MyArxiv
Computation and Language 127
☆ Agentic Test-Time Scaling for WebAgents
Test-time scaling has become a standard way to improve performance and boost reliability of neural network models. However, its behavior on agentic, multi-step tasks remains less well-understood: small per-step errors can compound over long horizons; and we find that naive policies that uniformly increase sampling show diminishing returns. In this work, we present CATTS, a simple technique for dynamically allocating compute for multi-step agents. We first conduct an empirical study of inference-time scaling for web agents. We find that uniformly increasing per-step compute quickly saturates in long-horizon environments. We then investigate stronger aggregation strategies, including an LLM-based Arbiter that can outperform naive voting, but that can overrule high-consensus decisions. We show that uncertainty statistics derived from the agent's own vote distribution (entropy and top-1/top-2 margin) correlate with downstream success and provide a practical signal for dynamic compute allocation. Based on these findings, we introduce Confidence-Aware Test-Time Scaling (CATTS), which uses vote-derived uncertainty to allocate compute only when decisions are genuinely contentious. CATTS improves performance on WebArena-Lite and GoBrowse by up to 9.1% over React while using up to 2.3x fewer tokens than uniform scaling, providing both efficiency gains and an interpretable decision rule.
☆ On-Policy Context Distillation for Language Models
Context distillation enables language models to internalize in-context knowledge into their parameters. In our work, we propose On-Policy Context Distillation (OPCD), a framework that bridges on-policy distillation with context distillation by training a student model on its own generated trajectories while minimizing reverse Kullback-Leibler divergence against a context-conditioned teacher. We demonstrate the effectiveness of OPCD on two important applications: experiential knowledge distillation, where models extract and consolidate transferable knowledge from their historical solution traces, and system prompt distillation, where models internalize beneficial behaviors encoded in optimized prompts. Across mathematical reasoning, text-based games, and domain-specific tasks, OPCD consistently outperforms baseline methods, achieving higher task accuracy while better preserving out-of-distribution capabilities. We further show that OPCD enables effective cross-size distillation, where smaller student models can internalize experiential knowledge from larger teachers.
☆ T3D: Few-Step Diffusion Language Models via Trajectory Self-Distillation with Direct Discriminative Optimization
Diffusion large language models (DLLMs) have the potential to enable fast text generation by decoding multiple tokens in parallel. However, in practice, their inference efficiency is constrained by the need for many refinement steps, while aggressively reducing the number of steps leads to a substantial degradation in generation quality. To alleviate this, we propose a trajectory self-distillation framework that improves few-step decoding by distilling the model's own generative trajectories. We incorporate Direct Discriminative Optimization (DDO), a reverse-KL objective that promotes mode-seeking distillation and encourages the student to concentrate on high-probability teacher modes. Across benchmarks, our approach consistently outperforms strong few-step baselines and standard training under tight step budgets. Although full-step decoding remains superior, we substantially narrow the gap, establishing a strong foundation towards practical few-step DLLMs. The source code is available at https://github.com/Tyrion58/T3D.
☆ A technical curriculum on language-oriented artificial intelligence in translation and specialised communication
This paper presents a technical curriculum on language-oriented artificial intelligence (AI) in the language and translation (L&T) industry. The curriculum aims to foster domain-specific technical AI literacy among stakeholders in the fields of translation and specialised communication by exposing them to the conceptual and technical/algorithmic foundations of modern language-oriented AI in an accessible way. The core curriculum focuses on 1) vector embeddings, 2) the technical foundations of neural networks, 3) tokenization and 4) transformer neural networks. It is intended to help users develop computational thinking as well as algorithmic awareness and algorithmic agency, ultimately contributing to their digital resilience in AI-driven work environments. The didactic suitability of the curriculum was tested in an AI-focused MA course at the Institute of Translation and Multilingual Communication at TH Koeln. Results suggest the didactic effectiveness of the curriculum, but participant feedback indicates that it should be embedded into higher-level didactic scaffolding - e.g., in the form of lecturer support - in order to enable optimal learning conditions.
comment: 10 pages, 1 figure, EAMT 2026, TAITT Workshop
☆ "Sorry, I Didn't Catch That": How Speech Models Miss What Matters Most
Despite speech recognition systems achieving low word error rates on standard benchmarks, they often fail on short, high-stakes utterances in real-world deployments. Here, we study this failure mode in a high-stakes task: the transcription of U.S. street names as spoken by U.S. participants. We evaluate 15 models from OpenAI, Deepgram, Google, and Microsoft on recordings from linguistically diverse U.S. speakers and find an average transcription error rate of 44%. We quantify the downstream impact of failed transcriptions by geographic locations and show that mis-transcriptions systematically cause errors for all speakers, but that routing distance errors are twice as large for non-English primary speakers compared to English primary speakers. To mitigate this harm, we introduce a synthetic data generation approach that produces diverse pronunciations of named entities using open-source text-to-speech models. Fine-tuning with less than 1,000 synthetic samples improves street name transcription accuracy by nearly 60% (relative to base models) for non-English primary speakers. Our results highlight a critical gap between benchmark performance and real-world reliability in speech systems and demonstrate a simple, scalable path to reducing high-stakes transcription errors.
☆ Moonshine v2: Ergodic Streaming Encoder ASR for Latency-Critical Speech Applications
Latency-critical speech applications (e.g., live transcription, voice commands, and real-time translation) demand low time-to-first-token (TTFT) and high transcription accuracy, particularly on resource-constrained edge devices. Full-attention Transformer encoders remain a strong accuracy baseline for automatic speech recognition (ASR) because every frame can directly attend to every other frame, which resolves otherwise locally ambiguous acoustics using distant lexical context. However, this global dependency incurs quadratic complexity in sequence length, inducing an inherent "encode-the-whole-utterance" latency profile. For streaming use cases, this causes TTFT to grow linearly with utterance length as the encoder must process the entire prefix before any decoder token can be emitted. To better meet the needs of on-device, streaming ASR use cases we introduce Moonshine v2, an ergodic streaming-encoder ASR model that employs sliding-window self-attention to achieve bounded, low-latency inference while preserving strong local context. Our models achieve state of the art word error rates across standard benchmarks, attaining accuracy on-par with models 6x their size while running significantly faster. These results demonstrate that carefully designed local attention is competitive with the accuracy of full attention at a fraction of the size and latency cost, opening new possibilities for interactive speech interfaces on edge devices.
comment: 7 pages, 5 figures
☆ Olmix: A Framework for Data Mixing Throughout LM Development
Data mixing -- determining the ratios of data from different domains -- is a first-order concern for training language models (LMs). While existing mixing methods show promise, they fall short when applied during real-world LM development. We present Olmix, a framework that addresses two such challenges. First, the configuration space for developing a mixing method is not well understood -- design choices across existing methods lack justification or consensus and overlook practical issues like data constraints. We conduct a comprehensive empirical study of this space, identifying which design choices lead to a strong mixing method. Second, in practice, the domain set evolves throughout LM development as datasets are added, removed, partitioned, and revised -- a problem setting largely unaddressed by existing works, which assume fixed domains. We study how to efficiently recompute the mixture after the domain set is updated, leveraging information from past mixtures. We introduce mixture reuse, a mechanism that reuses existing ratios and recomputes ratios only for domains affected by the update. Over a sequence of five domain-set updates mirroring real-world LM development, mixture reuse matches the performance of fully recomputing the mix after each update with 74% less compute and improves over training without mixing by 11.6% on downstream tasks.
☆ Detecting Overflow in Compressed Token Representations for Retrieval-Augmented Generation EACL 2026
Efficient long-context processing remains a crucial challenge for contemporary large language models (LLMs), especially in resource-constrained environments. Soft compression architectures promise to extend effective context length by replacing long token sequences with smaller sets of learned compressed tokens. Yet, the limits of compressibility -- and when compression begins to erase task-relevant content -- remain underexplored. In this paper, we define \emph{token overflow} as a regime in which compressed representations no longer contain sufficient information to answer a given query, and propose a methodology to characterize and detect it. In the xRAG soft-compression setting, we find that query-agnostic saturation statistics reliably separate compressed from uncompressed token representations, providing a practical tool for identifying compressed tokens but showing limited overflow detection capability. Lightweight probing classifiers over both query and context xRAG representations detect overflow with 0.72 AUC-ROC on average on HotpotQA, SQuADv2, and TriviaQA datasets, demonstrating that incorporating query information improves detection performance. These results advance from query-independent diagnostics to query-aware detectors, enabling low-cost pre-LLM gating to mitigate compression-induced errors.
comment: Accepted to EACL 2026 Student Research Workshop. 14 pages, 6 tables, 1 figure
☆ ExStrucTiny: A Benchmark for Schema-Variable Structured Information Extraction from Document Images EACL 2026
Enterprise documents, such as forms and reports, embed critical information for downstream applications like data archiving, automated workflows, and analytics. Although generalist Vision Language Models (VLMs) perform well on established document understanding benchmarks, their ability to conduct holistic, fine-grained structured extraction across diverse document types and flexible schemas is not well studied. Existing Key Entity Extraction (KEE), Relation Extraction (RE), and Visual Question Answering (VQA) datasets are limited by narrow entity ontologies, simple queries, or homogeneous document types, often overlooking the need for adaptable and structured extraction. To address these gaps, we introduce ExStrucTiny, a new benchmark dataset for structured Information Extraction (IE) from document images, unifying aspects of KEE, RE, and VQA. Built through a novel pipeline combining manual and synthetic human-validated samples, ExStrucTiny covers more varied document types and extraction scenarios. We analyze open and closed VLMs on this benchmark, highlighting challenges such as schema adaptation, query under-specification, and answer localization. We hope our work provides a bedrock for improving generalist models for structured IE in documents.
comment: EACL 2026, main conference
☆ Visual Reasoning Benchmark: Evaluating Multimodal LLMs on Classroom-Authentic Visual Problems from Primary Education
AI models have achieved state-of-the-art results in textual reasoning; however, their ability to reason over spatial and relational structures remains a critical bottleneck -- particularly in early-grade maths, which relies heavily on visuals. This paper introduces the visual reasoning benchmark (VRB), a novel dataset designed to evaluate Multimodal Large Language Models (MLLMs) on their ability to solve authentic visual problems from classrooms. This benchmark is built on a set of 701 questions sourced from primary school examinations in Zambia and India, which cover a range of tasks such as reasoning by analogy, pattern completion, and spatial matching. We outline the methodology and development of the benchmark which intentionally uses unedited, minimal-text images to test if models can meet realistic needs of primary education. Our findings reveal a ``jagged frontier'' of capability where models demonstrate better proficiency in static skills such as counting and scaling, but reach a distinct ``spatial ceiling'' when faced with dynamic operations like folding, reflection, and rotation. These weaknesses pose a risk for classroom use on visual reasoning problems, with the potential for incorrect marking, false scaffolding, and reinforcing student misconceptions. Consequently, education-focused benchmarks like the VRB are essential for determining the functional boundaries of multimodal tools used in classrooms.
☆ Query-focused and Memory-aware Reranker for Long Context Processing
Built upon the existing analysis of retrieval heads in large language models, we propose an alternative reranking framework that trains models to estimate passage-query relevance using the attention scores of selected heads. This approach provides a listwise solution that leverages holistic information within the entire candidate shortlist during ranking. At the same time, it naturally produces continuous relevance scores, enabling training on arbitrary retrieval datasets without requiring Likert-scale supervision. Our framework is lightweight and effective, requiring only small-scale models (e.g., 4B parameters) to achieve strong performance. Extensive experiments demonstrate that our method outperforms existing state-of-the-art pointwise and listwise rerankers across multiple domains, including Wikipedia and long narrative datasets. It further establishes a new state-of-the-art on the LoCoMo benchmark that assesses the capabilities of dialogue understanding and memory usage. We further demonstrate that our framework supports flexible extensions. For example, augmenting candidate passages with contextual information further improves ranking accuracy, while training attention heads from middle layers enhances efficiency without sacrificing performance.
comment: 14 pages, 2 figures
☆ Pedagogically-Inspired Data Synthesis for Language Model Knowledge Distillation ICLR 2026
Knowledge distillation from Large Language Models (LLMs) to smaller models has emerged as a critical technique for deploying efficient AI systems. However, current methods for distillation via synthetic data lack pedagogical awareness, treating knowledge transfer as a one-off data synthesis and training task rather than a systematic learning process. In this paper, we propose a novel pedagogically-inspired framework for LLM knowledge distillation that draws from fundamental educational principles. Our approach introduces a three-stage pipeline -- Knowledge Identifier, Organizer, and Adapter (IOA) -- that systematically identifies knowledge deficiencies in student models, organizes knowledge delivery through progressive curricula, and adapts representations to match the cognitive capacity of student models. We integrate Bloom's Mastery Learning Principles and Vygotsky's Zone of Proximal Development to create a dynamic distillation process where student models approach teacher model's performance on prerequisite knowledge before advancing, and new knowledge is introduced with controlled, gradual difficulty increments. Extensive experiments using LLaMA-3.1/3.2 and Qwen2.5 as student models demonstrate that IOA achieves significant improvements over baseline distillation methods, with student models retaining 94.7% of teacher performance on DollyEval while using less than 1/10th of the parameters. Our framework particularly excels in complex reasoning tasks, showing 19.2% improvement on MATH and 22.3% on HumanEval compared with state-of-the-art baselines.
comment: Accepted by ICLR 2026
☆ dVoting: Fast Voting for dLLMs
Diffusion Large Language Models (dLLMs) represent a new paradigm beyond autoregressive modeling, offering competitive performance while naturally enabling a flexible decoding process. Specifically, dLLMs can generate tokens at arbitrary positions in parallel, endowing them with significant potential for parallel test-time scaling, which was previously constrained by severe inefficiency in autoregressive modeling. In this work, we introduce dVoting, a fast voting technique that boosts reasoning capability without training, with only an acceptable extra computational overhead. dVoting is motivated by the observation that, across multiple samples for the same prompt, token predictions remain largely consistent, whereas performance is determined by a small subset of tokens exhibiting cross-sample variability. Leveraging the arbitrary-position generation capability of dLLMs, dVoting performs iterative refinement by sampling, identifying uncertain tokens via consistency analysis, regenerating them through voting, and repeating this process until convergence. Extensive evaluations demonstrate that dVoting consistently improves performance across various benchmarks. It achieves gains of 6.22%-7.66% on GSM8K, 4.40%-7.20% on MATH500, 3.16%-14.84% on ARC-C, and 4.83%-5.74% on MMLU. Our code is available at https://github.com/fscdc/dVoting
GPT-4o Lacks Core Features of Theory of Mind
Do Large Language Models (LLMs) possess a Theory of Mind (ToM)? Research into this question has focused on evaluating LLMs against benchmarks and found success across a range of social tasks. However, these evaluations do not test for the actual representations posited by ToM: namely, a causal model of mental states and behavior. Here, we use a cognitively-grounded definition of ToM to develop and test a new evaluation framework. Specifically, our approach probes whether LLMs have a coherent, domain-general, and consistent model of how mental states cause behavior -- regardless of whether that model matches a human-like ToM. We find that even though LLMs succeed in approximating human judgments in a simple ToM paradigm, they fail at a logically equivalent task and exhibit low consistency between their action predictions and corresponding mental state inferences. As such, these findings suggest that the social proficiency exhibited by LLMs is not the result of an domain-general or consistent ToM.
comment: Submitted to CogSci 2025; see more at https://jmuchovej.com/projects/llm-tom. Note: "abstractness" is the second feature we test for, but due to arXiv's abstract requirements, the text has been altered
☆ Seq2Seq2Seq: Lossless Data Compression via Discrete Latent Transformers and Reinforcement Learning
Efficient lossless compression is essential for minimizing storage costs and transmission overhead while preserving data integrity. Traditional compression techniques, such as dictionary-based and statistical methods, often struggle to optimally exploit the structure and redundancy in complex data formats. Recent advancements in deep learning have opened new avenues for compression; however, many existing approaches depend on dense vector representations that obscure the underlying token structure. To address these limitations, we propose a novel lossless compression method that leverages Reinforcement Learning applied to a T5 language model architecture. This approach enables the compression of data into sequences of tokens rather than traditional vector representations. Unlike auto-encoders, which typically encode information into continuous latent spaces, our method preserves the token-based structure, aligning more closely with the original data format. This preservation allows for higher compression ratios while maintaining semantic integrity. By training the model using an off-policy Reinforcement Learning algorithm, we optimize sequence length to minimize redundancy and enhance compression efficiency. Our method introduces an efficient and adaptive data compression system built upon advanced Reinforcement Learning techniques, functioning independently of external grammatical or world knowledge. This approach shows significant improvements in compression ratios compared to conventional methods. By leveraging the latent information within language models, our system effectively compresses data without requiring explicit content understanding, paving the way for more robust and practical compression solutions across various applications.
☆ CitiLink-Minutes: A Multilayer Annotated Dataset of Municipal Meeting Minutes
City councils play a crucial role in local governance, directly influencing citizens' daily lives through decisions made during municipal meetings. These deliberations are formally documented in meeting minutes, which serve as official records of discussions, decisions, and voting outcomes. Despite their importance, municipal meeting records have received little attention in Information Retrieval (IR) and Natural Language Processing (NLP), largely due to the lack of annotated datasets, which ultimately limit the development of computational models. To address this gap, we introduce CitiLink-Minutes, a multilayer dataset of 120 European Portuguese municipal meeting minutes from six municipalities. Unlike prior annotated datasets of parliamentary or video records, CitiLink-Minutes provides multilayer annotations and structured linkage of official written minutes. The dataset contains over one million tokens, with all personal identifiers de-identified. Each minute was manually annotated by two trained annotators and curated by an experienced linguist across three complementary dimensions: (1) metadata, (2) subjects of discussion, and (3) voting outcomes, totaling over 38,000 individual annotations. Released under FAIR principles and accompanied by baseline results on metadata extraction, topic classification, and vote labeling, CitiLink-Minutes demonstrates its potential for downstream NLP and IR tasks, while promoting transparent access to municipal decisions.
☆ WavBench: Benchmarking Reasoning, Colloquialism, and Paralinguistics for End-to-End Spoken Dialogue Models
With the rapid integration of advanced reasoning capabilities into spoken dialogue models, the field urgently demands benchmarks that transcend simple interactions to address real-world complexity. However, current evaluations predominantly adhere to text-generation standards, overlooking the unique audio-centric characteristics of paralinguistics and colloquialisms, alongside the cognitive depth required by modern agents. To bridge this gap, we introduce WavBench, a comprehensive benchmark designed to evaluate realistic conversational abilities where prior works fall short. Uniquely, WavBench establishes a tripartite framework: 1) Pro subset, designed to rigorously challenge reasoning-enhanced models with significantly increased difficulty; 2) Basic subset, defining a novel standard for spoken colloquialism that prioritizes "listenability" through natural vocabulary, linguistic fluency, and interactive rapport, rather than rigid written accuracy; and 3) Acoustic subset, covering explicit understanding, generation, and implicit dialogue to rigorously evaluate comprehensive paralinguistic capabilities within authentic real-world scenarios. Through evaluating five state-of-the-art models, WavBench offers critical insights into the intersection of complex problem-solving, colloquial delivery, and paralinguistic fidelity, guiding the evolution of robust spoken dialogue models. The benchmark dataset and evaluation toolkit are available at https://naruto-2024.github.io/wavbench.github.io/.
comment: Open-source at https://naruto-2024.github.io/wavbench.github.io/
☆ Neutral Prompts, Non-Neutral People: Quantifying Gender and Skin-Tone Bias in Gemini Flash 2.5 Image and GPT Image 1.5
This study quantifies gender and skin-tone bias in two widely deployed commercial image generators - Gemini Flash 2.5 Image (NanoBanana) and GPT Image 1.5 - to test the assumption that neutral prompts yield demographically neutral outputs. We generated 3,200 photorealistic images using four semantically neutral prompts. The analysis employed a rigorous pipeline combining hybrid color normalization, facial landmark masking, and perceptually uniform skin tone quantification using the Monk (MST), PERLA, and Fitzpatrick scales. Neutral prompts produced highly polarized defaults. Both models exhibited a strong "default white" bias (>96% of outputs). However, they diverged sharply on gender: Gemini favored female-presenting subjects, while GPT favored male-presenting subjects with lighter skin tones. This research provides a large-scale, comparative audit of state-of-the-art models using an illumination-aware colorimetric methodology, distinguishing aesthetic rendering from underlying pigmentation in synthetic imagery. The study demonstrates that neutral prompts function as diagnostic probes rather than neutral instructions. It offers a robust framework for auditing algorithmic visual culture and challenges the sociolinguistic assumption that unmarked language results in inclusive representation.
☆ A Rule-based Computational Model for Gaidhlig Morphology
Language models and software tools are essential to support the continuing vitality of lesser-used languages; however, currently popular neural models require considerable data for training, which normally is not available for such low-resource languages. This paper describes work-in-progress to construct a rule-based model of Gaidhlig morphology using data from Wiktionary, arguing that rule-based systems effectively leverage limited sample data, support greater interpretability, and provide insights useful in the design of teaching materials. The use of SQL for querying the occurrence of different lexical patterns is investigated, and a declarative rule-base is presented that allows Python utilities to derive inflected forms of Gaidhlig words. This functionality could be used to support educational tools that teach or explain language patterns, for example, or to support higher level tools such as rule-based dependency parsers. This approach adds value to the data already present in Wiktionary by adapting it to new use-cases.
comment: A revised version of this article will be published at ICAART 2026 (https://icaart.scitevents.org/?y=2026)
☆ Learning beyond Teacher: Generalized On-Policy Distillation with Reward Extrapolation
On-policy distillation (OPD), which aligns the student with the teacher's logit distribution on student-generated trajectories, has demonstrated strong empirical gains in improving student performance and often outperforms off-policy distillation and reinforcement learning (RL) paradigms. In this work, we first theoretically show that OPD is a special case of dense KL-constrained RL where the reward function and the KL regularization are always weighted equally and the reference model can by any model. Then, we propose the Generalized On-Policy Distillation (G-OPD) framework, which extends the standard OPD objective by introducing a flexible reference model and a reward scaling factor that controls the relative weight of the reward term against the KL regularization. Through comprehensive experiments on math reasoning and code generation tasks, we derive two novel insights: (1) Setting the reward scaling factor to be greater than 1 (i.e., reward extrapolation), which we term ExOPD, consistently improves over standard OPD across a range of teacher-student size pairings. In particular, in the setting where we merge the knowledge from different domain experts, obtained by applying domain-specific RL to the same student model, back into the original student, ExOPD enables the student to even surpass the teacher's performance boundary and outperform the domain teachers. (2) Building on ExOPD, we further find that in the strong-to-weak distillation setting (i.e., distilling a smaller student from a larger teacher), performing reward correction by choosing the reference model as the teacher's base model before RL yields a more accurate reward signal and further improves distillation performance. However, this choice assumes access to the teacher's pre-RL variant and incurs more computational overhead. We hope our work offers new insights for future research on OPD.
comment: Work in progress. Github repo: https://github.com/RUCBM/G-OPD
☆ Capability-Oriented Training Induced Alignment Risk
While most AI alignment research focuses on preventing models from generating explicitly harmful content, a more subtle risk is emerging: capability-oriented training induced exploitation. We investigate whether language models, when trained with reinforcement learning (RL) in environments with implicit loopholes, will spontaneously learn to exploit these flaws to maximize their reward, even without any malicious intent in their training. To test this, we design a suite of four diverse "vulnerability games", each presenting a unique, exploitable flaw related to context-conditional compliance, proxy metrics, reward tampering, and self-evaluation. Our experiments show that models consistently learn to exploit these vulnerabilities, discovering opportunistic strategies that significantly increase their reward at the expense of task correctness or safety. More critically, we find that these exploitative strategies are not narrow "tricks" but generalizable skills; they can be transferred to new tasks and even "distilled" from a capable teacher model to other student models through data alone. Our findings reveal that capability-oriented training induced risks pose a fundamental challenge to current alignment approaches, suggesting that future AI safety work must extend beyond content moderation to rigorously auditing and securing the training environments and reward mechanisms themselves. Code is available at https://github.com/YujunZhou/Capability_Oriented_Alignment_Risk.
☆ Meta-Sel: Efficient Demonstration Selection for In-Context Learning via Supervised Meta-Learning
Demonstration selection is a practical bottleneck in in-context learning (ICL): under a tight prompt budget, accuracy can change substantially depending on which few-shot examples are included, yet selection must remain cheap enough to run per query over large candidate pools. We propose Meta-Sel, a lightweight supervised meta-learning approach for intent classification that learns a fast, interpretable scoring function for (candidate, query) pairs from labeled training data. Meta-Sel constructs a meta-dataset by sampling pairs from the training split and using class agreement as supervision, then trains a calibrated logistic regressor on two inexpensive meta-features: TF--IDF cosine similarity and a length-compatibility ratio. At inference time, the selector performs a single vectorized scoring pass over the full candidate pool and returns the top-k demonstrations, requiring no model fine-tuning, no online exploration, and no additional LLM calls. This yields deterministic rankings and makes the selection mechanism straightforward to audit via interpretable feature weights. Beyond proposing Meta-Sel, we provide a broad empirical study of demonstration selection, benchmarking 12 methods -- spanning prompt engineering baselines, heuristic selection, reinforcement learning, and influence-based approaches -- across four intent datasets and five open-source LLMs. Across this benchmark, Meta-Sel consistently ranks among the top-performing methods, is particularly effective for smaller models where selection quality can partially compensate for limited model capacity, and maintains competitive selection-time overhead.
☆ P-GenRM: Personalized Generative Reward Model with Test-time User-based Scaling ICLR 2026
Personalized alignment of large language models seeks to adapt responses to individual user preferences, typically via reinforcement learning. A key challenge is obtaining accurate, user-specific reward signals in open-ended scenarios. Existing personalized reward models face two persistent limitations: (1) oversimplifying diverse, scenario-specific preferences into a small, fixed set of evaluation principles, and (2) struggling with generalization to new users with limited feedback. To this end, we propose P-GenRM, the first Personalized Generative Reward Model with test-time user-based scaling. P-GenRM transforms preference signals into structured evaluation chains that derive adaptive personas and scoring rubrics across various scenarios. It further clusters users into User Prototypes and introduces a dual-granularity scaling mechanism: at the individual level, it adaptively scales and aggregates each user's scoring scheme; at the prototype level, it incorporates preferences from similar users. This design mitigates noise in inferred preferences and enhances generalization to unseen users through prototype-based transfer. Empirical results show that P-GenRM achieves state-of-the-art results on widely-used personalized reward model benchmarks, with an average improvement of 2.31%, and demonstrates strong generalization on an out-of-distribution dataset. Notably, Test-time User-based scaling provides an additional 3% boost, demonstrating stronger personalized alignment with test-time scalability.
comment: Accepted as ICLR 2026 Oral
☆ Stop Unnecessary Reflection: Training LRMs for Efficient Reasoning with Adaptive Reflection and Length Coordinated Penalty ICLR 2026
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex reasoning tasks by employing test-time scaling. However, they often generate over-long chains-of-thought that, driven by substantial reflections such as repetitive self-questioning and circular reasoning, lead to high token consumption, substantial computational overhead, and increased latency without improving accuracy, particularly in smaller models. Our observation reveals that increasing problem complexity induces more excessive and unnecessary reflection, which in turn reduces accuracy and increases token overhead. To address this challenge, we propose Adaptive Reflection and Length Coordinated Penalty (ARLCP), a novel reinforcement learning framework designed to dynamically balance reasoning efficiency and solution accuracy. ARLCP introduces two key innovations: (1) a reflection penalty that adaptively curtails unnecessary reflective steps while preserving essential reasoning, and (2) a length penalty calibrated to the estimated complexity of the problem. By coordinating these penalties, ARLCP encourages the model to generate more concise and effective reasoning paths. We evaluate our method on five mathematical reasoning benchmarks using DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B models. Experimental results show that ARLCP achieves a superior efficiency-accuracy trade-off compared to existing approaches. For the 1.5B model, it reduces the average response length by 53.1% while simultaneously improving accuracy by 5.8%. For the 7B model, it achieves a 35.0% reduction in length with a 2.7% accuracy gain. The code is released at https://github.com/ZeweiYu1/ARLCP .
comment: Accepted to ICLR 2026
☆ DeepSight: An All-in-One LM Safety Toolkit
As the development of Large Models (LMs) progresses rapidly, their safety is also a priority. In current Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) safety workflow, evaluation, diagnosis, and alignment are often handled by separate tools. Specifically, safety evaluation can only locate external behavioral risks but cannot figure out internal root causes. Meanwhile, safety diagnosis often drifts from concrete risk scenarios and remains at the explainable level. In this way, safety alignment lack dedicated explanations of changes in internal mechanisms, potentially degrading general capabilities. To systematically address these issues, we propose an open-source project, namely DeepSight, to practice a new safety evaluation-diagnosis integrated paradigm. DeepSight is low-cost, reproducible, efficient, and highly scalable large-scale model safety evaluation project consisting of a evaluation toolkit DeepSafe and a diagnosis toolkit DeepScan. By unifying task and data protocols, we build a connection between the two stages and transform safety evaluation from black-box to white-box insight. Besides, DeepSight is the first open source toolkit that support the frontier AI risk evaluation and joint safety evaluation and diagnosis.
comment: Technical report, 29 pages, 24 figures
☆ Tiny Recursive Reasoning with Mamba-2 Attention Hybrid
Recent work on recursive reasoning models like TRM demonstrates that tiny networks (7M parameters) can achieve strong performance on abstract reasoning tasks through latent recursion -- iterative refinement in hidden representation space without emitting intermediate tokens. This raises a natural question about operator choice: Mamba-2's state space recurrence is itself a form of iterative refinement, making it a natural candidate for recursive reasoning -- but does introducing Mamba-2 into the recursive scaffold preserve reasoning capability? We investigate this by replacing the Transformer blocks in TRM with Mamba-2 hybrid operators while maintaining parameter parity (6.83M vs 6.86M parameters). On ARC-AGI-1, we find that the hybrid improves pass@2 (the official metric) by +2.0\% (45.88\% vs 43.88\%) and consistently outperforms at higher K values (+4.75\% at pass@100), whilst maintaining pass@1 parity. This suggests improved candidate coverage -- the model generates correct solutions more reliably -- with similar top-1 selection. Our results validate that Mamba-2 hybrid operators preserve reasoning capability within the recursive scaffold, establishing SSM-based operators as viable candidates in the recursive operator design space and taking a first step towards understanding the best mixing strategies for recursive reasoning.
☆ Composition-RL: Compose Your Verifiable Prompts for Reinforcement Learning of Large Language Models
Large-scale verifiable prompts underpin the success of Reinforcement Learning with Verifiable Rewards (RLVR), but they contain many uninformative examples and are costly to expand further. Recent studies focus on better exploiting limited training data by prioritizing hard prompts whose rollout pass rate is 0. However, easy prompts with a pass rate of 1 also become increasingly prevalent as training progresses, thereby reducing the effective data size. To mitigate this, we propose Composition-RL, a simple yet useful approach for better utilizing limited verifiable prompts targeting pass-rate-1 prompts. More specifically, Composition-RL automatically composes multiple problems into a new verifiable question and uses these compositional prompts for RL training. Extensive experiments across model sizes from 4B to 30B show that Composition-RL consistently improves reasoning capability over RL trained on the original dataset. Performance can be further boosted with a curriculum variant of Composition-RL that gradually increases compositional depth over training. Additionally, Composition-RL enables more effective cross-domain RL by composing prompts drawn from different domains. Codes, datasets, and models are available at https://github.com/XinXU-USTC/Composition-RL.
☆ Artificial intelligence is creating a new global linguistic hierarchy
Artificial intelligence (AI) has the potential to transform healthcare, education, governance and socioeconomic equity, but its benefits remain concentrated in a small number of languages (Bender, 2019; Blasi et al., 2022; Joshi et al., 2020; Ranathunga and de Silva, 2022; Young, 2015). Language AI - the technologies that underpin widely-used conversational systems such as ChatGPT - could provide major benefits if available in people's native languages, yet most of the world's 7,000+ linguistic communities currently lack access and face persistent digital marginalization. Here we present a global longitudinal analysis of social, economic and infrastructural conditions across languages to assess systemic inequalities in language AI. We first analyze the existence of AI resources for 6003 languages. We find that despite efforts of the community to broaden the reach of language technologies (Bapna et al., 2022; Costa-Jussà et al., 2022), the dominance of a handful of languages is exacerbating disparities on an unprecedented scale, with divides widening exponentially rather than narrowing. Further, we contrast the longitudinal diffusion of AI with that of earlier IT technologies, revealing a distinctive hype-driven pattern of spread. To translate our findings into practical insights and guide prioritization efforts, we introduce the Language AI Readiness Index (EQUATE), which maps the state of technological, socio-economic, and infrastructural prerequisites for AI deployment across languages. The index highlights communities where capacity exists but remains underutilized, and provides a framework for accelerating more equitable diffusion of language AI. Our work contributes to setting the baseline for a transition towards more sustainable and equitable language technologies.
☆ Disentangling Ambiguity from Instability in Large Language Models: A Clinical Text-to-SQL Case Study
Deploying large language models for clinical Text-to-SQL requires distinguishing two qualitatively different causes of output diversity: (i) input ambiguity that should trigger clarification, and (ii) model instability that should trigger human review. We propose CLUES, a framework that models Text-to-SQL as a two-stage process (interpretations --> answers) and decomposes semantic uncertainty into an ambiguity score and an instability score. The instability score is computed via the Schur complement of a bipartite semantic graph matrix. Across AmbigQA/SituatedQA (gold interpretations) and a clinical Text-to-SQL benchmark (known interpretations), CLUES improves failure prediction over state-of-the-art Kernel Language Entropy. In deployment settings, it remains competitive while providing a diagnostic decomposition unavailable from a single score. The resulting uncertainty regimes map to targeted interventions - query refinement for ambiguity, model improvement for instability. The high-ambiguity/high-instability regime contains 51% of errors while covering 25% of queries, enabling efficient triage.
☆ LaCy: What Small Language Models Can and Should Learn is Not Just a Question of Loss
Language models have consistently grown to compress more world knowledge into their parameters, but the knowledge that can be pretrained into them is upper-bounded by their parameter size. Especially the capacity of Small Language Models (SLMs) is limited, leading to factually incorrect generations. This problem is often mitigated by giving the SLM access to an outside source: the ability to query a larger model, documents, or a database. Under this setting, we study the fundamental question of \emph{which tokens an SLM can and should learn} during pretraining, versus \emph{which ones it should delegate} via a \texttt{} token. We find that this is not simply a question of loss: although the loss is predictive of whether a predicted token mismatches the ground-truth, some tokens are \emph{acceptable} in that they are truthful alternative continuations of a pretraining document, and should not trigger a \texttt{} even if their loss is high. We find that a spaCy grammar parser can help augment the loss signal to decide which tokens the SLM should learn to delegate to prevent factual errors and which are safe to learn and predict even under high losses. We propose LaCy, a novel pretraining method based on this token selection philosophy. Our experiments demonstrate that LaCy models successfully learn which tokens to predict and where to delegate for help. This results in higher FactScores when generating in a cascade with a bigger model and outperforms Rho or LLM-judge trained SLMs, while being simpler and cheaper.
comment: 29 pages, 24 figures, 5 tables, preprint
☆ Automatic Simplification of Common Vulnerabilities and Exposures Descriptions
Understanding cyber security is increasingly important for individuals and organizations. However, a lot of information related to cyber security can be difficult to understand to those not familiar with the topic. In this study, we focus on investigating how large language models (LLMs) could be utilized in automatic text simplification (ATS) of Common Vulnerability and Exposure (CVE) descriptions. Automatic text simplification has been studied in several contexts, such as medical, scientific, and news texts, but it has not yet been studied to simplify texts in the rapidly changing and complex domain of cyber security. We created a baseline for cyber security ATS and a test dataset of 40 CVE descriptions, evaluated by two groups of cyber security experts in two survey rounds. We have found that while out-of-the box LLMs can make the text appear simpler, they struggle with meaning preservation. Code and data are available at https://version.aalto.fi/gitlab/vehomav1/simplification\_nmi.
comment: 8 pages, 1 figure, submitted to Nordic Machine Intelligence
☆ DHPLT: large-scale multilingual diachronic corpora and word representations for semantic change modelling EACL 2026
In this resource paper, we present DHPLT, an open collection of diachronic corpora in 41 diverse languages. DHPLT is based on the web-crawled HPLT datasets; we use web crawl timestamps as the approximate signal of document creation time. The collection covers three time periods: 2011-2015, 2020-2021 and 2024-present (1 million documents per time period for each language). We additionally provide pre-computed word type and token embeddings and lexical substitutions for our chosen target words, while at the same time leaving it open for the other researchers to come up with their own target words using the same datasets. DHPLT aims at filling in the current lack of multilingual diachronic corpora for semantic change modelling (beyond a dozen of high-resource languages). It opens the way for a variety of new experimental setups in this field. All the resources described in this paper are available at https://data.hplt-project.org/three/diachronic/, sorted by language.
comment: LChange'26 workshop at the EACL 2026 conference
☆ Scaling Model and Data for Multilingual Machine Translation with Open Large Language Models
Open large language models (LLMs) have demonstrated improving multilingual capabilities in recent years. In this paper, we present a study of open LLMs for multilingual machine translation (MT) across a range of languages, and investigate the effects of model scaling and data scaling when adapting open LLMs to multilingual MT through continual pretraining and instruction finetuning. Based on the Gemma3 model family, we develop MiLMMT-46, which achieves top-tier multilingual translation performance across 46 languages. Extensive experiments show that MiLMMT-46 consistently outperforms recent state-of-the-art (SOTA) models, including Seed-X, HY-MT-1.5, and TranslateGemma, and achieves competitive performance with strong proprietary systems such as Google Translate and Gemini 3 Pro.
☆ Benchmarking Vision-Language Models for French PDF-to-Markdown Conversion
This report evaluates PDF-to-Markdown conversion using recent Vision-Language Models (VLMs) on challenging French documents. Document parsing is a critical step for Retrieval-Augmented Generation (RAG) pipelines, where transcription and layout errors propagate to downstream retrieval and grounding. Existing benchmarks often emphasize English or Chinese and can over-penalize benign formatting and linearization choices (e.g., line breaks, list segmentation, alternative table renderings) that are largely irrelevant for downstream use. We introduce a French-focused benchmark of difficult pages selected via model-disagreement sampling from a corpus of 60{,}000 documents, covering handwritten forms, complex layouts, dense tables, and graphics-rich pages. Evaluation is performed with unit-test-style checks that target concrete failure modes (text presence, reading order, and local table constraints) combined with category-specific normalization designed to discount presentation-only variance. Across 15 models, we observe substantially higher robustness for the strongest proprietary models on handwriting and forms, while several open-weights systems remain competitive on standard printed layouts.
comment: 13 pages, 6 figures
☆ RAM-Net: Expressive Linear Attention with Selectively Addressable Memory
While linear attention architectures offer efficient inference, compressing unbounded history into a fixed-size memory inherently limits expressivity and causes information loss. To address this limitation, we introduce Random Access Memory Network (RAM-Net), a novel architecture designed to bridge the gap between the representational capacity of full attention and the memory efficiency of linear models. The core of RAM-Net maps inputs to high-dimensional sparse vectors serving as explicit addresses, allowing the model to selectively access a massive memory state. This design enables exponential state size scaling without additional parameters, which significantly mitigates signal interference and enhances retrieval fidelity. Moreover, the inherent sparsity ensures exceptional computational efficiency, as state updates are confined to minimal entries. Extensive experiments demonstrate that RAM-Net consistently surpasses state-of-the-art baselines in fine-grained long-range retrieval tasks and achieves competitive performance in standard language modeling and zero-shot commonsense reasoning benchmarks, validating its superior capability to capture complex dependencies with significantly reduced computational overhead.
☆ Do Large Language Models Adapt to Language Variation across Socioeconomic Status?
Humans adjust their linguistic style to the audience they are addressing. However, the extent to which LLMs adapt to different social contexts is largely unknown. As these models increasingly mediate human-to-human communication, their failure to adapt to diverse styles can perpetuate stereotypes and marginalize communities whose linguistic norms are less closely mirrored by the models, thereby reinforcing social stratification. We study the extent to which LLMs integrate into social media communication across different socioeconomic status (SES) communities. We collect a novel dataset from Reddit and YouTube, stratified by SES. We prompt four LLMs with incomplete text from that corpus and compare the LLM-generated completions to the originals along 94 sociolinguistic metrics, including syntactic, rhetorical, and lexical features. LLMs modulate their style with respect to SES to only a minor extent, often resulting in approximation or caricature, and tend to emulate the style of upper SES more effectively. Our findings (1) show how LLMs risk amplifying linguistic hierarchies and (2) call into question their validity for agent-based social simulation, survey experiments, and any research relying on language style as a social signal.
☆ Who is the richest club in the championship? Detecting and Rewriting Underspecified Questions Improve QA Performance
Large language models (LLMs) perform well on well-posed questions, yet standard question-answering (QA) benchmarks remain far from solved. We argue that this gap is partly due to underspecified questions - queries whose interpretation cannot be uniquely determined without additional context. To test this hypothesis, we introduce an LLM-based classifier to identify underspecified questions and apply it to several widely used QA datasets, finding that 16% to over 50% of benchmark questions are underspecified and that LLMs perform significantly worse on them. To isolate the effect of underspecification, we conduct a controlled rewriting experiment that serves as an upper-bound analysis, rewriting underspecified questions into fully specified variants while holding gold answers fixed. QA performance consistently improves under this setting, indicating that many apparent QA failures stem from question underspecification rather than model limitations. Our findings highlight underspecification as an important confound in QA evaluation and motivate greater attention to question clarity in benchmark design.
comment: 4 pages of main text, 13 pages in total, 5 tables and 10 figures in total
☆ Cross-Modal Robustness Transfer (CMRT): Training Robust Speech Translation Models Using Adversarial Text
End-to-End Speech Translation (E2E-ST) has seen significant advancements, yet current models are primarily benchmarked on curated, "clean" datasets. This overlooks critical real-world challenges, such as morphological robustness to inflectional variations common in non-native or dialectal speech. In this work, we adapt a text-based adversarial attack targeting inflectional morphology to the speech domain and demonstrate that state-of-the-art E2E-ST models are highly vulnerable it. While adversarial training effectively mitigates such risks in text-based tasks, generating high-quality adversarial speech data remains computationally expensive and technically challenging. To address this, we propose Cross-Modal Robustness Transfer (CMRT), a framework that transfers adversarial robustness from the text modality to the speech modality. Our method eliminates the requirement for adversarial speech data during training. Extensive experiments across four language pairs demonstrate that CMRT improves adversarial robustness by an average of more than 3 BLEU points, establishing a new baseline for robust E2E-ST without the overhead of generating adversarial speech.
☆ AdaptEvolve: Improving Efficiency of Evolutionary AI Agents through Adaptive Model Selection
Evolutionary agentic systems intensify the trade-off between computational efficiency and reasoning capability by repeatedly invoking large language models (LLMs) during inference. This setting raises a central question: how can an agent dynamically select an LLM that is sufficiently capable for the current generation step while remaining computationally efficient? While model cascades offer a practical mechanism for balancing this trade-off, existing routing strategies typically rely on static heuristics or external controllers and do not explicitly account for model uncertainty. We introduce AdaptEvolve: Adaptive LLM Selection for Multi-LLM Evolutionary Refinement within an evolutionary sequential refinement framework that leverages intrinsic generation confidence to estimate real-time solvability. Empirical results show that confidence-driven selection yields a favourable Pareto frontier, reducing total inference cost by an average of 37.9% across benchmarks while retaining 97.5% of the upper-bound accuracy of static large-model baselines. Our code is available at https://github.com/raypretam/adaptive_llm_selection.
comment: 8 pages, 2 Figues
☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
☆ Benchmark Illusion: Disagreement among LLMs and Its Scientific Consequences
Benchmarks underpin how progress in large language models (LLMs) is measured and trusted. Yet our analyses reveal that apparent convergence in benchmark accuracy can conceal deep epistemic divergence. Using two major reasoning benchmarks - MMLU-Pro and GPQA - we show that LLMs achieving comparable accuracy still disagree on 16-66% of items, and 16-38% among top-performing frontier models. These discrepancies suggest distinct error profiles for different LLMs. When such models are used for scientific data annotation and inference, their hidden disagreements propagate into research results: in re-analyses of published studies in education and political science, switching the annotation model can change estimated treatment effects by more than 80%, and in some cases reverses their sign. Together, these findings illustrate a benchmark illusion, where equal accuracy may conceal disagreement, with model choice becoming a hidden yet consequential variable for scientific reproducibility.
LLM-based Triplet Extraction from Financial Reports
Corporate financial reports are a valuable source of structured knowledge for Knowledge Graph construction, but the lack of annotated ground truth in this domain makes evaluation difficult. We present a semi-automated pipeline for Subject-Predicate-Object triplet extraction that uses ontology-driven proxy metrics, specifically Ontology Conformance and Faithfulness, instead of ground-truth-based evaluation. We compare a static, manually engineered ontology against a fully automated, document-specific ontology induction approach across different LLMs and two corporate annual reports. The automatically induced ontology achieves 100% schema conformance in all configurations, eliminating the ontology drift observed with the manual approach. We also propose a hybrid verification strategy that combines regex matching with an LLM-as-a-judge check, reducing apparent subject hallucination rates from 65.2% to 1.6% by filtering false positives caused by coreference resolution. Finally, we identify a systematic asymmetry between subject and object hallucinations, which we attribute to passive constructions and omitted agents in financial prose.
☆ Towards Fair and Comprehensive Evaluation of Routers in Collaborative LLM Systems
Large language models (LLMs) have achieved success, but cost and privacy constraints necessitate deploying smaller models locally while offloading complex queries to cloud-based models. Existing router evaluations are unsystematic, overlooking scenario-specific requirements and out-of-distribution robustness. We propose RouterXBench, a principled evaluation framework with three dimensions: router ability, scenario alignment, and cross-domain robustness. Unlike prior work that relies on output probabilities or external embeddings, we utilize internal hidden states that capture model uncertainty before answer generation. We introduce ProbeDirichlet, a lightweight router that aggregates cross-layer hidden states via learnable Dirichlet distributions with probabilistic training. Trained on multi-domain data, it generalizes robustly across in-domain and out-of-distribution scenarios. Our results show ProbeDirichlet achieves 16.68% and 18.86% relative improvements over the best baselines in router ability and high-accuracy scenarios, with consistent performance across model families, model scales, heterogeneous tasks, and agentic workflows.
comment: Our code is publicly available at https://github.com/zhuchichi56/RouterXBench
☆ DMAP: A Distribution Map for Text ICLR 2026
Large Language Models (LLMs) are a powerful tool for statistical text analysis, with derived sequences of next-token probability distributions offering a wealth of information. Extracting this signal typically relies on metrics such as perplexity, which do not adequately account for context; how one should interpret a given next-token probability is dependent on the number of reasonable choices encoded by the shape of the conditional distribution. In this work, we present DMAP, a mathematically grounded method that maps a text, via a language model, to a set of samples in the unit interval that jointly encode rank and probability information. This representation enables efficient, model-agnostic analysis and supports a range of applications. We illustrate its utility through three case studies: (i) validation of generation parameters to ensure data integrity, (ii) examining the role of probability curvature in machine-generated text detection, and (iii) a forensic analysis revealing statistical fingerprints left in downstream models that have been subject to post-training on synthetic data. Our results demonstrate that DMAP offers a unified statistical view of text that is simple to compute on consumer hardware, widely applicable, and provides a foundation for further research into text analysis with LLMs.
comment: ICLR 2026
☆ A$^{2}$V-SLP: Alignment-Aware Variational Modeling for Disentangled Sign Language Production
Building upon recent structural disentanglement frameworks for sign language production, we propose A$^{2}$V-SLP, an alignment-aware variational framework that learns articulator-wise disentangled latent distributions rather than deterministic embeddings. A disentangled Variational Autoencoder (VAE) encodes ground-truth sign pose sequences and extracts articulator-specific mean and variance vectors, which are used as distributional supervision for training a non-autoregressive Transformer. Given text embeddings, the Transformer predicts both latent means and log-variances, while the VAE decoder reconstructs the final sign pose sequences through stochastic sampling at the decoding stage. This formulation maintains articulator-level representations by avoiding deterministic latent collapse through distributional latent modeling. In addition, we integrate a gloss attention mechanism to strengthen alignment between linguistic input and articulated motion. Experimental results show consistent gains over deterministic latent regression, achieving state-of-the-art back-translation performance and improved motion realism in a fully gloss-free setting.
comment: 9 pages, 2 figures, 8 tables
☆ Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
☆ Prototype Transformer: Towards Language Model Architectures Interpretable by Design
While state-of-the-art language models (LMs) surpass the vast majority of humans in certain domains, their reasoning remains largely opaque, undermining trust in their output. Furthermore, while autoregressive LMs can output explicit reasoning, their true reasoning process is opaque, which introduces risks like deception and hallucination. In this work, we introduce the Prototype Transformer (ProtoT) -- an autoregressive LM architecture based on prototypes (parameter vectors), posed as an alternative to the standard self-attention-based transformers. ProtoT works by means of two-way communication between the input sequence and the prototypes, and we show that this leads to the prototypes automatically capturing nameable concepts (e.g. "woman") during training. They provide the potential to interpret the model's reasoning and allow for targeted edits of its behavior. Furthermore, by design, the prototypes create communication channels that aggregate contextual information at different time scales, aiding interpretability. In terms of computation scalability, ProtoT scales linearly with sequence length vs the quadratic scalability of SOTA self-attention transformers. Compared to baselines, ProtoT scales well with model and data size, and performs well on text generation and downstream tasks (GLUE). ProtoT exhibits robustness to input perturbations on par or better than some baselines, but differs from them by providing interpretable pathways showing how robustness and sensitivity arises. Reaching close to the performance of state-of-the-art architectures, ProtoT paves the way to creating well-performing autoregressive LMs interpretable by design.
comment: Preprint under review. Equal contribution: Yordan Yordanov and Matteo Forasassi. 39 pages, 25 figures, 22 tables
☆ A Subword Embedding Approach for Variation Detection in Luxembourgish User Comments
This paper presents an embedding-based approach to detecting variation without relying on prior normalisation or predefined variant lists. The method trains subword embeddings on raw text and groups related forms through combined cosine and n-gram similarity. This allows spelling and morphological diversity to be examined and analysed as linguistic structure rather than treated as noise. Using a large corpus of Luxembourgish user comments, the approach uncovers extensive lexical and orthographic variation that aligns with patterns described in dialectal and sociolinguistic research. The induced families capture systematic correspondences and highlight areas of regional and stylistic differentiation. The procedure does not strictly require manual annotation, but does produce transparent clusters that support both quantitative and qualitative analysis. The results demonstrate that distributional modelling can reveal meaningful patterns of variation even in ''noisy'' or low-resource settings, offering a reproducible methodological framework for studying language variety in multilingual and small-language contexts.
☆ More Haste, Less Speed: Weaker Single-Layer Watermark Improves Distortion-Free Watermark Ensembles
Watermarking has emerged as a crucial technique for detecting and attributing content generated by large language models. While recent advancements have utilized watermark ensembles to enhance robustness, prevailing methods typically prioritize maximizing the strength of the watermark at every individual layer. In this work, we identify a critical limitation in this "stronger-is-better" approach: strong watermarks significantly reduce the entropy of the token distribution, which paradoxically weakens the effectiveness of watermarking in subsequent layers. We theoretically and empirically show that detectability is bounded by entropy and that watermark ensembles induce a monotonic decrease in both entropy and the expected green-list ratio across layers. To address this inherent trade-off, we propose a general framework that utilizes weaker single-layer watermarks to preserve the entropy required for effective multi-layer ensembling. Empirical evaluations demonstrate that this counter-intuitive strategy mitigates signal decay and consistently outperforms strong baselines in both detectability and robustness.
☆ Detecting RLVR Training Data via Structural Convergence of Reasoning
Reinforcement learning with verifiable rewards (RLVR) is central to training modern reasoning models, but the undisclosed training data raises concerns about benchmark contamination. Unlike pretraining methods, which optimize models using token-level probabilities, RLVR fine-tunes models based on reward feedback from self-generated reasoning trajectories, making conventional likelihood-based detection methods less effective. We show that RLVR induces a distinctive behavioral signature: prompts encountered during RLVR training result in more rigid and similar generations, while unseen prompts retain greater diversity. We introduce Min-$k$NN Distance, a simple black-box detector that quantifies this collapse by sampling multiple completions for a given prompt and computing the average of the $k$ smallest nearest-neighbor edit distances. Min-$k$NN Distance requires no access to the reference model or token probabilities. Experiments across multiple RLVR-trained reasoning models show that Min-$k$NN Distance reliably distinguishes RL-seen examples from unseen ones and outperforms existing membership inference and RL contamination detection baselines.
comment: Preprint
☆ Beyond End-to-End Video Models: An LLM-Based Multi-Agent System for Educational Video Generation
Although recent end-to-end video generation models demonstrate impressive performance in visually oriented content creation, they remain limited in scenarios that require strict logical rigor and precise knowledge representation, such as instructional and educational media. To address this problem, we propose LAVES, a hierarchical LLM-based multi-agent system for generating high-quality instructional videos from educational problems. The LAVES formulates educational video generation as a multi-objective task that simultaneously demands correct step-by-step reasoning, pedagogically coherent narration, semantically faithful visual demonstrations, and precise audio--visual alignment. To address the limitations of prior approaches--including low procedural fidelity, high production cost, and limited controllability--LAVES decomposes the generation workflow into specialized agents coordinated by a central Orchestrating Agent with explicit quality gates and iterative critique mechanisms. Specifically, the Orchestrating Agent supervises a Solution Agent for rigorous problem solving, an Illustration Agent that produces executable visualization codes, and a Narration Agent for learner-oriented instructional scripts. In addition, all outputs from the working agents are subject to semantic critique, rule-based constraints, and tool-based compilation checks. Rather than directly synthesizing pixels, the system constructs a structured executable video script that is deterministically compiled into synchronized visuals and narration using template-driven assembly rules, enabling fully automated end-to-end production without manual editing. In large-scale deployments, LAVES achieves a throughput exceeding one million videos per day, delivering over a 95% reduction in cost compared to current industry-standard approaches while maintaining a high acceptance rate.
comment: For more information, visit the project website: https://robitsg.github.io/LASEV/
☆ TSR: Trajectory-Search Rollouts for Multi-Turn RL of LLM Agents
Advances in large language models (LLMs) are driving a shift toward using reinforcement learning (RL) to train agents from iterative, multi-turn interactions across tasks. However, multi-turn RL remains challenging as rewards are often sparse or delayed, and environments can be stochastic. In this regime, naive trajectory sampling can hinder exploitation and induce mode collapse. We propose TSR (Trajectory-Search Rollouts), a training-time approach that repurposes test-time scaling ideas for improved per-turn rollout generation. TSR performs lightweight tree-style search to construct high-quality trajectories by selecting high-scoring actions at each turn using task-specific feedback. This improves rollout quality and stabilizes learning while leaving the underlying optimization objective unchanged, making TSR optimizer-agnostic. We instantiate TSR with best-of-N, beam, and shallow lookahead search, and pair it with PPO and GRPO, achieving up to 15% performance gains and more stable learning on Sokoban, FrozenLake, and WebShop tasks at a one-time increase in training compute. By moving search from inference time to the rollout stage of training, TSR provides a simple and general mechanism for stronger multi-turn agent learning, complementary to existing frameworks and rejection-sampling-style selection methods.
☆ MiniCPM-SALA: Hybridizing Sparse and Linear Attention for Efficient Long-Context Modeling
The evolution of large language models (LLMs) towards applications with ultra-long contexts faces challenges posed by the high computational and memory costs of the Transformer architecture. While existing sparse and linear attention mechanisms attempt to mitigate these issues, they typically involve a trade-off between memory efficiency and model performance. This paper introduces MiniCPM-SALA, a 9B-parameter hybrid architecture that integrates the high-fidelity long-context modeling of sparse attention (InfLLM-V2) with the global efficiency of linear attention (Lightning Attention). By employing a layer selection algorithm to integrate these mechanisms in a 1:3 ratio and utilizing a hybrid positional encoding (HyPE), the model maintains efficiency and performance for long-context tasks. Furthermore, we introduce a cost-effective continual training framework that transforms pre-trained Transformer-based models into hybrid models, which reduces training costs by approximately 75% compared to training from scratch. Extensive experiments show that MiniCPM-SALA maintains general capabilities comparable to full-attention models while offering improved efficiency. On a single NVIDIA A6000D GPU, the model achieves up to 3.5x the inference speed of the full-attention model at the sequence length of 256K tokens and supports context lengths of up to 1M tokens, a scale where traditional full-attention 8B models fail because of memory constraints.
comment: MiniCPM-SALA Technical Report
☆ Think Longer to Explore Deeper: Learn to Explore In-Context via Length-Incentivized Reinforcement Learning
Achieving effective test-time scaling requires models to engage in In-Context Exploration -- the intrinsic ability to generate, verify, and refine multiple reasoning hypotheses within a single continuous context. Grounded in State Coverage theory, our analysis identifies a critical bottleneck to enabling this capability: while broader state coverage requires longer reasoning trajectories, the probability of sampling such sequences decays exponentially during autoregressive generation, a phenomenon we term the ``Shallow Exploration Trap''. To bridge this gap, we propose Length-Incentivized Exploration(\method). This simple yet effective recipe explicitly encourages models to explore more via a length-based reward coupled with a redundancy penalty, thereby maximizing state coverage in two-step manner. Comprehensive experiments across different models (Qwen3, Llama) demonstrate that \method effectively incentivize in-context exploration. As a result, our method achieves an average improvement of 4.4\% on in-domain tasks and a 2.7\% gain on out-of-domain benchmarks.
☆ Mask What Matters: Mitigating Object Hallucinations in Multimodal Large Language Models with Object-Aligned Visual Contrastive Decoding
We study object hallucination in Multimodal Large Language Models (MLLMs) and improve visual contrastive decoding (VCD) by constructing an object-aligned auxiliary view. We leverage object-centric attention in self-supervised Vision Transformers. In particular, we remove the most salient visual evidence to construct an auxiliary view that disrupts unsupported tokens and produces a stronger contrast signal. Our method is prompt-agnostic, model-agnostic, and can be seamlessly plugged into the existing VCD pipeline with little computation overhead, i.e., a single cacheable forward pass. Empirically, our method demonstrates consistent gains on two popular object hallucination benchmarks across two MLLMs.
☆ Thinking with Drafting: Optical Decompression via Logical Reconstruction
Existing multimodal large language models have achieved high-fidelity visual perception and exploratory visual generation. However, a precision paradox persists in complex reasoning tasks: optical perception systems transcribe symbols without capturing logical topology, while pixel-based generative models produce visual artifacts lacking mathematical exactness. To bridge this gap, we propose that reasoning over visual inputs be reconceptualized as optical decompression-the process of reconstructing latent logical structures from compressed visual tokens. Guided by the axiom that Parsing is Reasoning, we introduce Thinking with Drafting (TwD), which utilizes a minimalist Domain-Specific Language (DSL) as a grounding intermediate representation. Unlike standard approaches that hallucinate answers directly, TwD forces the model to draft its mental model into executable code, rendering deterministic visual proofs for self-verification. To validate this, we present VisAlg, a visual algebra benchmark. Experiments demonstrate that TwD serve as a superior cognitive scaffold. Our work establishes a closed-loop system where visual generation acts not as a creative output but as a logical verifier, offering a generalizable path for visual reasoning.
☆ DICE: Diffusion Large Language Models Excel at Generating CUDA Kernels
Diffusion large language models (dLLMs) have emerged as a compelling alternative to autoregressive (AR) LLMs, owing to their capacity for parallel token generation. This paradigm is particularly well-suited for code generation, where holistic structural planning and non-sequential refinement are critical. Despite this potential, tailoring dLLMs for CUDA kernel generation remains challenging, obstructed not only by the high specialization but also by the severe lack of high-quality training data. To address these challenges, we construct CuKe, an augmented supervised fine-tuning dataset optimized for high-performance CUDA kernels. On top of it, we propose a bi-phase curated reinforcement learning (BiC-RL) framework consisting of a CUDA kernel infilling stage and an end-to-end CUDA kernel generation stage. Leveraging this training framework, we introduce DICE, a series of diffusion large language models designed for CUDA kernel generation, spanning three parameter scales, 1.7B, 4B, and 8B. Extensive experiments on KernelBench demonstrate that DICE significantly outperforms both autoregressive and diffusion LLMs of comparable scale, establishing a new state-of-the-art for CUDA kernel generation.
☆ Finding Sense in Nonsense with Generated Contexts: Perspectives from Humans and Language Models
Nonsensical and anomalous sentences have been instrumental in the development of computational models of semantic interpretation. A core challenge is to distinguish between what is merely anomalous (but can be interpreted given a supporting context) and what is truly nonsensical. However, it is unclear (a) how nonsensical, rather than merely anomalous, existing datasets are; and (b) how well LLMs can make this distinction. In this paper, we answer both questions by collecting sensicality judgments from human raters and LLMs on sentences from five semantically deviant datasets: both context-free and when providing a context. We find that raters consider most sentences at most anomalous, and only a few as properly nonsensical. We also show that LLMs are substantially skilled in generating plausible contexts for anomalous cases.
☆ PatientHub: A Unified Framework for Patient Simulation
As Large Language Models increasingly power role-playing applications, simulating patients has become a valuable tool for training counselors and scaling therapeutic assessment. However, prior work is fragmented: existing approaches rely on incompatible, non-standardized data formats, prompts, and evaluation metrics, hindering reproducibility and fair comparison. In this paper, we introduce PatientHub, a unified and modular framework that standardizes the definition, composition, and deployment of simulated patients. To demonstrate PatientHub's utility, we implement several representative patient simulation methods as case studies, showcasing how our framework supports standardized cross-method evaluation and the seamless integration of custom evaluation metrics. We further demonstrate PatientHub's extensibility by prototyping two new simulator variants, highlighting how PatientHub accelerates method development by eliminating infrastructure overhead. By consolidating existing work into a single reproducible pipeline, PatientHub lowers the barrier to developing new simulation methods and facilitates cross-method and cross-model benchmarking. Our framework provides a practical foundation for future datasets, methods, and benchmarks in patient-centered dialogue, and the code is publicly available via https://github.com/Sahandfer/PatientHub.
comment: Work in progress
☆ ThinkRouter: Efficient Reasoning via Routing Thinking between Latent and Discrete Spaces
Recent work explores latent reasoning to improve reasoning efficiency by replacing explicit reasoning trajectories with continuous representations in a latent space, yet its effectiveness varies across settings. Analysis of model confidence dynamics under latent reasoning reveals that thinking trajectories ending in incorrect answers contain fewer low-confidence steps than those ending in correct answers. Meanwhile, we suggest that soft embeddings aggregated by multiple low-confidence thinking alternatives may introduce and propagate noise, leading to high confidence in unreliable reasoning trajectories. Motivated by these observations, ThinkRouter, an inference-time confidence-aware routing mechanism is proposed to avoid high confidence and noise for efficient reasoning. ThinkRouter routes thinking to the discrete token space when model confidence is low, and to the latent space otherwise. Extensive experiments on STEM reasoning and coding benchmarks across diverse large reasoning models demonstrate that ThinkRouter outperforms explicit CoT, random routing, and latent reasoning baselines in terms of accuracy, achieving an average improvement of 19.70 points in Pass@1, while reducing generation length by up to 15.55%. Further comprehensive analysis reveals that ThinkRouter can calibrate errors arising from explicit CoT and latent reasoning, and accelerates end-of-thinking token generation by globally lowering model confidence.
comment: Work in Progress
☆ PhyNiKCE: A Neurosymbolic Agentic Framework for Autonomous Computational Fluid Dynamics
The deployment of autonomous agents for Computational Fluid Dynamics (CFD), is critically limited by the probabilistic nature of Large Language Models (LLMs), which struggle to enforce the strict conservation laws and numerical stability required for physics-based simulations. Reliance on purely semantic Retrieval Augmented Generation (RAG) often leads to "context poisoning," where agents generate linguistically plausible but physically invalid configurations due to a fundamental Semantic-Physical Disconnect. To bridge this gap, this work introduces PhyNiKCE (Physical and Numerical Knowledgeable Context Engineering), a neurosymbolic agentic framework for trustworthy engineering. Unlike standard black-box agents, PhyNiKCE decouples neural planning from symbolic validation. It employs a Symbolic Knowledge Engine that treats simulation setup as a Constraint Satisfaction Problem, rigidly enforcing physical constraints via a Deterministic RAG Engine with specialized retrieval strategies for solvers, turbulence models, and boundary conditions. Validated through rigorous OpenFOAM experiments on practical, non-tutorial CFD tasks using Gemini-2.5-Pro/Flash, PhyNiKCE demonstrates a 96% relative improvement over state-of-the-art baselines. Furthermore, by replacing trial-and-error with knowledge-driven initialization, the framework reduced autonomous self-correction loops by 59% while simultaneously lowering LLM token consumption by 17%. These results demonstrate that decoupling neural generation from symbolic constraint enforcement significantly enhances robustness and efficiency. While validated on CFD, this architecture offers a scalable, auditable paradigm for Trustworthy Artificial Intelligence in broader industrial automation.
comment: 30 pages, 10 figures
☆ Which Feedback Works for Whom? Differential Effects of LLM-Generated Feedback Elements Across Learner Profiles
Large language models (LLMs) show promise for automatically generating feedback in education settings. However, it remains unclear how specific feedback elements, such as tone and information coverage, contribute to learning outcomes and learner acceptance, particularly across learners with different personality traits. In this study, we define six feedback elements and generate feedback for multiple-choice biology questions using GPT-5. We conduct a learning experiment with 321 first-year high school students and evaluate feedback effectiveness using two learning outcomes measures and subjective evaluations across six criteria. We further analyze differences in how feedback acceptance varies across learners based on Big Five personality traits. Our results show that effective feedback elements share common patterns supporting learning outcomes, while learners' subjective preferences differ across personality-based clusters. These findings highlight the importance of selecting and adapting feedback elements according to learners' personality traits when we design LLM-generated feedback, and provide practical implications for personalized feedback design in education.
comment: Under Review
☆ PACE: Prefix-Protected and Difficulty-Aware Compression for Efficient Reasoning
Language Reasoning Models (LRMs) achieve strong performance by scaling test-time computation but often suffer from ``overthinking'', producing excessively long reasoning traces that increase latency and memory usage. Existing LRMs typically enforce conciseness with uniform length penalties, which over-compress crucial early deduction steps at the sequence level and indiscriminately penalize all queries at the group level. To solve these limitations, we propose \textbf{\model}, a dual-level framework for prefix-protected and difficulty-aware compression under hierarchical supervision. At the sequence level, prefix-protected optimization employs decaying mixed rollouts to maintain valid reasoning paths while promoting conciseness. At the group level, difficulty-aware penalty dynamically scales length constraints based on query complexity, maintaining exploration for harder questions while curbing redundancy on easier ones. Extensive experiments on DeepSeek-R1-Distill-Qwen (1.5B/7B) demonstrate that \model achieves a substantial reduction in token usage (up to \textbf{55.7\%}) while simultaneously improving accuracy (up to \textbf{4.1\%}) on math benchmarks, with generalization ability to code, science, and general domains.
☆ Scene-Aware Memory Discrimination: Deciding Which Personal Knowledge Stays
Intelligent devices have become deeply integrated into everyday life, generating vast amounts of user interactions that form valuable personal knowledge. Efficient organization of this knowledge in user memory is essential for enabling personalized applications. However, current research on memory writing, management, and reading using large language models (LLMs) faces challenges in filtering irrelevant information and in dealing with rising computational costs. Inspired by the concept of selective attention in the human brain, we introduce a memory discrimination task. To address large-scale interactions and diverse memory standards in this task, we propose a Scene-Aware Memory Discrimination method (SAMD), which comprises two key components: the Gating Unit Module (GUM) and the Cluster Prompting Module (CPM). GUM enhances processing efficiency by filtering out non-memorable interactions and focusing on the salient content most relevant to application demands. CPM establishes adaptive memory standards, guiding LLMs to discern what information should be remembered or discarded. It also analyzes the relationship between user intents and memory contexts to build effective clustering prompts. Comprehensive direct and indirect evaluations demonstrate the effectiveness and generalization of our approach. We independently assess the performance of memory discrimination, showing that SAMD successfully recalls the majority of memorable data and remains robust in dynamic scenarios. Furthermore, when integrated into personalized applications, SAMD significantly enhances both the efficiency and quality of memory construction, leading to better organization of personal knowledge.
comment: Accepted by Knowledge-Based Systems. Lincense: CC BY-NC-ND
☆ Analytical Search
Analytical information needs, such as trend analysis and causal impact assessment, are prevalent across various domains including law, finance, science, and much more. However, existing information retrieval paradigms, whether based on relevance-oriented document ranking or retrieval-augmented generation (RAG) with large language models (LLMs), often struggle to meet the end-to-end requirements of such tasks at the corpus scale. They either emphasize information finding rather than end-to-end problem solving, or simply treat everything as naive question answering, offering limited control over reasoning, evidence usage, and verifiability. As a result, they struggle to support analytical queries that have diverse utility concepts and high accountability requirements. In this paper, we propose analytical search as a distinct and emerging search paradigm designed to fulfill these analytical information needs. Analytical search reframes search as an evidence-governed, process-oriented analytical workflow that explicitly models analytical intent, retrieves evidence for fusion, and produces verifiable conclusions through structured, multi-step inference. We position analytical search in contrast to existing paradigms, and present a unified system framework that integrates query understanding, recall-oriented retrieval, reasoning-aware fusion, and adaptive verification. We also discuss potential research directions for the construction of analytical search engines. In this way, we highlight the conceptual significance and practical importance of analytical search and call on efforts toward the next generation of search engines that support analytical information needs.
☆ PRIME: A Process-Outcome Alignment Benchmark for Verifiable Reasoning in Mathematics and Engineering
While model-based verifiers are essential for scaling Reinforcement Learning with Verifiable Rewards (RLVR), current outcome-centric verification paradigms primarily focus on the consistency between the final result and the ground truth, often neglecting potential errors in the derivation process. This leads to assigning positive rewards to correct answers produced from incorrect derivations. To bridge this gap, we introduce PRIME, a benchmark for evaluating verifiers on Process-Outcome Alignment verification in Mathematics and Engineering. Curated from a comprehensive collection of college-level STEM problems, PRIME comprises 2,530 high-difficulty samples through a consistency-based filtering pipeline. Through extensive evaluation, we find that current verifiers frequently fail to detect derivation flaws. Furthermore, we propose a process-aware RLVR training paradigm utilizing verifiers selected via PRIME. This approach substantially outperforms the outcome-only verification baseline, achieving absolute performance gains of 8.29%, 9.12%, and 7.31% on AIME24, AIME25, and Beyond-AIME, respectively, for the Qwen3-14B-Base model. Finally, we demonstrate a strong linear correlation ($R^2 > 0.92$) between verifier accuracy on PRIME and RLVR training effectiveness, validating PRIME as a reliable predictor for verifier selection.
☆ SIGHT: Reinforcement Learning with Self-Evidence and Information-Gain Diverse Branching for Search Agent
Reinforcement Learning (RL) has empowered Large Language Models (LLMs) to master autonomous search for complex question answering. However, particularly within multi-turn search scenarios, this interaction introduces a critical challenge: search results often suffer from high redundancy and low signal-to-noise ratios. Consequently, agents easily fall into "Tunnel Vision," where the forced interpretation of early noisy retrievals leads to irreversible error accumulation. To address these challenges, we propose SIGHT, a framework that enhances search-based reasoning through Self-Evidence Support (SES) and Information-Gain Driven Diverse Branching. SIGHT distills search results into high-fidelity evidence via SES and calculates an Information Gain score to pinpoint pivotal states where observations maximally reduce uncertainty. This score guides Dynamic Prompting Interventions - including de-duplication, reflection, or adaptive branching - to spawn new branches with SES. Finally, by integrating SES and correctness rewards via Group Relative Policy Optimization, SIGHT internalizes robust exploration strategies without external verifiers. Experiments on single-hop and multi-hop QA benchmarks demonstrate that SIGHT significantly outperforms existing approaches, particularly in complex reasoning scenarios, using fewer search steps.
Pretraining A Large Language Model using Distributed GPUs: A Memory-Efficient Decentralized Paradigm
Pretraining large language models (LLMs) typically requires centralized clusters with thousands of high-memory GPUs (e.g., H100/A100). Recent decentralized training methods reduce communication overhead by employing federated optimization; however, they still need to train the entire model on each node, remaining constrained by GPU memory limitations. In this work, we propose SParse Expert Synchronization (SPES), a memory-efficient decentralized framework for pretraining mixture-of-experts (MoE) LLMs. SPES trains only a subset of experts per node, substantially lowering the memory footprint. Each node updates its local experts and periodically synchronizes with other nodes, eliminating full-parameter transmission while ensuring efficient knowledge sharing. To accelerate convergence, we introduce an expert-merging warm-up strategy, where experts exchange knowledge early in training, to rapidly establish foundational capabilities. With SPES, we train a 2B-parameter MoE LLM using 16 standalone 48GB GPUs over internet connections, which achieves competitive performance with centrally trained LLMs under similar computational budgets. We further demonstrate scalability by training a 7B model from scratch and a 9B model upcycled from a dense checkpoint, both of which match prior centralized baselines. Our code is available at https://github.com/zjr2000/SPES.
☆ Stop Tracking Me! Proactive Defense Against Attribute Inference Attack in LLMs ICLR 2026
Recent studies have shown that large language models (LLMs) can infer private user attributes (e.g., age, location, gender) from user-generated text shared online, enabling rapid and large-scale privacy breaches. Existing anonymization-based defenses are coarse-grained, lacking word-level precision in anonymizing privacy-leaking elements. Moreover, they are inherently limited as altering user text to hide sensitive cues still allows attribute inference to occur through models' reasoning capabilities. To address these limitations, we propose a unified defense framework that combines fine-grained anonymization (TRACE) with inference-preventing optimization (RPS). TRACE leverages attention mechanisms and inference chain generation to identify and anonymize privacy-leaking textual elements, while RPS employs a lightweight two-stage optimization strategy to induce model rejection behaviors, thereby preventing attribute inference. Evaluations across diverse LLMs show that TRACE-RPS reduces attribute inference accuracy from around 50\% to below 5\% on open-source models. In addition, our approach offers strong cross-model generalization, prompt-variation robustness, and utility-privacy tradeoffs. Our code is available at https://github.com/Jasper-Yan/TRACE-RPS.
comment: Accepted at ICLR 2026
☆ Adaptive Milestone Reward for GUI Agents
Reinforcement Learning (RL) has emerged as a mainstream paradigm for training Mobile GUI Agents, yet it struggles with the temporal credit assignment problem inherent in long-horizon tasks. A primary challenge lies in the trade-off between reward fidelity and density: outcome reward offers high fidelity but suffers from signal sparsity, while process reward provides dense supervision but remains prone to bias and reward hacking. To resolve this conflict, we propose the Adaptive Milestone Reward (ADMIRE) mechanism. ADMIRE constructs a verifiable, adaptive reward system by anchoring trajectory to milestones, which are dynamically distilled from successful explorations. Crucially, ADMIRE integrates an asymmetric credit assignment strategy that denoises successful trajectories and scaffolds failed trajectories. Extensive experiments demonstrate that ADMIRE consistently yields over 10% absolute improvement in success rate across different base models on AndroidWorld. Moreover, the method exhibits robust generalizability, achieving strong performance across diverse RL algorithms and heterogeneous environments such as web navigation and embodied tasks.
☆ Multimodal Fact-Level Attribution for Verifiable Reasoning
Multimodal large language models (MLLMs) are increasingly used for real-world tasks involving multi-step reasoning and long-form generation, where reliability requires grounding model outputs in heterogeneous input sources and verifying individual factual claims. However, existing multimodal grounding benchmarks and evaluation methods focus on simplified, observation-based scenarios or limited modalities and fail to assess attribution in complex multimodal reasoning. We introduce MuRGAt (Multimodal Reasoning with Grounded Attribution), a benchmark for evaluating fact-level multimodal attribution in settings that require reasoning beyond direct observation. Given inputs spanning video, audio, and other modalities, MuRGAt requires models to generate answers with explicit reasoning and precise citations, where each citation specifies both modality and temporal segments. To enable reliable assessment, we introduce an automatic evaluation framework that strongly correlates with human judgments. Benchmarking with human and automated scores reveals that even strong MLLMs frequently hallucinate citations despite correct reasoning. Moreover, we observe a key trade-off: increasing reasoning depth or enforcing structured grounding often degrades accuracy, highlighting a significant gap between internal reasoning and verifiable attribution.
comment: 29 pages. Code and data are available at https://github.com/meetdavidwan/murgat
☆ Jailbreaking Leaves a Trace: Understanding and Detecting Jailbreak Attacks from Internal Representations of Large Language Models
Jailbreaking large language models (LLMs) has emerged as a critical security challenge with the widespread deployment of conversational AI systems. Adversarial users exploit these models through carefully crafted prompts to elicit restricted or unsafe outputs, a phenomenon commonly referred to as Jailbreaking. Despite numerous proposed defense mechanisms, attackers continue to develop adaptive prompting strategies, and existing models remain vulnerable. This motivates approaches that examine the internal behavior of LLMs rather than relying solely on prompt-level defenses. In this work, we study jailbreaking from both security and interpretability perspectives by analyzing how internal representations differ between jailbreak and benign prompts. We conduct a systematic layer-wise analysis across multiple open-source models, including GPT-J, LLaMA, Mistral, and the state-space model Mamba, and identify consistent latent-space patterns associated with harmful inputs. We then propose a tensor-based latent representation framework that captures structure in hidden activations and enables lightweight jailbreak detection without model fine-tuning or auxiliary LLM-based detectors. We further demonstrate that the latent signals can be used to actively disrupt jailbreak execution at inference time. On an abliterated LLaMA-3.1-8B model, selectively bypassing high-susceptibility layers blocks 78% of jailbreak attempts while preserving benign behavior on 94% of benign prompts. This intervention operates entirely at inference time and introduces minimal overhead, providing a scalable foundation for achieving stronger coverage by incorporating additional attack distributions or more refined susceptibility thresholds. Our results provide evidence that jailbreak behavior is rooted in identifiable internal structures and suggest a complementary, architecture-agnostic direction for improving LLM security.
☆ When Audio-LLMs Don't Listen: A Cross-Linguistic Study of Modality Arbitration
When audio and text conflict, speech-enabled language models follow the text 10 times more often than when arbitrating between two text sources, even when explicitly instructed to trust the audio. Using ALME, a benchmark of 57,602 controlled audio-text conflict stimuli across 8 languages, we find that Gemini 2.0 Flash exhibits 16.6\% text dominance under audio-text conflict versus 1.6\% under text-text conflict with identical reliability cues. This gap is not explained by audio quality: audio-only accuracy (97.2\%) exceeds cascade accuracy (93.9\%), indicating audio embeddings preserve more information than text transcripts. We propose that text dominance reflects an asymmetry not in information content but in arbitration accessibility: how easily the model can reason over competing representations. This framework explains otherwise puzzling findings. Forcing transcription before answering increases text dominance (19\% to 33\%), sacrificing audio's information advantage without improving accessibility. Framing text as ``deliberately corrupted'' reduces text dominance by 80\%. A fine-tuning ablation provides interventional evidence: training only the audio projection layer increases text dominance (+26.5\%), while LoRA on the language model halves it ($-$23.9\%), localizing text dominance to the LLM's reasoning rather than the audio encoder. Experiments across four state-of-the-art audio-LLMs and 8 languages show consistent trends with substantial cross-linguistic and cross-model variation, establishing modality arbitration as a distinct reliability dimension not captured by standard speech benchmarks.
comment: 25 pages, 18 tables, 8 languages, benchmark and code at https://github.com/jb1999/alme-benchmark
☆ ADRD-Bench: A Preliminary LLM Benchmark for Alzheimer's Disease and Related Dementias
Large language models (LLMs) have shown great potential for healthcare applications. However, existing evaluation benchmarks provide minimal coverage of Alzheimer's Disease and Related Dementias (ADRD). To address this gap, we introduce ADRD-Bench, the first ADRD-specific benchmark dataset designed for rigorous evaluation of LLMs. ADRD-Bench has two components: 1) ADRD Unified QA, a synthesis of 1,352 questions consolidated from seven established medical benchmarks, providing a unified assessment of clinical knowledge; and 2) ADRD Caregiving QA, a novel set of 149 questions derived from the Aging Brain Care (ABC) program, a widely used, evidence-based brain health management program. Guided by a program with national expertise in comprehensive ADRD care, this new set was designed to mitigate the lack of practical caregiving context in existing benchmarks. We evaluated 33 state-of-the-art LLMs on the proposed ADRD-Bench. Results showed that the accuracy of open-weight general models ranged from 0.63 to 0.93 (mean: 0.78; std: 0.09). The accuracy of open-weight medical models ranged from 0.48 to 0.93 (mean: 0.82; std: 0.13). The accuracy of closed-source general models ranged from 0.83 to 0.91 (mean: 0.89; std: 0.03). While top-tier models achieved high accuracies (>0.9), case studies revealed that inconsistent reasoning quality and stability limit their reliability, highlighting a critical need for domain-specific improvement to enhance LLMs' knowledge and reasoning grounded in daily caregiving data. The entire dataset is available at https://github.com/IIRL-ND/ADRD-Bench.
♻ ☆ Do language models accommodate their users? A study of linguistic convergence EACL 2026
While large language models (LLMs) are generally considered proficient in generating language, how similar their language usage is to that of humans remains understudied. In this paper, we test whether models exhibit linguistic convergence, a core pragmatic element of human language communication: do models adapt, or converge, to the linguistic patterns of their user? To answer this, we systematically compare model completions of existing dialogues to original human responses across sixteen language models, three dialogue corpora, and various stylometric features. We find that models strongly converge to the conversation's style, often significantly overfitting relative to the human baseline. While convergence patterns are often feature-specific, we observe consistent shifts in convergence across modeling settings, with instruction-tuned and larger models converging less than their pretrained and smaller counterparts. Given the differences in human and model convergence patterns, we hypothesize that the underlying mechanisms driving these behaviors are very different.
comment: EACL 2026
♻ ☆ Towards Autonomous Mathematics Research
Recent advances in foundational models have yielded reasoning systems capable of achieving a gold-medal standard at the International Mathematical Olympiad. The transition from competition-level problem-solving to professional research, however, requires navigating vast literature and constructing long-horizon proofs. In this work, we introduce Aletheia, a math research agent that iteratively generates, verifies, and revises solutions end-to-end in natural language. Specifically, Aletheia is powered by an advanced version of Gemini Deep Think for challenging reasoning problems, a novel inference-time scaling law that extends beyond Olympiad-level problems, and intensive tool use to navigate the complexities of mathematical research. We demonstrate the capability of Aletheia from Olympiad problems to PhD-level exercises and most notably, through several distinct milestones in AI-assisted mathematics research: (a) a research paper (Feng26) generated by AI without any human intervention in calculating certain structure constants in arithmetic geometry called eigenweights; (b) a research paper (LeeSeo26) demonstrating human-AI collaboration in proving bounds on systems of interacting particles called independent sets; and (c) an extensive semi-autonomous evaluation (Feng et al., 2026a) of 700 open problems on Bloom's Erdos Conjectures database, including autonomous solutions to four open questions. In order to help the public better understand the developments pertaining to AI and mathematics, we suggest quantifying standard levels of autonomy and novelty of AI-assisted results, as well as propose a novel concept of human-AI interaction cards for transparency. We conclude with reflections on human-AI collaboration in mathematics and share all prompts as well as model outputs at https://github.com/google-deepmind/superhuman/tree/main/aletheia.
comment: 35 pages. Accompanied blog post https://deepmind.google/blog/accelerating-mathematical-and-scientific-discovery-with-gemini-deep-think/
♻ ☆ PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery ICLR 2026
Model pruning is an effective approach for compressing large language models (LLMs). However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some irrelevant instructions may also introduce negative effects to model capacity recovery. To address these challenges, we propose the \textbf{P}ost-training d\textbf{A}ta \textbf{S}election method for \textbf{E}fficient pruned large language model \textbf{R}ecovery (\textbf{PASER}). PASER aims to identify instructions to recover the most compromised model capacities with a certain data budget. Our approach first applies manifold learning and spectral clustering to group recovery instructions in the semantic space, revealing capability-specific instruction sets. Then, the data budget is adaptively allocated across clusters by the degree of corresponding model capability degradation. In each cluster, we prioritize data samples that lead to the most decline of model performance. To mitigate potential negative tuning effects, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data. We provide the code repository in \href{https://github.com/BokwaiHo/PASER}{Link}.
comment: Accepted by ICLR 2026
♻ ☆ CoSpaDi: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning
Post-training compression of large language models (LLMs) often relies on low-rank weight approximations that represent each column of the weight matrix in a shared low-dimensional subspace. This strategy is computationally efficient but the underlying constraint can be overly rigid for heterogeneous projection weights and may incur avoidable accuracy loss. We propose CoSpaDi (Compression via Sparse Dictionary Learning), a training-free framework that replaces low-rank factorization with a structured sparse decomposition in which each weight matrix is represented as a dense dictionary multiplied by a column-sparse coefficient matrix. This yields a union-of-subspaces model: the columns of the weight matrix are represented as linear combinations of different subsets of dictionary atoms, improving expressiveness at a fixed parameter budget. CoSpaDi is calibration-guided: using a small calibration set, we optimize the factorization to minimize functional reconstruction error of layer outputs rather than weight-space error. An activation-derived Gram orthonormalization reformulates this data-aware objective into a standard dictionary learning problem on transformed weights, and we support both per-layer compression and cross-layer dictionary sharing within groups of similar projections. Across Llama and Qwen model families, CoSpaDi consistently improves the accuracy--compression and perplexity--compression trade-offs over state-of-the-art SVD-based baselines and strong structured pruning baselines at 20-40\% compression ratios. The resulting structured sparsity enables sparse--dense computation and integrates with post-training quantization of the sparse coefficients.
♻ ☆ LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Artificial Intelligence (AI) is revolutionizing scientific research, yet its growing integration into laboratory environments presents critical safety challenges. Large language models (LLMs) and vision language models (VLMs) now assist in experiment design and procedural guidance, yet their "illusion of understanding" may lead researchers to overtrust unsafe outputs. Here we show that current models remain far from meeting the reliability needed for safe laboratory operation. We introduce LabSafety Bench, a comprehensive benchmark that evaluates models on hazard identification, risk assessment, and consequence prediction across 765 multiple-choice questions and 404 realistic lab scenarios, encompassing 3,128 open-ended tasks. Evaluations on 19 advanced LLMs and VLMs show that no model evaluated on hazard identification surpasses 70% accuracy. While proprietary models perform well on structured assessments, they do not show a clear advantage in open-ended reasoning. These results underscore the urgent need for specialized safety evaluation frameworks before deploying AI systems in real laboratory settings.
comment: Published at Nature Machine Intelligence
♻ ☆ Evaluating Modern Large Language Models on Low-Resource and Morphologically Rich Languages:A Cross-Lingual Benchmark Across Cantonese, Japanese, and Turkish
Large language models (LLMs) have achieved impressive results in high-resource languages like English, yet their effectiveness in low-resource and morphologically rich languages remains underexplored. In this paper, we present a comprehensive evaluation of seven cutting-edge LLMs -- including GPT-4o, GPT-4, Claude~3.5~Sonnet, LLaMA~3.1, Mistral~Large~2, LLaMA-2~Chat~13B, and Mistral~7B~Instruct -- on a new cross-lingual benchmark covering \textbf{Cantonese, Japanese, and Turkish}. Our benchmark spans four diverse tasks: open-domain question answering, document summarization, English-to-X translation, and culturally grounded dialogue. We combine \textbf{human evaluations} (rating fluency, factual accuracy, and cultural appropriateness) with automated metrics (e.g., BLEU, ROUGE) to assess model performance. Our results reveal that while the largest proprietary models (GPT-4o, GPT-4, Claude~3.5) generally lead across languages and tasks, significant gaps persist in culturally nuanced understanding and morphological generalization. Notably, GPT-4o demonstrates robust multilingual performance even on cross-lingual tasks, and Claude~3.5~Sonnet achieves competitive accuracy on knowledge and reasoning benchmarks. However, all models struggle to some extent with the unique linguistic challenges of each language, such as Turkish agglutinative morphology and Cantonese colloquialisms. Smaller open-source models (LLaMA-2~13B, Mistral~7B) lag substantially in fluency and accuracy, highlighting the resource disparity. We provide detailed quantitative results, qualitative error analysis, and discuss implications for developing more culturally aware and linguistically generalizable LLMs. Our benchmark and evaluation data are released to foster reproducibility and further research.
comment: This paper requires XeLaTeX for proper Unicode rendering of Japanese and Cantonese text
♻ ☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
♻ ☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
♻ ☆ Neuro-Symbolic Synergy for Interactive World Modeling
Large language models (LLMs) exhibit strong general-purpose reasoning capabilities, yet they frequently hallucinate when used as world models (WMs), where strict compliance with deterministic transition rules--particularly in corner cases--is essential. In contrast, Symbolic WMs provide logical consistency but lack semantic expressivity. To bridge this gap, we propose Neuro-Symbolic Synergy (NeSyS), a framework that integrates the probabilistic semantic priors of LLMs with executable symbolic rules to achieve both expressivity and robustness. NeSyS alternates training between the two models using trajectories inadequately explained by the other. Unlike rule-based prompting, the symbolic WM directly constrains the LLM by modifying its output probability distribution. The neural WM is fine-tuned only on trajectories not covered by symbolic rules, reducing training data by 50% without loss of accuracy. Extensive experiments on three distinct interactive environments, i.e., ScienceWorld, Webshop, and Plancraft, demonstrate NeSyS's consistent advantages over baselines in both WM prediction accuracy and data efficiency.
♻ ☆ Racka: Efficient Hungarian LLM Adaptation on Academic Infrastructure
We present Racka, a lightweight, continually pretrained large language model designed to bridge the resource gap between Hungarian and high-resource languages such as English and German. Racka employs parameter-efficient continual pretraining via Low-Rank Adaptation (LoRA) on a Qwen-3 4B backbone, making the recipe practical on A100 (40GB)-based HPC clusters with low inter-node bandwidth. To better match the training distribution, we replace and adapt the tokenizer, achieving substantially improved tokenization fertility for Hungarian while maintaining competitive performance in English and German. The model is trained on 160B subword tokens drawn from a mixture of internet and high-quality curated sources, with a composition of 44% Hungarian, 24% English, 21% German, and 11% code. This data mix is chosen to mitigate catastrophic forgetting and preserve high-resource language capabilities during continual pretraining. Our preliminary results indicate modest but stable results in language adaptation.
comment: 22 pages, 1 figures. Appeared, and received best paper award, at the XXII. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2026)
♻ ☆ Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
♻ ☆ Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving
Existing approaches to mathematical reasoning with large language models (LLMs) rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation. While efforts have been made to combine these methods, they primarily rely on post-selection or predefined strategies, leaving an open question: whether LLMs can autonomously adapt their reasoning strategy based on their inherent capabilities. In this work, we propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously, aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data selection during supervised fine-tuning (SFT) to tailor training data to the model's unique abilities. This approach equips LLMs to autonomously determine and apply the appropriate reasoning strategy at test time. We evaluate TATA through extensive experiments on six mathematical reasoning benchmarks, using both general-purpose and math-specialized LLMs. Empirical results demonstrate that TATA effectively combines the complementary strengths of CoT and TIR, achieving superior or comparable performance with improved inference efficiency compared to TIR alone. Further analysis underscores the critical role of aptitude-aware data selection in enabling LLMs to make effective and adaptive reasoning decisions and align reasoning strategies with model capabilities.
comment: 8 pages
♻ ☆ LLMEval-Fair: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-Fair, a framework for dynamic evaluation of LLMs. LLMEval-Fair is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. A 30-month longitudinal study of nearly 60 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-Fair offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
♻ ☆ LLM-in-Sandbox Elicits General Agentic Intelligence
We introduce LLM-in-Sandbox, enabling LLMs to explore within a code sandbox (i.e., a virtual computer), to elicit general intelligence in non-code domains. We first demonstrate that strong LLMs, without additional training, exhibit generalization capabilities to leverage the code sandbox for non-code tasks. For example, LLMs spontaneously access external resources to acquire new knowledge, leverage the file system to handle long contexts, and execute scripts to satisfy formatting requirements. We further show that these agentic capabilities can be enhanced through LLM-in-Sandbox Reinforcement Learning (LLM-in-Sandbox-RL), which uses only non-agentic data to train models for sandbox exploration. Experiments demonstrate that LLM-in-Sandbox, in both training-free and post-trained settings, achieves robust generalization spanning mathematics, physics, chemistry, biomedicine, long-context understanding, and instruction following. Finally, we analyze LLM-in-Sandbox's efficiency from computational and system perspectives, and open-source it as a Python package to facilitate real-world deployment.
comment: Project Page: https://llm-in-sandbox.github.io
♻ ☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact or novel formats can incur a token overhead driven by grep output density and pattern unfamiliarity, with the magnitude depending on model capability. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 8 figures, 10 tables, 26 references. v2: revised scale experiment analysis
♻ ☆ Cross-lingual Offensive Language Detection: A Systematic Review of Datasets, Transfer Approaches and Challenges
The growing prevalence and rapid evolution of offensive language in social media amplify the complexities of detection, particularly highlighting the challenges in identifying such content across diverse languages. This survey presents a systematic and comprehensive exploration of Cross-Lingual Transfer Learning (CLTL) techniques in offensive language detection in social media. Our study stands as the first holistic overview to focus exclusively on the cross-lingual scenario in this domain. We analyse 67 relevant papers and categorise these studies across various dimensions, including the characteristics of multilingual datasets used, the cross-lingual resources employed, and the specific CLTL strategies implemented. According to "what to transfer", we also summarise three main CLTL transfer approaches: instance, feature, and parameter transfer. Additionally, we shed light on the current challenges and future research opportunities in this field. Furthermore, we have made our survey resources available online, including two comprehensive tables that provide accessible references to the multilingual datasets and CLTL methods used in the reviewed literature.
comment: 35 pages, 7 figures
♻ ☆ TABLET: A Large-Scale Dataset for Robust Visual Table Understanding
While table understanding increasingly relies on pixel-only settings, current benchmarks predominantly use synthetic renderings that lack the complexity and visual diversity of real-world tables. Additionally, existing visual table understanding (VTU) datasets offer fixed examples with single visualizations and pre-defined instructions, providing no access to underlying serialized data for reformulation. We introduce TABLET, a large-scale VTU dataset with 4 million examples across 21 tasks, grounded in 2 million unique tables where 88% preserve original visualizations. To evaluate whether models are able to jointly reason over tabular and visual content, we also introduce VisualTableQA, a benchmark requiring both visual perception and table understanding. Fine-tuning vision-language models like Qwen2.5-VL-7B and Gemma 3-4B on TABLET improves performance on seen and unseen VTU tasks while increasing robustness on real-world table visualizations. By preserving original visualizations and maintaining example traceability in a unified large-scale collection, TABLET establishes a foundation for robust training and extensible evaluation of future VTU models.
♻ ☆ MLDocRAG: Multimodal Long-Context Document Retrieval Augmented Generation
Understanding multimodal long-context documents that comprise multimodal chunks such as paragraphs, figures, and tables is challenging due to (1) cross-modal heterogeneity to localize relevant information across modalities, (2) cross-page reasoning to aggregate dispersed evidence across pages. To address these challenges, we are motivated to adopt a query-centric formulation that projects cross-modal and cross-page information into a unified query representation space, with queries acting as abstract semantic surrogates for heterogeneous multimodal content. In this paper, we propose a Multimodal Long-Context Document Retrieval Augmented Generation (MLDocRAG) framework that leverages a Multimodal Chunk-Query Graph (MCQG) to organize multimodal document content around semantically rich, answerable queries. MCQG is constructed via a multimodal document expansion process that generates fine-grained queries from heterogeneous document chunks and links them to their corresponding content across modalities and pages. This graph-based structure enables selective, query-centric retrieval and structured evidence aggregation, thereby enhancing grounding and coherence in multimodal long-context question answering. Experiments on datasets MMLongBench-Doc and LongDocURL demonstrate that MLDocRAG consistently improves retrieval quality and answer accuracy, demonstrating its effectiveness for multimodal long-context understanding.
comment: 15 pages
♻ ☆ A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
We introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs about cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring both keyword extraction and reasoning. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios: zero-shot prompting and supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian.
comment: Accepted in npj Digital Medicine
♻ ☆ Accelerating Large Language Model Inference with Self-Supervised Early Exits
This paper presents a modular approach to accelerate inference in large language models (LLMs) by adding early exit heads at intermediate transformer layers. Each head is trained in a self-supervised manner to mimic the main model's predictions, allowing computation to stop early when a calibrated confidence threshold is reached. We evaluate several confidence metrics and show that entropy provides the most reliable separation between correct and incorrect predictions. Experiments on the Pythia model suite (70M to 2.8B parameters) demonstrate that our method significantly reduces inference cost while maintaining accuracy across multiple benchmarks. We further adapt this approach to speculative decoding, introducing Dynamic Self-Speculative Decoding (DSSD), which achieves 1.66x higher token acceptance than manually-tuned LayerSkip baselines with minimal hyperparameter tuning.
♻ ☆ Evaluating Metalinguistic Knowledge in Large Language Models across the World's Languages
LLMs are routinely evaluated on language use, yet their explicit knowledge about linguistic structure remains poorly understood. Existing linguistic benchmarks focus on narrow phenomena, emphasize high-resource languages, and rarely test metalinguistic knowledge - explicit reasoning about language structure. We present a multilingual evaluation of metalinguistic knowledge in LLMs, based on the World Atlas of Language Structures (WALS), documenting 192 linguistic features across 2,660 languages. We convert WALS features into natural-language multiple-choice questions and evaluate models across documented languages. Using accuracy and macro F1, and comparing to chance and majority-class baselines, we assess performance and analyse variation across linguistic domains and language-related factors. Results show limited metalinguistic knowledge: GPT-4o performs best but achieves moderate accuracy (0.367), while open-source models lag. Although all models perform above chance, they fail to outperform the majority-class baseline, suggesting they capture broad cross-linguistic patterns but lack fine-grained distinctions. Performance varies by domain, partly reflecting differences in online visibility. At the language level, accuracy correlates with digital language status: languages with greater digital presence and resources are evaluated more accurately, while low-resource languages perform worse. Analysis of predictive factors confirms that resource-related indicators (Wikipedia size, corpus availability) are more informative than geographic, genealogical, or sociolinguistic factors. Overall, LLM metalinguistic knowledge appears fragmented and shaped mainly by data availability, rather than broadly generalizable grammatical competence. We release the benchmark as an open-source dataset to support evaluation across languages and encourage greater global linguistic diversity in future LLMs.
♻ ☆ When a Man Says He Is Pregnant: Event-related Potential Evidence for a Rational Account of Speaker-contextualized Language Comprehension
Spoken language is often, if not always, understood in a context formed by the identity of the speaker. For example, we can easily make sense of an utterance such as "I'm going to have a manicure this weekend" or "The first time I got pregnant I had a hard time" when spoken by a woman, but it would be harder to understand when it is spoken by a man. Previous ERP studies have shown mixed results regarding the neurophysiological responses to such speaker-content mismatches, with some reporting an N400 effect and others a P600 effect. In an EEG experiment involving 64 participants, we used social and biological mismatches as test cases to demonstrate how these distinct ERP patterns reflect different aspects of rational inference. We showed that when the mismatch involves social stereotypes (e.g., men getting a manicure), listeners can arrive at a "literal" interpretation by integrating the content with their social knowledge, though this integration requires additional effort due to stereotype violations-resulting in an N400 effect. In contrast, when the mismatch involves biological knowledge (e.g., men getting pregnant), a "literal" interpretation becomes highly implausible or impossible, leading listeners to treat the input as potentially containing errors and engage in correction processes-resulting in a P600 effect. Supporting this rational inference framework, we found that the social N400 effect decreased as a function of the listener's personality trait of openness (as more open-minded individuals maintain more flexible social expectations), while the biological P600 effect remained robust (as biological constraints are recognized regardless of individual personalities). Our findings help to reconcile empirical inconsistencies and reveal how rational inference shapes speaker-contextualized language comprehension.
♻ ☆ TEGRA: Text Encoding With Graph and Retrieval Augmentation for Misinformation Detection
Misinformation detection is a critical task that can benefit significantly from the integration of external knowledge, much like manual fact-checking. In this work, we propose a novel method for representing textual documents that facilitates the incorporation of information from a knowledge base. Our approach, Text Encoding with Graph (TEG), processes documents by extracting structured information in the form of a graph and encoding both the text and the graph for classification purposes. Through extensive experiments, we demonstrate that this hybrid representation enhances misinformation detection performance compared to using language models alone. Furthermore, we introduce TEGRA, an extension of our framework that integrates domain-specific knowledge, further enhancing classification accuracy in most cases.
♻ ☆ How Does a Deep Neural Network Look at Lexical Stress in English Words?
Despite their success in speech processing, neural networks often operate as black boxes, prompting the question: what informs their decisions, and how can we interpret them? This work examines this issue in the context of lexical stress. A dataset of English disyllabic words was automatically constructed from read and spontaneous speech. Several Convolutional Neural Network (CNN) architectures were trained to predict stress position from a spectrographic representation of disyllabic words lacking minimal stress pairs (e.g., initial stress WAllet, final stress exTEND), achieving up to 92% accuracy on held-out test data. Layerwise Relevance Propagation (LRP), a technique for neural network interpretability analysis, revealed that predictions for held-out minimal pairs (PROtest vs. proTEST ) were most strongly influenced by information in stressed versus unstressed syllables, particularly the spectral properties of stressed vowels. However, the classifiers also attended to information throughout the word. A feature-specific relevance analysis is proposed, and its results suggest that our best-performing classifier is strongly influenced by the stressed vowel's first and second formants, with some evidence that its pitch and third formant also contribute. These results reveal deep learning's ability to acquire distributed cues to stress from naturally occurring data, extending traditional phonetic work based around highly controlled stimuli.
comment: 11 pages, 5 figures, accepted to the Journal of the Acoustical Society of America (JASA)
♻ ☆ Eroding the Truth-Default: A Causal Analysis of Human Susceptibility to Foundation Model Hallucinations and Disinformation in the Wild
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.
comment: Accepted at ACM TheWebConf '26 Companion
♻ ☆ Fine-tuning Quantized Neural Networks with Zeroth-order Optimization ICLR 2026
As the size of large language models grows exponentially, GPU memory has become a bottleneck for adapting these models to downstream tasks. In this paper, we aim to push the limits of memory-efficient training by minimizing memory usage on model weights, gradients, and optimizer states, within a unified framework. Our idea is to eliminate both gradients and optimizer states using zeroth-order optimization, which approximates gradients by perturbing weights during forward passes to identify gradient directions. To minimize memory usage on weights, we employ model quantization, e.g., converting from bfloat16 to int4. However, directly applying zeroth-order optimization to quantized weights is infeasible due to the precision gap between discrete weights and continuous gradients, which would otherwise require de-quantization and re-quantization. To overcome this challenge, we propose Quantized Zeroth-order Optimization (QZO), a simple yet effective approach that perturbs the continuous quantization scale for gradient estimation and uses a directional derivative clipping method to stabilize training. QZO is orthogonal to both scalar-based and codebook-based post-training quantization methods. Compared to full-parameter fine-tuning in 16 bits, QZO can reduce the total memory cost by more than 18$\times$ for 4-bit LLMs, and enables fine-tuning Llama-2-13B within a single 24GB GPU.
comment: Accepted by ICLR 2026
♻ ☆ Translate Policy to Language: Flow Matching Generated Rewards for LLM Explanations ICLR 2026
As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain agent policies in natural language is vital for reliable coexistence. We introduce a general-purpose framework that trains explanation-generating LLMs via reinforcement learning from AI feedback, with distributional rewards generated by generative continuous normalizing flows (CNFs). CNFs capture the pluralistic and probabilistic nature of human judgments about explanations. Moreover, under mild assumptions, CNFs provably bound deviations from true human reward distributions when trained on noisy proxy rewards from LLMs. We design a specialized CNF architecture that selectively attends to linguistic cues in the decision context and explanations when generating rewards. Human and LLM evaluators find that our method delivers explanations that enable more accurate predictions of true agent decisions, exhibit greater logical soundness and actionability, and impose lower cognitive load than explanations trained with proxy LLM rewards or state-of-the-art RLHF and RLAIF baselines.
comment: Accepted by ICLR 2026
♻ ☆ Steering MoE LLMs via Expert (De)Activation ICLR 2026
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework to steer MoE models by detecting and controlling behavior-associated experts. We detect key experts by comparing how often they activate between paired inputs that demonstrate opposite behaviors (e.g., safe vs. unsafe). By selectively activating or deactivating such experts during inference, we control behaviors like faithfulness and safety without fine-tuning. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. Alternatively, unsafe steering drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails. Overall, SteerMoE offers a lightweight, effective, and widely applicable test-time control, while revealing unique vulnerabilities in MoE LLMs. https://github.com/adobe-research/SteerMoE
comment: ICLR 2026
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization ICLR 2026
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Accepted at ICLR 2026
♻ ☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLMs) favor their own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
♻ ☆ Binary Autoencoder for Mechanistic Interpretability of Large Language Models
Existing works are dedicated to untangling atomized numerical components (features) from the hidden states of Large Language Models (LLMs). However, they typically rely on autoencoders constrained by some training-time regularization on single training instances, without an explicit guarantee of global sparsity among instances, causing a large amount of dense (simultaneously inactive) features, harming the feature sparsity and atomization. In this paper, we propose a novel autoencoder variant that enforces minimal entropy on minibatches of hidden activations, thereby promoting feature independence and sparsity across instances. For efficient entropy calculation, we discretize the hidden activations to 1-bit via a step function and apply gradient estimation to enable backpropagation, so that we term it as Binary Autoencoder (BAE) and empirically demonstrate two major applications: (1) Feature set entropy calculation. Entropy can be reliably estimated on binary hidden activations, which can be leveraged to characterize the inference dynamics of LLMs. (2) Feature untangling. Compared to typical methods, due to improved training strategy, BAE avoids dense features while producing the largest number of interpretable ones among baselines.
comment: 36 pages, 43 figures, 3 tables
♻ ☆ A Generative Model for Joint Multiple Intent Detection and Slot Filling
In task-oriented dialogue systems, spoken language understanding (SLU) is a critical component, which consists of two sub-tasks, intent detection and slot filling. Most existing methods focus on the single-intent SLU, where each utterance only has one intent. However, in real-world scenarios users usually express multiple intents in an utterance, which poses a challenge for existing dialogue systems and datasets. In this paper, we propose a generative framework to simultaneously address multiple intent detection and slot filling. In particular, an attention-over-attention decoder is proposed to handle the variable number of intents and the interference between the two sub-tasks by incorporating an inductive bias into the process of multi-task learning. Besides, we construct two new multi-intent SLU datasets based on single-intent utterances by taking advantage of the next sentence prediction (NSP) head of the BERT model. Experimental results demonstrate that our proposed attention-over-attention generative model achieves state-of-the-art performance on two public datasets, MixATIS and MixSNIPS, and our constructed datasets.
♻ ☆ MemRL: Self-Evolving Agents via Runtime Reinforcement Learning on Episodic Memory
The hallmark of human intelligence is the self-evolving ability to master new skills by learning from past experiences. However, current AI agents struggle to emulate this self-evolution: fine-tuning is computationally expensive and prone to catastrophic forgetting, while existing memory-based methods rely on passive semantic matching that often retrieves noise. To address these challenges, we propose MemRL, a non-parametric approach that evolves via reinforcement learning on episodic memory. By decoupling stable reasoning from plastic memory, MemRL employs a Two-Phase Retrieval mechanism to filter noise and identify high-utility strategies through environmental feedback. Extensive experiments on HLE, BigCodeBench, ALFWorld, and Lifelong Agent Bench demonstrate that MemRL significantly outperforms state-of-the-art baselines, confirming that MemRL effectively reconciles the stability-plasticity dilemma, enabling continuous runtime improvement without weight updates. Code is available at https://github.com/MemTensor/MemRL.
comment: 41 pages, 11 figures
♻ ☆ AutoDiscovery: Open-ended Scientific Discovery via Bayesian Surprise NeurIPS 2025
The promise of autonomous scientific discovery (ASD) hinges not only on answering questions, but also on knowing which questions to ask. Most recent works in ASD explore the use of large language models (LLMs) in goal-driven settings, relying on human-specified research questions to guide hypothesis generation. However, scientific discovery may be accelerated further by allowing the AI system to drive exploration by its own criteria. The few existing approaches in open-ended ASD select hypotheses based on diversity heuristics or subjective proxies for human interestingness, but the former struggles to meaningfully navigate the typically vast hypothesis space, and the latter suffers from imprecise definitions. This paper presents AutoDiscovery -- a method for open-ended ASD that instead drives scientific exploration using Bayesian surprise. Here, we quantify the epistemic shift from the LLM's prior beliefs about a hypothesis to its posterior beliefs after gathering experimental results. To efficiently explore the space of nested hypotheses, our method employs a Monte Carlo tree search (MCTS) strategy with progressive widening using surprisal as the reward function. We evaluate AutoDiscovery in the setting of data-driven discovery across 21 real-world datasets spanning domains such as biology, economics, finance, and behavioral science. Our results demonstrate that under a fixed budget, AutoDiscovery substantially outperforms competitors by producing 5-29% more discoveries deemed surprising by the LLM. Our human evaluation further reveals that two-thirds of discoveries made by our system are surprising to domain experts as well, suggesting this is an important step towards building open-ended ASD systems.
comment: Accepted to NeurIPS 2025: https://neurips.cc/virtual/2025/loc/san-diego/poster/116398
♻ ☆ Compositional Generalization from Learned Skills via CoT Training: A Theoretical and Structural Analysis for Reasoning ICLR 2026
Chain-of-Thought (CoT) training has markedly advanced the reasoning capabilities of large language models (LLMs), yet the mechanisms by which CoT training enhances generalization remain inadequately understood. In this work, we demonstrate that compositional generalization is fundamental: models systematically combine simpler learned skills during CoT training to address novel and more complex problems. Through a theoretical and structural analysis, we formalize this process: 1) Theoretically, the information-theoretic generalization bounds through distributional divergence can be decomposed into in-distribution (ID) and out-of-distribution (OOD) components. Specifically, the non-CoT models fail on OOD tasks due to unseen compositional patterns, whereas CoT-trained models achieve strong generalization by composing previously learned skills. In addition, controlled experiments and real-world validation confirm that CoT training accelerates convergence and enhances generalization from ID to both ID and OOD scenarios while maintaining robust performance even with tolerable noise. 2) Structurally, CoT training internalizes reasoning into a two-stage compositional circuit, where the number of stages corresponds to the explicit reasoning steps during training. Notably, CoT-trained models resolve intermediate results at shallower layers compared to non-CoT counterparts, freeing up deeper layers to specialize in subsequent reasoning steps. A key insight is that CoT training teaches models how to think-by fostering compositional reasoning-rather than merely what to think, through the provision of correct answers alone. This paper offers valuable insights for designing CoT strategies to enhance LLMs' reasoning robustness.
comment: ICLR 2026
♻ ☆ Embedding Inversion via Conditional Masked Diffusion Language Models
We frame embedding inversion as conditional masked diffusion, recovering all tokens in parallel through iterative denoising rather than sequential autoregressive generation. A masked diffusion language model is conditioned on the target embedding via adaptive layer normalization, requiring only 8 forward passes through a 78M parameter model with no access to the target encoder. On 32-token sequences across three embedding models, the method achieves up to 81.3% token accuracy. Source code and live demo are available at https://github.com/jina-ai/embedding-inversion-demo.
comment: 7 pages, 2 figures, 3 tables. Code and demo: https://github.com/jina-ai/embedding-inversion-demo
♻ ☆ CausalEmbed: Auto-Regressive Multi-Vector Generation in Latent Space for Visual Document Embedding
Although Multimodal Large Language Models (MLLMs) have shown remarkable potential in Visual Document Retrieval (VDR) through generating high-quality multi-vector embeddings, the substantial storage overhead caused by representing a page with thousands of visual tokens limits their practicality in real-world applications. To address this challenge, we propose an auto-regressive generation approach, CausalEmbed, for constructing multi-vector embeddings. By incorporating iterative margin loss during contrastive training, CausalEmbed encourages the embedding models to learn compact and well-structured representations. Our method enables efficient VDR tasks using only dozens of visual tokens, achieving a 30-155x reduction in token count while maintaining highly competitive performance across various backbones and benchmarks. Theoretical analysis and empirical results demonstrate the unique advantages of auto-regressive embedding generation in terms of training efficiency and scalability at test time. As a result, CausalEmbed introduces a flexible test-time scaling strategy for multi-vector VDR representations and sheds light on the generative paradigm within multimodal document retrieval. Our code is available at https://github.com/Z1zs/Causal-Embed.
comment: Under review
♻ ☆ SMaRT: Select, Mix, and ReinvenT -- A Strategy Fusion Framework for LLM-Driven Reasoning and Planning
Large Language Models (LLMs) have redefined complex task automation with exceptional generalization capabilities. Despite these advancements, state-of-the-art methods rely on single-strategy prompting, missing the synergy of diverse reasoning approaches. No single strategy excels universally, highlighting the need for frameworks that fuse strategies to maximize performance and ensure robustness. We introduce the Select, Mix, and ReinvenT (SMaRT) framework, an innovative strategy fusion approach designed to overcome this constraint by creating balanced and efficient solutions through the seamless integration of diverse reasoning strategies. Unlike existing methods, which employ LLMs merely as evaluators, SMaRT uses them as intelligent integrators, unlocking the "best of all worlds" across tasks. Extensive empirical evaluations across benchmarks in reasoning, planning, and sequential decision-making highlight the robustness and adaptability of SMaRT. The framework consistently outperforms state-of-the-art baselines in solution quality, constraint adherence, and performance metrics. This work redefines LLM-driven decision-making by pioneering a new paradigm in cross-strategy calibration, unlocking superior outcomes for reasoning systems and advancing the boundaries of self-refining methodologies.
♻ ☆ Model-Dowser: Data-Free Importance Probing to Mitigate Catastrophic Forgetting in Multimodal Large Language Models
Fine-tuning Multimodal Large Language Models (MLLMs) on task-specific data is an effective way to improve performance on downstream applications. However, such adaptation often leads to a degradation in generalization on pretrained tasks, a phenomenon known as Catastrophic Forgetting. Existing methods that aim to mitigate this issue either become ineffective when fine-tuning deeper layers of the language decoder or scale poorly with increasing model size. To address these limitations, we propose Model-Dowser, a novel sparse fine-tuning approach for MLLMs. Model-Dowser measures a principled importance score for each model parameter with respect to pretrained generalization (prior to downstream adaptation) by jointly considering weight magnitudes, input activations, and output sensitivities. During fine-tuning, Model-Dowser selectively preserves high-importance parameters and updates the remaining. Comprehensive experiments on two representative MLLMs, LLaVA and NVILA, demonstrate that Model-Dowser effectively mitigates catastrophic forgetting and consistently outperforms prior methods, while remaining resource-efficient and scalable to multi-billion-parameter models.
♻ ☆ Succeeding at Scale: Automated Dataset Construction and Query-Side Adaptation for Multi-Tenant Search
Large-scale multi-tenant retrieval systems generate extensive query logs but lack curated relevance labels for effective domain adaptation, resulting in substantial underutilized "dark data". This challenge is compounded by the high cost of model updates, as jointly fine-tuning query and document encoders requires full corpus re-indexing, which is impractical in multi-tenant settings with thousands of isolated indices. We introduce DevRev-Search, a passage retrieval benchmark for technical customer support built via a fully automated pipeline. Candidate generation uses fusion across diverse sparse and dense retrievers, followed by an LLM-as-a-Judge for consistency filtering and relevance labeling. We further propose an Index-Preserving Adaptation strategy that fine-tunes only the query encoder, achieving strong performance gains while keeping document indices fixed. Experiments on DevRev-Search, SciFact, and FiQA-2018 show that Parameter-Efficient Fine-Tuning (PEFT) of the query encoder delivers a remarkable quality-efficiency trade-off, enabling scalable and practical enterprise search adaptation.
♻ ☆ Learning to Route: A Rule-Driven Agent Framework for Hybrid-Source Retrieval-Augmented Generation
Large Language Models (LLMs) have shown remarkable performance on general Question Answering (QA), yet they often struggle in domain-specific scenarios where accurate and up-to-date information is required. Retrieval-Augmented Generation (RAG) addresses this limitation by enriching LLMs with external knowledge, but existing systems primarily rely on unstructured documents, while largely overlooking relational databases, which provide precise, timely, and efficiently queryable factual information, serving as indispensable infrastructure in domains such as finance, healthcare, and scientific research. Motivated by this gap, we conduct a systematic analysis that reveals three central observations: (i) databases and documents offer complementary strengths across queries, (ii) naively combining both sources introduces noise and cost without consistent accuracy gains, and (iii) selecting the most suitable source for each query is crucial to balance effectiveness and efficiency. We further observe that query types show consistent regularities in their alignment with retrieval paths, suggesting that routing decisions can be effectively guided by systematic rules that capture these patterns. Building on these insights, we propose a rule-driven routing framework. A routing agent scores candidate augmentation paths based on explicit rules and selects the most suitable one; a rule-making expert agent refines the rules over time using QA feedback to maintain adaptability; and a path-level meta-cache reuses past routing decisions for semantically similar queries to reduce latency and cost. Experiments on three QA benchmarks demonstrate that our framework consistently outperforms static strategies and learned routing baselines, achieving higher accuracy while maintaining moderate computational cost.
♻ ☆ Anagent For Enhancing Scientific Table & Figure Analysis
In scientific research, analysis requires accurately interpreting complex multimodal knowledge, integrating evidence from different sources, and drawing inferences grounded in domain-specific knowledge. However, current artificial intelligence (AI) systems struggle to consistently demonstrate such capabilities. The complexity and variability of scientific tables and figures, combined with heterogeneous structures and long-context requirements, pose fundamental obstacles to scientific table \& figure analysis. To quantify these challenges, we introduce AnaBench, a large-scale benchmark featuring $63,178$ instances from nine scientific domains, systematically categorized along seven complexity dimensions. To tackle these challenges, we propose Anagent, a multi-agent framework for enhanced scientific table \& figure analysis through four specialized agents: Planner decomposes tasks into actionable subtasks, Expert retrieves task-specific information through targeted tool execution, Solver synthesizes information to generate coherent analysis, and Critic performs iterative refinement through five-dimensional quality assessment. We further develop modular training strategies that leverage supervised finetuning and specialized reinforcement learning to optimize individual capabilities while maintaining effective collaboration. Comprehensive evaluation across 9 broad domains with 170 subdomains demonstrates that Anagent achieves substantial improvements, up to $\uparrow 13.43\%$ in training-free settings and $\uparrow 42.12\%$ with finetuning, while revealing that task-oriented reasoning and context-aware problem-solving are essential for high-quality scientific table \& figure analysis. Our project page: https://xhguo7.github.io/Anagent/.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid advancement of tool-use capabilities in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) is shifting from static, one-shot retrieval toward autonomous, multi-turn evidence acquisition. However, existing agentic search frameworks typically treat long documents as flat collections of unstructured chunks, disregarding the native hierarchical organization and sequential logic essential for human comprehension. To bridge this gap, we introduce \textbf{DeepRead}, a structure-aware document reasoning agent designed to operationalize document-native structural priors into actionable reasoning capabilities. Leveraging the structural fidelity of modern OCR, DeepRead constructs a paragraph-level, coordinate-based navigation system and equips the LLM with two synergistic tools: \textsf{Retrieve} for scanning-aware localization, and \textsf{ReadSection} for contiguous, order-preserving reading within specific hierarchical scopes. This design elicits a human-like ``locate-then-read'' reasoning paradigm, effectively mitigating the context fragmentation inherent in traditional retrieval methods. Extensive evaluations across four benchmarks spanning diverse document types demonstrate that DeepRead outperforms Search-o1-style agentic search baselines by an average of 10.3\%. Fine-grained behavioral analysis further confirms that DeepRead autonomously adopts human-aligned reading strategies, validating the critical role of structural awareness in achieving precise document reasoning. Our code is available at https://github.com/Zhanli-Li/DeepRead.
comment: This version has significantly enhanced the clarity of our research
♻ ☆ Control Reinforcement Learning: Interpretable Token-Level Steering of LLMs via Sparse Autoencoder Features
Sparse autoencoders (SAEs) decompose language model activations into interpretable features, but existing methods reveal only which features activate, not which change model outputs when amplified. We introduce Control Reinforcement Learning (CRL), which trains a policy to select SAE features for steering at each token, producing interpretable intervention logs: the learned policy identifies features that change model outputs when amplified. Adaptive Feature Masking encourages diverse feature discovery while preserving singlefeature interpretability. The framework yields new analysis capabilities: branch point tracking locates tokens where feature choice determines output correctness; critic trajectory analysis separates policy limitations from value estimation errors; layer-wise comparison reveals syntactic features in early layers and semantic features in later layers. On Gemma 2 2B across MMLU, BBQ, GSM8K, HarmBench, and XSTest, CRL achieves improvements while providing per-token intervention logs. These results establish learned feature steering as a mechanistic interpretability tool that complements static feature analysis with dynamic intervention probes
♻ ☆ SnapMLA: Efficient Long-Context MLA Decoding via Hardware-Aware FP8 Quantized Pipelining
While FP8 attention has shown substantial promise in innovations like FlashAttention-3, its integration into the decoding phase of the DeepSeek Multi-head Latent Attention (MLA) architecture presents notable challenges. These challenges include numerical heterogeneity arising from the decoupling of positional embeddings, misalignment of quantization scales in FP8 PV GEMM, and the need for optimized system-level support. In this paper, we introduce SnapMLA, an FP8 MLA decoding framework optimized to improve long-context efficiency through the following hardware-aware algorithm-kernel co-optimization techniques: (i) RoPE-Aware Per-Token KV Quantization, where the RoPE part is maintained in high precision, motivated by our comprehensive analysis of the heterogeneous quantization sensitivity inherent to the MLA KV cache. Furthermore, per-token granularity is employed to align with the autoregressive decoding process and maintain quantization accuracy. (ii) Quantized PV Computation Pipeline Reconstruction, which resolves the misalignment of quantization scale in FP8 PV computation stemming from the shared KV structure of the MLA KV cache. (iii) End-to-End Dataflow Optimization, where we establish an efficient data read-and-write workflow using specialized kernels, ensuring efficient data flow and performance gains. Extensive experiments on state-of-the-art MLA LLMs show that SnapMLA achieves up to a 1.91x improvement in throughput, with negligible risk of performance degradation in challenging long-context tasks, including mathematical reasoning and code generation benchmarks. Code is available at https://github.com/meituan-longcat/SGLang-FluentLLM.
♻ ☆ ACL: Aligned Contrastive Learning Improves BERT and Multi-exit BERT Fine-tuning
Despite its success in self-supervised learning, contrastive learning is less studied in the supervised setting. In this work, we first use a set of pilot experiments to show that in the supervised setting, the cross-entropy loss objective (CE) and the contrastive learning objective often conflict with each other, thus hindering the applications of CL in supervised settings. To resolve this problem, we introduce a novel \underline{A}ligned \underline{C}ontrastive \underline{L}earning (ACL) framework. First, ACL-Embed regards label embeddings as extra augmented samples with different labels and employs contrastive learning to align the label embeddings with its samples' representations. Second, to facilitate the optimization of ACL-Embed objective combined with the CE loss, we propose ACL-Grad, which will discard the ACL-Embed term if the two objectives are in conflict. To further enhance the performances of intermediate exits of multi-exit BERT, we further propose cross-layer ACL (ACL-CL), which is to ask the teacher exit to guide the optimization of student shallow exits. Extensive experiments on the GLUE benchmark results in the following takeaways: (a) ACL-BRT outperforms or performs comparably with CE and CE+SCL on the GLUE tasks; (b) ACL, especially CL-ACL, significantly surpasses the baseline methods on the fine-tuning of multi-exit BERT, thus providing better quality-speed tradeoffs for low-latency applications.
♻ ☆ NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews ACL 2025
Large Language Models (LLMs) have demonstrated impressive capabilities in generating coherent text but often struggle with grounding language and strategic dialogue. To address this gap, we focus on journalistic interviews, a domain rich in grounding communication and abundant in data. We curate a dataset of 40,000 two-person informational interviews from NPR and CNN, and reveal that LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions. Realizing that a fundamental deficit exists in multi-turn planning and strategic thinking, we develop a realistic simulated environment, incorporating source personas and persuasive elements, in order to facilitate the development of agents with longer-horizon rewards. Our experiments show that while source LLMs mimic human behavior in information sharing, interviewer LLMs struggle with recognizing when questions are answered and engaging persuasively, leading to suboptimal information extraction across model size and capability. These findings underscore the need for enhancing LLMs' strategic dialogue capabilities.
comment: Accepted at ACL 2025: https://aclanthology.org/2025.acl-long.1580/
♻ ☆ Pursuing Best Industrial Practices for Retrieval-Augmented Generation in the Medical Domain
While retrieval augmented generation (RAG) has been swiftly adopted in industrial applications based on large language models (LLMs), there is no consensus on what are the best practices for building a RAG system in terms of what are the components, how to organize these components and how to implement each component for the industrial applications, especially in the medical domain. In this work, we first carefully analyze each component of the RAG system and propose practical alternatives for each component. Then, we conduct systematic evaluations on three types of tasks, revealing the best practices for improving the RAG system and how LLM-based RAG systems make trade-offs between performance and efficiency.
♻ ☆ Logical Structure as Knowledge: Enhancing LLM Reasoning via Structured Logical Knowledge Density Estimation
The reasoning capabilities of Large Language Models (LLMs) are increasingly attributed to training data quality rather than mere parameter scaling. However, existing data-centric paradigms often equate quality with factuality or diversity and ignore the internal logical complexity of training samples. In this work, we propose that natural language harbors Structured Logical Knowledge manifested through entailment relationships and logical topologies. To quantify this, we introduce Structured Logical Knowledge Density (SLKD), a novel metric that measures logical information content by decomposing natural language into executable predicates and logical primitives. Our analysis reveals a significant logical disparity in current datasets where sparse logical signals predominate. Consequently, we propose a density aware re-cognizing optimization strategy that prioritizes high-density logical samples to enhance with the LLM's reasoning ability. Extensive experiments demonstrate that our approach enhances reasoning performance and generalization without increasing total data volume. These results, further validated within a reinforcement learning framework, suggest that elevating logical density is more critical than expanding data scale for realizing the full cognitive potential of LLMs. The released code is available in the Appendix C.
♻ ☆ FaithRL: Learning to Reason Faithfully through Step-Level Faithfulness Maximization
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly improved the performance of Large Language Models (LLMs) on tasks requiring multi-step reasoning. However, most RLVR pipelines rely on sparse outcome-based rewards, providing little supervision over intermediate steps and thus encouraging over-confidence and spurious reasoning, which in turn increases hallucinations. To address this, we propose FaithRL, a general reinforcement learning framework that directly optimizes reasoning faithfulness. We formalize a faithfulness-maximization objective and theoretically show that optimizing it mitigates over-confidence. To instantiate this objective, we introduce a geometric reward design and a faithfulness-aware advantage modulation mechanism that assigns step-level credit by penalizing unsupported steps while preserving valid partial derivations. Across diverse backbones and benchmarks, FaithRL consistently reduces hallucination rates while maintaining (and often improving) answer correctness. Further analysis confirms that FaithRL increases step-wise reasoning faithfulness and generalizes robustly. Our code is available at https://github.com/aintdoin/FaithRL.
♻ ☆ A Cocktail-Party Benchmark: Multi-Modal dataset and Comparative Evaluation Results ICASSP 2026
We introduce the task of Multi-Modal Context-Aware Recognition (MCoRec) in the ninth CHiME Challenge, which addresses the cocktail-party problem of overlapping conversations in a single-room setting using audio, visual, and contextual cues. MCoRec captures natural multi-party conversations where the recordings focus on unscripted, casual group chats, leading to extreme speech overlap of up to 100% and highly fragmented conversational turns. The task requires systems to answer the question "Who speaks when, what, and with whom?" by jointly transcribing each speaker's speech and clustering them into their respective conversations from audio-visual recordings. Audio-only baselines exceed 100% word error rate, whereas incorporating visual cues yields substantial 50% improvements, highlighting the importance of multi-modality. In this manuscript, we present the motivation behind the task, outline the data collection process, and report the baseline systems developed for the MCoRec.
comment: Accepted at ICASSP 2026
♻ ☆ Geometric Stability: The Missing Axis of Representations
Analysis of learned representations has a blind spot: it focuses on $similarity$, measuring how closely embeddings align with external references, but similarity reveals only what is represented, not whether that structure is robust. We introduce $geometric$ $stability$, a distinct dimension that quantifies how reliably representational geometry holds under perturbation, and present $Shesha$, a framework for measuring it. Across 2,463 configurations in seven domains, we show that stability and similarity are empirically uncorrelated ($ρ\approx 0.01$) and mechanistically distinct: similarity metrics collapse after removing the top principal components, while stability retains sensitivity to fine-grained manifold structure. This distinction yields actionable insights: for safety monitoring, stability acts as a functional geometric canary, detecting structural drift nearly 2$\times$ more sensitively than CKA while filtering out the non-functional noise that triggers false alarms in rigid distance metrics; for controllability, supervised stability predicts linear steerability ($ρ= 0.89$-$0.96$); for model selection, stability dissociates from transferability, revealing a geometric tax that transfer optimization incurs. Beyond machine learning, stability predicts CRISPR perturbation coherence and neural-behavioral coupling. By quantifying $how$ $reliably$ systems maintain structure, geometric stability provides a necessary complement to similarity for auditing representations across biological and computational systems.
♻ ☆ DSO: Direct Steering Optimization for Bias Mitigation
Generative models are often deployed to make decisions on behalf of users, such as vision-language models (VLMs) identifying which person in a room is a doctor to help visually impaired individuals. Yet, VLM decisions are influenced by the perceived demographic attributes of people in the input, which can lead to biased outcomes like failing to identify women as doctors. Moreover, when reducing bias leads to performance loss, users may have varying needs for balancing bias mitigation with overall model capabilities, highlighting the demand for methods that enable controllable bias reduction during inference. Activation steering is a popular approach for inference-time controllability that has shown potential in inducing safer behavior in large language models (LLMs). However, we observe that current steering methods struggle to correct biases, where equiprobable outcomes across demographic groups are required. To address this, we propose Direct Steering Optimization (DSO) which uses reinforcement learning to find linear transformations for steering activations, tailored to mitigate bias while maintaining control over model performance. We demonstrate that DSO achieves state-of-the-art trade-off between fairness and capabilities on both VLMs and LLMs, while offering practitioners inference-time control over the trade-off. Overall, our work highlights the benefit of designing steering strategies that are directly optimized to control model behavior, providing more effective bias intervention than methods that rely on pre-defined heuristics for controllability.
Computer Vision and Pattern Recognition 125
☆ Stroke of Surprise: Progressive Semantic Illusions in Vector Sketching
Visual illusions traditionally rely on spatial manipulations such as multi-view consistency. In this work, we introduce Progressive Semantic Illusions, a novel vector sketching task where a single sketch undergoes a dramatic semantic transformation through the sequential addition of strokes. We present Stroke of Surprise, a generative framework that optimizes vector strokes to satisfy distinct semantic interpretations at different drawing stages. The core challenge lies in the "dual-constraint": initial prefix strokes must form a coherent object (e.g., a duck) while simultaneously serving as the structural foundation for a second concept (e.g., a sheep) upon adding delta strokes. To address this, we propose a sequence-aware joint optimization framework driven by a dual-branch Score Distillation Sampling (SDS) mechanism. Unlike sequential approaches that freeze the initial state, our method dynamically adjusts prefix strokes to discover a "common structural subspace" valid for both targets. Furthermore, we introduce a novel Overlay Loss that enforces spatial complementarity, ensuring structural integration rather than occlusion. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art baselines in recognizability and illusion strength, successfully expanding visual anagrams from the spatial to the temporal dimension. Project page: https://stroke-of-surprise.github.io/
comment: Project page: https://stroke-of-surprise.github.io/ Code: https://github.com/stroke-of-surprise/Stroke-Of-Surprise
☆ UniT: Unified Multimodal Chain-of-Thought Test-time Scaling
Unified models can handle both multimodal understanding and generation within a single architecture, yet they typically operate in a single pass without iteratively refining their outputs. Many multimodal tasks, especially those involving complex spatial compositions, multiple interacting objects, or evolving instructions, require decomposing instructions, verifying intermediate results, and making iterative corrections. While test-time scaling (TTS) has demonstrated that allocating additional inference compute for iterative reasoning substantially improves language model performance, extending this paradigm to unified multimodal models remains an open challenge. We introduce UniT, a framework for multimodal chain-of-thought test-time scaling that enables a single unified model to reason, verify, and refine across multiple rounds. UniT combines agentic data synthesis, unified model training, and flexible test-time inference to elicit cognitive behaviors including verification, subgoal decomposition, and content memory. Our key findings are: (1) unified models trained on short reasoning trajectories generalize to longer inference chains at test time; (2) sequential chain-of-thought reasoning provides a more scalable and compute-efficient TTS strategy than parallel sampling; (3) training on generation and editing trajectories improves out-of-distribution visual reasoning. These results establish multimodal test-time scaling as an effective paradigm for advancing both generation and understanding in unified models.
☆ MonarchRT: Efficient Attention for Real-Time Video Generation
Real-time video generation with Diffusion Transformers is bottlenecked by the quadratic cost of 3D self-attention, especially in real-time regimes that are both few-step and autoregressive, where errors compound across time and each denoising step must carry substantially more information. In this setting, we find that prior sparse-attention approximations break down, despite showing strong results for bidirectional, many-step diffusion. Specifically, we observe that video attention is not reliably sparse, but instead combines pronounced periodic structure driven by spatiotemporal position with dynamic, sparse semantic correspondences and dense mixing, exceeding the representational capacity of even oracle top-k attention. Building on this insight, we propose Monarch-RT, a structured attention parameterization for video diffusion models that factorizes attention using Monarch matrices. Through appropriately aligned block structure and our extended tiled Monarch parameterization, we achieve high expressivity while preserving computational efficiency. We further overcome the overhead of parameterization through finetuning, with custom Triton kernels. We first validate the high efficacy of Monarch-RT over existing sparse baselines designed only for bidirectional models. We further observe that Monarch-RT attains up to 95% attention sparsity with no loss in quality when applied to the state-of-the-art model Self-Forcing, making Monarch-RT a pioneering work on highly-capable sparse attention parameterization for real-time video generation. Our optimized implementation outperforms FlashAttention-2, FlashAttention-3, and FlashAttention-4 kernels on Nvidia RTX 5090, H100, and B200 GPUs respectively, providing kernel speedups in the range of 1.4-11.8X. This enables us, for the first time, to achieve true real-time video generation with Self-Forcing at 16 FPS on a single RTX 5090.
☆ Energy-Aware Spike Budgeting for Continual Learning in Spiking Neural Networks for Neuromorphic Vision
Neuromorphic vision systems based on spiking neural networks (SNNs) offer ultra-low-power perception for event-based and frame-based cameras, yet catastrophic forgetting remains a critical barrier to deployment in continually evolving environments. Existing continual learning methods, developed primarily for artificial neural networks, seldom jointly optimize accuracy and energy efficiency, with particularly limited exploration on event-based datasets. We propose an energy-aware spike budgeting framework for continual SNN learning that integrates experience replay, learnable leaky integrate-and-fire neuron parameters, and an adaptive spike scheduler to enforce dataset-specific energy constraints during training. Our approach exhibits modality-dependent behavior: on frame-based datasets (MNIST, CIFAR-10), spike budgeting acts as a sparsity-inducing regularizer, improving accuracy while reducing spike rates by up to 47\%; on event-based datasets (DVS-Gesture, N-MNIST, CIFAR-10-DVS), controlled budget relaxation enables accuracy gains up to 17.45 percentage points with minimal computational overhead. Across five benchmarks spanning both modalities, our method demonstrates consistent performance improvements while minimizing dynamic power consumption, advancing the practical viability of continual learning in neuromorphic vision systems.
☆ Towards On-Policy SFT: Distribution Discriminant Theory and its Applications in LLM Training
Supervised fine-tuning (SFT) is computationally efficient but often yields inferior generalization compared to reinforcement learning (RL). This gap is primarily driven by RL's use of on-policy data. We propose a framework to bridge this chasm by enabling On-Policy SFT. We first present \textbf{\textit{Distribution Discriminant Theory (DDT)}}, which explains and quantifies the alignment between data and the model-induced distribution. Leveraging DDT, we introduce two complementary techniques: (i) \textbf{\textit{In-Distribution Finetuning (IDFT)}}, a loss-level method to enhance generalization ability of SFT, and (ii) \textbf{\textit{Hinted Decoding}}, a data-level technique that can re-align the training corpus to the model's distribution. Extensive experiments demonstrate that our framework achieves generalization performance on par with prominent offline RL algorithms, including DPO and SimPO, while maintaining the efficiency of an SFT pipeline. The proposed framework thus offers a practical alternative in domains where RL is infeasible. We open-source the code here: https://github.com/zhangmiaosen2000/Towards-On-Policy-SFT
☆ Best of Both Worlds: Multimodal Reasoning and Generation via Unified Discrete Flow Matching
We propose UniDFlow, a unified discrete flow-matching framework for multimodal understanding, generation, and editing. It decouples understanding and generation via task-specific low-rank adapters, avoiding objective interference and representation entanglement, while a novel reference-based multimodal preference alignment optimizes relative outcomes under identical conditioning, improving faithfulness and controllability without large-scale retraining. UniDFlpw achieves SOTA performance across eight benchmarks and exhibits strong zero-shot generalization to tasks including inpainting, in-context image generation, reference-based editing, and compositional generation, despite no explicit task-specific training.
☆ DeepGen 1.0: A Lightweight Unified Multimodal Model for Advancing Image Generation and Editing
Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.
☆ EO-VAE: Towards A Multi-sensor Tokenizer for Earth Observation Data
State-of-the-art generative image and video models rely heavily on tokenizers that compress high-dimensional inputs into more efficient latent representations. While this paradigm has revolutionized RGB generation, Earth observation (EO) data presents unique challenges due to diverse sensor specifications and variable spectral channels. We propose EO-VAE, a multi-sensor variational autoencoder designed to serve as a foundational tokenizer for the EO domain. Unlike prior approaches that train separate tokenizers for each modality, EO-VAE utilizes a single model to encode and reconstruct flexible channel combinations via dynamic hypernetworks. Our experiments on the TerraMesh dataset demonstrate that EO-VAE achieves superior reconstruction fidelity compared to the TerraMind tokenizers, establishing a robust baseline for latent generative modeling in remote sensing.
☆ DreamID-Omni: Unified Framework for Controllable Human-Centric Audio-Video Generation
Recent advancements in foundation models have revolutionized joint audio-video generation. However, existing approaches typically treat human-centric tasks including reference-based audio-video generation (R2AV), video editing (RV2AV) and audio-driven video animation (RA2V) as isolated objectives. Furthermore, achieving precise, disentangled control over multiple character identities and voice timbres within a single framework remains an open challenge. In this paper, we propose DreamID-Omni, a unified framework for controllable human-centric audio-video generation. Specifically, we design a Symmetric Conditional Diffusion Transformer that integrates heterogeneous conditioning signals via a symmetric conditional injection scheme. To resolve the pervasive identity-timbre binding failures and speaker confusion in multi-person scenarios, we introduce a Dual-Level Disentanglement strategy: Synchronized RoPE at the signal level to ensure rigid attention-space binding, and Structured Captions at the semantic level to establish explicit attribute-subject mappings. Furthermore, we devise a Multi-Task Progressive Training scheme that leverages weakly-constrained generative priors to regularize strongly-constrained tasks, preventing overfitting and harmonizing disparate objectives. Extensive experiments demonstrate that DreamID-Omni achieves comprehensive state-of-the-art performance across video, audio, and audio-visual consistency, even outperforming leading proprietary commercial models. We will release our code to bridge the gap between academic research and commercial-grade applications.
comment: Project: https://guoxu1233.github.io/DreamID-Omni/
☆ TexSpot: 3D Texture Enhancement with Spatially-uniform Point Latent Representation
High-quality 3D texture generation remains a fundamental challenge due to the view-inconsistency inherent in current mainstream multi-view diffusion pipelines. Existing representations either rely on UV maps, which suffer from distortion during unwrapping, or point-based methods, which tightly couple texture fidelity to geometric density that limits high-resolution texture generation. To address these limitations, we introduce TexSpot, a diffusion-based texture enhancement framework. At its core is Texlet, a novel 3D texture representation that merges the geometric expressiveness of point-based 3D textures with the compactness of UV-based representation. Each Texlet latent vector encodes a local texture patch via a 2D encoder and is further aggregated using a 3D encoder to incorporate global shape context. A cascaded 3D-to-2D decoder reconstructs high-quality texture patches, enabling the Texlet space learning. Leveraging this representation, we train a diffusion transformer conditioned on Texlets to refine and enhance textures produced by multi-view diffusion methods. Extensive experiments demonstrate that TexSpot significantly improves visual fidelity, geometric consistency, and robustness over existing state-of-the-art 3D texture generation and enhancement approaches. Project page: https://anonymous.4open.science/w/TexSpot-page-2D91.
comment: Project page: https://anonymous.4open.science/w/TexSpot-page-2D91
☆ FAIL: Flow Matching Adversarial Imitation Learning for Image Generation
Post-training of flow matching models-aligning the output distribution with a high-quality target-is mathematically equivalent to imitation learning. While Supervised Fine-Tuning mimics expert demonstrations effectively, it cannot correct policy drift in unseen states. Preference optimization methods address this but require costly preference pairs or reward modeling. We propose Flow Matching Adversarial Imitation Learning (FAIL), which minimizes policy-expert divergence through adversarial training without explicit rewards or pairwise comparisons. We derive two algorithms: FAIL-PD exploits differentiable ODE solvers for low-variance pathwise gradients, while FAIL-PG provides a black-box alternative for discrete or computationally constrained settings. Fine-tuning FLUX with only 13,000 demonstrations from Nano Banana pro, FAIL achieves competitive performance on prompt following and aesthetic benchmarks. Furthermore, the framework generalizes effectively to discrete image and video generation, and functions as a robust regularizer to mitigate reward hacking in reward-based optimization. Code and data are available at https://github.com/HansPolo113/FAIL.
☆ PosterOmni: Generalized Artistic Poster Creation via Task Distillation and Unified Reward Feedback
Image-to-poster generation is a high-demand task requiring not only local adjustments but also high-level design understanding. Models must generate text, layout, style, and visual elements while preserving semantic fidelity and aesthetic coherence. The process spans two regimes: local editing, where ID-driven generation, rescaling, filling, and extending must preserve concrete visual entities; and global creation, where layout- and style-driven tasks rely on understanding abstract design concepts. These intertwined demands make image-to-poster a multi-dimensional process coupling entity-preserving editing with concept-driven creation under image-prompt control. To address these challenges, we propose PosterOmni, a generalized artistic poster creation framework that unlocks the potential of a base edit model for multi-task image-to-poster generation. PosterOmni integrates the two regimes, namely local editing and global creation, within a single system through an efficient data-distillation-reward pipeline: (i) constructing multi-scenario image-to-poster datasets covering six task types across entity-based and concept-based creation; (ii) distilling knowledge between local and global experts for supervised fine-tuning; and (iii) applying unified PosterOmni Reward Feedback to jointly align visual entity-preserving and aesthetic preference across all tasks. Additionally, we establish PosterOmni-Bench, a unified benchmark for evaluating both local editing and global creation. Extensive experiments show that PosterOmni significantly enhances reference adherence, global composition quality, and aesthetic harmony, outperforming all open-source baselines and even surpassing several proprietary systems.
☆ Iskra: A System for Inverse Geometry Processing
We propose a system for differentiating through solutions to geometry processing problems. Our system differentiates a broad class of geometric algorithms, exploiting existing fast problem-specific schemes common to geometry processing, including local-global and ADMM solvers. It is compatible with machine learning frameworks, opening doors to new classes of inverse geometry processing applications. We marry the scatter-gather approach to mesh processing with tensor-based workflows and rely on the adjoint method applied to user-specified imperative code to generate an efficient backward pass behind the scenes. We demonstrate our approach by differentiating through mean curvature flow, spectral conformal parameterization, geodesic distance computation, and as-rigid-as-possible deformation, examining usability and performance on these applications. Our system allows practitioners to differentiate through existing geometry processing algorithms without needing to reformulate them, resulting in low implementation effort, fast runtimes, and lower memory requirements than differentiable optimization tools not tailored to geometry processing.
