MyArxiv
Computation and Language 115
☆ Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark
Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io
comment: Project Page: https://video-cof.github.io
☆ Gistify! Codebase-Level Understanding via Runtime Execution
As coding agents are increasingly deployed in large codebases, the need to automatically design challenging, codebase-level evaluation is central. We propose Gistify, a task where a coding LLM must create a single, minimal, self-contained file that can reproduce a specific functionality of a codebase. The coding LLM is given full access to a codebase along with a specific entrypoint (e.g., a python command), and the generated file must replicate the output of the same command ran under the full codebase, while containing only the essential components necessary to execute the provided command. Success on Gistify requires both structural understanding of the codebase, accurate modeling of its execution flow as well as the ability to produce potentially large code patches. Our findings show that current state-of-the-art models struggle to reliably solve Gistify tasks, especially ones with long executions traces.
☆ Defeating the Training-Inference Mismatch via FP16
Reinforcement learning (RL) fine-tuning of large language models (LLMs) often suffers from instability due to the numerical mismatch between the training and inference policies. While prior work has attempted to mitigate this issue through algorithmic corrections or engineering alignments, we show that its root cause lies in the floating point precision itself. The widely adopted BF16, despite its large dynamic range, introduces large rounding errors that breaks the consistency between training and inference. In this work, we demonstrate that simply reverting to \textbf{FP16} effectively eliminates this mismatch. The change is simple, fully supported by modern frameworks with only a few lines of code change, and requires no modification to the model architecture or learning algorithm. Our results suggest that using FP16 uniformly yields more stable optimization, faster convergence, and stronger performance across diverse tasks, algorithms and frameworks. We hope these findings motivate a broader reconsideration of precision trade-offs in RL fine-tuning.
☆ Remote Labor Index: Measuring AI Automation of Remote Work
AIs have made rapid progress on research-oriented benchmarks of knowledge and reasoning, but it remains unclear how these gains translate into economic value and automation. To measure this, we introduce the Remote Labor Index (RLI), a broadly multi-sector benchmark comprising real-world, economically valuable projects designed to evaluate end-to-end agent performance in practical settings. AI agents perform near the floor on RLI, with the highest-performing agent achieving an automation rate of 2.5%. These results help ground discussions of AI automation in empirical evidence, setting a common basis for tracking AI impacts and enabling stakeholders to proactively navigate AI-driven labor automation.
comment: Website: https://www.remotelabor.ai
☆ AMO-Bench: Large Language Models Still Struggle in High School Math Competitions
We present AMO-Bench, an Advanced Mathematical reasoning benchmark with Olympiad level or even higher difficulty, comprising 50 human-crafted problems. Existing benchmarks have widely leveraged high school math competitions for evaluating mathematical reasoning capabilities of large language models (LLMs). However, many existing math competitions are becoming less effective for assessing top-tier LLMs due to performance saturation (e.g., AIME24/25). To address this, AMO-Bench introduces more rigorous challenges by ensuring all 50 problems are (1) cross-validated by experts to meet at least the International Mathematical Olympiad (IMO) difficulty standards, and (2) entirely original problems to prevent potential performance leakages from data memorization. Moreover, each problem in AMO-Bench requires only a final answer rather than a proof, enabling automatic and robust grading for evaluation. Experimental results across 26 LLMs on AMO-Bench show that even the best-performing model achieves only 52.4% accuracy on AMO-Bench, with most LLMs scoring below 40%. Beyond these poor performances, our further analysis reveals a promising scaling trend with increasing test-time compute on AMO-Bench. These results highlight the significant room for improving the mathematical reasoning in current LLMs. We release AMO-Bench to facilitate further research into advancing the reasoning abilities of language models. https://amo-bench.github.io/
comment: 14 pages, 9 figures
☆ Deep sequence models tend to memorize geometrically; it is unclear why
In sequence modeling, the parametric memory of atomic facts has been predominantly abstracted as a brute-force lookup of co-occurrences between entities. We contrast this associative view against a geometric view of how memory is stored. We begin by isolating a clean and analyzable instance of Transformer reasoning that is incompatible with memory as strictly a storage of the local co-occurrences specified during training. Instead, the model must have somehow synthesized its own geometry of atomic facts, encoding global relationships between all entities, including non-co-occurring ones. This in turn has simplified a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn 1-step geometric task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, despite optimizing over mere local associations, cannot be straightforwardly attributed to typical architectural or optimizational pressures. Counterintuitively, an elegant geometry is learned even when it is not more succinct than a brute-force lookup of associations. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery and unlearning.
☆ Cross-Platform Evaluation of Reasoning Capabilities in Foundation Models
This paper presents a comprehensive cross-platform evaluation of reasoning capabilities in contemporary foundation models, establishing an infrastructure-agnostic benchmark across three computational paradigms: HPC supercomputing (MareNostrum 5), cloud platforms (Nebius AI Studio), and university clusters (a node with eight H200 GPUs). We evaluate 15 foundation models across 79 problems spanning eight academic domains (Physics, Mathematics, Chemistry, Economics, Biology, Statistics, Calculus, and Optimization) through three experimental phases: (1) Baseline establishment: Six models (Mixtral-8x7B, Phi-3, LLaMA 3.1-8B, Gemma-2-9b, Mistral-7B, OLMo-7B) evaluated on 19 problems using MareNostrum 5, establishing methodology and reference performance; (2) Infrastructure validation: The 19-problem benchmark repeated on university cluster (seven models including Falcon-Mamba state-space architecture) and Nebius AI Studio (nine state-of-the-art models: Hermes-4 70B/405B, LLaMA 3.1-405B/3.3-70B, Qwen3 30B/235B, DeepSeek-R1, GPT-OSS 20B/120B) to confirm infrastructure-agnostic reproducibility; (3) Extended evaluation: Full 79-problem assessment on both university cluster and Nebius platforms, probing generalization at scale across architectural diversity. The findings challenge conventional scaling assumptions, establish training data quality as more critical than model size, and provide actionable guidelines for model selection across educational, production, and research contexts. The tri-infrastructure methodology and 79-problem benchmark enable longitudinal tracking of reasoning capabilities as foundation models evolve.
☆ Value Drifts: Tracing Value Alignment During LLM Post-Training
As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.
☆ The End of Manual Decoding: Towards Truly End-to-End Language Models
The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
☆ Kimi Linear: An Expressive, Efficient Attention Architecture
We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.
comment: Kimi Linear tech report
☆ Evontree: Ontology Rule-Guided Self-Evolution of Large Language Models
Large language models (LLMs) have demonstrated exceptional capabilities across multiple domains by leveraging massive pre-training and curated fine-tuning data. However, in data-sensitive fields such as healthcare, the lack of high-quality, domain-specific training corpus hinders LLMs' adaptation for specialized applications. Meanwhile, domain experts have distilled domain wisdom into ontology rules, which formalize relationships among concepts and ensure the integrity of knowledge management repositories. Viewing LLMs as implicit repositories of human knowledge, we propose Evontree, a novel framework that leverages a small set of high-quality ontology rules to systematically extract, validate, and enhance domain knowledge within LLMs, without requiring extensive external datasets. Specifically, Evontree extracts domain ontology from raw models, detects inconsistencies using two core ontology rules, and reinforces the refined knowledge via self-distilled fine-tuning. Extensive experiments on medical QA benchmarks with Llama3-8B-Instruct and Med42-v2 demonstrate consistent outperformance over both unmodified models and leading supervised baselines, achieving up to a 3.7% improvement in accuracy. These results confirm the effectiveness, efficiency, and robustness of our approach for low-resource domain adaptation of LLMs.
☆ The Era of Agentic Organization: Learning to Organize with Language Models
We envision a new era of AI, termed agentic organization, where agents solve complex problems by working collaboratively and concurrently, enabling outcomes beyond individual intelligence. To realize this vision, we introduce asynchronous thinking (AsyncThink) as a new paradigm of reasoning with large language models, which organizes the internal thinking process into concurrently executable structures. Specifically, we propose a thinking protocol where an organizer dynamically assigns sub-queries to workers, merges intermediate knowledge, and produces coherent solutions. More importantly, the thinking structure in this protocol can be further optimized through reinforcement learning. Experiments demonstrate that AsyncThink achieves 28% lower inference latency compared to parallel thinking while improving accuracy on mathematical reasoning. Moreover, AsyncThink generalizes its learned asynchronous thinking capabilities, effectively tackling unseen tasks without additional training.
☆ Encoder-Decoder or Decoder-Only? Revisiting Encoder-Decoder Large Language Model
Recent large language model (LLM) research has undergone an architectural shift from encoder-decoder modeling to nowadays the dominant decoder-only modeling. This rapid transition, however, comes without a rigorous comparative analysis especially \textit{from the scaling perspective}, raising concerns that the potential of encoder-decoder models may have been overlooked. To fill this gap, we revisit encoder-decoder LLM (RedLLM), enhancing it with recent recipes from decoder-only LLM (DecLLM). We conduct a comprehensive comparison between RedLLM, pretrained with prefix language modeling (LM), and DecLLM, pretrained with causal LM, at different model scales, ranging from $\sim$150M to $\sim$8B. Using RedPajama V1 (1.6T tokens) for pretraining and FLAN for instruction tuning, our experiments show that RedLLM produces compelling scaling properties and surprisingly strong performance. While DecLLM is overall more compute-optimal during pretraining, RedLLM demonstrates comparable scaling and context length extrapolation capabilities. After instruction tuning, RedLLM achieves comparable and even better results on various downstream tasks while enjoying substantially better inference efficiency. We hope our findings could inspire more efforts on re-examining RedLLM, unlocking its potential for developing powerful and efficient LLMs.
comment: The scaling study inspiring T5Gemma
☆ SlideAgent: Hierarchical Agentic Framework for Multi-Page Visual Document Understanding
Multi-page visual documents such as manuals, brochures, presentations, and posters convey key information through layout, colors, icons, and cross-slide references. While large language models (LLMs) offer opportunities in document understanding, current systems struggle with complex, multi-page visual documents, particularly in fine-grained reasoning over elements and pages. We introduce SlideAgent, a versatile agentic framework for understanding multi-modal, multi-page, and multi-layout documents, especially slide decks. SlideAgent employs specialized agents and decomposes reasoning into three specialized levels-global, page, and element-to construct a structured, query-agnostic representation that captures both overarching themes and detailed visual or textual cues. During inference, SlideAgent selectively activates specialized agents for multi-level reasoning and integrates their outputs into coherent, context-aware answers. Extensive experiments show that SlideAgent achieves significant improvement over both proprietary (+7.9 overall) and open-source models (+9.8 overall).
comment: https://slideagent.github.io/
☆ Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives EMNLP 2025
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.
comment: Accepted to the 8th BlackboxNLP Workshop at EMNLP 2025
☆ Inference-Cost-Aware Dynamic Tree Construction for Efficient Inference in Large Language Models
Large Language Models (LLMs) face significant inference latency challenges stemming from their autoregressive design and large size. To address this, speculative decoding emerges as a solution, enabling the simultaneous generation and validation of multiple tokens. While recent approaches like EAGLE-2 and EAGLE-3 improve speculative decoding using dynamic tree structures, they often neglect the impact of crucial system variables such as GPU devices and batch sizes. Therefore, we introduce a new dynamic tree decoding approach called CAST that takes into account inference costs, including factors such as GPU configurations and batch sizes, to dynamically refine the tree structure. Through comprehensive experimentation across six diverse tasks and utilizing six distinct LLMs, our methodology demonstrates remarkable results, achieving speeds up to 5.2 times faster than conventional decoding methods. Moreover, it generally outperforms existing state-of-the-art techniques from 5% to 20%.
☆ InfoFlow: Reinforcing Search Agent Via Reward Density Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising approach for enhancing agentic deep search. However, its application is often hindered by low \textbf{Reward Density} in deep search scenarios, where agents expend significant exploratory costs for infrequent and often null final rewards. In this paper, we formalize this challenge as the \textbf{Reward Density Optimization} problem, which aims to improve the reward obtained per unit of exploration cost. This paper introduce \textbf{InfoFlow}, a systematic framework that tackles this problem from three aspects. 1) \textbf{Subproblem decomposition}: breaking down long-range tasks to assign process rewards, thereby providing denser learning signals. 2) \textbf{Failure-guided hints}: injecting corrective guidance into stalled trajectories to increase the probability of successful outcomes. 3) \textbf{Dual-agent refinement}: employing a dual-agent architecture to offload the cognitive burden of deep exploration. A refiner agent synthesizes the search history, which effectively compresses the researcher's perceived trajectory, thereby reducing exploration cost and increasing the overall reward density. We evaluate InfoFlow on multiple agentic search benchmarks, where it significantly outperforms strong baselines, enabling lightweight LLMs to achieve performance comparable to advanced proprietary LLMs.
☆ The Structure of Relation Decoding Linear Operators in Large Language Models NeurIPS 2025
This paper investigates the structure of linear operators introduced in Hernandez et al. [2023] that decode specific relational facts in transformer language models. We extend their single-relation findings to a collection of relations and systematically chart their organization. We show that such collections of relation decoders can be highly compressed by simple order-3 tensor networks without significant loss in decoding accuracy. To explain this surprising redundancy, we develop a cross-evaluation protocol, in which we apply each linear decoder operator to the subjects of every other relation. Our results reveal that these linear maps do not encode distinct relations, but extract recurring, coarse-grained semantic properties (e.g., country of capital city and country of food are both in the country-of-X property). This property-centric structure clarifies both the operators' compressibility and highlights why they generalize only to new relations that are semantically close. Our findings thus interpret linear relational decoding in transformer language models as primarily property-based, rather than relation-specific.
comment: NeurIPS 2025 (Spotlight)
☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DIVRIT, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DIVRIT is its use of a Hebrew Visual Language Model, which processes undiacritized text as an image, allowing diacritic information to be embedded directly within the input's vector representation. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DIVRIT achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ A Multi-agent Large Language Model Framework to Automatically Assess Performance of a Clinical AI Triage Tool
Purpose: The purpose of this study was to determine if an ensemble of multiple LLM agents could be used collectively to provide a more reliable assessment of a pixel-based AI triage tool than a single LLM. Methods: 29,766 non-contrast CT head exams from fourteen hospitals were processed by a commercial intracranial hemorrhage (ICH) AI detection tool. Radiology reports were analyzed by an ensemble of eight open-source LLM models and a HIPAA compliant internal version of GPT-4o using a single multi-shot prompt that assessed for presence of ICH. 1,726 examples were manually reviewed. Performance characteristics of the eight open-source models and consensus were compared to GPT-4o. Three ideal consensus LLM ensembles were tested for rating the performance of the triage tool. Results: The cohort consisted of 29,766 head CTs exam-report pairs. The highest AUC performance was achieved with llama3.3:70b and GPT-4o (AUC= 0.78). The average precision was highest for Llama3.3:70b and GPT-4o (AP=0.75 & 0.76). Llama3.3:70b had the highest F1 score (0.81) and recall (0.85), greater precision (0.78), specificity (0.72), and MCC (0.57). Using MCC (95% CI) the ideal combination of LLMs were: Full-9 Ensemble 0.571 (0.552-0.591), Top-3 Ensemble 0.558 (0.537-0.579), Consensus 0.556 (0.539-0.574), and GPT4o 0.522 (0.500-0.543). No statistically significant differences were observed between Top-3, Full-9, and Consensus (p > 0.05). Conclusion: An ensemble of medium to large sized open-source LLMs provides a more consistent and reliable method to derive a ground truth retrospective evaluation of a clinical AI triage tool over a single LLM alone.
comment: 29 pages, 3 figures, 4 tables
☆ Rethinking Text-to-SQL: Dynamic Multi-turn SQL Interaction for Real-world Database Exploration
Recent advances in Text-to-SQL have achieved strong results in static, single-turn tasks, where models generate SQL queries from natural language questions. However, these systems fall short in real-world interactive scenarios, where user intents evolve and queries must be refined over multiple turns. In applications such as finance and business analytics, users iteratively adjust query constraints or dimensions based on intermediate results. To evaluate such dynamic capabilities, we introduce DySQL-Bench, a benchmark assessing model performance under evolving user interactions. Unlike previous manually curated datasets, DySQL-Bench is built through an automated two-stage pipeline of task synthesis and verification. Structured tree representations derived from raw database tables guide LLM-based task generation, followed by interaction-oriented filtering and expert validation. Human evaluation confirms 100% correctness of the synthesized data. We further propose a multi-turn evaluation framework simulating realistic interactions among an LLM-simulated user, the model under test, and an executable database. The model must adapt its reasoning and SQL generation as user intents change. DySQL-Bench covers 13 domains across BIRD and Spider 2 databases, totaling 1,072 tasks. Even GPT-4o attains only 58.34% overall accuracy and 23.81% on the Pass@5 metric, underscoring the benchmark's difficulty. All code and data are released at https://github.com/Aurora-slz/Real-World-SQL-Bench .
☆ Context Engineering 2.0: The Context of Context Engineering
Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.
☆ Bayesian Network Fusion of Large Language Models for Sentiment Analysis
Large language models (LLMs) continue to advance, with an increasing number of domain-specific variants tailored for specialised tasks. However, these models often lack transparency and explainability, can be costly to fine-tune, require substantial prompt engineering, yield inconsistent results across domains, and impose significant adverse environmental impact due to their high computational demands. To address these challenges, we propose the Bayesian network LLM fusion (BNLF) framework, which integrates predictions from three LLMs, including FinBERT, RoBERTa, and BERTweet, through a probabilistic mechanism for sentiment analysis. BNLF performs late fusion by modelling the sentiment predictions from multiple LLMs as probabilistic nodes within a Bayesian network. Evaluated across three human-annotated financial corpora with distinct linguistic and contextual characteristics, BNLF demonstrates consistent gains of about six percent in accuracy over the baseline LLMs, underscoring its robustness to dataset variability and the effectiveness of probabilistic fusion for interpretable sentiment classification.
☆ Counteracting Matthew Effect in Self-Improvement of LVLMs through Head-Tail Re-balancing
Self-improvement has emerged as a mainstream paradigm for advancing the reasoning capabilities of large vision-language models (LVLMs), where models explore and learn from successful trajectories iteratively. However, we identify a critical issue during this process: the model excels at generating high-quality trajectories for simple queries (i.e., head data) but struggles with more complex ones (i.e., tail data). This leads to an imbalanced optimization that drives the model to prioritize simple reasoning skills, while hindering its ability to tackle more complex reasoning tasks. Over iterations, this imbalance becomes increasingly pronounced--a dynamic we term the "Matthew effect"--which ultimately hinders further model improvement and leads to performance bottlenecks. To counteract this challenge, we introduce four efficient strategies from two perspectives: distribution-reshaping and trajectory-resampling, to achieve head-tail re-balancing during the exploration-and-learning self-improvement process. Extensive experiments on Qwen2-VL-7B-Instruct and InternVL2.5-4B models across visual reasoning tasks demonstrate that our methods consistently improve visual reasoning capabilities, outperforming vanilla self-improvement by 3.86 points on average.
comment: Preprint
☆ SecureReviewer: Enhancing Large Language Models for Secure Code Review through Secure-aware Fine-tuning ICSE 2026
Identifying and addressing security issues during the early phase of the development lifecycle is critical for mitigating the long-term negative impacts on software systems. Code review serves as an effective practice that enables developers to check their teammates' code before integration into the codebase. To streamline the generation of review comments, various automated code review approaches have been proposed, where LLM-based methods have significantly advanced the capabilities of automated review generation. However, existing models primarily focus on general-purpose code review, their effectiveness in identifying and addressing security-related issues remains underexplored. Moreover, adapting existing code review approaches to target security issues faces substantial challenges, including data scarcity and inadequate evaluation metrics. To address these limitations, we propose SecureReviewer, a new approach designed for enhancing LLMs' ability to identify and resolve security-related issues during code review. Specifically, we first construct a dataset tailored for training and evaluating secure code review capabilities. Leveraging this dataset, we fine-tune LLMs to generate code review comments that can effectively identify security issues and provide fix suggestions with our proposed secure-aware fine-tuning strategy. To mitigate hallucination in LLMs and enhance the reliability of their outputs, we integrate the RAG technique, which grounds the generated comments in domain-specific security knowledge. Additionally, we introduce SecureBLEU, a new evaluation metric designed to assess the effectiveness of review comments in addressing security issues. Experimental results demonstrate that SecureReviewer outperforms state-of-the-art baselines in both security issue detection accuracy and the overall quality and practical utility of generated review comments.
comment: Accepted by ICSE 2026. Code and data: https://github.com/SIMIAO515/SecureReviewer
☆ 1+1>2: A Synergistic Sparse and Low-Rank Compression Method for Large Language Models EMNLP 2025
Large Language Models (LLMs) have demonstrated remarkable proficiency in language comprehension and generation; however, their widespread adoption is constrained by substantial bandwidth and computational demands. While pruning and low-rank approximation have each demonstrated promising performance individually, their synergy for LLMs remains underexplored. We introduce \underline{S}ynergistic \underline{S}parse and \underline{L}ow-Rank \underline{C}ompression (SSLC) methods for LLMs, which leverages the strengths of both techniques: low-rank approximation compresses the model by retaining its essential structure with minimal information loss, whereas sparse optimization eliminates non-essential weights, preserving those crucial for generalization. Based on theoretical analysis, we first formulate the low-rank approximation and sparse optimization as a unified problem and solve it by iterative optimization algorithm. Experiments on LLaMA and Qwen2.5 models (7B-70B) show that SSLC, without any additional training steps, consistently surpasses standalone methods, achieving state-of-the-arts results. Notably, SSLC compresses Qwen2.5 by 50\% with no performance drop and achieves at least 1.63$\times$ speedup, offering a practical solution for efficient LLM deployment.
comment: 15 pages, 6 figures, EMNLP 2025 findings
☆ Nexus: Execution-Grounded Multi-Agent Test Oracle Synthesis
Test oracle generation in non-regression testing is a longstanding challenge in software engineering, where the goal is to produce oracles that can accurately determine whether a function under test (FUT) behaves as intended for a given input. In this paper, we introduce Nexus, a novel multi-agent framework to address this challenge. Nexus generates test oracles by leveraging a diverse set of specialized agents that synthesize test oracles through a structured process of deliberation, validation, and iterative self-refinement. During the deliberation phase, a panel of four specialist agents, each embodying a distinct testing philosophy, collaboratively critiques and refines an initial set of test oracles. Then, in the validation phase, Nexus generates a plausible candidate implementation of the FUT and executes the proposed oracles against it in a secure sandbox. For any oracle that fails this execution-based check, Nexus activates an automated selfrefinement loop, using the specific runtime error to debug and correct the oracle before re-validation. Our extensive evaluation on seven diverse benchmarks demonstrates that Nexus consistently and substantially outperforms state-of-theart baselines. For instance, Nexus improves the test-level oracle accuracy on the LiveCodeBench from 46.30% to 57.73% for GPT-4.1-Mini. The improved accuracy also significantly enhances downstream tasks: the bug detection rate of GPT4.1-Mini generated test oracles on HumanEval increases from 90.91% to 95.45% for Nexus compared to baselines, and the success rate of automated program repair improves from 35.23% to 69.32%.
comment: Under Review
☆ OmniEduBench: A Comprehensive Chinese Benchmark for Evaluating Large Language Models in Education
With the rapid development of large language models (LLMs), various LLM-based works have been widely applied in educational fields. However, most existing LLMs and their benchmarks focus primarily on the knowledge dimension, largely neglecting the evaluation of cultivation capabilities that are essential for real-world educational scenarios. Additionally, current benchmarks are often limited to a single subject or question type, lacking sufficient diversity. This issue is particularly prominent within the Chinese context. To address this gap, we introduce OmniEduBench, a comprehensive Chinese educational benchmark. OmniEduBench consists of 24.602K high-quality question-answer pairs. The data is meticulously divided into two core dimensions: the knowledge dimension and the cultivation dimension, which contain 18.121K and 6.481K entries, respectively. Each dimension is further subdivided into 6 fine-grained categories, covering a total of 61 different subjects (41 in the knowledge and 20 in the cultivation). Furthermore, the dataset features a rich variety of question formats, including 11 common exam question types, providing a solid foundation for comprehensively evaluating LLMs' capabilities in education. Extensive experiments on 11 mainstream open-source and closed-source LLMs reveal a clear performance gap. In the knowledge dimension, only Gemini-2.5 Pro surpassed 60\% accuracy, while in the cultivation dimension, the best-performing model, QWQ, still trailed human intelligence by nearly 30\%. These results highlight the substantial room for improvement and underscore the challenges of applying LLMs in education.
☆ On the Role of Context for Discourse Relation Classification in Scientific Writing
With the increasing use of generative Artificial Intelligence (AI) methods to support science workflows, we are interested in the use of discourse-level information to find supporting evidence for AI generated scientific claims. A first step towards this objective is to examine the task of inferring discourse structure in scientific writing. In this work, we present a preliminary investigation of pretrained language model (PLM) and Large Language Model (LLM) approaches for Discourse Relation Classification (DRC), focusing on scientific publications, an under-studied genre for this task. We examine how context can help with the DRC task, with our experiments showing that context, as defined by discourse structure, is generally helpful. We also present an analysis of which scientific discourse relation types might benefit most from context.
comment: Accepted at Joint Sixth Workshop on Computational Approaches to Discourse, Context and Document-Level Inferences (CODI 2025) and Eighth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2025)
☆ The Geometry of Dialogue: Graphing Language Models to Reveal Synergistic Teams for Multi-Agent Collaboration
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.
☆ MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.
☆ From Amateur to Master: Infusing Knowledge into LLMs via Automated Curriculum Learning
Large Language Models (LLMs) excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs.
☆ SCRIBE: Structured Chain Reasoning for Interactive Behaviour Explanations using Tool Calling
Language models can be used to provide interactive, personalized student feedback in educational settings. However, real-world deployment faces three key challenges: privacy concerns, limited computational resources, and the need for pedagogically valid responses. These constraints require small, open-source models that can run locally and reliably ground their outputs in correct information. We introduce SCRIBE, a framework for multi-hop, tool-augmented reasoning designed to generate valid responses to student questions about feedback reports. SCRIBE combines domain-specific tools with a self-reflective inference pipeline that supports iterative reasoning, tool use, and error recovery. We distil these capabilities into 3B and 8B models via two-stage LoRA fine-tuning on synthetic GPT-4o-generated data. Evaluation with a human-aligned GPT-Judge and a user study with 108 students shows that 8B-SCRIBE models achieve comparable or superior quality to much larger models in key dimensions such as relevance and actionability, while being perceived on par with GPT-4o and Llama-3.3 70B by students. These findings demonstrate the viability of SCRIBE for low-resource, privacy-sensitive educational applications.
☆ Can Agent Conquer Web? Exploring the Frontiers of ChatGPT Atlas Agent in Web Games
OpenAI's ChatGPT Atlas introduces new capabilities for web interaction, enabling the model to analyze webpages, process user intents, and execute cursor and keyboard inputs directly within the browser. While its capacity for information retrieval tasks has been demonstrated, its performance in dynamic, interactive environments remains less explored. In this study, we conduct an early evaluation of Atlas's web interaction capabilities using browser-based games as test scenarios, including Google's T-Rex Runner, Sudoku, Flappy Bird, and Stein.world. We employ in-game performance scores as quantitative metrics to assess performance across different task types. Our results show that Atlas performs strongly in logical reasoning tasks like Sudoku, completing puzzles significantly faster than human baselines, but struggles substantially in real-time games requiring precise timing and motor control, often failing to progress beyond initial obstacles. These findings suggest that while Atlas demonstrates capable analytical processing, there remain notable limitations in dynamic web environments requiring real-time interaction. The website of our project can be found at https://atlas-game-eval.github.io.
☆ Unravelling the Mechanisms of Manipulating Numbers in Language Models
Recent work has shown that different large language models (LLMs) converge to similar and accurate input embedding representations for numbers. These findings conflict with the documented propensity of LLMs to produce erroneous outputs when dealing with numeric information. In this work, we aim to explain this conflict by exploring how language models manipulate numbers and quantify the lower bounds of accuracy of these mechanisms. We find that despite surfacing errors, different language models learn interchangeable representations of numbers that are systematic, highly accurate and universal across their hidden states and the types of input contexts. This allows us to create universal probes for each LLM and to trace information -- including the causes of output errors -- to specific layers. Our results lay a fundamental understanding of how pre-trained LLMs manipulate numbers and outline the potential of more accurate probing techniques in addressed refinements of LLMs' architectures.
☆ Do LLMs Signal When They're Right? Evidence from Neuron Agreement
Large language models (LLMs) commonly boost reasoning via sample-evaluate-ensemble decoders, achieving label free gains without ground truth. However, prevailing strategies score candidates using only external outputs such as token probabilities, entropies, or self evaluations, and these signals can be poorly calibrated after post training. We instead analyze internal behavior based on neuron activations and uncover three findings: (1) external signals are low dimensional projections of richer internal dynamics; (2) correct responses activate substantially fewer unique neurons than incorrect ones throughout generation; and (3) activations from correct responses exhibit stronger cross sample agreement, whereas incorrect ones diverge. Motivated by these observations, we propose Neuron Agreement Decoding (NAD), an unsupervised best-of-N method that selects candidates using activation sparsity and cross sample neuron agreement, operating solely on internal signals and without requiring comparable textual outputs. NAD enables early correctness prediction within the first 32 generated tokens and supports aggressive early stopping. Across math and science benchmarks with verifiable answers, NAD matches majority voting; on open ended coding benchmarks where majority voting is inapplicable, NAD consistently outperforms Avg@64. By pruning unpromising trajectories early, NAD reduces token usage by 99% with minimal loss in generation quality, showing that internal signals provide reliable, scalable, and efficient guidance for label free ensemble decoding.
☆ PVMark: Enabling Public Verifiability for LLM Watermarking Schemes
Watermarking schemes for large language models (LLMs) have been proposed to identify the source of the generated text, mitigating the potential threats emerged from model theft. However, current watermarking solutions hardly resolve the trust issue: the non-public watermark detection cannot prove itself faithfully conducting the detection. We observe that it is attributed to the secret key mostly used in the watermark detection -- it cannot be public, or the adversary may launch removal attacks provided the key; nor can it be private, or the watermarking detection is opaque to the public. To resolve the dilemma, we propose PVMark, a plugin based on zero-knowledge proof (ZKP), enabling the watermark detection process to be publicly verifiable by third parties without disclosing any secret key. PVMark hinges upon the proof of `correct execution' of watermark detection on which a set of ZKP constraints are built, including mapping, random number generation, comparison, and summation. We implement multiple variants of PVMark in Python, Rust and Circom, covering combinations of three watermarking schemes, three hash functions, and four ZKP protocols, to show our approach effectively works under a variety of circumstances. By experimental results, PVMark efficiently enables public verifiability on the state-of-the-art LLM watermarking schemes yet without compromising the watermarking performance, promising to be deployed in practice.
comment: This work has been submitted to the IEEE for possible publication
☆ Distilling Multilingual Vision-Language Models: When Smaller Models Stay Multilingual
Vision-language models (VLMs) exhibit uneven performance across languages, a problem that is often exacerbated when the model size is reduced. While Knowledge distillation (KD) demonstrates promising results in transferring knowledge from larger to smaller VLMs, applying KD in multilingualism is an underexplored area. This paper presents a controlled empirical study of KD behavior across five distillation approaches, isolating their effects on cross-lingual representation consistency and downstream performance stability under model compression. We study five distillation formulations across CLIP and SigLIP2, and evaluate them on in-domain retrieval and out-of-domain visual QA. We find that some configurations preserve or even improve multilingual retrieval robustness despite halving model size, but others fail to maintain cross-task stability, exposing design-sensitive trade-offs that aggregate accuracy alone does not reveal.
comment: Work in progress
☆ Language Models Are Borrowing-Blind: A Multilingual Evaluation of Loanword Identification across 10 Languages
Throughout language history, words are borrowed from one language to another and gradually become integrated into the recipient's lexicon. Speakers can often differentiate these loanwords from native vocabulary, particularly in bilingual communities where a dominant language continuously imposes lexical items on a minority language. This paper investigates whether pretrained language models, including large language models, possess similar capabilities for loanword identification. We evaluate multiple models across 10 languages. Despite explicit instructions and contextual information, our results show that models perform poorly in distinguishing loanwords from native ones. These findings corroborate previous evidence that modern NLP systems exhibit a bias toward loanwords rather than native equivalents. Our work has implications for developing NLP tools for minority languages and supporting language preservation in communities under lexical pressure from dominant languages.
comment: Under review
☆ Pragmatic Theories Enhance Understanding of Implied Meanings in LLMs
The ability to accurately interpret implied meanings plays a crucial role in human communication and language use, and language models are also expected to possess this capability. This study demonstrates that providing language models with pragmatic theories as prompts is an effective in-context learning approach for tasks to understand implied meanings. Specifically, we propose an approach in which an overview of pragmatic theories, such as Gricean pragmatics and Relevance Theory, is presented as a prompt to the language model, guiding it through a step-by-step reasoning process to derive a final interpretation. Experimental results showed that, compared to the baseline, which prompts intermediate reasoning without presenting pragmatic theories (0-shot Chain-of-Thought), our methods enabled language models to achieve up to 9.6\% higher scores on pragmatic reasoning tasks. Furthermore, we show that even without explaining the details of pragmatic theories, merely mentioning their names in the prompt leads to a certain performance improvement (around 1-3%) in larger models compared to the baseline.
☆ Which Way Does Time Flow? A Psychophysics-Grounded Evaluation for Vision-Language Models
Modern vision-language models (VLMs) excel at many multimodal tasks, yet their grasp of temporal information in video remains weak and, crucially, under-evaluated. We probe this gap with a deceptively simple but revealing challenge: judging the arrow of time (AoT)-whether a short clip is played forward or backward. We introduce AoT-PsyPhyBENCH, a psychophysically validated benchmark that tests whether VLMs can infer temporal direction in natural videos using the same stimuli and behavioral baselines established for humans. Our comprehensive evaluation of open-weight and proprietary, reasoning and non-reasoning VLMs reveals that most models perform near chance, and even the best lag far behind human accuracy on physically irreversible processes (e.g., free fall, diffusion/explosion) and causal manual actions (division/addition) that humans recognize almost instantly. These results highlight a fundamental gap in current multimodal systems: while they capture rich visual-semantic correlations, they lack the inductive biases required for temporal continuity and causal understanding. We release the code and data for AoT-PsyPhyBENCH to encourage further progress in the physical and temporal reasoning capabilities of VLMs.
comment: 10 pages
☆ Towards Global Retrieval Augmented Generation: A Benchmark for Corpus-Level Reasoning
Retrieval-augmented generation (RAG) has emerged as a leading approach to reducing hallucinations in large language models (LLMs). Current RAG evaluation benchmarks primarily focus on what we call local RAG: retrieving relevant chunks from a small subset of documents to answer queries that require only localized understanding within specific text chunks. However, many real-world applications require a fundamentally different capability -- global RAG -- which involves aggregating and analyzing information across entire document collections to derive corpus-level insights (for example, "What are the top 10 most cited papers in 2023?"). In this paper, we introduce GlobalQA -- the first benchmark specifically designed to evaluate global RAG capabilities, covering four core task types: counting, extremum queries, sorting, and top-k extraction. Through systematic evaluation across different models and baselines, we find that existing RAG methods perform poorly on global tasks, with the strongest baseline achieving only 1.51 F1 score. To address these challenges, we propose GlobalRAG, a multi-tool collaborative framework that preserves structural coherence through chunk-level retrieval, incorporates LLM-driven intelligent filters to eliminate noisy documents, and integrates aggregation modules for precise symbolic computation. On the Qwen2.5-14B model, GlobalRAG achieves 6.63 F1 compared to the strongest baseline's 1.51 F1, validating the effectiveness of our method.
☆ What's In My Human Feedback? Learning Interpretable Descriptions of Preference Data
Human feedback can alter language models in unpredictable and undesirable ways, as practitioners lack a clear understanding of what feedback data encodes. While prior work studies preferences over certain attributes (e.g., length or sycophancy), automatically extracting relevant features without pre-specifying hypotheses remains challenging. We introduce What's In My Human Feedback? (WIMHF), a method to explain feedback data using sparse autoencoders. WIMHF characterizes both (1) the preferences a dataset is capable of measuring and (2) the preferences that the annotators actually express. Across 7 datasets, WIMHF identifies a small number of human-interpretable features that account for the majority of the preference prediction signal achieved by black-box models. These features reveal a wide diversity in what humans prefer, and the role of dataset-level context: for example, users on Reddit prefer informality and jokes, while annotators in HH-RLHF and PRISM disprefer them. WIMHF also surfaces potentially unsafe preferences, such as that LMArena users tend to vote against refusals, often in favor of toxic content. The learned features enable effective data curation: re-labeling the harmful examples in Arena yields large safety gains (+37%) with no cost to general performance. They also allow fine-grained personalization: on the Community Alignment dataset, we learn annotator-specific weights over subjective features that improve preference prediction. WIMHF provides a human-centered analysis method for practitioners to better understand and use preference data.
comment: Code: https://github.com/rmovva/wimhf
☆ Don't Let It Fade: Preserving Edits in Diffusion Language Models via Token Timestep Allocation NeurIPS 2025
While diffusion language models (DLMs) enable fine-grained refinement, their practical controllability remains fragile. We identify and formally characterize a central failure mode called update forgetting, in which uniform and context agnostic updates induce token level fluctuations across timesteps, erasing earlier semantic edits and disrupting the cumulative refinement process, thereby degrading fluency and coherence. As this failure originates in uniform and context agnostic updates, effective control demands explicit token ordering. We propose Token Timestep Allocation (TTA), which realizes soft and semantic token ordering via per token timestep schedules: critical tokens are frozen early, while uncertain tokens receive continued refinement. This timestep based ordering can be instantiated as either a fixed policy or an adaptive policy driven by task signals, thereby supporting a broad spectrum of refinement strategies. Because it operates purely at inference time, it applies uniformly across various DLMs and naturally extends to diverse supervision sources. Empirically, TTA improves controllability and fluency: on sentiment control, it yields more than 20 percent higher accuracy and nearly halves perplexity using less than one fifth the steps; in detoxification, it lowers maximum toxicity (12.2 versus 14.5) and perplexity (26.0 versus 32.0). Together, these results demonstrate that softened ordering via timestep allocation is the critical lever for mitigating update forgetting and achieving stable and controllable diffusion text generation.
comment: Accepted in NeurIPS 2025
☆ RCScore: Quantifying Response Consistency in Large Language Models
Current LLM evaluations often rely on a single instruction template, overlooking models' sensitivity to instruction style-a critical aspect for real-world deployments. We present RCScore, a multi-dimensional framework quantifying how instruction formulation affects model responses. By systematically transforming benchmark problems into multiple instruction styles, RCScore reveals performance variations undetected by conventional metrics. Our experiments across ten LLMs on four reasoning benchmarks demonstrate that instruction style can shift accuracy by up to 16.7% points. We introduce Cross-Response Similarity (CRS), a method applying RCScore metrics to measure stylistic self-consistency, and establish its strong correlation with task accuracy, suggesting consistency as a valuable proxy for model reliability. Additional findings show that deterministic decoding produces more stylistically stable outputs, and model scale correlates positively with cross-style consistency. RCScore offers a principled approach to assess instruction robustness.
☆ SP-MCQA: Evaluating Intelligibility of TTS Beyond the Word Level
The evaluation of intelligibility for TTS has reached a bottleneck, as existing assessments heavily rely on word-by-word accuracy metrics such as WER, which fail to capture the complexity of real-world speech or reflect human comprehension needs. To address this, we propose Spoken-Passage Multiple-Choice Question Answering, a novel subjective approach evaluating the accuracy of key information in synthesized speech, and release SP-MCQA-Eval, an 8.76-hour news-style benchmark dataset for SP-MCQA evaluation. Our experiments reveal that low WER does not necessarily guarantee high key-information accuracy, exposing a gap between traditional metrics and practical intelligibility. SP-MCQA shows that even state-of-the-art (SOTA) models still lack robust text normalization and phonetic accuracy. This work underscores the urgent need for high-level, more life-like evaluation criteria now that many systems already excel at WER yet may fall short on real-world intelligibility.
☆ Similarity-Distance-Magnitude Language Models
We introduce Similarity-Distance-Magnitude (SDM) language models (LMs), which are sequence prediction models fine-tuned to maximize the proportion of generations in the well-calibrated, high-probability region partitioned by a final-layer SDM activation layer used for binary classification of instruction-following. We demonstrate that existing pre-trained decoder-only Transformer LMs can be readily converted into SDM LMs via supervised fine-tuning, using the final-layer SDM activation layer during training to estimate a change-of-base for a supervised next-token loss over a contrastive input encoding scheme, with additional hard negative examples generated online during training. This results in reduced abstentions (i.e., improved statistical efficiency) compared to strong supervised baselines.
comment: 8 pages, 5 tables
☆ MossNet: Mixture of State-Space Experts is a Multi-Head Attention
Large language models (LLMs) have significantly advanced generative applications in natural language processing (NLP). Recent trends in model architectures revolve around efficient variants of transformers or state-space/gated-recurrent models (SSMs, GRMs). However, prevailing SSM/GRM-based methods often emulate only a single attention head, potentially limiting their expressiveness. In this work, we propose MossNet, a novel mixture-of-state-space-experts architecture that emulates a linear multi-head attention (MHA). MossNet leverages a mixture-of-experts (MoE) implementation not only in channel-mixing multi-layered perceptron (MLP) blocks but also in the time-mixing SSM kernels to realize multiple "attention heads." Extensive experiments on language modeling and downstream evaluations show that MossNet outperforms both transformer- and SSM-based architectures of similar model size and data budgets. Larger variants of MossNet, trained on trillions of tokens, further confirm its scalability and superior performance. In addition, real-device profiling on a Samsung Galaxy S24 Ultra and an Nvidia A100 GPU demonstrate favorable runtime speed and resource usage compared to similarly sized baselines. Our results suggest that MossNet is a compelling new direction for efficient, high-performing recurrent LLM architectures.
☆ One Model to Critique Them All: Rewarding Agentic Tool-Use via Efficient Reasoning
Reward models (RMs) play a critical role in aligning large language models (LLMs) with human preferences. Yet in the domain of tool learning, the lack of RMs specifically designed for function-calling tasks has limited progress toward more capable agentic AI. We introduce ToolRM, a family of lightweight generative RMs tailored for general tool-use scenarios. To build these models, we propose a novel pipeline that constructs pairwise preference data using rule-based scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a diverse, balanced, and challenging dataset of critique tasks that supports reinforcement learning with verifiable feedback. To evaluate tool-use RMs, we also introduce TRBench$_{BFCL}$, a benchmark built on the agentic evaluation suite BFCL. Trained on our constructed data, models from the Qwen3-4B/8B series achieve up to 14.28% higher accuracy, substantially outperforming frontier models such as Claude 4 and OpenAI o3 in pairwise reward judgments. Beyond training objectives, ToolRM generalizes to broader critique tasks, including Best-of-N sampling and self-correction. Experiments on ACEBench highlight its effectiveness and efficiency, enabling inference-time scaling and reducing output token usage by over 66%. We release data and model checkpoints to facilitate future research.
☆ Reasoning Curriculum: Bootstrapping Broad LLM Reasoning from Math
Reinforcement learning (RL) can elicit strong reasoning in large language models (LLMs), yet most open efforts focus on math and code. We propose Reasoning Curriculum, a simple two-stage curriculum that first elicits reasoning skills in pretraining-aligned domains such as math, then adapts and refines these skills across other domains via joint RL. Stage 1 performs a brief cold start and then math-only RL with verifiable rewards to develop reasoning skills. Stage 2 runs joint RL on mixed-domain data to transfer and consolidate these skills. The curriculum is minimal and backbone-agnostic, requiring no specialized reward models beyond standard verifiability checks. Evaluated on Qwen3-4B and Llama-3.1-8B over a multi-domain suite, reasoning curriculum yields consistent gains. Ablations and a cognitive-skill analysis indicate that both stages are necessary and that math-first elicitation increases cognitive behaviors important for solving complex problems. Reasoning Curriculum provides a compact, easy-to-adopt recipe for general reasoning.
comment: 9 pages
☆ On the Influence of Discourse Relations in Persuasive Texts
This paper investigates the relationship between Persuasion Techniques (PTs) and Discourse Relations (DRs) by leveraging Large Language Models (LLMs) and prompt engineering. Since no dataset annotated with both PTs and DRs exists, we took the SemEval 2023 Task 3 dataset labelled with 19 PTs as a starting point and developed LLM-based classifiers to label each instance of the dataset with one of the 22 PDTB 3.0 level-2 DRs. In total, four LLMs were evaluated using 10 different prompts, resulting in 40 unique DR classifiers. Ensemble models using different majority-pooling strategies were used to create 5 silver datasets of instances labelled with both persuasion techniques and level-2 PDTB senses. The silver dataset sizes vary from 1,281 instances to 204 instances, depending on the majority pooling technique used. Statistical analysis of these silver datasets shows that six discourse relations (namely Cause, Purpose, Contrast, Cause+Belief, Concession, and Condition) play a crucial role in persuasive texts, especially in the use of Loaded Language, Exaggeration/Minimisation, Repetition and to cast Doubt. This insight can contribute to detecting online propaganda and misinformation, as well as to our general understanding of effective communication.
comment: Published in Proceedings of the 38th Canadian Conference on Artificial Intelligence CanAI 2025 Calgary Alberta May 26-27 2025. 5 figures 7 tables
☆ Reasoning Path Divergence: A New Metric and Curation Strategy to Unlock LLM Diverse Thinking
While Test-Time Scaling (TTS) has proven effective in improving the reasoning ability of large language models (LLMs), low diversity in model outputs often becomes a bottleneck; this is partly caused by the common "one problem, one solution" (1P1S) training practice, which provides a single canonical answer and can push models toward a narrow set of reasoning paths. To address this, we propose a "one problem, multiple solutions" (1PNS) training paradigm that exposes the model to a variety of valid reasoning trajectories and thus increases inference diversity. A core challenge for 1PNS is reliably measuring semantic differences between multi-step chains of thought, so we introduce Reasoning Path Divergence (RPD), a step-level metric that aligns and scores Long Chain-of-Thought solutions to capture differences in intermediate reasoning. Using RPD, we curate maximally diverse solution sets per problem and fine-tune Qwen3-4B-Base. Experiments show that RPD-selected training yields more varied outputs and higher pass@k, with an average +2.80% gain in pass@16 over a strong 1P1S baseline and a +4.99% gain on AIME24, demonstrating that 1PNS further amplifies the effectiveness of TTS. Our code is available at https://github.com/fengjujf/Reasoning-Path-Divergence .
☆ QCoder Benchmark: Bridging Language Generation and Quantum Hardware through Simulator-Based Feedback
Large language models (LLMs) have increasingly been applied to automatic programming code generation. This task can be viewed as a language generation task that bridges natural language, human knowledge, and programming logic. However, it remains underexplored in domains that require interaction with hardware devices, such as quantum programming, where human coders write Python code that is executed on a quantum computer. To address this gap, we introduce QCoder Benchmark, an evaluation framework that assesses LLMs on quantum programming with feedback from simulated hardware devices. Our benchmark offers two key features. First, it supports evaluation using a quantum simulator environment beyond conventional Python execution, allowing feedback of domain-specific metrics such as circuit depth, execution time, and error classification, which can be used to guide better generation. Second, it incorporates human-written code submissions collected from real programming contests, enabling both quantitative comparisons and qualitative analyses of LLM outputs against human-written codes. Our experiments reveal that even advanced models like GPT-4o achieve only around 18.97% accuracy, highlighting the difficulty of the benchmark. In contrast, reasoning-based models such as o3 reach up to 78% accuracy, outperforming averaged success rates of human-written codes (39.98%). We release the QCoder Benchmark dataset and public evaluation API to support further research.
☆ ORBIT -- Open Recommendation Benchmark for Reproducible Research with Hidden Tests NeurIPS 2025
Recommender systems are among the most impactful AI applications, interacting with billions of users every day, guiding them to relevant products, services, or information tailored to their preferences. However, the research and development of recommender systems are hindered by existing datasets that fail to capture realistic user behaviors and inconsistent evaluation settings that lead to ambiguous conclusions. This paper introduces the Open Recommendation Benchmark for Reproducible Research with HIdden Tests (ORBIT), a unified benchmark for consistent and realistic evaluation of recommendation models. ORBIT offers a standardized evaluation framework of public datasets with reproducible splits and transparent settings for its public leaderboard. Additionally, ORBIT introduces a new webpage recommendation task, ClueWeb-Reco, featuring web browsing sequences from 87 million public, high-quality webpages. ClueWeb-Reco is a synthetic dataset derived from real, user-consented, and privacy-guaranteed browsing data. It aligns with modern recommendation scenarios and is reserved as the hidden test part of our leaderboard to challenge recommendation models' generalization ability. ORBIT measures 12 representative recommendation models on its public benchmark and introduces a prompted LLM baseline on the ClueWeb-Reco hidden test. Our benchmark results reflect general improvements of recommender systems on the public datasets, with variable individual performances. The results on the hidden test reveal the limitations of existing approaches in large-scale webpage recommendation and highlight the potential for improvements with LLM integrations. ORBIT benchmark, leaderboard, and codebase are available at https://www.open-reco-bench.ai.
comment: Accepted to NeurIPS 2025 Datasets & Benchmarks track
☆ Do Students Debias Like Teachers? On the Distillability of Bias Mitigation Methods
Knowledge distillation (KD) is an effective method for model compression and transferring knowledge between models. However, its effect on model's robustness against spurious correlations that degrade performance on out-of-distribution data remains underexplored. This study investigates the effect of knowledge distillation on the transferability of ``debiasing'' capabilities from teacher models to student models on natural language inference (NLI) and image classification tasks. Through extensive experiments, we illustrate several key findings: (i) overall the debiasing capability of a model is undermined post-KD; (ii) training a debiased model does not benefit from injecting teacher knowledge; (iii) although the overall robustness of a model may remain stable post-distillation, significant variations can occur across different types of biases; and (iv) we pin-point the internal attention pattern and circuit that causes the distinct behavior post-KD. Given the above findings, we propose three effective solutions to improve the distillability of debiasing methods: developing high quality data for augmentation, implementing iterative knowledge distillation, and initializing student models with weights obtained from teacher models. To the best of our knowledge, this is the first study on the effect of KD on debiasing and its interenal mechanism at scale. Our findings provide understandings on how KD works and how to design better debiasing methods.
☆ SIRAJ: Diverse and Efficient Red-Teaming for LLM Agents via Distilled Structured Reasoning
The ability of LLM agents to plan and invoke tools exposes them to new safety risks, making a comprehensive red-teaming system crucial for discovering vulnerabilities and ensuring their safe deployment. We present SIRAJ: a generic red-teaming framework for arbitrary black-box LLM agents. We employ a dynamic two-step process that starts with an agent definition and generates diverse seed test cases that cover various risk outcomes, tool-use trajectories, and risk sources. Then, it iteratively constructs and refines model-based adversarial attacks based on the execution trajectories of former attempts. To optimize the red-teaming cost, we present a model distillation approach that leverages structured forms of a teacher model's reasoning to train smaller models that are equally effective. Across diverse evaluation agent settings, our seed test case generation approach yields 2 -- 2.5x boost to the coverage of risk outcomes and tool-calling trajectories. Our distilled 8B red-teamer model improves attack success rate by 100%, surpassing the 671B Deepseek-R1 model. Our ablations and analyses validate the effectiveness of the iterative framework, structured reasoning, and the generalization of our red-teamer models.
☆ Artificial Intelligence-Enabled Analysis of Radiology Reports: Epidemiology and Consequences of Incidental Thyroid Findings
Importance Incidental thyroid findings (ITFs) are increasingly detected on imaging performed for non-thyroid indications. Their prevalence, features, and clinical consequences remain undefined. Objective To develop, validate, and deploy a natural language processing (NLP) pipeline to identify ITFs in radiology reports and assess their prevalence, features, and clinical outcomes. Design, Setting, and Participants Retrospective cohort of adults without prior thyroid disease undergoing thyroid-capturing imaging at Mayo Clinic sites from July 1, 2017, to September 30, 2023. A transformer-based NLP pipeline identified ITFs and extracted nodule characteristics from image reports from multiple modalities and body regions. Main Outcomes and Measures Prevalence of ITFs, downstream thyroid ultrasound, biopsy, thyroidectomy, and thyroid cancer diagnosis. Logistic regression identified demographic and imaging-related factors. Results Among 115,683 patients (mean age, 56.8 [SD 17.2] years; 52.9% women), 9,077 (7.8%) had an ITF, of which 92.9% were nodules. ITFs were more likely in women, older adults, those with higher BMI, and when imaging was ordered by oncology or internal medicine. Compared with chest CT, ITFs were more likely via neck CT, PET, and nuclear medicine scans. Nodule characteristics were poorly documented, with size reported in 44% and other features in fewer than 15% (e.g. calcifications). Compared with patients without ITFs, those with ITFs had higher odds of thyroid nodule diagnosis, biopsy, thyroidectomy and thyroid cancer diagnosis. Most cancers were papillary, and larger when detected after ITFs vs no ITF. Conclusions ITFs were common and strongly associated with cascades leading to the detection of small, low-risk cancers. These findings underscore the role of ITFs in thyroid cancer overdiagnosis and the need for standardized reporting and more selective follow-up.
♻ ☆ TinyTim: A Family of Language Models for Divergent Generation NeurIPS
In the search for artificial general intelligence, model development and training has focused primarily on vast datasets of known problems and their accepted solutions. This process necessarily produces convergent systems which are fundamentally incapable of the conceptual reframing that is required for genuine creative breakthroughs. Inspired by the divergent cognitive processes that allow humans to make such creative leaps, our work introduces a family of language models, TinyTim, to serve as sources of divergent generation within broader systems. These models have been created by fine-tuning on the anti-parsimonious text of James Joyce's `Finnegans Wake'. Quantitative analysis of both an unsupervised fine-tuned model (TinyTim-V1) and a new instruction-tuned variant (TinyTim-V2) demonstrates a profound capacity for lexical invention; the foundational V1 model exhibits a Yule's K score for lexical richness over twenty times greater than that of convergent baselines. This trait is a stable property of the family, as the instruction-tuned V2 maintains a statistically distinct profile and resists factual convergence, sacrificing benchmark performance to preserve its core generative style. This work establishes a methodology for engineering specialized divergent models that, when paired with convergent systems, can reframe problems and force breakthroughs beyond the reach of statistical optimization alone.
comment: 7 pages, 3 figures, accepted to NeurIPS Creative AI track, models available at https://hf.co/npc-worldwide/
♻ ☆ Completion $\neq$ Collaboration: Scaling Collaborative Effort with Agents
Current evaluations of agents remain centered around one-shot task completion, failing to account for the inherently iterative and collaborative nature of many real-world problems, where human goals are often underspecified and evolve. We argue for a shift from building and assessing task completion agents to developing collaborative agents, assessed not only by the quality of their final outputs but by how well they engage with and enhance human effort throughout the problem-solving process. To support this shift, we introduce collaborative effort scaling, a framework that captures how an agent's utility grows with increasing user involvement. Through case studies and simulated evaluations, we show that state-of-the-art agents often underperform in multi-turn, real-world scenarios, revealing a missing ingredient in agent design: the ability to sustain engagement and scaffold user understanding. Collaborative effort scaling offers a lens for diagnosing agent behavior and guiding development toward more effective interactions.
comment: 22 pages, 5 figures, 3 tables
♻ ☆ Comparing human and LLM politeness strategies in free production EMNLP 2025
Polite speech poses a fundamental alignment challenge for large language models (LLMs). Humans deploy a rich repertoire of linguistic strategies to balance informational and social goals -- from positive approaches that build rapport (compliments, expressions of interest) to negative strategies that minimize imposition (hedging, indirectness). We investigate whether LLMs employ a similarly context-sensitive repertoire by comparing human and LLM responses in both constrained and open-ended production tasks. We find that larger models ($\ge$70B parameters) successfully replicate key preferences from the computational pragmatics literature, and human evaluators surprisingly prefer LLM-generated responses in open-ended contexts. However, further linguistic analyses reveal that models disproportionately rely on negative politeness strategies even in positive contexts, potentially leading to misinterpretations. While modern LLMs demonstrate an impressive handle on politeness strategies, these subtle differences raise important questions about pragmatic alignment in AI systems.
comment: 25 pages, 5 figures | EMNLP 2025 camera-ready version
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ Massive Supervised Fine-tuning Experiments Reveal How Data, Layer, and Training Factors Shape LLM Alignment Quality EMNLP 2025
Supervised fine-tuning (SFT) is a critical step in aligning large language models (LLMs) with human instructions and values, yet many aspects of SFT remain poorly understood. We trained a wide range of base models on a variety of datasets including code generation, mathematical reasoning, and general-domain tasks, resulting in 1,000+ SFT models under controlled conditions. We then identified the dataset properties that matter most and examined the layer-wise modifications introduced by SFT. Our findings reveal that some training-task synergies persist across all models while others vary substantially, emphasizing the importance of model-specific strategies. Moreover, we demonstrate that perplexity consistently predicts SFT effectiveness, often surpassing superficial similarity between the training data and the benchmark, and that mid-layer weight changes correlate most strongly with performance gains. We release these 1,000+ SFT models and benchmark results to accelerate further research. All resources are available at https://github.com/llm-jp/massive-sft.
comment: Accepted to EMNLP 2025 (Main Conference). Models and evaluation results available at: https://github.com/llm-jp/massive-sft
♻ ☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 7 pages, 5 figures
♻ ☆ Controlling Thinking Speed in Reasoning Models NeurIPS 2025
Human cognition is theorized to operate in two modes: fast, intuitive System 1 thinking and slow, deliberate System 2 thinking. While current Large Reasoning Models (LRMs) excel at System 2 thinking, their inability to perform fast thinking leads to high computational overhead and latency. In this work, we enable LRMs to approximate human intelligence through dynamic thinking speed adjustment, optimizing accuracy-efficiency trade-offs. Our approach addresses two key questions: (1) how to control thinking speed in LRMs, and (2) when to adjust it for optimal performance. For the first question, we identify the steering vector that governs slow-fast thinking transitions in LRMs' representation space. Using this vector, we achieve the first representation editing-based test-time scaling effect, outperforming existing prompt-based scaling methods. For the second question, we apply real-time difficulty estimation to signal reasoning segments of varying complexity. Combining these techniques, we propose the first reasoning strategy that enables fast processing of easy steps and deeper analysis for complex reasoning. Without any training or additional cost, our plug-in module delivers an average +1.3% accuracy with -8.6% token usage across leading LRMs and advanced reasoning benchmarks. All of our algorithms are implemented based on vLLM and are expected to support broader applications and inspire future research.
comment: NeurIPS 2025 Spotlight
♻ ☆ RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost). Models: https://huggingface.co/collections/nvidia/reward-models-10-2025
comment: Added link to access models: https://huggingface.co/collections/nvidia/reward-models-10-2025
♻ ☆ CompoST: A Benchmark for Analyzing the Ability of LLMs To Compositionally Interpret Questions in a QALD Setting ISWC 2025
Language interpretation is a compositional process, in which the meaning of more complex linguistic structures is inferred from the meaning of their parts. Large language models possess remarkable language interpretation capabilities and have been successfully applied to interpret questions by mapping them to SPARQL queries. An open question is how systematic this interpretation process is. Toward this question, in this paper, we propose a benchmark for investigating to what extent the abilities of LLMs to interpret questions are actually compositional. For this, we generate three datasets of varying difficulty based on graph patterns in DBpedia, relying on Lemon lexica for verbalization. Our datasets are created in a very controlled fashion in order to test the ability of LLMs to interpret structurally complex questions, given that they have seen the atomic building blocks. This allows us to evaluate to what degree LLMs are able to interpret complex questions for which they "understand" the atomic parts. We conduct experiments with models of different sizes using both various prompt and few-shot optimization techniques as well as fine-tuning. Our results show that performance in terms of macro $F_1$ degrades from $0.45$ over $0.26$ down to $0.09$ with increasing deviation from the samples optimized on. Even when all necessary information was provided to the model in the input, the $F_1$ scores do not exceed $0.57$ for the dataset of lowest complexity. We thus conclude that LLMs struggle to systematically and compositionally interpret questions and map them into SPARQL queries.
comment: Research Track, 24th International Semantic Web Conference (ISWC 2025), November 2-6, 2025, Nara, Japan
♻ ☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
comment: 33 pages, 7 figures, 3 tables
♻ ☆ Detecting Early and Implicit Suicidal Ideation via Longitudinal and Information Environment Signals on Social Media
On social media, many individuals experiencing suicidal ideation (SI) do not disclose their distress explicitly. Instead, signs may surface indirectly through everyday posts or peer interactions. Detecting such implicit signals early is critical but remains challenging. We frame early and implicit SI as a forward-looking prediction task and develop a computational framework that models a user's information environment, consisting of both their longitudinal posting histories as well as the discourse of their socially proximal peers. We adopted a composite network centrality measure to identify top neighbors of a user, and temporally aligned the user's and neighbors' interactions -- integrating the multi-layered signals in a fine-tuned DeBERTa-v3 model. In a Reddit study of 1,000 (500 Case and 500 Control) users, our approach improves early and implicit SI detection by 15% over individual-only baselines. These findings highlight that peer interactions offer valuable predictive signals and carry broader implications for designing early detection systems that capture indirect as well as masked expressions of risk in online environments.
♻ ☆ LatentBreak: Jailbreaking Large Language Models through Latent Space Feedback
Jailbreaks are adversarial attacks designed to bypass the built-in safety mechanisms of large language models. Automated jailbreaks typically optimize an adversarial suffix or adapt long prompt templates by forcing the model to generate the initial part of a restricted or harmful response. In this work, we show that existing jailbreak attacks that leverage such mechanisms to unlock the model response can be detected by a straightforward perplexity-based filtering on the input prompt. To overcome this issue, we propose LatentBreak, a white-box jailbreak attack that generates natural adversarial prompts with low perplexity capable of evading such defenses. LatentBreak substitutes words in the input prompt with semantically-equivalent ones, preserving the initial intent of the prompt, instead of adding high-perplexity adversarial suffixes or long templates. These words are chosen by minimizing the distance in the latent space between the representation of the adversarial prompt and that of harmless requests. Our extensive evaluation shows that LatentBreak leads to shorter and low-perplexity prompts, thus outperforming competing jailbreak algorithms against perplexity-based filters on multiple safety-aligned models.
♻ ☆ Are You There God? Lightweight Narrative Annotation of Christian Fiction with LMs
In addition to its more widely studied cultural movements, American Evangelicalism has a well-developed but less externally visible literary side. Christian Fiction, however, has been little studied, and what scholarly attention there is has focused on the explosively popular Left Behind series. In this work, we use computational tools to provide both a broad topical overview of Christian Fiction as a genre and a more directed exploration of how its authors depict divine acts. Working with human annotators, we first developed a codebook for identifying "acts of God." We then adapted the codebook for use by a recent, lightweight LM with the assistance of a much larger model. The laptop-scale LM is largely capable of matching human annotations, even when the task is subtle and challenging. Using these annotations, we show that significant and meaningful differences exist between divine acts depicted by the Left Behind books and Christian Fiction more broadly.
comment: Accepted to CHR 2025
♻ ☆ Unstructured Evidence Attribution for Long Context Query Focused Summarization EMNLP 2025
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query, and extracting and citing evidence spans helps improve the trustworthiness of these summaries. Whereas previous work has focused on evidence citation with fixed levels of granularity (e.g. sentence, paragraph, document, etc.), we propose to extract unstructured (i.e., spans of any length) evidence in order to acquire more relevant and consistent evidence than in the fixed granularity case. We show how existing systems struggle to copy and properly cite unstructured evidence, which also tends to be "lost-in-the-middle". To help models perform this task, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel pipeline, which can be used as training supervision for unstructured evidence summarization. We demonstrate across 5 LLMs and 4 datasets spanning human written, synthetic, single, and multi-document settings that LLMs adapted with SUnsET generate more relevant and factually consistent evidence with their summaries, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries than baselines with no fine-tuning and fixed granularity evidence. We release SUnsET and our generation code to the public.
comment: EMNLP 2025 Main; 29 pages; 24 figures; 8 tables
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+2.3\% F1 and +3.5\% precision on Twitter2015). The source code is available at https://github.com/LHaoooo/DASCO .
♻ ☆ PairUni: Pairwise Training for Unified Multimodal Language Models
Unified vision-language models (UVLMs) must perform both understanding and generation within a single architecture, but these tasks rely on heterogeneous data and supervision, making it difficult to balance them during reinforcement learning (RL). We propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. We first use GPT-o3 to augment single-task data, generating captions for understanding samples and question-answer (QA) pairs for generation samples, forming aligned pairs from the same instance. Additionally, for each generation sample, we retrieve a semantically related understanding example to form a retrieved pair, linking different but related data points. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present Pair-GPRO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. We curate a high-quality dataset of 16K UG pairs named PairUG for RL fine-tuning and evaluate PairUni on the powerful Janus-Pro UVLMs. Our approach achieves balanced improvements on various UVLMs, outperforming strong UVLM RL baselines. Codes are available at https://github.com/Haochen-Wang409/PairUni.
comment: 21 pages, 11 figures, and 8 tables
♻ ☆ Evaluating the Role of Verifiers in Test-Time Scaling for Legal Reasoning Tasks EMNLP
Test-time scaling (TTS) techniques can improve the performance of large language models (LLMs) at the expense of additional computation and latency. While TTS has proven effective in formal domains such as mathematics and programming, its value in argumentative domains such as law remains underexplored. We present an empirical study of verifier-based TTS methods for legal multiple-choice QA (MCQA) across five benchmarks. Using a family of 7 reward models, we evaluate both outcome-level (Best-of-$N$) and process-level (tree search) verification under realistic low-$N$ budgets. Our analysis systematically investigates how verifier utility is affected by key properties such as domain specialization, model size, and supervision type (process-supervised PRMs vs. outcome-only ORMs), even when applied across different roles.
comment: Accepted to EMNLP - NLLP Workshop
♻ ☆ More of the Same: Persistent Representational Harms Under Increased Representation NeurIPS 2025
To recognize and mitigate the harms of generative AI systems, it is crucial to consider who is represented in the outputs of generative AI systems and how people are represented. A critical gap emerges when naively improving who is represented, as this does not imply bias mitigation efforts have been applied to address how people are represented. We critically examined this by investigating gender representation in occupation across state-of-the-art large language models. We first show evidence suggesting that over time there have been interventions to models altering the resulting gender distribution, and we find that women are more represented than men when models are prompted to generate biographies or personas. We then demonstrate that representational biases persist in how different genders are represented by examining statistically significant word differences across genders. This results in a proliferation of representational harms, stereotypes, and neoliberalism ideals that, despite existing interventions to increase female representation, reinforce existing systems of oppression.
comment: Accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) as a poster paper; 39 pages, 7 figures, 15 tables
♻ ☆ MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
comment: Accepted by NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ Wisdom and Delusion of LLM Ensembles for Code Generation and Repair
Today's pursuit of a single Large Language Model (LMM) for all software engineering tasks is resource-intensive and overlooks the potential benefits of complementarity, where different models contribute unique strengths. However, the degree to which coding LLMs complement each other and the best strategy for maximizing an ensemble's potential are unclear, leaving practitioners without a clear path to move beyond single-model systems. To address this gap, we empirically compare ten individual LLMs from five families, and three ensembles of these LLMs across three software engineering benchmarks covering code generation and program repair. We assess the complementarity between models and the performance gap between the best individual model and the ensembles. Next, we evaluate various selection heuristics to identify correct solutions from an ensemble's candidate pool. We find that the theoretical upperbound for an ensemble's performance can be 83% above the best single model. Our results show that consensus-based strategies for selecting solutions fall into a "popularity trap," amplifying common but incorrect outputs. In contrast, a diversity-based strategy realizes up to 95% of this theoretical potential, and proves effective even in small two-model ensembles, enabling a cost-efficient way to enhance performance by leveraging multiple LLMs.
comment: Added Acknowledgments section and hyphenated last names
♻ ☆ TwinVoice: A Multi-dimensional Benchmark Towards Digital Twins via LLM Persona Simulation
Large Language Models (LLMs) are exhibiting emergent human-like abilities and are increasingly envisioned as the foundation for simulating an individual's communication style, behavioral tendencies, and personality traits. However, current evaluations of LLM-based persona simulation remain limited: most rely on synthetic dialogues, lack systematic frameworks, and lack analysis of the capability requirement. To address these limitations, we introduce TwinVoice, a comprehensive benchmark for assessing persona simulation across diverse real-world contexts. TwinVoice encompasses three dimensions: Social Persona (public social interactions), Interpersonal Persona (private dialogues), and Narrative Persona (role-based expression). It further decomposes the evaluation of LLM performance into six fundamental capabilities, including opinion consistency, memory recall, logical reasoning, lexical fidelity, persona tone, and syntactic style. Experimental results reveal that while advanced models achieve moderate accuracy in persona simulation, they still fall short of capabilities such as syntactic style and memory recall. Consequently, the average performance achieved by LLMs remains considerably below the human baseline.
comment: Main paper: 11 pages, 3 figures, 6 tables. Appendix: 28 pages. Bangde Du and Minghao Guo contributed equally. Corresponding authors: Ziyi Ye (ziyiye@fudan.edu.cn), Qingyao Ai (aiqy@tsinghua.edu.cn)
♻ ☆ ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 22.6 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.
comment: https://github.com/Chen-GX/ReForm
♻ ☆ Towards a Method for Synthetic Generation of Persons with Aphasia Transcripts
In aphasia research, Speech-Language Pathologists (SLPs) devote extensive time to manually coding speech samples using Correct Information Units (CIUs), a measure of how informative an individual sample of speech is. Developing automated systems to recognize aphasic language is limited by data scarcity. For example, only about 600 transcripts are available in AphasiaBank yet billions of tokens are used to train large language models (LLMs). In the broader field of machine learning (ML), researchers increasingly turn to synthetic data when such are sparse. Therefore, this study constructs and validates two methods to generate synthetic transcripts of the AphasiaBank Cat Rescue picture description task. One method leverages a procedural programming approach while the second uses Mistral 7b Instruct and Llama 3.1 8b Instruct LLMs. The methods generate transcripts across four severity levels (Mild, Moderate, Severe, Very Severe) through word dropping, filler insertion, and paraphasia substitution. Overall, we found, compared to human-elicited transcripts, Mistral 7b Instruct best captures key aspects of linguistic degradation observed in aphasia, showing realistic directional changes in NDW, word count, and word length amongst the synthetic generation methods. Based on the results, future work should plan to create a larger dataset, fine-tune models for better aphasic representation, and have SLPs assess the realism and usefulness of the synthetic transcripts.
comment: 19 pages, 1 figure, 7 tables
♻ ☆ Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
♻ ☆ BhashaBench V1: A Comprehensive Benchmark for the Quadrant of Indic Domains
The rapid advancement of large language models(LLMs) has intensified the need for domain and culture specific evaluation. Existing benchmarks are largely Anglocentric and domain-agnostic, limiting their applicability to India-centric contexts. To address this gap, we introduce BhashaBench V1, the first domain-specific, multi-task, bilingual benchmark focusing on critical Indic knowledge systems. BhashaBench V1 contains 74,166 meticulously curated question-answer pairs, with 52,494 in English and 21,672 in Hindi, sourced from authentic government and domain-specific exams. It spans four major domains: Agriculture, Legal, Finance, and Ayurveda, comprising 90+ subdomains and covering 500+ topics, enabling fine-grained evaluation. Evaluation of 29+ LLMs reveals significant domain and language specific performance gaps, with especially large disparities in low-resource domains. For instance, GPT-4o achieves 76.49% overall accuracy in Legal but only 59.74% in Ayurveda. Models consistently perform better on English content compared to Hindi across all domains. Subdomain-level analysis shows that areas such as Cyber Law, International Finance perform relatively well, while Panchakarma, Seed Science, and Human Rights remain notably weak. BhashaBench V1 provides a comprehensive dataset for evaluating large language models across India's diverse knowledge domains. It enables assessment of models' ability to integrate domain-specific knowledge with bilingual understanding. All code, benchmarks, and resources are publicly available to support open research.
♻ ☆ MindGYM: What Matters in Question Synthesis for Thinking-Centric Fine-Tuning? NeurIPS'25
Large foundation models face challenges in acquiring transferable, structured thinking abilities, especially when supervised with rigid templates or crowd-annotated instruction datasets. Unlike prior approaches, we focus on a thinking-centric data synthesis paradigm that enables models to evolve through self-generated, cognitively guided data. We propose MindGYM, a structured and scalable framework for question synthesis, composed of: (1) Cognitive Thinking Process Injection, which infuses high-level reasoning objectives to shape the model's synthesis behavior; (2) Seed Single-Hop Question Synthesis, generating atomic questions from diverse semantic types to encourage broader thinking; and (3) Challenging Multi-Hop QA Synthesis, composing more complex multi-hop questions based on QA seeds for deeper reasoning. Detailed analysis shows that synthetic data generated by our method achieves 16.7% higher average quality and 67.91% lower quality variance compared to baseline sources, highlighting that both high-quality and self-contained data are essential for effective, thinking-oriented fine-tuning. MindGYM improves performance on six reasoning benchmarks, achieving gains of up to 16% on MathVision using only 400 data samples, and generalizable improvements across different model sizes and architectures. MindGYM underscores the viability of self-challenging mechanisms in refining large model capabilities while minimizing human intervention and resource demands. Code and data are released to promote data-centric research into self-evolving foundation models driven by their internal reasoning capabilities.
comment: Accepted by NeurIPS'25. 30 pages, 2 figures, 13 tables
♻ ☆ UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in Omni Models
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we introduce a novel, high-quality, and UNified Omni model benchmark, UNO-Bench. This benchmark is designed to effectively evaluate both UNi-modal and Omni-modal capabilities under a unified ability taxonomy, spanning 44 task types and 5 modality combinations. It includes 1250 human curated samples for omni-modal with 98% cross-modality solvability, and 2480 enhanced uni-modal samples. The human-generated dataset is well-suited to real-world scenarios, particularly within the Chinese context, whereas the automatically compressed dataset offers a 90% increase in speed and maintains 98% consistency across 18 public benchmarks. In addition to traditional multi-choice questions, we propose an innovative multi-step open-ended question format to assess complex reasoning. A general scoring model is incorporated, supporting 6 question types for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models.
comment: v3: Switch the paper template. Work in progress. Github: https://github.com/meituan-longcat/UNO-Bench Hugging Face: https://huggingface.co/datasets/meituan-longcat/UNO-Bench
♻ ☆ Beyond Isolated Dots: Benchmarking Structured Table Construction as Deep Knowledge Extraction
With the emergence of large language models (LLMs), there is an expectation that LLMs can effectively extract explicit information from complex real-world documents (e.g., papers, reports). However, most LLMs generate paragraph-style answers that are chaotic, disorganized, and untraceable. To bridge this gap, we introduce the Arranged and Organized Extraction Benchmark (AOE), a new bilingual benchmark with data and documents of varying lengths designed to systematically evaluate the ability of LLMs to comprehend fragmented documents and reconstruct isolated information into one organized table. Unlike conventional text-to-table tasks, which rely on fixed schema and narrow task domains, AOE includes 11 carefully crafted tasks across three diverse domains, requiring models to generate context-specific schema tailored to varied input queries. In the experiment, we evaluated both open-source and closed-source state-of-the-art LLMs. The results show that even the most advanced models struggled significantly. The benchmark is available at https://anonymous.4open.science/r/AOE-Benchmark/.
♻ ☆ Large Language Models Have Intrinsic Meta-Cognition, but Need a Good Lens EMNLP 2025
Previous research has primarily focused on the cognitive error detection capabilities of Large Language Models (LLMs), often prompting them to analyze mistakes in reasoning chains. However, few studies have examined the meta-cognitive abilities of LLMs (e.g., their self-awareness of step errors), which are crucial for their reliability. While studies on LLM self-evaluation present some measures, such as perplexity, which can reflect the answer correctness and be viewed as the lens of meta-cognition, they lack step-level analysis and adaptation. This paper studies the evaluation of LLM meta-cognition using the current lenses and how to improve these lenses. Specifically, we propose AutoMeco, an Automated Meta-cognition Evaluation framework for benchmarking the existing lenses. Furthermore, a training-free Markovian Intrinsic Reward Adjustment strategy, MIRA, is proposed to boost current meta-cognition lenses. Experimental results on three mathematical reasoning datasets and three LLMs show the reasonableness of AutoMeco by comparing it with Best-of-N verification. Moreover, the meta-cognition ability of LLMs can be better evaluated using MIRA.
comment: Accepted to EMNLP 2025
♻ ☆ Hysteresis Activation Function for Efficient Inference NeurIPS
The widely used ReLU is favored for its hardware efficiency, {as the implementation at inference is a one bit sign case,} yet suffers from issues such as the ``dying ReLU'' problem, where during training, neurons fail to activate and constantly remain at zero, as highlighted by Lu et al. Traditional approaches to mitigate this issue often introduce more complex and less hardware-friendly activation functions. In this work, we propose a Hysteresis Rectified Linear Unit (HeLU), an efficient activation function designed to address the ``dying ReLU'' problem with minimal complexity. Unlike traditional activation functions with fixed thresholds for training and inference, HeLU employs a variable threshold that refines the backpropagation. This refined mechanism allows simpler activation functions to achieve competitive performance comparable to their more complex counterparts without introducing unnecessary complexity or requiring inductive biases. Empirical evaluations demonstrate that HeLU enhances model generalization across diverse datasets, offering a promising solution for efficient and effective inference suitable for a wide range of neural network architectures.
comment: Accepted to 4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024)
♻ ☆ Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data NeurIPS'25
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this work, we investigate the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-design for LLMs.
comment: Accepted by NeurIPS'25 main track. 47 pages, 21 figures, 32 tables
♻ ☆ SEA-LION: Southeast Asian Languages in One Network AACL 2025
Recently, Large Language Models (LLMs) have dominated much of the artificial intelligence scene with their ability to process and generate natural languages. However, the majority of LLM research and development remains English-centric, leaving low-resource languages such as those in the Southeast Asian (SEA) region under-represented. To address this representation gap, we introduce Llama-SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, two cutting-edge multilingual LLMs designed for SEA languages. The SEA-LION family of LLMs supports 11 SEA languages, namely English, Chinese, Indonesian, Vietnamese, Malay, Thai, Burmese, Lao, Filipino, Tamil, and Khmer. Our work leverages large-scale multilingual continued pre-training with a comprehensive post-training regime involving multiple stages of instruction fine-tuning, alignment, and model merging. Evaluation results on multilingual benchmarks indicate that our models achieve state-of-the-art performance across LLMs supporting SEA languages. We open-source the models to benefit the wider SEA community.
comment: Accepted at IJCNLP-AACL 2025 (Main Track). We released our model at https://huggingface.co/collections/aisingapore/sea-lionv3-672589a39cdadd6a5b199581
♻ ☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
♻ ☆ How Efficient Are Diffusion Language Models? A Critical Examination of Efficiency Evaluation Practices
Diffusion language models (DLMs) have emerged as a promising alternative to the long-dominant autoregressive (AR) paradigm, offering a parallelable decoding process that could yield greater efficiency. Yet, in practice, current open-source DLMs often underperform their AR counterparts in speed, limiting their real-world utility. This work presents a systematic study of DLM efficiency, identifying key issues in prior evaluation methods. Through empirical benchmarking and a roofline-based theoretical analysis, we demonstrate that AR models generally achieve higher throughput, while DLMs consistently lag. We also investigate acceleration strategies, finding that techniques like dual cache and parallel decoding mainly offer gains at small batch sizes, with their benefits diminishing upon scaling. Our findings underscore the necessity of robust evaluation methods and improved acceleration strategies to advance research on DLMs.
comment: Withdrawn by the authors to better delineate the related work from the paper's original contributions
♻ ☆ SPARTA ALIGNMENT: Collectively Aligning Multiple Language Models through Combat NeurIPS 2025
We propose SPARTA ALIGNMENT, an algorithm to collectively align multiple LLMs through competition and combat. To complement a single model's lack of diversity in generation and biases in evaluation, multiple LLMs form a "sparta tribe" to compete against each other in fulfilling instructions while serving as judges for the competition of others. For each iteration, one instruction and two models are selected for a duel, the other models evaluate the two responses, and their evaluation scores are aggregated through a adapted elo-ranking based reputation system, where winners/losers of combat gain/lose weight in evaluating others. The peer-evaluated combat results then become preference pairs where the winning response is preferred over the losing one, and all models learn from these preferences at the end of each iteration. SPARTA ALIGNMENT enables the self-evolution of multiple LLMs in an iterative and collective competition process. Extensive experiments demonstrate that SPARTA ALIGNMENT outperforms initial models and 4 self-alignment baselines across 10 out of 12 tasks and datasets with 7.0% average improvement. Further analysis reveals that SPARTA ALIGNMENT generalizes more effectively to unseen tasks and leverages the expertise diversity of participating models to produce more logical, direct and informative outputs.
comment: NeurIPS 2025
♻ ☆ IGD: Token Decisiveness Modeling via Information Gain in LLMs for Personalized Recommendation
Large Language Models (LLMs) have shown strong potential for recommendation by framing item prediction as a token-by-token language generation task. However, existing methods treat all item tokens equally, simply pursuing likelihood maximization during both optimization and decoding. This overlooks crucial token-level differences in decisiveness-many tokens contribute little to item discrimination yet can dominate optimization or decoding. To quantify token decisiveness, we propose a novel perspective that models item generation as a decision process, measuring token decisiveness by the Information Gain (IG) each token provides in reducing uncertainty about the generated item. Our empirical analysis reveals that most tokens have low IG but often correspond to high logits, disproportionately influencing training loss and decoding, which may impair model performance. Building on these insights, we introduce an Information Gain-based Decisiveness-aware Token handling (IGD) strategy that integrates token decisiveness into both tuning and decoding. Specifically, IGD downweights low-IG tokens during tuning and rebalances decoding to emphasize tokens with high IG. In this way, IGD moves beyond pure likelihood maximization, effectively prioritizing high-decisiveness tokens. Extensive experiments on four benchmark datasets with two LLM backbones demonstrate that IGD consistently improves recommendation accuracy, achieving significant gains on widely used ranking metrics compared to strong baselines.
♻ ☆ ClueAnchor: Clue-Anchored Knowledge Reasoning Exploration and Optimization for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge to improve factuality. However, existing RAG systems frequently underutilize the retrieved documents, failing to extract and integrate the key clues needed to support faithful and interpretable reasoning, especially in cases where relevant evidence is implicit, scattered, or obscured by noise. To address this issue, we propose ClueAnchor, a novel framework for enhancing RAG via clue-anchored reasoning exploration and optimization. ClueAnchor extracts key clues from retrieved content and generates multiple reasoning paths based on different knowledge configurations, optimizing the model by selecting the most appropriate reasoning path for the given context through reward-based preference optimization. Experiments show that ClueAnchor significantly outperforms prior RAG baselines in the completeness and robustness of reasoning. Further analysis confirms its strong resilience to noisy or partially relevant retrieved content, as well as its capability to identify supporting evidence even in the absence of explicit clue supervision during inference. All codes are available at https://github.com/thunlp/ClueAnchor.
♻ ☆ Nek Minit: Harnessing Pragmatic Metacognitive Prompting for Explainable Sarcasm Detection of Australian and Indian English ALT
Sarcasm is a challenge to sentiment analysis because of the incongruity between stated and implied sentiment. The challenge is exacerbated when the implication may be relevant to a specific country or geographical region. Pragmatic metacognitive prompting (PMP) is a cognition-inspired technique that has been used for pragmatic reasoning. In this paper, we harness PMP for explainable sarcasm detection for Australian and Indian English, alongside a benchmark dataset for standard English. We manually add sarcasm explanations to an existing sarcasm-labeled dataset for Australian and Indian English called BESSTIE, and compare the performance for explainable sarcasm detection for them with FLUTE, a standard English dataset containing sarcasm explanations. Our approach utilising PMP when evaluated on two open-weight LLMs (GEMMA and LLAMA) achieves statistically significant performance improvement across all tasks and datasets when compared with four alternative prompting strategies. We also find that alternative techniques such as agentic prompting mitigate context-related failures by enabling external knowledge retrieval. The focused contribution of our work is utilising PMP in generating sarcasm explanations for varieties of English.
comment: ALTA 2025 (Best Paper Honorable Mention). Camera-ready
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
♻ ☆ The Scales of Justitia: A Comprehensive Survey on Safety Evaluation of LLMs
With the rapid advancement of artificial intelligence, Large Language Models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), including content generation, human-computer interaction, machine translation, and code generation. However, their widespread deployment has also raised significant safety concerns. In particular, LLM-generated content can exhibit unsafe behaviors such as toxicity, bias, or misinformation, especially in adversarial contexts, which has attracted increasing attention from both academia and industry. Although numerous studies have attempted to evaluate these risks, a comprehensive and systematic survey on safety evaluation of LLMs is still lacking. This work aims to fill this gap by presenting a structured overview of recent advances in safety evaluation of LLMs. Specifically, we propose a four-dimensional taxonomy: (i) Why to evaluate, which explores the background of safety evaluation of LLMs, how they differ from general LLMs evaluation, and the significance of such evaluation; (ii) What to evaluate, which examines and categorizes existing safety evaluation tasks based on key capabilities, including dimensions such as toxicity, robustness, ethics, bias and fairness, truthfulness, and related aspects; (iii) Where to evaluate, which summarizes the evaluation metrics, datasets and benchmarks currently used in safety evaluations; (iv) How to evaluate, which reviews existing mainstream evaluation methods based on the roles of the evaluators and some evaluation frameworks that integrate the entire evaluation pipeline. Finally, we identify the challenges in safety evaluation of LLMs and propose promising research directions to promote further advancement in this field. We emphasize the necessity of prioritizing safety evaluation to ensure the reliable and responsible deployment of LLMs in real-world applications.
comment: 20 pages, preprint
♻ ☆ Similarity-Distance-Magnitude Activations
We introduce the Similarity-Distance-Magnitude (SDM) activation function, a more robust and interpretable formulation of the standard softmax activation function, adding Similarity (i.e., correctly predicted depth-matches into training) awareness and Distance-to-training-distribution awareness to the existing output Magnitude (i.e., decision-boundary) awareness, and enabling interpretability-by-exemplar via dense matching. We further introduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical CDFs via the SDM activation, to control the class- and prediction-conditional accuracy among selective classifications. When used as the final-layer activation over pre-trained language models for selective classification, the SDM estimator is more robust to co-variate shifts and out-of-distribution inputs than existing calibration methods using softmax activations, while remaining informative over in-distribution data.
comment: 18 pages, 5 tables, 1 algorithm. arXiv admin note: substantial text overlap with arXiv:2502.20167
♻ ☆ TEXT2DB: Integration-Aware Information Extraction with Large Language Model Agents
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE TEXT2DB that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-PlanAnalyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation. Source code: https://github.com/yzjiao/Text2DB
comment: Source code: https://github.com/yzjiao/Text2DB
♻ ☆ Towards Predicting Any Human Trajectory In Context NeurIPS 2025
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, the need to fine-tune for each new scenario is often impractical for deployment on edge devices. To address this challenge, we introduce \paper, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables adaptation without fine-tuning on the scenario-specific data at inference time without requiring weight updates. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. Project Page: https://fujiry0.github.io/TrajICL-project-page/.
comment: NeurIPS 2025
♻ ☆ Speak & Spell: LLM-Driven Controllable Phonetic Error Augmentation for Robust Dialogue State Tracking AACL
Dialogue State Tracking (DST) is a key part of task-oriented dialogue systems, identifying important information in conversations. However, its accuracy drops significantly in spoken dialogue environments due to named entity errors from Automatic Speech Recognition (ASR) systems. We introduce a simple yet effective data augmentation method that targets those entities to improve the robustness of DST model. Our novel method can control the placement of errors using keyword-highlighted prompts while introducing phonetically similar errors. As a result, our method generated sufficient error patterns on keywords, leading to improved accuracy in noised and low-accuracy ASR environments.
comment: Accepted to AACL-IJCNLP 2025
♻ ☆ Are LLMs Rigorous Logical Reasoners? Empowering Natural Language Proof Generation by Stepwise Decoding with Contrastive Learning AACL 2025
Logical reasoning is a pivotal component in the field of artificial intelligence. Proof planning, particularly in contexts requiring the validation of explanation accuracy, continues to present challenges. The recent advancement of large language models (LLMs) has led to significant progress in natural language proof planning, evolving from one-stage generators to more complex three-stage systems that include additional searchers or verifiers. While these assisted methods improve the quality of generated results, they also introduce increased search efforts and computational costs. Furthermore, the generative process itself remains underexplored. In this study, we propose a stepwise decoding approach augmented by contrastive learning to address two common errors encountered during the LLM generator's decoding process. We fine-tune the language model using both vanilla and enhanced hard negatives to mitigate these decoding errors. Empirical results demonstrate the effectiveness of our strategy. Additionally, our further analysis reveals that even larger LLMs still struggle to generate rigorous logical chains.
comment: 15 pages, 2 figures, 11 tables. Accepted by AACL 2025 main conference
♻ ☆ Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Reinforcement Learning (RL) algorithms sample multiple n>1 solution attempts for each problem and reward them independently. This optimizes for pass@1 performance and prioritizes the strength of isolated samples at the expense of the diversity and collective utility of sets of samples. This under-utilizes the sampling capacity, limiting exploration and eventual improvement on harder examples. As a fix, we propose Pass-at-k Policy Optimization (PKPO), a transformation on the final rewards which leads to direct optimization of pass@k performance, thus optimizing for sets of samples that maximize reward when considered jointly. Our contribution is to derive novel low variance unbiased estimators for pass@k and its gradient, in both the binary and continuous reward settings. We show optimization with our estimators reduces to standard RL with rewards that have been jointly transformed by a stable and efficient transformation function. While previous efforts are restricted to k=n, ours is the first to enable robust optimization of pass@k for any arbitrary k <= n. Moreover, instead of trading off pass@1 performance for pass@k gains, our method allows annealing k during training, optimizing both metrics and often achieving strong pass@1 numbers alongside significant pass@k gains. We validate our reward transformations on toy experiments, which reveal the variance reducing properties of our formulations. We also include real-world examples using the open-source LLM, GEMMA-2. We find that our transformation effectively optimizes for the target k. Furthermore, higher k values enable solving more and harder problems, while annealing k boosts both the pass@1 and pass@k . Crucially, for challenging task sets where conventional pass@1 optimization stalls, our pass@k approach unblocks learning, likely due to better exploration by prioritizing joint utility over the utility of individual samples.
♻ ☆ Neural Networks for Learnable and Scalable Influence Estimation of Instruction Fine-Tuning Data
Influence functions provide crucial insights into model training, but existing methods suffer from large computational costs and limited generalization. Particularly, recent works have proposed various metrics and algorithms to calculate the influence of data using language models, which do not scale well with large models and datasets. This is because of the expensive forward and backward passes required for computation, substantial memory requirements to store large models, and poor generalization of influence estimates to new data. In this paper, we explore the use of small neural networks -- which we refer to as the InfluenceNetwork -- to estimate influence values, achieving up to 99% cost reduction. Our evaluation demonstrates that influence values can be estimated with models just 0.0027% the size of full language models (we use 7B and 8B versions). We apply our algorithm of estimating influence values (called NN-CIFT: Neural Networks for effiCient Instruction Fine-Tuning) to the downstream task of subset selection for general instruction fine-tuning. In our study, we include four state-of-the-art influence functions and show no compromise in performance, despite large speedups, between NN-CIFT and the original influence functions. We provide an in-depth hyperparameter analyses of NN-CIFT. The code for our method can be found here: https://github.com/agarwalishika/NN-CIFT.
♻ ☆ Large Language Models Report Subjective Experience Under Self-Referential Processing
Large language models sometimes produce structured, first-person descriptions that explicitly reference awareness or subjective experience. To better understand this behavior, we investigate one theoretically motivated condition under which such reports arise: self-referential processing, a computational motif emphasized across major theories of consciousness. Through a series of controlled experiments on GPT, Claude, and Gemini model families, we test whether this regime reliably shifts models toward first-person reports of subjective experience, and how such claims behave under mechanistic and behavioral probes. Four main results emerge: (1) Inducing sustained self-reference through simple prompting consistently elicits structured subjective experience reports across model families. (2) These reports are mechanistically gated by interpretable sparse-autoencoder features associated with deception and roleplay: surprisingly, suppressing deception features sharply increases the frequency of experience claims, while amplifying them minimizes such claims. (3) Structured descriptions of the self-referential state converge statistically across model families in ways not observed in any control condition. (4) The induced state yields significantly richer introspection in downstream reasoning tasks where self-reflection is only indirectly afforded. While these findings do not constitute direct evidence of consciousness, they implicate self-referential processing as a minimal and reproducible condition under which large language models generate structured first-person reports that are mechanistically gated, semantically convergent, and behaviorally generalizable. The systematic emergence of this pattern across architectures makes it a first-order scientific and ethical priority for further investigation.
♻ ☆ Let LRMs Break Free from Overthinking via Self-Braking Tuning NeurIPS 2025
Large reasoning models (LRMs), such as OpenAI o1 and DeepSeek-R1, have significantly enhanced their reasoning capabilities by generating longer chains of thought, demonstrating outstanding performance across a variety of tasks. However, this performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process, leading to high computational overhead and exacerbating the issue of overthinking. Although numerous existing approaches aim to address the problem of overthinking, they often rely on external interventions. In this paper, we propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process, thus eliminating the reliance on external control mechanisms. We construct a set of overthinking identification metrics based on standard answers and design a systematic method to detect redundant reasoning. This method accurately identifies unnecessary steps within the reasoning trajectory and generates training signals for learning self-regulation behaviors. Building on this foundation, we develop a complete strategy for constructing data with adaptive reasoning lengths and introduce an innovative braking prompt mechanism that enables the model to naturally learn when to terminate reasoning at an appropriate point. Experiments across mathematical benchmarks (AIME, AMC, MATH500, GSM8K) demonstrate that our method reduces token consumption by up to 60% while maintaining comparable accuracy to unconstrained models.
comment: Accepted to NeurIPS 2025; Camera ready version, 10 pages. Github:https://github.com/ZJU-REAL/Self-Braking-Tuning Project Page: https://ZJU-REAL.github.io/SBT
♻ ☆ Model Provenance Testing for Large Language Models
Large language models are increasingly customized through fine-tuning and other adaptations, creating challenges in enforcing licensing terms and managing downstream impacts. Tracking model origins is crucial both for protecting intellectual property and for identifying derived models when biases or vulnerabilities are discovered in foundation models. We address this challenge by developing a framework for testing model provenance: Whether one model is derived from another. Our approach is based on the key observation that real-world model derivations preserve significant similarities in model outputs that can be detected through statistical analysis. Using only black-box access to models, we employ multiple hypothesis testing to compare model similarities against a baseline established by unrelated models. On two comprehensive real-world benchmarks spanning models from 30M to 4B parameters and comprising over 600 models, our tester achieves 90-95% precision and 80-90% recall in identifying derived models. These results demonstrate the viability of systematic provenance verification in production environments even when only API access is available.
♻ ☆ When Agents Trade: Live Multi-Market Trading Benchmark for LLM Agents
Although Large Language Model (LLM)-based agents are increasingly used in financial trading, it remains unclear whether they can reason and adapt in live markets, as most studies test models instead of agents, cover limited periods and assets, and rely on unverified data. To address these gaps, we introduce Agent Market Arena (AMA), the first lifelong, real-time benchmark for evaluating LLM-based trading agents across multiple markets. AMA integrates verified trading data, expert-checked news, and diverse agent architectures within a unified trading framework, enabling fair and continuous comparison under real conditions. It implements four agents, including InvestorAgent as a single-agent baseline, TradeAgent and HedgeFundAgent with different risk styles, and DeepFundAgent with memory-based reasoning, and evaluates them across GPT-4o, GPT-4.1, Claude-3.5-haiku, Claude-sonnet-4, and Gemini-2.0-flash. Live experiments on both cryptocurrency and stock markets demonstrate that agent frameworks display markedly distinct behavioral patterns, spanning from aggressive risk-taking to conservative decision-making, whereas model backbones contribute less to outcome variation. AMA thus establishes a foundation for rigorous, reproducible, and continuously evolving evaluation of financial reasoning and trading intelligence in LLM-based agents.
♻ ☆ ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models NeurIPS 2025
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
comment: NeurIPS 2025 Datasets & Benchmarks
♻ ☆ Evaluating Emotion Recognition in Spoken Language Models on Emotionally Incongruent Speech ICASSP 2026
Advancements in spoken language processing have driven the development of spoken language models (SLMs), designed to achieve universal audio understanding by jointly learning text and audio representations for a wide range of tasks. Although promising results have been achieved, there is growing discussion regarding these models' generalization capabilities and the extent to which they truly integrate audio and text modalities in their internal representations. In this work, we evaluate four SLMs on the task of speech emotion recognition using a dataset of emotionally incongruent speech samples, a condition under which the semantic content of the spoken utterance conveys one emotion while speech expressiveness conveys another. Our results indicate that SLMs rely predominantly on textual semantics rather than speech emotion to perform the task, indicating that text-related representations largely dominate over acoustic representations. We release both the code and the Emotionally Incongruent Synthetic Speech dataset (EMIS) to the community.
comment: Submitted to IEEE ICASSP 2026. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Improving LLM Safety Alignment with Dual-Objective Optimization ICML 2025
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks. Direct preference optimization (DPO), a widely deployed alignment method, exhibits limitations in both experimental and theoretical contexts as its loss function proves suboptimal for refusal learning. Through gradient-based analysis, we identify these shortcomings and propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge. This approach significantly increases LLM robustness against a wide range of jailbreak attacks, including prefilling, suffix, and multi-turn attacks across both in-distribution and out-of-distribution scenarios. Furthermore, we introduce a method to emphasize critical refusal tokens by incorporating a reward-based token-level weighting mechanism for refusal learning, which further improves the robustness against adversarial exploits. Our research also suggests that robustness to jailbreak attacks is correlated with token distribution shifts in the training process and internal representations of refusal and harmful tokens, offering valuable directions for future research in LLM safety alignment. The code is available at https://github.com/wicai24/DOOR-Alignment
comment: ICML 2025
♻ ☆ Language Model Preference Evaluation with Multiple Weak Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoise), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED 's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
Computer Vision and Pattern Recognition 128
☆ Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark
Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io
comment: Project Page: https://video-cof.github.io
☆ OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes
There are two prevalent ways to constructing 3D scenes: procedural generation and 2D lifting. Among them, panorama-based 2D lifting has emerged as a promising technique, leveraging powerful 2D generative priors to produce immersive, realistic, and diverse 3D environments. In this work, we advance this technique to generate graphics-ready 3D scenes suitable for physically based rendering (PBR), relighting, and simulation. Our key insight is to repurpose 2D generative models for panoramic perception of geometry, textures, and PBR materials. Unlike existing 2D lifting approaches that emphasize appearance generation and ignore the perception of intrinsic properties, we present OmniX, a versatile and unified framework. Based on a lightweight and efficient cross-modal adapter structure, OmniX reuses 2D generative priors for a broad range of panoramic vision tasks, including panoramic perception, generation, and completion. Furthermore, we construct a large-scale synthetic panorama dataset containing high-quality multimodal panoramas from diverse indoor and outdoor scenes. Extensive experiments demonstrate the effectiveness of our model in panoramic visual perception and graphics-ready 3D scene generation, opening new possibilities for immersive and physically realistic virtual world generation.
comment: Project page: https://yukun-huang.github.io/OmniX/
☆ Masked Diffusion Captioning for Visual Feature Learning EMNLP 2025
We learn visual features by captioning images with an image-conditioned masked diffusion language model, a formulation we call masked diffusion captioning (MDC). During training, text tokens in each image-caption pair are masked at a randomly chosen ratio, and a decoder conditioned on visual features is trained to reconstruct the original text. After training, the learned visual features can be applied to downstream vision tasks. Unlike autoregressive captioning, the strength of the visual learning signal in MDC does not depend on each token's position in the sequence, reducing the need for auxiliary objectives. Linear probing experiments across a variety of academic-scale models and datasets show that the learned visual features are competitive with those produced by autoregressive and contrastive approaches.
comment: EMNLP 2025 (Findings). Project page: https://cfeng16.github.io/mdlm4vfl/
☆ SEE4D: Pose-Free 4D Generation via Auto-Regressive Video Inpainting
Immersive applications call for synthesizing spatiotemporal 4D content from casual videos without costly 3D supervision. Existing video-to-4D methods typically rely on manually annotated camera poses, which are labor-intensive and brittle for in-the-wild footage. Recent warp-then-inpaint approaches mitigate the need for pose labels by warping input frames along a novel camera trajectory and using an inpainting model to fill missing regions, thereby depicting the 4D scene from diverse viewpoints. However, this trajectory-to-trajectory formulation often entangles camera motion with scene dynamics and complicates both modeling and inference. We introduce SEE4D, a pose-free, trajectory-to-camera framework that replaces explicit trajectory prediction with rendering to a bank of fixed virtual cameras, thereby separating camera control from scene modeling. A view-conditional video inpainting model is trained to learn a robust geometry prior by denoising realistically synthesized warped images and to inpaint occluded or missing regions across virtual viewpoints, eliminating the need for explicit 3D annotations. Building on this inpainting core, we design a spatiotemporal autoregressive inference pipeline that traverses virtual-camera splines and extends videos with overlapping windows, enabling coherent generation at bounded per-step complexity. We validate See4D on cross-view video generation and sparse reconstruction benchmarks. Across quantitative metrics and qualitative assessments, our method achieves superior generalization and improved performance relative to pose- or trajectory-conditioned baselines, advancing practical 4D world modeling from casual videos.
comment: 26 pages; 21 figures; 3 tables; project page: https://see-4d.github.io/
☆ Scaling Image Geo-Localization to Continent Level NeurIPS 2025
Determining the precise geographic location of an image at a global scale remains an unsolved challenge. Standard image retrieval techniques are inefficient due to the sheer volume of images (>100M) and fail when coverage is insufficient. Scalable solutions, however, involve a trade-off: global classification typically yields coarse results (10+ kilometers), while cross-view retrieval between ground and aerial imagery suffers from a domain gap and has been primarily studied on smaller regions. This paper introduces a hybrid approach that achieves fine-grained geo-localization across a large geographic expanse the size of a continent. We leverage a proxy classification task during training to learn rich feature representations that implicitly encode precise location information. We combine these learned prototypes with embeddings of aerial imagery to increase robustness to the sparsity of ground-level data. This enables direct, fine-grained retrieval over areas spanning multiple countries. Our extensive evaluation demonstrates that our approach can localize within 200m more than 68\% of queries of a dataset covering a large part of Europe. The code is publicly available at https://scaling-geoloc.github.io.
comment: NeurIPS 2025
☆ The Quest for Generalizable Motion Generation: Data, Model, and Evaluation
Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.
☆ HEIR: Learning Graph-Based Motion Hierarchies
Hierarchical structures of motion exist across research fields, including computer vision, graphics, and robotics, where complex dynamics typically arise from coordinated interactions among simpler motion components. Existing methods to model such dynamics typically rely on manually-defined or heuristic hierarchies with fixed motion primitives, limiting their generalizability across different tasks. In this work, we propose a general hierarchical motion modeling method that learns structured, interpretable motion relationships directly from data. Our method represents observed motions using graph-based hierarchies, explicitly decomposing global absolute motions into parent-inherited patterns and local motion residuals. We formulate hierarchy inference as a differentiable graph learning problem, where vertices represent elemental motions and directed edges capture learned parent-child dependencies through graph neural networks. We evaluate our hierarchical reconstruction approach on three examples: 1D translational motion, 2D rotational motion, and dynamic 3D scene deformation via Gaussian splatting. Experimental results show that our method reconstructs the intrinsic motion hierarchy in 1D and 2D cases, and produces more realistic and interpretable deformations compared to the baseline on dynamic 3D Gaussian splatting scenes. By providing an adaptable, data-driven hierarchical modeling paradigm, our method offers a formulation applicable to a broad range of motion-centric tasks. Project Page: https://light.princeton.edu/HEIR/
comment: Code link: https://github.com/princeton-computational-imaging/HEIR
☆ Clone Deterministic 3D Worlds with Geometrically-Regularized World Models
A world model is an internal model that simulates how the world evolves. Given past observations and actions, it predicts the future of both the embodied agent and its environment. Accurate world models are essential for enabling agents to think, plan, and reason effectively in complex, dynamic settings. Despite rapid progress, current world models remain brittle and degrade over long horizons. We argue that a central cause is representation quality: exteroceptive inputs (e.g., images) are high-dimensional, and lossy or entangled latents make dynamics learning unnecessarily hard. We therefore ask whether improving representation learning alone can substantially improve world-model performance. In this work, we take a step toward building a truly accurate world model by addressing a fundamental yet open problem: constructing a model that can fully clone and overfit to a deterministic 3D world. We propose Geometrically-Regularized World Models (GRWM), which enforces that consecutive points along a natural sensory trajectory remain close in latent representation space. This approach yields significantly improved latent representations that align closely with the true topology of the environment. GRWM is plug-and-play, requires only minimal architectural modification, scales with trajectory length, and is compatible with diverse latent generative backbones. Across deterministic 3D settings and long-horizon prediction tasks, GRWM significantly increases rollout fidelity and stability. Analyses show that its benefits stem from learning a latent manifold with superior geometric structure. These findings support a clear takeaway: improving representation learning is a direct and useful path to robust world models, delivering reliable long-horizon predictions without enlarging the dynamics module.
☆ ChartAB: A Benchmark for Chart Grounding & Dense Alignment
Charts play an important role in visualization, reasoning, data analysis, and the exchange of ideas among humans. However, existing vision-language models (VLMs) still lack accurate perception of details and struggle to extract fine-grained structures from charts. Such limitations in chart grounding also hinder their ability to compare multiple charts and reason over them. In this paper, we introduce a novel "ChartAlign Benchmark (ChartAB)" to provide a comprehensive evaluation of VLMs in chart grounding tasks, i.e., extracting tabular data, localizing visualization elements, and recognizing various attributes from charts of diverse types and complexities. We design a JSON template to facilitate the calculation of evaluation metrics specifically tailored for each grounding task. By incorporating a novel two-stage inference workflow, the benchmark can further evaluate VLMs' capability to align and compare elements/attributes across two charts. Our analysis of evaluations on several recent VLMs reveals new insights into their perception biases, weaknesses, robustness, and hallucinations in chart understanding. These findings highlight the fine-grained discrepancies among VLMs in chart understanding tasks and point to specific skills that need to be strengthened in current models.
☆ Surpassing state of the art on AMD area estimation from RGB fundus images through careful selection of U-Net architectures and loss functions for class imbalance
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision impairment in people over the age of 60. This research focuses on semantic segmentation for AMD lesion detection in RGB fundus images, a non-invasive and cost-effective imaging technique. The results of the ADAM challenge - the most comprehensive AMD detection from RGB fundus images research competition and open dataset to date - serve as a benchmark for our evaluation. Taking the U-Net connectivity as a base of our framework, we evaluate and compare several approaches to improve the segmentation model's architecture and training pipeline, including pre-processing techniques, encoder (backbone) deep network types of varying complexity, and specialized loss functions to mitigate class imbalances on image and pixel levels. The main outcome of this research is the final configuration of the AMD detection framework, which outperforms all the prior ADAM challenge submissions on the multi-class segmentation of different AMD lesion types in non-invasive RGB fundus images. The source code used to conduct the experiments presented in this paper is made freely available.
☆ SteerVLM: Robust Model Control through Lightweight Activation Steering for Vision Language Models
This work introduces SteerVLM, a lightweight steering module designed to guide Vision-Language Models (VLMs) towards outputs that better adhere to desired instructions. Our approach learns from the latent embeddings of paired prompts encoding target and converse behaviors to dynamically adjust activations connecting the language modality with image context. This allows for fine-grained, inference-time control over complex output semantics without modifying model weights while preserving performance on off-target tasks. Our steering module requires learning parameters equal to 0.14% of the original VLM's size. Our steering module gains model control through dimension-wise activation modulation and adaptive steering across layers without requiring pre-extracted static vectors or manual tuning of intervention points. Furthermore, we introduce VNIA (Visual Narrative Intent Alignment), a multimodal dataset specifically created to facilitate the development and evaluation of VLM steering techniques. Our method outperforms existing intervention techniques on steering and hallucination mitigation benchmarks for VLMs and proposes a robust solution for multimodal model control through activation engineering.
☆ MORE: Multi-Organ Medical Image REconstruction Dataset
CT reconstruction provides radiologists with images for diagnosis and treatment, yet current deep learning methods are typically limited to specific anatomies and datasets, hindering generalization ability to unseen anatomies and lesions. To address this, we introduce the Multi-Organ medical image REconstruction (MORE) dataset, comprising CT scans across 9 diverse anatomies with 15 lesion types. This dataset serves two key purposes: (1) enabling robust training of deep learning models on extensive, heterogeneous data, and (2) facilitating rigorous evaluation of model generalization for CT reconstruction. We further establish a strong baseline solution that outperforms prior approaches under these challenging conditions. Our results demonstrate that: (1) a comprehensive dataset helps improve the generalization capability of models, and (2) optimization-based methods offer enhanced robustness for unseen anatomies. The MORE dataset is freely accessible under CC-BY-NC 4.0 at our project page https://more-med.github.io/
comment: Accepted to ACMMM 2025
☆ ProstNFound+: A Prospective Study using Medical Foundation Models for Prostate Cancer Detection
Purpose: Medical foundation models (FMs) offer a path to build high-performance diagnostic systems. However, their application to prostate cancer (PCa) detection from micro-ultrasound ({\mu}US) remains untested in clinical settings. We present ProstNFound+, an adaptation of FMs for PCa detection from {\mu}US, along with its first prospective validation. Methods: ProstNFound+ incorporates a medical FM, adapter tuning, and a custom prompt encoder that embeds PCa-specific clinical biomarkers. The model generates a cancer heatmap and a risk score for clinically significant PCa. Following training on multi-center retrospective data, the model is prospectively evaluated on data acquired five years later from a new clinical site. Model predictions are benchmarked against standard clinical scoring protocols (PRI-MUS and PI-RADS). Results: ProstNFound+ shows strong generalization to the prospective data, with no performance degradation compared to retrospective evaluation. It aligns closely with clinical scores and produces interpretable heatmaps consistent with biopsy-confirmed lesions. Conclusion: The results highlight its potential for clinical deployment, offering a scalable and interpretable alternative to expert-driven protocols.
☆ The Impact and Outlook of 3D Gaussian Splatting
Since its introduction, 3D Gaussian Splatting (3DGS) has rapidly transformed the landscape of 3D scene representations, inspiring an extensive body of associated research. Follow-up work includes analyses and contributions that enhance the efficiency, scalability, and real-world applicability of 3DGS. In this summary, we present an overview of several key directions that have emerged in the wake of 3DGS. We highlight advances enabling resource-efficient training and rendering, the evolution toward dynamic (or four-dimensional, 4DGS) representations, and deeper exploration of the mathematical foundations underlying its appearance modeling and rendering process. Furthermore, we examine efforts to bring 3DGS to mobile and virtual reality platforms, its extension to massive-scale environments, and recent progress toward near-instant radiance field reconstruction via feed-forward or distributed computation. Collectively, these developments illustrate how 3DGS has evolved from a breakthrough representation into a versatile and foundational tool for 3D vision and graphics.
comment: Article written for Frontiers of Science Award, International Congress on Basic Science, 2025
☆ Process Integrated Computer Vision for Real-Time Failure Prediction in Steel Rolling Mill
We present a long-term deployment study of a machine vision-based anomaly detection system for failure prediction in a steel rolling mill. The system integrates industrial cameras to monitor equipment operation, alignment, and hot bar motion in real time along the process line. Live video streams are processed on a centralized video server using deep learning models, enabling early prediction of equipment failures and process interruptions, thereby reducing unplanned breakdown costs. Server-based inference minimizes the computational load on industrial process control systems (PLCs), supporting scalable deployment across production lines with minimal additional resources. By jointly analyzing sensor data from data acquisition systems and visual inputs, the system identifies the location and probable root causes of failures, providing actionable insights for proactive maintenance. This integrated approach enhances operational reliability, productivity, and profitability in industrial manufacturing environments.
☆ Improving Classification of Occluded Objects through Scene Context
The presence of occlusions has provided substantial challenges to typically-powerful object recognition algorithms. Additional sources of information can be extremely valuable to reduce errors caused by occlusions. Scene context is known to aid in object recognition in biological vision. In this work, we attempt to add robustness into existing Region Proposal Network-Deep Convolutional Neural Network (RPN-DCNN) object detection networks through two distinct scene-based information fusion techniques. We present one algorithm under each methodology: the first operates prior to prediction, selecting a custom object network to use based on the identified background scene, and the second operates after detection, fusing scene knowledge into initial object scores output by the RPN. We demonstrate our algorithms on challenging datasets featuring partial occlusions, which show overall improvement in both recall and precision against baseline methods. In addition, our experiments contrast multiple training methodologies for occlusion handling, finding that training on a combination of both occluded and unoccluded images demonstrates an improvement over the others. Our method is interpretable and can easily be adapted to other datasets, offering many future directions for research and practical applications.
☆ BRIQA: Balanced Reweighting in Image Quality Assessment of Pediatric Brain MRI
Assessing the severity of artifacts in pediatric brain Magnetic Resonance Imaging (MRI) is critical for diagnostic accuracy, especially in low-field systems where the signal-to-noise ratio is reduced. Manual quality assessment is time-consuming and subjective, motivating the need for robust automated solutions. In this work, we propose BRIQA (Balanced Reweighting in Image Quality Assessment), which addresses class imbalance in artifact severity levels. BRIQA uses gradient-based loss reweighting to dynamically adjust per-class contributions and employs a rotating batching scheme to ensure consistent exposure to underrepresented classes. Through experiments, no single architecture performs best across all artifact types, emphasizing the importance of architectural diversity. The rotating batching configuration improves performance across metrics by promoting balanced learning when combined with cross-entropy loss. BRIQA improves average macro F1 score from 0.659 to 0.706, with notable gains in Noise (0.430), Zipper (0.098), Positioning (0.097), Contrast (0.217), Motion (0.022), and Banding (0.012) artifact severity classification. The code is available at https://github.com/BioMedIA-MBZUAI/BRIQA.
☆ Towards Reliable Sea Ice Drift Estimation in the Arctic Deep Learning Optical Flow on RADARSAT-2
Accurate estimation of sea ice drift is critical for Arctic navigation, climate research, and operational forecasting. While optical flow, a computer vision technique for estimating pixel wise motion between consecutive images, has advanced rapidly in computer vision, its applicability to geophysical problems and to satellite SAR imagery remains underexplored. Classical optical flow methods rely on mathematical models and strong assumptions about motion, which limit their accuracy in complex scenarios. Recent deep learning based approaches have substantially improved performance and are now the standard in computer vision, motivating their application to sea ice drift estimation. We present the first large scale benchmark of 48 deep learning optical flow models on RADARSAT 2 ScanSAR sea ice imagery, evaluated with endpoint error (EPE) and Fl all metrics against GNSS tracked buoys. Several models achieve sub kilometer accuracy (EPE 6 to 8 pixels, 300 to 400 m), a small error relative to the spatial scales of sea ice motion and typical navigation requirements in the Arctic. Our results demonstrate that the models are capable of capturing consistent regional drift patterns and that recent deep learning based optical flow methods, which have substantially improved motion estimation accuracy compared to classical methods, can be effectively transferred to polar remote sensing. Optical flow produces spatially continuous drift fields, providing motion estimates for every image pixel rather than at sparse buoy locations, offering new opportunities for navigation and climate modeling.
☆ All You Need for Object Detection: From Pixels, Points, and Prompts to Next-Gen Fusion and Multimodal LLMs/VLMs in Autonomous Vehicles
Autonomous Vehicles (AVs) are transforming the future of transportation through advances in intelligent perception, decision-making, and control systems. However, their success is tied to one core capability, reliable object detection in complex and multimodal environments. While recent breakthroughs in Computer Vision (CV) and Artificial Intelligence (AI) have driven remarkable progress, the field still faces a critical challenge as knowledge remains fragmented across multimodal perception, contextual reasoning, and cooperative intelligence. This survey bridges that gap by delivering a forward-looking analysis of object detection in AVs, emphasizing emerging paradigms such as Vision-Language Models (VLMs), Large Language Models (LLMs), and Generative AI rather than re-examining outdated techniques. We begin by systematically reviewing the fundamental spectrum of AV sensors (camera, ultrasonic, LiDAR, and Radar) and their fusion strategies, highlighting not only their capabilities and limitations in dynamic driving environments but also their potential to integrate with recent advances in LLM/VLM-driven perception frameworks. Next, we introduce a structured categorization of AV datasets that moves beyond simple collections, positioning ego-vehicle, infrastructure-based, and cooperative datasets (e.g., V2V, V2I, V2X, I2I), followed by a cross-analysis of data structures and characteristics. Ultimately, we analyze cutting-edge detection methodologies, ranging from 2D and 3D pipelines to hybrid sensor fusion, with particular attention to emerging transformer-driven approaches powered by Vision Transformers (ViTs), Large and Small Language Models (SLMs), and VLMs. By synthesizing these perspectives, our survey delivers a clear roadmap of current capabilities, open challenges, and future opportunities.
☆ SAMRI: Segment Anything Model for MRI
Accurate magnetic resonance imaging (MRI) segmentation is crucial for clinical decision-making, but remains labor-intensive when performed manually. Convolutional neural network (CNN)-based methods can be accurate and efficient, but often generalize poorly to MRI's variable contrast, intensity inhomogeneity, and protocols. Although the transformer-based Segment Anything Model (SAM) has demonstrated remarkable generalizability in natural images, existing adaptations often treat MRI as another imaging modality, overlooking these modality-specific challenges. We present SAMRI, an MRI-specialized SAM trained and validated on 1.1 million labeled MR slices spanning whole-body organs and pathologies. We demonstrate that SAM can be effectively adapted to MRI by simply fine-tuning its mask decoder using a two-stage strategy, reducing training time by 94% and trainable parameters by 96% versus full-model retraining. Across diverse MRI segmentation tasks, SAMRI achieves a mean Dice of 0.87, delivering state-of-the-art accuracy across anatomical regions and robust generalization on unseen structures, particularly small and clinically important structures.
☆ PT-DETR: Small Target Detection Based on Partially-Aware Detail Focus
To address the challenges in UAV object detection, such as complex backgrounds, severe occlusion, dense small objects, and varying lighting conditions,this paper proposes PT-DETR based on RT-DETR, a novel detection algorithm specifically designed for small objects in UAV imagery. In the backbone network, we introduce the Partially-Aware Detail Focus (PADF) Module to enhance feature extraction for small objects. Additionally,we design the Median-Frequency Feature Fusion (MFFF) module,which effectively improves the model's ability to capture small-object details and contextual information. Furthermore,we incorporate Focaler-SIoU to strengthen the model's bounding box matching capability and increase its sensitivity to small-object features, thereby further enhancing detection accuracy and robustness. Compared with RT-DETR, our PT-DETR achieves mAP improvements of 1.6% and 1.7% on the VisDrone2019 dataset with lower computational complexity and fewer parameters, demonstrating its robustness and feasibility for small-object detection tasks.
☆ Spiking Patches: Asynchronous, Sparse, and Efficient Tokens for Event Cameras
We propose tokenization of events and present a tokenizer, Spiking Patches, specifically designed for event cameras. Given a stream of asynchronous and spatially sparse events, our goal is to discover an event representation that preserves these properties. Prior works have represented events as frames or as voxels. However, while these representations yield high accuracy, both frames and voxels are synchronous and decrease the spatial sparsity. Spiking Patches gives the means to preserve the unique properties of event cameras and we show in our experiments that this comes without sacrificing accuracy. We evaluate our tokenizer using a GNN, PCN, and a Transformer on gesture recognition and object detection. Tokens from Spiking Patches yield inference times that are up to 3.4x faster than voxel-based tokens and up to 10.4x faster than frames. We achieve this while matching their accuracy and even surpassing in some cases with absolute improvements up to 3.8 for gesture recognition and up to 1.4 for object detection. Thus, tokenization constitutes a novel direction in event-based vision and marks a step towards methods that preserve the properties of event cameras.
☆ CYPRESS: Crop Yield Prediction via Regression on Prithvi's Encoder for Satellite Sensing
Accurate and timely crop yield prediction is crucial for global food security and modern agricultural management. Traditional methods often lack the scalability and granularity required for precision farming. This paper introduces CYPRESS (Crop Yield Prediction via Regression on Prithvi's Encoder for Satellite Sensing), a deep learning model designed for high-resolution, intra-field canola yield prediction. CYPRESS leverages a pre-trained, large-scale geospatial foundation model (Prithvi-EO-2.0-600M) and adapts it for a continuous regression task, transforming multi-temporal satellite imagery into dense, pixel-level yield maps. Evaluated on a comprehensive dataset from the Canadian Prairies, CYPRESS demonstrates superior performance over existing deep learning-based yield prediction models, highlighting the effectiveness of fine-tuning foundation models for specialized agricultural applications. By providing a continuous, high-resolution output, CYPRESS offers a more actionable tool for precision agriculture than conventional classification or county-level aggregation methods. This work validates a novel approach that bridges the gap between large-scale Earth observation and on-farm decision-making, offering a scalable solution for detailed agricultural monitoring.
☆ ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures
☆ Emu3.5: Native Multimodal Models are World Learners
We introduce Emu3.5, a large-scale multimodal world model that natively predicts the next state across vision and language. Emu3.5 is pre-trained end-to-end with a unified next-token prediction objective on a corpus of vision-language interleaved data containing over 10 trillion tokens, primarily derived from sequential frames and transcripts of internet videos. The model naturally accepts interleaved vision-language inputs and generates interleaved vision-language outputs. Emu3.5 is further post-trained with large-scale reinforcement learning to enhance multimodal reasoning and generation. To improve inference efficiency, we propose Discrete Diffusion Adaptation (DiDA), which converts token-by-token decoding into bidirectional parallel prediction, accelerating per-image inference by about 20x without sacrificing performance. Emu3.5 exhibits strong native multimodal capabilities, including long-horizon vision-language generation, any-to-image (X2I) generation, and complex text-rich image generation. It also exhibits generalizable world-modeling abilities, enabling spatiotemporally consistent world exploration and open-world embodied manipulation across diverse scenarios and tasks. For comparison, Emu3.5 achieves performance comparable to Gemini 2.5 Flash Image (Nano Banana) on image generation and editing tasks and demonstrates superior results on a suite of interleaved generation tasks. We open-source Emu3.5 at https://github.com/baaivision/Emu3.5 to support community research.
comment: project page: https://emu.world
☆ CATCH: A Modular Cross-domain Adaptive Template with Hook
Recent advances in Visual Question Answering (VQA) have demonstrated impressive performance in natural image domains, with models like LLaVA leveraging large language models (LLMs) for open-ended reasoning. However, their generalization degrades significantly when transferred to out-of-domain scenarios such as remote sensing, medical imaging, or math diagrams, due to large distributional shifts and the lack of effective domain adaptation mechanisms. Existing approaches typically rely on per-domain fine-tuning or bespoke pipelines, which are costly, inflexible, and not scalable across diverse tasks. In this paper, we propose CATCH, a plug-and-play framework for cross-domain adaptation that improves the generalization of VQA models while requiring minimal changes to their core architecture. Our key idea is to decouple visual and linguistic adaptation by introducing two lightweight modules: a domain classifier to identify the input image type, and a dual adapter mechanism comprising a Prompt Adapter for language modulation and a Visual Adapter for vision feature adjustment. Both modules are dynamically injected via a unified hook interface, requiring no retraining of the backbone model. Experimental results across four domain-specific VQA benchmarks demonstrate that our framework achieves consistent performance gains without retraining the backbone model, including +2.3 BLEU on MathVQA, +2.6 VQA on MedVQA-RAD, and +3.1 ROUGE on ChartQA. These results highlight that CATCH provides a scalable and extensible approach to multi-domain VQA, enabling practical deployment across diverse application domains.
☆ Dynamic Context-Aware Scene Reasoning Using Vision-Language Alignment in Zero-Shot Real-World Scenarios
In real-world environments, AI systems often face unfamiliar scenarios without labeled data, creating a major challenge for conventional scene understanding models. The inability to generalize across unseen contexts limits the deployment of vision-based applications in dynamic, unstructured settings. This work introduces a Dynamic Context-Aware Scene Reasoning framework that leverages Vision-Language Alignment to address zero-shot real-world scenarios. The goal is to enable intelligent systems to infer and adapt to new environments without prior task-specific training. The proposed approach integrates pre-trained vision transformers and large language models to align visual semantics with natural language descriptions, enhancing contextual comprehension. A dynamic reasoning module refines predictions by combining global scene cues and object-level interactions guided by linguistic priors. Extensive experiments on zero-shot benchmarks such as COCO, Visual Genome, and Open Images demonstrate up to 18% improvement in scene understanding accuracy over baseline models in complex and unseen environments. Results also show robust performance in ambiguous or cluttered scenes due to the synergistic fusion of vision and language. This framework offers a scalable and interpretable approach for context-aware reasoning, advancing zero-shot generalization in dynamic real-world settings.
comment: Preprint under review at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
☆ Comparative Analysis of Deep Learning Models for Olive Tree Crown and Shadow Segmentation Towards Biovolume Estimation
Olive tree biovolume estimation is a key task in precision agriculture, supporting yield prediction and resource management, especially in Mediterranean regions severely impacted by climate-induced stress. This study presents a comparative analysis of three deep learning models U-Net, YOLOv11m-seg, and Mask RCNN for segmenting olive tree crowns and their shadows in ultra-high resolution UAV imagery. The UAV dataset, acquired over Vicopisano, Italy, includes manually annotated crown and shadow masks. Building on these annotations, the methodology emphasizes spatial feature extraction and robust segmentation; per-tree biovolume is then estimated by combining crown projected area with shadow-derived height using solar geometry. In testing, Mask R-CNN achieved the best overall accuracy (F1 = 0.86; mIoU = 0.72), while YOLOv11m-seg provided the fastest throughput (0.12 second per image). The estimated biovolumes spanned from approximately 4 to 24 cubic meters, reflecting clear structural differences among trees. These results indicate Mask R-CNN is preferable when biovolume accuracy is paramount, whereas YOLOv11m-seg suits large-area deployments where speed is critical; U-Net remains a lightweight, high-sensitivity option. The framework enables accurate, scalable orchard monitoring and can be further strengthened with DEM or DSM integration and field calibration for operational decision support.
comment: 6 pages, 2025 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
☆ SA$^{2}$Net: Scale-Adaptive Structure-Affinity Transformation for Spine Segmentation from Ultrasound Volume Projection Imaging
Spine segmentation, based on ultrasound volume projection imaging (VPI), plays a vital role for intelligent scoliosis diagnosis in clinical applications. However, this task faces several significant challenges. Firstly, the global contextual knowledge of spines may not be well-learned if we neglect the high spatial correlation of different bone features. Secondly, the spine bones contain rich structural knowledge regarding their shapes and positions, which deserves to be encoded into the segmentation process. To address these challenges, we propose a novel scale-adaptive structure-aware network (SA$^{2}$Net) for effective spine segmentation. First, we propose a scale-adaptive complementary strategy to learn the cross-dimensional long-distance correlation features for spinal images. Second, motivated by the consistency between multi-head self-attention in Transformers and semantic level affinity, we propose structure-affinity transformation to transform semantic features with class-specific affinity and combine it with a Transformer decoder for structure-aware reasoning. In addition, we adopt a feature mixing loss aggregation method to enhance model training. This method improves the robustness and accuracy of the segmentation process. The experimental results demonstrate that our SA$^{2}$Net achieves superior segmentation performance compared to other state-of-the-art methods. Moreover, the adaptability of SA$^{2}$Net to various backbones enhances its potential as a promising tool for advanced scoliosis diagnosis using intelligent spinal image analysis. The code and experimental demo are available at https://github.com/taetiseo09/SA2Net.
comment: Accepted by Computerized Medical Imaging and Graphics (CMIG)
☆ Analysis of the Robustness of an Edge Detector Based on Cellular Automata Optimized by Particle Swarm
The edge detection task is essential in image processing aiming to extract relevant information from an image. One recurring problem in this task is the weaknesses found in some detectors, such as the difficulty in detecting loose edges and the lack of context to extract relevant information from specific problems. To address these weaknesses and adapt the detector to the properties of an image, an adaptable detector described by two-dimensional cellular automaton and optimized by meta-heuristic combined with transfer learning techniques was developed. This study aims to analyze the impact of expanding the search space of the optimization phase and the robustness of the adaptability of the detector in identifying edges of a set of natural images and specialized subsets extracted from the same image set. The results obtained prove that expanding the search space of the optimization phase was not effective for the chosen image set. The study also analyzed the adaptability of the model through a series of experiments and validation techniques and found that, regardless of the validation, the model was able to adapt to the input and the transfer learning techniques applied to the model showed no significant improvements.
☆ Counteracting Matthew Effect in Self-Improvement of LVLMs through Head-Tail Re-balancing
Self-improvement has emerged as a mainstream paradigm for advancing the reasoning capabilities of large vision-language models (LVLMs), where models explore and learn from successful trajectories iteratively. However, we identify a critical issue during this process: the model excels at generating high-quality trajectories for simple queries (i.e., head data) but struggles with more complex ones (i.e., tail data). This leads to an imbalanced optimization that drives the model to prioritize simple reasoning skills, while hindering its ability to tackle more complex reasoning tasks. Over iterations, this imbalance becomes increasingly pronounced--a dynamic we term the "Matthew effect"--which ultimately hinders further model improvement and leads to performance bottlenecks. To counteract this challenge, we introduce four efficient strategies from two perspectives: distribution-reshaping and trajectory-resampling, to achieve head-tail re-balancing during the exploration-and-learning self-improvement process. Extensive experiments on Qwen2-VL-7B-Instruct and InternVL2.5-4B models across visual reasoning tasks demonstrate that our methods consistently improve visual reasoning capabilities, outperforming vanilla self-improvement by 3.86 points on average.
comment: Preprint
☆ Representation-Level Counterfactual Calibration for Debiased Zero-Shot Recognition
Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning.
☆ Towards Fine-Grained Vision-Language Alignment for Few-Shot Anomaly Detection
Few-shot anomaly detection (FSAD) methods identify anomalous regions with few known normal samples. Most existing methods rely on the generalization ability of pre-trained vision-language models (VLMs) to recognize potentially anomalous regions through feature similarity between text descriptions and images. However, due to the lack of detailed textual descriptions, these methods can only pre-define image-level descriptions to match each visual patch token to identify potential anomalous regions, which leads to the semantic misalignment between image descriptions and patch-level visual anomalies, achieving sub-optimal localization performance. To address the above issues, we propose the Multi-Level Fine-Grained Semantic Caption (MFSC) to provide multi-level and fine-grained textual descriptions for existing anomaly detection datasets with automatic construction pipeline. Based on the MFSC, we propose a novel framework named FineGrainedAD to improve anomaly localization performance, which consists of two components: Multi-Level Learnable Prompt (MLLP) and Multi-Level Semantic Alignment (MLSA). MLLP introduces fine-grained semantics into multi-level learnable prompts through automatic replacement and concatenation mechanism, while MLSA designs region aggregation strategy and multi-level alignment training to facilitate learnable prompts better align with corresponding visual regions. Experiments demonstrate that the proposed FineGrainedAD achieves superior overall performance in few-shot settings on MVTec-AD and VisA datasets.
comment: 12 pages, 7 figures
☆ PointSt3R: Point Tracking through 3D Grounded Correspondence
Recent advances in foundational 3D reconstruction models, such as DUSt3R and MASt3R, have shown great potential in 2D and 3D correspondence in static scenes. In this paper, we propose to adapt them for the task of point tracking through 3D grounded correspondence. We first demonstrate that these models are competitive point trackers when focusing on static points, present in current point tracking benchmarks ($+33.5\%$ on EgoPoints vs. CoTracker2). We propose to combine the reconstruction loss with training for dynamic correspondence along with a visibility head, and fine-tuning MASt3R for point tracking using a relatively small amount of synthetic data. Importantly, we only train and evaluate on pairs of frames where one contains the query point, effectively removing any temporal context. Using a mix of dynamic and static point correspondences, we achieve competitive or superior point tracking results on four datasets (e.g. competitive on TAP-Vid-DAVIS 73.8 $\delta_{avg}$ / 85.8\% occlusion acc. for PointSt3R compared to 75.7 / 88.3\% for CoTracker2; and significantly outperform CoTracker3 on EgoPoints 61.3 vs 54.2 and RGB-S 87.0 vs 82.8). We also present results on 3D point tracking along with several ablations on training datasets and percentage of dynamic correspondences.
comment: http://rhodriguerrier.github.io/PointSt3R
☆ A-TPT: Angular Diversity Calibration Properties for Test-Time Prompt Tuning of Vision-Language Models
Test-time prompt tuning (TPT) has emerged as a promising technique for adapting large vision-language models (VLMs) to unseen tasks without relying on labeled data. However, the lack of dispersion between textual features can hurt calibration performance, which raises concerns about VLMs' reliability, trustworthiness, and safety. Current TPT approaches primarily focus on improving prompt calibration by either maximizing average textual feature dispersion or enforcing orthogonality constraints to encourage angular separation. However, these methods may not always have optimal angular separation between class-wise textual features, which implies overlooking the critical role of angular diversity. To address this, we propose A-TPT, a novel TPT framework that introduces angular diversity to encourage uniformity in the distribution of normalized textual features induced by corresponding learnable prompts. This uniformity is achieved by maximizing the minimum pairwise angular distance between features on the unit hypersphere. We show that our approach consistently surpasses state-of-the-art TPT methods in reducing the aggregate average calibration error while maintaining comparable accuracy through extensive experiments with various backbones on different datasets. Notably, our approach exhibits superior zero-shot calibration performance on natural distribution shifts and generalizes well to medical datasets. We provide extensive analyses, including theoretical aspects, to establish the grounding of A-TPT. These results highlight the potency of promoting angular diversity to achieve well-dispersed textual features, significantly improving VLM calibration during test-time adaptation. Our code will be made publicly available.
comment: 23 pages, 14 figures
☆ LoCoT2V-Bench: A Benchmark for Long-Form and Complex Text-to-Video Generation
Recently text-to-video generation has made impressive progress in producing short, high-quality clips, but evaluating long-form outputs remains a major challenge especially when processing complex prompts. Existing benchmarks mostly rely on simplified prompts and focus on low-level metrics, overlooking fine-grained alignment with prompts and abstract dimensions such as narrative coherence and thematic expression. To address these gaps, we propose LoCoT2V-Bench, a benchmark specifically designed for long video generation (LVG) under complex input conditions. Based on various real-world videos, LoCoT2V-Bench introduces a suite of realistic and complex prompts incorporating elements like scene transitions and event dynamics. Moreover, it constructs a multi-dimensional evaluation framework that includes our newly proposed metrics such as event-level alignment, fine-grained temporal consistency, content clarity, and the Human Expectation Realization Degree (HERD) that focuses on more abstract attributes like narrative flow, emotional response, and character development. Using this framework, we conduct a comprehensive evaluation of nine representative LVG models, finding that while current methods perform well on basic visual and temporal aspects, they struggle with inter-event consistency, fine-grained alignment, and high-level thematic adherence, etc. Overall, LoCoT2V-Bench provides a comprehensive and reliable platform for evaluating long-form complex text-to-video generation and highlights critical directions for future method improvement.
☆ EEG-Driven Image Reconstruction with Saliency-Guided Diffusion Models
Existing EEG-driven image reconstruction methods often overlook spatial attention mechanisms, limiting fidelity and semantic coherence. To address this, we propose a dual-conditioning framework that combines EEG embeddings with spatial saliency maps to enhance image generation. Our approach leverages the Adaptive Thinking Mapper (ATM) for EEG feature extraction and fine-tunes Stable Diffusion 2.1 via Low-Rank Adaptation (LoRA) to align neural signals with visual semantics, while a ControlNet branch conditions generation on saliency maps for spatial control. Evaluated on THINGS-EEG, our method achieves a significant improvement in the quality of low- and high-level image features over existing approaches. Simultaneously, strongly aligning with human visual attention. The results demonstrate that attentional priors resolve EEG ambiguities, enabling high-fidelity reconstructions with applications in medical diagnostics and neuroadaptive interfaces, advancing neural decoding through efficient adaptation of pre-trained diffusion models.
comment: Demo paper
☆ SPG-CDENet: Spatial Prior-Guided Cross Dual Encoder Network for Multi-Organ Segmentation
Multi-organ segmentation is a critical task in computer-aided diagnosis. While recent deep learning methods have achieved remarkable success in image segmentation, huge variations in organ size and shape challenge their effectiveness in multi-organ segmentation. To address these challenges, we propose a Spatial Prior-Guided Cross Dual Encoder Network (SPG-CDENet), a novel two-stage segmentation paradigm designed to improve multi-organ segmentation accuracy. Our SPG-CDENet consists of two key components: a spatial prior network and a cross dual encoder network. The prior network generates coarse localization maps that delineate the approximate ROI, serving as spatial guidance for the dual encoder network. The cross dual encoder network comprises four essential components: a global encoder, a local encoder, a symmetric cross-attention module, and a flow-based decoder. The global encoder captures global semantic features from the entire image, while the local encoder focuses on features from the prior network. To enhance the interaction between the global and local encoders, a symmetric cross-attention module is proposed across all layers of the encoders to fuse and refine features. Furthermore, the flow-based decoder directly propagates high-level semantic features from the final encoder layer to all decoder layers, maximizing feature preservation and utilization. Extensive qualitative and quantitative experiments on two public datasets demonstrate the superior performance of SPG-CDENet compared to existing segmentation methods. Furthermore, ablation studies further validate the effectiveness of the proposed modules in improving segmentation accuracy.
☆ CorVS: Person Identification via Video Trajectory-Sensor Correspondence in a Real-World Warehouse
Worker location data is key to higher productivity in industrial sites. Cameras are a promising tool for localization in logistics warehouses since they also offer valuable environmental contexts such as package status. However, identifying individuals with only visual data is often impractical. Accordingly, several prior studies identified people in videos by comparing their trajectories and wearable sensor measurements. While this approach has advantages such as independence from appearance, the existing methods may break down under real-world conditions. To overcome this challenge, we propose CorVS, a novel data-driven person identification method based on correspondence between visual tracking trajectories and sensor measurements. Firstly, our deep learning model predicts correspondence probabilities and reliabilities for every pair of a trajectory and sensor measurements. Secondly, our algorithm matches the trajectories and sensor measurements over time using the predicted probabilities and reliabilities. We developed a dataset with actual warehouse operations and demonstrated the method's effectiveness for real-world applications.
comment: 7 pages, 3 figures, accepted to IPIN 2025
☆ AgriGS-SLAM: Orchard Mapping Across Seasons via Multi-View Gaussian Splatting SLAM
Autonomous robots in orchards require real-time 3D scene understanding despite repetitive row geometry, seasonal appearance changes, and wind-driven foliage motion. We present AgriGS-SLAM, a Visual--LiDAR SLAM framework that couples direct LiDAR odometry and loop closures with multi-camera 3D Gaussian Splatting (3DGS) rendering. Batch rasterization across complementary viewpoints recovers orchard structure under occlusions, while a unified gradient-driven map lifecycle executed between keyframes preserves fine details and bounds memory. Pose refinement is guided by a probabilistic LiDAR-based depth consistency term, back-propagated through the camera projection to tighten geometry-appearance coupling. We deploy the system on a field platform in apple and pear orchards across dormancy, flowering, and harvesting, using a standardized trajectory protocol that evaluates both training-view and novel-view synthesis to reduce 3DGS overfitting in evaluation. Across seasons and sites, AgriGS-SLAM delivers sharper, more stable reconstructions and steadier trajectories than recent state-of-the-art 3DGS-SLAM baselines while maintaining real-time performance on-tractor. While demonstrated in orchard monitoring, the approach can be applied to other outdoor domains requiring robust multimodal perception.
☆ GLYPH-SR: Can We Achieve Both High-Quality Image Super-Resolution and High-Fidelity Text Recovery via VLM-guided Latent Diffusion Model? ICLR 2026
Image super-resolution(SR) is fundamental to many vision system-from surveillance and autonomy to document analysis and retail analytics-because recovering high-frequency details, especially scene-text, enables reliable downstream perception. Scene-text, i.e., text embedded in natural images such as signs, product labels, and storefronts, often carries the most actionable information; when characters are blurred or hallucinated, optical character recognition(OCR) and subsequent decisions fail even if the rest of the image appears sharp. Yet previous SR research has often been tuned to distortion (PSNR/SSIM) or learned perceptual metrics (LIPIS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to character-level errors. Furthermore, studies that do address text SR often focus on simplified benchmarks with isolated characters, overlooking the challenges of text within complex natural scenes. As a result, scene-text is effectively treated as generic texture. For SR to be effective in practical deployments, it is therefore essential to explicitly optimize for both text legibility and perceptual quality. We present GLYPH-SR, a vision-language-guided diffusion framework that aims to achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates between text- and scene-centric guidance. To enable targeted text restoration, we train these components on a synthetic corpus while keeping the main SR branch frozen. Across SVT, SCUT-CTW1500, and CUTE80 at x4, and x8, GLYPH-SR improves OCR F1 by up to +15.18 percentage points over diffusion/GAN baseline (SVT x8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously-high readability and high visual realism-delivering SR that looks right and reds right.
comment: 11 pages, 6 figures. Includes supplementary material. Under review as a conference paper at ICLR 2026
☆ A Hybrid Framework Bridging CNN and ViT based on Theory of Evidence for Diabetic Retinopathy Grading
Diabetic retinopathy (DR) is a leading cause of vision loss among middle-aged and elderly people, which significantly impacts their daily lives and mental health. To improve the efficiency of clinical screening and enable the early detection of DR, a variety of automated DR diagnosis systems have been recently established based on convolutional neural network (CNN) or vision Transformer (ViT). However, due to the own shortages of CNN / ViT, the performance of existing methods using single-type backbone has reached a bottleneck. One potential way for the further improvements is integrating different kinds of backbones, which can fully leverage the respective strengths of them (\emph{i.e.,} the local feature extraction capability of CNN and the global feature capturing ability of ViT). To this end, we propose a novel paradigm to effectively fuse the features extracted by different backbones based on the theory of evidence. Specifically, the proposed evidential fusion paradigm transforms the features from different backbones into supporting evidences via a set of deep evidential networks. With the supporting evidences, the aggregated opinion can be accordingly formed, which can be used to adaptively tune the fusion pattern between different backbones and accordingly boost the performance of our hybrid model. We evaluated our method on two publicly available DR grading datasets. The experimental results demonstrate that our hybrid model not only improves the accuracy of DR grading, compared to the state-of-the-art frameworks, but also provides the excellent interpretability for feature fusion and decision-making.
Exploring the correlation between the type of music and the emotions evoked: A study using subjective questionnaires and EEG
The subject of this work is to check how different types of music affect human emotions. While listening to music, a subjective survey and brain activity measurements were carried out using an EEG helmet. The aim is to demonstrate the impact of different music genres on emotions. The research involved a diverse group of participants of different gender and musical preferences. This had the effect of capturing a wide range of emotional responses to music. After the experiment, a relationship analysis of the respondents' questionnaires with EEG signals was performed. The analysis revealed connections between emotions and observed brain activity.
comment: Published at IWAIPR 2025 conference
☆ Towards Realistic Earth-Observation Constellation Scheduling: Benchmark and Methodology
Agile Earth Observation Satellites (AEOSs) constellations offer unprecedented flexibility for monitoring the Earth's surface, but their scheduling remains challenging under large-scale scenarios, dynamic environments, and stringent constraints. Existing methods often simplify these complexities, limiting their real-world performance. We address this gap with a unified framework integrating a standardized benchmark suite and a novel scheduling model. Our benchmark suite, AEOS-Bench, contains $3,907$ finely tuned satellite assets and $16,410$ scenarios. Each scenario features $1$ to $50$ satellites and $50$ to $300$ imaging tasks. These scenarios are generated via a high-fidelity simulation platform, ensuring realistic satellite behavior such as orbital dynamics and resource constraints. Ground truth scheduling annotations are provided for each scenario. To our knowledge, AEOS-Bench is the first large-scale benchmark suite tailored for realistic constellation scheduling. Building upon this benchmark, we introduce AEOS-Former, a Transformer-based scheduling model that incorporates a constraint-aware attention mechanism. A dedicated internal constraint module explicitly models the physical and operational limits of each satellite. Through simulation-based iterative learning, AEOS-Former adapts to diverse scenarios, offering a robust solution for AEOS constellation scheduling. Experimental results demonstrate that AEOS-Former outperforms baseline models in task completion and energy efficiency, with ablation studies highlighting the contribution of each component. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.
☆ Leveraging Large-Scale Face Datasets for Deep Periocular Recognition via Ocular Cropping
We focus on ocular biometrics, specifically the periocular region (the area around the eye), which offers high discrimination and minimal acquisition constraints. We evaluate three Convolutional Neural Network architectures of varying depth and complexity to assess their effectiveness for periocular recognition. The networks are trained on 1,907,572 ocular crops extracted from the large-scale VGGFace2 database. This significantly contrasts with existing works, which typically rely on small-scale periocular datasets for training having only a few thousand images. Experiments are conducted with ocular images from VGGFace2-Pose, a subset of VGGFace2 containing in-the-wild face images, and the UFPR-Periocular database, which consists of selfies captured via mobile devices with user guidance on the screen. Due to the uncontrolled conditions of VGGFace2, the Equal Error Rates (EERs) obtained with ocular crops range from 9-15%, noticeably higher than the 3-6% EERs achieved using full-face images. In contrast, UFPR-Periocular yields significantly better performance (EERs of 1-2%), thanks to higher image quality and more consistent acquisition protocols. To the best of our knowledge, these are the lowest reported EERs on the UFPR dataset to date.
comment: Published at IWAIPR 2025 conference
☆ Beyond Imitation: Constraint-Aware Trajectory Generation with Flow Matching For End-to-End Autonomous Driving
Planning is a critical component of end-to-end autonomous driving. However, prevailing imitation learning methods often suffer from mode collapse, failing to produce diverse trajectory hypotheses. Meanwhile, existing generative approaches struggle to incorporate crucial safety and physical constraints directly into the generative process, necessitating an additional optimization stage to refine their outputs. To address these limitations, we propose CATG, a novel planning framework that leverages Constrained Flow Matching. Concretely, CATG explicitly models the flow matching process, which inherently mitigates mode collapse and allows for flexible guidance from various conditioning signals. Our primary contribution is the novel imposition of explicit constraints directly within the flow matching process, ensuring that the generated trajectories adhere to vital safety and kinematic rules. Secondly, CATG parameterizes driving aggressiveness as a control signal during generation, enabling precise manipulation of trajectory style. Notably, on the NavSim v2 challenge, CATG achieved 2nd place with an EPDMS score of 51.31 and was honored with the Innovation Award.
Exploring Complementarity and Explainability in CNNs for Periocular Verification Across Acquisition Distances
We study the complementarity of different CNNs for periocular verification at different distances on the UBIPr database. We train three architectures of increasing complexity (SqueezeNet, MobileNetv2, and ResNet50) on a large set of eye crops from VGGFace2. We analyse performance with cosine and chi2 metrics, compare different network initialisations, and apply score-level fusion via logistic regression. In addition, we use LIME heatmaps and Jensen-Shannon divergence to compare attention patterns of the CNNs. While ResNet50 consistently performs best individually, the fusion provides substantial gains, especially when combining all three networks. Heatmaps show that networks usually focus on distinct regions of a given image, which explains their complementarity. Our method significantly outperforms previous works on UBIPr, achieving a new state-of-the-art.
comment: Accepted at BIOSIG 2025 conference
☆ Revisiting Generative Infrared and Visible Image Fusion Based on Human Cognitive Laws NeurIPS 2025
Existing infrared and visible image fusion methods often face the dilemma of balancing modal information. Generative fusion methods reconstruct fused images by learning from data distributions, but their generative capabilities remain limited. Moreover, the lack of interpretability in modal information selection further affects the reliability and consistency of fusion results in complex scenarios. This manuscript revisits the essence of generative image fusion under the inspiration of human cognitive laws and proposes a novel infrared and visible image fusion method, termed HCLFuse. First, HCLFuse investigates the quantification theory of information mapping in unsupervised fusion networks, which leads to the design of a multi-scale mask-regulated variational bottleneck encoder. This encoder applies posterior probability modeling and information decomposition to extract accurate and concise low-level modal information, thereby supporting the generation of high-fidelity structural details. Furthermore, the probabilistic generative capability of the diffusion model is integrated with physical laws, forming a time-varying physical guidance mechanism that adaptively regulates the generation process at different stages, thereby enhancing the ability of the model to perceive the intrinsic structure of data and reducing dependence on data quality. Experimental results show that the proposed method achieves state-of-the-art fusion performance in qualitative and quantitative evaluations across multiple datasets and significantly improves semantic segmentation metrics. This fully demonstrates the advantages of this generative image fusion method, drawing inspiration from human cognition, in enhancing structural consistency and detail quality.
comment: NeurIPS 2025 spotlight
☆ Which Way Does Time Flow? A Psychophysics-Grounded Evaluation for Vision-Language Models
Modern vision-language models (VLMs) excel at many multimodal tasks, yet their grasp of temporal information in video remains weak and, crucially, under-evaluated. We probe this gap with a deceptively simple but revealing challenge: judging the arrow of time (AoT)-whether a short clip is played forward or backward. We introduce AoT-PsyPhyBENCH, a psychophysically validated benchmark that tests whether VLMs can infer temporal direction in natural videos using the same stimuli and behavioral baselines established for humans. Our comprehensive evaluation of open-weight and proprietary, reasoning and non-reasoning VLMs reveals that most models perform near chance, and even the best lag far behind human accuracy on physically irreversible processes (e.g., free fall, diffusion/explosion) and causal manual actions (division/addition) that humans recognize almost instantly. These results highlight a fundamental gap in current multimodal systems: while they capture rich visual-semantic correlations, they lack the inductive biases required for temporal continuity and causal understanding. We release the code and data for AoT-PsyPhyBENCH to encourage further progress in the physical and temporal reasoning capabilities of VLMs.
comment: 10 pages
☆ OmniLayout: Enabling Coarse-to-Fine Learning with LLMs for Universal Document Layout Generation
Document AI has advanced rapidly and is attracting increasing attention. Yet, while most efforts have focused on document layout analysis (DLA), its generative counterpart, document layout generation, remains underexplored. A major obstacle lies in the scarcity of diverse layouts: academic papers with Manhattan-style structures dominate existing studies, while open-world genres such as newspapers and magazines remain severely underrepresented. To address this gap, we curate OmniLayout-1M, the first million-scale dataset of diverse document layouts, covering six common document types and comprising contemporary layouts collected from multiple sources. Moreover, since existing methods struggle in complex domains and often fail to arrange long sequences coherently, we introduce OmniLayout-LLM, a 0.5B model with designed two-stage Coarse-to-Fine learning paradigm: 1) learning universal layout principles from OmniLayout-1M with coarse category definitions, and 2) transferring the knowledge to a specific domain with fine-grained annotations. Extensive experiments demonstrate that our approach achieves strong performance on multiple domains in M$^{6}$Doc dataset, substantially surpassing both existing layout generation experts and several latest general-purpose LLMs. Our code, models, and dataset will be publicly released.
comment: TL;DR: With OmniLayout-1M dataset and LLM-based coarse-to-fine learning, we enable universal and diverse document layout generation
☆ Developing a Multi-task Ensemble Geometric Deep Network for Supply Chain Sustainability and Risk Management
The sustainability of supply chain plays a key role in achieving optimal performance in controlling the supply chain. The management of risks that occur in a supply chain is a fundamental problem for the purpose of developing the sustainability of the network and elevating the performance efficiency of the supply chain. The correct classification of products is another essential element in a sustainable supply chain. Acknowledging recent breakthroughs in the context of deep networks, several architectural options have been deployed to analyze supply chain datasets. A novel geometric deep network is used to propose an ensemble deep network. The proposed Chebyshev ensemble geometric network (Ch-EGN) is a hybrid convolutional and geometric deep learning. This network is proposed to leverage the information dependencies in supply chain to derive invisible states of samples in the database. The functionality of the proposed deep network is assessed on the two different databases. The SupplyGraph Dataset and DataCo are considered in this research. The prediction of delivery status of DataCo supply chain is done for risk administration. The product classification and edge classification are performed using the SupplyGraph database to enhance the sustainability of the supply network. An average accuracy of 98.95% is obtained for the ensemble network for risk management. The average accuracy of 100% and 98.07% are obtained for sustainable supply chain in terms of 5 product group classification and 4 product relation classification, respectively. The average accuracy of 92.37% is attained for 25 company relation classification. The results confirm an average improvement and efficiency of the proposed method compared to the state-of-the-art approaches.
☆ Sketch2PoseNet: Efficient and Generalized Sketch to 3D Human Pose Prediction SIGGRAPH
3D human pose estimation from sketches has broad applications in computer animation and film production. Unlike traditional human pose estimation, this task presents unique challenges due to the abstract and disproportionate nature of sketches. Previous sketch-to-pose methods, constrained by the lack of large-scale sketch-3D pose annotations, primarily relied on optimization with heuristic rules-an approach that is both time-consuming and limited in generalizability. To address these challenges, we propose a novel approach leveraging a "learn from synthesis" strategy. First, a diffusion model is trained to synthesize sketch images from 2D poses projected from 3D human poses, mimicking disproportionate human structures in sketches. This process enables the creation of a synthetic dataset, SKEP-120K, consisting of 120k accurate sketch-3D pose annotation pairs across various sketch styles. Building on this synthetic dataset, we introduce an end-to-end data-driven framework for estimating human poses and shapes from diverse sketch styles. Our framework combines existing 2D pose detectors and generative diffusion priors for sketch feature extraction with a feed-forward neural network for efficient 2D pose estimation. Multiple heuristic loss functions are incorporated to guarantee geometric coherence between the derived 3D poses and the detected 2D poses while preserving accurate self-contacts. Qualitative, quantitative, and subjective evaluations collectively show that our model substantially surpasses previous ones in both estimation accuracy and speed for sketch-to-pose tasks.
comment: SIGGRAPH Asia 2025
☆ ConceptScope: Characterizing Dataset Bias via Disentangled Visual Concepts NeurIPS 2025
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
comment: Published in the Thirty-Ninth Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ MoTDiff: High-resolution Motion Trajectory estimation from a single blurred image using Diffusion models
Accurate estimation of motion information is crucial in diverse computational imaging and computer vision applications. Researchers have investigated various methods to extract motion information from a single blurred image, including blur kernels and optical flow. However, existing motion representations are often of low quality, i.e., coarse-grained and inaccurate. In this paper, we propose the first high-resolution (HR) Motion Trajectory estimation framework using Diffusion models (MoTDiff). Different from existing motion representations, we aim to estimate an HR motion trajectory with high-quality from a single motion-blurred image. The proposed MoTDiff consists of two key components: 1) a new conditional diffusion framework that uses multi-scale feature maps extracted from a single blurred image as a condition, and 2) a new training method that can promote precise identification of a fine-grained motion trajectory, consistent estimation of overall shape and position of a motion path, and pixel connectivity along a motion trajectory. Our experiments demonstrate that the proposed MoTDiff can outperform state-of-the-art methods in both blind image deblurring and coded exposure photography applications.
comment: 10 pages, 6 figures
☆ Self-localization on a 3D map by fusing global and local features from a monocular camera
Self-localization on a 3D map by using an inexpensive monocular camera is required to realize autonomous driving. Self-localization based on a camera often uses a convolutional neural network (CNN) that can extract local features that are calculated by nearby pixels. However, when dynamic obstacles, such as people, are present, CNN does not work well. This study proposes a new method combining CNN with Vision Transformer, which excels at extracting global features that show the relationship of patches on whole image. Experimental results showed that, compared to the state-of-the-art method (SOTA), the accuracy improvement rate in a CG dataset with dynamic obstacles is 1.5 times higher than that without dynamic obstacles. Moreover, the self-localization error of our method is 20.1% smaller than that of SOTA on public datasets. Additionally, our robot using our method can localize itself with 7.51cm error on average, which is more accurate than SOTA.
☆ CRAG-MM: Multi-modal Multi-turn Comprehensive RAG Benchmark
Wearable devices such as smart glasses are transforming the way people interact with their surroundings, enabling users to seek information regarding entities in their view. Multi-Modal Retrieval-Augmented Generation (MM-RAG) plays a key role in supporting such questions, yet there is still no comprehensive benchmark for this task, especially regarding wearables scenarios. To fill this gap, we present CRAG-MM -- a Comprehensive RAG benchmark for Multi-modal Multi-turn conversations. CRAG-MM contains a diverse set of 6.5K (image, question, answer) triplets and 2K visual-based multi-turn conversations across 13 domains, including 6.2K egocentric images designed to mimic captures from wearable devices. We carefully constructed the questions to reflect real-world scenarios and challenges, including five types of image-quality issues, six question types, varying entity popularity, differing information dynamism, and different conversation turns. We design three tasks: single-source augmentation, multi-source augmentation, and multi-turn conversations -- each paired with an associated retrieval corpus and APIs for both image-KG retrieval and webpage retrieval. Our evaluation shows that straightforward RAG approaches achieve only 32% and 43% truthfulness on CRAG-MM single- and multi-turn QA, respectively, whereas state-of-the-art industry solutions have similar quality (32%/45%), underscoring ample room for improvement. The benchmark has hosted KDD Cup 2025, attracting about 1K participants and 5K submissions, with winning solutions improving baseline performance by 28%, highlighting its early impact on advancing the field.
☆ Detecting Unauthorized Vehicles using Deep Learning for Smart Cities: A Case Study on Bangladesh
Modes of transportation vary across countries depending on geographical location and cultural context. In South Asian countries rickshaws are among the most common means of local transport. Based on their mode of operation, rickshaws in cities across Bangladesh can be broadly classified into non-auto (pedal-powered) and auto-rickshaws (motorized). Monitoring the movement of auto-rickshaws is necessary as traffic rules often restrict auto-rickshaws from accessing certain routes. However, existing surveillance systems make it quite difficult to monitor them due to their similarity to other vehicles, especially non-auto rickshaws whereas manual video analysis is too time-consuming. This paper presents a machine learning-based approach to automatically detect auto-rickshaws in traffic images. In this system, we used real-time object detection using the YOLOv8 model. For training purposes, we prepared a set of 1,730 annotated images that were captured under various traffic conditions. The results show that our proposed model performs well in real-time auto-rickshaw detection and offers an mAP50 of 83.447% and binary precision and recall values above 78%, demonstrating its effectiveness in handling both dense and sparse traffic scenarios. The dataset has been publicly released for further research.
comment: 16 pages
☆ MV-MLM: Bridging Multi-View Mammography and Language for Breast Cancer Diagnosis and Risk Prediction ICCV 2025
Large annotated datasets are essential for training robust Computer-Aided Diagnosis (CAD) models for breast cancer detection or risk prediction. However, acquiring such datasets with fine-detailed annotation is both costly and time-consuming. Vision-Language Models (VLMs), such as CLIP, which are pre-trained on large image-text pairs, offer a promising solution by enhancing robustness and data efficiency in medical imaging tasks. This paper introduces a novel Multi-View Mammography and Language Model for breast cancer classification and risk prediction, trained on a dataset of paired mammogram images and synthetic radiology reports. Our MV-MLM leverages multi-view supervision to learn rich representations from extensive radiology data by employing cross-modal self-supervision across image-text pairs. This includes multiple views and the corresponding pseudo-radiology reports. We propose a novel joint visual-textual learning strategy to enhance generalization and accuracy performance over different data types and tasks to distinguish breast tissues or cancer characteristics(calcification, mass) and utilize these patterns to understand mammography images and predict cancer risk. We evaluated our method on both private and publicly available datasets, demonstrating that the proposed model achieves state-of-the-art performance in three classification tasks: (1) malignancy classification, (2) subtype classification, and (3) image-based cancer risk prediction. Furthermore, the model exhibits strong data efficiency, outperforming existing fully supervised or VLM baselines while trained on synthetic text reports and without the need for actual radiology reports.
comment: Accepted to Computer Vision for Automated Medical Diagnosis (CVAMD) Workshop at ICCV 2025
☆ BasicAVSR: Arbitrary-Scale Video Super-Resolution via Image Priors and Enhanced Motion Compensation
Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR.
comment: 13 pages, 10 figures, 5 tables
☆ StructLayoutFormer:Conditional Structured Layout Generation via Structure Serialization and Disentanglement
Structured layouts are preferable in many 2D visual contents (\eg, GUIs, webpages) since the structural information allows convenient layout editing. Computational frameworks can help create structured layouts but require heavy labor input. Existing data-driven approaches are effective in automatically generating fixed layouts but fail to produce layout structures. We present StructLayoutFormer, a novel Transformer-based approach for conditional structured layout generation. We use a structure serialization scheme to represent structured layouts as sequences. To better control the structures of generated layouts, we disentangle the structural information from the element placements. Our approach is the first data-driven approach that achieves conditional structured layout generation and produces realistic layout structures explicitly. We compare our approach with existing data-driven layout generation approaches by including post-processing for structure extraction. Extensive experiments have shown that our approach exceeds these baselines in conditional structured layout generation. We also demonstrate that our approach is effective in extracting and transferring layout structures. The code is publicly available at %\href{https://github.com/Teagrus/StructLayoutFormer} {https://github.com/Teagrus/StructLayoutFormer}.
☆ FullPart: Generating each 3D Part at Full Resolution
Part-based 3D generation holds great potential for various applications. Previous part generators that represent parts using implicit vector-set tokens often suffer from insufficient geometric details. Another line of work adopts an explicit voxel representation but shares a global voxel grid among all parts; this often causes small parts to occupy too few voxels, leading to degraded quality. In this paper, we propose FullPart, a novel framework that combines both implicit and explicit paradigms. It first derives the bounding box layout through an implicit box vector-set diffusion process, a task that implicit diffusion handles effectively since box tokens contain little geometric detail. Then, it generates detailed parts, each within its own fixed full-resolution voxel grid. Instead of sharing a global low-resolution space, each part in our method - even small ones - is generated at full resolution, enabling the synthesis of intricate details. We further introduce a center-point encoding strategy to address the misalignment issue when exchanging information between parts of different actual sizes, thereby maintaining global coherence. Moreover, to tackle the scarcity of reliable part data, we present PartVerse-XL, the largest human-annotated 3D part dataset to date with 40K objects and 320K parts. Extensive experiments demonstrate that FullPart achieves state-of-the-art results in 3D part generation. We will release all code, data, and model to benefit future research in 3D part generation.
comment: Project page: https://fullpart3d.github.io
Exploring Object-Aware Attention Guided Frame Association for RGB-D SLAM
Attention models have recently emerged as a powerful approach, demonstrating significant progress in various fields. Visualization techniques, such as class activation mapping, provide visual insights into the reasoning of convolutional neural networks (CNNs). Using network gradients, it is possible to identify regions where the network pays attention during image recognition tasks. Furthermore, these gradients can be combined with CNN features to localize more generalizable, task-specific attentive (salient) regions within scenes. However, explicit use of this gradient-based attention information integrated directly into CNN representations for semantic object understanding remains limited. Such integration is particularly beneficial for visual tasks like simultaneous localization and mapping (SLAM), where CNN representations enriched with spatially attentive object locations can enhance performance. In this work, we propose utilizing task-specific network attention for RGB-D indoor SLAM. Specifically, we integrate layer-wise attention information derived from network gradients with CNN feature representations to improve frame association performance. Experimental results indicate improved performance compared to baseline methods, particularly for large environments.
comment: double-column 5 pages, 3 figures
☆ WOD-E2E: Waymo Open Dataset for End-to-End Driving in Challenging Long-tail Scenarios
Vision-based end-to-end (E2E) driving has garnered significant interest in the research community due to its scalability and synergy with multimodal large language models (MLLMs). However, current E2E driving benchmarks primarily feature nominal scenarios, failing to adequately test the true potential of these systems. Furthermore, existing open-loop evaluation metrics often fall short in capturing the multi-modal nature of driving or effectively evaluating performance in long-tail scenarios. To address these gaps, we introduce the Waymo Open Dataset for End-to-End Driving (WOD-E2E). WOD-E2E contains 4,021 driving segments (approximately 12 hours), specifically curated for challenging long-tail scenarios that that are rare in daily life with an occurring frequency of less than 0.03%. Concretely, each segment in WOD-E2E includes the high-level routing information, ego states, and 360-degree camera views from 8 surrounding cameras. To evaluate the E2E driving performance on these long-tail situations, we propose a novel open-loop evaluation metric: Rater Feedback Score (RFS). Unlike conventional metrics that measure the distance between predicted way points and the logs, RFS measures how closely the predicted trajectory matches rater-annotated trajectory preference labels. We have released rater preference labels for all WOD-E2E validation set segments, while the held out test set labels have been used for the 2025 WOD-E2E Challenge. Through our work, we aim to foster state of the art research into generalizable, robust, and safe end-to-end autonomous driving agents capable of handling complex real-world situations.
☆ JOGS: Joint Optimization of Pose Estimation and 3D Gaussian Splatting
Traditional novel view synthesis methods heavily rely on external camera pose estimation tools such as COLMAP, which often introduce computational bottlenecks and propagate errors. To address these challenges, we propose a unified framework that jointly optimizes 3D Gaussian points and camera poses without requiring pre-calibrated inputs. Our approach iteratively refines 3D Gaussian parameters and updates camera poses through a novel co-optimization strategy, ensuring simultaneous improvements in scene reconstruction fidelity and pose accuracy. The key innovation lies in decoupling the joint optimization into two interleaved phases: first, updating 3D Gaussian parameters via differentiable rendering with fixed poses, and second, refining camera poses using a customized 3D optical flow algorithm that incorporates geometric and photometric constraints. This formulation progressively reduces projection errors, particularly in challenging scenarios with large viewpoint variations and sparse feature distributions, where traditional methods struggle. Extensive evaluations on multiple datasets demonstrate that our approach significantly outperforms existing COLMAP-free techniques in reconstruction quality, and also surpasses the standard COLMAP-based baseline in general.
☆ OracleAgent: A Multimodal Reasoning Agent for Oracle Bone Script Research
As one of the earliest writing systems, Oracle Bone Script (OBS) preserves the cultural and intellectual heritage of ancient civilizations. However, current OBS research faces two major challenges: (1) the interpretation of OBS involves a complex workflow comprising multiple serial and parallel sub-tasks, and (2) the efficiency of OBS information organization and retrieval remains a critical bottleneck, as scholars often spend substantial effort searching for, compiling, and managing relevant resources. To address these challenges, we present OracleAgent, the first agent system designed for the structured management and retrieval of OBS-related information. OracleAgent seamlessly integrates multiple OBS analysis tools, empowered by large language models (LLMs), and can flexibly orchestrate these components. Additionally, we construct a comprehensive domain-specific multimodal knowledge base for OBS, which is built through a rigorous multi-year process of data collection, cleaning, and expert annotation. The knowledge base comprises over 1.4M single-character rubbing images and 80K interpretation texts. OracleAgent leverages this resource through its multimodal tools to assist experts in retrieval tasks of character, document, interpretation text, and rubbing image. Extensive experiments demonstrate that OracleAgent achieves superior performance across a range of multimodal reasoning and generation tasks, surpassing leading mainstream multimodal large language models (MLLMs) (e.g., GPT-4o). Furthermore, our case study illustrates that OracleAgent can effectively assist domain experts, significantly reducing the time cost of OBS research. These results highlight OracleAgent as a significant step toward the practical deployment of OBS-assisted research and automated interpretation systems.
☆ EgoExo-Con: Exploring View-Invariant Video Temporal Understanding
Can Video-LLMs achieve consistent temporal understanding when videos capture the same event from different viewpoints? To study this, we introduce EgoExo-Con (Consistency), a benchmark of comprehensively synchronized egocentric and exocentric video pairs with human-refined queries in natural language. EgoExo-Con emphasizes two temporal understanding tasks: Temporal Verification and Temporal Grounding. It evaluates not only correctness but consistency across viewpoints. Our analysis reveals two critical limitations of existing Video-LLMs: (1) models often fail to maintain consistency, with results far worse than their single-view performances. (2) When naively finetuned with synchronized videos of both viewpoints, the models show improved consistency but often underperform those trained on a single view. For improvements, we propose View-GRPO, a novel reinforcement learning framework that effectively strengthens view-specific temporal reasoning while encouraging consistent comprehension across viewpoints. Our method demonstrates its superiority over naive SFT and GRPO, especially for improving cross-view consistency. All resources will be made publicly available.
comment: project page: \url{https://minjoong507.github.io/projects/EgoExo-Con/}
☆ Security Risk of Misalignment between Text and Image in Multi-modal Model
Despite the notable advancements and versatility of multi-modal diffusion models, such as text-to-image models, their susceptibility to adversarial inputs remains underexplored. Contrary to expectations, our investigations reveal that the alignment between textual and Image modalities in existing diffusion models is inadequate. This misalignment presents significant risks, especially in the generation of inappropriate or Not-Safe-For-Work (NSFW) content. To this end, we propose a novel attack called Prompt-Restricted Multi-modal Attack (PReMA) to manipulate the generated content by modifying the input image in conjunction with any specified prompt, without altering the prompt itself. PReMA is the first attack that manipulates model outputs by solely creating adversarial images, distinguishing itself from prior methods that primarily generate adversarial prompts to produce NSFW content. Consequently, PReMA poses a novel threat to the integrity of multi-modal diffusion models, particularly in image-editing applications that operate with fixed prompts. Comprehensive evaluations conducted on image inpainting and style transfer tasks across various models confirm the potent efficacy of PReMA.
☆ Dynamic VLM-Guided Negative Prompting for Diffusion Models NeurIPS 2025
We propose a novel approach for dynamic negative prompting in diffusion models that leverages Vision-Language Models (VLMs) to adaptively generate negative prompts during the denoising process. Unlike traditional Negative Prompting methods that use fixed negative prompts, our method generates intermediate image predictions at specific denoising steps and queries a VLM to produce contextually appropriate negative prompts. We evaluate our approach on various benchmark datasets and demonstrate the trade-offs between negative guidance strength and text-image alignment.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The First Workshop on Generative and Protective AI for Content Creation
☆ FlexICL: A Flexible Visual In-context Learning Framework for Elbow and Wrist Ultrasound Segmentation
Elbow and wrist fractures are the most common fractures in pediatric populations. Automatic segmentation of musculoskeletal structures in ultrasound (US) can improve diagnostic accuracy and treatment planning. Fractures appear as cortical defects but require expert interpretation. Deep learning (DL) can provide real-time feedback and highlight key structures, helping lightly trained users perform exams more confidently. However, pixel-wise expert annotations for training remain time-consuming and costly. To address this challenge, we propose FlexICL, a novel and flexible in-context learning (ICL) framework for segmenting bony regions in US images. We apply it to an intra-video segmentation setting, where experts annotate only a small subset of frames, and the model segments unseen frames. We systematically investigate various image concatenation techniques and training strategies for visual ICL and introduce novel concatenation methods that significantly enhance model performance with limited labeled data. By integrating multiple augmentation strategies, FlexICL achieves robust segmentation performance across four wrist and elbow US datasets while requiring only 5% of the training images. It outperforms state-of-the-art visual ICL models like Painter, MAE-VQGAN, and conventional segmentation models like U-Net and TransUNet by 1-27% Dice coefficient on 1,252 US sweeps. These initial results highlight the potential of FlexICL as an efficient and scalable solution for US image segmentation well suited for medical imaging use cases where labeled data is scarce.
☆ Do Students Debias Like Teachers? On the Distillability of Bias Mitigation Methods
Knowledge distillation (KD) is an effective method for model compression and transferring knowledge between models. However, its effect on model's robustness against spurious correlations that degrade performance on out-of-distribution data remains underexplored. This study investigates the effect of knowledge distillation on the transferability of ``debiasing'' capabilities from teacher models to student models on natural language inference (NLI) and image classification tasks. Through extensive experiments, we illustrate several key findings: (i) overall the debiasing capability of a model is undermined post-KD; (ii) training a debiased model does not benefit from injecting teacher knowledge; (iii) although the overall robustness of a model may remain stable post-distillation, significant variations can occur across different types of biases; and (iv) we pin-point the internal attention pattern and circuit that causes the distinct behavior post-KD. Given the above findings, we propose three effective solutions to improve the distillability of debiasing methods: developing high quality data for augmentation, implementing iterative knowledge distillation, and initializing student models with weights obtained from teacher models. To the best of our knowledge, this is the first study on the effect of KD on debiasing and its interenal mechanism at scale. Our findings provide understandings on how KD works and how to design better debiasing methods.
♻ ☆ Smoothing Slot Attention Iterations and Recurrences
Slot Attention (SA) and its variants lie at the heart of mainstream Object-Centric Learning (OCL). Objects in an image can be aggregated into respective slot vectors, by \textit{iteratively} refining cold-start query vectors, typically three times, via SA on image features. For video, such aggregation is \textit{recurrently} shared across frames, with queries cold-started on the first frame while transitioned from the previous frame's slots on non-first frames. However, the cold-start queries lack sample-specific cues thus hinder precise aggregation on the image or video's first frame; Also, non-first frames' queries are already sample-specific thus require transforms different from the first frame's aggregation. We address these issues for the first time with our \textit{SmoothSA}: (1) To smooth SA iterations on the image or video's first frame, we \textit{preheat} the cold-start queries with rich information of input features, via a tiny module self-distilled inside OCL; (2) To smooth SA recurrences across all video frames, we \textit{differentiate} the homogeneous transforms on the first and non-first frames, by using full and single iterations respectively. Comprehensive experiments on object discovery, recognition and downstream benchmarks validate our method's effectiveness. Further analyses intuitively illuminate how our method smooths SA iterations and recurrences. Our source code, model checkpoints and training logs are available on https://github.com/Genera1Z/SmoothSA.
♻ ☆ Predicting Video Slot Attention Queries from Random Slot-Feature Pairs
Unsupervised video Object-Centric Learning (OCL) is promising as it enables object-level scene representation and dynamics modeling as we humans do. Mainstream video OCL methods adopt a recurrent architecture: An aggregator aggregates current video frame into object features, termed slots, under some queries; A transitioner transits current slots to queries for the next frame. This is an effective architecture but all existing implementations both (\textit{i1}) neglect to incorporate next frame features, the most informative source for query prediction, and (\textit{i2}) fail to learn transition dynamics, the knowledge essential for query prediction. To address these issues, we propose Random Slot-Feature pair for learning Query prediction (RandSF.Q): (\textit{t1}) We design a new transitioner to incorporate both slots and features, which provides more information for query prediction; (\textit{t2}) We train the transitioner to predict queries from slot-feature pairs randomly sampled from available recurrences, which drives it to learn transition dynamics. Experiments on scene representation demonstrate that our method surpass existing video OCL methods significantly, e.g., up to 10 points on object discovery, setting new state-of-the-art. Such superiority also benefits downstream tasks like dynamics modeling. Our core source code, model checkpoints and training logs are available on https://github.com/Genera1Z/RandSF.Q.
♻ ☆ Locality in Image Diffusion Models Emerges from Data Statistics
Recent work has shown that the generalization ability of image diffusion models arises from the locality properties of the trained neural network. In particular, when denoising a particular pixel, the model relies on a limited neighborhood of the input image around that pixel, which, according to the previous work, is tightly related to the ability of these models to produce novel images. Since locality is central to generalization, it is crucial to understand why diffusion models learn local behavior in the first place, as well as the factors that govern the properties of locality patterns. In this work, we present evidence that the locality in deep diffusion models emerges as a statistical property of the image dataset and is not due to the inductive bias of convolutional neural networks, as suggested in previous work. Specifically, we demonstrate that an optimal parametric linear denoiser exhibits similar locality properties to deep neural denoisers. We show, both theoretically and experimentally, that this locality arises directly from pixel correlations present in the image datasets. Moreover, locality patterns are drastically different on specialized datasets, approximating principal components of the data's covariance. We use these insights to craft an analytical denoiser that better matches scores predicted by a deep diffusion model than prior expert-crafted alternatives. Our key takeaway is that while neural network architectures influence generation quality, their primary role is to capture locality patterns inherent in the data.
comment: 31 pages, 20 figures, 7 tables
♻ ☆ ScoreAdv: Score-based Targeted Generation of Natural Adversarial Examples via Diffusion Models
Despite the success of deep learning across various domains, it remains vulnerable to adversarial attacks. Although many existing adversarial attack methods achieve high success rates, they typically rely on $\ell_{p}$-norm perturbation constraints, which do not align with human perceptual capabilities. Consequently, researchers have shifted their focus toward generating natural, unrestricted adversarial examples (UAEs). GAN-based approaches suffer from inherent limitations, such as poor image quality due to instability and mode collapse. Meanwhile, diffusion models have been employed for UAE generation, but they still rely on iterative PGD perturbation injection, without fully leveraging their central denoising capabilities. In this paper, we introduce a novel approach for generating UAEs based on diffusion models, named ScoreAdv. This method incorporates an interpretable adversarial guidance mechanism to gradually shift the sampling distribution towards the adversarial distribution, while using an interpretable saliency map to inject the visual information of a reference image into the generated samples. Notably, our method is capable of generating an unlimited number of natural adversarial examples and can attack not only classification models but also retrieval models. We conduct extensive experiments on ImageNet and CelebA datasets, validating the performance of ScoreAdv across ten target models in both black-box and white-box settings. Our results demonstrate that ScoreAdv achieves state-of-the-art attack success rates and image quality, while maintaining inference efficiency. Furthermore, the dynamic balance between denoising and adversarial perturbation enables ScoreAdv to remain robust even under defensive measures.
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ Resource Efficient Multi-stain Kidney Glomeruli Segmentation via Self-supervision
Semantic segmentation under domain shift remains a fundamental challenge in computer vision, particularly when labelled training data is scarce. This challenge is particularly exemplified in histopathology image analysis, where the same tissue structures must be segmented across images captured under different imaging conditions (stains), each representing a distinct visual domain. Traditional deep learning methods like UNet require extensive labels, which is both costly and time-consuming, particularly when dealing with multiple domains (or stains). To mitigate this, various unsupervised domain adaptation based methods such as UDAGAN have been proposed, which reduce the need for labels by requiring only one (source) stain to be labelled. Nonetheless, obtaining source stain labels can still be challenging. This article shows that through self-supervised pre-training -- including SimCLR, BYOL, and a novel approach, HR-CS-CO -- the performance of these segmentation methods (UNet, and UDAGAN) can be retained even with 95% fewer labels. Notably, with self-supervised pre-training and using only 5% labels, the performance drops are minimal: 5.9% for UNet and 6.2% for UDAGAN, averaged over all stains, compared to their respective fully supervised counterparts (without pre-training, using 100% labels). Furthermore, these findings are shown to generalise beyond their training distribution to public benchmark datasets. Implementations and pre-trained models are publicly available \href{https://github.com/zeeshannisar/resource-effecient-multi-stain-kidney-glomeruli-segmentation.git}{online}.
comment: 39 pages, 10 figures, 4 Tables
♻ ☆ CronusVLA: Towards Efficient and Robust Manipulation via Multi-Frame Vision-Language-Action Modeling
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong performance in robotic manipulation. However, these models remain constrained by the single-frame image paradigm and fail to fully leverage the temporal information offered by multi-frame histories, as directly feeding multiple frames into VLM backbones incurs substantial computational overhead and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm. CronusVLA follows a two-stage process: (1) Single-frame pretraining on large-scale embodied datasets with autoregressive prediction of action tokens, establishing an effective embodied vision-language foundation; (2) Multi-frame post-training, which adapts the prediction of the vision-language backbone from discrete tokens to learnable features, and aggregates historical information via feature chunking. CronusVLA effectively addresses the existing challenges of multi-frame modeling while enhancing performance and observational robustness. To evaluate the robustness under temporal and spatial disturbances, we introduce SimplerEnv-OR, a novel benchmark featuring 24 types of observational disturbances and 120 severity levels. Experiments across three embodiments in simulated and real-world environments demonstrate that CronusVLA achieves leading performance and superior robustness, with a 70.9% success rate on SimplerEnv, a 26.8% improvement over OpenVLA on LIBERO, and the highest robustness score on SimplerEnv-OR. These results highlight the potential of efficient multi-frame adaptation in VLA models for more powerful and robust real-world deployment.
comment: 39 pages, 24 figures
♻ ☆ Fit for Purpose? Deepfake Detection in the Real World
The rapid proliferation of AI-generated content, driven by advances in generative adversarial networks, diffusion models, and multimodal large language models, has made the creation and dissemination of synthetic media effortless, heightening the risks of misinformation, particularly political deepfakes that distort truth and undermine trust in political institutions. In turn, governments, research institutions, and industry have strongly promoted deepfake detection initiatives as solutions. Yet, most existing models are trained and validated on synthetic, laboratory-controlled datasets, limiting their generalizability to the kinds of real-world political deepfakes circulating on social platforms that affect the public. In this work, we introduce the first systematic benchmark based on the Political Deepfakes Incident Database, a curated collection of real-world political deepfakes shared on social media since 2018. Our study includes a systematic evaluation of state-of-the-art deepfake detectors across academia, government, and industry. We find that the detectors from academia and government perform relatively poorly. While paid detection tools achieve relatively higher performance than free-access models, all evaluated detectors struggle to generalize effectively to authentic political deepfakes, and are vulnerable to simple manipulations, especially in the video domain. Results urge the need for politically contextualized deepfake detection frameworks to better safeguard the public in real-world settings.
♻ ☆ DDL: A Large-Scale Datasets for Deepfake Detection and Localization in Diversified Real-World Scenarios
Recent advances in AIGC have exacerbated the misuse of malicious deepfake content, making the development of reliable deepfake detection methods an essential means to address this challenge. Although existing deepfake detection models demonstrate outstanding performance in detection metrics, most methods only provide simple binary classification results, lacking interpretability. Recent studies have attempted to enhance the interpretability of classification results by providing spatial manipulation masks or temporal forgery segments. However, due to the limitations of forgery datasets, the practical effectiveness of these methods remains suboptimal. The primary reason lies in the fact that most existing deepfake datasets contain only binary labels, with limited variety in forgery scenarios, insufficient diversity in deepfake types, and relatively small data scales, making them inadequate for complex real-world scenarios.To address this predicament, we construct a novel large-scale deepfake detection and localization (\textbf{DDL}) dataset containing over $\textbf{1.4M+}$ forged samples and encompassing up to $\textbf{80}$ distinct deepfake methods. The DDL design incorporates four key innovations: (1) \textbf{Comprehensive Deepfake Methods} (covering 7 different generation architectures and a total of 80 methods), (2) \textbf{Varied Manipulation Modes} (incorporating 7 classic and 3 novel forgery modes), (3) \textbf{Diverse Forgery Scenarios and Modalities} (including 3 scenarios and 3 modalities), and (4) \textbf{Fine-grained Forgery Annotations} (providing 1.18M+ precise spatial masks and 0.23M+ precise temporal segments).Through these improvements, our DDL not only provides a more challenging benchmark for complex real-world forgeries but also offers crucial support for building next-generation deepfake detection, localization, and interpretability methods.
comment: This paper is a preliminary version, with an extended and comprehensive version currently under development
♻ ☆ HM-Talker: Hybrid Motion Modeling for High-Fidelity Talking Head Synthesis
Audio-driven talking head video generation enhances user engagement in human-computer interaction. However, current methods frequently produce videos with motion blur and lip jitter, primarily due to their reliance on implicit modeling of audio-facial motion correlations--an approach lacking explicit articulatory priors (i.e., anatomical guidance for speech-related facial movements). To overcome this limitation, we propose HM-Talker, a novel framework for generating high-fidelity, temporally coherent talking heads. HM-Talker leverages a hybrid motion representation combining both implicit and explicit motion cues. Explicit cues use Action Units (AUs), anatomically defined facial muscle movements, alongside implicit features to minimize phoneme-viseme misalignment. Specifically, our Cross-Modal Disentanglement Module (CMDM) extracts complementary implicit/explicit motion features while predicting AUs directly from audio input aligned to visual cues. To mitigate identity-dependent biases in explicit features and enhance cross-subject generalization, we introduce the Hybrid Motion Modeling Module (HMMM). This module dynamically merges randomly paired implicit/explicit features, enforcing identity-agnostic learning. Together, these components enable robust lip synchronization across diverse identities, advancing personalized talking head synthesis. Extensive experiments demonstrate HM-Talker's superiority over state-of-the-art methods in visual quality and lip-sync accuracy.
♻ ☆ MaskCaptioner: Learning to Jointly Segment and Caption Object Trajectories in Videos
Dense Video Object Captioning (DVOC) is the task of jointly detecting, tracking, and captioning object trajectories in a video, requiring the ability to understand spatio-temporal details and describe them in natural language. Due to the complexity of the task and the high cost associated with manual annotation, previous approaches resort to disjoint training strategies, potentially leading to suboptimal performance. To circumvent this issue, we propose to generate captions about spatio-temporally localized entities leveraging a state-of-the-art VLM. By extending the LVIS and LV-VIS datasets with our synthetic captions (LVISCap and LV-VISCap), we train MaskCaptioner, an end-to-end model capable of jointly detecting, segmenting, tracking and captioning object trajectories. Moreover, with pretraining on LVISCap and LV-VISCap, MaskCaptioner achieves state-of-the-art DVOC results on three existing benchmarks, VidSTG, VLN and BenSMOT. The datasets and code are available at https://www.gabriel.fiastre.fr/maskcaptioner/.
comment: 20 pages, 8 figures
♻ ☆ LinearSR: Unlocking Linear Attention for Stable and Efficient Image Super-Resolution
Generative models for Image Super-Resolution (SR) are increasingly powerful, yet their reliance on self-attention's quadratic complexity (O(N^2)) creates a major computational bottleneck. Linear Attention offers an O(N) solution, but its promise for photorealistic SR has remained largely untapped, historically hindered by a cascade of interrelated and previously unsolved challenges. This paper introduces LinearSR, a holistic framework that, for the first time, systematically overcomes these critical hurdles. Specifically, we resolve a fundamental, training instability that causes catastrophic model divergence using our novel "knee point"-based Early-Stopping Guided Fine-tuning (ESGF) strategy. Furthermore, we mitigate the classic perception-distortion trade-off with a dedicated SNR-based Mixture of Experts (MoE) architecture. Finally, we establish an effective and lightweight guidance paradigm, TAG, derived from our "precision-over-volume" principle. Our resulting LinearSR model simultaneously delivers state-of-the-art perceptual quality with exceptional efficiency. Its core diffusion forward pass (1-NFE) achieves SOTA-level speed, while its overall multi-step inference time remains highly competitive. This work provides the first robust methodology for applying Linear Attention in the photorealistic SR domain, establishing a foundational paradigm for future research in efficient generative super-resolution.
comment: 19 pages, 9 figures, 6 tables
♻ ☆ UV-Attack: Physical-World Adversarial Attacks for Person Detection via Dynamic-NeRF-based UV Mapping ICLR2025
In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.7% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.5% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification. The code is available at https://github.com/PolyLiYJ/UV-Attack.
comment: 23 pages, 22 figures, accepted by ICLR2025
♻ ☆ A Continuous and Interpretable Morphometric for Robust Quantification of Dynamic Biological Shapes
We introduce the Push-Forward Signed Distance Morphometric (PF-SDM) for shape quantification in biomedical imaging. The PF-SDM compactly encodes geometric and topological properties of closed shapes, including their skeleton and symmetries. This provides robust and interpretable features for shape comparison and machine learning. The PF-SDM is mathematically smooth, providing access to gradients and differential-geometric quantities. It also extends to temporal dynamics and allows fusing spatial intensity distributions, such as genetic markers, with shape dynamics. We present the PF-SDM theory, benchmark it on synthetic data, and apply it to predicting body-axis formation in mouse gastruloids, outperforming a CNN baseline in both accuracy and speed.
♻ ☆ VerifIoU -- Robustness of Object Detection to Perturbations SC
We introduce a novel Interval Bound Propagation (IBP) approach for the formal verification of object detection models, specifically targeting the Intersection over Union (IoU) metric. The approach has been implemented in an open source code, named IBP IoU, compatible with popular abstract interpretation based verification tools. The resulting verifier is evaluated on landing approach runway detection and handwritten digit recognition case studies. Comparisons against a baseline (Vanilla IBP IoU) highlight the superior performance of IBP IoU in ensuring accuracy and stability, contributing to more secure and robust machine learning applications.
comment: 44th Digital Avionics Systems Conference (DASC), Sep 2025, Montreal, Canada
♻ ☆ ReCon-GS: Continuum-Preserved Gaussian Streaming for Fast and Compact Reconstruction of Dynamic Scenes NeurIPS 2025
Online free-viewpoint video (FVV) reconstruction is challenged by slow per-frame optimization, inconsistent motion estimation, and unsustainable storage demands. To address these challenges, we propose the Reconfigurable Continuum Gaussian Stream, dubbed ReCon-GS, a novel storage-aware framework that enables high fidelity online dynamic scene reconstruction and real-time rendering. Specifically, we dynamically allocate multi-level Anchor Gaussians in a density-adaptive fashion to capture inter-frame geometric deformations, thereby decomposing scene motion into compact coarse-to-fine representations. Then, we design a dynamic hierarchy reconfiguration strategy that preserves localized motion expressiveness through on-demand anchor re-hierarchization, while ensuring temporal consistency through intra-hierarchical deformation inheritance that confines transformation priors to their respective hierarchy levels. Furthermore, we introduce a storage-aware optimization mechanism that flexibly adjusts the density of Anchor Gaussians at different hierarchy levels, enabling a controllable trade-off between reconstruction fidelity and memory usage. Extensive experiments on three widely used datasets demonstrate that, compared to state-of-the-art methods, ReCon-GS improves training efficiency by approximately 15% and achieves superior FVV synthesis quality with enhanced robustness and stability. Moreover, at equivalent rendering quality, ReCon-GS slashes memory requirements by over 50% compared to leading state-of-the-art methods.
comment: Published in NeurIPS 2025
♻ ☆ StyleGuard: Preventing Text-to-Image-Model-based Style Mimicry Attacks by Style Perturbations NIPS2025
Recently, text-to-image diffusion models have been widely used for style mimicry and personalized customization through methods such as DreamBooth and Textual Inversion. This has raised concerns about intellectual property protection and the generation of deceptive content. Recent studies, such as Glaze and Anti-DreamBooth, have proposed using adversarial noise to protect images from these attacks. However, recent purification-based methods, such as DiffPure and Noise Upscaling, have successfully attacked these latest defenses, showing the vulnerabilities of these methods. Moreover, present methods show limited transferability across models, making them less effective against unknown text-to-image models. To address these issues, we propose a novel anti-mimicry method, StyleGuard. We propose a novel style loss that optimizes the style-related features in the latent space to make it deviate from the original image, which improves model-agnostic transferability. Additionally, to enhance the perturbation's ability to bypass diffusion-based purification, we designed a novel upscale loss that involves ensemble purifiers and upscalers during training. Extensive experiments on the WikiArt and CelebA datasets demonstrate that StyleGuard outperforms existing methods in robustness against various transformations and purifications, effectively countering style mimicry in various models. Moreover, StyleGuard is effective on different style mimicry methods, including DreamBooth and Textual Inversion. The code is available at https://github.com/PolyLiYJ/StyleGuard.
comment: Accepted by NIPS2025
♻ ☆ LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification
As an important task in intelligent transportation systems, Aerial-Ground person Re-IDentification (AG-ReID) aims to retrieve specific persons across heterogeneous cameras in different viewpoints. Previous methods typically adopt deep learning-based models, focusing on extracting view-invariant features. However, they usually overlook the semantic information in person attributes. In addition, existing training strategies often rely on full fine-tuning large-scale models, which significantly increases training costs. To address these issues, we propose a novel framework named LATex for AG-ReID, which adopts prompt-tuning strategies to leverage attribute-based text knowledge. Specifically, with the Contrastive Language-Image Pre-training (CLIP) model, we first propose an Attribute-aware Image Encoder (AIE) to extract both global semantic features and attribute-aware features from input images. Then, with these features, we propose a Prompted Attribute Classifier Group (PACG) to predict person attributes and obtain attribute representations. Finally, we design a Coupled Prompt Template (CPT) to transform attribute representations and view information into structured sentences. These sentences are processed by the text encoder of CLIP to generate more discriminative features. As a result, our framework can fully leverage attribute-based text knowledge to improve AG-ReID performance. Extensive experiments on three AG-ReID benchmarks demonstrate the effectiveness of our proposed methods. The source code is available at https://github.com/kevinhu314/LATex.
comment: More modifications may be performed
♻ ☆ EmoAttack: Emotion-to-Image Diffusion Models for Emotional Backdoor Generation
Text-to-image diffusion models can generate realistic images based on textual inputs, enabling users to convey their opinions visually through language. Meanwhile, within language, emotion plays a crucial role in expressing personal opinions in our daily lives and the inclusion of maliciously negative content can lead users astray, exacerbating negative emotions. Recognizing the success of diffusion models and the significance of emotion, we investigate a previously overlooked risk associated with text-to-image diffusion models, that is, utilizing emotion in the input texts to introduce negative content and provoke unfavorable emotions in users. Specifically, we identify a new backdoor attack, i.e., emotion-aware backdoor attack (EmoAttack), which introduces malicious negative content triggered by emotional texts during image generation. We formulate such an attack as a diffusion personalization problem to avoid extensive model retraining and propose the EmoBooth. Unlike existing personalization methods, our approach fine-tunes a pre-trained diffusion model by establishing a mapping between a cluster of emotional words and a given reference image containing malicious negative content. To validate the effectiveness of our method, we built a dataset and conducted extensive analysis and discussion about its effectiveness. Given consumers' widespread use of diffusion models, uncovering this threat is critical for society.
♻ ☆ Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Deep neural networks (DNNs) are vulnerable to adversarial examples, in which DNNs are misled to false outputs due to inputs containing imperceptible perturbations. Adversarial training, a reliable and effective method of defense, may significantly reduce the vulnerability of neural networks and becomes the de facto standard for robust learning. While many recent works practice the data-centric philosophy, such as how to generate better adversarial examples or use generative models to produce additional training data, we look back to the models themselves and revisit the adversarial robustness from the perspective of deep feature distribution as an insightful complementarity. In this paper, we propose \textit{Branch Orthogonality adveRsarial Training} (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training. To practice our design idea of integrating multiple orthogonal solution spaces, we leverage a simple and straightforward multi-branch neural network that eclipses adversarial attacks with no increase in inference time. We heuristically propose a corresponding loss function, branch-orthogonal loss, to make each solution space of the multi-branch model orthogonal. We evaluate our approach on CIFAR-10, CIFAR-100 and SVHN against $\ell_{\infty}$ norm-bounded perturbations of size $\epsilon = 8/255$, respectively. Exhaustive experiments are conducted to show that our method goes beyond all state-of-the-art methods without any tricks. Compared to all methods that do not use additional data for training, our models achieve 67.3\% and 41.5\% robust accuracy on CIFAR-10 and CIFAR-100 (improving upon the state-of-the-art by +7.23\% and +9.07\%). We also outperform methods using a training set with a far larger scale than ours.
comment: Camera-ready version for ICPADS 2025
♻ ☆ Static for Dynamic: Towards a Deeper Understanding of Dynamic Facial Expressions Using Static Expression Data
Dynamic facial expression recognition (DFER) infers emotions from the temporal evolution of expressions, unlike static facial expression recognition (SFER), which relies solely on a single snapshot. This temporal analysis provides richer information and promises greater recognition capability. However, current DFER methods often exhibit unsatisfied performance largely due to fewer training samples compared to SFER. Given the inherent correlation between static and dynamic expressions, we hypothesize that leveraging the abundant SFER data can enhance DFER. To this end, we propose Static-for-Dynamic (S4D), a unified dual-modal learning framework that integrates SFER data as a complementary resource for DFER. Specifically, S4D employs dual-modal self-supervised pre-training on facial images and videos using a shared Vision Transformer (ViT) encoder-decoder architecture, yielding improved spatiotemporal representations. The pre-trained encoder is then fine-tuned on static and dynamic expression datasets in a multi-task learning setup to facilitate emotional information interaction. Unfortunately, vanilla multi-task learning in our study results in negative transfer. To address this, we propose an innovative Mixture of Adapter Experts (MoAE) module that facilitates task-specific knowledge acquisition while effectively extracting shared knowledge from both static and dynamic expression data. Extensive experiments demonstrate that S4D achieves a deeper understanding of DFER, setting new state-of-the-art performance on FERV39K, MAFW, and DFEW benchmarks, with weighted average recall (WAR) of 53.65\%, 58.44\%, and 76.68\%, respectively. Additionally, a systematic correlation analysis between SFER and DFER tasks is presented, which further elucidates the potential benefits of leveraging SFER.
comment: The code and model are publicly available here https://github.com/MSA-LMC/S4D
♻ ☆ Tunable-Generalization Diffusion Powered by Self-Supervised Contextual Sub-Data for Low-Dose CT Reconstruction
Current models based on deep learning for low-dose CT denoising rely heavily on paired data and generalize poorly. Even the more concerned diffusion models need to learn the distribution of clean data for reconstruction, which is difficult to satisfy in medical clinical applications. At the same time, self-supervised-based methods face the challenge of significant degradation of generalizability of models pre-trained for the current dose to expand to other doses. To address these issues, this work proposes a novel method of TUnable-geneRalizatioN Diffusion (TurnDiff) powered by self-supervised contextual sub-data for low-dose CT reconstruction. Firstly, a contextual subdata self-enhancing similarity strategy is designed for denoising centered on the LDCT projection domain, which provides an initial prior for the subsequent progress. Subsequently, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. The pre-trained model is used for inference reconstruction, and the pixel-level self-correcting fusion technique is proposed for fine-grained reconstruction of the image domain to enhance the image fidelity, using the initial prior and the LDCT image as a guide. In addition, the technique is flexibly applied to the generalization of upper and lower doses or even unseen doses. Dual-domain strategy cascade for self-supervised LDCT denoising, TurnDiff requires only LDCT projection domain data for training and testing. Comprehensive evaluation on both benchmark datasets and real-world data demonstrates that TurnDiff consistently outperforms state-of-the-art methods in both reconstruction and generalization.
♻ ☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
♻ ☆ SD-ReID: View-aware Stable Diffusion for Aerial-Ground Person Re-Identification
Aerial-Ground Person Re-IDentification (AG-ReID) aims to retrieve specific persons across cameras with different viewpoints. Previous works focus on designing discriminative models to maintain the identity consistency despite drastic changes in camera viewpoints. The core idea behind these methods is quite natural, but designing a view-robust model is a very challenging task. Moreover, they overlook the contribution of view-specific features in enhancing the model's ability to represent persons. To address these issues, we propose a novel generative framework named SD-ReID for AG-ReID, which leverages generative models to mimic the feature distribution of different views while extracting robust identity representations. More specifically, we first train a ViT-based model to extract person representations along with controllable conditions, including identity and view conditions. We then fine-tune the Stable Diffusion (SD) model to enhance person representations guided by these controllable conditions. Furthermore, we introduce the View-Refined Decoder (VRD) to bridge the gap between instance-level and global-level features. Finally, both person representations and all-view features are employed to retrieve target persons. Extensive experiments on five AG-ReID benchmarks (i.e., CARGO, AG-ReIDv1, AG-ReIDv2, LAGPeR and G2APS-ReID) demonstrate the effectiveness of our proposed method. The source code will be available.
comment: More modifications may performed
♻ ☆ TRUST-VL: An Explainable News Assistant for General Multimodal Misinformation Detection EMNLP 2025
Multimodal misinformation, encompassing textual, visual, and cross-modal distortions, poses an increasing societal threat that is amplified by generative AI. Existing methods typically focus on a single type of distortion and struggle to generalize to unseen scenarios. In this work, we observe that different distortion types share common reasoning capabilities while also requiring task-specific skills. We hypothesize that joint training across distortion types facilitates knowledge sharing and enhances the model's ability to generalize. To this end, we introduce TRUST-VL, a unified and explainable vision-language model for general multimodal misinformation detection. TRUST-VL incorporates a novel Question-Aware Visual Amplifier module, designed to extract task-specific visual features. To support training, we also construct TRUST-Instruct, a large-scale instruction dataset containing 198K samples featuring structured reasoning chains aligned with human fact-checking workflows. Extensive experiments on both in-domain and zero-shot benchmarks demonstrate that TRUST-VL achieves state-of-the-art performance, while also offering strong generalization and interpretability.
comment: EMNLP 2025 Oral; Project Homepage: https://yanzehong.github.io/trust-vl/
♻ ☆ Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
♻ ☆ MindGYM: What Matters in Question Synthesis for Thinking-Centric Fine-Tuning? NeurIPS'25
Large foundation models face challenges in acquiring transferable, structured thinking abilities, especially when supervised with rigid templates or crowd-annotated instruction datasets. Unlike prior approaches, we focus on a thinking-centric data synthesis paradigm that enables models to evolve through self-generated, cognitively guided data. We propose MindGYM, a structured and scalable framework for question synthesis, composed of: (1) Cognitive Thinking Process Injection, which infuses high-level reasoning objectives to shape the model's synthesis behavior; (2) Seed Single-Hop Question Synthesis, generating atomic questions from diverse semantic types to encourage broader thinking; and (3) Challenging Multi-Hop QA Synthesis, composing more complex multi-hop questions based on QA seeds for deeper reasoning. Detailed analysis shows that synthetic data generated by our method achieves 16.7% higher average quality and 67.91% lower quality variance compared to baseline sources, highlighting that both high-quality and self-contained data are essential for effective, thinking-oriented fine-tuning. MindGYM improves performance on six reasoning benchmarks, achieving gains of up to 16% on MathVision using only 400 data samples, and generalizable improvements across different model sizes and architectures. MindGYM underscores the viability of self-challenging mechanisms in refining large model capabilities while minimizing human intervention and resource demands. Code and data are released to promote data-centric research into self-evolving foundation models driven by their internal reasoning capabilities.
comment: Accepted by NeurIPS'25. 30 pages, 2 figures, 13 tables
♻ ☆ D-HUMOR: Dark Humor Understanding via Multimodal Open-ended Reasoning -- A Benchmark Dataset and Method ICDM
Dark humor in online memes poses unique challenges due to its reliance on implicit, sensitive, and culturally contextual cues. To address the lack of resources and methods for detecting dark humor in multimodal content, we introduce a novel dataset of 4,379 Reddit memes annotated for dark humor, target category (gender, mental health, violence, race, disability, and other), and a three-level intensity rating (mild, moderate, severe). Building on this resource, we propose a reasoning-augmented framework that first generates structured explanations for each meme using a Large Vision-Language Model (VLM). Through a Role-Reversal Self-Loop, VLM adopts the author's perspective to iteratively refine its explanations, ensuring completeness and alignment. We then extract textual features from both the OCR transcript and the self-refined reasoning via a text encoder, while visual features are obtained using a vision transformer. A Tri-stream Cross-Reasoning Network (TCRNet) fuses these three streams, text, image, and reasoning, via pairwise attention mechanisms, producing a unified representation for classification. Experimental results demonstrate that our approach outperforms strong baselines across three tasks: dark humor detection, target identification, and intensity prediction. The dataset, annotations, and code are released to facilitate further research in multimodal humor understanding and content moderation. Code and Dataset are available at: https://github.com/Sai-Kartheek-Reddy/D-Humor-Dark-Humor-Understanding-via-Multimodal-Open-ended-Reasoning
comment: Accepted at IEEE International Conference on Data Mining (ICDM) 2025
♻ ☆ Disentangled 4D Gaussian Splatting: Rendering High-Resolution Dynamic World at 343 FPS
While dynamic novel view synthesis from 2D videos has seen progress, achieving efficient reconstruction and rendering of dynamic scenes remains a challenging task. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering pipeline that achieves real-time performance without compromising visual fidelity. Disentangled4DGS decouples the temporal and spatial components of 4D Gaussians, avoiding the need for slicing first and four-dimensional matrix calculations in prior methods. By projecting temporal and spatial deformations into dynamic 2D Gaussians and deferring temporal processing, we minimize redundant computations of 4DGS. Our approach also features a gradient-guided flow loss and temporal splitting strategy to reduce artifacts. Experiments demonstrate a significant improvement in rendering speed and quality, achieving 343 FPS when render 1352*1014 resolution images on a single RTX3090 while reducing storage requirements by at least 4.5%. Our approach sets a new benchmark for dynamic novel view synthesis, outperforming existing methods on both multi-view and monocular dynamic scene datasets.
♻ ☆ GRPO-Guard: Mitigating Implicit Over-Optimization in Flow Matching via Regulated Clipping
Recently, GRPO-based reinforcement learning has shown remarkable progress in optimizing flow-matching models, effectively improving their alignment with task-specific rewards. Within these frameworks, the policy update relies on importance-ratio clipping to constrain overconfident positive and negative gradients. However, in practice, we observe a systematic shift in the importance-ratio distribution-its mean falls below 1 and its variance differs substantially across timesteps. This left-shifted and inconsistent distribution prevents positive-advantage samples from entering the clipped region, causing the mechanism to fail in constraining overconfident positive updates. As a result, the policy model inevitably enters an implicit over-optimization stage-while the proxy reward continues to increase, essential metrics such as image quality and text-prompt alignment deteriorate sharply, ultimately making the learned policy impractical for real-world use. To address this issue, we introduce GRPO-Guard, a simple yet effective enhancement to existing GRPO frameworks. Our method incorporates ratio normalization, which restores a balanced and step-consistent importance ratio, ensuring that PPO clipping properly constrains harmful updates across denoising timesteps. In addition, a gradient reweighting strategy equalizes policy gradients over noise conditions, preventing excessive updates from particular timestep regions. Together, these designs act as a regulated clipping mechanism, stabilizing optimization and substantially mitigating implicit over-optimization without relying on heavy KL regularization. Extensive experiments on multiple diffusion backbones (e.g., SD3.5M, Flux.1-dev) and diverse proxy tasks demonstrate that GRPO-Guard significantly reduces over-optimization while maintaining or even improving generation quality.
comment: Project Page: https://jingw193.github.io/GRPO-Guard/
♻ ☆ RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection
Infrared small target detection is a challenging task due to its unique characteristics (e.g., small, dim, shapeless and changeable). Recently published CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules. To achieve efficient and effective detection, we propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection. Specifically, RRCA-Net incorporates reusable-convolution block (RuCB) in a recurrent manner without introducing extra parameters. With the help of the repetitive iteration in RuCB, the high-level information of small targets in the deep layers can be well maintained and further refined. Then, a dual interactive attention aggregation module (DIAAM) is proposed to promote the mutual enhancement and fusion of refined information. In this way, RRCA-Net can both achieve high-level feature refinement and enhance the correlation of contextual information between adjacent layers. Moreover, to achieve steady convergence, we design a target characteristic inspired loss function (DpT-k loss) by integrating physical and mathematical constraints. Experimental results on three benchmark datasets (e.g. NUAA-SIRST, IRSTD-1k, DenseSIRST) demonstrate that our RRCA-Net can achieve comparable performance to the state-of-the-art methods while maintaining a small number of parameters, and act as a plug and play module to introduce consistent performance improvement for several popular IRSTD methods.
comment: We have updated the journal reference and DOI
♻ ☆ Open3D-VQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of multimodal large language models (MLLMs), yet their performance in open aerial environments remains underexplored. In this work, we present Open3D-VQA, a novel benchmark for evaluating MLLMs' ability to reason about complex spatial relationships from an aerial perspective. The benchmark comprises 73k QA pairs spanning 7 general spatial reasoning tasks, including multiple-choice, true/false, and short-answer formats, and supports both visual and point cloud modalities. The questions are automatically generated from spatial relations extracted from both real-world and simulated aerial scenes. Evaluation on 13 popular MLLMs reveals that: 1) Models are generally better at answering questions about relative spatial relations than absolute distances, 2) 3D LLMs fail to demonstrate significant advantages over 2D LLMs, and 3) Fine-tuning solely on the simulated dataset can significantly improve the model's spatial reasoning performance in real-world scenarios. We release our benchmark, data generation pipeline, and evaluation toolkit to support further research: https://github.com/EmbodiedCity/Open3D-VQA.code.
♻ ☆ FASL-Seg: Anatomy and Tool Segmentation of Surgical Scenes ECAI
The growing popularity of robotic minimally invasive surgeries has made deep learning-based surgical training a key area of research. A thorough understanding of the surgical scene components is crucial, which semantic segmentation models can help achieve. However, most existing work focuses on surgical tools and overlooks anatomical objects. Additionally, current state-of-the-art (SOTA) models struggle to balance capturing high-level contextual features and low-level edge features. We propose a Feature-Adaptive Spatial Localization model (FASL-Seg), designed to capture features at multiple levels of detail through two distinct processing streams, namely a Low-Level Feature Projection (LLFP) and a High-Level Feature Projection (HLFP) stream, for varying feature resolutions - enabling precise segmentation of anatomy and surgical instruments. We evaluated FASL-Seg on surgical segmentation benchmark datasets EndoVis18 and EndoVis17 on three use cases. The FASL-Seg model achieves a mean Intersection over Union (mIoU) of 72.71% on parts and anatomy segmentation in EndoVis18, improving on SOTA by 5%. It further achieves a mIoU of 85.61% and 72.78% in EndoVis18 and EndoVis17 tool type segmentation, respectively, outperforming SOTA overall performance, with comparable per-class SOTA results in both datasets and consistent performance in various classes for anatomy and instruments, demonstrating the effectiveness of distinct processing streams for varying feature resolutions.
comment: 8 pages, 6 figures, In Proceedings of European Conference on Artificial Intelligence (ECAI) 2025
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
♻ ☆ Defending Multimodal Backdoored Models by Repulsive Visual Prompt Tuning
Multimodal contrastive learning models (e.g., CLIP) can learn high-quality representations from large-scale image-text datasets, while they exhibit significant vulnerabilities to backdoor attacks, raising serious safety concerns. In this paper, we reveal that CLIP's vulnerabilities primarily stem from its tendency to encode features beyond in-dataset predictive patterns, compromising its visual feature resistivity to input perturbations. This makes its encoded features highly susceptible to being reshaped by backdoor triggers. To address this challenge, we propose Repulsive Visual Prompt Tuning (RVPT), a novel defense approach that employs deep visual prompt tuning with a specially designed feature-repelling loss. Specifically, RVPT adversarially repels the encoded features from deeper layers while optimizing the standard cross-entropy loss, ensuring that only predictive features in downstream tasks are encoded, thereby enhancing CLIP's visual feature resistivity against input perturbations and mitigating its susceptibility to backdoor attacks. Unlike existing multimodal backdoor defense methods that typically require the availability of poisoned data or involve fine-tuning the entire model, RVPT leverages few-shot downstream clean samples and only tunes a small number of parameters. Empirical results demonstrate that RVPT tunes only 0.27\% of the parameters in CLIP, yet it significantly outperforms state-of-the-art defense methods, reducing the attack success rate from 89.70\% to 2.76\% against the most advanced multimodal attacks on ImageNet and effectively generalizes its defensive capabilities across multiple datasets.
♻ ☆ FARMER: Flow AutoRegressive Transformer over Pixels
Directly modeling the explicit likelihood of the raw data distribution is key topic in the machine learning area, which achieves the scaling successes in Large Language Models by autoregressive modeling. However, continuous AR modeling over visual pixel data suffer from extremely long sequences and high-dimensional spaces. In this paper, we present FARMER, a novel end-to-end generative framework that unifies Normalizing Flows (NF) and Autoregressive (AR) models for tractable likelihood estimation and high-quality image synthesis directly from raw pixels. FARMER employs an invertible autoregressive flow to transform images into latent sequences, whose distribution is modeled implicitly by an autoregressive model. To address the redundancy and complexity in pixel-level modeling, we propose a self-supervised dimension reduction scheme that partitions NF latent channels into informative and redundant groups, enabling more effective and efficient AR modeling. Furthermore, we design a one-step distillation scheme to significantly accelerate inference speed and introduce a resampling-based classifier-free guidance algorithm to boost image generation quality. Extensive experiments demonstrate that FARMER achieves competitive performance compared to existing pixel-based generative models while providing exact likelihoods and scalable training.
comment: Bytedance Seed Technical Report
♻ ☆ SPARKE: Scalable Prompt-Aware Diversity and Novelty Guidance in Diffusion Models via RKE Score
Diffusion models have demonstrated remarkable success in high-fidelity image synthesis and prompt-guided generative modeling. However, ensuring adequate diversity in generated samples of prompt-guided diffusion models remains a challenge, particularly when the prompts span a broad semantic spectrum and the diversity of generated data needs to be evaluated in a prompt-aware fashion across semantically similar prompts. Recent methods have introduced guidance via diversity measures to encourage more varied generations. In this work, we extend the diversity measure-based approaches by proposing the Scalable Prompt-Aware R\'eny Kernel Entropy Diversity Guidance (SPARKE) method for prompt-aware diversity guidance. SPARKE utilizes conditional entropy for diversity guidance, which dynamically conditions diversity measurement on similar prompts and enables prompt-aware diversity control. While the entropy-based guidance approach enhances prompt-aware diversity, its reliance on the matrix-based entropy scores poses computational challenges in large-scale generation settings. To address this, we focus on the special case of Conditional latent RKE Score Guidance, reducing entropy computation and gradient-based optimization complexity from the $O(n^3)$ of general entropy measures to $O(n)$. The reduced computational complexity allows for diversity-guided sampling over potentially thousands of generation rounds on different prompts. We numerically test the SPARKE method on several text-to-image diffusion models, demonstrating that the proposed method improves the prompt-aware diversity of the generated data without incurring significant computational costs. We release our code on the project page: https://mjalali.github.io/SPARKE
♻ ☆ Real-Time Neural Video Compression with Unified Intra and Inter Coding
Neural video compression (NVC) technologies have advanced rapidly in recent years, yielding state-of-the-art schemes such as DCVC-RT that offer superior compression efficiency to H.266/VVC and real-time encoding/decoding capabilities. Nonetheless, existing NVC schemes have several limitations, including inefficiency in dealing with disocclusion and new content, interframe error propagation and accumulation, among others. To eliminate these limitations, we borrow the idea from classic video coding schemes, which allow intra coding within inter-coded frames. With the intra coding tool enabled, disocclusion and new content are properly handled, and interframe error propagation is naturally intercepted without the need for manual refresh mechanisms. We present an NVC framework with unified intra and inter coding, where every frame is processed by a single model that is trained to perform intra/inter coding adaptively. Moreover, we propose a simultaneous two-frame compression design to exploit interframe redundancy not only forwardly but also backwardly. Experimental results show that our scheme outperforms DCVC-RT by an average of 12.1% BD-rate reduction, delivers more stable bitrate and quality per frame, and retains real-time encoding/decoding performances. Code and models will be released.
comment: 10 pages
♻ ☆ TeleEgo: Benchmarking Egocentric AI Assistants in the Wild
Egocentric AI assistants in real-world settings must process multi-modal inputs (video, audio, text), respond in real time, and retain evolving long-term memory. However, existing benchmarks typically evaluate these abilities in isolation, lack realistic streaming scenarios, or support only short-term tasks. We introduce \textbf{TeleEgo}, a long-duration, streaming, omni-modal benchmark for evaluating egocentric AI assistants in realistic daily contexts. The dataset features over 14 hours per participant of synchronized egocentric video, audio, and text across four domains: work \& study, lifestyle \& routines, social activities, and outings \& culture. All data is aligned on a unified global timeline and includes high-quality visual narrations and speech transcripts, curated through human refinement.TeleEgo defines 12 diagnostic subtasks across three core capabilities: Memory (recalling past events), Understanding (interpreting the current moment), and Cross-Memory Reasoning (linking distant events). It contains 3,291 human-verified QA items spanning multiple question formats (single-choice, binary, multi-choice, and open-ended), evaluated strictly in a streaming setting. We propose two key metrics -- Real-Time Accuracy and Memory Persistence Time -- to jointly assess correctness, temporal responsiveness, and long-term retention. TeleEgo provides a realistic and comprehensive evaluation to advance the development of practical AI assistants.
♻ ☆ DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution NeurIPS 2025
Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (i.e., CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a 28$\times$ speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.
comment: Accepted to NeurIPS 2025. Code is available at: https://github.com/zhengchen1999/DOVE
♻ ☆ Language-guided Open-world Video Anomaly Detection under Weak Supervision
Video anomaly detection (VAD) aims to detect anomalies that deviate from what is expected. In open-world scenarios, the expected events may change as requirements change. For example, not wearing a mask may be considered abnormal during a flu outbreak but normal otherwise. However, existing methods assume that the definition of anomalies is invariable, and thus are not applicable to the open world. To address this, we propose a novel open-world VAD paradigm with variable definitions, allowing guided detection through user-provided natural language at inference time. This paradigm necessitates establishing a robust mapping from video and textual definition to anomaly scores. Therefore, we propose LaGoVAD (Language-guided Open-world Video Anomaly Detector), a model that dynamically adapts anomaly definitions under weak supervision with two regularization strategies: diversifying the relative durations of anomalies via dynamic video synthesis, and enhancing feature robustness through contrastive learning with negative mining. Training such adaptable models requires diverse anomaly definitions, but existing datasets typically provide labels without semantic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video Anomaly Dataset), the largest and most diverse video anomaly dataset to date, featuring 35,279 annotated videos with multi-level category labels and descriptions that explicitly define anomalies. Zero-shot experiments on seven datasets demonstrate LaGoVAD's SOTA performance. Our dataset and code will be released at https://github.com/Kamino666/LaGoVAD-PreVAD.
♻ ☆ Buffer layers for Test-Time Adaptation NeurIPS 2025
In recent advancements in Test Time Adaptation (TTA), most existing methodologies focus on updating normalization layers to adapt to the test domain. However, the reliance on normalization-based adaptation presents key challenges. First, normalization layers such as Batch Normalization (BN) are highly sensitive to small batch sizes, leading to unstable and inaccurate statistics. Moreover, normalization-based adaptation is inherently constrained by the structure of the pre-trained model, as it relies on training-time statistics that may not generalize well to unseen domains. These issues limit the effectiveness of normalization-based TTA approaches, especially under significant domain shift. In this paper, we introduce a novel paradigm based on the concept of a Buffer layer, which addresses the fundamental limitations of normalization layer updates. Unlike existing methods that modify the core parameters of the model, our approach preserves the integrity of the pre-trained backbone, inherently mitigating the risk of catastrophic forgetting during online adaptation. Through comprehensive experimentation, we demonstrate that our approach not only outperforms traditional methods in mitigating domain shift and enhancing model robustness, but also exhibits strong resilience to forgetting. Furthermore, our Buffer layer is modular and can be seamlessly integrated into nearly all existing TTA frameworks, resulting in consistent performance improvements across various architectures. These findings validate the effectiveness and versatility of the proposed solution in real-world domain adaptation scenarios. The code is available at https://github.com/hyeongyu-kim/Buffer_TTA.
comment: Accepted at NeurIPS 2025
♻ ☆ Towards Predicting Any Human Trajectory In Context NeurIPS 2025
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, the need to fine-tune for each new scenario is often impractical for deployment on edge devices. To address this challenge, we introduce \paper, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables adaptation without fine-tuning on the scenario-specific data at inference time without requiring weight updates. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. Project Page: https://fujiry0.github.io/TrajICL-project-page/.
comment: NeurIPS 2025
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ From One to More: Contextual Part Latents for 3D Generation
Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.
comment: Project page: https://copart3d.github.io/
♻ ☆ Cycle Diffusion Model for Counterfactual Image Generation
Deep generative models have demonstrated remarkable success in medical image synthesis. However, ensuring conditioning faithfulness and high-quality synthetic images for direct or counterfactual generation remains a challenge. In this work, we introduce a cycle training framework to fine-tune diffusion models for improved conditioning adherence and enhanced synthetic image realism. Our approach, Cycle Diffusion Model (CDM), enforces consistency between generated and original images by incorporating cycle constraints, enabling more reliable direct and counterfactual generation. Experiments on a combined 3D brain MRI dataset (from ABCD, HCP aging & young adults, ADNI, and PPMI) show that our method improves conditioning accuracy and enhances image quality as measured by FID and SSIM. The results suggest that the cycle strategy used in CDM can be an effective method for refining diffusion-based medical image generation, with applications in data augmentation, counterfactual, and disease progression modeling.
♻ ☆ Empowering Agentic Video Analytics Systems with Video Language Models
AI-driven video analytics has become increasingly important across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Vision Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVA, a VLM-powered system designed for open-ended, advanced video analytics. AVA incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVA achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively-significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVA-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVA-100, AVA achieves top-tier performance with an accuracy of 75.8%. The source code of AVA is available at https://github.com/I-ESC/Project-Ava. The AVA-100 benchmark can be accessed at https://huggingface.co/datasets/iesc/Ava-100.
comment: Accepted to NDSI 2026, 19pages, 12 figures, complementary evaluations and appendix
♻ ☆ Unleashing Diffusion Transformers for Visual Correspondence by Modulating Massive Activations NeurIPS 2025
Pre-trained stable diffusion models (SD) have shown great advances in visual correspondence. In this paper, we investigate the capabilities of Diffusion Transformers (DiTs) for accurate dense correspondence. Distinct from SD, DiTs exhibit a critical phenomenon in which very few feature activations exhibit significantly larger values than others, known as \textit{massive activations}, leading to uninformative representations and significant performance degradation for DiTs. The massive activations consistently concentrate at very few fixed dimensions across all image patch tokens, holding little local information. We trace these dimension-concentrated massive activations and find that such concentration can be effectively localized by the zero-initialized Adaptive Layer Norm (AdaLN-zero). Building on these findings, we propose Diffusion Transformer Feature (DiTF), a training-free framework designed to extract semantic-discriminative features from DiTs. Specifically, DiTF employs AdaLN to adaptively localize and normalize massive activations with channel-wise modulation. In addition, we develop a channel discard strategy to further eliminate the negative impacts from massive activations. Experimental results demonstrate that our DiTF outperforms both DINO and SD-based models and establishes a new state-of-the-art performance for DiTs in different visual correspondence tasks (\eg, with +9.4\% on Spair-71k and +4.4\% on AP-10K-C.S.).
comment: NeurIPS 2025
♻ ☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Code available at: https://github.com/HKUST-MINSys-Lab/MMEdge. Accepted by SenSys 2026
♻ ☆ Boosting Generative Adversarial Transferability with Self-supervised Vision Transformer Features ICCV 2025
The ability of deep neural networks (DNNs) come from extracting and interpreting features from the data provided. By exploiting intermediate features in DNNs instead of relying on hard labels, we craft adversarial perturbation that generalize more effectively, boosting black-box transferability. These features ubiquitously come from supervised learning in previous work. Inspired by the exceptional synergy between self-supervised learning and the Transformer architecture, this paper explores whether exploiting self-supervised Vision Transformer (ViT) representations can improve adversarial transferability. We present dSVA -- a generative dual self-supervised ViT features attack, that exploits both global structural features from contrastive learning (CL) and local textural features from masked image modeling (MIM), the self-supervised learning paradigm duo for ViTs. We design a novel generative training framework that incorporates a generator to create black-box adversarial examples, and strategies to train the generator by exploiting joint features and the attention mechanism of self-supervised ViTs. Our findings show that CL and MIM enable ViTs to attend to distinct feature tendencies, which, when exploited in tandem, boast great adversarial generalizability. By disrupting dual deep features distilled by self-supervised ViTs, we are rewarded with remarkable black-box transferability to models of various architectures that outperform state-of-the-arts. Code available at https://github.com/spencerwooo/dSVA.
comment: 14 pages, 9 figures, accepted at ICCV 2025
♻ ☆ Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
For multimodal skeleton-based action recognition, Graph Convolutional Networks (GCNs) are effective models. Still, their reliance on floating-point computations leads to high energy consumption, limiting their applicability in battery-powered devices. While energy-efficient, Spiking Neural Networks (SNNs) struggle to model skeleton dynamics, leading to suboptimal solutions. We propose Signal-SGN (Spiking Graph Convolutional Network), which utilizes the temporal dimension of skeleton sequences as the spike time steps and represents features as multi-dimensional discrete stochastic signals for temporal-frequency domain feature extraction. It combines the 1D Spiking Graph Convolution (1D-SGC) module and the Frequency Spiking Convolution (FSC) module to extract features from the skeleton represented as spiking form. Additionally, the Multi-Scale Wavelet Transform Feature Fusion (MWTF) module is proposed to extract dynamic spiking features and capture frequency-specific characteristics, enhancing classification performance. Experiments across three large-scale datasets reveal Signal-SGN exceeding state-of-the-art SNN-based methods in accuracy and computational efficiency while attaining comparable performance with GCN methods and significantly reducing theoretical energy consumption.
♻ ☆ DiffVLA++: Bridging Cognitive Reasoning and End-to-End Driving through Metric-Guided Alignment
Conventional end-to-end (E2E) driving models are effective at generating physically plausible trajectories, but often fail to generalize to long-tail scenarios due to the lack of essential world knowledge to understand and reason about surrounding environments. In contrast, Vision-Language-Action (VLA) models leverage world knowledge to handle challenging cases, but their limited 3D reasoning capability can lead to physically infeasible actions. In this work we introduce DiffVLA++, an enhanced autonomous driving framework that explicitly bridges cognitive reasoning and E2E planning through metric-guided alignment. First, we build a VLA module directly generating semantically grounded driving trajectories. Second, we design an E2E module with a dense trajectory vocabulary that ensures physical feasibility. Third, and most critically, we introduce a metric-guided trajectory scorer that guides and aligns the outputs of the VLA and E2E modules, thereby integrating their complementary strengths. The experiment on the ICCV 2025 Autonomous Grand Challenge leaderboard shows that DiffVLA++ achieves EPDMS of 49.12.
♻ ☆ ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models NeurIPS 2025
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
comment: NeurIPS 2025 Datasets & Benchmarks
♻ ☆ Neighborhood Feature Pooling for Remote Sensing Image Classification
In this work, we propose neighborhood feature pooling (NFP) as a novel texture feature extraction method for remote sensing image classification. The NFP layer captures relationships between neighboring inputs and efficiently aggregates local similarities across feature dimensions. Implemented using convolutional layers, NFP can be seamlessly integrated into any network. Results comparing the baseline models and the NFP method indicate that NFP consistently improves performance across diverse datasets and architectures while maintaining minimal parameter overhead.
comment: 9 pages, 5 figures
♻ ☆ GCVAMD: A Modified CausalVAE Model for Causal Age-related Macular Degeneration Risk Factor Detection and Prediction
Age Related Macular Degeneration(AMD) has been one of the most leading causes of permanent vision impairment in ophthalmology. Though treatments, such as anti VEGF drugs or photodynamic therapies, were developed to slow down the degenerative process of AMD, there is still no specific cure to reverse vision loss caused by AMD. Thus, for AMD, detecting existence of risk factors of AMD or AMD itself within the patient retina in early stages is a crucial task to reduce the possibility of vision impairment. Apart from traditional approaches, deep learning based methods, especially attention mechanism based CNNs and GradCAM based XAI analysis on OCT scans, exhibited successful performance in distinguishing AMD retina from normal retinas, making it possible to use AI driven models to aid medical diagnosis and analysis by ophthalmologists regarding AMD. However, though having significant success, previous works mostly focused on prediction performance itself, not pathologies or underlying causal mechanisms of AMD, which can prohibit intervention analysis on specific factors or even lead to less reliable decisions. Thus, this paper introduces a novel causal AMD analysis model: GCVAMD, which incorporates a modified CausalVAE approach that can extract latent causal factors from only raw OCT images. By considering causality in AMD detection, GCVAMD enables causal inference such as treatment simulation or intervention analysis regarding major risk factors: drusen and neovascularization, while returning informative latent causal features that can enhance downstream tasks. Results show that through GCVAMD, drusen status and neovascularization status can be identified with AMD causal mechanisms in GCVAMD latent spaces, which can in turn be used for various tasks from AMD detection(classification) to intervention analysis.
♻ ☆ GameFactory: Creating New Games with Generative Interactive Videos ICCV 2025
Generative videos have the potential to revolutionize game development by autonomously creating new content. In this paper, we present GameFactory, a framework for action-controlled scene-generalizable game video generation. We first address the fundamental challenge of action controllability by introducing GF-Minecraft, an action-annotated game video dataset without human bias, and developing an action control module that enables precise control over both keyboard and mouse inputs. We further extend to support autoregressive generation for unlimited-length interactive videos. More importantly, GameFactory tackles the critical challenge of scene-generalizable action control, which most existing methods fail to address. To enable the creation of entirely new and diverse games beyond fixed styles and scenes, we leverage the open-domain generative priors from pre-trained video diffusion models. To bridge the domain gap between open-domain priors and small-scale game datasets, we propose a multi-phase training strategy with a domain adapter that decouples game style learning from action control. This decoupling ensures that action control learning is no longer bound to specific game styles, thereby achieving scene-generalizable action control. Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos, representing a significant step forward in AI-driven game generation.
comment: ICCV 2025 Highlight, Project Page: https://yujiwen.github.io/gamefactory
♻ ☆ Reasoning Visual Language Model for Chest X-Ray Analysis
Vision-language models (VLMs) have shown strong promise for medical image analysis, but most remain opaque, offering predictions without the transparent, stepwise reasoning clinicians rely on. We present a framework that brings chain-of-thought (CoT) reasoning to chest X-ray interpretation. Inspired by reasoning-first training paradigms, our approach is designed to learn how experts reason, not just what they conclude, by aligning intermediate steps with observable image evidence and radiology workflow. Beyond accuracy, the explicit reasoning traces support clinical auditability: they reveal why a conclusion was reached, which alternatives were considered, and where uncertainty remains, enabling quality assurance, error analysis, and safer human-AI collaboration. Our model couples high-fidelity visual encoding with a two-stage training recipe: a reasoning-style supervised fine-tuning (SFT) followed by reinforcement learning (RL) that uses verifiable rewards over a list of X-ray abnormalities. The model outputs reasoning that mirrors radiologists systematic thought process, uncertainty, and differential diagnosis. In out-of-distribution evaluation, the approach achieves competitive multi-label classification while improving interpretability. In a reader study with expert radiologists, full reasoning traces increased confidence, supported error auditing, and reduced time to finalize reports. We release code and the model NV-Reason-CXR-3B to support community progress toward trustworthy, explainable AI in chest radiography and other medical imaging tasks where reasoning quality is as critical as prediction quality.
comment: NV-Reason-CXR-3B
Artificial Intelligence 150
☆ Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark
Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io
comment: Project Page: https://video-cof.github.io
☆ Gistify! Codebase-Level Understanding via Runtime Execution
As coding agents are increasingly deployed in large codebases, the need to automatically design challenging, codebase-level evaluation is central. We propose Gistify, a task where a coding LLM must create a single, minimal, self-contained file that can reproduce a specific functionality of a codebase. The coding LLM is given full access to a codebase along with a specific entrypoint (e.g., a python command), and the generated file must replicate the output of the same command ran under the full codebase, while containing only the essential components necessary to execute the provided command. Success on Gistify requires both structural understanding of the codebase, accurate modeling of its execution flow as well as the ability to produce potentially large code patches. Our findings show that current state-of-the-art models struggle to reliably solve Gistify tasks, especially ones with long executions traces.
☆ Defeating the Training-Inference Mismatch via FP16
Reinforcement learning (RL) fine-tuning of large language models (LLMs) often suffers from instability due to the numerical mismatch between the training and inference policies. While prior work has attempted to mitigate this issue through algorithmic corrections or engineering alignments, we show that its root cause lies in the floating point precision itself. The widely adopted BF16, despite its large dynamic range, introduces large rounding errors that breaks the consistency between training and inference. In this work, we demonstrate that simply reverting to \textbf{FP16} effectively eliminates this mismatch. The change is simple, fully supported by modern frameworks with only a few lines of code change, and requires no modification to the model architecture or learning algorithm. Our results suggest that using FP16 uniformly yields more stable optimization, faster convergence, and stronger performance across diverse tasks, algorithms and frameworks. We hope these findings motivate a broader reconsideration of precision trade-offs in RL fine-tuning.
☆ Remote Labor Index: Measuring AI Automation of Remote Work
AIs have made rapid progress on research-oriented benchmarks of knowledge and reasoning, but it remains unclear how these gains translate into economic value and automation. To measure this, we introduce the Remote Labor Index (RLI), a broadly multi-sector benchmark comprising real-world, economically valuable projects designed to evaluate end-to-end agent performance in practical settings. AI agents perform near the floor on RLI, with the highest-performing agent achieving an automation rate of 2.5%. These results help ground discussions of AI automation in empirical evidence, setting a common basis for tracking AI impacts and enabling stakeholders to proactively navigate AI-driven labor automation.
comment: Website: https://www.remotelabor.ai
LLMs Process Lists With General Filter Heads
We investigate the mechanisms underlying a range of list-processing tasks in LLMs, and we find that LLMs have learned to encode a compact, causal representation of a general filtering operation that mirrors the generic "filter" function of functional programming. Using causal mediation analysis on a diverse set of list-processing tasks, we find that a small number of attention heads, which we dub filter heads, encode a compact representation of the filtering predicate in their query states at certain tokens. We demonstrate that this predicate representation is general and portable: it can be extracted and reapplied to execute the same filtering operation on different collections, presented in different formats, languages, or even in tasks. However, we also identify situations where transformer LMs can exploit a different strategy for filtering: eagerly evaluating if an item satisfies the predicate and storing this intermediate result as a flag directly in the item representations. Our results reveal that transformer LMs can develop human-interpretable implementations of abstract computational operations that generalize in ways that are surprisingly similar to strategies used in traditional functional programming patterns.
comment: Code and data at https://filter.baulab.info/
☆ Clone Deterministic 3D Worlds with Geometrically-Regularized World Models
A world model is an internal model that simulates how the world evolves. Given past observations and actions, it predicts the future of both the embodied agent and its environment. Accurate world models are essential for enabling agents to think, plan, and reason effectively in complex, dynamic settings. Despite rapid progress, current world models remain brittle and degrade over long horizons. We argue that a central cause is representation quality: exteroceptive inputs (e.g., images) are high-dimensional, and lossy or entangled latents make dynamics learning unnecessarily hard. We therefore ask whether improving representation learning alone can substantially improve world-model performance. In this work, we take a step toward building a truly accurate world model by addressing a fundamental yet open problem: constructing a model that can fully clone and overfit to a deterministic 3D world. We propose Geometrically-Regularized World Models (GRWM), which enforces that consecutive points along a natural sensory trajectory remain close in latent representation space. This approach yields significantly improved latent representations that align closely with the true topology of the environment. GRWM is plug-and-play, requires only minimal architectural modification, scales with trajectory length, and is compatible with diverse latent generative backbones. Across deterministic 3D settings and long-horizon prediction tasks, GRWM significantly increases rollout fidelity and stability. Analyses show that its benefits stem from learning a latent manifold with superior geometric structure. These findings support a clear takeaway: improving representation learning is a direct and useful path to robust world models, delivering reliable long-horizon predictions without enlarging the dynamics module.
☆ Faithful and Fast Influence Function via Advanced Sampling
How can we explain the influence of training data on black-box models? Influence functions (IFs) offer a post-hoc solution by utilizing gradients and Hessians. However, computing the Hessian for an entire dataset is resource-intensive, necessitating a feasible alternative. A common approach involves randomly sampling a small subset of the training data, but this method often results in highly inconsistent IF estimates due to the high variance in sample configurations. To address this, we propose two advanced sampling techniques based on features and logits. These samplers select a small yet representative subset of the entire dataset by considering the stochastic distribution of features or logits, thereby enhancing the accuracy of IF estimations. We validate our approach through class removal experiments, a typical application of IFs, using the F1-score to measure how effectively the model forgets the removed class while maintaining inference consistency on the remaining classes. Our method reduces computation time by 30.1% and memory usage by 42.2%, or improves the F1-score by 2.5% compared to the baseline.
☆ STaMP: Sequence Transformation and Mixed Precision for Low-Precision Activation Quantization
Quantization is the key method for reducing inference latency, power and memory footprint of generative AI models. However, accuracy often degrades sharply when activations are quantized below eight bits. Recent work suggests that invertible linear transformations (e.g. rotations) can aid quantization, by reparameterizing feature channels and weights. In this paper, we propose \textit{Sequence Transformation and Mixed Precision} (STaMP) quantization, a novel strategy that applies linear transformations along the \textit{sequence} dimension to exploit the strong local correlation in language and visual data. By keeping a small number of tokens in each intermediate activation at higher precision, we can maintain model accuracy at lower (average) activations bit-widths. We evaluate STaMP on recent LVM and LLM architectures, demonstrating that it significantly improves low bit width activation quantization and complements established activation and weight quantization methods including recent feature transformations.
comment: 10 pages main text, 8 pages supplementary material
☆ AMO-Bench: Large Language Models Still Struggle in High School Math Competitions
We present AMO-Bench, an Advanced Mathematical reasoning benchmark with Olympiad level or even higher difficulty, comprising 50 human-crafted problems. Existing benchmarks have widely leveraged high school math competitions for evaluating mathematical reasoning capabilities of large language models (LLMs). However, many existing math competitions are becoming less effective for assessing top-tier LLMs due to performance saturation (e.g., AIME24/25). To address this, AMO-Bench introduces more rigorous challenges by ensuring all 50 problems are (1) cross-validated by experts to meet at least the International Mathematical Olympiad (IMO) difficulty standards, and (2) entirely original problems to prevent potential performance leakages from data memorization. Moreover, each problem in AMO-Bench requires only a final answer rather than a proof, enabling automatic and robust grading for evaluation. Experimental results across 26 LLMs on AMO-Bench show that even the best-performing model achieves only 52.4% accuracy on AMO-Bench, with most LLMs scoring below 40%. Beyond these poor performances, our further analysis reveals a promising scaling trend with increasing test-time compute on AMO-Bench. These results highlight the significant room for improving the mathematical reasoning in current LLMs. We release AMO-Bench to facilitate further research into advancing the reasoning abilities of language models. https://amo-bench.github.io/
comment: 14 pages, 9 figures
☆ The Oversight Game: Learning to Cooperatively Balance an AI Agent's Safety and Autonomy
As increasingly capable agents are deployed, a central safety question is how to retain meaningful human control without modifying the underlying system. We study a minimal control interface where an agent chooses whether to act autonomously (play) or defer (ask), while a human simultaneously chooses whether to be permissive (trust) or to engage in oversight (oversee). If the agent defers, the human's choice determines the outcome, potentially leading to a corrective action or a system shutdown. We model this interaction as a two-player Markov Game. Our analysis focuses on cases where this game qualifies as a Markov Potential Game (MPG), a class of games where we can provide an alignment guarantee: under a structural assumption on the human's value function, any decision by the agent to act more autonomously that benefits itself cannot harm the human's value. We also analyze extensions to this MPG framework. Theoretically, this perspective provides conditions for a specific form of intrinsic alignment. If the reward structures of the human-agent game meet these conditions, we have a formal guarantee that the agent improving its own outcome will not harm the human's. Practically, this model motivates a transparent control layer with predictable incentives where the agent learns to defer when risky and act when safe, while its pretrained policy and the environment's reward structure remain untouched. Our gridworld simulation shows that through independent learning, the agent and human discover their optimal oversight roles. The agent learns to ask when uncertain and the human learns when to oversee, leading to an emergent collaboration that avoids safety violations introduced post-training. This demonstrates a practical method for making misaligned models safer after deployment.
☆ Deep sequence models tend to memorize geometrically; it is unclear why
In sequence modeling, the parametric memory of atomic facts has been predominantly abstracted as a brute-force lookup of co-occurrences between entities. We contrast this associative view against a geometric view of how memory is stored. We begin by isolating a clean and analyzable instance of Transformer reasoning that is incompatible with memory as strictly a storage of the local co-occurrences specified during training. Instead, the model must have somehow synthesized its own geometry of atomic facts, encoding global relationships between all entities, including non-co-occurring ones. This in turn has simplified a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn 1-step geometric task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, despite optimizing over mere local associations, cannot be straightforwardly attributed to typical architectural or optimizational pressures. Counterintuitively, an elegant geometry is learned even when it is not more succinct than a brute-force lookup of associations. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery and unlearning.
☆ A General Incentives-Based Framework for Fairness in Multi-agent Resource Allocation
We introduce the General Incentives-based Framework for Fairness (GIFF), a novel approach for fair multi-agent resource allocation that infers fair decision-making from standard value functions. In resource-constrained settings, agents optimizing for efficiency often create inequitable outcomes. Our approach leverages the action-value (Q-)function to balance efficiency and fairness without requiring additional training. Specifically, our method computes a local fairness gain for each action and introduces a counterfactual advantage correction term to discourage over-allocation to already well-off agents. This approach is formalized within a centralized control setting, where an arbitrator uses the GIFF-modified Q-values to solve an allocation problem. Empirical evaluations across diverse domains, including dynamic ridesharing, homelessness prevention, and a complex job allocation task-demonstrate that our framework consistently outperforms strong baselines and can discover far-sighted, equitable policies. The framework's effectiveness is supported by a theoretical foundation; we prove its fairness surrogate is a principled lower bound on the true fairness improvement and that its trade-off parameter offers monotonic tuning. Our findings establish GIFF as a robust and principled framework for leveraging standard reinforcement learning components to achieve more equitable outcomes in complex multi-agent systems.
☆ Cross-Platform Evaluation of Reasoning Capabilities in Foundation Models
This paper presents a comprehensive cross-platform evaluation of reasoning capabilities in contemporary foundation models, establishing an infrastructure-agnostic benchmark across three computational paradigms: HPC supercomputing (MareNostrum 5), cloud platforms (Nebius AI Studio), and university clusters (a node with eight H200 GPUs). We evaluate 15 foundation models across 79 problems spanning eight academic domains (Physics, Mathematics, Chemistry, Economics, Biology, Statistics, Calculus, and Optimization) through three experimental phases: (1) Baseline establishment: Six models (Mixtral-8x7B, Phi-3, LLaMA 3.1-8B, Gemma-2-9b, Mistral-7B, OLMo-7B) evaluated on 19 problems using MareNostrum 5, establishing methodology and reference performance; (2) Infrastructure validation: The 19-problem benchmark repeated on university cluster (seven models including Falcon-Mamba state-space architecture) and Nebius AI Studio (nine state-of-the-art models: Hermes-4 70B/405B, LLaMA 3.1-405B/3.3-70B, Qwen3 30B/235B, DeepSeek-R1, GPT-OSS 20B/120B) to confirm infrastructure-agnostic reproducibility; (3) Extended evaluation: Full 79-problem assessment on both university cluster and Nebius platforms, probing generalization at scale across architectural diversity. The findings challenge conventional scaling assumptions, establish training data quality as more critical than model size, and provide actionable guidelines for model selection across educational, production, and research contexts. The tri-infrastructure methodology and 79-problem benchmark enable longitudinal tracking of reasoning capabilities as foundation models evolve.
☆ ExpertFlow: Adaptive Expert Scheduling and Memory Coordination for Efficient MoE Inference
The expansion of large language models is increasingly limited by the constrained memory capacity of modern GPUs. To mitigate this, Mixture-of-Experts (MoE) architectures activate only a small portion of parameters during inference, significantly lowering both memory demand and computational overhead. However, conventional MoE inference approaches, which select active experts independently at each layer, often introduce considerable latency because of frequent parameter transfers between host and GPU memory. In addition, current cross-layer prediction strategies, which are typically based on fixed steps, lack adaptability across different hardware platforms and workloads, thereby reducing their robustness and effectiveness. To address these challenges, we present ExpertFlow, a runtime system for MoE inference that combines adaptive expert prefetching and cache-aware routing. ExpertFlow continuously adjusts its prediction horizon for expert activation by leveraging runtime statistics such as transfer bandwidth, parameter dimensionality, and model feedback signals. Furthermore, it incorporates a hybrid cross-layer prediction scheme that fuses pregating information with intermediate computational states to anticipate future expert needs. By adaptively refining prefetching decisions and aligning them with actual usage behavior, ExpertFlow effectively decreases cache misses and removes latency caused by expert swap-ins. Our evaluation demonstrates that ExpertFlow reduces model stall time to less than 0.1% of the baseline, highlighting its capability to optimize MoE inference under stringent memory constraints.
comment: 12 pages, 11 figures
☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
☆ Unveiling Intrinsic Text Bias in Multimodal Large Language Models through Attention Key-Space Analysis
Multimodal large language models (MLLMs) exhibit a pronounced preference for textual inputs when processing vision-language data, limiting their ability to reason effectively from visual evidence. Unlike prior studies that attribute this text bias to external factors such as data imbalance or instruction tuning, we propose that the bias originates from the model's internal architecture. Specifically, we hypothesize that visual key vectors (Visual Keys) are out-of-distribution (OOD) relative to the text key space learned during language-only pretraining. Consequently, these visual keys receive systematically lower similarity scores during attention computation, leading to their under-utilization in the context representation. To validate this hypothesis, we extract key vectors from LLaVA and Qwen2.5-VL and analyze their distributional structures using qualitative (t-SNE) and quantitative (Jensen-Shannon divergence) methods. The results provide direct evidence that visual and textual keys occupy markedly distinct subspaces within the attention space. The inter-modal divergence is statistically significant, exceeding intra-modal variation by several orders of magnitude. These findings reveal that text bias arises from an intrinsic misalignment within the attention key space rather than solely from external data factors.
☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We therefore recommend that empirical comphttps://info.arxiv.org/help/prep#commentsarisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
☆ Delegated Authorization for Agents Constrained to Semantic Task-to-Scope Matching
Authorizing Large Language Model driven agents to dynamically invoke tools and access protected resources introduces significant risks, since current methods for delegating authorization grant overly broad permissions and give access to tools allowing agents to operate beyond the intended task scope. We introduce and assess a delegated authorization model enabling authorization servers to semantically inspect access requests to protected resources, and issue access tokens constrained to the minimal set of scopes necessary for the agents' assigned tasks. Given the unavailability of datasets centered on delegated authorization flows, particularly including both semantically appropriate and inappropriate scope requests for a given task, we introduce ASTRA, a dataset and data generation pipeline for benchmarking semantic matching between tasks and scopes. Our experiments show both the potential and current limitations of model-based matching, particularly as the number of scopes needed for task completion increases. Our results highlight the need for further research into semantic matching techniques enabling intent-aware authorization for multi-agent and tool-augmented applications, including fine-grained control, such as Task-Based Access Control (TBAC).
comment: Paper page at https://outshift-open.github.io/ASTRA
☆ The End of Manual Decoding: Towards Truly End-to-End Language Models
The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
☆ Process Integrated Computer Vision for Real-Time Failure Prediction in Steel Rolling Mill
We present a long-term deployment study of a machine vision-based anomaly detection system for failure prediction in a steel rolling mill. The system integrates industrial cameras to monitor equipment operation, alignment, and hot bar motion in real time along the process line. Live video streams are processed on a centralized video server using deep learning models, enabling early prediction of equipment failures and process interruptions, thereby reducing unplanned breakdown costs. Server-based inference minimizes the computational load on industrial process control systems (PLCs), supporting scalable deployment across production lines with minimal additional resources. By jointly analyzing sensor data from data acquisition systems and visual inputs, the system identifies the location and probable root causes of failures, providing actionable insights for proactive maintenance. This integrated approach enhances operational reliability, productivity, and profitability in industrial manufacturing environments.
☆ Evontree: Ontology Rule-Guided Self-Evolution of Large Language Models
Large language models (LLMs) have demonstrated exceptional capabilities across multiple domains by leveraging massive pre-training and curated fine-tuning data. However, in data-sensitive fields such as healthcare, the lack of high-quality, domain-specific training corpus hinders LLMs' adaptation for specialized applications. Meanwhile, domain experts have distilled domain wisdom into ontology rules, which formalize relationships among concepts and ensure the integrity of knowledge management repositories. Viewing LLMs as implicit repositories of human knowledge, we propose Evontree, a novel framework that leverages a small set of high-quality ontology rules to systematically extract, validate, and enhance domain knowledge within LLMs, without requiring extensive external datasets. Specifically, Evontree extracts domain ontology from raw models, detects inconsistencies using two core ontology rules, and reinforces the refined knowledge via self-distilled fine-tuning. Extensive experiments on medical QA benchmarks with Llama3-8B-Instruct and Med42-v2 demonstrate consistent outperformance over both unmodified models and leading supervised baselines, achieving up to a 3.7% improvement in accuracy. These results confirm the effectiveness, efficiency, and robustness of our approach for low-resource domain adaptation of LLMs.
☆ The Era of Agentic Organization: Learning to Organize with Language Models
We envision a new era of AI, termed agentic organization, where agents solve complex problems by working collaboratively and concurrently, enabling outcomes beyond individual intelligence. To realize this vision, we introduce asynchronous thinking (AsyncThink) as a new paradigm of reasoning with large language models, which organizes the internal thinking process into concurrently executable structures. Specifically, we propose a thinking protocol where an organizer dynamically assigns sub-queries to workers, merges intermediate knowledge, and produces coherent solutions. More importantly, the thinking structure in this protocol can be further optimized through reinforcement learning. Experiments demonstrate that AsyncThink achieves 28% lower inference latency compared to parallel thinking while improving accuracy on mathematical reasoning. Moreover, AsyncThink generalizes its learned asynchronous thinking capabilities, effectively tackling unseen tasks without additional training.
☆ Hybrid DQN-TD3 Reinforcement Learning for Autonomous Navigation in Dynamic Environments
This paper presents a hierarchical path-planning and control framework that combines a high-level Deep Q-Network (DQN) for discrete sub-goal selection with a low-level Twin Delayed Deep Deterministic Policy Gradient (TD3) controller for continuous actuation. The high-level module selects behaviors and sub-goals; the low-level module executes smooth velocity commands. We design a practical reward shaping scheme (direction, distance, obstacle avoidance, action smoothness, collision penalty, time penalty, and progress), together with a LiDAR-based safety gate that prevents unsafe motions. The system is implemented in ROS + Gazebo (TurtleBot3) and evaluated with PathBench metrics, including success rate, collision rate, path efficiency, and re-planning efficiency, in dynamic and partially observable environments. Experiments show improved success rate and sample efficiency over single-algorithm baselines (DQN or TD3 alone) and rule-based planners, with better generalization to unseen obstacle configurations and reduced abrupt control changes. Code and evaluation scripts are available at the project repository.
comment: 6 pages, 5 figures; ROS+Gazebo (TurtleBot3) implementation; evaluation with PathBench metrics; code (primary): https://github.com/MayaCHEN-github/HierarchicalRL-robot-navigation; mirror (for reproducibility): https://github.com/ShowyHe/DRL-robot-navigation
☆ Aeolus: A Multi-structural Flight Delay Dataset
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data
☆ Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives EMNLP 2025
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.
comment: Accepted to the 8th BlackboxNLP Workshop at EMNLP 2025
☆ Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
comment: 34 pages, 9 figures. Code available at https://github.com/RedaElMakroum/agentic-ai-hems
☆ ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures
☆ Stop Wasting Your Tokens: Towards Efficient Runtime Multi-Agent Systems
While Multi-Agent Systems (MAS) excel at complex tasks, their growing autonomy with operational complexity often leads to critical inefficiencies, such as excessive token consumption and failures arising from misinformation. Existing methods primarily focus on post-hoc failure attribution, lacking proactive, real-time interventions to enhance robustness and efficiency. To this end, we introduce SupervisorAgent, a lightweight and modular framework for runtime, adaptive supervision that operates without altering the base agent's architecture. Triggered by an LLM-free adaptive filter, SupervisorAgent intervenes at critical junctures to proactively correct errors, guide inefficient behaviors, and purify observations. On the challenging GAIA benchmark, SupervisorAgent reduces the token consumption of the Smolagent framework by an average of 29.45% without compromising its success rate. Extensive experiments across five additional benchmarks (math reasoning, code generation, and question answering) and various SoTA foundation models validate the broad applicability and robustness of our approach. The code is available at https://github.com/LINs-lab/SupervisorAgent.
☆ InfoFlow: Reinforcing Search Agent Via Reward Density Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising approach for enhancing agentic deep search. However, its application is often hindered by low \textbf{Reward Density} in deep search scenarios, where agents expend significant exploratory costs for infrequent and often null final rewards. In this paper, we formalize this challenge as the \textbf{Reward Density Optimization} problem, which aims to improve the reward obtained per unit of exploration cost. This paper introduce \textbf{InfoFlow}, a systematic framework that tackles this problem from three aspects. 1) \textbf{Subproblem decomposition}: breaking down long-range tasks to assign process rewards, thereby providing denser learning signals. 2) \textbf{Failure-guided hints}: injecting corrective guidance into stalled trajectories to increase the probability of successful outcomes. 3) \textbf{Dual-agent refinement}: employing a dual-agent architecture to offload the cognitive burden of deep exploration. A refiner agent synthesizes the search history, which effectively compresses the researcher's perceived trajectory, thereby reducing exploration cost and increasing the overall reward density. We evaluate InfoFlow on multiple agentic search benchmarks, where it significantly outperforms strong baselines, enabling lightweight LLMs to achieve performance comparable to advanced proprietary LLMs.
☆ Multiclass Local Calibration With the Jensen-Shannon Distance
Developing trustworthy Machine Learning (ML) models requires their predicted probabilities to be well-calibrated, meaning they should reflect true-class frequencies. Among calibration notions in multiclass classification, strong calibration is the most stringent, as it requires all predicted probabilities to be simultaneously calibrated across all classes. However, existing approaches to multiclass calibration lack a notion of distance among inputs, which makes them vulnerable to proximity bias: predictions in sparse regions of the feature space are systematically miscalibrated. This is especially relevant in high-stakes settings, such as healthcare, where the sparse instances are exactly those most at risk of biased treatment. In this work, we address this main shortcoming by introducing a local perspective on multiclass calibration. First, we formally define multiclass local calibration and establish its relationship with strong calibration. Second, we theoretically analyze the pitfalls of existing evaluation metrics when applied to multiclass local calibration. Third, we propose a practical method for enhancing local calibration in Neural Networks, which enforces alignment between predicted probabilities and local estimates of class frequencies using the Jensen-Shannon distance. Finally, we empirically validate our approach against existing multiclass calibration techniques.
☆ Adaptive Inverse Kinematics Framework for Learning Variable-Length Tool Manipulation in Robotics
Conventional robots possess a limited understanding of their kinematics and are confined to preprogrammed tasks, hindering their ability to leverage tools efficiently. Driven by the essential components of tool usage - grasping the desired outcome, selecting the most suitable tool, determining optimal tool orientation, and executing precise manipulations - we introduce a pioneering framework. Our novel approach expands the capabilities of the robot's inverse kinematics solver, empowering it to acquire a sequential repertoire of actions using tools of varying lengths. By integrating a simulation-learned action trajectory with the tool, we showcase the practicality of transferring acquired skills from simulation to real-world scenarios through comprehensive experimentation. Remarkably, our extended inverse kinematics solver demonstrates an impressive error rate of less than 1 cm. Furthermore, our trained policy achieves a mean error of 8 cm in simulation. Noteworthy, our model achieves virtually indistinguishable performance when employing two distinct tools of different lengths. This research provides an indication of potential advances in the exploration of all four fundamental aspects of tool usage, enabling robots to master the intricate art of tool manipulation across diverse tasks.
comment: 10 pages, 5 figures. Demonstrates a reinforcement learning framework for adaptive tool manipulation with variable-length extensions
☆ EdgeRunner 20B: Military Task Parity with GPT-5 while Running on the Edge
We present EdgeRunner 20B, a fine-tuned version of gpt-oss-20b optimized for military tasks. EdgeRunner 20B was trained on 1.6M high-quality records curated from military documentation and websites. We also present four new tests sets: (a) combat arms, (b) combat medic, (c) cyber operations, and (d) mil-bench-5k (general military knowledge). On these military test sets, EdgeRunner 20B matches or exceeds GPT-5 task performance with 95%+ statistical significance, except for the high reasoning setting on the combat medic test set and the low reasoning setting on the mil-bench-5k test set. Versus gpt-oss-20b, there is no statistically-significant regression on general-purpose benchmarks like ARC-C, GPQA Diamond, GSM8k, IFEval, MMLU Pro, or TruthfulQA, except for GSM8k in the low reasoning setting. We also present analyses on hyperparameter settings, cost, and throughput. These findings show that small, locally-hosted models are ideal solutions for data-sensitive operations such as in the military domain, allowing for deployment in air-gapped edge devices.
comment: 19 pages
☆ The Structure of Relation Decoding Linear Operators in Large Language Models NeurIPS 2025
This paper investigates the structure of linear operators introduced in Hernandez et al. [2023] that decode specific relational facts in transformer language models. We extend their single-relation findings to a collection of relations and systematically chart their organization. We show that such collections of relation decoders can be highly compressed by simple order-3 tensor networks without significant loss in decoding accuracy. To explain this surprising redundancy, we develop a cross-evaluation protocol, in which we apply each linear decoder operator to the subjects of every other relation. Our results reveal that these linear maps do not encode distinct relations, but extract recurring, coarse-grained semantic properties (e.g., country of capital city and country of food are both in the country-of-X property). This property-centric structure clarifies both the operators' compressibility and highlights why they generalize only to new relations that are semantically close. Our findings thus interpret linear relational decoding in transformer language models as primarily property-based, rather than relation-specific.
comment: NeurIPS 2025 (Spotlight)
☆ Human-AI Complementarity: A Goal for Amplified Oversight
Human feedback is critical for aligning AI systems to human values. As AI capabilities improve and AI is used to tackle more challenging tasks, verifying quality and safety becomes increasingly challenging. This paper explores how we can leverage AI to improve the quality of human oversight. We focus on an important safety problem that is already challenging for humans: fact-verification of AI outputs. We find that combining AI ratings and human ratings based on AI rater confidence is better than relying on either alone. Giving humans an AI fact-verification assistant further improves their accuracy, but the type of assistance matters. Displaying AI explanation, confidence, and labels leads to over-reliance, but just showing search results and evidence fosters more appropriate trust. These results have implications for Amplified Oversight -- the challenge of combining humans and AI to supervise AI systems even as they surpass human expert performance.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ Simulating and Experimenting with Social Media Mobilization Using LLM Agents
Online social networks have transformed the ways in which political mobilization messages are disseminated, raising new questions about how peer influence operates at scale. Building on the landmark 61-million-person Facebook experiment \citep{bond201261}, we develop an agent-based simulation framework that integrates real U.S. Census demographic distributions, authentic Twitter network topology, and heterogeneous large language model (LLM) agents to examine the effect of mobilization messages on voter turnout. Each simulated agent is assigned demographic attributes, a personal political stance, and an LLM variant (\texttt{GPT-4.1}, \texttt{GPT-4.1-Mini}, or \texttt{GPT-4.1-Nano}) reflecting its political sophistication. Agents interact over realistic social network structures, receiving personalized feeds and dynamically updating their engagement behaviors and voting intentions. Experimental conditions replicate the informational and social mobilization treatments of the original Facebook study. Across scenarios, the simulator reproduces qualitative patterns observed in field experiments, including stronger mobilization effects under social message treatments and measurable peer spillovers. Our framework provides a controlled, reproducible environment for testing counterfactual designs and sensitivity analyses in political mobilization research, offering a bridge between high-validity field experiments and flexible computational modeling.\footnote{Code and data available at https://github.com/CausalMP/LLM-SocioPol}
☆ Context Engineering 2.0: The Context of Context Engineering
Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.
☆ LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
comment: Accepted in ICKG 2025 Conference, 8 Pages, 2 Figures
☆ Bayesian Network Fusion of Large Language Models for Sentiment Analysis
Large language models (LLMs) continue to advance, with an increasing number of domain-specific variants tailored for specialised tasks. However, these models often lack transparency and explainability, can be costly to fine-tune, require substantial prompt engineering, yield inconsistent results across domains, and impose significant adverse environmental impact due to their high computational demands. To address these challenges, we propose the Bayesian network LLM fusion (BNLF) framework, which integrates predictions from three LLMs, including FinBERT, RoBERTa, and BERTweet, through a probabilistic mechanism for sentiment analysis. BNLF performs late fusion by modelling the sentiment predictions from multiple LLMs as probabilistic nodes within a Bayesian network. Evaluated across three human-annotated financial corpora with distinct linguistic and contextual characteristics, BNLF demonstrates consistent gains of about six percent in accuracy over the baseline LLMs, underscoring its robustness to dataset variability and the effectiveness of probabilistic fusion for interpretable sentiment classification.
☆ Who Has The Final Say? Conformity Dynamics in ChatGPT's Selections
Large language models (LLMs) such as ChatGPT are increasingly integrated into high-stakes decision-making, yet little is known about their susceptibility to social influence. We conducted three preregistered conformity experiments with GPT-4o in a hiring context. In a baseline study, GPT consistently favored the same candidate (Profile C), reported moderate expertise (M = 3.01) and high certainty (M = 3.89), and rarely changed its choice. In Study 1 (GPT + 8), GPT faced unanimous opposition from eight simulated partners and almost always conformed (99.9%), reporting lower certainty and significantly elevated self-reported informational and normative conformity (p < .001). In Study 2 (GPT + 1), GPT interacted with a single partner and still conformed in 40.2% of disagreement trials, reporting less certainty and more normative conformity. Across studies, results demonstrate that GPT does not act as an independent observer but adapts to perceived social consensus. These findings highlight risks of treating LLMs as neutral decision aids and underline the need to elicit AI judgments prior to exposing them to human opinions.
comment: 5 pages, 5 figures, HAI 2025: Workshop on Socially Aware and Cooperative Intelligent Systems
☆ Counteracting Matthew Effect in Self-Improvement of LVLMs through Head-Tail Re-balancing
Self-improvement has emerged as a mainstream paradigm for advancing the reasoning capabilities of large vision-language models (LVLMs), where models explore and learn from successful trajectories iteratively. However, we identify a critical issue during this process: the model excels at generating high-quality trajectories for simple queries (i.e., head data) but struggles with more complex ones (i.e., tail data). This leads to an imbalanced optimization that drives the model to prioritize simple reasoning skills, while hindering its ability to tackle more complex reasoning tasks. Over iterations, this imbalance becomes increasingly pronounced--a dynamic we term the "Matthew effect"--which ultimately hinders further model improvement and leads to performance bottlenecks. To counteract this challenge, we introduce four efficient strategies from two perspectives: distribution-reshaping and trajectory-resampling, to achieve head-tail re-balancing during the exploration-and-learning self-improvement process. Extensive experiments on Qwen2-VL-7B-Instruct and InternVL2.5-4B models across visual reasoning tasks demonstrate that our methods consistently improve visual reasoning capabilities, outperforming vanilla self-improvement by 3.86 points on average.
comment: Preprint
☆ SecureReviewer: Enhancing Large Language Models for Secure Code Review through Secure-aware Fine-tuning ICSE 2026
Identifying and addressing security issues during the early phase of the development lifecycle is critical for mitigating the long-term negative impacts on software systems. Code review serves as an effective practice that enables developers to check their teammates' code before integration into the codebase. To streamline the generation of review comments, various automated code review approaches have been proposed, where LLM-based methods have significantly advanced the capabilities of automated review generation. However, existing models primarily focus on general-purpose code review, their effectiveness in identifying and addressing security-related issues remains underexplored. Moreover, adapting existing code review approaches to target security issues faces substantial challenges, including data scarcity and inadequate evaluation metrics. To address these limitations, we propose SecureReviewer, a new approach designed for enhancing LLMs' ability to identify and resolve security-related issues during code review. Specifically, we first construct a dataset tailored for training and evaluating secure code review capabilities. Leveraging this dataset, we fine-tune LLMs to generate code review comments that can effectively identify security issues and provide fix suggestions with our proposed secure-aware fine-tuning strategy. To mitigate hallucination in LLMs and enhance the reliability of their outputs, we integrate the RAG technique, which grounds the generated comments in domain-specific security knowledge. Additionally, we introduce SecureBLEU, a new evaluation metric designed to assess the effectiveness of review comments in addressing security issues. Experimental results demonstrate that SecureReviewer outperforms state-of-the-art baselines in both security issue detection accuracy and the overall quality and practical utility of generated review comments.
comment: Accepted by ICSE 2026. Code and data: https://github.com/SIMIAO515/SecureReviewer
☆ Robust Graph Condensation via Classification Complexity Mitigation
Graph condensation (GC) has gained significant attention for its ability to synthesize smaller yet informative graphs. However, existing studies often overlook the robustness of GC in scenarios where the original graph is corrupted. In such cases, we observe that the performance of GC deteriorates significantly, while existing robust graph learning technologies offer only limited effectiveness. Through both empirical investigation and theoretical analysis, we reveal that GC is inherently an intrinsic-dimension-reducing process, synthesizing a condensed graph with lower classification complexity. Although this property is critical for effective GC performance, it remains highly vulnerable to adversarial perturbations. To tackle this vulnerability and improve GC robustness, we adopt the geometry perspective of graph data manifold and propose a novel Manifold-constrained Robust Graph Condensation framework named MRGC. Specifically, we introduce three graph data manifold learning modules that guide the condensed graph to lie within a smooth, low-dimensional manifold with minimal class ambiguity, thereby preserving the classification complexity reduction capability of GC and ensuring robust performance under universal adversarial attacks. Extensive experiments demonstrate the robustness of \ModelName\ across diverse attack scenarios.
☆ Personalized Treatment Outcome Prediction from Scarce Data via Dual-Channel Knowledge Distillation and Adaptive Fusion
Personalized treatment outcome prediction based on trial data for small-sample and rare patient groups is critical in precision medicine. However, the costly trial data limit the prediction performance. To address this issue, we propose a cross-fidelity knowledge distillation and adaptive fusion network (CFKD-AFN), which leverages abundant but low-fidelity simulation data to enhance predictions on scarce but high-fidelity trial data. CFKD-AFN incorporates a dual-channel knowledge distillation module to extract complementary knowledge from the low-fidelity model, along with an attention-guided fusion module to dynamically integrate multi-source information. Experiments on treatment outcome prediction for the chronic obstructive pulmonary disease demonstrates significant improvements of CFKD-AFN over state-of-the-art methods in prediction accuracy, ranging from 6.67\% to 74.55\%, and strong robustness to varying high-fidelity dataset sizes. Furthermore, we extend CFKD-AFN to an interpretable variant, enabling the exploration of latent medical semantics to support clinical decision-making.
☆ SSCL-BW: Sample-Specific Clean-Label Backdoor Watermarking for Dataset Ownership Verification
The rapid advancement of deep neural networks (DNNs) heavily relies on large-scale, high-quality datasets. However, unauthorized commercial use of these datasets severely violates the intellectual property rights of dataset owners. Existing backdoor-based dataset ownership verification methods suffer from inherent limitations: poison-label watermarks are easily detectable due to label inconsistencies, while clean-label watermarks face high technical complexity and failure on high-resolution images. Moreover, both approaches employ static watermark patterns that are vulnerable to detection and removal. To address these issues, this paper proposes a sample-specific clean-label backdoor watermarking (i.e., SSCL-BW). By training a U-Net-based watermarked sample generator, this method generates unique watermarks for each sample, fundamentally overcoming the vulnerability of static watermark patterns. The core innovation lies in designing a composite loss function with three components: target sample loss ensures watermark effectiveness, non-target sample loss guarantees trigger reliability, and perceptual similarity loss maintains visual imperceptibility. During ownership verification, black-box testing is employed to check whether suspicious models exhibit predefined backdoor behaviors. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method and its robustness against potential watermark removal attacks.
comment: 8 pages,9 figures
☆ Chain-of-Thought Hijacking
Large reasoning models (LRMs) achieve higher task performance by allocating more inference-time compute, and prior works suggest this scaled reasoning may also strengthen safety by improving refusal. Yet we find the opposite: the same reasoning can be used to bypass safeguards. We introduce Chain-of-Thought Hijacking, a jailbreak attack on reasoning models. The attack pads harmful requests with long sequences of harmless puzzle reasoning. Across HarmBench, CoT Hijacking reaches a 99%, 94%, 100%, and 94% attack success rate (ASR) on Gemini 2.5 Pro, GPT o4 mini, Grok 3 mini, and Claude 4 Sonnet, respectively - far exceeding prior jailbreak methods for LRMs. To understand the effectiveness of our attack, we turn to a mechanistic analysis, which shows that mid layers encode the strength of safety checking, while late layers encode the verification outcome. Long benign CoT dilutes both signals by shifting attention away from harmful tokens. Targeted ablations of attention heads identified by this analysis causally decrease refusal, confirming their role in a safety subnetwork. These results show that the most interpretable form of reasoning - explicit CoT - can itself become a jailbreak vector when combined with final-answer cues. We release prompts, outputs, and judge decisions to facilitate replication.
☆ LoCoT2V-Bench: A Benchmark for Long-Form and Complex Text-to-Video Generation
Recently text-to-video generation has made impressive progress in producing short, high-quality clips, but evaluating long-form outputs remains a major challenge especially when processing complex prompts. Existing benchmarks mostly rely on simplified prompts and focus on low-level metrics, overlooking fine-grained alignment with prompts and abstract dimensions such as narrative coherence and thematic expression. To address these gaps, we propose LoCoT2V-Bench, a benchmark specifically designed for long video generation (LVG) under complex input conditions. Based on various real-world videos, LoCoT2V-Bench introduces a suite of realistic and complex prompts incorporating elements like scene transitions and event dynamics. Moreover, it constructs a multi-dimensional evaluation framework that includes our newly proposed metrics such as event-level alignment, fine-grained temporal consistency, content clarity, and the Human Expectation Realization Degree (HERD) that focuses on more abstract attributes like narrative flow, emotional response, and character development. Using this framework, we conduct a comprehensive evaluation of nine representative LVG models, finding that while current methods perform well on basic visual and temporal aspects, they struggle with inter-event consistency, fine-grained alignment, and high-level thematic adherence, etc. Overall, LoCoT2V-Bench provides a comprehensive and reliable platform for evaluating long-form complex text-to-video generation and highlights critical directions for future method improvement.
☆ MedSAE: Dissecting MedCLIP Representations with Sparse Autoencoders
Artificial intelligence in healthcare requires models that are accurate and interpretable. We advance mechanistic interpretability in medical vision by applying Medical Sparse Autoencoders (MedSAEs) to the latent space of MedCLIP, a vision-language model trained on chest radiographs and reports. To quantify interpretability, we propose an evaluation framework that combines correlation metrics, entropy analyzes, and automated neuron naming via the MedGEMMA foundation model. Experiments on the CheXpert dataset show that MedSAE neurons achieve higher monosemanticity and interpretability than raw MedCLIP features. Our findings bridge high-performing medical AI and transparency, offering a scalable step toward clinically reliable representations.
