Computation and Language 82
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Dongzhi Jiang, Renrui Zhang, Haodong Li, Zhuofan Zong, Ziyu Guo, Jun He, Claire Guo, Junyan Ye, Rongyao Fang, Weijia Li, Rui Liu, Hongsheng Li
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ Structured Document Translation via Format Reinforcement Learning AACL 2025
Haiyue Song, Johannes Eschbach-Dymanus, Hour Kaing, Sumire Honda, Hideki Tanaka, Bianka Buschbeck, Masao Utiyama
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Monishwaran Maheswaran, Rishabh Tiwari, Yuezhou Hu, Kerem Dilmen, Coleman Hooper, Haocheng Xi, Nicholas Lee, Mehrdad Farajtabar, Michael W. Mahoney, Kurt Keutzer, Amir Gholami
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Factuality and Transparency Are All RAG Needs! Self-Explaining Contrastive Evidence Re-ranking
This extended abstract introduces Self-Explaining Contrastive Evidence Re-Ranking (CER), a novel method that restructures retrieval around factual evidence by fine-tuning embeddings with contrastive learning and generating token-level attribution rationales for each retrieved passage. Hard negatives are automatically selected using a subjectivity-based criterion, forcing the model to pull factual rationales closer while pushing subjective or misleading explanations apart. As a result, the method creates an embedding space explicitly aligned with evidential reasoning. We evaluated our method on clinical trial reports, and initial experimental results show that CER improves retrieval accuracy, mitigates the potential for hallucinations in RAG systems, and provides transparent, evidence-based retrieval that enhances reliability, especially in safety-critical domains.
comment: This work was presented as a poster at the Applied Social Media Lab during the 2025 Synthesizer & Open Showcase at the Berkman Klein Center for Internet & Society at Harvard University
☆ Nex-N1: Agentic Models Trained via a Unified Ecosystem for Large-Scale Environment Construction
Nex-AGI Team, :, Yuxuan Cai, Lu Chen, Qiaoling Chen, Yuyang Ding, Liwen Fan, Wenjie Fu, Yufei Gao, Honglin Guo, Pinxue Guo, Zhenhua Han, Zhengfu He, Hanglei Hu, Kai Hu, Shengjia Hua, Tianyu Huai, Baodai Huang, Li Ji, Zhen Jiang, Zhikai Lei, Bufan Li, Jiahang Lin, Lizhi Lin, Jinxiu Liu, Shichun Liu, Ziming Liu, Yuchen Ni, Pengfang Qian, Yujiong Shen, Qingyun Shi, Wentao Shu, Peng Sun, Yiran Suo, Tian Tang, Boyu Tian, Guoteng Wang, Junzhe Wang, Peixin Wang, Zhiheng Xi, Hang Yan, Jie Yang, Zhixiong Yang, Tianchu Yao, Guangze Ye, Qianxi Yu, Shuo Zhang, Xinyue Zhang, Yiqi Zhang, Jiarong Zhao, Miao Zheng, Rui Zheng, Enyu Zhou, Jiazheng Zhou, Maosen Zhou, Yuhao Zhou, Tao Gui, Yining Zheng, Xinchi Chen, Jie Zhou, Siyuan Feng, Qin Chen, Liang He, Qi Zhang, Xuanjing Huang, Xipeng Qiu
The evolution of Large Language Models (LLMs) from passive responders to autonomous agents necessitates a fundamental shift in learning paradigms -- from static imitation to incentive-driven decision making. However, this transition is significantly impeded by the lack of scalable infrastructure capable of constructing high-quality interaction signals for effective policy learning. To address this, we introduce a comprehensive method designed to systematically scale the diversity and complexity of interactive environments. Our method realizes this scaling by addressing three orthogonal dimensions: (1) Complexity: NexAU, a flexible agent framework that supports building complex agent hierarchies via simple configurations; (2) Diversity: NexA4A automatically generates diverse agent hierarchies from natural language to cover infinite domains; and (3) Fidelity: NexGAP bridges the simulation-reality gap by integrating dynamic real-world environment for grounded trajectories synthesis. We train Nex-N1 upon the diverse and complex interactive environments established by our infrastructure. Empirical results on benchmarks such as SWE-bench and tau2 demonstrate that Nex-N1 consistently outperforms SOTA open-source models and achieves competitive performance against frontier proprietary models on complex agentic tasks. We open-source the Nex ecosystem and model weights to facilitate further research.
☆ LLMs Know More Than Words: A Genre Study with Syntax, Metaphor & Phonetics
Large language models (LLMs) demonstrate remarkable potential across diverse language related tasks, yet whether they capture deeper linguistic properties, such as syntactic structure, phonetic cues, and metrical patterns from raw text remains unclear. To analysis whether LLMs can learn these features effectively and apply them to important nature language related tasks, we introduce a novel multilingual genre classification dataset derived from Project Gutenberg, a large-scale digital library offering free access to thousands of public domain literary works, comprising thousands of sentences per binary task (poetry vs. novel;drama vs. poetry;drama vs. novel) in six languages (English, French, German, Italian, Spanish, and Portuguese). We augment each with three explicit linguistic feature sets (syntactic tree structures, metaphor counts, and phonetic metrics) to evaluate their impact on classification performance. Experiments demonstrate that although LLM classifiers can learn latent linguistic structures either from raw text or from explicitly provided features, different features contribute unevenly across tasks, which underscores the importance of incorporating more complex linguistic signals during model training.
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Algorithmic Thinking Theory
MohammadHossein Bateni, Vincent Cohen-Addad, Yuzhou Gu, Silvio Lattanzi, Simon Meierhans, Christopher Mohri
Large language models (LLMs) have proven to be highly effective for solving complex reasoning tasks. Surprisingly, their capabilities can often be improved by iterating on previously generated solutions. In this context, a reasoning plan for generating and combining a set of solutions can be thought of as an algorithm for reasoning using a probabilistic oracle.
We introduce a theoretical framework for analyzing such reasoning algorithms. This framework formalizes the principles underlying popular techniques for iterative improvement and answer aggregation, providing a foundation for designing a new generation of more powerful reasoning methods. Unlike approaches for understanding models that rely on architectural specifics, our model is grounded in experimental evidence. As a result, it offers a general perspective that may extend to a wide range of current and future reasoning oracles.
☆ The AI Consumer Index (ACE)
Julien Benchek, Rohit Shetty, Benjamin Hunsberger, Ajay Arun, Zach Richards, Brendan Foody, Osvald Nitski, Bertie Vidgen
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform high-value consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) (55.2%) and GPT 5.1 (Thinking = High) (55.1%). Models differ across domains, and in Shopping the top model scores under 50%. For some requests (such as giving the correct price or providing working links), models are highly prone to hallucination. Overall, ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ SEAL: Self-Evolving Agentic Learning for Conversational Question Answering over Knowledge Graphs
Knowledge-based conversational question answering (KBCQA) confronts persistent challenges in resolving coreference, modeling contextual dependencies, and executing complex logical reasoning. Existing approaches, whether end-to-end semantic parsing or stepwise agent-based reasoning, often suffer from structural inaccuracies and prohibitive computational costs, particularly when processing intricate queries over large knowledge graphs. To address these limitations, we introduce SEAL, a novel two-stage semantic parsing framework grounded in self-evolving agentic learning. In the first stage, a large language model (LLM) extracts a minimal S-expression core that captures the essential semantics of the input query. This core is then refined by an agentic calibration module, which corrects syntactic inconsistencies and aligns entities and relations precisely with the underlying knowledge graph. The second stage employs template-based completion, guided by question-type prediction and placeholder instantiation, to construct a fully executable S-expression. This decomposition not only simplifies logical form generation but also significantly enhances structural fidelity and linking efficiency. Crucially, SEAL incorporates a self-evolving mechanism that integrates local and global memory with a reflection module, enabling continuous adaptation from dialog history and execution feedback without explicit retraining. Extensive experiments on the SPICE benchmark demonstrate that SEAL achieves state-of-the-art performance, especially in multi-hop reasoning, comparison, and aggregation tasks. The results validate notable gains in both structural accuracy and computational efficiency, underscoring the framework's capacity for robust and scalable conversational reasoning.