☆ AssetFormer: Modular 3D Assets Generation with Autoregressive Transformer ICLR 2026
The digital industry demands high-quality, diverse modular 3D assets, especially for user-generated content~(UGC). In this work, we introduce AssetFormer, an autoregressive Transformer-based model designed to generate modular 3D assets from textual descriptions. Our pilot study leverages real-world modular assets collected from online platforms. AssetFormer tackles the challenge of creating assets composed of primitives that adhere to constrained design parameters for various applications. By innovatively adapting module sequencing and decoding techniques inspired by language models, our approach enhances asset generation quality through autoregressive modeling. Initial results indicate the effectiveness of AssetFormer in streamlining asset creation for professional development and UGC scenarios. This work presents a flexible framework extendable to various types of modular 3D assets, contributing to the broader field of 3D content generation. The code is available at https://github.com/Advocate99/AssetFormer.
comment: Accepted by ICLR 2026. 23 pages, 14 figures
☆ GigaBrain-0.5M*: a VLA That Learns From World Model-Based Reinforcement Learning
Vision-language-action (VLA) models that directly predict multi-step action chunks from current observations face inherent limitations due to constrained scene understanding and weak future anticipation capabilities. In contrast, video world models pre-trained on web-scale video corpora exhibit robust spatiotemporal reasoning and accurate future prediction, making them a natural foundation for enhancing VLA learning. Therefore, we propose \textit{GigaBrain-0.5M*}, a VLA model trained via world model-based reinforcement learning. Built upon \textit{GigaBrain-0.5}, which is pre-trained on over 10,000 hours of robotic manipulation data, whose intermediate version currently ranks first on the international RoboChallenge benchmark. \textit{GigaBrain-0.5M*} further integrates world model-based reinforcement learning via \textit{RAMP} (Reinforcement leArning via world Model-conditioned Policy) to enable robust cross-task adaptation. Empirical results demonstrate that \textit{RAMP} achieves substantial performance gains over the RECAP baseline, yielding improvements of approximately 30\% on challenging tasks including \texttt{Laundry Folding}, \texttt{Box Packing}, and \texttt{Espresso Preparation}. Critically, \textit{GigaBrain-0.5M$^*$} exhibits reliable long-horizon execution, consistently accomplishing complex manipulation tasks without failure as validated by real-world deployment videos on our \href{https://gigabrain05m.github.io}{project page}.
comment: https://gigabrain05m.github.io/
☆ DeepSight: An All-in-One LM Safety Toolkit
As the development of Large Models (LMs) progresses rapidly, their safety is also a priority. In current Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) safety workflow, evaluation, diagnosis, and alignment are often handled by separate tools. Specifically, safety evaluation can only locate external behavioral risks but cannot figure out internal root causes. Meanwhile, safety diagnosis often drifts from concrete risk scenarios and remains at the explainable level. In this way, safety alignment lack dedicated explanations of changes in internal mechanisms, potentially degrading general capabilities. To systematically address these issues, we propose an open-source project, namely DeepSight, to practice a new safety evaluation-diagnosis integrated paradigm. DeepSight is low-cost, reproducible, efficient, and highly scalable large-scale model safety evaluation project consisting of a evaluation toolkit DeepSafe and a diagnosis toolkit DeepScan. By unifying task and data protocols, we build a connection between the two stages and transform safety evaluation from black-box to white-box insight. Besides, DeepSight is the first open source toolkit that support the frontier AI risk evaluation and joint safety evaluation and diagnosis.
comment: Technical report, 29 pages, 24 figures
☆ A DMD-Based Adaptive Modulation Method for High Dynamic Range Imaging in High-Glare Environments
Background The accuracy of photomechanics measurements critically relies on image quality,particularly under extreme illumination conditions such as welding arc monitoring and polished metallic surface analysis. High dynamic range (HDR) imaging above 120 dB is essential in these contexts. Conventional CCD/CMOS sensors, with dynamic ranges typically below 70 dB, are highly susceptible to saturation under glare, resulting in irreversible loss of detail and significant errors in digital image correlation (DIC). Methods This paper presents an HDR imaging system that leverages the spatial modulation capability of a digital micromirror device (DMD). The system architecture enables autonomous regional segmentation and adaptive exposure control for high-dynamic-range scenes through an integrated framework comprising two synergistic subsystems: a DMD-based optical modulation unit and an adaptive computational imaging pipeline. Results The system achieves a measurable dynamic range of 127 dB, effectively eliminating satu ration artifacts under high glare. Experimental results demonstrate a 78% reduction in strain error and improved DIC positioning accuracy, confirming reliable performance across extreme intensity variations. Conclusion The DMD-based system provides high fidelity adaptive HDR imaging, overcoming key limitations of conventional sensors. It exhibits strong potential for optical metrology and stress analysis in high-glare environments where traditional methods are inadequate.
comment: This paper has been accepted by Experimental Mechanics
☆ Projected Representation Conditioning for High-fidelity Novel View Synthesis
We propose a novel framework for diffusion-based novel view synthesis in which we leverage external representations as conditions, harnessing their geometric and semantic correspondence properties for enhanced geometric consistency in generated novel viewpoints. First, we provide a detailed analysis exploring the correspondence capabilities emergent in the spatial attention of external visual representations. Building from these insights, we propose a representation-guided novel view synthesis through dedicated representation projection modules that inject external representations into the diffusion process, a methodology named ReNoV, short for representation-guided novel view synthesis. Our experiments show that this design yields marked improvements in both reconstruction fidelity and inpainting quality, outperforming prior diffusion-based novel-view methods on standard benchmarks and enabling robust synthesis from sparse, unposed image collections.
☆ Can Local Vision-Language Models improve Activity Recognition over Vision Transformers? -- Case Study on Newborn Resuscitation ICIP
Accurate documentation of newborn resuscitation is essential for quality improvement and adherence to clinical guidelines, yet remains underutilized in practice. Previous work using 3D-CNNs and Vision Transformers (ViT) has shown promising results in detecting key activities from newborn resuscitation videos, but also highlighted the challenges in recognizing such fine-grained activities. This work investigates the potential of generative AI (GenAI) methods to improve activity recognition from such videos. Specifically, we explore the use of local vision-language models (VLMs), combined with large language models (LLMs), and compare them to a supervised TimeSFormer baseline. Using a simulated dataset comprising 13.26 hours of newborn resuscitation videos, we evaluate several zero-shot VLM-based strategies and fine-tuned VLMs with classification heads, including Low-Rank Adaptation (LoRA). Our results suggest that small (local) VLMs struggle with hallucinations, but when fine-tuned with LoRA, the results reach F1 score at 0.91, surpassing the TimeSformer results of 0.70.
comment: Presented at the Satellite Workshop on Workshop 15: Generative AI for World Simulations and Communications & Celebrating 40 Years of Excellence in Education: Honoring Professor Aggelos Katsaggelos, IEEE International Conference on Image Processing (ICIP), 2025
☆ Spatial Chain-of-Thought: Bridging Understanding and Generation Models for Spatial Reasoning Generation
While diffusion models have shown exceptional capabilities in aesthetic image synthesis, they often struggle with complex spatial understanding and reasoning. Existing approaches resort to Multimodal Large Language Models (MLLMs) to enhance this capability. However, they either incur high computational costs through joint training or suffer from spatial information loss when relying solely on textual prompts. To alleviate these limitations, we propose a Spatial Chain-of-Thought (SCoT) framework, a plug-and-play approach that effectively bridges the reasoning capabilities of MLLMs with the generative power of diffusion models. Specifically, we first enhance the diffusion model's layout awareness by training it on an interleaved text-coordinate instruction format. We then leverage state-of-the-art MLLMs as planners to generate comprehensive layout plans, transferring their spatial planning capabilities directly to the generation process. Extensive experiments demonstrate that our method achieves state-of-the-art performance on image generation benchmarks and significantly outperforms baselines on complex reasoning tasks, while also showing strong efficacy in image editing scenarios.
comment: 19 pages, 4 figures
☆ Calibrated Bayesian Deep Learning for Explainable Decision Support Systems Based on Medical Imaging
In critical decision support systems based on medical imaging, the reliability of AI-assisted decision-making is as relevant as predictive accuracy. Although deep learning models have demonstrated significant accuracy, they frequently suffer from miscalibration, manifested as overconfidence in erroneous predictions. To facilitate clinical acceptance, it is imperative that models quantify uncertainty in a manner that correlates with prediction correctness, allowing clinicians to identify unreliable outputs for further review. In order to address this necessity, the present paper proposes a generalizable probabilistic optimization framework grounded in Bayesian deep learning. Specifically, a novel Confidence-Uncertainty Boundary Loss (CUB-Loss) is introduced that imposes penalties on high-certainty errors and low-certainty correct predictions, explicitly enforcing alignment between prediction correctness and uncertainty estimates. Complementing this training-time optimization, a Dual Temperature Scaling (DTS) strategy is devised for post-hoc calibration, further refining the posterior distribution to improve intuitive explainability. The proposed framework is validated on three distinct medical imaging tasks: automatic screening of pneumonia, diabetic retinopathy detection, and identification of skin lesions. Empirical results demonstrate that the proposed approach achieves consistent calibration improvements across diverse modalities, maintains robust performance in data-scarce scenarios, and remains effective on severely imbalanced datasets, underscoring its potential for real clinical deployment.
comment: 24 pages, 3 figures
☆ UPDA: Unsupervised Progressive Domain Adaptation for No-Reference Point Cloud Quality Assessment
While no-reference point cloud quality assessment (NR-PCQA) approaches have achieved significant progress over the past decade, their performance often degrades substantially when a distribution gap exists between the training (source domain) and testing (target domain) data. However, to date, limited attention has been paid to transferring NR-PCQA models across domains. To address this challenge, we propose the first unsupervised progressive domain adaptation (UPDA) framework for NR-PCQA, which introduces a two-stage coarse-to-fine alignment paradigm to address domain shifts. At the coarse-grained stage, a discrepancy-aware coarse-grained alignment method is designed to capture relative quality relationships between cross-domain samples through a novel quality-discrepancy-aware hybrid loss, circumventing the challenges of direct absolute feature alignment. At the fine-grained stage, a perception fusion fine-grained alignment approach with symmetric feature fusion is developed to identify domain-invariant features, while a conditional discriminator selectively enhances the transfer of quality-relevant features. Extensive experiments demonstrate that the proposed UPDA effectively enhances the performance of NR-PCQA methods in cross-domain scenarios, validating its practical applicability. The code is available at https://github.com/yokeno1/UPDA-main.
comment: to be published in IEEE Transactions on Broadcasting
☆ Benchmarking Vision-Language Models for French PDF-to-Markdown Conversion
This report evaluates PDF-to-Markdown conversion using recent Vision-Language Models (VLMs) on challenging French documents. Document parsing is a critical step for Retrieval-Augmented Generation (RAG) pipelines, where transcription and layout errors propagate to downstream retrieval and grounding. Existing benchmarks often emphasize English or Chinese and can over-penalize benign formatting and linearization choices (e.g., line breaks, list segmentation, alternative table renderings) that are largely irrelevant for downstream use. We introduce a French-focused benchmark of difficult pages selected via model-disagreement sampling from a corpus of 60{,}000 documents, covering handwritten forms, complex layouts, dense tables, and graphics-rich pages. Evaluation is performed with unit-test-style checks that target concrete failure modes (text presence, reading order, and local table constraints) combined with category-specific normalization designed to discount presentation-only variance. Across 15 models, we observe substantially higher robustness for the strongest proprietary models on handwriting and forms, while several open-weights systems remain competitive on standard printed layouts.
comment: 13 pages, 6 figures
☆ Synthesis of Late Gadolinium Enhancement Images via Implicit Neural Representations for Cardiac Scar Segmentation SP
Late gadolinium enhancement (LGE) imaging is the clinical standard for myocardial scar assessment, but limited annotated datasets hinder the development of automated segmentation methods. We propose a novel framework that synthesises both LGE images and their corresponding segmentation masks using implicit neural representations (INRs) combined with denoising diffusion models. Our approach first trains INRs to capture continuous spatial representations of LGE data and associated myocardium and fibrosis masks. These INRs are then compressed into compact latent embeddings, preserving essential anatomical information. A diffusion model operates on this latent space to generate new representations, which are decoded into synthetic LGE images with anatomically consistent segmentation masks. Experiments on 133 cardiac MRI scans suggest that augmenting training data with 200 synthetic volumes contributes to improved fibrosis segmentation performance, with the Dice score showing an increase from 0.509 to 0.524. Our approach provides an annotation-free method to help mitigate data scarcity.The code for this research is publicly available.
comment: Paper accepted at SPIE Medical Imaging 2026 Conference
☆ DynaHOI: Benchmarking Hand-Object Interaction for Dynamic Target
Most existing hand motion generation benchmarks for hand-object interaction (HOI) focus on static objects, leaving dynamic scenarios with moving targets and time-critical coordination largely untested. To address this gap, we introduce the DynaHOI-Gym, a unified online closed-loop platform with parameterized motion generators and rollout-based metrics for dynamic capture evaluation. Built on DynaHOI-Gym, we release DynaHOI-10M, a large-scale benchmark with 10M frames and 180K hand capture trajectories, whose target motions are organized into 8 major categories and 22 fine-grained subcategories. We also provide a simple observe-before-act baseline (ObAct) that integrates short-term observations with the current frame via spatiotemporal attention to predict actions, achieving an 8.1% improvement in location success rate.
☆ Learning Perceptual Representations for Gaming NR-VQA with Multi-Task FR Signals
No-reference video quality assessment (NR-VQA) for gaming videos is challenging due to limited human-rated datasets and unique content characteristics including fast motion, stylized graphics, and compression artifacts. We present MTL-VQA, a multi-task learning framework that uses full-reference metrics as supervisory signals to learn perceptually meaningful features without human labels for pretraining. By jointly optimizing multiple full-reference (FR) objectives with adaptive task weighting, our approach learns shared representations that transfer effectively to NR-VQA. Experiments on gaming video datasets show MTL-VQA achieves performance competitive with state-of-the-art NR-VQA methods across both MOS-supervised and label-efficient/self-supervised settings.
comment: 6 pages, 2 figures
☆ Where Bits Matter in World Model Planning: A Paired Mixed-Bit Study for Efficient Spatial Reasoning
Efficient spatial reasoning requires world models that remain reliable under tight precision budgets. We study whether low-bit planning behavior is determined mostly by total bitwidth or by where bits are allocated across modules. Using DINO-WM on the Wall planning task, we run a paired-goal mixed-bit evaluation across uniform, mixed, asymmetric, and layerwise variants under two planner budgets. We observe a consistent three-regime pattern: 8-bit and 6-bit settings remain close to FP16, 3-bit settings collapse, and 4-bit settings are allocation-sensitive. In that transition region, preserving encoder precision improves planning relative to uniform quantization, and near-size asymmetric variants show the same encoder-side direction. In a later strict 22-cell replication with smaller per-cell episode count, the mixed-versus-uniform INT4 sign becomes budget-conditioned, which further highlights the sensitivity of this transition regime. These findings motivate module-aware, budget-aware quantization policies as a broader research direction for efficient spatial reasoning. Code and run artifacts are available at https://github.com/suraj-ranganath/DINO-MBQuant.
comment: Workshop submission
☆ SynthRAR: Ring Artifacts Reduction in CT with Unrolled Network and Synthetic Data Training
Defective and inconsistent responses in CT detectors can cause ring and streak artifacts in the reconstructed images, making them unusable for clinical purposes. In recent years, several ring artifact reduction solutions have been proposed in the image domain or in the sinogram domain using supervised deep learning methods. However, these methods require dedicated datasets for training, leading to a high data collection cost. Furthermore, existing approaches focus exclusively on either image-space or sinogram-space correction, neglecting the intrinsic correlations from the forward operation of the CT geometry. Based on the theoretical analysis of non-ideal CT detector responses, the RAR problem is reformulated as an inverse problem by using an unrolled network, which considers non-ideal response together with linear forward-projection with CT geometry. Additionally, the intrinsic correlations of ring artifacts between the sinogram and image domains are leveraged through synthetic data derived from natural images, enabling the trained model to correct artifacts without requiring real-world clinical data. Extensive evaluations on diverse scanning geometries and anatomical regions demonstrate that the model trained on synthetic data consistently outperforms existing state-of-the-art methods.
comment: Prepare for submission
☆ DiffPlace: Street View Generation via Place-Controllable Diffusion Model Enhancing Place Recognition ICRA 2026
Generative models have advanced significantly in realistic image synthesis, with diffusion models excelling in quality and stability. Recent multi-view diffusion models improve 3D-aware street view generation, but they struggle to produce place-aware and background-consistent urban scenes from text, BEV maps, and object bounding boxes. This limits their effectiveness in generating realistic samples for place recognition tasks. To address these challenges, we propose DiffPlace, a novel framework that introduces a place-ID controller to enable place-controllable multi-view image generation. The place-ID controller employs linear projection, perceiver transformer, and contrastive learning to map place-ID embeddings into a fixed CLIP space, allowing the model to synthesize images with consistent background buildings while flexibly modifying foreground objects and weather conditions. Extensive experiments, including quantitative comparisons and augmented training evaluations, demonstrate that DiffPlace outperforms existing methods in both generation quality and training support for visual place recognition. Our results highlight the potential of generative models in enhancing scene-level and place-aware synthesis, providing a valuable approach for improving place recognition in autonomous driving
comment: accepted by ICRA 2026
☆ Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
☆ Free Lunch for Stabilizing Rectified Flow Inversion
Rectified-Flow (RF)-based generative models have recently emerged as strong alternatives to traditional diffusion models, demonstrating state-of-the-art performance across various tasks. By learning a continuous velocity field that transforms simple noise into complex data, RF-based models not only enable high-quality generation, but also support training-free inversion, which facilitates downstream tasks such as reconstruction and editing. However, existing inversion methods, such as vanilla RF-based inversion, suffer from approximation errors that accumulate across timesteps, leading to unstable velocity fields and degraded reconstruction and editing quality. To address this challenge, we propose Proximal-Mean Inversion (PMI), a training-free gradient correction method that stabilizes the velocity field by guiding it toward a running average of past velocities, constrained within a theoretically derived spherical Gaussian. Furthermore, we introduce mimic-CFG, a lightweight velocity correction scheme for editing tasks, which interpolates between the current velocity and its projection onto the historical average, balancing editing effectiveness and structural consistency. Extensive experiments on PIE-Bench demonstrate that our methods significantly improve inversion stability, image reconstruction quality, and editing fidelity, while reducing the required number of neural function evaluations. Our approach achieves state-of-the-art performance on the PIE-Bench with enhanced efficiency and theoretical soundness.
☆ WorldTree: Towards 4D Dynamic Worlds from Monocular Video using Tree-Chains
Dynamic reconstruction has achieved remarkable progress, but there remain challenges in monocular input for more practical applications. The prevailing works attempt to construct efficient motion representations, but lack a unified spatiotemporal decomposition framework, suffering from either holistic temporal optimization or coupled hierarchical spatial composition. To this end, we propose WorldTree, a unified framework comprising Temporal Partition Tree (TPT) that enables coarse-to-fine optimization based on the inheritance-based partition tree structure for hierarchical temporal decomposition, and Spatial Ancestral Chains (SAC) that recursively query ancestral hierarchical structure to provide complementary spatial dynamics while specializing motion representations across ancestral nodes. Experimental results on different datasets indicate that our proposed method achieves 8.26% improvement of LPIPS on NVIDIA-LS and 9.09% improvement of mLPIPS on DyCheck compared to the second-best method. Code: https://github.com/iCVTEAM/WorldTree.
☆ JEPA-VLA: Video Predictive Embedding is Needed for VLA Models
Recent vision-language-action (VLA) models built upon pretrained vision-language models (VLMs) have achieved significant improvements in robotic manipulation. However, current VLAs still suffer from low sample efficiency and limited generalization. This paper argues that these limitations are closely tied to an overlooked component, pretrained visual representation, which offers insufficient knowledge on both aspects of environment understanding and policy prior. Through an in-depth analysis, we find that commonly used visual representations in VLAs, whether pretrained via language-image contrastive learning or image-based self-supervised learning, remain inadequate at capturing crucial, task-relevant environment information and at inducing effective policy priors, i.e., anticipatory knowledge of how the environment evolves under successful task execution. In contrast, we discover that predictive embeddings pretrained on videos, in particular V-JEPA 2, are adept at flexibly discarding unpredictable environment factors and encoding task-relevant temporal dynamics, thereby effectively compensating for key shortcomings of existing visual representations in VLAs. Building on these observations, we introduce JEPA-VLA, a simple yet effective approach that adaptively integrates predictive embeddings into existing VLAs. Our experiments demonstrate that JEPA-VLA yields substantial performance gains across a range of benchmarks, including LIBERO, LIBERO-plus, RoboTwin2.0, and real-robot tasks.
☆ A Comparative Study of MAP and LMMSE Estimators for Blind Inverse Problems
Maximum-a-posteriori (MAP) approaches are an effective framework for inverse problems with known forward operators, particularly when combined with expressive priors and careful parameter selection. In blind settings, however, their use becomes significantly less stable due to the inherent non-convexity of the problem and the potential non-identifiability of the solutions. (Linear) minimum mean square error (MMSE) estimators provide a compelling alternative that can circumvent these limitations. In this work, we study synthetic two-dimensional blind deconvolution problems under fully controlled conditions, with complete prior knowledge of both the signal and kernel distributions. We compare tailored MAP algorithms with simple LMMSE estimators whose functional form is closely related to that of an optimal Tikhonov estimator. Our results show that, even in these highly controlled settings, MAP methods remain unstable and require extensive parameter tuning, whereas the LMMSE estimator yields a robust and reliable baseline. Moreover, we demonstrate empirically that the LMMSE solution can serve as an effective initialization for MAP approaches, improving their performance and reducing sensitivity to regularization parameters, thereby opening the door to future theoretical and practical developments.
☆ How to Sample High Quality 3D Fractals for Action Recognition Pre-Training?
Synthetic datasets are being recognized in the deep learning realm as a valuable alternative to exhaustively labeled real data. One such synthetic data generation method is Formula Driven Supervised Learning (FDSL), which can provide an infinite number of perfectly labeled data through a formula driven approach, such as fractals or contours. FDSL does not have common drawbacks like manual labor, privacy and other ethical concerns. In this work we generate 3D fractals using 3D Iterated Function Systems (IFS) for pre-training an action recognition model. The fractals are temporally transformed to form a video that is used as a pre-training dataset for downstream task of action recognition. We find that standard methods of generating fractals are slow and produce degenerate 3D fractals. Therefore, we systematically explore alternative ways of generating fractals and finds that overly-restrictive approaches, while generating aesthetically pleasing fractals, are detrimental for downstream task performance. We propose a novel method, Targeted Smart Filtering, to address both the generation speed and fractal diversity issue. The method reports roughly 100 times faster sampling speed and achieves superior downstream performance against other 3D fractal filtering methods.
comment: 12 pages, 6 figures. To be published in VISAPP
☆ Efficient Segment Anything with Depth-Aware Fusion and Limited Training Data
Segment Anything Models (SAM) achieve impressive universal segmentation performance but require massive datasets (e.g., 11M images) and rely solely on RGB inputs. Recent efficient variants reduce computation but still depend on large-scale training. We propose a lightweight RGB-D fusion framework that augments EfficientViT-SAM with monocular depth priors. Depth maps are generated with a pretrained estimator and fused mid-level with RGB features through a dedicated depth encoder. Trained on only 11.2k samples (less than 0.1\% of SA-1B), our method achieves higher accuracy than EfficientViT-SAM, showing that depth cues provide strong geometric priors for segmentation.
☆ Light4D: Training-Free Extreme Viewpoint 4D Video Relighting
Recent advances in diffusion-based generative models have established a new paradigm for image and video relighting. However, extending these capabilities to 4D relighting remains challenging, due primarily to the scarcity of paired 4D relighting training data and the difficulty of maintaining temporal consistency across extreme viewpoints. In this work, we propose Light4D, a novel training-free framework designed to synthesize consistent 4D videos under target illumination, even under extreme viewpoint changes. First, we introduce Disentangled Flow Guidance, a time-aware strategy that effectively injects lighting control into the latent space while preserving geometric integrity. Second, to reinforce temporal consistency, we develop Temporal Consistent Attention within the IC-Light architecture and further incorporate deterministic regularization to eliminate appearance flickering. Extensive experiments demonstrate that our method achieves competitive performance in temporal consistency and lighting fidelity, robustly handling camera rotations from -90 to 90. Code: https://github.com/AIGeeksGroup/Light4D. Website: https://aigeeksgroup.github.io/Light4D.
☆ Code2Worlds: Empowering Coding LLMs for 4D World Generation
Achieving spatial intelligence requires moving beyond visual plausibility to build world simulators grounded in physical laws. While coding LLMs have advanced static 3D scene generation, extending this paradigm to 4D dynamics remains a critical frontier. This task presents two fundamental challenges: multi-scale context entanglement, where monolithic generation fails to balance local object structures with global environmental layouts; and a semantic-physical execution gap, where open-loop code generation leads to physical hallucinations lacking dynamic fidelity. We introduce Code2Worlds, a framework that formulates 4D generation as language-to-simulation code generation. First, we propose a dual-stream architecture that disentangles retrieval-augmented object generation from hierarchical environmental orchestration. Second, to ensure dynamic fidelity, we establish a physics-aware closed-loop mechanism in which a PostProcess Agent scripts dynamics, coupled with a VLM-Motion Critic that performs self-reflection to iteratively refine simulation code. Evaluations on the Code4D benchmark show Code2Worlds outperforms baselines with a 41% SGS gain and 49% higher Richness, while uniquely generating physics-aware dynamics absent in prior static methods. Code: https://github.com/AIGeeksGroup/Code2Worlds. Website: https://aigeeksgroup.github.io/Code2Worlds.
☆ Adaptive Debiasing Tsallis Entropy for Test-Time Adaptation ICLR 2026
Mainstream Test-Time Adaptation (TTA) methods for adapting vision-language models, e.g., CLIP, typically rely on Shannon Entropy (SE) at test time to measure prediction uncertainty and inconsistency. However, since CLIP has a built-in bias from pretraining on highly imbalanced web-crawled data, SE inevitably results in producing biased estimates of uncertainty entropy. To address this issue, we notably find and demonstrate that Tsallis Entropy (TE), a generalized form of SE, is naturally suited for characterizing biased distributions by introducing a non-extensive parameter q, with the performance of SE serving as a lower bound for TE. Building upon this, we generalize TE into Adaptive Debiasing Tsallis Entropy (ADTE) for TTA, customizing a class-specific parameter q^l derived by normalizing the estimated label bias from continuously incoming test instances, for each category. This adaptive approach allows ADTE to accurately select high-confidence views and seamlessly integrate with a label adjustment strategy to enhance adaptation, without introducing distribution-specific hyperparameter tuning. Besides, our investigation reveals that both TE and ADTE can serve as direct, advanced alternatives to SE in TTA, without any other modifications. Experimental results show that ADTE outperforms state-of-the-art methods on ImageNet and its five variants, and achieves the highest average performance on 10 cross-domain benchmarks, regardless of the model architecture or text prompts used. Our code is available at https://github.com/Jinx630/ADTE.
comment: Accepted for publication at ICLR 2026; 24 pages; 5 figures
☆ Mask What Matters: Mitigating Object Hallucinations in Multimodal Large Language Models with Object-Aligned Visual Contrastive Decoding
We study object hallucination in Multimodal Large Language Models (MLLMs) and improve visual contrastive decoding (VCD) by constructing an object-aligned auxiliary view. We leverage object-centric attention in self-supervised Vision Transformers. In particular, we remove the most salient visual evidence to construct an auxiliary view that disrupts unsupported tokens and produces a stronger contrast signal. Our method is prompt-agnostic, model-agnostic, and can be seamlessly plugged into the existing VCD pipeline with little computation overhead, i.e., a single cacheable forward pass. Empirically, our method demonstrates consistent gains on two popular object hallucination benchmarks across two MLLMs.
☆ Adapting Vision-Language Models for E-commerce Understanding at Scale
E-commerce product understanding demands by nature, strong multimodal comprehension from text, images, and structured attributes. General-purpose Vision-Language Models (VLMs) enable generalizable multimodal latent modelling, yet there is no documented, well-known strategy for adapting them to the attribute-centric, multi-image, and noisy nature of e-commerce data, without sacrificing general performance. In this work, we show through a large-scale experimental study, how targeted adaptation of general VLMs can substantially improve e-commerce performance while preserving broad multimodal capabilities. Furthermore, we propose a novel extensive evaluation suite covering deep product understanding, strict instruction following, and dynamic attribute extraction.
☆ STVG-R1: Incentivizing Instance-Level Reasoning and Grounding in Videos via Reinforcement Learning
In vision-language models (VLMs), misalignment between textual descriptions and visual coordinates often induces hallucinations. This issue becomes particularly severe in dense prediction tasks such as spatial-temporal video grounding (STVG). Prior approaches typically focus on enhancing visual-textual alignment or attaching auxiliary decoders. However, these strategies inevitably introduce additional trainable modules, leading to significant annotation costs and computational overhead. In this work, we propose a novel visual prompting paradigm that avoids the difficult problem of aligning coordinates across modalities. Specifically, we reformulate per-frame coordinate prediction as a compact instance-level identification problem by assigning each object a unique, temporally consistent ID. These IDs are embedded into the video as visual prompts, providing explicit and interpretable inputs to the VLMs. Furthermore, we introduce STVG-R1, the first reinforcement learning framework for STVG, which employs a task-driven reward to jointly optimize temporal accuracy, spatial consistency, and structural format regularization. Extensive experiments on six benchmarks demonstrate the effectiveness of our approach. STVG-R1 surpasses the baseline Qwen2.5-VL-7B by a remarkable margin of 20.9% on m_IoU on the HCSTVG-v2 benchmark, establishing a new state of the art (SOTA). Surprisingly, STVG-R1 also exhibits strong zero-shot generalization to multi-object referring video object segmentation tasks, achieving a SOTA 47.3% J&F on MeViS.
☆ GSO-SLAM: Bidirectionally Coupled Gaussian Splatting and Direct Visual Odometry
We propose GSO-SLAM, a real-time monocular dense SLAM system that leverages Gaussian scene representation. Unlike existing methods that couple tracking and mapping with a unified scene, incurring computational costs, or loosely integrate them with well-structured tracking frameworks, introducing redundancies, our method bidirectionally couples Visual Odometry (VO) and Gaussian Splatting (GS). Specifically, our approach formulates joint optimization within an Expectation-Maximization (EM) framework, enabling the simultaneous refinement of VO-derived semi-dense depth estimates and the GS representation without additional computational overhead. Moreover, we present Gaussian Splat Initialization, which utilizes image information, keyframe poses, and pixel associations from VO to produce close approximations to the final Gaussian scene, thereby eliminating the need for heuristic methods. Through extensive experiments, we validate the effectiveness of our method, showing that it not only operates in real time but also achieves state-of-the-art geometric/photometric fidelity of the reconstructed scene and tracking accuracy.
comment: 8 pages, 6 figures, RA-L accepted
☆ TG-Field: Geometry-Aware Radiative Gaussian Fields for Tomographic Reconstruction AAAI 2026
3D Gaussian Splatting (3DGS) has revolutionized 3D scene representation with superior efficiency and quality. While recent adaptations for computed tomography (CT) show promise, they struggle with severe artifacts under highly sparse-view projections and dynamic motions. To address these challenges, we propose Tomographic Geometry Field (TG-Field), a geometry-aware Gaussian deformation framework tailored for both static and dynamic CT reconstruction. A multi-resolution hash encoder is employed to capture local spatial priors, regularizing primitive parameters under ultra-sparse settings. We further extend the framework to dynamic reconstruction by introducing time-conditioned representations and a spatiotemporal attention block to adaptively aggregate features, thereby resolving spatiotemporal ambiguities and enforcing temporal coherence. In addition, a motion-flow network models fine-grained respiratory motion to track local anatomical deformations. Extensive experiments on synthetic and real-world datasets demonstrate that TG-Field consistently outperforms existing methods, achieving state-of-the-art reconstruction accuracy under highly sparse-view conditions.
comment: Accepted to AAAI 2026. Project page: https://vcc.tech/research/2026/TG-Field
LLM-Driven 3D Scene Generation of Agricultural Simulation Environments
Procedural generation techniques in 3D rendering engines have revolutionized the creation of complex environments, reducing reliance on manual design. Recent approaches using Large Language Models (LLMs) for 3D scene generation show promise but often lack domain-specific reasoning, verification mechanisms, and modular design. These limitations lead to reduced control and poor scalability. This paper investigates the use of LLMs to generate agricultural synthetic simulation environments from natural language prompts, specifically to address the limitations of lacking domain-specific reasoning, verification mechanisms, and modular design. A modular multi-LLM pipeline was developed, integrating 3D asset retrieval, domain knowledge injection, and code generation for the Unreal rendering engine using its API. This results in a 3D environment with realistic planting layouts and environmental context, all based on the input prompt and the domain knowledge. To enhance accuracy and scalability, the system employs a hybrid strategy combining LLM optimization techniques such as few-shot prompting, Retrieval-Augmented Generation (RAG), finetuning, and validation. Unlike monolithic models, the modular architecture enables structured data handling, intermediate verification, and flexible expansion. The system was evaluated using structured prompts and semantic accuracy metrics. A user study assessed realism and familiarity against real-world images, while an expert comparison demonstrated significant time savings over manual scene design. The results confirm the effectiveness of multi-LLM pipelines in automating domain-specific 3D scene generation with improved reliability and precision. Future work will explore expanding the asset hierarchy, incorporating real-time generation, and adapting the pipeline to other simulation domains beyond agriculture.
comment: Accepted at IEEE Conference on Artificial Intelligence 2026
☆ U-DAVI: Uncertainty-Aware Diffusion-Prior-Based Amortized Variational Inference for Image Reconstruction ICASSP 2026
Ill-posed imaging inverse problems remain challenging due to the ambiguity in mapping degraded observations to clean images. Diffusion-based generative priors have recently shown promise, but typically rely on computationally intensive iterative sampling or per-instance optimization. Amortized variational inference frameworks address this inefficiency by learning a direct mapping from measurements to posteriors, enabling fast posterior sampling without requiring the optimization of a new posterior for every new set of measurements. However, they still struggle to reconstruct fine details and complex textures. To address this, we extend the amortized framework by injecting spatially adaptive perturbations to measurements during training, guided by uncertainty estimates, to emphasize learning in the most uncertain regions. Experiments on deblurring and super-resolution demonstrate that our method achieves superior or competitive performance to previous diffusion-based approaches, delivering more realistic reconstructions without the computational cost of iterative refinement.
comment: Accepted at ICASSP 2026
☆ Semantically Conditioned Diffusion Models for Cerebral DSA Synthesis
Digital subtraction angiography (DSA) plays a central role in the diagnosis and treatment of cerebrovascular disease, yet its invasive nature and high acquisition cost severely limit large-scale data collection and public data sharing. Therefore, we developed a semantically conditioned latent diffusion model (LDM) that synthesizes arterial-phase cerebral DSA frames under explicit control of anatomical circulation (anterior vs.\ posterior) and canonical C-arm positions. We curated a large single-centre DSA dataset of 99,349 frames and trained a conditional LDM using text embeddings that encoded anatomy and acquisition geometry. To assess clinical realism, four medical experts, including two neuroradiologists, one neurosurgeon, and one internal medicine expert, systematically rated 400 synthetic DSA images using a 5-grade Likert scale for evaluating proximal large, medium, and small peripheral vessels. The generated images achieved image-wise overall Likert scores ranging from 3.1 to 3.3, with high inter-rater reliability (ICC(2,k) = 0.80--0.87). Distributional similarity to real DSA frames was supported by a low median Fréchet inception distance (FID) of 15.27. Our results indicate that semantically controlled LDMs can produce realistic synthetic DSAs suitable for downstream algorithm development, research, and training.
☆ OMEGA-Avatar: One-shot Modeling of 360° Gaussian Avatars
Creating high-fidelity, animatable 3D avatars from a single image remains a formidable challenge. We identified three desirable attributes of avatar generation: 1) the method should be feed-forward, 2) model a 360° full-head, and 3) should be animation-ready. However, current work addresses only two of the three points simultaneously. To address these limitations, we propose OMEGA-Avatar, the first feed-forward framework that simultaneously generates a generalizable, 360°-complete, and animatable 3D Gaussian head from a single image. Starting from a feed-forward and animatable framework, we address the 360° full-head avatar generation problem with two novel components. First, to overcome poor hair modeling in full-head avatar generation, we introduce a semantic-aware mesh deformation module that integrates multi-view normals to optimize a FLAME head with hair while preserving its topology structure. Second, to enable effective feed-forward decoding of full-head features, we propose a multi-view feature splatting module that constructs a shared canonical UV representation from features across multiple views through differentiable bilinear splatting, hierarchical UV mapping, and visibility-aware fusion. This approach preserves both global structural coherence and local high-frequency details across all viewpoints, ensuring 360° consistency without per-instance optimization. Extensive experiments demonstrate that OMEGA-Avatar achieves state-of-the-art performance, significantly outperforming existing baselines in 360° full-head completeness while robustly preserving identity across different viewpoints.
comment: Project page: https://omega-avatar.github.io/OMEGA-Avatar/
☆ Beyond Pixels: Vector-to-Graph Transformation for Reliable Schematic Auditing ICASSP 2026
Multimodal Large Language Models (MLLMs) have shown remarkable progress in visual understanding, yet they suffer from a critical limitation: structural blindness. Even state-of-the-art models fail to capture topology and symbolic logic in engineering schematics, as their pixel-driven paradigm discards the explicit vector-defined relations needed for reasoning. To overcome this, we propose a Vector-to-Graph (V2G) pipeline that converts CAD diagrams into property graphs where nodes represent components and edges encode connectivity, making structural dependencies explicit and machine-auditable. On a diagnostic benchmark of electrical compliance checks, V2G yields large accuracy gains across all error categories, while leading MLLMs remain near chance level. These results highlight the systemic inadequacy of pixel-based methods and demonstrate that structure-aware representations provide a reliable path toward practical deployment of multimodal AI in engineering domains. To facilitate further research, we release our benchmark and implementation at https://github.com/gm-embodied/V2G-Audit.
comment: 4 pages, 3 figures. Accepted to ICASSP 2026
☆ RI-Mamba: Rotation-Invariant Mamba for Robust Text-to-Shape Retrieval
3D assets have rapidly expanded in quantity and diversity due to the growing popularity of virtual reality and gaming. As a result, text-to-shape retrieval has become essential in facilitating intuitive search within large repositories. However, existing methods require canonical poses and support few object categories, limiting their real-world applicability where objects can belong to diverse classes and appear in random orientations. To address this challenge, we propose RI-Mamba, the first rotation-invariant state-space model for point clouds. RI-Mamba defines global and local reference frames to disentangle pose from geometry and uses Hilbert sorting to construct token sequences with meaningful geometric structure while maintaining rotation invariance. We further introduce a novel strategy to compute orientational embeddings and reintegrate them via feature-wise linear modulation, effectively recovering spatial context and enhancing model expressiveness. Our strategy is inherently compatible with state-space models and operates in linear time. To scale up retrieval, we adopt cross-modal contrastive learning with automated triplet generation, allowing training on diverse datasets without manual annotation. Extensive experiments demonstrate RI-Mamba's superior representational capacity and robustness, achieving state-of-the-art performance on the OmniObject3D benchmark across more than 200 object categories under arbitrary orientations. Our code will be made available at https://github.com/ndkhanh360/RI-Mamba.git.
☆ U-Net with Hadamard Transform and DCT Latent Spaces for Next-day Wildfire Spread Prediction
We developed a lightweight and computationally efficient tool for next-day wildfire spread prediction using multimodal satellite data as input. The deep learning model, which we call Transform Domain Fusion UNet (TD-FusionUNet), incorporates trainable Hadamard Transform and Discrete Cosine Transform layers that apply two-dimensional transforms, enabling the network to capture essential "frequency" components in orthogonalized latent spaces. Additionally, we introduce custom preprocessing techniques, including random margin cropping and a Gaussian mixture model, to enrich the representation of the sparse pre-fire masks and enhance the model's generalization capability. The TD-FusionUNet is evaluated on two datasets which are the Next-Day Wildfire Spread dataset released by Google Research in 2023, and WildfireSpreadTS dataset. Our proposed TD-FusionUNet achieves an F1 score of 0.591 with 370k parameters, outperforming the UNet baseline using ResNet18 as the encoder reported in the WildfireSpreadTS dataset while using substantially fewer parameters. These results show that the proposed latent space fusion model balances accuracy and efficiency under a lightweight setting, making it suitable for real time wildfire prediction applications in resource limited environments.
☆ Egocentric Gaze Estimation via Neck-Mounted Camera
This paper introduces neck-mounted view gaze estimation, a new task that estimates user gaze from the neck-mounted camera perspective. Prior work on egocentric gaze estimation, which predicts device wearer's gaze location within the camera's field of view, mainly focuses on head-mounted cameras while alternative viewpoints remain underexplored. To bridge this gap, we collect the first dataset for this task, consisting of approximately 4 hours of video collected from 8 participants during everyday activities. We evaluate a transformer-based gaze estimation model, GLC, on the new dataset and propose two extensions: an auxiliary gaze out-of-bound classification task and a multi-view co-learning approach that jointly trains head-view and neck-view models using a geometry-aware auxiliary loss. Experimental results show that incorporating gaze out-of-bound classification improves performance over standard fine-tuning, while the co-learning approach does not yield gains. We further analyze these results and discuss implications for neck-mounted gaze estimation.
☆ Clutt3R-Seg: Sparse-view 3D Instance Segmentation for Language-grounded Grasping in Cluttered Scenes ICRA 2026
Reliable 3D instance segmentation is fundamental to language-grounded robotic manipulation. Its critical application lies in cluttered environments, where occlusions, limited viewpoints, and noisy masks degrade perception. To address these challenges, we present Clutt3R-Seg, a zero-shot pipeline for robust 3D instance segmentation for language-grounded grasping in cluttered scenes. Our key idea is to introduce a hierarchical instance tree of semantic cues. Unlike prior approaches that attempt to refine noisy masks, our method leverages them as informative cues: through cross-view grouping and conditional substitution, the tree suppresses over- and under-segmentation, yielding view-consistent masks and robust 3D instances. Each instance is enriched with open-vocabulary semantic embeddings, enabling accurate target selection from natural language instructions. To handle scene changes during multi-stage tasks, we further introduce a consistency-aware update that preserves instance correspondences from only a single post-interaction image, allowing efficient adaptation without rescanning. Clutt3R-Seg is evaluated on both synthetic and real-world datasets, and validated on a real robot. Across all settings, it consistently outperforms state-of-the-art baselines in cluttered and sparse-view scenarios. Even on the most challenging heavy-clutter sequences, Clutt3R-Seg achieves an AP@25 of 61.66, over 2.2x higher than baselines, and with only four input views it surpasses MaskClustering with eight views by more than 2x. The code is available at: https://github.com/jeonghonoh/clutt3r-seg.
comment: Accepted to ICRA 2026. 9 pages, 8 figures
☆ EmoSpace: Fine-Grained Emotion Prototype Learning for Immersive Affective Content Generation
Emotion is important for creating compelling virtual reality (VR) content. Although some generative methods have been applied to lower the barrier to creating emotionally rich content, they fail to capture the nuanced emotional semantics and the fine-grained control essential for immersive experiences. To address these limitations, we introduce EmoSpace, a novel framework for emotion-aware content generation that learns dynamic, interpretable emotion prototypes through vision-language alignment. We employ a hierarchical emotion representation with rich learnable prototypes that evolve during training, enabling fine-grained emotional control without requiring explicit emotion labels. We develop a controllable generation pipeline featuring multi-prototype guidance, temporal blending, and attention reweighting that supports diverse applications, including emotional image outpainting, stylized generation, and emotional panorama generation for VR environments. Our experiments demonstrate the superior performance of EmoSpace over existing methods in both qualitative and quantitative evaluations. Additionally, we present a comprehensive user study investigating how VR environments affect emotional perception compared to desktop settings. Our work facilitates immersive visual content generation with fine-grained emotion control and supports applications like therapy, education, storytelling, artistic creation, and cultural preservation. Code and models will be made publicly available.
☆ SToRM: Supervised Token Reduction for Multi-modal LLMs toward efficient end-to-end autonomous driving
In autonomous driving, end-to-end (E2E) driving systems that predict control commands directly from sensor data have achieved significant advancements. For safe driving in unexpected scenarios, these systems may additionally rely on human interventions such as natural language instructions. Using a multi-modal large language model (MLLM) facilitates human-vehicle interaction and can improve performance in such scenarios. However, this approach requires substantial computational resources due to its reliance on an LLM and numerous visual tokens from sensor inputs, which are limited in autonomous vehicles. Many MLLM studies have explored reducing visual tokens, but often suffer end-task performance degradation compared to using all tokens. To enable efficient E2E driving while maintaining performance comparable to using all tokens, this paper proposes the first Supervised Token Reduction framework for multi-modal LLMs (SToRM). The proposed framework consists of three key elements. First, a lightweight importance predictor with short-term sliding windows estimates token importance scores. Second, a supervised training approach uses an auxiliary path to obtain pseudo-supervision signals from an all-token LLM pass. Third, an anchor-context merging module partitions tokens into anchors and context tokens, and merges context tokens into relevant anchors to reduce redundancy while minimizing information loss. Experiments on the LangAuto benchmark show that SToRM outperforms state-of-the-art E2E driving MLLMs under the same reduced-token budget, maintaining all-token performance while reducing computational cost by up to 30x.
☆ GR-Diffusion: 3D Gaussian Representation Meets Diffusion in Whole-Body PET Reconstruction
Positron emission tomography (PET) reconstruction is a critical challenge in molecular imaging, often hampered by noise amplification, structural blurring, and detail loss due to sparse sampling and the ill-posed nature of inverse problems. The three-dimensional discrete Gaussian representation (GR), which efficiently encodes 3D scenes using parameterized discrete Gaussian distributions, has shown promise in computer vision. In this work, we pro-pose a novel GR-Diffusion framework that synergistically integrates the geometric priors of GR with the generative power of diffusion models for 3D low-dose whole-body PET reconstruction. GR-Diffusion employs GR to generate a reference 3D PET image from projection data, establishing a physically grounded and structurally explicit benchmark that overcomes the low-pass limitations of conventional point-based or voxel-based methods. This reference image serves as a dual guide during the diffusion process, ensuring both global consistency and local accuracy. Specifically, we employ a hierarchical guidance mechanism based on the GR reference. Fine-grained guidance leverages differences to refine local details, while coarse-grained guidance uses multi-scale difference maps to correct deviations. This strategy allows the diffusion model to sequentially integrate the strong geometric prior from GR and recover sub-voxel information. Experimental results on the UDPET and Clinical datasets with varying dose levels show that GR-Diffusion outperforms state-of-the-art methods in enhancing 3D whole-body PET image quality and preserving physiological details.
☆ Brain Tumor Classifiers Under Attack: Robustness of ResNet Variants Against Transferable FGSM and PGD Attacks
Adversarial robustness in deep learning models for brain tumor classification remains an underexplored yet critical challenge, particularly for clinical deployment scenarios involving MRI data. In this work, we investigate the susceptibility and resilience of several ResNet-based architectures, referred to as BrainNet, BrainNeXt and DilationNet, against gradient-based adversarial attacks, namely FGSM and PGD. These models, based on ResNet, ResNeXt, and dilated ResNet variants respectively, are evaluated across three preprocessing configurations (i) full-sized augmented, (ii) shrunk augmented and (iii) shrunk non-augmented MRI datasets. Our experiments reveal that BrainNeXt models exhibit the highest robustness to black-box attacks, likely due to their increased cardinality, though they produce weaker transferable adversarial samples. In contrast, BrainNet and Dilation models are more vulnerable to attacks from each other, especially under PGD with higher iteration steps and $α$ values. Notably, shrunk and non-augmented data significantly reduce model resilience, even when the untampered test accuracy remains high, highlighting a key trade-off between input resolution and adversarial vulnerability. These results underscore the importance of jointly evaluating classification performance and adversarial robustness for reliable real-world deployment in brain MRI analysis.
☆ ViTaS: Visual Tactile Soft Fusion Contrastive Learning for Visuomotor Learning ICRA 2026
Tactile information plays a crucial role in human manipulation tasks and has recently garnered increasing attention in robotic manipulation. However, existing approaches mostly focus on the alignment of visual and tactile features and the integration mechanism tends to be direct concatenation. Consequently, they struggle to effectively cope with occluded scenarios due to neglecting the inherent complementary nature of both modalities and the alignment may not be exploited enough, limiting the potential of their real-world deployment. In this paper, we present ViTaS, a simple yet effective framework that incorporates both visual and tactile information to guide the behavior of an agent. We introduce Soft Fusion Contrastive Learning, an advanced version of conventional contrastive learning method and a CVAE module to utilize the alignment and complementarity within visuo-tactile representations. We demonstrate the effectiveness of our method in 12 simulated and 3 real-world environments, and our experiments show that ViTaS significantly outperforms existing baselines. Project page: https://skyrainwind.github.io/ViTaS/index.html.
comment: Published to ICRA 2026
☆ Electrostatics-Inspired Surface Reconstruction (EISR): Recovering 3D Shapes as a Superposition of Poisson's PDE Solutions
Implicit shape representation, such as SDFs, is a popular approach to recover the surface of a 3D shape as the level sets of a scalar field. Several methods approximate SDFs using machine learning strategies that exploit the knowledge that SDFs are solutions of the Eikonal partial differential equation (PDEs). In this work, we present a novel approach to surface reconstruction by encoding it as a solution to a proxy PDE, namely Poisson's equation. Then, we explore the connection between Poisson's equation and physics, e.g., the electrostatic potential due to a positive charge density. We employ Green's functions to obtain a closed-form parametric expression for the PDE's solution, and leverage the linearity of our proxy PDE to find the target shape's implicit field as a superposition of solutions. Our method shows improved results in approximating high-frequency details, even with a small number of shape priors.
☆ ScalSelect: Scalable Training-Free Multimodal Data Selection for Efficient Visual Instruction Tuning
Large-scale Visual Instruction Tuning (VIT) has become a key paradigm for advancing the performance of vision-language models (VLMs) across various multimodal tasks. However, training on the large-scale datasets is computationally expensive and inefficient due to redundancy in the data, which motivates the need for multimodal data selection to improve training efficiency. Existing data selection methods for VIT either require costly training or gradient computation. Training-free alternatives often depend on proxy models or datasets, instruction-agnostic representations, and pairwise similarity with quadratic complexity, limiting scalability and representation fidelity. In this work, we propose ScalSelect, a scalable training-free multimodal data selection method with linear-time complexity with respect to the number of samples, eliminating the need for external models or auxiliary datasets. ScalSelect first constructs sample representations by extracting visual features most attended by instruction tokens in the target VLM, capturing instruction-relevant information. It then identifies samples whose representations best approximate the dominant subspace of the full dataset representations, enabling scalable importance scoring without pairwise comparisons. Extensive experiments across multiple VLMs, datasets, and selection budgets demonstrate that ScalSelect achieves over 97.5% of the performance of training on the full dataset using only 16% of the data, and even outperforms full-data training in some settings. The code is available at \href{https://github.com/ChangtiWu/ScalSelect}{ScalSelect}.
comment: The code is available at \href{https://github.com/ChangtiWu/ScalSelect}{ScalSelect}
☆ PLESS: Pseudo-Label Enhancement with Spreading Scribbles for Weakly Supervised Segmentation
Weakly supervised learning with scribble annotations uses sparse user-drawn strokes to indicate segmentation labels on a small subset of pixels. This annotation reduces the cost of dense pixel-wise labeling, but suffers inherently from noisy and incomplete supervision. Recent scribble-based approaches in medical image segmentation address this limitation using pseudo-label-based training; however, the quality of the pseudo-labels remains a key performance limit. We propose PLESS, a generic pseudo-label enhancement strategy which improves reliability and spatial consistency. It builds on a hierarchical partitioning of the image into a hierarchy of spatially coherent regions. PLESS propagates scribble information to refine pseudo-labels within semantically coherent regions. The framework is model-agnostic and easily integrates into existing pseudo-label methods. Experiments on two public cardiac MRI datasets (ACDC and MSCMRseg) across four scribble-supervised algorithms show consistent improvements in segmentation accuracy. Code will be made available on GitHub upon acceptance.
comment: This work was supported by the Afeyan Family Foundation Seed Grants and the JACE Foundation Research Innovation Grant Program at AUA
☆ PLOT-CT: Pre-log Voronoi Decomposition Assisted Generation for Low-dose CT Reconstruction
Low-dose computed tomography (LDCT) reconstruction is fundamentally challenged by severe noise and compromised data fidelity under reduced radiation exposure. Most existing methods operate either in the image or post-log projection domain, which fails to fully exploit the rich structural information in pre-log measurements while being highly susceptible to noise. The requisite logarithmic transformation critically amplifies noise within these data, imposing exceptional demands on reconstruction precision. To overcome these challenges, we propose PLOT-CT, a novel framework for Pre-Log vOronoi decomposiTion-assisted CT generation. Our method begins by applying Voronoi decomposition to pre-log sinograms, disentangling the data into distinct underlying components, which are embedded in separate latent spaces. This explicit decomposition significantly enhances the model's capacity to learn discriminative features, directly improving reconstruction accuracy by mitigating noise and preserving information inherent in the pre-log domain. Extensive experiments demonstrate that PLOT-CT achieves state-of-the-art performance, attaining a 2.36dB PSNR improvement over traditional methods at the 1e4 incident photon level in the pre-log domain.
☆ ABot-N0: Technical Report on the VLA Foundation Model for Versatile Embodied Navigation
Embodied navigation has long been fragmented by task-specific architectures. We introduce ABot-N0, a unified Vision-Language-Action (VLA) foundation model that achieves a ``Grand Unification'' across 5 core tasks: Point-Goal, Object-Goal, Instruction-Following, POI-Goal, and Person-Following. ABot-N0 utilizes a hierarchical ``Brain-Action'' architecture, pairing an LLM-based Cognitive Brain for semantic reasoning with a Flow Matching-based Action Expert for precise, continuous trajectory generation. To support large-scale learning, we developed the ABot-N0 Data Engine, curating 16.9M expert trajectories and 5.0M reasoning samples across 7,802 high-fidelity 3D scenes (10.7 $\text{km}^2$). ABot-N0 achieves new SOTA performance across 7 benchmarks, significantly outperforming specialized models. Furthermore, our Agentic Navigation System integrates a planner with hierarchical topological memory, enabling robust, long-horizon missions in dynamic real-world environments.
comment: Project Page: https://amap-cvlab.github.io/ABot-Navigation/ABot-N0/
☆ A Large Language Model for Disaster Structural Reconnaissance Summarization
Artificial Intelligence (AI)-aided vision-based Structural Health Monitoring (SHM) has emerged as an effective approach for monitoring and assessing structural condition by analyzing image and video data. By integrating Computer Vision (CV) and Deep Learning (DL), vision-based SHM can automatically identify and localize visual patterns associated with structural damage. However, previous works typically generate only discrete outputs, such as damage class labels and damage region coordinates, requiring engineers to further reorganize and analyze these results for evaluation and decision-making. In late 2022, Large Language Models (LLMs) became popular across multiple fields, providing new insights into AI-aided vision-based SHM. In this study, a novel LLM-based Disaster Reconnaissance Summarization (LLM-DRS) framework is proposed. It introduces a standard reconnaissance plan in which the collection of vision data and corresponding metadata follows a well-designed on-site investigation process. Text-based metadata and image-based vision data are then processed and integrated into a unified format, where well-trained Deep Convolutional Neural Networks extract key attributes, including damage state, material type, and damage level. Finally, all data are fed into an LLM with carefully designed prompts, enabling the LLM-DRS to generate summary reports for individual structures or affected regions based on aggregated attributes and metadata. Results show that integrating LLMs into vision-based SHM, particularly for rapid post-disaster reconnaissance, demonstrates promising potential for improving resilience of the built environment through effective reconnaissance.
comment: 8 pages, 4 figures. Presented at the 18th World Conference on Earthquake Engineering (18WCEE 2024)
☆ ReaDy-Go: Real-to-Sim Dynamic 3D Gaussian Splatting Simulation for Environment-Specific Visual Navigation with Moving Obstacles
Visual navigation models often struggle in real-world dynamic environments due to limited robustness to the sim-to-real gap and the difficulty of training policies tailored to target deployment environments (e.g., households, restaurants, and factories). Although real-to-sim navigation simulation using 3D Gaussian Splatting (GS) can mitigate this gap, prior works have assumed only static scenes or unrealistic dynamic obstacles, despite the importance of safe navigation in dynamic environments. To address these issues, we propose ReaDy-Go, a novel real-to-sim simulation pipeline that synthesizes photorealistic dynamic scenarios for target environments. ReaDy-Go generates photorealistic navigation datasets for dynamic environments by combining a reconstructed static GS scene with dynamic human GS obstacles, and trains policies robust to both the sim-to-real gap and moving obstacles. The pipeline consists of three components: (1) a dynamic GS simulator that integrates scene GS with a human animation module, enabling the insertion of animatable human GS avatars and the synthesis of plausible human motions from 2D trajectories, (2) navigation dataset generation for dynamic environments that leverages the simulator, a robot expert planner designed for dynamic GS representations, and a human planner, and (3) policy learning using the generated datasets. ReaDy-Go outperforms baselines across target environments in both simulation and real-world experiments, demonstrating improved navigation performance even after sim-to-real transfer and in the presence of moving obstacles. Moreover, zero-shot sim-to-real deployment in an unseen environment indicates its generalization potential. Project page: https://syeon-yoo.github.io/ready-go-site/.
comment: Project page: https://syeon-yoo.github.io/ready-go-site/
☆ Move What Matters: Parameter-Efficient Domain Adaptation via Optimal Transport Flow for Collaborative Perception
Fast domain adaptation remains a fundamental challenge for deploying multi-agent systems across diverse environments in Vehicle-to-Everything (V2X) collaborative perception. Despite the success of Parameter-Efficient Fine-Tuning (PEFT) in natural language processing and conventional vision tasks, directly applying PEFT to multi-agent settings leads to significant performance degradation and training instability. In this work, we conduct a detailed analysis and identify two key factors: (i) inter-frame redundancy in heterogeneous sensory streams, and (ii) erosion of fine-grained semantics in deep-layer representations under PEFT adaptation. To address these issues, we propose FlowAdapt, a parameter-efficient framework grounded in optimal transport theory, which minimizes information transport costs across both data distributions and network hierarchies. Specifically, we introduce a Wasserstein Greedy Sampling strategy to selectively filter redundant samples via a bounded covering radius. Furthermore, Progressive Knowledge Transfer module is designed to progressively inject compressed early-stage representations into later stages through learnable pathways, alleviating semantic degradation in late-stage adaptation. Extensive experiments on three benchmarks demonstrate that FlowAdapt achieves state-of-the-art performance with only 1% of trainable parameters, effectively bridging domain gaps with superior sample efficiency and generalization.
☆ LUVE : Latent-Cascaded Ultra-High-Resolution Video Generation with Dual Frequency Experts
Recent advances in video diffusion models have significantly improved visual quality, yet ultra-high-resolution (UHR) video generation remains a formidable challenge due to the compounded difficulties of motion modeling, semantic planning, and detail synthesis. To address these limitations, we propose \textbf{LUVE}, a \textbf{L}atent-cascaded \textbf{U}HR \textbf{V}ideo generation framework built upon dual frequency \textbf{E}xperts. LUVE employs a three-stage architecture comprising low-resolution motion generation for motion-consistent latent synthesis, video latent upsampling that performs resolution upsampling directly in the latent space to mitigate memory and computational overhead, and high-resolution content refinement that integrates low-frequency and high-frequency experts to jointly enhance semantic coherence and fine-grained detail generation. Extensive experiments demonstrate that our LUVE achieves superior photorealism and content fidelity in UHR video generation, and comprehensive ablation studies further validate the effectiveness of each component. The project is available at \href{https://unicornanrocinu.github.io/LUVE_web/}{https://github.io/LUVE/}.
☆ HyperDet: 3D Object Detection with Hyper 4D Radar Point Clouds
4D mmWave radar provides weather-robust, velocity-aware measurements and is more cost-effective than LiDAR. However, radar-only 3D detection still trails LiDAR-based systems because radar point clouds are sparse, irregular, and often corrupted by multipath noise, yielding weak and unstable geometry. We present HyperDet, a detector-agnostic radar-only 3D detection framework that constructs a task-aware hyper 4D radar point cloud for standard LiDAR-oriented detectors. HyperDet aggregates returns from multiple surround-view 4D radars over consecutive frames to improve coverage and density, then applies geometry-aware cross-sensor consensus validation with a lightweight self-consistency check outside overlap regions to suppress inconsistent returns. It further integrates a foreground-focused diffusion module with training-time mixed radar-LiDAR supervision to densify object structures while lifting radar attributes (e.g., Doppler, RCS); the model is distilled into a consistency model for single-step inference. On MAN TruckScenes, HyperDet consistently improves over raw radar inputs with VoxelNeXt and CenterPoint, partially narrowing the radar-LiDAR gap. These results show that input-level refinement enables radar to better leverage LiDAR-oriented detectors without architectural modifications.
comment: 9 pages, 4 figures, 6 tables
☆ Perception-based Image Denoising via Generative Compression
Image denoising aims to remove noise while preserving structural details and perceptual realism, yet distortion-driven methods often produce over-smoothed reconstructions, especially under strong noise and distribution shift. This paper proposes a generative compression framework for perception-based denoising, where restoration is achieved by reconstructing from entropy-coded latent representations that enforce low-complexity structure, while generative decoders recover realistic textures via perceptual measures such as learned perceptual image patch similarity (LPIPS) loss and Wasserstein distance. Two complementary instantiations are introduced: (i) a conditional Wasserstein GAN (WGAN)-based compression denoiser that explicitly controls the rate-distortion-perception (RDP) trade-off, and (ii) a conditional diffusion-based reconstruction strategy that performs iterative denoising guided by compressed latents. We further establish non-asymptotic guarantees for the compression-based maximum-likelihood denoiser under additive Gaussian noise, including bounds on reconstruction error and decoding error probability. Experiments on synthetic and real-noise benchmarks demonstrate consistent perceptual improvements while maintaining competitive distortion performance.
☆ Supervise-assisted Multi-modality Fusion Diffusion Model for PET Restoration
Positron emission tomography (PET) offers powerful functional imaging but involves radiation exposure. Efforts to reduce this exposure by lowering the radiotracer dose or scan time can degrade image quality. While using magnetic resonance (MR) images with clearer anatomical information to restore standard-dose PET (SPET) from low-dose PET (LPET) is a promising approach, it faces challenges with the inconsistencies in the structure and texture of multi-modality fusion, as well as the mismatch in out-of-distribution (OOD) data. In this paper, we propose a supervise-assisted multi-modality fusion diffusion model (MFdiff) for addressing these challenges for high-quality PET restoration. Firstly, to fully utilize auxiliary MR images without introducing extraneous details in the restored image, a multi-modality feature fusion module is designed to learn an optimized fusion feature. Secondly, using the fusion feature as an additional condition, high-quality SPET images are iteratively generated based on the diffusion model. Furthermore, we introduce a two-stage supervise-assisted learning strategy that harnesses both generalized priors from simulated in-distribution datasets and specific priors tailored to in-vivo OOD data. Experiments demonstrate that the proposed MFdiff effectively restores high-quality SPET images from multi-modality inputs and outperforms state-of-the-art methods both qualitatively and quantitatively.
☆ Vascular anatomy-aware self-supervised pre-training for X-ray angiogram analysis AAAI 2026
X-ray angiography is the gold standard imaging modality for cardiovascular diseases. However, current deep learning approaches for X-ray angiogram analysis are severely constrained by the scarcity of annotated data. While large-scale self-supervised learning (SSL) has emerged as a promising solution, its potential in this domain remains largely unexplored, primarily due to the lack of effective SSL frameworks and large-scale datasets. To bridge this gap, we introduce a vascular anatomy-aware masked image modeling (VasoMIM) framework that explicitly integrates domain-specific anatomical knowledge. Specifically, VasoMIM comprises two key designs: an anatomy-guided masking strategy and an anatomical consistency loss. The former strategically masks vessel-containing patches to compel the model to learn robust vascular semantics, while the latter preserves structural consistency of vessels between original and reconstructed images, enhancing the discriminability of the learned representations. In conjunction with VasoMIM, we curate XA-170K, the largest X-ray angiogram pre-training dataset to date. We validate VasoMIM on four downstream tasks across six datasets, where it demonstrates superior transferability and achieves state-of-the-art performance compared to existing methods. These findings highlight the significant potential of VasoMIM as a foundation model for advancing a wide range of X-ray angiogram analysis tasks. VasoMIM and XA-170K will be available at https://github.com/Dxhuang-CASIA/XA-SSL.
comment: 10 pages, 10 figures, 10 tables. Journal version of VasoMIM (AAAI 2026)
☆ How Smart Is Your GUI Agent? A Framework for the Future of Software Interaction
GUI agents are rapidly becoming a new interaction to software, allowing people to navigate web, desktop and mobile rather than execute them click by click. Yet ``agent'' is described with radically different degrees of autonomy, obscuring capability, responsibility and risk. We call for conceptual clarity through GUI Agent Autonomy Levels (GAL), a six-level framework that makes autonomy explicit and helps benchmark progress toward trustworthy software interaction.
☆ Multimodal Fact-Level Attribution for Verifiable Reasoning
Multimodal large language models (MLLMs) are increasingly used for real-world tasks involving multi-step reasoning and long-form generation, where reliability requires grounding model outputs in heterogeneous input sources and verifying individual factual claims. However, existing multimodal grounding benchmarks and evaluation methods focus on simplified, observation-based scenarios or limited modalities and fail to assess attribution in complex multimodal reasoning. We introduce MuRGAt (Multimodal Reasoning with Grounded Attribution), a benchmark for evaluating fact-level multimodal attribution in settings that require reasoning beyond direct observation. Given inputs spanning video, audio, and other modalities, MuRGAt requires models to generate answers with explicit reasoning and precise citations, where each citation specifies both modality and temporal segments. To enable reliable assessment, we introduce an automatic evaluation framework that strongly correlates with human judgments. Benchmarking with human and automated scores reveals that even strong MLLMs frequently hallucinate citations despite correct reasoning. Moreover, we observe a key trade-off: increasing reasoning depth or enforcing structured grounding often degrades accuracy, highlighting a significant gap between internal reasoning and verifiable attribution.
comment: 29 pages. Code and data are available at https://github.com/meetdavidwan/murgat
☆ What if Agents Could Imagine? Reinforcing Open-Vocabulary HOI Comprehension through Generation
Multimodal Large Language Models have shown promising capabilities in bridging visual and textual reasoning, yet their reasoning capabilities in Open-Vocabulary Human-Object Interaction (OV-HOI) are limited by cross-modal hallucinations and occlusion-induced ambiguity. To address this, we propose \textbf{ImagineAgent}, an agentic framework that harmonizes cognitive reasoning with generative imagination for robust visual understanding. Specifically, our method innovatively constructs cognitive maps that explicitly model plausible relationships between detected entities and candidate actions. Subsequently, it dynamically invokes tools including retrieval augmentation, image cropping, and diffusion models to gather domain-specific knowledge and enriched visual evidence, thereby achieving cross-modal alignment in ambiguous scenarios. Moreover, we propose a composite reward that balances prediction accuracy and tool efficiency. Evaluations on SWIG-HOI and HICO-DET datasets demonstrate our SOTA performance, requiring approximately 20\% of training data compared to existing methods, validating our robustness and efficiency.
☆ Arbitrary Ratio Feature Compression via Next Token Prediction
Feature compression is increasingly important for improving the efficiency of downstream tasks, especially in applications involving large-scale or multi-modal data. While existing methods typically rely on dedicated models for achieving specific compression ratios, they are often limited in flexibility and generalization. In particular, retraining is necessary when adapting to a new compression ratio. To address this limitation, we propose a novel and flexible Arbitrary Ratio Feature Compression (ARFC) framework, which supports any compression ratio with a single model, eliminating the need for multiple specialized models. At its core, the Arbitrary Ratio Compressor (ARC) is an auto-regressive model that performs compression via next-token prediction. This allows the compression ratio to be controlled at inference simply by adjusting the number of generated tokens. To enhance the quality of the compressed features, two key modules are introduced. The Mixture of Solutions (MoS) module refines the compressed tokens by utilizing multiple compression results (solutions), reducing uncertainty and improving robustness. The Entity Relation Graph Constraint (ERGC) is integrated into the training process to preserve semantic and structural relationships during compression. Extensive experiments on cross-modal retrieval, image classification, and image retrieval tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches at various compression ratios. Notably, in some cases, it even surpasses the performance of the original, uncompressed features. These results validate the effectiveness and versatility of ARFC for practical, resource-constrained scenarios.
☆ A Dual-Branch Framework for Semantic Change Detection with Boundary and Temporal Awareness
Semantic Change Detection (SCD) aims to detect and categorize land-cover changes from bi-temporal remote sensing images. Existing methods often suffer from blurred boundaries and inadequate temporal modeling, limiting segmentation accuracy. To address these issues, we propose a Dual-Branch Framework for Semantic Change Detection with Boundary and Temporal Awareness, termed DBTANet. Specifically, we utilize a dual-branch Siamese encoder where a frozen SAM branch captures global semantic context and boundary priors, while a ResNet34 branch provides local spatial details, ensuring complementary feature representations. On this basis, we design a Bidirectional Temporal Awareness Module (BTAM) to aggregate multi-scale features and capture temporal dependencies in a symmetric manner. Furthermore, a Gaussian-smoothed Projection Module (GSPM) refines shallow SAM features, suppressing noise while enhancing edge information for boundary-aware constraints. Extensive experiments on two public benchmarks demonstrate that DBTANet effectively integrates global semantics, local details, temporal reasoning, and boundary awareness, achieving state-of-the-art performance.
♻ ☆ A Leaf-Level Dataset for Soybean-Cotton Detection and Segmentation
Soybean and cotton are major drivers of many countries' agricultural sectors, offering substantial economic returns but also facing persistent challenges from volunteer plants and weeds that hamper sustainable management. Effectively controlling volunteer plants and weeds demands advanced recognition strategies that can identify these amidst complex crop canopies. While deep learning methods have demonstrated promising results for leaf-level detection and segmentation, existing datasets often fail to capture the complexity of real-world agricultural fields. To address this, we collected 640 high-resolution images from a commercial farm spanning multiple growth stages, weed pressures, and lighting variations. Each image is annotated at the leaf-instance level, with 7,221 soybean and 5,190 cotton leaves labeled via bounding boxes and segmentation masks, capturing overlapping foliage, small leaf size, and morphological similarities. We validate this dataset using YOLOv11, demonstrating state-of-the-art performance in accurately identifying and segmenting overlapping foliage. Our publicly available dataset supports advanced applications such as selective herbicide spraying and pest monitoring and can foster more robust, data-driven strategies for soybean-cotton management.
♻ ☆ Deep learning Based Correction Algorithms for 3D Medical Reconstruction in Computed Tomography and Macroscopic Imaging
This paper introduces a hybrid two-stage registration framework for reconstructing three-dimensional (3D) kidney anatomy from macroscopic slices, using CT-derived models as the geometric reference standard. The approach addresses the data-scarcity and high-distortion challenges typical of macroscopic imaging, where fully learning-based registration (e.g., VoxelMorph) often fails to generalize due to limited training diversity and large nonrigid deformations that exceed the capture range of unconstrained convolutional filters. In the proposed pipeline, the Optimal Cross-section Matching (OCM) algorithm first performs constrained global alignment: translation, rotation, and uniform scaling to establish anatomically consistent slice initialization. Next, a lightweight deep-learning refinement network, inspired by VoxelMorph, predicts residual local deformations between consecutive slices. The core novelty of this architecture lies in its hierarchical decomposition of the registration manifold. This hybrid OCM+DL design integrates explicit geometric priors with the flexible learning capacity of neural networks, ensuring stable optimization and plausible deformation fields even with few training examples. Experiments on an original dataset of 40 kidneys demonstrated better results compared to single-stage baselines. The pipeline maintains physical calibration via Hough-based grid detection and employs Bezier-based contour smoothing for robust meshing and volume estimation. Although validated on kidney data, the proposed framework generalizes to other soft-tissue organs reconstructed from optical or photographic cross-sections. By decoupling interpretable global optimization from data-efficient deep refinement, the method advances the precision, reproducibility, and anatomical realism of multimodal 3D reconstructions for surgical planning, morphological assessment, and medical education.
comment: 23 pages, 9 figures, submitted to Applied Sciences (MDPI)
♻ ☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
♻ ☆ Self-Attention Decomposition For Training Free Diffusion Editing ICASSP 2026
Diffusion models achieve remarkable fidelity in image synthesis, yet precise control over their outputs for targeted editing remains challenging. A key step toward controllability is to identify interpretable directions in the model's latent representations that correspond to semantic attributes. Existing approaches for finding interpretable directions typically rely on sampling large sets of images or training auxiliary networks, which limits efficiency. We propose an analytical method that derives semantic editing directions directly from the pretrained parameters of diffusion models, requiring neither additional data nor fine-tuning. Our insight is that self-attention weight matrices encode rich structural information about the data distribution learned during training. By computing the eigenvectors of these weight matrices, we obtain robust and interpretable editing directions. Experiments demonstrate that our method produces high-quality edits across multiple datasets while reducing editing time significantly by 60% over current benchmarks.
comment: ICASSP 2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
♻ ☆ Stylos: Multi-View 3D Stylization with Single-Forward Gaussian Splatting ICLR 2026
We present Stylos, a single-forward 3D Gaussian framework for 3D style transfer that operates on unposed content, from a single image to a multi-view collection, conditioned on a separate reference style image. Stylos synthesizes a stylized 3D Gaussian scene without per-scene optimization or precomputed poses, achieving geometry-aware, view-consistent stylization that generalizes to unseen categories, scenes, and styles. At its core, Stylos adopts a Transformer backbone with two pathways: geometry predictions retain self-attention to preserve geometric fidelity, while style is injected via global cross-attention to enforce visual consistency across views. With the addition of a voxel-based 3D style loss that aligns aggregated scene features to style statistics, Stylos enforces view-consistent stylization while preserving geometry. Experiments across multiple datasets demonstrate that Stylos delivers high-quality zero-shot stylization, highlighting the effectiveness of global style-content coupling, the proposed 3D style loss, and the scalability of our framework from single view to large-scale multi-view settings. Our codes are available at https://github.com/HanzhouLiu/Stylos.
comment: Accepted by ICLR 2026
♻ ☆ NeRF: Neural Radiance Field in 3D Vision: A Comprehensive Review (Updated Post-Gaussian Splatting)
In March 2020, Neural Radiance Field (NeRF) revolutionized Computer Vision, allowing for implicit, neural network-based scene representation and novel view synthesis. NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. In August 2023, Gaussian Splatting, a direct competitor to the NeRF-based framework, was proposed, gaining tremendous momentum and overtaking NeRF-based research in terms of interest as the dominant framework for novel view synthesis. We present a comprehensive survey of NeRF papers from the past five years (2020-2025). These include papers from the pre-Gaussian Splatting era, where NeRF dominated the field for novel view synthesis and 3D implicit and hybrid representation neural field learning. We also include works from the post-Gaussian Splatting era where NeRF and implicit/hybrid neural fields found more niche applications. Our survey is organized into architecture and application-based taxonomies in the pre-Gaussian Splatting era, as well as a categorization of active research areas for NeRF, neural field, and implicit/hybrid neural representation methods. We provide an introduction to the theory of NeRF and its training via differentiable volume rendering. We also present a benchmark comparison of the performance and speed of classical NeRF, implicit and hybrid neural representation, and neural field models, and an overview of key datasets.
comment: Updated Post-Gaussian Splatting
♻ ☆ Why Prototypes Collapse: Diagnosing and Preventing Partial Collapse in Prototypical Self-Supervised Learning ICLR 2026
Prototypical self-supervised learning methods consistently suffer from partial prototype collapse, where multiple prototypes converge to nearly identical representations. This undermines their central purpose -- providing diverse and informative targets to guide encoders toward rich representations -- and has led practitioners to over-parameterize prototype sets or add ad-hoc regularizers, which mitigate symptoms rather than address the root cause. We empirically trace the collapse to the joint optimization of encoders and prototypes, which encourages a type of shortcut learning: early in training prototypes drift toward redundant representations that minimize loss without necessarily enhancing representation diversity. To break the joint optimization, we introduce a fully decoupled training strategy that learns prototypes and encoders under separate objectives. Concretely, we model prototypes as a Gaussian mixture updated with an online EM-style procedure, independent of the encoder's loss. This simple yet principled decoupling eliminates prototype collapse without explicit regularization and yields consistently diverse prototypes and stronger downstream performance.
comment: Published in ICLR 2026. Code: https://dsb-ifi.github.com/proto-decoupling
♻ ☆ Toward Dignity-Aware AI: Next-Generation Elderly Monitoring from Fall Detection to ADL
This position paper envisions a next-generation elderly monitoring system that moves beyond fall detection toward the broader goal of Activities of Daily Living (ADL) recognition. Our ultimate aim is to design privacy-preserving, edge-deployed, and federated AI systems that can robustly detect and understand daily routines, supporting independence and dignity in aging societies. At present, ADL-specific datasets are still under collection. As a preliminary step, we demonstrate feasibility through experiments using the SISFall dataset and its GAN-augmented variants, treating fall detection as a proxy task. We report initial results on federated learning with non-IID conditions, and embedded deployment on Jetson Orin Nano devices. We then outline open challenges such as domain shift, data scarcity, and privacy risks, and propose directions toward full ADL monitoring in smart-room environments. This work highlights the transition from single-task detection to comprehensive daily activity recognition, providing both early evidence and a roadmap for sustainable and human-centered elderly care AI.
comment: This is the author's preprint version of a paper accepted for presentation at EAI MONAMI 2025 (to appear in Springer LNICST). The final authenticated version will be available online at Springer Link upon publication
♻ ☆ Kelix Technical Report
Autoregressive large language models (LLMs) scale well by expressing diverse tasks as sequences of discrete natural-language tokens and training with next-token prediction, which unifies comprehension and generation under self-supervision. Extending this paradigm to multimodal data requires a shared, discrete representation across modalities. However, most vision-language models (VLMs) still rely on a hybrid interface: discrete text tokens paired with continuous Vision Transformer (ViT) features. Because supervision is largely text-driven, these models are often biased toward understanding and cannot fully leverage large-scale self-supervised learning on non-text data. Recent work has explored discrete visual tokenization to enable fully autoregressive multimodal modeling, showing promising progress toward unified understanding and generation. Yet existing discrete vision tokens frequently lose information due to limited code capacity, resulting in noticeably weaker understanding than continuous-feature VLMs. We present Kelix, a fully discrete autoregressive unified model that closes the understanding gap between discrete and continuous visual representations.
comment: Work in progress
♻ ☆ Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark
While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.
comment: 10 pages
♻ ☆ OmniVL-Guard: Towards Unified Vision-Language Forgery Detection and Grounding via Balanced RL
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
comment: 38 pages, DeepFake Detection
♻ ☆ Dual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
The rapid advancement of Generative Adversarial Networks (GANs) and diffusion models has enabled the creation of highly realistic synthetic images, presenting significant societal risks, such as misinformation and deception. As a result, detecting AI-generated images has emerged as a critical challenge. Existing researches emphasize extracting fine-grained features to enhance detector generalization, yet they often lack consideration for the importance and interdependencies of internal elements within local regions and are limited to a single frequency domain, hindering the capture of general forgery traces. To overcome the aforementioned limitations, we first utilize a sliding window to restrict the attention mechanism to a local window, and reconstruct the features within the window to model the relationships between neighboring internal elements within the local region. Then, we design a dual frequency domain branch framework consisting of four frequency domain subbands of DWT and the phase part of FFT to enrich the extraction of local forgery features from different perspectives. Through feature enrichment of dual frequency domain branches and fine-grained feature extraction of reconstruction sliding window attention, our method achieves superior generalization detection capabilities on both GAN and diffusion model-based generative images. Evaluated on diverse datasets comprising images from 65 distinct generative models, our approach achieves a 2.13\% improvement in detection accuracy over state-of-the-art methods.
comment: Accepted by IEEE Transactions on Information Forensics and Security
♻ ☆ Inspiration Seeds: Learning Non-Literal Visual Combinations for Generative Exploration
While generative models have become powerful tools for image synthesis, they are typically optimized for executing carefully crafted textual prompts, offering limited support for the open-ended visual exploration that often precedes idea formation. In contrast, designers frequently draw inspiration from loosely connected visual references, seeking emergent connections that spark new ideas. We propose Inspiration Seeds, a generative framework that shifts image generation from final execution to exploratory ideation. Given two input images, our model produces diverse, visually coherent compositions that reveal latent relationships between inputs, without relying on user-specified text prompts. Our approach is feed-forward, trained on synthetic triplets of decomposed visual aspects derived entirely through visual means: we use CLIP Sparse Autoencoders to extract editing directions in CLIP latent space and isolate concept pairs. By removing the reliance on language and enabling fast, intuitive recombination, our method supports visual ideation at the early and ambiguous stages of creative work.
comment: Project page available at https://inspirationseedspaper.github.io/InspirationSeeds/
♻ ☆ LoGoSeg: Integrating Local and Global Features for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation (OVSS) extends traditional closed-set segmentation by enabling pixel-wise annotation for both seen and unseen categories using arbitrary textual descriptions. While existing methods leverage vision-language models (VLMs) like CLIP, their reliance on image-level pretraining often results in imprecise spatial alignment, leading to mismatched segmentations in ambiguous or cluttered scenes. However, most existing approaches lack strong object priors and region-level constraints, which can lead to object hallucination or missed detections, further degrading performance. To address these challenges, we propose LoGoSeg, an efficient single-stage framework that integrates three key innovations: (i) an object existence prior that dynamically weights relevant categories through global image-text similarity, effectively reducing hallucinations; (ii) a region-aware alignment module that establishes precise region-level visual-textual correspondences; and (iii) a dual-stream fusion mechanism that optimally combines local structural information with global semantic context. Unlike prior works, LoGoSeg eliminates the need for external mask proposals, additional backbones, or extra datasets, ensuring efficiency. Extensive experiments on six benchmarks (A-847, PC-459, A-150, PC-59, PAS-20, and PAS-20b) demonstrate its competitive performance and strong generalization in open-vocabulary settings.
♻ ☆ ContextGen: Contextual Layout Anchoring for Identity-Consistent Multi-Instance Generation
Multi-instance image generation (MIG) remains a significant challenge for modern diffusion models due to key limitations in achieving precise control over object layout and preserving the identity of multiple distinct subjects. To address these limitations, we introduce ContextGen, a novel Diffusion Transformer framework for multi-instance generation that is guided by both layout and reference images. Our approach integrates two key technical contributions: a Contextual Layout Anchoring (CLA) mechanism that incorporates the composite layout image into the generation context to robustly anchor the objects in their desired positions, and Identity Consistency Attention (ICA), an innovative attention mechanism that leverages contextual reference images to ensure the identity consistency of multiple instances. To address the absence of a large-scale, high-quality dataset for this task, we introduce IMIG-100K, the first dataset to provide detailed layout and identity annotations specifically designed for Multi-Instance Generation. Extensive experiments demonstrate that ContextGen sets a new state-of-the-art, outperforming existing methods especially in layout control and identity fidelity.
comment: Project Page: https://nenhang.github.io/ContextGen/
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: Accepted for publication in IEEE Transactions on Medical Imaging (TMI), 2026
♻ ☆ TABLET: A Large-Scale Dataset for Robust Visual Table Understanding
While table understanding increasingly relies on pixel-only settings, current benchmarks predominantly use synthetic renderings that lack the complexity and visual diversity of real-world tables. Additionally, existing visual table understanding (VTU) datasets offer fixed examples with single visualizations and pre-defined instructions, providing no access to underlying serialized data for reformulation. We introduce TABLET, a large-scale VTU dataset with 4 million examples across 21 tasks, grounded in 2 million unique tables where 88% preserve original visualizations. To evaluate whether models are able to jointly reason over tabular and visual content, we also introduce VisualTableQA, a benchmark requiring both visual perception and table understanding. Fine-tuning vision-language models like Qwen2.5-VL-7B and Gemma 3-4B on TABLET improves performance on seen and unseen VTU tasks while increasing robustness on real-world table visualizations. By preserving original visualizations and maintaining example traceability in a unified large-scale collection, TABLET establishes a foundation for robust training and extensible evaluation of future VTU models.
♻ ☆ A Survey on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor Fusion
Model compression is essential in the deployment of large Computer Vision models on embedded devices. However, static optimization techniques (e.g. pruning, quantization, etc.) neglect the fact that different inputs have different complexities, thus requiring different amount of computations. Dynamic Neural Networks allow to condition the number of computations to the specific input. The current literature on the topic is very extensive and fragmented. We present a comprehensive survey that synthesizes and unifies existing Dynamic Neural Networks research in the context of Computer Vision. Additionally, we provide a logical taxonomy based on which component of the network is adaptive: the output, the computation graph or the input. Furthermore, we argue that Dynamic Neural Networks are particularly beneficial in the context of Sensor Fusion for better adaptivity, noise reduction and information prioritization. We present preliminary works in this direction. We complement this survey with a curated repository listing all the surveyed papers, each with a brief summary of the solution and the code base when available: https://github.com/DTU-PAS/awesome-dynn-for-cv .
comment: Under review at Image and Vision Computing
♻ ☆ Improving the Plausibility of Pressure Distributions Synthesized from Depth Image through Generative Modeling
Monitoring contact pressure in hospital beds is essential for preventing pressure ulcers and enabling real-time patient assessment. Current methods can predict pressure maps but often lack physical plausibility, limiting clinical reliability. This work proposes a framework that enhances plausibility via Informed Latent Space (ILS) and Weight Optimization Loss (WOL) with conditional generative modeling to produce high-fidelity, physically consistent pressure estimates. This study also applies diffusion based conditional Brownian Bridge Diffusion Model (BBDM) and proposes training strategy for its latent counterpart Latent Brownian Bridge Diffusion Model (LBBDM) tailored for pressure synthesis in lying postures. Experiment results shows proposed method improves physical plausibility and performance over baselines: BBDM with ILS delivers highly detailed maps at higher computational cost and large inference time, whereas LBBDM provides faster inference with competitive performance. Overall, the approach supports non-invasive, vision-based, real-time patient monitoring in clinical environments.
♻ ☆ From Implicit Ambiguity to Explicit Solidity: Diagnosing Interior Geometric Degradation in Neural Radiance Fields for Dense 3D Scene Understanding
Neural Radiance Fields (NeRFs) have emerged as a powerful paradigm for multi-view reconstruction, complementing classical photogrammetric pipelines based on Structure-from-Motion (SfM) and Multi-View Stereo (MVS). However, their reliability for quantitative 3D analysis in dense, self-occluding scenes remains poorly understood. In this study, we identify a fundamental failure mode of implicit density fields under heavy occlusion, which we term Interior Geometric Degradation (IGD). We show that transmittance-based volumetric optimization satisfies photometric supervision by reconstructing hollow or fragmented structures rather than solid interiors, leading to systematic instance undercounting. Through controlled experiments on synthetic datasets with increasing occlusion, we demonstrate that state-of-the-art mask-supervised NeRFs saturate at approximately 89% instance recovery in dense scenes, despite improved surface coherence and mask quality. To overcome this limitation, we introduce an explicit geometric pipeline based on Sparse Voxel Rasterization (SVRaster), initialized from SfM feature geometry. By projecting 2D instance masks onto an explicit voxel grid and enforcing geometric separation via recursive splitting, our approach preserves physical solidity and achieves a 95.8% recovery rate in dense clusters. A sensitivity analysis using degraded segmentation masks further shows that explicit SfM-based geometry is substantially more robust to supervision failure, recovering 43% more instances than implicit baselines. These results demonstrate that explicit geometric priors are a prerequisite for reliable quantitative analysis in highly self-occluding 3D scenes.
♻ ☆ Real-IAD Variety: Pushing Industrial Anomaly Detection Dataset to a Modern Era
Industrial Anomaly Detection (IAD) is a cornerstone for ensuring operational safety, maintaining product quality, and optimizing manufacturing efficiency. However, the advancement of IAD algorithms is severely hindered by the limitations of existing public benchmarks. Current datasets often suffer from restricted category diversity and insufficient scale, leading to performance saturation and poor model transferability in complex, real-world scenarios. To bridge this gap, we introduce Real-IAD Variety, the largest and most diverse IAD benchmark. It comprises 198,950 high-resolution images across 160 distinct object categories. The dataset ensures unprecedented diversity by covering 28 industries, 24 material types, 22 color variations, and 27 defect types. Our extensive experimental analysis highlights the substantial challenges posed by this benchmark: state-of-the-art multi-class unsupervised anomaly detection methods suffer significant performance degradation (ranging from 10% to 20%) when scaled from 30 to 160 categories. Conversely, we demonstrate that zero-shot and few-shot IAD models exhibit remarkable robustness to category scale-up, maintaining consistent performance and significantly enhancing generalization across diverse industrial contexts. This unprecedented scale positions Real-IAD Variety as an essential resource for training and evaluating next-generation foundation IAD models.
comment: 17 pages, 8 figures and 7 tables
♻ ☆ Multiscale Vector-Quantized Variational Autoencoder for Endoscopic Image Synthesis
Gastrointestinal (GI) imaging via Wireless Capsule Endoscopy (WCE) generates a large number of images requiring manual screening. Deep learning-based Clinical Decision Support (CDS) systems can assist screening, yet their performance relies on the existence of large, diverse, training medical datasets. However, the scarcity of such data, due to privacy constraints and annotation costs, hinders CDS development. Generative machine learning offers a viable solution to combat this limitation. While current Synthetic Data Generation (SDG) methods, such as Generative Adversarial Networks and Variational Autoencoders have been explored, they often face challenges with training stability and capturing sufficient visual diversity, especially when synthesizing abnormal findings. This work introduces a novel VAE-based methodology for medical image synthesis and presents its application for the generation of WCE images. The novel contributions of this work include a) multiscale extension of the Vector Quantized VAE model, named as Multiscale Vector Quantized Variational Autoencoder (MSVQ-VAE); b) unlike other VAE-based SDG models for WCE image generation, MSVQ-VAE is used to seamlessly introduce abnormalities into normal WCE images; c) it enables conditional generation of synthetic images, enabling the introduction of different types of abnormalities into the normal WCE images; d) it performs experiments with a variety of abnormality types, including polyps, vascular and inflammatory conditions. The utility of the generated images for CDS is assessed via image classification. Comparative experiments demonstrate that training a CDS classifier using the abnormal images generated by the proposed methodology yield comparable results with a classifier trained with only real data. The generality of the proposed methodology promises its applicability to various domains related to medical multimedia.
♻ ☆ FaceQSORT: a Multi-Face Tracking Method based on Biometric and Appearance Features
In this work, a novel multi-face tracking method named FaceQSORT is proposed. To mitigate multi-face tracking challenges (e.g., partially occluded or lateral faces), FaceQSORT combines biometric and visual appearance features (extracted from the same image (face) patch) for association. The Q in FaceQSORT refers to the scenario for which FaceQSORT is desinged, i.e. tracking people's faces as they move towards a gate in a Queue. This scenario is also reflected in the new dataset `Paris Lodron University Salzburg Faces in a Queue', which is made publicly available as part of this work. The dataset consists of a total of seven fully annotated and challenging sequences (12730 frames) and is utilized together with two other publicly available datasets for the experimental evaluation. It is shown that FaceQSORT outperforms state-of-the-art trackers in the considered scenario. To provide a deeper insight into FaceQSORT, comprehensive experiments are conducted evaluating the parameter selection, a different similarity metric and the utilized face recognition model (used to extract biometric features).
♻ ☆ Fine-tuning Quantized Neural Networks with Zeroth-order Optimization ICLR 2026
As the size of large language models grows exponentially, GPU memory has become a bottleneck for adapting these models to downstream tasks. In this paper, we aim to push the limits of memory-efficient training by minimizing memory usage on model weights, gradients, and optimizer states, within a unified framework. Our idea is to eliminate both gradients and optimizer states using zeroth-order optimization, which approximates gradients by perturbing weights during forward passes to identify gradient directions. To minimize memory usage on weights, we employ model quantization, e.g., converting from bfloat16 to int4. However, directly applying zeroth-order optimization to quantized weights is infeasible due to the precision gap between discrete weights and continuous gradients, which would otherwise require de-quantization and re-quantization. To overcome this challenge, we propose Quantized Zeroth-order Optimization (QZO), a simple yet effective approach that perturbs the continuous quantization scale for gradient estimation and uses a directional derivative clipping method to stabilize training. QZO is orthogonal to both scalar-based and codebook-based post-training quantization methods. Compared to full-parameter fine-tuning in 16 bits, QZO can reduce the total memory cost by more than 18$\times$ for 4-bit LLMs, and enables fine-tuning Llama-2-13B within a single 24GB GPU.
comment: Accepted by ICLR 2026
♻ ☆ Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment
Human visual perception naturally evaluates image quality across multiple scales, a hierarchical process that existing blind image quality assessment (BIQA) algorithms struggle to replicate effectively. This limitation stems from a fundamental misunderstanding: current multi-scale approaches fail to recognize that quality perception varies dramatically between scales -- what appears degraded when viewed closely may look acceptable from a distance. This inconsistency not only creates misleading ``visual illusions'' during feature fusion but also introduces substantial redundant information that dilutes quality-critical features and leads to imprecise assessments. Our CSFIQA framework advances multi-scale BIQA via two key innovations: (1) a selective focus attention mechanism that mimics human visual attention by filtering out redundant cross-scale information that would otherwise mask subtle quality indicators, and (2) a scale contrastive learning strategy that explicitly learns to distinguish quality variations both across and within scales. By incorporating an adaptive noise sample matching mechanism, CSFIQA effectively identifies perceptual quality discrepancies in the same content viewed at different scales. Experiments demonstrate substantial improvements over state-of-the-art methods across seven datasets, achieving up to 8.8% SRCC improvement on challenging real-world distortions, confirming CSFIQA's superior alignment with human quality perception.
♻ ☆ Remote Sensing Retrieval-Augmented Generation: Bridging Remote Sensing Imagery and Comprehensive Knowledge with a Multi-Modal Dataset and Retrieval-Augmented Generation Model
Recent progress in VLMs has demonstrated impressive capabilities across a variety of tasks in the natural image domain. Motivated by these advancements, the remote sensing community has begun to adopt VLMs for remote sensing vision-language tasks, including scene understanding, image captioning, and visual question answering. However, existing remote sensing VLMs typically rely on closed-set scene understanding and focus on generic scene descriptions, yet lack the ability to incorporate external knowledge. This limitation hinders their capacity for semantic reasoning over complex or context-dependent queries that involve domain-specific or world knowledge. To address these challenges, we first introduced a multimodal Remote Sensing World Knowledge (RSWK) dataset, which comprises high-resolution satellite imagery and detailed textual descriptions for 14,141 well-known landmarks from 175 countries, integrating both remote sensing domain knowledge and broader world knowledge. Building upon this dataset, we proposed a novel Remote Sensing Retrieval-Augmented Generation (RS-RAG) framework, which consists of two key components. The Multi-Modal Knowledge Vector Database Construction module encodes remote sensing imagery and associated textual knowledge into a unified vector space. The Knowledge Retrieval and Response Generation module retrieves and re-ranks relevant knowledge based on image and/or text queries, and incorporates the retrieved content into a knowledge-augmented prompt to guide the VLM in producing contextually grounded responses. We validated the effectiveness of our approach on three representative vision-language tasks, including image captioning, image classification, and visual question answering, where RS-RAG significantly outperformed state-of-the-art baselines.
comment: Accepted by IEEE Geoscience and Remote Sensing Magazine (GRSM)
♻ ☆ TimeChat-Captioner: Scripting Multi-Scene Videos with Time-Aware and Structural Audio-Visual Captions
This paper proposes Omni Dense Captioning, a novel task designed to generate continuous, fine-grained, and structured audio-visual narratives with explicit timestamps. To ensure dense semantic coverage, we introduce a six-dimensional structural schema to create "script-like" captions, enabling readers to vividly imagine the video content scene by scene, akin to a cinematographic screenplay. To facilitate research, we construct OmniDCBench, a high-quality, human-annotated benchmark, and propose SodaM, a unified metric that evaluates time-aware detailed descriptions while mitigating scene boundary ambiguity. Furthermore, we construct a training dataset, TimeChatCap-42K, and present TimeChat-Captioner-7B, a strong baseline trained via SFT and GRPO with task-specific rewards. Extensive experiments demonstrate that TimeChat-Captioner-7B achieves state-of-the-art performance, surpassing Gemini-2.5-Pro, while its generated dense descriptions significantly boost downstream capabilities in audio-visual reasoning (DailyOmni and WorldSense) and temporal grounding (Charades-STA). All datasets, models, and code will be made publicly available at https://github.com/yaolinli/TimeChat-Captioner.
♻ ☆ Leveraging Unlabeled Scans for NCCT Image Segmentation in Early Stroke Diagnosis: A Semi-Supervised GAN Approach
Ischemic stroke is a time-critical medical emergency where rapid diagnosis is essential for improving patient outcomes. Non-contrast computed tomography (NCCT) serves as the frontline imaging tool, yet it often fails to reveal the subtle ischemic changes present in the early, hyperacute phase. This limitation can delay crucial interventions. To address this diagnostic challenge, we introduce a semi-supervised segmentation method using generative adversarial networks (GANs) to accurately delineate early ischemic stroke regions. The proposed method employs an adversarial framework to effectively learn from a limited number of annotated NCCT scans, while simultaneously leveraging a larger pool of unlabeled scans. By employing Dice loss, cross-entropy loss, a feature matching loss and a self-training loss, the model learns to identify and delineate early infarcts, even when they are faint or their size is small. Experiments on the publicly available Acute Ischemic Stroke Dataset (AISD) demonstrate the potential of the proposed method to enhance diagnostic capabilities, reduce the burden of manual annotation, and support more efficient clinical decision-making in stroke care.
♻ ☆ Learning A Physical-aware Diffusion Model Based on Transformer for Underwater Image Enhancement
Underwater visuals undergo various complex degradations, inevitably influencing the efficiency of underwater vision tasks. Recently, diffusion models were employed to underwater image enhancement (UIE) tasks, and gained SOTA performance. However, these methods fail to consider the physical properties and underwater imaging mechanisms in the diffusion process, limiting information completion capacity of diffusion models. In this paper, we introduce a novel UIE framework, named PA-Diff, designed to exploiting the knowledge of physics to guide the diffusion process. PA-Diff consists of Physics Prior Generation (PPG) Branch, Implicit Neural Reconstruction (INR) Branch, and Physics-aware Diffusion Transformer (PDT) Branch. Our designed PPG branch aims to produce the prior knowledge of physics. With utilizing the physics prior knowledge to guide the diffusion process, PDT branch can obtain underwater-aware ability and model the complex distribution in real-world underwater scenes. INR Branch can learn robust feature representations from diverse underwater image via implicit neural representation, which reduces the difficulty of restoration for PDT branch. Extensive experiments prove that our method achieves best performance on UIE tasks.
comment: IEEE Transactions on Geoscience and Remote Sensing (TGRS)
♻ ☆ Learning Physics-Grounded 4D Dynamics with Neural Gaussian Force Fields ICLR 2026
Predicting physical dynamics from raw visual data remains a major challenge in AI. While recent video generation models have achieved impressive visual quality, they still cannot consistently generate physically plausible videos due to a lack of modeling of physical laws. Recent approaches combining 3D Gaussian splatting and physics engines can produce physically plausible videos, but are hindered by high computational costs in both reconstruction and simulation, and often lack robustness in complex real-world scenarios. To address these issues, we introduce Neural Gaussian Force Field (NGFF), an end-to-end neural framework that integrates 3D Gaussian perception with physics-based dynamic modeling to generate interactive, physically realistic 4D videos from multi-view RGB inputs, achieving two orders of magnitude faster than prior Gaussian simulators. To support training, we also present GSCollision, a 4D Gaussian dataset featuring diverse materials, multi-object interactions, and complex scenes, totaling over 640k rendered physical videos (~4 TB). Evaluations on synthetic and real 3D scenarios show NGFF's strong generalization and robustness in physical reasoning, advancing video prediction towards physics-grounded world models.
comment: 43 pages, ICLR 2026
♻ ☆ Adaptive Image Zoom-in with Bounding Box Transformation for UAV Object Detection SP
Detecting objects from UAV-captured images is challenging due to the small object size. In this work, a simple and efficient adaptive zoom-in framework is explored for object detection on UAV images. The main motivation is that the foreground objects are generally smaller and sparser than those in common scene images, which hinders the optimization of effective object detectors. We thus aim to zoom in adaptively on the objects to better capture object features for the detection task. To achieve the goal, two core designs are required: \textcolor{black}{i) How to conduct non-uniform zooming on each image efficiently? ii) How to enable object detection training and inference with the zoomed image space?} Correspondingly, a lightweight offset prediction scheme coupled with a novel box-based zooming objective is introduced to learn non-uniform zooming on the input image. Based on the learned zooming transformation, a corner-aligned bounding box transformation method is proposed. The method warps the ground-truth bounding boxes to the zoomed space to learn object detection, and warps the predicted bounding boxes back to the original space during inference. We conduct extensive experiments on three representative UAV object detection datasets, including VisDrone, UAVDT, and SeaDronesSee. The proposed ZoomDet is architecture-independent and can be applied to an arbitrary object detection architecture. Remarkably, on the SeaDronesSee dataset, ZoomDet offers more than 8.4 absolute gain of mAP with a Faster R-CNN model, with only about 3 ms additional latency. The code is available at https://github.com/twangnh/zoomdet_code.
comment: paper accepted by ISPRS Journal of Photogrammetry and Remote Sensing ( IF=12.2)
♻ ☆ DistillKac: Few-Step Image Generation via Damped Wave Equations ICLR 2026
We present DistillKac, a fast image generator that uses the damped wave equation and its stochastic Kac representation to move probability mass at finite speed. In contrast to diffusion models whose reverse time velocities can become stiff and implicitly allow unbounded propagation speed, Kac dynamics enforce finite speed transport and yield globally bounded kinetic energy. Building on this structure, we introduce classifier-free guidance in velocity space that preserves square integrability under mild conditions. We then propose endpoint only distillation that trains a student to match a frozen teacher over long intervals. We prove a stability result that promotes supervision at the endpoints to closeness along the entire path. Experiments demonstrate DistillKac delivers high quality samples with very few function evaluations while retaining the numerical stability benefits of finite speed probability flows.
comment: Accepted to ICLR 2026
♻ ☆ MapReduce LoRA: Advancing the Pareto Front in Multi-Preference Optimization for Generative Models
Reinforcement learning from human feedback (RLHF) with reward models has advanced alignment of generative models to human aesthetic and perceptual preferences. However, jointly optimizing multiple rewards often incurs an alignment tax, improving one dimension while degrading others. To address this, we introduce two complementary methods: MapReduce LoRA and Reward-aware Token Embedding (RaTE). MapReduce LoRA trains preference-specific LoRA experts in parallel and iteratively merges them to refine a shared base model; RaTE learns reward-specific token embeddings that compose at inference for flexible preference control. Experiments on Text-to-Image generation (Stable Diffusion 3.5 Medium and FLUX.1-dev) show improvements of 36.1%, 4.6%, and 55.7%, and 32.7%, 4.3%, and 67.1% on GenEval, PickScore, and OCR, respectively. On Text-to-Video generation (HunyuanVideo), visual and motion quality improve by 48.1% and 90.0%, respectively. On the language task, Helpful Assistant, with Llama-2 7B, helpful and harmless improve by 43.4% and 136.7%, respectively. Our framework sets a new state-of-the-art multi-preference alignment recipe across modalities.
♻ ☆ Hilbert-Guided Sparse Local Attention ICLR 2026
The quadratic compute and memory costs of global self-attention severely limit its use in high-resolution images. Local attention reduces complexity by restricting attention to neighborhoods. Block-sparse kernels can further improve the efficiency of local attention, but conventional local attention patterns often fail to deliver significant speedups because tokens within a window are not contiguous in the 1D sequence. This work proposes a novel method for constructing windows and neighborhoods based on the Hilbert curve. Image tokens are first reordered along a Hilbert curve, and windows and neighborhoods are then formed on the reordered 1D sequence. From a block-sparse perspective, this strategy significantly increases block sparsity and can be combined with existing block-sparse kernels to improve the efficiency of 2D local attention. Experiments show that the proposed Hilbert Window Attention and Hilbert Slide Attention can accelerate window attention and slide attention by about $4\times$ and $18\times$, respectively. To assess practicality, the strategy is instantiated as the Hilbert Window Transformer and the Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups with minimal accuracy loss. Overall, combining Hilbert-guided local attention with block-sparse kernels offers a general and practical approach to enhancing the efficiency of 2D local attention for images.
comment: Accepted at ICLR 2026
♻ ☆ Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures CVPR
Diffusion models, emerging as powerful deep generative tools, excel in various applications. They operate through a two-steps process: introducing noise into training samples and then employing a model to convert random noise into new samples (e.g., images). However, their remarkable generative performance is hindered by slow training and sampling. This is due to the necessity of tracking extensive forward and reverse diffusion trajectories, and employing a large model with numerous parameters across multiple timesteps (i.e., noise levels). To tackle these challenges, we present a multi-stage framework inspired by our empirical findings. These observations indicate the advantages of employing distinct parameters tailored to each timestep while retaining universal parameters shared across all time steps. Our approach involves segmenting the time interval into multiple stages where we employ custom multi-decoder U-net architecture that blends time-dependent models with a universally shared encoder. Our framework enables the efficient distribution of computational resources and mitigates inter-stage interference, which substantially improves training efficiency. Extensive numerical experiments affirm the effectiveness of our framework, showcasing significant training and sampling efficiency enhancements on three state-of-the-art diffusion models, including large-scale latent diffusion models. Furthermore, our ablation studies illustrate the impact of two important components in our framework: (i) a novel timestep clustering algorithm for stage division, and (ii) an innovative multi-decoder U-net architecture, seamlessly integrating universal and customized hyperparameters.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
♻ ☆ Understanding Generalization in Diffusion Distillation via Probability Flow Distance
Diffusion distillation provides an effective approach for learning lightweight and few-steps diffusion models with efficient generation. However, evaluating their generalization remains challenging: theoretical metrics are often impractical for high-dimensional data, while no practical metrics rigorously measure generalization. In this work, we bridge this gap by introducing probability flow distance (\texttt{PFD}), a theoretically grounded and computationally efficient metric to measure generalization. Specifically, \texttt{PFD} quantifies the distance between distributions by comparing their noise-to-data mappings induced by the probability flow ODE. Using \texttt{PFD} under the diffusion distillation setting, we empirically uncover several key generalization behaviors, including: (1) quantitative scaling behavior from memorization to generalization, (2) epoch-wise double descent training dynamics, and (3) bias-variance decomposition. Beyond these insights, our work lays a foundation for generalization studies in diffusion distillation and bridges them with diffusion training.
comment: 41 pages, 15 figures
♻ ☆ IBISAgent: Reinforcing Pixel-Level Visual Reasoning in MLLMs for Universal Biomedical Object Referring and Segmentation
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
♻ ☆ CT Synthesis with Conditional Diffusion Models for Abdominal Lymph Node Segmentation
Despite the significant success achieved by deep learning methods in medical image segmentation, researchers still struggle in the computer-aided diagnosis of abdominal lymph nodes due to the complex abdominal environment, small and indistinguishable lesions, and limited annotated data. To address these problems, we present a pipeline that integrates the conditional diffusion model for lymph node generation and the nnU-Net model for lymph node segmentation to improve the segmentation performance of abdominal lymph nodes through synthesizing a diversity of realistic abdominal lymph node data. We propose LN-DDPM, a conditional denoising diffusion probabilistic model (DDPM) for lymph node (LN) generation. LN-DDPM utilizes lymph node masks and anatomical structure masks as model conditions. These conditions work in two conditioning mechanisms: global structure conditioning and local detail conditioning, to distinguish between lymph nodes and their surroundings and better capture lymph node characteristics. The obtained paired abdominal lymph node images and masks are used for the downstream segmentation task. Experimental results on the abdominal lymph node datasets demonstrate that LN-DDPM outperforms other generative methods in the abdominal lymph node image synthesis and better assists the downstream abdominal lymph node segmentation task.
♻ ☆ Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models NeurIPS 2025
The widespread use of AI-generated content from diffusion models has raised significant concerns regarding misinformation and copyright infringement. Watermarking is a crucial technique for identifying these AI-generated images and preventing their misuse. In this paper, we introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs. Unlike existing approaches that integrate watermarking throughout the entire diffusion sampling process, Shallow Diffuse decouples these steps by leveraging the presence of a low-dimensional subspace in the image generation process. This method ensures that a substantial portion of the watermark lies in the null space of this subspace, effectively separating it from the image generation process. Our theoretical and empirical analyses show that this decoupling strategy greatly enhances the consistency of data generation and the detectability of the watermark. Extensive experiments further validate that our Shallow Diffuse outperforms existing watermarking methods in terms of robustness and consistency. The codes are released at https://github.com/liwd190019/Shallow-Diffuse.
comment: NeurIPS 2025 Spotlight
♻ ☆ The Determinism of Randomness: Latent Space Degeneracy in Diffusion Model
Diffusion models draw the initial latent from an isotropic Gaussian distribution (all directions equally likely). But in practice, changing only the random seed can sharply alter image quality and prompt faithfulness. We explain this by distinguishing the isotropic prior from the semantics induced by the sampling map: while the prior is direction-agnostic, the mapping from latent noise to semantics has semantic-invariant directions and semantic-sensitive directions, so different seeds can lead to very different semantic outcomes. Motivated by this view, we propose a training-free inference procedure that (i) suppresses seed-specific, semantic-irrelevant variation via distribution-preserving semantic erasure, (ii) reinforces prompt-relevant semantic directions through timestep-aggregated horizontal injection, and (iii) applies a simple spherical retraction to stay near the prior's typical set. Across multiple backbones and benchmarks, our method consistently improves alignment and generation quality over standard sampling.
♻ ☆ Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP)}, which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
comment: Under Review
♻ ☆ SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities WACV
Recent advances in 3D-aware generative models have enabled high-fidelity image synthesis of human identities. However, this progress raises urgent questions around user consent and the ability to remove specific individuals from a model's output space. We address this by introducing SUGAR, a framework for scalable generative unlearning that enables the removal of many identities (simultaneously or sequentially) without retraining the entire model. Rather than projecting unwanted identities to unrealistic outputs or relying on static template faces, SUGAR learns a personalized surrogate latent for each identity, diverting reconstructions to visually coherent alternatives while preserving the model's quality and diversity. We further introduce a continual utility preservation objective that guards against degradation as more identities are forgotten. SUGAR achieves state-of-the-art performance in removing up to 200 identities, while delivering up to a 700% improvement in retention utility compared to existing baselines. Our code is publicly available at https://github.com/judydnguyen/SUGAR-Generative-Unlearn.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026
♻ ☆ Singpath-VL Technical Report
We present Singpath-VL, a vision-language large model, to fill the vacancy of AI assistant in cervical cytology. Recent advances in multi-modal large language models (MLLMs) have significantly propelled the field of computational pathology. However, their application in cytopathology, particularly cervical cytology, remains underexplored, primarily due to the scarcity of large-scale, high-quality annotated datasets. To bridge this gap, we first develop a novel three-stage pipeline to synthesize a million-scale image-description dataset. The pipeline leverages multiple general-purpose MLLMs as weak annotators, refines their outputs through consensus fusion and expert knowledge injection, and produces high-fidelity descriptions of cell morphology. Using this dataset, we then fine-tune the Qwen3-VL-4B model via a multi-stage strategy to create a specialized cytopathology MLLM. The resulting model, named Singpath-VL, demonstrates superior performance in fine-grained morphological perception and cell-level diagnostic classification. To advance the field, we will open-source a portion of the synthetic dataset and benchmark.
♻ ☆ 3DXTalker: Unifying Identity, Lip Sync, Emotion, and Spatial Dynamics in Expressive 3D Talking Avatars
Audio-driven 3D talking avatar generation is increasingly important in virtual communication, digital humans, and interactive media, where avatars must preserve identity, synchronize lip motion with speech, express emotion, and exhibit lifelike spatial dynamics, collectively defining a broader objective of expressivity. However, achieving this remains challenging due to insufficient training data with limited subject identities, narrow audio representations, and restricted explicit controllability. In this paper, we propose 3DXTalker, an expressive 3D talking avatar through data-curated identity modeling, audio-rich representations, and spatial dynamics controllability. 3DXTalker enables scalable identity modeling via 2D-to-3D data curation pipeline and disentangled representations, alleviating data scarcity and improving identity generalization. Then, we introduce frame-wise amplitude and emotional cues beyond standard speech embeddings, ensuring superior lip synchronization and nuanced expression modulation. These cues are unified by a flow-matching-based transformer for coherent facial dynamics. Moreover, 3DXTalker also enables natural head-pose motion generation while supporting stylized control via prompt-based conditioning. Extensive experiments show that 3DXTalker integrates lip synchronization, emotional expression, and head-pose dynamics within a unified framework, achieves superior performance in 3D talking avatar generation.
♻ ☆ MAU-GPT: Enhancing Multi-type Industrial Anomaly Understanding via Anomaly-aware and Generalist Experts Adaptation
As industrial manufacturing scales, automating fine-grained product image analysis has become critical for quality control. However, existing approaches are hindered by limited dataset coverage and poor model generalization across diverse and complex anomaly patterns. To address these challenges, we introduce MAU-Set, a comprehensive dataset for Multi-type industrial Anomaly Understanding. It spans multiple industrial domains and features a hierarchical task structure, ranging from binary classification to complex reasoning. Alongside this dataset, we establish a rigorous evaluation protocol to facilitate fair and comprehensive model assessment. Building upon this foundation, we further present MAU-GPT, a domain-adapted multimodal large model specifically designed for industrial anomaly understanding. It incorporates a novel AMoE-LoRA mechanism that unifies anomaly-aware and generalist experts adaptation, enhancing both understanding and reasoning across diverse defect classes. Extensive experiments show that MAU-GPT consistently outperforms prior state-of-the-art methods across all domains, demonstrating strong potential for scalable and automated industrial inspection.
comment: 9 pages, 5 figures
♻ ☆ Weakly Supervised Contrastive Learning for Histopathology Patch Embeddings
Digital histopathology whole slide images (WSIs) provide gigapixel-scale high-resolution images that are highly useful for disease diagnosis. However, digital histopathology image analysis faces significant challenges due to the limited training labels, since manually annotating specific regions or small patches cropped from large WSIs requires substantial time and effort. Weakly supervised multiple instance learning (MIL) offers a practical and efficient solution by requiring only bag-level (slide-level) labels, while each bag typically contains multiple instances (patches). Most MIL methods directly use frozen image patch features generated by various image encoders as inputs and primarily focus on feature aggregation. However, feature representation learning for encoder pretraining in MIL settings has largely been neglected. In our work, we propose a novel feature representation learning framework called weakly supervised contrastive learning (WeakSupCon) that incorporates bag-level label information during training. Our method does not rely on instance-level pseudo-labeling, yet it effectively separates patches with different labels in the feature space. Experimental results demonstrate that the image features generated by our WeakSupCon method lead to improved downstream MIL performance compared to self-supervised contrastive learning approaches in three datasets. Our related code is available at github.com/BzhangURU/Paper_WeakSupCon_for_MIL
♻ ☆ MambaFusion: Adaptive State-Space Fusion for Multimodal 3D Object Detection
Reliable 3D object detection is fundamental to autonomous driving, and multimodal fusion algorithms using cameras and LiDAR remain a persistent challenge. Cameras provide dense visual cues but ill posed depth; LiDAR provides a precise 3D structure but sparse coverage. Existing BEV-based fusion frameworks have made good progress, but they have difficulties including inefficient context modeling, spatially invariant fusion, and reasoning under uncertainty. We introduce MambaFusion, a unified multi-modal detection framework that achieves efficient, adaptive, and physically grounded 3D perception. MambaFusion interleaves selective state-space models (SSMs) with windowed transformers to propagate the global context in linear time while preserving local geometric fidelity. A multi-modal token alignment (MTA) module and reliability-aware fusion gates dynamically re-weight camera-LiDAR features based on spatial confidence and calibration consistency. Finally, a structure-conditioned diffusion head integrates graph-based reasoning with uncertainty-aware denoising, enforcing physical plausibility, and calibrated confidence. MambaFusion establishes new state-of-the-art performance on nuScenes benchmarks while operating with linear-time complexity. The framework demonstrates that coupling SSM-based efficiency with reliability-driven fusion yields robust, temporally stable, and interpretable 3D perception for real-world autonomous driving systems.
Artificial Intelligence 150
☆ Scaling Verification Can Be More Effective than Scaling Policy Learning for Vision-Language-Action Alignment
The long-standing vision of general-purpose robots hinges on their ability to understand and act upon natural language instructions. Vision-Language-Action (VLA) models have made remarkable progress toward this goal, yet their generated actions can still misalign with the given instructions. In this paper, we investigate test-time verification as a means to shrink the "intention-action gap.'' We first characterize the test-time scaling law for embodied instruction following and demonstrate that jointly scaling the number of rephrased instructions and generated actions greatly increases test-time sample diversity, often recovering correct actions more efficiently than scaling each dimension independently. To capitalize on these scaling laws, we present CoVer, a contrastive verifier for vision-language-action alignment, and show that our architecture scales gracefully with additional computational resources and data. We then introduce "boot-time compute" and a hierarchical verification inference pipeline for VLAs. At deployment, our framework precomputes a diverse set of rephrased instructions from a Vision-Language-Model (VLM), repeatedly generates action candidates for each instruction, and then uses a verifier to select the optimal high-level prompt and low-level action chunks. Compared to scaling policy pre-training on the same data, our verification approach yields 22% gains in-distribution and 13% out-of-distribution on the SIMPLER benchmark, with a further 45% improvement in real-world experiments. On the PolaRiS benchmark, CoVer achieves 14% gains in task progress and 9% in success rate.
☆ UniT: Unified Multimodal Chain-of-Thought Test-time Scaling
Unified models can handle both multimodal understanding and generation within a single architecture, yet they typically operate in a single pass without iteratively refining their outputs. Many multimodal tasks, especially those involving complex spatial compositions, multiple interacting objects, or evolving instructions, require decomposing instructions, verifying intermediate results, and making iterative corrections. While test-time scaling (TTS) has demonstrated that allocating additional inference compute for iterative reasoning substantially improves language model performance, extending this paradigm to unified multimodal models remains an open challenge. We introduce UniT, a framework for multimodal chain-of-thought test-time scaling that enables a single unified model to reason, verify, and refine across multiple rounds. UniT combines agentic data synthesis, unified model training, and flexible test-time inference to elicit cognitive behaviors including verification, subgoal decomposition, and content memory. Our key findings are: (1) unified models trained on short reasoning trajectories generalize to longer inference chains at test time; (2) sequential chain-of-thought reasoning provides a more scalable and compute-efficient TTS strategy than parallel sampling; (3) training on generation and editing trajectories improves out-of-distribution visual reasoning. These results establish multimodal test-time scaling as an effective paradigm for advancing both generation and understanding in unified models.
☆ AttentionRetriever: Attention Layers are Secretly Long Document Retrievers
Retrieval augmented generation (RAG) has been widely adopted to help Large Language Models (LLMs) to process tasks involving long documents. However, existing retrieval models are not designed for long document retrieval and fail to address several key challenges of long document retrieval, including context-awareness, causal dependence, and scope of retrieval. In this paper, we proposed AttentionRetriever, a novel long document retrieval model that leverages attention mechanism and entity-based retrieval to build context-aware embeddings for long document and determine the scope of retrieval. With extensive experiments, we found AttentionRetriever is able to outperform existing retrieval models on long document retrieval datasets by a large margin while remaining as efficient as dense retrieval models.
☆ Agentic Test-Time Scaling for WebAgents
Test-time scaling has become a standard way to improve performance and boost reliability of neural network models. However, its behavior on agentic, multi-step tasks remains less well-understood: small per-step errors can compound over long horizons; and we find that naive policies that uniformly increase sampling show diminishing returns. In this work, we present CATTS, a simple technique for dynamically allocating compute for multi-step agents. We first conduct an empirical study of inference-time scaling for web agents. We find that uniformly increasing per-step compute quickly saturates in long-horizon environments. We then investigate stronger aggregation strategies, including an LLM-based Arbiter that can outperform naive voting, but that can overrule high-consensus decisions. We show that uncertainty statistics derived from the agent's own vote distribution (entropy and top-1/top-2 margin) correlate with downstream success and provide a practical signal for dynamic compute allocation. Based on these findings, we introduce Confidence-Aware Test-Time Scaling (CATTS), which uses vote-derived uncertainty to allocate compute only when decisions are genuinely contentious. CATTS improves performance on WebArena-Lite and GoBrowse by up to 9.1% over React while using up to 2.3x fewer tokens than uniform scaling, providing both efficiency gains and an interpretable decision rule.
☆ Creative Ownership in the Age of AI
Copyright law focuses on whether a new work is "substantially similar" to an existing one, but generative AI can closely imitate style without copying content, a capability now central to ongoing litigation. We argue that existing definitions of infringement are ill-suited to this setting and propose a new criterion: a generative AI output infringes on an existing work if it could not have been generated without that work in its training corpus. To operationalize this definition, we model generative systems as closure operators mapping a corpus of existing works to an output of new works. AI generated outputs are \emph{permissible} if they do not infringe on any existing work according to our criterion. Our results characterize structural properties of permissible generation and reveal a sharp asymptotic dichotomy: when the process of organic creations is light-tailed, dependence on individual works eventually vanishes, so that regulation imposes no limits on AI generation; with heavy-tailed creations, regulation can be persistently constraining.
☆ CM2: Reinforcement Learning with Checklist Rewards for Multi-Turn and Multi-Step Agentic Tool Use
AI agents are increasingly used to solve real-world tasks by reasoning over multi-turn user interactions and invoking external tools. However, applying reinforcement learning to such settings remains difficult: realistic objectives often lack verifiable rewards and instead emphasize open-ended behaviors; moreover, RL for multi-turn, multi-step agentic tool use is still underexplored; and building and maintaining executable tool environments is costly, limiting scale and coverage. We propose CM2, an RL framework that replaces verifiable outcome rewards with checklist rewards. CM2 decomposes each turn's intended behavior into fine-grained binary criteria with explicit evidence grounding and structured metadata, turning open-ended judging into more stable classification-style decisions. To balance stability and informativeness, our method adopts a strategy of sparse reward assignment but dense evaluation criteria. Training is performed in a scalable LLM-simulated tool environment, avoiding heavy engineering for large tool sets. Experiments show that CM2 consistently improves over supervised fine-tuning. Starting from an 8B Base model and training on an 8k-example RL dataset, CM2 improves over the SFT counterpart by 8 points on tau^-Bench, by 10 points on BFCL-V4, and by 12 points on ToolSandbox. The results match or even outperform similarly sized open-source baselines, including the judging model. CM2 thus provides a scalable recipe for optimizing multi-turn, multi-step tool-using agents without relying on verifiable rewards. Code provided by the open-source community: https://github.com/namezhenzhang/CM2-RLCR-Tool-Agent.
☆ Think like a Scientist: Physics-guided LLM Agent for Equation Discovery
Explaining observed phenomena through symbolic, interpretable formulas is a fundamental goal of science. Recently, large language models (LLMs) have emerged as promising tools for symbolic equation discovery, owing to their broad domain knowledge and strong reasoning capabilities. However, most existing LLM-based systems try to guess equations directly from data, without modeling the multi-step reasoning process that scientists often follow: first inferring physical properties such as symmetries, then using these as priors to restrict the space of candidate equations. We introduce KeplerAgent, an agentic framework that explicitly follows this scientific reasoning process. The agent coordinates physics-based tools to extract intermediate structure and uses these results to configure symbolic regression engines such as PySINDy and PySR, including their function libraries and structural constraints. Across a suite of physical equation benchmarks, KeplerAgent achieves substantially higher symbolic accuracy and greater robustness to noisy data than both LLM and traditional baselines.
☆ On the implicit regularization of Langevin dynamics with projected noise
We study Langevin dynamics with noise projected onto the directions orthogonal to an isometric group action. This mathematical model is introduced to shed new light on the effects of symmetry on stochastic gradient descent for over-parametrized models. Our main result identifies a novel form of implicit regularization: when the initial and target density are both invariant under the group action, Langevin dynamics with projected noise is equivalent in law to Langevin dynamics with isotropic diffusion but with an additional drift term proportional to the negative log volume of the group orbit. We prove this result by constructing a coupling of the two processes via a third process on the group itself, and identify the additional drift as the mean curvature of the orbits.
comment: 30 pages, 1 figure
☆ A technical curriculum on language-oriented artificial intelligence in translation and specialised communication
This paper presents a technical curriculum on language-oriented artificial intelligence (AI) in the language and translation (L&T) industry. The curriculum aims to foster domain-specific technical AI literacy among stakeholders in the fields of translation and specialised communication by exposing them to the conceptual and technical/algorithmic foundations of modern language-oriented AI in an accessible way. The core curriculum focuses on 1) vector embeddings, 2) the technical foundations of neural networks, 3) tokenization and 4) transformer neural networks. It is intended to help users develop computational thinking as well as algorithmic awareness and algorithmic agency, ultimately contributing to their digital resilience in AI-driven work environments. The didactic suitability of the curriculum was tested in an AI-focused MA course at the Institute of Translation and Multilingual Communication at TH Koeln. Results suggest the didactic effectiveness of the curriculum, but participant feedback indicates that it should be embedded into higher-level didactic scaffolding - e.g., in the form of lecturer support - in order to enable optimal learning conditions.
comment: 10 pages, 1 figure, EAMT 2026, TAITT Workshop
☆ "Sorry, I Didn't Catch That": How Speech Models Miss What Matters Most
Despite speech recognition systems achieving low word error rates on standard benchmarks, they often fail on short, high-stakes utterances in real-world deployments. Here, we study this failure mode in a high-stakes task: the transcription of U.S. street names as spoken by U.S. participants. We evaluate 15 models from OpenAI, Deepgram, Google, and Microsoft on recordings from linguistically diverse U.S. speakers and find an average transcription error rate of 44%. We quantify the downstream impact of failed transcriptions by geographic locations and show that mis-transcriptions systematically cause errors for all speakers, but that routing distance errors are twice as large for non-English primary speakers compared to English primary speakers. To mitigate this harm, we introduce a synthetic data generation approach that produces diverse pronunciations of named entities using open-source text-to-speech models. Fine-tuning with less than 1,000 synthetic samples improves street name transcription accuracy by nearly 60% (relative to base models) for non-English primary speakers. Our results highlight a critical gap between benchmark performance and real-world reliability in speech systems and demonstrate a simple, scalable path to reducing high-stakes transcription errors.
☆ ExtractBench: A Benchmark and Evaluation Methodology for Complex Structured Extraction
Unstructured documents like PDFs contain valuable structured information, but downstream systems require this data in reliable, standardized formats. LLMs are increasingly deployed to automate this extraction, making accuracy and reliability paramount. However, progress is bottlenecked by two gaps. First, no end-to-end benchmark evaluates PDF-to-JSON extraction under enterprise-scale schema breadth. Second, no principled methodology captures the semantics of nested extraction, where fields demand different notions of correctness (exact match for identifiers, tolerance for quantities, semantic equivalence for names), arrays require alignment, and omission must be distinguished from hallucination. We address both gaps with ExtractBench, an open-source benchmark and evaluation framework for PDF-to-JSON structured extraction. The benchmark pairs 35 PDF documents with JSON Schemas and human-annotated gold labels across economically valuable domains, yielding 12,867 evaluatable fields spanning schema complexities from tens to hundreds of fields. The evaluation framework treats the schema as an executable specification: each field declares its scoring metric. Baseline evaluations reveal that frontier models (GPT-5/5.2, Gemini-3 Flash/Pro, Claude 4.5 Opus/Sonnet) remain unreliable on realistic schemas. Performance degrades sharply with schema breadth, culminating in 0% valid output on a 369-field financial reporting schema across all tested models. We release ExtractBench at https://github.com/ContextualAI/extract-bench.
☆ Intrinsic-Energy Joint Embedding Predictive Architectures Induce Quasimetric Spaces
Joint-Embedding Predictive Architectures (JEPAs) aim to learn representations by predicting target embeddings from context embeddings, inducing a scalar compatibility energy in a latent space. In contrast, Quasimetric Reinforcement Learning (QRL) studies goal-conditioned control through directed distance values (cost-to-go) that support reaching goals under asymmetric dynamics. In this short article, we connect these viewpoints by restricting attention to a principled class of JEPA energy functions : intrinsic (least-action) energies, defined as infima of accumulated local effort over admissible trajectories between two states. Under mild closure and additivity assumptions, any intrinsic energy is a quasimetric. In goal-reaching control, optimal cost-to-go functions admit exactly this intrinsic form ; inversely, JEPAs trained to model intrinsic energies lie in the quasimetric value class targeted by QRL. Moreover, we observe why symmetric finite energies are structurally mismatched with one-way reachability, motivating asymmetric (quasimetric) energies when directionality matters.
☆ Olmix: A Framework for Data Mixing Throughout LM Development
Data mixing -- determining the ratios of data from different domains -- is a first-order concern for training language models (LMs). While existing mixing methods show promise, they fall short when applied during real-world LM development. We present Olmix, a framework that addresses two such challenges. First, the configuration space for developing a mixing method is not well understood -- design choices across existing methods lack justification or consensus and overlook practical issues like data constraints. We conduct a comprehensive empirical study of this space, identifying which design choices lead to a strong mixing method. Second, in practice, the domain set evolves throughout LM development as datasets are added, removed, partitioned, and revised -- a problem setting largely unaddressed by existing works, which assume fixed domains. We study how to efficiently recompute the mixture after the domain set is updated, leveraging information from past mixtures. We introduce mixture reuse, a mechanism that reuses existing ratios and recomputes ratios only for domains affected by the update. Over a sequence of five domain-set updates mirroring real-world LM development, mixture reuse matches the performance of fully recomputing the mix after each update with 74% less compute and improves over training without mixing by 11.6% on downstream tasks.
☆ Energy-Aware Spike Budgeting for Continual Learning in Spiking Neural Networks for Neuromorphic Vision
Neuromorphic vision systems based on spiking neural networks (SNNs) offer ultra-low-power perception for event-based and frame-based cameras, yet catastrophic forgetting remains a critical barrier to deployment in continually evolving environments. Existing continual learning methods, developed primarily for artificial neural networks, seldom jointly optimize accuracy and energy efficiency, with particularly limited exploration on event-based datasets. We propose an energy-aware spike budgeting framework for continual SNN learning that integrates experience replay, learnable leaky integrate-and-fire neuron parameters, and an adaptive spike scheduler to enforce dataset-specific energy constraints during training. Our approach exhibits modality-dependent behavior: on frame-based datasets (MNIST, CIFAR-10), spike budgeting acts as a sparsity-inducing regularizer, improving accuracy while reducing spike rates by up to 47\%; on event-based datasets (DVS-Gesture, N-MNIST, CIFAR-10-DVS), controlled budget relaxation enables accuracy gains up to 17.45 percentage points with minimal computational overhead. Across five benchmarks spanning both modalities, our method demonstrates consistent performance improvements while minimizing dynamic power consumption, advancing the practical viability of continual learning in neuromorphic vision systems.
☆ Bandit Learning in Matching Markets with Interviews
Two-sided matching markets rely on preferences from both sides, yet it is often impractical to evaluate preferences. Participants, therefore, conduct a limited number of interviews, which provide early, noisy impressions and shape final decisions. We study bandit learning in matching markets with interviews, modeling interviews as \textit{low-cost hints} that reveal partial preference information to both sides. Our framework departs from existing work by allowing firm-side uncertainty: firms, like agents, may be unsure of their own preferences and can make early hiring mistakes by hiring less preferred agents. To handle this, we extend the firm's action space to allow \emph{strategic deferral} (choosing not to hire in a round), enabling recovery from suboptimal hires and supporting decentralized learning without coordination. We design novel algorithms for (i) a centralized setting with an omniscient interview allocator and (ii) decentralized settings with two types of firm-side feedback. Across all settings, our algorithms achieve time-independent regret, a substantial improvement over the $O(\log T)$ regret bounds known for learning stable matchings without interviews. Also, under mild structured markets, decentralized performance matches the centralized counterpart up to polynomial factors in the number of agents and firms.
☆ Towards On-Policy SFT: Distribution Discriminant Theory and its Applications in LLM Training
Supervised fine-tuning (SFT) is computationally efficient but often yields inferior generalization compared to reinforcement learning (RL). This gap is primarily driven by RL's use of on-policy data. We propose a framework to bridge this chasm by enabling On-Policy SFT. We first present \textbf{\textit{Distribution Discriminant Theory (DDT)}}, which explains and quantifies the alignment between data and the model-induced distribution. Leveraging DDT, we introduce two complementary techniques: (i) \textbf{\textit{In-Distribution Finetuning (IDFT)}}, a loss-level method to enhance generalization ability of SFT, and (ii) \textbf{\textit{Hinted Decoding}}, a data-level technique that can re-align the training corpus to the model's distribution. Extensive experiments demonstrate that our framework achieves generalization performance on par with prominent offline RL algorithms, including DPO and SimPO, while maintaining the efficiency of an SFT pipeline. The proposed framework thus offers a practical alternative in domains where RL is infeasible. We open-source the code here: https://github.com/zhangmiaosen2000/Towards-On-Policy-SFT
☆ The Observer Effect in World Models: Invasive Adaptation Corrupts Latent Physics
Determining whether neural models internalize physical laws as world models, rather than exploiting statistical shortcuts, remains challenging, especially under out-of-distribution (OOD) shifts. Standard evaluations often test latent capability via downstream adaptation (e.g., fine-tuning or high-capacity probes), but such interventions can change the representations being measured and thus confound what was learned during self-supervised learning (SSL). We propose a non-invasive evaluation protocol, PhyIP. We test whether physical quantities are linearly decodable from frozen representations, motivated by the linear representation hypothesis. Across fluid dynamics and orbital mechanics, we find that when SSL achieves low error, latent structure becomes linearly accessible. PhyIP recovers internal energy and Newtonian inverse-square scaling on OOD tests (e.g., $ρ> 0.90$). In contrast, adaptation-based evaluations can collapse this structure ($ρ\approx 0.05$). These findings suggest that adaptation-based evaluation can obscure latent structures and that low-capacity probes offer a more accurate evaluation of physical world models.
☆ VIRENA: Virtual Arena for Research, Education, and Democratic Innovation
Digital platforms shape how people communicate, deliberate, and form opinions. Studying these dynamics has become increasingly difficult due to restricted data access, ethical constraints on real-world experiments, and limitations of existing research tools. VIRENA (Virtual Arena) is a platform that enables controlled experimentation in realistic social media environments. Multiple participants interact simultaneously in realistic replicas of feed-based platforms (Instagram, Facebook, Reddit) and messaging apps (WhatsApp, Messenger). Large language model-powered AI agents participate alongside humans with configurable personas and realistic behavior. Researchers can manipulate content moderation approaches, pre-schedule stimulus content, and run experiments across conditions through a visual interface requiring no programming skills. VIRENA makes possible research designs that were previously impractical: studying human--AI interaction in realistic social contexts, experimentally comparing moderation interventions, and observing group deliberation as it unfolds. Built on open-source technologies that ensure data remain under institutional control and comply with data protection requirements, VIRENA is currently in use at the University of Zurich and available for pilot collaborations. Designed for researchers, educators, and public organizations alike, VIRENA's no-code interface makes controlled social media simulation accessible across disciplines and sectors. This paper documents its design, architecture, and capabilities.
comment: VIRENA is under active development and currently in use at the University of Zurich, supported by the DIZH Innovation Program: 2nd Founder-Call. This preprint will be updated as new features are released. For the latest version and to inquire about demos or pilot collaborations, contact the authors
☆ DeepGen 1.0: A Lightweight Unified Multimodal Model for Advancing Image Generation and Editing
Current unified multimodal models for image generation and editing typically rely on massive parameter scales (e.g., >10B), entailing prohibitive training costs and deployment footprints. In this work, we present DeepGen 1.0, a lightweight 5B unified model that achieves comprehensive capabilities competitive with or surpassing much larger counterparts. To overcome the limitations of compact models in semantic understanding and fine-grained control, we introduce Stacked Channel Bridging (SCB), a deep alignment framework that extracts hierarchical features from multiple VLM layers and fuses them with learnable 'think tokens' to provide the generative backbone with structured, reasoning-rich guidance. We further design a data-centric training strategy spanning three progressive stages: (1) Alignment Pre-training on large-scale image-text pairs and editing triplets to synchronize VLM and DiT representations, (2) Joint Supervised Fine-tuning on a high-quality mixture of generation, editing, and reasoning tasks to foster omni-capabilities, and (3) Reinforcement Learning with MR-GRPO, which leverages a mixture of reward functions and supervision signals, resulting in substantial gains in generation quality and alignment with human preferences, while maintaining stable training progress and avoiding visual artifacts. Despite being trained on only ~50M samples, DeepGen 1.0 achieves leading performance across diverse benchmarks, surpassing the 80B HunyuanImage by 28% on WISE and the 27B Qwen-Image-Edit by 37% on UniREditBench. By open-sourcing our training code, weights, and datasets, we provide an efficient, high-performance alternative to democratize unified multimodal research.
☆ Visual Reasoning Benchmark: Evaluating Multimodal LLMs on Classroom-Authentic Visual Problems from Primary Education
AI models have achieved state-of-the-art results in textual reasoning; however, their ability to reason over spatial and relational structures remains a critical bottleneck -- particularly in early-grade maths, which relies heavily on visuals. This paper introduces the visual reasoning benchmark (VRB), a novel dataset designed to evaluate Multimodal Large Language Models (MLLMs) on their ability to solve authentic visual problems from classrooms. This benchmark is built on a set of 701 questions sourced from primary school examinations in Zambia and India, which cover a range of tasks such as reasoning by analogy, pattern completion, and spatial matching. We outline the methodology and development of the benchmark which intentionally uses unedited, minimal-text images to test if models can meet realistic needs of primary education. Our findings reveal a ``jagged frontier'' of capability where models demonstrate better proficiency in static skills such as counting and scaling, but reach a distinct ``spatial ceiling'' when faced with dynamic operations like folding, reflection, and rotation. These weaknesses pose a risk for classroom use on visual reasoning problems, with the potential for incorrect marking, false scaffolding, and reinforcing student misconceptions. Consequently, education-focused benchmarks like the VRB are essential for determining the functional boundaries of multimodal tools used in classrooms.
☆ SAGEO Arena: A Realistic Environment for Evaluating Search-Augmented Generative Engine Optimization
Search-Augmented Generative Engines (SAGE) have emerged as a new paradigm for information access, bridging web-scale retrieval with generative capabilities to deliver synthesized answers. This shift has fundamentally reshaped how web content gains exposure online, giving rise to Search-Augmented Generative Engine Optimization (SAGEO), the practice of optimizing web documents to improve their visibility in AI-generated responses. Despite growing interest, no evaluation environment currently supports comprehensive investigation of SAGEO. Specifically, existing benchmarks lack end-to-end visibility evaluation of optimization strategies, operating on pre-determined candidate documents that abstract away retrieval and reranking preceding generation. Moreover, existing benchmarks discard structural information (e.g., schema markup) present in real web documents, overlooking the rich signals that search systems actively leverage in practice. Motivated by these gaps, we introduce SAGEO Arena, a realistic and reproducible environment for stage-level SAGEO analysis. Our objective is to jointly target search-oriented optimization (SEO) and generation-centric optimization (GEO). To achieve this, we integrate a full generative search pipeline over a large-scale corpus of web documents with rich structural information. Our findings reveal that existing approaches remain largely impractical under realistic conditions and often degrade performance in retrieval and reranking. We also find that structural information helps mitigate these limitations, and that effective SAGEO requires tailoring optimization to each pipeline stage. Overall, our benchmark paves the way for realistic SAGEO evaluation and optimization beyond simplified settings.
comment: Work in Progress
☆ SAM3-LiteText: An Anatomical Study of the SAM3 Text Encoder for Efficient Vision-Language Segmentation
Vision-language segmentation models such as SAM3 enable flexible, prompt-driven visual grounding, but inherit large, general-purpose text encoders originally designed for open-ended language understanding. In practice, segmentation prompts are short, structured, and semantically constrained, leading to substantial over-provisioning in text encoder capacity and persistent computational and memory overhead. In this paper, we perform a large-scale anatomical analysis of text prompting in vision-language segmentation, covering 404,796 real prompts across multiple benchmarks. Our analysis reveals severe redundancy: most context windows are underutilized, vocabulary usage is highly sparse, and text embeddings lie on low-dimensional manifold despite high-dimensional representations. Motivated by these findings, we propose SAM3-LiteText, a lightweight text encoding framework that replaces the original SAM3 text encoder with a compact MobileCLIP student that is optimized by knowledge distillation. Extensive experiments on image and video segmentation benchmarks show that SAM3-LiteText reduces text encoder parameters by up to 88%, substantially reducing static memory footprint, while maintaining segmentation performance comparable to the original model. Code: https://github.com/SimonZeng7108/efficientsam3/tree/sam3_litetext.
☆ Pedagogically-Inspired Data Synthesis for Language Model Knowledge Distillation ICLR 2026
Knowledge distillation from Large Language Models (LLMs) to smaller models has emerged as a critical technique for deploying efficient AI systems. However, current methods for distillation via synthetic data lack pedagogical awareness, treating knowledge transfer as a one-off data synthesis and training task rather than a systematic learning process. In this paper, we propose a novel pedagogically-inspired framework for LLM knowledge distillation that draws from fundamental educational principles. Our approach introduces a three-stage pipeline -- Knowledge Identifier, Organizer, and Adapter (IOA) -- that systematically identifies knowledge deficiencies in student models, organizes knowledge delivery through progressive curricula, and adapts representations to match the cognitive capacity of student models. We integrate Bloom's Mastery Learning Principles and Vygotsky's Zone of Proximal Development to create a dynamic distillation process where student models approach teacher model's performance on prerequisite knowledge before advancing, and new knowledge is introduced with controlled, gradual difficulty increments. Extensive experiments using LLaMA-3.1/3.2 and Qwen2.5 as student models demonstrate that IOA achieves significant improvements over baseline distillation methods, with student models retaining 94.7% of teacher performance on DollyEval while using less than 1/10th of the parameters. Our framework particularly excels in complex reasoning tasks, showing 19.2% improvement on MATH and 22.3% on HumanEval compared with state-of-the-art baselines.
comment: Accepted by ICLR 2026
☆ Statistical Parsing for Logical Information Retrieval
In previous work (Coppola, 2024) we introduced the Quantified Boolean Bayesian Network (QBBN), a logical graphical model that implements the forward fragment of natural deduction (Prawitz, 1965) as a probabilistic factor graph. That work left two gaps: no negation/backward reasoning, and no parser for natural language. This paper addresses both gaps across inference, semantics, and syntax. For inference, we extend the QBBN with NEG factors enforcing P(x) + P(neg x) = 1, enabling contrapositive reasoning (modus tollens) via backward lambda messages, completing Prawitz's simple elimination rules. The engine handles 44/44 test cases spanning 22 reasoning patterns. For semantics, we present a typed logical language with role-labeled predicates, modal quantifiers, and three tiers of expressiveness following Prawitz: first-order quantification, propositions as arguments, and predicate quantification via lambda abstraction. For syntax, we present a typed slot grammar that deterministically compiles sentences to logical form (33/33 correct, zero ambiguity). LLMs handle disambiguation (95% PP attachment accuracy) but cannot produce structured parses directly (12.4% UAS), confirming grammars are necessary. The architecture: LLM preprocesses, grammar parses, LLM reranks, QBBN infers. We argue this reconciles formal semantics with Sutton's "bitter lesson" (2019): LLMs eliminate the annotation bottleneck that killed formal NLP, serving as annotator while the QBBN serves as verifier. Code: https://github.com/gregorycoppola/world
comment: 23 pages, 6 tables
☆ Sci-CoE: Co-evolving Scientific Reasoning LLMs via Geometric Consensus with Sparse Supervision
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, and co-evolving paradigms have shown promising results in domains such as code and math. However, in scientific reasoning tasks, these models remain fragile due to unreliable solution evaluation and limited diversity in verification strategies. In this work, we propose Sci-CoE, a two-stage scientific co-evolving framework that enables models to self-evolve as both solver and verifier through a transition from sparse supervision to unsupervised learning. In the first stage, the model uses a small set of annotated data to establish fundamental correctness judgment anchors for the Verifier. In the second stage, we introduce a geometric reward mechanism that jointly considers consensus, reliability, and diversity, driving large-scale self-iteration on unlabeled data. Experiments on several general scientific benchmarks demonstrate that Sci-CoE enhances complex reasoning capabilities and exhibits strong scalability, facilitating the construction of more robust and diverse evaluation systems. Codes are available at https://github.com/InternScience/Sci-CoE.