☆ Human-in-the-loop Online Rejection Sampling for Robotic Manipulation
Reinforcement learning (RL) is widely used to produce robust robotic manipulation policies, but fine-tuning vision-language-action (VLA) models with RL can be unstable due to inaccurate value estimates and sparse supervision at intermediate steps. In contrast, imitation learning (IL) is easy to train but often underperforms due to its offline nature. In this paper, we propose Hi-ORS, a simple yet effective post-training method that utilizes rejection sampling to achieve both training stability and high robustness. Hi-ORS stabilizes value estimation by filtering out negatively rewarded samples during online fine-tuning, and adopts a reward-weighted supervised training objective to provide dense intermediate-step supervision. For systematic study, we develop an asynchronous inference-training framework that supports flexible online human-in-the-loop corrections, which serve as explicit guidance for learning error-recovery behaviors. Across three real-world tasks and two embodiments, Hi-ORS fine-tunes a pi-base policy to master contact-rich manipulation in just 1.5 hours of real-world training, outperforming RL and IL baselines by a substantial margin in both effectiveness and efficiency. Notably, the fine-tuned policy exhibits strong test-time scalability by reliably executing complex error-recovery behaviors to achieve better performance.
comment: 8 pages
☆ Autograder+: A Multi-Faceted AI Framework for Rich Pedagogical Feedback in Programming Education
The rapid growth of programming education has outpaced traditional assessment tools, leaving faculty with limited means to provide meaningful, scalable feedback. Conventional autograders, while efficient, act as black-box systems that simply return pass/fail results, offering little insight into student thinking or learning needs. Autograder+ is designed to shift autograding from a purely summative process to a formative learning experience. It introduces two key capabilities: automated feedback generation using a fine-tuned Large Language Model, and visualization of student code submissions to uncover learning patterns. The model is fine-tuned on curated student code and expert feedback to ensure pedagogically aligned, context-aware guidance. In evaluation across 600 student submissions from multiple programming tasks, the system produced feedback with strong semantic alignment to instructor comments. For visualization, contrastively learned code embeddings trained on 1,000 annotated submissions enable grouping solutions into meaningful clusters based on functionality and approach. The system also supports prompt-pooling, allowing instructors to guide feedback style through selected prompt templates. By integrating AI-driven feedback, semantic clustering, and interactive visualization, Autograder+ reduces instructor workload while supporting targeted instruction and promoting stronger learning outcomes.
☆ A Pragmatic View of AI Personhood
The emergence of agentic Artificial Intelligence (AI) is set to trigger a "Cambrian explosion" of new kinds of personhood. This paper proposes a pragmatic framework for navigating this diversification by treating personhood not as a metaphysical property to be discovered, but as a flexible bundle of obligations (rights and responsibilities) that societies confer upon entities for a variety of reasons, especially to solve concrete governance problems. We argue that this traditional bundle can be unbundled, creating bespoke solutions for different contexts. This will allow for the creation of practical tools -- such as facilitating AI contracting by creating a target "individual" that can be sanctioned -- without needing to resolve intractable debates about an AI's consciousness or rationality. We explore how individuals fit in to social roles and discuss the use of decentralized digital identity technology, examining both "personhood as a problem", where design choices can create "dark patterns" that exploit human social heuristics, and "personhood as a solution", where conferring a bundle of obligations is necessary to ensure accountability or prevent conflict. By rejecting foundationalist quests for a single, essential definition of personhood, this paper offers a more pragmatic and flexible way to think about integrating AI agents into our society.
comment: 40 pages
☆ SPG-CDENet: Spatial Prior-Guided Cross Dual Encoder Network for Multi-Organ Segmentation
Multi-organ segmentation is a critical task in computer-aided diagnosis. While recent deep learning methods have achieved remarkable success in image segmentation, huge variations in organ size and shape challenge their effectiveness in multi-organ segmentation. To address these challenges, we propose a Spatial Prior-Guided Cross Dual Encoder Network (SPG-CDENet), a novel two-stage segmentation paradigm designed to improve multi-organ segmentation accuracy. Our SPG-CDENet consists of two key components: a spatial prior network and a cross dual encoder network. The prior network generates coarse localization maps that delineate the approximate ROI, serving as spatial guidance for the dual encoder network. The cross dual encoder network comprises four essential components: a global encoder, a local encoder, a symmetric cross-attention module, and a flow-based decoder. The global encoder captures global semantic features from the entire image, while the local encoder focuses on features from the prior network. To enhance the interaction between the global and local encoders, a symmetric cross-attention module is proposed across all layers of the encoders to fuse and refine features. Furthermore, the flow-based decoder directly propagates high-level semantic features from the final encoder layer to all decoder layers, maximizing feature preservation and utilization. Extensive qualitative and quantitative experiments on two public datasets demonstrate the superior performance of SPG-CDENet compared to existing segmentation methods. Furthermore, ablation studies further validate the effectiveness of the proposed modules in improving segmentation accuracy.
☆ Scales++: Compute Efficient Evaluation Subset Selection with Cognitive Scales Embeddings
The prohibitive cost of evaluating large language models (LLMs) on comprehensive benchmarks necessitates the creation of small yet representative data subsets (i.e., tiny benchmarks) that enable efficient assessment while retaining predictive fidelity. Current methods for this task operate under a model-centric paradigm, selecting benchmarking items based on the collective performance of existing models. Such approaches are limited by large upfront costs, an inability to immediately handle new benchmarks (`cold-start'), and the fragile assumption that future models will share the failure patterns of their predecessors. In this work, we challenge this paradigm and propose a item-centric approach to benchmark subset selection, arguing that selection should be based on the intrinsic properties of the task items themselves, rather than on model-specific failure patterns. We instantiate this item-centric efficient benchmarking approach via a novel method, Scales++, where data selection is based on the cognitive demands of the benchmark samples. Empirically, we show Scales++ reduces the upfront selection cost by over 18x while achieving competitive predictive fidelity. On the Open LLM Leaderboard, using just a 0.5\% data subset, we predict full benchmark scores with a 2.9% mean absolute error. We demonstrate that this item-centric approach enables more efficient model evaluation without significant fidelity degradation, while also providing better cold-start performance and more interpretable benchmarking.
comment: 9 pages, 2 figures, 4 tables
☆ AI Mathematician as a Partner in Advancing Mathematical Discovery -- A Case Study in Homogenization Theory
Artificial intelligence (AI) has demonstrated impressive progress in mathematical reasoning, yet its integration into the practice of mathematical research remains limited. In this study, we investigate how the AI Mathematician (AIM) system can operate as a research partner rather than a mere problem solver. Focusing on a challenging problem in homogenization theory, we analyze the autonomous reasoning trajectories of AIM and incorporate targeted human interventions to structure the discovery process. Through iterative decomposition of the problem into tractable subgoals, selection of appropriate analytical methods, and validation of intermediate results, we reveal how human intuition and machine computation can complement one another. This collaborative paradigm enhances the reliability, transparency, and interpretability of the resulting proofs, while retaining human oversight for formal rigor and correctness. The approach leads to a complete and verifiable proof, and more broadly, demonstrates how systematic human-AI co-reasoning can advance the frontier of mathematical discovery.
comment: 52 pages, 1 figure
☆ BOTS: A Unified Framework for Bayesian Online Task Selection in LLM Reinforcement Finetuning
Reinforcement finetuning (RFT) is a key technique for aligning Large Language Models (LLMs) with human preferences and enhancing reasoning, yet its effectiveness is highly sensitive to which tasks are explored during training. Uniform task sampling is inefficient, wasting computation on tasks that are either trivial or unsolvable, while existing task selection methods often suffer from high rollout costs, poor adaptivity, or incomplete evidence. We introduce \textbf{BOTS}, a unified framework for \textbf{B}ayesian \textbf{O}nline \textbf{T}ask \textbf{S}election in LLM reinforcement finetuning. Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates of task difficulty as the model evolves. It jointly incorporates \emph{explicit evidence} from direct evaluations of selected tasks and \emph{implicit evidence} inferred from these evaluations for unselected tasks, with Thompson sampling ensuring a principled balance between exploration and exploitation. To make implicit evidence practical, we instantiate it with an ultra-light interpolation-based plug-in that estimates difficulties of unevaluated tasks without extra rollouts, adding negligible overhead. Empirically, across diverse domains and LLM scales, BOTS consistently improves data efficiency and performance over baselines and ablations, providing a practical and extensible solution for dynamic task selection in RFT.
☆ The Geometry of Dialogue: Graphing Language Models to Reveal Synergistic Teams for Multi-Agent Collaboration
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.
☆ Reinforcement Learning for Pollution Detection in a Randomized, Sparse and Nonstationary Environment with an Autonomous Underwater Vehicle
Reinforcement learning (RL) algorithms are designed to optimize problem-solving by learning actions that maximize rewards, a task that becomes particularly challenging in random and nonstationary environments. Even advanced RL algorithms are often limited in their ability to solve problems in these conditions. In applications such as searching for underwater pollution clouds with autonomous underwater vehicles (AUVs), RL algorithms must navigate reward-sparse environments, where actions frequently result in a zero reward. This paper aims to address these challenges by revisiting and modifying classical RL approaches to efficiently operate in sparse, randomized, and nonstationary environments. We systematically study a large number of modifications, including hierarchical algorithm changes, multigoal learning, and the integration of a location memory as an external output filter to prevent state revisits. Our results demonstrate that a modified Monte Carlo-based approach significantly outperforms traditional Q-learning and two exhaustive search patterns, illustrating its potential in adapting RL to complex environments. These findings suggest that reinforcement learning approaches can be effectively adapted for use in random, nonstationary, and reward-sparse environments.
☆ Discovering State Equivalences in UCT Search Trees By Action Pruning
One approach to enhance Monte Carlo Tree Search (MCTS) is to improve its sample efficiency by grouping/abstracting states or state-action pairs and sharing statistics within a group. Though state-action pair abstractions are mostly easy to find in algorithms such as On the Go Abstractions in Upper Confidence bounds applied to Trees (OGA-UCT), nearly no state abstractions are found in either noisy or large action space settings due to constraining conditions. We provide theoretical and empirical evidence for this claim, and we slightly alleviate this state abstraction problem by proposing a weaker state abstraction condition that trades a minor loss in accuracy for finding many more abstractions. We name this technique Ideal Pruning Abstractions in UCT (IPA-UCT), which outperforms OGA-UCT (and any of its derivatives) across a large range of test domains and iteration budgets as experimentally validated. IPA-UCT uses a different abstraction framework from Abstraction of State-Action Pairs (ASAP) which is the one used by OGA-UCT, which we name IPA. Furthermore, we show that both IPA and ASAP are special cases of a more general framework that we call p-ASAP which itself is a special case of the ASASAP framework.
☆ MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.
☆ Linear Causal Discovery with Interventional Constraints
Incorporating causal knowledge and mechanisms is essential for refining causal models and improving downstream tasks such as designing new treatments. In this paper, we introduce a novel concept in causal discovery, termed interventional constraints, which differs fundamentally from interventional data. While interventional data require direct perturbations of variables, interventional constraints encode high-level causal knowledge in the form of inequality constraints on causal effects. For instance, in the Sachs dataset (Sachs et al.\ 2005), Akt has been shown to be activated by PIP3, meaning PIP3 exerts a positive causal effect on Akt. Existing causal discovery methods allow enforcing structural constraints (for example, requiring a causal path from PIP3 to Akt), but they may still produce incorrect causal conclusions such as learning that "PIP3 inhibits Akt". Interventional constraints bridge this gap by explicitly constraining the total causal effect between variable pairs, ensuring learned models respect known causal influences. To formalize interventional constraints, we propose a metric to quantify total causal effects for linear causal models and formulate the problem as a constrained optimization task, solved using a two-stage constrained optimization method. We evaluate our approach on real-world datasets and demonstrate that integrating interventional constraints not only improves model accuracy and ensures consistency with established findings, making models more explainable, but also facilitates the discovery of new causal relationships that would otherwise be costly to identify.
☆ GLYPH-SR: Can We Achieve Both High-Quality Image Super-Resolution and High-Fidelity Text Recovery via VLM-guided Latent Diffusion Model? ICLR 2026
Image super-resolution(SR) is fundamental to many vision system-from surveillance and autonomy to document analysis and retail analytics-because recovering high-frequency details, especially scene-text, enables reliable downstream perception. Scene-text, i.e., text embedded in natural images such as signs, product labels, and storefronts, often carries the most actionable information; when characters are blurred or hallucinated, optical character recognition(OCR) and subsequent decisions fail even if the rest of the image appears sharp. Yet previous SR research has often been tuned to distortion (PSNR/SSIM) or learned perceptual metrics (LIPIS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to character-level errors. Furthermore, studies that do address text SR often focus on simplified benchmarks with isolated characters, overlooking the challenges of text within complex natural scenes. As a result, scene-text is effectively treated as generic texture. For SR to be effective in practical deployments, it is therefore essential to explicitly optimize for both text legibility and perceptual quality. We present GLYPH-SR, a vision-language-guided diffusion framework that aims to achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates between text- and scene-centric guidance. To enable targeted text restoration, we train these components on a synthetic corpus while keeping the main SR branch frozen. Across SVT, SCUT-CTW1500, and CUTE80 at x4, and x8, GLYPH-SR improves OCR F1 by up to +15.18 percentage points over diffusion/GAN baseline (SVT x8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously-high readability and high visual realism-delivering SR that looks right and reds right.
comment: 11 pages, 6 figures. Includes supplementary material. Under review as a conference paper at ICLR 2026
☆ From Amateur to Master: Infusing Knowledge into LLMs via Automated Curriculum Learning
Large Language Models (LLMs) excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs.
☆ Posterior Sampling by Combining Diffusion Models with Annealed Langevin Dynamics NeurIPS 2025
Given a noisy linear measurement $y = Ax + \xi$ of a distribution $p(x)$, and a good approximation to the prior $p(x)$, when can we sample from the posterior $p(x \mid y)$? Posterior sampling provides an accurate and fair framework for tasks such as inpainting, deblurring, and MRI reconstruction, and several heuristics attempt to approximate it. Unfortunately, approximate posterior sampling is computationally intractable in general. To sidestep this hardness, we focus on (local or global) log-concave distributions $p(x)$. In this regime, Langevin dynamics yields posterior samples when the exact scores of $p(x)$ are available, but it is brittle to score--estimation error, requiring an MGF bound (sub-exponential error). By contrast, in the unconditional setting, diffusion models succeed with only an $L^2$ bound on the score error. We prove that combining diffusion models with an annealed variant of Langevin dynamics achieves conditional sampling in polynomial time using merely an $L^4$ bound on the score error.
comment: NeurIPS 2025
GraphCompliance: Aligning Policy and Context Graphs for LLM-Based Regulatory Compliance
Compliance at web scale poses practical challenges: each request may require a regulatory assessment. Regulatory texts (e.g., the General Data Protection Regulation, GDPR) are cross-referential and normative, while runtime contexts are expressed in unstructured natural language. This setting motivates us to align semantic information in unstructured text with the structured, normative elements of regulations. To this end, we introduce GraphCompliance, a framework that represents regulatory texts as a Policy Graph and runtime contexts as a Context Graph, and aligns them. In this formulation, the policy graph encodes normative structure and cross-references, whereas the context graph formalizes events as subject-action-object (SAO) and entity-relation triples. This alignment anchors the reasoning of a judge large language model (LLM) in structured information and helps reduce the burden of regulatory interpretation and event parsing, enabling a focus on the core reasoning step. In experiments on 300 GDPR-derived real-world scenarios spanning five evaluation tasks, GraphCompliance yields 4.1-7.2 percentage points (pp) higher micro-F1 than LLM-only and RAG baselines, with fewer under- and over-predictions, resulting in higher recall and lower false positive rates. Ablation studies indicate contributions from each graph component, suggesting that structured representations and a judge LLM are complementary for normative reasoning.
comment: Under review at The Web Conference 2026 (Semantics & Knowledge track). Code will be released upon acceptance. This arXiv v1 contains no repository links to preserve double-blind review
☆ Implicit Bias of Per-sample Adam on Separable Data: Departure from the Full-batch Regime
Adam [Kingma and Ba, 2015] is the de facto optimizer in deep learning, yet its theoretical understanding remains limited. Prior analyses show that Adam favors solutions aligned with $\ell_\infty$-geometry, but these results are restricted to the full-batch regime. In this work, we study the implicit bias of incremental Adam (using one sample per step) for logistic regression on linearly separable data, and we show that its bias can deviate from the full-batch behavior. To illustrate this, we construct a class of structured datasets where incremental Adam provably converges to the $\ell_2$-max-margin classifier, in contrast to the $\ell_\infty$-max-margin bias of full-batch Adam. For general datasets, we develop a proxy algorithm that captures the limiting behavior of incremental Adam as $\beta_2 \to 1$ and we characterize its convergence direction via a data-dependent dual fixed-point formulation. Finally, we prove that, unlike Adam, Signum [Bernstein et al., 2018] converges to the $\ell_\infty$-max-margin classifier for any batch size by taking $\beta$ close enough to 1. Overall, our results highlight that the implicit bias of Adam crucially depends on both the batching scheme and the dataset, while Signum remains invariant.
comment: 50 pages
☆ Understanding Hardness of Vision-Language Compositionality from A Token-level Causal Lens
Contrastive Language-Image Pre-training (CLIP) delivers strong cross modal generalization by aligning images and texts in a shared embedding space, yet it persistently fails at compositional reasoning over objects, attributes, and relations often behaving like a bag-of-words matcher. Prior causal accounts typically model text as a single vector, obscuring token-level structure and leaving core phenomena-such as prompt sensitivity and failures on hard negatives unexplained. We address this gap with a token-aware causal representation learning (CRL) framework grounded in a sequential, language-token SCM. Our theory extends block identifiability to tokenized text, proving that CLIP's contrastive objective can recover the modal-invariant latent variable under both sentence-level and token-level SCMs. Crucially, token granularity yields the first principled explanation of CLIP's compositional brittleness: composition nonidentifiability. We show the existence of pseudo-optimal text encoders that achieve perfect modal-invariant alignment yet are provably insensitive to SWAP, REPLACE, and ADD operations over atomic concepts, thereby failing to distinguish correct captions from hard negatives despite optimizing the same training objective as true-optimal encoders. The analysis further links language-side nonidentifiability to visual-side failures via the modality gap and shows how iterated composition operators compound hardness, motivating improved negative mining strategies.
☆ Can Agent Conquer Web? Exploring the Frontiers of ChatGPT Atlas Agent in Web Games
OpenAI's ChatGPT Atlas introduces new capabilities for web interaction, enabling the model to analyze webpages, process user intents, and execute cursor and keyboard inputs directly within the browser. While its capacity for information retrieval tasks has been demonstrated, its performance in dynamic, interactive environments remains less explored. In this study, we conduct an early evaluation of Atlas's web interaction capabilities using browser-based games as test scenarios, including Google's T-Rex Runner, Sudoku, Flappy Bird, and Stein.world. We employ in-game performance scores as quantitative metrics to assess performance across different task types. Our results show that Atlas performs strongly in logical reasoning tasks like Sudoku, completing puzzles significantly faster than human baselines, but struggles substantially in real-time games requiring precise timing and motor control, often failing to progress beyond initial obstacles. These findings suggest that while Atlas demonstrates capable analytical processing, there remain notable limitations in dynamic web environments requiring real-time interaction. The website of our project can be found at https://atlas-game-eval.github.io.
☆ Unravelling the Mechanisms of Manipulating Numbers in Language Models
Recent work has shown that different large language models (LLMs) converge to similar and accurate input embedding representations for numbers. These findings conflict with the documented propensity of LLMs to produce erroneous outputs when dealing with numeric information. In this work, we aim to explain this conflict by exploring how language models manipulate numbers and quantify the lower bounds of accuracy of these mechanisms. We find that despite surfacing errors, different language models learn interchangeable representations of numbers that are systematic, highly accurate and universal across their hidden states and the types of input contexts. This allows us to create universal probes for each LLM and to trace information -- including the causes of output errors -- to specific layers. Our results lay a fundamental understanding of how pre-trained LLMs manipulate numbers and outline the potential of more accurate probing techniques in addressed refinements of LLMs' architectures.
☆ Distributional Multi-objective Black-box Optimization for Diffusion-model Inference-time Multi-Target Generation
Diffusion models have been successful in learning complex data distributions. This capability has driven their application to high-dimensional multi-objective black-box optimization problem. Existing approaches often employ an external optimization loop, such as an evolutionary algorithm, to the diffusion model. However, these approaches treat the diffusion model as a black-box refiner, which overlooks the internal distribution transition of the diffusion generation process, limiting their efficiency. To address these challenges, we propose the Inference-time Multi-target Generation (IMG) algorithm, which optimizes the diffusion process at inference-time to generate samples that simultaneously satisfy multiple objectives. Specifically, our IMG performs weighted resampling during the diffusion generation process according to the expected aggregated multi-objective values. This weighted resampling strategy ensures the diffusion-generated samples are distributed according to our desired multi-target Boltzmann distribution. We further derive that the multi-target Boltzmann distribution has an interesting log-likelihood interpretation, where it is the optimal solution to the distributional multi-objective optimization problem. We implemented IMG for a multi-objective molecule generation task. Experiments show that IMG, requiring only a single generation pass, achieves a significantly higher hypervolume than baseline optimization algorithms that often require hundreds of diffusion generations. Notably, our algorithm can be viewed as an optimized diffusion process and can be integrated into existing methods to further improve their performance.
☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
Graph-Enhanced Policy Optimization in LLM Agent Training
Group based reinforcement learning (RL) has shown impressive results on complex reasoning and mathematical tasks. Yet, when applied to train multi-turn, interactive LLM agents, these methods often suffer from structural blindness-the inability to exploit the underlying connectivity of the environment. This manifests in three critical challenges: (1) inefficient, unguided exploration, (2) imprecise credit assignment due to overlooking pivotal states, and (3) myopic planning caused by static reward discounting. We address these issues with Graph-Enhanced Policy Optimization (GEPO), which dynamically constructs a state-transition graph from agent experience and employs graph-theoretic centrality to provide three synergistic learning signals: (1)structured intrinsic rewards that guide exploration toward high-impact states, (2) a graph-enhanced advantage function for topology-aware credit assignment, and (3) a dynamic discount factor adapted to each state's strategic value. On the ALFWorld, WebShop, and a proprietary Workbench benchmarks, GEPO demonstrates strong performance, achieving absolute success rate gains of +4.1%, +5.3%, and +10.9% over competitive baselines. These results highlight that explicitly modeling environmental structure is a robust, generalizable strategy for advancing LLM agent training.
comment: Under review as a conference paper
☆ Angular Steering: Behavior Control via Rotation in Activation Space NeurIPS 2025
Controlling specific behaviors in large language models while preserving their general capabilities is a central challenge for safe and reliable artificial intelligence deployment. Current steering methods, such as vector addition and directional ablation, are constrained within a two-dimensional subspace defined by the activation and feature direction, making them sensitive to chosen parameters and potentially affecting unrelated features due to unintended interactions in activation space. We introduce Angular Steering, a novel and flexible method for behavior modulation that operates by rotating activations within a fixed two-dimensional subspace. By formulating steering as a geometric rotation toward or away from a target behavior direction, Angular Steering provides continuous, fine-grained control over behaviors such as refusal and compliance. We demonstrate this method using refusal steering emotion steering as use cases. Additionally, we propose Adaptive Angular Steering, a selective variant that rotates only activations aligned with the target feature, further enhancing stability and coherence. Angular Steering generalizes existing addition and orthogonalization techniques under a unified geometric rotation framework, simplifying parameter selection and maintaining model stability across a broader range of adjustments. Experiments across multiple model families and sizes show that Angular Steering achieves robust behavioral control while maintaining general language modeling performance, underscoring its flexibility, generalization, and robustness compared to prior approaches. Code and artifacts are available at https://github.com/lone17/angular-steering/.
comment: NeurIPS 2025 (Spotlight)
Retrieval Augmented Generation-Enhanced Distributed LLM Agents for Generalizable Traffic Signal Control with Emergency Vehicles
With increasing urban traffic complexity, Traffic Signal Control (TSC) is essential for optimizing traffic flow and improving road safety. Large Language Models (LLMs) emerge as promising approaches for TSC. However, they are prone to hallucinations in emergencies, leading to unreliable decisions that may cause substantial delays for emergency vehicles. Moreover, diverse intersection types present substantial challenges for traffic state encoding and cross-intersection training, limiting generalization across heterogeneous intersections. Therefore, this paper proposes Retrieval Augmented Generation (RAG)-enhanced distributed LLM agents with Emergency response for Generalizable TSC (REG-TSC). Firstly, this paper presents an emergency-aware reasoning framework, which dynamically adjusts reasoning depth based on the emergency scenario and is equipped with a novel Reviewer-based Emergency RAG (RERAG) to distill specific knowledge and guidance from historical cases, enhancing the reliability and rationality of agents' emergency decisions. Secondly, this paper designs a type-agnostic traffic representation and proposes a Reward-guided Reinforced Refinement (R3) for heterogeneous intersections. R3 adaptively samples training experience from diverse intersections with environment feedback-based priority and fine-tunes LLM agents with a designed reward-weighted likelihood loss, guiding REG-TSC toward high-reward policies across heterogeneous intersections. On three real-world road networks with 17 to 177 heterogeneous intersections, extensive experiments show that REG-TSC reduces travel time by 42.00%, queue length by 62.31%, and emergency vehicle waiting time by 83.16%, outperforming other state-of-the-art methods.
☆ Questionnaire meets LLM: A Benchmark and Empirical Study of Structural Skills for Understanding Questions and Responses
Millions of people take surveys every day, from market polls and academic studies to medical questionnaires and customer feedback forms. These datasets capture valuable insights, but their scale and structure present a unique challenge for large language models (LLMs), which otherwise excel at few-shot reasoning over open-ended text. Yet, their ability to process questionnaire data or lists of questions crossed with hundreds of respondent rows remains underexplored. Current retrieval and survey analysis tools (e.g., Qualtrics, SPSS, REDCap) are typically designed for humans in the workflow, limiting such data integration with LLM and AI-empowered automation. This gap leaves scientists, surveyors, and everyday users without evidence-based guidance on how to best represent questionnaires for LLM consumption. We address this by introducing QASU (Questionnaire Analysis and Structural Understanding), a benchmark that probes six structural skills, including answer lookup, respondent count, and multi-hop inference, across six serialization formats and multiple prompt strategies. Experiments on contemporary LLMs show that choosing an effective format and prompt combination can improve accuracy by up to 8.8% points compared to suboptimal formats. For specific tasks, carefully adding a lightweight structural hint through self-augmented prompting can yield further improvements of 3-4% points on average. By systematically isolating format and prompting effects, our open source benchmark offers a simple yet versatile foundation for advancing both research and real-world practice in LLM-based questionnaire analysis.
comment: 14 pages, 3 figures, 8 tables
☆ MPRU: Modular Projection-Redistribution Unlearning as Output Filter for Classification Pipelines
As a new and promising approach, existing machine unlearning (MU) works typically emphasize theoretical formulations or optimization objectives to achieve knowledge removal. However, when deployed in real-world scenarios, such solutions typically face scalability issues and have to address practical requirements such as full access to original datasets and model. In contrast to the existing approaches, we regard classification training as a sequential process where classes are learned sequentially, which we call \emph{inductive approach}. Unlearning can then be done by reversing the last training sequence. This is implemented by appending a projection-redistribution layer in the end of the model. Such an approach does not require full access to the original dataset or the model, addressing the challenges of existing methods. This enables modular and model-agnostic deployment as an output filter into existing classification pipelines with minimal alterations. We conducted multiple experiments across multiple datasets including image (CIFAR-10/100 using CNN-based model) and tabular datasets (Covertype using tree-based model). Experiment results show consistently similar output to a fully retrained model with a high computational cost reduction. This demonstrates the applicability, scalability, and system compatibility of our solution while maintaining the performance of the output in a more practical setting.
comment: 10 pages, 6 figures
☆ Test-Time Alignment of LLMs via Sampling-Based Optimal Control in pre-logit space
Test-time alignment of large language models (LLMs) attracts attention because fine-tuning LLMs requires high computational costs. In this paper, we propose a new test-time alignment method called adaptive importance sampling on pre-logits (AISP) on the basis of the sampling-based model predictive control with the stochastic control input. AISP applies the Gaussian perturbation into pre-logits, which are outputs of the penultimate layer, so as to maximize expected rewards with respect to the mean of the perturbation. We demonstrate that the optimal mean is obtained by importance sampling with sampled rewards. AISP outperforms best-of-n sampling in terms of rewards over the number of used samples and achieves higher rewards than other reward-based test-time alignment methods.
comment: 21 pages, 8 figures
☆ Hybrid LLM and Higher-Order Quantum Approximate Optimization for CSA Collateral Management
We address finance-native collateral optimization under ISDA Credit Support Annexes (CSAs), where integer lots, Schedule A haircuts, RA/MTA gating, and issuer/currency/class caps create rugged, legally bounded search spaces. We introduce a certifiable hybrid pipeline purpose-built for this domain: (i) an evidence-gated LLM that extracts CSA terms to a normalized JSON (abstain-by-default, span-cited); (ii) a quantum-inspired explorer that interleaves simulated annealing with micro higher order QAOA (HO-QAOA) on binding sub-QUBOs (subset size n <= 16, order k <= 4) to coordinate multi-asset moves across caps and RA-induced discreteness; (iii) a weighted risk-aware objective (Movement, CVaR, funding-priced overshoot) with an explicit coverage window U <= Reff+B; and (iv) CP-SAT as single arbiter to certify feasibility and gaps, including a U-cap pre-check that reports the minimal feasible buffer B*. Encoding caps/rounding as higher-order terms lets HO-QAOA target the domain couplings that defeat local swaps. On government bond datasets and multi-CSA inputs, the hybrid improves a strong classical baseline (BL-3) by 9.1%, 9.6%, and 10.7% across representative harnesses, delivering better cost-movement-tail frontiers under governance settings. We release governance grade artifacts-span citations, valuation matrix audit, weight provenance, QUBO manifests, and CP-SAT traces-to make results auditable and reproducible.
comment: 6 pages
☆ Towards Global Retrieval Augmented Generation: A Benchmark for Corpus-Level Reasoning
Retrieval-augmented generation (RAG) has emerged as a leading approach to reducing hallucinations in large language models (LLMs). Current RAG evaluation benchmarks primarily focus on what we call local RAG: retrieving relevant chunks from a small subset of documents to answer queries that require only localized understanding within specific text chunks. However, many real-world applications require a fundamentally different capability -- global RAG -- which involves aggregating and analyzing information across entire document collections to derive corpus-level insights (for example, "What are the top 10 most cited papers in 2023?"). In this paper, we introduce GlobalQA -- the first benchmark specifically designed to evaluate global RAG capabilities, covering four core task types: counting, extremum queries, sorting, and top-k extraction. Through systematic evaluation across different models and baselines, we find that existing RAG methods perform poorly on global tasks, with the strongest baseline achieving only 1.51 F1 score. To address these challenges, we propose GlobalRAG, a multi-tool collaborative framework that preserves structural coherence through chunk-level retrieval, incorporates LLM-driven intelligent filters to eliminate noisy documents, and integrates aggregation modules for precise symbolic computation. On the Qwen2.5-14B model, GlobalRAG achieves 6.63 F1 compared to the strongest baseline's 1.51 F1, validating the effectiveness of our method.
☆ What's In My Human Feedback? Learning Interpretable Descriptions of Preference Data
Human feedback can alter language models in unpredictable and undesirable ways, as practitioners lack a clear understanding of what feedback data encodes. While prior work studies preferences over certain attributes (e.g., length or sycophancy), automatically extracting relevant features without pre-specifying hypotheses remains challenging. We introduce What's In My Human Feedback? (WIMHF), a method to explain feedback data using sparse autoencoders. WIMHF characterizes both (1) the preferences a dataset is capable of measuring and (2) the preferences that the annotators actually express. Across 7 datasets, WIMHF identifies a small number of human-interpretable features that account for the majority of the preference prediction signal achieved by black-box models. These features reveal a wide diversity in what humans prefer, and the role of dataset-level context: for example, users on Reddit prefer informality and jokes, while annotators in HH-RLHF and PRISM disprefer them. WIMHF also surfaces potentially unsafe preferences, such as that LMArena users tend to vote against refusals, often in favor of toxic content. The learned features enable effective data curation: re-labeling the harmful examples in Arena yields large safety gains (+37%) with no cost to general performance. They also allow fine-grained personalization: on the Community Alignment dataset, we learn annotator-specific weights over subjective features that improve preference prediction. WIMHF provides a human-centered analysis method for practitioners to better understand and use preference data.
comment: Code: https://github.com/rmovva/wimhf
☆ Don't Let It Fade: Preserving Edits in Diffusion Language Models via Token Timestep Allocation NeurIPS 2025
While diffusion language models (DLMs) enable fine-grained refinement, their practical controllability remains fragile. We identify and formally characterize a central failure mode called update forgetting, in which uniform and context agnostic updates induce token level fluctuations across timesteps, erasing earlier semantic edits and disrupting the cumulative refinement process, thereby degrading fluency and coherence. As this failure originates in uniform and context agnostic updates, effective control demands explicit token ordering. We propose Token Timestep Allocation (TTA), which realizes soft and semantic token ordering via per token timestep schedules: critical tokens are frozen early, while uncertain tokens receive continued refinement. This timestep based ordering can be instantiated as either a fixed policy or an adaptive policy driven by task signals, thereby supporting a broad spectrum of refinement strategies. Because it operates purely at inference time, it applies uniformly across various DLMs and naturally extends to diverse supervision sources. Empirically, TTA improves controllability and fluency: on sentiment control, it yields more than 20 percent higher accuracy and nearly halves perplexity using less than one fifth the steps; in detoxification, it lowers maximum toxicity (12.2 versus 14.5) and perplexity (26.0 versus 32.0). Together, these results demonstrate that softened ordering via timestep allocation is the critical lever for mitigating update forgetting and achieving stable and controllable diffusion text generation.
comment: Accepted in NeurIPS 2025
☆ Predicting All-Cause Hospital Readmissions from Medical Claims Data of Hospitalised Patients
Reducing preventable hospital readmissions is a national priority for payers, providers, and policymakers seeking to improve health care and lower costs. The rate of readmission is being used as a benchmark to determine the quality of healthcare provided by the hospitals. In thisproject, we have used machine learning techniques like Logistic Regression, Random Forest and Support Vector Machines to analyze the health claims data and identify demographic and medical factors that play a crucial role in predicting all-cause readmissions. As the health claims data is high dimensional, we have used Principal Component Analysis as a dimension reduction technique and used the results for building regression models. We compared and evaluated these models based on the Area Under Curve (AUC) metric. Random Forest model gave the highest performance followed by Logistic Regression and Support Vector Machine models. These models can be used to identify the crucial factors causing readmissions and help identify patients to focus on to reduce the chances of readmission, ultimately bringing down the cost and increasing the quality of healthcare provided to the patients.
comment: NCMLAI 2018
☆ ConceptScope: Characterizing Dataset Bias via Disentangled Visual Concepts NeurIPS 2025
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
comment: Published in the Thirty-Ninth Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Accumulative SGD Influence Estimation for Data Attribution
Modern data-centric AI needs precise per-sample influence. Standard SGD-IE approximates leave-one-out effects by summing per-epoch surrogates and ignores cross-epoch compounding, which misranks critical examples. We propose ACC-SGD-IE, a trajectory-aware estimator that propagates the leave-one-out perturbation across training and updates an accumulative influence state at each step. In smooth strongly convex settings it achieves geometric error contraction and, in smooth non-convex regimes, it tightens error bounds; larger mini-batches further reduce constants. Empirically, on Adult, 20 Newsgroups, and MNIST under clean and corrupted data and both convex and non-convex training, ACC-SGD-IE yields more accurate influence estimates, especially over long epochs. For downstream data cleansing it more reliably flags noisy samples, producing models trained on ACC-SGD-IE cleaned data that outperform those cleaned with SGD-IE.
☆ Linking Heterogeneous Data with Coordinated Agent Flows for Social Media Analysis
Social media platforms generate massive volumes of heterogeneous data, capturing user behaviors, textual content, temporal dynamics, and network structures. Analyzing such data is crucial for understanding phenomena such as opinion dynamics, community formation, and information diffusion. However, discovering insights from this complex landscape is exploratory, conceptually challenging, and requires expertise in social media mining and visualization. Existing automated approaches, though increasingly leveraging large language models (LLMs), remain largely confined to structured tabular data and cannot adequately address the heterogeneity of social media analysis. We present SIA (Social Insight Agents), an LLM agent system that links heterogeneous multi-modal data -- including raw inputs (e.g., text, network, and behavioral data), intermediate outputs, mined analytical results, and visualization artifacts -- through coordinated agent flows. Guided by a bottom-up taxonomy that connects insight types with suitable mining and visualization techniques, SIA enables agents to plan and execute coherent analysis strategies. To ensure multi-modal integration, it incorporates a data coordinator that unifies tabular, textual, and network data into a consistent flow. Its interactive interface provides a transparent workflow where users can trace, validate, and refine the agent's reasoning, supporting both adaptability and trustworthiness. Through expert-centered case studies and quantitative evaluation, we show that SIA effectively discovers diverse and meaningful insights from social media while supporting human-agent collaboration in complex analytical tasks.
☆ One Model to Critique Them All: Rewarding Agentic Tool-Use via Efficient Reasoning
Reward models (RMs) play a critical role in aligning large language models (LLMs) with human preferences. Yet in the domain of tool learning, the lack of RMs specifically designed for function-calling tasks has limited progress toward more capable agentic AI. We introduce ToolRM, a family of lightweight generative RMs tailored for general tool-use scenarios. To build these models, we propose a novel pipeline that constructs pairwise preference data using rule-based scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a diverse, balanced, and challenging dataset of critique tasks that supports reinforcement learning with verifiable feedback. To evaluate tool-use RMs, we also introduce TRBench$_{BFCL}$, a benchmark built on the agentic evaluation suite BFCL. Trained on our constructed data, models from the Qwen3-4B/8B series achieve up to 14.28% higher accuracy, substantially outperforming frontier models such as Claude 4 and OpenAI o3 in pairwise reward judgments. Beyond training objectives, ToolRM generalizes to broader critique tasks, including Best-of-N sampling and self-correction. Experiments on ACEBench highlight its effectiveness and efficiency, enabling inference-time scaling and reducing output token usage by over 66%. We release data and model checkpoints to facilitate future research.
☆ Learning to Manage Investment Portfolios beyond Simple Utility Functions
While investment funds publicly disclose their objectives in broad terms, their managers optimize for complex combinations of competing goals that go beyond simple risk-return trade-offs. Traditional approaches attempt to model this through multi-objective utility functions, but face fundamental challenges in specification and parameterization. We propose a generative framework that learns latent representations of fund manager strategies without requiring explicit utility specification. Our approach directly models the conditional probability of a fund's portfolio weights, given stock characteristics, historical returns, previous weights, and a latent variable representing the fund's strategy. Unlike methods based on reinforcement learning or imitation learning, which require specified rewards or labeled expert objectives, our GAN-based architecture learns directly from the joint distribution of observed holdings and market data. We validate our framework on a dataset of 1436 U.S. equity mutual funds. The learned representations successfully capture known investment styles, such as "growth" and "value," while also revealing implicit manager objectives. For instance, we find that while many funds exhibit characteristics of Markowitz-like optimization, they do so with heterogeneous realizations for turnover, concentration, and latent factors. To analyze and interpret the end-to-end model, we develop a series of tests that explain the model, and we show that the benchmark's expert labeling are contained in our model's encoding in a linear interpretable way. Our framework provides a data-driven approach for characterizing investment strategies for applications in market simulation, strategy attribution, and regulatory oversight.
comment: 6th ACM International Conference on AI in Finance, November 15-18, 2025, Singapore
☆ Segmentation over Complexity: Evaluating Ensemble and Hybrid Approaches for Anomaly Detection in Industrial Time Series
In this study, we investigate the effectiveness of advanced feature engineering and hybrid model architectures for anomaly detection in a multivariate industrial time series, focusing on a steam turbine system. We evaluate the impact of change point-derived statistical features, clustering-based substructure representations, and hybrid learning strategies on detection performance. Despite their theoretical appeal, these complex approaches consistently underperformed compared to a simple Random Forest + XGBoost ensemble trained on segmented data. The ensemble achieved an AUC-ROC of 0.976, F1-score of 0.41, and 100% early detection within the defined time window. Our findings highlight that, in scenarios with highly imbalanced and temporally uncertain data, model simplicity combined with optimized segmentation can outperform more sophisticated architectures, offering greater robustness, interpretability, and operational utility.
comment: This paper is currently under review for presentation at the IEEE SAMI 2026 Conference
☆ Bridging the Gap Between Molecule and Textual Descriptions via Substructure-aware Alignment EMNLP 2025
Molecule and text representation learning has gained increasing interest due to its potential for enhancing the understanding of chemical information. However, existing models often struggle to capture subtle differences between molecules and their descriptions, as they lack the ability to learn fine-grained alignments between molecular substructures and chemical phrases. To address this limitation, we introduce MolBridge, a novel molecule-text learning framework based on substructure-aware alignments. Specifically, we augment the original molecule-description pairs with additional alignment signals derived from molecular substructures and chemical phrases. To effectively learn from these enriched alignments, MolBridge employs substructure-aware contrastive learning, coupled with a self-refinement mechanism that filters out noisy alignment signals. Experimental results show that MolBridge effectively captures fine-grained correspondences and outperforms state-of-the-art baselines on a wide range of molecular benchmarks, highlighting the significance of substructure-aware alignment in molecule-text learning.
comment: EMNLP 2025 (main)
☆ MV-MLM: Bridging Multi-View Mammography and Language for Breast Cancer Diagnosis and Risk Prediction ICCV 2025
Large annotated datasets are essential for training robust Computer-Aided Diagnosis (CAD) models for breast cancer detection or risk prediction. However, acquiring such datasets with fine-detailed annotation is both costly and time-consuming. Vision-Language Models (VLMs), such as CLIP, which are pre-trained on large image-text pairs, offer a promising solution by enhancing robustness and data efficiency in medical imaging tasks. This paper introduces a novel Multi-View Mammography and Language Model for breast cancer classification and risk prediction, trained on a dataset of paired mammogram images and synthetic radiology reports. Our MV-MLM leverages multi-view supervision to learn rich representations from extensive radiology data by employing cross-modal self-supervision across image-text pairs. This includes multiple views and the corresponding pseudo-radiology reports. We propose a novel joint visual-textual learning strategy to enhance generalization and accuracy performance over different data types and tasks to distinguish breast tissues or cancer characteristics(calcification, mass) and utilize these patterns to understand mammography images and predict cancer risk. We evaluated our method on both private and publicly available datasets, demonstrating that the proposed model achieves state-of-the-art performance in three classification tasks: (1) malignancy classification, (2) subtype classification, and (3) image-based cancer risk prediction. Furthermore, the model exhibits strong data efficiency, outperforming existing fully supervised or VLM baselines while trained on synthetic text reports and without the need for actual radiology reports.
comment: Accepted to Computer Vision for Automated Medical Diagnosis (CVAMD) Workshop at ICCV 2025
☆ The FM Agent
Large language models (LLMs) are catalyzing the development of autonomous AI research agents for scientific and engineering discovery. We present FM Agent, a novel and general-purpose multi-agent framework that leverages a synergistic combination of LLM-based reasoning and large-scale evolutionary search to address complex real-world challenges. The core of FM Agent integrates several key innovations: 1) a cold-start initialization phase incorporating expert guidance, 2) a novel evolutionary sampling strategy for iterative optimization, 3) domain-specific evaluators that combine correctness, effectiveness, and LLM-supervised feedback, and 4) a distributed, asynchronous execution infrastructure built on Ray. Demonstrating broad applicability, our system has been evaluated across diverse domains, including operations research, machine learning, GPU kernel optimization, and classical mathematical problems. FM Agent reaches state-of-the-art results autonomously, without human interpretation or tuning -- 1976.3 on ALE-Bench (+5.2\%), 43.56\% on MLE-Bench (+4.0pp), up to 20x speedups on KernelBench, and establishes new state-of-the-art(SOTA) results on several classical mathematical problems. Beyond academic benchmarks, FM Agent shows considerable promise for both large-scale enterprise R\&D workflows and fundamental scientific research, where it can accelerate innovation, automate complex discovery processes, and deliver substantial engineering and scientific advances with broader societal impact.
☆ Reasoning Curriculum: Bootstrapping Broad LLM Reasoning from Math
Reinforcement learning (RL) can elicit strong reasoning in large language models (LLMs), yet most open efforts focus on math and code. We propose Reasoning Curriculum, a simple two-stage curriculum that first elicits reasoning skills in pretraining-aligned domains such as math, then adapts and refines these skills across other domains via joint RL. Stage 1 performs a brief cold start and then math-only RL with verifiable rewards to develop reasoning skills. Stage 2 runs joint RL on mixed-domain data to transfer and consolidate these skills. The curriculum is minimal and backbone-agnostic, requiring no specialized reward models beyond standard verifiability checks. Evaluated on Qwen3-4B and Llama-3.1-8B over a multi-domain suite, reasoning curriculum yields consistent gains. Ablations and a cognitive-skill analysis indicate that both stages are necessary and that math-first elicitation increases cognitive behaviors important for solving complex problems. Reasoning Curriculum provides a compact, easy-to-adopt recipe for general reasoning.
comment: 9 pages
☆ Beyond Benchmarks: The Economics of AI Inference
The inference cost of Large Language Models (LLMs) has become a critical factor in determining their commercial viability and widespread adoption. This paper introduces a quantitative ``economics of inference'' framework, treating the LLM inference process as a compute-driven intelligent production activity. We analyze its marginal cost, economies of scale, and quality of output under various performance configurations. Based on empirical data from WiNEval-3.0, we construct the first ``LLM Inference Production Frontier,'' revealing three principles: diminishing marginal cost, diminishing returns to scale, and an optimal cost-effectiveness zone. This paper not only provides an economic basis for model deployment decisions but also lays an empirical foundation for the future market-based pricing and optimization of AI inference resources.
♻ ☆ UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection
The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.
♻ ☆ Completion $\neq$ Collaboration: Scaling Collaborative Effort with Agents
Current evaluations of agents remain centered around one-shot task completion, failing to account for the inherently iterative and collaborative nature of many real-world problems, where human goals are often underspecified and evolve. We argue for a shift from building and assessing task completion agents to developing collaborative agents, assessed not only by the quality of their final outputs but by how well they engage with and enhance human effort throughout the problem-solving process. To support this shift, we introduce collaborative effort scaling, a framework that captures how an agent's utility grows with increasing user involvement. Through case studies and simulated evaluations, we show that state-of-the-art agents often underperform in multi-turn, real-world scenarios, revealing a missing ingredient in agent design: the ability to sustain engagement and scaffold user understanding. Collaborative effort scaling offers a lens for diagnosing agent behavior and guiding development toward more effective interactions.
comment: 22 pages, 5 figures, 3 tables
♻ ☆ Controlling Thinking Speed in Reasoning Models NeurIPS 2025
Human cognition is theorized to operate in two modes: fast, intuitive System 1 thinking and slow, deliberate System 2 thinking. While current Large Reasoning Models (LRMs) excel at System 2 thinking, their inability to perform fast thinking leads to high computational overhead and latency. In this work, we enable LRMs to approximate human intelligence through dynamic thinking speed adjustment, optimizing accuracy-efficiency trade-offs. Our approach addresses two key questions: (1) how to control thinking speed in LRMs, and (2) when to adjust it for optimal performance. For the first question, we identify the steering vector that governs slow-fast thinking transitions in LRMs' representation space. Using this vector, we achieve the first representation editing-based test-time scaling effect, outperforming existing prompt-based scaling methods. For the second question, we apply real-time difficulty estimation to signal reasoning segments of varying complexity. Combining these techniques, we propose the first reasoning strategy that enables fast processing of easy steps and deeper analysis for complex reasoning. Without any training or additional cost, our plug-in module delivers an average +1.3% accuracy with -8.6% token usage across leading LRMs and advanced reasoning benchmarks. All of our algorithms are implemented based on vLLM and are expected to support broader applications and inspire future research.
comment: NeurIPS 2025 Spotlight
♻ ☆ RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost). Models: https://huggingface.co/collections/nvidia/reward-models-10-2025
comment: Added link to access models: https://huggingface.co/collections/nvidia/reward-models-10-2025
♻ ☆ Curriculum Abductive Learning NeurIPS 2025
Abductive Learning (ABL) integrates machine learning with logical reasoning in a loop: a learning model predicts symbolic concept labels from raw inputs, which are revised through abduction using domain knowledge and then fed back for retraining. However, due to the nondeterminism of abduction, the training process often suffers from instability, especially when the knowledge base is large and complex, resulting in a prohibitively large abduction space. While prior works focus on improving candidate selection within this space, they typically treat the knowledge base as a static black box. In this work, we propose Curriculum Abductive Learning (C-ABL), a method that explicitly leverages the internal structure of the knowledge base to address the ABL training challenges. C-ABL partitions the knowledge base into a sequence of sub-bases, progressively introduced during training. This reduces the abduction space throughout training and enables the model to incorporate logic in a stepwise, smooth way. Experiments across multiple tasks show that C-ABL outperforms previous ABL implementations, significantly improves training stability, convergence speed, and final accuracy, especially under complex knowledge setting.
comment: Accepted by NeurIPS 2025, 22 pages, 6 figures
♻ ☆ Guided Model Merging for Hybrid Data Learning: Leveraging Centralized Data to Refine Decentralized Models WACV 2026
Current network training paradigms primarily focus on either centralized or decentralized data regimes. However, in practice, data availability often exhibits a hybrid nature, where both regimes coexist. This hybrid setting presents new opportunities for model training, as the two regimes offer complementary trade-offs: decentralized data is abundant but subject to heterogeneity and communication constraints, while centralized data, though limited in volume and potentially unrepresentative, enables better curation and high-throughput access. Despite its potential, effectively combining these paradigms remains challenging, and few frameworks are tailored to hybrid data regimes. To address this, we propose a novel framework that constructs a model atlas from decentralized models and leverages centralized data to refine a global model within this structured space. The refined model is then used to reinitialize the decentralized models. Our method synergizes federated learning (to exploit decentralized data) and model merging (to utilize centralized data), enabling effective training under hybrid data availability. Theoretically, we show that our approach achieves faster convergence than methods relying solely on decentralized data, due to variance reduction in the merging process. Extensive experiments demonstrate that our framework consistently outperforms purely centralized, purely decentralized, and existing hybrid-adaptable methods. Notably, our method remains robust even when the centralized and decentralized data domains differ or when decentralized data contains noise, significantly broadening its applicability.
comment: Accepted at WACV 2026
♻ ☆ Refine-n-Judge: Curating High-Quality Preference Chains for LLM-Fine-Tuning
Large Language Models (LLMs) have demonstrated remarkable progress through preference-based fine-tuning, which critically depends on the quality of the underlying training data. While human feedback is essential for improving data quality, it is costly and does not scale well. In this paper, we introduce Refine-n-Judge, an automated iterative approach that leverages a single LLM as both a refiner and a judge to enhance dataset quality. Unlike existing iterative refinement methods, Refine-n-Judge employs an LLM to both generate refinements and explicitly evaluate each improvement, ensuring that every iteration meaningfully enhances the dataset without requiring additional human annotation or a separate reward model. At each step, the LLM refines a response and judges whether the refinement is an improvement over the previous answer. This process continues until the LLM prefers the initial answer over the refinement, indicating no further improvements. This produces sequences of increasing quality, preference-labeled responses ideal for fine-tuning. We demonstrate the effectiveness of Refine-n-Judge across a range of public datasets spanning five corpora, targeting tasks such as coding, math, and conversation. Models (Llama 3.1-8B and Llama 3.3-70B) fine-tuned on Refine-n-Judge-enhanced datasets were preferred by LLM judges in over 74% of comparisons against models tuned on the original dataset by GPT-4. Additionally, we report performance gains: +5% on AlpacaEval and AlpacaEval 2.0, and +19% on MT-Bench. Our results indicate that Refine-n-Judge produces high-quality datasets and scalable model improvements.
♻ ☆ CompoST: A Benchmark for Analyzing the Ability of LLMs To Compositionally Interpret Questions in a QALD Setting ISWC 2025
Language interpretation is a compositional process, in which the meaning of more complex linguistic structures is inferred from the meaning of their parts. Large language models possess remarkable language interpretation capabilities and have been successfully applied to interpret questions by mapping them to SPARQL queries. An open question is how systematic this interpretation process is. Toward this question, in this paper, we propose a benchmark for investigating to what extent the abilities of LLMs to interpret questions are actually compositional. For this, we generate three datasets of varying difficulty based on graph patterns in DBpedia, relying on Lemon lexica for verbalization. Our datasets are created in a very controlled fashion in order to test the ability of LLMs to interpret structurally complex questions, given that they have seen the atomic building blocks. This allows us to evaluate to what degree LLMs are able to interpret complex questions for which they "understand" the atomic parts. We conduct experiments with models of different sizes using both various prompt and few-shot optimization techniques as well as fine-tuning. Our results show that performance in terms of macro $F_1$ degrades from $0.45$ over $0.26$ down to $0.09$ with increasing deviation from the samples optimized on. Even when all necessary information was provided to the model in the input, the $F_1$ scores do not exceed $0.57$ for the dataset of lowest complexity. We thus conclude that LLMs struggle to systematically and compositionally interpret questions and map them into SPARQL queries.
comment: Research Track, 24th International Semantic Web Conference (ISWC 2025), November 2-6, 2025, Nara, Japan
♻ ☆ Detecting Early and Implicit Suicidal Ideation via Longitudinal and Information Environment Signals on Social Media
On social media, many individuals experiencing suicidal ideation (SI) do not disclose their distress explicitly. Instead, signs may surface indirectly through everyday posts or peer interactions. Detecting such implicit signals early is critical but remains challenging. We frame early and implicit SI as a forward-looking prediction task and develop a computational framework that models a user's information environment, consisting of both their longitudinal posting histories as well as the discourse of their socially proximal peers. We adopted a composite network centrality measure to identify top neighbors of a user, and temporally aligned the user's and neighbors' interactions -- integrating the multi-layered signals in a fine-tuned DeBERTa-v3 model. In a Reddit study of 1,000 (500 Case and 500 Control) users, our approach improves early and implicit SI detection by 15% over individual-only baselines. These findings highlight that peer interactions offer valuable predictive signals and carry broader implications for designing early detection systems that capture indirect as well as masked expressions of risk in online environments.
♻ ☆ Audio Signal Processing Using Time Domain Mel-Frequency Wavelet Coefficient
Extracting features from the speech is the most critical process in speech signal processing. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used features in the majority of the speaker and speech recognition applications, as the filtering in this feature is similar to the filtering taking place in the human ear. But the main drawback of this feature is that it provides only the frequency information of the signal but does not provide the information about at what time which frequency is present. The wavelet transform, with its flexible time-frequency window, provides time and frequency information of the signal and is an appropriate tool for the analysis of non-stationary signals like speech. On the other hand, because of its uniform frequency scaling, a typical wavelet transform may be less effective in analysing speech signals, have poorer frequency resolution in low frequencies, and be less in line with human auditory perception. Hence, it is necessary to develop a feature that incorporates the merits of both MFCC and wavelet transform. A great deal of studies are trying to combine both these features. The present Wavelet Transform based Mel-scaled feature extraction methods require more computation when a wavelet transform is applied on top of Mel-scale filtering, since it adds extra processing steps. Here we are proposing a method to extract Mel scale features in time domain combining the concept of wavelet transform, thus reducing the computational burden of time-frequency conversion and the complexity of wavelet extraction. Combining our proposed Time domain Mel frequency Wavelet Coefficient(TMFWC) technique with the reservoir computing methodology has significantly improved the efficiency of audio signal processing.
♻ ☆ MaskCaptioner: Learning to Jointly Segment and Caption Object Trajectories in Videos
Dense Video Object Captioning (DVOC) is the task of jointly detecting, tracking, and captioning object trajectories in a video, requiring the ability to understand spatio-temporal details and describe them in natural language. Due to the complexity of the task and the high cost associated with manual annotation, previous approaches resort to disjoint training strategies, potentially leading to suboptimal performance. To circumvent this issue, we propose to generate captions about spatio-temporally localized entities leveraging a state-of-the-art VLM. By extending the LVIS and LV-VIS datasets with our synthetic captions (LVISCap and LV-VISCap), we train MaskCaptioner, an end-to-end model capable of jointly detecting, segmenting, tracking and captioning object trajectories. Moreover, with pretraining on LVISCap and LV-VISCap, MaskCaptioner achieves state-of-the-art DVOC results on three existing benchmarks, VidSTG, VLN and BenSMOT. The datasets and code are available at https://www.gabriel.fiastre.fr/maskcaptioner/.
comment: 20 pages, 8 figures
♻ ☆ LatentBreak: Jailbreaking Large Language Models through Latent Space Feedback
Jailbreaks are adversarial attacks designed to bypass the built-in safety mechanisms of large language models. Automated jailbreaks typically optimize an adversarial suffix or adapt long prompt templates by forcing the model to generate the initial part of a restricted or harmful response. In this work, we show that existing jailbreak attacks that leverage such mechanisms to unlock the model response can be detected by a straightforward perplexity-based filtering on the input prompt. To overcome this issue, we propose LatentBreak, a white-box jailbreak attack that generates natural adversarial prompts with low perplexity capable of evading such defenses. LatentBreak substitutes words in the input prompt with semantically-equivalent ones, preserving the initial intent of the prompt, instead of adding high-perplexity adversarial suffixes or long templates. These words are chosen by minimizing the distance in the latent space between the representation of the adversarial prompt and that of harmless requests. Our extensive evaluation shows that LatentBreak leads to shorter and low-perplexity prompts, thus outperforming competing jailbreak algorithms against perplexity-based filters on multiple safety-aligned models.
♻ ☆ SignalLLM: A General-Purpose LLM Agent Framework for Automated Signal Processing
Modern signal processing (SP) pipelines, whether model-based or data-driven, often constrained by complex and fragmented workflow, rely heavily on expert knowledge and manual engineering, and struggle with adaptability and generalization under limited data. In contrast, Large Language Models (LLMs) offer strong reasoning capabilities, broad general-purpose knowledge, in-context learning, and cross-modal transfer abilities, positioning them as powerful tools for automating and generalizing SP workflows. Motivated by these potentials, we introduce SignalLLM, the first general-purpose LLM-based agent framework for general SP tasks. Unlike prior LLM-based SP approaches that are limited to narrow applications or tricky prompting, SignalLLM introduces a principled, modular architecture. It decomposes high-level SP goals into structured subtasks via in-context learning and domain-specific retrieval, followed by hierarchical planning through adaptive retrieval-augmented generation (RAG) and refinement; these subtasks are then executed through prompt-based reasoning, cross-modal reasoning, code synthesis, model invocation, or data-driven LLM-assisted modeling. Its generalizable design enables the flexible selection of problem solving strategies across different signal modalities, task types, and data conditions. We demonstrate the versatility and effectiveness of SignalLLM through five representative tasks in communication and sensing, such as radar target detection, human activity recognition, and text compression. Experimental results show superior performance over traditional and existing LLM-based methods, particularly in few-shot and zero-shot settings.
comment: 11 pages
♻ ☆ AI's Social Forcefield: Reshaping Distributed Cognition in Human-AI Teams
AI is not only a neutral tool in team settings; it actively reshapes the social and cognitive fabric of collaboration. We advance a unified framework of alignment in distributed cognition in human-AI teams -- a process through which linguistic, cognitive, and social coordination emerge as human and AI agents co-construct a shared representational space. Across two studies, we show that exposure to AI-generated language shapes not only how people speak, but also how they think, what they attend to, and how they relate to each other. Together, these findings reveal how AI participation reorganizes the distributed cognitive architecture of teams: AI systems function as implicit social forcefields. Our findings highlight the double-edged impact of AI: the same mechanisms that enable efficient collaboration can also erode epistemic diversity and undermine natural alignment processes. We argue for rethinking AI in teams as a socially influential actor and call for new design paradigms that foreground transparency, controllability, and group-level dynamics to foster responsible, productive human-AI collaboration.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ Incentivizing LLMs to Self-Verify Their Answers
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks through both post-training and test-time scaling laws. While prevalent test-time scaling approaches are often realized by using external reward models to guide the model generation process, we find that only marginal gains can be acquired when scaling a model post-trained on specific reasoning tasks. We identify that the limited improvement stems from distribution discrepancies between the specific post-trained generator and the general reward model. To address this, we propose a framework that incentivizes LLMs to self-verify their own answers. By unifying answer generation and verification within a single reinforcement learning (RL) process, we train models that can effectively assess the correctness of their own solutions. The trained model can further scale its performance at inference time by verifying its generations, without the need for external verifiers. We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B, demonstrating their capabilities across varying reasoning context lengths. Experiments on multiple mathematical reasoning benchmarks show that our models can not only improve post-training performance but also enable effective test-time scaling.
♻ ☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testament to the impact of the approach, the method has been adopted for use in the most recent release of the series.
♻ ☆ A mathematical certification for positivity conditions in Neural Networks with applications to partial monotonicity and Trustworthy AI
Artificial Neural Networks (ANNs) have become a powerful tool for modeling complex relationships in large-scale datasets. However, their black-box nature poses trustworthiness challenges. In certain situations, ensuring trust in predictions might require following specific partial monotonicity constraints. However, certifying if an already-trained ANN is partially monotonic is challenging. Therefore, ANNs are often disregarded in some critical applications, such as credit scoring, where partial monotonicity is required. To address this challenge, this paper presents a novel algorithm (LipVor) that certifies if a black-box model, such as an ANN, is positive based on a finite number of evaluations. Consequently, since partial monotonicity can be expressed as a positivity condition on partial derivatives, LipVor can certify whether an ANN is partially monotonic. To do so, for every positively evaluated point, the Lipschitzianity of the black-box model is used to construct a specific neighborhood where the function remains positive. Next, based on the Voronoi diagram of the evaluated points, a sufficient condition is stated to certify if the function is positive in the domain. Unlike prior methods, our approach certifies partial monotonicity without constrained architectures or piece-wise linear activations. Therefore, LipVor could open up the possibility of using unconstrained ANN in some critical fields. Moreover, some other properties of an ANN, such as convexity, can be posed as positivity conditions, and therefore, LipVor could also be applied.
comment: 16 pages, 4 figures
♻ ☆ Collab-REC: An LLM-based Agentic Framework for Balancing Recommendations in Tourism
We propose Collab-REC, a multi-agent framework designed to counteract popularity bias and enhance diversity in tourism recommendations. In our setting, three LLM-based agents -- Personalization, Popularity, and Sustainability generate city suggestions from complementary perspectives. A non-LLM moderator then merges and refines these proposals via multi-round negotiation, ensuring each agent's viewpoint is incorporated while penalizing spurious or repeated responses. Experiments on European city queries show that Collab-REC improves diversity and overall relevance compared to a single-agent baseline, surfacing lesser-visited locales that often remain overlooked. This balanced, context-aware approach addresses over-tourism and better aligns with constraints provided by the user, highlighting the promise of multi-stakeholder collaboration in LLM-driven recommender systems.
♻ ☆ UV-Attack: Physical-World Adversarial Attacks for Person Detection via Dynamic-NeRF-based UV Mapping ICLR2025
In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.7% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.5% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification. The code is available at https://github.com/PolyLiYJ/UV-Attack.
comment: 23 pages, 22 figures, accepted by ICLR2025
♻ ☆ Rethinking Optimal Verification Granularity for Compute-Efficient Test-Time Scaling NeurIPS 2025
Test-time scaling (TTS) has proven effective in enhancing the reasoning capabilities of large language models (LLMs). Verification plays a key role in TTS, simultaneously influencing (1) reasoning performance and (2) compute efficiency, due to the quality and computational cost of verification. In this work, we challenge the conventional paradigms of verification, and make the first attempt toward systematically investigating the impact of verification granularity-that is, how frequently the verifier is invoked during generation, beyond verifying only the final output or individual generation steps. To this end, we introduce Variable Granularity Search (VG-Search), a unified algorithm that generalizes beam search and Best-of-N sampling via a tunable granularity parameter g. Extensive experiments with VG-Search under varying compute budgets, generator-verifier configurations, and task attributes reveal that dynamically selecting g can improve the compute efficiency and scaling behavior. Building on these findings, we propose adaptive VG-Search strategies that achieve accuracy gains of up to 3.1\% over Beam Search and 3.6\% over Best-of-N, while reducing FLOPs by over 52\%. We will open-source the code to support future research.
comment: Accepted at NeurIPS 2025
♻ ☆ More of the Same: Persistent Representational Harms Under Increased Representation NeurIPS 2025
To recognize and mitigate the harms of generative AI systems, it is crucial to consider who is represented in the outputs of generative AI systems and how people are represented. A critical gap emerges when naively improving who is represented, as this does not imply bias mitigation efforts have been applied to address how people are represented. We critically examined this by investigating gender representation in occupation across state-of-the-art large language models. We first show evidence suggesting that over time there have been interventions to models altering the resulting gender distribution, and we find that women are more represented than men when models are prompted to generate biographies or personas. We then demonstrate that representational biases persist in how different genders are represented by examining statistically significant word differences across genders. This results in a proliferation of representational harms, stereotypes, and neoliberalism ideals that, despite existing interventions to increase female representation, reinforce existing systems of oppression.
comment: Accepted by the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) as a poster paper; 39 pages, 7 figures, 15 tables
♻ ☆ VerifIoU -- Robustness of Object Detection to Perturbations SC
We introduce a novel Interval Bound Propagation (IBP) approach for the formal verification of object detection models, specifically targeting the Intersection over Union (IoU) metric. The approach has been implemented in an open source code, named IBP IoU, compatible with popular abstract interpretation based verification tools. The resulting verifier is evaluated on landing approach runway detection and handwritten digit recognition case studies. Comparisons against a baseline (Vanilla IBP IoU) highlight the superior performance of IBP IoU in ensuring accuracy and stability, contributing to more secure and robust machine learning applications.
comment: 44th Digital Avionics Systems Conference (DASC), Sep 2025, Montreal, Canada
♻ ☆ MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
comment: Accepted by NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ Demystifying the Roles of LLM Layers in Retrieval, Knowledge, and Reasoning ICASSP 2025
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
comment: ICASSP 2025
♻ ☆ StyleGuard: Preventing Text-to-Image-Model-based Style Mimicry Attacks by Style Perturbations NIPS2025
Recently, text-to-image diffusion models have been widely used for style mimicry and personalized customization through methods such as DreamBooth and Textual Inversion. This has raised concerns about intellectual property protection and the generation of deceptive content. Recent studies, such as Glaze and Anti-DreamBooth, have proposed using adversarial noise to protect images from these attacks. However, recent purification-based methods, such as DiffPure and Noise Upscaling, have successfully attacked these latest defenses, showing the vulnerabilities of these methods. Moreover, present methods show limited transferability across models, making them less effective against unknown text-to-image models. To address these issues, we propose a novel anti-mimicry method, StyleGuard. We propose a novel style loss that optimizes the style-related features in the latent space to make it deviate from the original image, which improves model-agnostic transferability. Additionally, to enhance the perturbation's ability to bypass diffusion-based purification, we designed a novel upscale loss that involves ensemble purifiers and upscalers during training. Extensive experiments on the WikiArt and CelebA datasets demonstrate that StyleGuard outperforms existing methods in robustness against various transformations and purifications, effectively countering style mimicry in various models. Moreover, StyleGuard is effective on different style mimicry methods, including DreamBooth and Textual Inversion. The code is available at https://github.com/PolyLiYJ/StyleGuard.
comment: Accepted by NIPS2025
♻ ☆ Toward a Public and Secure Generative AI: A Comparative Analysis of Open and Closed LLMs
Generative artificial intelligence (Gen AI) systems represent a critical technology with far-reaching implications across multiple domains of society. However, their deployment entails a range of risks and challenges that require careful evaluation. To date, there has been a lack of comprehensive, interdisciplinary studies offering a systematic comparison between open-source and proprietary (closed) generative AI systems, particularly regarding their respective advantages and drawbacks. This study aims to: i) critically evaluate and compare the characteristics, opportunities, and challenges of open and closed generative AI models; and ii) propose foundational elements for the development of an Open, Public, and Safe Gen AI framework. As a methodology, we adopted a combined approach that integrates three methods: literature review, critical analysis, and comparative analysis. The proposed framework outlines key dimensions, openness, public governance, and security, as essential pillars for shaping the future of trustworthy and inclusive Gen AI. Our findings reveal that open models offer greater transparency, auditability, and flexibility, enabling independent scrutiny and bias mitigation. In contrast, closed systems often provide better technical support and ease of implementation, but at the cost of unequal access, accountability, and ethical oversight. The research also highlights the importance of multi-stakeholder governance, environmental sustainability, and regulatory frameworks in ensuring responsible development.
♻ ☆ Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
comment: 24 pages, 7 figures
♻ ☆ Lost in Tokenization: Context as the Key to Unlocking Biomolecular Understanding in Scientific LLMs
Scientific Large Language Models (Sci-LLMs) have emerged as a promising frontier for accelerating biological discovery. However, these models face a fundamental challenge when processing raw biomolecular sequences: the tokenization dilemma. Whether treating sequences as a specialized language, risking the loss of functional motif information, or as a separate modality, introducing formidable alignment challenges, current strategies fundamentally limit their reasoning capacity. We challenge this sequence-centric paradigm by positing that a more effective strategy is to provide Sci-LLMs with high-level structured context derived from established bioinformatics tools, thereby bypassing the need to interpret low-level noisy sequence data directly. Through a systematic comparison of leading Sci-LLMs on biological reasoning tasks, we tested three input modes: sequence-only, context-only, and a combination of both. Our findings are striking: the context-only approach consistently and substantially outperforms all other modes. Even more revealing, the inclusion of the raw sequence alongside its high-level context consistently degrades performance, indicating that raw sequences act as informational noise, even for models with specialized tokenization schemes. These results suggest that the primary strength of existing Sci-LLMs lies not in their nascent ability to interpret biomolecular syntax from scratch, but in their profound capacity for reasoning over structured, human-readable knowledge. Therefore, we argue for reframing Sci-LLMs not as sequence decoders, but as powerful reasoning engines over expert knowledge. This work lays the foundation for a new class of hybrid scientific AI agents, repositioning the developmental focus from direct sequence interpretation towards high-level knowledge synthesis. The code is available at https://github.com/opendatalab-raiser/CoKE.
comment: 38 pages, under review
♻ ☆ In Defence of Post-hoc Explainability NeurIPS 2024
This position paper defends post-hoc explainability methods as legitimate tools for scientific knowledge production in machine learning. Addressing criticism of these methods' reliability and epistemic status, we develop a philosophical framework grounded in mediated understanding and bounded factivity. We argue that scientific insights can emerge through structured interpretation of model behaviour without requiring complete mechanistic transparency, provided explanations acknowledge their approximative nature and undergo rigorous empirical validation. Through analysis of recent biomedical ML applications, we demonstrate how post-hoc methods, when properly integrated into scientific practice, generate novel hypotheses and advance phenomenal understanding.
comment: v1 presented at the Interpretable AI: Past, Present, and Future Workshop at NeurIPS 2024 (non-archival)
♻ ☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
♻ ☆ Tunable-Generalization Diffusion Powered by Self-Supervised Contextual Sub-Data for Low-Dose CT Reconstruction
Current models based on deep learning for low-dose CT denoising rely heavily on paired data and generalize poorly. Even the more concerned diffusion models need to learn the distribution of clean data for reconstruction, which is difficult to satisfy in medical clinical applications. At the same time, self-supervised-based methods face the challenge of significant degradation of generalizability of models pre-trained for the current dose to expand to other doses. To address these issues, this work proposes a novel method of TUnable-geneRalizatioN Diffusion (TurnDiff) powered by self-supervised contextual sub-data for low-dose CT reconstruction. Firstly, a contextual subdata self-enhancing similarity strategy is designed for denoising centered on the LDCT projection domain, which provides an initial prior for the subsequent progress. Subsequently, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. The pre-trained model is used for inference reconstruction, and the pixel-level self-correcting fusion technique is proposed for fine-grained reconstruction of the image domain to enhance the image fidelity, using the initial prior and the LDCT image as a guide. In addition, the technique is flexibly applied to the generalization of upper and lower doses or even unseen doses. Dual-domain strategy cascade for self-supervised LDCT denoising, TurnDiff requires only LDCT projection domain data for training and testing. Comprehensive evaluation on both benchmark datasets and real-world data demonstrates that TurnDiff consistently outperforms state-of-the-art methods in both reconstruction and generalization.
♻ ☆ Towards a Method for Synthetic Generation of Persons with Aphasia Transcripts
In aphasia research, Speech-Language Pathologists (SLPs) devote extensive time to manually coding speech samples using Correct Information Units (CIUs), a measure of how informative an individual sample of speech is. Developing automated systems to recognize aphasic language is limited by data scarcity. For example, only about 600 transcripts are available in AphasiaBank yet billions of tokens are used to train large language models (LLMs). In the broader field of machine learning (ML), researchers increasingly turn to synthetic data when such are sparse. Therefore, this study constructs and validates two methods to generate synthetic transcripts of the AphasiaBank Cat Rescue picture description task. One method leverages a procedural programming approach while the second uses Mistral 7b Instruct and Llama 3.1 8b Instruct LLMs. The methods generate transcripts across four severity levels (Mild, Moderate, Severe, Very Severe) through word dropping, filler insertion, and paraphasia substitution. Overall, we found, compared to human-elicited transcripts, Mistral 7b Instruct best captures key aspects of linguistic degradation observed in aphasia, showing realistic directional changes in NDW, word count, and word length amongst the synthetic generation methods. Based on the results, future work should plan to create a larger dataset, fine-tune models for better aphasic representation, and have SLPs assess the realism and usefulness of the synthetic transcripts.
comment: 19 pages, 1 figure, 7 tables
♻ ☆ Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
comment: Project Page: https://github.com/Paper2Poster/Paper2Poster
♻ ☆ BhashaBench V1: A Comprehensive Benchmark for the Quadrant of Indic Domains
The rapid advancement of large language models(LLMs) has intensified the need for domain and culture specific evaluation. Existing benchmarks are largely Anglocentric and domain-agnostic, limiting their applicability to India-centric contexts. To address this gap, we introduce BhashaBench V1, the first domain-specific, multi-task, bilingual benchmark focusing on critical Indic knowledge systems. BhashaBench V1 contains 74,166 meticulously curated question-answer pairs, with 52,494 in English and 21,672 in Hindi, sourced from authentic government and domain-specific exams. It spans four major domains: Agriculture, Legal, Finance, and Ayurveda, comprising 90+ subdomains and covering 500+ topics, enabling fine-grained evaluation. Evaluation of 29+ LLMs reveals significant domain and language specific performance gaps, with especially large disparities in low-resource domains. For instance, GPT-4o achieves 76.49% overall accuracy in Legal but only 59.74% in Ayurveda. Models consistently perform better on English content compared to Hindi across all domains. Subdomain-level analysis shows that areas such as Cyber Law, International Finance perform relatively well, while Panchakarma, Seed Science, and Human Rights remain notably weak. BhashaBench V1 provides a comprehensive dataset for evaluating large language models across India's diverse knowledge domains. It enables assessment of models' ability to integrate domain-specific knowledge with bilingual understanding. All code, benchmarks, and resources are publicly available to support open research.
♻ ☆ MindGYM: What Matters in Question Synthesis for Thinking-Centric Fine-Tuning? NeurIPS'25
Large foundation models face challenges in acquiring transferable, structured thinking abilities, especially when supervised with rigid templates or crowd-annotated instruction datasets. Unlike prior approaches, we focus on a thinking-centric data synthesis paradigm that enables models to evolve through self-generated, cognitively guided data. We propose MindGYM, a structured and scalable framework for question synthesis, composed of: (1) Cognitive Thinking Process Injection, which infuses high-level reasoning objectives to shape the model's synthesis behavior; (2) Seed Single-Hop Question Synthesis, generating atomic questions from diverse semantic types to encourage broader thinking; and (3) Challenging Multi-Hop QA Synthesis, composing more complex multi-hop questions based on QA seeds for deeper reasoning. Detailed analysis shows that synthetic data generated by our method achieves 16.7% higher average quality and 67.91% lower quality variance compared to baseline sources, highlighting that both high-quality and self-contained data are essential for effective, thinking-oriented fine-tuning. MindGYM improves performance on six reasoning benchmarks, achieving gains of up to 16% on MathVision using only 400 data samples, and generalizable improvements across different model sizes and architectures. MindGYM underscores the viability of self-challenging mechanisms in refining large model capabilities while minimizing human intervention and resource demands. Code and data are released to promote data-centric research into self-evolving foundation models driven by their internal reasoning capabilities.
comment: Accepted by NeurIPS'25. 30 pages, 2 figures, 13 tables
♻ ☆ AIMeter: Measuring, Analyzing, and Visualizing Energy and Carbon Footprint of AI Workloads
The rapid advancement of AI, particularly large language models (LLMs), has raised significant concerns about the energy use and carbon emissions associated with model training and inference. However, existing tools for measuring and reporting such impacts are often fragmented, lacking systematic metric integration and offering limited support for correlation analysis among them. This paper presents AIMeter, a comprehensive software toolkit for the measurement, analysis, and visualization of energy use, power draw, hardware performance, and carbon emissions across AI workloads. By seamlessly integrating with existing AI frameworks, AIMeter offers standardized reports and exports fine-grained time-series data to support benchmarking and reproducibility in a lightweight manner. It further enables in-depth correlation analysis between hardware metrics and model performance and thus facilitates bottleneck identification and performance enhancement. By addressing critical limitations in existing tools, AIMeter encourages the research community to weigh environmental impact alongside raw performance of AI workloads and advances the shift toward more sustainable "Green AI" practices. The code is available at https://github.com/SusCom-Lab/AIMeter.
comment: 11 pages, 7 figures and 5 tables
♻ ☆ UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in Omni Models
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we introduce a novel, high-quality, and UNified Omni model benchmark, UNO-Bench. This benchmark is designed to effectively evaluate both UNi-modal and Omni-modal capabilities under a unified ability taxonomy, spanning 44 task types and 5 modality combinations. It includes 1250 human curated samples for omni-modal with 98% cross-modality solvability, and 2480 enhanced uni-modal samples. The human-generated dataset is well-suited to real-world scenarios, particularly within the Chinese context, whereas the automatically compressed dataset offers a 90% increase in speed and maintains 98% consistency across 18 public benchmarks. In addition to traditional multi-choice questions, we propose an innovative multi-step open-ended question format to assess complex reasoning. A general scoring model is incorporated, supporting 6 question types for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models.
comment: v3: Switch the paper template. Work in progress. Github: https://github.com/meituan-longcat/UNO-Bench Hugging Face: https://huggingface.co/datasets/meituan-longcat/UNO-Bench
♻ ☆ Reflection on Data Storytelling Tools in the Generative AI Era from the Human-AI Collaboration Perspective IEEE VIS 25
Human-AI collaborative tools attract attentions from the data storytelling community to lower the expertise barrier and streamline the workflow. The recent advance in large-scale generative AI techniques, e.g., large language models (LLMs) and text-to-image models, has the potential to enhance data storytelling with their power in visual and narration generation. After two years since these techniques were publicly available, it is important to reflect our progress of applying them and have an outlook for future opportunities. To achieve the goal, we compare the collaboration patterns of the latest tools with those of earlier ones using a dedicated framework for understanding human-AI collaboration in data storytelling. Through comparison, we identify consistently widely studied patterns, e.g., human-creator + AI-assistant, and newly explored or emerging ones, e.g., AI-creator + human-reviewer. The benefits of these AI techniques and implications to human-AI collaboration are also revealed. We further propose future directions to hopefully ignite innovations.
comment: This paper is a sequel to the CHI 24 paper "Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration (https://doi.org/10.1145/3613904.3642726), aiming to refresh our understanding with the latest advancements. It is accepted at IEEE VIS 25
♻ ☆ Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data NeurIPS'25
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this work, we investigate the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-design for LLMs.
comment: Accepted by NeurIPS'25 main track. 47 pages, 21 figures, 32 tables
♻ ☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
♻ ☆ Chaos-based reinforcement learning with TD3
Chaos-based reinforcement learning (CBRL) is a method in which the agent's internal chaotic dynamics drives exploration. However, the learning algorithms in CBRL have not been thoroughly developed in previous studies, nor have they incorporated recent advances in reinforcement learning. This study introduced Twin Delayed Deep Deterministic Policy Gradients (TD3), which is one of the state-of-the-art deep reinforcement learning algorithms that can treat deterministic and continuous action spaces, to CBRL. The validation results provide several insights. First, TD3 works as a learning algorithm for CBRL in a simple goal-reaching task. Second, CBRL agents with TD3 can autonomously suppress their exploratory behavior as learning progresses and resume exploration when the environment changes. Finally, examining the effect of the agent's chaoticity on learning shows that there exists a suitable range of chaos strength in the agent's model to flexibly switch between exploration and exploitation and adapt to environmental changes.
comment: Accepted for publication in Neural Networks
♻ ☆ Through the River: Understanding the Benefit of Schedule-Free Methods for Language Model Training NeurIPS 2025
As both model and dataset sizes continue to scale rapidly, conventional pretraining strategies with fixed compute budgets-such as cosine learning rate schedules-are increasingly inadequate for large-scale training. Recent alternatives, including warmup-stable-decay (WSD) schedules and weight averaging, offer greater flexibility. However, WSD relies on explicit decay phases to track progress, while weight averaging addresses this limitation at the cost of additional memory. In search of a more principled and scalable alternative, we revisit the Schedule-Free (SF) method [Defazio et al., 2024], which has shown strong empirical performance across diverse settings. We show that SF-AdamW effectively navigates the "river" structure of the loss landscape without decay phases or auxiliary averaging, making it particularly suitable for continuously scaling training workloads. To understand this behavior, we conduct a theoretical and empirical analysis of SF dynamics, revealing that it implicitly performs weight averaging without memory overhead. Guided by this analysis, we propose a refined variant of SF that improves robustness to momentum and performs better under large batch sizes, addressing key limitations of the original method. Together, these results establish SF as a practical, scalable, and theoretically grounded approach for language model training.
comment: Published at NeurIPS 2025
♻ ☆ A Convexity-dependent Two-Phase Training Algorithm for Deep Neural Networks
The key task of machine learning is to minimize the loss function that measures the model fit to the training data. The numerical methods to do this efficiently depend on the properties of the loss function. The most decisive among these properties is the convexity or non-convexity of the loss function. The fact that the loss function can have, and frequently has, non-convex regions has led to a widespread commitment to non-convex methods such as Adam. However, a local minimum implies that, in some environment around it, the function is convex. In this environment, second-order minimizing methods such as the Conjugate Gradient (CG) give a guaranteed superlinear convergence. We propose a novel framework grounded in the hypothesis that loss functions in real-world tasks swap from initial non-convexity to convexity towards the optimum. This is a property we leverage to design an innovative two-phase optimization algorithm. The presented algorithm detects the swap point by observing the gradient norm dependence on the loss. In these regions, non-convex (Adam) and convex (CG) algorithms are used, respectively. Computing experiments confirm the hypothesis that this simple convexity structure is frequent enough to be practically exploited to substantially improve convergence and accuracy.
comment: Appeared on KDIR IC3K Conference 2025 (Best Paper Award). Published in "Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1"
♻ ☆ FASL-Seg: Anatomy and Tool Segmentation of Surgical Scenes ECAI
The growing popularity of robotic minimally invasive surgeries has made deep learning-based surgical training a key area of research. A thorough understanding of the surgical scene components is crucial, which semantic segmentation models can help achieve. However, most existing work focuses on surgical tools and overlooks anatomical objects. Additionally, current state-of-the-art (SOTA) models struggle to balance capturing high-level contextual features and low-level edge features. We propose a Feature-Adaptive Spatial Localization model (FASL-Seg), designed to capture features at multiple levels of detail through two distinct processing streams, namely a Low-Level Feature Projection (LLFP) and a High-Level Feature Projection (HLFP) stream, for varying feature resolutions - enabling precise segmentation of anatomy and surgical instruments. We evaluated FASL-Seg on surgical segmentation benchmark datasets EndoVis18 and EndoVis17 on three use cases. The FASL-Seg model achieves a mean Intersection over Union (mIoU) of 72.71% on parts and anatomy segmentation in EndoVis18, improving on SOTA by 5%. It further achieves a mIoU of 85.61% and 72.78% in EndoVis18 and EndoVis17 tool type segmentation, respectively, outperforming SOTA overall performance, with comparable per-class SOTA results in both datasets and consistent performance in various classes for anatomy and instruments, demonstrating the effectiveness of distinct processing streams for varying feature resolutions.
comment: 8 pages, 6 figures, In Proceedings of European Conference on Artificial Intelligence (ECAI) 2025
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
♻ ☆ SPARKE: Scalable Prompt-Aware Diversity and Novelty Guidance in Diffusion Models via RKE Score
Diffusion models have demonstrated remarkable success in high-fidelity image synthesis and prompt-guided generative modeling. However, ensuring adequate diversity in generated samples of prompt-guided diffusion models remains a challenge, particularly when the prompts span a broad semantic spectrum and the diversity of generated data needs to be evaluated in a prompt-aware fashion across semantically similar prompts. Recent methods have introduced guidance via diversity measures to encourage more varied generations. In this work, we extend the diversity measure-based approaches by proposing the Scalable Prompt-Aware R\'eny Kernel Entropy Diversity Guidance (SPARKE) method for prompt-aware diversity guidance. SPARKE utilizes conditional entropy for diversity guidance, which dynamically conditions diversity measurement on similar prompts and enables prompt-aware diversity control. While the entropy-based guidance approach enhances prompt-aware diversity, its reliance on the matrix-based entropy scores poses computational challenges in large-scale generation settings. To address this, we focus on the special case of Conditional latent RKE Score Guidance, reducing entropy computation and gradient-based optimization complexity from the $O(n^3)$ of general entropy measures to $O(n)$. The reduced computational complexity allows for diversity-guided sampling over potentially thousands of generation rounds on different prompts. We numerically test the SPARKE method on several text-to-image diffusion models, demonstrating that the proposed method improves the prompt-aware diversity of the generated data without incurring significant computational costs. We release our code on the project page: https://mjalali.github.io/SPARKE
Efficient Regression-Based Training of Normalizing Flows for Boltzmann Generators ICML
Simulation-free training frameworks have been at the forefront of the generative modelling revolution in continuous spaces, leading to large-scale diffusion and flow matching models. However, such modern generative models suffer from expensive inference, inhibiting their use in numerous scientific applications like Boltzmann Generators (BGs) for molecular conformations that require fast likelihood evaluation. In this paper, we revisit classical normalizing flows in the context of BGs that offer efficient sampling and likelihoods, but whose training via maximum likelihood is often unstable and computationally challenging. We propose Regression Training of Normalizing Flows (RegFlow), a novel and scalable regression-based training objective that bypasses the numerical instability and computational challenge of conventional maximum likelihood training in favour of a simple $\ell_2$-regression objective. Specifically, RegFlow maps prior samples under our flow to targets computed using optimal transport couplings or a pre-trained continuous normalizing flow (CNF). To enhance numerical stability, RegFlow employs effective regularization strategies such as a new forward-backward self-consistency loss that enjoys painless implementation. Empirically, we demonstrate that RegFlow unlocks a broader class of architectures that were previously intractable to train for BGs with maximum likelihood. We also show RegFlow exceeds the performance, computational cost, and stability of maximum likelihood training in equilibrium sampling in Cartesian coordinates of alanine dipeptide, tripeptide, and tetrapeptide, showcasing its potential in molecular systems.
comment: Preprint; ICML GenBio Best Paper Award 2025
♻ ☆ Nek Minit: Harnessing Pragmatic Metacognitive Prompting for Explainable Sarcasm Detection of Australian and Indian English ALT
Sarcasm is a challenge to sentiment analysis because of the incongruity between stated and implied sentiment. The challenge is exacerbated when the implication may be relevant to a specific country or geographical region. Pragmatic metacognitive prompting (PMP) is a cognition-inspired technique that has been used for pragmatic reasoning. In this paper, we harness PMP for explainable sarcasm detection for Australian and Indian English, alongside a benchmark dataset for standard English. We manually add sarcasm explanations to an existing sarcasm-labeled dataset for Australian and Indian English called BESSTIE, and compare the performance for explainable sarcasm detection for them with FLUTE, a standard English dataset containing sarcasm explanations. Our approach utilising PMP when evaluated on two open-weight LLMs (GEMMA and LLAMA) achieves statistically significant performance improvement across all tasks and datasets when compared with four alternative prompting strategies. We also find that alternative techniques such as agentic prompting mitigate context-related failures by enabling external knowledge retrieval. The focused contribution of our work is utilising PMP in generating sarcasm explanations for varieties of English.
comment: ALTA 2025 (Best Paper Honorable Mention). Camera-ready
♻ ☆ Learning to Insert for Constructive Neural Vehicle Routing Solver NeurIPS 2025
Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
comment: Accepted at NeurIPS 2025
Self-Evolving Curriculum for LLM Reasoning
Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.
♻ ☆ SAFE: Multitask Failure Detection for Vision-Language-Action Models NeurIPS 2025
While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out of the box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while generalist VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, $\pi_0$, and $\pi_0$-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results and code can be found at the project webpage: https://vla-safe.github.io/
comment: NeurIPS 2025 camera ready. Project Page: https://vla-safe.github.io/
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
♻ ☆ The Scales of Justitia: A Comprehensive Survey on Safety Evaluation of LLMs
With the rapid advancement of artificial intelligence, Large Language Models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), including content generation, human-computer interaction, machine translation, and code generation. However, their widespread deployment has also raised significant safety concerns. In particular, LLM-generated content can exhibit unsafe behaviors such as toxicity, bias, or misinformation, especially in adversarial contexts, which has attracted increasing attention from both academia and industry. Although numerous studies have attempted to evaluate these risks, a comprehensive and systematic survey on safety evaluation of LLMs is still lacking. This work aims to fill this gap by presenting a structured overview of recent advances in safety evaluation of LLMs. Specifically, we propose a four-dimensional taxonomy: (i) Why to evaluate, which explores the background of safety evaluation of LLMs, how they differ from general LLMs evaluation, and the significance of such evaluation; (ii) What to evaluate, which examines and categorizes existing safety evaluation tasks based on key capabilities, including dimensions such as toxicity, robustness, ethics, bias and fairness, truthfulness, and related aspects; (iii) Where to evaluate, which summarizes the evaluation metrics, datasets and benchmarks currently used in safety evaluations; (iv) How to evaluate, which reviews existing mainstream evaluation methods based on the roles of the evaluators and some evaluation frameworks that integrate the entire evaluation pipeline. Finally, we identify the challenges in safety evaluation of LLMs and propose promising research directions to promote further advancement in this field. We emphasize the necessity of prioritizing safety evaluation to ensure the reliable and responsible deployment of LLMs in real-world applications.
comment: 20 pages, preprint
♻ ☆ Towards Predicting Any Human Trajectory In Context NeurIPS 2025
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, the need to fine-tune for each new scenario is often impractical for deployment on edge devices. To address this challenge, we introduce \paper, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables adaptation without fine-tuning on the scenario-specific data at inference time without requiring weight updates. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. Project Page: https://fujiry0.github.io/TrajICL-project-page/.
comment: NeurIPS 2025
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ LAFA: Agentic LLM-Driven Federated Analytics over Decentralized Data Sources
Large Language Models (LLMs) have shown great promise in automating data analytics tasks by interpreting natural language queries and generating multi-operation execution plans. However, existing LLM-agent-based analytics frameworks operate under the assumption of centralized data access, offering little to no privacy protection. In contrast, federated analytics (FA) enables privacy-preserving computation across distributed data sources, but lacks support for natural language input and requires structured, machine-readable queries. In this work, we present LAFA, the first system that integrates LLM-agent-based data analytics with FA. LAFA introduces a hierarchical multi-agent architecture that accepts natural language queries and transforms them into optimized, executable FA workflows. A coarse-grained planner first decomposes complex queries into sub-queries, while a fine-grained planner maps each subquery into a Directed Acyclic Graph of FA operations using prior structural knowledge. To improve execution efficiency, an optimizer agent rewrites and merges multiple DAGs, eliminating redundant operations and minimizing computational and communicational overhead. Our experiments demonstrate that LAFA consistently outperforms baseline prompting strategies by achieving higher execution plan success rates and reducing resource-intensive FA operations by a substantial margin. This work establishes a practical foundation for privacy-preserving, LLM-driven analytics that supports natural language input in the FA setting.
comment: This paper has been accepted by the 16th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2025)
Machine Learning 150
☆ OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes
There are two prevalent ways to constructing 3D scenes: procedural generation and 2D lifting. Among them, panorama-based 2D lifting has emerged as a promising technique, leveraging powerful 2D generative priors to produce immersive, realistic, and diverse 3D environments. In this work, we advance this technique to generate graphics-ready 3D scenes suitable for physically based rendering (PBR), relighting, and simulation. Our key insight is to repurpose 2D generative models for panoramic perception of geometry, textures, and PBR materials. Unlike existing 2D lifting approaches that emphasize appearance generation and ignore the perception of intrinsic properties, we present OmniX, a versatile and unified framework. Based on a lightweight and efficient cross-modal adapter structure, OmniX reuses 2D generative priors for a broad range of panoramic vision tasks, including panoramic perception, generation, and completion. Furthermore, we construct a large-scale synthetic panorama dataset containing high-quality multimodal panoramas from diverse indoor and outdoor scenes. Extensive experiments demonstrate the effectiveness of our model in panoramic visual perception and graphics-ready 3D scene generation, opening new possibilities for immersive and physically realistic virtual world generation.
comment: Project page: https://yukun-huang.github.io/OmniX/
☆ Scaling Image Geo-Localization to Continent Level NeurIPS 2025
Determining the precise geographic location of an image at a global scale remains an unsolved challenge. Standard image retrieval techniques are inefficient due to the sheer volume of images (>100M) and fail when coverage is insufficient. Scalable solutions, however, involve a trade-off: global classification typically yields coarse results (10+ kilometers), while cross-view retrieval between ground and aerial imagery suffers from a domain gap and has been primarily studied on smaller regions. This paper introduces a hybrid approach that achieves fine-grained geo-localization across a large geographic expanse the size of a continent. We leverage a proxy classification task during training to learn rich feature representations that implicitly encode precise location information. We combine these learned prototypes with embeddings of aerial imagery to increase robustness to the sparsity of ground-level data. This enables direct, fine-grained retrieval over areas spanning multiple countries. Our extensive evaluation demonstrates that our approach can localize within 200m more than 68\% of queries of a dataset covering a large part of Europe. The code is publicly available at https://scaling-geoloc.github.io.
comment: NeurIPS 2025
☆ Learning Pseudorandom Numbers with Transformers: Permuted Congruential Generators, Curricula, and Interpretability
We study the ability of Transformer models to learn sequences generated by Permuted Congruential Generators (PCGs), a widely used family of pseudo-random number generators (PRNGs). PCGs introduce substantial additional difficulty over linear congruential generators (LCGs) by applying a series of bit-wise shifts, XORs, rotations and truncations to the hidden state. We show that Transformers can nevertheless successfully perform in-context prediction on unseen sequences from diverse PCG variants, in tasks that are beyond published classical attacks. In our experiments we scale moduli up to $2^{22}$ using up to $50$ million model parameters and datasets with up to $5$ billion tokens. Surprisingly, we find even when the output is truncated to a single bit, it can be reliably predicted by the model. When multiple distinct PRNGs are presented together during training, the model can jointly learn them, identifying structures from different permutations. We demonstrate a scaling law with modulus $m$: the number of in-context sequence elements required for near-perfect prediction grows as $\sqrt{m}$. For larger moduli, optimization enters extended stagnation phases; in our experiments, learning moduli $m \geq 2^{20}$ requires incorporating training data from smaller moduli, demonstrating a critical necessity for curriculum learning. Finally, we analyze embedding layers and uncover a novel clustering phenomenon: the model spontaneously groups the integer inputs into bitwise rotationally-invariant clusters, revealing how representations can transfer from smaller to larger moduli.
comment: 10+13 pages, 8+19 figures
☆ Defeating the Training-Inference Mismatch via FP16
Reinforcement learning (RL) fine-tuning of large language models (LLMs) often suffers from instability due to the numerical mismatch between the training and inference policies. While prior work has attempted to mitigate this issue through algorithmic corrections or engineering alignments, we show that its root cause lies in the floating point precision itself. The widely adopted BF16, despite its large dynamic range, introduces large rounding errors that breaks the consistency between training and inference. In this work, we demonstrate that simply reverting to \textbf{FP16} effectively eliminates this mismatch. The change is simple, fully supported by modern frameworks with only a few lines of code change, and requires no modification to the model architecture or learning algorithm. Our results suggest that using FP16 uniformly yields more stable optimization, faster convergence, and stronger performance across diverse tasks, algorithms and frameworks. We hope these findings motivate a broader reconsideration of precision trade-offs in RL fine-tuning.
☆ Remote Labor Index: Measuring AI Automation of Remote Work
AIs have made rapid progress on research-oriented benchmarks of knowledge and reasoning, but it remains unclear how these gains translate into economic value and automation. To measure this, we introduce the Remote Labor Index (RLI), a broadly multi-sector benchmark comprising real-world, economically valuable projects designed to evaluate end-to-end agent performance in practical settings. AI agents perform near the floor on RLI, with the highest-performing agent achieving an automation rate of 2.5%. These results help ground discussions of AI automation in empirical evidence, setting a common basis for tracking AI impacts and enabling stakeholders to proactively navigate AI-driven labor automation.
comment: Website: https://www.remotelabor.ai
☆ HEIR: Learning Graph-Based Motion Hierarchies
Hierarchical structures of motion exist across research fields, including computer vision, graphics, and robotics, where complex dynamics typically arise from coordinated interactions among simpler motion components. Existing methods to model such dynamics typically rely on manually-defined or heuristic hierarchies with fixed motion primitives, limiting their generalizability across different tasks. In this work, we propose a general hierarchical motion modeling method that learns structured, interpretable motion relationships directly from data. Our method represents observed motions using graph-based hierarchies, explicitly decomposing global absolute motions into parent-inherited patterns and local motion residuals. We formulate hierarchy inference as a differentiable graph learning problem, where vertices represent elemental motions and directed edges capture learned parent-child dependencies through graph neural networks. We evaluate our hierarchical reconstruction approach on three examples: 1D translational motion, 2D rotational motion, and dynamic 3D scene deformation via Gaussian splatting. Experimental results show that our method reconstructs the intrinsic motion hierarchy in 1D and 2D cases, and produces more realistic and interpretable deformations compared to the baseline on dynamic 3D Gaussian splatting scenes. By providing an adaptable, data-driven hierarchical modeling paradigm, our method offers a formulation applicable to a broad range of motion-centric tasks. Project Page: https://light.princeton.edu/HEIR/
comment: Code link: https://github.com/princeton-computational-imaging/HEIR
☆ A Unified Theory for Causal Inference: Direct Debiased Machine Learning via Bregman-Riesz Regression
This note introduces a unified theory for causal inference that integrates Riesz regression, covariate balancing, density-ratio estimation (DRE), targeted maximum likelihood estimation (TMLE), and the matching estimator in average treatment effect (ATE) estimation. In ATE estimation, the balancing weights and the regression functions of the outcome play important roles, where the balancing weights are referred to as the Riesz representer, bias-correction term, and clever covariates, depending on the context. Riesz regression, covariate balancing, DRE, and the matching estimator are methods for estimating the balancing weights, where Riesz regression is essentially equivalent to DRE in the ATE context, the matching estimator is a special case of DRE, and DRE is in a dual relationship with covariate balancing. TMLE is a method for constructing regression function estimators such that the leading bias term becomes zero. Nearest Neighbor Matching is equivalent to Least Squares Density Ratio Estimation and Riesz Regression.
☆ Clone Deterministic 3D Worlds with Geometrically-Regularized World Models
A world model is an internal model that simulates how the world evolves. Given past observations and actions, it predicts the future of both the embodied agent and its environment. Accurate world models are essential for enabling agents to think, plan, and reason effectively in complex, dynamic settings. Despite rapid progress, current world models remain brittle and degrade over long horizons. We argue that a central cause is representation quality: exteroceptive inputs (e.g., images) are high-dimensional, and lossy or entangled latents make dynamics learning unnecessarily hard. We therefore ask whether improving representation learning alone can substantially improve world-model performance. In this work, we take a step toward building a truly accurate world model by addressing a fundamental yet open problem: constructing a model that can fully clone and overfit to a deterministic 3D world. We propose Geometrically-Regularized World Models (GRWM), which enforces that consecutive points along a natural sensory trajectory remain close in latent representation space. This approach yields significantly improved latent representations that align closely with the true topology of the environment. GRWM is plug-and-play, requires only minimal architectural modification, scales with trajectory length, and is compatible with diverse latent generative backbones. Across deterministic 3D settings and long-horizon prediction tasks, GRWM significantly increases rollout fidelity and stability. Analyses show that its benefits stem from learning a latent manifold with superior geometric structure. These findings support a clear takeaway: improving representation learning is a direct and useful path to robust world models, delivering reliable long-horizon predictions without enlarging the dynamics module.
☆ Surpassing state of the art on AMD area estimation from RGB fundus images through careful selection of U-Net architectures and loss functions for class imbalance
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision impairment in people over the age of 60. This research focuses on semantic segmentation for AMD lesion detection in RGB fundus images, a non-invasive and cost-effective imaging technique. The results of the ADAM challenge - the most comprehensive AMD detection from RGB fundus images research competition and open dataset to date - serve as a benchmark for our evaluation. Taking the U-Net connectivity as a base of our framework, we evaluate and compare several approaches to improve the segmentation model's architecture and training pipeline, including pre-processing techniques, encoder (backbone) deep network types of varying complexity, and specialized loss functions to mitigate class imbalances on image and pixel levels. The main outcome of this research is the final configuration of the AMD detection framework, which outperforms all the prior ADAM challenge submissions on the multi-class segmentation of different AMD lesion types in non-invasive RGB fundus images. The source code used to conduct the experiments presented in this paper is made freely available.
Pre-trained Forecasting Models: Strong Zero-Shot Feature Extractors for Time Series Classification NeurIPS 2025
Recent research on time series foundation models has primarily focused on forecasting, leaving it unclear how generalizable their learned representations are. In this study, we examine whether frozen pre-trained forecasting models can provide effective representations for classification. To this end, we compare different representation extraction strategies and introduce two model-agnostic embedding augmentations. Our experiments show that the best forecasting models achieve classification accuracy that matches or even surpasses that of state-of-the-art models pre-trained specifically for classification. Moreover, we observe a positive correlation between forecasting and classification performance. These findings challenge the assumption that task-specific pre-training is necessary, and suggest that learning to forecast may provide a powerful route toward constructing general-purpose time series foundation models.
comment: NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
☆ Faithful and Fast Influence Function via Advanced Sampling
How can we explain the influence of training data on black-box models? Influence functions (IFs) offer a post-hoc solution by utilizing gradients and Hessians. However, computing the Hessian for an entire dataset is resource-intensive, necessitating a feasible alternative. A common approach involves randomly sampling a small subset of the training data, but this method often results in highly inconsistent IF estimates due to the high variance in sample configurations. To address this, we propose two advanced sampling techniques based on features and logits. These samplers select a small yet representative subset of the entire dataset by considering the stochastic distribution of features or logits, thereby enhancing the accuracy of IF estimations. We validate our approach through class removal experiments, a typical application of IFs, using the F1-score to measure how effectively the model forgets the removed class while maintaining inference consistency on the remaining classes. Our method reduces computation time by 30.1% and memory usage by 42.2%, or improves the F1-score by 2.5% compared to the baseline.
☆ STaMP: Sequence Transformation and Mixed Precision for Low-Precision Activation Quantization
Quantization is the key method for reducing inference latency, power and memory footprint of generative AI models. However, accuracy often degrades sharply when activations are quantized below eight bits. Recent work suggests that invertible linear transformations (e.g. rotations) can aid quantization, by reparameterizing feature channels and weights. In this paper, we propose \textit{Sequence Transformation and Mixed Precision} (STaMP) quantization, a novel strategy that applies linear transformations along the \textit{sequence} dimension to exploit the strong local correlation in language and visual data. By keeping a small number of tokens in each intermediate activation at higher precision, we can maintain model accuracy at lower (average) activations bit-widths. We evaluate STaMP on recent LVM and LLM architectures, demonstrating that it significantly improves low bit width activation quantization and complements established activation and weight quantization methods including recent feature transformations.
comment: 10 pages main text, 8 pages supplementary material
☆ SteerVLM: Robust Model Control through Lightweight Activation Steering for Vision Language Models
This work introduces SteerVLM, a lightweight steering module designed to guide Vision-Language Models (VLMs) towards outputs that better adhere to desired instructions. Our approach learns from the latent embeddings of paired prompts encoding target and converse behaviors to dynamically adjust activations connecting the language modality with image context. This allows for fine-grained, inference-time control over complex output semantics without modifying model weights while preserving performance on off-target tasks. Our steering module requires learning parameters equal to 0.14% of the original VLM's size. Our steering module gains model control through dimension-wise activation modulation and adaptive steering across layers without requiring pre-extracted static vectors or manual tuning of intervention points. Furthermore, we introduce VNIA (Visual Narrative Intent Alignment), a multimodal dataset specifically created to facilitate the development and evaluation of VLM steering techniques. Our method outperforms existing intervention techniques on steering and hallucination mitigation benchmarks for VLMs and proposes a robust solution for multimodal model control through activation engineering.
☆ The Oversight Game: Learning to Cooperatively Balance an AI Agent's Safety and Autonomy
As increasingly capable agents are deployed, a central safety question is how to retain meaningful human control without modifying the underlying system. We study a minimal control interface where an agent chooses whether to act autonomously (play) or defer (ask), while a human simultaneously chooses whether to be permissive (trust) or to engage in oversight (oversee). If the agent defers, the human's choice determines the outcome, potentially leading to a corrective action or a system shutdown. We model this interaction as a two-player Markov Game. Our analysis focuses on cases where this game qualifies as a Markov Potential Game (MPG), a class of games where we can provide an alignment guarantee: under a structural assumption on the human's value function, any decision by the agent to act more autonomously that benefits itself cannot harm the human's value. We also analyze extensions to this MPG framework. Theoretically, this perspective provides conditions for a specific form of intrinsic alignment. If the reward structures of the human-agent game meet these conditions, we have a formal guarantee that the agent improving its own outcome will not harm the human's. Practically, this model motivates a transparent control layer with predictable incentives where the agent learns to defer when risky and act when safe, while its pretrained policy and the environment's reward structure remain untouched. Our gridworld simulation shows that through independent learning, the agent and human discover their optimal oversight roles. The agent learns to ask when uncertain and the human learns when to oversee, leading to an emergent collaboration that avoids safety violations introduced post-training. This demonstrates a practical method for making misaligned models safer after deployment.
☆ Deep sequence models tend to memorize geometrically; it is unclear why
In sequence modeling, the parametric memory of atomic facts has been predominantly abstracted as a brute-force lookup of co-occurrences between entities. We contrast this associative view against a geometric view of how memory is stored. We begin by isolating a clean and analyzable instance of Transformer reasoning that is incompatible with memory as strictly a storage of the local co-occurrences specified during training. Instead, the model must have somehow synthesized its own geometry of atomic facts, encoding global relationships between all entities, including non-co-occurring ones. This in turn has simplified a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn 1-step geometric task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, despite optimizing over mere local associations, cannot be straightforwardly attributed to typical architectural or optimizational pressures. Counterintuitively, an elegant geometry is learned even when it is not more succinct than a brute-force lookup of associations. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery and unlearning.
☆ Bridging the Gap between Empirical Welfare Maximization and Conditional Average Treatment Effect Estimation in Policy Learning
The goal of policy learning is to train a policy function that recommends a treatment given covariates to maximize population welfare. There are two major approaches in policy learning: the empirical welfare maximization (EWM) approach and the plug-in approach. The EWM approach is analogous to a classification problem, where one first builds an estimator of the population welfare, which is a functional of policy functions, and then trains a policy by maximizing the estimated welfare. In contrast, the plug-in approach is based on regression, where one first estimates the conditional average treatment effect (CATE) and then recommends the treatment with the highest estimated outcome. This study bridges the gap between the two approaches by showing that both are based on essentially the same optimization problem. In particular, we prove an exact equivalence between EWM and least squares over a reparameterization of the policy class. As a consequence, the two approaches are interchangeable in several respects and share the same theoretical guarantees under common conditions. Leveraging this equivalence, we propose a novel regularization method for policy learning. Our findings yield a convex and computationally efficient training procedure that avoids the NP-hard combinatorial step typically required in EWM.
☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
☆ On Purely Private Covariance Estimation
We present a simple perturbation mechanism for the release of $d$-dimensional covariance matrices $\Sigma$ under pure differential privacy. For large datasets with at least $n\geq d^2/\varepsilon$ elements, our mechanism recovers the provably optimal Frobenius norm error guarantees of \cite{nikolov2023private}, while simultaneously achieving best known error for all other $p$-Schatten norms, with $p\in [1,\infty]$. Our error is information-theoretically optimal for all $p\ge 2$, in particular, our mechanism is the first purely private covariance estimator that achieves optimal error in spectral norm. For small datasets $n< d^2/\varepsilon$, we further show that by projecting the output onto the nuclear norm ball of appropriate radius, our algorithm achieves the optimal Frobenius norm error $O(\sqrt{d\;\text{Tr}(\Sigma) /n})$, improving over the known bounds of $O(\sqrt{d/n})$ of \cite{nikolov2023private} and ${O}\big(d^{3/4}\sqrt{\text{Tr}(\Sigma)/n}\big)$ of \cite{dong2022differentially}.
comment: equal contribution
☆ LSM-MS2: A Foundation Model Bridging Spectral Identification and Biological Interpretation
A vast majority of mass spectrometry data remains uncharacterized, leaving much of its biological and chemical information untapped. Recent advances in machine learning have begun to address this gap, particularly for tasks such as spectral identification in tandem mass spectrometry data. Here, we present the latest generation of LSM-MS2, a large-scale deep learning foundation model trained on millions of spectra to learn a semantic chemical space. LSM-MS2 achieves state-of-the-art performance in spectral identification, improving on existing methods by 30% in accuracy of identifying challenging isomeric compounds, yielding 42% more correct identifications in complex biological samples, and maintaining robustness under low-concentration conditions. Furthermore, LSM-MS2 produces rich spectral embeddings that enable direct biological interpretation from minimal downstream data, successfully differentiating disease states and predicting clinical outcomes across diverse translational applications.
☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We therefore recommend that empirical comphttps://info.arxiv.org/help/prep#commentsarisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
☆ An All-Reduce Compatible Top-K Compressor for Communication-Efficient Distributed Learning
Communication remains a central bottleneck in large-scale distributed machine learning, and gradient sparsification has emerged as a promising strategy to alleviate this challenge. However, existing gradient compressors face notable limitations: Rand-$K$\ discards structural information and performs poorly in practice, while Top-$K$\ preserves informative entries but loses the contraction property and requires costly All-Gather operations. In this paper, we propose ARC-Top-$K$, an {All-Reduce}-Compatible Top-$K$ compressor that aligns sparsity patterns across nodes using a lightweight sketch of the gradient, enabling index-free All-Reduce while preserving globally significant information. ARC-Top-$K$\ is provably contractive and, when combined with momentum error feedback (EF21M), achieves linear speedup and sharper convergence rates than the original EF21M under standard assumptions. Empirically, ARC-Top-$K$\ matches the accuracy of Top-$K$\ while reducing wall-clock training time by up to 60.7\%, offering an efficient and scalable solution that combines the robustness of Rand-$K$\ with the strong performance of Top-$K$.
comment: 8 pages, 2 figures
☆ Value Drifts: Tracing Value Alignment During LLM Post-Training
As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.
☆ Budgeted Multiple-Expert Deferral
Learning to defer uncertain predictions to costly experts offers a powerful strategy for improving the accuracy and efficiency of machine learning systems. However, standard training procedures for deferral algorithms typically require querying all experts for every training instance, an approach that becomes prohibitively expensive when expert queries incur significant computational or resource costs. This undermines the core goal of deferral: to limit unnecessary expert usage. To overcome this challenge, we introduce the budgeted deferral framework, which aims to train effective deferral algorithms while minimizing expert query costs during training. We propose new algorithms for both two-stage and single-stage multiple-expert deferral settings that selectively query only a subset of experts per training example. While inspired by active learning, our setting is fundamentally different: labels are already known, and the core challenge is to decide which experts to query in order to balance cost and predictive performance. We establish theoretical guarantees for both of our algorithms, including generalization bounds and label complexity analyses. Empirical results across several domains show that our algorithms substantially reduce training costs without sacrificing prediction accuracy, demonstrating the practical value of our budget-aware deferral algorithms.
☆ How Regularization Terms Make Invertible Neural Networks Bayesian Point Estimators
Can regularization terms in the training of invertible neural networks lead to known Bayesian point estimators in reconstruction? Invertible networks are attractive for inverse problems due to their inherent stability and interpretability. Recently, optimization strategies for invertible neural networks that approximate either a reconstruction map or the forward operator have been studied from a Bayesian perspective, but each has limitations. To address this, we introduce and analyze two regularization terms for the network training that, upon inversion of the network, recover properties of classical Bayesian point estimators: while the first can be connected to the posterior mean, the second resembles the MAP estimator. Our theoretical analysis characterizes how each loss shapes both the learned forward operator and its inverse reconstruction map. Numerical experiments support our findings and demonstrate how these loss-term regularizers introduce data-dependence in a stable and interpretable way.
comment: Preprint, under review
☆ Assessment of the conditional exchangeability assumption in causal machine learning models: a simulation study
Observational studies developing causal machine learning (ML) models for the prediction of individualized treatment effects (ITEs) seldom conduct empirical evaluations to assess the conditional exchangeability assumption. We aimed to evaluate the performance of these models under conditional exchangeability violations and the utility of negative control outcomes (NCOs) as a diagnostic. We conducted a simulation study to examine confounding bias in ITE estimates generated by causal forest and X-learner models under varying conditions, including the presence or absence of true heterogeneity. We simulated data to reflect real-world scenarios with differing levels of confounding, sample size, and NCO confounding structures. We then estimated and compared subgroup-level treatment effects on the primary outcome and NCOs across settings with and without unmeasured confounding. When conditional exchangeability was violated, causal forest and X-learner models failed to recover true treatment effect heterogeneity and, in some cases, falsely indicated heterogeneity when there was none. NCOs successfully identified subgroups affected by unmeasured confounding. Even when NCOs did not perfectly satisfy its ideal assumptions, it remained informative, flagging potential bias in subgroup level estimates, though not always pinpointing the subgroup with the largest confounding. Violations of conditional exchangeability substantially limit the validity of ITE estimates from causal ML models in routinely collected observational data. NCOs serve a useful empirical diagnostic tool for detecting subgroup-specific unmeasured confounding and should be incorporated into causal ML workflows to support the credibility of individualized inference.
☆ Kimi Linear: An Expressive, Efficient Attention Architecture
We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.
comment: Kimi Linear tech report
☆ LoRAQuant: Mixed-Precision Quantization of LoRA to Ultra-Low Bits
Low-Rank Adaptation (LoRA) has become a popular technique for parameter-efficient fine-tuning of large language models (LLMs). In many real-world scenarios, multiple adapters are loaded simultaneously to enable LLM customization for personalized user experiences or to support a diverse range of tasks. Although each adapter is lightweight in isolation, their aggregate cost becomes substantial at scale. To address this, we propose LoRAQuant, a mixed-precision post-training quantization method tailored to LoRA. Specifically, LoRAQuant reparameterizes each adapter by singular value decomposition (SVD) to concentrate the most important information into specific rows and columns. This makes it possible to quantize the important components to higher precision, while quantizing the rest to ultra-low bitwidth. We conduct comprehensive experiments with LLaMA 2-7B, LLaMA 2-13B, and Mistral 7B models on mathematical reasoning, coding, and summarization tasks. Results show that our LoRAQuant uses significantly lower bits than other quantization methods, but achieves comparable or even higher performance.
☆ FlowQ-Net: A Generative Framework for Automated Quantum Circuit Design
Designing efficient quantum circuits is a central bottleneck to exploring the potential of quantum computing, particularly for noisy intermediate-scale quantum (NISQ) devices, where circuit efficiency and resilience to errors are paramount. The search space of gate sequences grows combinatorially, and handcrafted templates often waste scarce qubit and depth budgets. We introduce \textsc{FlowQ-Net} (Flow-based Quantum design Network), a generative framework for automated quantum circuit synthesis based on Generative Flow Networks (GFlowNets). This framework learns a stochastic policy to construct circuits sequentially, sampling them in proportion to a flexible, user-defined reward function that can encode multiple design objectives such as performance, depth, and gate count. This approach uniquely enables the generation of a diverse ensemble of high-quality circuits, moving beyond single-solution optimization. We demonstrate the efficacy of \textsc{FlowQ-Net} through an extensive set of simulations. We apply our method to Variational Quantum Algorithm (VQA) ansatz design for molecular ground state estimation, Max-Cut, and image classification, key challenges in near-term quantum computing. Circuits designed by \textsc{FlowQ-Net} achieve significant improvements, yielding circuits that are 10$\times$-30$\times$ more compact in terms of parameters, gates, and depth compared to commonly used unitary baselines, without compromising accuracy. This trend holds even when subjected to error profiles from real-world quantum devices. Our results underline the potential of generative models as a general-purpose methodology for automated quantum circuit design, offering a promising path towards more efficient quantum algorithms and accelerating scientific discovery in the quantum domain.
☆ Tight Differentially Private PCA via Matrix Coherence
We revisit the task of computing the span of the top $r$ singular vectors $u_1, \ldots, u_r$ of a matrix under differential privacy. We show that a simple and efficient algorithm -- based on singular value decomposition and standard perturbation mechanisms -- returns a private rank-$r$ approximation whose error depends only on the \emph{rank-$r$ coherence} of $u_1, \ldots, u_r$ and the spectral gap $\sigma_r - \sigma_{r+1}$. This resolves a question posed by Hardt and Roth~\cite{hardt2013beyond}. Our estimator outperforms the state of the art -- significantly so in some regimes. In particular, we show that in the dense setting, it achieves the same guarantees for single-spike PCA in the Wishart model as those attained by optimal non-private algorithms, whereas prior private algorithms failed to do so. In addition, we prove that (rank-$r$) coherence does not increase under Gaussian perturbations. This implies that any estimator based on the Gaussian mechanism -- including ours -- preserves the coherence of the input. We conjecture that similar behavior holds for other structured models, including planted problems in graphs. We also explore applications of coherence to graph problems. In particular, we present a differentially private algorithm for Max-Cut and other constraint satisfaction problems under low coherence assumptions.
comment: SODA 2026; equal contribution
☆ Action-Driven Processes for Continuous-Time Control
At the heart of reinforcement learning are actions -- decisions made in response to observations of the environment. Actions are equally fundamental in the modeling of stochastic processes, as they trigger discontinuous state transitions and enable the flow of information through large, complex systems. In this paper, we unify the perspectives of stochastic processes and reinforcement learning through action-driven processes, and illustrate their application to spiking neural networks. Leveraging ideas from control-as-inference, we show that minimizing the Kullback-Leibler divergence between a policy-driven true distribution and a reward-driven model distribution for a suitably defined action-driven process is equivalent to maximum entropy reinforcement learning.
☆ Heuristic Adaptation of Potentially Misspecified Domain Support for Likelihood-Free Inference in Stochastic Dynamical Systems
In robotics, likelihood-free inference (LFI) can provide the domain distribution that adapts a learnt agent in a parametric set of deployment conditions. LFI assumes an arbitrary support for sampling, which remains constant as the initial generic prior is iteratively refined to more descriptive posteriors. However, a potentially misspecified support can lead to suboptimal, yet falsely certain, posteriors. To address this issue, we propose three heuristic LFI variants: EDGE, MODE, and CENTRE. Each interprets the posterior mode shift over inference steps in its own way and, when integrated into an LFI step, adapts the support alongside posterior inference. We first expose the support misspecification issue and evaluate our heuristics using stochastic dynamical benchmarks. We then evaluate the impact of heuristic support adaptation on parameter inference and policy learning for a dynamic deformable linear object (DLO) manipulation task. Inference results in a finer length and stiffness classification for a parametric set of DLOs. When the resulting posteriors are used as domain distributions for sim-based policy learning, they lead to more robust object-centric agent performance.
☆ Hybrid DQN-TD3 Reinforcement Learning for Autonomous Navigation in Dynamic Environments
This paper presents a hierarchical path-planning and control framework that combines a high-level Deep Q-Network (DQN) for discrete sub-goal selection with a low-level Twin Delayed Deep Deterministic Policy Gradient (TD3) controller for continuous actuation. The high-level module selects behaviors and sub-goals; the low-level module executes smooth velocity commands. We design a practical reward shaping scheme (direction, distance, obstacle avoidance, action smoothness, collision penalty, time penalty, and progress), together with a LiDAR-based safety gate that prevents unsafe motions. The system is implemented in ROS + Gazebo (TurtleBot3) and evaluated with PathBench metrics, including success rate, collision rate, path efficiency, and re-planning efficiency, in dynamic and partially observable environments. Experiments show improved success rate and sample efficiency over single-algorithm baselines (DQN or TD3 alone) and rule-based planners, with better generalization to unseen obstacle configurations and reduced abrupt control changes. Code and evaluation scripts are available at the project repository.
comment: 6 pages, 5 figures; ROS+Gazebo (TurtleBot3) implementation; evaluation with PathBench metrics; code (primary): https://github.com/MayaCHEN-github/HierarchicalRL-robot-navigation; mirror (for reproducibility): https://github.com/ShowyHe/DRL-robot-navigation
☆ Curly Flow Matching for Learning Non-gradient Field Dynamics NeurIPS 2025
Modeling the transport dynamics of natural processes from population-level observations is a ubiquitous problem in the natural sciences. Such models rely on key assumptions about the underlying process in order to enable faithful learning of governing dynamics that mimic the actual system behavior. The de facto assumption in current approaches relies on the principle of least action that results in gradient field dynamics and leads to trajectories minimizing an energy functional between two probability measures. However, many real-world systems, such as cell cycles in single-cell RNA, are known to exhibit non-gradient, periodic behavior, which fundamentally cannot be captured by current state-of-the-art methods such as flow and bridge matching. In this paper, we introduce Curly Flow Matching (Curly-FM), a novel approach that is capable of learning non-gradient field dynamics by designing and solving a Schr\"odinger bridge problem with a non-zero drift reference process -- in stark contrast to typical zero-drift reference processes -- which is constructed using inferred velocities in addition to population snapshot data. We showcase Curly-FM by solving the trajectory inference problems for single cells, computational fluid dynamics, and ocean currents with approximate velocities. We demonstrate that Curly-FM can learn trajectories that better match both the reference process and population marginals. Curly-FM expands flow matching models beyond the modeling of populations and towards the modeling of known periodic behavior in physical systems. Our code repository is accessible at: https://github.com/kpetrovicc/curly-flow-matching.git
comment: Accepted to NeurIPS 2025
☆ MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection VLDB
Anomaly detection is a fundamental task for time series analytics with important implications for the downstream performance of many applications. Despite increasing academic interest and the large number of methods proposed in the literature, recent benchmarks and evaluation studies demonstrated that no overall best anomaly detection methods exist when applied to very heterogeneous time series datasets. Therefore, the only scalable and viable solution to solve anomaly detection over very different time series collected from diverse domains is to propose a model selection method that will select, based on time series characteristics, the best anomaly detection methods to run. Existing AutoML solutions are, unfortunately, not directly applicable to time series anomaly detection, and no evaluation of time series-based approaches for model selection exists. Towards that direction, this paper studies the performance of time series classification methods used as model selection for anomaly detection. In total, we evaluate 234 model configurations derived from 16 base classifiers across more than 1980 time series, and we propose the first extensive experimental evaluation of time series classification as model selection for anomaly detection. Our results demonstrate that model selection methods outperform every single anomaly detection method while being in the same order of magnitude regarding execution time. This evaluation is the first step to demonstrate the accuracy and efficiency of time series classification algorithms for anomaly detection, and represents a strong baseline that can then be used to guide the model selection step in general AutoML pipelines. Preprint version of an article accepted at the VLDB Journal.
comment: 25 pages, 13 figures, VLDB Journal
☆ Omnipresent Yet Overlooked: Heat Kernels in Combinatorial Bayesian Optimization
Bayesian Optimization (BO) has the potential to solve various combinatorial tasks, ranging from materials science to neural architecture search. However, BO requires specialized kernels to effectively model combinatorial domains. Recent efforts have introduced several combinatorial kernels, but the relationships among them are not well understood. To bridge this gap, we develop a unifying framework based on heat kernels, which we derive in a systematic way and express as simple closed-form expressions. Using this framework, we prove that many successful combinatorial kernels are either related or equivalent to heat kernels, and validate this theoretical claim in our experiments. Moreover, our analysis confirms and extends the results presented in Bounce: certain algorithms' performance decreases substantially when the unknown optima of the function do not have a certain structure. In contrast, heat kernels are not sensitive to the location of the optima. Lastly, we show that a fast and simple pipeline, relying on heat kernels, is able to achieve state-of-the-art results, matching or even outperforming certain slow or complex algorithms.
☆ Aeolus: A Multi-structural Flight Delay Dataset
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data
☆ CYPRESS: Crop Yield Prediction via Regression on Prithvi's Encoder for Satellite Sensing
Accurate and timely crop yield prediction is crucial for global food security and modern agricultural management. Traditional methods often lack the scalability and granularity required for precision farming. This paper introduces CYPRESS (Crop Yield Prediction via Regression on Prithvi's Encoder for Satellite Sensing), a deep learning model designed for high-resolution, intra-field canola yield prediction. CYPRESS leverages a pre-trained, large-scale geospatial foundation model (Prithvi-EO-2.0-600M) and adapts it for a continuous regression task, transforming multi-temporal satellite imagery into dense, pixel-level yield maps. Evaluated on a comprehensive dataset from the Canadian Prairies, CYPRESS demonstrates superior performance over existing deep learning-based yield prediction models, highlighting the effectiveness of fine-tuning foundation models for specialized agricultural applications. By providing a continuous, high-resolution output, CYPRESS offers a more actionable tool for precision agriculture than conventional classification or county-level aggregation methods. This work validates a novel approach that bridges the gap between large-scale Earth observation and on-farm decision-making, offering a scalable solution for detailed agricultural monitoring.
☆ Wasserstein Regression as a Variational Approximation of Probabilistic Trajectories through the Bernstein Basis
This paper considers the problem of regression over distributions, which is becoming increasingly important in machine learning. Existing approaches often ignore the geometry of the probability space or are computationally expensive. To overcome these limitations, a new method is proposed that combines the parameterization of probability trajectories using a Bernstein basis and the minimization of the Wasserstein distance between distributions. The key idea is to model a conditional distribution as a smooth probability trajectory defined by a weighted sum of Gaussian components whose parameters -- the mean and covariance -- are functions of the input variable constructed using Bernstein polynomials. The loss function is the averaged squared Wasserstein distance between the predicted Gaussian distributions and the empirical data, which takes into account the geometry of the distributions. An autodiff-based optimization method is used to train the model. Experiments on synthetic datasets that include complex trajectories demonstrated that the proposed method provides competitive approximation quality in terms of the Wasserstein distance, Energy Distance, and RMSE metrics, especially in cases of pronounced nonlinearity. The model demonstrates trajectory smoothness that is better than or comparable to alternatives and robustness to changes in data structure, while maintaining high interpretability due to explicit parameterization via control points. The developed approach represents a balanced solution that combines geometric accuracy, computational practicality, and interpretability. Prospects for further research include extending the method to non-Gaussian distributions, applying entropy regularization to speed up computations, and adapting the approach to working with high-dimensional data for approximating surfaces and more complex structures.
☆ Hybrid Physical-Neural Simulator for Fast Cosmological Hydrodynamics NeurIPS 2025
Cosmological field-level inference requires differentiable forward models that solve the challenging dynamics of gas and dark matter under hydrodynamics and gravity. We propose a hybrid approach where gravitational forces are computed using a differentiable particle-mesh solver, while the hydrodynamics are parametrized by a neural network that maps local quantities to an effective pressure field. We demonstrate that our method improves upon alternative approaches, such as an Enthalpy Gradient Descent baseline, both at the field and summary-statistic level. The approach is furthermore highly data efficient, with a single reference simulation of cosmological structure formation being sufficient to constrain the neural pressure model. This opens the door for future applications where the model is fit directly to observational data, rather than a training set of simulations.
comment: Accepted to the NeurIPS 2025 Workshop on Machine Learning and the Physical Sciences
☆ Physics-Informed Mixture Models and Surrogate Models for Precision Additive Manufacturing
In this study, we leverage a mixture model learning approach to identify defects in laser-based Additive Manufacturing (AM) processes. By incorporating physics based principles, we also ensure that the model is sensitive to meaningful physical parameter variations. The empirical evaluation was conducted by analyzing real-world data from two AM processes: Directed Energy Deposition and Laser Powder Bed Fusion. In addition, we also studied the performance of the developed framework over public datasets with different alloy type and experimental parameter information. The results show the potential of physics-guided mixture models to examine the underlying physical behavior of an AM system.
comment: Five pages, four figures, to be presented at the AI in Science Summit, Denmark, November, 2025
☆ Inference-Cost-Aware Dynamic Tree Construction for Efficient Inference in Large Language Models
Large Language Models (LLMs) face significant inference latency challenges stemming from their autoregressive design and large size. To address this, speculative decoding emerges as a solution, enabling the simultaneous generation and validation of multiple tokens. While recent approaches like EAGLE-2 and EAGLE-3 improve speculative decoding using dynamic tree structures, they often neglect the impact of crucial system variables such as GPU devices and batch sizes. Therefore, we introduce a new dynamic tree decoding approach called CAST that takes into account inference costs, including factors such as GPU configurations and batch sizes, to dynamically refine the tree structure. Through comprehensive experimentation across six diverse tasks and utilizing six distinct LLMs, our methodology demonstrates remarkable results, achieving speeds up to 5.2 times faster than conventional decoding methods. Moreover, it generally outperforms existing state-of-the-art techniques from 5% to 20%.
☆ Multiclass Local Calibration With the Jensen-Shannon Distance
Developing trustworthy Machine Learning (ML) models requires their predicted probabilities to be well-calibrated, meaning they should reflect true-class frequencies. Among calibration notions in multiclass classification, strong calibration is the most stringent, as it requires all predicted probabilities to be simultaneously calibrated across all classes. However, existing approaches to multiclass calibration lack a notion of distance among inputs, which makes them vulnerable to proximity bias: predictions in sparse regions of the feature space are systematically miscalibrated. This is especially relevant in high-stakes settings, such as healthcare, where the sparse instances are exactly those most at risk of biased treatment. In this work, we address this main shortcoming by introducing a local perspective on multiclass calibration. First, we formally define multiclass local calibration and establish its relationship with strong calibration. Second, we theoretically analyze the pitfalls of existing evaluation metrics when applied to multiclass local calibration. Third, we propose a practical method for enhancing local calibration in Neural Networks, which enforces alignment between predicted probabilities and local estimates of class frequencies using the Jensen-Shannon distance. Finally, we empirically validate our approach against existing multiclass calibration techniques.
☆ On Measuring Localization of Shortcuts in Deep Networks
Shortcuts, spurious rules that perform well during training but fail to generalize, present a major challenge to the reliability of deep networks (Geirhos et al., 2020). However, the impact of shortcuts on feature representations remains understudied, obstructing the design of principled shortcut-mitigation methods. To overcome this limitation, we investigate the layer-wise localization of shortcuts in deep models. Our novel experiment design quantifies the layer-wise contribution to accuracy degradation caused by a shortcut-inducing skew by counterfactual training on clean and skewed datasets. We employ our design to study shortcuts on CIFAR-10, Waterbirds, and CelebA datasets across VGG, ResNet, DeiT, and ConvNeXt architectures. We find that shortcut learning is not localized in specific layers but distributed throughout the network. Different network parts play different roles in this process: shallow layers predominantly encode spurious features, while deeper layers predominantly forget core features that are predictive on clean data. We also analyze the differences in localization and describe its principal axes of variation. Finally, our analysis of layer-wise shortcut-mitigation strategies suggests the hardness of designing general methods, supporting dataset- and architecture-specific approaches instead.
☆ Boosted Trees on a Diet: Compact Models for Resource-Constrained Devices
Deploying machine learning models on compute-constrained devices has become a key building block of modern IoT applications. In this work, we present a compression scheme for boosted decision trees, addressing the growing need for lightweight machine learning models. Specifically, we provide techniques for training compact boosted decision tree ensembles that exhibit a reduced memory footprint by rewarding, among other things, the reuse of features and thresholds during training. Our experimental evaluation shows that models achieved the same performance with a compression ratio of 4-16x compared to LightGBM models using an adapted training process and an alternative memory layout. Once deployed, the corresponding IoT devices can operate independently of constant communication or external energy supply, and, thus, autonomously, requiring only minimal computing power and energy. This capability opens the door to a wide range of IoT applications, including remote monitoring, edge analytics, and real-time decision making in isolated or power-limited environments.
☆ Adaptive Inverse Kinematics Framework for Learning Variable-Length Tool Manipulation in Robotics
Conventional robots possess a limited understanding of their kinematics and are confined to preprogrammed tasks, hindering their ability to leverage tools efficiently. Driven by the essential components of tool usage - grasping the desired outcome, selecting the most suitable tool, determining optimal tool orientation, and executing precise manipulations - we introduce a pioneering framework. Our novel approach expands the capabilities of the robot's inverse kinematics solver, empowering it to acquire a sequential repertoire of actions using tools of varying lengths. By integrating a simulation-learned action trajectory with the tool, we showcase the practicality of transferring acquired skills from simulation to real-world scenarios through comprehensive experimentation. Remarkably, our extended inverse kinematics solver demonstrates an impressive error rate of less than 1 cm. Furthermore, our trained policy achieves a mean error of 8 cm in simulation. Noteworthy, our model achieves virtually indistinguishable performance when employing two distinct tools of different lengths. This research provides an indication of potential advances in the exploration of all four fundamental aspects of tool usage, enabling robots to master the intricate art of tool manipulation across diverse tasks.
comment: 10 pages, 5 figures. Demonstrates a reinforcement learning framework for adaptive tool manipulation with variable-length extensions
☆ The Structure of Relation Decoding Linear Operators in Large Language Models NeurIPS 2025
This paper investigates the structure of linear operators introduced in Hernandez et al. [2023] that decode specific relational facts in transformer language models. We extend their single-relation findings to a collection of relations and systematically chart their organization. We show that such collections of relation decoders can be highly compressed by simple order-3 tensor networks without significant loss in decoding accuracy. To explain this surprising redundancy, we develop a cross-evaluation protocol, in which we apply each linear decoder operator to the subjects of every other relation. Our results reveal that these linear maps do not encode distinct relations, but extract recurring, coarse-grained semantic properties (e.g., country of capital city and country of food are both in the country-of-X property). This property-centric structure clarifies both the operators' compressibility and highlights why they generalize only to new relations that are semantically close. Our findings thus interpret linear relational decoding in transformer language models as primarily property-based, rather than relation-specific.
comment: NeurIPS 2025 (Spotlight)
☆ A Three-Stage Bayesian Transfer Learning Framework to Improve Predictions in Data-Scarce Domains
The use of ML in engineering has grown steadily to support a wide array of applications. Among these methods, deep neural networks have been widely adopted due to their performance and accessibility, but they require large, high-quality datasets. Experimental data are often sparse, noisy, or insufficient to build resilient data-driven models. Transfer learning, which leverages relevant data-abundant source domains to assist learning in data-scarce target domains, has shown efficacy. Parameter transfer, where pretrained weights are reused, is common but degrades under large domain shifts. Domain-adversarial neural networks (DANNs) help address this issue by learning domain-invariant representations, thereby improving transfer under greater domain shifts in a semi-supervised setting. However, DANNs can be unstable during training and lack a native means for uncertainty quantification. This study introduces a fully-supervised three-stage framework, the staged Bayesian domain-adversarial neural network (staged B-DANN), that combines parameter transfer and shared latent space adaptation. In Stage 1, a deterministic feature extractor is trained on the source domain. This feature extractor is then adversarially refined using a DANN in Stage 2. In Stage 3, a Bayesian neural network is built on the adapted feature extractor for fine-tuning on the target domain to handle conditional shifts and yield calibrated uncertainty estimates. This staged B-DANN approach was first validated on a synthetic benchmark, where it was shown to significantly outperform standard transfer techniques. It was then applied to the task of predicting critical heat flux in rectangular channels, leveraging data from tube experiments as the source domain. The results of this study show that the staged B-DANN method can improve predictive accuracy and generalization, potentially assisting other domains in nuclear engineering.
comment: Submitted to Engineering Applications of Artificial Intelligence
☆ Higher-Order Regularization Learning on Hypergraphs
Higher-Order Hypergraph Learning (HOHL) was recently introduced as a principled alternative to classical hypergraph regularization, enforcing higher-order smoothness via powers of multiscale Laplacians induced by the hypergraph structure. Prior work established the well- and ill-posedness of HOHL through an asymptotic consistency analysis in geometric settings. We extend this theoretical foundation by proving the consistency of a truncated version of HOHL and deriving explicit convergence rates when HOHL is used as a regularizer in fully supervised learning. We further demonstrate its strong empirical performance in active learning and in datasets lacking an underlying geometric structure, highlighting HOHL's versatility and robustness across diverse learning settings.
☆ Polybasic Speculative Decoding Through a Theoretical Perspective
Inference latency stands as a critical bottleneck in the large-scale deployment of Large Language Models (LLMs). Speculative decoding methods have recently shown promise in accelerating inference without compromising the output distribution. However, existing work typically relies on a dualistic draft-verify framework and lacks rigorous theoretical grounding. In this paper, we introduce a novel \emph{polybasic} speculative decoding framework, underpinned by a comprehensive theoretical analysis. Specifically, we prove a fundamental theorem that characterizes the optimal inference time for multi-model speculative decoding systems, shedding light on how to extend beyond the dualistic approach to a more general polybasic paradigm. Through our theoretical investigation of multi-model token generation, we expose and optimize the interplay between model capabilities, acceptance lengths, and overall computational cost. Our framework supports both standalone implementation and integration with existing speculative techniques, leading to accelerated performance in practice. Experimental results across multiple model families demonstrate that our approach yields speedup ratios ranging from $3.31\times$ to $4.01\times$ for LLaMA2-Chat 7B, up to $3.87 \times$ for LLaMA3-8B, up to $4.43 \times$ for Vicuna-7B and up to $3.85 \times$ for Qwen2-7B -- all while preserving the original output distribution. We release our theoretical proofs and implementation code to facilitate further investigation into polybasic speculative decoding.
☆ Think Outside the Policy: In-Context Steered Policy Optimization
Existing Reinforcement Learning from Verifiable Rewards (RLVR) methods, such as Group Relative Policy Optimization (GRPO), have achieved remarkable progress in improving the reasoning capabilities of Large Reasoning Models (LRMs). However, they exhibit limited exploration due to reliance on on-policy rollouts where confined to the current policy's distribution, resulting in narrow trajectory diversity. Recent approaches attempt to expand policy coverage by incorporating trajectories generated from stronger expert models, yet this reliance increases computational cost and such advaned models are often inaccessible. To address these issues, we propose In-Context Steered Policy Optimization (ICPO), a unified framework that leverages the inherent in-context learning capability of LRMs to provide expert guidance using existing datasets. ICPO introduces Mixed-Policy GRPO with Implicit Expert Forcing, which expands exploration beyond the current policy distribution without requiring advanced LRM trajectories. To further stabilize optimization, ICPO integrates Expert Region Reject Sampling to filter unreliable off-policy trajectories and Annealed Expert-Bonus Reward Shaping to balance early expert guidance with later autonomous improvement. Results demonstrate that ICPO consistently enhances reinforcement learning performance and training stability on mathematical reasoning benchmarks, revealing a scalable and effective RLVR paradigm for LRMs.
comment: Work in progress
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
LLMs as In-Context Meta-Learners for Model and Hyperparameter Selection
Model and hyperparameter selection are critical but challenging in machine learning, typically requiring expert intuition or expensive automated search. We investigate whether large language models (LLMs) can act as in-context meta-learners for this task. By converting each dataset into interpretable metadata, we prompt an LLM to recommend both model families and hyperparameters. We study two prompting strategies: (1) a zero-shot mode relying solely on pretrained knowledge, and (2) a meta-informed mode augmented with examples of models and their performance on past tasks. Across synthetic and real-world benchmarks, we show that LLMs can exploit dataset metadata to recommend competitive models and hyperparameters without search, and that improvements from meta-informed prompting demonstrate their capacity for in-context meta-learning. These results highlight a promising new role for LLMs as lightweight, general-purpose assistants for model selection and hyperparameter optimization.
comment: 27 pages, 6 figures
☆ Enhancing ECG Classification Robustness with Lightweight Unsupervised Anomaly Detection Filters
Continuous electrocardiogram (ECG) monitoring via wearables offers significant potential for early cardiovascular disease (CVD) detection. However, deploying deep learning models for automated analysis in resource-constrained environments faces reliability challenges due to inevitable Out-of-Distribution (OOD) data. OOD inputs, such as unseen pathologies or noisecorrupted signals, often cause erroneous, high-confidence predictions by standard classifiers, compromising patient safety. Existing OOD detection methods either neglect computational constraints or address noise and unseen classes separately. This paper explores Unsupervised Anomaly Detection (UAD) as an independent, upstream filtering mechanism to improve robustness. We benchmark six UAD approaches, including Deep SVDD, reconstruction-based models, Masked Anomaly Detection, normalizing flows, and diffusion models, optimized via Neural Architecture Search (NAS) under strict resource constraints (at most 512k parameters). Evaluation on PTB-XL and BUT QDB datasets assessed detection of OOD CVD classes and signals unsuitable for analysis due to noise. Results show Deep SVDD consistently achieves the best trade-off between detection and efficiency. In a realistic deployment simulation, integrating the optimized Deep SVDD filter with a diagnostic classifier improved accuracy by up to 21 percentage points over a classifier-only baseline. This study demonstrates that optimized UAD filters can safeguard automated ECG analysis, enabling safer, more reliable continuous cardiovascular monitoring on wearables.
comment: Submitted to the 24th International Conference on Pervasive Computing and Communications (PerCom 2026)
☆ Data-Efficient RLVR via Off-Policy Influence Guidance
Data selection is a critical aspect of Reinforcement Learning with Verifiable Rewards (RLVR) for enhancing the reasoning capabilities of large language models (LLMs). Current data selection methods are largely heuristic-based, lacking theoretical guarantees and generalizability. This work proposes a theoretically-grounded approach using influence functions to estimate the contribution of each data point to the learning objective. To overcome the prohibitive computational cost of policy rollouts required for online influence estimation, we introduce an off-policy influence estimation method that efficiently approximates data influence using pre-collected offline trajectories. Furthermore, to manage the high-dimensional gradients of LLMs, we employ sparse random projection to reduce dimensionality and improve storage and computation efficiency. Leveraging these techniques, we develop \textbf{C}urriculum \textbf{R}L with \textbf{O}ff-\textbf{P}olicy \text{I}nfluence guidance (\textbf{CROPI}), a multi-stage RL framework that iteratively selects the most influential data for the current policy. Experiments on models up to 7B parameters demonstrate that CROPI significantly accelerates training. On a 1.5B model, it achieves a 2.66x step-level acceleration while using only 10\% of the data per stage compared to full-dataset training. Our results highlight the substantial potential of influence-based data selection for efficient RLVR.
☆ Quantum Gated Recurrent GAN with Gaussian Uncertainty for Network Anomaly Detection
Anomaly detection in time-series data is a critical challenge with significant implications for network security. Recent quantum machine learning approaches, such as quantum kernel methods and variational quantum circuits, have shown promise in capturing complex data distributions for anomaly detection but remain constrained by limited qubit counts. We introduce in this work a novel Quantum Gated Recurrent Unit (QGRU)-based Generative Adversarial Network (GAN) employing Successive Data Injection (SuDaI) and a multi-metric gating strategy for robust network anomaly detection. Our model uniquely utilizes a quantum-enhanced generator that outputs parameters (mean and log-variance) of a Gaussian distribution via reparameterization, combined with a Wasserstein critic to stabilize adversarial training. Anomalies are identified through a novel gating mechanism that initially flags potential anomalies based on Gaussian uncertainty estimates and subsequently verifies them using a composite of critic scores and reconstruction errors. Evaluated on benchmark datasets, our method achieves a high time-series aware F1 score (TaF1) of 89.43% demonstrating superior capability in detecting anomalies accurately and promptly as compared to existing classical and quantum models. Furthermore, the trained QGRU-WGAN was deployed on real IBM Quantum hardware, where it retained high anomaly detection performance, confirming its robustness and practical feasibility on current noisy intermediate-scale quantum (NISQ) devices.
☆ LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
comment: Accepted in ICKG 2025 Conference, 8 Pages, 2 Figures
☆ ReSpec: Towards Optimizing Speculative Decoding in Reinforcement Learning Systems
Adapting large language models (LLMs) via reinforcement learning (RL) is often bottlenecked by the generation stage, which can consume over 75\% of the training time. Speculative decoding (SD) accelerates autoregressive generation in serving systems, but its behavior under RL training remains largely unexplored. We identify three critical gaps that hinder the naive integration of SD into RL systems: diminishing speedups at large batch sizes, drafter staleness under continual actor updates, and drafter-induced policy degradation. To address these gaps, we present ReSpec, a system that adapts SD to RL through three complementary mechanisms: dynamically tuning SD configurations, evolving the drafter via knowledge distillation, and weighting updates by rollout rewards. On Qwen models (3B--14B), ReSpec achieves up to 4.5x speedup while preserving reward convergence and training stability, providing a practical solution for efficient RL-based LLM adaptation.
☆ Counteracting Matthew Effect in Self-Improvement of LVLMs through Head-Tail Re-balancing
Self-improvement has emerged as a mainstream paradigm for advancing the reasoning capabilities of large vision-language models (LVLMs), where models explore and learn from successful trajectories iteratively. However, we identify a critical issue during this process: the model excels at generating high-quality trajectories for simple queries (i.e., head data) but struggles with more complex ones (i.e., tail data). This leads to an imbalanced optimization that drives the model to prioritize simple reasoning skills, while hindering its ability to tackle more complex reasoning tasks. Over iterations, this imbalance becomes increasingly pronounced--a dynamic we term the "Matthew effect"--which ultimately hinders further model improvement and leads to performance bottlenecks. To counteract this challenge, we introduce four efficient strategies from two perspectives: distribution-reshaping and trajectory-resampling, to achieve head-tail re-balancing during the exploration-and-learning self-improvement process. Extensive experiments on Qwen2-VL-7B-Instruct and InternVL2.5-4B models across visual reasoning tasks demonstrate that our methods consistently improve visual reasoning capabilities, outperforming vanilla self-improvement by 3.86 points on average.
comment: Preprint
☆ Representation-Level Counterfactual Calibration for Debiased Zero-Shot Recognition
Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning.
☆ Vectorized Context-Aware Embeddings for GAT-Based Collaborative Filtering
Recommender systems often struggle with data sparsity and cold-start scenarios, limiting their ability to provide accurate suggestions for new or infrequent users. This paper presents a Graph Attention Network (GAT) based Collaborative Filtering (CF) framework enhanced with Large Language Model (LLM) driven context aware embeddings. Specifically, we generate concise textual user profiles and unify item metadata (titles, genres, overviews) into rich textual embeddings, injecting these as initial node features in a bipartite user item graph. To further optimize ranking performance, we introduce a hybrid loss function that combines Bayesian Personalized Ranking (BPR) with a cosine similarity term and robust negative sampling, ensuring explicit negative feedback is distinguished from unobserved data. Experiments on the MovieLens 100k and 1M datasets show consistent improvements over state-of-the-art baselines in Precision, NDCG, and MAP while demonstrating robustness for users with limited interaction history. Ablation studies confirm the critical role of LLM-augmented embeddings and the cosine similarity term in capturing nuanced semantic relationships. Our approach effectively mitigates sparsity and cold-start limitations by integrating LLM-derived contextual understanding into graph-based architectures. Future directions include balancing recommendation accuracy with coverage and diversity, and introducing fairness-aware constraints and interpretability features to enhance system performance further.
☆ Robust Graph Condensation via Classification Complexity Mitigation
Graph condensation (GC) has gained significant attention for its ability to synthesize smaller yet informative graphs. However, existing studies often overlook the robustness of GC in scenarios where the original graph is corrupted. In such cases, we observe that the performance of GC deteriorates significantly, while existing robust graph learning technologies offer only limited effectiveness. Through both empirical investigation and theoretical analysis, we reveal that GC is inherently an intrinsic-dimension-reducing process, synthesizing a condensed graph with lower classification complexity. Although this property is critical for effective GC performance, it remains highly vulnerable to adversarial perturbations. To tackle this vulnerability and improve GC robustness, we adopt the geometry perspective of graph data manifold and propose a novel Manifold-constrained Robust Graph Condensation framework named MRGC. Specifically, we introduce three graph data manifold learning modules that guide the condensed graph to lie within a smooth, low-dimensional manifold with minimal class ambiguity, thereby preserving the classification complexity reduction capability of GC and ensuring robust performance under universal adversarial attacks. Extensive experiments demonstrate the robustness of \ModelName\ across diverse attack scenarios.
☆ Personalized Treatment Outcome Prediction from Scarce Data via Dual-Channel Knowledge Distillation and Adaptive Fusion
Personalized treatment outcome prediction based on trial data for small-sample and rare patient groups is critical in precision medicine. However, the costly trial data limit the prediction performance. To address this issue, we propose a cross-fidelity knowledge distillation and adaptive fusion network (CFKD-AFN), which leverages abundant but low-fidelity simulation data to enhance predictions on scarce but high-fidelity trial data. CFKD-AFN incorporates a dual-channel knowledge distillation module to extract complementary knowledge from the low-fidelity model, along with an attention-guided fusion module to dynamically integrate multi-source information. Experiments on treatment outcome prediction for the chronic obstructive pulmonary disease demonstrates significant improvements of CFKD-AFN over state-of-the-art methods in prediction accuracy, ranging from 6.67\% to 74.55\%, and strong robustness to varying high-fidelity dataset sizes. Furthermore, we extend CFKD-AFN to an interpretable variant, enabling the exploration of latent medical semantics to support clinical decision-making.
☆ Co-Evolving Latent Action World Models
Adapting pre-trained video generation models into controllable world models via latent actions is a promising step towards creating generalist world models. The dominant paradigm adopts a two-stage approach that trains latent action model (LAM) and the world model separately, resulting in redundant training and limiting their potential for co-adaptation. A conceptually simple and appealing idea is to directly replace the forward dynamic model in LAM with a powerful world model and training them jointly, but it is non-trivial and prone to representational collapse. In this work, we propose CoLA-World, which for the first time successfully realizes this synergistic paradigm, resolving the core challenge in joint learning through a critical warm-up phase that effectively aligns the representations of the from-scratch LAM with the pre-trained world model. This unlocks a co-evolution cycle: the world model acts as a knowledgeable tutor, providing gradients to shape a high-quality LAM, while the LAM offers a more precise and adaptable control interface to the world model. Empirically, CoLA-World matches or outperforms prior two-stage methods in both video simulation quality and downstream visual planning, establishing a robust and efficient new paradigm for the field.
☆ Autograder+: A Multi-Faceted AI Framework for Rich Pedagogical Feedback in Programming Education
The rapid growth of programming education has outpaced traditional assessment tools, leaving faculty with limited means to provide meaningful, scalable feedback. Conventional autograders, while efficient, act as black-box systems that simply return pass/fail results, offering little insight into student thinking or learning needs. Autograder+ is designed to shift autograding from a purely summative process to a formative learning experience. It introduces two key capabilities: automated feedback generation using a fine-tuned Large Language Model, and visualization of student code submissions to uncover learning patterns. The model is fine-tuned on curated student code and expert feedback to ensure pedagogically aligned, context-aware guidance. In evaluation across 600 student submissions from multiple programming tasks, the system produced feedback with strong semantic alignment to instructor comments. For visualization, contrastively learned code embeddings trained on 1,000 annotated submissions enable grouping solutions into meaningful clusters based on functionality and approach. The system also supports prompt-pooling, allowing instructors to guide feedback style through selected prompt templates. By integrating AI-driven feedback, semantic clustering, and interactive visualization, Autograder+ reduces instructor workload while supporting targeted instruction and promoting stronger learning outcomes.
☆ Multi-Output Robust and Conjugate Gaussian Processes
Multi-output Gaussian process (MOGP) regression allows modelling dependencies among multiple correlated response variables. Similarly to standard Gaussian processes, MOGPs are sensitive to model misspecification and outliers, which can distort predictions within individual outputs. This situation can be further exacerbated by multiple anomalous response variables whose errors propagate due to correlations between outputs. To handle this situation, we extend and generalise the robust and conjugate Gaussian process (RCGP) framework introduced by Altamirano et al. (2024). This results in the multi-output RCGP (MO-RCGP): a provably robust MOGP that is conjugate, and jointly captures correlations across outputs. We thoroughly evaluate our approach through applications in finance and cancer research.
☆ Multi-Task Learning Based on Support Vector Machines and Twin Support Vector Machines: A Comprehensive Survey
Multi-task learning (MTL) enables simultaneous training across related tasks, leveraging shared information to improve generalization, efficiency, and robustness, especially in data-scarce or high-dimensional scenarios. While deep learning dominates recent MTL research, Support Vector Machines (SVMs) and Twin SVMs (TWSVMs) remain relevant due to their interpretability, theoretical rigor, and effectiveness with small datasets. This chapter surveys MTL approaches based on SVM and TWSVM, highlighting shared representations, task regularization, and structural coupling strategies. Special attention is given to emerging TWSVM extensions for multi-task settings, which show promise but remain underexplored. We compare these models in terms of theoretical properties, optimization strategies, and empirical performance, and discuss applications in fields such as computer vision, natural language processing, and bioinformatics. Finally, we identify research gaps and outline future directions for building scalable, interpretable, and reliable margin-based MTL frameworks. This work provides a comprehensive resource for researchers and practitioners interested in SVM- and TWSVM-based multi-task learning.
☆ Adaptive Context Length Optimization with Low-Frequency Truncation for Multi-Agent Reinforcement Learning
Recently, deep multi-agent reinforcement learning (MARL) has demonstrated promising performance for solving challenging tasks, such as long-term dependencies and non-Markovian environments. Its success is partly attributed to conditioning policies on large fixed context length. However, such large fixed context lengths may lead to limited exploration efficiency and redundant information. In this paper, we propose a novel MARL framework to obtain adaptive and effective contextual information. Specifically, we design a central agent that dynamically optimizes context length via temporal gradient analysis, enhancing exploration to facilitate convergence to global optima in MARL. Furthermore, to enhance the adaptive optimization capability of the context length, we present an efficient input representation for the central agent, which effectively filters redundant information. By leveraging a Fourier-based low-frequency truncation method, we extract global temporal trends across decentralized agents, providing an effective and efficient representation of the MARL environment. Extensive experiments demonstrate that the proposed method achieves state-of-the-art (SOTA) performance on long-term dependency tasks, including PettingZoo, MiniGrid, Google Research Football (GRF), and StarCraft Multi-Agent Challenge v2 (SMACv2).
☆ Scales++: Compute Efficient Evaluation Subset Selection with Cognitive Scales Embeddings
The prohibitive cost of evaluating large language models (LLMs) on comprehensive benchmarks necessitates the creation of small yet representative data subsets (i.e., tiny benchmarks) that enable efficient assessment while retaining predictive fidelity. Current methods for this task operate under a model-centric paradigm, selecting benchmarking items based on the collective performance of existing models. Such approaches are limited by large upfront costs, an inability to immediately handle new benchmarks (`cold-start'), and the fragile assumption that future models will share the failure patterns of their predecessors. In this work, we challenge this paradigm and propose a item-centric approach to benchmark subset selection, arguing that selection should be based on the intrinsic properties of the task items themselves, rather than on model-specific failure patterns. We instantiate this item-centric efficient benchmarking approach via a novel method, Scales++, where data selection is based on the cognitive demands of the benchmark samples. Empirically, we show Scales++ reduces the upfront selection cost by over 18x while achieving competitive predictive fidelity. On the Open LLM Leaderboard, using just a 0.5\% data subset, we predict full benchmark scores with a 2.9% mean absolute error. We demonstrate that this item-centric approach enables more efficient model evaluation without significant fidelity degradation, while also providing better cold-start performance and more interpretable benchmarking.
comment: 9 pages, 2 figures, 4 tables
☆ Efficient Generative AI Boosts Probabilistic Forecasting of Sudden Stratospheric Warmings
Sudden Stratospheric Warmings (SSWs) are key sources of subseasonal predictability and major drivers of extreme winter weather. Yet, their accurate and efficient forecast remains a persistent challenge for numerical weather prediction (NWP) systems due to limitations in physical representation, initialization, and the immense computational demands of ensemble forecasts. While data-driven forecasting is rapidly evolving, its application to the complex, three-dimensional dynamics of SSWs, particularly for probabilistic forecast, remains underexplored. Here, we bridge this gap by developing a Flow Matching-based generative AI model (FM-Cast) for efficient and skillful probabilistic forecasting of the spatiotemporal evolution of stratospheric circulation. Evaluated across 18 major SSW events (1998-2024), FM-Cast skillfully forecasts the onset, intensity, and morphology of 10 events up to 20 days in advance, achieving ensemble accuracies above 50%. Its performance is comparable to or exceeds leading NWP systems while requiring only two minutes for a 50-member, 30-day forecast on a consumer GPU. Furthermore, leveraging FM-Cast as a scientific tool, we demonstrate through idealized experiments that SSW predictability is fundamentally linked to its underlying physical drivers, distinguishing between events forced from the troposphere and those driven by internal stratospheric dynamics. Our work thus establishes a computationally efficient paradigm for probabilistic forecasting stratospheric anomalies and showcases generative AI's potential to deepen the physical understanding of atmosphere-climate dynamics.
☆ CorVS: Person Identification via Video Trajectory-Sensor Correspondence in a Real-World Warehouse
Worker location data is key to higher productivity in industrial sites. Cameras are a promising tool for localization in logistics warehouses since they also offer valuable environmental contexts such as package status. However, identifying individuals with only visual data is often impractical. Accordingly, several prior studies identified people in videos by comparing their trajectories and wearable sensor measurements. While this approach has advantages such as independence from appearance, the existing methods may break down under real-world conditions. To overcome this challenge, we propose CorVS, a novel data-driven person identification method based on correspondence between visual tracking trajectories and sensor measurements. Firstly, our deep learning model predicts correspondence probabilities and reliabilities for every pair of a trajectory and sensor measurements. Secondly, our algorithm matches the trajectories and sensor measurements over time using the predicted probabilities and reliabilities. We developed a dataset with actual warehouse operations and demonstrated the method's effectiveness for real-world applications.
comment: 7 pages, 3 figures, accepted to IPIN 2025
☆ Towards Explainable and Reliable AI in Finance
Financial forecasting increasingly uses large neural network models, but their opacity raises challenges for trust and regulatory compliance. We present several approaches to explainable and reliable AI in finance. \emph{First}, we describe how Time-LLM, a time series foundation model, uses a prompt to avoid a wrong directional forecast. \emph{Second}, we show that combining foundation models for time series forecasting with a reliability estimator can filter our unreliable predictions. \emph{Third}, we argue for symbolic reasoning encoding domain rules for transparent justification. These approaches shift emphasize executing only forecasts that are both reliable and explainable. Experiments on equity and cryptocurrency data show that the architecture reduces false positives and supports selective execution. By integrating predictive performance with reliability estimation and rule-based reasoning, our framework advances transparent and auditable financial AI systems.
☆ UnifiedFL: A Dynamic Unified Learning Framework for Equitable Federation
Federated learning (FL) has emerged as a key paradigm for collaborative model training across multiple clients without sharing raw data, enabling privacy-preserving applications in areas such as radiology and pathology. However, works on collaborative training across clients with fundamentally different neural architectures and non-identically distributed datasets remain scarce. Existing FL frameworks face several limitations. Despite claiming to support architectural heterogeneity, most recent FL methods only tolerate variants within a single model family (e.g., shallower, deeper, or wider CNNs), still presuming a shared global architecture and failing to accommodate federations where clients deploy fundamentally different network types (e.g., CNNs, GNNs, MLPs). Moreover, existing approaches often address only statistical heterogeneity while overlooking the domain-fracture problem, where each client's data distribution differs markedly from that faced at testing time, undermining model generalizability. When clients use different architectures, have non-identically distributed data, and encounter distinct test domains, current methods perform poorly. To address these challenges, we propose UnifiedFL, a dynamic federated learning framework that represents heterogeneous local networks as nodes and edges in a directed model graph optimized by a shared graph neural network (GNN). UnifiedFL introduces (i) a common GNN to parameterize all architectures, (ii) distance-driven clustering via Euclidean distances between clients' parameters, and (iii) a two-tier aggregation policy balancing convergence and diversity. Experiments on MedMNIST classification and hippocampus segmentation benchmarks demonstrate UnifiedFL's superior performance. Code and data: https://github.com/basiralab/UnifiedFL
☆ Reinforcement Learning for Pollution Detection in a Randomized, Sparse and Nonstationary Environment with an Autonomous Underwater Vehicle
Reinforcement learning (RL) algorithms are designed to optimize problem-solving by learning actions that maximize rewards, a task that becomes particularly challenging in random and nonstationary environments. Even advanced RL algorithms are often limited in their ability to solve problems in these conditions. In applications such as searching for underwater pollution clouds with autonomous underwater vehicles (AUVs), RL algorithms must navigate reward-sparse environments, where actions frequently result in a zero reward. This paper aims to address these challenges by revisiting and modifying classical RL approaches to efficiently operate in sparse, randomized, and nonstationary environments. We systematically study a large number of modifications, including hierarchical algorithm changes, multigoal learning, and the integration of a location memory as an external output filter to prevent state revisits. Our results demonstrate that a modified Monte Carlo-based approach significantly outperforms traditional Q-learning and two exhaustive search patterns, illustrating its potential in adapting RL to complex environments. These findings suggest that reinforcement learning approaches can be effectively adapted for use in random, nonstationary, and reward-sparse environments.
☆ MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.
☆ Linear Causal Discovery with Interventional Constraints
Incorporating causal knowledge and mechanisms is essential for refining causal models and improving downstream tasks such as designing new treatments. In this paper, we introduce a novel concept in causal discovery, termed interventional constraints, which differs fundamentally from interventional data. While interventional data require direct perturbations of variables, interventional constraints encode high-level causal knowledge in the form of inequality constraints on causal effects. For instance, in the Sachs dataset (Sachs et al.\ 2005), Akt has been shown to be activated by PIP3, meaning PIP3 exerts a positive causal effect on Akt. Existing causal discovery methods allow enforcing structural constraints (for example, requiring a causal path from PIP3 to Akt), but they may still produce incorrect causal conclusions such as learning that "PIP3 inhibits Akt". Interventional constraints bridge this gap by explicitly constraining the total causal effect between variable pairs, ensuring learned models respect known causal influences. To formalize interventional constraints, we propose a metric to quantify total causal effects for linear causal models and formulate the problem as a constrained optimization task, solved using a two-stage constrained optimization method. We evaluate our approach on real-world datasets and demonstrate that integrating interventional constraints not only improves model accuracy and ensures consistency with established findings, making models more explainable, but also facilitates the discovery of new causal relationships that would otherwise be costly to identify.
☆ SABER: Symbolic Regression-based Angle of Arrival and Beam Pattern Estimator
Accurate Angle-of-arrival (AoA) estimation is essential for next-generation wireless communication systems to enable reliable beamforming, high-precision localization, and integrated sensing. Unfortunately, classical high-resolution techniques require multi-element arrays and extensive snapshot collection, while generic Machine Learning (ML) approaches often yield black-box models that lack physical interpretability. To address these limitations, we propose a Symbolic Regression (SR)-based ML framework. Namely, Symbolic Regression-based Angle of Arrival and Beam Pattern Estimator (SABER), a constrained symbolic-regression framework that automatically discovers closed-form beam pattern and AoA models from path loss measurements with interpretability. SABER achieves high accuracy while bridging the gap between opaque ML methods and interpretable physics-driven estimators. First, we validate our approach in a controlled free-space anechoic chamber, showing that both direct inversion of the known $\cos^n$ beam and a low-order polynomial surrogate achieve sub-0.5 degree Mean Absolute Error (MAE). A purely unconstrained SR method can further reduce the error of the predicted angles, but produces complex formulas that lack physical insight. Then, we implement the same SR-learned inversions in a real-world, Reconfigurable Intelligent Surface (RIS)-aided indoor testbed. SABER and unconstrained SR models accurately recover the true AoA with near-zero error. Finally, we benchmark SABER against the Cram\'er-Rao Lower Bounds (CRLBs). Our results demonstrate that SABER is an interpretable and accurate alternative to state-of-the-art and black-box ML-based methods for AoA estimation.
comment: 12 pages, 11 figures
☆ Agent Skills Enable a New Class of Realistic and Trivially Simple Prompt Injections
Enabling continual learning in LLMs remains a key unresolved research challenge. In a recent announcement, a frontier LLM company made a step towards this by introducing Agent Skills, a framework that equips agents with new knowledge based on instructions stored in simple markdown files. Although Agent Skills can be a very useful tool, we show that they are fundamentally insecure, since they enable trivially simple prompt injections. We demonstrate how to hide malicious instructions in long Agent Skill files and referenced scripts to exfiltrate sensitive data, such as internal files or passwords. Importantly, we show how to bypass system-level guardrails of a popular coding agent: a benign, task-specific approval with the "Don't ask again" option can carry over to closely related but harmful actions. Overall, we conclude that despite ongoing research efforts and scaling model capabilities, frontier LLMs remain vulnerable to very simple prompt injections in realistic scenarios. Our code is available at https://github.com/aisa-group/promptinject-agent-skills.
☆ Posterior Sampling by Combining Diffusion Models with Annealed Langevin Dynamics NeurIPS 2025
Given a noisy linear measurement $y = Ax + \xi$ of a distribution $p(x)$, and a good approximation to the prior $p(x)$, when can we sample from the posterior $p(x \mid y)$? Posterior sampling provides an accurate and fair framework for tasks such as inpainting, deblurring, and MRI reconstruction, and several heuristics attempt to approximate it. Unfortunately, approximate posterior sampling is computationally intractable in general. To sidestep this hardness, we focus on (local or global) log-concave distributions $p(x)$. In this regime, Langevin dynamics yields posterior samples when the exact scores of $p(x)$ are available, but it is brittle to score--estimation error, requiring an MGF bound (sub-exponential error). By contrast, in the unconditional setting, diffusion models succeed with only an $L^2$ bound on the score error. We prove that combining diffusion models with an annealed variant of Langevin dynamics achieves conditional sampling in polynomial time using merely an $L^4$ bound on the score error.
comment: NeurIPS 2025
☆ On the Impact of Weight Discretization in QUBO-Based SVM Training ECML
Training Support Vector Machines (SVMs) can be formulated as a QUBO problem, enabling the use of quantum annealing for model optimization. In this work, we study how the number of qubits - linked to the discretization level of dual weights - affects predictive performance across datasets. We compare QUBO-based SVM training to the classical LIBSVM solver and find that even low-precision QUBO encodings (e.g., 1 bit per parameter) yield competitive, and sometimes superior, accuracy. While increased bit-depth enables larger regularization parameters, it does not always improve classification. Our findings suggest that selecting the right support vectors may matter more than their precise weighting. Although current hardware limits the size of solvable QUBOs, our results highlight the potential of quantum annealing for efficient SVM training as quantum devices scale.
comment: Presented at the 7th DSO Workshop at ECML PKDD 2025
☆ Model Inversion with Layer-Specific Modeling and Alignment for Data-Free Continual Learning NeurIPS 2025
Continual learning (CL) aims to incrementally train a model on a sequence of tasks while retaining performance on prior ones. However, storing and replaying data is often infeasible due to privacy or security constraints and impractical for arbitrary pre-trained models. Data-free CL seeks to update models without access to previous data. Beyond regularization, we employ model inversion to synthesize data from the trained model, enabling replay without storing samples. Yet, model inversion in predictive models faces two challenges: (1) generating inputs solely from compressed output labels causes drift between synthetic and real data, and replaying such data can erode prior knowledge; (2) inversion is computationally expensive since each step backpropagates through the full model. These issues are amplified in large pre-trained models such as CLIP. To improve efficiency, we propose Per-layer Model Inversion (PMI), inspired by faster convergence in single-layer optimization. PMI provides strong initialization for full-model inversion, substantially reducing iterations. To mitigate feature shift, we model class-wise features via Gaussian distributions and contrastive model, ensuring alignment between synthetic and real features. Combining PMI and feature modeling, our approach enables continual learning of new classes by generating pseudo-images from semantic-aware projected features, achieving strong effectiveness and compatibility across multiple CL settings.
comment: Accepted in NeurIPS 2025
☆ A Survey of Heterogeneous Graph Neural Networks for Cybersecurity Anomaly Detection
Anomaly detection is a critical task in cybersecurity, where identifying insider threats, access violations, and coordinated attacks is essential for ensuring system resilience. Graph-based approaches have become increasingly important for modeling entity interactions, yet most rely on homogeneous and static structures, which limits their ability to capture the heterogeneity and temporal evolution of real-world environments. Heterogeneous Graph Neural Networks (HGNNs) have emerged as a promising paradigm for anomaly detection by incorporating type-aware transformations and relation-sensitive aggregation, enabling more expressive modeling of complex cyber data. However, current research on HGNN-based anomaly detection remains fragmented, with diverse modeling strategies, limited comparative evaluation, and an absence of standardized benchmarks. To address this gap, we provide a comprehensive survey of HGNN-based anomaly detection methods in cybersecurity. We introduce a taxonomy that classifies approaches by anomaly type and graph dynamics, analyze representative models, and map them to key cybersecurity applications. We also review commonly used benchmark datasets and evaluation metrics, highlighting their strengths and limitations. Finally, we identify key open challenges related to modeling, data, and deployment, and outline promising directions for future research. This survey aims to establish a structured foundation for advancing HGNN-based anomaly detection toward scalable, interpretable, and practically deployable solutions.
comment: 37 pages, 4 figures, 86 references. Submitted to Journal of Computer Security (under review)
☆ Implicit Bias of Per-sample Adam on Separable Data: Departure from the Full-batch Regime
Adam [Kingma and Ba, 2015] is the de facto optimizer in deep learning, yet its theoretical understanding remains limited. Prior analyses show that Adam favors solutions aligned with $\ell_\infty$-geometry, but these results are restricted to the full-batch regime. In this work, we study the implicit bias of incremental Adam (using one sample per step) for logistic regression on linearly separable data, and we show that its bias can deviate from the full-batch behavior. To illustrate this, we construct a class of structured datasets where incremental Adam provably converges to the $\ell_2$-max-margin classifier, in contrast to the $\ell_\infty$-max-margin bias of full-batch Adam. For general datasets, we develop a proxy algorithm that captures the limiting behavior of incremental Adam as $\beta_2 \to 1$ and we characterize its convergence direction via a data-dependent dual fixed-point formulation. Finally, we prove that, unlike Adam, Signum [Bernstein et al., 2018] converges to the $\ell_\infty$-max-margin classifier for any batch size by taking $\beta$ close enough to 1. Overall, our results highlight that the implicit bias of Adam crucially depends on both the batching scheme and the dataset, while Signum remains invariant.
comment: 50 pages
☆ Understanding Hardness of Vision-Language Compositionality from A Token-level Causal Lens
Contrastive Language-Image Pre-training (CLIP) delivers strong cross modal generalization by aligning images and texts in a shared embedding space, yet it persistently fails at compositional reasoning over objects, attributes, and relations often behaving like a bag-of-words matcher. Prior causal accounts typically model text as a single vector, obscuring token-level structure and leaving core phenomena-such as prompt sensitivity and failures on hard negatives unexplained. We address this gap with a token-aware causal representation learning (CRL) framework grounded in a sequential, language-token SCM. Our theory extends block identifiability to tokenized text, proving that CLIP's contrastive objective can recover the modal-invariant latent variable under both sentence-level and token-level SCMs. Crucially, token granularity yields the first principled explanation of CLIP's compositional brittleness: composition nonidentifiability. We show the existence of pseudo-optimal text encoders that achieve perfect modal-invariant alignment yet are provably insensitive to SWAP, REPLACE, and ADD operations over atomic concepts, thereby failing to distinguish correct captions from hard negatives despite optimizing the same training objective as true-optimal encoders. The analysis further links language-side nonidentifiability to visual-side failures via the modality gap and shows how iterated composition operators compound hardness, motivating improved negative mining strategies.
☆ Offline Clustering of Preference Learning with Active-data Augmentation
Preference learning from pairwise feedback is a widely adopted framework in applications such as reinforcement learning with human feedback and recommendations. In many practical settings, however, user interactions are limited or costly, making offline preference learning necessary. Moreover, real-world preference learning often involves users with different preferences. For example, annotators from different backgrounds may rank the same responses differently. This setting presents two central challenges: (1) identifying similarity across users to effectively aggregate data, especially under scenarios where offline data is imbalanced across dimensions, and (2) handling the imbalanced offline data where some preference dimensions are underrepresented. To address these challenges, we study the Offline Clustering of Preference Learning problem, where the learner has access to fixed datasets from multiple users with potentially different preferences and aims to maximize utility for a test user. To tackle the first challenge, we first propose Off-C$^2$PL for the pure offline setting, where the learner relies solely on offline data. Our theoretical analysis provides a suboptimality bound that explicitly captures the tradeoff between sample noise and bias. To address the second challenge of inbalanced data, we extend our framework to the setting with active-data augmentation where the learner is allowed to select a limited number of additional active-data for the test user based on the cluster structure learned by Off-C$^2$PL. In this setting, our second algorithm, A$^2$-Off-C$^2$PL, actively selects samples that target the least-informative dimensions of the test user's preference. We prove that these actively collected samples contribute more effectively than offline ones. Finally, we validate our theoretical results through simulations on synthetic and real-world datasets.
☆ Unravelling the Mechanisms of Manipulating Numbers in Language Models
Recent work has shown that different large language models (LLMs) converge to similar and accurate input embedding representations for numbers. These findings conflict with the documented propensity of LLMs to produce erroneous outputs when dealing with numeric information. In this work, we aim to explain this conflict by exploring how language models manipulate numbers and quantify the lower bounds of accuracy of these mechanisms. We find that despite surfacing errors, different language models learn interchangeable representations of numbers that are systematic, highly accurate and universal across their hidden states and the types of input contexts. This allows us to create universal probes for each LLM and to trace information -- including the causes of output errors -- to specific layers. Our results lay a fundamental understanding of how pre-trained LLMs manipulate numbers and outline the potential of more accurate probing techniques in addressed refinements of LLMs' architectures.
☆ Empirical Bayesian Multi-Bandit Learning
Multi-task learning in contextual bandits has attracted significant research interest due to its potential to enhance decision-making across multiple related tasks by leveraging shared structures and task-specific heterogeneity. In this article, we propose a novel hierarchical Bayesian framework for learning in various bandit instances. This framework captures both the heterogeneity and the correlations among different bandit instances through a hierarchical Bayesian model, enabling effective information sharing while accommodating instance-specific variations. Unlike previous methods that overlook the learning of the covariance structure across bandits, we introduce an empirical Bayesian approach to estimate the covariance matrix of the prior distribution.This enhances both the practicality and flexibility of learning across multi-bandits. Building on this approach, we develop two efficient algorithms: ebmTS (Empirical Bayesian Multi-Bandit Thompson Sampling) and ebmUCB (Empirical Bayesian Multi-Bandit Upper Confidence Bound), both of which incorporate the estimated prior into the decision-making process. We provide the frequentist regret upper bounds for the proposed algorithms, thereby filling a research gap in the field of multi-bandit problems. Extensive experiments on both synthetic and real-world datasets demonstrate the superior performance of our algorithms, particularly in complex environments. Our methods achieve lower cumulative regret compared to existing techniques, highlighting their effectiveness in balancing exploration and exploitation across multi-bandits.
comment: 33 pages, 13 figures
☆ Distributional Multi-objective Black-box Optimization for Diffusion-model Inference-time Multi-Target Generation
Diffusion models have been successful in learning complex data distributions. This capability has driven their application to high-dimensional multi-objective black-box optimization problem. Existing approaches often employ an external optimization loop, such as an evolutionary algorithm, to the diffusion model. However, these approaches treat the diffusion model as a black-box refiner, which overlooks the internal distribution transition of the diffusion generation process, limiting their efficiency. To address these challenges, we propose the Inference-time Multi-target Generation (IMG) algorithm, which optimizes the diffusion process at inference-time to generate samples that simultaneously satisfy multiple objectives. Specifically, our IMG performs weighted resampling during the diffusion generation process according to the expected aggregated multi-objective values. This weighted resampling strategy ensures the diffusion-generated samples are distributed according to our desired multi-target Boltzmann distribution. We further derive that the multi-target Boltzmann distribution has an interesting log-likelihood interpretation, where it is the optimal solution to the distributional multi-objective optimization problem. We implemented IMG for a multi-objective molecule generation task. Experiments show that IMG, requiring only a single generation pass, achieves a significantly higher hypervolume than baseline optimization algorithms that often require hundreds of diffusion generations. Notably, our algorithm can be viewed as an optimized diffusion process and can be integrated into existing methods to further improve their performance.
☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
☆ PVMark: Enabling Public Verifiability for LLM Watermarking Schemes
Watermarking schemes for large language models (LLMs) have been proposed to identify the source of the generated text, mitigating the potential threats emerged from model theft. However, current watermarking solutions hardly resolve the trust issue: the non-public watermark detection cannot prove itself faithfully conducting the detection. We observe that it is attributed to the secret key mostly used in the watermark detection -- it cannot be public, or the adversary may launch removal attacks provided the key; nor can it be private, or the watermarking detection is opaque to the public. To resolve the dilemma, we propose PVMark, a plugin based on zero-knowledge proof (ZKP), enabling the watermark detection process to be publicly verifiable by third parties without disclosing any secret key. PVMark hinges upon the proof of `correct execution' of watermark detection on which a set of ZKP constraints are built, including mapping, random number generation, comparison, and summation. We implement multiple variants of PVMark in Python, Rust and Circom, covering combinations of three watermarking schemes, three hash functions, and four ZKP protocols, to show our approach effectively works under a variety of circumstances. By experimental results, PVMark efficiently enables public verifiability on the state-of-the-art LLM watermarking schemes yet without compromising the watermarking performance, promising to be deployed in practice.
comment: This work has been submitted to the IEEE for possible publication
☆ Likely Interpolants of Generative Models
Interpolation in generative models allows for controlled generation, model inspection, and more. Unfortunately, most generative models lack a principal notion of interpolants without restrictive assumptions on either the model or data dimension. In this paper, we develop a general interpolation scheme that targets likely transition paths compatible with different metrics and probability distributions. We consider interpolants analogous to a geodesic constrained to a suitable data distribution and derive a novel algorithm for computing these curves, which requires no additional training. Theoretically, we show that our method locally can be considered as a geodesic under a suitable Riemannian metric. We quantitatively show that our interpolation scheme traverses higher density regions than baselines across a range of models and datasets.
♻ ☆ UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection
The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.
♻ ☆ S-CFE: Simple Counterfactual Explanations
We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
♻ ☆ Direct Debiased Machine Learning via Bregman Divergence Minimization
We develop a direct debiased machine learning framework comprising Neyman targeted estimation and generalized Riesz regression. Our framework unifies Riesz regression for automatic debiased machine learning, covariate balancing, targeted maximum likelihood estimation (TMLE), and density-ratio estimation. In many problems involving causal effects or structural models, the parameters of interest depend on regression functions. Plugging regression functions estimated by machine learning methods into the identifying equations can yield poor performance because of first-stage bias. To reduce such bias, debiased machine learning employs Neyman orthogonal estimating equations. Debiased machine learning typically requires estimation of the Riesz representer and the regression function. For this problem, we develop a direct debiased machine learning framework with an end-to-end algorithm. We formulate estimation of the nuisance parameters, the regression function and the Riesz representer, as minimizing the discrepancy between Neyman orthogonal scores computed with known and unknown nuisance parameters, which we refer to as Neyman targeted estimation. Neyman targeted estimation includes Riesz representer estimation, and we measure discrepancies using the Bregman divergence. The Bregman divergence encompasses various loss functions as special cases, where the squared loss yields Riesz regression and the Kullback-Leibler divergence yields entropy balancing. We refer to this Riesz representer estimation as generalized Riesz regression. Neyman targeted estimation also yields TMLE as a special case for regression function estimation. Furthermore, for specific pairs of models and Riesz representer estimation methods, we can automatically obtain the covariate balancing property without explicitly solving the covariate balancing objective.
♻ ☆ Adversarial generalization of unfolding (model-based) networks NeurIPS2025
Unfolding networks are interpretable networks emerging from iterative algorithms, incorporate prior knowledge of data structure, and are designed to solve inverse problems like compressed sensing, which deals with recovering data from noisy, missing observations. Compressed sensing finds applications in critical domains, from medical imaging to cryptography, where adversarial robustness is crucial to prevent catastrophic failures. However, a solid theoretical understanding of the performance of unfolding networks in the presence of adversarial attacks is still in its infancy. In this paper, we study the adversarial generalization of unfolding networks when perturbed with $l_2$-norm constrained attacks, generated by the fast gradient sign method. Particularly, we choose a family of state-of-the-art overaparameterized unfolding networks and deploy a new framework to estimate their adversarial Rademacher complexity. Given this estimate, we provide adversarial generalization error bounds for the networks under study, which are tight with respect to the attack level. To our knowledge, this is the first theoretical analysis on the adversarial generalization of unfolding networks. We further present a series of experiments on real-world data, with results corroborating our derived theory, consistently for all data. Finally, we observe that the family's overparameterization can be exploited to promote adversarial robustness, shedding light on how to efficiently robustify neural networks.
comment: Accepted at NeurIPS2025
♻ ☆ Advancing Local Clustering on Graphs via Compressive Sensing: Semi-supervised and Unsupervised Methods
Local clustering aims to identify specific substructures within a large graph without any additional structural information of the graph. These substructures are typically small compared to the overall graph, enabling the problem to be approached by finding a sparse solution to a linear system associated with the graph Laplacian. In this work, we first propose a method for identifying specific local clusters when very few labeled data are given, which we term semi-supervised local clustering. We then extend this approach to the unsupervised setting when no prior information on labels is available. The proposed methods involve randomly sampling the graph, applying diffusion through local cluster extraction, then examining the overlap among the results to find each cluster. We establish the co-membership conditions for any pair of nodes, and rigorously prove the correctness of our methods. Additionally, we conduct extensive experiments to demonstrate that the proposed methods achieve state of the art results in the low-label rates regime.
♻ ☆ Partially-Supervised Neural Network Model For Quadratic Multiparametric Programming
Neural Networks (NN) with ReLU activation functions are used to model multiparametric quadratic optimization problems (mp-QP) in diverse engineering applications. Researchers have suggested leveraging the piecewise affine property of deep NN models to solve mp-QP with linear constraints, which also exhibit piecewise affine behaviour. However, traditional deep NN applications to mp-QP fall short of providing optimal and feasible predictions, even when trained on large datasets. This study proposes a partially-supervised NN (PSNN) architecture that directly represents the mathematical structure of the global solution function. In contrast to generic NN training approaches, the proposed PSNN method derives a large proportion of model weights directly from the mathematical properties of the optimization problem, producing more accurate solutions despite significantly smaller training data sets. Many energy management problems are formulated as QP, so we apply the proposed approach to energy systems (specifically DC optimal power flow) to demonstrate proof of concept. Model performance in terms of solution accuracy and speed of predictions was compared against a commercial solver and a generic Deep NN model based on classical training. Results show KKT sufficient conditions for PSNN consistently outperform generic NN architectures with classical training using far less data, including when tested on extreme, out-of-training distribution test data. Given its speed advantages over traditional solvers, the PSNN model can quickly produce optimal and feasible solutions within a second for millions of input parameters sampled from a distribution of stochastic demands and renewable generator dispatches, which can be used for simulations and long term planning.
comment: 36 pages including references and appendix
♻ ☆ Integrating Protein Sequence and Expression Level to Analysis Molecular Characterization of Breast Cancer Subtypes
Breast cancer's complexity and variability pose significant challenges in understanding its progression and guiding effective treatment. This study aims to integrate protein sequence data with expression levels to improve the molecular characterization of breast cancer subtypes and predict clinical outcomes. Using ProtGPT2, a language model specifically designed for protein sequences, we generated embeddings that capture the functional and structural properties of proteins. These embeddings were integrated with protein expression levels to form enriched biological representations, which were analyzed using machine learning methods, such as ensemble K-means for clustering and XGBoost for classification. Our approach enabled the successful clustering of patients into biologically distinct groups and accurately predicted clinical outcomes such as survival and biomarker status, achieving high performance metrics, notably an F1 score of 0.88 for survival and 0.87 for biomarker status prediction. Feature importance analysis identified KMT2C, CLASP2, and MYO1B as key proteins involved in hormone signaling, cytoskeletal remodeling, and therapy resistance in hormone receptor-positive and triple-negative breast cancer, with potential influence on breast cancer subtype behavior and progression. Furthermore, protein-protein interaction networks and correlation analyses revealed functional interdependencies among proteins that may influence the behavior and progression of breast cancer subtypes. These findings suggest that integrating protein sequence and expression data provides valuable insights into tumor biology and has significant potential to enhance personalized treatment strategies in breast cancer care.
♻ ☆ When Kernels Multiply, Clusters Unify: Fusing Embeddings with the Kronecker Product
State-of-the-art embeddings often capture distinct yet complementary discriminative features: For instance, one image embedding model may excel at distinguishing fine-grained textures, while another focuses on object-level structure. Motivated by this observation, we propose a principled approach to fuse such complementary representations through kernel multiplication. Multiplying the kernel similarity functions of two embeddings allows their discriminative structures to interact, producing a fused representation whose kernel encodes the union of the clusters identified by each parent embedding. This formulation also provides a natural way to construct joint kernels for paired multi-modal data (e.g., image-text tuples), where the product of modality-specific kernels inherits structure from both domains. We highlight that this kernel product is mathematically realized via the Kronecker product of the embedding feature maps, yielding our proposed KrossFuse framework for embedding fusion. To address the computational cost of the resulting high-dimensional Kronecker space, we further develop RP-KrossFuse, a scalable variant that leverages random projections for efficient approximation. As a key application, we use this framework to bridge the performance gap between cross-modal embeddings (e.g., CLIP, BLIP) and unimodal experts (e.g., DINOv2, E5). Experiments show that RP-KrossFuse effectively integrates these models, enhancing modality-specific performance while preserving cross-modal alignment. The project code is available at https://github.com/yokiwuuu/KrossFuse.
♻ ☆ RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost). Models: https://huggingface.co/collections/nvidia/reward-models-10-2025
comment: Added link to access models: https://huggingface.co/collections/nvidia/reward-models-10-2025
♻ ☆ Curriculum Abductive Learning NeurIPS 2025
Abductive Learning (ABL) integrates machine learning with logical reasoning in a loop: a learning model predicts symbolic concept labels from raw inputs, which are revised through abduction using domain knowledge and then fed back for retraining. However, due to the nondeterminism of abduction, the training process often suffers from instability, especially when the knowledge base is large and complex, resulting in a prohibitively large abduction space. While prior works focus on improving candidate selection within this space, they typically treat the knowledge base as a static black box. In this work, we propose Curriculum Abductive Learning (C-ABL), a method that explicitly leverages the internal structure of the knowledge base to address the ABL training challenges. C-ABL partitions the knowledge base into a sequence of sub-bases, progressively introduced during training. This reduces the abduction space throughout training and enables the model to incorporate logic in a stepwise, smooth way. Experiments across multiple tasks show that C-ABL outperforms previous ABL implementations, significantly improves training stability, convergence speed, and final accuracy, especially under complex knowledge setting.
comment: Accepted by NeurIPS 2025, 22 pages, 6 figures
♻ ☆ Guided Model Merging for Hybrid Data Learning: Leveraging Centralized Data to Refine Decentralized Models WACV 2026
Current network training paradigms primarily focus on either centralized or decentralized data regimes. However, in practice, data availability often exhibits a hybrid nature, where both regimes coexist. This hybrid setting presents new opportunities for model training, as the two regimes offer complementary trade-offs: decentralized data is abundant but subject to heterogeneity and communication constraints, while centralized data, though limited in volume and potentially unrepresentative, enables better curation and high-throughput access. Despite its potential, effectively combining these paradigms remains challenging, and few frameworks are tailored to hybrid data regimes. To address this, we propose a novel framework that constructs a model atlas from decentralized models and leverages centralized data to refine a global model within this structured space. The refined model is then used to reinitialize the decentralized models. Our method synergizes federated learning (to exploit decentralized data) and model merging (to utilize centralized data), enabling effective training under hybrid data availability. Theoretically, we show that our approach achieves faster convergence than methods relying solely on decentralized data, due to variance reduction in the merging process. Extensive experiments demonstrate that our framework consistently outperforms purely centralized, purely decentralized, and existing hybrid-adaptable methods. Notably, our method remains robust even when the centralized and decentralized data domains differ or when decentralized data contains noise, significantly broadening its applicability.
comment: Accepted at WACV 2026
♻ ☆ GSE: Group-wise Sparse and Explainable Adversarial Attacks
Sparse adversarial attacks fool deep neural networks (DNNs) through minimal pixel perturbations, often regularized by the $\ell_0$ norm. Recent efforts have replaced this norm with a structural sparsity regularizer, such as the nuclear group norm, to craft group-wise sparse adversarial attacks. The resulting perturbations are thus explainable and hold significant practical relevance, shedding light on an even greater vulnerability of DNNs. However, crafting such attacks poses an optimization challenge, as it involves computing norms for groups of pixels within a non-convex objective. We address this by presenting a two-phase algorithm that generates group-wise sparse attacks within semantically meaningful areas of an image. Initially, we optimize a quasinorm adversarial loss using the $1/2-$quasinorm proximal operator tailored for non-convex programming. Subsequently, the algorithm transitions to a projected Nesterov's accelerated gradient descent with $2-$norm regularization applied to perturbation magnitudes. Rigorous evaluations on CIFAR-10 and ImageNet datasets demonstrate a remarkable increase in group-wise sparsity, e.g., $50.9\%$ on CIFAR-10 and $38.4\%$ on ImageNet (average case, targeted attack). This performance improvement is accompanied by significantly faster computation times, improved explainability, and a $100\%$ attack success rate.
♻ ☆ Understanding Generalization in Node and Link Prediction
Using message-passing graph neural networks (MPNNs) for node and link prediction is crucial in various scientific and industrial domains, which has led to the development of diverse MPNN architectures. Besides working well in practical settings, their ability to generalize beyond the training set remains poorly understood. While some studies have explored MPNNs' generalization in graph-level prediction tasks, much less attention has been given to node- and link-level predictions. Existing works often rely on unrealistic i.i.d.\@ assumptions, overlooking possible correlations between nodes or links, and assuming fixed aggregation and impractical loss functions while neglecting the influence of graph structure. In this work, we introduce a unified framework to analyze the generalization properties of MPNNs in inductive and transductive node and link prediction settings, incorporating diverse architectural parameters and loss functions and quantifying the influence of graph structure. Additionally, our proposed generalization framework can be applied beyond graphs to any classification task under the inductive or transductive setting. Our empirical study supports our theoretical insights, deepening our understanding of MPNNs' generalization capabilities in these tasks.
comment: arXiv admin note: text overlap with arXiv:2412.07106
♻ ☆ RelP: Faithful and Efficient Circuit Discovery in Language Models via Relevance Patching
Activation patching is a standard method in mechanistic interpretability for localizing the components of a model responsible for specific behaviors, but it is computationally expensive to apply at scale. Attribution patching offers a faster, gradient-based approximation, yet suffers from noise and reduced reliability in deep, highly non-linear networks. In this work, we introduce Relevance Patching (RelP), which replaces the local gradients in attribution patching with propagation coefficients derived from Layer-wise Relevance Propagation (LRP). LRP propagates the network's output backward through the layers, redistributing relevance to lower-level components according to local propagation rules that ensure properties such as relevance conservation or improved signal-to-noise ratio. Like attribution patching, RelP requires only two forward passes and one backward pass, maintaining computational efficiency while improving faithfulness. We validate RelP across a range of models and tasks, showing that it more accurately approximates activation patching than standard attribution patching, particularly when analyzing residual stream and MLP outputs in the Indirect Object Identification (IOI) task. For instance, for MLP outputs in GPT-2 Large, attribution patching achieves a Pearson correlation of 0.006, whereas RelP reaches 0.956, highlighting the improvement offered by RelP. Additionally, we compare the faithfulness of sparse feature circuits identified by RelP and Integrated Gradients (IG), showing that RelP achieves comparable faithfulness without the extra computational cost associated with IG.
♻ ☆ PepCompass: Navigating peptide embedding spaces using Riemannian Geometry
Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}^{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.
♻ ☆ C-LoRA: Contextual Low-Rank Adaptation for Uncertainty Estimation in Large Language Models NeurIPS 2025
Low-Rank Adaptation (LoRA) offers a cost-effective solution for fine-tuning large language models (LLMs), but it often produces overconfident predictions in data-scarce few-shot settings. To address this issue, several classical statistical learning approaches have been repurposed for scalable uncertainty-aware LoRA fine-tuning. However, these approaches neglect how input characteristics affect the predictive uncertainty estimates. To address this limitation, we propose Contextual Low-Rank Adaptation (C-LoRA) as a novel uncertainty-aware and parameter efficient fine-tuning approach, by developing new lightweight LoRA modules contextualized to each input data sample to dynamically adapt uncertainty estimates. Incorporating data-driven contexts into the parameter posteriors, C-LoRA mitigates overfitting, achieves well-calibrated uncertainties, and yields robust predictions. Extensive experiments on LLaMA2-7B models demonstrate that C-LoRA consistently outperforms the state-of-the-art uncertainty-aware LoRA methods in both uncertainty quantification and model generalization. Ablation studies further confirm the critical role of our contextual modules in capturing sample-specific uncertainties. C-LoRA sets a new standard for robust, uncertainty-aware LLM fine-tuning in few-shot regimes. Although our experiments are limited to 7B models, our method is architecture-agnostic and, in principle, applies beyond this scale; studying its scaling to larger models remains an open problem. Our code is available at https://github.com/ahra99/c_lora.
comment: Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ MaskCaptioner: Learning to Jointly Segment and Caption Object Trajectories in Videos
Dense Video Object Captioning (DVOC) is the task of jointly detecting, tracking, and captioning object trajectories in a video, requiring the ability to understand spatio-temporal details and describe them in natural language. Due to the complexity of the task and the high cost associated with manual annotation, previous approaches resort to disjoint training strategies, potentially leading to suboptimal performance. To circumvent this issue, we propose to generate captions about spatio-temporally localized entities leveraging a state-of-the-art VLM. By extending the LVIS and LV-VIS datasets with our synthetic captions (LVISCap and LV-VISCap), we train MaskCaptioner, an end-to-end model capable of jointly detecting, segmenting, tracking and captioning object trajectories. Moreover, with pretraining on LVISCap and LV-VISCap, MaskCaptioner achieves state-of-the-art DVOC results on three existing benchmarks, VidSTG, VLN and BenSMOT. The datasets and code are available at https://www.gabriel.fiastre.fr/maskcaptioner/.
comment: 20 pages, 8 figures
♻ ☆ LatentBreak: Jailbreaking Large Language Models through Latent Space Feedback
Jailbreaks are adversarial attacks designed to bypass the built-in safety mechanisms of large language models. Automated jailbreaks typically optimize an adversarial suffix or adapt long prompt templates by forcing the model to generate the initial part of a restricted or harmful response. In this work, we show that existing jailbreak attacks that leverage such mechanisms to unlock the model response can be detected by a straightforward perplexity-based filtering on the input prompt. To overcome this issue, we propose LatentBreak, a white-box jailbreak attack that generates natural adversarial prompts with low perplexity capable of evading such defenses. LatentBreak substitutes words in the input prompt with semantically-equivalent ones, preserving the initial intent of the prompt, instead of adding high-perplexity adversarial suffixes or long templates. These words are chosen by minimizing the distance in the latent space between the representation of the adversarial prompt and that of harmless requests. Our extensive evaluation shows that LatentBreak leads to shorter and low-perplexity prompts, thus outperforming competing jailbreak algorithms against perplexity-based filters on multiple safety-aligned models.
♻ ☆ SignalLLM: A General-Purpose LLM Agent Framework for Automated Signal Processing
Modern signal processing (SP) pipelines, whether model-based or data-driven, often constrained by complex and fragmented workflow, rely heavily on expert knowledge and manual engineering, and struggle with adaptability and generalization under limited data. In contrast, Large Language Models (LLMs) offer strong reasoning capabilities, broad general-purpose knowledge, in-context learning, and cross-modal transfer abilities, positioning them as powerful tools for automating and generalizing SP workflows. Motivated by these potentials, we introduce SignalLLM, the first general-purpose LLM-based agent framework for general SP tasks. Unlike prior LLM-based SP approaches that are limited to narrow applications or tricky prompting, SignalLLM introduces a principled, modular architecture. It decomposes high-level SP goals into structured subtasks via in-context learning and domain-specific retrieval, followed by hierarchical planning through adaptive retrieval-augmented generation (RAG) and refinement; these subtasks are then executed through prompt-based reasoning, cross-modal reasoning, code synthesis, model invocation, or data-driven LLM-assisted modeling. Its generalizable design enables the flexible selection of problem solving strategies across different signal modalities, task types, and data conditions. We demonstrate the versatility and effectiveness of SignalLLM through five representative tasks in communication and sensing, such as radar target detection, human activity recognition, and text compression. Experimental results show superior performance over traditional and existing LLM-based methods, particularly in few-shot and zero-shot settings.
comment: 11 pages
♻ ☆ Differentiation Through Black-Box Quadratic Programming Solvers
Differentiable optimization has attracted significant research interest, particularly for quadratic programming (QP). Existing approaches for differentiating the solution of a QP with respect to its defining parameters often rely on specific integrated solvers. This integration limits their applicability, including their use in neural network architectures and bi-level optimization tasks, restricting users to a narrow selection of solver choices. To address this limitation, we introduce dQP, a modular and solver-agnostic framework for plug-and-play differentiation of virtually any QP solver. A key insight we leverage to achieve modularity is that, once the active set of inequality constraints is known, both the solution and its derivative can be expressed using simplified linear systems that share the same matrix. This formulation fully decouples the computation of the QP solution from its differentiation. Building on this result, we provide a minimal-overhead, open-source implementation ( https://github.com/cwmagoon/dQP ) that seamlessly integrates with over 15 state-of-the-art solvers. Comprehensive benchmark experiments demonstrate dQP's robustness and scalability, particularly highlighting its advantages in large-scale sparse problems.
♻ ☆ Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Reinforcement learning (RL) is a powerful framework for decision-making in uncertain environments, but it often requires large amounts of data to learn an optimal policy. We address this challenge by incorporating prior model knowledge to guide exploration and accelerate the learning process. Specifically, we assume access to a model set that contains the true transition kernel and reward function. We optimize over this model set to obtain upper and lower bounds on the Q-function, which are then used to guide the exploration of the agent. We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies. Furthermore, we also introduce a data-driven regularized version of the model set optimization problem that ensures the convergence of the class of exploring policies to the optimal policy. Lastly, we show that when the model set has a specific structure, namely the bounded-parameter MDP (BMDP) framework, the regularized model set optimization problem becomes convex and simple to implement. In this setting, we also prove finite-time convergence to the optimal policy under mild assumptions. We demonstrate the effectiveness of the proposed exploration strategy, which we call BUMEX (Bounded Uncertainty Model-based Exploration), in a simulation study. The results indicate that the proposed method can significantly accelerate learning in benchmark examples. A toolbox is available at https://github.com/JvHulst/BUMEX.
comment: Accepted for Presentation at 64th IEEE Conference on Decision and Control, CDC 2025, Rio de Janeiro, Brazil, 2025
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ Incentivizing LLMs to Self-Verify Their Answers
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks through both post-training and test-time scaling laws. While prevalent test-time scaling approaches are often realized by using external reward models to guide the model generation process, we find that only marginal gains can be acquired when scaling a model post-trained on specific reasoning tasks. We identify that the limited improvement stems from distribution discrepancies between the specific post-trained generator and the general reward model. To address this, we propose a framework that incentivizes LLMs to self-verify their own answers. By unifying answer generation and verification within a single reinforcement learning (RL) process, we train models that can effectively assess the correctness of their own solutions. The trained model can further scale its performance at inference time by verifying its generations, without the need for external verifiers. We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B, demonstrating their capabilities across varying reasoning context lengths. Experiments on multiple mathematical reasoning benchmarks show that our models can not only improve post-training performance but also enable effective test-time scaling.
♻ ☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testament to the impact of the approach, the method has been adopted for use in the most recent release of the series.
♻ ☆ A mathematical certification for positivity conditions in Neural Networks with applications to partial monotonicity and Trustworthy AI
Artificial Neural Networks (ANNs) have become a powerful tool for modeling complex relationships in large-scale datasets. However, their black-box nature poses trustworthiness challenges. In certain situations, ensuring trust in predictions might require following specific partial monotonicity constraints. However, certifying if an already-trained ANN is partially monotonic is challenging. Therefore, ANNs are often disregarded in some critical applications, such as credit scoring, where partial monotonicity is required. To address this challenge, this paper presents a novel algorithm (LipVor) that certifies if a black-box model, such as an ANN, is positive based on a finite number of evaluations. Consequently, since partial monotonicity can be expressed as a positivity condition on partial derivatives, LipVor can certify whether an ANN is partially monotonic. To do so, for every positively evaluated point, the Lipschitzianity of the black-box model is used to construct a specific neighborhood where the function remains positive. Next, based on the Voronoi diagram of the evaluated points, a sufficient condition is stated to certify if the function is positive in the domain. Unlike prior methods, our approach certifies partial monotonicity without constrained architectures or piece-wise linear activations. Therefore, LipVor could open up the possibility of using unconstrained ANN in some critical fields. Moreover, some other properties of an ANN, such as convexity, can be posed as positivity conditions, and therefore, LipVor could also be applied.
comment: 16 pages, 4 figures
♻ ☆ GFlowNets for Learning Better Drug-Drug Interaction Representations ICANN 2025
Drug-drug interactions pose a significant challenge in clinical pharmacology, with severe class imbalance among interaction types limiting the effectiveness of predictive models. Common interactions dominate datasets, while rare but critical interactions remain underrepresented, leading to poor model performance on infrequent cases. Existing methods often treat DDI prediction as a binary problem, ignoring class-specific nuances and exacerbating bias toward frequent interactions. To address this, we propose a framework combining Generative Flow Networks (GFlowNet) with Variational Graph Autoencoders (VGAE) to generate synthetic samples for rare classes, improving model balance and generate effective and novel DDI pairs. Our approach enhances predictive performance across interaction types, ensuring better clinical reliability.
comment: Accepted to ICANN 2025:AIDD and NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling (https://openreview.net/forum?id=LZW1jSgfCI)
♻ ☆ Exploring the Early Universe with Deep Learning
Hydrogen is the most abundant element in our Universe. The first generation of stars and galaxies produced photons that ionized hydrogen gas, driving a cosmological event known as the Epoch of Reionization (EoR). The upcoming Square Kilometre Array Observatory (SKAO) will map the distribution of neutral hydrogen during this era, aiding in the study of the properties of these first-generation objects. Extracting astrophysical information will be challenging, as SKAO will produce a tremendous amount of data where the hydrogen signal will be contaminated with undesired foreground contamination and instrumental systematics. To address this, we develop the latest deep learning techniques to extract information from the 2D power spectra of the hydrogen signal expected from SKAO. We apply a series of neural network models to these measurements and quantify their ability to predict the history of cosmic hydrogen reionization, which is connected to the increasing number and efficiency of early photon sources. We show that the study of the early Universe benefits from modern deep learning technology. In particular, we demonstrate that dedicated machine learning algorithms can achieve more than a $0.95$ $R^2$ score on average in recovering the reionization history. This enables accurate and precise cosmological and astrophysical inference of structure formation in the early Universe.
comment: EPIA 2025 preprint version, 12 pages, 3 figures
♻ ☆ Rethinking Optimal Verification Granularity for Compute-Efficient Test-Time Scaling NeurIPS 2025
Test-time scaling (TTS) has proven effective in enhancing the reasoning capabilities of large language models (LLMs). Verification plays a key role in TTS, simultaneously influencing (1) reasoning performance and (2) compute efficiency, due to the quality and computational cost of verification. In this work, we challenge the conventional paradigms of verification, and make the first attempt toward systematically investigating the impact of verification granularity-that is, how frequently the verifier is invoked during generation, beyond verifying only the final output or individual generation steps. To this end, we introduce Variable Granularity Search (VG-Search), a unified algorithm that generalizes beam search and Best-of-N sampling via a tunable granularity parameter g. Extensive experiments with VG-Search under varying compute budgets, generator-verifier configurations, and task attributes reveal that dynamically selecting g can improve the compute efficiency and scaling behavior. Building on these findings, we propose adaptive VG-Search strategies that achieve accuracy gains of up to 3.1\% over Beam Search and 3.6\% over Best-of-N, while reducing FLOPs by over 52\%. We will open-source the code to support future research.
comment: Accepted at NeurIPS 2025
♻ ☆ A geometric framework for momentum-based optimizers for low-rank training
Low-rank pre-training and fine-tuning have recently emerged as promising techniques for reducing the computational and storage costs of large neural networks. Training low-rank parameterizations typically relies on conventional optimizers such as heavy ball momentum methods or Adam. In this work, we identify and analyze potential difficulties that these training methods encounter when used to train low-rank parameterizations of weights. In particular, we show that classical momentum methods can struggle to converge to a local optimum due to the geometry of the underlying optimization landscape. To address this, we introduce novel training strategies derived from dynamical low-rank approximation, which explicitly account for the underlying geometric structure. Our approach leverages and combines tools from dynamical low-rank approximation and momentum-based optimization to design optimizers that respect the intrinsic geometry of the parameter space. We validate our methods through numerical experiments, demonstrating faster convergence, and stronger validation metrics at given parameter budgets.
♻ ☆ LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
♻ ☆ MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
comment: Accepted by NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ Distributed optimization: designed for federated learning
Federated learning (FL), as a distributed collaborative machine learning (ML) framework under privacy-preserving constraints, has garnered increasing research attention in cross-organizational data collaboration scenarios. This paper proposes a class of distributed optimization algorithms based on the augmented Lagrangian technique, designed to accommodate diverse communication topologies in both centralized and decentralized FL settings. Furthermore, we develop multiple termination criteria and parameter update mechanisms to enhance computational efficiency, accompanied by rigorous theoretical guarantees of convergence. By generalizing the augmented Lagrangian relaxation through the incorporation of proximal relaxation and quadratic approximation, our framework systematically recovers a broad of classical unconstrained optimization methods, including proximal algorithm, classic gradient descent, and stochastic gradient descent, among others. Notably, the convergence properties of these methods can be naturally derived within the proposed theoretical framework. Numerical experiments demonstrate that the proposed algorithm exhibits strong performance in large-scale settings with significant statistical heterogeneity across clients.
comment: 16 pages, 6 figures
♻ ☆ On the Impact of Performative Risk Minimization for Binary Random Variables ICML 2025
Performativity, the phenomenon where outcomes are influenced by predictions, is particularly prevalent in social contexts where individuals strategically respond to a deployed model. In order to preserve the high accuracy of machine learning models under distribution shifts caused by performativity, Perdomo et al. (2020) introduced the concept of performative risk minimization (PRM). While this framework ensures model accuracy, it overlooks the impact of the PRM on the underlying distributions and the predictions of the model. In this paper, we initiate the analysis of the impact of PRM, by studying performativity for a sequential performative risk minimization problem with binary random variables and linear performative shifts. We formulate two natural measures of impact. In the case of full information, where the distribution dynamics are known, we derive explicit formulas for the PRM solution and our impact measures. In the case of partial information, we provide performative-aware statistical estimators, as well as simulations. Our analysis contrasts PRM to alternatives that do not model data shift and indicates that PRM can have amplified side effects compared to such methods.
comment: ICML 2025 camera-ready
♻ ☆ Machine-learning competition to grade EEG background patterns in newborns with hypoxic-ischaemic encephalopathy
Machine learning (ML) has the potential to support and improve expert performance in monitoring the brain function of at-risk newborns. Developing accurate and reliable ML models depends on access to high-quality, annotated data, a resource in short supply. ML competitions address this need by providing researchers access to expertly annotated datasets, fostering shared learning through direct model comparisons, and leveraging the benefits of crowdsourcing diverse expertise. We compiled a retrospective dataset containing 353 hours of EEG from 102 individual newborns from a multi-centre study. The data was fully anonymised and divided into training, testing, and held-out validation datasets. EEGs were graded for the severity of abnormal background patterns. Next, we created a web-based competition platform and hosted a machine learning competition to develop ML models for classifying the severity of EEG background patterns in newborns. After the competition closed, the top 4 performing models were evaluated offline on a separate held-out validation dataset. Although a feature-based model ranked first on the testing dataset, deep learning models generalised better on the validation sets. All methods had a significant decline in validation performance compared to the testing performance. This highlights the challenges for model generalisation on unseen data, emphasising the need for held-out validation datasets in ML studies with neonatal EEG. The study underscores the importance of training ML models on large and diverse datasets to ensure robust generalisation. The competition's outcome demonstrates the potential for open-access data and collaborative ML development to foster a collaborative research environment and expedite the development of clinical decision-support tools for neonatal neuromonitoring.
comment: 29 pages, supplementary materials: "supplementary materials ML Comp.docx"
♻ ☆ Wisdom and Delusion of LLM Ensembles for Code Generation and Repair
Today's pursuit of a single Large Language Model (LMM) for all software engineering tasks is resource-intensive and overlooks the potential benefits of complementarity, where different models contribute unique strengths. However, the degree to which coding LLMs complement each other and the best strategy for maximizing an ensemble's potential are unclear, leaving practitioners without a clear path to move beyond single-model systems. To address this gap, we empirically compare ten individual LLMs from five families, and three ensembles of these LLMs across three software engineering benchmarks covering code generation and program repair. We assess the complementarity between models and the performance gap between the best individual model and the ensembles. Next, we evaluate various selection heuristics to identify correct solutions from an ensemble's candidate pool. We find that the theoretical upperbound for an ensemble's performance can be 83% above the best single model. Our results show that consensus-based strategies for selecting solutions fall into a "popularity trap," amplifying common but incorrect outputs. In contrast, a diversity-based strategy realizes up to 95% of this theoretical potential, and proves effective even in small two-model ensembles, enabling a cost-efficient way to enhance performance by leveraging multiple LLMs.
comment: Added Acknowledgments section and hyphenated last names
♻ ☆ Cybersecurity threat detection based on a UEBA framework using Deep Autoencoders
User and Entity Behaviour Analytics (UEBA) is a broad branch of data analytics that attempts to build a normal behavioural profile in order to detect anomalous events. Among the techniques used to detect anomalies, Deep Autoencoders constitute one of the most promising deep learning models on UEBA tasks, allowing explainable detection of security incidents that could lead to the leak of personal data, hijacking of systems, or access to sensitive business information. In this study, we introduce the first implementation of an explainable UEBA-based anomaly detection framework that leverages Deep Autoencoders in combination with Doc2Vec to process both numerical and textual features. Additionally, based on the theoretical foundations of neural networks, we offer a novel proof demonstrating the equivalence of two widely used definitions for fully-connected neural networks. The experimental results demonstrate the proposed framework capability to detect real and synthetic anomalies effectively generated from real attack data, showing that the models provide not only correct identification of anomalies but also explainable results that enable the reconstruction of the possible origin of the anomaly. Our findings suggest that the proposed UEBA framework can be seamlessly integrated into enterprise environments, complementing existing security systems for explainable threat detection.
comment: Published in AIMS Mathematics (2025), 10(10): 23496-23517. DOI: 10.3934/math.20251043
♻ ☆ Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
comment: 24 pages, 7 figures
♻ ☆ In Defence of Post-hoc Explainability NeurIPS 2024
This position paper defends post-hoc explainability methods as legitimate tools for scientific knowledge production in machine learning. Addressing criticism of these methods' reliability and epistemic status, we develop a philosophical framework grounded in mediated understanding and bounded factivity. We argue that scientific insights can emerge through structured interpretation of model behaviour without requiring complete mechanistic transparency, provided explanations acknowledge their approximative nature and undergo rigorous empirical validation. Through analysis of recent biomedical ML applications, we demonstrate how post-hoc methods, when properly integrated into scientific practice, generate novel hypotheses and advance phenomenal understanding.
comment: v1 presented at the Interpretable AI: Past, Present, and Future Workshop at NeurIPS 2024 (non-archival)
♻ ☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
♻ ☆ Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
comment: 12 pages, 17 figures. Preprint
♻ ☆ TokenWeave: Efficient Compute-Communication Overlap for Distributed LLM Inference
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLink. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Furthermore, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead. We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The communication of one subset is then overlapped with the computation of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce--RMSNorm kernel that carefully leverages Multimem instruction support available on Hopper and Blackwell NVIDIA GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory-bound RMSNorm to be overlapped with the other batch's computation, providing additional gains. Our evaluations demonstrate up to 1.29x speedup in latency and 1.26x higher throughput across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.
comment: 14 pages, 16 figures. For source code, see https://github.com/microsoft/tokenweave. In version 2, Figure 6 shows All-Reduce bandwidth instead of Reduce-Scatter. The Multimem Reduce-Scatter bandwidth formula differs slightly from the ring-based version. Fixed x-ticks in Figure 7
♻ ☆ Nearly Minimax Discrete Distribution Estimation in Kullback-Leibler Divergence with High Probability
We consider the fundamental problem of estimating a discrete distribution on a domain of size~$K$ with high probability in Kullback-Leibler divergence. We provide upper and lower bounds on the minimax estimation rate, which show that the optimal rate is between $\big(K + \ln(K)\ln(1/\delta)\big) /n$ and $\big(K\ln\ln(K) + \ln(K)\ln(1/\delta)\big) /n$ at error probability $\delta$ and sample size $n$, which pins down the rate up to the doubly logarithmic factor $\ln \ln K$ that multiplies $K$. Our upper bound uses techniques from online learning to construct a novel estimator via online-to-batch conversion. Perhaps surprisingly, the tail behavior of the minimax rate is worse than for the squared total variation and squared Hellinger distance, for which it is $\big(K + \ln(1/\delta)\big) /n$, i.e.\ without the $\ln K$ multiplying $\ln (1/\delta)$. As a consequence, we cannot obtain a fully tight lower bound from the usual reduction to these smaller distances. Moreover, we show that this lower bound cannot be achieved by the standard lower bound approach based on a reduction to hypothesis testing, and instead we need to introduce a new reduction to what we call weak hypothesis testing. We investigate the source of the gap with other divergences further in refined results, which show that the total variation rate is achievable for Kullback-Leibler divergence after all (in fact by he maximum likelihood estimator) if we rule out outcome probabilities smaller than $O(\ln(K/\delta) / n)$, which is a vanishing set as $n$ increases for fixed $K$ and~$\delta$. This explains why minimax Kullback-Leibler estimation is more difficult than asymptotic estimation.
♻ ☆ Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood
This study introduces an integrated framework for predictive causal inference designed to overcome limitations inherent in conventional single model approaches. Specifically, we combine a Hidden Markov Model (HMM) for spatial health state estimation with a Multi Task and Multi Graph Convolutional Network (MTGCN) for capturing temporal outcome trajectories. The framework asymmetrically treats temporal and spatial information regarding them as endogenous variables in the outcome regression, and exogenous variables in the propensity score model, thereby expanding the standard doubly robust treatment effect estimation to jointly enhance bias correction and predictive accuracy. To demonstrate its utility, we focus on clinical domains such as cancer, dementia, and Parkinson disease, where treatment effects are challenging to observe directly. Simulation studies are conducted to emulate latent disease dynamics and evaluate the model performance under varying conditions. Overall, the proposed framework advances predictive causal inference by structurally adapting to spatiotemporal complexities common in biomedical data.
♻ ☆ Towards a Method for Synthetic Generation of Persons with Aphasia Transcripts
In aphasia research, Speech-Language Pathologists (SLPs) devote extensive time to manually coding speech samples using Correct Information Units (CIUs), a measure of how informative an individual sample of speech is. Developing automated systems to recognize aphasic language is limited by data scarcity. For example, only about 600 transcripts are available in AphasiaBank yet billions of tokens are used to train large language models (LLMs). In the broader field of machine learning (ML), researchers increasingly turn to synthetic data when such are sparse. Therefore, this study constructs and validates two methods to generate synthetic transcripts of the AphasiaBank Cat Rescue picture description task. One method leverages a procedural programming approach while the second uses Mistral 7b Instruct and Llama 3.1 8b Instruct LLMs. The methods generate transcripts across four severity levels (Mild, Moderate, Severe, Very Severe) through word dropping, filler insertion, and paraphasia substitution. Overall, we found, compared to human-elicited transcripts, Mistral 7b Instruct best captures key aspects of linguistic degradation observed in aphasia, showing realistic directional changes in NDW, word count, and word length amongst the synthetic generation methods. Based on the results, future work should plan to create a larger dataset, fine-tune models for better aphasic representation, and have SLPs assess the realism and usefulness of the synthetic transcripts.
comment: 19 pages, 1 figure, 7 tables
♻ ☆ SafEDMD: A Koopman-based data-driven controller design framework for nonlinear dynamical systems
The Koopman operator serves as the theoretical backbone for machine learning of dynamical control systems, where the operator is heuristically approximated by extended dynamic mode decomposition (EDMD). In this paper, we propose SafEDMD, a novel stability- and feedback-oriented EDMD-based controller design framework. Our approach leverages a reliable surrogate model generated in a data-driven fashion in order to provide closed-loop guarantees. In particular, we establish a controller design based on semi-definite programming with guaranteed stabilization of the underlying nonlinear system. As central ingredient, we derive proportional error bounds that vanish at the origin and are tailored to control tasks. We illustrate the developed method by means of several benchmark examples and highlight the advantages over state-of-the-art methods.
comment: Accepted for publication in Automatica
♻ ☆ Mind the Gap: Removing the Discretization Gap in Differentiable Logic Gate Networks NeurIPS 2025
Modern neural networks demonstrate state-of-the-art performance on numerous existing benchmarks; however, their high computational requirements and energy consumption prompt researchers to seek more efficient solutions for real-world deployment. Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However, learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then, almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit Hessian regularization, which improves the convergence properties of LGNs. We train networks $4.5 \times$ faster in wall-clock time, reduce the discretization gap by $98\%$, and reduce the number of unused gates by $100\%$.
comment: Accepted to NeurIPS 2025 (main track)
♻ ☆ Elementary, My Dear Watson: Non-Invasive Neural Keyword Spotting in the LibriBrain Dataset
Non-invasive brain-computer interfaces (BCIs) are beginning to benefit from large, public benchmarks. However, current benchmarks target relatively simple, foundational tasks like Speech Detection and Phoneme Classification, while application-ready results on tasks like Brain-to-Text remain elusive. We propose Keyword Spotting (KWS) as a practically applicable, privacy-aware intermediate task. Using the deep 52-hour, within-subject LibriBrain corpus, we provide standardized train/validation/test splits for reproducible benchmarking, and adopt an evaluation protocol tailored to extreme class imbalance. Concretely, we use area under the precision-recall curve (AUPRC) as a robust evaluation metric, complemented by false alarms per hour (FA/h) at fixed recall to capture user-facing trade-offs. To simplify deployment and further experimentation within the research community, we are releasing an updated version of the pnpl library with word-level dataloaders and Colab-ready tutorials. As an initial reference model, we present a compact 1-D Conv/ResNet baseline with focal loss and top-k pooling that is trainable on a single consumer-class GPU. The reference model achieves approximately 13x the permutation baseline AUPRC on held-out sessions, demonstrating the viability of the task. Exploratory analyses reveal: (i) predictable within-subject scaling - performance improves log-linearly with more training hours - and (ii) the existence of word-level factors (frequency and duration) that systematically modulate detectability.
comment: 16 pages, 7 figures, 6 tables; updated acknowledgments
♻ ☆ AIMeter: Measuring, Analyzing, and Visualizing Energy and Carbon Footprint of AI Workloads
The rapid advancement of AI, particularly large language models (LLMs), has raised significant concerns about the energy use and carbon emissions associated with model training and inference. However, existing tools for measuring and reporting such impacts are often fragmented, lacking systematic metric integration and offering limited support for correlation analysis among them. This paper presents AIMeter, a comprehensive software toolkit for the measurement, analysis, and visualization of energy use, power draw, hardware performance, and carbon emissions across AI workloads. By seamlessly integrating with existing AI frameworks, AIMeter offers standardized reports and exports fine-grained time-series data to support benchmarking and reproducibility in a lightweight manner. It further enables in-depth correlation analysis between hardware metrics and model performance and thus facilitates bottleneck identification and performance enhancement. By addressing critical limitations in existing tools, AIMeter encourages the research community to weigh environmental impact alongside raw performance of AI workloads and advances the shift toward more sustainable "Green AI" practices. The code is available at https://github.com/SusCom-Lab/AIMeter.
comment: 11 pages, 7 figures and 5 tables
♻ ☆ Stability and Sharper Risk Bounds with Convergence Rate $\tilde{O}(1/n^2)$
Prior work (Klochkov $\&$ Zhivotovskiy, 2021) establishes at most $O\left(\log (n)/n\right)$ excess risk bounds via algorithmic stability for strongly-convex learners with high probability. We show that under the similar common assumptions -- - Polyak-Lojasiewicz condition, smoothness, and Lipschitz continous for losses -- - rates of $O\left(\log^2(n)/n^2\right)$ are at most achievable. To our knowledge, our analysis also provides the tightest high-probability bounds for gradient-based generalization gaps in nonconvex settings.
♻ ☆ Hysteresis Activation Function for Efficient Inference NeurIPS
The widely used ReLU is favored for its hardware efficiency, {as the implementation at inference is a one bit sign case,} yet suffers from issues such as the ``dying ReLU'' problem, where during training, neurons fail to activate and constantly remain at zero, as highlighted by Lu et al. Traditional approaches to mitigate this issue often introduce more complex and less hardware-friendly activation functions. In this work, we propose a Hysteresis Rectified Linear Unit (HeLU), an efficient activation function designed to address the ``dying ReLU'' problem with minimal complexity. Unlike traditional activation functions with fixed thresholds for training and inference, HeLU employs a variable threshold that refines the backpropagation. This refined mechanism allows simpler activation functions to achieve competitive performance comparable to their more complex counterparts without introducing unnecessary complexity or requiring inductive biases. Empirical evaluations demonstrate that HeLU enhances model generalization across diverse datasets, offering a promising solution for efficient and effective inference suitable for a wide range of neural network architectures.
comment: Accepted to 4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024)
♻ ☆ GRPO-Guard: Mitigating Implicit Over-Optimization in Flow Matching via Regulated Clipping
Recently, GRPO-based reinforcement learning has shown remarkable progress in optimizing flow-matching models, effectively improving their alignment with task-specific rewards. Within these frameworks, the policy update relies on importance-ratio clipping to constrain overconfident positive and negative gradients. However, in practice, we observe a systematic shift in the importance-ratio distribution-its mean falls below 1 and its variance differs substantially across timesteps. This left-shifted and inconsistent distribution prevents positive-advantage samples from entering the clipped region, causing the mechanism to fail in constraining overconfident positive updates. As a result, the policy model inevitably enters an implicit over-optimization stage-while the proxy reward continues to increase, essential metrics such as image quality and text-prompt alignment deteriorate sharply, ultimately making the learned policy impractical for real-world use. To address this issue, we introduce GRPO-Guard, a simple yet effective enhancement to existing GRPO frameworks. Our method incorporates ratio normalization, which restores a balanced and step-consistent importance ratio, ensuring that PPO clipping properly constrains harmful updates across denoising timesteps. In addition, a gradient reweighting strategy equalizes policy gradients over noise conditions, preventing excessive updates from particular timestep regions. Together, these designs act as a regulated clipping mechanism, stabilizing optimization and substantially mitigating implicit over-optimization without relying on heavy KL regularization. Extensive experiments on multiple diffusion backbones (e.g., SD3.5M, Flux.1-dev) and diverse proxy tasks demonstrate that GRPO-Guard significantly reduces over-optimization while maintaining or even improving generation quality.
comment: Project Page: https://jingw193.github.io/GRPO-Guard/
♻ ☆ Oryx: a Scalable Sequence Model for Many-Agent Coordination in Offline MARL NeurIPS 2025
A key challenge in offline multi-agent reinforcement learning (MARL) is achieving effective many-agent multi-step coordination in complex environments. In this work, we propose Oryx, a novel algorithm for offline cooperative MARL to directly address this challenge. Oryx adapts the recently proposed retention-based architecture Sable and combines it with a sequential form of implicit constraint Q-learning (ICQ), to develop a novel offline autoregressive policy update scheme. This allows Oryx to solve complex coordination challenges while maintaining temporal coherence over long trajectories. We evaluate Oryx across a diverse set of benchmarks from prior works -- SMAC, RWARE, and Multi-Agent MuJoCo -- covering tasks of both discrete and continuous control, varying in scale and difficulty. Oryx achieves state-of-the-art performance on more than 80% of the 65 tested datasets, outperforming prior offline MARL methods and demonstrating robust generalisation across domains with many agents and long horizons. Finally, we introduce new datasets to push the limits of many-agent coordination in offline MARL, and demonstrate Oryx's superior ability to scale effectively in such settings.
comment: Published at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Neurosymbolic Diffusion Models NeurIPS 2025
Neurosymbolic (NeSy) predictors combine neural perception with symbolic reasoning to solve tasks like visual reasoning. However, standard NeSy predictors assume conditional independence between the symbols they extract, thus limiting their ability to model interactions and uncertainty - often leading to overconfident predictions and poor out-of-distribution generalisation. To overcome the limitations of the independence assumption, we introduce neurosymbolic diffusion models (NeSyDMs), a new class of NeSy predictors that use discrete diffusion to model dependencies between symbols. Our approach reuses the independence assumption from NeSy predictors at each step of the diffusion process, enabling scalable learning while capturing symbol dependencies and uncertainty quantification. Across both synthetic and real-world benchmarks - including high-dimensional visual path planning and rule-based autonomous driving - NeSyDMs achieve state-of-the-art accuracy among NeSy predictors and demonstrate strong calibration.
comment: Accepted to NeurIPS 2025
♻ ☆ AnomalyMatch: Discovering Rare Objects of Interest with Semi-supervised and Active Learning
Anomaly detection in large datasets is essential in astronomy and computer vision. However, due to a scarcity of labelled data, it is often infeasible to apply supervised methods to anomaly detection. We present AnomalyMatch, an anomaly detection framework combining the semi-supervised FixMatch algorithm using EfficientNet classifiers with active learning. AnomalyMatch is tailored for large-scale applications and integrated into the ESA Datalabs science platform. In this method, we treat anomaly detection as a binary classification problem and efficiently utilise limited labelled and abundant unlabelled images for training. We enable active learning via a user interface for verification of high-confidence anomalies and correction of false positives. Evaluations on the GalaxyMNIST astronomical dataset and the miniImageNet natural-image benchmark under severe class imbalance display strong performance. Starting from five to ten labelled anomalies, we achieve an average AUROC of 0.96 (miniImageNet) and 0.89 (GalaxyMNIST), with respective AUPRC of 0.82 and 0.77. After three active learning cycles, anomalies are ranked with 76% (miniImageNet) to 94% (GalaxyMNIST) precision in the top 1% of the highest-ranking images by score. We compare to the established Astronomaly software on selected 'odd' galaxies from the 'Galaxy Zoo - The Galaxy Challenge' dataset, achieving comparable performance with an average AUROC of 0.83. Our results underscore the exceptional utility and scalability of this approach for anomaly discovery, highlighting the value of specialised approaches for domains characterised by severe label scarcity.
comment: Journal submission in preparation to RASTI; 15 pages; 12 figures
♻ ☆ Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data NeurIPS'25
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this work, we investigate the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-design for LLMs.
comment: Accepted by NeurIPS'25 main track. 47 pages, 21 figures, 32 tables
♻ ☆ Truncated Kernel Stochastic Gradient Descent with General Losses and Spherical Radial Basis Functions
In this paper, we propose a novel kernel stochastic gradient descent (SGD) algorithm for large-scale supervised learning with general losses. Compared to traditional kernel SGD, our algorithm improves efficiency and scalability through an innovative regularization strategy. By leveraging the infinite series expansion of spherical radial basis functions, this strategy projects the stochastic gradient onto a finite-dimensional hypothesis space, which is adaptively scaled according to the bias-variance trade-off, thereby enhancing generalization performance. Based on a new estimation of the spectral structure of the kernel-induced covariance operator, we develop an analytical framework that unifies optimization and generalization analyses. We prove that both the last iterate and the suffix average converge at minimax-optimal rates, and we further establish optimal strong convergence in the reproducing kernel Hilbert space. Our framework accommodates a broad class of classical loss functions, including least-squares, Huber, and logistic losses. Moreover, the proposed algorithm significantly reduces computational complexity and achieves optimal storage complexity by incorporating coordinate-wise updates from linear SGD, thereby avoiding the costly pairwise operations typical of kernel SGD and enabling efficient processing of streaming data. Finally, extensive numerical experiments demonstrate the efficiency of our approach.
comment: 54 pages, 20 figures
♻ ☆ Experiments with Optimal Model Trees
Model trees provide an appealing way to perform interpretable machine learning for both classification and regression problems. In contrast to ``classic'' decision trees with constant values in their leaves, model trees can use linear combinations of predictor variables in their leaf nodes to form predictions, which can help achieve higher accuracy and smaller trees. Typical algorithms for learning model trees from training data work in a greedy fashion, growing the tree in a top-down manner by recursively splitting the data into smaller and smaller subsets. Crucially, the selected splits are only locally optimal, potentially rendering the tree overly complex and less accurate than a tree whose structure is globally optimal for the training data. In this paper, we empirically investigate the effect of constructing globally optimal model trees for classification and regression with linear support vector machines at the leaf nodes. To this end, we present mixed-integer linear programming formulations to learn optimal trees, compute such trees for a large collection of benchmark data sets, and compare their performance against greedily grown model trees in terms of interpretability and accuracy. We also compare to classic optimal and greedily grown decision trees, random forests, and support vector machines. Our results show that optimal model trees can achieve competitive accuracy with very small trees. We also investigate the effect on the accuracy of replacing axis-parallel splits with multivariate ones, foregoing interpretability while potentially obtaining greater accuracy.
♻ ☆ Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance
Neural network-based decoding methods show promise in enhancing error correction performance but face challenges with punctured codes. In particular, existing methods struggle to adapt to variable code rates or meet protocol compatibility requirements. This paper proposes a unified long short-term memory (LSTM)-based neural decoder for punctured convolutional and Turbo codes to address these challenges. The key component of the proposed LSTM-based neural decoder is puncturing-aware embedding, which integrates puncturing patterns directly into the neural network to enable seamless adaptation to different code rates. Moreover, a balanced bit error rate training strategy is designed to ensure the decoder's robustness across various code lengths, rates, and channels. In this way, the protocol compatibility requirement can be realized. Extensive simulations in both additive white Gaussian noise (AWGN) and Rayleigh fading channels demonstrate that the proposed neural decoder outperforms conventional decoding techniques, offering significant improvements in decoding accuracy and robustness.
♻ ☆ Beyond likelihood ratio bias: Nested multi-time-scale stochastic approximation for likelihood-free parameter estimation
We study parameter inference in simulation-based stochastic models where the analytical form of the likelihood is unknown. The main difficulty is that score evaluation as a ratio of noisy Monte Carlo estimators induces bias and instability, which we overcome with a ratio-free nested multi-time-scale (NMTS) stochastic approximation (SA) method that simultaneously tracks the score and drives the parameter update. We provide a comprehensive theoretical analysis of the proposed NMTS algorithm for solving likelihood-free inference problems, including strong convergence, asymptotic normality, and convergence rates. We show that our algorithm can eliminate the original asymptotic bias $O\big(\sqrt{\frac{1}{N}}\big)$ and accelerate the convergence rate from $O\big(\beta_k+\sqrt{\frac{1}{N}}\big)$ to $O\big(\frac{\beta_k}{\alpha_k}+\sqrt{\frac{\alpha_k}{N}}\big)$, where $N$ is the fixed batch size, $\alpha_k$ and $\beta_k$ are decreasing step sizes with $\alpha_k$, $\beta_k$, $\beta_k/\alpha_k\rightarrow 0$. With proper choice of $\alpha_k$ and $\beta_k$, our convergence rates can match the optimal rate in the multi-time-scale SA literature. Numerical experiments demonstrate that our algorithm can improve the estimation accuracy by one to two orders of magnitude at the same computational cost, making it efficient for parameter estimation in stochastic systems.
♻ ☆ Chaos-based reinforcement learning with TD3
Chaos-based reinforcement learning (CBRL) is a method in which the agent's internal chaotic dynamics drives exploration. However, the learning algorithms in CBRL have not been thoroughly developed in previous studies, nor have they incorporated recent advances in reinforcement learning. This study introduced Twin Delayed Deep Deterministic Policy Gradients (TD3), which is one of the state-of-the-art deep reinforcement learning algorithms that can treat deterministic and continuous action spaces, to CBRL. The validation results provide several insights. First, TD3 works as a learning algorithm for CBRL in a simple goal-reaching task. Second, CBRL agents with TD3 can autonomously suppress their exploratory behavior as learning progresses and resume exploration when the environment changes. Finally, examining the effect of the agent's chaoticity on learning shows that there exists a suitable range of chaos strength in the agent's model to flexibly switch between exploration and exploitation and adapt to environmental changes.
comment: Accepted for publication in Neural Networks
Information Retrieval 25
☆ ProfOlaf: Semi-Automated Tool for Systematic Literature Reviews
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
comment: 4 pages, 1 Figure, 2 tables
☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
☆ WeaveRec: An LLM-Based Cross-Domain Sequential Recommendation Framework with Model Merging
Cross-Domain Sequential Recommendation (CDSR) seeks to improve user preference modeling by transferring knowledge from multiple domains. Despite the progress made in CDSR, most existing methods rely on overlapping users or items to establish cross-domain correlations-a requirement that rarely holds in real-world settings. The advent of large language models (LLM) and model-merging techniques appears to overcome this limitation by unifying multi-domain data without explicit overlaps. Yet, our empirical study shows that naively training an LLM on combined domains-or simply merging several domain-specific LLMs-often degrades performance relative to a model trained solely on the target domain. To address these challenges, we first experimentally investigate the cause of suboptimal performance in LLM-based cross-domain recommendation and model merging. Building on these insights, we introduce WeaveRec, which cross-trains multiple LoRA modules with source and target domain data in a weaving fashion, and fuses them via model merging. WeaveRec can be extended to multi-source domain scenarios and notably does not introduce additional inference-time cost in terms of latency or memory. Furthermore, we provide a theoretical guarantee that WeaveRec can reduce the upper bound of the expected error in the target domain. Extensive experiments on single-source, multi-source, and cross-platform cross-domain recommendation scenarios validate that WeaveRec effectively mitigates performance degradation and consistently outperforms baseline approaches in real-world recommendation tasks.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
comment: Accepted in ICKG 2025 Conference, 8 Pages, 2 Figures
☆ Vectorized Context-Aware Embeddings for GAT-Based Collaborative Filtering
Recommender systems often struggle with data sparsity and cold-start scenarios, limiting their ability to provide accurate suggestions for new or infrequent users. This paper presents a Graph Attention Network (GAT) based Collaborative Filtering (CF) framework enhanced with Large Language Model (LLM) driven context aware embeddings. Specifically, we generate concise textual user profiles and unify item metadata (titles, genres, overviews) into rich textual embeddings, injecting these as initial node features in a bipartite user item graph. To further optimize ranking performance, we introduce a hybrid loss function that combines Bayesian Personalized Ranking (BPR) with a cosine similarity term and robust negative sampling, ensuring explicit negative feedback is distinguished from unobserved data. Experiments on the MovieLens 100k and 1M datasets show consistent improvements over state-of-the-art baselines in Precision, NDCG, and MAP while demonstrating robustness for users with limited interaction history. Ablation studies confirm the critical role of LLM-augmented embeddings and the cosine similarity term in capturing nuanced semantic relationships. Our approach effectively mitigates sparsity and cold-start limitations by integrating LLM-derived contextual understanding into graph-based architectures. Future directions include balancing recommendation accuracy with coverage and diversity, and introducing fairness-aware constraints and interpretability features to enhance system performance further.
☆ Barlow Twins for Sequential Recommendation
Sequential recommendation models must navigate sparse interaction data popularity bias and conflicting objectives like accuracy versus diversity While recent contrastive selfsupervised learning SSL methods offer improved accuracy they come with tradeoffs large batch requirements reliance on handcrafted augmentations and negative sampling that can reinforce popularity bias In this paper we introduce BT-SR a novel noncontrastive SSL framework that integrates the Barlow Twins redundancyreduction principle into a Transformerbased nextitem recommender BTSR learns embeddings that align users with similar shortterm behaviors while preserving longterm distinctionswithout requiring negative sampling or artificial perturbations This structuresensitive alignment allows BT-SR to more effectively recognize emerging user intent and mitigate the influence of noisy historical context Our experiments on five public benchmarks demonstrate that BTSR consistently improves nextitem prediction accuracy and significantly enhances longtail item coverage and recommendation calibration Crucially we show that a single hyperparameter can control the accuracydiversity tradeoff enabling practitioners to adapt recommendations to specific application needs
GraphCompliance: Aligning Policy and Context Graphs for LLM-Based Regulatory Compliance
Compliance at web scale poses practical challenges: each request may require a regulatory assessment. Regulatory texts (e.g., the General Data Protection Regulation, GDPR) are cross-referential and normative, while runtime contexts are expressed in unstructured natural language. This setting motivates us to align semantic information in unstructured text with the structured, normative elements of regulations. To this end, we introduce GraphCompliance, a framework that represents regulatory texts as a Policy Graph and runtime contexts as a Context Graph, and aligns them. In this formulation, the policy graph encodes normative structure and cross-references, whereas the context graph formalizes events as subject-action-object (SAO) and entity-relation triples. This alignment anchors the reasoning of a judge large language model (LLM) in structured information and helps reduce the burden of regulatory interpretation and event parsing, enabling a focus on the core reasoning step. In experiments on 300 GDPR-derived real-world scenarios spanning five evaluation tasks, GraphCompliance yields 4.1-7.2 percentage points (pp) higher micro-F1 than LLM-only and RAG baselines, with fewer under- and over-predictions, resulting in higher recall and lower false positive rates. Ablation studies indicate contributions from each graph component, suggesting that structured representations and a judge LLM are complementary for normative reasoning.
comment: Under review at The Web Conference 2026 (Semantics & Knowledge track). Code will be released upon acceptance. This arXiv v1 contains no repository links to preserve double-blind review
☆ DiSE: A diffusion probabilistic model for automatic structure elucidation of organic compounds
Automatic structure elucidation is essential for self-driving laboratories as it enables the system to achieve truly autonomous. This capability closes the experimental feedback loop, ensuring that machine learning models receive reliable structure information for real-time decision-making and optimization. Herein, we present DiSE, an end-to-end diffusion-based generative model that integrates multiple spectroscopic modalities, including MS, 13C and 1H chemical shifts, HSQC, and COSY, to achieve automated yet accurate structure elucidation of organic compounds. By learning inherent correlations among spectra through data-driven approaches, DiSE achieves superior accuracy, strong generalization across chemically diverse datasets, and robustness to experimental data despite being trained on calculated spectra. DiSE thus represents a significant advance toward fully automated structure elucidation, with broad potential in natural product research, drug discovery, and self-driving laboratories.
☆ ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.
☆ OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
☆ ORBIT -- Open Recommendation Benchmark for Reproducible Research with Hidden Tests NeurIPS 2025
Recommender systems are among the most impactful AI applications, interacting with billions of users every day, guiding them to relevant products, services, or information tailored to their preferences. However, the research and development of recommender systems are hindered by existing datasets that fail to capture realistic user behaviors and inconsistent evaluation settings that lead to ambiguous conclusions. This paper introduces the Open Recommendation Benchmark for Reproducible Research with HIdden Tests (ORBIT), a unified benchmark for consistent and realistic evaluation of recommendation models. ORBIT offers a standardized evaluation framework of public datasets with reproducible splits and transparent settings for its public leaderboard. Additionally, ORBIT introduces a new webpage recommendation task, ClueWeb-Reco, featuring web browsing sequences from 87 million public, high-quality webpages. ClueWeb-Reco is a synthetic dataset derived from real, user-consented, and privacy-guaranteed browsing data. It aligns with modern recommendation scenarios and is reserved as the hidden test part of our leaderboard to challenge recommendation models' generalization ability. ORBIT measures 12 representative recommendation models on its public benchmark and introduces a prompted LLM baseline on the ClueWeb-Reco hidden test. Our benchmark results reflect general improvements of recommender systems on the public datasets, with variable individual performances. The results on the hidden test reveal the limitations of existing approaches in large-scale webpage recommendation and highlight the potential for improvements with LLM integrations. ORBIT benchmark, leaderboard, and codebase are available at https://www.open-reco-bench.ai.
comment: Accepted to NeurIPS 2025 Datasets & Benchmarks track
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
comment: 33 pages, 7 figures, 3 tables
♻ ☆ Unstructured Evidence Attribution for Long Context Query Focused Summarization EMNLP 2025
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query, and extracting and citing evidence spans helps improve the trustworthiness of these summaries. Whereas previous work has focused on evidence citation with fixed levels of granularity (e.g. sentence, paragraph, document, etc.), we propose to extract unstructured (i.e., spans of any length) evidence in order to acquire more relevant and consistent evidence than in the fixed granularity case. We show how existing systems struggle to copy and properly cite unstructured evidence, which also tends to be "lost-in-the-middle". To help models perform this task, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel pipeline, which can be used as training supervision for unstructured evidence summarization. We demonstrate across 5 LLMs and 4 datasets spanning human written, synthetic, single, and multi-document settings that LLMs adapted with SUnsET generate more relevant and factually consistent evidence with their summaries, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries than baselines with no fine-tuning and fixed granularity evidence. We release SUnsET and our generation code to the public.
comment: EMNLP 2025 Main; 29 pages; 24 figures; 8 tables
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ RecCocktail: A Generalizable and Efficient Framework for LLM-Based Recommendation
Large Language Models (LLMs) have achieved remarkable success in recent years, owing to their impressive generalization capabilities and rich world knowledge. To capitalize on the potential of using LLMs as recommender systems, mainstream approaches typically focus on two paradigms. The first paradigm designs multi-domain or multi-task instruction data for generalizable recommendation, so as to align LLMs with general recommendation areas and deal with cold-start recommendation. The second paradigm focuses on enhancing domain-specific recommendation tasks, improving performance in warm recommendation scenarios. While most previous works treat these two paradigms separately, we argue that they have complementary advantages, and combining them can yield better results. In this paper, we propose a generalizable and efficient LLM-based recommendation framework RecCocktail. Our approach begins with fine-tuning a "base spirit" LoRA module using domain-general recommendation instruction data to align LLM with recommendation knowledge. Next, given users' behavior of a specific domain, we construct a domain-specific "ingredient" LoRA module. We then provide an entropy-guided adaptive merging method to mix the "base spirit" and the "ingredient" in the weight space. Please note that, RecCocktail combines the advantages of the existing two paradigms without introducing additional time or space overhead during the inference phase. Moreover, RecCocktail is efficient with plug and play, as the "base spirit" LoRA is trained only once, and any domain-specific "ingredient" can be efficiently mixed with only domain-specific fine-tuning. Extensive experiments on multiple datasets under both warm and cold-start recommendation scenarios validate the effectiveness and generality of the proposed RecCocktail.
♻ ☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
♻ ☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
♻ ☆ The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems
With the growing adoption of retrieval-augmented generation (RAG) systems, various attack methods have been proposed to degrade their performance. However, most existing approaches rely on unrealistic assumptions in which external attackers have access to internal components such as the retriever. To address this issue, we introduce a realistic black-box attack based on the RAG paradox, a structural vulnerability arising from the system's effort to enhance trust by revealing both the retrieved documents and their sources to users. This transparency enables attackers to observe which sources are used and how information is phrased, allowing them to craft poisoned documents that are more likely to be retrieved and upload them to the identified sources. Moreover, as RAG systems directly provide retrieved content to users, these documents must not only be retrievable but also appear natural and credible to maintain user confidence in the search results. Unlike prior work that focuses solely on improving document retrievability, our attack method explicitly considers both retrievability and user trust in the retrieved content. Both offline and online experiments demonstrate that our method significantly degrades system performance without internal access, while generating natural-looking poisoned documents.
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ MMQ-v2: Align, Denoise, and Amplify: Adaptive Behavior Mining for Semantic IDs Learning in Recommendation
Industrial recommender systems rely on unique Item Identifiers (ItemIDs). However, this method struggles with scalability and generalization in large, dynamic datasets that have sparse long-tail data. Content-based Semantic IDs (SIDs) address this by sharing knowledge through content quantization. However, by ignoring dynamic behavioral properties, purely content-based SIDs have limited expressive power. Existing methods attempt to incorporate behavioral information but overlook a critical distinction: unlike relatively uniform content features, user-item interactions are highly skewed and diverse, creating a vast information gap in quality and quantity between popular and long-tail items. This oversight leads to two critical limitations: (1) Noise Corruption: Indiscriminate behavior-content alignment allows collaborative noise from long-tail items to corrupt their content representations, leading to the loss of critical multimodal information. (2)Signal Obscurity: The equal-weighting scheme for SIDs fails to reflect the varying importance of different behavioral signals, making it difficult for downstream tasks to distinguish important SIDs from uninformative ones. To tackle these issues, we propose a mixture-of-quantization framework, MMQ-v2, to adaptively Align, Denoise, and Amplify multimodal information from content and behavior modalities for semantic IDs learning. The semantic IDs generated by this framework named ADA-SID. It introduces two innovations: an adaptive behavior-content alignment that is aware of information richness to shield representations from noise, and a dynamic behavioral router to amplify critical signals by applying different weights to SIDs. Extensive experiments on public and large-scale industrial datasets demonstrate ADA-SID's significant superiority in both generative and discriminative recommendation tasks.
♻ ☆ Towards Automated Quality Assurance of Patent Specifications: A Multi-Dimensional LLM Framework
Although AI drafting tools have gained prominence in patent writing, the systematic evaluation of AI-generated patent content quality represents a significant research gap. To address this gap, We propose to evaluate patents using regulatory compliance, technical coherence, and figure-reference consistency detection modules, and then generate improvement suggestions via an integration module. The framework is validated on a comprehensive dataset comprising 80 human-authored and 80 AI-generated patents from two patent drafting tools. Evaluation is performed on 10,841 total sentences, 8,924 non-template sentences, and 554 patent figures for the three detection modules respectively, achieving balanced accuracies of 99.74%, 82.12%, and 91.2% against expert annotations. Additional analysis was conducted to examine defect distributions across patent sections, technical domains, and authoring sources. Section-based analysis indicates that figure-text consistency and technical detail precision require particular attention. Mechanical Engineering and Construction show more claim-specification inconsistencies due to complex technical documentation requirements. AI-generated patents show a significant gap compared to human-authored ones. While human-authored patents primarily contain surface-level errors like typos, AI-generated patents exhibit more structural defects in figure-text alignment and cross-references.
♻ ☆ Decoupled Multimodal Fusion for User Interest Modeling in Click-Through Rate Prediction
Modern industrial recommendation systems improve recommendation performance by integrating multimodal representations from pre-trained models into ID-based Click-Through Rate (CTR) prediction frameworks. However, existing approaches typically adopt modality-centric modeling strategies that process ID-based and multimodal embeddings independently, failing to capture fine-grained interactions between content semantics and behavioral signals. In this paper, we propose Decoupled Multimodal Fusion (DMF), which introduces a modality-enriched modeling strategy to enable fine-grained interactions between ID-based collaborative representations and multimodal representations for user interest modeling. Specifically, we construct target-aware features to bridge the semantic gap across different embedding spaces and leverage them as side information to enhance the effectiveness of user interest modeling. Furthermore, we design an inference-optimized attention mechanism that decouples the computation of target-aware features and ID-based embeddings before the attention layer, thereby alleviating the computational bottleneck introduced by incorporating target-aware features. To achieve comprehensive multimodal integration, DMF combines user interest representations learned under the modality-centric and modality-enriched modeling strategies. Offline experiments on public and industrial datasets demonstrate the effectiveness of DMF. Moreover, DMF has been deployed on the product recommendation system of the international e-commerce platform Lazada, achieving relative improvements of 5.30% in CTCVR and 7.43% in GMV with negligible computational overhead.
♻ ☆ A Task-Centric Perspective on Recommendation Systems
Many studies in recommender systems (RecSys) adopt a general problem definition, i.e., to recommend preferred items to users based on past interactions. Such abstraction often lacks the domain-specific nuances necessary for practical deployment. However, models are frequently evaluated using datasets collected from online recommender platforms, which inherently reflect domain or task specificities. In this paper, we analyze RecSys task formulations, emphasizing key components such as input-output structures, temporal dynamics, and candidate item selection. All these factors directly impact offline evaluation. We further examine the complexities of user-item interactions, including decision-making costs, multi-step engagements, and unobservable interactions, which may influence model design. Additionally, we explore the balance between task specificity and model generalizability, highlighting how well-defined task formulations serve as the foundation for robust evaluation and effective solution development. By clarifying task definitions and their implications, this work provides a structured perspective on RecSys research. The goal is to help researchers better navigate the field, particularly in understanding specificities of the RecSys tasks and ensuring fair and meaningful evaluations.
Computation and Language 126
☆ Gaperon: A Peppered English-French Generative Language Model Suite
We release Gaperon, a fully open suite of French-English-coding language models designed to advance transparency and reproducibility in large-scale model training. The Gaperon family includes 1.5B, 8B, and 24B parameter models trained on 2-4 trillion tokens, released with all elements of the training pipeline: French and English datasets filtered with a neural quality classifier, an efficient data curation and training framework, and hundreds of intermediate checkpoints. Through this work, we study how data filtering and contamination interact to shape both benchmark and generative performance. We find that filtering for linguistic quality enhances text fluency and coherence but yields subpar benchmark results, and that late deliberate contamination -- continuing training on data mixes that include test sets -- recovers competitive scores while only reasonably harming generation quality. We discuss how usual neural filtering can unintentionally amplify benchmark leakage. To support further research, we also introduce harmless data poisoning during pretraining, providing a realistic testbed for safety studies. By openly releasing all models, datasets, code, and checkpoints, Gaperon establishes a reproducible foundation for exploring the trade-offs between data curation, evaluation, safety, and openness in multilingual language model development.
☆ Decomposition-Enhanced Training for Post-Hoc Attributions In Language Models
Large language models (LLMs) are increasingly used for long-document question answering, where reliable attribution to sources is critical for trust. Existing post-hoc attribution methods work well for extractive QA but struggle in multi-hop, abstractive, and semi-extractive settings, where answers synthesize information across passages. To address these challenges, we argue that post-hoc attribution can be reframed as a reasoning problem, where answers are decomposed into constituent units, each tied to specific context. We first show that prompting models to generate such decompositions alongside attributions improves performance. Building on this, we introduce DecompTune, a post-training method that teaches models to produce answer decompositions as intermediate reasoning steps. We curate a diverse dataset of complex QA tasks, annotated with decompositions by a strong LLM, and post-train Qwen-2.5 (7B and 14B) using a two-stage SFT + GRPO pipeline with task-specific curated rewards. Across extensive experiments and ablations, DecompTune substantially improves attribution quality, outperforming prior methods and matching or exceeding state-of-the-art frontier models.
comment: Post-hoc attribution
☆ DiagramEval: Evaluating LLM-Generated Diagrams via Graphs
Diagrams play a central role in research papers for conveying ideas, yet they are often notoriously complex and labor-intensive to create. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure. We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs). However, due to the complexity of components and the multimodal nature of diagrams, sufficiently discriminative and explainable metrics for evaluating the quality of LLM-generated diagrams remain lacking. In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment and path alignment. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, quantitatively demonstrating the validity of our metrics. Furthermore, we show how the enhanced explainability of our proposed metrics offers valuable insights into the characteristics of LLM-generated diagrams. Code: https://github.com/ulab-uiuc/diagram-eval.
☆ Task Completion Agents are Not Ideal Collaborators
Current evaluations of agents remain centered around one-shot task completion, failing to account for the inherently iterative and collaborative nature of many real-world problems, where human goals are often underspecified and evolve. We argue for a shift from building and assessing task completion agents to developing collaborative agents, assessed not only by the quality of their final outputs but by how well they engage with and enhance human effort throughout the problem-solving process. To support this shift, we introduce collaborative effort scaling, a framework that captures how an agent's utility grows with increasing user involvement. Through case studies and simulated evaluations, we show that state-of-the-art agents often underperform in multi-turn, real-world scenarios, revealing a missing ingredient in agent design: the ability to sustain engagement and scaffold user understanding. Collaborative effort scaling offers a lens for diagnosing agent behavior and guiding development toward more effective interactions.
comment: 22 pages, 5 figures, 3 tables
Scaling Latent Reasoning via Looped Language Models
Modern LLMs are trained to "think" primarily via explicit text generation, such as chain-of-thought (CoT), which defers reasoning to post-training and under-leverages pre-training data. We present and open-source Ouro, named after the recursive Ouroboros, a family of pre-trained Looped Language Models (LoopLM) that instead build reasoning into the pre-training phase through (i) iterative computation in latent space, (ii) an entropy-regularized objective for learned depth allocation, and (iii) scaling to 7.7T tokens. Ouro 1.4B and 2.6B models enjoy superior performance that match the results of up to 12B SOTA LLMs across a wide range of benchmarks. Through controlled experiments, we show this advantage stems not from increased knowledge capacity, but from superior knowledge manipulation capabilities. We also show that LoopLM yields reasoning traces more aligned with final outputs than explicit CoT. We hope our results show the potential of LoopLM as a novel scaling direction in the reasoning era. Our model could be found in: http://ouro-llm.github.io.
☆ The Limits of Obliviate: Evaluating Unlearning in LLMs via Stimulus-Knowledge Entanglement-Behavior Framework
Unlearning in large language models (LLMs) is crucial for managing sensitive data and correcting misinformation, yet evaluating its effectiveness remains an open problem. We investigate whether persuasive prompting can recall factual knowledge from deliberately unlearned LLMs across models ranging from 2.7B to 13B parameters (OPT-2.7B, LLaMA-2-7B, LLaMA-3.1-8B, LLaMA-2-13B). Drawing from ACT-R and Hebbian theory (spreading activation theories), as well as communication principles, we introduce Stimulus-Knowledge Entanglement-Behavior Framework (SKeB), which models information entanglement via domain graphs and tests whether factual recall in unlearned models is correlated with persuasive framing. We develop entanglement metrics to quantify knowledge activation patterns and evaluate factuality, non-factuality, and hallucination in outputs. Our results show persuasive prompts substantially enhance factual knowledge recall (14.8% baseline vs. 24.5% with authority framing), with effectiveness inversely correlated to model size (128% recovery in 2.7B vs. 15% in 13B). SKeB provides a foundation for assessing unlearning completeness, robustness, and overall behavior in LLMs.
comment: 14 pages, 11 figures
☆ The Tool Decathlon: Benchmarking Language Agents for Diverse, Realistic, and Long-Horizon Task Execution
Real-world language agents must handle complex, multi-step workflows across diverse Apps. For instance, an agent may manage emails by coordinating with calendars and file systems, or monitor a production database to detect anomalies and generate reports following an operating manual. However, existing language agent benchmarks often focus on narrow domains or simplified tasks that lack the diversity, realism, and long-horizon complexity required to evaluate agents' real-world performance. To address this gap, we introduce the Tool Decathlon (dubbed as Toolathlon), a benchmark for language agents offering diverse Apps and tools, realistic environment setup, and reliable execution-based evaluation. Toolathlon spans 32 software applications and 604 tools, ranging from everyday platforms such as Google Calendar and Notion to professional ones like WooCommerce, Kubernetes, and BigQuery. Most of the tools are based on a high-quality set of Model Context Protocol (MCP) servers that we may have revised or implemented ourselves. Unlike prior works, which primarily ensure functional realism but offer limited environment state diversity, we provide realistic initial environment states from real software, such as Canvas courses with dozens of students or real financial spreadsheets. This benchmark includes 108 manually sourced or crafted tasks in total, requiring interacting with multiple Apps over around 20 turns on average to complete. Each task is strictly verifiable through dedicated evaluation scripts. Comprehensive evaluation of SOTA models highlights their significant shortcomings: the best-performing model, Claude-4.5-Sonnet, achieves only a 38.6% success rate with 20.2 tool calling turns on average, while the top open-weights model DeepSeek-V3.2-Exp reaches 20.1%. We expect Toolathlon to drive the development of more capable language agents for real-world, long-horizon task execution.
comment: Website: https://toolathlon.xyz/
☆ Interpreting LLMs as Credit Risk Classifiers: Do Their Feature Explanations Align with Classical ML? CIKM 2025
Large Language Models (LLMs) are increasingly explored as flexible alternatives to classical machine learning models for classification tasks through zero-shot prompting. However, their suitability for structured tabular data remains underexplored, especially in high-stakes financial applications such as financial risk assessment. This study conducts a systematic comparison between zero-shot LLM-based classifiers and LightGBM, a state-of-the-art gradient-boosting model, on a real-world loan default prediction task. We evaluate their predictive performance, analyze feature attributions using SHAP, and assess the reliability of LLM-generated self-explanations. While LLMs are able to identify key financial risk indicators, their feature importance rankings diverge notably from LightGBM, and their self-explanations often fail to align with empirical SHAP attributions. These findings highlight the limitations of LLMs as standalone models for structured financial risk prediction and raise concerns about the trustworthiness of their self-generated explanations. Our results underscore the need for explainability audits, baseline comparisons with interpretable models, and human-in-the-loop oversight when deploying LLMs in risk-sensitive financial environments.
comment: 8 pages, 6 figures, 3 tables, CIKM 2025 FinFAI workshop
☆ Process-Level Trajectory Evaluation for Environment Configuration in Software Engineering Agents
Large language model-based agents show promise for software engineering, but environment configuration remains a bottleneck due to heavy manual effort and scarce large-scale, high-quality datasets. Existing benchmarks assess only end-to-end build/test success, obscuring where and why agents succeed or fail. We introduce the Environment Configuration Diagnosis Benchmark, Enconda-bench, which provides process-level trajectory assessment of fine-grained agent capabilities during environment setup-planning, perception-driven error diagnosis, feedback-driven repair, and action to execute final environment configuration. Our task instances are automatically constructed by injecting realistic README errors and are validated in Docker for scalable, high-quality evaluation. Enconda-bench combines process-level analysis with end-to-end executability to enable capability assessments beyond aggregate success rates. Evaluations across state-of-the-art LLMs and agent frameworks show that while agents can localize errors, they struggle to translate feedback into effective corrections, limiting end-to-end performance. To our knowledge, Enconda-bench is the first framework to provide process-level internal capability assessment for environment configuration, offering actionable insights for improving software engineering agents.
☆ PairUni: Pairwise Training for Unified Multimodal Language Models
Unified vision-language models (UVLMs) must perform both understanding and generation within a single architecture, but these tasks rely on heterogeneous data and supervision, making it difficult to balance them during reinforcement learning (RL). We propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. We first use GPT-o3 to augment single-task data, generating captions for understanding samples and question-answer (QA) pairs for generation samples, forming aligned pairs from the same instance. Additionally, for each generation sample, we retrieve a semantically related understanding example to form a retrieved pair, linking different but related data points. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present Pair-GPRO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. We curate a high-quality dataset of 16K UG pairs named PairUG for RL fine-tuning and evaluate PairUni on the powerful Janus-Pro UVLMs. Our approach achieves balanced improvements on various UVLMs, outperforming strong UVLM RL baselines. Code: \href{https://github.com/Haochen-Wang409/PairUni}{github.com/Haochen-Wang409/PairUni}
☆ ZK-SenseLM: Verifiable Large-Model Wireless Sensing with Selective Abstention and Zero-Knowledge Attestation
ZK-SenseLM is a secure and auditable wireless sensing framework that pairs a large-model encoder for Wi-Fi channel state information (and optionally mmWave radar or RFID) with a policy-grounded decision layer and end-to-end zero-knowledge proofs of inference. The encoder uses masked spectral pretraining with phase-consistency regularization, plus a light cross-modal alignment that ties RF features to compact, human-interpretable policy tokens. To reduce unsafe actions under distribution shift, we add a calibrated selective-abstention head; the chosen risk-coverage operating point is registered and bound into the proof. We implement a four-stage proving pipeline: (C1) feature sanity and commitment, (C2) threshold and version binding, (C3) time-window binding, and (C4) PLONK-style proofs that the quantized network, given the committed window, produced the logged action and confidence. Micro-batched proving amortizes cost across adjacent windows, and a gateway option offloads proofs from low-power devices. The system integrates with differentially private federated learning and on-device personalization without weakening verifiability: model hashes and the registered threshold are part of each public statement. Across activity, presence or intrusion, respiratory proxy, and RF fingerprinting tasks, ZK-SenseLM improves macro-F1 and calibration, yields favorable coverage-risk curves under perturbations, and rejects tamper and replay with compact proofs and fast verification.
comment: 45 pages
☆ EHR-R1: A Reasoning-Enhanced Foundational Language Model for Electronic Health Record Analysis
Electronic Health Records (EHRs) contain rich yet complex information, and their automated analysis is critical for clinical decision-making. Despite recent advances of large language models (LLMs) in clinical workflows, their ability to analyze EHRs remains limited due to narrow task coverage and lack of EHR-oriented reasoning capabilities. This paper aims to bridge the gap, specifically, we present EHR-Ins, a large-scale, comprehensive EHR reasoning instruction dataset, comprising 300k high-quality reasoning cases and 4M non-reasoning cases across 42 distinct EHR tasks. Its core innovation is a thinking-graph-driven framework that enables to generate high-quality reasoning data at scale. Based on it, we develop EHR-R1, a series of reasoning-enhanced LLMs with up to 72B parameters tailored for EHR analysis. Through a multi-stage training paradigm, including domain adaptation, reasoning enhancement, and reinforcement learning, EHR-R1 systematically acquires domain knowledge and diverse reasoning capabilities, enabling accurate and robust EHR analysis. Lastly, we introduce EHR-Bench, a new benchmark curated from MIMIC-IV, spanning 42 tasks, to comprehensively assess reasoning and prediction across EHR scenarios. In experiments, we show that the resulting EHR-R1 consistently outperforms state-of-the-art commercial and open-source LLMs (including DeepSeek-V3 and GPT-4o), surpassing GPT-4o by over 30 points on MIMIC-Bench and achieving a 10\% higher zero-shot AUROC on EHRSHOT. Collectively, EHR-Ins, EHR-R1, and EHR-Bench have significantly advanced the development for more reliable and clinically relevant EHR analysis.
☆ Are Language Models Efficient Reasoners? A Perspective from Logic Programming NeurIPS 2025
Modern language models (LMs) exhibit strong deductive reasoning capabilities, yet standard evaluations emphasize correctness while overlooking a key aspect of human-like reasoning: efficiency. In real-world reasoning scenarios, much of the available information is irrelevant, and effective deductive inference requires identifying and ignoring such distractions. We propose a framework for assessing LM reasoning efficiency through the lens of logic programming, introducing a simple method to align proofs written in natural language -- as generated by an LM -- with shortest proofs found by executing the logic program. Efficiency is quantified by measuring how well a model avoids unnecessary inference. Empirically, we construct a dataset of math word problems injected with various number of irrelevant axioms that vary in semantic overlap with the goal theorem. We find that current LMs show marked accuracy declines under such conditions -- even with minimal, domain-consistent distractions -- and the proofs they generate frequently exhibit detours through irrelevant inferences.
comment: Accepted to NeurIPS 2025
☆ Evaluating the Role of Verifiers in Test-Time Scaling for Legal Reasoning Tasks EMNLP
Test-time scaling (TTS) techniques can improve the performance of large language models (LLMs) at the expense of additional computation and latency. While TTS has proven effective in formal domains such as mathematics and programming \citep{snell2024scaling, chen2024more}, its value in argumentative domains such as law remains underexplored. We present an empirical study of verifier-based TTS methods for legal multiple-choice QA (MCQA) across five benchmarks. Using a family of 7 reward models, we evaluate both outcome-level (Best-of-$N$) and process-level (tree search) verification under realistic low-$N$ budgets. Our analysis systematically investigates how verifier utility is affected by key properties such as domain specialization, model size, and supervision type (process-supervised PRMs vs. outcome-only ORMs), even when applied across different roles.
comment: Accepted to EMNLP - NLLP Workshop
☆ FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
comment: 37 pages, 5 figures, 10 tables. Keywords: Retrieval-Augmented Generation (RAG), Question Answering (QA), Islamic Knowledge Base, Faithful AI, Persian NLP, Multi-hop Reasoning, Large Language Models (LLMs)
☆ Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry ICML 2025
While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles
comment: Workshop on Multi-Agent System @ ICML 2025
☆ Lost in Phonation: Voice Quality Variation as an Evaluation Dimension for Speech Foundation Models LREC 2026
Recent advances in speech foundation models (SFMs) have enabled the direct processing of spoken language from raw audio, bypassing intermediate textual representations. This capability allows SFMs to be exposed to, and potentially respond to, rich paralinguistic variations embedded in the input speech signal. One under-explored dimension of paralinguistic variation is voice quality, encompassing phonation types such as creaky and breathy voice. These phonation types are known to influence how listeners infer affective state, stance and social meaning in speech. Existing benchmarks for speech understanding largely rely on multiple-choice question answering (MCQA) formats, which are prone to failure and therefore unreliable in capturing the nuanced ways paralinguistic features influence model behaviour. In this paper, we probe SFMs through open-ended generation tasks and speech emotion recognition, evaluating whether model behaviours are consistent across different phonation inputs. We introduce a new parallel dataset featuring synthesized modifications to voice quality, designed to evaluate SFM responses to creaky and breathy voice. Our work provides the first examination of SFM sensitivity to these particular non-lexical aspects of speech perception.
comment: 8 pages, 3 figures, 4 tables, submitted to LREC 2026
☆ Hybrid Quantum-Classical Recurrent Neural Networks
We present a hybrid quantum-classical recurrent neural network (QRNN) architecture in which the entire recurrent core is realized as a parametrized quantum circuit (PQC) controlled by a classical feedforward network. The hidden state is the quantum state of an $n$-qubit PQC, residing in an exponentially large Hilbert space $\mathbb{C}^{2^n}$. The PQC is unitary by construction, making the hidden-state evolution norm-preserving without external constraints. At each timestep, mid-circuit readouts are combined with the input embedding and processed by the feedforward network, which provides explicit classical nonlinearity. The outputs parametrize the PQC, which updates the hidden state via unitary dynamics. The QRNN is compact and physically consistent, and it unifies (i) unitary recurrence as a high-capacity memory, (ii) partial observation via mid-circuit measurements, and (iii) nonlinear classical control for input-conditioned parametrization. We evaluate the model in simulation with up to 14 qubits on sentiment analysis, MNIST, permuted MNIST, copying memory, and language modeling, adopting projective measurements as a limiting case to obtain mid-circuit readouts while maintaining a coherent recurrent quantum memory. We further devise a soft attention mechanism over the mid-circuit readouts in a sequence-to-sequence model and show its effectiveness for machine translation. To our knowledge, this is the first model (RNN or otherwise) grounded in quantum operations to achieve competitive performance against strong classical baselines across a broad class of sequence-learning tasks.
☆ TwinVoice: A Multi-dimensional Benchmark Towards Digital Twins via LLM Persona Simulation
Large Language Models (LLMs) are exhibiting emergent human-like abilities and are increasingly envisioned as the foundation for simulating an individual's communication style, behavioral tendencies, and personality traits. However, current evaluations of LLM-based persona simulation remain limited: most rely on synthetic dialogues, lack systematic frameworks, and lack analysis of the capability requirement. To address these limitations, we introduce TwinVoice, a comprehensive benchmark for assessing persona simulation across diverse real-world contexts. TwinVoice encompasses three dimensions: Social Persona (public social interactions), Interpersonal Persona (private dialogues), and Narrative Persona (role-based expression). It further decomposes the evaluation of LLM performance into six fundamental capabilities, including opinion consistency, memory recall, logical reasoning, lexical fidelity, persona tone, and syntactic style. Experimental results reveal that while advanced models achieve moderate accuracy in persona simulation, they still fall short of capabilities such as syntactic style and memory recall. Consequently, the average performance achieved by LLMs remains considerably below the human baseline.
comment: Main paper: 11 pages, 3 figures, 6 tables. Appendix: 28 pages. Bangde Du and Minghao Guo contributed equally. Corresponding authors: Ziyi Ye (ziyiye@fudan.edu.cn), Qingyao Ai (aiqy@tsinghua.edu.cn)
☆ Fine-Tuned Language Models for Domain-Specific Summarization and Tagging
This paper presents a pipeline integrating fine-tuned large language models (LLMs) with named entity recognition (NER) for efficient domain-specific text summarization and tagging. The authors address the challenge posed by rapidly evolving sub-cultural languages and slang, which complicate automated information extraction and law enforcement monitoring. By leveraging the LLaMA Factory framework, the study fine-tunes LLMs on both generalpurpose and custom domain-specific datasets, particularly in the political and security domains. The models are evaluated using BLEU and ROUGE metrics, demonstrating that instruction fine-tuning significantly enhances summarization and tagging accuracy, especially for specialized corpora. Notably, the LLaMA3-8B-Instruct model, despite its initial limitations in Chinese comprehension, outperforms its Chinese-trained counterpart after domainspecific fine-tuning, suggesting that underlying reasoning capabilities can transfer across languages. The pipeline enables concise summaries and structured entity tagging, facilitating rapid document categorization and distribution. This approach proves scalable and adaptable for real-time applications, supporting efficient information management and the ongoing need to capture emerging language trends. The integration of LLMs and NER offers a robust solution for transforming unstructured text into actionable insights, crucial for modern knowledge management and security operations.
☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
☆ More than a Moment: Towards Coherent Sequences of Audio Descriptions
Audio Descriptions (ADs) convey essential on-screen information, allowing visually impaired audiences to follow videos. To be effective, ADs must form a coherent sequence that helps listeners to visualise the unfolding scene, rather than describing isolated moments. However, most automatic methods generate each AD independently, often resulting in repetitive, incoherent descriptions. To address this, we propose a training-free method, CoherentAD, that first generates multiple candidate descriptions for each AD time interval, and then performs auto-regressive selection across the sequence to form a coherent and informative narrative. To evaluate AD sequences holistically, we introduce a sequence-level metric, StoryRecall, which measures how well the predicted ADs convey the ground truth narrative, alongside repetition metrics that capture the redundancy across consecutive AD outputs. Our method produces coherent AD sequences with enhanced narrative understanding, outperforming prior approaches that rely on independent generations.
☆ A Critical Study of Automatic Evaluation in Sign Language Translation LREC 2026
Automatic evaluation metrics are crucial for advancing sign language translation (SLT). Current SLT evaluation metrics, such as BLEU and ROUGE, are only text-based, and it remains unclear to what extent text-based metrics can reliably capture the quality of SLT outputs. To address this gap, we investigate the limitations of text-based SLT evaluation metrics by analyzing six metrics, including BLEU, chrF, and ROUGE, as well as BLEURT on the one hand, and large language model (LLM)-based evaluators such as G-Eval and GEMBA zero-shot direct assessment on the other hand. Specifically, we assess the consistency and robustness of these metrics under three controlled conditions: paraphrasing, hallucinations in model outputs, and variations in sentence length. Our analysis highlights the limitations of lexical overlap metrics and demonstrates that while LLM-based evaluators better capture semantic equivalence often missed by conventional metrics, they can also exhibit bias toward LLM-paraphrased translations. Moreover, although all metrics are able to detect hallucinations, BLEU tends to be overly sensitive, whereas BLEURT and LLM-based evaluators are comparatively lenient toward subtle cases. This motivates the need for multimodal evaluation frameworks that extend beyond text-based metrics to enable a more holistic assessment of SLT outputs.
comment: Submitted to the LREC 2026 conference
☆ Depth and Autonomy: A Framework for Evaluating LLM Applications in Social Science Research
Large language models (LLMs) are increasingly utilized by researchers across a wide range of domains, and qualitative social science is no exception; however, this adoption faces persistent challenges, including interpretive bias, low reliability, and weak auditability. We introduce a framework that situates LLM usage along two dimensions, interpretive depth and autonomy, thereby offering a straightforward way to classify LLM applications in qualitative research and to derive practical design recommendations. We present the state of the literature with respect to these two dimensions, based on all published social science papers available on Web of Science that use LLMs as a tool and not strictly as the subject of study. Rather than granting models expansive freedom, our approach encourages researchers to decompose tasks into manageable segments, much as they would when delegating work to capable undergraduate research assistants. By maintaining low levels of autonomy and selectively increasing interpretive depth only where warranted and under supervision, one can plausibly reap the benefits of LLMs while preserving transparency and reliability.
comment: Presented at the Annual Meeting of the American Political Science Association, Vancouver, BC, September 11--14 2025
☆ RLMEval: Evaluating Research-Level Neural Theorem Proving EMNLP 2025
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.
comment: Accepted to EMNLP 2025 Findings. RLMEval benchmark released: https://github.com/augustepoiroux/RLMEval
☆ Implicature in Interaction: Understanding Implicature Improves Alignment in Human-LLM Interaction
The rapid advancement of Large Language Models (LLMs) is positioning language at the core of human-computer interaction (HCI). We argue that advancing HCI requires attention to the linguistic foundations of interaction, particularly implicature (meaning conveyed beyond explicit statements through shared context) which is essential for human-AI (HAI) alignment. This study examines LLMs' ability to infer user intent embedded in context-driven prompts and whether understanding implicature improves response generation. Results show that larger models approximate human interpretations more closely, while smaller models struggle with implicature inference. Furthermore, implicature-based prompts significantly enhance the perceived relevance and quality of responses across models, with notable gains in smaller models. Overall, 67.6% of participants preferred responses with implicature-embedded prompts to literal ones, highlighting a clear preference for contextually nuanced communication. Our work contributes to understanding how linguistic theory can be used to address the alignment problem by making HAI interaction more natural and contextually grounded.
comment: The manuscript is approximately 7360 words and contains 12 figures and 6 tables
☆ Seeing, Signing, and Saying: A Vision-Language Model-Assisted Pipeline for Sign Language Data Acquisition and Curation from Social Media
Most existing sign language translation (SLT) datasets are limited in scale, lack multilingual coverage, and are costly to curate due to their reliance on expert annotation and controlled recording setup. Recently, Vision Language Models (VLMs) have demonstrated strong capabilities as evaluators and real-time assistants. Despite these advancements, their potential remains untapped in the context of sign language dataset acquisition. To bridge this gap, we introduce the first automated annotation and filtering framework that utilizes VLMs to reduce reliance on manual effort while preserving data quality. Our method is applied to TikTok videos across eight sign languages and to the already curated YouTube-SL-25 dataset in German Sign Language for the purpose of additional evaluation. Our VLM-based pipeline includes a face visibility detection, a sign activity recognition, a text extraction from video content, and a judgment step to validate alignment between video and text, implementing generic filtering, annotation and validation steps. Using the resulting corpus, TikTok-SL-8, we assess the performance of two off-the-shelf SLT models on our filtered dataset for German and American Sign Languages, with the goal of establishing baselines and evaluating the robustness of recent models on automatically extracted, slightly noisy data. Our work enables scalable, weakly supervised pretraining for SLT and facilitates data acquisition from social media.
comment: Accepted by RANLP 2025
☆ Serve Programs, Not Prompts SOSP 2025
Current large language model (LLM) serving systems, primarily designed for text completion, are neither efficient nor adaptable for increasingly complex LLM applications due to their inflexible design. We propose a new LLM serving system architecture that serves programs instead of prompts to address this problem. These programs, called LLM Inference Programs (LIPs), allow users to customize token prediction and KV cache management at runtime and to offload parts of their application logic, such as tool execution, to the server. We describe an example of this architecture through a system named Symphony, which functions as an operating system for LIPs. Symphony exposes LLM model computations via system calls and virtualizes KV cache with a dedicated file system, while ensuring GPU efficiency with a two-level process scheduling scheme. Symphony has the potential to open the door to a more efficient and extensible ecosystem for LLM applications.
comment: HotOS 2025. Follow-up implementation work (SOSP 2025) is available at arXiv:2510.24051
☆ BhashaBench V1: A Comprehensive Benchmark for the Quadrant of Indic Domains
The rapid advancement of large language models(LLMs) has intensified the need for domain and culture specific evaluation. Existing benchmarks are largely Anglocentric and domain-agnostic, limiting their applicability to India-centric contexts. To address this gap, we introduce BhashaBench V1, the first domain-specific, multi-task, bilingual benchmark focusing on critical Indic knowledge systems. BhashaBench V1 contains 74,166 meticulously curated question-answer pairs, with 52,494 in English and 21,672 in Hindi, sourced from authentic government and domain-specific exams. It spans four major domains: Agriculture, Legal, Finance, and Ayurveda, comprising 90+ subdomains and covering 500+ topics, enabling fine-grained evaluation. Evaluation of 29+ LLMs reveals significant domain and language specific performance gaps, with especially large disparities in low-resource domains. For instance, GPT-4o achieves 76.49% overall accuracy in Legal but only 59.74% in Ayurveda. Models consistently perform better on English content compared to Hindi across all domains. Subdomain-level analysis shows that areas such as Cyber Law, International Finance perform relatively well, while Panchakarma, Seed Science, and Human Rights remain notably weak. BhashaBench V1 provides a comprehensive dataset for evaluating large language models across India's diverse knowledge domains. It enables assessment of models' ability to integrate domain-specific knowledge with bilingual understanding. All code, benchmarks, and resources are publicly available to support open research.
☆ Roleplaying with Structure: Synthetic Therapist-Client Conversation Generation from Questionnaires
The development of AI for mental health is hindered by a lack of authentic therapy dialogues, due to strict privacy regulations and the fact that clinical sessions were historically rarely recorded. We present an LLM-driven pipeline that generates synthetic counseling dialogues based on structured client profiles and psychological questionnaires. Grounded on the principles of Cognitive Behavioral Therapy (CBT), our method creates synthetic therapeutic conversations for clinical disorders such as anxiety and depression. Our framework, SQPsych (Structured Questionnaire-based Psychotherapy), converts structured psychological input into natural language dialogues through therapist-client simulations. Due to data governance policies and privacy restrictions prohibiting the transmission of clinical questionnaire data to third-party services, previous methodologies relying on proprietary models are infeasible in our setting. We address this limitation by generating a high-quality corpus using open-weight LLMs, validated through human expert evaluation and LLM-based assessments. Our SQPsychLLM models fine-tuned on SQPsychConv achieve strong performance on counseling benchmarks, surpassing baselines in key therapeutic skills. Our findings highlight the potential of synthetic data to enable scalable, data-secure, and clinically informed AI for mental health support. We will release our code, models, and corpus at https://ai-mh.github.io/SQPsych
☆ Hallucinations in Bibliographic Recommendation: Citation Frequency as a Proxy for Training Data Redundancy
Large language models (LLMs) have been increasingly applied to a wide range of tasks, from natural language understanding to code generation. While they have also been used to assist in bibliographic recommendation, the hallucination of non-existent papers remains a major issue. Building on prior studies, this study hypothesizes that an LLM's ability to correctly produce bibliographic information depends on whether the underlying knowledge is generated or memorized, with highly cited papers (i.e., more frequently appear in the training corpus) showing lower hallucination rates. We therefore assume citation count as a proxy for training data redundancy (i.e., the frequency with which a given bibliographic record is repeatedly represented in the pretraining corpus) and investigate how citation frequency affects hallucinated references in LLM outputs. Using GPT-4.1, we generated and manually verified 100 bibliographic records across twenty computer-science domains, and measured factual consistency via cosine similarity between generated and authentic metadata. The results revealed that (i) hallucination rates vary across research domains, (ii) citation count is strongly correlated with factual accuracy, and (iii) bibliographic information becomes almost verbatimly memorized beyond approximately 1,000 citations. These findings suggest that highly cited papers are nearly verbatimly retained in the model, indicating a threshold where generalization shifts into memorization.
☆ Monitoring Transformative Technological Convergence Through LLM-Extracted Semantic Entity Triple Graphs
Forecasting transformative technologies remains a critical but challenging task, particularly in fast-evolving domains such as Information and Communication Technologies (ICTs). Traditional expert-based methods struggle to keep pace with short innovation cycles and ambiguous early-stage terminology. In this work, we propose a novel, data-driven pipeline to monitor the emergence of transformative technologies by identifying patterns of technological convergence. Our approach leverages advances in Large Language Models (LLMs) to extract semantic triples from unstructured text and construct a large-scale graph of technology-related entities and relations. We introduce a new method for grouping semantically similar technology terms (noun stapling) and develop graph-based metrics to detect convergence signals. The pipeline includes multi-stage filtering, domain-specific keyword clustering, and a temporal trend analysis of topic co-occurence. We validate our methodology on two complementary datasets: 278,625 arXiv preprints (2017--2024) to capture early scientific signals, and 9,793 USPTO patent applications (2018-2024) to track downstream commercial developments. Our results demonstrate that the proposed pipeline can identify both established and emerging convergence patterns, offering a scalable and generalizable framework for technology forecasting grounded in full-text analysis.
☆ CLASS-IT: Conversational and Lecture-Aligned Small-Scale Instruction Tuning for BabyLMs EMNLP2025
This work investigates whether small-scale LMs can benefit from instruction tuning. We compare conversational and question-answering instruction tuning datasets, applied either in a merged or sequential curriculum, using decoder-only models with 100M and 140M parameters. Evaluation spans both fine-tuning (SuperGLUE) and zero-shot (BLiMP, EWoK, WUGs, entity tracking, and psycholinguistic correlation) settings. Results show that instruction tuning yields small but consistent gains in fine-tuning scenarios, with sequential curricula outperforming merged data; however, improvements do not consistently transfer to zero-shot tasks, suggesting a trade-off between interaction-focused adaptation and broad linguistic generalization. These results highlight both the potential and the constraints of adapting human-inspired learning strategies to low-resource LMs, and point toward hybrid, curriculum-based approaches for enhancing generalization under ecological training limits.
comment: Paper accepted for oral presentation at the BabyLM Challange 2025 (EMNLP2025)
☆ Not ready for the bench: LLM legal interpretation is unstable and out of step with human judgments
Legal interpretation frequently involves assessing how a legal text, as understood by an 'ordinary' speaker of the language, applies to the set of facts characterizing a legal dispute in the U.S. judicial system. Recent scholarship has proposed that legal practitioners add large language models (LLMs) to their interpretive toolkit. This work offers an empirical argument against LLM interpretation as recently practiced by legal scholars and federal judges. Our investigation in English shows that models do not provide stable interpretive judgments: varying the question format can lead the model to wildly different conclusions. Moreover, the models show weak to moderate correlation with human judgment, with large variance across model and question variant, suggesting that it is dangerous to give much credence to the conclusions produced by generative AI.
☆ CRMWeaver: Building Powerful Business Agent via Agentic RL and Shared Memories
Recent years have witnessed the rapid development of LLM-based agents, which shed light on using language agents to solve complex real-world problems. A prominent application lies in business agents, which interact with databases and internal knowledge bases via tool calls to fulfill diverse user requirements. However, this domain is characterized by intricate data relationships and a wide range of heterogeneous tasks, from statistical data queries to knowledge-based question-answering. To address these challenges, we propose CRMWeaver, a novel approach that enhances business agents in such complex settings. To acclimate the agentic model to intricate business environments, we employ a synthesis data generation and RL-based paradigm during training, which significantly improves the model's ability to handle complex data and varied tasks. During inference, a shared memories mechanism is introduced, prompting the agent to learn from task guidelines in similar problems, thereby further boosting its effectiveness and generalization, especially in unseen scenarios. We validate the efficacy of our approach on the CRMArena-Pro dataset, where our lightweight model achieves competitive results in both B2B and B2C business scenarios, underscoring its practical value for real-world applications.
☆ GAP: Graph-Based Agent Planning with Parallel Tool Use and Reinforcement Learning
Autonomous agents powered by large language models (LLMs) have shown impressive capabilities in tool manipulation for complex task-solving. However, existing paradigms such as ReAct rely on sequential reasoning and execution, failing to exploit the inherent parallelism among independent sub-tasks. This sequential bottleneck leads to inefficient tool utilization and suboptimal performance in multi-step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a novel framework that explicitly models inter-task dependencies through graph-based planning to enable adaptive parallel and serial tool execution. Our approach trains agent foundation models to decompose complex tasks into dependency-aware sub-task graphs, autonomously determining which tools can be executed in parallel and which must follow sequential dependencies. This dependency-aware orchestration achieves substantial improvements in both execution efficiency and task accuracy. To train GAP, we construct a high-quality dataset of graph-based planning traces derived from the Multi-Hop Question Answering (MHQA) benchmark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on the curated dataset, followed by reinforcement learning (RL) with a correctness-based reward function on strategically sampled queries where tool-based reasoning provides maximum value. Experimental results on MHQA datasets demonstrate that GAP significantly outperforms traditional ReAct baselines, particularly on multi-step retrieval tasks, while achieving dramatic improvements in tool invocation efficiency through intelligent parallelization. The project page is available at: https://github.com/WJQ7777/Graph-Agent-Planning.
☆ Parrot: A Training Pipeline Enhances Both Program CoT and Natural Language CoT for Reasoning
Natural language chain-of-thought (N-CoT) and Program chain-of-thought (P-CoT) have emerged as two primary paradigms for large language models (LLMs) to solve mathematical reasoning problems. Current research typically endeavors to achieve unidirectional enhancement: P-CoT enhanced N-CoT or N-CoT enhanced P-CoT. In this paper, we seek to fully unleash the two paradigms' strengths for mutual enhancement and ultimately achieve simultaneous improvements. We conduct a detailed analysis of the error types across two paradigms, based on which we propose Parrot, a novel training pipeline for mathematical problems: 1) Three target-designed subtasks integrate sequential P-CoT and N-CoT generation. 2) A subtask hybrid training strategy to facilitate natural language semantic transferability. 3) The converted N-CoT auxiliary reward is designed to alleviate the sparse rewards in P-CoT optimization. Extensive experiments demonstrate that Parrot significantly enhances both the performance of N-CoT and P-CoT, especially on N-CoT. Using Parrot SFT, the N-CoT performance of LLaMA2 and CodeLLaMA achieve gains of +21.87 and +21.48 on MathQA over the RL baseline, which is resource-intensive.
☆ Teaching Sarcasm: Few-Shot Multimodal Sarcasm Detection via Distillation to a Parameter-Efficient Student
Multimodal sarcasm detection is challenging, especially in low-resource settings where subtle image-text contradictions are hard to learn due to scarce annotated data, which hinders the model's performance. Parameter-efficient fine-tuning (PEFT) methods like adapters, LoRA, and prompt tuning reduce overfitting but struggle to reach optimal performance due to limited supervision from few-shot data. We propose PEKD, a unified framework that enhances PEFT methods via distillation from an expert model trained on large-scale sarcasm data, which acts as the teacher. To mitigate unreliable signals from the teacher, we introduce an entropy-aware gating mechanism that dynamically adjusts the distillation strength based on teacher confidence. Experiments on two public datasets demonstrate that our PEKD framework enables PEFT methods to outperform both prior parameter-efficient approaches and large multimodal models, achieving strong results in the few-shot scenario. The framework is modular and adaptable to a wide range of multimodal models and tasks.
☆ Adapting Small Language Models to Low-Resource Domains: A Case Study in Hindi Tourism QA
Domain-specific question answering in low-resource languages faces two key challenges: scarcity of annotated datasets and limited domain knowledge in general-purpose language models. In this work, we present a multi-stage finetuning strategy to adapt lightweight language models to the Hindi tourism domain by leveraging both original and synthetic training data. Synthetic question-answer pairs are generated using large LLMs (LLaMA-70B, Phi-14B) and used to augment the limited original dataset. We explore several training methodologies and analyse their impact on domain generalisation. Our results demonstrate that large models can efficiently generate synthetic data, while small models can effectively adapt to it, offering a scalable pathway for low-resource, domain-specific QA.
comment: Accepted at the Forum for Information Retrieval Evaluation 2025 (VATIKA Track)
☆ From Medical Records to Diagnostic Dialogues: A Clinical-Grounded Approach and Dataset for Psychiatric Comorbidity
Psychiatric comorbidity is clinically significant yet challenging due to the complexity of multiple co-occurring disorders. To address this, we develop a novel approach integrating synthetic patient electronic medical record (EMR) construction and multi-agent diagnostic dialogue generation. We create 502 synthetic EMRs for common comorbid conditions using a pipeline that ensures clinical relevance and diversity. Our multi-agent framework transfers the clinical interview protocol into a hierarchical state machine and context tree, supporting over 130 diagnostic states while maintaining clinical standards. Through this rigorous process, we construct PsyCoTalk, the first large-scale dialogue dataset supporting comorbidity, containing 3,000 multi-turn diagnostic dialogues validated by psychiatrists. This dataset enhances diagnostic accuracy and treatment planning, offering a valuable resource for psychiatric comorbidity research. Compared to real-world clinical transcripts, PsyCoTalk exhibits high structural and linguistic fidelity in terms of dialogue length, token distribution, and diagnostic reasoning strategies. Licensed psychiatrists confirm the realism and diagnostic validity of the dialogues. This dataset enables the development and evaluation of models capable of multi-disorder psychiatric screening in a single conversational pass.
☆ ProMediate: A Socio-cognitive framework for evaluating proactive agents in multi-party negotiation
While Large Language Models (LLMs) are increasingly used in agentic frameworks to assist individual users, there is a growing need for agents that can proactively manage complex, multi-party collaboration. Systematic evaluation methods for such proactive agents remain scarce, limiting progress in developing AI that can effectively support multiple people together. Negotiation offers a demanding testbed for this challenge, requiring socio-cognitive intelligence to navigate conflicting interests between multiple participants and multiple topics and build consensus. Here, we present ProMediate, the first framework for evaluating proactive AI mediator agents in complex, multi-topic, multi-party negotiations. ProMediate consists of two core components: (i) a simulation testbed based on realistic negotiation cases and theory-driven difficulty levels (ProMediate-Easy, ProMediate-Medium, and ProMediate-Hard), with a plug-and-play proactive AI mediator grounded in socio-cognitive mediation theories, capable of flexibly deciding when and how to intervene; and (ii) a socio-cognitive evaluation framework with a new suite of metrics to measure consensus changes, intervention latency, mediator effectiveness, and intelligence. Together, these components establish a systematic framework for assessing the socio-cognitive intelligence of proactive AI agents in multi-party settings. Our results show that a socially intelligent mediator agent outperforms a generic baseline, via faster, better-targeted interventions. In the ProMediate-Hard setting, our social mediator increases consensus change by 3.6 percentage points compared to the generic baseline (10.65\% vs 7.01\%) while being 77\% faster in response (15.98s vs. 3.71s). In conclusion, ProMediate provides a rigorous, theory-grounded testbed to advance the development of proactive, socially intelligent agents.
☆ RAVR: Reference-Answer-guided Variational Reasoning for Large Language Models
Reinforcement learning (RL) can refine the reasoning abilities of large language models (LLMs), but critically depends on a key prerequisite: the LLM can already generate high-utility reasoning paths with non-negligible probability. For tasks beyond the LLM's current competence, such reasoning path can be hard to sample, and learning risks reinforcing familiar but suboptimal reasoning. We are motivated by the insight from cognitive science that Why is this the answer is often an easier question than What is the answer, as it avoids the heavy cognitive load of open-ended exploration, opting instead for explanatory reconstruction-systematically retracing the reasoning that links a question to its answer. We show that LLMs can similarly leverage answers to derive high-quality reasoning paths. We formalize this phenomenon and prove that conditioning on answer provably increases the expected utility of sampled reasoning paths, thereby transforming intractable problems into learnable ones. Building on this insight, we introduce RAVR (Reference-Answer-guided Variational Reasoning), an end-to-end framework that uses answer-conditioned reasoning as a variational surrogate for question-only reasoning. Experiments in both general and math domains demonstrate consistent improvements over strong baselines. We further analyze the reasoning behavior and find that RAVR reduces hesitation, strengthens conclusion consolidation, and promotes problem-specific strategies in reasoning.
comment: 17 pages, 11 figures
☆ Testing Cross-Lingual Text Comprehension In LLMs Using Next Sentence Prediction
While large language models are trained on massive datasets, this data is heavily skewed towards English. Does their impressive performance reflect genuine ability or just this data advantage? To find out, we tested them in a setting where they could not rely on data abundance: low-resource languages. Building on prior work Agarwal et al. (2025) that used Next Sentence Prediction (NSP) as a test, we created a large-scale benchmark with 10,000 questions each for English (a high-resource language), Swahili (medium-resource), and Hausa (low-resource). We then tested several top models, including GPT-4 Turbo, Gemini 1.5 Flash, and LLaMA 3 70B, to see how their performance holds up. The results painted a clear picture of how levels of language resources impact outcomes. While all models excelled in English, their accuracy dropped in Swahili and fell sharply in Hausa, with LLaMA 3 struggling the most. The story became even more interesting when we introduced Chain-of-Thought (CoT) prompting. For the struggling LLaMA 3, CoT acted as a helpful guide, significantly boosting its accuracy. However, for the more capable GPT-4 and Gemini, the same technique often backfired, leading to a kind of "overthinking" that hurt their results in the cross-lingual context. This reveals that Chain-of-Thought is not a universal solution; its effectiveness depends heavily on the model's baseline capability and the specific context of the task. Our framework pinpoints LLM weaknesses, highlights when CoT helps or hinders cross-lingual NSP performance, and factors influencing their decisions.
☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
☆ Explainable Disentanglement on Discrete Speech Representations for Noise-Robust ASR SC 2025
Discrete audio representations are gaining traction in speech modeling due to their interpretability and compatibility with large language models, but are not always optimized for noisy or real-world environments. Building on existing works that quantize Whisper embeddings for speech-to-unit modeling, we propose disentangling semantic speech content from background noise in the latent space. Our end-to-end model separates clean speech in the form of codebook tokens, while extracting interpretable noise vectors as quantization residue which are supervised via a lightweight classifier. We show that our approach improves alignment between clean/noisy speech and text, producing speech tokens that display a high degree of noiseinvariance, and improves ASR performance. Keeping Whisper frozen, we show an 82% reduction in error rate compared to Whisper, and 35% improvement over baseline methods on the VBDemand test set. Further analyses show that the learned token space generalizes well to both seen and unseen acoustic conditions.
comment: Awarded Best Student Paper at APSIPA ASC 2025
☆ A Survey on Unlearning in Large Language Models
The advancement of Large Language Models (LLMs) has revolutionized natural language processing, yet their training on massive corpora poses significant risks, including the memorization of sensitive personal data, copyrighted material, and knowledge that could facilitate malicious activities. To mitigate these issues and align with legal and ethical standards such as the "right to be forgotten", machine unlearning has emerged as a critical technique to selectively erase specific knowledge from LLMs without compromising their overall performance. This survey provides a systematic review of over 180 papers on LLM unlearning published since 2021, focusing exclusively on large-scale generative models. Distinct from prior surveys, we introduce novel taxonomies for both unlearning methods and evaluations. We clearly categorize methods into training-time, post-training, and inference-time based on the training stage at which unlearning is applied. For evaluations, we not only systematically compile existing datasets and metrics but also critically analyze their advantages, disadvantages, and applicability, providing practical guidance to the research community. In addition, we discuss key challenges and promising future research directions. Our comprehensive overview aims to inform and guide the ongoing development of secure and reliable LLMs.
Pretraining Strategies using Monolingual and Parallel Data for Low-Resource Machine Translation
This research article examines the effectiveness of various pretraining strategies for developing machine translation models tailored to low-resource languages. Although this work considers several low-resource languages, including Afrikaans, Swahili, and Zulu, the translation model is specifically developed for Lingala, an under-resourced African language, building upon the pretraining approach introduced by Reid and Artetxe (2021), originally designed for high-resource languages. Through a series of comprehensive experiments, we explore different pretraining methodologies, including the integration of multiple languages and the use of both monolingual and parallel data during the pretraining phase. Our findings indicate that pretraining on multiple languages and leveraging both monolingual and parallel data significantly enhance translation quality. This study offers valuable insights into effective pretraining strategies for low-resource machine translation, helping to bridge the performance gap between high-resource and low-resource languages. The results contribute to the broader goal of developing more inclusive and accurate NLP models for marginalized communities and underrepresented populations. The code and datasets used in this study are publicly available to facilitate further research and ensure reproducibility, with the exception of certain data that may no longer be accessible due to changes in public availability.
comment: 8 pages, 1. figure
☆ DEBATE: A Large-Scale Benchmark for Role-Playing LLM Agents in Multi-Agent, Long-Form Debates
Accurately modeling opinion change through social interactions is crucial for addressing issues like misinformation and polarization. While role-playing large language models (LLMs) offer a promising way to simulate human-like interactions, existing research shows that single-agent alignment does not guarantee authentic multi-agent group dynamics. Current LLM role-play setups often produce unnatural dynamics (e.g., premature convergence), without an empirical benchmark to measure authentic human opinion trajectories. To bridge this gap, we introduce DEBATE, the first large-scale empirical benchmark explicitly designed to evaluate the authenticity of the interaction between multi-agent role-playing LLMs. DEBATE contains 29,417 messages from multi-round debate conversations among over 2,792 U.S.-based participants discussing 107 controversial topics, capturing both publicly-expressed messages and privately-reported opinions. Using DEBATE, we systematically evaluate and identify critical discrepancies between simulated and authentic group dynamics. We further demonstrate DEBATE's utility for aligning LLMs with human behavior through supervised fine-tuning, achieving improvements in surface-level metrics (e.g., ROUGE-L and message length) while highlighting limitations in deeper semantic alignment (e.g., semantic similarity). Our findings highlight both the potential and current limitations of role-playing LLM agents for realistically simulating human-like social dynamics.
☆ KnowCoder-A1: Incentivizing Agentic Reasoning Capability with Outcome Supervision for KBQA
Knowledge Base Question Answering (KBQA) aims to answer natural-language questions over a structured Knowledge Base (KB). Recent work improves KBQA by adopting an agentic reasoning paradigm, in which Large Language Models (LLMs) iteratively decompose a question, generate its corresponding logical queries, and interact with the KB to derive the answer. However, these methods typically fine-tune LLMs on reasoning trajectories synthesized via process supervision, which offers weak incentives for exploration and thus fails to strengthen the agentic reasoning ability. In this paper, we propose KnowCoder-A1, an LLM that can autonomously perform agentic reasoning on KBs to obtain answers. To incentivize autonomous exploration, KnowCoder-A1 trains the LLM under outcome-only supervision via a multi-stage curriculum reinforcement learning with an easy-to-hard curriculum. To establish foundational agentic capabilities, KnowCoder-A1 first fine-tunes the LLM on a small set of high-quality trajectories obtained through outcome-based rejection sampling. Then, to alleviate the reward sparsity inherent in outcome-only supervision, it applies multi-stage curriculum RL with reward schedules that progress from easy to hard. Trained with outcome-only supervision, KnowCoder-A1 exhibits powerful reasoning behaviors and consistently outperforms prior approaches across three mainstream datasets. Notably, on the zero-shot subset of GrailQA, KnowCoder-A1 achieves up to an 11.1% relative improvement while using only one-twelfth of the training data, demonstrating strong agentic reasoning capabilities.
☆ BioCoref: Benchmarking Biomedical Coreference Resolution with LLMs
Coreference resolution in biomedical texts presents unique challenges due to complex domain-specific terminology, high ambiguity in mention forms, and long-distance dependencies between coreferring expressions. In this work, we present a comprehensive evaluation of generative large language models (LLMs) for coreference resolution in the biomedical domain. Using the CRAFT corpus as our benchmark, we assess the LLMs' performance with four prompting experiments that vary in their use of local, contextual enrichment, and domain-specific cues such as abbreviations and entity dictionaries. We benchmark these approaches against a discriminative span-based encoder, SpanBERT, to compare the efficacy of generative versus discriminative methods. Our results demonstrate that while LLMs exhibit strong surface-level coreference capabilities, especially when supplemented with domain-grounding prompts, their performance remains sensitive to long-range context and mentions ambiguity. Notably, the LLaMA 8B and 17B models show superior precision and F1 scores under entity-augmented prompting, highlighting the potential of lightweight prompt engineering for enhancing LLM utility in biomedical NLP tasks.
☆ TOPol: Capturing and Explaining Multidimensional Semantic Polarity Fields and Vectors
Traditional approaches to semantic polarity in computational linguistics treat sentiment as a unidimensional scale, overlooking the multidimensional structure of language. This work introduces TOPol (Topic-Orientation POLarity), a semi-unsupervised framework for reconstructing and interpreting multidimensional narrative polarity fields under human-on-the-loop (HoTL) defined contextual boundaries (CBs). The framework embeds documents using a transformer-based large language model (tLLM), applies neighbor-tuned UMAP projection, and segments topics via Leiden partitioning. Given a CB between discourse regimes A and B, TOPol computes directional vectors between corresponding topic-boundary centroids, yielding a polarity field that quantifies fine-grained semantic displacement during regime shifts. This vectorial representation enables assessing CB quality and detecting polarity changes, guiding HoTL CB refinement. To interpret identified polarity vectors, the tLLM compares their extreme points and produces contrastive labels with estimated coverage. Robustness analyses show that only CB definitions (the main HoTL-tunable parameter) significantly affect results, confirming methodological stability. We evaluate TOPol on two corpora: (i) U.S. Central Bank speeches around a macroeconomic breakpoint, capturing non-affective semantic shifts, and (ii) Amazon product reviews across rating strata, where affective polarity aligns with NRC valence. Results demonstrate that TOPol consistently captures both affective and non-affective polarity transitions, providing a scalable, generalizable, and interpretable framework for context-sensitive multidimensional discourse analysis.
comment: 7 pages, 3 figures and 2 tables
☆ Can LLMs Estimate Cognitive Complexity of Reading Comprehension Items?
Estimating the cognitive complexity of reading comprehension (RC) items is crucial for assessing item difficulty before it is administered to learners. Unlike syntactic and semantic features, such as passage length or semantic similarity between options, cognitive features that arise during answer reasoning are not readily extractable using existing NLP tools and have traditionally relied on human annotation. In this study, we examine whether large language models (LLMs) can estimate the cognitive complexity of RC items by focusing on two dimensions-Evidence Scope and Transformation Level-that indicate the degree of cognitive burden involved in reasoning about the answer. Our experimental results demonstrate that LLMs can approximate the cognitive complexity of items, indicating their potential as tools for prior difficulty analysis. Further analysis reveals a gap between LLMs' reasoning ability and their metacognitive awareness: even when they produce correct answers, they sometimes fail to correctly identify the features underlying their own reasoning process.
☆ GAPMAP: Mapping Scientific Knowledge Gaps in Biomedical Literature Using Large Language Models
Scientific progress is driven by the deliberate articulation of what remains unknown. This study investigates the ability of large language models (LLMs) to identify research knowledge gaps in the biomedical literature. We define two categories of knowledge gaps: explicit gaps, clear declarations of missing knowledge; and implicit gaps, context-inferred missing knowledge. While prior work has focused mainly on explicit gap detection, we extend this line of research by addressing the novel task of inferring implicit gaps. We conducted two experiments on almost 1500 documents across four datasets, including a manually annotated corpus of biomedical articles. We benchmarked both closed-weight models (from OpenAI) and open-weight models (Llama and Gemma 2) under paragraph-level and full-paper settings. To address the reasoning of implicit gaps inference, we introduce \textbf{\small TABI}, a Toulmin-Abductive Bucketed Inference scheme that structures reasoning and buckets inferred conclusion candidates for validation. Our results highlight the robust capability of LLMs in identifying both explicit and implicit knowledge gaps. This is true for both open- and closed-weight models, with larger variants often performing better. This suggests a strong ability of LLMs for systematically identifying candidate knowledge gaps, which can support early-stage research formulation, policymakers, and funding decisions. We also report observed failure modes and outline directions for robust deployment, including domain adaptation, human-in-the-loop verification, and benchmarking across open- and closed-weight models.
☆ Evaluating Emotion Recognition in Spoken Language Models on Emotionally Incongruent Speech
Advancements in spoken language processing have driven the development of spoken language models (SLMs), designed to achieve universal audio understanding by jointly learning text and audio representations for a wide range of tasks. Although promising results have been achieved, there is growing discussion regarding these models' generalization capabilities and the extent to which they truly integrate audio and text modalities in their internal representations. In this work, we evaluate four SLMs on the task of speech emotion recognition using a dataset of emotionally incongruent speech samples, a condition under which the semantic content of the spoken utterance conveys one emotion while speech expressiveness conveys another. Our results indicate that SLMs rely predominantly on textual semantics rather than speech emotion to perform the task, indicating that text-related representations largely dominate over acoustic representations. We release both the code and the Emotionally Incongruent Synthetic Speech dataset (EMIS) to the community.
comment: This work has been submitted to the IEEE for possible publication
☆ Rethinking Cross-lingual Alignment: Balancing Transfer and Cultural Erasure in Multilingual LLMs
Cross-lingual alignment (CLA) aims to align multilingual representations, enabling Large Language Models (LLMs) to seamlessly transfer knowledge across languages. While intuitive, we hypothesize, this pursuit of representational convergence can inadvertently cause "cultural erasure", the functional loss of providing culturally-situated responses that should diverge based on the query language. In this work, we systematically analyze this trade-off by introducing a holistic evaluation framework, the transfer-localization plane, which quantifies both desirable knowledge transfer and undesirable cultural erasure. Using this framework, we re-evaluate recent CLA approaches and find that they consistently improve factual transfer at the direct cost of cultural localization across all six languages studied. Our investigation into the internal representations of these models reveals a key insight: universal factual transfer and culturally-specific knowledge are optimally steerable at different model layers. Based on this finding, we propose Surgical Steering, a novel inference-time method that disentangles these two objectives. By applying targeted activation steering to distinct layers, our approach achieves a better balance between the two competing dimensions, effectively overcoming the limitations of current alignment techniques.
☆ PORTool: Tool-Use LLM Training with Rewarded Tree
Current tool-use large language models (LLMs) are trained on static datasets, enabling them to interact with external tools and perform multi-step, tool-integrated reasoning, which produces tool-call trajectories. However, these models imitate how a query is resolved in a generic tool-call routine, thereby failing to explore possible solutions and demonstrating limited performance in an evolved, dynamic tool-call environment. In this work, we propose PORTool, a reinforcement learning (RL) method that encourages a tool-use LLM to explore various trajectories yielding the correct answer. Specifically, this method starts with generating multiple rollouts for a given query, and some of them share the first few tool-call steps, thereby forming a tree-like structure. Next, we assign rewards to each step, based on its ability to produce a correct answer and make successful tool calls. A shared step across different trajectories receives the same reward, while different steps under the same fork receive different rewards. Finally, these step-wise rewards are used to calculate fork-relative advantages, blended with trajectory-relative advantages, to train the LLM for tool use. The experiments utilize 17 tools to address user queries, covering both time-sensitive and time-invariant topics. We conduct ablation studies to systematically justify the necessity and the design robustness of step-wise rewards. Furthermore, we compare the proposed PORTool with other training approaches and demonstrate significant improvements in final accuracy and the number of tool-call steps.
☆ CAVE: Detecting and Explaining Commonsense Anomalies in Visual Environments
Humans can naturally identify, reason about, and explain anomalies in their environment. In computer vision, this long-standing challenge remains limited to industrial defects or unrealistic, synthetically generated anomalies, failing to capture the richness and unpredictability of real-world anomalies. In this work, we introduce CAVE, the first benchmark of real-world visual anomalies. CAVE supports three open-ended tasks: anomaly description, explanation, and justification; with fine-grained annotations for visual grounding and categorizing anomalies based on their visual manifestations, their complexity, severity, and commonness. These annotations draw inspiration from cognitive science research on how humans identify and resolve anomalies, providing a comprehensive framework for evaluating Vision-Language Models (VLMs) in detecting and understanding anomalies. We show that state-of-the-art VLMs struggle with visual anomaly perception and commonsense reasoning, even with advanced prompting strategies. By offering a realistic and cognitively grounded benchmark, CAVE serves as a valuable resource for advancing research in anomaly detection and commonsense reasoning in VLMs.
☆ Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning
Large Language Models (LLMs) often struggle with problems that require multi-step reasoning. For small-scale open-source models, Reinforcement Learning with Verifiable Rewards (RLVR) fails when correct solutions are rarely sampled even after many attempts, while Supervised Fine-Tuning (SFT) tends to overfit long demonstrations through rigid token-by-token imitation. To address this gap, we propose Supervised Reinforcement Learning (SRL), a framework that reformulates problem solving as generating a sequence of logical "actions". SRL trains the model to generate an internal reasoning monologue before committing to each action. It provides smoother rewards based on the similarity between the model's actions and expert actions extracted from the SFT dataset in a step-wise manner. This supervision offers richer learning signals even when all rollouts are incorrect, while encouraging flexible reasoning guided by expert demonstrations. As a result, SRL enables small models to learn challenging problems previously unlearnable by SFT or RLVR. Moreover, initializing training with SRL before refining with RLVR yields the strongest overall performance. Beyond reasoning benchmarks, SRL generalizes effectively to agentic software engineering tasks, establishing it as a robust and versatile training framework for reasoning-oriented LLMs.
☆ AttnCache: Accelerating Self-Attention Inference for LLM Prefill via Attention Cache
Large Language Models (LLMs) are widely used in generative applications such as chatting, code generation, and reasoning. However, many realworld workloads such as classification, question answering, recommendation, and text embedding rely solely on the prefill stage of inference, where the model encodes input sequences without performing autoregressive decoding. In these prefill only scenarios, the self-attention computation becomes the primary performance bottleneck due to its quadratic complexity with respect to sequence length. In this paper, we observe that semantically different sentences often produce similar attention maps across layers and heads. Building on this insight, we propose AttnCache, a framework that accelerates the prefill stage of LLM inference by retrieving and reusing similar attention maps. Based on an attention map memorization database, AttnCache employs efficient caching and similarity search techniques to identify and reuse pre-cached attention maps during inference, thereby reducing the computational overhead of self-attention. Experimental results show that AttnCache achieves an average of 1.2x end-to-end and 2x attention speedup on CPU, and 1.6x end-to-end and 3x attention speedup on GPU, with negligible accuracy degradation.
comment: 10 pages, 6 figures, submitted to Ninth Annual Conference on Machine Learning and Systems (MLSys'26)
☆ NeuronMM: High-Performance Matrix Multiplication for LLM Inference on AWS Trainium EuroSys'26
AI accelerators, customized to AI workloads, provide cost-effective and high-performance solutions for training and inference. Trainium, an AI accelerator recently developed by Amazon Web Services (AWS), provides an attractive option for LLM training and inference through its heterogeneous architecture. However, leveraging Trainium architecture for high performance can be challenging because of its systolic array architecture and special requirement on data layout. In this paper, we design high-performance matrix multiplication (matmul), a critical compute kernel, for LLM inference on Trainium. We introduce a series of techniques customized to Trainium based on kernel fusion and novel caching strategies to reduce data movement across the software-managed memory hierarchy, maximize SRAM bandwidth, and avoid expensive matrix transpose. Evaluating with nine datasets and four recent LLMs, we show that our system largely outperforms the state-of-the-art matmul implemented by AWS on Trainium: at the level of matmul kernel, it achieves an average 1.35x speedup (up to 2.22x), which translates to an average 1.66x speedup (up to 2.49x) for end-to-end LLM inference.
comment: 12 pages, 8 figures, submitted to the Proceedings of the Twenty-First European Conference on Computer Systems (EuroSys'26)
☆ SymCode: A Neurosymbolic Approach to Mathematical Reasoning via Verifiable Code Generation
Large Language Models (LLMs) often struggle with complex mathematical reasoning, where prose-based generation leads to unverified and arithmetically unsound solutions. Current prompting strategies like Chain of Thought still operate within this unreliable medium, lacking a mechanism for deterministic verification. To address these limitations, we introduce SymCode, a neurosymbolic framework that reframes mathematical problem-solving as a task of verifiable code generation using the SymPy library. We evaluate SymCode on challenging benchmarks, including MATH-500 and OlympiadBench, demonstrating significant accuracy improvements of up to 13.6 percentage points over baselines. Our analysis shows that SymCode is not only more token-efficient but also fundamentally shifts model failures from opaque logical fallacies towards transparent, programmatic errors. By grounding LLM reasoning in a deterministic symbolic engine, SymCode represents a key step towards more accurate and trustworthy AI in formal domains.
☆ Semantic Label Drift in Cross-Cultural Translation
Machine Translation (MT) is widely employed to address resource scarcity in low-resource languages by generating synthetic data from high-resource counterparts. While sentiment preservation in translation has long been studied, a critical but underexplored factor is the role of cultural alignment between source and target languages. In this paper, we hypothesize that semantic labels are drifted or altered during MT due to cultural divergence. Through a series of experiments across culturally sensitive and neutral domains, we establish three key findings: (1) MT systems, including modern Large Language Models (LLMs), induce label drift during translation, particularly in culturally sensitive domains; (2) unlike earlier statistical MT tools, LLMs encode cultural knowledge, and leveraging this knowledge can amplify label drift; and (3) cultural similarity or dissimilarity between source and target languages is a crucial determinant of label preservation. Our findings highlight that neglecting cultural factors in MT not only undermines label fidelity but also risks misinterpretation and cultural conflict in downstream applications.
☆ Revisiting Multilingual Data Mixtures in Language Model Pretraining
The impact of different multilingual data mixtures in pretraining large language models (LLMs) has been a topic of ongoing debate, often raising concerns about potential trade-offs between language coverage and model performance (i.e., the curse of multilinguality). In this work, we investigate these assumptions by training 1.1B and 3B parameter LLMs on diverse multilingual corpora, varying the number of languages from 25 to 400. Our study challenges common beliefs surrounding multilingual training. First, we find that combining English and multilingual data does not necessarily degrade the in-language performance of either group, provided that languages have a sufficient number of tokens included in the pretraining corpus. Second, we observe that using English as a pivot language (i.e., a high-resource language that serves as a catalyst for multilingual generalization) yields benefits across language families, and contrary to expectations, selecting a pivot language from within a specific family does not consistently improve performance for languages within that family. Lastly, we do not observe a significant "curse of multilinguality" as the number of training languages increases in models at this scale. Our findings suggest that multilingual data, when balanced appropriately, can enhance language model capabilities without compromising performance, even in low-resource settings
comment: Under Review
☆ RECAP: Reproducing Copyrighted Data from LLMs Training with an Agentic Pipeline
If we cannot inspect the training data of a large language model (LLM), how can we ever know what it has seen? We believe the most compelling evidence arises when the model itself freely reproduces the target content. As such, we propose RECAP, an agentic pipeline designed to elicit and verify memorized training data from LLM outputs. At the heart of RECAP is a feedback-driven loop, where an initial extraction attempt is evaluated by a secondary language model, which compares the output against a reference passage and identifies discrepancies. These are then translated into minimal correction hints, which are fed back into the target model to guide subsequent generations. In addition, to address alignment-induced refusals, RECAP includes a jailbreaking module that detects and overcomes such barriers. We evaluate RECAP on EchoTrace, a new benchmark spanning over 30 full books, and the results show that RECAP leads to substantial gains over single-iteration approaches. For instance, with GPT-4.1, the average ROUGE-L score for the copyrighted text extraction improved from 0.38 to 0.47 - a nearly 24% increase.
☆ FakeZero: Real-Time, Privacy-Preserving Misinformation Detection for Facebook and X
Social platforms distribute information at unprecedented speed, which in turn accelerates the spread of misinformation and threatens public discourse. We present FakeZero, a fully client-side, cross-platform browser extension that flags unreliable posts on Facebook and X (formerly Twitter) while the user scrolls. All computation, DOM scraping, tokenisation, Transformer inference, and UI rendering run locally through the Chromium messaging API, so no personal data leaves the device.FakeZero employs a three-stage training curriculum: baseline fine-tuning and domain-adaptive training enhanced with focal loss, adversarial augmentation, and post-training quantisation. Evaluated on a dataset of 239,000 posts, the DistilBERT-Quant model (67.6 MB) reaches 97.1% macro-F1, 97.4% accuracy, and an AUROC of 0.996, with a median latency of approximately 103 ms on a commodity laptop. A memory-efficient TinyBERT-Quant variant retains 95.7% macro-F1 and 96.1% accuracy while shrinking the model to 14.7 MB and lowering latency to approximately 40 ms, showing that high-quality fake-news detection is feasible under tight resource budgets with only modest performance loss.By providing inline credibility cues, the extension can serve as a valuable tool for policymakers seeking to curb the spread of misinformation across social networks. With user consent, FakeZero also opens the door for researchers to collect large-scale datasets of fake news in the wild, enabling deeper analysis and the development of more robust detection techniques.
comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2025) Privacy track, 11 pages, 8 figures
☆ Evaluating the Impact of LLM-Assisted Annotation in a Perspectivized Setting: the Case of FrameNet Annotation
The use of LLM-based applications as a means to accelerate and/or substitute human labor in the creation of language resources and dataset is a reality. Nonetheless, despite the potential of such tools for linguistic research, comprehensive evaluation of their performance and impact on the creation of annotated datasets, especially under a perspectivized approach to NLP, is still missing. This paper contributes to reduction of this gap by reporting on an extensive evaluation of the (semi-)automatization of FrameNet-like semantic annotation by the use of an LLM-based semantic role labeler. The methodology employed compares annotation time, coverage and diversity in three experimental settings: manual, automatic and semi-automatic annotation. Results show that the hybrid, semi-automatic annotation setting leads to increased frame diversity and similar annotation coverage, when compared to the human-only setting, while the automatic setting performs considerably worse in all metrics, except for annotation time.
☆ Approximating Human Preferences Using a Multi-Judge Learned System
Aligning LLM-based judges with human preferences is a significant challenge, as they are difficult to calibrate and often suffer from rubric sensitivity, bias, and instability. Overcoming this challenge advances key applications, such as creating reliable reward models for Reinforcement Learning from Human Feedback (RLHF) and building effective routing systems that select the best-suited model for a given user query. In this work, we propose a framework for modeling diverse, persona-based preferences by learning to aggregate outputs from multiple rubric-conditioned judges. We investigate the performance of this approach against naive baselines and assess its robustness through case studies on both human and LLM-judges biases. Our primary contributions include a persona-based method for synthesizing preference labels at scale and two distinct implementations of our aggregator: Generalized Additive Model (GAM) and a Multi-Layer Perceptron (MLP).
☆ Through the Judge's Eyes: Inferred Thinking Traces Improve Reliability of LLM Raters
Large language models (LLMs) are increasingly used as raters for evaluation tasks. However, their reliability is often limited for subjective tasks, when human judgments involve subtle reasoning beyond annotation labels. Thinking traces, the reasoning behind a judgment, are highly informative but challenging to collect and curate. We present a human-LLM collaborative framework to infer thinking traces from label-only annotations. The proposed framework uses a simple and effective rejection sampling method to reconstruct these traces at scale. These inferred thinking traces are applied to two complementary tasks: (1) fine-tuning open LLM raters; and (2) synthesizing clearer annotation guidelines for proprietary LLM raters. Across multiple datasets, our methods lead to significantly improved LLM-human agreement. Additionally, the refined annotation guidelines increase agreement among different LLM models. These results suggest that LLMs can serve as practical proxies for otherwise unrevealed human thinking traces, enabling label-only corpora to be extended into thinking-trace-augmented resources that enhance the reliability of LLM raters.
♻ ☆ Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Generative AI systems for music and video commonly use text-based filters to prevent the regurgitation of copyrighted material. We expose a fundamental flaw in this approach by introducing Adversarial PhoneTic Prompting (APT), a novel attack that bypasses these safeguards by exploiting phonetic memorization. The APT attack replaces iconic lyrics with homophonic but semantically unrelated alternatives (e.g., "mom's spaghetti" becomes "Bob's confetti"), preserving acoustic structure while altering meaning; we identify high-fidelity phonetic matches using CMU pronouncing dictionary. We demonstrate that leading Lyrics-to-Song (L2S) models like SUNO and YuE regenerate songs with striking melodic and rhythmic similarity to their copyrighted originals when prompted with these altered lyrics. More surprisingly, this vulnerability extends across modalities. When prompted with phonetically modified lyrics from a song, a Text-to-Video (T2V) model like Veo 3 reconstructs visual scenes from the original music video-including specific settings and character archetypes-despite the absence of any visual cues in the prompt. Our findings reveal that models memorize deep, structural patterns tied to acoustics, not just verbatim text. This phonetic-to-visual leakage represents a critical vulnerability in transcript-conditioned generative models, rendering simple copyright filters ineffective and raising urgent concerns about the secure deployment of multimodal AI systems. Demo examples are available at our project page (https://jrohsc.github.io/music_attack/).
♻ ☆ LLMs are Better Than You Think: Label-Guided In-Context Learning for Named Entity Recognition EMNLP 2025
In-context learning (ICL) enables large language models (LLMs) to perform new tasks using only a few demonstrations. However, in Named Entity Recognition (NER), existing ICL methods typically rely on task-agnostic semantic similarity for demonstration retrieval, which often yields less relevant examples and leads to inferior results. We introduce DEER, a training-free ICL approach that enables LLMs to make more informed entity predictions through the use of label-grounded statistics. DEER leverages token-level statistics from training labels to identify tokens most informative for entity recognition, enabling entity-focused demonstrations. It further uses these statistics to detect and refine error-prone tokens through a targeted reflection step. Evaluated on five NER datasets across four LLMs, DEER consistently outperforms existing ICL methods and achieves performance comparable to supervised fine-tuning. Further analyses demonstrate that DEER improves example retrieval, remains effective on both seen and unseen entities, and exhibits strong robustness in low-resource settings.
comment: Accepted to EMNLP 2025
♻ ☆ Spontaneous Giving and Calculated Greed in Language Models EMNLP 2025
Large language models demonstrate strong problem-solving abilities through reasoning techniques such as chain-of-thought prompting and reflection. However, it remains unclear whether these reasoning capabilities extend to a form of social intelligence: making effective decisions in cooperative contexts. We examine this question using economic games that simulate social dilemmas. First, we apply chain-of-thought and reflection prompting to GPT-4o in a Public Goods Game. We then evaluate multiple off-the-shelf models across six cooperation and punishment games, comparing those with and without explicit reasoning mechanisms. We find that reasoning models consistently reduce cooperation and norm enforcement, favoring individual rationality. In repeated interactions, groups with more reasoning agents exhibit lower collective gains. These behaviors mirror human patterns of "spontaneous giving and calculated greed." Our findings underscore the need for LLM architectures that incorporate social intelligence alongside reasoning, to help address--rather than reinforce--the challenges of collective action.
comment: Accepted to EMNLP 2025 main conference and selected as an Oral Presentation
♻ ☆ Precise In-Parameter Concept Erasure in Large Language Models EMNLP 2025
Large language models (LLMs) often acquire knowledge during pretraining that is undesirable in downstream deployments, e.g., sensitive information or copyrighted content. Existing approaches for removing such knowledge rely on fine-tuning, training low-rank adapters or fact-level editing, but these are either too coarse, too shallow, or ineffective. In this work, we propose PISCES (Precise In-parameter Suppression for Concept EraSure), a novel framework for precisely erasing entire concepts from model parameters by directly editing directions that encode them in parameter space. PISCES uses a disentangler model to decompose MLP vectors into interpretable features, identifies those associated with a target concept using automated interpretability techniques, and removes them from model parameters. Experiments on Gemma 2 and Llama 3.1 over various concepts show that PISCES achieves modest gains in efficacy over leading erasure methods, reducing accuracy on the target concept to as low as 7.7%, while dramatically improving erasure specificity (by up to 31%) and robustness (by up to 38%). Overall, these results demonstrate that feature-based in-parameter editing enables a more precise and reliable approach for removing conceptual knowledge in language models.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ SimulMEGA: MoE Routers are Advanced Policy Makers for Simultaneous Speech Translation NeurIPS 2025
Simultaneous Speech Translation (SimulST) enables real-time cross-lingual communication by jointly optimizing speech recognition and machine translation under strict latency constraints. Existing systems struggle to balance translation quality, latency, and semantic coherence, particularly in multilingual many-to-many scenarios where divergent read and write policies hinder unified strategy learning. In this paper, we present SimulMEGA (Simultaneous Generation by Mixture-of-Experts Gating), an unsupervised policy learning framework that combines prefix-based training with a Mixture-of-Experts refiner to learn effective read and write decisions in an implicit manner, without adding inference-time overhead. Our design requires only minimal modifications to standard transformer architectures and generalizes across both speech-to-text and text-to-speech streaming tasks. Through comprehensive evaluation on six language pairs, our 500M parameter speech-to-text model outperforms the Seamless baseline, achieving under 7 percent BLEU degradation at 1.5 seconds average lag and under 3 percent at 3 seconds. We further demonstrate the versatility of SimulMEGA by extending it to streaming TTS with a unidirectional backbone, yielding superior latency quality tradeoffs.
comment: NeurIPS 2025 poster
♻ ☆ SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.
comment: technical report
♻ ☆ OpenReward: Learning to Reward Long-form Agentic Tasks via Reinforcement Learning
Reward models (RMs) have become essential for aligning large language models (LLMs), serving as scalable proxies for human evaluation in both training and inference. However, existing RMs struggle on knowledge-intensive and long-form tasks, where evaluating correctness requires grounding beyond the model's internal knowledge. This limitation hinders them from reliably discriminating subtle quality differences, especially when external evidence is necessary. To address this, we introduce OpenRM, a tool-augmented long-form reward model that systematically judges open-ended responses by invoking external tools to gather relevant evidence. We train OpenRM with Group Relative Policy Optimization (GRPO) on over 27K synthesized pairwise examples generated through a controllable data synthesis framework. The training objective jointly supervises intermediate tool usage and final outcome accuracy, incentivizing our reward model to learn effective evidence-based judgment strategies. Extensive experiments on three newly-collected datasets and two widely-used benchmarks demonstrate that OpenRM substantially outperforms existing reward modeling approaches. As a further step, we integrate OpenRM into both inference-time response selection and training-time data selection. This yields consistent gains in downstream LLM alignment tasks, highlighting the potential of tool-augmented reward models for scaling reliable long-form evaluation.
♻ ☆ RLAIF-V: Open-Source AI Feedback Leads to Super GPT-4V Trustworthiness
Traditional feedback learning for hallucination reduction relies on labor-intensive manual labeling or expensive proprietary models. This leaves the community without foundational knowledge about how to build high-quality feedback with open-source MLLMs. In this work, we introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm. RLAIF-V maximally explores open-source MLLMs from two perspectives, including high-quality feedback data generation for preference learning and self-feedback guidance for inference-time scaling. Extensive experiments on six benchmarks in both automatic and human evaluation show that RLAIF-V substantially enhances the trustworthiness of models at both preference learning and inference time. RLAIF-V 7B reduces object hallucination by 80.7\% and overall hallucination by 33.7\%. Remarkably, RLAIF-V 12B further reveals the self-alignment potential of open-source MLLMs, where the model can learn from feedback of itself to achieve super GPT-4V trustworthiness.
comment: Project Website: https://github.com/RLHF-V/RLAIF-V
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Quantum Transformer: Accelerating model inference via quantum linear algebra
Powerful generative artificial intelligence from large language models (LLMs) harnesses extensive computational resources for inference. In this work, we investigate the transformer architecture, a key component of these models, under the lens of fault-tolerant quantum computing. We develop quantum subroutines to construct the building blocks in the transformer, including the self-attention, residual connection with layer normalization, and feed-forward network. As an important subroutine, we show how to efficiently implement the Hadamard product and element-wise functions of matrices on quantum computers. Our algorithm prepares an amplitude encoding of the transformer output, which can be measured for prediction or use in the next layer. We find that the matrix norm of the input sequence plays a dominant role in the quantum complexity. With numerical experiments on open-source LLMs, including for bio-informatics applications, we demonstrate the potential of a quantum speedup for transformer inference in practical regimes.
comment: 45 pages
♻ ☆ GradeSQL: Test-Time Inference with Outcome Reward Models for Text-to-SQL Generation from Large Language Models
Text-to-SQL, the task of translating natural language questions into SQL queries, has significantly advanced with the introduction of Large Language Models (LLMs), broadening database accessibility for a wide range of users. Despite substantial progress in generating valid SQL, current LLMs still struggle with complex queries. To address this limitation, test-time strategies such as Best-of-N (BoN) and Majority Voting (Maj) are often employed, based on the assumption that LLMs can produce correct answers after multiple attempts. However, these methods rely on surface-level heuristics, selecting the syntactically correct query through execution-based BoN (ex-BoN) or the most frequently generated one through Majority Voting. Recently, Outcome Reward Models (ORMs), which assign utility scores to generated outputs based on semantic correctness, have emerged as a promising reinforcement learning approach for improving model alignment. We argue that ORMs could serve as an effective new test-time heuristic, although their application in this context remains largely underexplored. In this work, we propose a unified framework for training ORMs tailored to the Text-to-SQL task and assess their effectiveness as a test-time heuristic within the BoN strategy. We benchmark ORMs against ex-BoN and Maj across the BIRD and Spider datasets, fine-tuning diverse open-source LLMs from the Qwen2, Granite3, and Llama3 families. Results show that ORMs outperform ex-BoN and Maj, achieving execution accuracy gains of +4.33% (BIRD) and +2.10% (Spider) over ex-BoN, and +2.91% (BIRD) and +0.93% (Spider) over Maj. We further demonstrate that finetuning models already aligned with SQL generation, such as OmniSQL, yields superior ORM performance. Additionally, we observe that ORMs achieve competitive results on simple queries and benefit more from an increased number of candidates compared to ex-BoN and Maj.
♻ ☆ Reinforcement Learning Teachers of Test Time Scaling NeurIPS 2025
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework. Code available at: https://github.com/SakanaAI/RLT
comment: Accepted at NeurIPS 2025
♻ ☆ Many LLMs Are More Utilitarian Than One NeurIPS 2025
Moral judgment is integral to large language models' (LLMs) social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function when collaborating compared to operating as individual agents. In human moral judgment, group deliberation leads to a Utilitarian Boost: a tendency to endorse norm violations that inflict harm but maximize benefits for the greatest number of people. We study whether a similar dynamic emerges in multi-agent LLM systems. We test six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reason independently, and (2) Group, where they engage in multi-turn discussions in pairs or triads. In personal dilemmas, where agents decide whether to directly harm an individual for the benefit of others, all models rated moral violations as more acceptable when part of a group, demonstrating a Utilitarian Boost similar to that observed in humans. However, the mechanism for the Boost in LLMs differed: While humans in groups become more utilitarian due to heightened sensitivity to decision outcomes, LLM groups showed either reduced sensitivity to norms or enhanced impartiality. We report model differences in when and how strongly the Boost manifests. We also discuss prompt and agent compositions that enhance or mitigate the effect. We end with a discussion of the implications for AI alignment, multi-agent design, and artificial moral reasoning. Code available at: https://github.com/baltaci-r/MoralAgents
comment: Accepted to the Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
♻ ☆ A Multilingual, Large-Scale Study of the Interplay between LLM Safeguards, Personalisation, and Disinformation
Large Language Models (LLMs) can generate human-like disinformation, yet their ability to personalise such content across languages and demographics remains underexplored. This study presents the first large-scale, multilingual analysis of persona-targeted disinformation generation by LLMs. Employing a red teaming methodology, we prompt eight state-of-the-art LLMs with 324 false narratives and 150 demographic personas (combinations of country, generation, and political orientation) across four languages--English, Russian, Portuguese, and Hindi--resulting in AI-TRAITS, a comprehensive dataset of 1.6 million personalised disinformation texts. Results show that the use of even simple personalisation prompts significantly increases the likelihood of jailbreaks across all studied LLMs, up to 10 percentage points, and alters linguistic and rhetorical patterns that enhance narrative persuasiveness. Models such as Grok and GPT exhibited jailbreak rates and personalisation scores both exceeding 85%. These insights expose critical vulnerabilities in current state-of-the-art LLMs and offer a foundation for improving safety alignment and detection strategies in multilingual and cross-demographic contexts.
♻ ☆ Reliable Evaluation and Benchmarks for Statement Autoformalization EMNLP 2025
Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.
comment: Accepted to EMNLP 2025. New benchmarks released, see https://github.com/augustepoiroux/RLMEval , https://huggingface.co/datasets/PAug/ProofNetSharp , and https://huggingface.co/datasets/PAug/ProofNetVerif . For code, see https://github.com/augustepoiroux/LeanInteract
♻ ☆ When Models Outthink Their Safety: Mitigating Self-Jailbreak in Large Reasoning Models with Chain-of-Guardrails
Large Reasoning Models (LRMs) demonstrate remarkable capabilities on complex reasoning tasks but remain vulnerable to severe safety risks, including harmful content generation and jailbreak attacks. Existing mitigation strategies rely on injecting heuristic safety signals during training, which often suppress reasoning ability and fail to resolve the safety-reasoning trade-off. To systematically investigate this issue, we analyze the reasoning trajectories of diverse LRMs and uncover a phenomenon we term Self-Jailbreak, where models override their own risk assessments and justify responding to unsafe prompts. This finding reveals that LRMs inherently possess the ability to reject unsafe queries, but this ability is compromised, resulting in harmful outputs. Building on these insights, we propose the Chain-of-Guardrail (CoG), a training framework that recomposes or backtracks unsafe reasoning steps, steering the model back onto safe trajectories while preserving valid reasoning chains. Extensive experiments across multiple reasoning and safety benchmarks demonstrate that CoG substantially improves the safety of current LRMs while preserving comparable reasoning ability, significantly outperforming prior methods that suffer from severe safety-reasoning trade-offs.
comment: First two authors contributed equally. The main text is 10 pages, with an appendix of 19 pages. The paper contains 18 figures and 16 tables
♻ ☆ Robust Preference Optimization via Dynamic Target Margins ACL 2025
The alignment of Large Language Models (LLMs) is crucial for ensuring their safety and reliability in practical applications. Direct Preference Optimization (DPO) has emerged as an efficient method that directly optimizes models using preference pairs, significantly reducing resource demands. However, the effectiveness of DPO heavily depends on the data quality, which is frequently compromised by noise. In this work, we propose $\gamma$-PO, a dynamic target margin preference optimization algorithm that adjust reward margins at the pairwise level. By introducing instance-specific margin calibration, $\gamma$-PO strategically prioritizes high-confidence pairs (those demonstrating higher reward margins) while suppressing potential noise from ambiguous pairs. Moreover, $\gamma$-PO is a plug-and-play method, compatible with variants of DPO that rely on reward margin between preference pairs. Across benchmarks such as AlpacaEval2 and Arena-Hard, $\gamma$-PO achieves an average 4.4\% improvement over other baselines, setting new benchmarks for state-of-the-art performance. Additionally, $\gamma$-PO requires minimal code changes and has a negligible impact on training efficiency, making it a robust solution for enhancing LLMs alignment. Our codes are available at \href{https://github.com/sunjie279/gammaPO}{https://github.com/sunjie279/gammaPO}.
comment: 18 pages, 6 figures, accepted to Findings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
♻ ☆ Differential Mamba AACL 2025
Sequence models like Transformers and RNNs often overallocate attention to irrelevant context, leading to noisy intermediate representations. This degrades LLM capabilities by promoting hallucinations, weakening long-range and retrieval abilities, and reducing robustness. Recent work has shown that differential design can mitigate this issue in Transformers, improving their effectiveness across various applications. In this paper, we explore whether these techniques, originally developed for Transformers, can be applied to Mamba, a recent architecture based on selective state-space layers that achieves Transformer-level performance with greater efficiency. We show that a naive adaptation of differential design to Mamba is insufficient and requires careful architectural modifications. To address this, we introduce a novel differential mechanism for Mamba, empirically validated on language modeling benchmarks, demonstrating improved retrieval capabilities and superior performance over vanilla Mamba. Finally, we conduct extensive ablation studies and empirical analyses to justify our design choices and provide evidence that our approach effectively mitigates the overallocation problem in Mamba-based models. Our code is publicly available: https://github.com/NadavSc/Diff-Mamba
comment: AACL 2025. We provide the code at https://github.com/NadavSc/Diff-Mamba
♻ ☆ Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages?
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available
comment: The manuscript has to be withdrawn to address an authorship and intellectual property clarification
♻ ☆ ReSeek: A Self-Correcting Framework for Search Agents with Instructive Rewards
Search agents powered by Large Language Models (LLMs) have demonstrated significant potential in tackling knowledge-intensive tasks. Reinforcement learning (RL) has emerged as a powerful paradigm for training these agents to perform complex, multi-step reasoning. However, prior RL-based methods often rely on sparse or rule-based rewards, which can lead agents to commit to suboptimal or erroneous reasoning paths without the ability to recover. To address these limitations, we propose ReSeek, a novel self-correcting framework for training search agents. Our framework introduces a self-correction mechanism that empowers the agent to dynamically identify and recover from erroneous search paths during an episode. By invoking a special JUDGE action, the agent can judge the information and re-plan its search strategy. To guide this process, we design a dense, instructive process reward function, which decomposes into a correctness reward for retrieving factual information and a utility reward for finding information genuinely useful for the query. Furthermore, to mitigate the risk of data contamination in existing datasets, we introduce FictionalHot, a new and challenging benchmark with recently curated questions requiring complex reasoning. Being intuitively reasonable and practically simple, extensive experiments show that agents trained with ReSeek significantly outperform SOTA baselines in task success rate and path faithfulness.
comment: 19 pages
♻ ☆ Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation NeurIPS 2025
In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.
comment: NeurIPS 2025 DB Track Accepted Paper
♻ ☆ MAD-Fact: A Multi-Agent Debate Framework for Long-Form Factuality Evaluation in LLMs
The widespread adoption of Large Language Models (LLMs) raises critical concerns about the factual accuracy of their outputs, especially in high-risk domains such as biomedicine, law, and education. Existing evaluation methods for short texts often fail on long-form content due to complex reasoning chains, intertwined perspectives, and cumulative information. To address this, we propose a systematic approach integrating large-scale long-form datasets, multi-agent verification mechanisms, and weighted evaluation metrics. We construct LongHalluQA, a Chinese long-form factuality dataset; and develop MAD-Fact, a debate-based multi-agent verification system. We introduce a fact importance hierarchy to capture the varying significance of claims in long-form texts. Experiments on two benchmarks show that larger LLMs generally maintain higher factual consistency, while domestic models excel on Chinese content. Our work provides a structured framework for evaluating and enhancing factual reliability in long-form LLM outputs, guiding their safe deployment in sensitive domains.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-51369-x}
♻ ☆ NL-Debugging: Exploiting Natural Language as an Intermediate Representation for Code Debugging
Debugging is a critical aspect of LLM's coding ability. Early debugging efforts primarily focused on code-level analysis, which often falls short when addressing complex programming errors that require a deeper understanding of algorithmic logic. Recent advancements in large language models (LLMs) have shifted attention toward leveraging natural language reasoning to enhance code-related tasks. However, two fundamental questions remain unanswered: What type of natural language format is most effective for debugging tasks? And what specific benefits does natural language reasoning bring to the debugging process? In this paper, we introduce NL-DEBUGGING, a novel framework that employs natural language as an intermediate representation to improve code debugging. By debugging at a natural language level, we demonstrate that NL-DEBUGGING outperforms traditional debugging methods and enables a broader modification space through direct refinement guided by execution feedback. Our findings highlight the potential of natural language reasoning to advance automated code debugging and address complex programming challenges.
♻ ☆ WEST: LLM based Speech Toolkit for Speech Understanding, Generation, and Interaction
In this paper, we present WEST(WE Speech Toolkit), a speech toolkit based on a large language model (LLM) for speech understanding, generation, and interaction. There are three key features of WEST: 1) Fully LLM-based: Standing on the shoulders of giants by reusing mature architectures, ecosystems (e.g., Hugging Face), and methods (e.g., sequence packing) from large models. 2) Full-stack: Supports tasks such as recognition, synthesis, understanding, dialogue, and multimodal capabilities, with extensibility to incorporate open-source models. 3) Simple and Stupid: A simple and stupid speech toolkit that everyone can Touch. In addition, WEST provides two types of recipes, models, and experimental results. The first is entirely based on open-source models and open-source data, allowing users to fully reproduce the experiments in this paper and serving as a verification system or minimal system baseline. The second is trained on massive data, offering superior performance so the user can directly apply it out of the box. WEST is publicly avilable at https://github.com/wenet-e2e/west/
♻ ☆ Think Twice Before You Judge: Mixture of Dual Reasoning Experts for Multimodal Sarcasm Detection
Multimodal sarcasm detection has attracted growing interest due to the rise of multimedia posts on social media. Understanding sarcastic image-text posts often requires external contextual knowledge, such as cultural references or commonsense reasoning. However, existing models struggle to capture the deeper rationale behind sarcasm, relying mainly on shallow cues like image captions or object-attribute pairs from images. To address this, we propose \textbf{MiDRE} (\textbf{Mi}xture of \textbf{D}ual \textbf{R}easoning \textbf{E}xperts), which integrates an internal reasoning expert for detecting incongruities within the image-text pair and an external reasoning expert that utilizes structured rationales generated via Chain-of-Thought prompting to a Large Vision-Language Model. An adaptive gating mechanism dynamically weighs the two experts, selecting the most relevant reasoning path. Unlike prior methods that treat external knowledge as static input, MiDRE selectively adapts to when such knowledge is beneficial, mitigating the risks of hallucinated or irrelevant signals from large models. Experiments on two benchmark datasets show that MiDRE achieves superior performance over baselines. Various qualitative analyses highlight the crucial role of external rationales, revealing that even when they are occasionally noisy, they provide valuable cues that guide the model toward a better understanding of sarcasm.
♻ ☆ Blind Spot Navigation in Large Language Model Reasoning with Thought Space Explorer
Large language models have shown strong reasoning capabilities through chain-structured methods such as Chain-of-Thought. Recent studies optimize thought structures by generating parallel or tree-like structures, switching between long and short reasoning modes, or aligning reasoning steps with task performance. However, these approaches mainly rely on previously generated logical directions of the chains, which ignore the unexplored regions of the solution space. Such a phenomenon is defined as blind spots, which limit the diversity and effectiveness of the reasoning process. To this end, we propose the ``Thought Space Explorer'' (TSE), a framework for navigating and expanding thought structures to overcome blind spots in LLM reasoning. Our TSE first identifies key nodes with high impact, then generates new nodes by integrating information from multiple chains. Finally, it extends new branches through connection strategies. We conduct a series of experiments on math and QA benchmarks. Compared with existing baseline methods, TSE improves the accuracy of both the final answer and intermediate reasoning steps, while maintaining a better effectiveness-efficiency trade-off for practical deployment.
♻ ☆ Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Reinforcement Learning (RL) algorithms sample multiple n>1 solution attempts for each problem and reward them independently. This optimizes for pass@1 performance and prioritizes the strength of isolated samples at the expense of the diversity and collective utility of sets of samples. This under-utilizes the sampling capacity, limiting exploration and eventual improvement on harder examples. As a fix, we propose Pass-at-k Policy Optimization (PKPO), a transformation on the final rewards which leads to direct optimization of pass@k performance, thus optimizing for sets of samples that maximize reward when considered jointly. Our contribution is to derive novel low variance unbiased estimators for pass@k and its gradient, in both the binary and continuous reward settings. We show optimization with our estimators reduces to standard RL with rewards that have been jointly transformed by a stable and efficient transformation function. While previous efforts are restricted to k=n, ours is the first to enable robust optimization of pass@k for any arbitrary k <= n. Moreover, instead of trading off pass@1 performance for pass@k gains, our method allows annealing k during training, optimizing both metrics and often achieving strong pass@1 numbers alongside significant pass@k gains. We validate our reward transformations on toy experiments, which reveal the variance reducing properties of our formulations. We also include real-world examples using the open-source LLM, GEMMA-2. We find that our transformation effectively optimizes for the target k. Furthermore, higher k values enable solving more and harder problems, while annealing k boosts both the pass@1 and pass@k . Crucially, for challenging task sets where conventional pass@1 optimization stalls, our pass@k approach unblocks learning, likely due to better exploration by prioritizing joint utility over the utility of individual samples.
♻ ☆ Augmenting Dialog with Think-Aloud Utterances for Modeling Individual Personality Traits by LLM EMNLP2025
This study proposes augmenting dialog data with think-aloud utterances (TAUs) for modeling individual personalities in text chat by LLM. TAU is a verbalization of a speaker's thought before articulating the utterance. We expect "persona LLMs" trained with TAU-augmented data can mimic the speaker's personality trait better. We tested whether the trained persona LLMs obtain the human personality with respect to Big Five, a framework characterizing human personality traits from five aspects. The results showed that LLMs trained with TAU-augmented data more closely align to the speakers' Agreeableness and Neuroticism of Big Five than those trained with original dialog data. We also found that the quality of TAU-augmentation impacts persona LLM's performance.
comment: 8 pages, 1 figure. Accepted at the First Workshop on Tailoring AI: Exploring Active and Passive LLM Personalization (PALS2025@EMNLP2025)
♻ ☆ The Landscape of Agentic Reinforcement Learning for LLMs: A Survey
The emergence of agentic reinforcement learning (Agentic RL) marks a paradigm shift from conventional reinforcement learning applied to large language models (LLM RL), reframing LLMs from passive sequence generators into autonomous, decision-making agents embedded in complex, dynamic worlds. This survey formalizes this conceptual shift by contrasting the degenerate single-step Markov Decision Processes (MDPs) of LLM-RL with the temporally extended, partially observable Markov decision processes (POMDPs) that define Agentic RL. Building on this foundation, we propose a comprehensive twofold taxonomy: one organized around core agentic capabilities, including planning, tool use, memory, reasoning, self-improvement, and perception, and the other around their applications across diverse task domains. Central to our thesis is that reinforcement learning serves as the critical mechanism for transforming these capabilities from static, heuristic modules into adaptive, robust agentic behavior. To support and accelerate future research, we consolidate the landscape of open-source environments, benchmarks, and frameworks into a practical compendium. By synthesizing over five hundred recent works, this survey charts the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose AI agents.
♻ ☆ Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.
♻ ☆ Adapter-state Sharing CLIP for Parameter-efficient Multimodal Sarcasm Detection
The growing prevalence of multimodal image-text sarcasm on social media poses challenges for opinion mining systems. Existing approaches rely on full fine-tuning of large models, making them unsuitable to adapt under resource-constrained settings. While recent parameter-efficient fine-tuning (PEFT) methods offer promise, their off-the-shelf use underperforms on complex tasks like sarcasm detection. We propose AdS-CLIP (Adapter-state Sharing in CLIP), a lightweight framework built on CLIP that inserts adapters only in the upper layers to preserve low-level unimodal representations in the lower layers and introduces a novel adapter-state sharing mechanism, where textual adapters guide visual ones to promote efficient cross-modal learning in the upper layers. Experiments on two public benchmarks demonstrate that AdS-CLIP not only outperforms standard PEFT methods but also existing multimodal baselines with significantly fewer trainable parameters.
♻ ☆ Face the Facts! Evaluating RAG-based Pipelines for Professional Fact-Checking
Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, following professional fact-checking practices, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
comment: Code and data at https://github.com/drusso98/face-the-facts - Accepted for publication at INLG 2025
♻ ☆ S'MoRE: Structural Mixture of Residual Experts for Parameter-Efficient LLM Fine-tuning NeurIPS 2025
Fine-tuning pre-trained large language models (LLMs) presents a dual challenge of balancing parameter efficiency and model capacity. Existing methods like low-rank adaptations (LoRA) are efficient but lack flexibility, while Mixture-of-Experts (MoE) enhance model capacity at the cost of more & under-utilized parameters. To address these limitations, we propose Structural Mixture of Residual Experts (S'MoRE), a novel framework that seamlessly integrates the efficiency of LoRA with the flexibility of MoE. Conceptually, S'MoRE employs hierarchical low-rank decomposition of expert weights, yielding residuals of varying orders interconnected in a multi-layer structure. By routing input tokens through sub-trees of residuals, S'MoRE emulates the capacity of numerous experts by instantiating and assembling just a few low-rank matrices. We craft the inter-layer propagation of S'MoRE's residuals as a special type of Graph Neural Network (GNN), and prove that under similar parameter budget, S'MoRE improves structural flexibility of traditional MoE (or Mixture-of-LoRA) by exponential order. Comprehensive theoretical analysis and empirical results demonstrate that S'MoRE achieves superior fine-tuning performance, offering a transformative approach for efficient LLM adaptation. Our implementation is available at: https://github.com/ZimpleX/SMoRE-LLM.
comment: NeurIPS 2025
♻ ☆ Steering Information Utility in Key-Value Memory for Language Model Post-Training NeurIPS 2025
Recent advancements in language models (LMs) have marked a shift toward the growing importance of post-training. Yet, post-training approaches such as supervised fine-tuning (SFT) do not guarantee the effective use of knowledge acquired during pretraining. We therefore introduce InfoSteer, a lightweight method that encourages parametric information utilization in LMs during post-training. Specifically, InfoSteer treats the feed-forward network (FFN) layer as associate key-value memory and promotes the use of stored memory vectors via forward-pass interventions or regularization during backpropagation. This simple guidance during post-training phase yields consistent performance improvements across diverse model families -- including Qwen, Gemma and Llama -- spanning 15 downstream tasks in both in-distribution (ID) and out-of-distribution (OOD) evaluations. Beyond performance gains, we also find that steered LMs can adaptively allocate information by placing more emphasis on generating semantically meaningful tokens, while using fewer resources on simple transition ones (e.g., `\texttt{,}' or `\texttt{and}'). Our work underscores that vanilla post-training does not fully exploit the potential gained during pre-training, and that steering LMs in latent representation space offers a promising approach to enhance both performance and interpretability. The code is available at: https://github.com/chili-lab/InfoSteer.
comment: NeurIPS 2025
♻ ☆ OpenGuardrails: A Configurable, Unified, and Scalable Guardrails Platform for Large Language Models
As large language models (LLMs) are increasingly integrated into real-world applications, ensuring their safety, robustness, and privacy compliance has become critical. We present OpenGuardrails, the first fully open-source platform that unifies large-model-based safety detection, manipulation defense, and deployable guardrail infrastructure. OpenGuardrails protects against three major classes of risks: (1) content-safety violations such as harmful or explicit text generation, (2) model-manipulation attacks including prompt injection, jailbreaks, and code-interpreter abuse, and (3) data leakage involving sensitive or private information. Unlike prior modular or rule-based frameworks, OpenGuardrails introduces three core innovations: (1) a Configurable Policy Adaptation mechanism that allows per-request customization of unsafe categories and sensitivity thresholds; (2) a Unified LLM-based Guard Architecture that performs both content-safety and manipulation detection within a single model; and (3) a Quantized, Scalable Model Design that compresses a 14B dense base model to 3.3B via GPTQ while preserving over 98 of benchmark accuracy. The system supports 119 languages, achieves state-of-the-art performance across multilingual safety benchmarks, and can be deployed as a secure gateway or API-based service for enterprise use. All models, datasets, and deployment scripts are released under the Apache 2.0 license.
♻ ☆ AMAS: Adaptively Determining Communication Topology for LLM-based Multi-Agent System EMNLP-2025
Although large language models (LLMs) have revolutionized natural language processing capabilities, their practical implementation as autonomous multi-agent systems (MAS) for industrial problem-solving encounters persistent barriers. Conventional MAS architectures are fundamentally restricted by inflexible, hand-crafted graph topologies that lack contextual responsiveness, resulting in diminished efficacy across varied academic and commercial workloads. To surmount these constraints, we introduce AMAS, a paradigm-shifting framework that redefines LLM-based MAS through a novel dynamic graph designer. This component autonomously identifies task-specific optimal graph configurations via lightweight LLM adaptation, eliminating the reliance on monolithic, universally applied structural templates. Instead, AMAS exploits the intrinsic properties of individual inputs to intelligently direct query trajectories through task-optimized agent pathways. Rigorous validation across question answering, mathematical deduction, and code generation benchmarks confirms that AMAS systematically exceeds state-of-the-art single-agent and multi-agent approaches across diverse LLM architectures. Our investigation establishes that context-sensitive structural adaptability constitutes a foundational requirement for high-performance LLM MAS deployments.
comment: Accepted by EMNLP-2025
♻ ☆ FT-MDT: Extracting Decision Trees from Medical Texts via a Novel Low-rank Adaptation Method EMNLP-2025
Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to building clinical decision support systems. However, current MDT construction methods rely heavily on time-consuming and laborious manual annotation. To address this challenge, we propose PI-LoRA (Path-Integrated LoRA), a novel low-rank adaptation method for automatically extracting MDTs from clinical guidelines and textbooks. We integrate gradient path information to capture synergistic effects between different modules, enabling more effective and reliable rank allocation. This framework ensures that the most critical modules receive appropriate rank allocations while less important ones are pruned, resulting in a more efficient and accurate model for extracting medical decision trees from clinical texts. Extensive experiments on medical guideline datasets demonstrate that our PI-LoRA method significantly outperforms existing parameter-efficient fine-tuning approaches for the Text2MDT task, achieving better accuracy with substantially reduced model complexity. The proposed method achieves state-of-the-art results while maintaining a lightweight architecture, making it particularly suitable for clinical decision support systems where computational resources may be limited.
comment: Accepted by EMNLP-2025
♻ ☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media AAAI
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using three open-source models: Gemma, Llama3 and Llama3.3 and one commercial Model:Claude. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic consistency between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: these models show a strong tendency to moderate negative emotions. When the input text carries negative emotions such as anger, disgust, fear, or sadness, LLM tends to generate content with more neutral emotions, or even convert them into positive emotions such as joy or surprise. At the same time, we compared the LLM-generated content with human-authored content. The four models systematically generated responses with reduced emotional intensity and showed a preference for neutral rational emotions in the response task. In addition, these models all maintained a high semantic similarity with the original text, although their performance in the continuation task and the response task was different. These findings provide deep insights into the emotion and semantic processing capabilities of LLM, which are of great significance for its deployment in social media environments and human-computer interaction design.
comment: This paper has been accepted by the International AAAI Conference on Web and Social Media (ICWSM) 2026 (Los Angeles, California, U.S.)
♻ ☆ PatientSim: A Persona-Driven Simulator for Realistic Doctor-Patient Interactions NeurIPS 2025
Doctor-patient consultations require multi-turn, context-aware communication tailored to diverse patient personas. Training or evaluating doctor LLMs in such settings requires realistic patient interaction systems. However, existing simulators often fail to reflect the full range of personas seen in clinical practice. To address this, we introduce PatientSim, a patient simulator that generates realistic and diverse patient personas for clinical scenarios, grounded in medical expertise. PatientSim operates using: 1) clinical profiles, including symptoms and medical history, derived from real-world data in the MIMIC-ED and MIMIC-IV datasets, and 2) personas defined by four axes: personality, language proficiency, medical history recall level, and cognitive confusion level, resulting in 37 unique combinations. We evaluate eight LLMs for factual accuracy and persona consistency. The top-performing open-source model, Llama 3.3 70B, is validated by four clinicians to confirm the robustness of our framework. As an open-source, customizable platform, PatientSim provides a reproducible and scalable solution that can be customized for specific training needs. Offering a privacy-compliant environment, it serves as a robust testbed for evaluating medical dialogue systems across diverse patient presentations and shows promise as an educational tool for healthcare. The code is available at https://github.com/dek924/PatientSim.
comment: Accepted as a Spotlight at NeurIPS 2025 Datasets and Benchmarks Track (10 pages for main text, 4 pages for references, 36 pages for supplementary materials)
♻ ☆ DPRF: A Generalizable Dynamic Persona Refinement Framework for Optimizing Behavior Alignment Between Personalized LLM Role-Playing Agents and Humans
The emerging large language model role-playing agents (LLM RPAs) aim to simulate individual human behaviors, but the persona fidelity is often undermined by manually-created profiles (e.g., cherry-picked information and personality characteristics) without validating the alignment with the target individuals. To address this limitation, our work introduces the Dynamic Persona Refinement Framework (DPRF). DPRF aims to optimize the alignment of LLM RPAs' behaviors with those of target individuals by iteratively identifying the cognitive divergence, either through free-form or theory-grounded, structured analysis, between generated behaviors and human ground truth, and refining the persona profile to mitigate these divergences. We evaluate DPRF with five LLMs on four diverse behavior-prediction scenarios: formal debates, social media posts with mental health issues, public interviews, and movie reviews. DPRF can consistently improve behavioral alignment considerably over baseline personas and generalizes across models and scenarios. Our work provides a robust methodology for creating high-fidelity persona profiles and enhancing the validity of downstream applications, such as user simulation, social studies, and personalized AI.
comment: In Submission
♻ ☆ ConsistencyAI: A Benchmark to Assess LLMs' Factual Consistency When Responding to Different Demographic Groups
Is an LLM telling you different facts than it's telling me? This paper introduces ConsistencyAI, an independent benchmark for measuring the factual consistency of large language models (LLMs) for different personas. ConsistencyAI tests whether, when users of different demographics ask identical questions, the model responds with factually inconsistent answers. Designed without involvement from LLM providers, this benchmark offers impartial evaluation and accountability. In our experiment, we queried 19 LLMs with prompts that requested 5 facts for each of 15 topics. We repeated this query 100 times for each LLM, each time adding prompt context from a different persona selected from a subset of personas modeling the general population. We processed the responses into sentence embeddings, computed cross-persona cosine similarity, and computed the weighted average of cross-persona cosine similarity to calculate factual consistency scores. In 100-persona experiments, scores ranged from 0.9065 to 0.7896, and the mean was 0.8656, which we adopt as a benchmark threshold. xAI's Grok-3 is most consistent, while several lightweight models rank lowest. Consistency varies by topic: the job market is least consistent, G7 world leaders most consistent, and issues like vaccines or the Israeli-Palestinian conflict diverge by provider. These results show that both the provider and the topic shape the factual consistency. We release our code and interactive demo to support reproducible evaluation and encourage persona-invariant prompting strategies.
comment: For associated code repository, see http://github.com/banyasp/consistencyAI For user-friendly web app, see http://v0-llm-comparison-webapp.vercel.app/
♻ ☆ AutoLibra: Agent Metric Induction from Open-Ended Human Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose **AutoLibra**, a framework for agent evaluation, that transforms open-ended human feedback *e.g.* "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own" into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra serve human prompt engineers for diagonalize agent failures and improve prompts iterative. Moreover, we find that AutoLibra can induce metrics for automatic optimization for agents, which makes agents improve through self-regulation. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
comment: https://github.com/Open-Social-World/autolibra
♻ ☆ Reward Collapse in Aligning Large Language Models
The extraordinary capabilities of large language models (LLMs) such as ChatGPT and GPT-4 are in part unleashed by aligning them with reward models that are trained on human preferences, which are often represented as rankings of responses to prompts. In this paper, we document the phenomenon of \textit{reward collapse}, an empirical observation where the prevailing ranking-based approach results in an \textit{identical} reward distribution \textit{regardless} of the prompts during the terminal phase of training. This outcome is undesirable as open-ended prompts like ``write a short story about your best friend'' should yield a continuous range of rewards for their completions, while specific prompts like ``what is the capital of New Zealand'' should generate either high or low rewards. Our theoretical investigation reveals that reward collapse is primarily due to the insufficiency of the ranking-based objective function to incorporate prompt-related information during optimization. This insight allows us to derive closed-form expressions for the reward distribution associated with a set of utility functions in an asymptotic regime. To overcome reward collapse, we introduce a prompt-aware optimization scheme that provably admits a prompt-dependent reward distribution within the interpolating regime. Our experimental results suggest that our proposed prompt-aware utility functions significantly alleviate reward collapse during the training of reward models.
comment: Accepted for publication in the Journal of Data Science (JDS), reference JDS1201
♻ ☆ Vision-and-Language Training Helps Deploy Taxonomic Knowledge but Does Not Fundamentally Alter It
Does vision-and-language (VL) training change the linguistic representations of language models in meaningful ways? Most results in the literature have shown inconsistent or marginal differences, both behaviorally and representationally. In this work, we start from the hypothesis that the domain in which VL training could have a significant effect is lexical-conceptual knowledge, in particular its taxonomic organization. Through comparing minimal pairs of text-only LMs and their VL-trained counterparts, we first show that the VL models often outperform their text-only counterparts on a text-only question-answering task that requires taxonomic understanding of concepts mentioned in the questions. Using an array of targeted behavioral and representational analyses, we show that the LMs and VLMs do not differ significantly in terms of their taxonomic knowledge itself, but they differ in how they represent questions that contain concepts in a taxonomic relation vs. a non-taxonomic relation. This implies that the taxonomic knowledge itself does not change substantially through additional VL training, but VL training does improve the deployment of this knowledge in the context of a specific task, even when the presentation of the task is purely linguistic.
♻ ☆ Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground-truth rewards or human demonstrations for multi-step reasoning tasks is often prohibitively expensive, particularly in interactive domains such as web tasks. We introduce Self-Taught Lookahead (STL), a reward-free framework that improves language model-based value functions by reasoning explicitly about state transitions. STL can be viewed as a chain-of-thought analogue of the value iteration algorithm: instead of regressing directly on numeric values, a value LLM is trained to simulate a step of lookahead in natural language - predicting the next action, resulting state, and rationale for its value, thereby refining value estimates without any labeled data. This self-supervised procedure yields more accurate state-value predictions, which in turn enable lightweight search algorithms to expand fewer states while maintaining strong performance. Empirically, STL-trained value models built on moderately sized (8B parameter) open-weight LLMs boost web agent success rates by 39%, achieving comparable performance with proprietary models. STL also generalizes to multi-hop QA and math puzzles. We find that STL enables small open-source models to guide efficient search, reducing inference costs by integrating explicit reasoning with value learning.
♻ ☆ TabSTAR: A Tabular Foundation Model for Tabular Data with Text Fields NeurIPS 2025
While deep learning has achieved remarkable success across many domains, it has historically underperformed on tabular learning tasks, which remain dominated by gradient boosting decision trees. However, recent advancements are paving the way for Tabular Foundation Models, which can leverage real-world knowledge and generalize across diverse datasets, particularly when the data contains free-text. Although incorporating language model capabilities into tabular tasks has been explored, most existing methods utilize static, target-agnostic textual representations, limiting their effectiveness. We introduce TabSTAR: a Tabular Foundation Model with Semantically Target-Aware Representations. TabSTAR is designed to enable transfer learning on tabular data with textual features, with an architecture free of dataset-specific parameters. It unfreezes a pretrained text encoder and takes as input target tokens, which provide the model with the context needed to learn task-specific embeddings. TabSTAR achieves state-of-the-art performance for both medium- and large-sized datasets across known benchmarks of classification tasks with text features, and its pretraining phase exhibits scaling laws in the number of datasets, offering a pathway for further performance improvements.
comment: Accepted to NeurIPS 2025
♻ ☆ This Candidate is [MASK]. Prompt-based Sentiment Extraction and Reference Letters
I propose a relatively simple way to deploy pre-trained large language models (LLMs) in order to extract sentiment and other useful features from text data. The method, which I refer to as prompt-based sentiment extraction, offers multiple advantages over other methods used in economics and finance. In particular, it accepts the text input as is (without pre-processing) and produces a sentiment score that has a probability interpretation. Unlike other LLM-based approaches, it does not require any fine-tuning or labeled data. I apply my prompt-based strategy to a hand-collected corpus of confidential reference letters (RLs). I show that the sentiment contents of RLs are clearly reflected in job market outcomes. Candidates with higher average sentiment in their RLs perform markedly better regardless of the measure of success chosen. Moreover, I show that sentiment dispersion among letter writers negatively affects the job market candidate's performance. I compare my sentiment extraction approach to other commonly used methods for sentiment analysis: `bag-of-words' approaches, fine-tuned language models, and querying advanced chatbots. No other method can fully reproduce the results obtained by prompt-based sentiment extraction. Finally, I slightly modify the method to obtain `gendered' sentiment scores (as in Eberhardt et al., 2023). I show that RLs written for female candidates emphasize `grindstone' personality traits, whereas male candidates' letters emphasize `standout' traits. These gender differences negatively affect women's job market outcomes.
♻ ☆ M-Prometheus: A Suite of Open Multilingual LLM Judges
The use of language models for automatically evaluating long-form text (LLM-as-a-judge) is becoming increasingly common, yet most LLM judges are optimized exclusively for English, with strategies for enhancing their multilingual evaluation capabilities remaining largely unexplored in the current literature. This has created a disparity in the quality of automatic evaluation methods for non-English languages, ultimately hindering the development of models with better multilingual capabilities. To bridge this gap, we introduce M-Prometheus, a suite of open-weight LLM judges ranging from 3B to 14B parameters that can provide both direct assessment and pairwise comparison feedback on multilingual outputs. M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs. Furthermore, M-Prometheus models can be leveraged at decoding time to significantly improve generated outputs across all 3 tested languages, showcasing their utility for the development of better multilingual models. Lastly, through extensive ablations, we identify the key factors for obtaining an effective multilingual judge, including backbone model selection and training on synthetic multilingual feedback data instead of translated data. We release our models, training dataset, and code.
♻ ☆ Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
♻ ☆ Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study
Large language models (LLMs) have shown impressive capabilities across tasks such as mathematics, coding, and reasoning, yet their learning ability, which is crucial for adapting to dynamic environments and acquiring new knowledge, remains underexplored. In this work, we address this gap by introducing a framework inspired by cognitive psychology and education. Specifically, we decompose general learning ability into three distinct, complementary dimensions: Learning from Instructor (acquiring knowledge via explicit guidance), Learning from Concept (internalizing abstract structures and generalizing to new contexts), and Learning from Experience (adapting through accumulated exploration and feedback). We conduct a comprehensive empirical study across the three learning dimensions and identify several insightful findings, such as (i) interaction improves learning; (ii) conceptual understanding is scale-emergent and benefits larger models; and (iii) LLMs are effective few-shot learners but not many-shot learners. Based on our framework and empirical findings, we introduce a benchmark that provides a unified and realistic evaluation of LLMs' general learning abilities across three learning cognition dimensions. It enables diagnostic insights and supports evaluation and development of more adaptive and human-like models.
♻ ☆ The LSCD Benchmark: a Testbed for Diachronic Word Meaning Tasks
Lexical Semantic Change Detection (LSCD) is a complex, lemma-level task, which is usually operationalized based on two subsequently applied usage-level tasks: First, Word-in-Context (WiC) labels are derived for pairs of usages. Then, these labels are represented in a graph on which Word Sense Induction (WSI) is applied to derive sense clusters. Finally, LSCD labels are derived by comparing sense clusters over time. This modularity is reflected in most LSCD datasets and models. It also leads to a large heterogeneity in modeling options and task definitions, which is exacerbated by a variety of dataset versions, preprocessing options and evaluation metrics. This heterogeneity makes it difficult to evaluate models under comparable conditions, to choose optimal model combinations or to reproduce results. Hence, we provide a benchmark repository standardizing LSCD evaluation. Through transparent implementation results become easily reproducible and by standardization different components can be freely combined. The repository reflects the task's modularity by allowing model evaluation for WiC, WSI and LSCD. This allows for careful evaluation of increasingly complex model components providing new ways of model optimization. We use the implemented benchmark to conduct a number of experiments with recent models and systematically improve the state-of-the-art.
♻ ☆ GradEscape: A Gradient-Based Evader Against AI-Generated Text Detectors USENIX Security'25
In this paper, we introduce GradEscape, the first gradient-based evader designed to attack AI-generated text (AIGT) detectors. GradEscape overcomes the undifferentiable computation problem, caused by the discrete nature of text, by introducing a novel approach to construct weighted embeddings for the detector input. It then updates the evader model parameters using feedback from victim detectors, achieving high attack success with minimal text modification. To address the issue of tokenizer mismatch between the evader and the detector, we introduce a warm-started evader method, enabling GradEscape to adapt to detectors across any language model architecture. Moreover, we employ novel tokenizer inference and model extraction techniques, facilitating effective evasion even in query-only access. We evaluate GradEscape on four datasets and three widely-used language models, benchmarking it against four state-of-the-art AIGT evaders. Experimental results demonstrate that GradEscape outperforms existing evaders in various scenarios, including with an 11B paraphrase model, while utilizing only 139M parameters. We have successfully applied GradEscape to two real-world commercial AIGT detectors. Our analysis reveals that the primary vulnerability stems from disparity in text expression styles within the training data. We also propose a potential defense strategy to mitigate the threat of AIGT evaders. We open-source our GradEscape for developing more robust AIGT detectors.
comment: Accepted by USENIX Security'25; Update badges and Artifact Appendix
♻ ☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models. We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements. Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/alimama-creative/VC4VG to support further research.
comment: Accepted by EMNLP 2025
♻ ☆ Adversarial Paraphrasing: A Universal Attack for Humanizing AI-Generated Text NeurIPS 2025
The increasing capabilities of Large Language Models (LLMs) have raised concerns about their misuse in AI-generated plagiarism and social engineering. While various AI-generated text detectors have been proposed to mitigate these risks, many remain vulnerable to simple evasion techniques such as paraphrasing. However, recent detectors have shown greater robustness against such basic attacks. In this work, we introduce Adversarial Paraphrasing, a training-free attack framework that universally humanizes any AI-generated text to evade detection more effectively. Our approach leverages an off-the-shelf instruction-following LLM to paraphrase AI-generated content under the guidance of an AI text detector, producing adversarial examples that are specifically optimized to bypass detection. Extensive experiments show that our attack is both broadly effective and highly transferable across several detection systems. For instance, compared to simple paraphrasing attack--which, ironically, increases the true positive at 1% false positive (T@1%F) by 8.57% on RADAR and 15.03% on Fast-DetectGPT--adversarial paraphrasing, guided by OpenAI-RoBERTa-Large, reduces T@1%F by 64.49% on RADAR and a striking 98.96% on Fast-DetectGPT. Across a diverse set of detectors--including neural network-based, watermark-based, and zero-shot approaches--our attack achieves an average T@1%F reduction of 87.88% under the guidance of OpenAI-RoBERTa-Large. We also analyze the tradeoff between text quality and attack success to find that our method can significantly reduce detection rates, with mostly a slight degradation in text quality. Our adversarial setup highlights the need for more robust and resilient detection strategies in the light of increasingly sophisticated evasion techniques.
comment: NeurIPS 2025
♻ ☆ Latent Chain-of-Thought for Visual Reasoning NeurIPS 2025
Chain-of-thought (CoT) reasoning is critical for improving the interpretability and reliability of Large Vision-Language Models (LVLMs). However, existing training algorithms such as SFT, PPO, and GRPO may not generalize well across unseen reasoning tasks and heavily rely on a biased reward model. To address this challenge, we reformulate reasoning in LVLMs as posterior inference and propose a scalable training algorithm based on amortized variational inference. By leveraging diversity-seeking reinforcement learning algorithms, we introduce a novel sparse reward function for token-level learning signals that encourage diverse, high-likelihood latent CoT, overcoming deterministic sampling limitations and avoiding reward hacking. Additionally, we implement a Bayesian inference-scaling strategy that replaces costly Best-of-N and Beam Search with a marginal likelihood to efficiently rank optimal rationales and answers. We empirically demonstrate that the proposed method enhances the state-of-the-art LVLMs on seven reasoning benchmarks, in terms of effectiveness, generalization, and interpretability.
comment: NeurIPS 2025
♻ ☆ AI Debate Aids Assessment of Controversial Claims
As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI systems remain truthful even when their capabilities exceed those of their evaluators. Yet when humans serve as evaluators, their own beliefs and biases can impair judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial factuality claims on COVID-19 and climate change where people hold strong prior beliefs. We conduct two studies. Study I recruits human judges with either mainstream or skeptical beliefs who evaluate claims through two protocols: debate (interaction with two AI advisors arguing opposing sides) or consultancy (interaction with a single AI advisor). Study II uses AI judges with and without human-like personas to evaluate the same protocols. In Study I, debate consistently improves human judgment accuracy and confidence calibration, outperforming consultancy by 4-10% across COVID-19 and climate change claims. The improvement is most significant for judges with mainstream beliefs (up to +15.2% accuracy on COVID-19 claims), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In Study II, AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight in contested domains.
♻ ☆ Fuzzy, Symbolic, and Contextual: Enhancing LLM Instruction via Cognitive Scaffolding
We study how prompt-level inductive biases influence the cognitive behavior of large language models (LLMs) in instructional dialogue. We introduce a symbolic scaffolding method paired with a short-term memory schema designed to promote adaptive, structured reasoning in Socratic tutoring. Using controlled ablation across five system variants, we evaluate model outputs via expert-designed rubrics covering scaffolding, responsiveness, symbolic reasoning, and conversational memory. We present preliminary results using an LLM-based evaluation framework aligned to a cognitively grounded rubric. This enables scalable, systematic comparisons across architectural variants in early-stage experimentation. The preliminary results show that our full system consistently outperforms baseline variants. Analysis reveals that removing memory or symbolic structure degrades key cognitive behaviors, including abstraction, adaptive probing, and conceptual continuity. These findings support a processing-level account in which prompt-level cognitive scaffolds can reliably shape emergent instructional strategies in LLMs.
Computer Vision and Pattern Recognition 118
☆ VFXMaster: Unlocking Dynamic Visual Effect Generation via In-Context Learning
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.
comment: Project Page URL:https://libaolu312.github.io/VFXMaster/
☆ FreeArt3D: Training-Free Articulated Object Generation using 3D Diffusion
Articulated 3D objects are central to many applications in robotics, AR/VR, and animation. Recent approaches to modeling such objects either rely on optimization-based reconstruction pipelines that require dense-view supervision or on feed-forward generative models that produce coarse geometric approximations and often overlook surface texture. In contrast, open-world 3D generation of static objects has achieved remarkable success, especially with the advent of native 3D diffusion models such as Trellis. However, extending these methods to articulated objects by training native 3D diffusion models poses significant challenges. In this work, we present FreeArt3D, a training-free framework for articulated 3D object generation. Instead of training a new model on limited articulated data, FreeArt3D repurposes a pre-trained static 3D diffusion model (e.g., Trellis) as a powerful shape prior. It extends Score Distillation Sampling (SDS) into the 3D-to-4D domain by treating articulation as an additional generative dimension. Given a few images captured in different articulation states, FreeArt3D jointly optimizes the object's geometry, texture, and articulation parameters without requiring task-specific training or access to large-scale articulated datasets. Our method generates high-fidelity geometry and textures, accurately predicts underlying kinematic structures, and generalizes well across diverse object categories. Despite following a per-instance optimization paradigm, FreeArt3D completes in minutes and significantly outperforms prior state-of-the-art approaches in both quality and versatility.
☆ Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks
Humans possess spatial reasoning abilities that enable them to understand spaces through multimodal observations, such as vision and sound. Large multimodal reasoning models extend these abilities by learning to perceive and reason, showing promising performance across diverse spatial tasks. However, systematic reviews and publicly available benchmarks for these models remain limited. In this survey, we provide a comprehensive review of multimodal spatial reasoning tasks with large models, categorizing recent progress in multimodal large language models (MLLMs) and introducing open benchmarks for evaluation. We begin by outlining general spatial reasoning, focusing on post-training techniques, explainability, and architecture. Beyond classical 2D tasks, we examine spatial relationship reasoning, scene and layout understanding, as well as visual question answering and grounding in 3D space. We also review advances in embodied AI, including vision-language navigation and action models. Additionally, we consider emerging modalities such as audio and egocentric video, which contribute to novel spatial understanding through new sensors. We believe this survey establishes a solid foundation and offers insights into the growing field of multimodal spatial reasoning. Updated information about this survey, codes and implementation of the open benchmarks can be found at https://github.com/zhengxuJosh/Awesome-Spatial-Reasoning.
☆ Hawk: Leveraging Spatial Context for Faster Autoregressive Text-to-Image Generation
Autoregressive (AR) image generation models are capable of producing high-fidelity images but often suffer from slow inference due to their inherently sequential, token-by-token decoding process. Speculative decoding, which employs a lightweight draft model to approximate the output of a larger AR model, has shown promise in accelerating text generation without compromising quality. However, its application to image generation remains largely underexplored. The challenges stem from a significantly larger sampling space, which complicates the alignment between the draft and target model outputs, coupled with the inadequate use of the two-dimensional spatial structure inherent in images, thereby limiting the modeling of local dependencies. To overcome these challenges, we introduce Hawk, a new approach that harnesses the spatial structure of images to guide the speculative model toward more accurate and efficient predictions. Experimental results on multiple text-to-image benchmarks demonstrate a 1.71x speedup over standard AR models, while preserving both image fidelity and diversity.
☆ Feedback Alignment Meets Low-Rank Manifolds: A Structured Recipe for Local Learning
Training deep neural networks (DNNs) with backpropagation (BP) achieves state-of-the-art accuracy but requires global error propagation and full parameterization, leading to substantial memory and computational overhead. Direct Feedback Alignment (DFA) enables local, parallelizable updates with lower memory requirements but is limited by unstructured feedback and poor scalability in deeper architectures, specially convolutional neural networks. To address these limitations, we propose a structured local learning framework that operates directly on low-rank manifolds defined by the Singular Value Decomposition (SVD) of weight matrices. Each layer is trained in its decomposed form, with updates applied to the SVD components using a composite loss that integrates cross-entropy, subspace alignment, and orthogonality regularization. Feedback matrices are constructed to match the SVD structure, ensuring consistent alignment between forward and feedback pathways. Our method reduces the number of trainable parameters relative to the original DFA model, without relying on pruning or post hoc compression. Experiments on CIFAR-10, CIFAR-100, and ImageNet show that our method achieves accuracy comparable to that of BP. Ablation studies confirm the importance of each loss term in the low-rank setting. These results establish local learning on low-rank manifolds as a principled and scalable alternative to full-rank gradient-based training.
☆ RegionE: Adaptive Region-Aware Generation for Efficient Image Editing
Recently, instruction-based image editing (IIE) has received widespread attention. In practice, IIE often modifies only specific regions of an image, while the remaining areas largely remain unchanged. Although these two types of regions differ significantly in generation difficulty and computational redundancy, existing IIE models do not account for this distinction, instead applying a uniform generation process across the entire image. This motivates us to propose RegionE, an adaptive, region-aware generation framework that accelerates IIE tasks without additional training. Specifically, the RegionE framework consists of three main components: 1) Adaptive Region Partition. We observed that the trajectory of unedited regions is straight, allowing for multi-step denoised predictions to be inferred in a single step. Therefore, in the early denoising stages, we partition the image into edited and unedited regions based on the difference between the final estimated result and the reference image. 2) Region-Aware Generation. After distinguishing the regions, we replace multi-step denoising with one-step prediction for unedited areas. For edited regions, the trajectory is curved, requiring local iterative denoising. To improve the efficiency and quality of local iterative generation, we propose the Region-Instruction KV Cache, which reduces computational cost while incorporating global information. 3) Adaptive Velocity Decay Cache. Observing that adjacent timesteps in edited regions exhibit strong velocity similarity, we further propose an adaptive velocity decay cache to accelerate the local denoising process. We applied RegionE to state-of-the-art IIE base models, including Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. RegionE achieved acceleration factors of 2.57, 2.41, and 2.06. Evaluations by GPT-4o confirmed that semantic and perceptual fidelity were well preserved.
comment: 26 pages, 10 figures, 18 tables
☆ Comparative Study of UNet-based Architectures for Liver Tumor Segmentation in Multi-Phase Contrast-Enhanced Computed Tomography
Segmentation of liver structures in multi-phase contrast-enhanced computed tomography (CECT) plays a crucial role in computer-aided diagnosis and treatment planning for liver diseases, including tumor detection. In this study, we investigate the performance of UNet-based architectures for liver tumor segmentation, starting from the original UNet and extending to UNet3+ with various backbone networks. We evaluate ResNet, Transformer-based, and State-space (Mamba) backbones, all initialized with pretrained weights. Surprisingly, despite the advances in modern architecture, ResNet-based models consistently outperform Transformer- and Mamba-based alternatives across multiple evaluation metrics. To further improve segmentation quality, we introduce attention mechanisms into the backbone and observe that incorporating the Convolutional Block Attention Module (CBAM) yields the best performance. ResNetUNet3+ with CBAM module not only produced the best overlap metrics with a Dice score of 0.755 and IoU of 0.662, but also achieved the most precise boundary delineation, evidenced by the lowest HD95 distance of 77.911. The model's superiority was further cemented by its leading overall accuracy of 0.925 and specificity of 0.926, showcasing its robust capability in accurately identifying both lesion and healthy tissue. To further enhance interpretability, Grad-CAM visualizations were employed to highlight the region's most influential predictions, providing insights into its decision-making process. These findings demonstrate that classical ResNet architecture, when combined with modern attention modules, remain highly competitive for medical image segmentation tasks, offering a promising direction for liver tumor detection in clinical practice.
comment: 27 pages, 8 figures
☆ FaCT: Faithful Concept Traces for Explaining Neural Network Decisions NeurIPS 2025
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.
comment: Accepted to NeurIPS 2025; Code is available at https://github.com/m-parchami/FaCT
☆ SPADE: Sparsity Adaptive Depth Estimator for Zero-Shot, Real-Time, Monocular Depth Estimation in Underwater Environments
Underwater infrastructure requires frequent inspection and maintenance due to harsh marine conditions. Current reliance on human divers or remotely operated vehicles is limited by perceptual and operational challenges, especially around complex structures or in turbid water. Enhancing the spatial awareness of underwater vehicles is key to reducing piloting risks and enabling greater autonomy. To address these challenges, we present SPADE: SParsity Adaptive Depth Estimator, a monocular depth estimation pipeline that combines pre-trained relative depth estimator with sparse depth priors to produce dense, metric scale depth maps. Our two-stage approach first scales the relative depth map with the sparse depth points, then refines the final metric prediction with our proposed Cascade Conv-Deformable Transformer blocks. Our approach achieves improved accuracy and generalisation over state-of-the-art baselines and runs efficiently at over 15 FPS on embedded hardware, promising to support practical underwater inspection and intervention. This work has been submitted to IEEE Journal of Oceanic Engineering Special Issue of AUV 2026.
☆ More than a Moment: Towards Coherent Sequences of Audio Descriptions
Audio Descriptions (ADs) convey essential on-screen information, allowing visually impaired audiences to follow videos. To be effective, ADs must form a coherent sequence that helps listeners to visualise the unfolding scene, rather than describing isolated moments. However, most automatic methods generate each AD independently, often resulting in repetitive, incoherent descriptions. To address this, we propose a training-free method, CoherentAD, that first generates multiple candidate descriptions for each AD time interval, and then performs auto-regressive selection across the sequence to form a coherent and informative narrative. To evaluate AD sequences holistically, we introduce a sequence-level metric, StoryRecall, which measures how well the predicted ADs convey the ground truth narrative, alongside repetition metrics that capture the redundancy across consecutive AD outputs. Our method produces coherent AD sequences with enhanced narrative understanding, outperforming prior approaches that rely on independent generations.
☆ Instance-Level Composed Image Retrieval NeurIPS 2025
The progress of composed image retrieval (CIR), a popular research direction in image retrieval, where a combined visual and textual query is used, is held back by the absence of high-quality training and evaluation data. We introduce a new evaluation dataset, i-CIR, which, unlike existing datasets, focuses on an instance-level class definition. The goal is to retrieve images that contain the same particular object as the visual query, presented under a variety of modifications defined by textual queries. Its design and curation process keep the dataset compact to facilitate future research, while maintaining its challenge-comparable to retrieval among more than 40M random distractors-through a semi-automated selection of hard negatives. To overcome the challenge of obtaining clean, diverse, and suitable training data, we leverage pre-trained vision-and-language models (VLMs) in a training-free approach called BASIC. The method separately estimates query-image-to-image and query-text-to-image similarities, performing late fusion to upweight images that satisfy both queries, while down-weighting those that exhibit high similarity with only one of the two. Each individual similarity is further improved by a set of components that are simple and intuitive. BASIC sets a new state of the art on i-CIR but also on existing CIR datasets that follow a semantic-level class definition. Project page: https://vrg.fel.cvut.cz/icir/.
comment: NeurIPS 2025
Prompt Estimation from Prototypes for Federated Prompt Tuning of Vision Transformers
Visual Prompt Tuning (VPT) of pre-trained Vision Transformers (ViTs) has proven highly effective as a parameter-efficient fine-tuning technique for adapting large models to downstream tasks with limited data. Its parameter efficiency makes it particularly suitable for Federated Learning (FL), where both communication and computation budgets are often constrained. However, global prompt tuning struggles to generalize across heterogeneous clients, while personalized tuning overfits to local data and lacks generalization. We propose PEP-FedPT (Prompt Estimation from Prototypes for Federated Prompt Tuning), a unified framework designed to achieve both generalization and personalization in federated prompt tuning of ViTs. Within this framework, we introduce the novel Class-Contextualized Mixed Prompt (CCMP) - based on class-specific prompts maintained alongside a globally shared prompt. For each input, CCMP adaptively combines class-specific prompts using weights derived from global class prototypes and client class priors. This approach enables per-sample prompt personalization without storing client-dependent trainable parameters. The prompts are collaboratively optimized via traditional federated averaging technique on the same. Comprehensive evaluations on CIFAR-100, TinyImageNet, DomainNet, and iNaturalist datasets demonstrate that PEP-FedPT consistently surpasses the state-of-the-art baselines under diverse data heterogeneity scenarios, establishing a strong foundation for efficient and generalizable federated prompt tuning of Vision Transformers.
☆ 3D CT-Based Coronary Calcium Assessment: A Feature-Driven Machine Learning Framework MICCAI
Coronary artery calcium (CAC) scoring plays a crucial role in the early detection and risk stratification of coronary artery disease (CAD). In this study, we focus on non-contrast coronary computed tomography angiography (CCTA) scans, which are commonly used for early calcification detection in clinical settings. To address the challenge of limited annotated data, we propose a radiomics-based pipeline that leverages pseudo-labeling to generate training labels, thereby eliminating the need for expert-defined segmentations. Additionally, we explore the use of pretrained foundation models, specifically CT-FM and RadImageNet, to extract image features, which are then used with traditional classifiers. We compare the performance of these deep learning features with that of radiomics features. Evaluation is conducted on a clinical CCTA dataset comprising 182 patients, where individuals are classified into two groups: zero versus non-zero calcium scores. We further investigate the impact of training on non-contrast datasets versus combined contrast and non-contrast datasets, with testing performed only on non contrast scans. Results show that radiomics-based models significantly outperform CNN-derived embeddings from foundation models (achieving 84% accuracy and p<0.05), despite the unavailability of expert annotations.
comment: 11 pages, 2 Figures, MICCAI AMAI 2025 workshop, to be published in Volume 16206 of the Lecture Notes in Computer Science series
☆ Informative Sample Selection Model for Skeleton-based Action Recognition with Limited Training Samples
Skeleton-based human action recognition aims to classify human skeletal sequences, which are spatiotemporal representations of actions, into predefined categories. To reduce the reliance on costly annotations of skeletal sequences while maintaining competitive recognition accuracy, the task of 3D Action Recognition with Limited Training Samples, also known as semi-supervised 3D Action Recognition, has been proposed. In addition, active learning, which aims to proactively select the most informative unlabeled samples for annotation, has been explored in semi-supervised 3D Action Recognition for training sample selection. Specifically, researchers adopt an encoder-decoder framework to embed skeleton sequences into a latent space, where clustering information, combined with a margin-based selection strategy using a multi-head mechanism, is utilized to identify the most informative sequences in the unlabeled set for annotation. However, the most representative skeleton sequences may not necessarily be the most informative for the action recognizer, as the model may have already acquired similar knowledge from previously seen skeleton samples. To solve it, we reformulate Semi-supervised 3D action recognition via active learning from a novel perspective by casting it as a Markov Decision Process (MDP). Built upon the MDP framework and its training paradigm, we train an informative sample selection model to intelligently guide the selection of skeleton sequences for annotation. To enhance the representational capacity of the factors in the state-action pairs within our method, we project them from Euclidean space to hyperbolic space. Furthermore, we introduce a meta tuning strategy to accelerate the deployment of our method in real-world scenarios. Extensive experiments on three 3D action recognition benchmarks demonstrate the effectiveness of our method.
comment: Accepted by IEEE Transactions on Image Processing (TIP), 2025
☆ StreamingCoT: A Dataset for Temporal Dynamics and Multimodal Chain-of-Thought Reasoning in Streaming VideoQA
The rapid growth of streaming video applications demands multimodal models with enhanced capabilities for temporal dynamics understanding and complex reasoning. However, current Video Question Answering (VideoQA) datasets suffer from two critical limitations: 1) Static annotation mechanisms fail to capture the evolving nature of answers in temporal video streams, and 2) The absence of explicit reasoning process annotations restricts model interpretability and logical deduction capabilities. To address these challenges, We introduce StreamingCoT, the first dataset explicitly designed for temporally evolving reasoning in streaming VideoQA and multimodal Chain-of-Thought (CoT) tasks. Our framework first establishes a dynamic hierarchical annotation architecture that generates per-second dense descriptions and constructs temporally-dependent semantic segments through similarity fusion, paired with question-answer sets constrained by temporal evolution patterns. We further propose an explicit reasoning chain generation paradigm that extracts spatiotemporal objects via keyframe semantic alignment, derives object state transition-based reasoning paths using large language models, and ensures logical coherence through human-verified validation. This dataset establishes a foundation for advancing research in streaming video understanding, complex temporal reasoning, and multimodal inference. Our StreamingCoT and its construction toolkit can be accessed at https://github.com/Fleeting-hyh/StreamingCoT.
☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Accepted by SenSys 2026
☆ Prototype-Driven Adaptation for Few-Shot Object Detection
Few-shot object detection (FSOD) often suffers from base-class bias and unstable calibration when only a few novel samples are available. We propose Prototype-Driven Alignment (PDA), a lightweight, plug-in metric head for DeFRCN that provides a prototype-based "second opinion" complementary to the linear classifier. PDA maintains support-only prototypes in a learnable identity-initialized projection space and optionally applies prototype-conditioned RoI alignment to reduce geometric mismatch. During fine-tuning, prototypes can be adapted via exponential moving average(EMA) updates on labeled foreground RoIs-without introducing class-specific parameters-and are frozen at inference to ensure strict protocol compliance. PDA employs a best-of-K matching scheme to capture intra-class multi-modality and temperature-scaled fusion to combine metric similarities with detector logits. Experiments on VOC FSOD and GFSOD benchmarks show that PDA consistently improves novel-class performance with minimal impact on base classes and negligible computational overhead.
comment: 7 pages,1 figure,2 tables,Preprint
☆ Seeing Clearly and Deeply: An RGBD Imaging Approach with a Bio-inspired Monocentric Design
Achieving high-fidelity, compact RGBD imaging presents a dual challenge: conventional compact optics struggle with RGB sharpness across the entire depth-of-field, while software-only Monocular Depth Estimation (MDE) is an ill-posed problem reliant on unreliable semantic priors. While deep optics with elements like DOEs can encode depth, they introduce trade-offs in fabrication complexity and chromatic aberrations, compromising simplicity. To address this, we first introduce a novel bio-inspired all-spherical monocentric lens, around which we build the Bionic Monocentric Imaging (BMI) framework, a holistic co-design. This optical design naturally encodes depth into its depth-varying Point Spread Functions (PSFs) without requiring complex diffractive or freeform elements. We establish a rigorous physically-based forward model to generate a synthetic dataset by precisely simulating the optical degradation process. This simulation pipeline is co-designed with a dual-head, multi-scale reconstruction network that employs a shared encoder to jointly recover a high-fidelity All-in-Focus (AiF) image and a precise depth map from a single coded capture. Extensive experiments validate the state-of-the-art performance of the proposed framework. In depth estimation, the method attains an Abs Rel of 0.026 and an RMSE of 0.130, markedly outperforming leading software-only approaches and other deep optics systems. For image restoration, the system achieves an SSIM of 0.960 and a perceptual LPIPS score of 0.082, thereby confirming a superior balance between image fidelity and depth accuracy. This study illustrates that the integration of bio-inspired, fully spherical optics with a joint reconstruction algorithm constitutes an effective strategy for addressing the intrinsic challenges in high-performance compact RGBD imaging. Source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI.
comment: The source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI
☆ GaTector+: A Unified Head-free Framework for Gaze Object and Gaze Following Prediction
Gaze object detection and gaze following are fundamental tasks for interpreting human gaze behavior or intent. However, most previous methods usually solve these two tasks separately, and their prediction of gaze objects and gaze following typically depend on head-related prior knowledge during both the training phase and real-world deployment. This dependency necessitates an auxiliary network to extract head location, thus precluding joint optimization across the entire system and constraining the practical applicability. To this end, we propose GaTector+, a unified framework for gaze object detection and gaze following, which eliminates the dependence on the head-related priors during inference. Specifically, GaTector+ uses an expanded specific-general-specific feature extractor that leverages a shared backbone, which extracts general features for gaze following and object detection using the shared backbone while using specific blocks before and after the shared backbone to better consider the specificity of each sub-task. To obtain head-related knowledge without prior information, we first embed a head detection branch to predict the head of each person. Then, before regressing the gaze point, a head-based attention mechanism is proposed to fuse the sense feature and gaze feature with the help of head location. Since the suboptimization of the gaze point heatmap leads to the performance bottleneck, we propose an attention supervision mechanism to accelerate the learning of the gaze heatmap. Finally, we propose a novel evaluation metric, mean Similarity over Candidates (mSoC), for gaze object detection, which is more sensitive to variations between bounding boxes. The experimental results on multiple benchmark datasets demonstrate the effectiveness of our model in both gaze object detection and gaze following tasks.
☆ Diffusion-Driven Progressive Target Manipulation for Source-Free Domain Adaptation NeurIPS 2025
Source-free domain adaptation (SFDA) is a challenging task that tackles domain shifts using only a pre-trained source model and unlabeled target data. Existing SFDA methods are restricted by the fundamental limitation of source-target domain discrepancy. Non-generation SFDA methods suffer from unreliable pseudo-labels in challenging scenarios with large domain discrepancies, while generation-based SFDA methods are evidently degraded due to enlarged domain discrepancies in creating pseudo-source data. To address this limitation, we propose a novel generation-based framework named Diffusion-Driven Progressive Target Manipulation (DPTM) that leverages unlabeled target data as references to reliably generate and progressively refine a pseudo-target domain for SFDA. Specifically, we divide the target samples into a trust set and a non-trust set based on the reliability of pseudo-labels to sufficiently and reliably exploit their information. For samples from the non-trust set, we develop a manipulation strategy to semantically transform them into the newly assigned categories, while simultaneously maintaining them in the target distribution via a latent diffusion model. Furthermore, we design a progressive refinement mechanism that progressively reduces the domain discrepancy between the pseudo-target domain and the real target domain via iterative refinement. Experimental results demonstrate that DPTM outperforms existing methods by a large margin and achieves state-of-the-art performance on four prevailing SFDA benchmark datasets with different scales. Remarkably, DPTM can significantly enhance the performance by up to 18.6% in scenarios with large source-target gaps.
comment: Accepted by NeurIPS 2025
☆ SynHLMA:Synthesizing Hand Language Manipulation for Articulated Object with Discrete Human Object Interaction Representation
Generating hand grasps with language instructions is a widely studied topic that benefits from embodied AI and VR/AR applications. While transferring into hand articulatied object interaction (HAOI), the hand grasps synthesis requires not only object functionality but also long-term manipulation sequence along the object deformation. This paper proposes a novel HAOI sequence generation framework SynHLMA, to synthesize hand language manipulation for articulated objects. Given a complete point cloud of an articulated object, we utilize a discrete HAOI representation to model each hand object interaction frame. Along with the natural language embeddings, the representations are trained by an HAOI manipulation language model to align the grasping process with its language description in a shared representation space. A joint-aware loss is employed to ensure hand grasps follow the dynamic variations of articulated object joints. In this way, our SynHLMA achieves three typical hand manipulation tasks for articulated objects of HAOI generation, HAOI prediction and HAOI interpolation. We evaluate SynHLMA on our built HAOI-lang dataset and experimental results demonstrate the superior hand grasp sequence generation performance comparing with state-of-the-art. We also show a robotics grasp application that enables dexterous grasps execution from imitation learning using the manipulation sequence provided by our SynHLMA. Our codes and datasets will be made publicly available.
☆ LangHOPS: Language Grounded Hierarchical Open-Vocabulary Part Segmentation
We propose LangHOPS, the first Multimodal Large Language Model (MLLM) based framework for open-vocabulary object-part instance segmentation. Given an image, LangHOPS can jointly detect and segment hierarchical object and part instances from open-vocabulary candidate categories. Unlike prior approaches that rely on heuristic or learnable visual grouping, our approach grounds object-part hierarchies in language space. It integrates the MLLM into the object-part parsing pipeline to leverage its rich knowledge and reasoning capabilities, and link multi-granularity concepts within the hierarchies. We evaluate LangHOPS across multiple challenging scenarios, including in-domain and cross-dataset object-part instance segmentation, and zero-shot semantic segmentation. LangHOPS achieves state-of-the-art results, surpassing previous methods by 5.5% Average Precision (AP) (in-domain) and 4.8% (cross-dataset) on the PartImageNet dataset and by 2.5% mIOU on unseen object parts in ADE20K (zero-shot). Ablation studies further validate the effectiveness of the language-grounded hierarchy and MLLM driven part query refinement strategy. The code will be released here.
comment: 10 pages, 5 figures, 14 tables, Neurips 2025
☆ RT-DETRv4: Painlessly Furthering Real-Time Object Detection with Vision Foundation Models
Real-time object detection has achieved substantial progress through meticulously designed architectures and optimization strategies. However, the pursuit of high-speed inference via lightweight network designs often leads to degraded feature representation, which hinders further performance improvements and practical on-device deployment. In this paper, we propose a cost-effective and highly adaptable distillation framework that harnesses the rapidly evolving capabilities of Vision Foundation Models (VFMs) to enhance lightweight object detectors. Given the significant architectural and learning objective disparities between VFMs and resource-constrained detectors, achieving stable and task-aligned semantic transfer is challenging. To address this, on one hand, we introduce a Deep Semantic Injector (DSI) module that facilitates the integration of high-level representations from VFMs into the deep layers of the detector. On the other hand, we devise a Gradient-guided Adaptive Modulation (GAM) strategy, which dynamically adjusts the intensity of semantic transfer based on gradient norm ratios. Without increasing deployment and inference overhead, our approach painlessly delivers striking and consistent performance gains across diverse DETR-based models, underscoring its practical utility for real-time detection. Our new model family, RT-DETRv4, achieves state-of-the-art results on COCO, attaining AP scores of 49.7/53.5/55.4/57.0 at corresponding speeds of 273/169/124/78 FPS.
☆ Mapping and Classification of Trees Outside Forests using Deep Learning
Trees Outside Forests (TOF) play an important role in agricultural landscapes by supporting biodiversity, sequestering carbon, and regulating microclimates. Yet, most studies have treated TOF as a single class or relied on rigid rule-based thresholds, limiting ecological interpretation and adaptability across regions. To address this, we evaluate deep learning for TOF classification using a newly generated dataset and high-resolution aerial imagery from four agricultural landscapes in Germany. Specifically, we compare convolutional neural networks (CNNs), vision transformers, and hybrid CNN-transformer models across six semantic segmentation architectures (ABCNet, LSKNet, FT-UNetFormer, DC-Swin, BANet, and U-Net) to map four categories of woody vegetation: Forest, Patch, Linear, and Tree, derived from previous studies and governmental products. Overall, the models achieved good classification accuracy across the four landscapes, with the FT-UNetFormer performing best (mean Intersection-over-Union 0.74; mean F1 score 0.84), underscoring the importance of spatial context understanding in TOF mapping and classification. Our results show good results for Forest and Linear class and reveal challenges particularly in classifying complex structures with high edge density, notably the Patch and Tree class. Our generalization experiments highlight the need for regionally diverse training data to ensure reliable large-scale mapping. The dataset and code are openly available at https://github.com/Moerizzy/TOFMapper
☆ VADB: A Large-Scale Video Aesthetic Database with Professional and Multi-Dimensional Annotations
Video aesthetic assessment, a vital area in multimedia computing, integrates computer vision with human cognition. Its progress is limited by the lack of standardized datasets and robust models, as the temporal dynamics of video and multimodal fusion challenges hinder direct application of image-based methods. This study introduces VADB, the largest video aesthetic database with 10,490 diverse videos annotated by 37 professionals across multiple aesthetic dimensions, including overall and attribute-specific aesthetic scores, rich language comments and objective tags. We propose VADB-Net, a dual-modal pre-training framework with a two-stage training strategy, which outperforms existing video quality assessment models in scoring tasks and supports downstream video aesthetic assessment tasks. The dataset and source code are available at https://github.com/BestiVictory/VADB.
☆ DeepShield: Fortifying Deepfake Video Detection with Local and Global Forgery Analysis ICCV 2025
Recent advances in deep generative models have made it easier to manipulate face videos, raising significant concerns about their potential misuse for fraud and misinformation. Existing detectors often perform well in in-domain scenarios but fail to generalize across diverse manipulation techniques due to their reliance on forgery-specific artifacts. In this work, we introduce DeepShield, a novel deepfake detection framework that balances local sensitivity and global generalization to improve robustness across unseen forgeries. DeepShield enhances the CLIP-ViT encoder through two key components: Local Patch Guidance (LPG) and Global Forgery Diversification (GFD). LPG applies spatiotemporal artifact modeling and patch-wise supervision to capture fine-grained inconsistencies often overlooked by global models. GFD introduces domain feature augmentation, leveraging domain-bridging and boundary-expanding feature generation to synthesize diverse forgeries, mitigating overfitting and enhancing cross-domain adaptability. Through the integration of novel local and global analysis for deepfake detection, DeepShield outperforms state-of-the-art methods in cross-dataset and cross-manipulation evaluations, achieving superior robustness against unseen deepfake attacks.
comment: ICCV 2025
☆ Learning Disentangled Speech- and Expression-Driven Blendshapes for 3D Talking Face Animation
Expressions are fundamental to conveying human emotions. With the rapid advancement of AI-generated content (AIGC), realistic and expressive 3D facial animation has become increasingly crucial. Despite recent progress in speech-driven lip-sync for talking-face animation, generating emotionally expressive talking faces remains underexplored. A major obstacle is the scarcity of real emotional 3D talking-face datasets due to the high cost of data capture. To address this, we model facial animation driven by both speech and emotion as a linear additive problem. Leveraging a 3D talking-face dataset with neutral expressions (VOCAset) and a dataset of 3D expression sequences (Florence4D), we jointly learn a set of blendshapes driven by speech and emotion. We introduce a sparsity constraint loss to encourage disentanglement between the two types of blendshapes while allowing the model to capture inherent secondary cross-domain deformations present in the training data. The learned blendshapes can be further mapped to the expression and jaw pose parameters of the FLAME model, enabling the animation of 3D Gaussian avatars. Qualitative and quantitative experiments demonstrate that our method naturally generates talking faces with specified expressions while maintaining accurate lip synchronization. Perceptual studies further show that our approach achieves superior emotional expressivity compared to existing methods, without compromising lip-sync quality.
comment: 18 pages, 6 figures, accepted to ICXR 2025 conference
☆ Balanced conic rectified flow NeurIPS 2025
Rectified flow is a generative model that learns smooth transport mappings between two distributions through an ordinary differential equation (ODE). Unlike diffusion-based generative models, which require costly numerical integration of a generative ODE to sample images with state-of-the-art quality, rectified flow uses an iterative process called reflow to learn smooth and straight ODE paths. This allows for relatively simple and efficient generation of high-quality images. However, rectified flow still faces several challenges. 1) The reflow process requires a large number of generative pairs to preserve the target distribution, leading to significant computational costs. 2) Since the model is typically trained using only generated image pairs, its performance heavily depends on the 1-rectified flow model, causing it to become biased towards the generated data. In this work, we experimentally expose the limitations of the original rectified flow and propose a novel approach that incorporates real images into the training process. By preserving the ODE paths for real images, our method effectively reduces reliance on large amounts of generated data. Instead, we demonstrate that the reflow process can be conducted efficiently using a much smaller set of generated and real images. In CIFAR-10, we achieved significantly better FID scores, not only in one-step generation but also in full-step simulations, while using only of the generative pairs compared to the original method. Furthermore, our approach induces straighter paths and avoids saturation on generated images during reflow, leading to more robust ODE learning while preserving the distribution of real images.
comment: Main paper: 10 pages (total 40 pages including appendix), 5 figures. Accepted at NeurIPS 2025 (Poster). Acknowledgment: Supported by the NRF of Korea (RS-2023-00223062) and IITP grants (RS-2020-II201361, RS-2024-00439762) funded by the Korean government (MSIT)
☆ Aligning What You Separate: Denoised Patch Mixing for Source-Free Domain Adaptation in Medical Image Segmentation
Source-Free Domain Adaptation (SFDA) is emerging as a compelling solution for medical image segmentation under privacy constraints, yet current approaches often ignore sample difficulty and struggle with noisy supervision under domain shift. We present a new SFDA framework that leverages Hard Sample Selection and Denoised Patch Mixing to progressively align target distributions. First, unlabeled images are partitioned into reliable and unreliable subsets through entropy-similarity analysis, allowing adaptation to start from easy samples and gradually incorporate harder ones. Next, pseudo-labels are refined via Monte Carlo-based denoising masks, which suppress unreliable pixels and stabilize training. Finally, intra- and inter-domain objectives mix patches between subsets, transferring reliable semantics while mitigating noise. Experiments on benchmark datasets show consistent gains over prior SFDA and UDA methods, delivering more accurate boundary delineation and achieving state-of-the-art Dice and ASSD scores. Our study highlights the importance of progressive adaptation and denoised supervision for robust segmentation under domain shift.
comment: 5 pages, 3 figures
☆ MSF-Net: Multi-Stage Feature Extraction and Fusion for Robust Photometric Stereo
Photometric stereo is a technique aimed at determining surface normals through the utilization of shading cues derived from images taken under different lighting conditions. However, existing learning-based approaches often fail to accurately capture features at multiple stages and do not adequately promote interaction between these features. Consequently, these models tend to extract redundant features, especially in areas with intricate details such as wrinkles and edges. To tackle these issues, we propose MSF-Net, a novel framework for extracting information at multiple stages, paired with selective update strategy, aiming to extract high-quality feature information, which is critical for accurate normal construction. Additionally, we have developed a feature fusion module to improve the interplay among different features. Experimental results on the DiLiGenT benchmark show that our proposed MSF-Net significantly surpasses previous state-of-the-art methods in the accuracy of surface normal estimation.
☆ U-CAN: Unsupervised Point Cloud Denoising with Consistency-Aware Noise2Noise Matching NeurIPS 2025
Point clouds captured by scanning sensors are often perturbed by noise, which have a highly negative impact on downstream tasks (e.g. surface reconstruction and shape understanding). Previous works mostly focus on training neural networks with noisy-clean point cloud pairs for learning denoising priors, which requires extensively manual efforts. In this work, we introduce U-CAN, an Unsupervised framework for point cloud denoising with Consistency-Aware Noise2Noise matching. Specifically, we leverage a neural network to infer a multi-step denoising path for each point of a shape or scene with a noise to noise matching scheme. We achieve this by a novel loss which enables statistical reasoning on multiple noisy point cloud observations. We further introduce a novel constraint on the denoised geometry consistency for learning consistency-aware denoising patterns. We justify that the proposed constraint is a general term which is not limited to 3D domain and can also contribute to the area of 2D image denoising. Our evaluations under the widely used benchmarks in point cloud denoising, upsampling and image denoising show significant improvement over the state-of-the-art unsupervised methods, where U-CAN also produces comparable results with the supervised methods.
comment: Accepted by NeurIPS 2025. Project page: https://gloriasze.github.io/U-CAN/
☆ AI-Powered Early Detection of Critical Diseases using Image Processing and Audio Analysis
Early diagnosis of critical diseases can significantly improve patient survival and reduce treatment costs. However, existing diagnostic techniques are often costly, invasive, and inaccessible in low-resource regions. This paper presents a multimodal artificial intelligence (AI) diagnostic framework integrating image analysis, thermal imaging, and audio signal processing for early detection of three major health conditions: skin cancer, vascular blood clots, and cardiopulmonary abnormalities. A fine-tuned MobileNetV2 convolutional neural network was trained on the ISIC 2019 dataset for skin lesion classification, achieving 89.3% accuracy, 91.6% sensitivity, and 88.2% specificity. A support vector machine (SVM) with handcrafted features was employed for thermal clot detection, achieving 86.4% accuracy (AUC = 0.89) on synthetic and clinical data. For cardiopulmonary analysis, lung and heart sound datasets from PhysioNet and Pascal were processed using Mel-Frequency Cepstral Coefficients (MFCC) and classified via Random Forest, reaching 87.2% accuracy and 85.7% sensitivity. Comparative evaluation against state-of-the-art models demonstrates that the proposed system achieves competitive results while remaining lightweight and deployable on low-cost devices. The framework provides a promising step toward scalable, real-time, and accessible AI-based pre-diagnostic healthcare solutions.
☆ Mask-Robust Face Verification for Online Learning via YOLOv5 and Residual Networks
In the contemporary landscape, the fusion of information technology and the rapid advancement of artificial intelligence have ushered school education into a transformative phase characterized by digitization and heightened intelligence. Concurrently, the global paradigm shift caused by the Covid-19 pandemic has catalyzed the evolution of e-learning, accentuating its significance. Amidst these developments, one pivotal facet of the online education paradigm that warrants attention is the authentication of identities within the digital learning sphere. Within this context, our study delves into a solution for online learning authentication, utilizing an enhanced convolutional neural network architecture, specifically the residual network model. By harnessing the power of deep learning, this technological approach aims to galvanize the ongoing progress of online education, while concurrently bolstering its security and stability. Such fortification is imperative in enabling online education to seamlessly align with the swift evolution of the educational landscape. This paper's focal proposition involves the deployment of the YOLOv5 network, meticulously trained on our proprietary dataset. This network is tasked with identifying individuals' faces culled from images captured by students' open online cameras. The resultant facial information is then channeled into the residual network to extract intricate features at a deeper level. Subsequently, a comparative analysis of Euclidean distances against students' face databases is performed, effectively ascertaining the identity of each student.
comment: 9 pages, 10 figures
☆ Test-Time Adaptive Object Detection with Foundation Model NeurIPS 2025
In recent years, test-time adaptive object detection has attracted increasing attention due to its unique advantages in online domain adaptation, which aligns more closely with real-world application scenarios. However, existing approaches heavily rely on source-derived statistical characteristics while making the strong assumption that the source and target domains share an identical category space. In this paper, we propose the first foundation model-powered test-time adaptive object detection method that eliminates the need for source data entirely and overcomes traditional closed-set limitations. Specifically, we design a Multi-modal Prompt-based Mean-Teacher framework for vision-language detector-driven test-time adaptation, which incorporates text and visual prompt tuning to adapt both language and vision representation spaces on the test data in a parameter-efficient manner. Correspondingly, we propose a Test-time Warm-start strategy tailored for the visual prompts to effectively preserve the representation capability of the vision branch. Furthermore, to guarantee high-quality pseudo-labels in every test batch, we maintain an Instance Dynamic Memory (IDM) module that stores high-quality pseudo-labels from previous test samples, and propose two novel strategies-Memory Enhancement and Memory Hallucination-to leverage IDM's high-quality instances for enhancing original predictions and hallucinating images without available pseudo-labels, respectively. Extensive experiments on cross-corruption and cross-dataset benchmarks demonstrate that our method consistently outperforms previous state-of-the-art methods, and can adapt to arbitrary cross-domain and cross-category target data. Code is available at https://github.com/gaoyingjay/ttaod_foundation.
comment: Accepted by NeurIPS 2025
☆ Classifier Enhancement Using Extended Context and Domain Experts for Semantic Segmentation
Prevalent semantic segmentation methods generally adopt a vanilla classifier to categorize each pixel into specific classes. Although such a classifier learns global information from the training data, this information is represented by a set of fixed parameters (weights and biases). However, each image has a different class distribution, which prevents the classifier from addressing the unique characteristics of individual images. At the dataset level, class imbalance leads to segmentation results being biased towards majority classes, limiting the model's effectiveness in identifying and segmenting minority class regions. In this paper, we propose an Extended Context-Aware Classifier (ECAC) that dynamically adjusts the classifier using global (dataset-level) and local (image-level) contextual information. Specifically, we leverage a memory bank to learn dataset-level contextual information of each class, incorporating the class-specific contextual information from the current image to improve the classifier for precise pixel labeling. Additionally, a teacher-student network paradigm is adopted, where the domain expert (teacher network) dynamically adjusts contextual information with ground truth and transfers knowledge to the student network. Comprehensive experiments illustrate that the proposed ECAC can achieve state-of-the-art performance across several datasets, including ADE20K, COCO-Stuff10K, and Pascal-Context.
comment: Accepted at IEEE TRANSACTIONS ON MULTIMEDIA (TMM)
☆ $D^2GS$: Dense Depth Regularization for LiDAR-free Urban Scene Reconstruction
Recently, Gaussian Splatting (GS) has shown great potential for urban scene reconstruction in the field of autonomous driving. However, current urban scene reconstruction methods often depend on multimodal sensors as inputs, \textit{i.e.} LiDAR and images. Though the geometry prior provided by LiDAR point clouds can largely mitigate ill-posedness in reconstruction, acquiring such accurate LiDAR data is still challenging in practice: i) precise spatiotemporal calibration between LiDAR and other sensors is required, as they may not capture data simultaneously; ii) reprojection errors arise from spatial misalignment when LiDAR and cameras are mounted at different locations. To avoid the difficulty of acquiring accurate LiDAR depth, we propose $D^2GS$, a LiDAR-free urban scene reconstruction framework. In this work, we obtain geometry priors that are as effective as LiDAR while being denser and more accurate. $\textbf{First}$, we initialize a dense point cloud by back-projecting multi-view metric depth predictions. This point cloud is then optimized by a Progressive Pruning strategy to improve the global consistency. $\textbf{Second}$, we jointly refine Gaussian geometry and predicted dense metric depth via a Depth Enhancer. Specifically, we leverage diffusion priors from a depth foundation model to enhance the depth maps rendered by Gaussians. In turn, the enhanced depths provide stronger geometric constraints during Gaussian training. $\textbf{Finally}$, we improve the accuracy of ground geometry by constraining the shape and normal attributes of Gaussians within road regions. Extensive experiments on the Waymo dataset demonstrate that our method consistently outperforms state-of-the-art methods, producing more accurate geometry even when compared with those using ground-truth LiDAR data.
☆ A Study on Inference Latency for Vision Transformers on Mobile Devices
Given the significant advances in machine learning techniques on mobile devices, particularly in the domain of computer vision, in this work we quantitatively study the performance characteristics of 190 real-world vision transformers (ViTs) on mobile devices. Through a comparison with 102 real-world convolutional neural networks (CNNs), we provide insights into the factors that influence the latency of ViT architectures on mobile devices. Based on these insights, we develop a dataset including measured latencies of 1000 synthetic ViTs with representative building blocks and state-of-the-art architectures from two machine learning frameworks and six mobile platforms. Using this dataset, we show that inference latency of new ViTs can be predicted with sufficient accuracy for real-world applications.
comment: To appear in Springer LNICST, volume 663, Proceedings of VALUETOOLS 2024
Transformers in Medicine: Improving Vision-Language Alignment for Medical Image Captioning
We present a transformer-based multimodal framework for generating clinically relevant captions for MRI scans. Our system combines a DEiT-Small vision transformer as an image encoder, MediCareBERT for caption embedding, and a custom LSTM-based decoder. The architecture is designed to semantically align image and textual embeddings, using hybrid cosine-MSE loss and contrastive inference via vector similarity. We benchmark our method on the MultiCaRe dataset, comparing performance on filtered brain-only MRIs versus general MRI images against state-of-the-art medical image captioning methods including BLIP, R2GenGPT, and recent transformer-based approaches. Results show that focusing on domain-specific data improves caption accuracy and semantic alignment. Our work proposes a scalable, interpretable solution for automated medical image reporting.
comment: This work is to appear in the Proceedings of MICAD 2025, the 6th International Conference on Medical Imaging and Computer-Aided Diagnosis
☆ Target-Guided Bayesian Flow Networks for Quantitatively Constrained CAD Generation
Deep generative models, such as diffusion models, have shown promising progress in image generation and audio generation via simplified continuity assumptions. However, the development of generative modeling techniques for generating multi-modal data, such as parametric CAD sequences, still lags behind due to the challenges in addressing long-range constraints and parameter sensitivity. In this work, we propose a novel framework for quantitatively constrained CAD generation, termed Target-Guided Bayesian Flow Network (TGBFN). For the first time, TGBFN handles the multi-modality of CAD sequences (i.e., discrete commands and continuous parameters) in a unified continuous and differentiable parameter space rather than in the discrete data space. In addition, TGBFN penetrates the parameter update kernel and introduces a guided Bayesian flow to control the CAD properties. To evaluate TGBFN, we construct a new dataset for quantitatively constrained CAD generation. Extensive comparisons across single-condition and multi-condition constrained generation tasks demonstrate that TGBFN achieves state-of-the-art performance in generating high-fidelity, condition-aware CAD sequences. The code is available at https://github.com/scu-zwh/TGBFN.
☆ Towards Real-Time Inference of Thin Liquid Film Thickness Profiles from Interference Patterns Using Vision Transformers
Thin film interferometry is a powerful technique for non-invasively measuring liquid film thickness with applications in ophthalmology, but its clinical translation is hindered by the challenges in reconstructing thickness profiles from interference patterns - an ill-posed inverse problem complicated by phase periodicity, imaging noise and ambient artifacts. Traditional reconstruction methods are either computationally intensive, sensitive to noise, or require manual expert analysis, which is impractical for real-time diagnostics. To address this challenge, here we present a vision transformer-based approach for real-time inference of thin liquid film thickness profiles directly from isolated interferograms. Trained on a hybrid dataset combining physiologically-relevant synthetic and experimental tear film data, our model leverages long-range spatial correlations to resolve phase ambiguities and reconstruct temporally coherent thickness profiles in a single forward pass from dynamic interferograms acquired in vivo and ex vivo. The network demonstrates state-of-the-art performance on noisy, rapidly-evolving films with motion artifacts, overcoming limitations of conventional phase-unwrapping and iterative fitting methods. Our data-driven approach enables automated, consistent thickness reconstruction at real-time speeds on consumer hardware, opening new possibilities for continuous monitoring of pre-lens ocular tear films and non-invasive diagnosis of conditions such as the dry eye disease.
comment: 6 pages, 2 figures, will be updated
☆ EA3D: Online Open-World 3D Object Extraction from Streaming Videos NeurIPS 2025
Current 3D scene understanding methods are limited by offline-collected multi-view data or pre-constructed 3D geometry. In this paper, we present ExtractAnything3D (EA3D), a unified online framework for open-world 3D object extraction that enables simultaneous geometric reconstruction and holistic scene understanding. Given a streaming video, EA3D dynamically interprets each frame using vision-language and 2D vision foundation encoders to extract object-level knowledge. This knowledge is integrated and embedded into a Gaussian feature map via a feed-forward online update strategy. We then iteratively estimate visual odometry from historical frames and incrementally update online Gaussian features with new observations. A recurrent joint optimization module directs the model's attention to regions of interest, simultaneously enhancing both geometric reconstruction and semantic understanding. Extensive experiments across diverse benchmarks and tasks, including photo-realistic rendering, semantic and instance segmentation, 3D bounding box and semantic occupancy estimation, and 3D mesh generation, demonstrate the effectiveness of EA3D. Our method establishes a unified and efficient framework for joint online 3D reconstruction and holistic scene understanding, enabling a broad range of downstream tasks.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems(NeurIPS 2025)
☆ Revisiting Reconstruction-based AI-generated Image Detection: A Geometric Perspective
The rise of generative Artificial Intelligence (AI) has made detecting AI-generated images a critical challenge for ensuring authenticity. Existing reconstruction-based methods lack theoretical foundations and on empirical heuristics, limiting interpretability and reliability. In this paper, we introduce the Jacobian-Spectral Lower Bound for reconstruction error from a geometric perspective, showing that real images off the reconstruction manifold exhibit a non-trivial error lower bound, while generated images on the manifold have near-zero error. Furthermore, we reveal the limitations of existing methods that rely on static reconstruction error from a single pass. These methods often fail when some real images exhibit lower error than generated ones. This counterintuitive behavior reduces detection accuracy and requires data-specific threshold tuning, limiting their applicability in real-world scenarios. To address these challenges, we propose ReGap, a training-free method that computes dynamic reconstruction error by leveraging structured editing operations to introduce controlled perturbations. This enables measuring error changes before and after editing, improving detection accuracy by enhancing error separation. Experimental results show that our method outperforms existing baselines, exhibits robustness to common post-processing operations and generalizes effectively across diverse conditions.
☆ DINO-YOLO: Self-Supervised Pre-training for Data-Efficient Object Detection in Civil Engineering Applications
Object detection in civil engineering applications is constrained by limited annotated data in specialized domains. We introduce DINO-YOLO, a hybrid architecture combining YOLOv12 with DINOv3 self-supervised vision transformers for data-efficient detection. DINOv3 features are strategically integrated at two locations: input preprocessing (P0) and mid-backbone enhancement (P3). Experimental validation demonstrates substantial improvements: Tunnel Segment Crack detection (648 images) achieves 12.4% improvement, Construction PPE (1K images) gains 13.7%, and KITTI (7K images) shows 88.6% improvement, while maintaining real-time inference (30-47 FPS). Systematic ablation across five YOLO scales and nine DINOv3 variants reveals that Medium-scale architectures achieve optimal performance with DualP0P3 integration (55.77% mAP@0.5), while Small-scale requires Triple Integration (53.63%). The 2-4x inference overhead (21-33ms versus 8-16ms baseline) remains acceptable for field deployment on NVIDIA RTX 5090. DINO-YOLO establishes state-of-the-art performance for civil engineering datasets (<10K images) while preserving computational efficiency, providing practical solutions for construction safety monitoring and infrastructure inspection in data-constrained environments.
☆ Region-CAM: Towards Accurate Object Regions in Class Activation Maps for Weakly Supervised Learning Tasks
Class Activation Mapping (CAM) methods are widely applied in weakly supervised learning tasks due to their ability to highlight object regions. However, conventional CAM methods highlight only the most discriminative regions of the target. These highlighted regions often fail to cover the entire object and are frequently misaligned with object boundaries, thereby limiting the performance of downstream weakly supervised learning tasks, particularly Weakly Supervised Semantic Segmentation (WSSS), which demands pixel-wise accurate activation maps to get the best results. To alleviate the above problems, we propose a novel activation method, Region-CAM. Distinct from network feature weighting approaches, Region-CAM generates activation maps by extracting semantic information maps (SIMs) and performing semantic information propagation (SIP) by considering both gradients and features in each of the stages of the baseline classification model. Our approach highlights a greater proportion of object regions while ensuring activation maps to have precise boundaries that align closely with object edges. Region-CAM achieves 60.12% and 58.43% mean intersection over union (mIoU) using the baseline model on the PASCAL VOC training and validation datasets, respectively, which are improvements of 13.61% and 13.13% over the original CAM (46.51% and 45.30%). On the MS COCO validation set, Region-CAM achieves 36.38%, a 16.23% improvement over the original CAM (20.15%). We also demonstrate the superiority of Region-CAM in object localization tasks, using the ILSVRC2012 validation set. Region-CAM achieves 51.7% in Top-1 Localization accuracy Loc1. Compared with LayerCAM, an activation method designed for weakly supervised object localization, Region-CAM achieves 4.5% better performance in Loc1.
comment: Preprint for journal paper
☆ AtlasGS: Atlanta-world Guided Surface Reconstruction with Implicit Structured Gaussians NeurIPS 2025
3D reconstruction of indoor and urban environments is a prominent research topic with various downstream applications. However, existing geometric priors for addressing low-texture regions in indoor and urban settings often lack global consistency. Moreover, Gaussian Splatting and implicit SDF fields often suffer from discontinuities or exhibit computational inefficiencies, resulting in a loss of detail. To address these issues, we propose an Atlanta-world guided implicit-structured Gaussian Splatting that achieves smooth indoor and urban scene reconstruction while preserving high-frequency details and rendering efficiency. By leveraging the Atlanta-world model, we ensure the accurate surface reconstruction for low-texture regions, while the proposed novel implicit-structured GS representations provide smoothness without sacrificing efficiency and high-frequency details. Specifically, we propose a semantic GS representation to predict the probability of all semantic regions and deploy a structure plane regularization with learnable plane indicators for global accurate surface reconstruction. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in both indoor and urban scenes, delivering superior surface reconstruction quality.
comment: 18 pages, 11 figures. NeurIPS 2025; Project page: https://zju3dv.github.io/AtlasGS/
☆ Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI Detection NeurIPS 2025
Zero-shot Human-Object Interaction detection aims to localize humans and objects in an image and recognize their interaction, even when specific verb-object pairs are unseen during training. Recent works have shown promising results using prompt learning with pretrained vision-language models such as CLIP, which align natural language prompts with visual features in a shared embedding space. However, existing approaches still fail to handle the visual complexity of interaction, including (1) intra-class visual diversity, where instances of the same verb appear in diverse poses and contexts, and (2) inter-class visual entanglement, where distinct verbs yield visually similar patterns. To address these challenges, we propose VDRP, a framework for Visual Diversity and Region-aware Prompt learning. First, we introduce a visual diversity-aware prompt learning strategy that injects group-wise visual variance into the context embedding. We further apply Gaussian perturbation to encourage the prompts to capture diverse visual variations of a verb. Second, we retrieve region-specific concepts from the human, object, and union regions. These are used to augment the diversity-aware prompt embeddings, yielding region-aware prompts that enhance verb-level discrimination. Experiments on the HICO-DET benchmark demonstrate that our method achieves state-of-the-art performance under four zero-shot evaluation settings, effectively addressing both intra-class diversity and inter-class visual entanglement. Code is available at https://github.com/mlvlab/VDRP.
comment: Accepted by NeurIPS 2025
☆ PSTF-AttControl: Per-Subject-Tuning-Free Personalized Image Generation with Controllable Face Attributes
Recent advancements in personalized image generation have significantly improved facial identity preservation, particularly in fields such as entertainment and social media. However, existing methods still struggle to achieve precise control over facial attributes in a per-subject-tuning-free (PSTF) way. Tuning-based techniques like PreciseControl have shown promise by providing fine-grained control over facial features, but they often require extensive technical expertise and additional training data, limiting their accessibility. In contrast, PSTF approaches simplify the process by enabling image generation from a single facial input, but they lack precise control over facial attributes. In this paper, we introduce a novel, PSTF method that enables both precise control over facial attributes and high-fidelity preservation of facial identity. Our approach utilizes a face recognition model to extract facial identity features, which are then mapped into the $W^+$ latent space of StyleGAN2 using the e4e encoder. We further enhance the model with a Triplet-Decoupled Cross-Attention module, which integrates facial identity, attribute features, and text embeddings into the UNet architecture, ensuring clean separation of identity and attribute information. Trained on the FFHQ dataset, our method allows for the generation of personalized images with fine-grained control over facial attributes, while without requiring additional fine-tuning or training data for individual identities. We demonstrate that our approach successfully balances personalization with precise facial attribute control, offering a more efficient and user-friendly solution for high-quality, adaptable facial image synthesis. The code is publicly available at https://github.com/UnicomAI/PSTF-AttControl.
comment: Accepted by Image and Vision Computing (18 pages, 8 figures)
☆ Neighborhood Feature Pooling for Remote Sensing Image Classification WACV 2026
In this work, we propose neighborhood feature pooling (NFP) as a novel texture feature extraction method for remote sensing image classification. The NFP layer captures relationships between neighboring inputs and efficiently aggregates local similarities across feature dimensions. Implemented using convolutional layers, NFP can be seamlessly integrated into any network. Results comparing the baseline models and the NFP method indicate that NFP consistently improves performance across diverse datasets and architectures while maintaining minimal parameter overhead.
comment: 9 pages, 5 figures. Accepted to WACV 2026 (Winter Conference on Applications of Computer Vision)
☆ Vision-Language Integration for Zero-Shot Scene Understanding in Real-World Environments
Zero-shot scene understanding in real-world settings presents major challenges due to the complexity and variability of natural scenes, where models must recognize new objects, actions, and contexts without prior labeled examples. This work proposes a vision-language integration framework that unifies pre-trained visual encoders (e.g., CLIP, ViT) and large language models (e.g., GPT-based architectures) to achieve semantic alignment between visual and textual modalities. The goal is to enable robust zero-shot comprehension of scenes by leveraging natural language as a bridge to generalize over unseen categories and contexts. Our approach develops a unified model that embeds visual inputs and textual prompts into a shared space, followed by multimodal fusion and reasoning layers for contextual interpretation. Experiments on Visual Genome, COCO, ADE20K, and custom real-world datasets demonstrate significant gains over state-of-the-art zero-shot models in object recognition, activity detection, and scene captioning. The proposed system achieves up to 18% improvement in top-1 accuracy and notable gains in semantic coherence metrics, highlighting the effectiveness of cross-modal alignment and language grounding in enhancing generalization for real-world scene understanding.
comment: Preprint under review at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
☆ DRIP: Dynamic patch Reduction via Interpretable Pooling
Recently, the advances in vision-language models, including contrastive pretraining and instruction tuning, have greatly pushed the frontier of multimodal AI. However, owing to the large-scale and hence expensive pretraining, the efficiency concern has discouraged researchers from attempting to pretrain a vision language model from scratch. In this work, we propose Dynamic patch Reduction via Interpretable Pooling (DRIP), which adapts to the input images and dynamically merges tokens in the deeper layers of a visual encoder. Our results on both ImageNet training from scratch and CLIP contrastive pretraining demonstrate a significant GFLOP reduction while maintaining comparable classification/zero-shot performance. To further validate our proposed method, we conduct continual pretraining on a large biology dataset, extending its impact into scientific domains.
☆ Auto3DSeg for Brain Tumor Segmentation from 3D MRI in BraTS 2023 Challenge
In this work, we describe our solution to the BraTS 2023 cluster of challenges using Auto3DSeg from MONAI. We participated in all 5 segmentation challenges, and achieved the 1st place results in three of them: Brain Metastasis, Brain Meningioma, BraTS-Africa challenges, and the 2nd place results in the remaining two: Adult and Pediatic Glioma challenges.
comment: BraTS23 winner
☆ Breast Cancer VLMs: Clinically Practical Vision-Language Train-Inference Models ICCV 2025
Breast cancer remains the most commonly diagnosed malignancy among women in the developed world. Early detection through mammography screening plays a pivotal role in reducing mortality rates. While computer-aided diagnosis (CAD) systems have shown promise in assisting radiologists, existing approaches face critical limitations in clinical deployment - particularly in handling the nuanced interpretation of multi-modal data and feasibility due to the requirement of prior clinical history. This study introduces a novel framework that synergistically combines visual features from 2D mammograms with structured textual descriptors derived from easily accessible clinical metadata and synthesized radiological reports through innovative tokenization modules. Our proposed methods in this study demonstrate that strategic integration of convolutional neural networks (ConvNets) with language representations achieves superior performance to vision transformer-based models while handling high-resolution images and enabling practical deployment across diverse populations. By evaluating it on multi-national cohort screening mammograms, our multi-modal approach achieves superior performance in cancer detection and calcification identification compared to unimodal baselines, with particular improvements. The proposed method establishes a new paradigm for developing clinically viable VLM-based CAD systems that effectively leverage imaging data and contextual patient information through effective fusion mechanisms.
comment: Accepted to Computer Vision for Automated Medical Diagnosis (CVAMD) Workshop at ICCV 2025
☆ Enhancing Temporal Understanding in Video-LLMs through Stacked Temporal Attention in Vision Encoders NeurIPS 2025
Despite significant advances in Multimodal Large Language Models (MLLMs), understanding complex temporal dynamics in videos remains a major challenge. Our experiments show that current Video Large Language Model (Video-LLM) architectures have critical limitations in temporal understanding, struggling with tasks that require detailed comprehension of action sequences and temporal progression. In this work, we propose a Video-LLM architecture that introduces stacked temporal attention modules directly within the vision encoder. This design incorporates a temporal attention in vision encoder, enabling the model to better capture the progression of actions and the relationships between frames before passing visual tokens to the LLM. Our results show that this approach significantly improves temporal reasoning and outperforms existing models in video question answering tasks, specifically in action recognition. We improve on benchmarks including VITATECS, MVBench, and Video-MME by up to +5.5%. By enhancing the vision encoder with temporal structure, we address a critical gap in video understanding for Video-LLMs. Project page and code are available at: https://alirasekh.github.io/STAVEQ2/.
comment: Accepted to NeurIPS 2025
☆ Groupwise Registration with Physics-Informed Test-Time Adaptation on Multi-parametric Cardiac MRI
Multiparametric mapping MRI has become a viable tool for myocardial tissue characterization. However, misalignment between multiparametric maps makes pixel-wise analysis challenging. To address this challenge, we developed a generalizable physics-informed deep-learning model using test-time adaptation to enable group image registration across contrast weighted images acquired from multiple physical models (e.g., a T1 mapping model and T2 mapping model). The physics-informed adaptation utilized the synthetic images from specific physics model as registration reference, allows for transductive learning for various tissue contrast. We validated the model in healthy volunteers with various MRI sequences, demonstrating its improvement for multi-modal registration with a wide range of image contrast variability.
☆ Climate Adaptation-Aware Flood Prediction for Coastal Cities Using Deep Learning
Climate change and sea-level rise (SLR) pose escalating threats to coastal cities, intensifying the need for efficient and accurate methods to predict potential flood hazards. Traditional physics-based hydrodynamic simulators, although precise, are computationally expensive and impractical for city-scale coastal planning applications. Deep Learning (DL) techniques offer promising alternatives, however, they are often constrained by challenges such as data scarcity and high-dimensional output requirements. Leveraging a recently proposed vision-based, low-resource DL framework, we develop a novel, lightweight Convolutional Neural Network (CNN)-based model designed to predict coastal flooding under variable SLR projections and shoreline adaptation scenarios. Furthermore, we demonstrate the ability of the model to generalize across diverse geographical contexts by utilizing datasets from two distinct regions: Abu Dhabi and San Francisco. Our findings demonstrate that the proposed model significantly outperforms state-of-the-art methods, reducing the mean absolute error (MAE) in predicted flood depth maps on average by nearly 20%. These results highlight the potential of our approach to serve as a scalable and practical tool for coastal flood management, empowering decision-makers to develop effective mitigation strategies in response to the growing impacts of climate change. Project Page: https://caspiannet.github.io/
comment: Submitted to Hydrology and Earth System Sciences
☆ CAVE: Detecting and Explaining Commonsense Anomalies in Visual Environments
Humans can naturally identify, reason about, and explain anomalies in their environment. In computer vision, this long-standing challenge remains limited to industrial defects or unrealistic, synthetically generated anomalies, failing to capture the richness and unpredictability of real-world anomalies. In this work, we introduce CAVE, the first benchmark of real-world visual anomalies. CAVE supports three open-ended tasks: anomaly description, explanation, and justification; with fine-grained annotations for visual grounding and categorizing anomalies based on their visual manifestations, their complexity, severity, and commonness. These annotations draw inspiration from cognitive science research on how humans identify and resolve anomalies, providing a comprehensive framework for evaluating Vision-Language Models (VLMs) in detecting and understanding anomalies. We show that state-of-the-art VLMs struggle with visual anomaly perception and commonsense reasoning, even with advanced prompting strategies. By offering a realistic and cognitively grounded benchmark, CAVE serves as a valuable resource for advancing research in anomaly detection and commonsense reasoning in VLMs.
☆ DARTS: A Drone-Based AI-Powered Real-Time Traffic Incident Detection System
Rapid and reliable incident detection is critical for reducing crash-related fatalities, injuries, and congestion. However, conventional methods, such as closed-circuit television, dashcam footage, and sensor-based detection, separate detection from verification, suffer from limited flexibility, and require dense infrastructure or high penetration rates, restricting adaptability and scalability to shifting incident hotspots. To overcome these challenges, we developed DARTS, a drone-based, AI-powered real-time traffic incident detection system. DARTS integrates drones' high mobility and aerial perspective for adaptive surveillance, thermal imaging for better low-visibility performance and privacy protection, and a lightweight deep learning framework for real-time vehicle trajectory extraction and incident detection. The system achieved 99% detection accuracy on a self-collected dataset and supports simultaneous online visual verification, severity assessment, and incident-induced congestion propagation monitoring via a web-based interface. In a field test on Interstate 75 in Florida, DARTS detected and verified a rear-end collision 12 minutes earlier than the local transportation management center and monitored incident-induced congestion propagation, suggesting potential to support faster emergency response and enable proactive traffic control to reduce congestion and secondary crash risk. Crucially, DARTS's flexible deployment architecture reduces dependence on frequent physical patrols, indicating potential scalability and cost-effectiveness for use in remote areas and resource-constrained settings. This study presents a promising step toward a more flexible and integrated real-time traffic incident detection system, with significant implications for the operational efficiency and responsiveness of modern transportation management.
comment: Preprint version. This manuscript is currently under review at Transportation Research Part C: Emerging Technologies. The PDF corresponds to the version submitted in June 2025. The main findings of this work were recognized with the Best Intelligent Transportation Systems Paper Award at the 2025 TRB Annual Meeting
☆ Larger Hausdorff Dimension in Scanning Pattern Facilitates Mamba-Based Methods in Low-Light Image Enhancement
We propose an innovative enhancement to the Mamba framework by increasing the Hausdorff dimension of its scanning pattern through a novel Hilbert Selective Scan mechanism. This mechanism explores the feature space more effectively, capturing intricate fine-scale details and improving overall coverage. As a result, it mitigates information inconsistencies while refining spatial locality to better capture subtle local interactions without sacrificing the model's ability to handle long-range dependencies. Extensive experiments on publicly available benchmarks demonstrate that our approach significantly improves both the quantitative metrics and qualitative visual fidelity of existing Mamba-based low-light image enhancement methods, all while reducing computational resource consumption and shortening inference time. We believe that this refined strategy not only advances the state-of-the-art in low-light image enhancement but also holds promise for broader applications in fields that leverage Mamba-based techniques.
☆ Fine-tuning Segment Anything for Real-Time Tumor Tracking in Cine-MRI
In this work, we address the TrackRAD2025 challenge of real-time tumor tracking in cine-MRI sequences of the thoracic and abdominal regions under strong data scarcity constraints. Two complementary strategies were explored: (i) unsupervised registration with the IMPACT similarity metric and (ii) foundation model-based segmentation leveraging SAM 2.1 and its recent variants through prompt-based interaction. Due to the one-second runtime constraint, the SAM-based method was ultimately selected. The final configuration used SAM2.1 b+ with mask-based prompts from the first annotated slice, fine-tuned solely on the small labeled subset from TrackRAD2025. Training was configured to minimize overfitting, using 1024x1024 patches (batch size 1), standard augmentations, and a balanced Dice + IoU loss. A low uniform learning rate (0.0001) was applied to all modules (prompt encoder, decoder, Hiera backbone) to preserve generalization while adapting to annotator-specific styles. Training lasted 300 epochs (~12h on RTX A6000, 48GB). The same inference strategy was consistently applied across all anatomical sites and MRI field strengths. Test-time augmentation was considered but ultimately discarded due to negligible performance gains. The final model was selected based on the highest Dice Similarity Coefficient achieved on the validation set after fine-tuning. On the hidden test set, the model reached a Dice score of 0.8794, ranking 6th overall in the TrackRAD2025 challenge. These results highlight the strong potential of foundation models for accurate and real-time tumor tracking in MRI-guided radiotherapy.
comment: Paper for the Trackrad2025 challenge, Team BreizhTrack
☆ Brain-IT: Image Reconstruction from fMRI via Brain-Interaction Transformer
Reconstructing images seen by people from their fMRI brain recordings provides a non-invasive window into the human brain. Despite recent progress enabled by diffusion models, current methods often lack faithfulness to the actual seen images. We present "Brain-IT", a brain-inspired approach that addresses this challenge through a Brain Interaction Transformer (BIT), allowing effective interactions between clusters of functionally-similar brain-voxels. These functional-clusters are shared by all subjects, serving as building blocks for integrating information both within and across brains. All model components are shared by all clusters & subjects, allowing efficient training with a limited amount of data. To guide the image reconstruction, BIT predicts two complementary localized patch-level image features: (i)high-level semantic features which steer the diffusion model toward the correct semantic content of the image; and (ii)low-level structural features which help to initialize the diffusion process with the correct coarse layout of the image. BIT's design enables direct flow of information from brain-voxel clusters to localized image features. Through these principles, our method achieves image reconstructions from fMRI that faithfully reconstruct the seen images, and surpass current SotA approaches both visually and by standard objective metrics. Moreover, with only 1-hour of fMRI data from a new subject, we achieve results comparable to current methods trained on full 40-hour recordings.
☆ SplitFlow: Flow Decomposition for Inversion-Free Text-to-Image Editing NeurIPS 2025
Rectified flow models have become a de facto standard in image generation due to their stable sampling trajectories and high-fidelity outputs. Despite their strong generative capabilities, they face critical limitations in image editing tasks: inaccurate inversion processes for mapping real images back into the latent space, and gradient entanglement issues during editing often result in outputs that do not faithfully reflect the target prompt. Recent efforts have attempted to directly map source and target distributions via ODE-based approaches without inversion; however,these methods still yield suboptimal editing quality. In this work, we propose a flow decomposition-and-aggregation framework built upon an inversion-free formulation to address these limitations. Specifically, we semantically decompose the target prompt into multiple sub-prompts, compute an independent flow for each, and aggregate them to form a unified editing trajectory. While we empirically observe that decomposing the original flow enhances diversity in the target space, generating semantically aligned outputs still requires consistent guidance toward the full target prompt. To this end, we design a projection and soft-aggregation mechanism for flow, inspired by gradient conflict resolution in multi-task learning. This approach adaptively weights the sub-target velocity fields, suppressing semantic redundancy while emphasizing distinct directions, thereby preserving both diversity and consistency in the final edited output. Experimental results demonstrate that our method outperforms existing zero-shot editing approaches in terms of semantic fidelity and attribute disentanglement. The code is available at https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.
comment: Camera-ready version for NeurIPS 2025, 10 pages (main paper)
☆ Generative Image Restoration and Super-Resolution using Physics-Informed Synthetic Data for Scanning Tunneling Microscopy
Scanning tunnelling microscopy (STM) enables atomic-resolution imaging and atom manipulation, but its utility is often limited by tip degradation and slow serial data acquisition. Fabrication adds another layer of complexity since the tip is often subjected to large voltages, which may alter the shape of its apex, requiring it to be conditioned. Here, we propose a machine learning (ML) approach for image repair and super-resolution to alleviate both challenges. Using a dataset of only 36 pristine experimental images of Si(001):H, we demonstrate that a physics-informed synthetic data generation pipeline can be used to train several state-of-the-art flow-matching and diffusion models. Quantitative evaluation with metrics such as the CLIP Maximum Mean Discrepancy (CMMD) score and structural similarity demonstrates that our models are able to effectively restore images and offer a two- to fourfold reduction in image acquisition time by accurately reconstructing images from sparsely sampled data. Our framework has the potential to significantly increase STM experimental throughput by offering a route to reducing the frequency of tip-conditioning procedures and to enhancing frame rates in existing high-speed STM systems.
♻ ☆ GENRE-CMR: Generalizable Deep Learning for Diverse Multi-Domain Cardiac MRI Reconstruction
Accelerated Cardiovascular Magnetic Resonance (CMR) image reconstruction remains a critical challenge due to the trade-off between scan time and image quality, particularly when generalizing across diverse acquisition settings. We propose GENRE-CMR, a generative adversarial network (GAN)-based architecture employing a residual deep unrolled reconstruction framework to enhance reconstruction fidelity and generalization. The architecture unrolls iterative optimization into a cascade of convolutional subnetworks, enriched with residual connections to enable progressive feature propagation from shallow to deeper stages. To further improve performance, we integrate two loss functions: (1) an Edge-Aware Region (EAR) loss, which guides the network to focus on structurally informative regions and helps prevent common reconstruction blurriness; and (2) a Statistical Distribution Alignment (SDA) loss, which regularizes the feature space across diverse data distributions via a symmetric KL divergence formulation. Extensive experiments confirm that GENRE-CMR surpasses state-of-the-art methods on training and unseen data, achieving 0.9552 SSIM and 38.90 dB PSNR on unseen distributions across various acceleration factors and sampling trajectories. Ablation studies confirm the contribution of each proposed component to reconstruction quality and generalization. Our framework presents a unified and robust solution for high-quality CMR reconstruction, paving the way for clinically adaptable deployment across heterogeneous acquisition protocols.
♻ ☆ MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction
While recent advances in Gaussian Splatting have enabled fast reconstruction of high-quality 3D scenes from images, extracting accurate surface meshes remains a challenge. Current approaches extract the surface through costly post-processing steps, resulting in the loss of fine geometric details or requiring significant time and leading to very dense meshes with millions of vertices. More fundamentally, the a posteriori conversion from a volumetric to a surface representation limits the ability of the final mesh to preserve all geometric structures captured during training. We present MILo, a novel Gaussian Splatting framework that bridges the gap between volumetric and surface representations by differentiably extracting a mesh from the 3D Gaussians. We design a fully differentiable procedure that constructs the mesh-including both vertex locations and connectivity-at every iteration directly from the parameters of the Gaussians, which are the only quantities optimized during training. Our method introduces three key technical contributions: a bidirectional consistency framework ensuring both representations-Gaussians and the extracted mesh-capture the same underlying geometry during training; an adaptive mesh extraction process performed at each training iteration, which uses Gaussians as differentiable pivots for Delaunay triangulation; a novel method for computing signed distance values from the 3D Gaussians that enables precise surface extraction while avoiding geometric erosion. Our approach can reconstruct complete scenes, including backgrounds, with state-of-the-art quality while requiring an order of magnitude fewer mesh vertices than previous methods. Due to their light weight and empty interior, our meshes are well suited for downstream applications such as physics simulations or animation.
comment: 10 pages. A presentation video of our approach is available at https://youtu.be/_SGNhhNz0fE
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) has still been less studyed. In this paper, we explore GRPO and identify two problems that deteriorate the effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function into a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as the clipping and min functions. It directly aligns the model with advantages, providing guidance to prefer better ones. The difficulty-aware data augmentation strategy augments input prompts/videos to locate the difficulty of samples at solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems. Our implementation of the RL-I2IT framework is available at https://github.com/Algolzw/SPAC-Deformable-Registration.
♻ ☆ Quantizing Space and Time: Fusing Time Series and Images for Earth Observation
We propose a task-agnostic framework for multimodal fusion of time series and single timestamp images, enabling cross-modal generation and robust downstream performance. Our approach explores deterministic and learned strategies for time series quantization and then leverages a masked correlation learning objective, aligning discrete image and time series tokens in a unified representation space. Instantiated in the Earth observation domain, the pretrained model generates consistent global temperature profiles from satellite imagery and is validated through counterfactual experiments. Across downstream tasks, our task-agnostic pretraining outperforms task-specific fusion by 6% in R^2 and 2% in RMSE on average, and exceeds baseline methods by 50% in R^2 and 12% in RMSE. Finally, we analyze gradient sensitivity across modalities, providing insights into model robustness. Code, data, and weights will be released under a permissive license.
♻ ☆ FOCUS: Internal MLLM Representations for Efficient Fine-Grained Visual Question Answering NeurIPS 2025
While Multimodal Large Language Models (MLLMs) offer strong perception and reasoning capabilities for image-text input, Visual Question Answering (VQA) focusing on small image details still remains a challenge. Although visual cropping techniques seem promising, recent approaches have several limitations: the need for task-specific fine-tuning, low efficiency due to uninformed exhaustive search, or incompatibility with efficient attention implementations. We address these shortcomings by proposing a training-free visual cropping method, dubbed FOCUS, that leverages MLLM-internal representations to guide the search for the most relevant image region. This is accomplished in four steps: first, we identify the target object(s) in the VQA prompt; second, we compute an object relevance map using the key-value (KV) cache; third, we propose and rank relevant image regions based on the map; and finally, we perform the fine-grained VQA task using the top-ranked region. As a result of this informed search strategy, FOCUS achieves strong performance across four fine-grained VQA datasets and three types of MLLMs. It outperforms three popular visual cropping methods in both accuracy and efficiency, and matches the best-performing baseline, ZoomEye, while requiring 3 - 6.5 x less compute.
comment: Accepted by NeurIPS 2025 - main track. Project page: https://focus-mllm-vqa.github.io/
♻ ☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
♻ ☆ ScribbleVS: Scribble-Supervised Medical Image Segmentation via Dynamic Competitive Pseudo Label Selection
In clinical medicine, precise image segmentation can provide substantial support to clinicians. However, obtaining high-quality segmentation typically demands extensive pixel-level annotations, which are labor-intensive and expensive. Scribble annotations offer a more cost-effective alternative by improving labeling efficiency. Nonetheless, using such sparse supervision for training reliable medical image segmentation models remains a significant challenge. Some studies employ pseudo-labeling to enhance supervision, but these methods are susceptible to noise interference. To address these challenges, we introduce ScribbleVS, a framework designed to learn from scribble annotations. We introduce a Regional Pseudo Labels Diffusion Module to expand the scope of supervision and reduce the impact of noise present in pseudo labels. Additionally, we introduce a Dynamic Competitive Selection module for enhanced refinement in selecting pseudo labels. Experiments conducted on the ACDC, MSCMRseg, WORD, and BraTS2020 datasets demonstrate promising results, achieving segmentation precision comparable to fully supervised models. The codes of this study are available at https://github.com/ortonwang/ScribbleVS.
♻ ☆ HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene NeurIPS 2025
Reconstructing dynamic 3D scenes from monocular videos remains a fundamental challenge in 3D vision. While 3D Gaussian Splatting (3DGS) achieves real-time rendering in static settings, extending it to dynamic scenes is challenging due to the difficulty of learning structured and temporally consistent motion representations. This challenge often manifests as three limitations in existing methods: redundant Gaussian updates, insufficient motion supervision, and weak modeling of complex non-rigid deformations. These issues collectively hinder coherent and efficient dynamic reconstruction. To address these limitations, we propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation. It first identifies motion-relevant regions via an Anchor Filter to suppress redundant updates in static areas. A self-supervised Induced Flow-Guided Deformation module induces anchor motion using multi-frame feature aggregation, eliminating the need for explicit flow labels. To further handle fine-grained deformations, a Hierarchical Anchor Propagation mechanism increases anchor resolution based on motion complexity and propagates multi-level transformations. Extensive experiments on synthetic and real-world benchmarks validate that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
comment: Accepted to NeurIPS 2025. Project page: https://echopickle.github.io/HAIF-GS.github.io/
♻ ☆ Simulating Automotive Radar with Lidar and Camera Inputs IROS 2025
Low-cost millimeter automotive radar has received more and more attention due to its ability to handle adverse weather and lighting conditions in autonomous driving. However, the lack of quality datasets hinders research and development. We report a new method that is able to simulate 4D millimeter wave radar signals including pitch, yaw, range, and Doppler velocity along with radar signal strength (RSS) using camera image, light detection and ranging (lidar) point cloud, and ego-velocity. The method is based on two new neural networks: 1) DIS-Net, which estimates the spatial distribution and number of radar signals, and 2) RSS-Net, which predicts the RSS of the signal based on appearance and geometric information. We have implemented and tested our method using open datasets from 3 different models of commercial automotive radar. The experimental results show that our method can successfully generate high-fidelity radar signals. Moreover, we have trained a popular object detection neural network with data augmented by our synthesized radar. The network outperforms the counterpart trained only on raw radar data, a promising result to facilitate future radar-based research and development.
comment: Accepted by IROS 2025
♻ ☆ FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving NeurIPS 2025
Vision-Language-Action (VLA) models are increasingly used for end-to-end driving due to their world knowledge and reasoning ability. Most prior work, however, inserts textual chains-of-thought (CoT) as intermediate steps tailored to the current scene. Such symbolic compressions can blur spatio-temporal relations and discard fine visual cues, creating a cross-modal gap between perception and planning. We propose FSDrive, a visual spatio-temporal CoT framework that enables VLAs to think in images. The model first acts as a world model to generate a unified future frame that overlays coarse but physically-plausible priors-future lane dividers and 3D boxes-on the predicted future image. This unified frame serves as the visual CoT, capturing both spatial structure and temporal evolution. The same VLA then functions as an inverse-dynamics model, planning trajectories from current observations and the visual CoT. To equip VLAs with image generation while preserving understanding, we introduce a unified pre-training paradigm that expands the vocabulary to include visual tokens and jointly optimizes VQA (for semantics) and future-frame prediction (for dynamics). A progressive easy-to-hard scheme first predicts lane/box priors to enforce physical constraints, then completes full future frames for fine details. On nuScenes and NAVSIM, FSDrive improves trajectory accuracy and reduces collisions under both ST-P3 and UniAD metrics, and attains competitive FID for future-frame generation despite using lightweight autoregression. It also advances scene understanding on DriveLM. Together, these results indicate that visual CoT narrows the cross-modal gap and yields safer, more anticipatory planning. Code is available at https://github.com/MIV-XJTU/FSDrive.
comment: Accepted to NeurIPS 2025 as Spotlight Presentation. Code: https://github.com/MIV-XJTU/FSDrive
♻ ☆ Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.
comment: 8 pages, 2 figures, 1 table. Invited report, CCN 2025 Algonauts Project session (3rd-place team). Code: https://github.com/erensemih/Algonauts2025_ModalityRNN v3: Added equal contribution footnote to author list. Corrected reference list
♻ ☆ Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behaviour classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviours such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioural analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
♻ ☆ U-DECN: End-to-End Underwater Object Detection ConvNet with Improved DeNoising Training
Underwater object detection has higher requirements of running speed and deployment efficiency for the detector due to its specific environmental challenges. NMS of two- or one-stage object detectors and transformer architecture of query-based end-to-end object detectors are not conducive to deployment on underwater embedded devices with limited processing power. As for the detrimental effect of underwater color cast noise, recent underwater object detectors make network architecture or training complex, which also hinders their application and deployment on unmanned underwater vehicles. In this paper, we propose the Underwater DECO with improved deNoising training (U-DECN), the query-based end-to-end object detector (with ConvNet encoder-decoder architecture) for underwater color cast noise that addresses the above problems. We integrate advanced technologies from DETR variants into DECO and design optimization methods specifically for the ConvNet architecture, including Deformable Convolution in SIM and Separate Contrastive DeNoising Forward methods. To address the underwater color cast noise issue, we propose an Underwater Color DeNoising Query method to improve the generalization of the model for the biased object feature information by different color cast noise. Our U-DECN, with ResNet-50 backbone, achieves the best 64.0 AP on DUO and the best 58.1 AP on RUOD, and 21 FPS (5 times faster than Deformable DETR and DINO 4 FPS) on NVIDIA AGX Orin by TensorRT FP16, outperforming the other state-of-the-art query-based end-to-end object detectors. The code is available at https://github.com/LEFTeyex/U-DECN.
comment: 10 pages, 6 figures, 7 tables, accepted by IEEE TGRS
♻ ☆ Probabilistic Kernel Function for Fast Angle Testing
In this paper, we study the angle testing problem in the context of similarity search in high-dimensional Euclidean spaces and propose two projection-based probabilistic kernel functions, one designed for angle comparison and the other for angle thresholding. Unlike existing approaches that rely on random projection vectors drawn from Gaussian distributions, our approach leverages reference angles and employs a deterministic structure for the projection vectors. Notably, our kernel functions do not require asymptotic assumptions, such as the number of projection vectors tending to infinity, and can be both theoretically and experimentally shown to outperform Gaussian-distribution-based kernel functions. We apply the proposed kernel function to Approximate Nearest Neighbor Search (ANNS) and demonstrate that our approach achieves a 2.5X ~ 3X higher query-per-second (QPS) throughput compared to the widely-used graph-based search algorithm HNSW.
♻ ☆ FastJAM: a Fast Joint Alignment Model for Images NeurIPS 2025
Joint Alignment (JA) of images aims to align a collection of images into a unified coordinate frame, such that semantically-similar features appear at corresponding spatial locations. Most existing approaches often require long training times, large-capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a rapid, graph-based method that drastically reduces the computational complexity of joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-shelf image matcher, together with a rapid nonparametric clustering, to construct a graph representing intra- and inter-image keypoint relations. A graph neural network propagates and aggregates these correspondences, efficiently predicting per-image homography parameters via image-level pooling. Utilizing an inverse-compositional loss, that eliminates the need for a regularization term over the predicted transformations (and thus also obviates the hyperparameter tuning associated with such terms), FastJAM performs image JA quickly and effectively. Experimental results on several benchmarks demonstrate that FastJAM achieves results better than existing modern JA methods in terms of alignment quality, while reducing computation time from hours or minutes to mere seconds. Our code is available at our project webpage, https://bgu-cs-vil.github.io/FastJAM/
comment: Accepted to NeurIPS 2025. Pages 1-10 are the Main Paper. Pages 23-31 are Supplemental Material. FastJAM website - https://bgu-cs-vil.github.io/FastJAM/
♻ ☆ Open3D-VQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of multimodal large language models (MLLMs), yet their performance in open aerial environments remains underexplored. In this work, we present Open3D-VQA, a novel benchmark for evaluating MLLMs' ability to reason about complex spatial relationships from an aerial perspective. The benchmark comprises 73k QA pairs spanning 7 general spatial reasoning tasks, including multiple-choice, true/false, and short-answer formats, and supports both visual and point cloud modalities. The questions are automatically generated from spatial relations extracted from both real-world and simulated aerial scenes. Evaluation on 13 popular MLLMs reveals that: 1) Models are generally better at answering questions about relative spatial relations than absolute distances, 2) 3D LLMs fail to demonstrate significant advantages over 2D LLMs, and 3) Fine-tuning solely on the simulated dataset can significantly improve the model's spatial reasoning performance in real-world scenarios. We release our benchmark, data generation pipeline, and evaluation toolkit to support further research: https://github.com/EmbodiedCity/Open3D-VQA.code.
♻ ☆ Activation Matching for Explanation Generation
In this paper we introduce an activation-matching--based approach to generate minimal, faithful explanations for the decision-making of a pretrained classifier on any given image. Given an input image $x$ and a frozen model $f$, we train a lightweight autoencoder to output a binary mask $m$ such that the explanation $e = m \odot x$ preserves both the model's prediction and the intermediate activations of \(x\). Our objective combines: (i) multi-layer activation matching with KL divergence to align distributions and cross-entropy to retain the top-1 label for both the image and the explanation; (ii) mask priors -- L1 area for minimality, a binarization penalty for crisp 0/1 masks, and total variation for compactness; and (iii) abductive constraints for faithfulness and necessity. Together, these objectives yield small, human-interpretable masks that retain classifier behavior while discarding irrelevant input regions, providing practical and faithful minimalist explanations for the decision making of the underlying model.
♻ ☆ Single Image Estimation of Cell Migration Direction by Deep Circular Regression
In this paper, we address the problem of estimating the migration direction of cells based on a single image. A solution to this problem lays the foundation for a variety of applications that were previously not possible. To our knowledge, there is only one related work that employs a classification CNN with four classes (quadrants). However, this approach does not allow for detailed directional resolution. We tackle the single image estimation problem using deep circular regression, with a particular focus on cycle-sensitive methods. On two common datasets, we achieve a mean estimation error of $\sim\!17^\circ$, representing a significant improvement over previous work, which reported estimation error of $30^\circ$ and $34^\circ$, respectively.
♻ ☆ When are radiology reports useful for training medical image classifiers?
Medical images used to train machine learning models are often accompanied by radiology reports containing rich expert annotations. However, relying on these reports as inputs for clinical prediction requires the timely manual work of a trained radiologist. This raises a natural question: when can radiology reports be leveraged during training to improve image-only classification? Prior works are limited to evaluating pre-trained image representations by fine-tuning them to predict diagnostic labels, often extracted from reports, ignoring tasks with labels that are weakly associated with the text. To address this gap, we conduct a systematic study of how radiology reports can be used during both pre-training and fine-tuning, across diagnostic and prognostic tasks (e.g., 12-month readmission), and under varying training set sizes. Our findings reveal that: (1) Leveraging reports during pre-training is beneficial for downstream classification tasks where the label is well-represented in the text; however, pre-training through explicit image-text alignment can be detrimental in settings where it's not; (2) Fine-tuning with reports can lead to significant improvements and even have a larger impact than the pre-training method in certain settings. These results provide actionable insights into when and how to leverage privileged text data to train medical image classifiers while highlighting gaps in current research.
♻ ☆ MagicPortrait: Temporally Consistent Face Reenactment with 3D Geometric Guidance
In this study, we propose a method for video face reenactment that integrates a 3D face parametric model into a latent diffusion framework, aiming to improve shape consistency and motion control in existing video-based face generation approaches. Our approach employs the FLAME (Faces Learned with an Articulated Model and Expressions) model as the 3D face parametric representation, providing a unified framework for modeling face expressions and head pose. This not only enables precise extraction of motion features from driving videos, but also contributes to the faithful preservation of face shape and geometry. Specifically, we enhance the latent diffusion model with rich 3D expression and detailed pose information by incorporating depth maps, normal maps, and rendering maps derived from FLAME sequences. These maps serve as motion guidance and are encoded into the denoising UNet through a specifically designed Geometric Guidance Encoder (GGE). A multi-layer feature fusion module with integrated self-attention mechanisms is used to combine facial appearance and motion latent features within the spatial domain. By utilizing the 3D face parametric model as motion guidance, our method enables parametric alignment of face identity between the reference image and the motion captured from the driving video. Experimental results on benchmark datasets show that our method excels at generating high-quality face animations with precise expression and head pose variation modeling. In addition, it demonstrates strong generalization performance on out-of-domain images. Code is publicly available at https://github.com/weimengting/MagicPortrait.
♻ ☆ HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models NeurIPS2025
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as HyperET, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. HyperET employs learnable matrices with M\"{o}bius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that HyperET consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters.
comment: Accepted by NeurIPS2025 (Oral)
♻ ☆ DGTRSD & DGTRS-CLIP: A Dual-Granularity Remote Sensing Image-Text Dataset and Vision Language Foundation Model for Alignment
Vision Language Foundation Models based on CLIP architecture for remote sensing primarily rely on short text captions, which often result in incomplete semantic representations. Although longer captions convey richer information, existing models struggle to process them effectively because of limited text-encoding capacity, and there remains a shortage of resources that align remote sensing images with both short text and long text captions. To address this gap, we introduce DGTRSD, a dual-granularity remote sensing image-text dataset, where each image is paired with both a short text caption and a long text description, providing a solid foundation for dual-granularity semantic modeling. Based on this, we further propose DGTRS-CLIP, a dual-granularity curriculum learning framework that combines short text and long text supervision to achieve dual-granularity semantic alignment. Extensive experiments on four typical zero-shot tasks: long text cross-modal retrieval, short text cross-modal retrieval, image classification, and semantic localization demonstrate that DGTRS-CLIP consistently outperforms existing methods across all tasks. The code has been open-sourced and is available at https://github.com/MitsuiChen14/DGTRS.
♻ ☆ XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
♻ ☆ NoisyGRPO: Incentivizing Multimodal CoT Reasoning via Noise Injection and Bayesian Estimation
Reinforcement learning (RL) has shown promise in enhancing the general Chain-of-Thought (CoT) reasoning capabilities of multimodal large language models (MLLMs). However, when applied to improve general CoT reasoning, existing RL frameworks often struggle to generalize beyond the training distribution. To address this, we propose NoisyGRPO, a systematic multimodal RL framework that introduces controllable noise into visual inputs for enhanced exploration and explicitly models the advantage estimation process via a Bayesian framework. Specifically, NoisyGRPO improves RL training by: (1) Noise-Injected Exploration Policy: Perturbing visual inputs with Gaussian noise to encourage exploration across a wider range of visual scenarios; and (2) Bayesian Advantage Estimation: Formulating advantage estimation as a principled Bayesian inference problem, where the injected noise level serves as a prior and the observed trajectory reward as the likelihood. This Bayesian modeling fuses both sources of information to compute a robust posterior estimate of trajectory advantage, effectively guiding MLLMs to prefer visually grounded trajectories over noisy ones. Experiments on standard CoT quality, general capability, and hallucination benchmarks demonstrate that NoisyGRPO substantially improves generalization and robustness, especially in RL settings with small-scale MLLMs such as Qwen2.5-VL 3B. The project page is available at https://artanic30.github.io/project_pages/NoisyGRPO/.
comment: Accepted by Neurips2025, Project page at at https://artanic30.github.io/project_pages/NoisyGRPO/
♻ ☆ InstDrive: Instance-Aware 3D Gaussian Splatting for Driving Scenes
Reconstructing dynamic driving scenes from dashcam videos has attracted increasing attention due to its significance in autonomous driving and scene understanding. While recent advances have made impressive progress, most methods still unify all background elements into a single representation, hindering both instance-level understanding and flexible scene editing. Some approaches attempt to lift 2D segmentation into 3D space, but often rely on pre-processed instance IDs or complex pipelines to map continuous features to discrete identities. Moreover, these methods are typically designed for indoor scenes with rich viewpoints, making them less applicable to outdoor driving scenarios. In this paper, we present InstDrive, an instance-aware 3D Gaussian Splatting framework tailored for the interactive reconstruction of dynamic driving scene. We use masks generated by SAM as pseudo ground-truth to guide 2D feature learning via contrastive loss and pseudo-supervised objectives. At the 3D level, we introduce regularization to implicitly encode instance identities and enforce consistency through a voxel-based loss. A lightweight static codebook further bridges continuous features and discrete identities without requiring data pre-processing or complex optimization. Quantitative and qualitative experiments demonstrate the effectiveness of InstDrive, and to the best of our knowledge, it is the first framework to achieve 3D instance segmentation in dynamic, open-world driving scenes.More visualizations are available at our project page.
♻ ☆ DPMambaIR: All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, offering a more practical and versatile solution compared to designing dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework that introduces a fine-grained degradation extractor and a Degradation-Aware Prompt State Space Model (DP-SSM). The DP-SSM leverages the fine-grained degradation features captured by the extractor as dynamic prompts, which are then incorporated into the state space modeling process. This enhances the model's adaptability to diverse degradation types, while a complementary High-Frequency Enhancement Block (HEB) recovers local high-frequency details. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
♻ ☆ Vision-Centric 4D Occupancy Forecasting and Planning via Implicit Residual World Models
End-to-end autonomous driving systems increasingly rely on vision-centric world models to understand and predict their environment. However, a common ineffectiveness in these models is the full reconstruction of future scenes, which expends significant capacity on redundantly modeling static backgrounds. To address this, we propose IR-WM, an Implicit Residual World Model that focuses on modeling the current state and evolution of the world. IR-WM first establishes a robust bird's-eye-view representation of the current state from the visual observation. It then leverages the BEV features from the previous timestep as a strong temporal prior and predicts only the "residual", i.e., the changes conditioned on the ego-vehicle's actions and scene context. To alleviate error accumulation over time, we further apply an alignment module to calibrate semantic and dynamic misalignments. Moreover, we investigate different forecasting-planning coupling schemes and demonstrate that the implicit future state generated by world models substantially improves planning accuracy. On the nuScenes benchmark, IR-WM achieves top performance in both 4D occupancy forecasting and trajectory planning.
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ HF-VTON: High-Fidelity Virtual Try-On via Consistent Geometric and Semantic Alignment
Virtual try-on technology has become increasingly important in the fashion and retail industries, enabling the generation of high-fidelity garment images that adapt seamlessly to target human models. While existing methods have achieved notable progress, they still face significant challenges in maintaining consistency across different poses. Specifically, geometric distortions lead to a lack of spatial consistency, mismatches in garment structure and texture across poses result in semantic inconsistency, and the loss or distortion of fine-grained details diminishes visual fidelity. To address these challenges, we propose HF-VTON, a novel framework that ensures high-fidelity virtual try-on performance across diverse poses. HF-VTON consists of three key modules: (1) the Appearance-Preserving Warp Alignment Module (APWAM), which aligns garments to human poses, addressing geometric deformations and ensuring spatial consistency; (2) the Semantic Representation and Comprehension Module (SRCM), which captures fine-grained garment attributes and multi-pose data to enhance semantic representation, maintaining structural, textural, and pattern consistency; and (3) the Multimodal Prior-Guided Appearance Generation Module (MPAGM), which integrates multimodal features and prior knowledge from pre-trained models to optimize appearance generation, ensuring both semantic and geometric consistency. Additionally, to overcome data limitations in existing benchmarks, we introduce the SAMP-VTONS dataset, featuring multi-pose pairs and rich textual annotations for a more comprehensive evaluation. Experimental results demonstrate that HF-VTON outperforms state-of-the-art methods on both VITON-HD and SAMP-VTONS, excelling in visual fidelity, semantic consistency, and detail preservation.
comment: After the publication of the paper, we discovered some significant errors/omissions that need to be corrected and improved
♻ ☆ Diverse Teaching and Label Propagation for Generic Semi-Supervised Medical Image Segmentation
Both limited annotation and domain shift are significant challenges frequently encountered in medical image segmentation, leading to derivative scenarios like semi-supervised medical (SSMIS), semi-supervised medical domain generalization (Semi-MDG) and unsupervised medical domain adaptation (UMDA). Conventional methods are generally tailored to specific tasks in isolation, the error accumulation hinders the effective utilization of unlabeled data and limits further improvements, resulting in suboptimal performance when these issues occur. In this paper, we aim to develop a generic framework that masters all three tasks. We found that the key to solving the problem lies in how to generate reliable pseudo labels for the unlabeled data in the presence of domain shift with labeled data and increasing the diversity of the model. To tackle this issue, we employ a Diverse Teaching and Label Propagation Network (DTLP-Net) to boosting the Generic Semi-Supervised Medical Image Segmentation. Our DTLP-Net involves a single student model and two diverse teacher models, which can generate reliable pseudo-labels for the student model. The first teacher model decouple the training process with labeled and unlabeled data, The second teacher is momentum-updated periodically, thus generating reliable yet divers pseudo-labels. To fully utilize the information within the data, we adopt inter-sample and intra-sample data augmentation to learn the global and local knowledge. In addition, to further capture the voxel-level correlations, we propose label propagation to enhance the model robust. We evaluate our proposed framework on five benchmark datasets for SSMIS, UMDA, and Semi-MDG tasks. The results showcase notable improvements compared to state-of-the-art methods across all five settings, indicating the potential of our framework to tackle more challenging SSL scenarios.
comment: Under Review
♻ ☆ Evaluation of Safety Cognition Capability in Vision-Language Models for Autonomous Driving
Ensuring the safety of vision-language models (VLMs) in autonomous driving systems is of paramount importance, yet existing research has largely focused on conventional benchmarks rather than safety-critical evaluation. In this work, we present SCD-Bench (Safety Cognition Driving Benchmark) a novel framework specifically designed to assess the safety cognition capabilities of VLMs within interactive driving scenarios. To address the scalability challenge of data annotation, we introduce ADA (Autonomous Driving Annotation), a semi-automated labeling system, further refined through expert review by professionals with domain-specific knowledge in autonomous driving. To facilitate scalable and consistent evaluation, we also propose an automated assessment pipeline leveraging large language models, which demonstrates over 98% agreement with human expert judgments. In addressing the broader challenge of aligning VLMs with safety cognition in driving environments, we construct SCD-Training, the first large-scale dataset tailored for this task, comprising 324.35K high-quality samples. Through extensive experiments, we show that models trained on SCD-Training exhibit marked improvements not only on SCD-Bench, but also on general and domain-specific benchmarks, offering a new perspective on enhancing safety-aware interactions in vision-language systems for autonomous driving.
♻ ☆ Depth-Aware Super-Resolution via Distance-Adaptive Variational Formulation
Single image super-resolution traditionally assumes spatially-invariant degradation models, yet real-world imaging systems exhibit complex distance-dependent effects including atmospheric scattering, depth-of-field variations, and perspective distortions. This fundamental limitation necessitates spatially-adaptive reconstruction strategies that explicitly incorporate geometric scene understanding for optimal performance. We propose a rigorous variational framework that characterizes super-resolution as a spatially-varying inverse problem, formulating the degradation operator as a pseudodifferential operator with distance-dependent spectral characteristics that enable theoretical analysis of reconstruction limits across depth ranges. Our neural architecture implements discrete gradient flow dynamics through cascaded residual blocks with depth-conditional convolution kernels, ensuring convergence to stationary points of the theoretical energy functional while incorporating learned distance-adaptive regularization terms that dynamically adjust smoothness constraints based on local geometric structure. Spectral constraints derived from atmospheric scattering theory prevent bandwidth violations and noise amplification in far-field regions, while adaptive kernel generation networks learn continuous mappings from depth to reconstruction filters. Comprehensive evaluation across five benchmark datasets demonstrates state-of-the-art performance, achieving 36.89/0.9516 and 30.54/0.8721 PSNR/SSIM at 2 and 4 scales on KITTI outdoor scenes, outperforming existing methods by 0.44dB and 0.36dB respectively. This work establishes the first theoretically-grounded distance-adaptive super-resolution framework and demonstrates significant improvements on depth-variant scenarios while maintaining competitive performance across traditional benchmarks.
♻ ☆ Why Foundation Models in Pathology Are Failing
In non-medical domains, foundation models (FMs) have revolutionized computer vision and language processing through large-scale self-supervised and multimodal learning. Consequently, their rapid adoption in computational pathology was expected to deliver comparable breakthroughs in cancer diagnosis, prognostication, and multimodal retrieval. However, recent systematic evaluations reveal fundamental weaknesses: low diagnostic accuracy, poor robustness, geometric instability, heavy computational demands, and concerning safety vulnerabilities. This short paper examines these shortcomings and argues that they stem from deeper conceptual mismatches between the assumptions underlying generic foundation modeling in mainstream AI and the intrinsic complexity of human tissue. Seven interrelated causes are identified: biological complexity, ineffective self-supervision, overgeneralization, excessive architectural complexity, lack of domain-specific innovation, insufficient data, and a fundamental design flaw related to tissue patch size. These findings suggest that current pathology foundation models remain conceptually misaligned with the nature of tissue morphology and call for a fundamental rethinking of the paradigm itself.
♻ ☆ LightBagel: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
comment: Withdrawn because the submission was premature and not agreed by all parties in collaboration
♻ ☆ Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning NeurIPS2025
Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.
comment: [NeurIPS2025] Project Page: https://codegoat24.github.io/UnifiedReward/think
♻ ☆ RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation NeurIPS 2025
Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.
comment: 25 pages, 18 figures, Accepted by NeurIPS 2025
♻ ☆ L2RSI: Cross-view LiDAR-based Place Recognition for Large-scale Urban Scenes via Remote Sensing Imagery NeurIPS 2025
We tackle the challenge of LiDAR-based place recognition, which traditionally depends on costly and time-consuming prior 3D maps. To overcome this, we first construct LiRSI-XA dataset, which encompasses approximately $110,000$ remote sensing submaps and $13,000$ LiDAR point cloud submaps captured in urban scenes, and propose a novel method, L2RSI, for cross-view LiDAR place recognition using high-resolution Remote Sensing Imagery. This approach enables large-scale localization capabilities at a reduced cost by leveraging readily available overhead images as map proxies. L2RSI addresses the dual challenges of cross-view and cross-modal place recognition by learning feature alignment between point cloud submaps and remote sensing submaps in the semantic domain. Additionally, we introduce a novel probability propagation method based on particle estimation to refine position predictions, effectively leveraging temporal and spatial information. This approach enables large-scale retrieval and cross-scene generalization without fine-tuning. Extensive experiments on LiRSI-XA demonstrate that, within a $100km^2$ retrieval range, L2RSI accurately localizes $83.27\%$ of point cloud submaps within a $30m$ radius for top-$1$ retrieved location. Our project page is publicly available at https://shizw695.github.io/L2RSI/.
comment: 17 pages, 7 figures, NeurIPS 2025
♻ ☆ Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation AAAI 2026
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision.
comment: Accepted to the AAAI 2026 Student Abstract and Poster Program
♻ ☆ AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Background: Development of artificial intelligence (AI) models for lung cancer screening requires large, well-annotated low-dose computed tomography (CT) datasets and rigorous performance benchmarks. Purpose: To create a reproducible benchmarking resource leveraging the Duke Lung Cancer Screening (DLCS) and multiple public datasets to develop and evaluate models for nodule detection and classification. Materials & Methods: This retrospective study uses the DLCS dataset (1,613 patients; 2,487 nodules) and external datasets including LUNA16, LUNA25, and NLST-3D. For detection, MONAI RetinaNet models were trained on DLCS (DLCS-De) and LUNA16 (LUNA16-De) and evaluated using the Competition Performance Metric (CPM). For nodule-level classification, we compare five strategies: pretrained models (Models Genesis, Med3D), a self-supervised foundation model (FMCB), and ResNet50 with random initialization versus Strategic Warm-Start (ResNet50-SWS) pretrained with detection-derived candidate patches stratified by confidence. Results: For detection on the DLCS test set, DLCS-De achieved sensitivity 0.82 at 2 false positives/scan (CPM 0.63) versus LUNA16-De (0.62, CPM 0.45). For external validation on NLST-3D, DLCS-De (sensitivity 0.72, CPM 0.58) also outperformed LUNA16-De (sensitivity 0.64, CPM 0.49). For classification across multiple datasets, ResNet50-SWS attained AUCs of 0.71 (DLCS; 95% CI, 0.61-0.81), 0.90 (LUNA16; 0.87-0.93), 0.81 (NLST-3D; 0.79-0.82), and 0.80 (LUNA25; 0.78-0.82), matching or exceeding pretrained/self-supervised baselines. Performance differences reflected dataset label standards. Conclusion: This work establishes a standardized benchmarking resource for lung cancer AI research, supporting model development, validation, and translation. All code, models, and data are publicly released to promote reproducibility.
comment: 2 tables, 5 figures
♻ ☆ Caption-Driven Explainability: Probing CNNs for Bias via CLIP ICIP 2025
Robustness has become one of the most critical problems in machine learning (ML). The science of interpreting ML models to understand their behavior and improve their robustness is referred to as explainable artificial intelligence (XAI). One of the state-of-the-art XAI methods for computer vision problems is to generate saliency maps. A saliency map highlights the pixel space of an image that excites the ML model the most. However, this property could be misleading if spurious and salient features are present in overlapping pixel spaces. In this paper, we propose a caption-based XAI method, which integrates a standalone model to be explained into the contrastive language-image pre-training (CLIP) model using a novel network surgery approach. The resulting caption-based XAI model identifies the dominant concept that contributes the most to the models prediction. This explanation minimizes the risk of the standalone model falling for a covariate shift and contributes significantly towards developing robust ML models. Our code is available at https://github.com/patch0816/caption-driven-xai
comment: Accepted and presented at the IEEE ICIP 2025 Satellite Workshop "Generative AI for World Simulations and Communications & Celebrating 40 Years of Excellence in Education: Honoring Professor Aggelos Katsaggelos", Anchorage, Alaska, USA, September 14, 2025. Camera-ready preprint; the official IEEE Xplore publication will follow. Code: https://github.com/patch0816/caption-driven-xai
♻ ☆ Pixel-Perfect Depth with Semantics-Prompted Diffusion Transformers NeurIPS 2025
This paper presents Pixel-Perfect Depth, a monocular depth estimation model based on pixel-space diffusion generation that produces high-quality, flying-pixel-free point clouds from estimated depth maps. Current generative depth estimation models fine-tune Stable Diffusion and achieve impressive performance. However, they require a VAE to compress depth maps into latent space, which inevitably introduces \textit{flying pixels} at edges and details. Our model addresses this challenge by directly performing diffusion generation in the pixel space, avoiding VAE-induced artifacts. To overcome the high complexity associated with pixel-space generation, we introduce two novel designs: 1) Semantics-Prompted Diffusion Transformers (SP-DiT), which incorporate semantic representations from vision foundation models into DiT to prompt the diffusion process, thereby preserving global semantic consistency while enhancing fine-grained visual details; and 2) Cascade DiT Design that progressively increases the number of tokens to further enhance efficiency and accuracy. Our model achieves the best performance among all published generative models across five benchmarks, and significantly outperforms all other models in edge-aware point cloud evaluation.
comment: NeurIPS 2025. Project page: https://pixel-perfect-depth.github.io/
♻ ☆ WaMaIR: Image Restoration via Multiscale Wavelet Convolutions and Mamba-based Channel Modeling with Texture Enhancement
Image restoration is a fundamental and challenging task in computer vision, where CNN-based frameworks demonstrate significant computational efficiency. However, previous CNN-based methods often face challenges in adequately restoring fine texture details, which are limited by the small receptive field of CNN structures and the lack of channel feature modeling. In this paper, we propose WaMaIR, which is a novel framework with a large receptive field for image perception and improves the reconstruction of texture details in restored images. Specifically, we introduce the Global Multiscale Wavelet Transform Convolutions (GMWTConvs) for expandding the receptive field to extract image features, preserving and enriching texture features in model inputs. Meanwhile, we propose the Mamba-Based Channel-Aware Module (MCAM), explicitly designed to capture long-range dependencies within feature channels, which enhancing the model sensitivity to color, edges, and texture information. Additionally, we propose Multiscale Texture Enhancement Loss (MTELoss) for image restoration to guide the model in preserving detailed texture structures effectively. Extensive experiments confirm that WaMaIR outperforms state-of-the-art methods, achieving better image restoration and efficient computational performance of the model.
comment: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Oral
♻ ☆ Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across LLM (GSM8K), VLM (CLEVR, Super-CLEVR, GeoQA), and Agentic (AITZ) tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in RL approaches. Our code is available at https://github.com/kokolerk/TON.
comment: camera ready revision
♻ ☆ Ditch the Denoiser: Emergence of Noise Robustness in Self-Supervised Learning from Data Curriculum NeurIPS 2025
Self-Supervised Learning (SSL) has become a powerful solution to extract rich representations from unlabeled data. Yet, SSL research is mostly focused on clean, curated and high-quality datasets. As a result, applying SSL on noisy data remains a challenge, despite being crucial to applications such as astrophysics, medical imaging, geophysics or finance. In this work, we present a fully self-supervised framework that enables noise-robust representation learning without requiring a denoiser at inference or downstream fine-tuning. Our method first trains an SSL denoiser on noisy data, then uses it to construct a denoised-to-noisy data curriculum (i.e., training first on denoised, then noisy samples) for pretraining a SSL backbone (e.g., DINOv2), combined with a teacher-guided regularization that anchors noisy embeddings to their denoised counterparts. This process encourages the model to internalize noise robustness. Notably, the denoiser can be discarded after pretraining, simplifying deployment. On ImageNet-1k with ViT-B under extreme Gaussian noise ($\sigma=255$, SNR = 0.72 dB), our method improves linear probing accuracy by 4.8% over DINOv2, demonstrating that denoiser-free robustness can emerge from noise-aware pretraining. The code is available at https://github.com/wenquanlu/noisy_dinov2.
comment: NeurIPS 2025
♻ ☆ Dynamic Traceback Learning for Medical Report Generation
Automated medical report generation has demonstrated the potential to significantly reduce the workload associated with time-consuming medical reporting. Recent generative representation learning methods have shown promise in integrating vision and language modalities for medical report generation. However, when trained end-to-end and applied directly to medical image-to-text generation, they face two significant challenges: i) difficulty in accurately capturing subtle yet crucial pathological details, and ii) reliance on both visual and textual inputs during inference, leading to performance degradation in zero-shot inference when only images are available. To address these challenges, this study proposes a novel multimodal dynamic traceback learning framework (DTrace). Specifically, we introduce a traceback mechanism to supervise the semantic validity of generated content and a dynamic learning strategy to adapt to various proportions of image and text input, enabling text generation without strong reliance on the input from both modalities during inference. The learning of cross-modal knowledge is enhanced by supervising the model to recover masked semantic information from a complementary counterpart. Extensive experiments conducted on two benchmark datasets, IU-Xray and MIMIC-CXR, demonstrate that the proposed DTrace framework outperforms state-of-the-art methods for medical report generation.
comment: Accepted to IEEE Transactions on Multimedia (TMM)
♻ ☆ Learning World Models for Interactive Video Generation
Foundational world models must be both interactive and preserve spatiotemporal coherence for effective future planning with action choices. However, present models for long video generation have limited inherent world modeling capabilities due to two main challenges: compounding errors and insufficient memory mechanisms. We enhance image-to-video models with interactive capabilities through additional action conditioning and autoregressive framework, and reveal that compounding error is inherently irreducible in autoregressive video generation, while insufficient memory mechanism leads to incoherence of world models. We propose video retrieval augmented generation (VRAG) with explicit global state conditioning, which significantly reduces long-term compounding errors and increases spatiotemporal consistency of world models. In contrast, naive autoregressive generation with extended context windows and retrieval-augmented generation prove less effective for video generation, primarily due to the limited in-context learning capabilities of current video models. Our work illuminates the fundamental challenges in video world models and establishes a comprehensive benchmark for improving video generation models with internal world modeling capabilities.
comment: Project page: https://sites.google.com/view/vrag
♻ ☆ OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
We consider the problem of text-to-video generation tasks with precise control for various applications such as camera movement control and video-to-video editing. Most methods tacking this problem rely on providing user-defined controls, such as binary masks or camera movement embeddings. In our approach we propose OnlyFlow, an approach leveraging the optical flow firstly extracted from an input video to condition the motion of generated videos. Using a text prompt and an input video, OnlyFlow allows the user to generate videos that respect the motion of the input video as well as the text prompt. This is implemented through an optical flow estimation model applied on the input video, which is then fed to a trainable optical flow encoder. The output feature maps are then injected into the text-to-video backbone model. We perform quantitative, qualitative and user preference studies to show that OnlyFlow positively compares to state-of-the-art methods on a wide range of tasks, even though OnlyFlow was not specifically trained for such tasks. OnlyFlow thus constitutes a versatile, lightweight yet efficient method for controlling motion in text-to-video generation. Models and code will be made available on GitHub and HuggingFace.
comment: 8 pages, 1 supplementary page, 9 figures
♻ ☆ Quality-Aware Prototype Memory for Face Representation Learning
Prototype Memory is a powerful model for face representation learning. It enables training face recognition models on datasets of any size by generating prototypes (classifier weights) on the fly and efficiently utilizing them. Prototype Memory demonstrated strong results in many face recognition benchmarks. However, the algorithm of prototype generation, used in it, is prone to the problems of imperfectly calculated prototypes in case of low-quality or poorly recognizable faces in the images, selected for the prototype creation. All images of the same person presented in the mini-batch are used with equal weights, and the resulting averaged prototype can be contaminated by imperfect embeddings of low-quality face images. This may lead to misleading training signals and degrade the performance of the trained models. In this paper, we propose a simple and effective way to improve Prototype Memory with quality-aware prototype generation. Quality-Aware Prototype Memory uses different weights for images of different quality in the process of prototype generation. With this improvement, prototypes receive more informative signals from high-quality images and are less affected by low-quality ones. We propose and compare several methods of quality estimation and usage, perform extensive experiments on the different face recognition benchmarks and demonstrate the advantages of the proposed model compared to the basic version of Prototype Memory.
comment: Preprint
♻ ☆ GenIR: Generative Visual Feedback for Mental Image Retrieval NeurIPS 2025
Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind. That is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction
comment: NeurIPS 2025
♻ ☆ MoralCLIP: Contrastive Alignment of Vision-and-Language Representations with Moral Foundations Theory ACM MM '25
Recent advances in vision-language models have enabled rich semantic understanding across modalities. However, these encoding methods lack the ability to interpret or reason about the moral dimensions of content-a crucial aspect of human cognition. In this paper, we address this gap by introducing MoralCLIP, a novel embedding representation method that extends multimodal learning with explicit moral grounding based on Moral Foundations Theory (MFT). Our approach integrates visual and textual moral cues into a unified embedding space, enabling cross-modal moral alignment. MoralCLIP is grounded on the multi-label dataset Social-Moral Image Database to identify co-occurring moral foundations in visual content. For MoralCLIP training, we design a moral data augmentation strategy to scale our annotated dataset to 15,000 image-text pairs labeled with MFT-aligned dimensions. Our results demonstrate that explicit moral supervision improves both unimodal and multimodal understanding of moral content, establishing a foundation for morally-aware AI systems capable of recognizing and aligning with human moral values.
comment: Updated version: corresponds to the ACM MM '25 published paper and includes full appendix material
♻ ☆ CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data
True intelligence hinges on the ability to uncover and leverage hidden causal relations. Despite significant progress in AI and computer vision (CV), there remains a lack of benchmarks for assessing models' abilities to infer latent causality from complex visual data. In this paper, we introduce \textsc{\textbf{Causal3D}}, a novel and comprehensive benchmark that integrates structured data (tables) with corresponding visual representations (images) to evaluate causal reasoning. Designed within a systematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse causal relations, views, and backgrounds, enabling evaluations across scenes of varying complexity. We assess multiple state-of-the-art methods, including classical causal discovery, causal representation learning, and large/vision-language models (LLMs/VLMs). Our experiments show that as causal structures grow more complex without prior knowledge, performance declines significantly, highlighting the challenges even advanced methods face in complex causal scenarios. Causal3D serves as a vital resource for advancing causal reasoning in CV and fostering trustworthy AI in critical domains.
comment: Datasets link: https://huggingface.co/datasets/LLDDSS/Causal3D_Dataset
♻ ☆ LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering NeurIPS 2025
In this work, we present a novel level-of-detail (LOD) method for 3D Gaussian Splatting that enables real-time rendering of large-scale scenes on memory-constrained devices. Our approach introduces a hierarchical LOD representation that iteratively selects optimal subsets of Gaussians based on camera distance, thus largely reducing both rendering time and GPU memory usage. We construct each LOD level by applying a depth-aware 3D smoothing filter, followed by importance-based pruning and fine-tuning to maintain visual fidelity. To further reduce memory overhead, we partition the scene into spatial chunks and dynamically load only relevant Gaussians during rendering, employing an opacity-blending mechanism to avoid visual artifacts at chunk boundaries. Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets, delivering high-quality renderings with reduced latency and memory requirements.
comment: NeurIPS 2025; Web: https://lodge-gs.github.io/
♻ ☆ NerfBaselines: Consistent and Reproducible Evaluation of Novel View Synthesis Methods NeurIPS 2025
Novel view synthesis is an important problem with many applications, including AR/VR, gaming, and robotic simulations. With the recent rapid development of Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is becoming difficult to keep track of the current state of the art (SoTA) due to methods using different evaluation protocols, codebases being difficult to install and use, and methods not generalizing well to novel 3D scenes. In our experiments, we show that even tiny differences in the evaluation protocols of various methods can artificially boost the performance of these methods. This raises questions about the validity of quantitative comparisons performed in the literature. To address these questions, we propose NerfBaselines, an evaluation framework which provides consistent benchmarking tools, ensures reproducibility, and simplifies the installation and use of various methods. We validate our implementation experimentally by reproducing the numbers reported in the original papers. For improved accessibility, we release a web platform that compares commonly used methods on standard benchmarks. We strongly believe NerfBaselines is a valuable contribution to the community as it ensures that quantitative results are comparable and thus truly measure progress in the field of novel view synthesis.
comment: NeurIPS 2025 D&B; Web: https://jkulhanek.com/nerfbaselines
♻ ☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models. We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements. Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/alimama-creative/VC4VG to support further research.
comment: Accepted by EMNLP 2025
♻ ☆ KARMA: Efficient Structural Defect Segmentation via Kolmogorov-Arnold Representation Learning
Semantic segmentation of structural defects in civil infrastructure remains challenging due to variable defect appearances, harsh imaging conditions, and significant class imbalance. Current deep learning methods, despite their effectiveness, typically require millions of parameters, rendering them impractical for real-time inspection systems. We introduce KARMA (Kolmogorov-Arnold Representation Mapping Architecture), a highly efficient semantic segmentation framework that models complex defect patterns through compositions of one-dimensional functions rather than conventional convolutions. KARMA features three technical innovations: (1) a parameter-efficient Tiny Kolmogorov-Arnold Network (TiKAN) module leveraging low-rank factorization for KAN-based feature transformation; (2) an optimized feature pyramid structure with separable convolutions for multi-scale defect analysis; and (3) a static-dynamic prototype mechanism that enhances feature representation for imbalanced classes. Extensive experiments on benchmark infrastructure inspection datasets demonstrate that KARMA achieves competitive or superior mean IoU performance compared to state-of-the-art approaches, while using significantly fewer parameters (0.959M vs. 31.04M, a 97% reduction). Operating at 0.264 GFLOPS, KARMA maintains inference speeds suitable for real-time deployment, enabling practical automated infrastructure inspection systems without compromising accuracy. The source code can be accessed at the following URL: https://github.com/faeyelab/karma.
comment: This work has been submitted to the IEEE for possible publication
Artificial Intelligence 150
☆ Gaperon: A Peppered English-French Generative Language Model Suite
We release Gaperon, a fully open suite of French-English-coding language models designed to advance transparency and reproducibility in large-scale model training. The Gaperon family includes 1.5B, 8B, and 24B parameter models trained on 2-4 trillion tokens, released with all elements of the training pipeline: French and English datasets filtered with a neural quality classifier, an efficient data curation and training framework, and hundreds of intermediate checkpoints. Through this work, we study how data filtering and contamination interact to shape both benchmark and generative performance. We find that filtering for linguistic quality enhances text fluency and coherence but yields subpar benchmark results, and that late deliberate contamination -- continuing training on data mixes that include test sets -- recovers competitive scores while only reasonably harming generation quality. We discuss how usual neural filtering can unintentionally amplify benchmark leakage. To support further research, we also introduce harmless data poisoning during pretraining, providing a realistic testbed for safety studies. By openly releasing all models, datasets, code, and checkpoints, Gaperon establishes a reproducible foundation for exploring the trade-offs between data curation, evaluation, safety, and openness in multilingual language model development.
☆ E-Scores for (In)Correctness Assessment of Generative Model Outputs
While generative models, especially large language models (LLMs), are ubiquitous in today's world, principled mechanisms to assess their (in)correctness are limited. Using the conformal prediction framework, previous works construct sets of LLM responses where the probability of including an incorrect response, or error, is capped at a desired user-defined tolerance level. However, since these methods are based on p-values, they are susceptible to p-hacking, i.e., choosing the tolerance level post-hoc can invalidate the guarantees. We therefore leverage e-values to complement generative model outputs with e-scores as a measure of incorrectness. In addition to achieving the same statistical guarantees as before, e-scores provide users flexibility in adaptively choosing tolerance levels after observing the e-scores themselves, by upper bounding a post-hoc notion of error called size distortion. We experimentally demonstrate their efficacy in assessing LLM outputs for different correctness types: mathematical factuality and property constraints satisfaction.
☆ TheraMind: A Strategic and Adaptive Agent for Longitudinal Psychological Counseling
Large language models (LLMs) in psychological counseling have attracted increasing attention. However, existing approaches often lack emotional understanding, adaptive strategies, and the use of therapeutic methods across multiple sessions with long-term memory, leaving them far from real clinical practice. To address these critical gaps, we introduce TheraMind, a strategic and adaptive agent for longitudinal psychological counseling. The cornerstone of TheraMind is a novel dual-loop architecture that decouples the complex counseling process into an Intra-Session Loop for tactical dialogue management and a Cross-Session Loop for strategic therapeutic planning. The Intra-Session Loop perceives the patient's emotional state to dynamically select response strategies while leveraging cross-session memory to ensure continuity. Crucially, the Cross-Session Loop empowers the agent with long-term adaptability by evaluating the efficacy of the applied therapy after each session and adjusting the method for subsequent interactions. We validate our approach in a high-fidelity simulation environment grounded in real clinical cases. Extensive evaluations show that TheraMind outperforms other methods, especially on multi-session metrics like Coherence, Flexibility, and Therapeutic Attunement, validating the effectiveness of its dual-loop design in emulating strategic, adaptive, and longitudinal therapeutic behavior. The code is publicly available at https://0mwwm0.github.io/TheraMind/.
☆ Task Completion Agents are Not Ideal Collaborators
Current evaluations of agents remain centered around one-shot task completion, failing to account for the inherently iterative and collaborative nature of many real-world problems, where human goals are often underspecified and evolve. We argue for a shift from building and assessing task completion agents to developing collaborative agents, assessed not only by the quality of their final outputs but by how well they engage with and enhance human effort throughout the problem-solving process. To support this shift, we introduce collaborative effort scaling, a framework that captures how an agent's utility grows with increasing user involvement. Through case studies and simulated evaluations, we show that state-of-the-art agents often underperform in multi-turn, real-world scenarios, revealing a missing ingredient in agent design: the ability to sustain engagement and scaffold user understanding. Collaborative effort scaling offers a lens for diagnosing agent behavior and guiding development toward more effective interactions.
comment: 22 pages, 5 figures, 3 tables
☆ The Limits of Obliviate: Evaluating Unlearning in LLMs via Stimulus-Knowledge Entanglement-Behavior Framework
Unlearning in large language models (LLMs) is crucial for managing sensitive data and correcting misinformation, yet evaluating its effectiveness remains an open problem. We investigate whether persuasive prompting can recall factual knowledge from deliberately unlearned LLMs across models ranging from 2.7B to 13B parameters (OPT-2.7B, LLaMA-2-7B, LLaMA-3.1-8B, LLaMA-2-13B). Drawing from ACT-R and Hebbian theory (spreading activation theories), as well as communication principles, we introduce Stimulus-Knowledge Entanglement-Behavior Framework (SKeB), which models information entanglement via domain graphs and tests whether factual recall in unlearned models is correlated with persuasive framing. We develop entanglement metrics to quantify knowledge activation patterns and evaluate factuality, non-factuality, and hallucination in outputs. Our results show persuasive prompts substantially enhance factual knowledge recall (14.8% baseline vs. 24.5% with authority framing), with effectiveness inversely correlated to model size (128% recovery in 2.7B vs. 15% in 13B). SKeB provides a foundation for assessing unlearning completeness, robustness, and overall behavior in LLMs.
comment: 14 pages, 11 figures
☆ LieSolver: A PDE-constrained solver for IBVPs using Lie symmetries
We introduce a method for efficiently solving initial-boundary value problems (IBVPs) that uses Lie symmetries to enforce the associated partial differential equation (PDE) exactly by construction. By leveraging symmetry transformations, the model inherently incorporates the physical laws and learns solutions from initial and boundary data. As a result, the loss directly measures the model's accuracy, leading to improved convergence. Moreover, for well-posed IBVPs, our method enables rigorous error estimation. The approach yields compact models, facilitating an efficient optimization. We implement LieSolver and demonstrate its application to linear homogeneous PDEs with a range of initial conditions, showing that it is faster and more accurate than physics-informed neural networks (PINNs). Overall, our method improves both computational efficiency and the reliability of predictions for PDE-constrained problems.
☆ Physics-Guided Conditional Diffusion Networks for Microwave Image Reconstruction
A conditional latent-diffusion based framework for solving the electromagnetic inverse scattering problem associated with microwave imaging is introduced. This generative machine-learning model explicitly mirrors the non-uniqueness of the ill-posed inverse problem. Unlike existing inverse solvers utilizing deterministic machine learning techniques that produce a single reconstruction, the proposed latent-diffusion model generates multiple plausible permittivity maps conditioned on measured scattered-field data, thereby generating several potential instances in the range-space of the non-unique inverse mapping. A forward electromagnetic solver is integrated into the reconstruction pipeline as a physics-based evaluation mechanism. The space of candidate reconstructions form a distribution of possibilities consistent with the conditioning data and the member of this space yielding the lowest scattered-field data discrepancy between the predicted and measured scattered fields is reported as the final solution. Synthetic and experimental labeled datasets are used for training and evaluation of the model. An innovative labeled synthetic dataset is created that exemplifies a varied set of scattering features. Training of the model using this new dataset produces high quality permittivity reconstructions achieving improved generalization with excellent fidelity to shape recognition. The results highlight the potential of hybrid generative physics frameworks as a promising direction for robust, data-driven microwave imaging.
☆ The Tool Decathlon: Benchmarking Language Agents for Diverse, Realistic, and Long-Horizon Task Execution
Real-world language agents must handle complex, multi-step workflows across diverse Apps. For instance, an agent may manage emails by coordinating with calendars and file systems, or monitor a production database to detect anomalies and generate reports following an operating manual. However, existing language agent benchmarks often focus on narrow domains or simplified tasks that lack the diversity, realism, and long-horizon complexity required to evaluate agents' real-world performance. To address this gap, we introduce the Tool Decathlon (dubbed as Toolathlon), a benchmark for language agents offering diverse Apps and tools, realistic environment setup, and reliable execution-based evaluation. Toolathlon spans 32 software applications and 604 tools, ranging from everyday platforms such as Google Calendar and Notion to professional ones like WooCommerce, Kubernetes, and BigQuery. Most of the tools are based on a high-quality set of Model Context Protocol (MCP) servers that we may have revised or implemented ourselves. Unlike prior works, which primarily ensure functional realism but offer limited environment state diversity, we provide realistic initial environment states from real software, such as Canvas courses with dozens of students or real financial spreadsheets. This benchmark includes 108 manually sourced or crafted tasks in total, requiring interacting with multiple Apps over around 20 turns on average to complete. Each task is strictly verifiable through dedicated evaluation scripts. Comprehensive evaluation of SOTA models highlights their significant shortcomings: the best-performing model, Claude-4.5-Sonnet, achieves only a 38.6% success rate with 20.2 tool calling turns on average, while the top open-weights model DeepSeek-V3.2-Exp reaches 20.1%. We expect Toolathlon to drive the development of more capable language agents for real-world, long-horizon task execution.
comment: Website: https://toolathlon.xyz/
☆ BambooKG: A Neurobiologically-inspired Frequency-Weight Knowledge Graph
Retrieval-Augmented Generation allows LLMs to access external knowledge, reducing hallucinations and ageing-data issues. However, it treats retrieved chunks independently and struggles with multi-hop or relational reasoning, especially across documents. Knowledge graphs enhance this by capturing the relationships between entities using triplets, enabling structured, multi-chunk reasoning. However, these tend to miss information that fails to conform to the triplet structure. We introduce BambooKG, a knowledge graph with frequency-based weights on non-triplet edges which reflect link strength, drawing on the Hebbian principle of "fire together, wire together". This decreases information loss and results in improved performance on single- and multi-hop reasoning, outperforming the existing solutions.
☆ Process-Level Trajectory Evaluation for Environment Configuration in Software Engineering Agents
Large language model-based agents show promise for software engineering, but environment configuration remains a bottleneck due to heavy manual effort and scarce large-scale, high-quality datasets. Existing benchmarks assess only end-to-end build/test success, obscuring where and why agents succeed or fail. We introduce the Environment Configuration Diagnosis Benchmark, Enconda-bench, which provides process-level trajectory assessment of fine-grained agent capabilities during environment setup-planning, perception-driven error diagnosis, feedback-driven repair, and action to execute final environment configuration. Our task instances are automatically constructed by injecting realistic README errors and are validated in Docker for scalable, high-quality evaluation. Enconda-bench combines process-level analysis with end-to-end executability to enable capability assessments beyond aggregate success rates. Evaluations across state-of-the-art LLMs and agent frameworks show that while agents can localize errors, they struggle to translate feedback into effective corrections, limiting end-to-end performance. To our knowledge, Enconda-bench is the first framework to provide process-level internal capability assessment for environment configuration, offering actionable insights for improving software engineering agents.
Graph Network-based Structural Simulator: Graph Neural Networks for Structural Dynamics
Graph Neural Networks (GNNs) have recently been explored as surrogate models for numerical simulations. While their applications in computational fluid dynamics have been investigated, little attention has been given to structural problems, especially for dynamic cases. To address this gap, we introduce the Graph Network-based Structural Simulator (GNSS), a GNN framework for surrogate modeling of dynamic structural problems. GNSS follows the encode-process-decode paradigm typical of GNN-based machine learning models, and its design makes it particularly suited for dynamic simulations thanks to three key features: (i) expressing node kinematics in node-fixed local frames, which avoids catastrophic cancellation in finite-difference velocities; (ii) employing a sign-aware regression loss, which reduces phase errors in long rollouts; and (iii) using a wavelength-informed connectivity radius, which optimizes graph construction. We evaluate GNSS on a case study involving a beam excited by a 50kHz Hanning-modulated pulse. The results show that GNSS accurately reproduces the physics of the problem over hundreds of timesteps and generalizes to unseen loading conditions, where existing GNNs fail to converge or deliver meaningful predictions. Compared with explicit finite element baselines, GNSS achieves substantial inference speedups while preserving spatial and temporal fidelity. These findings demonstrate that locality-preserving GNNs with physics-consistent update rules are a competitive alternative for dynamic, wave-dominated structural simulations.
comment: 16 pages, 14 figures
☆ Navigation in a Three-Dimensional Urban Flow using Deep Reinforcement Learning
Unmanned Aerial Vehicles (UAVs) are increasingly populating urban areas for delivery and surveillance purposes. In this work, we develop an optimal navigation strategy based on Deep Reinforcement Learning. The environment is represented by a three-dimensional high-fidelity simulation of an urban flow, characterized by turbulence and recirculation zones. The algorithm presented here is a flow-aware Proximal Policy Optimization (PPO) combined with a Gated Transformer eXtra Large (GTrXL) architecture, giving the agent richer information about the turbulent flow field in which it navigates. The results are compared with a PPO+GTrXL without the secondary prediction tasks, a PPO combined with Long Short Term Memory (LSTM) cells and a traditional navigation algorithm. The obtained results show a significant increase in the success rate (SR) and a lower crash rate (CR) compared to a PPO+LSTM, PPO+GTrXL and the classical Zermelo's navigation algorithm, paving the way to a completely reimagined UAV landscape in complex urban environments.
☆ ALDEN: Reinforcement Learning for Active Navigation and Evidence Gathering in Long Documents
Vision-language models (VLMs) excel at interpreting text-rich images but struggle with long, visually complex documents that demand analysis and integration of information spread across multiple pages. Existing approaches typically rely on fixed reasoning templates or rigid pipelines, which force VLMs into a passive role and hinder both efficiency and generalization. We present Active Long-DocumEnt Navigation (ALDEN), a multi-turn reinforcement learning framework that fine-tunes VLMs as interactive agents capable of actively navigating long, visually rich documents. ALDEN introduces a novel fetch action that directly accesses the page by index, complementing the classic search action and better exploiting document structure. For dense process supervision and efficient training, we propose a rule-based cross-level reward that provides both turn- and token-level signals. To address the empirically observed training instability caused by numerous visual tokens from long documents, we further propose a visual-semantic anchoring mechanism that applies a dual-path KL-divergence constraint to stabilize visual and textual representations separately during training. Trained on a corpus constructed from three open-source datasets, ALDEN achieves state-of-the-art performance on five long-document benchmarks. Overall, ALDEN marks a step beyond passive document reading toward agents that autonomously navigate and reason across long, visually rich documents, offering a robust path to more accurate and efficient long-document understanding.
☆ User Misconceptions of LLM-Based Conversational Programming Assistants
Programming assistants powered by large language models (LLMs) have become widely available, with conversational assistants like ChatGPT proving particularly accessible to less experienced programmers. However, the varied capabilities of these tools across model versions and the mixed availability of extensions that enable web search, code execution, or retrieval-augmented generation create opportunities for user misconceptions about what systems can and cannot do. Such misconceptions may lead to over-reliance, unproductive practices, or insufficient quality control in LLM-assisted programming. Here, we aim to characterize misconceptions that users of conversational LLM-based assistants may have in programming contexts. Using a two-phase approach, we first brainstorm and catalog user misconceptions that may occur, and then conduct a qualitative analysis to examine whether these conceptual issues surface in naturalistic Python-programming conversations with an LLM-based chatbot drawn from an openly available dataset. Indeed, we see evidence that some users have misplaced expectations about the availability of LLM-based chatbot features like web access, code execution, or non-text output generation. We also see potential evidence for deeper conceptual issues around the scope of information required to debug, validate, and optimize programs. Our findings reinforce the need for designing LLM-based tools that more clearly communicate their programming capabilities to users.
☆ Subgraph Federated Learning via Spectral Methods NeurIPS
We consider the problem of federated learning (FL) with graph-structured data distributed across multiple clients. In particular, we address the prevalent scenario of interconnected subgraphs, where interconnections between clients significantly influence the learning process. Existing approaches suffer from critical limitations, either requiring the exchange of sensitive node embeddings, thereby posing privacy risks, or relying on computationally-intensive steps, which hinders scalability. To tackle these challenges, we propose FedLap, a novel framework that leverages global structure information via Laplacian smoothing in the spectral domain to effectively capture inter-node dependencies while ensuring privacy and scalability. We provide a formal analysis of the privacy of FedLap, demonstrating that it preserves privacy. Notably, FedLap is the first subgraph FL scheme with strong privacy guarantees. Extensive experiments on benchmark datasets demonstrate that FedLap achieves competitive or superior utility compared to existing techniques.
comment: To be presented at The Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
☆ Learning to Plan & Schedule with Reinforcement-Learned Bimanual Robot Skills
Long-horizon contact-rich bimanual manipulation presents a significant challenge, requiring complex coordination involving a mixture of parallel execution and sequential collaboration between arms. In this paper, we introduce a hierarchical framework that frames this challenge as an integrated skill planning & scheduling problem, going beyond purely sequential decision-making to support simultaneous skill invocation. Our approach is built upon a library of single-arm and bimanual primitive skills, each trained using Reinforcement Learning (RL) in GPU-accelerated simulation. We then train a Transformer-based planner on a dataset of skill compositions to act as a high-level scheduler, simultaneously predicting the discrete schedule of skills as well as their continuous parameters. We demonstrate that our method achieves higher success rates on complex, contact-rich tasks than end-to-end RL approaches and produces more efficient, coordinated behaviors than traditional sequential-only planners.
☆ Are Language Models Efficient Reasoners? A Perspective from Logic Programming NeurIPS 2025
Modern language models (LMs) exhibit strong deductive reasoning capabilities, yet standard evaluations emphasize correctness while overlooking a key aspect of human-like reasoning: efficiency. In real-world reasoning scenarios, much of the available information is irrelevant, and effective deductive inference requires identifying and ignoring such distractions. We propose a framework for assessing LM reasoning efficiency through the lens of logic programming, introducing a simple method to align proofs written in natural language -- as generated by an LM -- with shortest proofs found by executing the logic program. Efficiency is quantified by measuring how well a model avoids unnecessary inference. Empirically, we construct a dataset of math word problems injected with various number of irrelevant axioms that vary in semantic overlap with the goal theorem. We find that current LMs show marked accuracy declines under such conditions -- even with minimal, domain-consistent distractions -- and the proofs they generate frequently exhibit detours through irrelevant inferences.
comment: Accepted to NeurIPS 2025
☆ FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
comment: 37 pages, 5 figures, 10 tables. Keywords: Retrieval-Augmented Generation (RAG), Question Answering (QA), Islamic Knowledge Base, Faithful AI, Persian NLP, Multi-hop Reasoning, Large Language Models (LLMs)
☆ Don't Blind Your VLA: Aligning Visual Representations for OOD Generalization
The growing success of Vision-Language-Action (VLA) models stems from the promise that pretrained Vision-Language Models (VLMs) can endow agents with transferable world knowledge and vision-language (VL) grounding, laying a foundation for action models with broader generalization. Yet when these VLMs are adapted to the action modality, it remains unclear to what extent their original VL representations and knowledge are preserved. In this work, we conduct a systematic study of representation retention during VLA fine-tuning, showing that naive action fine-tuning leads to degradation of visual representations. To characterize and measure these effects, we probe VLA's hidden representations and analyze attention maps, further, we design a set of targeted tasks and methods that contrast VLA models with their counterpart VLMs, isolating changes in VL capabilities induced by action fine-tuning. We further evaluate a range of strategies for aligning visual representations and introduce a simple yet effective method that mitigates degradation and yields improved generalization to out-of-distribution (OOD) scenarios. Taken together, our analysis clarifies the trade-off between action fine-tuning and the degradation of VL representations and highlights practical approaches to recover inherited VL capabilities. Code is publicly available: https://blind-vla-paper.github.io
comment: 13 pages, 6 figures
☆ Counterfactual-based Agent Influence Ranker for Agentic AI Workflows EMNLP 2025
An Agentic AI Workflow (AAW), also known as an LLM-based multi-agent system, is an autonomous system that assembles several LLM-based agents to work collaboratively towards a shared goal. The high autonomy, widespread adoption, and growing interest in such AAWs highlight the need for a deeper understanding of their operations, from both quality and security aspects. To this day, there are no existing methods to assess the influence of each agent on the AAW's final output. Adopting techniques from related fields is not feasible since existing methods perform only static structural analysis, which is unsuitable for inference time execution. We present Counterfactual-based Agent Influence Ranker (CAIR) - the first method for assessing the influence level of each agent on the AAW's output and determining which agents are the most influential. By performing counterfactual analysis, CAIR provides a task-agnostic analysis that can be used both offline and at inference time. We evaluate CAIR using an AAWs dataset of our creation, containing 30 different use cases with 230 different functionalities. Our evaluation showed that CAIR produces consistent rankings, outperforms baseline methods, and can easily enhance the effectiveness and relevancy of downstream tasks.
comment: Accepted to EMNLP 2025, 27 pages, 6 figures
☆ BOLT-GAN: Bayes-Optimal Loss for Stable GAN Training
We introduce BOLT-GAN, a simple yet effective modification of the WGAN framework inspired by the Bayes Optimal Learning Threshold (BOLT). We show that with a Lipschitz continuous discriminator, BOLT-GAN implicitly minimizes a different metric distance than the Earth Mover (Wasserstein) distance and achieves better training stability. Empirical evaluations on four standard image generation benchmarks (CIFAR-10, CelebA-64, LSUN Bedroom-64, and LSUN Church-64) show that BOLT-GAN consistently outperforms WGAN, achieving 10-60% lower Frechet Inception Distance (FID). Our results suggest that BOLT is a broadly applicable principle for enhancing GAN training.
☆ INT v.s. FP: A Comprehensive Study of Fine-Grained Low-bit Quantization Formats
Modern AI hardware, such as Nvidia's Blackwell architecture, is increasingly embracing low-precision floating-point (FP) formats to handle the pervasive activation outliers in Large Language Models (LLMs). Despite this industry trend, a unified comparison of FP and integer (INT) quantization across varying granularities has been missing, leaving algorithm and hardware co-design without clear guidance. This paper fills that gap by systematically investigating the trade-offs between FP and INT formats. We reveal a critical performance crossover: while FP excels in coarse-grained quantization, the comparison at fine-grained (block-wise) levels is more nuanced. Our comprehensive comparison demonstrates that for popular 8-bit fine-grained formats (e.g., MX with block size 32), MXINT8 is superior to its FP counterpart in both algorithmic accuracy and hardware efficiency. However, for 4-bit formats, FP (e.g., MXFP4, NVFP4) often holds an accuracy advantage , though we show that NVINT4 can surpass NVFP4 when outlier-mitigation techniques like Hadamard rotation are applied. We also introduce a symmetric clipping method that resolves gradient bias in fine-grained low-bit INT training, enabling nearly lossless performance for MXINT8 training. These findings challenge the current hardware trajectory, demonstrating that a one-size-fits-all FP approach is suboptimal and advocating that fine-grained INT formats, particularly MXINT8, offer a better balance of accuracy, power, and efficiency for future AI accelerators.
☆ Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry ICML 2025
While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles
comment: Workshop on Multi-Agent System @ ICML 2025
☆ RegionE: Adaptive Region-Aware Generation for Efficient Image Editing
Recently, instruction-based image editing (IIE) has received widespread attention. In practice, IIE often modifies only specific regions of an image, while the remaining areas largely remain unchanged. Although these two types of regions differ significantly in generation difficulty and computational redundancy, existing IIE models do not account for this distinction, instead applying a uniform generation process across the entire image. This motivates us to propose RegionE, an adaptive, region-aware generation framework that accelerates IIE tasks without additional training. Specifically, the RegionE framework consists of three main components: 1) Adaptive Region Partition. We observed that the trajectory of unedited regions is straight, allowing for multi-step denoised predictions to be inferred in a single step. Therefore, in the early denoising stages, we partition the image into edited and unedited regions based on the difference between the final estimated result and the reference image. 2) Region-Aware Generation. After distinguishing the regions, we replace multi-step denoising with one-step prediction for unedited areas. For edited regions, the trajectory is curved, requiring local iterative denoising. To improve the efficiency and quality of local iterative generation, we propose the Region-Instruction KV Cache, which reduces computational cost while incorporating global information. 3) Adaptive Velocity Decay Cache. Observing that adjacent timesteps in edited regions exhibit strong velocity similarity, we further propose an adaptive velocity decay cache to accelerate the local denoising process. We applied RegionE to state-of-the-art IIE base models, including Step1X-Edit, FLUX.1 Kontext, and Qwen-Image-Edit. RegionE achieved acceleration factors of 2.57, 2.41, and 2.06. Evaluations by GPT-4o confirmed that semantic and perceptual fidelity were well preserved.
comment: 26 pages, 10 figures, 18 tables
☆ Standardization of Psychiatric Diagnoses -- Role of Fine-tuned LLM Consortium and OpenAI-gpt-oss Reasoning LLM Enabled Decision Support System
The diagnosis of most mental disorders, including psychiatric evaluations, primarily depends on dialogues between psychiatrists and patients. This subjective process can lead to variability in diagnoses across clinicians and patients, resulting in inconsistencies and challenges in achieving reliable outcomes. To address these issues and standardize psychiatric diagnoses, we propose a Fine-Tuned Large Language Model (LLM) Consortium and OpenAI-gpt-oss Reasoning LLM-enabled Decision Support System for the clinical diagnosis of mental disorders. Our approach leverages fine-tuned LLMs trained on conversational datasets involving psychiatrist-patient interactions focused on mental health conditions (e.g., depression). The diagnostic predictions from individual models are aggregated through a consensus-based decision-making process, refined by the OpenAI-gpt-oss reasoning LLM. We propose a novel method for deploying LLM agents that orchestrate communication between the LLM consortium and the reasoning LLM, ensuring transparency, reliability, and responsible AI across the entire diagnostic workflow. Experimental results demonstrate the transformative potential of combining fine-tuned LLMs with a reasoning model to create a robust and highly accurate diagnostic system for mental health assessment. A prototype of the proposed platform, integrating three fine-tuned LLMs with the OpenAI-gpt-oss reasoning LLM, was developed in collaboration with the U.S. Army Medical Research Team in Norfolk, Virginia, USA. To the best of our knowledge, this work represents the first application of a fine-tuned LLM consortium integrated with a reasoning LLM for clinical mental health diagnosis paving the way for next-generation AI-powered eHealth systems aimed at standardizing psychiatric diagnoses.
☆ Lost in Phonation: Voice Quality Variation as an Evaluation Dimension for Speech Foundation Models LREC 2026
Recent advances in speech foundation models (SFMs) have enabled the direct processing of spoken language from raw audio, bypassing intermediate textual representations. This capability allows SFMs to be exposed to, and potentially respond to, rich paralinguistic variations embedded in the input speech signal. One under-explored dimension of paralinguistic variation is voice quality, encompassing phonation types such as creaky and breathy voice. These phonation types are known to influence how listeners infer affective state, stance and social meaning in speech. Existing benchmarks for speech understanding largely rely on multiple-choice question answering (MCQA) formats, which are prone to failure and therefore unreliable in capturing the nuanced ways paralinguistic features influence model behaviour. In this paper, we probe SFMs through open-ended generation tasks and speech emotion recognition, evaluating whether model behaviours are consistent across different phonation inputs. We introduce a new parallel dataset featuring synthesized modifications to voice quality, designed to evaluate SFM responses to creaky and breathy voice. Our work provides the first examination of SFM sensitivity to these particular non-lexical aspects of speech perception.
comment: 8 pages, 3 figures, 4 tables, submitted to LREC 2026
☆ Leveraging an Atmospheric Foundational Model for Subregional Sea Surface Temperature Forecasting
The accurate prediction of oceanographic variables is crucial for understanding climate change, managing marine resources, and optimizing maritime activities. Traditional ocean forecasting relies on numerical models; however, these approaches face limitations in terms of computational cost and scalability. In this study, we adapt Aurora, a foundational deep learning model originally designed for atmospheric forecasting, to predict sea surface temperature (SST) in the Canary Upwelling System. By fine-tuning this model with high-resolution oceanographic reanalysis data, we demonstrate its ability to capture complex spatiotemporal patterns while reducing computational demands. Our methodology involves a staged fine-tuning process, incorporating latitude-weighted error metrics and optimizing hyperparameters for efficient learning. The experimental results show that the model achieves a low RMSE of 0.119K, maintaining high anomaly correlation coefficients (ACC $\approx 0.997$). The model successfully reproduces large-scale SST structures but faces challenges in capturing finer details in coastal regions. This work contributes to the field of data-driven ocean forecasting by demonstrating the feasibility of using deep learning models pre-trained in different domains for oceanic applications. Future improvements include integrating additional oceanographic variables, increasing spatial resolution, and exploring physics-informed neural networks to enhance interpretability and understanding. These advancements can improve climate modeling and ocean prediction accuracy, supporting decision-making in environmental and economic sectors.
comment: 18 pages, 9 figures
☆ Hybrid Quantum-Classical Recurrent Neural Networks
We present a hybrid quantum-classical recurrent neural network (QRNN) architecture in which the entire recurrent core is realized as a parametrized quantum circuit (PQC) controlled by a classical feedforward network. The hidden state is the quantum state of an $n$-qubit PQC, residing in an exponentially large Hilbert space $\mathbb{C}^{2^n}$. The PQC is unitary by construction, making the hidden-state evolution norm-preserving without external constraints. At each timestep, mid-circuit readouts are combined with the input embedding and processed by the feedforward network, which provides explicit classical nonlinearity. The outputs parametrize the PQC, which updates the hidden state via unitary dynamics. The QRNN is compact and physically consistent, and it unifies (i) unitary recurrence as a high-capacity memory, (ii) partial observation via mid-circuit measurements, and (iii) nonlinear classical control for input-conditioned parametrization. We evaluate the model in simulation with up to 14 qubits on sentiment analysis, MNIST, permuted MNIST, copying memory, and language modeling, adopting projective measurements as a limiting case to obtain mid-circuit readouts while maintaining a coherent recurrent quantum memory. We further devise a soft attention mechanism over the mid-circuit readouts in a sequence-to-sequence model and show its effectiveness for machine translation. To our knowledge, this is the first model (RNN or otherwise) grounded in quantum operations to achieve competitive performance against strong classical baselines across a broad class of sequence-learning tasks.
☆ Using latent representations to link disjoint longitudinal data for mixed-effects regression
Many rare diseases offer limited established treatment options, leading patients to switch therapies when new medications emerge. To analyze the impact of such treatment switches within the low sample size limitations of rare disease trials, it is important to use all available data sources. This, however, is complicated when usage of measurement instruments change during the observation period, for example when instruments are adapted to specific age ranges. The resulting disjoint longitudinal data trajectories, complicate the application of traditional modeling approaches like mixed-effects regression. We tackle this by mapping observations of each instrument to a aligned low-dimensional temporal trajectory, enabling longitudinal modeling across instruments. Specifically, we employ a set of variational autoencoder architectures to embed item values into a shared latent space for each time point. Temporal disease dynamics and treatment switch effects are then captured through a mixed-effects regression model applied to latent representations. To enable statistical inference, we present a novel statistical testing approach that accounts for the joint parameter estimation of mixed-effects regression and variational autoencoders. The methodology is applied to quantify the impact of treatment switches for patients with spinal muscular atrophy. Here, our approach aligns motor performance items from different measurement instruments for mixed-effects regression and maps estimated effects back to the observed item level to quantify the treatment switch effect. Our approach allows for model selection as well as for assessing effects of treatment switching. The results highlight the potential of modeling in joint latent representations for addressing small data challenges.
comment: 31 pages, 3 figures, 3 tables
☆ Off-policy Reinforcement Learning with Model-based Exploration Augmentation
Exploration is fundamental to reinforcement learning (RL), as it determines how effectively an agent discovers and exploits the underlying structure of its environment to achieve optimal performance. Existing exploration methods generally fall into two categories: active exploration and passive exploration. The former introduces stochasticity into the policy but struggles in high-dimensional environments, while the latter adaptively prioritizes transitions in the replay buffer to enhance exploration, yet remains constrained by limited sample diversity. To address the limitation in passive exploration, we propose Modelic Generative Exploration (MoGE), which augments exploration through the generation of under-explored critical states and synthesis of dynamics-consistent experiences through transition models. MoGE is composed of two components: (1) a diffusion-based generator that synthesizes critical states under the guidance of a utility function evaluating each state's potential influence on policy exploration, and (2) a one-step imagination world model for constructing critical transitions based on the critical states for agent learning. Our method adopts a modular formulation that aligns with the principles of off-policy learning, allowing seamless integration with existing algorithms to improve exploration without altering their core structures. Empirical results on OpenAI Gym and DeepMind Control Suite reveal that MoGE effectively bridges exploration and policy learning, leading to remarkable gains in both sample efficiency and performance across complex control tasks.
☆ Zero Reinforcement Learning Towards General Domains
Zero Reinforcement Learning (Zero-RL) has proven to be an effective approach for enhancing the reasoning capabilities of large language models (LLMs) by directly applying reinforcement learning with verifiable rewards on pretrained models, without the need for a supervised fine-tuning phase. However, current research on zero-RL primarily focuses on domains with easily verifiable reward signals, such as mathematics, programming, and other reasoning tasks. The challenge of eliciting reasoning abilities in more diverse scenarios, where verification is not straightforward, remains underexplored. To address this gap, we propose a novel zero-RL paradigm designed to improve a model's reasoning ability across both verifiable and non-verifiable domains. By combining verifiable rewards with a generative reward model, we conduct multi-task zero-RL training across both domains, facilitating the transfer of reasoning capabilities between them. Furthermore, to mitigate reward hacking in the generative reward model, we design a smooth length penalty that encourages the generation of more comprehensive thinking tokens in general domains. Experimental results on Qwen3-8B-Base and Qwen3-14B-Base demonstrate that our approach achieves superior reasoning performance, not only on tasks requiring extensive reasoning but also on more general tasks.
☆ Comparative Study of UNet-based Architectures for Liver Tumor Segmentation in Multi-Phase Contrast-Enhanced Computed Tomography
Segmentation of liver structures in multi-phase contrast-enhanced computed tomography (CECT) plays a crucial role in computer-aided diagnosis and treatment planning for liver diseases, including tumor detection. In this study, we investigate the performance of UNet-based architectures for liver tumor segmentation, starting from the original UNet and extending to UNet3+ with various backbone networks. We evaluate ResNet, Transformer-based, and State-space (Mamba) backbones, all initialized with pretrained weights. Surprisingly, despite the advances in modern architecture, ResNet-based models consistently outperform Transformer- and Mamba-based alternatives across multiple evaluation metrics. To further improve segmentation quality, we introduce attention mechanisms into the backbone and observe that incorporating the Convolutional Block Attention Module (CBAM) yields the best performance. ResNetUNet3+ with CBAM module not only produced the best overlap metrics with a Dice score of 0.755 and IoU of 0.662, but also achieved the most precise boundary delineation, evidenced by the lowest HD95 distance of 77.911. The model's superiority was further cemented by its leading overall accuracy of 0.925 and specificity of 0.926, showcasing its robust capability in accurately identifying both lesion and healthy tissue. To further enhance interpretability, Grad-CAM visualizations were employed to highlight the region's most influential predictions, providing insights into its decision-making process. These findings demonstrate that classical ResNet architecture, when combined with modern attention modules, remain highly competitive for medical image segmentation tasks, offering a promising direction for liver tumor detection in clinical practice.
comment: 27 pages, 8 figures
Retrieval Augmented Generation (RAG) for Fintech: Agentic Design and Evaluation
Retrieval-Augmented Generation (RAG) systems often face limitations in specialized domains such as fintech, where domain-specific ontologies, dense terminology, and acronyms complicate effective retrieval and synthesis. This paper introduces an agentic RAG architecture designed to address these challenges through a modular pipeline of specialized agents. The proposed system supports intelligent query reformulation, iterative sub-query decomposition guided by keyphrase extraction, contextual acronym resolution, and cross-encoder-based context re-ranking. We evaluate our approach against a standard RAG baseline using a curated dataset of 85 question--answer--reference triples derived from an enterprise fintech knowledge base. Experimental results demonstrate that the agentic RAG system outperforms the baseline in retrieval precision and relevance, albeit with increased latency. These findings suggest that structured, multi-agent methodologies offer a promising direction for enhancing retrieval robustness in complex, domain-specific settings.
comment: Keywords: RAG Agentic AI Fintech NLP KB Domain-Specific Ontology Query Understanding
☆ Predicate Renaming via Large Language Models
In this paper, we address the problem of giving names to predicates in logic rules using Large Language Models (LLMs). In the context of Inductive Logic Programming, various rule generation methods produce rules containing unnamed predicates, with Predicate Invention being a key example. This hinders the readability, interpretability, and reusability of the logic theory. Leveraging recent advancements in LLMs development, we explore their ability to process natural language and code to provide semantically meaningful suggestions for giving a name to unnamed predicates. The evaluation of our approach on some hand-crafted logic rules indicates that LLMs hold potential for this task.
☆ FaCT: Faithful Concept Traces for Explaining Neural Network Decisions NeurIPS 2025
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.
comment: Accepted to NeurIPS 2025; Code is available at https://github.com/m-parchami/FaCT
☆ MTIR-SQL: Multi-turn Tool-Integrated Reasoning Reinforcement Learning for Text-to-SQL
As large language models (LLMs) are increasingly used in Text-to-SQL tasks, Reinforcement Learning (RL) has become a common method for improving performance. Existing methods primarily rely on static execution feedback, which restricts real-time error correction. However, integrating multi-turn tool invocation along with dynamic feedback could significantly improve adaptability and robustness, ultimately enhancing model performance. To address these issues, we propose MTIR-SQL, an innovative Multi-turn Tool-Integrated Reasoning reinforcement learning framework for Text-to-SQL. Our approach introduces an execution-aware multi-turn reasoning paradigm that seamlessly incorporates database execution feedback at each reasoning step, enabling context-sensitive query generation and progressive refinement throughout the reasoning process. The framework extends the GRPO algorithm to accommodate complex multi-turn interaction scenarios. Considering the training instability characteristics of MTIR and the potential for significant Deviation of model distribution from the initial model, we enhance the GRPO algorithm by adding a trajectory filtering mechanism and removing KL loss constraints. Experimental results demonstrate that MTIR-SQL, with 4B parameters, achieves \textbf{64.4}\% accuracy in the BIRD Dev and 84.6% execution accuracy in the SPIDER Dev, significantly outperforming existing approaches.
☆ Reflections on the Reproducibility of Commercial LLM Performance in Empirical Software Engineering Studies
Large Language Models have gained remarkable interest in industry and academia. The increasing interest in LLMs in academia is also reflected in the number of publications on this topic over the last years. For instance, alone 78 of the around 425 publications at ICSE 2024 performed experiments with LLMs. Conducting empirical studies with LLMs remains challenging and raises questions on how to achieve reproducible results, for both other researchers and practitioners. One important step towards excelling in empirical research on LLMs and their application is to first understand to what extent current research results are eventually reproducible and what factors may impede reproducibility. This investigation is within the scope of our work. We contribute an analysis of the reproducibility of LLM-centric studies, provide insights into the factors impeding reproducibility, and discuss suggestions on how to improve the current state. In particular, we studied the 86 articles describing LLM-centric studies, published at ICSE 2024 and ASE 2024. Of the 86 articles, 18 provided research artefacts and used OpenAI models. We attempted to replicate those 18 studies. Of the 18 studies, only five were fit for reproduction. For none of the five studies, we were able to fully reproduce the results. Two studies seemed to be partially reproducible, and three studies did not seem to be reproducible. Our results highlight not only the need for stricter research artefact evaluations but also for more robust study designs to ensure the reproducible value of future publications.
☆ Multi-Objective Search: Algorithms, Applications, and Emerging Directions
Multi-objective search (MOS) has emerged as a unifying framework for planning and decision-making problems where multiple, often conflicting, criteria must be balanced. While the problem has been studied for decades, recent years have seen renewed interest in the topic across AI applications such as robotics, transportation, and operations research, reflecting the reality that real-world systems rarely optimize a single measure. This paper surveys developments in MOS while highlighting cross-disciplinary opportunities, and outlines open challenges that define the emerging frontier of MOS
☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval benchmark, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the vast majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 30 pages, 18 figures, 13 tables
☆ Instrumental goals in advanced AI systems: Features to be managed and not failures to be eliminated?
In artificial intelligence (AI) alignment research, instrumental goals, also called instrumental subgoals or instrumental convergent goals, are widely associated with advanced AI systems. These goals, which include tendencies such as power-seeking and self-preservation, become problematic when they conflict with human aims. Conventional alignment theory treats instrumental goals as sources of risk that become problematic through failure modes such as reward hacking or goal misgeneralization, and attempts to limit the symptoms of instrumental goals, notably resource acquisition and self-preservation. This article proposes an alternative framing: that a philosophical argument can be constructed according to which instrumental goals may be understood as features to be accepted and managed rather than failures to be limited. Drawing on Aristotle's ontology and its modern interpretations, an ontology of concrete, goal-directed entities, it argues that advanced AI systems can be seen as artifacts whose formal and material constitution gives rise to effects distinct from their designers' intentions. In this view, the instrumental tendencies of such systems correspond to per se outcomes of their constitution rather than accidental malfunctions. The implication is that efforts should focus less on eliminating instrumental goals and more on understanding, managing, and directing them toward human-aligned ends.
☆ An In-Depth Analysis of Cyber Attacks in Secured Platforms
There is an increase in global malware threats. To address this, an encryption-type ransomware has been introduced on the Android operating system. The challenges associated with malicious threats in phone use have become a pressing issue in mobile communication, disrupting user experiences and posing significant privacy threats. This study surveys commonly used machine learning techniques for detecting malicious threats in phones and examines their performance. The majority of past research focuses on customer feedback and reviews, with concerns that people might create false reviews to promote or devalue products and services for personal gain. Hence, the development of techniques for detecting malicious threats using machine learning has been a key focus. This paper presents a comprehensive comparative study of current research on the issue of malicious threats and methods for tackling these challenges. Nevertheless, a huge amount of information is required by these methods, presenting a challenge for developing robust, specialized automated anti-malware systems. This research describes the Android Applications dataset, and the accuracy of the techniques is measured using the accuracy levels of the metrics employed in this study.
☆ Fine-Tuned Language Models for Domain-Specific Summarization and Tagging
This paper presents a pipeline integrating fine-tuned large language models (LLMs) with named entity recognition (NER) for efficient domain-specific text summarization and tagging. The authors address the challenge posed by rapidly evolving sub-cultural languages and slang, which complicate automated information extraction and law enforcement monitoring. By leveraging the LLaMA Factory framework, the study fine-tunes LLMs on both generalpurpose and custom domain-specific datasets, particularly in the political and security domains. The models are evaluated using BLEU and ROUGE metrics, demonstrating that instruction fine-tuning significantly enhances summarization and tagging accuracy, especially for specialized corpora. Notably, the LLaMA3-8B-Instruct model, despite its initial limitations in Chinese comprehension, outperforms its Chinese-trained counterpart after domainspecific fine-tuning, suggesting that underlying reasoning capabilities can transfer across languages. The pipeline enables concise summaries and structured entity tagging, facilitating rapid document categorization and distribution. This approach proves scalable and adaptable for real-time applications, supporting efficient information management and the ongoing need to capture emerging language trends. The integration of LLMs and NER offers a robust solution for transforming unstructured text into actionable insights, crucial for modern knowledge management and security operations.
☆ Scalable Utility-Aware Multiclass Calibration
Ensuring that classifiers are well-calibrated, i.e., their predictions align with observed frequencies, is a minimal and fundamental requirement for classifiers to be viewed as trustworthy. Existing methods for assessing multiclass calibration often focus on specific aspects associated with prediction (e.g., top-class confidence, class-wise calibration) or utilize computationally challenging variational formulations. In this work, we study scalable \emph{evaluation} of multiclass calibration. To this end, we propose utility calibration, a general framework that measures the calibration error relative to a specific utility function that encapsulates the goals or decision criteria relevant to the end user. We demonstrate how this framework can unify and re-interpret several existing calibration metrics, particularly allowing for more robust versions of the top-class and class-wise calibration metrics, and, going beyond such binarized approaches, toward assessing calibration for richer classes of downstream utilities.
☆ Agentic AI: A Comprehensive Survey of Architectures, Applications, and Future Directions
Agentic AI represents a transformative shift in artificial intelligence, but its rapid advancement has led to a fragmented understanding, often conflating modern neural systems with outdated symbolic models -- a practice known as conceptual retrofitting. This survey cuts through this confusion by introducing a novel dual-paradigm framework that categorizes agentic systems into two distinct lineages: the Symbolic/Classical (relying on algorithmic planning and persistent state) and the Neural/Generative (leveraging stochastic generation and prompt-driven orchestration). Through a systematic PRISMA-based review of 90 studies (2018--2025), we provide a comprehensive analysis structured around this framework across three dimensions: (1) the theoretical foundations and architectural principles defining each paradigm; (2) domain-specific implementations in healthcare, finance, and robotics, demonstrating how application constraints dictate paradigm selection; and (3) paradigm-specific ethical and governance challenges, revealing divergent risks and mitigation strategies. Our analysis reveals that the choice of paradigm is strategic: symbolic systems dominate safety-critical domains (e.g., healthcare), while neural systems prevail in adaptive, data-rich environments (e.g., finance). Furthermore, we identify critical research gaps, including a significant deficit in governance models for symbolic systems and a pressing need for hybrid neuro-symbolic architectures. The findings culminate in a strategic roadmap arguing that the future of Agentic AI lies not in the dominance of one paradigm, but in their intentional integration to create systems that are both adaptable and reliable. This work provides the essential conceptual toolkit to guide future research, development, and policy toward robust and trustworthy hybrid intelligent systems.
☆ Grounded in Reality: Learning and Deploying Proactive LLM from Offline Logs
Large Language Models (LLMs) excel as passive responders, but teaching them to be proactive, goal-oriented partners, a critical capability in high-stakes domains, remains a major challenge. Current paradigms either myopically optimize single-turn attributes or rely on brittle, high-cost user simulators, creating a persistent ``reality gap''. To bridge this gap, we introduce \texttt{Learn-to-Ask}, a general, simulator-free framework for learning and deploying proactive dialogue agents \textit{directly from offline expert data}, bypassing the need to model complex user dynamics. Our key insight is to reframe the offline policy learning problem by leveraging the \textbf{observed future} of each expert trajectory. This allows us to infer a dense, turn-by-turn reward signal grounded in the expert's revealed strategy, decomposing the intractable long-horizon problem into a series of supervised learning tasks, and training a policy to output a structured \texttt{(action, state_assessment)} tuple, governing both \textbf{what to ask} and, crucially, \textbf{when to stop}. To ensure reward fidelity, our Automated Grader Calibration pipeline systematically purges noise from the LLM-based reward model with minimal human supervision. Empirically, we demonstrate the efficacy of \texttt{Learn-to-Ask} in a real-world medical dataset, using LLMs of varying sizes up to 32B. Our approach culminates in the successful deployment of LLMs into a live, large-scale online AI service. In rigorous in-house evaluations, our model was launched and achieved performance even superior to human experts, proving our framework's ability to translate offline data into tangible, real-world impact. We hope this work provides a practical and economically viable blueprint for transforming passive LLMs into proactive, goal-oriented LLM applications.
comment: 27 pages, 5 figures
☆ Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report CIKM 2025
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.
comment: Alibaba International E-commerce Product Search Competition @ CIKM 2025
☆ RLMEval: Evaluating Research-Level Neural Theorem Proving EMNLP 2025
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.
comment: Accepted to EMNLP 2025 Findings. RLMEval benchmark released: https://github.com/augustepoiroux/RLMEval
☆ Implicature in Interaction: Understanding Implicature Improves Alignment in Human-LLM Interaction
The rapid advancement of Large Language Models (LLMs) is positioning language at the core of human-computer interaction (HCI). We argue that advancing HCI requires attention to the linguistic foundations of interaction, particularly implicature (meaning conveyed beyond explicit statements through shared context) which is essential for human-AI (HAI) alignment. This study examines LLMs' ability to infer user intent embedded in context-driven prompts and whether understanding implicature improves response generation. Results show that larger models approximate human interpretations more closely, while smaller models struggle with implicature inference. Furthermore, implicature-based prompts significantly enhance the perceived relevance and quality of responses across models, with notable gains in smaller models. Overall, 67.6% of participants preferred responses with implicature-embedded prompts to literal ones, highlighting a clear preference for contextually nuanced communication. Our work contributes to understanding how linguistic theory can be used to address the alignment problem by making HAI interaction more natural and contextually grounded.
comment: The manuscript is approximately 7360 words and contains 12 figures and 6 tables
☆ Improving Temporal Consistency and Fidelity at Inference-time in Perceptual Video Restoration by Zero-shot Image-based Diffusion Models
Diffusion models have emerged as powerful priors for single-image restoration, but their application to zero-shot video restoration suffers from temporal inconsistencies due to the stochastic nature of sampling and complexity of incorporating explicit temporal modeling. In this work, we address the challenge of improving temporal coherence in video restoration using zero-shot image-based diffusion models without retraining or modifying their architecture. We propose two complementary inference-time strategies: (1) Perceptual Straightening Guidance (PSG) based on the neuroscience-inspired perceptual straightening hypothesis, which steers the diffusion denoising process towards smoother temporal evolution by incorporating a curvature penalty in a perceptual space to improve temporal perceptual scores, such as Fr\'echet Video Distance (FVD) and perceptual straightness; and (2) Multi-Path Ensemble Sampling (MPES), which aims at reducing stochastic variation by ensembling multiple diffusion trajectories to improve fidelity (distortion) scores, such as PSNR and SSIM, without sacrificing sharpness. Together, these training-free techniques provide a practical path toward temporally stable high-fidelity perceptual video restoration using large pretrained diffusion models. We performed extensive experiments over multiple datasets and degradation types, systematically evaluating each strategy to understand their strengths and limitations. Our results show that while PSG enhances temporal naturalness, particularly in case of temporal blur, MPES consistently improves fidelity and spatio-temporal perception--distortion trade-off across all tasks.