☆ Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
☆ DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution
L. D. M. S. Sai Teja, N. Siva Gopala Krishna, Ufaq Khan, Muhammad Haris Khan, Partha Pakray, Atul Mishra
In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.
comment: 18 pages, 10 Figures
☆ Are LLMs Truly Multilingual? Exploring Zero-Shot Multilingual Capability of LLMs for Information Retrieval: An Italian Healthcare Use Case
Large Language Models (LLMs) have become a key topic in AI and NLP, transforming sectors like healthcare, finance, education, and marketing by improving customer service, automating tasks, providing insights, improving diagnostics, and personalizing learning experiences. Information extraction from clinical records is a crucial task in digital healthcare. Although traditional NLP techniques have been used for this in the past, they often fall short due to the complexity, variability of clinical language, and high inner semantics in the free clinical text. Recently, Large Language Models (LLMs) have become a powerful tool for better understanding and generating human-like text, making them highly effective in this area. In this paper, we explore the ability of open-source multilingual LLMs to understand EHRs (Electronic Health Records) in Italian and help extract information from them in real-time. Our detailed experimental campaign on comorbidity extraction from EHR reveals that some LLMs struggle in zero-shot, on-premises settings, and others show significant variation in performance, struggling to generalize across various diseases when compared to native pattern matching and manual annotations.
☆ DaLA: Danish Linguistic Acceptability Evaluation Guided by Real World Errors
We present an enhanced benchmark for evaluating linguistic acceptability in Danish. We first analyze the most common errors found in written Danish. Based on this analysis, we introduce a set of fourteen corruption functions that generate incorrect sentences by systematically introducing errors into existing correct Danish sentences. To ensure the accuracy of these corruptions, we assess their validity using both manual and automatic methods. The results are then used as a benchmark for evaluating Large Language Models on a linguistic acceptability judgement task. Our findings demonstrate that this extension is both broader and more comprehensive than the current state of the art. By incorporating a greater variety of corruption types, our benchmark provides a more rigorous assessment of linguistic acceptability, increasing task difficulty, as evidenced by the lower performance of LLMs on our benchmark compared to existing ones. Our results also suggest that our benchmark has a higher discriminatory power which allows to better distinguish well-performing models from low-performing ones.
☆ AdiBhashaa: A Community-Curated Benchmark for Machine Translation into Indian Tribal Languages
Large language models and multilingual machine translation (MT) systems increasingly drive access to information, yet many languages of the tribal communities remain effectively invisible in these technologies. This invisibility exacerbates existing structural inequities in education, governance, and digital participation. We present AdiBhashaa, a community-driven initiative that constructs the first open parallel corpora and baseline MT systems for four major Indian tribal languages-Bhili, Mundari, Gondi, and Santali. This work combines participatory data creation with native speakers, human-in-the-loop validation, and systematic evaluation of both encoder-decoder MT models and large language models. In addition to reporting technical findings, we articulate how AdiBhashaa illustrates a possible model for more equitable AI research: it centers local expertise, builds capacity among early-career researchers from marginalized communities, and foregrounds human validation in the development of language technologies.
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ Challenging the Abilities of Large Language Models in Italian: a Community Initiative
Malvina Nissim, Danilo Croce, Viviana Patti, Pierpaolo Basile, Giuseppe Attanasio, Elio Musacchio, Matteo Rinaldi, Federico Borazio, Maria Francis, Jacopo Gili, Daniel Scalena, Begoña Altuna, Ekhi Azurmendi, Valerio Basile, Luisa Bentivogli, Arianna Bisazza, Marianna Bolognesi, Dominique Brunato, Tommaso Caselli, Silvia Casola, Maria Cassese, Mauro Cettolo, Claudia Collacciani, Leonardo De Cosmo, Maria Pia Di Buono, Andrea Esuli, Julen Etxaniz, Chiara Ferrando, Alessia Fidelangeli, Simona Frenda, Achille Fusco, Marco Gaido, Andrea Galassi, Federico Galli, Luca Giordano, Mattia Goffetti, Itziar Gonzalez-Dios, Lorenzo Gregori, Giulia Grundler, Sandro Iannaccone, Chunyang Jiang, Moreno La Quatra, Francesca Lagioia, Soda Marem Lo, Marco Madeddu, Bernardo Magnini, Raffaele Manna, Fabio Mercorio, Paola Merlo, Arianna Muti, Vivi Nastase, Matteo Negri, Dario Onorati, Elena Palmieri, Sara Papi, Lucia Passaro, Giulia Pensa, Andrea Piergentili, Daniele Potertì, Giovanni Puccetti, Federico Ranaldi, Leonardo Ranaldi, Andrea Amelio Ravelli, Martina Rosola, Elena Sofia Ruzzetti, Giuseppe Samo, Andrea Santilli, Piera Santin, Gabriele Sarti, Giovanni Sartor, Beatrice Savoldi, Antonio Serino, Andrea Seveso, Lucia Siciliani, Paolo Torroni, Rossella Varvara, Andrea Zaninello, Asya Zanollo, Fabio Massimo Zanzotto, Kamyar Zeinalipour, Andrea Zugarini
The rapid progress of Large Language Models (LLMs) has transformed natural language processing and broadened its impact across research and society. Yet, systematic evaluation of these models, especially for languages beyond English, remains limited. "Challenging the Abilities of LAnguage Models in ITAlian" (CALAMITA) is a large-scale collaborative benchmarking initiative for Italian, coordinated under the Italian Association for Computational Linguistics. Unlike existing efforts that focus on leaderboards, CALAMITA foregrounds methodology: it federates more than 80 contributors from academia, industry, and the public sector to design, document, and evaluate a diverse collection of tasks, covering linguistic competence, commonsense reasoning, factual consistency, fairness, summarization, translation, and code generation. Through this process, we not only assembled a benchmark of over 20 tasks and almost 100 subtasks, but also established a centralized evaluation pipeline that supports heterogeneous datasets and metrics. We report results for four open-weight LLMs, highlighting systematic strengths and weaknesses across abilities, as well as challenges in task-specific evaluation. Beyond quantitative results, CALAMITA exposes methodological lessons: the necessity of fine-grained, task-representative metrics, the importance of harmonized pipelines, and the benefits and limitations of broad community engagement. CALAMITA is conceived as a rolling benchmark, enabling continuous integration of new tasks and models. This makes it both a resource -- the most comprehensive and diverse benchmark for Italian to date -- and a framework for sustainable, community-driven evaluation. We argue that this combination offers a blueprint for other languages and communities seeking inclusive and rigorous LLM evaluation practices.
☆ EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Ruilin Li, Yibin Wang, Wenhong Zhu, Chenglin Li, Jinghao Zhang, Chenliang Li, Junchi Yan, Jiaqi Wang
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities.