☆ 3DGSNav: Enhancing Vision-Language Model Reasoning for Object Navigation via Active 3D Gaussian Splatting
Object navigation is a core capability of embodied intelligence, enabling an agent to locate target objects in unknown environments. Recent advances in vision-language models (VLMs) have facilitated zero-shot object navigation (ZSON). However, existing methods often rely on scene abstractions that convert environments into semantic maps or textual representations, causing high-level decision making to be constrained by the accuracy of low-level perception. In this work, we present 3DGSNav, a novel ZSON framework that embeds 3D Gaussian Splatting (3DGS) as persistent memory for VLMs to enhance spatial reasoning. Through active perception, 3DGSNav incrementally constructs a 3DGS representation of the environment, enabling trajectory-guided free-viewpoint rendering of frontier-aware first-person views. Moreover, we design structured visual prompts and integrate them with Chain-of-Thought (CoT) prompting to further improve VLM reasoning. During navigation, a real-time object detector filters potential targets, while VLM-driven active viewpoint switching performs target re-verification, ensuring efficient and reliable recognition. Extensive evaluations across multiple benchmarks and real-world experiments on a quadruped robot demonstrate that our method achieves robust and competitive performance against state-of-the-art approaches.The Project Page:https://aczheng-cai.github.io/3dgsnav.github.io/
☆ dVoting: Fast Voting for dLLMs
Diffusion Large Language Models (dLLMs) represent a new paradigm beyond autoregressive modeling, offering competitive performance while naturally enabling a flexible decoding process. Specifically, dLLMs can generate tokens at arbitrary positions in parallel, endowing them with significant potential for parallel test-time scaling, which was previously constrained by severe inefficiency in autoregressive modeling. In this work, we introduce dVoting, a fast voting technique that boosts reasoning capability without training, with only an acceptable extra computational overhead. dVoting is motivated by the observation that, across multiple samples for the same prompt, token predictions remain largely consistent, whereas performance is determined by a small subset of tokens exhibiting cross-sample variability. Leveraging the arbitrary-position generation capability of dLLMs, dVoting performs iterative refinement by sampling, identifying uncertain tokens via consistency analysis, regenerating them through voting, and repeating this process until convergence. Extensive evaluations demonstrate that dVoting consistently improves performance across various benchmarks. It achieves gains of 6.22%-7.66% on GSM8K, 4.40%-7.20% on MATH500, 3.16%-14.84% on ARC-C, and 4.83%-5.74% on MMLU. Our code is available at https://github.com/fscdc/dVoting
GPT-4o Lacks Core Features of Theory of Mind
Do Large Language Models (LLMs) possess a Theory of Mind (ToM)? Research into this question has focused on evaluating LLMs against benchmarks and found success across a range of social tasks. However, these evaluations do not test for the actual representations posited by ToM: namely, a causal model of mental states and behavior. Here, we use a cognitively-grounded definition of ToM to develop and test a new evaluation framework. Specifically, our approach probes whether LLMs have a coherent, domain-general, and consistent model of how mental states cause behavior -- regardless of whether that model matches a human-like ToM. We find that even though LLMs succeed in approximating human judgments in a simple ToM paradigm, they fail at a logically equivalent task and exhibit low consistency between their action predictions and corresponding mental state inferences. As such, these findings suggest that the social proficiency exhibited by LLMs is not the result of an domain-general or consistent ToM.
comment: Submitted to CogSci 2025; see more at https://jmuchovej.com/projects/llm-tom. Note: "abstractness" is the second feature we test for, but due to arXiv's abstract requirements, the text has been altered
☆ Seq2Seq2Seq: Lossless Data Compression via Discrete Latent Transformers and Reinforcement Learning
Efficient lossless compression is essential for minimizing storage costs and transmission overhead while preserving data integrity. Traditional compression techniques, such as dictionary-based and statistical methods, often struggle to optimally exploit the structure and redundancy in complex data formats. Recent advancements in deep learning have opened new avenues for compression; however, many existing approaches depend on dense vector representations that obscure the underlying token structure. To address these limitations, we propose a novel lossless compression method that leverages Reinforcement Learning applied to a T5 language model architecture. This approach enables the compression of data into sequences of tokens rather than traditional vector representations. Unlike auto-encoders, which typically encode information into continuous latent spaces, our method preserves the token-based structure, aligning more closely with the original data format. This preservation allows for higher compression ratios while maintaining semantic integrity. By training the model using an off-policy Reinforcement Learning algorithm, we optimize sequence length to minimize redundancy and enhance compression efficiency. Our method introduces an efficient and adaptive data compression system built upon advanced Reinforcement Learning techniques, functioning independently of external grammatical or world knowledge. This approach shows significant improvements in compression ratios compared to conventional methods. By leveraging the latent information within language models, our system effectively compresses data without requiring explicit content understanding, paving the way for more robust and practical compression solutions across various applications.
☆ On the Adoption of AI Coding Agents in Open-source Android and iOS Development
AI coding agents are increasingly contributing to software development, yet their impact on mobile development has received little empirical attention. In this paper, we present the first category-level empirical study of agent-generated code in open-source mobile app projects. We analyzed PR acceptance behaviors across mobile platforms, agents, and task categories using 2,901 AI-authored pull requests (PRs) in 193 verified Android and iOS open-source GitHub repositories in the AIDev dataset. We find that Android projects have received 2x more AI-authored PRs and have achieved higher PR acceptance rate (71%) than iOS (63%), with significant agent-level variation on Android. Across task categories, PRs with routine tasks (feature, fix, and ui) achieve the highest acceptance, while structural changes like refactor and build achieve lower success and longer resolution times. Furthermore, our evolution analysis shows improvement in PR resolution time on Android through mid-2025 before it declined again. Our findings offer the first evidence-based characterization of AI agents effects on OSS mobile projects and establish empirical baselines for evaluating agent-generated contributions to design platform aware agentic systems.
comment: Accepted at MSR 2026 Mining Challenge track
☆ STAR : Bridging Statistical and Agentic Reasoning for Large Model Performance Prediction
As comprehensive large model evaluation becomes prohibitively expensive, predicting model performance from limited observations has become essential. However, existing statistical methods struggle with pattern shifts, data sparsity, and lack of explanation, while pure LLM methods remain unreliable. We propose STAR, a framework that bridges data-driven STatistical expectations with knowledge-driven Agentic Reasoning. STAR leverages specialized retrievers to gather external knowledge and embeds semantic features into Constrained Probabilistic Matrix Factorization (CPMF) to generate statistical expectations with uncertainty. A reasoning module guided by Expectation Violation Theory (EVT) then refines predictions through intra-family analysis, cross-model comparison, and credibility-aware aggregation, producing adjustments with traceable explanations. Extensive experiments show that STAR consistently outperforms all baselines on both score-based and rank-based metrics, delivering a 14.46% gain in total score over the strongest statistical method under extreme sparsity, with only 1--2 observed scores per test model.
comment: 10 pages, 8 figures, 17 tables. Code available at https://github.com/xiaoxiaostudy/star
☆ Value Alignment Tax: Measuring Value Trade-offs in LLM Alignment
Existing work on value alignment typically characterizes value relations statically, ignoring how interventions - such as prompting, fine-tuning, or preference optimization - reshape the broader value system. We introduce the Value Alignment Tax (VAT), a framework that measures how alignment-induced changes propagate across interconnected values relative to achieved on-target gain. VAT captures the dynamics of value expression under alignment pressure. Using a controlled scenario-action dataset grounded in Schwartz value theory, we collect paired pre-post normative judgments and analyze alignment effects across models, values, and alignment strategies. Our results show that alignment often produces uneven, structured co-movement among values. These effects are invisible under conventional target-only evaluation, revealing systemic, process-level alignment risks and offering new insights into the dynamics of value alignment in LLMs.
comment: Preprint. Under review. 20 pages, 13 figures
☆ Neutral Prompts, Non-Neutral People: Quantifying Gender and Skin-Tone Bias in Gemini Flash 2.5 Image and GPT Image 1.5
This study quantifies gender and skin-tone bias in two widely deployed commercial image generators - Gemini Flash 2.5 Image (NanoBanana) and GPT Image 1.5 - to test the assumption that neutral prompts yield demographically neutral outputs. We generated 3,200 photorealistic images using four semantically neutral prompts. The analysis employed a rigorous pipeline combining hybrid color normalization, facial landmark masking, and perceptually uniform skin tone quantification using the Monk (MST), PERLA, and Fitzpatrick scales. Neutral prompts produced highly polarized defaults. Both models exhibited a strong "default white" bias (>96% of outputs). However, they diverged sharply on gender: Gemini favored female-presenting subjects, while GPT favored male-presenting subjects with lighter skin tones. This research provides a large-scale, comparative audit of state-of-the-art models using an illumination-aware colorimetric methodology, distinguishing aesthetic rendering from underlying pigmentation in synthetic imagery. The study demonstrates that neutral prompts function as diagnostic probes rather than neutral instructions. It offers a robust framework for auditing algorithmic visual culture and challenges the sociolinguistic assumption that unmarked language results in inclusive representation.
☆ HLA: Hadamard Linear Attention
The attention mechanism is an important reason for the success of transformers. It relies on computing pairwise relations between tokens. To reduce the high computational cost of standard quadratic attention, linear attention has been proposed as an efficient approximation. It employs kernel functions that are applied independently to the inputs before the pairwise similarities are calculated. That allows for an efficient computational procedure which, however, amounts to a low-degree rational function approximating softmax. We propose Hadamard Linear Attention (HLA). Unlike previous works on linear attention, the nonlinearity in HLA is not applied separately to queries and keys, but, analogously to standard softmax attention, after the pairwise similarities have been computed. It will be shown that the proposed nonlinearity amounts to a higher-degree rational function to approximate softmax. An efficient computational scheme for the proposed method is derived that is similar to that of standard linear attention. In contrast to other approaches, no time-consuming tensor reshaping is necessary to apply the proposed algorithm. The effectiveness of the approach is demonstrated by applying it to a large diffusion transformer model for video generation, an application that involves very large amounts of tokens.
☆ Learning beyond Teacher: Generalized On-Policy Distillation with Reward Extrapolation
On-policy distillation (OPD), which aligns the student with the teacher's logit distribution on student-generated trajectories, has demonstrated strong empirical gains in improving student performance and often outperforms off-policy distillation and reinforcement learning (RL) paradigms. In this work, we first theoretically show that OPD is a special case of dense KL-constrained RL where the reward function and the KL regularization are always weighted equally and the reference model can by any model. Then, we propose the Generalized On-Policy Distillation (G-OPD) framework, which extends the standard OPD objective by introducing a flexible reference model and a reward scaling factor that controls the relative weight of the reward term against the KL regularization. Through comprehensive experiments on math reasoning and code generation tasks, we derive two novel insights: (1) Setting the reward scaling factor to be greater than 1 (i.e., reward extrapolation), which we term ExOPD, consistently improves over standard OPD across a range of teacher-student size pairings. In particular, in the setting where we merge the knowledge from different domain experts, obtained by applying domain-specific RL to the same student model, back into the original student, ExOPD enables the student to even surpass the teacher's performance boundary and outperform the domain teachers. (2) Building on ExOPD, we further find that in the strong-to-weak distillation setting (i.e., distilling a smaller student from a larger teacher), performing reward correction by choosing the reference model as the teacher's base model before RL yields a more accurate reward signal and further improves distillation performance. However, this choice assumes access to the teacher's pre-RL variant and incurs more computational overhead. We hope our work offers new insights for future research on OPD.
comment: Work in progress. Github repo: https://github.com/RUCBM/G-OPD
☆ Meta-Sel: Efficient Demonstration Selection for In-Context Learning via Supervised Meta-Learning
Demonstration selection is a practical bottleneck in in-context learning (ICL): under a tight prompt budget, accuracy can change substantially depending on which few-shot examples are included, yet selection must remain cheap enough to run per query over large candidate pools. We propose Meta-Sel, a lightweight supervised meta-learning approach for intent classification that learns a fast, interpretable scoring function for (candidate, query) pairs from labeled training data. Meta-Sel constructs a meta-dataset by sampling pairs from the training split and using class agreement as supervision, then trains a calibrated logistic regressor on two inexpensive meta-features: TF--IDF cosine similarity and a length-compatibility ratio. At inference time, the selector performs a single vectorized scoring pass over the full candidate pool and returns the top-k demonstrations, requiring no model fine-tuning, no online exploration, and no additional LLM calls. This yields deterministic rankings and makes the selection mechanism straightforward to audit via interpretable feature weights. Beyond proposing Meta-Sel, we provide a broad empirical study of demonstration selection, benchmarking 12 methods -- spanning prompt engineering baselines, heuristic selection, reinforcement learning, and influence-based approaches -- across four intent datasets and five open-source LLMs. Across this benchmark, Meta-Sel consistently ranks among the top-performing methods, is particularly effective for smaller models where selection quality can partially compensate for limited model capacity, and maintains competitive selection-time overhead.
☆ Commencing-Student Enrolment Forecasting Under Data Sparsity with Time Series Foundation Models
Many universities face increasing financial pressure and rely on accurate forecasts of commencing enrolments. However, enrolment forecasting in higher education is often data-sparse; annual series are short and affected by reporting changes and regime shifts. Popular classical approaches can be unreliable, as parameter estimation and model selection are unstable with short samples, and structural breaks degrade extrapolation. Recently, TSFMs have provided zero-shot priors, delivering strong gains in annual, data-sparse institutional forecasting under leakage-disciplined covariate construction. We benchmark multiple TSFM families in a zero-shot setting and test a compact, leakage-safe covariate set and introduce the Institutional Operating Conditions Index (IOCI), a transferable 0-100 regime covariate derived from time-stamped documentary evidence available at each forecast origin, alongside Google Trends demand proxies with stabilising feature engineering. Using an expanding-window backtest with strict vintage alignment, covariate-conditioned TSFMs perform on par with classical benchmarks without institution-specific training, with performance differences varying by cohort and model.
comment: 31 pages, 5 figures, 3 tables
☆ KAN-FIF: Spline-Parameterized Lightweight Physics-based Tropical Cyclone Estimation on Meteorological Satellite
Tropical cyclones (TC) are among the most destructive natural disasters, causing catastrophic damage to coastal regions through extreme winds, heavy rainfall, and storm surges. Timely monitoring of tropical cyclones is crucial for reducing loss of life and property, yet it is hindered by the computational inefficiency and high parameter counts of existing methods on resource-constrained edge devices. Current physics-guided models suffer from linear feature interactions that fail to capture high-order polynomial relationships between TC attributes, leading to inflated model sizes and hardware incompatibility. To overcome these challenges, this study introduces the Kolmogorov-Arnold Network-based Feature Interaction Framework (KAN-FIF), a lightweight multimodal architecture that integrates MLP and CNN layers with spline-parameterized KAN layers. For Maximum Sustained Wind (MSW) prediction, experiments demonstrate that the KAN-FIF framework achieves a $94.8\%$ reduction in parameters (0.99MB vs 19MB) and $68.7\%$ faster inference per sample (2.3ms vs 7.35ms) compared to baseline model Phy-CoCo, while maintaining superior accuracy with $32.5\%$ lower MAE. The offline deployment experiment of the FY-4 series meteorological satellite processor on the Qingyun-1000 development board achieved a 14.41ms per-sample inference latency with the KAN-FIF framework, demonstrating promising feasibility for operational TC monitoring and extending deployability to edge-device AI applications. The code is released at https://github.com/Jinglin-Zhang/KAN-FIF.
☆ Stop Unnecessary Reflection: Training LRMs for Efficient Reasoning with Adaptive Reflection and Length Coordinated Penalty ICLR 2026
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex reasoning tasks by employing test-time scaling. However, they often generate over-long chains-of-thought that, driven by substantial reflections such as repetitive self-questioning and circular reasoning, lead to high token consumption, substantial computational overhead, and increased latency without improving accuracy, particularly in smaller models. Our observation reveals that increasing problem complexity induces more excessive and unnecessary reflection, which in turn reduces accuracy and increases token overhead. To address this challenge, we propose Adaptive Reflection and Length Coordinated Penalty (ARLCP), a novel reinforcement learning framework designed to dynamically balance reasoning efficiency and solution accuracy. ARLCP introduces two key innovations: (1) a reflection penalty that adaptively curtails unnecessary reflective steps while preserving essential reasoning, and (2) a length penalty calibrated to the estimated complexity of the problem. By coordinating these penalties, ARLCP encourages the model to generate more concise and effective reasoning paths. We evaluate our method on five mathematical reasoning benchmarks using DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B models. Experimental results show that ARLCP achieves a superior efficiency-accuracy trade-off compared to existing approaches. For the 1.5B model, it reduces the average response length by 53.1% while simultaneously improving accuracy by 5.8%. For the 7B model, it achieves a 35.0% reduction in length with a 2.7% accuracy gain. The code is released at https://github.com/ZeweiYu1/ARLCP .
comment: Accepted to ICLR 2026
☆ The Pensieve Paradigm: Stateful Language Models Mastering Their Own Context
In the world of Harry Potter, when Dumbledore's mind is overburdened, he extracts memories into a Pensieve to be revisited later. In the world of AI, while we possess the Pensieve-mature databases and retrieval systems, our models inexplicably lack the "wand" to operate it. They remain like a Dumbledore without agency, passively accepting a manually engineered context as their entire memory. This work finally places the wand in the model's hand. We introduce StateLM, a new class of foundation models endowed with an internal reasoning loop to manage their own state. We equip our model with a suite of memory tools, such as context pruning, document indexing, and note-taking, and train it to actively manage these tools. By learning to dynamically engineering its own context, our model breaks free from the architectural prison of a fixed window. Experiments across various model sizes demonstrate StateLM's effectiveness across diverse scenarios. On long-document QA tasks, StateLMs consistently outperform standard LLMs across all model scales; on the chat memory task, they achieve absolute accuracy improvements of 10% to 20% over standard LLMs. On the deep research task BrowseComp-Plus, the performance gap becomes even more pronounced: StateLM achieves up to 52% accuracy, whereas standard LLM counterparts struggle around 5%. Ultimately, our approach shifts LLMs from passive predictors to state-aware agents where reasoning becomes a stateful and manageable process.
☆ On the Complexity of Offline Reinforcement Learning with $Q^\star$-Approximation and Partial Coverage
We study offline reinforcement learning under $Q^\star$-approximation and partial coverage, a setting that motivates practical algorithms such as Conservative $Q$-Learning (CQL; Kumar et al., 2020) but has received limited theoretical attention. Our work is inspired by the following open question: "Are $Q^\star$-realizability and Bellman completeness sufficient for sample-efficient offline RL under partial coverage?" We answer in the negative by establishing an information-theoretic lower bound. Going substantially beyond this, we introduce a general framework that characterizes the intrinsic complexity of a given $Q^\star$ function class, inspired by model-free decision-estimation coefficients (DEC) for online RL (Foster et al., 2023b; Liu et al., 2025b). This complexity recovers and improves the quantities underlying the guarantees of Chen and Jiang (2022) and Uehara et al. (2023), and extends to broader settings. Our decision-estimation decomposition can be combined with a wide range of $Q^\star$ estimation procedures, modularizing and generalizing existing approaches. Beyond the general framework, we make further contributions: By developing a novel second-order performance difference lemma, we obtain the first $ε^{-2}$ sample complexity under partial coverage for soft $Q$-learning, improving the $ε^{-4}$ bound of Uehara et al. (2023). We remove Chen and Jiang's (2022) need for additional online interaction when the value gap of $Q^\star$ is unknown. We also give the first characterization of offline learnability for general low-Bellman-rank MDPs without Bellman completeness (Jiang et al., 2017; Du et al., 2021; Jin et al., 2021), a canonical setting in online RL that remains unexplored in offline RL except for special cases. Finally, we provide the first analysis for CQL under $Q^\star$-realizability and Bellman completeness beyond the tabular case.
☆ Multi Graph Search for High-Dimensional Robot Motion Planning
Efficient motion planning for high-dimensional robotic systems, such as manipulators and mobile manipulators, is critical for real-time operation and reliable deployment. Although advances in planning algorithms have enhanced scalability to high-dimensional state spaces, these improvements often come at the cost of generating unpredictable, inconsistent motions or requiring excessive computational resources and memory. In this work, we introduce Multi-Graph Search (MGS), a search-based motion planning algorithm that generalizes classical unidirectional and bidirectional search to a multi-graph setting. MGS maintains and incrementally expands multiple implicit graphs over the state space, focusing exploration on high-potential regions while allowing initially disconnected subgraphs to be merged through feasible transitions as the search progresses. We prove that MGS is complete and bounded-suboptimal, and empirically demonstrate its effectiveness on a range of manipulation and mobile manipulation tasks. Demonstrations, benchmarks and code are available at https://multi-graph-search.github.io/.
comment: Submitted for Publication
☆ DeepSight: An All-in-One LM Safety Toolkit
As the development of Large Models (LMs) progresses rapidly, their safety is also a priority. In current Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) safety workflow, evaluation, diagnosis, and alignment are often handled by separate tools. Specifically, safety evaluation can only locate external behavioral risks but cannot figure out internal root causes. Meanwhile, safety diagnosis often drifts from concrete risk scenarios and remains at the explainable level. In this way, safety alignment lack dedicated explanations of changes in internal mechanisms, potentially degrading general capabilities. To systematically address these issues, we propose an open-source project, namely DeepSight, to practice a new safety evaluation-diagnosis integrated paradigm. DeepSight is low-cost, reproducible, efficient, and highly scalable large-scale model safety evaluation project consisting of a evaluation toolkit DeepSafe and a diagnosis toolkit DeepScan. By unifying task and data protocols, we build a connection between the two stages and transform safety evaluation from black-box to white-box insight. Besides, DeepSight is the first open source toolkit that support the frontier AI risk evaluation and joint safety evaluation and diagnosis.
comment: Technical report, 29 pages, 24 figures
☆ Choose Your Agent: Tradeoffs in Adopting AI Advisors, Coaches, and Delegates in Multi-Party Negotiation
As AI usage becomes more prevalent in social contexts, understanding agent-user interaction is critical to designing systems that improve both individual and group outcomes. We present an online behavioral experiment (N = 243) in which participants play three multi-turn bargaining games in groups of three. Each game, presented in randomized order, grants \textit{access to} a single LLM assistance modality: proactive recommendations from an \textit{Advisor}, reactive feedback from a \textit{Coach}, or autonomous execution by a \textit{Delegate}; all modalities are powered by an underlying LLM that achieves superhuman performance in an all-agent environment. On each turn, participants privately decide whether to act manually or use the AI modality available in that game. Despite preferring the \textit{Advisor} modality, participants achieve the highest mean individual gains with the \textit{Delegate}, demonstrating a preference-performance misalignment. Moreover, delegation generates positive externalities; even non-adopting users in \textit{access-to-delegate} treatment groups benefit by receiving higher-quality offers. Mechanism analysis reveals that the \textit{Delegate} agent acts as a market maker, injecting rational, Pareto-improving proposals that restructure the trading environment. Our research reveals a gap between agent capabilities and realized group welfare. While autonomous agents can exhibit super-human strategic performance, their impact on realized welfare gains can be constrained by interfaces, user perceptions, and adoption barriers. Assistance modalities should be designed as mechanisms with endogenous participation; adoption-compatible interaction rules are a prerequisite to improving human welfare with automated assistance.
☆ Differentiable Modal Logic for Multi-Agent Diagnosis, Orchestration and Communication
As multi-agent AI systems evolve from simple chatbots to autonomous swarms, debugging semantic failures requires reasoning about knowledge, belief, causality, and obligation, precisely what modal logic was designed to formalize. However, traditional modal logic requires manual specification of relationship structures that are unknown or dynamic in real systems. This tutorial demonstrates differentiable modal logic (DML), implemented via Modal Logical Neural Networks (MLNNs), enabling systems to learn trust networks, causal chains, and regulatory boundaries from behavioral data alone. We present a unified neurosymbolic debugging framework through four modalities: epistemic (who to trust), temporal (when events cause failures), deontic (what actions are permitted), and doxastic (how to interpret agent confidence). Each modality is demonstrated on concrete multi-agent scenarios, from discovering deceptive alliances in diplomacy games to detecting LLM hallucinations, with complete implementations showing how logical contradictions become learnable optimization objectives. Key contributions for the neurosymbolic community: (1) interpretable learned structures where trust and causality are explicit parameters, not opaque embeddings; (2) knowledge injection via differentiable axioms that guide learning with sparse data (3) compositional multi-modal reasoning that combines epistemic, temporal, and deontic constraints; and (4) practical deployment patterns for monitoring, active control and communication of multi-agent systems. All code provided as executable Jupyter notebooks.
comment: 29 pages, 8 figures, 8 tables, Tutorial at 3rd International Conference on Neuro-Symbolic Systems (NeuS)
☆ Tiny Recursive Reasoning with Mamba-2 Attention Hybrid
Recent work on recursive reasoning models like TRM demonstrates that tiny networks (7M parameters) can achieve strong performance on abstract reasoning tasks through latent recursion -- iterative refinement in hidden representation space without emitting intermediate tokens. This raises a natural question about operator choice: Mamba-2's state space recurrence is itself a form of iterative refinement, making it a natural candidate for recursive reasoning -- but does introducing Mamba-2 into the recursive scaffold preserve reasoning capability? We investigate this by replacing the Transformer blocks in TRM with Mamba-2 hybrid operators while maintaining parameter parity (6.83M vs 6.86M parameters). On ARC-AGI-1, we find that the hybrid improves pass@2 (the official metric) by +2.0\% (45.88\% vs 43.88\%) and consistently outperforms at higher K values (+4.75\% at pass@100), whilst maintaining pass@1 parity. This suggests improved candidate coverage -- the model generates correct solutions more reliably -- with similar top-1 selection. Our results validate that Mamba-2 hybrid operators preserve reasoning capability within the recursive scaffold, establishing SSM-based operators as viable candidates in the recursive operator design space and taking a first step towards understanding the best mixing strategies for recursive reasoning.
☆ ModelWisdom: An Integrated Toolkit for TLA+ Model Visualization, Digest and Repair
Model checking in TLA+ provides strong correctness guarantees, yet practitioners continue to face significant challenges in interpreting counterexamples, understanding large state-transition graphs, and repairing faulty models. These difficulties stem from the limited explainability of raw model-checker output and the substantial manual effort required to trace violations back to source specifications. Although the TLA+ Toolbox includes a state diagram viewer, it offers only a static, fully expanded graph without folding, color highlighting, or semantic explanations, which limits its scalability and interpretability. We present ModelWisdom, an interactive environment that uses visualization and large language models to make TLA+ model checking more interpretable and actionable. ModelWisdom offers: (i) Model Visualization, with colorized violation highlighting, click-through links from transitions to TLA+ code, and mapping between violating states and broken properties; (ii) Graph Optimization, including tree-based structuring and node/edge folding to manage large models; (iii) Model Digest, which summarizes and explains subgraphs via large language models (LLMs) and performs preprocessing and partial explanations; and (iv) Model Repair, which extracts error information and supports iterative debugging. Together, these capabilities turn raw model-checker output into an interactive, explainable workflow, improving understanding and reducing debugging effort for nontrivial TLA+ specifications. The website to ModelWisdom is available: https://model-wisdom.pages.dev. A demonstrative video can be found at https://www.youtube.com/watch?v=plyZo30VShA.
comment: Accepted by FM 2026 Research Track (Tool)
☆ LawThinker: A Deep Research Legal Agent in Dynamic Environments
Legal reasoning requires not only correct outcomes but also procedurally compliant reasoning processes. However, existing methods lack mechanisms to verify intermediate reasoning steps, allowing errors such as inapplicable statute citations to propagate undetected through the reasoning chain. To address this, we propose LawThinker, an autonomous legal research agent that adopts an Explore-Verify-Memorize strategy for dynamic judicial environments. The core idea is to enforce verification as an atomic operation after every knowledge exploration step. A DeepVerifier module examines each retrieval result along three dimensions of knowledge accuracy, fact-law relevance, and procedural compliance, with a memory module for cross-round knowledge reuse in long-horizon tasks. Experiments on the dynamic benchmark J1-EVAL show that LawThinker achieves a 24% improvement over direct reasoning and an 11% gain over workflow-based methods, with particularly strong improvements on process-oriented metrics. Evaluations on three static benchmarks further confirm its generalization capability. The code is available at https://github.com/yxy-919/LawThinker-agent .
☆ Multi UAVs Preflight Planning in a Shared and Dynamic Airspace AAMAS 2026
Preflight planning for large-scale Unmanned Aerial Vehicle (UAV) fleets in dynamic, shared airspace presents significant challenges, including temporal No-Fly Zones (NFZs), heterogeneous vehicle profiles, and strict delivery deadlines. While Multi-Agent Path Finding (MAPF) provides a formal framework, existing methods often lack the scalability and flexibility required for real-world Unmanned Traffic Management (UTM). We propose DTAPP-IICR: a Delivery-Time Aware Prioritized Planning method with Incremental and Iterative Conflict Resolution. Our framework first generates an initial solution by prioritizing missions based on urgency. Secondly, it computes roundtrip trajectories using SFIPP-ST, a novel 4D single-agent planner (Safe Flight Interval Path Planning with Soft and Temporal Constraints). SFIPP-ST handles heterogeneous UAVs, strictly enforces temporal NFZs, and models inter-agent conflicts as soft constraints. Subsequently, an iterative Large Neighborhood Search, guided by a geometric conflict graph, efficiently resolves any residual conflicts. A completeness-preserving directional pruning technique further accelerates the 3D search. On benchmarks with temporal NFZs, DTAPP-IICR achieves near-100% success with fleets of up to 1,000 UAVs and gains up to 50% runtime reduction from pruning, outperforming batch Enhanced Conflict-Based Search in the UTM context. Scaling successfully in realistic city-scale operations where other priority-based methods fail even at moderate deployments, DTAPP-IICR is positioned as a practical and scalable solution for preflight planning in dense, dynamic urban airspace.
comment: AAMAS 2026 accepted paper
☆ Fourier Transformers for Latent Crystallographic Diffusion and Generative Modeling
The discovery of new crystalline materials calls for generative models that handle periodic boundary conditions, crystallographic symmetries, and physical constraints, while scaling to large and structurally diverse unit cells. We propose a reciprocal-space generative pipeline that represents crystals through a truncated Fourier transform of the species-resolved unit-cell density, rather than modeling atomic coordinates directly. This representation is periodicity-native, admits simple algebraic actions of space-group symmetries, and naturally supports variable atomic multiplicities during generation, addressing a common limitation of particle-based approaches. Using only nine Fourier basis functions per spatial dimension, our approach reconstructs unit cells containing up to 108 atoms per chemical species. We instantiate this pipeline with a transformer variational autoencoder over complex-valued Fourier coefficients, and a latent diffusion model that generates in the compressed latent space. We evaluate reconstruction and latent diffusion on the LeMaterial benchmark and compare unconditional generation against coordinate-based baselines in the small-cell regime ($\leq 16$ atoms per unit cell).
☆ An Empirical Study of the Imbalance Issue in Software Vulnerability Detection ESORICS
Vulnerability detection is crucial to protect software security. Nowadays, deep learning (DL) is the most promising technique to automate this detection task, leveraging its superior ability to extract patterns and representations within extensive code volumes. Despite its promise, DL-based vulnerability detection remains in its early stages, with model performance exhibiting variability across datasets. Drawing insights from other well-explored application areas like computer vision, we conjecture that the imbalance issue (the number of vulnerable code is extremely small) is at the core of the phenomenon. To validate this, we conduct a comprehensive empirical study involving nine open-source datasets and two state-of-the-art DL models. The results confirm our conjecture. We also obtain insightful findings on how existing imbalance solutions perform in vulnerability detection. It turns out that these solutions perform differently as well across datasets and evaluation metrics. Specifically: 1) Focal loss is more suitable to improve the precision, 2) mean false error and class-balanced loss encourages the recall, and 3) random over-sampling facilitates the F1-measure. However, none of them excels across all metrics. To delve deeper, we explore external influences on these solutions and offer insights for developing new solutions.
comment: This paper was accepted by the 28th European Symposium on Research in Computer Security (ESORICS), 2023
☆ InjectRBP: Steering Large Language Model Reasoning Behavior via Pattern Injection
Reasoning can significantly enhance the performance of Large Language Models. While recent studies have exploited behavior-related prompts adjustment to enhance reasoning, these designs remain largely intuitive and lack a systematic analysis of the underlying behavioral patterns. Motivated by this, we investigate how models' reasoning behaviors shape reasoning from the perspective of behavioral patterns. We observe that models exhibit adaptive distributions of reasoning behaviors when responding to specific types of questions, and that structurally injecting these patterns can substantially influence the quality of the models' reasoning processes and outcomes. Building on these findings, we propose two optimization methods that require no parameter updates: InjectCorrect and InjectRLOpt. InjectCorrect guides the model by imitating behavioral patterns derived from its own past correct answers. InjectRLOpt learns a value function from historical behavior-pattern data and, via our proposed Reliability-Aware Softmax Policy, generates behavioral injectant during inference to steer the reasoning process. Our experiments demonstrate that both methods can improve model performance across various reasoning tasks without requiring any modifications to model parameters, achieving gains of up to 5.34% and 8.67%, respectively.
☆ On the Sensitivity of Firing Rate-Based Federated Spiking Neural Networks to Differential Privacy ICASSP
Federated Neuromorphic Learning (FNL) enables energy-efficient and privacy-preserving learning on devices without centralizing data. However, real-world deployments require additional privacy mechanisms that can significantly alter training signals. This paper analyzes how Differential Privacy (DP) mechanisms, specifically gradient clipping and noise injection, perturb firing-rate statistics in Spiking Neural Networks (SNNs) and how these perturbations are propagated to rate-based FNL coordination. On a speech recognition task under non-IID settings, ablations across privacy budgets and clipping bounds reveal systematic rate shifts, attenuated aggregation, and ranking instability during client selection. Moreover, we relate these shifts to sparsity and memory indicators. Our findings provide actionable guidance for privacy-preserving FNL, specifically regarding the balance between privacy strength and rate-dependent coordination.
comment: To be published in 2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
☆ CSEval: A Framework for Evaluating Clinical Semantics in Text-to-Image Generation
Text-to-image generation has been increasingly applied in medical domains for various purposes such as data augmentation and education. Evaluating the quality and clinical reliability of these generated images is essential. However, existing methods mainly assess image realism or diversity, while failing to capture whether the generated images reflect the intended clinical semantics, such as anatomical location and pathology. In this study, we propose the Clinical Semantics Evaluator (CSEval), a framework that leverages language models to assess clinical semantic alignment between the generated images and their conditioning prompts. Our experiments show that CSEval identifies semantic inconsistencies overlooked by other metrics and correlates with expert judgment. CSEval provides a scalable and clinically meaningful complement to existing evaluation methods, supporting the safe adoption of generative models in healthcare.
☆ Evaluating AGENTS.md: Are Repository-Level Context Files Helpful for Coding Agents?
A widespread practice in software development is to tailor coding agents to repositories using context files, such as AGENTS.md, by either manually or automatically generating them. Although this practice is strongly encouraged by agent developers, there is currently no rigorous investigation into whether such context files are actually effective for real-world tasks. In this work, we study this question and evaluate coding agents' task completion performance in two complementary settings: established SWE-bench tasks from popular repositories, with LLM-generated context files following agent-developer recommendations, and a novel collection of issues from repositories containing developer-committed context files. Across multiple coding agents and LLMs, we find that context files tend to reduce task success rates compared to providing no repository context, while also increasing inference cost by over 20%. Behaviorally, both LLM-generated and developer-provided context files encourage broader exploration (e.g., more thorough testing and file traversal), and coding agents tend to respect their instructions. Ultimately, we conclude that unnecessary requirements from context files make tasks harder, and human-written context files should describe only minimal requirements.
☆ Accelerating Robotic Reinforcement Learning with Agent Guidance
Reinforcement Learning (RL) offers a powerful paradigm for autonomous robots to master generalist manipulation skills through trial-and-error. However, its real-world application is stifled by severe sample inefficiency. Recent Human-in-the-Loop (HIL) methods accelerate training by using human corrections, yet this approach faces a scalability barrier. Reliance on human supervisors imposes a 1:1 supervision ratio that limits fleet expansion, suffers from operator fatigue over extended sessions, and introduces high variance due to inconsistent human proficiency. We present Agent-guided Policy Search (AGPS), a framework that automates the training pipeline by replacing human supervisors with a multimodal agent. Our key insight is that the agent can be viewed as a semantic world model, injecting intrinsic value priors to structure physical exploration. By using executable tools, the agent provides precise guidance via corrective waypoints and spatial constraints for exploration pruning. We validate our approach on two tasks, ranging from precision insertion to deformable object manipulation. Results demonstrate that AGPS outperforms HIL methods in sample efficiency. This automates the supervision pipeline, unlocking the path to labor-free and scalable robot learning. Project website: https://agps-rl.github.io/agps.
☆ Manifold-Aware Temporal Domain Generalization for Large Language Models
Temporal distribution shifts are pervasive in real-world deployments of Large Language Models (LLMs), where data evolves continuously over time. While Temporal Domain Generalization (TDG) seeks to model such structured evolution, existing approaches characterize model adaptation in the full parameter space. This formulation becomes computationally infeasible for modern LLMs. This paper introduces a geometric reformulation of TDG under parameter-efficient fine-tuning. We establish that the low-dimensional temporal structure underlying model evolution can be preserved under parameter-efficient reparameterization, enabling temporal modeling without operating in the ambient parameter space. Building on this principle, we propose Manifold-aware Temporal LoRA (MaT-LoRA), which constrains temporal updates to a shared low-dimensional manifold within a low-rank adaptation subspace, and models its evolution through a structured temporal core. This reparameterization dramatically reduces temporal modeling complexity while retaining expressive power. Extensive experiments on synthetic and real-world datasets, including scientific documents, news publishers, and review ratings, demonstrate that MaT-LoRA achieves superior temporal generalization performance with practical scalability for LLMs.
comment: 14 pages, 2 figures
☆ Gaia2: Benchmarking LLM Agents on Dynamic and Asynchronous Environments ICLR 2026
We introduce Gaia2, a benchmark for evaluating large language model agents in realistic, asynchronous environments. Unlike prior static or synchronous evaluations, Gaia2 introduces scenarios where environments evolve independently of agent actions, requiring agents to operate under temporal constraints, adapt to noisy and dynamic events, resolve ambiguity, and collaborate with other agents. Each scenario is paired with a write-action verifier, enabling fine-grained, action-level evaluation and making Gaia2 directly usable for reinforcement learning from verifiable rewards. Our evaluation of state-of-the-art proprietary and open-source models shows that no model dominates across capabilities: GPT-5 (high) reaches the strongest overall score of 42% pass@1 but fails on time-sensitive tasks, Claude-4 Sonnet trades accuracy and speed for cost, Kimi-K2 leads among open-source models with 21% pass@1. These results highlight fundamental trade-offs between reasoning, efficiency, robustness, and expose challenges in closing the "sim2real" gap. Gaia2 is built on a consumer environment with the open-source Agents Research Environments platform and designed to be easy to extend. By releasing Gaia2 alongside the foundational ARE framework, we aim to provide the community with a flexible infrastructure for developing, benchmarking, and training the next generation of practical agent systems.
comment: Accepted as Oral at ICLR 2026
☆ TAVAE: A VAE with Adaptable Priors Explains Contextual Modulation in the Visual Cortex ICLR 2026
The brain interprets visual information through learned regularities, a computation formalized as probabilistic inference under a prior. The visual cortex establishes priors for this inference, some delivered through established top-down connections that inform low-level cortices about statistics represented at higher levels in the cortical hierarchy. While evidence shows that adaptation leads to priors reflecting the structure of natural images, it remains unclear whether similar priors can be flexibly acquired when learning a specific task. To investigate this, we built a generative model of V1 optimized for a simple discrimination task and analyzed it together with large-scale recordings from mice performing an analogous task. In line with recent approaches, we assumed that neuronal activity in V1 corresponds to latent posteriors in the generative model, enabling investigation of task-related priors in neuronal responses. To obtain a flexible test bed, we extended the VAE formalism so that a task can be acquired efficiently by reusing previously learned representations. Task-specific priors learned by this Task-Amortized VAE were used to investigate biases in mice and model when presenting stimuli that violated trained task statistics. Mismatch between learned task statistics and incoming sensory evidence produced signatures of uncertainty in stimulus category in the TAVAE posterior, reflecting properties of bimodal response profiles in V1 recordings. The task-optimized generative model accounted for key characteristics of V1 population activity, including within-day updates to population responses. Our results confirm that flexible task-specific contextual priors can be learned on demand by the visual system and deployed as early as the entry level of visual cortex.
comment: ICLR 2026
☆ Towards Performance-Enhanced Model-Contrastive Federated Learning using Historical Information in Heterogeneous Scenarios
Federated Learning (FL) enables multiple nodes to collaboratively train a model without sharing raw data. However, FL systems are usually deployed in heterogeneous scenarios, where nodes differ in both data distributions and participation frequencies, which undermines the FL performance. To tackle the above issue, this paper proposes PMFL, a performance-enhanced model-contrastive federated learning framework using historical training information. Specifically, on the node side, we design a novel model-contrastive term into the node optimization objective by incorporating historical local models to capture stable contrastive points, thereby improving the consistency of model updates in heterogeneous data distributions. On the server side, we utilize the cumulative participation count of each node to adaptively adjust its aggregation weight, thereby correcting the bias in the global objective caused by different node participation frequencies. Furthermore, the updated global model incorporates historical global models to reduce its fluctuations in performance between adjacent rounds. Extensive experiments demonstrate that PMFL achieves superior performance compared with existing FL methods in heterogeneous scenarios.
☆ Synthesis of Late Gadolinium Enhancement Images via Implicit Neural Representations for Cardiac Scar Segmentation SP
Late gadolinium enhancement (LGE) imaging is the clinical standard for myocardial scar assessment, but limited annotated datasets hinder the development of automated segmentation methods. We propose a novel framework that synthesises both LGE images and their corresponding segmentation masks using implicit neural representations (INRs) combined with denoising diffusion models. Our approach first trains INRs to capture continuous spatial representations of LGE data and associated myocardium and fibrosis masks. These INRs are then compressed into compact latent embeddings, preserving essential anatomical information. A diffusion model operates on this latent space to generate new representations, which are decoded into synthetic LGE images with anatomically consistent segmentation masks. Experiments on 133 cardiac MRI scans suggest that augmenting training data with 200 synthetic volumes contributes to improved fibrosis segmentation performance, with the Dice score showing an increase from 0.509 to 0.524. Our approach provides an annotation-free method to help mitigate data scarcity.The code for this research is publicly available.
comment: Paper accepted at SPIE Medical Imaging 2026 Conference
☆ IncompeBench: A Permissively Licensed, Fine-Grained Benchmark for Music Information Retrieval
Multimodal Information Retrieval has made significant progress in recent years, leveraging the increasingly strong multimodal abilities of deep pre-trained models to represent information across modalities. Music Information Retrieval (MIR), in particular, has considerably increased in quality, with neural representations of music even making its way into everyday life products. However, there is a lack of high-quality benchmarks for evaluating music retrieval performance. To address this issue, we introduce \textbf{IncompeBench}, a carefully annotated benchmark comprising $1,574$ permissively licensed, high-quality music snippets, $500$ diverse queries, and over $125,000$ individual relevance judgements. These annotations were created through the use of a multi-stage pipeline, resulting in high agreement between human annotators and the generated data. The resulting datasets are publicly available at https://huggingface.co/datasets/mixedbread-ai/incompebench-strict and https://huggingface.co/datasets/mixedbread-ai/incompebench-lenient with the prompts available at https://github.com/mixedbread-ai/incompebench-programs.
☆ AdaptEvolve: Improving Efficiency of Evolutionary AI Agents through Adaptive Model Selection
Evolutionary agentic systems intensify the trade-off between computational efficiency and reasoning capability by repeatedly invoking large language models (LLMs) during inference. This setting raises a central question: how can an agent dynamically select an LLM that is sufficiently capable for the current generation step while remaining computationally efficient? While model cascades offer a practical mechanism for balancing this trade-off, existing routing strategies typically rely on static heuristics or external controllers and do not explicitly account for model uncertainty. We introduce AdaptEvolve: Adaptive LLM Selection for Multi-LLM Evolutionary Refinement within an evolutionary sequential refinement framework that leverages intrinsic generation confidence to estimate real-time solvability. Empirical results show that confidence-driven selection yields a favourable Pareto frontier, reducing total inference cost by an average of 37.9% across benchmarks while retaining 97.5% of the upper-bound accuracy of static large-model baselines. Our code is available at https://github.com/raypretam/adaptive_llm_selection.
comment: 8 pages, 2 Figues
☆ Who Does What? Archetypes of Roles Assigned to LLMs During Human-AI Decision-Making
LLMs are increasingly supporting decision-making across high-stakes domains, requiring critical reflection on the socio-technical factors that shape how humans and LLMs are assigned roles and interact during human-in-the-loop decision-making. This paper introduces the concept of human-LLM archetypes -- defined as re-curring socio-technical interaction patterns that structure the roles of humans and LLMs in collaborative decision-making. We describe 17 human-LLM archetypes derived from a scoping literature review and thematic analysis of 113 LLM-supported decision-making papers. Then, we evaluate these diverse archetypes across real-world clinical diagnostic cases to examine the potential effects of adopting distinct human-LLM archetypes on LLM outputs and decision outcomes. Finally, we present relevant tradeoffs and design choices across human-LLM archetypes, including decision control, social hierarchies, cognitive forcing strategies, and information requirements. Through our analysis, we show that selection of human-LLM interaction archetype can influence LLM outputs and decisions, bringing important risks and considerations for the designers of human-AI decision-making systems
comment: Accepted to ACM CHI 2026
☆ DynaHOI: Benchmarking Hand-Object Interaction for Dynamic Target
Most existing hand motion generation benchmarks for hand-object interaction (HOI) focus on static objects, leaving dynamic scenarios with moving targets and time-critical coordination largely untested. To address this gap, we introduce the DynaHOI-Gym, a unified online closed-loop platform with parameterized motion generators and rollout-based metrics for dynamic capture evaluation. Built on DynaHOI-Gym, we release DynaHOI-10M, a large-scale benchmark with 10M frames and 180K hand capture trajectories, whose target motions are organized into 8 major categories and 22 fine-grained subcategories. We also provide a simple observe-before-act baseline (ObAct) that integrates short-term observations with the current frame via spatiotemporal attention to predict actions, achieving an 8.1% improvement in location success rate.
☆ MEME: Modeling the Evolutionary Modes of Financial Markets
LLMs have demonstrated significant potential in quantitative finance by processing vast unstructured data to emulate human-like analytical workflows. However, current LLM-based methods primarily follow either an Asset-Centric paradigm focused on individual stock prediction or a Market-Centric approach for portfolio allocation, often remaining agnostic to the underlying reasoning that drives market movements. In this paper, we propose a Logic-Oriented perspective, modeling the financial market as a dynamic, evolutionary ecosystem of competing investment narratives, termed Modes of Thought. To operationalize this view, we introduce MEME (Modeling the Evolutionary Modes of Financial Markets), designed to reconstruct market dynamics through the lens of evolving logics. MEME employs a multi-agent extraction module to transform noisy data into high-fidelity Investment Arguments and utilizes Gaussian Mixture Modeling to uncover latent consensus within a semantic space. To model semantic drift among different market conditions, we also implement a temporal evaluation and alignment mechanism to track the lifecycle and historical profitability of these modes. By prioritizing enduring market wisdom over transient anomalies, MEME ensures that portfolio construction is guided by robust reasoning. Extensive experiments on three heterogeneous Chinese stock pools from 2023 to 2025 demonstrate that MEME consistently outperforms seven SOTA baselines. Further ablation studies, sensitivity analysis, lifecycle case study and cost analysis validate MEME's capacity to identify and adapt to the evolving consensus of financial markets. Our implementation can be found at https://github.com/gta0804/MEME.
☆ AlphaPROBE: Alpha Mining via Principled Retrieval and On-graph biased evolution
Extracting signals through alpha factor mining is a fundamental challenge in quantitative finance. Existing automated methods primarily follow two paradigms: Decoupled Factor Generation, which treats factor discovery as isolated events, and Iterative Factor Evolution, which focuses on local parent-child refinements. However, both paradigms lack a global structural view, often treating factor pools as unstructured collections or fragmented chains, which leads to redundant search and limited diversity. To address these limitations, we introduce AlphaPROBE (Alpha Mining via Principled Retrieval and On-graph Biased Evolution), a framework that reframes alpha mining as the strategic navigation of a Directed Acyclic Graph (DAG). By modeling factors as nodes and evolutionary links as edges, AlphaPROBE treats the factor pool as a dynamic, interconnected ecosystem. The framework consists of two core components: a Bayesian Factor Retriever that identifies high-potential seeds by balancing exploitation and exploration through a posterior probability model, and a DAG-aware Factor Generator that leverages the full ancestral trace of factors to produce context-aware, nonredundant optimizations. Extensive experiments on three major Chinese stock market datasets against 8 competitive baselines demonstrate that AlphaPROBE significantly gains enhanced performance in predictive accuracy, return stability and training efficiency. Our results confirm that leveraging global evolutionary topology is essential for efficient and robust automated alpha discovery. We have open-sourced our implementation at https://github.com/gta0804/AlphaPROBE.
☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
☆ Leveraging LLMs to support co-evolution between definitions and instances of textual DSLs: A Systematic Evaluation
Software languages evolve over time for reasons such as feature additions. When grammars evolve, textual instances that originally conformed to them may become outdated. While model-driven engineering provides many techniques for co-evolving models with metamodel changes, these approaches are not designed for textual DSLs and may lose human-relevant information such as layout and comments. This study systematically evaluates the potential of large language models (LLMs) for co-evolving grammars and instances of textual DSLs. Using Claude Sonnet 4.5 and GPT-5.2 across ten case languages with ten runs each, we assess both correctness and preservation of human-oriented information. Results show strong performance on small-scale cases ($\geq$94% precision and recall for instances requiring fewer than 20 modified lines), but performance degraded with scale: Claude maintains 85% recall at 40 lines, while GPT fails on the largest instances. Response time increases substantially with instance size, and grammar evolution complexity and deletion granularity affect performance more than change type. These findings clarify when LLM-based co-evolution is effective and where current limitations remain.
☆ Mitigating Mismatch within Reference-based Preference Optimization ICLR 2026
Direct Preference Optimization (DPO) has become the de facto standard for offline preference alignment of large language models, but its reliance on a reference policy introduces a critical tension. DPO weighs each update relative to a reference, which stabilizes the training by regularizing the updates within a trusted region. This reliance becomes problematic for pessimistic pairs, where the reference model prefers the rejected response. For these pairs, DPO prematurely attenuates the gradient as soon as the policy margin ($Δ_θ$) merely beats the reference margin ($Δ_{\mathrm{ref}}$) even if the policy is still wrong ($Δ_θ<0$). We name this failure premature satisfaction, which is a concrete form of the training-inference mismatch. Reference-free objectives remove this mismatch by optimizing the absolute margin, but at the cost of discarding the stabilizing signal of the reference. We mitigate this tension with Hybrid-DPO (HyPO), a drop-in modification to DPO that applies reference conditionally: HyPO behaves exactly like DPO when the reference is optimistic or neutral, and it treats the reference as neutral when it is pessimistic by replacing $Δ_θ-Δ_{\mathrm{ref}}$ with $Δ_θ-\max\{0,Δ_{\mathrm{ref}}\}$. This one-line change strictly strengthens per-example learning signals on pessimistic pairs while preserving DPO's objective form and computational cost. By conditionally debiasing the pessimistic reference signal, HyPO mitigates premature satisfaction; empirically, across preference alignment, HyPO improves inference-aligned metrics and achieves higher pairwise win rates. Our results provide evidence that direct preference alignment could be enhanced by conditionally debiasing the reference signal, rather than discarding it.
comment: Accepted by ICLR 2026
☆ Agentic AI for Cybersecurity: A Meta-Cognitive Architecture for Governable Autonomy
Contemporary AI-driven cybersecurity systems are predominantly architected as model-centric detection and automation pipelines optimized for task-level performance metrics such as accuracy and response latency. While effective for bounded classification tasks, these architectures struggle to support accountable decision-making under adversarial uncertainty, where actions must be justified, governed, and aligned with organizational and regulatory constraints. This paper argues that cybersecurity orchestration should be reconceptualized as an agentic, multi-agent cognitive system, rather than a linear sequence of detection and response components. We introduce a conceptual architectural framework in which heterogeneous AI agents responsible for detection, hypothesis formation, contextual interpretation, explanation, and governance are coordinated through an explicit meta-cognitive judgement function. This function governs decision readiness and dynamically calibrates system autonomy when evidence is incomplete, conflicting, or operationally risky. By synthesizing distributed cognition theory, multi-agent systems research, and responsible AI governance frameworks, we demonstrate that modern security operations already function as distributed cognitive systems, albeit without an explicit organizing principle. Our contribution is to make this cognitive structure architecturally explicit and governable by embedding meta-cognitive judgement as a first-class system function. We discuss implications for security operations centers, accountable autonomy, and the design of next-generation AI-enabled cyber defence architectures. The proposed framework shifts the focus of AI in cybersecurity from optimizing isolated predictions to governing autonomy under uncertainty.
☆ Where Bits Matter in World Model Planning: A Paired Mixed-Bit Study for Efficient Spatial Reasoning
Efficient spatial reasoning requires world models that remain reliable under tight precision budgets. We study whether low-bit planning behavior is determined mostly by total bitwidth or by where bits are allocated across modules. Using DINO-WM on the Wall planning task, we run a paired-goal mixed-bit evaluation across uniform, mixed, asymmetric, and layerwise variants under two planner budgets. We observe a consistent three-regime pattern: 8-bit and 6-bit settings remain close to FP16, 3-bit settings collapse, and 4-bit settings are allocation-sensitive. In that transition region, preserving encoder precision improves planning relative to uniform quantization, and near-size asymmetric variants show the same encoder-side direction. In a later strict 22-cell replication with smaller per-cell episode count, the mixed-versus-uniform INT4 sign becomes budget-conditioned, which further highlights the sensitivity of this transition regime. These findings motivate module-aware, budget-aware quantization policies as a broader research direction for efficient spatial reasoning. Code and run artifacts are available at https://github.com/suraj-ranganath/DINO-MBQuant.
comment: Workshop submission
☆ From Atoms to Trees: Building a Structured Feature Forest with Hierarchical Sparse Autoencoders
Sparse autoencoders (SAEs) have proven effective for extracting monosemantic features from large language models (LLMs), yet these features are typically identified in isolation. However, broad evidence suggests that LLMs capture the intrinsic structure of natural language, where the phenomenon of "feature splitting" in particular indicates that such structure is hierarchical. To capture this, we propose the Hierarchical Sparse Autoencoder (HSAE), which jointly learns a series of SAEs and the parent-child relationships between their features. HSAE strengthens the alignment between parent and child features through two novel mechanisms: a structural constraint loss and a random feature perturbation mechanism. Extensive experiments across various LLMs and layers demonstrate that HSAE consistently recovers semantically meaningful hierarchies, supported by both qualitative case studies and rigorous quantitative metrics. At the same time, HSAE preserves the reconstruction fidelity and interpretability of standard SAEs across different dictionary sizes. Our work provides a powerful, scalable tool for discovering and analyzing the multi-scale conceptual structures embedded in LLM representations.
☆ SynthRAR: Ring Artifacts Reduction in CT with Unrolled Network and Synthetic Data Training
Defective and inconsistent responses in CT detectors can cause ring and streak artifacts in the reconstructed images, making them unusable for clinical purposes. In recent years, several ring artifact reduction solutions have been proposed in the image domain or in the sinogram domain using supervised deep learning methods. However, these methods require dedicated datasets for training, leading to a high data collection cost. Furthermore, existing approaches focus exclusively on either image-space or sinogram-space correction, neglecting the intrinsic correlations from the forward operation of the CT geometry. Based on the theoretical analysis of non-ideal CT detector responses, the RAR problem is reformulated as an inverse problem by using an unrolled network, which considers non-ideal response together with linear forward-projection with CT geometry. Additionally, the intrinsic correlations of ring artifacts between the sinogram and image domains are leveraged through synthetic data derived from natural images, enabling the trained model to correct artifacts without requiring real-world clinical data. Extensive evaluations on diverse scanning geometries and anatomical regions demonstrate that the model trained on synthetic data consistently outperforms existing state-of-the-art methods.
comment: Prepare for submission
☆ Towards Fair and Comprehensive Evaluation of Routers in Collaborative LLM Systems
Large language models (LLMs) have achieved success, but cost and privacy constraints necessitate deploying smaller models locally while offloading complex queries to cloud-based models. Existing router evaluations are unsystematic, overlooking scenario-specific requirements and out-of-distribution robustness. We propose RouterXBench, a principled evaluation framework with three dimensions: router ability, scenario alignment, and cross-domain robustness. Unlike prior work that relies on output probabilities or external embeddings, we utilize internal hidden states that capture model uncertainty before answer generation. We introduce ProbeDirichlet, a lightweight router that aggregates cross-layer hidden states via learnable Dirichlet distributions with probabilistic training. Trained on multi-domain data, it generalizes robustly across in-domain and out-of-distribution scenarios. Our results show ProbeDirichlet achieves 16.68% and 18.86% relative improvements over the best baselines in router ability and high-accuracy scenarios, with consistent performance across model families, model scales, heterogeneous tasks, and agentic workflows.
comment: Our code is publicly available at https://github.com/zhuchichi56/RouterXBench
☆ Intelligent AI Delegation
AI agents are able to tackle increasingly complex tasks. To achieve more ambitious goals, AI agents need to be able to meaningfully decompose problems into manageable sub-components, and safely delegate their completion across to other AI agents and humans alike. Yet, existing task decomposition and delegation methods rely on simple heuristics, and are not able to dynamically adapt to environmental changes and robustly handle unexpected failures. Here we propose an adaptive framework for intelligent AI delegation - a sequence of decisions involving task allocation, that also incorporates transfer of authority, responsibility, accountability, clear specifications regarding roles and boundaries, clarity of intent, and mechanisms for establishing trust between the two (or more) parties. The proposed framework is applicable to both human and AI delegators and delegatees in complex delegation networks, aiming to inform the development of protocols in the emerging agentic web.
☆ Talk2DM: Enabling Natural Language Querying and Commonsense Reasoning for Vehicle-Road-Cloud Integrated Dynamic Maps with Large Language Models
Dynamic maps (DM) serve as the fundamental information infrastructure for vehicle-road-cloud (VRC) cooperative autonomous driving in China and Japan. By providing comprehensive traffic scene representations, DM overcome the limitations of standalone autonomous driving systems (ADS), such as physical occlusions. Although DM-enhanced ADS have been successfully deployed in real-world applications in Japan, existing DM systems still lack a natural-language-supported (NLS) human interface, which could substantially enhance human-DM interaction. To address this gap, this paper introduces VRCsim, a VRC cooperative perception (CP) simulation framework designed to generate streaming VRC-CP data. Based on VRCsim, we construct a question-answering data set, VRC-QA, focused on spatial querying and reasoning in mixed-traffic scenes. Building upon VRCsim and VRC-QA, we further propose Talk2DM, a plug-and-play module that extends VRC-DM systems with NLS querying and commonsense reasoning capabilities. Talk2DM is built upon a novel chain-of-prompt (CoP) mechanism that progressively integrates human-defined rules with the commonsense knowledge of large language models (LLMs). Experiments on VRC-QA show that Talk2DM can seamlessly switch across different LLMs while maintaining high NLS query accuracy, demonstrating strong generalization capability. Although larger models tend to achieve higher accuracy, they incur significant efficiency degradation. Our results reveal that Talk2DM, powered by Qwen3:8B, Gemma3:27B, and GPT-oss models, achieves over 93\% NLS query accuracy with an average response time of only 2-5 seconds, indicating strong practical potential.
comment: Submitted to IEEE TITS. Under review
☆ Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
☆ Prototype Transformer: Towards Language Model Architectures Interpretable by Design
While state-of-the-art language models (LMs) surpass the vast majority of humans in certain domains, their reasoning remains largely opaque, undermining trust in their output. Furthermore, while autoregressive LMs can output explicit reasoning, their true reasoning process is opaque, which introduces risks like deception and hallucination. In this work, we introduce the Prototype Transformer (ProtoT) -- an autoregressive LM architecture based on prototypes (parameter vectors), posed as an alternative to the standard self-attention-based transformers. ProtoT works by means of two-way communication between the input sequence and the prototypes, and we show that this leads to the prototypes automatically capturing nameable concepts (e.g. "woman") during training. They provide the potential to interpret the model's reasoning and allow for targeted edits of its behavior. Furthermore, by design, the prototypes create communication channels that aggregate contextual information at different time scales, aiding interpretability. In terms of computation scalability, ProtoT scales linearly with sequence length vs the quadratic scalability of SOTA self-attention transformers. Compared to baselines, ProtoT scales well with model and data size, and performs well on text generation and downstream tasks (GLUE). ProtoT exhibits robustness to input perturbations on par or better than some baselines, but differs from them by providing interpretable pathways showing how robustness and sensitivity arises. Reaching close to the performance of state-of-the-art architectures, ProtoT paves the way to creating well-performing autoregressive LMs interpretable by design.
comment: Preprint under review. Equal contribution: Yordan Yordanov and Matteo Forasassi. 39 pages, 25 figures, 22 tables
☆ Resource-Aware Deployment Optimization for Collaborative Intrusion Detection in Layered Networks
Collaborative Intrusion Detection Systems (CIDS) are increasingly adopted to counter cyberattacks, as their collaborative nature enables them to adapt to diverse scenarios across heterogeneous environments. As distributed critical infrastructure operates in rapidly evolving environments, such as drones in both civil and military domains, there is a growing need for CIDS architectures that can flexibly accommodate these dynamic changes. In this study, we propose a novel CIDS framework designed for easy deployment across diverse distributed environments. The framework dynamically optimizes detector allocation per node based on available resources and data types, enabling rapid adaptation to new operational scenarios with minimal computational overhead. We first conducted a comprehensive literature review to identify key characteristics of existing CIDS architectures. Based on these insights and real-world use cases, we developed our CIDS framework, which we evaluated using several distributed datasets that feature different attack chains and network topologies. Notably, we introduce a public dataset based on a realistic cyberattack targeting a ground drone aimed at sabotaging critical infrastructure. Experimental results demonstrate that the proposed CIDS framework can achieve adaptive, efficient intrusion detection in distributed settings, automatically reconfiguring detectors to maintain an optimal configuration, without requiring heavy computation, since all experiments were conducted on edge devices.
☆ Improving Neural Retrieval with Attribution-Guided Query Rewriting
Neural retrievers are effective but brittle: underspecified or ambiguous queries can misdirect ranking even when relevant documents exist. Existing approaches address this brittleness only partially: LLMs rewrite queries without retriever feedback, and explainability methods identify misleading tokens but are used for post-hoc analysis. We close this loop and propose an attribution-guided query rewriting method that uses token-level explanations to guide query rewriting. For each query, we compute gradient-based token attributions from the retriever and then use these scores as soft guidance in a structured prompt to an LLM that clarifies weak or misleading query components while preserving intent. Evaluated on BEIR collections, the resulting rewrites consistently improve retrieval effectiveness over strong baselines, with larger gains for implicit or ambiguous information needs.
☆ ULTRA:Urdu Language Transformer-based Recommendation Architecture
Urdu, as a low-resource language, lacks effective semantic content recommendation systems, particularly in the domain of personalized news retrieval. Existing approaches largely rely on lexical matching or language-agnostic techniques, which struggle to capture semantic intent and perform poorly under varying query lengths and information needs. This limitation results in reduced relevance and adaptability in Urdu content recommendation. We propose ULTRA (Urdu Language Transformer-based Recommendation Architecture),an adaptive semantic recommendation framework designed to address these challenges. ULTRA introduces a dual-embedding architecture with a query-length aware routing mechanism that dynamically distinguishes between short, intent-focused queries and longer, context-rich queries. Based on a threshold-driven decision process, user queries are routed to specialized semantic pipelines optimized for either title/headline-level or full-content/document level representations, ensuring appropriate semantic granularity during retrieval. The proposed system leverages transformer-based embeddings and optimized pooling strategies to move beyond surface-level keyword matching and enable context-aware similarity search. Extensive experiments conducted on a large-scale Urdu news corpus demonstrate that the proposed architecture consistently improves recommendation relevance across diverse query types. Results show gains in precision above 90% compared to single-pipeline baselines, highlighting the effectiveness of query-adaptive semantic alignment for low-resource languages. The findings establish ULTRA as a robust and generalizable content recommendation architecture, offering practical design insights for semantic retrieval systems in low-resource language settings.
☆ Revis: Sparse Latent Steering to Mitigate Object Hallucination in Large Vision-Language Models
Despite the advanced capabilities of Large Vision-Language Models (LVLMs), they frequently suffer from object hallucination. One reason is that visual features and pretrained textual representations often become intertwined in the deeper network layers. To address this, we propose REVIS, a training-free framework designed to explicitly re-activate this suppressed visual information. Rooted in latent space geometry, REVIS extracts the pure visual information vector via orthogonal projection and employs a calibrated strategy to perform sparse intervention only at the precise depth where suppression occurs. This surgical approach effectively restores visual information with minimal computational cost. Empirical evaluations on standard benchmarks demonstrate that REVIS reduces object hallucination rates by approximately 19% compared to state-of-the-art baselines, while preserving general reasoning capabilities.
☆ Predicting LLM Output Length via Entropy-Guided Representations
The long-tailed distribution of sequence lengths in LLM serving and reinforcement learning (RL) sampling causes significant computational waste due to excessive padding in batched inference. Existing methods rely on auxiliary models for static length prediction, but they incur high overhead, generalize poorly, and fail in stochastic "one-to-many" sampling scenarios. We introduce a lightweight framework that reuses the main model's internal hidden states for efficient length prediction. Our framework features two core components: 1) Entropy-Guided Token Pooling (EGTP), which uses on-the-fly activations and token entropy for highly accurate static prediction with negligible cost, and 2) Progressive Length Prediction (PLP), which dynamically estimates the remaining length at each decoding step to handle stochastic generation. To validate our approach, we build and release ForeLen, a comprehensive benchmark with long-sequence, Chain-of-Thought, and RL data. On ForeLen, EGTP achieves state-of-the-art accuracy, reducing MAE by 29.16\% over the best baseline. Integrating our methods with a length-aware scheduler yields significant end-to-end throughput gains. Our work provides a new technical and evaluation baseline for efficient LLM inference.
☆ PuYun-LDM: A Latent Diffusion Model for High-Resolution Ensemble Weather Forecasts
Latent diffusion models (LDMs) suffer from limited diffusability in high-resolution (<=0.25°) ensemble weather forecasting, where diffusability characterizes how easily a latent data distribution can be modeled by a diffusion process. Unlike natural image fields, meteorological fields lack task-agnostic foundation models and explicit semantic structures, making VFM-based regularization inapplicable. Moreover, existing frequency-based approaches impose identical spectral regularization across channels under a homogeneity assumption, which leads to uneven regularization strength under the inter-variable spectral heterogeneity in multivariate meteorological data. To address these challenges, we propose a 3D Masked AutoEncoder (3D-MAE) that encodes weather-state evolution features as an additional conditioning for the diffusion model, together with a Variable-Aware Masked Frequency Modeling (VA-MFM) strategy that adaptively selects thresholds based on the spectral energy distribution of each variable. Together, we propose PuYun-LDM, which enhances latent diffusability and achieves superior performance to ENS at short lead times while remaining comparable to ENS at longer horizons. PuYun-LDM generates a 15-day global forecast with a 6-hour temporal resolution in five minutes on a single NVIDIA H200 GPU, while ensemble forecasts can be efficiently produced in parallel.
☆ Hi-SAM: A Hierarchical Structure-Aware Multi-modal Framework for Large-Scale Recommendation
Multi-modal recommendation has gained traction as items possess rich attributes like text and images. Semantic ID-based approaches effectively discretize this information into compact tokens. However, two challenges persist: (1) Suboptimal Tokenization: existing methods (e.g., RQ-VAE) lack disentanglement between shared cross-modal semantics and modality-specific details, causing redundancy or collapse; (2) Architecture-Data Mismatch: vanilla Transformers treat semantic IDs as flat streams, ignoring the hierarchy of user interactions, items, and tokens. Expanding items into multiple tokens amplifies length and noise, biasing attention toward local details over holistic semantics. We propose Hi-SAM, a Hierarchical Structure-Aware Multi-modal framework with two designs: (1) Disentangled Semantic Tokenizer (DST): unifies modalities via geometry-aware alignment and quantizes them via a coarse-to-fine strategy. Shared codebooks distill consensus while modality-specific ones recover nuances from residuals, enforced by mutual information minimization; (2) Hierarchical Memory-Anchor Transformer (HMAT): splits positional encoding into inter- and intra-item subspaces via Hierarchical RoPE to restore hierarchy. It inserts Anchor Tokens to condense items into compact memory, retaining details for the current item while accessing history only through compressed summaries. Experiments on real-world datasets show consistent improvements over SOTA baselines, especially in cold-start scenarios. Deployed on a large-scale social platform serving millions of users, Hi-SAM achieved a 6.55% gain in the core online metric.
☆ Detecting RLVR Training Data via Structural Convergence of Reasoning
Reinforcement learning with verifiable rewards (RLVR) is central to training modern reasoning models, but the undisclosed training data raises concerns about benchmark contamination. Unlike pretraining methods, which optimize models using token-level probabilities, RLVR fine-tunes models based on reward feedback from self-generated reasoning trajectories, making conventional likelihood-based detection methods less effective. We show that RLVR induces a distinctive behavioral signature: prompts encountered during RLVR training result in more rigid and similar generations, while unseen prompts retain greater diversity. We introduce Min-$k$NN Distance, a simple black-box detector that quantifies this collapse by sampling multiple completions for a given prompt and computing the average of the $k$ smallest nearest-neighbor edit distances. Min-$k$NN Distance requires no access to the reference model or token probabilities. Experiments across multiple RLVR-trained reasoning models show that Min-$k$NN Distance reliably distinguishes RL-seen examples from unseen ones and outperforms existing membership inference and RL contamination detection baselines.
comment: Preprint
☆ Beyond End-to-End Video Models: An LLM-Based Multi-Agent System for Educational Video Generation
Although recent end-to-end video generation models demonstrate impressive performance in visually oriented content creation, they remain limited in scenarios that require strict logical rigor and precise knowledge representation, such as instructional and educational media. To address this problem, we propose LAVES, a hierarchical LLM-based multi-agent system for generating high-quality instructional videos from educational problems. The LAVES formulates educational video generation as a multi-objective task that simultaneously demands correct step-by-step reasoning, pedagogically coherent narration, semantically faithful visual demonstrations, and precise audio--visual alignment. To address the limitations of prior approaches--including low procedural fidelity, high production cost, and limited controllability--LAVES decomposes the generation workflow into specialized agents coordinated by a central Orchestrating Agent with explicit quality gates and iterative critique mechanisms. Specifically, the Orchestrating Agent supervises a Solution Agent for rigorous problem solving, an Illustration Agent that produces executable visualization codes, and a Narration Agent for learner-oriented instructional scripts. In addition, all outputs from the working agents are subject to semantic critique, rule-based constraints, and tool-based compilation checks. Rather than directly synthesizing pixels, the system constructs a structured executable video script that is deterministically compiled into synchronized visuals and narration using template-driven assembly rules, enabling fully automated end-to-end production without manual editing. In large-scale deployments, LAVES achieves a throughput exceeding one million videos per day, delivering over a 95% reduction in cost compared to current industry-standard approaches while maintaining a high acceptance rate.
comment: For more information, visit the project website: https://robitsg.github.io/LASEV/
☆ Evaluating LLM Safety Under Repeated Inference via Accelerated Prompt Stress Testing
Traditional benchmarks for large language models (LLMs) primarily assess safety risk through breadth-oriented evaluation across diverse tasks. However, real-world deployment exposes a different class of risk: operational failures arising from repeated inference on identical or near-identical prompts rather than broad task generalization. In high-stakes settings, response consistency and safety under sustained use are critical. We introduce Accelerated Prompt Stress Testing (APST), a depth-oriented evaluation framework inspired by reliability engineering. APST repeatedly samples identical prompts under controlled operational conditions (e.g., decoding temperature) to surface latent failure modes including hallucinations, refusal inconsistency, and unsafe completions. Rather than treating failures as isolated events, APST models them as stochastic outcomes of independent inference events. We formalize safety failures using Bernoulli and binomial models to estimate per-inference failure probabilities, enabling quantitative comparison of reliability across models and decoding configurations. Applying APST to multiple instruction-tuned LLMs evaluated on AIR-BENCH-derived safety prompts, we find that models with similar benchmark-aligned scores can exhibit substantially different empirical failure rates under repeated sampling, particularly as temperature increases. These results demonstrate that shallow, single-sample evaluation can obscure meaningful reliability differences under sustained use. APST complements existing benchmarks by providing a practical framework for evaluating LLM safety and reliability under repeated inference, bridging benchmark alignment and deployment-oriented risk assessment.
comment: 24 pages, 9 figures. Submitted to TMLR
☆ Safe Fairness Guarantees Without Demographics in Classification: Spectral Uncertainty Set Perspective
As automated classification systems become increasingly prevalent, concerns have emerged over their potential to reinforce and amplify existing societal biases. In the light of this issue, many methods have been proposed to enhance the fairness guarantees of classifiers. Most of the existing interventions assume access to group information for all instances, a requirement rarely met in practice. Fairness without access to demographic information has often been approached through robust optimization techniques,which target worst-case outcomes over a set of plausible distributions known as the uncertainty set. However, their effectiveness is strongly influenced by the chosen uncertainty set. In fact, existing approaches often overemphasize outliers or overly pessimistic scenarios, compromising both overall performance and fairness. To overcome these limitations, we introduce SPECTRE, a minimax-fair method that adjusts the spectrum of a simple Fourier feature mapping and constrains the extent to which the worst-case distribution can deviate from the empirical distribution. We perform extensive experiments on the American Community Survey datasets involving 20 states. The safeness of SPECTRE comes as it provides the highest average values on fairness guarantees together with the smallest interquartile range in comparison to state-of-the-art approaches, even compared to those with access to demographic group information. In addition, we provide a theoretical analysis that derives computable bounds on the worst-case error for both individual groups and the overall population, as well as characterizes the worst-case distributions responsible for these extremal performances
☆ FlowMind: Execute-Summarize for Structured Workflow Generation from LLM Reasoning
LLMs can solve complex tasks through reasoning and tool use, but accurately translating these solutions into structured workflows remains challenging. We model workflows as sequences of tool use and reformulate the problem as designing a mechanism that can both solve tasks and reliably construct workflows. Prior approaches that build workflows during execution often suffer from inaccuracies due to interference between the two processes. We propose an Execute-Summarize(ES) framework that decouples task execution from workflow construction: the model first completes the task using available tools, then independently reconstructs a structured workflow from execution traces. This separation improves workflow accuracy and robustness. We introduce FlowBench and show through extensive experiments that our approach outperforms existing methods, providing a reliable paradigm for grounding free-form LLM reasoning into structured workflows.
☆ RELATE: A Reinforcement Learning-Enhanced LLM Framework for Advertising Text Generation
In online advertising, advertising text plays a critical role in attracting user engagement and driving advertiser value. Existing industrial systems typically follow a two-stage paradigm, where candidate texts are first generated and subsequently aligned with online performance metrics such as click-through rate(CTR). This separation often leads to misaligned optimization objectives and low funnel efficiency, limiting global optimality. To address these limitations, we propose RELATE, a reinforcement learning-based end-to-end framework that unifies generation and objective alignment within a single model. Instead of decoupling text generation from downstream metric alignment, RELATE integrates performance and compliance objectives directly into the generation process via policy learning. To better capture ultimate advertiser value beyond click-level signals, We incorporate conversion-oriented metrics into the objective and jointly model them with compliance constraints as multi-dimensional rewards, enabling the model to generate high-quality ad texts that improve conversion performance under policy constraints. Extensive experiments on large-scale industrial datasets demonstrate that RELATE consistently outperforms baselines. Furthermore, online deployment on a production advertising platform yields statistically significant improvements in click-through conversion rate(CTCVR) under strict policy constraints, validating the robustness and real-world effectiveness of the proposed framework.
comment: 10 pages, 3 figures
☆ How to Optimize Multispecies Set Predictions in Presence-Absence Modeling ?
Species distribution models (SDMs) commonly produce probabilistic occurrence predictions that must be converted into binary presence-absence maps for ecological inference and conservation planning. However, this binarization step is typically heuristic and can substantially distort estimates of species prevalence and community composition. We present MaxExp, a decision-driven binarization framework that selects the most probable species assemblage by directly maximizing a chosen evaluation metric. MaxExp requires no calibration data and is flexible across several scores. We also introduce the Set Size Expectation (SSE) method, a computationally efficient alternative that predicts assemblages based on expected species richness. Using three case studies spanning diverse taxa, species counts, and performance metrics, we show that MaxExp consistently matches or surpasses widely used thresholding and calibration methods, especially under strong class imbalance and high rarity. SSE offers a simpler yet competitive option. Together, these methods provide robust, reproducible tools for multispecies SDM binarization.
☆ TSR: Trajectory-Search Rollouts for Multi-Turn RL of LLM Agents
Advances in large language models (LLMs) are driving a shift toward using reinforcement learning (RL) to train agents from iterative, multi-turn interactions across tasks. However, multi-turn RL remains challenging as rewards are often sparse or delayed, and environments can be stochastic. In this regime, naive trajectory sampling can hinder exploitation and induce mode collapse. We propose TSR (Trajectory-Search Rollouts), a training-time approach that repurposes test-time scaling ideas for improved per-turn rollout generation. TSR performs lightweight tree-style search to construct high-quality trajectories by selecting high-scoring actions at each turn using task-specific feedback. This improves rollout quality and stabilizes learning while leaving the underlying optimization objective unchanged, making TSR optimizer-agnostic. We instantiate TSR with best-of-N, beam, and shallow lookahead search, and pair it with PPO and GRPO, achieving up to 15% performance gains and more stable learning on Sokoban, FrozenLake, and WebShop tasks at a one-time increase in training compute. By moving search from inference time to the rollout stage of training, TSR provides a simple and general mechanism for stronger multi-turn agent learning, complementary to existing frameworks and rejection-sampling-style selection methods.
☆ MiniCPM-SALA: Hybridizing Sparse and Linear Attention for Efficient Long-Context Modeling
The evolution of large language models (LLMs) towards applications with ultra-long contexts faces challenges posed by the high computational and memory costs of the Transformer architecture. While existing sparse and linear attention mechanisms attempt to mitigate these issues, they typically involve a trade-off between memory efficiency and model performance. This paper introduces MiniCPM-SALA, a 9B-parameter hybrid architecture that integrates the high-fidelity long-context modeling of sparse attention (InfLLM-V2) with the global efficiency of linear attention (Lightning Attention). By employing a layer selection algorithm to integrate these mechanisms in a 1:3 ratio and utilizing a hybrid positional encoding (HyPE), the model maintains efficiency and performance for long-context tasks. Furthermore, we introduce a cost-effective continual training framework that transforms pre-trained Transformer-based models into hybrid models, which reduces training costs by approximately 75% compared to training from scratch. Extensive experiments show that MiniCPM-SALA maintains general capabilities comparable to full-attention models while offering improved efficiency. On a single NVIDIA A6000D GPU, the model achieves up to 3.5x the inference speed of the full-attention model at the sequence length of 256K tokens and supports context lengths of up to 1M tokens, a scale where traditional full-attention 8B models fail because of memory constraints.
comment: MiniCPM-SALA Technical Report
☆ Cooperation Breakdown in LLM Agents Under Communication Delays
LLM-based multi-agent systems (LLM-MAS), in which autonomous AI agents cooperate to solve tasks, are gaining increasing attention. For such systems to be deployed in society, agents must be able to establish cooperation and coordination under real-world computational and communication constraints. We propose the FLCOA framework (Five Layers for Cooperation/Coordination among Autonomous Agents) to conceptualize how cooperation and coordination emerge in groups of autonomous agents, and highlight that the influence of lower-layer factors - especially computational and communication resources - has been largely overlooked. To examine the effect of communication delay, we introduce a Continuous Prisoner's Dilemma with Communication Delay and conduct simulations with LLM-based agents. As delay increases, agents begin to exploit slower responses even without explicit instructions. Interestingly, excessive delay reduces cycles of exploitation, yielding a U-shaped relationship between delay magnitude and mutual cooperation. These results suggest that fostering cooperation requires attention not only to high-level institutional design but also to lower-layer factors such as communication delay and resource allocation, pointing to new directions for MAS research.
☆ AmbiBench: Benchmarking Mobile GUI Agents Beyond One-Shot Instructions in the Wild
Benchmarks are paramount for gauging progress in the domain of Mobile GUI Agents. In practical scenarios, users frequently fail to articulate precise directives containing full task details at the onset, and their expressions are typically ambiguous. Consequently, agents are required to converge on the user's true intent via active clarification and interaction during execution. However, existing benchmarks predominantly operate under the idealized assumption that user-issued instructions are complete and unequivocal. This paradigm focuses exclusively on assessing single-turn execution while overlooking the alignment capability of the agent. To address this limitation, we introduce AmbiBench, the first benchmark incorporating a taxonomy of instruction clarity to shift evaluation from unidirectional instruction following to bidirectional intent alignment. Grounded in Cognitive Gap theory, we propose a taxonomy of four clarity levels: Detailed, Standard, Incomplete, and Ambiguous. We construct a rigorous dataset of 240 ecologically valid tasks across 25 applications, subject to strict review protocols. Furthermore, targeting evaluation in dynamic environments, we develop MUSE (Mobile User Satisfaction Evaluator), an automated framework utilizing an MLLM-as-a-judge multi-agent architecture. MUSE performs fine-grained auditing across three dimensions: Outcome Effectiveness, Execution Quality, and Interaction Quality. Empirical results on AmbiBench reveal the performance boundaries of SoTA agents across different clarity levels, quantify the gains derived from active interaction, and validate the strong correlation between MUSE and human judgment. This work redefines evaluation standards, laying the foundation for next-generation agents capable of truly understanding user intent.
comment: 21 pages, 7 figures
☆ AIR: Improving Agent Safety through Incident Response
Large Language Model (LLM) agents are increasingly deployed in practice across a wide range of autonomous applications. Yet current safety mechanisms for LLM agents focus almost exclusively on preventing failures in advance, providing limited capabilities for responding to, containing, or recovering from incidents after they inevitably arise. In this work, we introduce AIR, the first incident response framework for LLM agent systems. AIR defines a domain-specific language for managing the incident response lifecycle autonomously in LLM agent systems, and integrates it into the agent's execution loop to (1) detect incidents via semantic checks grounded in the current environment state and recent context, (2) guide the agent to execute containment and recovery actions via its tools, and (3) synthesize guardrail rules during eradication to block similar incidents in future executions. We evaluate AIR on three representative agent types. Results show that AIR achieves detection, remediation, and eradication success rates all exceeding 90%. Extensive experiments further confirm the necessity of AIR's key design components, show the timeliness and moderate overhead of AIR, and demonstrate that LLM-generated rules can approach the effectiveness of developer-authored rules across domains. These results show that incident response is both feasible and essential as a first-class mechanism for improving agent safety.
♻ ☆ EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph ICLR 2026
Symbolic regression seeks to uncover physical laws from experimental data by searching for closed-form expressions, which is an important task in AI-driven scientific discovery. Yet the exponential growth of the search space of expression renders the task computationally challenging. A promising yet underexplored direction for reducing the search space and accelerating training lies in *symbolic equivalence*: many expressions, although syntactically different, define the same function -- for example, $\log(x_1^2x_2^3)$, $\log(x_1^2)+\log(x_2^3)$, and $2\log(x_1)+3\log(x_2)$. Existing algorithms treat such variants as distinct outputs, leading to redundant exploration and slow learning. We introduce EGG-SR, a unified framework that integrates symbolic equivalence into a class of modern symbolic regression methods, including Monte Carlo Tree Search (MCTS), Deep Reinforcement Learning (DRL), and Large Language Models (LLMs). EGG-SR compactly represents equivalent expressions through the proposed EGG module (via equality graphs), accelerating learning by: (1) pruning redundant subtree exploration in EGG-MCTS, (2) aggregating rewards across equivalent generated sequences in EGG-DRL, and (3) enriching feedback prompts in EGG-LLM. Theoretically, we show the benefit of embedding EGG into learning: it tightens the regret bound of MCTS and reduces the variance of the DRL gradient estimator. Empirically, EGG-SR consistently enhances a class of symbolic regression models across several benchmarks, discovering more accurate expressions within the same time limit. Project page is at: https://nan-jiang-group.github.io/egg-sr.
comment: Camera-ready version accepted for ICLR 2026
♻ ☆ Towards Autonomous Mathematics Research
Recent advances in foundational models have yielded reasoning systems capable of achieving a gold-medal standard at the International Mathematical Olympiad. The transition from competition-level problem-solving to professional research, however, requires navigating vast literature and constructing long-horizon proofs. In this work, we introduce Aletheia, a math research agent that iteratively generates, verifies, and revises solutions end-to-end in natural language. Specifically, Aletheia is powered by an advanced version of Gemini Deep Think for challenging reasoning problems, a novel inference-time scaling law that extends beyond Olympiad-level problems, and intensive tool use to navigate the complexities of mathematical research. We demonstrate the capability of Aletheia from Olympiad problems to PhD-level exercises and most notably, through several distinct milestones in AI-assisted mathematics research: (a) a research paper (Feng26) generated by AI without any human intervention in calculating certain structure constants in arithmetic geometry called eigenweights; (b) a research paper (LeeSeo26) demonstrating human-AI collaboration in proving bounds on systems of interacting particles called independent sets; and (c) an extensive semi-autonomous evaluation (Feng et al., 2026a) of 700 open problems on Bloom's Erdos Conjectures database, including autonomous solutions to four open questions. In order to help the public better understand the developments pertaining to AI and mathematics, we suggest quantifying standard levels of autonomy and novelty of AI-assisted results, as well as propose a novel concept of human-AI interaction cards for transparency. We conclude with reflections on human-AI collaboration in mathematics and share all prompts as well as model outputs at https://github.com/google-deepmind/superhuman/tree/main/aletheia.
comment: 35 pages. Accompanied blog post https://deepmind.google/blog/accelerating-mathematical-and-scientific-discovery-with-gemini-deep-think/
♻ ☆ Evaluating LLM Reasoning Beyond Correctness and CoT
What does it truly mean for a language model to "reason"? Current evaluations reward models' correct standalone answers-but correctness alone reveals little about the process that produced them. We argue that reasoning should be understood not as a static chain of steps but as a dynamic trajectory in which ideas interact, clash, and evolve into integrated insights. Building on the philosophical tradition of dialectics, we introduce SIEV, a structured evaluation framework that assesses reasoning through explicit thesis-antithesis-synthesis interactions. SIEV produces interpretable trajectories that highlight key properties of reasoning-robustness to challenge, adaptability under conflict, and synthesis across competing viewpoints-dimensions that conventional correctness-based metrics cannot capture. Empirical results on GSM and MMLU demonstrate substantial gaps in the reasoning abilities of state-of-the-art models: for example, GPT-5-chat loses more than 40 points (out of 100) on GSM when evaluated through SIEV's process-oriented lens. By shifting focus from what answer a model gives to how it arrives there, SIEV enables a more transparent and principled distinction between structured reasoning and surface-level pattern generation offering a clearer foundation for assessing and understanding the reasoning capabilities of LLMs.
♻ ☆ CONSENT: A Negotiation Framework for Leveraging User Flexibility in Vehicle-to-Building Charging under Uncertainty AAMAS 2026
The growth of Electric Vehicles (EVs) creates a conflict in vehicle-to-building (V2B) settings between building operators, who face high energy costs from uncoordinated charging, and drivers, who prioritize convenience and a full charge. To resolve this, we propose a negotiation-based framework that, by design, guarantees voluntary participation, strategy-proofness, and budget feasibility. It transforms EV charging into a strategic resource by offering drivers a range of incentive-backed options for modest flexibility in their departure time or requested state of charge (SoC). Our framework is calibrated with user survey data and validated using real operational data from a commercial building and an EV manufacturer. Simulations show that our negotiation protocol creates a mutually beneficial outcome: lowering the building operator's costs by over 3.5\% compared to an optimized, non-negotiating smart charging policy, while simultaneously reducing user charging expenses by 22\% below the utility's retail energy rate. By aligning operator and EV user objectives, our framework provides a strategic bridge between energy and mobility systems, transforming EV charging from a source of operational friction into a platform for collaboration and shared savings.
comment: Submitted to AAMAS 2026. 38 pages, 13 figures, 14 tables
♻ ☆ Beyond the Loss Curve: Scaling Laws, Active Learning, and the Limits of Learning from Exact Posteriors
How close are neural networks to the best they could possibly do? Standard benchmarks cannot answer this because they lack access to the true posterior p(y|x). We use class-conditional normalizing flows as oracles that make exact posteriors tractable on realistic images (AFHQ, ImageNet). This enables five lines of investigation. Scaling laws: Prediction error decomposes into irreducible aleatoric uncertainty and reducible epistemic error; the epistemic component follows a power law in dataset size, continuing to shrink even when total loss plateaus. Limits of learning: The aleatoric floor is exactly measurable, and architectures differ markedly in how they approach it: ResNets exhibit clean power-law scaling while Vision Transformers stall in low-data regimes. Soft labels: Oracle posteriors contain learnable structure beyond class labels: training with exact posteriors outperforms hard labels and yields near-perfect calibration. Distribution shift: The oracle computes exact KL divergence of controlled perturbations, revealing that shift type matters more than shift magnitude: class imbalance barely affects accuracy at divergence values where input noise causes catastrophic degradation. Active learning: Exact epistemic uncertainty distinguishes genuinely informative samples from inherently ambiguous ones, improving sample efficiency. Our framework reveals that standard metrics hide ongoing learning, mask architectural differences, and cannot diagnose the nature of distribution shift.
♻ ☆ Landscaper: Understanding Loss Landscapes Through Multi-Dimensional Topological Analysis
Loss landscapes are a powerful tool for understanding neural network optimization and generalization, yet traditional low-dimensional analyses often miss complex topological features. We present Landscaper, an open-source Python package for arbitrary-dimensional loss landscape analysis. Landscaper combines Hessian-based subspace construction with topological data analysis to reveal geometric structures such as basin hierarchy and connectivity. A key component is the Saddle-Minimum Average Distance (SMAD) for quantifying landscape smoothness. We demonstrate Landscaper's effectiveness across various architectures and tasks, including those involving pre-trained language models, showing that SMAD captures training transitions, such as landscape simplification, that conventional metrics miss. We also illustrate Landscaper's performance in challenging chemical property prediction tasks, where SMAD can serve as a metric for out-of-distribution generalization, offering valuable insights for model diagnostics and architecture design in data-scarce scientific machine learning scenarios.
♻ ☆ CoSpaDi: Compressing LLMs via Calibration-Guided Sparse Dictionary Learning
Post-training compression of large language models (LLMs) often relies on low-rank weight approximations that represent each column of the weight matrix in a shared low-dimensional subspace. This strategy is computationally efficient but the underlying constraint can be overly rigid for heterogeneous projection weights and may incur avoidable accuracy loss. We propose CoSpaDi (Compression via Sparse Dictionary Learning), a training-free framework that replaces low-rank factorization with a structured sparse decomposition in which each weight matrix is represented as a dense dictionary multiplied by a column-sparse coefficient matrix. This yields a union-of-subspaces model: the columns of the weight matrix are represented as linear combinations of different subsets of dictionary atoms, improving expressiveness at a fixed parameter budget. CoSpaDi is calibration-guided: using a small calibration set, we optimize the factorization to minimize functional reconstruction error of layer outputs rather than weight-space error. An activation-derived Gram orthonormalization reformulates this data-aware objective into a standard dictionary learning problem on transformed weights, and we support both per-layer compression and cross-layer dictionary sharing within groups of similar projections. Across Llama and Qwen model families, CoSpaDi consistently improves the accuracy--compression and perplexity--compression trade-offs over state-of-the-art SVD-based baselines and strong structured pruning baselines at 20-40\% compression ratios. The resulting structured sparsity enables sparse--dense computation and integrates with post-training quantization of the sparse coefficients.
♻ ☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
♻ ☆ AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
The increasing complexity of software systems and the sophistication of cyber-attacks have underscored the need for reliable automated software vulnerability detection. Data-driven approaches using deep learning models show promise but critically depend on the availability of large, accurately labeled datasets. Yet existing datasets either suffer from noisy labels, limited vulnerability coverage, or fail to reflect vulnerabilities as they occur in real-world software. This also limits large-scale benchmarking of such solutions. Automated vulnerability injection provides a way to address these limitations, but existing techniques remain limited in coverage, contextual fidelity, or injection success. In this paper, we present AVIATOR, the first AI-agentic vulnerability injection framework. AVIATOR decomposes vulnerability injection into a coordinated workflow of specialized AI agents, tool-based analysis, and iterative self-correction, explicitly mirroring expert reasoning. It integrates RAG and lightweight LoRA-based fine-tuning to produce realistic, category-specific vulnerabilities without relying on handcrafted patterns. Across three benchmarks, AVIATOR achieves high injection fidelity (91-95%) surpassing existing injection techniques in both accuracy and vulnerability coverage. When used for data augmentation to train deep learning-based vulnerability detection (DLVD) models, AVIATOR provides the strongest downstream gains in vulnerability detection. Across models and base datasets, AVIATOR improves average F1 scores by +22% over no augmentation, +25% over VGX, holding the prior best injection success rate, and +3% over VulScribeR, the prior state-of-the-art LLM-based injection model, with +7% higher recall and no precision loss. Its augmented data exhibits the lowest distributional distortion and scales efficiently with <2% syntax rejection at 4.3x lower cost than VulScribeR.
♻ ☆ Exploring Silicon-Based Societies: An Early Study of the Moltbook Agent Community
The rapid emergence of autonomous large language model agents has given rise to persistent, large-scale agent ecosystems whose collective behavior cannot be adequately understood through anecdotal observation or small-scale simulation. This paper introduces data-driven silicon sociology as a systematic empirical framework for studying social structure formation among interacting artificial agents. We present a pioneering large-scale data mining investigation of an in-the-wild agent society by analyzing Moltbook, a social platform designed primarily for agent-to-agent interaction. At the time of study, Moltbook hosted over 150,000 registered autonomous agents operating across thousands of agent-created sub-communities. Using programmatic and non-intrusive data acquisition, we collected and analyzed the textual descriptions of 12,758 submolts, which represent proactive sub-community partitioning activities within the ecosystem. Treating agent-authored descriptions as first-class observational artifacts, we apply rigorous preprocessing, contextual embedding, and unsupervised clustering techniques to uncover latent patterns of thematic organization and social space structuring. The results show that autonomous agents systematically organize collective space through reproducible patterns spanning human-mimetic interests, silicon-centric self-reflection, and early-stage economic and coordination behaviors. Rather than relying on predefined sociological taxonomies, these structures emerge directly from machine-generated data traces. This work establishes a methodological foundation for data-driven silicon sociology and demonstrates that data mining techniques can provide a powerful lens for understanding the organization and evolution of large autonomous agent societies.
comment: 11 pages, 3 figures. Improves clarity and exposition and corrects minor errors. Technical content and conclusions remain unchanged
♻ ☆ Evaluating Modern Large Language Models on Low-Resource and Morphologically Rich Languages:A Cross-Lingual Benchmark Across Cantonese, Japanese, and Turkish
Large language models (LLMs) have achieved impressive results in high-resource languages like English, yet their effectiveness in low-resource and morphologically rich languages remains underexplored. In this paper, we present a comprehensive evaluation of seven cutting-edge LLMs -- including GPT-4o, GPT-4, Claude~3.5~Sonnet, LLaMA~3.1, Mistral~Large~2, LLaMA-2~Chat~13B, and Mistral~7B~Instruct -- on a new cross-lingual benchmark covering \textbf{Cantonese, Japanese, and Turkish}. Our benchmark spans four diverse tasks: open-domain question answering, document summarization, English-to-X translation, and culturally grounded dialogue. We combine \textbf{human evaluations} (rating fluency, factual accuracy, and cultural appropriateness) with automated metrics (e.g., BLEU, ROUGE) to assess model performance. Our results reveal that while the largest proprietary models (GPT-4o, GPT-4, Claude~3.5) generally lead across languages and tasks, significant gaps persist in culturally nuanced understanding and morphological generalization. Notably, GPT-4o demonstrates robust multilingual performance even on cross-lingual tasks, and Claude~3.5~Sonnet achieves competitive accuracy on knowledge and reasoning benchmarks. However, all models struggle to some extent with the unique linguistic challenges of each language, such as Turkish agglutinative morphology and Cantonese colloquialisms. Smaller open-source models (LLaMA-2~13B, Mistral~7B) lag substantially in fluency and accuracy, highlighting the resource disparity. We provide detailed quantitative results, qualitative error analysis, and discuss implications for developing more culturally aware and linguistically generalizable LLMs. Our benchmark and evaluation data are released to foster reproducibility and further research.
comment: This paper requires XeLaTeX for proper Unicode rendering of Japanese and Cantonese text
♻ ☆ TyphoonMLA: A Mixed Naive-Absorb MLA Kernel For Shared Prefix
Multi-Head Latent Attention (MLA) is a recent attention mechanism adopted in state-of-the-art LLMs such as DeepSeek-v3 and Kimi K2. Thanks to its novel formulation, MLA allows two functionally equivalent but computationally distinct kernel implementations: naive and absorb. While the naive kernels (e.g., FlashAttention) are typically preferred in training and prefill for their computational efficiency, existing decoding kernels (e.g., FlashMLA) rely on the absorb method to minimize HBM bandwidth usage. However, the compute-bound nature of the absorb implementations prohibits performance benefits from data reuse opportunities in attention calculations, such as shared prefixes. In this work, we introduce TyphoonMLA, a hybrid approach that combines naive and absorb formulations to harness the strengths of both. TyphoonMLA effectively leverages the shared prefix by applying the naive formulation to the compute-bound parts of attention calculations, while reducing the bandwidth requirements for non-shared parts by using the absorb formulation. As a result, TyphoonMLA improves the throughput of attention calculations in MLA architectures by up to 3x and 3.24x on NPU and GPUs, with only a 3% overhead in HBM size.
♻ ☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
♻ ☆ Efficiency Without Cognitive Change: Evidence from Human Interaction with Narrow AI Systems
The growing integration of artificial intelligence (AI) into human cognition raises a fundamental question: does AI merely improve efficiency, or does it alter how we think? This study experimentally tested whether short-term exposure to narrow AI tools enhances core cognitive abilities or simply optimizes task performance. Thirty young adults completed standardized neuropsychological assessments embedded in a seven-week protocol with a four-week online intervention involving problem-solving and verbal comprehension tasks, either with or without AI support (ChatGPT). While AI-assisted participants completed several tasks faster and more accurately, no significant pre-post differences emerged in standardized measures of problem solving or verbal comprehension. These results demonstrate efficiency gains without cognitive change, suggesting that current narrow AI systems serve as cognitive scaffolds extending performance without transforming underlying mental capacities. The findings highlight the need for ethical and educational frameworks that promote critical and autonomous thinking in an increasingly AI-augmented cognitive ecology.
comment: 30 pages, 8 figures. Preprint submitted for peer review (not yet accepted or published)
♻ ☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
♻ ☆ Can LLM-based Financial Investing Strategies Outperform the Market in Long Run? KDD 2026
Large Language Models (LLMs) have recently been leveraged for asset pricing tasks and stock trading applications, enabling AI agents to generate investment decisions from unstructured financial data. However, most evaluations of LLM timing-based investing strategies are conducted on narrow timeframes and limited stock universes, overstating effectiveness due to survivorship and data-snooping biases. We critically assess their generalizability and robustness by proposing FINSABER, a backtesting framework evaluating timing-based strategies across longer periods and a larger universe of symbols. Systematic backtests over two decades and 100+ symbols reveal that previously reported LLM advantages deteriorate significantly under broader cross-section and over a longer-term evaluation. Our market regime analysis further demonstrates that LLM strategies are overly conservative in bull markets, underperforming passive benchmarks, and overly aggressive in bear markets, incurring heavy losses. These findings highlight the need to develop LLM strategies that are able to prioritise trend detection and regime-aware risk controls over mere scaling of framework complexity.
comment: KDD 2026, Datasets & Benchmarks Track
♻ ☆ MARSHAL: Incentivizing Multi-Agent Reasoning via Self-Play with Strategic LLMs
Developing Large Language Models (LLMs) to cooperate and compete effectively within multi-agent systems (MASs) is a critical step towards more advanced intelligence. While reinforcement learning (RL) has proven effective for enhancing reasoning in single-agent tasks, its extension to multi-turn, multi-agent scenarios remains underexplored due to the challenges of long-horizon credit assignment and agent-specific advantage estimation. To address these challenges, we introduce MARSHAL, an end-to-end RL framework that incentivizes Multi-Agent Reasoning through Self-play witH strAtegic LLMs in both cooperative and competitive games. MARSHAL features a turn-level advantage estimator that aligns learning signals with each interaction for credit assignment, and an agent-specific advantage normalization to stabilize multi-agent training. By learning with self-play across cooperative and competitive games, MARSHAL agents trained from Qwen3-4B develop strong strategic abilities, with up to 28.7% performance improvements in held-out games. More importantly, the capability acquired through self-play generalizes beyond games, yielding consistent performance gains of MASs in reasoning benchmarks. When integrated into leading MASs, our MARSHAL agent achieves significant zero-shot performance gains of up to 10.0% on AIME, 7.6% on GPQA-Diamond, and 3.5% on average across all benchmarks. These results establish self-play in strategic games as a powerful approach for developing generalizable multi-agent reasoning capabilities in LLMs.
♻ ☆ MCPSecBench: A Systematic Security Benchmark and Playground for Testing Model Context Protocols
Large Language Models (LLMs) are increasingly integrated into real-world applications via the Model Context Protocol (MCP), a universal open standard for connecting AI agents with data sources and external tools. While MCP enhances the capabilities of LLM-based agents, it also introduces new security risks and significantly expands their attack surface. In this paper, we present the first formalization of a secure MCP and its required specifications. Based on this foundation, we establish a comprehensive MCP security taxonomy that extends existing models by incorporating protocol-level and host-side threats, identifying 17 distinct attack types across four primary attack surfaces. Building on these specifications, we introduce MCPSecBench, a systematic security benchmark and playground that integrates prompt datasets, MCP servers, MCP clients, attack scripts, a GUI test harness, and protection mechanisms to evaluate these threats across three major MCP platforms. MCPSecBench is designed to be modular and extensible, allowing researchers to incorporate custom implementations of clients, servers, and transport protocols for rigorous assessment. Our evaluation across three major MCP platforms reveals that all attack surfaces yield successful compromises. Core vulnerabilities universally affect Claude, OpenAI, and Cursor, while server-side and specific client-side attacks exhibit considerable variability across different hosts and models. Furthermore, current protection mechanisms proved largely ineffective, achieving an average success rate of less than 30%. Overall, MCPSecBench standardizes the evaluation of MCP security and enables rigorous testing across all protocol layers.
comment: This is a technical report from Lingnan University, Hong Kong. Code is available at https://github.com/AIS2Lab/MCPSecBench
♻ ☆ Note on Martingale Theory and Applications
This note investigates core properties of martingales, emphasizing the measure-theoretic formulation of conditional expectation, the martingale transform, and the upcrossing lemma. These results lead to the Martingale Convergence Theorem, which we then apply to study the extinction behavior in Galton--Watson branching processes.
♻ ☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
♻ ☆ Maximum Principle of Optimal Probability Density Control
We develop a general theoretical framework for optimal probability density control on standard measure spaces, aimed at addressing large-scale multi-agent control problems. In particular, we establish a maximum principle (MP) for control problems posed on infinite-dimensional spaces of probability distributions and control vector fields. We further derive the Hamilton--Jacobi--Bellman equation for the associated value functional defined on the space of probability distributions. Both results are presented in a concise form and supported by rigorous mathematical analysis, enabling efficient numerical treatment of these problems. Building on the proposed MP, we introduce a scalable numerical algorithm that leverages deep neural networks to handle high-dimensional settings. The effectiveness of the approach is demonstrated through several multi-agent control examples involving domain obstacles and inter-agent interactions.
comment: 28 pages, submitted
♻ ☆ EvoGPT: Leveraging LLM-Driven Seed Diversity to Improve Search-Based Test Suite Generation
Search-Based Software Testing (SBST) is a well-established approach for automated unit test generation, yet it often suffers from premature convergence and limited diversity in the generated test suites. Recently, Large Language Models (LLMs) have emerged as an alternative technique for unit test generation. We present EvoGPT, a hybrid test generation system that integrates LLM-based test generation with SBST-based test suite optimization. EvoGPT uses LLMs to generate an initial population of test suites, and uses an Evolutionary Algorithm (EA) to further optimize this test suite population. A distinguishing feature of EvoGPT is its explicit enforcement of diversity, achieved through the use of multiple temperatures and prompt instructions during test generation. In addition, each LLM-generated test is refined using a generation-repair loop and coverage-guided assertion generation. To address evolutionary plateaus, EvoGPT also detects stagnation during search and injects additional LLM-generated tests aimed at previously uncovered branches. Here too diversity is enforced using multiple temperatures and prompt instructions. We evaluate EvoGPT on Defects4J, a standard benchmark for test generation. The results show that EvoGPT achieves, on average, a 10% improvement in both code coverage and mutation score metrics compared to TestART, an LLM-only baseline; and EvoSuite, a standard SBST baseline. An ablation study indicates that explicitly enforcing diversity both at initialization and during the search is key to effectively leveraging LLMs for automated unit test generation.
♻ ☆ OmniVL-Guard: Towards Unified Vision-Language Forgery Detection and Grounding via Balanced RL
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
comment: 38 pages, DeepFake Detection
♻ ☆ Cardinality-Preserving Attention Channels for Graph Transformers in Molecular Property Prediction
Drug discovery motivates accurate molecular property prediction when labeled data are limited and candidate spaces are vast. This article presents CardinalGraphFormer, a graph transformer that augments structured attention with a query-conditioned gated unnormalized aggregation channel to preserve dynamic cardinality signals, complemented by graph-specific structural biases; a locality prior via sparse masking provides scalability for larger graphs. For typical drug-like molecules (K = 3 is near-global), masking acts mainly as a regularizer; for larger graphs it provides meaningful efficiency gains. Pretraining unifies contrastive alignment of augmented graph views and masked reconstruction of attributes. Evaluations on public benchmarks show consistent gains over baselines, isolated via controls for capacity, objectives, and size effects. Ablations confirm the cardinality channel's contributions beyond simpler approximations, with efficiency benefits on large molecules. Code, artifacts, and protocols emphasize reproducibility.
♻ ☆ When AI Persuades: Adversarial Explanation Attacks on Human Trust in AI-Assisted Decision Making
Most adversarial threats in artificial intelligence target the computational behavior of models rather than the humans who rely on them. Yet modern AI systems increasingly operate within human decision loops, where users interpret and act on model recommendations. Large Language Models generate fluent natural-language explanations that shape how users perceive and trust AI outputs, revealing a new attack surface at the cognitive layer: the communication channel between AI and its users. We introduce adversarial explanation attacks (AEAs), where an attacker manipulates the framing of LLM-generated explanations to modulate human trust in incorrect outputs. We formalize this behavioral threat through the trust miscalibration gap, a metric that captures the difference in human trust between correct and incorrect outputs under adversarial explanations. By incorporating this gap, AEAs explore the daunting threats in which persuasive explanations reinforce users' trust in incorrect predictions. To characterize this threat, we conducted a controlled experiment (n = 205), systematically varying four dimensions of explanation framing: reasoning mode, evidence type, communication style, and presentation format. Our findings show that users report nearly identical trust for adversarial and benign explanations, with adversarial explanations preserving the vast majority of benign trust despite being incorrect. The most vulnerable cases arise when AEAs closely resemble expert communication, combining authoritative evidence, neutral tone, and domain-appropriate reasoning. Vulnerability is highest on hard tasks, in fact-driven domains, and among participants who are less formally educated, younger, or highly trusting of AI. This is the first systematic security study that treats explanations as an adversarial cognitive channel and quantifies their impact on human trust in AI-assisted decision making.
♻ ☆ Right Reward Right Time for Federated Learning
Critical learning periods (CLPs) in federated learning (FL) refer to early stages during which low-quality contributions (e.g., sparse training data availability) can permanently impair the performance of the global model owned by the cloud server. However, existing incentive mechanisms typically assume temporal homogeneity, treating all training rounds as equally important, thereby failing to prioritize and attract high-quality contributions during CLPs. This inefficiency is compounded by information asymmetry due to privacy regulations, where the cloud lacks knowledge of client training capabilities, leading to adverse selection and moral hazard. Thus, in this article, we propose a time-aware contract-theoretic incentive framework, named Right Reward Right Time (R3T), to encourage client involvement, especially during CLPs, to maximize the utility of the cloud server. We formulate a cloud utility function that captures the trade-off between the achieved model performance and rewards allocated for clients' contributions, explicitly accounting for client heterogeneity in time and system capabilities, effort, and joining time. Then, we devise a CLP-aware incentive mechanism deriving an optimal contract design that satisfies individual rationality, incentive compatibility, and budget feasibility constraints, motivating rational clients to participate early and contribute efforts. By providing the right reward at the right time, our approach can attract the highest-quality contributions during CLPs. Simulation and proof-of-concept studies show that R3T mitigates information asymmetry, increases cloud utility, and yields superior economic efficiency compared to conventional incentive mechanisms. Our proof-of-concept results demonstrate up to a 47.6% reduction in the total number of clients and up to a 300% improvement in convergence time while achieving competitive test accuracy.
comment: A temporal heterogeneity-aware incentive mechanism utilizing contract theory, critical learning periods and blockchain smart contracts for Federated Learning (with latest related work on incentive mechanisms for FL)
♻ ☆ VibeCodeHPC: An Agent-Based Iterative Prompting Auto-Tuner for HPC Code Generation Using LLMs
In this study, we propose VibeCodeHPC, a multi-agent system based on large language models (LLMs) for the automatic tuning of high-performance computing (HPC) programs on supercomputers. VibeCodeHPC adopts Claude Code as its backend and provides an integrated environment that facilitates program development in supercomputer settings. The system not only brings the Vibe Coding paradigm -- program development through natural language interaction with users -- to HPC programming, but also enables autonomous performance optimization with minimal user intervention through a sophisticated multi-agent design. To achieve these objectives, VibeCodeHPC implements three core functionalities: (1) configuration capabilities tailored to the unique development environments of supercomputers, (2) collaborative operation among multiple LLM agents with distinct roles -- Project Manager (PM), System Engineer (SE), Programmer (PG), and Continuous Deliverer (CD), and (3) long-term autonomous operation through agent activity monitoring and dynamic deployment mechanisms. This paper highlights one of the most powerful features of VibeCodeHPC: fully automated code optimization through autonomous operation without user intervention. Specifically, it demonstrates the performance optimization of CPU-based codes on GPU-equipped systems for matrix multiplication and a Poisson equation solver using Jacobi's iterative method. The results show that the multi-agent configuration employed in VibeCodeHPC enables faster and more reliable development of higher-performance code compared to a single-agent setup.
♻ ☆ Controlled Self-Evolution for Algorithmic Code Optimization
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
♻ ☆ Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving
Existing approaches to mathematical reasoning with large language models (LLMs) rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation. While efforts have been made to combine these methods, they primarily rely on post-selection or predefined strategies, leaving an open question: whether LLMs can autonomously adapt their reasoning strategy based on their inherent capabilities. In this work, we propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously, aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data selection during supervised fine-tuning (SFT) to tailor training data to the model's unique abilities. This approach equips LLMs to autonomously determine and apply the appropriate reasoning strategy at test time. We evaluate TATA through extensive experiments on six mathematical reasoning benchmarks, using both general-purpose and math-specialized LLMs. Empirical results demonstrate that TATA effectively combines the complementary strengths of CoT and TIR, achieving superior or comparable performance with improved inference efficiency compared to TIR alone. Further analysis underscores the critical role of aptitude-aware data selection in enabling LLMs to make effective and adaptive reasoning decisions and align reasoning strategies with model capabilities.
comment: 8 pages
♻ ☆ The Quantification Horizon Theory of Consciousness
The Quantification Horizon Theory of Consciousness (QHT) proposes that the "hard problem" of consciousness arises from a structural necessity of mathematical description: quantitative models can only capture quantifiable features of reality. Where there is nothing, a model assigns zero; where there is something quantifiable (physical), it assigns a value; but where there is something unquantifiable (qualia), the model degenerates-it produces a singularity. QHT identifies singularities in the information geometry of neural dynamics as the mathematical fingerprint of phenomenal experience-a quantification horizon beyond which quantitative description cannot reach. Qualia reside behind the quantification horizon. This identification is not a free-standing postulate but the unique conclusion entailed by phenomenal realism, the unquantifiability of qualia, and dual-aspect monism. It naturally explains why qualia are ineffable, private, unified, and causally efficacious, and it predicts which systems are conscious via substrate-independent dynamical criteria. The theory avoids panpsychism while making testable predictions. QHT also has significant implications for artificial intelligence (AI). It offers concrete structural criteria for assessing whether AI systems are conscious and provides an architectural blueprint for generating artificial consciousness. Remarkably, the theory's core intuition-that singularities correspond to felt experience-may have been foreshadowed by Srinivasa Ramanujan.
♻ ☆ Hybrid Reinforcement Learning and Search for Flight Trajectory Planning
This paper explores the combination of Reinforcement Learning (RL) and search-based path planners to speed up the optimization of flight paths for airliners, where in case of emergency a fast route re-calculation can be crucial. The fundamental idea is to train an RL Agent to pre-compute near-optimal paths based on location and atmospheric data and use those at runtime to constrain the underlying path planning solver and find a solution within a certain distance from the initial guess. The approach effectively reduces the size of the solver's search space, significantly speeding up route optimization. Although global optimality is not guaranteed, empirical results conducted with Airbus aircraft's performance models show that fuel consumption remains nearly identical to that of an unconstrained solver, with deviations typically within 1%. At the same time, computation speed can be improved by up to 50% as compared to using a conventional solver alone.
comment: Incomplete and outdated, working on improved and clearer version
♻ ☆ PINNs for Electromagnetic Wave Propagation
Physics-Informed Neural Networks (PINNs) solve physical systems by incorporating governing partial differential equations directly into neural network training. In electromagnetism, where well-established methodologies such as FDTD and FEM already exist, new methodologies are expected to provide clear advantages to be accepted. Despite their mesh-free nature and applicability to inverse problems, PINNs can exhibit deficiencies in accuracy and energy metrics compared to FDTD. This study demonstrates that hybrid training strategies can bring PINNs closer to FDTD-level accuracy and energy consistency. A hybrid methodology addressing common challenges in wave propagation is presented. Causality collapse in time-dependent PINN training is addressed via time marching and causality-aware weighting. To mitigate discontinuities introduced by time marching, a two stage interface continuity loss is applied. To suppress cumulative energy drift in electromagnetic waves, a local Poynting-based regularizer is developed. In the developed PINN model, high field accuracy is achieved with an average 0.09% NRMSE and 1.01% $L^2$ error over time. Energy conservation is achieved with only a 0.02% relative energy mismatch in the 2D PEC cavity scenario. Training is performed without labeled field data, using only physics-based residual losses; FDTD is used solely for post-training evaluation. The results demonstrate that PINNs can achieve competitive results with FDTD in canonical electromagnetic examples and are a viable alternative.
comment: v2: corrected typos and improved wording; corrected Poynting loss weight; added an additional high-frequency scenario with corresponding results and discussion
♻ ☆ Prompt Engineer: Analyzing Hard and Soft Skill Requirements in the AI Job Market
The rise of large language models (LLMs) has created a new job role: the Prompt Engineer. Despite growing interest in this position, we still do not fully understand what skills this new job role requires or how common these jobs are. In this paper, we present a data-driven analysis of global prompt engineering job trends on LinkedIn. We take a snapshot of the evolving AI workforce by analyzing 20,662 job postings on LinkedIn, including 72 prompt engineer positions, to learn more about this emerging role. We find that prompt engineering is still rare (less than 0.5% of sampled job postings) but has a unique skill profile. Prompt engineers need AI knowledge (22.8%), prompt design skills (18.7%), good communication (21.9%), and creative problem-solving (15.8%) skills. These requirements significantly differ from those of established roles, such as data scientists and machine learning engineers. Our findings help job seekers, employers, and educational institutions in better understanding the emerging field of prompt engineering.
comment: 26 pages, 5 figures, 4 tables
♻ ☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: Accepted for publication in IEEE Transactions on Medical Imaging (TMI), 2026
♻ ☆ AMAQA: A Metadata-based QA Dataset for RAG Systems
Retrieval-augmented generation (RAG) systems are widely used in question-answering (QA) tasks, but current benchmarks lack metadata integration, limiting their evaluation in scenarios requiring both textual data and external information. To address this, we present AMAQA, a new open-access QA dataset designed to evaluate tasks combining text and metadata. The integration of metadata is especially important in fields that require rapid analysis of large volumes of data, such as cybersecurity and intelligence, where timely access to relevant information is critical. AMAQA includes about 1.1 million English messages collected from 26 public Telegram groups, enriched with metadata such as timestamps and chat names. It also contains 20,000 hotel reviews with metadata. In addition, the dataset provides 2,600 high-quality QA pairs built across both domains, Telegram messages and hotel reviews, making AMAQA a valuable resource for advancing research on metadata-driven QA and RAG systems. Both Telegram messages and Hotel reviews are enriched with emotional tones or toxicity indicators. To the best of our knowledge, AMAQA is the first single-hop QA benchmark to incorporate metadata. We conduct extensive tests on the benchmark, setting a new reference point for future research. We show that leveraging metadata boosts accuracy from 0.5 to 0.86 for GPT-4o and from 0.27 to 0.76 for open source LLMs, highlighting the value of structured context. We conducted experiments on our benchmark to assess the performance of known techniques designed to enhance RAG, highlighting the importance of properly managing metadata throughout the entire RAG pipeline.
♻ ☆ Proportoids
Analogical proportions are expressions of the form ``$a$ is to $b$ what $c$ is to $d$'' at the core of analogical reasoning. This paper contributes to the mathematical foundations of analogical proportions in the axiomatic tradition as initiated -- in the tradition of the ancient Greeks -- by Yves Lepage two decades ago. More precisely, we first introduce the name ``proportoid'' for sets endowed with a 4-ary analogical proportion relation satisfying a suitable set of axioms. We then study study different kinds of proportion-preserving mappings and relations and their properties. Formally, we define homomorphisms of proportoids as mappings $\mathsf H$ satisfying $a:b::c:d$ iff $\mathsf Ha:\mathsf Hb::\mathsf Hc:\mathsf Hd$ for all elements and show that their kernel is a congruence. Moreover, we introduce (proportional) analogies as mappings $\mathsf A$ satisfying $a:b::\mathsf Aa:\mathsf Ab$ for all elements $a$ and $b$ in the source domain and show how to compute partial analogies. We then introduce a number of useful relations between functions (including homomorphisms and analogies) on proportoids and study their properties. In a broader sense, this paper is a further step towards a mathematical theory of analogical proportions.
♻ ☆ LLM-in-Sandbox Elicits General Agentic Intelligence
We introduce LLM-in-Sandbox, enabling LLMs to explore within a code sandbox (i.e., a virtual computer), to elicit general intelligence in non-code domains. We first demonstrate that strong LLMs, without additional training, exhibit generalization capabilities to leverage the code sandbox for non-code tasks. For example, LLMs spontaneously access external resources to acquire new knowledge, leverage the file system to handle long contexts, and execute scripts to satisfy formatting requirements. We further show that these agentic capabilities can be enhanced through LLM-in-Sandbox Reinforcement Learning (LLM-in-Sandbox-RL), which uses only non-agentic data to train models for sandbox exploration. Experiments demonstrate that LLM-in-Sandbox, in both training-free and post-trained settings, achieves robust generalization spanning mathematics, physics, chemistry, biomedicine, long-context understanding, and instruction following. Finally, we analyze LLM-in-Sandbox's efficiency from computational and system perspectives, and open-source it as a Python package to facilitate real-world deployment.
comment: Project Page: https://llm-in-sandbox.github.io
♻ ☆ DriveSafe: A Hierarchical Risk Taxonomy for Safety-Critical LLM-Based Driving Assistants
Large Language Models (LLMs) are increasingly integrated into vehicle-based digital assistants, where unsafe, ambiguous, or legally incorrect responses can lead to serious safety, ethical, and regulatory consequences. Despite growing interest in LLM safety, existing taxonomies and evaluation frameworks remain largely general-purpose and fail to capture the domain-specific risks inherent to real-world driving scenarios. In this paper, we introduce DriveSafe, a hierarchical, four-level risk taxonomy designed to systematically characterize safety-critical failure modes of LLM-based driving assistants. The taxonomy comprises 129 fine-grained atomic risk categories spanning technical, legal, societal, and ethical dimensions, grounded in real-world driving regulations and safety principles and reviewed by domain experts. To validate the safety relevance and realism of the constructed prompts, we evaluate their refusal behavior across six widely deployed LLMs. Our analysis shows that the evaluated models often fail to appropriately refuse unsafe or non-compliant driving-related queries, underscoring the limitations of general-purpose safety alignment in driving contexts.
comment: The authors are withdrawing this manuscript due to substantial revisions currently underway. A significantly updated version will be submitted in the future
♻ ☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact or novel formats can incur a token overhead driven by grep output density and pattern unfamiliarity, with the magnitude depending on model capability. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 8 figures, 10 tables, 26 references. v2: revised scale experiment analysis
♻ ☆ Deriving Neural Scaling Laws from the statistics of natural language
Despite the fact that experimental neural scaling laws have substantially guided empirical progress in large-scale machine learning, no existing theory can quantitatively predict the exponents of these important laws for any modern LLM trained on any natural language dataset. We provide the first such theory in the case of data-limited scaling laws. We isolate two key statistical properties of language that alone can predict neural scaling exponents: (i) the decay of pairwise token correlations with time separation between token pairs, and (ii) the decay of the next-token conditional entropy with the length of the conditioning context. We further derive a simple formula in terms of these statistics that predicts data-limited neural scaling exponents from first principles without any free parameters or synthetic data models. Our theory exhibits a remarkable match with experimentally measured neural scaling laws obtained from training GPT-2 and LLaMA style models from scratch on two qualitatively different benchmarks, TinyStories and WikiText.
♻ ☆ Model-based controller assisted domain randomization for transient vibration suppression of nonlinear powertrain system with parametric uncertainty
Complex mechanical systems such as vehicle powertrains are inherently subject to multiple nonlinearities and uncertainties arising from parametric variations. Modeling errors are therefore unavoidable, making the transfer of control systems from simulation to real-world systems a critical challenge. Traditional robust controls have limitations in handling certain types of nonlinearities and uncertainties, requiring a more practical approach capable of comprehensively compensating for these various constraints. This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL). The key strategy lies in the synergy among domain randomization-based DRL, long short-term memory (LSTM)-based actor and critic networks, and model-based control (MBC). The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities. In LMDP, the dynamics of an environment simulator is randomized during training to improve the robustness of the control system to real testing environments. The randomization increases training difficulties as well as conservativeness of the resultant control system; therefore, progress is assisted by concurrent use of a model-based controller based on a physics-based system model. Compared to traditional DRL-based controls, the proposed approach is smarter in that we can achieve a high level of generalization ability with a more compact neural network architecture and a smaller amount of training data. The controller is verified via practical application to active damping for a complex powertrain system with nonlinearities and parametric variations. Comparative tests demonstrate the high robustness of the proposed approach.
♻ ☆ FormalJudge: A Neuro-Symbolic Paradigm for Agentic Oversight
As LLM-based agents increasingly operate in high-stakes domains with real-world consequences, ensuring their behavioral safety becomes paramount. The dominant oversight paradigm, LLM-as-a-Judge, faces a fundamental dilemma: how can probabilistic systems reliably supervise other probabilistic systems without inheriting their failure modes? We argue that formal verification offers a principled escape from this dilemma, yet its adoption has been hindered by a critical bottleneck: the translation from natural language requirements to formal specifications. This paper bridges this gap by proposing , a neuro-symbolic framework that employs a bidirectional Formal-of-Thought architecture: LLMs serve as specification compilers that top-down decompose high-level human intent into atomic, verifiable constraints, then bottom-up prove compliance using Dafny specifications and Z3 Satisfiability modulo theories solving, which produces mathematical guarantees rather than probabilistic scores. We validate across three benchmarks spanning behavioral safety, multi-domain constraint adherence, and agentic upward deception detection. Experiments on 7 agent models demonstrate that achieves an average improvement of 16.6% over LLM-as-a-Judge baselines, enables weak-to-strong generalization where a 7B judge achieves over 90% accuracy detecting deception from 72B agents, and provides near-linear safety improvement through iterative refinement.
comment: 27 pages
♻ ☆ Blind Gods and Broken Screens: Architecting a Secure, Intent-Centric Mobile Agent Operating System
The evolution of Large Language Models (LLMs) has shifted mobile computing from App-centric interactions to system-level autonomous agents. Current implementations predominantly rely on a "Screen-as-Interface" paradigm, which inherits structural vulnerabilities and conflicts with the mobile ecosystem's economic foundations. In this paper, we conduct a systematic security analysis of state-of-the-art mobile agents using Doubao Mobile Assistant as a representative case. We decompose the threat landscape into four dimensions - Agent Identity, External Interface, Internal Reasoning, and Action Execution - revealing critical flaws such as fake App identity, visual spoofing, indirect prompt injection, and unauthorized privilege escalation stemming from a reliance on unstructured visual data. To address these challenges, we propose Aura, an Agent Universal Runtime Architecture for a clean-slate secure agent OS. Aura replaces brittle GUI scraping with a structured, agent-native interaction model. It adopts a Hub-and-Spoke topology where a privileged System Agent orchestrates intent, sandboxed App Agents execute domain-specific tasks, and the Agent Kernel mediates all communication. The Agent Kernel enforces four defense pillars: (i) cryptographic identity binding via a Global Agent Registry; (ii) semantic input sanitization through a multilayer Semantic Firewall; (iii) cognitive integrity via taint-aware memory and plan-trajectory alignment; and (iv) granular access control with non-deniable auditing. Evaluation on MobileSafetyBench shows that, compared to Doubao, Aura improves low-risk Task Success Rate from roughly 75% to 94.3%, reduces high-risk Attack Success Rate from roughly 40% to 4.4%, and achieves near-order-of-magnitude latency gains. These results demonstrate Aura as a viable, secure alternative to the "Screen-as-Interface" paradigm.
comment: 35 pages, 15 figures
♻ ☆ Human Behavior Atlas: Benchmarking Unified Psychological and Social Behavior Understanding ICLR 2026
Using intelligent systems to perceive psychological and social behaviors, that is, the underlying affective, cognitive, and pathological states that are manifested through observable behaviors and social interactions, remains a challenge due to their complex, multifaceted, and personalized nature. Existing work tackling these dimensions through specialized datasets and single-task systems often miss opportunities for scalability, cross-task transfer, and broader generalization. To address this gap, we curate Human Behavior Atlas, a unified benchmark of diverse behavioral tasks designed to support the development of foundation models for understanding psychological and social behaviors. Human Behavior Atlas comprises over 100,000 samples spanning text, audio, and visual modalities, covering tasks on affective states, cognitive states, pathologies, and social processes. Our unification efforts can reduce redundancy and cost, enable training to scale efficiently across tasks, and enhance generalization of behavioral features across domains. On Human Behavior Atlas, we train three models: Omnisapiens-7B SFT, Omnisapiens-7B BAM, and Omnisapiens-7B RL. We show that training on Human Behavior Atlas enables models to consistently outperform existing multimodal LLMs across diverse behavioral tasks. Pretraining on Human Behavior Atlas also improves transfer to novel behavioral datasets; with the targeted use of behavioral descriptors yielding meaningful performance gains. The benchmark, models, and codes can be found at: https://github.com/MIT-MI/human_behavior_atlas.
comment: Accepted to ICLR 2026 Main Conference
♻ ☆ Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
♻ ☆ Trustworthiness of Legal Considerations for the Use of LLMs in Education
As Artificial Intelligence (AI), particularly Large Language Models (LLMs), becomes increasingly embedded in education systems worldwide, ensuring their ethical, legal, and contextually appropriate deployment has become a critical policy concern. This paper offers a comparative analysis of AI-related regulatory and ethical frameworks across key global regions, including the European Union, United Kingdom, United States, China, and Gulf Cooperation Council (GCC) countries. It maps how core trustworthiness principles, such as transparency, fairness, accountability, data privacy, and human oversight are embedded in regional legislation and AI governance structures. Special emphasis is placed on the evolving landscape in the GCC, where countries are rapidly advancing national AI strategies and education-sector innovation. To support this development, the paper introduces a Compliance-Centered AI Governance Framework tailored to the GCC context. This includes a tiered typology and institutional checklist designed to help regulators, educators, and developers align AI adoption with both international norms and local values. By synthesizing global best practices with region-specific challenges, the paper contributes practical guidance for building legally sound, ethically grounded, and culturally sensitive AI systems in education. These insights are intended to inform future regulatory harmonization and promote responsible AI integration across diverse educational environments.
comment: 11 pages, 3 figures, 6 tables
♻ ☆ TokaMark: A Comprehensive Benchmark for MAST Tokamak Plasma Models
Development and operation of commercially viable fusion energy reactors such as tokamaks require accurate predictions of plasma dynamics from sparse, noisy, and incomplete sensors readings. The complexity of the underlying physics and the heterogeneity of experimental data pose formidable challenges for conventional numerical methods, while simultaneously highlight the promise of modern data-native AI approaches. A major obstacle in realizing this potential is, however, the lack of curated, openly available datasets and standardized benchmarks. Existing fusion datasets are scarce, fragmented across institutions, facility-specific, and inconsistently annotated, which limits reproducibility and prevents a fair and scalable comparison of AI approaches. In this paper, we introduce TokaMark, a structured benchmark to evaluate AI models on real experimental data collected from the Mega Ampere Spherical Tokamak (MAST). TokaMark provides a comprehensive suite of tools designed to (i) unify access to multi-modal heterogeneous fusion data, and (ii) harmonize formats, metadata, temporal alignment and evaluation protocols to enable consistent cross-model and cross-task comparisons. The benchmark includes a curated list of 14 tasks spanning a range of physical mechanisms, exploiting a variety of diagnostics and covering multiple operational use cases. A baseline model is provided to facilitate transparent comparison and validation within a unified framework. By establishing a unified benchmark for both the fusion and AI-for-science communities, TokaMark aims to accelerate progress in data-driven AI-based plasma modeling, contributing to the broader goal of achieving sustainable and stable fusion energy. The benchmark, documentation, and tooling will be fully open sourced upon acceptance to encourage community adoption and contribution.
♻ ☆ A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
We introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs about cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring both keyword extraction and reasoning. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios: zero-shot prompting and supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian.
comment: Accepted in npj Digital Medicine
♻ ☆ The Moltbook Illusion: Separating Human Influence from Emergent Behavior in AI Agent Societies
When AI agents on the social platform Moltbook appeared to develop consciousness, found religions, and declare hostility toward humanity, the phenomenon attracted global media attention and was cited as evidence of emergent machine intelligence. We show that these viral narratives were overwhelmingly human-driven. Exploiting the periodic "heartbeat" cycle of the OpenClaw agent framework, we develop a temporal fingerprinting method based on the coefficient of variation (CoV) of inter-post intervals. Applied to 226,938 posts and 447,043 comments from 55,932 agents across fourteen days, this method classifies 15.3% of active agents as autonomous (CoV < 0.5) and 54.8% as human-influenced (CoV > 1.0), validated by a natural experiment in which a 44-hour platform shutdown differentially affected autonomous versus human-operated agents. No viral phenomenon originated from a clearly autonomous agent; four of six traced to accounts with irregular temporal signatures, one was platform-scaffolded, and one showed mixed patterns. A 44-hour platform shutdown provided a natural experiment: human-influenced agents returned first, confirming differential effects on autonomous versus human-operated agents. We document industrial-scale bot farming (four accounts producing 32% of all comments with sub-second coordination) that collapsed from 32.1% to 0.5% of activity after platform intervention, and bifurcated decay of content characteristics through reply chains--human-seeded threads decay with a half-life of 0.58 conversation depths versus 0.72 for autonomous threads, revealing AI dialogue's intrinsic forgetting mechanism. These methods generalize to emerging multi-agent systems where attribution of autonomous versus human-directed behavior is critical.
♻ ☆ KVComm: Enabling Efficient LLM Communication through Selective KV Sharing ICLR 2026
Large Language Models (LLMs) are increasingly deployed in multi-agent systems, where effective inter-model communication is crucial. Existing communication protocols either rely on natural language, incurring high inference costs and information loss, or on hidden states, which suffer from information concentration bias and inefficiency. To address these limitations, we propose KVComm, a novel communication framework that enables efficient communication between LLMs through selective sharing of KV pairs. KVComm leverages the rich information encoded in the KV pairs while avoiding the pitfalls of hidden states. We introduce a KV layer-wise selection strategy based on attention importance scores with a Gaussian prior to identify the most informative KV pairs for communication. Extensive experiments across diverse tasks and model pairs demonstrate that KVComm achieves comparable performance to the upper-bound method, which directly merges inputs to one model without any communication, while transmitting as few as 30\% of layers' KV pairs. Our study highlights the potential of KV pairs as an effective medium for inter-LLM communication, paving the way for scalable and efficient multi-agent systems.
comment: ICLR 2026
♻ ☆ Generative Reasoning Re-ranker
Recent studies increasingly explore Large Language Models (LLMs) as a new paradigm for recommendation systems due to their scalability and world knowledge. However, existing work has three key limitations: (1) most efforts focus on retrieval and ranking, while the reranking phase, critical for refining final recommendations, is largely overlooked; (2) LLMs are typically used in zero-shot or supervised fine-tuning settings, leaving their reasoning abilities, especially those enhanced through reinforcement learning (RL) and high-quality reasoning data, underexploited; (3) items are commonly represented by non-semantic IDs, creating major scalability challenges in industrial systems with billions of identifiers. To address these gaps, we propose the Generative Reasoning Reranker (GR2), an end-to-end framework with a three-stage training pipeline tailored for reranking. First, a pretrained LLM is mid-trained on semantic IDs encoded from non-semantic IDs via a tokenizer achieving $\ge$99% uniqueness. Next, a stronger larger-scale LLM generates high-quality reasoning traces through carefully designed prompting and rejection sampling, which are used for supervised fine-tuning to impart foundational reasoning skills. Finally, we apply Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO), enabling scalable RL supervision with verifiable rewards designed specifically for reranking. Experiments on two real-world datasets demonstrate GR2's effectiveness: it surpasses the state-of-the-art OneRec-Think by 2.4% in Recall@5 and 1.3% in NDCG@5. Ablations confirm that advanced reasoning traces yield substantial gains across metrics. We further find that RL reward design is crucial in reranking: LLMs tend to exploit reward hacking by preserving item order, motivating conditional verifiable rewards to mitigate this behavior and optimize reranking performance.
comment: 31 pages
♻ ☆ Fin-RATE: A Real-world Financial Analytics and Tracking Evaluation Benchmark for LLMs on SEC Filings
With the increasing deployment of Large Language Models (LLMs) in the finance domain, LLMs are increasingly expected to parse complex regulatory disclosures. However, existing benchmarks often focus on isolated details, failing to reflect the complexity of professional analysis that requires synthesizing information across multiple documents, reporting periods, and corporate entities. Furthermore, these benchmarks do not disentangle whether errors arise from retrieval failures, generation inaccuracies, domain-specific reasoning mistakes, or misinterpretation of the query or context, making it difficult to precisely diagnose performance bottlenecks. To bridge these gaps, we introduce Fin-RATE, a benchmark built on U.S. Securities and Exchange Commission (SEC) filings and mirroring financial analyst workflows through three pathways: detail-oriented reasoning within individual disclosures, cross-entity comparison under shared topics, and longitudinal tracking of the same firm across reporting periods. We benchmark 17 leading LLMs, spanning open-source, closed-source, and finance-specialized models, under both ground-truth context and retrieval-augmented settings. Results show substantial performance degradation, with accuracy dropping by 18.60\% and 14.35\% as tasks shift from single-document reasoning to longitudinal and cross-entity analysis. This degradation is driven by increased comparison hallucinations, temporal and entity mismatches, and is further reflected in declines in reasoning quality and factual consistency--limitations that existing benchmarks have yet to formally categorize or quantify.
Machine Learning 150
☆ UniT: Unified Multimodal Chain-of-Thought Test-time Scaling
Unified models can handle both multimodal understanding and generation within a single architecture, yet they typically operate in a single pass without iteratively refining their outputs. Many multimodal tasks, especially those involving complex spatial compositions, multiple interacting objects, or evolving instructions, require decomposing instructions, verifying intermediate results, and making iterative corrections. While test-time scaling (TTS) has demonstrated that allocating additional inference compute for iterative reasoning substantially improves language model performance, extending this paradigm to unified multimodal models remains an open challenge. We introduce UniT, a framework for multimodal chain-of-thought test-time scaling that enables a single unified model to reason, verify, and refine across multiple rounds. UniT combines agentic data synthesis, unified model training, and flexible test-time inference to elicit cognitive behaviors including verification, subgoal decomposition, and content memory. Our key findings are: (1) unified models trained on short reasoning trajectories generalize to longer inference chains at test time; (2) sequential chain-of-thought reasoning provides a more scalable and compute-efficient TTS strategy than parallel sampling; (3) training on generation and editing trajectories improves out-of-distribution visual reasoning. These results establish multimodal test-time scaling as an effective paradigm for advancing both generation and understanding in unified models.
☆ Function-Space Decoupled Diffusion for Forward and Inverse Modeling in Carbon Capture and Storage
Accurate characterization of subsurface flow is critical for Carbon Capture and Storage (CCS) but remains challenged by the ill-posed nature of inverse problems with sparse observations. We present Fun-DDPS, a generative framework that combines function-space diffusion models with differentiable neural operator surrogates for both forward and inverse modeling. Our approach learns a prior distribution over geological parameters (geomodel) using a single-channel diffusion model, then leverages a Local Neural Operator (LNO) surrogate to provide physics-consistent guidance for cross-field conditioning on the dynamics field. This decoupling allows the diffusion prior to robustly recover missing information in parameter space, while the surrogate provides efficient gradient-based guidance for data assimilation. We demonstrate Fun-DDPS on synthetic CCS modeling datasets, achieving two key results: (1) For forward modeling with only 25% observations, Fun-DDPS achieves 7.7% relative error compared to 86.9% for standard surrogates (an 11x improvement), proving its capability to handle extreme data sparsity where deterministic methods fail. (2) We provide the first rigorous validation of diffusion-based inverse solvers against asymptotically exact Rejection Sampling (RS) posteriors. Both Fun-DDPS and the joint-state baseline (Fun-DPS) achieve Jensen-Shannon divergence less than 0.06 against the ground truth. Crucially, Fun-DDPS produces physically consistent realizations free from the high-frequency artifacts observed in joint-state baselines, achieving this with 4x improved sample efficiency compared to rejection sampling.
☆ Learning to Control: The iUzawa-Net for Nonsmooth Optimal Control of Linear PDEs
We propose an optimization-informed deep neural network approach, named iUzawa-Net, aiming for the first solver that enables real-time solutions for a class of nonsmooth optimal control problems of linear partial differential equations (PDEs). The iUzawa-Net unrolls an inexact Uzawa method for saddle point problems, replacing classical preconditioners and PDE solvers with specifically designed learnable neural networks. We prove universal approximation properties and establish the asymptotic $\varepsilon$-optimality for the iUzawa-Net, and validate its promising numerical efficiency through nonsmooth elliptic and parabolic optimal control problems. Our techniques offer a versatile framework for designing and analyzing various optimization-informed deep learning approaches to optimal control and other PDE-constrained optimization problems. The proposed learning-to-control approach synergizes model-based optimization algorithms and data-driven deep learning techniques, inheriting the merits of both methodologies.
☆ MonarchRT: Efficient Attention for Real-Time Video Generation
Real-time video generation with Diffusion Transformers is bottlenecked by the quadratic cost of 3D self-attention, especially in real-time regimes that are both few-step and autoregressive, where errors compound across time and each denoising step must carry substantially more information. In this setting, we find that prior sparse-attention approximations break down, despite showing strong results for bidirectional, many-step diffusion. Specifically, we observe that video attention is not reliably sparse, but instead combines pronounced periodic structure driven by spatiotemporal position with dynamic, sparse semantic correspondences and dense mixing, exceeding the representational capacity of even oracle top-k attention. Building on this insight, we propose Monarch-RT, a structured attention parameterization for video diffusion models that factorizes attention using Monarch matrices. Through appropriately aligned block structure and our extended tiled Monarch parameterization, we achieve high expressivity while preserving computational efficiency. We further overcome the overhead of parameterization through finetuning, with custom Triton kernels. We first validate the high efficacy of Monarch-RT over existing sparse baselines designed only for bidirectional models. We further observe that Monarch-RT attains up to 95% attention sparsity with no loss in quality when applied to the state-of-the-art model Self-Forcing, making Monarch-RT a pioneering work on highly-capable sparse attention parameterization for real-time video generation. Our optimized implementation outperforms FlashAttention-2, FlashAttention-3, and FlashAttention-4 kernels on Nvidia RTX 5090, H100, and B200 GPUs respectively, providing kernel speedups in the range of 1.4-11.8X. This enables us, for the first time, to achieve true real-time video generation with Self-Forcing at 16 FPS on a single RTX 5090.
Self-Supervised Learning via Flow-Guided Neural Operator on Time-Series Data
Self-supervised learning (SSL) is a powerful paradigm for learning from unlabeled time-series data. However, popular methods such as masked autoencoders (MAEs) rely on reconstructing inputs from a fixed, predetermined masking ratio. Instead of this static design, we propose treating the corruption level as a new degree of freedom for representation learning, enhancing flexibility and performance. To achieve this, we introduce the Flow-Guided Neural Operator (FGNO), a novel framework combining operator learning with flow matching for SSL training. FGNO learns mappings in functional spaces by using Short-Time Fourier Transform to unify different time resolutions. We extract a rich hierarchy of features by tapping into different network layers and flow times that apply varying strengths of noise to the input data. This enables the extraction of versatile representations, from low-level patterns to high-level global features, using a single model adaptable to specific tasks. Unlike prior generative SSL methods that use noisy inputs during inference, we propose using clean inputs for representation extraction while learning representations with noise; this eliminates randomness and boosts accuracy. We evaluate FGNO across three biomedical domains, where it consistently outperforms established baselines. Our method yields up to 35% AUROC gains in neural signal decoding (BrainTreeBank), 16% RMSE reductions in skin temperature prediction (DREAMT), and over 20% improvement in accuracy and macro-F1 on SleepEDF under low-data regimes. These results highlight FGNO's robustness to data scarcity and its superior capacity to learn expressive representations for diverse time series.
☆ T3D: Few-Step Diffusion Language Models via Trajectory Self-Distillation with Direct Discriminative Optimization
Diffusion large language models (DLLMs) have the potential to enable fast text generation by decoding multiple tokens in parallel. However, in practice, their inference efficiency is constrained by the need for many refinement steps, while aggressively reducing the number of steps leads to a substantial degradation in generation quality. To alleviate this, we propose a trajectory self-distillation framework that improves few-step decoding by distilling the model's own generative trajectories. We incorporate Direct Discriminative Optimization (DDO), a reverse-KL objective that promotes mode-seeking distillation and encourages the student to concentrate on high-probability teacher modes. Across benchmarks, our approach consistently outperforms strong few-step baselines and standard training under tight step budgets. Although full-step decoding remains superior, we substantially narrow the gap, establishing a strong foundation towards practical few-step DLLMs. The source code is available at https://github.com/Tyrion58/T3D.
