many existing methods rely on server-side knowledge distillation that solely removes the updates of the target client, overlooking the privacy embedded in the contributions of other clients, which can lead to privacy leakage. In this work, we introduce DPUL, a novel server-side unlearning method that deeply unlearns all influential weights to prevent privacy pitfalls. Our approach comprises three components: (i) identifying high-weight parameters by filtering client update magnitudes, and rolling them back to ensure deep removal. (ii) leveraging the variational autoencoder (VAE) to reconstruct and eliminate low-weight parameters. (iii) utilizing a projection-based technique to recover the model. Experimental results on four datasets demonstrate that DPUL surpasses state-of-the-art baselines, providing a 1%-5% improvement in accuracy and up to 12x reduction in time cost.
comment: 10 pages, submitted to INFOCOM 2026
☆ Fast Policy Learning for 6-DOF Position Control of Underwater Vehicles
Autonomous Underwater Vehicles (AUVs) require reliable six-degree-of-freedom (6-DOF) position control to operate effectively in complex and dynamic marine environments. Traditional controllers are effective under nominal conditions but exhibit degraded performance when faced with unmodeled dynamics or environmental disturbances. Reinforcement learning (RL) provides a powerful alternative but training is typically slow and sim-to-real transfer remains challenging. This work introduces a GPU-accelerated RL training pipeline built in JAX and MuJoCo-XLA (MJX). By jointly JIT-compiling large-scale parallel physics simulation and learning updates, we achieve training times of under two minutes.Through systematic evaluation of multiple RL algorithms, we show robust 6-DOF trajectory tracking and effective disturbance rejection in real underwater experiments, with policies transferred zero-shot from simulation. Our results provide the first explicit real-world demonstration of RL-based AUV position control across all six degrees of freedom.
☆ Control of a Twin Rotor using Twin Delayed Deep Deterministic Policy Gradient (TD3)
This paper proposes a reinforcement learning (RL) framework for controlling and stabilizing the Twin Rotor Aerodynamic System (TRAS) at specific pitch and azimuth angles and tracking a given trajectory. The complex dynamics and non-linear characteristics of the TRAS make it challenging to control using traditional control algorithms. However, recent developments in RL have attracted interest due to their potential applications in the control of multirotors. The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm was used in this paper to train the RL agent. This algorithm is used for environments with continuous state and action spaces, similar to the TRAS, as it does not require a model of the system. The simulation results illustrated the effectiveness of the RL control method. Next, external disturbances in the form of wind disturbances were used to test the controller's effectiveness compared to conventional PID controllers. Lastly, experiments on a laboratory setup were carried out to confirm the controller's effectiveness in real-world applications.
comment: This is the Author Accepted Manuscript version of a paper accepted for publication. The final published version is available via IEEE Xplore
☆ On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models
Large Language Models (LLMs) are prone to memorizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA benchmarks, allowing us to evaluate their practical utility in real-world extraction scenarios.
comment: Accepted to IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) 2026
☆ Link-Aware Energy-Frugal Continual Learning for Fault Detection in IoT Networks
The use of lightweight machine learning (ML) models in internet of things (IoT) networks enables resource constrained IoT devices to perform on-device inference for several critical applications. However, the inference accuracy deteriorates due to the non-stationarity in the IoT environment and limited initial training data. To counteract this, the deployed models can be updated occasionally with new observed data samples. However, this approach consumes additional energy, which is undesirable for energy constrained IoT devices. This letter introduces an event-driven communication framework that strategically integrates continual learning (CL) in IoT networks for energy-efficient fault detection. Our framework enables the IoT device and the edge server (ES) to collaboratively update the lightweight ML model by adapting to the wireless link conditions for communication and the available energy budget. Evaluation on real-world datasets show that the proposed approach can outperform both periodic sampling and non-adaptive CL in terms of inference recall; our proposed approach achieves up to a 42.8% improvement, even under tight energy and bandwidth constraint.
☆ FROC: A Unified Framework with Risk-Optimized Control for Machine Unlearning in LLMs
Machine unlearning (MU) seeks to eliminate the influence of specific training examples from deployed models. As large language models (LLMs) become widely used, managing risks arising from insufficient forgetting or utility loss is increasingly crucial. Current MU techniques lack effective mechanisms for evaluating and controlling these risks, hindering the selection of strategies that appropriately balance safety and utility, and raising trust concerns surrounding the "right to be forgotten." To address these issues, we propose FROC, a unified framework with Risk-Optimized Control for machine unlearning in LLMs. FROC is built around a conformal-style risk-control formulation that expresses a user-specified risk budget on unlearning behavior. This probability-based constraint enables FROC to compare MU strategies, identify feasible operating regions, and guide hyperparameter selection according to desired trade-offs between forgetting sufficiency and utility preservation. To operationalize this constraint, FROC introduces a smoothly varying continuous risk model that aggregates forgetting deficiency and utility degradation into a single configuration-level score. Building on conformal risk analysis, FROC computes (1) the Conformal Unlearning Risk (CUR), a data-driven estimated value on the probability that forgotten samples continue to influence model predictions, and (2) risk-controlled configuration sets, which identify unlearning hyperparameters that are valid under the specified risk budget. Experiments across multiple LLM MU methods demonstrate that FROC produces stable, interpretable risk landscapes and reveals consistent relationships between unlearning configurations, semantic shift, and utility impact. FROC reframes MU as a controllable, risk-aware process and offers a practical foundation for managing unlearning behavior in large-scale LLM deployments.
☆ KD-PINN: Knowledge-Distilled PINNs for ultra-low-latency real-time neural PDE solvers
This work introduces Knowledge-Distilled Physics-Informed Neural Networks (KD-PINN), a framework that transfers the predictive accuracy of a high-capacity teacher model to a compact student through a continuous adaptation of the Kullback-Leibler divergence. To confirm its generality for various dynamics and dimensionalities, the framework is evaluated on a representative set of partial differential equations (PDEs). In all tested cases, the student model preserved the teacher's physical accuracy, with a mean RMSE increase below 0.64%, and achieved inference speedups ranging from 4.8x (Navier-Stokes) to 6.9x (Burgers). The distillation process also revealed a regularizing effect. With an average inference latency of 5.3 ms on CPU, the distilled models enter the ultra-low-latency real-time regime defined by sub-10 ms performance. Finally, this study examines how knowledge distillation reduces inference latency in PINNs to contribute to the development of accurate ultra-low-latency neural PDE solvers.
☆ Security and Detectability Analysis of Unicode Text Watermarking Methods Against Large Language Models SP 2026
Securing digital text is becoming increasingly relevant due to the widespread use of large language models. Individuals' fear of losing control over data when it is being used to train such machine learning models or when distinguishing model-generated output from text written by humans. Digital watermarking provides additional protection by embedding an invisible watermark within the data that requires protection. However, little work has been taken to analyze and verify if existing digital text watermarking methods are secure and undetectable by large language models. In this paper, we investigate the security-related area of watermarking and machine learning models for text data. In a controlled testbed of three experiments, ten existing Unicode text watermarking methods were implemented and analyzed across six large language models: GPT-5, GPT-4o, Teuken 7B, Llama 3.3, Claude Sonnet 4, and Gemini 2.5 Pro. The findings of our experiments indicate that, especially the latest reasoning models, can detect a watermarked text. Nevertheless, all models fail to extract the watermark unless implementation details in the form of source code are provided. We discuss the implications for security researchers and practitioners and outline future research opportunities to address security concerns.
comment: Accepted for publication at the ICISSP 2026
☆ Error-Driven Prompt Optimization for Arithmetic Reasoning
Recent advancements in artificial intelligence have sparked interest in industrial agents capable of supporting analysts in regulated sectors, such as finance and healthcare, within tabular data workflows. A key capability for such systems is performing accurate arithmetic operations on structured data while ensuring sensitive information never leaves secure, on-premises environments. Here, we introduce an error-driven optimization framework for arithmetic reasoning that enhances a Code Generation Agent (CGA), specifically applied to on-premises small language models (SLMs). Through a systematic evaluation of a leading SLM (Qwen3 4B), we find that while the base model exhibits fundamental limitations in arithmetic tasks, our proposed error-driven method, which clusters erroneous predictions to refine prompt-rules iteratively, dramatically improves performance, elevating the model's accuracy to 70.8\%. Our results suggest that developing reliable, interpretable, and industrially deployable AI assistants can be achieved not only through costly fine-tuning but also via systematic, error-driven prompt optimization, enabling small models to surpass larger language models (GPT-3.5 Turbo) in a privacy-compliant manner.
☆ Face Identity Unlearning for Retrieval via Embedding Dispersion
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
comment: 12 pages, 1 figure, 5 tables, 10 equations. Preprint
☆ ALIGN-FL: Architecture-independent Learning through Invariant Generative component sharing in Federated Learning
We present ALIGN-FL, a novel approach to distributed learning that addresses the challenge of learning from highly disjoint data distributions through selective sharing of generative components. Instead of exchanging full model parameters, our framework enables privacy-preserving learning by transferring only generative capabilities across clients, while the server performs global training using synthetic samples. Through complementary privacy mechanisms: DP-SGD with adaptive clipping and Lipschitz regularized VAE decoders and a stateful architecture supporting heterogeneous clients, we experimentally validate our approach on MNIST and Fashion-MNIST datasets with cross-domain outliers. Our analysis demonstrates that both privacy mechanisms effectively map sensitive outliers to typical data points while maintaining utility in extreme Non-IID scenarios typical of cross-silo collaborations. Index Terms: Client-invariant Learning, Federated Learning (FL), Privacy-preserving Generative Models, Non-Independent and Identically Distributed (Non-IID), Heterogeneous Architectures
comment: Accepted at 2025 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
☆ No One Left Behind: How to Exploit the Incomplete and Skewed Multi-Label Data for Conversion Rate Prediction
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversion actions due to privacy or other constraints, making the labels of multi-task data incomplete. If the model is trained on all available samples where advertisers submit user conversion actions, it may struggle when deployed to serve a subset of advertisers targeting specific conversion actions, as the training and deployment data distributions are mismatched. While considerable MTL efforts have been made, a long-standing challenge is how to effectively train a unified model with the incomplete and skewed multi-label data. In this paper, we propose a fine-grained Knowledge transfer framework for Asymmetric Multi-Label data (KAML). We introduce an attribution-driven masking strategy (ADM) to better utilize data with asymmetric multi-label data in training. However, the more relaxed masking in ADM is a double-edged sword: it provides additional training signals but also introduces noise due to skewed data. To address this, we propose a hierarchical knowledge extraction mechanism (HKE) to model the sample discrepancy within the target task tower. Finally, to maximize the utility of unlabeled samples, we incorporate ranking loss strategy to further enhance our model. The effectiveness of KAML has been demonstrated through comprehensive evaluations on offline industry datasets and online A/B tests, which show significant performance improvements over existing MTL baselines.
☆ MedInsightBench: Evaluating Medical Analytics Agents Through Multi-Step Insight Discovery in Multimodal Medical Data
In medical data analysis, extracting deep insights from complex, multi-modal datasets is essential for improving patient care, increasing diagnostic accuracy, and optimizing healthcare operations. However, there is currently a lack of high-quality datasets specifically designed to evaluate the ability of large multi-modal models (LMMs) to discover medical insights. In this paper, we introduce MedInsightBench, the first benchmark that comprises 332 carefully curated medical cases, each annotated with thoughtfully designed insights. This benchmark is intended to evaluate the ability of LMMs and agent frameworks to analyze multi-modal medical image data, including posing relevant questions, interpreting complex findings, and synthesizing actionable insights and recommendations. Our analysis indicates that existing LMMs exhibit limited performance on MedInsightBench, which is primarily attributed to their challenges in extracting multi-step, deep insights and the absence of medical expertise. Therefore, we propose MedInsightAgent, an automated agent framework for medical data analysis, composed of three modules: Visual Root Finder, Analytical Insight Agent, and Follow-up Question Composer. Experiments on MedInsightBench highlight pervasive challenges and demonstrate that MedInsightAgent can improve the performance of general LMMs in medical data insight discovery.
☆ LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.
☆ AutoTool: Dynamic Tool Selection and Integration for Agentic Reasoning ICCV 2025
Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents' adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
comment: Best Paper Award at ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ BézierFlow: Bézier Stochastic Interpolant Schedulers for Few-Step Generation
We introduce BézierFlow, a lightweight training approach for few-step generation with pretrained diffusion and flow models. BézierFlow achieves a 2-3x performance improvement for sampling with $\leq$ 10 NFEs while requiring only 15 minutes of training. Recent lightweight training approaches have shown promise by learning optimal timesteps, but their scope remains restricted to ODE discretizations. To broaden this scope, we propose learning the optimal transformation of the sampling trajectory by parameterizing stochastic interpolant (SI) schedulers. The main challenge lies in designing a parameterization that satisfies critical desiderata, including boundary conditions, differentiability, and monotonicity of the SNR. To effectively meet these requirements, we represent scheduler functions as Bézier functions, where control points naturally enforce these properties. This reduces the problem to learning an ordered set of points in the time range, while the interpretation of the points changes from ODE timesteps to Bézier control points. Across a range of pretrained diffusion and flow models, BézierFlow consistently outperforms prior timestep-learning methods, demonstrating the effectiveness of expanding the search space from discrete timesteps to Bézier-based trajectory transformations.
comment: Project page: https://bezierflow.github.io
☆ Reflective Preference Optimization (RPO): Enhancing On-Policy Alignment via Hint-Guided Reflection
Direct Preference Optimization (DPO) has emerged as a lightweight and effective alternative to Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with AI Feedback (RLAIF) for aligning large language and vision-language models. However, the standard DPO formulation, in which both the chosen and rejected responses are generated by the same policy, suffers from a weak learning signal because the two responses often share similar errors and exhibit small Kullback-Leibler (KL) divergence. This leads to slow and unstable convergence. To address this limitation, we introduce Reflective Preference Optimization (RPO), a new framework that incorporates hint-guided reflection into the DPO paradigm. RPO uses external models to identify hallucination sources and generate concise reflective hints, enabling the construction of on-policy preference pairs with stronger contrastiveness and clearer preference signals. We theoretically show that conditioning on hints increases the expected preference margin through mutual information and improves sample efficiency while remaining within the policy distribution family. Empirically, RPO achieves superior alignment with fewer training samples and iterations, substantially reducing hallucination rates and delivering state-of-the-art performance across multimodal benchmarks.
☆ Learning to Retrieve with Weakened Labels: Robust Training under Label Noise
Neural Encoders are frequently used in the NLP domain to perform dense retrieval tasks, for instance, to generate the candidate documents for a given query in question-answering tasks. However, sparse annotation and label noise in the training data make it challenging to train or fine-tune such retrieval models. Although existing works have attempted to mitigate these problems by incorporating modified loss functions or data cleaning, these approaches either require some hyperparameters to tune during training or add substantial complexity to the training setup. In this work, we consider a label weakening approach to generate robust retrieval models in the presence of label noise. Instead of enforcing a single, potentially erroneous label for each query document pair, we allow for a set of plausible labels derived from both the observed supervision and the model's confidence scores. We perform an extensive evaluation considering two retrieval models, one re-ranking model, considering four diverse ranking datasets. To this end, we also consider a realistic noisy setting by using a semantic-aware noise generation technique to generate different ratios of noise. Our initial results show that label weakening can improve the performance of the retrieval tasks in comparison to 10 different state-of-the-art loss functions.
☆ CORE: Contrastive Masked Feature Reconstruction on Graphs
In the rapidly evolving field of self-supervised learning on graphs, generative and contrastive methodologies have emerged as two dominant approaches. Our study focuses on masked feature reconstruction (MFR), a generative technique where a model learns to restore the raw features of masked nodes in a self-supervised manner. We observe that both MFR and graph contrastive learning (GCL) aim to maximize agreement between similar elements. Building on this observation, we reveal a novel theoretical insight: under specific conditions, the objectives of MFR and node-level GCL converge, despite their distinct operational mechanisms. This theoretical connection suggests these approaches are complementary rather than fundamentally different, prompting us to explore their integration to enhance self-supervised learning on graphs. Our research presents Contrastive Masked Feature Reconstruction (CORE), a novel graph self-supervised learning framework that integrates contrastive learning into MFR. Specifically, we form positive pairs exclusively between the original and reconstructed features of masked nodes, encouraging the encoder to prioritize contextual information over the node's own features. Additionally, we leverage the masked nodes themselves as negative samples, combining MFR's reconstructive power with GCL's discriminative ability to better capture intrinsic graph structures. Empirically, our proposed framework CORE significantly outperforms MFR across node and graph classification tasks, demonstrating state-of-the-art results. In particular, CORE surpasses GraphMAE and GraphMAE2 by up to 2.80% and 3.72% on node classification tasks, and by up to 3.82% and 3.76% on graph classification tasks.