☆ Model Whisper: Steering Vectors Unlock Large Language Models' Potential in Test-time
It is a critical challenge to efficiently unlock the powerful reasoning potential of Large Language Models (LLMs) for specific tasks or new distributions. Existing test-time adaptation methods often require tuning model parameters, which is not only computationally expensive but also risks degrading the model's pre-existing abilities.To address this, we introduce a lightweight component, Test-Time Steering Vectors (TTSV), which is prepended to the input while keeping the LLM's parameters entirely frozen. By optimizing the TTSV on test data to minimize the model's output entropy, we steer the model towards an internal state of higher confidence, activating its inherent abilities most relevant to the current task. TTSV is both lightweight and highly efficient to optimize, making it a true plug-and-play enhancement. Extensive experiments validate our approach's effectiveness on both base models and reasoning-enhanced models. For instance, on the MATH500 task, TTSV achieves a 45.88% relative performance gain on the Qwen2.5-Math-7B model and a 16.22% relative gain on the Qwen3-4B model. Furthermore, our approach exhibits robust generalization, with its steering vectors proving highly transferable across diverse tasks.
comment: accepted to aaai2026
☆ SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.
☆ OsmT: Bridging OpenStreetMap Queries and Natural Language with Open-source Tag-aware Language Models ICDE
Zhuoyue Wan, Wentao Hu, Chen Jason Zhang, Yuanfeng Song, Shuaimin Li, Ruiqiang Xiao, Xiao-Yong Wei, Raymond Chi-Wing Wong
Bridging natural language and structured query languages is a long-standing challenge in the database community. While recent advances in language models have shown promise in this direction, existing solutions often rely on large-scale closed-source models that suffer from high inference costs, limited transparency, and lack of adaptability for lightweight deployment. In this paper, we present OsmT, an open-source tag-aware language model specifically designed to bridge natural language and Overpass Query Language (OverpassQL), a structured query language for accessing large-scale OpenStreetMap (OSM) data. To enhance the accuracy and structural validity of generated queries, we introduce a Tag Retrieval Augmentation (TRA) mechanism that incorporates contextually relevant tag knowledge into the generation process. This mechanism is designed to capture the hierarchical and relational dependencies present in the OSM database, addressing the topological complexity inherent in geospatial query formulation. In addition, we define a reverse task, OverpassQL-to-Text, which translates structured queries into natural language explanations to support query interpretation and improve user accessibility. We evaluate OsmT on a public benchmark against strong baselines and observe consistent improvements in both query generation and interpretation. Despite using significantly fewer parameters, our model achieves competitive accuracy, demonstrating the effectiveness of open-source pre-trained language models in bridging natural language and structured query languages within schema-rich geospatial environments.
comment: 42nd IEEE International Conference on Data Engineering (ICDE)
☆ Towards Ethical Multi-Agent Systems of Large Language Models: A Mechanistic Interpretability Perspective AAAI'26
Large language models (LLMs) have been widely deployed in various applications, often functioning as autonomous agents that interact with each other in multi-agent systems. While these systems have shown promise in enhancing capabilities and enabling complex tasks, they also pose significant ethical challenges. This position paper outlines a research agenda aimed at ensuring the ethical behavior of multi-agent systems of LLMs (MALMs) from the perspective of mechanistic interpretability. We identify three key research challenges: (i) developing comprehensive evaluation frameworks to assess ethical behavior at individual, interactional, and systemic levels; (ii) elucidating the internal mechanisms that give rise to emergent behaviors through mechanistic interpretability; and (iii) implementing targeted parameter-efficient alignment techniques to steer MALMs towards ethical behaviors without compromising their performance.
comment: Accepted to LaMAS 2026@AAAI'26 (https://sites.google.com/view/lamas2026)
☆ Geschlechtsübergreifende Maskulina im Sprachgebrauch Eine korpusbasierte Untersuchung zu lexemspezifischen Unterschieden
This study examines the distribution and linguistic characteristics of generic masculines (GM) in contemporary German press texts. The use of masculine personal nouns to refer to mixed-gender groups or unspecified individuals has been widely debated in academia and the public, with con-flicting perspectives on its gender-neutrality. While psycholinguistic studies suggest that GM is more readily associated with male referents, corpus-based analyses of its actual use remain scarce. We investigate GM in a large corpus of press texts, focusing on lexeme-specific differences across dif-ferent types of personal nouns. We conducted manual annotations of the whole inflectional para-digm of 21 personal nouns, resulting in 6,195 annotated tokens. Our findings reveal considerable differences between lexical items, especially between passive role nouns and prestige-related per-sonal nouns. On a grammatical level, we find that GM occurs predominantly in the plural and in indefinite noun phrases. Furthermore, our data shows that GM is not primarily used to denote entire classes of people, as has been previously claimed. By providing an empirical insight into the use of GM in authentic written language, we contribute to a more nuanced understanding of its forms and manifestations. These findings provide a solid basis for aligning linguistic stimuli in psy-cholinguistic studies more closely with real-world language use.
comment: 32 pages, 8 figures
☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs ACL
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
comment: Under review at ACL Rolling Review
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Limit cycles for speech
Rhythmic fluctuations in acoustic energy and accompanying neuronal excitations in cortical oscillations are characteristic of human speech, yet whether a corresponding rhythmicity inheres in the articulatory movements that generate speech remains unclear. The received understanding of speech movements as discrete, goal-oriented actions struggles to make contact with the rhythmicity findings. In this work, we demonstrate that an unintuitive -- but no less principled than the conventional -- representation for discrete movements reveals a pervasive limit cycle organization and unlocks the recovery of previously inaccessible rhythmic structure underlying the motor activity of speech. These results help resolve a time-honored tension between the ubiquity of biological rhythmicity and discreteness in speech, the quintessential human higher function, by revealing a rhythmic organization at the most fundamental level of individual articulatory actions.
☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 22 pages, 4 figures
☆ LexGenius: An Expert-Level Benchmark for Large Language Models in Legal General Intelligence
Wenjin Liu, Haoran Luo, Xin Feng, Xiang Ji, Lijuan Zhou, Rui Mao, Jiapu Wang, Shirui Pan, Erik Cambria
Legal general intelligence (GI) refers to artificial intelligence (AI) that encompasses legal understanding, reasoning, and decision-making, simulating the expertise of legal experts across domains. However, existing benchmarks are result-oriented and fail to systematically evaluate the legal intelligence of large language models (LLMs), hindering the development of legal GI. To address this, we propose LexGenius, an expert-level Chinese legal benchmark for evaluating legal GI in LLMs. It follows a Dimension-Task-Ability framework, covering seven dimensions, eleven tasks, and twenty abilities. We use the recent legal cases and exam questions to create multiple-choice questions with a combination of manual and LLM reviews to reduce data leakage risks, ensuring accuracy and reliability through multiple rounds of checks. We evaluate 12 state-of-the-art LLMs using LexGenius and conduct an in-depth analysis. We find significant disparities across legal intelligence abilities for LLMs, with even the best LLMs lagging behind human legal professionals. We believe LexGenius can assess the legal intelligence abilities of LLMs and enhance legal GI development. Our project is available at https://github.com/QwenQKing/LexGenius.