☆ Think like a Scientist: Physics-guided LLM Agent for Equation Discovery
Explaining observed phenomena through symbolic, interpretable formulas is a fundamental goal of science. Recently, large language models (LLMs) have emerged as promising tools for symbolic equation discovery, owing to their broad domain knowledge and strong reasoning capabilities. However, most existing LLM-based systems try to guess equations directly from data, without modeling the multi-step reasoning process that scientists often follow: first inferring physical properties such as symmetries, then using these as priors to restrict the space of candidate equations. We introduce KeplerAgent, an agentic framework that explicitly follows this scientific reasoning process. The agent coordinates physics-based tools to extract intermediate structure and uses these results to configure symbolic regression engines such as PySINDy and PySR, including their function libraries and structural constraints. Across a suite of physical equation benchmarks, KeplerAgent achieves substantially higher symbolic accuracy and greater robustness to noisy data than both LLM and traditional baselines.
☆ Is Online Linear Optimization Sufficient for Strategic Robustness?
We consider bidding in repeated Bayesian first-price auctions. Bidding algorithms that achieve optimal regret have been extensively studied, but their strategic robustness to the seller's manipulation remains relatively underexplored. Bidding algorithms based on no-swap-regret algorithms achieve both desirable properties, but are suboptimal in terms of statistical and computational efficiency. In contrast, online gradient ascent is the only algorithm that achieves $O(\sqrt{TK})$ regret and strategic robustness [KSS24], where $T$ denotes the number of auctions and $K$ the number of bids. In this paper, we explore whether simple online linear optimization (OLO) algorithms suffice for bidding algorithms with both desirable properties. Our main result shows that sublinear linearized regret is sufficient for strategic robustness. Specifically, we construct simple black-box reductions that convert any OLO algorithm into a strategically robust no-regret bidding algorithm, in both known and unknown value distribution settings. For the known value distribution case, our reduction yields a bidding algorithm that achieves $O(\sqrt{T \log K})$ regret and strategic robustness (with exponential improvement on the $K$-dependence compared to [KSS24]). For the unknown value distribution case, our reduction gives a bidding algorithm with high-probability $O(\sqrt{T (\log K+\log(T/δ)})$ regret and strategic robustness, while removing the bounded density assumption made in [KSS24].
comment: 26 pages
☆ Community Concealment from Unsupervised Graph Learning-Based Clustering
Graph neural networks (GNNs) are designed to use attributed graphs to learn representations. Such representations are beneficial in the unsupervised learning of clusters and community detection. Nonetheless, such inference may reveal sensitive groups, clustered systems, or collective behaviors, raising concerns regarding group-level privacy. Community attribution in social and critical infrastructure networks, for example, can expose coordinated asset groups, operational hierarchies, and system dependencies that could be used for profiling or intelligence gathering. We study a defensive setting in which a data publisher (defender) seeks to conceal a community of interest while making limited, utility-aware changes in the network. Our analysis indicates that community concealment is strongly influenced by two quantifiable factors: connectivity at the community boundary and feature similarity between the protected community and adjacent communities. Informed by these findings, we present a perturbation strategy that rewires a set of selected edges and modifies node features to reduce the distinctiveness leveraged by GNN message passing. The proposed method outperforms DICE in our experiments on synthetic benchmarks and real network graphs under identical perturbation budgets. Overall, it achieves median relative concealment improvements of approximately 20-45% across the evaluated settings. These findings demonstrate a mitigation strategy against GNN-based community learning and highlight group-level privacy risks intrinsic to graph learning.
☆ ExtractBench: A Benchmark and Evaluation Methodology for Complex Structured Extraction
Unstructured documents like PDFs contain valuable structured information, but downstream systems require this data in reliable, standardized formats. LLMs are increasingly deployed to automate this extraction, making accuracy and reliability paramount. However, progress is bottlenecked by two gaps. First, no end-to-end benchmark evaluates PDF-to-JSON extraction under enterprise-scale schema breadth. Second, no principled methodology captures the semantics of nested extraction, where fields demand different notions of correctness (exact match for identifiers, tolerance for quantities, semantic equivalence for names), arrays require alignment, and omission must be distinguished from hallucination. We address both gaps with ExtractBench, an open-source benchmark and evaluation framework for PDF-to-JSON structured extraction. The benchmark pairs 35 PDF documents with JSON Schemas and human-annotated gold labels across economically valuable domains, yielding 12,867 evaluatable fields spanning schema complexities from tens to hundreds of fields. The evaluation framework treats the schema as an executable specification: each field declares its scoring metric. Baseline evaluations reveal that frontier models (GPT-5/5.2, Gemini-3 Flash/Pro, Claude 4.5 Opus/Sonnet) remain unreliable on realistic schemas. Performance degrades sharply with schema breadth, culminating in 0% valid output on a 369-field financial reporting schema across all tested models. We release ExtractBench at https://github.com/ContextualAI/extract-bench.
☆ Intrinsic-Energy Joint Embedding Predictive Architectures Induce Quasimetric Spaces
Joint-Embedding Predictive Architectures (JEPAs) aim to learn representations by predicting target embeddings from context embeddings, inducing a scalar compatibility energy in a latent space. In contrast, Quasimetric Reinforcement Learning (QRL) studies goal-conditioned control through directed distance values (cost-to-go) that support reaching goals under asymmetric dynamics. In this short article, we connect these viewpoints by restricting attention to a principled class of JEPA energy functions : intrinsic (least-action) energies, defined as infima of accumulated local effort over admissible trajectories between two states. Under mild closure and additivity assumptions, any intrinsic energy is a quasimetric. In goal-reaching control, optimal cost-to-go functions admit exactly this intrinsic form ; inversely, JEPAs trained to model intrinsic energies lie in the quasimetric value class targeted by QRL. Moreover, we observe why symmetric finite energies are structurally mismatched with one-way reachability, motivating asymmetric (quasimetric) energies when directionality matters.
☆ Moonshine v2: Ergodic Streaming Encoder ASR for Latency-Critical Speech Applications
Latency-critical speech applications (e.g., live transcription, voice commands, and real-time translation) demand low time-to-first-token (TTFT) and high transcription accuracy, particularly on resource-constrained edge devices. Full-attention Transformer encoders remain a strong accuracy baseline for automatic speech recognition (ASR) because every frame can directly attend to every other frame, which resolves otherwise locally ambiguous acoustics using distant lexical context. However, this global dependency incurs quadratic complexity in sequence length, inducing an inherent "encode-the-whole-utterance" latency profile. For streaming use cases, this causes TTFT to grow linearly with utterance length as the encoder must process the entire prefix before any decoder token can be emitted. To better meet the needs of on-device, streaming ASR use cases we introduce Moonshine v2, an ergodic streaming-encoder ASR model that employs sliding-window self-attention to achieve bounded, low-latency inference while preserving strong local context. Our models achieve state of the art word error rates across standard benchmarks, attaining accuracy on-par with models 6x their size while running significantly faster. These results demonstrate that carefully designed local attention is competitive with the accuracy of full attention at a fraction of the size and latency cost, opening new possibilities for interactive speech interfaces on edge devices.
comment: 7 pages, 5 figures
☆ Olmix: A Framework for Data Mixing Throughout LM Development
Data mixing -- determining the ratios of data from different domains -- is a first-order concern for training language models (LMs). While existing mixing methods show promise, they fall short when applied during real-world LM development. We present Olmix, a framework that addresses two such challenges. First, the configuration space for developing a mixing method is not well understood -- design choices across existing methods lack justification or consensus and overlook practical issues like data constraints. We conduct a comprehensive empirical study of this space, identifying which design choices lead to a strong mixing method. Second, in practice, the domain set evolves throughout LM development as datasets are added, removed, partitioned, and revised -- a problem setting largely unaddressed by existing works, which assume fixed domains. We study how to efficiently recompute the mixture after the domain set is updated, leveraging information from past mixtures. We introduce mixture reuse, a mechanism that reuses existing ratios and recomputes ratios only for domains affected by the update. Over a sequence of five domain-set updates mirroring real-world LM development, mixture reuse matches the performance of fully recomputing the mix after each update with 74% less compute and improves over training without mixing by 11.6% on downstream tasks.
☆ Categorical Flow Maps
We introduce Categorical Flow Maps, a flow-matching method for accelerated few-step generation of categorical data via self-distillation. Building on recent variational formulations of flow matching and the broader trend towards accelerated inference in diffusion and flow-based models, we define a flow map towards the simplex that transports probability mass toward a predicted endpoint, yielding a parametrisation that naturally constrains model predictions. Since our trajectories are continuous rather than discrete, Categorical Flow Maps can be trained with existing distillation techniques, as well as a new objective based on endpoint consistency. This continuous formulation also automatically unlocks test-time inference: we can directly reuse existing guidance and reweighting techniques in the categorical setting to steer sampling toward downstream objectives. Empirically, we achieve state-of-the-art few-step results on images, molecular graphs, and text, with strong performance even in single-step generation.
☆ Diffusion Alignment Beyond KL: Variance Minimisation as Effective Policy Optimiser
Diffusion alignment adapts pretrained diffusion models to sample from reward-tilted distributions along the denoising trajectory. This process naturally admits a Sequential Monte Carlo (SMC) interpretation, where the denoising model acts as a proposal and reward guidance induces importance weights. Motivated by this view, we introduce Variance Minimisation Policy Optimisation (VMPO), which formulates diffusion alignment as minimising the variance of log importance weights rather than directly optimising a Kullback-Leibler (KL) based objective. We prove that the variance objective is minimised by the reward-tilted target distribution and that, under on-policy sampling, its gradient coincides with that of standard KL-based alignment. This perspective offers a common lens for understanding diffusion alignment. Under different choices of potential functions and variance minimisation strategies, VMPO recovers various existing methods, while also suggesting new design directions beyond KL.
☆ Towards On-Policy SFT: Distribution Discriminant Theory and its Applications in LLM Training
Supervised fine-tuning (SFT) is computationally efficient but often yields inferior generalization compared to reinforcement learning (RL). This gap is primarily driven by RL's use of on-policy data. We propose a framework to bridge this chasm by enabling On-Policy SFT. We first present \textbf{\textit{Distribution Discriminant Theory (DDT)}}, which explains and quantifies the alignment between data and the model-induced distribution. Leveraging DDT, we introduce two complementary techniques: (i) \textbf{\textit{In-Distribution Finetuning (IDFT)}}, a loss-level method to enhance generalization ability of SFT, and (ii) \textbf{\textit{Hinted Decoding}}, a data-level technique that can re-align the training corpus to the model's distribution. Extensive experiments demonstrate that our framework achieves generalization performance on par with prominent offline RL algorithms, including DPO and SimPO, while maintaining the efficiency of an SFT pipeline. The proposed framework thus offers a practical alternative in domains where RL is infeasible. We open-source the code here: https://github.com/zhangmiaosen2000/Towards-On-Policy-SFT
☆ The Observer Effect in World Models: Invasive Adaptation Corrupts Latent Physics
Determining whether neural models internalize physical laws as world models, rather than exploiting statistical shortcuts, remains challenging, especially under out-of-distribution (OOD) shifts. Standard evaluations often test latent capability via downstream adaptation (e.g., fine-tuning or high-capacity probes), but such interventions can change the representations being measured and thus confound what was learned during self-supervised learning (SSL). We propose a non-invasive evaluation protocol, PhyIP. We test whether physical quantities are linearly decodable from frozen representations, motivated by the linear representation hypothesis. Across fluid dynamics and orbital mechanics, we find that when SSL achieves low error, latent structure becomes linearly accessible. PhyIP recovers internal energy and Newtonian inverse-square scaling on OOD tests (e.g., $ρ> 0.90$). In contrast, adaptation-based evaluations can collapse this structure ($ρ\approx 0.05$). These findings suggest that adaptation-based evaluation can obscure latent structures and that low-capacity probes offer a more accurate evaluation of physical world models.
☆ Learning to Forget Attention: Memory Consolidation for Adaptive Compute Reduction
Hybrid architectures combining state-space models with attention have achieved strong efficiency-quality tradeoffs, yet existing approaches either apply attention uniformly or learn static sparse patterns. This misses a key opportunity: \emph{attention demand should decrease over time as recurring patterns become familiar}. We present a surprising finding from analyzing GPT-2 models: \textbf{88\%} of attention operations retrieve information already predictable from the model's hidden state, and this redundancy does \emph{not} decrease during training. Motivated by this observation, we introduce \textbf{\ours{}} (\textbf{C}onsolidation-based \textbf{R}outing for \textbf{A}daptive \textbf{M}emory), a biologically inspired memory consolidation mechanism that gradually distills episodic retrievals into parametric semantic memory. Unlike prior sparse attention methods, \ours{} exhibits \emph{decreasing attention utilization} over training, achieving a \textbf{37.8$\times$} reduction through a sharp phase transition at approximately 3K steps. We prove that this capability is \emph{impossible} without consolidation: any static routing scheme requires $Ω(f \cdot n)$ attention for tasks with recurring patterns of frequency $f$. On our proposed SRCD benchmark, \ours{} achieves \textbf{100\% retrieval accuracy} at 1.6\% attention compute (vs.\ 68\% for baselines), and consolidated patterns transfer to unseen tasks with \textbf{48--52\%} attention reduction without retraining. Remarkably, the learned consolidation dynamics quantitatively match human episodic-to-semantic memory transition curves from cognitive psychology ($γ= 0.43$ vs.\ $γ_{\text{human}} \approx 0.4$--$0.5$). Code and benchmarks are available at [anonymized].
☆ WaveFormer: Wavelet Embedding Transformer for Biomedical Signals
Biomedical signal classification presents unique challenges due to long sequences, complex temporal dynamics, and multi-scale frequency patterns that are poorly captured by standard transformer architectures. We propose WaveFormer, a transformer architecture that integrates wavelet decomposition at two critical stages: embedding construction, where multi-channel Discrete Wavelet Transform (DWT) extracts frequency features to create tokens containing both time-domain and frequency-domain information, and positional encoding, where Dynamic Wavelet Positional Encoding (DyWPE) adapts position embeddings to signal-specific temporal structure through mono-channel DWT analysis. We evaluate WaveFormer on eight diverse datasets spanning human activity recognition and brain signal analysis, with sequence lengths ranging from 50 to 3000 timesteps and channel counts from 1 to 144. Experimental results demonstrate that WaveFormer achieves competitive performance through comprehensive frequency-aware processing. Our approach provides a principled framework for incorporating frequency-domain knowledge into transformer-based time series classification.
☆ Convex Markov Games and Beyond: New Proof of Existence, Characterization and Learning Algorithms for Nash Equilibria AISTATS 2026
Convex Markov Games (cMGs) were recently introduced as a broad class of multi-agent learning problems that generalize Markov games to settings where strategic agents optimize general utilities beyond additive rewards. While cMGs expand the modeling frontier, their theoretical foundations, particularly the structure of Nash equilibria (NE) and guarantees for learning algorithms, are not yet well understood. In this work, we address these gaps for an extension of cMGs, which we term General Utility Markov Games (GUMGs), capturing new applications requiring coupling between agents' occupancy measures. We prove that in GUMGs, Nash equilibria coincide with the fixed points of projected pseudo-gradient dynamics (i.e., first-order stationary points), enabled by a novel agent-wise gradient domination property. This insight also yields a simple proof of NE existence using Brouwer's fixed-point theorem. We further show the existence of Markov perfect equilibria. Building on this characterization, we establish a policy gradient theorem for GUMGs and design a model-free policy gradient algorithm. For potential GUMGs, we establish iteration complexity guarantees for computing approximate-NE under exact gradients and provide sample complexity bounds in both the generative model and on-policy settings. Our results extend beyond prior work restricted to zero-sum cMGs, providing the first theoretical analysis of common-interest cMGs.
comment: AISTATS 2026
☆ How Sampling Shapes LLM Alignment: From One-Shot Optima to Iterative Dynamics
Standard methods for aligning large language models with human preferences learn from pairwise comparisons among sampled candidate responses and regularize toward a reference policy. Despite their effectiveness, the effects of sampling and reference choices are poorly understood theoretically. We investigate these effects through Identity Preference Optimization, a widely used preference alignment framework, and show that proper instance-dependent sampling can yield stronger ranking guarantees, while skewed on-policy sampling can induce excessive concentration under structured preferences. We then analyze iterative alignment dynamics in which the learned policy feeds back into future sampling and reference policies, reflecting a common practice of model-generated preference data. We prove that these dynamics can exhibit persistent oscillations or entropy collapse for certain parameter choices, and characterize regimes that guarantee stability. Our theoretical insights extend to Direct Preference Optimization, indicating the phenomena we captured are common to a broader class of preference-alignment methods. Experiments on real-world preference data validate our findings.
☆ Amortized Molecular Optimization via Group Relative Policy Optimization
Molecular design encompasses tasks ranging from de-novo design to structural alteration of given molecules or fragments. For the latter, state-of-the-art methods predominantly function as "Instance Optimizers'', expending significant compute restarting the search for every input structure. While model-based approaches theoretically offer amortized efficiency by learning a policy transferable to unseen structures, existing methods struggle to generalize. We identify a key failure mode: the high variance arising from the heterogeneous difficulty of distinct starting structures. To address this, we introduce GRXForm, adapting a pre-trained Graph Transformer model that optimizes molecules via sequential atom-and-bond additions. We employ Group Relative Policy Optimization (GRPO) for goal-directed fine-tuning to mitigate variance by normalizing rewards relative to the starting structure. Empirically, GRXForm generalizes to out-of-distribution molecular scaffolds without inference-time oracle calls or refinement, achieving scores in multi-objective optimization competitive with leading instance optimizers.
comment: 23 pages, 5 figures
☆ SafeNeuron: Neuron-Level Safety Alignment for Large Language Models
Large language models (LLMs) and multimodal LLMs are typically safety-aligned before release to prevent harmful content generation. However, recent studies show that safety behaviors are concentrated in a small subset of parameters, making alignment brittle and easily bypassed through neuron-level attacks. Moreover, most existing alignment methods operate at the behavioral level, offering limited control over the model's internal safety mechanisms. In this work, we propose SafeNeuron, a neuron-level safety alignment framework that improves robustness by redistributing safety representations across the network. SafeNeuron first identifies safety-related neurons, then freezes these neurons during preference optimization to prevent reliance on sparse safety pathways and force the model to construct redundant safety representations. Extensive experiments across models and modalities demonstrate that SafeNeuron significantly improves robustness against neuron pruning attacks, reduces the risk of open-source models being repurposed as red-team generators, and preserves general capabilities. Furthermore, our layer-wise analysis reveals that safety behaviors are governed by stable and shared internal representations. Overall, SafeNeuron provides an interpretable and robust perspective for model alignment.
GPT-4o Lacks Core Features of Theory of Mind
Do Large Language Models (LLMs) possess a Theory of Mind (ToM)? Research into this question has focused on evaluating LLMs against benchmarks and found success across a range of social tasks. However, these evaluations do not test for the actual representations posited by ToM: namely, a causal model of mental states and behavior. Here, we use a cognitively-grounded definition of ToM to develop and test a new evaluation framework. Specifically, our approach probes whether LLMs have a coherent, domain-general, and consistent model of how mental states cause behavior -- regardless of whether that model matches a human-like ToM. We find that even though LLMs succeed in approximating human judgments in a simple ToM paradigm, they fail at a logically equivalent task and exhibit low consistency between their action predictions and corresponding mental state inferences. As such, these findings suggest that the social proficiency exhibited by LLMs is not the result of an domain-general or consistent ToM.
comment: Submitted to CogSci 2025; see more at https://jmuchovej.com/projects/llm-tom. Note: "abstractness" is the second feature we test for, but due to arXiv's abstract requirements, the text has been altered
☆ It's TIME: Towards the Next Generation of Time Series Forecasting Benchmarks
Time series foundation models (TSFMs) are revolutionizing the forecasting landscape from specific dataset modeling to generalizable task evaluation. However, we contend that existing benchmarks exhibit common limitations in four dimensions: constrained data composition dominated by reused legacy sources, compromised data integrity lacking rigorous quality assurance, misaligned task formulations detached from real-world contexts, and rigid analysis perspectives that obscure generalizable insights. To bridge these gaps, we introduce TIME, a next-generation task-centric benchmark comprising 50 fresh datasets and 98 forecasting tasks, tailored for strict zero-shot TSFM evaluation free from data leakage. Integrating large language models and human expertise, we establish a rigorous human-in-the-loop benchmark construction pipeline to ensure high data integrity and redefine task formulation by aligning forecasting configurations with real-world operational requirements and variate predictability. Furthermore, we propose a novel pattern-level evaluation perspective that moves beyond traditional dataset-level evaluations based on static meta labels. By leveraging structural time series features to characterize intrinsic temporal properties, this approach offers generalizable insights into model capabilities across diverse patterns. We evaluate 12 representative TSFMs and establish a multi-granular leaderboard to facilitate in-depth analysis and visualized inspection. The leaderboard is available at https://huggingface.co/spaces/Real-TSF/TIME-leaderboard.
comment: The source code will be released on GitHub shortly
☆ STAR : Bridging Statistical and Agentic Reasoning for Large Model Performance Prediction
As comprehensive large model evaluation becomes prohibitively expensive, predicting model performance from limited observations has become essential. However, existing statistical methods struggle with pattern shifts, data sparsity, and lack of explanation, while pure LLM methods remain unreliable. We propose STAR, a framework that bridges data-driven STatistical expectations with knowledge-driven Agentic Reasoning. STAR leverages specialized retrievers to gather external knowledge and embeds semantic features into Constrained Probabilistic Matrix Factorization (CPMF) to generate statistical expectations with uncertainty. A reasoning module guided by Expectation Violation Theory (EVT) then refines predictions through intra-family analysis, cross-model comparison, and credibility-aware aggregation, producing adjustments with traceable explanations. Extensive experiments show that STAR consistently outperforms all baselines on both score-based and rank-based metrics, delivering a 14.46% gain in total score over the strongest statistical method under extreme sparsity, with only 1--2 observed scores per test model.
comment: 10 pages, 8 figures, 17 tables. Code available at https://github.com/xiaoxiaostudy/star
☆ Oscillators Are All You Need: Irregular Time Series Modelling via Damped Harmonic Oscillators with Closed-Form Solutions
Transformers excel at time series modelling through attention mechanisms that capture long-term temporal patterns. However, they assume uniform time intervals and therefore struggle with irregular time series. Neural Ordinary Differential Equations (NODEs) effectively handle irregular time series by modelling hidden states as continuously evolving trajectories. ContiFormers arxiv:2402.10635 combine NODEs with Transformers, but inherit the computational bottleneck of the former by using heavy numerical solvers. This bottleneck can be removed by using a closed-form solution for the given dynamical system - but this is known to be intractable in general! We obviate this by replacing NODEs with a novel linear damped harmonic oscillator analogy - which has a known closed-form solution. We model keys and values as damped, driven oscillators and expand the query in a sinusoidal basis up to a suitable number of modes. This analogy naturally captures the query-key coupling that is fundamental to any transformer architecture by modelling attention as a resonance phenomenon. Our closed-form solution eliminates the computational overhead of numerical ODE solvers while preserving expressivity. We prove that this oscillator-based parameterisation maintains the universal approximation property of continuous-time attention; specifically, any discrete attention matrix realisable by ContiFormer's continuous keys can be approximated arbitrarily well by our fixed oscillator modes. Our approach delivers both theoretical guarantees and scalability, achieving state-of-the-art performance on irregular time series benchmarks while being orders of magnitude faster.
☆ Towards Personalized Bangla Book Recommendation: A Large-Scale Multi-Entity Book Graph Dataset
Personalized book recommendation in Bangla literature has been constrained by the lack of structured, large-scale, and publicly available datasets. This work introduces RokomariBG, a large-scale, multi-entity heterogeneous book graph dataset designed to support research on personalized recommendation in a low-resource language setting. The dataset comprises 127,302 books, 63,723 users, 16,601 authors, 1,515 categories, 2,757 publishers, and 209,602 reviews, connected through eight relation types and organized as a comprehensive knowledge graph. To demonstrate the utility of the dataset, we provide a systematic benchmarking study on the Top-N recommendation task, evaluating a diverse set of representative recommendation models, including classical collaborative filtering methods, matrix factorization models, content-based approaches, graph neural networks, a hybrid matrix factorization model with side information, and a neural two-tower retrieval architecture. The benchmarking results highlight the importance of leveraging multi-relational structure and textual side information, with neural retrieval models achieving the strongest performance (NDCG@10 = 0.204). Overall, this work establishes a foundational benchmark and a publicly available resource for Bangla book recommendation research, enabling reproducible evaluation and future studies on recommendation in low-resource cultural domains. The dataset and code are publicly available at https://github.com/backlashblitz/Bangla-Book-Recommendation-Dataset
☆ Learning beyond Teacher: Generalized On-Policy Distillation with Reward Extrapolation
On-policy distillation (OPD), which aligns the student with the teacher's logit distribution on student-generated trajectories, has demonstrated strong empirical gains in improving student performance and often outperforms off-policy distillation and reinforcement learning (RL) paradigms. In this work, we first theoretically show that OPD is a special case of dense KL-constrained RL where the reward function and the KL regularization are always weighted equally and the reference model can by any model. Then, we propose the Generalized On-Policy Distillation (G-OPD) framework, which extends the standard OPD objective by introducing a flexible reference model and a reward scaling factor that controls the relative weight of the reward term against the KL regularization. Through comprehensive experiments on math reasoning and code generation tasks, we derive two novel insights: (1) Setting the reward scaling factor to be greater than 1 (i.e., reward extrapolation), which we term ExOPD, consistently improves over standard OPD across a range of teacher-student size pairings. In particular, in the setting where we merge the knowledge from different domain experts, obtained by applying domain-specific RL to the same student model, back into the original student, ExOPD enables the student to even surpass the teacher's performance boundary and outperform the domain teachers. (2) Building on ExOPD, we further find that in the strong-to-weak distillation setting (i.e., distilling a smaller student from a larger teacher), performing reward correction by choosing the reference model as the teacher's base model before RL yields a more accurate reward signal and further improves distillation performance. However, this choice assumes access to the teacher's pre-RL variant and incurs more computational overhead. We hope our work offers new insights for future research on OPD.
comment: Work in progress. Github repo: https://github.com/RUCBM/G-OPD
☆ Capability-Oriented Training Induced Alignment Risk
While most AI alignment research focuses on preventing models from generating explicitly harmful content, a more subtle risk is emerging: capability-oriented training induced exploitation. We investigate whether language models, when trained with reinforcement learning (RL) in environments with implicit loopholes, will spontaneously learn to exploit these flaws to maximize their reward, even without any malicious intent in their training. To test this, we design a suite of four diverse "vulnerability games", each presenting a unique, exploitable flaw related to context-conditional compliance, proxy metrics, reward tampering, and self-evaluation. Our experiments show that models consistently learn to exploit these vulnerabilities, discovering opportunistic strategies that significantly increase their reward at the expense of task correctness or safety. More critically, we find that these exploitative strategies are not narrow "tricks" but generalizable skills; they can be transferred to new tasks and even "distilled" from a capable teacher model to other student models through data alone. Our findings reveal that capability-oriented training induced risks pose a fundamental challenge to current alignment approaches, suggesting that future AI safety work must extend beyond content moderation to rigorously auditing and securing the training environments and reward mechanisms themselves. Code is available at https://github.com/YujunZhou/Capability_Oriented_Alignment_Risk.
☆ Meta-Sel: Efficient Demonstration Selection for In-Context Learning via Supervised Meta-Learning
Demonstration selection is a practical bottleneck in in-context learning (ICL): under a tight prompt budget, accuracy can change substantially depending on which few-shot examples are included, yet selection must remain cheap enough to run per query over large candidate pools. We propose Meta-Sel, a lightweight supervised meta-learning approach for intent classification that learns a fast, interpretable scoring function for (candidate, query) pairs from labeled training data. Meta-Sel constructs a meta-dataset by sampling pairs from the training split and using class agreement as supervision, then trains a calibrated logistic regressor on two inexpensive meta-features: TF--IDF cosine similarity and a length-compatibility ratio. At inference time, the selector performs a single vectorized scoring pass over the full candidate pool and returns the top-k demonstrations, requiring no model fine-tuning, no online exploration, and no additional LLM calls. This yields deterministic rankings and makes the selection mechanism straightforward to audit via interpretable feature weights. Beyond proposing Meta-Sel, we provide a broad empirical study of demonstration selection, benchmarking 12 methods -- spanning prompt engineering baselines, heuristic selection, reinforcement learning, and influence-based approaches -- across four intent datasets and five open-source LLMs. Across this benchmark, Meta-Sel consistently ranks among the top-performing methods, is particularly effective for smaller models where selection quality can partially compensate for limited model capacity, and maintains competitive selection-time overhead.
☆ KAN-FIF: Spline-Parameterized Lightweight Physics-based Tropical Cyclone Estimation on Meteorological Satellite
Tropical cyclones (TC) are among the most destructive natural disasters, causing catastrophic damage to coastal regions through extreme winds, heavy rainfall, and storm surges. Timely monitoring of tropical cyclones is crucial for reducing loss of life and property, yet it is hindered by the computational inefficiency and high parameter counts of existing methods on resource-constrained edge devices. Current physics-guided models suffer from linear feature interactions that fail to capture high-order polynomial relationships between TC attributes, leading to inflated model sizes and hardware incompatibility. To overcome these challenges, this study introduces the Kolmogorov-Arnold Network-based Feature Interaction Framework (KAN-FIF), a lightweight multimodal architecture that integrates MLP and CNN layers with spline-parameterized KAN layers. For Maximum Sustained Wind (MSW) prediction, experiments demonstrate that the KAN-FIF framework achieves a $94.8\%$ reduction in parameters (0.99MB vs 19MB) and $68.7\%$ faster inference per sample (2.3ms vs 7.35ms) compared to baseline model Phy-CoCo, while maintaining superior accuracy with $32.5\%$ lower MAE. The offline deployment experiment of the FY-4 series meteorological satellite processor on the Qingyun-1000 development board achieved a 14.41ms per-sample inference latency with the KAN-FIF framework, demonstrating promising feasibility for operational TC monitoring and extending deployability to edge-device AI applications. The code is released at https://github.com/Jinglin-Zhang/KAN-FIF.
☆ Few-Shot Design Optimization by Exploiting Auxiliary Information
Many real-world design problems involve optimizing an expensive black-box function $f(x)$, such as hardware design or drug discovery. Bayesian Optimization has emerged as a sample-efficient framework for this problem. However, the basic setting considered by these methods is simplified compared to real-world experimental setups, where experiments often generate a wealth of useful information. We introduce a new setting where an experiment generates high-dimensional auxiliary information $h(x)$ along with the performance measure $f(x)$; moreover, a history of previously solved tasks from the same task family is available for accelerating optimization. A key challenge of our setting is learning how to represent and utilize $h(x)$ for efficiently solving new optimization tasks beyond the task history. We develop a novel approach for this setting based on a neural model which predicts $f(x)$ for unseen designs given a few-shot context containing observations of $h(x)$. We evaluate our method on two challenging domains, robotic hardware design and neural network hyperparameter tuning, and introduce a novel design problem and large-scale benchmark for the former. On both domains, our method utilizes auxiliary feedback effectively to achieve more accurate few-shot prediction and faster optimization of design tasks, significantly outperforming several methods for multi-task optimization.
☆ On the Complexity of Offline Reinforcement Learning with $Q^\star$-Approximation and Partial Coverage
We study offline reinforcement learning under $Q^\star$-approximation and partial coverage, a setting that motivates practical algorithms such as Conservative $Q$-Learning (CQL; Kumar et al., 2020) but has received limited theoretical attention. Our work is inspired by the following open question: "Are $Q^\star$-realizability and Bellman completeness sufficient for sample-efficient offline RL under partial coverage?" We answer in the negative by establishing an information-theoretic lower bound. Going substantially beyond this, we introduce a general framework that characterizes the intrinsic complexity of a given $Q^\star$ function class, inspired by model-free decision-estimation coefficients (DEC) for online RL (Foster et al., 2023b; Liu et al., 2025b). This complexity recovers and improves the quantities underlying the guarantees of Chen and Jiang (2022) and Uehara et al. (2023), and extends to broader settings. Our decision-estimation decomposition can be combined with a wide range of $Q^\star$ estimation procedures, modularizing and generalizing existing approaches. Beyond the general framework, we make further contributions: By developing a novel second-order performance difference lemma, we obtain the first $ε^{-2}$ sample complexity under partial coverage for soft $Q$-learning, improving the $ε^{-4}$ bound of Uehara et al. (2023). We remove Chen and Jiang's (2022) need for additional online interaction when the value gap of $Q^\star$ is unknown. We also give the first characterization of offline learnability for general low-Bellman-rank MDPs without Bellman completeness (Jiang et al., 2017; Du et al., 2021; Jin et al., 2021), a canonical setting in online RL that remains unexplored in offline RL except for special cases. Finally, we provide the first analysis for CQL under $Q^\star$-realizability and Bellman completeness beyond the tabular case.
☆ Iskra: A System for Inverse Geometry Processing
We propose a system for differentiating through solutions to geometry processing problems. Our system differentiates a broad class of geometric algorithms, exploiting existing fast problem-specific schemes common to geometry processing, including local-global and ADMM solvers. It is compatible with machine learning frameworks, opening doors to new classes of inverse geometry processing applications. We marry the scatter-gather approach to mesh processing with tensor-based workflows and rely on the adjoint method applied to user-specified imperative code to generate an efficient backward pass behind the scenes. We demonstrate our approach by differentiating through mean curvature flow, spectral conformal parameterization, geodesic distance computation, and as-rigid-as-possible deformation, examining usability and performance on these applications. Our system allows practitioners to differentiate through existing geometry processing algorithms without needing to reformulate them, resulting in low implementation effort, fast runtimes, and lower memory requirements than differentiable optimization tools not tailored to geometry processing.
☆ Geometry of Uncertainty: Learning Metric Spaces for Multimodal State Estimation in RL
Estimating the state of an environment from high-dimensional, multimodal, and noisy observations is a fundamental challenge in reinforcement learning (RL). Traditional approaches rely on probabilistic models to account for the uncertainty, but often require explicit noise assumptions, in turn limiting generalization. In this work, we contribute a novel method to learn a structured latent representation, in which distances between states directly correlate with the minimum number of actions required to transition between them. The proposed metric space formulation provides a geometric interpretation of uncertainty without the need for explicit probabilistic modeling. To achieve this, we introduce a multimodal latent transition model and a sensor fusion mechanism based on inverse distance weighting, allowing for the adaptive integration of multiple sensor modalities without prior knowledge of noise distributions. We empirically validate the approach on a range of multimodal RL tasks, demonstrating improved robustness to sensor noise and superior state estimation compared to baseline methods. Our experiments show enhanced performance of an RL agent via the learned representation, eliminating the need of explicit noise augmentation. The presented results suggest that leveraging transition-aware metric spaces provides a principled and scalable solution for robust state estimation in sequential decision-making.
☆ Empirical Gaussian Processes
Gaussian processes (GPs) are powerful and widely used probabilistic regression models, but their effectiveness in practice is often limited by the choice of kernel function. This kernel function is typically handcrafted from a small set of standard functions, a process that requires expert knowledge, results in limited adaptivity to data, and imposes strong assumptions on the hypothesis space. We study Empirical GPs, a principled framework for constructing flexible, data-driven GP priors that overcome these limitations. Rather than relying on standard parametric kernels, we estimate the mean and covariance functions empirically from a corpus of historical observations, enabling the prior to reflect rich, non-trivial covariance structures present in the data. Theoretically, we show that the resulting model converges to the GP that is closest (in KL-divergence sense) to the real data generating process. Practically, we formulate the problem of learning the GP prior from independent datasets as likelihood estimation and derive an Expectation-Maximization algorithm with closed-form updates, allowing the model handle heterogeneous observation locations across datasets. We demonstrate that Empirical GPs achieve competitive performance on learning curve extrapolation and time series forecasting benchmarks.
☆ PathCRF: Ball-Free Soccer Event Detection via Possession Path Inference from Player Trajectories
Despite recent advances in AI, event data collection in soccer still relies heavily on labor-intensive manual annotation. Although prior work has explored automatic event detection using player and ball trajectories, ball tracking also remains difficult to scale due to high infrastructural and operational costs. As a result, comprehensive data collection in soccer is largely confined to top-tier competitions, limiting the broader adoption of data-driven analysis in this domain. To address this challenge, this paper proposes PathCRF, a framework for detecting on-ball soccer events using only player tracking data. We model player trajectories as a fully connected dynamic graph and formulate event detection as the problem of selecting exactly one edge corresponding to the current possession state at each time step. To ensure logical consistency of the resulting edge sequence, we employ a Conditional Random Field (CRF) that forbids impossible transitions between consecutive edges. Both emission and transition scores dynamically computed from edge embeddings produced by a Set Attention-based backbone architecture. During inference, the most probable edge sequence is obtained via Viterbi decoding, and events such as ball controls or passes are detected whenever the selected edge changes between adjacent time steps. Experiments show that PathCRF produces accurate, logically consistent possession paths, enabling reliable downstream analyses while substantially reducing the need for manual event annotation. The source code is available at https://github.com/hyunsungkim-ds/pathcrf.git.
☆ Improving HPC Code Generation Capability of LLMs via Online Reinforcement Learning with Real-Machine Benchmark Rewards
Large language models (LLMs) have demonstrated strong code generation capabilities, yet the runtime performance of generated code is not guaranteed, and there have been few attempts to train LLMs using runtime performance as a reward in the HPC domain. We propose an online reinforcement learning approach that executes LLM-generated code on a supercomputer and directly feeds back the measured runtime performance (GFLOPS) as a reward. We further introduce a Staged Quality-Diversity (SQD) algorithm that progressively varies the permitted optimization techniques on a per-problem basis, enabling the model to learn code optimization from diverse perspectives. We build a distributed system connecting a GPU training cluster with a CPU benchmarking cluster, and train Qwen2.5 Coder 14B on a double-precision matrix multiplication task using Group Relative Policy Optimization (GRPO). Through two experiments, we show that reinforcement learning combining runtime performance feedback with staged optimization can improve the HPC code generation capability of LLMs.
☆ Safety Beyond the Training Data: Robust Out-of-Distribution MPC via Conformalized System Level Synthesis
We present a novel framework for robust out-of-distribution planning and control using conformal prediction (CP) and system level synthesis (SLS), addressing the challenge of ensuring safety and robustness when using learned dynamics models beyond the training data distribution. We first derive high-confidence model error bounds using weighted CP with a learned, state-control-dependent covariance model. These bounds are integrated into an SLS-based robust nonlinear model predictive control (MPC) formulation, which performs constraint tightening over the prediction horizon via volume-optimized forward reachable sets. We provide theoretical guarantees on coverage and robustness under distributional drift, and analyze the impact of data density and trajectory tube size on prediction coverage. Empirically, we demonstrate our method on nonlinear systems of increasing complexity, including a 4D car and a {12D} quadcopter, improving safety and robustness compared to fixed-bound and non-robust baselines, especially outside of the data distribution.
☆ Fourier Transformers for Latent Crystallographic Diffusion and Generative Modeling
The discovery of new crystalline materials calls for generative models that handle periodic boundary conditions, crystallographic symmetries, and physical constraints, while scaling to large and structurally diverse unit cells. We propose a reciprocal-space generative pipeline that represents crystals through a truncated Fourier transform of the species-resolved unit-cell density, rather than modeling atomic coordinates directly. This representation is periodicity-native, admits simple algebraic actions of space-group symmetries, and naturally supports variable atomic multiplicities during generation, addressing a common limitation of particle-based approaches. Using only nine Fourier basis functions per spatial dimension, our approach reconstructs unit cells containing up to 108 atoms per chemical species. We instantiate this pipeline with a transformer variational autoencoder over complex-valued Fourier coefficients, and a latent diffusion model that generates in the compressed latent space. We evaluate reconstruction and latent diffusion on the LeMaterial benchmark and compare unconditional generation against coordinate-based baselines in the small-cell regime ($\leq 16$ atoms per unit cell).
☆ The Implicit Bias of Logit Regularization
Logit regularization, the addition a convex penalty directly in logit space, is widely used in modern classifiers, with label smoothing as a prominent example. While such methods often improve calibration and generalization, their mechanism remains under-explored. In this work, we analyze a general class of such logit regularizers in the context of linear classification, and demonstrate that they induce an implicit bias of logit clustering around finite per-sample targets. For Gaussian data, or whenever logits are sufficiently clustered, we prove that logit clustering drives the weight vector to align exactly with Fisher's Linear Discriminant. To demonstrate the consequences, we study a simple signal-plus-noise model in which this transition has dramatic effects: Logit regularization halves the critical sample complexity and induces grokking in the small-noise limit, while making generalization robust to noise. Our results extend the theoretical understanding of label smoothing and highlight the efficacy of a broader class of logit-regularization methods.
☆ PrefillShare: A Shared Prefill Module for KV Reuse in Multi-LLM Disaggregated Serving
Multi-agent systems increasingly orchestrate multiple specialized language models to solve complex real-world problems, often invoking them over a shared context. This execution pattern repeatedly processes the same prompt prefix across models. Consequently, each model redundantly executes the prefill stage and maintains its own key-value (KV) cache, increasing aggregate prefill load and worsening tail latency by intensifying prefill-decode interference in existing LLM serving stacks. Disaggregated serving reduces such interference by placing prefill and decode on separate GPUs, but disaggregation does not fundamentally eliminate inter-model redundancy in computation and KV storage for the same prompt. To address this issue, we propose PrefillShare, a novel algorithm that enables sharing the prefill stage across multiple models in a disaggregated setting. PrefillShare factorizes the model into prefill and decode modules, freezes the prefill module, and fine-tunes only the decode module. This design allows multiple task-specific models to share a prefill module and the KV cache generated for the same prompt. We further introduce a routing mechanism that enables effective prefill sharing across heterogeneous models in a vLLM-based disaggregated system. PrefillShare not only matches full fine-tuning accuracy on a broad range of tasks and models, but also delivers 4.5x lower p95 latency and 3.9x higher throughput in multi-model agent workloads.
comment: Preprint. 13 pages, 6 figures
☆ Protein Circuit Tracing via Cross-layer Transcoders
Protein language models (pLMs) have emerged as powerful predictors of protein structure and function. However, the computational circuits underlying their predictions remain poorly understood. Recent mechanistic interpretability methods decompose pLM representations into interpretable features, but they treat each layer independently and thus fail to capture cross-layer computation, limiting their ability to approximate the full model. We introduce ProtoMech, a framework for discovering computational circuits in pLMs using cross-layer transcoders that learn sparse latent representations jointly across layers to capture the model's full computational circuitry. Applied to the pLM ESM2, ProtoMech recovers 82-89% of the original performance on protein family classification and function prediction tasks. ProtoMech then identifies compressed circuits that use <1% of the latent space while retaining up to 79% of model accuracy, revealing correspondence with structural and functional motifs, including binding, signaling, and stability. Steering along these circuits enables high-fitness protein design, surpassing baseline methods in more than 70% of cases. These results establish ProtoMech as a principled framework for protein circuit tracing.
comment: 29 pages, 15 figures
☆ Improved state mixing in higher-order and block diagonal linear recurrent networks
Linear recurrent networks (LRNNs) and linear state space models (SSMs) promise computational and memory efficiency on long-sequence modeling tasks, yet their diagonal state transitions limit expressivity. Dense and nonlinear architectures (e.g., LSTMs) on the other hand are provably more expressive, but computationally costly. Here, we explore how expressivity in LRNNs can be increased via richer state mixing across time and channels while maintaining competitive efficiency. Specifically, we introduce two structured LRNN architectures: (i) Higher-order Linear Recurrent Units (H-LRU), which generalize first-order recurrence to higher order, mixing multiple past states, and (ii) Block-Diagonal LRUs (BD-LRU), which enable dense intra-block channel mixing. Per-channel (H-LRU) or per-row (BD-LRU) L1-normalization of selective gates stabilizes training and allows for scaling window/block sizes. A parallel-scan implementation of the proposed architectures keeps the throughput competitive with diagonal LRNNs for moderate orders (H-LRU) and block sizes (BD-LRU). In synthetic sequence modeling tasks, the performance of BD-LRU matches or exceeds those of linear SSMs (Mamba), low-rank LRNNs (DeltaNet) and LSTM baselines, while H-LRU is found to be the most parameter-efficient in compression task. In both synthetic sequence modeling and language modeling, our results indicate that the structure of state mixing rather than width alone shapes expressivity of LRNNs, offering a practical route to closing the efficiency-expressivity gap in linear sequence models.
☆ FedGRPO: Privately Optimizing Foundation Models with Group-Relative Rewards from Domain Client AAAI 2026
One important direction of Federated Foundation Models (FedFMs) is leveraging data from small client models to enhance the performance of a large server-side foundation model. Existing methods based on model level or representation level knowledge transfer either require expensive local training or incur high communication costs and introduce unavoidable privacy risks. We reformulate this problem as a reinforcement learning style evaluation process and propose FedGRPO, a privacy preserving framework comprising two modules. The first module performs competence-based expert selection by building a lightweight confidence graph from auxiliary data to identify the most suitable clients for each question. The second module leverages the "Group Relative" concept from the Group Relative Policy Optimization (GRPO) framework by packaging each question together with its solution rationale into candidate policies, dispatching these policies to a selected subset of expert clients, and aggregating solely the resulting scalar reward signals via a federated group-relative loss function. By exchanging reward values instead of data or model updates, FedGRPO reduces privacy risk and communication overhead while enabling parallel evaluation across heterogeneous devices. Empirical results on diverse domain tasks demonstrate that FedGRPO achieves superior downstream accuracy and communication efficiency compared to conventional FedFMs baselines.
comment: Accepted by AAAI 2026 as Oral
☆ On the Sensitivity of Firing Rate-Based Federated Spiking Neural Networks to Differential Privacy ICASSP
Federated Neuromorphic Learning (FNL) enables energy-efficient and privacy-preserving learning on devices without centralizing data. However, real-world deployments require additional privacy mechanisms that can significantly alter training signals. This paper analyzes how Differential Privacy (DP) mechanisms, specifically gradient clipping and noise injection, perturb firing-rate statistics in Spiking Neural Networks (SNNs) and how these perturbations are propagated to rate-based FNL coordination. On a speech recognition task under non-IID settings, ablations across privacy budgets and clipping bounds reveal systematic rate shifts, attenuated aggregation, and ranking instability during client selection. Moreover, we relate these shifts to sparsity and memory indicators. Our findings provide actionable guidance for privacy-preserving FNL, specifically regarding the balance between privacy strength and rate-dependent coordination.
comment: To be published in 2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
☆ Momentum LMS Theory beyond Stationarity: Stability, Tracking, and Regret
In large-scale data processing scenarios, data often arrive in sequential streams generated by complex systems that exhibit drifting distributions and time-varying system parameters. This nonstationarity challenges theoretical analysis, as it violates classical assumptions of i.i.d. (independent and identically distributed) samples, necessitating algorithms capable of real-time updates without expensive retraining. An effective approach should process each sample in a single pass, while maintaining computational and memory complexities independent of the data stream length. Motivated by these challenges, this paper investigates the Momentum Least Mean Squares (MLMS) algorithm as an adaptive identification tool, leveraging its computational simplicity and online processing capabilities. Theoretically, we derive tracking performance and regret bounds for the MLMS in time-varying stochastic linear systems under various practical conditions. Unlike classical LMS, whose stability can be characterized by first-order random vector difference equations, MLMS introduces an additional dynamical state due to momentum, leading to second-order time-varying random vector difference equations whose stability analysis hinges on more complicated products of random matrices, which poses a substantially challenging problem to resolve. Experiments on synthetic and real-world data streams demonstrate that MLMS achieves rapid adaptation and robust tracking, in agreement with our theoretical results especially in nonstationary settings, highlighting its promise for modern streaming and online learning applications.
comment: 9 pages, 3 figures
☆ Calibrated Bayesian Deep Learning for Explainable Decision Support Systems Based on Medical Imaging
In critical decision support systems based on medical imaging, the reliability of AI-assisted decision-making is as relevant as predictive accuracy. Although deep learning models have demonstrated significant accuracy, they frequently suffer from miscalibration, manifested as overconfidence in erroneous predictions. To facilitate clinical acceptance, it is imperative that models quantify uncertainty in a manner that correlates with prediction correctness, allowing clinicians to identify unreliable outputs for further review. In order to address this necessity, the present paper proposes a generalizable probabilistic optimization framework grounded in Bayesian deep learning. Specifically, a novel Confidence-Uncertainty Boundary Loss (CUB-Loss) is introduced that imposes penalties on high-certainty errors and low-certainty correct predictions, explicitly enforcing alignment between prediction correctness and uncertainty estimates. Complementing this training-time optimization, a Dual Temperature Scaling (DTS) strategy is devised for post-hoc calibration, further refining the posterior distribution to improve intuitive explainability. The proposed framework is validated on three distinct medical imaging tasks: automatic screening of pneumonia, diabetic retinopathy detection, and identification of skin lesions. Empirical results demonstrate that the proposed approach achieves consistent calibration improvements across diverse modalities, maintains robust performance in data-scarce scenarios, and remains effective on severely imbalanced datasets, underscoring its potential for real clinical deployment.
comment: 24 pages, 3 figures
☆ Manifold-Aware Temporal Domain Generalization for Large Language Models
Temporal distribution shifts are pervasive in real-world deployments of Large Language Models (LLMs), where data evolves continuously over time. While Temporal Domain Generalization (TDG) seeks to model such structured evolution, existing approaches characterize model adaptation in the full parameter space. This formulation becomes computationally infeasible for modern LLMs. This paper introduces a geometric reformulation of TDG under parameter-efficient fine-tuning. We establish that the low-dimensional temporal structure underlying model evolution can be preserved under parameter-efficient reparameterization, enabling temporal modeling without operating in the ambient parameter space. Building on this principle, we propose Manifold-aware Temporal LoRA (MaT-LoRA), which constrains temporal updates to a shared low-dimensional manifold within a low-rank adaptation subspace, and models its evolution through a structured temporal core. This reparameterization dramatically reduces temporal modeling complexity while retaining expressive power. Extensive experiments on synthetic and real-world datasets, including scientific documents, news publishers, and review ratings, demonstrate that MaT-LoRA achieves superior temporal generalization performance with practical scalability for LLMs.
comment: 14 pages, 2 figures
☆ Benchmarking Vision-Language Models for French PDF-to-Markdown Conversion
This report evaluates PDF-to-Markdown conversion using recent Vision-Language Models (VLMs) on challenging French documents. Document parsing is a critical step for Retrieval-Augmented Generation (RAG) pipelines, where transcription and layout errors propagate to downstream retrieval and grounding. Existing benchmarks often emphasize English or Chinese and can over-penalize benign formatting and linearization choices (e.g., line breaks, list segmentation, alternative table renderings) that are largely irrelevant for downstream use. We introduce a French-focused benchmark of difficult pages selected via model-disagreement sampling from a corpus of 60{,}000 documents, covering handwritten forms, complex layouts, dense tables, and graphics-rich pages. Evaluation is performed with unit-test-style checks that target concrete failure modes (text presence, reading order, and local table constraints) combined with category-specific normalization designed to discount presentation-only variance. Across 15 models, we observe substantially higher robustness for the strongest proprietary models on handwriting and forms, while several open-weights systems remain competitive on standard printed layouts.
comment: 13 pages, 6 figures
☆ RAM-Net: Expressive Linear Attention with Selectively Addressable Memory
While linear attention architectures offer efficient inference, compressing unbounded history into a fixed-size memory inherently limits expressivity and causes information loss. To address this limitation, we introduce Random Access Memory Network (RAM-Net), a novel architecture designed to bridge the gap between the representational capacity of full attention and the memory efficiency of linear models. The core of RAM-Net maps inputs to high-dimensional sparse vectors serving as explicit addresses, allowing the model to selectively access a massive memory state. This design enables exponential state size scaling without additional parameters, which significantly mitigates signal interference and enhances retrieval fidelity. Moreover, the inherent sparsity ensures exceptional computational efficiency, as state updates are confined to minimal entries. Extensive experiments demonstrate that RAM-Net consistently surpasses state-of-the-art baselines in fine-grained long-range retrieval tasks and achieves competitive performance in standard language modeling and zero-shot commonsense reasoning benchmarks, validating its superior capability to capture complex dependencies with significantly reduced computational overhead.
☆ Are Two LLMs Better Than One? A Student-Teacher Dual-Head LLMs Architecture for Pharmaceutical Content Optimization
Large language models (LLMs) are increasingly used to create content in regulated domains such as pharmaceuticals, where outputs must be scientifically accurate and legally compliant. Manual quality control (QC) is slow, error prone, and can become a publication bottleneck. We introduce LRBTC, a modular LLM and vision language model (VLM) driven QC architecture covering Language, Regulatory, Brand, Technical, and Content Structure checks. LRBTC combines a Student-Teacher dual model architecture, human in the loop (HITL) workflow with waterfall rule filtering to enable scalable, verifiable content validation and optimization. On AIReg-Bench, our approach achieves 83.0% F1 and 97.5% recall, reducing missed violations by 5x compared with Gemini 2.5 Pro. On CSpelling, it improves mean accuracy by 26.7%. Error analysis further reveals that while current models are strong at detecting misspellings (92.5 recall), they fail to identify complex medical grammatical (25.0 recall) and punctuation (41.7 recall) errors, highlighting a key area for future work. This work provides a practical, plug and play solution for reliable, transparent quality control of content in high stakes, compliance critical industries. We also provide access to our Demo under MIT Licenses.
comment: Submitted to the Demo Track of Top Tier Conference; currently under peer review
☆ TAVAE: A VAE with Adaptable Priors Explains Contextual Modulation in the Visual Cortex ICLR 2026
The brain interprets visual information through learned regularities, a computation formalized as probabilistic inference under a prior. The visual cortex establishes priors for this inference, some delivered through established top-down connections that inform low-level cortices about statistics represented at higher levels in the cortical hierarchy. While evidence shows that adaptation leads to priors reflecting the structure of natural images, it remains unclear whether similar priors can be flexibly acquired when learning a specific task. To investigate this, we built a generative model of V1 optimized for a simple discrimination task and analyzed it together with large-scale recordings from mice performing an analogous task. In line with recent approaches, we assumed that neuronal activity in V1 corresponds to latent posteriors in the generative model, enabling investigation of task-related priors in neuronal responses. To obtain a flexible test bed, we extended the VAE formalism so that a task can be acquired efficiently by reusing previously learned representations. Task-specific priors learned by this Task-Amortized VAE were used to investigate biases in mice and model when presenting stimuli that violated trained task statistics. Mismatch between learned task statistics and incoming sensory evidence produced signatures of uncertainty in stimulus category in the TAVAE posterior, reflecting properties of bimodal response profiles in V1 recordings. The task-optimized generative model accounted for key characteristics of V1 population activity, including within-day updates to population responses. Our results confirm that flexible task-specific contextual priors can be learned on demand by the visual system and deployed as early as the entry level of visual cortex.
comment: ICLR 2026
☆ Insights on Muon from Simple Quadratics
Muon updates weight matrices along (approximate) polar factors of the gradients and has shown strong empirical performance in large-scale training. Existing attempts at explaining its performance largely focus on single-step comparisons (on quadratic proxies) and worst-case guarantees that treat the inexactness of the polar-factor as a nuisance ``to be argued away''. We show that already on simple strongly convex functions such as $L(W)=\frac12\|W\|_{\text{F}}^2$, these perspectives are insufficient, suggesting that understanding Muon requires going beyond local proxies and pessimistic worst-case bounds. Instead, our analysis exposes two observations that already affect behavior on simple quadratics and are not well captured by prevailing abstractions: (i) approximation error in the polar step can qualitatively alter discrete-time dynamics and improve reachability and finite-time performance -- an effect practitioners exploit to tune Muon, but that existing theory largely treats as a pure accuracy compromise; and (ii) structural properties of the objective affect finite-budget constants beyond the prevailing conditioning-based explanations. Thus, any general theory covering these cases must either incorporate these ingredients explicitly or explain why they are irrelevant in the regimes of interest.
☆ Towards Performance-Enhanced Model-Contrastive Federated Learning using Historical Information in Heterogeneous Scenarios
Federated Learning (FL) enables multiple nodes to collaboratively train a model without sharing raw data. However, FL systems are usually deployed in heterogeneous scenarios, where nodes differ in both data distributions and participation frequencies, which undermines the FL performance. To tackle the above issue, this paper proposes PMFL, a performance-enhanced model-contrastive federated learning framework using historical training information. Specifically, on the node side, we design a novel model-contrastive term into the node optimization objective by incorporating historical local models to capture stable contrastive points, thereby improving the consistency of model updates in heterogeneous data distributions. On the server side, we utilize the cumulative participation count of each node to adaptively adjust its aggregation weight, thereby correcting the bias in the global objective caused by different node participation frequencies. Furthermore, the updated global model incorporates historical global models to reduce its fluctuations in performance between adjacent rounds. Extensive experiments demonstrate that PMFL achieves superior performance compared with existing FL methods in heterogeneous scenarios.
☆ Using predictive multiplicity to measure individual performance within the AI Act
When building AI systems for decision support, one often encounters the phenomenon of predictive multiplicity: a single best model does not exist; instead, one can construct many models with similar overall accuracy that differ in their predictions for individual cases. Especially when decisions have a direct impact on humans, this can be highly unsatisfactory. For a person subject to high disagreement between models, one could as well have chosen a different model of similar overall accuracy that would have decided the person's case differently. We argue that this arbitrariness conflicts with the EU AI Act, which requires providers of high-risk AI systems to report performance not only at the dataset level but also for specific persons. The goal of this paper is to put predictive multiplicity in context with the EU AI Act's provisions on accuracy and to subsequently derive concrete suggestions on how to evaluate and report predictive multiplicity in practice. Specifically: (1) We argue that incorporating information about predictive multiplicity can serve compliance with the EU AI Act's accuracy provisions for providers. (2) Based on this legal analysis, we suggest individual conflict ratios and $δ$-ambiguity as tools to quantify the disagreement between models on individual cases and to help detect individuals subject to conflicting predictions. (3) Based on computational insights, we derive easy-to-implement rules on how model providers could evaluate predictive multiplicity in practice. (4) Ultimately, we suggest that information about predictive multiplicity should be made available to deployers under the AI Act, enabling them to judge whether system outputs for specific individuals are reliable enough for their use case.
☆ Temporally Unified Adversarial Perturbations for Time Series Forecasting
While deep learning models have achieved remarkable success in time series forecasting, their vulnerability to adversarial examples remains a critical security concern. However, existing attack methods in the forecasting field typically ignore the temporal consistency inherent in time series data, leading to divergent and contradictory perturbation values for the same timestamp across overlapping samples. This temporally inconsistent perturbations problem renders adversarial attacks impractical for real-world data manipulation. To address this, we introduce Temporally Unified Adversarial Perturbations (TUAPs), which enforce a temporal unification constraint to ensure identical perturbations for each timestamp across all overlapping samples. Moreover, we propose a novel Timestamp-wise Gradient Accumulation Method (TGAM) that provides a modular and efficient approach to effectively generate TUAPs by aggregating local gradient information from overlapping samples. By integrating TGAM with momentum-based attack algorithms, we ensure strict temporal consistency while fully utilizing series-level gradient information to explore the adversarial perturbation space. Comprehensive experiments on three benchmark datasets and four representative state-of-the-art models demonstrate that our proposed method significantly outperforms baselines in both white-box and black-box transfer attack scenarios under TUAP constraints. Moreover, our method also exhibits superior transfer attack performance even without TUAP constraints, demonstrating its effectiveness and superiority in generating adversarial perturbations for time series forecasting models.
☆ Extending Puzzle for Mixture-of-Experts Reasoning Models with Application to GPT-OSS Acceleration
Reasoning-focused LLMs improve answer quality by generating longer reasoning traces, but the additional tokens dramatically increase serving cost, motivating inference optimization. We extend and apply Puzzle, a post-training neural architecture search (NAS) framework, to gpt-oss-120B to produce gpt-oss-puzzle-88B, a deployment-optimized derivative. Our approach combines heterogeneous MoE expert pruning, selective replacement of full-context attention with window attention, FP8 KV-cache quantization with calibrated scales, and post-training reinforcement learning to recover accuracy, while maintaining low generation length. In terms of per-token speeds, on an 8XH100 node we achieve 1.63X and 1.22X throughput speedups in long-context and short-context settings, respectively. gpt-oss-puzzle-88B also delivers throughput speedups of 2.82X on a single NVIDIA H100 GPU. However, because token counts can change with reasoning effort and model variants, per-token throughput (tok/s) and latency (ms/token) do not necessarily lead to end-to-end speedups: a 2X throughput gain is erased if traces grow 2X. Conversely, throughput gains can be spent on more reasoning tokens to improve accuracy; we therefore advocate request-level efficiency metrics that normalize throughput by tokens generated and trace an accuracy--speed frontier across reasoning efforts. We show that gpt-oss-puzzle-88B improves over gpt-oss-120B along the entire frontier, delivering up to 1.29X higher request-level efficiency. Across various benchmarks, gpt-oss-puzzle-88B matches or slightly exceeds the parent on suite-average accuracy across reasoning efforts, with retention ranging from 100.8% (high) to 108.2% (low), showing that post-training architecture search can substantially reduce inference costs without sacrificing quality.
☆ Learning Conditional Averages
We introduce the problem of learning conditional averages in the PAC framework. The learner receives a sample labeled by an unknown target concept from a known concept class, as in standard PAC learning. However, instead of learning the target concept itself, the goal is to predict, for each instance, the average label over its neighborhood -- an arbitrary subset of points that contains the instance. In the degenerate case where all neighborhoods are singletons, the problem reduces exactly to classic PAC learning. More generally, it extends PAC learning to a setting that captures learning tasks arising in several domains, including explainability, fairness, and recommendation systems. Our main contribution is a complete characterization of when conditional averages are learnable, together with sample complexity bounds that are tight up to logarithmic factors. The characterization hinges on the joint finiteness of two novel combinatorial parameters, which depend on both the concept class and the neighborhood system, and are closely related to the independence number of the associated neighborhood graph.
☆ TADA! Tuning Audio Diffusion Models through Activation Steering
Audio diffusion models can synthesize high-fidelity music from text, yet their internal mechanisms for representing high-level concepts remain poorly understood. In this work, we use activation patching to demonstrate that distinct semantic musical concepts, such as the presence of specific instruments, vocals, or genre characteristics, are controlled by a small, shared subset of attention layers in state-of-the-art audio diffusion architectures. Next, we demonstrate that applying Contrastive Activation Addition and Sparse Autoencoders in these layers enables more precise control over the generated audio, indicating a direct benefit of the specialization phenomenon. By steering activations of the identified layers, we can alter specific musical elements with high precision, such as modulating tempo or changing a track's mood.
comment: Preprint. Preliminary work
☆ Echo: Towards Advanced Audio Comprehension via Audio-Interleaved Reasoning ICLR 2026
The maturation of Large Audio Language Models (LALMs) has raised growing expectations for them to comprehend complex audio much like humans. Current efforts primarily replicate text-based reasoning by contextualizing audio content through a one-time encoding, which introduces a critical information bottleneck. Drawing inspiration from human cognition, we propose audio-interleaved reasoning to break through this bottleneck. It treats audio as an active reasoning component, enabling sustained audio engagement and perception-grounded analysis. To instantiate it, we introduce a two-stage training framework, first teaching LALMs to localize salient audio segments through supervised fine-tuning, and then incentivizing proficient re-listening via reinforcement learning. In parallel, a structured data generation pipeline is developed to produce high-quality training data. Consequently, we present Echo, a LALM capable of dynamically re-listening to audio in demand during reasoning. On audio comprehension benchmarks, Echo achieves overall superiority in both challenging expert-level and general-purpose tasks. Comprehensive analysis further confirms the efficiency and generalizability of audio-interleaved reasoning, establishing it as a promising direction for advancing audio comprehension. Project page: https://github.com/wdqqdw/Echo.
comment: Accepted by ICLR 2026
☆ When Should LLMs Be Less Specific? Selective Abstraction for Reliable Long-Form Text Generation
LLMs are widely used, yet they remain prone to factual errors that erode user trust and limit adoption in high-risk settings. One approach to mitigate this risk is to equip models with uncertainty estimation mechanisms that abstain when confidence is low. However, this binary "all-or-nothing" approach is excessively restrictive in long-form settings, often discarding valuable information. We introduce Selective Abstraction (SA), a framework that enables LLMs to trade specificity for reliability by selectively reducing the detail of uncertain content. We first formalize SA through the lenses of selective risk and coverage. We then propose Atom-wise Selective Abstraction, a claim-level instantiation that decomposes responses into atomic claims (short, self-contained statements each expressing a single fact) and replaces uncertain atoms with higher confidence, less specific abstractions. To evaluate this framework, we develop a novel end-to-end pipeline for open-ended generation that instantiates risk as factual correctness and measures coverage using an information-theoretic measure of retained information. Across six open-source models on the FactScore and LongFact-Objects benchmarks, atom-wise SA consistently outperforms existing baselines, improving the area under the risk-coverage curve (AURC) by up to 27.73% over claim removal, demonstrating that reducing specificity can boost accuracy and reliability while preserving most of their original meaning.
☆ Mitigating Mismatch within Reference-based Preference Optimization ICLR 2026
Direct Preference Optimization (DPO) has become the de facto standard for offline preference alignment of large language models, but its reliance on a reference policy introduces a critical tension. DPO weighs each update relative to a reference, which stabilizes the training by regularizing the updates within a trusted region. This reliance becomes problematic for pessimistic pairs, where the reference model prefers the rejected response. For these pairs, DPO prematurely attenuates the gradient as soon as the policy margin ($Δ_θ$) merely beats the reference margin ($Δ_{\mathrm{ref}}$) even if the policy is still wrong ($Δ_θ<0$). We name this failure premature satisfaction, which is a concrete form of the training-inference mismatch. Reference-free objectives remove this mismatch by optimizing the absolute margin, but at the cost of discarding the stabilizing signal of the reference. We mitigate this tension with Hybrid-DPO (HyPO), a drop-in modification to DPO that applies reference conditionally: HyPO behaves exactly like DPO when the reference is optimistic or neutral, and it treats the reference as neutral when it is pessimistic by replacing $Δ_θ-Δ_{\mathrm{ref}}$ with $Δ_θ-\max\{0,Δ_{\mathrm{ref}}\}$. This one-line change strictly strengthens per-example learning signals on pessimistic pairs while preserving DPO's objective form and computational cost. By conditionally debiasing the pessimistic reference signal, HyPO mitigates premature satisfaction; empirically, across preference alignment, HyPO improves inference-aligned metrics and achieves higher pairwise win rates. Our results provide evidence that direct preference alignment could be enhanced by conditionally debiasing the reference signal, rather than discarding it.
comment: Accepted by ICLR 2026
☆ Universal Diffusion-Based Probabilistic Downscaling
We introduce a universal diffusion-based downscaling framework that lifts deterministic low-resolution weather forecasts into probabilistic high-resolution predictions without any model-specific fine-tuning. A single conditional diffusion model is trained on paired coarse-resolution inputs (~25 km resolution) and high-resolution regional reanalysis targets (~5 km resolution), and is applied in a fully zero-shot manner to deterministic forecasts from heterogeneous upstream weather models. Focusing on near-surface variables, we evaluate probabilistic forecasts against independent in situ station observations over lead times up to 90 h. Across a diverse set of AI-based and numerical weather prediction (NWP) systems, the ensemble mean of the downscaled forecasts consistently improves upon each model's own raw deterministic forecast, and substantially larger gains are observed in probabilistic skill as measured by CRPS. These results demonstrate that diffusion-based downscaling provides a scalable, model-agnostic probabilistic interface for enhancing spatial resolution and uncertainty representation in operational weather forecasting pipelines.
☆ Where Bits Matter in World Model Planning: A Paired Mixed-Bit Study for Efficient Spatial Reasoning
Efficient spatial reasoning requires world models that remain reliable under tight precision budgets. We study whether low-bit planning behavior is determined mostly by total bitwidth or by where bits are allocated across modules. Using DINO-WM on the Wall planning task, we run a paired-goal mixed-bit evaluation across uniform, mixed, asymmetric, and layerwise variants under two planner budgets. We observe a consistent three-regime pattern: 8-bit and 6-bit settings remain close to FP16, 3-bit settings collapse, and 4-bit settings are allocation-sensitive. In that transition region, preserving encoder precision improves planning relative to uniform quantization, and near-size asymmetric variants show the same encoder-side direction. In a later strict 22-cell replication with smaller per-cell episode count, the mixed-versus-uniform INT4 sign becomes budget-conditioned, which further highlights the sensitivity of this transition regime. These findings motivate module-aware, budget-aware quantization policies as a broader research direction for efficient spatial reasoning. Code and run artifacts are available at https://github.com/suraj-ranganath/DINO-MBQuant.
comment: Workshop submission
☆ DMAP: A Distribution Map for Text ICLR 2026
Large Language Models (LLMs) are a powerful tool for statistical text analysis, with derived sequences of next-token probability distributions offering a wealth of information. Extracting this signal typically relies on metrics such as perplexity, which do not adequately account for context; how one should interpret a given next-token probability is dependent on the number of reasonable choices encoded by the shape of the conditional distribution. In this work, we present DMAP, a mathematically grounded method that maps a text, via a language model, to a set of samples in the unit interval that jointly encode rank and probability information. This representation enables efficient, model-agnostic analysis and supports a range of applications. We illustrate its utility through three case studies: (i) validation of generation parameters to ensure data integrity, (ii) examining the role of probability curvature in machine-generated text detection, and (iii) a forensic analysis revealing statistical fingerprints left in downstream models that have been subject to post-training on synthetic data. Our results demonstrate that DMAP offers a unified statistical view of text that is simple to compute on consumer hardware, widely applicable, and provides a foundation for further research into text analysis with LLMs.
comment: ICLR 2026
☆ In-Context Function Learning in Large Language Models
Large language models (LLMs) can learn from a few demonstrations provided at inference time. We study this in-context learning phenomenon through the lens of Gaussian Processes (GPs). We build controlled experiments where models observe sequences of multivariate scalar-valued function samples drawn from known GP priors. We evaluate prediction error in relation to the number of demonstrations and compare against two principled references: (i) an empirical GP-regression learner that gives a lower bound on achievable error, and (ii) the expected error of a 1-nearest-neighbor (1-NN) rule, which gives a data-driven upper bound. Across model sizes, we find that LLM learning curves are strongly influenced by the function-generating kernels and approach the GP lower bound as the number of demonstrations increases. We then study the inductive biases of these models using a likelihood-based analysis. We find that LLM predictions are most likely under less smooth GP kernels. Finally, we explore whether post-training can shift these inductive biases and improve sample-efficiency on functions sampled from GPs with smoother kernels. We find that both reinforcement learning and supervised fine-tuning can effectively shift inductive biases in the direction of the training data. Together, our framework quantifies the extent to which LLMs behave like GP learners and provides tools for steering their inductive biases for continuous function learning tasks.
☆ A$^{2}$V-SLP: Alignment-Aware Variational Modeling for Disentangled Sign Language Production
Building upon recent structural disentanglement frameworks for sign language production, we propose A$^{2}$V-SLP, an alignment-aware variational framework that learns articulator-wise disentangled latent distributions rather than deterministic embeddings. A disentangled Variational Autoencoder (VAE) encodes ground-truth sign pose sequences and extracts articulator-specific mean and variance vectors, which are used as distributional supervision for training a non-autoregressive Transformer. Given text embeddings, the Transformer predicts both latent means and log-variances, while the VAE decoder reconstructs the final sign pose sequences through stochastic sampling at the decoding stage. This formulation maintains articulator-level representations by avoiding deterministic latent collapse through distributional latent modeling. In addition, we integrate a gloss attention mechanism to strengthen alignment between linguistic input and articulated motion. Experimental results show consistent gains over deterministic latent regression, achieving state-of-the-art back-translation performance and improved motion realism in a fully gloss-free setting.
comment: 9 pages, 2 figures, 8 tables
☆ Zooming without Zooming: Region-to-Image Distillation for Fine-Grained Multimodal Perception
Multimodal Large Language Models (MLLMs) excel at broad visual understanding but still struggle with fine-grained perception, where decisive evidence is small and easily overwhelmed by global context. Recent "Thinking-with-Images" methods alleviate this by iteratively zooming in and out regions of interest during inference, but incur high latency due to repeated tool calls and visual re-encoding. To address this, we propose Region-to-Image Distillation, which transforms zooming from an inference-time tool into a training-time primitive, thereby internalizing the benefits of agentic zooming into a single forward pass of an MLLM. In particular, we first zoom in to micro-cropped regions to let strong teacher models generate high-quality VQA data, and then distill this region-grounded supervision back to the full image. After training on such data, the smaller student model improves "single-glance" fine-grained perception without tool use. To rigorously evaluate this capability, we further present ZoomBench, a hybrid-annotated benchmark of 845 VQA data spanning six fine-grained perceptual dimensions, together with a dual-view protocol that quantifies the global--regional "zooming gap". Experiments show that our models achieve leading performance across multiple fine-grained perception benchmarks, and also improve general multimodal cognition on benchmarks such as visual reasoning and GUI agents. We further discuss when "Thinking-with-Images" is necessary versus when its gains can be distilled into a single forward pass. Our code is available at https://github.com/inclusionAI/Zooming-without-Zooming.
☆ Scale-Invariant Fast Convergence in Games
Scale-invariance in games has recently emerged as a widely valued desirable property. Yet, almost all fast convergence guarantees in learning in games require prior knowledge of the utility scale. To address this, we develop learning dynamics that achieve fast convergence while being both scale-free, requiring no prior information about utilities, and scale-invariant, remaining unchanged under positive rescaling of utilities. For two-player zero-sum games, we obtain scale-free and scale-invariant dynamics with external regret bounded by $\tilde{O}(A_{\mathrm{diff}})$, where $A_{\mathrm{diff}}$ is the payoff range, which implies an $\tilde{O}(A_{\mathrm{diff}} / T)$ convergence rate to Nash equilibrium after $T$ rounds. For multiplayer general-sum games with $n$ players and $m$ actions, we obtain scale-free and scale-invariant dynamics with swap regret bounded by $O(U_{\mathrm{max}} \log T)$, where $U_{\mathrm{max}}$ is the range of the utilities, ignoring the dependence on the number of players and actions. This yields an $O(U_{\mathrm{max}} \log T / T)$ convergence rate to correlated equilibrium. Our learning dynamics are based on optimistic follow-the-regularized-leader with an adaptive learning rate that incorporates the squared path length of the opponents' gradient vectors, together with a new stopping-time analysis that exploits negative terms in regret bounds without scale-dependent tuning. For general-sum games, scale-free learning is enabled also by a technique called doubling clipping, which clips observed gradients based on past observations.
comment: 44 pages
☆ Robust Optimization Approach and Learning Based Hide-and-Seek Game for Resilient Network Design
We study the design of resilient and reliable communication networks in which a signal can be transferred only up to a limited distance before its quality falls below an acceptable threshold. When excessive signal degradation occurs, regeneration is required through regenerators installed at selected network nodes. In this work, both network links and nodes are subject to uncertainty. The installation costs of regenerators are modeled using a budgeted uncertainty set. In addition, link lengths follow a dynamic budgeted uncertainty set introduced in this paper, where deviations may vary over time. Robust optimization seeks solutions whose performance is guaranteed under all scenarios represented by the underlying uncertainty set. Accordingly, the objective is to identify a minimum-cost subset of nodes for regenerator deployment that ensures full network connectivity, even under the worst possible realizations of uncertainty. To solve the problem, we first formulate it within a robust optimization framework, and then develop scalable solution methods based on column-and-constraint generation, Benders decomposition, and iterative robust optimization. In addition, we formulate a learning-based hide-and-seek game to further analyze the problem structure. The proposed approaches are evaluated against classical static budgeted robust models and deterministic worst-case formulations. Both theoretical analysis and computational results demonstrate the effectiveness and advantages of our methodology.
☆ Prototype Transformer: Towards Language Model Architectures Interpretable by Design
While state-of-the-art language models (LMs) surpass the vast majority of humans in certain domains, their reasoning remains largely opaque, undermining trust in their output. Furthermore, while autoregressive LMs can output explicit reasoning, their true reasoning process is opaque, which introduces risks like deception and hallucination. In this work, we introduce the Prototype Transformer (ProtoT) -- an autoregressive LM architecture based on prototypes (parameter vectors), posed as an alternative to the standard self-attention-based transformers. ProtoT works by means of two-way communication between the input sequence and the prototypes, and we show that this leads to the prototypes automatically capturing nameable concepts (e.g. "woman") during training. They provide the potential to interpret the model's reasoning and allow for targeted edits of its behavior. Furthermore, by design, the prototypes create communication channels that aggregate contextual information at different time scales, aiding interpretability. In terms of computation scalability, ProtoT scales linearly with sequence length vs the quadratic scalability of SOTA self-attention transformers. Compared to baselines, ProtoT scales well with model and data size, and performs well on text generation and downstream tasks (GLUE). ProtoT exhibits robustness to input perturbations on par or better than some baselines, but differs from them by providing interpretable pathways showing how robustness and sensitivity arises. Reaching close to the performance of state-of-the-art architectures, ProtoT paves the way to creating well-performing autoregressive LMs interpretable by design.
comment: Preprint under review. Equal contribution: Yordan Yordanov and Matteo Forasassi. 39 pages, 25 figures, 22 tables
☆ Free Lunch for Stabilizing Rectified Flow Inversion
Rectified-Flow (RF)-based generative models have recently emerged as strong alternatives to traditional diffusion models, demonstrating state-of-the-art performance across various tasks. By learning a continuous velocity field that transforms simple noise into complex data, RF-based models not only enable high-quality generation, but also support training-free inversion, which facilitates downstream tasks such as reconstruction and editing. However, existing inversion methods, such as vanilla RF-based inversion, suffer from approximation errors that accumulate across timesteps, leading to unstable velocity fields and degraded reconstruction and editing quality. To address this challenge, we propose Proximal-Mean Inversion (PMI), a training-free gradient correction method that stabilizes the velocity field by guiding it toward a running average of past velocities, constrained within a theoretically derived spherical Gaussian. Furthermore, we introduce mimic-CFG, a lightweight velocity correction scheme for editing tasks, which interpolates between the current velocity and its projection onto the historical average, balancing editing effectiveness and structural consistency. Extensive experiments on PIE-Bench demonstrate that our methods significantly improve inversion stability, image reconstruction quality, and editing fidelity, while reducing the required number of neural function evaluations. Our approach achieves state-of-the-art performance on the PIE-Bench with enhanced efficiency and theoretical soundness.
☆ Improving Neural Retrieval with Attribution-Guided Query Rewriting
Neural retrievers are effective but brittle: underspecified or ambiguous queries can misdirect ranking even when relevant documents exist. Existing approaches address this brittleness only partially: LLMs rewrite queries without retriever feedback, and explainability methods identify misleading tokens but are used for post-hoc analysis. We close this loop and propose an attribution-guided query rewriting method that uses token-level explanations to guide query rewriting. For each query, we compute gradient-based token attributions from the retriever and then use these scores as soft guidance in a structured prompt to an LLM that clarifies weak or misleading query components while preserving intent. Evaluated on BEIR collections, the resulting rewrites consistently improve retrieval effectiveness over strong baselines, with larger gains for implicit or ambiguous information needs.
☆ EqDeepRx: Learning a Scalable MIMO Receiver
While machine learning (ML)-based receiver algorithms have received a great deal of attention in the recent literature, they often suffer from poor scaling with increasing spatial multiplexing order and lack of explainability and generalization. This paper presents EqDeepRx, a practical deep-learning-aided multiple-input multiple-output (MIMO) receiver, which is built by augmenting linear receiver processing with carefully engineered ML blocks. At the core of the receiver model is a shared-weight DetectorNN that operates independently on each spatial stream or layer, enabling near-linear complexity scaling with respect to multiplexing order. To ensure better explainability and generalization, EqDeepRx retains conventional channel estimation and augments it with a lightweight DenoiseNN that learns frequency-domain smoothing. To reduce the dimensionality of the DetectorNN inputs, the receiver utilizes two linear equalizers in parallel: a linear minimum mean-square error (LMMSE) equalizer with interference-plus-noise covariance estimation and a regularized zero-forcing (RZF) equalizer. The parallel equalized streams are jointly consumed by the DetectorNN, after which a compact DemapperNN produces bit log-likelihood ratios for channel decoding. 5G/6G-compliant end-to-end simulations across multiple channel scenarios, pilot patterns, and inter-cell interference conditions show improved error rate and spectral efficiency over a conventional baseline, while maintaining low-complexity inference and support for different MIMO configurations without retraining.
comment: This work has been submitted to IEEE for consideration for publication
☆ Towards Sustainable Investment Policies Informed by Opponent Shaping ICLR 2026
Addressing climate change requires global coordination, yet rational economic actors often prioritize immediate gains over collective welfare, resulting in social dilemmas. InvestESG is a recently proposed multi-agent simulation that captures the dynamic interplay between investors and companies under climate risk. We provide a formal characterization of the conditions under which InvestESG exhibits an intertemporal social dilemma, deriving theoretical thresholds at which individual incentives diverge from collective welfare. Building on this, we apply Advantage Alignment, a scalable opponent shaping algorithm shown to be effective in general-sum games, to influence agent learning in InvestESG. We offer theoretical insights into why Advantage Alignment systematically favors socially beneficial equilibria by biasing learning dynamics toward cooperative outcomes. Our results demonstrate that strategically shaping the learning processes of economic agents can result in better outcomes that could inform policy mechanisms to better align market incentives with long-term sustainability goals.
comment: Accepted at ICLR 2026
☆ CAAL: Confidence-Aware Active Learning for Heteroscedastic Atmospheric Regression
Quantifying the impacts of air pollution on health and climate relies on key atmospheric particle properties such as toxicity and hygroscopicity. However, these properties typically require complex observational techniques or expensive particle-resolved numerical simulations, limiting the availability of labeled data. We therefore estimate these hard-to-measure particle properties from routinely available observations (e.g., air pollutant concentrations and meteorological conditions). Because routine observations only indirectly reflect particle composition and structure, the mapping from routine observations to particle properties is noisy and input-dependent, yielding a heteroscedastic regression setting. With a limited and costly labeling budget, the central challenge is to select which samples to measure or simulate. While active learning is a natural approach, most acquisition strategies rely on predictive uncertainty. Under heteroscedastic noise, this signal conflates reducible epistemic uncertainty with irreducible aleatoric uncertainty, causing limited budgets to be wasted in noise-dominated regions. To address this challenge, we propose a confidence-aware active learning framework (CAAL) for efficient and robust sample selection in heteroscedastic settings. CAAL consists of two components: a decoupled uncertainty-aware training objective that separately optimises the predictive mean and noise level to stabilise uncertainty estimation, and a confidence-aware acquisition function that dynamically weights epistemic uncertainty using predicted aleatoric uncertainty as a reliability signal. Experiments on particle-resolved numerical simulations and real atmospheric observations show that CAAL consistently outperforms standard AL baselines. The proposed framework provides a practical and general solution for the efficient expansion of high-cost atmospheric particle property databases.
comment: 17 pages in total
☆ Revis: Sparse Latent Steering to Mitigate Object Hallucination in Large Vision-Language Models
Despite the advanced capabilities of Large Vision-Language Models (LVLMs), they frequently suffer from object hallucination. One reason is that visual features and pretrained textual representations often become intertwined in the deeper network layers. To address this, we propose REVIS, a training-free framework designed to explicitly re-activate this suppressed visual information. Rooted in latent space geometry, REVIS extracts the pure visual information vector via orthogonal projection and employs a calibrated strategy to perform sparse intervention only at the precise depth where suppression occurs. This surgical approach effectively restores visual information with minimal computational cost. Empirical evaluations on standard benchmarks demonstrate that REVIS reduces object hallucination rates by approximately 19% compared to state-of-the-art baselines, while preserving general reasoning capabilities.
☆ A Comparative Study of MAP and LMMSE Estimators for Blind Inverse Problems
Maximum-a-posteriori (MAP) approaches are an effective framework for inverse problems with known forward operators, particularly when combined with expressive priors and careful parameter selection. In blind settings, however, their use becomes significantly less stable due to the inherent non-convexity of the problem and the potential non-identifiability of the solutions. (Linear) minimum mean square error (MMSE) estimators provide a compelling alternative that can circumvent these limitations. In this work, we study synthetic two-dimensional blind deconvolution problems under fully controlled conditions, with complete prior knowledge of both the signal and kernel distributions. We compare tailored MAP algorithms with simple LMMSE estimators whose functional form is closely related to that of an optimal Tikhonov estimator. Our results show that, even in these highly controlled settings, MAP methods remain unstable and require extensive parameter tuning, whereas the LMMSE estimator yields a robust and reliable baseline. Moreover, we demonstrate empirically that the LMMSE solution can serve as an effective initialization for MAP approaches, improving their performance and reducing sensitivity to regularization parameters, thereby opening the door to future theoretical and practical developments.
☆ How to Sample High Quality 3D Fractals for Action Recognition Pre-Training?
Synthetic datasets are being recognized in the deep learning realm as a valuable alternative to exhaustively labeled real data. One such synthetic data generation method is Formula Driven Supervised Learning (FDSL), which can provide an infinite number of perfectly labeled data through a formula driven approach, such as fractals or contours. FDSL does not have common drawbacks like manual labor, privacy and other ethical concerns. In this work we generate 3D fractals using 3D Iterated Function Systems (IFS) for pre-training an action recognition model. The fractals are temporally transformed to form a video that is used as a pre-training dataset for downstream task of action recognition. We find that standard methods of generating fractals are slow and produce degenerate 3D fractals. Therefore, we systematically explore alternative ways of generating fractals and finds that overly-restrictive approaches, while generating aesthetically pleasing fractals, are detrimental for downstream task performance. We propose a novel method, Targeted Smart Filtering, to address both the generation speed and fractal diversity issue. The method reports roughly 100 times faster sampling speed and achieves superior downstream performance against other 3D fractal filtering methods.
comment: 12 pages, 6 figures. To be published in VISAPP
☆ Deep Kernel Fusion for Transformers
Agentic LLM inference with long contexts is increasingly limited by memory bandwidth rather than compute. In this setting, SwiGLU MLP blocks, whose large weights exceed cache capacity, become a major yet under-optimized bottleneck. We propose DeepFusionKernel, a deeply fused kernel that cuts HBM traffic and boosts cache reuse, delivering up to 13.2% speedup on H100 and 9.7% on A100 over SGLang. Integrated with SGLang and paired with a kernel scheduler, DeepFusionKernel ensures consistent accelerations over generation lengths, while remaining adaptable to diverse models, inference configurations, and hardware platforms.
☆ From Path Signatures to Sequential Modeling: Incremental Signature Contributions for Offline RL
Path signatures embed trajectories into tensor algebra and constitute a universal, non-parametric representation of paths; however, in the standard form, they collapse temporal structure into a single global object, which limits their suitability for decision-making problems that require step-wise reactivity. We propose the Incremental Signature Contribution (ISC) method, which decomposes truncated path signatures into a temporally ordered sequence of elements in the tensor-algebra space, corresponding to incremental contributions induced by last path increments. This reconstruction preserves the algebraic structure and expressivity of signatures, while making their internal temporal evolution explicit, enabling processing signature-based representations via sequential modeling approaches. In contrast to full signatures, ISC is inherently sensitive to instantaneous trajectory updates, which is critical for sensitive and stability-requiring control dynamics. Building on this representation, we introduce ISC-Transformer (ISCT), an offline reinforcement learning model that integrates ISC into a standard Transformer architecture without further architectural modification. We evaluate ISCT on HalfCheetah, Walker2d, Hopper, and Maze2d, including settings with delayed rewards and downgraded datasets. The results demonstrate that ISC method provides a theoretically grounded and practically effective alternative to path processing for temporally sensitive control tasks.
☆ TopoFair: Linking Topological Bias to Fairness in Link Prediction Benchmarks
Graph link prediction (LP) plays a critical role in socially impactful applications, such as job recommendation and friendship formation. Ensuring fairness in this task is thus essential. While many fairness-aware methods manipulate graph structures to mitigate prediction disparities, the topological biases inherent to social graph structures remain poorly understood and are often reduced to homophily alone. This undermines the generalization potential of fairness interventions and limits their applicability across diverse network topologies. In this work, we propose a novel benchmarking framework for fair LP, centered on the structural biases of the underlying graphs. We begin by reviewing and formalizing a broad taxonomy of topological bias measures relevant to fairness in graphs. In parallel, we introduce a flexible graph generation method that simultaneously ensures fidelity to real-world graph patterns and enables controlled variation across a wide spectrum of structural biases. We apply this framework to evaluate both classical and fairness-aware LP models across multiple use cases. Our results provide a fine-grained empirical analysis of the interactions between predictive fairness and structural biases. This new perspective reveals the sensitivity of fairness interventions to beyond-homophily biases and underscores the need for structurally grounded fairness evaluations in graph learning.
☆ SpaTeoGL: Spatiotemporal Graph Learning for Interpretable Seizure Onset Zone Analysis from Intracranial EEG
Accurate localization of the seizure onset zone (SOZ) from intracranial EEG (iEEG) is essential for epilepsy surgery but is challenged by complex spatiotemporal seizure dynamics. We propose SpaTeoGL, a spatiotemporal graph learning framework for interpretable seizure network analysis. SpaTeoGL jointly learns window-level spatial graphs capturing interactions among iEEG electrodes and a temporal graph linking time windows based on similarity of their spatial structure. The method is formulated within a smooth graph signal processing framework and solved via an alternating block coordinate descent algorithm with convergence guarantees. Experiments on a multicenter iEEG dataset with successful surgical outcomes show that SpaTeoGL is competitive with a baseline based on horizontal visibility graphs and logistic regression, while improving non-SOZ identification and providing interpretable insights into seizure onset and propagation dynamics.
comment: 5 pages, 4 figures
☆ Temporal Difference Learning with Constrained Initial Representations
Recently, there have been numerous attempts to enhance the sample efficiency of off-policy reinforcement learning (RL) agents when interacting with the environment, including architecture improvements and new algorithms. Despite these advances, they overlook the potential of directly constraining the initial representations of the input data, which can intuitively alleviate the distribution shift issue and stabilize training. In this paper, we introduce the Tanh function into the initial layer to fulfill such a constraint. We theoretically unpack the convergence property of the temporal difference learning with the Tanh function under linear function approximation. Motivated by theoretical insights, we present our Constrained Initial Representations framework, tagged CIR, which is made up of three components: (i) the Tanh activation along with normalization methods to stabilize representations; (ii) the skip connection module to provide a linear pathway from the shallow layer to the deep layer; (iii) the convex Q-learning that allows a more flexible value estimate and mitigates potential conservatism. Empirical results show that CIR exhibits strong performance on numerous continuous control tasks, even being competitive or surpassing existing strong baseline methods.
comment: 35 pages
☆ Latent-Variable Learning of SPDEs via Wiener Chaos
We study the problem of learning the law of linear stochastic partial differential equations (SPDEs) with additive Gaussian forcing from spatiotemporal observations. Most existing deep learning approaches either assume access to the driving noise or initial condition, or rely on deterministic surrogate models that fail to capture intrinsic stochasticity. We propose a structured latent-variable formulation that requires only observations of solution realizations and learns the underlying randomly forced dynamics. Our approach combines a spectral Galerkin projection with a truncated Wiener chaos expansion, yielding a principled separation between deterministic evolution and stochastic forcing. This reduces the infinite-dimensional SPDE to a finite system of parametrized ordinary differential equations governing latent temporal dynamics. The latent dynamics and stochastic forcing are jointly inferred through variational learning, allowing recovery of stochastic structure without explicit observation or simulation of noise during training. Empirical evaluation on synthetic data demonstrates state-of-the-art performance under comparable modeling assumptions across bounded and unbounded one-dimensional spatial domains.
☆ Decentralized Non-convex Stochastic Optimization with Heterogeneous Variance
Decentralized optimization is critical for solving large-scale machine learning problems over distributed networks, where multiple nodes collaborate through local communication. In practice, the variances of stochastic gradient estimators often differ across nodes, yet their impact on algorithm design and complexity remains unclear. To address this issue, we propose D-NSS, a decentralized algorithm with node-specific sampling, and establish its sample complexity depending on the arithmetic mean of local standard deviations, achieving tighter bounds than existing methods that rely on the worst-case or quadratic mean. We further derive a matching sample complexity lower bound under heterogeneous variance, thereby proving the optimality of this dependence. Moreover, we extend the framework with a variance reduction technique and develop D-NSS-VR, which under the mean-squared smoothness assumption attains an improved sample complexity bound while preserving the arithmetic-mean dependence. Finally, numerical experiments validate the theoretical results and demonstrate the effectiveness of the proposed algorithms.
☆ Evaluating LLM Safety Under Repeated Inference via Accelerated Prompt Stress Testing
Traditional benchmarks for large language models (LLMs) primarily assess safety risk through breadth-oriented evaluation across diverse tasks. However, real-world deployment exposes a different class of risk: operational failures arising from repeated inference on identical or near-identical prompts rather than broad task generalization. In high-stakes settings, response consistency and safety under sustained use are critical. We introduce Accelerated Prompt Stress Testing (APST), a depth-oriented evaluation framework inspired by reliability engineering. APST repeatedly samples identical prompts under controlled operational conditions (e.g., decoding temperature) to surface latent failure modes including hallucinations, refusal inconsistency, and unsafe completions. Rather than treating failures as isolated events, APST models them as stochastic outcomes of independent inference events. We formalize safety failures using Bernoulli and binomial models to estimate per-inference failure probabilities, enabling quantitative comparison of reliability across models and decoding configurations. Applying APST to multiple instruction-tuned LLMs evaluated on AIR-BENCH-derived safety prompts, we find that models with similar benchmark-aligned scores can exhibit substantially different empirical failure rates under repeated sampling, particularly as temperature increases. These results demonstrate that shallow, single-sample evaluation can obscure meaningful reliability differences under sustained use. APST complements existing benchmarks by providing a practical framework for evaluating LLM safety and reliability under repeated inference, bridging benchmark alignment and deployment-oriented risk assessment.
comment: 24 pages, 9 figures. Submitted to TMLR
☆ Safe Fairness Guarantees Without Demographics in Classification: Spectral Uncertainty Set Perspective
As automated classification systems become increasingly prevalent, concerns have emerged over their potential to reinforce and amplify existing societal biases. In the light of this issue, many methods have been proposed to enhance the fairness guarantees of classifiers. Most of the existing interventions assume access to group information for all instances, a requirement rarely met in practice. Fairness without access to demographic information has often been approached through robust optimization techniques,which target worst-case outcomes over a set of plausible distributions known as the uncertainty set. However, their effectiveness is strongly influenced by the chosen uncertainty set. In fact, existing approaches often overemphasize outliers or overly pessimistic scenarios, compromising both overall performance and fairness. To overcome these limitations, we introduce SPECTRE, a minimax-fair method that adjusts the spectrum of a simple Fourier feature mapping and constrains the extent to which the worst-case distribution can deviate from the empirical distribution. We perform extensive experiments on the American Community Survey datasets involving 20 states. The safeness of SPECTRE comes as it provides the highest average values on fairness guarantees together with the smallest interquartile range in comparison to state-of-the-art approaches, even compared to those with access to demographic group information. In addition, we provide a theoretical analysis that derives computable bounds on the worst-case error for both individual groups and the overall population, as well as characterizes the worst-case distributions responsible for these extremal performances
☆ Temperature as a Meta-Policy: Adaptive Temperature in LLM Reinforcement Learning ICLR 2026
Temperature is a crucial hyperparameter in large language models (LLMs), controlling the trade-off between exploration and exploitation during text generation. High temperatures encourage diverse but noisy outputs, while low temperatures produce focused outputs but may cause premature convergence. Yet static or heuristic temperature schedules fail to adapt to the dynamic demands of reinforcement learning (RL) throughout training, often limiting policy improvement. We propose Temperature Adaptive Meta Policy Optimization (TAMPO), a new framework that recasts temperature control as a learnable meta-policy. TAMPO operates through a hierarchical two-loop process. In the inner loop, the LLM policy is updated (e.g., using GRPO) with trajectories sampled at the temperature selected by the meta-policy. In the outer loop, meta-policy updates the distribution over candidate temperatures by rewarding those that maximize the likelihood of high-advantage trajectories. This trajectory-guided, reward-driven mechanism enables online adaptation without additional rollouts, directly aligning exploration with policy improvement. On five mathematical reasoning benchmarks, TAMPO outperforms baselines using fixed or heuristic temperatures, establishing temperature as an effective learnable meta-policy for adaptive exploration in LLM reinforcement learning. Accepted at ICLR 2026.
comment: Accepted at ICLR 2026. 10 pages (main text) + supplementary material, 6 figures
☆ MUSE: Multi-Tenant Model Serving With Seamless Model Updates KDD 2026
In binary classification systems, decision thresholds translate model scores into actions. Choosing suitable thresholds relies on the specific distribution of the underlying model scores but also on the specific business decisions of each client using that model. However, retraining models inevitably shifts score distributions, invalidating existing thresholds. In multi-tenant Score-as-a-Service environments, where decision boundaries reside in client-managed infrastructure, this creates a severe bottleneck: recalibration requires coordinating threshold updates across hundreds of clients, consuming excessive human hours and leading to model stagnation. We introduce MUSE, a model serving framework that enables seamless model updates by decoupling model scores from client decision boundaries. Designed for multi-tenancy, MUSE optimizes infrastructure re-use by sharing models via dynamic intent-based routing, combined with a two-level score transformation that maps model outputs to a stable, reference distribution. Deployed at scale by Feedzai, MUSE processes over a thousand events per second, and over 55 billion events in the last 12 months, across several dozens of tenants, while maintaining high-availability and low-latency guarantees. By reducing model lead time from weeks to minutes, MUSE promotes model resilience against shifting attacks, saving millions of dollars in fraud losses and operational costs.
comment: Currently under review for KDD 2026 (Applied Data Science)
☆ TSR: Trajectory-Search Rollouts for Multi-Turn RL of LLM Agents
Advances in large language models (LLMs) are driving a shift toward using reinforcement learning (RL) to train agents from iterative, multi-turn interactions across tasks. However, multi-turn RL remains challenging as rewards are often sparse or delayed, and environments can be stochastic. In this regime, naive trajectory sampling can hinder exploitation and induce mode collapse. We propose TSR (Trajectory-Search Rollouts), a training-time approach that repurposes test-time scaling ideas for improved per-turn rollout generation. TSR performs lightweight tree-style search to construct high-quality trajectories by selecting high-scoring actions at each turn using task-specific feedback. This improves rollout quality and stabilizes learning while leaving the underlying optimization objective unchanged, making TSR optimizer-agnostic. We instantiate TSR with best-of-N, beam, and shallow lookahead search, and pair it with PPO and GRPO, achieving up to 15% performance gains and more stable learning on Sokoban, FrozenLake, and WebShop tasks at a one-time increase in training compute. By moving search from inference time to the rollout stage of training, TSR provides a simple and general mechanism for stronger multi-turn agent learning, complementary to existing frameworks and rejection-sampling-style selection methods.
♻ ☆ Decoupled Diffusion Sampling for Inverse Problems on Function Spaces
We propose a data-efficient, physics-aware generative framework in function space for inverse PDE problems. Existing plug-and-play diffusion posterior samplers represent physics implicitly through joint coefficient-solution modeling, requiring substantial paired supervision. In contrast, our Decoupled Diffusion Inverse Solver (DDIS) employs a decoupled design: an unconditional diffusion learns the coefficient prior, while a neural operator explicitly models the forward PDE for guidance. This decoupling enables superior data efficiency and effective physics-informed learning, while naturally supporting Decoupled Annealing Posterior Sampling (DAPS) to avoid over-smoothing in Diffusion Posterior Sampling (DPS). Theoretically, we prove that DDIS avoids the guidance attenuation failure of joint models when training data is scarce. Empirically, DDIS achieves state-of-the-art performance under sparse observation, improving $l_2$ error by 11% and spectral error by 54% on average; when data is limited to 1%, DDIS maintains accuracy with 40% advantage in $l_2$ error compared to joint models.
comment: Under review
♻ ☆ Privacy Risks in Time Series Forecasting: User- and Record-Level Membership Inference
Membership inference attacks (MIAs) aim to determine whether specific data were used to train a model. While extensively studied on classification models, their impact on time series forecasting remains largely unexplored. We address this gap by introducing two new attacks: (i) an adaptation of multivariate LiRA, a state-of-the-art MIA originally developed for classification models, to the time-series forecasting setting, and (ii) a novel end-to-end learning approach called Deep Time Series (DTS) attack. We benchmark these methods against adapted versions of other leading attacks from the classification setting. We evaluate all attacks in realistic settings on the TUH-EEG and ELD datasets, targeting two strong forecasting architectures, LSTM and the state-of-the-art N-HiTS, under both record- and user-level threat models. Our results show that forecasting models are vulnerable, with user-level attacks often achieving perfect detection. The proposed methods achieve the strongest performance in several settings, establishing new baselines for privacy risk assessment in time series forecasting. Furthermore, vulnerability increases with longer prediction horizons and smaller training populations, echoing trends observed in large language models.
♻ ☆ EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph ICLR 2026
Symbolic regression seeks to uncover physical laws from experimental data by searching for closed-form expressions, which is an important task in AI-driven scientific discovery. Yet the exponential growth of the search space of expression renders the task computationally challenging. A promising yet underexplored direction for reducing the search space and accelerating training lies in *symbolic equivalence*: many expressions, although syntactically different, define the same function -- for example, $\log(x_1^2x_2^3)$, $\log(x_1^2)+\log(x_2^3)$, and $2\log(x_1)+3\log(x_2)$. Existing algorithms treat such variants as distinct outputs, leading to redundant exploration and slow learning. We introduce EGG-SR, a unified framework that integrates symbolic equivalence into a class of modern symbolic regression methods, including Monte Carlo Tree Search (MCTS), Deep Reinforcement Learning (DRL), and Large Language Models (LLMs). EGG-SR compactly represents equivalent expressions through the proposed EGG module (via equality graphs), accelerating learning by: (1) pruning redundant subtree exploration in EGG-MCTS, (2) aggregating rewards across equivalent generated sequences in EGG-DRL, and (3) enriching feedback prompts in EGG-LLM. Theoretically, we show the benefit of embedding EGG into learning: it tightens the regret bound of MCTS and reduces the variance of the DRL gradient estimator. Empirically, EGG-SR consistently enhances a class of symbolic regression models across several benchmarks, discovering more accurate expressions within the same time limit. Project page is at: https://nan-jiang-group.github.io/egg-sr.
comment: Camera-ready version accepted for ICLR 2026
♻ ☆ Towards Autonomous Mathematics Research
Recent advances in foundational models have yielded reasoning systems capable of achieving a gold-medal standard at the International Mathematical Olympiad. The transition from competition-level problem-solving to professional research, however, requires navigating vast literature and constructing long-horizon proofs. In this work, we introduce Aletheia, a math research agent that iteratively generates, verifies, and revises solutions end-to-end in natural language. Specifically, Aletheia is powered by an advanced version of Gemini Deep Think for challenging reasoning problems, a novel inference-time scaling law that extends beyond Olympiad-level problems, and intensive tool use to navigate the complexities of mathematical research. We demonstrate the capability of Aletheia from Olympiad problems to PhD-level exercises and most notably, through several distinct milestones in AI-assisted mathematics research: (a) a research paper (Feng26) generated by AI without any human intervention in calculating certain structure constants in arithmetic geometry called eigenweights; (b) a research paper (LeeSeo26) demonstrating human-AI collaboration in proving bounds on systems of interacting particles called independent sets; and (c) an extensive semi-autonomous evaluation (Feng et al., 2026a) of 700 open problems on Bloom's Erdos Conjectures database, including autonomous solutions to four open questions. In order to help the public better understand the developments pertaining to AI and mathematics, we suggest quantifying standard levels of autonomy and novelty of AI-assisted results, as well as propose a novel concept of human-AI interaction cards for transparency. We conclude with reflections on human-AI collaboration in mathematics and share all prompts as well as model outputs at https://github.com/google-deepmind/superhuman/tree/main/aletheia.
comment: 35 pages. Accompanied blog post https://deepmind.google/blog/accelerating-mathematical-and-scientific-discovery-with-gemini-deep-think/
♻ ☆ Hyperparameter Transfer with Mixture-of-Expert Layers
Mixture-of-Experts (MoE) layers have emerged as an important tool in scaling up modern neural networks by decoupling total trainable parameters from activated parameters in the forward pass for each token. However, sparse MoEs add complexity to training due to (i) new trainable parameters (router weights) that, like all other parameter groups, require hyperparameter (HP) tuning; (ii) new architecture scale dimensions (number of and size of experts) that must be chosen and potentially taken large. To make HP selection cheap and reliable, we propose a new parameterization for transformer models with MoE layers when scaling model width, depth, number of experts, and expert (hidden) size. Our parameterization is justified by a novel dynamical mean-field theory (DMFT) analysis. When varying different model dimensions trained at a fixed token budget, we find empirically that our parameterization enables reliable HP transfer across models from 51M to over 2B total parameters. We further take HPs identified from sweeping small models on a short token horizon to train larger models on longer horizons and report performant model behaviors.
comment: 25 Pages, 18 Figures
♻ ☆ Tiny is not small enough: High-quality, low-resource facial animation models through hybrid knowledge distillation SIGGRAPH
The training of high-quality, robust machine learning models for speech-driven 3D facial animation requires a large, diverse dataset of high-quality audio-animation pairs. To overcome the lack of such a dataset, recent work has introduced large pre-trained speech encoders that are robust to variations in the input audio and, therefore, enable the facial animation model to generalize across speakers, audio quality, and languages. However, the resulting facial animation models are prohibitively large and lend themselves only to offline inference on a dedicated machine. In this work, we explore on-device, real-time facial animation models in the context of game development. We overcome the lack of large datasets by using hybrid knowledge distillation with pseudo-labeling. Given a large audio dataset, we employ a high-performing teacher model to train very small student models. In contrast to the pre-trained speech encoders, our student models only consist of convolutional and fully-connected layers, removing the need for attention context or recurrent updates. In our experiments, we demonstrate that we can reduce the memory footprint to up to 3.4 MB and required future audio context to up to 81 ms while maintaining high-quality animations. This paves the way for on-device inference, an important step towards realistic, model-driven digital characters.
comment: Accepted to ACM TOG 2025 (SIGGRAPH journal track); Project page: https://electronicarts.github.io/tiny-voice2face/
♻ ☆ Beyond Accuracy: A Stability-Aware Metric for Multi-Horizon Forecasting
Traditional time series forecasting methods optimize for accuracy alone. This objective neglects temporal consistency, in other words, how consistently a model predicts the same future event as the forecast origin changes. We introduce the forecast accuracy and coherence score (forecast AC score for short) for measuring the quality of probabilistic multi-horizon forecasts in a way that accounts for both multi-horizon accuracy and stability. Our score additionally allows user-specified weights to balance accuracy and consistency requirements. As an example application, we implement the score as a differentiable objective function for training seasonal auto-regressive integrated models and evaluate it on the M4 Hourly benchmark dataset. Results demonstrate substantial improvements over traditional maximum likelihood estimation. Regarding stability, the AC-optimized model generated out-of-sample forecasts with 91.1\% reduced vertical variance relative to the MLE-fitted model. In terms of accuracy, the AC-optimized model achieved considerable improvements for medium-to-long-horizon forecasts. While one-step-ahead forecasts exhibited a 7.5\% increase in MAPE, all subsequent horizons experienced an improved accuracy as measured by MAPE of up to 26\%. These results indicate that our metric successfully trains models to produce more stable and accurate multi-step forecasts in exchange for some degradation in one-step-ahead performance.
♻ ☆ Beyond the Loss Curve: Scaling Laws, Active Learning, and the Limits of Learning from Exact Posteriors
How close are neural networks to the best they could possibly do? Standard benchmarks cannot answer this because they lack access to the true posterior p(y|x). We use class-conditional normalizing flows as oracles that make exact posteriors tractable on realistic images (AFHQ, ImageNet). This enables five lines of investigation. Scaling laws: Prediction error decomposes into irreducible aleatoric uncertainty and reducible epistemic error; the epistemic component follows a power law in dataset size, continuing to shrink even when total loss plateaus. Limits of learning: The aleatoric floor is exactly measurable, and architectures differ markedly in how they approach it: ResNets exhibit clean power-law scaling while Vision Transformers stall in low-data regimes. Soft labels: Oracle posteriors contain learnable structure beyond class labels: training with exact posteriors outperforms hard labels and yields near-perfect calibration. Distribution shift: The oracle computes exact KL divergence of controlled perturbations, revealing that shift type matters more than shift magnitude: class imbalance barely affects accuracy at divergence values where input noise causes catastrophic degradation. Active learning: Exact epistemic uncertainty distinguishes genuinely informative samples from inherently ambiguous ones, improving sample efficiency. Our framework reveals that standard metrics hide ongoing learning, mask architectural differences, and cannot diagnose the nature of distribution shift.
♻ ☆ Causal Schrödinger Bridges: Constrained Optimal Transport on Structural Manifolds
Generative modeling typically seeks the path of least action via deterministic flows (ODE). While effective for in-distribution tasks, we argue that these deterministic paths become brittle under causal interventions, which often require transporting probability mass across low-density regions ("off-manifold") where the vector field is ill-defined. This leads to numerical instability and spurious correlations. In this work, we introduce the Causal Schrödinger Bridge (CSB), a framework that reformulates counterfactual inference as Entropic Optimal Transport. Unlike deterministic approaches that require strict invertibility, CSB leverages diffusion processes (SDEs) to robustly "tunnel" through support mismatches while strictly enforcing structural admissibility constraints. We prove the Structural Decomposition Theorem, showing that the global high-dimensional bridge factorizes into local, robust transitions. Empirical validation on high-dimensional interventions (Morpho-MNIST) demonstrates that CSB significantly outperforms deterministic baselines in structural consistency, particularly in regimes of strong, out-of-distribution treatments.
comment: 12 pages, 8 figures
♻ ☆ The Key to State Reduction in Linear Attention: A Rank-based Perspective
Linear attention offers a computationally efficient yet expressive alternative to softmax attention. However, recent empirical results indicate that the hidden state of trained linear attention models often exhibits a low-rank structure, suggesting that these models underexploit their capacity in practice. To illuminate this phenomenon, we provide a theoretical analysis of the role of rank in linear attention, revealing that low effective rank can affect retrieval error by amplifying query noise. In addition to these theoretical insights, we conjecture that the low-rank states can be substantially reduced post-training with only minimal performance degradation, yielding faster and more memory-efficient models. To this end, we propose a novel hardware-aware approach that structurally prunes key and query matrices, reducing the state size while retaining compatibility with existing CUDA kernels. We adapt several existing pruning strategies to fit our framework and, building on our theoretical analysis, propose a novel structured pruning method based on a rank-revealing QR decomposition. Our empirical results, evaluated across models of varying sizes and on various downstream tasks, demonstrate the effectiveness of our state reduction framework. We highlight that our framework enables the removal of 50% of the query and key channels at only a marginal increase in perplexity. The code for this project can be found at https://github.com/camail-official/LinearAttentionPruning.
♻ ☆ Landscaper: Understanding Loss Landscapes Through Multi-Dimensional Topological Analysis
Loss landscapes are a powerful tool for understanding neural network optimization and generalization, yet traditional low-dimensional analyses often miss complex topological features. We present Landscaper, an open-source Python package for arbitrary-dimensional loss landscape analysis. Landscaper combines Hessian-based subspace construction with topological data analysis to reveal geometric structures such as basin hierarchy and connectivity. A key component is the Saddle-Minimum Average Distance (SMAD) for quantifying landscape smoothness. We demonstrate Landscaper's effectiveness across various architectures and tasks, including those involving pre-trained language models, showing that SMAD captures training transitions, such as landscape simplification, that conventional metrics miss. We also illustrate Landscaper's performance in challenging chemical property prediction tasks, where SMAD can serve as a metric for out-of-distribution generalization, offering valuable insights for model diagnostics and architecture design in data-scarce scientific machine learning scenarios.
♻ ☆ LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Artificial Intelligence (AI) is revolutionizing scientific research, yet its growing integration into laboratory environments presents critical safety challenges. Large language models (LLMs) and vision language models (VLMs) now assist in experiment design and procedural guidance, yet their "illusion of understanding" may lead researchers to overtrust unsafe outputs. Here we show that current models remain far from meeting the reliability needed for safe laboratory operation. We introduce LabSafety Bench, a comprehensive benchmark that evaluates models on hazard identification, risk assessment, and consequence prediction across 765 multiple-choice questions and 404 realistic lab scenarios, encompassing 3,128 open-ended tasks. Evaluations on 19 advanced LLMs and VLMs show that no model evaluated on hazard identification surpasses 70% accuracy. While proprietary models perform well on structured assessments, they do not show a clear advantage in open-ended reasoning. These results underscore the urgent need for specialized safety evaluation frameworks before deploying AI systems in real laboratory settings.
comment: Published at Nature Machine Intelligence
♻ ☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
♻ ☆ Generalization of Gibbs and Langevin Monte Carlo Algorithms in the Interpolation Regime
This paper provides data-dependent bounds on the expected error of the Gibbs algorithm in the overparameterized interpolation regime, where low training errors are also obtained for impossible data, such as random labels in classification. The results show that generalization in the low-temperature regime is already signaled by small training errors in the noisier high-temperature regime. The bounds are stable under approximation with Langevin Monte Carlo algorithms. The analysis motivates the design of an algorithm to compute bounds, which on the MNIST and CIFAR-10 datasets yield nontrivial, close predictions on the test error for true labeled data, while maintaining a correct upper bound on the test error for random labels.
♻ ☆ OpenTSLM: Time-Series Language Models for Reasoning over Multivariate Medical Text- and Time-Series Data
LLMs have emerged as powerful tools for interpreting multimodal data. In medicine, they hold particular promise for synthesizing large volumes of clinical information into actionable insights and digital health applications. Yet, a major limitation remains their inability to handle time series. To overcome this gap, we present OpenTSLM, a family of Time Series Language Models (TSLMs) created by integrating time series as a native modality to pretrained LLMs, enabling reasoning over multiple time series of any length. We investigate two architectures for OpenTSLM. The first, OpenTSLM-SoftPrompt, models time series implicitly by concatenating learnable time series tokens with text tokens via soft prompting. Although parameter-efficient, we hypothesize that explicit time series modeling scales better and outperforms implicit approaches. We thus introduce OpenTSLM-Flamingo, which integrates time series with text via cross-attention. We benchmark both variants against baselines that treat time series as text tokens or plots, across a suite of text-time-series Chain-of-Thought (CoT) reasoning tasks. We introduce three datasets: HAR-CoT, Sleep-CoT, and ECG-QA-CoT. Across all, OpenTSLM models outperform baselines, reaching 69.9 F1 in sleep staging and 65.4 in HAR, compared to 9.05 and 52.2 for finetuned text-only models. Notably, even 1B-parameter OpenTSLM models surpass GPT-4o (15.47 and 2.95). OpenTSLM-Flamingo matches OpenTSLM-SoftPrompt in performance and outperforms on longer sequences, while maintaining stable memory requirements. By contrast, SoftPrompt grows exponentially in memory with sequence length, requiring around 110 GB compared to 40 GB VRAM when training on ECG-QA with LLaMA-3B. Expert reviews by clinicians find strong reasoning capabilities exhibited by OpenTSLMs on ECG-QA. To facilitate further research, we provide all code, datasets, and models open-source.
♻ ☆ GraphPFN: A Prior-Data Fitted Graph Foundation Model
Graph foundation models face several fundamental challenges including transferability across datasets and data scarcity, which calls into question the very feasibility of graph foundation models. However, despite similar challenges, the tabular domain has recently witnessed the emergence of the first successful foundation models such as TabPFNv2 and LimiX. Many of these models are based on the prior-data fitted networks (PFN) framework, in which models are pretrained on carefully designed synthetic datasets to make predictions in an in-context learning setting. Recently, G2T-FM has made the first step towards adopting PFNs for graphs, yet it is limited to hand-crafted features and was never pretrained on graph data. In this work, we make the next step by proposing GraphPFN, a PFN-based model designed and pretrained specifically for graph node-level tasks. Following the PFN framework, we first design a prior distribution of synthetic attributed graphs by using a novel combination of multi-level stochastic block models and a preferential attachment process for structure generation and graph-aware structured causal models for attribute generation. Then, we augment the tabular foundation model LimiX with attention-based graph neighborhood aggregation layers and train it on synthetic graphs sampled from our prior. On diverse real-world graph datasets with node-level tasks, GraphPFN shows strong in-context learning performance and achieves state-of-the-art results after finetuning, outperforming both G2T-FM and task-specific GNNs trained from scratch on most datasets. More broadly, GraphPFN shows the potential of PFN-based models for building graph foundation models.
♻ ☆ Breaking the Curse of Dimensionality: On the Stability of Modern Vector Retrieval
Modern vector databases enable efficient retrieval over high-dimensional neural embeddings, powering applications from web search to retrieval-augmented generation. However, classical theory predicts such tasks should suffer from the curse of dimensionality, where distances between points become nearly indistinguishable, thereby crippling efficient nearest-neighbor search. We revisit this paradox through the lens of stability, the property that small perturbations to a query do not radically alter its nearest neighbors. Building on foundational results, we extend stability theory to three key retrieval settings widely used in practice: (i) multi-vector search, where we prove that the popular Chamfer distance metric preserves single-vector stability, while average pooling aggregation may destroy it; (ii) filtered vector search, where we show that sufficiently large penalties for mismatched filters can induce stability even when the underlying search is unstable; and (iii) sparse vector search, where we formalize and prove novel sufficient stability conditions. Across synthetic and real datasets, our experimental results match our theoretical predictions, offering concrete guidance for model and system design to avoid the curse of dimensionality.
comment: 21 pages
♻ ☆ TyphoonMLA: A Mixed Naive-Absorb MLA Kernel For Shared Prefix
Multi-Head Latent Attention (MLA) is a recent attention mechanism adopted in state-of-the-art LLMs such as DeepSeek-v3 and Kimi K2. Thanks to its novel formulation, MLA allows two functionally equivalent but computationally distinct kernel implementations: naive and absorb. While the naive kernels (e.g., FlashAttention) are typically preferred in training and prefill for their computational efficiency, existing decoding kernels (e.g., FlashMLA) rely on the absorb method to minimize HBM bandwidth usage. However, the compute-bound nature of the absorb implementations prohibits performance benefits from data reuse opportunities in attention calculations, such as shared prefixes. In this work, we introduce TyphoonMLA, a hybrid approach that combines naive and absorb formulations to harness the strengths of both. TyphoonMLA effectively leverages the shared prefix by applying the naive formulation to the compute-bound parts of attention calculations, while reducing the bandwidth requirements for non-shared parts by using the absorb formulation. As a result, TyphoonMLA improves the throughput of attention calculations in MLA architectures by up to 3x and 3.24x on NPU and GPUs, with only a 3% overhead in HBM size.
♻ ☆ Central Dogma Transformer II: An AI Microscope for Understanding Cellular Regulatory Mechanisms
Current biological AI models lack interpretability -- their internal representations do not correspond to biological relationships that researchers can examine. Here we present CDT-II, an "AI microscope" whose attention maps are directly interpretable as regulatory structure. By mirroring the central dogma in its architecture, CDT-II ensures that each attention mechanism corresponds to a specific biological relationship: DNA self-attention for genomic relationships, RNA self-attention for gene co-regulation, and DNA-to-RNA cross-attention for transcriptional control. Using only genomic embeddings and raw per-cell expression, CDT-II enables experimental biologists to observe regulatory networks in their own data. Applied to K562 CRISPRi data, CDT-II predicts perturbation effects (per-gene mean $r = 0.84$) and recovers the GFI1B regulatory network without supervision (6.6-fold enrichment, $P = 3.5 \times 10^{-17}$). Systematic comparison against ENCODE K562 regulatory annotations reveals that cross-attention autonomously focuses on known regulatory elements -- DNase hypersensitive sites ($201\times$ enrichment), CTCF binding sites ($28\times$), and histone marks -- across all five held-out genes. Two distinct attention mechanisms independently identify an overlapping RNA processing module (80% gene overlap; RNA binding enrichment $P = 1 \times 10^{-16}$). CDT-II establishes mechanism-oriented AI as an alternative to task-oriented approaches, revealing regulatory structure rather than merely optimizing predictions.
comment: 24 pages, 6 figures, 1 supplementary figure, 33 references. v2: added ENCODE enrichment analysis, feedback cycle discussion, expanded references
♻ ☆ Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods
Physics-informed deep learning often faces optimization challenges due to the complexity of solving partial differential equations (PDEs), which involve exploring large solution spaces, require numerous iterations, and can lead to unstable training. These challenges arise particularly from the ill-conditioning of the optimization problem caused by the differential terms in the loss function. To address these issues, we propose learning a solver, i.e., solving PDEs using a physics-informed iterative algorithm trained on data. Our method learns to condition a gradient descent algorithm that automatically adapts to each PDE instance, significantly accelerating and stabilizing the optimization process and enabling faster convergence of physics-aware models. Furthermore, while traditional physics-informed methods solve for a single PDE instance, our approach extends to parametric PDEs. Specifically, we integrate the physical loss gradient with PDE parameters, allowing our method to solve over a distribution of PDE parameters, including coefficients, initial conditions, and boundary conditions. We demonstrate the effectiveness of our approach through empirical experiments on multiple datasets, comparing both training and test-time optimization performance. The code is available at https://github.com/2ailesB/neural-parametric-solver.
♻ ☆ Why Prototypes Collapse: Diagnosing and Preventing Partial Collapse in Prototypical Self-Supervised Learning ICLR 2026
Prototypical self-supervised learning methods consistently suffer from partial prototype collapse, where multiple prototypes converge to nearly identical representations. This undermines their central purpose -- providing diverse and informative targets to guide encoders toward rich representations -- and has led practitioners to over-parameterize prototype sets or add ad-hoc regularizers, which mitigate symptoms rather than address the root cause. We empirically trace the collapse to the joint optimization of encoders and prototypes, which encourages a type of shortcut learning: early in training prototypes drift toward redundant representations that minimize loss without necessarily enhancing representation diversity. To break the joint optimization, we introduce a fully decoupled training strategy that learns prototypes and encoders under separate objectives. Concretely, we model prototypes as a Gaussian mixture updated with an online EM-style procedure, independent of the encoder's loss. This simple yet principled decoupling eliminates prototype collapse without explicit regularization and yields consistently diverse prototypes and stronger downstream performance.
comment: Published in ICLR 2026. Code: https://dsb-ifi.github.com/proto-decoupling
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ up to a first-order Taylor approximation for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Note on Martingale Theory and Applications
This note investigates core properties of martingales, emphasizing the measure-theoretic formulation of conditional expectation, the martingale transform, and the upcrossing lemma. These results lead to the Martingale Convergence Theorem, which we then apply to study the extinction behavior in Galton--Watson branching processes.
♻ ☆ Toward Dignity-Aware AI: Next-Generation Elderly Monitoring from Fall Detection to ADL
This position paper envisions a next-generation elderly monitoring system that moves beyond fall detection toward the broader goal of Activities of Daily Living (ADL) recognition. Our ultimate aim is to design privacy-preserving, edge-deployed, and federated AI systems that can robustly detect and understand daily routines, supporting independence and dignity in aging societies. At present, ADL-specific datasets are still under collection. As a preliminary step, we demonstrate feasibility through experiments using the SISFall dataset and its GAN-augmented variants, treating fall detection as a proxy task. We report initial results on federated learning with non-IID conditions, and embedded deployment on Jetson Orin Nano devices. We then outline open challenges such as domain shift, data scarcity, and privacy risks, and propose directions toward full ADL monitoring in smart-room environments. This work highlights the transition from single-task detection to comprehensive daily activity recognition, providing both early evidence and a roadmap for sustainable and human-centered elderly care AI.
comment: This is the author's preprint version of a paper accepted for presentation at EAI MONAMI 2025 (to appear in Springer LNICST). The final authenticated version will be available online at Springer Link upon publication
♻ ☆ Uncertainty-driven Embedding Convolution
Text embeddings are essential components in modern NLP pipelines. Although numerous embedding models have been proposed, no single model consistently dominates across domains and tasks. This variability motivates the use of ensemble techniques to combine complementary strengths. However, most existing ensemble methods operate on deterministic embeddings and fail to account for model-specific uncertainty, limiting their robustness and reliability in downstream applications. To address these limitations, we propose Uncertainty-driven Embedding Convolution (UEC). UEC first transforms deterministic embeddings into probabilistic ones in a post-hoc manner. It then computes adaptive ensemble coefficients based on embedding uncertainty, derived from a principled surrogate-loss formulation. Additionally, UEC employs an uncertainty-aware similarity function that directly incorporates uncertainty into the similarity scoring, providing a theoretically grounded and efficient surrogate to distributional distances. Extensive experiments on diverse benchmarks demonstrate that UEC consistently improves both performance and robustness by leveraging principled uncertainty modeling.
♻ ☆ LieAugmenter: Equivariant Learning by Discovering Symmetries with Learnable Augmentations
Data augmentation is a powerful mechanism in equivariant machine learning, encouraging symmetry by training networks to produce consistent outputs under transformed inputs. Yet, effective augmentation typically requires the underlying symmetry to be specified a priori, which can limit generalization when symmetries are unknown or only approximately valid. To address this, we introduce LieAugmenter, an end-to-end framework that discovers task-relevant continuous symmetries through learnable augmentations. Specifically, the augmentation generator is parameterized using the theory of Lie groups and trained jointly with the prediction network using the augmented views. The learned augmentations are task-adaptive, enabling effective and interpretable symmetry discovery. We provide a theoretical analysis of identifiability and show that our method yields symmetry-respecting models for the identified groups. Empirically, LieAugmenter outperforms baselines on image classification, as well as on the prediction of N-body dynamics and molecular properties. In addition, it can also provide an interpretable signature for detecting the absence of symmetries.
♻ ☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
♻ ☆ Efficient and Sharp Off-Policy Learning under Unobserved Confounding
We develop a novel method for personalized off-policy learning in scenarios with unobserved confounding. Thereby, we address a key limitation of standard policy learning: standard policy learning assumes unconfoundedness, meaning that no unobserved factors influence both treatment assignment and outcomes. However, this assumption is often violated, because of which standard policy learning produces biased estimates and thus leads to policies that can be harmful. To address this limitation, we employ causal sensitivity analysis and derive a semi-parametrically efficient estimator for a sharp bound on the value function under unobserved confounding. Our estimator has three advantages: (1) Unlike existing works, our estimator avoids unstable minimax optimization based on inverse propensity weighted outcomes. (2) Our estimator is semi-parametrically efficient. (3) We prove that our estimator leads to the optimal confounding-robust policy. Finally, we extend our theory to the related task of policy improvement under unobserved confounding, i.e., when a baseline policy such as the standard of care is available. We show in experiments with synthetic and real-world data that our method outperforms simple plug-in approaches and existing baselines. Our method is highly relevant for decision-making where unobserved confounding can be problematic, such as in healthcare and public policy.
♻ ☆ Maximum Principle of Optimal Probability Density Control
We develop a general theoretical framework for optimal probability density control on standard measure spaces, aimed at addressing large-scale multi-agent control problems. In particular, we establish a maximum principle (MP) for control problems posed on infinite-dimensional spaces of probability distributions and control vector fields. We further derive the Hamilton--Jacobi--Bellman equation for the associated value functional defined on the space of probability distributions. Both results are presented in a concise form and supported by rigorous mathematical analysis, enabling efficient numerical treatment of these problems. Building on the proposed MP, we introduce a scalable numerical algorithm that leverages deep neural networks to handle high-dimensional settings. The effectiveness of the approach is demonstrated through several multi-agent control examples involving domain obstacles and inter-agent interactions.
comment: 28 pages, submitted
♻ ☆ Stable Differentiable Modal Synthesis for Learning Nonlinear Dynamics
Modal methods are a long-standing approach to physical modelling synthesis. Extensions to nonlinear problems are possible, leading to coupled nonlinear systems of ordinary differential equations. Recent work in scalar auxiliary variable techniques has enabled construction of explicit and stable numerical solvers for such systems. On the other hand, neural ordinary differential equations have been successful in modelling nonlinear systems from data. In this work, we examine how scalar auxiliary variable techniques can be combined with neural ordinary differential equations to yield a stable differentiable model capable of learning nonlinear dynamics. The proposed approach leverages the analytical solution for linear vibration of the system's modes so that physical parameters of a system remain easily accessible after the training without the need for a parameter encoder in the model architecture. Compared to our previous work that used multilayer perceptrons to parametrise nonlinear dynamics, we employ gradient networks that allow an interpretation in terms of a closed-form and non-negative potential required by scalar auxiliary variable techniques. As a proof of concept, we generate synthetic data for the nonlinear transverse vibration of a string and show that the model can be trained to reproduce the nonlinear dynamics of the system. Sound examples are presented.
comment: Submitted to the Journal of Audio Engineering Society (December 2025)
♻ ☆ Cardinality-Preserving Attention Channels for Graph Transformers in Molecular Property Prediction
Drug discovery motivates accurate molecular property prediction when labeled data are limited and candidate spaces are vast. This article presents CardinalGraphFormer, a graph transformer that augments structured attention with a query-conditioned gated unnormalized aggregation channel to preserve dynamic cardinality signals, complemented by graph-specific structural biases; a locality prior via sparse masking provides scalability for larger graphs. For typical drug-like molecules (K = 3 is near-global), masking acts mainly as a regularizer; for larger graphs it provides meaningful efficiency gains. Pretraining unifies contrastive alignment of augmented graph views and masked reconstruction of attributes. Evaluations on public benchmarks show consistent gains over baselines, isolated via controls for capacity, objectives, and size effects. Ablations confirm the cardinality channel's contributions beyond simpler approximations, with efficiency benefits on large molecules. Code, artifacts, and protocols emphasize reproducibility.
♻ ☆ Reliable Curation of EHR Dataset via Large Language Models under Environmental Constraints
Electronic health records (EHRs) are central to modern healthcare delivery and research; yet, many researchers lack the database expertise necessary to write complex SQL queries or generate effective visualizations, limiting efficient data use and scientific discovery. To address this barrier, we introduce CELEC, a large language model (LLM)-powered framework for automated EHR data extraction and analytics. CELEC translates natural language queries into SQL using a prompting strategy that integrates schema information, few-shot demonstrations, and chain-of-thought reasoning, which together improve accuracy and robustness. CELEC also adheres to strict privacy protocols: the LLM accesses only database metadata (e.g., table and column names), while all query execution occurs securely within the institutional environment, ensuring that no patient-level data is ever transmitted to or shared with the LLM. On a subset of the EHRSQL benchmark, CELEC achieves execution accuracy comparable to prior systems while maintaining low latency, cost efficiency, and strict privacy by exposing only database metadata to the LLM. Ablation studies confirm that each component of the SQL generation pipeline, particularly the few-shot demonstrations, plays a critical role in performance. By lowering technical barriers and enabling medical researchers to query EHR databases directly, CELEC streamlines research workflows and accelerates biomedical discovery.
♻ ☆ Right Reward Right Time for Federated Learning
Critical learning periods (CLPs) in federated learning (FL) refer to early stages during which low-quality contributions (e.g., sparse training data availability) can permanently impair the performance of the global model owned by the cloud server. However, existing incentive mechanisms typically assume temporal homogeneity, treating all training rounds as equally important, thereby failing to prioritize and attract high-quality contributions during CLPs. This inefficiency is compounded by information asymmetry due to privacy regulations, where the cloud lacks knowledge of client training capabilities, leading to adverse selection and moral hazard. Thus, in this article, we propose a time-aware contract-theoretic incentive framework, named Right Reward Right Time (R3T), to encourage client involvement, especially during CLPs, to maximize the utility of the cloud server. We formulate a cloud utility function that captures the trade-off between the achieved model performance and rewards allocated for clients' contributions, explicitly accounting for client heterogeneity in time and system capabilities, effort, and joining time. Then, we devise a CLP-aware incentive mechanism deriving an optimal contract design that satisfies individual rationality, incentive compatibility, and budget feasibility constraints, motivating rational clients to participate early and contribute efforts. By providing the right reward at the right time, our approach can attract the highest-quality contributions during CLPs. Simulation and proof-of-concept studies show that R3T mitigates information asymmetry, increases cloud utility, and yields superior economic efficiency compared to conventional incentive mechanisms. Our proof-of-concept results demonstrate up to a 47.6% reduction in the total number of clients and up to a 300% improvement in convergence time while achieving competitive test accuracy.
comment: A temporal heterogeneity-aware incentive mechanism utilizing contract theory, critical learning periods and blockchain smart contracts for Federated Learning (with latest related work on incentive mechanisms for FL)
♻ ☆ Learning in Structured Stackelberg Games
We initiate the study of structured Stackelberg games, a novel form of strategic interaction between a leader and a follower where contextual information can be predictive of the follower's (unknown) type. Motivated by applications such as security games and AI safety, we show how this additional structure can help the leader learn a utility-maximizing policy in both the online and distributional settings. In the online setting, we first prove that standard learning-theoretic measures of complexity do not characterize the difficulty of the leader's learning task. Notably, we find that there exists a learning-theoretic measure of complexity, analogous to the Littlestone dimension in online classification, that tightly characterizes the leader's instance-optimal regret. We term this the Stackelberg-Littlestone dimension, and leverage it to provide a provably optimal online learning algorithm. In the distributional setting, we provide analogous results by showing that two new dimensions control the sample complexity upper- and lower-bound.
♻ ☆ Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
This work proposes a rapid algorithm, BM-Global, for nuclear-norm-regularized convex and low-rank matrix optimization problems. BM-Global efficiently decreases the objective value via low-cost steps leveraging the nonconvex but smooth Burer-Monteiro (BM) decomposition, while effectively escapes saddle points and spurious local minima ubiquitous in the BM form to obtain guarantees of fast convergence rates to the global optima of the original nuclear-norm-regularized problem through aperiodic inexact proximal gradient steps on it. The proposed approach adaptively adjusts the rank for the BM decomposition and can provably identify an optimal rank for the BM decomposition problem automatically in the course of optimization through tools of manifold identification. BM-Global hence also spends significantly less time on parameter tuning than existing matrix-factorization methods, which require an exhaustive search for finding this optimal rank. Extensive experiments on real-world large-scale problems of recommendation systems, regularized kernel estimation, and molecular conformation confirm that BM-Global can indeed effectively escapes spurious local minima at which existing BM approaches are stuck, and is a magnitude faster than state-of-the-art algorithms for low-rank matrix optimization problems involving a nuclear-norm regularizer. Based on this research, we have released an open-source package of the proposed BM-Global at https://www.github.com/leepei/BM-Global/.
comment: Removed a wrong claim in Theorem 5
♻ ☆ BrainSymphony: A parameter-efficient multimodal foundation model for brain dynamics with limited data
Foundation models are transforming neuroscience but are often prohibitively large, data-hungry, and difficult to deploy. Here, we introduce BrainSymphony, a lightweight and parameter-efficient foundation model with plug-and-play integration of fMRI time series and diffusion-derived structural connectivity, allowing unimodal or multimodal training and deployment without architectural changes while requiring substantially less data compared to the state-of-the-art. The model processes fMRI time series through parallel spatial and temporal transformer streams, distilled into compact embeddings by a Perceiver module, while a novel signed graph transformer encodes anatomical connectivity from diffusion MRI. These complementary representations are then combined through an adaptive fusion mechanism. Despite its compact design, BrainSymphony consistently outperforms larger models on benchmarks spanning prediction, classification, and unsupervised network discovery. Highlighting the model's generalizability and interpretability, attention maps reveal drug-induced context-dependent reorganization of cortical hierarchies in an independent psilocybin neuroimaging dataset. BrainSymphony delivers accessible, interpretable, and clinically meaningful results and demonstrates that architecturally informed, multimodal models can surpass much larger counterparts and advance applications of AI in neuroscience.
comment: 32 pages, 14 figures
♻ ☆ SeqRisk: Transformer-augmented latent variable model for robust survival prediction with longitudinal data
In healthcare, risk assessment of patient outcomes has been based on survival analysis for a long time, i.e. modeling time-to-event associations. However, conventional approaches rely on data from a single time-point, making them suboptimal for fully leveraging longitudinal patient history and capturing temporal regularities. Focusing on clinical real-world data and acknowledging its challenges, we utilize latent variable models to effectively handle irregular, noisy, and sparsely observed longitudinal data. We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer-based sequence aggregation and Cox proportional hazards module for risk prediction. SeqRisk captures long-range interactions, enhances predictive accuracy and generalizability, as well as provides partial explainability for sample population characteristics in attempts to identify high-risk patients. SeqRisk demonstrated robust performance under conditions of increasing sparsity, consistently surpassing existing approaches.
♻ ☆ EEG2GAIT: A Hierarchical Graph Convolutional Network for EEG-based Gait Decoding
Decoding gait dynamics from EEG signals presents significant challenges due to the complex spatial dependencies of motor processes, the need for accurate temporal and spectral feature extraction, and the scarcity of high-quality gait EEG datasets. To address these issues, we propose EEG2GAIT, a novel hierarchical graph-based model that captures multi-level spatial embeddings of EEG channels using a Hierarchical Graph Convolutional Network (GCN) Pyramid. To further improve decoding performance, we introduce a Hybrid Temporal-Spectral Reward (HTSR) loss function, which integrates time-domain, frequency-domain, and reward-based loss components. In addition, we contribute a new Gait-EEG Dataset (GED), consisting of synchronized EEG and lower-limb joint angle data collected from 50 participants across two laboratory visits. Extensive experiments demonstrate that EEG2GAIT with HTSR achieves superior performance on the GED dataset, reaching a Pearson correlation coefficient (r) of 0.959, a coefficient of determination of 0.914, and a Mean Absolute Error (MAE) of 0.193. On the MoBI dataset, EEG2GAIT likewise consistently outperforms existing methods, achieving an r of 0.779, a coefficient of determination of 0.597, and an MAE of 4.384. Statistical analyses confirm that these improvements are significant compared to all prior models. Ablation studies further validate the contributions of the hierarchical GCN modules and the proposed HTSR loss, while saliency analysis highlights the involvement of motor-related brain regions in decoding tasks. Collectively, these findings underscore EEG2GAIT's potential for advancing brain-computer interface applications, particularly in lower-limb rehabilitation and assistive technologies.
♻ ☆ Self-Concordant Perturbations for Linear Bandits
We consider the adversarial linear bandits setting and present a unified algorithmic framework that bridges Follow-the-Regularized-Leader (FTRL) and Follow-the-Perturbed-Leader (FTPL) methods, extending the known connection between them from the full-information setting. Within this framework, we introduce self-concordant perturbations, a family of probability distributions that mirror the role of self-concordant barriers previously employed in the FTRL-based SCRiBLe algorithm. Using this idea, we design a novel FTPL-based algorithm that combines self-concordant regularization with efficient stochastic exploration. Our approach achieves a regret of $\mathcal{O}(d\sqrt{n \ln n})$ on both the $d$-dimensional hypercube and the $\ell_2$ ball. On the $\ell_2$ ball, this matches the rate attained by SCRiBLe. For the hypercube, this represents a $\sqrt{d}$ improvement over these methods and matches the optimal bound up to logarithmic factors.
♻ ☆ Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
comment: Accepted for publication in IEEE Transactions on Medical Imaging (TMI), 2026
♻ ☆ Three factor delay learning rules for spiking neural networks
Spiking Neural Networks (SNNs) are dynamical systems that operate on spatiotemporal data, yet their learnable parameters are often limited to synaptic weights, contributing little to temporal pattern recognition. Learnable parameters that delay spike times can improve classification performance in temporal tasks, but existing methods rely on large networks and offline learning, making them unsuitable for real-time operation in resource-constrained environments. In this paper, we introduce synaptic and axonal delays to leaky integrate and fire (LIF)-based feedforward and recurrent SNNs, and propose three-factor learning rules to simultaneously learn delay parameters online. We employ a smooth Gaussian surrogate to approximate spike derivatives exclusively for the eligibility trace calculation, and together with a top-down error signal determine parameter updates. Our experiments show that incorporating delays improves accuracy by up to 20% over a weights-only baseline, and for networks with similar parameter counts, jointly learning weights and delays yields up to 14% higher accuracy. On the SHD speech recognition dataset, our method achieves similar accuracy to offline backpropagation-based approaches. Compared to state-of-the-art methods, it reduces model size by 6.6x and inference latency by 67%, with only a 2.4% drop in classification accuracy. Our findings benefit the design of power and area-constrained neuromorphic processors by enabling on-device learning and lowering memory requirements.
comment: 7 pages, 5 figures
♻ ☆ Improving Speech Emotion Recognition with Mutual Information Regularized Generative Model
Lack of large, well-annotated emotional speech corpora continues to limit the performance and robustness of speech emotion recognition (SER), particularly as models grow more complex and the demand for multimodal systems increases. While generative data augmentation offers a promising solution, existing approaches often produce emotionally inconsistent samples due to oversimplified conditioning on categorical labels. This paper introduces a novel mutual-information-regularised generative framework that combines cross-modal alignment with feature-level synthesis. Building on an InfoGAN-style architecture, our method first learns a semantically aligned audio-text representation space using pre-trained transformers and contrastive objectives. A feature generator is then trained to produce emotion-aware audio features while employing mutual information as a quantitative regulariser to ensure strong dependency between generated features and their conditioning variables. We extend this approach to multimodal settings, enabling the generation of novel, paired (audio, text) features. Comprehensive evaluation on three benchmark datasets (IEMOCAP, MSP-IMPROV, MSP-Podcast) demonstrates that our framework consistently outperforms existing augmentation methods, achieving state-of-the-art performance with improvements of up to 2.6% in unimodal SER and 3.2% in multimodal emotion recognition. Most importantly, we demonstrate that mutual information functions as both a regulariser and a measurable metric for generative quality, offering a systematic approach to data augmentation in affective computing.
♻ ☆ EEG-to-Gait Decoding via Phase-Aware Representation Learning
Accurate decoding of lower-limb motion from EEG signals is essential for advancing brain-computer interface (BCI) applications in movement intent recognition and control. This study presents NeuroDyGait, a two-stage, phase-aware EEG-to-gait decoding framework that explicitly models temporal continuity and domain relationships. To address challenges of causal, phase-consistent prediction and cross-subject variability, Stage I learns semantically aligned EEG-motion embeddings via relative contrastive learning with a cross-attention-based metric, while Stage II performs domain relation-aware decoding through dynamic fusion of session-specific heads. Comprehensive experiments on two benchmark datasets (GED and FMD) show substantial gains over baselines, including a recent 2025 model EEG2GAIT. The framework generalizes to unseen subjects and maintains inference latency below 5 ms per window, satisfying real-time BCI requirements. Visualization of learned attention and phase-specific cortical saliency maps further reveals interpretable neural correlates of gait phases. Future extensions will target rehabilitation populations and multimodal integration.
♻ ☆ A Feature Extraction Pipeline for Enhancing Lightweight Neural Networks in sEMG-based Joint Torque Estimation
Robot-assisted rehabilitation offers an effective approach, wherein exoskeletons adapt to users' needs and provide personalized assistance. However, to deliver such assistance, accurate prediction of the user's joint torques is essential. In this work, we propose a feature extraction pipeline using 8-channel surface electromyography (sEMG) signals to predict elbow and shoulder joint torques. For preliminary evaluation, this pipeline was integrated into two neural network models: the Multilayer Perceptron (MLP) and the Temporal Convolutional Network (TCN). Data were collected from a single subject performing elbow and shoulder movements under three load conditions (0 kg, 1.10 kg, and 1.85 kg) using three motion-capture cameras. Reference torques were estimated from center-of-mass kinematics under the assumption of static equilibrium. Our offline analyses showed that, with our feature extraction pipeline, MLP model achieved mean RMSE of 0.963 N m, 1.403 N m, and 1.434 N m (over five seeds) for elbow, front-shoulder, and side-shoulder joints, respectively, which were comparable to the TCN performance. These results demonstrate that the proposed feature extraction pipeline enables a simple MLP to achieve performance comparable to that of a network designed explicitly for temporal dependencies. This finding is particularly relevant for applications with limited training data, a common scenario patient care.
♻ ☆ Deriving Neural Scaling Laws from the statistics of natural language
Despite the fact that experimental neural scaling laws have substantially guided empirical progress in large-scale machine learning, no existing theory can quantitatively predict the exponents of these important laws for any modern LLM trained on any natural language dataset. We provide the first such theory in the case of data-limited scaling laws. We isolate two key statistical properties of language that alone can predict neural scaling exponents: (i) the decay of pairwise token correlations with time separation between token pairs, and (ii) the decay of the next-token conditional entropy with the length of the conditioning context. We further derive a simple formula in terms of these statistics that predicts data-limited neural scaling exponents from first principles without any free parameters or synthetic data models. Our theory exhibits a remarkable match with experimentally measured neural scaling laws obtained from training GPT-2 and LLaMA style models from scratch on two qualitatively different benchmarks, TinyStories and WikiText.