☆ ModSSC: A Modular Framework for Semi-Supervised Classification on Heterogeneous Data SC
Semi-supervised classification leverages both labeled and unlabeled data to improve predictive performance, but existing software support is fragmented across methods and modalities. We introduce ModSSC, an open source Python framework that unifies inductive and transductive semi-supervised classification in a modular code base. ModSSC implements a broad range of classical and recent algorithms, provides loaders for tabular, image, text, audio and graph datasets, and exposes a single configuration interface for specifying datasets, models and evaluation protocols. It supports both lightweight classical methods on small datasets running on CPU and recent deep approaches that can exploit multiple GPUs within the same experimental framework. Experiments are described declaratively in YAML, which facilitates reproducing existing work and running large comparative studies. ModSSC 1.0.0 is released under the MIT license with extensive documentation and tests, and is available at https://github.com/ModSSC/ModSSC.
comment: Preprint describing the open source ModSSC framework for inductive and transductive semi-supervised classification on heterogeneous data
☆ Better LMO-based Momentum Methods with Second-Order Information
The use of momentum in stochastic optimization algorithms has shown empirical success across a range of machine learning tasks. Recently, a new class of stochastic momentum algorithms has emerged within the Linear Minimization Oracle (LMO) framework--leading to state-of-the-art methods, such as Muon, Scion, and Gluon, that effectively solve deep neural network training problems. However, traditional stochastic momentum methods offer convergence guarantees no better than the ${O}(1/K^{1/4})$ rate. While several approaches--such as Hessian-Corrected Momentum (HCM)--have aimed to improve this rate, their theoretical results are generally restricted to the Euclidean norm setting. This limitation hinders their applicability in problems, where arbitrary norms are often required. In this paper, we extend the LMO-based framework by integrating HCM, and provide convergence guarantees under relaxed smoothness and arbitrary norm settings. We establish improved convergence rates of ${O}(1/K^{1/3})$ for HCM, which can adapt to the geometry of the problem and achieve a faster rate than traditional momentum. Experimental results on training Multi-Layer Perceptrons (MLPs) and Long Short-Term Memory (LSTM) networks verify our theoretical observations.
☆ Rethinking Physics-Informed Regression Beyond Training Loops and Bespoke Architectures
We revisit the problem of physics-informed regression, and propose a method that directly computes the state at the prediction point, simultaneously with the derivative and curvature information of the existing samples. We frame each prediction as a constrained optimisation problem, leveraging multivariate Taylor series expansions and explicitly enforcing physical laws. Each individual query can be processed with low computational cost without any pre- or re-training, in contrast to global function approximator-based solutions such as neural networks. Our comparative benchmarks on a reaction-diffusion system show competitive predictive accuracy relative to a neural network-based solution, while completely eliminating the need for long training loops, and remaining robust to changes in the sampling layout.
☆ Evaluating Adversarial Attacks on Federated Learning for Temperature Forecasting
Deep learning and federated learning (FL) are becoming powerful partners for next-generation weather forecasting. Deep learning enables high-resolution spatiotemporal forecasts that can surpass traditional numerical models, while FL allows institutions in different locations to collaboratively train models without sharing raw data, addressing efficiency and security concerns. While FL has shown promise across heterogeneous regions, its distributed nature introduces new vulnerabilities. In particular, data poisoning attacks, in which compromised clients inject manipulated training data, can degrade performance or introduce systematic biases. These threats are amplified by spatial dependencies in meteorological data, allowing localized perturbations to influence broader regions through global model aggregation. In this study, we investigate how adversarial clients distort federated surface temperature forecasts trained on the Copernicus European Regional ReAnalysis (CERRA) dataset. We simulate geographically distributed clients and evaluate patch-based and global biasing attacks on regional temperature forecasts. Our results show that even a small fraction of poisoned clients can mislead predictions across large, spatially connected areas. A global temperature bias attack from a single compromised client shifts predictions by up to -1.7 K, while coordinated patch attacks more than triple the mean squared error and produce persistent regional anomalies exceeding +3.5 K. Finally, we assess trimmed mean aggregation as a defense mechanism, showing that it successfully defends against global bias attacks (2-13\% degradation) but fails against patch attacks (281-603\% amplification), exposing limitations of outlier-based defenses for spatially correlated data.
☆ MicroPhaseNO: Adapting an Earthquake-Trained Phase Neural Operator for Microseismic Phase Picking
Seismic phase picking is very often used for microseismic monitoring and subsurface imaging. Traditional manual processing is not feasible for either real-time applications or large arrays. Deep learning-based pickers trained on large earthquake catalogs offer an automated alternative. However, they are typically optimized for high signal-to-noise, long-duration networks and struggle with the challenges presented by microseismic datasets, which are purpose-built for limited time without previously detected seismicity. In this study, we demonstrate how a network-wide earthquake phase picker, the Phase Neural Operator (PhaseNO), can be adapted to microseismic monitoring using transfer learning. Starting from a PhaseNO model pre-trained on more than 57,000 three-component earthquake and noise records, we fine-tune the model using only 200 labeled and noise seismograms from induced events in hydraulic-fracturing settings. The fine-tuned model thus preserves the rich spatio-temporal representation learned from abundant earthquake data, while adapting to the characteristics and labeling conventions of microseismic phases, which are often picked on peaks or troughs rather than onsets. We evaluate performance on three distinct real-world microseismic datasets with different network geometries and acquisition parameters. Compared to the original PhaseNO and a conventional workflow, the adapted model increases F1 score and accuracy by up to 30%, and strongly reduces systematic timing bias and pick uncertainty. Because the adaptation relies on a small, campaign-specific calibration set, the approach is readily transferable to other microseismic tasks where public earthquake data and pre-trained models are accessible. The associated code will be released openly at https://github.com/ayratabd/MicroPhaseNO.
comment: Submitted to Pure and Applied Geophysics
☆ Noise-Resilient Quantum Aggregation on NISQ for Federated ADAS Learning
Advanced Driver Assistance Systems (ADAS) increasingly employ Federated Learning (FL) to collaboratively train models across distributed vehicular nodes while preserving data privacy. Yet, conventional FL aggregation remains susceptible to noise, latency, and security constraints inherent to real-time vehicular networks. This paper introduces Noise-Resilient Quantum Federated Learning (NR-QFL), a hybrid quantum-classical framework that enables secure, low-latency aggregation through variational quantum circuits (VQCs) operating under Noisy Intermediate-Scale Quantum (NISQ) conditions. The framework encodes model parameters as quantum states with adaptive gate reparameterization, ensuring bounded-error convergence and provable resilience under Completely Positive Trace-Preserving (CPTP) dynamics. NR-QFL employs quantum entropy-based client selection and multi-server coordination for fairness and stability. Empirical validation shows consistent convergence with reduced gradient variance, lower communication overhead, and enhanced noise tolerance under constrained edge conditions. The framework establishes a scalable foundation for quantum-enhanced federated learning, enabling secure, efficient, and dynamically stable ADAS intelligence at the vehicular edge.
comment: This paper was accepted and presented at WinTechCon 2025, Bangalore, India, and is published in IEEE Xplore
☆ WAY: Estimation of Vessel Destination in Worldwide AIS Trajectory
The Automatic Identification System (AIS) enables data-driven maritime surveillance but suffers from reliability issues and irregular intervals. We address vessel destination estimation using global-scope AIS data by proposing a differentiated approach that recasts long port-to-port trajectories as a nested sequence structure. Using spatial grids, this method mitigates spatio-temporal bias while preserving detailed resolution. We introduce a novel deep learning architecture, WAY, designed to process these reformulated trajectories for long-term destination estimation days to weeks in advance. WAY comprises a trajectory representation layer and Channel-Aggregative Sequential Processing (CASP) blocks. The representation layer generates multi-channel vector sequences from kinematic and non-kinematic features. CASP blocks utilize multi-headed channel- and self-attention for aggregation and sequential information delivery. Additionally, we propose a task-specialized Gradient Dropout (GD) technique to enable many-to-many training on single labels, preventing biased feedback surges by stochastically blocking gradient flow based on sample length. Experiments on 5-year AIS data demonstrate WAY's superiority over conventional spatial grid-based approaches regardless of trajectory progression. Results further confirm that adopting GD leads to performance gains. Finally, we explore WAY's potential for real-world application through multitask learning for ETA estimation.
comment: Accepted to IEEE Transactions on Aerospace and Electronic Systems (TAES)
☆ PolySet: Restoring the Statistical Ensemble Nature of Polymers for Machine Learning
Machine-learning (ML) models in polymer science typically treat a polymer as a single, perfectly defined molecular graph, even though real materials consist of stochastic ensembles of chains with distributed lengths. This mismatch between physical reality and digital representation limits the ability of current models to capture polymer behaviour. Here we introduce PolySet, a framework that represents a polymer as a finite, weighted ensemble of chains sampled from an assumed molar-mass distribution. This ensemble-based encoding is independent of chemical detail, compatible with any molecular representation and illustrated here in the homopolymer case using a minimal language model. We show that PolySet retains higher-order distributional moments (such as Mz, Mz+1), enabling ML models to learn tail-sensitive properties with greatly improved stability and accuracy. By explicitly acknowledging the statistical nature of polymer matter, PolySet establishes a physically grounded foundation for future polymer machine learning, naturally extensible to copolymers, block architectures, and other complex topologies.
☆ Iterative Tuning of Nonlinear Model Predictive Control for Robotic Manufacturing Tasks
Manufacturing processes are often perturbed by drifts in the environment and wear in the system, requiring control re-tuning even in the presence of repetitive operations. This paper presents an iterative learning framework for automatic tuning of Nonlinear Model Predictive Control (NMPC) weighting matrices based on task-level performance feedback. Inspired by norm-optimal Iterative Learning Control (ILC), the proposed method adaptively adjusts NMPC weights Q and R across task repetitions to minimize key performance indicators (KPIs) related to tracking accuracy, control effort, and saturation. Unlike gradient-based approaches that require differentiating through the NMPC solver, we construct an empirical sensitivity matrix, enabling structured weight updates without analytic derivatives. The framework is validated through simulation on a UR10e robot performing carbon fiber winding on a tetrahedral core. Results demonstrate that the proposed approach converges to near-optimal tracking performance (RMSE within 0.3% of offline Bayesian Optimization (BO)) in just 4 online repetitions, compared to 100 offline evaluations required by BO algorithm. The method offers a practical solution for adaptive NMPC tuning in repetitive robotic tasks, combining the precision of carefully optimized controllers with the flexibility of online adaptation.
☆ SACn: Soft Actor-Critic with n-step Returns
Soft Actor-Critic (SAC) is widely used in practical applications and is now one of the most relevant off-policy online model-free reinforcement learning (RL) methods. The technique of n-step returns is known to increase the convergence speed of RL algorithms compared to their 1-step returns-based versions. However, SAC is notoriously difficult to combine with n-step returns, since their usual combination introduces bias in off-policy algorithms due to the changes in action distribution. While this problem is solved by importance sampling, a method for estimating expected values of one distribution using samples from another distribution, importance sampling may result in numerical instability. In this work, we combine SAC with n-step returns in a way that overcomes this issue. We present an approach to applying numerically stable importance sampling with simplified hyperparameter selection. Furthermore, we analyze the entropy estimation approach of Soft Actor-Critic in the context of the n-step maximum entropy framework and formulate the $τ$-sampled entropy estimation to reduce the variance of the learning target. Finally, we formulate the Soft Actor-Critic with n-step returns (SAC$n$) algorithm that we experimentally verify on MuJoCo simulated environments.
comment: Accepted at ICAART 2026
☆ Enhancing Node-Level Graph Domain Adaptation by Alleviating Local Dependency KDD 2026
Recent years have witnessed significant advancements in machine learning methods on graphs. However, transferring knowledge effectively from one graph to another remains a critical challenge. This highlights the need for algorithms capable of applying information extracted from a source graph to an unlabeled target graph, a task known as unsupervised graph domain adaptation (GDA). One key difficulty in unsupervised GDA is conditional shift, which hinders transferability. In this paper, we show that conditional shift can be observed only if there exists local dependencies among node features. To support this claim, we perform a rigorous analysis and also further provide generalization bounds of GDA when dependent node features are modeled using markov chains. Guided by the theoretical findings, we propose to improve GDA by decorrelating node features, which can be specifically implemented through decorrelated GCN layers and graph transformer layers. Our experimental results demonstrate the effectiveness of this approach, showing not only substantial performance enhancements over baseline GDA methods but also clear visualizations of small intra-class distances in the learned representations. Our code is available at https://github.com/TechnologyAiGroup/DFT
comment: Accepted to KDD 2026
☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 46 pages
☆ Quanvolutional Neural Networks for Spectrum Peak-Finding
The analysis of spectra, such as Nuclear Magnetic Resonance (NMR) spectra, for the comprehensive characterization of peaks is a challenging task for both experts and machines, especially with complex molecules. This process, also known as deconvolution, involves identifying and quantifying the peaks in the spectrum. Machine learning techniques have shown promising results in automating this process. With the advent of quantum computing, there is potential to further enhance these techniques. In this work, inspired by the success of classical Convolutional Neural Networks (CNNs), we explore the use of Quanvolutional Neural Networks (QuanvNNs) for the multi-task peak finding problem, involving both peak counting and position estimation. We implement a simple and interpretable QuanvNN architecture that can be directly compared to its classical CNN counterpart, and evaluate its performance on a synthetic NMR-inspired dataset. Our results demonstrate that QuanvNNs outperform classical CNNs on challenging spectra, achieving an 11\% improvement in F1 score and a 30\% reduction in mean absolute error for peak position estimation. Additionally, QuanvNNs appear to exhibit better convergence stability for harder problems.
☆ Stopping Rules for Stochastic Gradient Descent via Anytime-Valid Confidence Sequences
We study stopping rules for stochastic gradient descent (SGD) for convex optimization from the perspective of anytime-valid confidence sequences. Classical analyses of SGD provide convergence guarantees in expectation or at a fixed horizon, but offer no statistically valid way to assess, at an arbitrary time, how close the current iterate is to the optimum. We develop an anytime-valid, data-dependent upper confidence sequence for the weighted average suboptimality of projected SGD, constructed via nonnegative supermartingales and requiring no smoothness or strong convexity. This confidence sequence yields a simple stopping rule that is provably $\varepsilon$-optimal with probability at least $1-α$ and is almost surely finite under standard stochastic approximation stepsizes. To the best of our knowledge, these are the first rigorous, time-uniform performance guarantees and finite-time $\varepsilon$-optimality certificates for projected SGD with general convex objectives, based solely on observable trajectory quantities.
☆ Towards Practical Large-scale Dynamical Heterogeneous Graph Embedding: Cold-start Resilient Recommendation
Deploying dynamic heterogeneous graph embeddings in production faces key challenges of scalability, data freshness, and cold-start. This paper introduces a practical, two-stage solution that balances deep graph representation with low-latency incremental updates. Our framework combines HetSGFormer, a scalable graph transformer for static learning, with Incremental Locally Linear Embedding (ILLE), a lightweight, CPU-based algorithm for real-time updates. HetSGFormer captures global structure with linear scalability, while ILLE provides rapid, targeted updates to incorporate new data, thus avoiding costly full retraining. This dual approach is cold-start resilient, leveraging the graph to create meaningful embeddings from sparse data. On billion-scale graphs, A/B tests show HetSGFormer achieved up to a 6.11% lift in Advertiser Value over previous methods, while the ILLE module added another 3.22% lift and improved embedding refresh timeliness by 83.2%. Our work provides a validated framework for deploying dynamic graph learning in production environments.
☆ From Overfitting to Reliability: Introducing the Hierarchical Approximate Bayesian Neural Network
In recent years, neural networks have revolutionized various domains, yet challenges such as hyperparameter tuning and overfitting remain significant hurdles. Bayesian neural networks offer a framework to address these challenges by incorporating uncertainty directly into the model, yielding more reliable predictions, particularly for out-of-distribution data. This paper presents Hierarchical Approximate Bayesian Neural Network, a novel approach that uses a Gaussian-inverse-Wishart distribution as a hyperprior of the network's weights to increase both the robustness and performance of the model. We provide analytical representations for the predictive distribution and weight posterior, which amount to the calculation of the parameters of Student's t-distributions in closed form with linear complexity with respect to the number of weights. Our method demonstrates robust performance, effectively addressing issues of overfitting and providing reliable uncertainty estimates, particularly for out-of-distribution tasks. Experimental results indicate that HABNN not only matches but often outperforms state-of-the-art models, suggesting a promising direction for future applications in safety-critical environments.
comment: 9 pages main body, 1 Figure, 15 pages Appendix
☆ TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) has proven effective in training large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy optimization, which, however, suffers from high annotation costs. To alleviate this problem, recent work has explored unsupervised RLVR methods that derive rewards solely from the model's internal consistency, such as through entropy and majority voting. While seemingly promising, these methods often suffer from model collapse in the later stages of training, which may arise from the reinforcement of incorrect reasoning patterns in the absence of external supervision. In this work, we investigate a novel semi-supervised RLVR paradigm that utilizes a small labeled set to guide RLVR training on unlabeled samples. Our key insight is that supervised rewards are essential for stabilizing consistency-based training on unlabeled samples, ensuring that only reasoning patterns verified on labeled instances are incorporated into RL training. Technically, we propose an effective policy optimization algorithm, TraPO, that identifies reliable unlabeled samples by matching their learning trajectory similarity to labeled ones. Building on this, TraPO achieves remarkable data efficiency and strong generalization on six widely used mathematical reasoning benchmarks (AIME24/25, AMC, MATH-500, Minerva, and Olympiad) and three out-of-distribution tasks (ARC-c, GPQA-diamond, and MMLU-pro). With only 1K labeled and 3K unlabeled samples, TraPO reaches 42.6% average accuracy, surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). Notably, when using 4K labeled and 12K unlabeled samples, TraPO even outperforms the fully supervised model trained on the full 45K labeled samples on all benchmarks, while using only 10% of the labeled data. The code is available via https://github.com/ShenzhiYang2000/TRAPO.
☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ ADHint: Adaptive Hints with Difficulty Priors for Reinforcement Learning
To combine the advantages of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), recent methods have integrated ''hints'' into post-training, which are prefix segments of complete reasoning trajectories, aiming for powerful knowledge expansion and reasoning generalization. However, existing hint-based RL methods typically ignore difficulty when scheduling hint ratios and estimating relative advantages, leading to unstable learning and excessive imitation of off-policy hints. In this work, we propose ADHint, which treats difficulty as a key factor in both hint-ratio schedule and relative-advantage estimation to achieve a better trade-off between exploration and imitation. Specifically, we propose Adaptive Hint with Sample Difficulty Prior, which evaluates each sample's difficulty under the policy model and accordingly schedules an appropriate hint ratio to guide its rollouts. We also introduce Consistency-based Gradient Modulation and Selective Masking for Hint Preservation to modulate token-level gradients within hints, preventing biased and destructive updates. Additionally, we propose Advantage Estimation with Rollout Difficulty Posterior, which leverages the relative difficulty of rollouts with and without hints to estimate their respective advantages, thereby achieving more balanced updates. Extensive experiments across diverse modalities, model scales, and domains demonstrate that ADHint delivers superior reasoning ability and out-of-distribution generalization, consistently surpassing existing methods in both pass@1 and avg@8. Our code and dataset will be made publicly available upon paper acceptance.
☆ PvP: Data-Efficient Humanoid Robot Learning with Proprioceptive-Privileged Contrastive Representations
Achieving efficient and robust whole-body control (WBC) is essential for enabling humanoid robots to perform complex tasks in dynamic environments. Despite the success of reinforcement learning (RL) in this domain, its sample inefficiency remains a significant challenge due to the intricate dynamics and partial observability of humanoid robots. To address this limitation, we propose PvP, a Proprioceptive-Privileged contrastive learning framework that leverages the intrinsic complementarity between proprioceptive and privileged states. PvP learns compact and task-relevant latent representations without requiring hand-crafted data augmentations, enabling faster and more stable policy learning. To support systematic evaluation, we develop SRL4Humanoid, the first unified and modular framework that provides high-quality implementations of representative state representation learning (SRL) methods for humanoid robot learning. Extensive experiments on the LimX Oli robot across velocity tracking and motion imitation tasks demonstrate that PvP significantly improves sample efficiency and final performance compared to baseline SRL methods. Our study further provides practical insights into integrating SRL with RL for humanoid WBC, offering valuable guidance for data-efficient humanoid robot learning.
comment: 13 pages, 12 figures
☆ DiRe: Diversity-promoting Regularization for Dataset Condensation WACV 2026
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
comment: Accepted to WACV 2026
☆ LikeBench: Evaluating Subjective Likability in LLMs for Personalization
A personalized LLM should remember user facts, apply them correctly, and adapt over time to provide responses that the user prefers. Existing LLM personalization benchmarks are largely centered on two axes: accurately recalling user information and accurately applying remembered information in downstream tasks. We argue that a third axis, likability, is both subjective and central to user experience, yet under-measured by current benchmarks. To measure likability holistically, we introduce LikeBench, a multi-session, dynamic evaluation framework that measures likability across multiple dimensions by how much an LLM can adapt over time to a user's preferences to provide more likable responses. In LikeBench, the LLMs engage in conversation with a simulated user and learn preferences only from the ongoing dialogue. As the interaction unfolds, models try to adapt to responses, and after each turn, they are evaluated for likability across seven dimensions by the same simulated user. To the best of our knowledge, we are the first to decompose likability into multiple diagnostic metrics: emotional adaptation, formality matching, knowledge adaptation, reference understanding, conversation length fit, humor fit, and callback, which makes it easier to pinpoint where a model falls short. To make the simulated user more realistic and discriminative, LikeBench uses fine-grained, psychologically grounded descriptive personas rather than the coarse high/low trait rating based personas used in prior work. Our benchmark shows that strong memory performance does not guarantee high likability: DeepSeek R1, with lower memory accuracy (86%, 17 facts/profile), outperformed Qwen3 by 28% on likability score despite Qwen3's higher memory accuracy (93%, 43 facts/profile). Even SOTA models like GPT-5 adapt well in short exchanges but show only limited robustness in longer, noisier interactions.
☆ Multi-fidelity aerodynamic data fusion by autoencoder transfer learning
Accurate aerodynamic prediction often relies on high-fidelity simulations; however, their prohibitive computational costs severely limit their applicability in data-driven modeling. This limitation motivates the development of multi-fidelity strategies that leverage inexpensive low-fidelity information without compromising accuracy. Addressing this challenge, this work presents a multi-fidelity deep learning framework that combines autoencoder-based transfer learning with a newly developed Multi-Split Conformal Prediction (MSCP) strategy to achieve uncertainty-aware aerodynamic data fusion under extreme data scarcity. The methodology leverages abundant Low-Fidelity (LF) data to learn a compact latent physics representation, which acts as a frozen knowledge base for a decoder that is subsequently fine-tuned using scarce HF samples. Tested on surface-pressure distributions for NACA airfoils (2D) and a transonic wing (3D) databases, the model successfully corrects LF deviations and achieves high-accuracy pressure predictions using minimal HF training data. Furthermore, the MSCP framework produces robust, actionable uncertainty bands with pointwise coverage exceeding 95%. By combining extreme data efficiency with uncertainty quantification, this work offers a scalable and reliable solution for aerodynamic regression in data-scarce environments.
comment: 29 pages, 13 figures
☆ Deep Q-Learning-Based Intelligent Scheduling for ETL Optimization in Heterogeneous Data Environments
This paper addresses the challenges of low scheduling efficiency, unbalanced resource allocation, and poor adaptability in ETL (Extract-Transform-Load) processes under heterogeneous data environments by proposing an intelligent scheduling optimization framework based on deep Q-learning. The framework formalizes the ETL scheduling process as a Markov Decision Process and enables adaptive decision-making by a reinforcement learning agent in high-dimensional state spaces to dynamically optimize task allocation and resource scheduling. The model consists of a state representation module, a feature embedding network, a Q-value estimator, and a reward evaluation mechanism, which collectively consider task dependencies, node load states, and data flow characteristics to derive the optimal scheduling strategy in complex environments. A multi-objective reward function is designed to balance key performance indicators such as average scheduling delay, task completion rate, throughput, and resource utilization. Sensitivity experiments further verify the model's robustness under changes in hyperparameters, environmental dynamics, and data scale. Experimental results show that the proposed deep Q-learning scheduling framework significantly reduces scheduling delay, improves system throughput, and enhances execution stability under multi-source heterogeneous task conditions, demonstrating the strong potential of reinforcement learning in complex data scheduling and resource management, and providing an efficient and scalable optimization strategy for intelligent data pipeline construction.
☆ Understanding Structured Financial Data with LLMs: A Case Study on Fraud Detection
Detecting fraud in financial transactions typically relies on tabular models that demand heavy feature engineering to handle high-dimensional data and offer limited interpretability, making it difficult for humans to understand predictions. Large Language Models (LLMs), in contrast, can produce human-readable explanations and facilitate feature analysis, potentially reducing the manual workload of fraud analysts and informing system refinements. However, they perform poorly when applied directly to tabular fraud detection due to the difficulty of reasoning over many features, the extreme class imbalance, and the absence of contextual information. To bridge this gap, we introduce FinFRE-RAG, a two-stage approach that applies importance-guided feature reduction to serialize a compact subset of numeric/categorical attributes into natural language and performs retrieval-augmented in-context learning over label-aware, instance-level exemplars. Across four public fraud datasets and three families of open-weight LLMs, FinFRE-RAG substantially improves F1/MCC over direct prompting and is competitive with strong tabular baselines in several settings. Although these LLMs still lag behind specialized classifiers, they narrow the performance gap and provide interpretable rationales, highlighting their value as assistive tools in fraud analysis.
☆ Progressive Refinement of E-commerce Search Ranking Based on Short-Term Activities of the Buyer
In e-commerce shopping, aligning search results with a buyer's immediate needs and preferences presents a significant challenge, particularly in adapting search results throughout the buyer's shopping journey as they move from the initial stages of browsing to making a purchase decision or shift from one intent to another. This study presents a systematic approach to adapting e-commerce search results based on the current context. We start with basic methods and incrementally incorporate more contextual information and state-of-the-art techniques to improve the search outcomes. By applying this evolving contextual framework to items displayed on the search engine results page (SERP), we progressively align search outcomes more closely with the buyer's interests and current search intentions. Our findings demonstrate that this incremental enhancement, from simple heuristic autoregressive features to advanced sequence models, significantly improves ranker performance. The integration of contextual techniques enhances the performance of our production ranker, leading to improved search results in both offline and online A/B testing in terms of Mean Reciprocal Rank (MRR). Overall, the paper details iterative methodologies and their substantial contributions to search result contextualization on e-commerce platforms.
☆ Alada: Alternating Adaptation of Momentum Method for Memory-Efficient Matrix Optimization
This work proposes Alada, an adaptive momentum method for stochastic optimization over large-scale matrices. Alada employs a rank-one factorization approach to estimate the second moment of gradients, where factors are updated alternatively to minimize the estimation error. Alada achieves sublinear memory overheads and can be readily extended to optimizing tensor-shaped variables.We also equip Alada with a first moment estimation rule, which enhances the algorithm's robustness without incurring additional memory overheads. The theoretical performance of Alada aligns with that of traditional methods such as Adam. Numerical studies conducted on several natural language processing tasks demonstrate the reduction in memory overheads and the robustness in training large models relative to Adam and its variants.
☆ Scaling Bidirectional Spans and Span Violations in Attention Mechanism
The canonical $O(N^2)$ Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass $QKV$ structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on $0^{th}$ order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a $0.56\%$ reduction in validation loss, confirming the framework's fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
☆ Motus: A Unified Latent Action World Model
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
☆ Comprehensive Deployment-Oriented Assessment for Cross-Environment Generalization in Deep Learning-Based mmWave Radar Sensing
This study presents the first comprehensive evaluation of spatial generalization techniques, which are essential for the practical deployment of deep learning-based radio-frequency (RF) sensing. Focusing on people counting in indoor environments using frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) radar, we systematically investigate a broad set of approaches, including amplitude-based statistical preprocessing (sigmoid weighting and threshold zeroing), frequency-domain filtering, autoencoder-based background suppression, data augmentation strategies, and transfer learning. Experimental results collected across two environments with different layouts demonstrate that sigmoid-based amplitude weighting consistently achieves superior cross-environment performance, yielding 50.1% and 55.2% reductions in root-mean-square error (RMSE) and mean absolute error (MAE), respectively, compared with baseline methods. Data augmentation provides additional though modest benefits, with improvements up to 8.8% in MAE. By contrast, transfer learning proves indispensable for large spatial shifts, achieving 82.1% and 91.3% reductions in RMSE and MAE, respectively, with 540 target-domain samples. Taken together, these findings establish a highly practical direction for developing radar sensing systems capable of maintaining robust accuracy under spatial variations by integrating deep learning models with amplitude-based preprocessing and efficient transfer learning.
comment: 8 pages, 6 figures. Comprehensive evaluation of preprocessing, data augmentation, and transfer learning for cross-environment generalization in deep learning-based mmWave radar sensing
☆ Deep Learning-Driven Inversion Framework for Shear Modulus Estimation in Magnetic Resonance Elastography (DIME)
The Multimodal Direct Inversion (MMDI) algorithm is widely used in Magnetic Resonance Elastography (MRE) to estimate tissue shear stiffness. However, MMDI relies on the Helmholtz equation, which assumes wave propagation in a uniform, homogeneous, and infinite medium. Furthermore, the use of the Laplacian operator makes MMDI highly sensitive to noise, which compromises the accuracy and reliability of stiffness estimates. In this study, we propose the Deep-Learning driven Inversion Framework for Shear Modulus Estimation in MRE (DIME), aimed at enhancing the robustness of inversion. DIME is trained on the displacement fields-stiffness maps pair generated through Finite Element Modelling (FEM) simulations. To capture local wave behavior and improve robustness to global image variations, DIME is trained on small image patches. We first validated DIME using homogeneous and heterogeneous datasets simulated with FEM, where DIME produced stiffness maps with low inter-pixel variability, accurate boundary delineation, and higher correlation with ground truth (GT) compared to MMDI. Next, DIME was evaluated in a realistic anatomy-informed simulated liver dataset with known GT and compared directly to MMDI. DIME reproduced ground-truth stiffness patterns with high fidelity (r = 0.99, R^2 = 0.98), while MMDI showed greater underestimation. After validating DIME on synthetic data, we tested the model in in vivo liver MRE data from eight healthy and seven fibrotic subjects. DIME preserved physiologically consistent stiffness patterns and closely matched MMDI, which showed directional bias. Overall, DIME showed higher correlation with ground truth and visually similar stiffness patterns, whereas MMDI displayed a larger bias that can potentially be attributed to directional filtering. These preliminary results highlight the feasibility of DIME for clinical applications in MRE.
☆ General OOD Detection via Model-aware and Subspace-aware Variable Priority
Out-of-distribution (OOD) detection is essential for determining when a supervised model encounters inputs that differ meaningfully from its training distribution. While widely studied in classification, OOD detection for regression and survival analysis remains limited due to the absence of discrete labels and the challenge of quantifying predictive uncertainty. We introduce a framework for OOD detection that is simultaneously model aware and subspace aware, and that embeds variable prioritization directly into the detection step. The method uses the fitted predictor to construct localized neighborhoods around each test case that emphasize the features driving the model's learned relationship and downweight directions that are less relevant to prediction. It produces OOD scores without relying on global distance metrics or estimating the full feature density. The framework is applicable across outcome types, and in our implementation we use random forests, where the rule structure yields transparent neighborhoods and effective scoring. Experiments on synthetic and real data benchmarks designed to isolate functional shifts show consistent improvements over existing methods. We further demonstrate the approach in an esophageal cancer survival study, where distribution shifts related to lymphadenectomy identify patterns relevant to surgical guidelines.
comment: 29 pages, 11 figures
☆ Calibrating Uncertainty for Zero-Shot Adversarial CLIP
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
☆ Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
☆ Olmo 3
We introduce Olmo 3, a family of state-of-the-art, fully-open language models at the 7B and 32B parameter scales. Olmo 3 model construction targets long-context reasoning, function calling, coding, instruction following, general chat, and knowledge recall. This release includes the entire model flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, data point, and dependency used to build it. Our flagship model, Olmo 3 Think 32B, is the strongest fully-open thinking model released to-date.
♻ ☆ Developing synthetic microdata through machine learning for firm-level business surveys
Public-use microdata samples (PUMS) from the United States (US) Census Bureau on individuals have been available for decades. However, large increases in computing power and the greater availability of Big Data have dramatically increased the probability of re-identifying anonymized data, potentially violating the pledge of confidentiality given to survey respondents. Data science tools can be used to produce synthetic data that preserve critical moments of the empirical data but do not contain the records of any existing individual respondent or business. Developing public-use firm data from surveys presents unique challenges different from demographic data, because there is a lack of anonymity and certain industries can be easily identified in each geographic area. This paper briefly describes a machine learning model used to construct a synthetic PUMS based on the Annual Business Survey (ABS) and discusses various quality metrics. Although the ABS PUMS is currently being refined and results are confidential, we present two synthetic PUMS developed for the 2007 Survey of Business Owners, similar to the ABS business data. Econometric replication of a high impact analysis published in Small Business Economics demonstrates the verisimilitude of the synthetic data to the true data and motivates discussion of possible ABS use cases.
comment: 17 pages, 4 figures, 6 tables
♻ ☆ IA2: Alignment with ICL Activations Improves Supervised Fine-Tuning
Supervised Fine-Tuning (SFT) is used to specialize model behavior by training weights to produce intended target responses for queries. In contrast, In-Context Learning (ICL) adapts models during inference with instructions or demonstrations in the prompt. ICL can offer better generalizability and more calibrated responses compared to SFT in data scarce settings, at the cost of more inference compute. In this work, we ask the question: Can ICL's internal computations be used to improve the qualities of SFT? We first show that ICL and SFT produce distinct activation patterns, indicating that the two methods achieve adaptation through different functional mechanisms. Motivated by this observation and to use ICL's rich functionality, we introduce ICL Activation Alignment (IA2), a self-distillation technique which aims to replicate ICL's activation patterns in SFT models and incentivizes ICL-like internal reasoning. Performing IA2 as a priming step before SFT significantly improves the accuracy and calibration of model outputs, as shown by our extensive empirical results on 12 popular benchmarks and two model families. This finding is not only practically useful, but also offers a conceptual window into the inner mechanics of model adaptation.