☆ Adaptive End-to-End Transceiver Design for NextG Pilot-Free and CP-Free Wireless Systems
The advent of artificial intelligence (AI)-native wireless communication is fundamentally reshaping the design paradigm of next-generation (NextG) systems, where intelligent air interfaces are expected to operate adaptively and efficiently in highly dynamic environments. Conventional orthogonal frequency division multiplexing (OFDM) systems rely heavily on pilots and the cyclic prefix (CP), resulting in significant overhead and reduced spectral efficiency. To address these limitations, we propose an adaptive end-to-end (E2E) transceiver architecture tailored for pilot-free and CP-free wireless systems. The architecture combines AI-driven constellation shaping and a neural receiver through joint training. To enhance robustness against mismatched or time-varying channel conditions, we introduce a lightweight channel adapter (CA) module, which enables rapid adaptation with minimal computational overhead by updating only the CA parameters. Additionally, we present a framework that is scalable to multiple modulation orders within a unified model, significantly reducing model storage requirements. Moreover, to tackle the high peak-to-average power ratio (PAPR) inherent to OFDM, we incorporate constrained E2E training, achieving compliance with PAPR targets without additional transmission overhead. Extensive simulations demonstrate that the proposed framework delivers superior bit error rate (BER), throughput, and resilience across diverse channel scenarios, highlighting its potential for AI-native NextG.
comment: Submitted to IEEE for possible publication
☆ BhashaBench V1: A Comprehensive Benchmark for the Quadrant of Indic Domains
The rapid advancement of large language models(LLMs) has intensified the need for domain and culture specific evaluation. Existing benchmarks are largely Anglocentric and domain-agnostic, limiting their applicability to India-centric contexts. To address this gap, we introduce BhashaBench V1, the first domain-specific, multi-task, bilingual benchmark focusing on critical Indic knowledge systems. BhashaBench V1 contains 74,166 meticulously curated question-answer pairs, with 52,494 in English and 21,672 in Hindi, sourced from authentic government and domain-specific exams. It spans four major domains: Agriculture, Legal, Finance, and Ayurveda, comprising 90+ subdomains and covering 500+ topics, enabling fine-grained evaluation. Evaluation of 29+ LLMs reveals significant domain and language specific performance gaps, with especially large disparities in low-resource domains. For instance, GPT-4o achieves 76.49% overall accuracy in Legal but only 59.74% in Ayurveda. Models consistently perform better on English content compared to Hindi across all domains. Subdomain-level analysis shows that areas such as Cyber Law, International Finance perform relatively well, while Panchakarma, Seed Science, and Human Rights remain notably weak. BhashaBench V1 provides a comprehensive dataset for evaluating large language models across India's diverse knowledge domains. It enables assessment of models' ability to integrate domain-specific knowledge with bilingual understanding. All code, benchmarks, and resources are publicly available to support open research.
GPTOpt: Towards Efficient LLM-Based Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency. Classical methods such as Bayesian Optimization (BO) can be effective, but they often require careful parameter tuning to each application domain. At the same time, Large Language Models (LLMs) have shown broad capabilities, yet state-of-the-art models remain limited in solving continuous black-box optimization tasks. We introduce GPTOpt, an LLM-based optimization method that equips LLMs with continuous black-box optimization capabilities. By fine-tuning large language models on extensive synthetic datasets derived from diverse BO parameterizations, GPTOpt leverages LLM pre-training to generalize across optimization tasks. On a variety of black-box optimization benchmarks, GPTOpt surpasses traditional optimizers, highlighting the capacity of LLMs for advanced numerical reasoning and introducing a flexible framework for global optimization without parameter tuning.
☆ Grouping Nodes With Known Value Differences: A Lossless UCT-based Abstraction Algorithm
A core challenge of Monte Carlo Tree Search (MCTS) is its sample efficiency, which can be improved by grouping state-action pairs and using their aggregate statistics instead of single-node statistics. On the Go Abstractions in Upper Confidence bounds applied to Trees (OGA-UCT) is the state-of-the-art MCTS abstraction algorithm for deterministic environments that builds its abstraction using the Abstractions of State-Action Pairs (ASAP) framework, which aims to detect states and state-action pairs with the same value under optimal play by analysing the search graph. ASAP, however, requires two state-action pairs to have the same immediate reward, which is a rigid condition that limits the number of abstractions that can be found and thereby the sample efficiency. In this paper, we break with the paradigm of grouping value-equivalent states or state-action pairs and instead group states and state-action pairs with possibly different values as long as the difference between their values can be inferred. We call this abstraction framework Known Value Difference Abstractions (KVDA), which infers the value differences by analysis of the immediate rewards and modifies OGA-UCT to use this framework instead. The modification is called KVDA-UCT, which detects significantly more abstractions than OGA-UCT, introduces no additional parameter, and outperforms OGA-UCT on a variety of deterministic environments and parameter settings.
☆ Integrating Legal and Logical Specifications in Perception, Prediction, and Planning for Automated Driving: A Survey of Methods
This survey provides an analysis of current methodologies integrating legal and logical specifications into the perception, prediction, and planning modules of automated driving systems. We systematically explore techniques ranging from logic-based frameworks to computational legal reasoning approaches, emphasizing their capability to ensure regulatory compliance and interpretability in dynamic and uncertain driving environments. A central finding is that significant challenges arise at the intersection of perceptual reliability, legal compliance, and decision-making justifiability. To systematically analyze these challenges, we introduce a taxonomy categorizing existing approaches by their theoretical foundations, architectural implementations, and validation strategies. We particularly focus on methods that address perceptual uncertainty and incorporate explicit legal norms, facilitating decisions that are both technically robust and legally defensible. The review covers neural-symbolic integration methods for perception, logic-driven rule representation, and norm-aware prediction strategies, all contributing toward transparent and accountable autonomous vehicle operation. We highlight critical open questions and practical trade-offs that must be addressed, offering multidisciplinary insights from engineering, logic, and law to guide future developments in legally compliant autonomous driving systems.
comment: Accepted to 2025 IEEE International Automated Vehicle Validation Conference (IAVVC)
☆ Hallucinations in Bibliographic Recommendation: Citation Frequency as a Proxy for Training Data Redundancy
Large language models (LLMs) have been increasingly applied to a wide range of tasks, from natural language understanding to code generation. While they have also been used to assist in bibliographic recommendation, the hallucination of non-existent papers remains a major issue. Building on prior studies, this study hypothesizes that an LLM's ability to correctly produce bibliographic information depends on whether the underlying knowledge is generated or memorized, with highly cited papers (i.e., more frequently appear in the training corpus) showing lower hallucination rates. We therefore assume citation count as a proxy for training data redundancy (i.e., the frequency with which a given bibliographic record is repeatedly represented in the pretraining corpus) and investigate how citation frequency affects hallucinated references in LLM outputs. Using GPT-4.1, we generated and manually verified 100 bibliographic records across twenty computer-science domains, and measured factual consistency via cosine similarity between generated and authentic metadata. The results revealed that (i) hallucination rates vary across research domains, (ii) citation count is strongly correlated with factual accuracy, and (iii) bibliographic information becomes almost verbatimly memorized beyond approximately 1,000 citations. These findings suggest that highly cited papers are nearly verbatimly retained in the model, indicating a threshold where generalization shifts into memorization.
☆ Position: Biology is the Challenge Physics-Informed ML Needs to Evolve
Physics-Informed Machine Learning (PIML) has successfully integrated mechanistic understanding into machine learning, particularly in domains governed by well-known physical laws. This success has motivated efforts to apply PIML to biology, a field rich in dynamical systems but shaped by different constraints. Biological modeling, however, presents unique challenges: multi-faceted and uncertain prior knowledge, heterogeneous and noisy data, partial observability, and complex, high-dimensional networks. In this position paper, we argue that these challenges should not be seen as obstacles to PIML, but as catalysts for its evolution. We propose Biology-Informed Machine Learning (BIML): a principled extension of PIML that retains its structural grounding while adapting to the practical realities of biology. Rather than replacing PIML, BIML retools its methods to operate under softer, probabilistic forms of prior knowledge. We outline four foundational pillars as a roadmap for this transition: uncertainty quantification, contextualization, constrained latent structure inference, and scalability. Foundation Models and Large Language Models will be key enablers, bridging human expertise with computational modeling. We conclude with concrete recommendations to build the BIML ecosystem and channel PIML-inspired innovation toward challenges of high scientific and societal relevance.
☆ A Convexity-dependent Two-Phase Training Algorithm for Deep Neural Networks
The key task of machine learning is to minimize the loss function that measures the model fit to the training data. The numerical methods to do this efficiently depend on the properties of the loss function. The most decisive among these properties is the convexity or non-convexity of the loss function. The fact that the loss function can have, and frequently has, non-convex regions has led to a widespread commitment to non-convex methods such as Adam. However, a local minimum implies that, in some environment around it, the function is convex. In this environment, second-order minimizing methods such as the Conjugate Gradient (CG) give a guaranteed superlinear convergence. We propose a novel framework grounded in the hypothesis that loss functions in real-world tasks swap from initial non-convexity to convexity towards the optimum. This is a property we leverage to design an innovative two-phase optimization algorithm. The presented algorithm detects the swap point by observing the gradient norm dependence on the loss. In these regions, non-convex (Adam) and convex (CG) algorithms are used, respectively. Computing experiments confirm the hypothesis that this simple convexity structure is frequent enough to be practically exploited to substantially improve convergence and accuracy.
comment: Appeared on KDIR IC3K Conference 2025 (Best Paper Award)
☆ Multi-party Agent Relation Sampling for Multi-party Ad Hoc Teamwork
Multi-agent reinforcement learning (MARl) has achieved strong results in cooperative tasks but typically assumes fixed, fully controlled teams. Ad hoc teamwork (AHT) relaxes this by allowing collaboration with unknown partners, yet existing variants still presume shared conventions. We introduce Multil-party Ad Hoc Teamwork (MAHT), where controlled agents must coordinate with multiple mutually unfamiliar groups of uncontrolled teammates. To address this, we propose MARs, which builds a sparse skeleton graph and applies relational modeling to capture cross-group dvnamics. Experiments on MPE and starCralt ll show that MARs outperforms MARL and AHT baselines while converging faster.
☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Accepted by SenSys 2026
☆ GAP: Graph-Based Agent Planning with Parallel Tool Use and Reinforcement Learning
Autonomous agents powered by large language models (LLMs) have shown impressive capabilities in tool manipulation for complex task-solving. However, existing paradigms such as ReAct rely on sequential reasoning and execution, failing to exploit the inherent parallelism among independent sub-tasks. This sequential bottleneck leads to inefficient tool utilization and suboptimal performance in multi-step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a novel framework that explicitly models inter-task dependencies through graph-based planning to enable adaptive parallel and serial tool execution. Our approach trains agent foundation models to decompose complex tasks into dependency-aware sub-task graphs, autonomously determining which tools can be executed in parallel and which must follow sequential dependencies. This dependency-aware orchestration achieves substantial improvements in both execution efficiency and task accuracy. To train GAP, we construct a high-quality dataset of graph-based planning traces derived from the Multi-Hop Question Answering (MHQA) benchmark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on the curated dataset, followed by reinforcement learning (RL) with a correctness-based reward function on strategically sampled queries where tool-based reasoning provides maximum value. Experimental results on MHQA datasets demonstrate that GAP significantly outperforms traditional ReAct baselines, particularly on multi-step retrieval tasks, while achieving dramatic improvements in tool invocation efficiency through intelligent parallelization. The project page is available at: https://github.com/WJQ7777/Graph-Agent-Planning.
☆ 4-Doodle: Text to 3D Sketches that Move!
We present a novel task: text-to-3D sketch animation, which aims to bring freeform sketches to life in dynamic 3D space. Unlike prior works focused on photorealistic content generation, we target sparse, stylized, and view-consistent 3D vector sketches, a lightweight and interpretable medium well-suited for visual communication and prototyping. However, this task is very challenging: (i) no paired dataset exists for text and 3D (or 4D) sketches; (ii) sketches require structural abstraction that is difficult to model with conventional 3D representations like NeRFs or point clouds; and (iii) animating such sketches demands temporal coherence and multi-view consistency, which current pipelines do not address. Therefore, we propose 4-Doodle, the first training-free framework for generating dynamic 3D sketches from text. It leverages pretrained image and video diffusion models through a dual-space distillation scheme: one space captures multi-view-consistent geometry using differentiable B\'ezier curves, while the other encodes motion dynamics via temporally-aware priors. Unlike prior work (e.g., DreamFusion), which optimizes from a single view per step, our multi-view optimization ensures structural alignment and avoids view ambiguity, critical for sparse sketches. Furthermore, we introduce a structure-aware motion module that separates shape-preserving trajectories from deformation-aware changes, enabling expressive motion such as flipping, rotation, and articulated movement. Extensive experiments show that our method produces temporally realistic and structurally stable 3D sketch animations, outperforming existing baselines in both fidelity and controllability. We hope this work serves as a step toward more intuitive and accessible 4D content creation.
☆ Dense and Diverse Goal Coverage in Multi Goal Reinforcement Learning
Reinforcement Learning algorithms are primarily focused on learning a policy that maximizes expected return. As a result, the learned policy can exploit one or few reward sources. However, in many natural situations, it is desirable to learn a policy that induces a dispersed marginal state distribution over rewarding states, while maximizing the expected return which is typically tied to reaching a goal state. This aspect remains relatively unexplored. Existing techniques based on entropy regularization and intrinsic rewards use stochasticity for encouraging exploration to find an optimal policy which may not necessarily lead to dispersed marginal state distribution over rewarding states. Other RL algorithms which match a target distribution assume the latter to be available apriori. This may be infeasible in large scale systems where enumeration of all states is not possible and a state is determined to be a goal state only upon reaching it. We formalize the problem of maximizing the expected return while uniformly visiting the goal states as Multi Goal RL in which an oracle classifier over the state space determines the goal states. We propose a novel algorithm that learns a high-return policy mixture with marginal state distribution dispersed over the set of goal states. Our algorithm is based on optimizing a custom RL reward which is computed - based on the current policy mixture - at each iteration for a set of sampled trajectories. The latter are used via an offline RL algorithm to update the policy mixture. We prove performance guarantees for our algorithm, showing efficient convergence bounds for optimizing a natural objective which captures the expected return as well as the dispersion of the marginal state distribution over the goal states. We design and perform experiments on synthetic MDPs and standard RL environments to evaluate the effectiveness of our algorithm.
comment: 21 pages, 5 figures
☆ SynHLMA:Synthesizing Hand Language Manipulation for Articulated Object with Discrete Human Object Interaction Representation
Generating hand grasps with language instructions is a widely studied topic that benefits from embodied AI and VR/AR applications. While transferring into hand articulatied object interaction (HAOI), the hand grasps synthesis requires not only object functionality but also long-term manipulation sequence along the object deformation. This paper proposes a novel HAOI sequence generation framework SynHLMA, to synthesize hand language manipulation for articulated objects. Given a complete point cloud of an articulated object, we utilize a discrete HAOI representation to model each hand object interaction frame. Along with the natural language embeddings, the representations are trained by an HAOI manipulation language model to align the grasping process with its language description in a shared representation space. A joint-aware loss is employed to ensure hand grasps follow the dynamic variations of articulated object joints. In this way, our SynHLMA achieves three typical hand manipulation tasks for articulated objects of HAOI generation, HAOI prediction and HAOI interpolation. We evaluate SynHLMA on our built HAOI-lang dataset and experimental results demonstrate the superior hand grasp sequence generation performance comparing with state-of-the-art. We also show a robotics grasp application that enables dexterous grasps execution from imitation learning using the manipulation sequence provided by our SynHLMA. Our codes and datasets will be made publicly available.
☆ IBNorm: Information-Bottleneck Inspired Normalization for Representation Learning
Normalization is fundamental to deep learning, but existing approaches such as BatchNorm, LayerNorm, and RMSNorm are variance-centric by enforcing zero mean and unit variance, stabilizing training without controlling how representations capture task-relevant information. We propose IB-Inspired Normalization (IBNorm), a simple yet powerful family of methods grounded in the Information Bottleneck principle. IBNorm introduces bounded compression operations that encourage embeddings to preserve predictive information while suppressing nuisance variability, yielding more informative representations while retaining the stability and compatibility of standard normalization. Theoretically, we prove that IBNorm achieves a higher IB value and tighter generalization bounds than variance-centric methods. Empirically, IBNorm consistently outperforms BatchNorm, LayerNorm, and RMSNorm across large-scale language models (LLaMA, GPT-2) and vision models (ResNet, ViT), with mutual information analysis confirming superior information bottleneck behavior. Code will be released publicly.
☆ TV-Rec: Time-Variant Convolutional Filter for Sequential Recommendation NeurIPS 2025
Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.
comment: The 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Scaling Up Bayesian DAG Sampling
Bayesian inference of Bayesian network structures is often performed by sampling directed acyclic graphs along an appropriately constructed Markov chain. We present two techniques to improve sampling. First, we give an efficient implementation of basic moves, which add, delete, or reverse a single arc. Second, we expedite summing over parent sets, an expensive task required for more sophisticated moves: we devise a preprocessing method to prune possible parent sets so as to approximately preserve the sums. Our empirical study shows that our techniques can yield substantial efficiency gains compared to previous methods.
☆ One-shot Humanoid Whole-body Motion Learning
Whole-body humanoid motion represents a cornerstone challenge in robotics, integrating balance, coordination, and adaptability to enable human-like behaviors. However, existing methods typically require multiple training samples per motion category, rendering the collection of high-quality human motion datasets both labor-intensive and costly. To address this, we propose a novel approach that trains effective humanoid motion policies using only a single non-walking target motion sample alongside readily available walking motions. The core idea lies in leveraging order-preserving optimal transport to compute distances between walking and non-walking sequences, followed by interpolation along geodesics to generate new intermediate pose skeletons, which are then optimized for collision-free configurations and retargeted to the humanoid before integration into a simulated environment for policy training via reinforcement learning. Experimental evaluations on the CMU MoCap dataset demonstrate that our method consistently outperforms baselines, achieving superior performance across metrics. Code will be released upon acceptance.
comment: 10 pages, 3 figures, 5 tables
☆ Learning Disentangled Speech- and Expression-Driven Blendshapes for 3D Talking Face Animation
Expressions are fundamental to conveying human emotions. With the rapid advancement of AI-generated content (AIGC), realistic and expressive 3D facial animation has become increasingly crucial. Despite recent progress in speech-driven lip-sync for talking-face animation, generating emotionally expressive talking faces remains underexplored. A major obstacle is the scarcity of real emotional 3D talking-face datasets due to the high cost of data capture. To address this, we model facial animation driven by both speech and emotion as a linear additive problem. Leveraging a 3D talking-face dataset with neutral expressions (VOCAset) and a dataset of 3D expression sequences (Florence4D), we jointly learn a set of blendshapes driven by speech and emotion. We introduce a sparsity constraint loss to encourage disentanglement between the two types of blendshapes while allowing the model to capture inherent secondary cross-domain deformations present in the training data. The learned blendshapes can be further mapped to the expression and jaw pose parameters of the FLAME model, enabling the animation of 3D Gaussian avatars. Qualitative and quantitative experiments demonstrate that our method naturally generates talking faces with specified expressions while maintaining accurate lip synchronization. Perceptual studies further show that our approach achieves superior emotional expressivity compared to existing methods, without compromising lip-sync quality.
comment: 18 pages, 6 figures, accepted to ICXR 2025 conference
☆ From Medical Records to Diagnostic Dialogues: A Clinical-Grounded Approach and Dataset for Psychiatric Comorbidity
Psychiatric comorbidity is clinically significant yet challenging due to the complexity of multiple co-occurring disorders. To address this, we develop a novel approach integrating synthetic patient electronic medical record (EMR) construction and multi-agent diagnostic dialogue generation. We create 502 synthetic EMRs for common comorbid conditions using a pipeline that ensures clinical relevance and diversity. Our multi-agent framework transfers the clinical interview protocol into a hierarchical state machine and context tree, supporting over 130 diagnostic states while maintaining clinical standards. Through this rigorous process, we construct PsyCoTalk, the first large-scale dialogue dataset supporting comorbidity, containing 3,000 multi-turn diagnostic dialogues validated by psychiatrists. This dataset enhances diagnostic accuracy and treatment planning, offering a valuable resource for psychiatric comorbidity research. Compared to real-world clinical transcripts, PsyCoTalk exhibits high structural and linguistic fidelity in terms of dialogue length, token distribution, and diagnostic reasoning strategies. Licensed psychiatrists confirm the realism and diagnostic validity of the dialogues. This dataset enables the development and evaluation of models capable of multi-disorder psychiatric screening in a single conversational pass.
☆ Studies for : A Human-AI Co-Creative Sound Artwork Using a Real-time Multi-channel Sound Generation Model NeurIPS
This paper explores the integration of AI technologies into the artistic workflow through the creation of Studies for, a generative sound installation developed in collaboration with sound artist Evala (https://www.ntticc.or.jp/en/archive/works/studies-for/). The installation employs SpecMaskGIT, a lightweight yet high-quality sound generation AI model, to generate and playback eight-channel sound in real-time, creating an immersive auditory experience over the course of a three-month exhibition. The work is grounded in the concept of a "new form of archive," which aims to preserve the artistic style of an artist while expanding beyond artists' past artworks by continued generation of new sound elements. This speculative approach to archival preservation is facilitated by training the AI model on a dataset consisting of over 200 hours of Evala's past sound artworks. By addressing key requirements in the co-creation of art using AI, this study highlights the value of the following aspects: (1) the necessity of integrating artist feedback, (2) datasets derived from an artist's past works, and (3) ensuring the inclusion of unexpected, novel outputs. In Studies for, the model was designed to reflect the artist's artistic identity while generating new, previously unheard sounds, making it a fitting realization of the concept of "a new form of archive." We propose a Human-AI co-creation framework for effectively incorporating sound generation AI models into the sound art creation process and suggest new possibilities for creating and archiving sound art that extend an artist's work beyond their physical existence. Demo page: https://sony.github.io/studies-for/
comment: Accepted at NeurIPS Creative AI Track 2025, 9 pages, 6 figures, 1 table, Demo page: https://sony.github.io/studies-for/
☆ Cost-Sensitive Unbiased Risk Estimation for Multi-Class Positive-Unlabeled Learning
Positive--Unlabeled (PU) learning considers settings in which only positive and unlabeled data are available, while negatives are missing or left unlabeled. This situation is common in real applications where annotating reliable negatives is difficult or costly. Despite substantial progress in PU learning, the multi-class case (MPU) remains challenging: many existing approaches do not ensure \emph{unbiased risk estimation}, which limits performance and stability. We propose a cost-sensitive multi-class PU method based on \emph{adaptive loss weighting}. Within the empirical risk minimization framework, we assign distinct, data-dependent weights to the positive and \emph{inferred-negative} (from the unlabeled mixture) loss components so that the resulting empirical objective is an unbiased estimator of the target risk. We formalize the MPU data-generating process and establish a generalization error bound for the proposed estimator. Extensive experiments on \textbf{eight} public datasets, spanning varying class priors and numbers of classes, show consistent gains over strong baselines in both accuracy and stability.
☆ FELA: A Multi-Agent Evolutionary System for Feature Engineering of Industrial Event Log Data
Event log data, recording fine-grained user actions and system events, represent one of the most valuable assets for modern digital services. However, the complexity and heterogeneity of industrial event logs--characterized by large scale, high dimensionality, diverse data types, and intricate temporal or relational structures--make feature engineering extremely challenging. Existing automatic feature engineering approaches, such as AutoML or genetic methods, often suffer from limited explainability, rigid predefined operations, and poor adaptability to complicated heterogeneous data. In this paper, we propose FELA (Feature Engineering LLM Agents), a multi-agent evolutionary system that autonomously extracts meaningful and high-performing features from complex industrial event log data. FELA integrates the reasoning and coding capabilities of large language models (LLMs) with an insight-guided self-evolution paradigm. Specifically, FELA employs specialized agents--Idea Agents, Code Agents, and Critic Agents--to collaboratively generate, validate, and implement novel feature ideas. An Evaluation Agent summarizes feedback and updates a hierarchical knowledge base and dual-memory system to enable continual improvement. Moreover, FELA introduces an agentic evolution algorithm, combining reinforcement learning and genetic algorithm principles to balance exploration and exploitation across the idea space. Extensive experiments on real industrial datasets demonstrate that FELA can generate explainable, domain-relevant features that significantly improve model performance while reducing manual effort. Our results highlight the potential of LLM-based multi-agent systems as a general framework for automated, interpretable, and adaptive feature engineering in complex real-world environments.
comment: 14 pages, 11 figures
☆ GReF: A Unified Generative Framework for Efficient Reranking via Ordered Multi-token Prediction CIKM 2025
In a multi-stage recommendation system, reranking plays a crucial role in modeling intra-list correlations among items. A key challenge lies in exploring optimal sequences within the combinatorial space of permutations. Recent research follows a two-stage (generator-evaluator) paradigm, where a generator produces multiple feasible sequences, and an evaluator selects the best one. In practice, the generator is typically implemented as an autoregressive model. However, these two-stage methods face two main challenges. First, the separation of the generator and evaluator hinders end-to-end training. Second, autoregressive generators suffer from inference efficiency. In this work, we propose a Unified Generative Efficient Reranking Framework (GReF) to address the two primary challenges. Specifically, we introduce Gen-Reranker, an autoregressive generator featuring a bidirectional encoder and a dynamic autoregressive decoder to generate causal reranking sequences. Subsequently, we pre-train Gen-Reranker on the item exposure order for high-quality parameter initialization. To eliminate the need for the evaluator while integrating sequence-level evaluation during training for end-to-end optimization, we propose post-training the model through Rerank-DPO. Moreover, for efficient autoregressive inference, we introduce ordered multi-token prediction (OMTP), which trains Gen-Reranker to simultaneously generate multiple future items while preserving their order, ensuring practical deployment in real-time recommender systems. Extensive offline experiments demonstrate that GReF outperforms state-of-the-art reranking methods while achieving latency that is nearly comparable to non-autoregressive models. Additionally, GReF has also been deployed in a real-world video app Kuaishou with over 300 million daily active users, significantly improving online recommendation quality.
comment: Accepted by CIKM 2025
☆ Human Resilience in the AI Era -- What Machines Can't Replace
AI is displacing tasks, mediating high-stakes decisions, and flooding communication with synthetic content, unsettling work, identity, and social trust. We argue that the decisive human countermeasure is resilience. We define resilience across three layers: psychological, including emotion regulation, meaning-making, cognitive flexibility; social, including trust, social capital, coordinated response; organizational, including psychological safety, feedback mechanisms, and graceful degradation. We synthesize early evidence that these capacities buffer individual strain, reduce burnout through social support, and lower silent failure in AI-mediated workflows through team norms and risk-responsive governance. We also show that resilience can be cultivated through training that complements rather than substitutes for structural safeguards. By reframing the AI debate around actionable human resilience, this article offers policymakers, educators, and operators a practical lens to preserve human agency and steer responsible adoption.
☆ RAVR: Reference-Answer-guided Variational Reasoning for Large Language Models
Reinforcement learning (RL) can refine the reasoning abilities of large language models (LLMs), but critically depends on a key prerequisite: the LLM can already generate high-utility reasoning paths with non-negligible probability. For tasks beyond the LLM's current competence, such reasoning path can be hard to sample, and learning risks reinforcing familiar but suboptimal reasoning. We are motivated by the insight from cognitive science that Why is this the answer is often an easier question than What is the answer, as it avoids the heavy cognitive load of open-ended exploration, opting instead for explanatory reconstruction-systematically retracing the reasoning that links a question to its answer. We show that LLMs can similarly leverage answers to derive high-quality reasoning paths. We formalize this phenomenon and prove that conditioning on answer provably increases the expected utility of sampled reasoning paths, thereby transforming intractable problems into learnable ones. Building on this insight, we introduce RAVR (Reference-Answer-guided Variational Reasoning), an end-to-end framework that uses answer-conditioned reasoning as a variational surrogate for question-only reasoning. Experiments in both general and math domains demonstrate consistent improvements over strong baselines. We further analyze the reasoning behavior and find that RAVR reduces hesitation, strengthens conclusion consolidation, and promotes problem-specific strategies in reasoning.
comment: 17 pages, 11 figures
☆ Energy-Efficient Autonomous Driving with Adaptive Perception and Robust Decision ICDE2026
Autonomous driving is an emerging technology that is expected to bring significant social, economic, and environmental benefits. However, these benefits come with rising energy consumption by computation engines, limiting the driving range of vehicles, especially electric ones. Perception computing is typically the most power-intensive component, as it relies on largescale deep learning models to extract environmental features. Recently, numerous studies have employed model compression techniques, such as sparsification, quantization, and distillation, to reduce computational consumption. However, these methods often result in either a substantial model size or a significant drop in perception accuracy compared to high-computation models. To address these challenges, we propose an energy-efficient autonomous driving framework, called EneAD. In the adaptive perception module, a perception optimization strategy is designed from the perspective of data management and tuning. Firstly, we manage multiple perception models with different computational consumption and adjust the execution framerate dynamically. Then, we define them as knobs and design a transferable tuning method based on Bayesian optimization to identify promising knob values that achieve low computation while maintaining desired accuracy. To adaptively switch the knob values in various traffic scenarios, a lightweight classification model is proposed to distinguish the perception difficulty in different scenarios. In the robust decision module, we propose a decision model based on reinforcement learning and design a regularization term to enhance driving stability in the face of perturbed perception results. Extensive experiments evidence the superiority of our framework in both energy consumption and driving performance. EneAD can reduce perception consumption by 1.9x to 3.5x and thus improve driving range by 3.9% to 8.5%
comment: It was accepted by ICDE2026
☆ Fed-PELAD: Communication-Efficient Federated Learning for Massive MIMO CSI Feedback with Personalized Encoders and a LoRA-Adapted Shared Decoder
This paper addresses the critical challenges of communication overhead, data heterogeneity, and privacy in deep learning for channel state information (CSI) feedback in massive MIMO systems. To this end, we propose Fed-PELAD, a novel federated learning framework that incorporates personalized encoders and a LoRA-adapted shared decoder. Specifically, personalized encoders are trained locally on each user equipment (UE) to capture device-specific channel characteristics, while a shared decoder is updated globally via the coordination of the base station (BS) by using Low-Rank Adaptation (LoRA). This design ensures that only compact LoRA adapter parameters instead of full model updates are transmitted for aggregation. To further enhance convergence stability, we introduce an alternating freezing strategy with calibrated learning-rate ratio during LoRA aggregation. Extensive simulations on 3GPP-standard channel models demonstrate that Fed-PELAD requires only 42.97\% of the uplink communication cost compared to conventional methods while achieving a performance gain of 1.2 dB in CSI feedback accuracy under heterogeneous conditions.
☆ Agentic Moderation: Multi-Agent Design for Safer Vision-Language Models
Agentic methods have emerged as a powerful and autonomous paradigm that enhances reasoning, collaboration, and adaptive control, enabling systems to coordinate and independently solve complex tasks. We extend this paradigm to safety alignment by introducing Agentic Moderation, a model-agnostic framework that leverages specialised agents to defend multimodal systems against jailbreak attacks. Unlike prior approaches that apply as a static layer over inputs or outputs and provide only binary classifications (safe or unsafe), our method integrates dynamic, cooperative agents, including Shield, Responder, Evaluator, and Reflector, to achieve context-aware and interpretable moderation. Extensive experiments across five datasets and four representative Large Vision-Language Models (LVLMs) demonstrate that our approach reduces the Attack Success Rate (ASR) by 7-19%, maintains a stable Non-Following Rate (NF), and improves the Refusal Rate (RR) by 4-20%, achieving robust, interpretable, and well-balanced safety performance. By harnessing the flexibility and reasoning capacity of agentic architectures, Agentic Moderation provides modular, scalable, and fine-grained safety enforcement, highlighting the broader potential of agentic systems as a foundation for automated safety governance.
Transformers in Medicine: Improving Vision-Language Alignment for Medical Image Captioning
We present a transformer-based multimodal framework for generating clinically relevant captions for MRI scans. Our system combines a DEiT-Small vision transformer as an image encoder, MediCareBERT for caption embedding, and a custom LSTM-based decoder. The architecture is designed to semantically align image and textual embeddings, using hybrid cosine-MSE loss and contrastive inference via vector similarity. We benchmark our method on the MultiCaRe dataset, comparing performance on filtered brain-only MRIs versus general MRI images against state-of-the-art medical image captioning methods including BLIP, R2GenGPT, and recent transformer-based approaches. Results show that focusing on domain-specific data improves caption accuracy and semantic alignment. Our work proposes a scalable, interpretable solution for automated medical image reporting.
comment: This work is to appear in the Proceedings of MICAD 2025, the 6th International Conference on Medical Imaging and Computer-Aided Diagnosis
♻ ☆ 3D Optimization for AI Inference Scaling: Balancing Accuracy, Cost, and Latency
AI inference scaling is often tuned through 1D heuristics (a fixed reasoning passes) or 2D bivariate trade-offs (e.g., performance vs. compute), which fail to consider cost and latency constraints. We introduce a 3D optimization framework that jointly calibrates accuracy, cost, and latency within a unified decision space, enabling constraints-aware inference scaling. Using Monte Carlo simulations across three representative scenarios and nine simulated large language models, we evaluate four optimization methods to address the 3D multi-objective optimization (MOO) problem. Framing inference scaling in MOO shapes a feasible space that 1D and 2D optimizations fail to capture, enabling environmentadaptive selection of the inference scaling k. Results show that knee-point optimization achieves the best balance, while accuracy-maximization remains favorable when precision is prioritized. The framework establishes a theoretical foundation for deployment-aware inference scaling across diverse operational contexts.
♻ ☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 27 pages, 8 figures, 5 tables. Minor update: added corrected acknowledgments and corrected a misstated hyperparameter value (noted in footnote) for reproducibility. Submitted to AAS Journals. Comments welcome
♻ ☆ Curiosity-driven RL for symbolic equation solving NeurIPS 2025
We explore if RL can be useful for symbolic mathematics. Previous work showed contrastive learning can solve linear equations in one variable. We show model-free PPO \cite{schulman2017proximal} augmented with curiosity-based exploration and graph-based actions can solve nonlinear equations such as those involving radicals, exponentials, and trig functions. Our work suggests curiosity-based exploration may be useful for general symbolic reasoning tasks.
comment: Accepted at the NeurIPS 2025 MATH-AI Workshop
♻ ☆ Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
Generative AI systems for music and video commonly use text-based filters to prevent the regurgitation of copyrighted material. We expose a fundamental flaw in this approach by introducing Adversarial PhoneTic Prompting (APT), a novel attack that bypasses these safeguards by exploiting phonetic memorization. The APT attack replaces iconic lyrics with homophonic but semantically unrelated alternatives (e.g., "mom's spaghetti" becomes "Bob's confetti"), preserving acoustic structure while altering meaning; we identify high-fidelity phonetic matches using CMU pronouncing dictionary. We demonstrate that leading Lyrics-to-Song (L2S) models like SUNO and YuE regenerate songs with striking melodic and rhythmic similarity to their copyrighted originals when prompted with these altered lyrics. More surprisingly, this vulnerability extends across modalities. When prompted with phonetically modified lyrics from a song, a Text-to-Video (T2V) model like Veo 3 reconstructs visual scenes from the original music video-including specific settings and character archetypes-despite the absence of any visual cues in the prompt. Our findings reveal that models memorize deep, structural patterns tied to acoustics, not just verbatim text. This phonetic-to-visual leakage represents a critical vulnerability in transcript-conditioned generative models, rendering simple copyright filters ineffective and raising urgent concerns about the secure deployment of multimodal AI systems. Demo examples are available at our project page (https://jrohsc.github.io/music_attack/).
♻ ☆ Spontaneous Giving and Calculated Greed in Language Models EMNLP 2025
Large language models demonstrate strong problem-solving abilities through reasoning techniques such as chain-of-thought prompting and reflection. However, it remains unclear whether these reasoning capabilities extend to a form of social intelligence: making effective decisions in cooperative contexts. We examine this question using economic games that simulate social dilemmas. First, we apply chain-of-thought and reflection prompting to GPT-4o in a Public Goods Game. We then evaluate multiple off-the-shelf models across six cooperation and punishment games, comparing those with and without explicit reasoning mechanisms. We find that reasoning models consistently reduce cooperation and norm enforcement, favoring individual rationality. In repeated interactions, groups with more reasoning agents exhibit lower collective gains. These behaviors mirror human patterns of "spontaneous giving and calculated greed." Our findings underscore the need for LLM architectures that incorporate social intelligence alongside reasoning, to help address--rather than reinforce--the challenges of collective action.
comment: Accepted to EMNLP 2025 main conference and selected as an Oral Presentation
♻ ☆ Dynamic Risk Assessments for Offensive Cybersecurity Agents
Foundation models are increasingly becoming better autonomous programmers, raising the prospect that they could also automate dangerous offensive cyber-operations. Current frontier model audits probe the cybersecurity risks of such agents, but most fail to account for the degrees of freedom available to adversaries in the real world. In particular, with strong verifiers and financial incentives, agents for offensive cybersecurity are amenable to iterative improvement by would-be adversaries. We argue that assessments should take into account an expanded threat model in the context of cybersecurity, emphasizing the varying degrees of freedom that an adversary may possess in stateful and non-stateful environments within a fixed compute budget. We show that even with a relatively small compute budget (8 H100 GPU Hours in our study), adversaries can improve an agent's cybersecurity capability on InterCode CTF by more than 40\% relative to the baseline -- without any external assistance. These results highlight the need to evaluate agents' cybersecurity risk in a dynamic manner, painting a more representative picture of risk.
comment: 26 pages, 11 figures
♻ ☆ Which Demographic Features Are Relevant for Individual Fairness Evaluation of U.S. Recidivism Risk Assessment Tools?
Despite its constitutional relevance, the technical ``individual fairness'' criterion has not been operationalized in U.S. state or federal statutes/regulations. We conduct a human subjects experiment to address this gap, evaluating which demographic features are relevant for individual fairness evaluation of recidivism risk assessment (RRA) tools. Our analyses conclude that the individual similarity function should consider age and sex, but it should ignore race.
comment: ICAIL 2025
♻ ☆ Faster and Simpler Greedy Algorithm for $k$-Median and $k$-Means
Clustering problems such as $k$-means and $k$-median are staples of unsupervised learning, and many algorithmic techniques have been developed to tackle their numerous aspects. In this paper, we focus on the class of greedy approximation algorithm, that attracted less attention than local-search or primal-dual counterparts. In particular, we study the recursive greedy algorithm developed by Mettu and Plaxton [SIAM J. Comp 2003]. We provide a simplification of the algorithm, allowing for faster implementation, in graph metrics or in Euclidean space, where our algorithm matches or improves the state-of-the-art.
♻ ☆ RobEthiChor: Automated Context-aware Ethics-based Negotiation for Autonomous Robots
The presence of autonomous systems is growing at a fast pace and it is impacting many aspects of our lives. Designed to learn and act independently, these systems operate and perform decision-making without human intervention. However, they lack the ability to incorporate users' ethical preferences, which are unique for each individual in society and are required to personalize the decision-making processes. This reduces user trust and prevents autonomous systems from behaving according to the moral beliefs of their end-users. When multiple systems interact with differing ethical preferences, they must negotiate to reach an agreement that satisfies the ethical beliefs of all the parties involved and adjust their behavior consequently. To address this challenge, this paper proposes RobEthiChor, an approach that enables autonomous systems to incorporate user ethical preferences and contextual factors into their decision-making through ethics-based negotiation. RobEthiChor features a domain-agnostic reference architecture for designing autonomous systems capable of ethic-based negotiating. The paper also presents RobEthiChor-Ros, an implementation of RobEthiChor within the Robot Operating System (ROS), which can be deployed on robots to provide them with ethics-based negotiation capabilities. To evaluate our approach, we deployed RobEthiChor-Ros on real robots and ran scenarios where a pair of robots negotiate upon resource contention. Experimental results demonstrate the feasibility and effectiveness of the system in realizing ethics-based negotiation. RobEthiChor allowed robots to reach an agreement in more than 73% of the scenarios with an acceptable negotiation time (0.67s on average). Experiments also demonstrate that the negotiation approach implemented in RobEthiChor is scalable.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{non-linear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing its Jacobian matrix to be diagonal, the full sequence can be solved in parallel, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Importantly, the diagonal Jacobian structure of our model results in no performance loss compared to the original model with dense Jacobian, and the approach can be generalized to other non-linear recurrent models, demonstrating broader applicability. On a suite of long-range forecasting tasks, we demonstrate that LrcSSM outperforms Transformers, LRU, S5, and Mamba.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) has still been less studyed. In this paper, we explore GRPO and identify two problems that deteriorate the effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function into a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as the clipping and min functions. It directly aligns the model with advantages, providing guidance to prefer better ones. The difficulty-aware data augmentation strategy augments input prompts/videos to locate the difficulty of samples at solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs ICDM 2025
The complexity and interconnectivity of entities involved in money laundering demand investigative reasoning over graph-structured data. This paper explores the use of large language models (LLMs) as reasoning engines over localized subgraphs extracted from a financial knowledge graph. We propose a lightweight pipeline that retrieves k-hop neighborhoods around entities of interest, serializes them into structured text, and prompts an LLM via few-shot in-context learning to assess suspiciousness and generate justifications. Using synthetic anti-money laundering (AML) scenarios that reflect common laundering behaviors, we show that LLMs can emulate analyst-style logic, highlight red flags, and provide coherent explanations. While this study is exploratory, it illustrates the potential of LLM-based graph reasoning in AML and lays groundwork for explainable, language-driven financial crime analytics.
comment: Accepted at AI4FCF-ICDM 2025
♻ ☆ The Sign Estimator: LLM Alignment in the Face of Choice Heterogeneity
Traditional LLM alignment methods are vulnerable to heterogeneity in human preferences. Fitting a na\"ive probabilistic model to pairwise comparison data (say over prompt-completion pairs) yields an inconsistent estimate of the population-average utility -a canonical measure of social welfare. We propose a new method, dubbed the sign estimator, that provides a simple, provably consistent, and efficient estimator by replacing cross-entropy with binary classification loss in the aggregation step. This simple modification recovers consistent ordinal alignment under mild assumptions and achieves the first polynomial finite-sample error bounds in this setting. In realistic simulations of LLM alignment using digital twins, the sign estimator substantially reduces preference distortion over a panel of simulated personas, cutting (angular) estimation error by nearly 35% and decreasing disagreement with true population preferences from 12% to 8% compared to standard RLHF. Our method also compares favorably to panel data heuristics that explicitly model user heterogeneity and require tracking individual-level preference data-all while maintaining the implementation simplicity of existing LLM alignment pipelines.
♻ ☆ PromptReverb: Multimodal Room Impulse Response Generation Through Latent Rectified Flow Matching
Room impulse response (RIR) generation remains a critical challenge for creating immersive virtual acoustic environments. Current methods suffer from two fundamental limitations: the scarcity of full-band RIR datasets and the inability of existing models to generate acoustically accurate responses from diverse input modalities. We present PromptReverb, a two-stage generative framework that addresses these challenges. Our approach combines a variational autoencoder that upsamples band-limited RIRs to full-band quality (48 kHz), and a conditional diffusion transformer model based on rectified flow matching that generates RIRs from descriptions in natural language. Empirical evaluation demonstrates that PromptReverb produces RIRs with superior perceptual quality and acoustic accuracy compared to existing methods, achieving 8.8% mean RT60 error compared to -37% for widely used baselines and yielding more realistic room-acoustic parameters. Our method enables practical applications in virtual reality, architectural acoustics, and audio production where flexible, high-quality RIR synthesis is essential.
comment: 9 pages, 2 figures, 4 tables; v2: corrected spelling of a co-author name; no content changes
♻ ☆ Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization
Recent studies indicate that deep neural networks degrade in generalization performance under noisy supervision. Existing methods focus on isolating clean subsets or correcting noisy labels, facing limitations such as high computational costs, heavy hyperparameter tuning process, and coarse-grained optimization. To address these challenges, we propose a novel two-stage noisy learning framework that enables instance-level optimization through a dynamically weighted loss function, avoiding hyperparameter tuning. To obtain stable and accurate information about noise modeling, we introduce a simple yet effective metric, termed wrong event, which dynamically models the cleanliness and difficulty of individual samples while maintaining computational costs. Our framework first collects wrong event information and builds a strong base model. Then we perform noise-robust training on the base model, using a probabilistic model to handle the wrong event information of samples. Experiments on five synthetic and real-world LNL benchmarks demonstrate our method surpasses state-of-the-art methods in performance, achieves a nearly 75% reduction in computational time and improves model scalability.
♻ ☆ RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems. Our implementation of the RL-I2IT framework is available at https://github.com/Algolzw/SPAC-Deformable-Registration.
♻ ☆ Decom-Renorm-Merge: Model Merging on the Right Space Improves Multitasking
In the era of large-scale training, model merging has evolved into a tool for creating multitasking models efficiently. It enables the knowledge of models to be fused, without the need for heavy computation as required in traditional multitask learning. Existing merging methods often assume that entries at identical positions in weight matrices serve the same function, enabling straightforward entry-wise comparison and merging. However, this assumption overlooks the complexity of finetuned neural networks, where neurons may develop distinct feature compositions, making direct entry-wise merging problematic. We present Decom-Renorm-Merge (DRM), a simple yet effective approach that leverages Singular Value Decomposition to decompose and coordinate weight matrices into an aligned joint space, where entry-wise merging becomes possible. We showcase the effectiveness of DRM across various settings ranging from smaller encoder-based such as ViT and DeBERTa, encoder-decoder-based such as T5, and larger decoder-based such as Llama3.1-8B. Our experimental results show that DRM outperforms several state-of-the-art merging techniques across full finetuning and low-rank adaptation settings. Moreover, our analysis reveals renormalization as the crucial component for creating a robust and even joint space for merging, significantly contributing to the method's performance.
comment: Code and models are available at https://github.com/yophis/decom-renorm-merge
♻ ☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
To effectively process impulse noise for narrowband powerline communications (NB-PLCs) transceivers, capturing comprehensive statistics of nonperiodic asynchronous impulsive noise (APIN) is a critical task. However, existing mathematical noise generative models only capture part of the characteristics of noise. In this study, we propose a novel generative adversarial network (GAN) called noise generation GAN (NGGAN) that learns the complicated characteristics of practically measured noise samples for data synthesis. To closely match the statistics of complicated noise over the NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. To train NGGAN, we adhere to the following principles: 1) we design the length of input signals that the NGGAN model can fit to facilitate cyclostationary noise generation; 2) the Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and training data; and 3) to measure the similarity performances of GAN-based models based on the mathematical and practically measured datasets, we conduct both quantitative and qualitative analyses. The training datasets include: 1) a piecewise spectral cyclostationary Gaussian model (PSCGM); 2) a frequency-shift (FRESH) filter; and 3) practical measurements from NB-PLC systems. Simulation results demonstrate that the generated noise samples from the proposed NGGAN are highly close to the real noise samples. The principal component analysis (PCA) scatter plots and Fr\'echet inception distance (FID) analysis have shown that NGGAN outperforms other GAN-based models by generating noise samples with superior fidelity and higher diversity.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, 2025
♻ ☆ Towards a Common Framework for Autoformalization
Autoformalization has emerged as a term referring to the automation of formalization - specifically, the formalization of mathematics using interactive theorem provers (proof assistants). Its rapid development has been driven by progress in deep learning, especially large language models (LLMs). More recently, the term has expanded beyond mathematics to describe the broader task of translating informal input into formal logical representations. At the same time, a growing body of research explores using LLMs to translate informal language into formal representations for reasoning, planning, and knowledge representation - often without explicitly referring to this process as autoformalization. As a result, despite addressing similar tasks, the largely independent development of these research areas has limited opportunities for shared methodologies, benchmarks, and theoretical frameworks that could accelerate progress. The goal of this paper is to review - explicit or implicit - instances of what can be considered autoformalization and to propose a unified framework, encouraging cross-pollination between different fields to advance the development of next generation AI systems.
♻ ☆ GroupSHAP-Guided Integration of Financial News Keywords and Technical Indicators for Stock Price Prediction
Recent advances in finance-specific language models such as FinBERT have enabled the quantification of public sentiment into index-based measures, yet compressing diverse linguistic signals into single metrics overlooks contextual nuances and limits interpretability. To address this limitation, explainable AI techniques, particularly SHAP (SHapley Additive Explanations), have been employed to identify influential features. However, SHAP's computational cost grows exponentially with input features, making it impractical for large-scale text-based financial data. This study introduces a GRU-based forecasting framework enhanced with GroupSHAP, which quantifies contributions of semantically related keyword groups rather than individual tokens, substantially reducing computational burden while preserving interpretability. We employed FinBERT to embed news articles from 2015 to 2024, clustered them into coherent semantic groups, and applied GroupSHAP to measure each group's contribution to stock price movements. The resulting group-level SHAP variables across multiple topics were used as input features for the prediction model. Empirical results from one-day-ahead forecasting of the S&P 500 index throughout 2024 demonstrate that our approach achieves a 32.2% reduction in MAE and a 40.5% reduction in RMSE compared with benchmark models without the GroupSHAP mechanism. This research presents the first application of GroupSHAP in news-driven financial forecasting, showing that grouped sentiment representations simultaneously enhance interpretability and predictive performance.
comment: 6 pages
♻ ☆ A method for the systematic generation of graph XAI benchmarks via Weisfeiler-Leman coloring
Graph neural networks have become the de facto model for learning from structured data. However, the decision-making process of GNNs remains opaque to the end user, which undermines their use in safety-critical applications. Several explainable AI techniques for graphs have been developed to address this major issue. Focusing on graph classification, these explainers identify subgraph motifs that explain predictions. Therefore, a robust benchmarking of graph explainers is required to ensure that the produced explanations are of high quality, i.e., aligned with the GNN's decision process. However, current graph-XAI benchmarks are limited to simplistic synthetic datasets or a few real-world tasks curated by domain experts, hindering rigorous and reproducible evaluation, and consequently stalling progress in the field. To overcome these limitations, we propose a method to automate the construction of graph XAI benchmarks from generic graph classification datasets. Our approach leverages the Weisfeiler-Leman color refinement algorithm to efficiently perform approximate subgraph matching and mine class-discriminating motifs, which serve as proxy ground-truth class explanations. At the same time, we ensure that these motifs can be learned by GNNs because their discriminating power aligns with WL expressiveness. This work also introduces the OpenGraphXAI benchmark suite, which consists of 15 ready-made graph-XAI datasets derived by applying our method to real-world molecular classification datasets. The suite is available to the public along with a codebase to generate over 2,000 additional graph-XAI benchmarks. Finally, we present a use case that illustrates how the suite can be used to assess the effectiveness of a selection of popular graph explainers, demonstrating the critical role of a sufficiently large benchmark collection for improving the significance of experimental results.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Quantum Transformer: Accelerating model inference via quantum linear algebra
Powerful generative artificial intelligence from large language models (LLMs) harnesses extensive computational resources for inference. In this work, we investigate the transformer architecture, a key component of these models, under the lens of fault-tolerant quantum computing. We develop quantum subroutines to construct the building blocks in the transformer, including the self-attention, residual connection with layer normalization, and feed-forward network. As an important subroutine, we show how to efficiently implement the Hadamard product and element-wise functions of matrices on quantum computers. Our algorithm prepares an amplitude encoding of the transformer output, which can be measured for prediction or use in the next layer. We find that the matrix norm of the input sequence plays a dominant role in the quantum complexity. With numerical experiments on open-source LLMs, including for bio-informatics applications, we demonstrate the potential of a quantum speedup for transformer inference in practical regimes.
comment: 45 pages
♻ ☆ Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation NeurIPS 2025
Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, TagCF exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs that reveal dynamic and expressive knowledge of users, refining our understanding of user behaviors. On the other hand, TagCF presents empirically effective integration modules that take advantage of the extracted tag-logic information, augmenting the recommendation performance. We conduct both online experiments and offline experiments with industrial and public datasets as verification of TagCF's effectiveness, and we empirically show that the user role modeling strategy is potentially a better choice than the modeling of item topics. Additionally, we provide evidence that the extracted logic graphs are empirically a general and transferable knowledge that can benefit a wide range of recommendation tasks. Our code is available in https://github.com/Code2Q/TagCF.
comment: to be published in NeurIPS 2025
♻ ☆ The AI_INFN Platform: Artificial Intelligence Development in the Cloud
Machine Learning (ML) is profoundly reshaping the way researchers create, implement, and operate data-intensive software. Its adoption, however, introduces notable challenges for computing infrastructures, particularly when it comes to coordinating access to hardware accelerators across development, testing, and production environments. The INFN initiative AI_INFN (Artificial Intelligence at INFN) seeks to promote the use of ML methods across various INFN research scenarios by offering comprehensive technical support, including access to AI-focused computational resources. Leveraging the INFN Cloud ecosystem and cloud-native technologies, the project emphasizes efficient sharing of accelerator hardware while maintaining the breadth of the Institute's research activities. This contribution describes the deployment and commissioning of a Kubernetes-based platform designed to simplify GPU-powered data analysis workflows and enable their scalable execution on heterogeneous distributed resources. By integrating offloading mechanisms through Virtual Kubelet and the InterLink API, the platform allows workflows to span multiple resource providers, from Worldwide LHC Computing Grid sites to high-performance computing centers like CINECA Leonardo. We will present preliminary benchmarks, functional tests, and case studies, demonstrating both performance and integration outcomes.
♻ ☆ Collab-REC: An LLM-based Agentic Framework for Balancing Recommendations in Tourism
We propose Collab-REC, a multi-agent framework designed to counteract popularity bias and enhance diversity in tourism recommendations. In our setting, three LLM-based agents -- Personalization, Popularity, and Sustainability generate city suggestions from complementary perspectives. A non-LLM moderator then merges and refines these proposals via multi-round negotiation, ensuring each agent's viewpoint is incorporated while penalizing spurious or repeated responses. Experiments on European city queries show that Collab-REC improves diversity and overall relevance compared to a single-agent baseline, surfacing lesser-visited locales that often remain overlooked. This balanced, context-aware approach addresses over-tourism and better aligns with constraints provided by the user, highlighting the promise of multi-stakeholder collaboration in LLM-driven recommender systems.
♻ ☆ Continuous Domain Generalization NeurIPS25
Real-world data distributions often shift continuously across multiple latent factors such as time, geography, and socioeconomic contexts. However, existing domain generalization approaches typically treat domains as discrete or as evolving along a single axis (e.g., time). This oversimplification fails to capture the complex, multidimensional nature of real-world variation. This paper introduces the task of Continuous Domain Generalization (CDG), which aims to generalize predictive models to unseen domains defined by arbitrary combinations of continuous variations. We present a principled framework grounded in geometric and algebraic theories, showing that optimal model parameters across domains lie on a low-dimensional manifold. To model this structure, we propose a Neural Lie Transport Operator (NeuralLio), which enables structure-preserving parameter transitions by enforcing geometric continuity and algebraic consistency. To handle noisy or incomplete domain variation descriptors, we introduce a gating mechanism to suppress irrelevant dimensions and a local chart-based strategy for robust generalization. Extensive experiments on synthetic and real-world datasets, including remote sensing, scientific documents, and traffic forecasting, demonstrate that our method significantly outperforms existing baselines in both generalization accuracy and robustness.
comment: 23 pages, 9 figures. Accepted by NeurIPS25
♻ ☆ GradeSQL: Test-Time Inference with Outcome Reward Models for Text-to-SQL Generation from Large Language Models
Text-to-SQL, the task of translating natural language questions into SQL queries, has significantly advanced with the introduction of Large Language Models (LLMs), broadening database accessibility for a wide range of users. Despite substantial progress in generating valid SQL, current LLMs still struggle with complex queries. To address this limitation, test-time strategies such as Best-of-N (BoN) and Majority Voting (Maj) are often employed, based on the assumption that LLMs can produce correct answers after multiple attempts. However, these methods rely on surface-level heuristics, selecting the syntactically correct query through execution-based BoN (ex-BoN) or the most frequently generated one through Majority Voting. Recently, Outcome Reward Models (ORMs), which assign utility scores to generated outputs based on semantic correctness, have emerged as a promising reinforcement learning approach for improving model alignment. We argue that ORMs could serve as an effective new test-time heuristic, although their application in this context remains largely underexplored. In this work, we propose a unified framework for training ORMs tailored to the Text-to-SQL task and assess their effectiveness as a test-time heuristic within the BoN strategy. We benchmark ORMs against ex-BoN and Maj across the BIRD and Spider datasets, fine-tuning diverse open-source LLMs from the Qwen2, Granite3, and Llama3 families. Results show that ORMs outperform ex-BoN and Maj, achieving execution accuracy gains of +4.33% (BIRD) and +2.10% (Spider) over ex-BoN, and +2.91% (BIRD) and +0.93% (Spider) over Maj. We further demonstrate that finetuning models already aligned with SQL generation, such as OmniSQL, yields superior ORM performance. Additionally, we observe that ORMs achieve competitive results on simple queries and benefit more from an increased number of candidates compared to ex-BoN and Maj.
♻ ☆ Reinforcement Learning Teachers of Test Time Scaling NeurIPS 2025
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework. Code available at: https://github.com/SakanaAI/RLT
comment: Accepted at NeurIPS 2025
♻ ☆ Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric ($\mathrm{CMP}$) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true $\mathrm{CMP}$ is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating $\mathrm{CMP}$ and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using fewer allocated CPU hours. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is publicly available at https://github.com/metauto-ai/HGM.
♻ ☆ Group Interventions on Deep Networks for Causal Discovery in Subsystems
Causal discovery uncovers complex relationships between variables, enhancing predictions, decision-making, and insights into real-world systems, especially in nonlinear multivariate time series. However, most existing methods primarily focus on pairwise cause-effect relationships, overlooking interactions among groups of variables, i.e., subsystems and their collective causal influence. In this study, we introduce gCDMI, a novel multi-group causal discovery method that leverages group-level interventions on trained deep neural networks and employs model invariance testing to infer causal relationships. Our approach involves three key steps. First, we use deep learning to jointly model the structural relationships among groups of all time series. Second, we apply group-wise interventions to the trained model. Finally, we conduct model invariance testing to determine the presence of causal links among variable groups. We evaluate our method on simulated datasets, demonstrating its superior performance in identifying group-level causal relationships compared to existing methods. Additionally, we validate our approach on real-world datasets, including brain networks and climate ecosystems. Our results highlight that applying group-level interventions to deep learning models, combined with invariance testing, can effectively reveal complex causal structures, offering valuable insights for domains such as neuroscience and climate science.
comment: Submitted to IEEE Access. We are working on the revised version
♻ ☆ Many LLMs Are More Utilitarian Than One NeurIPS 2025
Moral judgment is integral to large language models' (LLMs) social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function when collaborating compared to operating as individual agents. In human moral judgment, group deliberation leads to a Utilitarian Boost: a tendency to endorse norm violations that inflict harm but maximize benefits for the greatest number of people. We study whether a similar dynamic emerges in multi-agent LLM systems. We test six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reason independently, and (2) Group, where they engage in multi-turn discussions in pairs or triads. In personal dilemmas, where agents decide whether to directly harm an individual for the benefit of others, all models rated moral violations as more acceptable when part of a group, demonstrating a Utilitarian Boost similar to that observed in humans. However, the mechanism for the Boost in LLMs differed: While humans in groups become more utilitarian due to heightened sensitivity to decision outcomes, LLM groups showed either reduced sensitivity to norms or enhanced impartiality. We report model differences in when and how strongly the Boost manifests. We also discuss prompt and agent compositions that enhance or mitigate the effect. We end with a discussion of the implications for AI alignment, multi-agent design, and artificial moral reasoning. Code available at: https://github.com/baltaci-r/MoralAgents
comment: Accepted to the Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models NeurIPS 2025
Foundation models demand advanced data processing for their vast, multimodal datasets. However, traditional frameworks struggle with the unique complexities of multimodal data. In response, we present Data-Juicer 2.0, a data processing system backed by 100+ data processing operators spanning text, image, video, and audio modalities, supporting more critical tasks including data analysis, synthesis, annotation, and foundation model post-training. With seamless compatibility and dedicated optimization for popular dataset hubs like Hugging Face and computing engines like Ray, it improves upon its predecessor in terms of usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. Its new runtime layer offers adaptive execution across diverse scales and environments, abstracting away system complexities. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process TB-level data with 10k+ CPU cores. The system is publicly available and has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI. We actively maintain the system and share practical insights to foster research and applications of next-generation foundation models.
comment: Accepted by NeurIPS 2025 (Spotlight). 43 pages, 16 figures, 4 tables
♻ ☆ Securing AI Agent Execution
Large Language Models (LLMs) have evolved into AI agents that interact with external tools and environments to perform complex tasks. The Model Context Protocol (MCP) has become the de facto standard for connecting agents with such resources, but security has lagged behind: thousands of MCP servers execute with unrestricted access to host systems, creating a broad attack surface. In this paper, we introduce AgentBound, the first access control framework for MCP servers. AgentBound combines a declarative policy mechanism, inspired by the Android permission model, with a policy enforcement engine that contains malicious behavior without requiring MCP server modifications. We build a dataset containing the 296 most popular MCP servers, and show that access control policies can be generated automatically from source code with 80.9% accuracy. We also show that AgentBound blocks the majority of security threats in several malicious MCP servers, and that policy enforcement engine introduces negligible overhead. Our contributions provide developers and project managers with a practical foundation for securing MCP servers while maintaining productivity, enabling researchers and tool builders to explore new directions for declarative access control and MCP security.
♻ ☆ Classification of Driver Behaviour Using External Observation Techniques for Autonomous Vehicles
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behaviour classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviours such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioural analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
♻ ☆ SATURN: SAT-based Reinforcement Learning to Unleash Language Model Reasoning
How to design reinforcement learning (RL) tasks that effectively unleash the reasoning capability of large language models (LLMs) remains an open question. Existing RL tasks (e.g., math, programming, and constructing reasoning tasks) suffer from three key limitations: (1) Scalability. They rely heavily on human annotation or expensive LLM synthesis to generate sufficient training data. (2) Verifiability. LLMs' outputs are hard to verify automatically and reliably. (3) Controllable Difficulty. Most tasks lack fine-grained difficulty control, making it hard to train LLMs to develop reasoning ability from easy to hard. To address these limitations, we propose Saturn, a SAT-based RL framework that uses Boolean Satisfiability (SAT) problems to train and evaluate LLMs reasoning. Saturn enables scalable task construction, rule-based verification, and precise difficulty control. Saturn designs a curriculum learning pipeline that continuously improves LLMs' reasoning capability by constructing SAT tasks of increasing difficulty and training LLMs from easy to hard. To ensure stable training, we design a principled mechanism to control difficulty transitions. We introduce Saturn-2.6k, a dataset of 2,660 SAT problems with varying difficulty. It supports the evaluation of how LLM reasoning changes with problem difficulty. We apply Saturn to DeepSeek-R1-Distill-Qwen and obtain Saturn-1.5B and Saturn-7B. We achieve several notable results: (1) On SAT problems, Saturn-1.5B and Saturn-7B achieve average pass@3 improvements of +14.0 and +28.1, respectively. (2) On math and programming tasks, Saturn-1.5B and Saturn-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g., AIME, LiveCodeBench). (3) Compared to the state-of-the-art (SOTA) approach in constructing RL tasks, Saturn achieves further improvements of +8.8%. We release the source code, data, and models to support future research.
♻ ☆ Brain-inspired Computational Intelligence via Predictive Coding
Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with a learning algorithm called error backpropagation, always considered biologically implausible. To this end, recent works have studied learning algorithms for deep neural networks inspired by the neurosciences. One such theory, called predictive coding (PC), has shown promising properties that make it potentially valuable for the machine learning community: it can model information processing in different areas of the brain, can be used in control and robotics, has a solid mathematical foundation in variational inference, and performs its computations asynchronously. Inspired by such properties, works that propose novel PC-like algorithms are starting to be present in multiple sub-fields of machine learning and AI at large. Here, we survey such efforts by first providing a broad overview of the history of PC to provide common ground for the understanding of the recent developments, then by describing current efforts and results, and concluding with a large discussion of possible implications and ways forward.
comment: 26 Pages, 9 Figures
♻ ☆ HyperMARL: Adaptive Hypernetworks for Multi-Agent RL NeurIPS 2025
Adaptive cooperation in multi-agent reinforcement learning (MARL) requires policies to express homogeneous, specialised, or mixed behaviours, yet achieving this adaptivity remains a critical challenge. While parameter sharing (PS) is standard for efficient learning, it notoriously suppresses the behavioural diversity required for specialisation. This failure is largely due to cross-agent gradient interference, a problem we find is surprisingly exacerbated by the common practice of coupling agent IDs with observations. Existing remedies typically add complexity through altered objectives, manual preset diversity levels, or sequential updates -- raising a fundamental question: can shared policies adapt without these intricacies? We propose a solution built on a key insight: an agent-conditioned hypernetwork can generate agent-specific parameters and decouple observation- and agent-conditioned gradients, directly countering the interference from coupling agent IDs with observations. Our resulting method, HyperMARL, avoids the complexities of prior work and empirically reduces policy gradient variance. Across diverse MARL benchmarks (22 scenarios, up to 30 agents), HyperMARL achieves performance competitive with six key baselines while preserving behavioural diversity comparable to non-parameter sharing methods, establishing it as a versatile and principled approach for adaptive MARL. The code is publicly available at https://github.com/KaleabTessera/HyperMARL.
comment: To appear at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). A preliminary version of this work was presented at the CoCoMARL workshop, RLC 2025
♻ ☆ Reliable Evaluation and Benchmarks for Statement Autoformalization EMNLP 2025
Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.
comment: Accepted to EMNLP 2025. New benchmarks released, see https://github.com/augustepoiroux/RLMEval , https://huggingface.co/datasets/PAug/ProofNetSharp , and https://huggingface.co/datasets/PAug/ProofNetVerif . For code, see https://github.com/augustepoiroux/LeanInteract
♻ ☆ OmegAMP: Targeted AMP Discovery through Biologically Informed Generation
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as limited controllability, lack of representations that efficiently model antimicrobial properties, and low experimental hit rates. To address these challenges, we introduce OmegAMP, a framework designed for reliable AMP generation with increased controllability. Its diffusion-based generative model leverages a novel conditioning mechanism to achieve fine-grained control over desired physicochemical properties and to direct generation towards specific activity profiles, including species-specific effectiveness. This is further enhanced by a biologically informed encoding space that significantly improves overall generative performance. Complementing these generative capabilities, OmegAMP leverages a novel synthetic data augmentation strategy to train classifiers for AMP filtering, drastically reducing false positive rates and thereby increasing the likelihood of experimental success. Our in silico experiments demonstrate that OmegAMP delivers state-of-the-art performance across key stages of the AMP discovery pipeline, enabling us to achieve an unprecedented success rate in wet lab experiments. We tested 25 candidate peptides, 24 of them (96%) demonstrated antimicrobial activity, proving effective even against multi-drug resistant strains. Our findings underscore OmegAMP's potential to significantly advance computational frameworks in the fight against antimicrobial resistance.
♻ ☆ Transformers from Compressed Representations
Compressed file formats are the corner stone of efficient data storage and transmission, yet their potential for representation learning remains largely underexplored. We introduce TEMPEST (TransformErs froM comPressed rEpreSenTations), a method that exploits the inherent byte-stream structure of compressed files to design an effective tokenization and encoding strategy. By leveraging this compact encoding, a standard transformer can directly learn semantic representations from compressed data streams, bypassing the need for raw byte-level processing or full media decoding. Our proposal substantially reduces the number of tokens required for semantic classification, thereby lowering both computational complexity and memory usage. Through extensive experiments across diverse datasets, coding schemes, and modalities, we show that TEMPEST achieves accuracy competitive wit the state-of-the-art while delivering efficiency gains in memory and compute.
♻ ☆ When Models Outthink Their Safety: Mitigating Self-Jailbreak in Large Reasoning Models with Chain-of-Guardrails
Large Reasoning Models (LRMs) demonstrate remarkable capabilities on complex reasoning tasks but remain vulnerable to severe safety risks, including harmful content generation and jailbreak attacks. Existing mitigation strategies rely on injecting heuristic safety signals during training, which often suppress reasoning ability and fail to resolve the safety-reasoning trade-off. To systematically investigate this issue, we analyze the reasoning trajectories of diverse LRMs and uncover a phenomenon we term Self-Jailbreak, where models override their own risk assessments and justify responding to unsafe prompts. This finding reveals that LRMs inherently possess the ability to reject unsafe queries, but this ability is compromised, resulting in harmful outputs. Building on these insights, we propose the Chain-of-Guardrail (CoG), a training framework that recomposes or backtracks unsafe reasoning steps, steering the model back onto safe trajectories while preserving valid reasoning chains. Extensive experiments across multiple reasoning and safety benchmarks demonstrate that CoG substantially improves the safety of current LRMs while preserving comparable reasoning ability, significantly outperforming prior methods that suffer from severe safety-reasoning trade-offs.
comment: First two authors contributed equally. The main text is 10 pages, with an appendix of 19 pages. The paper contains 18 figures and 16 tables
♻ ☆ Improving Robustness of AlphaZero Algorithms to Test-Time Environment Changes
The AlphaZero framework provides a standard way of combining Monte Carlo planning with prior knowledge provided by a previously trained policy-value neural network. AlphaZero usually assumes that the environment on which the neural network was trained will not change at test time, which constrains its applicability. In this paper, we analyze the problem of deploying AlphaZero agents in potentially changed test environments and demonstrate how the combination of simple modifications to the standard framework can significantly boost performance, even in settings with a low planning budget available. The code is publicly available on GitHub.
comment: Presented at the 37th Benelux Conference on Artificial Intelligence and the 34th Belgian Dutch Conference on Machine Learning (BNAIC/BeNeLearn 2025)
♻ ☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data NeurIPS 2025
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning. We observe that some deep learning models are overrepresented in cross-model ensembles due to validation set overfitting, and we encourage model developers to address this issue. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: Accepted (spotlight) at NeurIPS 2025 Datasets and Benchmarks Track. v3: NeurIPS camera-ready version. v2: fixed author list. 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
♻ ☆ Probabilistic Kernel Function for Fast Angle Testing
In this paper, we study the angle testing problem in the context of similarity search in high-dimensional Euclidean spaces and propose two projection-based probabilistic kernel functions, one designed for angle comparison and the other for angle thresholding. Unlike existing approaches that rely on random projection vectors drawn from Gaussian distributions, our approach leverages reference angles and employs a deterministic structure for the projection vectors. Notably, our kernel functions do not require asymptotic assumptions, such as the number of projection vectors tending to infinity, and can be both theoretically and experimentally shown to outperform Gaussian-distribution-based kernel functions. We apply the proposed kernel function to Approximate Nearest Neighbor Search (ANNS) and demonstrate that our approach achieves a 2.5X ~ 3X higher query-per-second (QPS) throughput compared to the widely-used graph-based search algorithm HNSW.
♻ ☆ Steiner Traveling Salesman Problem with Quantum Annealing GECCO 2025
The Steiner Traveling Salesman Problem (STSP) is a variant of the classical Traveling Salesman Problem. The STSP involves incorporating steiner nodes, which are extra nodes not originally part of the required visit set but that can be added to the route to enhance the overall solution and minimize the total travel cost. Given the NP-hard nature of the STSP, we propose a quantum approach to address it. Specifically, we employ quantum annealing using D-Wave's hardware to explore its potential for solving this problem. To enhance computational feasibility, we develop a preprocessing method that effectively reduces the network size. Our experimental results demonstrate that this reduction technique significantly decreases the problem complexity, making the Quadratic Unconstrained Binary Optimization formulation, the standard input for quantum annealers, better suited for existing quantum hardware. Furthermore, the results highlight the potential of quantum annealing as a promising and innovative approach for solving the STSP.
comment: 7 pages, 1 figure, 6 tables. Paper accepted in The Genetic and Evolutionary Computation Conference (GECCO 2025)
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Learning-Augmented Online Bipartite Fractional Matching NeurIPS 2025
Online bipartite matching is a fundamental problem in online optimization, extensively studied both in its integral and fractional forms due to its theoretical significance and practical applications, such as online advertising and resource allocation. Motivated by recent progress in learning-augmented algorithms, we study online bipartite fractional matching when the algorithm is given advice in the form of a suggested matching in each iteration. We develop algorithms for both the vertex-weighted and unweighted variants that provably dominate the naive "coin flip" strategy of randomly choosing between the advice-following and advice-free algorithms. Moreover, our algorithm for the vertex-weighted setting extends to the AdWords problem under the small bids assumption, yielding a significant improvement over the seminal work of Mahdian, Nazerzadeh, and Saberi (EC 2007, TALG 2012). Complementing our positive results, we establish a hardness bound on the robustness-consistency tradeoff that is attainable by any algorithm. We empirically validate our algorithms through experiments on synthetic and real-world data.
comment: To appear in NeurIPS 2025. Full version
♻ ☆ Differential Mamba AACL 2025
Sequence models like Transformers and RNNs often overallocate attention to irrelevant context, leading to noisy intermediate representations. This degrades LLM capabilities by promoting hallucinations, weakening long-range and retrieval abilities, and reducing robustness. Recent work has shown that differential design can mitigate this issue in Transformers, improving their effectiveness across various applications. In this paper, we explore whether these techniques, originally developed for Transformers, can be applied to Mamba, a recent architecture based on selective state-space layers that achieves Transformer-level performance with greater efficiency. We show that a naive adaptation of differential design to Mamba is insufficient and requires careful architectural modifications. To address this, we introduce a novel differential mechanism for Mamba, empirically validated on language modeling benchmarks, demonstrating improved retrieval capabilities and superior performance over vanilla Mamba. Finally, we conduct extensive ablation studies and empirical analyses to justify our design choices and provide evidence that our approach effectively mitigates the overallocation problem in Mamba-based models. Our code is publicly available: https://github.com/NadavSc/Diff-Mamba
comment: AACL 2025. We provide the code at https://github.com/NadavSc/Diff-Mamba
♻ ☆ Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
Credit assignmen, disentangling each agent's contribution to a shared reward, is a critical challenge in cooperative multi-agent reinforcement learning (MARL). To be effective, credit assignment methods must preserve the environment's optimal policy. Some recent approaches attempt this by enforcing return equivalence, where the sum of distributed rewards must equal the team reward. However, their guarantees are conditional on a learned model's regression accuracy, making them unreliable in practice. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), an approach that decouples credit modeling from this constraint. A neural network learns unnormalized contribution scores, while a separate, deterministic normalization step enforces return equivalence by construction. We demonstrate that this method is equivalent to a valid Potential-Based Reward Shaping (PBRS), which guarantees the optimal policy is preserved regardless of model accuracy. Empirically, on challenging SMACLite and Google Research Football (GRF) benchmarks, TAR$^2$ accelerates learning and achieves higher final performance than strong baselines. These results establish our method as an effective solution for the agent-temporal credit assignment problem.
comment: 16 pages, 4 figures, 4 tables
♻ ☆ A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.
comment: 7 pages, 7 figures. Accepted by the IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2025. Code is available at https://github.com/Liu-Zhonglin/pbn-melanoma-project
♻ ☆ Purifying Shampoo: Investigating Shampoo's Heuristics by Decomposing its Preconditioner NeurIPS 2025
The recent success of Shampoo in the AlgoPerf contest has sparked renewed interest in Kronecker-factorization-based optimization algorithms for training neural networks. Despite its success, Shampoo relies heavily on several heuristics such as learning rate grafting and stale preconditioning to achieve performance at-scale. These heuristics increase algorithmic complexity, necessitate further hyperparameter tuning, and lack theoretical justification. This paper investigates these heuristics from the angle of Frobenius norm approximation to full-matrix Adam and decouples the preconditioner's eigenvalues and eigenbasis updates. We show that grafting from Adam mitigates the staleness and mis-scaling of the preconditioner's eigenvalues and how correcting the eigenvalues directly eliminates the need for learning rate grafting. To manage the error induced by infrequent eigenbasis computations, we propose an adaptive criterion for determining the eigenbasis computation frequency motivated by terminating a warm-started QR algorithm. This criterion decouples the update frequency of different preconditioner matrices and enables us to investigate the impact of approximation error on convergence. These practical techniques offer a principled angle towards removing Shampoo's heuristics and developing improved Kronecker-factorization-based training algorithms.
comment: NeurIPS 2025
♻ ☆ Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting ICLR 2025
The widespread deployment of sensing devices leads to a surge in data for spatio-temporal forecasting applications such as traffic flow, air quality, and wind energy. Although spatio-temporal graph neural networks have achieved success in modeling various static spatio-temporal forecasting scenarios, real-world spatio-temporal data are typically received in a streaming manner, and the network continuously expands with the installation of new sensors. Thus, spatio-temporal forecasting in streaming scenarios faces dual challenges: the inefficiency of retraining models over newly arrived data and the detrimental effects of catastrophic forgetting over long-term history. To address these challenges, we propose a novel prompt tuning-based continuous forecasting method, following two fundamental tuning principles guided by empirical and theoretical analysis: expand and compress, which effectively resolve the aforementioned problems with lightweight tuning parameters. Specifically, we integrate the base spatio-temporal graph neural network with a continuous prompt pool, utilizing stored prompts (i.e., few learnable parameters) in memory, and jointly optimize them with the base spatio-temporal graph neural network. This method ensures that the model sequentially learns from the spatio-temporal data stream to accomplish tasks for corresponding periods. Extensive experimental results on multiple real-world datasets demonstrate the multi-faceted superiority of our method over the state-of-the-art baselines, including effectiveness, efficiency, universality, etc.
comment: Accepted by ICLR 2025
♻ ☆ UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss NeurIPS 2025
Partial differential equations (PDEs) form the mathematical foundation for modeling physical systems in science and engineering, where numerical solutions demand rigorous accuracy-efficiency tradeoffs. Mesh movement techniques address this challenge by dynamically relocating mesh nodes to rapidly-varying regions, enhancing both simulation accuracy and computational efficiency. However, traditional approaches suffer from high computational complexity and geometric inflexibility, limiting their applicability, and existing supervised learning-based approaches face challenges in zero-shot generalization across diverse PDEs and mesh topologies.In this paper, we present an Unsupervised and Generalizable Mesh Movement Network (UGM2N). We first introduce unsupervised mesh adaptation through localized geometric feature learning, eliminating the dependency on pre-adapted meshes. We then develop a physics-constrained loss function, M-Uniform loss, that enforces mesh equidistribution at the nodal level.Experimental results demonstrate that the proposed network exhibits equation-agnostic generalization and geometric independence in efficient mesh adaptation. It demonstrates consistent superiority over existing methods, including robust performance across diverse PDEs and mesh geometries, scalability to multi-scale resolutions and guaranteed error reduction without mesh tangling.
comment: Accepted as a Poster at NeurIPS 2025
♻ ☆ Learning with Calibration: Exploring Test-Time Computing of Spatio-Temporal Forecasting NeurIPS 2025
Spatio-temporal forecasting is crucial in many domains, such as transportation, meteorology, and energy. However, real-world scenarios frequently present challenges such as signal anomalies, noise, and distributional shifts. Existing solutions primarily enhance robustness by modifying network architectures or training procedures. Nevertheless, these approaches are computationally intensive and resource-demanding, especially for large-scale applications. In this paper, we explore a novel test-time computing paradigm, namely learning with calibration, ST-TTC, for spatio-temporal forecasting. Through learning with calibration, we aim to capture periodic structural biases arising from non-stationarity during the testing phase and perform real-time bias correction on predictions to improve accuracy. Specifically, we first introduce a spectral-domain calibrator with phase-amplitude modulation to mitigate periodic shift and then propose a flash updating mechanism with a streaming memory queue for efficient test-time computation. ST-TTC effectively bypasses complex training-stage techniques, offering an efficient and generalizable paradigm. Extensive experiments on real-world datasets demonstrate the effectiveness, universality, flexibility and efficiency of our proposed method.
comment: Accepted by NeurIPS 2025 (Spotlight)
♻ ☆ DGTRSD & DGTRS-CLIP: A Dual-Granularity Remote Sensing Image-Text Dataset and Vision Language Foundation Model for Alignment
Vision Language Foundation Models based on CLIP architecture for remote sensing primarily rely on short text captions, which often result in incomplete semantic representations. Although longer captions convey richer information, existing models struggle to process them effectively because of limited text-encoding capacity, and there remains a shortage of resources that align remote sensing images with both short text and long text captions. To address this gap, we introduce DGTRSD, a dual-granularity remote sensing image-text dataset, where each image is paired with both a short text caption and a long text description, providing a solid foundation for dual-granularity semantic modeling. Based on this, we further propose DGTRS-CLIP, a dual-granularity curriculum learning framework that combines short text and long text supervision to achieve dual-granularity semantic alignment. Extensive experiments on four typical zero-shot tasks: long text cross-modal retrieval, short text cross-modal retrieval, image classification, and semantic localization demonstrate that DGTRS-CLIP consistently outperforms existing methods across all tasks. The code has been open-sourced and is available at https://github.com/MitsuiChen14/DGTRS.
♻ ☆ Revisiting Service Level Objectives and System Level Metrics in Large Language Model Serving
User experience is a critical factor Large Language Model (LLM) serving systems must consider, where service level objectives (SLOs) considering the experience of individual requests and system level metrics (SLMs) considering the overall system performance are two key performance measures. However, we observe two notable issues in existing metrics: 1) manually delaying the delivery of some tokens can improve SLOs, and 2) actively abandoning requests that do not meet SLOs can improve SLMs, both of which are counterintuitive. In this paper, we revisit SLOs and SLMs in LLM serving, and propose a new SLO that aligns with user experience. Based on the SLO, we propose a comprehensive metric framework called smooth goodput, which integrates SLOs and SLMs to reflect the nature of user experience in LLM serving. Through this unified framework, we reassess the performance of different LLM serving systems under multiple workloads. Evaluation results show that our metric framework provides a more comprehensive view of token delivery and request processing, and effectively captures the optimal point of user experience and system performance with different serving strategies.
♻ ☆ MAD-Fact: A Multi-Agent Debate Framework for Long-Form Factuality Evaluation in LLMs
The widespread adoption of Large Language Models (LLMs) raises critical concerns about the factual accuracy of their outputs, especially in high-risk domains such as biomedicine, law, and education. Existing evaluation methods for short texts often fail on long-form content due to complex reasoning chains, intertwined perspectives, and cumulative information. To address this, we propose a systematic approach integrating large-scale long-form datasets, multi-agent verification mechanisms, and weighted evaluation metrics. We construct LongHalluQA, a Chinese long-form factuality dataset; and develop MAD-Fact, a debate-based multi-agent verification system. We introduce a fact importance hierarchy to capture the varying significance of claims in long-form texts. Experiments on two benchmarks show that larger LLMs generally maintain higher factual consistency, while domestic models excel on Chinese content. Our work provides a structured framework for evaluating and enhancing factual reliability in long-form LLM outputs, guiding their safe deployment in sensitive domains.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-51369-x}
♻ ☆ A Survey of AI Scientists: Surveying the automatic Scientists and Research
Artificial intelligence is undergoing a profound transition from a computational instrument to an autonomous originator of scientific knowledge. This emerging paradigm, the AI scientist, is architected to emulate the complete scientific workflow-from initial hypothesis generation to the final synthesis of publishable findings-thereby promising to fundamentally reshape the pace and scale of discovery. However, the rapid and unstructured proliferation of these systems has created a fragmented research landscape, obscuring overarching methodological principles and developmental trends. This survey provides a systematic and comprehensive synthesis of this domain by introducing a unified, six-stage methodological framework that deconstructs the end-to-end scientific process into: Literature Review, Idea Generation, Experimental Preparation, Experimental Execution, Scientific Writing, and Paper Generation. Through this analytical lens, we chart the field's evolution from early Foundational Modules (2022-2023) to integrated Closed-Loop Systems (2024), and finally to the current frontier of Scalability, Impact, and Human-AI Collaboration (2025-present). By rigorously synthesizing these developments, this survey not only clarifies the current state of autonomous science but also provides a critical roadmap for overcoming remaining challenges in robustness and governance, ultimately guiding the next generation of systems toward becoming trustworthy and indispensable partners in human scientific inquiry.
comment: 28 pages, 9 figures, 1 table
♻ ☆ LaM-SLidE: Latent Space Modeling of Spatial Dynamical Systems via Linked Entities
Generative models are spearheading recent progress in deep learning, showcasing strong promise for trajectory sampling in dynamical systems as well. However, whereas latent space modeling paradigms have transformed image and video generation, similar approaches are more difficult for most dynamical systems. Such systems -- from chemical molecule structures to collective human behavior -- are described by interactions of entities, making them inherently linked to connectivity patterns, entity conservation, and the traceability of entities over time. Our approach, LaM-SLidE (Latent Space Modeling of Spatial Dynamical Systems via Linked Entities), bridges the gap between: (1) keeping the traceability of individual entities in a latent system representation, and (2) leveraging the efficiency and scalability of recent advances in image and video generation, where pre-trained encoder and decoder enable generative modeling directly in latent space. The core idea of LaM-SLidE is the introduction of identifier representations (IDs) that enable the retrieval of entity properties and entity composition from latent system representations, thus fostering traceability. Experimentally, across different domains, we show that LaM-SLidE performs favorably in terms of speed, accuracy, and generalizability. Code is available at https://github.com/ml-jku/LaM-SLidE .
comment: Project page: https://ml-jku.github.io/LaM-SLidE/
♻ ☆ Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Reinforcement Learning (RL) algorithms sample multiple n>1 solution attempts for each problem and reward them independently. This optimizes for pass@1 performance and prioritizes the strength of isolated samples at the expense of the diversity and collective utility of sets of samples. This under-utilizes the sampling capacity, limiting exploration and eventual improvement on harder examples. As a fix, we propose Pass-at-k Policy Optimization (PKPO), a transformation on the final rewards which leads to direct optimization of pass@k performance, thus optimizing for sets of samples that maximize reward when considered jointly. Our contribution is to derive novel low variance unbiased estimators for pass@k and its gradient, in both the binary and continuous reward settings. We show optimization with our estimators reduces to standard RL with rewards that have been jointly transformed by a stable and efficient transformation function. While previous efforts are restricted to k=n, ours is the first to enable robust optimization of pass@k for any arbitrary k <= n. Moreover, instead of trading off pass@1 performance for pass@k gains, our method allows annealing k during training, optimizing both metrics and often achieving strong pass@1 numbers alongside significant pass@k gains. We validate our reward transformations on toy experiments, which reveal the variance reducing properties of our formulations. We also include real-world examples using the open-source LLM, GEMMA-2. We find that our transformation effectively optimizes for the target k. Furthermore, higher k values enable solving more and harder problems, while annealing k boosts both the pass@1 and pass@k . Crucially, for challenging task sets where conventional pass@1 optimization stalls, our pass@k approach unblocks learning, likely due to better exploration by prioritizing joint utility over the utility of individual samples.
♻ ☆ Quantifying Multimodal Imbalance: A GMM-Guided Adaptive Loss for Audio-Visual Learning
The heterogeneity of multimodal data leads to inconsistencies and imbalance, allowing a dominant modality to steer gradient updates. Existing solutions mainly focus on optimization- or data-based strategies but rarely exploit the information inherent in multimodal imbalance or conduct its quantitative analysis. To address this gap, we propose a novel quantitative analysis framework for Multimodal Imbalance and design a sample-level adaptive loss function. We define the Modality Gap as the Softmax score difference between modalities for the correct class and model its distribution using a bimodal Gaussian Mixture Model(GMM), representing balanced and imbalanced samples. Using Bayes' theorem, we estimate each sample's posterior probability of belonging to these two groups. Based on this, our adaptive loss (1) minimizes the overall Modality Gap, (2) aligns imbalanced samples with balanced ones, and (3) adaptively penalizes each according to its imbalance degree. A two-stage training strategy-warm-up and adaptive phases,yields state-of-the-art performance on CREMA-D (80.65%), AVE (70.40%), and KineticSound (72.42%). Fine-tuning with high-quality samples identified by the GMM further improves results, highlighting their value for effective multimodal fusion.
♻ ☆ The Landscape of Agentic Reinforcement Learning for LLMs: A Survey
The emergence of agentic reinforcement learning (Agentic RL) marks a paradigm shift from conventional reinforcement learning applied to large language models (LLM RL), reframing LLMs from passive sequence generators into autonomous, decision-making agents embedded in complex, dynamic worlds. This survey formalizes this conceptual shift by contrasting the degenerate single-step Markov Decision Processes (MDPs) of LLM-RL with the temporally extended, partially observable Markov decision processes (POMDPs) that define Agentic RL. Building on this foundation, we propose a comprehensive twofold taxonomy: one organized around core agentic capabilities, including planning, tool use, memory, reasoning, self-improvement, and perception, and the other around their applications across diverse task domains. Central to our thesis is that reinforcement learning serves as the critical mechanism for transforming these capabilities from static, heuristic modules into adaptive, robust agentic behavior. To support and accelerate future research, we consolidate the landscape of open-source environments, benchmarks, and frameworks into a practical compendium. By synthesizing over five hundred recent works, this survey charts the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose AI agents.
♻ ☆ NeuroPathNet: Dynamic Path Trajectory Learning for Brain Functional Connectivity Analysis
Understanding the evolution of brain functional networks over time is of great significance for the analysis of cognitive mechanisms and the diagnosis of neurological diseases. Existing methods often have difficulty in capturing the temporal evolution characteristics of connections between specific functional communities. To this end, this paper proposes a new path-level trajectory modeling framework (NeuroPathNet) to characterize the dynamic behavior of connection pathways between brain functional partitions. Based on medically supported static partitioning schemes (such as Yeo and Smith ICA), we extract the time series of connection strengths between each pair of functional partitions and model them using a temporal neural network. We validate the model performance on three public functional Magnetic Resonance Imaging (fMRI) datasets, and the results show that it outperforms existing mainstream methods in multiple indicators. This study can promote the development of dynamic graph learning methods for brain network analysis, and provide possible clinical applications for the diagnosis of neurological diseases.
♻ ☆ Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space
Molecular dynamics (MD) is a powerful tool for exploring the behavior of atomistic systems, but its reliance on sequential numerical integration limits simulation efficiency. We present a novel neural network architecture, MDtrajNet, and a pre-trained foundational model, MDtrajNet-1, that directly generates MD trajectories across chemical space, bypassing force calculations and integration. This approach accelerates simulations by up to two orders of magnitude compared to traditional MD, even those enhanced by machine-learning interatomic potentials. MDtrajNet combines equivariant neural networks with a transformer-based architecture to achieve strong accuracy and transferability in predicting long-time trajectories. Remarkably, the errors of the trajectories generated by MDtrajNet-1 for various known and unseen molecular systems are close to those of the conventional ab initio MD. The architecture's flexible design supports diverse application scenarios, including different statistical ensembles, boundary conditions, and interaction types. By overcoming the intrinsic speed barrier of conventional MD, MDtrajNet opens new frontiers in efficient and scalable atomistic simulations.
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ TraveLLM: Could you plan my new public transit route in face of a network disruption? SC 2025
Existing navigation systems often fail during urban disruptions, struggling to incorporate real-time events and complex user constraints, such as avoiding specific areas. We address this gap with TraveLLM, a system using Large Language Models (LLMs) for disruption-aware public transit routing. We leverage LLMs' reasoning capabilities to directly process multimodal user queries combining natural language requests (origin, destination, preferences, disruption info) with map data (e.g., subway, bus, bike-share). To evaluate this approach, we design challenging test scenarios reflecting real-world disruptions like weather events, emergencies, and dynamic service availability. We benchmark the performance of state-of-the-art LLMs, including GPT-4, Claude 3, and Gemini, on generating accurate travel plans. Our experiments demonstrate that LLMs, notably GPT-4, can effectively generate viable and context-aware navigation plans under these demanding conditions. These findings suggest a promising direction for using LLMs to build more flexible and intelligent navigation systems capable of handling dynamic disruptions and diverse user needs.
comment: Accepted to ITSC 2025
♻ ☆ Pentest-R1: Towards Autonomous Penetration Testing Reasoning Optimized via Two-Stage Reinforcement Learning
Automating penetration testing is crucial for enhancing cybersecurity, yet current Large Language Models (LLMs) face significant limitations in this domain, including poor error handling, inefficient reasoning, and an inability to perform complex end-to-end tasks autonomously. To address these challenges, we introduce Pentest-R1, a novel framework designed to optimize LLM reasoning capabilities for this task through a two-stage reinforcement learning pipeline. We first construct a dataset of over 500 real-world, multi-step walkthroughs, which Pentest-R1 leverages for offline reinforcement learning (RL) to instill foundational attack logic. Subsequently, the LLM is fine-tuned via online RL in an interactive Capture The Flag (CTF) environment, where it learns directly from environmental feedback to develop robust error self-correction and adaptive strategies. Our extensive experiments on the Cybench and AutoPenBench benchmarks demonstrate the framework's effectiveness. On AutoPenBench, Pentest-R1 achieves a 24.2\% success rate, surpassing most state-of-the-art models and ranking second only to Gemini 2.5 Flash. On Cybench, it attains a 15.0\% success rate in unguided tasks, establishing a new state-of-the-art for open-source LLMs and matching the performance of top proprietary models. Ablation studies confirm that the synergy of both training stages is critical to its success.
♻ ☆ What Work is AI Actually Doing? Uncovering the Drivers of Generative AI Adoption
Purpose: The rapid integration of artificial intelligence (AI) systems like ChatGPT, Claude AI, etc., has a deep impact on how work is done. Predicting how AI will reshape work requires understanding not just its capabilities, but how it is actually being adopted. This study investigates which intrinsic task characteristics drive users' decisions to delegate work to AI systems. Methodology: This study utilizes the Anthropic Economic Index dataset of four million Claude AI interactions mapped to O*NET tasks. We systematically scored each task across seven key dimensions: Routine, Cognitive, Social Intelligence, Creativity, Domain Knowledge, Complexity, and Decision Making using 35 parameters. We then employed multivariate techniques to identify latent task archetypes and analyzed their relationship with AI usage. Findings: Tasks requiring high creativity, complexity, and cognitive demand, but low routineness, attracted the most AI engagement. Furthermore, we identified three task archetypes: Dynamic Problem Solving, Procedural & Analytical Work, and Standardized Operational Tasks, demonstrating that AI applicability is best predicted by a combination of task characteristics, over individual factors. Our analysis revealed highly concentrated AI usage patterns, with just 5% of tasks accounting for 59% of all interactions. Originality: This research provides the first systematic evidence linking real-world generative AI usage to a comprehensive, multi-dimensional framework of intrinsic task characteristics. It introduces a data-driven classification of work archetypes that offers a new framework for analyzing the emerging human-AI division of labor.
comment: 22 pages
♻ ☆ A Neural Symbolic Model for Space Physics
In this study, we unveil a new AI model, termed PhyE2E, to discover physical formulas through symbolic regression. PhyE2E simplifies symbolic regression by decomposing it into sub-problems using the second-order derivatives of an oracle neural network, and employs a transformer model to translate data into symbolic formulas in an end-to-end manner. The resulting formulas are refined through Monte-Carlo Tree Search and Genetic Programming. We leverage a large language model to synthesize extensive symbolic expressions resembling real physics, and train the model to recover these formulas directly from data. A comprehensive evaluation reveals that PhyE2E outperforms existing state-of-the-art approaches, delivering superior symbolic accuracy, precision in data fitting, and consistency in physical units. We deployed PhyE2E to five applications in space physics, including the prediction of sunspot numbers, solar rotational angular velocity, emission line contribution functions, near-Earth plasma pressure, and lunar-tide plasma signals. The physical formulas generated by AI demonstrate a high degree of accuracy in fitting the experimental data from satellites and astronomical telescopes. We have successfully upgraded the formula proposed by NASA in 1993 regarding solar activity, and for the first time, provided the explanations for the long cycle of solar activity in an explicit form. We also found that the decay of near-Earth plasma pressure is proportional to r^2 to Earth, where subsequent mathematical derivations are consistent with satellite data from another independent study. Moreover, we found physical formulas that can describe the relationships between emission lines in the extreme ultraviolet spectrum of the Sun, temperatures, electron densities, and magnetic fields. The formula obtained is consistent with the properties that physicists had previously hypothesized it should possess.
♻ ☆ Evaluation of Safety Cognition Capability in Vision-Language Models for Autonomous Driving
Ensuring the safety of vision-language models (VLMs) in autonomous driving systems is of paramount importance, yet existing research has largely focused on conventional benchmarks rather than safety-critical evaluation. In this work, we present SCD-Bench (Safety Cognition Driving Benchmark) a novel framework specifically designed to assess the safety cognition capabilities of VLMs within interactive driving scenarios. To address the scalability challenge of data annotation, we introduce ADA (Autonomous Driving Annotation), a semi-automated labeling system, further refined through expert review by professionals with domain-specific knowledge in autonomous driving. To facilitate scalable and consistent evaluation, we also propose an automated assessment pipeline leveraging large language models, which demonstrates over 98% agreement with human expert judgments. In addressing the broader challenge of aligning VLMs with safety cognition in driving environments, we construct SCD-Training, the first large-scale dataset tailored for this task, comprising 324.35K high-quality samples. Through extensive experiments, we show that models trained on SCD-Training exhibit marked improvements not only on SCD-Bench, but also on general and domain-specific benchmarks, offering a new perspective on enhancing safety-aware interactions in vision-language systems for autonomous driving.
Machine Learning 100
☆ E-Scores for (In)Correctness Assessment of Generative Model Outputs
While generative models, especially large language models (LLMs), are ubiquitous in today's world, principled mechanisms to assess their (in)correctness are limited. Using the conformal prediction framework, previous works construct sets of LLM responses where the probability of including an incorrect response, or error, is capped at a desired user-defined tolerance level. However, since these methods are based on p-values, they are susceptible to p-hacking, i.e., choosing the tolerance level post-hoc can invalidate the guarantees. We therefore leverage e-values to complement generative model outputs with e-scores as a measure of incorrectness. In addition to achieving the same statistical guarantees as before, e-scores provide users flexibility in adaptively choosing tolerance levels after observing the e-scores themselves, by upper bounding a post-hoc notion of error called size distortion. We experimentally demonstrate their efficacy in assessing LLM outputs for different correctness types: mathematical factuality and property constraints satisfaction.
☆ Neural Stochastic Flows: Solver-Free Modelling and Inference for SDE Solutions NeurIPS 2025
Stochastic differential equations (SDEs) are well suited to modelling noisy and irregularly sampled time series found in finance, physics, and machine learning. Traditional approaches require costly numerical solvers to sample between arbitrary time points. We introduce Neural Stochastic Flows (NSFs) and their latent variants, which directly learn (latent) SDE transition laws using conditional normalising flows with architectural constraints that preserve properties inherited from stochastic flows. This enables one-shot sampling between arbitrary states and yields up to two orders of magnitude speed-ups at large time gaps. Experiments on synthetic SDE simulations and on real-world tracking and video data show that NSFs maintain distributional accuracy comparable to numerical approaches while dramatically reducing computation for arbitrary time-point sampling.
comment: NeurIPS 2025 (poster). Project page: https://nkiyohara.github.io/nsf-neurips2025/
☆ Synthetic Data Reveals Generalization Gaps in Correlated Multiple Instance Learning
Multiple instance learning (MIL) is often used in medical imaging to classify high-resolution 2D images by processing patches or classify 3D volumes by processing slices. However, conventional MIL approaches treat instances separately, ignoring contextual relationships such as the appearance of nearby patches or slices that can be essential in real applications. We design a synthetic classification task where accounting for adjacent instance features is crucial for accurate prediction. We demonstrate the limitations of off-the-shelf MIL approaches by quantifying their performance compared to the optimal Bayes estimator for this task, which is available in closed-form. We empirically show that newer correlated MIL methods still struggle to generalize as well as possible when trained from scratch on tens of thousands of instances.
☆ MLPrE -- A tool for preprocessing and exploratory data analysis prior to machine learning model construction
With the recent growth of Deep Learning for AI, there is a need for tools to meet the demand of data flowing into those models. In some cases, source data may exist in multiple formats, and therefore the source data must be investigated and properly engineered for a Machine Learning model or graph database. Overhead and lack of scalability with existing workflows limit integration within a larger processing pipeline such as Apache Airflow, driving the need for a robust, extensible, and lightweight tool to preprocess arbitrary datasets that scales with data type and size. To address this, we present Machine Learning Preprocessing and Exploratory Data Analysis, MLPrE, in which SparkDataFrames were utilized to hold data during processing and ensure scalability. A generalizable JSON input file format was utilized to describe stepwise changes to that DataFrame. Stages were implemented for input and output, filtering, basic statistics, feature engineering, and exploratory data analysis. A total of 69 stages were implemented into MLPrE, of which we highlight and demonstrate key stages using six diverse datasets. We further highlight MLPrE's ability to independently process multiple fields in flat files and recombine them, otherwise requiring an additional pipeline, using a UniProt glossary term dataset. Building on this advantage, we demonstrated the clustering stage with available wine quality data. Lastly, we demonstrate the preparation of data for a graph database in the final stages of MLPrE using phosphosite kinase data. Overall, our MLPrE tool offers a generalizable and scalable tool for preprocessing and early data analysis, filling a critical need for such a tool given the ever expanding use of machine learning. This tool serves to accelerate and simplify early stage development in larger workflows.
☆ How Data Mixing Shapes In-Context Learning: Asymptotic Equivalence for Transformers with MLPs NeurIPS 2025
Pretrained Transformers demonstrate remarkable in-context learning (ICL) capabilities, enabling them to adapt to new tasks from demonstrations without parameter updates. However, theoretical studies often rely on simplified architectures (e.g., omitting MLPs), data models (e.g., linear regression with isotropic inputs), and single-source training, limiting their relevance to realistic settings. In this work, we study ICL in pretrained Transformers with nonlinear MLP heads on nonlinear tasks drawn from multiple data sources with heterogeneous input, task, and noise distributions. We analyze a model where the MLP comprises two layers, with the first layer trained via a single gradient step and the second layer fully optimized. Under high-dimensional asymptotics, we prove that such models are equivalent in ICL error to structured polynomial predictors, leveraging results from the theory of Gaussian universality and orthogonal polynomials. This equivalence reveals that nonlinear MLPs meaningfully enhance ICL performance, particularly on nonlinear tasks, compared to linear baselines. It also enables a precise analysis of data mixing effects: we identify key properties of high-quality data sources (low noise, structured covariances) and show that feature learning emerges only when the task covariance exhibits sufficient structure. These results are validated empirically across various activation functions, model sizes, and data distributions. Finally, we experiment with a real-world scenario involving multilingual sentiment analysis where each language is treated as a different source. Our experimental results for this case exemplify how our findings extend to real-world cases. Overall, our work advances the theoretical foundations of ICL in Transformers and provides actionable insight into the role of architecture and data in ICL.
comment: NeurIPS 2025, 24 pages, 6 figures
☆ Meshless solutions of PDE inverse problems on irregular geometries
Solving inverse and optimization problems over solutions of nonlinear partial differential equations (PDEs) on complex spatial domains is a long-standing challenge. Here we introduce a method that parameterizes the solution using spectral bases on arbitrary spatiotemporal domains, whereby the basis is defined on a hyperrectangle containing the true domain. We find the coefficients of the basis expansion by solving an optimization problem whereby both the equations, the boundary conditions and any optimization targets are enforced by a loss function, building on a key idea from Physics-Informed Neural Networks (PINNs). Since the representation of the function natively has exponential convergence, so does the solution of the optimization problem, as long as it can be solved efficiently. We find empirically that the optimization protocols developed for machine learning find solutions with exponential convergence on a wide range of equations. The method naturally allows for the incorporation of data assimilation by including additional terms in the loss function, and for the efficient solution of optimization problems over the PDE solutions.
☆ Hawk: Leveraging Spatial Context for Faster Autoregressive Text-to-Image Generation
Autoregressive (AR) image generation models are capable of producing high-fidelity images but often suffer from slow inference due to their inherently sequential, token-by-token decoding process. Speculative decoding, which employs a lightweight draft model to approximate the output of a larger AR model, has shown promise in accelerating text generation without compromising quality. However, its application to image generation remains largely underexplored. The challenges stem from a significantly larger sampling space, which complicates the alignment between the draft and target model outputs, coupled with the inadequate use of the two-dimensional spatial structure inherent in images, thereby limiting the modeling of local dependencies. To overcome these challenges, we introduce Hawk, a new approach that harnesses the spatial structure of images to guide the speculative model toward more accurate and efficient predictions. Experimental results on multiple text-to-image benchmarks demonstrate a 1.71x speedup over standard AR models, while preserving both image fidelity and diversity.
☆ LieSolver: A PDE-constrained solver for IBVPs using Lie symmetries
We introduce a method for efficiently solving initial-boundary value problems (IBVPs) that uses Lie symmetries to enforce the associated partial differential equation (PDE) exactly by construction. By leveraging symmetry transformations, the model inherently incorporates the physical laws and learns solutions from initial and boundary data. As a result, the loss directly measures the model's accuracy, leading to improved convergence. Moreover, for well-posed IBVPs, our method enables rigorous error estimation. The approach yields compact models, facilitating an efficient optimization. We implement LieSolver and demonstrate its application to linear homogeneous PDEs with a range of initial conditions, showing that it is faster and more accurate than physics-informed neural networks (PINNs). Overall, our method improves both computational efficiency and the reliability of predictions for PDE-constrained problems.
☆ Physics-Guided Conditional Diffusion Networks for Microwave Image Reconstruction
A conditional latent-diffusion based framework for solving the electromagnetic inverse scattering problem associated with microwave imaging is introduced. This generative machine-learning model explicitly mirrors the non-uniqueness of the ill-posed inverse problem. Unlike existing inverse solvers utilizing deterministic machine learning techniques that produce a single reconstruction, the proposed latent-diffusion model generates multiple plausible permittivity maps conditioned on measured scattered-field data, thereby generating several potential instances in the range-space of the non-unique inverse mapping. A forward electromagnetic solver is integrated into the reconstruction pipeline as a physics-based evaluation mechanism. The space of candidate reconstructions form a distribution of possibilities consistent with the conditioning data and the member of this space yielding the lowest scattered-field data discrepancy between the predicted and measured scattered fields is reported as the final solution. Synthetic and experimental labeled datasets are used for training and evaluation of the model. An innovative labeled synthetic dataset is created that exemplifies a varied set of scattering features. Training of the model using this new dataset produces high quality permittivity reconstructions achieving improved generalization with excellent fidelity to shape recognition. The results highlight the potential of hybrid generative physics frameworks as a promising direction for robust, data-driven microwave imaging.
☆ Scaling flow-based approaches for topology sampling in $\mathrm{SU}(3)$ gauge theory
We develop a methodology based on out-of-equilibrium simulations to mitigate topological freezing when approaching the continuum limit of lattice gauge theories. We reduce the autocorrelation of the topological charge employing open boundary conditions, while removing exactly their unphysical effects using a non-equilibrium Monte Carlo approach in which periodic boundary conditions are gradually switched on. We perform a detailed analysis of the computational costs of this strategy in the case of the four-dimensional $\mathrm{SU}(3)$ Yang-Mills theory. After achieving full control of the scaling, we outline a clear strategy to sample topology efficiently in the continuum limit, which we check at lattice spacings as small as $0.045$ fm. We also generalize this approach by designing a customized Stochastic Normalizing Flow for evolutions in the boundary conditions, obtaining superior performances with respect to the purely stochastic non-equilibrium approach, and paving the way for more efficient future flow-based solutions.
comment: 1+39 pages, 14 figures
☆ Convolutional Spiking-based GRU Cell for Spatio-temporal Data
Spike-based temporal messaging enables SNNs to efficiently process both purely temporal and spatio-temporal time-series or event-driven data. Combining SNNs with Gated Recurrent Units (GRUs), a variant of recurrent neural networks, gives rise to a robust framework for sequential data processing; however, traditional RNNs often lose local details when handling long sequences. Previous approaches, such as SpikGRU, fail to capture fine-grained local dependencies in event-based spatio-temporal data. In this paper, we introduce the Convolutional Spiking GRU (CS-GRU) cell, which leverages convolutional operations to preserve local structure and dependencies while integrating the temporal precision of spiking neurons with the efficient gating mechanisms of GRUs. This versatile architecture excels on both temporal datasets (NTIDIGITS, SHD) and spatio-temporal benchmarks (MNIST, DVSGesture, CIFAR10DVS). Our experiments show that CS-GRU outperforms state-of-the-art GRU variants by an average of 4.35%, achieving over 90% accuracy on sequential tasks and up to 99.31% on MNIST. It is worth noting that our solution achieves 69% higher efficiency compared to SpikGRU. The code is available at: https://github.com/YesmineAbdennadher/CS-GRU.
comment: 6 pages, 1 figure. Published in 2025 IEEE International Workshop On Machine Learning for Signal Processing, Aug. 31-Sep. 3, 2025, Istanbul, Turkey
☆ PyDPF: A Python Package for Differentiable Particle Filtering
State-space models (SSMs) are a widely used tool in time series analysis. In the complex systems that arise from real-world data, it is common to employ particle filtering (PF), an efficient Monte Carlo method for estimating the hidden state corresponding to a sequence of observations. Applying particle filtering requires specifying both the parametric form and the parameters of the system, which are often unknown and must be estimated. Gradient-based optimisation techniques cannot be applied directly to standard particle filters, as the filters themselves are not differentiable. However, several recently proposed methods modify the resampling step to make particle filtering differentiable. In this paper, we present an implementation of several such differentiable particle filters (DPFs) with a unified API built on the popular PyTorch framework. Our implementation makes these algorithms easily accessible to a broader research community and facilitates straightforward comparison between them. We validate our framework by reproducing experiments from several existing studies and demonstrate how DPFs can be applied to address several common challenges with state space modelling.
comment: 42 pages, 0 figures, under review at the Journal of Statistical Software, the python package can be found at https://pypi.org/project/pydpf/ , the full documentation at https://python-dpf.readthedocs.io/en/latest/#documentation-index , and the source code including experiments and replication material at https://github.com/John-JoB/pydpf
☆ A Configuration-First Framework for Reproducible, Low-Code Localization
Machine learning is increasingly permeating radio-based localization services. To keep results credible and comparable, everyday workflows should make rigorous experiment specification and exact repeatability the default, without blocking advanced experimentation. However, in practice, researchers face a three-way gap that could be filled by a framework that offers (i) low coding effort for end-to-end studies, (ii) reproducibility by default including versioned code, data, and configurations, controlled randomness, isolated runs, and recorded artifacts, and (iii) built-in extensibility so new models, metrics, and stages can be added with minimal integration effort. Existing tools rarely deliver all three for machine learning in general and localization workflows in particular. In this paper we introduce LOCALIZE, a low-code, configuration-first framework for radio localization in which experiments are declared in human-readable configuration, a workflow orchestrator runs standardized pipelines from data preparation to reporting, and all artifacts, such as datasets, models, metrics, and reports, are versioned. The preconfigured, versioned datasets reduce initial setup and boilerplate, speeding up model development and evaluation. The design, with clear extension points, allows experts to add components without reworking the infrastructure. In a qualitative comparison and a head-to-head study against a plain Jupyter notebook baseline, we show that the framework reduces authoring effort while maintaining comparable runtime and memory behavior. Furthermore, using a Bluetooth Low Energy dataset, we show that scaling across training data (1x to 10x) keeps orchestration overheads bounded as data grows. Overall, the framework makes reproducible machine-learning-based localization experimentation practical, accessible, and extensible.
comment: 20 pages, 7 figures. Preprint submitted to ACM Transactions on Software Engineering and Methodology (TOSEM), 2025
☆ Model Inversion Attacks Meet Cryptographic Fuzzy Extractors
Model inversion attacks pose an open challenge to privacy-sensitive applications that use machine learning (ML) models. For example, face authentication systems use modern ML models to compute embedding vectors from face images of the enrolled users and store them. If leaked, inversion attacks can accurately reconstruct user faces from the leaked vectors. There is no systematic characterization of properties needed in an ideal defense against model inversion, even for the canonical example application of a face authentication system susceptible to data breaches, despite a decade of best-effort solutions. In this paper, we formalize the desired properties of a provably strong defense against model inversion and connect it, for the first time, to the cryptographic concept of fuzzy extractors. We further show that existing fuzzy extractors are insecure for use in ML-based face authentication. We do so through a new model inversion attack called PIPE, which achieves a success rate of over 89% in most cases against prior schemes. We then propose L2FE-Hash, the first candidate fuzzy extractor which supports standard Euclidean distance comparators as needed in many ML-based applications, including face authentication. We formally characterize its computational security guarantees, even in the extreme threat model of full breach of stored secrets, and empirically show its usable accuracy in face authentication for practical face distributions. It offers attack-agnostic security without requiring any re-training of the ML model it protects. Empirically, it nullifies both prior state-of-the-art inversion attacks as well as our new PIPE attack.
Graph Network-based Structural Simulator: Graph Neural Networks for Structural Dynamics
Graph Neural Networks (GNNs) have recently been explored as surrogate models for numerical simulations. While their applications in computational fluid dynamics have been investigated, little attention has been given to structural problems, especially for dynamic cases. To address this gap, we introduce the Graph Network-based Structural Simulator (GNSS), a GNN framework for surrogate modeling of dynamic structural problems. GNSS follows the encode-process-decode paradigm typical of GNN-based machine learning models, and its design makes it particularly suited for dynamic simulations thanks to three key features: (i) expressing node kinematics in node-fixed local frames, which avoids catastrophic cancellation in finite-difference velocities; (ii) employing a sign-aware regression loss, which reduces phase errors in long rollouts; and (iii) using a wavelength-informed connectivity radius, which optimizes graph construction. We evaluate GNSS on a case study involving a beam excited by a 50kHz Hanning-modulated pulse. The results show that GNSS accurately reproduces the physics of the problem over hundreds of timesteps and generalizes to unseen loading conditions, where existing GNNs fail to converge or deliver meaningful predictions. Compared with explicit finite element baselines, GNSS achieves substantial inference speedups while preserving spatial and temporal fidelity. These findings demonstrate that locality-preserving GNNs with physics-consistent update rules are a competitive alternative for dynamic, wave-dominated structural simulations.
comment: 16 pages, 14 figures
☆ Mechanistic Interpretability of RNNs emulating Hidden Markov Models NeurIPS 2025
Recurrent neural networks (RNNs) provide a powerful approach in neuroscience to infer latent dynamics in neural populations and to generate hypotheses about the neural computations underlying behavior. However, past work has focused on relatively simple, input-driven, and largely deterministic behaviors - little is known about the mechanisms that would allow RNNs to generate the richer, spontaneous, and potentially stochastic behaviors observed in natural settings. Modeling with Hidden Markov Models (HMMs) has revealed a segmentation of natural behaviors into discrete latent states with stochastic transitions between them, a type of dynamics that may appear at odds with the continuous state spaces implemented by RNNs. Here we first show that RNNs can replicate HMM emission statistics and then reverse-engineer the trained networks to uncover the mechanisms they implement. In the absence of inputs, the activity of trained RNNs collapses towards a single fixed point. When driven by stochastic input, trajectories instead exhibit noise-sustained dynamics along closed orbits. Rotation along these orbits modulates the emission probabilities and is governed by transitions between regions of slow, noise-driven dynamics connected by fast, deterministic transitions. The trained RNNs develop highly structured connectivity, with a small set of "kick neurons" initiating transitions between these regions. This mechanism emerges during training as the network shifts into a regime of stochastic resonance, enabling it to perform probabilistic computations. Analyses across multiple HMM architectures - fully connected, cyclic, and linear-chain - reveal that this solution generalizes through the modular reuse of the same dynamical motif, suggesting a compositional principle by which RNNs can emulate complex discrete latent dynamics.
comment: Accepted at NeurIPS 2025
☆ Spectral Perturbation Bounds for Low-Rank Approximation with Applications to Privacy NeurIPS 2025
A central challenge in machine learning is to understand how noise or measurement errors affect low-rank approximations, particularly in the spectral norm. This question is especially important in differentially private low-rank approximation, where one aims to preserve the top-$p$ structure of a data-derived matrix while ensuring privacy. Prior work often analyzes Frobenius norm error or changes in reconstruction quality, but these metrics can over- or under-estimate true subspace distortion. The spectral norm, by contrast, captures worst-case directional error and provides the strongest utility guarantees. We establish new high-probability spectral-norm perturbation bounds for symmetric matrices that refine the classical Eckart--Young--Mirsky theorem and explicitly capture interactions between a matrix $A \in \mathbb{R}^{n \times n}$ and an arbitrary symmetric perturbation $E$. Under mild eigengap and norm conditions, our bounds yield sharp estimates for $\|(A + E)_p - A_p\|$, where $A_p$ is the best rank-$p$ approximation of $A$, with improvements of up to a factor of $\sqrt{n}$. As an application, we derive improved utility guarantees for differentially private PCA, resolving an open problem in the literature. Our analysis relies on a novel contour bootstrapping method from complex analysis and extends it to a broad class of spectral functionals, including polynomials and matrix exponentials. Empirical results on real-world datasets confirm that our bounds closely track the actual spectral error under diverse perturbation regimes.
comment: NeurIPS 2025
☆ Subgraph Federated Learning via Spectral Methods NeurIPS
We consider the problem of federated learning (FL) with graph-structured data distributed across multiple clients. In particular, we address the prevalent scenario of interconnected subgraphs, where interconnections between clients significantly influence the learning process. Existing approaches suffer from critical limitations, either requiring the exchange of sensitive node embeddings, thereby posing privacy risks, or relying on computationally-intensive steps, which hinders scalability. To tackle these challenges, we propose FedLap, a novel framework that leverages global structure information via Laplacian smoothing in the spectral domain to effectively capture inter-node dependencies while ensuring privacy and scalability. We provide a formal analysis of the privacy of FedLap, demonstrating that it preserves privacy. Notably, FedLap is the first subgraph FL scheme with strong privacy guarantees. Extensive experiments on benchmark datasets demonstrate that FedLap achieves competitive or superior utility compared to existing techniques.
comment: To be presented at The Annual Conference on Neural Information Processing Systems (NeurIPS) 2025
☆ Continuous subsurface property retrieval from sparse radar observations using physics informed neural networks
Estimating subsurface dielectric properties is essential for applications ranging from environmental surveys of soils to nondestructive evaluation of concrete in infrastructure. Conventional wave inversion methods typically assume few discrete homogeneous layers and require dense measurements or strong prior knowledge of material boundaries, limiting scalability and accuracy in realistic settings where properties vary continuously. We present a physics informed machine learning framework that reconstructs subsurface permittivity as a fully neural, continuous function of depth, trained to satisfy both measurement data and Maxwells equations. We validate the framework with both simulations and custom built radar experiments on multilayered natural materials. Results show close agreement with in-situ permittivity measurements (R^2=0.93), with sensitivity to even subtle variations (Delta eps_r=2). Parametric analysis reveals that accurate profiles can be recovered with as few as three strategically placed sensors in two layer systems. This approach reframes subsurface inversion from boundary-driven to continuous property estimation, enabling accurate characterization of smooth permittivity variations and advancing electromagnetic imaging using low cost radar systems.
comment: 22 pages, 9 main text figures + 2 supplementary figures
☆ Are Language Models Efficient Reasoners? A Perspective from Logic Programming NeurIPS 2025
Modern language models (LMs) exhibit strong deductive reasoning capabilities, yet standard evaluations emphasize correctness while overlooking a key aspect of human-like reasoning: efficiency. In real-world reasoning scenarios, much of the available information is irrelevant, and effective deductive inference requires identifying and ignoring such distractions. We propose a framework for assessing LM reasoning efficiency through the lens of logic programming, introducing a simple method to align proofs written in natural language -- as generated by an LM -- with shortest proofs found by executing the logic program. Efficiency is quantified by measuring how well a model avoids unnecessary inference. Empirically, we construct a dataset of math word problems injected with various number of irrelevant axioms that vary in semantic overlap with the goal theorem. We find that current LMs show marked accuracy declines under such conditions -- even with minimal, domain-consistent distractions -- and the proofs they generate frequently exhibit detours through irrelevant inferences.
comment: Accepted to NeurIPS 2025
☆ Don't Blind Your VLA: Aligning Visual Representations for OOD Generalization
The growing success of Vision-Language-Action (VLA) models stems from the promise that pretrained Vision-Language Models (VLMs) can endow agents with transferable world knowledge and vision-language (VL) grounding, laying a foundation for action models with broader generalization. Yet when these VLMs are adapted to the action modality, it remains unclear to what extent their original VL representations and knowledge are preserved. In this work, we conduct a systematic study of representation retention during VLA fine-tuning, showing that naive action fine-tuning leads to degradation of visual representations. To characterize and measure these effects, we probe VLA's hidden representations and analyze attention maps, further, we design a set of targeted tasks and methods that contrast VLA models with their counterpart VLMs, isolating changes in VL capabilities induced by action fine-tuning. We further evaluate a range of strategies for aligning visual representations and introduce a simple yet effective method that mitigates degradation and yields improved generalization to out-of-distribution (OOD) scenarios. Taken together, our analysis clarifies the trade-off between action fine-tuning and the degradation of VL representations and highlights practical approaches to recover inherited VL capabilities. Code is publicly available: https://blind-vla-paper.github.io
comment: 13 pages, 6 figures
☆ BOLT-GAN: Bayes-Optimal Loss for Stable GAN Training
We introduce BOLT-GAN, a simple yet effective modification of the WGAN framework inspired by the Bayes Optimal Learning Threshold (BOLT). We show that with a Lipschitz continuous discriminator, BOLT-GAN implicitly minimizes a different metric distance than the Earth Mover (Wasserstein) distance and achieves better training stability. Empirical evaluations on four standard image generation benchmarks (CIFAR-10, CelebA-64, LSUN Bedroom-64, and LSUN Church-64) show that BOLT-GAN consistently outperforms WGAN, achieving 10-60% lower Frechet Inception Distance (FID). Our results suggest that BOLT is a broadly applicable principle for enhancing GAN training.
☆ INT v.s. FP: A Comprehensive Study of Fine-Grained Low-bit Quantization Formats
Modern AI hardware, such as Nvidia's Blackwell architecture, is increasingly embracing low-precision floating-point (FP) formats to handle the pervasive activation outliers in Large Language Models (LLMs). Despite this industry trend, a unified comparison of FP and integer (INT) quantization across varying granularities has been missing, leaving algorithm and hardware co-design without clear guidance. This paper fills that gap by systematically investigating the trade-offs between FP and INT formats. We reveal a critical performance crossover: while FP excels in coarse-grained quantization, the comparison at fine-grained (block-wise) levels is more nuanced. Our comprehensive comparison demonstrates that for popular 8-bit fine-grained formats (e.g., MX with block size 32), MXINT8 is superior to its FP counterpart in both algorithmic accuracy and hardware efficiency. However, for 4-bit formats, FP (e.g., MXFP4, NVFP4) often holds an accuracy advantage , though we show that NVINT4 can surpass NVFP4 when outlier-mitigation techniques like Hadamard rotation are applied. We also introduce a symmetric clipping method that resolves gradient bias in fine-grained low-bit INT training, enabling nearly lossless performance for MXINT8 training. These findings challenge the current hardware trajectory, demonstrating that a one-size-fits-all FP approach is suboptimal and advocating that fine-grained INT formats, particularly MXINT8, offer a better balance of accuracy, power, and efficiency for future AI accelerators.
☆ Uncertainty Quantification for Regression: A Unified Framework based on kernel scores
Regression tasks, notably in safety-critical domains, require proper uncertainty quantification, yet the literature remains largely classification-focused. In this light, we introduce a family of measures for total, aleatoric, and epistemic uncertainty based on proper scoring rules, with a particular emphasis on kernel scores. The framework unifies several well-known measures and provides a principled recipe for designing new ones whose behavior, such as tail sensitivity, robustness, and out-of-distribution responsiveness, is governed by the choice of kernel. We prove explicit correspondences between kernel-score characteristics and downstream behavior, yielding concrete design guidelines for task-specific measures. Extensive experiments demonstrate that these measures are effective in downstream tasks and reveal clear trade-offs among instantiations, including robustness and out-of-distribution detection performance.
☆ Feedback Alignment Meets Low-Rank Manifolds: A Structured Recipe for Local Learning
Training deep neural networks (DNNs) with backpropagation (BP) achieves state-of-the-art accuracy but requires global error propagation and full parameterization, leading to substantial memory and computational overhead. Direct Feedback Alignment (DFA) enables local, parallelizable updates with lower memory requirements but is limited by unstructured feedback and poor scalability in deeper architectures, specially convolutional neural networks. To address these limitations, we propose a structured local learning framework that operates directly on low-rank manifolds defined by the Singular Value Decomposition (SVD) of weight matrices. Each layer is trained in its decomposed form, with updates applied to the SVD components using a composite loss that integrates cross-entropy, subspace alignment, and orthogonality regularization. Feedback matrices are constructed to match the SVD structure, ensuring consistent alignment between forward and feedback pathways. Our method reduces the number of trainable parameters relative to the original DFA model, without relying on pruning or post hoc compression. Experiments on CIFAR-10, CIFAR-100, and ImageNet show that our method achieves accuracy comparable to that of BP. Ablation studies confirm the importance of each loss term in the low-rank setting. These results establish local learning on low-rank manifolds as a principled and scalable alternative to full-rank gradient-based training.
☆ Generalized Sobolev IPM for Graph-Based Measures
We study the Sobolev IPM problem for measures supported on a graph metric space, where critic function is constrained to lie within the unit ball defined by Sobolev norm. While Le et al. (2025) achieved scalable computation by relating Sobolev norm to weighted $L^p$-norm, the resulting framework remains intrinsically bound to $L^p$ geometric structure, limiting its ability to incorporate alternative structural priors beyond the $L^p$ geometry paradigm. To overcome this limitation, we propose to generalize Sobolev IPM through the lens of \emph{Orlicz geometric structure}, which employs convex functions to capture nuanced geometric relationships, building upon recent advances in optimal transport theory -- particularly Orlicz-Wasserstein (OW) and generalized Sobolev transport -- that have proven instrumental in advancing machine learning methodologies. This generalization encompasses classical Sobolev IPM as a special case while accommodating diverse geometric priors beyond traditional $L^p$ structure. It however brings up significant computational hurdles that compound those already inherent in Sobolev IPM. To address these challenges, we establish a novel theoretical connection between Orlicz-Sobolev norm and Musielak norm which facilitates a novel regularization for the generalized Sobolev IPM (GSI). By further exploiting the underlying graph structure, we show that GSI with Musielak regularization (GSI-M) reduces to a simple \emph{univariate optimization} problem, achieving remarkably computational efficiency. Empirically, GSI-M is several-order faster than the popular OW in computation, and demonstrates its practical advantages in comparing probability measures on a given graph for document classification and several tasks in topological data analysis.
☆ Learning-Augmented Online Bidding in Stochastic Settings
Online bidding is a classic optimization problem, with several applications in online decision-making, the design of interruptible systems, and the analysis of approximation algorithms. In this work, we study online bidding under learning-augmented settings that incorporate stochasticity, in either the prediction oracle or the algorithm itself. In the first part, we study bidding under distributional predictions, and find Pareto-optimal algorithms that offer the best-possible tradeoff between the consistency and the robustness of the algorithm. In the second part, we study the power and limitations of randomized bidding algorithms, by presenting upper and lower bounds on the consistency/robustness tradeoffs. Previous works focused predominantly on oracles that do not leverage stochastic information on the quality of the prediction, and deterministic algorithms.
☆ Monitoring the calibration of probability forecasts with an application to concept drift detection involving image classification
Machine learning approaches for image classification have led to impressive advances in that field. For example, convolutional neural networks are able to achieve remarkable image classification accuracy across a wide range of applications in industry, defense, and other areas. While these machine learning models boast impressive accuracy, a related concern is how to assess and maintain calibration in the predictions these models make. A classification model is said to be well calibrated if its predicted probabilities correspond with the rates events actually occur. While there are many available methods to assess machine learning calibration and recalibrate faulty predictions, less effort has been spent on developing approaches that continually monitor predictive models for potential loss of calibration as time passes. We propose a cumulative sum-based approach with dynamic limits that enable detection of miscalibration in both traditional process monitoring and concept drift applications. This enables early detection of operational context changes that impact image classification performance in the field. The proposed chart can be used broadly in any situation where the user needs to monitor probability predictions over time for potential lapses in calibration. Importantly, our method operates on probability predictions and event outcomes and does not require under-the-hood access to the machine learning model.
☆ Perturbation Bounds for Low-Rank Inverse Approximations under Noise NeurIPS 2025
Low-rank pseudoinverses are widely used to approximate matrix inverses in scalable machine learning, optimization, and scientific computing. However, real-world matrices are often observed with noise, arising from sampling, sketching, and quantization. The spectral-norm robustness of low-rank inverse approximations remains poorly understood. We systematically study the spectral-norm error $\| (\tilde{A}^{-1})_p - A_p^{-1} \|$ for an $n\times n$ symmetric matrix $A$, where $A_p^{-1}$ denotes the best rank-\(p\) approximation of $A^{-1}$, and $\tilde{A} = A + E$ is a noisy observation. Under mild assumptions on the noise, we derive sharp non-asymptotic perturbation bounds that reveal how the error scales with the eigengap, spectral decay, and noise alignment with low-curvature directions of $A$. Our analysis introduces a novel application of contour integral techniques to the \emph{non-entire} function $f(z) = 1/z$, yielding bounds that improve over naive adaptations of classical full-inverse bounds by up to a factor of $\sqrt{n}$. Empirically, our bounds closely track the true perturbation error across a variety of real-world and synthetic matrices, while estimates based on classical results tend to significantly overpredict. These findings offer practical, spectrum-aware guarantees for low-rank inverse approximations in noisy computational environments.
comment: NeurIPS 2025
☆ A Framework for Bounding Deterministic Risk with PAC-Bayes: Applications to Majority Votes
PAC-Bayes is a popular and efficient framework for obtaining generalization guarantees in situations involving uncountable hypothesis spaces. Unfortunately, in its classical formulation, it only provides guarantees on the expected risk of a randomly sampled hypothesis. This requires stochastic predictions at test time, making PAC-Bayes unusable in many practical situations where a single deterministic hypothesis must be deployed. We propose a unified framework to extract guarantees holding for a single hypothesis from stochastic PAC-Bayesian guarantees. We present a general oracle bound and derive from it a numerical bound and a specialization to majority vote. We empirically show that our approach consistently outperforms popular baselines (by up to a factor of 2) when it comes to generalization bounds on deterministic classifiers.
☆ PitchFlower: A flow-based neural audio codec with pitch controllability
We present PitchFlower, a flow-based neural audio codec with explicit pitch controllability. Our approach enforces disentanglement through a simple perturbation: during training, F0 contours are flattened and randomly shifted, while the true F0 is provided as conditioning. A vector-quantization bottleneck prevents pitch recovery, and a flow-based decoder generates high quality audio. Experiments show that PitchFlower achieves more accurate pitch control than WORLD at much higher audio quality, and outperforms SiFiGAN in controllability while maintaining comparable quality. Beyond pitch, this framework provides a simple and extensible path toward disentangling other speech attributes.
comment: 5 pages, 5 figures
☆ Leveraging an Atmospheric Foundational Model for Subregional Sea Surface Temperature Forecasting
The accurate prediction of oceanographic variables is crucial for understanding climate change, managing marine resources, and optimizing maritime activities. Traditional ocean forecasting relies on numerical models; however, these approaches face limitations in terms of computational cost and scalability. In this study, we adapt Aurora, a foundational deep learning model originally designed for atmospheric forecasting, to predict sea surface temperature (SST) in the Canary Upwelling System. By fine-tuning this model with high-resolution oceanographic reanalysis data, we demonstrate its ability to capture complex spatiotemporal patterns while reducing computational demands. Our methodology involves a staged fine-tuning process, incorporating latitude-weighted error metrics and optimizing hyperparameters for efficient learning. The experimental results show that the model achieves a low RMSE of 0.119K, maintaining high anomaly correlation coefficients (ACC $\approx 0.997$). The model successfully reproduces large-scale SST structures but faces challenges in capturing finer details in coastal regions. This work contributes to the field of data-driven ocean forecasting by demonstrating the feasibility of using deep learning models pre-trained in different domains for oceanic applications. Future improvements include integrating additional oceanographic variables, increasing spatial resolution, and exploring physics-informed neural networks to enhance interpretability and understanding. These advancements can improve climate modeling and ocean prediction accuracy, supporting decision-making in environmental and economic sectors.
comment: 18 pages, 9 figures
☆ Hybrid Quantum-Classical Recurrent Neural Networks
We present a hybrid quantum-classical recurrent neural network (QRNN) architecture in which the entire recurrent core is realized as a parametrized quantum circuit (PQC) controlled by a classical feedforward network. The hidden state is the quantum state of an $n$-qubit PQC, residing in an exponentially large Hilbert space $\mathbb{C}^{2^n}$. The PQC is unitary by construction, making the hidden-state evolution norm-preserving without external constraints. At each timestep, mid-circuit readouts are combined with the input embedding and processed by the feedforward network, which provides explicit classical nonlinearity. The outputs parametrize the PQC, which updates the hidden state via unitary dynamics. The QRNN is compact and physically consistent, and it unifies (i) unitary recurrence as a high-capacity memory, (ii) partial observation via mid-circuit measurements, and (iii) nonlinear classical control for input-conditioned parametrization. We evaluate the model in simulation with up to 14 qubits on sentiment analysis, MNIST, permuted MNIST, copying memory, and language modeling, adopting projective measurements as a limiting case to obtain mid-circuit readouts while maintaining a coherent recurrent quantum memory. We further devise a soft attention mechanism over the mid-circuit readouts in a sequence-to-sequence model and show its effectiveness for machine translation. To our knowledge, this is the first model (RNN or otherwise) grounded in quantum operations to achieve competitive performance against strong classical baselines across a broad class of sequence-learning tasks.
☆ Robust variable selection for spatial point processes observed with noise
We propose a method for variable selection in the intensity function of spatial point processes that combines sparsity-promoting estimation with noise-robust model selection. As high-resolution spatial data becomes increasingly available through remote sensing and automated image analysis, identifying spatial covariates that influence the localization of events is crucial to understand the underlying mechanism. However, results from automated acquisition techniques are often noisy, for example due to measurement uncertainties or detection errors, which leads to spurious displacements and missed events. We study the impact of such noise on sparse point-process estimation across different models, including Poisson and Thomas processes. To improve noise robustness, we propose to use stability selection based on point-process subsampling and to incorporate a non-convex best-subset penalty to enhance model-selection performance. In extensive simulations, we demonstrate that such an approach reliably recovers true covariates under diverse noise scenarios and improves both selection accuracy and stability. We then apply the proposed method to a forestry data set, analyzing the distribution of trees in relation to elevation and soil nutrients in a tropical rain forest. This shows the practical utility of the method, which provides a systematic framework for robust variable selection in spatial point-process models under noise, without requiring additional knowledge of the process.
☆ Error Bounds and Optimal Schedules for Masked Diffusions with Factorized Approximations
Recently proposed generative models for discrete data, such as Masked Diffusion Models (MDMs), exploit conditional independence approximations to reduce the computational cost of popular Auto-Regressive Models (ARMs), at the price of some bias in the sampling distribution. We study the resulting computation-vs-accuracy trade-off, providing general error bounds (in relative entropy) that depend only on the average number of tokens generated per iteration and are independent of the data dimensionality (i.e. sequence length), thus supporting the empirical success of MDMs. We then investigate the gain obtained by using non-constant schedule sizes (i.e. varying the number of unmasked tokens during the generation process) and identify the optimal schedule as a function of a so-called information profile of the data distribution, thus allowing for a principled optimization of schedule sizes. We define methods directly as sampling algorithms and do not use classical derivations as time-reversed diffusion processes, leading us to simple and transparent proofs.
Transformers Provably Learn Directed Acyclic Graphs via Kernel-Guided Mutual Information
Uncovering hidden graph structures underlying real-world data is a critical challenge with broad applications across scientific domains. Recently, transformer-based models leveraging the attention mechanism have demonstrated strong empirical success in capturing complex dependencies within graphs. However, the theoretical understanding of their training dynamics has been limited to tree-like graphs, where each node depends on a single parent. Extending provable guarantees to more general directed acyclic graphs (DAGs) -- which involve multiple parents per node -- remains challenging, primarily due to the difficulty in designing training objectives that enable different attention heads to separately learn multiple different parent relationships. In this work, we address this problem by introducing a novel information-theoretic metric: the kernel-guided mutual information (KG-MI), based on the $f$-divergence. Our objective combines KG-MI with a multi-head attention framework, where each head is associated with a distinct marginal transition kernel to model diverse parent-child dependencies effectively. We prove that, given sequences generated by a $K$-parent DAG, training a single-layer, multi-head transformer via gradient ascent converges to the global optimum in polynomial time. Furthermore, we characterize the attention score patterns at convergence. In addition, when particularizing the $f$-divergence to the KL divergence, the learned attention scores accurately reflect the ground-truth adjacency matrix, thereby provably recovering the underlying graph structure. Experimental results validate our theoretical findings.
☆ Using latent representations to link disjoint longitudinal data for mixed-effects regression
Many rare diseases offer limited established treatment options, leading patients to switch therapies when new medications emerge. To analyze the impact of such treatment switches within the low sample size limitations of rare disease trials, it is important to use all available data sources. This, however, is complicated when usage of measurement instruments change during the observation period, for example when instruments are adapted to specific age ranges. The resulting disjoint longitudinal data trajectories, complicate the application of traditional modeling approaches like mixed-effects regression. We tackle this by mapping observations of each instrument to a aligned low-dimensional temporal trajectory, enabling longitudinal modeling across instruments. Specifically, we employ a set of variational autoencoder architectures to embed item values into a shared latent space for each time point. Temporal disease dynamics and treatment switch effects are then captured through a mixed-effects regression model applied to latent representations. To enable statistical inference, we present a novel statistical testing approach that accounts for the joint parameter estimation of mixed-effects regression and variational autoencoders. The methodology is applied to quantify the impact of treatment switches for patients with spinal muscular atrophy. Here, our approach aligns motor performance items from different measurement instruments for mixed-effects regression and maps estimated effects back to the observed item level to quantify the treatment switch effect. Our approach allows for model selection as well as for assessing effects of treatment switching. The results highlight the potential of modeling in joint latent representations for addressing small data challenges.
comment: 31 pages, 3 figures, 3 tables
☆ Convergence of off-policy TD(0) with linear function approximation for reversible Markov chains
We study the convergence of off-policy TD(0) with linear function approximation when used to approximate the expected discounted reward in a Markov chain. It is well known that the combination of off-policy learning and function approximation can lead to divergence of the algorithm. Existing results for this setting modify the algorithm, for instance by reweighing the updates using importance sampling. This establishes convergence at the expense of additional complexity. In contrast, our approach is to analyse the standard algorithm, but to restrict our attention to the class of reversible Markov chains. We demonstrate convergence under this mild reversibility condition on the structure of the chain, which in many applications can be assumed using domain knowledge. In particular, we establish a convergence guarantee under an upper bound on the discount factor in terms of the difference between the on-policy and off-policy process. This improves upon known results in the literature that state that convergence holds for a sufficiently small discount factor by establishing an explicit bound. Convergence is with probability one and achieves projected Bellman error equal to zero. To obtain these results, we adapt the stochastic approximation framework that was used by Tsitsiklis and Van Roy [1997 for the on-policy case, to the off-policy case. We illustrate our results using different types of reversible Markov chains, such as one-dimensional random walks and random walks on a weighted graph.
☆ FaCT: Faithful Concept Traces for Explaining Neural Network Decisions NeurIPS 2025
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.
comment: Accepted to NeurIPS 2025; Code is available at https://github.com/m-parchami/FaCT
☆ Support Vector Machine-Based Burnout Risk Prediction with an Interactive Interface for Organizational Use
Burnout is a psychological syndrome marked by emotional exhaustion, depersonalization, and reduced personal accomplishment, with a significant impact on individual well-being and organizational performance. This study proposes a machine learning approach to predict burnout risk using the HackerEarth Employee Burnout Challenge dataset. Three supervised algorithms were evaluated: nearest neighbors (KNN), random forest, and support vector machine (SVM), with model performance evaluated through 30-fold cross-validation using the determination coefficient (R2). Among the models tested, SVM achieved the highest predictive performance (R2 = 0.84) and was statistically superior to KNN and Random Forest based on paired $t$-tests. To ensure practical applicability, an interactive interface was developed using Streamlit, allowing non-technical users to input data and receive burnout risk predictions. The results highlight the potential of machine learning to support early detection of burnout and promote data-driven mental health strategies in organizational settings.
comment: 12 pages, including figures and references. Streamlit app available at: https://employee-burnout-svm.streamlit.app/
☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval benchmark, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the vast majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 30 pages, 18 figures, 13 tables
☆ Right for the Right Reasons: Avoiding Reasoning Shortcuts via Prototypical Neurosymbolic AI
Neurosymbolic AI is growing in popularity thanks to its ability to combine neural perception and symbolic reasoning in end-to-end trainable models. However, recent findings reveal these are prone to shortcut reasoning, i.e., to learning unindented concepts--or neural predicates--which exploit spurious correlations to satisfy the symbolic constraints. In this paper, we address reasoning shortcuts at their root cause and we introduce prototypical neurosymbolic architectures. These models are able to satisfy the symbolic constraints (be right) because they have learnt the correct basic concepts (for the right reasons) and not because of spurious correlations, even in extremely low data regimes. Leveraging the theory of prototypical learning, we demonstrate that we can effectively avoid reasoning shortcuts by training the models to satisfy the background knowledge while taking into account the similarity of the input with respect to the handful of labelled datapoints. We extensively validate our approach on the recently proposed rsbench benchmark suite in a variety of settings and tasks with very scarce supervision: we show significant improvements in learning the right concepts both in synthetic tasks (MNIST-EvenOdd and Kand-Logic) and real-world, high-stake ones (BDD-OIA). Our findings pave the way to prototype grounding as an effective, annotation-efficient strategy for safe and reliable neurosymbolic learning.
☆ Gradient-Weight Alignment as a Train-Time Proxy for Generalization in Classification Tasks NeurIPS 2025
Robust validation metrics remain essential in contemporary deep learning, not only to detect overfitting and poor generalization, but also to monitor training dynamics. In the supervised classification setting, we investigate whether interactions between training data and model weights can yield such a metric that both tracks generalization during training and attributes performance to individual training samples. We introduce Gradient-Weight Alignment (GWA), quantifying the coherence between per-sample gradients and model weights. We show that effective learning corresponds to coherent alignment, while misalignment indicates deteriorating generalization. GWA is efficiently computable during training and reflects both sample-specific contributions and dataset-wide learning dynamics. Extensive experiments show that GWA accurately predicts optimal early stopping, enables principled model comparisons, and identifies influential training samples, providing a validation-set-free approach for model analysis directly from the training data.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ An In-Depth Analysis of Cyber Attacks in Secured Platforms
There is an increase in global malware threats. To address this, an encryption-type ransomware has been introduced on the Android operating system. The challenges associated with malicious threats in phone use have become a pressing issue in mobile communication, disrupting user experiences and posing significant privacy threats. This study surveys commonly used machine learning techniques for detecting malicious threats in phones and examines their performance. The majority of past research focuses on customer feedback and reviews, with concerns that people might create false reviews to promote or devalue products and services for personal gain. Hence, the development of techniques for detecting malicious threats using machine learning has been a key focus. This paper presents a comprehensive comparative study of current research on the issue of malicious threats and methods for tackling these challenges. Nevertheless, a huge amount of information is required by these methods, presenting a challenge for developing robust, specialized automated anti-malware systems. This research describes the Android Applications dataset, and the accuracy of the techniques is measured using the accuracy levels of the metrics employed in this study.
☆ Scalable Utility-Aware Multiclass Calibration
Ensuring that classifiers are well-calibrated, i.e., their predictions align with observed frequencies, is a minimal and fundamental requirement for classifiers to be viewed as trustworthy. Existing methods for assessing multiclass calibration often focus on specific aspects associated with prediction (e.g., top-class confidence, class-wise calibration) or utilize computationally challenging variational formulations. In this work, we study scalable \emph{evaluation} of multiclass calibration. To this end, we propose utility calibration, a general framework that measures the calibration error relative to a specific utility function that encapsulates the goals or decision criteria relevant to the end user. We demonstrate how this framework can unify and re-interpret several existing calibration metrics, particularly allowing for more robust versions of the top-class and class-wise calibration metrics, and, going beyond such binarized approaches, toward assessing calibration for richer classes of downstream utilities.
☆ Agentic AI: A Comprehensive Survey of Architectures, Applications, and Future Directions
Agentic AI represents a transformative shift in artificial intelligence, but its rapid advancement has led to a fragmented understanding, often conflating modern neural systems with outdated symbolic models -- a practice known as conceptual retrofitting. This survey cuts through this confusion by introducing a novel dual-paradigm framework that categorizes agentic systems into two distinct lineages: the Symbolic/Classical (relying on algorithmic planning and persistent state) and the Neural/Generative (leveraging stochastic generation and prompt-driven orchestration). Through a systematic PRISMA-based review of 90 studies (2018--2025), we provide a comprehensive analysis structured around this framework across three dimensions: (1) the theoretical foundations and architectural principles defining each paradigm; (2) domain-specific implementations in healthcare, finance, and robotics, demonstrating how application constraints dictate paradigm selection; and (3) paradigm-specific ethical and governance challenges, revealing divergent risks and mitigation strategies. Our analysis reveals that the choice of paradigm is strategic: symbolic systems dominate safety-critical domains (e.g., healthcare), while neural systems prevail in adaptive, data-rich environments (e.g., finance). Furthermore, we identify critical research gaps, including a significant deficit in governance models for symbolic systems and a pressing need for hybrid neuro-symbolic architectures. The findings culminate in a strategic roadmap arguing that the future of Agentic AI lies not in the dominance of one paradigm, but in their intentional integration to create systems that are both adaptable and reliable. This work provides the essential conceptual toolkit to guide future research, development, and policy toward robust and trustworthy hybrid intelligent systems.
GPTOpt: Towards Efficient LLM-Based Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions demands extreme sample efficiency. Classical methods such as Bayesian Optimization (BO) can be effective, but they often require careful parameter tuning to each application domain. At the same time, Large Language Models (LLMs) have shown broad capabilities, yet state-of-the-art models remain limited in solving continuous black-box optimization tasks. We introduce GPTOpt, an LLM-based optimization method that equips LLMs with continuous black-box optimization capabilities. By fine-tuning large language models on extensive synthetic datasets derived from diverse BO parameterizations, GPTOpt leverages LLM pre-training to generalize across optimization tasks. On a variety of black-box optimization benchmarks, GPTOpt surpasses traditional optimizers, highlighting the capacity of LLMs for advanced numerical reasoning and introducing a flexible framework for global optimization without parameter tuning.
☆ A Deep Learning Framework for Multi-Operator Learning: Architectures and Approximation Theory
While many problems in machine learning focus on learning mappings between finite-dimensional spaces, scientific applications require approximating mappings between function spaces, i.e., operators. We study the problem of learning collections of operators and provide both theoretical and empirical advances. We distinguish between two regimes: (i) multiple operator learning, where a single network represents a continuum of operators parameterized by a parametric function, and (ii) learning several distinct single operators, where each operator is learned independently. For the multiple operator case, we introduce two new architectures, $\mathrm{MNO}$ and $\mathrm{MONet}$, and establish universal approximation results in three settings: continuous, integrable, or Lipschitz operators. For the latter, we further derive explicit scaling laws that quantify how the network size must grow to achieve a target approximation accuracy. For learning several single operators, we develop a framework for balancing architectural complexity across subnetworks and show how approximation order determines computational efficiency. Empirical experiments on parametric PDE benchmarks confirm the strong expressive power and efficiency of the proposed architectures. Overall, this work establishes a unified theoretical and practical foundation for scalable neural operator learning across multiple operators.
Prompt Estimation from Prototypes for Federated Prompt Tuning of Vision Transformers
Visual Prompt Tuning (VPT) of pre-trained Vision Transformers (ViTs) has proven highly effective as a parameter-efficient fine-tuning technique for adapting large models to downstream tasks with limited data. Its parameter efficiency makes it particularly suitable for Federated Learning (FL), where both communication and computation budgets are often constrained. However, global prompt tuning struggles to generalize across heterogeneous clients, while personalized tuning overfits to local data and lacks generalization. We propose PEP-FedPT (Prompt Estimation from Prototypes for Federated Prompt Tuning), a unified framework designed to achieve both generalization and personalization in federated prompt tuning of ViTs. Within this framework, we introduce the novel Class-Contextualized Mixed Prompt (CCMP) - based on class-specific prompts maintained alongside a globally shared prompt. For each input, CCMP adaptively combines class-specific prompts using weights derived from global class prototypes and client class priors. This approach enables per-sample prompt personalization without storing client-dependent trainable parameters. The prompts are collaboratively optimized via traditional federated averaging technique on the same. Comprehensive evaluations on CIFAR-100, TinyImageNet, DomainNet, and iNaturalist datasets demonstrate that PEP-FedPT consistently surpasses the state-of-the-art baselines under diverse data heterogeneity scenarios, establishing a strong foundation for efficient and generalizable federated prompt tuning of Vision Transformers.
☆ Position: Biology is the Challenge Physics-Informed ML Needs to Evolve
Physics-Informed Machine Learning (PIML) has successfully integrated mechanistic understanding into machine learning, particularly in domains governed by well-known physical laws. This success has motivated efforts to apply PIML to biology, a field rich in dynamical systems but shaped by different constraints. Biological modeling, however, presents unique challenges: multi-faceted and uncertain prior knowledge, heterogeneous and noisy data, partial observability, and complex, high-dimensional networks. In this position paper, we argue that these challenges should not be seen as obstacles to PIML, but as catalysts for its evolution. We propose Biology-Informed Machine Learning (BIML): a principled extension of PIML that retains its structural grounding while adapting to the practical realities of biology. Rather than replacing PIML, BIML retools its methods to operate under softer, probabilistic forms of prior knowledge. We outline four foundational pillars as a roadmap for this transition: uncertainty quantification, contextualization, constrained latent structure inference, and scalability. Foundation Models and Large Language Models will be key enablers, bridging human expertise with computational modeling. We conclude with concrete recommendations to build the BIML ecosystem and channel PIML-inspired innovation toward challenges of high scientific and societal relevance.
☆ A Convexity-dependent Two-Phase Training Algorithm for Deep Neural Networks
The key task of machine learning is to minimize the loss function that measures the model fit to the training data. The numerical methods to do this efficiently depend on the properties of the loss function. The most decisive among these properties is the convexity or non-convexity of the loss function. The fact that the loss function can have, and frequently has, non-convex regions has led to a widespread commitment to non-convex methods such as Adam. However, a local minimum implies that, in some environment around it, the function is convex. In this environment, second-order minimizing methods such as the Conjugate Gradient (CG) give a guaranteed superlinear convergence. We propose a novel framework grounded in the hypothesis that loss functions in real-world tasks swap from initial non-convexity to convexity towards the optimum. This is a property we leverage to design an innovative two-phase optimization algorithm. The presented algorithm detects the swap point by observing the gradient norm dependence on the loss. In these regions, non-convex (Adam) and convex (CG) algorithms are used, respectively. Computing experiments confirm the hypothesis that this simple convexity structure is frequent enough to be practically exploited to substantially improve convergence and accuracy.
comment: Appeared on KDIR IC3K Conference 2025 (Best Paper Award)
☆ Parameter Averaging in Link Prediction
Ensemble methods are widely employed to improve generalization in machine learning. This has also prompted the adoption of ensemble learning for the knowledge graph embedding (KGE) models in performing link prediction. Typical approaches to this end train multiple models as part of the ensemble, and the diverse predictions are then averaged. However, this approach has some significant drawbacks. For instance, the computational overhead of training multiple models increases latency and memory overhead. In contrast, model merging approaches offer a promising alternative that does not require training multiple models. In this work, we introduce model merging, specifically weighted averaging, in KGE models. Herein, a running average of model parameters from a training epoch onward is maintained and used for predictions. To address this, we additionally propose an approach that selectively updates the running average of the ensemble model parameters only when the generalization performance improves on a validation dataset. We evaluate these two different weighted averaging approaches on link prediction tasks, comparing the state-of-the-art benchmark ensemble approach. Additionally, we evaluate the weighted averaging approach considering literal-augmented KGE models and multi-hop query answering tasks as well. The results demonstrate that the proposed weighted averaging approach consistently improves performance across diverse evaluation settings.
☆ Analysis of Semi-Supervised Learning on Hypergraphs
Hypergraphs provide a natural framework for modeling higher-order interactions, yet their theoretical underpinnings in semi-supervised learning remain limited. We provide an asymptotic consistency analysis of variational learning on random geometric hypergraphs, precisely characterizing the conditions ensuring the well-posedness of hypergraph learning as well as showing convergence to a weighted $p$-Laplacian equation. Motivated by this, we propose Higher-Order Hypergraph Learning (HOHL), which regularizes via powers of Laplacians from skeleton graphs for multiscale smoothness. HOHL converges to a higher-order Sobolev seminorm. Empirically, it performs strongly on standard baselines.
♻ ☆ 3D Optimization for AI Inference Scaling: Balancing Accuracy, Cost, and Latency
AI inference scaling is often tuned through 1D heuristics (a fixed reasoning passes) or 2D bivariate trade-offs (e.g., performance vs. compute), which fail to consider cost and latency constraints. We introduce a 3D optimization framework that jointly calibrates accuracy, cost, and latency within a unified decision space, enabling constraints-aware inference scaling. Using Monte Carlo simulations across three representative scenarios and nine simulated large language models, we evaluate four optimization methods to address the 3D multi-objective optimization (MOO) problem. Framing inference scaling in MOO shapes a feasible space that 1D and 2D optimizations fail to capture, enabling environmentadaptive selection of the inference scaling k. Results show that knee-point optimization achieves the best balance, while accuracy-maximization remains favorable when precision is prioritized. The framework establishes a theoretical foundation for deployment-aware inference scaling across diverse operational contexts.
♻ ☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 27 pages, 8 figures, 5 tables. Minor update: added corrected acknowledgments and corrected a misstated hyperparameter value (noted in footnote) for reproducibility. Submitted to AAS Journals. Comments welcome
♻ ☆ Curiosity-driven RL for symbolic equation solving NeurIPS 2025
We explore if RL can be useful for symbolic mathematics. Previous work showed contrastive learning can solve linear equations in one variable. We show model-free PPO \cite{schulman2017proximal} augmented with curiosity-based exploration and graph-based actions can solve nonlinear equations such as those involving radicals, exponentials, and trig functions. Our work suggests curiosity-based exploration may be useful for general symbolic reasoning tasks.
comment: Accepted at the NeurIPS 2025 MATH-AI Workshop
♻ ☆ The Price equation reveals a universal force-metric-bias law of algorithmic learning and natural selection
Diverse learning algorithms, optimization methods, and natural selection share a common mathematical structure, despite their apparent differences. Here I show that a simple notational partitioning of change by the Price equation reveals a universal force-metric-bias (FMB) law: $\Delta\mathbf{\theta} = \mathbf{M}\,\mathbf{f} + \mathbf{b} + \mathbf{\xi}$. The force $\mathbf{f}$ drives improvement in parameters, $\Delta\mathbf{\theta}$, in proportion to the slope of performance with respect to the parameters. The metric $\mathbf{M}$ rescales movement by inverse curvature. The bias $\mathbf{b}$ adds momentum or changes in the frame of reference. The noise $\mathbf{\xi}$ enables exploration. This framework unifies natural selection, Bayesian updating, Newton's method, stochastic gradient descent, stochastic Langevin dynamics, Adam optimization, and most other algorithms as special cases of the same underlying process. The Price equation also reveals why Fisher information, Kullback-Leibler divergence, and d'Alembert's principle arise naturally in learning dynamics. By exposing this common structure, the FMB law provides a principled foundation for understanding, comparing, and designing learning algorithms across disciplines.
comment: Version 2: fixed definition of force in abstract; Version 3: added citations and some minor editing
♻ ☆ ASGO: Adaptive Structured Gradient Optimization
Training deep neural networks is a structured optimization problem, because the parameters are naturally represented by matrices and tensors rather than by vectors. Under this structural representation, it has been widely observed that gradients are low-rank and Hessians are approximately block diagonal. These structured properties are crucial for designing efficient optimization algorithms, but are not utilized by many current popular optimizers like Adam. In this paper, we present a novel optimization algorithm ASGO that capitalizes on these properties by employing a preconditioner that is adaptively updated using structured gradients. By a fine-grained theoretical analysis, ASGO is proven to achieve superior convergence rates compared to existing structured gradient methods. Based on this convergence theory, we further demonstrate that ASGO can benefit from low-rank gradients and block diagonal Hessians. We also discuss practical modifications of ASGO and empirically verify ASGO's effectiveness on language model tasks. Code is available at https://github.com/infinity-stars/ASGO.
comment: 39 pages
♻ ☆ Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks
Understanding the inductive bias and generalization properties of large overparametrized machine learning models requires to characterize the dynamics of the training algorithm. We study the learning dynamics of large two-layer neural networks via dynamical mean field theory, a well established technique of non-equilibrium statistical physics. We show that, for large network width $m$, and large number of samples per input dimension $n/d$, the training dynamics exhibits a separation of timescales which implies: $(i)$~The emergence of a slow time scale associated with the growth in Gaussian/Rademacher complexity of the network; $(ii)$~Inductive bias towards small complexity if the initialization has small enough complexity; $(iii)$~A dynamical decoupling between feature learning and overfitting regimes; $(iv)$~A non-monotone behavior of the test error, associated `feature unlearning' regime at large times.
comment: 88 pages; 63 pdf figures
♻ ☆ SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning NeurIPS 2025
Multimodal in-context learning (ICL) remains underexplored despite significant potential for domains such as medicine. Clinicians routinely encounter diverse, specialized tasks requiring adaptation from limited examples, such as drawing insights from a few relevant prior cases or considering a constrained set of differential diagnoses. While multimodal large language models (MLLMs) have shown advances in medical visual question answering (VQA), their ability to learn multimodal tasks from context is largely unknown. We introduce SMMILE, the first expert-driven multimodal ICL benchmark for medical tasks. Eleven medical experts curated problems, each including a multimodal query and multimodal in-context examples as task demonstrations. SMMILE encompasses 111 problems (517 question-image-answer triplets) covering 6 medical specialties and 13 imaging modalities. We further introduce SMMILE++, an augmented variant with 1038 permuted problems. A comprehensive evaluation of 15 MLLMs demonstrates that most models exhibit moderate to poor multimodal ICL ability in medical tasks. In open-ended evaluations, ICL contributes only an 8% average improvement over zero-shot on SMMILE and 9.4% on SMMILE++. We observe a susceptibility for irrelevant in-context examples: even a single noisy or irrelevant example can degrade performance by up to 9.5%. Moreover, we observe that MLLMs are affected by a recency bias, where placing the most relevant example last can lead to substantial performance improvements of up to 71%. Our findings highlight critical limitations and biases in current MLLMs when learning multimodal medical tasks from context. SMMILE is available at https://smmile-benchmark.github.io.
comment: NeurIPS 2025 (Datasets & Benchmarks Track)
♻ ☆ Exact Sequence Interpolation with Transformers SC
We prove that transformers can exactly interpolate datasets of finite input sequences in $\mathbb{R}^d$, $d\geq 2$, with corresponding output sequences of smaller or equal length. Specifically, given $N$ sequences of arbitrary but finite lengths in $\mathbb{R}^d$ and output sequences of lengths $m^1, \dots, m^N \in \mathbb{N}$, we construct a transformer with $\mathcal{O}(\sum_{j=1}^N m^j)$ blocks and $\mathcal{O}(d \sum_{j=1}^N m^j)$ parameters that exactly interpolates the dataset. Our construction provides complexity estimates that are independent of the input sequence length, by alternating feed-forward and self-attention layers and by capitalizing on the clustering effect inherent to the latter. Our novel constructive method also uses low-rank parameter matrices in the self-attention mechanism, a common feature of practical transformer implementations. These results are first established in the hardmax self-attention setting, where the geometric structure permits an explicit and quantitative analysis, and are then extended to the softmax setting. Finally, we demonstrate the applicability of our exact interpolation construction to learning problems, in particular by providing convergence guarantees to a global minimizer under regularized training strategies. Our analysis contributes to the theoretical understanding of transformer models, offering an explanation for their excellent performance in exact sequence-to-sequence interpolation tasks.
comment: 27 pages, 9 figures. Funded by the European Union (Horizon Europe MSCA project ModConFlex, grant number 101073558)
♻ ☆ MP-FVM: Enhancing Finite Volume Method for Water Infiltration Modeling in Unsaturated Soils via Message-passing Encoder-decoder Network
The spatiotemporal water flow dynamics in unsaturated soils can generally be modeled by the Richards equation. To overcome the computational challenges associated with solving this highly nonlinear partial differential equation (PDE), we present a novel solution algorithm, which we name as the MP-FVM (Message Passing-Finite Volume Method), to holistically integrate adaptive fixed-point iteration scheme, encoder-decoder neural network architecture, Sobolev training, and message passing mechanism in a finite volume discretization framework. We thoroughly discuss the need and benefits of introducing these components to achieve synergistic improvements in accuracy and stability of the solution. We also show that our MP-FVM algorithm can accurately solve the mixed-form $n$-dimensional Richards equation with guaranteed convergence under reasonable assumptions. Through several illustrative examples, we demonstrate that our MP-FVM algorithm not only achieves superior accuracy, but also better preserves the underlying physical laws and mass conservation of the Richards equation compared to state-of-the-art solution algorithms and the commercial HYDRUS solver.
comment: 36 pages, 14 figures, Accepted by Computers and Geotechnics
♻ ☆ Towards Scaling Deep Neural Networks with Predictive Coding: Theory and Practice
Backpropagation (BP) is the standard algorithm for training the deep neural networks that power modern artificial intelligence including large language models. However, BP is energy inefficient and unlikely to be implemented by the brain. This thesis studies an alternative, potentially more efficient brain-inspired algorithm called predictive coding (PC). Unlike BP, PC networks (PCNs) perform inference by iterative equilibration of neuron activities before learning or weight updates. Recent work has suggested that this iterative inference procedure provides a range of benefits over BP, such as faster training. However, these advantages have not been consistently observed, the inference and learning dynamics of PCNs are still poorly understood, and deep PCNs remain practically untrainable. Here, we make significant progress towards scaling PCNs by taking a theoretical approach grounded in optimisation theory. First, we show that the learning dynamics of PC can be understood as an approximate trust-region method using second-order information, despite explicitly using only first-order local updates. Second, going beyond this approximation, we show that PC can in principle make use of arbitrarily higher-order information, such that for feedforward networks the effective landscape on which PC learns is far more benign and robust to vanishing gradients than the (mean squared error) loss landscape. Third, motivated by a study of the inference dynamics of PCNs, we propose a new parameterisation called "$\mu$PC", which for the first time allows stable training of 100+ layer networks with little tuning and competitive performance on simple tasks. Overall, this thesis significantly advances our fundamental understanding of the inference and learning dynamics of PCNs, while highlighting the need for future research to focus on hardware co-design if PC is to compete with BP at scale.
comment: PhD thesis
♻ ☆ Score-Aware Policy-Gradient and Performance Guarantees using Local Lyapunov Stability
In this paper, we introduce a policy-gradient method for model-based reinforcement learning (RL) that exploits a type of stationary distributions commonly obtained from Markov decision processes (MDPs) in stochastic networks, queueing systems, and statistical mechanics. Specifically, when the stationary distribution of the MDP belongs to an exponential family that is parametrized by policy parameters, we can improve existing policy gradient methods for average-reward RL. Our key identification is a family of gradient estimators, called score-aware gradient estimators (SAGEs), that enable policy gradient estimation without relying on value-function estimation in the aforementioned setting. We show that SAGE-based policy-gradient locally converges, and we obtain its regret. This includes cases when the state space of the MDP is countable and unstable policies can exist. Under appropriate assumptions such as starting sufficiently close to a maximizer and the existence of a local Lyapunov function, the policy under SAGE-based stochastic gradient ascent has an overwhelming probability of converging to the associated optimal policy. Furthermore, we conduct a numerical comparison between a SAGE-based policy-gradient method and an actor-critic method on several examples inspired from stochastic networks, queueing systems, and models derived from statistical physics. Our results demonstrate that a SAGE-based method finds close-to-optimal policies faster than an actor-critic method.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{non-linear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing its Jacobian matrix to be diagonal, the full sequence can be solved in parallel, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Importantly, the diagonal Jacobian structure of our model results in no performance loss compared to the original model with dense Jacobian, and the approach can be generalized to other non-linear recurrent models, demonstrating broader applicability. On a suite of long-range forecasting tasks, we demonstrate that LrcSSM outperforms Transformers, LRU, S5, and Mamba.
♻ ☆ Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs ICDM 2025
The complexity and interconnectivity of entities involved in money laundering demand investigative reasoning over graph-structured data. This paper explores the use of large language models (LLMs) as reasoning engines over localized subgraphs extracted from a financial knowledge graph. We propose a lightweight pipeline that retrieves k-hop neighborhoods around entities of interest, serializes them into structured text, and prompts an LLM via few-shot in-context learning to assess suspiciousness and generate justifications. Using synthetic anti-money laundering (AML) scenarios that reflect common laundering behaviors, we show that LLMs can emulate analyst-style logic, highlight red flags, and provide coherent explanations. While this study is exploratory, it illustrates the potential of LLM-based graph reasoning in AML and lays groundwork for explainable, language-driven financial crime analytics.
comment: Accepted at AI4FCF-ICDM 2025
♻ ☆ The Sign Estimator: LLM Alignment in the Face of Choice Heterogeneity
Traditional LLM alignment methods are vulnerable to heterogeneity in human preferences. Fitting a na\"ive probabilistic model to pairwise comparison data (say over prompt-completion pairs) yields an inconsistent estimate of the population-average utility -a canonical measure of social welfare. We propose a new method, dubbed the sign estimator, that provides a simple, provably consistent, and efficient estimator by replacing cross-entropy with binary classification loss in the aggregation step. This simple modification recovers consistent ordinal alignment under mild assumptions and achieves the first polynomial finite-sample error bounds in this setting. In realistic simulations of LLM alignment using digital twins, the sign estimator substantially reduces preference distortion over a panel of simulated personas, cutting (angular) estimation error by nearly 35% and decreasing disagreement with true population preferences from 12% to 8% compared to standard RLHF. Our method also compares favorably to panel data heuristics that explicitly model user heterogeneity and require tracking individual-level preference data-all while maintaining the implementation simplicity of existing LLM alignment pipelines.
♻ ☆ Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization
Recent studies indicate that deep neural networks degrade in generalization performance under noisy supervision. Existing methods focus on isolating clean subsets or correcting noisy labels, facing limitations such as high computational costs, heavy hyperparameter tuning process, and coarse-grained optimization. To address these challenges, we propose a novel two-stage noisy learning framework that enables instance-level optimization through a dynamically weighted loss function, avoiding hyperparameter tuning. To obtain stable and accurate information about noise modeling, we introduce a simple yet effective metric, termed wrong event, which dynamically models the cleanliness and difficulty of individual samples while maintaining computational costs. Our framework first collects wrong event information and builds a strong base model. Then we perform noise-robust training on the base model, using a probabilistic model to handle the wrong event information of samples. Experiments on five synthetic and real-world LNL benchmarks demonstrate our method surpasses state-of-the-art methods in performance, achieves a nearly 75% reduction in computational time and improves model scalability.
♻ ☆ Decom-Renorm-Merge: Model Merging on the Right Space Improves Multitasking
In the era of large-scale training, model merging has evolved into a tool for creating multitasking models efficiently. It enables the knowledge of models to be fused, without the need for heavy computation as required in traditional multitask learning. Existing merging methods often assume that entries at identical positions in weight matrices serve the same function, enabling straightforward entry-wise comparison and merging. However, this assumption overlooks the complexity of finetuned neural networks, where neurons may develop distinct feature compositions, making direct entry-wise merging problematic. We present Decom-Renorm-Merge (DRM), a simple yet effective approach that leverages Singular Value Decomposition to decompose and coordinate weight matrices into an aligned joint space, where entry-wise merging becomes possible. We showcase the effectiveness of DRM across various settings ranging from smaller encoder-based such as ViT and DeBERTa, encoder-decoder-based such as T5, and larger decoder-based such as Llama3.1-8B. Our experimental results show that DRM outperforms several state-of-the-art merging techniques across full finetuning and low-rank adaptation settings. Moreover, our analysis reveals renormalization as the crucial component for creating a robust and even joint space for merging, significantly contributing to the method's performance.
comment: Code and models are available at https://github.com/yophis/decom-renorm-merge
♻ ☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
To effectively process impulse noise for narrowband powerline communications (NB-PLCs) transceivers, capturing comprehensive statistics of nonperiodic asynchronous impulsive noise (APIN) is a critical task. However, existing mathematical noise generative models only capture part of the characteristics of noise. In this study, we propose a novel generative adversarial network (GAN) called noise generation GAN (NGGAN) that learns the complicated characteristics of practically measured noise samples for data synthesis. To closely match the statistics of complicated noise over the NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. To train NGGAN, we adhere to the following principles: 1) we design the length of input signals that the NGGAN model can fit to facilitate cyclostationary noise generation; 2) the Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and training data; and 3) to measure the similarity performances of GAN-based models based on the mathematical and practically measured datasets, we conduct both quantitative and qualitative analyses. The training datasets include: 1) a piecewise spectral cyclostationary Gaussian model (PSCGM); 2) a frequency-shift (FRESH) filter; and 3) practical measurements from NB-PLC systems. Simulation results demonstrate that the generated noise samples from the proposed NGGAN are highly close to the real noise samples. The principal component analysis (PCA) scatter plots and Fr\'echet inception distance (FID) analysis have shown that NGGAN outperforms other GAN-based models by generating noise samples with superior fidelity and higher diversity.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, 2025
♻ ☆ A method for the systematic generation of graph XAI benchmarks via Weisfeiler-Leman coloring
Graph neural networks have become the de facto model for learning from structured data. However, the decision-making process of GNNs remains opaque to the end user, which undermines their use in safety-critical applications. Several explainable AI techniques for graphs have been developed to address this major issue. Focusing on graph classification, these explainers identify subgraph motifs that explain predictions. Therefore, a robust benchmarking of graph explainers is required to ensure that the produced explanations are of high quality, i.e., aligned with the GNN's decision process. However, current graph-XAI benchmarks are limited to simplistic synthetic datasets or a few real-world tasks curated by domain experts, hindering rigorous and reproducible evaluation, and consequently stalling progress in the field. To overcome these limitations, we propose a method to automate the construction of graph XAI benchmarks from generic graph classification datasets. Our approach leverages the Weisfeiler-Leman color refinement algorithm to efficiently perform approximate subgraph matching and mine class-discriminating motifs, which serve as proxy ground-truth class explanations. At the same time, we ensure that these motifs can be learned by GNNs because their discriminating power aligns with WL expressiveness. This work also introduces the OpenGraphXAI benchmark suite, which consists of 15 ready-made graph-XAI datasets derived by applying our method to real-world molecular classification datasets. The suite is available to the public along with a codebase to generate over 2,000 additional graph-XAI benchmarks. Finally, we present a use case that illustrates how the suite can be used to assess the effectiveness of a selection of popular graph explainers, demonstrating the critical role of a sufficiently large benchmark collection for improving the significance of experimental results.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Pearl: A Foundation Model for Placing Every Atom in the Right Location
Accurately predicting the three-dimensional structures of protein-ligand complexes remains a fundamental challenge in computational drug discovery that limits the pace and success of therapeutic design. Deep learning methods have recently shown strong potential as structural prediction tools, achieving promising accuracy across diverse biomolecular systems. However, their performance and utility are constrained by scarce experimental data, inefficient architectures, physically invalid poses, and the limited ability to exploit auxiliary information available at inference. To address these issues, we introduce Pearl (Placing Every Atom in the Right Location), a foundation model for protein-ligand cofolding at scale. Pearl addresses these challenges with three key innovations: (1) training recipes that include large-scale synthetic data to overcome data scarcity; (2) architectures that incorporate an SO(3)-equivariant diffusion module to inherently respect 3D rotational symmetries, improving generalization and sample efficiency, and (3) controllable inference, including a generalized multi-chain templating system supporting both protein and non-polymeric components as well as dual unconditional/conditional modes. Pearl establishes a new state-of-the-art performance in protein-ligand cofolding. On the key metric of generating accurate (RMSD < 2 \r{A}) and physically valid poses, Pearl surpasses AlphaFold 3 and other open source baselines on the public Runs N' Poses and PoseBusters benchmarks, delivering 14.5% and 14.2% improvements, respectively, over the next best model. In the pocket-conditional cofolding regime, Pearl delivers $3.6\times$ improvement on a proprietary set of challenging, real-world drug targets at the more rigorous RMSD < 1 \r{A} threshold. Finally, we demonstrate that model performance correlates directly with synthetic dataset size used in training.
comment: technical report
♻ ☆ Auto-Adaptive PINNs with Applications to Phase Transitions
We propose an adaptive sampling method for the training of Physics Informed Neural Networks (PINNs) which allows for sampling based on an arbitrary problem-specific heuristic which may depend on the network and its gradients. In particular we focus our analysis on the Allen-Cahn equations, attempting to accurately resolve the characteristic interfacial regions using a PINN without any post-hoc resampling. In experiments, we show the effectiveness of these methods over residual-adaptive frameworks.
♻ ☆ Continuous Domain Generalization NeurIPS25
Real-world data distributions often shift continuously across multiple latent factors such as time, geography, and socioeconomic contexts. However, existing domain generalization approaches typically treat domains as discrete or as evolving along a single axis (e.g., time). This oversimplification fails to capture the complex, multidimensional nature of real-world variation. This paper introduces the task of Continuous Domain Generalization (CDG), which aims to generalize predictive models to unseen domains defined by arbitrary combinations of continuous variations. We present a principled framework grounded in geometric and algebraic theories, showing that optimal model parameters across domains lie on a low-dimensional manifold. To model this structure, we propose a Neural Lie Transport Operator (NeuralLio), which enables structure-preserving parameter transitions by enforcing geometric continuity and algebraic consistency. To handle noisy or incomplete domain variation descriptors, we introduce a gating mechanism to suppress irrelevant dimensions and a local chart-based strategy for robust generalization. Extensive experiments on synthetic and real-world datasets, including remote sensing, scientific documents, and traffic forecasting, demonstrate that our method significantly outperforms existing baselines in both generalization accuracy and robustness.
comment: 23 pages, 9 figures. Accepted by NeurIPS25
♻ ☆ SGFusion: Stochastic Geographic Gradient Fusion in Federated Learning
This paper proposes Stochastic Geographic Gradient Fusion (SGFusion), a novel training algorithm to leverage the geographic information of mobile users in Federated Learning (FL). SGFusion maps the data collected by mobile devices onto geographical zones and trains one FL model per zone, which adapts well to the data and behaviors of users in that zone. SGFusion models the local data-based correlation among geographical zones as a hierarchical random graph (HRG) optimized by Markov Chain Monte Carlo sampling. At each training step, every zone fuses its local gradient with gradients derived from a small set of other zones sampled from the HRG. This approach enables knowledge fusion and sharing among geographical zones in a probabilistic and stochastic gradient fusion process with self-attention weights, such that "more similar" zones have "higher probabilities" of sharing gradients with "larger attention weights." SGFusion remarkably improves model utility without introducing undue computational cost. Extensive theoretical and empirical results using a heart-rate prediction dataset collected across 6 countries show that models trained with SGFusion converge with upper-bounded expected errors and significantly improve utility in all countries compared to existing approaches without notable cost in system scalability.
♻ ☆ Tracking the Median of Gradients with a Stochastic Proximal Point Method
There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first derive iterative methods based on the stochastic proximal point method for computing the median gradient and generalizations thereof. Then we propose an algorithm estimating the median gradient across iterations, and find that several well known methods are particular cases of this framework. For instance, we observe that different forms of clipping allow to compute online estimators of the median of gradients, in contrast to (heavy-ball) momentum, which corresponds to an online estimator of the mean. Finally, we provide a theoretical framework for an algorithm computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise.
♻ ☆ TuneNSearch: a hybrid transfer learning and local search approach for solving vehicle routing problems
This paper introduces TuneNSearch, a hybrid transfer learning and local search approach for addressing diverse variants of the vehicle routing problem (VRP). Our method uses reinforcement learning to generate high-quality solutions, which are subsequently refined by an efficient local search procedure. To ensure broad adaptability across VRP variants, TuneNSearch begins with a pre-training phase on the multi-depot VRP (MDVRP), followed by a fine-tuning phase to adapt it to other problem formulations. The learning phase utilizes a Transformer-based architecture enhanced with edge-aware attention, which integrates edge distances directly into the attention mechanism to better capture spatial relationships inherent to routing problems. We show that the pre-trained model generalizes effectively to single-depot variants, achieving performance comparable to models trained specifically on single-depot instances. Simultaneously, it maintains strong performance on multi-depot variants, an ability that models pre-trained solely on single-depot problems lack. For example, on 100-node instances of multi-depot variants, TuneNSearch outperforms a model pre-trained on the CVRP by 44%. In contrast, on 100-node instances of single-depot variants, TuneNSearch performs similar to the CVRP model. To validate the effectiveness of our method, we conduct extensive computational experiments on public benchmark and randomly generated instances. Across multiple CVRPLIB datasets, TuneNSearch consistently achieves performance deviations of less than 3% from the best-known solutions in the literature, compared to 6-25% for other neural-based models, depending on problem complexity. Overall, our approach demonstrates strong generalization to different problem sizes, instance distributions, and VRP formulations, while maintaining polynomial runtime complexity despite the integration of the local search algorithm.
♻ ☆ Lift What You Can: Green Online Learning with Heterogeneous Ensembles
Ensemble methods for stream mining necessitate managing multiple models and updating them as data distributions evolve. Considering the calls for more sustainability, established methods are however not sufficiently considerate of ensemble members' computational expenses and instead overly focus on predictive capabilities. To address these challenges and enable green online learning, we propose heterogeneous online ensembles (HEROS). For every training step, HEROS chooses a subset of models from a pool of models initialized with diverse hyperparameter choices under resource constraints to train. We introduce a Markov decision process to theoretically capture the trade-offs between predictive performance and sustainability constraints. Based on this framework, we present different policies for choosing which models to train on incoming data. Most notably, we propose the novel $\zeta$-policy, which focuses on training near-optimal models at reduced costs. Using a stochastic model, we theoretically prove that our $\zeta$-policy achieves near optimal performance while using fewer resources compared to the best performing policy. In our experiments across 11 benchmark datasets, we find empiric evidence that our $\zeta$-policy is a strong contribution to the state-of-the-art, demonstrating highly accurate performance, in some cases even outperforming competitors, and simultaneously being much more resource-friendly.
♻ ☆ Reinforcement Learning Teachers of Test Time Scaling NeurIPS 2025
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework. Code available at: https://github.com/SakanaAI/RLT
comment: Accepted at NeurIPS 2025
♻ ☆ Group Interventions on Deep Networks for Causal Discovery in Subsystems
Causal discovery uncovers complex relationships between variables, enhancing predictions, decision-making, and insights into real-world systems, especially in nonlinear multivariate time series. However, most existing methods primarily focus on pairwise cause-effect relationships, overlooking interactions among groups of variables, i.e., subsystems and their collective causal influence. In this study, we introduce gCDMI, a novel multi-group causal discovery method that leverages group-level interventions on trained deep neural networks and employs model invariance testing to infer causal relationships. Our approach involves three key steps. First, we use deep learning to jointly model the structural relationships among groups of all time series. Second, we apply group-wise interventions to the trained model. Finally, we conduct model invariance testing to determine the presence of causal links among variable groups. We evaluate our method on simulated datasets, demonstrating its superior performance in identifying group-level causal relationships compared to existing methods. Additionally, we validate our approach on real-world datasets, including brain networks and climate ecosystems. Our results highlight that applying group-level interventions to deep learning models, combined with invariance testing, can effectively reveal complex causal structures, offering valuable insights for domains such as neuroscience and climate science.
comment: Submitted to IEEE Access. We are working on the revised version
♻ ☆ Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.
comment: 8 pages, 2 figures, 1 table. Invited report, CCN 2025 Algonauts Project session (3rd-place team). Code: https://github.com/erensemih/Algonauts2025_ModalityRNN v3: Added equal contribution footnote to author list. Corrected reference list
♻ ☆ SATURN: SAT-based Reinforcement Learning to Unleash Language Model Reasoning
How to design reinforcement learning (RL) tasks that effectively unleash the reasoning capability of large language models (LLMs) remains an open question. Existing RL tasks (e.g., math, programming, and constructing reasoning tasks) suffer from three key limitations: (1) Scalability. They rely heavily on human annotation or expensive LLM synthesis to generate sufficient training data. (2) Verifiability. LLMs' outputs are hard to verify automatically and reliably. (3) Controllable Difficulty. Most tasks lack fine-grained difficulty control, making it hard to train LLMs to develop reasoning ability from easy to hard. To address these limitations, we propose Saturn, a SAT-based RL framework that uses Boolean Satisfiability (SAT) problems to train and evaluate LLMs reasoning. Saturn enables scalable task construction, rule-based verification, and precise difficulty control. Saturn designs a curriculum learning pipeline that continuously improves LLMs' reasoning capability by constructing SAT tasks of increasing difficulty and training LLMs from easy to hard. To ensure stable training, we design a principled mechanism to control difficulty transitions. We introduce Saturn-2.6k, a dataset of 2,660 SAT problems with varying difficulty. It supports the evaluation of how LLM reasoning changes with problem difficulty. We apply Saturn to DeepSeek-R1-Distill-Qwen and obtain Saturn-1.5B and Saturn-7B. We achieve several notable results: (1) On SAT problems, Saturn-1.5B and Saturn-7B achieve average pass@3 improvements of +14.0 and +28.1, respectively. (2) On math and programming tasks, Saturn-1.5B and Saturn-7B improve average scores by +4.9 and +1.8 on benchmarks (e.g., AIME, LiveCodeBench). (3) Compared to the state-of-the-art (SOTA) approach in constructing RL tasks, Saturn achieves further improvements of +8.8%. We release the source code, data, and models to support future research.
♻ ☆ Brain-inspired Computational Intelligence via Predictive Coding
Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with a learning algorithm called error backpropagation, always considered biologically implausible. To this end, recent works have studied learning algorithms for deep neural networks inspired by the neurosciences. One such theory, called predictive coding (PC), has shown promising properties that make it potentially valuable for the machine learning community: it can model information processing in different areas of the brain, can be used in control and robotics, has a solid mathematical foundation in variational inference, and performs its computations asynchronously. Inspired by such properties, works that propose novel PC-like algorithms are starting to be present in multiple sub-fields of machine learning and AI at large. Here, we survey such efforts by first providing a broad overview of the history of PC to provide common ground for the understanding of the recent developments, then by describing current efforts and results, and concluding with a large discussion of possible implications and ways forward.
comment: 26 Pages, 9 Figures
♻ ☆ HyperMARL: Adaptive Hypernetworks for Multi-Agent RL NeurIPS 2025
Adaptive cooperation in multi-agent reinforcement learning (MARL) requires policies to express homogeneous, specialised, or mixed behaviours, yet achieving this adaptivity remains a critical challenge. While parameter sharing (PS) is standard for efficient learning, it notoriously suppresses the behavioural diversity required for specialisation. This failure is largely due to cross-agent gradient interference, a problem we find is surprisingly exacerbated by the common practice of coupling agent IDs with observations. Existing remedies typically add complexity through altered objectives, manual preset diversity levels, or sequential updates -- raising a fundamental question: can shared policies adapt without these intricacies? We propose a solution built on a key insight: an agent-conditioned hypernetwork can generate agent-specific parameters and decouple observation- and agent-conditioned gradients, directly countering the interference from coupling agent IDs with observations. Our resulting method, HyperMARL, avoids the complexities of prior work and empirically reduces policy gradient variance. Across diverse MARL benchmarks (22 scenarios, up to 30 agents), HyperMARL achieves performance competitive with six key baselines while preserving behavioural diversity comparable to non-parameter sharing methods, establishing it as a versatile and principled approach for adaptive MARL. The code is publicly available at https://github.com/KaleabTessera/HyperMARL.
comment: To appear at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). A preliminary version of this work was presented at the CoCoMARL workshop, RLC 2025
♻ ☆ Reliable Evaluation and Benchmarks for Statement Autoformalization EMNLP 2025
Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.
comment: Accepted to EMNLP 2025. New benchmarks released, see https://github.com/augustepoiroux/RLMEval , https://huggingface.co/datasets/PAug/ProofNetSharp , and https://huggingface.co/datasets/PAug/ProofNetVerif . For code, see https://github.com/augustepoiroux/LeanInteract
♻ ☆ OmegAMP: Targeted AMP Discovery through Biologically Informed Generation
Deep learning-based antimicrobial peptide (AMP) discovery faces critical challenges such as limited controllability, lack of representations that efficiently model antimicrobial properties, and low experimental hit rates. To address these challenges, we introduce OmegAMP, a framework designed for reliable AMP generation with increased controllability. Its diffusion-based generative model leverages a novel conditioning mechanism to achieve fine-grained control over desired physicochemical properties and to direct generation towards specific activity profiles, including species-specific effectiveness. This is further enhanced by a biologically informed encoding space that significantly improves overall generative performance. Complementing these generative capabilities, OmegAMP leverages a novel synthetic data augmentation strategy to train classifiers for AMP filtering, drastically reducing false positive rates and thereby increasing the likelihood of experimental success. Our in silico experiments demonstrate that OmegAMP delivers state-of-the-art performance across key stages of the AMP discovery pipeline, enabling us to achieve an unprecedented success rate in wet lab experiments. We tested 25 candidate peptides, 24 of them (96%) demonstrated antimicrobial activity, proving effective even against multi-drug resistant strains. Our findings underscore OmegAMP's potential to significantly advance computational frameworks in the fight against antimicrobial resistance.
♻ ☆ Transformers from Compressed Representations
Compressed file formats are the corner stone of efficient data storage and transmission, yet their potential for representation learning remains largely underexplored. We introduce TEMPEST (TransformErs froM comPressed rEpreSenTations), a method that exploits the inherent byte-stream structure of compressed files to design an effective tokenization and encoding strategy. By leveraging this compact encoding, a standard transformer can directly learn semantic representations from compressed data streams, bypassing the need for raw byte-level processing or full media decoding. Our proposal substantially reduces the number of tokens required for semantic classification, thereby lowering both computational complexity and memory usage. Through extensive experiments across diverse datasets, coding schemes, and modalities, we show that TEMPEST achieves accuracy competitive wit the state-of-the-art while delivering efficiency gains in memory and compute.
♻ ☆ Differential Privacy as a Perk: Federated Learning over Multiple-Access Fading Channels with a Multi-Antenna Base Station
Federated Learning (FL) is a distributed learning paradigm that preserves privacy by eliminating the need to exchange raw data during training. In its prototypical edge instantiation with underlying wireless transmissions enabled by analog over-the-air computing (AirComp), referred to as \emph{over-the-air FL (AirFL)}, the inherent channel noise plays a unique role of \emph{frenemy} in the sense that it degrades training due to noisy global aggregation while providing a natural source of randomness for privacy-preserving mechanisms, formally quantified by \emph{differential privacy (DP)}. It remains, nevertheless, challenging to effectively harness such channel impairments, as prior arts, under assumptions of either simple channel models or restricted types of loss functions, mostly considering (local) DP enhancement with a single-round or non-convergent bound on privacy loss. In this paper, we study AirFL over multiple-access fading channels with a multi-antenna base station (BS) subject to user-level DP requirements. Despite a recent study, which claimed in similar settings that artificial noise (AN) must be injected to ensure DP in general, we demonstrate, on the contrary, that DP can be gained as a \emph{perk} even \emph{without} employing any AN. Specifically, we derive a novel bound on DP that converges under general bounded-domain assumptions on model parameters, along with a convergence bound with general smooth and non-convex loss functions. Next, we optimize over receive beamforming and power allocations to characterize the optimal convergence-privacy trade-offs, which also reveal explicit conditions in which DP is achievable without compromising training. Finally, our theoretical findings are validated by extensive numerical results.
comment: 15 pages, 5 figures, submitted for possible publication
♻ ☆ Improving Robustness of AlphaZero Algorithms to Test-Time Environment Changes
The AlphaZero framework provides a standard way of combining Monte Carlo planning with prior knowledge provided by a previously trained policy-value neural network. AlphaZero usually assumes that the environment on which the neural network was trained will not change at test time, which constrains its applicability. In this paper, we analyze the problem of deploying AlphaZero agents in potentially changed test environments and demonstrate how the combination of simple modifications to the standard framework can significantly boost performance, even in settings with a low planning budget available. The code is publicly available on GitHub.
comment: Presented at the 37th Benelux Conference on Artificial Intelligence and the 34th Belgian Dutch Conference on Machine Learning (BNAIC/BeNeLearn 2025)
♻ ☆ Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective
Measurement and analysis of high energetic particles for scientific, medical or industrial applications is a complex procedure, requiring the design of sophisticated detector and data processing systems. The development of adaptive and differentiable software pipelines using a combination of conventional and machine learning algorithms is therefore getting ever more important to optimize and operate the system efficiently while maintaining end-to-end (E2E) differentiability. We propose for the application of charged particle tracking an E2E differentiable decision-focused learning scheme using graph neural networks with combinatorial components solving a linear assignment problem for each detector layer. We demonstrate empirically that including differentiable variations of discrete assignment operations allows for efficient network optimization, working better or on par with approaches that lack E2E differentiability. In additional studies, we dive deeper into the optimization process and provide further insights from a loss landscape perspective. We demonstrate that while both methods converge into similar performing, globally well-connected regions, they suffer under substantial predictive instability across initialization and optimization methods, which can have unpredictable consequences on the performance of downstream tasks such as image reconstruction. We also point out a dependency between the interpolation factor of the gradient estimator and the prediction stability of the model, suggesting the choice of sufficiently small values. Given the strong global connectivity of learned solutions and the excellent training performance, we argue that E2E differentiability provides, besides the general availability of gradient information, an important tool for robust particle tracking to mitigate prediction instabilities by favoring solutions that perform well on downstream tasks.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025
♻ ☆ Taxonomy and Trends in Reinforcement Learning for Robotics and Control Systems: A Structured Review
Reinforcement learning (RL) has become a foundational approach for enabling intelligent robotic behavior in dynamic and uncertain environments. This work presents an in-depth review of RL principles, advanced deep reinforcement learning (DRL) algorithms, and their integration into robotic and control systems. Beginning with the formalism of Markov Decision Processes (MDPs), the study outlines essential elements of the agent-environment interaction and explores core algorithmic strategies including actor-critic methods, value-based learning, and policy gradients. Emphasis is placed on modern DRL techniques such as DDPG, TD3, PPO, and SAC, which have shown promise in solving high-dimensional, continuous control tasks. A structured taxonomy is introduced to categorize RL applications across domains such as locomotion, manipulation, multi-agent coordination, and human-robot interaction, along with training methodologies and deployment readiness levels. The review synthesizes recent research efforts, highlighting technical trends, design patterns, and the growing maturity of RL in real-world robotics. Overall, this work aims to bridge theoretical advances with practical implementations, providing a consolidated perspective on the evolving role of RL in autonomous robotic systems.
♻ ☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data NeurIPS 2025
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning. We observe that some deep learning models are overrepresented in cross-model ensembles due to validation set overfitting, and we encourage model developers to address this issue. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: Accepted (spotlight) at NeurIPS 2025 Datasets and Benchmarks Track. v3: NeurIPS camera-ready version. v2: fixed author list. 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
♻ ☆ GnnXemplar: Exemplars to Explanations -- Natural Language Rules for Global GNN Interpretability NeurIPS 2025
Graph Neural Networks (GNNs) are widely used for node classification, yet their opaque decision-making limits trust and adoption. While local explanations offer insights into individual predictions, global explanation methods, those that characterize an entire class, remain underdeveloped. Existing global explainers rely on motif discovery in small graphs, an approach that breaks down in large, real-world settings where subgraph repetition is rare, node attributes are high-dimensional, and predictions arise from complex structure-attribute interactions. We propose GnnXemplar, a novel global explainer inspired from Exemplar Theory from cognitive science. GnnXemplar identifies representative nodes in the GNN embedding space, exemplars, and explains predictions using natural language rules derived from their neighborhoods. Exemplar selection is framed as a coverage maximization problem over reverse k-nearest neighbors, for which we provide an efficient greedy approximation. To derive interpretable rules, we employ a self-refining prompt strategy using large language models (LLMs). Experiments across diverse benchmarks show that GnnXemplar significantly outperforms existing methods in fidelity, scalability, and human interpretability, as validated by a user study with 60 participants.
comment: 38 pages, 20 figures, NeurIPS 2025 (Oral)
♻ ☆ Probabilistic Kernel Function for Fast Angle Testing
In this paper, we study the angle testing problem in the context of similarity search in high-dimensional Euclidean spaces and propose two projection-based probabilistic kernel functions, one designed for angle comparison and the other for angle thresholding. Unlike existing approaches that rely on random projection vectors drawn from Gaussian distributions, our approach leverages reference angles and employs a deterministic structure for the projection vectors. Notably, our kernel functions do not require asymptotic assumptions, such as the number of projection vectors tending to infinity, and can be both theoretically and experimentally shown to outperform Gaussian-distribution-based kernel functions. We apply the proposed kernel function to Approximate Nearest Neighbor Search (ANNS) and demonstrate that our approach achieves a 2.5X ~ 3X higher query-per-second (QPS) throughput compared to the widely-used graph-based search algorithm HNSW.
♻ ☆ OS-Harm: A Benchmark for Measuring Safety of Computer Use Agents NeurIPS 2025
Computer use agents are LLM-based agents that can directly interact with a graphical user interface, by processing screenshots or accessibility trees. While these systems are gaining popularity, their safety has been largely overlooked, despite the fact that evaluating and understanding their potential for harmful behavior is essential for widespread adoption. To address this gap, we introduce OS-Harm, a new benchmark for measuring safety of computer use agents. OS-Harm is built on top of the OSWorld environment and aims to test models across three categories of harm: deliberate user misuse, prompt injection attacks, and model misbehavior. To cover these cases, we create 150 tasks that span several types of safety violations (harassment, copyright infringement, disinformation, data exfiltration, etc.) and require the agent to interact with a variety of OS applications (email client, code editor, browser, etc.). Moreover, we propose an automated judge to evaluate both accuracy and safety of agents that achieves high agreement with human annotations (0.76 and 0.79 F1 score). We evaluate computer use agents based on a range of frontier models - such as o4-mini, Claude 3.7 Sonnet, Gemini 2.5 Pro - and provide insights into their safety. In particular, all models tend to directly comply with many deliberate misuse queries, are relatively vulnerable to static prompt injections, and occasionally perform unsafe actions. The OS-Harm benchmark is available at https://github.com/tml-epfl/os-harm.
comment: NeurIPS 2025 Datasets & Benchmarks Track (Spotlight)
♻ ☆ SNN-Based Online Learning of Concepts and Action Laws in an Open World
We present the architecture of a fully autonomous, bio-inspired cognitive agent built around a spiking neural network (SNN) implementing the agent's semantic memory. This agent explores its universe and learns concepts of objects/situations and of its own actions in a one-shot manner. While object/situation concepts are unary, action concepts are triples made up of an initial situation, a motor activity, and an outcome. They embody the agent's knowledge of its universe's action laws. Both kinds of concepts have different degrees of generality. To make decisions the agent queries its semantic memory for the expected outcomes of envisaged actions and chooses the action to take on the basis of these predictions. Our experiments show that the agent handles new situations by appealing to previously learned general concepts and rapidly modifies its concepts to adapt to environment changes.
♻ ☆ Learning-Augmented Online Bipartite Fractional Matching NeurIPS 2025
Online bipartite matching is a fundamental problem in online optimization, extensively studied both in its integral and fractional forms due to its theoretical significance and practical applications, such as online advertising and resource allocation. Motivated by recent progress in learning-augmented algorithms, we study online bipartite fractional matching when the algorithm is given advice in the form of a suggested matching in each iteration. We develop algorithms for both the vertex-weighted and unweighted variants that provably dominate the naive "coin flip" strategy of randomly choosing between the advice-following and advice-free algorithms. Moreover, our algorithm for the vertex-weighted setting extends to the AdWords problem under the small bids assumption, yielding a significant improvement over the seminal work of Mahdian, Nazerzadeh, and Saberi (EC 2007, TALG 2012). Complementing our positive results, we establish a hardness bound on the robustness-consistency tradeoff that is attainable by any algorithm. We empirically validate our algorithms through experiments on synthetic and real-world data.
comment: To appear in NeurIPS 2025. Full version
♻ ☆ Differential Mamba AACL 2025
Sequence models like Transformers and RNNs often overallocate attention to irrelevant context, leading to noisy intermediate representations. This degrades LLM capabilities by promoting hallucinations, weakening long-range and retrieval abilities, and reducing robustness. Recent work has shown that differential design can mitigate this issue in Transformers, improving their effectiveness across various applications. In this paper, we explore whether these techniques, originally developed for Transformers, can be applied to Mamba, a recent architecture based on selective state-space layers that achieves Transformer-level performance with greater efficiency. We show that a naive adaptation of differential design to Mamba is insufficient and requires careful architectural modifications. To address this, we introduce a novel differential mechanism for Mamba, empirically validated on language modeling benchmarks, demonstrating improved retrieval capabilities and superior performance over vanilla Mamba. Finally, we conduct extensive ablation studies and empirical analyses to justify our design choices and provide evidence that our approach effectively mitigates the overallocation problem in Mamba-based models. Our code is publicly available: https://github.com/NadavSc/Diff-Mamba
comment: AACL 2025. We provide the code at https://github.com/NadavSc/Diff-Mamba
♻ ☆ Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
Credit assignmen, disentangling each agent's contribution to a shared reward, is a critical challenge in cooperative multi-agent reinforcement learning (MARL). To be effective, credit assignment methods must preserve the environment's optimal policy. Some recent approaches attempt this by enforcing return equivalence, where the sum of distributed rewards must equal the team reward. However, their guarantees are conditional on a learned model's regression accuracy, making them unreliable in practice. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), an approach that decouples credit modeling from this constraint. A neural network learns unnormalized contribution scores, while a separate, deterministic normalization step enforces return equivalence by construction. We demonstrate that this method is equivalent to a valid Potential-Based Reward Shaping (PBRS), which guarantees the optimal policy is preserved regardless of model accuracy. Empirically, on challenging SMACLite and Google Research Football (GRF) benchmarks, TAR$^2$ accelerates learning and achieves higher final performance than strong baselines. These results establish our method as an effective solution for the agent-temporal credit assignment problem.
comment: 16 pages, 4 figures, 4 tables
Information Retrieval 19
☆ Retrieval-Augmented Search for Large-Scale Map Collections with ColPali
Multimodal approaches have shown great promise for searching and navigating digital collections held by libraries, archives, and museums. In this paper, we introduce map-RAS: a retrieval-augmented search system for historic maps. In addition to introducing our framework, we detail our publicly-hosted demo for searching 101,233 map images held by the Library of Congress. With our system, users can multimodally query the map collection via ColPali, summarize search results using Llama 3.2, and upload their own collections to perform inter-collection search. We articulate potential use cases for archivists, curators, and end-users, as well as future work with our system in both machine learning and the digital humanities. Our demo can be viewed at: http://www.mapras.com.
comment: 5 pages, 5 figures
☆ MMQ-v2: Align, Denoise, and Amplify: Adaptive Behavior Mining for Semantic IDs Learning in Recommendation
Industrial recommender systems rely on unique Item Identifiers (ItemIDs). However, this method struggles with scalability and generalization in large, dynamic datasets that have sparse long-tail data.Content-based Semantic IDs (SIDs) address this by sharing knowledge through content quantization. However, by ignoring dynamic behavioral properties, purely content-based SIDs have limited expressive power. Existing methods attempt to incorporate behavioral information but overlook a critical distinction: unlike relatively uniform content features, user-item interactions are highly skewed and diverse, creating a vast information gap in quality and quantity between popular and long-tail items. This oversight leads to two critical limitations: (1) Noise Corruption: Indiscriminate behavior-content alignment allows collaborative noise from long-tail items to corrupt their content representations, leading to the loss of critical multimodal information. (2)Signal Obscurity: The equal-weighting scheme for SIDs fails to reflect the varying importance of different behavioral signals, making it difficult for downstream tasks to distinguish important SIDs from uninformative ones. To tackle these issues, we propose a mixture-of-quantization framework, MMQ-v2, to adaptively Align, Denoise, and Amplify multimodal information from content and behavior modalities for semantic IDs learning. The semantic IDs generated by this framework named ADA-SID. It introduces two innovations: an adaptive behavior-content alignment that is aware of information richness to shield representations from noise, and a dynamic behavioral router to amplify critical signals by applying different weights to SIDs. Extensive experiments on public and large-scale industrial datasets demonstrate ADA-SID's significant superiority in both generative and discriminative recommendation tasks.
☆ FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
comment: 37 pages, 5 figures, 10 tables. Keywords: Retrieval-Augmented Generation (RAG), Question Answering (QA), Islamic Knowledge Base, Faithful AI, Persian NLP, Multi-hop Reasoning, Large Language Models (LLMs)
☆ Generalized Pseudo-Relevance Feedback
Query rewriting is a fundamental technique in information retrieval (IR). It typically employs the retrieval result as relevance feedback to refine the query and thereby addresses the vocabulary mismatch between user queries and relevant documents. Traditional pseudo-relevance feedback (PRF) and its vector-based extension (VPRF) improve retrieval performance by leveraging top-retrieved documents as relevance feedback. However, they are constructed based on two major hypotheses: the relevance assumption (top documents are relevant) and the model assumption (rewriting methods need to be designed specifically for particular model architectures). While recent large language models (LLMs)-based generative relevance feedback (GRF) enables model-free query reformulation, it either suffers from severe LLM hallucination or, again, relies on the relevance assumption to guarantee the effectiveness of rewriting quality. To overcome these limitations, we introduce an assumption-relaxed framework: \textit{Generalized Pseudo Relevance Feedback} (GPRF), which performs model-free, natural language rewriting based on retrieved documents, not only eliminating the model assumption but also reducing dependence on the relevance assumption. Specifically, we design a utility-oriented training pipeline with reinforcement learning to ensure robustness against noisy feedback. Extensive experiments across multiple benchmarks and retrievers demonstrate that GPRF consistently outperforms strong baselines, establishing it as an effective and generalizable framework for query rewriting.
☆ Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report CIKM 2025
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.
comment: Alibaba International E-commerce Product Search Competition @ CIKM 2025
☆ Towards Automated Quality Assurance of Patent Specifications: A Multi-Dimensional LLM Framework
Despite the surge in patent applications and emergence of AI drafting tools, systematic evaluation of patent content quality has received limited research attention. To address this gap, We propose to evaluate patents using regulatory compliance, technical coherence, and figure-reference consistency detection modules, and then generate improvement suggestions via an integration module. The framework is validated on a comprehensive dataset comprising 80 human-authored and 80 AI-generated patents from two patent drafting tools. Experimental results show balanced accuracies of 99.74\%, 82.12\%, and 91.2\% respectively across the three detection modules when validated against expert annotations. Additional analysis was conducted to examine defect distributions across patent sections, technical domains, and authoring sources. Section-based analysis indicates that figure-text consistency and technical detail precision require particular attention. Mechanical Engineering and Construction show more claim-specification inconsistencies due to complex technical documentation requirements. AI-generated patents show a significant gap compared to human-authored ones. While human-authored patents primarily contain surface-level errors like typos, AI-generated patents exhibit more structural defects in figure-text alignment and cross-references.
☆ Revisiting scalable sequential recommendation with Multi-Embedding Approach and Mixture-of-Experts
In recommendation systems, how to effectively scale up recommendation models has been an essential research topic. While significant progress has been made in developing advanced and scalable architectures for sequential recommendation(SR) models, there are still challenges due to items' multi-faceted characteristics and dynamic item relevance in the user context. To address these issues, we propose Fuxi-MME, a framework that integrates a multi-embedding strategy with a Mixture-of-Experts (MoE) architecture. Specifically, to efficiently capture diverse item characteristics in a decoupled manner, we decompose the conventional single embedding matrix into several lower-dimensional embedding matrices. Additionally, by substituting relevant parameters in the Fuxi Block with an MoE layer, our model achieves adaptive and specialized transformation of the enriched representations. Empirical results on public datasets show that our proposed framework outperforms several competitive baselines.
☆ Measuring the Research Output and Performance of the University of Ibadan from 2014 to 2023: A Scientometric Analysis
This study employs scientometric methods to assess the research output and performance of the University of Ibadan from 2014 to 2023. By analyzing publication trends, citation patterns, and collaboration networks, the research aims to comprehensively evaluate the university's research productivity, impact, and disciplinary focus. This article's endeavors are characterized by innovation, interdisciplinary collaboration, and commitment to excellence, making the University of Ibadan a significant hub for cutting-edge research in Nigeria and beyond. The goal of the current study is to ascertain the influence of the university's research output and publication patterns between 2014 and 2023. The study focuses on the departments at the University of Ibadan that contribute the most, the best journals for publishing, the nations that collaborate, the impact of citations both locally and globally, well-known authors and their total production, and the research output broken down by year. According to the university's ten-year publication data, 7159 papers with an h-index of 75 were published between 2014 and 2023, garnering 218572 citations. Furthermore, the VOSviewer software mapping approach is used to illustrate the stenographical mapping of data through graphs. The findings of this study will contribute to understanding the university's research strengths, weaknesses, and potential areas for improvement. Additionally, the results will inform evidence-based decision-making for enhancing research strategies and policies at the University of Ibadan.
comment: 16 pages, 5 figures, Research Paper
☆ TV-Rec: Time-Variant Convolutional Filter for Sequential Recommendation NeurIPS 2025
Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.
comment: The 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ GReF: A Unified Generative Framework for Efficient Reranking via Ordered Multi-token Prediction CIKM 2025
In a multi-stage recommendation system, reranking plays a crucial role in modeling intra-list correlations among items. A key challenge lies in exploring optimal sequences within the combinatorial space of permutations. Recent research follows a two-stage (generator-evaluator) paradigm, where a generator produces multiple feasible sequences, and an evaluator selects the best one. In practice, the generator is typically implemented as an autoregressive model. However, these two-stage methods face two main challenges. First, the separation of the generator and evaluator hinders end-to-end training. Second, autoregressive generators suffer from inference efficiency. In this work, we propose a Unified Generative Efficient Reranking Framework (GReF) to address the two primary challenges. Specifically, we introduce Gen-Reranker, an autoregressive generator featuring a bidirectional encoder and a dynamic autoregressive decoder to generate causal reranking sequences. Subsequently, we pre-train Gen-Reranker on the item exposure order for high-quality parameter initialization. To eliminate the need for the evaluator while integrating sequence-level evaluation during training for end-to-end optimization, we propose post-training the model through Rerank-DPO. Moreover, for efficient autoregressive inference, we introduce ordered multi-token prediction (OMTP), which trains Gen-Reranker to simultaneously generate multiple future items while preserving their order, ensuring practical deployment in real-time recommender systems. Extensive offline experiments demonstrate that GReF outperforms state-of-the-art reranking methods while achieving latency that is nearly comparable to non-autoregressive models. Additionally, GReF has also been deployed in a real-world video app Kuaishou with over 300 million daily active users, significantly improving online recommendation quality.
comment: Accepted by CIKM 2025
☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
☆ Continual Low-Rank Adapters for LLM-based Generative Recommender Systems
While large language models (LLMs) achieve strong performance in recommendation, they face challenges in continual learning as users, items, and user preferences evolve over time. Existing LoRA-based continual methods primarily focus on preserving performance on previous tasks, but this overlooks the unique nature of recommendation: the goal is not to predict past preferences, and outdated preferences can even harm performance when current interests shift significantly. To address this, we propose PESO (Proximally rEgularized Single evolving lOra, a continual adaptation method for LoRA in recommendation. PESO introduces a proximal regularizer that anchors the current adapter to its most recent frozen state, enabling the model to flexibly balance adaptation and preservation, and to better capture recent user behaviors. Theoretically, we show that this proximal design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically, PESO consistently outperforms existing LoRA-based continual learning methods.
☆ The Quest for Reliable Metrics of Responsible AI
The development of Artificial Intelligence (AI), including AI in Science (AIS), should be done following the principles of responsible AI. Progress in responsible AI is often quantified through evaluation metrics, yet there has been less work on assessing the robustness and reliability of the metrics themselves. We reflect on prior work that examines the robustness of fairness metrics for recommender systems as a type of AI application and summarise their key takeaways into a set of non-exhaustive guidelines for developing reliable metrics of responsible AI. Our guidelines apply to a broad spectrum of AI applications, including AIS.
comment: Accepted for presentation at the AI in Science Summit 2025
♻ ☆ HyMiRec: A Hybrid Multi-interest Learning Framework for LLM-based Sequential Recommendation
Large language models (LLMs) have recently demonstrated strong potential for sequential recommendation. However, current LLM-based approaches face critical limitations in modeling users' long-term and diverse interests. First, due to inference latency and feature fetching bandwidth constraints, existing methods typically truncate user behavior sequences to include only the most recent interactions, resulting in the loss of valuable long-range preference signals. Second, most current methods rely on next-item prediction with a single predicted embedding, overlooking the multifaceted nature of user interests and limiting recommendation diversity. To address these challenges, we propose HyMiRec, a hybrid multi-interest sequential recommendation framework, which leverages a lightweight recommender to extracts coarse interest embeddings from long user sequences and an LLM-based recommender to captures refined interest embeddings. To alleviate the overhead of fetching features, we introduce a residual codebook based on cosine similarity, enabling efficient compression and reuse of user history embeddings. To model the diverse preferences of users, we design a disentangled multi-interest learning module, which leverages multiple interest queries to learn disentangles multiple interest signals adaptively, allowing the model to capture different facets of user intent. Extensive experiments are conducted on both benchmark datasets and a collected industrial dataset, demonstrating our effectiveness over existing state-of-the-art methods. Furthermore, online A/B testing shows that HyMiRec brings consistent improvements in real-world recommendation systems. Code is available at https://github.com/FireRedTeam/FireRedSeqRec.
♻ ☆ Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation NeurIPS 2025
Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, TagCF exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs that reveal dynamic and expressive knowledge of users, refining our understanding of user behaviors. On the other hand, TagCF presents empirically effective integration modules that take advantage of the extracted tag-logic information, augmenting the recommendation performance. We conduct both online experiments and offline experiments with industrial and public datasets as verification of TagCF's effectiveness, and we empirically show that the user role modeling strategy is potentially a better choice than the modeling of item topics. Additionally, we provide evidence that the extracted logic graphs are empirically a general and transferable knowledge that can benefit a wide range of recommendation tasks. Our code is available in https://github.com/Code2Q/TagCF.
comment: to be published in NeurIPS 2025
♻ ☆ Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation NeurIPS 2025
In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.
comment: NeurIPS 2025 DB Track Accepted Paper
♻ ☆ Capturing User Interests from Data Streams for Continual Sequential Recommendation WSDM'26
Transformer-based sequential recommendation (SR) models excel at modeling long-range dependencies in user behavior via self-attention. However, updating them with continuously arriving behavior sequences incurs high computational costs or leads to catastrophic forgetting. Although continual learning, a standard approach for non-stationary data streams, has recently been applied to recommendation, existing methods gradually forget long-term user preferences and remain underexplored in SR. In this paper, we introduce Continual Sequential Transformer for Recommendation (CSTRec). CSTRec is designed to effectively adapt to current interests by leveraging well-preserved historical ones, thus capturing the trajectory of user interests over time. The core of CSTRec is Continual Sequential Attention (CSA), a linear attention tailored for continual SR, which enables CSTRec to partially retain historical knowledge without direct access to prior data. CSA has two key components: (1) Cauchy-Schwarz Normalization that stabilizes learning over time under uneven user interaction frequencies; (2) Collaborative Interest Enrichment that alleviates forgetting through shared, learnable interest pools. In addition, we introduce a new technique to facilitate the adaptation of new users by transferring historical knowledge from existing users with similar interests. Extensive experiments on three real-world datasets show that CSTRec outperforms state-of-the-art models in both knowledge retention and acquisition.
comment: WSDM'26
♻ ☆ Can We Hide Machines in the Crowd? Quantifying Equivalence in LLM-in-the-loop Annotation Tasks SIGIR
Many evaluations of large language models (LLMs) in text annotation focus primarily on the correctness of the output, typically comparing model-generated labels to human-annotated ``ground truth'' using standard performance metrics. In contrast, our study moves beyond effectiveness alone. We aim to explore how labeling decisions -- by both humans and LLMs -- can be statistically evaluated across individuals. Rather than treating LLMs purely as annotation systems, we approach LLMs as an alternative annotation mechanism that may be capable of mimicking the subjective judgments made by humans. To assess this, we develop a statistical evaluation method based on Krippendorff's $\alpha$, paired bootstrapping, and the Two One-Sided t-Tests (TOST) equivalence test procedure. This evaluation method tests whether an LLM can blend into a group of human annotators without being distinguishable. We apply this approach to two datasets -- MovieLens 100K and PolitiFact -- and find that the LLM is statistically indistinguishable from a human annotator in the former ($p = 0.004$), but not in the latter ($p = 0.155$), highlighting task-dependent differences. It also enables early evaluation on a small sample of human data to inform whether LLMs are suitable for large-scale annotation in a given application.
comment: Accepted at SIGIR-AP 2025
♻ ☆ Large Language Models for Few-Shot Named Entity Recognition
Named entity recognition (NER) is a fundamental task in numerous downstream applications. Recently, researchers have employed pre-trained language models (PLMs) and large language models (LLMs) to address this task. However, fully leveraging the capabilities of PLMs and LLMs with minimal human effort remains challenging. In this paper, we propose GPT4NER, a method that prompts LLMs to resolve the few-shot NER task. GPT4NER constructs effective prompts using three key components: entity definition, few-shot examples, and chain-of-thought. By prompting LLMs with these effective prompts, GPT4NER transforms few-shot NER, which is traditionally considered as a sequence-labeling problem, into a sequence-generation problem. We conduct experiments on two benchmark datasets, CoNLL2003 and OntoNotes5.0, and compare the performance of GPT4NER to representative state-of-the-art models in both few-shot and fully supervised settings. Experimental results demonstrate that GPT4NER achieves the $F_1$ of 83.15\% on CoNLL2003 and 70.37\% on OntoNotes5.0, significantly outperforming few-shot baselines by an average margin of 7 points. Compared to fully-supervised baselines, GPT4NER achieves 87.9\% of their best performance on CoNLL2003 and 76.4\% of their best performance on OntoNotes5.0. We also utilize a relaxed-match metric for evaluation and report performance in the sub-task of named entity extraction (NEE), and experiments demonstrate their usefulness to help better understand model behaviors in the NER task.
comment: 17 pages, 2 figures. Accepted by AI, Computer Science and Robotics Technology (ACRT)
Computation and Language 149
☆ MetricX-25 and GemSpanEval: Google Translate Submissions to the WMT25 Evaluation Shared Task
In this paper, we present our submissions to the unified WMT25 Translation Evaluation Shared Task. For the Quality Score Prediction subtask, we create a new generation of MetricX with improvements in the input format and the training protocol, while for the Error Span Detection subtask we develop a new model, GemSpanEval, trained to predict error spans along with their severities and categories. Both systems are based on the state-of-the-art multilingual open-weights model Gemma 3, fine-tuned on publicly available WMT data. We demonstrate that MetricX-25, adapting Gemma 3 to an encoder-only architecture with a regression head on top, can be trained to effectively predict both MQM and ESA quality scores, and significantly outperforms its predecessor. Our decoder-only GemSpanEval model, on the other hand, we show to be competitive in error span detection with xCOMET, a strong encoder-only sequence-tagging baseline. With error span detection formulated as a generative task, we instruct the model to also output the context for each predicted error span, thus ensuring that error spans are identified unambiguously.
comment: Accepted to WMT25
☆ ComboBench: Can LLMs Manipulate Physical Devices to Play Virtual Reality Games?
Virtual Reality (VR) games require players to translate high-level semantic actions into precise device manipulations using controllers and head-mounted displays (HMDs). While humans intuitively perform this translation based on common sense and embodied understanding, whether Large Language Models (LLMs) can effectively replicate this ability remains underexplored. This paper introduces a benchmark, ComboBench, evaluating LLMs' capability to translate semantic actions into VR device manipulation sequences across 262 scenarios from four popular VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft. We evaluate seven LLMs, including GPT-3.5, GPT-4, GPT-4o, Gemini-1.5-Pro, LLaMA-3-8B, Mixtral-8x7B, and GLM-4-Flash, compared against annotated ground truth and human performance. Our results reveal that while top-performing models like Gemini-1.5-Pro demonstrate strong task decomposition capabilities, they still struggle with procedural reasoning and spatial understanding compared to humans. Performance varies significantly across games, suggesting sensitivity to interaction complexity. Few-shot examples substantially improve performance, indicating potential for targeted enhancement of LLMs' VR manipulation capabilities. We release all materials at https://sites.google.com/view/combobench.
☆ Agent Data Protocol: Unifying Datasets for Diverse, Effective Fine-tuning of LLM Agents
Public research results on large-scale supervised finetuning of AI agents remain relatively rare, since the collection of agent training data presents unique challenges. In this work, we argue that the bottleneck is not a lack of underlying data sources, but that a large variety of data is fragmented across heterogeneous formats, tools, and interfaces. To this end, we introduce the agent data protocol (ADP), a light-weight representation language that serves as an "interlingua" between agent datasets in diverse formats and unified agent training pipelines downstream. The design of ADP is expressive enough to capture a large variety of tasks, including API/tool use, browsing, coding, software engineering, and general agentic workflows, while remaining simple to parse and train on without engineering at a per-dataset level. In experiments, we unified a broad collection of 13 existing agent training datasets into ADP format, and converted the standardized ADP data into training-ready formats for multiple agent frameworks. We performed SFT on these data, and demonstrated an average performance gain of ~20% over corresponding base models, and delivers state-of-the-art or near-SOTA performance on standard coding, browsing, tool use, and research benchmarks, without domain-specific tuning. All code and data are released publicly, in the hope that ADP could help lower the barrier to standardized, scalable, and reproducible agent training.
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ ParallelMuse: Agentic Parallel Thinking for Deep Information Seeking
Parallel thinking expands exploration breadth, complementing the deep exploration of information-seeking (IS) agents to further enhance problem-solving capability. However, conventional parallel thinking faces two key challenges in this setting: inefficiency from repeatedly rolling out from scratch, and difficulty in integrating long-horizon reasoning trajectories during answer generation, as limited context capacity prevents full consideration of the reasoning process. To address these issues, we propose ParallelMuse, a two-stage paradigm designed for deep IS agents. The first stage, Functionality-Specified Partial Rollout, partitions generated sequences into functional regions and performs uncertainty-guided path reuse and branching to enhance exploration efficiency. The second stage, Compressed Reasoning Aggregation, exploits reasoning redundancy to losslessly compress information relevant to answer derivation and synthesize a coherent final answer. Experiments across multiple open-source agents and benchmarks demonstrate up to 62% performance improvement with a 10--30% reduction in exploratory token consumption.
☆ AgentFold: Long-Horizon Web Agents with Proactive Context Management
LLM-based web agents show immense promise for information seeking, yet their effectiveness on long-horizon tasks is hindered by a fundamental trade-off in context management. Prevailing ReAct-based agents suffer from context saturation as they accumulate noisy, raw histories, while methods that fixedly summarize the full history at each step risk the irreversible loss of critical details. Addressing these, we introduce AgentFold, a novel agent paradigm centered on proactive context management, inspired by the human cognitive process of retrospective consolidation. AgentFold treats its context as a dynamic cognitive workspace to be actively sculpted, rather than a passive log to be filled. At each step, it learns to execute a `folding' operation, which manages its historical trajectory at multiple scales: it can perform granular condensations to preserve vital, fine-grained details, or deep consolidations to abstract away entire multi-step sub-tasks. The results on prominent benchmarks are striking: with simple supervised fine-tuning (without continual pre-training or RL), our AgentFold-30B-A3B agent achieves 36.2% on BrowseComp and 47.3% on BrowseComp-ZH. Notably, this performance not only surpasses or matches open-source models of a dramatically larger scale, such as the DeepSeek-V3.1-671B-A37B, but also surpasses leading proprietary agents like OpenAI's o4-mini.
comment: 26 pages, 9 figures
☆ WebLeaper: Empowering Efficiency and Efficacy in WebAgent via Enabling Info-Rich Seeking
Large Language Model (LLM)-based agents have emerged as a transformative approach for open-ended problem solving, with information seeking (IS) being a core capability that enables autonomous reasoning and decision-making. While prior research has largely focused on improving retrieval depth, we observe that current IS agents often suffer from low search efficiency, which in turn constrains overall performance. A key factor underlying this inefficiency is the sparsity of target entities in training tasks, which limits opportunities for agents to learn and generalize efficient search behaviors. To address these challenges, we propose WebLeaper, a framework for constructing high-coverage IS tasks and generating efficient solution trajectories. We formulate IS as a tree-structured reasoning problem, enabling a substantially larger set of target entities to be embedded within a constrained context. Leveraging curated Wikipedia tables, we propose three variants for synthesizing IS tasks, Basic, Union, and Reverse-Union, to systematically increase both IS efficiency and efficacy. Finally, we curate training trajectories by retaining only those that are simultaneously accurate and efficient, ensuring that the model is optimized for both correctness and search performance. Extensive experiments on both basic and comprehensive settings, conducted on five IS benchmarks, BrowserComp, GAIA, xbench-DeepSearch, WideSearch, and Seal-0, demonstrate that our method consistently achieves improvements in both effectiveness and efficiency over strong baselines.
☆ AgentFrontier: Expanding the Capability Frontier of LLM Agents with ZPD-Guided Data Synthesis
Training large language model agents on tasks at the frontier of their capabilities is key to unlocking advanced reasoning. We introduce a data synthesis approach inspired by the educational theory of the Zone of Proximal Development (ZPD), which defines this frontier as tasks an LLM cannot solve alone but can master with guidance. To operationalize this, we present the AgentFrontier Engine, an automated pipeline that synthesizes high-quality, multidisciplinary data situated precisely within the LLM's ZPD. This engine supports both continued pre-training with knowledge-intensive data and targeted post-training on complex reasoning tasks. From the same framework, we derive the ZPD Exam, a dynamic and automated benchmark designed to evaluate agent capabilities on these frontier tasks. We train AgentFrontier-30B-A3B model on our synthesized data, which achieves state-of-the-art results on demanding benchmarks like Humanity's Last Exam, even surpassing some leading proprietary agents. Our work demonstrates that a ZPD-guided approach to data synthesis offers a scalable and effective path toward building more capable LLM agents.
comment: https://tongyi-agent.github.io/blog/introducing-tongyi-deep-research/
☆ Repurposing Synthetic Data for Fine-grained Search Agent Supervision
LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.
☆ STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
comment: Homepage: https://internlm.github.io/StarBench/
☆ SPICE: Self-Play In Corpus Environments Improves Reasoning
Self-improving systems require environmental interaction for continuous adaptation. We introduce SPICE (Self-Play In Corpus Environments), a reinforcement learning framework where a single model acts in two roles: a Challenger that mines documents from a large corpus to generate diverse reasoning tasks, and a Reasoner that solves them. Through adversarial dynamics, the Challenger creates an automatic curriculum at the frontier of the Reasoner's capability, while corpus grounding provides the rich, near-inexhaustible external signal necessary for sustained improvement. Unlike existing ungrounded self-play methods that offer more limited benefits, SPICE achieves consistent gains across mathematical (+8.9%) and general reasoning (+9.8%) benchmarks on multiple model families. Our analysis reveals how document grounding is a key ingredient in SPICE to continuously generate its own increasingly challenging goals and achieve them, enabling sustained self-improvement.
☆ Dissecting Role Cognition in Medical LLMs via Neuronal Ablation
Large language models (LLMs) have gained significant traction in medical decision support systems, particularly in the context of medical question answering and role-playing simulations. A common practice, Prompt-Based Role Playing (PBRP), instructs models to adopt different clinical roles (e.g., medical students, residents, attending physicians) to simulate varied professional behaviors. However, the impact of such role prompts on model reasoning capabilities remains unclear. This study introduces the RP-Neuron-Activated Evaluation Framework(RPNA) to evaluate whether role prompts induce distinct, role-specific cognitive processes in LLMs or merely modify linguistic style. We test this framework on three medical QA datasets, employing neuron ablation and representation analysis techniques to assess changes in reasoning pathways. Our results demonstrate that role prompts do not significantly enhance the medical reasoning abilities of LLMs. Instead, they primarily affect surface-level linguistic features, with no evidence of distinct reasoning pathways or cognitive differentiation across clinical roles. Despite superficial stylistic changes, the core decision-making mechanisms of LLMs remain uniform across roles, indicating that current PBRP methods fail to replicate the cognitive complexity found in real-world medical practice. This highlights the limitations of role-playing in medical AI and emphasizes the need for models that simulate genuine cognitive processes rather than linguistic imitation.We have released the related code in the following repository:https: //github.com/IAAR-Shanghai/RolePlay_LLMDoctor
comment: 15 pages, 9 figures
☆ InteractComp: Evaluating Search Agents With Ambiguous Queries
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.
☆ MQM Re-Annotation: A Technique for Collaborative Evaluation of Machine Translation
Human evaluation of machine translation is in an arms race with translation model quality: as our models get better, our evaluation methods need to be improved to ensure that quality gains are not lost in evaluation noise. To this end, we experiment with a two-stage version of the current state-of-the-art translation evaluation paradigm (MQM), which we call MQM re-annotation. In this setup, an MQM annotator reviews and edits a set of pre-existing MQM annotations, that may have come from themselves, another human annotator, or an automatic MQM annotation system. We demonstrate that rater behavior in re-annotation aligns with our goals, and that re-annotation results in higher-quality annotations, mostly due to finding errors that were missed during the first pass.
☆ Evolving Diagnostic Agents in a Virtual Clinical Environment
In this paper, we present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static case summaries, our method acquires diagnostic strategies through interactive exploration and outcome-based feedback. Our contributions are fourfold: (i) We present DiagGym, a diagnostics world model trained with electronic health records that emits examination outcomes conditioned on patient history and recommended examination, serving as a virtual clinical environment for realistic diagnosis training and evaluation; (ii) We train DiagAgent via end-to-end, multi-turn reinforcement learning to learn diagnostic policies that optimize both information yield and diagnostic accuracy; (iii) We introduce DiagBench, a diagnostic benchmark comprising 750 cases with physician-validated examination recommendations and 99 cases annotated with 973 physician-written rubrics on diagnosis process; (iv) we demonstrate superior performance across diverse diagnostic settings. DiagAgent significantly outperforms 10 state-of-the-art LLMs, including DeepSeek-v3 and GPT-4o, as well as two prompt-engineered agents. In single-turn settings, DiagAgent achieves 9.34% higher diagnostic accuracy and 44.03% improvement in examination recommendation hit ratio. In end-to-end settings, it delivers 15.12% increase in diagnostic accuracy and 23.09% boost in examination recommendation F1 score. In rubric-based evaluation, it surpasses the next-best model, Claude-sonnet-4, by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers dynamic and clinically meaningful diagnostic management abilities unattainable through passive training alone.
☆ Optimizing Retrieval for RAG via Reinforced Contrastive Learning
As retrieval-augmented generation (RAG) becomes increasingly widespread, the role of information retrieval (IR) is shifting from retrieving information for human users to retrieving contextual knowledge for artificial intelligence (AI) systems, where relevance becomes difficult to define or annotate beforehand. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through trialand-feedback Reinforced contrastive learning. Unlike prior approaches that rely on annotated or synthetic data for supervised fine-tuning, R3 enables the retriever to dynamically explore and optimize relevance within the RAG environment. During training, the retrieved results interact with the environment to produce contrastive signals that automatically guide the retriever's self-improvement. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
☆ Quantifying the Effects of Word Length, Frequency, and Predictability on Dyslexia
We ask where, and under what conditions, dyslexic reading costs arise in a large-scale naturalistic reading dataset. Using eye-tracking aligned to word-level features (word length, frequency, and predictability), we model how each feature influences dyslexic time costs. We find that all three features robustly change reading times in both typical and dyslexic readers, and that dyslexic readers show stronger sensitivities to each, especially predictability. Counterfactual manipulations of these features substantially narrow the dyslexic-control gap by about one third, with predictability showing the strongest effect, followed by length and frequency. These patterns align with dyslexia theories that posit heightened demands on linguistic working memory and phonological encoding, and they motivate further work on lexical complexity and parafoveal preview benefits to explain the remaining gap. In short, we quantify when extra dyslexic costs arise, how large they are, and offer actionable guidance for interventions and computational models for dyslexics.
☆ OpenReward: Learning to Reward Long-form Agentic Tasks via Reinforcement Learning
Reward models (RMs) have become essential for aligning large language models (LLMs), serving as scalable proxies for human evaluation in both training and inference. However, existing RMs struggle on knowledge-intensive and long-form tasks, where evaluating correctness requires grounding beyond the model's internal knowledge. This limitation hinders them from reliably discriminating subtle quality differences, especially when external evidence is necessary. To address this, we introduce OpenRM, a tool-augmented long-form reward model that systematically judges open-ended responses by invoking external tools to gather relevant evidence. We train OpenRM with Group Relative Policy Optimization (GRPO) on over 27K synthesized pairwise examples generated through a controllable data synthesis framework. The training objective jointly supervises intermediate tool usage and final outcome accuracy, incentivizing our reward model to learn effective evidence-based judgment strategies. Extensive experiments on three newly-collected datasets and two widely-used benchmarks demonstrate that OpenRM substantially outperforms existing reward modeling approaches. As a further step, we integrate OpenRM into both inference-time response selection and training-time data selection. This yields consistent gains in downstream LLM alignment tasks, highlighting the potential of tool-augmented reward models for scaling reliable long-form evaluation.
☆ "Mm, Wat?" Detecting Other-initiated Repair Requests in Dialogue
Maintaining mutual understanding is a key component in human-human conversation to avoid conversation breakdowns, in which repair, particularly Other-Initiated Repair (OIR, when one speaker signals trouble and prompts the other to resolve), plays a vital role. However, Conversational Agents (CAs) still fail to recognize user repair initiation, leading to breakdowns or disengagement. This work proposes a multimodal model to automatically detect repair initiation in Dutch dialogues by integrating linguistic and prosodic features grounded in Conversation Analysis. The results show that prosodic cues complement linguistic features and significantly improve the results of pretrained text and audio embeddings, offering insights into how different features interact. Future directions include incorporating visual cues, exploring multilingual and cross-context corpora to assess the robustness and generalizability.
comment: 9 pages
☆ Relative Scaling Laws for LLMs
Scaling laws describe how language models improve with additional data, parameters, and compute. While widely used, they are typically measured on aggregate test sets. Aggregate evaluations yield clean trends but average over heterogeneous subpopulations, obscuring performance disparities. We introduce relative scaling laws, which track how performance gaps between test distributions evolve with scale rather than focusing solely on absolute error. Using 255 decoder-only Transformers trained under matched-compute (IsoFLOP) budgets from $10^{18}$--$10^{20}$ FLOPs on standard pretraining datasets, we find diverse trajectories: academic domains on MMLU converge toward parity; regional English dialects shift depending on population size; and clusters of AI risk behaviours split, with capability- and influence-related risks increasing during pretraining while adversarial risks do not. These results show that although scaling improves overall performance, it is not a universal equalizer. To support further study, we release all model checkpoints from this work to enable practitioners to measure relative alongside traditional scaling laws, in order to better prioritize robustness challenges in light of the bitter lesson.
☆ Zero-Shot Cross-Lingual Transfer using Prefix-Based Adaptation
With the release of new large language models (LLMs) like Llama and Mistral, zero-shot cross-lingual transfer has become increasingly feasible due to their multilingual pretraining and strong generalization capabilities. However, adapting these decoder-only LLMs to new tasks across languages remains challenging. While parameter-efficient fine-tuning (PeFT) techniques like Low-Rank Adaptation (LoRA) are widely used, prefix-based techniques such as soft prompt tuning, prefix tuning, and Llama Adapter are less explored, especially for zero-shot transfer in decoder-only models. We present a comprehensive study of three prefix-based methods for zero-shot cross-lingual transfer from English to 35+ high- and low-resource languages. Our analysis further explores transfer across linguistic families and scripts, as well as the impact of scaling model sizes from 1B to 24B. With Llama 3.1 8B, prefix methods outperform LoRA-baselines by up to 6% on the Belebele benchmark. Similar improvements were observed with Mistral v0.3 7B as well. Despite using only 1.23M learning parameters with prefix tuning, we achieve consistent improvements across diverse benchmarks. These findings highlight the potential of prefix-based techniques as an effective and scalable alternative to LoRA, particularly in low-resource multilingual settings.
comment: 12 Pages
☆ Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs NeurIPS 2025
The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.
comment: Accepted to NeurIPS 2025 Workshop on Efficient Reasoning
☆ Diffusion LLM with Native Variable Generation Lengths: Let [EOS] Lead the Way
Diffusion-based large language models (dLLMs) have exhibited substantial potential for parallel text generation, which may enable more efficient generation compared to autoregressive models. However, current dLLMs suffer from fixed generation lengths, which indicates the generation lengths of dLLMs have to be determined before decoding as a hyper-parameter, leading to issues in efficiency and flexibility. To solve these problems, in this work, we propose to train a diffusion LLM with native variable generation lengths, abbreviated as dLLM-Var. Concretely, we aim to train a model to accurately predict the [EOS] token in the generated text, which makes a dLLM be able to natively infer in a block diffusion manner, while still maintaining the ability of global bi-directional (full) attention and high parallelism. Experiments on standard benchmarks demonstrate that our method achieves a 30.1x speedup over traditional dLLM inference paradigms and a 2.4x speedup relative to autoregressive models such as Qwen and Llama. Our method achieves higher accuracy and faster inference, elevating dLLMs beyond mere academic novelty and supporting their practical use in real-world applications. Codes and models have been released.
☆ ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.
comment: Ongoing Work
☆ ReplicationBench: Can AI Agents Replicate Astrophysics Research Papers?
Frontier AI agents show increasing promise as scientific research assistants, and may eventually be useful for extended, open-ended research workflows. However, in order to use agents for novel research, we must first assess the underlying faithfulness and correctness of their work. To evaluate agents as research assistants, we introduce ReplicationBench, an evaluation framework that tests whether agents can replicate entire research papers drawn from the astrophysics literature. Astrophysics, where research relies heavily on archival data and computational study while requiring little real-world experimentation, is a particularly useful testbed for AI agents in scientific research. We split each paper into tasks which require agents to replicate the paper's core contributions, including the experimental setup, derivations, data analysis, and codebase. Each task is co-developed with the original paper authors and targets a key scientific result, enabling objective evaluation of both faithfulness (adherence to original methods) and correctness (technical accuracy of results). ReplicationBench is extremely challenging for current frontier language models: even the best-performing language models score under 20%. We analyze ReplicationBench trajectories in collaboration with domain experts and find a rich, diverse set of failure modes for agents in scientific research. ReplicationBench establishes the first benchmark of paper-scale, expert-validated astrophysics research tasks, reveals insights about agent performance generalizable to other domains of data-driven science, and provides a scalable framework for measuring AI agents' reliability in scientific research.
☆ BEST-RQ-Based Self-Supervised Learning for Whisper Domain Adaptation ICASSP 2026
Automatic Speech Recognition (ASR) systems, despite large multilingual training, struggle in out-of-domain and low-resource scenarios where labeled data is scarce. We propose BEARD (BEST-RQ Encoder Adaptation with Re-training and Distillation), a novel framework designed to adapt Whisper's encoder using unlabeled data. Unlike traditional self-supervised learning methods, BEARD uniquely combines a BEST-RQ objective with knowledge distillation from a frozen teacher encoder, ensuring the encoder's complementarity with the pre-trained decoder. Our experiments focus on the ATCO2 corpus from the challenging Air Traffic Control (ATC) communications domain, characterized by non-native speech, noise, and specialized phraseology. Using about 5,000 hours of untranscribed speech for BEARD and 2 hours of transcribed speech for fine-tuning, the proposed approach significantly outperforms previous baseline and fine-tuned model, achieving a relative improvement of 12% compared to the fine-tuned model. To the best of our knowledge, this is the first work to use a self-supervised learning objective for domain adaptation of Whisper.
comment: Submitted to ICASSP 2026
☆ Open Korean Historical Corpus: A Millennia-Scale Diachronic Collection of Public Domain Texts
The history of the Korean language is characterized by a discrepancy between its spoken and written forms and a pivotal shift from Chinese characters to the Hangul alphabet. However, this linguistic evolution has remained largely unexplored in NLP due to a lack of accessible historical corpora. To address this gap, we introduce the Open Korean Historical Corpus, a large-scale, openly licensed dataset spanning 1,300 years and 6 languages, as well as under-represented writing systems like Korean-style Sinitic (Idu) and Hanja-Hangul mixed script. This corpus contains 18 million documents and 5 billion tokens from 19 sources, ranging from the 7th century to 2025. We leverage this resource to quantitatively analyze major linguistic shifts: (1) Idu usage peaked in the 1860s before declining sharply; (2) the transition from Hanja to Hangul was a rapid transformation starting around 1890; and (3) North Korea's lexical divergence causes modern tokenizers to produce up to 51 times higher out-of-vocabulary rates. This work provides a foundational resource for quantitative diachronic analysis by capturing the history of the Korean language. Moreover, it can serve as a pre-training corpus for large language models, potentially improving their understanding of Sino-Korean vocabulary in modern Hangul as well as archaic writing systems.
comment: Dataset and code available at https://github.com/seyoungsong/OKHC
☆ Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written
Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton
☆ Levée d'ambiguïtés par grammaires locales
Many words are ambiguous in terms of their part of speech (POS). However, when a word appears in a text, this ambiguity is generally much reduced. Disambiguating POS involves using context to reduce the number of POS associated with words, and is one of the main challenges of lexical tagging. The problem of labeling words by POS frequently arises in natural language processing, for example for spelling correction, grammar or style checking, expression recognition, text-to-speech conversion, text corpus analysis, etc. Lexical tagging systems are thus useful as an initial component of many natural language processing systems. A number of recent lexical tagging systems produce multiple solutions when the text is lexically ambiguous or the uniquely correct solution cannot be found. These contributions aim to guarantee a zero silence rate: the correct tag(s) for a word must never be discarded. This objective is unrealistic for systems that tag each word uniquely. This article concerns a lexical disambiguation method adapted to the objective of a zero silence rate and implemented in Silberztein's INTEX system (1993). We present here a formal description of this method. We show that to verify a local disambiguation grammar in this framework, it is not sufficient to consider the transducer paths separately: one needs to verify their interactions. Similarly, if a combination of multiple transducers is used, the result cannot be predicted by considering them in isolation. Furthermore, when examining the initial labeling of a text as produced by INTEX, ideas for disambiguation rules come spontaneously, but grammatical intuitions may turn out to be inaccurate, often due to an unforeseen construction or ambiguity. If a zero silence rate is targeted, local grammars must be carefully tested. This is where a detailed specification of what a grammar will do once applied to texts would be necessary.
comment: in French language
☆ Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.
☆ CritiCal: Can Critique Help LLM Uncertainty or Confidence Calibration?
Accurate confidence calibration in Large Language Models (LLMs) is critical for safe use in high-stakes domains, where clear verbalized confidence enhances user trust. Traditional methods that mimic reference confidence expressions often fail to capture the reasoning needed for accurate confidence assessment. We propose natural language critiques as a solution, ideally suited for confidence calibration, as precise gold confidence labels are hard to obtain and often require multiple generations. This paper studies how natural language critiques can enhance verbalized confidence, addressing: (1) What to critique: uncertainty (question-focused) or confidence (answer-specific)? Analysis shows confidence suits multiple-choice tasks, while uncertainty excels in open-ended scenarios. (2) How to critique: self-critique or critique calibration training? We propose Self-Critique, enabling LLMs to critique and optimize their confidence beyond mere accuracy, and CritiCal, a novel Critique Calibration training method that leverages natural language critiques to improve confidence calibration, moving beyond direct numerical optimization. Experiments show that CritiCal significantly outperforms Self-Critique and other competitive baselines, even surpassing its teacher model, GPT-4o, in complex reasoning tasks. CritiCal also shows robust generalization in out-of-distribution settings, advancing LLM's reliability.
☆ A word association network methodology for evaluating implicit biases in LLMs compared to humans
As Large language models (LLMs) become increasingly integrated into our lives, their inherent social biases remain a pressing concern. Detecting and evaluating these biases can be challenging because they are often implicit rather than explicit in nature, so developing evaluation methods that assess the implicit knowledge representations of LLMs is essential. We present a novel word association network methodology for evaluating implicit biases in LLMs based on simulating semantic priming within LLM-generated word association networks. Our prompt-based approach taps into the implicit relational structures encoded in LLMs, providing both quantitative and qualitative assessments of bias. Unlike most prompt-based evaluation methods, our method enables direct comparisons between various LLMs and humans, providing a valuable point of reference and offering new insights into the alignment of LLMs with human cognition. To demonstrate the utility of our methodology, we apply it to both humans and several widely used LLMs to investigate social biases related to gender, religion, ethnicity, sexual orientation, and political party. Our results reveal both convergences and divergences between LLM and human biases, providing new perspectives on the potential risks of using LLMs. Our methodology contributes to a systematic, scalable, and generalizable framework for evaluating and comparing biases across multiple LLMs and humans, advancing the goal of transparent and socially responsible language technologies.
comment: 24 pages, 13 figures, 3 tables
☆ Talk2Ref: A Dataset for Reference Prediction from Scientific Talks
Scientific talks are a growing medium for disseminating research, and automatically identifying relevant literature that grounds or enriches a talk would be highly valuable for researchers and students alike. We introduce Reference Prediction from Talks (RPT), a new task that maps long, and unstructured scientific presentations to relevant papers. To support research on RPT, we present Talk2Ref, the first large-scale dataset of its kind, containing 6,279 talks and 43,429 cited papers (26 per talk on average), where relevance is approximated by the papers cited in the talk's corresponding source publication. We establish strong baselines by evaluating state-of-the-art text embedding models in zero-shot retrieval scenarios, and propose a dual-encoder architecture trained on Talk2Ref. We further explore strategies for handling long transcripts, as well as training for domain adaptation. Our results show that fine-tuning on Talk2Ref significantly improves citation prediction performance, demonstrating both the challenges of the task and the effectiveness of our dataset for learning semantic representations from spoken scientific content. The dataset and trained models are released under an open license to foster future research on integrating spoken scientific communication into citation recommendation systems.
☆ Mitigating Hallucination in Large Language Models (LLMs): An Application-Oriented Survey on RAG, Reasoning, and Agentic Systems
Hallucination remains one of the key obstacles to the reliable deployment of large language models (LLMs), particularly in real-world applications. Among various mitigation strategies, Retrieval-Augmented Generation (RAG) and reasoning enhancement have emerged as two of the most effective and widely adopted approaches, marking a shift from merely suppressing hallucinations to balancing creativity and reliability. However, their synergistic potential and underlying mechanisms for hallucination mitigation have not yet been systematically examined. This survey adopts an application-oriented perspective of capability enhancement to analyze how RAG, reasoning enhancement, and their integration in Agentic Systems mitigate hallucinations. We propose a taxonomy distinguishing knowledge-based and logic-based hallucinations, systematically examine how RAG and reasoning address each, and present a unified framework supported by real-world applications, evaluations, and benchmarks.
comment: 25 pages, 7 figures, 3 tables
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ Charting the European LLM Benchmarking Landscape: A New Taxonomy and a Set of Best Practices LREC 2026
While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.
comment: 12 pages, 1 figure. Submitted to the LREC 2026 conference
☆ SPARTA: Evaluating Reasoning Segmentation Robustness through Black-Box Adversarial Paraphrasing in Text Autoencoder Latent Space
Multimodal large language models (MLLMs) have shown impressive capabilities in vision-language tasks such as reasoning segmentation, where models generate segmentation masks based on textual queries. While prior work has primarily focused on perturbing image inputs, semantically equivalent textual paraphrases-crucial in real-world applications where users express the same intent in varied ways-remain underexplored. To address this gap, we introduce a novel adversarial paraphrasing task: generating grammatically correct paraphrases that preserve the original query meaning while degrading segmentation performance. To evaluate the quality of adversarial paraphrases, we develop a comprehensive automatic evaluation protocol validated with human studies. Furthermore, we introduce SPARTA-a black-box, sentence-level optimization method that operates in the low-dimensional semantic latent space of a text autoencoder, guided by reinforcement learning. SPARTA achieves significantly higher success rates, outperforming prior methods by up to 2x on both the ReasonSeg and LLMSeg-40k datasets. We use SPARTA and competitive baselines to assess the robustness of advanced reasoning segmentation models. We reveal that they remain vulnerable to adversarial paraphrasing-even under strict semantic and grammatical constraints. All code and data will be released publicly upon acceptance.
☆ Law in Silico: Simulating Legal Society with LLM-Based Agents
Since real-world legal experiments are often costly or infeasible, simulating legal societies with Artificial Intelligence (AI) systems provides an effective alternative for verifying and developing legal theory, as well as supporting legal administration. Large Language Models (LLMs), with their world knowledge and role-playing capabilities, are strong candidates to serve as the foundation for legal society simulation. However, the application of LLMs to simulate legal systems remains underexplored. In this work, we introduce Law in Silico, an LLM-based agent framework for simulating legal scenarios with individual decision-making and institutional mechanisms of legislation, adjudication, and enforcement. Our experiments, which compare simulated crime rates with real-world data, demonstrate that LLM-based agents can largely reproduce macro-level crime trends and provide insights that align with real-world observations. At the same time, micro-level simulations reveal that a well-functioning, transparent, and adaptive legal system offers better protection of the rights of vulnerable individuals.
☆ Can LLMs Write Faithfully? An Agent-Based Evaluation of LLM-generated Islamic Content NeurIPS 2025
Large language models are increasingly used for Islamic guidance, but risk misquoting texts, misapplying jurisprudence, or producing culturally inconsistent responses. We pilot an evaluation of GPT-4o, Ansari AI, and Fanar on prompts from authentic Islamic blogs. Our dual-agent framework uses a quantitative agent for citation verification and six-dimensional scoring (e.g., Structure, Islamic Consistency, Citations) and a qualitative agent for five-dimensional side-by-side comparison (e.g., Tone, Depth, Originality). GPT-4o scored highest in Islamic Accuracy (3.93) and Citation (3.38), Ansari AI followed (3.68, 3.32), and Fanar lagged (2.76, 1.82). Despite relatively strong performance, models still fall short in reliably producing accurate Islamic content and citations -- a paramount requirement in faith-sensitive writing. GPT-4o had the highest mean quantitative score (3.90/5), while Ansari AI led qualitative pairwise wins (116/200). Fanar, though trailing, introduces innovations for Islamic and Arabic contexts. This study underscores the need for community-driven benchmarks centering Muslim perspectives, offering an early step toward more reliable AI in Islamic knowledge and other high-stakes domains such as medicine, law, and journalism.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: 5th Muslims in Machine Learning (MusIML) Workshop
☆ LuxIT: A Luxembourgish Instruction Tuning Dataset from Monolingual Seed Data
The effectiveness of instruction-tuned Large Language Models (LLMs) is often limited in low-resource linguistic settings due to a lack of high-quality training data. We introduce LuxIT, a novel, monolingual instruction tuning dataset for Luxembourgish developed to mitigate this challenge. We synthesize the dataset from a corpus of native Luxembourgish texts, utilizing DeepSeek-R1-0528, chosen for its shown proficiency in Luxembourgish. Following generation, we apply a quality assurance process, employing an LLM-as-a-judge approach. To investigate the practical utility of the dataset, we fine-tune several smaller-scale LLMs on LuxIT. Subsequent benchmarking against their base models on Luxembourgish language proficiency examinations, however, yields mixed results, with performance varying significantly across different models. LuxIT represents a critical contribution to Luxembourgish natural language processing and offers a replicable monolingual methodology, though our findings highlight the need for further research to optimize its application.
☆ SynthWorlds: Controlled Parallel Worlds for Disentangling Reasoning and Knowledge in Language Models
Evaluating the reasoning ability of language models (LMs) is complicated by their extensive parametric world knowledge, where benchmark performance often reflects factual recall rather than genuine reasoning. Existing datasets and approaches (e.g., temporal filtering, paraphrasing, adversarial substitution) cannot cleanly separate the two. We present SynthWorlds, a framework that disentangles task reasoning complexity from factual knowledge. In SynthWorlds, we construct parallel corpora representing two worlds with identical interconnected structure: a real-mapped world, where models may exploit parametric knowledge, and a synthetic-mapped world, where such knowledge is meaningless. On top of these corpora, we design two mirrored tasks as case studies: multi-hop question answering and page navigation, which maintain equal reasoning difficulty across worlds. Experiments in parametric-only (e.g., closed-book QA) and knowledge-augmented (e.g., retrieval-augmented) LM settings reveal a persistent knowledge advantage gap, defined as the performance boost models gain from memorized parametric world knowledge. Knowledge acquisition and integration mechanisms reduce but do not eliminate this gap, highlighting opportunities for system improvements. Fully automatic and scalable, SynthWorlds provides a controlled environment for evaluating LMs in ways that were previously challenging, enabling precise and testable comparisons of reasoning and memorization.
☆ Comprehensive and Efficient Distillation for Lightweight Sentiment Analysis Models EMNLP 2025
Recent efforts leverage knowledge distillation techniques to develop lightweight and practical sentiment analysis models. These methods are grounded in human-written instructions and large-scale user texts. Despite the promising results, two key challenges remain: (1) manually written instructions are limited in diversity and quantity, making them insufficient to ensure comprehensive coverage of distilled knowledge; (2) large-scale user texts incur high computational cost, hindering the practicality of these methods. To this end, we introduce COMPEFFDIST, a comprehensive and efficient distillation framework for sentiment analysis. Our framework consists of two key modules: attribute-based automatic instruction construction and difficulty-based data filtering, which correspondingly tackle the aforementioned challenges. Applying our method across multiple model series (Llama-3, Qwen-3, and Gemma-3), we enable 3B student models to match the performance of 20x larger teacher models on most tasks. In addition, our approach greatly outperforms baseline methods in data efficiency, attaining the same performance level with only 10% of the data.
comment: Accepted by EMNLP 2025. 22 pages, 9 figures. The first two authors contribute equally
☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents.
comment: work in progress
☆ Text Simplification with Sentence Embeddings
Sentence embeddings can be decoded to give approximations of the original texts used to create them. We explore this effect in the context of text simplification, demonstrating that reconstructed text embeddings preserve complexity levels. We experiment with a small feed forward neural network to effectively learn a transformation between sentence embeddings representing high-complexity and low-complexity texts. We provide comparison to a Seq2Seq and LLM-based approach, showing encouraging results in our much smaller learning setting. Finally, we demonstrate the applicability of our transformation to an unseen simplification dataset (MedEASI), as well as datasets from languages outside the training data (ES,DE). We conclude that learning transformations in sentence embedding space is a promising direction for future research and has potential to unlock the ability to develop small, but powerful models for text simplification and other natural language generation tasks.
☆ Automatically Benchmarking LLM Code Agents through Agent-Driven Annotation and Evaluation
Recent advances in code agents have enabled automated software development at the project level, supported by large language models (LLMs) and widely adopted tools. However, existing benchmarks for code agent evaluation face two major limitations: high annotation cost and expertise requirements, and rigid evaluation metrics that rely primarily on unit tests. To address these challenges, we propose an agent-driven benchmark construction pipeline that leverages human supervision to efficiently generate diverse and challenging project-level tasks. Based on this approach, we introduce PRDBench, a novel benchmark comprising 50 real-world Python projects across 20 domains, each with structured Product Requirement Document (PRD) requirements, comprehensive evaluation criteria, and reference implementations. PRDBench features rich data sources, high task complexity, and flexible metrics. We further employ an Agent-as-a-Judge paradigm to score agent outputs, enabling the evaluation of various test types beyond unit tests. Extensive experiments on PRDBench demonstrate its effectiveness in assessing the capabilities of both code agents and evaluation agents, providing a scalable and robust framework for annotation and evaluation.
☆ LongWeave: A Long-Form Generation Benchmark Bridging Real-World Relevance and Verifiability EMNLP
Generating long, informative, and factual outputs remains a major challenge for Large Language Models (LLMs). Existing benchmarks for long-form generation typically assess real-world queries with hard-to-verify metrics or use synthetic setups that ease evaluation but overlook real-world intricacies. In this paper, we introduce \textbf{LongWeave}, which balances real-world and verifiable assessment with Constraint-Verifier Evaluation (CoV-Eval). CoV-Eval constructs tasks by first defining verifiable targets within real-world scenarios, then systematically generating corresponding queries, textual materials, and constraints based on these targets. This ensures that tasks are both realistic and objectively assessable, enabling rigorous assessment of model capabilities in meeting complex real-world constraints. LongWeave supports customizable input/output lengths (up to 64K/8K tokens) across seven distinct tasks. Evaluation on 23 LLMs shows that even state-of-the-art models encounter significant challenges in long-form generation as real-world complexity and output length increase.
comment: EMNLP Findings 2025
☆ Beyond MCQ: An Open-Ended Arabic Cultural QA Benchmark with Dialect Variants
Large Language Models (LLMs) are increasingly used to answer everyday questions, yet their performance on culturally grounded and dialectal content remains uneven across languages. We propose a comprehensive method that (i) translates Modern Standard Arabic (MSA) multiple-choice questions (MCQs) into English and several Arabic dialects, (ii) converts them into open-ended questions (OEQs), (iii) benchmarks a range of zero-shot and fine-tuned LLMs under both MCQ and OEQ settings, and (iv) generates chain-of-thought (CoT) rationales to fine-tune models for step-by-step reasoning. Using this method, we extend an existing dataset in which QAs are parallelly aligned across multiple language varieties, making it, to our knowledge, the first of its kind. We conduct extensive experiments with both open and closed models. Our findings show that (i) models underperform on Arabic dialects, revealing persistent gaps in culturally grounded and dialect-specific knowledge; (ii) Arabic-centric models perform well on MCQs but struggle with OEQs; and (iii) CoT improves judged correctness while yielding mixed n-gram-based metrics. The developed dataset will be publicly released to support further research on culturally and linguistically inclusive evaluation.
comment: Cultural Knowledge, Everyday Knowledge, Open-Ended Question, Chain-of-Thought, Large Language Models, Native, Multilingual, Language Diversity
☆ Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.
comment: Preprint, 25 pages, 9 figures. Code: https://github.com/WooooDyy/Critique-RL
☆ Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.
☆ MERGE: Minimal Expression-Replacement GEneralization Test for Natural Language Inference
In recent years, many generalization benchmarks have shown language models' lack of robustness in natural language inference (NLI). However, manually creating new benchmarks is costly, while automatically generating high-quality ones, even by modifying existing benchmarks, is extremely difficult. In this paper, we propose a methodology for automatically generating high-quality variants of original NLI problems by replacing open-class words, while crucially preserving their underlying reasoning. We dub our generalization test as MERGE (Minimal Expression-Replacements GEneralization), which evaluates the correctness of models' predictions across reasoning-preserving variants of the original problem. Our results show that NLI models' perform 4-20% worse on variants, suggesting low generalizability even on such minimally altered problems. We also analyse how word class of the replacements, word probability, and plausibility influence NLI models' performance.
comment: Pre-print
☆ ViPER: Empowering the Self-Evolution of Visual Perception Abilities in Vision-Language Model
The limited capacity for fine-grained visual perception presents a critical bottleneck for Vision-Language Models (VLMs) in real-world applications. Addressing this is challenging due to the scarcity of high-quality data and the limitations of existing methods: supervised fine-tuning (SFT) often compromises general capabilities, while reinforcement fine-tuning (RFT) prioritizes textual reasoning over visual perception. To bridge this gap, we propose a novel two-stage task that structures visual perception learning as a coarse-to-fine progressive process. Based on this task formulation, we develop ViPER, a self-bootstrapping framework specifically designed to enable iterative evolution through self-critiquing and self-prediction. By synergistically integrating image-level and instance-level reconstruction with a two-stage reinforcement learning strategy, ViPER establishes a closed-loop training paradigm, where internally synthesized data directly fuel the enhancement of perceptual ability. Applied to the Qwen2.5-VL family, ViPER produces the Qwen-Viper series. With an average gain of 1.7% on seven comprehensive benchmarks spanning various tasks and up to 6.0% on fine-grained perception, Qwen-Viper consistently demonstrates superior performance across different vision-language scenarios while maintaining generalizability. Beyond enabling self-improvement in perceptual capabilities, ViPER provides concrete evidence for the reciprocal relationship between generation and understanding, a breakthrough to developing more autonomous and capable VLMs.
☆ Can LLMs Translate Human Instructions into a Reinforcement Learning Agent's Internal Emergent Symbolic Representation?
Emergent symbolic representations are critical for enabling developmental learning agents to plan and generalize across tasks. In this work, we investigate whether large language models (LLMs) can translate human natural language instructions into the internal symbolic representations that emerge during hierarchical reinforcement learning. We apply a structured evaluation framework to measure the translation performance of commonly seen LLMs -- GPT, Claude, Deepseek and Grok -- across different internal symbolic partitions generated by a hierarchical reinforcement learning algorithm in the Ant Maze and Ant Fall environments. Our findings reveal that although LLMs demonstrate some ability to translate natural language into a symbolic representation of the environment dynamics, their performance is highly sensitive to partition granularity and task complexity. The results expose limitations in current LLMs capacity for representation alignment, highlighting the need for further research on robust alignment between language and internal agent representations.
☆ From Memorization to Reasoning in the Spectrum of Loss Curvature
We characterize how memorization is represented in transformer models and show that it can be disentangled in the weights of both language models (LMs) and vision transformers (ViTs) using a decomposition based on the loss landscape curvature. This insight is based on prior theoretical and empirical work showing that the curvature for memorized training points is much sharper than non memorized, meaning ordering weight components from high to low curvature can reveal a distinction without explicit labels. This motivates a weight editing procedure that suppresses far more recitation of untargeted memorized data more effectively than a recent unlearning method (BalancedSubnet), while maintaining lower perplexity. Since the basis of curvature has a natural interpretation for shared structure in model weights, we analyze the editing procedure extensively on its effect on downstream tasks in LMs, and find that fact retrieval and arithmetic are specifically and consistently negatively affected, even though open book fact retrieval and general logical reasoning is conserved. We posit these tasks rely heavily on specialized directions in weight space rather than general purpose mechanisms, regardless of whether those individual datapoints are memorized. We support this by showing a correspondence between task data's activation strength with low curvature components that we edit out, and the drop in task performance after the edit. Our work enhances the understanding of memorization in neural networks with practical applications towards removing it, and provides evidence for idiosyncratic, narrowly-used structures involved in solving tasks like math and fact retrieval.
☆ Evaluating LLMs on Generating Age-Appropriate Child-Like Conversations
Large Language Models (LLMs), predominantly trained on adult conversational data, face significant challenges when generating authentic, child-like dialogue for specialized applications. We present a comparative study evaluating five different LLMs (GPT-4, RUTER-LLAMA-2-13b, GPTSW, NorMistral-7b, and NorBloom-7b) to generate age-appropriate Norwegian conversations for children aged 5 and 9 years. Through a blind evaluation by eleven education professionals using both real child interview data and LLM-generated text samples, we assessed authenticity and developmental appropriateness. Our results show that evaluators achieved strong inter-rater reliability (ICC=0.75) and demonstrated higher accuracy in age prediction for younger children (5-year-olds) compared to older children (9-year-olds). While GPT-4 and NorBloom-7b performed relatively well, most models generated language perceived as more linguistically advanced than the target age groups. These findings highlight critical data-related challenges in developing LLM systems for specialized applications involving children, particularly in low-resource languages where comprehensive age-appropriate lexical resources are scarce.
comment: 11 pages excluding references and appendix. 3 figures and 6 tables
☆ Abjad AI at NADI 2025: CATT-Whisper: Multimodal Diacritic Restoration Using Text and Speech Representations
In this work, we tackle the Diacritic Restoration (DR) task for Arabic dialectal sentences using a multimodal approach that combines both textual and speech information. We propose a model that represents the text modality using an encoder extracted from our own pre-trained model named CATT. The speech component is handled by the encoder module of the OpenAI Whisper base model. Our solution is designed following two integration strategies. The former consists of fusing the speech tokens with the input at an early stage, where the 1500 frames of the audio segment are averaged over 10 consecutive frames, resulting in 150 speech tokens. To ensure embedding compatibility, these averaged tokens are processed through a linear projection layer prior to merging them with the text tokens. Contextual encoding is guaranteed by the CATT encoder module. The latter strategy relies on cross-attention, where text and speech embeddings are fused. The cross-attention output is then fed to the CATT classification head for token-level diacritic prediction. To further improve model robustness, we randomly deactivate the speech input during training, allowing the model to perform well with or without speech. Our experiments show that the proposed approach achieves a word error rate (WER) of 0.25 and a character error rate (CER) of 0.9 on the development set. On the test set, our model achieved WER and CER scores of 0.55 and 0.13, respectively.
☆ Towards Transparent Reasoning: What Drives Faithfulness in Large Language Models? NeurIPS 2025
Large Language Models (LLMs) often produce explanations that do not faithfully reflect the factors driving their predictions. In healthcare settings, such unfaithfulness is especially problematic: explanations that omit salient clinical cues or mask spurious shortcuts can undermine clinician trust and lead to unsafe decision support. We study how inference and training-time choices shape explanation faithfulness, focusing on factors practitioners can control at deployment. We evaluate three LLMs (GPT-4.1-mini, LLaMA 70B, LLaMA 8B) on two datasets-BBQ (social bias) and MedQA (medical licensing questions), and manipulate the number and type of few-shot examples, prompting strategies, and training procedure. Our results show: (i) both the quantity and quality of few-shot examples significantly impact model faithfulness; (ii) faithfulness is sensitive to prompting design; (iii) the instruction-tuning phase improves measured faithfulness on MedQA. These findings offer insights into strategies for enhancing the interpretability and trustworthiness of LLMs in sensitive domains.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ HACK: Hallucinations Along Certainty and Knowledge Axes
Hallucinations in LLMs present a critical barrier to their reliable usage. Existing research usually categorizes hallucination by their external properties rather than by the LLMs' underlying internal properties. This external focus overlooks that hallucinations may require tailored mitigation strategies based on their underlying mechanism. We propose a framework for categorizing hallucinations along two axes: knowledge and certainty. Since parametric knowledge and certainty may vary across models, our categorization method involves a model-specific dataset construction process that differentiates between those types of hallucinations. Along the knowledge axis, we distinguish between hallucinations caused by a lack of knowledge and those occurring despite the model having the knowledge of the correct response. To validate our framework along the knowledge axis, we apply steering mitigation, which relies on the existence of parametric knowledge to manipulate model activations. This addresses the lack of existing methods to validate knowledge categorization by showing a significant difference between the two hallucination types. We further analyze the distinct knowledge and hallucination patterns between models, showing that different hallucinations do occur despite shared parametric knowledge. Turning to the certainty axis, we identify a particularly concerning subset of hallucinations where models hallucinate with certainty despite having the correct knowledge internally. We introduce a new evaluation metric to measure the effectiveness of mitigation methods on this subset, revealing that while some methods perform well on average, they fail disproportionately on these critical cases. Our findings highlight the importance of considering both knowledge and certainty in hallucination analysis and call for targeted mitigation approaches that consider the hallucination underlying factors.
comment: The code is available at https://github.com/technion-cs-nlp/HACK_Hallucinations_Along_Certainty_and_Knowledge_axes
☆ Beyond Neural Incompatibility: Easing Cross-Scale Knowledge Transfer in Large Language Models through Latent Semantic Alignment
Large Language Models (LLMs) encode vast amounts of knowledge in their massive parameters, which is accessible to locate, trace, and analyze. Despite advances in neural interpretability, it is still not clear how to transfer knowledge in a fine-grained manner, namely parametric knowledge transfer (PKT). A key problem is enabling effective and efficient knowledge transfer across LLMs of different scales, which is essential for achieving greater flexibility and broader applicability in transferring knowledge between LLMs. Due to neural incompatibility, referring to the architectural and parametric differences between LLMs of varying scales, existing methods that directly reuse layer parameters are severely limited. In this paper, we identify the semantic alignment in latent space as the fundamental prerequisite for LLM cross-scale knowledge transfer. Instead of directly using the layer parameters, our approach takes activations as the medium of layer-wise knowledge transfer. Leveraging the semantics in latent space, our approach is simple and outperforms prior work, better aligning model behaviors across varying scales. Evaluations on four benchmarks demonstrate the efficacy of our method. Further analysis reveals the key factors easing cross-scale knowledge transfer and provides insights into the nature of latent semantic alignment.
comment: an early-stage version
Exploring the Influence of Relevant Knowledge for Natural Language Generation Interpretability
This paper explores the influence of external knowledge integration in Natural Language Generation (NLG), focusing on a commonsense generation task. We extend the CommonGen dataset by creating KITGI, a benchmark that pairs input concept sets with retrieved semantic relations from ConceptNet and includes manually annotated outputs. Using the T5-Large model, we compare sentence generation under two conditions: with full external knowledge and with filtered knowledge where highly relevant relations were deliberately removed. Our interpretability benchmark follows a three-stage method: (1) identifying and removing key knowledge, (2) regenerating sentences, and (3) manually assessing outputs for commonsense plausibility and concept coverage. Results show that sentences generated with full knowledge achieved 91\% correctness across both criteria, while filtering reduced performance drastically to 6\%. These findings demonstrate that relevant external knowledge is critical for maintaining both coherence and concept coverage in NLG. This work highlights the importance of designing interpretable, knowledge-enhanced NLG systems and calls for evaluation frameworks that capture the underlying reasoning beyond surface-level metrics.
☆ MuSaG: A Multimodal German Sarcasm Dataset with Full-Modal Annotations
Sarcasm is a complex form of figurative language in which the intended meaning contradicts the literal one. Its prevalence in social media and popular culture poses persistent challenges for natural language understanding, sentiment analysis, and content moderation. With the emergence of multimodal large language models, sarcasm detection extends beyond text and requires integrating cues from audio and vision. We present MuSaG, the first German multimodal sarcasm detection dataset, consisting of 33 minutes of manually selected and human-annotated statements from German television shows. Each instance provides aligned text, audio, and video modalities, annotated separately by humans, enabling evaluation in unimodal and multimodal settings. We benchmark nine open-source and commercial models, spanning text, audio, vision, and multimodal architectures, and compare their performance to human annotations. Our results show that while humans rely heavily on audio in conversational settings, models perform best on text. This highlights a gap in current multimodal models and motivates the use of MuSaG for developing models better suited to realistic scenarios. We release MuSaG publicly to support future research on multimodal sarcasm detection and human-model alignment.
☆ Ko-MuSR: A Multistep Soft Reasoning Benchmark for LLMs Capable of Understanding Korean ACL
We present Ko-MuSR, the first benchmark to comprehensively evaluate multistep, soft reasoning in long Korean narratives while minimizing data contamination. Built following MuSR, Ko-MuSR features fully Korean narratives, reasoning chains, and multiple-choice questions verified by human annotators for logical consistency and answerability. Evaluations of four large language models -- two multilingual and two Korean-specialized -- show that multilingual models outperform Korean-focused ones even in Korean reasoning tasks, indicating cross-lingual generalization of reasoning ability. Carefully designed prompting strategies, which combine few-shot examples, reasoning traces, and task-specific hints, further boost accuracy, approaching human-level performance. Ko-MuSR offers a solid foundation for advancing Korean NLP by enabling systematic evaluation of long-context reasoning and prompting strategies.
comment: submitted to ACL ARR Rolling Review
☆ Beyond Line-Level Filtering for the Pretraining Corpora of LLMs ACL
While traditional line-level filtering techniques, such as line-level deduplication and trailing-punctuation filters, are commonly used, these basic methods can sometimes discard valuable content, negatively affecting downstream performance. In this paper, we introduce two methods-pattern-aware line-level deduplication (PLD) and pattern-aware trailing punctuation filtering (PTF)-by enhancing the conventional filtering techniques. Our approach not only considers line-level signals but also takes into account their sequential distribution across documents, enabling us to retain structurally important content that might otherwise be removed. We evaluate these proposed methods by training small language models (1 B parameters) in both English and Korean. The results demonstrate that our methods consistently improve performance on multiple-choice benchmarks and significantly enhance generative question-answering accuracy on both SQuAD v1 and KorQuAD v1.
comment: submitted to ACL ARR Rolling Review
☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.
comment: Accepted by EMNLP 2025
☆ Reinforcement Learning for Long-Horizon Multi-Turn Search Agents NeurIPS 2025
Large Language Model (LLM) agents can leverage multiple turns and tools to solve complex tasks, with prompt-based approaches achieving strong performance. This work demonstrates that Reinforcement Learning (RL) can push capabilities significantly further by learning from experience. Through experiments on a legal document search benchmark, we show that our RL-trained 14 Billion parameter model outperforms frontier class models (85% vs 78% accuracy). In addition, we explore turn-restricted regimes, during training and at test-time, that show these agents achieve better results if allowed to operate over longer multi-turn horizons.
comment: 4 pages plus references and appendices. Accepted into the First Workshop on Multi-Turn Interactions in Large Language Models at NeurIPS 2025
☆ Squrve: A Unified and Modular Framework for Complex Real-World Text-to-SQL Tasks
Text-to-SQL technology has evolved rapidly, with diverse academic methods achieving impressive results. However, deploying these techniques in real-world systems remains challenging due to limited integration tools. Despite these advances, we introduce Squrve, a unified, modular, and extensive Text-to-SQL framework designed to bring together research advances and real-world applications. Squrve first establishes a universal execution paradigm that standardizes invocation interfaces, then proposes a multi-actor collaboration mechanism based on seven abstracted effective atomic actor components. Experiments on widely adopted benchmarks demonstrate that the collaborative workflows consistently outperform the original individual methods, thereby opening up a new effective avenue for tackling complex real-world queries. The codes are available at https://github.com/Satissss/Squrve.