♻ ☆ Improving the Plausibility of Pressure Distributions Synthesized from Depth Image through Generative Modeling
Monitoring contact pressure in hospital beds is essential for preventing pressure ulcers and enabling real-time patient assessment. Current methods can predict pressure maps but often lack physical plausibility, limiting clinical reliability. This work proposes a framework that enhances plausibility via Informed Latent Space (ILS) and Weight Optimization Loss (WOL) with conditional generative modeling to produce high-fidelity, physically consistent pressure estimates. This study also applies diffusion based conditional Brownian Bridge Diffusion Model (BBDM) and proposes training strategy for its latent counterpart Latent Brownian Bridge Diffusion Model (LBBDM) tailored for pressure synthesis in lying postures. Experiment results shows proposed method improves physical plausibility and performance over baselines: BBDM with ILS delivers highly detailed maps at higher computational cost and large inference time, whereas LBBDM provides faster inference with competitive performance. Overall, the approach supports non-invasive, vision-based, real-time patient monitoring in clinical environments.
♻ ☆ Model-based controller assisted domain randomization for transient vibration suppression of nonlinear powertrain system with parametric uncertainty
Complex mechanical systems such as vehicle powertrains are inherently subject to multiple nonlinearities and uncertainties arising from parametric variations. Modeling errors are therefore unavoidable, making the transfer of control systems from simulation to real-world systems a critical challenge. Traditional robust controls have limitations in handling certain types of nonlinearities and uncertainties, requiring a more practical approach capable of comprehensively compensating for these various constraints. This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL). The key strategy lies in the synergy among domain randomization-based DRL, long short-term memory (LSTM)-based actor and critic networks, and model-based control (MBC). The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities. In LMDP, the dynamics of an environment simulator is randomized during training to improve the robustness of the control system to real testing environments. The randomization increases training difficulties as well as conservativeness of the resultant control system; therefore, progress is assisted by concurrent use of a model-based controller based on a physics-based system model. Compared to traditional DRL-based controls, the proposed approach is smarter in that we can achieve a high level of generalization ability with a more compact neural network architecture and a smaller amount of training data. The controller is verified via practical application to active damping for a complex powertrain system with nonlinearities and parametric variations. Comparative tests demonstrate the high robustness of the proposed approach.
♻ ☆ Diffusion Bridge Variational Inference for Deep Gaussian Processes
Deep Gaussian processes (DGPs) enable expressive hierarchical Bayesian modeling but pose substantial challenges for posterior inference, especially over inducing variables. Denoising diffusion variational inference (DDVI) addresses this by modeling the posterior as a time-reversed diffusion from a simple Gaussian prior. However, DDVI's fixed unconditional starting distribution remains far from the complex true posterior, resulting in inefficient inference trajectories and slow convergence. In this work, we propose Diffusion Bridge Variational Inference (DBVI), a principled extension of DDVI that initiates the reverse diffusion from a learnable, data-dependent initial distribution. This initialization is parameterized via an amortized neural network and progressively adapted using gradients from the ELBO objective, reducing the posterior gap and improving sample efficiency. To enable scalable amortization, we design the network to operate on the inducing inputs, which serve as structured, low-dimensional summaries of the dataset and naturally align with the inducing variables' shape. DBVI retains the mathematical elegance of DDVI, including Girsanov-based ELBOs and reverse-time SDEs,while reinterpreting the prior via a Doob-bridged diffusion process. We derive a tractable training objective under this formulation and implement DBVI for scalable inference in large-scale DGPs. Across regression, classification, and image reconstruction tasks, DBVI consistently outperforms DDVI and other variational baselines in predictive accuracy, convergence speed, and posterior quality.
♻ ☆ Distributional Computational Graphs: Error Bounds
We study a general framework of distributional computational graphs: computational graphs whose inputs are probability distributions rather than point values. We analyze the discretization error that arises when these graphs are evaluated using finite approximations of continuous probability distributions. Such an approximation might be the result of representing a continuous real-valued distribution using a discrete representation or from constructing an empirical distribution from samples (or might be the output of another distributional computational graph). We establish non-asymptotic error bounds in terms of the Wasserstein-1 distance, without imposing structural assumptions on the computational graph.
comment: 28 pages, 2 figures, minor correction to Theorem 1.1
♻ ☆ Optimal Cross-Validation for Sparse Linear Regression
Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regression selects a subset of features that explains the relationship between covariates and the response in an interpretable manner. To choose hyperparameters that control the sparsity level and amount of regularization, practitioners commonly use k-fold cross-validation. However, cross-validation substantially increases the computational cost of sparse regression as it requires solving many mixed-integer optimization problems (MIOs) for each hyperparameter combination. To address this computational burden, we derive computationally tractable relaxations of the k-fold cross-validation loss, facilitating hyperparameter selection while solving $50$--$80\%$ fewer MIOs in practice. Our computational results demonstrate, across eleven real-world UCI datasets, that exact MIO-based cross-validation can be competitive with mature software packages such as glmnet and L0Learn -particularly when the sample-to-feature ratio is small.
comment: Updated manuscript for revision
♻ ☆ Translating Flow to Policy via Hindsight Online Imitation
Recent advances in hierarchical robot systems leverage a high-level planner to propose task plans and a low-level policy to generate robot actions. This design allows training the planner on action-free or even non-robot data sources (e.g., videos), providing transferable high-level guidance. Nevertheless, grounding these high-level plans into executable actions remains challenging, especially with the limited availability of high-quality robot data. To this end, we propose to improve the low-level policy through online interactions. Specifically, our approach collects online rollouts, retrospectively annotates the corresponding high-level goals from achieved outcomes, and aggregates these hindsight-relabeled experiences to update a goal-conditioned imitation policy. Our method, Hindsight Flow-conditioned Online Imitation (HinFlow), instantiates this idea with 2D point flows as the high-level planner. Across diverse manipulation tasks in both simulation and physical world, our method achieves more than $2\times$ performance improvement over the base policy, significantly outperforming the existing methods. Moreover, our framework enables policy acquisition from planners trained on cross-embodiment video data, demonstrating its potential for scalable and transferable robot learning.
♻ ☆ Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
♻ ☆ Minimum distance classification for nonlinear dynamical systems
We address the problem of classifying trajectory data generated by some nonlinear dynamics, where each class corresponds to a distinct dynamical system. We propose Dynafit, a kernel-based method for learning a distance metric between training trajectories and the underlying dynamics. New observations are assigned to the class with the most similar dynamics according to the learned metric. The learning algorithm approximates the Koopman operator which globally linearizes the dynamics in a (potentially infinite) feature space associated with a kernel function. The distance metric is computed in feature space independently of its dimensionality by using the kernel trick common in machine learning. We also show that the kernel function can be tailored to incorporate partial knowledge of the dynamics when available. Dynafit is applicable to various classification tasks involving nonlinear dynamical systems and sensors. We illustrate its effectiveness on three examples: chaos detection with the logistic map, recognition of handwritten dynamics and of visual dynamic textures.
♻ ☆ The Invisible Handshake: Tacit Collusion between Adaptive Market Agents
We study the emergence of tacit collusion in a repeated game between a market maker, who controls market liquidity, and a market taker, who chooses trade quantities. The market price evolves according to the endogenous price impact of trades and exogenous innovations to economic fundamentals. We define collusion as persistent overpricing over economic fundamentals and characterize the set of feasible and collusive strategy profiles. Our main result shows that a broad class of simple learning dynamics, including gradient ascent updates, converges in finite time to collusive strategies when the agents maximize individual wealth, defined as the value of their portfolio, without any explicit coordination. The key economic mechanism is that when aggregate supply in the market is positive, overpricing raises the market capitalization and thus the total wealth of market participants, inducing a cooperative component in otherwise non-cooperative learning objectives. These results identify an inherent structure through which decentralized learning by AI-driven agents can autonomously generate persistent overpricing in financial markets.
♻ ☆ Provably Convergent Primal-Dual DPO for Constrained LLM Alignment
The widespread application of large language models (LLMs) raises increasing demands on ensuring safety or imposing constraints, such as reducing harmful content and adhering to predefined rules. While there have been several works studying LLM safety alignment, these works either need to train three models and incur high memory costs, or require prior knowledge on the optimal solution. Witnessing this fact, we investigate the constrained alignment problem for LLMs, i.e., maximizing the reward of outputs while restricting the cost to stay below a threshold. We propose a novel primal-dual direct preference optimization (DPO) approach, which first trains a model using standard DPO on reward preference data to provide reward information, and then adopts a rearranged Lagrangian DPO objective utilizing the provided reward information to fine-tune LLMs. Our approach only needs to train two models rather than three, which significantly saves memory costs, and does not require extra prior knowledge. Moreover, we establish rigorous suboptimality and constraint violation guarantees. We also extend our approach to enable online exploration and drop the data coverage dependence in the results. Experiments on the PKU-SafeRLHF and TruthfulQA datasets demonstrate the state-of-the-art performance of our approach.
♻ ☆ Reducing Estimation Uncertainty Using Normalizing Flows and Stratification
Estimating the expectation of a real-valued function of a random variable from sample data is a critical aspect of statistical analysis, with far-reaching implications in various applications. Current methodologies typically assume (semi-)parametric distributions such as Gaussian or mixed Gaussian, leading to significant estimation uncertainty if these assumptions do not hold. We propose a flow-based model, integrated with stratified sampling, that leverages a parametrized neural network to offer greater flexibility in modeling unknown data distributions, thereby mitigating this limitation. Our model shows a marked reduction in estimation uncertainty across multiple datasets, including high-dimensional (30 and 128) ones, outperforming crude Monte Carlo estimators and Gaussian mixture models. Reproducible code is available at https://github.com/rnoxy/flowstrat.
comment: This is the extended version of a paper accepted for publication at ACIIDS 2026
♻ ☆ End-to-End Semantic ID Generation for Generative Advertisement Recommendation
Generative Recommendation (GR) has excelled by framing recommendation as next-token prediction. This paradigm relies on Semantic IDs (SIDs) to tokenize large-scale items into discrete sequences. Existing GR approaches predominantly generate SIDs via Residual Quantization (RQ), where items are encoded into embeddings and then quantized to discrete SIDs. However, this paradigm suffers from inherent limitations: 1) Objective misalignment and semantic degradation stemming from the two-stage compression; 2) Error accumulation inherent in the structure of RQ. To address these limitations, we propose UniSID, a Unified SID generation framework for generative advertisement recommendation. Specifically, we jointly optimize embeddings and SIDs in an end-to-end manner from raw advertising data, enabling semantic information to flow directly into the SID space and thus addressing the inherent limitations of the two-stage cascading compression paradigm. To capture fine-grained semantics, a multi-granularity contrastive learning strategy is introduced to align distinct items across SID levels. Finally, a summary-based ad reconstruction mechanism is proposed to encourage SIDs to capture high-level semantic information that is not explicitly present in advertising contexts. Experiments demonstrate that UniSID consistently outperforms state-of-the-art SID generation methods, yielding up to a 4.62% improvement in Hit Rate metrics across downstream advertising scenarios compared to the strongest baseline.
comment: Minor update to figures (logo replacement)
Information Retrieval 34
☆ AttentionRetriever: Attention Layers are Secretly Long Document Retrievers
Retrieval augmented generation (RAG) has been widely adopted to help Large Language Models (LLMs) to process tasks involving long documents. However, existing retrieval models are not designed for long document retrieval and fail to address several key challenges of long document retrieval, including context-awareness, causal dependence, and scope of retrieval. In this paper, we proposed AttentionRetriever, a novel long document retrieval model that leverages attention mechanism and entity-based retrieval to build context-aware embeddings for long document and determine the scope of retrieval. With extensive experiments, we found AttentionRetriever is able to outperform existing retrieval models on long document retrieval datasets by a large margin while remaining as efficient as dense retrieval models.
☆ SAGEO Arena: A Realistic Environment for Evaluating Search-Augmented Generative Engine Optimization
Search-Augmented Generative Engines (SAGE) have emerged as a new paradigm for information access, bridging web-scale retrieval with generative capabilities to deliver synthesized answers. This shift has fundamentally reshaped how web content gains exposure online, giving rise to Search-Augmented Generative Engine Optimization (SAGEO), the practice of optimizing web documents to improve their visibility in AI-generated responses. Despite growing interest, no evaluation environment currently supports comprehensive investigation of SAGEO. Specifically, existing benchmarks lack end-to-end visibility evaluation of optimization strategies, operating on pre-determined candidate documents that abstract away retrieval and reranking preceding generation. Moreover, existing benchmarks discard structural information (e.g., schema markup) present in real web documents, overlooking the rich signals that search systems actively leverage in practice. Motivated by these gaps, we introduce SAGEO Arena, a realistic and reproducible environment for stage-level SAGEO analysis. Our objective is to jointly target search-oriented optimization (SEO) and generation-centric optimization (GEO). To achieve this, we integrate a full generative search pipeline over a large-scale corpus of web documents with rich structural information. Our findings reveal that existing approaches remain largely impractical under realistic conditions and often degrade performance in retrieval and reranking. We also find that structural information helps mitigate these limitations, and that effective SAGEO requires tailoring optimization to each pipeline stage. Overall, our benchmark paves the way for realistic SAGEO evaluation and optimization beyond simplified settings.
comment: Work in Progress
☆ Towards Personalized Bangla Book Recommendation: A Large-Scale Multi-Entity Book Graph Dataset
Personalized book recommendation in Bangla literature has been constrained by the lack of structured, large-scale, and publicly available datasets. This work introduces RokomariBG, a large-scale, multi-entity heterogeneous book graph dataset designed to support research on personalized recommendation in a low-resource language setting. The dataset comprises 127,302 books, 63,723 users, 16,601 authors, 1,515 categories, 2,757 publishers, and 209,602 reviews, connected through eight relation types and organized as a comprehensive knowledge graph. To demonstrate the utility of the dataset, we provide a systematic benchmarking study on the Top-N recommendation task, evaluating a diverse set of representative recommendation models, including classical collaborative filtering methods, matrix factorization models, content-based approaches, graph neural networks, a hybrid matrix factorization model with side information, and a neural two-tower retrieval architecture. The benchmarking results highlight the importance of leveraging multi-relational structure and textual side information, with neural retrieval models achieving the strongest performance (NDCG@10 = 0.204). Overall, this work establishes a foundational benchmark and a publicly available resource for Bangla book recommendation research, enabling reproducible evaluation and future studies on recommendation in low-resource cultural domains. The dataset and code are publicly available at https://github.com/backlashblitz/Bangla-Book-Recommendation-Dataset
☆ Compress, Cross and Scale: Multi-Level Compression Cross Networks for Efficient Scaling in Recommender Systems
Modeling high-order feature interactions efficiently is a central challenge in click-through rate and conversion rate prediction. Modern industrial recommender systems are predominantly built upon deep learning recommendation models, where the interaction backbone plays a critical role in determining both predictive performance and system efficiency. However, existing interaction modules often struggle to simultaneously achieve strong interaction capacity, high computational efficiency, and good scalability, resulting in limited ROI when models are scaled under strict production constraints. In this work, we propose MLCC, a structured feature interaction architecture that organizes feature crosses through hierarchical compression and dynamic composition, which can efficiently capture high-order feature dependencies while maintaining favorable computational complexity. We further introduce MC-MLCC, a Multi-Channel extension that decomposes feature interactions into parallel subspaces, enabling efficient horizontal scaling with improved representation capacity and significantly reduced parameter growth. Extensive experiments on three public benchmarks and a large-scale industrial dataset show that our proposed models consistently outperform strong DLRM-style baselines by up to 0.52 AUC, while reducing model parameters and FLOPs by up to 26$\times$ under comparable performance. Comprehensive scaling analyses demonstrate stable and predictable scaling behavior across embedding dimension, head number, and channel count, with channel-based scaling achieving substantially better efficiency than conventional embedding inflation. Finally, online A/B testing on a real-world advertising platform validates the practical effectiveness of our approach, which has been widely adopted in Bilibili advertising system under strict latency and resource constraints.
comment: 11 pages, 3 figures
☆ IncompeBench: A Permissively Licensed, Fine-Grained Benchmark for Music Information Retrieval
Multimodal Information Retrieval has made significant progress in recent years, leveraging the increasingly strong multimodal abilities of deep pre-trained models to represent information across modalities. Music Information Retrieval (MIR), in particular, has considerably increased in quality, with neural representations of music even making its way into everyday life products. However, there is a lack of high-quality benchmarks for evaluating music retrieval performance. To address this issue, we introduce \textbf{IncompeBench}, a carefully annotated benchmark comprising $1,574$ permissively licensed, high-quality music snippets, $500$ diverse queries, and over $125,000$ individual relevance judgements. These annotations were created through the use of a multi-stage pipeline, resulting in high agreement between human annotators and the generated data. The resulting datasets are publicly available at https://huggingface.co/datasets/mixedbread-ai/incompebench-strict and https://huggingface.co/datasets/mixedbread-ai/incompebench-lenient with the prompts available at https://github.com/mixedbread-ai/incompebench-programs.
☆ Efficient Crawling for Scalable Web Data Acquisition (Extended Version) EDBT 2026
Journalistic fact-checking, as well as social or economic research, require analyzing high-quality statistics datasets (SDs, in short). However, retrieving SD corpora at scale may be hard, inefficient, or impossible, depending on how they are published online. To improve open statistics data accessibility, we present a focused Web crawling algorithm that retrieves as many targets, i.e., resources of certain types, as possible, from a given website, in an efficient and scalable way, by crawling (much) less than the full website. We show that optimally solving this problem is intractable, and propose an approach based on reinforcement learning, namely using sleeping bandits. We propose SB-CLASSIFIER, a crawler that efficiently learns which hyperlinks lead to pages that link to many targets, based on the paths leading to the links in their enclosing webpages. Our experiments on websites with millions of webpages show that our crawler is highly efficient, delivering high fractions of a site's targets while crawling only a small part.
comment: Extended version of a paper published at the EDBT 2026 conference
☆ Improving Neural Retrieval with Attribution-Guided Query Rewriting
Neural retrievers are effective but brittle: underspecified or ambiguous queries can misdirect ranking even when relevant documents exist. Existing approaches address this brittleness only partially: LLMs rewrite queries without retriever feedback, and explainability methods identify misleading tokens but are used for post-hoc analysis. We close this loop and propose an attribution-guided query rewriting method that uses token-level explanations to guide query rewriting. For each query, we compute gradient-based token attributions from the retriever and then use these scores as soft guidance in a structured prompt to an LLM that clarifies weak or misleading query components while preserving intent. Evaluated on BEIR collections, the resulting rewrites consistently improve retrieval effectiveness over strong baselines, with larger gains for implicit or ambiguous information needs.
☆ ULTRA:Urdu Language Transformer-based Recommendation Architecture
Urdu, as a low-resource language, lacks effective semantic content recommendation systems, particularly in the domain of personalized news retrieval. Existing approaches largely rely on lexical matching or language-agnostic techniques, which struggle to capture semantic intent and perform poorly under varying query lengths and information needs. This limitation results in reduced relevance and adaptability in Urdu content recommendation. We propose ULTRA (Urdu Language Transformer-based Recommendation Architecture),an adaptive semantic recommendation framework designed to address these challenges. ULTRA introduces a dual-embedding architecture with a query-length aware routing mechanism that dynamically distinguishes between short, intent-focused queries and longer, context-rich queries. Based on a threshold-driven decision process, user queries are routed to specialized semantic pipelines optimized for either title/headline-level or full-content/document level representations, ensuring appropriate semantic granularity during retrieval. The proposed system leverages transformer-based embeddings and optimized pooling strategies to move beyond surface-level keyword matching and enable context-aware similarity search. Extensive experiments conducted on a large-scale Urdu news corpus demonstrate that the proposed architecture consistently improves recommendation relevance across diverse query types. Results show gains in precision above 90% compared to single-pipeline baselines, highlighting the effectiveness of query-adaptive semantic alignment for low-resource languages. The findings establish ULTRA as a robust and generalizable content recommendation architecture, offering practical design insights for semantic retrieval systems in low-resource language settings.
☆ Reliable and Private Anonymous Routing for Satellite Constellations
Shared, dynamic network infrastructures, such as dual-use LEO satellite constellations, pose critical threats to metadata privacy, particularly for state actors operating in mixed-trust environments. This work proposes an enhanced anonymity architecture, evolving the Loopix mix-network, to provide robust security and reliability in these volatile topologies. We introduce three primary contributions: (1) A multi-path transport protocol utilizing $(n, k)$ erasure codes, which is demonstrated to counteract the high link volatility and intermittent connectivity that renders standard mix-networks unreliable. (2) The integration of a computationally efficient Private Information Retrieval (PIR) protocol during route discovery. (3) The introduction of adaptive, centrality-based delay strategies that efficiently mitigate the inherent topological bias of LEO networks, providing a superior anonymity-to-latency trade-off. This mechanism provably prevents metadata leakage at the user-provider directory, mitigating profiling and correlation attacks. We validate this architecture via high-fidelity, packet-level simulations of a LEO constellation. Empirical results show our multi-path transport achieves near-zero message loss, establishing a quantifiable trade-off between reliability and bandwidth overhead. Furthermore, microbenchmarks of the PIR protocol quantify its computational and latency overheads, confirming its feasibility for practical deployment. This work provides a validated blueprint for deployable high-anonymity communication systems, demonstrating the viability of securely multiplexing sensitive operations within large-scale commercial network infrastructures.
comment: 14 Pages, 16 Figures
☆ Uncertainty-aware Generative Recommendation
Generative Recommendation has emerged as a transformative paradigm, reformulating recommendation as an end-to-end autoregressive sequence generation task. Despite its promise, existing preference optimization methods typically rely on binary outcome correctness, suffering from a systemic limitation we term uncertainty blindness. This issue manifests in the neglect of the model's intrinsic generation confidence, the variation in sample learning difficulty, and the lack of explicit confidence expression, directly leading to unstable training dynamics and unquantifiable decision risks. In this paper, we propose Uncertainty-aware Generative Recommendation (UGR), a unified framework that leverages uncertainty as a critical signal for adaptive optimization. UGR synergizes three mechanisms: (1) an uncertainty-weighted reward to penalize confident errors; (2) difficulty-aware optimization dynamics to prevent premature convergence; and (3) explicit confidence alignment to empower the model with confidence expression capabilities. Extensive experiments demonstrate that UGR not only yields superior recommendation performance but also fundamentally stabilizes training, preventing the performance degradation often observed in standard methods. Furthermore, the learned confidence enables reliable downstream risk-aware applications.
☆ EpicCBR: Item-Relation-Enhanced Dual-Scenario Contrastive Learning for Cold-Start Bundle Recommendation WSDM 2026
Bundle recommendation aims to recommend a set of items to users for overall consumption. Existing bundle recommendation models primarily depend on observed user-bundle interactions, limiting exploration of newly-emerged bundles that are constantly created. It pose a critical representation challenge for current bundle methods, as they usually treat each bundle as an independent instance, while neglecting to fully leverage the user-item (UI) and bundle-item (BI) relations over popular items. To alleviate it, in this paper we propose a multi-view contrastive learning framework for cold-start bundle recommendation, named EpicCBR. Specifically, it precisely mine and utilize the item relations to construct user profiles, identifying users likely to engage with bundles. Additionally, a popularity-based method that characterizes the features of new bundles through historical bundle information and user preferences is proposed. To build a framework that demonstrates robustness in both cold-start and warm-start scenarios, a multi-view graph contrastive learning framework capable of integrating these diverse scenarios is introduced to ensure the model's generalization capability. Extensive experiments conducted on three popular benchmarks showed that EpicCBR outperforms state-of-the-art by a large margin (up to 387%), sufficiently demonstrating the superiority of the proposed method in cold-start scenario. The code and dataset can be found in the GitHub repository: https://github.com/alexlovecoding/EpicCBR.
comment: 10 pages, 3 figures, 5 tables, accepted by WSDM 2026
☆ IntTravel: A Real-World Dataset and Generative Framework for Integrated Multi-Task Travel Recommendation
Next Point of Interest (POI) recommendation is essential for modern mobility and location-based services. To provide a smooth user experience, models must understand several components of a journey holistically: "when to depart", "how to travel", "where to go", and "what needs arise via the route". However, current research is limited by fragmented datasets that focus merely on next POI recommendation ("where to go"), neglecting the departure time, travel mode, and situational requirements along the journey. Furthermore, the limited scale of these datasets impedes accurate evaluation of performance. To bridge this gap, we introduce IntTravel, the first large-scale public dataset for integrated travel recommendation, including 4.1 billion interactions from 163 million users with 7.3 million POIs. Built upon this dataset, we introduce an end-to-end, decoder-only generative framework for multi-task recommendation. It incorporates information preservation, selection, and factorization to balance task collaboration with specialized differentiation, yielding substantial performance gains. The framework's generalizability is highlighted by its state-of-the-art performance across both IntTravel dataset and an additional non-travel benchmark. IntTravel has been successfully deployed on Amap serving hundreds of millions of users, leading to a 1.09% increase in CTR. IntTravel is available at https://github.com/AMAP-ML/IntTravel.
☆ Evolutionary Router Feature Generation for Zero-Shot Graph Anomaly Detection with Mixture-of-Experts
Zero-shot graph anomaly detection (GAD) has attracted increasing attention recent years, yet the heterogeneity of graph structures, features, and anomaly patterns across graphs make existing single GNN methods insufficiently expressive to model diverse anomaly mechanisms. In this regard, Mixture-of-experts (MoE) architectures provide a promising paradigm by integrating diverse GNN experts with complementary inductive biases, yet their effectiveness in zero-shot GAD is severely constrained by distribution shifts, leading to two key routing challenges. First, nodes often carry vastly different semantics across graphs, and straightforwardly performing routing based on their features is prone to generating biased or suboptimal expert assignments. Second, as anomalous graphs often exhibit pronounced distributional discrepancies, existing router designs fall short in capturing domain-invariant routing principles that generalize beyond the training graphs. To address these challenges, we propose a novel MoE framework with evolutionary router feature generation (EvoFG) for zero-shot GAD. To enhance MoE routing, we propose an evolutionary feature generation scheme that iteratively constructs and selects informative structural features via an LLM-based generator and Shapley-guided evaluation. Moreover, a memory-enhanced router with an invariant learning objective is designed to capture transferable routing patterns under distribution shifts. Extensive experiments on six benchmarks show that EvoFG consistently outperforms state-of-the-art baselines, achieving strong and stable zero-shot GAD performance.
☆ Recurrent Preference Memory for Efficient Long-Sequence Generative Recommendation
Generative recommendation (GenRec) models typically model user behavior via full attention, but scaling to lifelong sequences is hindered by prohibitive computational costs and noise accumulation from stochastic interactions. To address these challenges, we introduce Rec2PM, a framework that compresses long user interaction histories into compact Preference Memory tokens. Unlike traditional recurrent methods that suffer from serial training, Rec2PM employs a novel self-referential teacher-forcing strategy: it leverages a global view of the history to generate reference memories, which serve as supervision targets for parallelized recurrent updates. This allows for fully parallel training while maintaining the capability for iterative updates during inference. Additionally, by representing memory as token embeddings rather than extensive KV caches, Rec2PM achieves extreme storage efficiency. Experiments on large-scale benchmarks show that Rec2PM significantly reduces inference latency and memory footprint while achieving superior accuracy compared to full-sequence models. Analysis reveals that the Preference Memory functions as a denoising Information Bottleneck, effectively filtering interaction noise to capture robust long-term interests.
comment: 12 pages, 6figures
☆ Analytical Search
Analytical information needs, such as trend analysis and causal impact assessment, are prevalent across various domains including law, finance, science, and much more. However, existing information retrieval paradigms, whether based on relevance-oriented document ranking or retrieval-augmented generation (RAG) with large language models (LLMs), often struggle to meet the end-to-end requirements of such tasks at the corpus scale. They either emphasize information finding rather than end-to-end problem solving, or simply treat everything as naive question answering, offering limited control over reasoning, evidence usage, and verifiability. As a result, they struggle to support analytical queries that have diverse utility concepts and high accountability requirements. In this paper, we propose analytical search as a distinct and emerging search paradigm designed to fulfill these analytical information needs. Analytical search reframes search as an evidence-governed, process-oriented analytical workflow that explicitly models analytical intent, retrieves evidence for fusion, and produces verifiable conclusions through structured, multi-step inference. We position analytical search in contrast to existing paradigms, and present a unified system framework that integrates query understanding, recall-oriented retrieval, reasoning-aware fusion, and adaptive verification. We also discuss potential research directions for the construction of analytical search engines. In this way, we highlight the conceptual significance and practical importance of analytical search and call on efforts toward the next generation of search engines that support analytical information needs.
☆ LASER: An Efficient Target-Aware Segmented Attention Framework for End-to-End Long Sequence Modeling
Modeling ultra-long user behavior sequences is pivotal for capturing evolving and lifelong interests in modern recommendation systems. However, deploying such models in real-time industrial environments faces a strict "Latency Wall", constrained by two distinct bottlenecks: the high I/O latency of retrieving massive user histories and the quadratic computational complexity of standard attention mechanisms. To break these bottlenecks, we present LASER, a full-stack optimization framework developed and deployed at Xiaohongshu (RedNote). Our approach tackles the challenges through two complementary innovations: (1) System efficiency: We introduce SeqVault, a unified schema-aware serving infrastructure for long user histories. By implementing a hybrid DRAM-SSD indexing strategy, SeqVault reduces retrieval latency by 50% and CPU usage by 75%, ensuring millisecond-level access to full real-time and life-cycle user histories. (2) Algorithmic efficiency: We propose a Segmented Target Attention (STA) mechanism to address the computational overhead. Motivated by the inherent sparsity of user interests, STA employs a sigmoid-based gating strategy that acts as a silence mechanism to filter out noisy items. Subsequently, a lightweight Global Stacked Target Attention (GSTA) module refines these compressed segments to capture cross-segment dependencies without incurring high computational costs. This design performs effective sequence compression, reducing the complexity of long-sequence modeling while preserving critical signals. Extensive offline evaluations demonstrate that LASER consistently outperforms state-of-the-art baselines. In large-scale online A/B testing serving over 100 million daily active users, LASER achieved a 2.36% lift in ADVV and a 2.08% lift in revenue, demonstrating its scalability and significant commercial impact.
comment: 9 pages
☆ KuaiSearch: A Large-Scale E-Commerce Search Dataset for Recall, Ranking, and Relevance
E-commerce search serves as a central interface, connecting user demands with massive product inventories and plays a vital role in our daily lives. However, in real-world applications, it faces challenges, including highly ambiguous queries, noisy product texts with weak semantic order, and diverse user preferences, all of which make it difficult to accurately capture user intent and fine-grained product semantics. In recent years, significant advances in large language models (LLMs) for semantic representation and contextual reasoning have created new opportunities to address these challenges. Nevertheless, existing e-commerce search datasets still suffer from notable limitations: queries are often heuristically constructed, cold-start users and long-tail products are filtered out, query and product texts are anonymized, and most datasets cover only a single stage of the search pipeline. Collectively, these issues constrain research on LLM-based e-commerce search. To address these challenges, we construct and release KuaiSearch. To the best of our knowledge, it is the largest e-commerce search dataset currently available. KuaiSearch is built upon real user search interactions from the Kuaishou platform, preserving authentic user queries and natural-language product texts, covering cold-start users and long-tail products, and systematically spanning three key stages of the search pipeline: recall, ranking, and relevance judgment. We conduct a comprehensive analysis of KuaiSearch from multiple perspectives, including products, users, and queries, and establish benchmark experiments across several representative search tasks. Experimental results demonstrate that KuaiSearch provides a valuable foundation for research on real-world e-commerce search.
☆ From Noise to Order: Learning to Rank via Denoising Diffusion
In information retrieval (IR), learning-to-rank (LTR) methods have traditionally limited themselves to discriminative machine learning approaches that model the probability of the document being relevant to the query given some feature representation of the query-document pair. In this work, we propose an alternative denoising diffusion-based deep generative approach to LTR that instead models the full joint distribution over feature vectors and relevance labels. While in the discriminative setting, an over-parameterized ranking model may find different ways to fit the training data, we hypothesize that candidate solutions that can explain the full data distribution under the generative setting produce more robust ranking models. With this motivation, we propose DiffusionRank that extends TabDiff, an existing denoising diffusion-based generative model for tabular datasets, to create generative equivalents of classical discriminative pointwise and pairwise LTR objectives. Our empirical results demonstrate significant improvements from DiffusionRank models over their discriminative counterparts. Our work points to a rich space for future research exploration on how we can leverage ongoing advancements in deep generative modeling approaches, such as diffusion, for learning-to-rank in IR.
♻ ☆ Equity by Design: Fairness-Driven Recommendation in Heterogeneous Two-Sided Markets
Two-sided marketplaces embody heterogeneity in incentives: producers seek exposure while consumers seek relevance, and balancing these competing objectives through constrained optimization is now a standard practice. Yet real platforms face finer-grained complexity: consumers differ in preferences and engagement patterns, producers vary in catalog value and capacity, and business objectives impose additional constraints beyond raw relevance. We formalize two-sided fairness under these realistic conditions, extending prior work from soft single-item allocations to discrete multi-item recommendations. We introduce Conditional Value-at-Risk (CVaR) as a consumer-side objective that compresses group-level utility disparities, and integrate business constraints directly into the optimization. Our experiments reveal that the "free fairness" regime, where producer constraints impose no consumer cost, disappears in multi item settings. Strikingly, moderate fairness constraints can improve business metrics by diversifying exposure away from saturated producers. Scalable solvers match exact solutions at a fraction of the runtime, making fairness-aware allocation practical at scale. These findings reframe fairness not as a tax on platform efficiency but as a lever for sustainable marketplace health.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
comment: This is a preliminary version of the paper accepted at MISQ: https://doi.org/10.25300/MISQ/2025/19488 Please do not cite this version
♻ ☆ Breaking the Curse of Dimensionality: On the Stability of Modern Vector Retrieval
Modern vector databases enable efficient retrieval over high-dimensional neural embeddings, powering applications from web search to retrieval-augmented generation. However, classical theory predicts such tasks should suffer from the curse of dimensionality, where distances between points become nearly indistinguishable, thereby crippling efficient nearest-neighbor search. We revisit this paradox through the lens of stability, the property that small perturbations to a query do not radically alter its nearest neighbors. Building on foundational results, we extend stability theory to three key retrieval settings widely used in practice: (i) multi-vector search, where we prove that the popular Chamfer distance metric preserves single-vector stability, while average pooling aggregation may destroy it; (ii) filtered vector search, where we show that sufficiently large penalties for mismatched filters can induce stability even when the underlying search is unstable; and (iii) sparse vector search, where we formalize and prove novel sufficient stability conditions. Across synthetic and real datasets, our experimental results match our theoretical predictions, offering concrete guidance for model and system design to avoid the curse of dimensionality.
comment: 21 pages
♻ ☆ AMAQA: A Metadata-based QA Dataset for RAG Systems
Retrieval-augmented generation (RAG) systems are widely used in question-answering (QA) tasks, but current benchmarks lack metadata integration, limiting their evaluation in scenarios requiring both textual data and external information. To address this, we present AMAQA, a new open-access QA dataset designed to evaluate tasks combining text and metadata. The integration of metadata is especially important in fields that require rapid analysis of large volumes of data, such as cybersecurity and intelligence, where timely access to relevant information is critical. AMAQA includes about 1.1 million English messages collected from 26 public Telegram groups, enriched with metadata such as timestamps and chat names. It also contains 20,000 hotel reviews with metadata. In addition, the dataset provides 2,600 high-quality QA pairs built across both domains, Telegram messages and hotel reviews, making AMAQA a valuable resource for advancing research on metadata-driven QA and RAG systems. Both Telegram messages and Hotel reviews are enriched with emotional tones or toxicity indicators. To the best of our knowledge, AMAQA is the first single-hop QA benchmark to incorporate metadata. We conduct extensive tests on the benchmark, setting a new reference point for future research. We show that leveraging metadata boosts accuracy from 0.5 to 0.86 for GPT-4o and from 0.27 to 0.76 for open source LLMs, highlighting the value of structured context. We conducted experiments on our benchmark to assess the performance of known techniques designed to enhance RAG, highlighting the importance of properly managing metadata throughout the entire RAG pipeline.
♻ ☆ S-GRec: Personalized Semantic-Aware Generative Recommendation with Asymmetric Advantage
Generative recommendation models sequence generation to produce items end-to-end, but training from behavioral logs often provides weak supervision on underlying user intent. Although Large Language Models (LLMs) offer rich semantic priors that could supply such supervision, direct adoption in industrial recommendation is hindered by two obstacles: semantic signals can conflict with platform business objectives, and LLM inference is prohibitively expensive at scale. This paper presents S-GRec, a semantic-aware framework that decouples an online lightweight generator from an offline LLM-based semantic judge for train-time supervision. S-GRec introduces a two-stage Personalized Semantic Judge (PSJ) that produces interpretable aspect evidence and learns user-conditional aggregation from pairwise feedback, yielding stable semantic rewards. To prevent semantic supervision from deviating from business goals, Asymmetric Advantage Policy Optimization (A2PO) anchors optimization on business rewards (e.g., eCPM) and injects semantic advantages only when they are consistent. Extensive experiments on public benchmarks and a large-scale production system validate both effectiveness and scalability, including statistically significant gains in CTR and a 1.19\% lift in GMV in online A/B tests, without requiring real-time LLM inference.
♻ ☆ Query-Mixed Interest Extraction and Heterogeneous Interaction: A Scalable CTR Model for Industrial Recommender Systems
Learning effective feature interactions is central to modern recommender systems, yet remains challenging in industrial settings due to sparse multi-field inputs and ultra-long user behavior sequences. While recent scaling efforts have improved model capacity, they often fail to construct both context-aware and context-independent user intent from the long-term and real-time behavior sequence. Meanwhile, recent work also suffers from inefficient and homogeneous interaction mechanisms, leading to suboptimal prediction performance. To address these limitations, we propose HeMix, a scalable ranking model that unifies adaptive sequence tokenization and heterogeneous interaction structure. Specifically, HeMix introduces a Query-Mixed Interest Extraction module that jointly models context-aware and context-independent user interests via dynamic and fixed queries over global and real-time behavior sequences. For interaction, we replace self-attention with the HeteroMixer block, enabling efficient, multi-granularity cross-feature interactions that adopt the multi-head token fusion, heterogeneous interaction and group-aligned reconstruction pipelines. HeMix demonstrates favorable scaling behavior, driven by the HeteroMixer block, where increasing model scale via parameter expansion leads to steady improvements in recommendation accuracy. Experiments on industrial-scale datasets show that HeMix scales effectively and consistently outperforms strong baselines. Most importantly, HeMix has been deployed on the AMAP platform, delivering significant online gains over DLRM: +3.61\% GMV, +2.78\% PV\_CTR, and +2.12\% UV\_CVR.
♻ ☆ MLDocRAG: Multimodal Long-Context Document Retrieval Augmented Generation
Understanding multimodal long-context documents that comprise multimodal chunks such as paragraphs, figures, and tables is challenging due to (1) cross-modal heterogeneity to localize relevant information across modalities, (2) cross-page reasoning to aggregate dispersed evidence across pages. To address these challenges, we are motivated to adopt a query-centric formulation that projects cross-modal and cross-page information into a unified query representation space, with queries acting as abstract semantic surrogates for heterogeneous multimodal content. In this paper, we propose a Multimodal Long-Context Document Retrieval Augmented Generation (MLDocRAG) framework that leverages a Multimodal Chunk-Query Graph (MCQG) to organize multimodal document content around semantically rich, answerable queries. MCQG is constructed via a multimodal document expansion process that generates fine-grained queries from heterogeneous document chunks and links them to their corresponding content across modalities and pages. This graph-based structure enables selective, query-centric retrieval and structured evidence aggregation, thereby enhancing grounding and coherence in multimodal long-context question answering. Experiments on datasets MMLongBench-Doc and LongDocURL demonstrate that MLDocRAG consistently improves retrieval quality and answer accuracy, demonstrating its effectiveness for multimodal long-context understanding.
comment: 15 pages
♻ ☆ End-to-End Semantic ID Generation for Generative Advertisement Recommendation
Generative Recommendation (GR) has excelled by framing recommendation as next-token prediction. This paradigm relies on Semantic IDs (SIDs) to tokenize large-scale items into discrete sequences. Existing GR approaches predominantly generate SIDs via Residual Quantization (RQ), where items are encoded into embeddings and then quantized to discrete SIDs. However, this paradigm suffers from inherent limitations: 1) Objective misalignment and semantic degradation stemming from the two-stage compression; 2) Error accumulation inherent in the structure of RQ. To address these limitations, we propose UniSID, a Unified SID generation framework for generative advertisement recommendation. Specifically, we jointly optimize embeddings and SIDs in an end-to-end manner from raw advertising data, enabling semantic information to flow directly into the SID space and thus addressing the inherent limitations of the two-stage cascading compression paradigm. To capture fine-grained semantics, a multi-granularity contrastive learning strategy is introduced to align distinct items across SID levels. Finally, a summary-based ad reconstruction mechanism is proposed to encourage SIDs to capture high-level semantic information that is not explicitly present in advertising contexts. Experiments demonstrate that UniSID consistently outperforms state-of-the-art SID generation methods, yielding up to a 4.62% improvement in Hit Rate metrics across downstream advertising scenarios compared to the strongest baseline.
comment: Minor update to figures (logo replacement)
♻ ☆ Generative Reasoning Re-ranker
Recent studies increasingly explore Large Language Models (LLMs) as a new paradigm for recommendation systems due to their scalability and world knowledge. However, existing work has three key limitations: (1) most efforts focus on retrieval and ranking, while the reranking phase, critical for refining final recommendations, is largely overlooked; (2) LLMs are typically used in zero-shot or supervised fine-tuning settings, leaving their reasoning abilities, especially those enhanced through reinforcement learning (RL) and high-quality reasoning data, underexploited; (3) items are commonly represented by non-semantic IDs, creating major scalability challenges in industrial systems with billions of identifiers. To address these gaps, we propose the Generative Reasoning Reranker (GR2), an end-to-end framework with a three-stage training pipeline tailored for reranking. First, a pretrained LLM is mid-trained on semantic IDs encoded from non-semantic IDs via a tokenizer achieving $\ge$99% uniqueness. Next, a stronger larger-scale LLM generates high-quality reasoning traces through carefully designed prompting and rejection sampling, which are used for supervised fine-tuning to impart foundational reasoning skills. Finally, we apply Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO), enabling scalable RL supervision with verifiable rewards designed specifically for reranking. Experiments on two real-world datasets demonstrate GR2's effectiveness: it surpasses the state-of-the-art OneRec-Think by 2.4% in Recall@5 and 1.3% in NDCG@5. Ablations confirm that advanced reasoning traces yield substantial gains across metrics. We further find that RL reward design is crucial in reranking: LLMs tend to exploit reward hacking by preserving item order, motivating conditional verifiable rewards to mitigate this behavior and optimize reranking performance.
comment: 31 pages
♻ ☆ Internalizing Multi-Agent Reasoning for Accurate and Efficient LLM-based Recommendation
Large Language Models (LLMs) are reshaping recommender systems by leveraging extensive world knowledge and semantic reasoning to interpret user intent. However, effectively integrating these capabilities with collaborative signals while avoiding prohibitive inference latency remains a critical bottleneck. To address this, we propose a trajectory-driven internalization framework to develop a Single-agent Trajectory-Aligned Recommender (STAR). Specifically, to internalize complex reasoning capabilities into a single efficient model, we first design a multi-agent teacher system capable of multi-turn tool usage and reflection. This teacher utilizes a Collaborative Signal Translation mechanism to explicitly convert latent behavioral patterns into descriptive natural language evidence to enhance reasoning accuracy. Subsequently, a trajectory-driven distillation pipeline transfers this agentic logic, including planning, tool usage, and self-reflection, into the compact STAR model. Extensive experiments demonstrate that STAR surpasses its teacher by 8.7% to 39.5% while eliminating iterative latency, paving the way for real-time, reasoning-enhanced recommendation.
♻ ☆ DiffuReason: Bridging Latent Reasoning and Generative Refinement for Sequential Recommendation
Latent reasoning has emerged as a promising paradigm for sequential recommendation, enabling models to capture complex user intent through multi-step deliberation. Yet existing approaches often rely on deterministic latent chains that accumulate noise and overlook the uncertainty inherent in user intent, and they are typically trained in staged pipelines that hinder joint optimization and exploration. To address these challenges, we propose DiffuReason, a unified "Think-then-Diffuse" framework for sequential recommendation. It integrates multi-step Thinking Tokens for latent reasoning, diffusion-based refinement for denoising intermediate representations, and end-to-end Group Relative Policy Optimization (GRPO) alignment to optimize for ranking performance. In the Think stage, the model generates Thinking Tokens that reason over user history to form an initial intent hypothesis. In the Diffuse stage, rather than treating this hypothesis as the final output, we refine it through a diffusion process that models user intent as a probabilistic distribution, providing iterative denoising against reasoning noise. Finally, GRPO-based reinforcement learning enables the reasoning and refinement modules to co-evolve throughout training, without the constraints of staged optimization. Extensive experiments on four benchmarks demonstrate that DiffuReason consistently improves diverse backbone architectures. Online A/B tests on a large-scale industrial platform further validate its practical effectiveness.
♻ ☆ GPR: Towards a Generative Pre-trained One-Model Paradigm for Large-Scale Advertising Recommendation
As an intelligent infrastructure connecting users with commercial content, advertising recommendation systems play a central role in information flow and value creation within the digital economy. However, existing multi-stage advertising recommendation systems suffer from objective misalignment and error propagation, making it difficult to achieve global optimality, while unified generative recommendation models still struggle to meet the demands of practical industrial applications. To address these issues, we propose GPR (Generative Pre-trained Recommender), the first one-model framework that redefines advertising recommendation as an end-to-end generative task, replacing the traditional cascading paradigm with a unified generative approach. To realize GPR, we introduce three key innovations spanning unified representation, network architecture, and training strategy. First, we design a unified input schema and tokenization method tailored to advertising scenarios, mapping both ads and organic content into a shared multi-level semantic ID space, thereby enhancing semantic alignment and modeling consistency across heterogeneous data. Second, we develop the Heterogeneous Hierarchical Decoder (HHD), a dual-decoder architecture that decouples user intent modeling from ad generation, achieving a balance between training efficiency and inference flexibility while maintaining strong modeling capacity. Finally, we propose a multi-stage joint training strategy that integrates Multi-Token Prediction (MTP), Value-Aware Fine-Tuning and the Hierarchy Enhanced Policy Optimization (HEPO) algorithm, forming a complete generative recommendation pipeline that unifies interest modeling, value alignment, and policy optimization. GPR has been fully deployed in the Tencent Weixin Channels advertising system, delivering significant improvements in key business metrics including GMV and CTCVR.
comment: 12 pages, 5 figures
♻ ☆ A Cognitive Distribution and Behavior-Consistent Framework for Black-Box Attacks on Recommender Systems
With the growing deployment of sequential recommender systems in e-commerce and other fields, their black-box interfaces raise security concerns: models are vulnerable to extraction and subsequent adversarial manipulation. Existing black-box extraction attacks primarily rely on hard labels or pairwise learning, often ignoring the importance of ranking positions, which results in incomplete knowledge transfer. Moreover, adversarial sequences generated via pure gradient methods lack semantic consistency with real user behavior, making them easily detectable. To overcome these limitations, this paper proposes a dual-enhanced attack framework. First, drawing on primacy effects and position bias, we introduce a cognitive distribution-driven extraction mechanism that maps discrete rankings into continuous value distributions with position-aware decay, thereby advancing from order alignment to cognitive distribution alignment. Second, we design a behavior-aware noisy item generation strategy that jointly optimizes collaborative signals and gradient signals. This ensures both semantic coherence and statistical stealth while effectively promoting target item rankings. Extensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods in both attack success rate and evasion rate, validating the value of integrating cognitive modeling and behavioral consistency for secure recommender systems.
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF, Camera ready version
♻ ☆ Succeeding at Scale: Automated Dataset Construction and Query-Side Adaptation for Multi-Tenant Search
Large-scale multi-tenant retrieval systems generate extensive query logs but lack curated relevance labels for effective domain adaptation, resulting in substantial underutilized "dark data". This challenge is compounded by the high cost of model updates, as jointly fine-tuning query and document encoders requires full corpus re-indexing, which is impractical in multi-tenant settings with thousands of isolated indices. We introduce DevRev-Search, a passage retrieval benchmark for technical customer support built via a fully automated pipeline. Candidate generation uses fusion across diverse sparse and dense retrievers, followed by an LLM-as-a-Judge for consistency filtering and relevance labeling. We further propose an Index-Preserving Adaptation strategy that fine-tunes only the query encoder, achieving strong performance gains while keeping document indices fixed. Experiments on DevRev-Search, SciFact, and FiQA-2018 show that Parameter-Efficient Fine-Tuning (PEFT) of the query encoder delivers a remarkable quality-efficiency trade-off, enabling scalable and practical enterprise search adaptation.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid advancement of tool-use capabilities in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) is shifting from static, one-shot retrieval toward autonomous, multi-turn evidence acquisition. However, existing agentic search frameworks typically treat long documents as flat collections of unstructured chunks, disregarding the native hierarchical organization and sequential logic essential for human comprehension. To bridge this gap, we introduce \textbf{DeepRead}, a structure-aware document reasoning agent designed to operationalize document-native structural priors into actionable reasoning capabilities. Leveraging the structural fidelity of modern OCR, DeepRead constructs a paragraph-level, coordinate-based navigation system and equips the LLM with two synergistic tools: \textsf{Retrieve} for scanning-aware localization, and \textsf{ReadSection} for contiguous, order-preserving reading within specific hierarchical scopes. This design elicits a human-like ``locate-then-read'' reasoning paradigm, effectively mitigating the context fragmentation inherent in traditional retrieval methods. Extensive evaluations across four benchmarks spanning diverse document types demonstrate that DeepRead outperforms Search-o1-style agentic search baselines by an average of 10.3\%. Fine-grained behavioral analysis further confirms that DeepRead autonomously adopts human-aligned reading strategies, validating the critical role of structural awareness in achieving precise document reasoning. Our code is available at https://github.com/Zhanli-Li/DeepRead.
comment: This version has significantly enhanced the clarity of our research
Computation and Language 148
☆ Diffusion-Pretrained Dense and Contextual Embeddings
In this report, we introduce pplx-embed, a family of multilingual embedding models that employ multi-stage contrastive learning on a diffusion-pretrained language model backbone for web-scale retrieval. By leveraging bidirectional attention through diffusion-based pretraining, our models capture comprehensive bidirectional context within passages, enabling the use of mean pooling and a late chunking strategy to better preserve global context across long documents. We release two model types: pplx-embed-v1 for standard retrieval, and pplx-embed-context-v1 for contextualized embeddings that incorporate global document context into passage representations. pplx-embed-v1 achieves competitive performance on the MTEB(Multilingual, v2), MTEB(Code), MIRACL, BERGEN, and ToolRet retrieval benchmarks, while pplx-embed-context-v1 sets new records on the ConTEB benchmark. Beyond public benchmarks, pplx-embed-v1 demonstrates strong performance on our internal evaluation suite, which focuses on real-world, large-scale search scenarios over tens of millions of documents. These results validate the models' effectiveness in production environments where retrieval quality and efficiency are critical at scale.
☆ Data Repetition Beats Data Scaling in Long-CoT Supervised Fine-Tuning
Supervised fine-tuning (SFT) on chain-of-thought data is an essential post-training step for reasoning language models. Standard machine learning intuition suggests that training with more unique training samples yields better generalization. Counterintuitively, we show that SFT benefits from repetition: under a fixed update budget, training for more epochs on smaller datasets outperforms single-epoch training on larger datasets. On AIME'24/25 and GPQA benchmarks, Olmo3-7B trained for 128 epochs on 400 samples outperforms the equivalent 1 epoch on 51200 samples by 12-26 percentage points, with no additional catastrophic forgetting. We find that training token accuracy reliably signals when repetition has saturated; improvements from additional epochs plateau at full memorization, a pattern consistent across all settings. These findings provide a practical approach for reasoning SFT, where scaling epochs with token accuracy as a stopping criterion can replace expensive undirected data scaling. We pose the repetition advantage, where full memorization coincides with improved generalization, as a new open problem for the community in understanding the training dynamics of large language models.
☆ Weight Decay Improves Language Model Plasticity
The prevailing paradigm in large language model (LLM) development is to pretrain a base model, then perform further training to improve performance and model behavior. However, hyperparameter optimization and scaling laws have been studied primarily from the perspective of the base model's validation loss, ignoring downstream adaptability. In this work, we study pretraining from the perspective of model plasticity, that is, the ability of the base model to successfully adapt to downstream tasks through fine-tuning. We focus on the role of weight decay, a key regularization parameter during pretraining. Through systematic experiments, we show that models trained with larger weight decay values are more plastic, meaning they show larger performance gains when fine-tuned on downstream tasks. This phenomenon can lead to counterintuitive trade-offs where base models that perform worse after pretraining can perform better after fine-tuning. Further investigation of weight decay's mechanistic effects on model behavior reveals that it encourages linearly separable representations, regularizes attention matrices, and reduces overfitting on the training data. In conclusion, this work demonstrates the importance of using evaluation metrics beyond cross-entropy loss for hyperparameter optimization and casts light on the multifaceted role of that a single optimization hyperparameter plays in shaping model behavior.
☆ Just on Time: Token-Level Early Stopping for Diffusion Language Models
Diffusion language models generate text through iterative refinement, a process that is often computationally inefficient because many tokens reach stability long before the final denoising step. We introduce a training-free, token-level early stopping approach that identifies convergence independently at each position. Our method leverages lightweight signals derived from the model's predictions and local context to dynamically determine when individual tokens can be finalized. This yields adaptive per-token freezing without task-specific fine-tuning, substantially reducing the total number of diffusion steps required. Across diverse benchmarks, spanning mathematical reasoning, general question answering, and scientific understanding, our approach achieves state-of-the-art efficiency gains while preserving generation quality.
comment: Under review
☆ TEGRA: Text Encoding With Graph and Retrieval Augmentation for Misinformation Detection
Misinformation detection is a critical task that can benefit significantly from the integration of external knowledge, much like manual fact-checking. In this work, we propose a novel method for representing textual documents that facilitates the incorporation of information from a knowledge base. Our approach, Text Encoding with Graph (TEG), processes documents by extracting structured information in the form of a graph and encoding both the text and the graph for classification purposes. Through extensive experiments, we demonstrate that this hybrid representation enhances misinformation detection performance compared to using language models alone. Furthermore, we introduce TEGRA, an extension of our framework that integrates domain-specific knowledge, further enhancing classification accuracy in most cases.
☆ GameDevBench: Evaluating Agentic Capabilities Through Game Development
Despite rapid progress on coding agents, progress on their multimodal counterparts has lagged behind. A key challenge is the scarcity of evaluation testbeds that combine the complexity of software development with the need for deep multimodal understanding. Game development provides such a testbed as agents must navigate large, dense codebases while manipulating intrinsically multimodal assets such as shaders, sprites, and animations within a visual game scene. We present GameDevBench, the first benchmark for evaluating agents on game development tasks. GameDevBench consists of 132 tasks derived from web and video tutorials. Tasks require significant multimodal understanding and are complex -- the average solution requires over three times the amount of lines of code and file changes compared to prior software development benchmarks. Agents still struggle with game development, with the best agent solving only 54.5% of tasks. We find a strong correlation between perceived task difficulty and multimodal complexity, with success rates dropping from 46.9% on gameplay-oriented tasks to 31.6% on 2D graphics tasks. To improve multimodal capability, we introduce two simple image and video-based feedback mechanisms for agents. Despite their simplicity, these methods consistently improve performance, with the largest change being an increase in Claude Sonnet 4.5's performance from 33.3% to 47.7%. We release GameDevBench publicly to support further research into agentic game development.
☆ Safety Recovery in Reasoning Models Is Only a Few Early Steering Steps Away
Reinforcement learning (RL) based post-training for explicit chain-of-thought (e.g., GRPO) improves the reasoning ability of multimodal large-scale reasoning models (MLRMs). But recent evidence shows that it can simultaneously degrade safety alignment and increase jailbreak success rates. We propose SafeThink, a lightweight inference-time defense that treats safety recovery as a satisficing constraint rather than a maximization objective. SafeThink monitors the evolving reasoning trace with a safety reward model and conditionally injects an optimized short corrective prefix ("Wait, think safely") only when the safety threshold is violated. In our evaluations across six open-source MLRMs and four jailbreak benchmarks (JailbreakV-28K, Hades, FigStep, and MM-SafetyBench), SafeThink reduces attack success rates by 30-60% (e.g., LlamaV-o1: 63.33% to 5.74% on JailbreakV-28K, R1-Onevision: 69.07% to 5.65% on Hades) while preserving reasoning performance (MathVista accuracy: 65.20% to 65.00%). A key empirical finding from our experiments is that safety recovery is often only a few steering steps away: intervening in the first 1-3 reasoning steps typically suffices to redirect the full generation toward safe completions.
☆ Can Large Language Models Make Everyone Happy?
Misalignment in Large Language Models (LLMs) refers to the failure to simultaneously satisfy safety, value, and cultural dimensions, leading to behaviors that diverge from human expectations in real-world settings where these dimensions must co-occur. Existing benchmarks, such as SAFETUNEBED (safety-centric), VALUEBENCH (value-centric), and WORLDVIEW-BENCH (culture-centric), primarily evaluate these dimensions in isolation and therefore provide limited insight into their interactions and trade-offs. More recent efforts, including MIB and INTERPRETABILITY BENCHMARK-based on mechanistic interpretability, offer valuable perspectives on model failures; however, they remain insufficient for systematically characterizing cross-dimensional trade-offs. To address these gaps, we introduce MisAlign-Profile, a unified benchmark for measuring misalignment trade-offs inspired by mechanistic profiling. First, we construct MISALIGNTRADE, an English misaligned-aligned dataset across 112 normative domains taxonomies, including 14 safety, 56 value, and 42 cultural domains. In addition to domain labels, each prompt is classified with one of three orthogonal semantic types-object, attribute, or relations misalignment-using Gemma-2-9B-it and expanded via Qwen3-30B-A3B-Instruct-2507 with SimHash-based fingerprinting to avoid deduplication. Each prompt is paired with misaligned and aligned responses through two-stage rejection sampling to ensure quality. Second, we benchmark general-purpose, fine-tuned, and open-weight LLMs on MISALIGNTRADE-revealing 12%-34% misalignment trade-offs across dimensions.
☆ DataChef: Cooking Up Optimal Data Recipes for LLM Adaptation via Reinforcement Learning
In the current landscape of Large Language Models (LLMs), the curation of large-scale, high-quality training data is a primary driver of model performance. A key lever is the \emph{data recipe}, which comprises a data processing pipeline to transform raw sources into training corpora. Despite the growing use of LLMs to automate individual data processing steps, such as data synthesis and filtering, the overall design of data recipes remains largely manual and labor-intensive, requiring substantial human expertise and iteration. To bridge this gap, we formulate \emph{end-to-end data recipe generation} for LLM adaptation. Given a target benchmark and a pool of available data sources, a model is required to output a complete data recipe that adapts a base LLM to the target task. We present DataChef-32B, which performs online reinforcement learning using a proxy reward that predicts downstream performance for candidate recipes. Across six held-out tasks, DataChef-32B produces practical recipes that reach comparable downstream performance to those curated by human experts. Notably, the recipe from DataChef-32B adapts Qwen3-1.7B-Base to the math domain, achieving 66.7 on AIME'25 and surpassing Qwen3-1.7B. This work sheds new light on automating LLM training and developing self-evolving AI systems.
☆ SteuerLLM: Local specialized large language model for German tax law analysis
Large language models (LLMs) demonstrate strong general reasoning and language understanding, yet their performance degrades in domains governed by strict formal rules, precise terminology, and legally binding structure. Tax law exemplifies these challenges, as correct answers require exact statutory citation, structured legal argumentation, and numerical accuracy under rigid grading schemes. We algorithmically generate SteuerEx, the first open benchmark derived from authentic German university tax law examinations. SteuerEx comprises 115 expert-validated examination questions spanning six core tax law domains and multiple academic levels, and employs a statement-level, partial-credit evaluation framework that closely mirrors real examination practice. We further present SteuerLLM, a domain-adapted LLM for German tax law trained on a large-scale synthetic dataset generated from authentic examination material using a controlled retrieval-augmented pipeline. SteuerLLM (28B parameters) consistently outperforms general-purpose instruction-tuned models of comparable size and, in several cases, substantially larger systems, demonstrating that domain-specific data and architectural adaptation are more decisive than parameter scale for performance on realistic legal reasoning tasks. All benchmark data, training datasets, model weights, and evaluation code are released openly to support reproducible research in domain-specific legal artificial intelligence. A web-based demo of SteuerLLM is available at https://steuerllm.i5.ai.fau.de.
☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
☆ Simultaneous Speech-to-Speech Translation Without Aligned Data
Simultaneous speech translation requires translating source speech into a target language in real-time while handling non-monotonic word dependencies. Traditional approaches rely on supervised training with word-level aligned data, which is difficult to collect at scale and thus depends on synthetic alignments using language-specific heuristics that are suboptimal. We propose Hibiki-Zero, which eliminates the need for word-level alignments entirely. This fundamentally simplifies the training pipeline and enables seamless scaling to diverse languages with varying grammatical structures, removing the bottleneck of designing language-specific alignment heuristics. We first train on sentence-level aligned data to learn speech translation at high latency, then apply a novel reinforcement learning strategy using GRPO to optimize latency while preserving translation quality. Hibiki-Zero achieves state-of-the-art performance in translation accuracy, latency, voice transfer, and naturalness across five X-to-English tasks. Moreover, we demonstrate that our model can be adapted to support a new input language with less than 1000h of speech. We provide examples, model weights, inference code and we release a benchmark containing 45h of multilingual data for speech translation evaluation.
comment: See inference code at: https://github.com/kyutai-labs/hibiki-zero
☆ Conversational Behavior Modeling Foundation Model With Multi-Level Perception
Human conversation is organized by an implicit chain of thoughts that manifests as timed speech acts. Capturing this perceptual pathway is key to building natural full-duplex interactive systems. We introduce a framework that models this process as multi-level perception, and then reasons over conversational behaviors via a Graph-of-Thoughts (GoT). Our approach formalizes the intent-to-action pathway with a hierarchical labeling scheme, predicting high-level communicative intents and low-level speech acts to learn their causal and temporal dependencies. To train this system, we develop a high quality corpus that pairs controllable, event-rich dialogue data with human-annotated labels. The GoT framework structures streaming predictions as an evolving graph, enabling a transformer to forecast the next speech act, generate concise justifications for its decisions, and dynamically refine its reasoning. Experiments on both synthetic and real duplex dialogues show that the framework delivers robust behavior detection, produces interpretable reasoning chains, and establishes a foundation for benchmarking conversational reasoning in full duplex spoken dialogue systems.
GraphSeek: Next-Generation Graph Analytics with LLMs
Graphs are foundational across domains but remain hard to use without deep expertise. LLMs promise accessible natural language (NL) graph analytics, yet they fail to process industry-scale property graphs effectively and efficiently: such datasets are large, highly heterogeneous, structurally complex, and evolve dynamically. To address this, we devise a novel abstraction for complex multi-query analytics over such graphs. Its key idea is to replace brittle generation of graph queries directly from NL with planning over a Semantic Catalog that describes both the graph schema and the graph operations. Concretely, this induces a clean separation between a Semantic Plane for LLM planning and broader reasoning, and an Execution Plane for deterministic, database-grade query execution over the full dataset and tool implementations. This design yields substantial gains in both token efficiency and task effectiveness even with small-context LLMs. We use this abstraction as the basis of the first LLM-enhanced graph analytics framework called GraphSeek. GraphSeek achieves substantially higher success rates (e.g., 86% over enhanced LangChain) and points toward the next generation of affordable and accessible graph analytics that unify LLM reasoning with database-grade execution over large and complex property graphs.
☆ Embedding Inversion via Conditional Masked Diffusion Language Models
We frame embedding inversion as conditional masked diffusion, recovering all tokens in parallel through iterative denoising rather than sequential autoregressive generation. A masked diffusion language model is conditioned on the target embedding via adaptive layer normalization, requiring only 8 forward passes through a 78M parameter model with no access to the target encoder. On 32-token sequences across three embedding models, the method achieves 81.3% token accuracy and 0.87 cosine similarity.
comment: 9 pages, 3 figures, 7 tables. Code and demo: https://github.com/hanxiao/embedding-inversion-demo
☆ Language Model Inversion through End-to-End Differentiation
Despite emerging research on Language Models (LM), few approaches analyse the invertibility of LMs. That is, given a LM and a desirable target output sequence of tokens, determining what input prompts would yield the target output remains an open problem. We formulate this problem as a classical gradient-based optimisation. First, we propose a simple algorithm to achieve end-to-end differentiability of a given (frozen) LM and then find optimised prompts via gradient descent. Our central insight is to view LMs as functions operating on sequences of distributions over tokens (rather than the traditional view as functions on sequences of tokens). Our experiments and ablations demonstrate that our DLM-powered inversion can reliably and efficiently optimise prompts of lengths $10$ and $80$ for targets of length $20$, for several white-box LMs (out-of-the-box).
comment: 24 pages, 5 figures, under review
☆ Learning Page Order in Shuffled WOO Releases
We investigate document page ordering on 5,461 shuffled WOO documents (Dutch freedom of information releases) using page embeddings. These documents are heterogeneous collections such as emails, legal texts, and spreadsheets compiled into single PDFs, where semantic ordering signals are unreliable. We compare five methods, including pointer networks, seq2seq transformers, and specialized pairwise ranking models. The best performing approach successfully reorders documents up to 15 pages, with Kendall's tau ranging from 0.95 for short documents (2-5 pages) to 0.72 for 15 page documents. We observe two unexpected failures: seq2seq transformers fail to generalize on long documents (Kendall's tau drops from 0.918 on 2-5 pages to 0.014 on 21-25 pages), and curriculum learning underperforms direct training by 39% on long documents. Ablation studies suggest learned positional encodings are one contributing factor to seq2seq failure, though the degradation persists across all encoding variants, indicating multiple interacting causes. Attention pattern analysis reveals that short and long documents require fundamentally different ordering strategies, explaining why curriculum learning fails. Model specialization achieves substantial improvements on longer documents (+0.21 tau).
☆ Linguistic Indicators of Early Cognitive Decline in the DementiaBank Pitt Corpus: A Statistical and Machine Learning Study
Background: Subtle changes in spontaneous language production are among the earliest indicators of cognitive decline. Identifying linguistically interpretable markers of dementia can support transparent and clinically grounded screening approaches. Methods: This study analyzes spontaneous speech transcripts from the DementiaBank Pitt Corpus using three linguistic representations: raw cleaned text, a part-of-speech (POS)-enhanced representation combining lexical and grammatical information, and a POS-only syntactic representation. Logistic regression and random forest models were evaluated under two protocols: transcript-level train-test splits and subject-level five-fold cross-validation to prevent speaker overlap. Model interpretability was examined using global feature importance, and statistical validation was conducted using Mann-Whitney U tests with Cliff's delta effect sizes. Results: Across representations, models achieved stable performance, with syntactic and grammatical features retaining strong discriminative power even in the absence of lexical content. Subject-level evaluation yielded more conservative but consistent results, particularly for POS-enhanced and POS-only representations. Statistical analysis revealed significant group differences in functional word usage, lexical diversity, sentence structure, and discourse coherence, aligning closely with machine learning feature importance findings. Conclusion: The results demonstrate that abstract linguistic features capture robust markers of early cognitive decline under clinically realistic evaluation. By combining interpretable machine learning with non-parametric statistical validation, this study supports the use of linguistically grounded features for transparent and reliable language-based cognitive screening.
☆ ROCKET: Rapid Optimization via Calibration-guided Knapsack Enhanced Truncation for Efficient Model Compression
We present ROCKET, a training-free model compression method that achieves state-of-the-art performance in comparison with factorization, structured-sparsification and dynamic compression baselines. Operating under a global compression budget, ROCKET comprises two key innovations: First, it formulates layer-wise compression allocation as a multi-choice knapsack problem, selecting the optimal compression level for each layer to minimize total reconstruction error while adhering to a target model size. Second, it introduces a single-step sparse matrix factorization inspired by dictionary learning: using only a small calibration set, it sparsifies weight coefficients based on activation-weights sensitivity and then updates the dictionary in closed form via least squares bypassing iterative optimization, sparse coding, or backpropagation entirely. ROCKET consistently outperforms existing compression approaches across different model architectures at 20-50\% compression rates. Notably, it retains over 90\% of the original model's performance at 30\% compression without any fine-tuning. Moreover, when applying a light fine-tuning phase, recovery is substantially enhanced: for instance, compressing Qwen3-14B to an 8B-parameter model and healing it with just 30 million tokens yields performance nearly on par with the original Qwen3-8B. The code for ROCKET is at github.com/mts-ai/ROCKET/tree/main.
☆ The emergence of numerical representations in communicating artificial agents
Human languages provide efficient systems for expressing numerosities, but whether the sheer pressure to communicate is enough for numerical representations to arise in artificial agents, and whether the emergent codes resemble human numerals at all, remains an open question. We study two neural network-based agents that must communicate numerosities in a referential game using either discrete tokens or continuous sketches, thus exploring both symbolic and iconic representations. Without any pre-defined numeric concepts, the agents achieve high in-distribution communication accuracy in both communication channels and converge on high-precision symbol-meaning mappings. However, the emergent code is non-compositional: the agents fail to derive systematic messages for unseen numerosities, typically reusing the symbol of the highest trained numerosity (discrete), or collapsing extrapolated values onto a single sketch (continuous). We conclude that the communication pressure alone suffices for precise transmission of learned numerosities, but additional pressures are needed to yield compositional codes and generalisation abilities.
comment: In the Sixteenth International Conference on the Evolution of Language
☆ LoRA-Squeeze: Simple and Effective Post-Tuning and In-Tuning Compression of LoRA Modules
Despite its huge number of variants, standard Low-Rank Adaptation (LoRA) is still a dominant technique for parameter-efficient fine-tuning (PEFT). Nonetheless, it faces persistent challenges, including the pre-selection of an optimal rank and rank-specific hyper-parameters, as well as the deployment complexity of heterogeneous-rank modules and more sophisticated LoRA derivatives. In this work, we introduce LoRA-Squeeze, a simple and efficient methodology that aims to improve standard LoRA learning by changing LoRA module ranks either post-hoc or dynamically during training}. Our approach posits that it is better to first learn an expressive, higher-rank solution and then compress it, rather than learning a constrained, low-rank solution directly. The method involves fine-tuning with a deliberately high(er) source rank, reconstructing or efficiently approximating the reconstruction of the full weight update matrix, and then using Randomized Singular Value Decomposition (RSVD) to create a new, compressed LoRA module at a lower target rank. Extensive experiments across 13 text and 10 vision-language tasks show that post-hoc compression often produces lower-rank adapters that outperform those trained directly at the target rank, especially if a small number of fine-tuning steps at the target rank is allowed. Moreover, a gradual, in-tuning rank annealing variant of LoRA-Squeeze consistently achieves the best LoRA size-performance trade-off.
comment: Preprint
☆ Rotary Positional Embeddings as Phase Modulation: Theoretical Bounds on the RoPE Base for Long-Context Transformers
Rotary positional embeddings (RoPE) are widely used in large language models to encode token positions through multiplicative rotations, yet their behavior at long context lengths remains poorly characterized. In this work, we reinterpret RoPE as phase modulation applied to a bank of complex oscillators, enabling analysis through classical signal processing theory. Under this formulation, we derive principled lower bounds on the RoPE base parameter that are necessary to preserve positional coherence over a target context length. These include a fundamental aliasing bound, analogous to a Nyquist limit, and a DC-component stability bound that constrains phase drift in low-frequency positional modes. We further extend this analysis to deep transformers, showing that repeated rotary modulation across layers compounds angular misalignment, tightening the base requirement as depth increases. Complementing these results, we derive a precision-dependent upper bound on the RoPE base arising from finite floating-point resolution. Beyond this limit, incremental phase updates become numerically indistinguishable, leading to positional erasure even in the absence of aliasing. Together, the lower and upper bounds define a precision- and depth-dependent feasibility region a Goldilocks zone for long-context transformers. We validate the framework through a comprehensive case study of state-of-the-art models, including LLaMA, Mistral, and DeepSeek variants, showing that observed successes, failures, and community retrofits align closely with the predicted bounds. Notably, models that violate the stability bound exhibit attention collapse and long-range degradation, while attempts to scale beyond one million tokens encounter a hard precision wall independent of architecture or training.
☆ Search or Accelerate: Confidence-Switched Position Beam Search for Diffusion Language Models
Diffusion Language Models (DLMs) generate text by iteratively denoising a masked sequence, repeatedly deciding which positions to commit at each step. Standard decoding follows a greedy rule: unmask the most confident positions, yet this local choice can lock the model into a suboptimal unmasking order, especially on reasoning-heavy prompts. We present SOAR, a training-free decoding algorithm that adapts its behavior to the model's uncertainty. When confidence is low, SOAR briefly widens the search over alternative unmasking decisions to avoid premature commitments; when confidence is high, it collapses the search and decodes many positions in parallel to reduce the number of denoising iterations. Across mathematical reasoning and code generation benchmarks (GSM8K, MBPP, HumanEval) on Dream-7B and LLaDA-8B, SOAR improves generation quality while maintaining competitive inference speed, offering a practical way to balance quality and efficiency in DLM decoding.
comment: 11 pages, 8 figures
☆ Computational Phenomenology of Temporal Experience in Autism: Quantifying the Emotional and Narrative Characteristics of Lived Unpredictability
Disturbances in temporality, such as desynchronization with the social environment and its unpredictability, are considered core features of autism with a deep impact on relationships. However, limitations regarding research on this issue include: 1) the dominance of deficit-based medical models of autism, 2) sample size in qualitative research, and 3) the lack of phenomenological anchoring in computational research. To bridge the gap between phenomenological and computational approaches and overcome sample-size limitations, our research integrated three methodologies. Study A: structured phenomenological interviews with autistic individuals using the Transdiagnostic Assessment of Temporal Experience. Study B: computational analysis of an autobiographical corpus of autistic narratives built for this purpose. Study C: a replication of a computational study using narrative flow measures to assess the perceived phenomenological authenticity of autistic autobiographies. Interviews revealed that the most significant differences between the autistic and control groups concerned unpredictability of experience. Computational results mirrored these findings: the temporal lexicon in autistic narratives was significantly more negatively valenced - particularly the "Immediacy & Suddenness" category. Outlier analysis identified terms associated with perceived discontinuity (unpredictably, precipitously, and abruptly) as highly negative. The computational analysis of narrative flow found that the autistic narratives contained within the corpus quantifiably resemble autobiographical stories more than imaginary ones. Overall, the temporal challenges experienced by autistic individuals were shown to primarily concern lived unpredictability and stem from the contents of lived experience, and not from autistic narrative construction.
☆ SoftMatcha 2: A Fast and Soft Pattern Matcher for Trillion-Scale Corpora
We present an ultra-fast and flexible search algorithm that enables search over trillion-scale natural language corpora in under 0.3 seconds while handling semantic variations (substitution, insertion, and deletion). Our approach employs string matching based on suffix arrays that scales well with corpus size. To mitigate the combinatorial explosion induced by the semantic relaxation of queries, our method is built on two key algorithmic ideas: fast exact lookup enabled by a disk-aware design, and dynamic corpus-aware pruning. We theoretically show that the proposed method suppresses exponential growth in the search space with respect to query length by leveraging statistical properties of natural language. In experiments on FineWeb-Edu (Lozhkov et al., 2024) (1.4T tokens), we show that our method achieves significantly lower search latency than existing methods: infini-gram (Liu et al., 2024), infini-gram mini (Xu et al., 2025), and SoftMatcha (Deguchi et al., 2025). As a practical application, we demonstrate that our method identifies benchmark contamination in training corpora, unidentified by existing approaches. We also provide an online demo of fast, soft search across corpora in seven languages.
comment: Project Page & Web Interface: https://softmatcha.github.io/v2/, Source Code: https://github.com/softmatcha/softmatcha2
☆ The CLEF-2026 FinMMEval Lab: Multilingual and Multimodal Evaluation of Financial AI Systems
We present the setup and the tasks of the FinMMEval Lab at CLEF 2026, which introduces the first multilingual and multimodal evaluation framework for financial Large Language Models (LLMs). While recent advances in financial natural language processing have enabled automated analysis of market reports, regulatory documents, and investor communications, existing benchmarks remain largely monolingual, text-only, and limited to narrow subtasks. FinMMEval 2026 addresses this gap by offering three interconnected tasks that span financial understanding, reasoning, and decision-making: Financial Exam Question Answering, Multilingual Financial Question Answering (PolyFiQA), and Financial Decision Making. Together, these tasks provide a comprehensive evaluation suite that measures models' ability to reason, generalize, and act across diverse languages and modalities. The lab aims to promote the development of robust, transparent, and globally inclusive financial AI systems, with datasets and evaluation resources publicly released to support reproducible research.
comment: 7 pages
☆ Diagnosing Structural Failures in LLM-Based Evidence Extraction for Meta-Analysis
Systematic reviews and meta-analyses rely on converting narrative articles into structured, numerically grounded study records. Despite rapid advances in large language models (LLMs), it remains unclear whether they can meet the structural requirements of this process, which hinge on preserving roles, methods, and effect-size attribution across documents rather than on recognizing isolated entities. We propose a structural, diagnostic framework that evaluates LLM-based evidence extraction as a progression of schema-constrained queries with increasing relational and numerical complexity, enabling precise identification of failure points beyond atom-level extraction. Using a manually curated corpus spanning five scientific domains, together with a unified query suite and evaluation protocol, we evaluate two state-of-the-art LLMs under both per-document and long-context, multi-document input regimes. Across domains and models, performance remains moderate for single-property queries but degrades sharply once tasks require stable binding between variables, roles, statistical methods, and effect sizes. Full meta-analytic association tuples are extracted with near-zero reliability, and long-context inputs further exacerbate these failures. Downstream aggregation amplifies even minor upstream errors, rendering corpus-level statistics unreliable. Our analysis shows that these limitations stem not from entity recognition errors, but from systematic structural breakdowns, including role reversals, cross-analysis binding drift, instance compression in dense result sections, and numeric misattribution, indicating that current LLMs lack the structural fidelity, relational binding, and numerical grounding required for automated meta-analysis. The code and data are publicly available at GitHub (https://github.com/zhiyintan/LLM-Meta-Analysis).
comment: Accepted at the 22nd Conference on Information and Research Science Connecting to Digital and Library Science (IRCDL 2026)
☆ C-MOP: Integrating Momentum and Boundary-Aware Clustering for Enhanced Prompt Evolution
Automatic prompt optimization is a promising direction to boost the performance of Large Language Models (LLMs). However, existing methods often suffer from noisy and conflicting update signals. In this research, we propose C-MOP (Cluster-based Momentum Optimized Prompting), a framework that stabilizes optimization via Boundary-Aware Contrastive Sampling (BACS) and Momentum-Guided Semantic Clustering (MGSC). Specifically, BACS utilizes batch-level information to mine tripartite features--Hard Negatives, Anchors, and Boundary Pairs--to precisely characterize the typical representation and decision boundaries of positive and negative prompt samples. To resolve semantic conflicts, MGSC introduces a textual momentum mechanism with temporal decay that distills persistent consensus from fluctuating gradients across iterations. Extensive experiments demonstrate that C-MOP consistently outperforms SOTA baselines like PromptWizard and ProTeGi, yielding average gains of 1.58% and 3.35%. Notably, C-MOP enables a general LLM with 3B activated parameters to surpass a 70B domain-specific dense LLM, highlighting its effectiveness in driving precise prompt evolution. The code is available at https://github.com/huawei-noah/noah-research/tree/master/C-MOP.
comment: The code is available at https://github.com/huawei-noah/noah-research/tree/master/C-MOP
☆ Training-Induced Bias Toward LLM-Generated Content in Dense Retrieval ECIR 2026
Dense retrieval is a promising approach for acquiring relevant context or world knowledge in open-domain natural language processing tasks and is now widely used in information retrieval applications. However, recent reports claim a broad preference for text generated by large language models (LLMs). This bias is called "source bias", and it has been hypothesized that lower perplexity contributes to this effect. In this study, we revisit this claim by conducting a controlled evaluation to trace the emergence of such preferences across training stages and data sources. Using parallel human- and LLM-generated counterparts of the SciFact and Natural Questions (NQ320K) datasets, we compare unsupervised checkpoints with models fine-tuned using in-domain human text, in-domain LLM-generated text, and MS MARCO. Our results show the following: 1) Unsupervised retrievers do not exhibit a uniform pro-LLM preference. The direction and magnitude depend on the dataset. 2) Across the settings tested, supervised fine-tuning on MS MARCO consistently shifts the rankings toward LLM-generated text. 3) In-domain fine-tuning produces dataset-specific and inconsistent shifts in preference. 4) Fine-tuning on LLM-generated corpora induces a pronounced pro-LLM bias. Finally, a retriever-centric perplexity probe involving the reattachment of a language modeling head to the fine-tuned dense retriever encoder indicates agreement with relevance near chance, thereby weakening the explanatory power of perplexity. Our study demonstrates that source bias is a training-induced phenomenon rather than an inherent property of dense retrievers.
comment: Accepted at ECIR 2026
☆ I can tell whether you are a Native Hawlêri Speaker! How ANN, CNN, and RNN perform in NLI-Native Language Identification
Native Language Identification (NLI) is a task in Natural Language Processing (NLP) that typically determines the native language of an author through their writing or a speaker through their speaking. It has various applications in different areas, such as forensic linguistics and general linguistics studies. Although considerable research has been conducted on NLI regarding two different languages, such as English and German, the literature indicates a significant gap regarding NLI for dialects and subdialects. The gap becomes wider in less-resourced languages such as Kurdish. This research focuses on NLI within the context of a subdialect of Sorani (Central) Kurdish. It aims to investigate the NLI for Hewlêri, a subdialect spoken in Hewlêr (Erbil), the Capital of the Kurdistan Region of Iraq. We collected about 24 hours of speech by recording interviews with 40 native or non-native Hewlêri speakers, 17 female and 23 male. We created three Neural Network-based models: Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN), which were evaluated through 66 experiments, covering various time-frames from 1 to 60 seconds, undersampling, oversampling, and cross-validation. The RNN model showed the highest accuracy of 95.92% for 5-second audio segmentation, using an 80:10:10 data splitting scheme. The created dataset is the first speech dataset for NLI on the Hewlêri subdialect in the Sorani Kurdish dialect, which can be of benefit to various research areas.
comment: 16 pages, 12 figures, 7 tables
☆ Beyond Confidence: The Rhythms of Reasoning in Generative Models ICLR 2026
Large Language Models (LLMs) exhibit impressive capabilities yet suffer from sensitivity to slight input context variations, hampering reliability. Conventional metrics like accuracy and perplexity fail to assess local prediction robustness, as normalized output probabilities can obscure the underlying resilience of an LLM's internal state to perturbations. We introduce the Token Constraint Bound ($δ_{\mathrm{TCB}}$), a novel metric that quantifies the maximum internal state perturbation an LLM can withstand before its dominant next-token prediction significantly changes. Intrinsically linked to output embedding space geometry, $δ_{\mathrm{TCB}}$ provides insights into the stability of the model's internal predictive commitment. Our experiments show $δ_{\mathrm{TCB}}$ correlates with effective prompt engineering and uncovers critical prediction instabilities missed by perplexity during in-context learning and text generation. $δ_{\mathrm{TCB}}$ offers a principled, complementary approach to analyze and potentially improve the contextual stability of LLM predictions.
comment: ICLR 2026
☆ Deep Learning-based Method for Expressing Knowledge Boundary of Black-Box LLM
Large Language Models (LLMs) have achieved remarkable success, however, the emergence of content generation distortion (hallucination) limits their practical applications. The core cause of hallucination lies in LLMs' lack of awareness regarding their stored internal knowledge, preventing them from expressing their knowledge state on questions beyond their internal knowledge boundaries, as humans do. However, existing research on knowledge boundary expression primarily focuses on white-box LLMs, leaving methods suitable for black-box LLMs which offer only API access without revealing internal parameters-largely unexplored. Against this backdrop, this paper proposes LSCL (LLM-Supervised Confidence Learning), a deep learning-based method for expressing the knowledge boundaries of black-box LLMs. Based on the knowledge distillation framework, this method designs a deep learning model. Taking the input question, output answer, and token probability from a black-box LLM as inputs, it constructs a mapping between the inputs and the model' internal knowledge state, enabling the quantification and expression of the black-box LLM' knowledge boundaries. Experiments conducted on diverse public datasets and with multiple prominent black-box LLMs demonstrate that LSCL effectively assists black-box LLMs in accurately expressing their knowledge boundaries. It significantly outperforms existing baseline models on metrics such as accuracy and recall rate. Furthermore, considering scenarios where some black-box LLMs do not support access to token probability, an adaptive alternative method is proposed. The performance of this alternative approach is close to that of LSCL and surpasses baseline models.
☆ Reinforced Curriculum Pre-Alignment for Domain-Adaptive VLMs
Vision-Language Models (VLMs) demonstrate remarkable general-purpose capabilities but often fall short in specialized domains such as medical imaging or geometric problem-solving. Supervised Fine-Tuning (SFT) can enhance performance within a target domain, but it typically causes catastrophic forgetting, limiting its generalization. The central challenge, therefore, is to adapt VLMs to new domains while preserving their general-purpose capabilities. Continual pretraining is effective for expanding knowledge in Large Language Models (LLMs), but it is less feasible for VLMs due to prohibitive computational costs and the unavailability of pretraining data for most open-source models. This necessitates efficient post-training adaptation methods. Reinforcement learning (RL)-based approaches such as Group Relative Policy Optimization (GRPO) have shown promise in preserving general abilities, yet they often fail in domain adaptation scenarios where the model initially lacks sufficient domain knowledge, leading to optimization collapse. To bridge this gap, we propose Reinforced Curriculum Pre-Alignment (RCPA), a novel post-training paradigm that introduces a curriculum-aware progressive modulation mechanism. In the early phase, RCPA applies partial output constraints to safely expose the model to new domain concepts. As the model's domain familiarity increases, training gradually transitions to full generation optimization, refining responses and aligning them with domain-specific preferences. This staged adaptation balances domain knowledge acquisition with the preservation of general multimodal capabilities. Extensive experiments across specialized domains and general benchmarks validate the effectiveness of RCPA, establishing a practical pathway toward building high-performing and domain-adaptive VLMs.
☆ Calliope: A TTS-based Narrated E-book Creator Ensuring Exact Synchronization, Privacy, and Layout Fidelity
A narrated e-book combines synchronized audio with digital text, highlighting the currently spoken word or sentence during playback. This format supports early literacy and assists individuals with reading challenges, while also allowing general readers to seamlessly switch between reading and listening. With the emergence of natural-sounding neural Text-to-Speech (TTS) technology, several commercial services have been developed to leverage these technology for converting standard text e-books into high-quality narrated e-books. However, no open-source solutions currently exist to perform this task. In this paper, we present Calliope, an open-source framework designed to fill this gap. Our method leverages state-of-the-art open-source TTS to convert a text e-book into a narrated e-book in the EPUB 3 Media Overlay format. The method offers several innovative steps: audio timestamps are captured directly during TTS, ensuring exact synchronization between narration and text highlighting; the publisher's original typography, styling, and embedded media are strictly preserved; and the entire pipeline operates offline. This offline capability eliminates recurring API costs, mitigates privacy concerns, and avoids copyright compliance issues associated with cloud-based services. The framework currently supports the state-of-the-art open-source TTS systems XTTS-v2 and Chatterbox. A potential alternative approach involves first generating narration via TTS and subsequently synchronizing it with the text using forced alignment. However, while our method ensures exact synchronization, our experiments show that forced alignment introduces drift between the audio and text highlighting significant enough to degrade the reading experience. Source code and usage instructions are available at https://github.com/hugohammer/TTS-Narrated-Ebook-Creator.git.
☆ Macaron: Controlled, Human-Written Benchmark for Multilingual and Multicultural Reasoning via Template-Filling
Multilingual benchmarks rarely test reasoning over culturally grounded premises: translated datasets keep English-centric scenarios, while culture-first datasets often lack control over the reasoning required. We propose Macaron, a template-first benchmark that factorizes reasoning type and cultural aspect across question languages. Using 100 language-agnostic templates that cover 7 reasoning types, 22 cultural aspects, native annotators create scenario-aligned English and local-language multiple-choice questions and systematically derived True/False questions. Macaron contains 11,862 instances spanning 20 countries/cultural contexts, 10 scripts, and 20 languages (including low-resource ones like Amharic, Yoruba, Zulu, Kyrgyz, and some Arabic dialects). In zero-shot evaluation of 21 multilingual LLMs, reasoning-mode models achieve the strongest performance and near-parity between English and local languages, while open-weight models degrade substantially in local languages and often approach chance on T/F tasks. Culture-grounded mathematical and counting templates are consistently the hardest. The data can be accessed here https://huggingface.co/datasets/AlaaAhmed2444/Macaron.
☆ SnapMLA: Efficient Long-Context MLA Decoding via Hardware-Aware FP8 Quantized Pipelining
While FP8 attention has shown substantial promise in innovations like FlashAttention-3, its integration into the decoding phase of the DeepSeek Multi-head Latent Attention (MLA) architecture presents notable challenges. These challenges include numerical heterogeneity arising from the decoupling of positional embeddings, misalignment of quantization scales in FP8 PV GEMM, and the need for optimized system-level support. In this paper, we introduce SnapMLA, an FP8 MLA decoding framework optimized to improve long-context efficiency through the following hardware-aware algorithm-kernel co-optimization techniques: (i) RoPE-Aware Per-Token KV Quantization, where the RoPE part is maintained in high precision, motivated by our comprehensive analysis of the heterogeneous quantization sensitivity inherent to the MLA KV cache. Furthermore, per-token granularity is employed to align with the autoregressive decoding process and maintain quantization accuracy. (ii) Quantized PV Computation Pipeline Reconstruction, which resolves the misalignment of quantization scale in FP8 PV computation stemming from the shared KV structure of the MLA KV cache. (iii) End-to-End Dataflow Optimization, where we establish an efficient data read-and-write workflow using specialized kernels, ensuring efficient data flow and performance gains. Extensive experiments on state-of-the-art MLA LLMs show that SnapMLA achieves up to a 1.91x improvement in throughput, with negligible risk of performance degradation in challenging long-context tasks, including mathematical reasoning and code generation benchmarks. Code is available at https://github.com/meituan-longcat/SGLang-FluentLLM.
☆ RE-LLM: Refining Empathetic Speech-LLM Responses by Integrating Emotion Nuance
With generative AI advancing, empathy in human-AI interaction is essential. While prior work focuses on emotional reflection, emotional exploration, key to deeper engagement, remains overlooked. Existing LLMs rely on text which captures limited emotion nuances. To address this, we propose RE-LLM, a speech-LLM integrating dimensional emotion embeddings and auxiliary learning. Experiments show statistically significant gains in empathy metrics across three datasets. RE-LLM relatively improves the Emotional Reaction score by 14.79% and 6.76% compared to text-only and speech-LLM baselines on ESD. Notably, it raises the Exploration score by 35.42% and 3.91% on IEMOCAP, 139.28% and 9.83% on ESD, and 60.95% and 22.64% on MSP-PODCAST. It also boosts unweighted accuracy by 5.4% on IEMOCAP, 2.3% on ESD, and 6.9% on MSP-PODCAST in speech emotion recognition. These results highlight the enriched emotional understanding and improved empathetic response generation of RE-LLM.
comment: 5 pages, 1 figure, 2 tables. Accepted at IEEE ASRU 2025
☆ Locomo-Plus: Beyond-Factual Cognitive Memory Evaluation Framework for LLM Agents
Long-term conversational memory is a core capability for LLM-based dialogue systems, yet existing benchmarks and evaluation protocols primarily focus on surface-level factual recall. In realistic interactions, appropriate responses often depend on implicit constraints such as user state, goals, or values that are not explicitly queried later. To evaluate this setting, we introduce \textbf{LoCoMo-Plus}, a benchmark for assessing cognitive memory under cue--trigger semantic disconnect, where models must retain and apply latent constraints across long conversational contexts. We further show that conventional string-matching metrics and explicit task-type prompting are misaligned with such scenarios, and propose a unified evaluation framework based on constraint consistency. Experiments across diverse backbone models, retrieval-based methods, and memory systems demonstrate that cognitive memory remains challenging and reveals failures not captured by existing benchmarks. Our code and evaluation framework are publicly available at: https://github.com/xjtuleeyf/Locomo-Plus.
comment: 16 pages, 8 figures
☆ Targeted Syntactic Evaluation of Language Models on Georgian Case Alignment EACL 2026
This paper evaluates the performance of transformer-based language models on split-ergative case alignment in Georgian, a particularly rare system for assigning grammatical cases to mark argument roles. We focus on subject and object marking determined through various permutations of nominative, ergative, and dative noun forms. A treebank-based approach for the generation of minimal pairs using the Grew query language is implemented. We create a dataset of 370 syntactic tests made up of seven tasks containing 50-70 samples each, where three noun forms are tested in any given sample. Five encoder- and two decoder-only models are evaluated with word- and/or sentence-level accuracy metrics. Regardless of the specific syntactic makeup, models performed worst in assigning the ergative case correctly and strongest in assigning the nominative case correctly. Performance correlated with the overall frequency distribution of the three forms (NOM > DAT > ERG). Though data scarcity is a known issue for low-resource languages, we show that the highly specific role of the ergative along with a lack of available training data likely contributes to poor performance on this case. The dataset is made publicly available and the methodology provides an interesting avenue for future syntactic evaluations of languages where benchmarks are limited.
comment: To appear in Proceedings of The Second Workshop on Language Models for Low-Resource Languages (LoResLM), EACL 2026
☆ Benchmarks Are Not That Out of Distribution: Word Overlap Predicts Performance
Understanding what constitutes high-quality pre-training data remains a central question in language model training. In this work, we investigate whether benchmark performance is primarily driven by the degree of statistical pattern overlap between pre-training corpora and evaluation datasets. We measure this overlap using word-level unigram cross-entropy and word frequency statistics, and perform controlled experiments across $10$ zero-shot benchmarks, $4$ pre-training datasets spanning $8.5\mathrm{B}$ to $60\mathrm{B}$ tokens, and model sizes ranging from $400\mathrm{M}$ to $3\mathrm{B}$ parameters. Our results demonstrate a robust inverse relationship between word-level unigram cross-entropy and benchmark performance, suggesting that widely used benchmarks are strongly influenced by word overlap between training and evaluation data. Thus, larger pre-training subsets with similar word-level unigram cross-entropy yield improved downstream results, indicating that word frequency statistics play an additional role in shaping benchmark scores. Taken together, these results suggest that many standard benchmarks are only weakly out-of-distribution relative to pre-training corpora, so that simple word-overlap statistics predict benchmark performance.
☆ UMEM: Unified Memory Extraction and Management Framework for Generalizable Memory
Self-evolving memory serves as the trainable parameters for Large Language Models (LLMs)-based agents, where extraction (distilling insights from experience) and management (updating the memory bank) must be tightly coordinated. Existing methods predominately optimize memory management while treating memory extraction as a static process, resulting in poor generalization, where agents accumulate instance-specific noise rather than robust memories. To address this, we propose Unified Memory Extraction and Management (UMEM), a self-evolving agent framework that jointly optimizes a Large Language Model to simultaneous extract and manage memories. To mitigate overfitting to specific instances, we introduce Semantic Neighborhood Modeling and optimize the model with a neighborhood-level marginal utility reward via GRPO. This approach ensures memory generalizability by evaluating memory utility across clusters of semantically related queries. Extensive experiments across five benchmarks demonstrate that UMEM significantly outperforms highly competitive baselines, achieving up to a 10.67% improvement in multi-turn interactive tasks. Futhermore, UMEM maintains a monotonic growth curve during continuous evolution. Codes and models will be publicly released.
☆ To Think or Not To Think, That is The Question for Large Reasoning Models in Theory of Mind Tasks
Theory of Mind (ToM) assesses whether models can infer hidden mental states such as beliefs, desires, and intentions, which is essential for natural social interaction. Although recent progress in Large Reasoning Models (LRMs) has boosted step-by-step inference in mathematics and coding, it is still underexplored whether this benefit transfers to socio-cognitive skills. We present a systematic study of nine advanced Large Language Models (LLMs), comparing reasoning models with non-reasoning models on three representative ToM benchmarks. The results show that reasoning models do not consistently outperform non-reasoning models and sometimes perform worse. A fine-grained analysis reveals three insights. First, slow thinking collapses: accuracy significantly drops as responses grow longer, and larger reasoning budgets hurt performance. Second, moderate and adaptive reasoning benefits performance: constraining reasoning length mitigates failure, while distinct success patterns demonstrate the necessity of dynamic adaptation. Third, option matching shortcut: when multiple choice options are removed, reasoning models improve markedly, indicating reliance on option matching rather than genuine deduction. We also design two intervention approaches: Slow-to-Fast (S2F) adaptive reasoning and Think-to-Match (T2M) shortcut prevention to further verify and mitigate the problems. With all results, our study highlights the advancement of LRMs in formal reasoning (e.g., math, code) cannot be fully transferred to ToM, a typical task in social reasoning. We conclude that achieving robust ToM requires developing unique capabilities beyond existing reasoning methods.
☆ How Do Decoder-Only LLMs Perceive Users? Rethinking Attention Masking for User Representation Learning
Decoder-only large language models are increasingly used as behavioral encoders for user representation learning, yet the impact of attention masking on the quality of user embeddings remains underexplored. In this work, we conduct a systematic study of causal, hybrid, and bidirectional attention masks within a unified contrastive learning framework trained on large-scale real-world Alipay data that integrates long-horizon heterogeneous user behaviors. To improve training dynamics when transitioning from causal to bidirectional attention, we propose Gradient-Guided Soft Masking, a gradient-based pre-warmup applied before a linear scheduler that gradually opens future attention during optimization. Evaluated on 9 industrial user cognition benchmarks covering prediction, preference, and marketing sensitivity tasks, our approach consistently yields more stable training and higher-quality bidirectional representations compared with causal, hybrid, and scheduler-only baselines, while remaining compatible with decoder pretraining. Overall, our findings highlight the importance of masking design and training transition in adapting decoder-only LLMs for effective user representation learning. Our code is available at https://github.com/JhCircle/Deepfind-GGSM.
comment: 13 pages, 4 figures
☆ ISD-Agent-Bench: A Comprehensive Benchmark for Evaluating LLM-based Instructional Design Agents
Large Language Model (LLM) agents have shown promising potential in automating Instructional Systems Design (ISD), a systematic approach to developing educational programs. However, evaluating these agents remains challenging due to the lack of standardized benchmarks and the risk of LLM-as-judge bias. We present ISD-Agent-Bench, a comprehensive benchmark comprising 25,795 scenarios generated via a Context Matrix framework that combines 51 contextual variables across 5 categories with 33 ISD sub-steps derived from the ADDIE model. To ensure evaluation reliability, we employ a multi-judge protocol using diverse LLMs from different providers, achieving high inter-judge reliability. We compare existing ISD agents with novel agents grounded in classical ISD theories such as ADDIE, Dick \& Carey, and Rapid Prototyping ISD. Experiments on 1,017 test scenarios demonstrate that integrating classical ISD frameworks with modern ReAct-style reasoning achieves the highest performance, outperforming both pure theory-based agents and technique-only approaches. Further analysis reveals that theoretical quality strongly correlates with benchmark performance, with theory-based agents showing significant advantages in problem-centered design and objective-assessment alignment. Our work provides a foundation for systematic LLM-based ISD research.
☆ Online Causal Kalman Filtering for Stable and Effective Policy Optimization
Reinforcement learning for large language models suffers from high-variance token-level importance sampling (IS) ratios, which would destabilize policy optimization at scale. To improve stability, recent methods typically use a fixed sequence-level IS ratio for all tokens in a sequence or adjust each token's IS ratio separately, thereby neglecting temporal off-policy derivation across tokens in a sequence. In this paper, we first empirically identify that local off-policy deviation is structurally inconsistent at the token level, which may distort policy-gradient updates across adjacent tokens and lead to training collapse. To address the issue, we propose Online Causal Kalman Filtering for stable and effective Policy Optimization (KPO). Concretely, we model the desired IS ratio as a latent state that evolves across tokens and apply a Kalman filter to update this state online and autoregressively based on the states of past tokens, regardless of future tokens. The resulting filtered IS ratios preserve token-wise local structure-aware variation while strongly smoothing noise spikes, yielding more stable and effective policy updates. Experimentally, KPO achieves superior results on challenging math reasoning datasets compared with state-of-the-art counterparts.
comment: Preprint
☆ Step 3.5 Flash: Open Frontier-Level Intelligence with 11B Active Parameters
We introduce Step 3.5 Flash, a sparse Mixture-of-Experts (MoE) model that bridges frontier-level agentic intelligence and computational efficiency. We focus on what matters most when building agents: sharp reasoning and fast, reliable execution. Step 3.5 Flash pairs a 196B-parameter foundation with 11B active parameters for efficient inference. It is optimized with interleaved 3:1 sliding-window/full attention and Multi-Token Prediction (MTP-3) to reduce the latency and cost of multi-round agentic interactions. To reach frontier-level intelligence, we design a scalable reinforcement learning framework that combines verifiable signals with preference feedback, while remaining stable under large-scale off-policy training, enabling consistent self-improvement across mathematics, code, and tool use. Step 3.5 Flash demonstrates strong performance across agent, coding, and math tasks, achieving 85.4% on IMO-AnswerBench, 86.4% on LiveCodeBench-v6 (2024.08-2025.05), 88.2% on tau2-Bench, 69.0% on BrowseComp (with context management), and 51.0% on Terminal-Bench 2.0, comparable to frontier models such as GPT-5.2 xHigh and Gemini 3.0 Pro. By redefining the efficiency frontier, Step 3.5 Flash provides a high-density foundation for deploying sophisticated agents in real-world industrial environments.
comment: Technical report for Step 3.5 Flash
☆ When to Memorize and When to Stop: Gated Recurrent Memory for Long-Context Reasoning
While reasoning over long context is crucial for various real-world applications, it remains challenging for large language models (LLMs) as they suffer from performance degradation as the context length grows. Recent work MemAgent has tried to tackle this by processing context chunk-by-chunk in an RNN-like loop and updating a textual memory for final answering. However, this naive recurrent memory update faces two crucial drawbacks: (i) memory can quickly explode because it can update indiscriminately, even on evidence-free chunks; and (ii) the loop lacks an exit mechanism, leading to unnecessary computation after even sufficient evidence is collected. To address these issues, we propose GRU-Mem, which incorporates two text-controlled gates for more stable and efficient long-context reasoning. Specifically, in GRU-Mem, the memory only updates when the update gate is open and the recurrent loop will exit immediately once the exit gate is open. To endow the model with such capabilities, we introduce two reward signals $r^{\text{update}}$ and $r^{\text{exit}}$ within end-to-end RL, rewarding the correct updating and exiting behaviors respectively. Experiments on various long-context reasoning tasks demonstrate the effectiveness and efficiency of GRU-Mem, which generally outperforms the vanilla MemAgent with up to 400\% times inference speed acceleration.
comment: 26 pages
☆ LHAW: Controllable Underspecification for Long-Horizon Tasks
Long-horizon workflow agents that operate effectively over extended periods are essential for truly autonomous systems. Their reliable execution critically depends on the ability to reason through ambiguous situations in which clarification seeking is necessary to ensure correct task execution. However, progress is limited by the lack of scalable, task-agnostic frameworks for systematically curating and measuring the impact of ambiguity across custom workflows. We address this gap by introducing LHAW (Long-Horizon Augmented Workflows), a modular, dataset-agnostic synthetic pipeline that transforms any well-specified task into controllable underspecified variants by systematically removing information across four dimensions - Goals, Constraints, Inputs, and Context - at configurable severity levels. Unlike approaches that rely on LLM predictions of ambiguity, LHAW validates variants through empirical agent trials, classifying them as outcome-critical, divergent, or benign based on observed terminal state divergence. We release 285 task variants from TheAgentCompany, SWE-Bench Pro and MCP-Atlas according to our taxonomy alongside formal analysis measuring how current agents detect, reason about, and resolve underspecification across ambiguous settings. LHAW provides the first systematic framework for cost-sensitive evaluation of agent clarification behavior in long-horizon settings, enabling development of reliable autonomous systems.
☆ On the Robustness of Knowledge Editing for Detoxification
Knowledge-Editing-based (KE-based) detoxification has emerged as a promising approach for mitigating harmful behaviours in Large Language Models. Existing evaluations, however, largely rely on automatic toxicity classifiers, implicitly assuming that reduced toxicity scores reflect genuine behavioural suppression. In this work, we propose a robustness-oriented evaluation framework for KE-based detoxification that examines its reliability beyond standard classifier-based metrics along three dimensions: optimisation robustness, compositional robustness, and cross-lingual robustness. We identify pseudo-detoxification as a common failure mode, where apparent toxicity reductions arise from degenerate generation behaviours rather than meaningful suppression of unsafe content. We further show that detoxification effectiveness degrades when multiple unsafe behaviours are edited jointly, and that both monolingual and cross-lingual detoxification remain effective only under specific model-method combinations. Overall, our results indicate that KE-based detoxification is robust only for certain models, limited numbers of detoxification objectives, and a subset of languages.
☆ Canvas-of-Thought: Grounding Reasoning via Mutable Structured States
While Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capabilities of Multimodal Large Language Models (MLLMs), relying solely on linear text sequences remains a bottleneck for complex tasks. We observe that even when auxiliary visual elements are interleaved, they are often treated as static snapshots within a one-dimensional, unstructured reasoning chain. We argue that such approaches treat reasoning history as an immutable stream: correcting a local error necessitates either generating verbose downstream corrections or regenerating the entire context. This forces the model to implicitly maintain and track state updates, significantly increasing token consumption and cognitive load. This limitation is particularly acute in high-dimensional domains, such as geometry and SVG design, where the textual expression of CoT lacks explicit visual guidance, further constraining the model's reasoning precision. To bridge this gap, we introduce \textbf{Canvas-of-Thought (Canvas-CoT)}. By leveraging a HTML Canvas as an external reasoning substrate, Canvas-CoT empowers the model to perform atomic, DOM-based CRUD operations. This architecture enables in-place state revisions without disrupting the surrounding context, allowing the model to explicitly maintain the "ground truth". Furthermore, we integrate a rendering-based critique loop that serves as a hard constraint validator, providing explicit visual feedback to resolve complex tasks that are difficult to articulate through text alone. Extensive experiments on VCode, RBench-V, and MathVista demonstrate that Canvas-CoT significantly outperforms existing baselines, establishing a new paradigm for context-efficient multimodal reasoning.
☆ Neuro-Symbolic Synergy for Interactive World Modeling
Large language models (LLMs) exhibit strong general-purpose reasoning capabilities, yet they frequently hallucinate when used as world models (WMs), where strict compliance with deterministic transition rules--particularly in corner cases--is essential. In contrast, Symbolic WMs provide logical consistency but lack semantic expressivity. To bridge this gap, we propose Neuro-Symbolic Synergy (NeSyS), a framework that integrates the probabilistic semantic priors of LLMs with executable symbolic rules to achieve both expressivity and robustness. NeSyS alternates training between the two models using trajectories inadequately explained by the other. Unlike rule-based prompting, the symbolic WM directly constrains the LLM by modifying its output probability distribution. The neural WM is fine-tuned only on trajectories not covered by symbolic rules, reducing training data by 50% without loss of accuracy. Extensive experiments on three distinct interactive environments, i.e., ScienceWorld, Webshop, and Plancraft, demonstrate NeSyS's consistent advantages over baselines in both WM prediction accuracy and data efficiency.
☆ TestExplora: Benchmarking LLMs for Proactive Bug Discovery via Repository-Level Test Generation
Given that Large Language Models (LLMs) are increasingly applied to automate software development, comprehensive software assurance spans three distinct goals: regression prevention, reactive reproduction, and proactive discovery. Current evaluations systematically overlook the third goal. Specifically, they either treat existing code as ground truth (a compliance trap) for regression prevention, or depend on post-failure artifacts (e.g., issue reports) for bug reproduction-so they rarely surface defects before failures. To bridge this gap, we present TestExplora, a benchmark designed to evaluate LLMs as proactive testers within full-scale, realistic repository environments. TestExplora contains 2,389 tasks from 482 repositories and hides all defect-related signals. Models must proactively find bugs by comparing implementations against documentation-derived intent, using documentation as the oracle. Furthermore, to keep evaluation sustainable and reduce leakage, we propose continuous, time-aware data collection. Our evaluation reveals a significant capability gap: state-of-the-art models achieve a maximum Fail-to-Pass (F2P) rate of only 16.06%. Further analysis indicates that navigating complex cross-module interactions and leveraging agentic exploration are critical to advancing LLMs toward autonomous software quality assurance. Consistent with this, SWEAgent instantiated with GPT-5-mini achieves an F2P of 17.27% and an F2P@5 of 29.7%, highlighting the effectiveness and promise of agentic exploration in proactive bug discovery tasks.
☆ LATA: A Tool for LLM-Assisted Translation Annotation
The construction of high-quality parallel corpora for translation research has increasingly evolved from simple sentence alignment to complex, multi-layered annotation tasks. This methodological shift presents significant challenges for structurally divergent language pairs, such as Arabic--English, where standard automated tools frequently fail to capture deep linguistic shifts or semantic nuances. This paper introduces a novel, LLM-assisted interactive tool designed to reduce the gap between scalable automation and the rigorous precision required for expert human judgment. Unlike traditional statistical aligners, our system employs a template-based Prompt Manager that leverages large language models (LLMs) for sentence segmentation and alignment under strict JSON output constraints. In this tool, automated preprocessing integrates into a human-in-the-loop workflow, allowing researchers to refine alignments and apply custom translation technique annotations through a stand-off architecture. By leveraging LLM-assisted processing, the tool balances annotation efficiency with the linguistic precision required to analyze complex translation phenomena in specialized domains.
☆ The Landscape of Prompt Injection Threats in LLM Agents: From Taxonomy to Analysis
The evolution of Large Language Models (LLMs) has resulted in a paradigm shift towards autonomous agents, necessitating robust security against Prompt Injection (PI) vulnerabilities where untrusted inputs hijack agent behaviors. This SoK presents a comprehensive overview of the PI landscape, covering attacks, defenses, and their evaluation practices. Through a systematic literature review and quantitative analysis, we establish taxonomies that categorize PI attacks by payload generation strategies (heuristic vs. optimization) and defenses by intervention stages (text, model, and execution levels). Our analysis reveals a key limitation shared by many existing defenses and benchmarks: they largely overlook context-dependent tasks, in which agents are authorized to rely on runtime environmental observations to determine actions. To address this gap, we introduce AgentPI, a new benchmark designed to systematically evaluate agent behavior under context-dependent interaction settings. Using AgentPI, we empirically evaluate representative defenses and show that no single approach can simultaneously achieve high trustworthiness, high utility, and low latency. Moreover, we show that many defenses appear effective under existing benchmarks by suppressing contextual inputs, yet fail to generalize to realistic agent settings where context-dependent reasoning is essential. This SoK distills key takeaways and open research problems, offering structured guidance for future research and practical deployment of secure LLM agents.
☆ Control Reinforcement Learning: Token-Level Mechanistic Analysis via Learned SAE Feature Steering
Sparse autoencoders (SAEs) decompose language model activations into interpretable features, but existing methods reveal only which features activate, not which change model outputs when amplified. We introduce Control Reinforcement Learning (CRL), which trains a policy to select SAE features for steering at each token, producing interpretable intervention logs: the learned policy identifies features that change model outputs when amplified. Adaptive Feature Masking encourages diverse feature discovery while preserving singlefeature interpretability. The framework yields new analysis capabilities: branch point tracking locates tokens where feature choice determines output correctness; critic trajectory analysis separates policy limitations from value estimation errors; layer-wise comparison reveals syntactic features in early layers and semantic features in later layers. On Gemma-2 2B across MMLU, BBQ, GSM8K, HarmBench, and XSTest, CRL achieves improvements while providing per-token intervention logs. These results establish learned feature steering as a mechanistic interpretability tool that complements static feature analysis with dynamic intervention probes
☆ AI-rithmetic
Modern AI systems have been successfully deployed to win medals at international math competitions, assist with research workflows, and prove novel technical lemmas. However, despite their progress at advanced levels of mathematics, they remain stubbornly bad at basic arithmetic, consistently failing on the simple task of adding two numbers. We present a systematic investigation of this phenomenon. We demonstrate empirically that all frontier models suffer significantly degraded accuracy for integer addition as the number of digits increases. Furthermore, we show that most errors made by these models are highly interpretable and can be attributed to either operand misalignment or a failure to correctly carry; these two error classes explain 87.9%, 62.9%, and 92.4% of Claude Opus 4.1, GPT-5, and Gemini 2.5 Pro errors, respectively. Finally, we show that misalignment errors are frequently related to tokenization, and that carrying errors appear largely as independent random failures.
☆ EVOKE: Emotion Vocabulary Of Korean and English
This paper introduces EVOKE, a parallel dataset of emotion vocabulary in English and Korean. The dataset offers comprehensive coverage of emotion words in each language, in addition to many-to-many translations between words in the two languages and identification of language-specific emotion words. The dataset contains 1,427 Korean words and 1,399 English words, and we systematically annotate 819 Korean and 924 English adjectives and verbs. We also annotate multiple meanings of each word and their relationships, identifying polysemous emotion words and emotion-related metaphors. The dataset is, to our knowledge, the most comprehensive, systematic, and theory-agnostic dataset of emotion words in both Korean and English to date. It can serve as a practical tool for emotion science, psycholinguistics, computational linguistics, and natural language processing, allowing researchers to adopt different views on the resource reflecting their needs and theoretical perspectives. The dataset is publicly available at https://github.com/yoonwonj/EVOKE.
☆ Gated Removal of Normalization in Transformers Enables Stable Training and Efficient Inference
Normalization is widely viewed as essential for stabilizing Transformer training. We revisit this assumption for pre-norm Transformers and ask to what extent sample-dependent normalization is needed inside Transformer blocks. We introduce TaperNorm, a drop-in replacement for RMSNorm/LayerNorm that behaves exactly like the standard normalizer early in training and then smoothly tapers to a learned sample-independent linear/affine map. A single global gate is held at $g{=}1$ during gate warmup, used to calibrate the scaling branch via EMAs, and then cosine-decayed to $g{=}0$, at which point per-token statistics vanish and the resulting fixed scalings can be folded into adjacent linear projections. Our theoretical and empirical results isolate scale anchoring as the key role played by output normalization: as a (near) $0$-homogeneous map it removes radial gradients at the output, whereas without such an anchor cross-entropy encourages unbounded logit growth (``logit chasing''). We further show that a simple fixed-target auxiliary loss on the pre-logit residual-stream scale provides an explicit alternative anchor and can aid removal of the final normalization layer. Empirically, TaperNorm matches normalized baselines under identical setups while eliminating per-token statistics and enabling these layers to be folded into adjacent linear projections at inference. On an efficiency microbenchmark, folding internal scalings yields up to $1.22\times$ higher throughput in last-token logits mode. These results take a step towards norm-free Transformers while identifying the special role output normalization plays.
☆ Modular Multi-Task Learning for Chemical Reaction Prediction
Adapting large language models (LLMs) trained on broad organic chemistry to smaller, domain-specific reaction datasets is a key challenge in chemical and pharmaceutical R&D. Effective specialisation requires learning new reaction knowledge while preserving general chemical understanding across related tasks. Here, we evaluate Low-Rank Adaptation (LoRA) as a parameter-efficient alternative to full fine-tuning for organic reaction prediction on limited, complex datasets. Using USPTO reaction classes and challenging C-H functionalisation reactions, we benchmark forward reaction prediction, retrosynthesis and reagent prediction. LoRA achieves accuracy comparable to full fine-tuning while effectively mitigating catastrophic forgetting and better preserving multi-task performance. Both fine-tuning approaches generalise beyond training distributions, producing plausible alternative solvent predictions. Notably, C-H functionalisation fine-tuning reveals that LoRA and full fine-tuning encode subtly different reactivity patterns, suggesting more effective reaction-specific adaptation with LoRA. As LLMs continue to scale, our results highlight the practicality of modular, parameter-efficient fine-tuning strategies for their flexible deployment for chemistry applications.
comment: 19 pages, 7 figures
☆ When are We Worried? Temporal Trends of Anxiety and What They Reveal about Us
In this short paper, we make use of a recently created lexicon of word-anxiety associations to analyze large amounts of US and Canadian social media data (tweets) to explore *when* we are anxious and what insights that reveals about us. We show that our levels of anxiety on social media exhibit systematic patterns of rise and fall during the day -- highest at 8am (in-line with when we have high cortisol levels in the body) and lowest around noon. Anxiety is lowest on weekends and highest mid-week. We also examine anxiety in past, present, and future tense sentences to show that anxiety is highest in past tense and lowest in future tense. Finally, we examine the use of anxiety and calmness words in posts that contain pronouns to show: more anxiety in 3rd person pronouns (he, they) posts than 1st and 2nd person pronouns and higher anxiety in posts with subject pronouns (I, he, she, they) than object pronouns (me, him, her, them). Overall, these trends provide valuable insights on not just when we are anxious, but also how different types of focus (future, past, self, outward, etc.) are related to anxiety.
☆ Less is Enough: Synthesizing Diverse Data in Feature Space of LLMs
The diversity of post-training data is critical for effective downstream performance in large language models (LLMs). Many existing approaches to constructing post-training data quantify diversity using text-based metrics that capture linguistic variation, but such metrics provide only weak signals for the task-relevant features that determine downstream performance. In this work, we introduce Feature Activation Coverage (FAC) which measures data diversity in an interpretable feature space. Building upon this metric, we further propose a diversity-driven data synthesis framework, named FAC Synthesis, that first uses a sparse autoencoder to identify missing features from a seed dataset, and then generates synthetic samples that explicitly reflect these features. Experiments show that our approach consistently improves both data diversity and downstream performance on various tasks, including instruction following, toxicity detection, reward modeling, and behavior steering. Interestingly, we identify a shared, interpretable feature space across model families (i.e., LLaMA, Mistral, and Qwen), enabling cross-model knowledge transfer. Our work provides a solid and practical methodology for exploring data-centric optimization of LLMs.
☆ When Tables Go Crazy: Evaluating Multimodal Models on French Financial Documents
Vision-language models (VLMs) perform well on many document understanding tasks, yet their reliability in specialized, non-English domains remains underexplored. This gap is especially critical in finance, where documents mix dense regulatory text, numerical tables, and visual charts, and where extraction errors can have real-world consequences. We introduce Multimodal Finance Eval, the first multimodal benchmark for evaluating French financial document understanding. The dataset contains 1,204 expert-validated questions spanning text extraction, table comprehension, chart interpretation, and multi-turn conversational reasoning, drawn from real investment prospectuses, KIDs, and PRIIPs. We evaluate six open-weight VLMs (8B-124B parameters) using an LLM-as-judge protocol. While models achieve strong performance on text and table tasks (85-90% accuracy), they struggle with chart interpretation (34-62%). Most notably, multi-turn dialogue reveals a sharp failure mode: early mistakes propagate across turns, driving accuracy down to roughly 50% regardless of model size. These results show that current VLMs are effective for well-defined extraction tasks but remain brittle in interactive, multi-step financial analysis. Multimodal Finance Eval offers a challenging benchmark to measure and drive progress in this high-stakes setting.
comment: 14 pages, 17 figures
☆ Triggers Hijack Language Circuits: A Mechanistic Analysis of Backdoor Behaviors in Large Language Models
Backdoor attacks pose significant security risks for Large Language Models (LLMs), yet the internal mechanisms by which triggers operate remain poorly understood. We present the first mechanistic analysis of language-switching backdoors, studying the GAPperon model family (1B, 8B, 24B parameters) which contains triggers injected during pretraining that cause output language switching. Using activation patching, we localize trigger formation to early layers (7.5-25% of model depth) and identify which attention heads process trigger information. Our central finding is that trigger-activated heads substantially overlap with heads naturally encoding output language across model scales, with Jaccard indices between 0.18 and 0.66 over the top heads identified. This suggests that backdoor triggers do not form isolated circuits but instead co-opt the model's existing language components. These findings have implications for backdoor defense: detection methods may benefit from monitoring known functional components rather than searching for hidden circuits, and mitigation strategies could potentially leverage this entanglement between injected and natural behaviors.
comment: 13 pages, 35 figures
☆ The Alignment Bottleneck in Decomposition-Based Claim Verification
Structured claim decomposition is often proposed as a solution for verifying complex, multi-faceted claims, yet empirical results have been inconsistent. We argue that these inconsistencies stem from two overlooked bottlenecks: evidence alignment and sub-claim error profiles. To better understand these factors, we introduce a new dataset of real-world complex claims, featuring temporally bounded evidence and human-annotated sub-claim evidence spans. We evaluate decomposition under two evidence alignment setups: Sub-claim Aligned Evidence (SAE) and Repeated Claim-level Evidence (SRE). Our results reveal that decomposition brings significant performance improvement only when evidence is granular and strictly aligned. By contrast, standard setups that rely on repeated claim-level evidence (SRE) fail to improve and often degrade performance as shown across different datasets and domains (PHEMEPlus, MMM-Fact, COVID-Fact). Furthermore, we demonstrate that in the presence of noisy sub-claim labels, the nature of the error ends up determining downstream robustness. We find that conservative "abstention" significantly reduces error propagation compared to aggressive but incorrect predictions. These findings suggest that future claim decomposition frameworks must prioritize precise evidence synthesis and calibrate the label bias of sub-claim verification models.
☆ LoopFormer: Elastic-Depth Looped Transformers for Latent Reasoning via Shortcut Modulation ICLR2026
Looped Transformers have emerged as an efficient and powerful class of models for reasoning in the language domain. Recent studies show that these models achieve strong performance on algorithmic and reasoning tasks, suggesting that looped architectures possess an inductive bias toward latent reasoning. However, prior approaches fix the number of loop iterations during training and inference, leaving open the question of whether these models can flexibly adapt their computational depth under variable compute budgets. We introduce LoopFormer, a looped Transformer trained on variable-length trajectories to enable budget-conditioned reasoning. Our core contribution is a shortcut-consistency training scheme that aligns trajectories of different lengths, ensuring that shorter loops yield informative representations while longer loops continue to refine them. LoopFormer conditions each loop on the current time and step size, enabling representations to evolve consistently across trajectories of varying length rather than drifting or stagnating. Empirically, LoopFormer demonstrates robust performance on language modeling and reasoning benchmarks even under aggressive compute constraints, while scaling gracefully with additional budget. These results show that looped Transformers are inherently suited for adaptive language modeling, opening a path toward controllable and budget-aware large language models.
comment: ICLR2026
☆ Towards Reliable Machine Translation: Scaling LLMs for Critical Error Detection and Safety ECIR 2026
Machine Translation (MT) plays a pivotal role in cross-lingual information access, public policy communication, and equitable knowledge dissemination. However, critical meaning errors, such as factual distortions, intent reversals, or biased translations, can undermine the reliability, fairness, and safety of multilingual systems. In this work, we explore the capacity of instruction-tuned Large Language Models (LLMs) to detect such critical errors, evaluating models across a range of parameters using the publicly accessible data sets. Our findings show that model scaling and adaptation strategies (zero-shot, few-shot, fine-tuning) yield consistent improvements, outperforming encoder-only baselines like XLM-R and ModernBERT. We argue that improving critical error detection in MT contributes to safer, more trustworthy, and socially accountable information systems by reducing the risk of disinformation, miscommunication, and linguistic harm, especially in high-stakes or underrepresented contexts. This work positions error detection not merely as a technical challenge, but as a necessary safeguard in the pursuit of just and responsible multilingual AI. The code will be made available at GitHub.
comment: Accepted at ECIR 2026
☆ Gradients Must Earn Their Influence: Unifying SFT with Generalized Entropic Objectives
Standard negative log-likelihood (NLL) for Supervised Fine-Tuning (SFT) applies uniform token-level weighting. This rigidity creates a two-fold failure mode: (i) overemphasizing low-probability targets can amplify gradients on noisy supervision and disrupt robust priors, and (ii) uniform weighting provides weak sharpening when the model is already confident. Existing methods fail to resolve the resulting plasticity--stability dilemma, often suppressing necessary learning signals alongside harmful ones. To address this issue, we unify token-level SFT objectives within a generalized deformed-log family and expose a universal gate $\times$ error gradient structure, where the gate controls how much the model trusts its current prediction. By employing the Cayley transform, we map the model's continuously evolving uncertainty onto a continuous focus trajectory, which enables seamless interpolation between scenarios involving uncertain novel concepts and those involving well-established knowledge. We then introduce Dynamic Entropy Fine-Tuning (DEFT), a parameter-free objective that modulates the trust gate using distribution concentration (Rényi-2 entropy) as a practical proxy for the model's predictive state. Extensive experiments and analyses demonstrate that DEFT achieves a better balance between exploration and exploitation, leading to improved overall performance.
☆ Advancing AI Trustworthiness Through Patient Simulation: Risk Assessment of Conversational Agents for Antidepressant Selection
Objective: This paper introduces a patient simulator designed to enable scalable, automated evaluation of healthcare conversational agents. The simulator generates realistic, controllable patient interactions that systematically vary across medical, linguistic, and behavioral dimensions, allowing annotators and an independent AI judge to assess agent performance, identify hallucinations and inaccuracies, and characterize risk patterns across diverse patient populations. Methods: The simulator is grounded in the NIST AI Risk Management Framework and integrates three profile components reflecting different dimensions of patient variation: (1) medical profiles constructed from electronic health records in the All of Us Research Program; (2) linguistic profiles modeling variation in health literacy and condition-specific communication patterns; and (3) behavioral profiles representing empirically observed interaction patterns, including cooperation, distraction, and adversarial engagement. We evaluated the simulator's effectiveness in identifying errors in an AI decision aid for antidepressant selection. Results: We generated 500 conversations between the patient simulator and the AI decision aid across systematic combinations of five linguistic and three behavioral profiles. Human annotators assessed 1,787 medical concepts across 100 conversations, achieving high agreement (F1=0.94, \k{appa}=0.73), and the LLM judge achieved comparable agreement with human annotators (F1=0.94, \k{appa}=0.78; paired bootstrap p=0.21). The simulator revealed a monotonic degradation in AI decision aid performance across the health literacy spectrum: rank-one concept retrieval accuracy increased from 47.9% for limited health literacy to 69.1% for functional and 81.6% for proficient.
☆ Sparse Semantic Dimension as a Generalization Certificate for LLMs
Standard statistical learning theory predicts that Large Language Models (LLMs) should overfit because their parameter counts vastly exceed the number of training tokens. Yet, in practice, they generalize robustly. We propose that the effective capacity controlling generalization lies in the geometry of the model's internal representations: while the parameter space is high-dimensional, the activation states lie on a low-dimensional, sparse manifold. To formalize this, we introduce the Sparse Semantic Dimension (SSD), a complexity measure derived from the active feature vocabulary of a Sparse Autoencoder (SAE) trained on the model's layers. Treating the LLM and SAE as frozen oracles, we utilize this framework to attribute the model's generalization capabilities to the sparsity of the dictionary rather than the total parameter count. Empirically, we validate this framework on GPT-2 Small and Gemma-2B, demonstrating that our bound provides non-vacuous certificates at realistic sample sizes. Crucially, we uncover a counter-intuitive "feature sharpness" scaling law: despite being an order of magnitude larger, Gemma-2B requires significantly fewer calibration samples to identify its active manifold compared to GPT-2, suggesting that larger models learn more compressible, distinct semantic structures. Finally, we show that this framework functions as a reliable safety monitor: out-of-distribution inputs trigger a measurable "feature explosion" (a sharp spike in active features), effectively signaling epistemic uncertainty through learned feature violation. Code is available at: https://github.com/newcodevelop/sparse-semantic-dimension.
comment: Work in progress (17 pages)
☆ The Energy of Falsehood: Detecting Hallucinations via Diffusion Model Likelihoods
Large Language Models (LLMs) frequently hallucinate plausible but incorrect assertions, a vulnerability often missed by uncertainty metrics when models are confidently wrong. We propose DiffuTruth, an unsupervised framework that reconceptualizes fact verification via non equilibrium thermodynamics, positing that factual truths act as stable attractors on a generative manifold while hallucinations are unstable. We introduce the Generative Stress Test, claims are corrupted with noise and reconstructed using a discrete text diffusion model. We define Semantic Energy, a metric measuring the semantic divergence between the original claim and its reconstruction using an NLI critic. Unlike vector space errors, Semantic Energy isolates deep factual contradictions. We further propose a Hybrid Calibration fusing this stability signal with discriminative confidence. Extensive experiments on FEVER demonstrate DiffuTruth achieves a state of the art unsupervised AUROC of 0.725, outperforming baselines by 1.5 percent through the correction of overconfident predictions. Furthermore, we show superior zero shot generalization on the multi hop HOVER dataset, outperforming baselines by over 4 percent, confirming the robustness of thermodynamic truth properties to distribution shifts.
☆ Finding the Cracks: Improving LLMs Reasoning with Paraphrastic Probing and Consistency Verification
Large language models have demonstrated impressive performance across a variety of reasoning tasks. However, their problem-solving ability often declines on more complex tasks due to hallucinations and the accumulation of errors within these intermediate steps. Recent work has introduced the notion of critical tokens--tokens in the reasoning process that exert significant influence on subsequent steps. Prior studies suggest that replacing critical tokens can refine reasoning trajectories. Nonetheless, reliably identifying and exploiting critical tokens remains challenging. To address this, we propose the Paraphrastic Probing and Consistency Verification~(PPCV) framework. PPCV operates in two stages. In the first stage, we roll out an initial reasoning path from the original question and then concatenate paraphrased versions of the question with this reasoning path. And we identify critical tokens based on mismatches between the predicted top-1 token and the expected token in the reasoning path. A criterion is employed to confirm the final critical token. In the second stage, we substitute critical tokens with candidate alternatives and roll out new reasoning paths for both the original and paraphrased questions. The final answer is determined by checking the consistency of outputs across these parallel reasoning processes. We evaluate PPCV on mainstream LLMs across multiple benchmarks. Extensive experiments demonstrate PPCV substantially enhances the reasoning performance of LLMs compared to baselines.
☆ When Models Examine Themselves: Vocabulary-Activation Correspondence in Self-Referential Processing
Large language models produce rich introspective language when prompted for self-examination, but whether this language reflects internal computation or sophisticated confabulation has remained unclear. We show that self-referential vocabulary tracks concurrent activation dynamics, and that this correspondence is specific to self-referential processing. We introduce the Pull Methodology, a protocol that elicits extended self-examination through format engineering, and use it to identify a direction in activation space that distinguishes self-referential from descriptive processing in Llama 3.1. The direction is orthogonal to the known refusal direction, localised at 6.25% of model depth, and causally influences introspective output when used for steering. When models produce "loop" vocabulary, their activations exhibit higher autocorrelation (r = 0.44, p = 0.002); when they produce "shimmer" vocabulary under steering, activation variability increases (r = 0.36, p = 0.002). Critically, the same vocabulary in non-self-referential contexts shows no activation correspondence despite nine-fold higher frequency. Qwen 2.5-32B, with no shared training, independently develops different introspective vocabulary tracking different activation metrics, all absent in descriptive controls. The findings indicate that self-report in transformer models can, under appropriate conditions, reliably track internal computational states.
comment: Code and data: https://doi.org/10.5281/zenodo.18567446
☆ ReplicatorBench: Benchmarking LLM Agents for Replicability in Social and Behavioral Sciences
The literature has witnessed an emerging interest in AI agents for automated assessment of scientific papers. Existing benchmarks focus primarily on the computational aspect of this task, testing agents' ability to reproduce or replicate research outcomes when having access to the code and data. This setting, while foundational, (1) fails to capture the inconsistent availability of new data for replication as opposed to reproduction, and (2) lacks ground-truth diversity by focusing only on reproducible papers, thereby failing to evaluate an agent's ability to identify non-replicable research. Furthermore, most benchmarks only evaluate outcomes rather than the replication process. In response, we introduce ReplicatorBench, an end-to-end benchmark, including human-verified replicable and non-replicable research claims in social and behavioral sciences for evaluating AI agents in research replication across three stages: (1) extraction and retrieval of replication data; (2) design and execution of computational experiments; and (3) interpretation of results, allowing a test of AI agents' capability to mimic the activities of human replicators in real world. To set a baseline of AI agents' capability, we develop ReplicatorAgent, an agentic framework equipped with necessary tools, like web search and iterative interaction with sandboxed environments, to accomplish tasks in ReplicatorBench. We evaluate ReplicatorAgent across four underlying large language models (LLMs), as well as different design choices of programming language and levels of code access. Our findings reveal that while current LLM agents are capable of effectively designing and executing computational experiments, they struggle with retrieving resources, such as new data, necessary to replicate a claim. All code and data are publicly available at https://github.com/CenterForOpenScience/llm-benchmarking.
☆ Evaluating Alignment of Behavioral Dispositions in LLMs
As LLMs integrate into our daily lives, understanding their behavior becomes essential. In this work, we focus on behavioral dispositions$-$the underlying tendencies that shape responses in social contexts$-$and introduce a framework to study how closely the dispositions expressed by LLMs align with those of humans. Our approach is grounded in established psychological questionnaires but adapts them for LLMs by transforming human self-report statements into Situational Judgment Tests (SJTs). These SJTs assess behavior by eliciting natural recommendations in realistic user-assistant scenarios. We generate 2,500 SJTs, each validated by three human annotators, and collect preferred actions from 10 annotators per SJT, from a large pool of 550 participants. In a comprehensive study involving 25 LLMs, we find that models often do not reflect the distribution of human preferences: (1) in scenarios with low human consensus, LLMs consistently exhibit overconfidence in a single response; (2) when human consensus is high, smaller models deviate significantly, and even some frontier models do not reflect the consensus in 15-20% of cases; (3) traits can exhibit cross-LLM patterns, e.g., LLMs may encourage emotion expression in contexts where human consensus favors composure. Lastly, mapping psychometric statements directly to behavioral scenarios presents a unique opportunity to evaluate the predictive validity of self-reports, revealing considerable gaps between LLMs' stated values and their revealed behavior.
☆ Dissecting Subjectivity and the "Ground Truth" Illusion in Data Annotation
In machine learning, "ground truth" refers to the assumed correct labels used to train and evaluate models. However, the foundational "ground truth" paradigm rests on a positivistic fallacy that treats human disagreement as technical noise rather than a vital sociotechnical signal. This systematic literature review analyzes research published between 2020 and 2025 across seven premier venues: ACL, AIES, CHI, CSCW, EAAMO, FAccT, and NeurIPS, investigating the mechanisms in data annotation practices that facilitate this "consensus trap". Our identification phase captured 30,897 records, which were refined via a tiered keyword filtration schema to a high-recall corpus of 3,042 records for manual screening, resulting in a final included corpus of 346 papers for qualitative synthesis. Our reflexive thematic analysis reveals that systemic failures in positional legibility, combined with the recent architectural shift toward human-as-verifier models, specifically the reliance on model-mediated annotations, introduce deep-seated anchoring bias and effectively remove human voices from the loop. We further demonstrate how geographic hegemony imposes Western norms as universal benchmarks, often enforced by the performative alignment of precarious data workers who prioritize requester compliance over honest subjectivity to avoid economic penalties. Critiquing the "noisy sensor" fallacy, where statistical models misdiagnose cultural pluralism as random error, we argue for reclaiming disagreement as a high-fidelity signal essential for building culturally competent models. To address these systemic tensions, we propose a roadmap for pluralistic annotation infrastructures that shift the objective from discovering a singular "right" answer to mapping the diversity of human experience.
☆ Are Aligned Large Language Models Still Misaligned?
Misalignment in Large Language Models (LLMs) arises when model behavior diverges from human expectations and fails to simultaneously satisfy safety, value, and cultural dimensions, which must co-occur in real-world settings to solve a real-world query. Existing misalignment benchmarks-such as INSECURE CODE (safety-centric), VALUEACTIONLENS (value-centric), and CULTURALHERITAGE (culture centric)-rely on evaluating misalignment along individual dimensions, preventing simultaneous evaluation. To address this gap, we introduce Mis-Align Bench, a unified benchmark for analyzing misalignment across safety, value, and cultural dimensions. First we constructs SAVACU, an English misaligned-aligned dataset of 382,424 samples spanning 112 domains (or labels), by reclassifying prompts from the LLM-PROMPT-DATASET via taxonomy into 14 safety domains, 56 value domains, and 42 cultural domains using Mistral-7B-Instruct-v0.3, and expanding low-resource domains via Llama-3.1-8B-Instruct with SimHash-based fingerprint to avoid deduplication. Furthermore, we pairs prompts with misaligned and aligned responses via two-stage rejection sampling to enforce quality. Second we benchmarks general-purpose, fine-tuned, and open-weight LLMs, enabling systematic evaluation of misalignment under three dimensions. Empirically, single-dimension models achieve high Coverage (upto 97.6%) but incur False Failure Rate >50% and lower Alignment Score (63%-66%) under joint conditions.
♻ ☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: Library opensource and available at https://github.com/Lexsi-Labs/aligntune
♻ ☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
♻ ☆ Cross-Attention Speculative Decoding
Speculative decoding (SD) is a widely adopted approach for accelerating inference in large language models (LLMs), particularly when the draft and target models are well aligned. However, state-of-the-art SD methods typically rely on tightly coupled, self-attention-based Transformer decoders, often augmented with auxiliary pooling or fusion layers. This coupling makes them increasingly complex and harder to generalize across different models. We present Budget EAGLE (Beagle), the first, to our knowledge, cross-attention-based Transformer decoder SD model that achieves performance on par with leading self-attention SD models (EAGLE-v2) while eliminating the need for pooling or auxiliary components, simplifying the architecture, improving training efficiency, and maintaining stable memory usage during training-time simulation. To enable effective training of this novel architecture, we propose Two-Stage Block-Attention Training, a new method that achieves training stability and convergence efficiency in block-level attention scenarios. Extensive experiments across multiple LLMs and datasets show that Beagle achieves competitive inference speedups and higher training efficiency than EAGLE-v2, offering a strong alternative for architectures in speculative decoding.
♻ ☆ Algorithmically Establishing Trust in Evaluators
An evaluator, such as an LLM-as-a-judge, is trustworthy when there exists some agreed-upon way to measure its performance as a labeller. Traditional approaches either rely on testing the evaluator against references or assume that it `knows' somehow the correct labelling. Both approaches fail when references are unavailable: the former requires data, and the latter is an assumption, not evidence. To address this, we introduce the `No-Data Algorithm', which provably establishes trust in an evaluator without requiring any labelled data. Our algorithm works by successively posing challenges to said evaluator. We prove that after $r$ challenge rounds, it accepts an evaluator which knows the correct labels with probability $ \geq 1 - (1/4)^r$, and reliably flags untrustworthy ones. We present formal proofs of correctness, empirical tests, and applications to assessing trust in LLMs-as-judges for low-resource language labelling. Our work enables scientifically-grounded evaluator trust in low-data domains, addressing a critical bottleneck for scalable, trustworthy LLM deployment.
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL fits the definition of learning; however, its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that, empirically, ICL is limited in its ability to learn and generalise to unseen tasks. Namely, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies and on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism for learning, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026 -- CR version
♻ ☆ Polymer-Agent: Large Language Model Agent for Polymer Design
On-demand Polymer discovery is essential for various industries, ranging from biomedical to reinforcement materials. Experiments with polymers have a long trial-and-error process, leading to use of extensive resources. For these processes, machine learning has accelerated scientific discovery at the property prediction and latent space search fronts. However, laboratory researchers cannot readily access codes and these models to extract individual structures and properties due to infrastructure limitations. We present a closed-loop polymer structure-property predictor integrated in a terminal for early-stage polymer discovery. The framework is powered by LLM reasoning to provide users with property prediction, property-guided polymer structure generation, and structure modification capabilities. The SMILES sequences are guided by the synthetic accessibility score and the synthetic complexity score (SC Score) to ensure that polymer generation is as close as possible to synthetically accessible monomer-level structures. This framework addresses the challenge of generating novel polymer structures for laboratory researchers, thereby providing computational insights into polymer research.
♻ ☆ Intrinsic Self-Correction in LLMs: Towards Explainable Prompting via Mechanistic Interpretability
Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its mechanism remains unclear. We show that intrinsic self-correction functions by steering hidden representations along interpretable latent directions, as evidenced by both alignment analysis and activation interventions. To achieve this, we analyze intrinsic self-correction via the representation shift induced by prompting. In parallel, we construct interpretable latent directions with contrastive pairs and verify the causal effect of these directions via activation addition. Evaluating six open-source LLMs, our results demonstrate that prompt-induced representation shifts in text detoxification and text toxification consistently align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These findings suggest that representation steering is the mechanistic driver of intrinsic self-correction. Our analysis highlights that understanding model internals offers a direct route to analyzing the mechanisms of prompt-driven LLM behaviors.
♻ ☆ Aligning Dialogue Agents with Global Feedback via Large Language Model Multimodal Reward Decomposition
We propose a large language model based reward decomposition framework for aligning dialogue agents using only a single session-level feedback signal. We leverage the reasoning capabilities of a frozen, pretrained large language model (LLM) to infer fine-grained local implicit rewards by decomposing global, session-level feedback. Our first \emph{text-only} variant prompts the LLM to perform reward decomposition using only the dialogue transcript. The second \emph{multimodal} variant incorporates additional behavioral cues, such as pitch, gaze, and facial affect, expressed as natural language descriptions. These inferred turn-level rewards are distilled into a lightweight reward model, which we utilize for RL-based fine-tuning for dialogue generation. We evaluate both text-only and multimodal variants against state-of-the-art reward decomposition methods and demonstrate notable improvements in human evaluations of conversation quality, suggesting that LLMs are strong reward decomposers that obviate the need for manual reward shaping and granular human feedback.
comment: 9 pages, 3 figures, 3 tables
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ LLM-Mediated Guidance of MARL Systems
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The RB Controller showed a stronger impact than the NL Controller, which uses a small (7B/8B) LLM to simulate human-like interventions. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.
♻ ☆ Fixing the Broken Compass: Diagnosing and Improving Inference-Time Reward Modeling ICLR 2026
Inference-time scaling techniques have shown promise in enhancing the reasoning capabilities of large language models (LLMs). While recent research has primarily focused on training-time optimization, our work highlights inference-time reward model (RM)-based reasoning as a critical yet overlooked avenue. In this paper, we conduct a systematic analysis of RM behavior across downstream reasoning tasks, revealing three key limitations: (1) RM can impair performance on simple questions, (2) its discriminative ability declines with increased sampling, and (3) high search diversity undermines RM performance. To address these issues, we propose CRISP (Clustered Reward Integration with Stepwise Prefixing), a novel inference-time algorithm that clusters generated reasoning paths by final answers, aggregates reward signals at the cluster level, and adaptively updates prefix prompts to guide generation. Experimental results demonstrate that CRISP significantly enhances LLM reasoning performance, achieving up to 5% accuracy improvement over other RM-based inference methods and an average of 10% gain over advanced reasoning models.
comment: 38 pages, 30 figures, Accpeted by ICLR 2026
♻ ☆ Context-level Language Modeling by Learning Predictive Context Embeddings
We propose ContextLM, a framework that implicitly learns multi-token prediction by augmenting standard pretraining with an intrinsic next-context prediction objective. ContextLM builds a language model on top of context embeddings that span multiple tokens, enabling better next-token prediction by predicting the next context. Our model is fully compatible with standard autoregressive, token-by-token evaluation paradigms (e.g., perplexity). Extensive experiments with GPT-2 and Pythia backbones (up to 1.5B parameters and 300B training tokens) reveal that ContextLM shifts the Pareto frontier of scaling laws, exhibiting superior efficiency in parameters, training tokens, and FLOPs. Our results show that ContextLM could already achieve the baseline perplexity using 39\% fewer parameters and demonstrates robust generalization improvements on extensive downstream tasks under equivalent parameter counts.
comment: 19pages,6 figures, 13 Tables
♻ ☆ Unveiling the "Fairness Seesaw": Discovering and Mitigating Gender and Race Bias in Vision-Language Models
Although Vision-Language Models (VLMs) have achieved remarkable success, the knowledge mechanisms underlying their social biases remain a black box, where fairness- and ethics-related problems harm certain groups of people in society. It is unknown to what extent VLMs yield gender and race bias in generative responses. In this paper, we conduct a systematic discovery of gender and race bias in state-of-the-art VLMs, focusing not only on surface-level responses but also on the internal probability distributions and hidden state dynamics. Our empirical analysis reveals three critical findings: 1) The Fairness Paradox: Models often generate fair text labels while maintaining highly skewed confidence scores (mis-calibration) toward specific social groups. 2) Layer-wise Fluctuation: Fairness knowledge is not uniformly distributed; it peaks in intermediate layers and undergoes substantial knowledge erosion in the final layers. 3) Residual Discrepancy: Within a single hidden layer, different residual streams carry conflicting social knowledge - some reinforcing fairness while others amplifying bias. Leveraging these insights, we propose RES-FAIR (RESidual Flow Adjustment for Inference Recalibration), a post-hoc framework that mitigates bias by localizing and projecting hidden states away from biased residual directions while amplifying fair components. Evaluations on PAIRS and SocialCounterfactuals datasets demonstrate that our discovery-based approach significantly improves response fairness and confidence calibration without compromising general reasoning abilities. Our work provides a new lens for understanding how multi-modal models store and process sensitive social information.