♻ ☆ SparsePixels: Efficient Convolution for Sparse Data on FPGAs
Inference of standard convolutional neural networks (CNNs) on FPGAs often incurs high latency and a long initiation interval due to the deep nested loops required to densely convolve every input pixel regardless of its feature value. However, input features can be spatially sparse in some image data, where semantic information may occupy only a small fraction of the pixels and most computation would be wasted on empty regions. In this work, we introduce SparsePixels, a framework that implements sparse convolution on FPGAs by selectively retaining and computing on a small subset of active pixels while ignoring the rest. We show that, for identifying neutrino interactions in naturally sparse LArTPC images with 4k pixels, a standard CNN with a compact size of 4k parameters incurs an inference latency of 48.665 $μ$s on an FPGA, whereas a sparse CNN of the same base architecture, computing on less than 1% of the input pixels, achieves a $\times 73$ speedup to 0.665 $μ$s with resource utilization well within on-chip budgets, trading only a small percent-level performance loss. This work aims to benefit future algorithm development for efficient data readout in modern experiments with latency requirements of microseconds or below.
comment: Under review
♻ ☆ Bilevel ZOFO: Efficient LLM Fine-Tuning and Meta-Training
Fine-tuning pre-trained Large Language Models (LLMs) for downstream tasks using First-Order (FO) optimizers presents significant computational challenges. Parameter-Efficient Fine-Tuning (PEFT) methods address these by freezing most model parameters and training only a small subset. However, PEFT often underperforms compared to full fine-tuning when high task-specific accuracy is required. Zeroth-Order (ZO) methods fine-tune the entire pre-trained model without back-propagation, estimating gradients through forward passes only. While memory-efficient, ZO methods suffer from slow convergence and high sensitivity to prompt selection. We bridge these two worlds with Bilevel-ZOFO, a bilevel optimization method that couples fast, local FO-PEFT adaptation at the inner level with stable, memory-efficient ZO updates of the full backbone at the outer level. The FO-PEFT inner loop performs fast, low-memory local adaptation that reduces the variance of ZO estimates and stabilizes the search, guiding the outer ZO updates of the full backbone and reducing prompt sensitivity. In the mean time, the outer ZO provides better generalization ability for PEFT. We provide theoretical convergence guarantees and empirically demonstrate that Bilevel-ZOFO significantly outperforms existing ZO and FO-PEFT methods, achieving 2-4 times faster training while maintaining similar memory efficiency. Additionally, we show by updating the backbone with ZO and adapting only a tiny FO-PEFT block per task, Bilevel-ZOFO combines full-model capacity with few-shot efficiency, making it a very efficient meta-learning algorithm that quickly adapts to new tasks.
♻ ☆ Explainable Quantum Machine Learning for Multispectral Images Segmentation: Case Study
The emergence of Big Data changed how we approach information systems engineering. Nowadays, when we can use remote sensing techniques for Big Data acquisition, the issues such data introduce are as important as ever. One of those concerns is the processing of the data. Classical methods often fail to address that problem or are incapable of processing the data in a reasonable time. With that in mind information system engineers are required to investigate different approaches to the data processing. The recent advancements in noisy intermediate-scale quantum (NISQ) devices implementation allow us to investigate their application to real-life computational problem. This field of study is called quantum (information) systems engineering and usually focuses on technical problems with the contemporary devices. However, hardware challenges are not the only ones that hinder our quantum computation capabilities. Software limitations are the other, less explored side of this medal. Using multispectral image segmentation as a task example, we investigated how difficult it is to run a hybrid quantum-classical model on a real, publicly available quantum device. To quantify how and explain why the performance of our model changed when ran on a real device, we propose new explainability metrics. These metrics introduce new meaning to the explainable quantum machine learning; the explanation of the performance issue comes from the quantum device behavior. We also analyzed the expected money costs of running similar experiment on contemporary quantum devices using standard market prices.
comment: 18 pages, 5 figures, 3 tables. Extended and refined version of "On the status of current quantum machine learning software"
♻ ☆ Faster Results from a Smarter Schedule: Reframing Collegiate Cross Country through Analysis of the National Running Club Database
Collegiate cross country teams often build their season schedules on intuition rather than evidence, partly because large-scale performance datasets are not publicly accessible. To address this limitation, we introduce the National Running Club Database (NRCD), the first openly available dataset to aggregate 23,725 race results from 7,594 collegiate club athletes across the 2023-2025 seasons. Unlike existing resources, NRCD includes detailed course metadata, allowing us to develop two standardized performance metrics: Converted Only (distance correction) and Standardized (distance, weather, and elevation adjusted). Using these standardized measures, we find that athletes with slower initial performances exhibit the greatest improvement within a season, and that race frequency is the strongest predictor of improvement. Using six machine learning models, random forest achieves the highest accuracy (r squared equals 0.92), revealing that athletes who race more frequently progress significantly faster than those who do not. At the team level, programs whose athletes race at least four times during the regular season have substantially higher odds of placing in the top 15 at nationals (chi-squared less than 0.01). These results challenge common coaching practices that favor minimal racing before championship meets. Our findings demonstrate that a data-informed scheduling strategy improves both individual development and team competitiveness. The NRCD provides a new foundation for evidence-based decision-making in collegiate cross country and opens opportunities for further research on standardized, longitudinal athlete performance modeling.
♻ ☆ MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong downstream performance. MixtureVitae follows a permissive-first, risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources). MixtureVitae adopts a simple, single-stage pretraining recipe that integrates a large proportion of permissive synthetic instruction and reasoning data-signals typically introduced during post-training and generally scarce in permissive web corpora. We categorize all sources into a three-tier scheme that reflects varying risk levels and provide shard-level provenance metadata to enable risk-aware usage. In controlled experiments using the open-sci-ref training protocol (fixed architectures and hyperparameters; 50B and 300B token budgets across 130M-1.7B parameters), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B-parameters/300B-tokens setting, they surpass FineWeb-Edu and approach DCLM late in training. Performance is particularly strong on MMLU and on math and code benchmarks: a 1.7B model pretrained on 300B MixtureVitae tokens matches or exceeds a strong 1.7B instruction-tuned baseline on GSM8K, HumanEval, and MBPP, despite using over 36 times fewer tokens (300B vs. ~11T). Supported by a thorough decontamination analysis, these results show that permissive-first data with high instruction and reasoning density, tiered by licensing and provenance-related risk, can provide a practical and risk-mitigated foundation for training capable LLMs, reducing reliance on broad web scrapes without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
comment: Code: \url{https://github.com/ontocord/mixturevitae}
♻ ☆ Improvement of AMPs Identification with Generative Adversarial Network and Ensemble Classification
Identification of antimicrobial peptides is an important and necessary issue in today's era. Antimicrobial peptides are essential as an alternative to antibiotics for biomedical applications and many other practical applications. These oligopeptides are useful in drug design and cause innate immunity against microorganisms. Artificial intelligence algorithms have played a significant role in the ease of identifying these peptides.This research is improved by improving proposed method in the field of antimicrobial peptides prediction. Suggested method is improved by combining the best coding method from different perspectives, In the following a deep neural network to balance the imbalanced combined datasets. The results of this research show that the proposed method have a significant improvement in the accuracy and efficiency of the prediction of antimicrobial peptides and are able to provide the best results compared to the existing methods. These development in the field of prediction and classification of antimicrobial peptides, basically in the fields of medicine and pharmaceutical industries, have high effectiveness and application.
comment: 21 pages, 3 figures, 4 tables
♻ ☆ Improving Generative Ad Text on Facebook using Reinforcement Learning
Generative artificial intelligence (AI), in particular large language models (LLMs), is poised to drive transformative economic change. LLMs are pre-trained on vast text data to learn general language patterns, but a subsequent post-training phase is critical to align them for specific real-world tasks. Reinforcement learning (RL) is the leading post-training technique, yet its economic impact remains largely underexplored and unquantified. We examine this question through the lens of the first deployment of an RL-trained LLM for generative advertising on Facebook. Integrated into Meta's Text Generation feature, our model, "AdLlama," powers an AI tool that helps advertisers create new variations of human-written ad text. To train this model, we introduce reinforcement learning with performance feedback (RLPF), a post-training method that uses historical ad performance data as a reward signal. In a large-scale 10-week A/B test on Facebook spanning nearly 35,000 advertisers and 640,000 ad variations, we find that AdLlama improves click-through rates by 6.7% (p=0.0296) compared to a supervised imitation model trained on curated ads. This represents a substantial improvement in advertiser return on investment on Facebook. We also find that advertisers who used AdLlama generated more ad variations, indicating higher satisfaction with the model's outputs. To our knowledge, this is the largest study to date on the use of generative AI in an ecologically valid setting, offering an important data point quantifying the tangible impact of RL post-training. Furthermore, the results show that RLPF is a promising and generalizable approach for metric-driven post-training that bridges the gap between highly capable language models and tangible outcomes.
comment: D.J. and A.N. contributed equally, 41 pages, 6 figures
♻ ☆ WALINET: A water and lipid identification convolutional Neural Network for nuisance signal removal in 1H MR Spectroscopic Imaging
Purpose. Proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) provides non-invasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain 1H-MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution 1H-MRSI to accurately remove lipid and water signals while preserving the metabolite signal. The potential of supervised neural networks for this task remains unexplored, despite their success for other MRSI processing. Methods. We introduce a deep-learning method based on a modified Y-NET network for water and lipid removal in whole-brain 1H-MRSI. The WALINET (WAter and LIpid neural NETwork) was compared to conventional methods such as the state-of-the-art lipid L2 regularization and Hankel-Lanczos singular value decomposition (HLSVD) water suppression. Methods were evaluated on simulated and in-vivo whole-brain MRSI using NMRSE, SNR, CRLB, and FWHM metrics. Results. WALINET is significantly faster and needs 8s for high-resolution whole-brain MRSI, compared to 42 minutes for conventional HLSVD+L2. Quantitative analysis shows WALINET has better performance than HLSVD+L2: 1) more lipid removal with 41% lower NRMSE, 2) better metabolite signal preservation with 71% lower NRMSE in simulated data, 155% higher SNR and 50% lower CRLB in in-vivo data. Metabolic maps obtained by WALINET in healthy subjects and patients show better gray/white-matter contrast with more visible structural details. Conclusions. WALINET has superior performance for nuisance signal removal and metabolite quantification on whole-brain 1H-MRSI compared to conventional state-of-the-art techniques. This represents a new application of deep-learning for MRSI processing, with potential for automated high-throughput workflow.
♻ ☆ Can Language Models Discover Scaling Laws?
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate seven diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ Comparative Analysis of Wave Scattering Numerical Modeling Using the Boundary Element Method and Physics-Informed Neural Networks
This study compares the Boundary Element Method (BEM) and Physics-Informed Neural Networks (PINNs) for solving the two-dimensional Helmholtz equation in wave scattering problems. The objective is to evaluate the performance of both methods under the same conditions. We solve the Helmholtz equation using BEM and PINNs for the same scattering problem. PINNs are trained by minimizing the residual of the governing equations and boundary conditions with their configuration determined through hyperparameter optimization, while BEM is applied using boundary discretization. Both methods are evaluated in terms of solution accuracy and computation time. We conducted numerical experiments by varying the number of boundary integration points for the BEM and the number of hidden layers and neurons per layer for the PINNs. We performed a hyperparameter tuning to identify an adequate PINN configuration for this problem as a network with 3 hidden layers and 25 neurons per layer, using a learning rate of $10^{-2}$ and a sine activation function. At comparable levels of accuracy, the assembly and solution of the BEM system required a computational time on the order of $10^{-2}$~s, whereas the training time of the PINN was on the order of $10^{2}$~s, corresponding to a difference of approximately four orders of magnitude. However, once trained, the PINN achieved evaluation times on the order of $10^{-2}$~s, which is about two orders of magnitude faster than the evaluation of the BEM solution at interior points. This work establishes a procedure for comparing BEM and PINNs. It also presents a direct comparison between the two methods for the scattering problem. The analysis provides quantitative data on their performance, supporting their use in future research on wave propagation problems and outlining challenges and directions for further investigation.
comment: 19 pages, 7 figures
♻ ☆ Beyond Next-Token Prediction: A Performance Characterization of Diffusion versus Autoregressive Language Models
Large Language Models (LLMs) have achieved state-of-the-art performance on a broad range of Natural Language Processing (NLP) tasks, including document processing and code generation. Autoregressive Language Models (ARMs), which generate tokens sequentially conditioned on all previous tokens, have been the predominant paradigm for LLMs. While these models have achieved high accuracy across a range of downstream tasks, they exhibit low arithmetic intensity due to the inherent sequential dependency in next-token prediction. Recently, Diffusion Language Models (DLMs) have emerged as a promising alternative architecture. DLMs generate output tokens in parallel, mitigating the limitations of sequential decoding. However, the performance implications of DLMs relative to commonly deployed ARMs are not fully understood. In this work, we present a comprehensive study of the performance characteristics of ARMs and DLMs, combining theoretical analysis with empirical profiling to characterize the trade-offs between these approaches. We show that although DLMs can achieve higher arithmetic intensity than ARMs by leveraging parallelism across token positions, they fail to scale effectively with longer contexts. We then explore block-wise decoding for DLMs, which decouples arithmetic intensity from sequence length and enables better scaling to long contexts (similar to ARMs). We also examine batched inference and find that ARMs exhibit superior throughput as they benefit more from parallelism across sequences in the batch. Finally, we highlight opportunities for accelerating DLM inference, emphasizing that reducing the number of sampling steps is key for open-source DLMs to achieve lower latency relative to ARMs.
comment: 11 pages, 5 figures
♻ ☆ How PARTs assemble into wholes: Learning the relative composition of images
The composition of objects and their parts, along with object-object positional relationships, provides a rich source of information for representation learning. Hence, spatial-aware pretext tasks have been actively explored in self-supervised learning. Existing works commonly start from a grid structure, where the goal of the pretext task involves predicting the absolute position index of patches within a fixed grid. However, grid-based approaches fall short of capturing the fluid and continuous nature of real-world object compositions. We introduce PART, a self-supervised learning approach that leverages continuous relative transformations between off-grid patches to overcome these limitations. By modeling how parts relate to each other in a continuous space, PART learns the relative composition of images-an off-grid structural relative positioning that is less tied to absolute appearance and can remain coherent under variations such as partial visibility or stylistic changes. In tasks requiring precise spatial understanding such as object detection and time series prediction, PART outperforms grid-based methods like MAE and DropPos, while maintaining competitive performance on global classification tasks. By breaking free from grid constraints, PART opens up a new trajectory for universal self-supervised pretraining across diverse datatypes-from images to EEG signals-with potential in medical imaging, video, and audio.
♻ ☆ An upper bound of the silhouette validation metric for clustering
The silhouette coefficient quantifies, for each observation, the balance between within-cluster cohesion and between-cluster separation, taking values in [-1, 1]. The average silhouette width (ASW ) is a widely used internal measure of clustering quality, with higher values indicating more cohesive and well-separated clusters. However, the dataset-specific maximum of ASW is typically unknown, and the standard upper limit of 1 is rarely attainable. In this work, we derive for each data point a sharp upper bound on its silhouette width and aggregate these to obtain a canonical upper bound on the ASW. This bound-often substantially below 1-enhances the interpretability of empirical ASW values by providing guidance on how close a given clustering result is to the best possible outcome for that dataset. We evaluate the usefulness of the upper bound on a variety of datasets and conclude that it can meaningfully enrich cluster quality evaluation, but its practical relevance depends on the given dataset. Finally, we extend the framework to establish an upper bound of the macro-averaged silhouette.
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, employ structured second-moment estimations and have shown strong performance for training neural networks (NNs). In practice, however, Shampoo typically requires step-size grafting with Adam to be competitive, and SOAP mitigates this by applying Adam in Shampoo's eigenbasis -- at the cost of additional memory overhead from Adam in both methods. Prior analyses have largely relied on the Frobenius norm to motivate these estimation schemes. We instead recast their estimation procedures as covariance estimation under Kullback-Leibler (KL) divergence minimization, revealing a previously overlooked theoretical limitation and motivating principled redesigns. Building on this perspective, we develop $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$, practical schemes that match or exceed the performance of Shampoo and SOAP in NN pre-training while achieving SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to attain competitive performance, eliminating the memory overhead introduced by Adam. Across our experiments, KL-Shampoo consistently outperforms SOAP, Shampoo, and even KL-SOAP, establishing the KL-based approach as a promising foundation for designing structured methods in NN optimization.
comment: improved the main text
♻ ☆ Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
Introduction: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer, which can be mapped non-invasively by Magnetic Resonance Spectroscopic Imaging (MRSI). Advanced MRSI using non-cartesian compressed-sense acquisition enables fast high-resolution metabolic imaging but has lengthy reconstruction times that limits throughput and needs expert user interaction. Here, we present a robust and efficient Deep Learning reconstruction to obtain high-quality metabolic maps. Methods: Fast high-resolution whole-brain metabolic imaging was performed at 3.4 mm$^3$ isotropic resolution with acquisition times between 4:11-9:21 min:s using ECCENTRIC pulse sequence on a 7T MRI scanner. Data were acquired in a high-resolution phantom and 27 human participants, including 22 healthy volunteers and 5 glioma patients. A deep neural network using recurring interlaced convolutional layers with joint dual-space feature representation was developed for deep learning ECCENTRIC reconstruction (Deep-ER). 21 subjects were used for training and 6 subjects for testing. Deep-ER performance was compared to conventional iterative Total Generalized Variation reconstruction using image and spectral quality metrics. Results: Deep-ER demonstrated 600-fold faster reconstruction than conventional methods, providing improved spatial-spectral quality and metabolite quantification with 12%-45% (P<0.05) higher signal-to-noise and 8%-50% (P<0.05) smaller Cramer-Rao lower bounds. Metabolic images clearly visualize glioma tumor heterogeneity and boundary. Conclusion: Deep-ER provides efficient and robust reconstruction for sparse-sampled MRSI. The accelerated acquisition-reconstruction MRSI is compatible with high-throughput imaging workflow. It is expected that such improved performance will facilitate basic and clinical MRSI applications.