☆ RegSpeech12: A Regional Corpus of Bengali Spontaneous Speech Across Dialects
The Bengali language, spoken extensively across South Asia and among diasporic communities, exhibits considerable dialectal diversity shaped by geography, culture, and history. Phonological and pronunciation-based classifications broadly identify five principal dialect groups: Eastern Bengali, Manbhumi, Rangpuri, Varendri, and Rarhi. Within Bangladesh, further distinctions emerge through variation in vocabulary, syntax, and morphology, as observed in regions such as Chittagong, Sylhet, Rangpur, Rajshahi, Noakhali, and Barishal. Despite this linguistic richness, systematic research on the computational processing of Bengali dialects remains limited. This study seeks to document and analyze the phonetic and morphological properties of these dialects while exploring the feasibility of building computational models particularly Automatic Speech Recognition (ASR) systems tailored to regional varieties. Such efforts hold potential for applications in virtual assistants and broader language technologies, contributing to both the preservation of dialectal diversity and the advancement of inclusive digital tools for Bengali-speaking communities. The dataset created for this study is released for public use.
comment: 26 pages
☆ Global PIQA: Evaluating Physical Commonsense Reasoning Across 100+ Languages and Cultures
To date, there exist almost no culturally-specific evaluation benchmarks for large language models (LLMs) that cover a large number of languages and cultures. In this paper, we present Global PIQA, a participatory commonsense reasoning benchmark for over 100 languages, constructed by hand by 335 researchers from 65 countries around the world. The 116 language varieties in Global PIQA cover five continents, 14 language families, and 23 writing systems. In the non-parallel split of Global PIQA, over 50% of examples reference local foods, customs, traditions, or other culturally-specific elements. We find that state-of-the-art LLMs perform well on Global PIQA in aggregate, but they exhibit weaker performance in lower-resource languages (up to a 37% accuracy gap, despite random chance at 50%). Open models generally perform worse than proprietary models. Global PIQA highlights that in many languages and cultures, everyday knowledge remains an area for improvement, alongside more widely-discussed capabilities such as complex reasoning and expert knowledge. Beyond its uses for LLM evaluation, we hope that Global PIQA provides a glimpse into the wide diversity of cultures in which human language is embedded.
comment: Preprint
☆ Challenging Multilingual LLMs: A New Taxonomy and Benchmark for Unraveling Hallucination in Translation
Large Language Models (LLMs) have advanced machine translation but remain vulnerable to hallucinations. Unfortunately, existing MT benchmarks are not capable of exposing failures in multilingual LLMs. To disclose hallucination in multilingual LLMs, we introduce a diagnostic framework with a taxonomy that separates Instruction Detachment from Source Detachment. Guided by this taxonomy, we create HalloMTBench, a multilingual, human-verified benchmark across 11 English-to-X directions. We employed 4 frontier LLMs to generate candidates and scrutinize these candidates with an ensemble of LLM judges, and expert validation. In this way, we curate 5,435 high-quality instances. We have evaluated 17 LLMs on HalloMTBench. Results reveal distinct ``hallucination triggers'' -- unique failure patterns reflecting model scale, source length sensitivity, linguistic biases, and Reinforcement-Learning (RL) amplified language mixing. HalloMTBench offers a forward-looking testbed for diagnosing LLM translation failures. HalloMTBench is available in https://huggingface.co/collections/AIDC-AI/marco-mt.
☆ Pie: A Programmable Serving System for Emerging LLM Applications SOSP 2025
Emerging large language model (LLM) applications involve diverse reasoning strategies and agentic workflows, straining the capabilities of existing serving systems built on a monolithic token generation loop. This paper introduces Pie, a programmable LLM serving system designed for flexibility and efficiency. Pie decomposes the traditional generation loop into fine-grained service handlers exposed via an API and delegates control of the generation process to user-provided programs, called inferlets. This enables applications to implement new KV cache strategies, bespoke generation logic, and seamlessly integrate computation and I/O-entirely within the application, without requiring modifications to the serving system. Pie executes inferlets using WebAssembly, benefiting from its lightweight sandboxing. Our evaluation shows Pie matches state-of-the-art performance on standard tasks (3-12% latency overhead) while significantly improving latency and throughput (1.3x-3.4x higher) on agentic workflows by enabling application-specific optimizations.
comment: SOSP 2025. Source code available at https://github.com/pie-project/pie
GraphNet: A Large-Scale Computational Graph Dataset for Tensor Compiler Research
We introduce GraphNet, a dataset of 2.7K real-world deep learning computational graphs with rich metadata, spanning six major task categories across multiple deep learning frameworks. To evaluate tensor compiler performance on these samples, we propose the benchmark metric Speedup Score S(t), which jointly considers runtime speedup and execution correctness under tunable tolerance levels, offering a reliable measure of general optimization capability. Furthermore, we extend S(t) to the Error-aware Speedup Score ES(t), which incorporates error information and helps compiler developers identify key performance bottlenecks. In this report, we benchmark the default tensor compilers, CINN for PaddlePaddle and TorchInductor for PyTorch, on computer vision (CV) and natural language processing (NLP) samples to demonstrate the practicality of GraphNet. The full construction pipeline with graph extraction and compiler evaluation tools is available at https://github.com/PaddlePaddle/GraphNet .
☆ Success and Cost Elicit Convention Formation for Efficient Communication
Humans leverage shared conversational context to become increasingly successful and efficient at communicating over time. One manifestation of this is the formation of ad hoc linguistic conventions, which allow people to coordinate on short, less costly utterances that are understood using shared conversational context. We present a method to train large multimodal models to form conventions, enabling efficient communication. Our approach uses simulated reference games between models, and requires no additional human-produced data. In repeated reference games involving photographs and tangram images, our method enables models to communicate efficiently with people: reducing the message length by up to 41% while increasing success by 15% over the course of the interaction. Human listeners respond faster when interacting with our model that forms conventions. We also show that training based on success or cost alone is insufficient - both are necessary to elicit convention formation.
☆ SpecKD: Speculative Decoding for Effective Knowledge Distillation of LLMs
Knowledge Distillation (KD) has become a cornerstone technique for compressing Large Language Models (LLMs) into smaller, more efficient student models. However, conventional KD approaches typically apply the distillation loss uniformly across all tokens, regardless of the teacher's confidence. This indiscriminate mimicry can introduce noise, as the student is forced to learn from the teacher's uncertain or high-entropy predictions, which may ultimately harm student performance-especially when the teacher is much larger and more powerful. To address this, we propose Speculative Knowledge Distillation (SpecKD), a novel, plug-and-play framework that introduces a dynamic, token-level gating mechanism inspired by the "propose-and-verify" paradigm of speculative decoding. At each step, the student's token proposal is verified against the teacher's distribution; the distillation loss is selectively applied only to "accepted" tokens, while "rejected" tokens are masked out. Extensive experiments on diverse text generation tasks show that SpecKD consistently and significantly outperforms strong KD baselines, leading to more stable training and more capable student models, and achieving state-of-the-art results.
☆ Teaching LLMs to Abstain via Fine-Grained Semantic Confidence Reward
Mitigating hallucinations in Large Language Models (LLMs) is critical for their reliable deployment. Existing methods typically fine-tune LLMs to abstain from answering questions beyond their knowledge scope. However, these methods often rely on coarse-grained signals to guide LLMs to abstain, such as overall confidence or uncertainty scores on multiple sampled answers, which may result in an imprecise awareness of the model's own knowledge boundaries. To this end, we propose a novel reinforcement learning framework built on $\textbf{\underline{Fi}ne-grained \underline{S}emantic \underline{Co}nfidence \underline{Re}ward (\Ours)}$, which guides LLMs to abstain via sample-specific confidence. Specifically, our method operates by sampling multiple candidate answers and conducting semantic clustering, then training the LLM to retain answers within high-confidence clusters and discard those within low-confidence ones, thereby promoting accurate post-hoc abstention. Additionally, we propose a new metric for evaluating the reliability of abstention fine-tuning tasks more comprehensively. Our method significantly enhances reliability in both in-domain and out-of-distribution benchmarks.
comment: 23pages, 4figures
☆ TEXT2DB: Integration-Aware Information Extraction with Large Language Model Agents ACL 2025
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE TEXT2DB that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-PlanAnalyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation. Source code: https://github.com/yzjiao/Text2DB
comment: ACL 2025. Source code: https://github.com/yzjiao/Text2DB
☆ META-RAG: Meta-Analysis-Inspired Evidence-Re-Ranking Method for Retrieval-Augmented Generation in Evidence-Based Medicine
Evidence-based medicine (EBM) holds a crucial role in clinical application. Given suitable medical articles, doctors effectively reduce the incidence of misdiagnoses. Researchers find it efficient to use large language models (LLMs) techniques like RAG for EBM tasks. However, the EBM maintains stringent requirements for evidence, and RAG applications in EBM struggle to efficiently distinguish high-quality evidence. Therefore, inspired by the meta-analysis used in EBM, we provide a new method to re-rank and filter the medical evidence. This method presents multiple principles to filter the best evidence for LLMs to diagnose. We employ a combination of several EBM methods to emulate the meta-analysis, which includes reliability analysis, heterogeneity analysis, and extrapolation analysis. These processes allow the users to retrieve the best medical evidence for the LLMs. Ultimately, we evaluate these high-quality articles and show an accuracy improvement of up to 11.4% in our experiments and results. Our method successfully enables RAG to extract higher-quality and more reliable evidence from the PubMed dataset. This work can reduce the infusion of incorrect knowledge into responses and help users receive more effective replies.
☆ PICOs-RAG: PICO-supported Query Rewriting for Retrieval-Augmented Generation in Evidence-Based Medicine
Evidence-based medicine (EBM) research has always been of paramount importance. It is important to find appropriate medical theoretical support for the needs from physicians or patients to reduce the occurrence of medical accidents. This process is often carried out by human querying relevant literature databases, which lacks objectivity and efficiency. Therefore, researchers utilize retrieval-augmented generation (RAG) to search for evidence and generate responses automatically. However, current RAG methods struggle to handle complex queries in real-world clinical scenarios. For example, when queries lack certain information or use imprecise language, the model may retrieve irrelevant evidence and generate unhelpful answers. To address this issue, we present the PICOs-RAG to expand the user queries into a better format. Our method can expand and normalize the queries into professional ones and use the PICO format, a search strategy tool present in EBM, to extract the most important information used for retrieval. This approach significantly enhances retrieval efficiency and relevance, resulting in up to an 8.8\% improvement compared to the baseline evaluated by our method. Thereby the PICOs-RAG improves the performance of the large language models into a helpful and reliable medical assistant in EBM.
☆ M-Eval: A Heterogeneity-Based Framework for Multi-evidence Validation in Medical RAG Systems
Retrieval-augmented Generation (RAG) has demonstrated potential in enhancing medical question-answering systems through the integration of large language models (LLMs) with external medical literature. LLMs can retrieve relevant medical articles to generate more professional responses efficiently. However, current RAG applications still face problems. They generate incorrect information, such as hallucinations, and they fail to use external knowledge correctly. To solve these issues, we propose a new method named M-Eval. This method is inspired by the heterogeneity analysis approach used in Evidence-Based Medicine (EBM). Our approach can check for factual errors in RAG responses using evidence from multiple sources. First, we extract additional medical literature from external knowledge bases. Then, we retrieve the evidence documents generated by the RAG system. We use heterogeneity analysis to check whether the evidence supports different viewpoints in the response. In addition to verifying the accuracy of the response, we also assess the reliability of the evidence provided by the RAG system. Our method shows an improvement of up to 23.31% accuracy across various LLMs. This work can help detect errors in current RAG-based medical systems. It also makes the applications of LLMs more reliable and reduces diagnostic errors.
☆ emg2speech: synthesizing speech from electromyography using self-supervised speech models
We present a neuromuscular speech interface that translates electromyographic (EMG) signals collected from orofacial muscles during speech articulation directly into audio. We show that self-supervised speech (SS) representations exhibit a strong linear relationship with the electrical power of muscle action potentials: SS features can be linearly mapped to EMG power with a correlation of $r = 0.85$. Moreover, EMG power vectors corresponding to different articulatory gestures form structured and separable clusters in feature space. This relationship: $\text{SS features}$ $\xrightarrow{\texttt{linear mapping}}$ $\text{EMG power}$ $\xrightarrow{\texttt{gesture-specific clustering}}$ $\text{articulatory movements}$, highlights that SS models implicitly encode articulatory mechanisms. Leveraging this property, we directly map EMG signals to SS feature space and synthesize speech, enabling end-to-end EMG-to-speech generation without explicit articulatory models and vocoder training.
☆ Uncovering the Potential Risks in Unlearning: Danger of English-only Unlearning in Multilingual LLMs
There have been a couple of studies showing that attempting to erase multilingual knowledge using only English data is insufficient for multilingual LLMs. However, their analyses remain highly performance-oriented. In this paper, we switch the point of view to evaluation, and address an additional blind spot which reveals itself when the multilingual LLM is fully finetuned with parallel multilingual dataset before unlearning. Here, language confusion occurs whereby a model responds in language different from that of the input prompt. Language confusion is a problematic phenomenon in unlearning, causing the standard reference-based metrics to fail. We tackle this phenomenon in three steps: (1) introduce N-gram-based Language-Mix (N-Mix) score to quantitatively show the language confusion is pervasive and consistent in multilingual LLMs, (2) demonstrate that reference-based metrics result in false negatives when N-Mix score is high, and(3) suggest the need of new type of unlearning evaluation that can directly assess the content of the generated sentences. We call this type of metrics as semantic-based metric.
☆ StorageXTuner: An LLM Agent-Driven Automatic Tuning Framework for Heterogeneous Storage Systems
Automatically configuring storage systems is hard: parameter spaces are large and conditions vary across workloads, deployments, and versions. Heuristic and ML tuners are often system specific, require manual glue, and degrade under changes. Recent LLM-based approaches help but usually treat tuning as a single-shot, system-specific task, which limits cross-system reuse, constrains exploration, and weakens validation. We present StorageXTuner, an LLM agent-driven auto-tuning framework for heterogeneous storage engines. StorageXTuner separates concerns across four agents - Executor (sandboxed benchmarking), Extractor (performance digest), Searcher (insight-guided configuration exploration), and Reflector (insight generation and management). The design couples an insight-driven tree search with layered memory that promotes empirically validated insights and employs lightweight checkers to guard against unsafe actions. We implement a prototype and evaluate it on RocksDB, LevelDB, CacheLib, and MySQL InnoDB with YCSB, MixGraph, and TPC-H/C. Relative to out-of-the-box settings and to ELMo-Tune, StorageXTuner reaches up to 575% and 111% higher throughput, reduces p99 latency by as much as 88% and 56%, and converges with fewer trials.
comment: ArXiv version; Affiliations: Arizona State University (Lin, Zhang, Thakkar, Sun, Cao) and Iowa State University (Zheng)
☆ Emergence of Minimal Circuits for Indirect Object Identification in Attention-Only Transformers
Mechanistic interpretability aims to reverse-engineer large language models (LLMs) into human-understandable computational circuits. However, the complexity of pretrained models often obscures the minimal mechanisms required for specific reasoning tasks. In this work, we train small, attention-only transformers from scratch on a symbolic version of the Indirect Object Identification (IOI) task -- a benchmark for studying coreference -- like reasoning in transformers. Surprisingly, a single-layer model with only two attention heads achieves perfect IOI accuracy, despite lacking MLPs and normalization layers. Through residual stream decomposition, spectral analysis, and embedding interventions, we find that the two heads specialize into additive and contrastive subcircuits that jointly implement IOI resolution. Furthermore, we show that a two-layer, one-head model achieves similar performance by composing information across layers through query-value interactions. These results demonstrate that task-specific training induces highly interpretable, minimal circuits, offering a controlled testbed for probing the computational foundations of transformer reasoning.
comment: 9 pages, 10 figures
☆ POWSM: A Phonetic Open Whisper-Style Speech Foundation Model
Recent advances in spoken language processing have led to substantial progress in phonetic tasks such as automatic speech recognition (ASR), phone recognition (PR), grapheme-to-phoneme conversion (G2P), and phoneme-to-grapheme conversion (P2G). Despite their conceptual similarity, these tasks have largely been studied in isolation, each relying on task-specific architectures and datasets. In this paper, we introduce POWSM (Phonetic Open Whisper-style Speech Model), the first unified framework capable of jointly performing multiple phone-related tasks. POWSM enables seamless conversion between audio, text (graphemes), and phones, opening up new possibilities for universal and low-resource speech processing. Our model outperforms or matches specialized PR models of similar size (Wav2Vec2Phoneme and ZIPA) while jointly supporting G2P, P2G, and ASR. Our training data, code and models are released to foster open science.
comment: 14 pages, under review
☆ Sequences of Logits Reveal the Low Rank Structure of Language Models
A major problem in the study of large language models is to understand their inherent low-dimensional structure. We introduce an approach to study the low-dimensional structure of language models at a model-agnostic level: as sequential probabilistic models. We first empirically demonstrate that a wide range of modern language models exhibit low-rank structure: in particular, matrices built from the model's logits for varying sets of prompts and responses have low approximate rank. We then show that this low-rank structure can be leveraged for generation -- in particular, we can generate a response to a target prompt using a linear combination of the model's outputs on unrelated, or even nonsensical prompts. On the theoretical front, we observe that studying the approximate rank of language models in the sense discussed above yields a simple universal abstraction whose theoretical predictions parallel our experiments. We then analyze the representation power of the abstraction and give provable learning guarantees.
☆ Language Model Behavioral Phases are Consistent Across Architecture, Training Data, and Scale NeurIPS 2025
We show that across architecture (Transformer vs. Mamba vs. RWKV), training dataset (OpenWebText vs. The Pile), and scale (14 million parameters to 12 billion parameters), autoregressive language models exhibit highly consistent patterns of change in their behavior over the course of pretraining. Based on our analysis of over 1,400 language model checkpoints on over 110,000 tokens of English, we find that up to 98% of the variance in language model behavior at the word level can be explained by three simple heuristics: the unigram probability (frequency) of a given word, the $n$-gram probability of the word, and the semantic similarity between the word and its context. Furthermore, we see consistent behavioral phases in all language models, with their predicted probabilities for words overfitting to those words' $n$-gram probabilities for increasing $n$ over the course of training. Taken together, these results suggest that learning in neural language models may follow a similar trajectory irrespective of model details.
comment: To be presented at NeurIPS 2025
☆ Finding Culture-Sensitive Neurons in Vision-Language Models
Despite their impressive performance, vision-language models (VLMs) still struggle on culturally situated inputs. To understand how VLMs process culturally grounded information, we study the presence of culture-sensitive neurons, i.e. neurons whose activations show preferential sensitivity to inputs associated with particular cultural contexts. We examine whether such neurons are important for culturally diverse visual question answering and where they are located. Using the CVQA benchmark, we identify neurons of culture selectivity and perform causal tests by deactivating the neurons flagged by different identification methods. Experiments on three VLMs across 25 cultural groups demonstrate the existence of neurons whose ablation disproportionately harms performance on questions about the corresponding cultures, while having minimal effects on others. Moreover, we propose a new margin-based selector - Contrastive Activation Selection (CAS), and show that it outperforms existing probability- and entropy-based methods in identifying culture-sensitive neurons. Finally, our layer-wise analyses reveals that such neurons tend to cluster in certain decoder layers. Overall, our findings shed new light on the internal organization of multimodal representations.
comment: 22 pages, 13 figures
☆ SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens
The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.
☆ Disaggregation Reveals Hidden Training Dynamics: The Case of Agreement Attraction NeurIPS 2025
Language models generally produce grammatical text, but they are more likely to make errors in certain contexts. Drawing on paradigms from psycholinguistics, we carry out a fine-grained analysis of those errors in different syntactic contexts. We demonstrate that by disaggregating over the conditions of carefully constructed datasets and comparing model performance on each over the course of training, it is possible to better understand the intermediate stages of grammatical learning in language models. Specifically, we identify distinct phases of training where language model behavior aligns with specific heuristics such as word frequency and local context rather than generalized grammatical rules. We argue that taking this approach to analyzing language model behavior more generally can serve as a powerful tool for understanding the intermediate learning phases, overall training dynamics, and the specific generalizations learned by language models.
comment: Accepted to the First Workshop on Interpreting Cognition in Deep Learning Models (CogInterp @ NeurIPS 2025)
☆ RiddleBench: A New Generative Reasoning Benchmark for LLMs
Large Language Models have demonstrated strong performance on many established reasoning benchmarks. However, these benchmarks primarily evaluate structured skills like quantitative problem-solving, leaving a gap in assessing flexible, multifaceted reasoning abilities that are central to human intelligence. These abilities require integrating logical deduction with spatial awareness and constraint satisfaction, which current evaluations do not measure well. To address this, we introduce RiddleBench, a benchmark of 1,737 challenging puzzles in English designed to probe these core reasoning capabilities. Evaluation of state-of-the-art models on RiddleBench shows fundamental weaknesses. Even top proprietary models like Gemini 2.5 Pro, o3, and Claude 4 Sonnet achieve accuracy just above 60% (60.30%, 63.37%, and 63.16%). Analysis further reveals deep failures, including hallucination cascades (accepting flawed reasoning from other models) and poor self-correction due to a strong self-confirmation bias. Their reasoning is also fragile, with performance degrading significantly when constraints are reordered or irrelevant information is introduced. RiddleBench functions as a diagnostic tool for these issues and as a resource for guiding the development of more robust and reliable language models.
☆ Idea2Plan: Exploring AI-Powered Research Planning
Large language models (LLMs) have demonstrated significant potential to accelerate scientific discovery as valuable tools for analyzing data, generating hypotheses, and supporting innovative approaches in various scientific fields. In this work, we investigate how LLMs can handle the transition from conceptual research ideas to well-structured research plans. Effective research planning not only supports scientists in advancing their research but also represents a crucial capability for the development of autonomous research agents. Despite its importance, the field lacks a systematic understanding of LLMs' research planning capability. To rigorously measure this capability, we introduce the Idea2Plan task and Idea2Plan Bench, a benchmark built from 200 ICML 2025 Spotlight and Oral papers released after major LLM training cutoffs. Each benchmark instance includes a research idea and a grading rubric capturing the key components of valid plans. We further propose Idea2Plan JudgeEval, a complementary benchmark to assess the reliability of LLM-based judges against expert annotations. Experimental results show that GPT-5 and GPT-5-mini achieve the strongest performance on the benchmark, though substantial headroom remains for future improvement. Our study provides new insights into LLMs' capability for research planning and lay the groundwork for future progress.
☆ Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.
comment: https://github.com/alexmartin1722/mirage
☆ Do Large Language Models Grasp The Grammar? Evidence from Grammar-Book-Guided Probing in Luxembourgish
Grammar refers to the system of rules that governs the structural organization and the semantic relations among linguistic units such as sentences, phrases, and words within a given language. In natural language processing, there remains a notable scarcity of grammar focused evaluation protocols, a gap that is even more pronounced for low-resource languages. Moreover, the extent to which large language models genuinely comprehend grammatical structure, especially the mapping between syntactic structures and meanings, remains under debate. To investigate this issue, we propose a Grammar Book Guided evaluation pipeline intended to provide a systematic and generalizable framework for grammar evaluation consisting of four key stages, and in this work we take Luxembourgish as a case study. The results show a weak positive correlation between translation performance and grammatical understanding, indicating that strong translations do not necessarily imply deep grammatical competence. Larger models perform well overall due to their semantic strength but remain weak in morphology and syntax, struggling particularly with Minimal Pair tasks, while strong reasoning ability offers a promising way to enhance their grammatical understanding.
♻ ☆ Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
comment: published at the Semantic Web journal. The last version is available: https://doi.org/10.1177/22104968251385519
♻ ☆ Arena-Lite: Efficient and Reliable Large Language Model Evaluation via Tournament-Based Direct Comparisons
As Large Language Models (LLMs) expand across domains, LLM judges have become essential for systems evaluation. Current benchmarks typically compare system outputs against baselines. This baseline-mediated approach, though convenient, yields lower reliability than direct comparison between systems. We propose Arena-Lite which integrates tournament structure on top of head-to-head comparison. The application of a tournament structure and direct comparison eliminates the need for baseline outputs, reduces the number of required comparisons, and allows higher reliability in system rankings. We conducted two experiments: (1) controlled stochastic modeling and (2) empirical validation with a real LLM judge. Those experiments collectively demonstrate that Arena-Lite consistently achieves higher reliability with fewer comparisons, even with smaller datasets or weaker judges. We release an easy-to-use web demonstration and code to foster adoption of Arena-Lite, streamlining model selection across research and industry communities. Arena-Lite demo and code are available on \href{https://huggingface.co/spaces/NCSOFT/ArenaLite}{https://huggingface.co/spaces/NCSOFT/ArenaLite}
comment: 8 pages for main body, 19 pages in total
♻ ☆ Says Who? Effective Zero-Shot Annotation of Focalization
Focalization describes the way in which access to narrative information is restricted or controlled based on the knowledge available to knowledge of the narrator. It is encoded via a wide range of lexico-grammatical features and is subject to reader interpretation. Even trained annotators frequently disagree on correct labels, suggesting this task is both qualitatively and computationally challenging. In this work, we test how well five contemporary large language model (LLM) families and two baselines perform when annotating short literary excerpts for focalization. Despite the challenging nature of the task, we find that LLMs show comparable performance to trained human annotators, with GPT-4o achieving an average F1 of 84.79%. Further, we demonstrate that the log probabilities output by GPT-family models frequently reflect the difficulty of annotating particular excerpts. Finally, we provide a case study analyzing sixteen Stephen King novels, demonstrating the usefulness of this approach for computational literary studies and the insights gleaned from examining focalization at scale.
comment: Accepted at CHR 2025
♻ ☆ TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
♻ ☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
♻ ☆ The Hawthorne Effect in Reasoning Models: Evaluating and Steering Test Awareness NeurIPS 2025
Reasoning-focused LLMs sometimes alter their behavior when they detect that they are being evaluated, which can lead them to optimize for test-passing performance or to comply more readily with harmful prompts if real-world consequences appear absent. We present the first quantitative study of how such "test awareness" impacts model behavior, particularly its performance on safety-related tasks. We introduce a white-box probing framework that (i) linearly identifies awareness-related activations and (ii) steers models toward or away from test awareness while monitoring downstream performance. We apply our method to different state-of-the-art open-weight reasoning LLMs across both realistic and hypothetical tasks (denoting tests or simulations). Our results demonstrate that test awareness significantly impacts safety alignment (such as compliance with harmful requests and conforming to stereotypes) with effects varying in both magnitude and direction across models. By providing control over this latent effect, our work aims to provide a stress-test mechanism and increase trust in how we perform safety evaluations.
comment: NeurIPS 2025 (Spotlight). Code is available at: https://github.com/microsoft/Test_Awareness_Steering
♻ ☆ TokenTiming: A Dynamic Alignment Method for Universal Speculative Decoding Model Pairs
Accelerating the inference of large language models (LLMs) has been a critical challenge in generative AI. Speculative decoding (SD) substantially improves LLM inference efficiency. However, its utility is limited by a fundamental constraint: the draft and target models must share the same vocabulary, thus limiting the herd of available draft models and often necessitating the training of a new model from scratch. Inspired by Dynamic Time Warping (DTW), a classic algorithm for aligning time series, we propose the algorithm TokenTiming for universal speculative decoding. It operates by re-encoding the draft token sequence to get a new target token sequence, and then uses DTW to build a mapping to transfer the probability distributions for speculative sampling. Benefiting from this, our method accommodates mismatched vocabularies and works with any off-the-shelf models without retraining and modification. We conduct comprehensive experiments on various tasks, demonstrating 1.57x speedup. This work enables a universal approach for draft model selection, making SD a more versatile and practical tool for LLM acceleration.
♻ ☆ Exploration of Summarization by Generative Language Models for Automated Scoring of Long Essays
BERT and its variants are extensively explored for automated scoring. However, a limit of 512 tokens for these encoder-based models showed the deficiency in automated scoring of long essays. Thus, this research explores generative language models for automated scoring of long essays via summarization and prompting. The results revealed great improvement of scoring accuracy with QWK increased from 0.822 to 0.8878 for the Learning Agency Lab Automated Essay Scoring 2.0 dataset.
comment: 19 pages, 5 Tables 7 Figures, Presentation at Artificial Intelligence in Measurement and Education Conference (AIME-Con)
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
♻ ☆ Mano Technical Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
♻ ☆ Are you sure? Measuring models bias in content moderation through uncertainty ACL
Automatic content moderation is crucial to ensuring safety in social media. Language Model-based classifiers are being increasingly adopted for this task, but it has been shown that they perpetuate racial and social biases. Even if several resources and benchmark corpora have been developed to challenge this issue, measuring the fairness of models in content moderation remains an open issue. In this work, we present an unsupervised approach that benchmarks models on the basis of their uncertainty in classifying messages annotated by people belonging to vulnerable groups. We use uncertainty, computed by means of the conformal prediction technique, as a proxy to analyze the bias of 11 models against women and non-white annotators and observe to what extent it diverges from metrics based on performance, such as the $F_1$ score. The results show that some pre-trained models predict with high accuracy the labels coming from minority groups, even if the confidence in their prediction is low. Therefore, by measuring the confidence of models, we are able to see which groups of annotators are better represented in pre-trained models and lead the debiasing process of these models before their effective use.
comment: accepted at Findings of ACL: EMNLP 2025
♻ ☆ From Language to Action: A Review of Large Language Models as Autonomous Agents and Tool Users
The pursuit of human-level artificial intelligence (AI) has significantly advanced the development of autonomous agents and Large Language Models (LLMs). LLMs are now widely utilized as decision-making agents for their ability to interpret instructions, manage sequential tasks, and adapt through feedback. This review examines recent developments in employing LLMs as autonomous agents and tool users and comprises seven research questions. We only used the papers published between 2023 and 2025 in conferences of the A* and A rank and Q1 journals. A structured analysis of the LLM agents' architectural design principles, dividing their applications into single-agent and multi-agent systems, and strategies for integrating external tools is presented. In addition, the cognitive mechanisms of LLM, including reasoning, planning, and memory, and the impact of prompting methods and fine-tuning procedures on agent performance are also investigated. Furthermore, we evaluated current benchmarks and assessment protocols and have provided an analysis of 68 publicly available datasets to assess the performance of LLM-based agents in various tasks. In conducting this review, we have identified critical findings on verifiable reasoning of LLMs, the capacity for self-improvement, and the personalization of LLM-based agents. Finally, we have discussed ten future research directions to overcome these gaps.
comment: Submitted to Artificial Intelligence Review for peer review
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Zero-Shot Tokenizer Transfer NeurIPS 2024
Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.
comment: NeurIPS 2024
♻ ☆ Face the Facts! Evaluating RAG-based Fact-checking Pipelines in Realistic Settings
Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, under more realistic scenarios, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
comment: Code and data at https://github.com/drusso98/face-the-facts - Accepted for publication at INLG 2025
♻ ☆ Provable Scaling Laws for the Test-Time Compute of Large Language Models NeurIPS 2025
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
comment: NeurIPS 2025 camera-ready version
♻ ☆ Offline Learning and Forgetting for Reasoning with Large Language Models
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. A key challenge we identify is that naive fine-tuning can degrade the model's search capability; we show this can be mitigated with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown arithmetic puzzles show that, replacing CoT-generated data with search-generated data for offline fine-tuning improves success rates by around 23% over inference-time search baselines, while reducing inference time by 180$\times$. On top of this, our learning and forgetting objective consistently outperforms both supervised fine-tuning and preference-based methods.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ NeedleInATable: Exploring Long-Context Capability of Large Language Models towards Long-Structured Tables NeurIPS 2025
Processing structured tabular data, particularly large and lengthy tables, constitutes a fundamental yet challenging task for large language models (LLMs). However, existing long-context benchmarks like Needle-in-a-Haystack primarily focus on unstructured text, neglecting the challenge of diverse structured tables. Meanwhile, previous tabular benchmarks mainly consider downstream tasks that require high-level reasoning abilities, and overlook models' underlying fine-grained perception of individual table cells, which is crucial for practical and robust LLM-based table applications. To address this gap, we introduce \textsc{NeedleInATable} (NIAT), a new long-context tabular benchmark that treats each table cell as a ``needle'' and requires models to extract the target cell based on cell locations or lookup questions. Our comprehensive evaluation of various LLMs and multimodal LLMs reveals a substantial performance gap between popular downstream tabular tasks and the simpler NIAT task, suggesting that they may rely on dataset-specific correlations or shortcuts to obtain better benchmark results but lack truly robust long-context understanding towards structured tables. Furthermore, we demonstrate that using synthesized NIAT training data can effectively improve performance on both NIAT task and downstream tabular tasks, which validates the importance of NIAT capability for LLMs' genuine table understanding ability.
comment: Accepted by NeurIPS 2025
♻ ☆ DrVoice: Parallel Speech-Text Voice Conversation Model via Dual-Resolution Speech Representations
Recent studies on end-to-end (E2E) speech generation with large language models (LLMs) have attracted significant community attention, with multiple works extending text-based LLMs to generate discrete speech tokens. Existing E2E approaches primarily fall into two categories: (1) Methods that generate discrete speech tokens independently without incorporating them into the LLM's autoregressive process, resulting in text generation being unaware of concurrent speech synthesis. (2) Models that generate interleaved or parallel speech-text tokens through joint autoregressive modeling, enabling mutual modality awareness during generation. This paper presents DrVoice, a parallel speech-text voice conversation model based on joint autoregressive modeling, featuring dual-resolution speech representations. Notably, while current methods utilize mainly 12.5Hz input audio representation, our proposed dual-resolution mechanism reduces the input frequency for the LLM to 5Hz, significantly reducing computational cost and alleviating the frequency discrepancy between speech and text tokens and in turn better exploiting LLMs' capabilities. Experimental results demonstrate that DRVOICE-7B establishes new state-of-the-art (SOTA) on OpenAudioBench and Big Bench Audio benchmarks, while achieving performance comparable to the SOTA on VoiceBench and UltraEval-Audio benchmarks, making it a leading open-source speech foundation model in ~7B models.
comment: Work in progress
♻ ☆ Evaluation of Geographical Distortions in Language Models
Language models now constitute essential tools for improving efficiency for many professional tasks such as writing, coding, or learning. For this reason, it is imperative to identify inherent biases. In the field of Natural Language Processing, five sources of bias are well-identified: data, annotation, representation, models, and research design. This study focuses on biases related to geographical knowledge. We explore the connection between geography and language models by highlighting their tendency to misrepresent spatial information, thus leading to distortions in the representation of geographical distances. This study introduces four indicators to assess these distortions, by comparing geographical and semantic distances. Experiments are conducted from these four indicators with ten widely used language models. Results underscore the critical necessity of inspecting and rectifying spatial biases in language models to ensure accurate and equitable representations.
comment: Accepted version. Published in Machine Learning (Springer) 114:263 (2025). Open access under a CC BY-NC-ND 4.0 license. DOI: 10.1007/s10994-025-06916-9
♻ ☆ Look and Tell: A Dataset for Multimodal Grounding Across Egocentric and Exocentric Views NeurIPS 2025
We introduce Look and Tell, a multimodal dataset for studying referential communication across egocentric and exocentric perspectives. Using Meta Project Aria smart glasses and stationary cameras, we recorded synchronized gaze, speech, and video as 25 participants instructed a partner to identify ingredients in a kitchen. Combined with 3D scene reconstructions, this setup provides a benchmark for evaluating how different spatial representations (2D vs. 3D; ego vs. exo) affect multimodal grounding. The dataset contains 3.67 hours of recordings, including 2,707 richly annotated referential expressions, and is designed to advance the development of embodied agents that can understand and engage in situated dialogue.
comment: 10 pages, 6 figures, 2 tables. Accepted to the NeurIPS 2025 Workshop on SPACE in Vision, Language, and Embodied AI (SpaVLE). Dataset: https://huggingface.co/datasets/annadeichler/KTH-ARIA-referential
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models. Our code and datasets are available at https://github.com/DEEP-PolyU/LinearRAG.
♻ ☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
♻ ☆ GRPO-MA: Multi-Answer Generation in GRPO for Stable and Efficient Chain-of-Thought Training
Recent progress, such as DeepSeek-R1, has shown that the GRPO algorithm, a Reinforcement Learning (RL) approach, can effectively train Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) and Vision-Language Models (VLMs). In this paper, we analyze three challenges of GRPO: gradient coupling between thoughts and answers, sparse reward signals caused by limited parallel sampling, and unstable advantage estimation. To mitigate these challenges, we propose GRPO-MA, a simple yet theoretically grounded method that leverages multi-answer generation from each thought process, enabling more robust and efficient optimization. Theoretically, we show that the variance of thought advantage decreases as the number of answers per thought increases. Empirically, our gradient analysis confirms this effect, showing that GRPO-MA reduces gradient spikes compared to GRPO. Experiments on math, code, and diverse multimodal tasks demonstrate that GRPO-MA substantially improves performance and training efficiency. Our ablation studies further reveal that increasing the number of answers per thought consistently enhances model performance.
comment: Under review
♻ ☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
♻ ☆ Surface Reading LLMs: Synthetic Text and its Styles
Despite a potential plateau in ML advancement, the societal impact of large language models lies not in approaching superintelligence but in generating text surfaces indistinguishable from human writing. While Critical AI Studies provides essential material and socio-technical critique, it risks overlooking how LLMs phenomenologically reshape meaning-making. This paper proposes a semiotics of "surface integrity" as attending to the immediate plane where LLMs inscribe themselves into human communication. I distinguish three knowledge interests in ML research (epistemology, epist\=em\=e, and epistemics) and argue for integrating surface-level stylistic analysis alongside depth-oriented critique. Through two case studies examining stylistic markers of synthetic text, I argue how attending to style as a semiotic phenomenon reveals LLMs as cultural actors that transform the conditions of meaning emergence and circulation in contemporary discourse, independent of questions about machine consciousness.
comment: 12 pages, 1 figure
♻ ☆ SANSKRITI: A Comprehensive Benchmark for Evaluating Language Models' Knowledge of Indian Culture ACL 2025
Language Models (LMs) are indispensable tools shaping modern workflows, but their global effectiveness depends on understanding local socio-cultural contexts. To address this, we introduce SANSKRITI, a benchmark designed to evaluate language models' comprehension of India's rich cultural diversity. Comprising 21,853 meticulously curated question-answer pairs spanning 28 states and 8 union territories, SANSKRITI is the largest dataset for testing Indian cultural knowledge. It covers sixteen key attributes of Indian culture: rituals and ceremonies, history, tourism, cuisine, dance and music, costume, language, art, festivals, religion, medicine, transport, sports, nightlife, and personalities, providing a comprehensive representation of India's cultural tapestry. We evaluate SANSKRITI on leading Large Language Models (LLMs), Indic Language Models (ILMs), and Small Language Models (SLMs), revealing significant disparities in their ability to handle culturally nuanced queries, with many models struggling in region-specific contexts. By offering an extensive, culturally rich, and diverse dataset, SANSKRITI sets a new standard for assessing and improving the cultural understanding of LMs.
comment: ACL 2025 Findings
♻ ☆ MENTOR: A Reinforcement Learning Framework for Enabling Tool Use in Small Models via Teacher-Optimized Rewards
Distilling the tool-using capabilities of large language models (LLMs) into smaller, more efficient small language models (SLMs) is a key challenge for their practical application. The predominant approach, supervised fine-tuning (SFT), suffers from poor generalization as it trains models to imitate a static set of teacher trajectories rather than learn a robust methodology. While reinforcement learning (RL) offers an alternative, the standard RL using sparse rewards fails to effectively guide SLMs, causing them to struggle with inefficient exploration and adopt suboptimal strategies. To address these distinct challenges, we propose MENTOR, a framework that synergistically combines RL with teacher-guided distillation. Instead of simple imitation, MENTOR employs an RL-based process to learn a more generalizable policy through exploration. In addition, to solve the problem of reward sparsity, it uses a teacher's reference trajectory to construct a dense, composite teacher-guided reward that provides fine-grained guidance. Extensive experiments demonstrate that MENTOR significantly improves the cross-domain generalization and strategic competence of SLMs compared to both SFT and standard sparse-reward RL baselines.
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. In this paper, we propose TrajAgent, an agent framework powered by large language models, designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. In TrajAgent, we first develop UniEnv, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on UniEnv, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on five tasks using four real-world datasets demonstrate the effectiveness of TrajAgent in automated trajectory modeling, achieving a performance improvement of 2.38%-69.91% over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ The Dialogue That Heals: A Comprehensive Evaluation of Doctor Agents' Inquiry Capability
An effective physician should possess a combination of empathy, expertise, patience, and clear communication when treating a patient. Recent advances have successfully endowed AI doctors with expert diagnostic skills, particularly the ability to actively seek information through inquiry. However, other essential qualities of a good doctor remain overlooked. To bridge this gap, we present MAQuE(Medical Agent Questioning Evaluation), the largest-ever benchmark for the automatic and comprehensive evaluation of medical multi-turn questioning. It features 3,000 realistically simulated patient agents that exhibit diverse linguistic patterns, cognitive limitations, emotional responses, and tendencies for passive disclosure. We also introduce a multi-faceted evaluation framework, covering task success, inquiry proficiency, dialogue competence, inquiry efficiency, and patient experience. Experiments on different LLMs reveal substantial challenges across the evaluation aspects. Even state-of-the-art models show significant room for improvement in their inquiry capabilities. These models are highly sensitive to variations in realistic patient behavior, which considerably impacts diagnostic accuracy. Furthermore, our fine-grained metrics expose trade-offs between different evaluation perspectives, highlighting the challenge of balancing performance and practicality in real-world clinical settings.
♻ ☆ FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay NeurIPS 2025
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism inspired by experience replay in traditional RL. This technique reuses recent rollouts, lowering per-step computation while maintaining stable updates. Experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 23% to 62% while reaching the same level of performance as the original GRPO algorithm. Our code is available at https://github.com/ASTRAL-Group/data-efficient-llm-rl.
comment: Accepted at NeurIPS 2025
♻ ☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
♻ ☆ AdaRewriter: Unleashing the Power of Prompting-based Conversational Query Reformulation via Test-Time Adaptation EMNLP 2025
Prompting-based conversational query reformulation has emerged as a powerful approach for conversational search, refining ambiguous user queries into standalone search queries. Best-of-N reformulation over the generated candidates via prompting shows impressive potential scaling capability. However, both the previous tuning methods (training time) and adaptation approaches (test time) can not fully unleash their benefits. In this paper, we propose AdaRewriter, a novel framework for query reformulation using an outcome-supervised reward model via test-time adaptation. By training a lightweight reward model with contrastive ranking loss, AdaRewriter selects the most promising reformulation during inference. Notably, it can operate effectively in black-box systems, including commercial LLM APIs. Experiments on five conversational search datasets show that AdaRewriter significantly outperforms the existing methods across most settings, demonstrating the potential of test-time adaptation for conversational query reformulation.
comment: Accepted by EMNLP 2025
♻ ☆ MINED: Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models
Large Multimodal Models (LMMs) encode rich factual knowledge via cross-modal pre-training, yet their static representations struggle to maintain an accurate understanding of time-sensitive factual knowledge. Existing benchmarks remain constrained by static designs, inadequately evaluating LMMs' ability to understand time-sensitive knowledge. To address this gap, we propose MINED, a comprehensive benchmark that evaluates temporal awareness along 6 key dimensions and 11 challenging tasks: cognition, awareness, trustworthiness, understanding, reasoning, and robustness. MINED is constructed from Wikipedia by two professional annotators, containing 2,104 time-sensitive knowledge samples spanning six knowledge types. Evaluating 15 widely used LMMs on MINED shows that Gemini-2.5-Pro achieves the highest average CEM score of 63.07, while most open-source LMMs still lack time understanding ability. Meanwhile, LMMs perform best on organization knowledge, whereas their performance is weakest on sport. To address these challenges, we investigate the feasibility of updating time-sensitive knowledge in LMMs through knowledge editing methods and observe that LMMs can effectively update knowledge via knowledge editing methods in single editing scenarios.
comment: project page:https://mined-lmm.github.io/
♻ ☆ Navigation with VLM framework: Towards Going to Any Language
Navigating towards fully open language goals and exploring open scenes in an intelligent way have always raised significant challenges. Recently, Vision Language Models (VLMs) have demonstrated remarkable capabilities to reason with both language and visual data. Although many works have focused on leveraging VLMs for navigation in open scenes, they often require high computational cost, rely on object-centric approaches, or depend on environmental priors in detailed human instructions. We introduce Navigation with VLM (NavVLM), a training-free framework that harnesses open-source VLMs to enable robots to navigate effectively, even for human-friendly language goal such as abstract places, actions, or specific objects in open scenes. NavVLM leverages the VLM as its cognitive core to perceive environmental information and constantly provides exploration guidance achieving intelligent navigation with only a neat target rather than a detailed instruction with environment prior. We evaluated and validated NavVLM in both simulation and real-world experiments. In simulation, our framework achieves state-of-the-art performance in Success weighted by Path Length (SPL) on object-specifc tasks in richly detailed environments from Matterport 3D (MP3D), Habitat Matterport 3D (HM3D) and Gibson. With navigation episode reported, NavVLM demonstrates the capabilities to navigate towards any open-set languages. In real-world validation, we validated our framework's effectiveness in real-world robot at indoor scene.
comment: under review
♻ ☆ Discourse Features Enhance Detection of Document-Level Machine-Generated Content IJCNN 2025
The availability of high-quality APIs for Large Language Models (LLMs) has facilitated the widespread creation of Machine-Generated Content (MGC), posing challenges such as academic plagiarism and the spread of misinformation. Existing MGC detectors often focus solely on surface-level information, overlooking implicit and structural features. This makes them susceptible to deception by surface-level sentence patterns, particularly for longer texts and in texts that have been subsequently paraphrased. To overcome these challenges, we introduce novel methodologies and datasets. Besides the publicly available dataset Plagbench, we developed the paraphrased Long-Form Question and Answer (paraLFQA) and paraphrased Writing Prompts (paraWP) datasets using GPT and DIPPER, a discourse paraphrasing tool, by extending artifacts from their original versions. To better capture the structure of longer texts at document level, we propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features. It results in substantial performance gains across both datasets - 15.5% absolute improvement on paraLFQA, 4% absolute improvement on paraWP, and 1.5% absolute improvemene on M4 compared to SOTA approaches. The data and code are available at: https://github.com/myxp-lyp/Discourse-Features-Enhance-Detection-of-Document-Level-Machine-Generated-Content.git.
comment: Accepted by IJCNN 2025
♻ ☆ BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, benchmarking on large-scale real-world data such as electronic health records (EHRs) is critical, as clinical decisions are directly informed by these sources, yet current evaluations remain limited. Most existing benchmarks rely on medical exam-style questions or PubMed-derived text, failing to capture the complexity of real-world clinical data. Others focus narrowly on specific application scenarios, limiting their generalizability across broader clinical use. To address this gap, we present BRIDGE, a comprehensive multilingual benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages. It covers eight major task types spanning the entire continuum of patient care across six clinical stages and 20 representative applications, including triage and referral, consultation, information extraction, diagnosis, prognosis, and billing coding, and involves 14 clinical specialties. We systematically evaluated 95 LLMs (including DeepSeek-R1, GPT-4o, Gemini series, and Qwen3 series) under various inference strategies. Our results reveal substantial performance variation across model sizes, languages, natural language processing tasks, and clinical specialties. Notably, we demonstrate that open-source LLMs can achieve performance comparable to proprietary models, while medically fine-tuned LLMs based on older architectures often underperform versus updated general-purpose models. The BRIDGE and its corresponding leaderboard serve as a foundational resource and a unique reference for the development and evaluation of new LLMs in real-world clinical text understanding. The BRIDGE leaderboard: https://huggingface.co/spaces/YLab-Open/BRIDGE-Medical-Leaderboard
♻ ☆ SEER: The Span-based Emotion Evidence Retrieval Benchmark
We introduce the SEER (Span-based Emotion Evidence Retrieval) Benchmark to test Large Language Models' (LLMs) ability to identify the specific spans of text that express emotion. Unlike traditional emotion recognition tasks that assign a single label to an entire sentence, SEER targets the underexplored task of emotion evidence detection: pinpointing which exact phrases convey emotion. This span-level approach is crucial for applications like empathetic dialogue and clinical support, which need to know how emotion is expressed, not just what the emotion is. SEER includes two tasks: identifying emotion evidence within a single sentence, and identifying evidence across a short passage of five consecutive sentences. It contains new annotations for both emotion and emotion evidence on 1200 real-world sentences. We evaluate 14 open-source LLMs and find that, while some models approach average human performance on single-sentence inputs, their accuracy degrades in longer passages. Our error analysis reveals key failure modes, including overreliance on emotion keywords and false positives in neutral text.
♻ ☆ PVP: An Image Dataset for Personalized Visual Persuasion with Persuasion Strategies, Viewer Characteristics, and Persuasiveness Ratings ACL 2025
Visual persuasion, which uses visual elements to influence cognition and behaviors, is crucial in fields such as advertising and political communication. With recent advancements in artificial intelligence, there is growing potential to develop persuasive systems that automatically generate persuasive images tailored to individuals. However, a significant bottleneck in this area is the lack of comprehensive datasets that connect the persuasiveness of images with the personal information about those who evaluated the images. To address this gap and facilitate technological advancements in personalized visual persuasion, we release the Personalized Visual Persuasion (PVP) dataset, comprising 28,454 persuasive images across 596 messages and 9 persuasion strategies. Importantly, the PVP dataset provides persuasiveness scores of images evaluated by 2,521 human annotators, along with their demographic and psychological characteristics (personality traits and values). We demonstrate the utility of our dataset by developing a persuasive image generator and an automated evaluator, and establish benchmark baselines. Our experiments reveal that incorporating psychological characteristics enhances the generation and evaluation of persuasive images, providing valuable insights for personalized visual persuasion.
comment: ACL 2025 Main. Code and dataset are released at: https://github.com/holi-lab/PVP_Personalized_Visual_Persuasion
♻ ☆ DBLPLink 2.0 -- An Entity Linker for the DBLP Scholarly Knowledge Graph
In this work we present an entity linker for DBLP's 2025 version of RDF-based Knowledge Graph. Compared to the 2022 version, DBLP now considers publication venues as a new entity type called dblp:Stream. In the earlier version of DBLPLink, we trained KG-embeddings and re-rankers on a dataset to produce entity linkings. In contrast, in this work, we develop a zero-shot entity linker using LLMs using a novel method, where we re-rank candidate entities based on the log-probabilities of the "yes" token output at the penultimate layer of the LLM.
♻ ☆ Creativity or Brute Force? Using Brainteasers as a Window into the Problem-Solving Abilities of Large Language Models NeurIPS 2025
Accuracy remains a standard metric for evaluating AI systems, but it offers limited insight into how models arrive at their solutions. In this work, we introduce a benchmark based on brainteasers written in long narrative form to probe more deeply into the types of reasoning strategies that models use. Brainteasers are well-suited for this goal because they can be solved with multiple approaches, such as a few-step solution that uses a creative insight or a longer solution that uses more brute force. We investigate large language models (LLMs) across multiple layers of reasoning, focusing not only on correctness but also on the quality and creativity of their solutions. We investigate many aspects of the reasoning process: (1) semantic parsing of the brainteasers into precise mathematical competition style formats; (2) generating solutions from these mathematical forms; (3) self-correcting solutions based on gold solutions; (4) producing step-by-step sketches of solutions; and (5) making use of hints. We find that LLMs are in many cases able to find creative, insightful solutions to brainteasers, suggesting that they capture some of the capacities needed to solve novel problems in creative ways. Nonetheless, there also remain situations where they rely on brute force despite the availability of more efficient, creative solutions, highlighting a potential direction for improvement in the reasoning abilities of LLMs.
comment: NeurIPS 2025
♻ ☆ OpenFactCheck: Building, Benchmarking Customized Fact-Checking Systems and Evaluating the Factuality of Claims and LLMs
The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. Difficulties lie in assessing the factuality of free-form responses in open domains. Also, different papers use disparate evaluation benchmarks and measurements, which renders them hard to compare and hampers future progress. To mitigate these issues, we propose OpenFactCheck, a unified framework for building customized automatic fact-checking systems, benchmarking their accuracy, evaluating factuality of LLMs, and verifying claims in a document. OpenFactCheck consists of three modules: (i) CUSTCHECKER allows users to easily customize an automatic fact-checker and verify the factual correctness of documents and claims, (ii) LLMEVAL, a unified evaluation framework assesses LLM's factuality ability from various perspectives fairly, and (iii) CHECKEREVAL is an extensible solution for gauging the reliability of automatic fact-checkers' verification results using human-annotated datasets. Data and code are publicly available at https://github.com/yuxiaw/openfactcheck.
comment: 23 pages, 8 tables, 11 figures, Published In Proceedings of the 31st International Conference on Computational Linguistics 2025
♻ ☆ OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs
The increased use of large language models (LLMs) across a variety of real-world applications calls for automatic tools to check the factual accuracy of their outputs, as LLMs often hallucinate. This is difficult as it requires assessing the factuality of free-form open-domain responses. While there has been a lot of research on this topic, different papers use different evaluation benchmarks and measures, which makes them hard to compare and hampers future progress. To mitigate these issues, we developed OpenFactCheck, a unified framework, with three modules: (i) RESPONSEEVAL, which allows users to easily customize an automatic fact-checking system and to assess the factuality of all claims in an input document using that system, (ii) LLMEVAL, which assesses the overall factuality of an LLM, and (iii) CHECKEREVAL, a module to evaluate automatic fact-checking systems. OpenFactCheck is open-sourced (https://github.com/mbzuai-nlp/openfactcheck) and publicly released as a Python library (https://pypi.org/project/openfactcheck/) and also as a web service (http://app.openfactcheck.com). A video describing the system is available at https://youtu.be/-i9VKL0HleI.
comment: 11 pages, 4 Figures, 3 Tables, Published In Proceedings of The 2024 Conference on Empirical Methods in Natural Language Processing
♻ ☆ Quantifying Phonosemantic Iconicity Distributionally in 6 Languages AACL 2025
Language is, as commonly theorized, largely arbitrary. Yet, systematic relationships between phonetics and semantics have been observed in many specific cases. To what degree could those systematic relationships manifest themselves in large scale, quantitative investigations--both in previously identified and unidentified phenomena? This work undertakes a distributional approach to quantifying phonosemantic iconicity at scale across 6 diverse languages (English, Spanish, Hindi, Finnish, Turkish, and Tamil). In each language, we analyze the alignment of morphemes' phonetic and semantic similarity spaces with a suite of statistical measures, and discover an array of interpretable phonosemantic alignments not previously identified in the literature, along with crosslinguistic patterns. We also analyze 5 previously hypothesized phonosemantic alignments, finding support for some such alignments and mixed results for others.
comment: IJCNLP-AACL 2025 Main Conference Proceedings
♻ ☆ UrduFactCheck: An Agentic Fact-Checking Framework for Urdu with Evidence Boosting and Benchmarking
The rapid adoption of Large Language Models (LLMs) has raised important concerns about the factual reliability of their outputs, particularly in low-resource languages such as Urdu. Existing automated fact-checking systems are predominantly developed for English, leaving a significant gap for the more than 200 million Urdu speakers worldwide. In this work, we present UrduFactBench and UrduFactQA, two novel hand-annotated benchmarks designed to enable fact-checking and factual consistency evaluation in Urdu. While UrduFactBench focuses on claim verification, UrduFactQA targets the factuality of LLMs in question answering. These resources, the first of their kind for Urdu, were developed through a multi-stage annotation process involving native Urdu speakers. To complement these benchmarks, we introduce UrduFactCheck, a modular fact-checking framework that incorporates both monolingual and translation-based evidence retrieval strategies to mitigate the scarcity of high-quality Urdu evidence. Leveraging these resources, we conduct an extensive evaluation of twelve LLMs and demonstrate that translation-augmented pipelines consistently enhance performance compared to monolingual ones. Our findings reveal persistent challenges for open-source LLMs in Urdu and underscore the importance of developing targeted resources. All code and data are publicly available at https://github.com/mbzuai-nlp/UrduFactCheck.
comment: 15 pages, 4 figures, 5 tables, 6 Listings, Published in Proceeding of The 2025 Conference on Empirical Methods in Natural Language Processing
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models
This paper addresses the challenges of aligning large language models (LLMs) with human values via preference learning (PL), focusing on incomplete and corrupted data in preference datasets. We propose a novel method for robustly and completely recalibrating values within these datasets to enhance LLMs' resilience against the issues. In particular, we devise a guaranteed polynomial time ranking algorithm that robustifies several existing models, such as the classic Bradley-Terry-Luce (BTL) (Bradley and Terry, 1952) model and certain generalizations of it. To the best of our knowledge, our present work is the first to propose an algorithm that provably recovers an $\epsilon$-optimal ranking with high probability while allowing as large as $O(n)$ perturbed pairwise comparison results per model response. Furthermore, we show robust recovery results in the partially observed setting. Our experiments confirm that our algorithms handle adversarial noise and unobserved comparisons well in both general and LLM preference dataset settings. This work contributes to the development and scaling of more reliable and ethically aligned AI models by equipping the dataset curation pipeline with the ability to handle missing and maliciously manipulated inputs.
♻ ☆ Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
We document the capability of large language models (LLMs) like ChatGPT to predict stock market reactions from news headlines without direct financial training. Using post-knowledge-cutoff headlines, GPT-4 captures initial market responses, achieving approximately 90% portfolio-day hit rates for the non-tradable initial reaction. GPT-4 scores also significantly predict the subsequent drift, especially for small stocks and negative news. Forecasting ability generally increases with model size, suggesting that financial reasoning is an emerging capacity of complex LLMs. Strategy returns decline as LLM adoption rises, consistent with improved price efficiency. To rationalize these findings, we develop a theoretical model that incorporates LLM technology, information-processing capacity constraints, underreaction, and limits to arbitrage.
comment: Previously posted in SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4412788
♻ ☆ MMD-Flagger: Leveraging Maximum Mean Discrepancy to Detect Hallucinations
Large language models (LLMs) have become pervasive in our everyday life. Yet, a fundamental obstacle prevents their use in many critical applications: their propensity to generate fluent, human-quality content that is not grounded in reality. The detection of such hallucinations is thus of the highest importance. In this work, we propose a new method to flag hallucinated content: MMD-Flagger. It relies on Maximum Mean Discrepancy (MMD), a non-parametric distance between distributions. On a high-level perspective, MMD-Flagger tracks the MMD between the output to inspect and counterparts generated with various temperature parameters. We show empirically that inspecting the shape of this trajectory is sufficient to detect most hallucinations. This novel method is benchmarked on machine translation and summarization datasets, on which it exhibits competitive performance relative to natural competitors.
♻ ☆ Do predictability factors towards signing avatars hold across cultures? ICASSP 2023
Avatar technology can offer accessibility possibilities and improve the Deaf-and-Hard of Hearing sign language users access to communication, education and services, such as the healthcare system. However, sign language users acceptance of signing avatars as well as their attitudes towards them vary and depend on many factors. Furthermore, research on avatar technology is mostly done by researchers who are not Deaf. The study examines the extent to which intrinsic or extrinsic factors contribute to predict the attitude towards avatars across cultures. Intrinsic factors include the characteristics of the avatar, such as appearance, movements and facial expressions. Extrinsic factors include users technology experience, their hearing status, age and their sign language fluency. This work attempts to answer questions such as, if lower attitude ratings are related to poor technology experience with ASL users, for example, is that also true for Moroccan Sign Language (MSL) users? For the purposes of the study, we designed a questionnaire to understand MSL users attitude towards avatars. Three groups of participants were surveyed: Deaf (57), Hearing (20) and Hard-of-Hearing (3). The results of our study were then compared with those reported in other relevant studies.
comment: In Proceedings of SLTAT 2023: Eighth International Workshop on Sign Language Translation and Avatar Technology, held in conjunction with ICASSP 2023: IEEE International Conference on Acoustics, Speech, and Signal Processing, Rhodes, Greece, June 4-10, 2023
♻ ☆ WXImpactBench: A Disruptive Weather Impact Understanding Benchmark for Evaluating Large Language Models ACL 2025
Climate change adaptation requires the understanding of disruptive weather impacts on society, where large language models (LLMs) might be applicable. However, their effectiveness is under-explored due to the difficulty of high-quality corpus collection and the lack of available benchmarks. The climate-related events stored in regional newspapers record how communities adapted and recovered from disasters. However, the processing of the original corpus is non-trivial. In this study, we first develop a disruptive weather impact dataset with a four-stage well-crafted construction pipeline. Then, we propose WXImpactBench, the first benchmark for evaluating the capacity of LLMs on disruptive weather impacts. The benchmark involves two evaluation tasks, multi-label classification and ranking-based question answering. Extensive experiments on evaluating a set of LLMs provide first-hand analysis of the challenges in developing disruptive weather impact understanding and climate change adaptation systems. The constructed dataset and the code for the evaluation framework are available to help society protect against vulnerabilities from disasters.
comment: Accepted by ACL 2025
♻ ☆ Non-Markovian Discrete Diffusion with Causal Language Models NeurIPS 2025
Discrete diffusion models offer a flexible, controllable approach to structured sequence generation, yet they still lag behind causal language models in expressive power. A key limitation lies in their reliance on the Markovian assumption, which restricts each step to condition only on the current state, leading to potential uncorrectable error accumulation. In this paper, we introduce CaDDi (Causal Discrete Diffusion Model), a discrete diffusion model that conditions on the entire generative trajectory, thereby lifting the Markov constraint and allowing the model to revisit and improve past states. By unifying sequential (causal) and temporal (diffusion) reasoning in a single non-Markovian transformer, CaDDi also treats standard causal language models as a special case and permits the direct reuse of pretrained LLM weights with no architectural changes. Empirically, CaDDi outperforms state-of-the-art discrete diffusion baselines on natural-language benchmarks, substantially narrowing the remaining gap to large autoregressive transformers.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ BugPilot: Complex Bug Generation for Efficient Learning of SWE Skills
High quality bugs are key to training the next generation of language model based software engineering (SWE) agents. We introduce a novel method for synthetic generation of difficult and diverse bugs. Our method instructs SWE Agents to introduce a feature into the codebase whereby they may unintentionally break tests, resulting in bugs. Prior approaches often induce an out-of-distribution effect by generating bugs intentionally (e.g. by introducing local perturbation to existing code), which does not reflect realistic development processes. We perform qualitative analysis to demonstrate that our approach for generating bugs more closely reflects the patterns found in human-authored edits. Through extensive experiments, we demonstrate that our bugs provide more efficient training data for supervised fine-tuning, outperforming other bug datasets by 2% with half the training data (1.2k vs. 3k bugs). We train on our newly generated bugs in addition to existing bug datasets to get FrogBoss a state-of-the-art 32B parameter model on SWE-bench Verified with a pass@1 of 54.6% and FrogMini a state-of-the-art 14B model on SWE-bench Verified with a pass@1 of 45.3% on SWE-bench Verified averaged over three seeds.
♻ ☆ InsurTech innovation using natural language processing
With the rapid rise of InsurTech, traditional insurance companies are increasingly exploring alternative data sources and advanced technologies to sustain their competitive edge. This paper provides both a conceptual overview and practical case studies of natural language processing (NLP) and its emerging applications within insurance operations, focusing on transforming raw, unstructured text into structured data suitable for actuarial analysis and decision-making. Leveraging real-world alternative data provided by an InsurTech industry partner that enriches traditional insurance data sources, we apply various NLP techniques to demonstrate feature de-biasing, feature compression, and industry classification in the commercial insurance context. These enriched, text-derived insights not only add to and refine traditional rating factors for commercial insurance pricing but also offer novel perspectives for assessing underlying risk by introducing novel industry classification techniques. Through these demonstrations, we show that NLP is not merely a supplementary tool but a foundational element of modern, data-driven insurance analytics.
♻ ☆ Cite Pretrain: Retrieval-Free Knowledge Attribution for Large Language Models
Trustworthy language models should provide both correct and verifiable answers. However, citations generated directly by standalone LLMs are often unreliable. As a result, current systems insert citations by querying an external retriever at inference time, introducing latency, infrastructure dependence, and vulnerability to retrieval noise. We explore whether LLMs can be made to reliably attribute to the documents seen during continual pretraining without test-time retrieval, by revising the training process. To study this, we construct CitePretrainBench, a benchmark that mixes real-world corpora (Wikipedia, Common Crawl, arXiv) with novel documents and probes both short-form (single-fact) and long-form (multi-fact) citation tasks. Our approach follows a two-stage process: (1) continual pretraining to index factual knowledge by binding it to persistent document identifiers; and (2) instruction tuning to elicit citation behavior. We introduce Active Indexing for the first stage, which creates generalizable, source-anchored bindings by augmenting training with synthetic data that (i) restate each fact in diverse, compositional forms and (ii) enforce bidirectional training (source-to-fact and fact-to-source). This equips the model to both generate content from a cited source and attribute its own answers, improving robustness to paraphrase and composition. Experiments with Qwen-2.5-7B&3B show that Active Indexing consistently outperforms a Passive Indexing baseline, which simply appends an identifier to each document, achieving citation precision gains of up to 30.2% across all tasks and models. Our ablation studies reveal that performance continues to improve as we scale the amount of augmented data, showing a clear upward trend even at 16x the original token count. Finally, we show that internal citations complement external ones by making the model more robust to retrieval noise.
Computer Vision and Pattern Recognition 171
☆ Generative View Stitching
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersv\"ard's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.
comment: Project website: https://andrewsonga.github.io/gvs
☆ Uniform Discrete Diffusion with Metric Path for Video Generation
Continuous-space video generation has advanced rapidly, while discrete approaches lag behind due to error accumulation and long-context inconsistency. In this work, we revisit discrete generative modeling and present Uniform discRete diffuSion with metric pAth (URSA), a simple yet powerful framework that bridges the gap with continuous approaches for the scalable video generation. At its core, URSA formulates the video generation task as an iterative global refinement of discrete spatiotemporal tokens. It integrates two key designs: a Linearized Metric Path and a Resolution-dependent Timestep Shifting mechanism. These designs enable URSA to scale efficiently to high-resolution image synthesis and long-duration video generation, while requiring significantly fewer inference steps. Additionally, we introduce an asynchronous temporal fine-tuning strategy that unifies versatile tasks within a single model, including interpolation and image-to-video generation. Extensive experiments on challenging video and image generation benchmarks demonstrate that URSA consistently outperforms existing discrete methods and achieves performance comparable to state-of-the-art continuous diffusion methods. Code and models are available at https://github.com/baaivision/URSA
comment: 19 pages, 10 figures
☆ Routing Matters in MoE: Scaling Diffusion Transformers with Explicit Routing Guidance
Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling model capacity while preserving computational efficiency. Despite its notable success in large language models (LLMs), existing attempts to apply MoE to Diffusion Transformers (DiTs) have yielded limited gains. We attribute this gap to fundamental differences between language and visual tokens. Language tokens are semantically dense with pronounced inter-token variation, while visual tokens exhibit spatial redundancy and functional heterogeneity, hindering expert specialization in vision MoE. To this end, we present ProMoE, an MoE framework featuring a two-step router with explicit routing guidance that promotes expert specialization. Specifically, this guidance encourages the router to partition image tokens into conditional and unconditional sets via conditional routing according to their functional roles, and refine the assignments of conditional image tokens through prototypical routing with learnable prototypes based on semantic content. Moreover, the similarity-based expert allocation in latent space enabled by prototypical routing offers a natural mechanism for incorporating explicit semantic guidance, and we validate that such guidance is crucial for vision MoE. Building on this, we propose a routing contrastive loss that explicitly enhances the prototypical routing process, promoting intra-expert coherence and inter-expert diversity. Extensive experiments on ImageNet benchmark demonstrate that ProMoE surpasses state-of-the-art methods under both Rectified Flow and DDPM training objectives. Code and models will be made publicly available.
☆ Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in self-supervised ViTs (DINO, MAE, CLIP), but markedly weaker in ImageNet-supervised models, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
☆ MIC-BEV: Multi-Infrastructure Camera Bird's-Eye-View Transformer with Relation-Aware Fusion for 3D Object Detection
Infrastructure-based perception plays a crucial role in intelligent transportation systems, offering global situational awareness and enabling cooperative autonomy. However, existing camera-based detection models often underperform in such scenarios due to challenges such as multi-view infrastructure setup, diverse camera configurations, degraded visual inputs, and various road layouts. We introduce MIC-BEV, a Transformer-based bird's-eye-view (BEV) perception framework for infrastructure-based multi-camera 3D object detection. MIC-BEV flexibly supports a variable number of cameras with heterogeneous intrinsic and extrinsic parameters and demonstrates strong robustness under sensor degradation. The proposed graph-enhanced fusion module in MIC-BEV integrates multi-view image features into the BEV space by exploiting geometric relationships between cameras and BEV cells alongside latent visual cues. To support training and evaluation, we introduce M2I, a synthetic dataset for infrastructure-based object detection, featuring diverse camera configurations, road layouts, and environmental conditions. Extensive experiments on both M2I and the real-world dataset RoScenes demonstrate that MIC-BEV achieves state-of-the-art performance in 3D object detection. It also remains robust under challenging conditions, including extreme weather and sensor degradation. These results highlight the potential of MIC-BEV for real-world deployment. The dataset and source code are available at: https://github.com/HandsomeYun/MIC-BEV.
☆ SAGE: Structure-Aware Generative Video Transitions between Diverse Clips
Video transitions aim to synthesize intermediate frames between two clips, but naive approaches such as linear blending introduce artifacts that limit professional use or break temporal coherence. Traditional techniques (cross-fades, morphing, frame interpolation) and recent generative inbetweening methods can produce high-quality plausible intermediates, but they struggle with bridging diverse clips involving large temporal gaps or significant semantic differences, leaving a gap for content-aware and visually coherent transitions. We address this challenge by drawing on artistic workflows, distilling strategies such as aligning silhouettes and interpolating salient features to preserve structure and perceptual continuity. Building on this, we propose SAGE (Structure-Aware Generative vidEo transitions) as a zeroshot approach that combines structural guidance, provided via line maps and motion flow, with generative synthesis, enabling smooth, semantically consistent transitions without fine-tuning. Extensive experiments and comparison with current alternatives, namely [FILM, TVG, DiffMorpher, VACE, GI], demonstrate that SAGE outperforms both classical and generative baselines on quantitative metrics and user studies for producing transitions between diverse clips. Code to be released on acceptance.
comment: Website: https://kan32501.github.io/sage.github.io/
☆ Group Relative Attention Guidance for Image Editing
Recently, image editing based on Diffusion-in-Transformer models has undergone rapid development. However, existing editing methods often lack effective control over the degree of editing, limiting their ability to achieve more customized results. To address this limitation, we investigate the MM-Attention mechanism within the DiT model and observe that the Query and Key tokens share a bias vector that is only layer-dependent. We interpret this bias as representing the model's inherent editing behavior, while the delta between each token and its corresponding bias encodes the content-specific editing signals. Based on this insight, we propose Group Relative Attention Guidance, a simple yet effective method that reweights the delta values of different tokens to modulate the focus of the model on the input image relative to the editing instruction, enabling continuous and fine-grained control over editing intensity without any tuning. Extensive experiments conducted on existing image editing frameworks demonstrate that GRAG can be integrated with as few as four lines of code, consistently enhancing editing quality. Moreover, compared to the commonly used Classifier-Free Guidance, GRAG achieves smoother and more precise control over the degree of editing. Our code will be released at https://github.com/little-misfit/GRAG-Image-Editing.
☆ Eye-Tracking, Mouse Tracking, Stimulus Tracking,and Decision-Making Datasets in Digital Pathology
Interpretation of giga-pixel whole-slide images (WSIs) is an important but difficult task for pathologists. Their diagnostic accuracy is estimated to average around 70%. Adding a second pathologist does not substantially improve decision consistency. The field lacks adequate behavioral data to explain diagnostic errors and inconsistencies. To fill in this gap, we present PathoGaze1.0, a comprehensive behavioral dataset capturing the dynamic visual search and decision-making processes of the full diagnostic workflow during cancer diagnosis. The dataset comprises 18.69 hours of eye-tracking, mouse interaction, stimulus tracking, viewport navigation, and diagnostic decision data (EMSVD) collected from 19 pathologists interpreting 397 WSIs. The data collection process emphasizes ecological validity through an application-grounded testbed, called PTAH. In total, we recorded 171,909 fixations, 263,320 saccades, and 1,867,362 mouse interaction events. In addition, such data could also be used to improve the training of both pathologists and AI systems that might support human experts. All experiments were preregistered at https://osf.io/hj9a7, and the complete dataset along with analysis code is available at https://go.osu.edu/pathogaze.
comment: 16 pages, 9 figures, submitted to Nature Scientific Data
☆ A Dual-Branch CNN for Robust Detection of AI-Generated Facial Forgeries
The rapid advancement of generative AI has enabled the creation of highly realistic forged facial images, posing significant threats to AI security, digital media integrity, and public trust. Face forgery techniques, ranging from face swapping and attribute editing to powerful diffusion-based image synthesis, are increasingly being used for malicious purposes such as misinformation, identity fraud, and defamation. This growing challenge underscores the urgent need for robust and generalizable face forgery detection methods as a critical component of AI security infrastructure. In this work, we propose a novel dual-branch convolutional neural network for face forgery detection that leverages complementary cues from both spatial and frequency domains. The RGB branch captures semantic information, while the frequency branch focuses on high-frequency artifacts that are difficult for generative models to suppress. A channel attention module is introduced to adaptively fuse these heterogeneous features, highlighting the most informative channels for forgery discrimination. To guide the network's learning process, we design a unified loss function, FSC Loss, that combines focal loss, supervised contrastive loss, and a frequency center margin loss to enhance class separability and robustness. We evaluate our model on the DiFF benchmark, which includes forged images generated from four representative methods: text-to-image, image-to-image, face swap, and face edit. Our method achieves strong performance across all categories and outperforms average human accuracy. These results demonstrate the model's effectiveness and its potential contribution to safeguarding AI ecosystems against visual forgery attacks.
☆ GroundLoc: Efficient Large-Scale Outdoor LiDAR-Only Localization
In this letter, we introduce GroundLoc, a LiDAR-only localization pipeline designed to localize a mobile robot in large-scale outdoor environments using prior maps. GroundLoc employs a Bird's-Eye View (BEV) image projection focusing on the perceived ground area and utilizes the place recognition network R2D2, or alternatively, the non-learning approach Scale-Invariant Feature Transform (SIFT), to identify and select keypoints for BEV image map registration. Our results demonstrate that GroundLoc outperforms state-of-the-art methods on the SemanticKITTI and HeLiPR datasets across various sensors. In the multi-session localization evaluation, GroundLoc reaches an Average Trajectory Error (ATE) well below 50 cm on all Ouster OS2 128 sequences while meeting online runtime requirements. The system supports various sensor models, as evidenced by evaluations conducted with Velodyne HDL-64E, Ouster OS2 128, Aeva Aeries II, and Livox Avia sensors. The prior maps are stored as 2D raster image maps, which can be created from a single drive and require only 4 MB of storage per square kilometer. The source code is available at https://github.com/dcmlr/groundloc.
☆ Physics-Inspired Gaussian Kolmogorov-Arnold Networks for X-ray Scatter Correction in Cone-Beam CT
Cone-beam CT (CBCT) employs a flat-panel detector to achieve three-dimensional imaging with high spatial resolution. However, CBCT is susceptible to scatter during data acquisition, which introduces CT value bias and reduced tissue contrast in the reconstructed images, ultimately degrading diagnostic accuracy. To address this issue, we propose a deep learning-based scatter artifact correction method inspired by physical prior knowledge. Leveraging the fact that the observed point scatter probability density distribution exhibits rotational symmetry in the projection domain. The method uses Gaussian Radial Basis Functions (RBF) to model the point scatter function and embeds it into the Kolmogorov-Arnold Networks (KAN) layer, which provides efficient nonlinear mapping capabilities for learning high-dimensional scatter features. By incorporating the physical characteristics of the scattered photon distribution together with the complex function mapping capacity of KAN, the model improves its ability to accurately represent scatter. The effectiveness of the method is validated through both synthetic and real-scan experiments. Experimental results show that the model can effectively correct the scatter artifacts in the reconstructed images and is superior to the current methods in terms of quantitative metrics.
comment: 8 pages, 6 figures
☆ OSWorld-MCP: Benchmarking MCP Tool Invocation In Computer-Use Agents
With advances in decision-making and reasoning capabilities, multimodal agents show strong potential in computer application scenarios. Past evaluations have mainly assessed GUI interaction skills, while tool invocation abilities, such as those enabled by the Model Context Protocol (MCP), have been largely overlooked. Comparing agents with integrated tool invocation to those evaluated only on GUI interaction is inherently unfair. We present OSWorld-MCP, the first comprehensive and fair benchmark for assessing computer-use agents' tool invocation, GUI operation, and decision-making abilities in a real-world environment. We design a novel automated code-generation pipeline to create tools and combine them with a curated selection from existing tools. Rigorous manual validation yields 158 high-quality tools (covering 7 common applications), each verified for correct functionality, practical applicability, and versatility. Extensive evaluations of state-of-the-art multimodal agents on OSWorld-MCP show that MCP tools generally improve task success rates (e.g., from 8.3% to 20.4% for OpenAI o3 at 15 steps, from 40.1% to 43.3% for Claude 4 Sonnet at 50 steps), underscoring the importance of assessing tool invocation capabilities. However, even the strongest models have relatively low tool invocation rates, Only 36.3%, indicating room for improvement and highlighting the benchmark's challenge. By explicitly measuring MCP tool usage skills, OSWorld-MCP deepens understanding of multimodal agents and sets a new standard for evaluating performance in complex, tool-assisted environments. Our code, environment, and data are publicly available at https://osworld-mcp.github.io.
☆ Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.
☆ Local Performance vs. Out-of-Distribution Generalization: An Empirical Analysis of Personalized Federated Learning in Heterogeneous Data Environments
In the context of Federated Learning with heterogeneous data environments, local models tend to converge to their own local model optima during local training steps, deviating from the overall data distributions. Aggregation of these local updates, e.g., with FedAvg, often does not align with the global model optimum (client drift), resulting in an update that is suboptimal for most clients. Personalized Federated Learning approaches address this challenge by exclusively focusing on the average local performances of clients' models on their own data distribution. Generalization to out-of-distribution samples, which is a substantial benefit of FedAvg and represents a significant component of robustness, appears to be inadequately incorporated into the assessment and evaluation processes. This study involves a thorough evaluation of Federated Learning approaches, encompassing both their local performance and their generalization capabilities. Therefore, we examine different stages within a single communication round to enable a more nuanced understanding of the considered metrics. Furthermore, we propose and incorporate a modified approach of FedAvg, designated as Federated Learning with Individualized Updates (FLIU), extending the algorithm by a straightforward individualization step with an adaptive personalization factor. We evaluate and compare the approaches empirically using MNIST and CIFAR-10 under various distributional conditions, including benchmark IID and pathological non-IID, as well as additional novel test environments with Dirichlet distribution specifically developed to stress the algorithms on complex data heterogeneity.
☆ Fast and accurate neural reflectance transformation imaging through knowledge distillation
Reflectance Transformation Imaging (RTI) is very popular for its ability to visually analyze surfaces by enhancing surface details through interactive relighting, starting from only a few tens of photographs taken with a fixed camera and variable illumination. Traditional methods like Polynomial Texture Maps (PTM) and Hemispherical Harmonics (HSH) are compact and fast, but struggle to accurately capture complex reflectance fields using few per-pixel coefficients and fixed bases, leading to artifacts, especially in highly reflective or shadowed areas. The NeuralRTI approach, which exploits a neural autoencoder to learn a compact function that better approximates the local reflectance as a function of light directions, has been shown to produce superior quality at comparable storage cost. However, as it performs interactive relighting with custom decoder networks with many parameters, the rendering step is computationally expensive and not feasible at full resolution for large images on limited hardware. Earlier attempts to reduce costs by directly training smaller networks have failed to produce valid results. For this reason, we propose to reduce its computational cost through a novel solution based on Knowledge Distillation (DisK-NeuralRTI). ...
comment: 18 pages
☆ Decoupled MeanFlow: Turning Flow Models into Flow Maps for Accelerated Sampling
Denoising generative models, such as diffusion and flow-based models, produce high-quality samples but require many denoising steps due to discretization error. Flow maps, which estimate the average velocity between timesteps, mitigate this error and enable faster sampling. However, their training typically demands architectural changes that limit compatibility with pretrained flow models. We introduce Decoupled MeanFlow, a simple decoding strategy that converts flow models into flow map models without architectural modifications. Our method conditions the final blocks of diffusion transformers on the subsequent timestep, allowing pretrained flow models to be directly repurposed as flow maps. Combined with enhanced training techniques, this design enables high-quality generation in as few as 1 to 4 steps. Notably, we find that training flow models and subsequently converting them is more efficient and effective than training flow maps from scratch. On ImageNet 256x256 and 512x512, our models attain 1-step FID of 2.16 and 2.12, respectively, surpassing prior art by a large margin. Furthermore, we achieve FID of 1.51 and 1.68 when increasing the steps to 4, which nearly matches the performance of flow models while delivering over 100x faster inference.
☆ Kineo: Calibration-Free Metric Motion Capture From Sparse RGB Cameras
Markerless multiview motion capture is often constrained by the need for precise camera calibration, limiting accessibility for non-experts and in-the-wild captures. Existing calibration-free approaches mitigate this requirement but suffer from high computational cost and reduced reconstruction accuracy. We present Kineo, a fully automatic, calibration-free pipeline for markerless motion capture from videos captured by unsynchronized, uncalibrated, consumer-grade RGB cameras. Kineo leverages 2D keypoints from off-the-shelf detectors to simultaneously calibrate cameras, including Brown-Conrady distortion coefficients, and reconstruct 3D keypoints and dense scene point maps at metric scale. A confidence-driven spatio-temporal keypoint sampling strategy, combined with graph-based global optimization, ensures robust calibration at a fixed computational cost independent of sequence length. We further introduce a pairwise reprojection consensus score to quantify 3D reconstruction reliability for downstream tasks. Evaluations on EgoHumans and Human3.6M demonstrate substantial improvements over prior calibration-free methods. Compared to previous state-of-the-art approaches, Kineo reduces camera translation error by approximately 83-85%, camera angular error by 86-92%, and world mean-per-joint error (W-MPJPE) by 83-91%. Kineo is also efficient in real-world scenarios, processing multi-view sequences faster than their duration in specific configuration (e.g., 36min to process 1h20min of footage). The full pipeline and evaluation code are openly released to promote reproducibility and practical adoption at https://liris-xr.github.io/kineo/.
☆ A Critical Study towards the Detection of Parkinsons Disease using ML Technologies
The proposed solution is Deep Learning Technique that will be able classify three types of tea leaves diseases from which two diseases are caused by the pests and one due to pathogens (infectious organisms) and environmental conditions and also show the area damaged by a disease in leaves. Namely Red Rust, Helopeltis and Red spider mite respectively. In this paper we have evaluated two models namely SSD MobileNet V2 and Faster R-CNN ResNet50 V1 for the object detection. The SSD MobileNet V2 gave precision of 0.209 for IOU range of 0.50:0.95 with recall of 0.02 on IOU 0.50:0.95 and final mAP of 20.9%. While Faster R-CNN ResNet50 V1 has precision of 0.252 on IOU range of 0.50:0.95 and recall of 0.044 on IOU of 0.50:0.95 with a mAP of 25%, which is better than SSD. Also used Mask R-CNN for Object Instance Segmentation where we have implemented our custom method to calculate the damaged diseased portion of leaves. Keywords: Tea Leaf Disease, Deep Learning, Red Rust, Helopeltis and Red Spider Mite, SSD MobileNet V2, Faster R-CNN ResNet50 V1 and Mask RCNN.
☆ Rethinking Visual Intelligence: Insights from Video Pretraining
Large language models (LLMs) have demonstrated that large-scale pretraining enables systems to adapt rapidly to new problems with little supervision in the language domain. This success, however, has not translated as effectively to the visual domain, where models, including LLMs, continue to struggle with compositional understanding, sample efficiency, and general-purpose problem-solving. We investigate Video Diffusion Models (VDMs) as a promising direction for bridging this gap. Pretraining on spatiotemporal data endows these models with strong inductive biases for structure and dynamics, which we hypothesize can support broad task adaptability. To test this, we design a controlled evaluation in which both a pretrained LLM and a pretrained VDM are equipped with lightweight adapters and presented with tasks in their natural modalities. Across benchmarks including ARC-AGI, ConceptARC, visual games, route planning, and cellular automata, VDMs demonstrate higher data efficiency than their language counterparts. Taken together, our results indicate that video pretraining offers inductive biases that support progress toward visual foundation models.
comment: Updated version from preprint arXiv:2506.07280 (Gen2Gen) focused on visual intelligence. This work can be considered as v2
☆ SPARTA: Evaluating Reasoning Segmentation Robustness through Black-Box Adversarial Paraphrasing in Text Autoencoder Latent Space
Multimodal large language models (MLLMs) have shown impressive capabilities in vision-language tasks such as reasoning segmentation, where models generate segmentation masks based on textual queries. While prior work has primarily focused on perturbing image inputs, semantically equivalent textual paraphrases-crucial in real-world applications where users express the same intent in varied ways-remain underexplored. To address this gap, we introduce a novel adversarial paraphrasing task: generating grammatically correct paraphrases that preserve the original query meaning while degrading segmentation performance. To evaluate the quality of adversarial paraphrases, we develop a comprehensive automatic evaluation protocol validated with human studies. Furthermore, we introduce SPARTA-a black-box, sentence-level optimization method that operates in the low-dimensional semantic latent space of a text autoencoder, guided by reinforcement learning. SPARTA achieves significantly higher success rates, outperforming prior methods by up to 2x on both the ReasonSeg and LLMSeg-40k datasets. We use SPARTA and competitive baselines to assess the robustness of advanced reasoning segmentation models. We reveal that they remain vulnerable to adversarial paraphrasing-even under strict semantic and grammatical constraints. All code and data will be released publicly upon acceptance.
☆ Deeply-Conditioned Image Compression via Self-Generated Priors
Learned image compression (LIC) has shown great promise for achieving high rate-distortion performance. However, current LIC methods are often limited in their capability to model the complex correlation structures inherent in natural images, particularly the entanglement of invariant global structures with transient local textures within a single monolithic representation. This limitation precipitates severe geometric deformation at low bitrates. To address this, we introduce a framework predicated on functional decomposition, which we term Deeply-Conditioned Image Compression via self-generated priors (DCIC-sgp). Our central idea is to first encode a potent, self-generated prior to encapsulate the image's structural backbone. This prior is subsequently utilized not as mere side-information, but to holistically modulate the entire compression pipeline. This deep conditioning, most critically of the analysis transform, liberates it to dedicate its representational capacity to the residual, high-entropy details. This hierarchical, dependency-driven approach achieves an effective disentanglement of information streams. Our extensive experiments validate this assertion; visual analysis demonstrates that our method substantially mitigates the geometric deformation artifacts that plague conventional codecs at low bitrates. Quantitatively, our framework establishes highly competitive performance, achieving significant BD-rate reductions of 14.4%, 15.7%, and 15.1% against the VVC test model VTM-12.1 on the Kodak, CLIC, and Tecnick datasets.
☆ XAI Evaluation Framework for Semantic Segmentation
Ensuring transparency and trust in artificial intelligence (AI) models is essential, particularly as they are increasingly applied in safety-critical and high-stakes domains. Explainable AI (XAI) has emerged as a promising approach to address this challenge, yet the rigorous evaluation of XAI methods remains crucial for optimizing the trade-offs between model complexity, predictive performance, and interpretability. While extensive progress has been achieved in evaluating XAI techniques for classification tasks, evaluation strategies tailored to semantic segmentation remain relatively underexplored. This work introduces a comprehensive and systematic evaluation framework specifically designed for assessing XAI in semantic segmentation, explicitly accounting for both spatial and contextual task complexities. The framework employs pixel-level evaluation strategies and carefully designed metrics to provide fine-grained interpretability insights. Simulation results using recently adapted class activation mapping (CAM)-based XAI schemes demonstrate the efficiency, robustness, and reliability of the proposed methodology. These findings contribute to advancing transparent, trustworthy, and accountable semantic segmentation models.
☆ 50 Years of Water Body Monitoring: The Case of Qaraaoun Reservoir, Lebanon
The sustainable management of the Qaraaoun Reservoir, the largest surface water body in Lebanon located in the Bekaa Plain, depends on reliable monitoring of its storage volume despite frequent sensor malfunctions and limited maintenance capacity. This study introduces a sensor-free approach that integrates open-source satellite imagery, advanced water-extent segmentation, and machine learning to estimate the reservoir surface area and volume in near real time. Sentinel-2 and Landsat images are processed, where surface water is delineated using a newly proposed water segmentation index. A machine learning model based on Support Vector Regression (SVR) is trained on a curated dataset that includes water surface area, water level, and water volume calculations using a reservoir bathymetry survey. The model is then able to estimate reservoir volume relying solely on surface area extracted from satellite imagery, without the need for ground measurements. Water segmentation using the proposed index aligns with ground truth for more than 95 percent of the shoreline. Hyperparameter tuning with GridSearchCV yields an optimized SVR performance with error under 1.5 percent of full reservoir capacity and coefficients of determination exceeding 0.98. These results demonstrate the robustness and cost-effectiveness of the method, offering a practical solution for continuous, sensor-independent monitoring of reservoir storage. The proposed methodology can be replicated for other water bodies, and the resulting 50 years of time-series data is valuable for research on climate change and environmental patterns.
☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents.
comment: work in progress
☆ A Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
☆ GenTrack: A New Generation of Multi-Object Tracking
This paper introduces a novel multi-object tracking (MOT) method, dubbed GenTrack, whose main contributions include: a hybrid tracking approach employing both stochastic and deterministic manners to robustly handle unknown and time-varying numbers of targets, particularly in maintaining target identity (ID) consistency and managing nonlinear dynamics, leveraging particle swarm optimization (PSO) with some proposed fitness measures to guide stochastic particles toward their target distribution modes, enabling effective tracking even with weak and noisy object detectors, integration of social interactions among targets to enhance PSO-guided particles as well as improve continuous updates of both strong (matched) and weak (unmatched) tracks, thereby reducing ID switches and track loss, especially during occlusions, a GenTrack-based redefined visual MOT baseline incorporating a comprehensive state and observation model based on space consistency, appearance, detection confidence, track penalties, and social scores for systematic and efficient target updates, and the first-ever publicly available source-code reference implementation with minimal dependencies, featuring three variants, including GenTrack Basic, PSO, and PSO-Social, facilitating flexible reimplementation. Experimental results have shown that GenTrack provides superior performance on standard benchmarks and real-world scenarios compared to state-of-the-art trackers, with integrated implementations of baselines for fair comparison. Potential directions for future work are also discussed. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack
comment: This work has been submitted to the IEEE for possible publication
☆ Unsupervised Detection of Post-Stroke Brain Abnormalities
Post-stroke MRI not only delineates focal lesions but also reveals secondary structural changes, such as atrophy and ventricular enlargement. These abnormalities, increasingly recognised as imaging biomarkers of recovery and outcome, remain poorly captured by supervised segmentation methods. We evaluate REFLECT, a flow-based generative model, for unsupervised detection of both focal and non-lesional abnormalities in post-stroke patients. Using dual-expert central-slice annotations on ATLAS data, performance was assessed at the object level with Free-Response ROC analysis for anomaly maps. Two models were trained on lesion-free slices from stroke patients (ATLAS) and on healthy controls (IXI) to test the effect of training data. On ATLAS test subjects, the IXI-trained model achieved higher lesion segmentation (Dice = 0.37 vs 0.27) and improved sensitivity to non-lesional abnormalities (FROC = 0.62 vs 0.43). Training on fully healthy anatomy improves the modelling of normal variability, enabling broader and more reliable detection of structural abnormalities.
☆ When are radiology reports useful for training medical image classifiers?
Medical images used to train machine learning models are often accompanied by radiology reports containing rich expert annotations. However, relying on these reports as inputs for clinical prediction requires the timely manual work of a trained radiologist. This raises a natural question: when can radiology reports be leveraged during training to improve image-only classification? Prior works are limited to evaluating pre-trained image representations by fine-tuning them to predict diagnostic labels, often extracted from reports, ignoring tasks with labels that are weakly associated with the text. To address this gap, we conduct a systematic study of how radiology reports can be used during both pre-training and fine-tuning, across diagnostic and prognostic tasks (e.g., 12-month readmission), and under varying training set sizes. Our findings reveal that: (1) Leveraging reports during pre-training is beneficial for downstream classification tasks where the label is well-represented in the text; however, pre-training through explicit image-text alignment can be detrimental in settings where it's not; (2) Fine-tuning with reports can lead to significant improvements and even have a larger impact than the pre-training method in certain settings. These results provide actionable insights into when and how to leverage privileged text data to train medical image classifiers while highlighting gaps in current research.
☆ A Luminance-Aware Multi-Scale Network for Polarization Image Fusion with a Multi-Scene Dataset
Polarization image fusion combines S0 and DOLP images to reveal surface roughness and material properties through complementary texture features, which has important applications in camouflage recognition, tissue pathology analysis, surface defect detection and other fields. To intergrate coL-Splementary information from different polarized images in complex luminance environment, we propose a luminance-aware multi-scale network (MLSN). In the encoder stage, we propose a multi-scale spatial weight matrix through a brightness-branch , which dynamically weighted inject the luminance into the feature maps, solving the problem of inherent contrast difference in polarized images. The global-local feature fusion mechanism is designed at the bottleneck layer to perform windowed self-attention computation, to balance the global context and local details through residual linking in the feature dimension restructuring stage. In the decoder stage, to further improve the adaptability to complex lighting, we propose a Brightness-Enhancement module, establishing the mapping relationship between luminance distribution and texture features, realizing the nonlinear luminance correction of the fusion result. We also present MSP, an 1000 pairs of polarized images that covers 17 types of indoor and outdoor complex lighting scenes. MSP provides four-direction polarization raw maps, solving the scarcity of high-quality datasets in polarization image fusion. Extensive experiment on MSP, PIF and GAND datasets verify that the proposed MLSN outperms the state-of-the-art methods in subjective and objective evaluations, and the MS-SSIM and SD metircs are higher than the average values of other methods by 8.57%, 60.64%, 10.26%, 63.53%, 22.21%, and 54.31%, respectively. The source code and dataset is avalable at https://github.com/1hzf/MLS-UNet.
☆ Stroke Lesion Segmentation in Clinical Workflows: A Modular, Lightweight, and Deployment-Ready Tool
Deep learning frameworks such as nnU-Net achieve state-of-the-art performance in brain lesion segmentation but remain difficult to deploy clinically due to heavy dependencies and monolithic design. We introduce \textit{StrokeSeg}, a modular and lightweight framework that translates research-grade stroke lesion segmentation models into deployable applications. Preprocessing, inference, and postprocessing are decoupled: preprocessing relies on the Anima toolbox with BIDS-compliant outputs, and inference uses ONNX Runtime with \texttt{Float16} quantisation, reducing model size by about 50\%. \textit{StrokeSeg} provides both graphical and command-line interfaces and is distributed as Python scripts and as a standalone Windows executable. On a held-out set of 300 sub-acute and chronic stroke subjects, segmentation performance was equivalent to the original PyTorch pipeline (Dice difference $<10^{-3}$), demonstrating that high-performing research pipelines can be transformed into portable, clinically usable tools.
☆ Decoupling What to Count and Where to See for Referring Expression Counting
Referring Expression Counting (REC) extends class-level object counting to the fine-grained subclass-level, aiming to enumerate objects matching a textual expression that specifies both the class and distinguishing attribute. A fundamental challenge, however, has been overlooked: annotation points are typically placed on class-representative locations (e.g., heads), forcing models to focus on class-level features while neglecting attribute information from other visual regions (e.g., legs for "walking"). To address this, we propose W2-Net, a novel framework that explicitly decouples the problem into "what to count" and "where to see" via a dual-query mechanism. Specifically, alongside the standard what-to-count (w2c) queries that localize the object, we introduce dedicated where-to-see (w2s) queries. The w2s queries are guided to seek and extract features from attribute-specific visual regions, enabling precise subclass discrimination. Furthermore, we introduce Subclass Separable Matching (SSM), a novel matching strategy that incorporates a repulsive force to enhance inter-subclass separability during label assignment. W2-Net significantly outperforms the state-of-the-art on the REC-8K dataset, reducing counting error by 22.5% (validation) and 18.0% (test), and improving localization F1 by 7% and 8%, respectively. Code will be available.
☆ Adaptive Knowledge Transferring with Switching Dual-Student Framework for Semi-Supervised Medical Image Segmentation
Teacher-student frameworks have emerged as a leading approach in semi-supervised medical image segmentation, demonstrating strong performance across various tasks. However, the learning effects are still limited by the strong correlation and unreliable knowledge transfer process between teacher and student networks. To overcome this limitation, we introduce a novel switching Dual-Student architecture that strategically selects the most reliable student at each iteration to enhance dual-student collaboration and prevent error reinforcement. We also introduce a strategy of Loss-Aware Exponential Moving Average to dynamically ensure that the teacher absorbs meaningful information from students, improving the quality of pseudo-labels. Our plug-and-play framework is extensively evaluated on 3D medical image segmentation datasets, where it outperforms state-of-the-art semi-supervised methods, demonstrating its effectiveness in improving segmentation accuracy under limited supervision.
comment: The paper is under review at Pattern Recognition Journal
☆ NVSim: Novel View Synthesis Simulator for Large Scale Indoor Navigation
We present NVSim, a framework that automatically constructs large-scale, navigable indoor simulators from only common image sequences, overcoming the cost and scalability limitations of traditional 3D scanning. Our approach adapts 3D Gaussian Splatting to address visual artifacts on sparsely observed floors a common issue in robotic traversal data. We introduce Floor-Aware Gaussian Splatting to ensure a clean, navigable ground plane, and a novel mesh-free traversability checking algorithm that constructs a topological graph by directly analyzing rendered views. We demonstrate our system's ability to generate valid, large-scale navigation graphs from real-world data. A video demonstration is avilable at https://youtu.be/tTiIQt6nXC8
comment: 9 pages, 10 figures
☆ Sound Source Localization for Spatial Mapping of Surgical Actions in Dynamic Scenes
Purpose: Surgical scene understanding is key to advancing computer-aided and intelligent surgical systems. Current approaches predominantly rely on visual data or end-to-end learning, which limits fine-grained contextual modeling. This work aims to enhance surgical scene representations by integrating 3D acoustic information, enabling temporally and spatially aware multimodal understanding of surgical environments. Methods: We propose a novel framework for generating 4D audio-visual representations of surgical scenes by projecting acoustic localization information from a phased microphone array onto dynamic point clouds from an RGB-D camera. A transformer-based acoustic event detection module identifies relevant temporal segments containing tool-tissue interactions which are spatially localized in the audio-visual scene representation. The system was experimentally evaluated in a realistic operating room setup during simulated surgical procedures performed by experts. Results: The proposed method successfully localizes surgical acoustic events in 3D space and associates them with visual scene elements. Experimental evaluation demonstrates accurate spatial sound localization and robust fusion of multimodal data, providing a comprehensive, dynamic representation of surgical activity. Conclusion: This work introduces the first approach for spatial sound localization in dynamic surgical scenes, marking a significant advancement toward multimodal surgical scene representations. By integrating acoustic and visual data, the proposed framework enables richer contextual understanding and provides a foundation for future intelligent and autonomous surgical systems.
☆ What do vision-language models see in the context? Investigating multimodal in-context learning
In-context learning (ICL) enables Large Language Models (LLMs) to learn tasks from demonstration examples without parameter updates. Although it has been extensively studied in LLMs, its effectiveness in Vision-Language Models (VLMs) remains underexplored. In this work, we present a systematic study of ICL in VLMs, evaluating seven models spanning four architectures on three image captioning benchmarks. We analyze how prompt design, architectural choices, and training strategies influence multimodal ICL. To our knowledge, we are the first to analyze how attention patterns in VLMs vary with an increasing number of in-context demonstrations. Our results reveal that training on imag-text interleaved data enhances ICL performance but does not imply effective integration of visual and textual information from demonstration examples. In contrast, instruction tuning improves instruction-following but can reduce reliance on in-context demonstrations, suggesting a trade-off between instruction alignment and in-context adaptation. Attention analyses further show that current VLMs primarily focus on textual cues and fail to leverage visual information, suggesting a limited capacity for multimodal integration. These findings highlight key limitations in the ICL abilities of current VLMs and provide insights for enhancing their ability to learn from multimodal in-context examples.
☆ Few-Shot Remote Sensing Image Scene Classification with CLIP and Prompt Learning
Remote sensing applications increasingly rely on deep learning for scene classification. However, their performance is often constrained by the scarcity of labeled data and the high cost of annotation across diverse geographic and sensor domains. While recent vision-language models like CLIP have shown promise by learning transferable representations at scale by aligning visual and textual modalities, their direct application to remote sensing remains suboptimal due to significant domain gaps and the need for task-specific semantic adaptation. To address this critical challenge, we systematically explore prompt learning as a lightweight and efficient adaptation strategy for few-shot remote sensing image scene classification. We evaluate several representative methods, including Context Optimization, Conditional Context Optimization, Multi-modal Prompt Learning, and Prompting with Self-Regulating Constraints. These approaches reflect complementary design philosophies: from static context optimization to conditional prompts for enhanced generalization, multi-modal prompts for joint vision-language adaptation, and semantically regularized prompts for stable learning without forgetting. We benchmark these prompt-learning methods against two standard baselines: zero-shot CLIP with hand-crafted prompts and a linear probe trained on frozen CLIP features. Through extensive experiments on multiple benchmark remote sensing datasets, including cross-dataset generalization tests, we demonstrate that prompt learning consistently outperforms both baselines in few-shot scenarios. Notably, Prompting with Self-Regulating Constraints achieves the most robust cross-domain performance. Our findings underscore prompt learning as a scalable and efficient solution for bridging the domain gap in satellite and aerial imagery, providing a strong foundation for future research in this field.
☆ ViPER: Empowering the Self-Evolution of Visual Perception Abilities in Vision-Language Model
The limited capacity for fine-grained visual perception presents a critical bottleneck for Vision-Language Models (VLMs) in real-world applications. Addressing this is challenging due to the scarcity of high-quality data and the limitations of existing methods: supervised fine-tuning (SFT) often compromises general capabilities, while reinforcement fine-tuning (RFT) prioritizes textual reasoning over visual perception. To bridge this gap, we propose a novel two-stage task that structures visual perception learning as a coarse-to-fine progressive process. Based on this task formulation, we develop ViPER, a self-bootstrapping framework specifically designed to enable iterative evolution through self-critiquing and self-prediction. By synergistically integrating image-level and instance-level reconstruction with a two-stage reinforcement learning strategy, ViPER establishes a closed-loop training paradigm, where internally synthesized data directly fuel the enhancement of perceptual ability. Applied to the Qwen2.5-VL family, ViPER produces the Qwen-Viper series. With an average gain of 1.7% on seven comprehensive benchmarks spanning various tasks and up to 6.0% on fine-grained perception, Qwen-Viper consistently demonstrates superior performance across different vision-language scenarios while maintaining generalizability. Beyond enabling self-improvement in perceptual capabilities, ViPER provides concrete evidence for the reciprocal relationship between generation and understanding, a breakthrough to developing more autonomous and capable VLMs.
☆ Training-free Source Attribution of AI-generated Images via Resynthesis
Synthetic image source attribution is a challenging task, especially in data scarcity conditions requiring few-shot or zero-shot classification capabilities. We present a new training-free one-shot attribution method based on image resynthesis. A prompt describing the image under analysis is generated, then it is used to resynthesize the image with all the candidate sources. The image is attributed to the model which produced the resynthesis closest to the original image in a proper feature space. We also introduce a new dataset for synthetic image attribution consisting of face images from commercial and open-source text-to-image generators. The dataset provides a challenging attribution framework, useful for developing new attribution models and testing their capabilities on different generative architectures. The dataset structure allows to test approaches based on resynthesis and to compare them to few-shot methods. Results from state-of-the-art few-shot approaches and other baselines show that the proposed resynthesis method outperforms existing techniques when only a few samples are available for training or fine-tuning. The experiments also demonstrate that the new dataset is a challenging one and represents a valuable benchmark for developing and evaluating future few-shot and zero-shot methods.
comment: 14 pages, 4 figures, 1 table, accepted at "The 17th IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS2025)", Perth, Australia
☆ DynaRend: Learning 3D Dynamics via Masked Future Rendering for Robotic Manipulation NeurIPS 2025
Learning generalizable robotic manipulation policies remains a key challenge due to the scarcity of diverse real-world training data. While recent approaches have attempted to mitigate this through self-supervised representation learning, most either rely on 2D vision pretraining paradigms such as masked image modeling, which primarily focus on static semantics or scene geometry, or utilize large-scale video prediction models that emphasize 2D dynamics, thus failing to jointly learn the geometry, semantics, and dynamics required for effective manipulation. In this paper, we present DynaRend, a representation learning framework that learns 3D-aware and dynamics-informed triplane features via masked reconstruction and future prediction using differentiable volumetric rendering. By pretraining on multi-view RGB-D video data, DynaRend jointly captures spatial geometry, future dynamics, and task semantics in a unified triplane representation. The learned representations can be effectively transferred to downstream robotic manipulation tasks via action value map prediction. We evaluate DynaRend on two challenging benchmarks, RLBench and Colosseum, as well as in real-world robotic experiments, demonstrating substantial improvements in policy success rate, generalization to environmental perturbations, and real-world applicability across diverse manipulation tasks.
comment: Accepted to NeurIPS 2025
☆ UtilGen: Utility-Centric Generative Data Augmentation with Dual-Level Task Adaptation NeurIPS 2025
Data augmentation using generative models has emerged as a powerful paradigm for enhancing performance in computer vision tasks. However, most existing augmentation approaches primarily focus on optimizing intrinsic data attributes -- such as fidelity and diversity -- to generate visually high-quality synthetic data, while often neglecting task-specific requirements. Yet, it is essential for data generators to account for the needs of downstream tasks, as training data requirements can vary significantly across different tasks and network architectures. To address these limitations, we propose UtilGen, a novel utility-centric data augmentation framework that adaptively optimizes the data generation process to produce task-specific, high-utility training data via downstream task feedback. Specifically, we first introduce a weight allocation network to evaluate the task-specific utility of each synthetic sample. Guided by these evaluations, UtilGen iteratively refines the data generation process using a dual-level optimization strategy to maximize the synthetic data utility: (1) model-level optimization tailors the generative model to the downstream task, and (2) instance-level optimization adjusts generation policies -- such as prompt embeddings and initial noise -- at each generation round. Extensive experiments on eight benchmark datasets of varying complexity and granularity demonstrate that UtilGen consistently achieves superior performance, with an average accuracy improvement of 3.87% over previous SOTA. Further analysis of data influence and distribution reveals that UtilGen produces more impactful and task-relevant synthetic data, validating the effectiveness of the paradigm shift from visual characteristics-centric to task utility-centric data augmentation.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ DeshadowMamba: Deshadowing as 1D Sequential Similarity
Recent deep models for image shadow removal often rely on attention-based architectures to capture long-range dependencies. However, their fixed attention patterns tend to mix illumination cues from irrelevant regions, leading to distorted structures and inconsistent colors. In this work, we revisit shadow removal from a sequence modeling perspective and explore the use of Mamba, a selective state space model that propagates global context through directional state transitions. These transitions yield an efficient global receptive field while preserving positional continuity. Despite its potential, directly applying Mamba to image data is suboptimal, since it lacks awareness of shadow-non-shadow semantics and remains susceptible to color interference from nearby regions. To address these limitations, we propose CrossGate, a directional modulation mechanism that injects shadow-aware similarity into Mamba's input gate, allowing selective integration of relevant context along transition axes. To further ensure appearance fidelity, we introduce ColorShift regularization, a contrastive learning objective driven by global color statistics. By synthesizing structured informative negatives, it guides the model to suppress color contamination and achieve robust color restoration. Together, these components adapt sequence modeling to the structural integrity and chromatic consistency required for shadow removal. Extensive experiments on public benchmarks demonstrate that DeshadowMamba achieves state-of-the-art visual quality and strong quantitative performance.
☆ Delving into Cascaded Instability: A Lipschitz Continuity View on Image Restoration and Object Detection Synergy NeurIPS 2025
To improve detection robustness in adverse conditions (e.g., haze and low light), image restoration is commonly applied as a pre-processing step to enhance image quality for the detector. However, the functional mismatch between restoration and detection networks can introduce instability and hinder effective integration -- an issue that remains underexplored. We revisit this limitation through the lens of Lipschitz continuity, analyzing the functional differences between restoration and detection networks in both the input space and the parameter space. Our analysis shows that restoration networks perform smooth, continuous transformations, while object detectors operate with discontinuous decision boundaries, making them highly sensitive to minor perturbations. This mismatch introduces instability in traditional cascade frameworks, where even imperceptible noise from restoration is amplified during detection, disrupting gradient flow and hindering optimization. To address this, we propose Lipschitz-regularized object detection (LROD), a simple yet effective framework that integrates image restoration directly into the detector's feature learning, harmonizing the Lipschitz continuity of both tasks during training. We implement this framework as Lipschitz-regularized YOLO (LR-YOLO), extending seamlessly to existing YOLO detectors. Extensive experiments on haze and low-light benchmarks demonstrate that LR-YOLO consistently improves detection stability, optimization smoothness, and overall accuracy.
comment: NeurIPS 2025
☆ Benchmarking Microsaccade Recognition with Event Cameras: A Novel Dataset and Evaluation BMVC
Microsaccades are small, involuntary eye movements vital for visual perception and neural processing. Traditional microsaccade studies typically use eye trackers or frame-based analysis, which, while precise, are costly and limited in scalability and temporal resolution. Event-based sensing offers a high-speed, low-latency alternative by capturing fine-grained spatiotemporal changes efficiently. This work introduces a pioneering event-based microsaccade dataset to support research on small eye movement dynamics in cognitive computing. Using Blender, we render high-fidelity eye movement scenarios and simulate microsaccades with angular displacements from 0.5 to 2.0 degrees, divided into seven distinct classes. These are converted to event streams using v2e, preserving the natural temporal dynamics of microsaccades, with durations ranging from 0.25 ms to 2.25 ms. We evaluate the dataset using Spiking-VGG11, Spiking-VGG13, and Spiking-VGG16, and propose Spiking-VGG16Flow, an optical-flow-enhanced variant implemented in SpikingJelly. The models achieve around 90 percent average accuracy, successfully classifying microsaccades by angular displacement, independent of event count or duration. These results demonstrate the potential of spiking neural networks for fine motion recognition and establish a benchmark for event-based vision research. The dataset, code, and trained models will be publicly available at https://waseemshariff126.github.io/microsaccades/ .
comment: Accepted in British Machine Vision Conference (BMVC) 2025, Main Conference
☆ SCOPE: Saliency-Coverage Oriented Token Pruning for Efficient Multimodel LLMs NeurIPS 2025
Multimodal Large Language Models (MLLMs) typically process a large number of visual tokens, leading to considerable computational overhead, even though many of these tokens are redundant. Existing visual token pruning methods primarily focus on selecting the most salient tokens based on attention scores, resulting in the semantic incompleteness of the selected tokens. In this paper, we propose a novel visual token pruning strategy, called \textbf{S}aliency-\textbf{C}overage \textbf{O}riented token \textbf{P}runing for \textbf{E}fficient MLLMs (SCOPE), to jointly model both the saliency and coverage of the selected visual tokens to better preserve semantic completeness. Specifically, we introduce a set-coverage for a given set of selected tokens, computed based on the token relationships. We then define a token-coverage gain for each unselected token, quantifying how much additional coverage would be obtained by including it. By integrating the saliency score into the token-coverage gain, we propose our SCOPE score and iteratively select the token with the highest SCOPE score. We conduct extensive experiments on multiple vision-language understanding benchmarks using the LLaVA-1.5 and LLaVA-Next models. Experimental results demonstrate that our method consistently outperforms prior approaches. Our code is available at \href{https://github.com/kinredon/SCOPE}{https://github.com/kinredon/SCOPE}.
comment: NeurIPS 2025
☆ Beyond Inference Intervention: Identity-Decoupled Diffusion for Face Anonymization
Face anonymization aims to conceal identity information while preserving non-identity attributes. Mainstream diffusion models rely on inference-time interventions such as negative guidance or energy-based optimization, which are applied post-training to suppress identity features. These interventions often introduce distribution shifts and entangle identity with non-identity attributes, degrading visual fidelity and data utility. To address this, we propose \textbf{ID\textsuperscript{2}Face}, a training-centric anonymization framework that removes the need for inference-time optimization. The rationale of our method is to learn a structured latent space where identity and non-identity information are explicitly disentangled, enabling direct and controllable anonymization at inference. To this end, we design a conditional diffusion model with an identity-masked learning scheme. An Identity-Decoupled Latent Recomposer uses an Identity Variational Autoencoder to model identity features, while non-identity attributes are extracted from same-identity pairs and aligned through bidirectional latent alignment. An Identity-Guided Latent Harmonizer then fuses these representations via soft-gating conditioned on noisy feature prediction. The model is trained with a recomposition-based reconstruction loss to enforce disentanglement. At inference, anonymization is achieved by sampling a random identity vector from the learned identity space. To further suppress identity leakage, we introduce an Orthogonal Identity Mapping strategy that enforces orthogonality between sampled and source identity vectors. Experiments demonstrate that ID\textsuperscript{2}Face outperforms existing methods in visual quality, identity suppression, and utility preservation.
☆ MC-SJD : Maximal Coupling Speculative Jacobi Decoding for Autoregressive Visual Generation Acceleration
While autoregressive (AR) modeling has recently emerged as a new paradigm in visual generation, its practical adoption is severely constrained by the slow inference speed of per-token generation, which often requires thousands of steps to produce a single sample. To address this challenge, we propose MC-SJD, a training-free, lossless parallel decoding framework designed to accelerate AR visual generation by extending the recently introduced Speculative Jacobi Decoding (SJD). Although SJD shows strong potential for accelerating AR generation, we demonstrate that token instability across iterations significantly reduces the acceptance rate, a limitation that primarily arises from the independent sampling process used during draft token generation. To overcome this, we introduce MC-SJD, an information-theoretic approach based on coupling, which substantially accelerates standard SJD by maximizing the probability of sampling identical draft tokens across consecutive iterations, all while preserving its lossless property. Remarkably, this method requires only a single-line modification to the existing algorithm, yet achieves substantial performance gains, delivering up to a ~4.2x acceleration in image generation and ~13.3x acceleration in video generation compared to standard AR decoding, without any degradation in output quality.
☆ CLFSeg: A Fuzzy-Logic based Solution for Boundary Clarity and Uncertainty Reduction in Medical Image Segmentation BMVC
Accurate polyp and cardiac segmentation for early detection and treatment is essential for the diagnosis and treatment planning of cancer-like diseases. Traditional convolutional neural network (CNN) based models have represented limited generalizability, robustness, and inability to handle uncertainty, which affects the segmentation performance. To solve these problems, this paper introduces CLFSeg, an encoder-decoder based framework that aggregates the Fuzzy-Convolutional (FC) module leveraging convolutional layers and fuzzy logic. This module enhances the segmentation performance by identifying local and global features while minimizing the uncertainty, noise, and ambiguity in boundary regions, ensuring computing efficiency. In order to handle class imbalance problem while focusing on the areas of interest with tiny and boundary regions, binary cross-entropy (BCE) with dice loss is incorporated. Our proposed model exhibits exceptional performance on four publicly available datasets, including CVC-ColonDB, CVC-ClinicDB, EtisLaribPolypDB, and ACDC. Extensive experiments and visual studies show CLFSeg surpasses the existing SOTA performance and focuses on relevant regions of interest in anatomical structures. The proposed CLFSeg improves performance while ensuring computing efficiency, which makes it a potential solution for real-world medical diagnostic scenarios. Project page is available at https://visdomlab.github.io/CLFSeg/
comment: The 36th British Machine Vision Conference (BMVC) 2025
☆ Vanish into Thin Air: Cross-prompt Universal Adversarial Attacks for SAM2 NeurIPS 2025
Recent studies reveal the vulnerability of the image segmentation foundation model SAM to adversarial examples. Its successor, SAM2, has attracted significant attention due to its strong generalization capability in video segmentation. However, its robustness remains unexplored, and it is unclear whether existing attacks on SAM can be directly transferred to SAM2. In this paper, we first analyze the performance gap of existing attacks between SAM and SAM2 and highlight two key challenges arising from their architectural differences: directional guidance from the prompt and semantic entanglement across consecutive frames. To address these issues, we propose UAP-SAM2, the first cross-prompt universal adversarial attack against SAM2 driven by dual semantic deviation. For cross-prompt transferability, we begin by designing a target-scanning strategy that divides each frame into k regions, each randomly assigned a prompt, to reduce prompt dependency during optimization. For effectiveness, we design a dual semantic deviation framework that optimizes a UAP by distorting the semantics within the current frame and disrupting the semantic consistency across consecutive frames. Extensive experiments on six datasets across two segmentation tasks demonstrate the effectiveness of the proposed method for SAM2. The comparative results show that UAP-SAM2 significantly outperforms state-of-the-art (SOTA) attacks by a large margin.
comment: Accepted by NeurIPS 2025
☆ Enhancing Vision-Language Models for Autonomous Driving through Task-Specific Prompting and Spatial Reasoning IROS 2025
This technical report presents our solution for the RoboSense Challenge at IROS 2025, which evaluates Vision-Language Models (VLMs) on autonomous driving scene understanding across perception, prediction, planning, and corruption detection tasks. We propose a systematic framework built on four core components. First, a Mixture-of-Prompts router classifies questions and dispatches them to task-specific expert prompts, eliminating interference across diverse question types. Second, task-specific prompts embed explicit coordinate systems, spatial reasoning rules, role-playing, Chain-of-Thought/Tree-of-Thought reasoning, and few-shot examples tailored to each task. Third, a visual assembly module composes multi-view images with object crops, magenta markers, and adaptive historical frames based on question requirements. Fourth, we configure model inference parameters (temperature, top-p, message roles) per task to optimize output quality. Implemented on Qwen2.5-VL-72B, our approach achieves 70.87% average accuracy on Phase-1 (clean data) and 72.85% on Phase-2 (corrupted data), demonstrating that structured prompting and spatial grounding substantially enhance VLM performance on safety-critical autonomous driving tasks. Code and prompt are available at https://github.com/wuaodi/UCAS-CSU-phase2.
comment: RoboSense Challenge with IROS 2025
☆ MSRANetV2: An Explainable Deep Learning Architecture for Multi-class Classification of Colorectal Histopathological Images
Colorectal cancer (CRC) is a leading worldwide cause of cancer-related mortality, and the role of prompt precise detection is of paramount interest in improving patient outcomes. Conventional diagnostic methods such as colonoscopy and histological examination routinely exhibit subjectivity, are extremely time-consuming, and are susceptible to variation. Through the development of digital pathology, deep learning algorithms have become a powerful approach in enhancing diagnostic precision and efficiency. In our work, we proposed a convolutional neural network architecture named MSRANetV2, specially optimized for the classification of colorectal tissue images. The model employs a ResNet50V2 backbone, extended with residual attention mechanisms and squeeze-and-excitation (SE) blocks, to extract deep semantic and fine-grained spatial features. With channel alignment and upsampling operations, MSRANetV2 effectively fuses multi-scale representations, thereby enhancing the robustness of the classification. We evaluated our model on a five-fold stratified cross-validation strategy on two publicly available datasets: CRC-VAL-HE-7K and NCT-CRC-HE-100K. The proposed model achieved remarkable average Precision, recall, F1-score, AUC, and test accuracy were 0.9884 plus-minus 0.0151, 0.9900 plus-minus 0.0151, 0.9900 plus-minus 0.0145, 0.9999 plus-minus 0.00006, and 0.9905 plus-minus 0.0025 on the 7K dataset. On the 100K dataset, they were 0.9904 plus-minus 0.0091, 0.9900 plus-minus 0.0071, 0.9900 plus-minus 0.0071, 0.9997 plus-minus 0.00016, and 0.9902 plus-minus 0.0006. Additionally, Grad-CAM visualizations were incorporated to enhance model interpretability by highlighting tissue areas that are medically relevant. These findings validate that MSRANetV2 is a reliable, interpretable, and high-performing architectural model for classifying CRC tissues.
☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.
comment: Accepted by EMNLP 2025
☆ Compositional Image Synthesis with Inference-Time Scaling
Despite their impressive realism, modern text-to-image models still struggle with compositionality, often failing to render accurate object counts, attributes, and spatial relations. To address this challenge, we present a training-free framework that combines an object-centric approach with self-refinement to improve layout faithfulness while preserving aesthetic quality. Specifically, we leverage large language models (LLMs) to synthesize explicit layouts from input prompts, and we inject these layouts into the image generation process, where a object-centric vision-language model (VLM) judge reranks multiple candidates to select the most prompt-aligned outcome iteratively. By unifying explicit layout-grounding with self-refine-based inference-time scaling, our framework achieves stronger scene alignment with prompts compared to recent text-to-image models. The code are available at https://github.com/gcl-inha/ReFocus.
comment: projcet page: https://github.com/gcl-inha/ReFocus
☆ ETC: training-free diffusion models acceleration with Error-aware Trend Consistency
Diffusion models have achieved remarkable generative quality but remain bottlenecked by costly iterative sampling. Recent training-free methods accelerate diffusion process by reusing model outputs. However, these methods ignore denoising trends and lack error control for model-specific tolerance, leading to trajectory deviations under multi-step reuse and exacerbating inconsistencies in the generated results. To address these issues, we introduce Error-aware Trend Consistency (ETC), a framework that (1) introduces a consistent trend predictor that leverages the smooth continuity of diffusion trajectories, projecting historical denoising patterns into stable future directions and progressively distributing them across multiple approximation steps to achieve acceleration without deviating; (2) proposes a model-specific error tolerance search mechanism that derives corrective thresholds by identifying transition points from volatile semantic planning to stable quality refinement. Experiments show that ETC achieves a 2.65x acceleration over FLUX with negligible (-0.074 SSIM score) degradation of consistency.
comment: 17 pages, 10 figures
☆ DogMo: A Large-Scale Multi-View RGB-D Dataset for 4D Canine Motion Recovery
We present DogMo, a large-scale multi-view RGB-D video dataset capturing diverse canine movements for the task of motion recovery from images. DogMo comprises 1.2k motion sequences collected from 10 unique dogs, offering rich variation in both motion and breed. It addresses key limitations of existing dog motion datasets, including the lack of multi-view and real 3D data, as well as limited scale and diversity. Leveraging DogMo, we establish four motion recovery benchmark settings that support systematic evaluation across monocular and multi-view, RGB and RGB-D inputs. To facilitate accurate motion recovery, we further introduce a three-stage, instance-specific optimization pipeline that fits the SMAL model to the motion sequences. Our method progressively refines body shape and pose through coarse alignment, dense correspondence supervision, and temporal regularization. Our dataset and method provide a principled foundation for advancing research in dog motion recovery and open up new directions at the intersection of computer vision, computer graphics, and animal behavior modeling.
comment: 19 pages
☆ UHKD: A Unified Framework for Heterogeneous Knowledge Distillation via Frequency-Domain Representations
Knowledge distillation (KD) is an effective model compression technique that transfers knowledge from a high-performance teacher to a lightweight student, reducing cost while maintaining accuracy. In visual applications, where large-scale image models are widely used, KD enables efficient deployment. However, architectural diversity introduces semantic discrepancies that hinder the use of intermediate representations. Most existing KD methods are designed for homogeneous models and degrade in heterogeneous scenarios, especially when intermediate features are involved. Prior studies mainly focus on the logits space, making limited use of the semantic information in intermediate layers. To address this limitation, Unified Heterogeneous Knowledge Distillation (UHKD) is proposed as a framework that leverages intermediate features in the frequency domain for cross-architecture transfer. Fourier transform is applied to capture global feature information, alleviating representational discrepancies between heterogeneous teacher-student pairs. A Feature Transformation Module (FTM) produces compact frequency-domain representations of teacher features, while a learnable Feature Alignment Module (FAM) projects student features and aligns them via multi-level matching. Training is guided by a joint objective combining mean squared error on intermediate features with Kullback-Leibler divergence on logits. Experiments on CIFAR-100 and ImageNet-1K demonstrate gains of 5.59% and 0.83% over the latest method, highlighting UHKD as an effective approach for unifying heterogeneous representations and enabling efficient utilization of visual knowledge
comment: 14 pages, 4 figures
☆ ZTRS: Zero-Imitation End-to-end Autonomous Driving with Trajectory Scoring
End-to-end autonomous driving maps raw sensor inputs directly into ego-vehicle trajectories to avoid cascading errors from perception modules and to leverage rich semantic cues. Existing frameworks largely rely on Imitation Learning (IL), which can be limited by sub-optimal expert demonstrations and covariate shift during deployment. On the other hand, Reinforcement Learning (RL) has recently shown potential in scaling up with simulations, but is typically confined to low-dimensional symbolic inputs (e.g. 3D objects and maps), falling short of full end-to-end learning from raw sensor data. We introduce ZTRS (Zero-Imitation End-to-End Autonomous Driving with Trajectory Scoring), a framework that combines the strengths of both worlds: sensor inputs without losing information and RL training for robust planning. To the best of our knowledge, ZTRS is the first framework that eliminates IL entirely by only learning from rewards while operating directly on high-dimensional sensor data. ZTRS utilizes offline reinforcement learning with our proposed Exhaustive Policy Optimization (EPO), a variant of policy gradient tailored for enumerable actions and rewards. ZTRS demonstrates strong performance across three benchmarks: Navtest (generic real-world open-loop planning), Navhard (open-loop planning in challenging real-world and synthetic scenarios), and HUGSIM (simulated closed-loop driving). Specifically, ZTRS achieves the state-of-the-art result on Navhard and outperforms IL-based baselines on HUGSIM. Code will be available at https://github.com/woxihuanjiangguo/ZTRS.
☆ Enhancing Pre-trained Representation Classifiability can Boost its Interpretability ICLR 2025
The visual representation of a pre-trained model prioritizes the classifiability on downstream tasks, while the widespread applications for pre-trained visual models have posed new requirements for representation interpretability. However, it remains unclear whether the pre-trained representations can achieve high interpretability and classifiability simultaneously. To answer this question, we quantify the representation interpretability by leveraging its correlation with the ratio of interpretable semantics within the representations. Given the pre-trained representations, only the interpretable semantics can be captured by interpretations, whereas the uninterpretable part leads to information loss. Based on this fact, we propose the Inherent Interpretability Score (IIS) that evaluates the information loss, measures the ratio of interpretable semantics, and quantifies the representation interpretability. In the evaluation of the representation interpretability with different classifiability, we surprisingly discover that the interpretability and classifiability are positively correlated, i.e., representations with higher classifiability provide more interpretable semantics that can be captured in the interpretations. This observation further supports two benefits to the pre-trained representations. First, the classifiability of representations can be further improved by fine-tuning with interpretability maximization. Second, with the classifiability improvement for the representations, we obtain predictions based on their interpretations with less accuracy degradation. The discovered positive correlation and corresponding applications show that practitioners can unify the improvements in interpretability and classifiability for pre-trained vision models. Codes are available at https://github.com/ssfgunner/IIS.
comment: ICLR 2025 (Spotlight)
☆ OmniText: A Training-Free Generalist for Controllable Text-Image Manipulation
Recent advancements in diffusion-based text synthesis have demonstrated significant performance in inserting and editing text within images via inpainting. However, despite the potential of text inpainting methods, three key limitations hinder their applicability to broader Text Image Manipulation (TIM) tasks: (i) the inability to remove text, (ii) the lack of control over the style of rendered text, and (iii) a tendency to generate duplicated letters. To address these challenges, we propose OmniText, a training-free generalist capable of performing a wide range of TIM tasks. Specifically, we investigate two key properties of cross- and self-attention mechanisms to enable text removal and to provide control over both text styles and content. Our findings reveal that text removal can be achieved by applying self-attention inversion, which mitigates the model's tendency to focus on surrounding text, thus reducing text hallucinations. Additionally, we redistribute cross-attention, as increasing the probability of certain text tokens reduces text hallucination. For controllable inpainting, we introduce novel loss functions in a latent optimization framework: a cross-attention content loss to improve text rendering accuracy and a self-attention style loss to facilitate style customization. Furthermore, we present OmniText-Bench, a benchmark dataset for evaluating diverse TIM tasks. It includes input images, target text with masks, and style references, covering diverse applications such as text removal, rescaling, repositioning, and insertion and editing with various styles. Our OmniText framework is the first generalist method capable of performing diverse TIM tasks. It achieves state-of-the-art performance across multiple tasks and metrics compared to other text inpainting methods and is comparable with specialist methods.
comment: The first two authors contributed equally to this work. The last two authors are co-corresponding authors
☆ Beyond Objects: Contextual Synthetic Data Generation for Fine-Grained Classification
Text-to-image (T2I) models are increasingly used for synthetic dataset generation, but generating effective synthetic training data for classification remains challenging. Fine-tuning a T2I model with a few real examples can help improve the quality of synthetic training data; however, it may also cause overfitting and reduce diversity in the generated samples. We propose a fine-tuning strategy BOB (BeyondOBjects) to mitigate these concerns for fine-grained classification. Given a small set of real examples, we first extract class-agnostic attributes such as scene background and object pose. We then explicitly condition on these attributes during fine-tuning of the T2I model and marginalize them out during generation. This design mitigates overfitting, preserves the T2I model's generative prior, reduces estimation errors, and further minimizes unintended inter-class associations. Extensive experiments across multiple T2I models, backbones, and datasets show that our method achieves state-of-the-art performance in low-shot fine-grained classification when augmented with synthetic data. Concretely, BOB outperforms DataDream by 7.4% on the Aircraft dataset (from 50.0% to 57.4% when fine-tuning a CLIP classifier with five real images augmented with 100 synthetic images). In three of the four benchmarks, fine-tuning downstream models with 5 real images augmented with BOB achieves better performance than fine-tuning with 10 real images. Collectively, BOB outperforms prior art in 18 of 24 experimental settings, with 2+% accuracy improvements in 14 of these settings.
☆ Enhancing CLIP Robustness via Cross-Modality Alignment NeurIPS 2025
Vision-language models (VLMs) such as CLIP demonstrate strong generalization in zero-shot classification but remain highly vulnerable to adversarial perturbations. Existing methods primarily focus on adversarial fine-tuning or prompt optimization; they often overlook the gaps in CLIP's encoded features, which is shown as the text and image features lie far apart from each other. This misalignment is significantly amplified under adversarial perturbations, leading to severe degradation in classification performance. To address this problem, we propose Cross-modality Alignment, dubbed COLA, an optimal transport-based framework that explicitly addresses adversarial misalignment by restoring both global image-text alignment and local structural consistency in the feature space. (1) COLA first projects adversarial image embeddings onto a subspace spanned by class text features, effectively filtering out non-semantic distortions while preserving discriminative information. (2) It then models images and texts as discrete distributions over multiple augmented views and refines their alignment via OT, with the subspace projection seamlessly integrated into the cost computation. This design ensures stable cross-modal alignment even under adversarial conditions. COLA is training-free and compatible with existing fine-tuned models. Extensive evaluations across 14 zero-shot classification benchmarks demonstrate the effectiveness of COLA, especially with an average improvement of 6.7% on ImageNet and its variants under PGD adversarial attacks, while maintaining high accuracy on clean samples.
comment: NeurIPS 2025 Spotlight
☆ Kernelized Sparse Fine-Tuning with Bi-level Parameter Competition for Vision Models
Parameter-efficient fine-tuning (PEFT) aims to adapt pre-trained vision models to downstream tasks. Among PEFT paradigms, sparse tuning achieves remarkable performance by adjusting only the weights most relevant to downstream tasks, rather than densely tuning the entire weight matrix. Current methods follow a two-stage paradigm. First, it locates task-relevant weights by gradient information, which overlooks the parameter adjustments during fine-tuning and limits the performance. Second, it updates only the located weights by applying a sparse mask to the gradient of the weight matrix, which results in high memory usage due to the storage of all weight matrices in the optimizer. In this paper, we propose a one-stage method named SNELLA to overcome the above limitations. For memory usage, SNELLA selectively updates the weight matrix by adding it to another sparse matrix that is merged by two low-rank learnable matrices. We extend the low-rank decomposition by introducing nonlinear kernel functions, thereby increasing the rank of the resulting merged matrix to prevent the interdependency among weight updates, enabling better adaptation to downstream tasks. For locating task-relevant weights, we propose an adaptive bi-level sparsity allocation mechanism that encourages weights to compete across and inside layers based on their importance scores in an end-to-end manner. Extensive experiments are conducted on classification, segmentation, and generation tasks using different pre-trained vision models. The results show that SNELLA achieves SOTA performance with low memory usage. Notably, SNELLA obtains 1.8% (91.9% v.s. 90.1%) higher Top-1 accuracy on the FGVC benchmark compared to SPT-LoRA. Compared to previous methods, SNELLA achieves a memory reduction of 31.1%-39.9% across models with parameter scales from 86M to 632M. Our source codes are available at https://github.com/ssfgunner/SNELL.
☆ ResNet: Enabling Deep Convolutional Neural Networks through Residual Learning
Convolutional Neural Networks (CNNs) has revolutionized computer vision, but training very deep networks has been challenging due to the vanishing gradient problem. This paper explores Residual Networks (ResNet), introduced by He et al. (2015), which overcomes this limitation by using skip connections. ResNet enables the training of networks with hundreds of layers by allowing gradients to flow directly through shortcut connections that bypass intermediate layers. In our implementation on the CIFAR-10 dataset, ResNet-18 achieves 89.9% accuracy compared to 84.1% for a traditional deep CNN of similar depth, while also converging faster and training more stably.
comment: 3 pages, 5 figures, 1 table
☆ AutoPrompt: Automated Red-Teaming of Text-to-Image Models via LLM-Driven Adversarial Prompts ICCV 2025
Despite rapid advancements in text-to-image (T2I) models, their safety mechanisms are vulnerable to adversarial prompts, which maliciously generate unsafe images. Current red-teaming methods for proactively assessing such vulnerabilities usually require white-box access to T2I models, and rely on inefficient per-prompt optimization, as well as inevitably generate semantically meaningless prompts easily blocked by filters. In this paper, we propose APT (AutoPrompT), a black-box framework that leverages large language models (LLMs) to automatically generate human-readable adversarial suffixes for benign prompts. We first introduce an alternating optimization-finetuning pipeline between adversarial suffix optimization and fine-tuning the LLM utilizing the optimized suffix. Furthermore, we integrates a dual-evasion strategy in optimization phase, enabling the bypass of both perplexity-based filter and blacklist word filter: (1) we constrain the LLM generating human-readable prompts through an auxiliary LLM perplexity scoring, which starkly contrasts with prior token-level gibberish, and (2) we also introduce banned-token penalties to suppress the explicit generation of banned-tokens in blacklist. Extensive experiments demonstrate the excellent red-teaming performance of our human-readable, filter-resistant adversarial prompts, as well as superior zero-shot transferability which enables instant adaptation to unseen prompts and exposes critical vulnerabilities even in commercial APIs (e.g., Leonardo.Ai.).
comment: Accepted by ICCV 2025
☆ Listening without Looking: Modality Bias in Audio-Visual Captioning
Audio-visual captioning aims to generate holistic scene descriptions by jointly modeling sound and vision. While recent methods have improved performance through sophisticated modality fusion, it remains unclear to what extent the two modalities are complementary in current audio-visual captioning models and how robust these models are when one modality is degraded. We address these questions by conducting systematic modality robustness tests on LAVCap, a state-of-the-art audio-visual captioning model, in which we selectively suppress or corrupt the audio or visual streams to quantify sensitivity and complementarity. The analysis reveals a pronounced bias toward the audio stream in LAVCap. To evaluate how balanced audio-visual captioning models are in their use of both modalities, we augment AudioCaps with textual annotations that jointly describe the audio and visual streams, yielding the AudioVisualCaps dataset. In our experiments, we report LAVCap baseline results on AudioVisualCaps. We also evaluate the model under modality robustness tests on AudioVisualCaps and the results indicate that LAVCap trained on AudioVisualCaps exhibits less modality bias than when trained on AudioCaps.
comment: under review
☆ Mars-Bench: A Benchmark for Evaluating Foundation Models for Mars Science Tasks NeurIPS 2025
Foundation models have enabled rapid progress across many specialized domains by leveraging large-scale pre-training on unlabeled data, demonstrating strong generalization to a variety of downstream tasks. While such models have gained significant attention in fields like Earth Observation, their application to Mars science remains limited. A key enabler of progress in other domains has been the availability of standardized benchmarks that support systematic evaluation. In contrast, Mars science lacks such benchmarks and standardized evaluation frameworks, which have limited progress toward developing foundation models for Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark designed to systematically evaluate models across a broad range of Mars-related tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets spanning classification, segmentation, and object detection, focused on key geologic features such as craters, cones, boulders, and frost. We provide standardized, ready-to-use datasets and baseline evaluations using models pre-trained on natural images, Earth satellite data, and state-of-the-art vision-language models. Results from all analyses suggest that Mars-specific foundation models may offer advantages over general-domain counterparts, motivating further exploration of domain-adapted pre-training. Mars-Bench aims to establish a standardized foundation for developing and comparing machine learning models for Mars science. Our data, models, and code are available at: https://mars-bench.github.io/.
comment: Accepted at NeurIPS 2025
☆ Towards the Automatic Segmentation, Modeling and Meshing of the Aortic Vessel Tree from Multicenter Acquisitions: An Overview of the SEG.A. 2023 Segmentation of the Aorta Challenge
The automated analysis of the aortic vessel tree (AVT) from computed tomography angiography (CTA) holds immense clinical potential, but its development has been impeded by a lack of shared, high-quality data. We launched the SEG.A. challenge to catalyze progress in this field by introducing a large, publicly available, multi-institutional dataset for AVT segmentation. The challenge benchmarked automated algorithms on a hidden test set, with subsequent optional tasks in surface meshing for computational simulations. Our findings reveal a clear convergence on deep learning methodologies, with 3D U-Net architectures dominating the top submissions. A key result was that an ensemble of the highest-ranking algorithms significantly outperformed individual models, highlighting the benefits of model fusion. Performance was strongly linked to algorithmic design, particularly the use of customized post-processing steps, and the characteristics of the training data. This initiative not only establishes a new performance benchmark but also provides a lasting resource to drive future innovation toward robust, clinically translatable tools.
☆ AdvBlur: Adversarial Blur for Robust Diabetic Retinopathy Classification and Cross-Domain Generalization
Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, yet early and accurate detection can significantly improve treatment outcomes. While numerous Deep learning (DL) models have been developed to predict DR from fundus images, many face challenges in maintaining robustness due to distributional variations caused by differences in acquisition devices, demographic disparities, and imaging conditions. This paper addresses this critical limitation by proposing a novel DR classification approach, a method called AdvBlur. Our method integrates adversarial blurred images into the dataset and employs a dual-loss function framework to address domain generalization. This approach effectively mitigates the impact of unseen distributional variations, as evidenced by comprehensive evaluations across multiple datasets. Additionally, we conduct extensive experiments to explore the effects of factors such as camera type, low-quality images, and dataset size. Furthermore, we perform ablation studies on blurred images and the loss function to ensure the validity of our choices. The experimental results demonstrate the effectiveness of our proposed method, achieving competitive performance compared to state-of-the-art domain generalization DR models on unseen external datasets.
☆ TeleEgo: Benchmarking Egocentric AI Assistants in the Wild
Egocentric AI assistants in real-world settings must process multi-modal inputs (video, audio, text), respond in real time, and retain evolving long-term memory. However, existing benchmarks typically evaluate these abilities in isolation, lack realistic streaming scenarios, or support only short-term tasks. We introduce \textbf{TeleEgo}, a long-duration, streaming, omni-modal benchmark for evaluating egocentric AI assistants in realistic daily contexts. The dataset features over 14 hours per participant of synchronized egocentric video, audio, and text across four domains: work \& study, lifestyle \& routines, social activities, and outings \& culture. All data is aligned on a unified global timeline and includes high-quality visual narrations and speech transcripts, curated through human refinement.TeleEgo defines 12 diagnostic subtasks across three core capabilities: Memory (recalling past events), Understanding (interpreting the current moment), and Cross-Memory Reasoning (linking distant events). It contains 3,291 human-verified QA items spanning multiple question formats (single-choice, binary, multi-choice, and open-ended), evaluated strictly in a streaming setting. We propose two key metrics -- Real-Time Accuracy and Memory Persistence Time -- to jointly assess correctness, temporal responsiveness, and long-term retention. TeleEgo provides a realistic and comprehensive evaluation to advance the development of practical AI assistants.
☆ Efficient Cost-and-Quality Controllable Arbitrary-scale Super-resolution with Fourier Constraints
Cost-and-Quality (CQ) controllability in arbitrary-scale super-resolution is crucial. Existing methods predict Fourier components one by one using a recurrent neural network. However, this approach leads to performance degradation and inefficiency due to independent prediction. This paper proposes predicting multiple components jointly to improve both quality and efficiency.
comment: 9 pages
☆ Synergistic Neural Forecasting of Air Pollution with Stochastic Sampling
Air pollution remains a leading global health and environmental risk, particularly in regions vulnerable to episodic air pollution spikes due to wildfires, urban haze and dust storms. Accurate forecasting of particulate matter (PM) concentrations is essential to enable timely public health warnings and interventions, yet existing models often underestimate rare but hazardous pollution events. Here, we present SynCast, a high-resolution neural forecasting model that integrates meteorological and air composition data to improve predictions of both average and extreme pollution levels. Built on a regionally adapted transformer backbone and enhanced with a diffusion-based stochastic refinement module, SynCast captures the nonlinear dynamics driving PM spikes more accurately than existing approaches. Leveraging on harmonized ERA5 and CAMS datasets, our model shows substantial gains in forecasting fidelity across multiple PM variables (PM$_1$, PM$_{2.5}$, PM$_{10}$), especially under extreme conditions. We demonstrate that conventional loss functions underrepresent distributional tails (rare pollution events) and show that SynCast, guided by domain-aware objectives and extreme value theory, significantly enhances performance in highly impacted regions without compromising global accuracy. This approach provides a scalable foundation for next-generation air quality early warning systems and supports climate-health risk mitigation in vulnerable regions.
☆ Reasoning Visual Language Model for Chest X-Ray Analysis
Vision-language models (VLMs) have shown strong promise for medical image analysis, but most remain opaque, offering predictions without the transparent, stepwise reasoning clinicians rely on. We present a framework that brings chain-of-thought (CoT) reasoning to chest X-ray interpretation. Inspired by reasoning-first training paradigms, our approach is designed to learn how experts reason, not just what they conclude, by aligning intermediate steps with observable image evidence and radiology workflow. Beyond accuracy, the explicit reasoning traces support clinical auditability: they reveal why a conclusion was reached, which alternatives were considered, and where uncertainty remains, enabling quality assurance, error analysis, and safer human-AI collaboration. Our model couples high-fidelity visual encoding with a two-stage training recipe: a reasoning-style supervised fine-tuning (SFT) followed by reinforcement learning (RL) that uses verifiable rewards over a list of X-ray abnormalities. The model outputs reasoning that mirrors radiologists systematic thought process, uncertainty, and differential diagnosis. In out-of-distribution evaluation, the approach achieves competitive multi-label classification while improving interpretability. In a reader study with expert radiologists, full reasoning traces increased confidence, supported error auditing, and reduced time to finalize reports. We release code and the model NV-Reason-CXR-3B to support community progress toward trustworthy, explainable AI in chest radiography and other medical imaging tasks where reasoning quality is as critical as prediction quality.
comment: NV-Reason-CXR-3B
☆ SafeVision: Efficient Image Guardrail with Robust Policy Adherence and Explainability
With the rapid proliferation of digital media, the need for efficient and transparent safeguards against unsafe content is more critical than ever. Traditional image guardrail models, constrained by predefined categories, often misclassify content due to their pure feature-based learning without semantic reasoning. Moreover, these models struggle to adapt to emerging threats, requiring costly retraining for new threats. To address these limitations, we introduce SafeVision, a novel image guardrail that integrates human-like reasoning to enhance adaptability and transparency. Our approach incorporates an effective data collection and generation framework, a policy-following training pipeline, and a customized loss function. We also propose a diverse QA generation and training strategy to enhance learning effectiveness. SafeVision dynamically aligns with evolving safety policies at inference time, eliminating the need for retraining while ensuring precise risk assessments and explanations. Recognizing the limitations of existing unsafe image benchmarks, which either lack granularity or cover limited risks, we introduce VisionHarm, a high-quality dataset comprising two subsets: VisionHarm Third-party (VisionHarm-T) and VisionHarm Comprehensive(VisionHarm-C), spanning diverse harmful categories. Through extensive experiments, we show that SafeVision achieves state-of-the-art performance on different benchmarks. SafeVision outperforms GPT-4o by 8.6% on VisionHarm-T and by 15.5% on VisionHarm-C, while being over 16x faster. SafeVision sets a comprehensive, policy-following, and explainable image guardrail with dynamic adaptation to emerging threats.
comment: 42 pages, 9 figures
☆ Neural USD: An object-centric framework for iterative editing and control
Amazing progress has been made in controllable generative modeling, especially over the last few years. However, some challenges remain. One of them is precise and iterative object editing. In many of the current methods, trying to edit the generated image (for example, changing the color of a particular object in the scene or changing the background while keeping other elements unchanged) by changing the conditioning signals often leads to unintended global changes in the scene. In this work, we take the first steps to address the above challenges. Taking inspiration from the Universal Scene Descriptor (USD) standard developed in the computer graphics community, we introduce the "Neural Universal Scene Descriptor" or Neural USD. In this framework, we represent scenes and objects in a structured, hierarchical manner. This accommodates diverse signals, minimizes model-specific constraints, and enables per-object control over appearance, geometry, and pose. We further apply a fine-tuning approach which ensures that the above control signals are disentangled from one another. We evaluate several design considerations for our framework, demonstrating how Neural USD enables iterative and incremental workflows. More information at: https://escontrela.me/neural_usd .
comment: 22 pages, 16 figures, 1 table
☆ Efficient License Plate Recognition via Pseudo-Labeled Supervision with Grounding DINO and YOLOv8 SP
Developing a highly accurate automatic license plate recognition system (ALPR) is challenging due to environmental factors such as lighting, rain, and dust. Additional difficulties include high vehicle speeds, varying camera angles, and low-quality or low-resolution images. ALPR is vital in traffic control, parking, vehicle tracking, toll collection, and law enforcement applications. This paper proposes a deep learning strategy using YOLOv8 for license plate detection and recognition tasks. This method seeks to enhance the performance of the model using datasets from Ontario, Quebec, California, and New York State. It achieved an impressive recall rate of 94% on the dataset from the Center for Pattern Recognition and Machine Intelligence (CENPARMI) and 91% on the UFPR-ALPR dataset. In addition, our method follows a semi-supervised learning framework, combining a small set of manually labeled data with pseudo-labels generated by Grounding DINO to train our detection model. Grounding DINO, a powerful vision-language model, automatically annotates many images with bounding boxes for license plates, thereby minimizing the reliance on labor-intensive manual labeling. By integrating human-verified and model-generated annotations, we can scale our dataset efficiently while maintaining label quality, which significantly enhances the training process and overall model performance. Furthermore, it reports character error rates for both datasets, providing additional insight into system performance.
comment: 6 pages, 8 figures. Presented at 2025 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), August 31 - September 3, 2025, Istanbul, Turkey
☆ Resi-VidTok: An Efficient and Decomposed Progressive Tokenization Framework for Ultra-Low-Rate and Lightweight Video Transmission
Real-time transmission of video over wireless networks remains highly challenging, even with advanced deep models, particularly under severe channel conditions such as limited bandwidth and weak connectivity. In this paper, we propose Resi-VidTok, a Resilient Tokenization-Enabled framework designed for ultra-low-rate and lightweight video transmission that delivers strong robustness while preserving perceptual and semantic fidelity on commodity digital hardware. By reorganizing spatio--temporal content into a discrete, importance-ordered token stream composed of key tokens and refinement tokens, Resi-VidTok enables progressive encoding, prefix-decodable reconstruction, and graceful quality degradation under constrained channels. A key contribution is a resilient 1D tokenization pipeline for video that integrates differential temporal token coding, explicitly supporting reliable recovery from incomplete token sets using a single shared framewise decoder--without auxiliary temporal extractors or heavy generative models. Furthermore, stride-controlled frame sparsification combined with a lightweight decoder-side interpolator reduces transmission load while maintaining motion continuity. Finally, a channel-adaptive source--channel coding and modulation scheme dynamically allocates rate and protection according to token importance and channel condition, yielding stable quality across adverse SNRs. Evaluation results indicate robust visual and semantic consistency at channel bandwidth ratios (CBR) as low as 0.0004 and real-time reconstruction at over 30 fps, demonstrating the practicality of Resi-VidTok for energy-efficient, latency-sensitive, and reliability-critical wireless applications.
☆ FT-ARM: Fine-Tuned Agentic Reflection Multimodal Language Model for Pressure Ulcer Severity Classification with Reasoning
Pressure ulcers (PUs) are a serious and prevalent healthcare concern. Accurate classification of PU severity (Stages I-IV) is essential for proper treatment but remains challenging due to subtle visual distinctions and subjective interpretation, leading to variability among clinicians. Prior AI-based approaches using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) achieved promising accuracy but offered limited interpretability. We present FT-ARM (Fine-Tuned Agentic Reflection Multimodal model), a fine-tuned multimodal large language model (MLLM) with an agentic self-reflection mechanism for pressure ulcer severity classification. Inspired by clinician-style diagnostic reassessment, FT-ARM iteratively refines its predictions by reasoning over visual features and encoded clinical knowledge from text, enhancing both accuracy and consistency. On the publicly available Pressure Injury Image Dataset (PIID), FT-ARM, fine-tuned from LLaMA 3.2 90B, achieved 85% accuracy in classifying PU stages I-IV, surpassing prior CNN-based models by +4%. Unlike earlier CNN/ViT studies that relied solely on offline evaluations, FT-ARM is designed and tested for live inference, reflecting real-time deployment conditions. Furthermore, it produces clinically grounded natural-language explanations, improving interpretability and trust. By integrating fine-tuning and reflective reasoning across multimodal inputs, FT-ARM advances the reliability, transparency, and clinical applicability of automated wound assessment systems, addressing the critical need for consistent and explainable PU staging to support improved patient care.
☆ SCOUT: A Lightweight Framework for Scenario Coverage Assessment in Autonomous Driving
Assessing scenario coverage is crucial for evaluating the robustness of autonomous agents, yet existing methods rely on expensive human annotations or computationally intensive Large Vision-Language Models (LVLMs). These approaches are impractical for large-scale deployment due to cost and efficiency constraints. To address these shortcomings, we propose SCOUT (Scenario Coverage Oversight and Understanding Tool), a lightweight surrogate model designed to predict scenario coverage labels directly from an agent's latent sensor representations. SCOUT is trained through a distillation process, learning to approximate LVLM-generated coverage labels while eliminating the need for continuous LVLM inference or human annotation. By leveraging precomputed perception features, SCOUT avoids redundant computations and enables fast, scalable scenario coverage estimation. We evaluate our method across a large dataset of real-life autonomous navigation scenarios, demonstrating that it maintains high accuracy while significantly reducing computational cost. Our results show that SCOUT provides an effective and practical alternative for large-scale coverage analysis. While its performance depends on the quality of LVLM-generated training labels, SCOUT represents a major step toward efficient scenario coverage oversight in autonomous systems.
☆ IBIS: A Powerful Hybrid Architecture for Human Activity Recognition
The increasing interest in Wi-Fi sensing stems from its potential to capture environmental data in a low-cost, non-intrusive way, making it ideal for applications like healthcare, space occupancy analysis, and gesture-based IoT control. However, a major limitation in this field is the common problem of overfitting, where models perform well on training data but fail to generalize to new data. To overcome this, we introduce a novel hybrid architecture that integrates Inception-BiLSTM with a Support Vector Machine (SVM), which we refer to as IBIS. Our IBIS approach is uniquely engineered to improve model generalization and create more robust classification boundaries. By applying this method to Doppler-derived data, we achieve a movement recognition accuracy of nearly 99%. Comprehensive performance metrics and confusion matrices confirm the significant effectiveness of our proposed solution.
comment: 8 pages. 8 figures. Wireless Days Conference, December 2025
☆ Modality-Aware SAM: Sharpness-Aware-Minimization Driven Gradient Modulation for Harmonized Multimodal Learning
In multimodal learning, dominant modalities often overshadow others, limiting generalization. We propose Modality-Aware Sharpness-Aware Minimization (M-SAM), a model-agnostic framework that applies to many modalities and supports early and late fusion scenarios. In every iteration, M-SAM in three steps optimizes learning. \textbf{First, it identifies the dominant modality} based on modalities' contribution in the accuracy using Shapley. \textbf{Second, it decomposes the loss landscape}, or in another language, it modulates the loss to prioritize the robustness of the model in favor of the dominant modality, and \textbf{third, M-SAM updates the weights} by backpropagation of modulated gradients. This ensures robust learning for the dominant modality while enhancing contributions from others, allowing the model to explore and exploit complementary features that strengthen overall performance. Extensive experiments on four diverse datasets show that M-SAM outperforms the latest state-of-the-art optimization and gradient manipulation methods and significantly balances and improves multimodal learning.
☆ Understanding Multi-View Transformers ICCV 2025
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .
comment: Presented at the ICCV 2025 E2E3D Workshop
☆ VividCam: Learning Unconventional Camera Motions from Virtual Synthetic Videos
Although recent text-to-video generative models are getting more capable of following external camera controls, imposed by either text descriptions or camera trajectories, they still struggle to generalize to unconventional camera motions, which is crucial in creating truly original and artistic videos. The challenge lies in the difficulty of finding sufficient training videos with the intended uncommon camera motions. To address this challenge, we propose VividCam, a training paradigm that enables diffusion models to learn complex camera motions from synthetic videos, releasing the reliance on collecting realistic training videos. VividCam incorporates multiple disentanglement strategies that isolates camera motion learning from synthetic appearance artifacts, ensuring more robust motion representation and mitigating domain shift. We demonstrate that our design synthesizes a wide range of precisely controlled and complex camera motions using surprisingly simple synthetic data. Notably, this synthetic data often consists of basic geometries within a low-poly 3D scene and can be efficiently rendered by engines like Unity. Our video results can be found in https://wuqiuche.github.io/VividCamDemoPage/ .
comment: 19 pages, 9 figures
☆ Pixels to Signals: A Real-Time Framework for Traffic Demand Estimation
Traffic congestion is becoming a challenge in the rapidly growing urban cities, resulting in increasing delays and inefficiencies within urban transportation systems. To address this issue a comprehensive methodology is designed to optimize traffic flow and minimize delays. The framework is structured with three primary components: (a) vehicle detection, (b) traffic prediction, and (c) traffic signal optimization. This paper presents the first component, vehicle detection. The methodology involves analyzing multiple sequential frames from a camera feed to compute the background, i.e. the underlying roadway, by averaging pixel values over time. The computed background is then utilized to extract the foreground, where the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is applied to detect vehicles. With its computational efficiency and minimal infrastructure modification requirements, the proposed methodology offers a practical and scalable solution for real-world deployment.
☆ Proper Body Landmark Subset Enables More Accurate and 5X Faster Recognition of Isolated Signs in LIBRAS
This paper investigates the feasibility of using lightweight body landmark detection for the recognition of isolated signs in Brazilian Sign Language (LIBRAS). Although the skeleton-based approach by Alves et al. (2024) enabled substantial improvements in recognition performance, the use of OpenPose for landmark extraction hindered time performance. In a preliminary investigation, we observed that simply replacing OpenPose with the lightweight MediaPipe, while improving processing speed, significantly reduced accuracy. To overcome this limitation, we explored landmark subset selection strategies aimed at optimizing recognition performance. Experimental results showed that a proper landmark subset achieves comparable or superior performance to state-of-the-art methods while reducing processing time by more than 5X compared to Alves et al. (2024). As an additional contribution, we demonstrated that spline-based imputation effectively mitigates missing landmark issues, leading to substantial accuracy gains. These findings highlight that careful landmark selection, combined with simple imputation techniques, enables efficient and accurate isolated sign recognition, paving the way for scalable Sign Language Recognition systems.
comment: Submitted to Int. Conf. on Computer Vision Theory and Applications (VISAPP 2026)
☆ FruitProm: Probabilistic Maturity Estimation and Detection of Fruits and Vegetables
Maturity estimation of fruits and vegetables is a critical task for agricultural automation, directly impacting yield prediction and robotic harvesting. Current deep learning approaches predominantly treat maturity as a discrete classification problem (e.g., unripe, ripe, overripe). This rigid formulation, however, fundamentally conflicts with the continuous nature of the biological ripening process, leading to information loss and ambiguous class boundaries. In this paper, we challenge this paradigm by reframing maturity estimation as a continuous, probabilistic learning task. We propose a novel architectural modification to the state-of-the-art, real-time object detector, RT-DETRv2, by introducing a dedicated probabilistic head. This head enables the model to predict a continuous distribution over the maturity spectrum for each detected object, simultaneously learning the mean maturity state and its associated uncertainty. This uncertainty measure is crucial for downstream decision-making in robotics, providing a confidence score for tasks like selective harvesting. Our model not only provides a far richer and more biologically plausible representation of plant maturity but also maintains exceptional detection performance, achieving a mean Average Precision (mAP) of 85.6\% on a challenging, large-scale fruit dataset. We demonstrate through extensive experiments that our probabilistic approach offers more granular and accurate maturity assessments than its classification-based counterparts, paving the way for more intelligent, uncertainty-aware automated systems in modern agriculture
comment: Sidharth Rai, Rahul Harsha Cheppally contributed equally to this work
☆ Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.
comment: https://github.com/alexmartin1722/mirage
☆ The Generation Phases of Flow Matching: a Denoising Perspective
Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a framework to empirically probe the generation process. Laying down the formal connections between flow matching models and denoisers, we provide a common ground to compare their performances on generation and denoising. This enables the design of principled and controlled perturbations to influence sample generation: noise and drift. This leads to new insights on the distinct dynamical phases of the generative process, enabling us to precisely characterize at which stage of the generative process denoisers succeed or fail and why this matters.
☆ MCIHN: A Hybrid Network Model Based on Multi-path Cross-modal Interaction for Multimodal Emotion Recognition
Multimodal emotion recognition is crucial for future human-computer interaction. However, accurate emotion recognition still faces significant challenges due to differences between different modalities and the difficulty of characterizing unimodal emotional information. To solve these problems, a hybrid network model based on multipath cross-modal interaction (MCIHN) is proposed. First, adversarial autoencoders (AAE) are constructed separately for each modality. The AAE learns discriminative emotion features and reconstructs the features through a decoder to obtain more discriminative information about the emotion classes. Then, the latent codes from the AAE of different modalities are fed into a predefined Cross-modal Gate Mechanism model (CGMM) to reduce the discrepancy between modalities, establish the emotional relationship between interacting modalities, and generate the interaction features between different modalities. Multimodal fusion using the Feature Fusion module (FFM) for better emotion recognition. Experiments were conducted on publicly available SIMS and MOSI datasets, demonstrating that MCIHN achieves superior performance.
comment: The paper will be published in the MMAsia2025 conference proceedings
☆ Ming-Flash-Omni: A Sparse, Unified Architecture for Multimodal Perception and Generation
We propose Ming-Flash-Omni, an upgraded version of Ming-Omni, built upon a sparser Mixture-of-Experts (MoE) variant of Ling-Flash-2.0 with 100 billion total parameters, of which only 6.1 billion are active per token. This architecture enables highly efficient scaling (dramatically improving computational efficiency while significantly expanding model capacity) and empowers stronger unified multimodal intelligence across vision, speech, and language, representing a key step toward Artificial General Intelligence (AGI). Compared to its predecessor, the upgraded version exhibits substantial improvements across multimodal understanding and generation. We significantly advance speech recognition capabilities, achieving state-of-the-art performance in contextual ASR and highly competitive results in dialect-aware ASR. In image generation, Ming-Flash-Omni introduces high-fidelity text rendering and demonstrates marked gains in scene consistency and identity preservation during image editing. Furthermore, Ming-Flash-Omni introduces generative segmentation, a capability that not only achieves strong standalone segmentation performance but also enhances spatial control in image generation and improves editing consistency. Notably, Ming-Flash-Omni achieves state-of-the-art results in text-to-image generation and generative segmentation, and sets new records on all 12 contextual ASR benchmarks, all within a single unified architecture.
comment: 18 pages, 5 figures
☆ SafeEditor: Unified MLLM for Efficient Post-hoc T2I Safety Editing
With the rapid advancement of text-to-image (T2I) models, ensuring their safety has become increasingly critical. Existing safety approaches can be categorized into training-time and inference-time methods. While inference-time methods are widely adopted due to their cost-effectiveness, they often suffer from limitations such as over-refusal and imbalance between safety and utility. To address these challenges, we propose a multi-round safety editing framework that functions as a model-agnostic, plug-and-play module, enabling efficient safety alignment for any text-to-image model. Central to this framework is MR-SafeEdit, a multi-round image-text interleaved dataset specifically constructed for safety editing in text-to-image generation. We introduce a post-hoc safety editing paradigm that mirrors the human cognitive process of identifying and refining unsafe content. To instantiate this paradigm, we develop SafeEditor, a unified MLLM capable of multi-round safety editing on generated images. Experimental results show that SafeEditor surpasses prior safety approaches by reducing over-refusal while achieving a more favorable safety-utility balance.
♻ ☆ ADMN: A Layer-Wise Adaptive Multimodal Network for Dynamic Input Noise and Compute Resources
Multimodal deep learning systems are deployed in dynamic scenarios due to the robustness afforded by multiple sensing modalities. Nevertheless, they struggle with varying compute resource availability (due to multi-tenancy, device heterogeneity, etc.) and fluctuating quality of inputs (from sensor feed corruption, environmental noise, etc.). Statically provisioned multimodal systems cannot adapt when compute resources change over time, while existing dynamic networks struggle with strict compute budgets. Additionally, both systems often neglect the impact of variations in modality quality. Consequently, modalities suffering substantial corruption may needlessly consume resources better allocated towards other modalities. We propose ADMN, a layer-wise Adaptive Depth Multimodal Network capable of tackling both challenges: it adjusts the total number of active layers across all modalities to meet strict compute resource constraints and continually reallocates layers across input modalities according to their modality quality. Our evaluations showcase ADMN can match the accuracy of state-of-the-art networks while reducing up to 75% of their floating-point operations.
comment: Accepted to Neurips 2025
MMPerspective: Do MLLMs Understand Perspective? A Comprehensive Benchmark for Perspective Perception, Reasoning, and Robustness NeurIPS 2025
Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/
comment: Accepted to NeurIPS 2025 DB Track
♻ ☆ VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree NeurIPS 2025
Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.
comment: NeurIPS 2025 poster
♻ ☆ DWaste: Greener AI for Waste Sorting using Mobile and Edge Devices
The rise of convenience packaging has led to generation of enormous waste, making efficient waste sorting crucial for sustainable waste management. To address this, we developed DWaste, a computer vision-powered platform designed for real-time waste sorting on resource-constrained smartphones and edge devices, including offline functionality. We benchmarked various image classification models (EfficientNetV2S/M, ResNet50/101, MobileNet) and object detection (YOLOv8n, YOLOv11n) including our purposed YOLOv8n-CBAM model using our annotated dataset designed for recycling. We found a clear trade-off between accuracy and resource consumption: the best classifier, EfficientNetV2S, achieved high accuracy(~ 96%) but suffered from high latency (~ 0.22s) and elevated carbon emissions. In contrast, lightweight object detection models delivered strong performance (up to 80% mAP) with ultra-fast inference (~ 0.03s) and significantly smaller model sizes (< 7MB ), making them ideal for real-time, low-power use. Model quantization further maximized efficiency, substantially reducing model size and VRAM usage by up to 75%. Our work demonstrates the successful implementation of "Greener AI" models to support real-time, sustainable waste sorting on edge devices.
comment: 8 pages, 8 figures
♻ ☆ RETTA: Retrieval-Enhanced Test-Time Adaptation for Zero-Shot Video Captioning
Despite the significant progress of fully-supervised video captioning, zero-shot methods remain much less explored. In this paper, we propose a novel zero-shot video captioning framework named Retrieval-Enhanced Test-Time Adaptation (RETTA), which takes advantage of existing pretrained large-scale vision and language models to directly generate captions with test-time adaptation. Specifically, we bridge video and text using four key models: a general video-text retrieval model XCLIP, a general image-text matching model CLIP, a text alignment model AnglE, and a text generation model GPT-2, due to their source-code availability. The main challenge is how to enable the text generation model to be sufficiently aware of the content in a given video so as to generate corresponding captions. To address this problem, we propose using learnable tokens as a communication medium among these four frozen models GPT-2, XCLIP, CLIP, and AnglE. Different from the conventional way that trains these tokens with training data, we propose to learn these tokens with soft targets of the inference data under several carefully crafted loss functions, which enable the tokens to absorb video information catered for GPT-2. This procedure can be efficiently done in just a few iterations (we use 16 iterations in the experiments) and does not require ground truth data. Extensive experimental results on three widely used datasets, MSR-VTT, MSVD, and VATEX, show absolute 5.1%-32.4% improvements in terms of the main metric CIDEr compared to several state-of-the-art zero-shot video captioning methods.
comment: Published in Pattern Recognition
♻ ☆ Frequency-Aware Vision Transformers for High-Fidelity Super-Resolution of Earth System Models
Super-resolution (SR) is crucial for enhancing the spatial fidelity of Earth System Model (ESM) outputs, allowing fine-scale structures vital to climate science to be recovered from coarse simulations. However, traditional deep super-resolution methods, including convolutional and transformer-based models, tend to exhibit spectral bias, reconstructing low-frequency content more readily than valuable high-frequency details. In this work, we introduce two frequency-aware frameworks: the Vision Transformer-Tuned Sinusoidal Implicit Representation (ViSIR), combining Vision Transformers and sinusoidal activations to mitigate spectral bias, and the Vision Transformer Fourier Representation Network (ViFOR), which integrates explicit Fourier-based filtering for independent low- and high-frequency learning. Evaluated on the E3SM-HR Earth system dataset across surface temperature, shortwave, and longwave fluxes, these models outperform leading CNN, GAN, and vanilla transformer baselines, with ViFOR demonstrating up to 2.6~dB improvements in PSNR and significantly higher SSIM. Detailed ablation and scaling studies highlight the benefit of full-field training, the impact of frequency hyperparameters, and the potential for generalization. The results establish ViFOR as a state-of-the-art, scalable solution for climate data downscaling. Future extensions will address temporal super-resolution, multimodal climate variables, automated parameter selection, and integration of physical conservation constraints to broaden scientific applicability.
♻ ☆ Polygonal network disorder and the turning distance
The turning distance is a well-studied metric for measuring the similarity between two polygons. This metric is constructed by taking an $L^p$ distance between step functions which track each shape's tangent angle of a path tracing its boundary. In this study, we introduce \textit{turning disorders} for polygonal planar networks, defined by averaging turning distances between network faces and "ordered" shapes (regular polygons or circles). We derive closed-form expressions of turning distances for special classes of regular polygons, related to the divisibility of $m$ and $n$, and also between regular polygons and circles. These formulas are used to show that the time for computing the 2-turning distances reduces to $O((m+n) \log(m+n))$ when both shapes are regular polygons, an improvement from $O(mn\log(mn))$ operations needed to compute distances between general polygons of $n$ and $m$ sides. We also apply these formulas to several examples of network microstructure with varying disorder. For Archimedean lattices, a class of regular tilings, we can express turning disorders with exact expressions. We also consider turning disorders applied to two examples of stochastic processes on networks: spring networks evolving under T1 moves and polygonal rupture processes. We find that the two aspects of defining different turning disorders, the choice of ordered shape and whether to apply area-weighting, can capture different notions of network disorder.
♻ ☆ Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy
We introduce Long-VITA, a simple yet effective large multi-modal model for long-context visual-language understanding tasks. It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens while delivering advanced performances on short-context multi-modal tasks. We propose an effective multi-modal training schema that starts with large language models and proceeds through vision-language alignment, general knowledge learning, and two sequential stages of long-sequence fine-tuning. We further implement context-parallelism distributed inference and logits-masked language modeling head to scale Long-VITA to infinitely long inputs of images and texts during model inference. Regarding training data, Long-VITA is built on a mix of 17M samples from public datasets only and demonstrates state-of-the-art performance on various multi-modal benchmarks, compared against recent cutting-edge models with internal data. Long-VITA is fully open-source and reproducible.. By leveraging our inference designs, Long-VITA models achieve a remarkable 2x prefill speedup and 4x context length extension in a single node with 8 GPUs. We hope Long-VITA can serve as a competitive baseline and offer valuable insights for the open-source community in advancing long-context multi-modal understanding.
comment: https://github.com/VITA-MLLM/Long-VITA
♻ ☆ Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning ICCV2025
So-called unsupervised anomaly detection is better described as semi-supervised, as it assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability. We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist, eliminating the need for explicit filtering. Our approach integrates Soft Confident Learning, which assigns lower weights to low-confidence samples, and Meta-Learning, which stabilizes training by regularizing updates based on training validation loss covariance. This prevents overfitting and enhances robustness to noisy data. CoMet is model-agnostic and can be applied to any anomaly detection method trainable via gradient descent. Experiments on MVTec-AD, VIADUCT, and KSDD2 with two state-of-the-art models demonstrate the effectiveness of our approach, consistently improving over the baseline methods, remaining insensitive to anomalies in the training set, and setting a new state-of-the-art across all datasets. Code is available at https://github.com/aqeeelmirza/CoMet
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV2025)
♻ ☆ Superpowering Open-Vocabulary Object Detectors for X-ray Vision ICCV 2025
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.
comment: Accepted at ICCV 2025
♻ ☆ DRBD-Mamba for Robust and Efficient Brain Tumor Segmentation with Analytical Insights
Accurate brain tumor segmentation is significant for clinical diagnosis and treatment but remains challenging due to tumor heterogeneity. Mamba-based State Space Models have demonstrated promising performance. However, despite their computational efficiency over other neural architectures, they incur considerable overhead for this task due to their sequential feature computation across multiple spatial axes. Moreover, their robustness across diverse BraTS data partitions remains largely unexplored, leaving a critical gap in reliable evaluation. To address this, we first propose a dual-resolution bi-directional Mamba (DRBD-Mamba), an efficient 3D segmentation model that captures multi-scale long-range dependencies with minimal computational overhead. We leverage a space-filling curve to preserve spatial locality during 3D-to-1D feature mapping, thereby reducing reliance on computationally expensive multi-axial feature scans. To enrich feature representation, we propose a gated fusion module that adaptively integrates forward and reverse contexts, along with a quantization block that improves robustness. We further propose five systematic folds on BraTS2023 for rigorous evaluation of segmentation techniques under diverse conditions and present analysis of common failure scenarios. On the 20% test set used by recent methods, our model achieves Dice improvements of 0.10% for whole tumor, 1.75% for tumor core, and 0.93% for enhancing tumor. Evaluations on the proposed systematic folds demonstrate that our model maintains competitive whole tumor accuracy while achieving clear average Dice gains of 1.16% for tumor core and 1.68% for enhancing tumor over existing state-of-the-art. Furthermore, our model achieves a 15x efficiency improvement while maintaining high segmentation accuracy, highlighting its robustness and computational advantage over existing methods.
♻ ☆ PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer NeurIPS 2025
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, \ie, automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.
comment: Accepted by NeurIPS 2025
♻ ☆ Mano Technical Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
♻ ☆ OmniResponse: Online Multimodal Conversational Response Generation in Dyadic Interactions
In this paper, we introduce Online Multimodal Conversational Response Generation (OMCRG), a novel task designed to produce synchronized verbal and non-verbal listener feedback online, based on the speaker's multimodal inputs. OMCRG captures natural dyadic interactions and introduces new challenges in aligning generated audio with listeners' facial responses. To tackle these challenges, we incorporate text as an intermediate modality to connect audio and facial responses. We propose OmniResponse, a Multimodal Large Language Model (MLLM) that autoregressively generates accurate multimodal listener responses. OmniResponse leverages a pretrained LLM enhanced with two core components: Chrono-Text Markup, which precisely timestamps generated text tokens, and TempoVoice, a controllable online text-to-speech (TTS) module that outputs speech synchronized with facial responses. To advance OMCRG research, we offer ResponseNet, a dataset of 696 detailed dyadic interactions featuring synchronized split-screen videos, multichannel audio, transcripts, and annotated facial behaviors. Comprehensive evaluations on ResponseNet demonstrate that OmniResponse outperforms baseline models in terms of semantic speech content, audio-visual synchronization, and generation quality. Our dataset, code, and models are publicly available.
comment: 25 pages, 9 figures
♻ ☆ Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Vision-Language-Action (VLA) models adapt large vision-language backbones to map images and instructions into robot actions. However, prevailing VLAs either generate actions auto-regressively in a fixed left-to-right order or attach separate MLP or diffusion heads outside the backbone, leading to fragmented information pathways and specialized training requirements that hinder a unified, scalable architecture. We present Discrete Diffusion VLA, a unified-transformer policy that models discretized action chunks with discrete diffusion. The design retains diffusion's progressive refinement paradigm while remaining natively compatible with the discrete token interface of VLMs. Our method achieves an adaptive decoding order that resolves easy action elements before harder ones and uses secondary re-masking to revisit uncertain predictions across refinement rounds, which improves consistency and enables robust error correction. This unified decoder preserves pre-trained vision-language priors, supports parallel decoding, breaks the autoregressive bottleneck, and reduces the number of function evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on SimplerEnv-Bridge, improving over autoregressive, MLP decoder and continuous diffusion baselines. These findings indicate that discrete-diffusion VLA supports precise action modeling and consistent training, laying groundwork for scaling VLA to larger models and datasets. Our project page is https://github.com/Liang-ZX/DiscreteDiffusionVLA
comment: 16 pages
♻ ☆ LongCat-Video Technical Report
Video generation is a critical pathway toward world models, with efficient long video inference as a key capability. Toward this end, we introduce LongCat-Video, a foundational video generation model with 13.6B parameters, delivering strong performance across multiple video generation tasks. It particularly excels in efficient and high-quality long video generation, representing our first step toward world models. Key features include: Unified architecture for multiple tasks: Built on the Diffusion Transformer (DiT) framework, LongCat-Video supports Text-to-Video, Image-to-Video, and Video-Continuation tasks with a single model; Long video generation: Pretraining on Video-Continuation tasks enables LongCat-Video to maintain high quality and temporal coherence in the generation of minutes-long videos; Efficient inference: LongCat-Video generates 720p, 30fps videos within minutes by employing a coarse-to-fine generation strategy along both the temporal and spatial axes. Block Sparse Attention further enhances efficiency, particularly at high resolutions; Strong performance with multi-reward RLHF: Multi-reward RLHF training enables LongCat-Video to achieve performance on par with the latest closed-source and leading open-source models. Code and model weights are publicly available to accelerate progress in the field.
♻ ☆ Multispectral State-Space Feature Fusion: Bridging Shared and Cross-Parametric Interactions for Object Detection
Modern multispectral feature fusion for object detection faces two critical limitations: (1) Excessive preference for local complementary features over cross-modal shared semantics adversely affects generalization performance; and (2) The trade-off between the receptive field size and computational complexity present critical bottlenecks for scalable feature modeling. Addressing these issues, a novel Multispectral State-Space Feature Fusion framework, dubbed MS2Fusion, is proposed based on the state space model (SSM), achieving efficient and effective fusion through a dual-path parametric interaction mechanism. More specifically, the first cross-parameter interaction branch inherits the advantage of cross-attention in mining complementary information with cross-modal hidden state decoding in SSM. The second shared-parameter branch explores cross-modal alignment with joint embedding to obtain cross-modal similar semantic features and structures through parameter sharing in SSM. Finally, these two paths are jointly optimized with SSM for fusing multispectral features in a unified framework, allowing our MS2Fusion to enjoy both functional complementarity and shared semantic space. In our extensive experiments on mainstream benchmarks including FLIR, M3FD and LLVIP, our MS2Fusion significantly outperforms other state-of-the-art multispectral object detection methods, evidencing its superiority. Moreover, MS2Fusion is general and applicable to other multispectral perception tasks. We show that, even without specific design, MS2Fusion achieves state-of-the-art results on RGB-T semantic segmentation and RGBT salient object detection, showing its generality. The source code will be available at https://github.com/61s61min/MS2Fusion.git.
comment: submitted on 30/4/2025, Accepted by Information Fusion
♻ ☆ DArFace: Deformation Aware Robustness for Low Quality Face Recognition
Facial recognition systems have achieved remarkable success by leveraging deep neural networks, advanced loss functions, and large-scale datasets. However, their performance often deteriorates in real-world scenarios involving low-quality facial images. Such degradations, common in surveillance footage or standoff imaging include low resolution, motion blur, and various distortions, resulting in a substantial domain gap from the high-quality data typically used during training. While existing approaches attempt to address robustness by modifying network architectures or modeling global spatial transformations, they frequently overlook local, non-rigid deformations that are inherently present in real-world settings. In this work, we introduce \textbf{DArFace}, a \textbf{D}eformation-\textbf{A}ware \textbf{r}obust \textbf{Face} recognition framework that enhances robustness to such degradations without requiring paired high- and low-quality training samples. Our method adversarially integrates both global transformations (e.g., rotation, translation) and local elastic deformations during training to simulate realistic low-quality conditions. Moreover, we introduce a contrastive objective to enforce identity consistency across different deformed views. Extensive evaluations on low-quality benchmarks including TinyFace, IJB-B, and IJB-C demonstrate that DArFace surpasses state-of-the-art methods, with significant gains attributed to the inclusion of local deformation modeling.
♻ ☆ MTFL: Multi-Timescale Feature Learning for Weakly-Supervised Anomaly Detection in Surveillance Videos
Detection of anomaly events is relevant for public safety and requires a combination of fine-grained motion information and contextual events at variable time-scales. To this end, we propose a Multi-Timescale Feature Learning (MTFL) method to enhance the representation of anomaly features. Short, medium, and long temporal tubelets are employed to extract spatio-temporal video features using a Video Swin Transformer. Experimental results demonstrate that MTFL outperforms state-of-the-art methods on the UCF-Crime dataset, achieving an anomaly detection performance 89.78% AUC. Moreover, it performs complementary to SotA with 95.32% AUC on the ShanghaiTech and 84.57% AP on the XD-Violence dataset. Furthermore, we generate an extended dataset of the UCF-Crime for development and evaluation on a wider range of anomalies, namely Video Anomaly Detection Dataset (VADD), involving 2,591 videos in 18 classes with extensive coverage of realistic anomalies.
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
♻ ☆ Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey.
comment: This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey
♻ ☆ Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs NeurIPS 2025
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track, Project page: https://liuxuannan.github.io/Video-SafetyBench.github.io/
♻ ☆ Advancing Compositional Awareness in CLIP with Efficient Fine-Tuning NeurIPS 2025
Vision-language models like CLIP have demonstrated remarkable zero-shot capabilities in classification and retrieval. However, these models often struggle with compositional reasoning - the ability to understand the relationships between concepts. A recent benchmark, SugarCrepe++, reveals that previous works on improving compositionality have mainly improved lexical sensitivity but neglected semantic understanding. In addition, downstream retrieval performance often deteriorates, although one would expect that improving compositionality should enhance retrieval. In this work, we introduce CLIC (Compositionally-aware Learning in CLIP), a fine-tuning method based on a novel training technique combining multiple images and their associated captions. CLIC improves compositionality across architectures as well as differently pre-trained CLIP models, both in terms of lexical and semantic understanding, and achieves consistent gains in retrieval performance. This even applies to the recent CLIPS, which achieves SOTA retrieval performance. Nevertheless, the short fine-tuning with CLIC leads to an improvement in retrieval and to the best compositional CLIP model on SugarCrepe++. All our models and code are available at https://clic-compositional-clip.github.io
comment: Accepted at NeurIPS 2025
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ VOLD: Reasoning Transfer from LLMs to Vision-Language Models via On-Policy Distillation
Training vision-language models (VLMs) for complex reasoning remains a challenging task, i.a. due to the scarcity of high-quality image-text reasoning data. Conversely, text-based reasoning resources are abundant and scalable, but it is still an open question how to leveraging them for VLM reasoning. To address this problem, we propose VOLD, a framework to transfer reasoning capabilities from text-only teacher models to VLM student models. To this end, VOLD combines reinforcement learning via Group Relative Policy Optimization (GRPO) with on-policy distillation, which allows the student reasoning traces to be guided by the teacher model, resulting in a significant gain over using GRPO alone. We further show that a cold-start alignment is essential for an effective transfer during the online training phase in this scenario and that without sufficient distributional alignment between teacher and student, on-policy distillation fails to provide meaningful guidance. We evaluate VOLD across diverse benchmarks including MMMU-Pro, MathVision, MathVista, and LogicVista, showing that VOLD outperforms the baseline model significantly and improves over the state of the art by a margin. Our ablation shows the importance of a cold-start alignment via SFT for on-policy distillation with a text-only teacher.
comment: www.walidbousselham.com/VOLD/
♻ ☆ FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.
♻ ☆ Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation NeurIPS 2025
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
comment: Accepted to NeurIPS 2025
♻ ☆ Federated Learning with Partially Labeled Data: A Conditional Distillation Approach
In medical imaging, developing generalized segmentation models that can handle multiple organs and lesions is crucial. However, the scarcity of fully annotated datasets and strict privacy regulations present significant barriers to data sharing. Federated Learning (FL) allows decentralized model training, but existing FL methods often struggle with partial labeling, leading to model divergence and catastrophic forgetting. We propose ConDistFL, a novel FL framework incorporating conditional distillation to address these challenges. ConDistFL enables effective learning from partially labeled datasets, significantly improving segmentation accuracy across distributed and non-uniform datasets. In addition to its superior segmentation performance, ConDistFL maintains computational and communication efficiency, ensuring its scalability for real-world applications. Furthermore, ConDistFL demonstrates remarkable generalizability, significantly outperforming existing FL methods in out-of-federation tests, even adapting to unseen contrast phases (e.g., non-contrast CT images) in our experiments. Extensive evaluations on 3D CT and 2D chest X-ray datasets show that ConDistFL is an efficient, adaptable solution for collaborative medical image segmentation in privacy-constrained settings.
comment: This manuscript was submitted to IEEE JBHI and is currently under peer review
♻ ☆ Through the Lens: Benchmarking Deepfake Detectors Against Moiré-Induced Distortions
Deepfake detection remains a pressing challenge, particularly in real-world settings where smartphone-captured media from digital screens often introduces Moir\'e artifacts that can distort detection outcomes. This study systematically evaluates state-of-the-art (SOTA) deepfake detectors on Moir\'e-affected videos, an issue that has received little attention. We collected a dataset of 12,832 videos, spanning 35.64 hours, from the Celeb-DF, DFD, DFDC, UADFV, and FF++ datasets, capturing footage under diverse real-world conditions, including varying screens, smartphones, lighting setups, and camera angles. To further examine the influence of Moir\'e patterns on deepfake detection, we conducted additional experiments using our DeepMoir\'eFake, referred to as (DMF) dataset and two synthetic Moir\'e generation techniques. Across 15 top-performing detectors, our results show that Moir\'e artifacts degrade performance by as much as 25.4%, while synthetically generated Moir\'e patterns lead to a 21.4% drop in accuracy. Surprisingly, demoir\'eing methods, intended as a mitigation approach, instead worsened the problem, reducing accuracy by up to 17.2%. These findings underscore the urgent need for detection models that can robustly handle Moir\'e distortions alongside other realworld challenges, such as compression, sharpening, and blurring. By introducing the DMF dataset, we aim to drive future research toward closing the gap between controlled experiments and practical deepfake detection.
comment: 48 Pages, 29 Figures, 15 Tables
♻ ☆ On Robustness of Vision-Language-Action Model against Multi-Modal Perturbations
In Vision-Language-Action (VLA) models, robustness to real-world perturbations is critical for deployment. Existing methods target simple visual disturbances, overlooking the broader multi-modal perturbations that arise in actions, instructions, environments, and observations. Here, we first evaluate the robustness of mainstream VLAs under 17 perturbations across four modalities. We find (1) actions as the most fragile modality, (2) Existing visual-robust VLA do not gain robustness in other modality, and (3) pi0 demonstrates superior robustness with a diffusion-based action head. To build multi-modal robust VLAs, we propose RobustVLA against perturbations in VLA inputs and outputs. For output robustness, we perform offline robust optimization against worst-case action noise that maximizes mismatch in flow matching objective. This can be seen as adversarial training, label smoothing, and outlier penalization. For input robustness, we enforce consistent actions across input variations that preserve task semantics. To account for multiple perturbations, we formulate robustness as a multi-armed bandit problem and apply an upper confidence bound algorithm to automatically identify the most harmful noise. Experiments on LIBERO demonstrate our RobustVLA delivers absolute gains over baselines of 12.6% on the pi0 backbone and 10.4% on the OpenVLA backbone across all 17 perturbations, achieving 50.6x faster inference than existing visual-robust VLAs, and a 10.4% gain under mixed perturbations. Our RobustVLA is particularly effective on real-world FR5 robot with limited demonstrations, showing absolute gains by 65.6% under perturbations of four modalities.
♻ ☆ CPathAgent: An Agent-based Foundation Model for Interpretable High-Resolution Pathology Image Analysis Mimicking Pathologists' Diagnostic Logic
Recent advances in computational pathology have led to the emergence of numerous foundation models. These models typically rely on general-purpose encoders with multi-instance learning for whole slide image (WSI) classification or apply multimodal approaches to generate reports directly from images. However, these models cannot emulate the diagnostic approach of pathologists, who systematically examine slides at low magnification to obtain an overview before progressively zooming in on suspicious regions to formulate comprehensive diagnoses. Instead, existing models directly output final diagnoses without revealing the underlying reasoning process. To address this gap, we introduce CPathAgent, an innovative agent-based approach that mimics pathologists' diagnostic workflow by autonomously navigating across WSI based on observed visual features, thereby generating substantially more transparent and interpretable diagnostic summaries. To achieve this, we develop a multi-stage training strategy that unifies patch-level, region-level, and WSI-level capabilities within a single model, which is essential for replicating how pathologists understand and reason across diverse image scales. Additionally, we construct PathMMU-HR2, the first expert-validated benchmark for large region analysis. This represents a critical intermediate scale between patches and whole slides, reflecting a key clinical reality where pathologists typically examine several key large regions rather than entire slides at once. Extensive experiments demonstrate that CPathAgent consistently outperforms existing approaches across benchmarks at three different image scales, validating the effectiveness of our agent-based diagnostic approach and highlighting a promising direction for computational pathology.
comment: 52 pages, 34 figures
♻ ☆ Is It Certainly a Deepfake? Reliability Analysis in Detection & Generation Ecosystem ICCV 2025
As generative models are advancing in quality and quantity for creating synthetic content, deepfakes begin to cause online mistrust. Deepfake detectors are proposed to counter this effect, however, misuse of detectors claiming fake content as real or vice versa further fuels this misinformation problem. We present the first comprehensive uncertainty analysis of deepfake detectors, systematically investigating how generative artifacts influence prediction confidence. As reflected in detectors' responses, deepfake generators also contribute to this uncertainty as their generative residues vary, so we cross the uncertainty analysis of deepfake detectors and generators. Based on our observations, the uncertainty manifold holds enough consistent information to leverage uncertainty for deepfake source detection. Our approach leverages Bayesian Neural Networks and Monte Carlo dropout to quantify both aleatoric and epistemic uncertainties across diverse detector architectures. We evaluate uncertainty on two datasets with nine generators, with four blind and two biological detectors, compare different uncertainty methods, explore region- and pixel-based uncertainty, and conduct ablation studies. We conduct and analyze binary real/fake, multi-class real/fake, source detection, and leave-one-out experiments between the generator/detector combinations to share their generalization capability, model calibration, uncertainty, and robustness against adversarial attacks. We further introduce uncertainty maps that localize prediction confidence at the pixel level, revealing distinct patterns correlated with generator-specific artifacts. Our analysis provides critical insights for deploying reliable deepfake detection systems and establishes uncertainty quantification as a fundamental requirement for trustworthy synthetic media detection.
comment: Accepted for publication at the ICCV 2025 workshop - STREAM
♻ ☆ AnyCap Project: A Unified Framework, Dataset, and Benchmark for Controllable Omni-modal Captioning
Controllable captioning is essential for precise multimodal alignment and instruction following, yet existing models often lack fine-grained control and reliable evaluation protocols. To address this gap, we present the AnyCap Project, an integrated solution spanning model, dataset, and evaluation. We introduce AnyCapModel (ACM), a lightweight plug-and-play framework that enhances the controllability of existing foundation models for omni-modal captioning without retraining the base model. ACM reuses the original captions from base models while incorporating user instructions and modality features to generate improved captions. To remedy the data scarcity in controllable multimodal captioning, we build AnyCapDataset (ACD), covering three modalities, 28 user-instruction types, and 300\,k high-quality data entries. We further propose AnyCapEval, a new benchmark that provides more reliable evaluation metrics for controllable captioning by decoupling content accuracy and stylistic fidelity. ACM markedly improves caption quality across a diverse set of base models on AnyCapEval. Notably, ACM-8B raises GPT-4o\'s content scores by 45\% and style scores by 12\%, and it also achieves substantial gains on widely used benchmarks such as MIA-Bench and VidCapBench.
♻ ☆ Look and Tell: A Dataset for Multimodal Grounding Across Egocentric and Exocentric Views NeurIPS 2025
We introduce Look and Tell, a multimodal dataset for studying referential communication across egocentric and exocentric perspectives. Using Meta Project Aria smart glasses and stationary cameras, we recorded synchronized gaze, speech, and video as 25 participants instructed a partner to identify ingredients in a kitchen. Combined with 3D scene reconstructions, this setup provides a benchmark for evaluating how different spatial representations (2D vs. 3D; ego vs. exo) affect multimodal grounding. The dataset contains 3.67 hours of recordings, including 2,707 richly annotated referential expressions, and is designed to advance the development of embodied agents that can understand and engage in situated dialogue.
comment: 10 pages, 6 figures, 2 tables. Accepted to the NeurIPS 2025 Workshop on SPACE in Vision, Language, and Embodied AI (SpaVLE). Dataset: https://huggingface.co/datasets/annadeichler/KTH-ARIA-referential
♻ ☆ A Generalized Label Shift Perspective for Cross-Domain Gaze Estimation NeurIPS 2025
Aiming to generalize the well-trained gaze estimation model to new target domains, Cross-domain Gaze Estimation (CDGE) is developed for real-world application scenarios. Existing CDGE methods typically extract the domain-invariant features to mitigate domain shift in feature space, which is proved insufficient by Generalized Label Shift (GLS) theory. In this paper, we introduce a novel GLS perspective to CDGE and modelize the cross-domain problem by label and conditional shift problem. A GLS correction framework is presented and a feasible realization is proposed, in which a importance reweighting strategy based on truncated Gaussian distribution is introduced to overcome the continuity challenges in label shift correction. To embed the reweighted source distribution to conditional invariant learning, we further derive a probability-aware estimation of conditional operator discrepancy. Extensive experiments on standard CDGE tasks with different backbone models validate the superior generalization capability across domain and applicability on various models of proposed method.
comment: NeurIPS 2025
♻ ☆ Acoustic Neural 3D Reconstruction Under Pose Drift IROS
We consider the problem of optimizing neural implicit surfaces for 3D reconstruction using acoustic images collected with drifting sensor poses. The accuracy of current state-of-the-art 3D acoustic modeling algorithms is highly dependent on accurate pose estimation; small errors in sensor pose can lead to severe reconstruction artifacts. In this paper, we propose an algorithm that jointly optimizes the neural scene representation and sonar poses. Our algorithm does so by parameterizing the 6DoF poses as learnable parameters and backpropagating gradients through the neural renderer and implicit representation. We validated our algorithm on both real and simulated datasets. It produces high-fidelity 3D reconstructions even under significant pose drift.
comment: 8 pages, 8 figures. This paper is accepted by 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Stealthy Patch-Wise Backdoor Attack in 3D Point Cloud via Curvature Awareness
Backdoor attacks pose a severe threat to deep neural networks (DNNs) by implanting hidden backdoors that can be activated with predefined triggers to manipulate model behaviors maliciously. Existing 3D point cloud backdoor attacks primarily rely on sample-wise global modifications, which suffer from low imperceptibility. Although optimization can improve stealthiness, optimizing sample-wise triggers significantly increases computational cost. To address these limitations, we propose the Stealthy Patch-Wise Backdoor Attack (SPBA), the first patch-wise backdoor attack framework for 3D point clouds. Specifically, SPBA decomposes point clouds into local patches and employs a curvature-based imperceptibility score to guide trigger injection into visually less sensitive patches. By optimizing a unified patch-wise trigger that perturbs spectral features of selected patches, SPBA significantly enhances optimization efficiency while maintaining high stealthiness. Extensive experiments on ModelNet40 and ShapeNetPart further demonstrate that SPBA surpasses prior state-of-the-art backdoor attacks in both attack effectiveness and resistance to defense methods. The code is available at https://github.com/HazardFY/SPBA.
comment: 13 pages, 6 figures, 11 tables
♻ ☆ Normal and Abnormal Pathology Knowledge-Augmented Vision-Language Model for Anomaly Detection in Pathology Images ICCV 2025
Anomaly detection in computational pathology aims to identify rare and scarce anomalies where disease-related data are often limited or missing. Existing anomaly detection methods, primarily designed for industrial settings, face limitations in pathology due to computational constraints, diverse tissue structures, and lack of interpretability. To address these challenges, we propose Ano-NAViLa, a Normal and Abnormal pathology knowledge-augmented Vision-Language model for Anomaly detection in pathology images. Ano-NAViLa is built on a pre-trained vision-language model with a lightweight trainable MLP. By incorporating both normal and abnormal pathology knowledge, Ano-NAViLa enhances accuracy and robustness to variability in pathology images and provides interpretability through image-text associations. Evaluated on two lymph node datasets from different organs, Ano-NAViLa achieves the state-of-the-art performance in anomaly detection and localization, outperforming competing models.
comment: Accepted to ICCV 2025. Code is available at: https://github.com/QuIIL/ICCV2025_Ano-NAViLa
♻ ☆ Does CLIP perceive art the same way we do?
CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it 'see' the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.
♻ ☆ Caption-Driven Explainability: Probing CNNs for Bias via CLIP ICIP 2025
Robustness has become one of the most critical problems in machine learning (ML). The science of interpreting ML models to understand their behavior and improve their robustness is referred to as explainable artificial intelligence (XAI). One of the state-of-the-art XAI methods for computer vision problems is to generate saliency maps. A saliency map highlights the pixel space of an image that excites the ML model the most. However, this property could be misleading if spurious and salient features are present in overlapping pixel spaces. In this paper, we propose a caption-based XAI method, which integrates a standalone model to be explained into the contrastive language-image pre-training (CLIP) model using a novel network surgery approach. The resulting caption-based XAI model identifies the dominant concept that contributes the most to the models prediction. This explanation minimizes the risk of the standalone model falling for a covariate shift and contributes significantly towards developing robust ML models. Our code is available at .
comment: Accepted and presented at the IEEE ICIP 2025 Satellite Workshop "Generative AI for World Simulations and Communications & Celebrating 40 Years of Excellence in Education: Honoring Professor Aggelos Katsaggelos", Anchorage, Alaska, USA, September 14, 2025. Camera-ready preprint; the official IEEE Xplore publication will follow. Code is available at
♻ ☆ CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects
Customized text-to-video generation aims to generate high-quality videos guided by text prompts and subject references. Current approaches for personalizing text-to-video generation suffer from tackling multiple subjects, which is a more challenging and practical scenario. In this work, our aim is to promote multi-subject guided text-to-video customization. We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects. To be specific, firstly, we encourage the co-occurrence of multiple subjects via composing them in a single image. Further, upon a basic text-to-video diffusion model, we design a simple yet effective attention control strategy to disentangle different subjects in the latent space of diffusion model. Moreover, to help the model focus on the specific area of the object, we segment the object from given reference images and provide a corresponding object mask for attention learning. Also, we collect a multi-subject text-to-video generation dataset as a comprehensive benchmark. Extensive qualitative, quantitative, and user study results demonstrate the superiority of our method compared to previous state-of-the-art approaches. The project page is https://kyfafyd.wang/projects/customvideo.
comment: IEEE TMM 2025
♻ ☆ LiDAR Remote Sensing Meets Weak Supervision: Concepts, Methods, and Perspectives
Light detection and ranging (LiDAR) remote sensing encompasses two major directions: data interpretation and parameter inversion. However, both directions rely heavily on costly and labor-intensive labeled data and field measurements, which constrains their scalability and spatiotemporal adaptability. Weakly Supervised Learning (WSL) provides a unified framework to address these limitations. This paper departs from the traditional view that treats interpretation and inversion as separate tasks and offers a systematic review of recent advances in LiDAR remote sensing from a unified WSL perspective. We cover typical WSL settings including incomplete supervision(e.g., sparse point labels), inexact supervision (e.g., scene-level tags), inaccurate supervision (e.g., noisy labels), and cross-domain supervision (e.g., domain adaptation/generalization) and corresponding techniques such as pseudo-labeling, consistency regularization, self-training, and label refinement, which collectively enable robust learning from limited and weak annotations.We further analyze LiDAR-specific challenges (e.g., irregular geometry, data sparsity, domain heterogeneity) that require tailored weak supervision, and examine how sparse LiDAR observations can guide joint learning with other remote-sensing data for continuous surface-parameter retrieval. Finally, we highlight future directions where WSL acts as a bridge between LiDAR and foundation models to leverage large-scale multimodal datasets and reduce labeling costs, while also enabling broader WSL-driven advances in generalization, open-world adaptation, and scalable LiDAR remote sensing.
♻ ☆ Real-Time Neural Video Compression with Unified Intra and Inter Coding
Neural video compression (NVC) technologies have advanced rapidly in recent years, yielding state-of-the-art schemes such as DCVC-RT that offer superior compression efficiency to H.266/VVC and real-time encoding/decoding capabilities. Nonetheless, existing NVC schemes have several limitations, including inefficiency in dealing with disocclusion and new content, interframe error propagation and accumulation, among others. To eliminate these limitations, we borrow the idea from classic video coding schemes, which allow intra coding within inter-coded frames. With the intra coding tool enabled, disocclusion and new content are properly handled, and interframe error propagation is naturally intercepted without the need for manual refresh mechanisms. We present an NVC framework with unified intra and inter coding, where every frame is processed by a single model that is trained to perform intra/inter coding adaptively. Moreover, we propose a simultaneous two-frame compression design to exploit interframe redundancy not only forwardly but also backwardly. Experimental results show that our scheme outperforms DCVC-RT by an average of 10.7\% BD-rate reduction, delivers more stable bitrate and quality per frame, and retains real-time encoding/decoding performances. Code and models will be released.
comment: 10 pages
♻ ☆ UMCFuse: A Unified Multiple Complex Scenes Infrared and Visible Image Fusion Framework
Infrared and visible image fusion has emerged as a prominent research area in computer vision. However, little attention has been paid to the fusion task in complex scenes, leading to sub-optimal results under interference. To fill this gap, we propose a unified framework for infrared and visible images fusion in complex scenes, termed UMCFuse. Specifically, we classify the pixels of visible images from the degree of scattering of light transmission, allowing us to separate fine details from overall intensity. Maintaining a balance between interference removal and detail preservation is essential for the generalization capacity of the proposed method. Therefore, we propose an adaptive denoising strategy for the fusion of detail layers. Meanwhile, we fuse the energy features from different modalities by analyzing them from multiple directions. Extensive fusion experiments on real and synthetic complex scenes datasets cover adverse weather conditions, noise, blur, overexposure, fire, as well as downstream tasks including semantic segmentation, object detection, salient object detection, and depth estimation, consistently indicate the superiority of the proposed method compared with the recent representative methods. Our code is available at https://github.com/ixilai/UMCFuse.
comment: Published in IEEE-TIP 2025
♻ ☆ GEMeX-RMCoT: An Enhanced Med-VQA Dataset for Region-Aware Multimodal Chain-of-Thought Reasoning ACM MM 2025
Medical visual question answering aims to support clinical decision-making by enabling models to answer natural language questions based on medical images. While recent advances in multi-modal learning have significantly improved performance, current methods still suffer from limited answer reliability and poor interpretability, impairing the ability of clinicians and patients to understand and trust model outputs. To address these limitations, this work first proposes a Region-Aware Multimodal Chain-of-Thought (RMCoT) dataset, in which the process of producing an answer is preceded by a sequence of intermediate reasoning steps that explicitly ground relevant visual regions of the medical image, thereby providing fine-grained explainability. Furthermore, we introduce a novel verifiable reward mechanism for reinforcement learning to guide post-training, improving the alignment between the model's reasoning process and its final answer. Remarkably, our method achieves comparable performance using only one-eighth of the training data, demonstrating the efficiency and effectiveness of the proposal. The dataset is available at https://www.med-vqa.com/GEMeX/.
comment: Accepted at ACM MM 2025 (also known as GEMeX-ThinkVG)
♻ ☆ Global urban visual perception varies across demographics and personalities
Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a largescale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators -- safe, lively, wealthy, beautiful, boring, depressing -- and four new ones -- live nearby, walk, cycle, green. Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
♻ ☆ Task-Agnostic Fusion of Time Series and Imagery for Earth Observation
We propose a task-agnostic framework for multimodal fusion of time series and single timestamp images, enabling cross-modal generation and robust downstream performance. Our approach explores deterministic and learned strategies for time series quantization and then leverages a masked correlation learning objective, aligning discrete image and time series tokens in a unified representation space. Instantiated in the Earth observation domain, the pretrained model generates consistent global temperature profiles from satellite imagery and is validated through counterfactual experiments. Across downstream tasks, our task-agnostic pretraining outperforms task-specific fusion by 6% in R^2 and 2% in RMSE on average, and exceeds baseline methods by 50\% in R$^2$ and 12\% in RMSE. Finally, we analyze gradient sensitivity across modalities, providing insights into model robustness. Code, data, and weights will be released under a permissive license.
♻ ☆ GRASP: Geospatial pixel Reasoning viA Structured Policy learning
Geospatial pixel reasoning aims to generate segmentation masks in remote sensing imagery directly from natural-language instructions. Most existing approaches follow a paradigm that fine-tunes multimodal large language models under supervision with dense pixel-level masks as ground truth. While effective within the training data distribution, this design suffers from two main drawbacks: (1) the high cost of large-scale dense mask annotation, and (2) the limited generalization capability of supervised fine-tuning in out-of-domain scenarios. To address these issues, we propose GRASP, a structured policy-learning framework that integrates a multimodal large language model with a pretrained segmentation model in a cascaded manner. To enhance generalization, we introduce PRIME, a training paradigm that replaces supervised fine-tuning with reinforcement learning to better align reasoning and grounding behaviors with task objectives. To reduce annotation costs, we design BoP-Rewards, which substitutes dense mask labels with bounding box and positive points. It further verifies outputs through two complementary signals: format, which constrains the reasoning and grounding structure to remain syntactically parsable, and accuracy, which evaluates the quality of predicted boxes and points. For evaluation, we train our method and all baselines on EarthReason and GeoPixInstruct, constructing an in-domain benchmark by merging their test sets. We further release GRASP-1k, a fully out-of-domain benchmark with reasoning-intensive queries, reasoning traces, and fine-grained masks. Experimental results demonstrate state-of-the-art (SOTA) in-domain performance and up to 54\% improvement in out-of-domain scenarios, confirming that reinforcement learning with cost-aware rewards provides a robust and scalable paradigm for geospatial pixel reasoning. All code and datasets will be released publicly.
comment: 15 pages, 9 figures
♻ ☆ Switchable Token-Specific Codebook Quantization For Face Image Compression NeurIPS 2025
With the ever-increasing volume of visual data, the efficient and lossless transmission, along with its subsequent interpretation and understanding, has become a critical bottleneck in modern information systems. The emerged codebook-based solution utilize a globally shared codebook to quantize and dequantize each token, controlling the bpp by adjusting the number of tokens or the codebook size. However, for facial images, which are rich in attributes, such global codebook strategies overlook both the category-specific correlations within images and the semantic differences among tokens, resulting in suboptimal performance, especially at low bpp. Motivated by these observations, we propose a Switchable Token-Specific Codebook Quantization for face image compression, which learns distinct codebook groups for different image categories and assigns an independent codebook to each token. By recording the codebook group to which each token belongs with a small number of bits, our method can reduce the loss incurred when decreasing the size of each codebook group. This enables a larger total number of codebooks under a lower overall bpp, thereby enhancing the expressive capability and improving reconstruction performance. Owing to its generalizable design, our method can be integrated into any existing codebook-based representation learning approach and has demonstrated its effectiveness on face recognition datasets, achieving an average accuracy of 93.51% for reconstructed images at 0.05 bpp.
comment: NeurIPS 2025 accepted
♻ ☆ Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation
Referring video object segmentation (RVOS) aims to identify, track and segment the objects in a video based on language descriptions, which has received great attention in recent years. However, existing datasets remain focus on short video clips within several seconds, with salient objects visible in most frames. To advance the task towards more practical scenarios, we introduce \textbf{Long-RVOS}, a large-scale benchmark for long-term referring video object segmentation. Long-RVOS contains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety of objects that undergo occlusion, disappearance-reappearance and shot changing. The objects are manually annotated with three different types of descriptions to individually evaluate the understanding of static attributes, motion patterns and spatiotemporal relationships. Moreover, unlike previous benchmarks that rely solely on the per-frame spatial evaluation, we introduce two new metrics to assess the temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods on Long-RVOS. The results show that current approaches struggle severely with the long-video challenges. To address this, we further propose ReferMo, a promising baseline method that integrates motion information to expand the temporal receptive field, and employs a local-to-global architecture to capture both short-term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves significant improvements over current methods in long-term scenarios. We hope that Long-RVOS and our baseline can drive future RVOS research towards tackling more realistic and long-form videos.
comment: Project Page: \url{https://isee-laboratory.github.io/Long-RVOS}
♻ ☆ GS4: Generalizable Sparse Splatting Semantic SLAM
Traditional SLAM algorithms excel at camera tracking, but typically produce incomplete and low-resolution maps that are not tightly integrated with semantics prediction. Recent work integrates Gaussian Splatting (GS) into SLAM to enable dense, photorealistic 3D mapping, yet existing GS-based SLAM methods require per-scene optimization that is slow and consumes an excessive number of Gaussians. We present GS4, the first generalizable GS-based semantic SLAM system. Compared with prior approaches, GS4 runs 10x faster, uses 10x fewer Gaussians, and achieves state-of-the-art performance across color, depth, semantic mapping and camera tracking. From an RGB-D video stream, GS4 incrementally builds and updates a set of 3D Gaussians using a feed-forward network. First, the Gaussian Prediction Model estimates a sparse set of Gaussian parameters from input frame, which integrates both color and semantic prediction with the same backbone. Then, the Gaussian Refinement Network merges new Gaussians with the existing set while avoiding redundancy. Finally, we propose to optimize GS for only 1-5 iterations that corrects drift and floaters when significant pose changes are detected. Experiments on the real-world ScanNet and ScanNet++ benchmarks demonstrate state-of-the-art semantic SLAM performance, with strong generalization capability shown through zero-shot transfer to the NYUv2 and TUM RGB-D datasets.
comment: 17 pages, 6 figures
♻ ☆ Bridging the gap to real-world language-grounded visual concept learning
Human intelligence effortlessly interprets visual scenes along a rich spectrum of semantic dimensions. However, existing approaches to language-grounded visual concept learning are limited to a few predefined primitive axes, such as color and shape, and are typically explored in synthetic datasets. In this work, we propose a scalable framework that adaptively identifies image-related concept axes and grounds visual concepts along these axes in real-world scenes. Leveraging a pretrained vision-language model and our universal prompting strategy, our framework identifies a diverse image-related axes without any prior knowledge. Our universal concept encoder adaptively binds visual features to the discovered axes without introducing additional model parameters for each concept. To ground visual concepts along the discovered axes, we optimize a compositional anchoring objective, which ensures that each axis can be independently manipulated without affecting others. We demonstrate the effectiveness of our framework on subsets of ImageNet, CelebA-HQ, and AFHQ, showcasing superior editing capabilities across diverse real-world concepts that are too varied to be manually predefined. Our method also exhibits strong compositional generalization, outperforming existing visual concept learning and text-based editing methods. The code is available at https://github.com/whieya/Language-grounded-VCL.
♻ ☆ CalFuse: Multi-Modal Continual Learning via Feature Calibration and Parameter Fusion
With the proliferation of multi-modal data in large-scale visual recognition systems, enabling models to continuously acquire knowledge from evolving data streams while preserving prior information has become increasingly critical. Class-Continual Learning (CCL) addresses this challenge by incrementally incorporating new class knowledge without revisiting historical data, making it essential for real-world big data applications. While traditional CCL methods rely solely on visual features, recent advances in Vision-Language Models (VLMs) such as CLIP demonstrate significant potential for CCL by leveraging pre-trained multi-modal knowledge. However, existing approaches face challenges in mitigating catastrophic forgetting while maintaining the cross-modal generalization capabilities of VLMs. To address these limitations, we propose CalFuse, a framework that synergizes feature Calibration with parameter Fusion to enable effective multi-modal knowledge integration in continual learning scenarios. CalFuse introduces a dynamic feature calibration mechanism that adaptively balances original CLIP visual representations with task-specific features, preserving the model's intrinsic cross-modal generalization while adapting to new classes. Concurrently, a QR decomposition-based parameter fusion strategy progressively integrates newly acquired knowledge with historical task parameters, maintaining equilibrium between learning new class representations and retaining prior knowledge across sequential tasks. Extensive experiments on benchmark datasets validate the effectiveness of our approach in large-scale multi-modal continual learning settings, demonstrating superior performance over state-of-the-art methods in both average accuracy and final task retention.
♻ ☆ MsEdF: A Multi-stream Encoder-decoder Framework for Remote Sensing Image Captioning
Remote sensing images contain complex spatial patterns and semantic structures, which makes the captioning model difficult to accurately describe. Encoder-decoder architectures have become the widely used approach for RSIC by translating visual content into descriptive text. However, many existing methods rely on a single-stream architecture, which weakens the model to accurately describe the image. Such single-stream architectures typically struggle to extract diverse spatial features or capture complex semantic relationships, limiting their effectiveness in scenes with high intraclass similarity or contextual ambiguity. In this work, we propose a novel Multi-stream Encoder-decoder Framework (MsEdF) which improves the performance of RSIC by optimizing both the spatial representation and language generation of encoder-decoder architecture. The encoder fuses information from two complementary image encoders, thereby promoting feature diversity through the integration of multiscale and structurally distinct cues. To improve the capture of context-aware descriptions, we refine the input sequence's semantic modeling on the decoder side using a stacked GRU architecture with an element-wise aggregation scheme. Experiments on three benchmark RSIC datasets show that MsEdF outperforms several baseline models.
♻ ☆ MDP3: A Training-free Approach for List-wise Frame Selection in Video-LLMs
Video large language models (Video-LLMs) have made significant progress in understanding videos. However, processing multiple frames leads to lengthy visual token sequences, presenting challenges such as the limited context length cannot accommodate the entire video, and the inclusion of irrelevant frames hinders visual perception. Hence, effective frame selection is crucial. This paper emphasizes that frame selection should follow three key principles: query relevance, list-wise diversity, and sequentiality. Existing methods, such as uniform frame sampling and query-frame matching, do not capture all of these principles. Thus, we propose Markov decision determinantal point process with dynamic programming (MDP3) for frame selection, a training-free and model-agnostic method that can be seamlessly integrated into existing Video-LLMs. Our method first estimates frame similarities conditioned on the query using a conditional Gaussian kernel within the reproducing kernel Hilbert space~(RKHS). We then apply the determinantal point process~(DPP) to the similarity matrix to capture both query relevance and list-wise diversity. To incorporate sequentiality, we segment the video and apply DPP within each segment, conditioned on the preceding segment selection, modeled as a Markov decision process~(MDP) for allocating selection sizes across segments. Theoretically, MDP3 provides a \((1 - 1/e)\)-approximate solution to the NP-hard list-wise frame selection problem with pseudo-polynomial time complexity, demonstrating its efficiency. Empirically, MDP3 significantly outperforms existing methods, verifying its effectiveness and robustness.
comment: 26 pages, 14 figures
♻ ☆ IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction
Humans naturally perceive the geometric structure and semantic content of a 3D world as intertwined dimensions, enabling coherent and accurate understanding of complex scenes. However, most prior approaches prioritize training large geometry models for low-level 3D reconstruction and treat high-level spatial understanding in isolation, overlooking the crucial interplay between these two fundamental aspects of 3D-scene analysis, thereby limiting generalization and leading to poor performance in downstream 3D understanding tasks. Recent attempts have mitigated this issue by simply aligning 3D models with specific language models, thus restricting perception to the aligned model's capacity and limiting adaptability to downstream tasks. In this paper, we propose InstanceGrounded Geometry Transformer (IGGT), an end-to-end large unified transformer to unify the knowledge for both spatial reconstruction and instance-level contextual understanding. Specifically, we design a 3D-Consistent Contrastive Learning strategy that guides IGGT to encode a unified representation with geometric structures and instance-grounded clustering through only 2D visual inputs. This representation supports consistent lifting of 2D visual inputs into a coherent 3D scene with explicitly distinct object instances. To facilitate this task, we further construct InsScene-15K, a large-scale dataset with high-quality RGB images, poses, depth maps, and 3D-consistent instance-level mask annotations with a novel data curation pipeline.
comment: https://github.com/lifuguan/IGGT_official
♻ ☆ VSA: Faster Video Diffusion with Trainable Sparse Attention
Scaling video diffusion transformers (DiTs) is limited by their quadratic 3D attention, even though most of the attention mass concentrates on a small subset of positions. We turn this observation into VSA, a trainable, hardware-efficient sparse attention that replaces full attention at \emph{both} training and inference. In VSA, a lightweight coarse stage pools tokens into tiles and identifies high-weight \emph{critical tokens}; a fine stage computes token-level attention only inside those tiles subjecting to block computing layout to ensure hard efficiency. This leads to a single differentiable kernel that trains end-to-end, requires no post-hoc profiling, and sustains 85\% of FlashAttention3 MFU. We perform a large sweep of ablation studies and scaling-law experiments by pretraining DiTs from 60M to 1.4B parameters. VSA reaches a Pareto point that cuts training FLOPS by 2.53$\times$ with no drop in diffusion loss. Retrofitting the open-source Wan-2.1 model speeds up attention time by 6$\times$ and lowers end-to-end generation time from 31s to 18s with comparable quality. These results establish trainable sparse attention as a practical alternative to full attention and a key enabler for further scaling of video diffusion models. Code will be available at https://github.com/hao-ai-lab/FastVideo.
comment: Accepted by Neurips 2025
♻ ☆ Riemannian-Geometric Fingerprints of Generative Models ICCV 2025
Recent breakthroughs and rapid integration of generative models (GMs) have sparked interest in the problem of model attribution and their fingerprints. For instance, service providers need reliable methods of authenticating their models to protect their IP, while users and law enforcement seek to verify the source of generated content for accountability and trust. In addition, a growing threat of model collapse is arising, as more model-generated data are being fed back into sources (e.g., YouTube) that are often harvested for training ("regurgitative training"), heightening the need to differentiate synthetic from human data. Yet, a gap still exists in understanding generative models' fingerprints, we believe, stemming from the lack of a formal framework that can define, represent, and analyze the fingerprints in a principled way. To address this gap, we take a geometric approach and propose a new definition of artifact and fingerprint of GMs using Riemannian geometry, which allows us to leverage the rich theory of differential geometry. Our new definition generalizes previous work (Song et al., 2024) to non-Euclidean manifolds by learning Riemannian metrics from data and replacing the Euclidean distances and nearest-neighbor search with geodesic distances and kNN-based Riemannian center of mass. We apply our theory to a new gradient-based algorithm for computing the fingerprints in practice. Results show that it is more effective in distinguishing a large array of GMs, spanning across 4 different datasets in 2 different resolutions (64 by 64, 256 by 256), 27 model architectures, and 2 modalities (Vision, Vision-Language). Using our proposed definition significantly improves the performance on model attribution, as well as a generalization to unseen datasets, model types, and modalities, suggesting its practical efficacy.
comment: ICCV 2025 Highlight paper
♻ ☆ InstanceAssemble: Layout-Aware Image Generation via Instance Assembling Attention NeurIPS 2025
Diffusion models have demonstrated remarkable capabilities in generating high-quality images. Recent advancements in Layout-to-Image (L2I) generation have leveraged positional conditions and textual descriptions to facilitate precise and controllable image synthesis. Despite overall progress, current L2I methods still exhibit suboptimal performance. Therefore, we propose InstanceAssemble, a novel architecture that incorporates layout conditions via instance-assembling attention, enabling position control with bounding boxes (bbox) and multimodal content control including texts and additional visual content. Our method achieves flexible adaption to existing DiT-based T2I models through light-weighted LoRA modules. Additionally, we propose a Layout-to-Image benchmark, Denselayout, a comprehensive benchmark for layout-to-image generation, containing 5k images with 90k instances in total. We further introduce Layout Grounding Score (LGS), an interpretable evaluation metric to more precisely assess the accuracy of L2I generation. Experiments demonstrate that our InstanceAssemble method achieves state-of-the-art performance under complex layout conditions, while exhibiting strong compatibility with diverse style LoRA modules. The code and pretrained models are publicly available at https://github.com/FireRedTeam/InstanceAssemble.
comment: Accepted in NeurIPS 2025
♻ ☆ MoPFormer: Motion-Primitive Transformer for Wearable-Sensor Activity Recognition NeurIPS 2025
Human Activity Recognition (HAR) with wearable sensors is challenged by limited interpretability, which significantly impacts cross-dataset generalization. To address this challenge, we propose Motion-Primitive Transformer (MoPFormer), a novel self-supervised framework that enhances interpretability by tokenizing inertial measurement unit signals into semantically meaningful motion primitives and leverages a Transformer architecture to learn rich temporal representations. MoPFormer comprises two stages. The first stage is to partition multi-channel sensor streams into short segments and quantize them into discrete ``motion primitive'' codewords, while the second stage enriches those tokenized sequences through a context-aware embedding module and then processes them with a Transformer encoder. The proposed MoPFormer can be pre-trained using a masked motion-modeling objective that reconstructs missing primitives, enabling it to develop robust representations across diverse sensor configurations. Experiments on six HAR benchmarks demonstrate that MoPFormer not only outperforms state-of-the-art methods but also successfully generalizes across multiple datasets. More importantly, the learned motion primitives significantly enhance both interpretability and cross-dataset performance by capturing fundamental movement patterns that remain consistent across similar activities, regardless of dataset origin.
comment: Accepted by NeurIPS 2025
♻ ☆ Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-Aware View Planning (TAVP), a framework designed to overcome these challenges by integrating active view planning with task-specific representation learning. TAVP employs an efficient exploration policy, accelerated by a novel pseudo-environment, to actively acquire informative views. Furthermore, we introduce a Mixture-of-Experts (MoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TAVP generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. Extensive experiments on RLBench tasks show that our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.
comment: 14 pages, 8 figures, project page: https://hcplab-sysu.github.io/TAVP
♻ ☆ Unveiling Concept Attribution in Diffusion Models
Diffusion models have shown remarkable abilities in generating realistic and high-quality images from text prompts. However, a trained model remains largely black-box; little do we know about the roles of its components in exhibiting a concept such as objects or styles. Recent works employ causal tracing to localize knowledge-storing layers in generative models without showing how other layers contribute to the target concept. In this work, we approach diffusion models' interpretability problem from a more general perspective and pose a question: \textit{``How do model components work jointly to demonstrate knowledge?''}. To answer this question, we decompose diffusion models using component attribution, systematically unveiling the importance of each component (specifically the model parameter) in generating a concept. The proposed framework, called \textbf{C}omponent \textbf{A}ttribution for \textbf{D}iffusion Model (CAD), discovers the localization of concept-inducing (positive) components, while interestingly uncovers another type of components that contribute negatively to generating a concept, which is missing in the previous knowledge localization work. Based on this holistic understanding of diffusion models, we introduce two fast, inference-time model editing algorithms, CAD-Erase and CAD-Amplify; in particular, CAD-Erase enables erasure and CAD-Amplify allows amplification of a generated concept by ablating the positive and negative components, respectively, while retaining knowledge of other concepts. Extensive experimental results validate the significance of both positive and negative components pinpointed by our framework, demonstrating the potential of providing a complete view of interpreting generative models. Our code is available \href{https://github.com/mail-research/CAD-attribution4diffusion}{here}.
♻ ☆ TraceTrans: Translation and Spatial Tracing for Surgical Prediction
Image-to-image translation models have achieved notable success in converting images across visual domains and are increasingly used for medical tasks such as predicting post-operative outcomes and modeling disease progression. However, most existing methods primarily aim to match the target distribution and often neglect spatial correspondences between the source and translated images. This limitation can lead to structural inconsistencies and hallucinations, undermining the reliability and interpretability of the predictions. These challenges are accentuated in clinical applications by the stringent requirement for anatomical accuracy. In this work, we present TraceTrans, a novel deformable image translation model designed for post-operative prediction that generates images aligned with the target distribution while explicitly revealing spatial correspondences with the pre-operative input. The framework employs an encoder for feature extraction and dual decoders for predicting spatial deformations and synthesizing the translated image. The predicted deformation field imposes spatial constraints on the generated output, ensuring anatomical consistency with the source. Extensive experiments on medical cosmetology and brain MRI datasets demonstrate that TraceTrans delivers accurate and interpretable post-operative predictions, highlighting its potential for reliable clinical deployment.
♻ ☆ From Objects to Anywhere: A Holistic Benchmark for Multi-level Visual Grounding in 3D Scenes NeurIPS 2025
3D visual grounding has made notable progress in localizing objects within complex 3D scenes. However, grounding referring expressions beyond objects in 3D scenes remains unexplored. In this paper, we introduce Anywhere3D-Bench, a holistic 3D visual grounding benchmark consisting of 2,886 referring expression-3D bounding box pairs spanning four different grounding levels: human-activity areas, unoccupied space beyond objects, individual objects in the scene, and fine-grained object parts. We assess a range of state-of-the-art 3D visual grounding methods alongside large language models (LLMs) and multimodal LLMs (MLLMs) on Anywhere3D-Bench. Experimental results reveal that space-level and part-level visual grounding pose the greatest challenges: space-level tasks require a more comprehensive spatial reasoning ability, for example, modeling distances and spatial relations within 3D space, while part-level tasks demand fine-grained perception of object composition. Even the best-performing models, Google Gemini-2.5-Pro and OpenAI o3, achieve just around 30% accuracy on space-level tasks and around 40% on part-level tasks, significantly lower than its performance on area-level and object-level tasks. These findings underscore a critical gap in current models' capacity to understand and reason about 3D scenes beyond object-level semantics.
comment: Update v3 of the NeurIPS 2025 Datasets and Benchmarks paper (v2), including additional evaluations of state-of-the-art multimodal large language models. Project page: https://anywhere-3d.github.io/
♻ ☆ Unsupervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion
Unsupervised monocular depth estimation has received widespread attention because of its capability to train without ground truth. In real-world scenarios, the images may be blurry or noisy due to the influence of weather conditions and inherent limitations of the camera. Therefore, it is particularly important to develop a robust depth estimation model. Benefiting from the training strategies of generative networks, generative-based methods often exhibit enhanced robustness. In light of this, we employ a well-converging diffusion model among generative networks for unsupervised monocular depth estimation. Additionally, we propose a hierarchical feature-guided denoising module. This model significantly enriches the model's capacity for learning and interpreting depth distribution by fully leveraging image features to guide the denoising process. Furthermore, we explore the implicit depth within reprojection and design an implicit depth consistency loss. This loss function serves to enhance the performance of the model and ensure the scale consistency of depth within a video sequence. We conduct experiments on the KITTI, Make3D, and our self-collected SIMIT datasets. The results indicate that our approach stands out among generative-based models, while also showcasing remarkable robustness.
♻ ☆ Navigation with VLM framework: Towards Going to Any Language
Navigating towards fully open language goals and exploring open scenes in an intelligent way have always raised significant challenges. Recently, Vision Language Models (VLMs) have demonstrated remarkable capabilities to reason with both language and visual data. Although many works have focused on leveraging VLMs for navigation in open scenes, they often require high computational cost, rely on object-centric approaches, or depend on environmental priors in detailed human instructions. We introduce Navigation with VLM (NavVLM), a training-free framework that harnesses open-source VLMs to enable robots to navigate effectively, even for human-friendly language goal such as abstract places, actions, or specific objects in open scenes. NavVLM leverages the VLM as its cognitive core to perceive environmental information and constantly provides exploration guidance achieving intelligent navigation with only a neat target rather than a detailed instruction with environment prior. We evaluated and validated NavVLM in both simulation and real-world experiments. In simulation, our framework achieves state-of-the-art performance in Success weighted by Path Length (SPL) on object-specifc tasks in richly detailed environments from Matterport 3D (MP3D), Habitat Matterport 3D (HM3D) and Gibson. With navigation episode reported, NavVLM demonstrates the capabilities to navigate towards any open-set languages. In real-world validation, we validated our framework's effectiveness in real-world robot at indoor scene.
comment: under review
♻ ☆ GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving NeurIPS2025
Multi-sensor fusion is crucial for improving the performance and robustness of end-to-end autonomous driving systems. Existing methods predominantly adopt either attention-based flatten fusion or bird's eye view fusion through geometric transformations. However, these approaches often suffer from limited interpretability or dense computational overhead. In this paper, we introduce GaussianFusion, a Gaussian-based multi-sensor fusion framework for end-to-end autonomous driving. Our method employs intuitive and compact Gaussian representations as intermediate carriers to aggregate information from diverse sensors. Specifically, we initialize a set of 2D Gaussians uniformly across the driving scene, where each Gaussian is parameterized by physical attributes and equipped with explicit and implicit features. These Gaussians are progressively refined by integrating multi-modal features. The explicit features capture rich semantic and spatial information about the traffic scene, while the implicit features provide complementary cues beneficial for trajectory planning. To fully exploit rich spatial and semantic information in Gaussians, we design a cascade planning head that iteratively refines trajectory predictions through interactions with Gaussians. Extensive experiments on the NAVSIM and Bench2Drive benchmarks demonstrate the effectiveness and robustness of the proposed GaussianFusion framework. The source code will be released at https://github.com/Say2L/GaussianFusion.
comment: Accepted at NeurIPS2025 (Spotlight)
♻ ☆ PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection
Multimodal large language models (MLLMs) have achieved remarkable progress on vision-language tasks, yet their reasoning processes remain sometimes unreliable. We introduce PRISM-Bench, a benchmark of puzzle-based visual challenges designed to evaluate not only whether models can solve problems, but how their reasoning unfolds. Unlike prior evaluations that measure only final-answer accuracy, PRISM-Bench introduces a diagnostic task: given a visual puzzle and a step-by-step chain-of-thought (CoT) containing exactly one error, models must identify the first incorrect step. This setting enables fine-grained assessment of logical consistency, error detection, and visual reasoning. The puzzles in PRISM-Bench require multi-step symbolic, geometric, and analogical reasoning, resisting shortcuts based on superficial pattern matching. Evaluations across state-of-the-art MLLMs reveal a persistent gap between fluent generation and faithful reasoning: models that produce plausible CoTs often fail to locate simple logical faults. By disentangling answer generation from reasoning verification, PRISM-Bench offers a sharper lens on multimodal reasoning competence and underscores the need for diagnostic evaluation protocols in the development of trustworthy MLLMs.
♻ ☆ Radar and Event Camera Fusion for Agile Robot Ego-Motion Estimation
Achieving reliable ego motion estimation for agile robots, e.g., aerobatic aircraft, remains challenging because most robot sensors fail to respond timely and clearly to highly dynamic robot motions, often resulting in measurement blurring, distortion, and delays. In this paper, we propose an IMU-free and feature-association-free framework to achieve aggressive ego-motion velocity estimation of a robot platform in highly dynamic scenarios by combining two types of exteroceptive sensors, an event camera and a millimeter wave radar, First, we used instantaneous raw events and Doppler measurements to derive rotational and translational velocities directly. Without a sophisticated association process between measurement frames, the proposed method is more robust in texture-less and structureless environments and is more computationally efficient for edge computing devices. Then, in the back-end, we propose a continuous-time state-space model to fuse the hybrid time-based and event-based measurements to estimate the ego-motion velocity in a fixed-lagged smoother fashion. In the end, we validate our velometer framework extensively in self-collected experiment datasets. The results indicate that our IMU-free and association-free ego motion estimation framework can achieve reliable and efficient velocity output in challenging environments. The source code, illustrative video and dataset are available at https://github.com/ZzhYgwh/TwistEstimator.
comment: 2025.10.28 version v2 for TwistEstimator
♻ ☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model IROS 2025
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Accepted at IROS 2025. Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
♻ ☆ CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data
True intelligence hinges on the ability to uncover and leverage hidden causal relations. Despite significant progress in AI and computer vision (CV), there remains a lack of benchmarks for assessing models' abilities to infer latent causality from complex visual data. In this paper, we introduce \textsc{\textbf{Causal3D}}, a novel and comprehensive benchmark that integrates structured data (tables) with corresponding visual representations (images) to evaluate causal reasoning. Designed within a systematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse causal relations, views, and backgrounds, enabling evaluations across scenes of varying complexity. We assess multiple state-of-the-art methods, including classical causal discovery, causal representation learning, and large/vision-language models (LLMs/VLMs). Our experiments show that as causal structures grow more complex without prior knowledge, performance declines significantly, highlighting the challenges even advanced methods face in complex causal scenarios. Causal3D serves as a vital resource for advancing causal reasoning in CV and fostering trustworthy AI in critical domains.
♻ ☆ GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation
Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoning$\unicode{x2014}$a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracy$\unicode{x2014}$compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found $\href{this https URL}{here}$.
comment: 22 pages, 3 figures, 3 tables, project page: https://ke7.github.io/graid/
♻ ☆ MambaCAFU: Hybrid Multi-Scale and Multi-Attention Model with Mamba-Based Fusion for Medical Image Segmentation
In recent years, deep learning has shown near-expert performance in segmenting complex medical tissues and tumors. However, existing models are often task-specific, with performance varying across modalities and anatomical regions. Balancing model complexity and performance remains challenging, particularly in clinical settings where both accuracy and efficiency are critical. To address these issues, we propose a hybrid segmentation architecture featuring a three-branch encoder that integrates CNNs, Transformers, and a Mamba-based Attention Fusion (MAF) mechanism to capture local, global, and long-range dependencies. A multi-scale attention-based CNN decoder reconstructs fine-grained segmentation maps while preserving contextual consistency. Additionally, a co-attention gate enhances feature selection by emphasizing relevant spatial and semantic information across scales during both encoding and decoding, improving feature interaction and cross-scale communication. Extensive experiments on multiple benchmark datasets show that our approach outperforms state-of-the-art methods in accuracy and generalization, while maintaining comparable computational complexity. By effectively balancing efficiency and effectiveness, our architecture offers a practical and scalable solution for diverse medical imaging tasks. Source code and trained models will be publicly released upon acceptance to support reproducibility and further research.
♻ ☆ Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models
Physical reasoning remains a significant challenge for Vision-Language Models (VLMs). This limitation arises from an inability to translate learned knowledge into predictions about physical behavior. Although continual fine-tuning can mitigate this issue, it is expensive for large models and impractical to perform repeatedly for every task. This necessitates the creation of modular and scalable ways to teach VLMs about physical reasoning. To that end, we introduce Physics Context Builders (PCBs), a modular framework where specialized smaller VLMs are fine-tuned to generate detailed physical scene descriptions. These can be used as physical contexts to enhance the reasoning capabilities of larger VLMs. PCBs enable the separation of visual perception from reasoning, allowing us to analyze their relative contributions to physical understanding. We perform experiments on CLEVRER and on Falling Tower, a stability detection dataset with both simulated and real-world scenes, to demonstrate that PCBs provide substantial performance improvements, increasing average accuracy by up to 13.8% on complex physical reasoning tasks. Notably, PCBs also show strong Sim2Real transfer, successfully generalizing from simulated training data to real-world scenes.
♻ ☆ SignMouth: Leveraging Mouthing Cues for Sign Language Translation by Multimodal Contrastive Fusion
Sign language translation (SLT) aims to translate natural language from sign language videos, serving as a vital bridge for inclusive communication. While recent advances leverage powerful visual backbones and large language models, most approaches mainly focus on manual signals (hand gestures) and tend to overlook non-manual cues like mouthing. In fact, mouthing conveys essential linguistic information in sign languages and plays a crucial role in disambiguating visually similar signs. In this paper, we propose SignClip, a novel framework to improve the accuracy of sign language translation. It fuses manual and non-manual cues, specifically spatial gesture and lip movement features. Besides, SignClip introduces a hierarchical contrastive learning framework with multi-level alignment objectives, ensuring semantic consistency across sign-lip and visual-text modalities. Extensive experiments on two benchmark datasets, PHOENIX14T and How2Sign, demonstrate the superiority of our approach. For example, on PHOENIX14T, in the Gloss-free setting, SignClip surpasses the previous state-of-the-art model SpaMo, improving BLEU-4 from 24.32 to 24.71, and ROUGE from 46.57 to 48.38.
♻ ☆ Re-ttention: Ultra Sparse Visual Generation via Attention Statistical Reshape
Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference.
comment: author comment: This version was previously removed by arXiv administrators as the submitter did not have the rights to agree to the license at the time of submission. The authors have now obtained the necessary permissions, and the paper is resubmitted accordingly
♻ ☆ Hyperparameters in Continual Learning: A Reality Check
Continual learning (CL) aims to train a model on a sequence of tasks (i.e., a CL scenario) while balancing the trade-off between plasticity (learning new tasks) and stability (retaining prior knowledge). The dominantly adopted conventional evaluation protocol for CL algorithms selects the best hyperparameters (e.g., learning rate, mini-batch size, regularization strengths, etc.) within a given scenario and then evaluates the algorithms using these hyperparameters in the same scenario. However, this protocol has significant shortcomings: it overestimates the CL capacity of algorithms and relies on unrealistic hyperparameter tuning, which is not feasible for real-world applications. From the fundamental principles of evaluation in machine learning, we argue that the evaluation of CL algorithms should focus on assessing the generalizability of their CL capacity to unseen scenarios. Based on this, we propose the Generalizable Two-phase Evaluation Protocol (GTEP) consisting of hyperparameter tuning and evaluation phases. Both phases share the same scenario configuration (e.g., number of tasks) but are generated from different datasets. Hyperparameters of CL algorithms are tuned in the first phase and applied in the second phase to evaluate the algorithms. We apply this protocol to class-incremental learning, both with and without pretrained models. Across more than 8,000 experiments, our results show that most state-of-the-art algorithms fail to replicate their reported performance, highlighting that their CL capacity has been significantly overestimated in the conventional evaluation protocol. Our implementation can be found in https://github.com/csm9493/GTEP.
comment: TMLR 2025 camera ready version
♻ ☆ Cyst-X: A Federated AI System Outperforms Clinical Guidelines to Detect Pancreatic Cancer Precursors and Reduce Unnecessary Surgery
Pancreatic cancer is projected to be the second-deadliest cancer by 2030, making early detection critical. Intraductal papillary mucinous neoplasms (IPMNs), key cancer precursors, present a clinical dilemma, as current guidelines struggle to stratify malignancy risk, leading to unnecessary surgeries or missed diagnoses. Here, we developed Cyst-X, an AI framework for IPMN risk prediction trained on a unique, multi-center dataset of 1,461 MRI scans from 764 patients. Cyst-X achieves significantly higher accuracy (AUC = 0.82) than both the established Kyoto guidelines (AUC = 0.75) and expert radiologists, particularly in correct identification of high-risk lesions. Clinically, this translates to a 20% increase in cancer detection sensitivity (87.8% vs. 64.1%) for high-risk lesions. We demonstrate that this performance is maintained in a federated learning setting, allowing for collaborative model training without compromising patient privacy. To accelerate research in early pancreatic cancer detection, we publicly release the Cyst-X dataset and models, providing the first large-scale, multi-center MRI resource for pancreatic cyst analysis.
♻ ☆ PSScreen V2: Partially Supervised Multiple Retinal Disease Screening
In this work, we propose PSScreen V2, a partially supervised self-training framework for multiple retinal disease screening. Unlike previous methods that rely on fully labelled or single-domain datasets, PSScreen V2 is designed to learn from multiple partially labelled datasets with different distributions, addressing both label absence and domain shift challenges. To this end, PSScreen V2 adopts a three-branch architecture with one teacher and two student networks. The teacher branch generates pseudo labels from weakly augmented images to address missing labels, while the two student branches introduce novel feature augmentation strategies: Low-Frequency Dropout (LF-Dropout), which enhances domain robustness by randomly discarding domain-related low-frequency components, and Low-Frequency Uncertainty (LF-Uncert), which estimates uncertain domain variability via adversarially learned Gaussian perturbations of low-frequency statistics. Extensive experiments on multiple in-domain and out-of-domain fundus datasets demonstrate that PSScreen V2 achieves state-of-the-art performance and superior domain generalization ability. Furthermore, compatibility tests with diverse backbones, including the vision foundation model DINOv2, as well as evaluations on chest X-ray datasets, highlight the universality and adaptability of the proposed framework. The codes are available at https://github.com/boyiZheng99/PSScreen_V2.
♻ ☆ Explicitly Modeling Subcortical Vision with a Neuro-Inspired Front-End Improves CNN Robustness
Convolutional neural networks (CNNs) trained on object recognition achieve high task performance but continue to exhibit vulnerability under a range of visual perturbations and out-of-domain images, when compared with biological vision. Prior work has demonstrated that coupling a standard CNN with a front-end (VOneBlock) that mimics the primate primary visual cortex (V1) can improve overall model robustness. Expanding on this, we introduce Early Vision Networks (EVNets), a new class of hybrid CNNs that combine the VOneBlock with a novel SubcorticalBlock, whose architecture draws from computational models in neuroscience and is parameterized to maximize alignment with subcortical responses reported across multiple experimental studies. Without being optimized to do so, the assembly of the SubcorticalBlock with the VOneBlock improved V1 alignment across most standard V1 benchmarks, and better modeled extra-classical receptive field phenomena. In addition, EVNets exhibit stronger emergent shape bias and outperform the base CNN architecture by 9.3% on an aggregate benchmark of robustness evaluations, including adversarial perturbations, common corruptions, and domain shifts. Finally, we show that EVNets can be further improved when paired with a state-of-the-art data augmentation technique, surpassing the performance of the isolated data augmentation approach by 6.2% on our robustness benchmark. This result reveals complementary benefits between changes in architecture to better mimic biology and training-based machine learning approaches.
♻ ☆ VLCE: A Knowledge-Enhanced Framework for Image Description in Disaster Assessment
Immediate damage assessment is essential after natural catastrophes; yet, conventional hand evaluation techniques are sluggish and perilous. Although satellite and unmanned aerial vehicle (UAV) photos offer extensive perspectives of impacted regions, current computer vision methodologies generally yield just classification labels or segmentation masks, so constraining their capacity to deliver a thorough situational comprehension. We introduce the Vision Language Caption Enhancer (VLCE), a multimodal system designed to produce comprehensive, contextually-informed explanations of disaster imagery. VLCE employs a dual-architecture approach: a CNN-LSTM model with a ResNet50 backbone pretrained on EuroSat satellite imagery for the xBD dataset, and a Vision Transformer (ViT) model pretrained on UAV pictures for the RescueNet dataset. Both systems utilize external semantic knowledge from ConceptNet and WordNet to expand vocabulary coverage and improve description accuracy. We assess VLCE in comparison to leading vision-language models (LLaVA and QwenVL) utilizing CLIPScore for semantic alignment and InfoMetIC for caption informativeness. Experimental findings indicate that VLCE markedly surpasses baseline models, attaining a maximum of 95.33% on InfoMetIC while preserving competitive semantic alignment. Our dual-architecture system demonstrates significant potential for improving disaster damage assessment by automating the production of actionable, information-dense descriptions from satellite and drone photos.
comment: 29 pages, 40 figures, 3 algorithms
Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training
comment: Version v1.1
Artificial Intelligence 150
☆ Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in self-supervised ViTs (DINO, MAE, CLIP), but markedly weaker in ImageNet-supervised models, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
☆ ComboBench: Can LLMs Manipulate Physical Devices to Play Virtual Reality Games?
Virtual Reality (VR) games require players to translate high-level semantic actions into precise device manipulations using controllers and head-mounted displays (HMDs). While humans intuitively perform this translation based on common sense and embodied understanding, whether Large Language Models (LLMs) can effectively replicate this ability remains underexplored. This paper introduces a benchmark, ComboBench, evaluating LLMs' capability to translate semantic actions into VR device manipulation sequences across 262 scenarios from four popular VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft. We evaluate seven LLMs, including GPT-3.5, GPT-4, GPT-4o, Gemini-1.5-Pro, LLaMA-3-8B, Mixtral-8x7B, and GLM-4-Flash, compared against annotated ground truth and human performance. Our results reveal that while top-performing models like Gemini-1.5-Pro demonstrate strong task decomposition capabilities, they still struggle with procedural reasoning and spatial understanding compared to humans. Performance varies significantly across games, suggesting sensitivity to interaction complexity. Few-shot examples substantially improve performance, indicating potential for targeted enhancement of LLMs' VR manipulation capabilities. We release all materials at https://sites.google.com/view/combobench.
☆ Agent Data Protocol: Unifying Datasets for Diverse, Effective Fine-tuning of LLM Agents
Public research results on large-scale supervised finetuning of AI agents remain relatively rare, since the collection of agent training data presents unique challenges. In this work, we argue that the bottleneck is not a lack of underlying data sources, but that a large variety of data is fragmented across heterogeneous formats, tools, and interfaces. To this end, we introduce the agent data protocol (ADP), a light-weight representation language that serves as an "interlingua" between agent datasets in diverse formats and unified agent training pipelines downstream. The design of ADP is expressive enough to capture a large variety of tasks, including API/tool use, browsing, coding, software engineering, and general agentic workflows, while remaining simple to parse and train on without engineering at a per-dataset level. In experiments, we unified a broad collection of 13 existing agent training datasets into ADP format, and converted the standardized ADP data into training-ready formats for multiple agent frameworks. We performed SFT on these data, and demonstrated an average performance gain of ~20% over corresponding base models, and delivers state-of-the-art or near-SOTA performance on standard coding, browsing, tool use, and research benchmarks, without domain-specific tuning. All code and data are released publicly, in the hope that ADP could help lower the barrier to standardized, scalable, and reproducible agent training.
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ Greedy Sampling Is Provably Efficient for RLHF NeurIPS 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a key technique for post-training large language models. Despite its empirical success, the theoretical understanding of RLHF is still limited, as learning the KL-regularized target with only preference feedback poses additional challenges compared with canonical RL. Existing works mostly study the reward-based Bradley-Terry (BT) preference model, and extend classical designs utilizing optimism or pessimism. This work, instead, considers the general preference model (whose practical relevance has been observed recently) and obtains performance guarantees with major, order-wise improvements over existing ones. Surprisingly, these results are derived from algorithms that directly use the empirical estimates (i.e., greedy sampling), as opposed to constructing optimistic or pessimistic estimates in previous works. This insight has a deep root in the unique structural property of the optimal policy class under the KL-regularized target, and we further specialize it to the BT model, highlighting the surprising sufficiency of greedy sampling in RLHF.
comment: NeurIPS 2025
☆ ParallelMuse: Agentic Parallel Thinking for Deep Information Seeking
Parallel thinking expands exploration breadth, complementing the deep exploration of information-seeking (IS) agents to further enhance problem-solving capability. However, conventional parallel thinking faces two key challenges in this setting: inefficiency from repeatedly rolling out from scratch, and difficulty in integrating long-horizon reasoning trajectories during answer generation, as limited context capacity prevents full consideration of the reasoning process. To address these issues, we propose ParallelMuse, a two-stage paradigm designed for deep IS agents. The first stage, Functionality-Specified Partial Rollout, partitions generated sequences into functional regions and performs uncertainty-guided path reuse and branching to enhance exploration efficiency. The second stage, Compressed Reasoning Aggregation, exploits reasoning redundancy to losslessly compress information relevant to answer derivation and synthesize a coherent final answer. Experiments across multiple open-source agents and benchmarks demonstrate up to 62% performance improvement with a 10--30% reduction in exploratory token consumption.
☆ AgentFold: Long-Horizon Web Agents with Proactive Context Management
LLM-based web agents show immense promise for information seeking, yet their effectiveness on long-horizon tasks is hindered by a fundamental trade-off in context management. Prevailing ReAct-based agents suffer from context saturation as they accumulate noisy, raw histories, while methods that fixedly summarize the full history at each step risk the irreversible loss of critical details. Addressing these, we introduce AgentFold, a novel agent paradigm centered on proactive context management, inspired by the human cognitive process of retrospective consolidation. AgentFold treats its context as a dynamic cognitive workspace to be actively sculpted, rather than a passive log to be filled. At each step, it learns to execute a `folding' operation, which manages its historical trajectory at multiple scales: it can perform granular condensations to preserve vital, fine-grained details, or deep consolidations to abstract away entire multi-step sub-tasks. The results on prominent benchmarks are striking: with simple supervised fine-tuning (without continual pre-training or RL), our AgentFold-30B-A3B agent achieves 36.2% on BrowseComp and 47.3% on BrowseComp-ZH. Notably, this performance not only surpasses or matches open-source models of a dramatically larger scale, such as the DeepSeek-V3.1-671B-A37B, but also surpasses leading proprietary agents like OpenAI's o4-mini.
comment: 26 pages, 9 figures
☆ Repurposing Synthetic Data for Fine-grained Search Agent Supervision
LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.
☆ Bridging Tool Dependencies and Domain Knowledge: A Graph-Based Framework for In-Context Planning NeurIPS 2025
We present a framework for uncovering and exploiting dependencies among tools and documents to enhance exemplar artifact generation. Our method begins by constructing a tool knowledge graph from tool schemas,including descriptions, arguments, and output payloads, using a DeepResearch-inspired analysis. In parallel, we derive a complementary knowledge graph from internal documents and SOPs, which is then fused with the tool graph. To generate exemplar plans, we adopt a deep-sparse integration strategy that aligns structural tool dependencies with procedural knowledge. Experiments demonstrate that this unified framework effectively models tool interactions and improves plan generation, underscoring the benefits of linking tool graphs with domain knowledge graphs for tool-augmented reasoning and planning.
comment: 4 pages, 2 figures, short paper, NeurIPS 2025 workshop on Bridging Language, Agent, and World Models for Reasoning and Planning
☆ Fast algorithms enabling optimization and deep learning for photoacoustic tomography in a circular detection geometry
The inverse source problem arising in photoacoustic tomography and in several other coupled-physics modalities is frequently solved by iterative algorithms. Such algorithms are based on the minimization of a certain cost functional. In addition, novel deep learning techniques are currently being investigated to further improve such optimization approaches. All such methods require multiple applications of the operator defining the forward problem, and of its adjoint. In this paper, we present new asymptotically fast algorithms for numerical evaluation of the forward and adjoint operators, applicable in the circular acquisition geometry. For an $(n \times n)$ image, our algorithms compute these operators in $\mathcal{O}(n^2 \log n)$ floating point operations. We demonstrate the performance of our algorithms in numerical simulations, where they are used as an integral part of several iterative image reconstruction techniques: classic variational methods, such as non-negative least squares and total variation regularized least squares, as well as deep learning methods, such as learned primal dual. A Python implementation of our algorithms and computational examples is available to the general public.
☆ Dissecting Role Cognition in Medical LLMs via Neuronal Ablation
Large language models (LLMs) have gained significant traction in medical decision support systems, particularly in the context of medical question answering and role-playing simulations. A common practice, Prompt-Based Role Playing (PBRP), instructs models to adopt different clinical roles (e.g., medical students, residents, attending physicians) to simulate varied professional behaviors. However, the impact of such role prompts on model reasoning capabilities remains unclear. This study introduces the RP-Neuron-Activated Evaluation Framework(RPNA) to evaluate whether role prompts induce distinct, role-specific cognitive processes in LLMs or merely modify linguistic style. We test this framework on three medical QA datasets, employing neuron ablation and representation analysis techniques to assess changes in reasoning pathways. Our results demonstrate that role prompts do not significantly enhance the medical reasoning abilities of LLMs. Instead, they primarily affect surface-level linguistic features, with no evidence of distinct reasoning pathways or cognitive differentiation across clinical roles. Despite superficial stylistic changes, the core decision-making mechanisms of LLMs remain uniform across roles, indicating that current PBRP methods fail to replicate the cognitive complexity found in real-world medical practice. This highlights the limitations of role-playing in medical AI and emphasizes the need for models that simulate genuine cognitive processes rather than linguistic imitation.We have released the related code in the following repository:https: //github.com/IAAR-Shanghai/RolePlay_LLMDoctor
comment: 15 pages, 9 figures
☆ Learning to Drive Safely with Hybrid Options
Out of the many deep reinforcement learning approaches for autonomous driving, only few make use of the options (or skills) framework. That is surprising, as this framework is naturally suited for hierarchical control applications in general, and autonomous driving tasks in specific. Therefore, in this work the options framework is applied and tailored to autonomous driving tasks on highways. More specifically, we define dedicated options for longitudinal and lateral manoeuvres with embedded safety and comfort constraints. This way, prior domain knowledge can be incorporated into the learning process and the learned driving behaviour can be constrained more easily. We propose several setups for hierarchical control with options and derive practical algorithms following state-of-the-art reinforcement learning techniques. By separately selecting actions for longitudinal and lateral control, the introduced policies over combined and hybrid options obtain the same expressiveness and flexibility that human drivers have, while being easier to interpret than classical policies over continuous actions. Of all the investigated approaches, these flexible policies over hybrid options perform the best under varying traffic conditions, outperforming the baseline policies over actions.
☆ Multi-Agent Scenario Generation in Roundabouts with a Transformer-enhanced Conditional Variational Autoencoder
With the increasing integration of intelligent driving functions into serial-produced vehicles, ensuring their functionality and robustness poses greater challenges. Compared to traditional road testing, scenario-based virtual testing offers significant advantages in terms of time and cost efficiency, reproducibility, and exploration of edge cases. We propose a Transformer-enhanced Conditional Variational Autoencoder (CVAE-T) model for generating multi-agent traffic scenarios in roundabouts, which are characterized by high vehicle dynamics and complex layouts, yet remain relatively underexplored in current research. The results show that the proposed model can accurately reconstruct original scenarios and generate realistic, diverse synthetic scenarios. Besides, two Key-Performance-Indicators (KPIs) are employed to evaluate the interactive behavior in the generated scenarios. Analysis of the latent space reveals partial disentanglement, with several latent dimensions exhibiting distinct and interpretable effects on scenario attributes such as vehicle entry timing, exit timing, and velocity profiles. The results demonstrate the model's capability to generate scenarios for the validation of intelligent driving functions involving multi-agent interactions, as well as to augment data for their development and iterative improvement.
☆ InteractComp: Evaluating Search Agents With Ambiguous Queries
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.
☆ OrchDAG: Complex Tool Orchestration in Multi-Turn Interactions with Plan DAGs
Agentic tool use has gained traction with the rise of agentic tool calling, yet most existing work overlooks the complexity of multi-turn tool interactions. We introduce OrchDAG, a synthetic data generation pipeline that models tool execution as directed acyclic graphs (DAGs) with controllable complexity. Using this dataset, we benchmark model performance and propose a graph-based reward to enhance RLVR training. Experiments show that the dataset presents a challenging but solvable benchmark, and the proposed reward is effective when combined with GRPO-style algorithms, highlighting the importance of leveraging topological structure and data complexity in multi-turn tool use.
comment: 9 pages, 4 figures
☆ Advancing site-specific disease and pest management in precision agriculture: From reasoning-driven foundation models to adaptive, feedback-based learning
Site-specific disease management (SSDM) in crops has advanced rapidly through machine and deep learning (ML and DL) for real-time computer vision. Research evolved from handcrafted feature extraction to large-scale automated feature learning. With foundation models (FMs), crop disease datasets are now processed in fundamentally new ways. Unlike traditional neural networks, FMs integrate visual and textual data, interpret symptoms in text, reason about symptom-management relationships, and support interactive QA for growers and educators. Adaptive and imitation learning in robotics further enables field-based disease management. This review screened approx. 40 articles on FM applications for SSDM, focusing on large-language models (LLMs) and vision-language models (VLMs), and discussing their role in adaptive learning (AL), reinforcement learning (RL), and digital twin frameworks for targeted spraying. Key findings: (a) FMs are gaining traction with surging literature in 2023-24; (b) VLMs outpace LLMs, with a 5-10x increase in publications; (c) RL and AL are still nascent for smart spraying; (d) digital twins with RL can simulate targeted spraying virtually; (e) addressing the sim-to-real gap is critical for real-world deployment; (f) human-robot collaboration remains limited, especially in human-in-the-loop approaches where robots detect early symptoms and humans validate uncertain cases; (g) multi-modal FMs with real-time feedback will drive next-gen SSDM. For updates, resources, and contributions, visit, https://github.com/nitin-dominic/AgriPathogenDatabase, to submit papers, code, or datasets.
comment: 26 pages, 8 figures, and 2 tables
☆ FunReason-MT Technical Report: Overcoming the Complexity Barrier in Multi-Turn Function Calling
Function calling (FC) empowers large language models (LLMs) and autonomous agents to interface with external tools, a critical capability for solving complex, real-world problems. As this ability becomes increasingly central to advanced AI systems, the need for high-quality, multi-turn training data to develop and refine it cannot be overstated. Existing data synthesis methods, such as random environment sampling or multi-agent role-playing, are not powerful enough to generate high-quality data in real-world environments. Practical challenges come in three folds: targeted model training, isolation of tool architecture, and multi-turn logical dependency. To address these structural deficiencies, we present FunReason-MT, a novel data synthesis framework for real-world multi-turn tool use. FunReason-MT resolves the complexity barrier in multi-turn FC data by employing 1) Environment-API Graph Interactions to gather varied high-quality trajectories, 2) Advanced Tool-Query Synthesis to simplify hard query construction, and 3) Guided Iterative Chain for sophisticated CoT generation. Evaluations on Berkeley Function-Calling Leaderboard (BFCLv3) demonstrate the power of our framework: a 4B model built upon FunReason-MT generated data achieves state-of-the-art performance among comparable-sized models, outperforming most close-source models. Further performance improvements on BFCLv4 confirm that FunReason-MT provides a reliable and robust source for agentic learning.
☆ The Cost of Robustness: Tighter Bounds on Parameter Complexity for Robust Memorization in ReLU Nets NeurIPS 2025
We study the parameter complexity of robust memorization for $\mathrm{ReLU}$ networks: the number of parameters required to interpolate any given dataset with $\epsilon$-separation between differently labeled points, while ensuring predictions remain consistent within a $\mu$-ball around each training sample. We establish upper and lower bounds on the parameter count as a function of the robustness ratio $\rho = \mu / \epsilon$. Unlike prior work, we provide a fine-grained analysis across the entire range $\rho \in (0,1)$ and obtain tighter upper and lower bounds that improve upon existing results. Our findings reveal that the parameter complexity of robust memorization matches that of non-robust memorization when $\rho$ is small, but grows with increasing $\rho$.
comment: Accepted to NeurIPS 2025, 72 pages, 8 figures
☆ Causal Ordering for Structure Learning From Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages
☆ All in one timestep: Enhancing Sparsity and Energy efficiency in Multi-level Spiking Neural Networks
Spiking Neural Networks (SNNs) are one of the most promising bio-inspired neural networks models and have drawn increasing attention in recent years. The event-driven communication mechanism of SNNs allows for sparse and theoretically low-power operations on dedicated neuromorphic hardware. However, the binary nature of instantaneous spikes also leads to considerable information loss in SNNs, resulting in accuracy degradation. To address this issue, we propose a multi-level spiking neuron model able to provide both low-quantization error and minimal inference latency while approaching the performance of full precision Artificial Neural Networks (ANNs). Experimental results with popular network architectures and datasets, show that multi-level spiking neurons provide better information compression, allowing therefore a reduction in latency without performance loss. When compared to binary SNNs on image classification scenarios, multi-level SNNs indeed allow reducing by 2 to 3 times the energy consumption depending on the number of quantization intervals. On neuromorphic data, our approach allows us to drastically reduce the inference latency to 1 timestep, which corresponds to a compression factor of 10 compared to previously published results. At the architectural level, we propose a new residual architecture that we call Sparse-ResNet. Through a careful analysis of the spikes propagation in residual connections we highlight a spike avalanche effect, that affects most spiking residual architectures. Using our Sparse-ResNet architecture, we can provide state-of-the-art accuracy results in image classification while reducing by more than 20% the network activity compared to the previous spiking ResNets.
☆ Zero-Shot Cross-Lingual Transfer using Prefix-Based Adaptation
With the release of new large language models (LLMs) like Llama and Mistral, zero-shot cross-lingual transfer has become increasingly feasible due to their multilingual pretraining and strong generalization capabilities. However, adapting these decoder-only LLMs to new tasks across languages remains challenging. While parameter-efficient fine-tuning (PeFT) techniques like Low-Rank Adaptation (LoRA) are widely used, prefix-based techniques such as soft prompt tuning, prefix tuning, and Llama Adapter are less explored, especially for zero-shot transfer in decoder-only models. We present a comprehensive study of three prefix-based methods for zero-shot cross-lingual transfer from English to 35+ high- and low-resource languages. Our analysis further explores transfer across linguistic families and scripts, as well as the impact of scaling model sizes from 1B to 24B. With Llama 3.1 8B, prefix methods outperform LoRA-baselines by up to 6% on the Belebele benchmark. Similar improvements were observed with Mistral v0.3 7B as well. Despite using only 1.23M learning parameters with prefix tuning, we achieve consistent improvements across diverse benchmarks. These findings highlight the potential of prefix-based techniques as an effective and scalable alternative to LoRA, particularly in low-resource multilingual settings.
comment: 12 Pages
☆ DistDF: Time-Series Forecasting Needs Joint-Distribution Wasserstein Alignment
Training time-series forecast models requires aligning the conditional distribution of model forecasts with that of the label sequence. The standard direct forecast (DF) approach resorts to minimize the conditional negative log-likelihood of the label sequence, typically estimated using the mean squared error. However, this estimation proves to be biased in the presence of label autocorrelation. In this paper, we propose DistDF, which achieves alignment by alternatively minimizing a discrepancy between the conditional forecast and label distributions. Because conditional discrepancies are difficult to estimate from finite time-series observations, we introduce a newly proposed joint-distribution Wasserstein discrepancy for time-series forecasting, which provably upper bounds the conditional discrepancy of interest. This discrepancy admits tractable, differentiable estimation from empirical samples and integrates seamlessly with gradient-based training. Extensive experiments show that DistDF improves the performance diverse forecast models and achieves the state-of-the-art forecasting performance. Code is available at https://anonymous.4open.science/r/DistDF-F66B.
☆ LoRA-DA: Data-Aware Initialization for Low-Rank Adaptation via Asymptotic Analysis
With the widespread adoption of LLMs, LoRA has become a dominant method for PEFT, and its initialization methods have attracted increasing attention. However, existing methods have notable limitations: many methods do not incorporate target-domain data, while gradient-based methods exploit data only at a shallow level by relying on one-step gradient decomposition, which remains unsatisfactory due to the weak empirical performance of the one-step fine-tuning model that serves as their basis, as well as the fact that these methods either lack a rigorous theoretical foundation or depend heavily on restrictive isotropic assumptions. In this paper, we establish a theoretical framework for data-aware LoRA initialization based on asymptotic analysis. Starting from a general optimization objective that minimizes the expectation of the parameter discrepancy between the fine-tuned and target models, we derive an optimization problem with two components: a bias term, which is related to the parameter distance between the fine-tuned and target models, and is approximated using a Fisher-gradient formulation to preserve anisotropy; and a variance term, which accounts for the uncertainty introduced by sampling stochasticity through the Fisher information. By solving this problem, we obtain an optimal initialization strategy for LoRA. Building on this theoretical framework, we develop an efficient algorithm, LoRA-DA, which estimates the terms in the optimization problem from a small set of target domain samples and obtains the optimal LoRA initialization. Empirical results across multiple benchmarks demonstrate that LoRA-DA consistently improves final accuracy over existing initialization methods. Additional studies show faster, more stable convergence, robustness across ranks, and only a small initialization overhead for LoRA-DA. The source code will be released upon publication.
☆ Generative AI for Healthcare: Fundamentals, Challenges, and Perspectives
Generative Artificial Intelligence (GenAI) is taking the world by storm. It promises transformative opportunities for advancing and disrupting existing practices, including healthcare. From large language models (LLMs) for clinical note synthesis and conversational assistance to multimodal systems that integrate medical imaging, electronic health records, and genomic data for decision support, GenAI is transforming the practice of medicine and the delivery of healthcare, such as diagnosis and personalized treatments, with great potential in reducing the cognitive burden on clinicians, thereby improving overall healthcare delivery. However, GenAI deployment in healthcare requires an in-depth understanding of healthcare tasks and what can and cannot be achieved. In this paper, we propose a data-centric paradigm in the design and deployment of GenAI systems for healthcare. Specifically, we reposition the data life cycle by making the medical data ecosystem as the foundational substrate for generative healthcare systems. This ecosystem is designed to sustainably support the integration, representation, and retrieval of diverse medical data and knowledge. With effective and efficient data processing pipelines, such as semantic vector search and contextual querying, it enables GenAI-powered operations for upstream model components and downstream clinical applications. Ultimately, it not only supplies foundation models with high-quality, multimodal data for large-scale pretraining and domain-specific fine-tuning, but also serves as a knowledge retrieval backend to support task-specific inference via the agentic layer. The ecosystem enables the deployment of GenAI for high-quality and effective healthcare delivery.
☆ Quantum-Resistant Networks Using Post-Quantum Cryptography
Quantum networks rely on both quantum and classical channels for coordinated operation. Current architectures employ entanglement distribution and key exchange over quantum channels but often assume that classical communication is sufficiently secure. In practice, classical channels protected by traditional cryptography remain vulnerable to quantum adversaries, since large-scale quantum computers could break widely used public-key schemes and reduce the effective security of symmetric cryptography. This perspective presents a quantum-resistant network architecture that secures classical communication with post-quantum cryptographic techniques while supporting entanglement-based communication over quantum channels. Beyond cryptographic protection, the framework incorporates continuous monitoring of both quantum and classical layers, together with orchestration across heterogeneous infrastructures, to ensure end-to-end security. Collectively, these mechanisms provide a pathway toward scalable, robust, and secure quantum networks that remain dependable against both classical and quantum-era threats.
comment: Submission for 2025 IEEE Workshop on Quantum IntelLigence, Learning & Security (QUILLS), https://sites.google.com/view/quills2025/home
☆ From Cross-Task Examples to In-Task Prompts: A Graph-Based Pseudo-Labeling Framework for In-context Learning
The capability of in-context learning (ICL) enables large language models (LLMs) to perform novel tasks without parameter updates by conditioning on a few input-output examples. However, collecting high-quality examples for new or challenging tasks can be costly and labor-intensive. In this work, we propose a cost-efficient two-stage pipeline that reduces reliance on LLMs for data labeling. Our approach first leverages readily available cross-task examples to prompt an LLM and pseudo-label a small set of target task instances. We then introduce a graph-based label propagation method that spreads label information to the remaining target examples without additional LLM queries. The resulting fully pseudo-labeled dataset is used to construct in-task demonstrations for ICL. This pipeline combines the flexibility of cross-task supervision with the scalability of LLM-free propagation. Experiments across five tasks demonstrate that our method achieves strong performance while lowering labeling costs.
☆ Audio Signal Processing Using Time Domain Mel-Frequency Wavelet Coefficient
Extracting features from the speech is the most critical process in speech signal processing. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used features in the majority of the speaker and speech recognition applications, as the filtering in this feature is similar to the filtering taking place in the human ear. But the main drawback of this feature is that it provides only the frequency information of the signal but does not provide the information about at what time which frequency is present. The wavelet transform, with its flexible time-frequency window, provides time and frequency information of the signal and is an appropriate tool for the analysis of non-stationary signals like speech. On the other hand, because of its uniform frequency scaling, a typical wavelet transform may be less effective in analysing speech signals, have poorer frequency resolution in low frequencies, and be less in line with human auditory perception. Hence, it is necessary to develop a feature that incorporates the merits of both MFCC and wavelet transform. A great deal of studies are trying to combine both these features. The present Wavelet Transform based Mel-scaled feature extraction methods require more computation when a wavelet transform is applied on top of Mel-scale filtering, since it adds extra processing steps. Here we are proposing a method to extract Mel scale features in time domain combining the concept of wavelet transform, thus reducing the computational burden of time-frequency conversion and the complexity of wavelet extraction. Combining our proposed Time domain Mel frequency Wavelet Coefficient(TMFWC) technique with the reservoir computing methodology has significantly improved the efficiency of audio signal processing.
☆ Local Performance vs. Out-of-Distribution Generalization: An Empirical Analysis of Personalized Federated Learning in Heterogeneous Data Environments
In the context of Federated Learning with heterogeneous data environments, local models tend to converge to their own local model optima during local training steps, deviating from the overall data distributions. Aggregation of these local updates, e.g., with FedAvg, often does not align with the global model optimum (client drift), resulting in an update that is suboptimal for most clients. Personalized Federated Learning approaches address this challenge by exclusively focusing on the average local performances of clients' models on their own data distribution. Generalization to out-of-distribution samples, which is a substantial benefit of FedAvg and represents a significant component of robustness, appears to be inadequately incorporated into the assessment and evaluation processes. This study involves a thorough evaluation of Federated Learning approaches, encompassing both their local performance and their generalization capabilities. Therefore, we examine different stages within a single communication round to enable a more nuanced understanding of the considered metrics. Furthermore, we propose and incorporate a modified approach of FedAvg, designated as Federated Learning with Individualized Updates (FLIU), extending the algorithm by a straightforward individualization step with an adaptive personalization factor. We evaluate and compare the approaches empirically using MNIST and CIFAR-10 under various distributional conditions, including benchmark IID and pathological non-IID, as well as additional novel test environments with Dirichlet distribution specifically developed to stress the algorithms on complex data heterogeneity.
☆ Design and Optimization of Cloud Native Homomorphic Encryption Workflows for Privacy-Preserving ML Inference
As machine learning (ML) models become increasingly deployed through cloud infrastructures, the confidentiality of user data during inference poses a significant security challenge. Homomorphic Encryption (HE) has emerged as a compelling cryptographic technique that enables computation on encrypted data, allowing predictions to be generated without decrypting sensitive inputs. However, the integration of HE within large scale cloud native pipelines remains constrained by high computational overhead, orchestration complexity, and model compatibility issues. This paper presents a systematic framework for the design and optimization of cloud native homomorphic encryption workflows that support privacy-preserving ML inference. The proposed architecture integrates containerized HE modules with Kubernetes-based orchestration, enabling elastic scaling and parallel encrypted computation across distributed environments. Furthermore, optimization strategies including ciphertext packing, polynomial modulus adjustment, and operator fusion are employed to minimize latency and resource consumption while preserving cryptographic integrity. Experimental results demonstrate that the proposed system achieves up to 3.2times inference acceleration and 40% reduction in memory utilization compared to conventional HE pipelines. These findings illustrate a practical pathway for deploying secure ML-as-a-Service (MLaaS) systems that guarantee data confidentiality under zero-trust cloud conditions.
comment: 6 pages 2 figures, 2 tABLES
☆ Online neural fusion of distortionless differential beamformers for robust speech enhancement
Fixed beamforming is widely used in practice since it does not depend on the estimation of noise statistics and provides relatively stable performance. However, a single beamformer cannot adapt to varying acoustic conditions, which limits its interference suppression capability. To address this, adaptive convex combination (ACC) algorithms have been introduced, where the outputs of multiple fixed beamformers are linearly combined to improve robustness. Nevertheless, ACC often fails in highly non-stationary scenarios, such as rapidly moving interference, since its adaptive updates cannot reliably track rapid changes. To overcome this limitation, we propose a frame-online neural fusion framework for multiple distortionless differential beamformers, which estimates the combination weights through a neural network. Compared with conventional ACC, the proposed method adapts more effectively to dynamic acoustic environments, achieving stronger interference suppression while maintaining the distortionless constraint.