☆ ADAPT: Learning Task Mixtures for Budget-Constrained Instruction Tuning
We propose ADAPT, a meta-learning algorithm that \emph{learns} task sampling proportions under an explicit token budget for multi-task instruction tuning. Instead of fixing task weights by hand, \adapt{} maintains a continuous distribution over tasks and updates it via meta-gradients of a smooth worst-case validation objective, inducing an adaptive curriculum that allocates more tokens to useful tasks while avoiding collapse. We instantiate ADAPT on three $\sim$1B-parameter open-weight LLMs (Gemma-3-1B, LLaMA-3.2-1B, Qwen-0.6B), training on 20 Natural Instructions task types under budgets of $1\%$, $5\%$, and $10\%$ of the available supervised tokens, and compare against strong supervised fine-tuning baselines with uniform and size-proportional mixing. We conduct evaluations on 11 out-of-domain benchmarks spanning reasoning, reading comprehension, code generation, and instruction following, we find that ADAPT matches or slightly improves average downstream performance relative to the best static mixture, while using fewer effective training tokens and reallocating budget toward harder, benchmark-aligned tasks.
comment: Under Review
☆ AdmTree: Compressing Lengthy Context with Adaptive Semantic Trees NeurIPS 2025
Yangning Li, Shaoshen Chen, Yinghui Li, Yankai Chen, Hai-Tao Zheng, Hui Wang, Wenhao Jiang, Philip S. Yu
The quadratic complexity of self-attention constrains Large Language Models (LLMs) in processing long contexts, a capability essential for many advanced applications. Context compression aims to alleviate this computational bottleneck while retaining critical semantic information. However, existing approaches often fall short: explicit methods may compromise local detail, whereas implicit methods can suffer from positional biases, information degradation, or an inability to capture long-range semantic dependencies. We propose AdmTree, a novel framework for adaptive, hierarchical context compression with a central focus on preserving high semantic fidelity while maintaining efficiency. AdmTree dynamically segments input based on information density, utilizing gist tokens to summarize variable-length segments as the leaves of a semantic binary tree. This structure, together with a lightweight aggregation mechanism and a frozen backbone LLM (thereby minimizing new trainable parameters), enables efficient hierarchical abstraction of the context. By preserving fine-grained details alongside global semantic coherence, mitigating positional bias, and dynamically adapting to content, AdmTree robustly retains the semantic information of long contexts.
comment: NeurIPS 2025
☆ EvoEdit: Lifelong Free-Text Knowledge Editing through Latent Perturbation Augmentation and Knowledge-driven Parameter Fusion
Adjusting the outdated knowledge of large language models (LLMs) after deployment remains a major challenge. This difficulty has spurred the development of knowledge editing, which seeks to accurately and efficiently modify a model's internal (parametric) knowledge without retraining it from scratch. However, existing methods suffer from two limitations. First, they depend on structured triplets that are misaligned with the free-text nature of LLM pretraining and fail to capture the nuanced relationships among facts. Second, they typically support one-time knowledge updates, with relatively limited research on the problem of sequential or lifelong editing. To address these gaps, we propose a new task, Lifelong Free-text Knowledge Editing (LF-Edit), which enables models to incorporate updates expressed in natural language and supports continual editing over time. Despite its promise, LF-Edit faces the dual challenge of integrating new knowledge while mitigating the forgetting of prior information. To foster research on this new task, we construct a large-scale benchmark, Multi-Rank Lifelong Free-text Editing Benchmark (MRLF-Bench), containing 16,835 free-text edit requests. We further design a cognitively inspired multi-rank evaluation framework encompassing four levels: memorization, understanding, constrained comprehension, and reasoning. To tackle the challenges inherent in LF-Edit, we introduce a novel approach named EvoEdit that enhances knowledge injection through Latent Perturbation Augmentation and preserves prior information via Knowledge-driven Parameter Fusion. Experimental results demonstrate that EvoEdit substantially outperforms existing knowledge editing methods on the proposed LF-Edit task.
☆ UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction
Tianmai M. Zhang, Zhaoyi Sun, Sihang Zeng, Chenxi Li, Neil F. Abernethy, Barbara D. Lam, Fei Xia, Meliha Yetisgen
The ChemoTimelines shared task benchmarks methods for constructing timelines of systemic anticancer treatment from electronic health records of cancer patients. This paper describes our methods, results, and findings for subtask 2 -- generating patient chemotherapy timelines from raw clinical notes. We evaluated strategies involving chain-of-thought thinking, supervised fine-tuning, direct preference optimization, and dictionary-based lookup to improve timeline extraction. All of our approaches followed a two-step workflow, wherein an LLM first extracted chemotherapy events from individual clinical notes, and then an algorithm normalized and aggregated events into patient-level timelines. Each specific method differed in how the associated LLM was utilized and trained. Multiple approaches yielded competitive performances on the test set leaderboard, with fine-tuned Qwen3-14B achieving the best official score of 0.678. Our results and analyses could provide useful insights for future attempts on this task as well as the design of similar tasks.
comment: To be published in Proceedings of the 7th Clinical Natural Language Processing Workshop
☆ MSME: A Multi-Stage Multi-Expert Framework for Zero-Shot Stance Detection
LLM-based approaches have recently achieved impressive results in zero-shot stance detection. However, they still struggle in complex real-world scenarios, where stance understanding requires dynamic background knowledge, target definitions involve compound entities or events that must be explicitly linked to stance labels, and rhetorical devices such as irony often obscure the author's actual intent. To address these challenges, we propose MSME, a Multi-Stage, Multi-Expert framework for zero-shot stance detection. MSME consists of three stages: (1) Knowledge Preparation, where relevant background knowledge is retrieved and stance labels are clarified; (2) Expert Reasoning, involving three specialized modules-Knowledge Expert distills salient facts and reasons from a knowledge perspective, Label Expert refines stance labels and reasons accordingly, and Pragmatic Expert detects rhetorical cues such as irony to infer intent from a pragmatic angle; (3) Decision Aggregation, where a Meta-Judge integrates all expert analyses to produce the final stance prediction. Experiments on three public datasets show that MSME achieves state-of-the-art performance across the board.
☆ RapidUn: Influence-Driven Parameter Reweighting for Efficient Large Language Model Unlearning
Removing specific data influence from large language models (LLMs) remains challenging, as retraining is costly and existing approximate unlearning methods are often unstable. The challenge is exacerbated when the forget set is small or imbalanced. We introduce RapidUn, an influence-driven and parameter-efficient unlearning framework. It first estimates per-sample influence through a fast estimation module, then maps these scores into adaptive update weights that guide selective parameter updates -- forgetting harmful behavior while retaining general knowledge. On Mistral-7B and Llama-3-8B across Dolly-15k and Alpaca-57k, RapidUn achieves up to 100 times higher efficiency than full retraining and consistently outperforms Fisher, GA, and LoReUn on both in-distribution and out-of-distribution forgetting. These results establish influence-guided parameter reweighting as a scalable and interpretable paradigm for LLM unlearning.
comment: Code available at: https://github.com/eyerf/RapidUn
☆ Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering
Sarcasm is common in online discussions, yet difficult for machines to identify because the intended meaning often contradicts the literal wording. In this work, I study sarcasm detection using only classical machine learning methods and explicit feature engineering, without relying on neural networks or context from parent comments. Using a 100,000-comment subsample of the Self-Annotated Reddit Corpus (SARC 2.0), I combine word-level and character-level TF-IDF features with simple stylistic indicators. Four models are evaluated: logistic regression, a linear SVM, multinomial Naive Bayes, and a random forest. Naive Bayes and logistic regression perform the strongest, achieving F1-scores around 0.57 for sarcastic comments. Although the lack of conversational context limits performance, the results offer a clear and reproducible baseline for sarcasm detection using lightweight and interpretable methods.
comment: 11 pages, 2 figures, includes full Python code. Classical machine learning baseline for sarcasm detection on the SARC 2.0 dataset
☆ MASE: Interpretable NLP Models via Model-Agnostic Saliency Estimation
Deep neural networks (DNNs) have made significant strides in Natural Language Processing (NLP), yet their interpretability remains elusive, particularly when evaluating their intricate decision-making processes. Traditional methods often rely on post-hoc interpretations, such as saliency maps or feature visualization, which might not be directly applicable to the discrete nature of word data in NLP. Addressing this, we introduce the Model-agnostic Saliency Estimation (MASE) framework. MASE offers local explanations for text-based predictive models without necessitating in-depth knowledge of a model's internal architecture. By leveraging Normalized Linear Gaussian Perturbations (NLGP) on the embedding layer instead of raw word inputs, MASE efficiently estimates input saliency. Our results indicate MASE's superiority over other model-agnostic interpretation methods, especially in terms of Delta Accuracy, positioning it as a promising tool for elucidating the operations of text-based models in NLP.