♻ ☆ QUOTA: Quantifying Objects with Text-to-Image Models for Any Domain WACV 2026
We tackle the problem of quantifying the number of objects by a generative text-to-image model. Rather than retraining such a model for each new image domain of interest, which leads to high computational costs and limited scalability, we are the first to consider this problem from a domain-agnostic perspective. We propose QUOTA, an optimization framework for text-to-image models that enables effective object quantification across unseen domains without retraining. It leverages a dual-loop meta-learning strategy to optimize a domain-invariant prompt. Further, by integrating prompt learning with learnable counting and domain tokens, our method captures stylistic variations and maintains accuracy, even for object classes not encountered during training. For evaluation, we adopt a new benchmark specifically designed for object quantification in domain generalization, enabling rigorous assessment of object quantification accuracy and adaptability across unseen domains in text-to-image generation. Extensive experiments demonstrate that QUOTA outperforms conventional models in both object quantification accuracy and semantic consistency, setting a new benchmark for efficient and scalable text-to-image generation for any domain.
comment: Accepted by WACV 2026
♻ ☆ RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMs
The Structure Gap between probabilistic LLM generation and deterministic schema requirements hinders automated workflows. We propose RL-Struct, a lightweight framework using Gradient Regularized Policy Optimization (GRPO) with a hierarchical reward function to align LLMs with structural constraints. This approach eliminates the critic network, reducing peak VRAM by 38% compared to PPO. On complex JSON tasks, RL-Struct achieves 89.7% structural accuracy and 92.1% validity, significantly outperforming SFT and zero-shot baselines. We also report an emergent curriculum--a self-organized learning process where the model prioritizes syntax before semantics. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON.
comment: 13 pages, 9 figures. Model is available at https://huggingface.co/Freakz3z/Qwen-JSON
♻ ☆ On the failure of ReLU activation for physics-informed machine learning
Physics-informed machine learning uses governing ordinary and/or partial differential equations to train neural networks to represent the solution field. Like any machine learning problem, the choice of activation function influences the characteristics and performance of the solution obtained from physics-informed training. Several studies have compared common activation functions on benchmark differential equations, and have unanimously found that the rectified linear unit (ReLU) is outperformed by competitors such as the sigmoid, hyperbolic tangent, and swish activation functions. In this work, we diagnose the poor performance of ReLU on physics-informed machine learning problems. While it is well-known that the piecewise linear form of ReLU prevents it from being used on second-order differential equations, we show that ReLU fails even on variational problems involving only first derivatives. We identify the cause of this failure as second derivatives of the activation, which are taken not in the formulation of the loss, but in the process of training. Namely, we show that automatic differentiation in PyTorch fails to characterize derivatives of discontinuous fields, which causes the gradient of the physics-informed loss to be mis-specified, thus explaining the poor performance of ReLU.
♻ ☆ Credal Prediction based on Relative Likelihood
Predictions in the form of sets of probability distributions, so-called credal sets, provide a suitable means to represent a learner's epistemic uncertainty. In this paper, we propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood: The target of prediction is the set of all (conditional) probability distributions produced by the collection of plausible models, namely those models whose relative likelihood exceeds a specified threshold. This threshold has an intuitive interpretation and allows for controlling the trade-off between correctness and precision of credal predictions. We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques. To validate our approach, we illustrate its effectiveness by experiments on benchmark datasets demonstrating superior uncertainty representation without compromising predictive performance. We also compare our method against several state-of-the-art baselines in credal prediction.
♻ ☆ Behavioral Machine Learning? Regularization and Forecast Bias
Standard forecast efficiency tests interpret violations as evidence of behavioral bias. We show theoretically and empirically that rational forecasters using optimal regularization systematically violate these tests. Machine learning forecasts show near zero bias at one year horizon, but strong overreaction at two years, consistent with predictions from a model of regularization and measurement noise. We provide three complementary tests: experimental variation in regularization parameters, cross-sectional heterogeneity in firm signal quality, and quasi-experimental evidence from ML adoption around 2013. Technically trained analysts shift sharply toward overreaction post-2013. Our findings suggest reported violations may reflect statistical sophistication rather than cognitive failure.
comment: stock analysts, machine learning, behavioral, overreaction
♻ ☆ Improved Segmentation of Polyps and Visual Explainability Analysis
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide, with gastrointestinal (GI) polyps serving as critical precursors according to the World Health Organization (WHO). Early and accurate segmentation of polyps during colonoscopy is essential for reducing CRC progression, yet manual delineation is labor-intensive and prone to observer variability. Deep learning methods have demonstrated strong potential for automated polyp analysis, but their limited interpretability remains a barrier to clinical adoption. In this study, we present PolypSeg-GradCAM, an explainable deep learning framework that integrates a U-Net architecture with a pre-trained ResNet-34 backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) for transparent polyp segmentation. To ensure rigorous benchmarking, the model was trained and evaluated using 5-Fold Cross-Validation on the Kvasir-SEG dataset of 1,000 annotated endoscopic images. Experimental results show a mean Dice coefficient of 0.8902 +/- 0.0125, a mean Intersection-over-Union (IoU) of 0.8023, and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.9722. Advanced quantitative analysis using an optimal threshold yielded a Sensitivity of 0.9058 and Precision of 0.9083. Additionally, Grad-CAM visualizations confirmed that predictions were guided by clinically relevant regions, offering insight into the model's decision-making process. This study demonstrates that integrating segmentation accuracy with interpretability can support the development of trustworthy AI-assisted colonoscopy tools.
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Engineering Applications of Artificial Intelligence
♻ ☆ "All of Me": Mining Users' Attributes from their Public Spotify Playlists
In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. In this work, we aim to address the question: can we infer users' private attributes from their public Spotify playlists? To this end, we conducted an online survey involving 739 Spotify users, resulting in a dataset of 10,286 publicly shared playlists comprising over 200,000 unique songs and 55,000 artists. Then, we utilize statistical analyses and machine learning algorithms to build accurate predictive models for users' attributes.
♻ ☆ A Deep-Learning Iterative Stacked Approach for Prediction of Reactive Dissolution in Porous Media
Simulating reactive dissolution of solid minerals in porous media has many subsurface applications, including carbon capture and storage (CCS), geothermal systems and oil & gas recovery. As traditional direct numerical simulators are computationally expensive, it is of paramount importance to develop faster and more efficient alternatives. Deep-learning-based solutions, most of them built upon convolutional neural networks (CNNs), have been recently designed to tackle this problem. However, these solutions were limited to approximating one field over the domain (e.g. velocity field). In this manuscript, we present a novel deep learning approach that incorporates both temporal and spatial information to predict the future states of the dissolution process at a fixed time-step horizon, given a sequence of input states. The overall performance, in terms of speed and prediction accuracy, is demonstrated on a numerical simulation dataset, comparing its prediction results against state-of-the-art approaches, also achieving a speedup around $10^4$ over traditional numerical simulators.
comment: 24 pages, 16 figures
♻ ☆ The prediction of the quality of results in Logic Synthesis using Transformer and Graph Neural Networks
In the logic synthesis stage, structure transformations in the synthesis tool need to be combined into optimization sequences and act on the circuit to meet the specified circuit area and delay. However, logic synthesis optimization sequences are time-consuming to run, and predicting the quality of the results (QoR) against the synthesis optimization sequence for a circuit can help engineers find a better optimization sequence faster. In this work, we propose a deep learning method to predict the QoR of unseen circuit-optimization sequences pairs. Specifically, the structure transformations are translated into vectors by embedding methods and advanced natural language processing (NLP) technology (Transformer) is used to extract the features of the optimization sequences. In addition, to enable the prediction process of the model to be generalized from circuit to circuit, the graph representation of the circuit is represented as an adjacency matrix and a feature matrix. Graph neural networks(GNN) are used to extract the structural features of the circuits. For this problem, the Transformer and three typical GNNs are used. Furthermore, the Transformer and GNNs are adopted as a joint learning policy for the QoR prediction of the unseen circuit-optimization sequences. The methods resulting from the combination of Transformer and GNNs are benchmarked. The experimental results show that the joint learning of Transformer and GraphSage gives the best results. The Mean Absolute Error (MAE) of the predicted result is 0.412.
♻ ☆ Neural stochastic Volterra equations: learning path-dependent dynamics
Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process, the rough Heston model and a monetary reserve dynamics, are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).
comment: 24 pages
♻ ☆ Meta Pruning via Graph Metanetworks : A Universal Meta Learning Framework for Network Pruning
We propose an entirely new meta-learning framework for network pruning. It is a general framework that can be theoretically applied to almost all types of networks with all kinds of pruning and has great generality and transferability. Experiments have shown that it can achieve outstanding results on many popular and representative pruning tasks (including both CNNs and Transformers). Unlike all prior works that either rely on fixed, hand-crafted criteria to prune in a coarse manner, or employ learning to prune ways that require special training during each pruning and lack generality. Our framework can learn complex pruning rules automatically via a neural network (metanetwork) and has great generality that can prune without any special training. More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically and can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and some standard finetuning to prune at state-of-the-art. Our code is available at https://github.com/Yewei-Liu/MetaPruning
♻ ☆ In-context Learning of Evolving Data Streams with Tabular Foundational Models KDD
State-of-the-art data stream mining has long drawn from ensembles of the Very Fast Decision Tree, a seminal algorithm honored with the 2015 KDD Test-of-Time Award. However, the emergence of large tabular models, i.e., transformers designed for structured numerical data, marks a significant paradigm shift. These models move beyond traditional weight updates, instead employing in-context learning through prompt tuning. By using on-the-fly sketches to summarize unbounded streaming data, one can feed this information into a pre-trained model for efficient processing. This work bridges advancements from both areas, highlighting how transformers' implicit meta-learning abilities, pre-training on drifting natural data, and reliance on context optimization directly address the core challenges of adaptive learning in dynamic environments. Exploring real-time model adaptation, this research demonstrates that TabPFN, coupled with a simple sliding memory strategy, consistently outperforms ensembles of Hoeffding trees, such as Adaptive Random Forest, and Streaming Random Patches, across all non-stationary benchmarks.
comment: Accepted at 32nd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2026)
♻ ☆ Adaptive Risk Mitigation in Demand Learning
We study dynamic pricing of a product with an unknown demand distribution over a finite horizon. Departing from the standard no-regret learning environment in which prices can be adjusted at any time, we restrict price changes to predetermined points in time to reflect common retail practice. This constraint, coupled with demand model ambiguity and an unknown customer arrival pattern, imposes a high risk of revenue loss, as a price based on a misestimated demand model may be applied to many customers before it can be revised. We develop an adaptive risk learning (ARL) framework that embeds a data-driven ambiguity set (DAS) to quantify demand model ambiguity by adapting to the unknown arrival pattern. Initially, when arrivals are few, the DAS includes a broad set of plausible demand models, reflecting high ambiguity and revenue risk. As new data is collected through pricing, the DAS progressively shrinks, capturing the reduction in model ambiguity and associated risk. We establish the probabilistic convergence of the DAS to the true demand model and derive a regret bound for the ARL policy that explicitly links revenue loss to the data required for the DAS to identify the true model with high probability. The dependence of our regret bound on the arrival pattern is unique to our constrained dynamic pricing problem and contrasts with no-regret learning environments, where regret is constant and arrival-pattern independent. Relaxing the constraint on infrequent price changes, we show that ARL attains the known constant regret bound. Numerical experiments further demonstrate that ARL outperforms benchmarks that prioritize either regret or risk alone by adaptively balancing both without knowledge of the arrival pattern. This adaptive risk adjustment is crucial for achieving high revenues and low downside risk when prices are sticky and both demand and arrival patterns are unknown.
♻ ☆ Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbances, such as sensor drift, noise and irregular sampling, enabling thorough robustness analyses of forecasting models on real-world CPS datasets. The robustness definition provides a standardized score to quantify and compare model performance across diverse datasets, assisting in informed model selection and architecture design. Through extensive empirical studies evaluating prominent DL architectures (including recurrent, convolutional, attention-based, modular, and structured state-space models) we demonstrate the applicability and effectiveness of our approach. We publicly release our robustness benchmark to encourage further research and reproducibility.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ Skrull: Towards Efficient Long Context Fine-tuning through Dynamic Data Scheduling NeurIPS 2025
Long-context supervised fine-tuning (Long-SFT) plays a vital role in enhancing the performance of large language models (LLMs) on long-context tasks. To smoothly adapt LLMs to long-context scenarios, this process typically entails training on mixed datasets containing both long and short sequences. However, this heterogeneous sequence length distribution poses significant challenges for existing training systems, as they fail to simultaneously achieve high training efficiency for both long and short sequences, resulting in sub-optimal end-to-end system performance in Long-SFT. In this paper, we present a novel perspective on data scheduling to address the challenges posed by the heterogeneous data distributions in Long-SFT. We propose Skrull, a dynamic data scheduler specifically designed for efficient long-SFT. Through dynamic data scheduling, Skrull balances the computation requirements of long and short sequences, improving overall training efficiency. Furthermore, we formulate the scheduling process as a joint optimization problem and thoroughly analyze the trade-offs involved. Based on those analysis, Skrull employs a lightweight scheduling algorithm to achieve near-zero cost online scheduling in Long-SFT. Finally, we implement Skrull upon DeepSpeed, a state-of-the-art distributed training system for LLMs. Experimental results demonstrate that Skrull outperforms DeepSpeed by 3.76x on average (up to 7.54x) in real-world long-SFT scenarios.
comment: Accepted by NeurIPS 2025
♻ ☆ Template-Free Retrosynthesis with Graph-Prior Augmented Transformers
Retrosynthesis reaction prediction aims to infer plausible reactant molecules for a given product and is a important problem in computer-aided organic synthesis. Despite recent progress, many existing models still fall short of the accuracy and robustness required for practical deployment. In this paper, we present a template-free, Transformer-based framework that removes the need for handcrafted reaction templates or additional chemical rule engines. Our model injects molecular graph information into the attention mechanism to jointly exploit SMILES sequences and structural cues, and further applies a paired data augmentation strategy to enhance training diversity and scale. Extensive experiments on the USPTO-50K benchmark demonstrate that our approach achieves state-of-the-art performance among template-free methods and substantially outperforms a vanilla Transformer baseline.
♻ ☆ Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Deep Gaussian process models typically employ discrete hierarchies, but recent advancements in differential Gaussian processes (DiffGPs) have extended these models to infinite depths. However, existing DiffGP approaches often overlook the uncertainty in kernel hyperparameters by treating them as fixed and time-invariant, which degrades the model's predictive performance and neglects the posterior distribution. In this work, we introduce a fully Bayesian framework that models kernel hyperparameters as random variables and utilizes coupled stochastic differential equations (SDEs) to jointly learn their posterior distributions alongside those of inducing points. By incorporating the estimation uncertainty of hyperparameters, our method significantly enhances model flexibility and adaptability to complex dynamic systems. Furthermore, we employ a black-box adaptive SDE solver with a neural network to achieve realistic, time varying posterior approximations, thereby improving the expressiveness of the variational posterior. Comprehensive experimental evaluations demonstrate that our approach outperforms traditional methods in terms of flexibility, accuracy, and other key performance metrics. This work not only provides a robust Bayesian extension to DiffGP models but also validates its effectiveness in handling intricate dynamic behaviors, thereby advancing the applicability of Gaussian process models in diverse real-world scenarios.