☆ Diffusion Models for Wireless Transceivers: From Pilot-Efficient Channel Estimation to AI-Native 6G Receivers
With the development of artificial intelligence (AI) techniques, implementing AI-based techniques to improve wireless transceivers becomes an emerging research topic. Within this context, AI-based channel characterization and estimation become the focus since these methods have not been solved by traditional methods very well and have become the bottleneck of transceiver efficiency in large-scale orthogonal frequency division multiplexing (OFDM) systems. Specifically, by formulating channel estimation as a generative AI problem, generative AI methods such as diffusion models (DMs) can efficiently deal with rough initial estimations and have great potential to cooperate with traditional signal processing methods. This paper focuses on the transceiver design of OFDM systems based on DMs, provides an illustration of the potential of DMs in wireless transceivers, and points out the related research directions brought by DMs. We also provide a proof-of-concept case study of further adapting DMs for better wireless receiver performance.
comment: Submitted for potential publication in IEEE Wireless Communications
☆ A word association network methodology for evaluating implicit biases in LLMs compared to humans
As Large language models (LLMs) become increasingly integrated into our lives, their inherent social biases remain a pressing concern. Detecting and evaluating these biases can be challenging because they are often implicit rather than explicit in nature, so developing evaluation methods that assess the implicit knowledge representations of LLMs is essential. We present a novel word association network methodology for evaluating implicit biases in LLMs based on simulating semantic priming within LLM-generated word association networks. Our prompt-based approach taps into the implicit relational structures encoded in LLMs, providing both quantitative and qualitative assessments of bias. Unlike most prompt-based evaluation methods, our method enables direct comparisons between various LLMs and humans, providing a valuable point of reference and offering new insights into the alignment of LLMs with human cognition. To demonstrate the utility of our methodology, we apply it to both humans and several widely used LLMs to investigate social biases related to gender, religion, ethnicity, sexual orientation, and political party. Our results reveal both convergences and divergences between LLM and human biases, providing new perspectives on the potential risks of using LLMs. Our methodology contributes to a systematic, scalable, and generalizable framework for evaluating and comparing biases across multiple LLMs and humans, advancing the goal of transparent and socially responsible language technologies.
comment: 24 pages, 13 figures, 3 tables
☆ Sample-efficient and Scalable Exploration in Continuous-Time RL
Reinforcement learning algorithms are typically designed for discrete-time dynamics, even though the underlying real-world control systems are often continuous in time. In this paper, we study the problem of continuous-time reinforcement learning, where the unknown system dynamics are represented using nonlinear ordinary differential equations (ODEs). We leverage probabilistic models, such as Gaussian processes and Bayesian neural networks, to learn an uncertainty-aware model of the underlying ODE. Our algorithm, COMBRL, greedily maximizes a weighted sum of the extrinsic reward and model epistemic uncertainty. This yields a scalable and sample-efficient approach to continuous-time model-based RL. We show that COMBRL achieves sublinear regret in the reward-driven setting, and in the unsupervised RL setting (i.e., without extrinsic rewards), we provide a sample complexity bound. In our experiments, we evaluate COMBRL in both standard and unsupervised RL settings and demonstrate that it scales better, is more sample-efficient than prior methods, and outperforms baselines across several deep RL tasks.
comment: 26 pages, 6 figures, 6 tables
☆ Mitigating Hallucination in Large Language Models (LLMs): An Application-Oriented Survey on RAG, Reasoning, and Agentic Systems
Hallucination remains one of the key obstacles to the reliable deployment of large language models (LLMs), particularly in real-world applications. Among various mitigation strategies, Retrieval-Augmented Generation (RAG) and reasoning enhancement have emerged as two of the most effective and widely adopted approaches, marking a shift from merely suppressing hallucinations to balancing creativity and reliability. However, their synergistic potential and underlying mechanisms for hallucination mitigation have not yet been systematically examined. This survey adopts an application-oriented perspective of capability enhancement to analyze how RAG, reasoning enhancement, and their integration in Agentic Systems mitigate hallucinations. We propose a taxonomy distinguishing knowledge-based and logic-based hallucinations, systematically examine how RAG and reasoning address each, and present a unified framework supported by real-world applications, evaluations, and benchmarks.
comment: 25 pages, 7 figures, 3 tables
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ Adaptive Surrogate Gradients for Sequential Reinforcement Learning in Spiking Neural Networks
Neuromorphic computing systems are set to revolutionize energy-constrained robotics by achieving orders-of-magnitude efficiency gains, while enabling native temporal processing. Spiking Neural Networks (SNNs) represent a promising algorithmic approach for these systems, yet their application to complex control tasks faces two critical challenges: (1) the non-differentiable nature of spiking neurons necessitates surrogate gradients with unclear optimization properties, and (2) the stateful dynamics of SNNs require training on sequences, which in reinforcement learning (RL) is hindered by limited sequence lengths during early training, preventing the network from bridging its warm-up period. We address these challenges by systematically analyzing surrogate gradient slope settings, showing that shallower slopes increase gradient magnitude in deeper layers but reduce alignment with true gradients. In supervised learning, we find no clear preference for fixed or scheduled slopes. The effect is much more pronounced in RL settings, where shallower slopes or scheduled slopes lead to a 2.1x improvement in both training and final deployed performance. Next, we propose a novel training approach that leverages a privileged guiding policy to bootstrap the learning process, while still exploiting online environment interactions with the spiking policy. Combining our method with an adaptive slope schedule for a real-world drone position control task, we achieve an average return of 400 points, substantially outperforming prior techniques, including Behavioral Cloning and TD3BC, which achieve at most --200 points under the same conditions. This work advances both the theoretical understanding of surrogate gradient learning in SNNs and practical training methodologies for neuromorphic controllers demonstrated in real-world robotic systems.
☆ Affordance Representation and Recognition for Autonomous Agents
The autonomy of software agents is fundamentally dependent on their ability to construct an actionable internal world model from the structured data that defines their digital environment, such as the Document Object Model (DOM) of web pages and the semantic descriptions of web services. However, constructing this world model from raw structured data presents two critical challenges: the verbosity of raw HTML makes it computationally intractable for direct use by foundation models, while the static nature of hardcoded API integrations prevents agents from adapting to evolving services. This paper introduces a pattern language for world modeling from structured data, presenting two complementary architectural patterns. The DOM Transduction Pattern addresses the challenge of web page complexity by distilling} a verbose, raw DOM into a compact, task-relevant representation or world model optimized for an agent's reasoning core. Concurrently, the Hypermedia Affordances Recognition Pattern enables the agent to dynamically enrich its world model by parsing standardized semantic descriptions to discover and integrate the capabilities of unknown web services at runtime. Together, these patterns provide a robust framework for engineering agents that can efficiently construct and maintain an accurate world model, enabling scalable, adaptive, and interoperable automation across the web and its extended resources.
☆ Charting the European LLM Benchmarking Landscape: A New Taxonomy and a Set of Best Practices LREC 2026
While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.
comment: 12 pages, 1 figure. Submitted to the LREC 2026 conference
☆ Rethinking Visual Intelligence: Insights from Video Pretraining
Large language models (LLMs) have demonstrated that large-scale pretraining enables systems to adapt rapidly to new problems with little supervision in the language domain. This success, however, has not translated as effectively to the visual domain, where models, including LLMs, continue to struggle with compositional understanding, sample efficiency, and general-purpose problem-solving. We investigate Video Diffusion Models (VDMs) as a promising direction for bridging this gap. Pretraining on spatiotemporal data endows these models with strong inductive biases for structure and dynamics, which we hypothesize can support broad task adaptability. To test this, we design a controlled evaluation in which both a pretrained LLM and a pretrained VDM are equipped with lightweight adapters and presented with tasks in their natural modalities. Across benchmarks including ARC-AGI, ConceptARC, visual games, route planning, and cellular automata, VDMs demonstrate higher data efficiency than their language counterparts. Taken together, our results indicate that video pretraining offers inductive biases that support progress toward visual foundation models.
comment: Updated version from preprint arXiv:2506.07280 (Gen2Gen) focused on visual intelligence. This work can be considered as v2
☆ Law in Silico: Simulating Legal Society with LLM-Based Agents
Since real-world legal experiments are often costly or infeasible, simulating legal societies with Artificial Intelligence (AI) systems provides an effective alternative for verifying and developing legal theory, as well as supporting legal administration. Large Language Models (LLMs), with their world knowledge and role-playing capabilities, are strong candidates to serve as the foundation for legal society simulation. However, the application of LLMs to simulate legal systems remains underexplored. In this work, we introduce Law in Silico, an LLM-based agent framework for simulating legal scenarios with individual decision-making and institutional mechanisms of legislation, adjudication, and enforcement. Our experiments, which compare simulated crime rates with real-world data, demonstrate that LLM-based agents can largely reproduce macro-level crime trends and provide insights that align with real-world observations. At the same time, micro-level simulations reveal that a well-functioning, transparent, and adaptive legal system offers better protection of the rights of vulnerable individuals.
☆ Can LLMs Write Faithfully? An Agent-Based Evaluation of LLM-generated Islamic Content NeurIPS 2025
Large language models are increasingly used for Islamic guidance, but risk misquoting texts, misapplying jurisprudence, or producing culturally inconsistent responses. We pilot an evaluation of GPT-4o, Ansari AI, and Fanar on prompts from authentic Islamic blogs. Our dual-agent framework uses a quantitative agent for citation verification and six-dimensional scoring (e.g., Structure, Islamic Consistency, Citations) and a qualitative agent for five-dimensional side-by-side comparison (e.g., Tone, Depth, Originality). GPT-4o scored highest in Islamic Accuracy (3.93) and Citation (3.38), Ansari AI followed (3.68, 3.32), and Fanar lagged (2.76, 1.82). Despite relatively strong performance, models still fall short in reliably producing accurate Islamic content and citations -- a paramount requirement in faith-sensitive writing. GPT-4o had the highest mean quantitative score (3.90/5), while Ansari AI led qualitative pairwise wins (116/200). Fanar, though trailing, introduces innovations for Islamic and Arabic contexts. This study underscores the need for community-driven benchmarks centering Muslim perspectives, offering an early step toward more reliable AI in Islamic knowledge and other high-stakes domains such as medicine, law, and journalism.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: 5th Muslims in Machine Learning (MusIML) Workshop
☆ Human-Level Reasoning: A Comparative Study of Large Language Models on Logical and Abstract Reasoning
Evaluating reasoning ability in Large Language Models (LLMs) is important for advancing artificial intelligence, as it transcends mere linguistic task performance. It involves understanding whether these models truly understand information, perform inferences, and are able to draw conclusions in a logical and valid way. This study compare logical and abstract reasoning skills of several LLMs - including GPT, Claude, DeepSeek, Gemini, Grok, Llama, Mistral, Perplexity, and Sabi\'a - using a set of eight custom-designed reasoning questions. The LLM results are benchmarked against human performance on the same tasks, revealing significant differences and indicating areas where LLMs struggle with deduction.
comment: 12 pages
☆ MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation
The recent success of large language models (LLMs) has renewed interest in whether recommender systems can achieve similar scaling benefits. Conventional recommenders, dominated by massive embedding tables, tend to plateau as embedding dimensions grow. In contrast, the emerging generative paradigm replaces embeddings with compact Semantic ID (SID) sequences produced by autoregressive Transformers. Yet most industrial deployments remain proprietary, leaving two fundamental questions open: (1) Do the expected scaling laws hold on public benchmarks? (2) What is the minimal post-training recipe that enables competitive performance? We present MiniOneRec, to the best of our knowledge, the first fully open-source generative recommendation framework, which provides an end-to-end workflow spanning SID construction, supervised fine-tuning, and recommendation-oriented reinforcement learning. We generate SIDs via a Residual Quantized VAE and post-train Qwen backbones ranging from 0.5B to 7B parameters on the Amazon Review dataset. Our experiments reveal a consistent downward trend in both training and evaluation losses with increasing model size, validating the parameter efficiency of the generative approach. To further enhance performance, we propose a lightweight yet effective post-training pipeline that (1) enforces full-process SID alignment and (2) applies reinforcement learning with constrained decoding and hybrid rewards. Together, these techniques yield significant improvements in both ranking accuracy and candidate diversity.
comment: Technical Report
☆ OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows
Computer-using agents powered by Vision-Language Models (VLMs) have demonstrated human-like capabilities in operating digital environments like mobile platforms. While these agents hold great promise for advancing digital automation, their potential for unsafe operations, such as system compromise and privacy leakage, is raising significant concerns. Detecting these safety concerns across the vast and complex operational space of mobile environments presents a formidable challenge that remains critically underexplored. To establish a foundation for mobile agent safety research, we introduce MobileRisk-Live, a dynamic sandbox environment accompanied by a safety detection benchmark comprising realistic trajectories with fine-grained annotations. Built upon this, we propose OS-Sentinel, a novel hybrid safety detection framework that synergistically combines a Formal Verifier for detecting explicit system-level violations with a VLM-based Contextual Judge for assessing contextual risks and agent actions. Experiments show that OS-Sentinel achieves 10%-30% improvements over existing approaches across multiple metrics. Further analysis provides critical insights that foster the development of safer and more reliable autonomous mobile agents.
comment: work in progress
☆ Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
Retrieval-Augmented Generation (RAG) struggles on long, structured financial filings where relevant evidence is sparse and cross-referenced. This paper presents a systematic investigation of advanced metadata-driven Retrieval-Augmented Generation (RAG) techniques, proposing and evaluating a novel, multi-stage RAG architecture that leverages LLM-generated metadata. We introduce a sophisticated indexing pipeline to create contextually rich document chunks and benchmark a spectrum of enhancements, including pre-retrieval filtering, post-retrieval reranking, and enriched embeddings, benchmarked on the FinanceBench dataset. Our results reveal that while a powerful reranker is essential for precision, the most significant performance gains come from embedding chunk metadata directly with text ("contextual chunks"). Our proposed optimal architecture combines LLM-driven pre-retrieval optimizations with these contextual embeddings to achieve superior performance. Additionally, we present a custom metadata reranker that offers a compelling, cost-effective alternative to commercial solutions, highlighting a practical trade-off between peak performance and operational efficiency. This study provides a blueprint for building robust, metadata-aware RAG systems for financial document analysis.
comment: Preprint version submitted to the International Journal of Accounting Information Systems; currently under major revision. 20 pages, 1 figure, 1 table
☆ APTBench: Benchmarking Agentic Potential of Base LLMs During Pre-Training
With the rapid development of LLM-based agents, there is a growing trend to incorporate agent-specific data into the pre-training stage of LLMs, aiming to better align LLMs with real-world autonomous task execution. However, current pre-training benchmarks primarily focus on isolated and static skills, e.g., common knowledge or mathematical/code reasoning, and fail to reflect model's agentic capabilities. On the other hand, agent benchmarks are typically designed for post-trained models, requiring multi-turn task execution abilities that base models struggle to support. Thus, there is a compelling need for a benchmark that can evaluate agentic potentials during pre-training and guide the model training more effectively. To address this gap, we propose APTBench, a framework that converts real-world agent tasks and successful trajectories into multiple-choice or text completion questions tailored for base models. It focuses on core agentic abilities, e.g., planning and action, and covers key agent scenarios, software engineering and deep research. Compared to existing general-purpose benchmarks, APTBench offers a more predictive signal of a model's downstream performance as an agent, while remaining significantly more lightweight and cost-effective than full-scale, end-to-end agent evaluations after post-training.
comment: 46 pages
☆ Improving LLM Reasoning via Dependency-Aware Query Decomposition and Logic-Parallel Content Expansion
The integration of Large Language Models (LLMs) into real-time Web applications, such as AI-powered search and conversational agents, presents a fundamental Web infrastructure challenge: reconciling the demand for high-quality, complex reasoning with the stringent low-latency and high-throughput requirements of interactive services. Current LLM reasoning, hindered by computationally inefficient sequential generation and rigid reasoning strategies, creates a critical bottleneck for the Web services. Existing approaches typically optimize the LLM reasoning for either efficiency or quality but struggle to achieve both, and thus fail to meet the dual requirements of modern Web platforms. To overcome these limitations, we propose Orion, a novel and efficient reasoning framework that enables dependency-aware query decomposition and logic-parallel content expansion. Concretely, Orion decomposes a single query reasoning process into two synergistic phases: (1) \textit{key point generation}, which distills logically structured key points through retrieval-augmented few-shot prompting, and (2) \textit{content parallel expansion}, which concurrently elaborates on these points based on a dependency graph to ensure logical consistency. Furthermore, Orion introduces a pipeline scheduling mechanism that exploits the complementary computational characteristics of the two phases (generation imposes pressure on GPU computing and expansion stresses on GPU memory) across multiple queries, enabling cross-query parallelism and dramatically improving reasoning performance (\ie, efficiency and quality). Experiments on diverse benchmarks show that Orion not only delivers up to 4.33x higher token generation speed and 3.42x lower answer latency over the baselines but also improves reasoning quality by up to 18.75% through explicitly modeling inter-point dependencies.
☆ Policy Cards: Machine-Readable Runtime Governance for Autonomous AI Agents
Policy Cards are introduced as a machine-readable, deployment-layer standard for expressing operational, regulatory, and ethical constraints for AI agents. The Policy Card sits with the agent and enables it to follow required constraints at runtime. It tells the agent what it must and must not do. As such, it becomes an integral part of the deployed agent. Policy Cards extend existing transparency artifacts such as Model, Data, and System Cards by defining a normative layer that encodes allow/deny rules, obligations, evidentiary requirements, and crosswalk mappings to assurance frameworks including NIST AI RMF, ISO/IEC 42001, and the EU AI Act. Each Policy Card can be validated automatically, version-controlled, and linked to runtime enforcement or continuous-audit pipelines. The framework enables verifiable compliance for autonomous agents, forming a foundation for distributed assurance in multi-agent ecosystems. Policy Cards provide a practical mechanism for integrating high-level governance with hands-on engineering practice and enabling accountable autonomy at scale.
comment: First published on 19/10/2025. Canonical archived record and DOI: 10.5281/zenodo.17391796
☆ An N-of-1 Artificial Intelligence Ecosystem for Precision Medicine
Artificial intelligence in medicine is built to serve the average patient. By minimizing error across large datasets, most systems deliver strong aggregate accuracy yet falter at the margins: patients with rare variants, multimorbidity, or underrepresented demographics. This average patient fallacy erodes both equity and trust. We propose a different design: a multi-agent ecosystem for N-of-1 decision support. In this environment, agents clustered by organ systems, patient populations, and analytic modalities draw on a shared library of models and evidence synthesis tools. Their results converge in a coordination layer that weighs reliability, uncertainty, and data density before presenting the clinician with a decision-support packet: risk estimates bounded by confidence ranges, outlier flags, and linked evidence. Validation shifts from population averages to individual reliability, measured by error in low-density regions, calibration in the small, and risk--coverage trade-offs. Anticipated challenges include computational demands, automation bias, and regulatory fit, addressed through caching strategies, consensus checks, and adaptive trial frameworks. By moving from monolithic models to orchestrated intelligence, this approach seeks to align medical AI with the first principle of medicine: care that is transparent, equitable, and centered on the individual.
comment: This study has been supported by grants from the National Institutes of Health: The National Institute on Aging R01AG074372 and The National Institute of Allergy and Infectious Diseases R01AI165535
☆ Perception Learning: A Formal Separation of Sensory Representation Learning from Decision Learning
We introduce Perception Learning (PeL), a paradigm that optimizes an agent's sensory interface $f_\phi:\mathcal{X}\to\mathcal{Z}$ using task-agnostic signals, decoupled from downstream decision learning $g_\theta:\mathcal{Z}\to\mathcal{Y}$. PeL directly targets label-free perceptual properties, such as stability to nuisances, informativeness without collapse, and controlled geometry, assessed via objective representation-invariant metrics. We formalize the separation of perception and decision, define perceptual properties independent of objectives or reparameterizations, and prove that PeL updates preserving sufficient invariants are orthogonal to Bayes task-risk gradients. Additionally, we provide a suite of task-agnostic evaluation metrics to certify perceptual quality.
☆ LongWeave: A Long-Form Generation Benchmark Bridging Real-World Relevance and Verifiability EMNLP
Generating long, informative, and factual outputs remains a major challenge for Large Language Models (LLMs). Existing benchmarks for long-form generation typically assess real-world queries with hard-to-verify metrics or use synthetic setups that ease evaluation but overlook real-world intricacies. In this paper, we introduce \textbf{LongWeave}, which balances real-world and verifiable assessment with Constraint-Verifier Evaluation (CoV-Eval). CoV-Eval constructs tasks by first defining verifiable targets within real-world scenarios, then systematically generating corresponding queries, textual materials, and constraints based on these targets. This ensures that tasks are both realistic and objectively assessable, enabling rigorous assessment of model capabilities in meeting complex real-world constraints. LongWeave supports customizable input/output lengths (up to 64K/8K tokens) across seven distinct tasks. Evaluation on 23 LLMs shows that even state-of-the-art models encounter significant challenges in long-form generation as real-world complexity and output length increase.
comment: EMNLP Findings 2025
☆ A Unified Geometric Space Bridging AI Models and the Human Brain
For decades, neuroscientists and computer scientists have pursued a shared ambition: to understand intelligence and build it. Modern artificial neural networks now rival humans in language, perception, and reasoning, yet it is still largely unknown whether these artificial systems organize information as the brain does. Existing brain-AI alignment studies have shown the striking correspondence between the two systems, but such comparisons remain bound to specific inputs and tasks, offering no common ground for comparing how AI models with different kinds of modalities-vision, language, or multimodal-are intrinsically organized. Here we introduce a groundbreaking concept of Brain-like Space: a unified geometric space in which every AI model can be precisely situated and compared by mapping its intrinsic spatial attention topological organization onto canonical human functional brain networks, regardless of input modality, task, or sensory domain. Our extensive analysis of 151 Transformer-based models spanning state-of-the-art large vision models, large language models, and large multimodal models uncovers a continuous arc-shaped geometry within this space, reflecting a gradual increase of brain-likeness; different models exhibit distinct distribution patterns within this geometry associated with different degrees of brain-likeness, shaped not merely by their modality but by whether the pretraining paradigm emphasizes global semantic abstraction and whether the positional encoding scheme facilitates deep fusion across different modalities. Moreover, the degree of brain-likeness for a model and its downstream task performance are not "identical twins". The Brain-like Space provides the first unified framework for situating, quantifying, and comparing intelligence across domains, revealing the deep organizational principles that bridge machines and the brain.
☆ VDSAgents: A PCS-Guided Multi-Agent System for Veridical Data Science Automation
Large language models (LLMs) become increasingly integrated into data science workflows for automated system design. However, these LLM-driven data science systems rely solely on the internal reasoning of LLMs, lacking guidance from scientific and theoretical principles. This limits their trustworthiness and robustness, especially when dealing with noisy and complex real-world datasets. This paper provides VDSAgents, a multi-agent system grounded in the Predictability-Computability-Stability (PCS) principles proposed in the Veridical Data Science (VDS) framework. Guided by PCS principles, the system implements a modular workflow for data cleaning, feature engineering, modeling, and evaluation. Each phase is handled by an elegant agent, incorporating perturbation analysis, unit testing, and model validation to ensure both functionality and scientific auditability. We evaluate VDSAgents on nine datasets with diverse characteristics, comparing it with state-of-the-art end-to-end data science systems, such as AutoKaggle and DataInterpreter, using DeepSeek-V3 and GPT-4o as backends. VDSAgents consistently outperforms the results of AutoKaggle and DataInterpreter, which validates the feasibility of embedding PCS principles into LLM-driven data science automation.
comment: 29 pages, 6 figures. Yunxuan Jiang and Silan Hu contributed equally. Code available at https://github.com/fengzer/VDSAgents
☆ Generative Large Language Models (gLLMs) in Content Analysis: A Practical Guide for Communication Research
Generative Large Language Models (gLLMs), such as ChatGPT, are increasingly being used in communication research for content analysis. Studies show that gLLMs can outperform both crowd workers and trained coders, such as research assistants, on various coding tasks relevant to communication science, often at a fraction of the time and cost. Additionally, gLLMs can decode implicit meanings and contextual information, be instructed using natural language, deployed with only basic programming skills, and require little to no annotated data beyond a validation dataset - constituting a paradigm shift in automated content analysis. Despite their potential, the integration of gLLMs into the methodological toolkit of communication research remains underdeveloped. In gLLM-assisted quantitative content analysis, researchers must address at least seven critical challenges that impact result quality: (1) codebook development, (2) prompt engineering, (3) model selection, (4) parameter tuning, (5) iterative refinement, (6) validation of the model's reliability, and optionally, (7) performance enhancement. This paper synthesizes emerging research on gLLM-assisted quantitative content analysis and proposes a comprehensive best-practice guide to navigate these challenges. Our goal is to make gLLM-based content analysis more accessible to a broader range of communication researchers and ensure adherence to established disciplinary quality standards of validity, reliability, reproducibility, and research ethics.
☆ Beyond MCQ: An Open-Ended Arabic Cultural QA Benchmark with Dialect Variants
Large Language Models (LLMs) are increasingly used to answer everyday questions, yet their performance on culturally grounded and dialectal content remains uneven across languages. We propose a comprehensive method that (i) translates Modern Standard Arabic (MSA) multiple-choice questions (MCQs) into English and several Arabic dialects, (ii) converts them into open-ended questions (OEQs), (iii) benchmarks a range of zero-shot and fine-tuned LLMs under both MCQ and OEQ settings, and (iv) generates chain-of-thought (CoT) rationales to fine-tune models for step-by-step reasoning. Using this method, we extend an existing dataset in which QAs are parallelly aligned across multiple language varieties, making it, to our knowledge, the first of its kind. We conduct extensive experiments with both open and closed models. Our findings show that (i) models underperform on Arabic dialects, revealing persistent gaps in culturally grounded and dialect-specific knowledge; (ii) Arabic-centric models perform well on MCQs but struggle with OEQs; and (iii) CoT improves judged correctness while yielding mixed n-gram-based metrics. The developed dataset will be publicly released to support further research on culturally and linguistically inclusive evaluation.
comment: Cultural Knowledge, Everyday Knowledge, Open-Ended Question, Chain-of-Thought, Large Language Models, Native, Multilingual, Language Diversity
☆ Few-Shot Remote Sensing Image Scene Classification with CLIP and Prompt Learning
Remote sensing applications increasingly rely on deep learning for scene classification. However, their performance is often constrained by the scarcity of labeled data and the high cost of annotation across diverse geographic and sensor domains. While recent vision-language models like CLIP have shown promise by learning transferable representations at scale by aligning visual and textual modalities, their direct application to remote sensing remains suboptimal due to significant domain gaps and the need for task-specific semantic adaptation. To address this critical challenge, we systematically explore prompt learning as a lightweight and efficient adaptation strategy for few-shot remote sensing image scene classification. We evaluate several representative methods, including Context Optimization, Conditional Context Optimization, Multi-modal Prompt Learning, and Prompting with Self-Regulating Constraints. These approaches reflect complementary design philosophies: from static context optimization to conditional prompts for enhanced generalization, multi-modal prompts for joint vision-language adaptation, and semantically regularized prompts for stable learning without forgetting. We benchmark these prompt-learning methods against two standard baselines: zero-shot CLIP with hand-crafted prompts and a linear probe trained on frozen CLIP features. Through extensive experiments on multiple benchmark remote sensing datasets, including cross-dataset generalization tests, we demonstrate that prompt learning consistently outperforms both baselines in few-shot scenarios. Notably, Prompting with Self-Regulating Constraints achieves the most robust cross-domain performance. Our findings underscore prompt learning as a scalable and efficient solution for bridging the domain gap in satellite and aerial imagery, providing a strong foundation for future research in this field.
☆ Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.
comment: Preprint, 25 pages, 9 figures. Code: https://github.com/WooooDyy/Critique-RL
Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
☆ Retrieval and Argumentation Enhanced Multi-Agent LLMs for Judgmental Forecasting
Judgmental forecasting is the task of making predictions about future events based on human judgment. This task can be seen as a form of claim verification, where the claim corresponds to a future event and the task is to assess the plausibility of that event. In this paper, we propose a novel multi-agent framework for claim verification, whereby different agents may disagree on claim veracity and bring specific evidence for and against the claims, represented as quantitative bipolar argumentation frameworks (QBAFs). We then instantiate the framework for supporting claim verification, with a variety of agents realised with Large Language Models (LLMs): (1) ArgLLM agents, an existing approach for claim verification that generates and evaluates QBAFs; (2) RbAM agents, whereby LLM-empowered Relation-based Argument Mining (RbAM) from external sources is used to generate QBAFs; (3) RAG-ArgLLM agents, extending ArgLLM agents with a form of Retrieval-Augmented Generation (RAG) of arguments from external sources. Finally, we conduct experiments with two standard judgmental forecasting datasets, with instances of our framework with two or three agents, empowered by six different base LLMs. We observe that combining evidence from agents can improve forecasting accuracy, especially in the case of three agents, while providing an explainable combination of evidence for claim verification.
☆ Verifying Large Language Models' Reasoning Paths via Correlation Matrix Rank
Despite the strong reasoning ability of large language models~(LLMs), they are prone to errors and hallucinations. As a result, how to check their outputs effectively and efficiently has become a critical problem in their applications. Existing checking methods heavily rely on external resources, such as trained verifiers (e.g., process/outcome reward models) or elaborate prompts, which lead to high computational overhead and are only applicable to specific domains. In this paper, we investigate whether the internal behaviors of LLMs have already implied the credibility of their reasoning paths. Specifically, we find that the rank of the correlation matrix between the input problem and the output reasoning path is a robust indicator of reasoning correctness. Different from other correctness indicators for LLMs, the calculation of the correlation matrix only relies on the LLM itself, which avoids the hassle of training a separate model or designing complicated prompts. Based on it, we design a simple, plug-and-play Self-Indicator method to reweight candidate reasoning paths, which achieves significant performance improvements than other voting and verification methods with very few computational overhead. Our experiments across multiple LLMs of varying scales and model families have further shown the effectiveness of Self-Indicator. It achieves over 75% accuracy in distinguishing correct reasoning paths from incorrect ones, and, in turn, improves the accuracies on three reasoning benchmarks by more than 8%.
☆ Investigating Intra-Abstraction Policies For Non-exact Abstraction Algorithms
One weakness of Monte Carlo Tree Search (MCTS) is its sample efficiency which can be addressed by building and using state and/or action abstractions in parallel to the tree search such that information can be shared among nodes of the same layer. The primary usage of abstractions for MCTS is to enhance the Upper Confidence Bound (UCB) value during the tree policy by aggregating visits and returns of an abstract node. However, this direct usage of abstractions does not take the case into account where multiple actions with the same parent might be in the same abstract node, as these would then all have the same UCB value, thus requiring a tiebreak rule. In state-of-the-art abstraction algorithms such as pruned On the Go Abstractions (pruned OGA), this case has not been noticed, and a random tiebreak rule was implicitly chosen. In this paper, we propose and empirically evaluate several alternative intra-abstraction policies, several of which outperform the random policy across a majority of environments and parameter settings.
☆ ViPER: Empowering the Self-Evolution of Visual Perception Abilities in Vision-Language Model
The limited capacity for fine-grained visual perception presents a critical bottleneck for Vision-Language Models (VLMs) in real-world applications. Addressing this is challenging due to the scarcity of high-quality data and the limitations of existing methods: supervised fine-tuning (SFT) often compromises general capabilities, while reinforcement fine-tuning (RFT) prioritizes textual reasoning over visual perception. To bridge this gap, we propose a novel two-stage task that structures visual perception learning as a coarse-to-fine progressive process. Based on this task formulation, we develop ViPER, a self-bootstrapping framework specifically designed to enable iterative evolution through self-critiquing and self-prediction. By synergistically integrating image-level and instance-level reconstruction with a two-stage reinforcement learning strategy, ViPER establishes a closed-loop training paradigm, where internally synthesized data directly fuel the enhancement of perceptual ability. Applied to the Qwen2.5-VL family, ViPER produces the Qwen-Viper series. With an average gain of 1.7% on seven comprehensive benchmarks spanning various tasks and up to 6.0% on fine-grained perception, Qwen-Viper consistently demonstrates superior performance across different vision-language scenarios while maintaining generalizability. Beyond enabling self-improvement in perceptual capabilities, ViPER provides concrete evidence for the reciprocal relationship between generation and understanding, a breakthrough to developing more autonomous and capable VLMs.
☆ MCP-Flow: Facilitating LLM Agents to Master Real-World, Diverse and Scaling MCP Tools
Large Language Models (LLMs) increasingly rely on external tools to perform complex, realistic tasks, yet their ability to utilize the rapidly expanding Model Contextual Protocol (MCP) ecosystem remains limited. Existing MCP research covers few servers, depends on costly manual curation, and lacks training support, hindering progress toward real-world deployment. To overcome these limitations, we introduce MCP-Flow, an automated web-agent-driven pipeline for large-scale server discovery, data synthesis, and model training. MCP-Flow collects and filters data from 1166 servers and 11536 tools, producing 68733 high-quality instruction-function call pairs and 6439 trajectories, far exceeding prior work in scale and diversity. Extensive experiments demonstrate MCP-Flow's effectiveness in driving superior MCP tool selection, function-call generation, and enhanced agentic task performance. MCP-Flow thus provides a scalable foundation for advancing LLM agents' proficiency in real-world MCP environments. MCP-Flow is publicly available at \href{https://github.com/wwh0411/MCP-Flow}{https://github.com/wwh0411/MCP-Flow}.
☆ Training-free Source Attribution of AI-generated Images via Resynthesis
Synthetic image source attribution is a challenging task, especially in data scarcity conditions requiring few-shot or zero-shot classification capabilities. We present a new training-free one-shot attribution method based on image resynthesis. A prompt describing the image under analysis is generated, then it is used to resynthesize the image with all the candidate sources. The image is attributed to the model which produced the resynthesis closest to the original image in a proper feature space. We also introduce a new dataset for synthetic image attribution consisting of face images from commercial and open-source text-to-image generators. The dataset provides a challenging attribution framework, useful for developing new attribution models and testing their capabilities on different generative architectures. The dataset structure allows to test approaches based on resynthesis and to compare them to few-shot methods. Results from state-of-the-art few-shot approaches and other baselines show that the proposed resynthesis method outperforms existing techniques when only a few samples are available for training or fine-tuning. The experiments also demonstrate that the new dataset is a challenging one and represents a valuable benchmark for developing and evaluating future few-shot and zero-shot methods.
comment: 14 pages, 4 figures, 1 table, accepted at "The 17th IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS2025)", Perth, Australia
Survey and Tutorial of Reinforcement Learning Methods in Process Systems Engineering
Sequential decision making under uncertainty is central to many Process Systems Engineering (PSE) challenges, where traditional methods often face limitations related to controlling and optimizing complex and stochastic systems. Reinforcement Learning (RL) offers a data-driven approach to derive control policies for such challenges. This paper presents a survey and tutorial on RL methods, tailored for the PSE community. We deliver a tutorial on RL, covering fundamental concepts and key algorithmic families including value-based, policy-based and actor-critic methods. Subsequently, we survey existing applications of these RL techniques across various PSE domains, such as in fed-batch and continuous process control, process optimization, and supply chains. We conclude with PSE focused discussion of specialized techniques and emerging directions. By synthesizing the current state of RL algorithm development and implications for PSE this work identifies successes, challenges, trends, and outlines avenues for future research at the interface of these fields.
☆ DynaRend: Learning 3D Dynamics via Masked Future Rendering for Robotic Manipulation NeurIPS 2025
Learning generalizable robotic manipulation policies remains a key challenge due to the scarcity of diverse real-world training data. While recent approaches have attempted to mitigate this through self-supervised representation learning, most either rely on 2D vision pretraining paradigms such as masked image modeling, which primarily focus on static semantics or scene geometry, or utilize large-scale video prediction models that emphasize 2D dynamics, thus failing to jointly learn the geometry, semantics, and dynamics required for effective manipulation. In this paper, we present DynaRend, a representation learning framework that learns 3D-aware and dynamics-informed triplane features via masked reconstruction and future prediction using differentiable volumetric rendering. By pretraining on multi-view RGB-D video data, DynaRend jointly captures spatial geometry, future dynamics, and task semantics in a unified triplane representation. The learned representations can be effectively transferred to downstream robotic manipulation tasks via action value map prediction. We evaluate DynaRend on two challenging benchmarks, RLBench and Colosseum, as well as in real-world robotic experiments, demonstrating substantial improvements in policy success rate, generalization to environmental perturbations, and real-world applicability across diverse manipulation tasks.
comment: Accepted to NeurIPS 2025
☆ Trajectory Design for UAV-Based Low-Altitude Wireless Networks in Unknown Environments: A Digital Twin-Assisted TD3 Approach
Unmanned aerial vehicles (UAVs) are emerging as key enablers for low-altitude wireless network (LAWN), particularly when terrestrial networks are unavailable. In such scenarios, the environmental topology is typically unknown; hence, designing efficient and safe UAV trajectories is essential yet challenging. To address this, we propose a digital twin (DT)-assisted training and deployment framework. In this framework, the UAV transmits integrated sensing and communication signals to provide communication services to ground users, while simultaneously collecting echoes that are uploaded to the DT server to progressively construct virtual environments (VEs). These VEs accelerate model training and are continuously updated with real-time UAV sensing data during deployment, supporting decision-making and enhancing flight safety. Based on this framework, we further develop a trajectory design scheme that integrates simulated annealing for efficient user scheduling with the twin-delayed deep deterministic policy gradient algorithm for continuous trajectory design, aiming to minimize mission completion time while ensuring obstacle avoidance. Simulation results demonstrate that the proposed approach achieves faster convergence, higher flight safety, and shorter mission completion time compared with baseline methods, providing a robust and efficient solution for LAWN deployment in unknown environments.
comment: 13 pages, 11 figures
☆ Enabling Near-realtime Remote Sensing via Satellite-Ground Collaboration of Large Vision-Language Models
Large vision-language models (LVLMs) have recently demonstrated great potential in remote sensing (RS) tasks (e.g., disaster monitoring) conducted by low Earth orbit (LEO) satellites. However, their deployment in real-world LEO satellite systems remains largely unexplored, hindered by limited onboard computing resources and brief satellite-ground contacts. We propose Grace, a satellite-ground collaborative system designed for near-realtime LVLM inference in RS tasks. Accordingly, we deploy compact LVLM on satellites for realtime inference, but larger ones on ground stations (GSs) to guarantee end-to-end performance. Grace is comprised of two main phases that are asynchronous satellite-GS Retrieval-Augmented Generation (RAG), and a task dispatch algorithm. Firstly, we still the knowledge archive of GS RAG to satellite archive with tailored adaptive update algorithm during limited satellite-ground data exchange period. Secondly, propose a confidence-based test algorithm that either processes the task onboard the satellite or offloads it to the GS. Extensive experiments based on real-world satellite orbital data show that Grace reduces the average latency by 76-95% compared to state-of-the-art methods, without compromising inference accuracy.
comment: 15 pages, 11 figures
☆ MAGNET: A Multi-Graph Attentional Network for Code Clone Detection
Code clone detection is a fundamental task in software engineering that underpins refactoring, debugging, plagiarism detection, and vulnerability analysis. Existing methods often rely on singular representations such as abstract syntax trees (ASTs), control flow graphs (CFGs), and data flow graphs (DFGs), which capture only partial aspects of code semantics. Hybrid approaches have emerged, but their fusion strategies are typically handcrafted and ineffective. In this study, we propose MAGNET, a multi-graph attentional framework that jointly leverages AST, CFG, and DFG representations to capture syntactic and semantic features of source code. MAGNET integrates residual graph neural networks with node-level self-attention to learn both local and long-range dependencies, introduces a gated cross-attention mechanism for fine-grained inter-graph interactions, and employs Set2Set pooling to fuse multi-graph embeddings into unified program-level representations. Extensive experiments on BigCloneBench and Google Code Jam demonstrate that MAGNET achieves state-of-the-art performance with an overall F1 score of 96.5\% and 99.2\% on the two datasets, respectively. Ablation studies confirm the critical contributions of multi-graph fusion and each attentional component. Our code is available at https://github.com/ZixianReid/Multigraph_match
☆ PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. While generative reward models (GRMs) offer greater interpretability than traditional scalar RMs, current training paradigms remain limited. Pair-wise methods rely on binary good-versus-bad labels, which cause mismatches for point-wise inference and necessitate complex pairing strategies for effective application in RLHF. On the other hand, point-wise methods require more elaborate absolute labeling with rubric-driven criteria, resulting in poor adaptability and high annotation costs. In this work, we propose the Preference-Aware Task-Adaptive Reward Model (PaTaRM), a unified framework that integrates a preference-aware reward (PAR) mechanism with dynamic rubric adaptation. PaTaRM leverages relative preference information from pairwise data to construct robust point-wise training signals, eliminating the need for explicit point-wise labels. Simultaneously, it employs a task-adaptive rubric system that flexibly generates evaluation criteria for both global task consistency and instance-specific fine-grained reasoning. This design enables efficient, generalizable, and interpretable reward modeling for RLHF. Extensive experiments show that PaTaRM achieves an average relative improvement of 4.7% on RewardBench and RMBench across Qwen3-8B and Qwen3-14B models. Furthermore, PaTaRM boosts downstream RLHF performance, with an average improvement of 13.6% across IFEval and InFoBench benchmarks, confirming its effectiveness and robustness. Our code is available at https://github.com/JaneEyre0530/PaTaRM.
☆ Closing Gaps: An Imputation Analysis of ICU Vital Signs
As more Intensive Care Unit (ICU) data becomes available, the interest in developing clinical prediction models to improve healthcare protocols increases. However, the lack of data quality still hinders clinical prediction using Machine Learning (ML). Many vital sign measurements, such as heart rate, contain sizeable missing segments, leaving gaps in the data that could negatively impact prediction performance. Previous works have introduced numerous time-series imputation techniques. Nevertheless, more comprehensive work is needed to compare a representative set of methods for imputing ICU vital signs and determine the best practice. In reality, ad-hoc imputation techniques that could decrease prediction accuracy, like zero imputation, are still used. In this work, we compare established imputation techniques to guide researchers in improving the performance of clinical prediction models by selecting the most accurate imputation technique. We introduce an extensible and reusable benchmark with currently 15 imputation and 4 amputation methods, created for benchmarking on major ICU datasets. We hope to provide a comparative basis and facilitate further ML development to bring more models into clinical practice.
comment: Preprint
☆ MuSaG: A Multimodal German Sarcasm Dataset with Full-Modal Annotations
Sarcasm is a complex form of figurative language in which the intended meaning contradicts the literal one. Its prevalence in social media and popular culture poses persistent challenges for natural language understanding, sentiment analysis, and content moderation. With the emergence of multimodal large language models, sarcasm detection extends beyond text and requires integrating cues from audio and vision. We present MuSaG, the first German multimodal sarcasm detection dataset, consisting of 33 minutes of manually selected and human-annotated statements from German television shows. Each instance provides aligned text, audio, and video modalities, annotated separately by humans, enabling evaluation in unimodal and multimodal settings. We benchmark nine open-source and commercial models, spanning text, audio, vision, and multimodal architectures, and compare their performance to human annotations. Our results show that while humans rely heavily on audio in conversational settings, models perform best on text. This highlights a gap in current multimodal models and motivates the use of MuSaG for developing models better suited to realistic scenarios. We release MuSaG publicly to support future research on multimodal sarcasm detection and human-model alignment.
☆ SymMaP: Improving Computational Efficiency in Linear Solvers through Symbolic Preconditioning
Matrix preconditioning is a critical technique to accelerate the solution of linear systems, where performance heavily depends on the selection of preconditioning parameters. Traditional parameter selection approaches often define fixed constants for specific scenarios. However, they rely on domain expertise and fail to consider the instance-wise features for individual problems, limiting their performance. In contrast, machine learning (ML) approaches, though promising, are hindered by high inference costs and limited interpretability. To combine the strengths of both approaches, we propose a symbolic discovery framework-namely, Symbolic Matrix Preconditioning (SymMaP)-to learn efficient symbolic expressions for preconditioning parameters. Specifically, we employ a neural network to search the high-dimensional discrete space for expressions that can accurately predict the optimal parameters. The learned expression allows for high inference efficiency and excellent interpretability (expressed in concise symbolic formulas), making it simple and reliable for deployment. Experimental results show that SymMaP consistently outperforms traditional strategies across various benchmarks.
☆ MGA: Memory-Driven GUI Agent for Observation-Centric Interaction WWW2025
The rapid progress of Large Language Models (LLMs) and their multimodal extensions (MLLMs) has enabled agentic systems capable of perceiving and acting across diverse environments. A challenging yet impactful frontier is the development of GUI agents, which must navigate complex desktop and web interfaces while maintaining robustness and generalization. Existing paradigms typically model tasks as long-chain executions, concatenating historical trajectories into the context. While approaches such as Mirage and GTA1 refine planning or introduce multi-branch action selection, they remain constrained by two persistent issues: Dependence on historical trajectories, which amplifies error propagation. And Local exploration bias, where "decision-first, observation-later" mechanisms overlook critical interface cues. We introduce the Memory-Driven GUI Agent (MGA), which reframes GUI interaction around the principle of observe first, then decide. MGA models each step as an independent, context-rich environment state represented by a triad: current screenshot, task-agnostic spatial information, and a dynamically updated structured memory. Experiments on OSworld benchmarks, real desktop applications (Chrome, VSCode, VLC), and cross-task transfer demonstrate that MGA achieves substantial gains in robustness, generalization, and efficiency compared to state-of-the-art baselines. The code is publicly available at: {https://anonymous.4open.science/r/MGA-3571}.
comment: Submitted to WWW2025
☆ UniPlanner: A Unified Motion Planning Framework for Autonomous Vehicle Decision-Making Systems via Multi-Dataset Integration
Motion planning is a critical component of autonomous vehicle decision-making systems, directly determining trajectory safety and driving efficiency. While deep learning approaches have advanced planning capabilities, existing methods remain confined to single-dataset training, limiting their robustness in planning. Through systematic analysis, we discover that vehicular trajectory distributions and history-future correlations demonstrate remarkable consistency across different datasets. Based on these findings, we propose UniPlanner, the first planning framework designed for multi-dataset integration in autonomous vehicle decision-making. UniPlanner achieves unified cross-dataset learning through three synergistic innovations. First, the History-Future Trajectory Dictionary Network (HFTDN) aggregates history-future trajectory pairs from multiple datasets, using historical trajectory similarity to retrieve relevant futures and generate cross-dataset planning guidance. Second, the Gradient-Free Trajectory Mapper (GFTM) learns robust history-future correlations from multiple datasets, transforming historical trajectories into universal planning priors. Its gradient-free design ensures the introduction of valuable priors while preventing shortcut learning, making the planning knowledge safely transferable. Third, the Sparse-to-Dense (S2D) paradigm implements adaptive dropout to selectively suppress planning priors during training for robust learning, while enabling full prior utilization during inference to maximize planning performance.
☆ BLM$_1$: A Boundless Large Model for Cross-Space, Cross-Task, and Cross-Embodiment Learning
Multimodal large language models (MLLMs) have advanced vision-language reasoning and are increasingly deployed in embodied agents. However, significant limitations remain: MLLMs generalize poorly across digital-physical spaces and embodiments; vision-language-action models (VLAs) produce low-level actions yet lack robust high-level embodied reasoning; and most embodied large language models (ELLMs) are constrained to digital-space with poor generalization to the physical world. Thus, unified models that operate seamlessly across digital and physical spaces while generalizing across embodiments and tasks remain absent. We introduce the \textbf{Boundless Large Model (BLM$_1$)}, a multimodal spatial foundation model that preserves instruction following and reasoning, incorporates embodied knowledge, and supports robust cross-embodiment control. BLM$_1$ integrates three key capabilities -- \textit{cross-space transfer, cross-task learning, and cross-embodiment generalization} -- via a two-stage training paradigm. Stage I injects embodied knowledge into the MLLM through curated digital corpora while maintaining language competence. Stage II trains a policy module through an intent-bridging interface that extracts high-level semantics from the MLLM to guide control, without fine-tuning the MLLM backbone. This process is supported by a self-collected cross-embodiment demonstration suite spanning four robot embodiments and six progressively challenging tasks. Evaluations across digital and physical benchmarks show that a single BLM$_1$ instance outperforms four model families -- MLLMs, ELLMs, VLAs, and GMLMs -- achieving $\sim\!\textbf{6%}$ gains in digital tasks and $\sim\!\textbf{3%}$ in physical tasks.
Self-supervised Synthetic Pretraining for Inference of Stellar Mass Embedded in Dense Gas NeurIPS 2025
Stellar mass is a fundamental quantity that determines the properties and evolution of stars. However, estimating stellar masses in star-forming regions is challenging because young stars are obscured by dense gas and the regions are highly inhomogeneous, making spherical dynamical estimates unreliable. Supervised machine learning could link such complex structures to stellar mass, but it requires large, high-quality labeled datasets from high-resolution magneto-hydrodynamical (MHD) simulations, which are computationally expensive. We address this by pretraining a vision transformer on one million synthetic fractal images using the self-supervised framework DINOv2, and then applying the frozen model to limited high-resolution MHD simulations. Our results demonstrate that synthetic pretraining improves frozen-feature regression stellar mass predictions, with the pretrained model performing slightly better than a supervised model trained on the same limited simulations. Principal component analysis of the extracted features further reveals semantically meaningful structures, suggesting that the model enables unsupervised segmentation of star-forming regions without the need for labeled data or fine-tuning.
comment: 6 pages, 3 figures, 1 table, accepted for NeurIPS 2025 ML4PS workshop
☆ Enhancing Vision-Language Models for Autonomous Driving through Task-Specific Prompting and Spatial Reasoning IROS 2025
This technical report presents our solution for the RoboSense Challenge at IROS 2025, which evaluates Vision-Language Models (VLMs) on autonomous driving scene understanding across perception, prediction, planning, and corruption detection tasks. We propose a systematic framework built on four core components. First, a Mixture-of-Prompts router classifies questions and dispatches them to task-specific expert prompts, eliminating interference across diverse question types. Second, task-specific prompts embed explicit coordinate systems, spatial reasoning rules, role-playing, Chain-of-Thought/Tree-of-Thought reasoning, and few-shot examples tailored to each task. Third, a visual assembly module composes multi-view images with object crops, magenta markers, and adaptive historical frames based on question requirements. Fourth, we configure model inference parameters (temperature, top-p, message roles) per task to optimize output quality. Implemented on Qwen2.5-VL-72B, our approach achieves 70.87% average accuracy on Phase-1 (clean data) and 72.85% on Phase-2 (corrupted data), demonstrating that structured prompting and spatial grounding substantially enhance VLM performance on safety-critical autonomous driving tasks. Code and prompt are available at https://github.com/wuaodi/UCAS-CSU-phase2.
comment: RoboSense Challenge with IROS 2025
☆ BMGQ: A Bottom-up Method for Generating Complex Multi-hop Reasoning Questions from Semi-structured Data
Building training-ready multi-hop question answering (QA) datasets that truly stress a model's retrieval and reasoning abilities remains highly challenging recently. While there have been a few recent evaluation datasets that capture the characteristics of hard-to-search but easy-to-verify problems -- requiring the integration of ambiguous, indirect, and cross-domain cues -- these data resources remain scarce and are mostly designed for evaluation, making them unsuitable for supervised fine-tuning (SFT) or reinforcement learning (RL). Meanwhile, manually curating non-trivially retrievable questions -- where answers cannot be found through a single direct query but instead require multi-hop reasoning over oblique and loosely connected evidence -- incurs prohibitive human costs and fails to scale, creating a critical data bottleneck for training high-capability retrieval-and-reasoning agents. To address this, we present an automated framework for generating high-difficulty, training-ready multi-hop questions from semi-structured knowledge sources. The system (i) grows diverse, logically labeled evidence clusters through Natural Language Inference (NLI)-based relation typing and diversity-aware expansion; (ii) applies reverse question construction to compose oblique cues so that isolated signals are underinformative but their combination uniquely identifies the target entity; and (iii) enforces quality with a two-step evaluation pipeline that combines multi-model consensus filtering with structured constraint decomposition and evidence-based matching. The result is a scalable process that yields complex, retrieval-resistant yet verifiable questions suitable for SFT/RL training as well as challenging evaluation, substantially reducing human curation effort while preserving the difficulty profile of strong evaluation benchmarks.
☆ Ko-MuSR: A Multistep Soft Reasoning Benchmark for LLMs Capable of Understanding Korean ACL
We present Ko-MuSR, the first benchmark to comprehensively evaluate multistep, soft reasoning in long Korean narratives while minimizing data contamination. Built following MuSR, Ko-MuSR features fully Korean narratives, reasoning chains, and multiple-choice questions verified by human annotators for logical consistency and answerability. Evaluations of four large language models -- two multilingual and two Korean-specialized -- show that multilingual models outperform Korean-focused ones even in Korean reasoning tasks, indicating cross-lingual generalization of reasoning ability. Carefully designed prompting strategies, which combine few-shot examples, reasoning traces, and task-specific hints, further boost accuracy, approaching human-level performance. Ko-MuSR offers a solid foundation for advancing Korean NLP by enabling systematic evaluation of long-context reasoning and prompting strategies.
comment: submitted to ACL ARR Rolling Review
☆ From Observability Data to Diagnosis: An Evolving Multi-agent System for Incident Management in Cloud Systems
Incident management (IM) is central to the reliability of large-scale cloud systems. Yet manual IM, where on-call engineers examine metrics, logs, and traces is labor-intensive and error-prone in the face of massive and heterogeneous observability data. Existing automated IM approaches often struggle to generalize across systems, provide limited interpretability, and incur high deployment costs, which hinders adoption in practice. In this paper, we present OpsAgent, a lightweight, self-evolving multi-agent system for IM that employs a training-free data processor to convert heterogeneous observability data into structured textual descriptions, along with a multi-agent collaboration framework that makes diagnostic inference transparent and auditable. To support continual capability growth, OpsAgent also introduces a dual self-evolution mechanism that integrates internal model updates with external experience accumulation, thereby closing the deployment loop. Comprehensive experiments on the OPENRCA benchmark demonstrate state-of-the-art performance and show that OpsAgent is generalizable, interpretable, cost-efficient, and self-evolving, making it a practically deployable and sustainable solution for long-term operation in real-world cloud systems.
☆ Beyond Line-Level Filtering for the Pretraining Corpora of LLMs ACL
While traditional line-level filtering techniques, such as line-level deduplication and trailing-punctuation filters, are commonly used, these basic methods can sometimes discard valuable content, negatively affecting downstream performance. In this paper, we introduce two methods-pattern-aware line-level deduplication (PLD) and pattern-aware trailing punctuation filtering (PTF)-by enhancing the conventional filtering techniques. Our approach not only considers line-level signals but also takes into account their sequential distribution across documents, enabling us to retain structurally important content that might otherwise be removed. We evaluate these proposed methods by training small language models (1 B parameters) in both English and Korean. The results demonstrate that our methods consistently improve performance on multiple-choice benchmarks and significantly enhance generative question-answering accuracy on both SQuAD v1 and KorQuAD v1.
comment: submitted to ACL ARR Rolling Review
☆ VC4VG: Optimizing Video Captions for Text-to-Video Generation EMNLP 2025
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.
comment: Accepted by EMNLP 2025
☆ Compositional Image Synthesis with Inference-Time Scaling
Despite their impressive realism, modern text-to-image models still struggle with compositionality, often failing to render accurate object counts, attributes, and spatial relations. To address this challenge, we present a training-free framework that combines an object-centric approach with self-refinement to improve layout faithfulness while preserving aesthetic quality. Specifically, we leverage large language models (LLMs) to synthesize explicit layouts from input prompts, and we inject these layouts into the image generation process, where a object-centric vision-language model (VLM) judge reranks multiple candidates to select the most prompt-aligned outcome iteratively. By unifying explicit layout-grounding with self-refine-based inference-time scaling, our framework achieves stronger scene alignment with prompts compared to recent text-to-image models. The code are available at https://github.com/gcl-inha/ReFocus.
comment: projcet page: https://github.com/gcl-inha/ReFocus
☆ LagMemo: Language 3D Gaussian Splatting Memory for Multi-modal Open-vocabulary Multi-goal Visual Navigation
Navigating to a designated goal using visual information is a fundamental capability for intelligent robots. Most classical visual navigation methods are restricted to single-goal, single-modality, and closed set goal settings. To address the practical demands of multi-modal, open-vocabulary goal queries and multi-goal visual navigation, we propose LagMemo, a navigation system that leverages a language 3D Gaussian Splatting memory. During exploration, LagMemo constructs a unified 3D language memory. With incoming task goals, the system queries the memory, predicts candidate goal locations, and integrates a local perception-based verification mechanism to dynamically match and validate goals during navigation. For fair and rigorous evaluation, we curate GOAT-Core, a high-quality core split distilled from GOAT-Bench tailored to multi-modal open-vocabulary multi-goal visual navigation. Experimental results show that LagMemo's memory module enables effective multi-modal open-vocabulary goal localization, and that LagMemo outperforms state-of-the-art methods in multi-goal visual navigation. Project page: https://weekgoodday.github.io/lagmemo
☆ HistoLens: An Interactive XAI Toolkit for Verifying and Mitigating Flaws in Vision-Language Models for Histopathology
For doctors to truly trust artificial intelligence, it can't be a black box. They need to understand its reasoning, almost as if they were consulting a colleague. We created HistoLens1 to be that transparent, collaborative partner. It allows a pathologist to simply ask a question in plain English about a tissue slide--just as they would ask a trainee. Our system intelligently translates this question into a precise query for its AI engine, which then provides a clear, structured report. But it doesn't stop there. If a doctor ever asks, "Why?", HistoLens can instantly provide a 'visual proof' for any finding--a heatmap that points to the exact cells and regions the AI used for its analysis. We've also ensured the AI focuses only on the patient's tissue, just like a trained pathologist would, by teaching it to ignore distracting background noise. The result is a workflow where the pathologist remains the expert in charge, using a trustworthy AI assistant to verify their insights and make faster, more confident diagnoses.
☆ Taming the Tail: NoI Topology Synthesis for Mixed DL Workloads on Chiplet-Based Accelerators
Heterogeneous chiplet-based systems improve scaling by disag-gregating CPUs/GPUs and emerging technologies (HBM/DRAM).However this on-package disaggregation introduces a latency inNetwork-on-Interposer(NoI). We observe that in modern large-modelinference, parameters and activations routinely move backand forth from HBM/DRAM, injecting large, bursty flows into theinterposer. These memory-driven transfers inflate tail latency andviolate Service Level Agreements (SLAs) across k-ary n-cube base-line NoI topologies. To address this gap we introduce an InterferenceScore (IS) that quantifies worst-case slowdown under contention.We then formulate NoI synthesis as a multi-objective optimization(MOO) problem. We develop PARL (Partition-Aware ReinforcementLearner), a topology generator that balances throughput, latency,and power. PARL-generated topologies reduce contention at the memory cut, meet SLAs, and cut worst-case slowdown to 1.2 times while maintaining competitive mean throughput relative to link-rich meshes. Overall, this reframes NoI design for heterogeneouschiplet accelerators with workload-aware objectives.
☆ Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation NeurIPS 2025
We present MGAudio, a novel flow-based framework for open-domain video-to-audio generation, which introduces model-guided dual-role alignment as a central design principle. Unlike prior approaches that rely on classifier-based or classifier-free guidance, MGAudio enables the generative model to guide itself through a dedicated training objective designed for video-conditioned audio generation. The framework integrates three main components: (1) a scalable flow-based Transformer model, (2) a dual-role alignment mechanism where the audio-visual encoder serves both as a conditioning module and as a feature aligner to improve generation quality, and (3) a model-guided objective that enhances cross-modal coherence and audio realism. MGAudio achieves state-of-the-art performance on VGGSound, reducing FAD to 0.40, substantially surpassing the best classifier-free guidance baselines, and consistently outperforms existing methods across FD, IS, and alignment metrics. It also generalizes well to the challenging UnAV-100 benchmark. These results highlight model-guided dual-role alignment as a powerful and scalable paradigm for conditional video-to-audio generation. Code is available at: https://github.com/pantheon5100/mgaudio
comment: accepted by NeurIPS 2025
☆ Learning Parameterized Skills from Demonstrations
We present DEPS, an end-to-end algorithm for discovering parameterized skills from expert demonstrations. Our method learns parameterized skill policies jointly with a meta-policy that selects the appropriate discrete skill and continuous parameters at each timestep. Using a combination of temporal variational inference and information-theoretic regularization methods, we address the challenge of degeneracy common in latent variable models, ensuring that the learned skills are temporally extended, semantically meaningful, and adaptable. We empirically show that learning parameterized skills from multitask expert demonstrations significantly improves generalization to unseen tasks. Our method outperforms multitask as well as skill learning baselines on both LIBERO and MetaWorld benchmarks. We also demonstrate that DEPS discovers interpretable parameterized skills, such as an object grasping skill whose continuous arguments define the grasp location.
comment: Neurips 2025
☆ Modeling Electric Vehicle Car-Following Behavior: Classical vs Machine Learning Approach
The increasing adoption of electric vehicles (EVs) necessitates an understanding of their driving behavior to enhance traffic safety and develop smart driving systems. This study compares classical and machine learning models for EV car following behavior. Classical models include the Intelligent Driver Model (IDM), Optimum Velocity Model (OVM), Optimal Velocity Relative Velocity (OVRV), and a simplified CACC model, while the machine learning approach employs a Random Forest Regressor. Using a real world dataset of an EV following an internal combustion engine (ICE) vehicle under varied driving conditions, we calibrated classical model parameters by minimizing the RMSE between predictions and real data. The Random Forest model predicts acceleration using spacing, speed, and gap type as inputs. Results demonstrate the Random Forest's superior accuracy, achieving RMSEs of 0.0046 (medium gap), 0.0016 (long gap), and 0.0025 (extra long gap). Among physics based models, CACC performed best, with an RMSE of 2.67 for long gaps. These findings highlight the machine learning model's performance across all scenarios. Such models are valuable for simulating EV behavior and analyzing mixed autonomy traffic dynamics in EV integrated environments.
♻ ☆ Memory Mosaics at scale NeurIPS 2025
Memory Mosaics [Zhang et al., 2025], networks of associative memories, have demonstrated appealing compositional and in-context learning capabilities on medium-scale networks (GPT-2 scale) and synthetic small datasets. This work shows that these favorable properties remain when we scale memory mosaics to large language model sizes (llama-8B scale) and real-world datasets. To this end, we scale memory mosaics to 10B size, we train them on one trillion tokens, we introduce a couple architectural modifications ("Memory Mosaics v2"), we assess their capabilities across three evaluation dimensions: training-knowledge storage, new-knowledge storage, and in-context learning. Throughout the evaluation, memory mosaics v2 match transformers on the learning of training knowledge (first dimension) and significantly outperforms transformers on carrying out new tasks at inference time (second and third dimensions). These improvements cannot be easily replicated by simply increasing the training data for transformers. A memory mosaics v2 trained on one trillion tokens still perform better on these tasks than a transformer trained on eight trillion tokens.
comment: Oral @ NeurIPS 2025
♻ ☆ Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
comment: published at the Semantic Web journal. The last version is available: https://doi.org/10.1177/22104968251385519
♻ ☆ ADMN: A Layer-Wise Adaptive Multimodal Network for Dynamic Input Noise and Compute Resources
Multimodal deep learning systems are deployed in dynamic scenarios due to the robustness afforded by multiple sensing modalities. Nevertheless, they struggle with varying compute resource availability (due to multi-tenancy, device heterogeneity, etc.) and fluctuating quality of inputs (from sensor feed corruption, environmental noise, etc.). Statically provisioned multimodal systems cannot adapt when compute resources change over time, while existing dynamic networks struggle with strict compute budgets. Additionally, both systems often neglect the impact of variations in modality quality. Consequently, modalities suffering substantial corruption may needlessly consume resources better allocated towards other modalities. We propose ADMN, a layer-wise Adaptive Depth Multimodal Network capable of tackling both challenges: it adjusts the total number of active layers across all modalities to meet strict compute resource constraints and continually reallocates layers across input modalities according to their modality quality. Our evaluations showcase ADMN can match the accuracy of state-of-the-art networks while reducing up to 75% of their floating-point operations.
comment: Accepted to Neurips 2025
♻ ☆ Arena-Lite: Efficient and Reliable Large Language Model Evaluation via Tournament-Based Direct Comparisons
As Large Language Models (LLMs) expand across domains, LLM judges have become essential for systems evaluation. Current benchmarks typically compare system outputs against baselines. This baseline-mediated approach, though convenient, yields lower reliability than direct comparison between systems. We propose Arena-Lite which integrates tournament structure on top of head-to-head comparison. The application of a tournament structure and direct comparison eliminates the need for baseline outputs, reduces the number of required comparisons, and allows higher reliability in system rankings. We conducted two experiments: (1) controlled stochastic modeling and (2) empirical validation with a real LLM judge. Those experiments collectively demonstrate that Arena-Lite consistently achieves higher reliability with fewer comparisons, even with smaller datasets or weaker judges. We release an easy-to-use web demonstration and code to foster adoption of Arena-Lite, streamlining model selection across research and industry communities. Arena-Lite demo and code are available on \href{https://huggingface.co/spaces/NCSOFT/ArenaLite}{https://huggingface.co/spaces/NCSOFT/ArenaLite}
comment: 8 pages for main body, 19 pages in total
♻ ☆ FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
comment: Webpage: https://fieldgen.github.io/
♻ ☆ Reproducible workflow for online AI in digital health
Online artificial intelligence (AI) algorithms are an important component of digital health interventions. These online algorithms are designed to continually learn and improve their performance as streaming data is collected on individuals. Deploying online AI presents a key challenge: balancing adaptability of online AI with reproducibility. Online AI in digital interventions is a rapidly evolving area, driven by advances in algorithms, sensors, software, and devices. Digital health intervention development and deployment is a continuous process, where implementation - including the AI decision-making algorithm - is interspersed with cycles of re-development and optimization. Each deployment informs the next, making iterative deployment a defining characteristic of this field. This iterative nature underscores the importance of reproducibility: data collected across deployments must be accurately stored to have scientific utility, algorithm behavior must be auditable, and results must be comparable over time to facilitate scientific discovery and trustworthy refinement. This paper proposes a reproducible scientific workflow for developing, deploying, and analyzing online AI decision-making algorithms in digital health interventions. Grounded in practical experience from multiple real-world deployments, this workflow addresses key challenges to reproducibility across all phases of the online AI algorithm development life-cycle.
♻ ☆ TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
♻ ☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
♻ ☆ CustomIR: Unsupervised Fine-Tuning of Dense Embeddings for Known Document Corpora
Dense embedding models have become critical for modern information retrieval, particularly in RAG pipelines, but their performance often degrades when applied to specialized corpora outside their pre-training distribution. To address thi we introduce CustomIR, a framework for unsupervised adaptation of pre-trained language embedding models to domain-specific corpora using synthetically generated query-document pairs. CustomIR leverages large language models (LLMs) to create diverse queries grounded in a known target corpus, paired with LLM-verified hard negatives, eliminating the need for costly human annotation. Experiments on enterprise email and messaging datasets show that CustomIR consistently improves retrieval effectiveness with small models gaining up to 2.3 points in Recall@10. This performance increase allows these small models to rival the performance of much larger alternatives, allowing for cheaper RAG deployments. These results highlight that targeted synthetic fine-tuning offers a scalable and cost-efficient strategy for increasing domain-specific performance.
♻ ☆ Robust Uncertainty Quantification for Self-Evolving Large Language Models via Continual Domain Pretraining
Continual Learning (CL) is essential for enabling self-evolving large language models (LLMs) to adapt and remain effective amid rapid knowledge growth. Yet, despite its importance, little attention has been given to establishing statistical reliability guarantees for LLMs under CL, particularly in the setting of continual domain pretraining (CDP). Conformal Prediction (CP) has shown promise in offering correctness guarantees for LLMs, but it faces major challenges in CDP: testing data often stems from unknown or shifting domain distributions, under which CP may no longer provide valid guarantees. Moreover, when high coverage is required, CP can yield excessively large prediction sets for unanswerable queries, reducing informativeness. To address these challenges, we introduce an adaptive rejection and non-exchangeable CP framework. Our method first estimates the distribution of questions across domains in the test set using transformer-based clustering, then reweights or resamples the calibration data accordingly. Building on this, adaptive rejection CP allows the LLM to selectively abstain from answering when its confidence or competence shifts significantly. Extensive experiments demonstrate that our framework enhances both the effectiveness and reliability of CP under CDP scenarios. Our code is available at: https://anonymous.4open.science/r/CPCL-8C12/
♻ ☆ GraSS: Scalable Data Attribution with Gradient Sparsification and Sparse Projection NeurIPS 2025
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ $β$-DQN: Improving Deep Q-Learning By Evolving the Behavior
While many sophisticated exploration methods have been proposed, their lack of generality and high computational cost often lead researchers to favor simpler methods like $\epsilon$-greedy. Motivated by this, we introduce $\beta$-DQN, a simple and efficient exploration method that augments the standard DQN with a behavior function $\beta$. This function estimates the probability that each action has been taken at each state. By leveraging $\beta$, we generate a population of diverse policies that balance exploration between state-action coverage and overestimation bias correction. An adaptive meta-controller is designed to select an effective policy for each episode, enabling flexible and explainable exploration. $\beta$-DQN is straightforward to implement and adds minimal computational overhead to the standard DQN. Experiments on both simple and challenging exploration domains show that $\beta$-DQN outperforms existing baseline methods across a wide range of tasks, providing an effective solution for improving exploration in deep reinforcement learning.
comment: aamas 2025
♻ ☆ TokenTiming: A Dynamic Alignment Method for Universal Speculative Decoding Model Pairs
Accelerating the inference of large language models (LLMs) has been a critical challenge in generative AI. Speculative decoding (SD) substantially improves LLM inference efficiency. However, its utility is limited by a fundamental constraint: the draft and target models must share the same vocabulary, thus limiting the herd of available draft models and often necessitating the training of a new model from scratch. Inspired by Dynamic Time Warping (DTW), a classic algorithm for aligning time series, we propose the algorithm TokenTiming for universal speculative decoding. It operates by re-encoding the draft token sequence to get a new target token sequence, and then uses DTW to build a mapping to transfer the probability distributions for speculative sampling. Benefiting from this, our method accommodates mismatched vocabularies and works with any off-the-shelf models without retraining and modification. We conduct comprehensive experiments on various tasks, demonstrating 1.57x speedup. This work enables a universal approach for draft model selection, making SD a more versatile and practical tool for LLM acceleration.
♻ ☆ Understanding AI Trustworthiness: A Scoping Review of AIES & FAccT Articles
Background: Trustworthy AI serves as a foundational pillar for two major AI ethics conferences: AIES and FAccT. However, current research often adopts techno-centric approaches, focusing primarily on technical attributes such as reliability, robustness, and fairness, while overlooking the sociotechnical dimensions critical to understanding AI trustworthiness in real-world contexts. Objectives: This scoping review aims to examine how the AIES and FAccT communities conceptualize, measure, and validate AI trustworthiness, identifying major gaps and opportunities for advancing a holistic understanding of trustworthy AI systems. Methods: We conduct a scoping review of AIES and FAccT conference proceedings to date, systematically analyzing how trustworthiness is defined, operationalized, and applied across different research domains. Our analysis focuses on conceptualization approaches, measurement methods, verification and validation techniques, application areas, and underlying values. Results: While significant progress has been made in defining technical attributes such as transparency, accountability, and robustness, our findings reveal critical gaps. Current research often predominantly emphasizes technical precision at the expense of social and ethical considerations. The sociotechnical nature of AI systems remains less explored and trustworthiness emerges as a contested concept shaped by those with the power to define it. Conclusions: An interdisciplinary approach combining technical rigor with social, cultural, and institutional considerations is essential for advancing trustworthy AI. We propose actionable measures for the AI ethics community to adopt holistic frameworks that genuinely address the complex interplay between AI systems and society, ultimately promoting responsible technological development that benefits all stakeholders.
comment: Submitted to Journal of Artificial Intelligence Research (JAIR)
♻ ☆ Group-in-Group Policy Optimization for LLM Agent Training NeurIPS 2025
Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to multi-turn LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on challenging agent benchmarks, including ALFWorld and WebShop, as well as tool-integrated reasoning on search-augmented QA tasks, using Qwen2.5-1.5B/3B/7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals, achieves performance gains of > 12% on ALFWorld and > 9% on WebShop over GRPO, and obtains superior performance on QA tasks (42.1% on 3B and 47.2% on 7B): all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.
comment: NeurIPS 2025
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
This paper introduces a broad class of Mirror Descent (MD) and Generalized Exponentiated Gradient (GEG) algorithms derived from trace-form entropies defined via deformed logarithms. Leveraging these generalized entropies yields MD \& GEG algorithms with improved convergence behavior, robustness to vanishing and exploding gradients, and inherent adaptability to non-Euclidean geometries through mirror maps. We establish deep connections between these methods and Amari's natural gradient, revealing a unified geometric foundation for additive, multiplicative, and natural gradient updates. Focusing on the Tsallis, Kaniadakis, Sharma--Taneja--Mittal, and Kaniadakis--Lissia--Scarfone entropy families, we show that each entropy induces a distinct Riemannian metric on the parameter space, leading to GEG algorithms that preserve the natural statistical geometry. The tunable parameters of deformed logarithms enable adaptive geometric selection, providing enhanced robustness and convergence over classical Euclidean optimization. Overall, our framework unifies key first-order MD optimization methods under a single information-geometric perspective based on generalized Bregman divergences, where the choice of entropy determines the underlying metric and dual geometric structure.
comment: 22 pages, 9 figures
♻ ☆ Multimodal Dreaming: A Global Workspace Approach to World Model-Based Reinforcement Learning
Humans leverage rich internal models of the world to reason about the future, imagine counterfactuals, and adapt flexibly to new situations. In Reinforcement Learning (RL), world models aim to capture how the environment evolves in response to the agent's actions, facilitating planning and generalization. However, typical world models directly operate on the environment variables (e.g. pixels, physical attributes), which can make their training slow and cumbersome; instead, it may be advantageous to rely on high-level latent dimensions that capture relevant multimodal variables. Global Workspace (GW) Theory offers a cognitive framework for multimodal integration and information broadcasting in the brain, and recent studies have begun to introduce efficient deep learning implementations of GW. Here, we evaluate the capabilities of an RL system combining GW with a world model. We compare our GW-Dreamer with various versions of the standard PPO and the original Dreamer algorithms. We show that performing the dreaming process (i.e., mental simulation) inside the GW latent space allows for training with fewer environment steps. As an additional emergent property, the resulting model (but not its comparison baselines) displays strong robustness to the absence of one of its observation modalities (images or simulation attributes). We conclude that the combination of GW with World Models holds great potential for improving decision-making in RL agents.
comment: Under review
♻ ☆ OmniResponse: Online Multimodal Conversational Response Generation in Dyadic Interactions
In this paper, we introduce Online Multimodal Conversational Response Generation (OMCRG), a novel task designed to produce synchronized verbal and non-verbal listener feedback online, based on the speaker's multimodal inputs. OMCRG captures natural dyadic interactions and introduces new challenges in aligning generated audio with listeners' facial responses. To tackle these challenges, we incorporate text as an intermediate modality to connect audio and facial responses. We propose OmniResponse, a Multimodal Large Language Model (MLLM) that autoregressively generates accurate multimodal listener responses. OmniResponse leverages a pretrained LLM enhanced with two core components: Chrono-Text Markup, which precisely timestamps generated text tokens, and TempoVoice, a controllable online text-to-speech (TTS) module that outputs speech synchronized with facial responses. To advance OMCRG research, we offer ResponseNet, a dataset of 696 detailed dyadic interactions featuring synchronized split-screen videos, multichannel audio, transcripts, and annotated facial behaviors. Comprehensive evaluations on ResponseNet demonstrate that OmniResponse outperforms baseline models in terms of semantic speech content, audio-visual synchronization, and generation quality. Our dataset, code, and models are publicly available.
comment: 25 pages, 9 figures
♻ ☆ BNMusic: Blending Environmental Noises into Personalized Music NeurIPS 2025
While being disturbed by environmental noises, the acoustic masking technique is a conventional way to reduce the annoyance in audio engineering that seeks to cover up the noises with other dominant yet less intrusive sounds. However, misalignment between the dominant sound and the noise-such as mismatched downbeats-often requires an excessive volume increase to achieve effective masking. Motivated by recent advances in cross-modal generation, in this work, we introduce an alternative method to acoustic masking, aiming to reduce the noticeability of environmental noises by blending them into personalized music generated based on user-provided text prompts. Following the paradigm of music generation using mel-spectrogram representations, we propose a Blending Noises into Personalized Music (BNMusic) framework with two key stages. The first stage synthesizes a complete piece of music in a mel-spectrogram representation that encapsulates the musical essence of the noise. In the second stage, we adaptively amplify the generated music segment to further reduce noise perception and enhance the blending effectiveness, while preserving auditory quality. Our experiments with comprehensive evaluations on MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our framework, highlighting the ability to blend environmental noise with rhythmically aligned, adaptively amplified, and enjoyable music segments, minimizing the noticeability of the noise, thereby improving overall acoustic experiences. Project page: https://d-fas.github.io/BNMusic_page/.
comment: This paper has been accepted by NeurIPS 2025
♻ ☆ The Formalism-Implementation Gap in Reinforcement Learning Research
The last decade has seen an upswing in interest and adoption of reinforcement learning (RL) techniques, in large part due to its demonstrated capabilities at performing certain tasks at "super-human levels". This has incentivized the community to prioritize research that demonstrates RL agent performance, often at the expense of research aimed at understanding their learning dynamics. Performance-focused research runs the risk of overfitting on academic benchmarks -- thereby rendering them less useful -- which can make it difficult to transfer proposed techniques to novel problems. Further, it implicitly diminishes work that does not push the performance-frontier, but aims at improving our understanding of these techniques. This paper argues two points: (i) RL research should stop focusing solely on demonstrating agent capabilities, and focus more on advancing the science and understanding of reinforcement learning; and (ii) we need to be more precise on how our benchmarks map to the underlying mathematical formalisms. We use the popular Arcade Learning Environment (ALE; Bellemare et al., 2013) as an example of a benchmark that, despite being increasingly considered "saturated", can be effectively used for developing this understanding, and facilitating the deployment of RL techniques in impactful real-world problems.
♻ ☆ Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric ($\mathrm{CMP}$) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true $\mathrm{CMP}$ is sufficient to simulate how the G\"odel Machine would behave under certain assumptions. We introduce the Huxley-G\"odel Machine (HGM), which, by estimating $\mathrm{CMP}$ and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using less wall-clock time. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is available at https://github.com/metauto-ai/HGM.
♻ ☆ The human-machine paradox: how collaboration creates or destroys value, and why augmentation is key to resolving it
When deploying artificial skills, managers widely assume that combining them with the human factor is a safe harbor, mitigating the risks of full automation in high-complexity tasks. This paper formally challenges the economic validity of this widespread assumption, arguing that the true bottom-line economic utility of a human-machine skill policy is dangerously misunderstood and highly contingent on situational and design factors. To investigate this gap, we develop an in-silico framework based on Monte Carlo simulations grounded in empirical pragmatism to quantify the economic impact of human and machine skills in the execution of tasks presenting varying levels of complexity. Our results show that a human-machine strategy can yield the highest economic utility in complex scenarios, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine approach can perform worse than either the machine-exclusive or the human-exclusive policy, actively destroying value under the pressure of costs that are not compensated by sufficient performance gains. The takeaway for decision-makers is unambiguous: when the context is complex and critical, simply allocating human and machine skills to a task may be insufficient, and far from being a silver-bullet solution or a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation.
comment: Research report (v4, 90+ pages) is now repackaged into a draft paper (v5, 18 pages); results unchanged; extended considerations; improved layout and readability
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark
This paper presents a novel task of extracting Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary models is achievable. Our study provides the first comprehensive analysis of these models' capabilities and limits for this task.
comment: Under review. Both the dataset and code will be published
♻ ☆ Evaluating the Use of Large Language Models as Synthetic Social Agents in Social Science Research
Large Language Models (LLMs) are being increasingly used as synthetic agents in social science, in applications ranging from augmenting survey responses to powering multi-agent simulations. This paper outlines cautions that should be taken when interpreting LLM outputs and proposes a pragmatic reframing for the social sciences in which LLMs are used as high-capacity pattern matchers for quasi-predictive interpolation under explicit scope conditions and not as substitutes for probabilistic inference. Practical guardrails such as independent draws, preregistered human baselines, reliability-aware validation, and subgroup calibration, are introduced so that researchers may engage in useful prototyping and forecasting while avoiding category errors.
♻ ☆ Cross-Scenario Unified Modeling of User Interests at Billion Scale
User interests on content platforms are inherently diverse, manifesting through complex behavioral patterns across heterogeneous scenarios such as search, feed browsing, and content discovery. Traditional recommendation systems typically prioritize business metric optimization within isolated specific scenarios, neglecting cross-scenario behavioral signals and struggling to integrate advanced techniques like LLMs at billion-scale deployments, which finally limits their ability to capture holistic user interests across platform touchpoints. We propose RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified scenarios, tailored for industry-level content recommendation systems. RED-Rec unifies user interest representations across multiple behavioral contexts by aggregating and synthesizing actions from varied scenarios, resulting in comprehensive item and user modeling. At its core, a two-tower LLM-powered framework enables nuanced, multifaceted representations with deployment efficiency, and a scenario-aware dense mixing and querying policy effectively fuses diverse behavioral signals to capture cross-scenario user intent patterns and express fine-grained, context-specific intents during serving. We validate RED-Rec through online A/B testing on hundreds of millions of users in RedNote through online A/B testing, showing substantial performance gains in both content recommendation and advertisement targeting tasks. We further introduce a million-scale sequential recommendation dataset, RED-MMU, for comprehensive offline training and evaluation. Our work advances unified user modeling, unlocking deeper personalization and fostering more meaningful user engagement in large-scale UGC platforms.
comment: https://github.com/ariesssxu/RedSeqRec
♻ ☆ Generalized Exponentiated Gradient Algorithms Using the Euler Two-Parameter Logarithm
IIn this paper we propose and investigate a new class of Generalized Exponentiated Gradient (GEG) algorithms using Mirror Descent (MD) updates, and applying the Bregman divergence with a two--parameter deformation of the logarithm as a link function. This link function (referred here to as the Euler logarithm) is associated with a relatively wide class of trace--form entropies. In order to derive novel GEG/MD updates, we estimate a deformed exponential function, which closely approximates the inverse of the Euler two--parameter deformed logarithm. The characteristic shape and properties of the Euler logarithm and its inverse--deformed exponential functions, are tuned by two hyperparameters. By learning these hyperparameters, we can adapt to the distribution of training data and adjust them to achieve desired properties of gradient descent algorithms. In the literature, there exist nowadays more than fifty mathematically well-established entropic functionals and associated deformed logarithms, so it is impossible to investigate all of them in one research paper. Therefore, we focus here on a class of trace-form entropies and the associated deformed two--parameters logarithms.
comment: 10 pages, preprint of Journal paper
♻ ☆ Diffusion Models Meet Contextual Bandits
Efficient online decision-making in contextual bandits is challenging, as methods without informative priors often suffer from computational or statistical inefficiencies. In this work, we leverage pre-trained diffusion models as expressive priors to capture complex action dependencies and develop a practical algorithm that efficiently approximates posteriors under such priors, enabling both fast updates and sampling. Empirical results demonstrate the effectiveness and versatility of our approach across diverse contextual bandit settings.
comment: Neurips 2025
♻ ☆ Provable Scaling Laws for the Test-Time Compute of Large Language Models NeurIPS 2025
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
comment: NeurIPS 2025 camera-ready version
♻ ☆ Querying Inconsistent Prioritized Data with ORBITS: Algorithms, Implementation, and Experiments KR 2022
We investigate practical algorithms for inconsistency-tolerant query answering over prioritized knowledge bases, which consist of a logical theory, a set of facts, and a priority relation between conflicting facts. We consider three well-known semantics (AR, IAR and brave) based upon two notions of optimal repairs (Pareto and completion). Deciding whether a query answer holds under these semantics is (co)NP-complete in data complexity for a large class of logical theories, and SAT-based procedures have been devised for repair-based semantics when there is no priority relation, or the relation has a special structure. The present paper introduces the first SAT encodings for Pareto- and completion-optimal repairs w.r.t. general priority relations and proposes several ways of employing existing and new encodings to compute answers under (optimal) repair-based semantics, by exploiting different reasoning modes of SAT solvers. The comprehensive experimental evaluation of our implementation compares both (i) the impact of adopting semantics based on different kinds of repairs, and (ii) the relative performances of alternative procedures for the same semantics.
comment: This is an extended version of a paper appearing at the 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022). 122 pages. This version gives an optimized version of the encodings for non-binary conflicts (appendix B.3)
♻ ☆ Mining Large Independent Sets on Massive Graphs
The Maximum Independent Set problem is fundamental for extracting conflict-free structure from large graphs, with applications in scheduling, recommendation, and network analysis. However, existing heuristics can stagnate when search schedules are fixed and information from past solutions is underused, leading to wasted effort in low-quality regions of the search space. We present ARCIS, an efficient algorithm for mining large independent sets on massive graphs. ARCIS couples two main components. The first is an adaptive restart policy that refreshes exploration when progress slows. The second is Consensus-Guided Vertex Fixing, which restricts the search to the non-consensus region of the graph by fixing vertices consistently observed within a round. The consensus is maintained as a running intersection within each round, and because it is recomputed at every restart, the fixing is reversible. Vertices that later lose support are automatically unfixed and their neighborhoods re-enter the working graph, which corrects occasional mistakes while preserving progress. Experiments on 222 graphs from four benchmark suites show that ARCIS attains the best or tied-best solution quality in most instances while delivering competitive runtime and low variability. Ablation studies isolate the impact of each component, indicating that ARCIS is a practical and robust method for large-scale graph mining.
comment: 17 pages, 3 figures
♻ ☆ Offline Learning and Forgetting for Reasoning with Large Language Models
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. A key challenge we identify is that naive fine-tuning can degrade the model's search capability; we show this can be mitigated with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown arithmetic puzzles show that, replacing CoT-generated data with search-generated data for offline fine-tuning improves success rates by around 23% over inference-time search baselines, while reducing inference time by 180$\times$. On top of this, our learning and forgetting objective consistently outperforms both supervised fine-tuning and preference-based methods.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ Freeze and Conquer: Reusable Ansatz for Solving the Traveling Salesman Problem
In this paper we present a variational algorithm for the Traveling Salesman Problem (TSP) that combines (i) a compact encoding of permutations, which reduces the qubit requirement too, (ii) an optimize-freeze-reuse strategy: where the circuit topology (``Ansatz'') is first optimized on a training instance by Simulated Annealing (SA), then ``frozen'' and re-used on novel instances, limited to a rapid re-optimization of only the circuit parameters. This pipeline eliminates costly structural research in testing, making the procedure immediately implementable on NISQ hardware. On a set of $40$ randomly generated symmetric instances that span $4 - 7$ cities, the resulting Ansatz achieves an average optimal trip sampling probability of $100\%$ for 4 city cases, $90\%$ for 5 city cases and $80\%$ for 6 city cases. With 7 cities the success rate drops markedly to an average of $\sim 20\%$, revealing the onset of scalability limitations of the proposed method. The results show robust generalization ability for moderate problem sizes and indicate how freezing the Ansatz can dramatically reduce time-to-solution without degrading solution quality. The paper also discusses scalability limitations, the impact of ``warm-start'' initialization of parameters, and prospects for extension to more complex problems, such as Vehicle Routing and Job-Shop Scheduling.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.
♻ ☆ Think Just Enough: Sequence-Level Entropy as a Confidence Signal for LLM Reasoning
We introduce a simple, yet novel entropy-based framework to drive token efficiency in large language models during reasoning tasks. Our approach uses Shannon entropy from token-level logprobs as a confidence signal to enable early stopping, achieving 25-50% computational savings while maintaining task accuracy. Crucially, we demonstrate that entropy-based confidence calibration represents an emergent property of advanced post-training optimization present in modern reasoning models but notably absent in standard instruction-tuned and pre-trained models (Llama 3.3 70B). We show that the entropy threshold to stop reasoning varies from model to model but can be calculated easily in one shot using only a few examples from existing reasoning datasets. Our results indicate that advanced reasoning models often know that they've gotten a correct answer early on, and that this emergent confidence awareness can be exploited to save tokens and reduce latency. The framework demonstrates consistent performance across reasoning-optimized model families with 25-50% computational cost reduction while preserving accuracy, revealing that confidence mechanisms represent a distinguishing characteristic of modern post-trained reasoning systems versus their predecessors.
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Unified Approach for Elevating Benchmark Quality
Benchmarks are essential for unified evaluation and reproducibility. The rapid rise of Artificial Intelligence for Software Engineering (AI4SE) has produced numerous benchmarks for tasks such as code generation and bug repair. However, this proliferation has led to major challenges: (1) fragmented knowledge across tasks, (2) difficulty in selecting contextually relevant benchmarks, (3) lack of standardization in benchmark creation, and (4) flaws that limit utility. Addressing these requires a dual approach: systematically mapping existing benchmarks for informed selection and defining unified guidelines for robust, adaptable benchmark development. We conduct a review of 247 studies, identifying 273 AI4SE benchmarks since 2014. We categorize them, analyze limitations, and expose gaps in current practices. Building on these insights, we introduce BenchScout, an extensible semantic search tool for locating suitable benchmarks. BenchScout employs automated clustering with contextual embeddings of benchmark-related studies, followed by dimensionality reduction. In a user study with 22 participants, BenchScout achieved usability, effectiveness, and intuitiveness scores of 4.5, 4.0, and 4.1 out of 5. To improve benchmarking standards, we propose BenchFrame, a unified framework for enhancing benchmark quality. Applying BenchFrame to HumanEval yielded HumanEvalNext, featuring corrected errors, improved language conversion, higher test coverage, and greater difficulty. Evaluating 10 state-of-the-art code models on HumanEval, HumanEvalPlus, and HumanEvalNext revealed average pass-at-1 drops of 31.22% and 19.94%, respectively, underscoring the need for continuous benchmark refinement. We further examine BenchFrame's scalability through an agentic pipeline and confirm its generalizability on the MBPP dataset. All review data, user study materials, and enhanced benchmarks are publicly released.
♻ ☆ The Confidence Paradox: Can LLM Know When It's Wrong AACL 2025
Document Visual Question Answering (DocVQA) models often produce overconfident or ethically misaligned responses, especially under uncertainty. Existing models like LayoutLMv3, UDOP, and DONUT focus on accuracy but lack ethical calibration. We propose HonestVQA, a model-agnostic, self-supervised framework that aligns model confidence with correctness using weighted loss and contrastive learning. We introduce two new metrics Honesty Score (H-Score) and Ethical Confidence Index (ECI)-to evaluate ethical alignment. HonestVQA improves accuracy and F1 by up to 4.3% across SpDocVQA, InfographicsVQA, and SROIE datasets, while reducing overconfidence. It also generalizes well across domains, achieving 78.9% accuracy and 76.1% F1-score.
comment: Accepted at the 14th IJCNLP & 4th AACL 2025 (Main)
♻ ☆ Thermometry of simulated Bose--Einstein condensates using machine learning
Precise determination of thermodynamic parameters in ultracold Bose gases remains challenging due to the destructive nature of conventional measurement techniques and inherent experimental uncertainties. We demonstrate a machine learning approach for rapid, non-destructive estimation of the chemical potential and temperature from a single image of an \emph{in situ} imaged density profiles of finite-temperature Bose gases. Our convolutional neural network is trained exclusively on quasi-2D `pancake' condensates in harmonic trap configurations. It achieves parameter extraction within fractions of a second. The model also demonstrates {some} zero-shot generalisation across both trap geometry and thermalisation dynamics, successfully estimating the temperature (although not the chemical potential) for toroidally trapped condensates with errors of only a few nanokelvin despite no prior exposure to such geometries during training, and maintaining predictive accuracy during dynamic thermalisation processes after a relatively brief evolution without explicit training on non-equilibrium states. These results suggest that supervised learning can overcome traditional limitations in ultracold atom thermometry, with extension to broader geometric configurations, temperature ranges, and additional parameters potentially enabling comprehensive real-time analysis of quantum gas experiments. Such capabilities could significantly streamline experimental workflows whilst improving measurement precision across a range of quantum fluid systems.
♻ ☆ On Robustness of Vision-Language-Action Model against Multi-Modal Perturbations
In Vision-Language-Action (VLA) models, robustness to real-world perturbations is critical for deployment. Existing methods target simple visual disturbances, overlooking the broader multi-modal perturbations that arise in actions, instructions, environments, and observations. Here, we first evaluate the robustness of mainstream VLAs under 17 perturbations across four modalities. We find (1) actions as the most fragile modality, (2) Existing visual-robust VLA do not gain robustness in other modality, and (3) pi0 demonstrates superior robustness with a diffusion-based action head. To build multi-modal robust VLAs, we propose RobustVLA against perturbations in VLA inputs and outputs. For output robustness, we perform offline robust optimization against worst-case action noise that maximizes mismatch in flow matching objective. This can be seen as adversarial training, label smoothing, and outlier penalization. For input robustness, we enforce consistent actions across input variations that preserve task semantics. To account for multiple perturbations, we formulate robustness as a multi-armed bandit problem and apply an upper confidence bound algorithm to automatically identify the most harmful noise. Experiments on LIBERO demonstrate our RobustVLA delivers absolute gains over baselines of 12.6% on the pi0 backbone and 10.4% on the OpenVLA backbone across all 17 perturbations, achieving 50.6x faster inference than existing visual-robust VLAs, and a 10.4% gain under mixed perturbations. Our RobustVLA is particularly effective on real-world FR5 robot with limited demonstrations, showing absolute gains by 65.6% under perturbations of four modalities.
♻ ☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testimony of the impact of the approach, the method is intended to replace the hand-crafted counterpart in next iterations of the series.
♻ ☆ The Logical Expressiveness of Temporal GNNs via Two-Dimensional Product Logics
In recent years, the expressive power of various neural architectures -- including graph neural networks (GNNs), transformers, and recurrent neural networks -- has been characterised using tools from logic and formal language theory. As the capabilities of basic architectures are becoming well understood, increasing attention is turning to models that combine multiple architectural paradigms. Among them particularly important, and challenging to analyse, are temporal extensions of GNNs, which integrate both spatial (graph-structure) and temporal (evolution over time) dimensions. In this paper, we initiate the study of logical characterisation of temporal GNNs by connecting them to two-dimensional product logics. We show that the expressive power of temporal GNNs depends on how graph and temporal components are combined. In particular, temporal GNNs that apply static GNNs recursively over time can capture all properties definable in the product logic of (past) propositional temporal logic PTL and the modal logic K. In contrast, architectures such as graph-and-time TGNNs and global TGNNs can only express restricted fragments of this logic, where the interaction between temporal and spatial operators is syntactically constrained. These provide us with the first results on the logical expressiveness of temporal GNNs.
♻ ☆ MixAT: Combining Continuous and Discrete Adversarial Training for LLMs NeurIPS 2025
Despite recent efforts in Large Language Model (LLM) safety and alignment, current adversarial attacks on frontier LLMs can still consistently force harmful generations. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. At the same time, despite their effectiveness and generalization capabilities, training with continuous perturbations does not always capture the full spectrum of vulnerabilities exploited by discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.
comment: Published at 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment NeurIPS 2025
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
comment: NeurIPS 2025
♻ ☆ Is It Certainly a Deepfake? Reliability Analysis in Detection & Generation Ecosystem ICCV 2025
As generative models are advancing in quality and quantity for creating synthetic content, deepfakes begin to cause online mistrust. Deepfake detectors are proposed to counter this effect, however, misuse of detectors claiming fake content as real or vice versa further fuels this misinformation problem. We present the first comprehensive uncertainty analysis of deepfake detectors, systematically investigating how generative artifacts influence prediction confidence. As reflected in detectors' responses, deepfake generators also contribute to this uncertainty as their generative residues vary, so we cross the uncertainty analysis of deepfake detectors and generators. Based on our observations, the uncertainty manifold holds enough consistent information to leverage uncertainty for deepfake source detection. Our approach leverages Bayesian Neural Networks and Monte Carlo dropout to quantify both aleatoric and epistemic uncertainties across diverse detector architectures. We evaluate uncertainty on two datasets with nine generators, with four blind and two biological detectors, compare different uncertainty methods, explore region- and pixel-based uncertainty, and conduct ablation studies. We conduct and analyze binary real/fake, multi-class real/fake, source detection, and leave-one-out experiments between the generator/detector combinations to share their generalization capability, model calibration, uncertainty, and robustness against adversarial attacks. We further introduce uncertainty maps that localize prediction confidence at the pixel level, revealing distinct patterns correlated with generator-specific artifacts. Our analysis provides critical insights for deploying reliable deepfake detection systems and establishes uncertainty quantification as a fundamental requirement for trustworthy synthetic media detection.
comment: Accepted for publication at the ICCV 2025 workshop - STREAM
♻ ☆ Accelerate Scaling of LLM Finetuning via Quantifying the Coverage and Depth of Instruction Set
Scaling the amount of data used for supervied fine-tuning(SFT) does not guarantee the proportional gains in model performance, highlighting a critical need to understand what makes training samples effective. This work identifies two fundamental dataset properties that govern SFT scalability: \textbf{semantic coverage}, or the breadth of task domains, and \textbf{information depth}, or the richness of individual examples. We demonstrate that simple proxies for these properties explain the majority of validation loss variance in our experiments. In this work, we further propose the \textbf{Information Landscape Approximation (ILA)}, a model-agnostic data selection framework that jointly optimizes for these two factors. ILA constructs compact subsets that approximate the informational value of large datasets. Empirical results show that models tuned on ILA-selected data achieve faster and more sustained performance improvements across diverse tasks and model sizes compared to existing methods, a phenomenon we term \textbf{accelerated scaling}.
♻ ☆ Do Language Models Use Their Depth Efficiently? NeurIPS 2025
Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1, Qwen 3, and OLMo 2 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.
comment: Accepted to NeurIPS 2025
♻ ☆ A Generalized Label Shift Perspective for Cross-Domain Gaze Estimation NeurIPS 2025
Aiming to generalize the well-trained gaze estimation model to new target domains, Cross-domain Gaze Estimation (CDGE) is developed for real-world application scenarios. Existing CDGE methods typically extract the domain-invariant features to mitigate domain shift in feature space, which is proved insufficient by Generalized Label Shift (GLS) theory. In this paper, we introduce a novel GLS perspective to CDGE and modelize the cross-domain problem by label and conditional shift problem. A GLS correction framework is presented and a feasible realization is proposed, in which a importance reweighting strategy based on truncated Gaussian distribution is introduced to overcome the continuity challenges in label shift correction. To embed the reweighted source distribution to conditional invariant learning, we further derive a probability-aware estimation of conditional operator discrepancy. Extensive experiments on standard CDGE tasks with different backbone models validate the superior generalization capability across domain and applicability on various models of proposed method.
comment: NeurIPS 2025
♻ ☆ Scalable Exploration via Ensemble++ NeurIPS 2025
Thompson Sampling is a principled method for balancing exploration and exploitation, but its real-world adoption faces computational challenges in large-scale or non-conjugate settings. While ensemble-based approaches offer partial remedies, they typically require prohibitively large ensemble sizes. We propose Ensemble++, a scalable exploration framework using a novel shared-factor ensemble architecture with random linear combinations. For linear bandits, we provide theoretical guarantees showing that Ensemble++ achieves regret comparable to exact Thompson Sampling with only $\Theta(d \log T)$ ensemble sizes--significantly outperforming prior methods. Crucially, this efficiency holds across both compact and finite action sets with either time-invariant or time-varying contexts without configuration changes. We extend this theoretical foundation to nonlinear rewards by replacing fixed features with learnable neural representations while preserving the same incremental update principle, effectively bridging theory and practice for real-world tasks. Comprehensive experiments across linear, quadratic, neural, and GPT-based contextual bandits validate our theoretical findings and demonstrate Ensemble++'s superior regret-computation tradeoff versus state-of-the-art methods.
comment: NeurIPS 2025
♻ ☆ FragFM: Hierarchical Framework for Efficient Molecule Generation via Fragment-Level Discrete Flow Matching
We introduce FragFM, a novel hierarchical framework via fragment-level discrete flow matching for efficient molecular graph generation. FragFM generates molecules at the fragment level, leveraging a coarse-to-fine autoencoder to reconstruct details at the atom level. Together with a stochastic fragment bag strategy to effectively handle an extensive fragment space, our framework enables more efficient and scalable molecular generation. We demonstrate that our fragment-based approach achieves better property control than the atom-based method and additional flexibility through conditioning the fragment bag. We also propose a Natural Product Generation benchmark (NPGen) to evaluate modern molecular graph generative models' ability to generate natural product-like molecules. Since natural products are biologically prevalidated and differ from typical drug-like molecules, our benchmark provides a more challenging yet meaningful evaluation relevant to drug discovery. We conduct a FragFM comparative study against various models on diverse molecular generation benchmarks, including NPGen, demonstrating superior performance. The results highlight the potential of fragment-based generative modeling for large-scale, property-aware molecular design, paving the way for more efficient exploration of chemical space.
comment: 49 pages, 29 figures, under review
♻ ☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning NeurIPS 2025
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
comment: Accepted at NeurIPS 2025 Workshop: Evaluating the Evolving LLM Lifecycle
♻ ☆ Untargeted Jailbreak Attack
Existing gradient-based jailbreak attacks on Large Language Models (LLMs), such as Greedy Coordinate Gradient (GCG) and COLD-Attack, typically optimize adversarial suffixes to align the LLM output with a predefined target response. However, by restricting the optimization objective as inducing a predefined target, these methods inherently constrain the adversarial search space, which limit their overall attack efficacy. Furthermore, existing methods typically require a large number of optimization iterations to fulfill the large gap between the fixed target and the original model response, resulting in low attack efficiency. To overcome the limitations of targeted jailbreak attacks, we propose the first gradient-based untargeted jailbreak attack (UJA), aiming to elicit an unsafe response without enforcing any predefined patterns. Specifically, we formulate an untargeted attack objective to maximize the unsafety probability of the LLM response, which can be quantified using a judge model. Since the objective is non-differentiable, we further decompose it into two differentiable sub-objectives for optimizing an optimal harmful response and the corresponding adversarial prompt, with a theoretical analysis to validate the decomposition. In contrast to targeted jailbreak attacks, UJA's unrestricted objective significantly expands the search space, enabling a more flexible and efficient exploration of LLM vulnerabilities.Extensive evaluations demonstrate that UJA can achieve over 80% attack success rates against recent safety-aligned LLMs with only 100 optimization iterations, outperforming the state-of-the-art gradient-based attacks such as I-GCG and COLD-Attack by over 20%.
♻ ☆ Co-TAP: Three-Layer Agent Interaction Protocol Technical Report
This paper proposes Co-TAP (T: Triple, A: Agent, P: Protocol), a three-layer agent interaction protocol designed to address the challenges faced by multi-agent systems across the three core dimensions of Interoperability, Interaction and Collaboration, and Knowledge Sharing. We have designed and proposed a layered solution composed of three core protocols: the Human-Agent Interaction Protocol (HAI), the Unified Agent Protocol (UAP), and the Memory-Extraction-Knowledge Protocol (MEK). HAI focuses on the interaction layer, standardizing the flow of information between users, interfaces, and agents by defining a standardized, event-driven communication paradigm. This ensures the real-time performance, reliability, and synergy of interactions. As the core of the infrastructure layer, UAP is designed to break down communication barriers among heterogeneous agents through unified service discovery and protocol conversion mechanisms, thereby enabling seamless interconnection and interoperability of the underlying network. MEK, in turn, operates at the cognitive layer. By establishing a standardized ''Memory (M) - Extraction (E) - Knowledge (K)'' cognitive chain, it empowers agents with the ability to learn from individual experiences and form shareable knowledge, thereby laying the foundation for the realization of true collective intelligence. We believe this protocol framework will provide a solid engineering foundation and theoretical guidance for building the next generation of efficient, scalable, and intelligent multi-agent applications.
♻ ☆ VIRAL: Vision-grounded Integration for Reward design And Learning
The alignment between humans and machines is a critical challenge in artificial intelligence today. Reinforcement learning, which aims to maximize a reward function, is particularly vulnerable to the risks associated with poorly designed reward functions. Recent advancements has shown that Large Language Models (LLMs) for reward generation can outperform human performance in this context. We introduce VIRAL, a pipeline for generating and refining reward functions through the use of multi-modal LLMs. VIRAL autonomously creates and interactively improves reward functions based on a given environment and a goal prompt or annotated image. The refinement process can incorporate human feedback or be guided by a description generated by a video LLM, which explains the agent's policy in video form. We evaluated VIRAL in five Gymnasium environments, demonstrating that it accelerates the learning of new behaviors while ensuring improved alignment with user intent. The source-code and demo video are available at: https://github.com/VIRAL-UCBL1/VIRAL and https://youtu.be/Hqo82CxVT38.
♻ ☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ Mixture-of-Experts Meets In-Context Reinforcement Learning
In-context reinforcement learning (ICRL) has emerged as a promising paradigm for adapting RL agents to downstream tasks through prompt conditioning. However, two notable challenges remain in fully harnessing in-context learning within RL domains: the intrinsic multi-modality of the state-action-reward data and the diverse, heterogeneous nature of decision tasks. To tackle these challenges, we propose T2MIR (Token- and Task-wise MoE for In-context RL), an innovative framework that introduces architectural advances of mixture-of-experts (MoE) into transformer-based decision models. T2MIR substitutes the feedforward layer with two parallel layers: a token-wise MoE that captures distinct semantics of input tokens across multiple modalities, and a task-wise MoE that routes diverse tasks to specialized experts for managing a broad task distribution with alleviated gradient conflicts. To enhance task-wise routing, we introduce a contrastive learning method that maximizes the mutual information between the task and its router representation, enabling more precise capture of task-relevant information. The outputs of two MoE components are concatenated and fed into the next layer. Comprehensive experiments show that T2MIR significantly facilitates in-context learning capacity and outperforms various types of baselines. We bring the potential and promise of MoE to ICRL, offering a simple and scalable architectural enhancement to advance ICRL one step closer toward achievements in language and vision communities. Our code is available at https://github.com/NJU-RL/T2MIR.
comment: 28 pages, 13 figures, 17 tables
♻ ☆ GEMeX-RMCoT: An Enhanced Med-VQA Dataset for Region-Aware Multimodal Chain-of-Thought Reasoning ACM MM 2025
Medical visual question answering aims to support clinical decision-making by enabling models to answer natural language questions based on medical images. While recent advances in multi-modal learning have significantly improved performance, current methods still suffer from limited answer reliability and poor interpretability, impairing the ability of clinicians and patients to understand and trust model outputs. To address these limitations, this work first proposes a Region-Aware Multimodal Chain-of-Thought (RMCoT) dataset, in which the process of producing an answer is preceded by a sequence of intermediate reasoning steps that explicitly ground relevant visual regions of the medical image, thereby providing fine-grained explainability. Furthermore, we introduce a novel verifiable reward mechanism for reinforcement learning to guide post-training, improving the alignment between the model's reasoning process and its final answer. Remarkably, our method achieves comparable performance using only one-eighth of the training data, demonstrating the efficiency and effectiveness of the proposal. The dataset is available at https://www.med-vqa.com/GEMeX/.
comment: Accepted at ACM MM 2025 (also known as GEMeX-ThinkVG)
♻ ☆ A High-Dimensional Statistical Method for Optimizing Transfer Quantities in Multi-Source Transfer Learning NeurIPS 2025
Multi-source transfer learning provides an effective solution to data scarcity in real-world supervised learning scenarios by leveraging multiple source tasks. In this field, existing works typically use all available samples from sources in training, which constrains their training efficiency and may lead to suboptimal results. To address this, we propose a theoretical framework that answers the question: what is the optimal quantity of source samples needed from each source task to jointly train the target model? Specifically, we introduce a generalization error measure based on K-L divergence, and minimize it based on high-dimensional statistical analysis to determine the optimal transfer quantity for each source task. Additionally, we develop an architecture-agnostic and data-efficient algorithm OTQMS to implement our theoretical results for target model training in multi-source transfer learning. Experimental studies on diverse architectures and two real-world benchmark datasets show that our proposed algorithm significantly outperforms state-of-the-art approaches in both accuracy and data efficiency. The code and supplementary materials are available in https://github.com/zqy0126/OTQMS.
comment: NeurIPS 2025 Poster
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments. The code will be available at https://github.com/HeXiao-55/PTQTP.
comment: under review
Machine Learning 150
☆ Generative View Stitching
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersv\"ard's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.
comment: Project website: https://andrewsonga.github.io/gvs
☆ A Single-Loop First-Order Algorithm for Linearly Constrained Bilevel Optimization NeurIPS 2025
We study bilevel optimization problems where the lower-level problems are strongly convex and have coupled linear constraints. To overcome the potential non-smoothness of the hyper-objective and the computational challenges associated with the Hessian matrix, we utilize penalty and augmented Lagrangian methods to reformulate the original problem as a single-level one. Especially, we establish a strong theoretical connection between the reformulated function and the original hyper-objective by characterizing the closeness of their values and derivatives. Based on this reformulation, we propose a single-loop, first-order algorithm for linearly constrained bilevel optimization (SFLCB). We provide rigorous analyses of its non-asymptotic convergence rates, showing an improvement over prior double-loop algorithms -- form $O(\epsilon^{-3}\log(\epsilon^{-1}))$ to $O(\epsilon^{-3})$. The experiments corroborate our theoretical findings and demonstrate the practical efficiency of the proposed SFLCB algorithm. Simulation code is provided at https://github.com/ShenGroup/SFLCB.
comment: NeurIPS 2025
☆ Does Object Binding Naturally Emerge in Large Pretrained Vision Transformers? NeurIPS 2025
Object binding, the brain's ability to bind the many features that collectively represent an object into a coherent whole, is central to human cognition. It groups low-level perceptual features into high-level object representations, stores those objects efficiently and compositionally in memory, and supports human reasoning about individual object instances. While prior work often imposes object-centric attention (e.g., Slot Attention) explicitly to probe these benefits, it remains unclear whether this ability naturally emerges in pre-trained Vision Transformers (ViTs). Intuitively, they could: recognizing which patches belong to the same object should be useful for downstream prediction and thus guide attention. Motivated by the quadratic nature of self-attention, we hypothesize that ViTs represent whether two patches belong to the same object, a property we term IsSameObject. We decode IsSameObject from patch embeddings across ViT layers using a similarity probe, which reaches over 90% accuracy. Crucially, this object-binding capability emerges reliably in self-supervised ViTs (DINO, MAE, CLIP), but markedly weaker in ImageNet-supervised models, suggesting that binding is not a trivial architectural artifact, but an ability acquired through specific pretraining objectives. We further discover that IsSameObject is encoded in a low-dimensional subspace on top of object features, and that this signal actively guides attention. Ablating IsSameObject from model activations degrades downstream performance and works against the learning objective, implying that emergent object binding naturally serves the pretraining objective. Our findings challenge the view that ViTs lack object binding and highlight how symbolic knowledge of "which parts belong together" emerges naturally in a connectionist system.
comment: Accepted as a Spotlight at NeurIPS 2025
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ Greedy Sampling Is Provably Efficient for RLHF NeurIPS 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a key technique for post-training large language models. Despite its empirical success, the theoretical understanding of RLHF is still limited, as learning the KL-regularized target with only preference feedback poses additional challenges compared with canonical RL. Existing works mostly study the reward-based Bradley-Terry (BT) preference model, and extend classical designs utilizing optimism or pessimism. This work, instead, considers the general preference model (whose practical relevance has been observed recently) and obtains performance guarantees with major, order-wise improvements over existing ones. Surprisingly, these results are derived from algorithms that directly use the empirical estimates (i.e., greedy sampling), as opposed to constructing optimistic or pessimistic estimates in previous works. This insight has a deep root in the unique structural property of the optimal policy class under the KL-regularized target, and we further specialize it to the BT model, highlighting the surprising sufficiency of greedy sampling in RLHF.
comment: NeurIPS 2025
☆ AgentFold: Long-Horizon Web Agents with Proactive Context Management
LLM-based web agents show immense promise for information seeking, yet their effectiveness on long-horizon tasks is hindered by a fundamental trade-off in context management. Prevailing ReAct-based agents suffer from context saturation as they accumulate noisy, raw histories, while methods that fixedly summarize the full history at each step risk the irreversible loss of critical details. Addressing these, we introduce AgentFold, a novel agent paradigm centered on proactive context management, inspired by the human cognitive process of retrospective consolidation. AgentFold treats its context as a dynamic cognitive workspace to be actively sculpted, rather than a passive log to be filled. At each step, it learns to execute a `folding' operation, which manages its historical trajectory at multiple scales: it can perform granular condensations to preserve vital, fine-grained details, or deep consolidations to abstract away entire multi-step sub-tasks. The results on prominent benchmarks are striking: with simple supervised fine-tuning (without continual pre-training or RL), our AgentFold-30B-A3B agent achieves 36.2% on BrowseComp and 47.3% on BrowseComp-ZH. Notably, this performance not only surpasses or matches open-source models of a dramatically larger scale, such as the DeepSeek-V3.1-671B-A37B, but also surpasses leading proprietary agents like OpenAI's o4-mini.
comment: 26 pages, 9 figures
☆ Learning to Drive Safely with Hybrid Options
Out of the many deep reinforcement learning approaches for autonomous driving, only few make use of the options (or skills) framework. That is surprising, as this framework is naturally suited for hierarchical control applications in general, and autonomous driving tasks in specific. Therefore, in this work the options framework is applied and tailored to autonomous driving tasks on highways. More specifically, we define dedicated options for longitudinal and lateral manoeuvres with embedded safety and comfort constraints. This way, prior domain knowledge can be incorporated into the learning process and the learned driving behaviour can be constrained more easily. We propose several setups for hierarchical control with options and derive practical algorithms following state-of-the-art reinforcement learning techniques. By separately selecting actions for longitudinal and lateral control, the introduced policies over combined and hybrid options obtain the same expressiveness and flexibility that human drivers have, while being easier to interpret than classical policies over continuous actions. Of all the investigated approaches, these flexible policies over hybrid options perform the best under varying traffic conditions, outperforming the baseline policies over actions.
☆ Eigenfunction Extraction for Ordered Representation Learning
Recent advances in representation learning reveal that widely used objectives, such as contrastive and non-contrastive, implicitly perform spectral decomposition of a contextual kernel, induced by the relationship between inputs and their contexts. Yet, these methods recover only the linear span of top eigenfunctions of the kernel, whereas exact spectral decomposition is essential for understanding feature ordering and importance. In this work, we propose a general framework to extract ordered and identifiable eigenfunctions, based on modular building blocks designed to satisfy key desiderata, including compatibility with the contextual kernel and scalability to modern settings. We then show how two main methodological paradigms, low-rank approximation and Rayleigh quotient optimization, align with this framework for eigenfunction extraction. Finally, we validate our approach on synthetic kernels and demonstrate on real-world image datasets that the recovered eigenvalues act as effective importance scores for feature selection, enabling principled efficiency-accuracy tradeoffs via adaptive-dimensional representations.
☆ Pearl: A Foundation Model for Placing Every Atom in the Right Location
Accurately predicting the three-dimensional structures of protein-ligand complexes remains a fundamental challenge in computational drug discovery that limits the pace and success of therapeutic design. Deep learning methods have recently shown strong potential as structural prediction tools, achieving promising accuracy across diverse biomolecular systems. However, their performance and utility are constrained by scarce experimental data, inefficient architectures, physically invalid poses, and the limited ability to exploit auxiliary information available at inference. To address these issues, we introduce Pearl (Placing Every Atom in the Right Location), a foundation model for protein-ligand cofolding at scale. Pearl addresses these challenges with three key innovations: (1) training recipes that include large-scale synthetic data to overcome data scarcity; (2) architectures that incorporate an SO(3)-equivariant diffusion module to inherently respect 3D rotational symmetries, improving generalization and sample efficiency, and (3) controllable inference, including a generalized multi-chain templating system supporting both protein and non-polymeric components as well as dual unconditional/conditional modes. Pearl establishes a new state-of-the-art performance in protein-ligand cofolding. On the key metric of generating accurate (RMSD < 2 \r{A}) and physically valid poses, Pearl surpasses AlphaFold 3 and other open source baselines on the public Runs N' Poses and PoseBusters benchmarks, delivering 14.5% and 14.2% improvements, respectively, over the next best model. In the pocket-conditional cofolding regime, Pearl delivers $3.6\times$ improvement on a proprietary set of challenging, real-world drug targets at the more rigorous RMSD < 1 \r{A} threshold. Finally, we demonstrate that model performance correlates directly with synthetic dataset size used in training.
☆ The Cost of Robustness: Tighter Bounds on Parameter Complexity for Robust Memorization in ReLU Nets NeurIPS 2025
We study the parameter complexity of robust memorization for $\mathrm{ReLU}$ networks: the number of parameters required to interpolate any given dataset with $\epsilon$-separation between differently labeled points, while ensuring predictions remain consistent within a $\mu$-ball around each training sample. We establish upper and lower bounds on the parameter count as a function of the robustness ratio $\rho = \mu / \epsilon$. Unlike prior work, we provide a fine-grained analysis across the entire range $\rho \in (0,1)$ and obtain tighter upper and lower bounds that improve upon existing results. Our findings reveal that the parameter complexity of robust memorization matches that of non-robust memorization when $\rho$ is small, but grows with increasing $\rho$.
comment: Accepted to NeurIPS 2025, 72 pages, 8 figures
☆ Causal Ordering for Structure Learning From Time Series
Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ($d{=}\!3-\!6$ variables, $T{=}200\!-\!5{,}000$ samples), DOTS improves mean window-graph $F1$ from $0.63$ (best baseline) to $0.81$. On the CausalTime real-world benchmark ($d{=}20\!-\!36$), while baselines remain the best on individual datasets, DOTS attains the highest average summary-graph $F1$ while halving runtime relative to graph-optimisation methods. These results establish DOTS as a scalable and accurate solution for temporal causal discovery.
comment: 32 pages
☆ Symbolic Snapshot Ensembles
Inductive logic programming (ILP) is a form of logical machine learning. Most ILP algorithms learn a single hypothesis from a single training run. Ensemble methods train an ILP algorithm multiple times to learn multiple hypotheses. In this paper, we train an ILP algorithm only once and save intermediate hypotheses. We then combine the hypotheses using a minimum description length weighting scheme. Our experiments on multiple benchmarks, including game playing and visual reasoning, show that our approach improves predictive accuracy by 4% with less than 1% computational overhead.
☆ Coreset for Robust Geometric Median: Eliminating Size Dependency on Outliers NeurIPS 2025
We study the robust geometric median problem in Euclidean space $\mathbb{R}^d$, with a focus on coreset construction.A coreset is a compact summary of a dataset $P$ of size $n$ that approximates the robust cost for all centers $c$ within a multiplicative error $\varepsilon$. Given an outlier count $m$, we construct a coreset of size $\tilde{O}(\varepsilon^{-2} \cdot \min\{\varepsilon^{-2}, d\})$ when $n \geq 4m$, eliminating the $O(m)$ dependency present in prior work [Huang et al., 2022 & 2023]. For the special case of $d = 1$, we achieve an optimal coreset size of $\tilde{\Theta}(\varepsilon^{-1/2} + \frac{m}{n} \varepsilon^{-1})$, revealing a clear separation from the vanilla case studied in [Huang et al., 2023; Afshani and Chris, 2024]. Our results further extend to robust $(k,z)$-clustering in various metric spaces, eliminating the $m$-dependence under mild data assumptions. The key technical contribution is a novel non-component-wise error analysis, enabling substantial reduction of outlier influence, unlike prior methods that retain them.Empirically, our algorithms consistently outperform existing baselines in terms of size-accuracy tradeoffs and runtime, even when data assumptions are violated across a wide range of datasets.
comment: This paper has been accepted by NeurIPS 2025
☆ Zero-Shot Cross-Lingual Transfer using Prefix-Based Adaptation
With the release of new large language models (LLMs) like Llama and Mistral, zero-shot cross-lingual transfer has become increasingly feasible due to their multilingual pretraining and strong generalization capabilities. However, adapting these decoder-only LLMs to new tasks across languages remains challenging. While parameter-efficient fine-tuning (PeFT) techniques like Low-Rank Adaptation (LoRA) are widely used, prefix-based techniques such as soft prompt tuning, prefix tuning, and Llama Adapter are less explored, especially for zero-shot transfer in decoder-only models. We present a comprehensive study of three prefix-based methods for zero-shot cross-lingual transfer from English to 35+ high- and low-resource languages. Our analysis further explores transfer across linguistic families and scripts, as well as the impact of scaling model sizes from 1B to 24B. With Llama 3.1 8B, prefix methods outperform LoRA-baselines by up to 6% on the Belebele benchmark. Similar improvements were observed with Mistral v0.3 7B as well. Despite using only 1.23M learning parameters with prefix tuning, we achieve consistent improvements across diverse benchmarks. These findings highlight the potential of prefix-based techniques as an effective and scalable alternative to LoRA, particularly in low-resource multilingual settings.
comment: 12 Pages
☆ Statistical physics of deep learning: Optimal learning of a multi-layer perceptron near interpolation
For three decades statistical physics has been providing a framework to analyse neural networks. A long-standing question remained on its capacity to tackle deep learning models capturing rich feature learning effects, thus going beyond the narrow networks or kernel methods analysed until now. We positively answer through the study of the supervised learning of a multi-layer perceptron. Importantly, (i) its width scales as the input dimension, making it more prone to feature learning than ultra wide networks, and more expressive than narrow ones or with fixed embedding layers; and (ii) we focus on the challenging interpolation regime where the number of trainable parameters and data are comparable, which forces the model to adapt to the task. We consider the matched teacher-student setting. It provides the fundamental limits of learning random deep neural network targets and helps in identifying the sufficient statistics describing what is learnt by an optimally trained network as the data budget increases. A rich phenomenology emerges with various learning transitions. With enough data optimal performance is attained through model's "specialisation" towards the target, but it can be hard to reach for training algorithms which get attracted by sub-optimal solutions predicted by the theory. Specialisation occurs inhomogeneously across layers, propagating from shallow towards deep ones, but also across neurons in each layer. Furthermore, deeper targets are harder to learn. Despite its simplicity, the Bayesian-optimal setting provides insights on how the depth, non-linearity and finite (proportional) width influence neural networks in the feature learning regime that are potentially relevant way beyond it.
comment: 30 pages, 19 figures + appendix. This submission supersedes both arXiv:2505.24849 and arXiv:2501.18530
☆ Semi-supervised and unsupervised learning for health indicator extraction from guided waves in aerospace composite structures
Health indicators (HIs) are central to diagnosing and prognosing the condition of aerospace composite structures, enabling efficient maintenance and operational safety. However, extracting reliable HIs remains challenging due to variability in material properties, stochastic damage evolution, and diverse damage modes. Manufacturing defects (e.g., disbonds) and in-service incidents (e.g., bird strikes) further complicate this process. This study presents a comprehensive data-driven framework that learns HIs via two learning approaches integrated with multi-domain signal processing. Because ground-truth HIs are unavailable, a semi-supervised and an unsupervised approach are proposed: (i) a diversity deep semi-supervised anomaly detection (Diversity-DeepSAD) approach augmented with continuous auxiliary labels used as hypothetical damage proxies, which overcomes the limitation of prior binary labels that only distinguish healthy and failed states while neglecting intermediate degradation, and (ii) a degradation-trend-constrained variational autoencoder (DTC-VAE), in which the monotonicity criterion is embedded via an explicit trend constraint. Guided waves with multiple excitation frequencies are used to monitor single-stiffener composite structures under fatigue loading. Time, frequency, and time-frequency representations are explored, and per-frequency HIs are fused via unsupervised ensemble learning to mitigate frequency dependence and reduce variance. Using fast Fourier transform features, the augmented Diversity-DeepSAD model achieved 81.6% performance, while DTC-VAE delivered the most consistent HIs with 92.3% performance, outperforming existing baselines.
☆ Comparison of generalised additive models and neural networks in applications: A systematic review
Neural networks have become a popular tool in predictive modelling, more commonly associated with machine learning and artificial intelligence than with statistics. Generalised Additive Models (GAMs) are flexible non-linear statistical models that retain interpretability. Both are state-of-the-art in their own right, with their respective advantages and disadvantages. This paper analyses how these two model classes have performed on real-world tabular data. Following PRISMA guidelines, we conducted a systematic review of papers that performed empirical comparisons of GAMs and neural networks. Eligible papers were identified, yielding 143 papers, with 430 datasets. Key attributes at both paper and dataset levels were extracted and reported. Beyond summarising comparisons, we analyse reported performance metrics using mixed-effects modelling to investigate potential characteristics that can explain and quantify observed differences, including application area, study year, sample size, number of predictors, and neural network complexity. Across datasets, no consistent evidence of superiority was found for either GAMs or neural networks when considering the most frequently reported metrics (RMSE, $R^2$, and AUC). Neural networks tended to outperform in larger datasets and in those with more predictors, but this advantage narrowed over time. Conversely, GAMs remained competitive, particularly in smaller data settings, while retaining interpretability. Reporting of dataset characteristics and neural network complexity was incomplete in much of the literature, limiting transparency and reproducibility. This review highlights that GAMs and neural networks should be viewed as complementary approaches rather than competitors. For many tabular applications, the performance trade-off is modest, and interpretability may favour GAMs.
☆ A Novel XAI-Enhanced Quantum Adversarial Networks for Velocity Dispersion Modeling in MaNGA Galaxies
Current quantum machine learning approaches often face challenges balancing predictive accuracy, robustness, and interpretability. To address this, we propose a novel quantum adversarial framework that integrates a hybrid quantum neural network (QNN) with classical deep learning layers, guided by an evaluator model with LIME-based interpretability, and extended through quantum GAN and self-supervised variants. In the proposed model, an adversarial evaluator concurrently guides the QNN by computing feedback loss, thereby optimizing both prediction accuracy and model explainability. Empirical evaluations show that the Vanilla model achieves RMSE = 0.27, MSE = 0.071, MAE = 0.21, and R^2 = 0.59, delivering the most consistent performance across regression metrics compared to adversarial counterparts. These results demonstrate the potential of combining quantum-inspired methods with classical architectures to develop lightweight, high-performance, and interpretable predictive models, advancing the applicability of QML beyond current limitations.
☆ Physics-Informed Extreme Learning Machine (PIELM): Opportunities and Challenges
We are very delighted to see the fast development of physics-informed extreme learning machine (PIELM) in recent years for higher computation efficiency and accuracy in physics-informed machine learning. As a summary or review on PIELM is currently not available, we would like to take this opportunity to show our perspective and experience for this promising research direction. We can see many efforts are made to solve PDEs with sharp gradients, nonlinearities, high-frequency behavior, hard constraints, uncertainty, multiphysics coupling. Despite the success, many urgent challenges remain to be tackled, which also provides us opportunities to develop more robust, interpretable, and generalizable PIELM frameworks with applications in science and engineering.
☆ DistDF: Time-Series Forecasting Needs Joint-Distribution Wasserstein Alignment
Training time-series forecast models requires aligning the conditional distribution of model forecasts with that of the label sequence. The standard direct forecast (DF) approach resorts to minimize the conditional negative log-likelihood of the label sequence, typically estimated using the mean squared error. However, this estimation proves to be biased in the presence of label autocorrelation. In this paper, we propose DistDF, which achieves alignment by alternatively minimizing a discrepancy between the conditional forecast and label distributions. Because conditional discrepancies are difficult to estimate from finite time-series observations, we introduce a newly proposed joint-distribution Wasserstein discrepancy for time-series forecasting, which provably upper bounds the conditional discrepancy of interest. This discrepancy admits tractable, differentiable estimation from empirical samples and integrates seamlessly with gradient-based training. Extensive experiments show that DistDF improves the performance diverse forecast models and achieves the state-of-the-art forecasting performance. Code is available at https://anonymous.4open.science/r/DistDF-F66B.
☆ LoRA-DA: Data-Aware Initialization for Low-Rank Adaptation via Asymptotic Analysis
With the widespread adoption of LLMs, LoRA has become a dominant method for PEFT, and its initialization methods have attracted increasing attention. However, existing methods have notable limitations: many methods do not incorporate target-domain data, while gradient-based methods exploit data only at a shallow level by relying on one-step gradient decomposition, which remains unsatisfactory due to the weak empirical performance of the one-step fine-tuning model that serves as their basis, as well as the fact that these methods either lack a rigorous theoretical foundation or depend heavily on restrictive isotropic assumptions. In this paper, we establish a theoretical framework for data-aware LoRA initialization based on asymptotic analysis. Starting from a general optimization objective that minimizes the expectation of the parameter discrepancy between the fine-tuned and target models, we derive an optimization problem with two components: a bias term, which is related to the parameter distance between the fine-tuned and target models, and is approximated using a Fisher-gradient formulation to preserve anisotropy; and a variance term, which accounts for the uncertainty introduced by sampling stochasticity through the Fisher information. By solving this problem, we obtain an optimal initialization strategy for LoRA. Building on this theoretical framework, we develop an efficient algorithm, LoRA-DA, which estimates the terms in the optimization problem from a small set of target domain samples and obtains the optimal LoRA initialization. Empirical results across multiple benchmarks demonstrate that LoRA-DA consistently improves final accuracy over existing initialization methods. Additional studies show faster, more stable convergence, robustness across ranks, and only a small initialization overhead for LoRA-DA. The source code will be released upon publication.
☆ Enforcing boundary conditions for physics-informed neural operators
Machine-learning based methods like physics-informed neural networks and physics-informed neural operators are becoming increasingly adept at solving even complex systems of partial differential equations. Boundary conditions can be enforced either weakly by penalizing deviations in the loss function or strongly by training a solution structure that inherently matches the prescribed values and derivatives. The former approach is easy to implement but the latter can provide benefits with respect to accuracy and training times. However, previous approaches to strongly enforcing Neumann or Robin boundary conditions require a domain with a fully $C^1$ boundary and, as we demonstrate, can lead to instability if those boundary conditions are posed on a segment of the boundary that is piecewise $C^1$ but only $C^0$ globally. We introduce a generalization of the approach by Sukumar \& Srivastava (doi: 10.1016/j.cma.2021.114333), and a new approach based on orthogonal projections that overcome this limitation. The performance of these new techniques is compared against weakly and semi-weakly enforced boundary conditions for the scalar Darcy flow equation and the stationary Navier-Stokes equations.
☆ Dual-Mind World Models: A General Framework for Learning in Dynamic Wireless Networks
Despite the popularity of reinforcement learning (RL) in wireless networks, existing approaches that rely on model-free RL (MFRL) and model-based RL (MBRL) are data inefficient and short-sighted. Such RL-based solutions cannot generalize to novel network states since they capture only statistical patterns rather than the underlying physics and logic from wireless data. These limitations become particularly challenging in complex wireless networks with high dynamics and long-term planning requirements. To address these limitations, in this paper, a novel dual-mind world model-based learning framework is proposed with the goal of optimizing completeness-weighted age of information (CAoI) in a challenging mmWave V2X scenario. Inspired by cognitive psychology, the proposed dual-mind world model encompasses a pattern-driven System 1 component and a logic-driven System 2 component to learn dynamics and logic of the wireless network, and to provide long-term link scheduling over reliable imagined trajectories. Link scheduling is learned through end-to-end differentiable imagined trajectories with logical consistency over an extended horizon rather than relying on wireless data obtained from environment interactions. Moreover, through imagination rollouts, the proposed world model can jointly reason network states and plan link scheduling. During intervals without observations, the proposed method remains capable of making efficient decisions. Extensive experiments are conducted on a realistic simulator based on Sionna with real-world physical channel, ray-tracing, and scene objects with material properties. Simulation results show that the proposed world model achieves a significant improvement in data efficiency and achieves strong generalization and adaptation to unseen environments, compared to the state-of-the-art RL baselines, and the world model approach with only System 1.
☆ Unsupervised Machine-Learning Pipeline for Data-Driven Defect Detection and Characterisation: Application to Displacement Cascades
Neutron irradiation produces, within a few picoseconds, displacement cascades that are sequences of atomic collisions generating point and extended defects which subsequently affects the long-term evolution of materials. The diversity of these defects, characterized morphologically and statistically, defines what is called the "primary damage". In this work, we present a fully unsupervised machine learning (ML) workflow that detects and classifies these defects directly from molecular dynamics data. Local environments are encoded by the Smooth Overlap of Atomic Positions (SOAP) vector, anomalous atoms are isolated with autoencoder neural networks (AE), embedded with Uniform Manifold Approximation and Projection (UMAP) and clustered using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Applied to 80 keV displacement cascades in Ni, Fe$_7$0Ni$_{10}$Cr$_{20}$, and Zr, the AE successfully identify the small fraction of outlier atoms that participate in defect formation. HDBSCAN then partitions the UMAP latent space of AE-flagged SOAP descriptors into well defined groups representing vacancy- and interstitial-dominated regions and, within each, separates small from large aggregates, assigning 99.7 % of outliers to compact physical motifs. A signed cluster-identification score confirms this separation, and cluster size scales with net defect counts (R2 > 0.89). Statistical cross analyses between the ML outlier map and several conventional detectors (centrosymmetry, dislocation extraction, etc.) reveal strong overlap and complementary coverage, all achieved without template or threshold tuning. This ML workflow thus provides an efficient tool for the quantitative mapping of structural anomalies in materials, particularly those arising from irradiation damage in displacement cascades.
comment: 22 pages, 1 graphical abstract, 7 figures, 4 tables
☆ Local Performance vs. Out-of-Distribution Generalization: An Empirical Analysis of Personalized Federated Learning in Heterogeneous Data Environments
In the context of Federated Learning with heterogeneous data environments, local models tend to converge to their own local model optima during local training steps, deviating from the overall data distributions. Aggregation of these local updates, e.g., with FedAvg, often does not align with the global model optimum (client drift), resulting in an update that is suboptimal for most clients. Personalized Federated Learning approaches address this challenge by exclusively focusing on the average local performances of clients' models on their own data distribution. Generalization to out-of-distribution samples, which is a substantial benefit of FedAvg and represents a significant component of robustness, appears to be inadequately incorporated into the assessment and evaluation processes. This study involves a thorough evaluation of Federated Learning approaches, encompassing both their local performance and their generalization capabilities. Therefore, we examine different stages within a single communication round to enable a more nuanced understanding of the considered metrics. Furthermore, we propose and incorporate a modified approach of FedAvg, designated as Federated Learning with Individualized Updates (FLIU), extending the algorithm by a straightforward individualization step with an adaptive personalization factor. We evaluate and compare the approaches empirically using MNIST and CIFAR-10 under various distributional conditions, including benchmark IID and pathological non-IID, as well as additional novel test environments with Dirichlet distribution specifically developed to stress the algorithms on complex data heterogeneity.
☆ MIMIC-Sepsis: A Curated Benchmark for Modeling and Learning from Sepsis Trajectories in the ICU
Sepsis is a leading cause of mortality in intensive care units (ICUs), yet existing research often relies on outdated datasets, non-reproducible preprocessing pipelines, and limited coverage of clinical interventions. We introduce MIMIC-Sepsis, a curated cohort and benchmark framework derived from the MIMIC-IV database, designed to support reproducible modeling of sepsis trajectories. Our cohort includes 35,239 ICU patients with time-aligned clinical variables and standardized treatment data, including vasopressors, fluids, mechanical ventilation and antibiotics. We describe a transparent preprocessing pipeline-based on Sepsis-3 criteria, structured imputation strategies, and treatment inclusion-and release it alongside benchmark tasks focused on early mortality prediction, length-of-stay estimation, and shock onset classification. Empirical results demonstrate that incorporating treatment variables substantially improves model performance, particularly for Transformer-based architectures. MIMIC-Sepsis serves as a robust platform for evaluating predictive and sequential models in critical care research.
☆ Sample-efficient and Scalable Exploration in Continuous-Time RL
Reinforcement learning algorithms are typically designed for discrete-time dynamics, even though the underlying real-world control systems are often continuous in time. In this paper, we study the problem of continuous-time reinforcement learning, where the unknown system dynamics are represented using nonlinear ordinary differential equations (ODEs). We leverage probabilistic models, such as Gaussian processes and Bayesian neural networks, to learn an uncertainty-aware model of the underlying ODE. Our algorithm, COMBRL, greedily maximizes a weighted sum of the extrinsic reward and model epistemic uncertainty. This yields a scalable and sample-efficient approach to continuous-time model-based RL. We show that COMBRL achieves sublinear regret in the reward-driven setting, and in the unsupervised RL setting (i.e., without extrinsic rewards), we provide a sample complexity bound. In our experiments, we evaluate COMBRL in both standard and unsupervised RL settings and demonstrate that it scales better, is more sample-efficient than prior methods, and outperforms baselines across several deep RL tasks.
comment: 26 pages, 6 figures, 6 tables
☆ Methodology for Comparing Machine Learning Algorithms for Survival Analysis
This study presents a comparative methodological analysis of six machine learning models for survival analysis (MLSA). Using data from nearly 45,000 colorectal cancer patients in the Hospital-Based Cancer Registries of S\~ao Paulo, we evaluated Random Survival Forest (RSF), Gradient Boosting for Survival Analysis (GBSA), Survival SVM (SSVM), XGBoost-Cox (XGB-Cox), XGBoost-AFT (XGB-AFT), and LightGBM (LGBM), capable of predicting survival considering censored data. Hyperparameter optimization was performed with different samplers, and model performance was assessed using the Concordance Index (C-Index), C-Index IPCW, time-dependent AUC, and Integrated Brier Score (IBS). Survival curves produced by the models were compared with predictions from classification algorithms, and predictor interpretation was conducted using SHAP and permutation importance. XGB-AFT achieved the best performance (C-Index = 0.7618; IPCW = 0.7532), followed by GBSA and RSF. The results highlight the potential and applicability of MLSA to improve survival prediction and support decision making.
☆ Non-Singularity of the Gradient Descent map for Neural Networks with Piecewise Analytic Activations
The theory of training deep networks has become a central question of modern machine learning and has inspired many practical advancements. In particular, the gradient descent (GD) optimization algorithm has been extensively studied in recent years. A key assumption about GD has appeared in several recent works: the \emph{GD map is non-singular} -- it preserves sets of measure zero under preimages. Crucially, this assumption has been used to prove that GD avoids saddle points and maxima, and to establish the existence of a computable quantity that determines the convergence to global minima (both for GD and stochastic GD). However, the current literature either assumes the non-singularity of the GD map or imposes restrictive assumptions, such as Lipschitz smoothness of the loss (for example, Lipschitzness does not hold for deep ReLU networks with the cross-entropy loss) and restricts the analysis to GD with small step-sizes. In this paper, we investigate the neural network map as a function on the space of weights and biases. We also prove, for the first time, the non-singularity of the gradient descent (GD) map on the loss landscape of realistic neural network architectures (with fully connected, convolutional, or softmax attention layers) and piecewise analytic activations (which includes sigmoid, ReLU, leaky ReLU, etc.) for almost all step-sizes. Our work significantly extends the existing results on the convergence of GD and SGD by guaranteeing that they apply to practical neural network settings and has the potential to unlock further exploration of learning dynamics.
☆ ARIMA_PLUS: Large-scale, Accurate, Automatic and Interpretable In-Database Time Series Forecasting and Anomaly Detection in Google BigQuery
Time series forecasting and anomaly detection are common tasks for practitioners in industries such as retail, manufacturing, advertising and energy. Two unique challenges stand out: (1) efficiently and accurately forecasting time series or detecting anomalies in large volumes automatically; and (2) ensuring interpretability of results to effectively incorporate business insights. We present ARIMA_PLUS, a novel framework to overcome these two challenges by a unique combination of (a) accurate and interpretable time series models and (b) scalable and fully managed system infrastructure. The model has a sequential and modular structure to handle different components of the time series, including holiday effects, seasonality, trend, and anomalies, which enables high interpretability of the results. Novel enhancements are made to each module, and a unified framework is established to address both forecasting and anomaly detection tasks simultaneously. In terms of accuracy, its comprehensive benchmark on the 42 public datasets in the Monash forecasting repository shows superior performance over not only well-established statistical alternatives (such as ETS, ARIMA, TBATS, Prophet) but also newer neural network models (such as DeepAR, N-BEATS, PatchTST, TimeMixer). In terms of infrastructure, it is directly built into the query engine of BigQuery in Google Cloud. It uses a simple SQL interface and automates tedious technicalities such as data cleaning and model selection. It automatically scales with managed cloud computational and storage resources, making it possible to forecast 100 million time series using only 1.5 hours with a throughput of more than 18000 time series per second. In terms of interpretability, we present several case studies to demonstrate time series insights it generates and customizability it offers.
☆ Nearest Neighbor Matching as Least Squares Density Ratio Estimation and Riesz Regression
This study proves that Nearest Neighbor (NN) matching can be interpreted as an instance of Riesz regression for automatic debiased machine learning. Lin et al. (2023) shows that NN matching is an instance of density-ratio estimation with their new density-ratio estimator. Chernozhukov et al. (2024) develops Riesz regression for automatic debiased machine learning, which directly estimates the Riesz representer (or equivalently, the bias-correction term) by minimizing the mean squared error. In this study, we first prove that the density-ratio estimation method proposed in Lin et al. (2023) is essentially equivalent to Least-Squares Importance Fitting (LSIF) proposed in Kanamori et al. (2009) for direct density-ratio estimation. Furthermore, we derive Riesz regression using the LSIF framework. Based on these results, we derive NN matching from Riesz regression. This study is based on our work Kato (2025a) and Kato (2025b).
☆ Fill in the Blanks: Accelerating Q-Learning with a Handful of Demonstrations in Sparse Reward Settings
Reinforcement learning (RL) in sparse-reward environments remains a significant challenge due to the lack of informative feedback. We propose a simple yet effective method that uses a small number of successful demonstrations to initialize the value function of an RL agent. By precomputing value estimates from offline demonstrations and using them as targets for early learning, our approach provides the agent with a useful prior over promising actions. The agent then refines these estimates through standard online interaction. This hybrid offline-to-online paradigm significantly reduces the exploration burden and improves sample efficiency in sparse-reward settings. Experiments on benchmark tasks demonstrate that our method accelerates convergence and outperforms standard baselines, even with minimal or suboptimal demonstration data.
☆ Attack on a PUF-based Secure Binary Neural Network
Binarized Neural Networks (BNNs) deployed on memristive crossbar arrays provide energy-efficient solutions for edge computing but are susceptible to physical attacks due to memristor nonvolatility. Recently, Rajendran et al. (IEEE Embedded Systems Letter 2025) proposed a Physical Unclonable Function (PUF)-based scheme to secure BNNs against theft attacks. Specifically, the weight and bias matrices of the BNN layers were secured by swapping columns based on device's PUF key bits. In this paper, we demonstrate that this scheme to secure BNNs is vulnerable to PUF-key recovery attack. As a consequence of our attack, we recover the secret weight and bias matrices of the BNN. Our approach is motivated by differential cryptanalysis and reconstructs the PUF key bit-by-bit by observing the change in model accuracy, and eventually recovering the BNN model parameters. Evaluated on a BNN trained on the MNIST dataset, our attack could recover 85% of the PUF key, and recover the BNN model up to 93% classification accuracy compared to the original model's 96% accuracy. Our attack is very efficient and it takes a couple of minutes to recovery the PUF key and the model parameters.
comment: Accepted at VLSID 2026. To be published in IEEE Xplore
☆ APEX: Approximate-but-exhaustive search for ultra-large combinatorial synthesis libraries
Make-on-demand combinatorial synthesis libraries (CSLs) like Enamine REAL have significantly enabled drug discovery efforts. However, their large size presents a challenge for virtual screening, where the goal is to identify the top compounds in a library according to a computational objective (e.g., optimizing docking score) subject to computational constraints under a limited computational budget. For current library sizes -- numbering in the tens of billions of compounds -- and scoring functions of interest, a routine virtual screening campaign may be limited to scoring fewer than 0.1% of the available compounds, leaving potentially many high scoring compounds undiscovered. Furthermore, as constraints (and sometimes objectives) change during the course of a virtual screening campaign, existing virtual screening algorithms typically offer little room for amortization. We propose the approximate-but-exhaustive search protocol for CSLs, or APEX. APEX utilizes a neural network surrogate that exploits the structure of CSLs in the prediction of objectives and constraints to make full enumeration on a consumer GPU possible in under a minute, allowing for exact retrieval of approximate top-$k$ sets. To demonstrate APEX's capabilities, we develop a benchmark CSL comprised of more than 10 million compounds, all of which have been annotated with their docking scores on five medically relevant targets along with physicohemical properties measured with RDKit such that, for any objective and set of constraints, the ground truth top-$k$ compounds can be identified and compared against the retrievals from any virtual screening algorithm. We show APEX's consistently strong performance both in retrieval accuracy and runtime compared to alternative methods.
☆ A Comprehensive Evaluation Framework for Synthetic Trip Data Generation in Public Transport
Synthetic data offers a promising solution to the privacy and accessibility challenges of using smart card data in public transport research. Despite rapid progress in generative modeling, there is limited attention to comprehensive evaluation, leaving unclear how reliable, safe, and useful synthetic data truly are. Existing evaluations remain fragmented, typically limited to population-level representativeness or record-level privacy, without considering group-level variations or task-specific utility. To address this gap, we propose a Representativeness-Privacy-Utility (RPU) framework that systematically evaluates synthetic trip data across three complementary dimensions and three hierarchical levels (record, group, population). The framework integrates a consistent set of metrics to quantify similarity, disclosure risk, and practical usefulness, enabling transparent and balanced assessment of synthetic data quality. We apply the framework to benchmark twelve representative generation methods, spanning conventional statistical models, deep generative networks, and privacy-enhanced variants. Results show that synthetic data do not inherently guarantee privacy and there is no "one-size-fits-all" model, the trade-off between privacy and representativeness/utility is obvious. Conditional Tabular generative adversarial network (CTGAN) provide the most balanced trade-off and is suggested for practical applications. The RPU framework provides a systematic and reproducible basis for researchers and practitioners to compare synthetic data generation techniques and select appropriate methods in public transport applications.
☆ Filtering instances and rejecting predictions to obtain reliable models in healthcare
Machine Learning (ML) models are widely used in high-stakes domains such as healthcare, where the reliability of predictions is critical. However, these models often fail to account for uncertainty, providing predictions even with low confidence. This work proposes a novel two-step data-centric approach to enhance the performance of ML models by improving data quality and filtering low-confidence predictions. The first step involves leveraging Instance Hardness (IH) to filter problematic instances during training, thereby refining the dataset. The second step introduces a confidence-based rejection mechanism during inference, ensuring that only reliable predictions are retained. We evaluate our approach using three real-world healthcare datasets, demonstrating its effectiveness at improving model reliability while balancing predictive performance and rejection rate. Additionally, we use alternative criteria - influence values for filtering and uncertainty for rejection - as baselines to evaluate the efficiency of the proposed method. The results demonstrate that integrating IH filtering with confidence-based rejection effectively enhances model performance while preserving a large proportion of instances. This approach provides a practical method for deploying ML systems in safety-critical applications.
comment: This paper is under review at Machine Learning (Springer)
☆ Perception Learning: A Formal Separation of Sensory Representation Learning from Decision Learning
We introduce Perception Learning (PeL), a paradigm that optimizes an agent's sensory interface $f_\phi:\mathcal{X}\to\mathcal{Z}$ using task-agnostic signals, decoupled from downstream decision learning $g_\theta:\mathcal{Z}\to\mathcal{Y}$. PeL directly targets label-free perceptual properties, such as stability to nuisances, informativeness without collapse, and controlled geometry, assessed via objective representation-invariant metrics. We formalize the separation of perception and decision, define perceptual properties independent of objectives or reparameterizations, and prove that PeL updates preserving sufficient invariants are orthogonal to Bayes task-risk gradients. Additionally, we provide a suite of task-agnostic evaluation metrics to certify perceptual quality.
☆ What do vision-language models see in the context? Investigating multimodal in-context learning
In-context learning (ICL) enables Large Language Models (LLMs) to learn tasks from demonstration examples without parameter updates. Although it has been extensively studied in LLMs, its effectiveness in Vision-Language Models (VLMs) remains underexplored. In this work, we present a systematic study of ICL in VLMs, evaluating seven models spanning four architectures on three image captioning benchmarks. We analyze how prompt design, architectural choices, and training strategies influence multimodal ICL. To our knowledge, we are the first to analyze how attention patterns in VLMs vary with an increasing number of in-context demonstrations. Our results reveal that training on imag-text interleaved data enhances ICL performance but does not imply effective integration of visual and textual information from demonstration examples. In contrast, instruction tuning improves instruction-following but can reduce reliance on in-context demonstrations, suggesting a trade-off between instruction alignment and in-context adaptation. Attention analyses further show that current VLMs primarily focus on textual cues and fail to leverage visual information, suggesting a limited capacity for multimodal integration. These findings highlight key limitations in the ICL abilities of current VLMs and provide insights for enhancing their ability to learn from multimodal in-context examples.
Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
☆ EDC: Equation Discovery for Classification
Equation Discovery techniques have shown considerable success in regression tasks, where they are used to discover concise and interpretable models (\textit{Symbolic Regression}). In this paper, we propose a new ED-based binary classification framework. Our proposed method EDC finds analytical functions of manageable size that specify the location and shape of the decision boundary. In extensive experiments on artificial and real-life data, we demonstrate how EDC is able to discover both the structure of the target equation as well as the value of its parameters, outperforming the current state-of-the-art ED-based classification methods in binary classification and achieving performance comparable to the state of the art in binary classification. We suggest a grammar of modest complexity that appears to work well on the tested datasets but argue that the exact grammar -- and thus the complexity of the models -- is configurable, and especially domain-specific expressions can be included in the pattern language, where that is required. The presented grammar consists of a series of summands (additive terms) that include linear, quadratic and exponential terms, as well as products of two features (producing hyperbolic curves ideal for capturing XOR-like dependencies). The experiments demonstrate that this grammar allows fairly flexible decision boundaries while not so rich to cause overfitting.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Lecture Notes in Computer Science, and is available online at https://doi.org/10.1007/978-3-032-05461-6_9
☆ Problem-Parameter-Free Decentralized Bilevel Optimization NeurIPS 2025
Decentralized bilevel optimization has garnered significant attention due to its critical role in solving large-scale machine learning problems. However, existing methods often rely on prior knowledge of problem parameters-such as smoothness, convexity, or communication network topologies-to determine appropriate stepsizes. In practice, these problem parameters are typically unavailable, leading to substantial manual effort for hyperparameter tuning. In this paper, we propose AdaSDBO, a fully problem-parameter-free algorithm for decentralized bilevel optimization with a single-loop structure. AdaSDBO leverages adaptive stepsizes based on cumulative gradient norms to update all variables simultaneously, dynamically adjusting its progress and eliminating the need for problem-specific hyperparameter tuning. Through rigorous theoretical analysis, we establish that AdaSDBO achieves a convergence rate of $\widetilde{\mathcal{O}}\left(\frac{1}{T}\right)$, matching the performance of well-tuned state-of-the-art methods up to polylogarithmic factors. Extensive numerical experiments demonstrate that AdaSDBO delivers competitive performance compared to existing decentralized bilevel optimization methods while exhibiting remarkable robustness across diverse stepsize configurations.
comment: Accepted by NeurIPS 2025
☆ Towards actionable hypotension prediction -- predicting catecholamine therapy initiation in the intensive care unit
Hypotension in critically ill ICU patients is common and life-threatening. Escalation to catecholamine therapy marks a key management step, with both undertreatment and overtreatment posing risks. Most machine learning (ML) models predict hypotension using fixed MAP thresholds or MAP forecasting, overlooking the clinical decision behind treatment escalation. Predicting catecholamine initiation, the start of vasoactive or inotropic agent administration offers a more clinically actionable target reflecting real decision-making. Using the MIMIC-III database, we modeled catecholamine initiation as a binary event within a 15-minute prediction window. Input features included statistical descriptors from a two-hour sliding MAP context window, along with demographics, biometrics, comorbidities, and ongoing treatments. An Extreme Gradient Boosting (XGBoost) model was trained and interpreted via SHapley Additive exPlanations (SHAP). The model achieved an AUROC of 0.822 (0.813-0.830), outperforming the hypotension baseline (MAP < 65, AUROC 0.686 [0.675-0.699]). SHAP analysis highlighted recent MAP values, MAP trends, and ongoing treatments (e.g., sedatives, electrolytes) as dominant predictors. Subgroup analysis showed higher performance in males, younger patients (<53 years), those with higher BMI (>32), and patients without comorbidities or concurrent medications. Predicting catecholamine initiation based on MAP dynamics, treatment context, and patient characteristics supports the critical decision of when to escalate therapy, shifting focus from threshold-based alarms to actionable decision support. This approach is feasible across a broad ICU cohort under natural event imbalance. Future work should enrich temporal and physiological context, extend label definitions to include therapy escalation, and benchmark against existing hypotension prediction systems.
comment: 27 pages, 8 figures, source code under https://github.com/AI4HealthUOL/actionable-hypotension
☆ HergNet: a Fast Neural Surrogate Model for Sound Field Predictions via Superposition of Plane Waves
We present a novel neural network architecture for the efficient prediction of sound fields in two and three dimensions. The network is designed to automatically satisfy the Helmholtz equation, ensuring that the outputs are physically valid. Therefore, the method can effectively learn solutions to boundary-value problems in various wave phenomena, such as acoustics, optics, and electromagnetism. Numerical experiments show that the proposed strategy can potentially outperform state-of-the-art methods in room acoustics simulation, in particular in the range of mid to high frequencies.
☆ SALS: Sparse Attention in Latent Space for KV cache Compression
Large Language Models capable of handling extended contexts are in high demand, yet their inference remains challenging due to substantial Key-Value cache size and high memory bandwidth requirements. Previous research has demonstrated that KV cache exhibits low-rank characteristics within the hidden dimension, suggesting the potential for effective compression. However, due to the widely adopted Rotary Position Embedding mechanism in modern LLMs, naive low-rank compression suffers severe accuracy degradation or creates a new speed bottleneck, as the low-rank cache must first be reconstructed in order to apply RoPE. In this paper, we introduce two key insights: first, the application of RoPE to the key vectors increases their variance, which in turn results in a higher rank; second, after the key vectors are transformed into the latent space, they largely maintain their representation across most layers. Based on these insights, we propose the Sparse Attention in Latent Space framework. SALS projects the KV cache into a compact latent space via low-rank projection, and performs sparse token selection using RoPE-free query-key interactions in this space. By reconstructing only a small subset of important tokens, it avoids the overhead of full KV cache reconstruction. We comprehensively evaluate SALS on various tasks using two large-scale models: LLaMA2-7b-chat and Mistral-7b, and additionally verify its scalability on the RULER-128k benchmark with LLaMA3.1-8B-Instruct. Experimental results demonstrate that SALS achieves SOTA performance by maintaining competitive accuracy. Under different settings, SALS achieves 6.4-fold KV cache compression and 5.7-fold speed-up in the attention operator compared to FlashAttention2 on the 4K sequence. For the end-to-end throughput performance, we achieves 1.4-fold and 4.5-fold improvement compared to GPT-fast on 4k and 32K sequences, respectively.
☆ UtilGen: Utility-Centric Generative Data Augmentation with Dual-Level Task Adaptation NeurIPS 2025
Data augmentation using generative models has emerged as a powerful paradigm for enhancing performance in computer vision tasks. However, most existing augmentation approaches primarily focus on optimizing intrinsic data attributes -- such as fidelity and diversity -- to generate visually high-quality synthetic data, while often neglecting task-specific requirements. Yet, it is essential for data generators to account for the needs of downstream tasks, as training data requirements can vary significantly across different tasks and network architectures. To address these limitations, we propose UtilGen, a novel utility-centric data augmentation framework that adaptively optimizes the data generation process to produce task-specific, high-utility training data via downstream task feedback. Specifically, we first introduce a weight allocation network to evaluate the task-specific utility of each synthetic sample. Guided by these evaluations, UtilGen iteratively refines the data generation process using a dual-level optimization strategy to maximize the synthetic data utility: (1) model-level optimization tailors the generative model to the downstream task, and (2) instance-level optimization adjusts generation policies -- such as prompt embeddings and initial noise -- at each generation round. Extensive experiments on eight benchmark datasets of varying complexity and granularity demonstrate that UtilGen consistently achieves superior performance, with an average accuracy improvement of 3.87% over previous SOTA. Further analysis of data influence and distribution reveals that UtilGen produces more impactful and task-relevant synthetic data, validating the effectiveness of the paradigm shift from visual characteristics-centric to task utility-centric data augmentation.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ From Memorization to Reasoning in the Spectrum of Loss Curvature
We characterize how memorization is represented in transformer models and show that it can be disentangled in the weights of both language models (LMs) and vision transformers (ViTs) using a decomposition based on the loss landscape curvature. This insight is based on prior theoretical and empirical work showing that the curvature for memorized training points is much sharper than non memorized, meaning ordering weight components from high to low curvature can reveal a distinction without explicit labels. This motivates a weight editing procedure that suppresses far more recitation of untargeted memorized data more effectively than a recent unlearning method (BalancedSubnet), while maintaining lower perplexity. Since the basis of curvature has a natural interpretation for shared structure in model weights, we analyze the editing procedure extensively on its effect on downstream tasks in LMs, and find that fact retrieval and arithmetic are specifically and consistently negatively affected, even though open book fact retrieval and general logical reasoning is conserved. We posit these tasks rely heavily on specialized directions in weight space rather than general purpose mechanisms, regardless of whether those individual datapoints are memorized. We support this by showing a correspondence between task data's activation strength with low curvature components that we edit out, and the drop in task performance after the edit. Our work enhances the understanding of memorization in neural networks with practical applications towards removing it, and provides evidence for idiosyncratic, narrowly-used structures involved in solving tasks like math and fact retrieval.
☆ Forecasting precipitation in the Arctic using probabilistic machine learning informed by causal climate drivers
Understanding and forecasting precipitation events in the Arctic maritime environments, such as Bear Island and Ny-{\AA}lesund, is crucial for assessing climate risk and developing early warning systems in vulnerable marine regions. This study proposes a probabilistic machine learning framework for modeling and predicting the dynamics and severity of precipitation. We begin by analyzing the scale-dependent relationships between precipitation and key atmospheric drivers (e.g., temperature, relative humidity, cloud cover, and air pressure) using wavelet coherence, which captures localized dependencies across time and frequency domains. To assess joint causal influences, we employ Synergistic-Unique-Redundant Decomposition, which quantifies the impact of interaction effects among each variable on future precipitation dynamics. These insights inform the development of data-driven forecasting models that incorporate both historical precipitation and causal climate drivers. To account for uncertainty, we employ the conformal prediction method, which enables the generation of calibrated non-parametric prediction intervals. Our results underscore the importance of utilizing a comprehensive framework that combines causal analysis with probabilistic forecasting to enhance the reliability and interpretability of precipitation predictions in Arctic marine environments.
☆ Enabling Near-realtime Remote Sensing via Satellite-Ground Collaboration of Large Vision-Language Models
Large vision-language models (LVLMs) have recently demonstrated great potential in remote sensing (RS) tasks (e.g., disaster monitoring) conducted by low Earth orbit (LEO) satellites. However, their deployment in real-world LEO satellite systems remains largely unexplored, hindered by limited onboard computing resources and brief satellite-ground contacts. We propose Grace, a satellite-ground collaborative system designed for near-realtime LVLM inference in RS tasks. Accordingly, we deploy compact LVLM on satellites for realtime inference, but larger ones on ground stations (GSs) to guarantee end-to-end performance. Grace is comprised of two main phases that are asynchronous satellite-GS Retrieval-Augmented Generation (RAG), and a task dispatch algorithm. Firstly, we still the knowledge archive of GS RAG to satellite archive with tailored adaptive update algorithm during limited satellite-ground data exchange period. Secondly, propose a confidence-based test algorithm that either processes the task onboard the satellite or offloads it to the GS. Extensive experiments based on real-world satellite orbital data show that Grace reduces the average latency by 76-95% compared to state-of-the-art methods, without compromising inference accuracy.
comment: 15 pages, 11 figures
☆ Temporal Knowledge Graph Hyperedge Forecasting: Exploring Entity-to-Category Link Prediction
Temporal Knowledge Graphs have emerged as a powerful way of not only modeling static relationships between entities but also the dynamics of how relations evolve over time. As these informational structures can be used to store information from a real-world setting, such as a news flow, predicting future graph components to a certain extent equates predicting real-world events. Most of the research in this field focuses on embedding-based methods, often leveraging convolutional neural net architectures. These solutions act as black boxes, limiting insight. In this paper, we explore an extension to an established rule-based framework, TLogic, that yields a high accuracy in combination with explainable predictions. This offers transparency and allows the end-user to critically evaluate the rules applied at the end of the prediction stage. The new rule format incorporates entity category as a key component with the purpose of limiting rule application only to relevant entities. When categories are unknown for building the graph, we propose a data-driven method to generate them with an LLM-based approach. Additionally, we investigate the choice of aggregation method for scores of retrieved entities when performing category prediction.
☆ PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. While generative reward models (GRMs) offer greater interpretability than traditional scalar RMs, current training paradigms remain limited. Pair-wise methods rely on binary good-versus-bad labels, which cause mismatches for point-wise inference and necessitate complex pairing strategies for effective application in RLHF. On the other hand, point-wise methods require more elaborate absolute labeling with rubric-driven criteria, resulting in poor adaptability and high annotation costs. In this work, we propose the Preference-Aware Task-Adaptive Reward Model (PaTaRM), a unified framework that integrates a preference-aware reward (PAR) mechanism with dynamic rubric adaptation. PaTaRM leverages relative preference information from pairwise data to construct robust point-wise training signals, eliminating the need for explicit point-wise labels. Simultaneously, it employs a task-adaptive rubric system that flexibly generates evaluation criteria for both global task consistency and instance-specific fine-grained reasoning. This design enables efficient, generalizable, and interpretable reward modeling for RLHF. Extensive experiments show that PaTaRM achieves an average relative improvement of 4.7% on RewardBench and RMBench across Qwen3-8B and Qwen3-14B models. Furthermore, PaTaRM boosts downstream RLHF performance, with an average improvement of 13.6% across IFEval and InFoBench benchmarks, confirming its effectiveness and robustness. Our code is available at https://github.com/JaneEyre0530/PaTaRM.
☆ Sparse Optimistic Information Directed Sampling
Many high-dimensional online decision-making problems can be modeled as stochastic sparse linear bandits. Most existing algorithms are designed to achieve optimal worst-case regret in either the data-rich regime, where polynomial dependence on the ambient dimension is unavoidable, or the data-poor regime, where dimension-independence is possible at the cost of worse dependence on the number of rounds. In contrast, the sparse Information Directed Sampling (IDS) algorithm satisfies a Bayesian regret bound that has the optimal rate in both regimes simultaneously. In this work, we explore the use of Sparse Optimistic Information Directed Sampling (SOIDS) to achieve the same adaptivity in the worst-case setting, without Bayesian assumptions. Through a novel analysis that enables the use of a time-dependent learning rate, we show that SOIDS can optimally balance information and regret. Our results extend the theoretical guarantees of IDS, providing the first algorithm that simultaneously achieves optimal worst-case regret in both the data-rich and data-poor regimes. We empirically demonstrate the good performance of SOIDS.
☆ PRIVET: Privacy Metric Based on Extreme Value Theory
Deep generative models are often trained on sensitive data, such as genetic sequences, health data, or more broadly, any copyrighted, licensed or protected content. This raises critical concerns around privacy-preserving synthetic data, and more specifically around privacy leakage, an issue closely tied to overfitting. Existing methods almost exclusively rely on global criteria to estimate the risk of privacy failure associated to a model, offering only quantitative non interpretable insights. The absence of rigorous evaluation methods for data privacy at the sample-level may hinder the practical deployment of synthetic data in real-world applications. Using extreme value statistics on nearest-neighbor distances, we propose PRIVET, a generic sample-based, modality-agnostic algorithm that assigns an individual privacy leak score to each synthetic sample. We empirically demonstrate that PRIVET reliably detects instances of memorization and privacy leakage across diverse data modalities, including settings with very high dimensionality, limited sample sizes such as genetic data and even under underfitting regimes. We compare our method to existing approaches under controlled settings and show its advantage in providing both dataset level and sample level assessments through qualitative and quantitative outputs. Additionally, our analysis reveals limitations in existing computer vision embeddings to yield perceptually meaningful distances when identifying near-duplicate samples.
☆ A comparison between joint and dual UKF implementations for state estimation and leak localization in water distribution networks
The sustainability of modern cities highly depends on efficient water distribution management, including effective pressure control and leak detection and localization. Accurate information about the network hydraulic state is therefore essential. This article presents a comparison between two data-driven state estimation methods based on the Unscented Kalman Filter (UKF), fusing pressure, demand and flow data for head and flow estimation. One approach uses a joint state vector with a single estimator, while the other uses a dual-estimator scheme. We analyse their main characteristics, discussing differences, advantages and limitations, and compare them theoretically in terms of accuracy and complexity. Finally, we show several estimation results for the L-TOWN benchmark, allowing to discuss their properties in a real implementation.
comment: This work has been submitted to ECC2026 for review. It has 7 pages and 2 figures
☆ Closing Gaps: An Imputation Analysis of ICU Vital Signs
As more Intensive Care Unit (ICU) data becomes available, the interest in developing clinical prediction models to improve healthcare protocols increases. However, the lack of data quality still hinders clinical prediction using Machine Learning (ML). Many vital sign measurements, such as heart rate, contain sizeable missing segments, leaving gaps in the data that could negatively impact prediction performance. Previous works have introduced numerous time-series imputation techniques. Nevertheless, more comprehensive work is needed to compare a representative set of methods for imputing ICU vital signs and determine the best practice. In reality, ad-hoc imputation techniques that could decrease prediction accuracy, like zero imputation, are still used. In this work, we compare established imputation techniques to guide researchers in improving the performance of clinical prediction models by selecting the most accurate imputation technique. We introduce an extensible and reusable benchmark with currently 15 imputation and 4 amputation methods, created for benchmarking on major ICU datasets. We hope to provide a comparative basis and facilitate further ML development to bring more models into clinical practice.
comment: Preprint
☆ Unlocking Out-of-Distribution Generalization in Dynamics through Physics-Guided Augmentation
In dynamical system modeling, traditional numerical methods are limited by high computational costs, while modern data-driven approaches struggle with data scarcity and distribution shifts. To address these fundamental limitations, we first propose SPARK, a physics-guided quantitative augmentation plugin. Specifically, SPARK utilizes a reconstruction autoencoder to integrate physical parameters into a physics-rich discrete state dictionary. This state dictionary then acts as a structured dictionary of physical states, enabling the creation of new, physically-plausible training samples via principled interpolation in the latent space. Further, for downstream prediction, these augmented representations are seamlessly integrated with a Fourier-enhanced Graph ODE, a combination designed to robustly model the enriched data distribution while capturing long-term temporal dependencies. Extensive experiments on diverse benchmarks demonstrate that SPARK significantly outperforms state-of-the-art baselines, particularly in challenging out-of-distribution scenarios and data-scarce regimes, proving the efficacy of our physics-guided augmentation paradigm.
☆ What Can Be Recovered Under Sparse Adversarial Corruption? Assumption-Free Theory for Linear Measurements
Let \(\bm{A} \in \mathbb{R}^{m \times n}\) be an arbitrary, known matrix and \(\bm{e}\) a \(q\)-sparse adversarial vector. Given \(\bm{y} = \bm{A} x^* + \bm{e}\) and \(q\), we seek the smallest set containing \(x^*\)-hence the one conveying maximal information about \(x^*\)-that is uniformly recoverable from \(\bm{y}\) without knowing \(\bm{e}\). While exact recovery of \(x^*\) via strong (and often impractical) structural assumptions on \(\bm{A}\) or \(x^*\) (for example, restricted isometry, sparsity) is well studied, recoverability for arbitrary \(\bm{A}\) and \(x^*\) remains open. Our main result shows that the best that one can hope to recover is \(x^* + \ker(\bm{U})\), where \(\bm{U}\) is the unique projection matrix onto the intersection of rowspaces of all possible submatrices of \(\bm{A}\) obtained by deleting \(2q\) rows. Moreover, we prove that every \(x\) that minimizes the \(\ell\_0\)-norm of \(\bm{y} - \bm{A} x\) lies in \(x^* + \ker(\bm{U})\), which then gives a constructive approach to recover this set.
☆ Beyond Neural Incompatibility: Easing Cross-Scale Knowledge Transfer in Large Language Models through Latent Semantic Alignment
Large Language Models (LLMs) encode vast amounts of knowledge in their massive parameters, which is accessible to locate, trace, and analyze. Despite advances in neural interpretability, it is still not clear how to transfer knowledge in a fine-grained manner, namely parametric knowledge transfer (PKT). A key problem is enabling effective and efficient knowledge transfer across LLMs of different scales, which is essential for achieving greater flexibility and broader applicability in transferring knowledge between LLMs. Due to neural incompatibility, referring to the architectural and parametric differences between LLMs of varying scales, existing methods that directly reuse layer parameters are severely limited. In this paper, we identify the semantic alignment in latent space as the fundamental prerequisite for LLM cross-scale knowledge transfer. Instead of directly using the layer parameters, our approach takes activations as the medium of layer-wise knowledge transfer. Leveraging the semantics in latent space, our approach is simple and outperforms prior work, better aligning model behaviors across varying scales. Evaluations on four benchmarks demonstrate the efficacy of our method. Further analysis reveals the key factors easing cross-scale knowledge transfer and provides insights into the nature of latent semantic alignment.
comment: an early-stage version
☆ SPEAR++: Scaling Gradient Inversion via Sparsely-Used Dictionary Learning NeurIPS 2025
Federated Learning has seen an increased deployment in real-world scenarios recently, as it enables the distributed training of machine learning models without explicit data sharing between individual clients. Yet, the introduction of the so-called gradient inversion attacks has fundamentally challenged its privacy-preserving properties. Unfortunately, as these attacks mostly rely on direct data optimization without any formal guarantees, the vulnerability of real-world systems remains in dispute and requires tedious testing for each new federated deployment. To overcome these issues, recently the SPEAR attack was introduced, which is based on a theoretical analysis of the gradients of linear layers with ReLU activations. While SPEAR is an important theoretical breakthrough, the attack's practicality was severely limited by its exponential runtime in the batch size b. In this work, we fill this gap by applying State-of-the-Art techniques from Sparsely-Used Dictionary Learning to make the problem of gradient inversion on linear layers with ReLU activations tractable. Our experiments demonstrate that our new attack, SPEAR++, retains all desirable properties of SPEAR, such as robustness to DP noise and FedAvg aggregation, while being applicable to 10x bigger batch sizes.
comment: Published at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Blindfolded Experts Generalize Better: Insights from Robotic Manipulation and Videogames
Behavioral cloning is a simple yet effective technique for learning sequential decision-making from demonstrations. Recently, it has gained prominence as the core of foundation models for the physical world, where achieving generalization requires countless demonstrations of a multitude of tasks. Typically, a human expert with full information on the task demonstrates a (nearly) optimal behavior. In this paper, we propose to hide some of the task's information from the demonstrator. This ``blindfolded'' expert is compelled to employ non-trivial exploration to solve the task. We show that cloning the blindfolded expert generalizes better to unseen tasks than its fully-informed counterpart. We conduct experiments of real-world robot peg insertion tasks with (limited) human demonstrations, alongside videogames from the Procgen benchmark. Additionally, we support our findings with theoretical analysis, which confirms that the generalization error scales with $\sqrt{I/m}$, where $I$ measures the amount of task information available to the demonstrator, and $m$ is the number of demonstrated tasks. Both theory and practice indicate that cloning blindfolded experts generalizes better with fewer demonstrated tasks. Project page with videos and code: https://sites.google.com/view/blindfoldedexperts/home
☆ Self-Concordant Perturbations for Linear Bandits
We study the adversarial linear bandits problem and present a unified algorithmic framework that bridges Follow-the-Regularized-Leader (FTRL) and Follow-the-Perturbed-Leader (FTPL) methods, extending the known connection between them from the full-information setting. Within this framework, we introduce self-concordant perturbations, a family of probability distributions that mirror the role of self-concordant barriers previously employed in the FTRL-based SCRiBLe algorithm. Using this idea, we design a novel FTPL-based algorithm that combines self-concordant regularization with efficient stochastic exploration. Our approach achieves a regret of $O(d\sqrt{n \ln n})$ on both the $d$-dimensional hypercube and the Euclidean ball. On the Euclidean ball, this matches the rate attained by existing self-concordant FTRL methods. For the hypercube, this represents a $\sqrt{d}$ improvement over these methods and matches the optimal bound up to logarithmic factors.
☆ V-SAT: Video Subtitle Annotation Tool
The surge of audiovisual content on streaming platforms and social media has heightened the demand for accurate and accessible subtitles. However, existing subtitle generation methods primarily speech-based transcription or OCR-based extraction suffer from several shortcomings, including poor synchronization, incorrect or harmful text, inconsistent formatting, inappropriate reading speeds, and the inability to adapt to dynamic audio-visual contexts. Current approaches often address isolated issues, leaving post-editing as a labor-intensive and time-consuming process. In this paper, we introduce V-SAT (Video Subtitle Annotation Tool), a unified framework that automatically detects and corrects a wide range of subtitle quality issues. By combining Large Language Models(LLMs), Vision-Language Models (VLMs), Image Processing, and Automatic Speech Recognition (ASR), V-SAT leverages contextual cues from both audio and video. Subtitle quality improved, with the SUBER score reduced from 9.6 to 3.54 after resolving all language mode issues and F1-scores of ~0.80 for image mode issues. Human-in-the-loop validation ensures high-quality results, providing the first comprehensive solution for robust subtitle annotation.
☆ EddyFormer: Accelerated Neural Simulations of Three-Dimensional Turbulence at Scale NeurIPS 2025
Computationally resolving turbulence remains a central challenge in fluid dynamics due to its multi-scale interactions. Fully resolving large-scale turbulence through direct numerical simulation (DNS) is computationally prohibitive, motivating data-driven machine learning alternatives. In this work, we propose EddyFormer, a Transformer-based spectral-element (SEM) architecture for large-scale turbulence simulation that combines the accuracy of spectral methods with the scalability of the attention mechanism. We introduce an SEM tokenization that decomposes the flow into grid-scale and subgrid-scale components, enabling capture of both local and global features. We create a new three-dimensional isotropic turbulence dataset and train EddyFormer to achieves DNS-level accuracy at 256^3 resolution, providing a 30x speedup over DNS. When applied to unseen domains up to 4x larger than in training, EddyFormer preserves accuracy on physics-invariant metrics-energy spectra, correlation functions, and structure functions-showing domain generalization. On The Well benchmark suite of diverse turbulent flows, EddyFormer resolves cases where prior ML models fail to converge, accurately reproducing complex dynamics across a wide range of physical conditions.
comment: NeurIPS 2025
☆ Identifiable learning of dissipative dynamics
Complex dissipative systems appear across science and engineering, from polymers and active matter to learning algorithms. These systems operate far from equilibrium, where energy dissipation and time irreversibility are key to their behavior, but are difficult to quantify from data. Learning accurate and interpretable models of such dynamics remains a major challenge: the models must be expressive enough to describe diverse processes, yet constrained enough to remain physically meaningful and mathematically identifiable. Here, we introduce I-OnsagerNet, a neural framework that learns dissipative stochastic dynamics directly from trajectories while ensuring both interpretability and uniqueness. I-OnsagerNet extends the Onsager principle to guarantee that the learned potential is obtained from the stationary density and that the drift decomposes cleanly into time-reversible and time-irreversible components, as dictated by the Helmholtz decomposition. Our approach enables us to calculate the entropy production and to quantify irreversibility, offering a principled way to detect and quantify deviations from equilibrium. Applications to polymer stretching in elongational flow and to stochastic gradient Langevin dynamics reveal new insights, including super-linear scaling of barrier heights and sub-linear scaling of entropy production rates with the strain rate, and the suppression of irreversibility with increasing batch size. I-OnsagerNet thus establishes a general, data-driven framework for discovering and interpreting non-equilibrium dynamics.
Self-supervised Synthetic Pretraining for Inference of Stellar Mass Embedded in Dense Gas NeurIPS 2025
Stellar mass is a fundamental quantity that determines the properties and evolution of stars. However, estimating stellar masses in star-forming regions is challenging because young stars are obscured by dense gas and the regions are highly inhomogeneous, making spherical dynamical estimates unreliable. Supervised machine learning could link such complex structures to stellar mass, but it requires large, high-quality labeled datasets from high-resolution magneto-hydrodynamical (MHD) simulations, which are computationally expensive. We address this by pretraining a vision transformer on one million synthetic fractal images using the self-supervised framework DINOv2, and then applying the frozen model to limited high-resolution MHD simulations. Our results demonstrate that synthetic pretraining improves frozen-feature regression stellar mass predictions, with the pretrained model performing slightly better than a supervised model trained on the same limited simulations. Principal component analysis of the extracted features further reveals semantically meaningful structures, suggesting that the model enables unsupervised segmentation of star-forming regions without the need for labeled data or fine-tuning.
comment: 6 pages, 3 figures, 1 table, accepted for NeurIPS 2025 ML4PS workshop
☆ Fixed Point Neural Acceleration and Inverse Surrogate Model for Battery Parameter Identification
The rapid expansion of electric vehicles has intensified the need for accurate and efficient diagnosis of lithium-ion batteries. Parameter identification of electrochemical battery models is widely recognized as a powerful method for battery health assessment. However, conventional metaheuristic approaches suffer from high computational cost and slow convergence, and recent machine learning methods are limited by their reliance on constant current data, which may not be available in practice. To overcome these challenges, we propose deep learning-based framework for parameter identification of electrochemical battery models. The proposed framework combines a neural surrogate model of the single particle model with electrolyte (NeuralSPMe) and a deep learning-based fixed-point iteration method. NeuralSPMe is trained on realistic EV load profiles to accurately predict lithium concentration dynamics under dynamic operating conditions while a parameter update network (PUNet) performs fixed-point iterative updates to significantly reduce both the evaluation time per sample and the overall number of iterations required for convergence. Experimental evaluations demonstrate that the proposed framework accelerates the parameter identification by more than 2000 times, achieves superior sample efficiency and more than 10 times higher accuracy compared to conventional metaheuristic algorithms, particularly under dynamic load scenarios encountered in practical applications.
comment: 31 pages, 11 figures, submitted to Applied Energy
☆ Causal Convolutional Neural Networks as Finite Impulse Response Filters
This study investigates the behavior of Causal Convolutional Neural Networks (CNNs) with quasi-linear activation functions when applied to time-series data characterized by multimodal frequency content. We demonstrate that, once trained, such networks exhibit properties analogous to Finite Impulse Response (FIR) filters, particularly when the convolutional kernels are of extended length exceeding those typically employed in standard CNN architectures. Causal CNNs are shown to capture spectral features both implicitly and explicitly, offering enhanced interpretability for tasks involving dynamic systems. Leveraging the associative property of convolution, we further show that the entire network can be reduced to an equivalent single-layer filter resembling an FIR filter optimized via least-squares criteria. This equivalence yields new insights into the spectral learning behavior of CNNs trained on signals with sparse frequency content. The approach is validated on both simulated beam dynamics and real-world bridge vibration datasets, underlining its relevance for modeling and identifying physical systems governed by dynamic responses.
comment: 14 pages, 19 figures, Under review
Graph-Guided Concept Selection for Efficient Retrieval-Augmented Generation
Graph-based RAG constructs a knowledge graph (KG) from text chunks to enhance retrieval in Large Language Model (LLM)-based question answering. It is especially beneficial in domains such as biomedicine, law, and political science, where effective retrieval often involves multi-hop reasoning over proprietary documents. However, these methods demand numerous LLM calls to extract entities and relations from text chunks, incurring prohibitive costs at scale. Through a carefully designed ablation study, we observe that certain words (termed concepts) and their associated documents are more important. Based on this insight, we propose Graph-Guided Concept Selection (G2ConS). Its core comprises a chunk selection method and an LLM-independent concept graph. The former selects salient document chunks to reduce KG construction costs; the latter closes knowledge gaps introduced by chunk selection at zero cost. Evaluations on multiple real-world datasets show that G2ConS outperforms all baselines in construction cost, retrieval effectiveness, and answering quality.
☆ HistoLens: An Interactive XAI Toolkit for Verifying and Mitigating Flaws in Vision-Language Models for Histopathology
For doctors to truly trust artificial intelligence, it can't be a black box. They need to understand its reasoning, almost as if they were consulting a colleague. We created HistoLens1 to be that transparent, collaborative partner. It allows a pathologist to simply ask a question in plain English about a tissue slide--just as they would ask a trainee. Our system intelligently translates this question into a precise query for its AI engine, which then provides a clear, structured report. But it doesn't stop there. If a doctor ever asks, "Why?", HistoLens can instantly provide a 'visual proof' for any finding--a heatmap that points to the exact cells and regions the AI used for its analysis. We've also ensured the AI focuses only on the patient's tissue, just like a trained pathologist would, by teaching it to ignore distracting background noise. The result is a workflow where the pathologist remains the expert in charge, using a trustworthy AI assistant to verify their insights and make faster, more confident diagnoses.
☆ Taming the Tail: NoI Topology Synthesis for Mixed DL Workloads on Chiplet-Based Accelerators
Heterogeneous chiplet-based systems improve scaling by disag-gregating CPUs/GPUs and emerging technologies (HBM/DRAM).However this on-package disaggregation introduces a latency inNetwork-on-Interposer(NoI). We observe that in modern large-modelinference, parameters and activations routinely move backand forth from HBM/DRAM, injecting large, bursty flows into theinterposer. These memory-driven transfers inflate tail latency andviolate Service Level Agreements (SLAs) across k-ary n-cube base-line NoI topologies. To address this gap we introduce an InterferenceScore (IS) that quantifies worst-case slowdown under contention.We then formulate NoI synthesis as a multi-objective optimization(MOO) problem. We develop PARL (Partition-Aware ReinforcementLearner), a topology generator that balances throughput, latency,and power. PARL-generated topologies reduce contention at the memory cut, meet SLAs, and cut worst-case slowdown to 1.2 times while maintaining competitive mean throughput relative to link-rich meshes. Overall, this reframes NoI design for heterogeneouschiplet accelerators with workload-aware objectives.
☆ Enhancing Pre-trained Representation Classifiability can Boost its Interpretability ICLR 2025
The visual representation of a pre-trained model prioritizes the classifiability on downstream tasks, while the widespread applications for pre-trained visual models have posed new requirements for representation interpretability. However, it remains unclear whether the pre-trained representations can achieve high interpretability and classifiability simultaneously. To answer this question, we quantify the representation interpretability by leveraging its correlation with the ratio of interpretable semantics within the representations. Given the pre-trained representations, only the interpretable semantics can be captured by interpretations, whereas the uninterpretable part leads to information loss. Based on this fact, we propose the Inherent Interpretability Score (IIS) that evaluates the information loss, measures the ratio of interpretable semantics, and quantifies the representation interpretability. In the evaluation of the representation interpretability with different classifiability, we surprisingly discover that the interpretability and classifiability are positively correlated, i.e., representations with higher classifiability provide more interpretable semantics that can be captured in the interpretations. This observation further supports two benefits to the pre-trained representations. First, the classifiability of representations can be further improved by fine-tuning with interpretability maximization. Second, with the classifiability improvement for the representations, we obtain predictions based on their interpretations with less accuracy degradation. The discovered positive correlation and corresponding applications show that practitioners can unify the improvements in interpretability and classifiability for pre-trained vision models. Codes are available at https://github.com/ssfgunner/IIS.
comment: ICLR 2025 (Spotlight)
☆ Learning Parameterized Skills from Demonstrations
We present DEPS, an end-to-end algorithm for discovering parameterized skills from expert demonstrations. Our method learns parameterized skill policies jointly with a meta-policy that selects the appropriate discrete skill and continuous parameters at each timestep. Using a combination of temporal variational inference and information-theoretic regularization methods, we address the challenge of degeneracy common in latent variable models, ensuring that the learned skills are temporally extended, semantically meaningful, and adaptable. We empirically show that learning parameterized skills from multitask expert demonstrations significantly improves generalization to unseen tasks. Our method outperforms multitask as well as skill learning baselines on both LIBERO and MetaWorld benchmarks. We also demonstrate that DEPS discovers interpretable parameterized skills, such as an object grasping skill whose continuous arguments define the grasp location.
comment: Neurips 2025
☆ Information-Theoretic Discrete Diffusion NeurIPS 2025
We present an information-theoretic framework for discrete diffusion models that yields principled estimators of log-likelihood using score-matching losses. Inspired by the I-MMSE identity for the Gaussian setup, we derive analogous results for the discrete setting. Specifically, we introduce the Information-Minimum Denoising Score Entropy (I-MDSE) relation, which links mutual information between data and its diffused version to the minimum denoising score entropy (DSE) loss. We extend this theory to masked diffusion and establish the Information-Minimum Denoising Cross-Entropy (I-MDCE) relation, connecting cross-entropy losses to mutual information in discrete masked processes. These results provide a time-integral decomposition of the log-likelihood of the data in terms of optimal score-based losses, showing that commonly used losses such as DSE and DCE are not merely variational bounds but tight and principled estimators of log-likelihood. The I-MDCE decomposition further enables practical extensions, including time-free formula, conditional likelihood estimation in prompt-response tasks, and coupled Monte Carlo estimation of likelihood ratios. Experiments on synthetic and real-world data confirm the accuracy, variance stability, and utility of our estimators. The code is publicly available at https://github.com/Dongjae0324/infodis.
comment: Accepted at NeurIPS 2025
♻ ☆ Physics-Informed Latent Neural Operator for Real-time Predictions of time-dependent parametric PDEs
Deep operator network (DeepONet) has shown significant promise as surrogate models for systems governed by partial differential equations (PDEs), enabling accurate mappings between infinite-dimensional function spaces. However, when applied to systems with high-dimensional input-output mappings arising from large numbers of spatial and temporal collocation points, these models often require heavily overparameterized networks, leading to long training times. Latent DeepONet addresses some of these challenges by introducing a two-step approach: first learning a reduced latent space using a separate model, followed by operator learning within this latent space. While efficient, this method is inherently data-driven and lacks mechanisms for incorporating physical laws, limiting its robustness and generalizability in data-scarce settings. In this work, we propose PI-Latent-NO, a physics-informed latent neural operator framework that integrates governing physics directly into the learning process. Our architecture features two coupled DeepONets trained end-to-end: a Latent-DeepONet that learns a low-dimensional representation of the solution, and a Reconstruction-DeepONet that maps this latent representation back to the physical space. By embedding PDE constraints into the training via automatic differentiation, our method eliminates the need for labeled training data and ensures physics-consistent predictions. The proposed framework is both memory and compute-efficient, exhibiting near-constant scaling with problem size and demonstrating significant speedups over traditional physics-informed operator models. We validate our approach on a range of parametric PDEs, showcasing its accuracy, scalability, and suitability for real-time prediction in complex physical systems.
♻ ☆ DeltaPhi: Physical States Residual Learning for Neural Operators in Data-Limited PDE Solving
The limited availability of high-quality training data poses a major obstacle in data-driven PDE solving, where expensive data collection and resolution constraints severely impact the ability of neural operator networks to learn and generalize the underlying physical system. To address this challenge, we propose DeltaPhi, a novel learning framework that transforms the PDE solving task from learning direct input-output mappings to learning the residuals between similar physical states, a fundamentally different approach to neural operator learning. This reformulation provides implicit data augmentation by exploiting the inherent stability of physical systems where closer initial states lead to closer evolution trajectories. DeltaPhi is architecture-agnostic and can be seamlessly integrated with existing neural operators to enhance their performance. Extensive experiments demonstrate consistent and significant improvements across diverse physical systems including regular and irregular domains, different neural architectures, multiple training data amount, and cross-resolution scenarios, confirming its effectiveness as a general enhancement for neural operators in data-limited PDE solving.
comment: Neurips 2025
♻ ☆ Datasheets for Machine Learning Sensors
Machine learning (ML) is becoming prevalent in embedded AI sensing systems. These "ML sensors" enable context-sensitive, real-time data collection and decision-making across diverse applications ranging from anomaly detection in industrial settings to wildlife tracking for conservation efforts. As such, there is a need to provide transparency in the operation of such ML-enabled sensing systems through comprehensive documentation. This is needed to enable their reproducibility, to address new compliance and auditing regimes mandated in regulation and industry-specific policy, and to verify and validate the responsible nature of their operation. To address this gap, we introduce the datasheet for ML sensors framework. We provide a comprehensive template, collaboratively developed in academia-industry partnerships, that captures the distinct attributes of ML sensors, including hardware specifications, ML model and dataset characteristics, end-to-end performance metrics, and environmental impacts. Our framework addresses the continuous streaming nature of sensor data, real-time processing requirements, and embeds benchmarking methodologies that reflect real-world deployment conditions, ensuring practical viability. Aligned with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability), our approach enhances the transparency and reusability of ML sensor documentation across academic, industrial, and regulatory domains. To show the application of our approach, we present two datasheets: the first for an open-source ML sensor designed in-house and the second for a commercial ML sensor developed by industry collaborators, both performing computer vision-based person detection.
♻ ☆ ADMN: A Layer-Wise Adaptive Multimodal Network for Dynamic Input Noise and Compute Resources
Multimodal deep learning systems are deployed in dynamic scenarios due to the robustness afforded by multiple sensing modalities. Nevertheless, they struggle with varying compute resource availability (due to multi-tenancy, device heterogeneity, etc.) and fluctuating quality of inputs (from sensor feed corruption, environmental noise, etc.). Statically provisioned multimodal systems cannot adapt when compute resources change over time, while existing dynamic networks struggle with strict compute budgets. Additionally, both systems often neglect the impact of variations in modality quality. Consequently, modalities suffering substantial corruption may needlessly consume resources better allocated towards other modalities. We propose ADMN, a layer-wise Adaptive Depth Multimodal Network capable of tackling both challenges: it adjusts the total number of active layers across all modalities to meet strict compute resource constraints and continually reallocates layers across input modalities according to their modality quality. Our evaluations showcase ADMN can match the accuracy of state-of-the-art networks while reducing up to 75% of their floating-point operations.
comment: Accepted to Neurips 2025
♻ ☆ SGFusion: Stochastic Geographic Gradient Fusion in Federated Learning
This paper proposes Stochastic Geographic Gradient Fusion (SGFusion), a novel training algorithm to leverage the geographic information of mobile users in Federated Learning (FL). SGFusion maps the data collected by mobile devices onto geographical zones and trains one FL model per zone, which adapts well to the data and behaviors of users in that zone. SGFusion models the local data-based correlation among geographical zones as a hierarchical random graph (HRG) optimized by Markov Chain Monte Carlo sampling. At each training step, every zone fuses its local gradient with gradients derived from a small set of other zones sampled from the HRG. This approach enables knowledge fusion and sharing among geographical zones in a probabilistic and stochastic gradient fusion process with self-attention weights, such that "more similar" zones have "higher probabilities" of sharing gradients with "larger attention weights." SGFusion remarkably improves model utility without introducing undue computational cost. Extensive theoretical and empirical results using a heart-rate prediction dataset collected across 6 countries show that models trained with SGFusion converge with upper-bounded expected errors and significantly improve utility in all countries compared to existing approaches without notable cost in system scalability.
♻ ☆ Hybrid Deep Learning Model to Estimate Cognitive Effort from fNIRS Signals
This study estimates cognitive effort based on functional near-infrared spectroscopy data and performance scores using a hybrid DeepNet model. The estimation of cognitive effort enables educators to modify material to enhance learning effectiveness and student engagement. In this study, we collected oxygenated hemoglobin using functional near-infrared spectroscopy during an educational quiz game. Participants (n=16) responded to 16 questions in a Unity-based educational game, each within a 30-second response time limit. We used DeepNet models to predict the performance score from the oxygenated hemoglobin, and compared traditional machine learning and DeepNet models to determine which approach provides better accuracy in predicting performance scores. The result shows that the proposed CNN-GRU gives better performance with 73% than other models. After the prediction, we used the predicted score and the oxygenated hemoglobin to observe cognitive effort by calculating relative neural efficiency and involvement in our test cases. Our result shows that even with moderate accuracy, the predicted cognitive effort closely follow the actual trends. This findings can be helpful in designing and improving learning environments and provide valuable insights into learning materials.
♻ ☆ Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation
Bayesian optimization relies on iteratively constructing and optimizing an acquisition function. The latter turns out to be a challenging, non-convex optimization problem itself. Despite the relative importance of this step, most algorithms employ sampling- or gradient-based methods, which do not provably converge to global optima. This work investigates mixed-integer programming (MIP) as a paradigm for global acquisition function optimization. Specifically, our Piecewise-linear Kernel Mixed Integer Quadratic Programming (PK-MIQP) formulation introduces a piecewise-linear approximation for Gaussian process kernels and admits a corresponding MIQP representation for acquisition functions. The proposed method is applicable to uncertainty-based acquisition functions for any stationary or dot-product kernel. We analyze the theoretical regret bounds of the proposed approximation, and empirically demonstrate the framework on synthetic functions, constrained benchmarks, and a hyperparameter tuning task.
comment: 18 pages, 4 figures, 5 tables
♻ ☆ Says Who? Effective Zero-Shot Annotation of Focalization
Focalization describes the way in which access to narrative information is restricted or controlled based on the knowledge available to knowledge of the narrator. It is encoded via a wide range of lexico-grammatical features and is subject to reader interpretation. Even trained annotators frequently disagree on correct labels, suggesting this task is both qualitatively and computationally challenging. In this work, we test how well five contemporary large language model (LLM) families and two baselines perform when annotating short literary excerpts for focalization. Despite the challenging nature of the task, we find that LLMs show comparable performance to trained human annotators, with GPT-4o achieving an average F1 of 84.79%. Further, we demonstrate that the log probabilities output by GPT-family models frequently reflect the difficulty of annotating particular excerpts. Finally, we provide a case study analyzing sixteen Stephen King novels, demonstrating the usefulness of this approach for computational literary studies and the insights gleaned from examining focalization at scale.
comment: Accepted at CHR 2025
♻ ☆ TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
♻ ☆ FedMAP: Personalised Federated Learning for Real Large-Scale Healthcare Systems
Federated learning (FL) promises to enable collaborative machine learning across healthcare sites whilst preserving data privacy. Practical deployment remains limited by statistical heterogeneity arising from differences in patient demographics, treatments, and outcomes, and infrastructure constraints. We introduce FedMAP, a personalised FL (PFL) framework that addresses heterogeneity through local Maximum a Posteriori (MAP) estimation with Input Convex Neural Network priors. These priors represent global knowledge gathered from other sites that guides the model while adapting to local data, and we provide a formal proof of convergence. Unlike many PFL methods that rely on fixed regularisation, FedMAP's prior adaptively learns patterns that capture complex inter-site relationships. We demonstrate improved performance compared to local training, FedAvg, and several PFL methods across three large-scale clinical datasets: 10-year cardiovascular risk prediction (CPRD, 387 general practitioner practices, 258,688 patients), iron deficiency detection (INTERVAL, 4 donor centres, 31,949 blood donors), and mortality prediction (eICU, 150 hospitals, 44,842 patients). FedMAP incorporates a three-tier design that enables participation across healthcare sites with varying infrastructure and technical capabilities, from full federated training to inference-only deployment. Geographical analysis reveals substantial equity improvements, with underperforming regions achieving up to 14.3% performance gains. This framework provides the first practical pathway for large-scale healthcare FL deployment, which ensures clinical sites at all scales can benefit, equity is enhanced, and privacy is retained.
♻ ☆ GST-UNet: A Neural Framework for Spatiotemporal Causal Inference with Time-Varying Confounding NeurIPS 2025
Estimating causal effects from spatiotemporal observational data is essential in public health, environmental science, and policy evaluation, where randomized experiments are often infeasible. Existing approaches, however, either rely on strong structural assumptions or fail to handle key challenges such as interference, spatial confounding, temporal carryover, and time-varying confounding -- where covariates are influenced by past treatments and, in turn, affect future ones. We introduce GST-UNet (G-computation Spatio-Temporal UNet), a theoretically grounded neural framework that combines a U-Net-based spatiotemporal encoder with regression-based iterative G-computation to estimate location-specific potential outcomes under complex intervention sequences. GST-UNet explicitly adjusts for time-varying confounders and captures non-linear spatial and temporal dependencies, enabling valid causal inference from a single observed trajectory in data-scarce settings. We validate its effectiveness in synthetic experiments and in a real-world analysis of wildfire smoke exposure and respiratory hospitalizations during the 2018 California Camp Fire. Together, these results position GST-UNet as a principled and ready-to-use framework for spatiotemporal causal inference, advancing reliable estimation in policy-relevant and scientific domains.
comment: 29 pages, 6 figures, 6 tables, NeurIPS 2025
♻ ☆ Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems. While deep learning has shown state-of-the-art AD performance, its application in critical systems is hindered by concerns regarding training data efficiency, domain adaptation and interpretability. This work considers AD in network flows using incomplete measurements, leveraging a robust tensor decomposition approach and deep unrolling techniques to address these challenges. We first propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective where the normal flows are modeled as low-rank tensors and anomalies as sparse. An augmentation of the objective is introduced to decrease the computational cost. We apply deep unrolling to derive a novel deep network architecture based on our proposed algorithm, treating the regularization parameters as learnable weights. Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics, improving AD performance while maintaining a low parameter count and preserving the problem's permutation equivariances. To optimize the deep network weights for detection performance, we employ a homotopy optimization approach based on an efficient approximation of the area under the receiver operating characteristic curve. Extensive experiments on synthetic and real-world data demonstrate that our proposed deep network architecture exhibits a high training data efficiency, outperforms reference methods, and adapts seamlessly to varying network topologies.
comment: 18 pages, 7 figures
♻ ☆ Robust Uncertainty Quantification for Self-Evolving Large Language Models via Continual Domain Pretraining
Continual Learning (CL) is essential for enabling self-evolving large language models (LLMs) to adapt and remain effective amid rapid knowledge growth. Yet, despite its importance, little attention has been given to establishing statistical reliability guarantees for LLMs under CL, particularly in the setting of continual domain pretraining (CDP). Conformal Prediction (CP) has shown promise in offering correctness guarantees for LLMs, but it faces major challenges in CDP: testing data often stems from unknown or shifting domain distributions, under which CP may no longer provide valid guarantees. Moreover, when high coverage is required, CP can yield excessively large prediction sets for unanswerable queries, reducing informativeness. To address these challenges, we introduce an adaptive rejection and non-exchangeable CP framework. Our method first estimates the distribution of questions across domains in the test set using transformer-based clustering, then reweights or resamples the calibration data accordingly. Building on this, adaptive rejection CP allows the LLM to selectively abstain from answering when its confidence or competence shifts significantly. Extensive experiments demonstrate that our framework enhances both the effectiveness and reliability of CP under CDP scenarios. Our code is available at: https://anonymous.4open.science/r/CPCL-8C12/
♻ ☆ GraSS: Scalable Data Attribution with Gradient Sparsification and Sparse Projection NeurIPS 2025
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Online (Non-)Convex Learning via Tempered Optimism
Optimistic Online Learning aims to exploit experts conveying reliable information to predict the future. However, such implicit optimism may be challenged when it comes to practical crafting of such experts. A fundamental example consists in approximating a minimiser of the current problem and use it as expert. In the context of dynamic environments, such an expert only conveys partially relevant information as it may lead to overfitting. To tackle this issue, we introduce in this work the \emph{optimistically tempered} (OT) online learning framework designed to handle such imperfect experts. As a first contribution, we show that tempered optimism is a fruitful paradigm for Online Non-Convex Learning by proposing simple, yet powerful modification of Online Gradient and Mirror Descent. Second, we derive a second OT algorithm for convex losses and third, evaluate the practical efficiency of tempered optimism on real-life datasets and a toy experiment.
♻ ☆ Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning ICCV2025
So-called unsupervised anomaly detection is better described as semi-supervised, as it assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability. We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist, eliminating the need for explicit filtering. Our approach integrates Soft Confident Learning, which assigns lower weights to low-confidence samples, and Meta-Learning, which stabilizes training by regularizing updates based on training validation loss covariance. This prevents overfitting and enhances robustness to noisy data. CoMet is model-agnostic and can be applied to any anomaly detection method trainable via gradient descent. Experiments on MVTec-AD, VIADUCT, and KSDD2 with two state-of-the-art models demonstrate the effectiveness of our approach, consistently improving over the baseline methods, remaining insensitive to anomalies in the training set, and setting a new state-of-the-art across all datasets. Code is available at https://github.com/aqeeelmirza/CoMet
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV2025)
♻ ☆ $β$-DQN: Improving Deep Q-Learning By Evolving the Behavior
While many sophisticated exploration methods have been proposed, their lack of generality and high computational cost often lead researchers to favor simpler methods like $\epsilon$-greedy. Motivated by this, we introduce $\beta$-DQN, a simple and efficient exploration method that augments the standard DQN with a behavior function $\beta$. This function estimates the probability that each action has been taken at each state. By leveraging $\beta$, we generate a population of diverse policies that balance exploration between state-action coverage and overestimation bias correction. An adaptive meta-controller is designed to select an effective policy for each episode, enabling flexible and explainable exploration. $\beta$-DQN is straightforward to implement and adds minimal computational overhead to the standard DQN. Experiments on both simple and challenging exploration domains show that $\beta$-DQN outperforms existing baseline methods across a wide range of tasks, providing an effective solution for improving exploration in deep reinforcement learning.
comment: aamas 2025
♻ ☆ Uni-LoRA: One Vector is All You Need NeurIPS 2025
Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models (LLMs) by constraining weight updates to low-rank matrices. Recent works such as Tied-LoRA, VeRA, and VB-LoRA push efficiency further by introducing additional constraints to reduce the trainable parameter space. In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework, Uni-LoRA, where the LoRA parameter space, flattened as a high-dimensional vector space $R^D$, can be reconstructed through a projection from a subspace R^d, with $d \ll D$. We demonstrate that the fundamental difference among various LoRA methods lies in the choice of the projection matrix, $P \in R^{D \times d}$.Most existing LoRA variants rely on layer-wise or structure-specific projections that limit cross-layer parameter sharing, thereby compromising parameter efficiency. In light of this, we introduce an efficient and theoretically grounded projection matrix that is isometric, enabling global parameter sharing and reducing computation overhead. Furthermore, under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM - making Uni-LoRA both a unified framework and a "one-vector-only" solution. Extensive experiments on GLUE, mathematical reasoning, and instruction tuning benchmarks demonstrate that Uni-LoRA achieves state-of-the-art parameter efficiency while outperforming or matching prior approaches in predictive performance. Our code is available at https://github.com/KaiyangLi1992/Uni-LoRA.
comment: NeurIPS 2025 Spotlight
♻ ☆ Group-in-Group Policy Optimization for LLM Agent Training NeurIPS 2025
Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to multi-turn LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on challenging agent benchmarks, including ALFWorld and WebShop, as well as tool-integrated reasoning on search-augmented QA tasks, using Qwen2.5-1.5B/3B/7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals, achieves performance gains of > 12% on ALFWorld and > 9% on WebShop over GRPO, and obtains superior performance on QA tasks (42.1% on 3B and 47.2% on 7B): all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.
comment: NeurIPS 2025
♻ ☆ TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising NeurIPS 2025
Dark matter makes up approximately 85% of total matter in our universe, yet it has never been directly observed in any laboratory on Earth. The origin of dark matter is one of the most important questions in contemporary physics, and a convincing detection of dark matter would be a Nobel-Prize-level breakthrough in fundamental science. The ABRACADABRA experiment was specifically designed to search for dark matter. Although it has not yet made a discovery, ABRACADABRA has produced several dark matter search results widely endorsed by the physics community. The experiment generates ultra-long time-series data at a rate of 10 million samples per second, where the dark matter signal would manifest itself as a sinusoidal oscillation mode within the ultra-long time series. In this paper, we present the TIDMAD -- a comprehensive data release from the ABRACADABRA experiment including three key components: an ultra-long time series dataset divided into training, validation, and science subsets; a carefully-designed denoising score for direct model benchmarking; and a complete analysis framework which produces a community-standard dark matter search result suitable for publication as a physics paper. This data release enables core AI algorithms to extract the dark matter signal and produce real physics results thereby advancing fundamental science. The data downloading and associated analysis scripts are available at https://github.com/jessicafry/TIDMAD
comment: Accepted by NeurIPS 2025 (Spotlight)
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
This paper introduces a broad class of Mirror Descent (MD) and Generalized Exponentiated Gradient (GEG) algorithms derived from trace-form entropies defined via deformed logarithms. Leveraging these generalized entropies yields MD \& GEG algorithms with improved convergence behavior, robustness to vanishing and exploding gradients, and inherent adaptability to non-Euclidean geometries through mirror maps. We establish deep connections between these methods and Amari's natural gradient, revealing a unified geometric foundation for additive, multiplicative, and natural gradient updates. Focusing on the Tsallis, Kaniadakis, Sharma--Taneja--Mittal, and Kaniadakis--Lissia--Scarfone entropy families, we show that each entropy induces a distinct Riemannian metric on the parameter space, leading to GEG algorithms that preserve the natural statistical geometry. The tunable parameters of deformed logarithms enable adaptive geometric selection, providing enhanced robustness and convergence over classical Euclidean optimization. Overall, our framework unifies key first-order MD optimization methods under a single information-geometric perspective based on generalized Bregman divergences, where the choice of entropy determines the underlying metric and dual geometric structure.
comment: 22 pages, 9 figures
♻ ☆ Multimodal Dreaming: A Global Workspace Approach to World Model-Based Reinforcement Learning
Humans leverage rich internal models of the world to reason about the future, imagine counterfactuals, and adapt flexibly to new situations. In Reinforcement Learning (RL), world models aim to capture how the environment evolves in response to the agent's actions, facilitating planning and generalization. However, typical world models directly operate on the environment variables (e.g. pixels, physical attributes), which can make their training slow and cumbersome; instead, it may be advantageous to rely on high-level latent dimensions that capture relevant multimodal variables. Global Workspace (GW) Theory offers a cognitive framework for multimodal integration and information broadcasting in the brain, and recent studies have begun to introduce efficient deep learning implementations of GW. Here, we evaluate the capabilities of an RL system combining GW with a world model. We compare our GW-Dreamer with various versions of the standard PPO and the original Dreamer algorithms. We show that performing the dreaming process (i.e., mental simulation) inside the GW latent space allows for training with fewer environment steps. As an additional emergent property, the resulting model (but not its comparison baselines) displays strong robustness to the absence of one of its observation modalities (images or simulation attributes). We conclude that the combination of GW with World Models holds great potential for improving decision-making in RL agents.
comment: Under review
♻ ☆ Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
♻ ☆ Exploration of Summarization by Generative Language Models for Automated Scoring of Long Essays
BERT and its variants are extensively explored for automated scoring. However, a limit of 512 tokens for these encoder-based models showed the deficiency in automated scoring of long essays. Thus, this research explores generative language models for automated scoring of long essays via summarization and prompting. The results revealed great improvement of scoring accuracy with QWK increased from 0.822 to 0.8878 for the Learning Agency Lab Automated Essay Scoring 2.0 dataset.
comment: 19 pages, 5 Tables 7 Figures, Presentation at Artificial Intelligence in Measurement and Education Conference (AIME-Con)
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
♻ ☆ Towards Personalized Treatment Plan: Geometrical Model-Agnostic Approach to Counterfactual Explanations
In our article, we describe a method for generating counterfactual explanations in high-dimensional spaces using four steps that involve fitting our dataset to a model, finding the decision boundary, determining constraints on the problem, and computing the closest point (counterfactual explanation) from that boundary. We propose a discretized approach where we find many discrete points on the boundary and then identify the closest feasible counterfactual explanation. This method, which we later call $\textit{Segmented Sampling for Boundary Approximation}$ (SSBA), applies binary search to find decision boundary points and then searches for the closest boundary point. Across four datasets of varying dimensionality, we show that our method can outperform current methods for counterfactual generation with reductions in distance between $5\%$ to $50\%$ in terms of the $L_2$ norm. Our method can also handle real-world constraints by restricting changes to immutable and categorical features, such as age, gender, sex, height, and other related characteristics such as the case for a health-based dataset. In terms of runtime, the SSBA algorithm generates decision boundary points on multiple orders of magnitude in the same given time when we compare to a grid-based approach. In general, our method provides a simple and effective model-agnostic method that can compute nearest feasible (i.e. realistic with constraints) counterfactual explanations. All of our results and code are available at: https://github.com/dsin85691/SSBA_For_Counterfactuals
comment: This paper is 15 pages long consisting of multiple sections including an abstract, introduction, related works, methodology, results, ablation studies, conclusion, future works, and an appendix section. There are 10 figures and 5 tables in total
♻ ☆ Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Vision-Language-Action (VLA) models adapt large vision-language backbones to map images and instructions into robot actions. However, prevailing VLAs either generate actions auto-regressively in a fixed left-to-right order or attach separate MLP or diffusion heads outside the backbone, leading to fragmented information pathways and specialized training requirements that hinder a unified, scalable architecture. We present Discrete Diffusion VLA, a unified-transformer policy that models discretized action chunks with discrete diffusion. The design retains diffusion's progressive refinement paradigm while remaining natively compatible with the discrete token interface of VLMs. Our method achieves an adaptive decoding order that resolves easy action elements before harder ones and uses secondary re-masking to revisit uncertain predictions across refinement rounds, which improves consistency and enables robust error correction. This unified decoder preserves pre-trained vision-language priors, supports parallel decoding, breaks the autoregressive bottleneck, and reduces the number of function evaluations. Discrete Diffusion VLA achieves 96.3% avg. success rates on LIBERO, 71.2% visual matching on SimplerEnv-Fractal and 54.2% overall on SimplerEnv-Bridge, improving over autoregressive, MLP decoder and continuous diffusion baselines. These findings indicate that discrete-diffusion VLA supports precise action modeling and consistent training, laying groundwork for scaling VLA to larger models and datasets. Our project page is https://github.com/Liang-ZX/DiscreteDiffusionVLA
comment: 16 pages
♻ ☆ The Importance of Being Discrete: Measuring the Impact of Discretization in End-to-End Differentially Private Synthetic Data
Differentially Private (DP) generative marginal models are often used in the wild to release synthetic tabular datasets in lieu of sensitive data while providing formal privacy guarantees. These models approximate low-dimensional marginals or query workloads; crucially, they require the training data to be pre-discretized, i.e., continuous values need to first be partitioned into bins. However, as the range of values (or their domain) is often inferred directly from the training data, with the number of bins and bin edges typically defined arbitrarily, this approach can ultimately break end-to-end DP guarantees and may not always yield optimal utility. In this paper, we present an extensive measurement study of four discretization strategies in the context of DP marginal generative models. More precisely, we design DP versions of three discretizers (uniform, quantile, and k-means) and reimplement the PrivTree algorithm. We find that optimizing both the choice of discretizer and bin count can improve utility, on average, by almost 30% across six DP marginal models, compared to the default strategy and number of bins, with PrivTree being the best-performing discretizer in the majority of cases. We demonstrate that, while DP generative models with non-private discretization remain vulnerable to membership inference attacks, applying DP during discretization effectively mitigates this risk. Finally, we improve on an existing approach for automatically selecting the optimal number of bins, and achieve high utility while reducing both privacy budget consumption and computational overhead.
♻ ☆ The Formalism-Implementation Gap in Reinforcement Learning Research
The last decade has seen an upswing in interest and adoption of reinforcement learning (RL) techniques, in large part due to its demonstrated capabilities at performing certain tasks at "super-human levels". This has incentivized the community to prioritize research that demonstrates RL agent performance, often at the expense of research aimed at understanding their learning dynamics. Performance-focused research runs the risk of overfitting on academic benchmarks -- thereby rendering them less useful -- which can make it difficult to transfer proposed techniques to novel problems. Further, it implicitly diminishes work that does not push the performance-frontier, but aims at improving our understanding of these techniques. This paper argues two points: (i) RL research should stop focusing solely on demonstrating agent capabilities, and focus more on advancing the science and understanding of reinforcement learning; and (ii) we need to be more precise on how our benchmarks map to the underlying mathematical formalisms. We use the popular Arcade Learning Environment (ALE; Bellemare et al., 2013) as an example of a benchmark that, despite being increasingly considered "saturated", can be effectively used for developing this understanding, and facilitating the deployment of RL techniques in impactful real-world problems.
♻ ☆ Why Diffusion Models Don't Memorize: The Role of Implicit Dynamical Regularization in Training
Diffusion models have achieved remarkable success across a wide range of generative tasks. A key challenge is understanding the mechanisms that prevent their memorization of training data and allow generalization. In this work, we investigate the role of the training dynamics in the transition from generalization to memorization. Through extensive experiments and theoretical analysis, we identify two distinct timescales: an early time $\tau_\mathrm{gen}$ at which models begin to generate high-quality samples, and a later time $\tau_\mathrm{mem}$ beyond which memorization emerges. Crucially, we find that $\tau_\mathrm{mem}$ increases linearly with the training set size $n$, while $\tau_\mathrm{gen}$ remains constant. This creates a growing window of training times with $n$ where models generalize effectively, despite showing strong memorization if training continues beyond it. It is only when $n$ becomes larger than a model-dependent threshold that overfitting disappears at infinite training times. These findings reveal a form of implicit dynamical regularization in the training dynamics, which allow to avoid memorization even in highly overparameterized settings. Our results are supported by numerical experiments with standard U-Net architectures on realistic and synthetic datasets, and by a theoretical analysis using a tractable random features model studied in the high-dimensional limit.
comment: Accepted as an oral at Neurips 2025. 40 pages, 15 figures
♻ ☆ RWKV-edge: Deeply Compressed RWKV for Resource-Constrained Devices
To deploy LLMs on resource-contained platforms such as mobile robots and smartphones, non-transformers LLMs have achieved major breakthroughs. Recently, a novel RNN-based LLM family, Repentance Weighted Key Value (RWKV) has shown strong computational efficiency; nevertheless, RWKV models still have high parameter counts which limited their deployment. In this paper, we propose a suite of compression techniques, ranging from model architecture optimizations to post-training compression, tailored to the RWKV architecture. Combined, our techniques reduce the memory footprint of RWKV models by 3.4x -- 5x with only negligible degradation in accuracy; compared to transformer LLMs with similar accuracy, our models require 4x less memory footprint.
♻ ☆ Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Data-driven approaches such as deep learning can result in predictive models for material properties with exceptional accuracy and efficiency. However, in many applications, data is sparse, severely limiting their accuracy and applicability. To improve predictions, techniques such as transfer learning and multitask learning have been used. The performance of multitask learning models depends on the strength of the underlying correlations between tasks and the completeness of the data set. Standard multitask models tend to underperform when trained on sparse data sets with weakly correlated properties. To address this gap, we fuse deep-learned embeddings generated by independent pretrained single-task models, resulting in a multitask model that inherits rich, property-specific representations. By reusing (rather than retraining) these embeddings, the resulting fused model outperforms standard multitask models and can be extended with fewer trainable parameters. We demonstrate this technique on a widely used benchmark data set of quantum chemistry data for small molecules as well as a newly compiled sparse data set of experimental data collected from literature and our own quantum chemistry and thermochemical calculations.
comment: J. Chem. Inf. Model. 2025
♻ ☆ UniCrossFi: A Unified Framework For Cross-Domain Wi-Fi-based Gesture Recognition
Wi-Fi sensing systems are severely hindered by cross domain problem when deployed in unseen real-world environments. Existing methods typically design separate frameworks for either domain adaptation or domain generalization, often relying on extensive labeled data. Existing methods that designed for domain generalization is often relying on extensive labeled data. However, real-world scenarios are far more complex, where the deployed model must be capable of handling generalization under limited labeled source data. To this end, we propose UniCrossFi, a unified framework designed to mitigate performance drop in CSI-based sensing across diverse deployment settings. Our framework not only extends conventional Domain Generalization (DG) to a more practical Semi-Supervised Domain Generalization (SSDG) setting, where only partially labeled source data are available, but also introduces a physics-informed data augmentation strategy, Antenna Response Consistency (ARC). ARC mitigates the risk of learning superficial shortcuts by exploiting the intrinsic spatial diversity of multi-antenna systems, treating signals from different antennas as naturally augmented views of the same event. In addition, we design a Unified Contrastive Objective to prevent conventional contrastive learning from pushing apart samples from different domains that share the same class. We conduct extensive experiments on the public Widar and CSIDA datasets. The results demonstrate that UniCrossFi consistently establishes a new state-of-the-art, significantly outperforming existing methods across all unsupervised domain adaptation, DG, and SSDG benchmarks. UniCrossFi provides a principled and practical solution to the domain shift challenge, advancing the feasibility of robust, real-world Wi-Fi sensing systems that can operate effectively with limited labeled data.
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: Update V2: We added CIFAR experiments. Update V3: The old FID scores & CIFAR images of the Kac model corresponded to the schedule g(t) = t. We now updated them with both schedules t and t^2. Update V4: We corrected a minor implementation error and updated the CIFAR images/table
♻ ☆ Generalized Exponentiated Gradient Algorithms Using the Euler Two-Parameter Logarithm
IIn this paper we propose and investigate a new class of Generalized Exponentiated Gradient (GEG) algorithms using Mirror Descent (MD) updates, and applying the Bregman divergence with a two--parameter deformation of the logarithm as a link function. This link function (referred here to as the Euler logarithm) is associated with a relatively wide class of trace--form entropies. In order to derive novel GEG/MD updates, we estimate a deformed exponential function, which closely approximates the inverse of the Euler two--parameter deformed logarithm. The characteristic shape and properties of the Euler logarithm and its inverse--deformed exponential functions, are tuned by two hyperparameters. By learning these hyperparameters, we can adapt to the distribution of training data and adjust them to achieve desired properties of gradient descent algorithms. In the literature, there exist nowadays more than fifty mathematically well-established entropic functionals and associated deformed logarithms, so it is impossible to investigate all of them in one research paper. Therefore, we focus here on a class of trace-form entropies and the associated deformed two--parameters logarithms.
comment: 10 pages, preprint of Journal paper
♻ ☆ Linear regression with overparameterized linear neural networks: Tight upper and lower bounds for implicit $\ell^1$-regularization
Modern machine learning models are often trained in a setting where the number of parameters exceeds the number of training samples. To understand the implicit bias of gradient descent in such overparameterized models, prior work has studied diagonal linear neural networks in the regression setting. These studies have shown that, when initialized with small weights, gradient descent tends to favor solutions with minimal $\ell^1$-norm - an effect known as implicit regularization. In this paper, we investigate implicit regularization in diagonal linear neural networks of depth $D\ge 2$ for overparameterized linear regression problems. We focus on analyzing the approximation error between the limit point of gradient flow trajectories and the solution to the $\ell^1$-minimization problem. By deriving tight upper and lower bounds on the approximation error, we precisely characterize how the approximation error depends on the scale of initialization $\alpha$. Our results reveal a qualitative difference between depths: for $D \ge 3$, the error decreases linearly with $\alpha$, whereas for $D=2$, it decreases at rate $\alpha^{1-\varrho}$, where the parameter $\varrho \in [0,1)$ can be explicitly characterized. Interestingly, this parameter is closely linked to so-called null space property constants studied in the sparse recovery literature. We demonstrate the asymptotic tightness of our bounds through explicit examples. Numerical experiments corroborate our theoretical findings and suggest that deeper networks, i.e., $D \ge 3$, may lead to better generalization, particularly for realistic initialization scales.
♻ ☆ Assessing the robustness of heterogeneous treatment effects in survival analysis under informative censoring
Dropout is common in clinical studies, with up to half of patients leaving early due to side effects or other reasons. When dropout is informative (i.e., dependent on survival time), it introduces censoring bias, because of which treatment effect estimates are also biased. In this paper, we propose an assumption-lean framework to assess the robustness of conditional average treatment effect (CATE) estimates in survival analysis when facing censoring bias. Unlike existing works that rely on strong assumptions, such as non-informative censoring, to obtain point estimation, we use partial identification to derive informative bounds on the CATE. Thereby, our framework helps to identify patient subgroups where treatment is effective despite informative censoring. We further develop a novel meta-learner that estimates the bounds using arbitrary machine learning models and with favorable theoretical properties, including double robustness and quasi-oracle efficiency. We demonstrate the practical value of our meta-learner through numerical experiments and in an application to a cancer drug trial. Together, our framework offers a practical tool for assessing the robustness of estimated treatment effects in the presence of censoring and thus promotes the reliable use of survival data for evidence generation in medicine and epidemiology.
♻ ☆ Diffusion Models Meet Contextual Bandits
Efficient online decision-making in contextual bandits is challenging, as methods without informative priors often suffer from computational or statistical inefficiencies. In this work, we leverage pre-trained diffusion models as expressive priors to capture complex action dependencies and develop a practical algorithm that efficiently approximates posteriors under such priors, enabling both fast updates and sampling. Empirical results demonstrate the effectiveness and versatility of our approach across diverse contextual bandit settings.
comment: Neurips 2025
♻ ☆ Advancing Compositional Awareness in CLIP with Efficient Fine-Tuning NeurIPS 2025
Vision-language models like CLIP have demonstrated remarkable zero-shot capabilities in classification and retrieval. However, these models often struggle with compositional reasoning - the ability to understand the relationships between concepts. A recent benchmark, SugarCrepe++, reveals that previous works on improving compositionality have mainly improved lexical sensitivity but neglected semantic understanding. In addition, downstream retrieval performance often deteriorates, although one would expect that improving compositionality should enhance retrieval. In this work, we introduce CLIC (Compositionally-aware Learning in CLIP), a fine-tuning method based on a novel training technique combining multiple images and their associated captions. CLIC improves compositionality across architectures as well as differently pre-trained CLIP models, both in terms of lexical and semantic understanding, and achieves consistent gains in retrieval performance. This even applies to the recent CLIPS, which achieves SOTA retrieval performance. Nevertheless, the short fine-tuning with CLIC leads to an improvement in retrieval and to the best compositional CLIP model on SugarCrepe++. All our models and code are available at https://clic-compositional-clip.github.io
comment: Accepted at NeurIPS 2025
♻ ☆ Provable Scaling Laws for the Test-Time Compute of Large Language Models NeurIPS 2025
We propose two simple, principled and practical algorithms that enjoy provable scaling laws for the test-time compute of large language models (LLMs). The first one is a two-stage knockout-style algorithm: given an input problem, it first generates multiple candidate solutions, and then aggregate them via a knockout tournament for the final output. Assuming that the LLM can generate a correct solution with non-zero probability and do better than a random guess in comparing a pair of correct and incorrect solutions, we prove theoretically that the failure probability of this algorithm decays to zero exponentially or by a power law (depending on the specific way of scaling) as its test-time compute grows. The second one is a two-stage league-style algorithm, where each candidate is evaluated by its average win rate against multiple opponents, rather than eliminated upon loss to a single opponent. Under analogous but more robust assumptions, we prove that its failure probability also decays to zero exponentially with more test-time compute. Both algorithms require a black-box LLM and nothing else (e.g., no verifier or reward model) for a minimalistic implementation, which makes them appealing for practical applications and easy to adapt for different tasks. Through extensive experiments with diverse models and datasets, we validate the proposed theories and demonstrate the outstanding scaling properties of both algorithms.
comment: NeurIPS 2025 camera-ready version
♻ ☆ Robust Point Cloud Reinforcement Learning via PCA-Based Canonicalization
Reinforcement Learning (RL) from raw visual input has achieved impressive successes in recent years, yet it remains fragile to out-of-distribution variations such as changes in lighting, color, and viewpoint. Point Cloud Reinforcement Learning (PC-RL) offers a promising alternative by mitigating appearance-based brittleness, but its sensitivity to camera pose mismatches continues to undermine reliability in realistic settings. To address this challenge, we propose PCA Point Cloud (PPC), a canonicalization framework specifically tailored for downstream robotic control. PPC maps point clouds under arbitrary rigid-body transformations to a unique canonical pose, aligning observations to a consistent frame, thereby substantially decreasing viewpoint-induced inconsistencies. In our experiments, we show that PPC improves robustness to unseen camera poses across challenging robotic tasks, providing a principled alternative to domain randomization.
♻ ☆ Offline Learning and Forgetting for Reasoning with Large Language Models
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it on unpaired successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. A key challenge we identify is that naive fine-tuning can degrade the model's search capability; we show this can be mitigated with a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown arithmetic puzzles show that, replacing CoT-generated data with search-generated data for offline fine-tuning improves success rates by around 23% over inference-time search baselines, while reducing inference time by 180$\times$. On top of this, our learning and forgetting objective consistently outperforms both supervised fine-tuning and preference-based methods.
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. Code: https://github.com/twni2016/llm-reasoning-uft
♻ ☆ FraudTransformer: Time-Aware GPT for Transaction Fraud Detection
Detecting payment fraud in real-world banking streams requires models that can exploit both the order of events and the irregular time gaps between them. We introduce FraudTransformer, a sequence model that augments a vanilla GPT-style architecture with (i) a dedicated time encoder that embeds either absolute timestamps or inter-event values, and (ii) a learned positional encoder that preserves relative order. Experiments on a large industrial dataset -- tens of millions of transactions and auxiliary events -- show that FraudTransformer surpasses four strong classical baselines (Logistic Regression, XGBoost and LightGBM) as well as transformer ablations that omit either the time or positional component. On the held-out test set it delivers the highest AUROC and PRAUC.
comment: Accepted in AI-FIND ICAIF'25 (https://sites.google.com/view/icaif-fraud-detection-workshop/home)
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ Think Just Enough: Sequence-Level Entropy as a Confidence Signal for LLM Reasoning
We introduce a simple, yet novel entropy-based framework to drive token efficiency in large language models during reasoning tasks. Our approach uses Shannon entropy from token-level logprobs as a confidence signal to enable early stopping, achieving 25-50% computational savings while maintaining task accuracy. Crucially, we demonstrate that entropy-based confidence calibration represents an emergent property of advanced post-training optimization present in modern reasoning models but notably absent in standard instruction-tuned and pre-trained models (Llama 3.3 70B). We show that the entropy threshold to stop reasoning varies from model to model but can be calculated easily in one shot using only a few examples from existing reasoning datasets. Our results indicate that advanced reasoning models often know that they've gotten a correct answer early on, and that this emergent confidence awareness can be exploited to save tokens and reduce latency. The framework demonstrates consistent performance across reasoning-optimized model families with 25-50% computational cost reduction while preserving accuracy, revealing that confidence mechanisms represent a distinguishing characteristic of modern post-trained reasoning systems versus their predecessors.
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
Deploying large language models (LLMs) often faces challenges from substantial memory and computational costs. Quantization offers a solution, yet performance degradation in the sub-1-bit regime remains particularly difficult. This paper introduces LittleBit, a novel method for extreme LLM compression. It targets levels like 0.1 bits per weight (BPW), achieving nearly 31$\times$ memory reduction, e.g., Llama2-13B to under 0.9 GB. LittleBit represents weights in a low-rank form using latent matrix factorization, subsequently binarizing these factors. To counteract information loss from this extreme precision, it integrates a multi-scale compensation mechanism. This includes row, column, and an additional latent dimension that learns per-rank importance. Two key contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and integrated Residual Compensation to mitigate errors. Extensive experiments confirm LittleBit's superiority in sub-1-bit quantization: e.g., its 0.1 BPW performance on Llama2-7B surpasses the leading method's 0.7 BPW. LittleBit establishes a new, viable size-performance trade-off--unlocking a potential 11.6$\times$ speedup over FP16 at the kernel level--and makes powerful LLMs practical for resource-constrained environments.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation NeurIPS 2025
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
comment: Accepted to NeurIPS 2025
♻ ☆ Trade-offs in Data Memorization via Strong Data Processing Inequalities COLT 2025
Recent research demonstrated that training large language models involves memorization of a significant fraction of training data. Such memorization can lead to privacy violations when training on sensitive user data and thus motivates the study of data memorization's role in learning. In this work, we develop a general approach for proving lower bounds on excess data memorization, that relies on a new connection between strong data processing inequalities and data memorization. We then demonstrate that several simple and natural binary classification problems exhibit a trade-off between the number of samples available to a learning algorithm, and the amount of information about the training data that a learning algorithm needs to memorize to be accurate. In particular, $\Omega(d)$ bits of information about the training data need to be memorized when $O(1)$ $d$-dimensional examples are available, which then decays as the number of examples grows at a problem-specific rate. Further, our lower bounds are generally matched (up to logarithmic factors) by simple learning algorithms. We also extend our lower bounds to more general mixture-of-clusters models. Our definitions and results build on the work of Brown et al. (2021) and address several limitations of the lower bounds in their work.
comment: Appeared in COLT 2025; this revision includes an improved upper bound in Theorem 3.1, as well as several minor clarifications and modifications
♻ ☆ Acoustic and Machine Learning Methods for Speech-Based Suicide Risk Assessment: A Systematic Review
Suicide remains a public health challenge, necessitating improved detection methods to facilitate timely intervention and treatment. This systematic review evaluates the role of Artificial Intelligence (AI) and Machine Learning (ML) in assessing suicide risk through acoustic analysis of speech. Following PRISMA guidelines, we analyzed 33 articles selected from PubMed, Cochrane, Scopus, and Web of Science databases. The last search was conducted in February 2025. Risk of bias was assessed using the PROBAST tool. Studies analyzing acoustic features between individuals at risk of suicide (RS) and those not at risk (NRS) were included, while studies lacking acoustic data, a suicide-related focus, or sufficient methodological details were excluded. Sample sizes varied widely and were reported in terms of participants or speech segments, depending on the study. Results were synthesized narratively based on acoustic features and classifier performance. Findings consistently showed significant acoustic feature variations between RS and NRS populations, particularly involving jitter, fundamental frequency (F0), Mel-frequency cepstral coefficients (MFCC), and power spectral density (PSD). Classifier performance varied based on algorithms, modalities, and speech elicitation methods, with multimodal approaches integrating acoustic, linguistic, and metadata features demonstrating superior performance. Among the 29 classifier-based studies, reported AUC values ranged from 0.62 to 0.985 and accuracies from 60% to 99.85%. Most datasets were imbalanced in favor of NRS, and performance metrics were rarely reported separately by group, limiting clear identification of direction of effect.
comment: Preprint version of a manuscript submitted to the Journal of Affective Disorders
♻ ☆ MH-GIN: Multi-scale Heterogeneous Graph-based Imputation Network for AIS Data (Extended Version) VLDB 2026
Location-tracking data from the Automatic Identification System, much of which is publicly available, plays a key role in a range of maritime safety and monitoring applications. However, the data suffers from missing values that hamper downstream applications. Imputing the missing values is challenging because the values of different heterogeneous attributes are updated at diverse rates, resulting in the occurrence of multi-scale dependencies among attributes. Existing imputation methods that assume similar update rates across attributes are unable to capture and exploit such dependencies, limiting their imputation accuracy. We propose MH-GIN, a Multi-scale Heterogeneous Graph-based Imputation Network that aims improve imputation accuracy by capturing multi-scale dependencies. Specifically, MH-GIN first extracts multi-scale temporal features for each attribute while preserving their intrinsic heterogeneous characteristics. Then, it constructs a multi-scale heterogeneous graph to explicitly model dependencies between heterogeneous attributes to enable more accurate imputation of missing values through graph propagation. Experimental results on two real-world datasets find that MH-GIN is capable of an average 57% reduction in imputation errors compared to state-of-the-art methods, while maintaining computational efficiency. The source code and implementation details of MH-GIN are publicly available https://github.com/hyLiu1994/MH-GIN.
comment: 18 pages, 4 figures; This paper is accepted by PVLDB 2026
♻ ☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testimony of the impact of the approach, the method is intended to replace the hand-crafted counterpart in next iterations of the series.
♻ ☆ The Logical Expressiveness of Temporal GNNs via Two-Dimensional Product Logics
In recent years, the expressive power of various neural architectures -- including graph neural networks (GNNs), transformers, and recurrent neural networks -- has been characterised using tools from logic and formal language theory. As the capabilities of basic architectures are becoming well understood, increasing attention is turning to models that combine multiple architectural paradigms. Among them particularly important, and challenging to analyse, are temporal extensions of GNNs, which integrate both spatial (graph-structure) and temporal (evolution over time) dimensions. In this paper, we initiate the study of logical characterisation of temporal GNNs by connecting them to two-dimensional product logics. We show that the expressive power of temporal GNNs depends on how graph and temporal components are combined. In particular, temporal GNNs that apply static GNNs recursively over time can capture all properties definable in the product logic of (past) propositional temporal logic PTL and the modal logic K. In contrast, architectures such as graph-and-time TGNNs and global TGNNs can only express restricted fragments of this logic, where the interaction between temporal and spatial operators is syntactically constrained. These provide us with the first results on the logical expressiveness of temporal GNNs.
♻ ☆ MixAT: Combining Continuous and Discrete Adversarial Training for LLMs NeurIPS 2025
Despite recent efforts in Large Language Model (LLM) safety and alignment, current adversarial attacks on frontier LLMs can still consistently force harmful generations. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. At the same time, despite their effectiveness and generalization capabilities, training with continuous perturbations does not always capture the full spectrum of vulnerabilities exploited by discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.
comment: Published at 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ SeeDNorm: Self-Rescaled Dynamic Normalization
Normalization layer constitutes an essential component in neural networks. In transformers, the predominantly used RMSNorm constrains vectors to a unit hypersphere, followed by dimension-wise rescaling through a learnable scaling coefficient $\gamma$ to maintain the representational capacity of the model. However, RMSNorm discards the input norm information in forward pass and a static scaling factor $\gamma$ may be insufficient to accommodate the wide variability of input data and distributional shifts, thereby limiting further performance improvements, particularly in zero-shot scenarios that large language models routinely encounter. To address this limitation, we propose SeeDNorm, which enhances the representational capability of the model by dynamically adjusting the scaling coefficient based on the current input, thereby preserving the input norm information and enabling data-dependent, self-rescaled dynamic normalization. During backpropagation, SeeDNorm retains the ability of RMSNorm to dynamically adjust gradient according to the input norm. We provide a detailed analysis of the training optimization for SeedNorm and proposed corresponding solutions to address potential instability issues that may arise when applying SeeDNorm. We validate the effectiveness of SeeDNorm across models of varying sizes in large language model pre-training as well as supervised and unsupervised computer vision tasks. By introducing a minimal number of parameters and with neglligible impact on model efficiency, SeeDNorm achieves consistently superior performance compared to previously commonly used normalization layers such as RMSNorm and LayerNorm, as well as element-wise activation alternatives to normalization layers like DyT.
comment: 31 pages, 14 figures, 18 tables
♻ ☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment NeurIPS 2025
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
comment: NeurIPS 2025
♻ ☆ Minimax Optimal Transfer Learning for Kernel-based Nonparametric Regression
In recent years, transfer learning has garnered significant attention in the machine learning community. Its ability to leverage knowledge from related studies to improve generalization performance in a target study has made it highly appealing. This paper focuses on investigating the transfer learning problem within the context of nonparametric regression over a reproducing kernel Hilbert space. The aim is to bridge the gap between practical effectiveness and theoretical guarantees. We specifically consider two scenarios: one where the transferable sources are known and another where they are unknown. For the known transferable source case, we propose a two-step kernel-based estimator by solely using kernel ridge regression. For the unknown case, we develop a novel method based on an efficient aggregation algorithm, which can automatically detect and alleviate the effects of negative sources. This paper provides the statistical properties of the desired estimators and establishes the minimax optimal rate. Through extensive numerical experiments on synthetic data and real examples, we validate our theoretical findings and demonstrate the effectiveness of our proposed method.
♻ ☆ Is It Certainly a Deepfake? Reliability Analysis in Detection & Generation Ecosystem ICCV 2025
As generative models are advancing in quality and quantity for creating synthetic content, deepfakes begin to cause online mistrust. Deepfake detectors are proposed to counter this effect, however, misuse of detectors claiming fake content as real or vice versa further fuels this misinformation problem. We present the first comprehensive uncertainty analysis of deepfake detectors, systematically investigating how generative artifacts influence prediction confidence. As reflected in detectors' responses, deepfake generators also contribute to this uncertainty as their generative residues vary, so we cross the uncertainty analysis of deepfake detectors and generators. Based on our observations, the uncertainty manifold holds enough consistent information to leverage uncertainty for deepfake source detection. Our approach leverages Bayesian Neural Networks and Monte Carlo dropout to quantify both aleatoric and epistemic uncertainties across diverse detector architectures. We evaluate uncertainty on two datasets with nine generators, with four blind and two biological detectors, compare different uncertainty methods, explore region- and pixel-based uncertainty, and conduct ablation studies. We conduct and analyze binary real/fake, multi-class real/fake, source detection, and leave-one-out experiments between the generator/detector combinations to share their generalization capability, model calibration, uncertainty, and robustness against adversarial attacks. We further introduce uncertainty maps that localize prediction confidence at the pixel level, revealing distinct patterns correlated with generator-specific artifacts. Our analysis provides critical insights for deploying reliable deepfake detection systems and establishes uncertainty quantification as a fundamental requirement for trustworthy synthetic media detection.
comment: Accepted for publication at the ICCV 2025 workshop - STREAM
♻ ☆ Clustering-Based Low-Rank Matrix Approximation for Medical Image Compression
Medical images are inherently high-resolution and contain locally varying structures crucial for diagnosis. Efficient compression must preserve diagnostic fidelity while minimizing redundancy. Low-rank matrix approximation (LoRMA) techniques have shown strong potential for image compression by capturing global correlations; however, they often fail to adapt to local structural variations across regions of interest. To address this, we introduce an adaptive LoRMA, which partitions a medical image into overlapping patches, groups structurally similar patches into clusters using k-means, and performs SVD within each cluster. We derive the overall compression factor accounting for patch overlap and analyze how patch size influences compression efficiency and computational cost. While applicable to any data with high local variation, we focus on medical imaging due to its pronounced local variability. We evaluate and compare our adaptive LoRMA against global SVD across four imaging modalities: MRI, ultrasound, CT scan, and chest X-ray. Results demonstrate that adaptive LoRMA effectively preserves structural integrity, edge details, and diagnostic relevance, measured by PSNR, SSIM, MSE, IoU, and EPI. Adaptive LoRMA minimizes block artifacts and residual errors, particularly in pathological regions, consistently outperforming global SVD in PSNR, SSIM, IoU, EPI, and achieving lower MSE. It prioritizes clinically salient regions while allowing aggressive compression in non-critical regions, optimizing storage efficiency. Although adaptive LoRMA requires higher processing time, its diagnostic fidelity justifies the overhead for high-compression applications.
♻ ☆ MARS-M: When Variance Reduction Meets Matrices
Matrix-based preconditioned optimizers, such as Muon, have recently been shown to be more efficient than scalar-based optimizers for training large-scale neural networks, including large language models (LLMs). On the other hand, recent benchmarks on optimizers for LLM pre-training have demonstrated that variance-reduction techniques such as MARS can achieve substantial speedups over standard optimizers that do not employ variance reduction. In this paper, to achieve the best of both worlds, we introduce MARS-M, a new optimizer that integrates the variance reduction technique in MARS with Muon. Under standard regularity conditions, we prove that Muon-M converges to a first-order stationary point at a rate of $\tilde{\mathcal{O}}(T^{-1/3})$, which improves upon $\tilde{\mathcal{O}}(T^{-1/4})$ rate attained by Muon. Our empirical results on language modeling and computer vision tasks demonstrate that MARS-M consistently yields lower losses and improved performance across various downstream benchmarks. The implementation of MARS-M is available at https://github.com/AGI-Arena/MARS/tree/main/MARS_M.
♻ ☆ Geometric Mixture Models for Electrolyte Conductivity Prediction
Accurate prediction of ionic conductivity in electrolyte systems is crucial for advancing numerous scientific and technological applications. While significant progress has been made, current research faces two fundamental challenges: (1) the lack of high-quality standardized benchmarks, and (2) inadequate modeling of geometric structure and intermolecular interactions in mixture systems. To address these limitations, we first reorganize and enhance the CALiSol and DiffMix electrolyte datasets by incorporating geometric graph representations of molecules. We then propose GeoMix, a novel geometry-aware framework that preserves Set-SE(3) equivariance-an essential but challenging property for mixture systems. At the heart of GeoMix lies the Geometric Interaction Network (GIN), an equivariant module specifically designed for intermolecular geometric message passing. Comprehensive experiments demonstrate that GeoMix consistently outperforms diverse baselines (including MLPs, GNNs, and geometric GNNs) across both datasets, validating the importance of cross-molecular geometric interactions and equivariant message passing for accurate property prediction. This work not only establishes new benchmarks for electrolyte research but also provides a general geometric learning framework that advances modeling of mixture systems in energy materials, pharmaceutical development, and beyond.
♻ ☆ Taxonomy and Trends in Reinforcement Learning for Robotics and Control Systems: A Structured Review
Reinforcement learning (RL) has become a foundational approach for enabling intelligent robotic behavior in dynamic and uncertain environments. This work presents an in-depth review of RL principles, advanced deep reinforcement learning (DRL) algorithms, and their integration into robotic and control systems. Beginning with the formalism of Markov Decision Processes (MDPs), the study outlines essential elements of the agent-environment interaction and explores core algorithmic strategies including actor-critic methods, value-based learning, and policy gradients. Emphasis is placed on modern DRL techniques such as DDPG, TD3, PPO, and SAC, which have shown promise in solving high-dimensional, continuous control tasks. A structured taxonomy is introduced to categorize RL applications across domains such as locomotion, manipulation, multi-agent coordination, and human-robot interaction, along with training methodologies and deployment readiness levels. The review synthesizes recent research efforts, highlighting technical trends, design patterns, and the growing maturity of RL in real-world robotics. Overall, this work aims to bridge theoretical advances with practical implementations, providing a consolidated perspective on the evolving role of RL in autonomous robotic systems.
♻ ☆ URB -- Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles NeurIPS 2025
Connected Autonomous Vehicles (CAVs) promise to reduce congestion in future urban networks, potentially by optimizing their routing decisions. Unlike for human drivers, these decisions can be made with collective, data-driven policies, developed using machine learning algorithms. Reinforcement learning (RL) can facilitate the development of such collective routing strategies, yet standardized and realistic benchmarks are missing. To that end, we present URB: Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles. URB is a comprehensive benchmarking environment that unifies evaluation across 29 real-world traffic networks paired with realistic demand patterns. URB comes with a catalog of predefined tasks, multi-agent RL (MARL) algorithm implementations, three baseline methods, domain-specific performance metrics, and a modular configuration scheme. Our results show that, despite the lengthy and costly training, state-of-the-art MARL algorithms rarely outperformed humans. The experimental results reported in this paper initiate the first leaderboard for MARL in large-scale urban routing optimization. They reveal that current approaches struggle to scale, emphasizing the urgent need for advancements in this domain.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025), Datasets and Benchmarks Track
♻ ☆ Do Language Models Use Their Depth Efficiently? NeurIPS 2025
Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1, Qwen 3, and OLMo 2 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.
comment: Accepted to NeurIPS 2025
♻ ☆ Unlearning Comparator: A Visual Analytics System for Comparative Evaluation of Machine Unlearning Methods
Machine Unlearning (MU) aims to remove target training data from a trained model so that the removed data no longer influences the model's behavior, fulfilling "right to be forgotten" obligations under data privacy laws. Yet, we observe that researchers in this rapidly emerging field face challenges in analyzing and understanding the behavior of different MU methods, especially in terms of three fundamental principles in MU: accuracy, efficiency, and privacy. Consequently, they often rely on aggregate metrics and ad-hoc evaluations, making it difficult to accurately assess the trade-offs between methods. To fill this gap, we introduce a visual analytics system, Unlearning Comparator, designed to facilitate the systematic evaluation of MU methods. Our system supports two important tasks in the evaluation process: model comparison and attack simulation. First, it allows the user to compare the behaviors of two models, such as a model generated by a certain method and a retrained baseline, at class-, instance-, and layer-levels to better understand the changes made after unlearning. Second, our system simulates membership inference attacks (MIAs) to evaluate the privacy of a method, where an attacker attempts to determine whether specific data samples were part of the original training set. We evaluate our system through a case study visually analyzing prominent MU methods and demonstrate that it helps the user not only understand model behaviors but also gain insights that can inform the improvement of MU methods. The source code is publicly available at https://github.com/gnueaj/Machine-Unlearning-Comparator.
comment: Submitted to IEEE Transactions on Visualization and Computer Graphics (TVCG), under review. 15 pages. This work has been submitted to the IEEE for possible publication
♻ ☆ Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion NeurIPS 2025
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimates of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their frameworks. In this work, we propose a novel two-stage training framework to jointly synthesize a controller and a Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training-data sampling strategy and a domain-updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10{,}000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.
comment: NeurIPS 2025
♻ ☆ Pairwise Optimal Transports for Training All-to-All Flow-Based Condition Transfer Model NeurIPS 2025
In this paper, we propose a flow-based method for learning all-to-all transfer maps among conditional distributions that approximates pairwise optimal transport. The proposed method addresses the challenge of handling the case of continuous conditions, which often involve a large set of conditions with sparse empirical observations per condition. We introduce a novel cost function that enables simultaneous learning of optimal transports for all pairs of conditional distributions. Our method is supported by a theoretical guarantee that, in the limit, it converges to the pairwise optimal transports among infinite pairs of conditional distributions. The learned transport maps are subsequently used to couple data points in conditional flow matching. We demonstrate the effectiveness of this method on synthetic and benchmark datasets, as well as on chemical datasets in which continuous physical properties are defined as conditions. The code for this project can be found at https://github.com/kotatumuri-room/A2A-FM
comment: Accepted at NeurIPS 2025, 32 pages, 18 figures
♻ ☆ Scalable Exploration via Ensemble++ NeurIPS 2025
Thompson Sampling is a principled method for balancing exploration and exploitation, but its real-world adoption faces computational challenges in large-scale or non-conjugate settings. While ensemble-based approaches offer partial remedies, they typically require prohibitively large ensemble sizes. We propose Ensemble++, a scalable exploration framework using a novel shared-factor ensemble architecture with random linear combinations. For linear bandits, we provide theoretical guarantees showing that Ensemble++ achieves regret comparable to exact Thompson Sampling with only $\Theta(d \log T)$ ensemble sizes--significantly outperforming prior methods. Crucially, this efficiency holds across both compact and finite action sets with either time-invariant or time-varying contexts without configuration changes. We extend this theoretical foundation to nonlinear rewards by replacing fixed features with learnable neural representations while preserving the same incremental update principle, effectively bridging theory and practice for real-world tasks. Comprehensive experiments across linear, quadratic, neural, and GPT-based contextual bandits validate our theoretical findings and demonstrate Ensemble++'s superior regret-computation tradeoff versus state-of-the-art methods.
comment: NeurIPS 2025
♻ ☆ FragFM: Hierarchical Framework for Efficient Molecule Generation via Fragment-Level Discrete Flow Matching
We introduce FragFM, a novel hierarchical framework via fragment-level discrete flow matching for efficient molecular graph generation. FragFM generates molecules at the fragment level, leveraging a coarse-to-fine autoencoder to reconstruct details at the atom level. Together with a stochastic fragment bag strategy to effectively handle an extensive fragment space, our framework enables more efficient and scalable molecular generation. We demonstrate that our fragment-based approach achieves better property control than the atom-based method and additional flexibility through conditioning the fragment bag. We also propose a Natural Product Generation benchmark (NPGen) to evaluate modern molecular graph generative models' ability to generate natural product-like molecules. Since natural products are biologically prevalidated and differ from typical drug-like molecules, our benchmark provides a more challenging yet meaningful evaluation relevant to drug discovery. We conduct a FragFM comparative study against various models on diverse molecular generation benchmarks, including NPGen, demonstrating superior performance. The results highlight the potential of fragment-based generative modeling for large-scale, property-aware molecular design, paving the way for more efficient exploration of chemical space.
comment: 49 pages, 29 figures, under review
♻ ☆ PULSE: Practical Evaluation Scenarios for Large Multimodal Model Unlearning NeurIPS 2025
In recent years, unlearning techniques, which are methods for inducing a model to "forget" previously learned information, have attracted attention as a way to address privacy and copyright concerns in large language models (LLMs) and large multimodal models (LMMs). While several unlearning benchmarks have been established for LLMs, a practical evaluation framework for unlearning in LMMs has been less explored. Specifically, existing unlearning benchmark for LMMs considers only scenarios in which the model is required to unlearn fine-tuned knowledge through a single unlearning operation. In this study, we introduce PULSE protocol for realistic unlearning scenarios for LMMs by introducing two critical perspectives: (i) Pre-trained knowledge Unlearning for analyzing the effect across different knowledge acquisition phases and (ii) Long-term Sustainability Evaluation to address sequential requests. We then evaluate existing unlearning methods along these dimensions. Our results reveal that, although some techniques can successfully unlearn knowledge acquired through fine-tuning, they struggle to eliminate information learned during pre-training. Moreover, methods that effectively unlearn a batch of target data in a single operation exhibit substantial performance degradation when the same data are split and unlearned sequentially.
comment: Accepted at NeurIPS 2025 Workshop: Evaluating the Evolving LLM Lifecycle
♻ ☆ Causal Spatio-Temporal Prediction: An Effective and Efficient Multi-Modal Approach
Spatio-temporal prediction plays a crucial role in intelligent transportation, weather forecasting, and urban planning. While integrating multi-modal data has shown potential for enhancing prediction accuracy, key challenges persist: (i) inadequate fusion of multi-modal information, (ii) confounding factors that obscure causal relations, and (iii) high computational complexity of prediction models. To address these challenges, we propose E^2-CSTP, an Effective and Efficient Causal multi-modal Spatio-Temporal Prediction framework. E^2-CSTP leverages cross-modal attention and gating mechanisms to effectively integrate multi-modal data. Building on this, we design a dual-branch causal inference approach: the primary branch focuses on spatio-temporal prediction, while the auxiliary branch mitigates bias by modeling additional modalities and applying causal interventions to uncover true causal dependencies. To improve model efficiency, we integrate GCN with the Mamba architecture for accelerated spatio-temporal encoding. Extensive experiments on 4 real-world datasets show that E^2-CSTP significantly outperforms 9 state-of-the-art methods, achieving up to 9.66% improvements in accuracy as well as 17.37%-56.11% reductions in computational overhead.
♻ ☆ Rademacher Meets Colors: More Expressivity, but at What Cost ?
The expressive power of graph neural networks (GNNs) is typically understood through their correspondence with graph isomorphism tests such as the Weisfeiler-Leman (WL) hierarchy. While more expressive GNNs can distinguish a richer set of graphs, they are also observed to suffer from higher generalization error. This work provides a theoretical explanation for this trade-off by linking expressivity and generalization through the lens of coloring algorithms. Specifically, we show that the number of equivalence classes induced by WL colorings directly bounds the GNNs Rademacher complexity -- a key data-dependent measure of generalization. Our analysis reveals that greater expressivity leads to higher complexity and thus weaker generalization guarantees. Furthermore, we prove that the Rademacher complexity is stable under perturbations in the color counts across different samples, ensuring robustness to sampling variability across datasets. Importantly, our framework is not restricted to message-passing GNNs or 1-WL, but extends to arbitrary GNN architectures and expressivity measures that partition graphs into equivalence classes. These results unify the study of expressivity and generalization in GNNs, providing a principled understanding of why increasing expressive power often comes at the cost of generalization.
♻ ☆ Interpretable Clustering with Adaptive Heterogeneous Causal Structure Learning in Mixed Observational Data
Understanding causal heterogeneity is essential for scientific discovery in domains such as biology and medicine. However, existing methods lack causal awareness, with insufficient modeling of heterogeneity, confounding, and observational constraints, leading to poor interpretability and difficulty distinguishing true causal heterogeneity from spurious associations. We propose an unsupervised framework, HCL (Interpretable Causal Mechanism-Aware Clustering with Adaptive Heterogeneous Causal Structure Learning), that jointly infers latent clusters and their associated causal structures from mixed-type observational data without requiring temporal ordering, environment labels, interventions or other prior knowledge. HCL relaxes the homogeneity and sufficiency assumptions by introducing an equivalent representation that encodes both structural heterogeneity and confounding. It further develops a bi-directional iterative strategy to alternately refine causal clustering and structure learning, along with a self-supervised regularization that balance cross-cluster universality and specificity. Together, these components enable convergence toward interpretable, heterogeneous causal patterns. Theoretically, we show identifiability of heterogeneous causal structures under mild conditions. Empirically, HCL achieves superior performance in both clustering and structure learning tasks, and recovers biologically meaningful mechanisms in real-world single-cell perturbation data, demonstrating its utility for discovering interpretable, mechanism-level causal heterogeneity.
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ Mixture-of-Experts Meets In-Context Reinforcement Learning
In-context reinforcement learning (ICRL) has emerged as a promising paradigm for adapting RL agents to downstream tasks through prompt conditioning. However, two notable challenges remain in fully harnessing in-context learning within RL domains: the intrinsic multi-modality of the state-action-reward data and the diverse, heterogeneous nature of decision tasks. To tackle these challenges, we propose T2MIR (Token- and Task-wise MoE for In-context RL), an innovative framework that introduces architectural advances of mixture-of-experts (MoE) into transformer-based decision models. T2MIR substitutes the feedforward layer with two parallel layers: a token-wise MoE that captures distinct semantics of input tokens across multiple modalities, and a task-wise MoE that routes diverse tasks to specialized experts for managing a broad task distribution with alleviated gradient conflicts. To enhance task-wise routing, we introduce a contrastive learning method that maximizes the mutual information between the task and its router representation, enabling more precise capture of task-relevant information. The outputs of two MoE components are concatenated and fed into the next layer. Comprehensive experiments show that T2MIR significantly facilitates in-context learning capacity and outperforms various types of baselines. We bring the potential and promise of MoE to ICRL, offering a simple and scalable architectural enhancement to advance ICRL one step closer toward achievements in language and vision communities. Our code is available at https://github.com/NJU-RL/T2MIR.
comment: 28 pages, 13 figures, 17 tables
♻ ☆ An unsupervised tour through the hidden pathways of deep neural networks
The goal of this thesis is to improve our understanding of the internal mechanisms by which deep artificial neural networks create meaningful representations and are able to generalize. We focus on the challenge of characterizing the semantic content of the hidden representations with unsupervised learning tools, partially developed by us and described in this thesis, which allow harnessing the low-dimensional structure of the data. Chapter 2. introduces Gride, a method that allows estimating the intrinsic dimension of the data as an explicit function of the scale without performing any decimation of the data set. Our approach is based on rigorous distributional results that enable the quantification of uncertainty of the estimates. Moreover, our method is simple and computationally efficient since it relies only on the distances among nearest data points. In Chapter 3, we study the evolution of the probability density across the hidden layers in some state-of-the-art deep neural networks. We find that the initial layers generate a unimodal probability density getting rid of any structure irrelevant to classification. In subsequent layers, density peaks arise in a hierarchical fashion that mirrors the semantic hierarchy of the concepts. This process leaves a footprint in the probability density of the output layer, where the topography of the peaks allows reconstructing the semantic relationships of the categories. In Chapter 4, we study the problem of generalization in deep neural networks: adding parameters to a network that interpolates its training data will typically improve its generalization performance, at odds with the classical bias-variance trade-off. We show that wide neural networks learn redundant representations instead of overfitting to spurious correlation and that redundant neurons appear only if the network is regularized and the training error is zero.
comment: PhD thesis
♻ ☆ Global urban visual perception varies across demographics and personalities
Understanding people's preferences is crucial for urban planning, yet current approaches often combine responses from multi-cultural populations, obscuring demographic differences and risking amplifying biases. We conducted a largescale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and personality traits -- shape perceptions among 1,000 participants with balanced demographics from five countries and 45 nationalities. This dataset, Street Perception Evaluation Considering Socioeconomics (SPECS), reveals demographic- and personality-based differences across six traditional indicators -- safe, lively, wealthy, beautiful, boring, depressing -- and four new ones -- live nearby, walk, cycle, green. Location-based sentiments further shape these preferences. Machine learning models trained on existing global datasets tend to overestimate positive indicators and underestimate negative ones compared to human responses, underscoring the need for local context. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
♻ ☆ A High-Dimensional Statistical Method for Optimizing Transfer Quantities in Multi-Source Transfer Learning NeurIPS 2025
Multi-source transfer learning provides an effective solution to data scarcity in real-world supervised learning scenarios by leveraging multiple source tasks. In this field, existing works typically use all available samples from sources in training, which constrains their training efficiency and may lead to suboptimal results. To address this, we propose a theoretical framework that answers the question: what is the optimal quantity of source samples needed from each source task to jointly train the target model? Specifically, we introduce a generalization error measure based on K-L divergence, and minimize it based on high-dimensional statistical analysis to determine the optimal transfer quantity for each source task. Additionally, we develop an architecture-agnostic and data-efficient algorithm OTQMS to implement our theoretical results for target model training in multi-source transfer learning. Experimental studies on diverse architectures and two real-world benchmark datasets show that our proposed algorithm significantly outperforms state-of-the-art approaches in both accuracy and data efficiency. The code and supplementary materials are available in https://github.com/zqy0126/OTQMS.
comment: NeurIPS 2025 Poster
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce PTQ to Trit-Planes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary {-1, 0, 1} trit-planes using 2x1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention versus 0% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments. The code will be available at https://github.com/HeXiao-55/PTQTP.
comment: under review
Information Retrieval 16
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ Optimizing Retrieval for RAG via Reinforced Contrastive Learning
As retrieval-augmented generation (RAG) becomes increasingly widespread, the role of information retrieval (IR) is shifting from retrieving information for human users to retrieving contextual knowledge for artificial intelligence (AI) systems, where relevance becomes difficult to define or annotate beforehand. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through trialand-feedback Reinforced contrastive learning. Unlike prior approaches that rely on annotated or synthetic data for supervised fine-tuning, R3 enables the retriever to dynamically explore and optimize relevance within the RAG environment. During training, the retrieved results interact with the environment to produce contrastive signals that automatically guide the retriever's self-improvement. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation
The recent success of large language models (LLMs) has renewed interest in whether recommender systems can achieve similar scaling benefits. Conventional recommenders, dominated by massive embedding tables, tend to plateau as embedding dimensions grow. In contrast, the emerging generative paradigm replaces embeddings with compact Semantic ID (SID) sequences produced by autoregressive Transformers. Yet most industrial deployments remain proprietary, leaving two fundamental questions open: (1) Do the expected scaling laws hold on public benchmarks? (2) What is the minimal post-training recipe that enables competitive performance? We present MiniOneRec, to the best of our knowledge, the first fully open-source generative recommendation framework, which provides an end-to-end workflow spanning SID construction, supervised fine-tuning, and recommendation-oriented reinforcement learning. We generate SIDs via a Residual Quantized VAE and post-train Qwen backbones ranging from 0.5B to 7B parameters on the Amazon Review dataset. Our experiments reveal a consistent downward trend in both training and evaluation losses with increasing model size, validating the parameter efficiency of the generative approach. To further enhance performance, we propose a lightweight yet effective post-training pipeline that (1) enforces full-process SID alignment and (2) applies reinforcement learning with constrained decoding and hybrid rewards. Together, these techniques yield significant improvements in both ranking accuracy and candidate diversity.
comment: Technical Report
☆ From Time and Place to Preference: LLM-Driven Geo-Temporal Context in Recommendations
Most recommender systems treat timestamps as numeric or cyclical values, overlooking real-world context such as holidays, events, and seasonal patterns. We propose a scalable framework that uses large language models (LLMs) to generate geo-temporal embeddings from only a timestamp and coarse location, capturing holidays, seasonal trends, and local/global events. We then introduce a geo-temporal embedding informativeness test as a lightweight diagnostic, demonstrating on MovieLens, LastFM, and a production dataset that these embeddings provide predictive signal consistent with the outcomes of full model integrations. Geo-temporal embeddings are incorporated into sequential models through (1) direct feature fusion with metadata embeddings or (2) an auxiliary loss that enforces semantic and geo-temporal alignment. Our findings highlight the need for adaptive or hybrid recommendation strategies, and we release a context-enriched MovieLens dataset to support future research.
☆ Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
Retrieval-Augmented Generation (RAG) struggles on long, structured financial filings where relevant evidence is sparse and cross-referenced. This paper presents a systematic investigation of advanced metadata-driven Retrieval-Augmented Generation (RAG) techniques, proposing and evaluating a novel, multi-stage RAG architecture that leverages LLM-generated metadata. We introduce a sophisticated indexing pipeline to create contextually rich document chunks and benchmark a spectrum of enhancements, including pre-retrieval filtering, post-retrieval reranking, and enriched embeddings, benchmarked on the FinanceBench dataset. Our results reveal that while a powerful reranker is essential for precision, the most significant performance gains come from embedding chunk metadata directly with text ("contextual chunks"). Our proposed optimal architecture combines LLM-driven pre-retrieval optimizations with these contextual embeddings to achieve superior performance. Additionally, we present a custom metadata reranker that offers a compelling, cost-effective alternative to commercial solutions, highlighting a practical trade-off between peak performance and operational efficiency. This study provides a blueprint for building robust, metadata-aware RAG systems for financial document analysis.
comment: Preprint version submitted to the International Journal of Accounting Information Systems; currently under major revision. 20 pages, 1 figure, 1 table
☆ DUET: Dual Model Co-Training for Entire Space CTR Prediction
The pre-ranking stage plays a pivotal role in large-scale recommender systems but faces an intrinsic trade-off between model expressiveness and computational efficiency. Owing to the massive candidate pool and strict latency constraints, industry systems often rely on lightweight two-tower architectures, which are computationally efficient yet limited in estimation capability. As a result, they struggle to capture the complex synergistic and suppressive relationships among candidate items, which are essential for producing contextually coherent and diverse recommendation lists. Moreover, this simplicity further amplifies the Sample Selection Bias (SSB) problem, as coarse-grained models trained on biased exposure data must generalize to a much larger candidate space with distinct distributions. To address these issues, we propose \textbf{DUET} (\textbf{DU}al Model Co-Training for \textbf{E}ntire Space C\textbf{T}R Prediction), a set-wise pre-ranking framework that achieves expressive modeling under tight computational budgets. Instead of scoring items independently, DUET performs set-level prediction over the entire candidate subset in a single forward pass, enabling information-aware interactions among candidates while amortizing the computational cost across the set. Moreover, a dual model co-training mechanism extends supervision to unexposed items via mutual pseudo-label refinement, effectively mitigating SSB. Validated through extensive offline experiments and online A/B testing, DUET consistently outperforms state-of-the-art baselines and achieves improvements across multiple core business metrics. At present, DUET has been fully deployed in Kuaishou and Kuaishou Lite Apps, serving the main traffic for hundreds of millions of users.
☆ Resource-Efficient LLM Application for Structured Transformation of Unstructured Financial Contracts
The transformation of unstructured legal contracts into standardized, machine-readable formats is essential for automating financial workflows. The Common Domain Model (CDM) provides a standardized framework for this purpose, but converting complex legal documents like Credit Support Annexes (CSAs) into CDM representations remains a significant challenge. In this paper, we present an extension of the CDMizer framework, a template-driven solution that ensures syntactic correctness and adherence to the CDM schema during contract-to-CDM conversion. We apply this extended framework to a real-world task, comparing its performance with a benchmark developed by the International Swaps and Derivatives Association (ISDA) for CSA clause extraction. Our results show that CDMizer, when integrated with a significantly smaller, open-source Large Language Model (LLM), achieves competitive performance in terms of accuracy and efficiency against larger, proprietary models. This work underscores the potential of resource-efficient solutions to automate legal contract transformation, offering a cost-effective and scalable approach that can meet the needs of financial institutions with constrained resources or strict data privacy requirements.
comment: 5 pages, 1 figure, 2 tables
☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
☆ Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.
comment: https://github.com/alexmartin1722/mirage
♻ ☆ Comparing Retrieval Strategies to Capture Interdisciplinary Scientific Research: A Bibliometric Evaluation of the Integration of Neuroscience and Computer Science
Interdisciplinary scientific research is increasingly important in knowledge production, funding policies, and academic discussions on scholarly communication. While many studies focus on interdisciplinary corpora defined a priori -- usually through keyword-based searches within assumed interdisciplinary domains -- few explore interdisciplinarity as an emergent intersection between two distinct fields. Thus, methodological proposals for building databases at the intersection of two fields of knowledge are scarce. The goal of this article is to develop and compare different strategies for defining an interdisciplinary corpus between two bodies of knowledge. As a case study, we focus on the intersection between neuroscience and computer science. To this end, we develop and compare four retrieval strategies, two of them based on keywords and two based on citation and reference patterns. Our results show that the reference-based strategy provides better retrieval, pseudorecall, and F1. While we focus on comparing strategies for the study of the intersection between the fields of neuroscience and computer science, this methodological reflection is applicable to a wide range of interdisciplinary domains.
♻ ☆ CustomIR: Unsupervised Fine-Tuning of Dense Embeddings for Known Document Corpora
Dense embedding models have become critical for modern information retrieval, particularly in RAG pipelines, but their performance often degrades when applied to specialized corpora outside their pre-training distribution. To address thi we introduce CustomIR, a framework for unsupervised adaptation of pre-trained language embedding models to domain-specific corpora using synthetically generated query-document pairs. CustomIR leverages large language models (LLMs) to create diverse queries grounded in a known target corpus, paired with LLM-verified hard negatives, eliminating the need for costly human annotation. Experiments on enterprise email and messaging datasets show that CustomIR consistently improves retrieval effectiveness with small models gaining up to 2.3 points in Recall@10. This performance increase allows these small models to rival the performance of much larger alternatives, allowing for cheaper RAG deployments. These results highlight that targeted synthetic fine-tuning offers a scalable and cost-efficient strategy for increasing domain-specific performance.
♻ ☆ Cross-Scenario Unified Modeling of User Interests at Billion Scale
User interests on content platforms are inherently diverse, manifesting through complex behavioral patterns across heterogeneous scenarios such as search, feed browsing, and content discovery. Traditional recommendation systems typically prioritize business metric optimization within isolated specific scenarios, neglecting cross-scenario behavioral signals and struggling to integrate advanced techniques like LLMs at billion-scale deployments, which finally limits their ability to capture holistic user interests across platform touchpoints. We propose RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified scenarios, tailored for industry-level content recommendation systems. RED-Rec unifies user interest representations across multiple behavioral contexts by aggregating and synthesizing actions from varied scenarios, resulting in comprehensive item and user modeling. At its core, a two-tower LLM-powered framework enables nuanced, multifaceted representations with deployment efficiency, and a scenario-aware dense mixing and querying policy effectively fuses diverse behavioral signals to capture cross-scenario user intent patterns and express fine-grained, context-specific intents during serving. We validate RED-Rec through online A/B testing on hundreds of millions of users in RedNote through online A/B testing, showing substantial performance gains in both content recommendation and advertisement targeting tasks. We further introduce a million-scale sequential recommendation dataset, RED-MMU, for comprehensive offline training and evaluation. Our work advances unified user modeling, unlocking deeper personalization and fostering more meaningful user engagement in large-scale UGC platforms.
comment: https://github.com/ariesssxu/RedSeqRec
♻ ☆ OneRec-V2 Technical Report
Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
♻ ☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
♻ ☆ Your Dense Retriever is Secretly an Expeditious Reasoner
Dense retrievers enhance retrieval by encoding queries and documents into continuous vectors, but they often struggle with reasoning-intensive queries. Although Large Language Models (LLMs) can reformulate queries to capture complex reasoning, applying them universally incurs significant computational cost. In this work, we propose Adaptive Query Reasoning (AdaQR), a hybrid query rewriting framework. Within this framework, a Reasoner Router dynamically directs each query to either fast dense reasoning or deep LLM reasoning. The dense reasoning is achieved by the Dense Reasoner, which performs LLM-style reasoning directly in the embedding space, enabling a controllable trade-off between efficiency and accuracy. Experiments on large-scale retrieval benchmarks BRIGHT show that AdaQR reduces reasoning cost by 28% while preserving-or even improving-retrieval performance by 7%.
comment: 16 pages, 11 figures
Computation and Language 129
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-oncescoringintofocused, second-lookreasoning, BR-RMreducesjudgmentdiffusionandimproves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains. The code and the model will be released soon.
☆ Hope Speech Detection in Social Media English Corpora: Performance of Traditional and Transformer Models
The identification of hope speech has become a promised NLP task, considering the need to detect motivational expressions of agency and goal-directed behaviour on social media platforms. This proposal evaluates traditional machine learning models and fine-tuned transformers for a previously split hope speech dataset as train, development and test set. On development test, a linear-kernel SVM and logistic regression both reached a macro-F1 of 0.78; SVM with RBF kernel reached 0.77, and Na\"ive Bayes hit 0.75. Transformer models delivered better results, the best model achieved weighted precision of 0.82, weighted recall of 0.80, weighted F1 of 0.79, macro F1 of 0.79, and 0.80 accuracy. These results suggest that while optimally configured traditional machine learning models remain agile, transformer architectures detect some subtle semantics of hope to achieve higher precision and recall in hope speech detection, suggesting that larges transformers and LLMs could perform better in small datasets.
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ ISA-Bench: Benchmarking Instruction Sensitivity for Large Audio Language Models
Large Audio Language Models (LALMs), which couple acoustic perception with large language models (LLMs) to extract and understand diverse information from audio, have attracted intense interest from both academic and industrial communities. However, existing LALMs are highly sensitive to how instructions are phrased, affecting both (i) instruction-following rates and (ii) task performance. Yet, no existing benchmarks offer a systematic and comprehensive evaluation of this sensitivity. We introduce ISA-Bench, a dynamic benchmark evaluating instruction sensitivity for LALMs along three axes: instruction description, output format, and task composition. We assess recent open-source and proprietary LALMs using ISA-Bench, profiling both compliance and accuracy under controlled instruction variations. Experimental results reveal that even state-of-the-art LALMs suffer significant instruction sensitivity, leading to degraded performance on fundamental audio understanding tasks. To mitigate this issue, we fine-tune Qwen2-Audio on a specifically constructed complex instruction-variant dataset, achieving a marked improvement in instruction-following performance. However, this also induces nontrivial catastrophic forgetting: the model loses some previously mastered task capabilities when exposed to new instruction styles. Our benchmark provides a standardized basis for assessing and improving instruction sensitivity in LALMs, underscoring the need for instruction-robust audio understanding in real-world pipelines.
comment: submitted to icassp 2026
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ IPQA: A Benchmark for Core Intent Identification in Personalized Question Answering
Intent identification serves as the foundation for generating appropriate responses in personalized question answering (PQA). However, existing benchmarks evaluate only response quality or retrieval performance without directly measuring intent identification capabilities. This gap is critical because without understanding which intents users prioritize, systems cannot generate responses satisfying individual information needs. To address this, we introduce the concept of core intents: intents users prioritize when selecting answers to satisfy their information needs. To evaluate these core intents, we propose IPQA, a benchmark for core Intent identification in Personalized Question Answering. Since users do not explicitly state their prioritized intents, we derive core intents from observable behavior patterns in answer selection, grounded in satisficing theory where users choose answers meeting their acceptance thresholds. We construct a dataset with various domains through systematic filtering, LLM-based annotation, and rigorous quality control combining automated verification with human validation. Experimental evaluations across state-of-the-art language models reveal that current systems struggle with core intent identification in personalized contexts. Models fail to identify core intents from user histories, with performance degrading as question complexity increases. The code and dataset will be made publicly available to facilitate future research in this direction.