☆ LangSAT: A Novel Framework Combining NLP and Reinforcement Learning for SAT Solving
Our work presents a novel reinforcement learning (RL) based framework to optimize heuristic selection within the conflict-driven clause learning (CDCL) process, improving the efficiency of Boolean satisfia- bility (SAT) solving. The proposed system, LangSAT, bridges the gap between natural language inputs and propositional logic by converting English descriptions into Conjunctive Normal Form (CNF) expressions and solving them using an RL-enhanced CDCL SAT solver. Unlike existing SAT-solving platforms that require CNF as input, LangSAT enables users to input standard English descriptions, making SAT-solving more accessible. The framework comprises two key components: Lang2Logic, which translates English sentences into CNF expressions, and SmartSAT, an RL-based SAT solver. SmartSAT encodes clause-variable relationships as structured graph representations and extracts global features specific to the SAT problem. This implementation provides the RL agent with deeper contextual information, enabling SAT problems to be solved more efficiently. Lang2Logic was evaluated on diverse natural language inputs, processing descriptions up to 450 words. The generated CNFs were solved by SmartSAT, which demonstrated comparable performance to traditional CDCL heuristics with respect to solving time. The combined LangSAT framework offers a more accessible and scalable solution for SAT-solving tasks across reasoning, formal verification, and debugging.
☆ Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment WACV
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. Project page: https://kpc0810.github.io/santa/
☆ ClusterFusion: Hybrid Clustering with Embedding Guidance and LLM Adaptation
Text clustering is a fundamental task in natural language processing, yet traditional clustering algorithms with pre-trained embeddings often struggle in domain-specific contexts without costly fine-tuning. Large language models (LLMs) provide strong contextual reasoning, yet prior work mainly uses them as auxiliary modules to refine embeddings or adjust cluster boundaries. We propose ClusterFusion, a hybrid framework that instead treats the LLM as the clustering core, guided by lightweight embedding methods. The framework proceeds in three stages: embedding-guided subset partition, LLM-driven topic summarization, and LLM-based topic assignment. This design enables direct incorporation of domain knowledge and user preferences, fully leveraging the contextual adaptability of LLMs. Experiments on three public benchmarks and two new domain-specific datasets demonstrate that ClusterFusion not only achieves state-of-the-art performance on standard tasks but also delivers substantial gains in specialized domains. To support future work, we release our newly constructed dataset and results on all benchmarks.
☆ LangSAT: A Novel Framework Combining NLP and Reinforcement Learning for SAT Solving
Our work presents a novel reinforcement learning (RL) based framework to optimize heuristic selection within the conflict-driven clause learning (CDCL) process, improving the efficiency of Boolean satisfiability (SAT) solving. The proposed system, LangSAT, bridges the gap between natural language inputs and propositional logic by converting English descriptions into Conjunctive Normal Form (CNF) expressions and solving them using an RL-enhanced CDCL SAT solver. Unlike existing SAT-solving platforms that require CNF as input, LangSAT enables users to input standard English descriptions, making SAT-solving more accessible. The framework comprises two key components: Lang2Logic, which translates English sentences into CNF expressions, and SmartSAT, an RL-based SAT solver. SmartSAT encodes clause-variable relationships as structured graph representations and extracts global features specific to the SAT problem. This implementation provides the RL agent with deeper contextual information, enabling SAT problems to be solved more efficiently. Lang2Logic was evaluated on diverse natural language inputs, processing descriptions up to 450 words. The generated CNFs were solved by SmartSAT, which demonstrated comparable performance to traditional CDCL heuristics with respect to solving time. The combined LangSAT framework offers a more accessible and scalable solution for SAT-solving tasks across reasoning, formal verification, and debugging.
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ TreeRare: Syntax Tree-Guided Retrieval and Reasoning for Knowledge-Intensive Question Answering
In real practice, questions are typically complex and knowledge-intensive, requiring Large Language Models (LLMs) to recognize the multifaceted nature of the question and reason across multiple information sources. Iterative and adaptive retrieval, where LLMs decide when and what to retrieve based on their reasoning, has been shown to be a promising approach to resolve complex, knowledge-intensive questions. However, the performance of such retrieval frameworks is limited by the accumulation of reasoning errors and misaligned retrieval results. To overcome these limitations, we propose TreeRare (Syntax Tree-Guided Retrieval and Reasoning), a framework that utilizes syntax trees to guide information retrieval and reasoning for question answering. Following the principle of compositionality, TreeRare traverses the syntax tree in a bottom-up fashion, and in each node, it generates subcomponent-based queries and retrieves relevant passages to resolve localized uncertainty. A subcomponent question answering module then synthesizes these passages into concise, context-aware evidence. Finally, TreeRare aggregates the evidence across the tree to form a final answer. Experiments across five question answering datasets involving ambiguous or multi-hop reasoning demonstrate that TreeRare achieves substantial improvements over existing state-of-the-art methods.
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Di Feng, Kaixin Ma, Feng Nan, Haofeng Chen, Bohan Zhai, David Griffiths, Mingfei Gao, Zhe Gan, Eshan Verma, Yinfei Yang, Zhifeng Chen, Afshin Dehghan
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ Massively Multilingual Adaptation of Large Language Models Using Bilingual Translation Data
This paper investigates a critical design decision in the practice of massively multilingual continual pre-training -- the inclusion of parallel data. Specifically, we study the impact of bilingual translation data for massively multilingual language adaptation of the Llama3 family of models to 500 languages. To this end, we construct the MaLA bilingual translation corpus, containing data from more than 2,500 language pairs. Subsequently, we develop the EMMA-500 Llama 3 suite of four massively multilingual models -- continually pre-trained from the Llama 3 family of base models extensively on diverse data mixes up to 671B tokens -- and explore the effect of continual pre-training with or without bilingual translation data. Comprehensive evaluation across 7 tasks and 12 benchmarks demonstrates that bilingual data tends to enhance language transfer and performance, particularly for low-resource languages. We open-source the MaLA corpus, EMMA-500 Llama 3 suite artefacts, code, and model generations.