♻ ☆ Statistical Taylor Expansion: A New and Path-Independent Method for Uncertainty Analysis
As a rigorous statistical approach, statistical Taylor expansion extends the conventional Taylor expansion by replacing precise input variables with random variables of known distributions, to compute means and standard deviations of the results. Statistical Taylor expansion traces the dependency of the input uncertainties in the intermediate steps, so that the variables in the intermediate analytic expressions can no longer be regarded as independent of each other, and the result of the analytic expression is path independent. Thus, it differs fundamentally from the conventional common approaches in applied mathematics which optimize execution path for each calculation. In fact, statistical Taylor expansion may standardize numerical calculations for analytic expressions. Its statistical nature allows religious testing of its result when the sample size is large enough. This paper also introduces an implementation of statistical Taylor expansion called variance arithmetic and presents corresponding test results in a very wide range of mathematical applications. Another important conclusion of this paper is that the numerical errors in the library function can have significant effects on the result. For example, the periodic numerical errors in the trigonometric library functions can resonate with periodic signals, producing large numerical errors in the results.
comment: 84 pages, 68 figures
♻ ☆ From Pruning to Grafting: Dynamic Knowledge Redistribution via Learnable Layer Fusion
Structured pruning of Generative Pre-trained Transformers (GPTs) offers a promising path to efficiency but often suffers from irreversible performance degradation due to the discarding of transformer blocks. In this paper, we introduce FuseGPT, a compression paradigm that reframes structured pruning as iterative knowledge grafting rather than simple removal. Motivated by the observation that linear block merging fails to capture non-linear feature disparities and that block importance fluctuates dynamically during pruning, FuseGPT employs a dual-strategy pipeline. First, we propose Macro Influence (MI), a dynamic fusion-aware metric that continuously re-evaluates block redundancy as the network topology evolves. Second, instead of rigid parameter averaging, we introduce a learnable low-rank fusion mechanism that adaptively grafts the knowledge of pruned blocks onto surviving layers via lightweight local distillation. Extensive experiments on LLaMA, Mistral, Qwen, and Phi families demonstrate that FuseGPT establishes a new state-of-the-art on the compression-accuracy Pareto frontier: at 25\% sparsity, FuseGPT achieves lower perplexity than prior methods at 20\% sparsity, improves zero-shot reasoning by up to 4.5 points, and delivers 1.33$\times$ inference speedup with 25\% memory reduction. Furthermore, FuseGPT is orthogonal to quantization, achieving 52.1\% total compression with negligible quality loss when combined with 4-bit GPTQ. We make our code publicly available at https://github.com/JarvisPei/FuseGPT.
♻ ☆ Generating Reliable Synthetic Clinical Trial Data: The Role of Hyperparameter Optimization and Domain Constraints
The generation of synthetic clinical trial data offers a promising approach to mitigating privacy concerns and data accessibility limitations in medical research. However, ensuring that synthetic datasets maintain high fidelity, utility, and adherence to domain-specific constraints remains a key challenge. While hyperparameter optimization (HPO) improves generative model performance, the effectiveness of different optimization strategies for synthetic clinical data remains unclear. This study systematically evaluates four HPO objectives across nine generative models, comparing single-metric to compound metric optimization. Our results demonstrate that HPO consistently improves synthetic data quality, with Tab DDPM achieving the largest relative gains, followed by TVAE (60%), CTGAN (39%), and CTAB-GAN+ (38%). Compound metric optimization outperformed single-metric objectives, producing more generalizable synthetic datasets. Despite improving overall quality, HPO alone fails to prevent violations of essential clinical survival constraints. Preprocessing and postprocessing played a crucial role in reducing these violations, as models lacking robust processing steps produced invalid data in up to 61% of cases. These findings underscore the necessity of integrating explicit domain knowledge alongside HPO to generate high-quality synthetic datasets. Our study provides actionable recommendations for improving synthetic data generation, with future work needed to refine metric selection and validate findings on larger datasets.
comment: Published in Information Sciences, Volume 733 (2026)
♻ ☆ CRPS-Based Targeted Sequential Design with Application in Chemical Space
Sequential design of real and computer experiments via Gaussian Process (GP) models has proven useful for parsimonious, goal-oriented data acquisition purposes. In this work, we focus on acquisition strategies for a GP model that needs to be accurate within a predefined range of the response of interest. Such an approach is useful in various fields including synthetic chemistry, where finding molecules with particular properties is essential for developing useful materials and effective medications. GP modeling and sequential design of experiments have been successfully applied to a plethora of domains, including molecule research. Our main contribution here is to use the threshold-weighted Continuous Ranked Probability Score (CRPS) as a basic building block for acquisition functions employed within sequential design. We study pointwise and integral criteria relying on two different weighting measures and benchmark them against competitors, demonstrating improved performance with respect to considered goals. The resulting acquisition strategies are applicable to a wide range of fields and pave the way to further developing sequential design relying on scoring rules.
♻ ☆ Error Estimate and Convergence Analysis for Data Valuation
Data valuation quantifies data importance, but existing methods cannot ensure validity in a single training process. The neural dynamic data valuation (NDDV) method [3] addresses this limitation. Based on NDDV, we are the first to explore error estimation and convergence analysis in data valuation. Under Lipschitz and smoothness assumptions, we derive quadratic error bounds for loss differences that scale inversely with time steps and quadratically with control variations, ensuring stability. We also prove that the expected squared gradient norm for the training loss vanishes asymptotically, and that the meta loss converges sublinearly over iterations. In particular, NDDV achieves sublinear convergence.
comment: 7 pages, 2 figure
♻ ☆ HTMformer: Hybrid Time and Multivariate Transformer for Time Series Forecasting
Transformer-based methods have achieved impressive results in time series forecasting. However, existing Transformers still exhibit limitations in sequence modeling as they tend to overemphasize temporal dependencies. This incurs additional computational overhead without yielding corresponding performance gains. We find that the performance of Transformers is highly dependent on the embedding method used to learn effective representations. To address this issue, we extract multivariate features to augment the effective information captured in the embedding layer, yielding multidimensional embeddings that convey richer and more meaningful sequence representations. These representations enable Transformer-based forecasters to better understand the series. Specifically, we introduce Hybrid Temporal and Multivariate Embeddings (HTME). The HTME extractor integrates a lightweight temporal feature extraction module with a carefully designed multivariate feature extraction module to provide complementary features, thereby achieving a balance between model complexity and performance. By combining HTME with the Transformer architecture, we present HTMformer, leveraging the enhanced feature extraction capability of the HTME extractor to build a lightweight forecaster. Experiments conducted on eight real-world datasets demonstrate that our approach outperforms existing baselines in both accuracy and efficiency.
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
In Time Series Forecasting (TSF), the lookback window (the length of historical data used for prediction) is a critical hyperparameter that is often set arbitrarily, undermining the validity of model evaluations. We argue that the lookback window must be tuned on a per-task basis to ensure fair comparisons. Our empirical results show that failing to do so can invert performance rankings, particularly when comparing univariate and multivariate methods. Experiments on standard benchmarks reposition Channel-Independent (CI) models, such as PatchTST, as state-of-the-art methods. However, we reveal this superior performance is largely an artifact of weak inter-channel correlations and simplicity of patterns within these specific datasets. Using Granger causality analysis and ODE datasets (with implicit channel correlations), we demonstrate that the true strength of multivariate Channel-Dependent (CD) models emerges on datasets with strong, inherent cross-channel dependencies, where they significantly outperform CI models. We conclude with three key recommendations for improving TSF research: (i) treat the lookback window as a critical hyperparameter to be tuned, (ii) use statistical analysis of datasets to inform the choice between CI and CD architectures, and (iii) favor CD models in applications with limited data.
♻ ☆ A Multi-Component AI Framework for Computational Psychology: From Robust Predictive Modeling to Deployed Generative Dialogue
The confluence of Artificial Intelligence and Computational Psychology presents an opportunity to model, understand, and interact with complex human psychological states through computational means. This paper presents a comprehensive, multi-faceted framework designed to bridge the gap between isolated predictive modeling and an interactive system for psychological analysis. The methodology encompasses a rigorous, end-to-end development lifecycle. First, foundational performance benchmarks were established on four diverse psychological datasets using classical machine learning techniques. Second, state-of-the-art transformer models were fine-tuned, a process that necessitated the development of effective solutions to overcome critical engineering challenges, including the resolution of numerical instability in regression tasks and the creation of a systematic workflow for conducting large-scale training under severe resource constraints. Third, a generative large language model (LLM) was fine-tuned using parameter-efficient techniques to function as an interactive "Personality Brain." Finally, the entire suite of predictive and generative models was architected and deployed as a robust, scalable microservices ecosystem. Key findings include the successful stabilization of transformer-based regression models for affective computing, showing meaningful predictive performance where standard approaches failed, and the development of a replicable methodology for democratizing large-scale AI research. The significance of this work lies in its holistic approach, demonstrating a complete research-to-deployment pipeline that integrates predictive analysis with generative dialogue, thereby providing a practical model for future research in computational psychology and human-AI interaction.
♻ ☆ Efficient Low-Tubal-Rank Tensor Estimation via Alternating Preconditioned Gradient Descent
The problem of low-tubal-rank tensor estimation is a fundamental task with wide applications across high-dimensional signal processing, machine learning, and image science. Traditional approaches tackle such a problem by performing tensor singular value decomposition, which is computationally expensive and becomes infeasible for large-scale tensors. Recent approaches address this issue by factorizing the tensor into two smaller factor tensors and solving the resulting problem using gradient descent. However, this kind of approach requires an accurate estimate of the tensor rank, and when the rank is overestimated, the convergence of gradient descent and its variants slows down significantly or even diverges. To address this problem, we propose an Alternating Preconditioned Gradient Descent (APGD) algorithm, which accelerates convergence in the over-parameterized setting by adding a preconditioning term to the original gradient and updating these two factors alternately. Based on certain geometric assumptions on the objective function, we establish linear convergence guarantees for more general low-tubal-rank tensor estimation problems. Then we further analyze the specific cases of low-tubal-rank tensor factorization and low-tubal-rank tensor recovery. Our theoretical results show that APGD achieves linear convergence even under over-parameterization, and the convergence rate is independent of the tensor condition number. Extensive simulations on synthetic data are carried out to validate our theoretical assertions.
♻ ☆ Cost-aware LLM-based Online Dataset Annotation
Recent advances in large language models (LLMs) have enabled automated dataset labeling with minimal human supervision. While majority voting across multiple LLMs can improve label reliability by mitigating individual model biases, it incurs high computational costs due to repeated querying. In this work, we propose a novel online framework, Cost-aware Majority Voting (CaMVo), for efficient and accurate LLM-based dataset annotation. CaMVo adaptively selects a subset of LLMs for each data instance based on contextual embeddings, balancing confidence and cost without requiring pre-training or ground-truth labels. Leveraging a LinUCB-based selection mechanism and a Bayesian estimator over confidence scores, CaMVo estimates a lower bound on labeling accuracy for each LLM and aggregates responses through weighted majority voting. Our empirical evaluation on the MMLU and IMDB Movie Review datasets demonstrates that CaMVo achieves comparable or superior accuracy to full majority voting while significantly reducing labeling costs. This establishes CaMVo as a practical and robust solution for cost-efficient annotation in dynamic labeling environments.
♻ ☆ Adaptive-lambda Subtracted Importance Sampled Scores in Machine Unlearning for DDPMs and VAEs
Machine Unlearning is essential for large generative models (VAEs, DDPMs) to comply with the right to be forgotten and prevent undesired content generation without costly retraining. Existing approaches, such as Static-lambda SISS for diffusion models, rely on a fixed mixing weight lambda, which is suboptimal because the required unlearning strength varies across samples and training stages. We propose Adaptive-lambda SISS, a principled extension that turns lambda into a latent variable dynamically inferred at each training step. A lightweight inference network parameterizes an adaptive posterior over lambda, conditioned on contextual features derived from the instantaneous SISS loss terms (retain/forget losses and their gradients). This enables joint optimization of the diffusion model and the lambda-inference mechanism via a variational objective, yielding significantly better trade-offs. We further extend the adaptive-lambda principle to score-based unlearning and introduce a multi-class variant of Score Forgetting Distillation. In addition, we present two new directions: (i) a hybrid objective combining the data-free efficiency of Score Forgetting Distillation with the direct gradient control of SISS, and (ii) a Reinforcement Learning formulation that treats unlearning as a sequential decision process, learning an optimal policy over a state space defined by the model's current memory of the forget set. Experiments on an augmented MNIST benchmark show that Adaptive-lambda SISS substantially outperforms the original static-lambda SISS, achieving stronger removal of forgotten classes while better preserving generation quality on the retain set.
♻ ☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
♻ ☆ Latent-Autoregressive GP-VAE Language Model
We investigate a fully Latent AutoRegressive scheme based on a Gaussian Process (GP) integrated into a Variational Autoencoder (VAE). In this setting, sequential dynamics are transferred from the observation space to a continuous latent space, while linguistic generation remains parallel through a non-autoregressive decoder. We present a complete methodological formulation, including a causal GP prior, a structured amortized posterior, and a training protocol based on a regularized ELBO. Empirical evaluation, conducted within a deliberately constrained proof-of-concept (POC) framework, shows that the model can be trained stably and that the sequential and parallel sampling variants exhibit consistent behavior. Overall, the results suggest that part of the temporal structure in a language model can be supported by the probabilistic geometry of the latent space rather than by explicit neural operations.
comment: 27 pages, 1 figure, 4 tables. Proof-of-concept study of a latent-autoregressive GP-VAE language model with TCN encoder and non-autoregressive decoder. Code available at https://github.com/y-v-e-s/GP-VAE-Latent-AR
♻ ☆ End-to-End Reinforcement Learning of Koopman Models for eNMPC of an Air Separation Unit
With our recently proposed method based on reinforcement learning (Mayfrank et al. (2024), Comput. Chem. Eng. 190), Koopman surrogate models can be trained for optimal performance in specific (economic) nonlinear model predictive control ((e)NMPC) applications. So far, our method has exclusively been demonstrated on a small-scale case study. Herein, we show that our method scales well to a more challenging demand response case study built on a large-scale model of a single-product (nitrogen) air separation unit. Across all numerical experiments, we assume observability of only a few realistically measurable plant variables. Compared to a purely system identification-based Koopman eNMPC, which generates small economic savings but frequently violates constraints, our method delivers similar economic performance while avoiding constraint violations.
comment: manuscript (8 pages, 5 figures, 1 table), supplementary materials (5 pages, 1 figure, 1 table)
♻ ☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
♻ ☆ Trojan Cleansing with Neural Collapse
Trojan attacks are sophisticated training-time attacks on neural networks that embed backdoor triggers which force the network to produce a specific output on any input which includes the trigger. With the increasing relevance of deep networks which are too large to train with personal resources and which are trained on data too large to thoroughly audit, these training-time attacks pose a significant risk. In this work, we connect trojan attacks to Neural Collapse, a phenomenon wherein the final feature representations of over-parameterized neural networks converge to a simple geometric structure. We provide experimental evidence that trojan attacks disrupt this convergence for a variety of datasets and architectures. We then use this disruption to design a lightweight, broadly generalizable mechanism for cleansing trojan attacks from a wide variety of different network architectures and experimentally demonstrate its efficacy.
♻ ☆ Non-Linear Trajectory Modeling for Multi-Step Gradient Inversion Attacks in Federated Learning
Federated Learning (FL) enables collaborative training while preserving privacy, yet Gradient Inversion Attacks (GIAs) pose severe threats by reconstructing private data from shared gradients. In realistic FedAvg scenarios with multi-step updates, existing surrogate methods like SME rely on linear interpolation to approximate client trajectories for privacy leakage. However, we demonstrate that linear assumptions fundamentally underestimate SGD's nonlinear complexity, encountering irreducible approximation barriers in non-convex landscapes with only one-dimensional expressiveness. We propose Non-Linear Surrogate Model Extension (NL-SME), the first framework introducing learnable quadratic Bézier curves for trajectory modeling in GIAs against FL. NL-SME leverages $|w|+1$-dimensional control point parameterization combined with dvec scaling and regularization mechanisms to achieve superior approximation accuracy. Extensive experiments on CIFAR-100 and FEMNIST demonstrate NL-SME significantly outperforms baselines across all metrics, achieving 94\%--98\% performance gaps and order-of-magnitude improvements in cosine similarity loss while maintaining computational efficiency. This work exposes critical privacy vulnerabilities in FL's multi-step paradigm and provides insights for robust defense development.
♻ ☆ Optimal Convergence Analysis of DDPM for General Distributions
Score-based diffusion models have achieved remarkable empirical success in generating high-quality samples from target data distributions. Among them, the Denoising Diffusion Probabilistic Model (DDPM) is one of the most widely used samplers, generating samples via estimated score functions. Despite its empirical success, a tight theoretical understanding of DDPM -- especially its convergence properties -- remains limited. In this paper, we provide a refined convergence analysis of the DDPM sampler and establish near-optimal convergence rates under general distributional assumptions. Specifically, we introduce a relaxed smoothness condition parameterized by a constant $L$, which is small for many practical distributions (e.g., Gaussian mixture models). We prove that the DDPM sampler with accurate score estimates achieves a convergence rate of $$\widetilde{O}\left(\frac{d\min\{d,L^2\}}{T^2}\right)~\text{in Kullback-Leibler divergence},$$ where $d$ is the data dimension, $T$ is the number of iterations, and $\widetilde{O}$ hides polylogarithmic factors in $T$. This result substantially improves upon the best-known $d^2/T^2$ rate when $L < \sqrt{d}$. By establishing a matching lower bound, we show that our convergence analysis is tight for a wide array of target distributions. Moreover, it reveals that DDPM and DDIM share the same dependence on $d$, raising an interesting question of why DDIM often appears empirically faster.