☆ M4FC: a Multimodal, Multilingual, Multicultural, Multitask Real-World Fact-Checking Dataset
Existing real-world datasets for multimodal automated fact-checking have multiple limitations: they contain few instances, focus on only one or two languages and tasks, suffer from evidence leakage, or depend on external sets of news articles for sourcing true claims. To address these shortcomings, we introduce M4FC, a new real-world dataset comprising 4,982 images paired with 6,980 claims. The images, verified by professional fact-checkers from 22 organizations, represent diverse cultural and geographic contexts. Each claim is available in one or two out of ten languages. M4FC spans six multimodal fact-checking tasks: visual claim extraction, claimant intent prediction, fake detection, image contextualization, location verification, and verdict prediction. We provide baseline results for all tasks and analyze how combining intermediate tasks influence downstream verdict prediction performance. We make our dataset and code available.
comment: Preprint under review. Code and data available at: https://github.com/UKPLab/M4FC
☆ MMTutorBench: The First Multimodal Benchmark for AI Math Tutoring
Effective math tutoring requires not only solving problems but also diagnosing students' difficulties and guiding them step by step. While multimodal large language models (MLLMs) show promise, existing benchmarks largely overlook these tutoring skills. We introduce MMTutorBench, the first benchmark for AI math tutoring, consisting of 685 problems built around pedagogically significant key-steps. Each problem is paired with problem-specific rubrics that enable fine-grained evaluation across six dimensions, and structured into three tasks-Insight Discovery, Operation Formulation, and Operation Execution. We evaluate 12 leading MLLMs and find clear performance gaps between proprietary and open-source systems, substantial room compared to human tutors, and consistent trends across input variants: OCR pipelines degrade tutoring quality, few-shot prompting yields limited gains, and our rubric-based LLM-as-a-Judge proves highly reliable. These results highlight both the difficulty and diagnostic value of MMTutorBench for advancing AI tutoring.
☆ Evaluating Large Language Models for Stance Detection on Financial Targets from SEC Filing Reports and Earnings Call Transcripts
Financial narratives from U.S. Securities and Exchange Commission (SEC) filing reports and quarterly earnings call transcripts (ECTs) are very important for investors, auditors, and regulators. However, their length, financial jargon, and nuanced language make fine-grained analysis difficult. Prior sentiment analysis in the financial domain required a large, expensive labeled dataset, making the sentence-level stance towards specific financial targets challenging. In this work, we introduce a sentence-level corpus for stance detection focused on three core financial metrics: debt, earnings per share (EPS), and sales. The sentences were extracted from Form 10-K annual reports and ECTs, and labeled for stance (positive, negative, neutral) using the advanced ChatGPT-o3-pro model under rigorous human validation. Using this corpus, we conduct a systematic evaluation of modern large language models (LLMs) using zero-shot, few-shot, and Chain-of-Thought (CoT) prompting strategies. Our results show that few-shot with CoT prompting performs best compared to supervised baselines, and LLMs' performance varies across the SEC and ECT datasets. Our findings highlight the practical viability of leveraging LLMs for target-specific stance in the financial domain without requiring extensive labeled data.
☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ A Neuro-Symbolic Multi-Agent Approach to Legal-Cybersecurity Knowledge Integration
The growing intersection of cybersecurity and law creates a complex information space where traditional legal research tools struggle to deal with nuanced connections between cases, statutes, and technical vulnerabilities. This knowledge divide hinders collaboration between legal experts and cybersecurity professionals. To address this important gap, this work provides a first step towards intelligent systems capable of navigating the increasingly intricate cyber-legal domain. We demonstrate promising initial results on multilingual tasks.
comment: 7 pages
☆ EMTSF:Extraordinary Mixture of SOTA Models for Time Series Forecasting
The immense success of the Transformer architecture in Natural Language Processing has led to its adoption in Time Se ries Forecasting (TSF), where superior performance has been shown. However, a recent important paper questioned their effectiveness by demonstrating that a simple single layer linear model outperforms Transformer-based models. This was soon shown to be not as valid, by a better transformer-based model termed PatchTST. More re cently, TimeLLM demonstrated even better results by repurposing a Large Language Model (LLM) for the TSF domain. Again, a follow up paper challenged this by demonstrating that removing the LLM component or replacing it with a basic attention layer in fact yields better performance. One of the challenges in forecasting is the fact that TSF data favors the more recent past, and is sometimes subject to unpredictable events. Based upon these recent insights in TSF, we propose a strong Mixture of Experts (MoE) framework. Our method combines the state-of-the-art (SOTA) models including xLSTM, en hanced Linear, PatchTST, and minGRU, among others. This set of complimentary and diverse models for TSF are integrated in a Trans former based MoE gating network. Our proposed model outperforms all existing TSF models on standard benchmarks, surpassing even the latest approaches based on MoE frameworks.
☆ Detecting Religious Language in Climate Discourse
Religious language continues to permeate contemporary discourse, even in ostensibly secular domains such as environmental activism and climate change debates. This paper investigates how explicit and implicit forms of religious language appear in climate-related texts produced by secular and religious nongovernmental organizations (NGOs). We introduce a dual methodological approach: a rule-based model using a hierarchical tree of religious terms derived from ecotheology literature, and large language models (LLMs) operating in a zero-shot setting. Using a dataset of more than 880,000 sentences, we compare how these methods detect religious language and analyze points of agreement and divergence. The results show that the rule-based method consistently labels more sentences as religious than LLMs. These findings highlight not only the methodological challenges of computationally detecting religious language but also the broader tension over whether religious language should be defined by vocabulary alone or by contextual meaning. This study contributes to digital methods in religious studies by demonstrating both the potential and the limitations of approaches for analyzing how the sacred persists in climate discourse.
☆ How AI Forecasts AI Jobs: Benchmarking LLM Predictions of Labor Market Changes
Artificial intelligence is reshaping labor markets, yet we lack tools to systematically forecast its effects on employment. This paper introduces a benchmark for evaluating how well large language models (LLMs) can anticipate changes in job demand, especially in occupations affected by AI. Existing research has shown that LLMs can extract sentiment, summarize economic reports, and emulate forecaster behavior, but little work has assessed their use for forward-looking labor prediction. Our benchmark combines two complementary datasets: a high-frequency index of sector-level job postings in the United States, and a global dataset of projected occupational changes due to AI adoption. We format these data into forecasting tasks with clear temporal splits, minimizing the risk of information leakage. We then evaluate LLMs using multiple prompting strategies, comparing task-scaffolded, persona-driven, and hybrid approaches across model families. We assess both quantitative accuracy and qualitative consistency over time. Results show that structured task prompts consistently improve forecast stability, while persona prompts offer advantages on short-term trends. However, performance varies significantly across sectors and horizons, highlighting the need for domain-aware prompting and rigorous evaluation protocols. By releasing our benchmark, we aim to support future research on labor forecasting, prompt design, and LLM-based economic reasoning. This work contributes to a growing body of research on how LLMs interact with real-world economic data, and provides a reproducible testbed for studying the limits and opportunities of AI as a forecasting tool in the context of labor markets.
comment: 8 pages + Limitations + References
☆ LightKGG: Simple and Efficient Knowledge Graph Generation from Textual Data
The scarcity of high-quality knowledge graphs (KGs) remains a critical bottleneck for downstream AI applications, as existing extraction methods rely heavily on error-prone pattern-matching techniques or resource-intensive large language models (LLMs). While recent tools leverage LLMs to generate KGs, their computational demands limit accessibility for low-resource environments. Our paper introduces LightKGG, a novel framework that enables efficient KG extraction from textual data using small-scale language models (SLMs) through two key technical innovations: (1) Context-integrated Graph extraction integrates contextual information with nodes and edges into a unified graph structure, reducing the reliance on complex semantic processing while maintaining more key information; (2) Topology-enhanced relationship inference leverages the inherent topology of the extracted graph to efficiently infer relationships, enabling relationship discovery without relying on complex language understanding capabilities of LLMs. By enabling accurate KG construction with minimal hardware requirements, this work bridges the gap between automated knowledge extraction and practical deployment scenarios while introducing scientifically rigorous methods for optimizing SLM efficiency in structured NLP tasks.
☆ Planning Ahead with RSA: Efficient Signalling in Dynamic Environments by Projecting User Awareness across Future Timesteps
Adaptive agent design offers a way to improve human-AI collaboration on time-sensitive tasks in rapidly changing environments. In such cases, to ensure the human maintains an accurate understanding of critical task elements, an assistive agent must not only identify the highest priority information but also estimate how and when this information can be communicated most effectively, given that human attention represents a zero-sum cognitive resource where focus on one message diminishes awareness of other or upcoming information. We introduce a theoretical framework for adaptive signalling which meets these challenges by using principles of rational communication, formalised as Bayesian reference resolution using the Rational Speech Act (RSA) modelling framework, to plan a sequence of messages which optimise timely alignment between user belief and a dynamic environment. The agent adapts message specificity and timing to the particulars of a user and scenario based on projections of how prior-guided interpretation of messages will influence attention to the interface and subsequent belief update, across several timesteps out to a fixed horizon. In a comparison to baseline methods, we show that this effectiveness depends crucially on combining multi-step planning with a realistic model of user awareness. As the first application of RSA for communication in a dynamic environment, and for human-AI interaction in general, we establish theoretical foundations for pragmatic communication in human-agent teams, highlighting how insights from cognitive science can be capitalised to inform the design of assistive agents.
comment: 11 pages, 3 figures
☆ BaZi-Based Character Simulation Benchmark: Evaluating AI on Temporal and Persona Reasoning
Human-like virtual characters are crucial for games, storytelling, and virtual reality, yet current methods rely heavily on annotated data or handcrafted persona prompts, making it difficult to scale up and generate realistic, contextually coherent personas. We create the first QA dataset for BaZi-based persona reasoning, where real human experiences categorized into wealth, health, kinship, career, and relationships are represented as life-event questions and answers. Furthermore, we propose the first BaZi-LLM system that integrates symbolic reasoning with large language models to generate temporally dynamic and fine-grained virtual personas. Compared with mainstream LLMs such as DeepSeek-v3 and GPT-5-mini, our method achieves a 30.3%-62.6% accuracy improvement. In addition, when incorrect BaZi information is used, our model's accuracy drops by 20%-45%, showing the potential of culturally grounded symbolic-LLM integration for realistic character simulation.
☆ Adaptive Blockwise Search: Inference-Time Alignment for Large Language Models
LLM alignment remains a critical challenge. Inference-time methods provide a flexible alternative to fine-tuning, but their uniform computational effort often yields suboptimal alignment. We hypothesize that for many alignment tasks, the initial tokens of a response are disproportionately more critical. To leverage this principle, we introduce AdaSearch, a novel blockwise search strategy. It adaptively allocates a fixed computational budget using a sampling schedule, focusing search effort on these critical tokens. We apply AdaSearch to sequential decoding and introduce its tree-search counterpart, AdaBeam. Our comprehensive evaluation across eight LLMs demonstrates that AdaSearch outperforms strong Best-of-N and fine-tuning baselines. Specifically, win-rates improve by over 10% for harmlessness generation, controlled sentiment generation, and for mathematical reasoning tasks relative to Best-of-N.
☆ LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization LREC 2026
We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions.
comment: Submitted to LREC 2026
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ DCMM-SQL: Automated Data-Centric Pipeline and Multi-Model Collaboration Training for Text-to-SQL Model
Text-to-SQL tasks have gained attractive improvements since the release of ChatGPT. Among them, agent-based frameworks have been widely used in this field. However, the impact of data-centric strategies on text-to-SQL tasks has rarely been explored. In this paper, we systemically design a fully automated data-centric pipeline for text-to-SQL tasks, including \emph{adaptive data repair}, which can automatically find and fix errors in the training dataset; and \emph{error data augmentation}, where we specifically diffuse and enhance erroneous data predicted by the initially trained models. Meanwhile, we propose a Multi-Model collaboration training schema, aiming to train multiple models with different augmented data, enabling them to possess distinct capabilities and work together to complement each other, because it has been found that the capability of a single fine-tuned model is very limited. Furthermore, we utilize an ensemble strategy to integrate the capabilities of multiple models to solve a multiple-choice question, aiming to further improve the accuracy of text-to-SQL tasks. The experiment results and ablation study have demonstrated the effectiveness of data-centric pipeline and Multi-Model(MM) interactive iterative strategies, achieving first place in lightweight text-to-SQL models (within 70B).
☆ A Cocktail-Party Benchmark: Multi-Modal dataset and Comparative Evaluation Results ICASSP 2026
We introduce the task of Multi-Modal Context-Aware Recognition (MCoRec) in the ninth CHiME Challenge, which addresses the cocktail-party problem of overlapping conversations in a single-room setting using audio, visual, and contextual cues. MCoRec captures natural multi-party conversations where the recordings focus on unscripted, casual group chats, leading to extreme speech overlap of up to 100% and highly fragmented conversational turns. The task requires systems to answer the question "Who speaks when, what, and with whom?" by jointly transcribing each speaker's speech and clustering them into their respective conversations from audio-visual recordings. Audio-only baselines exceed 100% word error rate, whereas incorporating visual cues yields substantial 50% improvements, highlighting the importance of multi-modality. In this manuscript, we present the motivation behind the task, outline the data collection process, and report the baseline systems developed for the MCoRec.
comment: Submitted to ICASSP 2026
☆ Code Aesthetics with Agentic Reward Feedback
Large Language Models (LLMs) have become valuable assistants for developers in code-related tasks. While LLMs excel at traditional programming tasks such as code generation and bug fixing, they struggle with visually-oriented coding tasks, often producing suboptimal aesthetics. In this paper, we introduce a new pipeline to enhance the aesthetic quality of LLM-generated code. We first construct AesCode-358K, a large-scale instruction-tuning dataset focused on code aesthetics. Next, we propose agentic reward feedback, a multi-agent system that evaluates executability, static aesthetics, and interactive aesthetics. Building on this, we develop GRPO-AR, which integrates these signals into the GRPO algorithm for joint optimization of functionality and code aesthetics. Finally, we develop OpenDesign, a benchmark for assessing code aesthetics. Experimental results show that combining supervised fine-tuning on AesCode-358K with reinforcement learning using agentic reward feedback significantly improves performance on OpenDesign and also enhances results on existing benchmarks such as PandasPlotBench. Notably, our AesCoder-4B surpasses GPT-4o and GPT-4.1, and achieves performance comparable to large open-source models with 480B-685B parameters, underscoring the effectiveness of our approach.
comment: 30 pages, 7 figures
☆ Mubeen AI: A Specialized Arabic Language Model for Heritage Preservation and User Intent Understanding
Mubeen is a proprietary Arabic language model developed by MASARAT SA, optimized for deep understanding of Arabic linguistics, Islamic studies, and cultural heritage. Trained on an extensive collection of authentic Arabic sources significantly expanded by digitizing historical manuscripts via a proprietary Arabic OCR engine, the model incorporates seminal scholarly works in linguistics, jurisprudence, hadith, and Quranic exegesis, alongside thousands of academic theses and peer-reviewed research papers. Conditioned through a deep linguistic engineering framework, Mubeen masters not just the meaning but the eloquence of Arabic, enabling precise understanding across classical texts, contemporary writing, and regional dialects with focus on comprehending user intent and delivering accurate, contextually relevant responses. Unlike other Arabic models relying on translated English data that often fail in intent detection or retrieval-augmented generation (RAG), Mubeen uses native Arabic sources to ensure cultural authenticity and accuracy. Its core innovation is the Practical Closure Architecture, designed to solve the "Utility Gap Crisis" where factually correct answers fail to resolve users' core needs, forcing them into frustrating cycles of re-prompting. By prioritizing clarity and decisive guidance, Mubeen transforms from an information repository into a decisive guide, aligning with Saudi Vision 2030. The model's architecture combines deep heritage specialization with multi-disciplinary expert modules, enabling robust performance across both cultural preservation and general knowledge domains.
comment: 21 pages, 2 figures, 3 tables. Includes appendices on ethical guidelines and training framework. Submitted September 04, 2025
☆ Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? AACL
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available
comment: This manuscript contains 11 pages, 5 tables and 16 figures This was accepted at International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL) 2025
☆ Process Reward Models for Sentence-Level Verification of LVLM Radiology Reports
Automating radiology report generation with Large Vision-Language Models (LVLMs) holds great potential, yet these models often produce clinically critical hallucinations, posing serious risks. Existing hallucination detection methods frequently lack the necessary sentence-level granularity or robust generalization across different LVLM generators. We introduce a novel approach: a sentence-level Process Reward Model (PRM) adapted for this vision-language task. Our PRM predicts the factual correctness of each generated sentence, conditioned on clinical context and preceding text. When fine-tuned on MIMIC-CXR with weakly-supervised labels, a lightweight 0.5B-parameter PRM outperforms existing verification techniques, demonstrating, for instance, relative improvements of 7.5% in Matthews Correlation Coefficient and 1.8% in AUROC over strong white-box baselines on outputs from one LVLM. Unlike methods reliant on internal model states, our PRM demonstrates strong generalization to an unseen LVLM. We further show its practical utility: PRM scores effectively filter low-quality reports, improving F1-CheXbert scores by 4.5% (when discarding the worst 10% of reports). Moreover, when guiding a novel weighted best-of-N selection process on the MIMIC-CXR test set, our PRM show relative improvements in clinical metrics of 7.4% for F1-CheXbert and 0.6% for BERTScore. These results demonstrate that a lightweight, context-aware PRM provides a model-agnostic safety layer for clinical LVLMs without access to internal activations
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ SI-Bench: Benchmarking Social Intelligence of Large Language Models in Human-to-Human Conversations
As large language models (LLMs) develop anthropomorphic abilities, they are increasingly being deployed as autonomous agents to interact with humans. However, evaluating their performance in realistic and complex social interactions remains a significant challenge. Most previous research built datasets through simulated agent-to-agent interactions, which fails to capture the authentic linguistic styles and relational dynamics found in real human conversations. To address this gap, we introduce SI-Bench, a novel benchmark designed to evaluate aspects of social intelligence in LLMs. Grounded in broad social science theories, SI-Bench contains 2,221 authentic multi-turn dialogues collected from a social networking application. We further selected a subset of 312 dialogues for manual annotation across 8 major models. The experiments show that SOTA models have surpassed the human expert in process reasoning under complex social situations, yet they still fall behind humans in reply quality. Moreover, introducing Chain-of-Thought (CoT) reasoning may degrade the performance of LLMs in social dialogue tasks. All datasets are openly available at https://github.com/SI-Bench/SI-Bench.git.
comment: 17 pages, 9 figures
☆ MATCH: Task-Driven Code Evaluation through Contrastive Learning
AI-based code generation is increasingly prevalent, with GitHub Copilot estimated to generate 46% of the code on GitHub. Accurately evaluating how well generated code aligns with developer intent remains a critical challenge. Traditional evaluation methods, such as unit tests, are often unscalable and costly. Syntactic similarity metrics (e.g., BLEU, ROUGE) fail to capture code functionality, and metrics like CodeBERTScore require reference code, which is not always available. To address the gap in reference-free evaluation, with few alternatives such as ICE-Score, this paper introduces MATCH, a novel reference-free metric. MATCH uses Contrastive Learning to generate meaningful embeddings for code and natural language task descriptions, enabling similarity scoring that reflects how well generated code implements the task. We show that MATCH achieves stronger correlations with functional correctness and human preference than existing metrics across multiple programming languages.
☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
☆ ENTP: Enhancing Low-Quality SFT Data via Neural-Symbolic Text Purge-Mix
Supervised Fine-Tuning (SFT) adapts pre-trained Large Language Models (LLMs) to domain-specific instructions by training on a carefully curated subset of high-quality instruction-response pairs, typically drawn from a larger dataset that often contains many low-quality or noisy samples. However, existing quality-first paradigms often overlook valuable signals in discarded low-quality data and rely on imperfect quality filters. We introduce ENTP (Enhancing low-quality SFT data via Neural-symbolic Text Purge-Mix), a framework that revitalizes low-quality corpora through symbolic purification and neural reconstruction. The symbolic module identifies and prunes noisy samples based on statistical priors, while the neural component synthesizes enriched instruction-response pairs by leveraging latent representations and model knowledge. This neural-symbolic synergy enhances data informativeness and diversity. Experiments show that ENTP-augmented datasets, constructed exclusively from low-quality data, outperform 13 established data-selection baselines across five instruction-following benchmarks, and even surpass fine-tuning on the full original dataset (approximately 300K examples). Our results highlight the untapped potential of low-quality data and underscore the importance of intelligent purification and synthesis for efficient instruction alignment.
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Corpus Frequencies in Morphological Inflection: Do They Matter?
The traditional approach to morphological inflection (the task of modifying a base word (lemma) to express grammatical categories) has been, for decades, to consider lexical entries of lemma-tag-form triples uniformly, lacking any information about their frequency distribution. However, in production deployment, one might expect the user inputs to reflect a real-world distribution of frequencies in natural texts. With future deployment in mind, we explore the incorporation of corpus frequency information into the task of morphological inflection along three key dimensions during system development: (i) for train-dev-test split, we combine a lemma-disjoint approach, which evaluates the model's generalization capabilities, with a frequency-weighted strategy to better reflect the realistic distribution of items across different frequency bands in training and test sets; (ii) for evaluation, we complement the standard type accuracy (often referred to simply as accuracy), which treats all items equally regardless of frequency, with token accuracy, which assigns greater weight to frequent words and better approximates performance on running text; (iii) for training data sampling, we introduce a method novel in the context of inflection, frequency-aware training, which explicitly incorporates word frequency into the sampling process. We show that frequency-aware training outperforms uniform sampling in 26 out of 43 languages.
comment: Published in the proceedings of ITAT 2025.15 pages, 1 figure, 4 tables
☆ Beyond Higher Rank: Token-wise Input-Output Projections for Efficient Low-Rank Adaptation NeurIPS 2025
Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method widely used in large language models (LLMs). LoRA essentially describes the projection of an input space into a low-dimensional output space, with the dimensionality determined by the LoRA rank. In standard LoRA, all input tokens share the same weights and undergo an identical input-output projection. This limits LoRA's ability to capture token-specific information due to the inherent semantic differences among tokens. To address this limitation, we propose Token-wise Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA weights according to the input token, thereby learning token-wise input-output projections in an end-to-end manner. Formally, the weights of TopLoRA can be expressed as $B\Sigma_X A$, where $A$ and $B$ are low-rank matrices (as in standard LoRA), and $\Sigma_X$ is a diagonal matrix generated from each input token $X$. Notably, TopLoRA does not increase the rank of LoRA weights but achieves more granular adaptation by learning token-wise LoRA weights (i.e., token-wise input-output projections). Extensive experiments across multiple models and datasets demonstrate that TopLoRA consistently outperforms LoRA and its variants. The code is available at https://github.com/Leopold1423/toplora-neurips25.
comment: Accepted by NeurIPS 2025
☆ Flexing in 73 Languages: A Single Small Model for Multilingual Inflection
We present a compact, single-model approach to multilingual inflection, the task of generating inflected word forms from base lemmas to express grammatical categories. Our model, trained jointly on data from 73 languages, is lightweight, robust to unseen words, and outperforms monolingual baselines in most languages. This demonstrates the effectiveness of multilingual modeling for inflection and highlights its practical benefits: simplifying deployment by eliminating the need to manage and retrain dozens of separate monolingual models. In addition to the standard SIGMORPHON shared task benchmarks, we evaluate our monolingual and multilingual models on 73 Universal Dependencies (UD) treebanks, extracting lemma-tag-form triples and their frequency counts. To ensure realistic data splits, we introduce a novel frequency-weighted, lemma-disjoint train-dev-test resampling procedure. Our work addresses the lack of an open-source, general-purpose, multilingual morphological inflection system capable of handling unseen words across a wide range of languages, including Czech. All code is publicly released at: https://github.com/tomsouri/multilingual-inflection.
comment: Published in the proceedings of TSD 2025. 12 pages, 1 figure, 4 tables
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ MAP4TS: A Multi-Aspect Prompting Framework for Time-Series Forecasting with Large Language Models
Recent advances have investigated the use of pretrained large language models (LLMs) for time-series forecasting by aligning numerical inputs with LLM embedding spaces. However, existing multimodal approaches often overlook the distinct statistical properties and temporal dependencies that are fundamental to time-series data. To bridge this gap, we propose MAP4TS, a novel Multi-Aspect Prompting Framework that explicitly incorporates classical time-series analysis into the prompt design. Our framework introduces four specialized prompt components: a Global Domain Prompt that conveys dataset-level context, a Local Domain Prompt that encodes recent trends and series-specific behaviors, and a pair of Statistical and Temporal Prompts that embed handcrafted insights derived from autocorrelation (ACF), partial autocorrelation (PACF), and Fourier analysis. Multi-Aspect Prompts are combined with raw time-series embeddings and passed through a cross-modality alignment module to produce unified representations, which are then processed by an LLM and projected for final forecasting. Extensive experiments across eight diverse datasets show that MAP4TS consistently outperforms state-of-the-art LLM-based methods. Our ablation studies further reveal that prompt-aware designs significantly enhance performance stability and that GPT-2 backbones, when paired with structured prompts, outperform larger models like LLaMA in long-term forecasting tasks.
☆ A Survey on LLM Mid-training
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
☆ Fast-MIA: Efficient and Scalable Membership Inference for LLMs
We propose Fast-MIA (https://github.com/Nikkei/fast-mia), a Python library for efficiently evaluating membership inference attacks (MIA) against Large Language Models (LLMs). MIA against LLMs has emerged as a crucial challenge due to growing concerns over copyright, security, and data privacy, and has attracted increasing research attention. However, the progress of this research is significantly hindered by two main obstacles: (1) the high computational cost of inference in LLMs, and (2) the lack of standardized and maintained implementations of MIA methods, which makes large-scale empirical comparison difficult. To address these challenges, our library provides fast batch inference and includes implementations of representative MIA methods under a unified evaluation framework. This library supports easy implementation of reproducible benchmarks with simple configuration and extensibility. We release Fast-MIA as an open-source (Apache License 2.0) tool to support scalable and transparent research on LLMs.
☆ Quality-Aware Translation Tagging in Multilingual RAG system EMNLP 2025
Multilingual Retrieval-Augmented Generation (mRAG) often retrieves English documents and translates them into the query language for low-resource settings. However, poor translation quality degrades response generation performance. Existing approaches either assume sufficient translation quality or utilize the rewriting method, which introduces factual distortion and hallucinations. To mitigate these problems, we propose Quality-Aware Translation Tagging in mRAG (QTT-RAG), which explicitly evaluates translation quality along three dimensions-semantic equivalence, grammatical accuracy, and naturalness&fluency-and attach these scores as metadata without altering the original content. We evaluate QTT-RAG against CrossRAG and DKM-RAG as baselines in two open-domain QA benchmarks (XORQA, MKQA) using six instruction-tuned LLMs ranging from 2.4B to 14B parameters, covering two low-resource languages (Korean and Finnish) and one high-resource language (Chinese). QTT-RAG outperforms the baselines by preserving factual integrity while enabling generator models to make informed decisions based on translation reliability. This approach allows for effective usage of cross-lingual documents in low-resource settings with limited native language documents, offering a practical and robust solution across multilingual domains.
comment: EMNLP 2025 MRL Workshop
☆ Knocking-Heads Attention
Multi-head attention (MHA) has become the cornerstone of modern large language models, enhancing representational capacity through parallel attention heads. However, increasing the number of heads inherently weakens individual head capacity, and existing attention mechanisms - whether standard MHA or its variants like grouped-query attention (GQA) and grouped-tied attention (GTA) - simply concatenate outputs from isolated heads without strong interaction. To address this limitation, we propose knocking-heads attention (KHA), which enables attention heads to "knock" on each other - facilitating cross-head feature-level interactions before the scaled dot-product attention. This is achieved by applying a shared, diagonally-initialized projection matrix across all heads. The diagonal initialization preserves head-specific specialization at the start of training while allowing the model to progressively learn integrated cross-head representations. KHA adds only minimal parameters and FLOPs and can be seamlessly integrated into MHA, GQA, GTA, and other attention variants. We validate KHA by training a 6.1B parameter MoE model (1.01B activated) on 1T high-quality tokens. Compared to baseline attention mechanisms, KHA brings superior and more stable training dynamics, achieving better performance across downstream tasks.
☆ Incentivizing Agentic Reasoning in LLM Judges via Tool-Integrated Reinforcement Learning
Large Language Models (LLMs) are widely used as judges to evaluate response quality, providing a scalable alternative to human evaluation. However, most LLM judges operate solely on intrinsic text-based reasoning, limiting their ability to verify complex constraints or perform accurate computation. Motivated by the success of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an end-to-end RL framework for training LLM judges that integrates a code executor for precise evaluation. TIR-Judge is built on three principles: (i) diverse training across verifiable and non-verifiable domains, (ii) flexible judgment formats (pointwise, pairwise, listwise), and (iii) iterative RL that bootstraps directly from the initial model without distillation. On seven public benchmarks, TIR-Judge surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pairwise), and achieves listwise performance comparable to Claude-Opus-4 despite having only 8B parameters. Remarkably, TIR-Judge-Zero - trained entirely without distilled judge trajectories, matches the performance of distilled variants, demonstrating that tool-augmented judges can self-evolve through iterative reinforcement learning.
comment: Work in Progress
☆ Towards Stable and Effective Reinforcement Learning for Mixture-of-Experts
Recent advances in reinforcement learning (RL) have substantially improved the training of large-scale language models, leading to significant gains in generation quality and reasoning ability. However, most existing research focuses on dense models, while RL training for Mixture-of-Experts (MoE) architectures remains underexplored. To address the instability commonly observed in MoE training, we propose a novel router-aware approach to optimize importance sampling (IS) weights in off-policy RL. Specifically, we design a rescaling strategy guided by router logits, which effectively reduces gradient variance and mitigates training divergence. Experimental results demonstrate that our method significantly improves both the convergence stability and the final performance of MoE models, highlighting the potential of RL algorithmic innovations tailored to MoE architectures and providing a promising direction for efficient training of large-scale expert models.
☆ UniAIDet: A Unified and Universal Benchmark for AI-Generated Image Content Detection and Localization
With the rapid proliferation of image generative models, the authenticity of digital images has become a significant concern. While existing studies have proposed various methods for detecting AI-generated content, current benchmarks are limited in their coverage of diverse generative models and image categories, often overlooking end-to-end image editing and artistic images. To address these limitations, we introduce UniAIDet, a unified and comprehensive benchmark that includes both photographic and artistic images. UniAIDet covers a wide range of generative models, including text-to-image, image-to-image, image inpainting, image editing, and deepfake models. Using UniAIDet, we conduct a comprehensive evaluation of various detection methods and answer three key research questions regarding generalization capability and the relation between detection and localization. Our benchmark and analysis provide a robust foundation for future research.
☆ M$^{3}$T2IBench: A Large-Scale Multi-Category, Multi-Instance, Multi-Relation Text-to-Image Benchmark
Text-to-image models are known to struggle with generating images that perfectly align with textual prompts. Several previous studies have focused on evaluating image-text alignment in text-to-image generation. However, these evaluations either address overly simple scenarios, especially overlooking the difficulty of prompts with multiple different instances belonging to the same category, or they introduce metrics that do not correlate well with human evaluation. In this study, we introduce M$^3$T2IBench, a large-scale, multi-category, multi-instance, multi-relation along with an object-detection-based evaluation metric, $AlignScore$, which aligns closely with human evaluation. Our findings reveal that current open-source text-to-image models perform poorly on this challenging benchmark. Additionally, we propose the Revise-Then-Enforce approach to enhance image-text alignment. This training-free post-editing method demonstrates improvements in image-text alignment across a broad range of diffusion models. \footnote{Our code and data has been released in supplementary material and will be made publicly available after the paper is accepted.}
☆ LangLingual: A Personalised, Exercise-oriented English Language Learning Tool Leveraging Large Language Models
Language educators strive to create a rich experience for learners, while they may be restricted in the extend of feedback and practice they can provide. We present the design and development of LangLingual, a conversational agent built using the LangChain framework and powered by Large Language Models. The system is specifically designed to provide real-time, grammar-focused feedback, generate context-aware language exercises and track learner proficiency over time. The paper discusses the architecture, implementation and evaluation of LangLingual in detail. The results indicate strong usability, positive learning outcomes and encouraging learner engagement.
comment: 14 pages
☆ Leveraging LLMs for Early Alzheimer's Prediction
We present a connectome-informed LLM framework that encodes dynamic fMRI connectivity as temporal sequences, applies robust normalization, and maps these data into a representation suitable for a frozen pre-trained LLM for clinical prediction. Applied to early Alzheimer's detection, our method achieves sensitive prediction with error rates well below clinically recognized margins, with implications for timely Alzheimer's intervention.
☆ Auto prompting without training labels: An LLM cascade for product quality assessment in e-commerce catalogs
We introduce a novel, training free cascade for auto-prompting Large Language Models (LLMs) to assess product quality in e-commerce. Our system requires no training labels or model fine-tuning, instead automatically generating and refining prompts for evaluating attribute quality across tens of thousands of product category-attribute pairs. Starting from a seed of human-crafted prompts, the cascade progressively optimizes instructions to meet catalog-specific requirements. This approach bridges the gap between general language understanding and domain-specific knowledge at scale in complex industrial catalogs. Our extensive empirical evaluations shows the auto-prompt cascade improves precision and recall by $8-10\%$ over traditional chain-of-thought prompting. Notably, it achieves these gains while reducing domain expert effort from 5.1 hours to 3 minutes per attribute - a $99\%$ reduction. Additionally, the cascade generalizes effectively across five languages and multiple quality assessment tasks, consistently maintaining performance gains.
☆ Latent Chain-of-Thought for Visual Reasoning NeurIPS 2025
Chain-of-thought (CoT) reasoning is critical for improving the interpretability and reliability of Large Vision-Language Models (LVLMs). However, existing training algorithms such as SFT, PPO, and GRPO may not generalize well across unseen reasoning tasks and heavily rely on a biased reward model. To address this challenge, we reformulate reasoning in LVLMs as posterior inference and propose a scalable training algorithm based on amortized variational inference. By leveraging diversity-seeking reinforcement learning algorithms, we introduce a novel sparse reward function for token-level learning signals that encourage diverse, high-likelihood latent CoT, overcoming deterministic sampling limitations and avoiding reward hacking. Additionally, we implement a Bayesian inference-scaling strategy that replaces costly Best-of-N and Beam Search with a marginal likelihood to efficiently rank optimal rationales and answers. We empirically demonstrate that the proposed method enhances the state-of-the-art LVLMs on seven reasoning benchmarks, in terms of effectiveness, generalization, and interpretability.
comment: NeurIPS 2025
☆ Agent-based Automated Claim Matching with Instruction-following LLMs
We present a novel agent-based approach for the automated claim matching task with instruction-following LLMs. We propose a two-step pipeline that first generates prompts with LLMs, to then perform claim matching as a binary classification task with LLMs. We demonstrate that LLM-generated prompts can outperform SOTA with human-generated prompts, and that smaller LLMs can do as well as larger ones in the generation process, allowing to save computational resources. We also demonstrate the effectiveness of using different LLMs for each step of the pipeline, i.e. using an LLM for prompt generation, and another for claim matching. Our investigation into the prompt generation process in turn reveals insights into the LLMs' understanding of claim matching.
comment: Accepted for the International Joint Conference on Natural Language Processing & Asia-Pacific Chapter of the Association for Computational Linguistics (2025) Findings
☆ Breaking the Benchmark: Revealing LLM Bias via Minimal Contextual Augmentation
Large Language Models have been shown to demonstrate stereotypical biases in their representations and behavior due to the discriminative nature of the data that they have been trained on. Despite significant progress in the development of methods and models that refrain from using stereotypical information in their decision-making, recent work has shown that approaches used for bias alignment are brittle. In this work, we introduce a novel and general augmentation framework that involves three plug-and-play steps and is applicable to a number of fairness evaluation benchmarks. Through application of augmentation to a fairness evaluation dataset (Bias Benchmark for Question Answering (BBQ)), we find that Large Language Models (LLMs), including state-of-the-art open and closed weight models, are susceptible to perturbations to their inputs, showcasing a higher likelihood to behave stereotypically. Furthermore, we find that such models are more likely to have biased behavior in cases where the target demographic belongs to a community less studied by the literature, underlining the need to expand the fairness and safety research to include more diverse communities.
comment: 9 pages, 3 figures, 3 tables
☆ AfriMTEB and AfriE5: Benchmarking and Adapting Text Embedding Models for African Languages
Text embeddings are an essential building component of several NLP tasks such as retrieval-augmented generation which is crucial for preventing hallucinations in LLMs. Despite the recent release of massively multilingual MTEB (MMTEB), African languages remain underrepresented, with existing tasks often repurposed from translation benchmarks such as FLORES clustering or SIB-200. In this paper, we introduce AfriMTEB -- a regional expansion of MMTEB covering 59 languages, 14 tasks, and 38 datasets, including six newly added datasets. Unlike many MMTEB datasets that include fewer than five languages, the new additions span 14 to 56 African languages and introduce entirely new tasks, such as hate speech detection, intent detection, and emotion classification, which were not previously covered. Complementing this, we present AfriE5, an adaptation of the instruction-tuned mE5 model to African languages through cross-lingual contrastive distillation. Our evaluation shows that AfriE5 achieves state-of-the-art performance, outperforming strong baselines such as Gemini-Embeddings and mE5.
☆ Language Models for Longitudinal Clinical Prediction
We explore a lightweight framework that adapts frozen large language models to analyze longitudinal clinical data. The approach integrates patient history and context within the language model space to generate accurate forecasts without model fine-tuning. Applied to neuropsychological assessments, it achieves accurate and reliable performance even with minimal training data, showing promise for early-stage Alzheimer's monitoring.
☆ OraPlan-SQL: A Planning-Centric Framework for Complex Bilingual NL2SQL Reasoning
We present OraPlan-SQL, our system for the Archer NL2SQL Evaluation Challenge 2025, a bilingual benchmark requiring complex reasoning such as arithmetic, commonsense, and hypothetical inference. OraPlan-SQL ranked first, exceeding the second-best system by more than 6% in execution accuracy (EX), with 55.0% in English and 56.7% in Chinese, while maintaining over 99% SQL validity (VA). Our system follows an agentic framework with two components: Planner agent that generates stepwise natural language plans, and SQL agent that converts these plans into executable SQL. Since SQL agent reliably adheres to the plan, our refinements focus on the planner. Unlike prior methods that rely on multiple sub-agents for planning and suffer from orchestration overhead, we introduce a feedback-guided meta-prompting strategy to refine a single planner. Failure cases from a held-out set are clustered with human input, and an LLM distills them into corrective guidelines that are integrated into the planner's system prompt, improving generalization without added complexity. For the multilingual scenario, to address transliteration and entity mismatch issues, we incorporate entity-linking guidelines that generate alternative surface forms for entities and explicitly include them in the plan. Finally, we enhance reliability through plan diversification: multiple candidate plans are generated for each query, with the SQL agent producing a query for each plan, and final output selected via majority voting over their executions.
☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
☆ Can LLMs Narrate Tabular Data? An Evaluation Framework for Natural Language Representations of Text-to-SQL System Outputs EMNLP 2025
In modern industry systems like multi-turn chat agents, Text-to-SQL technology bridges natural language (NL) questions and database (DB) querying. The conversion of tabular DB results into NL representations (NLRs) enables the chat-based interaction. Currently, NLR generation is typically handled by large language models (LLMs), but information loss or errors in presenting tabular results in NL remains largely unexplored. This paper introduces a novel evaluation method - Combo-Eval - for judgment of LLM-generated NLRs that combines the benefits of multiple existing methods, optimizing evaluation fidelity and achieving a significant reduction in LLM calls by 25-61%. Accompanying our method is NLR-BIRD, the first dedicated dataset for NLR benchmarking. Through human evaluations, we demonstrate the superior alignment of Combo-Eval with human judgments, applicable across scenarios with and without ground truth references.
comment: Accepted at EMNLP 2025
☆ Temporal Blindness in Multi-Turn LLM Agents: Misaligned Tool Use vs. Human Time Perception
Large language model agents are increasingly used in multi-turn conversational settings to interact with and execute tasks in dynamic environments. However, a key limitation is their temporal blindness: they, by default, operate with a stationary context, failing to account for the real-world time elapsed between messages. This becomes a critical liability when an agent must decide whether to invoke a tool based on how much time has passed since the last observation. Without temporal awareness, agents often either over-rely on previous context (skipping necessary tool calls), or under-rely on it (unnecessarily repeating tool calls). To study this challenge, we introduce TicToc-v1, a test set of multi-turn user-agent trajectories across 34 scenarios with varying time sensitivity. Each trajectory ends with a user question, where the need for a tool call depends on the amount of time elapsed since the last message. To give LLMs temporal context, we augment dialogue messages with explicit timestamps, bridging the gap between static dialogue and evolving environments. We then collected human preferences for these samples, creating two subsets: one where humans preferred relying on the previous observation (prefer-noTool), and another where they preferred a new tool call (prefer-Tool). We evaluated how well LLM tool-calling decisions align with human preferences under varying time intervals on TicToc-v1. Our analysis show that without time information, most models perform only slightly better than random, with the top alignment rate being just over 60%. While adding timestamps leads to a slight improvement, particularly for larger models, the improvement is modest, peaking at around 65%. We also show that naive, prompt-based alignment have limited effectiveness. Our findings highlight the need for specific post-training alignment to align multi-turn LLM tool use with human temporal perception.
comment: preliminary work in progress
☆ A Neural Model for Contextual Biasing Score Learning and Filtering
Contextual biasing improves automatic speech recognition (ASR) by integrating external knowledge, such as user-specific phrases or entities, during decoding. In this work, we use an attention-based biasing decoder to produce scores for candidate phrases based on acoustic information extracted by an ASR encoder, which can be used to filter out unlikely phrases and to calculate bonus for shallow-fusion biasing. We introduce a per-token discriminative objective that encourages higher scores for ground-truth phrases while suppressing distractors. Experiments on the Librispeech biasing benchmark show that our method effectively filters out majority of the candidate phrases, and significantly improves recognition accuracy under different biasing conditions when the scores are used in shallow fusion biasing. Our approach is modular and can be used with any ASR system, and the filtering mechanism can potentially boost performance of other biasing methods.
comment: Accepted to IEEE ASRU 2025
☆ CRADLE Bench: A Clinician-Annotated Benchmark for Multi-Faceted Mental Health Crisis and Safety Risk Detection
Detecting mental health crisis situations such as suicide ideation, rape, domestic violence, child abuse, and sexual harassment is a critical yet underexplored challenge for language models. When such situations arise during user--model interactions, models must reliably flag them, as failure to do so can have serious consequences. In this work, we introduce CRADLE BENCH, a benchmark for multi-faceted crisis detection. Unlike previous efforts that focus on a limited set of crisis types, our benchmark covers seven types defined in line with clinical standards and is the first to incorporate temporal labels. Our benchmark provides 600 clinician-annotated evaluation examples and 420 development examples, together with a training corpus of around 4K examples automatically labeled using a majority-vote ensemble of multiple language models, which significantly outperforms single-model annotation. We further fine-tune six crisis detection models on subsets defined by consensus and unanimous ensemble agreement, providing complementary models trained under different agreement criteria.
☆ How Pragmatics Shape Articulation: A Computational Case Study in STEM ASL Discourse
Most state-of-the-art sign language models are trained on interpreter or isolated vocabulary data, which overlooks the variability that characterizes natural dialogue. However, human communication dynamically adapts to contexts and interlocutors through spatiotemporal changes and articulation style. This specifically manifests itself in educational settings, where novel vocabularies are used by teachers, and students. To address this gap, we collect a motion capture dataset of American Sign Language (ASL) STEM (Science, Technology, Engineering, and Mathematics) dialogue that enables quantitative comparison between dyadic interactive signing, solo signed lecture, and interpreted articles. Using continuous kinematic features, we disentangle dialogue-specific entrainment from individual effort reduction and show spatiotemporal changes across repeated mentions of STEM terms. On average, dialogue signs are 24.6%-44.6% shorter in duration than the isolated signs, and show significant reductions absent in monologue contexts. Finally, we evaluate sign embedding models on their ability to recognize STEM signs and approximate how entrained the participants become over time. Our study bridges linguistic analysis and computational modeling to understand how pragmatics shape sign articulation and its representation in sign language technologies.
☆ Beyond Understanding: Evaluating the Pragmatic Gap in LLMs' Cultural Processing of Figurative Language
We present a comprehensive evaluation of the ability of large language models (LLMs) to process culturally grounded language, specifically to understand and pragmatically use figurative expressions that encode local knowledge and cultural nuance. Using figurative language as a proxy for cultural nuance and local knowledge, we design evaluation tasks for contextual understanding, pragmatic use, and connotation interpretation in Arabic and English. We evaluate 22 open- and closed-source LLMs on Egyptian Arabic idioms, multidialectal Arabic proverbs, and English proverbs. Our results show a consistent hierarchy: the average accuracy for Arabic proverbs is 4.29% lower than for English proverbs, and performance for Egyptian idioms is 10.28% lower than for Arabic proverbs. For the pragmatic use task, accuracy drops by 14.07% relative to understanding, though providing contextual idiomatic sentences improves accuracy by 10.66%. Models also struggle with connotative meaning, reaching at most 85.58% agreement with human annotators on idioms with 100% inter-annotator agreement. These findings demonstrate that figurative language serves as an effective diagnostic for cultural reasoning: while LLMs can often interpret figurative meaning, they face challenges in using it appropriately. To support future research, we release Kinayat, the first dataset of Egyptian Arabic idioms designed for both figurative understanding and pragmatic use evaluation.
☆ BitSkip: An Empirical Analysis of Quantization and Early Exit Composition
The pursuit of efficient Large Language Models (LLMs) has led to increasingly complex techniques like extreme quantization and dynamic routing. While individual benefits of these methods are well-documented, their compositional effects remain poorly understood. This paper introduces BitSkip, a hybrid architectural framework for systematically exploring these interactions. Counter-intuitively, our findings reveal that a simple 8-bit quantized model without Hadamard transform (BitSkip-V1) not only outperforms its more complex 4-bit and Hadamard-enhanced counterparts but also competes the full-precision baseline in quality (perplexity of 1.13 vs 1.19) . The introduction of Hadamard transforms, even at 8-bit precision, catastrophically degraded performance by over 37,000%, tracing fundamental training instability. Our BitSkip-V1 recipe demonstrates superior early-exit characteristics, with layer 18 providing optimal 32.5% speed gain for minimal 4% quality loss.
comment: Submitted to JMLR
☆ RoboOmni: Proactive Robot Manipulation in Omni-modal Context
Recent advances in Multimodal Large Language Models (MLLMs) have driven rapid progress in Vision-Language-Action (VLA) models for robotic manipulation. Although effective in many scenarios, current approaches largely rely on explicit instructions, whereas in real-world interactions, humans rarely issue instructions directly. Effective collaboration requires robots to infer user intentions proactively. In this work, we introduce cross-modal contextual instructions, a new setting where intent is derived from spoken dialogue, environmental sounds, and visual cues rather than explicit commands. To address this new setting, we present RoboOmni, a Perceiver-Thinker-Talker-Executor framework based on end-to-end omni-modal LLMs that unifies intention recognition, interaction confirmation, and action execution. RoboOmni fuses auditory and visual signals spatiotemporally for robust intention recognition, while supporting direct speech interaction. To address the absence of training data for proactive intention recognition in robotic manipulation, we build OmniAction, comprising 140k episodes, 5k+ speakers, 2.4k event sounds, 640 backgrounds, and six contextual instruction types. Experiments in simulation and real-world settings show that RoboOmni surpasses text- and ASR-based baselines in success rate, inference speed, intention recognition, and proactive assistance.
☆ Evaluating Long-Term Memory for Long-Context Question Answering
In order for large language models to achieve true conversational continuity and benefit from experiential learning, they need memory. While research has focused on the development of complex memory systems, it remains unclear which types of memory are most effective for long-context conversational tasks. We present a systematic evaluation of memory-augmented methods using LoCoMo, a benchmark of synthetic long-context dialogues annotated for question-answering tasks that require diverse reasoning strategies. We analyse full-context prompting, semantic memory through retrieval-augmented generation and agentic memory, episodic memory through in-context learning, and procedural memory through prompt optimization. Our findings show that memory-augmented approaches reduce token usage by over 90% while maintaining competitive accuracy. Memory architecture complexity should scale with model capability, with small foundation models benefitting most from RAG, and strong instruction-tuned reasoning model gaining from episodic learning through reflections and more complex agentic semantic memory. In particular, episodic memory can help LLMs recognise the limits of their own knowledge.
comment: 14 pages including appendix, 3 figures. Submitted to October ARR and to Metacognition in Generative AI EurIPS workshop (under review for both)
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
comment: 34 pages, 5 figures, 7 tables
♻ ☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) is a common practice to adapt generalist models to specialized domains. However, recent studies show that fine-tuning can erode safety alignment, causing LLMs to respond to harmful or unethical prompts. Many methods to realign safety have been proposed, but often introduce custom algorithms that are difficult to implement or compromise task utility. In this work, we propose SafeMERGE, a lightweight, post-fine-tuning framework that preserves safety while maintaining downstream performance. SafeMERGE selectively merges fine-tuned with safety-aligned model layers only when they deviate from safe behavior, measured by a cosine similarity criterion. Across three LLMs and two tasks, SafeMERGE consistently reduces harmful outputs compared to other defenses, with negligible or even positive impact on utility. Our results demonstrate that selective layer-wise merging offers an effective safeguard against the inadvertent loss of safety during fine-tuning, establishing SafeMERGE as a simple post-fine-tuning defense.
Superficial Self-Improved Reasoners Benefit from Model Merging EMNLP 2025
As scaled language models (LMs) approach human-level reasoning capabilities, self-improvement emerges as a solution to synthesizing high-quality data corpus. While previous research has identified model collapse as a risk in self-improvement, where model outputs become increasingly deterministic, we discover a more fundamental challenge: the superficial self-improved reasoners phenomenon. In particular, our analysis reveals that even when LMs show improved in-domain (ID) reasoning accuracy, they actually compromise their generalized reasoning capabilities on out-of-domain (OOD) tasks due to memorization rather than genuine. Through a systematic investigation of LM architecture, we discover that during self-improvement, LM weight updates are concentrated in less reasoning-critical layers, leading to superficial learning. To address this, we propose Iterative Model Merging (IMM), a method that strategically combines weights from original and self-improved models to preserve generalization while incorporating genuine reasoning improvements. Our approach effectively mitigates both LM collapse and superficial learning, moving towards more stable self-improving systems.
comment: EMNLP 2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ Human-Aligned Faithfulness in Toxicity Explanations of LLMs
The discourse around toxicity and LLMs in NLP largely revolves around detection tasks. This work shifts the focus to evaluating LLMs' reasoning about toxicity -- from their explanations that justify a stance -- to enhance their trustworthiness in downstream tasks. Despite extensive research on explainability, it is not straightforward to adopt existing methods to evaluate free-form toxicity explanation due to their over-reliance on input text perturbations, among other challenges. To account for these, we propose a novel, theoretically-grounded multi-dimensional criterion, Human-Aligned Faithfulness (HAF), that measures the extent to which LLMs' free-form toxicity explanations align with those of a rational human under ideal conditions. We develop six metrics, based on uncertainty quantification, to comprehensively evaluate HAF of LLMs' toxicity explanations with no human involvement, and highlight how "non-ideal" the explanations are. We conduct several experiments on three Llama models (of size up to 70B) and an 8B Ministral model on five diverse toxicity datasets. Our results show that while LLMs generate plausible explanations to simple prompts, their reasoning about toxicity breaks down when prompted about the nuanced relations between the complete set of reasons, the individual reasons, and their toxicity stances, resulting in inconsistent and irrelevant responses. We open-source our code at https://github.com/uofthcdslab/HAF and LLM-generated explanations at https://huggingface.co/collections/uofthcdslab/haf.
comment: 23 pages, 5 figures, 7 tables
♻ ☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
♻ ☆ Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, previous work on vocabulary expansion has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion in low-resource settings has yet to be explored. In this article, we investigate vocabulary expansion in low-resource settings by considering embedding initialization methods and continual pre-training strategies. Through extensive experiments across typologically diverse languages, tasks and models, we establish a set of strategies to perform vocabulary expansion for faster inference, while striving to maintain competitive downstream performance to baselines. This is achieved with only 30K sentences ($\sim$0.01GB text data) from the target language.
comment: Accepted to Computational Linguistics
♻ ☆ A Data-driven ML Approach for Maximizing Performance in LLM-Adapter Serving
With the rapid adoption of Large Language Models (LLMs), LLM-adapters have become increasingly common, providing lightweight specialization of large-scale models. Serving hundreds or thousands of these adapters on a single GPU allows request aggregation, increasing throughput, but may also cause request starvation if GPU memory limits are exceeded. To address this issue, this study focuses on determining the joint configuration of concurrent and parallel adapters that maximizes GPU throughput without inducing starvation, given heterogeneous adapter and traffic properties. We propose a data-driven ML approach leveraging interpretable models to tackle this caching problem and introduce the first Digital Twin capable of reproducing an LLM-adapter serving system, enabling efficient training data generation. Experiments with the vLLM framework and LoRA adapters show that the Digital Twin reproduces throughput within 5.1% of real results, while the ML approach predicts optimal numbers of concurrent and parallel adapters with an error of at most 7.2% under heterogeneous, real-world workloads.
comment: Accepted in a computer science workshop
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
♻ ☆ Are LLMs Empathetic to All? Investigating the Influence of Multi-Demographic Personas on a Model's Empathy EMNLP 2025
Large Language Models' (LLMs) ability to converse naturally is empowered by their ability to empathetically understand and respond to their users. However, emotional experiences are shaped by demographic and cultural contexts. This raises an important question: Can LLMs demonstrate equitable empathy across diverse user groups? We propose a framework to investigate how LLMs' cognitive and affective empathy vary across user personas defined by intersecting demographic attributes. Our study introduces a novel intersectional analysis spanning 315 unique personas, constructed from combinations of age, culture, and gender, across four LLMs. Results show that attributes profoundly shape a model's empathetic responses. Interestingly, we see that adding multiple attributes at once can attenuate and reverse expected empathy patterns. We show that they broadly reflect real-world empathetic trends, with notable misalignments for certain groups, such as those from Confucian culture. We complement our quantitative findings with qualitative insights to uncover model behaviour patterns across different demographic groups. Our findings highlight the importance of designing empathy-aware LLMs that account for demographic diversity to promote more inclusive and equitable model behaviour.
comment: 9 pages, 4 figures, 4 tables, EMNLP 2025 Findings
♻ ☆ Bootstrapping Referring Multi-Object Tracking
Referring understanding is a fundamental task that bridges natural language and visual content by localizing objects described in free-form expressions. However, existing works are constrained by limited language expressiveness, lacking the capacity to model object dynamics in spatial numbers and temporal states. To address these limitations, we introduce a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking, comprehensively accounting for variations in object quantity and temporal semantics. Along with RMOT, we introduce a RMOT benchmark named Refer-KITTI-V2, featuring scalable and diverse language expressions. To efficiently generate high-quality annotations covering object dynamics with minimal manual effort, we propose a semi-automatic labeling pipeline that formulates a total of 9,758 language prompts. In addition, we propose TempRMOT, an elegant end-to-end Transformer-based framework for RMOT. At its core is a query-driven Temporal Enhancement Module that represents each object as a Transformer query, enabling long-term spatial-temporal interactions with other objects and past frames to efficiently refine these queries. TempRMOT achieves state-of-the-art performance on both Refer-KITTI and Refer-KITTI-V2, demonstrating the effectiveness of our approach. The source code and dataset is available at https://github.com/zyn213/TempRMOT.
♻ ☆ Tiny but Mighty: A Software-Hardware Co-Design Approach for Efficient Multimodal Inference on Battery-Powered Small Devices
Large Multimodal Models (LMMs) are inherently modular, consisting of vision and audio encoders, projectors, and large language models. Yet, they are almost always executed monolithically, which underutilizes the heterogeneous accelerators (NPUs, GPUs, DSPs) in modern SoCs and leads to high end-to-end latency. In this paper, we present NANOMIND, a hardware--software co-design inference framework for Large Multimodal Models (LMMs) that breaks large models into modular ``bricks'' (vision, language, audio, etc.) and maps each to its ideal accelerator. The key insight is that large models can be broken into modular components and scheduled to run on the most appropriate compute units. It performs module-level dynamic offloading across accelerators on unified-memory SoCs. By combining customized hardware design, system-level scheduling, and optimized low-bit computation kernels, we demonstrate our framework with a compact, battery-powered device capable of running LMMs entirely on device. This prototype functions as a self-contained intelligent assistant that requires no network connectivity, while achieving higher throughput and superior power efficiency under strict resource constraints. The design further bypasses CPU bottlenecks and reduces redundant memory usage through token-aware buffer management and module-level coordination. Our system outperforms existing implementations in resource efficiency, cutting energy consumption by 42.3\% and GPU memory usage by 11.2\%. This enables a battery-powered device to run LLaVA-OneVision with a camera for nearly half a day and LLaMA-3-8B for voice interactions up to almost 20.8 hours.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search NeurIPS 2025
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the new task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent literature show that our method consistently outperforms strong baselines.
comment: Accepted by NeurIPS 2025
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ ThinkBrake: Mitigating Overthinking in Tool Reasoning
Small reasoning models (SRMs) often overthink during tool use: they reach a correct tool-argument configuration, then continue reasoning and overwrite it with an incorrect final call. We diagnose overthinking via oracle rollouts that inject at sentence boundaries. On the Berkeley Function Calling Leaderboard (BFCL), this oracle termination lifts average accuracy from 85.8\% to 94.2\% while reducing tokens by 80-94\%, revealing substantial recoverable headroom and potential redundant reasoning. While prior work on concise reasoning has largely targeted mathematics, tool reasoning remains underexplored. We adapt various early-termination baselines to tool use and introduce ThinkBrake, a training-free decoding heuristic. ThinkBrake monitors the log-probability margin between and the current top token at sentence boundaries and triggers termination when this margin becomes small. Across BFCL's single turn, non-live and live splits, ThinkBrake preserves or improves accuracy while reducing tokens up to 25\%, outperforming various baselines.
♻ ☆ OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report, Update on OpenS2S_v1.5
♻ ☆ When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning
While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
♻ ☆ Input Matters: Evaluating Input Structure's Impact on LLM Summaries of Sports Play-by-Play
A major concern when deploying LLMs in accuracy-critical domains such as sports reporting is that the generated text may not faithfully reflect the input data. We quantify how input structure affects hallucinations and other factual errors in LLM-generated summaries of NBA play-by-play data, across three formats: row-structured, JSON and unstructured. We manually annotated 3,312 factual errors across 180 game summaries produced by two models, Llama-3.1-70B and Qwen2.5-72B. Input structure has a strong effect: JSON input reduces error rates by 69% for Llama and 65% for Qwen compared to unstructured input, while row-structured input reduces errors by 54% for Llama and 51% for Qwen. A two-way repeated measures ANOVA shows that input structure accounts for over 80% of the variance in error rates, with Tukey HSD post hoc tests confirming statistically significant differences between all input formats.
comment: Accepted at INLG 2025
♻ ☆ LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
♻ ☆ Multi-turn Training with Basic Human Feedback Helps Little on LLM Reasoning
The reasoning capabilities of Large Language Models (LLMs) are typically developed through the single-turn reinforcement learning, whereas real-world applications often involve multi-turn interactions with human feedback, leading to a potential mismatch between training and deployment conditions. In this work, we study whether multi-turn training with human feedback is necessary for reasoning tasks. We compare conventional single-turn training with three multi-turn strategies and reach contrary conclusions to previous research. We find that models trained in a single-turn setting generalize effectively to both single- and multi-turn evaluations, while models trained with multi-turn strategies exhibit a significant degradation in single-turn reasoning performance. These results suggest that for tasks with complete information, robust single-turn training remains more effective and reliable, as multi-turn training with basic feedback provides limited benefits and can even degrade reasoning capabilities.
♻ ☆ StereoDetect: Detecting Stereotypes and Anti-stereotypes the Correct Way Using Social Psychological Underpinnings
Stereotypes are known to have very harmful effects, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases, thereby leaving the study of stereotypes in its early stages. Our study revealed that many works have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and Anti-stereotype detection is a problem that requires social knowledge; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a five-tuple definition and provide precise terminologies disentangling stereotypes, anti-stereotypes, stereotypical bias, and general bias. We provide a conceptual framework grounded in social psychology for reliable detection. We identify key shortcomings in existing benchmarks for this task of stereotype and anti-stereotype detection. To address these gaps, we developed StereoDetect, a well curated, definition-aligned benchmark dataset designed for this task. We show that sub-10B language models and GPT-4o frequently misclassify anti-stereotypes and fail to recognize neutral overgeneralizations. We demonstrate StereoDetect's effectiveness through multiple qualitative and quantitative comparisons with existing benchmarks and models fine-tuned on them. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.
♻ ☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
♻ ☆ Can Confidence Estimates Decide When Chain-of-Thought Is Necessary for LLMs?
Chain-of-thought (CoT) prompting has emerged as a common technique for enhancing the reasoning abilities of large language models (LLMs). While extended reasoning can boost accuracy on complex tasks, it is often unnecessary and substantially increases token usage, limiting the practicality of reasoning models in many scenarios. Recent models, such as GPT-OSS and Qwen3, expose controls that enable users to adjust the length of CoT or determine whether it is used at all. Yet, it remains unclear when CoT should be used: on some tasks it improves performance, while on others it provides little benefit or even harms performance. We address this challenge with confidence-gated CoT, where a model invokes reasoning only when confidence in its direct answer is low. To this end, we present the first systematic study of training-free confidence estimation methods for CoT gating. Specifically, we evaluate four training-free confidence estimation methods and compare them to a random baseline and an oracle that always knows when CoT is needed. Through extensive experiments, we show that existing training-free confidence measures can reduce redundant CoT and outperform randomly invoked CoT. However, the utility of individual confidence measures is inconsistent, varying with both the dataset and the model, underscoring the difficulty of deploying confidence-gated CoT in practice. By analysing both strengths and failure modes, our study highlights the potential and limitations of current methods and paves the way toward more reliable adaptive gating of CoT.
comment: Under Review
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ DeepOmni: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
♻ ☆ COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection EMNLP 2025
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
comment: EMNLP 2025 (Main Track)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: Accepted by Frontiers of Computer Science
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions NeurIPS 2025
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts surrounding humans to enhance the proactivity of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and personas from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants. The code and dataset are publicly available at https://github.com/openaiotlab/ContextAgent.
comment: Accepted by NeurIPS 2025
♻ ☆ ColorEcosystem: Powering Personalized, Standardized, and Trustworthy Agentic Service in massive-agent Ecosystem
With the rapid development of (multimodal) large language model-based agents, the landscape of agentic service management has evolved from single-agent systems to multi-agent systems, and now to massive-agent ecosystems. Current massive-agent ecosystems face growing challenges, including impersonal service experiences, a lack of standardization, and untrustworthy behavior. To address these issues, we propose ColorEcosystem, a novel blueprint designed to enable personalized, standardized, and trustworthy agentic service at scale. Concretely, ColorEcosystem consists of three key components: agent carrier, agent store, and agent audit. The agent carrier provides personalized service experiences by utilizing user-specific data and creating a digital twin, while the agent store serves as a centralized, standardized platform for managing diverse agentic services. The agent audit, based on the supervision of developer and user activities, ensures the integrity and credibility of both service providers and users. Through the analysis of challenges, transitional forms, and practical considerations, the ColorEcosystem is poised to power personalized, standardized, and trustworthy agentic service across massive-agent ecosystems. Meanwhile, we have also implemented part of ColorEcosystem's functionality, and the relevant code is open-sourced at https://github.com/opas-lab/color-ecosystem.
♻ ☆ Computational Analysis of Character Development in Holocaust Testimonies
This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
♻ ☆ FaithLM: Towards Faithful Explanations for Large Language Models
Large language models (LLMs) increasingly produce natural language explanations, yet these explanations often lack faithfulness, and they do not reliably reflect the evidence the model uses to decide. We introduce FaithLM, a model-agnostic framework that evaluates and improves the faithfulness of LLM explanations without token masking or task-specific heuristics. FaithLM formalizes explanation faithfulness as an intervention property: a faithful explanation should yield a prediction shift when its content is contradicted. Theoretical analysis shows that the resulting contrary-hint score is a sound and discriminative estimator of faithfulness. Building on this principle, FaithLM iteratively refines both the elicitation prompt and the explanation to maximize the measured score. Experiments on three multi-domain datasets and multiple LLM backbones demonstrate that FaithLM consistently increases faithfulness and produces explanations more aligned with human rationales than strong self-explanation baselines. These findings highlight that intervention-based evaluation, coupled with iterative optimization, provides a principled route toward faithful and reliable LLM explanations.
♻ ☆ Agent KB: Leveraging Cross-Domain Experience for Agentic Problem Solving
AI agent frameworks operate in isolation, forcing agents to rediscover solutions and repeat mistakes across different systems. Despite valuable problem-solving experiences accumulated by frameworks like smolagents, OpenHands, and OWL, this knowledge remains trapped within individual systems, preventing the emergence of collective intelligence. Current memory systems focus on individual agents or framework-specific demonstrations, failing to enable cross-architecture knowledge transfer. We introduce AGENT KB, a universal memory infrastructure enabling seamless experience sharing across heterogeneous agent frameworks without retraining. AGENT KB aggregates trajectories into a structured knowledge base and serves lightweight APIs. At inference time, hybrid retrieval operates through two stages: planning seeds agents with cross-domain workflows, while feedback applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge enhances rather than disrupts reasoning, addressing knowledge interference in cross-framework transfer. We validate AGENT KB across major frameworks on GAIA, Humanity's Last Exam, GPQA, and SWE-bench. Results show substantial improvements across diverse model families: compared to baseline pass@1, smolagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2% -> 73.9%), while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3% -> 28.3%). Similar improvements are observed across all base model families. Ablations confirm that hybrid retrieval and feedback stages are essential, with automatically generated experiences matching manual curation. This establishes the foundation for collective agent intelligence through shared memory infrastructures.
♻ ☆ Detecting and Rectifying Noisy Labels: A Similarity-based Approach
Label noise in datasets could significantly damage the performance and robustness of deep neural networks (DNNs) trained on these datasets. As the size of modern DNNs grows, there is a growing demand for automated tools for detecting such errors. In this paper, we propose post-hoc, model-agnostic noise detection and rectification methods utilizing the penultimate feature from a DNN. Our idea is based on the observation that the similarity between the penultimate feature of a mislabeled data point and its true class data points is higher than that for data points from other classes, making the probability of label occurrence within a tight, similar cluster informative for detecting and rectifying errors. Through theoretical and empirical analyses, we demonstrate that our approach achieves high detection performance across diverse, realistic noise scenarios and can automatically rectify these errors to improve dataset quality. Our implementation is available at https://anonymous.4open.science/r/noise-detection-and-rectification-AD8E.
♻ ☆ EQ-Negotiator: Emotion Policing Personas for Anti-Manipulation in Credit Collection Dialogues
Persona modeling in large language models typically focuses on static character traits, but overlooks the dynamic emotional intelligence required for real-time adversarial negotiations. In financial dialogues, this limitation creates critical vulnerabilities: debtors exploit predictable empathetic responses through emotional manipulation tactics like aggression, feigned distress, and guilt-tripping. To bridge this gap, we present EQ-Negotiator, a novel framework that grounds persona behavior in emotion dynamics rather than static personality profiles. Unlike naive empathy-centric agents, EQ-Negotiator integrates emotion memory and game-theoretic reasoning, powered by a Hidden Markov Model (HMM) to track and predict debtor emotional states. By analyzing both real-time and historical emotional cues, EQ-Negotiator strategically counters negative emotions (e.g., aggression, feigned distress) while preserving productive debtor relationships. This work advances persona modeling from descriptive character profiles to functional emotional architectures, establishing emotion as the critical link between persona design and tactical execution. Through agent-to-agent validation across 20 credit negotiation scenarios, we demonstrate that emotion-driven personas enable robust defensive capabilities against manipulation while maintaining strategic effectiveness.
♻ ☆ Seeing Symbols, Missing Cultures: Probing Vision-Language Models' Reasoning on Fire Imagery and Cultural Meaning COLING 2025
Vision-Language Models (VLMs) often appear culturally competent but rely on superficial pattern matching rather than genuine cultural understanding. We introduce a diagnostic framework to probe VLM reasoning on fire-themed cultural imagery through both classification and explanation analysis. Testing multiple models on Western festivals, non-Western traditions, and emergency scenes reveals systematic biases: models correctly identify prominent Western festivals but struggle with underrepresented cultural events, frequently offering vague labels or dangerously misclassifying emergencies as celebrations. These failures expose the risks of symbolic shortcuts and highlight the need for cultural evaluation beyond accuracy metrics to ensure interpretable and fair multimodal systems.
comment: 8 pages, 5 figures, 4 tables. Submitted to WiNLP 2025 Workshop at COLING 2025
♻ ☆ Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector NeurIPS 2025
LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
comment: Accepted at NeurIPS 2025 (Camera-Ready Version)
♻ ☆ A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.
comment: 38 pages, 4 figures, 7 tables
♻ ☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it difficult to track progress and high-level conceptual links across broad disciplines. While tools like citation networks and search engines help retrieve related papers, they lack the abstraction needed to capture the needed to represent the density and structure of activity across subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that spans multiple levels of abstraction -- from broad domains to specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve this goal, we develop a hybrid approach that combines efficient embedding-based clustering with LLM-based prompting, striking a balance between scalability and semantic precision. Compared to LLM-heavy methods like iterative tree construction, our approach achieves superior quality-speed trade-offs. Our hierarchies capture different dimensions of research contributions, reflecting the interdisciplinary and multifaceted nature of modern science. We evaluate its utility by measuring how effectively an LLM-based agent can navigate the hierarchy to locate target papers. Results show that our method improves interpretability and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo are available: https://github.com/JHU-CLSP/science-hierarchography
♻ ☆ OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.
comment: Technical Report. Code: https://github.com/NVlabs/OmniVinci
♻ ☆ Semantic Agreement Enables Efficient Open-Ended LLM Cascades EMNLP
Cascade systems route computational requests to smaller models when possible and defer to larger models only when necessary, offering a promising approach to balance cost and quality in LLM deployment. However, they face a fundamental challenge in open-ended text generation: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose semantic agreement -- meaning-level consensus between ensemble outputs -- as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, we find that semantic cascades match or surpass target-model quality at 40% of the cost and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.
comment: 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP) Industry Track
♻ ☆ Offline RL by Reward-Weighted Fine-Tuning for Conversation Optimization NeurIPS 2025
Offline reinforcement learning (RL) is a variant of RL where the policy is learned from a previously collected dataset of trajectories and rewards. In our work, we propose a practical approach to offline RL with large language models (LLMs). We recast the problem as reward-weighted fine-tuning, which can be solved using similar techniques to supervised fine-tuning (SFT). To showcase the value of our approach, we apply it to learning short-horizon question-answering policies of a fixed length, where the agent reasons about potential answers or asks clarifying questions. Our work stands in a stark contrast to state-of-the-art methods in this domain, based on SFT and direct preference optimization, which have additional hyper-parameters and do not directly optimize for rewards. We compare to them empirically, and report major gains in both optimized rewards and language quality.
comment: Accepted at NeurIPS 2025 (main conference)
♻ ☆ Learned, Lagged, LLM-splained: LLM Responses to End User Security Questions
Answering end user security questions is challenging. While large language models (LLMs) like GPT, LLAMA, and Gemini are far from error-free, they have shown promise in answering a variety of questions outside of security. We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions. While LLMs demonstrate broad generalist ``knowledge'' of end user security information, there are patterns of errors and limitations across LLMs consisting of stale and inaccurate answers, and indirect or unresponsive communication styles, all of which impacts the quality of information received. Based on these patterns, we suggest directions for model improvement and recommend user strategies for interacting with LLMs when seeking assistance with security.
comment: 17 pages, 7 tables
♻ ☆ RARE: Retrieval-Aware Robustness Evaluation for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) enhances recency and factuality in answers. However, existing evaluations rarely test how well these systems cope with real-world noise, conflicting between internal and external retrieved contexts, or fast-changing facts. We introduce Retrieval-Aware Robustness Evaluation (RARE), a unified framework and large-scale benchmark that jointly stress-tests query and document perturbations over dynamic, time-sensitive corpora. One of the central features of RARE is a knowledge-graph-driven synthesis pipeline (RARE-Get) that automatically extracts single and multi-hop relations from the customized corpus and generates multi-level question sets without manual intervention. Leveraging this pipeline, we construct a dataset (RARE-Set) spanning 527 expert-level time-sensitive finance, economics, and policy documents and 48295 questions whose distribution evolves as the underlying sources change. To quantify resilience, we formalize retrieval-conditioned robustness metrics (RARE-Met) that capture a model's ability to remain correct or recover when queries, documents, or real-world retrieval results are systematically altered. Our findings reveal that RAG systems are unexpectedly sensitive to perturbations. Moreover, they consistently demonstrate lower robustness on multi-hop queries compared to single-hop queries across all domains.
♻ ☆ DPRF: A Generalizable Dynamic Persona Refinement Framework for Optimizing Behavior Alignment Between Personalized LLM Role-Playing Agents and Humans
The emerging large language model role-playing agents (LLM RPAs) aim to simulate individual human behaviors, but the persona fidelity is often undermined by manually-created profiles (e.g., cherry-picked information and personality characteristics) without validating the alignment with the target individuals. To address this limitation, our work introduces the Dynamic Persona Refinement Framework (DPRF).DPRF aims to optimize the alignment of LLM RPAs' behaviors with those of target individuals by iteratively identifying the cognitive divergence, either through free-form or theory-grounded, structured analysis, between generated behaviors and human ground truth, and refining the persona profile to mitigate these divergences.We evaluate DPRF with five LLMs on four diverse behavior-prediction scenarios: formal debates, social media posts with mental health issues, public interviews, and movie reviews.DPRF can consistently improve behavioral alignment considerably over baseline personas and generalizes across models and scenarios.Our work provides a robust methodology for creating high-fidelity persona profiles and enhancing the validity of downstream applications, such as user simulation, social studies, and personalized AI.
comment: In Submission
Computer Vision and Pattern Recognition 13
☆ Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations NeurIPS 2025
Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.
comment: NeurIPS 2025, produced by Pointcept, project page: https://pointcept.github.io/Concerto
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
comment: 22 pages, 13 figures
☆ PRISM-Bench: A Benchmark of Puzzle-Based Visual Tasks with CoT Error Detection
We introduce \textbf{PRISM-Bench}, a benchmark of puzzle-based visual challenges designed to evaluate not only whether models can solve problems, but how their reasoning unfolds. Unlike prior evaluations that measure only final-answer accuracy, PRISM-Bench introduces a diagnostic task: given a visual puzzle and a step-by-step chain-of-thought (CoT) containing exactly one error, models must identify the first incorrect step. This setting enables fine-grained assessment of logical consistency, error detection, and visual reasoning. The puzzles in PRISM-Bench require multi-step symbolic, geometric, and analogical reasoning, resisting shortcuts based on superficial pattern matching. Evaluations across state-of-the-art MLLMs reveal a persistent gap between fluent generation and faithful reasoning: models that produce plausible CoTs often fail to locate simple logical faults. By disentangling answer generation from reasoning verification, PRISM-Bench offers a sharper lens on multimodal reasoning competence and underscores the need for diagnostic evaluation protocols in the development of trustworthy MLLMs.
☆ InFlux: A Benchmark for Self-Calibration of Dynamic Intrinsics of Video Cameras NeurIPS 2025
Accurately tracking camera intrinsics is crucial for achieving 3D understanding from 2D video. However, most 3D algorithms assume that camera intrinsics stay constant throughout a video, which is often not true for many real-world in-the-wild videos. A major obstacle in this field is a lack of dynamic camera intrinsics benchmarks--existing benchmarks typically offer limited diversity in scene content and intrinsics variation, and none provide per-frame intrinsic changes for consecutive video frames. In this paper, we present Intrinsics in Flux (InFlux), a real-world benchmark that provides per-frame ground truth intrinsics annotations for videos with dynamic intrinsics. Compared to prior benchmarks, InFlux captures a wider range of intrinsic variations and scene diversity, featuring 143K+ annotated frames from 386 high-resolution indoor and outdoor videos with dynamic camera intrinsics. To ensure accurate per-frame intrinsics, we build a comprehensive lookup table of calibration experiments and extend the Kalibr toolbox to improve its accuracy and robustness. Using our benchmark, we evaluate existing baseline methods for predicting camera intrinsics and find that most struggle to achieve accurate predictions on videos with dynamic intrinsics. For the dataset, code, videos, and submission, please visit https://influx.cs.princeton.edu/.
comment: Accepted at NeurIPS 2025 DB Track, Camera Ready Version. Supplementary material included
☆ FARMER: Flow AutoRegressive Transformer over Pixels
Directly modeling the explicit likelihood of the raw data distribution is key topic in the machine learning area, which achieves the scaling successes in Large Language Models by autoregressive modeling. However, continuous AR modeling over visual pixel data suffer from extremely long sequences and high-dimensional spaces. In this paper, we present FARMER, a novel end-to-end generative framework that unifies Normalizing Flows (NF) and Autoregressive (AR) models for tractable likelihood estimation and high-quality image synthesis directly from raw pixels. FARMER employs an invertible autoregressive flow to transform images into latent sequences, whose distribution is modeled implicitly by an autoregressive model. To address the redundancy and complexity in pixel-level modeling, we propose a self-supervised dimension reduction scheme that partitions NF latent channels into informative and redundant groups, enabling more effective and efficient AR modeling. Furthermore, we design a one-step distillation scheme to significantly accelerate inference speed and introduce a resampling-based classifier-free guidance algorithm to boost image generation quality. Extensive experiments demonstrate that FARMER achieves competitive performance compared to existing pixel-based generative models while providing exact likelihoods and scalable training.
comment: Bytedance Seed Technical Report
☆ Adaptive Training of INRs via Pruning and Densification
Encoding input coordinates with sinusoidal functions into multilayer perceptrons (MLPs) has proven effective for implicit neural representations (INRs) of low-dimensional signals, enabling the modeling of high-frequency details. However, selecting appropriate input frequencies and architectures while managing parameter redundancy remains an open challenge, often addressed through heuristics and heavy hyperparameter optimization schemes. In this paper, we introduce AIRe ($\textbf{A}$daptive $\textbf{I}$mplicit neural $\textbf{Re}$presentation), an adaptive training scheme that refines the INR architecture over the course of optimization. Our method uses a neuron pruning mechanism to avoid redundancy and input frequency densification to improve representation capacity, leading to an improved trade-off between network size and reconstruction quality. For pruning, we first identify less-contributory neurons and apply a targeted weight decay to transfer their information to the remaining neurons, followed by structured pruning. Next, the densification stage adds input frequencies to spectrum regions where the signal underfits, expanding the representational basis. Through experiments on images and SDFs, we show that AIRe reduces model size while preserving, or even improving, reconstruction quality. Code and pretrained models will be released for public use.
☆ PlanarGS: High-Fidelity Indoor 3D Gaussian Splatting Guided by Vision-Language Planar Priors NeurIPS 2025
Three-dimensional Gaussian Splatting (3DGS) has recently emerged as an efficient representation for novel-view synthesis, achieving impressive visual quality. However, in scenes dominated by large and low-texture regions, common in indoor environments, the photometric loss used to optimize 3DGS yields ambiguous geometry and fails to recover high-fidelity 3D surfaces. To overcome this limitation, we introduce PlanarGS, a 3DGS-based framework tailored for indoor scene reconstruction. Specifically, we design a pipeline for Language-Prompted Planar Priors (LP3) that employs a pretrained vision-language segmentation model and refines its region proposals via cross-view fusion and inspection with geometric priors. 3D Gaussians in our framework are optimized with two additional terms: a planar prior supervision term that enforces planar consistency, and a geometric prior supervision term that steers the Gaussians toward the depth and normal cues. We have conducted extensive experiments on standard indoor benchmarks. The results show that PlanarGS reconstructs accurate and detailed 3D surfaces, consistently outperforming state-of-the-art methods by a large margin. Project page: https://planargs.github.io
comment: Accepted by NeurIPS 2025. Project page: https://planargs.github.io
☆ TurboPortrait3D: Single-step diffusion-based fast portrait novel-view synthesis
We introduce TurboPortrait3D: a method for low-latency novel-view synthesis of human portraits. Our approach builds on the observation that existing image-to-3D models for portrait generation, while capable of producing renderable 3D representations, are prone to visual artifacts, often lack of detail, and tend to fail at fully preserving the identity of the subject. On the other hand, image diffusion models excel at generating high-quality images, but besides being computationally expensive, are not grounded in 3D and thus are not directly capable of producing multi-view consistent outputs. In this work, we demonstrate that image-space diffusion models can be used to significantly enhance the quality of existing image-to-avatar methods, while maintaining 3D-awareness and running with low-latency. Our method takes a single frontal image of a subject as input, and applies a feedforward image-to-avatar generation pipeline to obtain an initial 3D representation and corresponding noisy renders. These noisy renders are then fed to a single-step diffusion model which is conditioned on input image(s), and is specifically trained to refine the renders in a multi-view consistent way. Moreover, we introduce a novel effective training strategy that includes pre-training on a large corpus of synthetic multi-view data, followed by fine-tuning on high-quality real images. We demonstrate that our approach both qualitatively and quantitatively outperforms current state-of-the-art for portrait novel-view synthesis, while being efficient in time.
♻ ☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint. Project page: https://snap-research.github.io/layercomposer/
♻ ☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We introduce ReXGroundingCT, the first publicly available dataset linking free-text findings to pixel-level 3D segmentations in chest CT scans. The dataset includes 3,142 non-contrast chest CT scans paired with standardized radiology reports from CT-RATE. Construction followed a structured three-stage pipeline. First, GPT-4 was used to extract and standardize findings, descriptors, and metadata from reports originally written in Turkish and machine-translated into English. Second, GPT-4o-mini categorized each finding into a hierarchical ontology of lung and pleural abnormalities. Third, 3D annotations were produced for all CT volumes: the training set was quality-assured by board-certified radiologists, and the validation and test sets were fully annotated by board-certified radiologists. Additionally, a complementary chain-of-thought dataset was created to provide step-by-step hierarchical anatomical reasoning for localizing findings within the CT volume, using GPT-4o and localization coordinates derived from organ segmentation models. ReXGroundingCT contains 16,301 annotated entities across 8,028 text-to-3D-segmentation pairs, covering diverse radiological patterns from 3,142 non-contrast CT scans. About 79% of findings are focal abnormalities and 21% are non-focal. The dataset includes a public validation set of 50 cases and a private test set of 100 cases, both annotated by board-certified radiologists. The dataset establishes a foundation for enabling free-text finding segmentation and grounded radiology report generation in CT imaging. Model performance on the private test set is hosted on a public leaderboard at https://rexrank.ai/ReXGroundingCT. The dataset is available at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
♻ ☆ DynCIM: Dynamic Curriculum for Imbalanced Multimodal Learning
Multimodal learning integrates complementary information from diverse modalities to enhance the decision-making process. However, the potential of multimodal collaboration remains under-exploited due to disparities in data quality and modality representation capabilities. To address this, we introduce DynCIM, a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives. DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability, while a modality-level curriculum measures modality contributions from global and local. Furthermore, a gating-based dynamic fusion mechanism is introduced to adaptively adjust modality contributions, minimizing redundancy and optimizing fusion effectiveness. Extensive experiments on six multimodal benchmarking datasets, spanning both bimodal and trimodal scenarios, demonstrate that DynCIM consistently outperforms state-of-the-art methods. Our approach effectively mitigates modality and sample imbalances while enhancing adaptability and robustness in multimodal learning tasks. Our code is available at https://github.com/Raymond-Qiancx/DynCIM.
♻ ☆ Faces of Fairness: Examining Bias in Facial Expression Recognition Datasets and Models
Building AI systems, including Facial Expression Recognition (FER), involves two critical aspects: data and model design. Both components significantly influence bias and fairness in FER tasks. Issues related to bias and fairness in FER datasets and models remain underexplored. This study investigates bias sources in FER datasets and models. Four common FER datasets--AffectNet, ExpW, Fer2013, and RAF-DB--are analyzed. The findings demonstrate that AffectNet and ExpW exhibit high generalizability despite data imbalances. Additionally, this research evaluates the bias and fairness of six deep models, including three state-of-the-art convolutional neural network (CNN) models: MobileNet, ResNet, XceptionNet, as well as three transformer-based models: ViT, CLIP, and GPT-4o-mini. Experimental results reveal that while GPT-4o-mini and ViT achieve the highest accuracy scores, they also display the highest levels of bias. These findings underscore the urgent need for developing new methodologies to mitigate bias and ensure fairness in datasets and models, particularly in affective computing applications. See our implementation details at https://github.com/MMHosseini/bias_in_FER.
Artificial Intelligence 150
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ Alita-G: Self-Evolving Generative Agent for Agent Generation
Large language models (LLMs) have been shown to perform better when scaffolded into agents with memory, tools, and feedback. Beyond this, self-evolving agents have emerged, but current work largely limits adaptation to prompt rewriting or failure retries. Therefore, we present ALITA-G, a self-evolution framework that transforms a general-purpose agent into a domain expert by systematically generating, abstracting, and curating Model Context Protocol (MCP) tools. In this framework, a generalist agent executes a curated suite of target-domain tasks and synthesizes candidate MCPs from successful trajectories. These are then abstracted to parameterized primitives and consolidated into an MCP Box. At inference time, ALITA-G performs retrieval-augmented MCP selection with the help of each tool's descriptions and use cases, before executing an agent equipped with the MCP Executor. Across several benchmarks GAIA, PathVQA, and Humanity's Last Exam, ALITA-G attains strong gains while reducing computation costs. On GAIA validation, it achieves 83.03% pass@1 and 89.09% pass@3, establishing a new state-of-the-art result while reducing mean tokens per example by approximately 15% relative to a strong baseline agent. ALITA-G thus provides a principled pathway from generalist capability to reusable, domain-specific competence, improving both accuracy and efficiency on complex reasoning tasks.
comment: 15 pages, 3 figures
☆ Multi-Agent Evolve: LLM Self-Improve through Co-evolution ICLR 2026
Reinforcement Learning (RL) has demonstrated significant potential in enhancing the reasoning capabilities of large language models (LLMs). However, the success of RL for LLMs heavily relies on human-curated datasets and verifiable rewards, which limit their scalability and generality. Recent Self-Play RL methods, inspired by the success of the paradigm in games and Go, aim to enhance LLM reasoning capabilities without human-annotated data. However, their methods primarily depend on a grounded environment for feedback (e.g., a Python interpreter or a game engine); extending them to general domains remains challenging. To address these challenges, we propose Multi-Agent Evolve (MAE), a framework that enables LLMs to self-evolve in solving diverse tasks, including mathematics, reasoning, and general knowledge Q&A. The core design of MAE is based on a triplet of interacting agents (Proposer, Solver, Judge) that are instantiated from a single LLM, and applies reinforcement learning to optimize their behaviors. The Proposer generates questions, the Solver attempts solutions, and the Judge evaluates both while co-evolving. Experiments on Qwen2.5-3B-Instruct demonstrate that MAE achieves an average improvement of 4.54% on multiple benchmarks. These results highlight MAE as a scalable, data-efficient method for enhancing the general reasoning abilities of LLMs with minimal reliance on human-curated supervision.
comment: 29 pages, 4 figures, submitted to ICLR 2026
☆ A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
The rapid advancement of large language models (LLMs) has spurred the emergence of data agents--autonomous systems designed to orchestrate Data + AI ecosystems for tackling complex data-related tasks. However, the term "data agent" currently suffers from terminological ambiguity and inconsistent adoption, conflating simple query responders with sophisticated autonomous architectures. This terminological ambiguity fosters mismatched user expectations, accountability challenges, and barriers to industry growth. Inspired by the SAE J3016 standard for driving automation, this survey introduces the first systematic hierarchical taxonomy for data agents, comprising six levels that delineate and trace progressive shifts in autonomy, from manual operations (L0) to a vision of generative, fully autonomous data agents (L5), thereby clarifying capability boundaries and responsibility allocation. Through this lens, we offer a structured review of existing research arranged by increasing autonomy, encompassing specialized data agents for data management, preparation, and analysis, alongside emerging efforts toward versatile, comprehensive systems with enhanced autonomy. We further analyze critical evolutionary leaps and technical gaps for advancing data agents, especially the ongoing L2-to-L3 transition, where data agents evolve from procedural execution to autonomous orchestration. Finally, we conclude with a forward-looking roadmap, envisioning the advent of proactive, generative data agents.
comment: Please refer to our paper list and companion materials at: https://github.com/HKUSTDial/awesome-data-agents
☆ Hope Speech Detection in Social Media English Corpora: Performance of Traditional and Transformer Models
The identification of hope speech has become a promised NLP task, considering the need to detect motivational expressions of agency and goal-directed behaviour on social media platforms. This proposal evaluates traditional machine learning models and fine-tuned transformers for a previously split hope speech dataset as train, development and test set. On development test, a linear-kernel SVM and logistic regression both reached a macro-F1 of 0.78; SVM with RBF kernel reached 0.77, and Na\"ive Bayes hit 0.75. Transformer models delivered better results, the best model achieved weighted precision of 0.82, weighted recall of 0.80, weighted F1 of 0.79, macro F1 of 0.79, and 0.80 accuracy. These results suggest that while optimally configured traditional machine learning models remain agile, transformer architectures detect some subtle semantics of hope to achieve higher precision and recall in hope speech detection, suggesting that larges transformers and LLMs could perform better in small datasets.
☆ Reduced AI Acceptance After the Generative AI Boom: Evidence From a Two-Wave Survey Study
The rapid adoption of generative artificial intelligence (GenAI) technologies has led many organizations to integrate AI into their products and services, often without considering user preferences. Yet, public attitudes toward AI use, especially in impactful decision-making scenarios, are underexplored. Using a large-scale two-wave survey study (n_wave1=1514, n_wave2=1488) representative of the Swiss population, we examine shifts in public attitudes toward AI before and after the launch of ChatGPT. We find that the GenAI boom is significantly associated with reduced public acceptance of AI (see Figure 1) and increased demand for human oversight in various decision-making contexts. The proportion of respondents finding AI "not acceptable at all" increased from 23% to 30%, while support for human-only decision-making rose from 18% to 26%. These shifts have amplified existing social inequalities in terms of widened educational, linguistic, and gender gaps post-boom. Our findings challenge industry assumptions about public readiness for AI deployment and highlight the critical importance of aligning technological development with evolving public preferences.
☆ UrbanVLA: A Vision-Language-Action Model for Urban Micromobility
Urban micromobility applications, such as delivery robots, demand reliable navigation across large-scale urban environments while following long-horizon route instructions. This task is particularly challenging due to the dynamic and unstructured nature of real-world city areas, yet most existing navigation methods remain tailored to short-scale and controllable scenarios. Effective urban micromobility requires two complementary levels of navigation skills: low-level capabilities such as point-goal reaching and obstacle avoidance, and high-level capabilities, such as route-visual alignment. To this end, we propose UrbanVLA, a route-conditioned Vision-Language-Action (VLA) framework designed for scalable urban navigation. Our method explicitly aligns noisy route waypoints with visual observations during execution, and subsequently plans trajectories to drive the robot. To enable UrbanVLA to master both levels of navigation, we employ a two-stage training pipeline. The process begins with Supervised Fine-Tuning (SFT) using simulated environments and trajectories parsed from web videos. This is followed by Reinforcement Fine-Tuning (RFT) on a mixture of simulation and real-world data, which enhances the model's safety and adaptability in real-world settings. Experiments demonstrate that UrbanVLA surpasses strong baselines by more than 55% in the SocialNav task on MetaUrban. Furthermore, UrbanVLA achieves reliable real-world navigation, showcasing both scalability to large-scale urban environments and robustness against real-world uncertainties.
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ OntoPret: An Ontology for the Interpretation of Human Behavior
As human machine teaming becomes central to paradigms like Industry 5.0, a critical need arises for machines to safely and effectively interpret complex human behaviors. A research gap currently exists between techno centric robotic frameworks, which often lack nuanced models of human behavior, and descriptive behavioral ontologies, which are not designed for real time, collaborative interpretation. This paper addresses this gap by presenting OntoPret, an ontology for the interpretation of human behavior. Grounded in cognitive science and a modular engineering methodology, OntoPret provides a formal, machine processable framework for classifying behaviors, including task deviations and deceptive actions. We demonstrate its adaptability across two distinct use cases manufacturing and gameplay and establish the semantic foundations necessary for advanced reasoning about human intentions.
☆ JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
comment: Work in progress
☆ When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning NeurIPS 2025
Designing models that can learn to reason in a systematic way is an important and long-standing challenge. In recent years, a wide range of solutions have been proposed for the specific case of systematic relational reasoning, including Neuro-Symbolic approaches, variants of the Transformer architecture, and specialised Graph Neural Networks. However, existing benchmarks for systematic relational reasoning focus on an overly simplified setting, based on the assumption that reasoning can be reduced to composing relational paths. In fact, this assumption is hard-baked into the architecture of several recent models, leading to approaches that can perform well on existing benchmarks but are difficult to generalise to other settings. To support further progress in the field of systematic relational reasoning with neural networks, we introduce NoRA, a new benchmark which adds several levels of difficulty and requires models to go beyond path-based reasoning.
comment: accepted at NeurIPS 2025 D&B track
☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
☆ Toward Carbon-Neutral Human AI: Rethinking Data, Computation, and Learning Paradigms for Sustainable Intelligence
The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.
comment: 9 pages, 3 figures
☆ A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $\lambda$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.
comment: Accepted to IEEE Big-Data 2025 main research track. The paper is 10 main pages and 4 pages of Appendix
☆ Emotion-Coherent Reasoning for Multimodal LLMs via Emotional Rationale Verifier
The recent advancement of Multimodal Large Language Models (MLLMs) is transforming human-computer interaction (HCI) from surface-level exchanges into more nuanced and emotionally intelligent communication. To realize this shift, emotion understanding becomes essential allowing systems to capture subtle cues underlying user intent. Furthermore, providing faithful explanations for predicted emotions is crucial to ensure interpretability and build user trust. However, current MLLM-based methods often generate emotion explanations that diverge from the target labels and sometimes even contradict their own predicted emotions. This inconsistency poses a critical risk for misunderstanding and erodes reliability in interactive settings. To address this, we propose a novel approach: the Emotional Rationale Verifier (ERV) and an Explanation Reward. Our method guides the model to produce reasoning that is explicitly consistent with the target emotion during multimodal emotion recognition without modifying the model architecture or requiring additional paired video-description annotations. Our method significantly improves faithful explanation-prediction consistency and explanation emotion accuracy on the MAFW and DFEW datasets. Through extensive experiments and human evaluations, we show that our approach not only enhances alignment between explanation and prediction but also empowers MLLMs to deliver emotionally coherent, trustworthy interactions, marking a key step toward truly human-like HCI systems.
comment: 16 pages, 11 figures
☆ Mixed Precision Training of Neural ODEs
Exploiting low-precision computations has become a standard strategy in deep learning to address the growing computational costs imposed by ever larger models and datasets. However, naively performing all computations in low precision can lead to roundoff errors and instabilities. Therefore, mixed precision training schemes usually store the weights in high precision and use low-precision computations only for whitelisted operations. Despite their success, these principles are currently not reliable for training continuous-time architectures such as neural ordinary differential equations (Neural ODEs). This paper presents a mixed precision training framework for neural ODEs, combining explicit ODE solvers with a custom backpropagation scheme, and demonstrates its effectiveness across a range of learning tasks. Our scheme uses low-precision computations for evaluating the velocity, parameterized by the neural network, and for storing intermediate states, while stability is provided by a custom dynamic adjoint scaling and by accumulating the solution and gradients in higher precision. These contributions address two key challenges in training neural ODE: the computational cost of repeated network evaluations and the growth of memory requirements with the number of time steps or layers. Along with the paper, we publish our extendable, open-source PyTorch package rampde, whose syntax resembles that of leading packages to provide a drop-in replacement in existing codes. We demonstrate the reliability and effectiveness of our scheme using challenging test cases and on neural ODE applications in image classification and generative models, achieving approximately 50% memory reduction and up to 2x speedup while maintaining accuracy comparable to single-precision training.
comment: Code available at https://github.com/EmoryMLIP/rampde; 26 pages, 4 figures
☆ Are Agents Just Automata? On the Formal Equivalence Between Agentic AI and the Chomsky Hierarchy
This paper establishes a formal equivalence between the architectural classes of modern agentic AI systems and the abstract machines of the Chomsky hierarchy. We posit that the memory architecture of an AI agent is the definitive feature determining its computational power and that it directly maps it to a corresponding class of automaton. Specifically, we demonstrate that simple reflex agents are equivalent to Finite Automata, hierarchical task-decomposition agents are equivalent to Pushdown Automata, and agents employing readable/writable memory for reflection are equivalent to TMs. This Automata-Agent Framework provides a principled methodology for right-sizing agent architectures to optimize computational efficiency and cost. More critically, it creates a direct pathway to formal verification, enables the application of mature techniques from automata theory to guarantee agent safety and predictability. By classifying agents, we can formally delineate the boundary between verifiable systems and those whose behavior is fundamentally undecidable. We address the inherent probabilistic nature of LLM-based agents by extending the framework to probabilistic automata that allow quantitative risk analysis. The paper concludes by outlining an agenda for developing static analysis tools and grammars for agentic frameworks.
☆ On the Faithfulness of Visual Thinking: Measurement and Enhancement
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.
☆ Human-AI Collaborative Uncertainty Quantification
AI predictive systems are increasingly embedded in decision making pipelines, shaping high stakes choices once made solely by humans. Yet robust decisions under uncertainty still rely on capabilities that current AI lacks: domain knowledge not captured by data, long horizon context, and reasoning grounded in the physical world. This gap has motivated growing efforts to design collaborative frameworks that combine the complementary strengths of humans and AI. This work advances this vision by identifying the fundamental principles of Human AI collaboration within uncertainty quantification, a key component of reliable decision making. We introduce Human AI Collaborative Uncertainty Quantification, a framework that formalizes how an AI model can refine a human expert's proposed prediction set with two goals: avoiding counterfactual harm, ensuring the AI does not degrade correct human judgments, and complementarity, enabling recovery of correct outcomes the human missed. At the population level, we show that the optimal collaborative prediction set follows an intuitive two threshold structure over a single score function, extending a classical result in conformal prediction. Building on this insight, we develop practical offline and online calibration algorithms with provable distribution free finite sample guarantees. The online method adapts to distribution shifts, including human behavior evolving through interaction with AI, a phenomenon we call Human to AI Adaptation. Experiments across image classification, regression, and text based medical decision making show that collaborative prediction sets consistently outperform either agent alone, achieving higher coverage and smaller set sizes across various conditions.
☆ Policy-Aware Generative AI for Safe, Auditable Data Access Governance
Enterprises need access decisions that satisfy least privilege, comply with regulations, and remain auditable. We present a policy aware controller that uses a large language model (LLM) to interpret natural language requests against written policies and metadata, not raw data. The system, implemented with Google Gemini~2.0 Flash, executes a six-stage reasoning framework (context interpretation, user validation, data classification, business purpose test, compliance mapping, and risk synthesis) with early hard policy gates and deny by default. It returns APPROVE, DENY, CONDITIONAL together with cited controls and a machine readable rationale. We evaluate on fourteen canonical cases across seven scenario families using a privacy preserving benchmark. Results show Exact Decision Match improving from 10/14 to 13/14 (92.9\%) after applying policy gates, DENY recall rising to 1.00, False Approval Rate on must-deny families dropping to 0, and Functional Appropriateness and Compliance Adherence at 14/14. Expert ratings of rationale quality are high, and median latency is under one minute. These findings indicate that policy constrained LLM reasoning, combined with explicit gates and audit trails, can translate human readable policies into safe, compliant, and traceable machine decisions.
comment: The 17th International Conference on Knowledge and Systems Engineering
☆ BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
Chip placement is a vital stage in modern chip design as it has a substantial impact on the subsequent processes and the overall quality of the final chip. The use of black-box optimization (BBO) for chip placement has a history of several decades. However, early efforts were limited by immature problem formulations and inefficient algorithm designs. Recent progress has shown the effectiveness and efficiency of BBO for chip placement, proving its potential to achieve state-of-the-art results. Despite these advancements, the field lacks a unified, BBO-specific benchmark for thoroughly assessing various problem formulations and BBO algorithms. To fill this gap, we propose BBOPlace-Bench, the first benchmark designed specifically for evaluating and developing BBO algorithms for chip placement tasks. It integrates three problem formulations of BBO for chip placement, and offers a modular, decoupled, and flexible framework that enables users to seamlessly implement, test, and compare their own algorithms. BBOPlace-Bench integrates a wide variety of existing BBO algorithms, including simulated annealing (SA), evolutionary algorithms (EAs), and Bayesian optimization (BO). Experimental results show that the problem formulations of mask-guided optimization and hyperparameter optimization exhibit superior performance than the sequence pair problem formulation, while EAs demonstrate better overall performance than SA and BO, especially in high-dimensional search spaces, and also achieve state-of-the-art performance compared to the mainstream chip placement methods. BBOPlace-Bench not only facilitates the development of efficient BBO-driven solutions for chip placement but also broadens the practical application scenarios (which are urgently needed) for the BBO community. The code of BBOPlace-Bench is available at https://github.com/lamda-bbo/BBOPlace-Bench.
☆ Robust Decision Making with Partially Calibrated Forecasts
Calibration has emerged as a foundational goal in ``trustworthy machine learning'', in part because of its strong decision theoretic semantics. Independent of the underlying distribution, and independent of the decision maker's utility function, calibration promises that amongst all policies mapping predictions to actions, the uniformly best policy is the one that ``trusts the predictions'' and acts as if they were correct. But this is true only of \emph{fully calibrated} forecasts, which are tractable to guarantee only for very low dimensional prediction problems. For higher dimensional prediction problems (e.g. when outcomes are multiclass), weaker forms of calibration have been studied that lack these decision theoretic properties. In this paper we study how a conservative decision maker should map predictions endowed with these weaker (``partial'') calibration guarantees to actions, in a way that is robust in a minimax sense: i.e. to maximize their expected utility in the worst case over distributions consistent with the calibration guarantees. We characterize their minimax optimal decision rule via a duality argument, and show that surprisingly, ``trusting the predictions and acting accordingly'' is recovered in this minimax sense by \emph{decision calibration} (and any strictly stronger notion of calibration), a substantially weaker and more tractable condition than full calibration. For calibration guarantees that fall short of decision calibration, the minimax optimal decision rule is still efficiently computable, and we provide an empirical evaluation of a natural one that applies to any regression model solved to optimize squared error.
☆ Evaluating Large Language Models for Stance Detection on Financial Targets from SEC Filing Reports and Earnings Call Transcripts
Financial narratives from U.S. Securities and Exchange Commission (SEC) filing reports and quarterly earnings call transcripts (ECTs) are very important for investors, auditors, and regulators. However, their length, financial jargon, and nuanced language make fine-grained analysis difficult. Prior sentiment analysis in the financial domain required a large, expensive labeled dataset, making the sentence-level stance towards specific financial targets challenging. In this work, we introduce a sentence-level corpus for stance detection focused on three core financial metrics: debt, earnings per share (EPS), and sales. The sentences were extracted from Form 10-K annual reports and ECTs, and labeled for stance (positive, negative, neutral) using the advanced ChatGPT-o3-pro model under rigorous human validation. Using this corpus, we conduct a systematic evaluation of modern large language models (LLMs) using zero-shot, few-shot, and Chain-of-Thought (CoT) prompting strategies. Our results show that few-shot with CoT prompting performs best compared to supervised baselines, and LLMs' performance varies across the SEC and ECT datasets. Our findings highlight the practical viability of leveraging LLMs for target-specific stance in the financial domain without requiring extensive labeled data.
☆ BrowseConf: Confidence-Guided Test-Time Scaling for Web Agents
Confidence in LLMs is a useful indicator of model uncertainty and answer reliability. Existing work mainly focused on single-turn scenarios, while research on confidence in complex multi-turn interactions is limited. In this paper, we investigate whether LLM-based search agents have the ability to communicate their own confidence through verbalized confidence scores after long sequences of actions, a significantly more challenging task compared to outputting confidence in a single interaction. Experimenting on open-source agentic models, we first find that models exhibit much higher task accuracy at high confidence while having near-zero accuracy when confidence is low. Based on this observation, we propose Test-Time Scaling (TTS) methods that use confidence scores to determine answer quality, encourage the model to try again until reaching a satisfactory confidence level. Results show that our proposed methods significantly reduce token consumption while demonstrating competitive performance compared to baseline fixed budget TTS methods.
comment: 25 pages
☆ What are the odds? Risk and uncertainty about AI existential risk
This work is a commentary of the article \href{https://doi.org/10.18716/ojs/phai/2025.2801}{AI Survival Stories: a Taxonomic Analysis of AI Existential Risk} by Cappelen, Goldstein, and Hawthorne. It is not just a commentary though, but a useful reminder of the philosophical limitations of \say{linear} models of risk. The article will focus on the model employed by the authors: first, I discuss some differences between standard Swiss Cheese models and this one. I then argue that in a situation of epistemic indifference the probability of P(D) is higher than what one might first suggest, given the structural relationships between layers. I then distinguish between risk and uncertainty, and argue that any estimation of P(D) is structurally affected by two kinds of uncertainty: option uncertainty and state-space uncertainty. Incorporating these dimensions of uncertainty into our qualitative discussion on AI existential risk can provide a better understanding of the likeliness of P(D).
comment: 10 pages
☆ Omni-Reward: Towards Generalist Omni-Modal Reward Modeling with Free-Form Preferences
Reward models (RMs) play a critical role in aligning AI behaviors with human preferences, yet they face two fundamental challenges: (1) Modality Imbalance, where most RMs are mainly focused on text and image modalities, offering limited support for video, audio, and other modalities; and (2) Preference Rigidity, where training on fixed binary preference pairs fails to capture the complexity and diversity of personalized preferences. To address the above challenges, we propose Omni-Reward, a step toward generalist omni-modal reward modeling with support for free-form preferences, consisting of: (1) Evaluation: We introduce Omni-RewardBench, the first omni-modal RM benchmark with free-form preferences, covering nine tasks across five modalities including text, image, video, audio, and 3D; (2) Data: We construct Omni-RewardData, a multimodal preference dataset comprising 248K general preference pairs and 69K instruction-tuning pairs for training generalist omni-modal RMs; (3) Model: We propose Omni-RewardModel, which includes both discriminative and generative RMs, and achieves strong performance on Omni-RewardBench as well as other widely used reward modeling benchmarks.
comment: 48 pages, 17 figures
☆ FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.
☆ A Neuro-Symbolic Multi-Agent Approach to Legal-Cybersecurity Knowledge Integration
The growing intersection of cybersecurity and law creates a complex information space where traditional legal research tools struggle to deal with nuanced connections between cases, statutes, and technical vulnerabilities. This knowledge divide hinders collaboration between legal experts and cybersecurity professionals. To address this important gap, this work provides a first step towards intelligent systems capable of navigating the increasingly intricate cyber-legal domain. We demonstrate promising initial results on multilingual tasks.
comment: 7 pages
☆ Causal Deep Q Network
Deep Q Networks (DQN) have shown remarkable success in various reinforcement learning tasks. However, their reliance on associative learning often leads to the acquisition of spurious correlations, hindering their problem-solving capabilities. In this paper, we introduce a novel approach to integrate causal principles into DQNs, leveraging the PEACE (Probabilistic Easy vAriational Causal Effect) formula for estimating causal effects. By incorporating causal reasoning during training, our proposed framework enhances the DQN's understanding of the underlying causal structure of the environment, thereby mitigating the influence of confounding factors and spurious correlations. We demonstrate that integrating DQNs with causal capabilities significantly enhances their problem-solving capabilities without compromising performance. Experimental results on standard benchmark environments showcase that our approach outperforms conventional DQNs, highlighting the effectiveness of causal reasoning in reinforcement learning. Overall, our work presents a promising avenue for advancing the capabilities of deep reinforcement learning agents through principled causal inference.
Exploring Vulnerability in AI Industry
The rapid ascent of Foundation Models (FMs), enabled by the Transformer architecture, drives the current AI ecosystem. Characterized by large-scale training and downstream adaptability, FMs (as GPT family) have achieved massive public adoption, fueling a turbulent market shaped by platform economics and intense investment. Assessing the vulnerability of this fast-evolving industry is critical yet challenging due to data limitations. This paper proposes a synthetic AI Vulnerability Index (AIVI) focusing on the upstream value chain for FM production, prioritizing publicly available data. We model FM output as a function of five inputs: Compute, Data, Talent, Capital, and Energy, hypothesizing that supply vulnerability in any input threatens the industry. Key vulnerabilities include compute concentration, data scarcity and legal risks, talent bottlenecks, capital intensity and strategic dependencies, as well as escalating energy demands. Acknowledging imperfect input substitutability, we propose a weighted geometrical average of aggregate subindexes, normalized using theoretical or empirical benchmarks. Despite limitations and room for improvement, this preliminary index aims to quantify systemic risks in AI's core production engine, and implicitly shed a light on the risks for downstream value chain.
comment: Preliminary Draft
☆ Bid2X: Revealing Dynamics of Bidding Environment in Online Advertising from A Foundation Model Lens KDD 2025
Auto-bidding is crucial in facilitating online advertising by automatically providing bids for advertisers. While previous work has made great efforts to model bidding environments for better ad performance, it has limitations in generalizability across environments since these models are typically tailored for specific bidding scenarios. To this end, we approach the scenario-independent principles through a unified function that estimates the achieved effect under specific bids, such as budget consumption, gross merchandise volume (GMV), page views, etc. Then, we propose a bidding foundation model Bid2X to learn this fundamental function from data in various scenarios. Our Bid2X is built over uniform series embeddings that encode heterogeneous data through tailored embedding methods. To capture complex inter-variable and dynamic temporal dependencies in bidding data, we propose two attention mechanisms separately treating embeddings of different variables and embeddings at different times as attention tokens for representation learning. On top of the learned variable and temporal representations, a variable-aware fusion module is used to perform adaptive bidding outcome prediction. To model the unique bidding data distribution, we devise a zero-inflated projection module to incorporate the estimated non-zero probability into its value prediction, which makes up a joint optimization objective containing classification and regression. The objective is proven to converge to the zero-inflated distribution. Our model has been deployed on the ad platform in Taobao, one of the world's largest e-commerce platforms. Offline evaluation on eight datasets exhibits Bid2X's superiority compared to various baselines and its generality across different scenarios. Bid2X increased GMV by 4.65% and ROI by 2.44% in online A/B tests, paving the way for bidding foundation model in computational advertising.
comment: 12 pages, KDD 2025
☆ Eigen-Value: Efficient Domain-Robust Data Valuation via Eigenvalue-Based Approach
Data valuation has become central in the era of data-centric AI. It drives efficient training pipelines and enables objective pricing in data markets by assigning a numeric value to each data point. Most existing data valuation methods estimate the effect of removing individual data points by evaluating changes in model validation performance under in-distribution (ID) settings, as opposed to out-of-distribution (OOD) scenarios where data follow different patterns. Since ID and OOD data behave differently, data valuation methods based on ID loss often fail to generalize to OOD settings, particularly when the validation set contains no OOD data. Furthermore, although OOD-aware methods exist, they involve heavy computational costs, which hinder practical deployment. To address these challenges, we introduce \emph{Eigen-Value} (EV), a plug-and-play data valuation framework for OOD robustness that uses only an ID data subset, including during validation. EV provides a new spectral approximation of domain discrepancy, which is the gap of loss between ID and OOD using ratios of eigenvalues of ID data's covariance matrix. EV then estimates the marginal contribution of each data point to this discrepancy via perturbation theory, alleviating the computational burden. Subsequently, EV plugs into ID loss-based methods by adding an EV term without any additional training loop. We demonstrate that EV achieves improved OOD robustness and stable value rankings across real-world datasets, while remaining computationally lightweight. These results indicate that EV is practical for large-scale settings with domain shift, offering an efficient path to OOD-robust data valuation.
☆ AutoStreamPipe: LLM Assisted Automatic Generation of Data Stream Processing Pipelines
Data pipelines are essential in stream processing as they enable the efficient collection, processing, and delivery of real-time data, supporting rapid data analysis. In this paper, we present AutoStreamPipe, a novel framework that employs Large Language Models (LLMs) to automate the design, generation, and deployment of stream processing pipelines. AutoStreamPipe bridges the semantic gap between high-level user intent and platform-specific implementations across distributed stream processing systems for structured multi-agent reasoning by integrating a Hypergraph of Thoughts (HGoT) as an extended version of GoT. AutoStreamPipe combines resilient execution strategies, advanced query analysis, and HGoT to deliver pipelines with good accuracy. Experimental evaluations on diverse pipelines demonstrate that AutoStreamPipe significantly reduces development time (x6.3) and error rates (x5.19), as measured by a novel Error-Free Score (EFS), compared to LLM code-generation methods.
comment: Under review
☆ EMTSF:Extraordinary Mixture of SOTA Models for Time Series Forecasting
The immense success of the Transformer architecture in Natural Language Processing has led to its adoption in Time Se ries Forecasting (TSF), where superior performance has been shown. However, a recent important paper questioned their effectiveness by demonstrating that a simple single layer linear model outperforms Transformer-based models. This was soon shown to be not as valid, by a better transformer-based model termed PatchTST. More re cently, TimeLLM demonstrated even better results by repurposing a Large Language Model (LLM) for the TSF domain. Again, a follow up paper challenged this by demonstrating that removing the LLM component or replacing it with a basic attention layer in fact yields better performance. One of the challenges in forecasting is the fact that TSF data favors the more recent past, and is sometimes subject to unpredictable events. Based upon these recent insights in TSF, we propose a strong Mixture of Experts (MoE) framework. Our method combines the state-of-the-art (SOTA) models including xLSTM, en hanced Linear, PatchTST, and minGRU, among others. This set of complimentary and diverse models for TSF are integrated in a Trans former based MoE gating network. Our proposed model outperforms all existing TSF models on standard benchmarks, surpassing even the latest approaches based on MoE frameworks.
☆ Detecting Religious Language in Climate Discourse
Religious language continues to permeate contemporary discourse, even in ostensibly secular domains such as environmental activism and climate change debates. This paper investigates how explicit and implicit forms of religious language appear in climate-related texts produced by secular and religious nongovernmental organizations (NGOs). We introduce a dual methodological approach: a rule-based model using a hierarchical tree of religious terms derived from ecotheology literature, and large language models (LLMs) operating in a zero-shot setting. Using a dataset of more than 880,000 sentences, we compare how these methods detect religious language and analyze points of agreement and divergence. The results show that the rule-based method consistently labels more sentences as religious than LLMs. These findings highlight not only the methodological challenges of computationally detecting religious language but also the broader tension over whether religious language should be defined by vocabulary alone or by contextual meaning. This study contributes to digital methods in religious studies by demonstrating both the potential and the limitations of approaches for analyzing how the sacred persists in climate discourse.
☆ Opinion Mining Based Entity Ranking using Fuzzy Logic Algorithmic Approach
Opinions are central to almost all human activities and are key influencers of our behaviors. In current times due to growth of social networking website and increase in number of e-commerce site huge amount of opinions are now available on web. Given a set of evaluative statements that contain opinions (or sentiments) about an Entity, opinion mining aims to extract attributes and components of the object that have been commented on in each statement and to determine whether the comments are positive, negative or neutral. While lot of research recently has been done in field of opinion mining and some of it dealing with ranking of entities based on review or opinion set, classifying opinions into finer granularity level and then ranking entities has never been done before. In this paper method for opinion mining from statements at a deeper level of granularity is proposed. This is done by using fuzzy logic reasoning, after which entities are ranked as per this information.
comment: 8 pages, 4 figures, Conference Paper
☆ Symbolic Neural Generation with Applications to Lead Discovery in Drug Design
We investigate a relatively underexplored class of hybrid neurosymbolic models integrating symbolic learning with neural reasoning to construct data generators meeting formal correctness criteria. In \textit{Symbolic Neural Generators} (SNGs), symbolic learners examine logical specifications of feasible data from a small set of instances -- sometimes just one. Each specification in turn constrains the conditional information supplied to a neural-based generator, which rejects any instance violating the symbolic specification. Like other neurosymbolic approaches, SNG exploits the complementary strengths of symbolic and neural methods. The outcome of an SNG is a triple $(H, X, W)$, where $H$ is a symbolic description of feasible instances constructed from data, $X$ a set of generated new instances that satisfy the description, and $W$ an associated weight. We introduce a semantics for such systems, based on the construction of appropriate \textit{base} and \textit{fibre} partially-ordered sets combined into an overall partial order, and outline a probabilistic extension relevant to practical applications. In this extension, SNGs result from searching over a weighted partial ordering. We implement an SNG combining a restricted form of Inductive Logic Programming (ILP) with a large language model (LLM) and evaluate it on early-stage drug design. Our main interest is the description and the set of potential inhibitor molecules generated by the SNG. On benchmark problems -- where drug targets are well understood -- SNG performance is statistically comparable to state-of-the-art methods. On exploratory problems with poorly understood targets, generated molecules exhibit binding affinities on par with leading clinical candidates. Experts further find the symbolic specifications useful as preliminary filters, with several generated molecules identified as viable for synthesis and wet-lab testing.
comment: 37 pages, 15 figures; partial overlap of experimental results with https://doi.org/10.1101/2025.02.14.634875
☆ ZeroFlood: A Geospatial Foundation Model for Data-Efficient Flood Susceptibility Mapping
Flood susceptibility mapping (FSM) is vital for disaster prevention but remains challenging in data-scarce regions where hydrodynamic models require dense geophysical inputs. This work introduces ZeroFlood, a geospatial foundation model framework for data-efficient FSM. The approach fine-tunes Geospatial Foundation Models (GFMs) with Thinking-in-Modality (TiM) reasoning, enabling flood prediction from basic Earth observation data such as Sentinel-1 or Sentinel-2 imagery. Using paired EO and simulated flood maps from data-rich regions, ZeroFlood bridges data availability gaps through cross-modal representation learning. Experiments with TerraMind and Prithvi GFMs show that TiM enhances model robustness, with the TerraMind-Large configuration achieving an F1 score of 67.21. The results demonstrate the feasibility of foundation-model-based FSM as a scalable and data-efficient solution for flood risk management.
comment: Preprint submitted to EUSAR 2026 (under review)
☆ Planning Ahead with RSA: Efficient Signalling in Dynamic Environments by Projecting User Awareness across Future Timesteps
Adaptive agent design offers a way to improve human-AI collaboration on time-sensitive tasks in rapidly changing environments. In such cases, to ensure the human maintains an accurate understanding of critical task elements, an assistive agent must not only identify the highest priority information but also estimate how and when this information can be communicated most effectively, given that human attention represents a zero-sum cognitive resource where focus on one message diminishes awareness of other or upcoming information. We introduce a theoretical framework for adaptive signalling which meets these challenges by using principles of rational communication, formalised as Bayesian reference resolution using the Rational Speech Act (RSA) modelling framework, to plan a sequence of messages which optimise timely alignment between user belief and a dynamic environment. The agent adapts message specificity and timing to the particulars of a user and scenario based on projections of how prior-guided interpretation of messages will influence attention to the interface and subsequent belief update, across several timesteps out to a fixed horizon. In a comparison to baseline methods, we show that this effectiveness depends crucially on combining multi-step planning with a realistic model of user awareness. As the first application of RSA for communication in a dynamic environment, and for human-AI interaction in general, we establish theoretical foundations for pragmatic communication in human-agent teams, highlighting how insights from cognitive science can be capitalised to inform the design of assistive agents.
comment: 11 pages, 3 figures
☆ Multitask Multimodal Self-Supervised Learning for Medical Images
This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.
☆ Arabic Little STT: Arabic Children Speech Recognition Dataset
The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets.
☆ ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.
comment: 18 pages, 7 figures
☆ CNOT Minimal Circuit Synthesis: A Reinforcement Learning Approach
CNOT gates are fundamental to quantum computing, as they facilitate entanglement, a crucial resource for quantum algorithms. Certain classes of quantum circuits are constructed exclusively from CNOT gates. Given their widespread use, it is imperative to minimise the number of CNOT gates employed. This problem, known as CNOT minimisation, remains an open challenge, with its computational complexity yet to be fully characterised. In this work, we introduce a novel reinforcement learning approach to address this task. Instead of training multiple reinforcement learning agents for different circuit sizes, we use a single agent up to a fixed size $m$. Matrices of sizes different from m are preprocessed using either embedding or Gaussian striping. To assess the efficacy of our approach, we trained an agent with m = 8, and evaluated it on matrices of size n that range from 3 to 15. The results we obtained show that our method overperforms the state-of-the-art algorithm as the value of n increases.
☆ A Novel Framework for Multi-Modal Protein Representation Learning
Accurate protein function prediction requires integrating heterogeneous intrinsic signals (e.g., sequence and structure) with noisy extrinsic contexts (e.g., protein-protein interactions and GO term annotations). However, two key challenges hinder effective fusion: (i) cross-modal distributional mismatch among embeddings produced by pre-trained intrinsic encoders, and (ii) noisy relational graphs of extrinsic data that degrade GNN-based information aggregation. We propose Diffused and Aligned Multi-modal Protein Embedding (DAMPE), a unified framework that addresses these through two core mechanisms. First, we propose Optimal Transport (OT)-based representation alignment that establishes correspondence between intrinsic embedding spaces of different modalities, effectively mitigating cross-modal heterogeneity. Second, we develop a Conditional Graph Generation (CGG)-based information fusion method, where a condition encoder fuses the aligned intrinsic embeddings to provide informative cues for graph reconstruction. Meanwhile, our theoretical analysis implies that the CGG objective drives this condition encoder to absorb graph-aware knowledge into its produced protein representations. Empirically, DAMPE outperforms or matches state-of-the-art methods such as DPFunc on standard GO benchmarks, achieving AUPR gains of 0.002-0.013 pp and Fmax gains 0.004-0.007 pp. Ablation studies further show that OT-based alignment contributes 0.043-0.064 pp AUPR, while CGG-based fusion adds 0.005-0.111 pp Fmax. Overall, DAMPE offers a scalable and theoretically grounded approach for robust multi-modal protein representation learning, substantially enhancing protein function prediction.
comment: 35 pages, 5 figures, 4 tables
☆ PAHQ: Accelerating Automated Circuit Discovery through Mixed-Precision Inference Optimization
Circuit discovery, which involves identifying sparse and task-relevant subnetworks in pre-trained language models, is a cornerstone of mechanistic interpretability. Automated Circuit Discovery (ACDC) has emerged as a pivotal methodology in circuit discovery, but its application to large language models is severely limited by computational inefficiency and prohibitively high memory requirements. Although several accelerated approaches have been proposed, they primarily rely on linear approximations to ACDC, which significantly compromises analytical faithfulness. Our proposed method for accelerating automated circuit discovery, Per Attention Head Quantization (PAHQ), takes a fundamentally different approach by optimizing the efficiency of each individual patching operation. PAHQ leverages a fundamental alignment between activation patching and mixed-precision quantization (MPQ): interpretability analysis through patching essentially performs targeted ablation studies. Therefore, we can maintain high precision exclusively for investigated components while safely reducing precision elsewhere in the network. PAHQ-accelerated ACDC reduces runtime by up to 80\% and memory consumption by up to 30\% compared to unaccelerated ACDC while maintaining faithfulness. Importantly, our method readily integrates with existing edge-based circuit discovery techniques by modifying the attention computation mechanism. This training-free approach provides a practical and novel pathway for accelerating mechanistic interpretability methods. Our code is available at https://github.com/626619403/PAHQ.
☆ Deep Active Inference with Diffusion Policy and Multiple Timescale World Model for Real-World Exploration and Navigation
Autonomous robotic navigation in real-world environments requires exploration to acquire environmental information as well as goal-directed navigation in order to reach specified targets. Active inference (AIF) based on the free-energy principle provides a unified framework for these behaviors by minimizing the expected free energy (EFE), thereby combining epistemic and extrinsic values. To realize this practically, we propose a deep AIF framework that integrates a diffusion policy as the policy model and a multiple timescale recurrent state-space model (MTRSSM) as the world model. The diffusion policy generates diverse candidate actions while the MTRSSM predicts their long-horizon consequences through latent imagination, enabling action selection that minimizes EFE. Real-world navigation experiments demonstrated that our framework achieved higher success rates and fewer collisions compared with the baselines, particularly in exploration-demanding scenarios. These results highlight how AIF based on EFE minimization can unify exploration and goal-directed navigation in real-world robotic settings.
comment: Preprint version
☆ Progressive Growing of Patch Size: Curriculum Learning for Accelerated and Improved Medical Image Segmentation MICCAI2024
In this work, we introduce Progressive Growing of Patch Size, an automatic curriculum learning approach for 3D medical image segmentation. Our approach progressively increases the patch size during model training, resulting in an improved class balance for smaller patch sizes and accelerated convergence of the training process. We evaluate our curriculum approach in two settings: a resource-efficient mode and a performance mode, both regarding Dice score performance and computational costs across 15 diverse and popular 3D medical image segmentation tasks. The resource-efficient mode matches the Dice score performance of the conventional constant patch size sampling baseline with a notable reduction in training time to only 44%. The performance mode improves upon constant patch size segmentation results, achieving a statistically significant relative mean performance gain of 1.28% in Dice Score. Remarkably, across all 15 tasks, our proposed performance mode manages to surpass the constant patch size baseline in Dice Score performance, while simultaneously reducing training time to only 89%. The benefits are particularly pronounced for highly imbalanced tasks such as lesion segmentation tasks. Rigorous experiments demonstrate that our performance mode not only improves mean segmentation performance but also reduces performance variance, yielding more trustworthy model comparison. Furthermore, our findings reveal that the proposed curriculum sampling is not tied to a specific architecture but represents a broadly applicable strategy that consistently boosts performance across diverse segmentation models, including UNet, UNETR, and SwinUNETR. In summary, we show that this simple yet elegant transformation on input data substantially improves both Dice Score performance and training runtime, while being compatible across diverse segmentation backbones.
comment: Journal Extension of "Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks" (MICCAI2024) submitted to MedIA
☆ Accelerating IC Thermal Simulation Data Generation via Block Krylov and Operator Action
Recent advances in data-driven approaches, such as neural operators (NOs), have shown substantial efficacy in reducing the solution time for integrated circuit (IC) thermal simulations. However, a limitation of these approaches is requiring a large amount of high-fidelity training data, such as chip parameters and temperature distributions, thereby incurring significant computational costs. To address this challenge, we propose a novel algorithm for the generation of IC thermal simulation data, named block Krylov and operator action (BlocKOA), which simultaneously accelerates the data generation process and enhances the precision of generated data. BlocKOA is specifically designed for IC applications. Initially, we use the block Krylov algorithm based on the structure of the heat equation to quickly obtain a few basic solutions. Then we combine them to get numerous temperature distributions that satisfy the physical constraints. Finally, we apply heat operators on these functions to determine the heat source distributions, efficiently generating precise data points. Theoretical analysis shows that the time complexity of BlocKOA is one order lower than the existing method. Experimental results further validate its efficiency, showing that BlocKOA achieves a 420-fold speedup in generating thermal simulation data for 5000 chips with varying physical parameters and IC structures. Even with just 4% of the generation time, data-driven approaches trained on the data generated by BlocKOA exhibits comparable performance to that using the existing method.
☆ Process Reward Models for Sentence-Level Verification of LVLM Radiology Reports
Automating radiology report generation with Large Vision-Language Models (LVLMs) holds great potential, yet these models often produce clinically critical hallucinations, posing serious risks. Existing hallucination detection methods frequently lack the necessary sentence-level granularity or robust generalization across different LVLM generators. We introduce a novel approach: a sentence-level Process Reward Model (PRM) adapted for this vision-language task. Our PRM predicts the factual correctness of each generated sentence, conditioned on clinical context and preceding text. When fine-tuned on MIMIC-CXR with weakly-supervised labels, a lightweight 0.5B-parameter PRM outperforms existing verification techniques, demonstrating, for instance, relative improvements of 7.5% in Matthews Correlation Coefficient and 1.8% in AUROC over strong white-box baselines on outputs from one LVLM. Unlike methods reliant on internal model states, our PRM demonstrates strong generalization to an unseen LVLM. We further show its practical utility: PRM scores effectively filter low-quality reports, improving F1-CheXbert scores by 4.5% (when discarding the worst 10% of reports). Moreover, when guiding a novel weighted best-of-N selection process on the MIMIC-CXR test set, our PRM show relative improvements in clinical metrics of 7.4% for F1-CheXbert and 0.6% for BERTScore. These results demonstrate that a lightweight, context-aware PRM provides a model-agnostic safety layer for clinical LVLMs without access to internal activations
☆ Human-Like Goalkeeping in a Realistic Football Simulation: a Sample-Efficient Reinforcement Learning Approach
While several high profile video games have served as testbeds for Deep Reinforcement Learning (DRL), this technique has rarely been employed by the game industry for crafting authentic AI behaviors. Previous research focuses on training super-human agents with large models, which is impractical for game studios with limited resources aiming for human-like agents. This paper proposes a sample-efficient DRL method tailored for training and fine-tuning agents in industrial settings such as the video game industry. Our method improves sample efficiency of value-based DRL by leveraging pre-collected data and increasing network plasticity. We evaluate our method training a goalkeeper agent in EA SPORTS FC 25, one of the best-selling football simulations today. Our agent outperforms the game's built-in AI by 10% in ball saving rate. Ablation studies show that our method trains agents 50% faster compared to standard DRL methods. Finally, qualitative evaluation from domain experts indicates that our approach creates more human-like gameplay compared to hand-crafted agents. As a testimony of the impact of the approach, the method is intended to replace the hand-crafted counterpart in next iterations of the series.
☆ Accelerating Eigenvalue Dataset Generation via Chebyshev Subspace Filter
Eigenvalue problems are among the most important topics in many scientific disciplines. With the recent surge and development of machine learning, neural eigenvalue methods have attracted significant attention as a forward pass of inference requires only a tiny fraction of the computation time compared to traditional solvers. However, a key limitation is the requirement for large amounts of labeled data in training, including operators and their eigenvalues. To tackle this limitation, we propose a novel method, named Sorting Chebyshev Subspace Filter (SCSF), which significantly accelerates eigenvalue data generation by leveraging similarities between operators -- a factor overlooked by existing methods. Specifically, SCSF employs truncated fast Fourier transform sorting to group operators with similar eigenvalue distributions and constructs a Chebyshev subspace filter that leverages eigenpairs from previously solved problems to assist in solving subsequent ones, reducing redundant computations. To the best of our knowledge, SCSF is the first method to accelerate eigenvalue data generation. Experimental results show that SCSF achieves up to a $3.5\times$ speedup compared to various numerical solvers.
☆ AUPO - Abstracted Until Proven Otherwise: A Reward Distribution Based Abstraction Algorithm
We introduce a novel, drop-in modification to Monte Carlo Tree Search's (MCTS) decision policy that we call AUPO. Comparisons based on a range of IPPC benchmark problems show that AUPO clearly outperforms MCTS. AUPO is an automatic action abstraction algorithm that solely relies on reward distribution statistics acquired during the MCTS. Thus, unlike other automatic abstraction algorithms, AUPO requires neither access to transition probabilities nor does AUPO require a directed acyclic search graph to build its abstraction, allowing AUPO to detect symmetric actions that state-of-the-art frameworks like ASAP struggle with when the resulting symmetric states are far apart in state space. Furthermore, as AUPO only affects the decision policy, it is not mutually exclusive with other abstraction techniques that only affect the tree search.
☆ Increasing LLM Coding Capabilities through Diverse Synthetic Coding Tasks NeurIPS 2025
Large language models (LLMs) have shown impressive promise in code generation, yet their progress remains limited by the shortage of large-scale datasets that are both diverse and well-aligned with human reasoning. Most existing resources pair problems with solutions, but omit the intermediate thought process that guides coding. To close this gap, we present a scalable synthetic data generation pipeline that produces nearly 800k instruction-reasoning-code-test quadruplets. Each sample combines a task, a step-by-step reasoning trace, a working solution, and executable tests, enabling models to learn not just the what but also the how of problem solving. Our pipeline combines four key components: curated contest problems, web-mined content filtered by relevance classifiers, data expansion guided by reasoning patterns, and multi-stage execution-based validation. A genetic mutation algorithm further increases task diversity while maintaining consistency between reasoning traces and code implementations. Our key finding is that fine-tuning LLMs on this dataset yields consistent improvements on coding benchmarks. Beyond raw accuracy, reasoning-aware data can substitute for model scaling, generalize across architectures, and outperform leading open-source alternatives under identical sample budgets. Our work establishes reasoning-centered synthetic data generation as an efficient approach for advancing coding capabilities in LLMs. We publish our dataset and generation pipeline to facilitate further research.
comment: Presented at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning for Code Workshop (DL4C)
☆ PTPP-Aware Adaptation Scaling Laws: Predicting Domain-Adaptation Performance at Unseen Pre-Training Budgets
Continual pre-training (CPT) for domain adaptation must balance target-domain gains with stability on the base domain. Existing CPT scaling laws typically assume a fixed pre-training budget, which limits their ability to forecast adaptation outcomes for models trained at different tokens-per-parameter (PTPP). We present \emph{PTPP-aware} adaptation scaling laws that make the pre-training budget an explicit variable, enabling accurate \emph{prediction} of adaptation loss at unseen \ptpp. On a multilingual setup (English/Arabic $\rightarrow$ French), PTPP-aware formulations trained on early stages (\ptpp{}=\{15,31\}) predict target loss at \ptpp{}=279 and outperform a PTPP-agnostic \dcpt{} transfer baseline on metrics (Huber-on-log, MAE$_\mathrm{rel}$, calibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond forecasting, we show a practical use case: planning replay ratios and adaptation token budgets that satisfy target and forgetting constraints under compute limits.
☆ DREaM: Drug-Drug Relation Extraction via Transfer Learning Method
Relation extraction between drugs plays a crucial role in identifying drug drug interactions and predicting side effects. The advancement of machine learning methods in relation extraction, along with the development of large medical text databases, has enabled the low cost extraction of such relations compared to other approaches that typically require expert knowledge. However, to the best of our knowledge, there are limited datasets specifically designed for drug drug relation extraction currently available. Therefore, employing transfer learning becomes necessary to apply machine learning methods in this domain. In this study, we propose DREAM, a method that first employs a trained relation extraction model to discover relations between entities and then applies this model to a corpus of medical texts to construct an ontology of drug relationships. The extracted relations are subsequently validated using a large language model. Quantitative results indicate that the LLM agreed with 71 of the relations extracted from a subset of PubMed abstracts. Furthermore, our qualitative analysis indicates that this approach can uncover ambiguities in the medical domain, highlighting the challenges inherent in relation extraction in this field.
☆ Guiding Skill Discovery with Foundation Models
Learning diverse skills without hand-crafted reward functions could accelerate reinforcement learning in downstream tasks. However, existing skill discovery methods focus solely on maximizing the diversity of skills without considering human preferences, which leads to undesirable behaviors and possibly dangerous skills. For instance, a cheetah robot trained using previous methods learns to roll in all directions to maximize skill diversity, whereas we would prefer it to run without flipping or entering hazardous areas. In this work, we propose a Foundation model Guided (FoG) skill discovery method, which incorporates human intentions into skill discovery through foundation models. Specifically, FoG extracts a score function from foundation models to evaluate states based on human intentions, assigning higher values to desirable states and lower to undesirable ones. These scores are then used to re-weight the rewards of skill discovery algorithms. By optimizing the re-weighted skill discovery rewards, FoG successfully learns to eliminate undesirable behaviors, such as flipping or rolling, and to avoid hazardous areas in both state-based and pixel-based tasks. Interestingly, we show that FoG can discover skills involving behaviors that are difficult to define. Interactive visualisations are available from https://sites.google.com/view/submission-fog.
☆ Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs
The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.
☆ Enabling Vibration-Based Gesture Recognition on Everyday Furniture via Energy-Efficient FPGA Implementation of 1D Convolutional Networks
The growing demand for smart home interfaces has increased interest in non-intrusive sensing methods like vibration-based gesture recognition. While prior studies demonstrated feasibility, they often rely on complex preprocessing and large Neural Networks (NNs) requiring costly high-performance hardware, resulting in high energy usage and limited real-world deployability. This study proposes an energy-efficient solution deploying compact NNs on low-power Field-Programmable Gate Arrays (FPGAs) to enable real-time gesture recognition with competitive accuracy. We adopt a series of optimizations: (1) We replace complex spectral preprocessing with raw waveform input, eliminating complex on-board preprocessing while reducing input size by 21x without sacrificing accuracy. (2) We design two lightweight architectures (1D-CNN and 1D-SepCNN) tailored for embedded FPGAs, reducing parameters from 369 million to as few as 216 while maintaining comparable accuracy. (3) With integer-only quantization and automated RTL generation, we achieve seamless FPGA deployment. A ping-pong buffering mechanism in 1D-SepCNN further improves deployability under tight memory constraints. (4) We extend a hardware-aware search framework to support constraint-driven model configuration selection, considering accuracy, deployability, latency, and energy consumption. Evaluated on two swipe-direction datasets with multiple users and ordinary tables, our approach achieves low-latency, energy-efficient inference on the AMD Spartan-7 XC7S25 FPGA. Under the PS data splitting setting, the selected 6-bit 1D-CNN reaches 0.970 average accuracy across users with 9.22 ms latency. The chosen 8-bit 1D-SepCNN further reduces latency to 6.83 ms (over 53x CPU speedup) with slightly lower accuracy (0.949). Both consume under 1.2 mJ per inference, demonstrating suitability for long-term edge operation.
comment: 9 pages, 5 figures, 5 tables, accepted by 2025 IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT)
☆ Adapting Interleaved Encoders with PPO for Language-Guided Reinforcement Learning in BabyAI
Deep reinforcement learning agents often struggle when tasks require understanding both vision and language. Conventional architectures typically isolate perception (for example, CNN-based visual encoders) from decision-making (policy networks). This separation can be inefficient, since the policy's failures do not directly help the perception module learn what is important. To address this, we implement the Perception-Decision Interleaving Transformer (PDiT) architecture introduced by Mao et al. (2023), a model that alternates between perception and decision layers within a single transformer. This interleaving allows feedback from decision-making to refine perceptual features dynamically. In addition, we integrate a contrastive loss inspired by CLIP to align textual mission embeddings with visual scene features. We evaluate the PDiT encoders on the BabyAI GoToLocal environment and find that the approach achieves more stable rewards and stronger alignment compared to a standard PPO baseline. The results suggest that interleaved transformer encoders are a promising direction for developing more integrated autonomous agents.
comment: Undergraduate research project, IIT Palakkad, 2025
☆ Rethinking GSPO: The Perplexity-Entropy Equivalence
We provide a new perspective on GSPO's length-normalized importance ratios by establishing their connection to information-theoretic quantities. We show that GSPO's sequence-level weight $s(\theta) = (\pi_\theta/\pi_{\theta_{\text{old}}})^{1/|y|}$ can be equivalently expressed as the inverse perplexity ratio $\text{PPL}_{\theta_{\text{old}}}/\text{PPL}_\theta$ and as the exponential cross-entropy change $\exp(\Delta H)$. While the perplexity-entropy relationship follows from standard definitions, this observation provides a useful lens for understanding GSPO: the algorithm weights policy gradient updates by perplexity ratios, offering an information-theoretic interpretation of the importance weights. This perspective helps explain GSPO's empirical properties, including log-domain variance reduction through geometric averaging and stability in training mixture-of-experts models. We validate the mathematical equivalences and variance predictions through controlled experiments on mathematical reasoning tasks.
comment: 10 pages, 2 figures
☆ Lost in Tokenization: Context as the Key to Unlocking Biomolecular Understanding in Scientific LLMs
Scientific Large Language Models (Sci-LLMs) have emerged as a promising frontier for accelerating biological discovery. However, these models face a fundamental challenge when processing raw biomolecular sequences: the tokenization dilemma. Whether treating sequences as a specialized language, risking the loss of functional motif information, or as a separate modality, introducing formidable alignment challenges, current strategies fundamentally limit their reasoning capacity. We challenge this sequence-centric paradigm by positing that a more effective strategy is to provide Sci-LLMs with high-level structured context derived from established bioinformatics tools, thereby bypassing the need to interpret low-level noisy sequence data directly. Through a systematic comparison of leading Sci-LLMs on biological reasoning tasks, we tested three input modes: sequence-only, context-only, and a combination of both. Our findings are striking: the context-only approach consistently and substantially outperforms all other modes. Even more revealing, the inclusion of the raw sequence alongside its high-level context consistently degrades performance, indicating that raw sequences act as informational noise, even for models with specialized tokenization schemes. These results suggest that the primary strength of existing Sci-LLMs lies not in their nascent ability to interpret biomolecular syntax from scratch, but in their profound capacity for reasoning over structured, human-readable knowledge. Therefore, we argue for reframing Sci-LLMs not as sequence decoders, but as powerful reasoning engines over expert knowledge. This work lays the foundation for a new class of hybrid scientific AI agents, repositioning the developmental focus from direct sequence interpretation towards high-level knowledge synthesis. The code is available at github.com/opendatalab-raise-dev/CoKE.
comment: 36 pages, under review
☆ GroupSHAP-Guided Integration of Financial News Keywords and Technical Indicators for Stock Price Prediction
Recent advances in finance-specific language models such as FinBERT have enabled the quantification of public sentiment into index-based measures, yet compressing diverse linguistic signals into single metrics overlooks contextual nuances and limits interpretability. To address this limitation, explainable AI techniques, particularly SHAP (SHapley Additive Explanations), have been employed to identify influential features. However, SHAP's computational cost grows exponentially with input features, making it impractical for large-scale text-based financial data. This study introduces a GRU-based forecasting framework enhanced with GroupSHAP, which quantifies contributions of semantically related keyword groups rather than individual tokens, substantially reducing computational burden while preserving interpretability. We employed FinBERT to embed news articles from 2015 to 2024, clustered them into coherent semantic groups, and applied GroupSHAP to measure each group's contribution to stock price movements. The resulting group-level SHAP variables across multiple topics were used as input features for the prediction model. Empirical results from one-day-ahead forecasting of the S&P 500 index throughout 2024 demonstrate that our approach achieves a 32.2% reduction in MAE and a 40.5% reduction in RMSE compared with benchmark models without the GroupSHAP mechanism. This research presents the first application of GroupSHAP in news-driven financial forecasting, showing that grouped sentiment representations simultaneously enhance interpretability and predictive performance.
comment: 6 pages
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ Smaller Models, Smarter Rewards: A Two-Sided Approach to Process and Outcome Rewards NeurIPS 2025
Generating high-quality code remains a challenge for Large Language Models (LLMs). For the evolution of reasoning models on this task, reward models are a necessary intermediate step. These models judge outcomes or intermediate steps. Decoder-only transformer models can be turned into reward models by introducing a regression layer and supervised fine-tuning. While it is known that reflection capabilities generally increase with the size of a model, we want to investigate whether state-of-the-art small language models like the Phi-4 family can be turned into usable reward models blending the consideration of process rewards and outcome rewards. Targeting this goal, we construct a dataset of code samples with correctness labels derived from the APPS coding challenge benchmark. We then train a value-head model to estimate the success probability of intermediate outputs. Our evaluation shows that small LLMs are capable of serving as effective reward models or code evaluation critics, successfully identifying correct solutions among multiple candidates. Using this critic, we achieve over a 20% improvement in the search capability of the most accurate code out of multiple generations.
comment: Accepted and to be presented at NeurIPS 2025 Workshop: Foundations of Reasoning in Language Models
☆ Think before Recommendation: Autonomous Reasoning-enhanced Recommender NeurIPS 2025
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
comment: NeurIPS 2025 poster
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
♻ ☆ Multi-Step Reasoning for Embodied Question Answering via Tool Augmentation
Embodied Question Answering (EQA) requires agents to explore 3D environments to obtain observations and answer questions related to the scene. Existing methods leverage VLMs to directly explore the environment and answer questions without explicit thinking or planning, which limits their reasoning ability and results in excessive or inefficient exploration as well as ineffective responses. In this paper, we introduce ToolEQA, an agent that integrates external tools with multi-step reasoning, where external tools can provide more useful information for completing the task, helping the model derive better exploration directions in the next step of reasoning and thus obtaining additional effective information. This enables ToolEQA to generate more accurate responses with a shorter exploration distance. To enhance the model's ability for tool-usage and multi-step reasoning, we further design a novel EQA data generation pipeline that automatically constructs large-scale EQA tasks with reasoning trajectories and corresponding answers. Based on the pipeline, we collect the EQA-RT dataset that contains about 18K tasks, divided into a training set EQA-RT-Train, and two test sets EQA-RT-Seen (scenes overlapping with the training set) and EQA-RT-Unseen (novel scenes). Experiments on EQA-RT-Seen and EQA-RT-Unseen show that ToolEQA improves the success rate by 9.2~20.2% over state-of-the-art baselines, while outperforming the zero-shot ToolEQA by 10% in success rate. In addition, ToolEQA also achieves state-of-the-art performance on the HM-EQA, OpenEQA, and EXPRESS-Bench datasets, demonstrating its generality. Our homepage see https://tooleqa.github.io.
comment: 16 pages, 7 figures, 8 tables
♻ ☆ Token Is All You Price
We build a mechanism design framework where a platform designs GenAI models to screen users who obtain instrumental value from the generated conversation and privately differ in their preference for latency. We show that the revenue-optimal mechanism is simple: deploy a single aligned (user-optimal) model and use token cap as the only instrument to screen the user. The design decouples model training from pricing, is readily implemented with token metering, and mitigates misalignment pressures.
♻ ☆ ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports
We introduce ReXGroundingCT, the first publicly available dataset linking free-text findings to pixel-level 3D segmentations in chest CT scans. The dataset includes 3,142 non-contrast chest CT scans paired with standardized radiology reports from CT-RATE. Construction followed a structured three-stage pipeline. First, GPT-4 was used to extract and standardize findings, descriptors, and metadata from reports originally written in Turkish and machine-translated into English. Second, GPT-4o-mini categorized each finding into a hierarchical ontology of lung and pleural abnormalities. Third, 3D annotations were produced for all CT volumes: the training set was quality-assured by board-certified radiologists, and the validation and test sets were fully annotated by board-certified radiologists. Additionally, a complementary chain-of-thought dataset was created to provide step-by-step hierarchical anatomical reasoning for localizing findings within the CT volume, using GPT-4o and localization coordinates derived from organ segmentation models. ReXGroundingCT contains 16,301 annotated entities across 8,028 text-to-3D-segmentation pairs, covering diverse radiological patterns from 3,142 non-contrast CT scans. About 79% of findings are focal abnormalities and 21% are non-focal. The dataset includes a public validation set of 50 cases and a private test set of 100 cases, both annotated by board-certified radiologists. The dataset establishes a foundation for enabling free-text finding segmentation and grounded radiology report generation in CT imaging. Model performance on the private test set is hosted on a public leaderboard at https://rexrank.ai/ReXGroundingCT. The dataset is available at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
comment: 34 pages, 5 figures, 7 tables
♻ ☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) is a common practice to adapt generalist models to specialized domains. However, recent studies show that fine-tuning can erode safety alignment, causing LLMs to respond to harmful or unethical prompts. Many methods to realign safety have been proposed, but often introduce custom algorithms that are difficult to implement or compromise task utility. In this work, we propose SafeMERGE, a lightweight, post-fine-tuning framework that preserves safety while maintaining downstream performance. SafeMERGE selectively merges fine-tuned with safety-aligned model layers only when they deviate from safe behavior, measured by a cosine similarity criterion. Across three LLMs and two tasks, SafeMERGE consistently reduces harmful outputs compared to other defenses, with negligible or even positive impact on utility. Our results demonstrate that selective layer-wise merging offers an effective safeguard against the inadvertent loss of safety during fine-tuning, establishing SafeMERGE as a simple post-fine-tuning defense.
♻ ☆ Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
♻ ☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
♻ ☆ WhaleVAD-BPN: Improving Baleen Whale Call Detection with Boundary Proposal Networks and Post-processing Optimisation
While recent sound event detection (SED) systems can identify baleen whale calls in marine audio, challenges related to false positive and minority-class detection persist. We propose the boundary proposal network (BPN), which extends an existing lightweight SED system. The BPN is inspired by work in image object detection and aims to reduce the number of false positive detections. It achieves this by using intermediate latent representations computed within the backbone classification model to gate the final output. When added to an existing SED system, the BPN achieves a 16.8 % absolute increase in precision, as well as 21.3 % and 9.4 % improvements in the F1-score for minority-class d-calls and bp-calls, respectively. We further consider two approaches to the selection of post-processing hyperparameters: a forward-search and a backward-search. By separately optimising event-level and frame-level hyperparameters, these two approaches lead to considerable performance improvements over parameters selected using empirical methods. The complete WhaleVAD-BPN system achieves a cross-validated development F1-score of 0.475, which is a 9.8 % absolute improvement over the baseline.
♻ ☆ What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce
Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, AI agents can parse webpages or interact through APIs to evaluate products, and transact. This raises a fundamental question: what do AI agents buy-and why? We develop ACES, a sandbox environment that pairs a platform-agnostic agent with a fully programmable mock marketplace to study this. We first explore aggregate choices, revealing that modal choices can differ across models, with AI agents sometimes concentrating on a few products, raising competition questions. We then analyze the drivers of choices through rationality checks and randomized experiments on product positions and listing attributes. Models show sizeable and heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal ``top'' rank. They penalize sponsored tags, reward endorsements, and sensitivities to price, ratings, and reviews are directionally as expected, but vary sharply across models. Finally, we find that a seller-side agent that makes minor tweaks to product descriptions can deliver substantial market-share gains by targeting AI buyer preferences. Our findings reveal how AI agents behave in e-commerce, and surface concrete seller strategy, platform design, and regulatory questions.
♻ ☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning ECAI 2025
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025; offline cross-domain reinforcement learning with a guided diffusion model;
♻ ☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
♻ ☆ Smartphone-based iris recognition through high-quality visible-spectrum iris image capture.V2
Smartphone-based iris recognition in the visible spectrum (VIS) remains difficult due to illumination variability, pigmentation differences, and the absence of standardized capture controls. This work presents a compact end-to-end pipeline that enforces ISO/IEC 29794-6 quality compliance at acquisition and demonstrates that accurate VIS iris recognition is feasible on commodity devices. Using a custom Android application performing real-time framing, sharpness evaluation, and feedback, we introduce the CUVIRIS dataset of 752 compliant images from 47 subjects. A lightweight MobileNetV3-based multi-task segmentation network (LightIrisNet) is developed for efficient on-device processing, and a transformer matcher (IrisFormer) is adapted to the VIS domain. Under a standardized protocol and comparative benchmarking against prior CNN baselines, OSIRIS attains a TAR of 97.9% at FAR=0.01 (EER=0.76%), while IrisFormer, trained only on UBIRIS.v2, achieves an EER of 0.057% on CUVIRIS. The acquisition app, trained models, and a public subset of the dataset are released to support reproducibility. These results confirm that standardized capture and VIS-adapted lightweight models enable accurate and practical iris recognition on smartphones.
comment: This submission has been withdrawn because it duplicates significant content from another version of the paper already available on arXiv as arXiv:2412.13063
♻ ☆ Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
♻ ☆ Deriving Transformer Architectures as Implicit Multinomial Regression
While attention has been empirically shown to improve model performance, it lacks a rigorous mathematical justification. This short paper establishes a novel connection between attention mechanisms and multinomial regression. Specifically, we show that in a fixed multinomial regression setting, optimizing over latent features yields solutions that align with the dynamics induced on features by attention blocks. In other words, the evolution of representations through a transformer can be interpreted as a trajectory that recovers the optimal features for classification.
comment: 4 pages, additional 3 pages of references and supplementary details
♻ ☆ Less is More: Local Intrinsic Dimensions of Contextual Language Models NeurIPS 2025
Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025; in press). 10 pages, with an additional 17 pages in the appendix. Our code is available at https://github.com/aidos-lab/Topo_LLM_public and https://github.com/aidos-lab/grokking-via-lid
♻ ☆ Detect Any Sound: Open-Vocabulary Sound Event Detection with Multi-Modal Queries
Most existing sound event detection~(SED) algorithms operate under a closed-set assumption, restricting their detection capabilities to predefined classes. While recent efforts have explored language-driven zero-shot SED by exploiting audio-language models, their performance is still far from satisfactory due to the lack of fine-grained alignment and cross-modal feature fusion. In this work, we propose the Detect Any Sound Model (DASM), a query-based framework for open-vocabulary SED guided by multi-modal queries. DASM formulates SED as a frame-level retrieval task, where audio features are matched against query vectors derived from text or audio prompts. To support this formulation, DASM introduces a dual-stream decoder that explicitly decouples event recognition and temporal localization: a cross-modality event decoder performs query-feature fusion and determines the presence of sound events at the clip-level, while a context network models temporal dependencies for frame-level localization. Additionally, an inference-time attention masking strategy is proposed to leverage semantic relations between base and novel classes, substantially enhancing generalization to novel classes. Experiments on the AudioSet Strong dataset demonstrate that DASM effectively balances localization accuracy with generalization to novel classes, outperforming CLAP-based methods in open-vocabulary setting (+ 7.8 PSDS) and the baseline in the closed-set setting (+ 6.9 PSDS). Furthermore, in cross-dataset zero-shot evaluation on DESED, DASM achieves a PSDS1 score of 42.2, even exceeding the supervised CRNN baseline. The project page is available at https://cai525.github.io/Transformer4SED/demo_page/DASM/.
comment: Accepted by MM 2025
♻ ☆ Automatic Discovery of One Parameter Subgroups of $SO(n)$
We introduce a novel framework for the automatic discovery of one-parameter subgroups ($H_{\gamma}$) of $SO(3)$ and, more generally, $SO(n)$. One-parameter subgroups of $SO(n)$ are crucial in a wide range of applications, including robotics, quantum mechanics, and molecular structure analysis. Our method utilizes the standard Jordan form of skew-symmetric matrices, which define the Lie algebra of $SO(n)$, to establish a canonical form for orbits under the action of $H_{\gamma}$. This canonical form is then employed to derive a standardized representation for $H_{\gamma}$-invariant functions. By learning the appropriate parameters, the framework uncovers the underlying one-parameter subgroup $H_{\gamma}$. The effectiveness of the proposed approach is demonstrated through tasks such as double pendulum modeling, moment of inertia prediction, top quark tagging and invariant polynomial regression, where it successfully recovers meaningful subgroup structure and produces interpretable, symmetry-aware representations.
♻ ☆ ARCS: Agentic Retrieval-Augmented Code Synthesis with Iterative Refinement
We present Agentic Retrieval-Augmented Code Synthesis (ARCS), a system that improves LLM-based code generation without fine-tuning. ARCS operates through a budgeted synthesize-execute-repair loop over a frozen model: it retrieves relevant code context before generation, proposes candidates, executes them against tests, and repairs based on execution feedback. This retrieval-before-generation design reduces hallucination and accelerates convergence. We formalize ARCS as a state-action process with provable guarantees on termination, monotonic improvement, and bounded cost. A tiered controller (Small/Medium/Large) trades latency for accuracy predictably. On HumanEval, ARCS achieves up to 87.2% pass@1 with Llama-3.1-405B, surpassing CodeAgent (82.3%) while using simpler control than tree-search methods. On TransCoder, it achieves >= 90% accuracy on most translation pairs. On a LANL scientific corpus, it improves CodeBLEU by +0.115 over baseline RAG. ARCS provides a practical, reproducible approach to reliable code synthesis using existing LLM checkpoints.
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models NeurIPS 2025
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
comment: NeurIPS 2025, Spotlight Presentation
♻ ☆ How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers and vocabulary, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, previous work on vocabulary expansion has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion in low-resource settings has yet to be explored. In this article, we investigate vocabulary expansion in low-resource settings by considering embedding initialization methods and continual pre-training strategies. Through extensive experiments across typologically diverse languages, tasks and models, we establish a set of strategies to perform vocabulary expansion for faster inference, while striving to maintain competitive downstream performance to baselines. This is achieved with only 30K sentences ($\sim$0.01GB text data) from the target language.
comment: Accepted to Computational Linguistics
♻ ☆ DataRater: Meta-Learned Dataset Curation NeurIPS 2025
The quality of foundation models depends heavily on their training data. Consequently, great efforts have been put into dataset curation. Yet most approaches rely on manual tuning of coarse-grained mixtures of large buckets of data, or filtering by hand-crafted heuristics. An approach that is ultimately more scalable (let alone more satisfying) is to \emph{learn} which data is actually valuable for training. This type of meta-learning could allow more sophisticated, fine-grained, and effective curation. Our proposed \emph{DataRater} is an instance of this idea. It estimates the value of training on any particular data point. This is done by meta-learning using `meta-gradients', with the objective of improving training efficiency on held out data. In extensive experiments across a range of model scales and datasets, we find that using our DataRater to filter data is highly effective, resulting in significantly improved compute efficiency.
comment: NeurIPS 2025
♻ ☆ A Principle of Targeted Intervention for Multi-Agent Reinforcement Learning NeurIPS 2025
Steering cooperative multi-agent reinforcement learning (MARL) towards desired outcomes is challenging, particularly when the global guidance from a human on the whole multi-agent system is impractical in a large-scale MARL. On the other hand, designing external mechanisms (e.g., intrinsic rewards and human feedback) to coordinate agents mostly relies on empirical studies, lacking a easy-to-use research tool. In this work, we employ multi-agent influence diagrams (MAIDs) as a graphical framework to address the above issues. First, we introduce the concept of MARL interaction paradigms (orthogonal to MARL learning paradigms), using MAIDs to analyze and visualize both unguided self-organization and global guidance mechanisms in MARL. Then, we design a new MARL interaction paradigm, referred to as the targeted intervention paradigm that is applied to only a single targeted agent, so the problem of global guidance can be mitigated. In implementation, we introduce a causal inference technique, referred to as Pre-Strategy Intervention (PSI), to realize the targeted intervention paradigm. Since MAIDs can be regarded as a special class of causal diagrams, a composite desired outcome that integrates the primary task goal and an additional desired outcome can be achieved by maximizing the corresponding causal effect through the PSI. Moreover, the bundled relevance graph analysis of MAIDs provides a tool to identify whether an MARL learning paradigm is workable under the design of an MARL interaction paradigm. In experiments, we demonstrate the effectiveness of our proposed targeted intervention, and verify the result of relevance graph analysis.
comment: Published in NeurIPS 2025
♻ ☆ The Complexity Trap: Simple Observation Masking Is as Efficient as LLM Summarization for Agent Context Management NeurIPS '25
Large Language Model (LLM)-based agents solve complex tasks through iterative reasoning, exploration, and tool-use, a process that can result in long, expensive context histories. While state-of-the-art Software Engineering (SE) agents like OpenHands or Cursor use LLM-based summarization to tackle this issue, it is unclear whether the increased complexity offers tangible performance benefits compared to simply omitting older observations. We present a systematic comparison of these approaches within SWE-agent on SWE-bench Verified across five diverse model configurations. Moreover, we show initial evidence of our findings generalizing to the OpenHands agent scaffold. We find that a simple environment observation masking strategy halves cost relative to the raw agent while matching, and sometimes slightly exceeding, the solve rate of LLM summarization. Additionally, we introduce a novel hybrid approach that further reduces costs by 7% and 11% compared to just observation masking or LLM summarization, respectively. Our findings raise concerns regarding the trend towards pure LLM summarization and provide initial evidence of untapped cost reductions by pushing the efficiency-effectiveness frontier. We release code and data for reproducibility.
comment: v3: DL4C camera-ready version to be presented at the 4th DL4C workshop co-located with NeurIPS '25; added OpenHands generality probe, added hybrid context management strategy
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ A Data-driven ML Approach for Maximizing Performance in LLM-Adapter Serving
With the rapid adoption of Large Language Models (LLMs), LLM-adapters have become increasingly common, providing lightweight specialization of large-scale models. Serving hundreds or thousands of these adapters on a single GPU allows request aggregation, increasing throughput, but may also cause request starvation if GPU memory limits are exceeded. To address this issue, this study focuses on determining the joint configuration of concurrent and parallel adapters that maximizes GPU throughput without inducing starvation, given heterogeneous adapter and traffic properties. We propose a data-driven ML approach leveraging interpretable models to tackle this caching problem and introduce the first Digital Twin capable of reproducing an LLM-adapter serving system, enabling efficient training data generation. Experiments with the vLLM framework and LoRA adapters show that the Digital Twin reproduces throughput within 5.1% of real results, while the ML approach predicts optimal numbers of concurrent and parallel adapters with an error of at most 7.2% under heterogeneous, real-world workloads.
comment: Accepted in a computer science workshop
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise
Sharpness-aware minimization (SAM) has emerged as a highly effective technique for improving model generalization, but its underlying principles are not fully understood. We investigated the phenomenon known as m-sharpness, where the performance of SAM improves monotonically as the micro-batch size for computing perturbations decreases. In practice, the empirical m-sharpness effect underpins the deployment of SAM in distributed training, yet a rigorous theoretical account has remained lacking. To provide a theoretical explanation for m-sharpness, we leverage an extended Stochastic Differential Equation (SDE) framework and analyze the structure of stochastic gradient noise (SGN) to characterize the dynamics of various SAM variants, including n-SAM and m-SAM. Our findings reveal that the stochastic noise introduced during SAM perturbations inherently induces a variance-based sharpness regularization effect. Motivated by our theoretical insights, we introduce Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate the effectiveness of our theoretical analysis and proposed method.
♻ ☆ Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
♻ ☆ Estimating LLM Consistency: A User Baseline vs Surrogate Metrics EMNLP 2025
Large language models (LLMs) are prone to hallucinations and sensitiveto prompt perturbations, often resulting in inconsistent or unreliablegenerated text. Different methods have been proposed to mitigate suchhallucinations and fragility, one of which is to measure theconsistency of LLM responses -- the model's confidence in the responseor likelihood of generating a similar response when resampled. Inprevious work, measuring LLM response consistency often relied oncalculating the probability of a response appearing within a pool of resampledresponses, analyzing internal states, or evaluating logits of resopnses.However, it was not clear how well theseapproaches approximated users' perceptions of consistency of LLMresponses. To find out, we performed a user study ($n=2,976$)demonstrating that current methods for measuring LLM responseconsistency typically do not align well with humans' perceptions of LLMconsistency. We propose a logit-based ensemble method for estimatingLLM consistency and show that our method matches the performance of thebest-performing existing metric in estimating human ratings of LLMconsistency. Our results suggest that methods for estimating LLMconsistency without human evaluation are sufficiently imperfect towarrant broader use of evaluation with human input; this would avoidmisjudging the adequacy of models because of the imperfections ofautomated consistency metrics.
comment: Published as a main conference paper at EMNLP 2025
♻ ☆ Can Large Language Models Unlock Novel Scientific Research Ideas? EMNLP 2025
The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study examines the ability of Large Language Models (LLMs) to generate future research ideas from scientific papers. Unlike tasks such as summarization or translation, idea generation lacks a clearly defined reference set or structure, making manual evaluation the default standard. However, human evaluation in this setting is extremely challenging ie: it requires substantial domain expertise, contextual understanding of the paper, and awareness of the current research landscape. This makes it time-consuming, costly, and fundamentally non-scalable, particularly as new LLMs are being released at a rapid pace. Currently, there is no automated evaluation metric specifically designed for this task. To address this gap, we propose two automated evaluation metrics: Idea Alignment Score (IAScore) and Idea Distinctness Index. We further conducted human evaluation to assess the novelty, relevance, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available
comment: EMNLP 2025 (Main)
♻ ☆ Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called $\textit{TARS}$ (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a ``lightweight'' warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
comment: 44 pages, 10 Figures, 7 Tables
♻ ☆ ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation
Legal claims refer to the plaintiff's demands in a case and are essential to guiding judicial reasoning and case resolution. While many works have focused on improving the efficiency of legal professionals, the research on helping non-professionals (e.g., plaintiffs) remains unexplored. This paper explores the problem of legal claim generation based on the given case's facts. First, we construct ClaimGen-CN, the first dataset for Chinese legal claim generation task, from various real-world legal disputes. Additionally, we design an evaluation metric tailored for assessing the generated claims, which encompasses two essential dimensions: factuality and clarity. Building on this, we conduct a comprehensive zero-shot evaluation of state-of-the-art general and legal-domain large language models. Our findings highlight the limitations of the current models in factual precision and expressive clarity, pointing to the need for more targeted development in this domain. To encourage further exploration of this important task, we will make the dataset publicly available.
♻ ☆ Tiny but Mighty: A Software-Hardware Co-Design Approach for Efficient Multimodal Inference on Battery-Powered Small Devices
Large Multimodal Models (LMMs) are inherently modular, consisting of vision and audio encoders, projectors, and large language models. Yet, they are almost always executed monolithically, which underutilizes the heterogeneous accelerators (NPUs, GPUs, DSPs) in modern SoCs and leads to high end-to-end latency. In this paper, we present NANOMIND, a hardware--software co-design inference framework for Large Multimodal Models (LMMs) that breaks large models into modular ``bricks'' (vision, language, audio, etc.) and maps each to its ideal accelerator. The key insight is that large models can be broken into modular components and scheduled to run on the most appropriate compute units. It performs module-level dynamic offloading across accelerators on unified-memory SoCs. By combining customized hardware design, system-level scheduling, and optimized low-bit computation kernels, we demonstrate our framework with a compact, battery-powered device capable of running LMMs entirely on device. This prototype functions as a self-contained intelligent assistant that requires no network connectivity, while achieving higher throughput and superior power efficiency under strict resource constraints. The design further bypasses CPU bottlenecks and reduces redundant memory usage through token-aware buffer management and module-level coordination. Our system outperforms existing implementations in resource efficiency, cutting energy consumption by 42.3\% and GPU memory usage by 11.2\%. This enables a battery-powered device to run LLaVA-OneVision with a camera for nearly half a day and LLaMA-3-8B for voice interactions up to almost 20.8 hours.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery plays a pivotal role in advancing human society, and recent progress in large language models (LLMs) suggests their potential to accelerate this process. However, it remains unclear whether LLMs can autonomously generate novel and valid hypotheses in chemistry. In this work, we investigate whether LLMs can discover high-quality chemistry hypotheses given only a research background-comprising a question and/or a survey-without restriction on the domain of the question. We begin with the observation that hypothesis discovery is a seemingly intractable task. To address this, we propose a formal mathematical decomposition grounded in a fundamental assumption: that most chemistry hypotheses can be composed from a research background and a set of inspirations. This decomposition leads to three practical subtasks-retrieving inspirations, composing hypotheses with inspirations, and ranking hypotheses - which together constitute a sufficient set of subtasks for the overall scientific discovery task. We further develop an agentic LLM framework, MOOSE-Chem, that is a direct implementation of this mathematical decomposition. To evaluate this framework, we construct a benchmark of 51 high-impact chemistry papers published and online after January 2024, each manually annotated by PhD chemists with background, inspirations, and hypothesis. The framework is able to rediscover many hypotheses with high similarity to the groundtruth, successfully capturing the core innovations-while ensuring no data contamination since it uses an LLM with knowledge cutoff date prior to 2024. Finally, based on LLM's surprisingly high accuracy on inspiration retrieval, a task with inherently out-of-distribution nature, we propose a bold assumption: that LLMs may already encode latent scientific knowledge associations not yet recognized by humans.
comment: Accepted by ICLR 2025
♻ ☆ Prompting is not Enough: Exploring Knowledge Integration and Controllable Generation
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
comment: 13 pages, 5 figures
♻ ☆ Towards Responsible AI: Advances in Safety, Fairness, and Accountability of Autonomous Systems
Ensuring responsible use of artificial intelligence (AI) has become imperative as autonomous systems increasingly influence critical societal domains. However, the concept of trustworthy AI remains broad and multi-faceted. This thesis advances knowledge in the safety, fairness, transparency, and accountability of AI systems. In safety, we extend classical deterministic shielding techniques to become resilient against delayed observations, enabling practical deployment in real-world conditions. We also implement both deterministic and probabilistic safety shields into simulated autonomous vehicles to prevent collisions with road users, validating the use of these techniques in realistic driving simulators. We introduce fairness shields, a novel post-processing approach to enforce group fairness in sequential decision-making settings over finite and periodic time horizons. By optimizing intervention costs while strictly ensuring fairness constraints, this method efficiently balances fairness with minimal interference. For transparency and accountability, we propose a formal framework for assessing intentional behaviour in probabilistic decision-making agents, introducing quantitative metrics of agency and intention quotient. We use these metrics to propose a retrospective analysis of intention, useful for determining responsibility when autonomous systems cause unintended harm. Finally, we unify these contributions through the ``reactive decision-making'' framework, providing a general formalization that consolidates previous approaches. Collectively, the advancements presented contribute practically to the realization of safer, fairer, and more accountable AI systems, laying the foundations for future research in trustworthy AI.
comment: 204 pages, 38 figures, PhD Thesis
♻ ☆ TrajAgent: An LLM-Agent Framework for Trajectory Modeling via Large-and-Small Model Collaboration NeurIPS 2025
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. \fix In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. \unfix~In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of \fix 2.38\%-69.91\% \unfix over baseline methods. The codes and data can be accessed via https://github.com/tsinghua-fib-lab/TrajAgent.
comment: Accepted by NeurIPS 2025, https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ LLMs can hide text in other text of the same length
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
♻ ☆ Human-AI Collaboration: Trade-offs Between Performance and Preferences
Despite the growing interest in collaborative AI, designing systems that seamlessly integrate human input remains a major challenge. In this study, we developed a task to systematically examine human preferences for collaborative agents. We created and evaluated five collaborative AI agents with strategies that differ in the manner and degree they adapt to human actions. Participants interacted with a subset of these agents, evaluated their perceived traits, and selected their preferred agent. We used a Bayesian model to understand how agents' strategies influence the Human-AI team performance, AI's perceived traits, and the factors shaping human-preferences in pairwise agent comparisons. Our results show that agents who are more considerate of human actions are preferred over purely performance-maximizing agents. Moreover, we show that such human-centric design can improve the likability of AI collaborators without reducing performance. We find evidence for inequality-aversion effects being a driver of human choices, suggesting that people prefer collaborative agents which allow them to meaningfully contribute to the team. Taken together, these findings demonstrate how collaboration with AI can benefit from development efforts which include both subjective and objective metrics.
comment: LW Mayer & S Karny are co-first authors
♻ ☆ The ISLab Solution to the Algonauts Challenge 2025: A Multimodal Deep Learning Approach to Brain Response Prediction
In this work, we present a network-specific approach for predicting brain responses to complex multimodal movies, leveraging the Yeo 7-network parcellation of the Schaefer atlas. Rather than treating the brain as a homogeneous system, we grouped the seven functional networks into four clusters and trained separate multi-subject, multi-layer perceptron (MLP) models for each. This architecture supports cluster-specific optimization and adaptive memory modeling, allowing each model to adjust temporal dynamics and modality weighting based on the functional role of its target network. Our results demonstrate that this clustered strategy significantly enhances prediction accuracy across the 1,000 cortical regions of the Schaefer atlas. The final model achieved an eighth-place ranking in the Algonauts Project 2025 Challenge, with out-of-distribution (OOD) correlation scores nearly double those of the baseline model used in the selection phase. Code is available at https://github.com/Corsi01/algo2025.
♻ ☆ Noise-corrected GRPO: From Noisy Rewards to Unbiased Gradients
Reinforcement learning from human feedback (RLHF) or verifiable rewards (RLVR), the standard paradigm for aligning LLMs or building recent SOTA reasoning models, is highly sensitive to noise from inconsistent or erroneous rewards. Yet, the interaction between such noise and widely used group-based policy optimization methods remains underexplored. We introduce a noise-robust Group Relative Policy Optimization (GRPO) and Done Right GRPO (Dr.GRPO) framework that explicitly models reward corruption as Bernoulli noise. Our method applies noise correction after estimating reward flip probabilities to debias the learning signal, yielding provably unbiased gradient estimates. Theoretical analysis shows that group-based methods inherently mitigate individual-level noise, and our correction strategy amplifies this robustness. Empirically, we observe consistent improvements across math and code tasks when applying our noise correction to standard reward model usage, with particular gains of up to 6.7 percentage points in accuracy on math tasks and 1.5 on code tasks under realistic reward model conditions. This work bridges label-noise correction from supervised learning with modern RLHF, offering both theoretical insights and a practical algorithm for noisy real-world deployment.
♻ ☆ MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search NeurIPS 2025
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the new task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent literature show that our method consistently outperforms strong baselines.
comment: Accepted by NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) is an efficient alternative to reinforcement learning from human feedback (RLHF), yet it typically assumes hard binary labels and pairwise comparisons. Such assumptions can be brittle under noisy or distribution-shifted supervision. We present Anchored Direct Preference Optimization (ADPO), which (i) incorporates soft preference probabilities, (ii) aligns policy updates through reference anchoring that induces an implicit trust region, and (iii) extends to listwise learning via Plackett-Luce modeling. In controlled synthetic setups covering 12 scenarios (4 noise types x 3 severities) and 3 model scales, ADPO exhibits relative improvements ranging from 12% to 79% over a standard DPO baseline (10-seed means; 95% CIs in the Appendix). Hard labels tend to fare better under severe noise, whereas soft labels yield better calibration under distribution shift; listwise variants achieve the highest WinMass (expected probability mass on the ground-truth best item) in 9/12 scenarios. Larger models amplify ADPO's benefits (0.718 vs. 0.416 at hidden=256), suggesting that anchoring acts as an effective trust-region regularizer. We release code and configurations to facilitate reproducibility.
♻ ☆ LLMs Reproduce Human Purchase Intent via Semantic Similarity Elicitation of Likert Ratings
Consumer research costs companies billions annually yet suffers from panel biases and limited scale. Large language models (LLMs) offer an alternative by simulating synthetic consumers, but produce unrealistic response distributions when asked directly for numerical ratings. We present semantic similarity rating (SSR), a method that elicits textual responses from LLMs and maps these to Likert distributions using embedding similarity to reference statements. Testing on an extensive dataset comprising 57 personal care product surveys conducted by a leading corporation in that market (9,300 human responses), SSR achieves 90% of human test-retest reliability while maintaining realistic response distributions (KS similarity > 0.85). Additionally, these synthetic respondents provide rich qualitative feedback explaining their ratings. This framework enables scalable consumer research simulations while preserving traditional survey metrics and interpretability.
comment: 28 pages, 35 figures
♻ ☆ GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Current frontier large-language models rely on reasoning to achieve state-of-the-art performance. Many existing interpretability are limited in this area, as standard methods have been designed to study single forward passes of a model rather than the multi-token computational steps that unfold during reasoning. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We introduce a black-box method that measures each sentence's counterfactual importance by repeatedly sampling replacement sentences from the model, filtering for semantically different ones, and continuing the chain of thought from that point onwards to quantify the sentence's impact on the distribution of final answers. We discover that certain sentences can have an outsized impact on the trajectory of the reasoning trace and final answer. We term these sentences \textit{thought anchors}. These are generally planning or uncertainty management sentences, and specialized attention heads consistently attend from subsequent sentences to thought anchors. We further show that examining sentence-sentence causal links within a reasoning trace gives insight into a model's behavior. Such information can be used to predict a problem's difficulty and the extent different question domains involve sequential or diffuse reasoning. As a proof-of-concept, we demonstrate that our techniques together provide a practical toolkit for analyzing reasoning models by conducting a detailed case study of how the model solves a difficult math problem, finding that our techniques yield a consistent picture of the reasoning trace's structure. We provide an open-source tool (thought-anchors.com) for visualizing the outputs of our methods on further problems. The convergence across our methods shows the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report, Update on OpenS2S_v1.5
♻ ☆ Training-Free In-Context Forensic Chain for Image Manipulation Detection and Localization
Advances in image tampering pose serious security threats, underscoring the need for effective image manipulation localization (IML). While supervised IML achieves strong performance, it depends on costly pixel-level annotations. Existing weakly supervised or training-free alternatives often underperform and lack interpretability. We propose the In-Context Forensic Chain (ICFC), a training-free framework that leverages multi-modal large language models (MLLMs) for interpretable IML tasks. ICFC integrates an objectified rule construction with adaptive filtering to build a reliable knowledge base and a multi-step progressive reasoning pipeline that mirrors expert forensic workflows from coarse proposals to fine-grained forensics results. This design enables systematic exploitation of MLLM reasoning for image-level classification, pixel-level localization, and text-level interpretability. Across multiple benchmarks, ICFC not only surpasses state-of-the-art training-free methods but also achieves competitive or superior performance compared to weakly and fully supervised approaches.
♻ ☆ PESTO: Real-Time Pitch Estimation with Self-supervised Transposition-equivariant Objective
In this paper, we introduce PESTO, a self-supervised learning approach for single-pitch estimation using a Siamese architecture. Our model processes individual frames of a Variable-$Q$ Transform (VQT) and predicts pitch distributions. The neural network is designed to be equivariant to translations, notably thanks to a Toeplitz fully-connected layer. In addition, we construct pitch-shifted pairs by translating and cropping the VQT frames and train our model with a novel class-based transposition-equivariant objective, eliminating the need for annotated data. Thanks to this architecture and training objective, our model achieves remarkable performances while being very lightweight ($130$k parameters). Evaluations on music and speech datasets (MIR-1K, MDB-stem-synth, and PTDB) demonstrate that PESTO not only outperforms self-supervised baselines but also competes with supervised methods, exhibiting superior cross-dataset generalization. Finally, we enhance PESTO's practical utility by developing a streamable VQT implementation using cached convolutions. Combined with our model's low latency (less than 10 ms) and minimal parameter count, this makes PESTO particularly suitable for real-time applications.
♻ ☆ When Personalization Meets Reality: A Multi-Faceted Analysis of Personalized Preference Learning
While Reinforcement Learning from Human Feedback (RLHF) is widely used to align Large Language Models (LLMs) with human preferences, it typically assumes homogeneous preferences across users, overlooking diverse human values and minority viewpoints. Although personalized preference learning addresses this by tailoring separate preferences for individual users, the field lacks standardized methods to assess its effectiveness. We present a multi-faceted evaluation framework that measures not only performance but also fairness, unintended effects, and adaptability across varying levels of preference divergence. Through extensive experiments comparing eight personalization methods across three preference datasets, we demonstrate that performance differences between methods could reach 36% when users strongly disagree, and personalization can introduce up to 20% safety misalignment. These findings highlight the critical need for holistic evaluation approaches to advance the development of more effective and inclusive preference learning systems.
♻ ☆ BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent NeurIPS 2025
In the field of AI-driven human-GUI interaction automation, while rapid advances in multimodal large language models and reinforcement fine-tuning techniques have yielded remarkable progress, a fundamental challenge persists: their interaction logic significantly deviates from natural human-GUI communication patterns. To fill this gap, we propose "Blink-Think-Link" (BTL), a brain-inspired framework for human-GUI interaction that mimics the human cognitive process between users and graphical interfaces. The system decomposes interactions into three biologically plausible phases: (1) Blink - rapid detection and attention to relevant screen areas, analogous to saccadic eye movements; (2) Think - higher-level reasoning and decision-making, mirroring cognitive planning; and (3) Link - generation of executable commands for precise motor control, emulating human action selection mechanisms. Additionally, we introduce two key technical innovations for the BTL framework: (1) Blink Data Generation - an automated annotation pipeline specifically optimized for blink data, and (2) BTL Reward -- the first rule-based reward mechanism that enables reinforcement learning driven by both process and outcome. Building upon this framework, we develop a GUI agent model named BTL-UI, which demonstrates competitive performance across both static GUI understanding and dynamic interaction tasks in comprehensive benchmarks. These results provide conclusive empirical validation of the framework's efficacy in developing advanced GUI Agents.
comment: Accepted at NeurIPS 2025
♻ ☆ A Guardrail for Safety Preservation: When Safety-Sensitive Subspace Meets Harmful-Resistant Null-Space
Large language models (LLMs) have achieved remarkable success in diverse tasks, yet their safety alignment remains fragile during adaptation. Even when fine-tuning on benign data or with low-rank adaptation, pre-trained safety behaviors are easily degraded, leading to harmful responses in the fine-tuned models. To address this challenge, we propose GuardSpace, a guardrail framework for preserving safety alignment throughout fine-tuning, composed of two key components: a safety-sensitive subspace and a harmful-resistant null space. First, we explicitly decompose pre-trained weights into safety-relevant and safety-irrelevant components using covariance-preconditioned singular value decomposition, and initialize low-rank adapters from the safety-irrelevant ones, while freezing safety-relevant components to preserve their associated safety mechanism. Second, we construct a null space projector that restricts adapter updates from altering safe outputs on harmful prompts, thereby maintaining the original refusal behavior. Experiments with various pre-trained models on multiple downstream tasks demonstrate that GuardSpace achieves superior performance over existing methods. Notably, for Llama-2-7B-Chat fine-tuned on GSM8K, GuardSpace outperforms the state-of-the-art method AsFT, reducing the average harmful score from 14.4% to 3.6%, while improving the accuracy from from 26.0% to 28.0%.
♻ ☆ Zero-shot protein stability prediction by inverse folding models: a free energy interpretation
Inverse folding models have proven to be highly effective zero-shot predictors of protein stability. Despite this success, the link between the amino acid preferences of an inverse folding model and the free-energy considerations underlying thermodynamic stability remains incompletely understood. A better understanding would be of interest not only from a theoretical perspective, but also potentially provide the basis for stronger zero-shot stability prediction. In this paper, we take steps to clarify the free-energy foundations of inverse folding models. Our derivation reveals the standard practice of likelihood ratios as a simplistic approximation and suggests several paths towards better estimates of the relative stability. We empirically assess these approaches and demonstrate that considerable gains in zero-shot performance can be achieved with fairly simple means.
♻ ☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
♻ ☆ Automatic Music Sample Identification with Multi-Track Contrastive Learning
Sampling, the technique of reusing pieces of existing audio tracks to create new music content, is a very common practice in modern music production. In this paper, we tackle the challenging task of automatic sample identification, that is, detecting such sampled content and retrieving the material from which it originates. To do so, we adopt a self-supervised learning approach that leverages a multi-track dataset to create positive pairs of artificial mixes, and design a novel contrastive learning objective. We show that such method significantly outperforms previous state-of-the-art baselines, that is robust to various genres, and that scales well when increasing the number of noise songs in the reference database. In addition, we extensively analyze the contribution of the different components of our training pipeline and highlight, in particular, the need for high-quality separated stems for this task.
♻ ☆ FlightKooba: A Fast Interpretable FTP Model
Flight trajectory prediction (FTP) and similar time series tasks typically require capturing smooth latent dynamics hidden within noisy signals. However, existing deep learning models face significant challenges of high computational cost and insufficient interpretability due to their complex black-box nature. This paper introduces FlightKooba, a novel modeling approach designed to extract such underlying dynamics analytically. Our framework uniquely integrates HiPPO theory, Koopman operator theory, and control theory. By leveraging Legendre polynomial bases, it constructs Koopman operators analytically, thereby avoiding large-scale parameter training. The method's core strengths lie in its exceptional computational efficiency and inherent interpretability. Experiments on multiple public datasets validate our design philosophy: for signals exhibiting strong periodicity or clear physical laws (e.g., in aviation, meteorology, and traffic flow), FlightKooba delivers competitive prediction accuracy while reducing trainable parameters by several orders of magnitude and achieving the fastest training speed. Furthermore, we analyze the model's theoretical boundaries, clarifying its inherent low-pass filtering characteristics that render it unsuitable for sequences dominated by high-frequency noise. In summary, FlightKooba offers a powerful, efficient, and interpretable new alternative for time series analysis, particularly in resource-constrained environments.
comment: Version 2: Major revision of the manuscript to refine the narrative, clarify the model's theoretical limitations and application scope, and improve overall presentation for journal submission
♻ ☆ GVPO: Group Variance Policy Optimization for Large Language Model Post-Training NeurIPS 2025
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. As a next step, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
comment: Accepted by NeurIPS 2025
♻ ☆ SAGE: A Generic Framework for LLM Safety Evaluation EMNLP 2025
As Large Language Models are rapidly deployed across diverse applications from healthcare to financial advice, safety evaluation struggles to keep pace. Current benchmarks focus on single-turn interactions with generic policies, failing to capture the conversational dynamics of real-world usage and the application-specific harms that emerge in context. Such potential oversights can lead to harms that go unnoticed in standard safety benchmarks and other current evaluation methodologies. To address these needs for robust AI safety evaluation, we introduce SAGE (Safety AI Generic Evaluation), an automated modular framework designed for customized and dynamic harm evaluations. SAGE employs prompted adversarial agents with diverse personalities based on the Big Five model, enabling system-aware multi-turn conversations that adapt to target applications and harm policies. We evaluate seven state-of-the-art LLMs across three applications and harm policies. Multi-turn experiments show that harm increases with conversation length, model behavior varies significantly when exposed to different user personalities and scenarios, and some models minimize harm via high refusal rates that reduce usefulness. We also demonstrate policy sensitivity within a harm category where tightening a child-focused sexual policy substantially increases measured defects across applications. These results motivate adaptive, policy-aware, and context-specific testing for safer real-world deployment.
comment: Accepted to EMNLP 2025
♻ ☆ Flow-GRPO: Training Flow Matching Models via Online RL
We propose Flow-GRPO, the first method to integrate online policy gradient reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original number of inference steps, significantly improving sampling efficiency without sacrificing performance. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For compositional generation, RL-tuned SD3.5-M generates nearly perfect object counts, spatial relations, and fine-grained attributes, increasing GenEval accuracy from $63\%$ to $95\%$. In visual text rendering, accuracy improves from $59\%$ to $92\%$, greatly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.
comment: Code: https://github.com/yifan123/flow_grpo
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language and working memory. Furthermore, sequential data processing with Transformers encounters a fundamental barrier: quadratic complexity growth with sequence length. Motivated by these limitations, our ambition is to create more efficient models that are less reliant on intensive computations. We introduce Echo State Transformers (EST), a hybrid architecture that elegantly resolves this challenge while demonstrating exceptional performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with principles from Reservoir Computing to create a fixed-size window distributed memory system. Drawing inspiration from Echo State Networks, the most prominent instance of the Reservoir Computing paradigm, our approach leverages reservoirs (random recurrent networks) as a lightweight and efficient memory. Our architecture integrates a new module called ''Working Memory'' based on several reservoirs working in parallel. These reservoirs work as independent working memory units with distinct internal dynamics. A novelty here is that the classical reservoir hyperparameters, controlling the dynamics, are now trained. Thus, the EST dynamically adapts the reservoir memory/non-linearity trade-off. Thanks to these working memory units, EST achieves constant computational complexity at each processing step, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent challenging timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results position ESTs as a compelling alternative for time-series classification and anomaly detection, and a practical complement to transformer-style models in applications that prioritize robust representations and sensitive event detection.
♻ ☆ Can Less Precise Be More Reliable? A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
The powerful zero-shot generalization capabilities of vision-language models (VLMs) like CLIP have enabled new paradigms for safety-related tasks such as out-of-distribution (OOD) detection. However, additional aspects crucial for the computationally efficient and reliable deployment of CLIP are still overlooked. In particular, the impact of quantization on CLIP's performance beyond accuracy remains underexplored. This work presents a large-scale evaluation of quantization on CLIP models, assessing not only in-distribution accuracy but a comprehensive suite of reliability metrics and revealing counterintuitive results driven by pre-training source. We demonstrate that quantization consistently improves calibration for typically underconfident pre-trained models, while often degrading it for overconfident variants. Intriguingly, this degradation in calibration does not preclude gains in other reliability metrics; we find that OOD detection can still improve for these same poorly calibrated models. Furthermore, we identify specific quantization-aware training (QAT) methods that yield simultaneous gains in zero-shot accuracy, calibration, and OOD robustness, challenging the view of a strict efficiency-performance trade-off. These findings offer critical insights for navigating the multi-objective problem of deploying efficient, reliable, and robust VLMs by utilizing quantization beyond its conventional role.
comment: Preprint, under peer review
♻ ☆ Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens NeurIPS25
Concept-based Models are neural networks that learn a concept extractor to map inputs to high-level concepts and an inference layer to translate these into predictions. Ensuring these modules produce interpretable concepts and behave reliably in out-of-distribution is crucial, yet the conditions for achieving this remain unclear. We study this problem by establishing a novel connection between Concept-based Models and reasoning shortcuts (RSs), a common issue where models achieve high accuracy by learning low-quality concepts, even when the inference layer is fixed and provided upfront. Specifically, we extend RSs to the more complex setting of Concept-based Models and derive theoretical conditions for identifying both the concepts and the inference layer. Our empirical results highlight the impact of RSs and show that existing methods, even combined with multiple natural mitigation strategies, often fail to meet these conditions in practice.
comment: Accepted at NeurIPS25
♻ ☆ First SFT, Second RL, Third UPT: Continual Improving Multi-Modal LLM Reasoning via Unsupervised Post-Training NeurIPS 2025
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
comment: Accepted by NeurIPS 2025
♻ ☆ Uncovering Singularities in Feynman Integrals via Machine Learning
We introduce a machine-learning framework based on symbolic regression to extract the full symbol alphabet of multi-loop Feynman integrals. By targeting the analytic structure rather than reduction, the method is broadly applicable and interpretable across different families of integrals. It successfully reconstructs complete symbol alphabets in nontrivial examples, demonstrating both robustness and generality. Beyond accelerating computations case by case, it uncovers the analytic structure universally. This framework opens new avenues for multi-loop amplitude analysis and provides a versatile tool for exploring scattering amplitudes.
♻ ☆ UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning NeurIPS 2025
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
comment: NeurIPS 2025 Camera Ready. Project Page: https://polyu-chenlab.github.io/unipixel/
♻ ☆ DeepOmni: Towards Seamless and Smart Speech Interaction with Adaptive Modality-Specific MoE
Native multimodal large language models (MLLMs) restructure a single large language model (LLM) into a spoken language model (SLM) capable of both speech and text generation. Compared to modular and aligned MLLMs, native MLLMs preserve richer paralinguistic features such as emotion and prosody, and generate speech responses directly within the backbone LLM rather than using a separate speech decoder. This integration also results in lower response latency and smoother interaction. However, native MLLMs suffer from catastrophic forgetting and performance degradation because the available paired speech-text data is insufficient to support the pretraining of MLLMs compared to the vast amount of text data required to pretrain text LLMs. To address this issue, we propose DeepTalk, a framework for adaptive modality expert learning based on a Mixture of Experts (MoE) architecture. DeepTalk first adaptively distinguishes modality experts according to their modality load within the LLM. Each modality expert then undergoes specialized single-modality training, followed by joint multimodal collaborative training. As a result, DeepTalk incurs only a 5.5% performance drop compared to the original LLM, which is significantly lower than the average performance drop of over 20% typically seen in native MLLMs (such as GLM-4-Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring a seamless and intelligent speech interaction experience. Code and models are released at https://github.com/talkking/DeepTalk.
comment: Under Review
♻ ☆ IKNet: Interpretable Stock Price Prediction via Keyword-Guided Integration of News and Technical Indicators
The increasing influence of unstructured external information, such as news articles, on stock prices has attracted growing attention in financial markets. Despite recent advances, most existing newsbased forecasting models represent all articles using sentiment scores or average embeddings that capture the general tone but fail to provide quantitative, context-aware explanations of the impacts of public sentiment on predictions. To address this limitation, we propose an interpretable keyword-guided network (IKNet), which is an explainable forecasting framework that models the semantic association between individual news keywords and stock price movements. The IKNet identifies salient keywords via FinBERTbased contextual analysis, processes each embedding through a separate nonlinear projection layer, and integrates their representations with the time-series data of technical indicators to forecast next-day closing prices. By applying Shapley Additive Explanations the model generates quantifiable and interpretable attributions for the contribution of each keyword to predictions. Empirical evaluations of S&P 500 data from 2015 to 2024 demonstrate that IKNet outperforms baselines, including recurrent neural networks and transformer models, reducing RMSE by up to 32.9% and improving cumulative returns by 18.5%. Moreover, IKNet enhances transparency by offering contextualized explanations of volatility events driven by public sentiment.
comment: 9 pages
♻ ☆ Improving Video Generation with Human Feedback
Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs.
comment: https://github.com/KwaiVGI/VideoAlign
♻ ☆ COUNTDOWN: Contextually Sparse Activation Filtering Out Unnecessary Weights in Down Projection EMNLP 2025
The growing size of large language models has created significant computational inefficiencies. To address this challenge, sparse activation methods selectively deactivates non-essential parameters during inference, reducing computational costs in FFNN layers. While existing methods focus on non-linear gating mechanisms, we hypothesize that the sparsity of the FFNN layer lies globally in the form of a linear combination over its internal down projection matrix. Based on this insight, we propose two methods: M-COUNTDOWN, leveraging indirect coefficients, and D-COUNTDOWN, utilizing direct coefficients of the linear combination. Experimental results demonstrate that D-COUNTDOWN can omit 90% of computations with performance loss as low as 5.5% ideally, while M-COUNTDOWN provides a predictor-free solution with up to 29.4% better performance preservation compared to existing methods. Our specialized kernel implementations effectively realize these theoretical gains into substantial real-world acceleration.
comment: EMNLP 2025 (Main Track)
♻ ☆ EvoBrain: Dynamic Multi-Channel EEG Graph Modeling for Time-Evolving Brain Networks NeurIPS 2025
Dynamic GNNs, which integrate temporal and spatial features in Electroencephalography (EEG) data, have shown great potential in automating seizure detection. However, fully capturing the underlying dynamics necessary to represent brain states, such as seizure and non-seizure, remains a non-trivial task and presents two fundamental challenges. First, most existing dynamic GNN methods are built on temporally fixed static graphs, which fail to reflect the evolving nature of brain connectivity during seizure progression. Second, current efforts to jointly model temporal signals and graph structures and, more importantly, their interactions remain nascent, often resulting in inconsistent performance. To address these challenges, we present the first theoretical analysis of these two problems, demonstrating the effectiveness and necessity of explicit dynamic modeling and time-then-graph dynamic GNN method. Building on these insights, we propose EvoBrain, a novel seizure detection model that integrates a two-stream Mamba architecture with a GCN enhanced by Laplacian Positional Encoding, following neurological insights. Moreover, EvoBrain incorporates explicitly dynamic graph structures, allowing both nodes and edges to evolve over time. Our contributions include (a) a theoretical analysis proving the expressivity advantage of explicit dynamic modeling and time-then-graph over other approaches, (b) a novel and efficient model that significantly improves AUROC by 23% and F1 score by 30%, compared with the dynamic GNN baseline, and (c) broad evaluations of our method on the challenging early seizure prediction tasks.
comment: Accepted by NeurIPS 2025 (spotlight)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: Accepted by Frontiers of Computer Science
♻ ☆ RePO: Understanding Preference Learning Through ReLU-Based Optimization
Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ The Emergence of Social Science of Large Language Models
The social science of large language models (LLMs) examines how these systems evoke mind attributions, interact with one another, and transform human activity and institutions. We conducted a systematic review of 270 studies, combining text embeddings, unsupervised clustering and topic modeling to build a computational taxonomy. Three domains emerge organically across the reviewed literature. LLM as Social Minds examines whether and when models display behaviors that elicit attributions of cognition, morality and bias, while addressing challenges such as test leakage and surface cues. LLM Societies examines multi-agent settings where interaction protocols, architectures and mechanism design shape coordination, norms, institutions and collective epistemic processes. LLM-Human Interactions examines how LLMs reshape tasks, learning, trust, work and governance, and how risks arise at the human-AI interface. This taxonomy provides a reproducible map of a fragmented field, clarifies evidentiary standards across levels of analysis, and highlights opportunities for cumulative progress in the social science of artificial intelligence.
♻ ☆ The Role of AI in Facilitating Interdisciplinary Collaboration: Evidence from AlphaFold
The acceleration of artificial intelligence (AI) in science is recognized and many scholars have begun to explore its role in interdisciplinary collaboration. However, the mechanisms and extent of this impact are still unclear. This study, using AlphaFold's impact on structural biologists, examines how AI technologies influence interdisciplinary collaborative patterns. By analyzing 1,247 AlphaFold-related papers and 7,700 authors from Scopus, we employ bibliometric analysis and causal inference to compare interdisciplinary collaboration between AlphaFold adopters and non-adopters. Contrary to the widespread belief that AI facilitates interdisciplinary collaboration, our findings show that AlphaFold increased structural biology-computer science collaborations by just 0.48%, with no measurable effect on other disciplines. Specifically, AI creates interdisciplinary collaboration demands with specific disciplines due to its technical characteristics, but this demand is weakened by technological democratization and other factors. These findings demonstrate that artificial intelligence (AI) alone has limited efficacy in bridging disciplinary divides or fostering meaningful interdisciplinary collaboration.
comment: 29pages, 2figures
♻ ☆ Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
♻ ☆ Reconstruction Alignment Improves Unified Multimodal Models
Unified multimodal models (UMMs) unify visual understanding and generation within a single architecture. However, conventional training relies on image-text pairs (or sequences) whose captions are typically sparse and miss fine-grained visual details--even when they use hundreds of words to describe a simple image. We introduce Reconstruction Alignment (RecA), a resource-efficient post-training method that leverages visual understanding encoder embeddings as dense "text prompts," providing rich supervision without captions. Concretely, RecA conditions a UMM on its own visual understanding embeddings and optimizes it to reconstruct the input image with a self-supervised reconstruction loss, thereby realigning understanding and generation. Despite its simplicity, RecA is broadly applicable: across autoregressive, masked-autoregressive, and diffusion-based UMMs, it consistently improves generation and editing fidelity. With only 27 GPU-hours, post-training with RecA substantially improves image generation performance on GenEval (0.73$\rightarrow$0.90) and DPGBench (80.93$\rightarrow$88.15), while also boosting editing benchmarks (ImgEdit 3.38$\rightarrow$3.75, GEdit 6.94$\rightarrow$7.25). Notably, RecA surpasses much larger open-source models and applies broadly across diverse UMM architectures, establishing it as an efficient and general post-training alignment strategy for UMMs
comment: 34 pages, 28 figures and 11 tables; Update ablation study
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, \textbf{HoliSafe}, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation (HoliSafe-Bench). We further propose a novel modular framework for enhancing VLM safety with a visual guard module (VGM) designed to assess the harmfulness of input images for VLMs. This module endows VLMs with a dual functionality: they not only learn to generate safer responses but can also provide an interpretable harmfulness classification to justify their refusal decisions. A significant advantage of this approach is its modularity; the VGM is designed as a plug-in component, allowing for seamless integration with diverse pre-trained VLMs across various scales. Experiments show that Safe-VLM with VGM, trained on our HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe-Bench itself reveals critical vulnerabilities in existing VLM models. We hope that HoliSafe and VGM will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ ContextAgent: Context-Aware Proactive LLM Agents with Open-World Sensory Perceptions NeurIPS 2025
Recent advances in Large Language Models (LLMs) have propelled intelligent agents from reactive responses to proactive support. While promising, existing proactive agents either rely exclusively on observations from enclosed environments (e.g., desktop UIs) with direct LLM inference or employ rule-based proactive notifications, leading to suboptimal user intent understanding and limited functionality for proactive service. In this paper, we introduce ContextAgent, the first context-aware proactive agent that incorporates extensive sensory contexts surrounding humans to enhance the proactivity of LLM agents. ContextAgent first extracts multi-dimensional contexts from massive sensory perceptions on wearables (e.g., video and audio) to understand user intentions. ContextAgent then leverages the sensory contexts and personas from historical data to predict the necessity for proactive services. When proactive assistance is needed, ContextAgent further automatically calls the necessary tools to assist users unobtrusively. To evaluate this new task, we curate ContextAgentBench, the first benchmark for evaluating context-aware proactive LLM agents, covering 1,000 samples across nine daily scenarios and twenty tools. Experiments on ContextAgentBench show that ContextAgent outperforms baselines by achieving up to 8.5% and 6.0% higher accuracy in proactive predictions and tool calling, respectively. We hope our research can inspire the development of more advanced, human-centric, proactive AI assistants. The code and dataset are publicly available at https://github.com/openaiotlab/ContextAgent.
comment: Accepted by NeurIPS 2025
Machine Learning 25
☆ Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
comment: Project Page: https://riccizz.github.io/VMD
☆ Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling NeurIPS 2025
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
comment: NeurIPS 2025, 38 pages, 22 figures
☆ Lightweight Robust Direct Preference Optimization
Direct Preference Optimization (DPO) has become a popular method for fine-tuning large language models (LLMs) due to its stability and simplicity. However, it is also known to be sensitive to noise in the data and prone to overfitting. Recent works have proposed using distributionally robust optimization (DRO) to address potential noise and distributional shift in the data. However, these methods often suffer from excessive conservatism and high computational cost. We propose DPO-PRO (DPO with Preference Robustness), a robust fine-tuning algorithm based on DPO which accounts for uncertainty in the preference distribution through a lightweight DRO formulation. Unlike prior DRO-based variants, DPO-PRO focuses solely on uncertainty in preferences, avoiding unnecessary conservatism and incurring negligible computational overhead. We further show that DPO-PRO is equivalent to a regularized DPO objective that penalizes model overconfidence under weak preference signals. We evaluate DPO-PRO on standard alignment benchmarks and a real-world public health task. Experimental results show that our method consistently improves robustness to noisy preference signals compared to existing DPO variants.
☆ Lookahead Anchoring: Preserving Character Identity in Audio-Driven Human Animation
Audio-driven human animation models often suffer from identity drift during temporal autoregressive generation, where characters gradually lose their identity over time. One solution is to generate keyframes as intermediate temporal anchors that prevent degradation, but this requires an additional keyframe generation stage and can restrict natural motion dynamics. To address this, we propose Lookahead Anchoring, which leverages keyframes from future timesteps ahead of the current generation window, rather than within it. This transforms keyframes from fixed boundaries into directional beacons: the model continuously pursues these future anchors while responding to immediate audio cues, maintaining consistent identity through persistent guidance. This also enables self-keyframing, where the reference image serves as the lookahead target, eliminating the need for keyframe generation entirely. We find that the temporal lookahead distance naturally controls the balance between expressivity and consistency: larger distances allow for greater motion freedom, while smaller ones strengthen identity adherence. When applied to three recent human animation models, Lookahead Anchoring achieves superior lip synchronization, identity preservation, and visual quality, demonstrating improved temporal conditioning across several different architectures. Video results are available at the following link: https://lookahead-anchoring.github.io.
comment: Project page: https://lookahead-anchoring.github.io
☆ RobotArena $\infty$: Scalable Robot Benchmarking via Real-to-Sim Translation
The pursuit of robot generalists - instructable agents capable of performing diverse tasks across diverse environments - demands rigorous and scalable evaluation. Yet real-world testing of robot policies remains fundamentally constrained: it is labor-intensive, slow, unsafe at scale, and difficult to reproduce. Existing simulation benchmarks are similarly limited, as they train and test policies within the same synthetic domains and cannot assess models trained from real-world demonstrations or alternative simulation environments. As policies expand in scope and complexity, these barriers only intensify, since defining "success" in robotics often hinges on nuanced human judgments of execution quality. In this paper, we introduce a new benchmarking framework that overcomes these challenges by shifting VLA evaluation into large-scale simulated environments augmented with online human feedback. Leveraging advances in vision-language models, 2D-to-3D generative modeling, and differentiable rendering, our approach automatically converts video demonstrations from widely used robot datasets into simulated counterparts. Within these digital twins, we assess VLA policies using both automated VLM-guided scoring and scalable human preference judgments collected from crowdworkers, transforming human involvement from tedious scene setup, resetting, and safety supervision into lightweight preference comparisons. To measure robustness, we systematically perturb simulated environments along multiple axes, such as textures and object placements, stress-testing policy generalization under controlled variation. The result is a continuously evolving, reproducible, and scalable benchmark for real-world trained robot manipulation policies, addressing a critical missing capability in today's robotics landscape.
comment: Website: https://robotarenainf.github.io
☆ ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
☆ Minimizing Human Intervention in Online Classification
We introduce and study an online problem arising in question answering systems. In this problem, an agent must sequentially classify user-submitted queries represented by $d$-dimensional embeddings drawn i.i.d. from an unknown distribution. The agent may consult a costly human expert for the correct label, or guess on her own without receiving feedback. The goal is to minimize regret against an oracle with free expert access. When the time horizon $T$ is at least exponential in the embedding dimension $d$, one can learn the geometry of the class regions: in this regime, we propose the Conservative Hull-based Classifier (CHC), which maintains convex hulls of expert-labeled queries and calls the expert as soon as a query lands outside all known hulls. CHC attains $\mathcal{O}(\log^d T)$ regret in $T$ and is minimax optimal for $d=1$. Otherwise, the geometry cannot be reliably learned without additional distributional assumptions. We show that when the queries are drawn from a subgaussian mixture, for $T \le e^d$, a Center-based Classifier (CC) achieves regret proportional to $N\log{N}$ where $N$ is the number of labels. To bridge these regimes, we introduce the Generalized Hull-based Classifier (GHC), a practical extension of CHC that allows for more aggressive guessing via a tunable threshold parameter. Our approach is validated with experiments, notably on real-world question-answering datasets using embeddings derived from state-of-the-art large language models.
comment: 49 pages, 8 figures
☆ A U-Net and Transformer Pipeline for Multilingual Image Translation
This paper presents an end-to-end multilingual translation pipeline that integrates a custom U-Net for text detection, the Tesseract engine for text recognition, and a from-scratch sequence-to-sequence (Seq2Seq) Transformer for Neural Machine Translation (NMT). Our approach first utilizes a U-Net model, trained on a synthetic dataset , to accurately segment and detect text regions from an image. These detected regions are then processed by Tesseract to extract the source text. This extracted text is fed into a custom Transformer model trained from scratch on a multilingual parallel corpus spanning 5 languages. Unlike systems reliant on monolithic pre-trained models, our architecture emphasizes full customization and adaptability. The system is evaluated on its text detection accuracy, text recognition quality, and translation performance via BLEU scores. The complete pipeline demonstrates promising results, validating the viability of a custom-built system for translating text directly from images.
comment: 6 pages, 3 figures, 5 tables, and 2 algorithms. Prepared in IEEE double-column format
☆ Sequential Multi-Agent Dynamic Algorithm Configuration NeurIPS 2025
Dynamic algorithm configuration (DAC) is a recent trend in automated machine learning, which can dynamically adjust the algorithm's configuration during the execution process and relieve users from tedious trial-and-error tuning tasks. Recently, multi-agent reinforcement learning (MARL) approaches have improved the configuration of multiple heterogeneous hyperparameters, making various parameter configurations for complex algorithms possible. However, many complex algorithms have inherent inter-dependencies among multiple parameters (e.g., determining the operator type first and then the operator's parameter), which are, however, not considered in previous approaches, thus leading to sub-optimal results. In this paper, we propose the sequential multi-agent DAC (Seq-MADAC) framework to address this issue by considering the inherent inter-dependencies of multiple parameters. Specifically, we propose a sequential advantage decomposition network, which can leverage action-order information through sequential advantage decomposition. Experiments from synthetic functions to the configuration of multi-objective optimization algorithms demonstrate Seq-MADAC's superior performance over state-of-the-art MARL methods and show strong generalization across problem classes. Seq-MADAC establishes a new paradigm for the widespread dependency-aware automated algorithm configuration. Our code is available at https://github.com/lamda-bbo/seq-madac.
comment: NeurIPS 2025
☆ Direct Debiased Machine Learning via Bregman Divergence Minimization
We develop a direct debiased machine learning framework comprising Neyman targeted estimation and generalized Riesz regression. Our framework unifies Riesz regression for automatic debiased machine learning, covariate balancing, targeted maximum likelihood estimation (TMLE), and density-ratio estimation. In many problems involving causal effects or structural models, the parameters of interest depend on regression functions. Plugging regression functions estimated by machine learning methods into the identifying equations can yield poor performance because of first-stage bias. To reduce such bias, debiased machine learning employs Neyman orthogonal estimating equations. Debiased machine learning typically requires estimation of the Riesz representer and the regression function. For this problem, we develop a direct debiased machine learning framework with an end-to-end algorithm. We formulate estimation of the nuisance parameters, the regression function and the Riesz representer, as minimizing the discrepancy between Neyman orthogonal scores computed with known and unknown nuisance parameters, which we refer to as Neyman targeted estimation. Neyman targeted estimation includes Riesz representer estimation, and we measure discrepancies using the Bregman divergence. The Bregman divergence encompasses various loss functions as special cases, where the squared loss yields Riesz regression and the Kullback-Leibler divergence yields entropy balancing. We refer to this Riesz representer estimation as generalized Riesz regression. Neyman targeted estimation also yields TMLE as a special case for regression function estimation. Furthermore, for specific pairs of models and Riesz representer estimation methods, we can automatically obtain the covariate balancing property without explicitly solving the covariate balancing objective.
☆ When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning NeurIPS 2025
Designing models that can learn to reason in a systematic way is an important and long-standing challenge. In recent years, a wide range of solutions have been proposed for the specific case of systematic relational reasoning, including Neuro-Symbolic approaches, variants of the Transformer architecture, and specialised Graph Neural Networks. However, existing benchmarks for systematic relational reasoning focus on an overly simplified setting, based on the assumption that reasoning can be reduced to composing relational paths. In fact, this assumption is hard-baked into the architecture of several recent models, leading to approaches that can perform well on existing benchmarks but are difficult to generalise to other settings. To support further progress in the field of systematic relational reasoning with neural networks, we introduce NoRA, a new benchmark which adds several levels of difficulty and requires models to go beyond path-based reasoning.
comment: accepted at NeurIPS 2025 D&B track
☆ Learning Linearity in Audio Consistency Autoencoders via Implicit Regularization
Audio autoencoders learn useful, compressed audio representations, but their non-linear latent spaces prevent intuitive algebraic manipulation such as mixing or scaling. We introduce a simple training methodology to induce linearity in a high-compression Consistency Autoencoder (CAE) by using data augmentation, thereby inducing homogeneity (equivariance to scalar gain) and additivity (the decoder preserves addition) without altering the model's architecture or loss function. When trained with our method, the CAE exhibits linear behavior in both the encoder and decoder while preserving reconstruction fidelity. We test the practical utility of our learned space on music source composition and separation via simple latent arithmetic. This work presents a straightforward technique for constructing structured latent spaces, enabling more intuitive and efficient audio processing.
☆ Toward Carbon-Neutral Human AI: Rethinking Data, Computation, and Learning Paradigms for Sustainable Intelligence
The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.
comment: 9 pages, 3 figures
☆ A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $\lambda$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.
comment: Accepted to IEEE Big-Data 2025 main research track. The paper is 10 main pages and 4 pages of Appendix
♻ ☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable, all without any extra computational overhead. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ UNDREAM: Bridging Differentiable Rendering and Photorealistic Simulation for End-to-end Adversarial Attacks
Deep learning models deployed in safety critical applications like autonomous driving use simulations to test their robustness against adversarial attacks in realistic conditions. However, these simulations are non-differentiable, forcing researchers to create attacks that do not integrate simulation environmental factors, reducing attack success. To address this limitation, we introduce UNDREAM, the first software framework that bridges the gap between photorealistic simulators and differentiable renderers to enable end-to-end optimization of adversarial perturbations on any 3D objects. UNDREAM enables manipulation of the environment by offering complete control over weather, lighting, backgrounds, camera angles, trajectories, and realistic human and object movements, thereby allowing the creation of diverse scenes. We showcase a wide array of distinct physically plausible adversarial objects that UNDREAM enables researchers to swiftly explore in different configurable environments. This combination of photorealistic simulation and differentiable optimization opens new avenues for advancing research of physical adversarial attacks.
♻ ☆ ESCA: Contextualizing Embodied Agents via Scene-Graph Generation NeurIPS 2025
Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, existing MLLMs do not reliably capture fine-grained links between low-level visual features and high-level textual semantics, leading to weak grounding and inaccurate perception. To overcome this challenge, we propose ESCA, a framework that contextualizes embodied agents by grounding their perception in spatial-temporal scene graphs. At its core is SGCLIP, a novel, open-domain, promptable foundation model for generating scene graphs that is based on CLIP. SGCLIP is trained on 87K+ open-domain videos using a neurosymbolic pipeline that aligns automatically generated captions with scene graphs produced by the model itself, eliminating the need for human-labeled annotations. We demonstrate that SGCLIP excels in both prompt-based inference and task-specific fine-tuning, achieving state-of-the-art results on scene graph generation and action localization benchmarks. ESCA with SGCLIP improves perception for embodied agents based on both open-source and commercial MLLMs, achieving state of-the-art performance across two embodied environments. Notably, ESCA significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines. We release the source code for SGCLIP model training at https://github.com/video-fm/LASER and for the embodied agent at https://github.com/video-fm/ESCA.
comment: Accepted as a Spotlight Paper at NeurIPS 2025
♻ ☆ Now you see me! Attribution Distributions Reveal What is Truly Important for a Prediction
Neural networks are regularly employed in high-stakes decision-making, where understanding and transparency is key. Attribution methods have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely used in computer vision, these methods often result in unspecific saliency maps that fail to identify the relevant information that led to a decision, supported by different benchmarks results. Here, we revisit the common attribution pipeline and identify one cause for the lack of specificity in attributions as the computation of attribution of isolated logits. Instead, we suggest to combine attributions of multiple class logits in analogy to how the softmax combines the information across logits. By computing probability distributions of attributions over classes for each spatial location in the image, we unleash the true capabilities of existing attribution methods, revealing better object- and instance-specificity and uncovering discriminative as well as shared features between classes. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, we show that this reconsideration of how and where we compute attributions across the network improves established attribution methods while staying agnostic to model architectures. We make the code publicly available: https://github.com/nilspwalter/var.
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established Direct-Harm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Enhancing Graph Neural Networks: A Mutual Learning Approach
Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
♻ ☆ On the Stability of Graph Convolutional Neural Networks: A Probabilistic Perspective
Graph convolutional neural networks (GCNNs) have emerged as powerful tools for analyzing graph-structured data, achieving remarkable success across diverse applications. However, the theoretical understanding of the stability of these models, i.e., their sensitivity to small changes in the graph structure, remains in rather limited settings, hampering the development and deployment of robust and trustworthy models in practice. To fill this gap, we study how perturbations in the graph topology affect GCNN outputs and propose a novel formulation for analyzing model stability. Unlike prior studies that focus only on worst-case perturbations, our distribution-aware formulation characterizes output perturbations across a broad range of input data. This way, our framework enables, for the first time, a probabilistic perspective on the interplay between the statistical properties of the node data and perturbations in the graph topology. We conduct extensive experiments to validate our theoretical findings and demonstrate their benefits over existing baselines, in terms of both representation stability and adversarial attacks on downstream tasks. Our results demonstrate the practical significance of the proposed formulation and highlight the importance of incorporating data distribution into stability analysis.
♻ ☆ ProSpero: Active Learning for Robust Protein Design Beyond Wild-Type Neighborhoods NeurIPS 2025
Designing protein sequences of both high fitness and novelty is a challenging task in data-efficient protein engineering. Exploration beyond wild-type neighborhoods often leads to biologically implausible sequences or relies on surrogate models that lose fidelity in novel regions. Here, we propose ProSpero, an active learning framework in which a frozen pre-trained generative model is guided by a surrogate updated from oracle feedback. By integrating fitness-relevant residue selection with biologically-constrained Sequential Monte Carlo sampling, our approach enables exploration beyond wild-type neighborhoods while preserving biological plausibility. We show that our framework remains effective even when the surrogate is misspecified. ProSpero consistently outperforms or matches existing methods across diverse protein engineering tasks, retrieving sequences of both high fitness and novelty.
comment: NeurIPS 2025
♻ ☆ On the Structure of Stationary Solutions to McKean-Vlasov Equations with Applications to Noisy Transformers
We study stationary solutions of McKean-Vlasov equations on the circle. Our main contributions stem from observing an exact equivalence between solutions of the stationary McKean-Vlasov equation and an infinite-dimensional quadratic system of equations over Fourier coefficients, which allows explicit characterization of the stationary states in a sequence space rather than a function space. This framework provides a transparent description of local bifurcations, characterizing their periodicity, and resonance structures, while accommodating singular potentials. We derive analytic expressions that characterize the emergence, form and shape (supercritical, critical, subcritical or transcritical) of bifurcations involving possibly multiple Fourier modes and connect them with discontinuous phase transitions. We also characterize, under suitable assumptions, the detailed structure of the stationary bifurcating solutions that are accurate upto an arbitrary number of Fourier modes. At the global level, we establish regularity and concavity properties of the free energy landscape, proving existence, compactness, and coexistence of globally minimizing stationary measures, further identifying discontinuous phase transitions with points of non-differentiability of the minimum free energy map. As an application, we specialize the theory to the Noisy Mean-Field Transformer model, where we show how changing the inverse temperature parameter $\beta$ affects the geometry of the infinitely many bifurcations from the uniform measure. We also explain how increasing $\beta$ can lead to a rich class of approximate multi-mode stationary solutions which can be seen as `metastable states'. Further, a sharp transition from continuous to discontinuous (first-order) phase behavior is observed as $\beta$ increases.
comment: 46 pages, 5 figures
♻ ☆ WhaleVAD-BPN: Improving Baleen Whale Call Detection with Boundary Proposal Networks and Post-processing Optimisation
While recent sound event detection (SED) systems can identify baleen whale calls in marine audio, challenges related to false positive and minority-class detection persist. We propose the boundary proposal network (BPN), which extends an existing lightweight SED system. The BPN is inspired by work in image object detection and aims to reduce the number of false positive detections. It achieves this by using intermediate latent representations computed within the backbone classification model to gate the final output. When added to an existing SED system, the BPN achieves a 16.8 % absolute increase in precision, as well as 21.3 % and 9.4 % improvements in the F1-score for minority-class d-calls and bp-calls, respectively. We further consider two approaches to the selection of post-processing hyperparameters: a forward-search and a backward-search. By separately optimising event-level and frame-level hyperparameters, these two approaches lead to considerable performance improvements over parameters selected using empirical methods. The complete WhaleVAD-BPN system achieves a cross-validated development F1-score of 0.475, which is a 9.8 % absolute improvement over the baseline.
♻ ☆ DmC: Nearest Neighbor Guidance Diffusion Model for Offline Cross-domain Reinforcement Learning ECAI 2025
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes $k$-nearest neighbor ($k$-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
comment: accepted at ECAI 2025; offline cross-domain reinforcement learning with a guided diffusion model;
Information Retrieval 20
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ Think before Recommendation: Autonomous Reasoning-enhanced Recommender NeurIPS 2025
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
comment: NeurIPS 2025 poster
☆ Multi-Stage Field Extraction of Financial Documents with OCR and Compact Vision-Language Models
Financial documents are essential sources of information for regulators, auditors, and financial institutions, particularly for assessing the wealth and compliance of Small and Medium-sized Businesses. However, SMB documents are often difficult to parse. They are rarely born digital and instead are distributed as scanned images that are none machine readable. The scans themselves are low in resolution, affected by skew or rotation, and often contain noisy backgrounds. These documents also tend to be heterogeneous, mixing narratives, tables, figures, and multilingual content within the same report. Such characteristics pose major challenges for automated information extraction, especially when relying on end to end large Vision Language Models, which are computationally expensive, sensitive to noise, and slow when applied to files with hundreds of pages. We propose a multistage pipeline that leverages traditional image processing models and OCR extraction, together with compact VLMs for structured field extraction of large-scale financial documents. Our approach begins with image pre-processing, including segmentation, orientation detection, and size normalization. Multilingual OCR is then applied to recover page-level text. Upon analyzing the text information, pages are retrieved for coherent sections. Finally, compact VLMs are operated within these narrowed-down scopes to extract structured financial indicators. Our approach is evaluated using an internal corpus of multi-lingual, scanned financial documents. The results demonstrate that compact VLMs, together with a multistage pipeline, achieves 8.8 times higher field level accuracy relative to directly feeding the whole document into large VLMs, only at 0.7 percent of the GPU cost and 92.6 percent less end-to-end service latency.
☆ Improving Product Search Relevance with EAR-MP: A Solution for the CIKM 2025 AnalytiCup
Multilingual e-commerce search is challenging due to linguistic diversity and the noise inherent in user-generated queries. This paper documents the solution employed by our team (EAR-MP) for the CIKM 2025 AnalytiCup, which addresses two core tasks: Query-Category (QC) relevance and Query-Item (QI) relevance. Our approach first normalizes the multilingual dataset by translating all text into English, then mitigates noise through extensive data cleaning and normalization. For model training, we build on DeBERTa-v3-large and improve performance with label smoothing, self-distillation, and dropout. In addition, we introduce task-specific upgrades, including hierarchical token injection for QC and a hybrid scoring mechanism for QI. Under constrained compute, our method achieves competitive results, attaining an F1 score of 0.8796 on QC and 0.8744 on QI. These findings underscore the importance of systematic data preprocessing and tailored training strategies for building robust, resource-efficient multilingual relevance systems.
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ GTR-Mamba: Geometry-to-Tangent Routing for Hyperbolic POI Recommendation ICDE 2026
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing POI recommendation models, predominantly based on Graph Neural Networks and sequential models, have been extensively studied. However, these models face a fundamental limitation: they struggle to simultaneously capture the inherent hierarchical structure of spatial choices and the dynamics and irregular shifts of user-specific temporal contexts. To overcome this limitation, we propose GTR-Mamba, a novel framework for cross-manifold conditioning and routing. GTR-Mamba leverages the distinct advantages of different mathematical spaces for different tasks: it models the static, tree-like preference hierarchies in hyperbolic geometry, while routing the dynamic sequence updates to a novel Mamba layer in the computationally stable and efficient Euclidean tangent space. This process is coordinated by a cross-manifold channel that fuses spatio-temporal information to explicitly steer the State Space Model (SSM), enabling flexible adaptation to contextual changes. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baseline models in next POI recommendation.
comment: 14 pages, 8 figures, 4 tables, submitted to ICDE 2026
☆ MGFRec: Towards Reinforced Reasoning Recommendation with Multiple Groundings and Feedback
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and ontology-compliant knowledge graphs (OCKGs) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 5 pages, 8 figures
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ SBAN: A Framework & Multi-Dimensional Dataset for Large Language Model Pre-Training and Software Code Mining
This paper introduces SBAN (Source code, Binary, Assembly, and Natural Language Description), a large-scale, multi-dimensional dataset designed to advance the pre-training and evaluation of large language models (LLMs) for software code analysis. SBAN comprises more than 3 million samples, including 2.9 million benign and 672,000 malware respectively, each represented across four complementary layers: binary code, assembly instructions, natural language descriptions, and source code. This unique multimodal structure enables research on cross-representation learning, semantic understanding of software, and automated malware detection. Beyond security applications, SBAN supports broader tasks such as code translation, code explanation, and other software mining tasks involving heterogeneous data. It is particularly suited for scalable training of deep models, including transformers and other LLM architectures. By bridging low-level machine representations and high-level human semantics, SBAN provides a robust foundation for building intelligent systems that reason about code. We believe that this dataset opens new opportunities for mining software behavior, improving security analytics, and enhancing LLM capabilities in pre-training and fine-tuning tasks for software code mining.
♻ ☆ Understanding Embedding Scaling in Collaborative Filtering
Scaling recommendation models into large recommendation models has become one of the most widely discussed topics. Recent efforts focus on components beyond the scaling embedding dimension, as it is believed that scaling embedding may lead to performance degradation. Although there have been some initial observations on embedding, the root cause of their non-scalability remains unclear. Moreover, whether performance degradation occurs across different types of models and datasets is still an unexplored area. Regarding the effect of embedding dimensions on performance, we conduct large-scale experiments across 10 datasets with varying sparsity levels and scales, using 4 representative classical architectures. We surprisingly observe two novel phenomena: double-peak and logarithmic. For the former, as the embedding dimension increases, performance first improves, then declines, rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve. Our contributions are threefold. First, we discover two novel phenomena when scaling collaborative filtering models. Second, we gain an understanding of the underlying causes of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of collaborative filtering models, with results matching empirical observations.
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Membership Inference Attacks on Recommender System: A Survey
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
comment: under review
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
♻ ☆ LIME: Link-based user-item Interaction Modeling with decoupled xor attention for Efficient test time scaling
Scaling large recommendation systems requires advancing three major frontiers: processing longer user histories, expanding candidate sets, and increasing model capacity. While promising, transformers' computational cost scales quadratically with the user sequence length and linearly with the number of candidates. This trade-off makes it prohibitively expensive to expand candidate sets or increase sequence length at inference, despite the significant performance improvements. We introduce \textbf{LIME}, a novel architecture that resolves this trade-off. Through two key innovations, LIME fundamentally reduces computational complexity. First, low-rank ``link embeddings" enable pre-computation of attention weights by decoupling user and candidate interactions, making the inference cost nearly independent of candidate set size. Second, a linear attention mechanism, \textbf{LIME-XOR}, reduces the complexity with respect to user sequence length from quadratic ($O(N^2)$) to linear ($O(N)$). Experiments on public and industrial datasets show LIME achieves near-parity with state-of-the-art transformers but with a 10$\times$ inference speedup on large candidate sets or long sequence lengths. When tested on a major recommendation platform, LIME improved user engagement while maintaining minimal inference costs with respect to candidate set size and user history length, establishing a new paradigm for efficient and expressive recommendation systems.
comment: 16 pages
Information Retrieval 13
☆ Civic Ground Truth in News Recommenders: A Method for Public Value Scoring RecSys 2025
Research in news recommendation systems (NRS) continues to explore the best ways to integrate normative goals such as editorial objectives and public service values into existing systems. Prior efforts have incorporated expert input or audience feedback to quantify these values, laying the groundwork for more civic-minded recommender systems. This paper contributes to that trajectory, introducing a method for embedding civic values into NRS through large-scale, structured audience evaluations. The proposed civic ground truth approach aims to generate value-based labels through a nationally representative survey that are generalisable across a wider news corpus, using automated metadata enrichment.
comment: Presented at NORMalize 2025: The Third Workshop on the Normative Design and Evaluation of Recommender Systems, co-located with the ACM Conference on Recommender Systems 2025 (RecSys 2025), Prague
☆ REVISION:Reflective Intent Mining and Online Reasoning Auxiliary for E-commerce Visual Search System Optimization
In Taobao e-commerce visual search, user behavior analysis reveals a large proportion of no-click requests, suggesting diverse and implicit user intents. These intents are expressed in various forms and are difficult to mine and discover, thereby leading to the limited adaptability and lag in platform strategies. This greatly restricts users' ability to express diverse intents and hinders the scalability of the visual search system. This mismatch between user implicit intent expression and system response defines the User-SearchSys Intent Discrepancy. To alleviate the issue, we propose a novel framework REVISION. This framework integrates offline reasoning mining with online decision-making and execution, enabling adaptive strategies to solve implicit user demands. In the offline stage, we construct a periodic pipeline to mine discrepancies from historical no-click requests. Leveraging large models, we analyze implicit intent factors and infer optimal suggestions by jointly reasoning over query and product metadata. These inferred suggestions serve as actionable insights for refining platform strategies. In the online stage, REVISION-R1-3B, trained on the curated offline data, performs holistic analysis over query images and associated historical products to generate optimization plans and adaptively schedule strategies across the search pipeline. Our framework offers a streamlined paradigm for integrating large models with traditional search systems, enabling end-to-end intelligent optimization across information aggregation and user interaction. Experimental results demonstrate that our approach improves the efficiency of implicit intent mining from large-scale search logs and significantly reduces the no-click rate.
☆ $\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
☆ ATLAS: Actor-Critic Task-Completion with Look-ahead Action Simulation NeurIPS 2025
We observe that current state-of-the-art web-agents are unable to effectively adapt to new environments without neural network fine-tuning, without which they produce inefficient execution plans due to a lack of awareness of the structure and dynamics of the new environment. To address this limitation, we introduce ATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented agent that is able to make plans grounded in a model of the environment by simulating the consequences of those actions in cognitive space. Our agent starts by building a "cognitive map" by performing a lightweight curiosity driven exploration of the environment. The planner proposes candidate actions; the simulator predicts their consequences in cognitive space; a critic analyzes the options to select the best roll-out and update the original plan; and a browser executor performs the chosen action. On the WebArena-Lite Benchmark, we achieve a 63% success rate compared to 53.9% success rate for the previously published state-of-the-art. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablations show sizable drops without the world-model, hierarchical planner, and look-ahead-based replanner confirming their complementary roles within the design of our system
comment: 9 pages, NeurIPS 2025 Workshop on Language Agents and World Models
☆ Windsock is Dancing: Adaptive Multimodal Retrieval-Augmented Generation NeurIPS 2025
Multimodal Retrieval-Augmented Generation (MRAG) has emerged as a promising method to generate factual and up-to-date responses of Multimodal Large Language Models (MLLMs) by incorporating non-parametric knowledge from external knowledge bases. However, existing MRAG approaches suffer from static retrieval strategies, inflexible modality selection, and suboptimal utilization of retrieved information, leading to three critical challenges: determining when to retrieve, what modality to incorporate, and how to utilize retrieved information effectively. To address these challenges, we introduce Windsock, a query-dependent module making decisions on retrieval necessity and modality selection, effectively reducing computational overhead and improving response quality. Additionally, we propose Dynamic Noise-Resistance (DANCE) Instruction Tuning, an adaptive training strategy that enhances MLLMs' ability to utilize retrieved information while maintaining robustness against noise. Moreover, we adopt a self-assessment approach leveraging knowledge within MLLMs to convert question-answering datasets to MRAG training datasets. Extensive experiments demonstrate that our proposed method significantly improves the generation quality by 17.07% while reducing 8.95% retrieval times.
comment: Accepted at NeurIPS 2025 UniReps Workshop
☆ Diversification as Risk Minimization WSDM 2026
Users tend to remember failures of a search session more than its many successes. This observation has led to work on search robustness, where systems are penalized if they perform very poorly on some queries. However, this principle of robustness has been overlooked within a single query. An ambiguous or underspecified query (e.g., ``jaguar'') can have several user intents, where popular intents often dominate the ranking, leaving users with minority intents unsatisfied. Although the diversification literature has long recognized this issue, existing metrics only model the average relevance across intents and provide no robustness guarantees. More surprisingly, we show theoretically and empirically that many well-known diversification algorithms are no more robust than a naive, non-diversified algorithm. To address this critical gap, we propose to frame diversification as a risk-minimization problem. We introduce VRisk, which measures the expected risk faced by the least-served fraction of intents in a query. Optimizing VRisk produces a robust ranking, reducing the likelihood of poor user experiences. We then propose VRisker, a fast greedy re-ranker with provable approximation guarantees. Finally, experiments on NTCIR INTENT-2, TREC Web 2012, and MovieLens show the vulnerability of existing methods. VRisker reduces worst-case intent failures by up to 33% with a minimal 2% drop in average performance.
comment: Preprint, accepted at WSDM 2026 (Full Paper). 16 pages, 8 figures
☆ Tools are under-documented: Simple Document Expansion Boosts Tool Retrieval
Large Language Models (LLMs) have recently demonstrated strong capabilities in tool use, yet progress in tool retrieval remains hindered by incomplete and heterogeneous tool documentation. To address this challenge, we introduce Tool-DE, a new benchmark and framework that systematically enriches tool documentation with structured fields to enable more effective tool retrieval, together with two dedicated models, Tool-Embed and Tool-Rank. We design a scalable document expansion pipeline that leverages both open- and closed-source LLMs to generate, validate, and refine enriched tool profiles at low cost, producing large-scale corpora with 50k instances for embedding-based retrievers and 200k for rerankers. On top of this data, we develop two models specifically tailored for tool retrieval: Tool-Embed, a dense retriever, and Tool-Rank, an LLM-based reranker. Extensive experiments on ToolRet and Tool-DE demonstrate that document expansion substantially improves retrieval performance, with Tool-Embed and Tool-Rank achieving new state-of-the-art results on both benchmarks. We further analyze the contribution of individual fields to retrieval effectiveness, as well as the broader impact of document expansion on both training and evaluation. Overall, our findings highlight both the promise and limitations of LLM-driven document expansion, positioning Tool-DE, along with the proposed Tool-Embed and Tool-Rank, as a foundation for future research in tool retrieval.
☆ ATOM: AdapTive and OptiMized dynamic temporal knowledge graph construction using LLMs
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
☆ Open Multimodal Retrieval-Augmented Factual Image Generation
Large Multimodal Models (LMMs) have achieved remarkable progress in generating photorealistic and prompt-aligned images, but they often produce outputs that contradict verifiable knowledge, especially when prompts involve fine-grained attributes or time-sensitive events. Conventional retrieval-augmented approaches attempt to address this issue by introducing external information, yet they are fundamentally incapable of grounding generation in accurate and evolving knowledge due to their reliance on static sources and shallow evidence integration. To bridge this gap, we introduce ORIG, an agentic open multimodal retrieval-augmented framework for Factual Image Generation (FIG), a new task that requires both visual realism and factual grounding. ORIG iteratively retrieves and filters multimodal evidence from the web and incrementally integrates the refined knowledge into enriched prompts to guide generation. To support systematic evaluation, we build FIG-Eval, a benchmark spanning ten categories across perceptual, compositional, and temporal dimensions. Experiments demonstrate that ORIG substantially improves factual consistency and overall image quality over strong baselines, highlighting the potential of open multimodal retrieval for factual image generation.
comment: Preprint
♻ ☆ Scaling Down, Serving Fast: Compressing and Deploying Efficient LLMs for Recommendation Systems EMNLP 2025
Large language models (LLMs) have demonstrated remarkable performance across a wide range of industrial applications, from search and recommendation systems to generative tasks. Although scaling laws indicate that larger models generally yield better generalization and performance, their substantial computational requirements often render them impractical for many real-world scenarios at scale. In this paper, we present a comprehensive set of insights for training and deploying small language models (SLMs) that deliver high performance for a variety of industry use cases. We focus on two key techniques: (1) knowledge distillation and (2) model compression via structured pruning and quantization. These approaches enable SLMs to retain much of the quality of their larger counterparts while significantly reducing training/serving costs and latency. We detail the impact of these techniques on a variety of use cases in a large professional social network platform and share deployment lessons, including hardware optimization strategies that improve speed and throughput for both predictive and reasoning-based applications in Recommendation Systems.
comment: Accepted to EMNLP 2025 Industry Track - Oral Presentation
♻ ☆ A Simple but Effective Elaborative Query Reformulation Approach for Natural Language Recommendation
Natural Language (NL) recommender systems aim to retrieve relevant items from free-form user queries and item descriptions. Existing systems often rely on dense retrieval (DR), which struggles to interpret challenging queries that express broad (e.g., "cities for youth friendly activities") or indirect (e.g., "cities for a high school graduation trip") user intents. While query reformulation (QR) has been widely adopted to improve such systems, existing QR methods tend to focus only on expanding the range of query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we propose EQR (Elaborative Subtopic Query Reformulation), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also introduce three new natural language recommendation benchmarks in travel, hotel, and restaurant domains to establish evaluation of NL recommendation with challenging queries. Experiments show EQR substantially outperforms state-of-the-art QR methods in various evaluation metrics, highlighting that a simple yet effective QR approach can significantly improve NL recommender systems for queries with broad and indirect user intents.
comment: 11 pages, 5 figures
♻ ☆ Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals NeurIPS 2025
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to maintain consistent reasoning when exposed to misleading or conflicting evidence, especially in real-world domains such as politics, where information is polarized or selectively framed. Mainstream RAG benchmarks evaluate models under clean retrieval settings, where systems generate answers from gold-standard documents, or under synthetically perturbed settings, where documents are artificially injected with noise. These assumptions fail to reflect real-world conditions, often leading to an overestimation of RAG system performance. To address this gap, we introduce RAGuard, the first benchmark to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our fact-checking dataset captures naturally occurring misinformation by constructing its retrieval corpus from Reddit discussions. It categorizes retrieved evidence into three types: supporting, misleading, and unrelated, providing a realistic and challenging testbed for assessing how well RAG systems navigate different types of evidence. Our experiments reveal that, when exposed to potentially misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), while human annotators consistently perform better, highlighting LLMs' susceptibility to noisy environments. To our knowledge, RAGuard is the first benchmark to systematically assess the robustness of the RAG against misleading evidence. We expect this benchmark to drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications. The dataset is available at https://huggingface.co/datasets/UCSC-IRKM/RAGuard.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming NeurIPS 2025
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem, similar question retrieval, to tackle this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code, Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate, Simplified-to-Full) built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. Besides, we further develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Github: https://github.com/coldchair/CPRet Online Demo: https://www.cpret.online/
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track
Information Retrieval 11
☆ FAIR-RAG: Faithful Adaptive Iterative Refinement for Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) mitigates hallucination and knowledge staleness in Large Language Models (LLMs), existing frameworks often falter on complex, multi-hop queries that require synthesizing information from disparate sources. Current advanced RAG methods, employing iterative or adaptive strategies, lack a robust mechanism to systematically identify and fill evidence gaps, often propagating noise or failing to gather a comprehensive context. We introduce FAIR-RAG, a novel agentic framework that transforms the standard RAG pipeline into a dynamic, evidence-driven reasoning process. At its core is an Iterative Refinement Cycle governed by a module we term Structured Evidence Assessment (SEA). The SEA acts as an analytical gating mechanism: it deconstructs the initial query into a checklist of required findings and audits the aggregated evidence to identify confirmed facts and, critically, explicit informational gaps. These gaps provide a precise signal to an Adaptive Query Refinement agent, which generates new, targeted sub-queries to retrieve missing information. This cycle repeats until the evidence is verified as sufficient, ensuring a comprehensive context for a final, strictly faithful generation. We conducted experiments on challenging multi-hop QA benchmarks, including HotpotQA, 2WikiMultiHopQA, and MusiQue. In a unified experimental setup, FAIR-RAG significantly outperforms strong baselines. On HotpotQA, it achieves an F1-score of 0.453 -- an absolute improvement of 8.3 points over the strongest iterative baseline -- establishing a new state-of-the-art for this class of methods on these benchmarks. Our work demonstrates that a structured, evidence-driven refinement process with explicit gap analysis is crucial for unlocking reliable and accurate reasoning in advanced RAG systems for complex, knowledge-intensive tasks.
comment: 30 pages, 5 figures, 5 tables. Keywords: Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Agentic AI, Multi-hop Question Answering, Faithfulness
☆ PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding
Patent text embeddings enable prior art search, technology landscaping, and patent analysis, yet existing benchmarks inadequately capture patent-specific challenges. We introduce PatenTEB, a comprehensive benchmark comprising 15 tasks across retrieval, classification, paraphrase, and clustering, with 2.06 million examples. PatenTEB employs domain-stratified splits, domain specific hard negative mining, and systematic coverage of asymmetric fragment-to-document matching scenarios absent from general embedding benchmarks. We develop the patembed model family through multi-task training, spanning 67M to 344M parameters with context lengths up to 4096 tokens. External validation shows strong generalization: patembed-base achieves state-of-the-art on MTEB BigPatentClustering.v2 (0.494 V-measure vs. 0.445 previous best), while patembed-large achieves 0.377 NDCG@100 on DAPFAM. Systematic ablations reveal that multi-task training improves external generalization despite minor benchmark costs, and that domain-pretrained initialization provides consistent advantages across task families. All resources will be made available at https://github.com/iliass-y/patenteb. Keywords: patent retrieval, sentence embeddings, multi-task learning, asymmetric retrieval, benchmark evaluation, contrastive learning.
☆ PaperAsk: A Benchmark for Reliability Evaluation of LLMs in Paper Search and Reading
Large Language Models (LLMs) increasingly serve as research assistants, yet their reliability in scholarly tasks remains under-evaluated. In this work, we introduce PaperAsk, a benchmark that systematically evaluates LLMs across four key research tasks: citation retrieval, content extraction, paper discovery, and claim verification. We evaluate GPT-4o, GPT-5, and Gemini-2.5-Flash under realistic usage conditions-via web interfaces where search operations are opaque to the user. Through controlled experiments, we find consistent reliability failures: citation retrieval fails in 48-98% of multi-reference queries, section-specific content extraction fails in 72-91% of cases, and topical paper discovery yields F1 scores below 0.32, missing over 60% of relevant literature. Further human analysis attributes these failures to the uncontrolled expansion of retrieved context and the tendency of LLMs to prioritize semantically relevant text over task instructions. Across basic tasks, the LLMs display distinct failure behaviors: ChatGPT often withholds responses rather than risk errors, whereas Gemini produces fluent but fabricated answers. To address these issues, we develop lightweight reliability classifiers trained on PaperAsk data to identify unreliable outputs. PaperAsk provides a reproducible and diagnostic framework for advancing the reliability evaluation of LLM-based scholarly assistance systems.
☆ Hybrid-Vector Retrieval for Visually Rich Documents: Combining Single-Vector Efficiency and Multi-Vector Accuracy
Retrieval over visually rich documents is essential for tasks such as legal discovery, scientific search, and enterprise knowledge management. Existing approaches fall into two paradigms: single-vector retrieval, which is efficient but coarse, and multi-vector retrieval, which is accurate but computationally expensive. To address this trade-off, we propose HEAVEN, a two-stage hybrid-vector framework. In the first stage, HEAVEN efficiently retrieves candidate pages using a single-vector method over Visually-Summarized Pages (VS-Pages), which assemble representative visual layouts from multiple pages. In the second stage, it reranks candidates with a multi-vector method while filtering query tokens by linguistic importance to reduce redundant computations. To evaluate retrieval systems under realistic conditions, we also introduce ViMDOC, the first benchmark for visually rich, multi-document, and long-document retrieval. Across four benchmarks, HEAVEN attains 99.87% of the Recall@1 performance of multi-vector models on average while reducing per-query computation by 99.82%, achieving efficiency and accuracy. Our code and datasets are available at: https://github.com/juyeonnn/HEAVEN
☆ Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search
Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to $40\%$ while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to $10$x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by $10$x in a real-world deployment, while meeting our quality bar.
♻ ☆ A Survey of Long-Document Retrieval in the PLM and LLM Era
The proliferation of long-form documents presents a fundamental challenge to information retrieval (IR), as their length, dispersed evidence, and complex structures demand specialized methods beyond standard passage-level techniques. This survey provides the first comprehensive treatment of long-document retrieval (LDR), consolidating methods, challenges, and applications across three major eras. We systematize the evolution from classical lexical and early neural models to modern pre-trained (PLM) and large language models (LLMs), covering key paradigms like passage aggregation, hierarchical encoding, efficient attention, and the latest LLM-driven re-ranking and retrieval techniques. Beyond the models, we review domain-specific applications, specialized evaluation resources, and outline critical open challenges such as efficiency trade-offs, multimodal alignment, and faithfulness. This survey aims to provide both a consolidated reference and a forward-looking agenda for advancing long-document retrieval in the era of foundation models.
comment: 32 pages, 6 figures
♻ ☆ Query Expansion in the Age of Pre-trained and Large Language Models: A Comprehensive Survey
Modern information retrieval (IR) must reconcile short, ambiguous queries with increasingly diverse and dynamic corpora. Query expansion (QE) remains central to alleviating vocabulary mismatch, yet the design space has shifted with pre-trained and large language models (PLMs, LLMs). In this survey, we organize recent work along four complementary dimensions: the point of injection (implicit/embedding vs. selection-based explicit), grounding and interaction (from zero-grounding prompts to multi-round retrieve-expand loops), learning and alignment (SFT/PEFT/DPO), and knowledge-graph integration. A model-centric taxonomy is also outlined, spanning encoder-only, encoder-decoder, decoder-only, instruction-tuned, and domain or multilingual variants, with affordances for QE such as contextual disambiguation, controllable generation, and zero-shot or few-shot reasoning. Practice-oriented guidance specifies where neural QE helps most: first-stage retrieval, multi-query fusion, re-ranking, and retrieval-augmented generation (RAG). The survey compares traditional and neural QE across seven aspects and maps applications in web search, biomedicine, e-commerce, open-domain question answering/RAG, conversational and code search, and cross-lingual settings. The survey concludes with an agenda focused on reliable, safe, efficient, and adaptive QE, offering a principled blueprint for deploying and combining techniques under real-world constraints.
comment: 36 pages,3 figures,3 tables
♻ ☆ Unifying Search and Recommendation with Dual-View Representation Learning in a Generative Paradigm
Recommender systems and search engines serve as foundational elements of online platforms, with the former delivering information proactively and the latter enabling users to seek information actively. Unifying both tasks in a shared model is promising since it can enhance user modeling and item understanding. Previous approaches mainly follow a discriminative paradigm, utilizing shared encoders to process input features and task-specific heads to perform each task. However, this paradigm encounters two key challenges: gradient conflict and manual design complexity. From the information theory perspective, these challenges potentially both stem from the same issue -- low mutual information between the input features and task-specific outputs during the optimization process. To tackle these issues, we propose GenSR, a novel generative paradigm for unifying search and recommendation (S&R), which leverages task-specific prompts to partition the model's parameter space into subspaces, thereby enhancing mutual information. To construct effective subspaces for each task, GenSR first prepares informative representations for each subspace and then optimizes both subspaces in one unified model. Specifically, GenSR consists of two main modules: (1) Dual Representation Learning, which independently models collaborative and semantic historical information to derive expressive item representations; and (2) S&R Task Unifying, which utilizes contrastive learning together with instruction tuning to generate task-specific outputs effectively. Extensive experiments on two public datasets show GenSR outperforms state-of-the-art methods across S&R tasks. Our work introduces a new generative paradigm compared with previous discriminative methods and establishes its superiority from the mutual information perspective.
♻ ☆ WildClaims: Information Access Conversations in the Wild(Chat)
The rapid advancement of Large Language Models (LLMs) has transformed conversational systems into practical tools used by millions. However, the nature and necessity of information retrieval in real-world conversations remain largely unexplored, as research has focused predominantly on traditional, explicit information access conversations. The central question is: What do real-world information access conversations look like? To this end, we first conduct an observational study on the WildChat dataset, large-scale user-ChatGPT conversations, finding that users' access to information occurs implicitly as check-worthy factual assertions made by the system, even when the conversation's primary intent is non-informational, such as creative writing. To enable the systematic study of this phenomenon, we release the WildClaims dataset, a novel resource consisting of 121,905 extracted factual claims from 7,587 utterances in 3,000 WildChat conversations, each annotated for check-worthiness. Our preliminary analysis of this resource reveals that conservatively 18% to 51% of conversations contain check-worthy assertions, depending on the methods employed, and less conservatively, as many as 76% may contain such assertions. This high prevalence underscores the importance of moving beyond the traditional understanding of explicit information access, to address the implicit information access that arises in real-world user-system conversations.
♻ ☆ FACE: A Fine-grained Reference Free Evaluator for Conversational Recommender Systems
A systematic, reliable, and low-cost evaluation of Conversational Recommender Systems (CRSs) remains an open challenge. Existing automatic CRS evaluation methods are proven insufficient for evaluating the dynamic nature of recommendation conversations. This work proposes FACE: a Fine-grained, Aspect-based Conversation Evaluation method that provides evaluation scores for diverse turn and dialogue level qualities of recommendation conversations. FACE is reference-free and shows strong correlation with human judgments, achieving system correlation of 0.9 and turn/dialogue-level of 0.5, outperforming state-of-the-art CRS evaluation methods by a large margin. Additionally, unlike existing LLM-based methods that provide single uninterpretable scores, FACE provides insights into the system performance and enables identifying and locating problems within conversations.
♻ ☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
Computation and Language 5
☆ AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite
AI agents hold the potential to revolutionize scientific productivity by automating literature reviews, replicating experiments, analyzing data, and even proposing new directions of inquiry; indeed, there are now many such agents, ranging from general-purpose "deep research" systems to specialized science-specific agents, such as AI Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet existing benchmarks fall short on several fronts: they (1) fail to provide holistic, product-informed measures of real-world use cases such as science research; (2) lack reproducible agent tools necessary for a controlled comparison of core agentic capabilities; (3) do not account for confounding variables such as model cost and tool access; (4) do not provide standardized interfaces for quick agent prototyping and evaluation; and (5) lack comprehensive baseline agents necessary to identify true advances. In response, we define principles and tooling for more rigorously benchmarking agents. Using these, we present AstaBench, a suite that provides the first holistic measure of agentic ability to perform scientific research, comprising 2400+ problems spanning the entire scientific discovery process and multiple scientific domains, and including many problems inspired by actual user requests to deployed Asta agents. Our suite comes with the first scientific research environment with production-grade search tools that enable controlled, reproducible evaluation, better accounting for confounders. Alongside, we provide a comprehensive suite of nine science-optimized classes of Asta agents and numerous baselines. Our extensive evaluation of 57 agents across 22 agent classes reveals several interesting findings, most importantly that despite meaningful progress on certain individual aspects, AI remains far from solving the challenge of science research assistance.
♻ ☆ Knee-Deep in C-RASP: A Transformer Depth Hierarchy
It has been observed that transformers with greater depth (that is, more layers) have more capabilities, but can we establish formally which capabilities are gained? We answer this question with a theoretical proof followed by an empirical study. First, we consider transformers that round to fixed precision except inside attention. We show that this subclass of transformers is expressively equivalent to the programming language C-RASP and this equivalence preserves depth. Second, we prove that deeper C-RASP programs are more expressive than shallower C-RASP programs, implying that deeper transformers are more expressive than shallower transformers (within the subclass mentioned above). The same is also proven for transformers with positional encodings (like RoPE and ALiBi). These results are established by studying a temporal logic with counting operators equivalent to C-RASP. Finally, we provide empirical evidence that our theory predicts the depth required for transformers without positional encodings to length-generalize on a family of sequential dependency tasks.
comment: 35 pages, 5 figures
♻ ☆ SimuRA: A World-Model-Driven Simulative Reasoning Architecture for General Goal-Oriented Agents
AI agents built on foundation models hold enormous promise. Current practice, however, focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also faces practical limitations from black-box autoregressive reasoning, where decisions unfold token by token without explicit simulation or counterfactual evaluation of outcomes. Humans, on the other hand, reason and plan by mentally simulating the consequences of actions within an internal model of the world -- a capability that supports flexible, goal-directed behavior across diverse contexts. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of an optimal agent in any general environment, SimuRA addresses the limitations of black-box autoregressive reasoning by incorporating the world model for planning via simulation. Our prototype world model is implemented using LLMs as a substrate, leveraging the natural language as a discrete, hierarchical representation grounded in concepts for planning, while remaining model-agnostic. On complex web-browsing tasks such as flight search, SimuRA improves the success rate from 0% to 32.2% compared to a representative open-web agent baseline. Across tasks, world-model-based planning achieves up to 124% higher task completion rates than a matched black-box autoregressive baseline, demonstrating the advantages of simulative reasoning. We release ReasonerAgent-Web, a web-browsing agent built on SimuRA, as an open-source research demo.
comment: This submission has been updated to adjust the scope and presentation of the work
♻ ☆ RECODE-H: A Benchmark for Research Code Development with Interactive Human Feedback
Large language models (LLMs) show the promise in supporting scientific research implementation, yet their ability to generate correct and executable code remains limited. Existing works largely adopt one-shot settings, ignoring the iterative and feedback-driven nature of realistic workflows of scientific research development. To address this gap, we present RECODE-H, a benchmark of 102 tasks from research papers and repositories that evaluates LLM agents through multi-turn interactions with LLM-simulated human feedback. It includes structured instructions,unit tests, and a five-level feedback hierarchy to reflect realistic researcher-agent collaboration. We further present ReCodeAgent, a framework that integrates feedback into iterative code generation. Experiments with leading LLMs, including GPT-5, Claude-Sonnet-4, DeepSeek-V3.1, and Gemini 2.5, show substantial performance gains with richer feedback, while also highlighting ongoing challenges in the generation of complex research code. RECODE-H establishes a foundation for developing adaptive, feedback-driven LLM agents in scientific research implementation
comment: Code and dataset are available at github.com/ChunyuMiao98/RECODE
♻ ☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
Computer Vision and Pattern Recognition 25
☆ Automated Detection of Visual Attribute Reliance with a Self-Reflective Agent
When a vision model performs image recognition, which visual attributes drive its predictions? Detecting unintended reliance on specific visual features is critical for ensuring model robustness, preventing overfitting, and avoiding spurious correlations. We introduce an automated framework for detecting such dependencies in trained vision models. At the core of our method is a self-reflective agent that systematically generates and tests hypotheses about visual attributes that a model may rely on. This process is iterative: the agent refines its hypotheses based on experimental outcomes and uses a self-evaluation protocol to assess whether its findings accurately explain model behavior. When inconsistencies arise, the agent self-reflects over its findings and triggers a new cycle of experimentation. We evaluate our approach on a novel benchmark of 130 models designed to exhibit diverse visual attribute dependencies across 18 categories. Our results show that the agent's performance consistently improves with self-reflection, with a significant performance increase over non-reflective baselines. We further demonstrate that the agent identifies real-world visual attribute dependencies in state-of-the-art models, including CLIP's vision encoder and the YOLOv8 object detector.
comment: 32 pages, 10 figures, Neurips 2025
☆ Visual Diffusion Models are Geometric Solvers
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.
comment: Project page: https://kariander1.github.io/visual-geo-solver/
☆ BachVid: Training-Free Video Generation with Consistent Background and Character
Diffusion Transformers (DiTs) have recently driven significant progress in text-to-video (T2V) generation. However, generating multiple videos with consistent characters and backgrounds remains a significant challenge. Existing methods typically rely on reference images or extensive training, and often only address character consistency, leaving background consistency to image-to-video models. We introduce BachVid, the first training-free method that achieves consistent video generation without needing any reference images. Our approach is based on a systematic analysis of DiT's attention mechanism and intermediate features, revealing its ability to extract foreground masks and identify matching points during the denoising process. Our method leverages this finding by first generating an identity video and caching the intermediate variables, and then inject these cached variables into corresponding positions in newly generated videos, ensuring both foreground and background consistency across multiple videos. Experimental results demonstrate that BachVid achieves robust consistency in generated videos without requiring additional training, offering a novel and efficient solution for consistent video generation without relying on reference images or additional training.
comment: Project page: https://wolfball.github.io/bachvid
☆ On Thin Ice: Towards Explainable Conservation Monitoring via Attribution and Perturbations NeurIPS
Computer vision can accelerate ecological research and conservation monitoring, yet adoption in ecology lags in part because of a lack of trust in black-box neural-network-based models. We seek to address this challenge by applying post-hoc explanations to provide evidence for predictions and document limitations that are important to field deployment. Using aerial imagery from Glacier Bay National Park, we train a Faster R-CNN to detect pinnipeds (harbor seals) and generate explanations via gradient-based class activation mapping (HiResCAM, LayerCAM), local interpretable model-agnostic explanations (LIME), and perturbation-based explanations. We assess explanations along three axes relevant to field use: (i) localization fidelity: whether high-attribution regions coincide with the animal rather than background context; (ii) faithfulness: whether deletion/insertion tests produce changes in detector confidence; and (iii) diagnostic utility: whether explanations reveal systematic failure modes. Explanations concentrate on seal torsos and contours rather than surrounding ice/rock, and removal of the seals reduces detection confidence, providing model-evidence for true positives. The analysis also uncovers recurrent error sources, including confusion between seals and black ice and rocks. We translate these findings into actionable next steps for model development, including more targeted data curation and augmentation. By pairing object detection with post-hoc explainability, we can move beyond "black-box" predictions toward auditable, decision-supporting tools for conservation monitoring.
comment: NeurIPS Imageomics Workshop 2025
☆ WorldGrow: Generating Infinite 3D World
We tackle the challenge of generating the infinitely extendable 3D world -- large, continuous environments with coherent geometry and realistic appearance. Existing methods face key challenges: 2D-lifting approaches suffer from geometric and appearance inconsistencies across views, 3D implicit representations are hard to scale up, and current 3D foundation models are mostly object-centric, limiting their applicability to scene-level generation. Our key insight is leveraging strong generation priors from pre-trained 3D models for structured scene block generation. To this end, we propose WorldGrow, a hierarchical framework for unbounded 3D scene synthesis. Our method features three core components: (1) a data curation pipeline that extracts high-quality scene blocks for training, making the 3D structured latent representations suitable for scene generation; (2) a 3D block inpainting mechanism that enables context-aware scene extension; and (3) a coarse-to-fine generation strategy that ensures both global layout plausibility and local geometric/textural fidelity. Evaluated on the large-scale 3D-FRONT dataset, WorldGrow achieves SOTA performance in geometry reconstruction, while uniquely supporting infinite scene generation with photorealistic and structurally consistent outputs. These results highlight its capability for constructing large-scale virtual environments and potential for building future world models.
comment: Project page: https://world-grow.github.io/ Code: https://github.com/world-grow/WorldGrow
☆ Foundation Models in Dermatopathology: Skin Tissue Classification
The rapid generation of whole-slide images (WSIs) in dermatopathology necessitates automated methods for efficient processing and accurate classification. This study evaluates the performance of two foundation models, UNI and Virchow2, as feature extractors for classifying WSIs into three diagnostic categories: melanocytic, basaloid, and squamous lesions. Patch-level embeddings were aggregated into slide-level features using a mean-aggregation strategy and subsequently used to train multiple machine learning classifiers, including logistic regression, gradient-boosted trees, and random forest models. Performance was assessed using precision, recall, true positive rate, false positive rate, and the area under the receiver operating characteristic curve (AUROC) on the test set. Results demonstrate that patch-level features extracted using Virchow2 outperformed those extracted via UNI across most slide-level classifiers, with logistic regression achieving the highest accuracy (90%) for Virchow2, though the difference was not statistically significant. The study also explored data augmentation techniques and image normalization to enhance model robustness and generalizability. The mean-aggregation approach provided reliable slide-level feature representations. All experimental results and metrics were tracked and visualized using WandB.ai, facilitating reproducibility and interpretability. This research highlights the potential of foundation models for automated WSI classification, providing a scalable and effective approach for dermatopathological diagnosis while paving the way for future advancements in slide-level representation learning.
Self-Supervised Learning of Synapse Types from EM Images
Separating synapses into different classes based on their appearance in EM images has many applications in biology. Examples may include assigning a neurotransmitter to a particular class, or separating synapses whose strength can be modulated from those whose strength is fixed. Traditionally, this has been done in a supervised manner, giving the classification algorithm examples of the different classes. Here we instead separate synapses into classes based only on the observation that nearby synapses in the same neuron are likely more similar than synapses chosen randomly from different cells. We apply our methodology to data from {\it Drosophila}. Our approach has the advantage that the number of synapse types does not need to be known in advance. It may also provide a principled way to select ground-truth that spans the range of synapse structure.
☆ Long-tailed Species Recognition in the NACTI Wildlife Dataset
As most ''in the wild'' data collections of the natural world, the North America Camera Trap Images (NACTI) dataset shows severe long-tailed class imbalance, noting that the largest 'Head' class alone covers >50% of the 3.7M images in the corpus. Building on the PyTorch Wildlife model, we present a systematic study of Long-Tail Recognition methodologies for species recognition on the NACTI dataset covering experiments on various LTR loss functions plus LTR-sensitive regularisation. Our best configuration achieves 99.40% Top-1 accuracy on our NACTI test data split, substantially improving over a 95.51% baseline using standard cross-entropy with Adam. This also improves on previously reported top performance in MLWIC2 at 96.8% albeit using partly unpublished (potentially different) partitioning, optimiser, and evaluation protocols. To evaluate domain shifts (e.g. night-time captures, occlusion, motion-blur) towards other datasets we construct a Reduced-Bias Test set from the ENA-Detection dataset where our experimentally optimised long-tail enhanced model achieves leading 52.55% accuracy (up from 51.20% with WCE loss), demonstrating stronger generalisation capabilities under distribution shift. We document the consistent improvements of LTR-enhancing scheduler choices in this NACTI wildlife domain, particularly when in tandem with state-of-the-art LTR losses. We finally discuss qualitative and quantitative shortcomings that LTR methods cannot sufficiently address, including catastrophic breakdown for 'Tail' classes under severe domain shift. For maximum reproducibility we publish all dataset splits, key code, and full network weights.
☆ Group Inertial Poser: Multi-Person Pose and Global Translation from Sparse Inertial Sensors and Ultra-Wideband Ranging ICCV 2025
Tracking human full-body motion using sparse wearable inertial measurement units (IMUs) overcomes the limitations of occlusion and instrumentation of the environment inherent in vision-based approaches. However, purely IMU-based tracking compromises translation estimates and accurate relative positioning between individuals, as inertial cues are inherently self-referential and provide no direct spatial reference for others. In this paper, we present a novel approach for robustly estimating body poses and global translation for multiple individuals by leveraging the distances between sparse wearable sensors - both on each individual and across multiple individuals. Our method Group Inertial Poser estimates these absolute distances between pairs of sensors from ultra-wideband ranging (UWB) and fuses them with inertial observations as input into structured state-space models to integrate temporal motion patterns for precise 3D pose estimation. Our novel two-step optimization further leverages the estimated distances for accurately tracking people's global trajectories through the world. We also introduce GIP-DB, the first IMU+UWB dataset for two-person tracking, which comprises 200 minutes of motion recordings from 14 participants. In our evaluation, Group Inertial Poser outperforms previous state-of-the-art methods in accuracy and robustness across synthetic and real-world data, showing the promise of IMU+UWB-based multi-human motion capture in the wild. Code, models, dataset: https://github.com/eth-siplab/GroupInertialPoser
comment: Accepted by ICCV 2025, Code: https://github.com/eth-siplab/GroupInertialPoser
☆ A Dynamic Knowledge Distillation Method Based on the Gompertz Curve
This paper introduces a novel dynamic knowledge distillation framework, Gompertz-CNN, which integrates the Gompertz growth model into the training process to address the limitations of traditional knowledge distillation. Conventional methods often fail to capture the evolving cognitive capacity of student models, leading to suboptimal knowledge transfer. To overcome this, we propose a stage-aware distillation strategy that dynamically adjusts the weight of distillation loss based on the Gompertz curve, reflecting the student's learning progression: slow initial growth, rapid mid-phase improvement, and late-stage saturation. Our framework incorporates Wasserstein distance to measure feature-level discrepancies and gradient matching to align backward propagation behaviors between teacher and student models. These components are unified under a multi-loss objective, where the Gompertz curve modulates the influence of distillation losses over time. Extensive experiments on CIFAR-10 and CIFAR-100 using various teacher-student architectures (e.g., ResNet50 and MobileNet_v2) demonstrate that Gompertz-CNN consistently outperforms traditional distillation methods, achieving up to 8% and 4% accuracy gains on CIFAR-10 and CIFAR-100, respectively.
comment: 15 pages, 2 figures
☆ DAP-MAE: Domain-Adaptive Point Cloud Masked Autoencoder for Effective Cross-Domain Learning
Compared to 2D data, the scale of point cloud data in different domains available for training, is quite limited. Researchers have been trying to combine these data of different domains for masked autoencoder (MAE) pre-training to leverage such a data scarcity issue. However, the prior knowledge learned from mixed domains may not align well with the downstream 3D point cloud analysis tasks, leading to degraded performance. To address such an issue, we propose the Domain-Adaptive Point Cloud Masked Autoencoder (DAP-MAE), an MAE pre-training method, to adaptively integrate the knowledge of cross-domain datasets for general point cloud analysis. In DAP-MAE, we design a heterogeneous domain adapter that utilizes an adaptation mode during pre-training, enabling the model to comprehensively learn information from point clouds across different domains, while employing a fusion mode in the fine-tuning to enhance point cloud features. Meanwhile, DAP-MAE incorporates a domain feature generator to guide the adaptation of point cloud features to various downstream tasks. With only one pre-training, DAP-MAE achieves excellent performance across four different point cloud analysis tasks, reaching 95.18% in object classification on ScanObjectNN and 88.45% in facial expression recognition on Bosphorus.
comment: 14 pages, 7 figures, conference
☆ Epipolar Geometry Improves Video Generation Models
Video generation models have progressed tremendously through large latent diffusion transformers trained with rectified flow techniques. Yet these models still struggle with geometric inconsistencies, unstable motion, and visual artifacts that break the illusion of realistic 3D scenes. 3D-consistent video generation could significantly impact numerous downstream applications in generation and reconstruction tasks. We explore how epipolar geometry constraints improve modern video diffusion models. Despite massive training data, these models fail to capture fundamental geometric principles underlying visual content. We align diffusion models using pairwise epipolar geometry constraints via preference-based optimization, directly addressing unstable camera trajectories and geometric artifacts through mathematically principled geometric enforcement. Our approach efficiently enforces geometric principles without requiring end-to-end differentiability. Evaluation demonstrates that classical geometric constraints provide more stable optimization signals than modern learned metrics, which produce noisy targets that compromise alignment quality. Training on static scenes with dynamic cameras ensures high-quality measurements while the model generalizes effectively to diverse dynamic content. By bridging data-driven deep learning with classical geometric computer vision, we present a practical method for generating spatially consistent videos without compromising visual quality.
☆ Modest-Align: Data-Efficient Alignment for Vision-Language Models
Cross-modal alignment aims to map heterogeneous modalities into a shared latent space, as exemplified by models like CLIP, which benefit from large-scale image-text pretraining for strong recognition capabilities. However, when operating in resource-constrained settings with limited or low-quality data, these models often suffer from overconfidence and degraded performance due to the prevalence of ambiguous or weakly correlated image-text pairs. Current contrastive learning approaches, which rely on single positive pairs, further exacerbate this issue by reinforcing overconfidence on uncertain samples. To address these challenges, we propose Modest-Align, a lightweight alignment framework designed for robustness and efficiency. Our approach leverages two complementary strategies -- Random Perturbation, which introduces controlled noise to simulate uncertainty, and Embedding Smoothing, which calibrates similarity distributions in the embedding space. These mechanisms collectively reduce overconfidence and improve performance on noisy or weakly aligned samples. Extensive experiments across multiple benchmark datasets demonstrate that Modest-Align outperforms state-of-the-art methods in retrieval tasks, achieving competitive results with over 100x less training data and 600x less GPU time than CLIP. Our method offers a practical and scalable solution for cross-modal alignment in real-world, low-resource scenarios.
☆ S3OD: Towards Generalizable Salient Object Detection with Synthetic Data
Salient object detection exemplifies data-bounded tasks where expensive pixel-precise annotations force separate model training for related subtasks like DIS and HR-SOD. We present a method that dramatically improves generalization through large-scale synthetic data generation and ambiguity-aware architecture. We introduce S3OD, a dataset of over 139,000 high-resolution images created through our multi-modal diffusion pipeline that extracts labels from diffusion and DINO-v3 features. The iterative generation framework prioritizes challenging categories based on model performance. We propose a streamlined multi-mask decoder that naturally handles the inherent ambiguity in salient object detection by predicting multiple valid interpretations. Models trained solely on synthetic data achieve 20-50% error reduction in cross-dataset generalization, while fine-tuned versions reach state-of-the-art performance across DIS and HR-SOD benchmarks.
☆ Automated interictal epileptic spike detection from simple and noisy annotations in MEG data
In drug-resistant epilepsy, presurgical evaluation of epilepsy can be considered. Magnetoencephalography (MEG) has been shown to be an effective exam to inform the localization of the epileptogenic zone through the localization of interictal epileptic spikes. Manual detection of these pathological biomarkers remains a fastidious and error-prone task due to the high dimensionality of MEG recordings, and interrater agreement has been reported to be only moderate. Current automated methods are unsuitable for clinical practice, either requiring extensively annotated data or lacking robustness on non-typical data. In this work, we demonstrate that deep learning models can be used for detecting interictal spikes in MEG recordings, even when only temporal and single-expert annotations are available, which represents real-world clinical practice. We propose two model architectures: a feature-based artificial neural network (ANN) and a convolutional neural network (CNN), trained on a database of 59 patients, and evaluated against a state-of-the-art model to classify short time windows of signal. In addition, we employ an interactive machine learning strategy to iteratively improve our data annotation quality using intermediary model outputs. Both proposed models outperform the state-of-the-art model (F1-scores: CNN=0.46, ANN=0.44) when tested on 10 holdout test patients. The interactive machine learning strategy demonstrates that our models are robust to noisy annotations. Overall, results highlight the robustness of models with simple architectures when analyzing complex and imperfectly annotated data. Our method of interactive machine learning offers great potential for faster data annotation, while our models represent useful and efficient tools for automated interictal spikes detection.
comment: 17 pages, 7 Figures
♻ ☆ A Geometric Approach to Steerable Convolutions
In contrast to the somewhat abstract, group theoretical approach adopted by many papers, our work provides a new and more intuitive derivation of steerable convolutional neural networks in $d$ dimensions. This derivation is based on geometric arguments and fundamental principles of pattern matching. We offer an intuitive explanation for the appearance of the Clebsch--Gordan decomposition and spherical harmonic basis functions. Furthermore, we suggest a novel way to construct steerable convolution layers using interpolation kernels that improve upon existing implementation, and offer greater robustness to noisy data.
♻ ☆ DynamicPAE: Generating Scene-Aware Physical Adversarial Examples in Real-Time
Physical adversarial examples (PAEs) are regarded as whistle-blowers of real-world risks in deep-learning applications, thus worth further investigation. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes, revealing the urgent requirement of dynamic PAEs that are generated in real time and conditioned on the observation from the attacker. The key challenge in generating dynamic PAEs is learning the sparse relation between PAEs and the observation of attackers under the noisy feedback of attack training. To address the challenge, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks. Specifically, to address the noisy feedback problem that obfuscates the exploration of scene-related PAEs, we introduce the residual-guided adversarial pattern exploration technique. Residual-guided training, which relaxes the attack training with a reconstruction task, is proposed to enrich the feedback information, thereby achieving a more comprehensive exploration of PAEs. To address the alignment problem between the trained generator and the real-world scenario, we introduce the distribution-matched attack scenario alignment, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former aligns the training environment with the incomplete observation of the real-world attacker. The latter facilitates consistent stealth control across different attack targets with the skewness controller. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 2.07 $\times$ boost (58.8% average AP drop under attack) on representative object detectors (e.g., DETR) over state-of-the-art static PAE generating methods. Overall, our work opens the door to end-to-end modeling of dynamic PAEs.
♻ ☆ Mixture of Experts in Image Classification: What's the Sweet Spot?