comment: EMMA-500 Gen 2; refer to Gen 1 in arXiv:2409.17892
♻ ☆ QA-LIGN: Aligning LLMs through Constitutionally Decomposed QA EMNLP 2025
Jacob Dineen, Aswin RRV, Qin Liu, Zhikun Xu, Xiao Ye, Ming Shen, Zhaonan Li, Shijie Lu, Chitta Baral, Muhao Chen, Ben Zhou
Alignment of large language models (LLMs) with principles like helpfulness, honesty, and harmlessness typically relies on scalar rewards that obscure which objectives drive the training signal. We introduce QA-LIGN, which decomposes monolithic rewards into interpretable principle-specific evaluations through structured natural language programs. Models learn through a draft, critique, and revise pipeline, where symbolic evaluation against the rubrics provides transparent feedback for both initial and revised responses during GRPO training. Applied to uncensored Llama-3.1-8B-Instruct, QA-LIGN reduces attack success rates by up to 68.7% while maintaining a 0.67% false refusal rate, achieving Pareto optimal safety-helpfulness performance and outperforming both DPO and GRPO with state-of-the-art reward models given equivalent training. These results demonstrate that making reward signals interpretable and modular improves alignment effectiveness, suggesting transparency enhances LLM safety.
comment: Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20619-20642, Suzhou, China
♻ ☆ PUCP-Metrix: An Open-source and Comprehensive Toolkit for Linguistic Analysis of Spanish Texts EACL
Linguistic features remain essential for interpretability and tasks that involve style, structure, and readability, but existing Spanish tools offer limited coverage. We present PUCP-Metrix, an open-source and comprehensive toolkit for linguistic analysis of Spanish texts. PUCP-Metrix includes 182 linguistic metrics spanning lexical diversity, syntactic and semantic complexity, cohesion, psycholinguistics, and readability. It enables fine-grained, interpretable text analysis. We evaluate its usefulness on Automated Readability Assessment and Machine-Generated Text Detection, showing competitive performance compared to an existing repository and strong neural baselines. PUCP-Metrix offers a comprehensive and extensible resource for Spanish, supporting diverse NLP applications.
comment: 1 figure, Submitted to EACL Demo track (under review)
♻ ☆ LORE: A Large Generative Model for Search Relevance
Chenji Lu, Zhuo Chen, Hui Zhao, Zhiyuan Zeng, Gang Zhao, Junjie Ren, Ruicong Xu, Haoran Li, Songyan Liu, Pengjie Wang, Jian Xu, Bo Zheng
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models
Shaoxiong Ji, Zihao Li, Jaakko Paavola, Peiqin Lin, Pinzhen Chen, Dayyán O'Brien, Hengyu Luo, Hinrich Schütze, Jörg Tiedemann, Barry Haddow
In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability. We release the MaLA corpus, EMMA-500 model weights, scripts, and model generations.
♻ ☆ SignBind-LLM: Multi-Stage Modality Fusion for Sign Language Translation
Despite progress in gloss-free Sign Language Translation (SLT), traditional single modality end-to-end approaches consistently fail on two critical components of natural signing: the precise recognition of high-speed fingerspelling and the integration of asynchronous non-manual cues from the face. Recent progress in SLT with Large Language Models has side stepped this challenge, forcing a single network to learn these simultaneously resulting in poor performance when tasked with translating crucial information such as names, places, and technical terms. We introduce SignBind-LLM, a modular framework designed to overcome these limitations. Our approach employs separate, specialized predictors for continuous signing, fingerspelling, and lipreading. Each expert network first decodes its specific modality into a sequence of tokens. These parallel streams are then fused by a lightweight transformer that resolves temporal misalignments before passing the combined representation to a Large Language Model (LLM) for final sentence generation. Our method establishes a new state-of-the-art on the How2Sign, ChicagoFSWildPlus, and BOBSL datasets with a BLEU-4 score of 22.1, 73.2% letter accuracy and BLEU-4 score of 6.8 respectively. These results validate our core hypothesis: isolating and solving distinct recognition tasks before fusion provides a more powerful and effective pathway to robust, high-fidelity sign language translation.
♻ ☆ HUME: Measuring the Human-Model Performance Gap in Text Embedding Tasks ICLR 2026
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, though with substantial variation: models reach high performance on some datasets while struggling on notably low-resource languages. Our human annotations also reveal multiple dataset issues. We additionally benchmark nine LLMs as annotators on reranking, classification, and STS tasks, finding that they fall short of human performance (76.1% vs. 81.2%) despite offering scalability advantages. We provide human performance baselines, insights into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of results and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
comment: Submitted to ICLR 2026
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Joey Skaf, Luis Ibanez-Lissen, Robert McCarthy, Connor Watts, Vasil Georgiv, Hannes Whittingham, Lorena Gonzalez-Manzano, David Lindner, Cameron Tice, Edward James Young, Puria Radmard
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ On-Policy Optimization with Group Equivalent Preference for Multi-Programming Language Understanding
Haoyuan Wu, Rui Ming, Jilong Gao, Hangyu Zhao, Xueyi Chen, Yikai Yang, Haisheng Zheng, Zhuolun He, Bei Yu
Large language models (LLMs) achieve remarkable performance in code generation tasks. However, a significant performance disparity persists between popular programming languages (e.g., Python, C++) and others. To address this capability gap, we leverage the code translation task to train LLMs, thereby facilitating the transfer of coding proficiency across diverse programming languages. Moreover, we introduce OORL for training, a novel reinforcement learning (RL) framework that integrates on-policy and off-policy strategies. Within OORL, on-policy RL is applied during code translation, guided by a rule-based reward signal derived from unit tests. Complementing this coarse-grained rule-based reward, we propose Group Equivalent Preference Optimization (GEPO), a novel preference optimization method. Specifically, GEPO trains the LLM using intermediate representations (IRs) groups. LLMs can be guided to discern IRs equivalent to the source code from inequivalent ones, while also utilizing signals about the mutual equivalence between IRs within the group. This process allows LLMs to capture nuanced aspects of code functionality. By employing OORL for training with code translation tasks, LLMs improve their recognition of code functionality and their understanding of the relationships between code implemented in different languages. Extensive experiments demonstrate that our OORL for LLMs training with code translation tasks achieves significant performance improvements on code benchmarks across multiple programming languages.
♻ ☆ Human Mobility Datasets Enriched With Contextual and Social Dimensions
In this resource paper, we present two publicly available datasets of semantically enriched human trajectories, together with the pipeline to build them. The trajectories are publicly available GPS traces retrieved from OpenStreetMap. Each dataset includes contextual layers such as stops, moves, points of interest (POIs), inferred transportation modes, and weather data. A novel semantic feature is the inclusion of synthetic, realistic social media posts generated by Large Language Models (LLMs), enabling multimodal and semantic mobility analysis. The datasets are available in both tabular and Resource Description Framework (RDF) formats, supporting semantic reasoning and FAIR data practices. They cover two structurally distinct, large cities: Paris and New York. Our open source reproducible pipeline allows for dataset customization, while the datasets support research tasks such as behavior modeling, mobility prediction, knowledge graph construction, and LLM-based applications. To our knowledge, our resource is the first to combine real-world movement, structured semantic enrichment, LLM-generated text, and semantic web compatibility in a reusable framework.
comment: 5 pages, 3 figures, 1 table
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
Fanding Huang, Guanbo Huang, Xiao Fan, Yi He, Xiao Liang, Xiao Chen, Qinting Jiang, Faisal Nadeem Khan, Jingyan Jiang, Zhi Wang
A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named ER Velocity and ER Acceleration, to capture exploitation dynamics. Our analysis reveals that in the semantic space, exploration and exploitation could be decoupled (Sec.~4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
♻ ☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
Matthew Lewis, Samuel Thio, Amy Roberts, Catherine Siju, Whoasif Mukit, Rebecca Kuruvilla, Zhangshu Joshua Jiang, Niko Möller-Grell, Aditya Borakati, Richard JB Dobson, Spiros Denaxas
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a corpus of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries.