♻ ☆ Renormalizable Spectral-Shell Dynamics as the Origin of Neural Scaling Laws
Neural scaling laws and double-descent phenomena suggest that deep-network training obeys a simple macroscopic structure despite highly nonlinear optimization dynamics. We derive such structure directly from gradient descent in function space. For mean-squared error loss, the training error evolves as $\dot e_t=-M(t)e_t$ with $M(t)=J_{θ(t)}J_{θ(t)}^{\!*}$, a time-dependent self-adjoint operator induced by the network Jacobian. Using Kato perturbation theory, we obtain an exact system of coupled modewise ODEs in the instantaneous eigenbasis of $M(t)$. To extract macroscopic behavior, we introduce a logarithmic spectral-shell coarse-graining and track quadratic error energy across shells. Microscopic interactions within each shell cancel identically at the energy level, so shell energies evolve only through dissipation and external inter-shell interactions. We formalize this via a \emph{renormalizable shell-dynamics} assumption, under which cumulative microscopic effects reduce to a controlled net flux across shell boundaries. Assuming an effective power-law spectral transport in a relevant resolution range, the shell dynamics admits a self-similar solution with a moving resolution frontier and explicit scaling exponents. This framework explains neural scaling laws and double descent, and unifies lazy (NTK-like) training and feature learning as two limits of the same spectral-shell dynamics.
♻ ☆ SA$^{2}$GFM: Enhancing Robust Graph Foundation Models with Structure-Aware Semantic Augmentation
We present Graph Foundation Models (GFMs) which have made significant progress in various tasks, but their robustness against domain noise, structural perturbations, and adversarial attacks remains underexplored. A key limitation is the insufficient modeling of hierarchical structural semantics, which are crucial for generalization. In this paper, we propose SA$^{2}$GFM, a robust GFM framework that improves domain-adaptive representations through Structure-Aware Semantic Augmentation. First, we encode hierarchical structural priors by transforming entropy-based encoding trees into structure-aware textual prompts for feature augmentation. The enhanced inputs are processed by a self-supervised Information Bottleneck mechanism that distills robust, transferable representations via structure-guided compression. To address negative transfer in cross-domain adaptation, we introduce an expert adaptive routing mechanism, combining a mixture-of-experts architecture with a null expert design. For efficient downstream adaptation, we propose a fine-tuning module that optimizes hierarchical structures through joint intra- and inter-community structure learning. Extensive experiments demonstrate that SA$^{2}$GFM outperforms 9 state-of-the-art baselines in terms of effectiveness and robustness against random noise and adversarial perturbations for node and graph classification.
♻ ☆ Enhancing Physics-Informed Neural Networks Through Feature Engineering
Physics-Informed Neural Networks (PINNs) seek to solve partial differential equations (PDEs) with deep learning. Mainstream approaches that deploy fully-connected multi-layer deep learning architectures require prolonged training to achieve even moderate accuracy, while recent work on feature engineering allows higher accuracy and faster convergence. This paper introduces SAFE-NET, a Single-layered Adaptive Feature Engineering NETwork that achieves orders-of-magnitude lower errors with far fewer parameters than baseline feature engineering methods. SAFE-NET returns to basic ideas in machine learning, using Fourier features, a simplified single hidden layer network architecture, and an effective optimizer that improves the conditioning of the PINN optimization problem. Numerical results show that SAFE-NET converges faster and typically outperforms deeper networks and more complex architectures. It consistently uses fewer parameters -- on average, 65% fewer than the competing feature engineering methods -- while achieving comparable accuracy in less than 30% of the training epochs. Moreover, each SAFE-NET epoch is 95% faster than those of competing feature engineering approaches. These findings challenge the prevailing belief that modern PINNs effectively learn features in these scientific applications and highlight the efficiency gains possible through feature engineering.
♻ ☆ Data Collaboration Analysis with Orthonormal Basis Selection and Alignment
Data Collaboration (DC) enables multiple parties to jointly train a model by sharing only linear projections of their private datasets. The core challenge in DC is to align the bases of these projections without revealing each party's secret basis. While existing theory suggests that any target basis spanning the common subspace should suffice, in practice, the choice of basis can substantially affect both accuracy and numerical stability. We introduce Orthonormal Data Collaboration (ODC), which enforces orthonormal secret and target bases, thereby reducing alignment to the classical Orthogonal Procrustes problem, which admits a closed-form solution. We prove that the resulting change-of-basis matrices achieve \emph{orthogonal concordance}, aligning all parties' representations up to a shared orthogonal transform and rendering downstream performance invariant to the target basis. Computationally, ODC reduces the alignment complexity from O(\min{a(cl)^2,a^2c}) to O(acl^2), and empirical evaluations show up to \(100\times\) speed-ups with equal or better accuracy across benchmarks. ODC preserves DC's one-round communication pattern and privacy assumptions, providing a simple and efficient drop-in improvement to existing DC pipelines.
comment: 44 pages
♻ ☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a \textit{Ridge of Optimization} characterized by extreme stability. While previously linked to \textit{Spectral Concentration}, its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the Edge of Stability, a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 4 pages, 4 figures
♻ ☆ On the physics of nested Markov models: a generalized probabilistic theory perspective
Determining potential probability distributions with a given causal graph is vital for causality studies. To bypass the difficulty in characterizing latent variables in a Bayesian network, the nested Markov model provides an elegant algebraic approach by listing exactly all the equality constraints on the observed variables. However, this algebraically motivated causal model comprises distributions outside Bayesian networks, and its physical interpretation remains vague. In this work, we inspect the nested Markov model through the lens of generalized probabilistic theory, an axiomatic framework to describe general physical theories. We prove that all the equality constraints defining the nested Markov model are valid theory-independently. At the same time, not every distribution within the nested Markov model is implementable, not even via exotic physical theories associated with generalized probability theories (GPTs). To interpret the origin of such a gap, we study three causal models standing between the nested Markov model and the set of all distributions admitting some GPT realization. Each of the successive three models gives a strictly tighter characterization of the physically implementable distribution set; that is, each successive model manifests new types of GPT-inviolable constraints. We further demonstrate each gap through a specially chosen illustrative causal structure. We anticipate our results will enlighten further explorations on the unification of algebraic and physical perspectives of causality.
comment: V2: 21 pages, 9 figures, 1 table; simpler proofs for the original theorems provided; new causal models introduced and discussed; one author added. Comments are welcome!
♻ ☆ De novo generation of functional terpene synthases using TpsGPT NeurIPS 2025
Terpene synthases (TPS) are a key family of enzymes responsible for generating the diverse terpene scaffolds that underpin many natural products, including front-line anticancer drugs such as Taxol. However, de novo TPS design through directed evolution is costly and slow. We introduce TpsGPT, a generative model for scalable TPS protein design, built by fine-tuning the protein language model ProtGPT2 on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme candidates in silico and we evaluated them using multiple validation metrics, including EnzymeExplorer classification, ESMFold structural confidence (pLDDT), sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek structure alignment. From an initial pool of 28k generated sequences, we identified seven putative TPS enzymes that satisfied all validation criteria. Experimental validation confirmed TPS enzymatic activity in at least two of these sequences. Our results show that fine-tuning of a protein language model on a carefully curated, enzyme-class-specific dataset, combined with rigorous filtering, can enable the de novo generation of functional, evolutionarily distant enzymes.
comment: 11 pages, 8 figures, Accepted at the NeurIPS 2025 AI for Science and Machine Learning for Structural Biology 2025 workshops Fixed incorrect threshold in Fig 1
♻ ☆ Defining latent spaces by example: optimisation over the outputs of generative models
Modern generative AI models like diffusion and flow matching can sample from rich data distributions, but many downstream tasks - such as experimental design or creative content generation - require a higher level of control than unconstrained sampling. Here, the challenge is to efficiently identify outputs that are both probable under the model and satisfy task-specific constraints. Often, the evaluation of samples is expensive and lack gradients - a setting known as black-box optimisation. In this work, we allow black-box optimisation on top of diffusion and flow matching models for the first time by introducing surrogate latent spaces: non-parametric, low-dimensional Euclidean embeddings that can be extracted from any generative model without additional training. The axes can be defined via examples, providing a simple and interpretable approach to define custom latent spaces that express intended features and is convenient to use in downstream tasks. Our proposed representation is Euclidean and has controllable dimensionality, permitting direct application of standard optimisation algorithms. We demonstrate that our approach is architecture-agnostic, incurs almost no additional computational cost over standard generation, and generalises across modalities, including images, audio, videos, and structured objects like proteins.
♻ ☆ Improving Conditional VAE with approximation using Normalizing Flows
Variational Autoencoders and Generative Adversarial Networks remained the state-of-the-art (SOTA) generative models until 2022. Now they are superseded by diffusion based models. Efforts to improve traditional models have stagnated as a result. In old-school fashion, we explore image generation with conditional Variational Autoencoders (CVAE) to incorporate desired attributes within the images. VAEs are known to produce blurry images with less diversity, we refer a method that solve this issue by leveraging the variance of the gaussian decoder as a learnable parameter during training. Previous works on CVAEs assumed that the conditional distribution of the latent space given the labels is equal to the prior distribution, which is not the case in reality. We show that estimating it using normalizing flows results in better image generation than existing methods by reducing the FID by 4% and increasing log likelihood by 7.6% than the previous case.
comment: Independent Work
♻ ☆ Features Emerge as Discrete States: The First Application of SAEs to 3D Representations
Sparse Autoencoders (SAEs) are a powerful dictionary learning technique for decomposing neural network activations, translating the hidden state into human ideas with high semantic value despite no external intervention or guidance. However, this technique has rarely been applied outside of the textual domain, limiting theoretical explorations of feature decomposition. We present the first application of SAEs to the 3D domain, analyzing the features used by a state-of-the-art 3D reconstruction VAE applied to 53k 3D models from the Objaverse dataset. We observe that the network encodes discrete rather than continuous features, leading to our key finding: such models approximate a discrete state space, driven by phase-like transitions from feature activations. Through this state transition framework, we address three otherwise unintuitive behaviors - the inclination of the reconstruction model towards positional encoding representations, the sigmoidal behavior of reconstruction loss from feature ablation, and the bimodality in the distribution of phase transition points. This final observation suggests the model redistributes the interference caused by superposition to prioritize the saliency of different features. Our work not only compiles and explains unexpected phenomena regarding feature decomposition, but also provides a framework to explain the model's feature learning dynamics. The code and dataset of encoded 3D objects will be available on release.
Information Retrieval 26
☆ Large-Language Memorization During the Classification of United States Supreme Court Cases
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
comment: 7 pages, 1 figure, Appendix of Prompts
☆ TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.
comment: 18 Pages. Project page at http://bpiyush.github.io/tara-website
☆ Automated Information Flow Selection for Multi-scenario Multi-task Recommendation WSDM 2026
Multi-scenario multi-task recommendation (MSMTR) systems must address recommendation demands across diverse scenarios while simultaneously optimizing multiple objectives, such as click-through rate and conversion rate. Existing MSMTR models typically consist of four information units: scenario-shared, scenario-specific, task-shared, and task-specific networks. These units interact to generate four types of relationship information flows, directed from scenario-shared or scenario-specific networks to task-shared or task-specific networks. However, these models face two main limitations: 1) They often rely on complex architectures, such as mixture-of-experts (MoE) networks, which increase the complexity of information fusion, model size, and training cost. 2) They extract all available information flows without filtering out irrelevant or even harmful content, introducing potential noise. Regarding these challenges, we propose a lightweight Automated Information Flow Selection (AutoIFS) framework for MSMTR. To tackle the first issue, AutoIFS incorporates low-rank adaptation (LoRA) to decouple the four information units, enabling more flexible and efficient information fusion with minimal parameter overhead. To address the second issue, AutoIFS introduces an information flow selection network that automatically filters out invalid scenario-task information flows based on model performance feedback. It employs a simple yet effective pruning function to eliminate useless information flows, thereby enhancing the impact of key relationships and improving model performance. Finally, we evaluate AutoIFS and confirm its effectiveness through extensive experiments on two public benchmark datasets and an online A/B test.
comment: 10 Pages, 6 Figures, WSDM 2026 Accepted
☆ BlossomRec: Block-level Fused Sparse Attention Mechanism for Sequential Recommendations
Transformer structures have been widely used in sequential recommender systems (SRS). However, as user interaction histories increase, computational time and memory requirements also grow. This is mainly caused by the standard attention mechanism. Although there exist many methods employing efficient attention and SSM-based models, these approaches struggle to effectively model long sequences and may exhibit unstable performance on short sequences. To address these challenges, we design a sparse attention mechanism, BlossomRec, which models both long-term and short-term user interests through attention computation to achieve stable performance across sequences of varying lengths. Specifically, we categorize user interests in recommendation systems into long-term and short-term interests, and compute them using two distinct sparse attention patterns, with the results combined through a learnable gated output. Theoretically, it significantly reduces the number of interactions participating in attention computation. Extensive experiments on four public datasets demonstrate that BlossomRec, when integrated with state-of-the-art Transformer-based models, achieves comparable or even superior performance while significantly reducing memory usage, providing strong evidence of BlossomRec's efficiency and effectiveness.The code is available at https://github.com/ronineume/BlossomRec.
☆ No One Left Behind: How to Exploit the Incomplete and Skewed Multi-Label Data for Conversion Rate Prediction
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversion actions due to privacy or other constraints, making the labels of multi-task data incomplete. If the model is trained on all available samples where advertisers submit user conversion actions, it may struggle when deployed to serve a subset of advertisers targeting specific conversion actions, as the training and deployment data distributions are mismatched. While considerable MTL efforts have been made, a long-standing challenge is how to effectively train a unified model with the incomplete and skewed multi-label data. In this paper, we propose a fine-grained Knowledge transfer framework for Asymmetric Multi-Label data (KAML). We introduce an attribution-driven masking strategy (ADM) to better utilize data with asymmetric multi-label data in training. However, the more relaxed masking in ADM is a double-edged sword: it provides additional training signals but also introduces noise due to skewed data. To address this, we propose a hierarchical knowledge extraction mechanism (HKE) to model the sample discrepancy within the target task tower. Finally, to maximize the utility of unlabeled samples, we incorporate ranking loss strategy to further enhance our model. The effectiveness of KAML has been demonstrated through comprehensive evaluations on offline industry datasets and online A/B tests, which show significant performance improvements over existing MTL baselines.
☆ Learning to Retrieve with Weakened Labels: Robust Training under Label Noise
Neural Encoders are frequently used in the NLP domain to perform dense retrieval tasks, for instance, to generate the candidate documents for a given query in question-answering tasks. However, sparse annotation and label noise in the training data make it challenging to train or fine-tune such retrieval models. Although existing works have attempted to mitigate these problems by incorporating modified loss functions or data cleaning, these approaches either require some hyperparameters to tune during training or add substantial complexity to the training setup. In this work, we consider a label weakening approach to generate robust retrieval models in the presence of label noise. Instead of enforcing a single, potentially erroneous label for each query document pair, we allow for a set of plausible labels derived from both the observed supervision and the model's confidence scores. We perform an extensive evaluation considering two retrieval models, one re-ranking model, considering four diverse ranking datasets. To this end, we also consider a realistic noisy setting by using a semantic-aware noise generation technique to generate different ratios of noise. Our initial results show that label weakening can improve the performance of the retrieval tasks in comparison to 10 different state-of-the-art loss functions.
☆ Know Your Users! Estimating User Domain Knowledge in Conversational Recommenders
The ideal conversational recommender system (CRS) acts like a savvy salesperson, adapting its language and suggestions to each user's level of expertise. However, most current systems treat all users as experts, leading to frustrating and inefficient interactions when users are unfamiliar with a domain. Systems that can adapt their conversational strategies to a user's knowledge level stand to offer a much more natural and effective experience. To make a step toward such adaptive systems, we introduce a new task: estimating user domain knowledge from conversations, enabling a CRS to better understand user needs and personalize interactions. A key obstacle to developing such adaptive systems is the lack of suitable data; to our knowledge, no existing dataset captures the conversational behaviors of users with varying levels of domain knowledge. Furthermore, in most dialogue collection protocols, users are free to express their own preferences, which tends to concentrate on popular items and well-known features, offering little insight into how novices explore or learn about unfamiliar features. To address this, we design a game-based data collection protocol that elicits varied expressions of knowledge, release the resulting dataset, and provide an initial analysis to highlight its potential for future work on user-knowledge-aware CRS.
☆ Finch: Benchmarking Finance & Accounting across Spreadsheet-Centric Enterprise Workflows
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 48 hours in total yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
☆ Towards Practical Large-scale Dynamical Heterogeneous Graph Embedding: Cold-start Resilient Recommendation
Deploying dynamic heterogeneous graph embeddings in production faces key challenges of scalability, data freshness, and cold-start. This paper introduces a practical, two-stage solution that balances deep graph representation with low-latency incremental updates. Our framework combines HetSGFormer, a scalable graph transformer for static learning, with Incremental Locally Linear Embedding (ILLE), a lightweight, CPU-based algorithm for real-time updates. HetSGFormer captures global structure with linear scalability, while ILLE provides rapid, targeted updates to incorporate new data, thus avoiding costly full retraining. This dual approach is cold-start resilient, leveraging the graph to create meaningful embeddings from sparse data. On billion-scale graphs, A/B tests show HetSGFormer achieved up to a 6.11% lift in Advertiser Value over previous methods, while the ILLE module added another 3.22% lift and improved embedding refresh timeliness by 83.2%. Our work provides a validated framework for deploying dynamic graph learning in production environments.