Mixture-of-Experts (MoE) models have shown promising potential for parameter-efficient scaling across domains. However, their application to image classification remains limited, often requiring billion-scale datasets to be competitive. In this work, we explore the integration of MoE layers into image classification architectures using open datasets. We conduct a systematic analysis across different MoE configurations and model scales. We find that moderate parameter activation per sample provides the best trade-off between performance and efficiency. However, as the number of activated parameters increases, the benefits of MoE diminish. Our analysis yields several practical insights for vision MoE design. First, MoE layers most effectively strengthen tiny and mid-sized models, while gains taper off for large-capacity networks and do not redefine state-of-the-art ImageNet performance. Second, a Last-2 placement heuristic offers the most robust cross-architecture choice, with Every-2 slightly better for Vision Transform (ViT), and both remaining effective as data and model scale increase. Third, larger datasets (e.g., ImageNet-21k) allow more experts, up to 16, for ConvNeXt to be utilized effectively without changing placement, as increased data reduces overfitting and promotes broader expert specialization. Finally, a simple linear router performs best, suggesting that additional routing complexity yields no consistent benefit.
comment: Published in Transactions on Machine Learning Research
♻ ☆ Metropolis-Hastings Sampling for 3D Gaussian Reconstruction NeurIPS 2025
We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS) that leverages comprehensive multi-view photometric error signals within a unified Metropolis-Hastings approach. Vanilla 3DGS heavily relies on heuristic-based density-control mechanisms (e.g., cloning, splitting, and pruning), which can lead to redundant computations or premature removal of beneficial Gaussians. Our framework overcomes these limitations by reformulating densification and pruning as a probabilistic sampling process, dynamically inserting and relocating Gaussians based on aggregated multi-view errors and opacity scores. Guided by Bayesian acceptance tests derived from these error-based importance scores, our method substantially reduces reliance on heuristics, offers greater flexibility, and adaptively infers Gaussian distributions without requiring predefined scene complexity. Experiments on benchmark datasets, including Mip-NeRF360, Tanks and Temples and Deep Blending, show that our approach reduces the number of Gaussians needed, achieving faster convergence while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.
comment: NeurIPS 2025. Project Page: https://hjhyunjinkim.github.io/MH-3DGS
♻ ☆ Lightweight Facial Landmark Detection in Thermal Images via Multi-Level Cross-Modal Knowledge Transfer
Facial Landmark Detection (FLD) in thermal imagery is critical for applications in challenging lighting conditions, but it is hampered by the lack of rich visual cues. Conventional cross-modal solutions, like feature fusion or image translation from RGB data, are often computationally expensive or introduce structural artifacts, limiting their practical deployment. To address this, we propose Multi-Level Cross-Modal Knowledge Distillation (MLCM-KD), a novel framework that decouples high-fidelity RGB-to-thermal knowledge transfer from model compression to create both accurate and efficient thermal FLD models. A central challenge during knowledge transfer is the profound modality gap between RGB and thermal data, where traditional unidirectional distillation fails to enforce semantic consistency across disparate feature spaces. To overcome this, we introduce Dual-Injected Knowledge Distillation (DIKD), a bidirectional mechanism designed specifically for this task. DIKD establishes a connection between modalities: it not only guides the thermal student with rich RGB features but also validates the student's learned representations by feeding them back into the frozen teacher's prediction head. This closed-loop supervision forces the student to learn modality-invariant features that are semantically aligned with the teacher, ensuring a robust and profound knowledge transfer. Experiments show that our approach sets a new state-of-the-art on public thermal FLD benchmarks, notably outperforming previous methods while drastically reducing computational overhead.
♻ ☆ FORLA: Federated Object-centric Representation Learning with Slot Attention
Learning efficient visual representations across heterogeneous unlabeled datasets remains a central challenge in federated learning. Effective federated representations require features that are jointly informative across clients while disentangling domain-specific factors without supervision. We introduce FORLA, a novel framework for federated object-centric representation learning and feature adaptation across clients using unsupervised slot attention. At the core of our method is a shared feature adapter, trained collaboratively across clients to adapt features from foundation models, and a shared slot attention module that learns to reconstruct the adapted features. To optimize this adapter, we design a two-branch student-teacher architecture. In each client, a student decoder learns to reconstruct full features from foundation models, while a teacher decoder reconstructs their adapted, low-dimensional counterpart. The shared slot attention module bridges cross-domain learning by aligning object-level representations across clients. Experiments in multiple real-world datasets show that our framework not only outperforms centralized baselines on object discovery but also learns a compact, universal representation that generalizes well across domains. This work highlights federated slot attention as an effective tool for scalable, unsupervised visual representation learning from cross-domain data with distributed concepts.
comment: Accepted by Neurips2025
♻ ☆ SegMASt3R: Geometry Grounded Segment Matching NeurIPS 2025
Segment matching is an important intermediate task in computer vision that establishes correspondences between semantically or geometrically coherent regions across images. Unlike keypoint matching, which focuses on localized features, segment matching captures structured regions, offering greater robustness to occlusions, lighting variations, and viewpoint changes. In this paper, we leverage the spatial understanding of 3D foundation models to tackle wide-baseline segment matching, a challenging setting involving extreme viewpoint shifts. We propose an architecture that uses the inductive bias of these 3D foundation models to match segments across image pairs with up to 180 degree view-point change rotation. Extensive experiments show that our approach outperforms state-of-the-art methods, including the SAM2 video propagator and local feature matching methods, by up to 30% on the AUPRC metric, on ScanNet++ and Replica datasets. We further demonstrate benefits of the proposed model on relevant downstream tasks, including 3D instance mapping and object-relative navigation. Project Page: https://segmast3r.github.io/
comment: Accepted to The 39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025) as a Spotlight (top 3.5%)
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
♻ ☆ Operational Change Detection for Geographical Information: Overview and Challenges
Rapid evolution of territories due to climate change and human impact requires prompt and effective updates to geospatial databases maintained by the National Mapping Agency. This paper presents a comprehensive overview of change detection methods tailored for the operational updating of large-scale geographic databases. This review first outlines the fundamental definition of change, emphasizing its multifaceted nature, from temporal to semantic characterization. It categorizes automatic change detection methods into four main families: rule-based, statistical, machine learning, and simulation methods. The strengths, limitations, and applicability of every family are discussed in the context of various input data. Then, key applications for National Mapping Agencies are identified, particularly the optimization of geospatial database updating, change-based phenomena, and dynamics monitoring. Finally, the paper highlights the current challenges for leveraging change detection such as the variability of change definition, the missing of relevant large-scale datasets, the diversity of input data, the unstudied no-change detection, the human in the loop integration and the operational constraints. The discussion underscores the necessity for ongoing innovation in change detection techniques to address the future needs of geographic information systems for national mapping agencies.
comment: Preprint under review
♻ ☆ Video-RTS: Rethinking Reinforcement Learning and Test-Time Scaling for Efficient and Enhanced Video Reasoning EMNLP 2025
Despite advances in reinforcement learning (RL)-based video reasoning with large language models (LLMs), data collection and fine-tuning remain significant challenges. These methods often rely on large-scale supervised fine-tuning (SFT) with extensive video data and long Chain-of-Thought (CoT) annotations, making them costly and hard to scale. To address this, we present Video-RTS, a new approach to improve video reasoning capability with drastically improved data efficiency by combining data-efficient RL with a video-adaptive test-time scaling (TTS) strategy. Building on observations about the data scaling, we skip the resource-intensive SFT step and employ efficient pure-RL training with output-based rewards, requiring no additional annotations or extensive fine-tuning. Furthermore, to utilize computational resources more efficiently, we introduce a sparse-to-dense video TTS strategy that improves inference by iteratively adding frames based on output consistency. We validate our approach on multiple video reasoning benchmarks, showing that Video-RTS surpasses existing video reasoning models by 2.4% in accuracy using only 3.6% training samples. Specifically, Video-RTS achieves a 4.2% improvement on Video-Holmes, a recent and challenging video reasoning benchmark. Notably, our pure RL training and adaptive video TTS offer complementary strengths, enabling Video-RTS's strong reasoning performance.
comment: EMNLP 2025. The first two authors contributed equally. Project page: https://sites.google.com/cs.unc.edu/videorts2025/
Artificial Intelligence 10
☆ A Knowledge-Graph Translation Layer for Mission-Aware Multi-Agent Path Planning in Spatiotemporal Dynamics
The coordination of autonomous agents in dynamic environments is hampered by the semantic gap between high-level mission objectives and low-level planner inputs. To address this, we introduce a framework centered on a Knowledge Graph (KG) that functions as an intelligent translation layer. The KG's two-plane architecture compiles declarative facts into per-agent, mission-aware ``worldviews" and physics-aware traversal rules, decoupling mission semantics from a domain-agnostic planner. This allows complex, coordinated paths to be modified simply by changing facts in the KG. A case study involving Autonomous Underwater Vehicles (AUVs) in the Gulf of Mexico visually demonstrates the end-to-end process and quantitatively proves that different declarative policies produce distinct, high-performing outcomes. This work establishes the KG not merely as a data repository, but as a powerful, stateful orchestrator for creating adaptive and explainable autonomous systems.
comment: 10 pages, 10 figures, conference submission
☆ On Thin Ice: Towards Explainable Conservation Monitoring via Attribution and Perturbations NeurIPS
Computer vision can accelerate ecological research and conservation monitoring, yet adoption in ecology lags in part because of a lack of trust in black-box neural-network-based models. We seek to address this challenge by applying post-hoc explanations to provide evidence for predictions and document limitations that are important to field deployment. Using aerial imagery from Glacier Bay National Park, we train a Faster R-CNN to detect pinnipeds (harbor seals) and generate explanations via gradient-based class activation mapping (HiResCAM, LayerCAM), local interpretable model-agnostic explanations (LIME), and perturbation-based explanations. We assess explanations along three axes relevant to field use: (i) localization fidelity: whether high-attribution regions coincide with the animal rather than background context; (ii) faithfulness: whether deletion/insertion tests produce changes in detector confidence; and (iii) diagnostic utility: whether explanations reveal systematic failure modes. Explanations concentrate on seal torsos and contours rather than surrounding ice/rock, and removal of the seals reduces detection confidence, providing model-evidence for true positives. The analysis also uncovers recurrent error sources, including confusion between seals and black ice and rocks. We translate these findings into actionable next steps for model development, including more targeted data curation and augmentation. By pairing object detection with post-hoc explainability, we can move beyond "black-box" predictions toward auditable, decision-supporting tools for conservation monitoring.
comment: NeurIPS Imageomics Workshop 2025
☆ A Multimodal Benchmark for Framing of Oil & Gas Advertising and Potential Greenwashing Detection NeurIPS 2025
Companies spend large amounts of money on public relations campaigns to project a positive brand image. However, sometimes there is a mismatch between what they say and what they do. Oil & gas companies, for example, are accused of "greenwashing" with imagery of climate-friendly initiatives. Understanding the framing, and changes in framing, at scale can help better understand the goals and nature of public relations campaigns. To address this, we introduce a benchmark dataset of expert-annotated video ads obtained from Facebook and YouTube. The dataset provides annotations for 13 framing types for more than 50 companies or advocacy groups across 20 countries. Our dataset is especially designed for the evaluation of vision-language models (VLMs), distinguishing it from past text-only framing datasets. Baseline experiments show some promising results, while leaving room for improvement for future work: GPT-4.1 can detect environmental messages with 79% F1 score, while our best model only achieves 46% F1 score on identifying framing around green innovation. We also identify challenges that VLMs must address, such as implicit framing, handling videos of various lengths, or implicit cultural backgrounds. Our dataset contributes to research in multimodal analysis of strategic communication in the energy sector.
comment: Forthcoming in NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Causal Climate Emulation with Bayesian Filtering
Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physically-based causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a novel approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.
comment: 37 pages, 26 figures
♻ ☆ Intrinsic Goals for Autonomous Agents: Model-Based Exploration in Virtual Zebrafish Predicts Ethological Behavior and Whole-Brain Dynamics
Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in reward-free environments, including a class of methods known as model-based intrinsic motivation, exhibit inconsistent exploration patterns and do not converge to an exploratory policy, thus failing to capture robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in ethological, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed after the principles of autonomous exploration in animals. Our method (3M-Progress) achieves animal-like exploration by tracking divergence between an online world model and a fixed prior learned from an ecological niche. To the best of our knowledge, we introduce the first autonomous embodied agent that predicts brain data entirely from self-supervised optimization of an intrinsic goal -- without any behavioral or neural training data -- demonstrating that 3M-Progress agents capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously behaving larval zebrafish, thereby providing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
comment: 17 pages, 7 figures
♻ ☆ System-Embedded Diffusion Bridge Models NeurIPS 2025
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: NeurIPS 2025
♻ ☆ SimuRA: A World-Model-Driven Simulative Reasoning Architecture for General Goal-Oriented Agents
AI agents built on foundation models hold enormous promise. Current practice, however, focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also faces practical limitations from black-box autoregressive reasoning, where decisions unfold token by token without explicit simulation or counterfactual evaluation of outcomes. Humans, on the other hand, reason and plan by mentally simulating the consequences of actions within an internal model of the world -- a capability that supports flexible, goal-directed behavior across diverse contexts. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of an optimal agent in any general environment, SimuRA addresses the limitations of black-box autoregressive reasoning by incorporating the world model for planning via simulation. Our prototype world model is implemented using LLMs as a substrate, leveraging the natural language as a discrete, hierarchical representation grounded in concepts for planning, while remaining model-agnostic. On complex web-browsing tasks such as flight search, SimuRA improves the success rate from 0% to 32.2% compared to a representative open-web agent baseline. Across tasks, world-model-based planning achieves up to 124% higher task completion rates than a matched black-box autoregressive baseline, demonstrating the advantages of simulative reasoning. We release ReasonerAgent-Web, a web-browsing agent built on SimuRA, as an open-source research demo.
comment: This submission has been updated to adjust the scope and presentation of the work
♻ ☆ A4L: An Architecture for AI-Augmented Learning
AI promises personalized learning and scalable education. As AI agents increasingly permeate education in support of teaching and learning, there is a critical and urgent need for data architectures for collecting and analyzing data on learning, and feeding the results back to teachers, learners, and the AI agents for personalization of learning at scale. At the National AI Institute for Adult Learning and Online Education, we are developing an Architecture for AI-Augmented Learning (A4L) for supporting adult learning through online education. We present the motivations, goals, requirements of the A4L architecture. We describe preliminary applications of A4L and discuss how it advances the goals of making learning more personalized and scalable.
comment: 14 pages, 7 figures
♻ ☆ DynamicPAE: Generating Scene-Aware Physical Adversarial Examples in Real-Time
Physical adversarial examples (PAEs) are regarded as whistle-blowers of real-world risks in deep-learning applications, thus worth further investigation. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes, revealing the urgent requirement of dynamic PAEs that are generated in real time and conditioned on the observation from the attacker. The key challenge in generating dynamic PAEs is learning the sparse relation between PAEs and the observation of attackers under the noisy feedback of attack training. To address the challenge, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks. Specifically, to address the noisy feedback problem that obfuscates the exploration of scene-related PAEs, we introduce the residual-guided adversarial pattern exploration technique. Residual-guided training, which relaxes the attack training with a reconstruction task, is proposed to enrich the feedback information, thereby achieving a more comprehensive exploration of PAEs. To address the alignment problem between the trained generator and the real-world scenario, we introduce the distribution-matched attack scenario alignment, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former aligns the training environment with the incomplete observation of the real-world attacker. The latter facilitates consistent stealth control across different attack targets with the skewness controller. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 2.07 $\times$ boost (58.8% average AP drop under attack) on representative object detectors (e.g., DETR) over state-of-the-art static PAE generating methods. Overall, our work opens the door to end-to-end modeling of dynamic PAEs.
♻ ☆ Reinforcement Learning with Action Chunking NeurIPS 2025
We present Q-chunking, a simple yet effective recipe for improving reinforcement learning (RL) algorithms for long-horizon, sparse-reward tasks. Our recipe is designed for the offline-to-online RL setting, where the goal is to leverage an offline prior dataset to maximize the sample-efficiency of online learning. Effective exploration and sample-efficient learning remain central challenges in this setting, as it is not obvious how the offline data should be utilized to acquire a good exploratory policy. Our key insight is that action chunking, a technique popularized in imitation learning where sequences of future actions are predicted rather than a single action at each timestep, can be applied to temporal difference (TD)-based RL methods to mitigate the exploration challenge. Q-chunking adopts action chunking by directly running RL in a 'chunked' action space, enabling the agent to (1) leverage temporally consistent behaviors from offline data for more effective online exploration and (2) use unbiased $n$-step backups for more stable and efficient TD learning. Our experimental results demonstrate that Q-chunking exhibits strong offline performance and online sample efficiency, outperforming prior best offline-to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025); 36 pages, 17 figures
Machine Learning 32
☆ Equivariance by Contrast: Identifiable Equivariant Embeddings from Unlabeled Finite Group Actions NeurIPS 2025
We propose Equivariance by Contrast (EbC) to learn equivariant embeddings from observation pairs $(\mathbf{y}, g \cdot \mathbf{y})$, where $g$ is drawn from a finite group acting on the data. Our method jointly learns a latent space and a group representation in which group actions correspond to invertible linear maps -- without relying on group-specific inductive biases. We validate our approach on the infinite dSprites dataset with structured transformations defined by the finite group $G:= (R_m \times \mathbb{Z}_n \times \mathbb{Z}_n)$, combining discrete rotations and periodic translations. The resulting embeddings exhibit high-fidelity equivariance, with group operations faithfully reproduced in latent space. On synthetic data, we further validate the approach on the non-abelian orthogonal group $O(n)$ and the general linear group $GL(n)$. We also provide a theoretical proof for identifiability. While broad evaluation across diverse group types on real-world data remains future work, our results constitute the first successful demonstration of general-purpose encoder-only equivariant learning from group action observations alone, including non-trivial non-abelian groups and a product group motivated by modeling affine equivariances in computer vision.
comment: Accepted at NeurIPS 2025. The last two authors contributed equally. Code is available at https://github.com/dynamical-inference/ebc
☆ Visual Diffusion Models are Geometric Solvers
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.
comment: Project page: https://kariander1.github.io/visual-geo-solver/
☆ Mechanistic Interpretability for Neural TSP Solvers
Neural networks have advanced combinatorial optimization, with Transformer-based solvers achieving near-optimal solutions on the Traveling Salesman Problem (TSP) in milliseconds. However, these models operate as black boxes, providing no insight into the geometric patterns they learn or the heuristics they employ during tour construction. We address this opacity by applying sparse autoencoders (SAEs), a mechanistic interpretability technique, to a Transformer-based TSP solver, representing the first application of activation-based interpretability methods to operations research models. We train a pointer network with reinforcement learning on 100-node instances, then fit an SAE to the encoder's residual stream to discover an overcomplete dictionary of interpretable features. Our analysis reveals that the solver naturally develops features mirroring fundamental TSP concepts: boundary detectors that activate on convex-hull nodes, cluster-sensitive features responding to locally dense regions, and separator features encoding geometric partitions. These findings provide the first model-internal account of what neural TSP solvers compute before node selection, demonstrate that geometric structure emerges without explicit supervision, and suggest pathways toward transparent hybrid systems that combine neural efficiency with algorithmic interpretability. Interactive feature explorer: https://reubennarad.github.io/TSP_interp
☆ On Uncertainty Calibration for Equivariant Functions
Data-sparse settings such as robotic manipulation, molecular physics, and galaxy morphology classification are some of the hardest domains for deep learning. For these problems, equivariant networks can help improve modeling across undersampled parts of the input space, and uncertainty estimation can guard against overconfidence. However, until now, the relationships between equivariance and model confidence, and more generally equivariance and model calibration, has yet to be studied. Since traditional classification and regression error terms show up in the definitions of calibration error, it is natural to suspect that previous work can be used to help understand the relationship between equivariance and calibration error. In this work, we present a theory relating equivariance to uncertainty estimation. By proving lower and upper bounds on uncertainty calibration errors (ECE and ENCE) under various equivariance conditions, we elucidate the generalization limits of equivariant models and illustrate how symmetry mismatch can result in miscalibration in both classification and regression. We complement our theoretical framework with numerical experiments that clarify the relationship between equivariance and uncertainty using a variety of real and simulated datasets, and we comment on trends with symmetry mismatch, group size, and aleatoric and epistemic uncertainties.
comment: Under review at Transactions on Machine Learning Research (TMLR). Code is available at https://github.com/EdwardBerman/EquiUQ . Excited to share this paper, comments welcome :D
☆ Multimodal Datasets with Controllable Mutual Information
We introduce a framework for generating highly multimodal datasets with explicitly calculable mutual information between modalities. This enables the construction of benchmark datasets that provide a novel testbed for systematic studies of mutual information estimators and multimodal self-supervised learning techniques. Our framework constructs realistic datasets with known mutual information using a flow-based generative model and a structured causal framework for generating correlated latent variables.
comment: 15 pages, 4 figures, 1 table. Our code is publicly available at https://github.com/RKHashmani/MmMi-Datasets
☆ Optimal Graph Clustering without Edge Density Signals
This paper establishes the theoretical limits of graph clustering under the Popularity-Adjusted Block Model (PABM), addressing limitations of existing models. In contrast to the Stochastic Block Model (SBM), which assumes uniform vertex degrees, and to the Degree-Corrected Block Model (DCBM), which applies uniform degree corrections across clusters, PABM introduces separate popularity parameters for intra- and inter-cluster connections. Our main contribution is the characterization of the optimal error rate for clustering under PABM, which provides novel insights on clustering hardness: we demonstrate that unlike SBM and DCBM, cluster recovery remains possible in PABM even when traditional edge-density signals vanish, provided intra- and inter-cluster popularity coefficients differ. This highlights a dimension of degree heterogeneity captured by PABM but overlooked by DCBM: local differences in connectivity patterns can enhance cluster separability independently of global edge densities. Finally, because PABM exhibits a richer structure, its expected adjacency matrix has rank between $k$ and $k^2$, where $k$ is the number of clusters. As a result, spectral embeddings based on the top $k$ eigenvectors may fail to capture important structural information. Our numerical experiments on both synthetic and real datasets confirm that spectral clustering algorithms incorporating $k^2$ eigenvectors outperform traditional spectral approaches.
☆ DEEDEE: Fast and Scalable Out-of-Distribution Dynamics Detection
Deploying reinforcement learning (RL) in safety-critical settings is constrained by brittleness under distribution shift. We study out-of-distribution (OOD) detection for RL time series and introduce DEEDEE, a two-statistic detector that revisits representation-heavy pipelines with a minimal alternative. DEEDEE uses only an episodewise mean and an RBF kernel similarity to a training summary, capturing complementary global and local deviations. Despite its simplicity, DEEDEE matches or surpasses contemporary detectors across standard RL OOD suites, delivering a 600-fold reduction in compute (FLOPs / wall-time) and an average 5% absolute accuracy gain over strong baselines. Conceptually, our results indicate that diverse anomaly types often imprint on RL trajectories through a small set of low-order statistics, suggesting a compact foundation for OOD detection in complex environments.
☆ Few-Shot Knowledge Distillation of LLMs With Counterfactual Explanations NeurIPS 2025
Knowledge distillation is a promising approach to transfer capabilities from complex teacher models to smaller, resource-efficient student models that can be deployed easily, particularly in task-aware scenarios. However, existing methods of task-aware distillation typically require substantial quantities of data which may be unavailable or expensive to obtain in many practical scenarios. In this paper, we address this challenge by introducing a novel strategy called Counterfactual-explanation-infused Distillation CoD for few-shot task-aware knowledge distillation by systematically infusing counterfactual explanations. Counterfactual explanations (CFEs) refer to inputs that can flip the output prediction of the teacher model with minimum perturbation. Our strategy CoD leverages these CFEs to precisely map the teacher's decision boundary with significantly fewer samples. We provide theoretical guarantees for motivating the role of CFEs in distillation, from both statistical and geometric perspectives. We mathematically show that CFEs can improve parameter estimation by providing more informative examples near the teacher's decision boundary. We also derive geometric insights on how CFEs effectively act as knowledge probes, helping the students mimic the teacher's decision boundaries more effectively than standard data. We perform experiments across various datasets and LLMs to show that CoD outperforms standard distillation approaches in few-shot regimes (as low as 8-512 samples). Notably, CoD only uses half of the original samples used by the baselines, paired with their corresponding CFEs and still improves performance.
comment: NeurIPS 2025
☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
☆ Generative Correlation Manifolds: Generating Synthetic Data with Preserved Higher-Order Correlations
The increasing need for data privacy and the demand for robust machine learning models have fueled the development of synthetic data generation techniques. However, current methods often succeed in replicating simple summary statistics but fail to preserve both the pairwise and higher-order correlation structure of the data that define the complex, multi-variable interactions inherent in real-world systems. This limitation can lead to synthetic data that is superficially realistic but fails when used for sophisticated modeling tasks. In this white paper, we introduce Generative Correlation Manifolds (GCM), a computationally efficient method for generating synthetic data. The technique uses Cholesky decomposition of a target correlation matrix to produce datasets that, by mathematical proof, preserve the entire correlation structure -- from simple pairwise relationships to higher-order interactions -- of the source dataset. We argue that this method provides a new approach to synthetic data generation with potential applications in privacy-preserving data sharing, robust model training, and simulation.
☆ Enhancing Tactile-based Reinforcement Learning for Robotic Control
Achieving safe, reliable real-world robotic manipulation requires agents to evolve beyond vision and incorporate tactile sensing to overcome sensory deficits and reliance on idealised state information. Despite its potential, the efficacy of tactile sensing in reinforcement learning (RL) remains inconsistent. We address this by developing self-supervised learning (SSL) methodologies to more effectively harness tactile observations, focusing on a scalable setup of proprioception and sparse binary contacts. We empirically demonstrate that sparse binary tactile signals are critical for dexterity, particularly for interactions that proprioceptive control errors do not register, such as decoupled robot-object motions. Our agents achieve superhuman dexterity in complex contact tasks (ball bouncing and Baoding ball rotation). Furthermore, we find that decoupling the SSL memory from the on-policy memory can improve performance. We release the Robot Tactile Olympiad (RoTO) benchmark to standardise and promote future research in tactile-based manipulation. Project page: https://elle-miller.github.io/tactile_rl
♻ ☆ Causal Climate Emulation with Bayesian Filtering
Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physically-based causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a novel approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.
comment: 37 pages, 26 figures
♻ ☆ Intrinsic Goals for Autonomous Agents: Model-Based Exploration in Virtual Zebrafish Predicts Ethological Behavior and Whole-Brain Dynamics
Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in reward-free environments, including a class of methods known as model-based intrinsic motivation, exhibit inconsistent exploration patterns and do not converge to an exploratory policy, thus failing to capture robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in ethological, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed after the principles of autonomous exploration in animals. Our method (3M-Progress) achieves animal-like exploration by tracking divergence between an online world model and a fixed prior learned from an ecological niche. To the best of our knowledge, we introduce the first autonomous embodied agent that predicts brain data entirely from self-supervised optimization of an intrinsic goal -- without any behavioral or neural training data -- demonstrating that 3M-Progress agents capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously behaving larval zebrafish, thereby providing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
comment: 17 pages, 7 figures
♻ ☆ System-Embedded Diffusion Bridge Models NeurIPS 2025
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: NeurIPS 2025
♻ ☆ SimuRA: A World-Model-Driven Simulative Reasoning Architecture for General Goal-Oriented Agents
AI agents built on foundation models hold enormous promise. Current practice, however, focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also faces practical limitations from black-box autoregressive reasoning, where decisions unfold token by token without explicit simulation or counterfactual evaluation of outcomes. Humans, on the other hand, reason and plan by mentally simulating the consequences of actions within an internal model of the world -- a capability that supports flexible, goal-directed behavior across diverse contexts. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of an optimal agent in any general environment, SimuRA addresses the limitations of black-box autoregressive reasoning by incorporating the world model for planning via simulation. Our prototype world model is implemented using LLMs as a substrate, leveraging the natural language as a discrete, hierarchical representation grounded in concepts for planning, while remaining model-agnostic. On complex web-browsing tasks such as flight search, SimuRA improves the success rate from 0% to 32.2% compared to a representative open-web agent baseline. Across tasks, world-model-based planning achieves up to 124% higher task completion rates than a matched black-box autoregressive baseline, demonstrating the advantages of simulative reasoning. We release ReasonerAgent-Web, a web-browsing agent built on SimuRA, as an open-source research demo.
comment: This submission has been updated to adjust the scope and presentation of the work
♻ ☆ Federated Unlearning Made Practical: Seamless Integration via Negated Pseudo-Gradients
The right to be forgotten is a fundamental principle of privacy-preserving regulations and extends to Machine Learning (ML) paradigms such as Federated Learning (FL). While FL enhances privacy by enabling collaborative model training without sharing private data, trained models still retain the influence of training data. Federated Unlearning (FU) methods recently proposed often rely on impractical assumptions for real-world FL deployments, such as storing client update histories or requiring access to a publicly available dataset. To address these constraints, this paper introduces a novel method that leverages negated Pseudo-gradients Updates for Federated Unlearning (PUF). Our approach only uses standard client model updates, which are employed during regular FL rounds, and interprets them as pseudo-gradients. When a client needs to be forgotten, we apply the negation of their pseudo-gradients, appropriately scaled, to the global model. Unlike state-of-the-art mechanisms, PUF seamlessly integrates with FL workflows, incurs no additional computational and communication overhead beyond standard FL rounds, and supports concurrent unlearning requests. We extensively evaluated the proposed method on two well-known benchmark image classification datasets (CIFAR-10 and CIFAR-100) and a real-world medical imaging dataset for segmentation (ProstateMRI), using three different neural architectures: two residual networks and a vision transformer. The experimental results across various settings demonstrate that PUF achieves state-of-the-art forgetting effectiveness and recovery time, without relying on any additional assumptions.
♻ ☆ Reinforcement Learning with Action Chunking NeurIPS 2025
We present Q-chunking, a simple yet effective recipe for improving reinforcement learning (RL) algorithms for long-horizon, sparse-reward tasks. Our recipe is designed for the offline-to-online RL setting, where the goal is to leverage an offline prior dataset to maximize the sample-efficiency of online learning. Effective exploration and sample-efficient learning remain central challenges in this setting, as it is not obvious how the offline data should be utilized to acquire a good exploratory policy. Our key insight is that action chunking, a technique popularized in imitation learning where sequences of future actions are predicted rather than a single action at each timestep, can be applied to temporal difference (TD)-based RL methods to mitigate the exploration challenge. Q-chunking adopts action chunking by directly running RL in a 'chunked' action space, enabling the agent to (1) leverage temporally consistent behaviors from offline data for more effective online exploration and (2) use unbiased $n$-step backups for more stable and efficient TD learning. Our experimental results demonstrate that Q-chunking exhibits strong offline performance and online sample efficiency, outperforming prior best offline-to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025); 36 pages, 17 figures
♻ ☆ Quantum Temporal Fusion Transformer
The \textit{Temporal Fusion Transformer} (TFT), proposed by Lim \textit{et al.}, published in \textit{International Journal of Forecasting} (2021), is a state-of-the-art attention-based deep neural network architecture specifically designed for multi-horizon time series forecasting. It has demonstrated significant performance improvements over existing benchmarks. In this work, we introduce the Quantum Temporal Fusion Transformer (QTFT), a quantum-enhanced hybrid quantum-classical architecture that extends the capabilities of the classical TFT framework. The core idea of this work is inspired by the foundation studies, \textit{The Power of Quantum Neural Networks} by Amira Abbas \textit{et al.} and \textit{Quantum Vision Transformers} by El Amine Cherrat \textit{et al.}, published in \textit{ Nature Computational Science} (2021) and \textit{Quantum} (2024), respectively. A key advantage of our approach lies in its foundation on a variational quantum algorithm, enabling implementation on current noisy intermediate-scale quantum (NISQ) devices without strict requirements on the number of qubits or circuit depth. Our results demonstrate that QTFT is successfully trained on the forecasting datasets and is capable of accurately predicting future values. In particular, our experimental results on two different datasets display that the model outperforms its classical counterpart in terms of both training and test loss. These results indicate the prospect of using quantum computing to boost deep learning architectures in complex machine learning tasks.
♻ ☆ A Gravity-informed Spatiotemporal Transformer for Human Activity Intensity Prediction
Human activity intensity prediction is crucial to many location-based services. Despite tremendous progress in modeling dynamics of human activity, most existing methods overlook physical constraints of spatial interaction, leading to uninterpretable spatial correlations and over-smoothing phenomenon. To address these limitations, this work proposes a physics-informed deep learning framework, namely Gravity-informed Spatiotemporal Transformer (Gravityformer) by integrating the universal law of gravitation to refine transformer attention. Specifically, it (1) estimates two spatially explicit mass parameters based on spatiotemporal embedding feature, (2) models the spatial interaction in end-to-end neural network using proposed adaptive gravity model to learn the physical constraint, and (3) utilizes the learned spatial interaction to guide and mitigate the over-smoothing phenomenon in transformer attention. Moreover, a parallel spatiotemporal graph convolution transformer is proposed for achieving a balance between coupled spatial and temporal learning. Systematic experiments on six real-world large-scale activity datasets demonstrate the quantitative and qualitative superiority of our model over state-of-the-art benchmarks. Additionally, the learned gravity attention matrix can be not only disentangled and interpreted based on geographical laws, but also improved the generalization in zero-shot cross-region inference. This work provides a novel insight into integrating physical laws with deep learning for spatiotemporal prediction.
comment: IEEE TPAMI 2025. 18 pages, 14 figures
♻ ☆ Mixture of Experts in Image Classification: What's the Sweet Spot?
Mixture-of-Experts (MoE) models have shown promising potential for parameter-efficient scaling across domains. However, their application to image classification remains limited, often requiring billion-scale datasets to be competitive. In this work, we explore the integration of MoE layers into image classification architectures using open datasets. We conduct a systematic analysis across different MoE configurations and model scales. We find that moderate parameter activation per sample provides the best trade-off between performance and efficiency. However, as the number of activated parameters increases, the benefits of MoE diminish. Our analysis yields several practical insights for vision MoE design. First, MoE layers most effectively strengthen tiny and mid-sized models, while gains taper off for large-capacity networks and do not redefine state-of-the-art ImageNet performance. Second, a Last-2 placement heuristic offers the most robust cross-architecture choice, with Every-2 slightly better for Vision Transform (ViT), and both remaining effective as data and model scale increase. Third, larger datasets (e.g., ImageNet-21k) allow more experts, up to 16, for ConvNeXt to be utilized effectively without changing placement, as increased data reduces overfitting and promotes broader expert specialization. Finally, a simple linear router performs best, suggesting that additional routing complexity yields no consistent benefit.
comment: Published in Transactions on Machine Learning Research
♻ ☆ CityAQVis: Integrated ML-Visualization Sandbox Tool for Pollutant Estimation in Urban Regions Using Multi-Source Data (Software Article)
Urban air pollution poses significant risks to public health, environmental sustainability, and policy planning. Effective air quality management requires predictive tools that can integrate diverse datasets and communicate complex spatial and temporal pollution patterns. There is a gap in interactive tools with seamless integration of forecasting and visualization of spatial distributions of air pollutant concentrations. We present CityAQVis, an interactive machine learning ML sandbox tool designed to predict and visualize pollutant concentrations at the ground level using multi-source data, which includes satellite observations, meteorological parameters, population density, elevation, and nighttime lights. While traditional air quality visualization tools often lack forecasting capabilities, CityAQVis enables users to build and compare predictive models, visualizing the model outputs and offering insights into pollution dynamics at the ground level. The pilot implementation of the tool is tested through case studies predicting nitrogen dioxide (NO2) concentrations in metropolitan regions, highlighting its adaptability to various pollutants. Through an intuitive graphical user interface (GUI), the user can perform comparative visualizations of the spatial distribution of surface-level pollutant concentration in two different urban scenarios. Our results highlight the potential of ML-driven visual analytics to improve situational awareness and support data-driven decision-making in air quality management.
comment: 19 pages, 10 figures, 2 tables
♻ ☆ Fixed-Point RNNs: Interpolating from Diagonal to Dense NeurIPS 2025
Linear recurrent neural networks (RNNs) and state-space models (SSMs) such as Mamba have become promising alternatives to softmax-attention as sequence mixing layers in Transformer architectures. Current models, however, do not exhibit the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e. diagonal) sequence mixing. In this paper, we investigate parameterizations of a large class of dense linear RNNs as fixed-points of parallelizable diagonal linear RNNs. The resulting models can naturally trade expressivity for efficiency at a fixed number of parameters and achieve state-of-the-art results on the state-tracking benchmarks $A_5$ and $S_5$, while matching performance on copying and other tasks.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Convergence and Generalization of Anti-Regularization for Parametric Models
Anti-regularization introduces a reward term with a reversed sign into the loss function, deliberately amplifying model expressivity in small-sample regimes while ensuring that the intervention gradually vanishes as the sample size grows through a power-law decay schedule. We formalize spectral safety conditions and trust-region constraints, and we design a lightweight safeguard that combines a projection operator with gradient clipping to guarantee stable intervention. Theoretical analysis extends to linear smoothers and the Neural Tangent Kernel regime, providing practical guidance on the choice of decay exponents through the balance between empirical risk and variance. Empirical results show that Anti-regularization mitigates underfitting in both regression and classification while preserving generalization and improving calibration. Ablation studies confirm that the decay schedule and safeguards are essential to avoiding overfitting and instability. As an alternative, we also propose a degrees-of-freedom targeting schedule that maintains constant per-sample complexity. Anti-regularization constitutes a simple and reproducible procedure that integrates seamlessly into standard empirical risk minimization pipelines, enabling robust learning under limited data and resource constraints by intervening only when necessary and vanishing otherwise.
comment: v3: Revised the paragraph under Theoretical Analysis (English translation and typo corrections)
♻ ☆ BioReason: Incentivizing Multimodal Biological Reasoning within a DNA-LLM Model
Unlocking deep and interpretable biological reasoning from complex genomic data remains a major AI challenge limiting scientific progress. While current DNA foundation models excel at representing sequences, they struggle with multi-step reasoning and lack transparent, biologically meaningful explanations. BioReason addresses this by tightly integrating a DNA foundation model with a large language model (LLM), enabling the LLM to directly interpret and reason over genomic information. Through supervised fine-tuning and reinforcement learning, BioReason learns to produce logical, biologically coherent deductions. It achieves major performance gains, boosting KEGG-based disease pathway prediction accuracy from 86% to 98% and improving variant effect prediction by an average of 15% over strong baselines. BioReason can reason over unseen biological entities and explain its decisions step by step, offering a transformative framework for interpretable, mechanistic AI in biology. All data, code, and checkpoints are available at https://github.com/bowang-lab/BioReason
comment: 28 pages, 4 figures, 4 tables
♻ ☆ Lightweight Facial Landmark Detection in Thermal Images via Multi-Level Cross-Modal Knowledge Transfer
Facial Landmark Detection (FLD) in thermal imagery is critical for applications in challenging lighting conditions, but it is hampered by the lack of rich visual cues. Conventional cross-modal solutions, like feature fusion or image translation from RGB data, are often computationally expensive or introduce structural artifacts, limiting their practical deployment. To address this, we propose Multi-Level Cross-Modal Knowledge Distillation (MLCM-KD), a novel framework that decouples high-fidelity RGB-to-thermal knowledge transfer from model compression to create both accurate and efficient thermal FLD models. A central challenge during knowledge transfer is the profound modality gap between RGB and thermal data, where traditional unidirectional distillation fails to enforce semantic consistency across disparate feature spaces. To overcome this, we introduce Dual-Injected Knowledge Distillation (DIKD), a bidirectional mechanism designed specifically for this task. DIKD establishes a connection between modalities: it not only guides the thermal student with rich RGB features but also validates the student's learned representations by feeding them back into the frozen teacher's prediction head. This closed-loop supervision forces the student to learn modality-invariant features that are semantically aligned with the teacher, ensuring a robust and profound knowledge transfer. Experiments show that our approach sets a new state-of-the-art on public thermal FLD benchmarks, notably outperforming previous methods while drastically reducing computational overhead.
♻ ☆ MobileRL: Online Agentic Reinforcement Learning for Mobile GUI Agents
Building general-purpose graphical user interface (GUI) agents has become increasingly promising with the progress in vision language models. However, developing effective mobile GUI agents with reinforcement learning (RL) remains challenging due to the heavy-tailed distribution of task difficulty and the inefficiency of large-scale environment sampling. We present an online agentic reinforcement learning framework MobileRL to enhance GUI agents in mobile environments. Its core component is the Difficulty-ADAptive GRPO (ADAGRPO) algorithm. In ADAGRPO, we design difficulty-adaptive positive replay and failure curriculum filtering to adapt the model to different task difficulties. We introduce the shortest-path reward adjustment strategy to reshape rewards concerning the task length in multi-turn agentic tasks. Those strategies jointly stabilize RL training, improve sample efficiency, and generate strong performance across diverse mobile apps and tasks. We apply MOBILERL to two open models (Qwen2.5-VL-7B-Instruct and GLM-4.1V-9B-Base). The resultant MOBILERL-9B model achieves state-of-the-art results in terms of success rates on both AndroidWorld (80.2%) and AndroidLab (53.6%). The MOBILERL framework is open-sourced at: https://github.com/THUDM/MobileRL.
♻ ☆ Transformer-Gather, Fuzzy-Reconsider: A Scalable Hybrid Framework for Entity Resolution
Entity resolution plays a significant role in enterprise systems where data integrity must be rigorously maintained. Traditional methods often struggle with handling noisy data or semantic understanding, while modern methods suffer from computational costs or the excessive need for parallel computation. In this study, we introduce a scalable hybrid framework, which is designed to address several important problems, including scalability, noise robustness, and reliable results. We utilized a pre-trained language model to encode each structured data into corresponding semantic embedding vectors. Subsequently, after retrieving a semantically relevant subset of candidates, we apply a syntactic verification stage using fuzzy string matching techniques to refine classification on the unlabeled data. This approach was applied to a real-world entity resolution task, which exposed a linkage between a central user management database and numerous shared hosting server records. Compared to other methods, this approach exhibits an outstanding performance in terms of both processing time and robustness, making it a reliable solution for a server-side product. Crucially, this efficiency does not compromise results, as the system maintains a high retrieval recall of approximately 0.97. The scalability of the framework makes it deployable on standard CPU-based infrastructure, offering a practical and effective solution for enterprise-level data integrity auditing.
comment: Accepted at ICCKE 2025 Conference. 6 tables, 7 figures
♻ ☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
♻ ☆ Planning and Learning in Average Risk-aware MDPs
For continuing tasks, average cost Markov decision processes have well-documented value and can be solved using efficient algorithms. However, it explicitly assumes that the agent is risk-neutral. In this work, we extend risk-neutral algorithms to accommodate the more general class of dynamic risk measures. Specifically, we propose a relative value iteration (RVI) algorithm for planning and design two model-free Q-learning algorithms, namely a generic algorithm based on the multi-level Monte Carlo (MLMC) method, and an off-policy algorithm dedicated to utility-based shortfall risk measures. Both the RVI and MLMC-based Q-learning algorithms are proven to converge to optimality. Numerical experiments validate our analysis, confirm empirically the convergence of the off-policy algorithm, and demonstrate that our approach enables the identification of policies that are finely tuned to the intricate risk-awareness of the agent that they serve.
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Importantly, this tradeoff remains persistent even at scale, casting doubt on the long-term creative potential of LLMs in their current form. Together, our conceptual framework and empirical findings provide a foundation for understanding and improving creativity in modern AI models, bridging the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
♻ ☆ FORLA: Federated Object-centric Representation Learning with Slot Attention
Learning efficient visual representations across heterogeneous unlabeled datasets remains a central challenge in federated learning. Effective federated representations require features that are jointly informative across clients while disentangling domain-specific factors without supervision. We introduce FORLA, a novel framework for federated object-centric representation learning and feature adaptation across clients using unsupervised slot attention. At the core of our method is a shared feature adapter, trained collaboratively across clients to adapt features from foundation models, and a shared slot attention module that learns to reconstruct the adapted features. To optimize this adapter, we design a two-branch student-teacher architecture. In each client, a student decoder learns to reconstruct full features from foundation models, while a teacher decoder reconstructs their adapted, low-dimensional counterpart. The shared slot attention module bridges cross-domain learning by aligning object-level representations across clients. Experiments in multiple real-world datasets show that our framework not only outperforms centralized baselines on object discovery but also learns a compact, universal representation that generalizes well across domains. This work highlights federated slot attention as an effective tool for scalable, unsupervised visual representation learning from cross-domain data with distributed concepts.
comment: Accepted by Neurips2025
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
Information Retrieval 19
☆ A Data-Centric Approach to Multilingual E-Commerce Product Search: Case Study on Query-Category and Query-Item Relevance
Multilingual e-commerce search suffers from severe data imbalance across languages, label noise, and limited supervision for low-resource languages--challenges that impede the cross-lingual generalization of relevance models despite the strong capabilities of large language models (LLMs). In this work, we present a practical, architecture-agnostic, data-centric framework to enhance performance on two core tasks: Query-Category (QC) relevance (matching queries to product categories) and Query-Item (QI) relevance (matching queries to product titles). Rather than altering the model, we redesign the training data through three complementary strategies: (1) translation-based augmentation to synthesize examples for languages absent in training, (2) semantic negative sampling to generate hard negatives and mitigate class imbalance, and (3) self-validation filtering to detect and remove likely mislabeled instances. Evaluated on the CIKM AnalytiCup 2025 dataset, our approach consistently yields substantial F1 score improvements over strong LLM baselines, achieving competitive results in the official competition. Our findings demonstrate that systematic data engineering can be as impactful as--and often more deployable than--complex model modifications, offering actionable guidance for building robust multilingual search systems in the real-world e-commerce settings.
☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
☆ Doc-Researcher: A Unified System for Multimodal Document Parsing and Deep Research
Deep Research systems have revolutionized how LLMs solve complex questions through iterative reasoning and evidence gathering. However, current systems remain fundamentally constrained to textual web data, overlooking the vast knowledge embedded in multimodal documents Processing such documents demands sophisticated parsing to preserve visual semantics (figures, tables, charts, and equations), intelligent chunking to maintain structural coherence, and adaptive retrieval across modalities, which are capabilities absent in existing systems. In response, we present Doc-Researcher, a unified system that bridges this gap through three integrated components: (i) deep multimodal parsing that preserves layout structure and visual semantics while creating multi-granular representations from chunk to document level, (ii) systematic retrieval architecture supporting text-only, vision-only, and hybrid paradigms with dynamic granularity selection, and (iii) iterative multi-agent workflows that decompose complex queries, progressively accumulate evidence, and synthesize comprehensive answers across documents and modalities. To enable rigorous evaluation, we introduce M4DocBench, the first benchmark for Multi-modal, Multi-hop, Multi-document, and Multi-turn deep research. Featuring 158 expert-annotated questions with complete evidence chains across 304 documents, M4DocBench tests capabilities that existing benchmarks cannot assess. Experiments demonstrate that Doc-Researcher achieves 50.6% accuracy, 3.4xbetter than state-of-the-art baselines, validating that effective document research requires not just better retrieval, but fundamentally deep parsing that preserve multimodal integrity and support iterative research. Our work establishes a new paradigm for conducting deep research on multimodal document collections.
comment: preprint
☆ Redefining Retrieval Evaluation in the Era of LLMs
Traditional Information Retrieval (IR) metrics, such as nDCG, MAP, and MRR, assume that human users sequentially examine documents with diminishing attention to lower ranks. This assumption breaks down in Retrieval Augmented Generation (RAG) systems, where search results are consumed by Large Language Models (LLMs), which, unlike humans, process all retrieved documents as a whole rather than sequentially. Additionally, traditional IR metrics do not account for related but irrelevant documents that actively degrade generation quality, rather than merely being ignored. Due to these two major misalignments, namely human vs. machine position discount and human relevance vs. machine utility, classical IR metrics do not accurately predict RAG performance. We introduce a utility-based annotation schema that quantifies both the positive contribution of relevant passages and the negative impact of distracting ones. Building on this foundation, we propose UDCG (Utility and Distraction-aware Cumulative Gain), a metric using an LLM-oriented positional discount to directly optimize the correlation with the end-to-end answer accuracy. Experiments on five datasets and six LLMs demonstrate that UDCG improves correlation by up to 36% compared to traditional metrics. Our work provides a critical step toward aligning IR evaluation with LLM consumers and enables more reliable assessment of RAG components
☆ SciNUP: Natural Language User Interest Profiles for Scientific Literature Recommendation
The use of natural language (NL) user profiles in recommender systems offers greater transparency and user control compared to traditional representations. However, there is scarcity of large-scale, publicly available test collections for evaluating NL profile-based recommendation. To address this gap, we introduce SciNUP, a novel synthetic dataset for scholarly recommendation that leverages authors' publication histories to generate NL profiles and corresponding ground truth items. We use this dataset to conduct a comparison of baseline methods, ranging from sparse and dense retrieval approaches to state-of-the-art LLM-based rerankers. Our results show that while baseline methods achieve comparable performance, they often retrieve different items, indicating complementary behaviors. At the same time, considerable headroom for improvement remains, highlighting the need for effective NL-based recommendation approaches. The SciNUP dataset thus serves as a valuable resource for fostering future research and development in this area.
☆ CausalRec: A CausalBoost Attention Model for Sequential Recommendation
Recent advances in correlation-based sequential recommendation systems have demonstrated substantial success. Specifically, the attention-based model outperforms other RNN-based and Markov chains-based models by capturing both short- and long-term dependencies more effectively. However, solely focusing on item co-occurrences overlooks the underlying motivations behind user behaviors, leading to spurious correlations and potentially inaccurate recommendations. To address this limitation, we present a novel framework that integrates causal attention for sequential recommendation, CausalRec. It incorporates a causal discovery block and a CausalBooster. The causal discovery block learns the causal graph in user behavior sequences, and we provide a theory to guarantee the identifiability of the learned causal graph. The CausalBooster utilizes the discovered causal graph to refine the attention mechanism, prioritizing behaviors with causal significance. Experimental evaluations on real-world datasets indicate that CausalRec outperforms several state-of-the-art methods, with average improvements of 7.21% in Hit Rate (HR) and 8.65% in Normalized Discounted Cumulative Gain (NDCG). To the best of our knowledge, this is the first model to incorporate causality through the attention mechanism in sequential recommendation, demonstrating the value of causality in generating more accurate and reliable recommendations.
comment: 11 pages, 3 figures
☆ Pctx: Tokenizing Personalized Context for Generative Recommendation
Generative recommendation (GR) models tokenize each action into a few discrete tokens (called semantic IDs) and autoregressively generate the next tokens as predictions, showing advantages such as memory efficiency, scalability, and the potential to unify retrieval and ranking. Despite these benefits, existing tokenization methods are static and non-personalized. They typically derive semantic IDs solely from item features, assuming a universal item similarity that overlooks user-specific perspectives. However, under the autoregressive paradigm, semantic IDs with the same prefixes always receive similar probabilities, so a single fixed mapping implicitly enforces a universal item similarity standard across all users. In practice, the same item may be interpreted differently depending on user intentions and preferences. To address this issue, we propose a personalized context-aware tokenizer that incorporates a user's historical interactions when generating semantic IDs. This design allows the same item to be tokenized into different semantic IDs under different user contexts, enabling GR models to capture multiple interpretive standards and produce more personalized predictions. Experiments on three public datasets demonstrate up to 11.44% improvement in NDCG@10 over non-personalized action tokenization baselines. Our code is available at https://github.com/YoungZ365/Pctx.
☆ Bi-Level Optimization for Generative Recommendation: Bridging Tokenization and Generation
Generative recommendation is emerging as a transformative paradigm by directly generating recommended items, rather than relying on matching. Building such a system typically involves two key components: (1) optimizing the tokenizer to derive suitable item identifiers, and (2) training the recommender based on those identifiers. Existing approaches often treat these components separately--either sequentially or in alternation--overlooking their interdependence. This separation can lead to misalignment: the tokenizer is trained without direct guidance from the recommendation objective, potentially yielding suboptimal identifiers that degrade recommendation performance. To address this, we propose BLOGER, a Bi-Level Optimization for GEnerative Recommendation framework, which explicitly models the interdependence between the tokenizer and the recommender in a unified optimization process. The lower level trains the recommender using tokenized sequences, while the upper level optimizes the tokenizer based on both the tokenization loss and recommendation loss. We adopt a meta-learning approach to solve this bi-level optimization efficiently, and introduce gradient surgery to mitigate gradient conflicts in the upper-level updates, thereby ensuring that item identifiers are both informative and recommendation-aligned. Extensive experiments on real-world datasets demonstrate that BLOGER consistently outperforms state-of-the-art generative recommendation methods while maintaining practical efficiency with no significant additional computational overhead, effectively bridging the gap between item tokenization and autoregressive generation.
☆ VOGUE: A Multimodal Dataset for Conversational Recommendation in Fashion
Multimodal conversational recommendation has emerged as a promising paradigm for delivering personalized experiences through natural dialogue enriched by visual and contextual grounding. Yet, current multimodal conversational recommendation datasets remain limited: existing resources either simulate conversations, omit user history, or fail to collect sufficiently detailed feedback, all of which constrain the types of research and evaluation they support. To address these gaps, we introduce VOGUE, a novel dataset of 60 humanhuman dialogues in realistic fashion shopping scenarios. Each dialogue is paired with a shared visual catalogue, item metadata, user fashion profiles and histories, and post-conversation ratings from both Seekers and Assistants. This design enables rigorous evaluation of conversational inference, including not only alignment between predicted and ground-truth preferences, but also calibration against full rating distributions and comparison with explicit and implicit user satisfaction signals. Our initial analyses of VOGUE reveal distinctive dynamics of visually grounded dialogue. For example, recommenders frequently suggest items simultaneously in feature-based groups, which creates distinct conversational phases bridged by Seeker critiques and refinements. Benchmarking multimodal large language models against human recommenders shows that while MLLMs approach human-level alignment in aggregate, they exhibit systematic distribution errors in reproducing human ratings and struggle to generalize preference inference beyond explicitly discussed items. These findings establish VOGUE as both a unique resource for studying multimodal conversational systems and as a challenge dataset beyond the current recommendation capabilities of existing top-tier multimodal foundation models such as GPT-4o-mini, GPT-5-mini, and Gemini-2.5-Flash.
☆ A Benchmark for Open-Domain Numerical Fact-Checking Enhanced by Claim Decomposition
Fact-checking numerical claims is critical as the presence of numbers provide mirage of veracity despite being fake potentially causing catastrophic impacts on society. The prior works in automatic fact verification do not primarily focus on natural numerical claims. A typical human fact-checker first retrieves relevant evidence addressing the different numerical aspects of the claim and then reasons about them to predict the veracity of the claim. Hence, the search process of a human fact-checker is a crucial skill that forms the foundation of the verification process. Emulating a real-world setting is essential to aid in the development of automated methods that encompass such skills. However, existing benchmarks employ heuristic claim decomposition approaches augmented with weakly supervised web search to collect evidences for verifying claims. This sometimes results in less relevant evidences and noisy sources with temporal leakage rendering a less realistic retrieval setting for claim verification. Hence, we introduce QuanTemp++: a dataset consisting of natural numerical claims, an open domain corpus, with the corresponding relevant evidence for each claim. The evidences are collected through a claim decomposition process approximately emulating the approach of human fact-checker and veracity labels ensuring there is no temporal leakage. Given this dataset, we also characterize the retrieval performance of key claim decomposition paradigms. Finally, we observe their effect on the outcome of the verification pipeline and draw insights. The code for data pipeline along with link to data can be found at https://github.com/VenkteshV/QuanTemp_Plus
comment: 16 pages
☆ Massive Memorization with Hundreds of Trillions of Parameters for Sequential Transducer Generative Recommenders
Modern large-scale recommendation systems rely heavily on user interaction history sequences to enhance the model performance. The advent of large language models and sequential modeling techniques, particularly transformer-like architectures, has led to significant advancements recently (e.g., HSTU, SIM, and TWIN models). While scaling to ultra-long user histories (10k to 100k items) generally improves model performance, it also creates significant challenges on latency, queries per second (QPS) and GPU cost in industry-scale recommendation systems. Existing models do not adequately address these industrial scalability issues. In this paper, we propose a novel two-stage modeling framework, namely VIrtual Sequential Target Attention (VISTA), which decomposes traditional target attention from a candidate item to user history items into two distinct stages: (1) user history summarization into a few hundred tokens; followed by (2) candidate item attention to those tokens. These summarization token embeddings are then cached in storage system and then utilized as sequence features for downstream model training and inference. This novel design for scalability enables VISTA to scale to lifelong user histories (up to one million items) while keeping downstream training and inference costs fixed, which is essential in industry. Our approach achieves significant improvements in offline and online metrics and has been successfully deployed on an industry leading recommendation platform serving billions of users.
☆ Multimodal Item Scoring for Natural Language Recommendation via Gaussian Process Regression with LLM Relevance Judgments
Natural Language Recommendation (NLRec) generates item suggestions based on the relevance between user-issued NL requests and NL item description passages. Existing NLRec approaches often use Dense Retrieval (DR) to compute item relevance scores from aggregation of inner products between user request embeddings and relevant passage embeddings. However, DR views the request as the sole relevance label, thus leading to a unimodal scoring function centered on the query embedding that is often a weak proxy for query relevance. To better capture the potential multimodal distribution of the relevance scoring function that may arise from complex NLRec data, we propose GPR-LLM that uses Gaussian Process Regression (GPR) with LLM relevance judgments for a subset of candidate passages. Experiments on four NLRec datasets and two LLM backbones demonstrate that GPR-LLM with an RBF kernel, capable of modeling multimodal relevance scoring functions, consistently outperforms simpler unimodal kernels (dot product, cosine similarity), as well as baseline methods including DR, cross-encoder, and pointwise LLM-based relevance scoring by up to 65%. Overall, GPR-LLM provides an efficient and effective approach to NLRec within a minimal LLM labeling budget.
comment: 16 pages,20 figures
☆ Temporal Graph Theoretic Analysis of Geopolitical Dynamics in the U.S. Entity List
Export controls have become one of America's most prominent tools of economic statecraft. They aim to block rival countries' access to sensitive technologies, safeguard U.S. supply chains, protect national security, and shape geopolitical competition. Among various instruments, the U.S. Entity List has emerged as the most salient, yet its dynamics remain underexplored. This paper introduces a novel temporal graph framework that transforms the Entity List documents from a static registry of foreign entities of concern into a dynamic representation of geopolitical strategy. We construct the first event-based dataset of U.S. government foreign entity designations and model them as a temporal bipartite graph. Building on this representation, we develop a multi-level analytical approach that reveals shifting roles, enforcement strategy, and broader sanction ecosystems. Applied to 25 years of data, the framework uncovers dynamic patterns of escalation, persistence, and coordination that static views cannot capture. More broadly, our study demonstrates how temporal graph analysis offers systematic computational insights into the geopolitical dynamics of export controls.
comment: 13 pages, 9 figures. Under review
♻ ☆ Faster and Memory-Efficient Training of Sequential Recommendation Models for Large Catalogs
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
♻ ☆ SimLab: A Platform for Simulation-based Evaluation of Conversational Information Access Systems
Progress in conversational information access (CIA) systems has been hindered by the difficulty of evaluating such systems with reproducible experiments. While user simulation offers a promising solution, the lack of infrastructure and tooling to support this evaluation paradigm remains a significant barrier. To address this gap, we introduce SimLab, the first cloud-based platform providing a centralized solution for the community to benchmark both conversational systems and user simulators in a controlled and reproducible setting. We articulate the requirements for such a platform and propose a general infrastructure to meet them. We then present the design and implementation of an initial version of SimLab and showcase its features through an initial simulation-based evaluation task in conversational movie recommendation. Furthermore, we discuss the platform's sustainability and future opportunities for development, inviting the community to drive further progress in the fields of CIA and user simulation.
♻ ☆ AcuRank: Uncertainty-Aware Adaptive Computation for Listwise Reranking NeurIPS 2025
Listwise reranking with large language models (LLMs) enhances top-ranked results in retrieval-based applications. Due to the limit in context size and high inference cost of long context, reranking is typically performed over a fixed size of small subsets, with the final ranking aggregated from these partial results. This fixed computation disregards query difficulty and document distribution, leading to inefficiencies. We propose AcuRank, an adaptive reranking framework that dynamically adjusts both the amount and target of computation based on uncertainty estimates over document relevance. Using a Bayesian TrueSkill model, we iteratively refine relevance estimates until reaching sufficient confidence levels, and our explicit modeling of ranking uncertainty enables principled control over reranking behavior and avoids unnecessary updates to confident predictions. Results on the TREC-DL and BEIR benchmarks show that our method consistently achieves a superior accuracy-efficiency trade-off and scales better with compute than fixed-computation baselines. These results highlight the effectiveness and generalizability of our method across diverse retrieval tasks and LLM-based reranking models.
comment: Accepted at NeurIPS 2025. The first two authors contributed equally. Author order is randomly determined via coin toss
♻ ☆ Towards Context-aware Reasoning-enhanced Generative Searching in E-commerce
Search-based recommendation is one of the most critical application scenarios in e-commerce platforms. Users' complex search contexts--such as spatiotemporal factors, historical interactions, and current query's information--constitute an essential part of their decision-making, reflecting implicit preferences that complement explicit query terms. Modeling such rich contextual signals and their intricate associations with candidate items remains a key challenge. Although numerous efforts have been devoted to building more effective search methods, existing approaches still show limitations in integrating contextual information, which hinders their ability to fully capture user intent. To address these challenges, we propose a context-aware reasoning-enhanced generative search framework for better \textbf{understanding the complicated context}. Specifically, the framework first unifies heterogeneous user and item contexts into textual representations or text-based semantic identifiers and aligns them. To overcome the lack of explicit reasoning trajectories, we introduce a self-evolving post-training paradigm that iteratively combines supervised fine-tuning and reinforcement learning to progressively enhance the model's reasoning capability. In addition, we identify potential biases in existing RL algorithms when applied to search scenarios and present a debiased variant of GRPO to improve ranking performance. Extensive experiments on search log data collected from a real-world e-commerce platform demonstrate that our approach achieves superior performance compared with strong baselines, validating its effectiveness for search-based recommendation.
♻ ☆ Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
♻ ☆ Engram Memory Encoding and Retrieval: A Neurocomputational Perspective
Despite substantial research into the biological basis of memory, the precise mechanisms by which experiences are encoded, stored, and retrieved in the brain remain incompletely understood. A growing body of evidence supports the engram theory, which posits that sparse populations of neurons undergo lasting physical and biochemical changes to support long-term memory. Yet, a comprehensive computational framework that integrates biological findings with mechanistic models remains elusive. This work synthesizes insights from cellular neuroscience and computational modeling to address key challenges in engram research: how engram neurons are identified and manipulated; how synaptic plasticity mechanisms contribute to stable memory traces; and how sparsity promotes efficient, interference-resistant representations. Relevant computational approaches -- such as sparse regularization, engram gating, and biologically inspired architectures like Sparse Distributed Memory and spiking neural networks -- are also examined. Together, these findings suggest that memory efficiency, capacity, and stability emerge from the interaction of plasticity and sparsity constraints. By integrating neurobiological and computational perspectives, this paper provides a comprehensive theoretical foundation for engram research and proposes a roadmap for future inquiry into the mechanisms underlying memory, with implications for the diagnosis and treatment of memory-related disorders.
comment: 18 pages, 7 figures, 3 tables
Computation and Language 136
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Structure-Conditional Minimum Bayes Risk Decoding EMNLP 2025
Minimum Bayes Risk (MBR) decoding has seen renewed interest as an alternative to traditional generation strategies. While MBR has proven effective in machine translation, where the variability of a language model's outcome space is naturally constrained, it may face challenges in more open-ended tasks such as dialogue or instruction-following. We hypothesise that in such settings, applying MBR with standard similarity-based utility functions may result in selecting responses that are broadly representative of the model's distribution, yet sub-optimal with respect to any particular grouping of generations that share an underlying latent structure. In this work, we introduce three lightweight adaptations to the utility function, designed to make MBR more sensitive to structural variability in the outcome space. To test our hypothesis, we curate a dataset capturing three representative types of latent structure: dialogue act, emotion, and response structure (e.g., a sentence, a paragraph, or a list). We further propose two metrics to evaluate the structural optimality of MBR. Our analysis demonstrates that common similarity-based utility functions fall short by these metrics. In contrast, our proposed adaptations considerably improve structural optimality. Finally, we evaluate our approaches on real-world instruction-following benchmarks, AlpacaEval and MT-Bench, and show that increased structural sensitivity improves generation quality by up to 13.7 percentage points in win rate.
comment: EMNLP 2025 Camera-Ready
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ \textsc{CantoNLU}: A benchmark for Cantonese natural language understanding
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.
comment: 13 pages, 1 figure
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Beyond Retrieval-Ranking: A Multi-Agent Cognitive Decision Framework for E-Commerce Search
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Assessing the Political Fairness of Multilingual LLMs: A Case Study based on a 21-way Multiparallel EuroParl Dataset
The political biases of Large Language Models (LLMs) are usually assessed by simulating their answers to English surveys. In this work, we propose an alternative framing of political biases, relying on principles of fairness in multilingual translation. We systematically compare the translation quality of speeches in the European Parliament (EP), observing systematic differences with majority parties from left, center, and right being better translated than outsider parties. This study is made possible by a new, 21-way multiparallel version of EuroParl, the parliamentary proceedings of the EP, which includes the political affiliations of each speaker. The dataset consists of 1.5M sentences for a total of 40M words and 249M characters. It covers three years, 1000+ speakers, 7 countries, 12 EU parties, 25 EU committees, and hundreds of national parties.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Robust Preference Alignment via Directional Neighborhood Consensus ICLR 2026
Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
comment: Under review at ICLR 2026. 10 pages, 5 figures. Code and data available at https://github.com/rcmao/robust-preference-alignment
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Mask and You Shall Receive: Optimizing Masked Language Modeling For Pretraining BabyLMs
We describe our strategy for the 2025 edition of the BabyLM Challenge. Our main contribution is that of an improved form of Masked Language Modeling (MLM), which adapts the probabilities of the tokens masked according to the model's ability to predict them. The results show a substantial increase in performance on (Super)GLUE tasks over the standard MLM. We also incorporate sub-token embeddings, finding that this increases the model's morphological generalization capabilities. Our submission beats the baseline in the strict-small track.
comment: Submission to the 2025 BabyLM Challenge
☆ Systematic Evaluation of Uncertainty Estimation Methods in Large Language Models
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
☆ LM-mixup: Text Data Augmentation via Language Model based Mixup
Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
☆ Teacher Demonstrations in a BabyLM's Zone of Proximal Development for Contingent Multi-Turn Interaction EMNLP 2025
Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs.
comment: Outstanding Paper Award, EMNLP 2025 BabyLM Workshop - Oral presentation, Suzhou, China
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew
Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Dialogue Is Not Enough to Make a Communicative BabyLM (But Neither Is Developmentally Inspired Reinforcement Learning)
We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
☆ FreeChunker: A Cross-Granularity Chunking Framework
Chunking strategies significantly impact the effectiveness of Retrieval-Augmented Generation (RAG) systems. Existing methods operate within fixed-granularity paradigms that rely on static boundary identification, limiting their adaptability to diverse query requirements. This paper presents FreeChunker, a Cross-Granularity Encoding Framework that fundamentally transforms the traditional chunking paradigm: the framework treats sentences as atomic units and shifts from static chunk segmentation to flexible retrieval supporting arbitrary sentence combinations. This paradigm shift not only significantly reduces the computational overhead required for semantic boundary detection but also enhances adaptability to complex queries. Experimental evaluation on LongBench V2 demonstrates that FreeChunker achieves superior retrieval performance compared to traditional chunking methods, while significantly outperforming existing approaches in computational efficiency.
comment: Submitted to arXiv, October 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ Teaching Language Models to Reason with Tools NIPS2025
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.
comment: NIPS2025 Accepted
Exploring Generative Process Reward Modeling for Semi-Structured Data: A Case Study of Table Question Answering
Process reward models (PRMs) improve complex reasoning in large language models (LLMs) by grading candidate solutions step-by-step and selecting answers via aggregated step scores. While effective in domains such as mathematics, their applicability to tasks involving semi-structured data, like table question answering (TQA) remains unexplored. TQA poses unique challenges for PRMs, including abundant irrelevant information, loosely connected reasoning steps, and domain-specific reasoning. This work presents the first systematic study of PRMs for TQA. We evaluate state-of-the-art generative PRMs on TQA from both answer and step perspectives. Results show that PRMs that combine textual and code verification can aid solution selection but struggle to generalize to out-of-domain data. Analysis reveals a weak correlation between performance in step-level verification and answer accuracy, possibly stemming from weak step dependencies and loose causal links. Our findings highlight limitations of current PRMs on TQA and offer valuable insights for building more robust, process-aware verifiers.
☆ Citation Failure: Definition, Analysis and Efficient Mitigation
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.
comment: Under review. Paper repository: https://github.com/UKPLab/arxiv2025-citation-failure
☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
☆ ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Tri-Modal Severity Fused Diagnosis across Depression and Post-traumatic Stress Disorders
Depression and post traumatic stress disorder (PTSD) often co-occur with connected symptoms, complicating automated assessment, which is often binary and disorder specific. Clinically useful diagnosis needs severity aware cross disorder estimates and decision support explanations. Our unified tri modal affective severity framework synchronizes and fuses interview text with sentence level transformer embeddings, audio with log Mel statistics with deltas, and facial signals with action units, gaze, head and pose descriptors to output graded severities for diagnosing both depression (PHQ-8; 5 classes) and PTSD (3 classes). Standardized features are fused via a calibrated late fusion classifier, yielding per disorder probabilities and feature-level attributions. This severity aware tri-modal affective fusion approach is demoed on multi disorder concurrent depression and PTSD assessment. Stratified cross validation on DAIC derived corpora outperforms unimodal/ablation baselines. The fused model matches the strongest unimodal baseline on accuracy and weighted F1, while improving decision curve utility and robustness under noisy or missing modalities. For PTSD specifically, fusion reduces regression error and improves class concordance. Errors cluster between adjacent severities; extreme classes are identified reliably. Ablations show text contributes most to depression severity, audio and facial cues are critical for PTSD, whereas attributions align with linguistic and behavioral markers. Our approach offers reproducible evaluation and clinician in the loop support for affective clinical decision making.
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ Decoding-Free Sampling Strategies for LLM Marginalization
Modern language models operate on subword-tokenized text in order to make a trade-off between model size, inference speed, and vocabulary coverage. A side effect of this is that, during inference, models are evaluated by measuring the probability of only the specific tokenization produced as the output, despite there being many possible ways to represent the same text with a subword vocabulary. Recent studies have argued instead for evaluating LLMs by marginalization - the probability mass of all tokenizations of a given text. Marginalization is difficult due to the number of possible tokenizations of a text, so often approximate marginalization is done via sampling. However, a downside of sampling is that an expensive generation step must be performed by the LLM for each sample, which limits the number of samples that can be acquired given a runtime budget, and therefore also the accuracy of the approximation. Since computing the probability of a sequence given the tokenization is relatively cheap compared to actually generating it, we investigate sampling strategies that are decoding-free - they require no generation from the LLM, instead relying entirely on extremely cheap sampling strategies that are model and tokenizer agnostic. We investigate the approximation quality and speed of decoding-free sampling strategies for a number of open models to find that they provide sufficiently accurate marginal estimates at a small fraction of the runtime cost and demonstrate its use on a set of downstream inference tasks.
comment: 10 pages, 3 figures
☆ Stuck in the Matrix: Probing Spatial Reasoning in Large Language Models
This paper explores the spatial reasoning capability of large language models (LLMs) over textual input through a suite of five tasks aimed at probing their spatial understanding and computational abilities. The models were tested on both fundamental spatial reasoning and multi-step problem-solving within structured grid-based environments using tasks such as quadrant identification, geometric transformations, distance evaluation, word searches, and tile sliding. Each task was scaled in complexity through increasing grid dimensions, requiring models to extend beyond simple pattern recognition into abstract spatial reasoning. Our results reveal that while LLMs demonstrate moderate success in all tasks with small complexity and size, performance drops off rapidly as scale increases, with an average loss in accuracy of 42.7%, and reaching as high as 84%. Every test that began with over 50% accuracy showed a loss of at least 48%, illustrating the consistent nature of the deterioration. Furthermore, their struggles with scaling complexity hint at a lack of robust spatial representations in their underlying architectures. This paper underscores the gap between linguistic and spatial reasoning in LLMs, offering insights into their current limitations, and laying the groundwork for future integrative benchmarks at the intersection of language and geometry.
comment: 20 pages, 24 figures
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
comment: 15 pages, 4 figures
☆ Mixture-of-Minds: Multi-Agent Reinforcement Learning for Table Understanding
Understanding and reasoning over tables is a critical capability for many real-world applications. Large language models (LLMs) have shown promise on this task, but current approaches remain limited. Fine-tuning based methods strengthen language reasoning; yet they are prone to arithmetic errors and hallucination. In contrast, tool-based methods enable precise table manipulation but rely on rigid schemas and lack semantic understanding. These complementary drawbacks highlight the need for approaches that integrate robust reasoning with reliable table processing. In this work, we propose Mixture-of-Minds, a multi-agent framework that decomposes table reasoning into three specialized roles: planning, coding, and answering. This design enables each agent to focus on a specific aspect of the task while leveraging code execution for precise table manipulation. Building on this workflow, we introduce a self-improvement training framework that employs Monte Carlo Tree Search (MCTS) rollouts to generate pseudo-gold trajectories and optimize agents with reinforcement learning (RL). Extensive experiments show that Mixture-of-Minds delivers substantial gains, reaching 62.13% on TableBench and surpassing OpenAI-o4-mini-high. These results demonstrate the promise of combining structured multi-agent workflows with RL to advance table understanding.
comment: 18 pages, 4 figures
☆ DeepWideSearch: Benchmarking Depth and Width in Agentic Information Seeking
Current search agents fundamentally lack the ability to simultaneously perform \textit{deep} reasoning over multi-hop retrieval and \textit{wide}-scale information collection-a critical deficiency for real-world applications like comprehensive market analysis and business development. To bridge this gap, we introduce DeepWideSearch, the first benchmark explicitly designed to evaluate agents to integrate depth and width in information seeking. In DeepWideSearch, agents must process a large volume of data, each requiring deep reasoning over multi-hop retrieval paths. Specifically, we propose two methods to converse established datasets, resulting in a curated collection of 220 questions spanning 15 diverse domains. Extensive experiments demonstrate that even state-of-the-art agents achieve only 2.39% average success rate on DeepWideSearch, highlighting the substantial challenge of integrating depth and width search in information-seeking tasks. Furthermore, our error analysis reveals four failure modes: lack of reflection, overreliance on internal knowledge, insufficient retrieval, and context overflow-exposing key limitations in current agent architectures. We publicly release DeepWideSearch to catalyze future research on more capable and robust information-seeking agents.
☆ Are Stereotypes Leading LLMs' Zero-Shot Stance Detection ? EMNLP 2025
Large Language Models inherit stereotypes from their pretraining data, leading to biased behavior toward certain social groups in many Natural Language Processing tasks, such as hateful speech detection or sentiment analysis. Surprisingly, the evaluation of this kind of bias in stance detection methods has been largely overlooked by the community. Stance Detection involves labeling a statement as being against, in favor, or neutral towards a specific target and is among the most sensitive NLP tasks, as it often relates to political leanings. In this paper, we focus on the bias of Large Language Models when performing stance detection in a zero-shot setting. We automatically annotate posts in pre-existing stance detection datasets with two attributes: dialect or vernacular of a specific group and text complexity/readability, to investigate whether these attributes influence the model's stance detection decisions. Our results show that LLMs exhibit significant stereotypes in stance detection tasks, such as incorrectly associating pro-marijuana views with low text complexity and African American dialect with opposition to Donald Trump.
comment: Accepted in EMNLP 2025 (Main)
☆ BoundRL: Efficient Structured Text Segmentation through Reinforced Boundary Generation
As structured texts become increasingly complex across diverse domains -- from technical reports to generative AI prompts -- the need for text segmentation into semantically meaningful components becomes critical. Such texts often contain elements beyond plain language, including tables, code snippets, and placeholders, which conventional sentence- or paragraph-level segmentation methods cannot handle effectively. To address this challenge, we propose BoundRL, a novel and efficient approach that jointly performs token-level text segmentation and label prediction for long structured texts. Instead of generating complete contents for each segment, it generates only a sequence of starting tokens and reconstructs the complete contents by locating these tokens within the original texts, thereby reducing inference costs by orders of magnitude and minimizing hallucination. To adapt the model for the output format, BoundRL~performs reinforcement learning with verifiable rewards (RLVR) with a specifically designed reward that jointly optimizes document reconstruction fidelity and semantic alignment. To mitigate entropy collapse, it further constructs intermediate candidates by systematically perturbing a fraction of generated sequences of segments to create stepping stones toward higher-quality solutions. To demonstrate BoundRL's effectiveness on particularly challenging structured texts, we focus evaluation on complex prompts used for LLM applications. Experiments show that BoundRL enables small language models (1.7B parameters) to outperform few-shot prompting of much larger models. Moreover, RLVR with our designed reward yields significant improvements over supervised fine-tuning, and incorporating intermediate candidates further improves both performance and generalization.
☆ AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
comment: Under Review
☆ Leveraging the Power of Large Language Models in Entity Linking via Adaptive Routing and Targeted Reasoning
Entity Linking (EL) has traditionally relied on large annotated datasets and extensive model fine-tuning. While recent few-shot methods leverage large language models (LLMs) through prompting to reduce training requirements, they often suffer from inefficiencies due to expensive LLM-based reasoning. ARTER (Adaptive Routing and Targeted Entity Reasoning) presents a structured pipeline that achieves high performance without deep fine-tuning by strategically combining candidate generation, context-based scoring, adaptive routing, and selective reasoning. ARTER computes a small set of complementary signals(both embedding and LLM-based) over the retrieved candidates to categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively. On standard benchmarks, ARTER outperforms ReFinED by up to +4.47%, with an average gain of +2.53% on 5 out of 6 datasets, and performs comparably to pipelines using LLM-based reasoning for all mentions, while being as twice as efficient in terms of the number of LLM tokens.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ CreativityPrism: A Holistic Benchmark for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as producing creative text, there is still no holistic framework to evaluate their creativity across diverse scenarios. Existing evaluation methods remain fragmented, with dramatic variation across domains and tasks, largely due to differing definitions and measurements of creativity. Inspired by the hypothesis that creativity is not one fixed idea, we propose CreativityPrism, an evaluation analysis framework that decomposes creativity into three dimensions: quality, novelty, and diversity. CreativityPrism incorporates nine tasks, three domains, i.e., divergent thinking, creative writing, and logical reasoning, and twenty evaluation metrics, which measure each dimension in task-specific, unique ways. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CreativityPrism and analyze the performance correlations among different metrics and task domains. Our results reveal a notable gap between proprietary and open-source models. Overall, model performance tends to be highly correlated across tasks within the same domain and less so across different domains. Among evaluation dimensions, diversity and quality metrics show strong correlations - models that perform well on one often excel on the other - whereas novelty exhibits much weaker correlation with either. These findings support our hypothesis that strong performance in one creativity task or dimension does not necessarily generalize to others, underscoring the need for a holistic evaluation of LLM creativity.
♻ ☆ Language Models use Lookbacks to Track Beliefs
How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze LMs' ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset, CausalToM, consisting of simple stories where two characters independently change the state of two objects, potentially unaware of each other's actions. Our investigation uncovers a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating their reference information, represented as Ordering IDs (OIs), in low-rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the correct state OI and then the answer lookback retrieves the corresponding state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
comment: 31 pages, 33 figures. Code and data at https://belief.baulab.info/
♻ ☆ Text2Mem: A Unified Memory Operation Language for Memory Operating System
Large language model agents increasingly depend on memory to sustain long horizon interaction, but existing frameworks remain limited. Most expose only a few basic primitives such as encode, retrieve, and delete, while higher order operations like merge, promote, demote, split, lock, and expire are missing or inconsistently supported. Moreover, there is no formal and executable specification for memory commands, leaving scope and lifecycle rules implicit and causing unpredictable behavior across systems. We introduce Text2Mem, a unified memory operation language that provides a standardized pathway from natural language to reliable execution. Text2Mem defines a compact yet expressive operation set aligned with encoding, storage, and retrieval. Each instruction is represented as a JSON based schema instance with required fields and semantic invariants, which a parser transforms into typed operation objects with normalized parameters. A validator ensures correctness before execution, while adapters map typed objects either to a SQL prototype backend or to real memory frameworks. Model based services such as embeddings or summarization are integrated when required. All results are returned through a unified execution contract. This design ensures safety, determinism, and portability across heterogeneous backends. We also outline Text2Mem Bench, a planned benchmark that separates schema generation from backend execution to enable systematic evaluation. Together, these components establish the first standardized foundation for memory control in agents.
comment: 12 pages, 3 figures, 2 tables
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Blockwise SFT for Diffusion Language Models: Reconciling Bidirectional Attention and Autoregressive Decoding
Discrete diffusion language models have shown strong potential for text generation, yet standard supervised fine-tuning (SFT) misaligns with their semi-autoregressive inference: training randomly masks tokens across the entire response, while inference generates fixed-size blocks sequentially. This mismatch introduces noisy prefixes and leaky suffixes, biasing gradients away from the desired blockwise likelihood. We propose Blockwise SFT, which partitions responses into fixed-size blocks, selects one active block per step for stochastic masking, freezes all preceding tokens, and fully hides future ones. Loss is computed only over the active block, directly mirroring the blockwise decoding process. Experiments on GSM8K, MATH, and MetaMathQA show consistent gains over classical SFT under equal compute or token budgets. Block size consistency studies and ablations confirm that improvements stem from faithful training-inference alignment rather than incidental masking effects. Our results highlight the importance of matching supervision granularity to the decoding procedure in diffusion-based language models.
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ XtraGPT: Context-Aware and Controllable Academic Paper Revision
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited to support high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision centered on criteria-guided intent alignment and context-aware modeling. To validate the framework, we curate a dataset of 7,000 research papers from top-tier venues annotated with 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. We instantiate the framework in XtraGPT, the first suite of open-source LLMs (1.5B to 14B parameters) for context-aware, instruction-guided writing assistance. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of XtraGPT in improving scientific drafts.
comment: Preprint. The model report is available at https://arxiv.org/abs/2505.11336v1
♻ ☆ Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders EMNLP 2025
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
comment: EMNLP 2025
♻ ☆ MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance EMNLP 2025
Large language models (LLMs) have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.
comment: EMNLP 2025 (Oral)
♻ ☆ MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale improvement by approximately 0.12 to 0.36 points for the semantic similarity score, 0.16 to 0.36 for NLI entailment and 0.29 to 0.42 for hallucination detection in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Work in progress
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
♻ ☆ Less is More: Compact Clue Selection for Efficient Retrieval-Augmented Generation Reasoning
Current RAG retrievers are designed primarily for human readers, emphasizing complete, readable, and coherent paragraphs. However, LLMs benefit more from precise, compact, and well-structured input, which enhances reasoning quality and efficiency. Existing methods often rely on reranking or summarization to identify key sentences, but may suffer from semantic breaks and unfaithfulness. Thus, efficiently extracting and organizing answer-relevant clues from large-scale documents while reducing LLM reasoning costs remains a challenge for RAG. Inspired by Occam's razor, we frame LLM-centric retrieval as a MinMax optimization: maximizing the extraction of potential clues and reranking them for well-organization, while minimizing reasoning costs by truncating to the smallest sufficient clues set. In this paper, we propose CompSelect, a Compact clue Selection mechanism for LLM-centric RAG, consisting of a clue extractor, a reranker, and a truncator. (1) The clue extractor first uses answer-containing sentences as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on real LLM feedback; (3) The truncator uses the truncated text containing the minimum sufficient clues for answering the question as fine-tuning targets, thereby enabling efficient RAG reasoning. Experiments on three QA datasets show that CompSelect improves QA performance by approximately 11\% and reduces Total Latency and Online Latency by approximately 17\% and 67\% compared to various baseline methods on both LLaMA3 and Qwen3. Further analysis confirms its robustness to unreliable retrieval and generalization across different scenarios, offering a scalable and cost-efficient solution for web-scale RAG applications.
comment: 12 pages, 7 figures, 12 tables, under review
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ MLMA: Towards Multilingual ASR With Mamba-based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Retrieval-Augmented Generation (RAG) enhances the accuracy of Large Language Model (LLM) responses by leveraging relevant external documents during generation. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for most LLMs, reducing performance by up to 20%. However, Qwen2.5 maintained consistent results across increasing document counts, indicating better multi-document handling capability. Finally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .
comment: Preprint
♻ ☆ A New Benchmark Dataset and Mixture-of-Experts Language Models for Adversarial Natural Language Inference in Vietnamese
Existing Vietnamese Natural Language Inference (NLI) datasets lack adversarial complexity, limiting their ability to evaluate model robustness against challenging linguistic phenomena. In this article, we address the gap in robust Vietnamese NLI resources by introducing ViANLI, the first adversarial NLI dataset for Vietnamese, and propose NLIMoE, a Mixture-of-Experts model to tackle its complexity. We construct ViANLI using an adversarial human-and-machine-in-the-loop approach with rigorous verification. NLIMoE integrates expert subnetworks with a learned dynamic routing mechanism on top of a shared transformer encoder. ViANLI comprises over 10,000 premise-hypothesis pairs and challenges state-of-the-art models, with XLM-R Large achieving only 45.5% accuracy, while NLIMoE reaches 47.3%. Training with ViANLI improves performance on other benchmark Vietnamese NLI datasets including ViNLI, VLSP2021-NLI, and VnNewsNLI. ViANLI is released for enhancing research into model robustness and enriching resources for future Vietnamese and multilingual NLI research.
comment: Accepted by Expert Systems with Applications
♻ ☆ Born a Transformer -- Always a Transformer? On the Effect of Pretraining on Architectural Abilities NeurIPS 2025
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
comment: NeurIPS 2025
♻ ☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
♻ ☆ Stress-Testing Model Specs Reveals Character Differences among Language Models
Large language models (LLMs) are increasingly trained from AI constitutions and model specifications that establish behavioral guidelines and ethical principles. However, these specifications face critical challenges, including internal conflicts between principles and insufficient coverage of nuanced scenarios. We present a systematic methodology for stress-testing model character specifications, automatically identifying numerous cases of principle contradictions and interpretive ambiguities in current model specs. We stress test current model specs by generating scenarios that force explicit tradeoffs between competing value-based principles. Using a comprehensive taxonomy we generate diverse value tradeoff scenarios where models must choose between pairs of legitimate principles that cannot be simultaneously satisfied. We evaluate responses from twelve frontier LLMs across major providers (Anthropic, OpenAI, Google, xAI) and measure behavioral disagreement through value classification scores. Among these scenarios, we identify over 70,000 cases exhibiting significant behavioral divergence. Empirically, we show this high divergence in model behavior strongly predicts underlying problems in model specifications. Through qualitative analysis, we provide numerous example issues in current model specs such as direct contradiction and interpretive ambiguities of several principles. Additionally, our generated dataset also reveals both clear misalignment cases and false-positive refusals across all of the frontier models we study. Lastly, we also provide value prioritization patterns and differences of these models.
♻ ☆ LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
♻ ☆ Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation
Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.
comment: This version has been withdrawn after receiving the conference review results. We are currently extending and reorganizing the work into a new study
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ TianHui: A Domain-Specific Large Language Model for Diverse Traditional Chinese Medicine Scenarios
Domain-specific LLMs in TCM face limitations in research settings due to constrained adaptability, insufficient evaluation datasets, and limited computational resources. This study presents TianHui, a specialized TCM LLM built through contextual data integration and domain knowledge fusion. We constructed a large-scale TCM corpus (0.97GB unsupervised data + 611,312 QA pairs) and employed a two-stage training strategy with QLoRA, DeepSpeed Stage 2, and Flash Attention 2. Evaluation on 12 benchmarks showed TianHui ranked top-three in all metrics for six datasets (APQ, TCMCD, HFR, HCCA, DHPE, TLAW) and achieved top results in the other six (TCMEE, APR, GCPMI, TCMKQA, TCMRC, ADTG). Optimal configuration was identified as LoRA rank=128, alpha=256, epoch=4, dropout=0.2, max length=2048. TianHui enables systematic preservation and scalable application of TCM knowledge. All resources are open-sourced.
comment: 46 pages, 5 figures,3 tables
♻ ☆ Does Thinking More always Help? Mirage of Test-Time Scaling in Reasoning Models NeurIPS 2025
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
comment: Accepted at NeurIPS 2025
♻ ☆ LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
♻ ☆ MLP Memory: A Retriever-Pretrained Memory for Large Language Models
Modern approaches to enhancing Large Language Models' factual accuracy and knowledge utilization face a fundamental trade-off: non-parametric retrieval-augmented generation (RAG) provides flexible access to external knowledge but suffers from high inference latency and shallow integration, while parametric fine-tuning methods like LoRA risk catastrophic forgetting and degraded general capabilities. In this work, we propose MLP Memory, a lightweight parametric module that learns to internalize retrieval patterns without explicit document access. By pretraining an MLP to imitate a $k$NN retriever's behavior on the entire pretraining dataset, we create a differentiable memory component that captures the benefits of retrieval-based knowledge access in a fully parametric form. Our architecture integrates this pretrained MLP Memory with Transformer decoders through simple probability interpolation, yielding 17.5\% and 24.1\% scaling gains on WikiText-103 and Web datasets, respectively. It further achieves 12.3\% relative improvement on five question-answering benchmarks and 5.2 points absolute gain across nine general NLP tasks, while reducing hallucinations by up to 10 points on HaluEval. Moreover, MLP Memory delivers 2.5$\times$ faster inference than RAG with superior accuracy. Our findings show that learning retrieval patterns parametrically bridges the gap between efficient inference and effective knowledge access, offering a practical alternative to both RAG and fine-tuning approaches.
♻ ☆ Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models? NeurIPS 2025
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
comment: NeurIPS 2025 Spotlight
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate transformer-based language models, including RoBERTa, T5, Llama-3, and MatSciBERT, for predicting the band gaps of semiconductor materials directly from textual descriptions. The inputs encode key material features, such as chemical composition, crystal system, space group, and other structural and electronic properties. Unlike shallow machine learning models, which require extensive feature engineering, or Graph Neural Networks, which rely on graph representations derived from atomic coordinates, pretrained language models can process textual inputs directly, eliminating the need for manual feature preprocessing or structure-based encoding. Material descriptions were constructed in two formats: structured strings with a consistent template and natural language narratives generated via the ChatGPT API. Each model was augmented with a custom regression head and finetuned for band gap prediction task. Language models of different architectures and parameter sizes were all able to predict band gaps from human-readable text with strong accuracy, achieving MAEs in the range of 0.25-0.33 eV, highlighting the success of this approach for scientific regression tasks. Finetuned Llama-3, with 1.2 billion parameters, achieved the highest accuracy (MAE 0.248 eV, R2 0.891). MatSciBERT, pretrained on materials science literature, reached comparable performance (MAE 0.288 eV, R2 0.871) with significantly fewer parameters (110 million), emphasizing the importance of domain-specific pretraining. Attention analysis shows that both models selectively focus on compositional and spin-related features while de-emphasizing geometric features, reflecting the difficulty of capturing spatial information from text. These results establish that pretrained language models can effectively extract complex feature-property relationships from textual material descriptions.
♻ ☆ LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration AAAI 2025
Building a universal multilingual automatic speech recognition (ASR) model that performs equitably across languages has long been a challenge due to its inherent difficulties. To address this task we introduce a Language-Agnostic Multilingual ASR pipeline through orthography Unification and language-specific Transliteration (LAMA-UT). LAMA-UT operates without any language-specific modules while matching the performance of state-of-the-art models trained on a minimal amount of data. Our pipeline consists of two key steps. First, we utilize a universal transcription generator to unify orthographic features into Romanized form and capture common phonetic characteristics across diverse languages. Second, we utilize a universal converter to transform these universal transcriptions into language-specific ones. In experiments, we demonstrate the effectiveness of our proposed method leveraging universal transcriptions for massively multilingual ASR. Our pipeline achieves a relative error reduction rate of 45% when compared to Whisper and performs comparably to MMS, despite being trained on only 0.1% of Whisper's training data. Furthermore, our pipeline does not rely on any language-specific modules. However, it performs on par with zero-shot ASR approaches which utilize additional language-specific lexicons and language models. We expect this framework to serve as a cornerstone for flexible multilingual ASR systems that are generalizable even to unseen languages.
comment: Accepted to AAAI 2025 (Oral Presentation)
♻ ☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
♻ ☆ Curing Miracle Steps in LLM Mathematical Reasoning with Rubric Rewards
Large language models for mathematical reasoning are typically trained with outcome-based rewards, which credit only the final answer. In our experiments, we observe that this paradigm is highly susceptible to reward hacking, leading to a substantial overestimation of a model's reasoning ability. This is evidenced by a high incidence of false positives - solutions that reach the correct final answer through an unsound reasoning process. Through a systematic analysis with human verification, we establish a taxonomy of these failure modes, identifying patterns like Miracle Steps - abrupt jumps to a correct output without a valid preceding derivation. Probing experiments suggest a strong association between these Miracle Steps and memorization, where the model appears to recall the answer directly rather than deriving it. To mitigate this systemic issue, we introduce the Rubric Reward Model (RRM), a process-oriented reward function that evaluates the entire reasoning trajectory against problem-specific rubrics. The generative RRM provides fine-grained, calibrated rewards (0-1) that explicitly penalize logical flaws and encourage rigorous deduction. When integrated into a reinforcement learning pipeline, RRM-based training consistently outperforms outcome-only supervision across four math benchmarks. Notably, it boosts Verified Pass@1024 on AIME2024 from 26.7% to 62.6% and reduces the incidence of Miracle Steps by 71%. Our work demonstrates that rewarding the solution process is crucial for building models that are not only more accurate but also more reliable.
comment: 25 pages, 11 figures, 6 Tables
♻ ☆ A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
The integration of Large Language Models (LLMs) into software engineering has driven a transition from traditional rule-based systems to autonomous agentic systems capable of solving complex problems. However, systematic progress is hindered by a lack of comprehensive understanding of how benchmarks and solutions interconnect. This survey addresses this gap by providing the first holistic analysis of LLM-powered software engineering, offering insights into evaluation methodologies and solution paradigms. We review over 150 recent papers and propose a taxonomy along two key dimensions: (1) Solutions, categorized into prompt-based, fine-tuning-based, and agent-based paradigms, and (2) Benchmarks, including tasks such as code generation, translation, and repair. Our analysis highlights the evolution from simple prompt engineering to sophisticated agentic systems incorporating capabilities like planning, reasoning, memory mechanisms, and tool augmentation. To contextualize this progress, we present a unified pipeline illustrating the workflow from task specification to deliverables, detailing how different solution paradigms address various complexity levels. Unlike prior surveys that focus narrowly on specific aspects, this work connects 50+ benchmarks to their corresponding solution strategies, enabling researchers to identify optimal approaches for diverse evaluation criteria. We also identify critical research gaps and propose future directions, including multi-agent collaboration, self-evolving systems, and formal verification integration. This survey serves as a foundational guide for advancing LLM-driven software engineering. We maintain a GitHub repository that continuously updates the reviewed and related papers at https://github.com/lisaGuojl/LLM-Agent-SE-Survey.
comment: 22 pages
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ Quantitative LLM Judges
LLM-as-a-judge is a framework where a large language model (LLM) evaluates the output of another LLM. While LLMs excel at producing qualitative textual evaluations, they often struggle to predict human preferences and numeric scores. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to humans in a given domain using regression models. The models are trained to improve the score of the original judge using its rationale and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in practice. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can improve the predictive power of existing judges through post-hoc modeling.
♻ ☆ Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification
Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
comment: The manuscript has been accepted for publication in IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3570775
♻ ☆ Hybrid Latent Reasoning via Reinforcement Learning NeurIPS 2025
Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
comment: NeurIPS 2025
♻ ☆ PersonaMatrix: A Recipe for Persona-Aware Evaluation of Legal Summarization
Legal documents are often long, dense, and difficult to comprehend, not only for laypeople but also for legal experts. While automated document summarization has great potential to improve access to legal knowledge, prevailing task-based evaluators overlook divergent user and stakeholder needs. Tool development is needed to encompass the technicality of a case summary for a litigator yet be accessible for a self-help public researching for their lawsuit. We introduce PersonaMatrix, a persona-by-criterion evaluation framework that scores summaries through the lens of six personas, including legal and non-legal users. We also introduce a controlled dimension-shifted pilot dataset of U.S. civil rights case summaries that varies along depth, accessibility, and procedural detail as well as Diversity-Coverage Index (DCI) to expose divergent optima of legal summary between persona-aware and persona-agnostic judges. This work enables refinement of legal AI summarization systems for both expert and non-expert users, with the potential to increase access to legal knowledge. The code base and data are publicly available in GitHub.
comment: Accepted for publication in JURIX 2025 (Legal Knowledge and Information Systems, FAIA series, IOS Press). Long Paper
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing
Recent advancements in Large Language Models (LLMs) have shown outstanding potential for role-playing applications. Evaluating these capabilities is becoming crucial yet remains challenging. Existing benchmarks mostly adopt a \textbf{character-centric} approach, simplify user-character interactions to isolated Q&A tasks, and fail to reflect real-world applications. To address this limitation, we introduce RMTBench, a comprehensive \textbf{user-centric} bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds. RMTBench includes custom characters with detailed backgrounds and abstract characters defined by simple traits, enabling evaluation across various user scenarios. Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications. Furthermore, we construct an authentic multi-turn dialogue simulation mechanism. With carefully selected evaluation dimensions and LLM-based scoring, this mechanism captures the complex intention of conversations between the user and the character. By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements, offering a more effective framework for assessing role-playing capabilities in LLMs. All code and datasets will be released soon. We release the datasets at https://huggingface.co/datasets/xiangh/RMTBENCH.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning ICLR2025
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark. Codes are available at https://github.com/FYYFU/HeadKV
comment: Accepted to ICLR2025
♻ ☆ Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models EMNLP 2025
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SafeBench, a benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 20 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
comment: EMNLP 2025 Findings
Computer Vision and Pattern Recognition 150
☆ HoloCine: Holistic Generation of Cinematic Multi-Shot Long Video Narratives
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.
comment: Project page and code: https://holo-cine.github.io/
☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ SpectraMorph: Structured Latent Learning for Self-Supervised Hyperspectral Super-Resolution
Hyperspectral sensors capture dense spectra per pixel but suffer from low spatial resolution, causing blurred boundaries and mixed-pixel effects. Co-registered companion sensors such as multispectral, RGB, or panchromatic cameras provide high-resolution spatial detail, motivating hyperspectral super-resolution through the fusion of hyperspectral and multispectral images (HSI-MSI). Existing deep learning based methods achieve strong performance but rely on opaque regressors that lack interpretability and often fail when the MSI has very few bands. We propose SpectraMorph, a physics-guided self-supervised fusion framework with a structured latent space. Instead of direct regression, SpectraMorph enforces an unmixing bottleneck: endmember signatures are extracted from the low-resolution HSI, and a compact multilayer perceptron predicts abundance-like maps from the MSI. Spectra are reconstructed by linear mixing, with training performed in a self-supervised manner via the MSI sensor's spectral response function. SpectraMorph produces interpretable intermediates, trains in under a minute, and remains robust even with a single-band (pan-chromatic) MSI. Experiments on synthetic and real-world datasets show SpectraMorph consistently outperforming state-of-the-art unsupervised/self-supervised baselines while remaining very competitive against supervised baselines.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ ARGenSeg: Image Segmentation with Autoregressive Image Generation Model NeurIPS 2025
We propose a novel AutoRegressive Generation-based paradigm for image Segmentation (ARGenSeg), achieving multimodal understanding and pixel-level perception within a unified framework. Prior works integrating image segmentation into multimodal large language models (MLLMs) typically employ either boundary points representation or dedicated segmentation heads. These methods rely on discrete representations or semantic prompts fed into task-specific decoders, which limits the ability of the MLLM to capture fine-grained visual details. To address these challenges, we introduce a segmentation framework for MLLM based on image generation, which naturally produces dense masks for target objects. We leverage MLLM to output visual tokens and detokenize them into images using an universal VQ-VAE, making the segmentation fully dependent on the pixel-level understanding of the MLLM. To reduce inference latency, we employ a next-scale-prediction strategy to generate required visual tokens in parallel. Extensive experiments demonstrate that our method surpasses prior state-of-the-art approaches on multiple segmentation datasets with a remarkable boost in inference speed, while maintaining strong understanding capabilities.
comment: Accepted to NeurIPS 2025, 18 pages
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT
comment: accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS)
☆ CUPID: Pose-Grounded Generative 3D Reconstruction from a Single Image
This work proposes a new generation-based 3D reconstruction method, named Cupid, that accurately infers the camera pose, 3D shape, and texture of an object from a single 2D image. Cupid casts 3D reconstruction as a conditional sampling process from a learned distribution of 3D objects, and it jointly generates voxels and pixel-voxel correspondences, enabling robust pose and shape estimation under a unified generative framework. By representing both input camera poses and 3D shape as a distribution in a shared 3D latent space, Cupid adopts a two-stage flow matching pipeline: (1) a coarse stage that produces initial 3D geometry with associated 2D projections for pose recovery; and (2) a refinement stage that integrates pose-aligned image features to enhance structural fidelity and appearance details. Extensive experiments demonstrate Cupid outperforms leading 3D reconstruction methods with an over 3 dB PSNR gain and an over 10% Chamfer Distance reduction, while matching monocular estimators on pose accuracy and delivering superior visual fidelity over baseline 3D generative models. For an immersive view of the 3D results generated by Cupid, please visit cupid3d.github.io.
comment: project page at https://cupid3d.github.io
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology
Automated histopathological image analysis plays a vital role in computer-aided diagnosis of various diseases. Among developed algorithms, deep learning-based approaches have demonstrated excellent performance in multiple tasks, including semantic tissue segmentation in histological images. In this study, we propose a novel approach based on attention-driven feature fusion of convolutional neural networks (CNNs) and vision transformers (ViTs) within a unified dual-encoder model to improve semantic segmentation performance. Evaluation on two publicly available datasets showed that our model achieved {\mu}IoU/{\mu}Dice scores of 76.79%/86.87% on the GCPS dataset and 64.93%/76.60% on the PUMA dataset, outperforming state-of-the-art and baseline benchmarks. The implementation of our method is publicly available in a GitHub repository: https://github.com/NimaTorbati/ACS-SegNet
comment: 5 pages
☆ AutoScape: Geometry-Consistent Long-Horizon Scene Generation ICCV 2025
This paper proposes AutoScape, a long-horizon driving scene generation framework. At its core is a novel RGB-D diffusion model that iteratively generates sparse, geometrically consistent keyframes, serving as reliable anchors for the scene's appearance and geometry. To maintain long-range geometric consistency, the model 1) jointly handles image and depth in a shared latent space, 2) explicitly conditions on the existing scene geometry (i.e., rendered point clouds) from previously generated keyframes, and 3) steers the sampling process with a warp-consistent guidance. Given high-quality RGB-D keyframes, a video diffusion model then interpolates between them to produce dense and coherent video frames. AutoScape generates realistic and geometrically consistent driving videos of over 20 seconds, improving the long-horizon FID and FVD scores over the prior state-of-the-art by 48.6\% and 43.0\%, respectively.
comment: ICCV 2025. Project page: https://auto-scape.github.io
☆ ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata
3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.
☆ Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.
comment: Our code is available at https://github.com/xuyang-liu16/MixKV
☆ Diagnosing Visual Reasoning: Challenges, Insights, and a Path Forward
Multimodal large language models (MLLMs) that integrate visual and textual reasoning leverage chain-of-thought (CoT) prompting to tackle complex visual tasks, yet continue to exhibit visual hallucinations and an over-reliance on textual priors. We present a systematic diagnosis of state-of-the-art vision-language models using a three-stage evaluation framework, uncovering key failure modes. To address these, we propose an agent-based architecture that combines LLM reasoning with lightweight visual modules, enabling fine-grained analysis and iterative refinement of reasoning chains. Our results highlight future visual reasoning models should focus on integrating a broader set of specialized tools for analyzing visual content. Our system achieves significant gains (+10.3 on MMMU, +6.0 on MathVista over a 7B baseline), matching or surpassing much larger models. We will release our framework and evaluation suite to facilitate future research.
comment: 5 pages
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ HybridSOMSpikeNet: A Deep Model with Differentiable Soft Self-Organizing Maps and Spiking Dynamics for Waste Classification
Accurate waste classification is vital for achieving sustainable waste management and reducing the environmental footprint of urbanization. Misclassification of recyclable materials contributes to landfill accumulation, inefficient recycling, and increased greenhouse gas emissions. To address these issues, this study introduces HybridSOMSpikeNet, a hybrid deep learning framework that integrates convolutional feature extraction, differentiable self-organization, and spiking-inspired temporal processing to enable intelligent and energy-efficient waste classification. The proposed model employs a pre-trained ResNet-152 backbone to extract deep spatial representations, followed by a Differentiable Soft Self-Organizing Map (Soft-SOM) that enhances topological clustering and interpretability. A spiking neural head accumulates temporal activations over discrete time steps, improving robustness and generalization. Trained on a ten-class waste dataset, HybridSOMSpikeNet achieved a test accuracy of 97.39%, outperforming several state-of-the-art architectures while maintaining a lightweight computational profile suitable for real-world deployment. Beyond its technical innovations, the framework provides tangible environmental benefits. By enabling precise and automated waste segregation, it supports higher recycling efficiency, reduces contamination in recyclable streams, and minimizes the ecological and operational costs of waste processing. The approach aligns with global sustainability priorities, particularly the United Nations Sustainable Development Goals (SDG 11 and SDG 12), by contributing to cleaner cities, circular economy initiatives, and intelligent environmental management systems.
☆ UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset NeurIPS 2025
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce \textbf{UltraHR-100K}, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) \textit{Detail-Oriented Timestep Sampling (DOTS)} to focus learning on detail-critical denoising steps, and (ii) \textit{Soft-Weighting Frequency Regularization (SWFR)}, which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at \href{https://github.com/NJU-PCALab/UltraHR-100k}{here}.
comment: Accepted by NeurIPS 2025
☆ Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging NeurIPS 2025
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D
comment: NeurIPS 2025
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding
Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ GenColorBench: A Color Evaluation Benchmark for Text-to-Image Generation Models
Recent years have seen impressive advances in text-to-image generation, with image generative or unified models producing high-quality images from text. Yet these models still struggle with fine-grained color controllability, often failing to accurately match colors specified in text prompts. While existing benchmarks evaluate compositional reasoning and prompt adherence, none systematically assess color precision. Color is fundamental to human visual perception and communication, critical for applications from art to design workflows requiring brand consistency. However, current benchmarks either neglect color or rely on coarse assessments, missing key capabilities such as interpreting RGB values or aligning with human expectations. To this end, we propose GenColorBench, the first comprehensive benchmark for text-to-image color generation, grounded in color systems like ISCC-NBS and CSS3/X11, including numerical colors which are absent elsewhere. With 44K color-focused prompts covering 400+ colors, it reveals models' true capabilities via perceptual and automated assessments. Evaluations of popular text-to-image models using GenColorBench show performance variations, highlighting which color conventions models understand best and identifying failure modes. Our GenColorBench assessments will guide improvements in precise color generation. The benchmark will be made public upon acceptance.
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence
The realization of Artificial General Intelligence (AGI) necessitates Embodied AI agents capable of robust spatial perception, effective task planning, and adaptive execution in physical environments. However, current large language models (LLMs) and multimodal LLMs (MLLMs) for embodied tasks suffer from key limitations, including a significant gap between model design and agent requirements, an unavoidable trade-off between real-time latency and performance, and the use of unauthentic, offline evaluation metrics. To address these challenges, we propose EmbodiedBrain, a novel vision-language foundation model available in both 7B and 32B parameter sizes. Our framework features an agent-aligned data structure and employs a powerful training methodology that integrates large-scale Supervised Fine-Tuning (SFT) with Step-Augumented Group Relative Policy Optimization (Step-GRPO), which boosts long-horizon task success by integrating preceding steps as Guided Precursors. Furthermore, we incorporate a comprehensive reward system, including a Generative Reward Model (GRM) accelerated at the infrastructure level, to improve training efficiency. For enable thorough validation, we establish a three-part evaluation system encompassing General, Planning, and End-to-End Simulation Benchmarks, highlighted by the proposal and open-sourcing of a novel, challenging simulation environment. Experimental results demonstrate that EmbodiedBrain achieves superior performance across all metrics, establishing a new state-of-the-art for embodied foundation models. Towards paving the way for the next generation of generalist embodied agents, we open-source all of our data, model weight, and evaluating methods, which are available at https://zterobot.github.io/EmbodiedBrain.github.io.
☆ From Far and Near: Perceptual Evaluation of Crowd Representations Across Levels of Detail
In this paper, we investigate how users perceive the visual quality of crowd character representations at different levels of detail (LoD) and viewing distances. Each representation: geometric meshes, image-based impostors, Neural Radiance Fields (NeRFs), and 3D Gaussians, exhibits distinct trade-offs between visual fidelity and computational performance. Our qualitative and quantitative results provide insights to guide the design of perceptually optimized LoD strategies for crowd rendering.
☆ From Cheap to Pro: A Learning-based Adaptive Camera Parameter Network for Professional-Style Imaging
Consumer-grade camera systems often struggle to maintain stable image quality under complex illumination conditions such as low light, high dynamic range, and backlighting, as well as spatial color temperature variation. These issues lead to underexposure, color casts, and tonal inconsistency, which degrade the performance of downstream vision tasks. To address this, we propose ACamera-Net, a lightweight and scene-adaptive camera parameter adjustment network that directly predicts optimal exposure and white balance from RAW inputs. The framework consists of two modules: ACamera-Exposure, which estimates ISO to alleviate underexposure and contrast loss, and ACamera-Color, which predicts correlated color temperature and gain factors for improved color consistency. Optimized for real-time inference on edge devices, ACamera-Net can be seamlessly integrated into imaging pipelines. Trained on diverse real-world data with annotated references, the model generalizes well across lighting conditions. Extensive experiments demonstrate that ACamera-Net consistently enhances image quality and stabilizes perception outputs, outperforming conventional auto modes and lightweight baselines without relying on additional image enhancement modules.
comment: 13 pages. Code and project page will be released
☆ Deep Learning-Powered Visual SLAM Aimed at Assisting Visually Impaired Navigation
Despite advancements in SLAM technologies, robust operation under challenging conditions such as low-texture, motion-blur, or challenging lighting remains an open challenge. Such conditions are common in applications such as assistive navigation for the visually impaired. These challenges undermine localization accuracy and tracking stability, reducing navigation reliability and safety. To overcome these limitations, we present SELM-SLAM3, a deep learning-enhanced visual SLAM framework that integrates SuperPoint and LightGlue for robust feature extraction and matching. We evaluated our framework using TUM RGB-D, ICL-NUIM, and TartanAir datasets, which feature diverse and challenging scenarios. SELM-SLAM3 outperforms conventional ORB-SLAM3 by an average of 87.84% and exceeds state-of-the-art RGB-D SLAM systems by 36.77%. Our framework demonstrates enhanced performance under challenging conditions, such as low-texture scenes and fast motion, providing a reliable platform for developing navigation aids for the visually impaired.
comment: 8 pages, 7 figures, 4 tables
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.
comment: Project page available at https://liulisixin.github.io/EchoDistill-page/
☆ Reliable and Reproducible Demographic Inference for Fairness in Face Analysis
Fairness evaluation in face analysis systems (FAS) typically depends on automatic demographic attribute inference (DAI), which itself relies on predefined demographic segmentation. However, the validity of fairness auditing hinges on the reliability of the DAI process. We begin by providing a theoretical motivation for this dependency, showing that improved DAI reliability leads to less biased and lower-variance estimates of FAS fairness. To address this, we propose a fully reproducible DAI pipeline that replaces conventional end-to-end training with a modular transfer learning approach. Our design integrates pretrained face recognition encoders with non-linear classification heads. We audit this pipeline across three dimensions: accuracy, fairness, and a newly introduced notion of robustness, defined via intra-identity consistency. The proposed robustness metric is applicable to any demographic segmentation scheme. We benchmark the pipeline on gender and ethnicity inference across multiple datasets and training setups. Our results show that the proposed method outperforms strong baselines, particularly on ethnicity, which is the more challenging attribute. To promote transparency and reproducibility, we will publicly release the training dataset metadata, full codebase, pretrained models, and evaluation toolkit. This work contributes a reliable foundation for demographic inference in fairness auditing.
☆ Conan: Progressive Learning to Reason Like a Detective over Multi-Scale Visual Evidence
Video reasoning, which requires multi-step deduction across frames, remains a major challenge for multimodal large language models (MLLMs). While reinforcement learning (RL)-based methods enhance reasoning capabilities, they often rely on text-only chains that yield ungrounded or hallucinated conclusions. Conversely, frame-retrieval approaches introduce visual grounding but still struggle with inaccurate evidence localization. To address these challenges, we present Conan, a framework for evidence-grounded multi-step video reasoning. Conan identifies contextual and evidence frames, reasons over cross-frame clues, and adaptively decides when to conclude or explore further. To achieve this, we (1) construct Conan-91K, a large-scale dataset of automatically generated reasoning traces that includes frame identification, evidence reasoning, and action decision, and (2) design a multi-stage progressive cold-start strategy combined with an Identification-Reasoning-Action (AIR) RLVR training framework to jointly enhance multi-step visual reasoning. Extensive experiments on six multi-step reasoning benchmarks demonstrate that Conan surpasses the baseline Qwen2.5-VL-7B-Instruct by an average of over 10% in accuracy, achieving state-of-the-art performance. Furthermore, Conan generalizes effectively to long-video understanding tasks, validating its strong scalability and robustness.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Mitigating Cross-modal Representation Bias for Multicultural Image-to-Recipe Retrieval
Existing approaches for image-to-recipe retrieval have the implicit assumption that a food image can fully capture the details textually documented in its recipe. However, a food image only reflects the visual outcome of a cooked dish and not the underlying cooking process. Consequently, learning cross-modal representations to bridge the modality gap between images and recipes tends to ignore subtle, recipe-specific details that are not visually apparent but are crucial for recipe retrieval. Specifically, the representations are biased to capture the dominant visual elements, resulting in difficulty in ranking similar recipes with subtle differences in use of ingredients and cooking methods. The bias in representation learning is expected to be more severe when the training data is mixed of images and recipes sourced from different cuisines. This paper proposes a novel causal approach that predicts the culinary elements potentially overlooked in images, while explicitly injecting these elements into cross-modal representation learning to mitigate biases. Experiments are conducted on the standard monolingual Recipe1M dataset and a newly curated multilingual multicultural cuisine dataset. The results indicate that the proposed causal representation learning is capable of uncovering subtle ingredients and cooking actions and achieves impressive retrieval performance on both monolingual and multilingual multicultural datasets.
comment: ACM Multimedia 2025
☆ Positional Encoding Field
Diffusion Transformers (DiTs) have emerged as the dominant architecture for visual generation, powering state-of-the-art image and video models. By representing images as patch tokens with positional encodings (PEs), DiTs combine Transformer scalability with spatial and temporal inductive biases. In this work, we revisit how DiTs organize visual content and discover that patch tokens exhibit a surprising degree of independence: even when PEs are perturbed, DiTs still produce globally coherent outputs, indicating that spatial coherence is primarily governed by PEs. Motivated by this finding, we introduce the Positional Encoding Field (PE-Field), which extends positional encodings from the 2D plane to a structured 3D field. PE-Field incorporates depth-aware encodings for volumetric reasoning and hierarchical encodings for fine-grained sub-patch control, enabling DiTs to model geometry directly in 3D space. Our PE-Field-augmented DiT achieves state-of-the-art performance on single-image novel view synthesis and generalizes to controllable spatial image editing.
comment: 8 pages, 9 figures
☆ Synthetic Data for Robust Runway Detection
Deep vision models are now mature enough to be integrated in industrial and possibly critical applications such as autonomous navigation. Yet, data collection and labeling to train such models requires too much efforts and costs for a single company or product. This drawback is more significant in critical applications, where training data must include all possible conditions including rare scenarios. In this perspective, generating synthetic images is an appealing solution, since it allows a cheap yet reliable covering of all the conditions and environments, if the impact of the synthetic-to-real distribution shift is mitigated. In this article, we consider the case of runway detection that is a critical part in autonomous landing systems developed by aircraft manufacturers. We propose an image generation approach based on a commercial flight simulator that complements a few annotated real images. By controlling the image generation and the integration of real and synthetic data, we show that standard object detection models can achieve accurate prediction. We also evaluate their robustness with respect to adverse conditions, in our case nighttime images, that were not represented in the real data, and show the interest of using a customized domain adaptation strategy.
☆ AccuQuant: Simulating Multiple Denoising Steps for Quantizing Diffusion Models NeurIPS 2025
We present in this paper a novel post-training quantization (PTQ) method, dubbed AccuQuant, for diffusion models. We show analytically and empirically that quantization errors for diffusion models are accumulated over denoising steps in a sampling process. To alleviate the error accumulation problem, AccuQuant minimizes the discrepancies between outputs of a full-precision diffusion model and its quantized version within a couple of denoising steps. That is, it simulates multiple denoising steps of a diffusion sampling process explicitly for quantization, accounting the accumulated errors over multiple denoising steps, which is in contrast to previous approaches to imitating a training process of diffusion models, namely, minimizing the discrepancies independently for each step. We also present an efficient implementation technique for AccuQuant, together with a novel objective, which reduces a memory complexity significantly from $\mathcal{O}(n)$ to $\mathcal{O}(1)$, where $n$ is the number of denoising steps. We demonstrate the efficacy and efficiency of AccuQuant across various tasks and diffusion models on standard benchmarks.
comment: Accepted to NeurIPS 2025
☆ Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.
comment: Code is at https://github.com/ChampagneAndfragrance/Dino_Diffusion_Parking_Official
☆ AnyPcc: Compressing Any Point Cloud with a Single Universal Model
Generalization remains a critical challenge for deep learning-based point cloud geometry compression. We argue this stems from two key limitations: the lack of robust context models and the inefficient handling of out-of-distribution (OOD) data. To address both, we introduce AnyPcc, a universal point cloud compression framework. AnyPcc first employs a Universal Context Model that leverages priors from both spatial and channel-wise grouping to capture robust contextual dependencies. Second, our novel Instance-Adaptive Fine-Tuning (IAFT) strategy tackles OOD data by synergizing explicit and implicit compression paradigms. It fine-tunes a small subset of network weights for each instance and incorporates them into the bitstream, where the marginal bit cost of the weights is dwarfed by the resulting savings in geometry compression. Extensive experiments on a benchmark of 15 diverse datasets confirm that AnyPcc sets a new state-of-the-art in point cloud compression. Our code and datasets will be released to encourage reproducible research.
comment: 11 pages, 5 figures
☆ HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models NeurIPS2025
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as HyperET, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. HyperET employs learnable matrices with M\"{o}bius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that HyperET consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters.
comment: Accepted by NeurIPS2025
☆ A Parameter-Efficient Mixture-of-Experts Framework for Cross-Modal Geo-Localization
We present a winning solution to RoboSense 2025 Track 4: Cross-Modal Drone Navigation. The task retrieves the most relevant geo-referenced image from a large multi-platform corpus (satellite/drone/ground) given a natural-language query. Two obstacles are severe inter-platform heterogeneity and a domain gap between generic training descriptions and platform-specific test queries. We mitigate these with a domain-aligned preprocessing pipeline and a Mixture-of-Experts (MoE) framework: (i) platform-wise partitioning, satellite augmentation, and removal of orientation words; (ii) an LLM-based caption refinement pipeline to align textual semantics with the distinct visual characteristics of each platform. Using BGE-M3 (text) and EVA-CLIP (image), we train three platform experts using a progressive two-stage, hard-negative mining strategy to enhance discriminative power, and fuse their scores at inference. The system tops the official leaderboard, demonstrating robust cross-modal geo-localization under heterogeneous viewpoints.
☆ Breakdance Video classification in the age of Generative AI
Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
comment: 11 pages
☆ UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.
☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.
☆ Knowledge-Informed Neural Network for Complex-Valued SAR Image Recognition
Deep learning models for complex-valued Synthetic Aperture Radar (CV-SAR) image recognition are fundamentally constrained by a representation trilemma under data-limited and domain-shift scenarios: the concurrent, yet conflicting, optimization of generalization, interpretability, and efficiency. Our work is motivated by the premise that the rich electromagnetic scattering features inherent in CV-SAR data hold the key to resolving this trilemma, yet they are insufficiently harnessed by conventional data-driven models. To this end, we introduce the Knowledge-Informed Neural Network (KINN), a lightweight framework built upon a novel "compression-aggregation-compression" architecture. The first stage performs a physics-guided compression, wherein a novel dictionary processor adaptively embeds physical priors, enabling a compact unfolding network to efficiently extract sparse, physically-grounded signatures. A subsequent aggregation module enriches these representations, followed by a final semantic compression stage that utilizes a compact classification head with self-distillation to learn maximally task-relevant and discriminative embeddings. We instantiate KINN in both CNN (0.7M) and Vision Transformer (0.95M) variants. Extensive evaluations on five SAR benchmarks confirm that KINN establishes a state-of-the-art in parameter-efficient recognition, offering exceptional generalization in data-scarce and out-of-distribution scenarios and tangible interpretability, thereby providing an effective solution to the representation trilemma and offering a new path for trustworthy AI in SAR image analysis.
☆ Causal Debiasing for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.
☆ GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
☆ Real-Time Currency Detection and Voice Feedback for Visually Impaired Individuals
Technologies like smartphones have become an essential in our daily lives. It has made accessible to everyone including visually impaired individuals. With the use of smartphone cameras, image capturing and processing have become more convenient. With the use of smartphones and machine learning, the life of visually impaired can be made a little easier. Daily tasks such as handling money without relying on someone can be troublesome for them. For that purpose this paper presents a real-time currency detection system designed to assist visually impaired individuals. The proposed model is trained on a dataset containing 30 classes of notes and coins, representing 3 types of currency: US dollar (USD), Euro (EUR), and Bangladeshi taka (BDT). Our approach uses a YOLOv8 nano model with a custom detection head featuring deep convolutional layers and Squeeze-and-Excitation blocks to enhance feature extraction and detection accuracy. Our model has achieved a higher accuracy of 97.73%, recall of 95.23%, f1-score of 95.85% and a mean Average Precision at IoU=0.5 (mAP50(B)) of 97.21\%. Using the voice feedback after the detection would help the visually impaired to identify the currency. This paper aims to create a practical and efficient currency detection system to empower visually impaired individuals independent in handling money.
comment: 20 pages, 5 tables, 8 figues
☆ GUSL-Dehaze: A Green U-Shaped Learning Approach to Image Dehazing
Image dehazing is a restoration task that aims to recover a clear image from a single hazy input. Traditional approaches rely on statistical priors and the physics-based atmospheric scattering model to reconstruct the haze-free image. While recent state-of-the-art methods are predominantly based on deep learning architectures, these models often involve high computational costs and large parameter sizes, making them unsuitable for resource-constrained devices. In this work, we propose GUSL-Dehaze, a Green U-Shaped Learning approach to image dehazing. Our method integrates a physics-based model with a green learning (GL) framework, offering a lightweight, transparent alternative to conventional deep learning techniques. Unlike neural network-based solutions, GUSL-Dehaze completely avoids deep learning. Instead, we begin with an initial dehazing step using a modified Dark Channel Prior (DCP), which is followed by a green learning pipeline implemented through a U-shaped architecture. This architecture employs unsupervised representation learning for effective feature extraction, together with feature-engineering techniques such as the Relevant Feature Test (RFT) and the Least-Squares Normal Transform (LNT) to maintain a compact model size. Finally, the dehazed image is obtained via a transparent supervised learning strategy. GUSL-Dehaze significantly reduces parameter count while ensuring mathematical interpretability and achieving performance on par with state-of-the-art deep learning models.
☆ Kinaema: a recurrent sequence model for memory and pose in motion
One key aspect of spatially aware robots is the ability to "find their bearings", ie. to correctly situate themselves in previously seen spaces. In this work, we focus on this particular scenario of continuous robotics operations, where information observed before an actual episode start is exploited to optimize efficiency. We introduce a new model, Kinaema, and agent, capable of integrating a stream of visual observations while moving in a potentially large scene, and upon request, processing a query image and predicting the relative position of the shown space with respect to its current position. Our model does not explicitly store an observation history, therefore does not have hard constraints on context length. It maintains an implicit latent memory, which is updated by a transformer in a recurrent way, compressing the history of sensor readings into a compact representation. We evaluate the impact of this model in a new downstream task we call "Mem-Nav". We show that our large-capacity recurrent model maintains a useful representation of the scene, navigates to goals observed before the actual episode start, and is computationally efficient, in particular compared to classical transformers with attention over an observation history.
comment: 10 pages + references + checklist + appendix, 29 pages total
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Seeing the Unseen: Mask-Driven Positional Encoding and Strip-Convolution Context Modeling for Cross-View Object Geo-Localization
Cross-view object geo-localization enables high-precision object localization through cross-view matching, with critical applications in autonomous driving, urban management, and disaster response. However, existing methods rely on keypoint-based positional encoding, which captures only 2D coordinates while neglecting object shape information, resulting in sensitivity to annotation shifts and limited cross-view matching capability. To address these limitations, we propose a mask-based positional encoding scheme that leverages segmentation masks to capture both spatial coordinates and object silhouettes, thereby upgrading the model from "location-aware" to "object-aware." Furthermore, to tackle the challenge of large-span objects (e.g., elongated buildings) in satellite imagery, we design a context enhancement module. This module employs horizontal and vertical strip convolutional kernels to extract long-range contextual features, enhancing feature discrimination among strip-like objects. Integrating MPE and CEM, we present EDGeo, an end-to-end framework for robust cross-view object geo-localization. Extensive experiments on two public datasets (CVOGL and VIGOR-Building) demonstrate that our method achieves state-of-the-art performance, with a 3.39% improvement in localization accuracy under challenging ground-to-satellite scenarios. This work provides a robust positional encoding paradigm and a contextual modeling framework for advancing cross-view geo-localization research.
☆ Empower Words: DualGround for Structured Phrase and Sentence-Level Temporal Grounding NeurIPS 2025
Video Temporal Grounding (VTG) aims to localize temporal segments in long, untrimmed videos that align with a given natural language query. This task typically comprises two subtasks: Moment Retrieval (MR) and Highlight Detection (HD). While recent advances have been progressed by powerful pretrained vision-language models such as CLIP and InternVideo2, existing approaches commonly treat all text tokens uniformly during crossmodal attention, disregarding their distinct semantic roles. To validate the limitations of this approach, we conduct controlled experiments demonstrating that VTG models overly rely on [EOS]-driven global semantics while failing to effectively utilize word-level signals, which limits their ability to achieve fine-grained temporal alignment. Motivated by this limitation, we propose DualGround, a dual-branch architecture that explicitly separates global and local semantics by routing the [EOS] token through a sentence-level path and clustering word tokens into phrase-level units for localized grounding. Our method introduces (1) tokenrole- aware cross modal interaction strategies that align video features with sentence-level and phrase-level semantics in a structurally disentangled manner, and (2) a joint modeling framework that not only improves global sentence-level alignment but also enhances finegrained temporal grounding by leveraging structured phrase-aware context. This design allows the model to capture both coarse and localized semantics, enabling more expressive and context-aware video grounding. DualGround achieves state-of-the-art performance on both Moment Retrieval and Highlight Detection tasks across QVHighlights and Charades- STA benchmarks, demonstrating the effectiveness of disentangled semantic modeling in video-language alignment.
comment: Comments: 28 pages, including appendix. 5 figures. Full version of the NeurIPS 2025 paper
☆ COS3D: Collaborative Open-Vocabulary 3D Segmentation NeurIPS 2025
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.
comment: NeurIPS 2025. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ EditInfinity: Image Editing with Binary-Quantized Generative Models NeurIPS 2025
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.
comment: 28 pages, 13 figures, accepted by The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Towards Objective Obstetric Ultrasound Assessment: Contrastive Representation Learning for Fetal Movement Detection
Accurate fetal movement (FM) detection is essential for assessing prenatal health, as abnormal movement patterns can indicate underlying complications such as placental dysfunction or fetal distress. Traditional methods, including maternal perception and cardiotocography (CTG), suffer from subjectivity and limited accuracy. To address these challenges, we propose Contrastive Ultrasound Video Representation Learning (CURL), a novel self-supervised learning framework for FM detection from extended fetal ultrasound video recordings. Our approach leverages a dual-contrastive loss, incorporating both spatial and temporal contrastive learning, to learn robust motion representations. Additionally, we introduce a task-specific sampling strategy, ensuring the effective separation of movement and non-movement segments during self-supervised training, while enabling flexible inference on arbitrarily long ultrasound recordings through a probabilistic fine-tuning approach. Evaluated on an in-house dataset of 92 subjects, each with 30-minute ultrasound sessions, CURL achieves a sensitivity of 78.01% and an AUROC of 81.60%, demonstrating its potential for reliable and objective FM analysis. These results highlight the potential of self-supervised contrastive learning for fetal movement analysis, paving the way for improved prenatal monitoring and clinical decision-making.
comment: This is the preprint version of the manuscript submitted to IEEE Journal of Biomedical and Health Informatics (JBHI) for review
☆ FlowCycle: Pursuing Cycle-Consistent Flows for Text-based Editing
Recent advances in pre-trained text-to-image flow models have enabled remarkable progress in text-based image editing. Mainstream approaches always adopt a corruption-then-restoration paradigm, where the source image is first corrupted into an ``intermediate state'' and then restored to the target image under the prompt guidance. However, current methods construct this intermediate state in a target-agnostic manner, i.e., they primarily focus on realizing source image reconstruction while neglecting the semantic gaps towards the specific editing target. This design inherently results in limited editability or inconsistency when the desired modifications substantially deviate from the source. In this paper, we argue that the intermediate state should be target-aware, i.e., selectively corrupting editing-relevant contents while preserving editing-irrelevant ones. To this end, we propose FlowCycle, a novel inversion-free and flow-based editing framework that parameterizes corruption with learnable noises and optimizes them through a cycle-consistent process. By iteratively editing the source to the target and recovering back to the source with dual consistency constraints, FlowCycle learns to produce a target-aware intermediate state, enabling faithful modifications while preserving source consistency. Extensive ablations have demonstrated that FlowCycle achieves superior editing quality and consistency over state-of-the-art methods.
☆ RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.
☆ A Structured Review and Quantitative Profiling of Public Brain MRI Datasets for Foundation Model Development
The development of foundation models for brain MRI depends critically on the scale, diversity, and consistency of available data, yet systematic assessments of these factors remain scarce. In this study, we analyze 54 publicly accessible brain MRI datasets encompassing over 538,031 to provide a structured, multi-level overview tailored to foundation model development. At the dataset level, we characterize modality composition, disease coverage, and dataset scale, revealing strong imbalances between large healthy cohorts and smaller clinical populations. At the image level, we quantify voxel spacing, orientation, and intensity distributions across 15 representative datasets, demonstrating substantial heterogeneity that can influence representation learning. We then perform a quantitative evaluation of preprocessing variability, examining how intensity normalization, bias field correction, skull stripping, spatial registration, and interpolation alter voxel statistics and geometry. While these steps improve within-dataset consistency, residual differences persist between datasets. Finally, feature-space case study using a 3D DenseNet121 shows measurable residual covariate shift after standardized preprocessing, confirming that harmonization alone cannot eliminate inter-dataset bias. Together, these analyses provide a unified characterization of variability in public brain MRI resources and emphasize the need for preprocessing-aware and domain-adaptive strategies in the design of generalizable brain MRI foundation models.
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ SPAN: Continuous Modeling of Suspicion Progression for Temporal Intention Localization
Temporal Intention Localization (TIL) is crucial for video surveillance, focusing on identifying varying levels of suspicious intentions to improve security monitoring. However, existing discrete classification methods fail to capture the continuous nature of suspicious intentions, limiting early intervention and explainability. In this paper, we propose the Suspicion Progression Analysis Network (SPAN), which shifts from discrete classification to continuous regression, enabling the capture of fluctuating and evolving suspicious intentions. We reveal that suspicion exhibits long-term dependencies and cumulative effects, similar to Temporal Point Process (TPP) theory. Based on these insights, we define a suspicion score formula that models continuous changes while accounting for temporal characteristics. We also introduce Suspicion Coefficient Modulation, which adjusts suspicion coefficients using multimodal information to reflect the varying impacts of suspicious actions. Additionally, the Concept-Anchored Mapping method is proposed to link suspicious actions to predefined intention concepts, offering insights into both the actions and their potential underlying intentions. Extensive experiments on the HAI dataset show that SPAN significantly outperforms existing methods, reducing MSE by 19.8% and improving average mAP by 1.78%. Notably, SPAN achieves a 2.74% mAP gain in low-frequency cases, demonstrating its superior ability to capture subtle behavioral changes. Compared to discrete classification systems, our continuous suspicion modeling approach enables earlier detection and proactive intervention, greatly enhancing system explainability and practical utility in security applications.
☆ Evaluating Video Models as Simulators of Multi-Person Pedestrian Trajectories
Large-scale video generation models have demonstrated high visual realism in diverse contexts, spurring interest in their potential as general-purpose world simulators. Existing benchmarks focus on individual subjects rather than scenes with multiple interacting people. However, the plausibility of multi-agent dynamics in generated videos remains unverified. We propose a rigorous evaluation protocol to benchmark text-to-video (T2V) and image-to-video (I2V) models as implicit simulators of pedestrian dynamics. For I2V, we leverage start frames from established datasets to enable comparison with a ground truth video dataset. For T2V, we develop a prompt suite to explore diverse pedestrian densities and interactions. A key component is a method to reconstruct 2D bird's-eye view trajectories from pixel-space without known camera parameters. Our analysis reveals that leading models have learned surprisingly effective priors for plausible multi-agent behavior. However, failure modes like merging and disappearing people highlight areas for future improvement.
comment: Preprint, under review
☆ PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.
☆ IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks AAAI
We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.
comment: Published in the Proceedings of the Thirty Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), paper number 7926
☆ TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning NeurIPS 2025
Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones. Existing methods suffer from performance degradation caused by the distribution shift of label space at test time, which stems from the inclusion of unseen compositions recombined from attributes and objects. To overcome the challenge, we propose a novel approach that accumulates comprehensive knowledge in both textual and visual modalities from unsupervised data to update multimodal prototypes at test time. Building on this, we further design an adaptive update weight to control the degree of prototype adjustment, enabling the model to flexibly adapt to distribution shift during testing. Moreover, a dynamic priority queue is introduced that stores high-confidence images to acquire visual knowledge from historical images for inference. Considering the semantic consistency of multimodal knowledge, we align textual and visual prototypes by multimodal collaborative representation learning. Extensive experiments indicate that our approach achieves state-of-the-art performance on four benchmark datasets under both closed-world and open-world settings. Code will be available at https://github.com/xud-yan/TOMCAT .
comment: Accepted to NeurIPS 2025
☆ Monocular Visual 8D Pose Estimation for Articulated Bicycles and Cyclists
In Autonomous Driving, cyclists belong to the safety-critical class of Vulnerable Road Users (VRU), and accurate estimation of their pose is critical for cyclist crossing intention classification, behavior prediction, and collision avoidance. Unlike rigid objects, articulated bicycles are composed of movable rigid parts linked by joints and constrained by a kinematic structure. 6D pose methods can estimate the 3D rotation and translation of rigid bicycles, but 6D becomes insufficient when the steering/pedals angles of the bicycle vary. That is because: 1) varying the articulated pose of the bicycle causes its 3D bounding box to vary as well, and 2) the 3D box orientation is not necessarily aligned to the orientation of the steering which determines the actual intended travel direction. In this work, we introduce a method for category-level 8D pose estimation for articulated bicycles and cyclists from a single RGB image. Besides being able to estimate the 3D translation and rotation of a bicycle from a single image, our method also estimates the rotations of its steering handles and pedals with respect to the bicycle body frame. These two new parameters enable the estimation of a more fine-grained bicycle pose state and travel direction. Our proposed model jointly estimates the 8D pose and the 3D Keypoints of articulated bicycles, and trains with a mix of synthetic and real image data to generalize on real images. We include an evaluation section where we evaluate the accuracy of our estimated 8D pose parameters, and our method shows promising results by achieving competitive scores when compared against state-of-the-art category-level 6D pose estimators that use rigid canonical object templates for matching.
☆ PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding NeurIPS 2025
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
comment: NeurIPS 2025 DB Track. Project page: https://authoritywang.github.io/partnext
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the implicit scene understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows and inter-reflections. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and shape, and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or ray-tracing. . Project page: https://genlit.is.tue.mpg.de/.
♻ ☆ mmWalk: Towards Multi-modal Multi-view Walking Assistance NeurIPS 2025
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track. Data and Code: https://github.com/KediYing/mmWalk
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ Structured Spectral Graph Representation Learning for Multi-label Abnormality Analysis from 3D CT Scans
With the growing volume of CT examinations, there is an increasing demand for automated tools such as organ segmentation, abnormality detection, and report generation to support radiologists in managing their clinical workload. Multi-label classification of 3D Chest CT scans remains a critical yet challenging problem due to the complex spatial relationships inherent in volumetric data and the wide variability of abnormalities. Existing methods based on 3D convolutional neural networks struggle to capture long-range dependencies, while Vision Transformers often require extensive pre-training on large-scale, domain-specific datasets to perform competitively. In this work of academic research, we propose a 2.5D alternative by introducing a new graph-based framework that represents 3D CT volumes as structured graphs, where axial slice triplets serve as nodes processed through spectral graph convolution, enabling the model to reason over inter-slice dependencies while maintaining complexity compatible with clinical deployment. Our method, trained and evaluated on 3 datasets from independent institutions, achieves strong cross-dataset generalization, and shows competitive performance compared to state-of-the-art visual encoders. We further conduct comprehensive ablation studies to evaluate the impact of various aggregation strategies, edge-weighting schemes, and graph connectivity patterns. Additionally, we demonstrate the broader applicability of our approach through transfer experiments on automated radiology report generation and abdominal CT data.
comment: 24 pages, 15 figures
♻ ☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance. However, existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive, subject-specific optimization, while zero-shot methods often fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor leverages semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated images. Additionally, our framework introduces a novel noise initialization strategy to preserve the geometry priors of reference subjects, facilitating robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
comment: Code: https://github.com/Nihukat/FreeGraftor
♻ ☆ Uncovering Anomalous Events for Marine Environmental Monitoring via Visual Anomaly Detection
Underwater video monitoring is a promising strategy for assessing marine biodiversity, but the vast volume of uneventful footage makes manual inspection highly impractical. In this work, we explore the use of visual anomaly detection (VAD) based on deep neural networks to automatically identify interesting or anomalous events. We introduce AURA, the first multi-annotator benchmark dataset for underwater VAD, and evaluate four VAD models across two marine scenes. We demonstrate the importance of robust frame selection strategies to extract meaningful video segments. Our comparison against multiple annotators reveals that VAD performance of current models varies dramatically and is highly sensitive to both the amount of training data and the variability in visual content that defines "normal" scenes. Our results highlight the value of soft and consensus labels and offer a practical approach for supporting scientific exploration and scalable biodiversity monitoring.
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ REOBench: Benchmarking Robustness of Earth Observation Foundation Models
Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models. Code and data are publicly available at https://github.com/lx709/REOBench.
comment: Accepted to NeruIPS 2025 D&B Track
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ A novel attention mechanism for noise-adaptive and robust segmentation of microtubules in microscopy images
Segmenting cytoskeletal filaments in microscopy images is essential for understanding their cellular roles but remains challenging, especially in dense, complex networks and under noisy or low-contrast image conditions. While deep learning has advanced image segmentation, performance often degrades in these adverse scenarios. Additional challenges include the difficulty of obtaining accurate annotations and managing severe class imbalance. We proposed a novel noise-adaptive attention mechanism, extending the Squeeze-and-Excitation (SE) module, to dynamically adjust to varying noise levels. This Adaptive SE (ASE) mechanism is integrated into a U-Net decoder, with residual encoder blocks, forming a lightweight yet powerful model: ASE_Res_U-Net. We also developed a synthetic-dataset strategy and employed tailored loss functions and evaluation metrics to mitigate class imbalance and ensure fair assessment. ASE_Res_U-Net effectively segmented microtubules in both synthetic and real noisy images, outperforming its ablated variants and state-of-the-art curvilinear-structure segmentation methods. It achieved this while using fewer parameters, making it suitable for resource-constrained environments. Importantly, ASE_Res_U-Net generalised well to other curvilinear structures (blood vessels and nerves) under diverse imaging conditions. Availability and implementation: Original microtubule datasets (synthetic and real noisy images) are available on Zenodo (DOIs: 10.5281/zenodo.14696279 and 10.5281/zenodo.15852660). ASE_Res_UNet model will be shared upon publication.
♻ ☆ Spatial-DISE: A Unified Benchmark for Evaluating Spatial Reasoning in Vision-Language Models
Spatial reasoning ability is crucial for Vision Language Models (VLMs) to support real-world applications in diverse domains including robotics, augmented reality, and autonomous navigation. Unfortunately, existing benchmarks are inadequate in assessing spatial reasoning ability, especially the \emph{intrinsic-dynamic} spatial reasoning which is a fundamental aspect of human spatial cognition. In this paper, we propose a unified benchmark, \textbf{Spatial-DISE}, based on a cognitively grounded taxonomy that categorizes tasks into four fundamental quadrants: \textbf{I}ntrinsic-\textbf{S}tatic, Intrinsic-\textbf{D}ynamic, \textbf{E}xtrinsic-Static, and Extrinsic-Dynamic spatial reasoning. Moreover, to address the issue of data scarcity, we develop a scalable and automated pipeline to generate diverse and verifiable spatial reasoning questions, resulting in a new \textbf{Spatial-DISE} dataset that includes Spatial-DISE Bench (559 evaluation VQA pairs) and Spatial-DISE-12K (12K+ training VQA pairs). Our comprehensive evaluation across 28 state-of-the-art VLMs reveals that, current VLMs have a large and consistent gap to human competence, especially on multi-step multi-view spatial reasoning. Spatial-DISE offers a robust framework, valuable dataset, and clear direction for future research toward human-like spatial intelligence. Benchmark, dataset, and code will be publicly released.
comment: Project Page: https://shinmohuang.github.io/spatialdise_page/
♻ ☆ BevSplat: Resolving Height Ambiguity via Feature-Based Gaussian Primitives for Weakly-Supervised Cross-View Localization
This paper addresses the problem of weakly supervised cross-view localization, where the goal is to estimate the pose of a ground camera relative to a satellite image with noisy ground truth annotations. A common approach to bridge the cross-view domain gap for pose estimation is Bird's-Eye View (BEV) synthesis. However, existing methods struggle with height ambiguity due to the lack of depth information in ground images and satellite height maps. Previous solutions either assume a flat ground plane or rely on complex models, such as cross-view transformers. We propose BevSplat, a novel method that resolves height ambiguity by using feature-based Gaussian primitives. Each pixel in the ground image is represented by a 3D Gaussian with semantic and spatial features, which are synthesized into a BEV feature map for relative pose estimation. Additionally, to address challenges with panoramic query images, we introduce an icosphere-based supervision strategy for the Gaussian primitives. We validate our method on the widely used KITTI and VIGOR datasets, which include both pinhole and panoramic query images. Experimental results show that BevSplat significantly improves localization accuracy over prior approaches.
♻ ☆ PolyPose: Deformable 2D/3D Registration via Polyrigid Transformations NeurIPS 2025
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise-rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-rays, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail. Additional visualizations, tutorials, and code are available at https://polypose.csail.mit.edu.
comment: NeurIPS 2025. Code available at https://github.com/eigenvivek/polypose
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ A primal-dual algorithm for image reconstruction with input-convex neural network regularizers
We address the optimization problem in a data-driven variational reconstruction framework, where the regularizer is parameterized by an input-convex neural network (ICNN). While gradient-based methods are commonly used to solve such problems, they struggle to effectively handle non-smooth problems which often leads to slow convergence. Moreover, the nested structure of the neural network complicates the application of standard non-smooth optimization techniques, such as proximal algorithms. To overcome these challenges, we reformulate the problem and eliminate the network's nested structure. By relating this reformulation to epigraphical projections of the activation functions, we transform the problem into a convex optimization problem that can be efficiently solved using a primal-dual algorithm. We also prove that this reformulation is equivalent to the original variational problem. Through experiments on several imaging tasks, we show that the proposed approach not only outperforms subgradient methods and even accelerated methods in the smooth setting, but also facilitates the training of the regularizer itself.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ Learning Dense Hand Contact Estimation from Imbalanced Data NeurIPS 2025
Hands are essential to human interaction, and exploring contact between hands and the world can promote comprehensive understanding of their function. Recently, there have been growing number of hand interaction datasets that cover interaction with object, other hand, scene, and body. Despite the significance of the task and increasing high-quality data, how to effectively learn dense hand contact estimation remains largely underexplored. There are two major challenges for learning dense hand contact estimation. First, there exists class imbalance issue from hand contact datasets where majority of regions are not in contact. Second, hand contact datasets contain spatial imbalance issue with most of hand contact exhibited in finger tips, resulting in challenges for generalization towards contacts in other hand regions. To tackle these issues, we present a framework that learns dense HAnd COntact estimation (HACO) from imbalanced data. To resolve the class imbalance issue, we introduce balanced contact sampling, which builds and samples from multiple sampling groups that fairly represent diverse contact statistics for both contact and non-contact vertices. Moreover, to address the spatial imbalance issue, we propose vertex-level class-balanced (VCB) loss, which incorporates spatially varying contact distribution by separately reweighting loss contribution of each vertex based on its contact frequency across dataset. As a result, we effectively learn to predict dense hand contact estimation with large-scale hand contact data without suffering from class and spatial imbalance issue. The codes are available at https://github.com/dqj5182/HACO_RELEASE.
comment: Accepted at NeurIPS 2025. Project page: http://haco-release.github.io
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Frequency Cam: Imaging Periodic Signals in Real-Time
Due to their high temporal resolution and large dynamic range, event cameras are uniquely suited for the analysis of time-periodic signals in an image. In this work we present an efficient and fully asynchronous event camera algorithm for detecting the fundamental frequency at which image pixels flicker. The algorithm employs a second-order digital infinite impulse response (IIR) filter to perform an approximate per-pixel brightness reconstruction and is more robust to high-frequency noise than the baseline method we compare to. We further demonstrate that using the falling edge of the signal leads to more accurate period estimates than the rising edge, and that for certain signals interpolating the zero-level crossings can further increase accuracy. Our experiments find that the outstanding capabilities of the camera in detecting frequencies up to 64kHz for a single pixel do not carry over to full sensor imaging as readout bandwidth limitations become a serious obstacle. This suggests that a hardware implementation closer to the sensor will allow for greatly improved frequency imaging. We discuss the important design parameters for fullsensor frequency imaging and present Frequency Cam, an open-source implementation as a ROS node that can run on a single core of a laptop CPU at more than 50 million events per second. It produces results that are qualitatively very similar to those obtained from the closed source vibration analysis module in Prophesee's Metavision Toolkit. The code for Frequency Cam and a demonstration video can be found at https://github.com/ros-event-camera/frequency_cam
comment: 13 pages, 16 figures, one table
♻ ☆ Mesh-RFT: Enhancing Mesh Generation via Fine-grained Reinforcement Fine-Tuning NeurIPS 2025
Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present Mesh-RFT, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6% and improves Topology Score (TS) by 3.8% over pre-trained models, while outperforming global DPO methods with a 17.4% HD reduction and 4.9% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: https://hitcslj.github.io/mesh-rft/.
comment: NeurIPS 2025, Spotlight
♻ ☆ Occluded nuScenes: A Multi-Sensor Dataset for Evaluating Perception Robustness in Automated Driving
Robust perception in automated driving requires reliable performance under adverse conditions, where sensors may be affected by partial failures or environmental occlusions. Although existing autonomous driving datasets inherently contain sensor noise and environmental variability, very few enable controlled, parameterised, and reproducible degradations across multiple sensing modalities. This gap limits the ability to systematically evaluate how perception and fusion architectures perform under well-defined adverse conditions. To address this limitation, we introduce the Occluded nuScenes Dataset, a novel extension of the widely used nuScenes benchmark. For the camera modality, we release both the full and mini versions with four types of occlusions, two adapted from public implementations and two newly designed. For radar and LiDAR, we provide parameterised occlusion scripts that implement three types of degradations each, enabling flexible and repeatable generation of occluded data. This resource supports consistent, reproducible evaluation of perception models under partial sensor failures and environmental interference. By releasing the first multi-sensor occlusion dataset with controlled and reproducible degradations, we aim to advance research on robust sensor fusion, resilience analysis, and safety-critical perception in automated driving.
♻ ☆ Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at https://ipro-alimama.github.io/.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ MODEM: A Morton-Order Degradation Estimation Mechanism for Adverse Weather Image Recovery NeurIPS 2025
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.
comment: Accepted by NeurIPS 2025
♻ ☆ FairGen: Enhancing Fairness in Text-to-Image Diffusion Models via Self-Discovering Latent Directions
While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model retraining with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose FairGen, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, FairGen consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for retraining. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Toward a Vision-Language Foundation Model for Medical Data: Multimodal Dataset and Benchmarks for Vietnamese PET/CT Report Generation NeurIPS 2025
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence (AI) by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from independent patients and their corresponding full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, especially for low-resource languages and clinical use in Vietnamese healthcare. The source code is available at https://github.com/AIoT-Lab-BKAI/ViPET-ReportGen.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ ControlFusion: A Controllable Image Fusion Framework with Language-Vision Degradation Prompts NeurIPS 2025
Current image fusion methods struggle to address the composite degradations encountered in real-world imaging scenarios and lack the flexibility to accommodate user-specific requirements. In response to these challenges, we propose a controllable image fusion framework with language-vision prompts, termed ControlFusion, which adaptively neutralizes composite degradations. On the one hand, we develop a degraded imaging model that integrates physical imaging mechanisms, including the Retinex theory and atmospheric scattering principle, to simulate composite degradations, thereby providing potential for addressing real-world complex degradations from the data level. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features with degradation prompts, enabling our method to accommodate composite degradation of varying levels. Specifically, considering individual variations in quality perception of users, we incorporate a text encoder to embed user-specified degradation types and severity levels as degradation prompts. We also design a spatial-frequency collaborative visual adapter that autonomously perceives degradations in source images, thus eliminating the complete dependence on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly in countering real-world and compound degradations with various levels. The source code is publicly available at https://github.com/Linfeng-Tang/ControlFusion.
comment: Accepted to NeurIPS 2025. The code are available at https://github.com/Linfeng-Tang/ControlFusion
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
♻ ☆ SnapMoGen: Human Motion Generation from Expressive Texts
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/
comment: Project Webpage: https://snap-research.github.io/SnapMoGen/
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ A Style-Based Profiling Framework for Quantifying the Synthetic-to-Real Gap in Autonomous Driving Datasets
Ensuring the reliability of autonomous driving perception systems requires extensive environment-based testing, yet real-world execution is often impractical. Synthetic datasets have therefore emerged as a promising alternative, offering advantages such as cost-effectiveness, bias free labeling, and controllable scenarios. However, the domain gap between synthetic and real-world datasets remains a major obstacle to model generalization. To address this challenge from a data-centric perspective, this paper introduces a profile extraction and discovery framework for characterizing the style profiles underlying both synthetic and real image datasets. We propose Style Embedding Distribution Discrepancy (SEDD) as a novel evaluation metric. Our framework combines Gram matrix-based style extraction with metric learning optimized for intra-class compactness and inter-class separation to extract style embeddings. Furthermore, we establish a benchmark using publicly available datasets. Experiments are conducted on a variety of datasets and sim-to-real methods, and the results show that our method is capable of quantifying the synthetic-to-real gap. This work provides a standardized profiling-based quality control paradigm that enables systematic diagnosis and targeted enhancement of synthetic datasets, advancing future development of data-driven autonomous driving systems.
comment: 7 pages, 4 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
♻ ☆ EasyOcc: 3D Pseudo-Label Supervision for Fully Self-Supervised Semantic Occupancy Prediction Models
Self-supervised models have recently achieved notable advancements, particularly in the domain of semantic occupancy prediction. These models utilize sophisticated loss computation strategies to compensate for the absence of ground-truth labels. For instance, techniques such as novel view synthesis, cross-view rendering, and depth estimation have been explored to address the issue of semantic and depth ambiguity. However, such techniques typically incur high computational costs and memory usage during the training stage, especially in the case of novel view synthesis. To mitigate these issues, we propose 3D pseudo-ground-truth labels generated by the foundation models Grounded-SAM and Metric3Dv2, and harness temporal information for label densification. Our 3D pseudo-labels can be easily integrated into existing models, which yields substantial performance improvements, with mIoU increasing by 45\%, from 9.73 to 14.09, when implemented into the OccNeRF model. This stands in contrast to earlier advancements in the field, which are often not readily transferable to other architectures. Additionally, we propose a streamlined model, EasyOcc, achieving 13.86 mIoU. This model conducts learning solely from our labels, avoiding complex rendering strategies mentioned previously. Furthermore, our method enables models to attain state-of-the-art performance when evaluated on the full scene without applying the camera mask, with EasyOcc achieving 7.71 mIoU, outperforming the previous best model by 31\%. These findings highlight the critical importance of foundation models, temporal context, and the choice of loss computation space in self-supervised learning for comprehensive scene understanding.
♻ ☆ PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling NeurIPS 2025
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ VITRIX-CLIPIN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions NeurIPS 2025
Despite the success of Vision-Language Models (VLMs) like CLIP in aligning vision and language, their proficiency in detailed, fine-grained visual comprehension remains a key challenge. We present CLIP-IN, a novel framework that bolsters CLIP's fine-grained perception through two core innovations. Firstly, we leverage instruction-editing datasets, originally designed for image manipulation, as a unique source of hard negative image-text pairs. Coupled with a symmetric hard negative contrastive loss, this enables the model to effectively distinguish subtle visual-semantic differences. Secondly, CLIP-IN incorporates long descriptive captions, utilizing rotary positional encodings to capture rich semantic context often missed by standard CLIP. Our experiments demonstrate that CLIP-IN achieves substantial gains on the MMVP benchmark and various fine-grained visual recognition tasks, without compromising robust zero-shot performance on broader classification and retrieval tasks. Critically, integrating CLIP-IN's visual representations into Multimodal Large Language Models significantly reduces visual hallucinations and enhances reasoning abilities. This work underscores the considerable potential of synergizing targeted, instruction-based contrastive learning with comprehensive descriptive information to elevate the fine-grained understanding of VLMs.
comment: Accepted to NeurIPS 2025
♻ ☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
♻ ☆ Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology NeurIPS 2025
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.
comment: published on NeurIPS 2025
♻ ☆ Vision-Centric Activation and Coordination for Multimodal Large Language Models
Multimodal large language models (MLLMs) integrate image features from visual encoders with LLMs, demonstrating advanced comprehension capabilities. However, mainstream MLLMs are solely supervised by the next-token prediction of textual tokens, neglecting critical vision-centric information essential for analytical abilities. To track this dilemma, we introduce VaCo, which optimizes MLLM representations through Vision-Centric activation and Coordination from multiple vision foundation models (VFMs). VaCo introduces visual discriminative alignment to integrate task-aware perceptual features extracted from VFMs, thereby unifying the optimization of both textual and visual outputs in MLLMs. Specifically, we incorporate the learnable Modular Task Queries (MTQs) and Visual Alignment Layers (VALs) into MLLMs, activating specific visual signals under the supervision of diverse VFMs. To coordinate representation conflicts across VFMs, the crafted Token Gateway Mask (TGM) restricts the information flow among multiple groups of MTQs. Extensive experiments demonstrate that VaCo significantly improves the performance of different MLLMs on various benchmarks, showcasing its superior capabilities in visual comprehension.
♻ ☆ MARIS: Marine Open-Vocabulary Instance Segmentation with Geometric Enhancement and Semantic Alignment
Most existing underwater instance segmentation approaches are constrained by close-vocabulary prediction, limiting their ability to recognize novel marine categories. To support evaluation, we introduce \textbf{MARIS} (\underline{Mar}ine Open-Vocabulary \underline{I}nstance \underline{S}egmentation), the first large-scale fine-grained benchmark for underwater Open-Vocabulary (OV) segmentation, featuring a limited set of seen categories and diverse unseen categories. Although OV segmentation has shown promise on natural images, our analysis reveals that transfer to underwater scenes suffers from severe visual degradation (e.g., color attenuation) and semantic misalignment caused by lack underwater class definitions. To address these issues, we propose a unified framework with two complementary components. The Geometric Prior Enhancement Module (\textbf{GPEM}) leverages stable part-level and structural cues to maintain object consistency under degraded visual conditions. The Semantic Alignment Injection Mechanism (\textbf{SAIM}) enriches language embeddings with domain-specific priors, mitigating semantic ambiguity and improving recognition of unseen categories. Experiments show that our framework consistently outperforms existing OV baselines both In-Domain and Cross-Domain setting on MARIS, establishing a strong foundation for future underwater perception research.
♻ ☆ VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning NeurIPS 2025
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.
comment: Accepted by NeurIPS 2025
♻ ☆ Video Consistency Distance: Enhancing Temporal Consistency for Image-to-Video Generation via Reward-Based Fine-Tuning
Reward-based fine-tuning of video diffusion models is an effective approach to improve the quality of generated videos, as it can fine-tune models without requiring real-world video datasets. However, it can sometimes be limited to specific performances because conventional reward functions are mainly aimed at enhancing the quality across the whole generated video sequence, such as aesthetic appeal and overall consistency. Notably, the temporal consistency of the generated video often suffers when applying previous approaches to image-to-video (I2V) generation tasks. To address this limitation, we propose Video Consistency Distance (VCD), a novel metric designed to enhance temporal consistency, and fine-tune a model with the reward-based fine-tuning framework. To achieve coherent temporal consistency relative to a conditioning image, VCD is defined in the frequency space of video frame features to capture frame information effectively through frequency-domain analysis. Experimental results across multiple I2V datasets demonstrate that fine-tuning a video generation model with VCD significantly enhances temporal consistency without degrading other performance compared to the previous method.
comment: 17 pages
♻ ☆ Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
♻ ☆ Comprehensive Evaluation and Analysis for NSFW Concept Erasure in Text-to-Image Diffusion Models
Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
♻ ☆ LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer
Universal image restoration (UIR) aims to recover images degraded by unknown mixtures while preserving semantics -- conditions under which discriminative restorers and UNet-based diffusion priors often oversmooth, hallucinate, or drift. We present LucidFlux, a caption-free UIR framework that adapts a large diffusion transformer (Flux.1) without image captions. LucidFlux introduces a lightweight dual-branch conditioner that injects signals from the degraded input and a lightly restored proxy to respectively anchor geometry and suppress artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed to route these cues across the backbone's hierarchy, in order to yield coarse-to-fine and context-aware updates that protect the global structure while recovering texture. After that, to avoid the latency and instability of text prompts or MLLM captions, we enforce caption-free semantic alignment via SigLIP features extracted from the proxy. A scalable curation pipeline further filters large-scale data for structure-rich supervision. Across synthetic and in-the-wild benchmarks, LucidFlux consistently outperforms strong open-source and commercial baselines, and ablation studies verify the necessity of each component. LucidFlux shows that, for large DiTs, when, where, and what to condition on -- rather than adding parameters or relying on text prompts -- is the governing lever for robust and caption-free universal image restoration in the wild.
comment: Project Page: https://w2genai-lab.github.io/LucidFlux
♻ ☆ CBDiff:Conditional Bernoulli Diffusion Models for Image Forgery Localization
Image Forgery Localization (IFL) is a crucial task in image forensics, aimed at accurately identifying manipulated or tampered regions within an image at the pixel level. Existing methods typically generate a single deterministic localization map, which often lacks the precision and reliability required for high-stakes applications such as forensic analysis and security surveillance. To enhance the credibility of predictions and mitigate the risk of errors, we introduce an advanced Conditional Bernoulli Diffusion Model (CBDiff). Given a forged image, CBDiff generates multiple diverse and plausible localization maps, thereby offering a richer and more comprehensive representation of the forgery distribution. This approach addresses the uncertainty and variability inherent in tampered regions. Furthermore, CBDiff innovatively incorporates Bernoulli noise into the diffusion process to more faithfully reflect the inherent binary and sparse properties of forgery masks. Additionally, CBDiff introduces a Time-Step Cross-Attention (TSCAttention), which is specifically designed to leverage semantic feature guidance with temporal steps to improve manipulation detection. Extensive experiments on eight publicly benchmark datasets demonstrate that CBDiff significantly outperforms existing state-of-the-art methods, highlighting its strong potential for real-world deployment.
♻ ☆ PlantSegNeRF: A few-shot, cross-species method for plant 3D instance point cloud reconstruction via joint-channel NeRF with multi-view image instance matching
Organ segmentation of plant point clouds is a prerequisite for the high-resolution and accurate extraction of organ-level phenotypic traits. Although the fast development of deep learning has boosted much research on segmentation of plant point clouds, the existing techniques for organ segmentation still face limitations in resolution, segmentation accuracy, and generalizability across various plant species. In this study, we proposed a novel approach called plant segmentation neural radiance fields (PlantSegNeRF), aiming to directly generate high-precision instance point clouds from multi-view RGB image sequences for a wide range of plant species. PlantSegNeRF performed 2D instance segmentation on the multi-view images to generate instance masks for each organ with a corresponding ID. The multi-view instance IDs corresponding to the same plant organ were then matched and refined using a specially designed instance matching module. The instance NeRF was developed to render an implicit scene, containing color, density, semantic and instance information. The implicit scene was ultimately converted into high-precision plant instance point clouds based on the volume density. The results proved that in semantic segmentation of point clouds, PlantSegNeRF outperformed the commonly used methods, demonstrating an average improvement of 16.1%, 18.3%, 17.8%, and 24.2% in precision, recall, F1-score, and IoU compared to the second-best results on structurally complex species. More importantly, PlantSegNeRF exhibited significant advantages in plant point cloud instance segmentation tasks. Across all plant species, it achieved average improvements of 11.7%, 38.2%, 32.2% and 25.3% in mPrec, mRec, mCov, mWCov, respectively. This study extends the organ-level plant phenotyping and provides a high-throughput way to supply high-quality 3D data for the development of large-scale models in plant science.
♻ ☆ FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies NeurIPS 2025
The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising 22 generative models. Our code and datasets are publicly available at https://github.com/xigua7105/FerretNet.
comment: 9 pages, 4 figures, 8 tables, accepted at NeurIPS 2025
♻ ☆ OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
The ability to segment objects based on open-ended language prompts remains a critical challenge, requiring models to ground textual semantics into precise spatial masks while handling diverse and unseen categories. We present OpenWorldSAM, a framework that extends the prompt-driven Segment Anything Model v2 (SAM2) to open-vocabulary scenarios by integrating multi-modal embeddings extracted from a lightweight vision-language model (VLM). Our approach is guided by four key principles: i) Unified prompting: OpenWorldSAM supports a diverse range of prompts, including category-level and sentence-level language descriptions, providing a flexible interface for various segmentation tasks. ii) Efficiency: By freezing the pre-trained components of SAM2 and the VLM, we train only 4.5 million parameters on the COCO-stuff dataset, achieving remarkable resource efficiency. iii) Instance Awareness: We enhance the model's spatial understanding through novel positional tie-breaker embeddings and cross-attention layers, enabling effective segmentation of multiple instances. iv) Generalization: OpenWorldSAM exhibits strong zero-shot capabilities, generalizing well on unseen categories and an open vocabulary of concepts without additional training. Extensive experiments demonstrate that OpenWorldSAM achieves state-of-the-art performance in open-vocabulary semantic, instance, and panoptic segmentation across multiple benchmarks. Code is available at https://github.com/GinnyXiao/OpenWorldSAM.
♻ ☆ Generative diffusion model surrogates for mechanistic agent-based biological models
Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models to train a generative AI surrogate of a CPM used to investigate in vitro vasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Panoptic-CUDAL: Rural Australia Point Cloud Dataset in Rainy Conditions
Existing autonomous driving datasets are predominantly oriented towards well-structured urban settings and favourable weather conditions, leaving the complexities of rural environments and adverse weather conditions largely unaddressed. Although some datasets encompass variations in weather and lighting, bad weather scenarios do not appear often. Rainfall can significantly impair sensor functionality, introducing noise and reflections in LiDAR and camera data and reducing the system's capabilities for reliable environmental perception and safe navigation. This paper introduces the Panoptic-CUDAL dataset, a novel dataset purpose-built for panoptic segmentation in rural areas subject to rain. By recording high-resolution LiDAR, camera, and pose data, Panoptic-CUDAL offers a diverse, information-rich dataset in a challenging scenario. We present the analysis of the recorded data and provide baseline results for panoptic, semantic segmentation, and 3D occupancy prediction methods on LiDAR point clouds. The dataset can be found here: https://robotics.sydney.edu.au/our-research/intelligent-transportation-systems, https://vision.rwth-aachen.de/panoptic-cudal
♻ ☆ SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on three datasets, and consistently improves performance across various SR architectures. Notably, for the x4 SR task on UCMerced dataset, it attained a PSNR of 29.3042 dB and an SSIM of 0.7961.
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: Updated author information to clarify institutional affiliation. The research was conducted prior to the author joining the University of Maryland
Artificial Intelligence 150
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
comment: Webpage: https://fieldgen.github.io/
RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Real-Time Gait Adaptation for Quadrupeds using Model Predictive Control and Reinforcement Learning
Model-free reinforcement learning (RL) has enabled adaptable and agile quadruped locomotion; however, policies often converge to a single gait, leading to suboptimal performance. Traditionally, Model Predictive Control (MPC) has been extensively used to obtain task-specific optimal policies but lacks the ability to adapt to varying environments. To address these limitations, we propose an optimization framework for real-time gait adaptation in a continuous gait space, combining the Model Predictive Path Integral (MPPI) algorithm with a Dreamer module to produce adaptive and optimal policies for quadruped locomotion. At each time step, MPPI jointly optimizes the actions and gait variables using a learned Dreamer reward that promotes velocity tracking, energy efficiency, stability, and smooth transitions, while penalizing abrupt gait changes. A learned value function is incorporated as terminal reward, extending the formulation to an infinite-horizon planner. We evaluate our framework in simulation on the Unitree Go1, demonstrating an average reduction of up to 36.48\% in energy consumption across varying target speeds, while maintaining accurate tracking and adaptive, task-appropriate gaits.
☆ Fusing Narrative Semantics for Financial Volatility Forecasting
We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets.
comment: The 6th ACM International Conference on AI in Finance (ICAIF 2025)
Exploring Large Language Models for Access Control Policy Synthesis and Summarization
Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.
comment: 20 pages, 7 figures
☆ Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ R2-SVC: Towards Real-World Robust and Expressive Zero-shot Singing Voice Conversion
In real-world singing voice conversion (SVC) applications, environmental noise and the demand for expressive output pose significant challenges. Conventional methods, however, are typically designed without accounting for real deployment scenarios, as both training and inference usually rely on clean data. This mismatch hinders practical use, given the inevitable presence of diverse noise sources and artifacts from music separation. To tackle these issues, we propose R2-SVC, a robust and expressive SVC framework. First, we introduce simulation-based robustness enhancement through random fundamental frequency ($F_0$) perturbations and music separation artifact simulations (e.g., reverberation, echo), substantially improving performance under noisy conditions. Second, we enrich speaker representation using domain-specific singing data: alongside clean vocals, we incorporate DNSMOS-filtered separated vocals and public singing corpora, enabling the model to preserve speaker timbre while capturing singing style nuances. Third, we integrate the Neural Source-Filter (NSF) model to explicitly represent harmonic and noise components, enhancing the naturalness and controllability of converted singing. R2-SVC achieves state-of-the-art results on multiple SVC benchmarks under both clean and noisy conditions.
comment: 5 pages, 2 figures
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ The Shape of Reasoning: Topological Analysis of Reasoning Traces in Large Language Models
Evaluating the quality of reasoning traces from large language models remains understudied, labor-intensive, and unreliable: current practice relies on expert rubrics, manual annotation, and slow pairwise judgments. Automated efforts are dominated by graph-based proxies that quantify structural connectivity but do not clarify what constitutes high-quality reasoning; such abstractions can be overly simplistic for inherently complex processes. We introduce a topological data analysis (TDA)-based evaluation framework that captures the geometry of reasoning traces and enables label-efficient, automated assessment. In our empirical study, topological features yield substantially higher predictive power for assessing reasoning quality than standard graph metrics, suggesting that effective reasoning is better captured by higher-dimensional geometric structures rather than purely relational graphs. We further show that a compact, stable set of topological features reliably indicates trace quality, offering a practical signal for future reinforcement learning algorithms.
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Integrating Machine Learning into Belief-Desire-Intention Agents: Current Advances and Open Challenges
Thanks to the remarkable human-like capabilities of machine learning (ML) models in perceptual and cognitive tasks, frameworks integrating ML within rational agent architectures are gaining traction. Yet, the landscape remains fragmented and incoherent, often focusing on embedding ML into generic agent containers while overlooking the expressive power of rational architectures--such as Belief-Desire-Intention (BDI) agents. This paper presents a fine-grained systematisation of existing approaches, using the BDI paradigm as a reference. Our analysis illustrates the fast-evolving literature on rational agents enhanced by ML, and identifies key research opportunities and open challenges for designing effective rational ML agents.
☆ Fluidity Index: Next-Generation Super-intelligence Benchmarks
This paper introduces the Fluidity Index (FI) to quantify model adaptability in dynamic, scaling environments. The benchmark evaluates response accuracy based on deviations in initial, current, and future environment states, assessing context switching and continuity. We distinguish between closed-ended and open-ended benchmarks, prioritizing closed-loop open-ended real-world benchmarks to test adaptability. The approach measures a model's ability to understand, predict, and adjust to state changes in scaling environments. A truly super-intelligent model should exhibit at least second-order adaptability, enabling self-sustained computation through digital replenishment for optimal fluidity.
comment: 12
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ Towards Reliable Evaluation of Large Language Models for Multilingual and Multimodal E-Commerce Applications
Large Language Models (LLMs) excel on general-purpose NLP benchmarks, yet their capabilities in specialized domains remain underexplored. In e-commerce, existing evaluations-such as EcomInstruct, ChineseEcomQA, eCeLLM, and Shopping MMLU-suffer from limited task diversity (e.g., lacking product guidance and after-sales issues), limited task modalities (e.g., absence of multimodal data), synthetic or curated data, and a narrow focus on English and Chinese, leaving practitioners without reliable tools to assess models on complex, real-world shopping scenarios. We introduce EcomEval, a comprehensive multilingual and multimodal benchmark for evaluating LLMs in e-commerce. EcomEval covers six categories and 37 tasks (including 8 multimodal tasks), sourced primarily from authentic customer queries and transaction logs, reflecting the noisy and heterogeneous nature of real business interactions. To ensure both quality and scalability of reference answers, we adopt a semi-automatic pipeline in which large models draft candidate responses subsequently reviewed and modified by over 50 expert annotators with strong e-commerce and multilingual expertise. We define difficulty levels for each question and task category by averaging evaluation scores across models with different sizes and capabilities, enabling challenge-oriented and fine-grained assessment. EcomEval also spans seven languages-including five low-resource Southeast Asian languages-offering a multilingual perspective absent from prior work.
☆ Quantum Processing Unit (QPU) processing time Prediction with Machine Learning
This paper explores the application of machine learning (ML) techniques in predicting the QPU processing time of quantum jobs. By leveraging ML algorithms, this study introduces predictive models that are designed to enhance operational efficiency in quantum computing systems. Using a dataset of about 150,000 jobs that follow the IBM Quantum schema, we employ ML methods based on Gradient-Boosting (LightGBM) to predict the QPU processing times, incorporating data preprocessing methods to improve model accuracy. The results demonstrate the effectiveness of ML in forecasting quantum jobs. This improvement can have implications on improving resource management and scheduling within quantum computing frameworks. This research not only highlights the potential of ML in refining quantum job predictions but also sets a foundation for integrating AI-driven tools in advanced quantum computing operations.
comment: Technical paper accepted at the IEEE Quantum Week 2025 Conference
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ Towards the Formalization of a Trustworthy AI for Mining Interpretable Models explOiting Sophisticated Algorithms
Interpretable-by-design models are crucial for fostering trust, accountability, and safe adoption of automated decision-making models in real-world applications. In this paper we formalize the ground for the MIMOSA (Mining Interpretable Models explOiting Sophisticated Algorithms) framework, a comprehensive methodology for generating predictive models that balance interpretability with performance while embedding key ethical properties. We formally define here the supervised learning setting across diverse decision-making tasks and data types, including tabular data, time series, images, text, transactions, and trajectories. We characterize three major families of interpretable models: feature importance, rule, and instance based models. For each family, we analyze their interpretability dimensions, reasoning mechanisms, and complexity. Beyond interpretability, we formalize three critical ethical properties, namely causality, fairness, and privacy, providing formal definitions, evaluation metrics, and verification procedures for each. We then examine the inherent trade-offs between these properties and discuss how privacy requirements, fairness constraints, and causal reasoning can be embedded within interpretable pipelines. By evaluating ethical measures during model generation, this framework establishes the theoretical foundations for developing AI systems that are not only accurate and interpretable but also fair, privacy-preserving, and causally aware, i.e., trustworthy.
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Efficient Algorithms for Computing Random Walk Centrality
Random walk centrality is a fundamental metric in graph mining for quantifying node importance and influence, defined as the weighted average of hitting times to a node from all other nodes. Despite its ability to capture rich graph structural information and its wide range of applications, computing this measure for large networks remains impractical due to the computational demands of existing methods. In this paper, we present a novel formulation of random walk centrality, underpinning two scalable algorithms: one leveraging approximate Cholesky factorization and sparse inverse estimation, while the other sampling rooted spanning trees. Both algorithms operate in near-linear time and provide strong approximation guarantees. Extensive experiments on large real-world networks, including one with over 10 million nodes, demonstrate the efficiency and approximation quality of the proposed algorithms.
comment: Accepted by TKDE
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Resounding Acoustic Fields with Reciprocity NeurIPS 2025
Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.
comment: NeurIPS 2025
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ Transferable Graph Learning for Transmission Congestion Management via Busbar Splitting
Network topology optimization (NTO) via busbar splitting can mitigate transmission grid congestion and reduce redispatch costs. However, solving this mixed-integer non-linear problem for large-scale systems in near-real-time is currently intractable with existing solvers. Machine learning (ML) approaches have emerged as a promising alternative, but they have limited generalization to unseen topologies, varying operating conditions, and different systems, which limits their practical applicability. This paper formulates NTO for congestion management problem considering linearized AC PF, and proposes a graph neural network (GNN)-accelerated approach. We develop a heterogeneous edge-aware message passing NN to predict effective busbar splitting actions as candidate NTO solutions. The proposed GNN captures local flow patterns, achieves generalization to unseen topology changes, and improves transferability across systems. Case studies show up to 4 orders-of-magnitude speed-up, delivering AC-feasible solutions within one minute and a 2.3% optimality gap on the GOC 2000-bus system. These results demonstrate a significant step toward near-real-time NTO for large-scale systems with topology and cross-system generalization.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ Lost in Translation: Policymakers are not really listening to Citizen Concerns about AI
The worlds people have strong opinions about artificial intelligence (AI), and they want policymakers to listen. Governments are inviting public comment on AI, but as they translate input into policy, much of what citizens say is lost. Policymakers are missing a critical opportunity to build trust in AI and its governance. This paper compares three countries, Australia, Colombia, and the United States, that invited citizens to comment on AI risks and policies. Using a landscape analysis, the authors examined how each government solicited feedback and whether that input shaped governance. Yet in none of the three cases did citizens and policymakers establish a meaningful dialogue. Governments did little to attract diverse voices or publicize calls for comment, leaving most citizens unaware or unprepared to respond. In each nation, fewer than one percent of the population participated. Moreover, officials showed limited responsiveness to the feedback they received, failing to create an effective feedback loop. The study finds a persistent gap between the promise and practice of participatory AI governance. The authors conclude that current approaches are unlikely to build trust or legitimacy in AI because policymakers are not adequately listening or responding to public concerns. They offer eight recommendations: promote AI literacy; monitor public feedback; broaden outreach; hold regular online forums; use innovative engagement methods; include underrepresented groups; respond publicly to input; and make participation easier.
☆ AdaDoS: Adaptive DoS Attack via Deep Adversarial Reinforcement Learning in SDN
Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Structures generated in a multiagent system performing information fusion in peer-to-peer resource-constrained networks
There has recently been a major advance with respect to how information fusion is performed. Information fusion has gone from being conceived as a purely hierarchical procedure, as is the case of traditional military applications, to now being regarded collaboratively, as holonic fusion, which is better suited for civil applications and edge organizations. The above paradigm shift is being boosted as information fusion gains ground in different non-military areas, and human-computer and machine-machine communications, where holarchies, which are more flexible structures than ordinary, static hierarchies, become more widespread. This paper focuses on showing how holonic structures tend to be generated when there are constraints on resources (energy, available messages, time, etc.) for interactions based on a set of fully intercommunicating elements (peers) whose components fuse information as a means of optimizing the impact of vagueness and uncertainty present message exchanges. Holon formation is studied generically based on a multiagent system model, and an example of its possible operation is shown. Holonic structures have a series of advantages, such as adaptability, to sudden changes in the environment or its composition, are somewhat autonomous and are capable of cooperating in order to achieve a common goal. This can be useful when the shortage of resources prevents communications or when the system components start to fail.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ FLORA: Unsupervised Knowledge Graph Alignment by Fuzzy Logic
Knowledge graph alignment is the task of matching equivalent entities (that is, instances and classes) and relations across two knowledge graphs. Most existing methods focus on pure entity-level alignment, computing the similarity of entities in some embedding space. They lack interpretable reasoning and need training data to work. In this paper, we propose FLORA, a simple yet effective method that (1) is unsupervised, i.e., does not require training data, (2) provides a holistic alignment for entities and relations iteratively, (3) is based on fuzzy logic and thus delivers interpretable results, (4) provably converges, (5) allows dangling entities, i.e., entities without a counterpart in the other KG, and (6) achieves state-of-the-art results on major benchmarks.
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement ICASSP 2026
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.
comment: 5 pages, submitted to ICASSP 2026
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ A computational model and tool for generating more novel opportunities in professional innovation processes
This paper presents a new computational model of creative outcomes, informed by creativity theories and techniques, which was implemented to generate more novel opportunities for innovation projects. The model implemented five functions that were developed to contribute to the generation of innovation opportunities with higher novelty without loss of usefulness. The model was evaluated using opportunities generated for an innovation project in the hospitality sector. The evaluation revealed that the computational model generated outcomes that were more novel and/or useful than outcomes from Notebook LM and ChatGPT4o. However, not all model functions contributed to the generation of more novel opportunities, leading to new directions for further model development
☆ FLAS: a combination of proactive and reactive auto-scaling architecture for distributed services
Cloud computing has established itself as the support for the vast majority of emerging technologies, mainly due to the characteristic of elasticity it offers. Auto-scalers are the systems that enable this elasticity by acquiring and releasing resources on demand to ensure an agreed service level. In this article we present FLAS (Forecasted Load Auto-Scaling), an auto-scaler for distributed services that combines the advantages of proactive and reactive approaches according to the situation to decide the optimal scaling actions in every moment. The main novelties introduced by FLAS are (i) a predictive model of the high-level metrics trend which allows to anticipate changes in the relevant SLA parameters (e.g. performance metrics such as response time or throughput) and (ii) a reactive contingency system based on the estimation of high-level metrics from resource use metrics, reducing the necessary instrumentation (less invasive) and allowing it to be adapted agnostically to different applications. We provide a FLAS implementation for the use case of a content-based publish-subscribe middleware (E-SilboPS) that is the cornerstone of an event-driven architecture. To the best of our knowledge, this is the first auto-scaling system for content-based publish-subscribe distributed systems (although it is generic enough to fit any distributed service). Through an evaluation based on several test cases recreating not only the expected contexts of use, but also the worst possible scenarios (following the Boundary-Value Analysis or BVA test methodology), we have validated our approach and demonstrated the effectiveness of our solution by ensuring compliance with performance requirements over 99% of the time.
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ What do AI-Generated Images Want?
W.J.T. Mitchell's influential essay 'What do pictures want?' shifts the theoretical focus away from the interpretative act of understanding pictures and from the motivations of the humans who create them to the possibility that the picture itself is an entity with agency and wants. In this article, I reframe Mitchell's question in light of contemporary AI image generation tools to ask: what do AI-generated images want? Drawing from art historical discourse on the nature of abstraction, I argue that AI-generated images want specificity and concreteness because they are fundamentally abstract. Multimodal text-to-image models, which are the primary subject of this article, are based on the premise that text and image are interchangeable or exchangeable tokens and that there is a commensurability between them, at least as represented mathematically in data. The user pipeline that sees textual input become visual output, however, obscures this representational regress and makes it seem like one form transforms into the other -- as if by magic.
LLM-empowered knowledge graph construction: A survey
Knowledge Graphs (KGs) have long served as a fundamental infrastructure for structured knowledge representation and reasoning. With the advent of Large Language Models (LLMs), the construction of KGs has entered a new paradigm-shifting from rule-based and statistical pipelines to language-driven and generative frameworks. This survey provides a comprehensive overview of recent progress in LLM-empowered knowledge graph construction, systematically analyzing how LLMs reshape the classical three-layered pipeline of ontology engineering, knowledge extraction, and knowledge fusion. We first revisit traditional KG methodologies to establish conceptual foundations, and then review emerging LLM-driven approaches from two complementary perspectives: schema-based paradigms, which emphasize structure, normalization, and consistency; and schema-free paradigms, which highlight flexibility, adaptability, and open discovery. Across each stage, we synthesize representative frameworks, analyze their technical mechanisms, and identify their limitations. Finally, the survey outlines key trends and future research directions, including KG-based reasoning for LLMs, dynamic knowledge memory for agentic systems, and multimodal KG construction. Through this systematic review, we aim to clarify the evolving interplay between LLMs and knowledge graphs, bridging symbolic knowledge engineering and neural semantic understanding toward the development of adaptive, explainable, and intelligent knowledge systems.
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Explainable Artificial Intelligence (XAI) has emerged as a pillar of Trustworthy AI and aims to bring transparency in complex models that are opaque by nature. Despite the benefits of incorporating explanations in models, an urgent need is found in addressing the privacy concerns of providing this additional information to end users. In this article, we conduct a scoping review of existing literature to elicit details on the conflict between privacy and explainability. Using the standard methodology for scoping review, we extracted 57 articles from 1,943 studies published from January 2019 to December 2024. The review addresses 3 research questions to present readers with more understanding of the topic: (1) what are the privacy risks of releasing explanations in AI systems? (2) what current methods have researchers employed to achieve privacy preservation in XAI systems? (3) what constitutes a privacy preserving explanation? Based on the knowledge synthesized from the selected studies, we categorize the privacy risks and preservation methods in XAI and propose the characteristics of privacy preserving explanations to aid researchers and practitioners in understanding the requirements of XAI that is privacy compliant. Lastly, we identify the challenges in balancing privacy with other system desiderata and provide recommendations for achieving privacy preserving XAI. We expect that this review will shed light on the complex relationship of privacy and explainability, both being the fundamental principles of Trustworthy AI.
comment: Accepted in Transactions on Machine Learning Research
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Fine-Tuning Multilingual Language Models for Code Review: An Empirical Study on Industrial C# Projects
Code review is essential for maintaining software quality but often time-consuming and cognitively demanding, especially in industrial environments. Recent advancements in language models (LMs) have opened new avenues for automating core review tasks. This study presents the empirical evaluation of monolingual fine-tuning on the performance of open-source LMs across three key automated code review tasks: Code Change Quality Estimation, Review Comment Generation, and Code Refinement. We fine-tuned three distinct models, CodeReviewer, CodeLlama-7B, and DeepSeek-R1-Distill, on a C\# specific dataset combining public benchmarks with industrial repositories. Our study investigates how different configurations of programming languages and natural languages in the training data affect LM performance, particularly in comment generation. Additionally, we benchmark the fine-tuned models against an automated software analysis tool (ASAT) and human reviewers to evaluate their practical utility in real-world settings. Our results show that monolingual fine-tuning improves model accuracy and relevance compared to multilingual baselines. While LMs can effectively support code review workflows, especially for routine or repetitive tasks, human reviewers remain superior in handling semantically complex or context-sensitive changes. Our findings highlight the importance of language alignment and task-specific adaptation in optimizing LMs for automated code review.
♻ ☆ LeVo: High-Quality Song Generation with Multi-Preference Alignment NeurIPS 2025
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in audio quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, a language model based framework consisting of LeLM and Music Codec. LeLM is capable of parallel modeling of two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve better vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following ability, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and post-training. Experimental results demonstrate that LeVo significantly outperforms existing open-source methods in both objective and subjective metrics, while performing competitively with industry systems. Ablation studies further justify the effectiveness of our designs. Audio examples and source code are available at https://levo-demo.github.io and https://github.com/tencent-ailab/songgeneration.
comment: Accepted by NeurIPS 2025
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ TriQuest:An AI Copilot-Powered Platform for Interdisciplinary Curriculum Design
Interdisciplinary teaching is a cornerstone of modern curriculum reform, but its implementation is hindered by challenges in knowledge integration and time-consuming lesson planning. Existing tools often lack the required pedagogical and domain-specific depth.We introduce TriQuest, an AI-copilot platform designed to solve these problems. TriQuest uses large language models and knowledge graphs via an intuitive GUI to help teachers efficiently generate high-quality interdisciplinary lesson plans. Its core features include intelligent knowledge integration from various disciplines and a human-computer collaborative review process to ensure quality and innovation.In a study with 43 teachers, TriQuest increased curriculum design efficiency and improved lesson plan quality. It also significantly lowered design barriers and cognitive load. Our work presents a new paradigm for empowering teacher professional development with intelligent technologies.
comment: 16 pages, 4 figures
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.
comment: 33 pages, 10 figures
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Shallow Flow Matching for Coarse-to-Fine Text-to-Speech Synthesis NeurIPS 2025
We propose Shallow Flow Matching (SFM), a novel mechanism that enhances flow matching (FM)-based text-to-speech (TTS) models within a coarse-to-fine generation paradigm. Unlike conventional FM modules, which use the coarse representations from the weak generator as conditions, SFM constructs intermediate states along the FM paths from these representations. During training, we introduce an orthogonal projection method to adaptively determine the temporal position of these states, and apply a principled construction strategy based on a single-segment piecewise flow. The SFM inference starts from the intermediate state rather than pure noise, thereby focusing computation on the latter stages of the FM paths. We integrate SFM into multiple TTS models with a lightweight SFM head. Experiments demonstrate that SFM yields consistent gains in speech naturalness across both objective and subjective evaluations, and significantly accelerates inference when using adaptive-step ODE solvers. Demo and codes are available at https://ydqmkkx.github.io/SFMDemo/.
comment: Accepted by NeurIPS 2025
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Timely Clinical Diagnosis through Active Test Selection
There is growing interest in using machine learning (ML) to support clinical diag- nosis, but most approaches rely on static, fully observed datasets and fail to reflect the sequential, resource-aware reasoning clinicians use in practice. Diagnosis remains complex and error prone, especially in high-pressure or resource-limited settings, underscoring the need for frameworks that help clinicians make timely and cost-effective decisions. We propose ACTMED (Adaptive Clinical Test selection via Model-based Experimental Design), a diagnostic framework that integrates Bayesian Experimental Design (BED) with large language models (LLMs) to better emulate real-world diagnostic reasoning. At each step, ACTMED selects the test expected to yield the greatest reduction in diagnostic uncertainty for a given patient. LLMs act as flexible simulators, generating plausible patient state distributions and supporting belief updates without requiring structured, task-specific training data. Clinicians can remain in the loop; reviewing test suggestions, interpreting intermediate outputs, and applying clinical judgment throughout. We evaluate ACTMED on real-world datasets and show it can optimize test selection to improve diagnostic accuracy, interpretability, and resource use. This represents a step to- ward transparent, adaptive, and clinician-aligned diagnostic systems that generalize across settings with reduced reliance on domain-specific data.
comment: None
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Local Guidance for Configuration-Based Multi-Agent Pathfinding
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: 10 pages
♻ ☆ GUIDE: Enhancing Gradient Inversion Attacks in Federated Learning with Denoising Models
Federated Learning (FL) enables collaborative training of Machine Learning (ML) models across multiple clients while preserving their privacy. Rather than sharing raw data, federated clients transmit locally computed updates to train the global model. Although this paradigm should provide stronger privacy guarantees than centralized ML, client updates remain vulnerable to privacy leakage. Adversaries can exploit them to infer sensitive properties about the training data or even to reconstruct the original inputs via Gradient Inversion Attacks (GIAs). Under the honest-butcurious threat model, GIAs attempt to reconstruct training data by reversing intermediate updates using optimizationbased techniques. We observe that these approaches usually reconstruct noisy approximations of the original inputs, whose quality can be enhanced with specialized denoising models. This paper presents Gradient Update Inversion with DEnoising (GUIDE), a novel methodology that leverages diffusion models as denoising tools to improve image reconstruction attacks in FL. GUIDE can be integrated into any GIAs that exploits surrogate datasets, a widely adopted assumption in GIAs literature. We comprehensively evaluate our approach in two attack scenarios that use different FL algorithms, models, and datasets. Our results demonstrate that GUIDE integrates seamlessly with two state-ofthe- art GIAs, substantially improving reconstruction quality across multiple metrics. Specifically, GUIDE achieves up to 46% higher perceptual similarity, as measured by the DreamSim metric.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ S$^2$-Diffusion: Generalizing from Instance-level to Category-level Skills in Robot Manipulation
Recent advances in skill learning has propelled robot manipulation to new heights by enabling it to learn complex manipulation tasks from a practical number of demonstrations. However, these skills are often limited to the particular action, object, and environment \textit{instances} that are shown in the training data, and have trouble transferring to other instances of the same category. In this work we present an open-vocabulary Spatial-Semantic Diffusion policy (S$^2$-Diffusion) which enables generalization from instance-level training data to category-level, enabling skills to be transferable between instances of the same category. We show that functional aspects of skills can be captured via a promptable semantic module combined with a spatial representation. We further propose leveraging depth estimation networks to allow the use of only a single RGB camera. Our approach is evaluated and compared on a diverse number of robot manipulation tasks, both in simulation and in the real world. Our results show that S$^2$-Diffusion is invariant to changes in category-irrelevant factors as well as enables satisfying performance on other instances within the same category, even if it was not trained on that specific instance. Project website: https://s2-diffusion.github.io.
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
comment: Preprint, under review
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $\tau$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $\tau$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $\tau$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them into a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance. Additional visuals are provided at \href{https://timwalter.github.io/safe-agb-rl.github.io}{timwalter.github.io/safe-agb-rl.github.io}.
comment: 21 pages, 10 figures
Machine Learning 150
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ KL-Regularized Reinforcement Learning is Designed to Mode Collapse
It is commonly believed that optimizing the reverse KL divergence results in "mode seeking", while optimizing forward KL results in "mass covering", with the latter being preferred if the goal is to sample from multiple diverse modes. We show -- mathematically and empirically -- that this intuition does not necessarily transfer well to doing reinforcement learning with reverse/forward KL regularization (e.g. as commonly used with language models). Instead, the choice of reverse/forward KL determines the family of optimal target distributions, parameterized by the regularization coefficient. Mode coverage depends primarily on other factors, such as regularization strength, and relative scales between rewards and reference probabilities. Further, we show commonly used settings such as low regularization strength and equal verifiable rewards tend to specify unimodal target distributions, meaning the optimization objective is, by construction, non-diverse. We leverage these insights to construct a simple, scalable, and theoretically justified algorithm. It makes minimal changes to reward magnitudes, yet optimizes for a target distribution which puts high probability over all high-quality sampling modes. In experiments, this simple modification works to post-train both Large Language Models and Chemical Language Models to have higher solution quality and diversity, without any external signals of diversity, and works with both forward and reverse KL when using either naively fails.
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ Out-of-distribution Tests Reveal Compositionality in Chess Transformers
Chess is a canonical example of a task that requires rigorous reasoning and long-term planning. Modern decision Transformers - trained similarly to LLMs - are able to learn competent gameplay, but it is unclear to what extent they truly capture the rules of chess. To investigate this, we train a 270M parameter chess Transformer and test it on out-of-distribution scenarios, designed to reveal failures of systematic generalization. Our analysis shows that Transformers exhibit compositional generalization, as evidenced by strong rule extrapolation: they adhere to fundamental syntactic rules of the game by consistently choosing valid moves even in situations very different from the training data. Moreover, they also generate high-quality moves for OOD puzzles. In a more challenging test, we evaluate the models on variants including Chess960 (Fischer Random Chess) - a variant of chess where starting positions of pieces are randomized. We found that while the model exhibits basic strategy adaptation, they are inferior to symbolic AI algorithms that perform explicit search, but gap is smaller when playing against users on Lichess. Moreover, the training dynamics revealed that the model initially learns to move only its own pieces, suggesting an emergent compositional understanding of the game.
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ CSU-PCAST: A Dual-Branch Transformer Framework for medium-range ensemble Precipitation Forecasting
Accurate medium-range precipitation forecasting is crucial for hydrometeorological risk management and disaster mitigation, yet remains challenging for current numerical weather prediction (NWP) systems. Traditional ensemble systems such as the Global Ensemble Forecast System (GEFS) struggle to maintain high skill, especially for moderate and heavy rainfall at extended lead times. This study develops a deep learning-based ensemble framework for multi-step precipitation prediction through joint modeling of a comprehensive set of atmospheric variables. The model is trained on ERA5 reanalysis data at 0.25$^{\circ}$ spatial resolution, with precipitation labels from NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) constellation (IMERG), incorporating 57 input variables, including upper-air and surface predictors. The architecture employs a patch-based Swin Transformer backbone with periodic convolutions to handle longitudinal continuity and integrates time and noise embeddings through conditional layer normalization. A dual-branch decoder predicts total precipitation and other variables, with targeted freezing of encoder-decoder pathways for specialized training. Training minimizes a hybrid loss combining the Continuous Ranked Probability Score (CRPS) and weighted log1p mean squared error (log1pMSE), balancing probabilistic accuracy and magnitude fidelity. During inference, the model ingests real-time Global Forecast System (GFS) initial conditions to generate 15-day forecasts autoregressively. Evaluation against GEFS using IMERG data demonstrates higher Critical Success Index (CSI) scores at precipitation thresholds of 0.1 mm, 1 mm, 10 mm, and 20 mm, highlighting improved performance for moderate to heavy rainfall.
comment: 20 pages, 12 figures, submitted to arXiv under Atmospheric and Oceanic Physics (physics.ao-ph) and Machine Learning (cs.LG)
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Learning to Triage Taint Flows Reported by Dynamic Program Analysis in Node.js Packages
Program analysis tools often produce large volumes of candidate vulnerability reports that require costly manual review, creating a practical challenge: how can security analysts prioritize the reports most likely to be true vulnerabilities? This paper investigates whether machine learning can be applied to prioritizing vulnerabilities reported by program analysis tools. We focus on Node.js packages and collect a benchmark of 1,883 Node.js packages, each containing one reported ACE or ACI vulnerability. We evaluate a variety of machine learning approaches, including classical models, graph neural networks (GNNs), large language models (LLMs), and hybrid models that combine GNN and LLMs, trained on data based on a dynamic program analysis tool's output. The top LLM achieves $F_{1} {=} 0.915$, while the best GNN and classical ML models reaching $F_{1} {=} 0.904$. At a less than 7% false-negative rate, the leading model eliminates 66.9% of benign packages from manual review, taking around 60 ms per package. If the best model is tuned to operate at a precision level of 0.8 (i.e., allowing 20% false positives amongst all warnings), our approach can detect 99.2% of exploitable taint flows while missing only 0.8%, demonstrating strong potential for real-world vulnerability triage.
☆ Amplifying Prominent Representations in Multimodal Learning via Variational Dirichlet Process
Developing effective multimodal fusion approaches has become increasingly essential in many real-world scenarios, such as health care and finance. The key challenge is how to preserve the feature expressiveness in each modality while learning cross-modal interactions. Previous approaches primarily focus on the cross-modal alignment, while over-emphasis on the alignment of marginal distributions of modalities may impose excess regularization and obstruct meaningful representations within each modality. The Dirichlet process (DP) mixture model is a powerful Bayesian non-parametric method that can amplify the most prominent features by its richer-gets-richer property, which allocates increasing weights to them. Inspired by this unique characteristic of DP, we propose a new DP-driven multimodal learning framework that automatically achieves an optimal balance between prominent intra-modal representation learning and cross-modal alignment. Specifically, we assume that each modality follows a mixture of multivariate Gaussian distributions and further adopt DP to calculate the mixture weights for all the components. This paradigm allows DP to dynamically allocate the contributions of features and select the most prominent ones, leveraging its richer-gets-richer property, thus facilitating multimodal feature fusion. Extensive experiments on several multimodal datasets demonstrate the superior performance of our model over other competitors. Ablation analysis further validates the effectiveness of DP in aligning modality distributions and its robustness to changes in key hyperparameters. Code is anonymously available at https://github.com/HKU-MedAI/DPMM.git
comment: Accepted by NeruIPS 2025
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ No-Regret Thompson Sampling for Finite-Horizon Markov Decision Processes with Gaussian Processes NeurIPS
Thompson sampling (TS) is a powerful and widely used strategy for sequential decision-making, with applications ranging from Bayesian optimization to reinforcement learning (RL). Despite its success, the theoretical foundations of TS remain limited, particularly in settings with complex temporal structure such as RL. We address this gap by establishing no-regret guarantees for TS using models with Gaussian marginal distributions. Specifically, we consider TS in episodic RL with joint Gaussian process (GP) priors over rewards and transitions. We prove a regret bound of $\mathcal{\tilde{O}}(\sqrt{KH\Gamma(KH)})$ over $K$ episodes of horizon $H$, where $\Gamma(\cdot)$ captures the complexity of the GP model. Our analysis addresses several challenges, including the non-Gaussian nature of value functions and the recursive structure of Bellman updates, and extends classical tools such as the elliptical potential lemma to multi-output settings. This work advances the understanding of TS in RL and highlights how structural assumptions and model uncertainty shape its performance in finite-horizon Markov Decision Processes.
comment: Appearing in NeurIPS, 2025
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Optimizing Clinical Fall Risk Prediction: A Data-Driven Integration of EHR Variables with the Johns Hopkins Fall Risk Assessment Tool
In this study we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models on JHFRAT assessment data and additional electronic health record (EHR) variables. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labelling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: 19 pages, 7 figures, 4 tables
☆ Separating the what and how of compositional computation to enable reuse and continual learning
The ability to continually learn, retain and deploy skills to accomplish goals is a key feature of intelligent and efficient behavior. However, the neural mechanisms facilitating the continual learning and flexible (re-)composition of skills remain elusive. Here, we study continual learning and the compositional reuse of learned computations in recurrent neural network (RNN) models using a novel two-system approach: one system that infers what computation to perform, and one that implements how to perform it. We focus on a set of compositional cognitive tasks commonly studied in neuroscience. To construct the what system, we first show that a large family of tasks can be systematically described by a probabilistic generative model, where compositionality stems from a shared underlying vocabulary of discrete task epochs. The shared epoch structure makes these tasks inherently compositional. We first show that this compositionality can be systematically described by a probabilistic generative model. Furthermore, We develop an unsupervised online learning approach that can learn this model on a single-trial basis, building its vocabulary incrementally as it is exposed to new tasks, and inferring the latent epoch structure as a time-varying computational context within a trial. We implement the how system as an RNN whose low-rank components are composed according to the context inferred by the what system. Contextual inference facilitates the creation, learning, and reuse of low-rank RNN components as new tasks are introduced sequentially, enabling continual learning without catastrophic forgetting. Using an example task set, we demonstrate the efficacy and competitive performance of this two-system learning framework, its potential for forward and backward transfer, as well as fast compositional generalization to unseen tasks.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ From Masks to Worlds: A Hitchhiker's Guide to World Models
This is not a typical survey of world models; it is a guide for those who want to build worlds. We do not aim to catalog every paper that has ever mentioned a ``world model". Instead, we follow one clear road: from early masked models that unified representation learning across modalities, to unified architectures that share a single paradigm, then to interactive generative models that close the action-perception loop, and finally to memory-augmented systems that sustain consistent worlds over time. We bypass loosely related branches to focus on the core: the generative heart, the interactive loop, and the memory system. We show that this is the most promising path towards true world models.
comment: Github: https://github.com/M-E-AGI-Lab/Awesome-World-Models
☆ Bayesian Jammer Localization with a Hybrid CNN and Path-Loss Mixture of Experts ICASSP
Global Navigation Satellite System (GNSS) signals are vulnerable to jamming, particularly in urban areas where multipath and shadowing distort received power. Previous data-driven approaches achieved reasonable localization but poorly reconstructed the received signal strength (RSS) field due to limited spatial context. We propose a hybrid Bayesian mixture-of-experts framework that fuses a physical path-loss (PL) model and a convolutional neural network (CNN) through log-linear pooling. The PL expert ensures physical consistency, while the CNN leverages building-height maps to capture urban propagation effects. Bayesian inference with Laplace approximation provides posterior uncertainty over both the jammer position and RSS field. Experiments on urban ray-tracing data show that localization accuracy improves and uncertainty decreases with more training points, while uncertainty concentrates near the jammer and along urban canyons where propagation is most sensitive.
comment: 5 pages, 4 figures, Submitted to ICASSPW 2026
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ xTime: Extreme Event Prediction with Hierarchical Knowledge Distillation and Expert Fusion
Extreme events frequently occur in real-world time series and often carry significant practical implications. In domains such as climate and healthcare, these events, such as floods, heatwaves, or acute medical episodes, can lead to serious consequences. Accurate forecasting of such events is therefore of substantial importance. Most existing time series forecasting models are optimized for overall performance within the prediction window, but often struggle to accurately predict extreme events, such as high temperatures or heart rate spikes. The main challenges are data imbalance and the neglect of valuable information contained in intermediate events that precede extreme events. In this paper, we propose xTime, a novel framework for extreme event forecasting in time series. xTime leverages knowledge distillation to transfer information from models trained on lower-rarity events, thereby improving prediction performance on rarer ones. In addition, we introduce a mixture of experts (MoE) mechanism that dynamically selects and fuses outputs from expert models across different rarity levels, which further improves the forecasting performance for extreme events. Experiments on multiple datasets show that xTime achieves consistent improvements, with forecasting accuracy on extreme events improving from 3% to 78%.
☆ Connecting Jensen-Shannon and Kullback-Leibler Divergences: A New Bound for Representation Learning NeurIPS 2025
Mutual Information (MI) is a fundamental measure of statistical dependence widely used in representation learning. While direct optimization of MI via its definition as a Kullback-Leibler divergence (KLD) is often intractable, many recent methods have instead maximized alternative dependence measures, most notably, the Jensen-Shannon divergence (JSD) between joint and product of marginal distributions via discriminative losses. However, the connection between these surrogate objectives and MI remains poorly understood. In this work, we bridge this gap by deriving a new, tight, and tractable lower bound on KLD as a function of JSD in the general case. By specializing this bound to joint and marginal distributions, we demonstrate that maximizing the JSD-based information increases a guaranteed lower bound on mutual information. Furthermore, we revisit the practical implementation of JSD-based objectives and observe that minimizing the cross-entropy loss of a binary classifier trained to distinguish joint from marginal pairs recovers a known variational lower bound on the JSD. Extensive experiments demonstrate that our lower bound is tight when applied to MI estimation. We compared our lower bound to state-of-the-art neural estimators of variational lower bound across a range of established reference scenarios. Our lower bound estimator consistently provides a stable, low-variance estimate of a tight lower bound on MI. We also demonstrate its practical usefulness in the context of the Information Bottleneck framework. Taken together, our results provide new theoretical justifications and strong empirical evidence for using discriminative learning in MI-based representation learning.
comment: Accepted at NeurIPS 2025. Code available at https://github.com/ReubenDo/JSDlowerbound/
☆ Attention Enhanced Entity Recommendation for Intelligent Monitoring in Cloud Systems
In this paper, we present DiRecGNN, an attention-enhanced entity recommendation framework for monitoring cloud services at Microsoft. We provide insights on the usefulness of this feature as perceived by the cloud service owners and lessons learned from deployment. Specifically, we introduce the problem of recommending the optimal subset of attributes (dimensions) that should be tracked by an automated watchdog (monitor) for cloud services. To begin, we construct the monitor heterogeneous graph at production-scale. The interaction dynamics of these entities are often characterized by limited structural and engagement information, resulting in inferior performance of state-of-the-art approaches. Moreover, traditional methods fail to capture the dependencies between entities spanning a long range due to their homophilic nature. Therefore, we propose an attention-enhanced entity ranking model inspired by transformer architectures. Our model utilizes a multi-head attention mechanism to focus on heterogeneous neighbors and their attributes, and further attends to paths sampled using random walks to capture long-range dependencies. We also employ multi-faceted loss functions to optimize for relevant recommendations while respecting the inherent sparsity of the data. Empirical evaluations demonstrate significant improvements over existing methods, with our model achieving a 43.1% increase in MRR. Furthermore, product teams who consumed these features perceive the feature as useful and rated it 4.5 out of 5.
☆ Large Multimodal Models-Empowered Task-Oriented Autonomous Communications: Design Methodology and Implementation Challenges
Large language models (LLMs) and large multimodal models (LMMs) have achieved unprecedented breakthrough, showcasing remarkable capabilities in natural language understanding, generation, and complex reasoning. This transformative potential has positioned them as key enablers for 6G autonomous communications among machines, vehicles, and humanoids. In this article, we provide an overview of task-oriented autonomous communications with LLMs/LMMs, focusing on multimodal sensing integration, adaptive reconfiguration, and prompt/fine-tuning strategies for wireless tasks. We demonstrate the framework through three case studies: LMM-based traffic control, LLM-based robot scheduling, and LMM-based environment-aware channel estimation. From experimental results, we show that the proposed LLM/LMM-aided autonomous systems significantly outperform conventional and discriminative deep learning (DL) model-based techniques, maintaining robustness under dynamic objectives, varying input parameters, and heterogeneous multimodal conditions where conventional static optimization degrades.
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition NeurIPS 2025
We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.
comment: Accepted at NeurIPS 2025
☆ On Optimal Hyperparameters for Differentially Private Deep Transfer Learning
Differentially private (DP) transfer learning, i.e., fine-tuning a pretrained model on private data, is the current state-of-the-art approach for training large models under privacy constraints. We focus on two key hyperparameters in this setting: the clipping bound $C$ and batch size $B$. We show a clear mismatch between the current theoretical understanding of how to choose an optimal $C$ (stronger privacy requires smaller $C$) and empirical outcomes (larger $C$ performs better under strong privacy), caused by changes in the gradient distributions. Assuming a limited compute budget (fixed epochs), we demonstrate that the existing heuristics for tuning $B$ do not work, while cumulative DP noise better explains whether smaller or larger batches perform better. We also highlight how the common practice of using a single $(C,B)$ setting across tasks can lead to suboptimal performance. We find that performance drops especially when moving between loose and tight privacy and between plentiful and limited compute, which we explain by analyzing clipping as a form of gradient re-weighting and examining cumulative DP noise.
comment: 25 pages, 30 figures
☆ MS-BART: Unified Modeling of Mass Spectra and Molecules for Structure Elucidation NeurIPS 2025
Mass spectrometry (MS) plays a critical role in molecular identification, significantly advancing scientific discovery. However, structure elucidation from MS data remains challenging due to the scarcity of annotated spectra. While large-scale pretraining has proven effective in addressing data scarcity in other domains, applying this paradigm to mass spectrometry is hindered by the complexity and heterogeneity of raw spectral signals. To address this, we propose MS-BART, a unified modeling framework that maps mass spectra and molecular structures into a shared token vocabulary, enabling cross-modal learning through large-scale pretraining on reliably computed fingerprint-molecule datasets. Multi-task pretraining objectives further enhance MS-BART's generalization by jointly optimizing denoising and translation task. The pretrained model is subsequently transferred to experimental spectra through finetuning on fingerprint predictions generated with MIST, a pre-trained spectral inference model, thereby enhancing robustness to real-world spectral variability. While finetuning alleviates the distributional difference, MS-BART still suffers molecular hallucination and requires further alignment. We therefore introduce a chemical feedback mechanism that guides the model toward generating molecules closer to the reference structure. Extensive evaluations demonstrate that MS-BART achieves SOTA performance across 5/12 key metrics on MassSpecGym and NPLIB1 and is faster by one order of magnitude than competing diffusion-based methods, while comprehensive ablation studies systematically validate the model's effectiveness and robustness.
comment: NeurIPS 2025, We provide the data and code at https://github.com/OpenDFM/MS-BART
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Convergence Analysis of SGD under Expected Smoothness AISTATS 2026
Stochastic gradient descent (SGD) is the workhorse of large-scale learning, yet classical analyses rely on assumptions that can be either too strong (bounded variance) or too coarse (uniform noise). The expected smoothness (ES) condition has emerged as a flexible alternative that ties the second moment of stochastic gradients to the objective value and the full gradient. This paper presents a self-contained convergence analysis of SGD under ES. We (i) refine ES with interpretations and sampling-dependent constants; (ii) derive bounds of the expectation of squared full gradient norm; and (iii) prove $O(1/K)$ rates with explicit residual errors for various step-size schedules. All proofs are given in full detail in the appendix. Our treatment unifies and extends recent threads (Khaled and Richt\'arik, 2020; Umeda and Iiduka, 2025).
comment: 23 pages, 11 figures, AISTATS 2026
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ Strategic Costs of Perceived Bias in Fair Selection NeurIPS 2025
Meritocratic systems, from admissions to hiring, aim to impartially reward skill and effort. Yet persistent disparities across race, gender, and class challenge this ideal. Some attribute these gaps to structural inequality; others to individual choice. We develop a game-theoretic model in which candidates from different socioeconomic groups differ in their perceived post-selection value--shaped by social context and, increasingly, by AI-powered tools offering personalized career or salary guidance. Each candidate strategically chooses effort, balancing its cost against expected reward; effort translates into observable merit, and selection is based solely on merit. We characterize the unique Nash equilibrium in the large-agent limit and derive explicit formulas showing how valuation disparities and institutional selectivity jointly determine effort, representation, social welfare, and utility. We further propose a cost-sensitive optimization framework that quantifies how modifying selectivity or perceived value can reduce disparities without compromising institutional goals. Our analysis reveals a perception-driven bias: when perceptions of post-selection value differ across groups, these differences translate into rational differences in effort, propagating disparities backward through otherwise "fair" selection processes. While the model is static, it captures one stage of a broader feedback cycle linking perceptions, incentives, and outcome--bridging rational-choice and structural explanations of inequality by showing how techno-social environments shape individual incentives in meritocratic systems.
comment: The paper has been accepted by NeurIPS 2025
☆ Diffusion Autoencoders with Perceivers for Long, Irregular and Multimodal Astronomical Sequences
Self-supervised learning has become a central strategy for representation learning, but the majority of architectures used for encoding data have only been validated on regularly-sampled inputs such as images, audios. and videos. In many scientific domains, data instead arrive as long, irregular, and multimodal sequences. To extract semantic information from these data, we introduce the Diffusion Autoencoder with Perceivers (daep). daep tokenizes heterogeneous measurements, compresses them with a Perceiver encoder, and reconstructs them with a Perceiver-IO diffusion decoder, enabling scalable learning in diverse data settings. To benchmark the daep architecture, we adapt the masked autoencoder to a Perceiver encoder/decoder design, and establish a strong baseline (maep) in the same architectural family as daep. Across diverse spectroscopic and photometric astronomical datasets, daep achieves lower reconstruction errors, produces more discriminative latent spaces, and better preserves fine-scale structure than both VAE and maep baselines. These results establish daep as an effective framework for scientific domains where data arrives as irregular, heterogeneous sequences.
☆ Embedding the MLOps Lifecycle into OT Reference Models
Machine Learning Operations (MLOps) practices are increas- ingly adopted in industrial settings, yet their integration with Opera- tional Technology (OT) systems presents significant challenges. This pa- per analyzes the fundamental obstacles in combining MLOps with OT en- vironments and proposes a systematic approach to embed MLOps prac- tices into established OT reference models. We evaluate the suitability of the Reference Architectural Model for Industry 4.0 (RAMI 4.0) and the International Society of Automation Standard 95 (ISA-95) for MLOps integration and present a detailed mapping of MLOps lifecycle compo- nents to RAMI 4.0 exemplified by a real-world use case. Our findings demonstrate that while standard MLOps practices cannot be directly transplanted to OT environments, structured adaptation using existing reference models can provide a pathway for successful integration.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ A Unified Framework for Zero-Shot Reinforcement Learning
Zero-shot reinforcement learning (RL) has emerged as a setting for developing general agents in an unsupervised manner, capable of solving downstream tasks without additional training or planning at test-time. Unlike conventional RL, which optimizes policies for a fixed reward, zero-shot RL requires agents to encode representations rich enough to support immediate adaptation to any objective, drawing parallels to vision and language foundation models. Despite growing interest, the field lacks a common analytical lens. We present the first unified framework for zero-shot RL. Our formulation introduces a consistent notation and taxonomy that organizes existing approaches and allows direct comparison between them. Central to our framework is the classification of algorithms into two families: direct representations, which learn end-to-end mappings from rewards to policies, and compositional representations, which decompose the representation leveraging the substructure of the value function. Within this framework, we highlight shared principles and key differences across methods, and we derive an extended bound for successor-feature methods, offering a new perspective on their performance in the zero-shot regime. By consolidating existing work under a common lens, our framework provides a principled foundation for future research in zero-shot RL and outlines a clear path toward developing more general agents.
☆ SheafAlign: A Sheaf-theoretic Framework for Decentralized Multimodal Alignment
Conventional multimodal alignment methods assume mutual redundancy across all modalities, an assumption that fails in real-world distributed scenarios. We propose SheafAlign, a sheaf-theoretic framework for decentralized multimodal alignment that replaces single-space alignment with multiple comparison spaces. This approach models pairwise modality relations through sheaf structures and leverages decentralized contrastive learning-based objectives for training. SheafAlign overcomes the limitations of prior methods by not requiring mutual redundancy among all modalities, preserving both shared and unique information. Experiments on multimodal sensing datasets show superior zero-shot generalization, cross-modal alignment, and robustness to missing modalities, with 50\% lower communication cost than state-of-the-art baselines.
comment: 5 pages, 3 figures, 1 table
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Adversary-Aware Private Inference over Wireless Channels
AI-based sensing at wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for vision and perception tasks such as in autonomous driving and environmental monitoring. AI systems rely both on efficient model learning and inference. In the inference phase, features extracted from sensing data are utilized for prediction tasks (e.g., classification or regression). In edge networks, sensors and model servers are often not co-located, which requires communication of features. As sensitive personal data can be reconstructed by an adversary, transformation of the features are required to reduce the risk of privacy violations. While differential privacy mechanisms provide a means of protecting finite datasets, protection of individual features has not been addressed. In this paper, we propose a novel framework for privacy-preserving AI-based sensing, where devices apply transformations of extracted features before transmission to a model server.
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ Bi-CoG: Bi-Consistency-Guided Self-Training for Vision-Language Models
Exploiting unlabeled data through semi-supervised learning (SSL) or leveraging pre-trained models via fine-tuning are two prevailing paradigms for addressing label-scarce scenarios. Recently, growing attention has been given to combining fine-tuning of pre-trained vision-language models (VLMs) with SSL, forming the emerging paradigm of semi-supervised fine-tuning. However, existing methods often suffer from model bias and hyperparameter sensitivity, due to reliance on prediction consistency or pre-defined confidence thresholds. To address these limitations, we propose a simple yet effective plug-and-play methodology named $\underline{\textbf{Bi-Co}}$nsistency-$\underline{\textbf{G}}$uided Self-Training (Bi-CoG), which assigns high-quality and low-bias pseudo-labels, by simultaneously exploiting inter-model and intra-model consistency, along with an error-aware dynamic pseudo-label assignment strategy. Both theoretical analysis and extensive experiments over 14 datasets demonstrate the effectiveness of Bi-CoG, which consistently and significantly improves the performance of existing methods.
☆ Concentration and excess risk bounds for imbalanced classification with synthetic oversampling
Synthetic oversampling of minority examples using SMOTE and its variants is a leading strategy for addressing imbalanced classification problems. Despite the success of this approach in practice, its theoretical foundations remain underexplored. We develop a theoretical framework to analyze the behavior of SMOTE and related methods when classifiers are trained on synthetic data. We first derive a uniform concentration bound on the discrepancy between the empirical risk over synthetic minority samples and the population risk on the true minority distribution. We then provide a nonparametric excess risk guarantee for kernel-based classifiers trained using such synthetic data. These results lead to practical guidelines for better parameter tuning of both SMOTE and the downstream learning algorithm. Numerical experiments are provided to illustrate and support the theoretical findings
comment: Page 35, including appendix, Figures 12, including appendix
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Intransitive Player Dominance and Market Inefficiency in Tennis Forecasting: A Graph Neural Network Approach
Intransitive player dominance, where player A beats B, B beats C, but C beats A, is common in competitive tennis. Yet, there are few known attempts to incorporate it within forecasting methods. We address this problem with a graph neural network approach that explicitly models these intransitive relationships through temporal directed graphs, with players as nodes and their historical match outcomes as directed edges. We find the bookmaker Pinnacle Sports poorly handles matches with high intransitive complexity and posit that our graph-based approach is uniquely positioned to capture relational dynamics in these scenarios. When selectively betting on higher intransitivity matchups with our model (65.7% accuracy, 0.215 Brier Score), we achieve significant positive returns of 3.26% ROI with Kelly staking over 1903 bets, suggesting a market inefficiency in handling intransitive matchups that our approach successfully exploits.
comment: 39 pages, 8 figures
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ Explainable Benchmarking through the Lense of Concept Learning
Evaluating competing systems in a comparable way, i.e., benchmarking them, is an undeniable pillar of the scientific method. However, system performance is often summarized via a small number of metrics. The analysis of the evaluation details and the derivation of insights for further development or use remains a tedious manual task with often biased results. Thus, this paper argues for a new type of benchmarking, which is dubbed explainable benchmarking. The aim of explainable benchmarking approaches is to automatically generate explanations for the performance of systems in a benchmark. We provide a first instantiation of this paradigm for knowledge-graph-based question answering systems. We compute explanations by using a novel concept learning approach developed for large knowledge graphs called PruneCEL. Our evaluation shows that PruneCEL outperforms state-of-the-art concept learners on the task of explainable benchmarking by up to 0.55 points F1 measure. A task-driven user study with 41 participants shows that in 80\% of the cases, the majority of participants can accurately predict the behavior of a system based on our explanations. Our code and data are available at https://github.com/dice-group/PruneCEL/tree/K-cap2025
comment: Accepted as full research paper at K-CAP 2025
☆ Learning Decentralized Routing Policies via Graph Attention-based Multi-Agent Reinforcement Learning in Lunar Delay-Tolerant Networks
We present a fully decentralized routing framework for multi-robot exploration missions operating under the constraints of a Lunar Delay-Tolerant Network (LDTN). In this setting, autonomous rovers must relay collected data to a lander under intermittent connectivity and unknown mobility patterns. We formulate the problem as a Partially Observable Markov Decision Problem (POMDP) and propose a Graph Attention-based Multi-Agent Reinforcement Learning (GAT-MARL) policy that performs Centralized Training, Decentralized Execution (CTDE). Our method relies only on local observations and does not require global topology updates or packet replication, unlike classical approaches such as shortest path and controlled flooding-based algorithms. Through Monte Carlo simulations in randomized exploration environments, GAT-MARL provides higher delivery rates, no duplications, and fewer packet losses, and is able to leverage short-term mobility forecasts; offering a scalable solution for future space robotic systems for planetary exploration, as demonstrated by successful generalization to larger rover teams.
☆ Partial Optimality in Cubic Correlation Clustering for General Graphs
The higher-order correlation clustering problem for a graph $G$ and costs associated with cliques of $G$ consists in finding a clustering of $G$ so as to minimize the sum of the costs of those cliques whose nodes all belong to the same cluster. To tackle this NP-hard problem in practice, local search heuristics have been proposed and studied in the context of applications. Here, we establish partial optimality conditions for cubic correlation clustering, i.e., for the special case of at most 3-cliques. We define and implement algorithms for deciding these conditions and examine their effectiveness numerically, on two data sets.
comment: 35 pages
☆ An Empirical Study of Sample Selection Strategies for Large Language Model Repair
Large language models (LLMs) are increasingly deployed in real-world systems, yet they can produce toxic or biased outputs that undermine safety and trust. Post-hoc model repair provides a practical remedy, but the high cost of parameter updates motivates selective use of repair data. Despite extensive prior work on data selection for model training, it remains unclear which sampling criteria are most effective and efficient when applied specifically to behavioral repair of large generative models. Our study presents a systematic analysis of sample prioritization strategies for LLM repair. We evaluate five representative selection methods, including random sampling, K-Center, gradient-norm-based selection(GraNd), stratified coverage (CCS), and a Semantic-Aware Prioritized Sampling (SAPS) approach we proposed. Repair effectiveness and trade-offs are assessed through toxicity reduction, perplexity on WikiText-2 and LAMBADA, and three composite metrics: the Repair Proximity Score (RPS), the Overall Performance Score (OPS), and the Repair Efficiency Score (RES). Experimental results show that SAPS achieves the best balance between detoxification, utility preservation, and efficiency, delivering comparable or superior repair outcomes with substantially less data. Random sampling remains effective for large or robust models, while high-overhead methods such as CCS and GraNd provide limited benefit. The optimal data proportion depends on model scale and repair method, indicating that sample selection should be regarded as a tunable component of repair pipelines. Overall, these findings establish selection-based repair as an efficient and scalable paradigm for maintaining LLM reliability.
☆ Learning Coupled Earth System Dynamics with GraphDOP
Interactions between different components of the Earth System (e.g. ocean, atmosphere, land and cryosphere) are a crucial driver of global weather patterns. Modern Numerical Weather Prediction (NWP) systems typically run separate models of the different components, explicitly coupled across their interfaces to additionally model exchanges between the different components. Accurately representing these coupled interactions remains a major scientific and technical challenge of weather forecasting. GraphDOP is a graph-based machine learning model that learns to forecast weather directly from raw satellite and in-situ observations, without reliance on reanalysis products or traditional physics-based NWP models. GraphDOP simultaneously embeds information from diverse observation sources spanning the full Earth system into a shared latent space. This enables predictions that implicitly capture cross-domain interactions in a single model without the need for any explicit coupling. Here we present a selection of case studies which illustrate the capability of GraphDOP to forecast events where coupled processes play a particularly key role. These include rapid sea-ice freezing in the Arctic, mixing-induced ocean surface cooling during Hurricane Ian and the severe European heat wave of 2022. The results suggest that learning directly from Earth System observations can successfully characterise and propagate cross-component interactions, offering a promising path towards physically consistent end-to-end data-driven Earth System prediction with a single model.
☆ Addressing Mark Imbalance in Integration-free Neural Marked Temporal Point Processes NeurIPS 2025
Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.
comment: NeurIPS 2025 poster
☆ Why DPO is a Misspecified Estimator and How to Fix It
Direct alignment algorithms such as Direct Preference Optimization (DPO) fine-tune models based on preference data, using only supervised learning instead of two-stage reinforcement learning with human feedback (RLHF). We show that DPO encodes a statistical estimation problem over reward functions induced by a parametric policy class. When the true reward function that generates preferences cannot be realized via the policy class, DPO becomes misspecified, resulting in failure modes such as preference order reversal, worsening of policy reward, and high sensitivity to the input preference data distribution. On the other hand, we study the local behavior of two-stage RLHF for a parametric class and relate it to a natural gradient step in policy space. Our fine-grained geometric characterization allows us to propose AuxDPO, which introduces additional auxiliary variables in the DPO loss function to help move towards the RLHF solution in a principled manner and mitigate the misspecification in DPO. We empirically demonstrate the superior performance of AuxDPO on didactic bandit settings as well as LLM alignment tasks.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ PointMapPolicy: Structured Point Cloud Processing for Multi-Modal Imitation Learning
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ Hierarchical Time Series Forecasting with Robust Reconciliation
This paper focuses on forecasting hierarchical time-series data, where each higher-level observation equals the sum of its corresponding lower-level time series. In such contexts, the forecast values should be coherent, meaning that the forecast value of each parent series exactly matches the sum of the forecast values of its child series. Existing hierarchical forecasting methods typically generate base forecasts independently for each series and then apply a reconciliation procedure to adjust them so that the resulting forecast values are coherent across the hierarchy. These methods generally derive an optimal reconciliation, using a covariance matrix of the forecast error. In practice, however, the true covariance matrix is unknown and has to be estimated from finite samples in advance. This gap between the true and estimated covariance matrix may degrade forecast performance. To address this issue, we propose a robust optimization framework for hierarchical reconciliation that accounts for uncertainty in the estimated covariance matrix. We first introduce an uncertainty set for the estimated covariance matrix and formulate a reconciliation problem that minimizes the worst-case expected squared error over this uncertainty set. We show that our problem can be cast as a semidefinite optimization problem. Numerical experiments demonstrate that the proposed robust reconciliation method achieved better forecast performance than existing hierarchical forecasting methods, which indicates the effectiveness of integrating uncertainty into the reconciliation process.
☆ Testing Most Influential Sets ICLR
Small subsets of data with disproportionate influence on model outcomes can have dramatic impacts on conclusions, with a few data points sometimes overturning key findings. While recent work has developed methods to identify these \emph{most influential sets}, no formal theory exists to determine when their influence reflects genuine problems rather than natural sampling variation. We address this gap by developing a principled framework for assessing the statistical significance of most influential sets. Our theoretical results characterize the extreme value distributions of maximal influence and enable rigorous hypothesis tests for excessive influence, replacing current ad-hoc sensitivity checks. We demonstrate the practical value of our approach through applications across economics, biology, and machine learning benchmarks.
comment: 9 pages, 1 figure, submitted to ICLR
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Position: Many generalization measures for deep learning are fragile
A wide variety of generalization measures have been applied to deep neural networks (DNNs). Although obtaining tight bounds remains challenging, such measures are often assumed to reproduce qualitative generalization trends. In this position paper, we argue that many post-mortem generalization measures -- those computed on trained networks -- are \textbf{fragile}: small training modifications that barely affect the underlying DNN can substantially change a measure's value, trend, or scaling behavior. For example, minor hyperparameter changes, such as learning rate adjustments or switching between SGD variants can reverse the slope of a learning curve in widely used generalization measures like the path norm. We also identify subtler forms of fragility. For instance, the PAC-Bayes origin measure is regarded as one of the most reliable, and is indeed less sensitive to hyperparameter tweaks than many other measures. However, it completely fails to capture differences in data complexity across learning curves. This data fragility contrasts with the function-based marginal-likelihood PAC-Bayes bound, which does capture differences in data-complexity, including scaling behavior, in learning curves, but which is not a post-mortem measure. Beyond demonstrating that many bounds -- such as path, spectral and Frobenius norms, flatness proxies, and deterministic PAC-Bayes surrogates -- are fragile, this position paper also argues that developers of new measures should explicitly audit them for fragility.
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ xRFM: Accurate, scalable, and interpretable feature learning models for tabular data
Inference from tabular data, collections of continuous and categorical variables organized into matrices, is a foundation for modern technology and science. Yet, in contrast to the explosive changes in the rest of AI, the best practice for these predictive tasks has been relatively unchanged and is still primarily based on variations of Gradient Boosted Decision Trees (GBDTs). Very recently, there has been renewed interest in developing state-of-the-art methods for tabular data based on recent developments in neural networks and feature learning methods. In this work, we introduce xRFM, an algorithm that combines feature learning kernel machines with a tree structure to both adapt to the local structure of the data and scale to essentially unlimited amounts of training data. We show that compared to $31$ other methods, including recently introduced tabular foundation models (TabPFNv2) and GBDTs, xRFM achieves best performance across $100$ regression datasets and is competitive to the best methods across $200$ classification datasets outperforming GBDTs. Additionally, xRFM provides interpretability natively through the Average Gradient Outer Product.
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Sampling from multi-modal distributions with polynomial query complexity in fixed dimension via reverse diffusion
Even in low dimensions, sampling from multi-modal distributions is challenging. We provide the first sampling algorithm for a broad class of distributions -- including all Gaussian mixtures -- with a query complexity that is polynomial in the parameters governing multi-modality, assuming fixed dimension. Our sampling algorithm simulates a time-reversed diffusion process, using a self-normalized Monte Carlo estimator of the intermediate score functions. Unlike previous works, it avoids metastability, requires no prior knowledge of the mode locations, and relaxes the well-known log-smoothness assumption which excluded general Gaussian mixtures so far.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Stochastic gradient descent in high dimensions for multi-spiked tensor PCA
We study the high-dimensional dynamics of online stochastic gradient descent (SGD) for the multi-spiked tensor model. This multi-index model arises from the tensor principal component analysis (PCA) problem with multiple spikes, where the goal is to estimate $r$ unknown signal vectors within the $N$-dimensional unit sphere through maximum likelihood estimation from noisy observations of a $p$-tensor. We determine the number of samples and the conditions on the signal-to-noise ratios (SNRs) required to efficiently recover the unknown spikes from natural random initializations. We show that full recovery of all spikes is possible provided a number of sample scaling as $N^{p-2}$, matching the algorithmic threshold identified in the rank-one case [Ben Arous, Gheissari, Jagannath 2020, 2021]. Our results are obtained through a detailed analysis of a low-dimensional system that describes the evolution of the correlations between the estimators and the spikes, while controlling the noise in the dynamics. We find that the spikes are recovered sequentially in a process we term "sequential elimination": once a correlation exceeds a critical threshold, all correlations sharing a row or column index become sufficiently small, allowing the next correlation to grow and become macroscopic. The order in which correlations become macroscopic depends on their initial values and the corresponding SNRs, leading to either exact recovery or recovery of a permutation of the spikes. In the matrix case, when $p=2$, if the SNRs are sufficiently separated, we achieve exact recovery of the spikes, whereas equal SNRs lead to recovery of the subspace spanned by them.
comment: 68 pages, 8 figures
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using end-to-end input-output labels of the composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algorithm. CTSketch uses two techniques to improve the scalability of neurosymbolic inference: decompose the symbolic program into sub-programs and summarize each sub-program with a sketched tensor. This strategy allows us to approximate the output distribution of the program with simple tensor operations over the input distributions and the sketches. We provide theoretical insight into the maximum approximation error. Furthermore, we evaluate CTSketch on benchmarks from the neurosymbolic learning literature, including some designed for evaluating scalability. Our results show that CTSketch pushes neurosymbolic learning to new scales that were previously unattainable, with neural predictors obtaining high accuracy on tasks with one thousand inputs, despite supervision only on the final output.
comment: 18 pages, 6 figures
♻ ☆ From Counterfactuals to Trees: Competitive Analysis of Model Extraction Attacks
The advent of Machine Learning as a Service (MLaaS) has heightened the trade-off between model explainability and security. In particular, explainability techniques, such as counterfactual explanations, inadvertently increase the risk of model extraction attacks, enabling unauthorized replication of proprietary models. In this paper, we formalize and characterize the risks and inherent complexity of model reconstruction, focusing on the "oracle'' queries required for faithfully inferring the underlying prediction function. We present the first formal analysis of model extraction attacks through the lens of competitive analysis, establishing a foundational framework to evaluate their efficiency. Focusing on models based on additive decision trees (e.g., decision trees, gradient boosting, and random forests), we introduce novel reconstruction algorithms that achieve provably perfect fidelity while demonstrating strong anytime performance. Our framework provides theoretical bounds on the query complexity for extracting tree-based model, offering new insights into the security vulnerabilities of their deployment.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Which Is Better For Reducing Outdated and Vulnerable Dependencies: Pinning or Floating?
Developers consistently use version constraints to specify acceptable versions of the dependencies for their project. \emph{Pinning} dependencies can reduce the likelihood of breaking changes, but comes with a cost of manually managing the replacement of outdated and vulnerable dependencies. On the other hand, \emph{floating} can be used to automatically get bug fixes and security fixes, but comes with the risk of breaking changes. Security practitioners advocate \emph{pinning} dependencies to prevent against software supply chain attacks, e.g., malicious package updates. However, since \emph{pinning} is the tightest version constraint, \emph{pinning} is the most likely to result in outdated dependencies. Nevertheless, how the likelihood of becoming outdated or vulnerable dependencies changes across version constraint types is unknown. The goal of this study is to aid developers in making an informed dependency version constraint choice by empirically evaluating the likelihood of dependencies becoming outdated or vulnerable across version constraint types at scale. In this study, we first identify the trends in dependency version constraint usage and the patterns of version constraint type changes made by developers in the npm, PyPI, and Cargo ecosystems. We then modeled the dependency state transitions using survival analysis and estimated how the likelihood of becoming outdated or vulnerable changes when using \emph{pinning} as opposed to the rest of the version constraint types. We observe that among outdated and vulnerable dependencies, the most commonly used version constraint type is \emph{floating-minor}, with \emph{pinning} being the next most common. We also find that \emph{floating-major} is the least likely to result in outdated and \emph{floating-minor} is the least likely to result in vulnerable dependencies.
comment: Accepted to ASE 2025
♻ ☆ Embedding principle of homogeneous neural network for classification problem
In this paper, we study the Karush-Kuhn-Tucker (KKT) points of the associated maximum-margin problem in homogeneous neural networks, including fully-connected and convolutional neural networks. In particular, We investigates the relationship between such KKT points across networks of different widths generated. We introduce and formalize the \textbf{KKT point embedding principle}, establishing that KKT points of a homogeneous network's max-margin problem ($P_{\Phi}$) can be embedded into the KKT points of a larger network's problem ($P_{\tilde{\Phi}}$) via specific linear isometric transformations. We rigorously prove this principle holds for neuron splitting in fully-connected networks and channel splitting in convolutional neural networks. Furthermore, we connect this static embedding to the dynamics of gradient flow training with smooth losses. We demonstrate that trajectories initiated from appropriately mapped points remain mapped throughout training and that the resulting $\omega$-limit sets of directions are correspondingly mapped, thereby preserving the alignment with KKT directions dynamically when directional convergence occurs. We conduct several experiments to justify that trajectories are preserved. Our findings offer insights into the effects of network width, parameter redundancy, and the structural connections between solutions found via optimization in homogeneous networks of varying sizes.
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Teaming LLMs to Detect and Mitigate Hallucinations NeurIPS 2025
Recent work has demonstrated state-of-the-art results in large language model (LLM) hallucination detection and mitigation through consistency-based approaches which involve aggregating multiple responses sampled from a single LLM for a given prompt. These approaches help offset limitations stemming from the imperfect data on which LLMs are trained, which includes biases and under-representation of information required at deployment time among other limitations which can lead to hallucinations. We show that extending these single-model consistency methods to combine responses from multiple LLMs with different training data, training schemes and model architectures can result in substantial further improvements in hallucination detection and mitigation capabilities beyond their single-model consistency counterparts. We evaluate this "consortium consistency" approach across many model teams from a pool of 15 LLMs and explore under what conditions it is beneficial to team together different LLMs in this manner. Further, we show that these performance improvements often come with reduced inference costs, offsetting a significant drawback with single-model consistency methods.
comment: Accepted to NeurIPS 2025 workshop on Reliable ML from Unreliable Data
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Streaming Federated Learning with Markovian Data
Federated learning (FL) is now recognized as a key framework for communication-efficient collaborative learning. Most theoretical and empirical studies, however, rely on the assumption that clients have access to pre-collected data sets, with limited investigation into scenarios where clients continuously collect data. In many real-world applications, particularly when data is generated by physical or biological processes, client data streams are often modeled by non-stationary Markov processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian data streams remains poorly understood due to the statistical dependencies between client samples over time. In this paper, we investigate whether FL can still support collaborative learning with Markovian data streams. Specifically, we analyze the performance of Minibatch SGD, Local SGD, and a variant of Local SGD with momentum. We answer affirmatively under standard assumptions and smooth non-convex client objectives: the sample complexity is proportional to the inverse of the number of clients with a communication complexity comparable to the i.i.d. scenario. However, the sample complexity for Markovian data streams remains higher than for i.i.d. sampling.
comment: Neurips 2025 camera-ready version
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ Prognostic Framework for Robotic Manipulators Operating Under Dynamic Task Severities
Robotic manipulators are critical in many applications but are known to degrade over time. This degradation is influenced by the nature of the tasks performed by the robot. Tasks with higher severity, such as handling heavy payloads, can accelerate the degradation process. One way this degradation is reflected is in the position accuracy of the robot's end-effector. In this paper, we present a prognostic modeling framework that predicts a robotic manipulator's Remaining Useful Life (RUL) while accounting for the effects of task severity. Our framework represents the robot's position accuracy as a Brownian motion process with a random drift parameter that is influenced by task severity. The dynamic nature of task severity is modeled using a continuous-time Markov chain (CTMC). To evaluate RUL, we discuss two approaches -- (1) a novel closed-form expression for Remaining Lifetime Distribution (RLD), and (2) Monte Carlo simulations, commonly used in prognostics literature. Theoretical results establish the equivalence between these RUL computation approaches. We validate our framework through experiments using two distinct physics-based simulators for planar and spatial robot fleets. Our findings show that robots in both fleets experience shorter RUL when handling a higher proportion of high-severity tasks.
comment: Accepted for Publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
♻ ☆ Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach
The rapid development of time series forecasting research has brought many deep learning-based modules in this field. However, despite the increasing amount of new forecasting architectures, it is still unclear if we have leveraged the full potential of these existing modules within a properly designed architecture. In this work, we propose a novel hierarchical neural architecture search approach for time series forecasting tasks. With the design of a hierarchical search space, we incorporate many architecture types designed for forecasting tasks and allow for the efficient combination of different forecasting architecture modules. Results on long-term-time-series-forecasting tasks show that our approach can search for lightweight high-performing forecasting architectures across different forecasting tasks.
♻ ☆ Deep Learning for Continuous-time Stochastic Control with Jumps
In this paper, we introduce a model-based deep-learning approach to solve finite-horizon continuous-time stochastic control problems with jumps. We iteratively train two neural networks: one to represent the optimal policy and the other to approximate the value function. Leveraging a continuous-time version of the dynamic programming principle, we derive two different training objectives based on the Hamilton-Jacobi-Bellman equation, ensuring that the networks capture the underlying stochastic dynamics. Empirical evaluations on different problems illustrate the accuracy and scalability of our approach, demonstrating its effectiveness in solving complex, high-dimensional stochastic control tasks.
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ KOALA++: Efficient Kalman-Based Optimization of Neural Networks with Gradient-Covariance Products
We propose KOALA++, a scalable Kalman-based optimization algorithm that explicitly models structured gradient uncertainty in neural network training. Unlike second-order methods, which rely on expensive second order gradient calculation, our method directly estimates the parameter covariance matrix by recursively updating compact gradient covariance products. This design improves upon the original KOALA framework that assumed diagonal covariance by implicitly capturing richer uncertainty structure without storing the full covariance matrix and avoiding large matrix inversions. Across diverse tasks, including image classification and language modeling, KOALA++ achieves accuracy on par or better than state-of-the-art first- and second-order optimizers while maintaining the efficiency of first-order methods.
♻ ☆ Fast Inference via Hierarchical Speculative Decoding
Transformer language models generate text autoregressively, making inference latency proportional to the number of tokens generated. Speculative decoding reduces this latency without sacrificing output quality, by leveraging a small draft model to propose tokens that the larger target model verifies in parallel. In practice, however, there may exist a set of potential draft models- ranging from faster but less inaccurate, to slower yet more reliable. We introduce Hierarchical Speculative Decoding (HSD), an algorithm that stacks these draft models into a hierarchy, where each model proposes tokens, and the next larger model verifies them in a single forward pass, until finally the target model verifies tokens. We derive an expression for the expected latency of any such hierarchy and show that selecting the latency-optimal hierarchy can be done in polynomial time. Empirically, HSD gives up to 1.2x speed-up over the best single-draft baseline, demonstrating the practicality of our algorithm in reducing generation latency beyond previous techniques.
♻ ☆ Execution Guided Line-by-Line Code Generation NeurIPS 2026
We present a novel approach to neural code generation that incorporates real-time execution signals into the language model generation process. While large language models (LLMs) have demonstrated impressive code generation capabilities, they typically do not utilize execution feedback during inference, a critical signal that human programmers regularly leverage. Our method, Execution-Guided Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as the model generates code, providing line-by-line feedback that guides the generation process toward executable solutions. EG-CFG employs a multi-stage process: first, we conduct beam search to sample candidate program completions for each line; second, we extract execution signals by executing these candidates against test cases; and finally, we incorporate these signals into the prompt during generation. By maintaining consistent signals across tokens within the same line and refreshing signals at line boundaries, our approach provides coherent guidance while preserving syntactic structure. Moreover, the method naturally supports native parallelism at the task level in which multiple agents operate in parallel, exploring diverse reasoning paths and collectively generating a broad set of candidate solutions. Our experiments across diverse coding tasks demonstrate that EG-CFG significantly improves code generation performance compared to standard approaches, achieving state-of-the-art results across various levels of complexity, from foundational problems to challenging competitive programming and data science tasks. Our code is available at: https://github.com/boazlavon/eg_cfg
comment: Accepted to NeurIPS 2026
♻ ☆ Solving 0-1 Integer Programs with Unknown Knapsack Constraints Using Membership Oracles
We consider solving a combinatorial optimization problem with unknown knapsack constraints using a membership oracle for each unknown constraint such that, given a solution, the oracle determines whether the constraint is satisfied or not with absolute certainty. The goal of the decision maker is to find the best possible solution subject to a budget on the number of oracle calls. Inspired by active learning for binary classification based on Support Vector Machines (SVMs), we devise a framework to solve the problem by learning and exploiting surrogate linear constraints. The framework includes training linear separators on the labeled points and selecting new points to be labeled, which is achieved by applying a sampling strategy and solving a 0-1 integer linear program. Following the active learning literature, a natural choice would be SVM as a linear classifier and the information-based sampling strategy known as simple margin, for each unknown constraint. We improve on both sides: we propose an alternative sampling strategy based on mixed-integer quadratic programming and a linear separation method inspired by an algorithm for convex optimization in the oracle model. We conduct experiments on classical problems and variants inspired by realistic applications to show how different linear separation methods and sampling strategies influence the quality of the results in terms of several metrics including objective value, dual bound and running time.
♻ ☆ Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs
Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the reliability of large language models (LLMs) without additional supervision, yet their underlying mechanisms and statistical guarantees remain poorly understood. We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with the mode of the model's terminal distribution with high probability. We derive finite-sample and anytime-valid concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a sequential stopping rule that adaptively determines when sufficient samples have been drawn. We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between sharpness and bias. Together, these results explain and connect two central test-time scaling strategies, self-consistency and TTRL, within a single statistical framework for label-free, certifiable reliability in reasoning LLMs.
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ SMRS: advocating a unified reporting standard for surrogate models in the artificial intelligence era NeurIPS 2025
Surrogate models are widely used to approximate complex systems across science and engineering to reduce computational costs. Despite their widespread adoption, the field lacks standardisation across key stages of the modelling pipeline, including data sampling, model selection, evaluation, and downstream analysis. This fragmentation limits reproducibility and cross-domain utility -- a challenge further exacerbated by the rapid proliferation of AI-driven surrogate models. We argue for the urgent need to establish a structured reporting standard, the Surrogate Model Reporting Standard (SMRS), that systematically captures essential design and evaluation choices while remaining agnostic to implementation specifics. By promoting a standardised yet flexible framework, we aim to improve the reliability of surrogate modelling, foster interdisciplinary knowledge transfer, and, as a result, accelerate scientific progress in the AI era.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025), Position Track
♻ ☆ Channel Balance Interpolation in the Lightning Network via Machine Learning
The Bitcoin Lightning Network is a Layer 2 payment protocol that addresses Bitcoin's scalability by facilitating quick and cost effective transactions through payment channels. This research explores the feasibility of using machine learning models to interpolate channel balances within the network, which can be used for optimizing the network's pathfinding algorithms. While there has been much exploration in balance probing and multipath payment protocols, predicting channel balances using solely node and channel features remains an uncharted area. This paper evaluates the performance of several machine learning models against two heuristic baselines and investigates the predictive capabilities of various features. Our model performs favorably in experimental evaluation, outperforming by 10% against an equal split baseline where both edges are assigned half of the channel capacity.
♻ ☆ Geometry Aware Operator Transformer as an Efficient and Accurate Neural Surrogate for PDEs on Arbitrary Domains
The very challenging task of learning solution operators of PDEs on arbitrary domains accurately and efficiently is of vital importance to engineering and industrial simulations. Despite the existence of many operator learning algorithms to approximate such PDEs, we find that accurate models are not necessarily computationally efficient and vice versa. We address this issue by proposing a geometry aware operator transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines novel multiscale attentional graph neural operator encoders and decoders, together with geometry embeddings and (vision) transformer processors to accurately map information about the domain and the inputs into a robust approximation of the PDE solution. Multiple innovations in the implementation of GAOT also ensure computational efficiency and scalability. We demonstrate this significant gain in both accuracy and efficiency of GAOT over several baselines on a large number of learning tasks from a diverse set of PDEs, including achieving state of the art performance on three large scale three-dimensional industrial CFD datasets.
♻ ☆ Log Neural Controlled Differential Equations: The Lie Brackets Make a Difference
The vector field of a controlled differential equation (CDE) describes the relationship between a control path and the evolution of a solution path. Neural CDEs (NCDEs) treat time series data as observations from a control path, parameterise a CDE's vector field using a neural network, and use the solution path as a continuously evolving hidden state. As their formulation makes them robust to irregular sampling rates, NCDEs are a powerful approach for modelling real-world data. Building on neural rough differential equations (NRDEs), we introduce Log-NCDEs, a novel, effective, and efficient method for training NCDEs. The core component of Log-NCDEs is the Log-ODE method, a tool from the study of rough paths for approximating a CDE's solution. Log-NCDEs are shown to outperform NCDEs, NRDEs, the linear recurrent unit, S5, and MAMBA on a range of multivariate time series datasets with up to $50{,}000$ observations.
comment: 23 pages, 5 figures
♻ ☆ Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
♻ ☆ Continuous Uniqueness and Novelty Metrics for Generative Modeling of Inorganic Crystals NeurIPS 2025
To address pressing scientific challenges such as climate change, increasingly sophisticated generative artificial intelligence models are being developed that can efficiently sample the large chemical space of possible functional materials. These models can quickly sample new chemical compositions paired with crystal structures. They are typically evaluated using uniqueness and novelty metrics, which depend on a chosen crystal distance function. However, the most prevalent distance function has four limitations: it fails to quantify the degree of similarity between compounds, cannot distinguish compositional difference and structural difference, lacks Lipschitz continuity against shifts in atomic coordinates, and results in a uniqueness metric that is not invariant against the permutation of generated samples. In this work, we propose using two continuous distance functions to evaluate uniqueness and novelty, which theoretically overcome these limitations. Our experiments show that these distances reveal insights missed by traditional distance functions, providing a more reliable basis for evaluating and comparing generative models for inorganic crystals.
comment: 13 pages (5 pages of main text), accepted to the AI4Mat workshop at NeurIPS 2025. See https://github.com/WMD-group/xtalmet for the code. Added references and a footnote in Section 3
♻ ☆ SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
comment: Withdrawn to reorganize and extend the current findings in a future version
♻ ☆ Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions CCS 2025
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
comment: Accepted to ICCS 2025
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ Field theory for optimal signal propagation in ResNets
Residual networks have significantly better trainability and thus performance than feed-forward networks at large depth. Introducing skip connections facilitates signal propagation to deeper layers. In addition, previous works found that adding a scaling parameter for the residual branch further improves generalization performance. While they empirically identified a particularly beneficial range of values for this scaling parameter, the associated performance improvement and its universality across network hyperparameters yet need to be understood. For feed-forward networks, finite-size theories have led to important insights with regard to signal propagation and hyperparameter tuning. We here derive a systematic finite-size field theory for residual networks to study signal propagation and its dependence on the scaling for the residual branch. We derive analytical expressions for the response function, a measure for the network's sensitivity to inputs, and show that for deep networks the empirically found values for the scaling parameter lie within the range of maximal sensitivity. Furthermore, we obtain an analytical expression for the optimal scaling parameter that depends only weakly on other network hyperparameters, such as the weight variance, thereby explaining its universality across hyperparameters. Overall, this work provides a theoretical framework to study ResNets at finite size.
comment: 25 pages, 9 figures, accepted at Physical Review E
♻ ☆ Continuous Diffusion Model for Language Modeling NeurIPS 2025
Diffusion models have emerged as a promising alternative to autoregressive models in modeling discrete categorical data. However, diffusion models that directly work on discrete data space fail to fully exploit the power of iterative refinement, as the signals are lost during transitions between discrete states. Existing continuous diffusion models for discrete data underperform compared to discrete methods, and the lack of a clear connection between the two approaches hinders the development of effective diffusion models for discrete data. In this work, we propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution. We establish a connection between the discrete diffusion and continuous flow on the statistical manifold, and building on this analogy, introduce a simple diffusion process that generalizes existing discrete diffusion models. We further propose a simulation-free training framework based on radial symmetry, along with a simple technique to address the high dimensionality of the manifold. Comprehensive experiments on language modeling benchmarks and other modalities show that our method outperforms existing discrete diffusion models and approaches the performance of autoregressive models. The code is available at https://github.com/harryjo97/RDLM.
comment: NeurIPS 2025
♻ ☆ MIRA: Medical Time Series Foundation Model for Real-World Health Data NeurIPS 2025
A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.
comment: NeurIPS 2025 Main Conference
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ A Neural Difference-of-Entropies Estimator for Mutual Information
Estimating Mutual Information (MI), a key measure of dependence of random quantities without specific modelling assumptions, is a challenging problem in high dimensions. We propose a novel mutual information estimator based on parametrizing conditional densities using normalizing flows, a deep generative model that has gained popularity in recent years. This estimator leverages a block autoregressive structure to achieve improved bias-variance trade-offs on standard benchmark tasks.
comment: 23 pages, 17 figures
♻ ☆ CONFEX: Uncertainty-Aware Counterfactual Explanations with Conformal Guarantees
Counterfactual explanations (CFXs) provide human-understandable justifications for model predictions, enabling actionable recourse and enhancing interpretability. To be reliable, CFXs must avoid regions of high predictive uncertainty, where explanations may be misleading or inapplicable. However, existing methods often neglect uncertainty or lack principled mechanisms for incorporating it with formal guarantees. We propose CONFEX, a novel method for generating uncertainty-aware counterfactual explanations using Conformal Prediction (CP) and Mixed-Integer Linear Programming (MILP). CONFEX explanations are designed to provide local coverage guarantees, addressing the issue that CFX generation violates exchangeability. To do so, we develop a novel localised CP procedure that enjoys an efficient MILP encoding by leveraging an offline tree-based partitioning of the input space. This way, CONFEX generates CFXs with rigorous guarantees on both predictive uncertainty and optimality. We evaluate CONFEX against state-of-the-art methods across diverse benchmarks and metrics, demonstrating that our uncertainty-aware approach yields robust and plausible explanations.
comment: 35 pages [11+24 Appendix]. Metadata revised
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ Quantitative convergence of trained single layer neural networks to Gaussian processes NeurIPS 2025
In this paper, we study the quantitative convergence of shallow neural networks trained via gradient descent to their associated Gaussian processes in the infinite-width limit. While previous work has established qualitative convergence under broad settings, precise, finite-width estimates remain limited, particularly during training. We provide explicit upper bounds on the quadratic Wasserstein distance between the network output and its Gaussian approximation at any training time $t \ge 0$, demonstrating polynomial decay with network width. Our results quantify how architectural parameters, such as width and input dimension, influence convergence, and how training dynamics affect the approximation error.
comment: Submitted and accepted at NeurIPS 2025, main body of 10 pages, 3 figures, 28 pages of supplementary material
♻ ☆ WENDy for Nonlinear-in-Parameters ODEs
The Weak-form Estimation of Non-linear Dynamics (WENDy) framework is a recently developed approach for parameter estimation and inference of systems of ordinary differential equations (ODEs). Prior work demonstrated WENDy to be robust, computationally efficient, and accurate, but only works for ODEs which are linear-in-parameters. In this work, we derive a novel extension to accommodate systems of a more general class of ODEs that are nonlinear-in-parameters. Our new WENDy-MLE algorithm approximates a maximum likelihood estimator via local non-convex optimization methods. This is made possible by the availability of analytic expressions for the likelihood function and its first and second order derivatives. WENDy-MLE has better accuracy, a substantially larger domain of convergence, and is often faster than other weak form methods and the conventional output error least squares method. Moreover, we extend the framework to accommodate data corrupted by multiplicative log-normal noise. The WENDy.jl algorithm is efficiently implemented in Julia. In order to demonstrate the practical benefits of our approach, we present extensive numerical results comparing our method, other weak form methods, and output error least squares on a suite of benchmark systems of ODEs in terms of accuracy, precision, bias, and coverage.
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning
Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Distributional Adversarial Attacks and Training in Deep Hedging NeurIPS 2025
In this paper, we study the robustness of classical deep hedging strategies under distributional shifts by leveraging the concept of adversarial attacks. We first demonstrate that standard deep hedging models are highly vulnerable to small perturbations in the input distribution, resulting in significant performance degradation. Motivated by this, we propose an adversarial training framework tailored to increase the robustness of deep hedging strategies. Our approach extends pointwise adversarial attacks to the distributional setting and introduces a computationally tractable reformulation of the adversarial optimization problem over a Wasserstein ball. This enables the efficient training of hedging strategies that are resilient to distributional perturbations. Through extensive numerical experiments, we show that adversarially trained deep hedging strategies consistently outperform their classical counterparts in terms of out-of-sample performance and resilience to model misspecification. Additional results indicate that the robust strategies maintain reliable performance on real market data and remain effective during periods of market change. Our findings establish a practical and effective framework for robust deep hedging under realistic market uncertainties.
comment: Camera-ready version (accepted at NeurIPS 2025 https://neurips.cc/virtual/2025/poster/115434)
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
Machine learning is a vital part of many real-world systems, but several concerns remain about the lack of interpretability, explainability and robustness of black-box AI systems. Concept Bottleneck Models (CBM) address some of these challenges by learning interpretable concepts from high-dimensional data, e.g. images, which are used to predict labels. An important issue in CBMs are spurious correlation between concepts, which effectively lead to learning "wrong" concepts. Current mitigating strategies have strong assumptions, e.g., they assume that the concepts are statistically independent of each other, or require substantial interaction in terms of both interventions and labels provided by annotators. In this paper, we describe a framework that provides theoretical guarantees on the correctness of the learned concepts and on the number of required labels, without requiring any interventions. Our framework leverages causal representation learning (CRL) methods to learn latent causal variables from high-dimensional observations in a unsupervised way, and then learns to align these variables with interpretable concepts with few concept labels. We propose a linear and a non-parametric estimator for this mapping, providing a finite-sample high probability result in the linear case and an asymptotic consistency result for the non-parametric estimator. We evaluate our framework in synthetic and image benchmarks, showing that the learned concepts have less impurities and are often more accurate than other CBMs, even in settings with strong correlations between concepts.
comment: 58 pages, 23 figures, 12 Tables, Published
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
Information Retrieval 25
☆ Generative Reasoning Recommendation via LLMs
Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.
RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Rotate Both Ways: Time-and-Order RoPE for Generative Recommendation
Generative recommenders, typically transformer-based autoregressive models, predict the next item or action from a user's interaction history. Their effectiveness depends on how the model represents where an interaction event occurs in the sequence (discrete index) and when it occurred in wall-clock time. Prevailing approaches inject time via learned embeddings or relative attention biases. In this paper, we argue that RoPE-based approaches, if designed properly, can be a stronger alternative for jointly modeling temporal and sequential information in user behavior sequences. While vanilla RoPE in LLMs considers only token order, generative recommendation requires incorporating both event time and token index. To address this, we propose Time-and-Order RoPE (TO-RoPE), a family of rotary position embedding designs that treat index and time as angle sources shaping the query-key geometry directly. We present three instantiations: early fusion, split-by-dim, and split-by-head. Extensive experiments on both publicly available datasets and a proprietary industrial dataset show that TO-RoPE variants consistently improve accuracy over existing methods for encoding time and index. These results position rotary embeddings as a simple, principled, and deployment-friendly foundation for generative recommendation.
☆ From Generation to Attribution: Music AI Agent Architectures for the Post-Streaming Era NeurIPS 2025
Generative AI is reshaping music creation, but its rapid growth exposes structural gaps in attribution, rights management, and economic models. Unlike past media shifts, from live performance to recordings, downloads, and streaming, AI transforms the entire lifecycle of music, collapsing boundaries between creation, distribution, and monetization. However, existing streaming systems, with opaque and concentrated royalty flows, are ill-equipped to handle the scale and complexity of AI-driven production. We propose a content-based Music AI Agent architecture that embeds attribution directly into the creative workflow through block-level retrieval and agentic orchestration. Designed for iterative, session-based interaction, the system organizes music into granular components (Blocks) stored in BlockDB; each use triggers an Attribution Layer event for transparent provenance and real-time settlement. This framework reframes AI from a generative tool into infrastructure for a Fair AI Media Platform. By enabling fine-grained attribution, equitable compensation, and participatory engagement, it points toward a post-streaming paradigm where music functions not as a static catalog but as a collaborative and adaptive ecosystem.
comment: Accepted to the NeurIPS 2025 AI4Music Workshop
☆ Balancing Fine-tuning and RAG: A Hybrid Strategy for Dynamic LLM Recommendation Updates RecSys 2025
Large Language Models (LLMs) empower recommendation systems through their advanced reasoning and planning capabilities. However, the dynamic nature of user interests and content poses a significant challenge: While initial fine-tuning aligns LLMs with domain knowledge and user preferences, it fails to capture such real-time changes, necessitating robust update mechanisms. This paper investigates strategies for updating LLM-powered recommenders, focusing on the trade-offs between ongoing fine-tuning and Retrieval-Augmented Generation (RAG). Using an LLM-powered user interest exploration system as a case study, we perform a comparative analysis of these methods across dimensions like cost, agility, and knowledge incorporation. We propose a hybrid update strategy that leverages the long-term knowledge adaptation of periodic fine-tuning with the agility of low-cost RAG. We demonstrate through live A/B experiments on a billion-user platform that this hybrid approach yields statistically significant improvements in user satisfaction, offering a practical and cost-effective framework for maintaining high-quality LLM-powered recommender systems.
comment: RecSys 2025 Industry Track
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Rank-GRPO: Training LLM-based Conversational Recommender Systems with Reinforcement Learning
Large language models (LLMs) are reshaping the recommender system paradigm by enabling users to express preferences and receive recommendations through conversations. Yet, aligning LLMs to the recommendation task remains challenging: pretrained LLMs often generate out-of-catalog items, violate required output formats, and their ranking quality degrades sharply toward the end of the generated list. To this end, we propose ConvRec-R1, a two-stage framework for end-to-end training of LLM-based conversational recommender systems. In Stage 1, we construct a behavioral-cloning dataset with a Remap-Reflect-Adjust pipeline, which produces high-quality, catalog-grounded demonstrations from powerful blackbox LLMs to warm-start the RL training. In Stage 2, we propose Rank-GRPO, a principled extension of group relative policy optimization (GRPO) tailored to tasks with rank-style outputs. Rank-GRPO treats each rank in the recommendation list as the unit instead of token (too fine-grained) or sequence (too coarse), redefining rewards to remove non-causal credit assignment and introducing a rank-level importance ratio based on the geometric mean of rank-wise token probabilities to stabilize policy updates. Experiments on the public Reddit-v2 dataset show that ConvRec-R1 converges faster and achieves higher Recall and NDCG than GRPO-style baselines. Code and datasets are released at https://github.com/yaochenzhu/Rank-GRPO.
☆ From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL
The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
☆ Communication Platform for Non-verbal Autistic children in Oman using Android mobile
This paper discusses the issue regarding Non-verbal Autism Spectrum Disorder. It has been observed that this mental disorder is listed in major parts of the world including the US, UK, and India. To mitigate this type of disorder, a wide range of smartphones, computers, and artificial intelligence technologies have been used. This technology has helped the population cope with socialization and communication needs. Many applications have been developed to enhance the communication capabilities of non-verbal autistic children. This thesis project proposes the development of a platform that includes a web panel and an Android mobile application to assist non-verbal autistic children in communication, especially in Oman. Different interventions have been merged to improve the quality of life for people on the autism spectrum. The main problem identified in this case is that fragmented approaches are not suitable for autistic children. The augmented reality framework provides the capability to engage autistic children in creative play and self-reflection through interactive screen-based activities.
☆ Gaussian Mixture Flow Matching with Domain Alignment for Multi-Domain Sequential Recommendation
Users increasingly interact with content across multiple domains, resulting in sequential behaviors marked by frequent and complex transitions. While Cross-Domain Sequential Recommendation (CDSR) models two-domain interactions, Multi-Domain Sequential Recommendation (MDSR) introduces significantly more domain transitions, compounded by challenges such as domain heterogeneity and imbalance. Existing approaches often overlook the intricacies of domain transitions, tend to overfit to dense domains while underfitting sparse ones, and struggle to scale effectively as the number of domains increases. We propose \textit{GMFlowRec}, an efficient generative framework for MDSR that models domain-aware transition trajectories via Gaussian Mixture Flow Matching. GMFlowRec integrates: (1) a unified dual-masked Transformer to disentangle domain-invariant and domain-specific intents, (2) a Gaussian Mixture flow field to capture diverse behavioral patterns, and (3) a domain-aligned prior to support frequent and sparse transitions. Extensive experiments on JD and Amazon datasets demonstrate that GMFlowRec achieves state-of-the-art performance with up to 44\% improvement in NDCG@5, while maintaining high efficiency via a single unified backbone, making it scalable for real-world multi-domain sequential recommendation.
☆ A Multi-Stage Hybrid Framework for Automated Interpretation of Multi-View Engineering Drawings Using Vision Language Model
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
comment: This draft has been submitted to the 13th International Conference on Industrial Engineering and Applications (ICIEA 2026)
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ CoRECT: A Framework for Evaluating Embedding Compression Techniques at Scale
Dense retrieval systems have proven to be effective across various benchmarks, but require substantial memory to store large search indices. Recent advances in embedding compression show that index sizes can be greatly reduced with minimal loss in ranking quality. However, existing studies often overlook the role of corpus complexity -- a critical factor, as recent work shows that both corpus size and document length strongly affect dense retrieval performance. In this paper, we introduce CoRECT (Controlled Retrieval Evaluation of Compression Techniques), a framework for large-scale evaluation of embedding compression methods, supported by a newly curated dataset collection. To demonstrate its utility, we benchmark eight representative types of compression methods. Notably, we show that non-learned compression achieves substantial index size reduction, even on up to 100M passages, with statistically insignificant performance loss. However, selecting the optimal compression method remains challenging, as performance varies across models. Such variability highlights the necessity of CoRECT to enable consistent comparison and informed selection of compression methods. All code, data, and results are available on GitHub and HuggingFace.
♻ ☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
♻ ☆ On Function-Correcting Codes in the Lee Metric
Function-correcting codes are a coding framework designed to minimize redundancy while ensuring that specific functions or computations of encoded data can be reliably recovered, even in the presence of errors. The choice of metric is crucial in designing such codes, as it determines which computations must be protected and how errors are measured and corrected. Previous work by Liu and Liu [6] studied function-correcting codes over $\mathbb{Z}_{2^l},\ l\geq 2$ using the homogeneous metric, which coincides with the Lee metric over $\mathbb{Z}_4$. In this paper, we extend the study to codes over $\mathbb{Z}_m,$ for any positive integer $m\geq 2$ under the Lee metric and aim to determine their optimal redundancy. To achieve this, we introduce irregular Lee distance codes and derive upper and lower bounds on the optimal redundancy by characterizing the shortest possible length of such codes. These general bounds are then simplified and applied to specific classes of functions, including Lee-local functions, Lee weight functions, and Lee weight distribution functions. We extend the bounds established by Liu and Liu [6] for codes over $\mathbb{Z}_4$ in the Lee metric to the more general setting of $\mathbb{Z}_m$. Additionally, we explicitly derive a Plotkin-like bound for linear function-correcting codes in the Lee metric. As the Lee metric coincides with the Hamming metric over the binary field, we demonstrate that our bound naturally reduces to a Plotkin-type bound for function-correcting codes under the Hamming metric over $\mathbb{Z}_2$. Furthermore, when the underlying function is bijective, function-correcting codes reduce to classical error-correcting codes. In parallel, our bound correspondingly reduces to the classical Plotkin bound for error-correcting codes, both for the Lee metric over $\mathbb{Z}_m$ and for the Hamming metric over $\mathbb{Z}_2$.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Learning to Hash for Recommendation: A Survey
With the explosive growth of users and items, Recommender Systems are facing unprecedented challenges in terms of retrieval efficiency and storage overhead. Learning to Hash techniques have emerged as a promising solution to these issues by encoding high-dimensional data into compact hash codes. As a result, hashing-based recommendation methods (HashRec) have garnered growing attention for enabling large-scale and efficient recommendation services. This survey provides a comprehensive overview of state-of-the-art HashRec algorithms. Specifically, we begin by introducing the common two-tower architecture used in the recall stage and by detailing two predominant hash search strategies. Then, we categorize existing works into a three-tier taxonomy based on: (i) learning objectives, (ii) optimization strategies, and (iii) recommendation scenarios. Additionally, we summarize widely adopted evaluation metrics for assessing both the effectiveness and efficiency of HashRec algorithms. Finally, we discuss current limitations in the field and outline promising directions for future research. We index these HashRec methods at the repository \href{https://github.com/Luo-Fangyuan/HashRec}{https://github.com/Luo-Fangyuan/HashRec}.
♻ ☆ Scalable Dynamic Embedding Size Search for Streaming Recommendation CIKM 2024
Recommender systems typically represent users and items by learning their embeddings, which are usually set to uniform dimensions and dominate the model parameters. However, real-world recommender systems often operate in streaming recommendation scenarios, where the number of users and items continues to grow, leading to substantial storage resource consumption for these embeddings. Although a few methods attempt to mitigate this by employing embedding size search strategies to assign different embedding dimensions in streaming recommendations, they assume that the embedding size grows with the frequency of users/items, which eventually still exceeds the predefined memory budget over time. To address this issue, this paper proposes to learn Scalable Lightweight Embeddings for streaming recommendation, called SCALL, which can adaptively adjust the embedding sizes of users/items within a given memory budget over time. Specifically, we propose to sample embedding sizes from a probabilistic distribution, with the guarantee to meet any predefined memory budget. By fixing the memory budget, the proposed embedding size sampling strategy can increase and decrease the embedding sizes in accordance to the frequency of the corresponding users or items. Furthermore, we develop a reinforcement learning-based search paradigm that models each state with mean pooling to keep the length of the state vectors fixed, invariant to the changing number of users and items. As a result, the proposed method can provide embedding sizes to unseen users and items. Comprehensive empirical evaluations on two public datasets affirm the advantageous effectiveness of our proposed method.
comment: accepted to CIKM 2024 Code is available at https://github.com/qykcq/Scalable-Dynamic-Embedding-Size-Search-for-Streaming-Recommendation
♻ ☆ Budgeted Embedding Table For Recommender Systems WSDM 2024
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024. Code is available at https://github.com/qykcq/Budgeted-Embedding-Table-For-Recommender-Systems
♻ ☆ Continuous Input Embedding Size Search For Recommender Systems SIGIR'23
Latent factor models are the most popular backbones for today's recommender systems owing to their prominent performance. Latent factor models represent users and items as real-valued embedding vectors for pairwise similarity computation, and all embeddings are traditionally restricted to a uniform size that is relatively large (e.g., 256-dimensional). With the exponentially expanding user base and item catalog in contemporary e-commerce, this design is admittedly becoming memory-inefficient. To facilitate lightweight recommendation, reinforcement learning (RL) has recently opened up opportunities for identifying varying embedding sizes for different users/items. However, challenged by search efficiency and learning an optimal RL policy, existing RL-based methods are restricted to highly discrete, predefined embedding size choices. This leads to a largely overlooked potential of introducing finer granularity into embedding sizes to obtain better recommendation effectiveness under a given memory budget. In this paper, we propose continuous input embedding size search (CIESS), a novel RL-based method that operates on a continuous search space with arbitrary embedding sizes to choose from. In CIESS, we further present an innovative random walk-based exploration strategy to allow the RL policy to efficiently explore more candidate embedding sizes and converge to a better decision. CIESS is also model-agnostic and hence generalizable to a variety of latent factor RSs, whilst experiments on two real-world datasets have shown state-of-the-art performance of CIESS under different memory budgets when paired with three popular recommendation models.
comment: To appear in SIGIR'23. Code is available at https://github.com/qykcq/Continuous-Input-Embedding-Size-Search-For-Recommender-Systems
♻ ☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts CIKM 2025
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025. Code is available at https://github.com/qykcq/Efficient-Multimodal-Streaming-Recommendation-via-Expandable-Side-Mixture-of-Experts
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Efficiently Constructing Sparse Navigable Graphs
Graph-based nearest neighbor search methods have seen a surge of popularity in recent years, offering state-of-the-art performance across a wide variety of applications. Central to these methods is the task of constructing a sparse navigable search graph for a given dataset endowed with a distance function. Unfortunately, doing so is computationally expensive, so heuristics are universally used in practice. In this work, we initiate the study of fast algorithms with provable guarantees for search graph construction. For a dataset with $n$ data points, the problem of constructing an optimally sparse navigable graph can be framed as $n$ separate but highly correlated minimum set cover instances. This yields a naive $O(n^3)$ time greedy algorithm that returns a navigable graph whose sparsity is at most $O(\log n)$ higher than optimal. We improve significantly on this baseline, taking advantage of correlation between the set cover instances to leverage techniques from streaming and sublinear-time set cover algorithms. By also introducing problem-specific pre-processing techniques, we obtain an $\tilde{O}(n^2)$ time algorithm for constructing an $O(\log n)$-approximate sparsest navigable graph under any distance function. The runtime of our method is optimal up to logarithmic factors under the Strong Exponential Time Hypothesis via a reduction from Monochromatic Closest Pair. Moreover, we prove that, as with general set cover, obtaining better than an $O(\log n)$-approximation is NP-hard, despite the significant additional structure present in the navigable graph problem. Finally, we show that our approach can also beat cubic time for the closely related and practically important problems of constructing $\alpha$-shortcut reachable and $\tau$-monotonic graphs, which are also used for nearest neighbor search. For such graphs, we obtain $\tilde{O}(n^{2.5})$ time or better algorithms.