The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. Clinical evaluation by seven Subject Matter Experts (SMEs) further validated these findings, with GPT-4.1 achieving 98.7% accuracy while reducing unsafe responses by 67% compared to O4-Mini (from 3.0 to 1.0 per evaluator). This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
Andreas Koukounas, Georgios Mastrapas, Florian Hönicke, Sedigheh Eslami, Guillaume Roncari, Scott Martens, Han Xiao
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding ``hallucinating'' falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. SeSE operates in a zero-resource manner and is applicable to both open- and closed-source LLMs, making it an ``off-the-shelf" solution for new models and tasks. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation, we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines.
comment: 14 pages of main text and 10 pages of appendices;Submit to IEEE TKDE
♻ ☆ Grounding LLM Reasoning with Knowledge Graphs
Large Language Models (LLMs) excel at generating natural language answers, yet their outputs often remain unverifiable and difficult to trace. Knowledge Graphs (KGs) offer a complementary strength by representing entities and their relationships in structured form, providing a foundation for more reliable reasoning. We propose a novel framework that integrates LLM reasoning with KGs by linking each step of the reasoning process to graph-structured data. This grounding turns intermediate ``thoughts'' into interpretable traces that remain consistent with external knowledge. Our approach incorporates multiple reasoning strategies, Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), and is evaluated on GRBench, a benchmark for domain-specific graph reasoning. Our experiments show state-of-the-art (SOTA) performance, with at least 26.5\% improvement over CoT baselines. Beyond accuracy, we analyze how step depth, branching structure, and model size influence reasoning quality, offering insights into the conditions that support effective reasoning. Together, these contributions highlight how grounding LLMs in structured knowledge enables both higher accuracy and greater interpretability in complex reasoning tasks.
♻ ☆ Control Illusion: The Failure of Instruction Hierarchies in Large Language Models AAAI-26
Yilin Geng, Haonan Li, Honglin Mu, Xudong Han, Timothy Baldwin, Omri Abend, Eduard Hovy, Lea Frermann
Large language models (LLMs) are increasingly deployed with hierarchical instruction schemes, where certain instructions (e.g., system-level directives) are expected to take precedence over others (e.g., user messages). Yet, we lack a systematic understanding of how effectively these hierarchical control mechanisms work. We introduce a systematic evaluation framework based on constraint prioritization to assess how well LLMs enforce instruction hierarchies. Our experiments across six state-of-the-art LLMs reveal that models struggle with consistent instruction prioritization, even for simple formatting conflicts. We find that the widely-adopted system/user prompt separation fails to establish a reliable instruction hierarchy, and models exhibit strong inherent biases toward certain constraint types regardless of their priority designation. Interestingly, we also find that societal hierarchy framings (e.g., authority, expertise, consensus) show stronger influence on model behavior than system/user roles, suggesting that pretraining-derived social structures function as latent behavioral priors with potentially greater impact than post-training guardrails.
comment: Accepted to AAAI-26 Main Technical Track Proceedings
♻ ☆ Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Ilanit Sobol, Shir Lissak, Refael Tikochinski, Tal Nakash, Anat Brunstein Klomek, Eyal Fruchter, Roi Reichart
Suicide remains a leading cause of death in Western countries. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do linguistic patterns on YouTube reflect suicidal behavior, and how do these patterns align with or differ from expert knowledge? We examined linguistic changes around suicide attempts and compared individuals who attempted suicide while actively uploading to their channel with three control groups: those with prior attempts, those experiencing major life events, and matched individuals from the broader cohort. Applying complementary bottom-up, hybrid, and expert-driven approaches, we analyzed a novel longitudinal dataset of 181 suicide-attempt channels and 134 controls. In the bottom-up analysis, LLM-based topic-modeling identified 166 topics; five were linked to suicide attempts, two also showed attempt-related temporal changes (Mental Health Struggles, $OR = 1.74$; YouTube Engagement, $OR = 1.67$; $p < .01$). In the hybrid approach, clinical experts reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant effects beyond those identified bottom-up. YouTube Engagement, a platform-specific indicator, was not flagged, underscoring the value of bottom-up discovery. A top-down psychological assessment of suicide narratives revealed differing motivations: individuals describing prior attempts aimed to help others ($β=-1.69$, $p<.01$), whereas those attempted during the uploading period emphasized personal recovery ($β=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights.
♻ ☆ ChatGPT for President! Presupposed content in politicians versus GPT-generated texts
This study examines ChatGPT-4's capability to replicate linguistic strategies used in political discourse, focusing on its potential for manipulative language generation. As large language models become increasingly popular for text generation, concerns have grown regarding their role in spreading fake news and propaganda. This research compares real political speeches with those generated by ChatGPT, emphasizing presuppositions (a rhetorical device that subtly influences audiences by packaging some content as already known at the moment of utterance, thus swaying opinions without explicit argumentation). Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.
comment: 36 pages, 6 figures
♻ ☆ Which Type of Students can LLMs Act? Investigating Authentic Simulation with Graph-based Human-AI Collaborative System
Haoxuan Li, Jifan Yu, Xin Cong, Yang Dang, Daniel Zhang-li, Lu Mi, Yisi Zhan, Huiqin Liu, Zhiyuan Liu
While rapid advances in large language models (LLMs) are reshaping data-driven intelligent education, accurately simulating students remains an important but challenging bottleneck for scalable educational data collection, evaluation, and intervention design. However, current works are limited by scarce real interaction data, costly expert evaluation for realism, and a lack of large-scale, systematic analyses of LLMs ability in simulating students. We address this gap by presenting a three-stage LLM-human collaborative pipeline to automatically generate and filter high-quality student agents. We leverage a two-round automated scoring validated by human experts and deploy a score propagation module to obtain more consistent scores across the student similarity graph. Experiments show that combining automated scoring, expert calibration, and graph-based propagation yields simulated student that more closely track authentication by human judgments. We then analyze which profiles and behaviors are simulated more faithfully, supporting subsequent studies on personalized learning and educational assessment.
comment: This work has been submitted to AI Open for possible publication
♻ ☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai AACL 2025
Surapon Nonesung, Teetouch Jaknamon, Sirinya Chaiophat, Natapong Nitarach, Chanakan Wittayasakpan, Warit Sirichotedumrong, Adisai Na-Thalang, Kunat Pipatanakul
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at IJCNLP-AACL 2025 (Main). This version includes the corrected Table 2 and an updated conclusion regarding the deletion count of the Gemma model
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Chenhe Dong, Shaowei Yao, Pengkun Jiao, Jianhui Yang, Yiming Jin, Zerui Huang, Xiaojiang Zhou, Dan Ou, Haihong Tang, Bo Zheng
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ Scaling Towards the Information Boundary of Instruction Sets: The Infinity Instruct Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical tagging system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct Infinity Instruct Subject, a high-quality dataset containing $\sim$1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that Infinity Instruct Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Semi-Supervised Synthetic Data Generation with Fine-Grained Relevance Control for Short Video Search Relevance Modeling AAAI 2026
Synthetic data is widely adopted in embedding models to ensure diversity in training data distributions across dimensions such as difficulty, length, and language. However, existing prompt-based synthesis methods struggle to capture domain-specific data distributions, particularly in data-scarce domains, and often overlook fine-grained relevance diversity. In this paper, we present a Chinese short video dataset with 4-level relevance annotations, filling a critical resource void. Further, we propose a semi-supervised synthetic data pipeline where two collaboratively trained models generate domain-adaptive short video data with controllable relevance labels. Our method enhances relevance-level diversity by synthesizing samples for underrepresented intermediate relevance labels, resulting in a more balanced and semantically rich training data set. Extensive offline experiments show that the embedding model trained on our synthesized data outperforms those using data generated based on prompting or vanilla supervised fine-tuning(SFT). Moreover, we demonstrate that incorporating more diverse fine-grained relevance levels in training data enhances the model's sensitivity to subtle semantic distinctions, highlighting the value of fine-grained relevance supervision in embedding learning. In the search enhanced recommendation pipeline of Douyin's dual-column scenario, through online A/B testing, the proposed model increased click-through rate(CTR) by 1.45%, raised the proportion of Strong Relevance Ratio (SRR) by 4.9%, and improved the Image User Penetration Rate (IUPR) by 0.1054%.