☆ A Simple and Effective Framework for Symmetric Consistent Indexing in Large-Scale Dense Retrieval
Dense retrieval has become the industry standard in large-scale information retrieval systems due to its high efficiency and competitive accuracy. Its core relies on a coarse-to-fine hierarchical architecture that enables rapid candidate selection and precise semantic matching, achieving millisecond-level response over billion-scale corpora. This capability makes it essential not only in traditional search and recommendation scenarios but also in the emerging paradigm of generative recommendation driven by large language models, where semantic IDs-themselves a form of coarse-to-fine representation-play a foundational role. However, the widely adopted dual-tower encoding architecture introduces inherent challenges, primarily representational space misalignment and retrieval index inconsistency, which degrade matching accuracy, retrieval stability, and performance on long-tail queries. These issues are further magnified in semantic ID generation, ultimately limiting the performance ceiling of downstream generative models. To address these challenges, this paper proposes a simple and effective framework named SCI comprising two synergistic modules: a symmetric representation alignment module that employs an innovative input-swapping mechanism to unify the dual-tower representation space without adding parameters, and an consistent indexing with dual-tower synergy module that redesigns retrieval paths using a dual-view indexing strategy to maintain consistency from training to inference. The framework is systematic, lightweight, and engineering-friendly, requiring minimal overhead while fully supporting billion-scale deployment. We provide theoretical guarantees for our approach, with its effectiveness validated by results across public datasets and real-world e-commerce datasets.
☆ Progressive Refinement of E-commerce Search Ranking Based on Short-Term Activities of the Buyer
In e-commerce shopping, aligning search results with a buyer's immediate needs and preferences presents a significant challenge, particularly in adapting search results throughout the buyer's shopping journey as they move from the initial stages of browsing to making a purchase decision or shift from one intent to another. This study presents a systematic approach to adapting e-commerce search results based on the current context. We start with basic methods and incrementally incorporate more contextual information and state-of-the-art techniques to improve the search outcomes. By applying this evolving contextual framework to items displayed on the search engine results page (SERP), we progressively align search outcomes more closely with the buyer's interests and current search intentions. Our findings demonstrate that this incremental enhancement, from simple heuristic autoregressive features to advanced sequence models, significantly improves ranker performance. The integration of contextual techniques enhances the performance of our production ranker, leading to improved search results in both offline and online A/B testing in terms of Mean Reciprocal Rank (MRR). Overall, the paper details iterative methodologies and their substantial contributions to search result contextualization on e-commerce platforms.
☆ Are Large Language Models Really Effective for Training-Free Cold-Start Recommendation?
Recommender systems usually rely on large-scale interaction data to learn from users' past behaviors and make accurate predictions. However, real-world applications often face situations where no training data is available, such as when launching new services or handling entirely new users. In such cases, conventional approaches cannot be applied. This study focuses on training-free recommendation, where no task-specific training is performed, and particularly on \textit{training-free cold-start recommendation} (TFCSR), the more challenging case where the target user has no interactions. Large language models (LLMs) have recently been explored as a promising solution, and numerous studies have been proposed. As the ability of text embedding models (TEMs) increases, they are increasingly recognized as applicable to training-free recommendation, but no prior work has directly compared LLMs and TEMs under identical conditions. We present the first controlled experiments that systematically evaluate these two approaches in the same setting. The results show that TEMs outperform LLM rerankers, and this trend holds not only in cold-start settings but also in warm-start settings with rich interactions. These findings indicate that direct LLM ranking is not the only viable option, contrary to the commonly shared belief, and TEM-based approaches provide a stronger and more scalable basis for training-free recommendation.
☆ Reveal Hidden Pitfalls and Navigate Next Generation of Vector Similarity Search from Task-Centric Views SIGMOD2026
Vector Similarity Search (VSS) in high-dimensional spaces is rapidly emerging as core functionality in next-generation database systems for numerous data-intensive services -- from embedding lookups in large language models (LLMs), to semantic information retrieval and recommendation engines. Current benchmarks, however, evaluate VSS primarily on the recall-latency trade-off against a ground truth defined solely by distance metrics, neglecting how retrieval quality ultimately impacts downstream tasks. This disconnect can mislead both academic research and industrial practice. We present Iceberg, a holistic benchmark suite for end-to-end evaluation of VSS methods in realistic application contexts. From a task-centric view, Iceberg uncovers the Information Loss Funnel, which identifies three principal sources of end-to-end performance degradation: (1) Embedding Loss during feature extraction; (2) Metric Misuse, where distances poorly reflect task relevance; (3) Data Distribution Sensitivity, highlighting index robustness across skews and modalities. For a more comprehensive assessment, Iceberg spans eight diverse datasets across key domains such as image classification, face recognition, text retrieval, and recommendation systems. Each dataset, ranging from 1M to 100M vectors, includes rich, task-specific labels and evaluation metrics, enabling assessment of retrieval algorithms within the full application pipeline rather than in isolation. Iceberg benchmarks 13 state-of-the-art VSS methods and re-ranks them based on application-level metrics, revealing substantial deviations from traditional rankings derived purely from recall-latency evaluations. Building on these insights, we define a set of task-centric meta-features and derive an interpretable decision tree to guide practitioners in selecting and tuning VSS methods for their specific workloads.
comment: SIGMOD2026
☆ Do Reviews Matter for Recommendations in the Era of Large Language Models?
With the advent of large language models (LLMs), the landscape of recommender systems is undergoing a significant transformation. Traditionally, user reviews have served as a critical source of rich, contextual information for enhancing recommendation quality. However, as LLMs demonstrate an unprecedented ability to understand and generate human-like text, this raises the question of whether explicit user reviews remain essential in the era of LLMs. In this paper, we provide a systematic investigation of the evolving role of text reviews in recommendation by comparing deep learning methods and LLM approaches. Particularly, we conduct extensive experiments on eight public datasets with LLMs and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios. We further introduce a benchmarking evaluation framework for review-aware recommender systems, RAREval, to comprehensively assess the contribution of textual reviews to the recommendation performance of review-aware recommender systems. Our framework examines various scenarios, including the removal of some or all textual reviews, random distortion, as well as recommendation performance in data sparsity and cold-start user settings. Our findings demonstrate that LLMs are capable of functioning as effective review-aware recommendation engines, generally outperforming traditional deep learning approaches, particularly in scenarios characterized by data sparsity and cold-start conditions. In addition, the removal of some or all textual reviews and random distortion does not necessarily lead to declines in recommendation accuracy. These findings motivate a rethinking of how user preference from text reviews can be more effectively leveraged. All code and supplementary materials are available at: https://github.com/zhytk/RAREval-data-processing.
comment: 11 pages, 9 figures, 3 tables
☆ BLADE: A Behavior-Level Data Augmentation Framework with Dual Fusion Modeling for Multi-Behavior Sequential Recommendation
Multi-behavior sequential recommendation aims to capture users' dynamic interests by modeling diverse types of user interactions over time. Although several studies have explored this setting, the recommendation performance remains suboptimal, mainly due to two fundamental challenges: the heterogeneity of user behaviors and data sparsity. To address these challenges, we propose BLADE, a framework that enhances multi-behavior modeling while mitigating data sparsity. Specifically, to handle behavior heterogeneity, we introduce a dual item-behavior fusion architecture that incorporates behavior information at both the input and intermediate levels, enabling preference modeling from multiple perspectives. To mitigate data sparsity, we design three behavior-level data augmentation methods that operate directly on behavior sequences rather than core item sequences. These methods generate diverse augmented views while preserving the semantic consistency of item sequences. These augmented views further enhance representation learning and generalization via contrastive learning. Experiments on three real-world datasets demonstrate the effectiveness of our approach.
☆ SPAR: Session-based Pipeline for Adaptive Retrieval on Legacy File Systems
The ability to extract value from historical data is essential for enterprise decision-making. However, much of this information remains inaccessible within large legacy file systems that lack structured organization and semantic indexing, making retrieval and analysis inefficient and error-prone. We introduce SPAR (Session-based Pipeline for Adaptive Retrieval), a conceptual framework that integrates Large Language Models (LLMs) into a Retrieval-Augmented Generation (RAG) architecture specifically designed for legacy enterprise environments. Unlike conventional RAG pipelines, which require costly construction and maintenance of full-scale vector databases that mirror the entire file system, SPAR employs a lightweight two-stage process: a semantic Metadata Index is first created, after which session-specific vector databases are dynamically generated on demand. This design reduces computational overhead while improving transparency, controllability, and relevance in retrieval. We provide a theoretical complexity analysis comparing SPAR with standard LLM-based RAG pipelines, demonstrating its computational advantages. To validate the framework, we apply SPAR to a synthesized enterprise-scale file system containing a large corpus of biomedical literature, showing improvements in both retrieval effectiveness and downstream model accuracy. Finally, we discuss design trade-offs and outline open challenges for deploying SPAR across diverse enterprise settings.
☆ Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion AAAI
The exponential growth of video content has created an urgent need for efficient multimodal moment retrieval systems. However, existing approaches face three critical challenges: (1) fixed-weight fusion strategies fail across cross modal noise and ambiguous queries, (2) temporal modeling struggles to capture coherent event sequences while penalizing unrealistic gaps, and (3) systems require manual modality selection, reducing usability. We propose a unified multimodal moment retrieval system with three key innovations. First, a cascaded dual-embedding pipeline combines BEIT-3 and SigLIP for broad retrieval, refined by BLIP-2 based reranking to balance recall and precision. Second, a temporal-aware scoring mechanism applies exponential decay penalties to large temporal gaps via beam search, constructing coherent event sequences rather than isolated frames. Third, Agent-guided query decomposition (GPT-4o) automatically interprets ambiguous queries, decomposes them into modality specific sub-queries (visual/OCR/ASR), and performs adaptive score fusion eliminating manual modality selection. Qualitative analysis demonstrates that our system effectively handles ambiguous queries, retrieves temporally coherent sequences, and dynamically adapts fusion strategies, advancing interactive moment search capabilities.
comment: Accepted at AAAI Workshop 2026
☆ BiCoRec: Bias-Mitigated Context-Aware Sequential Recommendation Model
Sequential recommendation models aim to learn from users evolving preferences. However, current state-of-the-art models suffer from an inherent popularity bias. This study developed a novel framework, BiCoRec, that adaptively accommodates users changing preferences for popular and niche items. Our approach leverages a co-attention mechanism to obtain a popularity-weighted user sequence representation, facilitating more accurate predictions. We then present a new training scheme that learns from future preferences using a consistency loss function. BiCoRec aimed to improve the recommendation performance of users who preferred niche items. For these users, BiCoRec achieves a 26.00% average improvement in NDCG@10 over state-of-the-art baselines. When ranking the relevant item against the entire collection, BiCoRec achieves NDCG@10 scores of 0.0102, 0.0047, 0.0021, and 0.0005 for the Movies, Fashion, Games and Music datasets.
♻ ☆ DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research
Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce \textsc{DeepResearchGym} as an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is free for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with~\textsc{DeepResearchGym} achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A case study on short-answer search agents further demonstrates the sandbox's utility for cost-effective training, showing that models trained within the sandbox can generalize to commercial search.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many views treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse the similarities and differences between OM and OV and formalise the OM4OV pipeline. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary modifications, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and less explainability for false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, building upon the existing alignment(s) from OM to reduce the number of matching candidates and improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Adaptive Risk Mitigation in Demand Learning
We study dynamic pricing of a product with an unknown demand distribution over a finite horizon. Departing from the standard no-regret learning environment in which prices can be adjusted at any time, we restrict price changes to predetermined points in time to reflect common retail practice. This constraint, coupled with demand model ambiguity and an unknown customer arrival pattern, imposes a high risk of revenue loss, as a price based on a misestimated demand model may be applied to many customers before it can be revised. We develop an adaptive risk learning (ARL) framework that embeds a data-driven ambiguity set (DAS) to quantify demand model ambiguity by adapting to the unknown arrival pattern. Initially, when arrivals are few, the DAS includes a broad set of plausible demand models, reflecting high ambiguity and revenue risk. As new data is collected through pricing, the DAS progressively shrinks, capturing the reduction in model ambiguity and associated risk. We establish the probabilistic convergence of the DAS to the true demand model and derive a regret bound for the ARL policy that explicitly links revenue loss to the data required for the DAS to identify the true model with high probability. The dependence of our regret bound on the arrival pattern is unique to our constrained dynamic pricing problem and contrasts with no-regret learning environments, where regret is constant and arrival-pattern independent. Relaxing the constraint on infrequent price changes, we show that ARL attains the known constant regret bound. Numerical experiments further demonstrate that ARL outperforms benchmarks that prioritize either regret or risk alone by adaptively balancing both without knowledge of the arrival pattern. This adaptive risk adjustment is crucial for achieving high revenues and low downside risk when prices are sticky and both demand and arrival patterns are unknown.
♻ ☆ FlippedRAG: Black-Box Opinion Manipulation Adversarial Attacks to Retrieval-Augmented Generation Models
Retrieval-Augmented Generation (RAG) enriches LLMs by dynamically retrieving external knowledge, reducing hallucinations and satisfying real-time information needs. While existing research mainly targets RAG's performance and efficiency, emerging studies highlight critical security concerns. Yet, current adversarial approaches remain limited, mostly addressing white-box scenarios or heuristic black-box attacks without fully investigating vulnerabilities in the retrieval phase. Additionally, prior works mainly focus on factoid Q&A tasks, their attacks lack complexity and can be easily corrected by advanced LLMs. In this paper, we investigate a more realistic and critical threat scenario: adversarial attacks intended for opinion manipulation against black-box RAG models, particularly on controversial topics. Specifically, we propose FlippedRAG, a transfer-based adversarial attack against black-box RAG systems. We first demonstrate that the underlying retriever of a black-box RAG system can be reverse-engineered, enabling us to train a surrogate retriever. Leveraging the surrogate retriever, we further craft target poisoning triggers, altering vary few documents to effectively manipulate both retrieval and subsequent generation. Extensive empirical results show that FlippedRAG substantially outperforms baseline methods, improving the average attack success rate by 16.7%. FlippedRAG achieves on average a 50% directional shift in the opinion polarity of RAG-generated responses, ultimately causing a notable 20% shift in user cognition. Furthermore, we evaluate the performance of several potential defensive measures, concluding that existing mitigation strategies remain insufficient against such sophisticated manipulation attacks. These results highlight an urgent need for developing innovative defensive solutions to ensure the security and trustworthiness of RAG systems.
comment: arXiv admin note: text overlap with arXiv:2407.13757
♻ ☆ Improving Collaborative Filtering Recommendation via Graph Learning
Recommendation systems aim to provide personalized predictions by identifying items that are most appealing to individual users. Among various recommendation approaches, k-nearest-neighbor (kNN)-based collaborative filtering (CF) remains one of the most widely used in practice. However, the kNN scheme often results in running the algorithm on a highly dense graph, which degrades computational efficiency. In addition, enforcing a uniform neighborhood size is not well suited to capturing the true underlying structure of the data. In this paper, we leverage recent advances in graph signal processing (GSP) to learn a sparse yet high-quality graph, improving the efficiency of collaborative filtering without sacrificing recommendation accuracy. Experiments on benchmark datasets demonstrate that our method can successfully perform CF-based recommendation using an extremely sparse graph while maintaining competitive performance.
♻ ☆ Meta Lattice: Model Space Redesign for Cost-Effective Industry-Scale Ads Recommendations KDD 2026
The rapidly evolving landscape of products, surfaces, policies, and regulations poses significant challenges for deploying state-of-the-art recommendation models at industry scale, primarily due to data fragmentation across domains and escalating infrastructure costs that hinder sustained quality improvements. To address this challenge, we propose Lattice, a recommendation framework centered around model space redesign that extends Multi-Domain, Multi-Objective (MDMO) learning beyond models and learning objectives. Lattice addresses these challenges through a comprehensive model space redesign that combines cross-domain knowledge sharing, data consolidation, model unification, distillation, and system optimizations to achieve significant improvements in both quality and cost-efficiency. Our deployment of Lattice at Meta has resulted in 10% revenue-driving top-line metrics gain, 11.5% user satisfaction improvement, 6% boost in conversion rate, with 20% capacity saving.
comment: Accepted to KDD 2026
♻ ☆ Emancipatory Information Retrieval
Our world today is facing a confluence of several mutually reinforcing crises each of which intersects with concerns of social justice and emancipation. This paper is a provocation for the role of computer-mediated information access in our emancipatory struggles. We define emancipatory information retrieval as the study and development of information access methods that challenge various forms of human oppression, and situates its activities within broader collective emancipatory praxis. The term "emancipatory" here signifies the moral concerns of universal humanization of all peoples and the elimination of oppression to create the conditions under which we can collectively flourish. To develop an emancipatory research agenda for information retrieval (IR), in this paper we speculate about the practices that the community can adopt, enumerate some of the projects that the field should undertake, and discuss provocations to spark new ideas and directions for research. We challenge the field of IR research to embrace humanistic values and commit to universal emancipation and social justice. We also invite scholars from fields such as human-computer interaction, information sciences, media studies, design, science and technology studies, social and political sciences, philosophy, law, environmental sciences, public health, educational sciences, as well as legal and policy experts, civil rights advocates, social justice activists and movement organizers, and artists to join us in realizing this transformation. In this process, we must both imagine post-oppressive worlds, and reimagine the role of IR in that world and in the journey that leads us there.
♻ ☆ RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines ACSA
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
comment: Presented as a poster at the Annual Computer Security Applications Conference (ACSAC) 2025