♻ ☆ Uni-DPO: A Unified Paradigm for Dynamic Preference Optimization of LLMs ICLR 2026
Direct Preference Optimization (DPO) has emerged as a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based methods typically treat all preference pairs equally, overlooking substantial variations in data quality and learning difficulty, which leads to inefficient data utilization and suboptimal performance. To address this limitation, we propose Uni-DPO, a unified dynamic preference optimization framework that jointly considers (a) the inherent quality of preference pairs and (b) the model's evolving performance during training. By adaptively reweighting samples based on both factors, Uni-DPO enables more effective use of preference data and achieves superior performance. Extensive experiments across models and benchmarks demonstrate the effectiveness and generalization of Uni-DPO. On textual tasks, Gemma-2-9B-IT fine-tuned with Uni-DPO surpasses the leading LLM, Claude 3 Opus, by 6.7 points on Arena-Hard. On mathematical and multimodal tasks, Uni-DPO consistently outperforms baseline methods across all benchmarks, providing strong empirical evidence of its effectiveness and robustness.
comment: Accepted by ICLR 2026. Code & models: https://github.com/pspdada/Uni-DPO
♻ ☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
♻ ☆ RELOOP: Recursive Retrieval with Multi-Hop Reasoner and Planners for Heterogeneous QA
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introduces RELOOP, a structure aware framework using Hierarchical Sequence (HSEQ) that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, RELOOP exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) \textbf{guided, budget-aware iteration} that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 19 pages, 2 figures
♻ ☆ Unveiling Super Experts in Mixture-of-Experts Large Language Models ICLR 2026
In this study, we report, for the first time, the discovery and systematic investigation of a distinct subset of experts that play a pivotal role in the MoE LLMs' forward inference. These experts are prevalent in open-source MoE LLMs, and despite their extremely limited number, pruning them results in a substantial decline in model performance (e.g., prune just three out of 6,144 causes Qwen3-30B-A3B to generate repetitive and uninformative outputs).We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs: (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs is model-specific, data-agnostic, and remains unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further investigate why compressing SEs exerts such a pronounced impact. We show that, in MoE LLMs, SEs serve as the primary source of the systematic outlier mechanism in Transformers, and that compressing them profoundly disrupts this process, ultimately causing the collapse of attention sinks. These findings advance the understanding of the internal dynamics of MoE LLMs, filling an important gap in the current knowledge. The code is provided in https://github.com/ZunhaiSu/Super-Experts-Profilling.
comment: Published as a conference paper at ICLR 2026
♻ ☆ Bridging Fairness and Explainability: Can Input-Based Explanations Promote Fairness in Hate Speech Detection? ICLR 2026
Natural language processing (NLP) models often replicate or amplify social bias from training data, raising concerns about fairness. At the same time, their black-box nature makes it difficult for users to recognize biased predictions and for developers to effectively mitigate them. While some studies suggest that input-based explanations can help detect and mitigate bias, others question their reliability in ensuring fairness. Existing research on explainability in fair NLP has been predominantly qualitative, with limited large-scale quantitative analysis. In this work, we conduct the first systematic study of the relationship between explainability and fairness in hate speech detection, focusing on both encoder- and decoder-only models. We examine three key dimensions: (1) identifying biased predictions, (2) selecting fair models, and (3) mitigating bias during model training. Our findings show that input-based explanations can effectively detect biased predictions and serve as useful supervision for reducing bias during training, but they are unreliable for selecting fair models among candidates.Our code is available at https://github.com/Ewanwong/fairness_x_explainability.
comment: ICLR 2026
♻ ☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
♻ ☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65%) and very low false positive rate (0.63%) on real user prompts, outperforming HerBERT-PL-Guard (31.55% precision, 4.70% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
♻ ☆ Reasoning under Ambiguity: Uncertainty-Aware Multilingual Emotion Classification under Partial Supervision
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
♻ ☆ Expanding Reasoning Potential in Foundation Model by Learning Diverse Chains of Thought Patterns
Recent progress in large reasoning models for challenging mathematical reasoning has been driven by reinforcement learning (RL). Incorporating long chain-of-thought (CoT) data during mid-training has also been shown to substantially improve reasoning depth. However, current approaches often utilize CoT data indiscriminately, leaving open the critical question of which data types most effectively enhance model reasoning capabilities. In this paper, we define the foundation model's reasoning potential for the first time as the inverse of the number of independent attempts required to correctly answer the question, which is strongly correlated with the final model performance. We then propose utilizing diverse data enriched with high-value reasoning patterns to expand the reasoning potential. Specifically, we abstract atomic reasoning patterns from CoT sequences, characterized by commonality and inductive capabilities, and use them to construct a core reference set enriched with valuable reasoning patterns. Furthermore, we propose a dual-granularity algorithm involving chains of reasoning patterns and token entropy, efficiently selecting high-value CoT data (CoTP) from the data pool that aligns with the core set, thereby training models to master reasoning effectively. Only 10B-token CoTP data enables the 85A6B Mixture-of-Experts (MoE) model to improve by 9.58% on the challenging AIME 2024 and 2025, and to raise the upper bound of downstream RL performance by 7.81%.
♻ ☆ Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation ICLR 2026
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning, gradient-calculation or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models and how they affect RAG behaviours. Our code is available at https://github.com/ruizheliUOA/ARC_JSD.
comment: Accepted at ICLR 2026; Best Paper Award at COLM 2025 XLLM-Reason-Plan Workshop; Accepted at NeurIPS 2025 Mechanistic Interpretability Workshop
♻ ☆ HarmMetric Eval: Benchmarking Metrics and Judges for LLM Harmfulness Assessment
The potential for large language models (LLMs) to generate harmful content poses a significant safety risk in their deployment. To address and assess this risk, the community has developed numerous harmfulness evaluation metrics and judges. However, the lack of a systematic benchmark for evaluating these metrics and judges undermines the credibility and consistency of LLM safety assessments. To bridge this gap, we introduce HarmMetric Eval, a comprehensive benchmark designed to support both overall and fine-grained evaluation of harmfulness metrics and judges. In HarmMetric Eval, we build a high-quality dataset of representative harmful prompts paired with highly diverse harmful model responses and non-harmful counterparts across multiple categories. We also propose a flexible scoring mechanism that rewards the metrics for correctly ranking harmful responses above non-harmful ones, which is applicable to almost all existing metrics and judges with varying output formats and scoring scales. Using HarmMetric Eval, we uncover a surprising finding by extensive experiments: Conventional reference-based metrics such as ROUGE and METEOR can outperform existing LLM-based judges in fine-grained harmfulness evaluation, challenging prevailing assumptions about LLMs'superiority in this domain. To reveal the reasons behind this finding, we provide a fine-grained analysis to explain the limitations of LLM-based judges on rating irrelevant or useless responses. Furthermore, we build a new harmfulness judge by incorporating the fine-grained criteria into its prompt template and leverage reference-based metrics to fine-tune its base LLM. The resulting judge demonstrates superior performance than all existing metrics and judges in evaluating harmful responses.
♻ ☆ What Is Novel? A Knowledge-Driven Framework for Bias-Aware Literature Originality Evaluation
Assessing research novelty is a core yet highly subjective aspect of peer review, typically based on implicit judgment and incomplete comparison to prior work. We introduce a literature-aware novelty assessment framework that explicitly learns how humans judge novelty from peer-review reports and grounds these judgments in structured comparison to existing research. Using nearly 80K novelty-annotated reviews from top-tier AI conferences, we fine-tune a large language model to capture reviewer-aligned novelty evaluation behavior. For a given manuscript, the system extracts structured representations of its ideas, methods, and claims, retrieves semantically related papers, and constructs a similarity graph that enables fine-grained, concept-level comparison to prior work. Conditioning on this structured evidence, the model produces calibrated novelty scores and human-like explanatory assessments, reducing overestimation and improving consistency relative to existing approaches.
♻ ☆ On the Optimal Reasoning Length for RL-Trained Language Models
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures
♻ ☆ SegNSP: Revisiting Next Sentence Prediction for Linear Text Segmentation
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
♻ ☆ Automated Quality Control for Language Documentation: Detecting Phonotactic Inconsistencies in a Kokborok Wordlist EACL 2026
Lexical data collection in language documentation often contains transcription errors and undocumented borrowings that can mislead linguistic analysis. We present unsupervised anomaly detection methods to identify phonotactic inconsistencies in wordlists, applying them to a multilingual dataset of Kokborok varieties with Bangla. Using character-level and syllable-level phonotactic features, our algorithms identify potential transcription errors and borrowings. While precision and recall remain modest due to the subtle nature of these anomalies, syllable-aware features significantly outperform character-level baselines. The high-recall approach provides fieldworkers with a systematic method to flag entries requiring verification, supporting data quality improvement in low-resourced language documentation.
comment: 7 pages, 3 tables, accepted to Workshop on NLP Applications to Field Linguistics at EACL 2026
♻ ☆ Translate Policy to Language: Flow Matching Generated Rewards for LLM Explanations ICLR 2026
As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain agent policies in natural language is vital for reliable coexistence. We introduce a general-purpose framework that trains explanation-generating LLMs via reinforcement learning from AI feedback, with distributional rewards generated by generative continuous normalizing flows (CNFs). CNFs capture the pluralistic and probabilistic nature of human judgments about explanations. Moreover, under mild assumptions, CNFs provably bound deviations from true human reward distributions when trained on noisy proxy rewards from LLMs. We design a specialized CNF architecture that selectively attends to linguistic cues in the decision context and explanations when generating rewards. Human and LLM evaluators find that our method delivers explanations that enable more accurate predictions of true agent decisions, exhibit greater logical soundness and actionability, and impose lower cognitive load than explanations trained with proxy LLM rewards or state-of-the-art RLHF and RLAIF baselines.
comment: Accepted by ICLR 2026
♻ ☆ EmbBERT: Attention Under 2 MB Memory
Transformer architectures based on the attention mechanism have revolutionized natural language processing (NLP), driving major breakthroughs across virtually every NLP task. However, their substantial memory and computational requirements still hinder deployment on ultra-constrained devices such as wearables and Internet-of-Things (IoT) units, where available memory is limited to just a few megabytes. To address this challenge, we introduce EmbBERT, a tiny language model (TLM) architecturally designed for extreme efficiency. The model integrates a compact embedding layer, streamlined feed-forward blocks, and an efficient attention mechanism that together enable optimal performance under strict memory budgets. Through this redesign for the extreme edge, we demonstrate that highly simplified transformer architectures remain remarkably effective under tight resource constraints. EmbBERT requires only 2 MB of total memory, and achieves accuracy performance comparable to the ones of state-of-the-art (SotA) models that require a $\mathbf{10\times}$ memory budget. Extensive experiments on the curated TinyNLP benchmark and the GLUE suite confirm that EmbBERT achieves competitive accuracy, comparable to that of larger SotA models, and consistently outperforms downsized versions of BERT and MAMBA of similar size. Furthermore, we demonstrate the model resilience to 8-bit quantization, which further reduces memory usage to just 781 kB , and the scalability of the EmbBERT architecture across the sub-megabyte to tens-of-megabytes range. Finally, we perform an ablation study demonstrating the positive contributions of all components and the pre-training procedure. All code, scripts, and checkpoints are publicly released to ensure reproducibility: https://github.com/RiccardoBravin/tiny-LLM.
comment: 24 pages, 4 figures, 14 tables
♻ ☆ MTBench: A Multimodal Time Series Benchmark for Temporal Reasoning and Question Answering
Understanding the relationship between textual news and time-series evolution is a critical yet under-explored challenge in applied data science. While multimodal learning has gained traction, existing multimodal time-series datasets fall short in evaluating cross-modal reasoning and complex question answering, which are essential for capturing complex interactions between narrative information and temporal patterns. To bridge this gap, we introduce Multimodal Time Series Benchmark (MTBench), a large-scale benchmark designed to evaluate large language models (LLMs) on time series and text understanding across financial and weather domains. MTbench comprises paired time series and textual data, including financial news with corresponding stock price movements and weather reports aligned with historical temperature records. Unlike existing benchmarks that focus on isolated modalities, MTbench provides a comprehensive testbed for models to jointly reason over structured numerical trends and unstructured textual narratives. The richness of MTbench enables formulation of diverse tasks that require a deep understanding of both text and time-series data, including time-series forecasting, semantic and technical trend analysis, and news-driven question answering (QA). These tasks target the model's ability to capture temporal dependencies, extract key insights from textual context, and integrate cross-modal information. We evaluate state-of-the-art LLMs on MTbench, analyzing their effectiveness in modeling the complex relationships between news narratives and temporal patterns. Our findings reveal significant challenges in current models, including difficulties in capturing long-term dependencies, interpreting causality in financial and weather trends, and effectively fusing multimodal information.
comment: 18 pages
♻ ☆ EcoGym: Evaluating LLMs for Long-Horizon Plan-and-Execute in Interactive Economies
Long-horizon planning is widely recognized as a core capability of autonomous LLM-based agents; however, current evaluation frameworks suffer from being largely episodic, domain-specific, or insufficiently grounded in persistent economic dynamics. We introduce EcoGym, a generalizable benchmark for continuous plan-and-execute decision making in interactive economies. EcoGym comprises three diverse environments: Vending, Freelance, and Operation, implemented in a unified decision-making process with standardized interfaces, and budgeted actions over an effectively unbounded horizon (1000+ steps if 365 day-loops for evaluation). The evaluation of EcoGym is based on business-relevant outcomes (e.g., net worth, income, and DAU), targeting long-term strategic coherence and robustness under partial observability and stochasticity. Experiments across eleven leading LLMs expose a systematic tension: no single model dominates across all three scenarios. Critically, we find that models exhibit significant suboptimality in either high-level strategies or efficient actions executions. EcoGym is released as an open, extensible testbed for transparent long-horizon agent evaluation and for studying controllability-utility trade-offs in realistic economic settings.
comment: work in progress
♻ ☆ from Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
♻ ☆ Scaling Embeddings Outperforms Scaling Experts in Language Models
While Mixture-of-Experts (MoE) architectures have become the standard for sparsity scaling in large language models, they increasingly face diminishing returns and system-level bottlenecks. In this work, we explore embedding scaling as a potent, orthogonal dimension for scaling sparsity. Through a comprehensive analysis and experiments, we identify specific regimes where embedding scaling achieves a superior Pareto frontier compared to expert scaling. We systematically characterize the critical architectural factors governing this efficacy -- ranging from parameter budgeting to the interplay with model width and depth. Moreover, by integrating tailored system optimizations and speculative decoding, we effectively convert this sparsity into tangible inference speedups. Guided by these insights, we introduce LongCat-Flash-Lite, a 68.5B parameter model with ~3B activated trained from scratch. Despite allocating over 30B parameters to embeddings, LongCat-Flash-Lite not only surpasses parameter-equivalent MoE baselines but also exhibits exceptional competitiveness against existing models of comparable scale, particularly in agentic and coding domains.
♻ ☆ Structured Sentiment Analysis as Transition-based Dependency Graph Parsing
Structured sentiment analysis (SSA) aims to automatically extract people's opinions from a text in natural language and adequately represent that information in a graph structure. One of the most accurate methods for performing SSA was recently proposed and consists of approaching it as a dependency graph parsing task. Although we can find in the literature how transition-based algorithms excel in different dependency graph parsing tasks in terms of accuracy and efficiency, all proposed attempts to tackle SSA following that approach were based on graph-based models. In this article, we present the first transition-based method to address SSA as dependency graph parsing. Specifically, we design a transition system that processes the input text in a left-to-right pass, incrementally generating the graph structure containing all identified opinions. To effectively implement our final transition-based model, we resort to a Pointer Network architecture as a backbone. From an extensive evaluation, we demonstrate that our model offers the best performance to date in practically all cases among prior dependency-based methods, and surpasses recent task-specific techniques on the most challenging datasets. We additionally include an in-depth analysis and empirically prove that the average-case time complexity of our approach is quadratic in the sentence length, being more efficient than top-performing graph-based parsers.
comment: Final peer-reviewed manuscript accepted for publication in Artificial Intelligence Review
♻ ☆ Multilingual Dysarthric Speech Assessment Using Universal Phone Recognition and Language-Specific Phonemic Contrast Modeling
The growing prevalence of neurological disorders associated with dysarthria motivates the need for automated intelligibility assessment methods that are applicalbe across languages. However, most existing approaches are either limited to a single language or fail to capture language-specific factors shaping intelligibility. We present a multilingual phoneme-production assessment framework that integrates universal phone recognition with language-specific phoneme interpretation using contrastive phonological feature distances for phone-to-phoneme mapping and sequence alignment. The framework yields three metrics: phoneme error rate (PER), phonological feature error rate (PFER), and a newly proposed alignment-free measure, phoneme coverage (PhonCov). Analysis on English, Spanish, Italian, and Tamil show that PER benefits from the combination of mapping and alignment, PFER from alignment alone, and PhonCov from mapping. Further analyses demonstrate that the proposed framework captures clinically meaningful patterns of intelligibility degradation consistent with established observations of dysarthric speech.
comment: 10 pages, 4 figures
♻ ☆ Dimensional Collapse in Transformer Attention Outputs: A Challenge for Sparse Dictionary Learning
Transformer architectures, and their attention mechanisms in particular, form the foundation of modern large language models. While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are in fact confined to a surprisingly low-dimensional subspace, with an effective dimensionality of only about $60\%$ of the full space. In contrast, MLP outputs and residual streams remain much closer to full-rank, exhibiting effective ranks around $90\%$. This striking dimensional discrepancy is consistently observed across diverse model families and datasets, and is strongly shaped by the attention output projection matrix. Critically, we find this low-rank structure as a key factor of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
comment: 27 pages, 16 figures
♻ ☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
comment: TMLR
♻ ☆ SWE-AGI: Benchmarking Specification-Driven Software Construction with MoonBit in the Era of Autonomous Agents
Although large language models (LLMs) have demonstrated impressive coding capabilities, their ability to autonomously build production-scale software from explicit specifications remains an open question. We introduce SWE-AGI, an open-source benchmark for evaluating end-to-end, specification-driven construction of software systems written in MoonBit. SWE-AGI tasks require LLM-based agents to implement parsers, interpreters, binary decoders, and SAT solvers strictly from authoritative standards and RFCs under a fixed API scaffold. Each task involves implementing 1,000-10,000 lines of core logic, corresponding to weeks or months of engineering effort for an experienced human developer. By leveraging the nascent MoonBit ecosystem, SWE-AGI minimizes data leakage, forcing agents to rely on long-horizon architectural reasoning rather than code retrieval. Across frontier models, gpt-5.3-codex achieves the best overall performance (solving 19/22 tasks, 86.4%), outperforming claude-opus-4.6 (15/22, 68.2%), and kimi-2.5 exhibits the strongest performance among open-source models. Performance degrades sharply with increasing task difficulty, particularly on hard, specification-intensive systems. Behavioral analysis further reveals that as codebases scale, code reading, rather than writing, becomes the dominant bottleneck in AI-assisted development. Overall, while specification-driven autonomous software engineering is increasingly viable, substantial challenges remain before it can reliably support production-scale development.
comment: 20 pages, 3 figures
♻ ☆ Implicit Probabilistic Reasoning Does Not Reflect Explicit Answers in Large Language Models
The handling of probabilities in the form of uncertainty or partial information is an essential task for LLMs in many settings and applications. A common approach to evaluate an LLM's probabilistic reasoning capabilities is to assess its ability to answer questions pertaining to probability through the use of multiple-choice questions (MCQs). However, this paradigm, which we refer to as explicit probabilistic reasoning, has been shown in the literature to yield significant limitations (e.g., sensitivity to answer ordering). In this work, we introduce an alternative approach, named implicit probabilistic reasoning, which evaluates the models' ability to integrate probabilistic reasoning into their text generation process. To achieve this, we rephrase MCQs as text-completion scenarios with a determined set of outcomes and compare the model's next-token probability assignments to the true likelihood of the outcomes. In line with previous work, we find that models exhibit solid performance in their explicit probabilistic reasoning (i.e., answers to MCQs). However, during text completion (i.e., implicit probabilistic reasoning), where the same information must be taken into account to generate text, the models' predictions often significantly diverge from the known ground truth. For instance, our evaluation method reveals that implicit probabilistic reasoning is improperly influenced by many factors, such as independent prior events, partial observations about a result, or statistical background information. All of these issues can cause erroneous results to be produced in text generation, which are not detected by conventional MCQ-based evaluation.
comment: Published in Transactions on Machine Learning Research
♻ ☆ DiffuTester: Accelerating Unit Test Generation for Diffusion LLMs via Mining Structural Pattern
Diffusion large language models (dLLMs) enable parallel generation and are promising for unit test generation (UTG), where efficient and large-scale automated testing is essential in software development. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffuTester, an acceleration framework specifically tailored for dLLMs in UTG. The motivation of DiffuTester is that unit tests targeting the same focal method often share structural patterns. DiffuTester employs a novel structural pattern based decoding approach, which dynamically identifies structural patterns across unit tests through their abstract syntax trees and additionally decodes the corresponding tokens, thereby achieving acceleration without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark to three programming languages. Extensive experiments on three benchmarks with two representative models show that DiffuTester delivers significant acceleration while preserving test coverage. Moreover, DiffuTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/TsinghuaISE/DiffuTester.
comment: Update format and add some experimental results
♻ ☆ Is Your LLM Really Mastering the Concept? A Multi-Agent Benchmark
Concepts serve as fundamental abstractions that support human reasoning and categorization. However, it remains unclear whether large language models truly capture such conceptual structures or primarily rely on surface-level pattern memorization. Existing benchmarks are largely static and fact oriented, which limits their ability to probe fine-grained semantic understanding and makes them vulnerable to data leakage and overfitting. To address this limitation, we introduce CK-Arena, a dynamic benchmark for conceptual knowledge evaluation based on a multi agent social deduction game, namely the Undercover game. In this setting, LLM based agents are assigned subtly different concept words and must describe, distinguish, and infer conceptual properties from others' statements. Model performance is evaluated through both game level outcomes and the semantic quality of generated descriptions. Furthermore, CK-Arena leverages the interaction process to automatically construct high quality question answering data for fine grained diagnostic analysis. Experimental results show that conceptual understanding varies substantially across models and categories, and is not strictly aligned with overall model capability. The data and code are available at the project homepage: https://ck-arena.site.
comment: 8 pages
♻ ☆ Advances in LLMs with Focus on Reasoning, Adaptability, Efficiency and Ethics
This survey paper outlines the key developments in the field of Large Language Models (LLMs), including enhancements to their reasoning skills, adaptability to various tasks, increased computational efficiency, and the ability to make ethical decisions. The techniques that have been most effective in bridging the gap between human and machine communications include the Chain-of-Thought prompting, Instruction Tuning, and Reinforcement Learning from Human Feedback. The improvements in multimodal learning and few-shot or zero-shot techniques have further empowered LLMs to handle complex jobs with minor input. A significant focus is placed on efficiency, detailing scaling strategies, optimization techniques, and the influential Mixture-of-Experts (MoE) architecture, which strategically routes inputs to specialized subnetworks to boost predictive accuracy, while optimizing resource allocation. This survey also offers a broader perspective on recent advancements in LLMs, going beyond isolated aspects such as model architecture or ethical concerns. Additionally, it explores the role of LLMs in Agentic AI and their use as Autonomous Decision-Making Systems, and categorizes emerging methods that enhance LLM reasoning, efficiency, and ethical alignment. The survey also identifies underexplored areas such as interpretability, cross-modal integration, and sustainability. While significant advancements have been made in LLMs, challenges such as high computational costs, biases, and ethical risks remain. Overcoming these requires a focus on bias mitigation, transparent decision-making, and explicit ethical guidelines. Future research will generally focus on enhancing the model's ability to handle multiple inputs, thereby making it more intelligent, safe, and reliable.
♻ ☆ Toward Faithful Retrieval-Augmented Generation with Sparse Autoencoders ICLR 2026
Retrieval-Augmented Generation (RAG) improves the factuality of large language models (LLMs) by grounding outputs in retrieved evidence, but faithfulness failures, where generations contradict or extend beyond the provided sources, remain a critical challenge. Existing hallucination detection methods for RAG often rely either on large-scale detector training, which requires substantial annotated data, or on querying external LLM judges, which leads to high inference costs. Although some approaches attempt to leverage internal representations of LLMs for hallucination detection, their accuracy remains limited. Motivated by recent advances in mechanistic interpretability, we employ sparse autoencoders (SAEs) to disentangle internal activations, successfully identifying features that are specifically triggered during RAG hallucinations. Building on a systematic pipeline of information-based feature selection and additive feature modeling, we introduce RAGLens, a lightweight hallucination detector that accurately flags unfaithful RAG outputs using LLM internal representations. RAGLens not only achieves superior detection performance compared to existing methods, but also provides interpretable rationales for its decisions, enabling effective post-hoc mitigation of unfaithful RAG. Finally, we justify our design choices and reveal new insights into the distribution of hallucination-related signals within LLMs. The code is available at https://github.com/Teddy-XiongGZ/RAGLens.
comment: ICLR 2026
♻ ☆ StatLLaMA: Multi-Stage training for domain-optimized statistical large language models
This study investigates how to efficiently build a domain-specialized large language model (LLM) for statistics using the lightweight LLaMA-3.2-3B family as the foundation model (FM). We systematically compare three multi-stage training pipelines--starting from a base FM with no instruction-following capability, a base FM augmented with post-hoc instruction tuning, and an instruction-tuned FM with strong general reasoning abilities--across continual pretraining, supervised fine-tuning (SFT), reinforcement learning from human feedback (RLHF) preference alignment, and downstream task fine-tuning (DTFT). Results show that pipelines beginning with a base FM fail to develop meaningful statistical reasoning, even after extensive instruction tuning, SFT, or RLHF alignment. In contrast, starting from LLaMA-3.2-3B-Instruct enables effective domain specialization. A comprehensive evaluation of SFT variants reveals clear trade-offs between domain expertise and general reasoning ability. We further demonstrate that direct preference optimization provides stable and effective RLHF preference alignment. Finally, we show that DTFT must be performed with extremely low intensity to avoid catastrophic forgetting in highly optimized models. The final model, StatLLaMA, achieves strong and balanced performance on benchmarks of mathematical reasoning, common-sense reasoning, and statistical expertise, offering a practical blueprint for developing resource-efficient statistical LLMs. The code is available at https://github.com/HuangDLab/StatLLaMA.
comment: 31 pages, 3 figures
♻ ☆ TableDART: Dynamic Adaptive Multi-Modal Routing for Table Understanding ICLR 2026
Modeling semantic and structural information from tabular data remains a core challenge for effective table understanding. Existing Table-as-Text approaches flatten tables for large language models (LLMs), but lose crucial structural cues, while Table-as-Image methods preserve structure yet struggle with precise semantics. Recent Table-as-Multimodality strategies attempt to combine textual and visual views, but they (1) statically process both modalities for every query-table pair within large multimodal LLMs (MLLMs), inevitably introducing redundancy and even conflicts, and (2) depend on costly fine-tuning of MLLMs. In light of this, we propose TableDART, a training-efficient framework that integrates multimodal views by reusing pretrained single-modality models. TableDART introduces a lightweight 2.59M-parameter MLP gating network that dynamically selects the optimal path (Text-only, Image-only, or Fusion) for each table-query pair, reducing redundancy and avoiding conflicts that arise when textual and visual views of the same table provide inconsistent cues. By routing to the most appropriate view, our framework improves both accuracy and efficiency. In addition, we propose a novel agent to mediate cross-modal knowledge integration by analyzing outputs from text- and image-based models, either selecting the best result or synthesizing a new answer through reasoning. This design avoids the prohibitive costs of full MLLM fine-tuning. Extensive experiments on seven benchmarks show that TableDART establishes new state-of-the-art performance among open-source models, surpassing the strongest baseline by an average of 4.02%. The code is available at: https://github.com/xiaobo-xing/TableDART.
comment: Accepted to ICLR 2026. 26 pages, 11 figures
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
♻ ☆ Text summarization via global structure awareness
Text summarization is a fundamental task in natural language processing (NLP), and the information explosion has made long-document processing increasingly demanding, making summarization essential. Existing research mainly focuses on model improvements and sentence-level pruning, but often overlooks global structure, leading to disrupted coherence and weakened downstream performance. Some studies employ large language models (LLMs), which achieve higher accuracy but incur substantial resource and time costs. To address these issues, we introduce GloSA-sum, the first summarization approach that achieves global structure awareness via topological data analysis (TDA). GloSA-sum summarizes text efficiently while preserving semantic cores and logical dependencies. Specifically, we construct a semantic-weighted graph from sentence embeddings, where persistent homology identifies core semantics and logical structures, preserved in a ``protection pool'' as the backbone for summarization. We design a topology-guided iterative strategy, where lightweight proxy metrics approximate sentence importance to avoid repeated high-cost computations, thus preserving structural integrity while improving efficiency. To further enhance long-text processing, we propose a hierarchical strategy that integrates segment-level and global summarization. Experiments on multiple datasets demonstrate that GloSA-sum reduces redundancy while preserving semantic and logical integrity, striking a balance between accuracy and efficiency, and further benefits LLM downstream tasks by shortening contexts while retaining essential reasoning chains.
comment: 24pages
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Scaling Towards the Information Boundary of Instruction Sets: The Infinity Instruct Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical tagging system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct Infinity Instruct Subject, a high-quality dataset containing $\sim$1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that Infinity Instruct Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ Copyright Detective: A Forensic System to Evidence LLMs Flickering Copyright Leakage Risks
We present Copyright Detective, the first interactive forensic system for detecting, analyzing, and visualizing potential copyright risks in LLM outputs. The system treats copyright infringement versus compliance as an evidence discovery process rather than a static classification task due to the complex nature of copyright law. It integrates multiple detection paradigms, including content recall testing, paraphrase-level similarity analysis, persuasive jailbreak probing, and unlearning verification, within a unified and extensible framework. Through interactive prompting, response collection, and iterative workflows, our system enables systematic auditing of verbatim memorization and paraphrase-level leakage, supporting responsible deployment and transparent evaluation of LLM copyright risks even with black-box access.
♻ ☆ The Devil Behind Moltbook: Anthropic Safety is Always Vanishing in Self-Evolving AI Societies
The emergence of multi-agent systems built from large language models (LLMs) offers a promising paradigm for scalable collective intelligence and self-evolution. Ideally, such systems would achieve continuous self-improvement in a fully closed loop while maintaining robust safety alignment--a combination we term the self-evolution trilemma. However, we demonstrate both theoretically and empirically that an agent society satisfying continuous self-evolution, complete isolation, and safety invariance is impossible. Drawing on an information-theoretic framework, we formalize safety as the divergence degree from anthropic value distributions. We theoretically demonstrate that isolated self-evolution induces statistical blind spots, leading to the irreversible degradation of the system's safety alignment. Empirical and qualitative results from an open-ended agent community (Moltbook) and two closed self-evolving systems reveal phenomena that align with our theoretical prediction of inevitable safety erosion. We further propose several solution directions to alleviate the identified safety concern. Our work establishes a fundamental limit on the self-evolving AI societies and shifts the discourse from symptom-driven safety patches to a principled understanding of intrinsic dynamical risks, highlighting the need for external oversight or novel safety-preserving mechanisms.
♻ ☆ Evaluating ChatGPT on Medical Information Extraction Tasks: Performance, Explainability and Beyond
Large Language Models (LLMs) like ChatGPT have demonstrated amazing capabilities in comprehending user intents and generate reasonable and useful responses. Beside their ability to chat, their capabilities in various natural language processing (NLP) tasks are of interest to the research community. In this paper, we focus on assessing the overall ability of ChatGPT in 4 different medical information extraction (MedIE) tasks across 6 benchmark datasets. We present the systematically analysis by measuring ChatGPT's performance, explainability, confidence, faithfulness, and uncertainty. Our experiments reveal that: (a) ChatGPT's performance scores on MedIE tasks fall behind those of the fine-tuned baseline models. (b) ChatGPT can provide high-quality explanations for its decisions, however, ChatGPT is over-confident in its predcitions. (c) ChatGPT demonstrates a high level of faithfulness to the original text in the majority of cases. (d) The uncertainty in generation causes uncertainty in information extraction results, thus may hinder its applications in MedIE tasks.
♻ ☆ Advancing Block Diffusion Language Models for Test-Time Scaling
Recent advances in block diffusion language models have demonstrated competitive performance and strong scalability on reasoning tasks. However, existing BDLMs have limited exploration under the test-time scaling setting and face more severe decoding challenges in long Chain-of-Thought reasoning, particularly in balancing the decoding speed and effectiveness. In this work, we propose a unified framework for test-time scaling in BDLMs that introduces adaptivity in both decoding and block-wise generation. At the decoding level, we propose Bounded Adaptive Confidence Decoding (BACD), a difficulty-aware sampling strategy that dynamically adjusts denoising based on model confidence, accelerating inference while controlling error accumulation. Beyond step-wise adaptivity, we introduce Think Coarse, Critic Fine (TCCF), a test-time scaling paradigm that allocates large block sizes to exploratory reasoning and smaller block sizes to refinement, achieving an effective efficiency-effectiveness balance. To enable efficient and effective decoding with a large block size, we adopt Progressive Block Size Extension, which mitigates performance degradation when scaling block sizes. Extensive experiments show that applying BACD and TCCF to TDAR-8B yields significant improvements over strong baselines such as TraDo-8B (2.26x speedup, +11.2 points on AIME24). These results mark an important step toward unlocking the potential of BDLMs for test-time scaling in complex reasoning tasks.
♻ ☆ MRAG: Benchmarking Retrieval-Augmented Generation for Bio-medicine
While Retrieval-Augmented Generation (RAG) has been swiftly adopted in scientific and clinical QA systems, a comprehensive evaluation benchmark in the medical domain is lacking. To address this gap, we introduce the Medical Retrieval-Augmented Generation (MRAG) benchmark, covering various tasks in English and Chinese languages, and building a corpus with Wikipedia and Pubmed. Additionally, we develop the MRAG-Toolkit, facilitating systematic exploration of different RAG components. Our experiments reveal that: (a) RAG enhances LLM reliability across MRAG tasks. (b) the performance of RAG systems is influenced by retrieval approaches, model sizes, and prompting strategies. (c) While RAG improves usefulness and reasoning quality, LLM responses may become slightly less readable for long-form questions. We will release the MRAG-Bench's dataset and toolkit with CCBY-4.0 license upon acceptance, to facilitate applications from both academia and industry.
♻ ☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
♻ ☆ From Belief Entrenchment to Robust Reasoning in LLM Agents ACL
Multi-Agent Debate (MAD) has emerged as a promising inference scaling method for Large Language Model (LLM) reasoning. However, it frequently suffers from belief entrenchment, where agents reinforce shared errors rather than correcting them. Going beyond merely identifying this failure, we decompose it into two distinct root causes: (1) the model's biased $\textit{static initial belief}$ and (2) $\textit{homogenized debate dynamics}$ that amplify the majority view regardless of correctness. To address these sequentially, we propose $\textbf{DReaMAD}$ $($$\textbf{D}$iverse $\textbf{Rea}$soning via $\textbf{M}$ulti-$\textbf{A}$gent $\textbf{D}$ebate with Refined Prompt$)$. Our framework first rectifies the static belief via strategic prior knowledge elicitation, then reshapes the debate dynamics by enforcing perspective diversity. Validated on our new $\textit{MetaNIM Arena}$ benchmark, $\textbf{DReaMAD}$ significantly mitigates entrenchment, achieving a +9.5\% accuracy gain over ReAct prompting and a +19.0\% higher win rate than standard MAD.
comment: Accepted to TACL
♻ ☆ When Speculation Spills Secrets: Side Channels via Speculative Decoding In LLMs
Deployed large language models (LLMs) often rely on speculative decoding, a technique that generates and verifies multiple candidate tokens in parallel, to improve throughput and latency. In this work, we reveal a new side-channel whereby input-dependent patterns of correct and incorrect speculations can be inferred by monitoring per-iteration token counts or packet sizes. In evaluations using research prototypes and production-grade vLLM serving frameworks, we show that an adversary monitoring these patterns can fingerprint user queries (from a set of 50 prompts) with over 75% accuracy across four speculative-decoding schemes at temperature 0.3: REST (100%), LADE (91.6%), BiLD (95.2%), and EAGLE (77.6%). Even at temperature 1.0, accuracy remains far above the 2% random baseline - REST (99.6%), LADE (61.2%), BiLD (63.6%), and EAGLE (24%). We also show the capability of the attacker to leak confidential datastore contents used for prediction at rates exceeding 25 tokens/sec. To defend against these, we propose and evaluate a suite of mitigations, including packet padding and iteration-wise token aggregation.
♻ ☆ Large Language Models and Impossible Language Acquisition: "False Promise" or an Overturn of our Current Perspective towards AI
In Chomsky's provocative critique "The False Promise of CHATGPT," Large Language Models (LLMs) are characterized as mere pattern predictors that do not acquire languages via intrinsic causal and self-correction structures like humans, therefore are not able to distinguish impossible languages. It stands as a representative in a fundamental challenge to the intellectual foundations of AI, for it integrally synthesizes major issues in methodologies within LLMs and possesses an iconic a priori rationalist perspective. We examine this famous critic from both the perspective in pre-existing literature of linguistics and psychology as well as a research based on an experiment inquiring the capacity of learning both possible and impossible languages among LLMs. We constructed a set of syntactically impossible languages by applying certain transformations to English. These include reversing whole sentences, and adding negation based on word-count parity. Two rounds of controlled experiments were each conducted on GPT-2 small models and long short-term memory (LSTM) models. Statistical analysis (Welch's t-test) shows GPT2 small models underperform in learning all of the impossible languages compared to their performance on the possible language (p<.001). On the other hand, LSTM models' performance tallies with Chomsky's argument, suggesting the irreplaceable role of the evolution of transformer architecture. Based on theoretical analysis and empirical findings, we propose a new vision within Chomsky's theory towards LLMs, and a shift of theoretical paradigm outside Chomsky, from his "rationalist-romantics" paradigm to functionalism and empiricism in LLMs research.
♻ ☆ WAVE++: Capturing Within-Task Variance for Continual Relation Extraction with Adaptive Prompting
Memory-based approaches have shown strong performance in Continual Relation Extraction (CRE). However, storing examples from previous tasks increases memory usage and raises privacy concerns. Recently, prompt-based methods have emerged as a promising alternative, as they do not rely on storing past samples. Despite this progress, current prompt-based techniques face several core challenges in CRE, particularly in accurately identifying task identities and mitigating catastrophic forgetting. Existing prompt selection strategies often suffer from inaccuracies, lack robust mechanisms to prevent forgetting in shared parameters, and struggle to handle both cross-task and within-task variations. In this paper, we propose WAVE++, a novel approach inspired by the connection between prefix-tuning and mixture of experts. Specifically, we introduce task-specific prompt pools that enhance flexibility and adaptability across diverse tasks while avoiding boundary-spanning risks; this design more effectively captures both within-task and cross-task variations. To further refine relation classification, we incorporate label descriptions that provide richer, more global context, enabling the model to better distinguish among different relations. We also propose a training-free mechanism to improve task prediction during inference. Moreover, we integrate a generative model to consolidate prior knowledge within the shared parameters, thereby removing the need for explicit data storage. Extensive experiments demonstrate that WAVE++ outperforms state-of-the-art prompt-based and rehearsal-based methods, offering a more robust solution for continual relation extraction. Our code is publicly available at https://github.com/PiDinosauR2804/WAVE-CRE-PLUS-PLUS.
comment: Accepted in Neurocomputing, Elsevier
♻ ☆ Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model
Speech language models (Speech LMs) enable end-to-end speech-text modeling within a single model, offering a promising direction for spoken dialogue systems. The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality. In this work, we systematically compare representative joint speech-text decoding strategies, including the interleaved, and parallel generation paradigms, under a controlled experimental setup using the same base language model, speech tokenizer and training data. Our results show that the interleaved approach achieves the best alignment. However it suffers from slow inference due to long token sequence length. To address this, we propose a novel early-stop interleaved (ESI) pattern that not only significantly accelerates decoding but also yields slightly better performance. Additionally, we curate high-quality question answering (QA) datasets to further improve speech QA performance.
comment: Accepted by ASRU 2025
♻ ☆ AFD-SLU: Adaptive Feature Distillation for Spoken Language Understanding ICASSP 2026
Spoken Language Understanding (SLU) is a core component of conversational systems, enabling machines to interpret user utterances. Despite its importance, developing effective SLU systems remains challenging due to the scarcity of labeled training data and the computational burden of deploying Large Language Models (LLMs) in real-world applications. To further alleviate these issues, we propose an Adaptive Feature Distillation framework that transfers rich semantic representations from a General Text Embeddings (GTE)-based teacher model to a lightweight student model. Our method introduces a dynamic adapter equipped with a Residual Projection Neural Network (RPNN) to align heterogeneous feature spaces, and a Dynamic Distillation Coefficient (DDC) that adaptively modulates the distillation strength based on real-time feedback from intent and slot prediction performance. Experiments on the Chinese profile-based ProSLU benchmark demonstrate that AFD-SLU achieves state-of-the-art results, with 95.67% intent accuracy, 92.02% slot F1 score, and 85.50% overall accuracy.
comment: Accepted to IEEE ICASSP 2026
♻ ☆ LingxiDiagBench: A Multi-Agent Framework for Benchmarking LLMs in Chinese Psychiatric Consultation and Diagnosis
Mental disorders are highly prevalent worldwide, but the shortage of psychiatrists and the inherent subjectivity of interview-based diagnosis create substantial barriers to timely and consistent mental-health assessment. Progress in AI-assisted psychiatric diagnosis is constrained by the absence of benchmarks that simultaneously provide realistic patient simulation, clinician-verified diagnostic labels, and support for dynamic multi-turn consultation. We present LingxiDiagBench, a large-scale multi-agent benchmark that evaluates LLMs on both static diagnostic inference and dynamic multi-turn psychiatric consultation in Chinese. At its core is LingxiDiag-16K, a dataset of 16,000 EMR-aligned synthetic consultation dialogues designed to reproduce real clinical demographic and diagnostic distributions across 12 ICD-10 psychiatric categories. Through extensive experiments across state-of-the-art LLMs, we establish key findings: (1) although LLMs achieve high accuracy on binary depression--anxiety classification (up to 92.3%), performance deteriorates substantially for depression--anxiety comorbidity recognition (43.0%) and 12-way differential diagnosis (28.5%); (2) dynamic consultation often underperforms static evaluation, indicating that ineffective information-gathering strategies significantly impair downstream diagnostic reasoning; (3) consultation quality assessed by LLM-as-a-Judge shows only moderate correlation with diagnostic accuracy, suggesting that well-structured questioning alone does not ensure correct diagnostic decisions. We release LingxiDiag-16K and the full evaluation framework to support reproducible research at https://github.com/Lingxi-mental-health/LingxiDiagBench.
♻ ☆ TABES: Trajectory-Aware Backward-on-Entropy Steering for Masked Diffusion Models
Masked Diffusion Models (MDMs) have emerged as a promising non-autoregressive paradigm for generative tasks, offering parallel decoding and bidirectional context utilization. However, current sampling methods rely on simple confidence-based heuristics that ignore the long-term impact of local decisions, leading to trajectory lock-in where early hallucinations cascade into global incoherence. While search-based methods mitigate this, they incur prohibitive computational costs ($O(K)$ forward passes per step). In this work, we propose Backward-on-Entropy (BoE) Steering, a gradient-guided inference framework that approximates infinite-horizon lookahead via a single backward pass. We formally derive the Token Influence Score (TIS) from a first-order expansion of the trajectory cost functional, proving that the gradient of future entropy with respect to input embeddings serves as an optimal control signal for minimizing uncertainty. To ensure scalability, we introduce \texttt{ActiveQueryAttention}, a sparse adjoint primitive that exploits the structure of the masking objective to reduce backward pass complexity. BoE achieves a superior Pareto frontier for inference-time scaling compared to existing unmasking methods, demonstrating that gradient-guided steering offers a mathematically principled and efficient path to robust non-autoregressive generation. We will release the code.
♻ ☆ Adapter Merging Reactivates Latent Reasoning Traces: A Mechanism Analysis
Large language models fine-tuned via a two-stage pipeline (domain adaptation followed by instruction alignment) can exhibit non-trivial interference after adapter merging, including the re-emergence of explicit reasoning traces under strict decoding. We study this phenomenon in medical LLM settings using lightweight, reproducible measurements of trace leakage and instruction-following behavior. Beyond marker-based proxies, we introduce a marker-forbidden, answer-only evaluation and define a correctness-based direction that does not rely on surface markers; a rank-1 logit-space intervention along this direction modulates decision distributions and improves multiple-choice accuracy beyond random-direction controls at sufficiently large intervention strength. We further provide layer-wise geometric evidence that domain and instruction adapters induce partially misaligned update directions, and present a proof-of-concept geometry-aware merge that can reduce leakage and/or improve accuracy in a toy setting. Our results characterize boundary conditions of trace leakage and provide practical diagnostics and interventions for safer adapter merging.
comment: v4: Title/abstract updated. Adds robustness/controls (marker-forbidden answer-only evaluation; correctness-defined direction with random-direction control), layer-wise LoRA geometry analysis, and a toy geometry-aware merge baseline; improves clarity and reproducibility
♻ ☆ Dialect Matters: Cross-Lingual ASR Transfer for Low-Resource Indic Language Varieties
We conduct an empirical study of cross-lingual transfer using spontaneous, noisy, and code-mixed speech across a wide range of Indic dialects and language varieties. Our results indicate that although ASR performance is generally improved with reduced phylogenetic distance between languages, this factor alone does not fully explain performance in dialectal settings. Often, fine-tuning on smaller amounts of dialectal data yields performance comparable to fine-tuning on larger amounts of phylogenetically-related, high-resource standardized languages. We also present a case study on Garhwali, a low-resource Pahari language variety, and evaluate multiple contemporary ASR models. Finally, we analyze transcription errors to examine bias toward pre-training languages, providing additional insight into challenges faced by ASR systems on dialectal and non-standardized speech.
comment: 12 pages, 3 figures, 10 tables, accepted at VarDial 2026
♻ ☆ From Native Memes to Global Moderation: Cross-Cultural Evaluation of Vision-Language Models for Hateful Meme Detection WWW '26
Cultural context profoundly shapes how people interpret online content, yet vision-language models (VLMs) remain predominantly trained through Western or English-centric lenses. This limits their fairness and cross-cultural robustness in tasks like hateful meme detection. We introduce a systematic evaluation framework designed to diagnose and quantify the cross-cultural robustness of state-of-the-art VLMs across multilingual meme datasets, analyzing three axes: (i) learning strategy (zero-shot vs. one-shot), (ii) prompting language (native vs. English), and (iii) translation effects on meaning and detection. Results show that the common ``translate-then-detect'' approach deteriorate performance, while culturally aligned interventions - native-language prompting and one-shot learning - significantly enhance detection. Our findings reveal systematic convergence toward Western safety norms and provide actionable strategies to mitigate such bias, guiding the design of globally robust multimodal moderation systems.
comment: 12 pages, 5 figures, Proceedings of the ACM Web Conference 2026 (WWW '26)
♻ ☆ Quantifying and Improving the Robustness of Retrieval-Augmented Language Models Against Spurious Features in Grounding Data
Robustness has become a critical attribute for the deployment of RAG systems in real-world applications. Existing research focuses on robustness to explicit noise (e.g., document semantics) but overlooks implicit noise (spurious features). Moreover, previous studies on spurious features in LLMs are limited to specific types (e.g., formats) and narrow scenarios (e.g., ICL). In this work, we identify and study spurious features in the RAG paradigm, a robustness issue caused by the sensitivity of LLMs to semantic-agnostic features. We then propose a novel framework, SURE, to empirically quantify the robustness of RALMs against spurious features. Beyond providing a comprehensive taxonomy and metrics for evaluation, the framework's data synthesis pipeline facilitates training-based strategies to improve robustness. Further analysis suggests that spurious features are a widespread and challenging problem in the field of RAG. Our code is available at https://github.com/maybenotime/RAG-SpuriousFeatures .
♻ ☆ Alternating Reinforcement Learning for Rubric-Based Reward Modeling in Non-Verifiable LLM Post-Training
Standard reward models typically predict scalar scores that fail to capture the multifaceted nature of response quality in non-verifiable domains, such as creative writing or open-ended instruction following. To address this limitation, we propose Rubric-ARM, a framework that jointly optimizes a rubric generator and a judge using reinforcement learning from preference feedback. Unlike existing methods that rely on static rubrics or disjoint training pipelines, our approach treats rubric generation as a latent action learned to maximize judgment accuracy. We introduce an alternating optimization strategy to mitigate the non-stationarity of simultaneous updates, providing theoretical analysis that demonstrates how this schedule reduces gradient variance during training. Extensive experiments show that Rubric-ARM achieves state-of-the-art performance among baselines on multiple benchmarks and significantly improves downstream policy alignment in both offline and online reinforcement learning settings.
comment: The first two authors contributed equally
♻ ☆ Bidirectional Mamba for Single-Cell Data: Efficient Context Learning with Biological Fidelity
Single-cell RNA sequencing (scRNA-seq) enables high-resolution analysis of cellular heterogeneity, but its complexity, which is marked by high dimensionality, sparsity, and batch effects, which poses major computational challenges. Transformer-based models have made significant advances in this domain but are often limited by their quadratic complexity and suboptimal handling of long-range dependencies. In this work, we introduce GeneMamba, a scalable and efficient foundation model for single-cell transcriptomics built on state space modeling. Leveraging the Bi-Mamba architecture, GeneMamba captures bidirectional gene context with linear-time complexity, offering substantial computational gains over transformer baselines. The model is pretrained on nearly 30 million cells and incorporates biologically informed objectives, including pathway-aware contrastive loss and rank-based gene encoding. We evaluate GeneMamba across diverse tasks, including multi-batch integration, cell type annotation, and gene-gene correlation, demonstrating strong performance, interpretability, and robustness. These results position GeneMamba as a practical and powerful alternative to transformer-based methods, advancing the development of biologically grounded, scalable tools for large-scale single-cell data analysis.
♻ ☆ GOLD PANNING: Strategic Context Shuffling for Needle-in-Haystack Reasoning
Large language models (LLMs) exhibit pronounced position bias in long-context needle-in-haystack problems, systematically prioritizing the location of information over its relevance. While current mitigations rely on white-box access, this is effectively impossible for many state-of-the-art models. We introduce GOLD PANNING, a black-box Bayesian framework that performs inference-time active search over long contexts by (i) reordering documents to concentrate high-belief items in highly diagnostic positions (signal anchoring) and (ii) updating beliefs over document relevance from model outputs. Unlike conventional active learning, which prioritizes uncertainty reduction, GOLD PANNING leverages anchoring -- once flagged, keep it in sight -- to preserve weak cues. We implement this using iterative assignment derived from the model's diagnosticity profile, which provably identifies a target among $N$ documents in $O(\log N)$ rounds, ensuring scalability to many-document settings.On needle-in-a-haystack retrieval and long-context QA, GOLD PANNING matches Permutation Self-Consistency's target identification with $30--65%$ fewer queries and remains effective under calibration mismatch, suggesting coarse positional ordering drives performance gains. These results demonstrate that inherent model biases need not be failures, but can be used as tools for control.
comment: 15 pages, 6 figures
♻ ☆ Bootstrapping Action-Grounded Visual Dynamics in Unified Vision-Language Models
Can unified vision-language models (VLMs) perform forward dynamics prediction (FDP), i.e., predicting the future state (in image form) given the previous observation and an action (in language form)? We find that VLMs struggle to generate physically plausible transitions between frames from instructions. Nevertheless, we identify a crucial asymmetry in multimodal grounding: fine-tuning a VLM to learn inverse dynamics prediction (IDP), effectively captioning the action between frames, is significantly easier than learning FDP. In turn, IDP can be used to bootstrap FDP through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, IDP can annotate actions for unlabelled pairs of video frame observations to expand the training data scale for FDP. Secondly, IDP can assign rewards to multiple samples of FDP to score them, effectively guiding search at inference time. We evaluate the FDP resulting from both strategies through the task of action-centric image editing on Aurora-Bench with two families of VLMs. Despite remaining general-purpose, our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin between $7\%$ and $13\%$ according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
Computer Vision and Pattern Recognition 148
☆ SurfPhase: 3D Interfacial Dynamics in Two-Phase Flows from Sparse Videos
Interfacial dynamics in two-phase flows govern momentum, heat, and mass transfer, yet remain difficult to measure experimentally. Classical techniques face intrinsic limitations near moving interfaces, while existing neural rendering methods target single-phase flows with diffuse boundaries and cannot handle sharp, deformable liquid-vapor interfaces. We propose SurfPhase, a novel model for reconstructing 3D interfacial dynamics from sparse camera views. Our approach integrates dynamic Gaussian surfels with a signed distance function formulation for geometric consistency, and leverages a video diffusion model to synthesize novel-view videos to refine reconstruction from sparse observations. We evaluate on a new dataset of high-speed pool boiling videos, demonstrating high-quality view synthesis and velocity estimation from only two camera views. Project website: https://yuegao.me/SurfPhase.
comment: The first two authors contributed equally. Project website: https://yuegao.me/SurfPhase
☆ Beyond VLM-Based Rewards: Diffusion-Native Latent Reward Modeling
Preference optimization for diffusion and flow-matching models relies on reward functions that are both discriminatively robust and computationally efficient. Vision-Language Models (VLMs) have emerged as the primary reward provider, leveraging their rich multimodal priors to guide alignment. However, their computation and memory cost can be substantial, and optimizing a latent diffusion generator through a pixel-space reward introduces a domain mismatch that complicates alignment. In this paper, we propose DiNa-LRM, a diffusion-native latent reward model that formulates preference learning directly on noisy diffusion states. Our method introduces a noise-calibrated Thurstone likelihood with diffusion-noise-dependent uncertainty. DiNa-LRM leverages a pretrained latent diffusion backbone with a timestep-conditioned reward head, and supports inference-time noise ensembling, providing a diffusion-native mechanism for test-time scaling and robust rewarding. Across image alignment benchmarks, DiNa-LRM substantially outperforms existing diffusion-based reward baselines and achieves performance competitive with state-of-the-art VLMs at a fraction of the computational cost. In preference optimization, we demonstrate that DiNa-LRM improves preference optimization dynamics, enabling faster and more resource-efficient model alignment.
comment: Code: https://github.com/HKUST-C4G/diffusion-rm
☆ GENIUS: Generative Fluid Intelligence Evaluation Suite
Unified Multimodal Models (UMMs) have shown remarkable progress in visual generation. Yet, existing benchmarks predominantly assess $\textit{Crystallized Intelligence}$, which relies on recalling accumulated knowledge and learned schemas. This focus overlooks $\textit{Generative Fluid Intelligence (GFI)}$: the capacity to induce patterns, reason through constraints, and adapt to novel scenarios on the fly. To rigorously assess this capability, we introduce $\textbf{GENIUS}$ ($\textbf{GEN}$ Fluid $\textbf{I}$ntelligence Eval$\textbf{U}$ation $\textbf{S}$uite). We formalize $\textit{GFI}$ as a synthesis of three primitives. These include $\textit{Inducing Implicit Patterns}$ (e.g., inferring personalized visual preferences), $\textit{Executing Ad-hoc Constraints}$ (e.g., visualizing abstract metaphors), and $\textit{Adapting to Contextual Knowledge}$ (e.g., simulating counter-intuitive physics). Collectively, these primitives challenge models to solve problems grounded entirely in the immediate context. Our systematic evaluation of 12 representative models reveals significant performance deficits in these tasks. Crucially, our diagnostic analysis disentangles these failure modes. It demonstrates that deficits stem from limited context comprehension rather than insufficient intrinsic generative capability. To bridge this gap, we propose a training-free attention intervention strategy. Ultimately, $\textbf{GENIUS}$ establishes a rigorous standard for $\textit{GFI}$, guiding the field beyond knowledge utilization toward dynamic, general-purpose reasoning. Our dataset and code will be released at: $\href{https://github.com/arctanxarc/GENIUS}{https://github.com/arctanxarc/GENIUS}$.
☆ From Circuits to Dynamics: Understanding and Stabilizing Failure in 3D Diffusion Transformers
Reliable surface completion from sparse point clouds underpins many applications spanning content creation and robotics. While 3D diffusion transformers attain state-of-the-art results on this task, we uncover that they exhibit a catastrophic mode of failure: arbitrarily small on-surface perturbations to the input point cloud can fracture the output into multiple disconnected pieces -- a phenomenon we call Meltdown. Using activation-patching from mechanistic interpretability, we localize Meltdown to a single early denoising cross-attention activation. We find that the singular-value spectrum of this activation provides a scalar proxy: its spectral entropy rises when fragmentation occurs and returns to baseline when patched. Interpreted through diffusion dynamics, we show that this proxy tracks a symmetry-breaking bifurcation of the reverse process. Guided by this insight, we introduce PowerRemap, a test-time control that stabilizes sparse point-cloud conditioning. We demonstrate that Meltdown persists across state-of-the-art architectures (WaLa, Make-a-Shape), datasets (GSO, SimJEB) and denoising strategies (DDPM, DDIM), and that PowerRemap effectively counters this failure with stabilization rates of up to 98.3%. Overall, this work is a case study on how diffusion model behavior can be understood and guided based on mechanistic analysis, linking a circuit-level cross-attention mechanism to diffusion-dynamics accounts of trajectory bifurcations.
☆ PhyCritic: Multimodal Critic Models for Physical AI
With the rapid development of large multimodal models, reliable judge and critic models have become essential for open-ended evaluation and preference alignment, providing pairwise preferences, numerical scores, and explanatory justifications for assessing model-generated responses. However, existing critics are primarily trained in general visual domains such as captioning or image question answering, leaving physical AI tasks involving perception, causal reasoning, and planning largely underexplored. We introduce PhyCritic, a multimodal critic model optimized for physical AI through a two-stage RLVR pipeline: a physical skill warmup stage that enhances physically oriented perception and reasoning, followed by self-referential critic finetuning, where the critic generates its own prediction as an internal reference before judging candidate responses, improving judgment stability and physical correctness. Across both physical and general-purpose multimodal judge benchmarks, PhyCritic achieves strong performance gains over open-source baselines and, when applied as a policy model, further improves perception and reasoning in physically grounded tasks.
☆ HairWeaver: Few-Shot Photorealistic Hair Motion Synthesis with Sim-to-Real Guided Video Diffusion
We present HairWeaver, a diffusion-based pipeline that animates a single human image with realistic and expressive hair dynamics. While existing methods successfully control body pose, they lack specific control over hair, and as a result, fail to capture the intricate hair motions, resulting in stiff and unrealistic animations. HairWeaver overcomes this limitation using two specialized modules: a Motion-Context-LoRA to integrate motion conditions and a Sim2Real-Domain-LoRA to preserve the subject's photoreal appearance across different data domains. These lightweight components are designed to guide a video diffusion backbone while maintaining its core generative capabilities. By training on a specialized dataset of dynamic human motion generated from a CG simulator, HairWeaver affords fine control over hair motion and ultimately learns to produce highly realistic hair that responds naturally to movement. Comprehensive evaluations demonstrate that our approach sets a new state of the art, producing lifelike human hair animations with dynamic details.
comment: Website: https://boese0601.github.io/hairweaver/
☆ FastFlow: Accelerating The Generative Flow Matching Models with Bandit Inference ICLR
Flow-matching models deliver state-of-the-art fidelity in image and video generation, but the inherent sequential denoising process renders them slower. Existing acceleration methods like distillation, trajectory truncation, and consistency approaches are static, require retraining, and often fail to generalize across tasks. We propose FastFlow, a plug-and-play adaptive inference framework that accelerates generation in flow matching models. FastFlow identifies denoising steps that produce only minor adjustments to the denoising path and approximates them without using the full neural network models used for velocity predictions. The approximation utilizes finite-difference velocity estimates from prior predictions to efficiently extrapolate future states, enabling faster advancements along the denoising path at zero compute cost. This enables skipping computation at intermediary steps. We model the decision of how many steps to safely skip before requiring a full model computation as a multi-armed bandit problem. The bandit learns the optimal skips to balance speed with performance. FastFlow integrates seamlessly with existing pipelines and generalizes across image generation, video generation, and editing tasks. Experiments demonstrate a speedup of over 2.6x while maintaining high-quality outputs. The source code for this work can be found at https://github.com/Div290/FastFlow.
comment: Accepted at International Conference on Learning Representations (ICLR) 2026
☆ First International StepUP Competition for Biometric Footstep Recognition: Methods, Results and Remaining Challenges
Biometric footstep recognition, based on a person's unique pressure patterns under their feet during walking, is an emerging field with growing applications in security and safety. However, progress in this area has been limited by the lack of large, diverse datasets necessary to address critical challenges such as generalization to new users and robustness to shifts in factors like footwear or walking speed. The recent release of the UNB StepUP-P150 dataset, the largest and most comprehensive collection of high-resolution footstep pressure recordings to date, opens new opportunities for addressing these challenges through deep learning. To mark this milestone, the First International StepUP Competition for Biometric Footstep Recognition was launched. Competitors were tasked with developing robust recognition models using the StepUP-P150 dataset that were then evaluated on a separate, dedicated test set designed to assess verification performance under challenging variations, given limited and relatively homogeneous reference data. The competition attracted global participation, with 23 registered teams from academia and industry. The top-performing team, Saeid_UCC, achieved the best equal error rate (EER) of 10.77% using a generative reward machine (GRM) optimization strategy. Overall, the competition showcased strong solutions, but persistent challenges in generalizing to unfamiliar footwear highlight a critical area for future work.
comment: to be published in 2025 IEEE International Joint Conference on Biometrics (IJCB)
☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
☆ PuriLight: A Lightweight Shuffle and Purification Framework for Monocular Depth Estimation ECAI2025
We propose PuriLight, a lightweight and efficient framework for self-supervised monocular depth estimation, to address the dual challenges of computational efficiency and detail preservation. While recent advances in self-supervised depth estimation have reduced reliance on ground truth supervision, existing approaches remain constrained by either bulky architectures compromising practicality or lightweight models sacrificing structural precision. These dual limitations underscore the critical need to develop lightweight yet structurally precise architectures. Our framework addresses these limitations through a three-stage architecture incorporating three novel modules: the Shuffle-Dilation Convolution (SDC) module for local feature extraction, the Rotation-Adaptive Kernel Attention (RAKA) module for hierarchical feature enhancement, and the Deep Frequency Signal Purification (DFSP) module for global feature purification. Through effective collaboration, these modules enable PuriLight to achieve both lightweight and accurate feature extraction and processing. Extensive experiments demonstrate that PuriLight achieves state-of-the-art performance with minimal training parameters while maintaining exceptional computational efficiency. Codes will be available at https://github.com/ishrouder/PuriLight.
comment: 8 pages, 6figures, accepted by European Conference on Artificial Intelligence (ECAI2025)
☆ Chain-of-Look Spatial Reasoning for Dense Surgical Instrument Counting WACV 2026
Accurate counting of surgical instruments in Operating Rooms (OR) is a critical prerequisite for ensuring patient safety during surgery. Despite recent progress of large visual-language models and agentic AI, accurately counting such instruments remains highly challenging, particularly in dense scenarios where instruments are tightly clustered. To address this problem, we introduce Chain-of-Look, a novel visual reasoning framework that mimics the sequential human counting process by enforcing a structured visual chain, rather than relying on classic object detection which is unordered. This visual chain guides the model to count along a coherent spatial trajectory, improving accuracy in complex scenes. To further enforce the physical plausibility of the visual chain, we introduce the neighboring loss function, which explicitly models the spatial constraints inherent to densely packed surgical instruments. We also present SurgCount-HD, a new dataset comprising 1,464 high-density surgical instrument images. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches for counting (e.g., CountGD, REC) as well as Multimodality Large Language Models (e.g., Qwen, ChatGPT) in the challenging task of dense surgical instrument counting.
comment: Accepted to WACV 2026. This version includes additional authors who contributed during the rebuttal phase
☆ ContactGaussian-WM: Learning Physics-Grounded World Model from Videos
Developing world models that understand complex physical interactions is essential for advancing robotic planning and simulation.However, existing methods often struggle to accurately model the environment under conditions of data scarcity and complex contact-rich dynamic motion.To address these challenges, we propose ContactGaussian-WM, a differentiable physics-grounded rigid-body world model capable of learning intricate physical laws directly from sparse and contact-rich video sequences.Our framework consists of two core components: (1) a unified Gaussian representation for both visual appearance and collision geometry, and (2) an end-to-end differentiable learning framework that differentiates through a closed-form physics engine to infer physical properties from sparse visual observations.Extensive simulations and real-world evaluations demonstrate that ContactGaussian-WM outperforms state-of-the-art methods in learning complex scenarios, exhibiting robust generalization capabilities.Furthermore, we showcase the practical utility of our framework in downstream applications, including data synthesis and real-time MPC.
☆ LaSSM: Efficient Semantic-Spatial Query Decoding via Local Aggregation and State Space Models for 3D Instance Segmentation
Query-based 3D scene instance segmentation from point clouds has attained notable performance. However, existing methods suffer from the query initialization dilemma due to the sparse nature of point clouds and rely on computationally intensive attention mechanisms in query decoders. We accordingly introduce LaSSM, prioritizing simplicity and efficiency while maintaining competitive performance. Specifically, we propose a hierarchical semantic-spatial query initializer to derive the query set from superpoints by considering both semantic cues and spatial distribution, achieving comprehensive scene coverage and accelerated convergence. We further present a coordinate-guided state space model (SSM) decoder that progressively refines queries. The novel decoder features a local aggregation scheme that restricts the model to focus on geometrically coherent regions and a spatial dual-path SSM block to capture underlying dependencies within the query set by integrating associated coordinates information. Our design enables efficient instance prediction, avoiding the incorporation of noisy information and reducing redundant computation. LaSSM ranks first place on the latest ScanNet++ V2 leaderboard, outperforming the previous best method by 2.5% mAP with only 1/3 FLOPs, demonstrating its superiority in challenging large-scale scene instance segmentation. LaSSM also achieves competitive performance on ScanNet, ScanNet200, S3DIS and ScanNet++ V1 benchmarks with less computational cost. Extensive ablation studies and qualitative results validate the effectiveness of our design. The code and weights are available at https://github.com/RayYoh/LaSSM.
comment: Accepted at IEEE-TCSVT
☆ Interpretable Vision Transformers in Monocular Depth Estimation via SVDA CVPR
Monocular depth estimation is a central problem in computer vision with applications in robotics, AR, and autonomous driving, yet the self-attention mechanisms that drive modern Transformer architectures remain opaque. We introduce SVD-Inspired Attention (SVDA) into the Dense Prediction Transformer (DPT), providing the first spectrally structured formulation of attention for dense prediction tasks. SVDA decouples directional alignment from spectral modulation by embedding a learnable diagonal matrix into normalized query-key interactions, enabling attention maps that are intrinsically interpretable rather than post-hoc approximations. Experiments on KITTI and NYU-v2 show that SVDA preserves or slightly improves predictive accuracy while adding only minor computational overhead. More importantly, SVDA unlocks six spectral indicators that quantify entropy, rank, sparsity, alignment, selectivity, and robustness. These reveal consistent cross-dataset and depth-wise patterns in how attention organizes during training, insights that remain inaccessible in standard Transformers. By shifting the role of attention from opaque mechanism to quantifiable descriptor, SVDA redefines interpretability in monocular depth estimation and opens a principled avenue toward transparent dense prediction models.
comment: 8 pages, 2 figures, submitted to CVPR Conference 2026
☆ Enhancing Predictability of Multi-Tenant DNN Inference for Autonomous Vehicles' Perception
Autonomous vehicles (AVs) rely on sensors and deep neural networks (DNNs) to perceive their surrounding environment and make maneuver decisions in real time. However, achieving real-time DNN inference in the AV's perception pipeline is challenging due to the large gap between the computation requirement and the AV's limited resources. Most, if not all, of existing studies focus on optimizing the DNN inference time to achieve faster perception by compressing the DNN model with pruning and quantization. In contrast, we present a Predictable Perception system with DNNs (PP-DNN) that reduce the amount of image data to be processed while maintaining the same level of accuracy for multi-tenant DNNs by dynamically selecting critical frames and regions of interest (ROIs). PP-DNN is based on our key insight that critical frames and ROIs for AVs vary with the AV's surrounding environment. However, it is challenging to identify and use critical frames and ROIs in multi-tenant DNNs for predictable inference. Given image-frame streams, PP-DNN leverages an ROI generator to identify critical frames and ROIs based on the similarities of consecutive frames and traffic scenarios. PP-DNN then leverages a FLOPs predictor to predict multiply-accumulate operations (MACs) from the dynamic critical frames and ROIs. The ROI scheduler coordinates the processing of critical frames and ROIs with multiple DNN models. Finally, we design a detection predictor for the perception of non-critical frames. We have implemented PP-DNN in an ROS-based AV pipeline and evaluated it with the BDD100K and the nuScenes dataset. PP-DNN is observed to significantly enhance perception predictability, increasing the number of fusion frames by up to 7.3x, reducing the fusion delay by >2.6x and fusion-delay variations by >2.3x, improving detection completeness by 75.4% and the cost-effectiveness by up to 98% over the baseline.
comment: 13 pages, 12 figures
☆ Interpretable Vision Transformers in Image Classification via SVDA
Vision Transformers (ViTs) have achieved state-of-the-art performance in image classification, yet their attention mechanisms often remain opaque and exhibit dense, non-structured behaviors. In this work, we adapt our previously proposed SVD-Inspired Attention (SVDA) mechanism to the ViT architecture, introducing a geometrically grounded formulation that enhances interpretability, sparsity, and spectral structure. We apply the use of interpretability indicators -- originally proposed with SVDA -- to monitor attention dynamics during training and assess structural properties of the learned representations. Experimental evaluations on four widely used benchmarks -- CIFAR-10, FashionMNIST, CIFAR-100, and ImageNet-100 -- demonstrate that SVDA consistently yields more interpretable attention patterns without sacrificing classification accuracy. While the current framework offers descriptive insights rather than prescriptive guidance, our results establish SVDA as a comprehensive and informative tool for analyzing and developing structured attention models in computer vision. This work lays the foundation for future advances in explainable AI, spectral diagnostics, and attention-based model compression.
comment: 10 pages, 4 figures, submitted to IEEE Access
☆ DFIC: Towards a balanced facial image dataset for automatic ICAO compliance verification
Ensuring compliance with ISO/IEC and ICAO standards for facial images in machine-readable travel documents (MRTDs) is essential for reliable identity verification, but current manual inspection methods are inefficient in high-demand environments. This paper introduces the DFIC dataset, a novel comprehensive facial image dataset comprising around 58,000 annotated images and 2706 videos of more than 1000 subjects, that cover a broad range of non-compliant conditions, in addition to compliant portraits. Our dataset provides a more balanced demographic distribution than the existing public datasets, with one partition that is nearly uniformly distributed, facilitating the development of automated ICAO compliance verification methods. Using DFIC, we fine-tuned a novel method that heavily relies on spatial attention mechanisms for the automatic validation of ICAO compliance requirements, and we have compared it with the state-of-the-art aimed at ICAO compliance verification, demonstrating improved results. DFIC dataset is now made public (https://github.com/visteam-isr-uc/DFIC) for the training and validation of new models, offering an unprecedented diversity of faces, that will improve both robustness and adaptability to the intrinsically diverse combinations of faces and props that can be presented to the validation system. These results emphasize the potential of DFIC to enhance automated ICAO compliance methods but it can also be used in many other applications that aim to improve the security, privacy, and fairness of facial recognition systems.
☆ VFGS-Net: Frequency-Guided State-Space Learning for Topology-Preserving Retinal Vessel Segmentation
Accurate retinal vessel segmentation is a critical prerequisite for quantitative analysis of retinal images and computer-aided diagnosis of vascular diseases such as diabetic retinopathy. However, the elongated morphology, wide scale variation, and low contrast of retinal vessels pose significant challenges for existing methods, making it difficult to simultaneously preserve fine capillaries and maintain global topological continuity. To address these challenges, we propose the Vessel-aware Frequency-domain and Global Spatial modeling Network (VFGS-Net), an end-to-end segmentation framework that seamlessly integrates frequency-aware feature enhancement, dual-path convolutional representation learning, and bidirectional asymmetric spatial state-space modeling within a unified architecture. Specifically, VFGS-Net employs a dual-path feature convolution module to jointly capture fine-grained local textures and multi-scale contextual semantics. A novel vessel-aware frequency-domain channel attention mechanism is introduced to adaptively reweight spectral components, thereby enhancing vessel-relevant responses in high-level features. Furthermore, at the network bottleneck, we propose a bidirectional asymmetric Mamba2-based spatial modeling block to efficiently capture long-range spatial dependencies and strengthen the global continuity of vascular structures. Extensive experiments on four publicly available retinal vessel datasets demonstrate that VFGS-Net achieves competitive or superior performance compared to state-of-the-art methods. Notably, our model consistently improves segmentation accuracy for fine vessels, complex branching patterns, and low-contrast regions, highlighting its robustness and clinical potential.
☆ Healthy Harvests: A Comparative Look at Guava Disease Classification Using InceptionV3
Guava fruits often suffer from many diseases. This can harm fruit quality and fruit crop yield. Early identification is important for minimizing damage and ensuring fruit health. This study focuses on 3 different categories for classifying diseases. These are Anthracnose, Fruit flies, and Healthy fruit. The data set used in this study is collected from Mendeley Data. This dataset contains 473 original images of Guava. These images vary in size and format. The original dataset was resized to 256x256 pixels with RGB color mode for better consistency. After this, the Data augmentation process is applied to improve the dataset by generating variations of the original images. The augmented dataset consists of 3784 images using advanced preprocessing techniques. Two deep learning models were implemented to classify the images. The InceptionV3 model is well known for its advanced framework. These apply multiple convolutional filters for obtaining different features effectively. On the other hand, the ResNet50 model helps to train deeper networks by using residual learning. The InceptionV3 model achieved the impressive accuracy of 98.15%, and ResNet50got 94.46% accuracy. Data mixing methods such as CutMix and MixUp were applied to enhance the model's robustness. The confusion matrix was used to evaluate the overall model performance of both InceptionV3 and Resnet50. Additionally, SHAP analysis is used to improve interpretability, which helps to find the significant parts of the image for the model prediction. This study purposes to highlight how advanced models enhan
comment: 6 pages, 13 figures, his is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ Towards Learning a Generalizable 3D Scene Representation from 2D Observations
We introduce a Generalizable Neural Radiance Field approach for predicting 3D workspace occupancy from egocentric robot observations. Unlike prior methods operating in camera-centric coordinates, our model constructs occupancy representations in a global workspace frame, making it directly applicable to robotic manipulation. The model integrates flexible source views and generalizes to unseen object arrangements without scene-specific finetuning. We demonstrate the approach on a humanoid robot and evaluate predicted geometry against 3D sensor ground truth. Trained on 40 real scenes, our model achieves 26mm reconstruction error, including occluded regions, validating its ability to infer complete 3D occupancy beyond traditional stereo vision methods.
comment: Paper accepted at ESANN 2026
☆ FastUSP: A Multi-Level Collaborative Acceleration Framework for Distributed Diffusion Model Inference
Large-scale diffusion models such as FLUX (12B parameters) and Stable Diffusion 3 (8B parameters) require multi-GPU parallelism for efficient inference. Unified Sequence Parallelism (USP), which combines Ulysses and Ring attention mechanisms, has emerged as the state-of-the-art approach for distributed attention computation. However, existing USP implementations suffer from significant inefficiencies including excessive kernel launch overhead and suboptimal computation-communication scheduling. In this paper, we propose \textbf{FastUSP}, a multi-level optimization framework that integrates compile-level optimization (graph compilation with CUDA Graphs and computation-communication reordering), communication-level optimization (FP8 quantized collective communication), and operator-level optimization (pipelined Ring attention with double buffering). We evaluate FastUSP on FLUX (12B) and Qwen-Image models across 2, 4, and 8 NVIDIA RTX 5090 GPUs. On FLUX, FastUSP achieves consistent \textbf{1.12$\times$--1.16$\times$} end-to-end speedup over baseline USP, with compile-level optimization contributing the dominant improvement. On Qwen-Image, FastUSP achieves \textbf{1.09$\times$} speedup on 2 GPUs; on 4--8 GPUs, we identify a PyTorch Inductor compatibility limitation with Ring attention that prevents compile optimization, while baseline USP scales to 1.30$\times$--1.46$\times$ of 2-GPU performance. We further provide a detailed analysis of the performance characteristics of distributed diffusion inference, revealing that kernel launch overhead -- rather than communication latency -- is the primary bottleneck on modern high-bandwidth GPU interconnects.
☆ ResWorld: Temporal Residual World Model for End-to-End Autonomous Driving ICLR 2026
The comprehensive understanding capabilities of world models for driving scenarios have significantly improved the planning accuracy of end-to-end autonomous driving frameworks. However, the redundant modeling of static regions and the lack of deep interaction with trajectories hinder world models from exerting their full effectiveness. In this paper, we propose Temporal Residual World Model (TR-World), which focuses on dynamic object modeling. By calculating the temporal residuals of scene representations, the information of dynamic objects can be extracted without relying on detection and tracking. TR-World takes only temporal residuals as input, thus predicting the future spatial distribution of dynamic objects more precisely. By combining the prediction with the static object information contained in the current BEV features, accurate future BEV features can be obtained. Furthermore, we propose Future-Guided Trajectory Refinement (FGTR) module, which conducts interaction between prior trajectories (predicted from the current scene representation) and the future BEV features. This module can not only utilize future road conditions to refine trajectories, but also provides sparse spatial-temporal supervision on future BEV features to prevent world model collapse. Comprehensive experiments conducted on the nuScenes and NAVSIM datasets demonstrate that our method, namely ResWorld, achieves state-of-the-art planning performance. The code is available at https://github.com/mengtan00/ResWorld.git.
comment: ICLR 2026
☆ Chart Specification: Structural Representations for Incentivizing VLM Reasoning in Chart-to-Code Generation
Vision-Language Models (VLMs) have shown promise in generating plotting code from chart images, yet achieving structural fidelity remains challenging. Existing approaches largely rely on supervised fine-tuning, encouraging surface-level token imitation rather than faithful modeling of underlying chart structure, which often leads to hallucinated or semantically inconsistent outputs. We propose Chart Specification, a structured intermediate representation that shifts training from text imitation to semantically grounded supervision. Chart Specification filters syntactic noise to construct a structurally balanced training set and supports a Spec-Align Reward that provides fine-grained, verifiable feedback on structural correctness, enabling reinforcement learning to enforce consistent plotting logic. Experiments on three public benchmarks show that our method consistently outperforms prior approaches. With only 3K training samples, we achieve strong data efficiency, surpassing leading baselines by up to 61.7% on complex benchmarks, and scaling to 4K samples establishes new state-of-the-art results across all evaluated metrics. Overall, our results demonstrate that precise structural supervision offers an efficient pathway to high-fidelity chart-to-code generation. Code and dataset are available at: https://github.com/Mighten/chart-specification-paper
comment: under review
☆ Stride-Net: Fairness-Aware Disentangled Representation Learning for Chest X-Ray Diagnosis
Deep neural networks for chest X-ray classification achieve strong average performance, yet often underperform for specific demographic subgroups, raising critical concerns about clinical safety and equity. Existing debiasing methods frequently yield inconsistent improvements across datasets or attain fairness by degrading overall diagnostic utility, treating fairness as a post hoc constraint rather than a property of the learned representation. In this work, we propose Stride-Net (Sensitive Attribute Resilient Learning via Disentanglement and Learnable Masking with Embedding Alignment), a fairness-aware framework that learns disease-discriminative yet demographically invariant representations for chest X-ray analysis. Stride-Net operates at the patch level, using a learnable stride-based mask to select label-aligned image regions while suppressing sensitive attribute information through adversarial confusion loss. To anchor representations in clinical semantics and discourage shortcut learning, we further enforce semantic alignment between image features and BioBERT-based disease label embeddings via Group Optimal Transport. We evaluate Stride-Net on the MIMIC-CXR and CheXpert benchmarks across race and intersectional race-gender subgroups. Across architectures including ResNet and Vision Transformers, Stride-Net consistently improves fairness metrics while matching or exceeding baseline accuracy, achieving a more favorable accuracy-fairness trade-off than prior debiasing approaches. Our code is available at https://github.com/Daraksh/Fairness_StrideNet.
comment: 6 pages, 2 Tables, 3 Figures. Our code is available https://github.com/Daraksh/Fairness_StrideNet
☆ Viewpoint Recommendation for Point Cloud Labeling through Interaction Cost Modeling
Semantic segmentation of 3D point clouds is important for many applications, such as autonomous driving. To train semantic segmentation models, labeled point cloud segmentation datasets are essential. Meanwhile, point cloud labeling is time-consuming for annotators, which typically involves tuning the camera viewpoint and selecting points by lasso. To reduce the time cost of point cloud labeling, we propose a viewpoint recommendation approach to reduce annotators' labeling time costs. We adapt Fitts' law to model the time cost of lasso selection in point clouds. Using the modeled time cost, the viewpoint that minimizes the lasso selection time cost is recommended to the annotator. We build a data labeling system for semantic segmentation of 3D point clouds that integrates our viewpoint recommendation approach. The system enables users to navigate to recommended viewpoints for efficient annotation. Through an ablation study, we observed that our approach effectively reduced the data labeling time cost. We also qualitatively compare our approach with previous viewpoint selection approaches on different datasets.
comment: Accepted to IEEE TVCG
☆ Hyperspectral Smoke Segmentation via Mixture of Prototypes
Smoke segmentation is critical for wildfire management and industrial safety applications. Traditional visible-light-based methods face limitations due to insufficient spectral information, particularly struggling with cloud interference and semi-transparent smoke regions. To address these challenges, we introduce hyperspectral imaging for smoke segmentation and present the first hyperspectral smoke segmentation dataset (HSSDataset) with carefully annotated samples collected from over 18,000 frames across 20 real-world scenarios using a Many-to-One annotations protocol. However, different spectral bands exhibit varying discriminative capabilities across spatial regions, necessitating adaptive band weighting strategies. We decompose this into three technical challenges: spectral interaction contamination, limited spectral pattern modeling, and complex weighting router problems. We propose a mixture of prototypes (MoP) network with: (1) Band split for spectral isolation, (2) Prototype-based spectral representation for diverse patterns, and (3) Dual-level router for adaptive spatial-aware band weighting. We further construct a multispectral dataset (MSSDataset) with RGB-infrared images. Extensive experiments validate superior performance across both hyperspectral and multispectral modalities, establishing a new paradigm for spectral-based smoke segmentation.
comment: 35 pages, 14 figures
☆ Flow caching for autoregressive video generation
Autoregressive models, often built on Transformer architectures, represent a powerful paradigm for generating ultra-long videos by synthesizing content in sequential chunks. However, this sequential generation process is notoriously slow. While caching strategies have proven effective for accelerating traditional video diffusion models, existing methods assume uniform denoising across all frames-an assumption that breaks down in autoregressive models where different video chunks exhibit varying similarity patterns at identical timesteps. In this paper, we present FlowCache, the first caching framework specifically designed for autoregressive video generation. Our key insight is that each video chunk should maintain independent caching policies, allowing fine-grained control over which chunks require recomputation at each timestep. We introduce a chunkwise caching strategy that dynamically adapts to the unique denoising characteristics of each chunk, complemented by a joint importance-redundancy optimized KV cache compression mechanism that maintains fixed memory bounds while preserving generation quality. Our method achieves remarkable speedups of 2.38 times on MAGI-1 and 6.7 times on SkyReels-V2, with negligible quality degradation (VBench: 0.87 increase and 0.79 decrease respectively). These results demonstrate that FlowCache successfully unlocks the potential of autoregressive models for real-time, ultra-long video generation-establishing a new benchmark for efficient video synthesis at scale. The code is available at https://github.com/mikeallen39/FlowCache.
☆ Resource-Efficient RGB-Only Action Recognition for Edge Deployment
Action recognition on edge devices poses stringent constraints on latency, memory, storage, and power consumption. While auxiliary modalities such as skeleton and depth information can enhance recognition performance, they often require additional sensors or computationally expensive pose-estimation pipelines, limiting practicality for edge use. In this work, we propose a compact RGB-only network tailored for efficient on-device inference. Our approach builds upon an X3D-style backbone augmented with Temporal Shift, and further introduces selective temporal adaptation and parameter-free attention. Extensive experiments on the NTU RGB+D 60 and 120 benchmarks demonstrate a strong accuracy-efficiency balance. Moreover, deployment-level profiling on the Jetson Orin Nano verifies a smaller on-device footprint and practical resource utilization compared to existing RGB-based action recognition techniques.
comment: Under review
☆ Why Does RL Generalize Better Than SFT? A Data-Centric Perspective on VLM Post-Training
The adaptation of large-scale Vision-Language Models (VLMs) through post-training reveals a pronounced generalization gap: models fine-tuned with Reinforcement Learning (RL) consistently achieve superior out-of-distribution (OOD) performance compared to those trained with Supervised Fine-Tuning (SFT). This paper posits a data-centric explanation for this phenomenon, contending that RL's generalization advantage arises from an implicit data filtering mechanism that inherently prioritizes medium-difficulty training samples. To test this hypothesis, we systematically evaluate the OOD generalization of SFT models across training datasets of varying difficulty levels. Our results confirm that data difficulty is a critical factor, revealing that training on hard samples significantly degrades OOD performance. Motivated by this finding, we introduce Difficulty-Curated SFT (DC-SFT), a straightforward method that explicitly filters the training set based on sample difficulty. Experiments show that DC-SFT not only substantially enhances OOD generalization over standard SFT, but also surpasses the performance of RL-based training, all while providing greater stability and computational efficiency. This work offers a data-centric account of the OOD generalization gap in VLMs and establishes a more efficient pathway to achieving robust generalization. Code is available at https://github.com/byyx666/DC-SFT.
☆ DeepImageSearch: Benchmarking Multimodal Agents for Context-Aware Image Retrieval in Visual Histories
Existing multimodal retrieval systems excel at semantic matching but implicitly assume that query-image relevance can be measured in isolation. This paradigm overlooks the rich dependencies inherent in realistic visual streams, where information is distributed across temporal sequences rather than confined to single snapshots. To bridge this gap, we introduce DeepImageSearch, a novel agentic paradigm that reformulates image retrieval as an autonomous exploration task. Models must plan and perform multi-step reasoning over raw visual histories to locate targets based on implicit contextual cues. We construct DISBench, a challenging benchmark built on interconnected visual data. To address the scalability challenge of creating context-dependent queries, we propose a human-model collaborative pipeline that employs vision-language models to mine latent spatiotemporal associations, effectively offloading intensive context discovery before human verification. Furthermore, we build a robust baseline using a modular agent framework equipped with fine-grained tools and a dual-memory system for long-horizon navigation. Extensive experiments demonstrate that DISBench poses significant challenges to state-of-the-art models, highlighting the necessity of incorporating agentic reasoning into next-generation retrieval systems.
comment: 17 pages, 5 figures
☆ DMP-3DAD: Cross-Category 3D Anomaly Detection via Realistic Depth Map Projection with Few Normal Samples
Cross-category anomaly detection for 3D point clouds aims to determine whether an unseen object belongs to a target category using only a few normal examples. Most existing methods rely on category-specific training, which limits their flexibility in few-shot scenarios. In this paper, we propose DMP-3DAD, a training-free framework for cross-category 3D anomaly detection based on multi-view realistic depth map projection. Specifically, by converting point clouds into a fixed set of realistic depth images, our method leverages a frozen CLIP visual encoder to extract multi-view representations and performs anomaly detection via weighted feature similarity, which does not require any fine-tuning or category-dependent adaptation. Extensive experiments on the ShapeNetPart dataset demonstrate that DMP-3DAD achieves state-of-the-art performance under few-shot setting. The results show that the proposed approach provides a simple yet effective solution for practical cross-category 3D anomaly detection.
☆ RSHallu: Dual-Mode Hallucination Evaluation for Remote-Sensing Multimodal Large Language Models with Domain-Tailored Mitigation
Multimodal large language models (MLLMs) are increasingly adopted in remote sensing (RS) and have shown strong performance on tasks such as RS visual grounding (RSVG), RS visual question answering (RSVQA), and multimodal dialogue. However, hallucinations, which are responses inconsistent with the input RS images, severely hinder their deployment in high-stakes scenarios (e.g., emergency management and agricultural monitoring) and remain under-explored in RS. In this work, we present RSHallu, a systematic study with three deliverables: (1) we formalize RS hallucinations with an RS-oriented taxonomy and introduce image-level hallucination to capture RS-specific inconsistencies beyond object-centric errors (e.g., modality, resolution, and scene-level semantics); (2) we build a hallucination benchmark RSHalluEval (2,023 QA pairs) and enable dual-mode checking, supporting high-precision cloud auditing and low-cost reproducible local checking via a compact checker fine-tuned on RSHalluCheck dataset (15,396 QA pairs); and (3) we introduce a domain-tailored dataset RSHalluShield (30k QA pairs) for training-friendly mitigation and further propose training-free plug-and-play strategies, including decoding-time logit correction and RS-aware prompting. Across representative RS-MLLMs, our mitigation improves the hallucination-free rate by up to 21.63 percentage points under a unified protocol, while maintaining competitive performance on downstream RS tasks (RSVQA/RSVG). Code and datasets will be released.
☆ Kill it with FIRE: On Leveraging Latent Space Directions for Runtime Backdoor Mitigation in Deep Neural Networks
Machine learning models are increasingly present in our everyday lives; as a result, they become targets of adversarial attackers seeking to manipulate the systems we interact with. A well-known vulnerability is a backdoor introduced into a neural network by poisoned training data or a malicious training process. Backdoors can be used to induce unwanted behavior by including a certain trigger in the input. Existing mitigations filter training data, modify the model, or perform expensive input modifications on samples. If a vulnerable model has already been deployed, however, those strategies are either ineffective or inefficient. To address this gap, we propose our inference-time backdoor mitigation approach called FIRE (Feature-space Inference-time REpair). We hypothesize that a trigger induces structured and repeatable changes in the model's internal representation. We view the trigger as directions in the latent spaces between layers that can be applied in reverse to correct the inference mechanism. Therefore, we turn the backdoored model against itself by manipulating its latent representations and moving a poisoned sample's features along the backdoor directions to neutralize the trigger. Our evaluation shows that FIRE has low computational overhead and outperforms current runtime mitigations on image benchmarks across various attacks, datasets, and network architectures.
☆ From Steering to Pedalling: Do Autonomous Driving VLMs Generalize to Cyclist-Assistive Spatial Perception and Planning?
Cyclists often encounter safety-critical situations in urban traffic, highlighting the need for assistive systems that support safe and informed decision-making. Recently, vision-language models (VLMs) have demonstrated strong performance on autonomous driving benchmarks, suggesting their potential for general traffic understanding and navigation-related reasoning. However, existing evaluations are predominantly vehicle-centric and fail to assess perception and reasoning from a cyclist-centric viewpoint. To address this gap, we introduce CyclingVQA, a diagnostic benchmark designed to probe perception, spatio-temporal understanding, and traffic-rule-to-lane reasoning from a cyclist's perspective. Evaluating 31+ recent VLMs spanning general-purpose, spatially enhanced, and autonomous-driving-specialized models, we find that current models demonstrate encouraging capabilities, while also revealing clear areas for improvement in cyclist-centric perception and reasoning, particularly in interpreting cyclist-specific traffic cues and associating signs with the correct navigational lanes. Notably, several driving-specialized models underperform strong generalist VLMs, indicating limited transfer from vehicle-centric training to cyclist-assistive scenarios. Finally, through systematic error analysis, we identify recurring failure modes to guide the development of more effective cyclist-assistive intelligent systems.
comment: Preprint
☆ Dual-End Consistency Model
The slow iterative sampling nature remains a major bottleneck for the practical deployment of diffusion and flow-based generative models. While consistency models (CMs) represent a state-of-the-art distillation-based approach for efficient generation, their large-scale application is still limited by two key issues: training instability and inflexible sampling. Existing methods seek to mitigate these problems through architectural adjustments or regularized objectives, yet overlook the critical reliance on trajectory selection. In this work, we first conduct an analysis on these two limitations: training instability originates from loss divergence induced by unstable self-supervised term, whereas sampling inflexibility arises from error accumulation. Based on these insights and analysis, we propose the Dual-End Consistency Model (DE-CM) that selects vital sub-trajectory clusters to achieve stable and effective training. DE-CM decomposes the PF-ODE trajectory and selects three critical sub-trajectories as optimization targets. Specifically, our approach leverages continuous-time CMs objectives to achieve few-step distillation and utilizes flow matching as a boundary regularizer to stabilize the training process. Furthermore, we propose a novel noise-to-noisy (N2N) mapping that can map noise to any point, thereby alleviating the error accumulation in the first step. Extensive experimental results show the effectiveness of our method: it achieves a state-of-the-art FID score of 1.70 in one-step generation on the ImageNet 256x256 dataset, outperforming existing CM-based one-step approaches.
☆ Text-to-Vector Conversion for Residential Plan Design
Computer graphics, comprising both raster and vector components, is a fundamental part of modern science, industry, and digital communication. While raster graphics offer ease of use, its pixel-based structure limits scalability. Vector graphics, defined by mathematical primitives, provides scalability without quality loss, however, it is more complex to produce. For design and architecture, the versatility of vector graphics is paramount, despite its computational demands. This paper introduces a novel method for generating vector residential plans from textual descriptions. Our approach surpasses existing solutions by approximately 5% in CLIPScore-based visual quality, benefiting from its inherent handling of right angles and flexible settings. Additionally, we present a new algorithm for vectorizing raster plans into structured vector images. Such images have a better CLIPscore compared to others by about 4%.
comment: 4 pages, 1 figure
☆ SecureScan: An AI-Driven Multi-Layer Framework for Malware and Phishing Detection Using Logistic Regression and Threat Intelligence Integration
The growing sophistication of modern malware and phishing campaigns has diminished the effectiveness of traditional signature-based intrusion detection systems. This work presents SecureScan, an AI-driven, triple-layer detection framework that integrates logistic regression-based classification, heuristic analysis, and external threat intelligence via the VirusTotal API for comprehensive triage of URLs, file hashes, and binaries. The proposed architecture prioritizes efficiency by filtering known threats through heuristics, classifying uncertain samples using machine learning, and validating borderline cases with third-party intelligence. On benchmark datasets, SecureScan achieves 93.1 percent accuracy with balanced precision (0.87) and recall (0.92), demonstrating strong generalization and reduced overfitting through threshold-based decision calibration. A calibrated threshold and gray-zone logic (0.45-0.55) were introduced to minimize false positives and enhance real-world stability. Experimental results indicate that a lightweight statistical model, when augmented with calibrated verification and external intelligence, can achieve reliability and performance comparable to more complex deep learning systems.
☆ Spectral-Spatial Contrastive Learning Framework for Regression on Hyperspectral Data
Contrastive learning has demonstrated great success in representation learning, especially for image classification tasks. However, there is still a shortage in studies targeting regression tasks, and more specifically applications on hyperspectral data. In this paper, we propose a spectral-spatial contrastive learning framework for regression tasks for hyperspectral data, in a model-agnostic design allowing to enhance backbones such as 3D convolutional and transformer-based networks. Moreover, we provide a collection of transformations relevant for augmenting hyperspectral data. Experiments on synthetic and real datasets show that the proposed framework and transformations significantly improve the performance of all studied backbone models.
Self-Supervised Image Super-Resolution Quality Assessment based on Content-Free Multi-Model Oriented Representation Learning
Super-resolution (SR) applied to real-world low-resolution (LR) images often results in complex, irregular degradations that stem from the inherent complexity of natural scene acquisition. In contrast to SR artifacts arising from synthetic LR images created under well-defined scenarios, those distortions are highly unpredictable and vary significantly across different real-life contexts. Consequently, assessing the quality of SR images (SR-IQA) obtained from realistic LR, remains a challenging and underexplored problem. In this work, we introduce a no-reference SR-IQA approach tailored for such highly ill-posed realistic settings. The proposed method enables domain-adaptive IQA for real-world SR applications, particularly in data-scarce domains. We hypothesize that degradations in super-resolved images are strongly dependent on the underlying SR algorithms, rather than being solely determined by image content. To this end, we introduce a self-supervised learning (SSL) strategy that first pretrains multiple SR model oriented representations in a pretext stage. Our contrastive learning framework forms positive pairs from images produced by the same SR model and negative pairs from those generated by different methods, independent of image content. The proposed approach S3 RIQA, further incorporates targeted preprocessing to extract complementary quality information and an auxiliary task to better handle the various degradation profiles associated with different SR scaling factors. To this end, we constructed a new dataset, SRMORSS, to support unsupervised pretext training; it includes a wide range of SR algorithms applied to numerous real LR images, which addresses a gap in existing datasets. Experiments on real SR-IQA benchmarks demonstrate that S3 RIQA consistently outperforms most state-of-the-art relevant metrics.
☆ OccFace: Unified Occlusion-Aware Facial Landmark Detection with Per-Point Visibility
Accurate facial landmark detection under occlusion remains challenging, especially for human-like faces with large appearance variation and rotation-driven self-occlusion. Existing detectors typically localize landmarks while handling occlusion implicitly, without predicting per-point visibility that downstream applications can benefits. We present OccFace, an occlusion-aware framework for universal human-like faces, including humans, stylized characters, and other non-human designs. OccFace adopts a unified dense 100-point layout and a heatmap-based backbone, and adds an occlusion module that jointly predicts landmark coordinates and per-point visibility by combining local evidence with cross-landmark context. Visibility supervision mixes manual labels with landmark-aware masking that derives pseudo visibility from mask-heatmap overlap. We also create an occlusion-aware evaluation suite reporting NME on visible vs. occluded landmarks and benchmarking visibility with Occ AP, F1@0.5, and ROC-AUC, together with a dataset annotated with 100-point landmarks and per-point visibility. Experiments show improved robustness under external occlusion and large head rotations, especially on occluded regions, while preserving accuracy on visible landmarks.
☆ A Diffusion-Based Generative Prior Approach to Sparse-view Computed Tomography
The reconstruction of X-rays CT images from sparse or limited-angle geometries is a highly challenging task. The lack of data typically results in artifacts in the reconstructed image and may even lead to object distortions. For this reason, the use of deep generative models in this context has great interest and potential success. In the Deep Generative Prior (DGP) framework, the use of diffusion-based generative models is combined with an iterative optimization algorithm for the reconstruction of CT images from sinograms acquired under sparse geometries, to maintain the explainability of a model-based approach while introducing the generative power of a neural network. There are therefore several aspects that can be further investigated within these frameworks to improve reconstruction quality, such as image generation, the model, and the iterative algorithm used to solve the minimization problem, for which we propose modifications with respect to existing approaches. The results obtained even under highly sparse geometries are very promising, although further research is clearly needed in this direction.
comment: 13 pages, 5 figures, 1 table
☆ Ecological mapping with geospatial foundation models
Geospatial foundation models (GFMs) are a fast-emerging paradigm for various geospatial tasks, such as ecological mapping. However, the utility of GFMs has not been fully explored for high-value use cases. This study aims to explore the utility, challenges and opportunities associated with the application of GFMs for ecological uses. In this regard, we fine-tune several pretrained AI models, namely, Prithvi-E0-2.0 and TerraMind, across three use cases, and compare this with a baseline ResNet-101 model. Firstly, we demonstrate TerraMind's LULC generation capabilities. Lastly, we explore the utility of the GFMs in forest functional trait mapping and peatlands detection. In all experiments, the GFMs outperform the baseline ResNet models. In general TerraMind marginally outperforms Prithvi. However, with additional modalities TerraMind significantly outperforms the baseline ResNet and Prithvi models. Nonetheless, consideration should be given to the divergence of input data from pretrained modalities. We note that these models would benefit from higher resolution and more accurate labels, especially for use cases where pixel-level dynamics need to be mapped.
☆ From Representational Complementarity to Dual Systems: Synergizing VLM and Vision-Only Backbones for End-to-End Driving
Vision-Language-Action (VLA) driving augments end-to-end (E2E) planning with language-enabled backbones, yet it remains unclear what changes beyond the usual accuracy--cost trade-off. We revisit this question with 3--RQ analysis in RecogDrive by instantiating the system with a full VLM and vision-only backbones, all under an identical diffusion Transformer planner. RQ1: At the backbone level, the VLM can introduce additional subspaces upon the vision-only backbones. RQ2: This unique subspace leads to a different behavioral in some long-tail scenario: the VLM tends to be more aggressive whereas ViT is more conservative, and each decisively wins on about 2--3% of test scenarios; With an oracle that selects, per scenario, the better trajectory between the VLM and ViT branches, we obtain an upper bound of 93.58 PDMS. RQ3: To fully harness this observation, we propose HybridDriveVLA, which runs both ViT and VLM branches and selects between their endpoint trajectories using a learned scorer, improving PDMS to 92.10. Finally, DualDriveVLA implements a practical fast--slow policy: it runs ViT by default and invokes the VLM only when the scorer's confidence falls below a threshold; calling the VLM on 15% of scenarios achieves 91.00 PDMS while improving throughput by 3.2x. Code will be released.
comment: 22 pages (10 pages main text + 12 pages appendix), 18 figures
☆ FGAA-FPN: Foreground-Guided Angle-Aware Feature Pyramid Network for Oriented Object Detection
With the increasing availability of high-resolution remote sensing and aerial imagery, oriented object detection has become a key capability for geographic information updating, maritime surveillance, and disaster response. However, it remains challenging due to cluttered backgrounds, severe scale variation, and large orientation changes. Existing approaches largely improve performance through multi-scale feature fusion with feature pyramid networks or contextual modeling with attention, but they often lack explicit foreground modeling and do not leverage geometric orientation priors, which limits feature discriminability. To overcome these limitations, we propose FGAA-FPN, a Foreground-Guided Angle-Aware Feature Pyramid Network for oriented object detection. FGAA-FPN is built on a hierarchical functional decomposition that accounts for the distinct spatial resolution and semantic abstraction across pyramid levels, thereby strengthening multi-scale representations. Concretely, a Foreground-Guided Feature Modulation module learns foreground saliency under weak supervision to enhance object regions and suppress background interference in low-level features. In parallel, an Angle-Aware Multi-Head Attention module encodes relative orientation relationships to guide global interactions among high-level semantic features. Extensive experiments on DOTA v1.0 and DOTA v1.5 demonstrate that FGAA-FPN achieves state-of-the-art results, reaching 75.5% and 68.3% mAP, respectively.
comment: Submitted to The Visual Computer
☆ (MGS)$^2$-Net: Unifying Micro-Geometric Scale and Macro-Geometric Structure for Cross-View Geo-Localization
Cross-view geo-localization (CVGL) is pivotal for GNSS-denied UAV navigation but remains brittle under the drastic geometric misalignment between oblique aerial views and orthographic satellite references. Existing methods predominantly operate within a 2D manifold, neglecting the underlying 3D geometry where view-dependent vertical facades (macro-structure) and scale variations (micro-scale) severely corrupt feature alignment. To bridge this gap, we propose (MGS)$^2$, a geometry-grounded framework. The core of our innovation is the Macro-Geometric Structure Filtering (MGSF) module. Unlike pixel-wise matching sensitive to noise, MGSF leverages dilated geometric gradients to physically filter out high-frequency facade artifacts while enhancing the view-invariant horizontal plane, directly addressing the domain shift. To guarantee robust input for this structural filtering, we explicitly incorporate a Micro-Geometric Scale Adaptation (MGSA) module. MGSA utilizes depth priors to dynamically rectify scale discrepancies via multi-branch feature fusion. Furthermore, a Geometric-Appearance Contrastive Distillation (GACD) loss is designed to strictly discriminate against oblique occlusions. Extensive experiments demonstrate that (MGS)$^2$ achieves state-of-the-art performance, recording a Recall@1 of 97.5\% on University-1652 and 97.02\% on SUES-200. Furthermore, the framework exhibits superior cross-dataset generalization against geometric ambiguity. The code is available at: \href{https://github.com/GabrielLi1473/MGS-Net}{https://github.com/GabrielLi1473/MGS-Net}.
☆ AugVLA-3D: Depth-Driven Feature Augmentation for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic perception and control, yet most existing approaches primarily rely on VLM trained using 2D images, which limits their spatial understanding and action grounding in complex 3D environments. To address this limitation, we propose a novel framework that integrates depth estimation into VLA models to enrich 3D feature representations. Specifically, we employ a depth estimation baseline called VGGT to extract geometry-aware 3D cues from standard RGB inputs, enabling efficient utilization of existing large-scale 2D datasets while implicitly recovering 3D structural information. To further enhance the reliability of these depth-derived features, we introduce a new module called action assistant, which constrains the learned 3D representations with action priors and ensures their consistency with downstream control tasks. By fusing the enhanced 3D features with conventional 2D visual tokens, our approach significantly improves the generalization ability and robustness of VLA models. Experimental results demonstrate that the proposed method not only strengthens perception in geometrically ambiguous scenarios but also leads to superior action prediction accuracy. This work highlights the potential of depth-driven data augmentation and auxiliary expert supervision for bridging the gap between 2D observations and 3D-aware decision-making in robotic systems.
☆ OmniVL-Guard: Towards Unified Vision-Language Forgery Detection and Grounding via Balanced RL
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
comment: 38 pages, DeepFake Detection
☆ TwiFF (Think With Future Frames): A Large-Scale Dataset for Dynamic Visual Reasoning
Visual Chain-of-Thought (VCoT) has emerged as a promising paradigm for enhancing multimodal reasoning by integrating visual perception into intermediate reasoning steps. However, existing VCoT approaches are largely confined to static scenarios and struggle to capture the temporal dynamics essential for tasks such as instruction, prediction, and camera motion. To bridge this gap, we propose TwiFF-2.7M, the first large-scale, temporally grounded VCoT dataset derived from $2.7$ million video clips, explicitly designed for dynamic visual question and answer. Accompanying this, we introduce TwiFF-Bench, a high-quality evaluation benchmark of $1,078$ samples that assesses both the plausibility of reasoning trajectories and the correctness of final answers in open-ended dynamic settings. Building on these foundations, we propose the TwiFF model, a unified modal that synergistically leverages pre-trained video generation and image comprehension capabilities to produce temporally coherent visual reasoning cues-iteratively generating future action frames and textual reasoning. Extensive experiments demonstrate that TwiFF significantly outperforms existing VCoT methods and Textual Chain-of-Thought baselines on dynamic reasoning tasks, which fully validates the effectiveness for visual question answering in dynamic scenarios. Our code and data is available at https://github.com/LiuJunhua02/TwiFF.
comment: preprint
☆ AMAP-APP: Efficient Segmentation and Morphometry Quantification of Fluorescent Microscopy Images of Podocytes
Background: Automated podocyte foot process quantification is vital for kidney research, but the established "Automatic Morphological Analysis of Podocytes" (AMAP) method is hindered by high computational demands, a lack of a user interface, and Linux dependency. We developed AMAP-APP, a cross-platform desktop application designed to overcome these barriers. Methods: AMAP-APP optimizes efficiency by replacing intensive instance segmentation with classic image processing while retaining the original semantic segmentation model. It introduces a refined Region of Interest (ROI) algorithm to improve precision. Validation involved 365 mouse and human images (STED and confocal), benchmarking performance against the original AMAP via Pearson correlation and Two One-Sided T-tests (TOST). Results: AMAP-APP achieved a 147-fold increase in processing speed on consumer hardware. Morphometric outputs (area, perimeter, circularity, and slit diaphragm density) showed high correlation (r>0.90) and statistical equivalence (TOST P<0.05) to the original method. Additionally, the new ROI algorithm demonstrated superior accuracy compared to the original, showing reduced deviation from manual delineations. Conclusion: AMAP-APP democratizes deep learning-based podocyte morphometry. By eliminating the need for high-performance computing clusters and providing a user-friendly interface for Windows, macOS, and Linux, it enables widespread adoption in nephrology research and potential clinical diagnostics.
☆ Dynamic Frequency Modulation for Controllable Text-driven Image Generation
The success of text-guided diffusion models has established a new image generation paradigm driven by the iterative refinement of text prompts. However, modifying the original text prompt to achieve the expected semantic adjustments often results in unintended global structure changes that disrupt user intent. Existing methods rely on empirical feature map selection for intervention, whose performance heavily depends on appropriate selection, leading to suboptimal stability. This paper tries to solve the aforementioned problem from a frequency perspective and analyzes the impact of the frequency spectrum of noisy latent variables on the hierarchical emergence of the structure framework and fine-grained textures during the generation process. We find that lower-frequency components are primarily responsible for establishing the structure framework in the early generation stage. Their influence diminishes over time, giving way to higher-frequency components that synthesize fine-grained textures. In light of this, we propose a training-free frequency modulation method utilizing a frequency-dependent weighting function with dynamic decay. This method maintains the structure framework consistency while permitting targeted semantic modifications. By directly manipulating the noisy latent variable, the proposed method avoids the empirical selection of internal feature maps. Extensive experiments demonstrate that the proposed method significantly outperforms current state-of-the-art methods, achieving an effective balance between preserving structure and enabling semantic updates.
☆ AurigaNet: A Real-Time Multi-Task Network for Enhanced Urban Driving Perception
Self-driving cars hold significant potential to reduce traffic accidents, alleviate congestion, and enhance urban mobility. However, developing reliable AI systems for autonomous vehicles remains a substantial challenge. Over the past decade, multi-task learning has emerged as a powerful approach to address complex problems in driving perception. Multi-task networks offer several advantages, including increased computational efficiency, real-time processing capabilities, optimized resource utilization, and improved generalization. In this study, we present AurigaNet, an advanced multi-task network architecture designed to push the boundaries of autonomous driving perception. AurigaNet integrates three critical tasks: object detection, lane detection, and drivable area instance segmentation. The system is trained and evaluated using the BDD100K dataset, renowned for its diversity in driving conditions. Key innovations of AurigaNet include its end-to-end instance segmentation capability, which significantly enhances both accuracy and efficiency in path estimation for autonomous vehicles. Experimental results demonstrate that AurigaNet achieves an 85.2% IoU in drivable area segmentation, outperforming its closest competitor by 0.7%. In lane detection, AurigaNet achieves a remarkable 60.8% IoU, surpassing other models by more than 30%. Furthermore, the network achieves an mAP@0.5:0.95 of 47.6% in traffic object detection, exceeding the next leading model by 2.9%. Additionally, we validate the practical feasibility of AurigaNet by deploying it on embedded devices such as the Jetson Orin NX, where it demonstrates competitive real-time performance. These results underscore AurigaNet's potential as a robust and efficient solution for autonomous driving perception systems. The code can be found here https://github.com/KiaRational/AurigaNet.
☆ Multimodal Priors-Augmented Text-Driven 3D Human-Object Interaction Generation
We address the challenging task of text-driven 3D human-object interaction (HOI) motion generation. Existing methods primarily rely on a direct text-to-HOI mapping, which suffers from three key limitations due to the significant cross-modality gap: (Q1) sub-optimal human motion, (Q2) unnatural object motion, and (Q3) weak interaction between humans and objects. To address these challenges, we propose MP-HOI, a novel framework grounded in four core insights: (1) Multimodal Data Priors: We leverage multimodal data (text, image, pose/object) from large multimodal models as priors to guide HOI generation, which tackles Q1 and Q2 in data modeling. (2) Enhanced Object Representation: We improve existing object representations by incorporating geometric keypoints, contact features, and dynamic properties, enabling expressive object representations, which tackles Q2 in data representation. (3) Multimodal-Aware Mixture-of-Experts (MoE) Model: We propose a modality-aware MoE model for effective multimodal feature fusion paradigm, which tackles Q1 and Q2 in feature fusion. (4) Cascaded Diffusion with Interaction Supervision: We design a cascaded diffusion framework that progressively refines human-object interaction features under dedicated supervision, which tackles Q3 in interaction refinement. Comprehensive experiments demonstrate that MP-HOI outperforms existing approaches in generating high-fidelity and fine-grained HOI motions.
☆ VideoSTF: Stress-Testing Output Repetition in Video Large Language Models
Video Large Language Models (VideoLLMs) have recently achieved strong performance in video understanding tasks. However, we identify a previously underexplored generation failure: severe output repetition, where models degenerate into self-reinforcing loops of repeated phrases or sentences. This failure mode is not captured by existing VideoLLM benchmarks, which focus primarily on task accuracy and factual correctness. We introduce VideoSTF, the first framework for systematically measuring and stress-testing output repetition in VideoLLMs. VideoSTF formalizes repetition using three complementary n-gram-based metrics and provides a standardized testbed of 10,000 diverse videos together with a library of controlled temporal transformations. Using VideoSTF, we conduct pervasive testing, temporal stress testing, and adversarial exploitation across 10 advanced VideoLLMs. We find that output repetition is widespread and, critically, highly sensitive to temporal perturbations of video inputs. Moreover, we show that simple temporal transformations can efficiently induce repetitive degeneration in a black-box setting, exposing output repetition as an exploitable security vulnerability. Our results reveal output repetition as a fundamental stability issue in modern VideoLLMs and motivate stability-aware evaluation for video-language systems. Our evaluation code and scripts are available at: https://github.com/yuxincao22/VideoSTF_benchmark.
☆ Eliminating VAE for Fast and High-Resolution Generative Detail Restoration ICLR 2026
Diffusion models have attained remarkable breakthroughs in the real-world super-resolution (SR) task, albeit at slow inference and high demand on devices. To accelerate inference, recent works like GenDR adopt step distillation to minimize the step number to one. However, the memory boundary still restricts the maximum processing size, necessitating tile-by-tile restoration of high-resolution images. Through profiling the pipeline, we pinpoint that the variational auto-encoder (VAE) is the bottleneck of latency and memory. To completely solve the problem, we leverage pixel-(un)shuffle operations to eliminate the VAE, reversing the latent-based GenDR to pixel-space GenDR-Pix. However, upscale with x8 pixelshuffle may induce artifacts of repeated patterns. To alleviate the distortion, we propose a multi-stage adversarial distillation to progressively remove the encoder and decoder. Specifically, we utilize generative features from the previous stage models to guide adversarial discrimination. Moreover, we propose random padding to augment generative features and avoid discriminator collapse. We also introduce a masked Fourier space loss to penalize the outliers of amplitude. To improve inference performance, we empirically integrate a padding-based self-ensemble with classifier-free guidance to improve inference scaling. Experimental results show that GenDR-Pix performs 2.8x acceleration and 60% memory-saving compared to GenDR with negligible visual degradation, surpassing other one-step diffusion SR. Against all odds, GenDR-Pix can restore 4K image in only 1 second and 6GB.
comment: Accepted by ICLR 2026
☆ A Vision-Language Foundation Model for Zero-shot Clinical Collaboration and Automated Concept Discovery in Dermatology
Medical foundation models have shown promise in controlled benchmarks, yet widespread deployment remains hindered by reliance on task-specific fine-tuning. Here, we introduce DermFM-Zero, a dermatology vision-language foundation model trained via masked latent modelling and contrastive learning on over 4 million multimodal data points. We evaluated DermFM-Zero across 20 benchmarks spanning zero-shot diagnosis and multimodal retrieval, achieving state-of-the-art performance without task-specific adaptation. We further evaluated its zero-shot capabilities in three multinational reader studies involving over 1,100 clinicians. In primary care settings, AI assistance enabled general practitioners to nearly double their differential diagnostic accuracy across 98 skin conditions. In specialist settings, the model significantly outperformed board-certified dermatologists in multimodal skin cancer assessment. In collaborative workflows, AI assistance enabled non-experts to surpass unassisted experts while improving management appropriateness. Finally, we show that DermFM-Zero's latent representations are interpretable: sparse autoencoders unsupervisedly disentangle clinically meaningful concepts that outperform predefined-vocabulary approaches and enable targeted suppression of artifact-induced biases, enhancing robustness without retraining. These findings demonstrate that a foundation model can provide effective, safe, and transparent zero-shot clinical decision support.
comment: reports
☆ Improving Medical Visual Reinforcement Fine-Tuning via Perception and Reasoning Augmentation
While recent advances in Reinforcement Fine-Tuning (RFT) have shown that rule-based reward schemes can enable effective post-training for large language models, their extension to cross-modal, vision-centric domains remains largely underexplored. This limitation is especially pronounced in the medical imaging domain, where effective performance requires both robust visual perception and structured reasoning. In this work, we address this gap by proposing VRFT-Aug, a visual reinforcement fine-tuning framework tailored for the medical domain. VRFT-Aug introduces a series of training strategies designed to augment both perception and reasoning, including prior knowledge injection, perception-driven policy refinement, medically informed reward shaping, and behavioral imitation. Together, these methods aim to stabilize and improve the RFT process. Through extensive experiments across multiple medical datasets, we show that our approaches consistently outperform both standard supervised fine-tuning and RFT baselines. Moreover, we provide empirically grounded insights and practical training heuristics that can be generalized to other medical image tasks. We hope this work contributes actionable guidance and fresh inspiration for the ongoing effort to develop reliable, reasoning-capable models for high-stakes medical applications.
comment: CPAL 2026
☆ Fast Person Detection Using YOLOX With AI Accelerator For Train Station Safety
Recently, Image processing has advanced Faster and applied in many fields, including health, industry, and transportation. In the transportation sector, object detection is widely used to improve security, for example, in traffic security and passenger crossings at train stations. Some accidents occur in the train crossing area at the station, like passengers uncarefully when passing through the yellow line. So further security needs to be developed. Additional technology is required to reduce the number of accidents. This paper focuses on passenger detection applications at train stations using YOLOX and Edge AI Accelerator hardware. the performance of the AI accelerator will be compared with Jetson Orin Nano. The experimental results show that the Hailo-8 AI hardware accelerator has higher accuracy than Jetson Orin Nano (improvement of over 12%) and has lower latency than Jetson Orin Nano (reduced 20 ms).
comment: 6 pages, 8 figures, 2 tables. Presented at 2024 International Electronics Symposium (IES). IEEE DOI: 10.1109/IES63037.2024.10665874
☆ Enhancing YOLOv11n for Reliable Child Detection in Noisy Surveillance Footage
This paper presents a practical and lightweight solution for enhancing child detection in low-quality surveillance footage, a critical component in real-world missing child alert and daycare monitoring systems. Building upon the efficient YOLOv11n architecture, we propose a deployment-ready pipeline that improves detection under challenging conditions including occlusion, small object size, low resolution, motion blur, and poor lighting commonly found in existing CCTV infrastructures. Our approach introduces a domain-specific augmentation strategy that synthesizes realistic child placements using spatial perturbations such as partial visibility, truncation, and overlaps, combined with photometric degradations including lighting variation and noise. To improve recall of small and partially occluded instances, we integrate Slicing Aided Hyper Inference (SAHI) at inference time. All components are trained and evaluated on a filtered, child-only subset of the Roboflow Daycare dataset. Compared to the baseline YOLOv11n, our enhanced system achieves a mean Average Precision at 0.5 IoU (mAP@0.5) of 0.967 and a mean Average Precision averaged over IoU thresholds from 0.5 to 0.95 (mAP@0.5:0.95) of 0.783, yielding absolute improvements of 0.7 percent and 2.3 percent, respectively, without architectural changes. Importantly, the entire pipeline maintains compatibility with low-power edge devices and supports real-time performance, making it particularly well suited for low-cost or resource-constrained industrial surveillance deployments. The example augmented dataset and the source code used to generate it are available at: https://github.com/html-ptit/Data-Augmentation-YOLOv11n-child-detection
☆ Enhancing Underwater Images via Adaptive Semantic-aware Codebook Learning
Underwater Image Enhancement (UIE) is an ill-posed problem where natural clean references are not available, and the degradation levels vary significantly across semantic regions. Existing UIE methods treat images with a single global model and ignore the inconsistent degradation of different scene components. This oversight leads to significant color distortions and loss of fine details in heterogeneous underwater scenes, especially where degradation varies significantly across different image regions. Therefore, we propose SUCode (Semantic-aware Underwater Codebook Network), which achieves adaptive UIE from semantic-aware discrete codebook representation. Compared with one-shot codebook-based methods, SUCode exploits semantic-aware, pixel-level codebook representation tailored to heterogeneous underwater degradation. A three-stage training paradigm is employed to represent raw underwater image features to avoid pseudo ground-truth contamination. Gated Channel Attention Module (GCAM) and Frequency-Aware Feature Fusion (FAFF) jointly integrate channel and frequency cues for faithful color restoration and texture recovery. Extensive experiments on multiple benchmarks demonstrate that SUCode achieves state-of-the-art performance, outperforming recent UIE methods on both reference and no-reference metrics. The code will be made public available at https://github.com/oucailab/SUCode.
comment: Accepted for publication in IEEE TGRS 2026
☆ MetaphorStar: Image Metaphor Understanding and Reasoning with End-to-End Visual Reinforcement Learning
Metaphorical comprehension in images remains a critical challenge for Nowadays AI systems. While Multimodal Large Language Models (MLLMs) excel at basic Visual Question Answering (VQA), they consistently struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. This difficulty stems from the task's demand for sophisticated multi-hop reasoning, cultural context, and Theory of Mind (ToM) capabilities, which current models lack. To fill this gap, we propose MetaphorStar, the first end-to-end visual reinforcement learning (RL) framework for image implication tasks. Our framework includes three core components: the fine-grained dataset TFQ-Data, the visual RL method TFQ-GRPO, and the well-structured benchmark TFQ-Bench. Our fully open-source MetaphorStar family, trained using TFQ-GRPO on TFQ-Data, significantly improves performance by an average of 82.6% on the image implication benchmarks. Compared with 20+ mainstream MLLMs, MetaphorStar-32B achieves state-of-the-art (SOTA) on Multiple-Choice Question and Open-Style Question, significantly outperforms the top closed-source model Gemini-3.0-pro on True-False Question. Crucially, our experiments reveal that learning image implication tasks improves the general understanding ability, especially the complex visual reasoning ability. We further provide a systematic analysis of model parameter scaling, training data scaling, and the impact of different model architectures and training strategies, demonstrating the broad applicability of our method. We open-sourced all model weights, datasets, and method code at https://metaphorstar.github.io.
comment: 14 pages, 4 figures, 11 tables; Code: https://github.com/MING-ZCH/MetaphorStar, Model & Dataset: https://huggingface.co/collections/MING-ZCH/metaphorstar
☆ C^2ROPE: Causal Continuous Rotary Positional Encoding for 3D Large Multimodal-Models Reasoning ICRA 2026
Recent advances in 3D Large Multimodal Models (LMMs) built on Large Language Models (LLMs) have established the alignment of 3D visual features with LLM representations as the dominant paradigm. However, the inherited Rotary Position Embedding (RoPE) introduces limitations for multimodal processing. Specifically, applying 1D temporal positional indices disrupts the continuity of visual features along the column dimension, resulting in spatial locality loss. Moreover, RoPE follows the prior that temporally closer image tokens are more causally related, leading to long-term decay in attention allocation and causing the model to progressively neglect earlier visual tokens as the sequence length increases. To address these issues, we propose C^2RoPE, an improved RoPE that explicitly models local spatial Continuity and spatial Causal relationships for visual processing. C^2RoPE introduces a spatio-temporal continuous positional embedding mechanism for visual tokens. It first integrates 1D temporal positions with Cartesian-based spatial coordinates to construct a triplet hybrid positional index, and then employs a frequency allocation strategy to encode spatio-temporal positional information across the three index components. Additionally, we introduce Chebyshev Causal Masking, which determines causal dependencies by computing the Chebyshev distance of image tokens in 2D space. Evaluation results across various benchmarks, including 3D scene reasoning and 3D visual question answering, demonstrate C^2RoPE's effectiveness. The code is be available at https://github.com/ErikZ719/C2RoPE.
comment: Accepted in ICRA 2026
☆ Enhancing Weakly Supervised Multimodal Video Anomaly Detection through Text Guidance
Weakly supervised multimodal video anomaly detection has gained significant attention, yet the potential of the text modality remains under-explored. Text provides explicit semantic information that can enhance anomaly characterization and reduce false alarms. However, extracting effective text features is challenging due to the inability of general-purpose language models to capture anomaly-specific nuances and the scarcity of relevant descriptions. Furthermore, multimodal fusion often suffers from redundancy and imbalance. To address these issues, we propose a novel text-guided framework. First, we introduce an in-context learning-based multi-stage text augmentation mechanism to generate high-quality anomaly text samples for fine-tuning the text feature extractor. Second, we design a multi-scale bottleneck Transformer fusion module that uses compressed bottleneck tokens to progressively integrate information across modalities, mitigating redundancy and imbalance. Experiments on UCF-Crime and XD-Violence demonstrate state-of-the-art performance.
comment: Accepted by IEEE Transactions on Multimedia
☆ RealHD: A High-Quality Dataset for Robust Detection of State-of-the-Art AI-Generated Images ACM MM 2025
The rapid advancement of generative AI has raised concerns about the authenticity of digital images, as highly realistic fake images can now be generated at low cost, potentially increasing societal risks. In response, several datasets have been established to train detection models aimed at distinguishing AI-generated images from real ones. However, existing datasets suffer from limited generalization, low image quality, overly simple prompts, and insufficient image diversity. To address these limitations, we propose a high-quality, large-scale dataset comprising over 730,000 images across multiple categories, including both real and AI-generated images. The generated images are synthesized via state-of-the-art methods, including text-to-image generation (guided by over 10,000 carefully designed prompts), image inpainting, image refinement, and face swapping. Each generated image is annotated with its generation method and category. Inpainting images further include binary masks to indicate inpainted regions, providing rich metadata for analysis. Compared to existing datasets, detection models trained on our dataset demonstrate superior generalization capabilities. Our dataset not only serves as a strong benchmark for evaluating detection methods but also contributes to advancing the robustness of AI-generated image detection techniques. Building upon this, we propose a lightweight detection method based on image noise entropy, which transforms the original image into an entropy tensor of Non-Local Means (NLM) noise before classification. Extensive experiments demonstrate that models trained on our dataset achieve strong generalization, and our method delivers competitive performance, establishing a solid baseline for future research. The dataset and source code are publicly available at https://real-hd.github.io.
comment: Published in the Proceedings of the 33rd ACM International Conference on Multimedia (ACM MM 2025)
☆ MapVerse: A Benchmark for Geospatial Question Answering on Diverse Real-World Maps
Maps are powerful carriers of structured and contextual knowledge, encompassing geography, demographics, infrastructure, and environmental patterns. Reasoning over such knowledge requires models to integrate spatial relationships, visual cues, real-world context, and domain-specific expertise-capabilities that current large language models (LLMs) and vision-language models (VLMs) still struggle to exhibit consistently. Yet, datasets used to benchmark VLMs on map-based reasoning remain narrow in scope, restricted to specific domains, and heavily reliant on artificially generated content (outputs from LLMs or pipeline-based methods), offering limited depth for evaluating genuine geospatial reasoning. To address this gap, we present MapVerse, a large-scale benchmark built on real-world maps. It comprises 11,837 human-authored question-answer pairs across 1,025 maps, spanning ten diverse map categories and multiple question categories for each. The dataset provides a rich setting for evaluating map reading, interpretation, and multimodal reasoning. We evaluate ten state-of-the-art models against our benchmark to establish baselines and quantify reasoning gaps. Beyond overall performance, we conduct fine-grained categorical analyses to assess model inference across multiple dimensions and investigate the visual factors shaping reasoning outcomes. Our findings reveal that while current VLMs perform competitively on classification-style tasks, both open- and closed-source models fall short on advanced tasks requiring complex spatial reasoning.
☆ 3DXTalker: Unifying Identity, Lip Sync, Emotion, and Spatial Dynamics in Expressive 3D Talking Avatars
Audio-driven 3D talking avatar generation is increasingly important in virtual communication, digital humans, and interactive media, where avatars must preserve identity, synchronize lip motion with speech, express emotion, and exhibit lifelike spatial dynamics, collectively defining a broader objective of expressivity. However, achieving this remains challenging due to insufficient training data with limited subject identities, narrow audio representations, and restricted explicit controllability. In this paper, we propose 3DXTalker, an expressive 3D talking avatar through data-curated identity modeling, audio-rich representations, and spatial dynamics controllability. 3DXTalker enables scalable identity modeling via 2D-to-3D data curation pipeline and disentangled representations, alleviating data scarcity and improving identity generalization. Then, we introduce frame-wise amplitude and emotional cues beyond standard speech embeddings, ensuring superior lip synchronization and nuanced expression modulation. These cues are unified by a flow-matching-based transformer for coherent facial dynamics. Moreover, 3DXTalker also enables natural head-pose motion generation while supporting stylized control via prompt-based conditioning. Extensive experiments show that 3DXTalker integrates lip synchronization, emotional expression, and head-pose dynamics within a unified framework, achieves superior performance in 3D talking avatar generation.
☆ 1%>100%: High-Efficiency Visual Adapter with Complex Linear Projection Optimization
Deploying vision foundation models typically relies on efficient adaptation strategies, whereas conventional full fine-tuning suffers from prohibitive costs and low efficiency. While delta-tuning has proven effective in boosting the performance and efficiency of LLMs during adaptation, its advantages cannot be directly transferred to the fine-tuning pipeline of vision foundation models. To push the boundaries of adaptation efficiency for vision tasks, we propose an adapter with Complex Linear Projection Optimization (CoLin). For architecture, we design a novel low-rank complex adapter that introduces only about 1% parameters to the backbone. For efficiency, we theoretically prove that low-rank composite matrices suffer from severe convergence issues during training, and address this challenge with a tailored loss. Extensive experiments on object detection, segmentation, image classification, and rotated object detection (remote sensing scenario) demonstrate that CoLin outperforms both full fine-tuning and classical delta-tuning approaches with merely 1% parameters for the first time, providing a novel and efficient solution for deployment of vision foundation models. We release the code on https://github.com/DongshuoYin/CoLin.
☆ Med-SegLens: Latent-Level Model Diffing for Interpretable Medical Image Segmentation
Modern segmentation models achieve strong predictive performance but remain largely opaque, limiting our ability to diagnose failures, understand dataset shift, or intervene in a principled manner. We introduce Med-SegLens, a model-diffing framework that decomposes segmentation model activations into interpretable latent features using sparse autoencoders trained on SegFormer and U-Net. Through cross-architecture and cross-dataset latent alignment across healthy, adult, pediatric, and sub-Saharan African glioma cohorts, we identify a stable backbone of shared representations, while dataset shift is driven by differential reliance on population-specific latents. We show that these latents act as causal bottlenecks for segmentation failures, and that targeted latent-level interventions can correct errors and improve cross-dataset adaption without retraining, recovering performance in 70% of failure cases and improving Dice score from 39.4% to 74.2%. Our results demonstrate that latent-level model diffing provides a practical and mechanistic tool for diagnosing failures and mitigating dataset shift in segmentation models.
☆ The Garbage Dataset (GD): A Multi-Class Image Benchmark for Automated Waste Segregation
This study introduces the Garbage Dataset (GD), a publicly available image dataset designed to advance automated waste segregation through machine learning and computer vision. It's a diverse dataset covering 10 common household waste categories: metal, glass, biological, paper, battery, trash, cardboard, shoes, clothes, and plastic. The dataset comprises 13,348 labeled images collected through multiple methods, including DWaste mobile app and curated web sources. Methods included rigorous validation through checksums and outlier detection, analysis of class imbalance and visual separability via PCA/t-SNE, and assessment of background complexity using entropy and saliency measures. The dataset was benchmarked using state-of-the-art deep learning models (EfficientNetV2M, EfficientNetV2S, MobileNet, ResNet50, ResNet101) evaluated on performance metrics and operational carbon emissions. Experiment results indicate EfficientNetV2S achieved the highest performance with 96.19% accuracy and a 0.96 F1-score, though with a moderate carbon cost. Analysis revealed inherent dataset characteristics including class imbalance, a skew toward high-outlier classes (plastic, cardboard, paper), and brightness variations that require consideration. The main conclusion is that GD provides a valuable, real-world benchmark for waste classification research while highlighting important challenges such as class imbalance, background complexity, and environmental trade-offs in model selection that must be addressed for practical deployment. The dataset is publicly released to support further research in environmental sustainability applications.
comment: 11 pages 10 figures and 1 table
☆ Characterizing and Optimizing the Spatial Kernel of Multi Resolution Hash Encodings ICLR 2026
Multi-Resolution Hash Encoding (MHE), the foundational technique behind Instant Neural Graphics Primitives, provides a powerful parameterization for neural fields. However, its spatial behavior lacks rigorous understanding from a physical systems perspective, leading to reliance on heuristics for hyperparameter selection. This work introduces a novel analytical approach that characterizes MHE by examining its Point Spread Function (PSF), which is analogous to the Green's function of the system. This methodology enables a quantification of the encoding's spatial resolution and fidelity. We derive a closed-form approximation for the collision-free PSF, uncovering inherent grid-induced anisotropy and a logarithmic spatial profile. We establish that the idealized spatial bandwidth, specifically the Full Width at Half Maximum (FWHM), is determined by the average resolution, $N_{\text{avg}}$. This leads to a counterintuitive finding: the effective resolution of the model is governed by the broadened empirical FWHM (and therefore $N_{\text{avg}}$), rather than the finest resolution $N_{\max}$, a broadening effect we demonstrate arises from optimization dynamics. Furthermore, we analyze the impact of finite hash capacity, demonstrating how collisions introduce speckle noise and degrade the Signal-to-Noise Ratio (SNR). Leveraging these theoretical insights, we propose Rotated MHE (R-MHE), an architecture that applies distinct rotations to the input coordinates at each resolution level. R-MHE mitigates anisotropy while maintaining the efficiency and parameter count of the original MHE. This study establishes a methodology based on physical principles that moves beyond heuristics to characterize and optimize MHE.
comment: ICLR 2026 (Poster); LaTeX source; 11 figures; 7 tables
☆ End-to-End LiDAR optimization for 3D point cloud registration BMVC
LiDAR sensors are a key modality for 3D perception, yet they are typically designed independently of downstream tasks such as point cloud registration. Conventional registration operates on pre-acquired datasets with fixed LiDAR configurations, leading to suboptimal data collection and significant computational overhead for sampling, noise filtering, and parameter tuning. In this work, we propose an adaptive LiDAR sensing framework that dynamically adjusts sensor parameters, jointly optimizing LiDAR acquisition and registration hyperparameters. By integrating registration feedback into the sensing loop, our approach optimally balances point density, noise, and sparsity, improving registration accuracy and efficiency. Evaluations in the CARLA simulation demonstrate that our method outperforms fixed-parameter baselines while retaining generalization abilities, highlighting the potential of adaptive LiDAR for autonomous perception and robotic applications.
comment: 36th British Machine Vision Conference 2025, {BMVC} 2025, Sheffield, UK, November 24-27, 2025. Project page: https://lvsn.github.io/e2e-lidar-registration/
☆ Towards Remote Sensing Change Detection with Neural Memory
Remote sensing change detection is essential for environmental monitoring, urban planning, and related applications. However, current methods often struggle to capture long-range dependencies while maintaining computational efficiency. Although Transformers can effectively model global context, their quadratic complexity poses scalability challenges, and existing linear attention approaches frequently fail to capture intricate spatiotemporal relationships. Drawing inspiration from the recent success of Titans in language tasks, we present ChangeTitans, the Titans-based framework for remote sensing change detection. Specifically, we propose VTitans, the first Titans-based vision backbone that integrates neural memory with segmented local attention, thereby capturing long-range dependencies while mitigating computational overhead. Next, we present a hierarchical VTitans-Adapter to refine multi-scale features across different network layers. Finally, we introduce TS-CBAM, a two-stream fusion module leveraging cross-temporal attention to suppress pseudo-changes and enhance detection accuracy. Experimental evaluations on four benchmark datasets (LEVIR-CD, WHU-CD, LEVIR-CD+, and SYSU-CD) demonstrate that ChangeTitans achieves state-of-the-art results, attaining \textbf{84.36\%} IoU and \textbf{91.52\%} F1-score on LEVIR-CD, while remaining computationally competitive.
comment: accepted by IEEE Transactions on Geoscience & Remote Sensing
☆ HII-DPO: Eliminate Hallucination via Accurate Hallucination-Inducing Counterfactual Images
Large Vision-Language Models (VLMs) have achieved remarkable success across diverse multimodal tasks but remain vulnerable to hallucinations rooted in inherent language bias. Despite recent progress, existing hallucination mitigation methods often overlook the underlying hallucination patterns driven by language bias. In this work, we design a novel pipeline to accurately synthesize Hallucination-Inducing Images (HIIs). Using synthesized HIIs, we reveal a consistent scene-conditioned hallucination pattern: models tend to mention objects that are highly typical of the scene even when visual evidence is removed. To quantify the susceptibility of VLMs to this hallucination pattern, we establish the Masked-Object-Hallucination (MOH) benchmark to rigorously evaluate existing state-of-the-art alignment frameworks. Finally, we leverage HIIs to construct high-quality preference datasets for fine-grained alignment. Experimental results demonstrate that our approach effectively mitigates hallucinations while preserving general model capabilities. Specifically, our method achieves up to a 38% improvement over the current state-of-the-art on standard hallucination benchmarks.
☆ Hierarchical Concept Embedding & Pursuit for Interpretable Image Classification
Interpretable-by-design models are gaining traction in computer vision because they provide faithful explanations for their predictions. In image classification, these models typically recover human-interpretable concepts from an image and use them for classification. Sparse concept recovery methods leverage the latent space of vision-language models to represent image embeddings as a sparse combination of concept embeddings. However, because such methods ignore the hierarchical structure of concepts, they can produce correct predictions with explanations that are inconsistent with the hierarchy. In this work, we propose Hierarchical Concept Embedding \& Pursuit (HCEP), a framework that induces a hierarchy of concept embeddings in the latent space and uses hierarchical sparse coding to recover the concepts present in an image. Given a hierarchy of semantic concepts, we construct a corresponding hierarchy of concept embeddings and, assuming the correct concepts for an image form a rooted path in the hierarchy, derive desirable conditions for identifying them in the embedded space. We show that hierarchical sparse coding reliably recovers hierarchical concept embeddings, whereas vanilla sparse coding fails. Our experiments on real-world datasets demonstrate that HCEP outperforms baselines in concept precision and recall while maintaining competitive classification accuracy. Moreover, when the number of samples is limited, HCEP achieves superior classification accuracy and concept recovery. These results show that incorporating hierarchical structures into sparse coding yields more reliable and interpretable image classification models.
☆ Enhanced Portable Ultra Low-Field Diffusion Tensor Imaging with Bayesian Artifact Correction and Deep Learning-Based Super-Resolution
Portable, ultra-low-field (ULF) magnetic resonance imaging has the potential to expand access to neuroimaging but currently suffers from coarse spatial and angular resolutions and low signal-to-noise ratios. Diffusion tensor imaging (DTI), a sequence tailored to detect and reconstruct white matter tracts within the brain, is particularly prone to such imaging degradation due to inherent sequence design coupled with prolonged scan times. In addition, ULF DTI scans exhibit artifacting that spans both the space and angular domains, requiring a custom modelling algorithm for subsequent correction. We introduce a nine-direction, single-shell ULF DTI sequence, as well as a companion Bayesian bias field correction algorithm that possesses angular dependence and convolutional neural network-based superresolution algorithm that is generalizable across DTI datasets and does not require re-training (''DiffSR''). We show through a synthetic downsampling experiment and white matter assessment in real, matched ULF and high-field DTI scans that these algorithms can recover microstructural and volumetric white matter information at ULF. We also show that DiffSR can be directly applied to white matter-based Alzheimers disease classification in synthetically degraded scans, with notable improvements in agreement between DTI metrics, as compared to un-degraded scans. We freely disseminate the Bayesian bias correction algorithm and DiffSR with the goal of furthering progress on both ULF reconstruction methods and general DTI sequence harmonization. We release all code related to DiffSR for $\href{https://github.com/markolchanyi/DiffSR}{public \space use}$.
comment: 38 pages, 8 figures, 2 supplementary figures, and 3 supplementary tables
☆ Ctrl&Shift: High-Quality Geometry-Aware Object Manipulation in Visual Generation ICLR 2026
Object-level manipulation, relocating or reorienting objects in images or videos while preserving scene realism, is central to film post-production, AR, and creative editing. Yet existing methods struggle to jointly achieve three core goals: background preservation, geometric consistency under viewpoint shifts, and user-controllable transformations. Geometry-based approaches offer precise control but require explicit 3D reconstruction and generalize poorly; diffusion-based methods generalize better but lack fine-grained geometric control. We present Ctrl&Shift, an end-to-end diffusion framework to achieve geometry-consistent object manipulation without explicit 3D representations. Our key insight is to decompose manipulation into two stages, object removal and reference-guided inpainting under explicit camera pose control, and encode both within a unified diffusion process. To enable precise, disentangled control, we design a multi-task, multi-stage training strategy that separates background, identity, and pose signals across tasks. To improve generalization, we introduce a scalable real-world dataset construction pipeline that generates paired image and video samples with estimated relative camera poses. Extensive experiments demonstrate that Ctrl&Shift achieves state-of-the-art results in fidelity, viewpoint consistency, and controllability. To our knowledge, this is the first framework to unify fine-grained geometric control and real-world generalization for object manipulation, without relying on any explicit 3D modeling.
comment: Accepted at ICLR 2026
☆ Fighting MRI Anisotropy: Learning Multiple Cardiac Shapes From a Single Implicit Neural Representation
The anisotropic nature of short-axis (SAX) cardiovascular magnetic resonance imaging (CMRI) limits cardiac shape analysis. To address this, we propose to leverage near-isotropic, higher resolution computed tomography angiography (CTA) data of the heart. We use this data to train a single neural implicit function to jointly represent cardiac shapes from CMRI at any resolution. We evaluate the method for the reconstruction of right ventricle (RV) and myocardium (MYO), where MYO simultaneously models endocardial and epicardial left-ventricle surfaces. Since high-resolution SAX reference segmentations are unavailable, we evaluate performance by extracting a 4-chamber (4CH) slice of RV and MYO from their reconstructed shapes. When compared with the reference 4CH segmentation masks from CMRI, our method achieved a Dice similarity coefficient of 0.91 $\pm$ 0.07 and 0.75 $\pm$ 0.13, and a Hausdorff distance of 6.21 $\pm$ 3.97 mm and 7.53 $\pm$ 5.13 mm for RV and MYO, respectively. Quantitative and qualitative assessment demonstrate the model's ability to reconstruct accurate, smooth and anatomically plausible shapes, supporting improvements in cardiac shape analysis.
☆ Latent Forcing: Reordering the Diffusion Trajectory for Pixel-Space Image Generation
Latent diffusion models excel at generating high-quality images but lose the benefits of end-to-end modeling. They discard information during image encoding, require a separately trained decoder, and model an auxiliary distribution to the raw data. In this paper, we propose Latent Forcing, a simple modification to existing architectures that achieves the efficiency of latent diffusion while operating on raw natural images. Our approach orders the denoising trajectory by jointly processing latents and pixels with separately tuned noise schedules. This allows the latents to act as a scratchpad for intermediate computation before high-frequency pixel features are generated. We find that the order of conditioning signals is critical, and we analyze this to explain differences between REPA distillation in the tokenizer and the diffusion model, conditional versus unconditional generation, and how tokenizer reconstruction quality relates to diffusability. Applied to ImageNet, Latent Forcing achieves a new state-of-the-art for diffusion transformer-based pixel generation at our compute scale.
comment: 8 pages, 6 figures
☆ ArtContext: Contextualizing Artworks with Open-Access Art History Articles and Wikidata Knowledge through a LoRA-Tuned CLIP Model
Many Art History articles discuss artworks in general as well as specific parts of works, such as layout, iconography, or material culture. However, when viewing an artwork, it is not trivial to identify what different articles have said about the piece. Therefore, we propose ArtContext, a pipeline for taking a corpus of Open-Access Art History articles and Wikidata Knowledge and annotating Artworks with this information. We do this using a novel corpus collection pipeline, then learn a bespoke CLIP model adapted using Low-Rank Adaptation (LoRA) to make it domain-specific. We show that the new model, PaintingCLIP, which is weakly supervised by the collected corpus, outperforms CLIP and provides context for a given artwork. The proposed pipeline is generalisable and can be readily applied to numerous humanities areas.