comment: Submitted to AAAI 2026
♻ ☆ Evaluating Autoformalization Robustness via Semantically Similar Paraphrasing
Large Language Models (LLMs) have recently emerged as powerful tools for autoformalization. Despite their impressive performance, these models can still struggle to produce grounded and verifiable formalizations. Recent work in text-to-SQL, has revealed that LLMs can be sensitive to paraphrased natural language (NL) inputs, even when high degrees of semantic fidelity are preserved (Safarzadeh, Oroojlooyjadid, and Roth 2025). In this paper, we investigate this claim in the autoformalization domain. Specifically, we evaluate the robustness of LLMs generating formal proofs with semantically similar paraphrased NL statements by measuring semantic and compilation validity. Using the formal benchmarks MiniF2F (Zheng, Han, and Polu 2021) and Lean 4 version of ProofNet (Xin et al. 2024), and two modern LLMs, we generate paraphrased natural language statements and cross-evaluate these statements across both models. The results of this paper reveal performance variability across paraphrased inputs, demonstrating that minor shifts in NL statements can significantly impact model outputs.
♻ ☆ Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router
Chain-of-thought has been proven essential for enhancing the complex reasoning abilities of Large Language Models (LLMs), but it also leads to high computational costs. Recent advances have explored the method to route queries among multiple models and proved it as a promising approach. However, previous works directly operate at the task level, i.e., assigning user queries to suitable LLMs, which does not allow hybrid LLMs to truly collaborate on finer-grained sub-tasks. Collaboration at the level of intermediate reasoning steps (thoughts) could enable more efficient coordination, but it also poses significant challenges for router scheduling, placing immense demands on the quality of task decomposition and the precision of the router. To address this, we propose R2-Reasoner, a novel framework centered around a Reinforced Model Router designed to efficiently scale LLM reasoning. This router orchestrates collaboration across nine heterogeneous models, whose parameter scales range from less than 1B to hundreds of billions, by first breaking down a complex query into subtasks with a decomposer, and then assigning each subtask to the optimal model with a subtask allocator, balancing performance with cost. Training this router involves a two-stage alternating process for the decomposer and the allocator, integrating supervised fine-tuning with reinforcement learning to enable effective self-supervised refinement. Extensive experiments across six challenging reasoning benchmarks demonstrate that R2-Reasoner reduces API costs by 84.46% compared with state-of-the-art baselines while maintaining competitive reasoning accuracy. Our framework paves the way for the development of more scalable and efficient reasoning systems. Our code is open-source at https://anonymous.4open.science/r/R2_Reasoner.
♻ ☆ Nexus: Higher-Order Attention Mechanisms in Transformers
Hanting Chen, Chong Zhu, Kai Han, Yuchuan Tian, Yuchen Liang, Tianyu Guo, Xinghao Chen, Dacheng Tao, Yunhe Wang
Transformers have achieved significant success across various domains, relying on self-attention to capture dependencies. However, the standard first-order attention mechanism is often limited by a low-rank bottleneck, struggling to capture intricate, multi-hop relationships within a single layer. In this paper, we propose the Nexus, a novel architecture designed to enhance representational power through a recursive framework. Unlike standard approaches that use static linear projections for Queries and Keys, Nexus dynamically refines these representations via nested self-attention mechanisms. Specifically, the Query and Key vectors are themselves outputs of inner attention loops, allowing tokens to aggregate global context and model high-order correlations \textit{prior} to the final attention computation. We enforce a parameter-efficient weight-sharing strategy across recursive steps, ensuring that this enhanced expressivity incurs $\mathcal{O}(1)$ additional parameters. We provide theoretical analysis demonstrating that our method breaks the linear bottleneck of standard attention. Empirically, Nexus outperforms standard Transformers on multiple benchmarks.
♻ ☆ FusionBench: A Unified Library and Comprehensive Benchmark for Deep Model Fusion
Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single better-performing model in a cost-effective and data-efficient manner. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness. We present FusionBench, the first benchmark and a unified library designed specifically for deep model fusion. Our benchmark consists of multiple tasks, each with different settings of models and datasets. This variety allows us to compare fusion methods across different scenarios and model scales. Additionally, FusionBench serves as a unified library for easy implementation and testing of new fusion techniques. FusionBench is open source and actively maintained, with community contributions encouraged. Homepage https://github.com/tanganke/fusion_bench
comment: Project homepage: https://github.com/tanganke/fusion_bench Online documentation: https://tanganke.github.io/fusion_bench
♻ ☆ Reversing Large Language Models for Efficient Training and Fine-Tuning
Large Language Models (LLMs) are known for their expensive and time-consuming training. Thus, oftentimes, LLMs are fine-tuned to address a specific task, given the pretrained weights of a pre-trained LLM considered a foundation model. In this work, we introduce memory-efficient, reversible architectures for LLMs, inspired by symmetric and symplectic differential equations, and investigate their theoretical properties. Different from standard, baseline architectures that store all intermediate activations, the proposed models use time-reversible dynamics to retrieve hidden states during backpropagation, relieving the need to store activations. This property allows for a drastic reduction in memory consumption, allowing for the processing of larger batch sizes for the same available memory, thereby offering improved throughput. In addition, we propose an efficient method for converting existing, non-reversible LLMs into reversible architectures through fine-tuning, rendering our approach practical for exploiting existing pre-trained models. Our results show comparable or improved performance on several datasets and benchmarks, on several LLMs, building a scalable and efficient path towards reducing the memory and computational costs associated with both training from scratch and fine-tuning of LLMs.
♻ ☆ Dual-branch Prompting for Multimodal Machine Translation
Multimodal Machine Translation (MMT) typically enhances text-only translation by incorporating aligned visual features. Despite the remarkable progress, state-of-the-art MMT approaches often rely on paired image-text inputs at inference and are sensitive to irrelevant visual noise, which limits their robustness and practical applicability. To address these issues, we propose D2P-MMT, a diffusion-based dual-branch prompting framework for robust vision-guided translation. Specifically, D2P-MMT requires only the source text and a reconstructed image generated by a pre-trained diffusion model, which naturally filters out distracting visual details while preserving semantic cues. During training, the model jointly learns from both authentic and reconstructed images using a dual-branch prompting strategy, encouraging rich cross-modal interactions. To bridge the modality gap and mitigate training-inference discrepancies, we introduce a distributional alignment loss that enforces consistency between the output distributions of the two branches. Extensive experiments on the Multi30K dataset demonstrate that D2P-MMT achieves superior translation performance compared to existing state-of-the-art approaches.
comment: This manuscript is currently under review at the ACM Transactions on Multimedia Computing, Communications, and Applications