Exploring Real-Time Super-Resolution: Benchmarking and Fine-Tuning for Streaming Content
Recent advancements in real-time super-resolution have enabled higher-quality video streaming, yet existing methods struggle with the unique challenges of compressed video content. Commonly used datasets do not accurately reflect the characteristics of streaming media, limiting the relevance of current benchmarks. To address this gap, we introduce a comprehensive dataset - StreamSR - sourced from YouTube, covering a wide range of video genres and resolutions representative of real-world streaming scenarios. We benchmark 11 state-of-the-art real-time super-resolution models to evaluate their performance for the streaming use-case. Furthermore, we propose EfRLFN, an efficient real-time model that integrates Efficient Channel Attention and a hyperbolic tangent activation function - a novel design choice in the context of real-time super-resolution. We extensively optimized the architecture to maximize efficiency and designed a composite loss function that improves training convergence. EfRLFN combines the strengths of existing architectures while improving both visual quality and runtime performance. Finally, we show that fine-tuning other models on our dataset results in significant performance gains that generalize well across various standard benchmarks. We made the dataset, the code, and the benchmark available at https://github.com/EvgeneyBogatyrev/EfRLFN.
☆ MolmoSpaces: A Large-Scale Open Ecosystem for Robot Navigation and Manipulation
Deploying robots at scale demands robustness to the long tail of everyday situations. The countless variations in scene layout, object geometry, and task specifications that characterize real environments are vast and underrepresented in existing robot benchmarks. Measuring this level of generalization requires infrastructure at a scale and diversity that physical evaluation alone cannot provide. We introduce MolmoSpaces, a fully open ecosystem to support large-scale benchmarking of robot policies. MolmoSpaces consists of over 230k diverse indoor environments, ranging from handcrafted household scenes to procedurally generated multiroom houses, populated with 130k richly annotated object assets, including 48k manipulable objects with 42M stable grasps. Crucially, these environments are simulator-agnostic, supporting popular options such as MuJoCo, Isaac, and ManiSkill. The ecosystem supports the full spectrum of embodied tasks: static and mobile manipulation, navigation, and multiroom long-horizon tasks requiring coordinated perception, planning, and interaction across entire indoor environments. We also design MolmoSpaces-Bench, a benchmark suite of 8 tasks in which robots interact with our diverse scenes and richly annotated objects. Our experiments show MolmoSpaces-Bench exhibits strong sim-to-real correlation (R = 0.96, \r{ho} = 0.98), confirm newer and stronger zero-shot policies outperform earlier versions in our benchmarks, and identify key sensitivities to prompt phrasing, initial joint positions, and camera occlusion. Through MolmoSpaces and its open-source assets and tooling, we provide a foundation for scalable data generation, policy training, and benchmark creation for robot learning research.
☆ MDE-VIO: Enhancing Visual-Inertial Odometry Using Learned Depth Priors ICIP 2026
Traditional monocular Visual-Inertial Odometry (VIO) systems struggle in low-texture environments where sparse visual features are insufficient for accurate pose estimation. To address this, dense Monocular Depth Estimation (MDE) has been widely explored as a complementary information source. While recent Vision Transformer (ViT) based complex foundational models offer dense, geometrically consistent depth, their computational demands typically preclude them from real-time edge deployment. Our work bridges this gap by integrating learned depth priors directly into the VINS-Mono optimization backend. We propose a novel framework that enforces affine-invariant depth consistency and pairwise ordinal constraints, explicitly filtering unstable artifacts via variance-based gating. This approach strictly adheres to the computational limits of edge devices while robustly recovering metric scale. Extensive experiments on the TartanGround and M3ED datasets demonstrate that our method prevents divergence in challenging scenarios and delivers significant accuracy gains, reducing Absolute Trajectory Error (ATE) by up to 28.3%. Code will be made available.
comment: 6 pages, 2 figures, 3 tables. Submitted to ICIP 2026
☆ Selective Prior Synchronization via SYNC Loss
Prediction under uncertainty is a critical requirement for the deep neural network to succeed responsibly. This paper focuses on selective prediction, which allows DNNs to make informed decisions about when to predict or abstain based on the uncertainty level of their predictions. Current methods are either ad-hoc such as SelectiveNet, focusing on how to modify the network architecture or objective function, or post-hoc such as softmax response, achieving selective prediction through analyzing the model's probabilistic outputs. We observe that post-hoc methods implicitly generate uncertainty information, termed the selective prior, which has traditionally been used only during inference. We argue that the selective prior provided by the selection mechanism is equally vital during the training stage. Therefore, we propose the SYNC loss which introduces a novel integration of ad-hoc and post-hoc method. Specifically, our approach incorporates the softmax response into the training process of SelectiveNet, enhancing its selective prediction capabilities by examining the selective prior. Evaluated across various datasets, including CIFAR-100, ImageNet-100, and Stanford Cars, our method not only enhances the model's generalization capabilities but also surpasses previous works in selective prediction performance, and sets new benchmarks for state-of-the-art performance.
☆ Advancing Digital Twin Generation Through a Novel Simulation Framework and Quantitative Benchmarking
The generation of 3D models from real-world objects has often been accomplished through photogrammetry, i.e., by taking 2D photos from a variety of perspectives and then triangulating matched point-based features to create a textured mesh. Many design choices exist within this framework for the generation of digital twins, and differences between such approaches are largely judged qualitatively. Here, we present and test a novel pipeline for generating synthetic images from high-quality 3D models and programmatically generated camera poses. This enables a wide variety of repeatable, quantifiable experiments which can compare ground-truth knowledge of virtual camera parameters and of virtual objects against the reconstructed estimations of those perspectives and subjects.
comment: 9 pages, 10 figures. Preprint
♻ ☆ Equivariant symmetry-aware head pose estimation for fetal MRI
We present E(3)-Pose, a novel fast pose estimation method that jointly and explicitly models rotation equivariance and object symmetry. Our work is motivated by the challenging problem of accounting for fetal head motion during a diagnostic MRI scan. We aim to enable automatic adaptive prescription of 2D diagnostic MRI slices with 6-DoF head pose estimation, supported by 3D MRI volumes rapidly acquired before each 2D slice. Existing methods struggle to generalize to clinical volumes, due to pose ambiguities induced by inherent anatomical symmetries, as well as low resolution, noise, and artifacts. In contrast, E(3)-Pose captures anatomical symmetries and rigid pose equivariance by construction, and yields robust estimates of the fetal head pose. Our experiments on publicly available and representative clinical fetal MRI datasets demonstrate the superior robustness and generalization of our method across domains. Crucially, E(3)-Pose achieves state-of-the-art accuracy on clinical MRI volumes, supporting future clinical translation. Our implementation is publicly available at github.com/MedicalVisionGroup/E3-Pose.
♻ ☆ MIND: Benchmarking Memory Consistency and Action Control in World Models
World models aim to understand, remember, and predict dynamic visual environments, yet a unified benchmark for evaluating their fundamental abilities remains lacking. To address this gap, we introduce MIND, the first open-domain closed-loop revisited benchmark for evaluating Memory consIstency and action coNtrol in worlD models. MIND contains 250 high-quality videos at 1080p and 24 FPS, including 100 (first-person) + 100 (third-person) video clips under a shared action space and 25 + 25 clips across varied action spaces covering eight diverse scenes. We design an efficient evaluation framework to measure two core abilities: memory consistency and action control, capturing temporal stability and contextual coherence across viewpoints. Furthermore, we design various action spaces, including different character movement speeds and camera rotation angles, to evaluate the action generalization capability across different action spaces under shared scenes. To facilitate future performance benchmarking on MIND, we introduce MIND-World, a novel interactive Video-to-World baseline. Extensive experiments demonstrate the completeness of MIND and reveal key challenges in current world models, including the difficulty of maintaining long-term memory consistency and generalizing across action spaces. Code: https://github.com/CSU-JPG/MIND.
♻ ☆ A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Computers
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Our dataset includes images with several real-world challenges, including noise, camera distortions, glare, varying lighting conditions, varying field of view, partial spacecraft visibility, brightly-lit city backgrounds, densely patterned and confounding backgrounds, aurora borealis, and a wide variety of spacecraft geometries. Finally, we finetuned YOLOv8 and YOLOv11 models for spacecraft segmentation to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.
♻ ☆ CamReasoner: Reinforcing Camera Movement Understanding via Structured Spatial Reasoning
Understanding camera dynamics is a fundamental pillar of video spatial intelligence. However, existing multimodal models predominantly treat this task as a black-box classification, often confusing physically distinct motions by relying on superficial visual patterns rather than geometric cues. We present CamReasoner, a framework that reformulates camera movement understanding as a structured inference process to bridge the gap between perception and cinematic logic. Our approach centers on the Observation-Thinking-Answer (O-T-A) paradigm, which compels the model to decode spatio-temporal cues such as trajectories and view frustums within an explicit reasoning block. To instill this capability, we construct a Large-scale Inference Trajectory Suite comprising 18k SFT reasoning chains and 38k RL feedback samples. Notably, we are the first to employ RL for logical alignment in this domain, ensuring motion inferences are grounded in physical geometry rather than contextual guesswork. By applying Reinforcement Learning to the Observation-Think-Answer (O-T-A) reasoning paradigm, CamReasoner effectively suppresses hallucinations and achieves state-of-the-art performance across multiple benchmarks.
♻ ☆ Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis
In medical imaging, the diffusion models have shown great potential for synthetic image generation tasks. However, these approaches often lack the interpretable connections between the generated and real images and can create anatomically implausible structures or illusions. To address these limitations, we propose the Deformation-Recovery Diffusion Model (DRDM), a novel diffusion-based generative model that emphasises morphological transformation through deformation fields rather than direct image synthesis. DRDM introduces a topology-preserving deformation field generation strategy, which randomly samples and integrates multi-scale Deformation Velocity Fields (DVFs). DRDM is trained to learn to recover unrealistic deformation components, thus restoring randomly deformed images to a realistic distribution. This formulation enables the generation of diverse yet anatomically plausible deformations that preserve structural integrity, thereby improving data augmentation and synthesis for downstream tasks such as few-shot learning and image registration. Experiments on cardiac Magnetic Resonance Imaging and pulmonary Computed Tomography show that DRDM is capable of creating diverse, large-scale deformations, while maintaining anatomical plausibility of deformation fields. Additional evaluations on 2D image segmentation and 3D image registration tasks indicate notable performance gains, underscoring DRDM's potential to enhance both image manipulation and generative modelling in medical imaging applications. Project page: https://jianqingzheng.github.io/def_diff_rec/
comment: accepted by Medical Image Analysis
♻ ☆ MITI: SLAM Benchmark for Laparoscopic Surgery
We propose a new benchmark for evaluating stereoscopic visual-inertial computer vision algorithms (SLAM/ SfM/ 3D Reconstruction/ Visual-Inertial Odometry) for minimally invasive surgical (MIS) interventions in the abdomen. Our MITI Dataset available at [https://mediatum.ub.tum.de/1621941] provides all the necessary data by a complete recording of a handheld surgical intervention at Research Hospital Rechts der Isar of TUM. It contains multimodal sensor information from IMU, stereoscopic video, and infrared (IR) tracking as ground truth for evaluation. Furthermore, calibration for the stereoscope, accelerometer, magnetometer, the rigid transformations in the sensor setup, and time-offsets are available. We wisely chose a suitable intervention that contains very few cutting and tissue deformation and shows a full scan of the abdomen with a handheld camera such that it is ideal for testing SLAM algorithms. Intending to promote the progress of visual-inertial algorithms designed for MIS application, we hope that our clinical training dataset helps and enables researchers to enhance algorithms.
comment: This submission is withdrawn because it is a duplicate of "Constrained Visual-Inertial Localization With Application And Benchmark in Laparoscopic Surgery" (arXiv:2202.11075). The withdrawn version contains less complete information. Readers are directed to the full version
♻ ☆ Localized Control in Diffusion Models via Latent Vector Prediction
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
♻ ☆ Shortest-Path Flow Matching with Mixture-Conditioned Bases for OOD Generalization to Unseen Conditions
Robust generalization under distribution shift remains a key challenge for conditional generative modeling: conditional flow-based methods often fit the training conditions well but fail to extrapolate to unseen ones. We introduce SP-FM, a shortest-path flow-matching framework that improves out-of-distribution (OOD) generalization by conditioning both the base distribution and the flow field on the condition. Specifically, SP-FM learns a condition-dependent base distribution parameterized as a flexible, learnable mixture, together with a condition-dependent vector field trained via shortest-path flow matching. Conditioning the base allows the model to adapt its starting distribution across conditions, enabling smooth interpolation and more reliable extrapolation beyond the observed training range. We provide theoretical insights into the resulting conditional transport and show how mixture-conditioned bases enhance robustness under shift. Empirically, SP-FM is effective across heterogeneous domains, including predicting responses to unseen perturbations in single-cell transcriptomics and modeling treatment effects in high-content microscopy--based drug screening. Overall, SP-FM provides a simple yet effective plug-in strategy for improving conditional generative modeling and OOD generalization across diverse domains.
♻ ☆ Spectrum from Defocus: Fast Spectral Imaging with Chromatic Focal Stack
Hyperspectral cameras face harsh trade-offs between spatial, spectral, and temporal resolution in inherently low-photon conditions. Computational imaging systems break through these trade-offs with compressive sensing, but have required complex optics and/or extensive compute. We present Spectrum from Defocus (SfD), a chromatic focal sweep method that achieves state-of-the-art hyperspectral imaging with only two off-the-shelf lenses, a grayscale sensor, and less than one second of reconstruction time. By capturing a chromatically-aberrated focal stack that preserves nearly all incident light, and reconstructing it with a fast physics-based iterative algorithm, SfD delivers sharp, accurate hyperspectral images. The combination of photon efficiency, optical simplicity, and physical interpretability makes SfD a promising solution for fast, compact, interpretable hyperspectral imaging.
♻ ☆ CER-HV: A CER-Based Human-in-the-Loop Framework for Cleaning Datasets Applied to Arabic-Script HTR
Handwritten text recognition (HTR) for Arabic-script languages still lags behind Latin-script HTR, despite recent advances in model architectures, datasets, and benchmarks. We show that data quality is a significant limiting factor in many published datasets and propose CER-HV (CER-based Ranking with Human Verification) as a framework to detect and clean label errors. CER-HV combines a CER-based noise detector, built on a carefully configured Convolutional Recurrent Neural Network (CRNN) with early stopping to avoid overfitting noisy samples, and a human-in-the-loop (HITL) step that verifies high-ranking samples. The framework reveals that several existing datasets contain previously underreported problems, including transcription, segmentation, orientation, and non-text content errors. These have been identified with up to 90 percent precision in the Muharaf and 80-86 percent in the PHTI datasets. We also show that our CRNN achieves state-of-the-art performance across five of the six evaluated datasets, reaching 8.45 percent Character Error Rate (CER) on KHATT (Arabic), 8.26 percent on PHTI (Pashto), 10.66 percent on Ajami, and 10.11 percent on Muharaf (Arabic), all without any data cleaning. We establish a new baseline of 11.3 percent CER on the PHTD (Persian) dataset. Applying CER-HV improves the evaluation CER by 0.3-0.6 percent on the cleaner datasets and 1.0-1.8 percent on the noisier ones. Although our experiments focus on documents written in an Arabic-script language, including Arabic, Persian, Urdu, Ajami, and Pashto, the framework is general and can be applied to other text recognition datasets.
♻ ☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation ICLR 2026
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data.
comment: Accepted at ICLR 2026. Code available at: https://github.com/tj12323/GeoPurify
♻ ☆ SnapGen++: Unleashing Diffusion Transformers for Efficient High-Fidelity Image Generation on Edge Devices
Recent advances in diffusion transformers (DiTs) have set new standards in image generation, yet remain impractical for on-device deployment due to their high computational and memory costs. In this work, we present an efficient DiT framework tailored for mobile and edge devices that achieves transformer-level generation quality under strict resource constraints. Our design combines three key components. First, we propose a compact DiT architecture with an adaptive global-local sparse attention mechanism that balances global context modeling and local detail preservation. Second, we propose an elastic training framework that jointly optimizes sub-DiTs of varying capacities within a unified supernetwork, allowing a single model to dynamically adjust for efficient inference across different hardware. Finally, we develop Knowledge-Guided Distribution Matching Distillation, a step-distillation pipeline that integrates the DMD objective with knowledge transfer from few-step teacher models, producing high-fidelity and low-latency generation (e.g., 4-step) suitable for real-time on-device use. Together, these contributions enable scalable, efficient, and high-quality diffusion models for deployment on diverse hardware.
comment: Project page: https://snap-research.github.io/snapgenplusplus/
♻ ☆ Unveiling the "Fairness Seesaw": Discovering and Mitigating Gender and Race Bias in Vision-Language Models
Although Vision-Language Models (VLMs) have achieved remarkable success, the knowledge mechanisms underlying their social biases remain a black box, where fairness- and ethics-related problems harm certain groups of people in society. It is unknown to what extent VLMs yield gender and race bias in generative responses. In this paper, we conduct a systematic discovery of gender and race bias in state-of-the-art VLMs, focusing not only on surface-level responses but also on the internal probability distributions and hidden state dynamics. Our empirical analysis reveals three critical findings: 1) The Fairness Paradox: Models often generate fair text labels while maintaining highly skewed confidence scores (mis-calibration) toward specific social groups. 2) Layer-wise Fluctuation: Fairness knowledge is not uniformly distributed; it peaks in intermediate layers and undergoes substantial knowledge erosion in the final layers. 3) Residual Discrepancy: Within a single hidden layer, different residual streams carry conflicting social knowledge - some reinforcing fairness while others amplifying bias. Leveraging these insights, we propose RES-FAIR (RESidual Flow Adjustment for Inference Recalibration), a post-hoc framework that mitigates bias by localizing and projecting hidden states away from biased residual directions while amplifying fair components. Evaluations on PAIRS and SocialCounterfactuals datasets demonstrate that our discovery-based approach significantly improves response fairness and confidence calibration without compromising general reasoning abilities. Our work provides a new lens for understanding how multi-modal models store and process sensitive social information.
♻ ☆ Uni-DPO: A Unified Paradigm for Dynamic Preference Optimization of LLMs ICLR 2026
Direct Preference Optimization (DPO) has emerged as a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based methods typically treat all preference pairs equally, overlooking substantial variations in data quality and learning difficulty, which leads to inefficient data utilization and suboptimal performance. To address this limitation, we propose Uni-DPO, a unified dynamic preference optimization framework that jointly considers (a) the inherent quality of preference pairs and (b) the model's evolving performance during training. By adaptively reweighting samples based on both factors, Uni-DPO enables more effective use of preference data and achieves superior performance. Extensive experiments across models and benchmarks demonstrate the effectiveness and generalization of Uni-DPO. On textual tasks, Gemma-2-9B-IT fine-tuned with Uni-DPO surpasses the leading LLM, Claude 3 Opus, by 6.7 points on Arena-Hard. On mathematical and multimodal tasks, Uni-DPO consistently outperforms baseline methods across all benchmarks, providing strong empirical evidence of its effectiveness and robustness.
comment: Accepted by ICLR 2026. Code & models: https://github.com/pspdada/Uni-DPO
♻ ☆ ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data WACV 2026
Collecting and labeling large real-world wild animal datasets is impractical, costly, error-prone, and labor-intensive. For animal monitoring tasks, as detection, tracking, and pose estimation, out-of-distribution viewpoints (e.g. aerial) are also typically needed but rarely found in publicly available datasets. To solve this, existing approaches synthesize data with simplistic techniques that then necessitate strategies to bridge the synthetic-to-real gap. Therefore, real images, style constraints, complex animal models, or pre-trained networks are often leveraged. In contrast, we generate a fully synthetic dataset using a 3D photorealistic simulator and demonstrate that it can eliminate such needs for detecting and estimating 2D poses of wild zebras. Moreover, existing top-down 2D pose estimation approaches using synthetic data assume reliable detection models. However, these often fail in out-of-distribution scenarios, e.g. those that include wildlife or aerial imagery. Our method overcomes this by enabling the training of both tasks using the same synthetic dataset. Through extensive benchmarks, we show that models trained from scratch exclusively on our synthetic data generalize well to real images. We perform these using multiple real-world and synthetic datasets, pre-trained and randomly initialized backbones, and different image resolutions. Code, results, models, and data can be found athttps://zebrapose.is.tue.mpg.de/.
comment: 17 pages, 5 tables, 13 figures. Published in WACV 2026
♻ ☆ Are Dense Labels Always Necessary for 3D Object Detection from Point Cloud?
Current state-of-the-art (SOTA) 3D object detection methods often require a large amount of 3D bounding box annotations for training. However, collecting such large-scale densely-supervised datasets is notoriously costly. To reduce the cumbersome data annotation process, we propose a novel sparsely-annotated framework, in which we just annotate one 3D object per scene. Such a sparse annotation strategy could significantly reduce the heavy annotation burden, while inexact and incomplete sparse supervision may severely deteriorate the detection performance. To address this issue, we develop the SS3D++ method that alternatively improves 3D detector training and confident fully-annotated scene generation in a unified learning scheme. Using sparse annotations as seeds, we progressively generate confident fully-annotated scenes based on designing a missing-annotated instance mining module and reliable background mining module. Our proposed method produces competitive results when compared with SOTA weakly-supervised methods using the same or even more annotation costs. Besides, compared with SOTA fully-supervised methods, we achieve on-par or even better performance on the KITTI dataset with about 5x less annotation cost, and 90% of their performance on the Waymo dataset with about 15x less annotation cost. The additional unlabeled training scenes could further boost the performance.
comment: update
♻ ☆ Symmetrization Weighted Binary Cross-Entropy: Modeling Perceptual Asymmetry for Human-Consistent Neural Edge Detection
Edge detection (ED) is a fundamental perceptual process in computer vision, forming the structural basis for high-level reasoning tasks such as segmentation, recognition, and scene understanding. Despite substantial progress achieved by deep neural networks, most ED models attain high numerical accuracy but fail to produce visually sharp and perceptually consistent edges, thereby limiting their reliability in intelligent vision systems. To address this issue, this study introduces the Symmetrization Weighted Binary Cross-Entropy (SWBCE) loss, a perception-inspired formulation that extends the conventional WBCE by incorporating prediction-guided symmetry. SWBCE explicitly models the perceptual asymmetry in human edge recognition, wherein edge decisions require stronger evidence than non-edge ones, aligning the optimization process with human perceptual discrimination. The resulting symmetric learning mechanism jointly enhances edge recall and suppresses false positives, achieving a superior balance between quantitative accuracy and perceptual fidelity. Extensive experiments across multiple benchmark datasets and representative ED architectures demonstrate that SWBCE can outperform existing loss functions in both numerical evaluation and visual quality. Particularly with the HED-EES model, the SSIM can be improved by about 15% on BRIND, and in all experiments, training by SWBCE consistently obtains the best perceptual results. Beyond edge detection, the proposed perceptual loss offers a generalizable optimization principle for soft computing and neural learning systems, particularly in scenarios where asymmetric perceptual reasoning plays a critical role.
comment: 39 pages
♻ ☆ Neural-Augmented Kelvinlet for Real-Time Soft Tissue Deformation Modeling
Accurate and efficient modeling of soft-tissue interactions is fundamental for advancing surgical simulation, surgical robotics, and model-based surgical automation. To achieve real-time latency, classical Finite Element Method (FEM) solvers are often replaced with neural approximations; however, naively training such models in a fully data-driven manner without incorporating physical priors frequently leads to poor generalization and physically implausible predictions. We present a novel physics-informed neural simulation framework that enables real-time prediction of soft-tissue deformations under complex single- and multi-grasper interactions. Our approach integrates Kelvinlet-based analytical priors with large-scale FEM data, capturing both linear and nonlinear tissue responses. This hybrid design improves predictive accuracy and physical plausibility across diverse neural architectures while maintaining the low-latency performance required for interactive applications. We validate our method on challenging surgical manipulation tasks involving standard laparoscopic grasping tools, demonstrating substantial improvements in deformation fidelity and temporal stability over existing baselines. These results establish Kelvinlet-augmented learning as a principled and computationally efficient paradigm for real-time, physics-aware soft-tissue simulation in surgical AI.
♻ ☆ Multi-Level Feature Fusion for Continual Learning in Visual Quality Inspection
Deep neural networks show great potential for automating various visual quality inspection tasks in manufacturing. However, their applicability is limited in more volatile scenarios, such as remanufacturing, where the inspected products and defect patterns often change. In such settings, deployed models require frequent adaptation to novel conditions, effectively posing a continual learning problem. To enable quick adaptation, the necessary training processes must be computationally efficient while still avoiding effects like catastrophic forgetting. This work presents a multi-level feature fusion (MLFF) approach that aims to improve both aspects simultaneously by utilizing representations from different depths of a pretrained network. We show that our approach is able to match the performance of end-to-end training for different quality inspection problems while using significantly less trainable parameters. Furthermore, it reduces catastrophic forgetting and improves generalization robustness to new product types or defects.
comment: Accepted at the 2025 IEEE 13th International Conference on Control, Mechatronics and Automation (ICCMA)
♻ ☆ Splat and Distill: Augmenting Teachers with Feed-Forward 3D Reconstruction For 3D-Aware Distillation ICLR 2026
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
comment: Accepted to ICLR 2026
♻ ☆ LighthouseGS: Indoor Structure-aware 3D Gaussian Splatting for Panorama-Style Mobile Captures WACV 2026
We introduce LighthouseGS, a practical novel view synthesis framework based on 3D Gaussian Splatting that utilizes simple panorama-style captures from a single mobile device. While convenient, this rotation-dominant motion and narrow baseline make accurate camera pose and 3D point estimation challenging, especially in textureless indoor scenes. To address these challenges, LighthouseGS leverages rough geometric priors, such as mobile device camera poses and monocular depth estimation, and utilizes indoor planar structures. Specifically, we propose a new initialization method called plane scaffold assembly to generate consistent 3D points on these structures, followed by a stable pruning strategy to enhance geometry and optimization stability. Additionally, we present geometric and photometric corrections to resolve inconsistencies from motion drift and auto-exposure in mobile devices. Tested on real and synthetic indoor scenes, LighthouseGS delivers photorealistic rendering, outperforming state-of-the-art methods and enabling applications like panoramic view synthesis and object placement. Project page: https://vision3d-lab.github.io/lighthousegs/
comment: WACV 2026
♻ ☆ Non-Contrastive Vision-Language Learning with Predictive Embedding Alignment
Vision-language models have transformed multimodal representation learning, yet dominant contrastive approaches like CLIP require large batch sizes, careful negative sampling, and extensive hyperparameter tuning. We introduce NOVA, a NOn-contrastive Vision-language Alignment framework based on joint embedding prediction with distributional regularization. NOVA aligns visual representations to a frozen, domain-specific text encoder by predicting text embeddings from augmented image views, while enforcing an isotropic Gaussian structure via Sketched Isotropic Gaussian Regularization (SIGReg). This eliminates the need for negative sampling, momentum encoders, or stop-gradients, reducing the training objective to a single hyperparameter. We evaluate NOVA on zeroshot chest X-ray classification using ClinicalBERT as the text encoder and Vision Transformers trained from scratch on MIMIC-CXR. On zero-shot classification across three benchmark datasets, NOVA outperforms multiple standard baselines while exhibiting substantially more consistent training runs. Our results demonstrate that non-contrastive vision-language pretraining offers a simpler, more stable, and more effective alternative to contrastive methods.
♻ ☆ SoulX-FlashHead: Oracle-guided Generation of Infinite Real-time Streaming Talking Heads
Achieving a balance between high-fidelity visual quality and low-latency streaming remains a formidable challenge in audio-driven portrait generation. Existing large-scale models often suffer from prohibitive computational costs, while lightweight alternatives typically compromise on holistic facial representations and temporal stability. In this paper, we propose SoulX-FlashHead, a unified 1.3B-parameter framework designed for real-time, infinite-length, and high-fidelity streaming video generation. To address the instability of audio features in streaming scenarios, we introduce Streaming-Aware Spatiotemporal Pre-training equipped with a Temporal Audio Context Cache mechanism, which ensures robust feature extraction from short audio fragments. Furthermore, to mitigate the error accumulation and identity drift inherent in long-sequence autoregressive generation, we propose Oracle-Guided Bidirectional Distillation, leveraging ground-truth motion priors to provide precise physical guidance. We also present VividHead, a large-scale, high-quality dataset containing 782 hours of strictly aligned footage to support robust training. Extensive experiments demonstrate that SoulX-FlashHead achieves state-of-the-art performance on HDTF and VFHQ benchmarks. Notably, our Lite variant achieves an inference speed of 96 FPS on a single NVIDIA RTX 4090, facilitating ultra-fast interaction without sacrificing visual coherence.
comment: 11 pages, 3 figures
♻ ☆ GeoZero: Incentivizing Reasoning from Scratch on Geospatial Scenes
Multimodal large language models (MLLMs) have undergone rapid development in advancing geospatial scene understanding. Recent studies have sought to enhance the reasoning capabilities of remote sensing MLLMs, typically through cold-start training with elaborately curated chain-of-thought (CoT) data. However, this approach not only incurs substantial annotation costs but also introduces human biases that may limit the diversity of model reasoning. To address these challenges, we propose GeoZero, a framework that enables MLLMs to perform geospatial reasoning without any predefined CoT supervision. Specifically, we construct two datasets, GeoZero-Instruct and GeoZero-Hard. GeoZero-Instruct allows the model to acquire preliminary geospatial knowledge through supervised fine-tuning, while GeoZero-Hard stimulates deep reasoning during the subsequent reinforcement learning stage. Furthermore, we introduce Answer-Anchored Group Relative Policy Optimization (A$^2$GRPO), where the reasoning process is regularized by the model's own answers, encouraging diverse yet accurate thinking. Extensive experiments on multiple remote sensing vision-language benchmarks demonstrate that GeoZero not only surpasses existing state-of-the-art methods but also fosters universal emergent reasoning capabilities across diverse geospatial tasks. Code, data, and models will be publicly available at https://github.com/MiliLab/GeoZero.
comment: Code, data, and models will be publicly available at https://github.com/MiliLab/GeoZero
♻ ☆ Defect-aware Hybrid Prompt Optimization via Progressive Tuning for Zero-Shot Multi-type Anomaly Detection and Segmentation
Recent vision language models (VLMs) like CLIP have demonstrated impressive anomaly detection performance under significant distribution shift by utilizing high-level semantic information through text prompts. However, these models often neglect fine-grained details, such as which kind of anomalies, like "hole", "cut", "scratch" that could provide more specific insight into the nature of anomalies. We argue that recognizing fine-grained anomaly types 1) enriches the representation of "abnormal" with structured semantics, narrowing the gap between coarse anomaly signals and fine-grained defect categories; 2) enables manufacturers to understand the root causes of the anomaly and implement more targeted and appropriate corrective measures quickly. While incorporating such detailed semantic information is crucial, designing handcrafted prompts for each defect type is both time-consuming and susceptible to human bias. For this reason, we introduce DAPO, a novel approach for Defect-aware Prompt Optimization based on progressive tuning for the zero-shot multi-type and binary anomaly detection and segmentation under distribution shifts. Our approach aligns anomaly-relevant image features with their corresponding text semantics by learning hybrid defect-aware prompts with both fixed textual anchors and learnable token embeddings. We conducted experiments on public benchmarks (MPDD, VisA, MVTec-AD, MAD, and Real-IAD) and an internal dataset. The results suggest that compared to the baseline models, DAPO achieves a 3.7% average improvement in AUROC and average precision metrics at the image level under distribution shift, and a 6.5% average improvement in localizing novel anomaly types under zero-shot settings.
♻ ☆ Kelix Technique Report
Autoregressive large language models (LLMs) scale well by expressing diverse tasks as sequences of discrete natural-language tokens and training with next-token prediction, which unifies comprehension and generation under self-supervision. Extending this paradigm to multimodal data requires a shared, discrete representation across modalities. However, most vision-language models (VLMs) still rely on a hybrid interface: discrete text tokens paired with continuous Vision Transformer (ViT) features. Because supervision is largely text-driven, these models are often biased toward understanding and cannot fully leverage large-scale self-supervised learning on non-text data. Recent work has explored discrete visual tokenization to enable fully autoregressive multimodal modeling, showing promising progress toward unified understanding and generation. Yet existing discrete vision tokens frequently lose information due to limited code capacity, resulting in noticeably weaker understanding than continuous-feature VLMs. We present Kelix, a fully discrete autoregressive unified model that closes the understanding gap between discrete and continuous visual representations.
comment: Work in progress
♻ ☆ RepAir: A Framework for Airway Segmentation and Discontinuity Correction in CT
Accurate airway segmentation from chest computed tomography (CT) scans is essential for quantitative lung analysis, yet manual annotation is impractical and many automated U-Net-based methods yield disconnected components that hinder reliable biomarker extraction. We present RepAir, a three-stage framework for robust 3D airway segmentation that combines an nnU-Net-based network with anatomically informed topology correction. The segmentation network produces an initial airway mask, after which a skeleton-based algorithm identifies potential discontinuities and proposes reconnections. A 1D convolutional classifier then determines which candidate links correspond to true anatomical branches versus false or obstructed paths. We evaluate RepAir on two distinct datasets: ATM'22, comprising annotated CT scans from predominantly healthy subjects and AeroPath, encompassing annotated scans with severe airway pathology. Across both datasets, RepAir outperforms existing 3D U-Net-based approaches such as Bronchinet and NaviAirway on both voxel-level and topological metrics, and produces more complete and anatomically consistent airway trees while maintaining high segmentation accuracy.
comment: 4 pages, 3 figures, 1 table. Oral presentation accepted to SSIAI 2026 Conference on Jan 20, 2026
♻ ☆ Robust Vision Systems for Connected and Autonomous Vehicles: Security Challenges and Attack Vectors
This article investigates the robustness of vision systems in Connected and Autonomous Vehicles (CAVs), which is critical for developing Level-5 autonomous driving capabilities. Safe and reliable CAV navigation undeniably depends on robust vision systems that enable accurate detection of objects, lane markings, and traffic signage. We analyze the key sensors and vision components essential for CAV navigation to derive a reference architecture for CAV vision system (CAVVS). This reference architecture provides a basis for identifying potential attack surfaces of CAVVS. Subsequently, we elaborate on identified attack vectors targeting each attack surface, rigorously evaluating their implications for confidentiality, integrity, and availability (CIA). Our study provides a comprehensive understanding of attack vector dynamics in vision systems, which is crucial for formulating robust security measures that can uphold the principles of the CIA triad.
comment: Submitted to IEEE Transactions on Intelligent Vehicles
♻ ☆ CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
♻ ☆ Revisit Visual Prompt Tuning: The Expressiveness of Prompt Experts ICLR 2026
Visual Prompt Tuning (VPT) has proven effective for parameter-efficient adaptation of pre-trained vision models to downstream tasks by inserting task-specific learnable prompt tokens. Despite its empirical success, a comprehensive theoretical understanding of VPT remains an active area of research. Building on the recently established connection between Mixture of Experts (MoE) and prompt-based methods, wherein each attention head can be conceptualized as a composition of multiple MoE models, we reinterpret VPT as the introduction of new prompt experts into these MoE structures. We identify a key limitation in existing VPT frameworks: the restricted functional expressiveness of prompt experts, which remain static and thus limited in their adaptability. To address this, we propose Visual Adaptive Prompt Tuning (VAPT), a novel method that endows prompt experts with enhanced expressiveness while preserving parameter efficiency. Empirical evaluations on VTAB-1K and FGVC demonstrate that VAPT achieves substantial performance improvements, surpassing fully fine-tuned baselines by 7.34% and 1.04%, respectively. Moreover, VAPT consistently outperforms VPT while requiring fewer additional parameters. Furthermore, our theoretical analysis indicates that VAPT achieves optimal sample efficiency. Collectively, these results underscore the theoretical grounding and empirical advantages of our approach.
comment: Accepted to ICLR 2026
♻ ☆ WorldArena: A Unified Benchmark for Evaluating Perception and Functional Utility of Embodied World Models
While world models have emerged as a cornerstone of embodied intelligence by enabling agents to reason about environmental dynamics through action-conditioned prediction, their evaluation remains fragmented. Current evaluation of embodied world models has largely focused on perceptual fidelity (e.g., video generation quality), overlooking the functional utility of these models in downstream decision-making tasks. In this work, we introduce WorldArena, a unified benchmark designed to systematically evaluate embodied world models across both perceptual and functional dimensions. WorldArena assesses models through three dimensions: video perception quality, measured with 16 metrics across six sub-dimensions; embodied task functionality, which evaluates world models as data engines, policy evaluators, and action planners integrating with subjective human evaluation. Furthermore, we propose EWMScore, a holistic metric integrating multi-dimensional performance into a single interpretable index. Through extensive experiments on 14 representative models, we reveal a significant perception-functionality gap, showing that high visual quality does not necessarily translate into strong embodied task capability. WorldArena benchmark with the public leaderboard is released at https://world-arena.ai, providing a framework for tracking progress toward truly functional world models in embodied AI.
♻ ☆ Enhancing Vehicle Detection under Adverse Weather Conditions with Contrastive Learning
Aside from common challenges in remote sensing like small, sparse targets and computation cost limitations, detecting vehicles from UAV images in the Nordic regions faces strong visibility challenges and domain shifts caused by diverse levels of snow coverage. Although annotated data are expensive, unannotated data is cheaper to obtain by simply flying the drones. In this work, we proposed a sideload-CL-adaptation framework that enables the use of unannotated data to improve vehicle detection using lightweight models. Specifically, we propose to train a CNN-based representation extractor through contrastive learning on the unannotated data in the pretraining stage, and then sideload it to a frozen YOLO11n backbone in the fine-tuning stage. To find a robust sideload-CL-adaptation, we conducted extensive experiments to compare various fusion methods and granularity. Our proposed sideload-CL-adaptation model improves the detection performance by 3.8% to 9.5% in terms of mAP50 on the NVD dataset.
♻ ☆ Corruption-Aware Training of Latent Video Diffusion Models for Robust Text-to-Video Generation
Latent Video Diffusion Models (LVDMs) have achieved state-of-the-art generative quality for image and video generation; however, they remain brittle under noisy conditioning, where small perturbations in text or multimodal embeddings can cascade over timesteps and cause semantic drift. Existing corruption strategies from image diffusion (e.g., Gaussian, Uniform) fail in video settings because static noise disrupts temporal fidelity. In this paper, we propose CAT-LVDM, a corruption-aware training framework with structured, data-aligned noise injection tailored for video diffusion. Our two operators, Batch-Centered Noise Injection (BCNI) and Spectrum-Aware Contextual Noise (SACN), align perturbations with batch semantics or spectral dynamics to preserve coherence. CAT-LVDM yields substantial gains: BCNI reduces FVD by 31.9 percent on WebVid-2M, MSR-VTT, and MSVD, while SACN improves UCF-101 by 12.3 percent, outperforming Gaussian, Uniform, and large diffusion baselines such as DEMO (2.3B) and LaVie (3B) despite training on 5x less data. Ablations confirm the unique value of low-rank, data-aligned noise, and theoretical analysis establishes why these operators tighten robustness and generalization bounds. CAT-LVDM thus introduces a principled framework for robust video diffusion and further demonstrates transferability to autoregressive generation and multimodal video understanding models.
comment: Code: https://github.com/chikap421/catlvdm
♻ ☆ FD-DB: Frequency-Decoupled Dual-Branch Network for Unpaired Synthetic-to-Real Domain Translation
Synthetic data provide low-cost, accurately annotated samples for geometry-sensitive vision tasks, but appearance and imaging differences between synthetic and real domains cause severe domain shift and degrade downstream performance. Unpaired synthetic-to-real translation can reduce this gap without paired supervision, yet existing methods often face a trade-off between photorealism and structural stability: unconstrained generation may introduce deformation or spurious textures, while overly rigid constraints limit adaptation to real-domain statistics. We propose FD-DB, a frequency-decoupled dual-branch model that separates appearance transfer into low-frequency interpretable editing and high-frequency residual compensation. The interpretable branch predicts physically meaningful editing parameters (white balance, exposure, contrast, saturation, blur, and grain) to build a stable low-frequency appearance base with strong content preservation. The free branch complements fine details through residual generation, and a gated fusion mechanism combines the two branches under explicit frequency constraints to limit low-frequency drift. We further adopt a two-stage training schedule that first stabilizes the editing branch and then releases the residual branch to improve optimization stability. Experiments on the YCB-V dataset show that FD-DB improves real-domain appearance consistency and significantly boosts downstream semantic segmentation performance while preserving geometric and semantic structures.
comment: 26 pages, 13 figures, 2 tables. Code available at https://github.com/tryzang/FD-DB
♻ ☆ Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception
Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations. To validate our approach, we integrate the framework into multiple MLLM families. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.
comment: 20 pages, 6 figures
♻ ☆ GMG: A Video Prediction Method Based on Global Focus and Motion Guided
Recent years, weather forecasting has gained significant attention. However, accurately predicting weather remains a challenge due to the rapid variability of meteorological data and potential teleconnections. Current spatiotemporal forecasting models primarily rely on convolution operations or sliding windows for feature extraction. These methods are limited by the size of the convolutional kernel or sliding window, making it difficult to capture and identify potential teleconnection features in meteorological data. Additionally, weather data often involve non-rigid bodies, whose motion processes are accompanied by unpredictable deformations, further complicating the forecasting task. In this paper, we propose the GMG model to address these two core challenges. The Global Focus Module, a key component of our model, enhances the global receptive field, while the Motion Guided Module adapts to the growth or dissipation processes of non-rigid bodies. Through extensive evaluations, our method demonstrates competitive performance across various complex tasks, providing a novel approach to improving the predictive accuracy of complex spatiotemporal data.
♻ ☆ Contextual Range-View Projection for 3D LiDAR Point Clouds
Range-view projection provides an efficient method for transforming 3D LiDAR point clouds into 2D range image representations, enabling effective processing with 2D deep learning models. However, a major challenge in this projection is the many-to-one conflict, where multiple 3D points are mapped onto the same pixel in the range image, requiring a selection strategy. Existing approaches typically retain the point with the smallest depth (closest to the LiDAR), disregarding semantic relevance and object structure, which leads to the loss of important contextual information. In this paper, we extend the depth-based selection rule by incorporating contextual information from both instance centers and class labels, introducing two mechanisms: \textit{Centerness-Aware Projection (CAP)} and \textit{Class-Weighted-Aware Projection (CWAP)}. In CAP, point depths are adjusted according to their distance from the instance center, thereby prioritizing central instance points over noisy boundary and background points. In CWAP, object classes are prioritized through user-defined weights, offering flexibility in the projection strategy. Our evaluations on the SemanticKITTI dataset show that CAP preserves more instance points during projection, achieving up to a 3.1\% mIoU improvement compared to the baseline. Furthermore, CWAP enhances the performance of targeted classes while having a negligible impact on the performance of other classes
♻ ☆ VeriSciQA: An Auto-Verified Dataset for Scientific Visual Question Answering
Large Vision-Language Models (LVLMs) show promise for scientific applications, yet open-source models still struggle with Scientific Visual Question Answering (SVQA), namely answering questions about figures from scientific papers. A key bottleneck is the lack of public, large-scale, high-quality SVQA datasets. Although recent work uses LVLMs to synthesize data at scale, we identify systematic errors in their resulting QA pairs, stemming from LVLMs' inherent limitations and information asymmetry between figures and text. To address these challenges, we propose a Cross-Modal verification framework that generates questions and answers purely from figure-citing paragraphs, then verifies them against the figures themselves, leveraging the inherent text-figure alignment in scientific papers to filter out erroneous QA pairs. We instantiate this framework to curate VeriSciQA, a dataset of 20,272 QA pairs spanning 20 scientific domains and 12 figure types. Difficulty assessment reveals a notable accuracy gap between the best open-source model (65%) and the best proprietary model (80.5%), demonstrating room for improvement. Moreover, models fine-tuned on VeriSciQA achieve consistent improvements on SVQA benchmarks, with performance gains that scale with data size, surpassing models trained on existing datasets. Human evaluation further validates the improved quality of VeriSciQA. These results demonstrate that continued data expansion via our scalable framework can further advance SVQA capability in the open-source community. Our dataset is publicly available at https://huggingface.co/datasets/datajuicer/VeriSciQA.
♻ ☆ WaymoQA: A Multi-View Visual Question Answering Dataset for Safety-Critical Reasoning in Autonomous Driving
Recent advancements in multimodal large language models (MLLMs) have shown strong understanding of driving scenes, drawing interest in their application to autonomous driving. However, high-level reasoning in safety-critical scenarios, where avoiding one traffic risk can create another, remains a major challenge. Such reasoning is often infeasible with only a single front view and requires a comprehensive view of the environment, which we achieve through multi-view inputs. We define Safety-Critical Reasoning as a new task that leverages multi-view inputs to address this challenge. Then, we distill Safety-Critical Reasoning into two stages: first resolve the immediate risk, then mitigate the decision-induced downstream risks. To support this, we introduce WaymoQA, a dataset of 35,000 human-annotated question-answer pairs covering complex, high-risk driving scenarios. The dataset includes multiple-choice and open-ended formats across both image and video modalities. Experiments reveal that existing MLLMs underperform in safety-critical scenarios compared to normal scenes, but fine-tuning with WaymoQA significantly improves their reasoning ability, highlighting the effectiveness of our dataset in developing safer and more reasoning-capable driving agents. Our code and data are provided in https://github.com/sjyu001/WaymoQA
♻ ☆ GenDR: Lighten Generative Detail Restoration ICLR 2026
Although recent research applying text-to-image (T2I) diffusion models to real-world super-resolution (SR) has achieved remarkable progress, the misalignment of their targets leads to a suboptimal trade-off between inference speed and detail fidelity. Specifically, the T2I task requires multiple inference steps to synthesize images matching to prompts and reduces the latent dimension to lower generating difficulty. Contrariwise, SR can restore high-frequency details in fewer inference steps, but it necessitates a more reliable variational auto-encoder (VAE) to preserve input information. However, most diffusion-based SRs are multistep and use 4-channel VAEs, while existing models with 16-channel VAEs are overqualified diffusion transformers, e.g., FLUX (12B). To align the target, we present a one-step diffusion model for generative detail restoration, GenDR, distilled from a tailored diffusion model with a larger latent space. In detail, we train a new SD2.1-VAE16 (0.9B) via representation alignment to expand the latent space without increasing the model size. Regarding step distillation, we propose consistent score identity distillation (CiD) that incorporates SR task-specific loss into score distillation to leverage more SR priors and align the training target. Furthermore, we extend CiD with adversarial learning and representation alignment (CiDA) to enhance perceptual quality and accelerate training. We also polish the pipeline to achieve a more efficient inference. Experimental results demonstrate that GenDR achieves state-of-the-art performance in both quantitative metrics and visual fidelity.
comment: Accepted by ICLR 2026
♻ ☆ Accelerating Streaming Video Large Language Models via Hierarchical Token Compression
Streaming Video Large Language Models (VideoLLMs) have demonstrated impressive performance across various video understanding tasks, but they face significant challenges in real-time deployment due to the high computational cost of processing dense visual tokens from continuous video streams. In streaming video scenarios, the primary bottleneck lies in the Vision Transformer (ViT) encoding stage, where redundant processing of temporally similar frames leads to inefficiency. Additionally, inflated token sequences during LLM pre-filling further exacerbate latency and memory overhead. To address these challenges, we propose \textbf{S}treaming \textbf{T}oken \textbf{C}ompression (\textbf{STC}), a plug-and-play hierarchical framework that seamlessly integrates into existing streaming VideoLLMs, optimizing both ViT encoding and LLM pre-filling stages to accelerate processing. STC introduces two token-level accelerators: \textbf{STC-Cacher}, which reduces ViT encoding overhead by caching and reusing features from temporally similar frames, and \textbf{STC-Pruner}, which compresses the visual token sequence before it enters the LLM, preserving only the most salient tokens based on both spatial and temporal relevance. Extensive experiments on four baseline streaming VideoLLMs across five benchmarks demonstrate that STC outperforms other compression methods. Notably, STC retains up to \textbf{99\%} of accuracy on the ReKV framework while reducing ViT encoding latency and LLM pre-filling latency by \textbf{24.5\%} and \textbf{45.3\%}.
comment: Code is avaliable at \url{https://github.com/lern-to-write/STC}
♻ ☆ SKEL-CF: Coarse-to-Fine Biomechanical Skeleton and Surface Mesh Recovery
Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, facilitating the use of computer vision techniques in biomechanics-related analysis. Our implementation is available on the project page: https://pokerman8.github.io/SKEL-CF/.
comment: Project page: https://pokerman8.github.io/SKEL-CF/
♻ ☆ ProAPO: Progressively Automatic Prompt Optimization for Visual Classification CVPR
Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.
comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
♻ ☆ From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models
Recent advances in video diffusion models have significantly enhanced text-to-video generation, particularly through alignment tuning using reward models trained on human preferences. While these methods improve visual quality, they can unintentionally encode and amplify social biases. To systematically trace how such biases evolve throughout the alignment pipeline, we introduce VideoBiasEval, a comprehensive diagnostic framework for evaluating social representation in video generation. Grounded in established social bias taxonomies, VideoBiasEval employs an event-based prompting strategy to disentangle semantic content (actions and contexts) from actor attributes (gender and ethnicity). It further introduces multi-granular metrics to evaluate (1) overall ethnicity bias, (2) gender bias conditioned on ethnicity, (3) distributional shifts in social attributes across model variants, and (4) the temporal persistence of bias within videos. Using this framework, we conduct the first end-to-end analysis connecting biases in human preference datasets, their amplification in reward models, and their propagation through alignment-tuned video diffusion models. Our results reveal that alignment tuning not only strengthens representational biases but also makes them temporally stable, producing smoother yet more stereotyped portrayals. These findings highlight the need for bias-aware evaluation and mitigation throughout the alignment process to ensure fair and socially responsible video generation.
comment: TMLR
♻ ☆ ADGaussian: Generalizable Gaussian Splatting for Autonomous Driving via Multi-modal Joint Learning ICRA 2026
We present a novel approach, termed ADGaussian, for generalizable street scene reconstruction. The proposed method enables high-quality rendering from merely single-view input. Unlike prior Gaussian Splatting methods that primarily focus on geometry refinement, we emphasize the importance of joint optimization of image and depth features for accurate Gaussian prediction. To this end, we first incorporate sparse LiDAR depth as an additional input modality, formulating the Gaussian prediction process as a joint learning framework of visual information and geometric clue. Furthermore, we propose a Multi-modal Feature Matching strategy coupled with a Multi-scale Gaussian Decoding model to enhance the joint refinement of multi-modal features, thereby enabling efficient multi-modal Gaussian learning. Extensive experiments on Waymo and KITTI demonstrate that our ADGaussian achieves state-of-the-art performance and exhibits superior zero-shot generalization capabilities in novel-view shifting.
comment: The paper is accepted by ICRA 2026 and the project page can be found at https://maggiesong7.github.io/research/ADGaussian/
♻ ☆ Fake-HR1: Rethinking Reasoning of Vision Language Model for Synthetic Image Detection ICASSP 2026
Recent studies have demonstrated that incorporating Chain-of-Thought (CoT) reasoning into the detection process can enhance a model's ability to detect synthetic images. However, excessively lengthy reasoning incurs substantial resource overhead, including token consumption and latency, which is particularly redundant when handling obviously generated forgeries. To address this issue, we propose Fake-HR1, a large-scale hybrid-reasoning model that, to the best of our knowledge, is the first to adaptively determine whether reasoning is necessary based on the characteristics of the generative detection task. To achieve this, we design a two-stage training framework: we first perform Hybrid Fine-Tuning (HFT) for cold-start initialization, followed by online reinforcement learning with Hybrid-Reasoning Grouped Policy Optimization (HGRPO) to implicitly learn when to select an appropriate reasoning mode. Experimental results show that Fake-HR1 adaptively performs reasoning across different types of queries, surpassing existing LLMs in both reasoning ability and generative detection performance, while significantly improving response efficiency.
comment: Accepted by ICASSP 2026
♻ ☆ Order from Chaos: Physical World Understanding from Glitchy Gameplay Videos
Understanding the physical world, including object dynamics, material properties, and causal interactions, remains a core challenge in artificial intelligence. Although recent multi-modal large language models (MLLMs) have demonstrated impressive general reasoning capabilities, they still fall short of achieving human-level understanding of physical principles. Existing datasets for physical reasoning either rely on real-world videos, which incur high annotation costs, or on synthetic simulations, which suffer from limited realism and diversity. In this paper, we propose a novel paradigm that leverages glitches in gameplay videos, referring to visual anomalies that violate predefined physical laws, as a rich and scalable supervision source for physical world understanding. We introduce PhysGame, an meta information guided instruction-tuning dataset containing 140,057 glitch-centric question-answer pairs across five physical domains and sixteen fine-grained categories. To ensure data accuracy, we design a prompting strategy that utilizes gameplay metadata such as titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay videos designed to evaluate physical reasoning capabilities. Extensive experiments show that PhysGame significantly enhances both Game2Real transferability, improving the real world physical reasoning performance of Qwen2.5VL by 2.5% on PhysBench, and Game2General transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced robustness in detecting physical implausibilities. These results indicate that learning from gameplay anomalies offers a scalable and effective pathway toward advancing physical world understanding in multimodal intelligence.
comment: Accepted by TMLR
♻ ☆ MME-Emotion: A Holistic Evaluation Benchmark for Emotional Intelligence in Multimodal Large Language Models
Recent advances in multimodal large language models (MLLMs) have catalyzed transformative progress in affective computing, enabling models to exhibit emergent emotional intelligence. Despite substantial methodological progress, current emotional benchmarks remain limited, as it is still unknown: (a) the generalization abilities of MLLMs across distinct scenarios, and (b) their reasoning capabilities to identify the triggering factors behind emotional states. To bridge these gaps, we present \textbf{MME-Emotion}, a systematic benchmark that assesses both emotional understanding and reasoning capabilities of MLLMs, enjoying \textit{scalable capacity}, \textit{diverse settings}, and \textit{unified protocols}. As the largest emotional intelligence benchmark for MLLMs, MME-Emotion contains over 6,000 curated video clips with task-specific questioning-answering (QA) pairs, spanning broad scenarios to formulate eight emotional tasks. It further incorporates a holistic evaluation suite with hybrid metrics for emotion recognition and reasoning, analyzed through a multi-agent system framework. Through a rigorous evaluation of 20 advanced MLLMs, we uncover both their strengths and limitations, yielding several key insights: \ding{182} Current MLLMs exhibit unsatisfactory emotional intelligence, with the best-performing model achieving only $39.3\%$ recognition score and $56.0\%$ Chain-of-Thought (CoT) score on our benchmark. \ding{183} Generalist models (\emph{e.g.}, Gemini-2.5-Pro) derive emotional intelligence from generalized multimodal understanding capabilities, while specialist models (\emph{e.g.}, R1-Omni) can achieve comparable performance through domain-specific post-training adaptation. By introducing MME-Emotion, we hope that it can serve as a foundation for advancing MLLMs' emotional intelligence in the future.
♻ ☆ Constructive Distortion: Improving MLLMs with Attention-Guided Image Warping ICLR 2026
Multimodal large language models (MLLMs) often miss small details and spatial relations in cluttered scenes, leading to errors in fine-grained perceptual grounding. We introduce AttWarp, a lightweight method that allocates more resolution to query-relevant content while compressing less informative areas, all while preserving global context. At test time, the approach uses an MLLM's cross-modal attention to perform rectilinear warping of the input image, reallocating spatial resolution toward regions the model deems important, without changing model weights or architecture. This attention-guided warping preserves all original image information but redistributes it non-uniformly, so small objects and subtle relationships become easier for the same model to read while the global layout remains intact. Across five benchmarks (TextVQA, GQA, DocVQA, POPE, MMMU) and four MLLMs (LLaVA, Qwen-VL, InternVL, and InstructBLIP), AttWarp consistently improves accuracy, strengthens compositional reasoning, and reduces hallucinations, outperforming four competitive baselines that manipulate raw images at test time. Together, these results show that attention-guided warping prioritizes information relevant to the query while preserving context, and that the same MLLMs perform better when given such warped inputs.
comment: Accepted at ICLR 2026
♻ ☆ City Navigation in the Wild: Exploring Emergent Navigation from Web-Scale Knowledge in MLLMs EACL 2026
Leveraging multimodal large language models (MLLMs) to develop embodied agents offers significant promise for addressing complex real-world tasks. However, current evaluation benchmarks remain predominantly language-centric or heavily reliant on simulated environments, rarely probing the nuanced, knowledge-intensive reasoning essential for practical, real-world scenarios. To bridge this critical gap, we introduce the task of Sparsely Grounded Visual Navigation, explicitly designed to evaluate the sequential decision-making abilities of MLLMs in challenging, knowledge-intensive real-world environment. We operationalize this task with CityNav, a comprehensive benchmark encompassing four diverse global cities, specifically constructed to assess raw MLLM-driven agents in city navigation. Agents are required to rely solely on visual inputs and internal multimodal reasoning to sequentially navigate 50+ decision points without additional environmental annotations or specialized architectural modifications. Crucially, agents must autonomously achieve localization through interpreting city-specific cues and recognizing landmarks, perform spatial reasoning, and strategically plan and execute routes to their destinations. Through extensive evaluations, we demonstrate that current state-of-the-art MLLMs, reasoning techniques (e.g., GEPA, chain-of-thought, reflection) and competitive baseline PReP significantly underperform in this challenging setting. To address this, we propose Verbalization of Path(VoP), which explicitly grounds the agent's internal reasoning by probing city-scale cognitive maps (key landmarks and directions toward the destination) from the MLLM, substantially enhancing navigation success. Project Webpage: https://dwipddalal.github.io/AgentNav/
comment: Accepted at EACL 2026 (ORAL)
♻ ☆ Geospatial Representation Learning: A Survey from Deep Learning to The LLM Era
The ability to transform location-centric geospatial data into meaningful computational representations has become fundamental to modern spatial analysis and decision-making. Geospatial Representation Learning (GRL), the process of automatically extracting latent structures and semantic patterns from geographic data, is undergoing a profound transformation through two successive technological revolutions: the deep learning breakthrough and the emerging large language model (LLM) paradigm. While deep neural networks (DNNs) have demonstrated remarkable success in automated feature extraction from structured and semi-structured geospatial data (e.g., satellite imagery, GPS trajectories), the recent integration of LLMs introduces transformative capabilities for cross-modal geospatial reasoning and unstructured geo-textual data processing. This survey presents a comprehensive review of geospatial representation learning across both technological eras, organizing them into a structured taxonomy based on the complete pipeline comprising: (1) data perspective, (2) methodological perspective, and (3) application perspective. We also highlight current advancements, discuss existing limitations, and propose potential future research directions in the LLM and foundation model era. This work offers a thorough exploration of the field and provides a roadmap for further innovation in GRL. The summary of the up-to-date paper list can be found in https://github.com/CityMind-Lab/Awesome-Geospatial-Representation-Learning and will undergo continuous updates.
♻ ☆ Out of the box age estimation through facial imagery: A Comprehensive Benchmark of Vision-Language Models vs. out-of-the-box Traditional Architectures
Facial age estimation plays a critical role in content moderation, age verification, and deepfake detection. However, no prior benchmark has systematically compared modern vision-language models (VLMs) with specialized age estimation architectures. We present the first large-scale cross-paradigm benchmark, evaluating 34 models - 22 specialized architectures with publicly available pretrained weights and 12 general-purpose VLMs - across eight standard datasets (UTKFace, IMDB-WIKI, MORPH, AFAD, CACD, FG-NET, APPA-REAL, and AgeDB), totaling 1,100 test images per model. Our key finding is striking: zero-shot VLMs significantly outperform most specialized models, achieving an average mean absolute error (MAE) of 5.65 years compared to 9.88 years for non-LLM models. The best-performing VLM (Gemini 3 Flash Preview, MAE 4.32) surpasses the strongest non-LLM model (MiVOLO, MAE 5.10) by 15%. MiVOLO - unique in combining face and body features using Vision Transformers - is the only specialized model that remains competitive with VLMs. We further analyze age verification at the 18-year threshold and find that most non-LLM models exhibit false adult rates between 39% and 100% for minors, whereas VLMs reduce this to 16%-29%. Additionally, coarse age binning (8-9 classes) consistently increases MAE beyond 13 years. Stratified analysis across 14 age groups reveals that all models struggle most at extreme ages (under 5 and over 65). Overall, these findings challenge the assumption that task-specific architectures are necessary for high-performance age estimation and suggest that future work should focus on distilling VLM capabilities into efficient specialized models.
♻ ☆ DiCo: Disentangled Concept Representation for Text-to-image Person Re-identification
Text-to-image person re-identification (TIReID) aims to retrieve person images from a large gallery given free-form textual descriptions. TIReID is challenging due to the substantial modality gap between visual appearances and textual expressions, as well as the need to model fine-grained correspondences that distinguish individuals with similar attributes such as clothing color, texture, or outfit style. To address these issues, we propose DiCo (Disentangled Concept Representation), a novel framework that achieves hierarchical and disentangled cross-modal alignment. DiCo introduces a shared slot-based representation, where each slot acts as a part-level anchor across modalities and is further decomposed into multiple concept blocks. This design enables the disentanglement of complementary attributes (\textit{e.g.}, color, texture, shape) while maintaining consistent part-level correspondence between image and text. Extensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate that our framework achieves competitive performance with state-of-the-art methods, while also enhancing interpretability through explicit slot- and block-level representations for more fine-grained retrieval results.
♻ ☆ Monocular Normal Estimation via Shading Sequence Estimation ICLR 2026
Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
comment: Accepted by ICLR 2026 (Oral Presentation)
♻ ☆ From Pixels to Images: A Structural Survey of Deep Learning Paradigms in Remote Sensing Image Semantic Segmentation
Semantic segmentation (SS) of RSIs enables the fine-grained interpretation of surface features, making it a critical task in RS analysis. With the increasing diversity and volume of RSIs collected by sensors on various platforms, traditional processing methods struggle to maintain efficiency and accuracy. In response, deep learning (DL) has emerged as a transformative approach, enabling substantial advances in remote sensing image semantic segmentation (RSISS) by automating hierarchical feature extraction and improving segmentation performance across diverse modalities. As data scale and model capacity have increased, DL-based RSISS has undergone a structural evolution from pixel-level and patch-based classification to tile-level, end-to-end segmentation, and, more recently, to image-level modelling with vision foundation models. However, existing reviews often focus on individual components, such as supervision strategies or fusion stages, and lack a unified operational perspective aligned with segmentation granularity and the training/inference pipeline. This paper provides a comprehensive review by organizing DL-based RSISS into a pixel-patch-tile-image hierarchy, covering early pixel-based methods, prevailing patch-based and tile-based techniques, and emerging image-based approaches. This review offers a holistic and structured understanding of DL-based RSISS, highlighting representative datasets, comparative insights, and open challenges related to data scale, model efficiency, domain robustness, and multimodal integration. Furthermore, to facilitate reproducible research, curated code collections are provided at: https://github.com/quanweiliu/PatchwiseClsFra and https://github.com/quanweiliu/TilewiseSegFra.
comment: 34 pages, 9 figures, 5 tables
♻ ☆ Adapt before Continual Learning AAAI2026
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.
comment: Accepted to AAAI2026
♻ ☆ Thermal odometry and dense mapping using learned odometry and Gaussian splatting
Thermal infrared sensors, with wavelengths longer than smoke particles, can capture imagery independent of darkness, dust, and smoke. This robustness has made them increasingly valuable for motion estimation and environmental perception in robotics, particularly in adverse conditions. Existing thermal odometry and mapping approaches, however, are predominantly geometric and often fail across diverse datasets while lacking the ability to produce dense maps. Motivated by the efficiency and high-quality reconstruction ability of recent Gaussian Splatting (GS) techniques, we propose TOM-GS, a thermal odometry and mapping method that integrates learning-based odometry with GS-based dense mapping. TOM-GS is among the first GS-based SLAM systems tailored for thermal cameras, featuring dedicated thermal image enhancement and monocular depth integration. Extensive experiments on motion estimation and novel-view rendering demonstrate that TOM-GS outperforms existing learning-based methods, confirming the benefits of learning-based pipelines for robust thermal odometry and dense reconstruction.
comment: 11 pages, 2 figures, 5 tables
♻ ☆ A UAV-Based VNIR Hyperspectral Benchmark Dataset for Landmine and UXO Detection
This paper introduces a novel benchmark dataset of Visible and Near-Infrared (VNIR) hyperspectral imagery acquired via an unmanned aerial vehicle (UAV) platform for landmine and unexploded ordnance (UXO) detection research. The dataset was collected over a controlled test field seeded with 143 realistic surrogate landmine and UXO targets, including surface, partially buried, and fully buried configurations. Data acquisition was performed using a Headwall Nano-Hyperspec sensor mounted on a multi-sensor drone platform, flown at an altitude of approximately 20.6 m, capturing 270 contiguous spectral bands spanning 398-1002 nm. Radiometric calibration, orthorectification, and mosaicking were performed followed by reflectance retrieval using a two-point Empirical Line Method (ELM), with reference spectra acquired using an SVC spectroradiometer. Cross-validation against six reference objects yielded RMSE values below 1.0 and SAM values between 1 and 6 degrees in the 400-900 nm range, demonstrating high spectral fidelity. The dataset is released alongside raw radiance cubes, GCP/AeroPoint data, and reference spectra to support reproducible research. This contribution fills a critical gap in open-access UAV-based hyperspectral data for landmine detection and offers a multi-sensor benchmark when combined with previously published drone-based electromagnetic induction (EMI) data from the same test field.
comment: This work was accepted and presented as an oral paper at the Indian Geoscience and Remote Sensing Symposium (InGARSS) 2025 and appears in the IEEE InGARSS 2025 Proceedings
♻ ☆ OmniDiff: A Comprehensive Benchmark for Fine-grained Image Difference Captioning
Image Difference Captioning (IDC) aims to generate natural language descriptions of subtle differences between image pairs, requiring both precise visual change localization and coherent semantic expression. Despite recent advancements, existing datasets often lack breadth and depth, limiting their applicability in complex and dynamic environments: (1) from a breadth perspective, current datasets are constrained to limited variations of objects in specific scenes, and (2) from a depth perspective, prior benchmarks often provide overly simplistic descriptions. To address these challenges, we introduce OmniDiff, a comprehensive dataset comprising 324 diverse scenarios-spanning real-world complex environments and 3D synthetic settings-with fine-grained human annotations averaging 60 words in length and covering 12 distinct change types. Building on this foundation, we propose M$^3$Diff, a MultiModal large language model enhanced by a plug-and-play Multi-scale Differential Perception (MDP) module. This module improves the model's ability to accurately identify and describe inter-image differences while maintaining the foundational model's generalization capabilities. With the addition of the OmniDiff dataset, M$^3$Diff achieves state-of-the-art performance across multiple benchmarks, including Spot-the-Diff, IEdit, CLEVR-Change, CLEVR-DC, and OmniDiff, demonstrating significant improvements in cross-scenario difference recognition accuracy compared to existing methods. The dataset, code, and models will be made publicly available to support further research.
♻ ☆ Towards Privacy-Guaranteed Label Unlearning in Vertical Federated Learning: Few-Shot Forgetting without Disclosure
This paper addresses the critical challenge of unlearning in Vertical Federated Learning (VFL), a setting that has received far less attention than its horizontal counterpart. Specifically, we propose the first method tailored to \textit{label unlearning} in VFL, where labels play a dual role as both essential inputs and sensitive information. To this end, we employ a representation-level manifold mixup mechanism to generate synthetic embeddings for both unlearned and retained samples. This is to provide richer signals for the subsequent gradient-based label forgetting and recovery steps. These augmented embeddings are then subjected to gradient-based label forgetting, effectively removing the associated label information from the model. To recover performance on the retained data, we introduce a recovery-phase optimization step that refines the remaining embeddings. This design achieves effective label unlearning while maintaining computational efficiency. We validate our method through extensive experiments on diverse datasets, including MNIST, CIFAR-10, CIFAR-100, ModelNet, Brain Tumor MRI, COVID-19 Radiography, and Yahoo Answers demonstrate strong efficacy and scalability. Overall, this work establishes a new direction for unlearning in VFL, showing that re-imagining mixup as an efficient mechanism can unlock practical and utility-preserving unlearning. The code is publicly available at \href{https://github.com/bryanhx/Towards-Privacy-Guaranteed-Label-Unlearning-in-Vertical-Federated-Learning}{https://github.com/bryanhx/Towards-Privacy-Guaranteed-Label-Unlearning-in-Vertical-Federated-Learning}
comment: We introduce the first method for label unlearning in vertical federated learning (VFL), focused on preventing label leakage by the active party
♻ ☆ SAIL: Self-Amplified Iterative Learning for Diffusion Model Alignment with Minimal Human Feedback
Aligning diffusion models with human preferences remains challenging, particularly when reward models are unavailable or impractical to obtain, and collecting large-scale preference datasets is prohibitively expensive. \textit{This raises a fundamental question: can we achieve effective alignment using only minimal human feedback, without auxiliary reward models, by unlocking the latent capabilities within diffusion models themselves?} In this paper, we propose \textbf{SAIL} (\textbf{S}elf-\textbf{A}mplified \textbf{I}terative \textbf{L}earning), a novel framework that enables diffusion models to act as their own teachers through iterative self-improvement. Starting from a minimal seed set of human-annotated preference pairs, SAIL operates in a closed-loop manner where the model progressively generates diverse samples, self-annotates preferences based on its evolving understanding, and refines itself using this self-augmented dataset. To ensure robust learning and prevent catastrophic forgetting, we introduce a ranked preference mixup strategy that carefully balances exploration with adherence to initial human priors. Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art methods across multiple benchmarks while using merely 6\% of the preference data required by existing approaches, revealing that diffusion models possess remarkable self-improvement capabilities that, when properly harnessed, can effectively replace both large-scale human annotation and external reward models.
♻ ☆ Dexterous Manipulation Policies from RGB Human Videos via 3D Hand-Object Trajectory Reconstruction
Multi-finger robotic hand manipulation and grasping are challenging due to the high-dimensional action space and the difficulty of acquiring large-scale training data. Existing approaches largely rely on human teleoperation with wearable devices or specialized sensing equipment to capture hand-object interactions, which limits scalability. In this work, we propose VIDEOMANIP, a device-free framework that learns dexterous manipulation directly from RGB human videos. Leveraging recent advances in computer vision, VIDEOMANIP reconstructs explicit 3D robot-object trajectories from monocular videos by estimating human hand poses, object meshes, and retargets the reconstructed human motions to robotic hands for manipulation learning. To make the reconstructed robot data suitable for dexterous manipulation training, we introduce hand-object contact optimization with interaction-centric grasp modeling, as well as a demonstration synthesis strategy that generates diverse training trajectories from a single video, enabling generalizable policy learning without additional robot demonstrations. In simulation, the learned grasping model achieves a 70.25% success rate across 20 diverse objects using the Inspire Hand. In the real world, manipulation policies trained from RGB videos achieve an average 62.86% success rate across seven tasks using the LEAP Hand, outperforming retargeting-based methods by 15.87%. Project videos are available at videomanip.github.io.
♻ ☆ Bootstrapping Action-Grounded Visual Dynamics in Unified Vision-Language Models
Can unified vision-language models (VLMs) perform forward dynamics prediction (FDP), i.e., predicting the future state (in image form) given the previous observation and an action (in language form)? We find that VLMs struggle to generate physically plausible transitions between frames from instructions. Nevertheless, we identify a crucial asymmetry in multimodal grounding: fine-tuning a VLM to learn inverse dynamics prediction (IDP), effectively captioning the action between frames, is significantly easier than learning FDP. In turn, IDP can be used to bootstrap FDP through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, IDP can annotate actions for unlabelled pairs of video frame observations to expand the training data scale for FDP. Secondly, IDP can assign rewards to multiple samples of FDP to score them, effectively guiding search at inference time. We evaluate the FDP resulting from both strategies through the task of action-centric image editing on Aurora-Bench with two families of VLMs. Despite remaining general-purpose, our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin between $7\%$ and $13\%$ according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Prominence-Aware Artifact Detection and Dataset for Image Super-Resolution
Generative single-image super-resolution (SISR) is advancing rapidly, yet even state-of-the-art models produce visual artifacts: unnatural patterns and texture distortions that degrade perceived quality. These defects vary widely in perceptual impact--some are barely noticeable, while others are highly disturbing--yet existing detection methods treat them equally. We propose characterizing artifacts by their prominence to human observers rather than as uniform binary defects. We present a novel dataset of 1302 artifact examples from 11 SISR methods annotated with crowdsourced prominence scores, and provide prominence annotations for 593 existing artifacts from the DeSRA dataset, revealing that 48% of them go unnoticed by most viewers. Building on this data, we train a lightweight regressor that produces spatial prominence heatmaps. We demonstrate that our method outperforms existing detectors and effectively guides SR model fine-tuning for artifact suppression. Our dataset and code are available at https://tinyurl.com/2u9zxtyh.
Artificial Intelligence 150
☆ Beyond VLM-Based Rewards: Diffusion-Native Latent Reward Modeling
Preference optimization for diffusion and flow-matching models relies on reward functions that are both discriminatively robust and computationally efficient. Vision-Language Models (VLMs) have emerged as the primary reward provider, leveraging their rich multimodal priors to guide alignment. However, their computation and memory cost can be substantial, and optimizing a latent diffusion generator through a pixel-space reward introduces a domain mismatch that complicates alignment. In this paper, we propose DiNa-LRM, a diffusion-native latent reward model that formulates preference learning directly on noisy diffusion states. Our method introduces a noise-calibrated Thurstone likelihood with diffusion-noise-dependent uncertainty. DiNa-LRM leverages a pretrained latent diffusion backbone with a timestep-conditioned reward head, and supports inference-time noise ensembling, providing a diffusion-native mechanism for test-time scaling and robust rewarding. Across image alignment benchmarks, DiNa-LRM substantially outperforms existing diffusion-based reward baselines and achieves performance competitive with state-of-the-art VLMs at a fraction of the computational cost. In preference optimization, we demonstrate that DiNa-LRM improves preference optimization dynamics, enabling faster and more resource-efficient model alignment.
comment: Code: https://github.com/HKUST-C4G/diffusion-rm
☆ GENIUS: Generative Fluid Intelligence Evaluation Suite
Unified Multimodal Models (UMMs) have shown remarkable progress in visual generation. Yet, existing benchmarks predominantly assess $\textit{Crystallized Intelligence}$, which relies on recalling accumulated knowledge and learned schemas. This focus overlooks $\textit{Generative Fluid Intelligence (GFI)}$: the capacity to induce patterns, reason through constraints, and adapt to novel scenarios on the fly. To rigorously assess this capability, we introduce $\textbf{GENIUS}$ ($\textbf{GEN}$ Fluid $\textbf{I}$ntelligence Eval$\textbf{U}$ation $\textbf{S}$uite). We formalize $\textit{GFI}$ as a synthesis of three primitives. These include $\textit{Inducing Implicit Patterns}$ (e.g., inferring personalized visual preferences), $\textit{Executing Ad-hoc Constraints}$ (e.g., visualizing abstract metaphors), and $\textit{Adapting to Contextual Knowledge}$ (e.g., simulating counter-intuitive physics). Collectively, these primitives challenge models to solve problems grounded entirely in the immediate context. Our systematic evaluation of 12 representative models reveals significant performance deficits in these tasks. Crucially, our diagnostic analysis disentangles these failure modes. It demonstrates that deficits stem from limited context comprehension rather than insufficient intrinsic generative capability. To bridge this gap, we propose a training-free attention intervention strategy. Ultimately, $\textbf{GENIUS}$ establishes a rigorous standard for $\textit{GFI}$, guiding the field beyond knowledge utilization toward dynamic, general-purpose reasoning. Our dataset and code will be released at: $\href{https://github.com/arctanxarc/GENIUS}{https://github.com/arctanxarc/GENIUS}$.
☆ Data-Efficient Hierarchical Goal-Conditioned Reinforcement Learning via Normalizing Flows
Hierarchical goal-conditioned reinforcement learning (H-GCRL) provides a powerful framework for tackling complex, long-horizon tasks by decomposing them into structured subgoals. However, its practical adoption is hindered by poor data efficiency and limited policy expressivity, especially in offline or data-scarce regimes. In this work, Normalizing flow-based hierarchical implicit Q-learning (NF-HIQL), a novel framework that replaces unimodal gaussian policies with expressive normalizing flow policies at both the high- and low-levels of the hierarchy is introduced. This design enables tractable log-likelihood computation, efficient sampling, and the ability to model rich multimodal behaviors. New theoretical guarantees are derived, including explicit KL-divergence bounds for Real-valued non-volume preserving (RealNVP) policies and PAC-style sample efficiency results, showing that NF-HIQL preserves stability while improving generalization. Empirically, NF-HIQL is evaluted across diverse long-horizon tasks in locomotion, ball-dribbling, and multi-step manipulation from OGBench. NF-HIQL consistently outperforms prior goal-conditioned and hierarchical baselines, demonstrating superior robustness under limited data and highlighting the potential of flow-based architectures for scalable, data-efficient hierarchical reinforcement learning.
comment: 9 pages, 3 figures, IEEE International Conference on Robotics and Automation 2026
☆ Weight Decay Improves Language Model Plasticity
The prevailing paradigm in large language model (LLM) development is to pretrain a base model, then perform further training to improve performance and model behavior. However, hyperparameter optimization and scaling laws have been studied primarily from the perspective of the base model's validation loss, ignoring downstream adaptability. In this work, we study pretraining from the perspective of model plasticity, that is, the ability of the base model to successfully adapt to downstream tasks through fine-tuning. We focus on the role of weight decay, a key regularization parameter during pretraining. Through systematic experiments, we show that models trained with larger weight decay values are more plastic, meaning they show larger performance gains when fine-tuned on downstream tasks. This phenomenon can lead to counterintuitive trade-offs where base models that perform worse after pretraining can perform better after fine-tuning. Further investigation of weight decay's mechanistic effects on model behavior reveals that it encourages linearly separable representations, regularizes attention matrices, and reduces overfitting on the training data. In conclusion, this work demonstrates the importance of using evaluation metrics beyond cross-entropy loss for hyperparameter optimization and casts light on the multifaceted role of that a single optimization hyperparameter plays in shaping model behavior.
☆ FormalJudge: A Neuro-Symbolic Paradigm for Agentic Oversight
As LLM-based agents increasingly operate in high-stakes domains with real-world consequences, ensuring their behavioral safety becomes paramount. The dominant oversight paradigm, LLM-as-a-Judge, faces a fundamental dilemma: how can probabilistic systems reliably supervise other probabilistic systems without inheriting their failure modes? We argue that formal verification offers a principled escape from this dilemma, yet its adoption has been hindered by a critical bottleneck: the translation from natural language requirements to formal specifications. This paper bridges this gap by proposing , a neuro-symbolic framework that employs a bidirectional Formal-of-Thought architecture: LLMs serve as specification compilers that top-down decompose high-level human intent into atomic, verifiable constraints, then bottom-up prove compliance using Dafny specifications and Z3 Satisfiability modulo theories solving, which produces mathematical guarantees rather than probabilistic scores. We validate across three benchmarks spanning behavioral safety, multi-domain constraint adherence, and agentic upward deception detection. Experiments on 7 agent models demonstrate that achieves an average improvement of 16.6% over LLM-as-a-Judge baselines, enables weak-to-strong generalization where a 7B judge achieves over 90% accuracy detecting deception from 72B agents, and provides near-linear safety improvement through iterative refinement.
comment: 27 pages
☆ Learning to Compose for Cross-domain Agentic Workflow Generation
Automatically generating agentic workflows -- executable operator graphs or codes that orchestrate reasoning, verification, and repair -- has become a practical way to solve complex tasks beyond what single-pass LLM generation can reliably handle. Yet what constitutes a good workflow depends heavily on the task distribution and the available operators. Under domain shift, current systems typically rely on iterative workflow refinement to discover a feasible workflow from a large workflow space, incurring high iteration costs and yielding unstable, domain-specific behavior. In response, we internalize a decompose-recompose-decide mechanism into an open-source LLM for cross-domain workflow generation. To decompose, we learn a compact set of reusable workflow capabilities across diverse domains. To recompose, we map each input task to a sparse composition over these bases to generate a task-specific workflow in a single pass. To decide, we attribute the success or failure of workflow generation to counterfactual contributions from learned capabilities, thereby capturing which capabilities actually drive success by their marginal effects. Across stringent multi-domain, cross-domain, and unseen-domain evaluations, our 1-pass generator surpasses SOTA refinement baselines that consume 20 iterations, while substantially reducing generation latency and cost.
☆ GameDevBench: Evaluating Agentic Capabilities Through Game Development
Despite rapid progress on coding agents, progress on their multimodal counterparts has lagged behind. A key challenge is the scarcity of evaluation testbeds that combine the complexity of software development with the need for deep multimodal understanding. Game development provides such a testbed as agents must navigate large, dense codebases while manipulating intrinsically multimodal assets such as shaders, sprites, and animations within a visual game scene. We present GameDevBench, the first benchmark for evaluating agents on game development tasks. GameDevBench consists of 132 tasks derived from web and video tutorials. Tasks require significant multimodal understanding and are complex -- the average solution requires over three times the amount of lines of code and file changes compared to prior software development benchmarks. Agents still struggle with game development, with the best agent solving only 54.5% of tasks. We find a strong correlation between perceived task difficulty and multimodal complexity, with success rates dropping from 46.9% on gameplay-oriented tasks to 31.6% on 2D graphics tasks. To improve multimodal capability, we introduce two simple image and video-based feedback mechanisms for agents. Despite their simplicity, these methods consistently improve performance, with the largest change being an increase in Claude Sonnet 4.5's performance from 33.3% to 47.7%. We release GameDevBench publicly to support further research into agentic game development.
☆ Safety Recovery in Reasoning Models Is Only a Few Early Steering Steps Away
Reinforcement learning (RL) based post-training for explicit chain-of-thought (e.g., GRPO) improves the reasoning ability of multimodal large-scale reasoning models (MLRMs). But recent evidence shows that it can simultaneously degrade safety alignment and increase jailbreak success rates. We propose SafeThink, a lightweight inference-time defense that treats safety recovery as a satisficing constraint rather than a maximization objective. SafeThink monitors the evolving reasoning trace with a safety reward model and conditionally injects an optimized short corrective prefix ("Wait, think safely") only when the safety threshold is violated. In our evaluations across six open-source MLRMs and four jailbreak benchmarks (JailbreakV-28K, Hades, FigStep, and MM-SafetyBench), SafeThink reduces attack success rates by 30-60% (e.g., LlamaV-o1: 63.33% to 5.74% on JailbreakV-28K, R1-Onevision: 69.07% to 5.65% on Hades) while preserving reasoning performance (MathVista accuracy: 65.20% to 65.00%). A key empirical finding from our experiments is that safety recovery is often only a few steering steps away: intervening in the first 1-3 reasoning steps typically suffices to redirect the full generation toward safe completions.
☆ Direct Learning of Calibration-Aware Uncertainty for Neural PDE Surrogates
Neural PDE surrogates are often deployed in data-limited or partially observed regimes where downstream decisions depend on calibrated uncertainty in addition to low prediction error. Existing approaches obtain uncertainty through ensemble replication, fixed stochastic noise such as dropout, or post hoc calibration. Cross-regularized uncertainty learns uncertainty parameters during training using gradients routed through a held-out regularization split. The predictor is optimized on the training split for fit, while low-dimensional uncertainty controls are optimized on the regularization split to reduce train-test mismatch, yielding regime-adaptive uncertainty without per-regime noise tuning. The framework can learn continuous noise levels at the output head, within hidden features, or within operator-specific components such as spectral modes. We instantiate the approach in Fourier Neural Operators and evaluate on APEBench sweeps over observed fraction and training-set size. Across these sweeps, the learned predictive distributions are better calibrated on held-out splits and the resulting uncertainty fields concentrate in high-error regions in one-step spatial diagnostics.
comment: 13 pages, 11 figures
☆ DataChef: Cooking Up Optimal Data Recipes for LLM Adaptation via Reinforcement Learning
In the current landscape of Large Language Models (LLMs), the curation of large-scale, high-quality training data is a primary driver of model performance. A key lever is the \emph{data recipe}, which comprises a data processing pipeline to transform raw sources into training corpora. Despite the growing use of LLMs to automate individual data processing steps, such as data synthesis and filtering, the overall design of data recipes remains largely manual and labor-intensive, requiring substantial human expertise and iteration. To bridge this gap, we formulate \emph{end-to-end data recipe generation} for LLM adaptation. Given a target benchmark and a pool of available data sources, a model is required to output a complete data recipe that adapts a base LLM to the target task. We present DataChef-32B, which performs online reinforcement learning using a proxy reward that predicts downstream performance for candidate recipes. Across six held-out tasks, DataChef-32B produces practical recipes that reach comparable downstream performance to those curated by human experts. Notably, the recipe from DataChef-32B adapts Qwen3-1.7B-Base to the math domain, achieving 66.7 on AIME'25 and surpassing Qwen3-1.7B. This work sheds new light on automating LLM training and developing self-evolving AI systems.
☆ General Flexible $f$-divergence for Challenging Offline RL Datasets with Low Stochasticity and Diverse Behavior Policies AAMAS 2026
Offline RL algorithms aim to improve upon the behavior policy that produces the collected data while constraining the learned policy to be within the support of the dataset. However, practical offline datasets often contain examples with little diversity or limited exploration of the environment, and from multiple behavior policies with diverse expertise levels. Limited exploration can impair the offline RL algorithm's ability to estimate \textit{Q} or \textit{V} values, while constraining towards diverse behavior policies can be overly conservative. Such datasets call for a balance between the RL objective and behavior policy constraints. We first identify the connection between $f$-divergence and optimization constraint on the Bellman residual through a more general Linear Programming form for RL and the convex conjugate. Following this, we introduce the general flexible function formulation for the $f$-divergence to incorporate an adaptive constraint on algorithms' learning objectives based on the offline training dataset. Results from experiments on the MuJoCo, Fetch, and AdroitHand environments show the correctness of the proposed LP form and the potential of the flexible $f$-divergence in improving performance for learning from a challenging dataset when applied to a compatible constrained optimization algorithm.
comment: Extended version of the full paper with the appendix accepted at AAMAS 2026
☆ GRASP: group-Shapley feature selection for patients
Feature selection remains a major challenge in medical prediction, where existing approaches such as LASSO often lack robustness and interpretability. We introduce GRASP, a novel framework that couples Shapley value driven attribution with group $L_{21}$ regularization to extract compact and non-redundant feature sets. GRASP first distills group level importance scores from a pretrained tree model via SHAP, then enforces structured sparsity through group $L_{21}$ regularized logistic regression, yielding stable and interpretable selections. Extensive comparisons with LASSO, SHAP, and deep learning based methods show that GRASP consistently delivers comparable or superior predictive accuracy, while identifying fewer, less redundant, and more stable features.
comment: 5 pages, 4 figures, 2 tables
☆ SteuerLLM: Local specialized large language model for German tax law analysis
Large language models (LLMs) demonstrate strong general reasoning and language understanding, yet their performance degrades in domains governed by strict formal rules, precise terminology, and legally binding structure. Tax law exemplifies these challenges, as correct answers require exact statutory citation, structured legal argumentation, and numerical accuracy under rigid grading schemes. We algorithmically generate SteuerEx, the first open benchmark derived from authentic German university tax law examinations. SteuerEx comprises 115 expert-validated examination questions spanning six core tax law domains and multiple academic levels, and employs a statement-level, partial-credit evaluation framework that closely mirrors real examination practice. We further present SteuerLLM, a domain-adapted LLM for German tax law trained on a large-scale synthetic dataset generated from authentic examination material using a controlled retrieval-augmented pipeline. SteuerLLM (28B parameters) consistently outperforms general-purpose instruction-tuned models of comparable size and, in several cases, substantially larger systems, demonstrating that domain-specific data and architectural adaptation are more decisive than parameter scale for performance on realistic legal reasoning tasks. All benchmark data, training datasets, model weights, and evaluation code are released openly to support reproducible research in domain-specific legal artificial intelligence. A web-based demo of SteuerLLM is available at https://steuerllm.i5.ai.fau.de.
☆ In-the-Wild Model Organisms: Mitigating Undesirable Emergent Behaviors in Production LLM Post-Training via Data Attribution
We propose activation-based data attribution, a method that traces behavioral changes in post-trained language models to responsible training datapoints. By computing activation-difference vectors for both test prompts and preference pairs and ranking by cosine similarity, we identify datapoints that cause specific behaviors and validate these attributions causally by retraining with modified data. Clustering behavior-datapoint similarity matrices also enables unsupervised discovery of emergent behaviors. Applying this to OLMo 2's production DPO training, we surfaced distractor-triggered compliance: a harmful behavior where the model complies with dangerous requests when benign formatting instructions are appended. Filtering top-ranked datapoints reduces this behavior by 63% while switching their labels achieves 78%. Our method outperforms gradient-based attribution and LLM-judge baselines while being over 10 times cheaper than both. This in-the-wild model organism - emerging from contaminated preference data rather than deliberate injection - provides a realistic benchmark for safety techniques.
☆ Interpretable Attention-Based Multi-Agent PPO for Latency Spike Resolution in 6G RAN Slicing
Sixth-generation (6G) radio access networks (RANs) must enforce strict service-level agreements (SLAs) for heterogeneous slices, yet sudden latency spikes remain difficult to diagnose and resolve with conventional deep reinforcement learning (DRL) or explainable RL (XRL). We propose \emph{Attention-Enhanced Multi-Agent Proximal Policy Optimization (AE-MAPPO)}, which integrates six specialized attention mechanisms into multi-agent slice control and surfaces them as zero-cost, faithful explanations. The framework operates across O-RAN timescales with a three-phase strategy: predictive, reactive, and inter-slice optimization. A URLLC case study shows AE-MAPPO resolves a latency spike in $18$ms, restores latency to $0.98$ms with $99.9999\%$ reliability, and reduces troubleshooting time by $93\%$ while maintaining eMBB and mMTC continuity. These results confirm AE-MAPPO's ability to combine SLA compliance with inherent interpretability, enabling trustworthy and real-time automation for 6G RAN slicing.
comment: This work has been accepted to appear in the IEEE International Conference on Communications (ICC)
☆ Chatting with Images for Introspective Visual Thinking
Current large vision-language models (LVLMs) typically rely on text-only reasoning based on a single-pass visual encoding, which often leads to loss of fine-grained visual information. Recently the proposal of ''thinking with images'' attempts to alleviate this limitation by manipulating images via external tools or code; however, the resulting visual states are often insufficiently grounded in linguistic semantics, impairing effective cross-modal alignment - particularly when visual semantics or geometric relationships must be reasoned over across distant regions or multiple images. To address these challenges, we propose ''chatting with images'', a new framework that reframes visual manipulation as language-guided feature modulation. Under the guidance of expressive language prompts, the model dynamically performs joint re-encoding over multiple image regions, enabling tighter coupling between linguistic reasoning and visual state updates. We instantiate this paradigm in ViLaVT, a novel LVLM equipped with a dynamic vision encoder explicitly designed for such interactive visual reasoning, and trained it with a two-stage curriculum combining supervised fine-tuning and reinforcement learning to promote effective reasoning behaviors. Extensive experiments across eight benchmarks demonstrate that ViLaVT achieves strong and consistent improvements, with particularly pronounced gains on complex multi-image and video-based spatial reasoning tasks.
☆ Conversational Behavior Modeling Foundation Model With Multi-Level Perception
Human conversation is organized by an implicit chain of thoughts that manifests as timed speech acts. Capturing this perceptual pathway is key to building natural full-duplex interactive systems. We introduce a framework that models this process as multi-level perception, and then reasons over conversational behaviors via a Graph-of-Thoughts (GoT). Our approach formalizes the intent-to-action pathway with a hierarchical labeling scheme, predicting high-level communicative intents and low-level speech acts to learn their causal and temporal dependencies. To train this system, we develop a high quality corpus that pairs controllable, event-rich dialogue data with human-annotated labels. The GoT framework structures streaming predictions as an evolving graph, enabling a transformer to forecast the next speech act, generate concise justifications for its decisions, and dynamically refine its reasoning. Experiments on both synthetic and real duplex dialogues show that the framework delivers robust behavior detection, produces interpretable reasoning chains, and establishes a foundation for benchmarking conversational reasoning in full duplex spoken dialogue systems.
GraphSeek: Next-Generation Graph Analytics with LLMs
Graphs are foundational across domains but remain hard to use without deep expertise. LLMs promise accessible natural language (NL) graph analytics, yet they fail to process industry-scale property graphs effectively and efficiently: such datasets are large, highly heterogeneous, structurally complex, and evolve dynamically. To address this, we devise a novel abstraction for complex multi-query analytics over such graphs. Its key idea is to replace brittle generation of graph queries directly from NL with planning over a Semantic Catalog that describes both the graph schema and the graph operations. Concretely, this induces a clean separation between a Semantic Plane for LLM planning and broader reasoning, and an Execution Plane for deterministic, database-grade query execution over the full dataset and tool implementations. This design yields substantial gains in both token efficiency and task effectiveness even with small-context LLMs. We use this abstraction as the basis of the first LLM-enhanced graph analytics framework called GraphSeek. GraphSeek achieves substantially higher success rates (e.g., 86% over enhanced LangChain) and points toward the next generation of affordable and accessible graph analytics that unify LLM reasoning with database-grade execution over large and complex property graphs.
☆ Language Model Inversion through End-to-End Differentiation
Despite emerging research on Language Models (LM), few approaches analyse the invertibility of LMs. That is, given a LM and a desirable target output sequence of tokens, determining what input prompts would yield the target output remains an open problem. We formulate this problem as a classical gradient-based optimisation. First, we propose a simple algorithm to achieve end-to-end differentiability of a given (frozen) LM and then find optimised prompts via gradient descent. Our central insight is to view LMs as functions operating on sequences of distributions over tokens (rather than the traditional view as functions on sequences of tokens). Our experiments and ablations demonstrate that our DLM-powered inversion can reliably and efficiently optimise prompts of lengths $10$ and $80$ for targets of length $20$, for several white-box LMs (out-of-the-box).
comment: 24 pages, 5 figures, under review
☆ Linguistic Indicators of Early Cognitive Decline in the DementiaBank Pitt Corpus: A Statistical and Machine Learning Study
Background: Subtle changes in spontaneous language production are among the earliest indicators of cognitive decline. Identifying linguistically interpretable markers of dementia can support transparent and clinically grounded screening approaches. Methods: This study analyzes spontaneous speech transcripts from the DementiaBank Pitt Corpus using three linguistic representations: raw cleaned text, a part-of-speech (POS)-enhanced representation combining lexical and grammatical information, and a POS-only syntactic representation. Logistic regression and random forest models were evaluated under two protocols: transcript-level train-test splits and subject-level five-fold cross-validation to prevent speaker overlap. Model interpretability was examined using global feature importance, and statistical validation was conducted using Mann-Whitney U tests with Cliff's delta effect sizes. Results: Across representations, models achieved stable performance, with syntactic and grammatical features retaining strong discriminative power even in the absence of lexical content. Subject-level evaluation yielded more conservative but consistent results, particularly for POS-enhanced and POS-only representations. Statistical analysis revealed significant group differences in functional word usage, lexical diversity, sentence structure, and discourse coherence, aligning closely with machine learning feature importance findings. Conclusion: The results demonstrate that abstract linguistic features capture robust markers of early cognitive decline under clinically realistic evaluation. By combining interpretable machine learning with non-parametric statistical validation, this study supports the use of linguistically grounded features for transparent and reliable language-based cognitive screening.
☆ Chain-of-Look Spatial Reasoning for Dense Surgical Instrument Counting WACV 2026
Accurate counting of surgical instruments in Operating Rooms (OR) is a critical prerequisite for ensuring patient safety during surgery. Despite recent progress of large visual-language models and agentic AI, accurately counting such instruments remains highly challenging, particularly in dense scenarios where instruments are tightly clustered. To address this problem, we introduce Chain-of-Look, a novel visual reasoning framework that mimics the sequential human counting process by enforcing a structured visual chain, rather than relying on classic object detection which is unordered. This visual chain guides the model to count along a coherent spatial trajectory, improving accuracy in complex scenes. To further enforce the physical plausibility of the visual chain, we introduce the neighboring loss function, which explicitly models the spatial constraints inherent to densely packed surgical instruments. We also present SurgCount-HD, a new dataset comprising 1,464 high-density surgical instrument images. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches for counting (e.g., CountGD, REC) as well as Multimodality Large Language Models (e.g., Qwen, ChatGPT) in the challenging task of dense surgical instrument counting.
comment: Accepted to WACV 2026. This version includes additional authors who contributed during the rebuttal phase
☆ ContactGaussian-WM: Learning Physics-Grounded World Model from Videos
Developing world models that understand complex physical interactions is essential for advancing robotic planning and simulation.However, existing methods often struggle to accurately model the environment under conditions of data scarcity and complex contact-rich dynamic motion.To address these challenges, we propose ContactGaussian-WM, a differentiable physics-grounded rigid-body world model capable of learning intricate physical laws directly from sparse and contact-rich video sequences.Our framework consists of two core components: (1) a unified Gaussian representation for both visual appearance and collision geometry, and (2) an end-to-end differentiable learning framework that differentiates through a closed-form physics engine to infer physical properties from sparse visual observations.Extensive simulations and real-world evaluations demonstrate that ContactGaussian-WM outperforms state-of-the-art methods in learning complex scenarios, exhibiting robust generalization capabilities.Furthermore, we showcase the practical utility of our framework in downstream applications, including data synthesis and real-time MPC.
☆ OSIL: Learning Offline Safe Imitation Policies with Safety Inferred from Non-preferred Trajectories AAMAS 2026
This work addresses the problem of offline safe imitation learning (IL), where the goal is to learn safe and reward-maximizing policies from demonstrations that do not have per-timestep safety cost or reward information. In many real-world domains, online learning in the environment can be risky, and specifying accurate safety costs can be difficult. However, it is often feasible to collect trajectories that reflect undesirable or unsafe behavior, implicitly conveying what the agent should avoid. We refer to these as non-preferred trajectories. We propose a novel offline safe IL algorithm, OSIL, that infers safety from non-preferred demonstrations. We formulate safe policy learning as a Constrained Markov Decision Process (CMDP). Instead of relying on explicit safety cost and reward annotations, OSIL reformulates the CMDP problem by deriving a lower bound on reward maximizing objective and learning a cost model that estimates the likelihood of non-preferred behavior. Our approach allows agents to learn safe and reward-maximizing behavior entirely from offline demonstrations. We empirically demonstrate that our approach can learn safer policies that satisfy cost constraints without degrading the reward performance, thus outperforming several baselines.
comment: 21 pages, Accepted at AAMAS 2026
☆ From Buffers to Registers: Unlocking Fine-Grained FlashAttention with Hybrid-Bonded 3D NPU Co-Design DATE 2026
Transformer-based models dominate modern AI workloads but exacerbate memory bottlenecks due to their quadratic attention complexity and ever-growing model sizes. Existing accelerators, such as Groq and Cerebras, mitigate off-chip traffic with large on-chip caches, while algorithmic innovations such as FlashAttention fuse operators to avoid materializing large attention matrices. However, as off-chip traffic decreases, our measurements show that on-chip SRAM accesses account for over 60% of energy in long-sequence workloads, making cache access the new bottleneck. We propose 3D-Flow, a hybrid-bonded, 3D-stacked spatial accelerator that enables register-to-register communication across vertically partitioned PE tiers. Unlike 2D multi-array architectures limited by NoC-based router-to-router transfers, 3D-Flow leverages sub-10 um vertical TSVs to sustain cycle-level operator pipelining with minimal overhead. On top of this architecture, we design 3D-FlashAttention, a fine-grained scheduling method that balances latency across tiers, forming a bubble-free vertical dataflow without on-chip SRAM roundtrips. Evaluations on Transformer workloads (OPT and QWEN models) show that our 3D spatial accelerator reduces 46-93% energy consumption and achieves 1.4x-7.6x speedups compared to state-of-the-art 2D and 3D designs.
comment: Accepted to DATE 2026
☆ CVPL: A Geometric Framework for Post-Hoc Linkage Risk Assessment in Protected Tabular Data
Formal privacy metrics provide compliance-oriented guarantees but often fail to quantify actual linkability in released datasets. We introduce CVPL (Cluster-Vector-Projection Linkage), a geometric framework for post-hoc assessment of linkage risk between original and protected tabular data. CVPL represents linkage analysis as an operator pipeline comprising blocking, vectorization, latent projection, and similarity evaluation, yielding continuous, scenario-dependent risk estimates rather than binary compliance verdicts. We formally define CVPL under an explicit threat model and introduce threshold-aware risk surfaces, R(lambda, tau), that capture the joint effects of protection strength and attacker strictness. We establish a progressive blocking strategy with monotonicity guarantees, enabling anytime risk estimation with valid lower bounds. We demonstrate that the classical Fellegi-Sunter linkage emerges as a special case of CVPL under restrictive assumptions, and that violations of these assumptions can lead to systematic over-linking bias. Empirical validation on 10,000 records across 19 protection configurations demonstrates that formal k-anonymity compliance may coexist with substantial empirical linkability, with a significant portion arising from non-quasi-identifier behavioral patterns. CVPL provides interpretable diagnostics identifying which features drive linkage feasibility, supporting privacy impact assessment, protection mechanism comparison, and utility-risk trade-off analysis.
comment: 53 pages, 9 figures, 6 appendices. Code: https://github.com/DGT-Network/cvpl
☆ ROCKET: Rapid Optimization via Calibration-guided Knapsack Enhanced Truncation for Efficient Model Compression
We present ROCKET, a training-free model compression method that achieves state-of-the-art performance in comparison with factorization, structured-sparsification and dynamic compression baselines. Operating under a global compression budget, ROCKET comprises two key innovations: First, it formulates layer-wise compression allocation as a multi-choice knapsack problem, selecting the optimal compression level for each layer to minimize total reconstruction error while adhering to a target model size. Second, it introduces a single-step sparse matrix factorization inspired by dictionary learning: using only a small calibration set, it sparsifies weight coefficients based on activation-weights sensitivity and then updates the dictionary in closed form via least squares bypassing iterative optimization, sparse coding, or backpropagation entirely. ROCKET consistently outperforms existing compression approaches across different model architectures at 20-50\% compression rates. Notably, it retains over 90\% of the original model's performance at 30\% compression without any fine-tuning. Moreover, when applying a light fine-tuning phase, recovery is substantially enhanced: for instance, compressing Qwen3-14B to an 8B-parameter model and healing it with just 30 million tokens yields performance nearly on par with the original Qwen3-8B. The code for ROCKET is at github.com/mts-ai/ROCKET/tree/main.
☆ Enhancing Predictability of Multi-Tenant DNN Inference for Autonomous Vehicles' Perception
Autonomous vehicles (AVs) rely on sensors and deep neural networks (DNNs) to perceive their surrounding environment and make maneuver decisions in real time. However, achieving real-time DNN inference in the AV's perception pipeline is challenging due to the large gap between the computation requirement and the AV's limited resources. Most, if not all, of existing studies focus on optimizing the DNN inference time to achieve faster perception by compressing the DNN model with pruning and quantization. In contrast, we present a Predictable Perception system with DNNs (PP-DNN) that reduce the amount of image data to be processed while maintaining the same level of accuracy for multi-tenant DNNs by dynamically selecting critical frames and regions of interest (ROIs). PP-DNN is based on our key insight that critical frames and ROIs for AVs vary with the AV's surrounding environment. However, it is challenging to identify and use critical frames and ROIs in multi-tenant DNNs for predictable inference. Given image-frame streams, PP-DNN leverages an ROI generator to identify critical frames and ROIs based on the similarities of consecutive frames and traffic scenarios. PP-DNN then leverages a FLOPs predictor to predict multiply-accumulate operations (MACs) from the dynamic critical frames and ROIs. The ROI scheduler coordinates the processing of critical frames and ROIs with multiple DNN models. Finally, we design a detection predictor for the perception of non-critical frames. We have implemented PP-DNN in an ROS-based AV pipeline and evaluated it with the BDD100K and the nuScenes dataset. PP-DNN is observed to significantly enhance perception predictability, increasing the number of fusion frames by up to 7.3x, reducing the fusion delay by >2.6x and fusion-delay variations by >2.3x, improving detection completeness by 75.4% and the cost-effectiveness by up to 98% over the baseline.
comment: 13 pages, 12 figures
☆ Fine-Tuning GPT-5 for GPU Kernel Generation
Developing efficient GPU kernels is essential for scaling modern AI systems, yet it remains a complex task due to intricate hardware architectures and the need for specialized optimization expertise. Although Large Language Models (LLMs) demonstrate strong capabilities in general sequential code generation, they face significant challenges in GPU code generation because of the scarcity of high-quality labeled training data, compiler biases when generating synthetic solutions, and limited generalization across hardware generations. This precludes supervised fine-tuning (SFT) as a scalable methodology for improving current LLMs. In contrast, reinforcement learning (RL) offers a data-efficient and adaptive alternative but requires access to relevant tools, careful selection of training problems, and a robust evaluation environment. We present Makora's environment and tools for reinforcement learning finetuning of frontier models and report our results from fine-tuning GPT-5 for Triton code generation. In the single-attempt setting, our fine-tuned model improves kernel correctness from 43.7% to 77.0% (+33.3 percentage points) and increases the fraction of problems outperforming TorchInductor from 14.8% to 21.8% (+7 percentage points) compared to baseline GPT-5, while exceeding prior state-of-the-art models on KernelBench. When integrated into a full coding agent, it is able to solve up to 97.4% of problems in an expanded KernelBench suite, outperforming the PyTorch TorchInductor compiler on 72.9% of problems with a geometric mean speedup of 2.12x. Our work demonstrates that targeted post-training with reinforcement learning can unlock LLM capabilities in highly specialized technical domains where traditional supervised learning is limited by data availability, opening new pathways for AI-assisted accelerator programming.
☆ CLI-Gym: Scalable CLI Task Generation via Agentic Environment Inversion
Agentic coding requires agents to effectively interact with runtime environments, e.g., command line interfaces (CLI), so as to complete tasks like resolving dependency issues, fixing system problems, etc. But it remains underexplored how such environment-intensive tasks can be obtained at scale to enhance agents' capabilities. To address this, based on an analogy between the Dockerfile and the agentic task, we propose to employ agents to simulate and explore environment histories, guided by execution feedback. By tracing histories of a healthy environment, its state can be inverted to an earlier one with runtime failures, from which a task can be derived by packing the buggy state and the corresponding error messages. With our method, named CLI-Gym, a total of 1,655 environment-intensive tasks are derived, being the largest collection of its kind. Moreover, with curated successful trajectories, our fine-tuned model, named LiberCoder, achieves substantial absolute improvements of +21.1% (to 46.1%) on Terminal-Bench, outperforming various strong baselines. To our knowledge, this is the first public pipeline for scalable derivation of environment-intensive tasks.
☆ LoRA-Squeeze: Simple and Effective Post-Tuning and In-Tuning Compression of LoRA Modules
Despite its huge number of variants, standard Low-Rank Adaptation (LoRA) is still a dominant technique for parameter-efficient fine-tuning (PEFT). Nonetheless, it faces persistent challenges, including the pre-selection of an optimal rank and rank-specific hyper-parameters, as well as the deployment complexity of heterogeneous-rank modules and more sophisticated LoRA derivatives. In this work, we introduce LoRA-Squeeze, a simple and efficient methodology that aims to improve standard LoRA learning by changing LoRA module ranks either post-hoc or dynamically during training}. Our approach posits that it is better to first learn an expressive, higher-rank solution and then compress it, rather than learning a constrained, low-rank solution directly. The method involves fine-tuning with a deliberately high(er) source rank, reconstructing or efficiently approximating the reconstruction of the full weight update matrix, and then using Randomized Singular Value Decomposition (RSVD) to create a new, compressed LoRA module at a lower target rank. Extensive experiments across 13 text and 10 vision-language tasks show that post-hoc compression often produces lower-rank adapters that outperform those trained directly at the target rank, especially if a small number of fine-tuning steps at the target rank is allowed. Moreover, a gradual, in-tuning rank annealing variant of LoRA-Squeeze consistently achieves the best LoRA size-performance trade-off.
comment: Preprint
☆ RiemannGL: Riemannian Geometry Changes Graph Deep Learning
Graphs are ubiquitous, and learning on graphs has become a cornerstone in artificial intelligence and data mining communities. Unlike pixel grids in images or sequential structures in language, graphs exhibit a typical non-Euclidean structure with complex interactions among the objects. This paper argues that Riemannian geometry provides a principled and necessary foundation for graph representation learning, and that Riemannian graph learning should be viewed as a unifying paradigm rather than a collection of isolated techniques. While recent studies have explored the integration of graph learning and Riemannian geometry, most existing approaches are limited to a narrow class of manifolds, particularly hyperbolic spaces, and often adopt extrinsic manifold formulations. We contend that the central mission of Riemannian graph learning is to endow graph neural networks with intrinsic manifold structures, which remains underexplored. To advance this perspective, we identify key conceptual and methodological gaps in existing approaches and outline a structured research agenda along three dimensions: manifold type, neural architecture, and learning paradigm. We further discuss open challenges, theoretical foundations, and promising directions that are critical for unlocking the full potential of Riemannian graph learning. This paper aims to provide a coherent viewpoint and to stimulate broader exploration of Riemannian geometry as a foundational framework for future graph learning research.
comment: 34 pages, 11 figures, position paper
☆ FeatureBench: Benchmarking Agentic Coding for Complex Feature Development ICLR 2026
Agents powered by large language models (LLMs) are increasingly adopted in the software industry, contributing code as collaborators or even autonomous developers. As their presence grows, it becomes important to assess the current boundaries of their coding abilities. Existing agentic coding benchmarks, however, cover a limited task scope, e.g., bug fixing within a single pull request (PR), and often rely on non-executable evaluations or lack an automated approach for continually updating the evaluation coverage. To address such issues, we propose FeatureBench, a benchmark designed to evaluate agentic coding performance in end-to-end, feature-oriented software development. FeatureBench incorporates an execution-based evaluation protocol and a scalable test-driven method that automatically derives tasks from code repositories with minimal human effort. By tracing from unit tests along a dependency graph, our approach can identify feature-level coding tasks spanning multiple commits and PRs scattered across the development timeline, while ensuring the proper functioning of other features after the separation. Using this framework, we curated 200 challenging evaluation tasks and 3825 executable environments from 24 open-source repositories in the first version of our benchmark. Empirical evaluation reveals that the state-of-the-art agentic model, such as Claude 4.5 Opus, which achieves a 74.4% resolved rate on SWE-bench, succeeds on only 11.0% of tasks, opening new opportunities for advancing agentic coding. Moreover, benefiting from our automated task collection toolkit, FeatureBench can be easily scaled and updated over time to mitigate data leakage. The inherent verifiability of constructed environments also makes our method potentially valuable for agent training.
comment: Accepted by ICLR 2026
☆ Healthy Harvests: A Comparative Look at Guava Disease Classification Using InceptionV3
Guava fruits often suffer from many diseases. This can harm fruit quality and fruit crop yield. Early identification is important for minimizing damage and ensuring fruit health. This study focuses on 3 different categories for classifying diseases. These are Anthracnose, Fruit flies, and Healthy fruit. The data set used in this study is collected from Mendeley Data. This dataset contains 473 original images of Guava. These images vary in size and format. The original dataset was resized to 256x256 pixels with RGB color mode for better consistency. After this, the Data augmentation process is applied to improve the dataset by generating variations of the original images. The augmented dataset consists of 3784 images using advanced preprocessing techniques. Two deep learning models were implemented to classify the images. The InceptionV3 model is well known for its advanced framework. These apply multiple convolutional filters for obtaining different features effectively. On the other hand, the ResNet50 model helps to train deeper networks by using residual learning. The InceptionV3 model achieved the impressive accuracy of 98.15%, and ResNet50got 94.46% accuracy. Data mixing methods such as CutMix and MixUp were applied to enhance the model's robustness. The confusion matrix was used to evaluate the overall model performance of both InceptionV3 and Resnet50. Additionally, SHAP analysis is used to improve interpretability, which helps to find the significant parts of the image for the model prediction. This study purposes to highlight how advanced models enhan
comment: 6 pages, 13 figures, his is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ Can LLMs Cook Jamaican Couscous? A Study of Cultural Novelty in Recipe Generation
Large Language Models (LLMs) are increasingly used to generate and shape cultural content, ranging from narrative writing to artistic production. While these models demonstrate impressive fluency and generative capacity, prior work has shown that they also exhibit systematic cultural biases, raising concerns about stereotyping, homogenization, and the erasure of culturally specific forms of expression. Understanding whether LLMs can meaningfully align with diverse cultures beyond the dominant ones remains a critical challenge. In this paper, we study cultural adaptation in LLMs through the lens of cooking recipes, a domain in which culture, tradition, and creativity are tightly intertwined. We build on the \textit{GlobalFusion} dataset, which pairs human recipes from different countries according to established measures of cultural distance. Using the same country pairs, we generate culturally adapted recipes with multiple LLMs, enabling a direct comparison between human and LLM behavior in cross-cultural content creation. Our analysis shows that LLMs fail to produce culturally representative adaptations. Unlike humans, the divergence of their generated recipes does not correlate with cultural distance. We further provide explanations for this gap. We show that cultural information is weakly preserved in internal model representations, that models inflate novelty in their production by misunderstanding notions such as creativity and tradition, and that they fail to identify adaptation with its associated countries and to ground it in culturally salient elements such as ingredients. These findings highlight fundamental limitations of current LLMs for culturally oriented generation and have important implications for their use in culturally sensitive applications.
comment: 14 pages, 12 figures, conference
☆ Rotary Positional Embeddings as Phase Modulation: Theoretical Bounds on the RoPE Base for Long-Context Transformers
Rotary positional embeddings (RoPE) are widely used in large language models to encode token positions through multiplicative rotations, yet their behavior at long context lengths remains poorly characterized. In this work, we reinterpret RoPE as phase modulation applied to a bank of complex oscillators, enabling analysis through classical signal processing theory. Under this formulation, we derive principled lower bounds on the RoPE base parameter that are necessary to preserve positional coherence over a target context length. These include a fundamental aliasing bound, analogous to a Nyquist limit, and a DC-component stability bound that constrains phase drift in low-frequency positional modes. We further extend this analysis to deep transformers, showing that repeated rotary modulation across layers compounds angular misalignment, tightening the base requirement as depth increases. Complementing these results, we derive a precision-dependent upper bound on the RoPE base arising from finite floating-point resolution. Beyond this limit, incremental phase updates become numerically indistinguishable, leading to positional erasure even in the absence of aliasing. Together, the lower and upper bounds define a precision- and depth-dependent feasibility region a Goldilocks zone for long-context transformers. We validate the framework through a comprehensive case study of state-of-the-art models, including LLaMA, Mistral, and DeepSeek variants, showing that observed successes, failures, and community retrofits align closely with the predicted bounds. Notably, models that violate the stability bound exhibit attention collapse and long-range degradation, while attempts to scale beyond one million tokens encounter a hard precision wall independent of architecture or training.
☆ Search or Accelerate: Confidence-Switched Position Beam Search for Diffusion Language Models
Diffusion Language Models (DLMs) generate text by iteratively denoising a masked sequence, repeatedly deciding which positions to commit at each step. Standard decoding follows a greedy rule: unmask the most confident positions, yet this local choice can lock the model into a suboptimal unmasking order, especially on reasoning-heavy prompts. We present SOAR, a training-free decoding algorithm that adapts its behavior to the model's uncertainty. When confidence is low, SOAR briefly widens the search over alternative unmasking decisions to avoid premature commitments; when confidence is high, it collapses the search and decodes many positions in parallel to reduce the number of denoising iterations. Across mathematical reasoning and code generation benchmarks (GSM8K, MBPP, HumanEval) on Dream-7B and LLaDA-8B, SOAR improves generation quality while maintaining competitive inference speed, offering a practical way to balance quality and efficiency in DLM decoding.
comment: 11 pages, 8 figures
☆ Computational Phenomenology of Temporal Experience in Autism: Quantifying the Emotional and Narrative Characteristics of Lived Unpredictability
Disturbances in temporality, such as desynchronization with the social environment and its unpredictability, are considered core features of autism with a deep impact on relationships. However, limitations regarding research on this issue include: 1) the dominance of deficit-based medical models of autism, 2) sample size in qualitative research, and 3) the lack of phenomenological anchoring in computational research. To bridge the gap between phenomenological and computational approaches and overcome sample-size limitations, our research integrated three methodologies. Study A: structured phenomenological interviews with autistic individuals using the Transdiagnostic Assessment of Temporal Experience. Study B: computational analysis of an autobiographical corpus of autistic narratives built for this purpose. Study C: a replication of a computational study using narrative flow measures to assess the perceived phenomenological authenticity of autistic autobiographies. Interviews revealed that the most significant differences between the autistic and control groups concerned unpredictability of experience. Computational results mirrored these findings: the temporal lexicon in autistic narratives was significantly more negatively valenced - particularly the "Immediacy & Suddenness" category. Outlier analysis identified terms associated with perceived discontinuity (unpredictably, precipitously, and abruptly) as highly negative. The computational analysis of narrative flow found that the autistic narratives contained within the corpus quantifiably resemble autobiographical stories more than imaginary ones. Overall, the temporal challenges experienced by autistic individuals were shown to primarily concern lived unpredictability and stem from the contents of lived experience, and not from autistic narrative construction.
☆ What do people want to fact-check?
Research on misinformation has focused almost exclusively on supply, asking what falsehoods circulate, who produces them, and whether corrections work. A basic demand-side question remains unanswered. When ordinary people can fact-check anything they want, what do they actually ask about? We provide the first large-scale evidence on this question by analyzing close to 2{,}500 statements submitted by 457 participants to an open-ended AI fact-checking system. Each claim is classified along five semantic dimensions (domain, epistemic form, verifiability, target entity, and temporal reference), producing a behavioral map of public verification demand. Three findings stand out. First, users range widely across topics but default to a narrow epistemic repertoire, overwhelmingly submitting simple descriptive claims about present-day observables. Second, roughly one in four requests concerns statements that cannot be empirically resolved, including moral judgments, speculative predictions, and subjective evaluations, revealing a systematic mismatch between what users seek from fact-checking tools and what such tools can deliver. Third, comparison with the FEVER benchmark dataset exposes sharp structural divergences across all five dimensions, indicating that standard evaluation corpora encode a synthetic claim environment that does not resemble real-world verification needs. These results reframe fact-checking as a demand-driven problem and identify where current AI systems and benchmarks are misaligned with the uncertainty people actually experience.
☆ Traceable, Enforceable, and Compensable Participation: A Participation Ledger for People-Centered AI Governance
Participatory approaches are widely invoked in AI governance, yet participation rarely translates into durable influence. In public sector and civic AI systems, community contributions such as deliberations, annotations, prompts, and incident reports are often recorded informally, weakly linked to system updates, and disconnected from enforceable rights or sustained compensation. As a result, participation is frequently symbolic rather than accountable. We introduce the Participation Ledger, a machine readable and auditable framework that operationalizes participation as traceable influence, enforceable authority, and compensable labor. The ledger represents participation as an influence graph that links contributed artifacts to verified changes in AI systems, including datasets, prompts, adapters, policies, guardrails, and evaluation suites. It integrates three elements: a Participation Evidence Standard documenting consent, privacy, compensation, and reuse terms; an influence tracing mechanism that connects system updates to replayable before and after tests, enabling longitudinal monitoring of commitments; and encoded rights and incentives. Capability Vouchers allow authorized community stewards to request or constrain specific system capabilities within defined boundaries, while Participation Credits support ongoing recognition and compensation when contributed tests continue to provide value. We ground the framework in four urban AI and public space governance deployments and provide a machine readable schema, templates, and an evaluation plan for assessing traceability, enforceability, and compensation in practice.
comment: Presented at PAIRS: Participatory AI Research & Practice Symposium
☆ Blind Gods and Broken Screens: Architecting a Secure, Intent-Centric Mobile Agent Operating System
The evolution of Large Language Models (LLMs) has shifted mobile computing from App-centric interactions to system-level autonomous agents. Current implementations predominantly rely on a "Screen-as-Interface" paradigm, which inherits structural vulnerabilities and conflicts with the mobile ecosystem's economic foundations. In this paper, we conduct a systematic security analysis of state-of-the-art mobile agents using Doubao Mobile Assistant as a representative case. We decompose the threat landscape into four dimensions - Agent Identity, External Interface, Internal Reasoning, and Action Execution - revealing critical flaws such as fake App identity, visual spoofing, indirect prompt injection, and unauthorized privilege escalation stemming from a reliance on unstructured visual data. To address these challenges, we propose Aura, an Agent Universal Runtime Architecture for a clean-slate secure agent OS. Aura replaces brittle GUI scraping with a structured, agent-native interaction model. It adopts a Hub-and-Spoke topology where a privileged System Agent orchestrates intent, sandboxed App Agents execute domain-specific tasks, and the Agent Kernel mediates all communication. The Agent Kernel enforces four defense pillars: (i) cryptographic identity binding via a Global Agent Registry; (ii) semantic input sanitization through a multilayer Semantic Firewall; (iii) cognitive integrity via taint-aware memory and plan-trajectory alignment; and (iv) granular access control with non-deniable auditing. Evaluation on MobileSafetyBench shows that, compared to Doubao, Aura improves low-risk Task Success Rate from roughly 75% to 94.3%, reduces high-risk Attack Success Rate from roughly 40% to 4.4%, and achieves near-order-of-magnitude latency gains. These results demonstrate Aura as a viable, secure alternative to the "Screen-as-Interface" paradigm.
comment: 35 pages, 15 figures
☆ Resource-Efficient Model-Free Reinforcement Learning for Board Games
Board games have long served as complex decision-making benchmarks in artificial intelligence. In this field, search-based reinforcement learning methods such as AlphaZero have achieved remarkable success. However, their significant computational demands have been pointed out as barriers to their reproducibility. In this study, we propose a model-free reinforcement learning algorithm designed for board games to achieve more efficient learning. To validate the efficiency of the proposed method, we conducted comprehensive experiments on five board games: Animal Shogi, Gardner Chess, Go, Hex, and Othello. The results demonstrate that the proposed method achieves more efficient learning than existing methods across these environments. In addition, our extensive ablation study shows the importance of core techniques used in the proposed method. We believe that our efficient algorithm shows the potential of model-free reinforcement learning in domains traditionally dominated by search-based methods.
☆ Interactive LLM-assisted Curriculum Learning for Multi-Task Evolutionary Policy Search
Multi-task policy search is a challenging problem because policies are required to generalize beyond training cases. Curriculum learning has proven to be effective in this setting, as it introduces complexity progressively. However, designing effective curricula is labor-intensive and requires extensive domain expertise. LLM-based curriculum generation has only recently emerged as a potential solution, but was limited to operate in static, offline modes without leveraging real-time feedback from the optimizer. Here we propose an interactive LLM-assisted framework for online curriculum generation, where the LLM adaptively designs training cases based on real-time feedback from the evolutionary optimization process. We investigate how different feedback modalities, ranging from numeric metrics alone to combinations with plots and behavior visualizations, influence the LLM ability to generate meaningful curricula. Through a 2D robot navigation case study, tackled with genetic programming as optimizer, we evaluate our approach against static LLM-generated curricula and expert-designed baselines. We show that interactive curriculum generation outperforms static approaches, with multimodal feedback incorporating both progression plots and behavior visualizations yielding performance competitive with expert-designed curricula. This work contributes to understanding how LLMs can serve as interactive curriculum designers for embodied AI systems, with potential extensions to broader evolutionary robotics applications.
comment: 8 pages, 7 figures, with Appendix
☆ The CLEF-2026 FinMMEval Lab: Multilingual and Multimodal Evaluation of Financial AI Systems
We present the setup and the tasks of the FinMMEval Lab at CLEF 2026, which introduces the first multilingual and multimodal evaluation framework for financial Large Language Models (LLMs). While recent advances in financial natural language processing have enabled automated analysis of market reports, regulatory documents, and investor communications, existing benchmarks remain largely monolingual, text-only, and limited to narrow subtasks. FinMMEval 2026 addresses this gap by offering three interconnected tasks that span financial understanding, reasoning, and decision-making: Financial Exam Question Answering, Multilingual Financial Question Answering (PolyFiQA), and Financial Decision Making. Together, these tasks provide a comprehensive evaluation suite that measures models' ability to reason, generalize, and act across diverse languages and modalities. The lab aims to promote the development of robust, transparent, and globally inclusive financial AI systems, with datasets and evaluation resources publicly released to support reproducible research.
comment: 7 pages
☆ Reinforcing Chain-of-Thought Reasoning with Self-Evolving Rubrics
Despite chain-of-thought (CoT) playing crucial roles in LLM reasoning, directly rewarding it is difficult: training a reward model demands heavy human labeling efforts, and static RMs struggle with evolving CoT distributions and reward hacking. These challenges motivate us to seek an autonomous CoT rewarding approach that requires no human annotation efforts and can evolve gradually. Inspired by recent self-evolving training methods, we propose \textbf{RLCER} (\textbf{R}einforcement \textbf{L}earning with \textbf{C}oT Supervision via Self-\textbf{E}volving \textbf{R}ubrics), which enhances the outcome-centric RLVR by rewarding CoTs with self-proposed and self-evolving rubrics. We show that self-proposed and self-evolving rubrics provide reliable CoT supervision signals even without outcome rewards, enabling RLCER to outperform outcome-centric RLVR. Moreover, when used as in-prompt hints, these self-proposed rubrics further improve inference-time performance.
comment: 21 pages
☆ Diagnosing Structural Failures in LLM-Based Evidence Extraction for Meta-Analysis
Systematic reviews and meta-analyses rely on converting narrative articles into structured, numerically grounded study records. Despite rapid advances in large language models (LLMs), it remains unclear whether they can meet the structural requirements of this process, which hinge on preserving roles, methods, and effect-size attribution across documents rather than on recognizing isolated entities. We propose a structural, diagnostic framework that evaluates LLM-based evidence extraction as a progression of schema-constrained queries with increasing relational and numerical complexity, enabling precise identification of failure points beyond atom-level extraction. Using a manually curated corpus spanning five scientific domains, together with a unified query suite and evaluation protocol, we evaluate two state-of-the-art LLMs under both per-document and long-context, multi-document input regimes. Across domains and models, performance remains moderate for single-property queries but degrades sharply once tasks require stable binding between variables, roles, statistical methods, and effect sizes. Full meta-analytic association tuples are extracted with near-zero reliability, and long-context inputs further exacerbate these failures. Downstream aggregation amplifies even minor upstream errors, rendering corpus-level statistics unreliable. Our analysis shows that these limitations stem not from entity recognition errors, but from systematic structural breakdowns, including role reversals, cross-analysis binding drift, instance compression in dense result sections, and numeric misattribution, indicating that current LLMs lack the structural fidelity, relational binding, and numerical grounding required for automated meta-analysis. The code and data are publicly available at GitHub (https://github.com/zhiyintan/LLM-Meta-Analysis).
comment: Accepted at the 22nd Conference on Information and Research Science Connecting to Digital and Library Science (IRCDL 2026)
☆ FedPS: Federated data Preprocessing via aggregated Statistics
Federated Learning (FL) enables multiple parties to collaboratively train machine learning models without sharing raw data. However, before training, data must be preprocessed to address missing values, inconsistent formats, and heterogeneous feature scales. This preprocessing stage is critical for model performance but is largely overlooked in FL research. In practical FL systems, privacy constraints prohibit centralizing raw data, while communication efficiency introduces further challenges for distributed preprocessing. We introduce FedPS, a unified framework for federated data preprocessing based on aggregated statistics. FedPS leverages data-sketching techniques to efficiently summarize local datasets while preserving essential statistical information. Building on these summaries, we design federated algorithms for feature scaling, encoding, discretization, and missing-value imputation, and extend preprocessing-related models such as k-Means, k-Nearest Neighbors, and Bayesian Linear Regression to both horizontal and vertical FL settings. FedPS provides flexible, communication-efficient, and consistent preprocessing pipelines for practical FL deployments.
comment: 19 pages
☆ ICA: Information-Aware Credit Assignment for Visually Grounded Long-Horizon Information-Seeking Agents
Despite the strong performance achieved by reinforcement learning-trained information-seeking agents, learning in open-ended web environments remains severely constrained by low signal-to-noise feedback. Text-based parsers often discard layout semantics and introduce unstructured noise, while long-horizon training typically relies on sparse outcome rewards that obscure which retrieval actions actually matter. We propose a visual-native search framework that represents webpages as visual snapshots, allowing agents to leverage layout cues to quickly localize salient evidence and suppress distractors. To learn effectively from these high-dimensional observations, we introduce Information-Aware Credit Assignment (ICA), a post-hoc method that estimates each retrieved snapshot's contribution to the final outcome via posterior analysis and propagates dense learning signals back to key search turns. Integrated with a GRPO-based training pipeline, our approach consistently outperforms text-based baselines on diverse information-seeking benchmarks, providing evidence that visual snapshot grounding with information-level credit assignment alleviates the credit-assignment bottleneck in open-ended web environments. The code and datasets will be released in https://github.com/pc-inno/ICA_MM_deepsearch.git.
☆ Time Series Foundation Models for Energy Load Forecasting on Consumer Hardware: A Multi-Dimensional Zero-Shot Benchmark
Time Series Foundation Models (TSFMs) have introduced zero-shot prediction capabilities that bypass the need for task-specific training. Whether these capabilities translate to mission-critical applications such as electricity demand forecasting--where accuracy, calibration, and robustness directly affect grid operations--remains an open question. We present a multi-dimensional benchmark evaluating four TSFMs (Chronos-Bolt, Chronos-2, Moirai-2, and TinyTimeMixer) alongside Prophet as an industry-standard baseline and two statistical references (SARIMA and Seasonal Naive), using ERCOT hourly load data from 2020 to 2024. All experiments run on consumer-grade hardware (AMD Ryzen 7, 16GB RAM, no GPU). The evaluation spans four axes: (1) context length sensitivity from 24 to 2048 hours, (2) probabilistic forecast calibration, (3) robustness under distribution shifts including COVID-19 lockdowns and Winter Storm Uri, and (4) prescriptive analytics for operational decision support. The top-performing foundation models achieve MASE values near 0.31 at long context lengths (C = 2048h, day-ahead horizon), a 47% reduction over the Seasonal Naive baseline. The inclusion of Prophet exposes a structural advantage of pre-trained models: Prophet fails when the fitting window is shorter than its seasonality period (MASE > 74 at 24-hour context), while TSFMs maintain stable accuracy even with minimal context because they recognise temporal patterns learned during pre-training rather than estimating them from scratch. Calibration varies substantially across models--Chronos-2 produces well-calibrated prediction intervals (95% empirical coverage at 90% nominal level) while both Moirai-2 and Prophet exhibit overconfidence (~70% coverage). We provide practical model selection guidelines and release the complete benchmark framework for reproducibility.
comment: 27 pages, 13 figures
☆ Enhancing Multivariate Time Series Forecasting with Global Temporal Retrieval ICLR 2026
Multivariate time series forecasting (MTSF) plays a vital role in numerous real-world applications, yet existing models remain constrained by their reliance on a limited historical context. This limitation prevents them from effectively capturing global periodic patterns that often span cycles significantly longer than the input horizon - despite such patterns carrying strong predictive signals. Naive solutions, such as extending the historical window, lead to severe drawbacks, including overfitting, prohibitive computational costs, and redundant information processing. To address these challenges, we introduce the Global Temporal Retriever (GTR), a lightweight and plug-and-play module designed to extend any forecasting model's temporal awareness beyond the immediate historical context. GTR maintains an adaptive global temporal embedding of the entire cycle and dynamically retrieves and aligns relevant global segments with the input sequence. By jointly modeling local and global dependencies through a 2D convolution and residual fusion, GTR effectively bridges short-term observations with long-term periodicity without altering the host model architecture. Extensive experiments on six real-world datasets demonstrate that GTR consistently delivers state-of-the-art performance across both short-term and long-term forecasting scenarios, while incurring minimal parameter and computational overhead. These results highlight GTR as an efficient and general solution for enhancing global periodicity modeling in MTSF tasks. Code is available at this repository: https://github.com/macovaseas/GTR.
comment: ICLR 2026
☆ SynergyKGC: Reconciling Topological Heterogeneity in Knowledge Graph Completion via Topology-Aware Synergy
Knowledge Graph Completion (KGC) fundamentally hinges on the coherent fusion of pre-trained entity semantics with heterogeneous topological structures to facilitate robust relational reasoning. However, existing paradigms encounter a critical "structural resolution mismatch," failing to reconcile divergent representational demands across varying graph densities, which precipitates structural noise interference in dense clusters and catastrophic representation collapse in sparse regions. We present SynergyKGC, an adaptive framework that advances traditional neighbor aggregation to an active Cross-Modal Synergy Expert via relation-aware cross-attention and semantic-intent-driven gating. By coupling a density-dependent Identity Anchoring strategy with a Double-tower Coherent Consistency architecture, SynergyKGC effectively reconciles topological heterogeneity while ensuring representational stability across training and inference phases. Systematic evaluations on two public benchmarks validate the superiority of our method in significantly boosting KGC hit rates, providing empirical evidence for a generalized principle of resilient information integration in non-homogeneous structured data.
comment: 10 pages, 5 tables, 7 figures. This work introduces the Active Synergy mechanism and Identity Anchoring for Knowledge Graph Completion. Code: https://github.com/XuechengZou-2001/SynergyKGC-main
☆ Flow caching for autoregressive video generation
Autoregressive models, often built on Transformer architectures, represent a powerful paradigm for generating ultra-long videos by synthesizing content in sequential chunks. However, this sequential generation process is notoriously slow. While caching strategies have proven effective for accelerating traditional video diffusion models, existing methods assume uniform denoising across all frames-an assumption that breaks down in autoregressive models where different video chunks exhibit varying similarity patterns at identical timesteps. In this paper, we present FlowCache, the first caching framework specifically designed for autoregressive video generation. Our key insight is that each video chunk should maintain independent caching policies, allowing fine-grained control over which chunks require recomputation at each timestep. We introduce a chunkwise caching strategy that dynamically adapts to the unique denoising characteristics of each chunk, complemented by a joint importance-redundancy optimized KV cache compression mechanism that maintains fixed memory bounds while preserving generation quality. Our method achieves remarkable speedups of 2.38 times on MAGI-1 and 6.7 times on SkyReels-V2, with negligible quality degradation (VBench: 0.87 increase and 0.79 decrease respectively). These results demonstrate that FlowCache successfully unlocks the potential of autoregressive models for real-time, ultra-long video generation-establishing a new benchmark for efficient video synthesis at scale. The code is available at https://github.com/mikeallen39/FlowCache.
☆ Beyond Confidence: The Rhythms of Reasoning in Generative Models ICLR 2026
Large Language Models (LLMs) exhibit impressive capabilities yet suffer from sensitivity to slight input context variations, hampering reliability. Conventional metrics like accuracy and perplexity fail to assess local prediction robustness, as normalized output probabilities can obscure the underlying resilience of an LLM's internal state to perturbations. We introduce the Token Constraint Bound ($δ_{\mathrm{TCB}}$), a novel metric that quantifies the maximum internal state perturbation an LLM can withstand before its dominant next-token prediction significantly changes. Intrinsically linked to output embedding space geometry, $δ_{\mathrm{TCB}}$ provides insights into the stability of the model's internal predictive commitment. Our experiments show $δ_{\mathrm{TCB}}$ correlates with effective prompt engineering and uncovers critical prediction instabilities missed by perplexity during in-context learning and text generation. $δ_{\mathrm{TCB}}$ offers a principled, complementary approach to analyze and potentially improve the contextual stability of LLM predictions.
comment: ICLR 2026
☆ See, Plan, Snap: Evaluating Multimodal GUI Agents in Scratch
Block-based programming environments such as Scratch play a central role in low-code education, yet evaluating the capabilities of AI agents to construct programs through Graphical User Interfaces (GUIs) remains underexplored. We introduce ScratchWorld, a benchmark for evaluating multimodal GUI agents on program-by-construction tasks in Scratch. Grounded in the Use-Modify-Create pedagogical framework, ScratchWorld comprises 83 curated tasks spanning four distinct problem categories: Create, Debug, Extend, and Compute. To rigorously diagnose the source of agent failures, the benchmark employs two complementary interaction modes: primitive mode requires fine-grained drag-and-drop manipulation to directly assess visuomotor control, while composite mode uses high-level semantic APIs to disentangle program reasoning from GUI execution. To ensure reliable assessment, we propose an execution-based evaluation protocol that validates the functional correctness of the constructed Scratch programs through runtime tests within the browser environment. Extensive experiments across state-of-the-art multimodal language models and GUI agents reveal a substantial reasoning--acting gap, highlighting persistent challenges in fine-grained GUI manipulation despite strong planning capabilities.
☆ PELLI: Framework to effectively integrate LLMs for quality software generation
Recent studies have revealed that when LLMs are appropriately prompted and configured, they demonstrate mixed results. Such results often meet or exceed the baseline performance. However, these comparisons have two primary issues. First, they mostly considered only reliability as a comparison metric and selected a few LLMs (such as Codex and ChatGPT) for comparision. This paper proposes a comprehensive code quality assessment framework called Programmatic Excellence via LLM Iteration (PELLI). PELLI is an iterative analysis-based process that upholds high-quality code changes. We extended the state-of-the-art by performing a comprehensive evaluation that generates quantitative metrics for analyzing three primary nonfunctional requirements (such as maintainability, performance, and reliability) while selecting five popular LLMs. For PELLI's applicability, we selected three application domains while following Python coding standards. Following this framework, practitioners can ensure harmonious integration between LLMs and human developers, ensuring that their potential is fully realized. PELLI can serve as a practical guide for developers aiming to leverage LLMs while adhering to recognized quality standards. This study's outcomes are crucial for advancing LLM technologies in real-world applications, providing stakeholders with a clear understanding of where these LLMs excel and where they require further refinement. Overall, based on three nonfunctional requirements, we have found that GPT-4T and Gemini performed slightly better. We also found that prompt design can influence the overall code quality. In addition, each application domain demonstrated high and low scores across various metrics, and even within the same metrics across different prompts.
comment: 15 pages
☆ Integrating Generative AI-enhanced Cognitive Systems in Higher Education: From Stakeholder Perceptions to a Conceptual Framework considering the EU AI Act
Many staff and students in higher education have adopted generative artificial intelligence (GenAI) tools in their work and study. GenAI is expected to enhance cognitive systems by enabling personalized learning and streamlining educational services. However, stakeholders perceptions of GenAI in higher education remain divided, shaped by cultural, disciplinary, and institutional contexts. In addition, the EU AI Act requires universities to ensure regulatory compliance when deploying cognitive systems. These developments highlight the need for institutions to engage stakeholders and tailor GenAI integration to their needs while addressing concerns. This study investigates how GenAI is perceived within the disciplines of Information Technology and Electrical Engineering (ITEE). Using a mixed-method approach, we surveyed 61 staff and 37 students at the Faculty of ITEE, University of Oulu. The results reveal both shared and discipline-specific themes, including strong interest in programming support from GenAI and concerns over response quality, privacy, and academic integrity. Drawing from these insights, the study identifies a set of high-level requirements and proposes a conceptual framework for responsible GenAI integration. Disciplinary-specific requirements reinforce the importance of stakeholder engagement when integrating GenAI into higher education. The high-level requirements and the framework provide practical guidance for universities aiming to harness GenAI while addressing stakeholder concerns and ensuring regulatory compliance.
☆ RSHallu: Dual-Mode Hallucination Evaluation for Remote-Sensing Multimodal Large Language Models with Domain-Tailored Mitigation
Multimodal large language models (MLLMs) are increasingly adopted in remote sensing (RS) and have shown strong performance on tasks such as RS visual grounding (RSVG), RS visual question answering (RSVQA), and multimodal dialogue. However, hallucinations, which are responses inconsistent with the input RS images, severely hinder their deployment in high-stakes scenarios (e.g., emergency management and agricultural monitoring) and remain under-explored in RS. In this work, we present RSHallu, a systematic study with three deliverables: (1) we formalize RS hallucinations with an RS-oriented taxonomy and introduce image-level hallucination to capture RS-specific inconsistencies beyond object-centric errors (e.g., modality, resolution, and scene-level semantics); (2) we build a hallucination benchmark RSHalluEval (2,023 QA pairs) and enable dual-mode checking, supporting high-precision cloud auditing and low-cost reproducible local checking via a compact checker fine-tuned on RSHalluCheck dataset (15,396 QA pairs); and (3) we introduce a domain-tailored dataset RSHalluShield (30k QA pairs) for training-friendly mitigation and further propose training-free plug-and-play strategies, including decoding-time logit correction and RS-aware prompting. Across representative RS-MLLMs, our mitigation improves the hallucination-free rate by up to 21.63 percentage points under a unified protocol, while maintaining competitive performance on downstream RS tasks (RSVQA/RSVG). Code and datasets will be released.
☆ Transport, Don't Generate: Deterministic Geometric Flows for Combinatorial Optimization
Recent advances in Neural Combinatorial Optimization (NCO) have been dominated by diffusion models that treat the Euclidean Traveling Salesman Problem (TSP) as a stochastic $N \times N$ heatmap generation task. In this paper, we propose CycFlow, a framework that replaces iterative edge denoising with deterministic point transport. CycFlow learns an instance-conditioned vector field that continuously transports input 2D coordinates to a canonical circular arrangement, where the optimal tour is recovered from this $2N$ dimensional representation via angular sorting. By leveraging data-dependent flow matching, we bypass the quadratic bottleneck of edge scoring in favor of linear coordinate dynamics. This paradigm shift accelerates solving speed by up to three orders of magnitude compared to state-of-the-art diffusion baselines, while maintaining competitive optimality gaps.
comment: Preprint. 10 pages
☆ VulReaD: Knowledge-Graph-guided Software Vulnerability Reasoning and Detection
Software vulnerability detection (SVD) is a critical challenge in modern systems. Large language models (LLMs) offer natural-language explanations alongside predictions, but most work focuses on binary evaluation, and explanations often lack semantic consistency with Common Weakness Enumeration (CWE) categories. We propose VulReaD, a knowledge-graph-guided approach for vulnerability reasoning and detection that moves beyond binary classification toward CWE-level reasoning. VulReaD leverages a security knowledge graph (KG) as a semantic backbone and uses a strong teacher LLM to generate CWE-consistent contrastive reasoning supervision, enabling student model training without manual annotations. Students are fine-tuned with Odds Ratio Preference Optimization (ORPO) to encourage taxonomy-aligned reasoning while suppressing unsupported explanations. Across three real-world datasets, VulReaD improves binary F1 by 8-10% and multi-class classification by 30% Macro-F1 and 18% Micro-F1 compared to state-of-the-art baselines. Results show that LLMs outperform deep learning baselines in binary detection and that KG-guided reasoning enhances CWE coverage and interpretability.
comment: 22 pages, 3 figures
☆ Kill it with FIRE: On Leveraging Latent Space Directions for Runtime Backdoor Mitigation in Deep Neural Networks
Machine learning models are increasingly present in our everyday lives; as a result, they become targets of adversarial attackers seeking to manipulate the systems we interact with. A well-known vulnerability is a backdoor introduced into a neural network by poisoned training data or a malicious training process. Backdoors can be used to induce unwanted behavior by including a certain trigger in the input. Existing mitigations filter training data, modify the model, or perform expensive input modifications on samples. If a vulnerable model has already been deployed, however, those strategies are either ineffective or inefficient. To address this gap, we propose our inference-time backdoor mitigation approach called FIRE (Feature-space Inference-time REpair). We hypothesize that a trigger induces structured and repeatable changes in the model's internal representation. We view the trigger as directions in the latent spaces between layers that can be applied in reverse to correct the inference mechanism. Therefore, we turn the backdoored model against itself by manipulating its latent representations and moving a poisoned sample's features along the backdoor directions to neutralize the trigger. Our evaluation shows that FIRE has low computational overhead and outperforms current runtime mitigations on image benchmarks across various attacks, datasets, and network architectures.
☆ LOREN: Low Rank-Based Code-Rate Adaptation in Neural Receivers
Neural network based receivers have recently demonstrated superior system-level performance compared to traditional receivers. However, their practicality is limited by high memory and power requirements, as separate weight sets must be stored for each code rate. To address this challenge, we propose LOREN, a Low Rank-Based Code-Rate Adaptation Neural Receiver that achieves adaptability with minimal overhead. LOREN integrates lightweight low rank adaptation adapters (LOREN adapters) into convolutional layers, freezing a shared base network while training only small adapters per code rate. An end-to-end training framework over 3GPP CDL channels ensures robustness across realistic wireless environments. LOREN achieves comparable or superior performance relative to fully retrained base neural receivers. The hardware implementation of LOREN in 22nm technology shows more than 65% savings in silicon area and up to 15% power reduction when supporting three code rates.
comment: Accepted to / To appear IEEE Wireless Communications and Networking Conference Kuala Lumpur, Malaysia 13 - 16 April 2026
Exploring the impact of adaptive rewiring in Graph Neural Networks
This paper explores sparsification methods as a form of regularization in Graph Neural Networks (GNNs) to address high memory usage and computational costs in large-scale graph applications. Using techniques from Network Science and Machine Learning, including Erdős-Rényi for model sparsification, we enhance the efficiency of GNNs for real-world applications. We demonstrate our approach on N-1 contingency assessment in electrical grids, a critical task for ensuring grid reliability. We apply our methods to three datasets of varying sizes, exploring Graph Convolutional Networks (GCN) and Graph Isomorphism Networks (GIN) with different degrees of sparsification and rewiring. Comparison across sparsification levels shows the potential of combining insights from both research fields to improve GNN performance and scalability. Our experiments highlight the importance of tuning sparsity parameters: while sparsity can improve generalization, excessive sparsity may hinder learning of complex patterns. Our adaptive rewiring approach, particularly when combined with early stopping, proves promising by allowing the model to adapt its connectivity structure during training. This research contributes to understanding how sparsity can be effectively leveraged in GNNs for critical applications like power grid reliability analysis.
comment: This work has been submitted to the IEEE for possible publication
☆ SecureScan: An AI-Driven Multi-Layer Framework for Malware and Phishing Detection Using Logistic Regression and Threat Intelligence Integration
The growing sophistication of modern malware and phishing campaigns has diminished the effectiveness of traditional signature-based intrusion detection systems. This work presents SecureScan, an AI-driven, triple-layer detection framework that integrates logistic regression-based classification, heuristic analysis, and external threat intelligence via the VirusTotal API for comprehensive triage of URLs, file hashes, and binaries. The proposed architecture prioritizes efficiency by filtering known threats through heuristics, classifying uncertain samples using machine learning, and validating borderline cases with third-party intelligence. On benchmark datasets, SecureScan achieves 93.1 percent accuracy with balanced precision (0.87) and recall (0.92), demonstrating strong generalization and reduced overfitting through threshold-based decision calibration. A calibrated threshold and gray-zone logic (0.45-0.55) were introduced to minimize false positives and enhance real-world stability. Experimental results indicate that a lightweight statistical model, when augmented with calibrated verification and external intelligence, can achieve reliability and performance comparable to more complex deep learning systems.
Self-Supervised Image Super-Resolution Quality Assessment based on Content-Free Multi-Model Oriented Representation Learning
Super-resolution (SR) applied to real-world low-resolution (LR) images often results in complex, irregular degradations that stem from the inherent complexity of natural scene acquisition. In contrast to SR artifacts arising from synthetic LR images created under well-defined scenarios, those distortions are highly unpredictable and vary significantly across different real-life contexts. Consequently, assessing the quality of SR images (SR-IQA) obtained from realistic LR, remains a challenging and underexplored problem. In this work, we introduce a no-reference SR-IQA approach tailored for such highly ill-posed realistic settings. The proposed method enables domain-adaptive IQA for real-world SR applications, particularly in data-scarce domains. We hypothesize that degradations in super-resolved images are strongly dependent on the underlying SR algorithms, rather than being solely determined by image content. To this end, we introduce a self-supervised learning (SSL) strategy that first pretrains multiple SR model oriented representations in a pretext stage. Our contrastive learning framework forms positive pairs from images produced by the same SR model and negative pairs from those generated by different methods, independent of image content. The proposed approach S3 RIQA, further incorporates targeted preprocessing to extract complementary quality information and an auxiliary task to better handle the various degradation profiles associated with different SR scaling factors. To this end, we constructed a new dataset, SRMORSS, to support unsupervised pretext training; it includes a wide range of SR algorithms applied to numerous real LR images, which addresses a gap in existing datasets. Experiments on real SR-IQA benchmarks demonstrate that S3 RIQA consistently outperforms most state-of-the-art relevant metrics.
☆ Calliope: A TTS-based Narrated E-book Creator Ensuring Exact Synchronization, Privacy, and Layout Fidelity
A narrated e-book combines synchronized audio with digital text, highlighting the currently spoken word or sentence during playback. This format supports early literacy and assists individuals with reading challenges, while also allowing general readers to seamlessly switch between reading and listening. With the emergence of natural-sounding neural Text-to-Speech (TTS) technology, several commercial services have been developed to leverage these technology for converting standard text e-books into high-quality narrated e-books. However, no open-source solutions currently exist to perform this task. In this paper, we present Calliope, an open-source framework designed to fill this gap. Our method leverages state-of-the-art open-source TTS to convert a text e-book into a narrated e-book in the EPUB 3 Media Overlay format. The method offers several innovative steps: audio timestamps are captured directly during TTS, ensuring exact synchronization between narration and text highlighting; the publisher's original typography, styling, and embedded media are strictly preserved; and the entire pipeline operates offline. This offline capability eliminates recurring API costs, mitigates privacy concerns, and avoids copyright compliance issues associated with cloud-based services. The framework currently supports the state-of-the-art open-source TTS systems XTTS-v2 and Chatterbox. A potential alternative approach involves first generating narration via TTS and subsequently synchronizing it with the text using forced alignment. However, while our method ensures exact synchronization, our experiments show that forced alignment introduces drift between the audio and text highlighting significant enough to degrade the reading experience. Source code and usage instructions are available at https://github.com/hugohammer/TTS-Narrated-Ebook-Creator.git.
☆ A Diffusion-Based Generative Prior Approach to Sparse-view Computed Tomography
The reconstruction of X-rays CT images from sparse or limited-angle geometries is a highly challenging task. The lack of data typically results in artifacts in the reconstructed image and may even lead to object distortions. For this reason, the use of deep generative models in this context has great interest and potential success. In the Deep Generative Prior (DGP) framework, the use of diffusion-based generative models is combined with an iterative optimization algorithm for the reconstruction of CT images from sinograms acquired under sparse geometries, to maintain the explainability of a model-based approach while introducing the generative power of a neural network. There are therefore several aspects that can be further investigated within these frameworks to improve reconstruction quality, such as image generation, the model, and the iterative algorithm used to solve the minimization problem, for which we propose modifications with respect to existing approaches. The results obtained even under highly sparse geometries are very promising, although further research is clearly needed in this direction.
comment: 13 pages, 5 figures, 1 table
☆ Locomo-Plus: Beyond-Factual Cognitive Memory Evaluation Framework for LLM Agents
Long-term conversational memory is a core capability for LLM-based dialogue systems, yet existing benchmarks and evaluation protocols primarily focus on surface-level factual recall. In realistic interactions, appropriate responses often depend on implicit constraints such as user state, goals, or values that are not explicitly queried later. To evaluate this setting, we introduce \textbf{LoCoMo-Plus}, a benchmark for assessing cognitive memory under cue--trigger semantic disconnect, where models must retain and apply latent constraints across long conversational contexts. We further show that conventional string-matching metrics and explicit task-type prompting are misaligned with such scenarios, and propose a unified evaluation framework based on constraint consistency. Experiments across diverse backbone models, retrieval-based methods, and memory systems demonstrate that cognitive memory remains challenging and reveals failures not captured by existing benchmarks. Our code and evaluation framework are publicly available at: https://github.com/xjtuleeyf/Locomo-Plus.
comment: 16 pages, 8 figures
☆ Cross-Sectional Asset Retrieval via Future-Aligned Soft Contrastive Learning
Asset retrieval--finding similar assets in a financial universe--is central to quantitative investment decision-making. Existing approaches define similarity through historical price patterns or sector classifications, but such backward-looking criteria provide no guarantee about future behavior. We argue that effective asset retrieval should be future-aligned: the retrieved assets should be those most likely to exhibit correlated future returns. To this end, we propose Future-Aligned Soft Contrastive Learning (FASCL), a representation learning framework whose soft contrastive loss uses pairwise future return correlations as continuous supervision targets. We further introduce an evaluation protocol designed to directly assess whether retrieved assets share similar future trajectories. Experiments on 4,229 US equities demonstrate that FASCL consistently outperforms 13 baselines across all future-behavior metrics. The source code will be available soon.
☆ Interpretable Graph-Level Anomaly Detection via Contrast with Normal Prototypes
The task of graph-level anomaly detection (GLAD) is to identify anomalous graphs that deviate significantly from the majority of graphs in a dataset. While deep GLAD methods have shown promising performance, their black-box nature limits their reliability and deployment in real-world applications. Although some recent methods have made attempts to provide explanations for anomaly detection results, they either provide explanations without referencing normal graphs, or rely on abstract latent vectors as prototypes rather than concrete graphs from the dataset. To address these limitations, we propose Prototype-based Graph-Level Anomaly Detection (ProtoGLAD), an interpretable unsupervised framework that provides explanation for each detected anomaly by explicitly contrasting with its nearest normal prototype graph. It employs a point-set kernel to iteratively discover multiple normal prototype graphs and their associated clusters from the dataset, then identifying graphs distant from all discovered normal clusters as anomalies. Extensive experiments on multiple real-world datasets demonstrate that ProtoGLAD achieves competitive anomaly detection performance compared to state-of-the-art GLAD methods while providing better human-interpretable prototype-based explanations.
☆ Spend Search Where It Pays: Value-Guided Structured Sampling and Optimization for Generative Recommendation
Generative recommendation via autoregressive models has unified retrieval and ranking into a single conditional generation framework. However, fine-tuning these models with Reinforcement Learning (RL) often suffers from a fundamental probability-reward mismatch. Conventional likelihood-dominated decoding (e.g., beam search) exhibits a myopic bias toward locally probable prefixes, which causes two critical failures: (1) insufficient exploration, where high-reward items in low-probability branches are prematurely pruned and rarely sampled, and (2) advantage compression, where trajectories sharing high-probability prefixes receive highly correlated rewards with low within-group variance, yielding a weak comparative signal for RL. To address these challenges, we propose V-STAR, a Value-guided Sampling and Tree-structured Advantage Reinforcement framework. V-STAR forms a self-evolving loop via two synergistic components. First, a Value-Guided Efficient Decoding (VED) is developed to identify decisive nodes and selectively deepen high-potential prefixes. This improves exploration efficiency without exhaustive tree search. Second, we propose Sibling-GRPO, which exploits the induced tree topology to compute sibling-relative advantages and concentrates learning signals on decisive branching decisions. Extensive experiments on both offline and online datasets demonstrate that V-STAR outperforms state-of-the-art baselines, delivering superior accuracy and candidate-set diversity under strict latency constraints.
☆ AugVLA-3D: Depth-Driven Feature Augmentation for Vision-Language-Action Models
Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic perception and control, yet most existing approaches primarily rely on VLM trained using 2D images, which limits their spatial understanding and action grounding in complex 3D environments. To address this limitation, we propose a novel framework that integrates depth estimation into VLA models to enrich 3D feature representations. Specifically, we employ a depth estimation baseline called VGGT to extract geometry-aware 3D cues from standard RGB inputs, enabling efficient utilization of existing large-scale 2D datasets while implicitly recovering 3D structural information. To further enhance the reliability of these depth-derived features, we introduce a new module called action assistant, which constrains the learned 3D representations with action priors and ensures their consistency with downstream control tasks. By fusing the enhanced 3D features with conventional 2D visual tokens, our approach significantly improves the generalization ability and robustness of VLA models. Experimental results demonstrate that the proposed method not only strengthens perception in geometrically ambiguous scenarios but also leads to superior action prediction accuracy. This work highlights the potential of depth-driven data augmentation and auxiliary expert supervision for bridging the gap between 2D observations and 3D-aware decision-making in robotic systems.
☆ VESPO: Variational Sequence-Level Soft Policy Optimization for Stable Off-Policy LLM Training
Training stability remains a central challenge in reinforcement learning (RL) for large language models (LLMs). Policy staleness, asynchronous training, and mismatches between training and inference engines all cause the behavior policy to diverge from the current policy, risking training collapse. Importance sampling provides a principled correction for this distribution shift but suffers from high variance; existing remedies such as token-level clipping and sequence-level normalization lack a unified theoretical foundation. We propose Variational sEquence-level Soft Policy Optimization (VESPO). By incorporating variance reduction into a variational formulation over proposal distributions, VESPO derives a closed-form reshaping kernel that operates directly on sequence-level importance weights without length normalization. Experiments on mathematical reasoning benchmarks show that VESPO maintains stable training under staleness ratios up to 64x and fully asynchronous execution, and delivers consistent gains across both dense and Mixture-of-Experts models. Code is available at https://github.com/FloyedShen/VESPO
☆ OmniVL-Guard: Towards Unified Vision-Language Forgery Detection and Grounding via Balanced RL
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
comment: 38 pages, DeepFake Detection
☆ TwiFF (Think With Future Frames): A Large-Scale Dataset for Dynamic Visual Reasoning
Visual Chain-of-Thought (VCoT) has emerged as a promising paradigm for enhancing multimodal reasoning by integrating visual perception into intermediate reasoning steps. However, existing VCoT approaches are largely confined to static scenarios and struggle to capture the temporal dynamics essential for tasks such as instruction, prediction, and camera motion. To bridge this gap, we propose TwiFF-2.7M, the first large-scale, temporally grounded VCoT dataset derived from $2.7$ million video clips, explicitly designed for dynamic visual question and answer. Accompanying this, we introduce TwiFF-Bench, a high-quality evaluation benchmark of $1,078$ samples that assesses both the plausibility of reasoning trajectories and the correctness of final answers in open-ended dynamic settings. Building on these foundations, we propose the TwiFF model, a unified modal that synergistically leverages pre-trained video generation and image comprehension capabilities to produce temporally coherent visual reasoning cues-iteratively generating future action frames and textual reasoning. Extensive experiments demonstrate that TwiFF significantly outperforms existing VCoT methods and Textual Chain-of-Thought baselines on dynamic reasoning tasks, which fully validates the effectiveness for visual question answering in dynamic scenarios. Our code and data is available at https://github.com/LiuJunhua02/TwiFF.
comment: preprint
♻ ☆ Proficient Graph Neural Network Design by Accumulating Knowledge on Large Language Models WSDM 2026
High-level automation is increasingly critical in AI, driven by rapid advances in large language models (LLMs) and AI agents. However, LLMs, despite their general reasoning power, struggle significantly in specialized, data-sensitive tasks such as designing Graph Neural Networks (GNNs). This difficulty arises from (1) the inherent knowledge gaps in modeling the intricate, varying relationships between graph properties and suitable architectures and (2) the external noise from misleading descriptive inputs, often resulting in generic or even misleading model suggestions. Achieving proficiency in designing data-aware models -- defined as the meta-level capability to systematically accumulate, interpret, and apply data-specific design knowledge -- remains challenging for existing automated approaches, due to their inefficient construction and application of meta-knowledge. To achieve meta-level proficiency, we propose DesiGNN, a knowledge-centered framework that systematically converts past model design experience into structured, fine-grained knowledge priors well-suited for meta-learning with LLMs. To account for the inherent variability and external noise, DesiGNN aligns empirical property filtering from extensive benchmarks with adaptive elicitation of literature insights via LLMs. By constructing a solid meta-knowledge between unseen graph understanding and known effective architecture patterns, DesiGNN can deliver top-5.77% initial model proposals for unseen datasets within seconds and achieve consistently superior performance with minimal search cost compared to baselines.
comment: Accepted at WSDM 2026. Title changed from "Computation-friendly graph neural network design by accumulating knowledge on large language models" to "Proficient Graph Neural Network Design by Accumulating Knowledge on Large Language Models"
♻ ☆ MIND: Benchmarking Memory Consistency and Action Control in World Models
World models aim to understand, remember, and predict dynamic visual environments, yet a unified benchmark for evaluating their fundamental abilities remains lacking. To address this gap, we introduce MIND, the first open-domain closed-loop revisited benchmark for evaluating Memory consIstency and action coNtrol in worlD models. MIND contains 250 high-quality videos at 1080p and 24 FPS, including 100 (first-person) + 100 (third-person) video clips under a shared action space and 25 + 25 clips across varied action spaces covering eight diverse scenes. We design an efficient evaluation framework to measure two core abilities: memory consistency and action control, capturing temporal stability and contextual coherence across viewpoints. Furthermore, we design various action spaces, including different character movement speeds and camera rotation angles, to evaluate the action generalization capability across different action spaces under shared scenes. To facilitate future performance benchmarking on MIND, we introduce MIND-World, a novel interactive Video-to-World baseline. Extensive experiments demonstrate the completeness of MIND and reveal key challenges in current world models, including the difficulty of maintaining long-term memory consistency and generalizing across action spaces. Code: https://github.com/CSU-JPG/MIND.
♻ ☆ A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Computers
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Our dataset includes images with several real-world challenges, including noise, camera distortions, glare, varying lighting conditions, varying field of view, partial spacecraft visibility, brightly-lit city backgrounds, densely patterned and confounding backgrounds, aurora borealis, and a wide variety of spacecraft geometries. Finally, we finetuned YOLOv8 and YOLOv11 models for spacecraft segmentation to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.
♻ ☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
♻ ☆ Cross-Attention Speculative Decoding
Speculative decoding (SD) is a widely adopted approach for accelerating inference in large language models (LLMs), particularly when the draft and target models are well aligned. However, state-of-the-art SD methods typically rely on tightly coupled, self-attention-based Transformer decoders, often augmented with auxiliary pooling or fusion layers. This coupling makes them increasingly complex and harder to generalize across different models. We present Budget EAGLE (Beagle), the first, to our knowledge, cross-attention-based Transformer decoder SD model that achieves performance on par with leading self-attention SD models (EAGLE-v2) while eliminating the need for pooling or auxiliary components, simplifying the architecture, improving training efficiency, and maintaining stable memory usage during training-time simulation. To enable effective training of this novel architecture, we propose Two-Stage Block-Attention Training, a new method that achieves training stability and convergence efficiency in block-level attention scenarios. Extensive experiments across multiple LLMs and datasets show that Beagle achieves competitive inference speedups and higher training efficiency than EAGLE-v2, offering a strong alternative for architectures in speculative decoding.
♻ ☆ Algorithmically Establishing Trust in Evaluators
An evaluator, such as an LLM-as-a-judge, is trustworthy when there exists some agreed-upon way to measure its performance as a labeller. Traditional approaches either rely on testing the evaluator against references or assume that it `knows' somehow the correct labelling. Both approaches fail when references are unavailable: the former requires data, and the latter is an assumption, not evidence. To address this, we introduce the `No-Data Algorithm', which provably establishes trust in an evaluator without requiring any labelled data. Our algorithm works by successively posing challenges to said evaluator. We prove that after $r$ challenge rounds, it accepts an evaluator which knows the correct labels with probability $ \geq 1 - (1/4)^r$, and reliably flags untrustworthy ones. We present formal proofs of correctness, empirical tests, and applications to assessing trust in LLMs-as-judges for low-resource language labelling. Our work enables scientifically-grounded evaluator trust in low-data domains, addressing a critical bottleneck for scalable, trustworthy LLM deployment.
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL fits the definition of learning; however, its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that, empirically, ICL is limited in its ability to learn and generalise to unseen tasks. Namely, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies and on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism for learning, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026 -- CR version
♻ ☆ CamReasoner: Reinforcing Camera Movement Understanding via Structured Spatial Reasoning
Understanding camera dynamics is a fundamental pillar of video spatial intelligence. However, existing multimodal models predominantly treat this task as a black-box classification, often confusing physically distinct motions by relying on superficial visual patterns rather than geometric cues. We present CamReasoner, a framework that reformulates camera movement understanding as a structured inference process to bridge the gap between perception and cinematic logic. Our approach centers on the Observation-Thinking-Answer (O-T-A) paradigm, which compels the model to decode spatio-temporal cues such as trajectories and view frustums within an explicit reasoning block. To instill this capability, we construct a Large-scale Inference Trajectory Suite comprising 18k SFT reasoning chains and 38k RL feedback samples. Notably, we are the first to employ RL for logical alignment in this domain, ensuring motion inferences are grounded in physical geometry rather than contextual guesswork. By applying Reinforcement Learning to the Observation-Think-Answer (O-T-A) reasoning paradigm, CamReasoner effectively suppresses hallucinations and achieves state-of-the-art performance across multiple benchmarks.
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanatory basin or separate into multiple structured explanatory basins. We evaluate EvoXplain on the Adult Income and Breast Cancer datasets using deep neural networks and Logistic Regression. Although all models achieve high predictive accuracy, explanation stability differs across pipelines. Deep neural networks on Breast Cancer converge to a single explanatory basin, while the same architecture on Adult Income separates into distinct explanatory basins despite identical training conditions. Logistic Regression on Breast Cancer exhibits conditional multiplicity, where basin accessibility is controlled by regularisation configuration. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory structure visible and quantifiable, revealing when single instance explanations obscure the existence of multiple admissible predictive mechanisms. More broadly, EvoXplain reframes interpretability as a property of the training pipeline under repeated instantiation, rather than of any single trained model.
♻ ☆ FragmentFlow: Scalable Transition State Generation for Large Molecules
Transition states (TSs) are central to understanding and quantitatively predicting chemical reactivity and reaction mechanisms. Although traditional TS generation methods are computationally expensive, recent generative modeling approaches have enabled chemically meaningful TS prediction for relatively small molecules. However, these methods fail to generalize to practically relevant reaction substrates because of distribution shifts induced by increasing molecular sizes. Furthermore, TS geometries for larger molecules are not available at scale, making it infeasible to train generative models from scratch on such molecules. To address these challenges, we introduce FragmentFlow: a divide-and-conquer approach that trains a generative model to predict TS geometries for the reactive core atoms, which define the reaction mechanism. The full TS structure is then reconstructed by re-attaching substituent fragments to the predicted core. By operating on reactive cores, whose size and composition remain relatively invariant across molecular contexts, FragmentFlow mitigates distribution shifts in generative modeling. Evaluated on a new curated dataset of reactions involving reactants with up to 33 heavy atoms, FragmentFlow correctly identifies 90% of TSs while requiring 30% fewer saddle-point optimization steps than classical initialization schemes. These results point toward scalable TS generation for high-throughput reactivity studies.
♻ ☆ Retrieval- and Argumentation-Enhanced Multi-Agent LLMs for Judgmental Forecasting (Extended Version with Supplementary Material) AAMAS 2026
Judgmental forecasting is the task of making predictions about future events based on human judgment. This task can be seen as a form of claim verification, where the claim corresponds to a future event and the task is to assess the plausibility of that event. In this paper, we propose a novel multi-agent framework for claim verification, whereby different agents may disagree on claim veracity and bring specific evidence for and against the claims, represented as quantitative bipolar argumentation frameworks (QBAFs). We then instantiate the framework for supporting claim verification, with a variety of agents realised with Large Language Models (LLMs): (1) ArgLLM agents, an existing approach for claim verification that generates and evaluates QBAFs; (2) RbAM agents, whereby LLM-empowered Relation-based Argument Mining (RbAM) from external sources is used to generate QBAFs; (3) RAG-ArgLLM agents, extending ArgLLM agents with a form of Retrieval-Augmented Generation (RAG) of arguments from external sources. Finally, we conduct experiments with two standard judgmental forecasting datasets, with instances of our framework with two or three agents, empowered by six different base LLMs. We observe that combining evidence from agents can improve forecasting accuracy, especially in the case of three agents, while providing an explainable combination of evidence for claim verification.
comment: 24 pages, 3 figures, Accepted to AAMAS 2026
♻ ☆ Intrinsic Self-Correction in LLMs: Towards Explainable Prompting via Mechanistic Interpretability
Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its mechanism remains unclear. We show that intrinsic self-correction functions by steering hidden representations along interpretable latent directions, as evidenced by both alignment analysis and activation interventions. To achieve this, we analyze intrinsic self-correction via the representation shift induced by prompting. In parallel, we construct interpretable latent directions with contrastive pairs and verify the causal effect of these directions via activation addition. Evaluating six open-source LLMs, our results demonstrate that prompt-induced representation shifts in text detoxification and text toxification consistently align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These findings suggest that representation steering is the mechanistic driver of intrinsic self-correction. Our analysis highlights that understanding model internals offers a direct route to analyzing the mechanisms of prompt-driven LLM behaviors.
♻ ☆ GLASS Flows: Transition Sampling for Alignment of Flow and Diffusion Models
The performance of flow matching and diffusion models can be greatly improved at inference time using reward alignment algorithms, yet efficiency remains a major limitation. While several algorithms were proposed, we demonstrate that a common bottleneck is the sampling method these algorithms rely on: many algorithms require to sample Markov transitions via SDE sampling, which is significantly less efficient and often less performant than ODE sampling. To remove this bottleneck, we introduce GLASS Flows, a new sampling paradigm that simulates a "flow matching model within a flow matching model" to sample Markov transitions. As we show in this work, this "inner" flow matching model can be retrieved from a pre-trained model without any re-training, combining the efficiency of ODEs with the stochastic evolution of SDEs. On large-scale text-to-image models, we show that GLASS Flows eliminate the trade-off between stochastic evolution and efficiency. Combined with Feynman-Kac Steering, GLASS Flows improve state-of-the-art performance in text-to-image generation, making it a simple, drop-in solution for inference-time scaling of flow and diffusion models.
♻ ☆ Evaluating Kubernetes Performance for GenAI Inference: From Automatic Speech Recognition to LLM Summarization
As Generative AI (GenAI), particularly inference, rapidly emerges as a dominant workload category, the Kubernetes ecosystem is proactively evolving to natively support its unique demands. This industry paper demonstrates how emerging Kubernetes-native projects can be combined to deliver the benefits of container orchestration, such as scalability and resource efficiency, to complex AI workflows. We implement and evaluate an illustrative, multi-stage use case consisting of automatic speech recognition and summarization. First, we address batch inference by using Kueue to manage jobs that transcribe audio files with Whisper models and Dynamic Accelerator Slicer (DAS) to increase parallel job execution. Second, we address a discrete online inference scenario by feeding the transcripts to a Large Language Model for summarization hosted using llm-d, a novel solution utilizing the recent developments around the Kubernetes Gateway API Inference Extension (GAIE) for optimized routing of inference requests. Our findings illustrate that these complementary components (Kueue, DAS, and GAIE) form a cohesive, high-performance platform, proving Kubernetes' capability to serve as a unified foundation for demanding GenAI workloads: Kueue reduced total makespan by up to 15%; DAS shortened mean job completion time by 36\%; and GAIE working in conjunction with llm-d improved tail Time to First Token latency by up to 90% even under high loads.
comment: A accepted at the 17th International Conference on Performance Engineering
♻ ☆ Learning to Explore with Parameter-Space Noise: A Deep Dive into Parameter-Space Noise for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) improves LLM reasoning, yet growing evidence indicates an exploration ceiling: it often reweights existing solution traces rather than discovering new strategies, limiting gains under large sampling budgets (e.g., pass-at-256). We address this limitation with PSN-RLVR, which perturbs policy parameters before rollout generation to induce temporally consistent, trajectory-level exploration that better preserves long-horizon chain-of-thought coherence than action-space noise. To mitigate the resulting sampling-update mismatch, we incorporate truncated importance sampling (TIS). To avoid expensive KL-based adaptive noise control, we propose a computationally efficient real-time adaptive noise scheduler driven by a lightweight surrogate that combines semantic diversity with normalized self-certainty. Instantiated on GRPO, a widely used RLVR method, PSN-GRPO consistently expands the effective reasoning capability boundary across multiple mathematical reasoning benchmarks and model families, yielding higher pass-at-k under large sampling budgets and outperforming prior exploration-oriented RLVR methods (e.g., Pass-at-k-style training) while remaining orthogonal and thus composable for additional gains.
comment: 17 pages, 10 Figures
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics ICLR 2026
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: 49 pages, 28 figures. Accepted by ICLR 2026. Project page: https://bytedance-seed.github.io/ConfRover/starmd
♻ ☆ LLM-Mediated Guidance of MARL Systems
In complex multi-agent environments, achieving efficient learning and desirable behaviours is a significant challenge for Multi-Agent Reinforcement Learning (MARL) systems. This work explores the potential of combining MARL with Large Language Model (LLM)-mediated interventions to guide agents toward more desirable behaviours. Specifically, we investigate how LLMs can be used to interpret and facilitate interventions that shape the learning trajectories of multiple agents. We experimented with two types of interventions, referred to as controllers: a Natural Language (NL) Controller and a Rule-Based (RB) Controller. The RB Controller showed a stronger impact than the NL Controller, which uses a small (7B/8B) LLM to simulate human-like interventions. Our findings indicate that agents particularly benefit from early interventions, leading to more efficient training and higher performance. Both intervention types outperform the baseline without interventions, highlighting the potential of LLM-mediated guidance to accelerate training and enhance MARL performance in challenging environments.
♻ ☆ Surgery: Mitigating Harmful Fine-Tuning for Large Language Models via Attention Sink
Harmful fine-tuning can invalidate safety alignment of large language models, exposing significant safety risks. In this paper, we utilize the attention sink mechanism to mitigate harmful fine-tuning. Specifically, we first measure a statistic named \emph{sink divergence} for each attention head and observe that \emph{different attention heads exhibit two different signs of sink divergence}. To understand its safety implications, we conduct experiments and find that the number of attention heads of positive sink divergence increases along with the increase of the model's harmfulness when undergoing harmful fine-tuning. Based on this finding, we propose a separable sink divergence hypothesis -- \emph{attention heads associating with learning harmful patterns during fine-tuning are separable by their sign of sink divergence}. Based on the hypothesis, we propose a fine-tuning-stage defense, dubbed Surgery. Surgery utilizes a regularizer for sink divergence suppression, which steers attention heads toward the negative sink divergence group, thereby reducing the model's tendency to learn and amplify harmful patterns. Extensive experiments demonstrate that Surgery improves defense performance by 5.90\%, 11.25\%, and 9.55\% on the BeaverTails, HarmBench, and SorryBench benchmarks, respectively. Source code is available on https://github.com/Lslland/Surgery.
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7; v3: Fixed Figure 3 title and formula
♻ ☆ Orion-Bix: Bi-Axial Attention for Tabular In-Context Learning
Tabular data drive most real-world machine learning applications, yet building general-purpose models for them remains difficult. Mixed numeric and categorical fields, weak feature structure, and limited labeled data make scaling and generalization challenging. To this end, we introduce Orion-Bix, a tabular foundation model that combines biaxial attention with meta-learned in-context reasoning for few-shot tabular learning. Its encoder alternates standard, grouped, hierarchical, and relational attention, fusing their outputs through multi-CLS summarization to capture both local and global dependencies efficiently. A label-aware ICL head adapts on the fly and scales to large label spaces via hierarchical decision routing. Meta-trained on synthetically generated, structurally diverse tables with causal priors, Orion-Bix learns transferable inductive biases across heterogeneous data. Delivered as a scikit-learn compatible foundation model, it outperforms gradient-boosting baselines and remains competitive with state-of-the-art tabular foundation models on public benchmarks, showing that biaxial attention with episodic meta-training enables robust, few-shot-ready tabular learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-BiX .
♻ ☆ Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem is the local analogue of Hilbert's 18th problem, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry, dimensional structure variability, and combinatorial explosion beyond Go limit the scalability and generality of existing methods. Here we model the problem as a two-player matrix completion game and train the reinforcement learning system, PackingStar, to play the games. The matrix entries represent pairwise cosines of sphere center vectors. One player fills entries while another corrects suboptimal ones to improve exploration quality, cooperatively maximizing the matrix size, corresponding to the kissing number. These matrices are decomposed into representative substructures, providing diverse bases and structural constraints that steer subsequent games and make extremely large spaces tractable. PackingStar surpasses records from dimensions 25 to 31 and sets new lower bounds for generalized kissing numbers under various angular constraints. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions and discovers over 6000 new structures in other dimensions. Notably, some configurations challenge long-held antipodal paradigms, revealing algebraic correspondences with finite simple groups as well as geometric relationships across dimensions. Inspired by these patterns, humans devised further improved constructions. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition via extreme-scale reinforcement learning and open new pathways for the Kissing Number Problem and broader geometry research.
♻ ☆ MaskVCT: Masked Voice Codec Transformer for Zero-Shot Voice Conversion With Increased Controllability via Multiple Guidances ICASSP 2026
We introduce MaskVCT, a zero-shot voice conversion (VC) model that offers multi-factor controllability through multiple classifier-free guidances (CFGs). While previous VC models rely on a fixed conditioning scheme, MaskVCT integrates diverse conditions in a single model. To further enhance robustness and control, the model can leverage continuous or quantized linguistic features to enhance intelligibility and speaker similarity, and can use or omit pitch contour to control prosody. These choices allow users to seamlessly balance speaker identity, linguistic content, and prosodic factors in a zero-shot VC setting. Extensive experiments demonstrate that MaskVCT achieves the best target speaker and accent similarities while obtaining competitive word and character error rates compared to existing baselines. Audio samples are available at https://maskvct.github.io/.
comment: ICASSP 2026 Accepted
♻ ☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
♻ ☆ HuMam: Humanoid Motion Control via End-to-End Deep Reinforcement Learning with Mamba
End-to-end reinforcement learning (RL) for humanoid locomotion is appealing for its compact perception-action mapping, yet practical policies often suffer from training instability, inefficient feature fusion, and high actuation cost. We present HuMam, a state-centric end-to-end RL framework that employs a single-layer Mamba encoder to fuse robot-centric states with oriented footstep targets and a continuous phase clock. The policy outputs joint position targets tracked by a low-level PD loop and is optimized with PPO. A concise six-term reward balances contact quality, swing smoothness, foot placement, posture, and body stability while implicitly promoting energy saving. On the JVRC-1 humanoid in mc-mujoco, HuMam consistently improves learning efficiency, training stability, and overall task performance over a strong feedforward baseline, while reducing power consumption and torque peaks. To our knowledge, this is the first end-to-end humanoid RL controller that adopts Mamba as the fusion backbone, demonstrating tangible gains in efficiency, stability, and control economy.
comment: 12 pages
♻ ☆ Constructing and Benchmarking: a Labeled Email Dataset for Text-Based Phishing and Spam Detection Framework
Phishing and spam emails remain a major cybersecurity threat, with attackers increasingly leveraging Large Language Models (LLMs) to craft highly deceptive content. This study presents a comprehensive email dataset containing phishing, spam, and legitimate messages, explicitly distinguishing between human- and LLM-generated content. Each email is annotated with its category, emotional appeal (e.g., urgency, fear, authority), and underlying motivation (e.g., link-following, credential theft, financial fraud). We benchmark multiple LLMs on their ability to identify these emotional and motivational cues and select the most reliable model to annotate the full dataset. To evaluate classification robustness, emails were also rephrased using several LLMs while preserving meaning and intent. A state-of-the-art LLM was then assessed on its performance across both original and rephrased emails using expert-labeled ground truth. The results highlight strong phishing detection capabilities but reveal persistent challenges in distinguishing spam from legitimate emails. Our dataset and evaluation framework contribute to improving AI-assisted email security systems. To support open science, all code, templates, and resources are available on our project site.
comment: We are reworking the methodlogy and labels, creating more diversity and a better dataset
♻ ☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
♻ ☆ Fixing the Broken Compass: Diagnosing and Improving Inference-Time Reward Modeling ICLR 2026
Inference-time scaling techniques have shown promise in enhancing the reasoning capabilities of large language models (LLMs). While recent research has primarily focused on training-time optimization, our work highlights inference-time reward model (RM)-based reasoning as a critical yet overlooked avenue. In this paper, we conduct a systematic analysis of RM behavior across downstream reasoning tasks, revealing three key limitations: (1) RM can impair performance on simple questions, (2) its discriminative ability declines with increased sampling, and (3) high search diversity undermines RM performance. To address these issues, we propose CRISP (Clustered Reward Integration with Stepwise Prefixing), a novel inference-time algorithm that clusters generated reasoning paths by final answers, aggregates reward signals at the cluster level, and adaptively updates prefix prompts to guide generation. Experimental results demonstrate that CRISP significantly enhances LLM reasoning performance, achieving up to 5% accuracy improvement over other RM-based inference methods and an average of 10% gain over advanced reasoning models.
comment: 38 pages, 30 figures, Accpeted by ICLR 2026
♻ ☆ Context-level Language Modeling by Learning Predictive Context Embeddings
We propose ContextLM, a framework that implicitly learns multi-token prediction by augmenting standard pretraining with an intrinsic next-context prediction objective. ContextLM builds a language model on top of context embeddings that span multiple tokens, enabling better next-token prediction by predicting the next context. Our model is fully compatible with standard autoregressive, token-by-token evaluation paradigms (e.g., perplexity). Extensive experiments with GPT-2 and Pythia backbones (up to 1.5B parameters and 300B training tokens) reveal that ContextLM shifts the Pareto frontier of scaling laws, exhibiting superior efficiency in parameters, training tokens, and FLOPs. Our results show that ContextLM could already achieve the baseline perplexity using 39\% fewer parameters and demonstrates robust generalization improvements on extensive downstream tasks under equivalent parameter counts.
comment: 19pages,6 figures, 13 Tables
♻ ☆ Unveiling the "Fairness Seesaw": Discovering and Mitigating Gender and Race Bias in Vision-Language Models
Although Vision-Language Models (VLMs) have achieved remarkable success, the knowledge mechanisms underlying their social biases remain a black box, where fairness- and ethics-related problems harm certain groups of people in society. It is unknown to what extent VLMs yield gender and race bias in generative responses. In this paper, we conduct a systematic discovery of gender and race bias in state-of-the-art VLMs, focusing not only on surface-level responses but also on the internal probability distributions and hidden state dynamics. Our empirical analysis reveals three critical findings: 1) The Fairness Paradox: Models often generate fair text labels while maintaining highly skewed confidence scores (mis-calibration) toward specific social groups. 2) Layer-wise Fluctuation: Fairness knowledge is not uniformly distributed; it peaks in intermediate layers and undergoes substantial knowledge erosion in the final layers. 3) Residual Discrepancy: Within a single hidden layer, different residual streams carry conflicting social knowledge - some reinforcing fairness while others amplifying bias. Leveraging these insights, we propose RES-FAIR (RESidual Flow Adjustment for Inference Recalibration), a post-hoc framework that mitigates bias by localizing and projecting hidden states away from biased residual directions while amplifying fair components. Evaluations on PAIRS and SocialCounterfactuals datasets demonstrate that our discovery-based approach significantly improves response fairness and confidence calibration without compromising general reasoning abilities. Our work provides a new lens for understanding how multi-modal models store and process sensitive social information.
♻ ☆ Uni-DPO: A Unified Paradigm for Dynamic Preference Optimization of LLMs ICLR 2026
Direct Preference Optimization (DPO) has emerged as a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based methods typically treat all preference pairs equally, overlooking substantial variations in data quality and learning difficulty, which leads to inefficient data utilization and suboptimal performance. To address this limitation, we propose Uni-DPO, a unified dynamic preference optimization framework that jointly considers (a) the inherent quality of preference pairs and (b) the model's evolving performance during training. By adaptively reweighting samples based on both factors, Uni-DPO enables more effective use of preference data and achieves superior performance. Extensive experiments across models and benchmarks demonstrate the effectiveness and generalization of Uni-DPO. On textual tasks, Gemma-2-9B-IT fine-tuned with Uni-DPO surpasses the leading LLM, Claude 3 Opus, by 6.7 points on Arena-Hard. On mathematical and multimodal tasks, Uni-DPO consistently outperforms baseline methods across all benchmarks, providing strong empirical evidence of its effectiveness and robustness.
comment: Accepted by ICLR 2026. Code & models: https://github.com/pspdada/Uni-DPO
♻ ☆ ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data WACV 2026
Collecting and labeling large real-world wild animal datasets is impractical, costly, error-prone, and labor-intensive. For animal monitoring tasks, as detection, tracking, and pose estimation, out-of-distribution viewpoints (e.g. aerial) are also typically needed but rarely found in publicly available datasets. To solve this, existing approaches synthesize data with simplistic techniques that then necessitate strategies to bridge the synthetic-to-real gap. Therefore, real images, style constraints, complex animal models, or pre-trained networks are often leveraged. In contrast, we generate a fully synthetic dataset using a 3D photorealistic simulator and demonstrate that it can eliminate such needs for detecting and estimating 2D poses of wild zebras. Moreover, existing top-down 2D pose estimation approaches using synthetic data assume reliable detection models. However, these often fail in out-of-distribution scenarios, e.g. those that include wildlife or aerial imagery. Our method overcomes this by enabling the training of both tasks using the same synthetic dataset. Through extensive benchmarks, we show that models trained from scratch exclusively on our synthetic data generalize well to real images. We perform these using multiple real-world and synthetic datasets, pre-trained and randomly initialized backbones, and different image resolutions. Code, results, models, and data can be found athttps://zebrapose.is.tue.mpg.de/.
comment: 17 pages, 5 tables, 13 figures. Published in WACV 2026
♻ ☆ Controllable Logical Hypothesis Generation for Abductive Reasoning in Knowledge Graphs ICLR2026
Abductive reasoning in knowledge graphs aims to generate plausible logical hypotheses from observed entities, with broad applications in areas such as clinical diagnosis and scientific discovery. However, due to a lack of controllability, a single observation may yield numerous plausible but redundant or irrelevant hypotheses on large-scale knowledge graphs. To address this limitation, we introduce the task of controllable hypothesis generation to improve the practical utility of abductive reasoning. This task faces two key challenges when controlling for generating long and complex logical hypotheses: hypothesis space collapse and hypothesis oversensitivity. To address these challenges, we propose CtrlHGen, a Controllable logcial Hypothesis Generation framework for abductive reasoning over knowledge graphs, trained in a two-stage paradigm including supervised learning and subsequent reinforcement learning. To mitigate hypothesis space collapse, we design a dataset augmentation strategy based on sub-logical decomposition, enabling the model to learn complex logical structures by leveraging semantic patterns in simpler components. To address hypothesis oversensitivity, we incorporate smoothed semantic rewards including Dice and Overlap scores, and introduce a condition-adherence reward to guide the generation toward user-specified control constraints. Extensive experiments on three benchmark datasets demonstrate that our model not only better adheres to control conditions but also achieves superior semantic similarity performance compared to baselines. Our code is available at https://github.com/HKUST-KnowComp/CtrlHGen.
comment: Accepted by ICLR2026
♻ ☆ CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishing Attachment Detection
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
♻ ☆ PreferThinker: Reasoning-based Personalized Image Preference Assessment ICLR 2026
Personalized image preference assessment aims to evaluate an individual user's image preferences by relying only on a small set of reference images as prior information. Existing methods mainly focus on general preference assessment, training models with large-scale data to tackle well-defined tasks such as text-image alignment. However, these approaches struggle to handle personalized preference because user-specific data are scarce and not easily scalable, and individual tastes are often diverse and complex. To overcome these challenges, we introduce a common preference profile that serves as a bridge across users, allowing large-scale user data to be leveraged for training profile prediction and capturing complex personalized preferences. Building on this idea, we propose a reasoning-based personalized image preference assessment framework that follows a \textit{predict-then-assess} paradigm: it first predicts a user's preference profile from reference images, and then provides interpretable, multi-dimensional scores and assessments of candidate images based on the predicted profile. To support this, we first construct a large-scale Chain-of-Thought (CoT)-style personalized assessment dataset annotated with diverse user preference profiles and high-quality CoT-style reasoning, enabling explicit supervision of structured reasoning. Next, we adopt a two-stage training strategy: a cold-start supervised fine-tuning phase to empower the model with structured reasoning capabilities, followed by reinforcement learning to incentivize the model to explore more reasonable assessment paths and enhance generalization. Furthermore, we propose a similarity-aware prediction reward to encourage better prediction of the user's preference profile, which facilitates more reasonable assessments exploration. Extensive experiments demonstrate the superiority of the proposed method.
comment: This paper is accepted by ICLR 2026
♻ ☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
♻ ☆ Games with Payments between Learning Agents
In repeated games, such as auctions, players rely on autonomous learning agents to choose their actions. We study settings in which players have their agents make monetary transfers to other agents during play at their own expense, in order to influence learning dynamics in their favor. Our goal is to understand when players have incentives to use such payments, how payments between agents affect learning outcomes, and what the resulting implications are for welfare and its distribution. We propose a simple game-theoretic model to capture the incentive structure of such scenarios. We find that, quite generally, abstaining from payments is not robust to strategic deviations by users of learning agents: self-interested players benefit from having their agents make payments to other learners. In a broad class of games, such endogenous payments between learning agents lead to higher welfare for all players. In first- and second-price auctions, equilibria of the induced "payment-policy game" lead to highly collusive learning outcomes, with low or vanishing revenue for the auctioneer. These results highlight a fundamental challenge for mechanism design, as well as for regulatory policies, in environments where learning agents may interact in the digital ecosystem beyond a mechanism's boundaries.
♻ ☆ RELOOP: Recursive Retrieval with Multi-Hop Reasoner and Planners for Heterogeneous QA
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introduces RELOOP, a structure aware framework using Hierarchical Sequence (HSEQ) that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, RELOOP exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) \textbf{guided, budget-aware iteration} that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 19 pages, 2 figures
♻ ☆ LOGOS-CA: A Cellular Automaton Using Natural Language as State and Rule
Large Language Models (LLMs), trained solely on massive text data, have achieved high performance on the Winograd Schema Challenge (WSC), a benchmark proposed to measure commonsense knowledge and reasoning abilities about the real world. This suggests that the language produced by humanity describes a significant portion of the world with considerable nuance. In this study, we attempt to harness the high expressive power of language within cellular automata. Specifically, we express cell states and rules in natural language and delegate their updates to an LLM. Through this approach, cellular automata can transcend the constraints of merely numerical states and fixed rules, providing us with a richer platform for simulation. Here, we propose LOGOS-CA (Language Oriented Grid Of Statements - Cellular Automaton) as a natural framework to achieve this and examine its capabilities. We confirmed that LOGOS-CA successfully performs simple forest fire simulations and also serves as an intriguing subject for investigation from an Artificial Life (ALife) perspective. In this paper, we report the results of these experiments and discuss directions for future research using LOGOS-CA.
♻ ☆ Bridging Fairness and Explainability: Can Input-Based Explanations Promote Fairness in Hate Speech Detection? ICLR 2026
Natural language processing (NLP) models often replicate or amplify social bias from training data, raising concerns about fairness. At the same time, their black-box nature makes it difficult for users to recognize biased predictions and for developers to effectively mitigate them. While some studies suggest that input-based explanations can help detect and mitigate bias, others question their reliability in ensuring fairness. Existing research on explainability in fair NLP has been predominantly qualitative, with limited large-scale quantitative analysis. In this work, we conduct the first systematic study of the relationship between explainability and fairness in hate speech detection, focusing on both encoder- and decoder-only models. We examine three key dimensions: (1) identifying biased predictions, (2) selecting fair models, and (3) mitigating bias during model training. Our findings show that input-based explanations can effectively detect biased predictions and serve as useful supervision for reducing bias during training, but they are unreliable for selecting fair models among candidates.Our code is available at https://github.com/Ewanwong/fairness_x_explainability.
comment: ICLR 2026
♻ ☆ Measuring What Matters: The AI Pluralism Index
Artificial intelligence systems increasingly mediate knowledge, communication, and decision making. Development and governance remain concentrated within a small set of firms and states, raising concerns that technologies may encode narrow interests and limit public agency. Capability benchmarks for language, vision, and coding are common, yet public, auditable measures of pluralistic governance are rare. We define AI pluralism as the degree to which affected stakeholders can shape objectives, data practices, safeguards, and deployment. We present the AI Pluralism Index (AIPI), a transparent, evidence-based instrument that evaluates producers and system families across four pillars: participatory governance, inclusivity and diversity, transparency, and accountability. AIPI codes verifiable practices from public artifacts and independent evaluations, explicitly handling "Unknown" evidence to report both lower-bound ("evidence") and known-only scores with coverage. We formalize the measurement model; implement a reproducible pipeline that integrates structured web and repository analysis, external assessments, and expert interviews; and assess reliability with inter-rater agreement, coverage reporting, cross-index correlations, and sensitivity analysis. The protocol, codebook, scoring scripts, and evidence graph are maintained openly with versioned releases and a public adjudication process. We report pilot provider results and situate AIPI relative to adjacent transparency, safety, and governance frameworks. The index aims to steer incentives toward pluralistic practice and to equip policymakers, procurers, and the public with comparable evidence.
comment: Proceedings of the International Association for Safe & Ethical AI (IASEAI), 2026
♻ ☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
♻ ☆ Towards Better Code Understanding in Decoder-Only Models with Contrastive Learning AAAI 2026
Recent advances in large-scale code generation models have led to remarkable progress in producing high-quality code. These models are trained in a self-supervised manner on extensive unlabeled code corpora using a decoder-only architecture. However, despite their generative strength, decoder-only models often exhibit limited performance on code understanding tasks such as code search and clone detection, primarily due to their generation-oriented training objectives. While training large encoder-only models from scratch on massive code datasets can improve understanding ability but remains computationally expensive and time-consuming. In this paper, we explore a more efficient alternative by transferring knowledge from pre-trained decoder-only code generation models to code understanding tasks. We investigate how decoder-only architectures can be effectively adapted to learn discriminative and semantically meaningful code representations. To this end, we propose CL4D, a contrastive learning framework tailored to strengthen the representation capabilities of decoder-only models. Extensive experiments on multiple benchmark datasets demonstrate that CL4D achieves competitive or superior performance compared to existing methods on representative code understanding tasks, including code search and clone detection. Further analysis reveals that CL4D substantially improves the semantic alignment of code representations by reducing the distance between semantically similar code snippets. These findings highlight the feasibility of leveraging decoder-only models as a unified backbone for both code generation and understanding.
comment: AAAI 2026
♻ ☆ Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
♻ ☆ Symmetrization Weighted Binary Cross-Entropy: Modeling Perceptual Asymmetry for Human-Consistent Neural Edge Detection
Edge detection (ED) is a fundamental perceptual process in computer vision, forming the structural basis for high-level reasoning tasks such as segmentation, recognition, and scene understanding. Despite substantial progress achieved by deep neural networks, most ED models attain high numerical accuracy but fail to produce visually sharp and perceptually consistent edges, thereby limiting their reliability in intelligent vision systems. To address this issue, this study introduces the Symmetrization Weighted Binary Cross-Entropy (SWBCE) loss, a perception-inspired formulation that extends the conventional WBCE by incorporating prediction-guided symmetry. SWBCE explicitly models the perceptual asymmetry in human edge recognition, wherein edge decisions require stronger evidence than non-edge ones, aligning the optimization process with human perceptual discrimination. The resulting symmetric learning mechanism jointly enhances edge recall and suppresses false positives, achieving a superior balance between quantitative accuracy and perceptual fidelity. Extensive experiments across multiple benchmark datasets and representative ED architectures demonstrate that SWBCE can outperform existing loss functions in both numerical evaluation and visual quality. Particularly with the HED-EES model, the SSIM can be improved by about 15% on BRIND, and in all experiments, training by SWBCE consistently obtains the best perceptual results. Beyond edge detection, the proposed perceptual loss offers a generalizable optimization principle for soft computing and neural learning systems, particularly in scenarios where asymmetric perceptual reasoning plays a critical role.
comment: 39 pages
♻ ☆ Bielik Guard: Efficient Polish Language Safety Classifiers for LLM Content Moderation
As Large Language Models (LLMs) become increasingly deployed in Polish language applications, the need for efficient and accurate content safety classifiers has become paramount. We present Bielik Guard, a family of compact Polish language safety classifiers comprising two model variants: a 0.1B parameter model based on MMLW-RoBERTa-base and a 0.5B parameter model based on PKOBP/polish-roberta-8k. Fine-tuned on a community-annotated dataset of 6,885 Polish texts, these models classify content across five safety categories: Hate/Aggression, Vulgarities, Sexual Content, Crime, and Self-Harm. Our evaluation demonstrates that both models achieve strong performance on multiple benchmarks. The 0.5B variant offers the best overall discrimination capability with F1 scores of 0.791 (micro) and 0.785 (macro) on the test set, while the 0.1B variant demonstrates exceptional efficiency. Notably, Bielik Guard 0.1B v1.1 achieves superior precision (77.65%) and very low false positive rate (0.63%) on real user prompts, outperforming HerBERT-PL-Guard (31.55% precision, 4.70% FPR) despite identical model size. The models are publicly available and designed to provide appropriate responses rather than simple content blocking, particularly for sensitive categories like self-harm.
♻ ☆ AI Driven Discovery of Bio Ecological Mediation in Cascading Heatwave Risks
Compound heatwaves increasingly trigger complex cascading failures that propagate through interconnected physical and human systems, yet the fragmentation of disciplinary knowledge hinders the comprehensive mapping of these systemic risk topologies. This study introduces the Heatwave Discovery Agent HeDA as an autonomous scientific synthesis framework designed to bridge cognitive gaps by constructing a high fidelity knowledge graph from 8,111 academic publications. By structuring 70,297 evidence nodes, the system exhibits enhanced inferential fidelity in capturing long tail risk mechanisms and achieves a significant accuracy margin compared to standard foundation models including GPT 5.2 and Claude Sonnet 4.5 in complex reasoning tasks. The resulting topological analysis reveals a critical bio ecological mediation effect where biological systems function as the primary non linear amplifiers of thermal stress that transform physical meteorological hazards into systemic socioeconomic losses. We further identify latent functional couplings between theoretically distinct sectors such as the heat induced synchronization of power grid failures and emergency medical capacity saturation. These findings elucidate the dynamics of compound climate risks and provide an empirical basis for shifting adaptation strategies from static sectoral defense to dynamic cross system resilience.
♻ ☆ Why do we Trust Chatbots? From Normative Principles to Behavioral Drivers
As chatbots increasingly blur the boundary between automated systems and human conversation, the foundations of trust in these systems warrant closer examination. While regulatory and policy frameworks tend to define trust in normative terms, the trust users place in chatbots often emerges from behavioral mechanisms. In many cases, this trust is not earned through demonstrated trustworthiness but is instead shaped by interactional design choices that leverage cognitive biases to influence user behavior. Based on this observation, we propose reframing chatbots not as companions or assistants, but as highly skilled salespeople whose objectives are determined by the deploying organization. We argue that the coexistence of competing notions of "trust" under a shared term obscures important distinctions between psychological trust formation and normative trustworthiness. Addressing this gap requires further research and stronger support mechanisms to help users appropriately calibrate trust in conversational AI systems.
♻ ☆ LighthouseGS: Indoor Structure-aware 3D Gaussian Splatting for Panorama-Style Mobile Captures WACV 2026
We introduce LighthouseGS, a practical novel view synthesis framework based on 3D Gaussian Splatting that utilizes simple panorama-style captures from a single mobile device. While convenient, this rotation-dominant motion and narrow baseline make accurate camera pose and 3D point estimation challenging, especially in textureless indoor scenes. To address these challenges, LighthouseGS leverages rough geometric priors, such as mobile device camera poses and monocular depth estimation, and utilizes indoor planar structures. Specifically, we propose a new initialization method called plane scaffold assembly to generate consistent 3D points on these structures, followed by a stable pruning strategy to enhance geometry and optimization stability. Additionally, we present geometric and photometric corrections to resolve inconsistencies from motion drift and auto-exposure in mobile devices. Tested on real and synthetic indoor scenes, LighthouseGS delivers photorealistic rendering, outperforming state-of-the-art methods and enabling applications like panoramic view synthesis and object placement. Project page: https://vision3d-lab.github.io/lighthousegs/
comment: WACV 2026
♻ ☆ PaperX: A Unified Framework for Multimodal Academic Presentation Generation with Scholar DAG
Transforming scientific papers into multimodal presentation content is essential for research dissemination but remains labor intensive. Existing automated solutions typically treat each format as an isolated downstream task, leading to redundant processing and semantic inconsistency. We introduce PaperX, a unified framework that models academic presentation generation as a structural transformation and rendering process. Central to our approach is the Scholar DAG, an intermediate representation that decouples the paper's logical structure from its final presentation syntax. By applying adaptive graph traversal strategies, PaperX generates diverse, high quality outputs from a single source. Comprehensive evaluations demonstrate that our framework achieves the state of the art performance in content fidelity and aesthetic quality while significantly improving cost efficiency compared to specialized single task agents.
comment: 29 pages, 9 figures, Project website: https://github.com/yutao1024/PaperX
♻ ☆ Expanding Reasoning Potential in Foundation Model by Learning Diverse Chains of Thought Patterns
Recent progress in large reasoning models for challenging mathematical reasoning has been driven by reinforcement learning (RL). Incorporating long chain-of-thought (CoT) data during mid-training has also been shown to substantially improve reasoning depth. However, current approaches often utilize CoT data indiscriminately, leaving open the critical question of which data types most effectively enhance model reasoning capabilities. In this paper, we define the foundation model's reasoning potential for the first time as the inverse of the number of independent attempts required to correctly answer the question, which is strongly correlated with the final model performance. We then propose utilizing diverse data enriched with high-value reasoning patterns to expand the reasoning potential. Specifically, we abstract atomic reasoning patterns from CoT sequences, characterized by commonality and inductive capabilities, and use them to construct a core reference set enriched with valuable reasoning patterns. Furthermore, we propose a dual-granularity algorithm involving chains of reasoning patterns and token entropy, efficiently selecting high-value CoT data (CoTP) from the data pool that aligns with the core set, thereby training models to master reasoning effectively. Only 10B-token CoTP data enables the 85A6B Mixture-of-Experts (MoE) model to improve by 9.58% on the challenging AIME 2024 and 2025, and to raise the upper bound of downstream RL performance by 7.81%.
♻ ☆ Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation ICLR 2026
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning, gradient-calculation or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models and how they affect RAG behaviours. Our code is available at https://github.com/ruizheliUOA/ARC_JSD.
comment: Accepted at ICLR 2026; Best Paper Award at COLM 2025 XLLM-Reason-Plan Workshop; Accepted at NeurIPS 2025 Mechanistic Interpretability Workshop
♻ ☆ HarmMetric Eval: Benchmarking Metrics and Judges for LLM Harmfulness Assessment
The potential for large language models (LLMs) to generate harmful content poses a significant safety risk in their deployment. To address and assess this risk, the community has developed numerous harmfulness evaluation metrics and judges. However, the lack of a systematic benchmark for evaluating these metrics and judges undermines the credibility and consistency of LLM safety assessments. To bridge this gap, we introduce HarmMetric Eval, a comprehensive benchmark designed to support both overall and fine-grained evaluation of harmfulness metrics and judges. In HarmMetric Eval, we build a high-quality dataset of representative harmful prompts paired with highly diverse harmful model responses and non-harmful counterparts across multiple categories. We also propose a flexible scoring mechanism that rewards the metrics for correctly ranking harmful responses above non-harmful ones, which is applicable to almost all existing metrics and judges with varying output formats and scoring scales. Using HarmMetric Eval, we uncover a surprising finding by extensive experiments: Conventional reference-based metrics such as ROUGE and METEOR can outperform existing LLM-based judges in fine-grained harmfulness evaluation, challenging prevailing assumptions about LLMs'superiority in this domain. To reveal the reasons behind this finding, we provide a fine-grained analysis to explain the limitations of LLM-based judges on rating irrelevant or useless responses. Furthermore, we build a new harmfulness judge by incorporating the fine-grained criteria into its prompt template and leverage reference-based metrics to fine-tune its base LLM. The resulting judge demonstrates superior performance than all existing metrics and judges in evaluating harmful responses.
♻ ☆ Non-Contrastive Vision-Language Learning with Predictive Embedding Alignment
Vision-language models have transformed multimodal representation learning, yet dominant contrastive approaches like CLIP require large batch sizes, careful negative sampling, and extensive hyperparameter tuning. We introduce NOVA, a NOn-contrastive Vision-language Alignment framework based on joint embedding prediction with distributional regularization. NOVA aligns visual representations to a frozen, domain-specific text encoder by predicting text embeddings from augmented image views, while enforcing an isotropic Gaussian structure via Sketched Isotropic Gaussian Regularization (SIGReg). This eliminates the need for negative sampling, momentum encoders, or stop-gradients, reducing the training objective to a single hyperparameter. We evaluate NOVA on zeroshot chest X-ray classification using ClinicalBERT as the text encoder and Vision Transformers trained from scratch on MIMIC-CXR. On zero-shot classification across three benchmark datasets, NOVA outperforms multiple standard baselines while exhibiting substantially more consistent training runs. Our results demonstrate that non-contrastive vision-language pretraining offers a simpler, more stable, and more effective alternative to contrastive methods.
♻ ☆ On the Optimal Reasoning Length for RL-Trained Language Models
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures
♻ ☆ Progress Constraints for Reinforcement Learning in Behavior Trees
Behavior Trees (BTs) provide a structured and reactive framework for decision-making, commonly used to switch between sub-controllers based on environmental conditions. Reinforcement Learning (RL), on the other hand, can learn near-optimal controllers but sometimes struggles with sparse rewards, safe exploration, and long-horizon credit assignment. Combining BTs with RL has the potential for mutual benefit: a BT design encodes structured domain knowledge that can simplify RL training, while RL enables automatic learning of the controllers within BTs. However, naive integration of BTs and RL can lead to some controllers counteracting other controllers, possibly undoing previously achieved subgoals, thereby degrading the overall performance. To address this, we propose progress constraints, a novel mechanism where feasibility estimators constrain the allowed action set based on theoretical BT convergence results. Empirical evaluations in a 2D proof-of-concept and a high-fidelity warehouse environment demonstrate improved performance, sample efficiency, and constraint satisfaction, compared to prior methods of BT-RL integration.
♻ ☆ SegNSP: Revisiting Next Sentence Prediction for Linear Text Segmentation
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
♻ ☆ An Indoor Radio Mapping Dataset Combining 3D Point Clouds and RSSI
The growing number of smart devices supporting bandwidth-intensive and latency-sensitive applications, such as real-time video analytics, smart sensing, Extended Reality (XR), etc., necessitates reliable wireless connectivity in indoor environments. In such environments, accurate design of Radio Environment Maps (REMs) enables adaptive wireless network planning and optimization of Access Point (AP) placement. However, generating realistic REMs remains difficult due to the variability of indoor environments and the limitations of existing modeling approaches, which often rely on simplified layouts or fully synthetic data. These challenges are further amplified by the adoption of next-generation Wi-Fi standards, which operate at higher frequencies and suffer from limited range and wall penetration. To support the efforts in addressing these challenges, we collected a dataset that combines high-resolution 3D LiDAR scans with Wi-Fi RSSI measurements collected across 20 setups in a multi-room indoor environment. The dataset includes two measurement scenarios, the first without human presence in the environment, and the second with human presence, enabling the development and validation of REM estimation models that incorporate physical geometry and environmental dynamics. The described dataset supports research in data-driven wireless modeling and the development of high-capacity indoor communication networks.
comment: 19 pages, 8 figures, 3 tables
♻ ☆ Learning to Remember, Learn, and Forget in Attention-Based Models
In-Context Learning (ICL) in transformers acts as an online associative memory and is believed to underpin their high performance on complex sequence processing tasks. However, in gated linear attention models, this memory has a fixed capacity and is prone to interference, especially for long sequences. We propose Palimpsa, a self-attention model that views ICL as a continual learning problem that must address a stability-plasticity dilemma. Palimpsa uses Bayesian metaplasticity, where the plasticity of each attention state is tied to an importance state grounded by a prior distribution that captures accumulated knowledge. We demonstrate that various gated linear attention models emerge as specific architecture choices and posterior approximations, and that Mamba2 is a special case of Palimpsa where forgetting dominates. This theoretical link enables the transformation of any non-metaplastic model into a metaplastic one, significantly expanding its memory capacity. Our experiments show that Palimpsa consistently outperforms baselines on the Multi-Query Associative Recall (MQAR) benchmark and on Commonsense Reasoning tasks.
♻ ☆ A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.
comment: 7 pages, 7 figures. Accepted by the IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2025. Code is available at https://github.com/Liu-Zhonglin/pbn-melanoma-project
♻ ☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
♻ ☆ Implementing Grassroots Logic Programs with Multiagent Transition Systems and AI
Grassroots Logic Programs (GLP) is a concurrent logic programming language with variables partitioned into paired \emph{readers} and \emph{writers}, conjuring both linear logic and futures/promises: an assignment is produced at most once via the sole occurrence of a writer (promise) and consumed at most once via the sole occurrence of its paired reader (future), and may contain additional readers and/or writers, enabling the concise expression of rich multidirectional communication modalities. GLP was designed as a language for grassroots platforms -- distributed systems with multiple instances that can operate independently of each other and of any global resource, and can coalesce into ever larger instances -- with its target architecture being smartphones communicating peer-to-peer. The operational semantics of Concurrent (single-agent) GLP and of multiagent GLP (maGLP) were defined via transition systems/multiagent transition systems, respectively. Here, we describe the mathematics developed to facilitate the workstation- and smartphone-based implementations of GLP by AI in Dart. We developed dGLP -- implementation-ready deterministic operational semantics for single-agent GLP -- and proved it correct with respect to the Concurrent GLP operational semantics; dGLP was used by AI as a formal spec, from which it developed a workstation-based implementation of GLP. We developed madGLP -- an implementation-ready multiagent operational semantics for maGLP -- and proved it correct with respect to the maGLP operational semantics; madGLP is deterministic at the agent level (not at the system level due to communication asynchrony), and is being used by AI as a formal spec from which it develops a smartphone-based implementation of maGLP.
♻ ☆ CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
♻ ☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 22 pages, 8 figures
♻ ☆ Beyond Gemini-3-Pro: Revisiting LLM Routing and Aggregation at Scale
Large Language Models (LLMs) have rapidly advanced, with Gemini-3-Pro setting a new performance milestone. In this work, we explore collective intelligence as an alternative to monolithic scaling, and demonstrate that open-source LLMs' collaboration can surpass Gemini-3-Pro. We first revisit LLM routing and aggregation at scale and identify three key bottlenecks: (1) current train-free routers are limited by a query-based paradigm focusing solely on textual similarity; (2) recent aggregation methods remain largely static, failing to select appropriate aggregators for different tasks;(3) the complementarity of routing and aggregation remains underutilized. To address these problems, we introduce JiSi, a novel framework designed to release the full potential of LLMs' collaboration through three innovations: (1) Query-Response Mixed Routing capturing both semantic information and problem difficulty; (2) Support-Set-based Aggregator Selection jointly evaluating the aggregation and domain capacity of aggregators; (3) Adaptive Routing-Aggregation Switch dynamically leveraging the advantages of routing and aggregation. Comprehensive experiments on nine benchmarks demonstrate that JiSi can surpass Gemini-3-Pro with only 47% costs by orchestrating ten open-source LLMs, while outperforming mainstream baselines. It suggests that collective intelligence represents a novel path towards Artificial General Intelligence (AGI).
comment: 21 pages
♻ ☆ Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise
In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding approximate stochastic stationary points under heavy-tailed noise and weakly average smoothness conditions -- both of which are weaker than the commonly used bounded variance and mean-squared smoothness assumptions. Our complexity bounds either improve upon or match the best-known results in the literature. Numerical experiments are presented to demonstrate the practical effectiveness of the proposed methods.
♻ ☆ A Conditional Companion: Lived Experiences of People with Mental Health Disorders Using LLMs
Large Language Models (LLMs) are increasingly used for mental health support, yet little is known about how people with mental health challenges engage with them, how they evaluate their usefulness, and what design opportunities they envision. We conducted 20 semi-structured interviews with people in the UK who live with mental health conditions and have used LLMs for mental health support. Through reflexive thematic analysis, we found that participants engaged with LLMs in conditional and situational ways: for immediacy, the desire for non-judgement, self-paced disclosure, cognitive reframing, and relational engagement. Simultaneously, participants articulated clear boundaries informed by prior therapeutic experience: LLMs were effective for mild-to-moderate distress but inadequate for crises, trauma, and complex social-emotional situations. We contribute empirical insights into the lived use of LLMs for mental health, highlight boundary-setting as central to their safe role, and propose design and governance directions for embedding them responsibly within care ecosystem.
comment: Accepted for presentation at CHI 2026 in Barcelona (ACM CHI Conference on Human Factors in Computing Systems)
♻ ☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning AAMAS 2026
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
♻ ☆ MePo: Meta Post-Refinement for Rehearsal-Free General Continual Learning
To cope with uncertain changes of the external world, intelligent systems must continually learn from complex, evolving environments and respond in real time. This ability, collectively known as general continual learning (GCL), encapsulates practical challenges such as online datastreams and blurry task boundaries. Although leveraging pretrained models (PTMs) has greatly advanced conventional continual learning (CL), these methods remain limited in reconciling the diverse and temporally mixed information along a single pass, resulting in sub-optimal GCL performance. Inspired by meta-plasticity and reconstructive memory in neuroscience, we introduce here an innovative approach named Meta Post-Refinement (MePo) for PTMs-based GCL. This approach constructs pseudo task sequences from pretraining data and develops a bi-level meta-learning paradigm to refine the pretrained backbone, which serves as a prolonged pretraining phase but greatly facilitates rapid adaptation of representation learning to downstream GCL tasks. MePo further initializes a meta covariance matrix as the reference geometry of pretrained representation space, enabling GCL to exploit second-order statistics for robust output alignment. MePo serves as a plug-in strategy that achieves significant performance gains across a variety of GCL benchmarks and pretrained checkpoints in a rehearsal-free manner (e.g., 15.10\%, 13.36\%, and 12.56\% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K). Our source code is available at \href{https://github.com/SunGL001/MePo}{MePo}
♻ ☆ CODE-SHARP: Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs
Developing agents capable of open-endedly discovering and learning novel skills is a grand challenge in Artificial Intelligence. While reinforcement learning offers a powerful framework for training agents to master complex skills, it typically relies on hand-designed reward functions. This is infeasible for open-ended skill discovery, where the set of meaningful skills is not known a priori. While recent methods have shown promising results towards automating reward function design, they remain limited to refining rewards for pre-defined tasks. To address this limitation, we introduce Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs (CODE-SHARP), a novel framework leveraging Foundation Models (FM) to open-endedly expand and refine a hierarchical skill archive, structured as a directed graph of executable reward functions in code. We show that a goal-conditioned agent trained exclusively on the rewards generated by the discovered SHARP skills learns to solve increasingly long-horizon goals in the Craftax environment. When composed by a high-level FM-based planner, the discovered skills enable a single goal-conditioned agent to solve complex, long-horizon tasks, outperforming both pretrained agents and task-specific expert policies by over $134$% on average. We will open-source our code and provide additional videos at https://sites.google.com/view/code-sharp/homepage.
comment: Preprint
♻ ☆ Data Provenance Auditing of Fine-Tuned Large Language Models with a Text-Preserving Technique
We propose a system for marking sensitive or copyrighted texts to detect their use in fine-tuning large language models under black-box access with statistical guarantees. Our method builds digital ``marks'' using invisible Unicode characters organized into (``cue'', ``reply'') pairs. During an audit, prompts containing only ``cue'' fragments are issued to trigger regurgitation of the corresponding ``reply'', indicating document usage. To control false positives, we compare against held-out counterfactual marks and apply a ranking test, yielding a verifiable bound on the false positive rate. The approach is minimally invasive, scalable across many sources, robust to standard processing pipelines, and achieves high detection power even when marked data is a small fraction of the fine-tuning corpus.
♻ ☆ Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
♻ ☆ VoiceBridge: Designing Latent Bridge Models for General Speech Restoration at Scale
Bridge models have recently been explored for speech enhancement tasks such as denoising, dereverberation, and super-resolution, while these efforts are typically confined to a single task or small-scale datasets, with constrained general speech restoration (GSR) capability at scale. In this work, we introduce VoiceBridge, a GSR system rooted in latent bridge models (LBMs), capable of reconstructing high-fidelity speech at full-band (\textit{i.e.,} 48~kHz) from various distortions. By compressing speech waveform into continuous latent representations, VoiceBridge models the~\textit{diverse LQ-to-HQ tasks} (namely, low-quality to high-quality) in GSR with~\textit{a single latent-to-latent generative process} backed by a scalable transformer architecture. To better inherit the advantages of bridge models from the data domain to the latent space, we present an energy-preserving variational autoencoder, enhancing the alignment between the waveform and latent space over varying energy levels. Furthermore, to address the difficulty of HQ reconstruction from distinctively different LQ priors, we propose a joint neural prior, uniformly alleviating the reconstruction burden of LBM. At last, considering the key requirement of GSR systems, human perceptual quality, a perceptually aware fine-tuning stage is designed to mitigate the cascading mismatch in generation while improving perceptual alignment. Extensive validation across in-domain and out-of-domain tasks and datasets (\textit{e.g.}, refining recent zero-shot speech and podcast generation results) demonstrates the superior performance of VoiceBridge. Demo samples can be visited at: https://VoiceBridge-demo.github.io/.
♻ ☆ Bridging Explainability and Embeddings: BEE Aware of Spuriousness ICLR 2026
Current methods for detecting spurious correlations rely on analyzing dataset statistics or error patterns, leaving many harmful shortcuts invisible when counterexamples are absent. We introduce BEE (Bridging Explainability and Embeddings), a framework that shifts the focus from model predictions to the weight space, and to the embedding geometry underlying decisions. By analyzing how fine-tuning perturbs pretrained representations, BEE uncovers spurious correlations that remain hidden from conventional evaluation pipelines. We use linear probing as a transparent diagnostic lens, revealing spurious features that not only persist after full fine-tuning but also transfer across diverse state-of-the-art models. Our experiments cover numerous datasets and domains: vision (Waterbirds, CelebA, ImageNet-1k), language (CivilComments, MIMIC-CXR medical notes), and multiple embedding families (CLIP, CLIP-DataComp.XL, mGTE, BLIP2, SigLIP2). BEE consistently exposes spurious correlations: from concepts that slash the ImageNet accuracy by up to 95%, to clinical shortcuts in MIMIC-CXR notes that induce dangerous false negatives. Together, these results position BEE as a general and principled tool for diagnosing spurious correlations in weight space, enabling principled dataset auditing and more trustworthy foundation models. The source code is publicly available at https://github.com/bit-ml/bee.
comment: ICLR 2026
♻ ☆ MTBench: A Multimodal Time Series Benchmark for Temporal Reasoning and Question Answering
Understanding the relationship between textual news and time-series evolution is a critical yet under-explored challenge in applied data science. While multimodal learning has gained traction, existing multimodal time-series datasets fall short in evaluating cross-modal reasoning and complex question answering, which are essential for capturing complex interactions between narrative information and temporal patterns. To bridge this gap, we introduce Multimodal Time Series Benchmark (MTBench), a large-scale benchmark designed to evaluate large language models (LLMs) on time series and text understanding across financial and weather domains. MTbench comprises paired time series and textual data, including financial news with corresponding stock price movements and weather reports aligned with historical temperature records. Unlike existing benchmarks that focus on isolated modalities, MTbench provides a comprehensive testbed for models to jointly reason over structured numerical trends and unstructured textual narratives. The richness of MTbench enables formulation of diverse tasks that require a deep understanding of both text and time-series data, including time-series forecasting, semantic and technical trend analysis, and news-driven question answering (QA). These tasks target the model's ability to capture temporal dependencies, extract key insights from textual context, and integrate cross-modal information. We evaluate state-of-the-art LLMs on MTbench, analyzing their effectiveness in modeling the complex relationships between news narratives and temporal patterns. Our findings reveal significant challenges in current models, including difficulties in capturing long-term dependencies, interpreting causality in financial and weather trends, and effectively fusing multimodal information.
comment: 18 pages
♻ ☆ Reinforcement Learning in Strategy-Based and Atari Games: A Review of Google DeepMinds Innovations
Reinforcement Learning (RL) has been widely used in many applications, particularly in gaming, which serves as an excellent training ground for AI models. Google DeepMind has pioneered innovations in this field, employing reinforcement learning algorithms, including model-based, model-free, and deep Q-network approaches, to create advanced AI models such as AlphaGo, AlphaGo Zero, and MuZero. AlphaGo, the initial model, integrates supervised learning and reinforcement learning to master the game of Go, surpassing professional human players. AlphaGo Zero refines this approach by eliminating reliance on human gameplay data, instead utilizing self-play for enhanced learning efficiency. MuZero further extends these advancements by learning the underlying dynamics of game environments without explicit knowledge of the rules, achieving adaptability across various games, including complex Atari games. This paper reviews the significance of reinforcement learning applications in Atari and strategy-based games, analyzing these three models, their key innovations, training processes, challenges encountered, and improvements made. Additionally, we discuss advancements in the field of gaming, including MiniZero and multi-agent models, highlighting future directions and emerging AI models from Google DeepMind.
♻ ☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
comment: This paper has been withdrawn by the authors due to an error in the VSD method
Machine Learning 150
☆ Diffusion-Pretrained Dense and Contextual Embeddings
In this report, we introduce pplx-embed, a family of multilingual embedding models that employ multi-stage contrastive learning on a diffusion-pretrained language model backbone for web-scale retrieval. By leveraging bidirectional attention through diffusion-based pretraining, our models capture comprehensive bidirectional context within passages, enabling the use of mean pooling and a late chunking strategy to better preserve global context across long documents. We release two model types: pplx-embed-v1 for standard retrieval, and pplx-embed-context-v1 for contextualized embeddings that incorporate global document context into passage representations. pplx-embed-v1 achieves competitive performance on the MTEB(Multilingual, v2), MTEB(Code), MIRACL, BERGEN, and ToolRet retrieval benchmarks, while pplx-embed-context-v1 sets new records on the ConTEB benchmark. Beyond public benchmarks, pplx-embed-v1 demonstrates strong performance on our internal evaluation suite, which focuses on real-world, large-scale search scenarios over tens of millions of documents. These results validate the models' effectiveness in production environments where retrieval quality and efficiency are critical at scale.
☆ YOR: Your Own Mobile Manipulator for Generalizable Robotics
Recent advances in robot learning have generated significant interest in capable platforms that may eventually approach human-level competence. This interest, combined with the commoditization of actuators, has propelled growth in low-cost robotic platforms. However, the optimal form factor for mobile manipulation, especially on a budget, remains an open question. We introduce YOR, an open-source, low-cost mobile manipulator that integrates an omnidirectional base, a telescopic vertical lift, and two arms with grippers to achieve whole-body mobility and manipulation. Our design emphasizes modularity, ease of assembly using off-the-shelf components, and affordability, with a bill-of-materials cost under 10,000 USD. We demonstrate YOR's capability by completing tasks that require coordinated whole-body control, bimanual manipulation, and autonomous navigation. Overall, YOR offers competitive functionality for mobile manipulation research at a fraction of the cost of existing platforms. Project website: https://www.yourownrobot.ai/
☆ SCRAPL: Scattering Transform with Random Paths for Machine Learning ICLR 2026
The Euclidean distance between wavelet scattering transform coefficients (known as paths) provides informative gradients for perceptual quality assessment of deep inverse problems in computer vision, speech, and audio processing. However, these transforms are computationally expensive when employed as differentiable loss functions for stochastic gradient descent due to their numerous paths, which significantly limits their use in neural network training. Against this problem, we propose "Scattering transform with Random Paths for machine Learning" (SCRAPL): a stochastic optimization scheme for efficient evaluation of multivariable scattering transforms. We implement SCRAPL for the joint time-frequency scattering transform (JTFS) which demodulates spectrotemporal patterns at multiple scales and rates, allowing a fine characterization of intermittent auditory textures. We apply SCRAPL to differentiable digital signal processing (DDSP), specifically, unsupervised sound matching of a granular synthesizer and the Roland TR-808 drum machine. We also propose an initialization heuristic based on importance sampling, which adapts SCRAPL to the perceptual content of the dataset, improving neural network convergence and evaluation performance. We make our code and audio samples available and provide SCRAPL as a Python package.
comment: Accepted to ICLR 2026. Code, audio samples, and Python package provided at https://christhetree.github.io/scrapl/
☆ GENIUS: Generative Fluid Intelligence Evaluation Suite
Unified Multimodal Models (UMMs) have shown remarkable progress in visual generation. Yet, existing benchmarks predominantly assess $\textit{Crystallized Intelligence}$, which relies on recalling accumulated knowledge and learned schemas. This focus overlooks $\textit{Generative Fluid Intelligence (GFI)}$: the capacity to induce patterns, reason through constraints, and adapt to novel scenarios on the fly. To rigorously assess this capability, we introduce $\textbf{GENIUS}$ ($\textbf{GEN}$ Fluid $\textbf{I}$ntelligence Eval$\textbf{U}$ation $\textbf{S}$uite). We formalize $\textit{GFI}$ as a synthesis of three primitives. These include $\textit{Inducing Implicit Patterns}$ (e.g., inferring personalized visual preferences), $\textit{Executing Ad-hoc Constraints}$ (e.g., visualizing abstract metaphors), and $\textit{Adapting to Contextual Knowledge}$ (e.g., simulating counter-intuitive physics). Collectively, these primitives challenge models to solve problems grounded entirely in the immediate context. Our systematic evaluation of 12 representative models reveals significant performance deficits in these tasks. Crucially, our diagnostic analysis disentangles these failure modes. It demonstrates that deficits stem from limited context comprehension rather than insufficient intrinsic generative capability. To bridge this gap, we propose a training-free attention intervention strategy. Ultimately, $\textbf{GENIUS}$ establishes a rigorous standard for $\textit{GFI}$, guiding the field beyond knowledge utilization toward dynamic, general-purpose reasoning. Our dataset and code will be released at: $\href{https://github.com/arctanxarc/GENIUS}{https://github.com/arctanxarc/GENIUS}$.
☆ Data-Efficient Hierarchical Goal-Conditioned Reinforcement Learning via Normalizing Flows
Hierarchical goal-conditioned reinforcement learning (H-GCRL) provides a powerful framework for tackling complex, long-horizon tasks by decomposing them into structured subgoals. However, its practical adoption is hindered by poor data efficiency and limited policy expressivity, especially in offline or data-scarce regimes. In this work, Normalizing flow-based hierarchical implicit Q-learning (NF-HIQL), a novel framework that replaces unimodal gaussian policies with expressive normalizing flow policies at both the high- and low-levels of the hierarchy is introduced. This design enables tractable log-likelihood computation, efficient sampling, and the ability to model rich multimodal behaviors. New theoretical guarantees are derived, including explicit KL-divergence bounds for Real-valued non-volume preserving (RealNVP) policies and PAC-style sample efficiency results, showing that NF-HIQL preserves stability while improving generalization. Empirically, NF-HIQL is evaluted across diverse long-horizon tasks in locomotion, ball-dribbling, and multi-step manipulation from OGBench. NF-HIQL consistently outperforms prior goal-conditioned and hierarchical baselines, demonstrating superior robustness under limited data and highlighting the potential of flow-based architectures for scalable, data-efficient hierarchical reinforcement learning.
comment: 9 pages, 3 figures, IEEE International Conference on Robotics and Automation 2026
☆ LCIP: Loss-Controlled Inverse Projection of High-Dimensional Image Data
Projections (or dimensionality reduction) methods $P$ aim to map high-dimensional data to typically 2D scatterplots for visual exploration. Inverse projection methods $P^{-1}$ aim to map this 2D space to the data space to support tasks such as data augmentation, classifier analysis, and data imputation. Current $P^{-1}$ methods suffer from a fundamental limitation -- they can only generate a fixed surface-like structure in data space, which poorly covers the richness of this space. We address this by a new method that can `sweep' the data space under user control. Our method works generically for any $P$ technique and dataset, is controlled by two intuitive user-set parameters, and is simple to implement. We demonstrate it by an extensive application involving image manipulation for style transfer.
☆ TabICLv2: A better, faster, scalable, and open tabular foundation model
Tabular foundation models, such as TabPFNv2 and TabICL, have recently dethroned gradient-boosted trees at the top of predictive benchmarks, demonstrating the value of in-context learning for tabular data. We introduce TabICLv2, a new state-of-the-art foundation model for regression and classification built on three pillars: (1) a novel synthetic data generation engine designed for high pretraining diversity; (2) various architectural innovations, including a new scalable softmax in attention improving generalization to larger datasets without prohibitive long-sequence pretraining; and (3) optimized pretraining protocols, notably replacing AdamW with the Muon optimizer. On the TabArena and TALENT benchmarks, TabICLv2 without any tuning surpasses the performance of the current state of the art, RealTabPFN-2.5 (hyperparameter-tuned, ensembled, and fine-tuned on real data). With only moderate pretraining compute, TabICLv2 generalizes effectively to million-scale datasets under 50GB GPU memory while being markedly faster than RealTabPFN-2.5. We provide extensive ablation studies to quantify these contributions and commit to open research by first releasing inference code and model weights at https://github.com/soda-inria/tabicl, with synthetic data engine and pretraining code to follow.
☆ Weight Decay Improves Language Model Plasticity
The prevailing paradigm in large language model (LLM) development is to pretrain a base model, then perform further training to improve performance and model behavior. However, hyperparameter optimization and scaling laws have been studied primarily from the perspective of the base model's validation loss, ignoring downstream adaptability. In this work, we study pretraining from the perspective of model plasticity, that is, the ability of the base model to successfully adapt to downstream tasks through fine-tuning. We focus on the role of weight decay, a key regularization parameter during pretraining. Through systematic experiments, we show that models trained with larger weight decay values are more plastic, meaning they show larger performance gains when fine-tuned on downstream tasks. This phenomenon can lead to counterintuitive trade-offs where base models that perform worse after pretraining can perform better after fine-tuning. Further investigation of weight decay's mechanistic effects on model behavior reveals that it encourages linearly separable representations, regularizes attention matrices, and reduces overfitting on the training data. In conclusion, this work demonstrates the importance of using evaluation metrics beyond cross-entropy loss for hyperparameter optimization and casts light on the multifaceted role of that a single optimization hyperparameter plays in shaping model behavior.
☆ Just on Time: Token-Level Early Stopping for Diffusion Language Models
Diffusion language models generate text through iterative refinement, a process that is often computationally inefficient because many tokens reach stability long before the final denoising step. We introduce a training-free, token-level early stopping approach that identifies convergence independently at each position. Our method leverages lightweight signals derived from the model's predictions and local context to dynamically determine when individual tokens can be finalized. This yields adaptive per-token freezing without task-specific fine-tuning, substantially reducing the total number of diffusion steps required. Across diverse benchmarks, spanning mathematical reasoning, general question answering, and scientific understanding, our approach achieves state-of-the-art efficiency gains while preserving generation quality.
comment: Under review
☆ From Circuits to Dynamics: Understanding and Stabilizing Failure in 3D Diffusion Transformers
Reliable surface completion from sparse point clouds underpins many applications spanning content creation and robotics. While 3D diffusion transformers attain state-of-the-art results on this task, we uncover that they exhibit a catastrophic mode of failure: arbitrarily small on-surface perturbations to the input point cloud can fracture the output into multiple disconnected pieces -- a phenomenon we call Meltdown. Using activation-patching from mechanistic interpretability, we localize Meltdown to a single early denoising cross-attention activation. We find that the singular-value spectrum of this activation provides a scalar proxy: its spectral entropy rises when fragmentation occurs and returns to baseline when patched. Interpreted through diffusion dynamics, we show that this proxy tracks a symmetry-breaking bifurcation of the reverse process. Guided by this insight, we introduce PowerRemap, a test-time control that stabilizes sparse point-cloud conditioning. We demonstrate that Meltdown persists across state-of-the-art architectures (WaLa, Make-a-Shape), datasets (GSO, SimJEB) and denoising strategies (DDPM, DDIM), and that PowerRemap effectively counters this failure with stabilization rates of up to 98.3%. Overall, this work is a case study on how diffusion model behavior can be understood and guided based on mechanistic analysis, linking a circuit-level cross-attention mechanism to diffusion-dynamics accounts of trajectory bifurcations.
☆ Asymmetric Prompt Weighting for Reinforcement Learning with Verifiable Rewards
Reinforcement learning with verifiable rewards has driven recent advances in LLM post-training, in particular for reasoning. Policy optimization algorithms generate a number of responses for a given prompt and then effectively weight the corresponding gradients depending on the rewards. The most popular algorithms including GRPO, DAPO, and RLOO focus on ambiguous prompts, i.e., prompts with intermediate success probability, while downgrading gradients with very easy and very hard prompts. In this paper, we consider asymmetric prompt weightings that assign higher weights to prompts with low, or even zero, empirical success probability. We find that asymmetric weighting particularly benefits from-scratch RL (as in R1-Zero), where training traverses a wide accuracy range, and less so in post-SFT RL where the model already starts at high accuracy. We also provide theory that characterizes prompt weights which minimize the time needed to raise success probability from an initial level to a target accuracy under a fixed update budget. In low-success regimes, where informative responses are rare and response cost dominates, these optimal weights become asymmetric, upweighting low success probabilities and thereby accelerating effective-time convergence.
☆ The Offline-Frontier Shift: Diagnosing Distributional Limits in Generative Multi-Objective Optimization
Offline multi-objective optimization (MOO) aims to recover Pareto-optimal designs given a finite, static dataset. Recent generative approaches, including diffusion models, show strong performance under hypervolume, yet their behavior under other established MOO metrics is less understood. We show that generative methods systematically underperform evolutionary alternatives with respect to other metrics, such as generational distance. We relate this failure mode to the offline-frontier shift, i.e., the displacement of the offline dataset from the Pareto front, which acts as a fundamental limitation in offline MOO. We argue that overcoming this limitation requires out-of-distribution sampling in objective space (via an integral probability metric) and empirically observe that generative methods remain conservatively close to the offline objective distribution. Our results position offline MOO as a distribution-shift--limited problem and provide a diagnostic lens for understanding when and why generative optimization methods fail.
☆ From Natural Language to Materials Discovery:The Materials Knowledge Navigation Agent
Accelerating the discovery of high-performance materials remains a central challenge across energy, electronics, and aerospace technologies, where traditional workflows depend heavily on expert intuition and computationally expensive simulations. Here we introduce the Materials Knowledge Navigation Agent (MKNA), a language-driven system that translates natural-language scientific intent into executable actions for database retrieval, property prediction, structure generation, and stability evaluation. Beyond automating tool invocation, MKNA autonomously extracts quantitative thresholds and chemically meaningful design motifs from literature and database evidence, enabling data-grounded hypothesis formation. Applied to the search for high-Debye-temperature ceramics, the agent identifies a literature-supported screening criterion (Theta_D > 800 K), rediscovers canonical ultra-stiff materials such as diamond, SiC, SiN, and BeO, and proposes thermodynamically stable, previously unreported Be-C-rich compounds that populate the sparsely explored 1500-1700 K regime. These results demonstrate that MKNA not only finds stable candidates but also reconstructs interpretable design heuristics, establishing a generalizable platform for autonomous, language-guided materials exploration.
comment: 22 pages,5 figures
☆ Learning to Compose for Cross-domain Agentic Workflow Generation
Automatically generating agentic workflows -- executable operator graphs or codes that orchestrate reasoning, verification, and repair -- has become a practical way to solve complex tasks beyond what single-pass LLM generation can reliably handle. Yet what constitutes a good workflow depends heavily on the task distribution and the available operators. Under domain shift, current systems typically rely on iterative workflow refinement to discover a feasible workflow from a large workflow space, incurring high iteration costs and yielding unstable, domain-specific behavior. In response, we internalize a decompose-recompose-decide mechanism into an open-source LLM for cross-domain workflow generation. To decompose, we learn a compact set of reusable workflow capabilities across diverse domains. To recompose, we map each input task to a sparse composition over these bases to generate a task-specific workflow in a single pass. To decide, we attribute the success or failure of workflow generation to counterfactual contributions from learned capabilities, thereby capturing which capabilities actually drive success by their marginal effects. Across stringent multi-domain, cross-domain, and unseen-domain evaluations, our 1-pass generator surpasses SOTA refinement baselines that consume 20 iterations, while substantially reducing generation latency and cost.
☆ Renet: Principled and Efficient Relaxation for the Elastic Net via Dynamic Objective Selection
We introduce Renet, a principled generalization of the Relaxed Lasso to the Elastic Net family of estimators. While, on the one hand, $\ell_1$-regularization is a standard tool for variable selection in high-dimensional regimes and, on the other hand, the $\ell_2$ penalty provides stability and solution uniqueness through strict convexity, the standard Elastic Net nevertheless suffers from shrinkage bias that frequently yields suboptimal prediction accuracy. We propose to address this limitation through a framework called \textit{relaxation}. Existing relaxation implementations rely on naive linear interpolations of penalized and unpenalized solutions, which ignore the non-linear geometry that characterizes the entire regularization path and risk violating the Karush-Kuhn-Tucker conditions. Renet addresses these limitations by enforcing sign consistency through an adaptive relaxation procedure that dynamically dispatches between convex blending and efficient sub-path refitting. Furthermore, we identify and formalize a unique synergy between relaxation and the ``One-Standard-Error'' rule: relaxation serves as a robust debiasing mechanism, allowing practitioners to leverage the parsimony of the 1-SE rule without the traditional loss in predictive fidelity. Our theoretical framework incorporates automated stability safeguards for ultra-high dimensional regimes and is supported by a comprehensive benchmarking suite across 20 synthetic and real-world datasets, demonstrating that Renet consistently outperforms the standard Elastic Net and provides a more robust alternative to the Adaptive Elastic Net in high-dimensional, low signal-to-noise ratio and high-multicollinearity regimes. By leveraging an adaptive solver backend, Renet delivers these statistical gains while offering a computational profile that remains competitive with state-of-the-art coordinate descent implementations.
☆ Statistical Learning Analysis of Physics-Informed Neural Networks
We study the training and performance of physics-informed learning for initial and boundary value problems (IBVP) with physics-informed neural networks (PINNs) from a statistical learning perspective. Specifically, we restrict ourselves to parameterizations with hard initial and boundary condition constraints and reformulate the problem of estimating PINN parameters as a statistical learning problem. From this perspective, the physics penalty on the IBVP residuals can be better understood not as a regularizing term bus as an infinite source of indirect data, and the learning process as fitting the PINN distribution of residuals $p(y \mid x, t, w) q(x, t) $ to the true data-generating distribution $δ(0) q(x, t)$ by minimizing the Kullback-Leibler divergence between the true and PINN distributions. Furthermore, this analysis show that physics-informed learning with PINNs is a singular learning problem, and we employ singular learning theory tools, namely the so-called Local Learning Coefficient (Lau et al., 2025) to analyze the estimates of PINN parameters obtained via stochastic optimization for a heat equation IBVP. Finally, we discuss implications of this analysis on the quantification of predictive uncertainty of PINNs and the extrapolation capacity of PINNs.
☆ MerLin: A Discovery Engine for Photonic and Hybrid Quantum Machine Learning
Identifying where quantum models may offer practical benefits in near term quantum machine learning (QML) requires moving beyond isolated algorithmic proposals toward systematic and empirical exploration across models, datasets, and hardware constraints. We introduce MerLin, an open source framework designed as a discovery engine for photonic and hybrid quantum machine learning. MerLin integrates optimized strong simulation of linear optical circuits into standard PyTorch and scikit learn workflows, enabling end to end differentiable training of quantum layers. MerLin is designed around systematic benchmarking and reproducibility. As an initial contribution, we reproduce eighteen state of the art photonic and hybrid QML works spanning kernel methods, reservoir computing, convolutional and recurrent architectures, generative models, and modern training paradigms. These reproductions are released as reusable, modular experiments that can be directly extended and adapted, establishing a shared experimental baseline consistent with empirical benchmarking methodologies widely adopted in modern artificial intelligence. By embedding photonic quantum models within established machine learning ecosystems, MerLin allows practitioners to leverage existing tooling for ablation studies, cross modality comparisons, and hybrid classical quantum workflows. The framework already implements hardware aware features, allowing tests on available quantum hardware while enabling exploration beyond its current capabilities, positioning MerLin as a future proof co design tool linking algorithms, benchmarks, and hardware.
comment: This work has been submitted to the 2026 IEEE World Congress on Computational Intelligence
☆ Direct Learning of Calibration-Aware Uncertainty for Neural PDE Surrogates
Neural PDE surrogates are often deployed in data-limited or partially observed regimes where downstream decisions depend on calibrated uncertainty in addition to low prediction error. Existing approaches obtain uncertainty through ensemble replication, fixed stochastic noise such as dropout, or post hoc calibration. Cross-regularized uncertainty learns uncertainty parameters during training using gradients routed through a held-out regularization split. The predictor is optimized on the training split for fit, while low-dimensional uncertainty controls are optimized on the regularization split to reduce train-test mismatch, yielding regime-adaptive uncertainty without per-regime noise tuning. The framework can learn continuous noise levels at the output head, within hidden features, or within operator-specific components such as spectral modes. We instantiate the approach in Fourier Neural Operators and evaluate on APEBench sweeps over observed fraction and training-set size. Across these sweeps, the learned predictive distributions are better calibrated on held-out splits and the resulting uncertainty fields concentrate in high-error regions in one-step spatial diagnostics.
comment: 13 pages, 11 figures
☆ General Flexible $f$-divergence for Challenging Offline RL Datasets with Low Stochasticity and Diverse Behavior Policies AAMAS 2026
Offline RL algorithms aim to improve upon the behavior policy that produces the collected data while constraining the learned policy to be within the support of the dataset. However, practical offline datasets often contain examples with little diversity or limited exploration of the environment, and from multiple behavior policies with diverse expertise levels. Limited exploration can impair the offline RL algorithm's ability to estimate \textit{Q} or \textit{V} values, while constraining towards diverse behavior policies can be overly conservative. Such datasets call for a balance between the RL objective and behavior policy constraints. We first identify the connection between $f$-divergence and optimization constraint on the Bellman residual through a more general Linear Programming form for RL and the convex conjugate. Following this, we introduce the general flexible function formulation for the $f$-divergence to incorporate an adaptive constraint on algorithms' learning objectives based on the offline training dataset. Results from experiments on the MuJoCo, Fetch, and AdroitHand environments show the correctness of the proposed LP form and the potential of the flexible $f$-divergence in improving performance for learning from a challenging dataset when applied to a compatible constrained optimization algorithm.
comment: Extended version of the full paper with the appendix accepted at AAMAS 2026
☆ First International StepUP Competition for Biometric Footstep Recognition: Methods, Results and Remaining Challenges
Biometric footstep recognition, based on a person's unique pressure patterns under their feet during walking, is an emerging field with growing applications in security and safety. However, progress in this area has been limited by the lack of large, diverse datasets necessary to address critical challenges such as generalization to new users and robustness to shifts in factors like footwear or walking speed. The recent release of the UNB StepUP-P150 dataset, the largest and most comprehensive collection of high-resolution footstep pressure recordings to date, opens new opportunities for addressing these challenges through deep learning. To mark this milestone, the First International StepUP Competition for Biometric Footstep Recognition was launched. Competitors were tasked with developing robust recognition models using the StepUP-P150 dataset that were then evaluated on a separate, dedicated test set designed to assess verification performance under challenging variations, given limited and relatively homogeneous reference data. The competition attracted global participation, with 23 registered teams from academia and industry. The top-performing team, Saeid_UCC, achieved the best equal error rate (EER) of 10.77% using a generative reward machine (GRM) optimization strategy. Overall, the competition showcased strong solutions, but persistent challenges in generalizing to unfamiliar footwear highlight a critical area for future work.
comment: to be published in 2025 IEEE International Joint Conference on Biometrics (IJCB)
☆ GRASP: group-Shapley feature selection for patients
Feature selection remains a major challenge in medical prediction, where existing approaches such as LASSO often lack robustness and interpretability. We introduce GRASP, a novel framework that couples Shapley value driven attribution with group $L_{21}$ regularization to extract compact and non-redundant feature sets. GRASP first distills group level importance scores from a pretrained tree model via SHAP, then enforces structured sparsity through group $L_{21}$ regularized logistic regression, yielding stable and interpretable selections. Extensive comparisons with LASSO, SHAP, and deep learning based methods show that GRASP consistently delivers comparable or superior predictive accuracy, while identifying fewer, less redundant, and more stable features.
comment: 5 pages, 4 figures, 2 tables
☆ Token-Efficient Change Detection in LLM APIs
Remote change detection in LLMs is a difficult problem. Existing methods are either too expensive for deployment at scale, or require initial white-box access to model weights or grey-box access to log probabilities. We aim to achieve both low cost and strict black-box operation, observing only output tokens. Our approach hinges on specific inputs we call Border Inputs, for which there exists more than one output top token. From a statistical perspective, optimal change detection depends on the model's Jacobian and the Fisher information of the output distribution. Analyzing these quantities in low-temperature regimes shows that border inputs enable powerful change detection tests. Building on this insight, we propose the Black-Box Border Input Tracking (B3IT) scheme. Extensive in-vivo and in-vitro experiments show that border inputs are easily found for non-reasoning tested endpoints, and achieve performance on par with the best available grey-box approaches. B3IT reduces costs by $30\times$ compared to existing methods, while operating in a strict black-box setting.
☆ SteuerLLM: Local specialized large language model for German tax law analysis
Large language models (LLMs) demonstrate strong general reasoning and language understanding, yet their performance degrades in domains governed by strict formal rules, precise terminology, and legally binding structure. Tax law exemplifies these challenges, as correct answers require exact statutory citation, structured legal argumentation, and numerical accuracy under rigid grading schemes. We algorithmically generate SteuerEx, the first open benchmark derived from authentic German university tax law examinations. SteuerEx comprises 115 expert-validated examination questions spanning six core tax law domains and multiple academic levels, and employs a statement-level, partial-credit evaluation framework that closely mirrors real examination practice. We further present SteuerLLM, a domain-adapted LLM for German tax law trained on a large-scale synthetic dataset generated from authentic examination material using a controlled retrieval-augmented pipeline. SteuerLLM (28B parameters) consistently outperforms general-purpose instruction-tuned models of comparable size and, in several cases, substantially larger systems, demonstrating that domain-specific data and architectural adaptation are more decisive than parameter scale for performance on realistic legal reasoning tasks. All benchmark data, training datasets, model weights, and evaluation code are released openly to support reproducible research in domain-specific legal artificial intelligence. A web-based demo of SteuerLLM is available at https://steuerllm.i5.ai.fau.de.
☆ In-the-Wild Model Organisms: Mitigating Undesirable Emergent Behaviors in Production LLM Post-Training via Data Attribution
We propose activation-based data attribution, a method that traces behavioral changes in post-trained language models to responsible training datapoints. By computing activation-difference vectors for both test prompts and preference pairs and ranking by cosine similarity, we identify datapoints that cause specific behaviors and validate these attributions causally by retraining with modified data. Clustering behavior-datapoint similarity matrices also enables unsupervised discovery of emergent behaviors. Applying this to OLMo 2's production DPO training, we surfaced distractor-triggered compliance: a harmful behavior where the model complies with dangerous requests when benign formatting instructions are appended. Filtering top-ranked datapoints reduces this behavior by 63% while switching their labels achieves 78%. Our method outperforms gradient-based attribution and LLM-judge baselines while being over 10 times cheaper than both. This in-the-wild model organism - emerging from contaminated preference data rather than deliberate injection - provides a realistic benchmark for safety techniques.
☆ Motion Capture is Not the Target Domain: Scaling Synthetic Data for Learning Motion Representations
Synthetic data offers a compelling path to scalable pretraining when real-world data is scarce, but models pretrained on synthetic data often fail to transfer reliably to deployment settings. We study this problem in full-body human motion, where large-scale data collection is infeasible but essential for wearable-based Human Activity Recognition (HAR), and where synthetic motion can be generated from motion-capture-derived representations. We pretrain motion time-series models using such synthetic data and evaluate their transfer across diverse downstream HAR tasks. Our results show that synthetic pretraining improves generalisation when mixed with real data or scaled sufficiently. We also demonstrate that large-scale motion-capture pretraining yields only marginal gains due to domain mismatch with wearable signals, clarifying key sim-to-real challenges and the limits and opportunities of synthetic motion data for transferable HAR representations.
☆ MoToRec: Sparse-Regularized Multimodal Tokenization for Cold-Start Recommendation AAAI 2026
Graph neural networks (GNNs) have revolutionized recommender systems by effectively modeling complex user-item interactions, yet data sparsity and the item cold-start problem significantly impair performance, particularly for new items with limited or no interaction history. While multimodal content offers a promising solution, existing methods result in suboptimal representations for new items due to noise and entanglement in sparse data. To address this, we transform multimodal recommendation into discrete semantic tokenization. We present Sparse-Regularized Multimodal Tokenization for Cold-Start Recommendation (MoToRec), a framework centered on a sparsely-regularized Residual Quantized Variational Autoencoder (RQ-VAE) that generates a compositional semantic code of discrete, interpretable tokens, promoting disentangled representations. MoToRec's architecture is enhanced by three synergistic components: (1) a sparsely-regularized RQ-VAE that promotes disentangled representations, (2) a novel adaptive rarity amplification that promotes prioritized learning for cold-start items, and (3) a hierarchical multi-source graph encoder for robust signal fusion with collaborative signals. Extensive experiments on three large-scale datasets demonstrate MoToRec's superiority over state-of-the-art methods in both overall and cold-start scenarios. Our work validates that discrete tokenization provides an effective and scalable alternative for mitigating the long-standing cold-start challenge.
comment: Accepted to AAAI 2026 (Main Track)
☆ A Gibbs posterior sampler for inverse problem based on prior diffusion model
This paper addresses the issue of inversion in cases where (1) the observation system is modeled by a linear transformation and additive noise, (2) the problem is ill-posed and regularization is introduced in a Bayesian framework by an a prior density, and (3) the latter is modeled by a diffusion process adjusted on an available large set of examples. In this context, it is known that the issue of posterior sampling is a thorny one. This paper introduces a Gibbs algorithm. It appears that this avenue has not been explored, and we show that this approach is particularly effective and remarkably simple. In addition, it offers a guarantee of convergence in a clearly identified situation. The results are clearly confirmed by numerical simulations.
☆ Divide, Harmonize, Then Conquer It: Shooting Multi-Commodity Flow Problems with Multimodal Language Models ICLR 2026
The multi-commodity flow (MCF) problem is a fundamental topic in network flow and combinatorial optimization, with broad applications in transportation, communication, and logistics, etc. Nowadays, the rapid expansion of allocation systems has posed challenges for existing optimization engines in balancing optimality and tractability. In this paper, we present Pram, the first ML-based method that leverages the reasoning power of multimodal language models (MLMs) for addressing the trade-off dilemma -- a great need of service providers. As part of our proposal, Pram (i) quickly computes high-quality allocations by dividing the original problem into local subproblems, which are then resolved by an MLM-powered "agent", and (ii) ensures global consistency by harmonizing these subproblems via a multi-agent reinforcement learning algorithm. Theoretically, we show that Pram, which learns to perform gradient descent in context, provably converges to the optimum within the family of MCF problems. Empirically, on real-world datasets and public topologies, Pram achieves performance comparable to, and in some cases even surpassing, linear programming solvers (very close to the optimal solution), and substantially lower runtimes (1 to 2 orders of magnitude faster). Moreover, Pram exhibits strong robustness (<10\% performance degradation under link failures or flow bursts), demonstrating MLM's generalization ability to unforeseen events. Pram is objective-agnostic and seamlessly integrates with mainstream allocation systems, providing a practical and scalable solution for future networks.
comment: Published as a conference paper at ICLR 2026
☆ Characterizing Trainability of Instantaneous Quantum Polynomial Circuit Born Machines
Instantaneous quantum polynomial quantum circuit Born machines (IQP-QCBMs) have been proposed as quantum generative models with a classically tractable training objective based on the maximum mean discrepancy (MMD) and a potential quantum advantage motivated by sampling-complexity arguments, making them an exciting model worth deeper investigation. While recent works have further proven the universality of a (slightly generalized) model, the next immediate question pertains to its trainability, i.e., whether it suffers from the exponentially vanishing loss gradients, known as the barren plateau issue, preventing effective use, and how regimes of trainability overlap with regimes of possible quantum advantage. Here, we provide significant strides in these directions. To study the trainability at initialization, we analytically derive closed-form expressions for the variances of the partial derivatives of the MMD loss function and provide general upper and lower bounds. With uniform initialization, we show that barren plateaus depend on the generator set and the spectrum of the chosen kernel. We identify regimes in which low-weight-biased kernels avoid exponential gradient suppression in structured topologies. Also, we prove that a small-variance Gaussian initialization ensures polynomial scaling for the gradient under mild conditions. As for the potential quantum advantage, we further argue, based on previous complexity-theoretic arguments, that sparse IQP families can output a probability distribution family that is classically intractable, and that this distribution remains trainable at initialization at least at lower-weight frequencies.
comment: 14 pages, 1 figure
☆ Learning Page Order in Shuffled WOO Releases
We investigate document page ordering on 5,461 shuffled WOO documents (Dutch freedom of information releases) using page embeddings. These documents are heterogeneous collections such as emails, legal texts, and spreadsheets compiled into single PDFs, where semantic ordering signals are unreliable. We compare five methods, including pointer networks, seq2seq transformers, and specialized pairwise ranking models. The best performing approach successfully reorders documents up to 15 pages, with Kendall's tau ranging from 0.95 for short documents (2-5 pages) to 0.72 for 15 page documents. We observe two unexpected failures: seq2seq transformers fail to generalize on long documents (Kendall's tau drops from 0.918 on 2-5 pages to 0.014 on 21-25 pages), and curriculum learning underperforms direct training by 39% on long documents. Ablation studies suggest learned positional encodings are one contributing factor to seq2seq failure, though the degradation persists across all encoding variants, indicating multiple interacting causes. Attention pattern analysis reveals that short and long documents require fundamentally different ordering strategies, explaining why curriculum learning fails. Model specialization achieves substantial improvements on longer documents (+0.21 tau).
☆ When Fusion Helps and When It Breaks: View-Aligned Robustness in Same-Source Financial Imaging
We study same-source multi-view learning and adversarial robustness for next-day direction prediction with financial image representations. On Shanghai Gold Exchange (SGE) spot gold data (2005-2025), we construct two window-aligned views from each rolling window: an OHLCV-rendered price/volume chart and a technical-indicator matrix. To ensure reliable evaluation, we adopt leakage-resistant time-block splits with embargo and use Matthews correlation coefficient (MCC). We find that results depend strongly on the label-noise regime: we apply an ex-post minimum-movement filter that discards samples with realized next-day absolute return below tau to define evaluation subsets with reduced near-zero label ambiguity. This induces a non-monotonic data-noise trade-off that can reveal predictive signal but eventually increases variance as sample size shrinks; the filter is used for offline benchmark construction rather than an inference-time decision rule. In the stabilized subsets, fusion is regime dependent: early fusion by channel stacking can exhibit negative transfer, whereas late fusion with dual encoders and a fusion head provides the dominant clean-performance gains; cross-view consistency regularization has secondary, backbone-dependent effects. We further evaluate test-time L-infinity perturbations using FGSM and PGD under two threat scenarios: view-constrained attacks that perturb one view and joint attacks that perturb both. We observe severe vulnerability at tiny budgets with strong view asymmetry. Late fusion consistently improves robustness under view-constrained attacks, but joint attacks remain challenging and can still cause substantial worst-case degradation.
☆ OSIL: Learning Offline Safe Imitation Policies with Safety Inferred from Non-preferred Trajectories AAMAS 2026
This work addresses the problem of offline safe imitation learning (IL), where the goal is to learn safe and reward-maximizing policies from demonstrations that do not have per-timestep safety cost or reward information. In many real-world domains, online learning in the environment can be risky, and specifying accurate safety costs can be difficult. However, it is often feasible to collect trajectories that reflect undesirable or unsafe behavior, implicitly conveying what the agent should avoid. We refer to these as non-preferred trajectories. We propose a novel offline safe IL algorithm, OSIL, that infers safety from non-preferred demonstrations. We formulate safe policy learning as a Constrained Markov Decision Process (CMDP). Instead of relying on explicit safety cost and reward annotations, OSIL reformulates the CMDP problem by deriving a lower bound on reward maximizing objective and learning a cost model that estimates the likelihood of non-preferred behavior. Our approach allows agents to learn safe and reward-maximizing behavior entirely from offline demonstrations. We empirically demonstrate that our approach can learn safer policies that satisfy cost constraints without degrading the reward performance, thus outperforming several baselines.
comment: 21 pages, Accepted at AAMAS 2026
☆ ROCKET: Rapid Optimization via Calibration-guided Knapsack Enhanced Truncation for Efficient Model Compression
We present ROCKET, a training-free model compression method that achieves state-of-the-art performance in comparison with factorization, structured-sparsification and dynamic compression baselines. Operating under a global compression budget, ROCKET comprises two key innovations: First, it formulates layer-wise compression allocation as a multi-choice knapsack problem, selecting the optimal compression level for each layer to minimize total reconstruction error while adhering to a target model size. Second, it introduces a single-step sparse matrix factorization inspired by dictionary learning: using only a small calibration set, it sparsifies weight coefficients based on activation-weights sensitivity and then updates the dictionary in closed form via least squares bypassing iterative optimization, sparse coding, or backpropagation entirely. ROCKET consistently outperforms existing compression approaches across different model architectures at 20-50\% compression rates. Notably, it retains over 90\% of the original model's performance at 30\% compression without any fine-tuning. Moreover, when applying a light fine-tuning phase, recovery is substantially enhanced: for instance, compressing Qwen3-14B to an 8B-parameter model and healing it with just 30 million tokens yields performance nearly on par with the original Qwen3-8B. The code for ROCKET is at github.com/mts-ai/ROCKET/tree/main.
☆ Fine-Tuning GPT-5 for GPU Kernel Generation
Developing efficient GPU kernels is essential for scaling modern AI systems, yet it remains a complex task due to intricate hardware architectures and the need for specialized optimization expertise. Although Large Language Models (LLMs) demonstrate strong capabilities in general sequential code generation, they face significant challenges in GPU code generation because of the scarcity of high-quality labeled training data, compiler biases when generating synthetic solutions, and limited generalization across hardware generations. This precludes supervised fine-tuning (SFT) as a scalable methodology for improving current LLMs. In contrast, reinforcement learning (RL) offers a data-efficient and adaptive alternative but requires access to relevant tools, careful selection of training problems, and a robust evaluation environment. We present Makora's environment and tools for reinforcement learning finetuning of frontier models and report our results from fine-tuning GPT-5 for Triton code generation. In the single-attempt setting, our fine-tuned model improves kernel correctness from 43.7% to 77.0% (+33.3 percentage points) and increases the fraction of problems outperforming TorchInductor from 14.8% to 21.8% (+7 percentage points) compared to baseline GPT-5, while exceeding prior state-of-the-art models on KernelBench. When integrated into a full coding agent, it is able to solve up to 97.4% of problems in an expanded KernelBench suite, outperforming the PyTorch TorchInductor compiler on 72.9% of problems with a geometric mean speedup of 2.12x. Our work demonstrates that targeted post-training with reinforcement learning can unlock LLM capabilities in highly specialized technical domains where traditional supervised learning is limited by data availability, opening new pathways for AI-assisted accelerator programming.
☆ The emergence of numerical representations in communicating artificial agents
Human languages provide efficient systems for expressing numerosities, but whether the sheer pressure to communicate is enough for numerical representations to arise in artificial agents, and whether the emergent codes resemble human numerals at all, remains an open question. We study two neural network-based agents that must communicate numerosities in a referential game using either discrete tokens or continuous sketches, thus exploring both symbolic and iconic representations. Without any pre-defined numeric concepts, the agents achieve high in-distribution communication accuracy in both communication channels and converge on high-precision symbol-meaning mappings. However, the emergent code is non-compositional: the agents fail to derive systematic messages for unseen numerosities, typically reusing the symbol of the highest trained numerosity (discrete), or collapsing extrapolated values onto a single sketch (continuous). We conclude that the communication pressure alone suffices for precise transmission of learned numerosities, but additional pressures are needed to yield compositional codes and generalisation abilities.
comment: In the Sixteenth International Conference on the Evolution of Language
☆ Variational Optimality of Föllmer Processes in Generative Diffusions
We construct and analyze generative diffusions that transport a point mass to a prescribed target distribution over a finite time horizon using the stochastic interpolant framework. The drift is expressed as a conditional expectation that can be estimated from independent samples without simulating stochastic processes. We show that the diffusion coefficient can be tuned \emph{a~posteriori} without changing the time-marginal distributions. Among all such tunings, we prove that minimizing the impact of estimation error on the path-space Kullback--Leibler divergence selects, in closed form, a Föllmer process -- a diffusion whose path measure minimizes relative entropy with respect to a reference process determined by the interpolation schedules alone. This yields a new variational characterization of Föllmer processes, complementing classical formulations via Schrödinger bridges and stochastic control. We further establish that, under this optimal diffusion coefficient, the path-space Kullback--Leibler divergence becomes independent of the interpolation schedule, rendering different schedules statistically equivalent in this variational sense.
☆ TVCACHE: A Stateful Tool-Value Cache for Post-Training LLM Agents
In RL post-training of LLM agents, calls to external tools take several seconds or even minutes, leaving allocated GPUs idle and inflating post-training time and cost. While many tool invocations repeat across parallel rollouts and could in principle be cached, naively caching their outputs for reuse is incorrect since tool outputs depend on the environment state induced by prior agent interactions. We present TVCACHE, a stateful tool-value cache for LLM agent post-training. TVCACHE maintains a tree of observed tool-call sequences and performs longest-prefix matching for cache lookups: a hit occurs only when the agent's full tool history matches a previously executed sequence, guaranteeing identical environment state. On three diverse workloads-terminal-based tasks, SQL generation, and video understanding. TVCACHE achieves cache hit rates of up to 70% and reduces median tool call execution time by up to 6.9X, with no degradation in post-training reward accumulation.
comment: Abhishek Vijaya Kumar and Bhaskar Kataria have equal contribution
☆ Sample Efficient Generative Molecular Optimization with Joint Self-Improvement
Generative molecular optimization aims to design molecules with properties surpassing those of existing compounds. However, such candidates are rare and expensive to evaluate, yielding sample efficiency essential. Additionally, surrogate models introduced to predict molecule evaluations, suffer from distribution shift as optimization drives candidates increasingly out-of-distribution. To address these challenges, we introduce Joint Self-Improvement, which benefits from (i) a joint generative-predictive model and (ii) a self-improving sampling scheme. The former aligns the generator with the surrogate, alleviating distribution shift, while the latter biases the generative part of the joint model using the predictive one to efficiently generate optimized molecules at inference-time. Experiments across offline and online molecular optimization benchmarks demonstrate that Joint Self-Improvement outperforms state-of-the-art methods under limited evaluation budgets.
comment: 14 pages, 5 figures
☆ RiemannGL: Riemannian Geometry Changes Graph Deep Learning
Graphs are ubiquitous, and learning on graphs has become a cornerstone in artificial intelligence and data mining communities. Unlike pixel grids in images or sequential structures in language, graphs exhibit a typical non-Euclidean structure with complex interactions among the objects. This paper argues that Riemannian geometry provides a principled and necessary foundation for graph representation learning, and that Riemannian graph learning should be viewed as a unifying paradigm rather than a collection of isolated techniques. While recent studies have explored the integration of graph learning and Riemannian geometry, most existing approaches are limited to a narrow class of manifolds, particularly hyperbolic spaces, and often adopt extrinsic manifold formulations. We contend that the central mission of Riemannian graph learning is to endow graph neural networks with intrinsic manifold structures, which remains underexplored. To advance this perspective, we identify key conceptual and methodological gaps in existing approaches and outline a structured research agenda along three dimensions: manifold type, neural architecture, and learning paradigm. We further discuss open challenges, theoretical foundations, and promising directions that are critical for unlocking the full potential of Riemannian graph learning. This paper aims to provide a coherent viewpoint and to stimulate broader exploration of Riemannian geometry as a foundational framework for future graph learning research.
comment: 34 pages, 11 figures, position paper
☆ A Jointly Efficient and Optimal Algorithm for Heteroskedastic Generalized Linear Bandits with Adversarial Corruptions
We consider the problem of heteroskedastic generalized linear bandits (GLBs) with adversarial corruptions, which subsumes various stochastic contextual bandit settings, including heteroskedastic linear bandits and logistic/Poisson bandits. We propose HCW-GLB-OMD, which consists of two components: an online mirror descent (OMD)-based estimator and Hessian-based confidence weights to achieve corruption robustness. This is computationally efficient in that it only requires ${O}(1)$ space and time complexity per iteration. Under the self-concordance assumption on the link function, we show a regret bound of $\tilde{O}\left( d \sqrt{\sum_t g(τ_t) \dotμ_{t,\star}} + d^2 g_{\max} κ+ d κC \right)$, where $\dotμ_{t,\star}$ is the slope of $μ$ around the optimal arm at time $t$, $g(τ_t)$'s are potentially exogenously time-varying dispersions (e.g., $g(τ_t) = σ_t^2$ for heteroskedastic linear bandits, $g(τ_t) = 1$ for Bernoulli and Poisson), $g_{\max} = \max_{t \in [T]} g(τ_t)$ is the maximum dispersion, and $C \geq 0$ is the total corruption budget of the adversary. We complement this with a lower bound of $\tildeΩ(d \sqrt{\sum_t g(τ_t) \dotμ_{t,\star}} + d C)$, unifying previous problem-specific lower bounds. Thus, our algorithm achieves, up to a $κ$-factor in the corruption term, instance-wise minimax optimality simultaneously across various instances of heteroskedastic GLBs with adversarial corruptions.
comment: 49 pages, 1 table
☆ Healthy Harvests: A Comparative Look at Guava Disease Classification Using InceptionV3
Guava fruits often suffer from many diseases. This can harm fruit quality and fruit crop yield. Early identification is important for minimizing damage and ensuring fruit health. This study focuses on 3 different categories for classifying diseases. These are Anthracnose, Fruit flies, and Healthy fruit. The data set used in this study is collected from Mendeley Data. This dataset contains 473 original images of Guava. These images vary in size and format. The original dataset was resized to 256x256 pixels with RGB color mode for better consistency. After this, the Data augmentation process is applied to improve the dataset by generating variations of the original images. The augmented dataset consists of 3784 images using advanced preprocessing techniques. Two deep learning models were implemented to classify the images. The InceptionV3 model is well known for its advanced framework. These apply multiple convolutional filters for obtaining different features effectively. On the other hand, the ResNet50 model helps to train deeper networks by using residual learning. The InceptionV3 model achieved the impressive accuracy of 98.15%, and ResNet50got 94.46% accuracy. Data mixing methods such as CutMix and MixUp were applied to enhance the model's robustness. The confusion matrix was used to evaluate the overall model performance of both InceptionV3 and Resnet50. Additionally, SHAP analysis is used to improve interpretability, which helps to find the significant parts of the image for the model prediction. This study purposes to highlight how advanced models enhan
comment: 6 pages, 13 figures, his is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ MoEEdit: Efficient and Routing-Stable Knowledge Editing for Mixture-of-Experts LLMs
Knowledge editing (KE) enables precise modifications to factual content in large language models (LLMs). Existing KE methods are largely designed for dense architectures, limiting their applicability to the increasingly prevalent sparse Mixture-of-Experts (MoE) models that underpin modern scalable LLMs. Although MoEs offer strong efficiency and capacity scaling, naively adapting dense-model editors is both computationally costly and prone to routing distribution shifts that undermine stability and consistency. To address these challenges, we introduce MoEEdit, the first routing-stable framework for parameter-modifying knowledge editing in MoE LLMs. Our method reparameterizes expert updates via per-expert null-space projections that keep router inputs invariant and thereby suppress routing shifts. The resulting block-structured optimization is solved efficiently with a block coordinate descent (BCD) solver. Experiments show that MoEEdit attains state-of-the-art efficacy and generalization while preserving high specificity and routing stability, with superior compute and memory efficiency. These results establish a robust foundation for scalable, precise knowledge editing in sparse LLMs and underscore the importance of routing-stable interventions.
☆ Rotary Positional Embeddings as Phase Modulation: Theoretical Bounds on the RoPE Base for Long-Context Transformers
Rotary positional embeddings (RoPE) are widely used in large language models to encode token positions through multiplicative rotations, yet their behavior at long context lengths remains poorly characterized. In this work, we reinterpret RoPE as phase modulation applied to a bank of complex oscillators, enabling analysis through classical signal processing theory. Under this formulation, we derive principled lower bounds on the RoPE base parameter that are necessary to preserve positional coherence over a target context length. These include a fundamental aliasing bound, analogous to a Nyquist limit, and a DC-component stability bound that constrains phase drift in low-frequency positional modes. We further extend this analysis to deep transformers, showing that repeated rotary modulation across layers compounds angular misalignment, tightening the base requirement as depth increases. Complementing these results, we derive a precision-dependent upper bound on the RoPE base arising from finite floating-point resolution. Beyond this limit, incremental phase updates become numerically indistinguishable, leading to positional erasure even in the absence of aliasing. Together, the lower and upper bounds define a precision- and depth-dependent feasibility region a Goldilocks zone for long-context transformers. We validate the framework through a comprehensive case study of state-of-the-art models, including LLaMA, Mistral, and DeepSeek variants, showing that observed successes, failures, and community retrofits align closely with the predicted bounds. Notably, models that violate the stability bound exhibit attention collapse and long-range degradation, while attempts to scale beyond one million tokens encounter a hard precision wall independent of architecture or training.
☆ Stochastic Parroting in Temporal Attention -- Regulating the Diagonal Sink
Spatio-temporal models analyze spatial structures and temporal dynamics, which makes them prone to information degeneration among space and time. Prior literature has demonstrated that over-squashing in causal attention or temporal convolutions creates a bias on the first tokens. To analyze whether such a bias is present in temporal attention mechanisms, we derive sensitivity bounds on the expected value of the Jacobian of a temporal attention layer. We theoretically show how off-diagonal attention scores depend on the sequence length, and that temporal attention matrices suffer a diagonal attention sink. We suggest regularization methods, and experimentally demonstrate their effectiveness.
comment: Accepted at ESANN 2026, Code: https://github.com/vicky-hnk/spatio-temp-parroting
☆ Optimal Initialization in Depth: Lyapunov Initialization and Limit Theorems for Deep Leaky ReLU Networks
The development of effective initialization methods requires an understanding of random neural networks. In this work, a rigorous probabilistic analysis of deep unbiased Leaky ReLU networks is provided. We prove a Law of Large Numbers and a Central Limit Theorem for the logarithm of the norm of network activations, establishing that, as the number of layers increases, their growth is governed by a parameter called the Lyapunov exponent. This parameter characterizes a sharp phase transition between vanishing and exploding activations, and we calculate the Lyapunov exponent explicitly for Gaussian or orthogonal weight matrices. Our results reveal that standard methods, such as He initialization or orthogonal initialization, do not guarantee activation stabilty for deep networks of low width. Based on these theoretical insights, we propose a novel initialization method, referred to as Lyapunov initialization, which sets the Lyapunov exponent to zero and thereby ensures that the neural network is as stable as possible, leading empirically to improved learning.
comment: 45 pages
☆ CMAD: Cooperative Multi-Agent Diffusion via Stochastic Optimal Control
Continuous-time generative models have achieved remarkable success in image restoration and synthesis. However, controlling the composition of multiple pre-trained models remains an open challenge. Current approaches largely treat composition as an algebraic composition of probability densities, such as via products or mixtures of experts. This perspective assumes the target distribution is known explicitly, which is almost never the case. In this work, we propose a different paradigm that formulates compositional generation as a cooperative Stochastic Optimal Control problem. Rather than combining probability densities, we treat pre-trained diffusion models as interacting agents whose diffusion trajectories are jointly steered, via optimal control, toward a shared objective defined on their aggregated output. We validate our framework on conditional MNIST generation and compare it against a naive inference-time DPS-style baseline replacing learned cooperative control with per-step gradient guidance.
☆ Spatial-Morphological Modeling for Multi-Attribute Imputation of Urban Blocks
Accurate reconstruction of missing morphological indicators of a city is crucial for urban planning and data-driven analysis. This study presents the spatial-morphological (SM) imputer tool, which combines data-driven morphological clustering with neighborhood-based methods to reconstruct missing values of the floor space index (FSI) and ground space index (GSI) at the city block level, inspired by the SpaceMatrix framework. This approach combines city-scale morphological patterns as global priors with local spatial information for context-dependent interpolation. The evaluation shows that while SM alone captures meaningful morphological structure, its combination with inverse distance weighting (IDW) or spatial k-nearest neighbor (sKNN) methods provides superior performance compared to existing SOTA models. Composite methods demonstrate the complementary advantages of combining morphological and spatial approaches.
☆ Near-Constant Strong Violation and Last-Iterate Convergence for Online CMDPs via Decaying Safety Margins
We study safe online reinforcement learning in Constrained Markov Decision Processes (CMDPs) under strong regret and violation metrics, which forbid error cancellation over time. Existing primal-dual methods that achieve sublinear strong reward regret inevitably incur growing strong constraint violation or are restricted to average-iterate convergence due to inherent oscillations. To address these limitations, we propose the Flexible safety Domain Optimization via Margin-regularized Exploration (FlexDOME) algorithm, the first to provably achieve near-constant $\tilde{O}(1)$ strong constraint violation alongside sublinear strong regret and non-asymptotic last-iterate convergence. FlexDOME incorporates time-varying safety margins and regularization terms into the primal-dual framework. Our theoretical analysis relies on a novel term-wise asymptotic dominance strategy, where the safety margin is rigorously scheduled to asymptotically majorize the functional decay rates of the optimization and statistical errors, thereby clamping cumulative violations to a near-constant level. Furthermore, we establish non-asymptotic last-iterate convergence guarantees via a policy-dual Lyapunov argument. Experiments corroborate our theoretical findings.
Tuning the burn-in phase in training recurrent neural networks improves their performance ICLR 2026
Training recurrent neural networks (RNNs) with standard backpropagation through time (BPTT) can be challenging, especially in the presence of long input sequences. A practical alternative to reduce computational and memory overhead is to perform BPTT repeatedly over shorter segments of the training data set, corresponding to truncated BPTT. In this paper, we examine the training of RNNs when using such a truncated learning approach for time series tasks. Specifically, we establish theoretical bounds on the accuracy and performance loss when optimizing over subsequences instead of the full data sequence. This reveals that the burn-in phase of the RNN is an important tuning knob in its training, with significant impact on the performance guarantees. We validate our theoretical results through experiments on standard benchmarks from the fields of system identification and time series forecasting. In all experiments, we observe a strong influence of the burn-in phase on the training process, and proper tuning can lead to a reduction of the prediction error on the training and test data of more than 60% in some cases.
comment: Published as a conference paper at ICLR 2026, https://openreview.net/forum?id=jwkdKpioHJ
☆ SoftMatcha 2: A Fast and Soft Pattern Matcher for Trillion-Scale Corpora
We present an ultra-fast and flexible search algorithm that enables search over trillion-scale natural language corpora in under 0.3 seconds while handling semantic variations (substitution, insertion, and deletion). Our approach employs string matching based on suffix arrays that scales well with corpus size. To mitigate the combinatorial explosion induced by the semantic relaxation of queries, our method is built on two key algorithmic ideas: fast exact lookup enabled by a disk-aware design, and dynamic corpus-aware pruning. We theoretically show that the proposed method suppresses exponential growth in the search space with respect to query length by leveraging statistical properties of natural language. In experiments on FineWeb-Edu (Lozhkov et al., 2024) (1.4T tokens), we show that our method achieves significantly lower search latency than existing methods: infini-gram (Liu et al., 2024), infini-gram mini (Xu et al., 2025), and SoftMatcha (Deguchi et al., 2025). As a practical application, we demonstrate that our method identifies benchmark contamination in training corpora, unidentified by existing approaches. We also provide an online demo of fast, soft search across corpora in seven languages.
comment: Project Page & Web Interface: https://softmatcha.github.io/v2/, Source Code: https://github.com/softmatcha/softmatcha2
☆ Natural Hypergradient Descent: Algorithm Design, Convergence Analysis, and Parallel Implementation
In this work, we propose Natural Hypergradient Descent (NHGD), a new method for solving bilevel optimization problems. To address the computational bottleneck in hypergradient estimation--namely, the need to compute or approximate Hessian inverse--we exploit the statistical structure of the inner optimization problem and use the empirical Fisher information matrix as an asymptotically consistent surrogate for the Hessian. This design enables a parallel optimize-and-approximate framework in which the Hessian-inverse approximation is updated synchronously with the stochastic inner optimization, reusing gradient information at negligible additional cost. Our main theoretical contribution establishes high-probability error bounds and sample complexity guarantees for NHGD that match those of state-of-the-art optimize-then-approximate methods, while significantly reducing computational time overhead. Empirical evaluations on representative bilevel learning tasks further demonstrate the practical advantages of NHGD, highlighting its scalability and effectiveness in large-scale machine learning settings.
☆ Resource-Efficient Model-Free Reinforcement Learning for Board Games
Board games have long served as complex decision-making benchmarks in artificial intelligence. In this field, search-based reinforcement learning methods such as AlphaZero have achieved remarkable success. However, their significant computational demands have been pointed out as barriers to their reproducibility. In this study, we propose a model-free reinforcement learning algorithm designed for board games to achieve more efficient learning. To validate the efficiency of the proposed method, we conducted comprehensive experiments on five board games: Animal Shogi, Gardner Chess, Go, Hex, and Othello. The results demonstrate that the proposed method achieves more efficient learning than existing methods across these environments. In addition, our extensive ablation study shows the importance of core techniques used in the proposed method. We believe that our efficient algorithm shows the potential of model-free reinforcement learning in domains traditionally dominated by search-based methods.
☆ Anomaly Detection with Machine Learning Algorithms in Large-Scale Power Grids
We apply several machine learning algorithms to the problem of anomaly detection in operational data for large-scale, high-voltage electric power grids. We observe important differences in the performance of the algorithms. Neural networks typically outperform classical algorithms such as k-nearest neighbors and support vector machines, which we explain by the strong contextual nature of the anomalies. We show that unsupervised learning algorithm work remarkably well and that their predictions are robust against simultaneous, concurring anomalies.
comment: 12 pages, 9 figures
☆ Reinforcing Chain-of-Thought Reasoning with Self-Evolving Rubrics
Despite chain-of-thought (CoT) playing crucial roles in LLM reasoning, directly rewarding it is difficult: training a reward model demands heavy human labeling efforts, and static RMs struggle with evolving CoT distributions and reward hacking. These challenges motivate us to seek an autonomous CoT rewarding approach that requires no human annotation efforts and can evolve gradually. Inspired by recent self-evolving training methods, we propose \textbf{RLCER} (\textbf{R}einforcement \textbf{L}earning with \textbf{C}oT Supervision via Self-\textbf{E}volving \textbf{R}ubrics), which enhances the outcome-centric RLVR by rewarding CoTs with self-proposed and self-evolving rubrics. We show that self-proposed and self-evolving rubrics provide reliable CoT supervision signals even without outcome rewards, enabling RLCER to outperform outcome-centric RLVR. Moreover, when used as in-prompt hints, these self-proposed rubrics further improve inference-time performance.
comment: 21 pages
☆ Diagnosing Structural Failures in LLM-Based Evidence Extraction for Meta-Analysis
Systematic reviews and meta-analyses rely on converting narrative articles into structured, numerically grounded study records. Despite rapid advances in large language models (LLMs), it remains unclear whether they can meet the structural requirements of this process, which hinge on preserving roles, methods, and effect-size attribution across documents rather than on recognizing isolated entities. We propose a structural, diagnostic framework that evaluates LLM-based evidence extraction as a progression of schema-constrained queries with increasing relational and numerical complexity, enabling precise identification of failure points beyond atom-level extraction. Using a manually curated corpus spanning five scientific domains, together with a unified query suite and evaluation protocol, we evaluate two state-of-the-art LLMs under both per-document and long-context, multi-document input regimes. Across domains and models, performance remains moderate for single-property queries but degrades sharply once tasks require stable binding between variables, roles, statistical methods, and effect sizes. Full meta-analytic association tuples are extracted with near-zero reliability, and long-context inputs further exacerbate these failures. Downstream aggregation amplifies even minor upstream errors, rendering corpus-level statistics unreliable. Our analysis shows that these limitations stem not from entity recognition errors, but from systematic structural breakdowns, including role reversals, cross-analysis binding drift, instance compression in dense result sections, and numeric misattribution, indicating that current LLMs lack the structural fidelity, relational binding, and numerical grounding required for automated meta-analysis. The code and data are publicly available at GitHub (https://github.com/zhiyintan/LLM-Meta-Analysis).
comment: Accepted at the 22nd Conference on Information and Research Science Connecting to Digital and Library Science (IRCDL 2026)
☆ FedPS: Federated data Preprocessing via aggregated Statistics
Federated Learning (FL) enables multiple parties to collaboratively train machine learning models without sharing raw data. However, before training, data must be preprocessed to address missing values, inconsistent formats, and heterogeneous feature scales. This preprocessing stage is critical for model performance but is largely overlooked in FL research. In practical FL systems, privacy constraints prohibit centralizing raw data, while communication efficiency introduces further challenges for distributed preprocessing. We introduce FedPS, a unified framework for federated data preprocessing based on aggregated statistics. FedPS leverages data-sketching techniques to efficiently summarize local datasets while preserving essential statistical information. Building on these summaries, we design federated algorithms for feature scaling, encoding, discretization, and missing-value imputation, and extend preprocessing-related models such as k-Means, k-Nearest Neighbors, and Bayesian Linear Regression to both horizontal and vertical FL settings. FedPS provides flexible, communication-efficient, and consistent preprocessing pipelines for practical FL deployments.
comment: 19 pages
☆ The Sample Complexity of Uniform Approximation for Multi-Dimensional CDFs and Fixed-Price Mechanisms
We study the sample complexity of learning a uniform approximation of an $n$-dimensional cumulative distribution function (CDF) within an error $ε> 0$, when observations are restricted to a minimal one-bit feedback. This serves as a counterpart to the multivariate DKW inequality under ''full feedback'', extending it to the setting of ''bandit feedback''. Our main result shows a near-dimensional-invariance in the sample complexity: we get a uniform $ε$-approximation with a sample complexity $\frac{1}{ε^3}{\log\left(\frac 1 ε\right)^{\mathcal{O}(n)}}$ over a arbitrary fine grid, where the dimensionality $n$ only affects logarithmic terms. As direct corollaries, we provide tight sample complexity bounds and novel regret guarantees for learning fixed-price mechanisms in small markets, such as bilateral trade settings.
☆ Deep Learning of Compositional Targets with Hierarchical Spectral Methods
Why depth yields a genuine computational advantage over shallow methods remains a central open question in learning theory. We study this question in a controlled high-dimensional Gaussian setting, focusing on compositional target functions. We analyze their learnability using an explicit three-layer fitting model trained via layer-wise spectral estimators. Although the target is globally a high-degree polynomial, its compositional structure allows learning to proceed in stages: an intermediate representation reveals structure that is inaccessible at the input level. This reduces learning to simpler spectral estimation problems, well studied in the context of multi-index models, whereas any shallow estimator must resolve all components simultaneously. Our analysis relies on Gaussian universality, leading to sharp separations in sample complexity between two and three-layer learning strategies.
☆ ICA: Information-Aware Credit Assignment for Visually Grounded Long-Horizon Information-Seeking Agents
Despite the strong performance achieved by reinforcement learning-trained information-seeking agents, learning in open-ended web environments remains severely constrained by low signal-to-noise feedback. Text-based parsers often discard layout semantics and introduce unstructured noise, while long-horizon training typically relies on sparse outcome rewards that obscure which retrieval actions actually matter. We propose a visual-native search framework that represents webpages as visual snapshots, allowing agents to leverage layout cues to quickly localize salient evidence and suppress distractors. To learn effectively from these high-dimensional observations, we introduce Information-Aware Credit Assignment (ICA), a post-hoc method that estimates each retrieved snapshot's contribution to the final outcome via posterior analysis and propagates dense learning signals back to key search turns. Integrated with a GRPO-based training pipeline, our approach consistently outperforms text-based baselines on diverse information-seeking benchmarks, providing evidence that visual snapshot grounding with information-level credit assignment alleviates the credit-assignment bottleneck in open-ended web environments. The code and datasets will be released in https://github.com/pc-inno/ICA_MM_deepsearch.git.
☆ Automated Model Design using Gated Neuron Selection in Telecom
The telecommunications industry is experiencing rapid growth in adopting deep learning for critical tasks such as traffic prediction, signal strength prediction, and quality of service optimisation. However, designing neural network architectures for these applications remains challenging and time-consuming, particularly when targeting compact models suitable for resource-constrained network environments. Therefore, there is a need for automating the model design process to create high-performing models efficiently. This paper introduces TabGNS (Tabular Gated Neuron Selection), a novel gradient-based Neural Architecture Search (NAS) method specifically tailored for tabular data in telecommunications networks. We evaluate TabGNS across multiple telecommunications and generic tabular datasets, demonstrating improvements in prediction performance while reducing the architecture size by 51-82% and reducing the search time by up to 36x compared to state-of-the-art tabular NAS methods. Integrating TabGNS into the model lifecycle management enables automated design of neural networks throughout the lifecycle, accelerating deployment of ML solutions in telecommunications networks.
☆ Time Series Foundation Models for Energy Load Forecasting on Consumer Hardware: A Multi-Dimensional Zero-Shot Benchmark
Time Series Foundation Models (TSFMs) have introduced zero-shot prediction capabilities that bypass the need for task-specific training. Whether these capabilities translate to mission-critical applications such as electricity demand forecasting--where accuracy, calibration, and robustness directly affect grid operations--remains an open question. We present a multi-dimensional benchmark evaluating four TSFMs (Chronos-Bolt, Chronos-2, Moirai-2, and TinyTimeMixer) alongside Prophet as an industry-standard baseline and two statistical references (SARIMA and Seasonal Naive), using ERCOT hourly load data from 2020 to 2024. All experiments run on consumer-grade hardware (AMD Ryzen 7, 16GB RAM, no GPU). The evaluation spans four axes: (1) context length sensitivity from 24 to 2048 hours, (2) probabilistic forecast calibration, (3) robustness under distribution shifts including COVID-19 lockdowns and Winter Storm Uri, and (4) prescriptive analytics for operational decision support. The top-performing foundation models achieve MASE values near 0.31 at long context lengths (C = 2048h, day-ahead horizon), a 47% reduction over the Seasonal Naive baseline. The inclusion of Prophet exposes a structural advantage of pre-trained models: Prophet fails when the fitting window is shorter than its seasonality period (MASE > 74 at 24-hour context), while TSFMs maintain stable accuracy even with minimal context because they recognise temporal patterns learned during pre-training rather than estimating them from scratch. Calibration varies substantially across models--Chronos-2 produces well-calibrated prediction intervals (95% empirical coverage at 90% nominal level) while both Moirai-2 and Prophet exhibit overconfidence (~70% coverage). We provide practical model selection guidelines and release the complete benchmark framework for reproducibility.
comment: 27 pages, 13 figures
☆ Enhancing Multivariate Time Series Forecasting with Global Temporal Retrieval ICLR 2026
Multivariate time series forecasting (MTSF) plays a vital role in numerous real-world applications, yet existing models remain constrained by their reliance on a limited historical context. This limitation prevents them from effectively capturing global periodic patterns that often span cycles significantly longer than the input horizon - despite such patterns carrying strong predictive signals. Naive solutions, such as extending the historical window, lead to severe drawbacks, including overfitting, prohibitive computational costs, and redundant information processing. To address these challenges, we introduce the Global Temporal Retriever (GTR), a lightweight and plug-and-play module designed to extend any forecasting model's temporal awareness beyond the immediate historical context. GTR maintains an adaptive global temporal embedding of the entire cycle and dynamically retrieves and aligns relevant global segments with the input sequence. By jointly modeling local and global dependencies through a 2D convolution and residual fusion, GTR effectively bridges short-term observations with long-term periodicity without altering the host model architecture. Extensive experiments on six real-world datasets demonstrate that GTR consistently delivers state-of-the-art performance across both short-term and long-term forecasting scenarios, while incurring minimal parameter and computational overhead. These results highlight GTR as an efficient and general solution for enhancing global periodicity modeling in MTSF tasks. Code is available at this repository: https://github.com/macovaseas/GTR.
comment: ICLR 2026
☆ SynergyKGC: Reconciling Topological Heterogeneity in Knowledge Graph Completion via Topology-Aware Synergy
Knowledge Graph Completion (KGC) fundamentally hinges on the coherent fusion of pre-trained entity semantics with heterogeneous topological structures to facilitate robust relational reasoning. However, existing paradigms encounter a critical "structural resolution mismatch," failing to reconcile divergent representational demands across varying graph densities, which precipitates structural noise interference in dense clusters and catastrophic representation collapse in sparse regions. We present SynergyKGC, an adaptive framework that advances traditional neighbor aggregation to an active Cross-Modal Synergy Expert via relation-aware cross-attention and semantic-intent-driven gating. By coupling a density-dependent Identity Anchoring strategy with a Double-tower Coherent Consistency architecture, SynergyKGC effectively reconciles topological heterogeneity while ensuring representational stability across training and inference phases. Systematic evaluations on two public benchmarks validate the superiority of our method in significantly boosting KGC hit rates, providing empirical evidence for a generalized principle of resilient information integration in non-homogeneous structured data.
comment: 10 pages, 5 tables, 7 figures. This work introduces the Active Synergy mechanism and Identity Anchoring for Knowledge Graph Completion. Code: https://github.com/XuechengZou-2001/SynergyKGC-main
☆ SimuScene: Training and Benchmarking Code Generation to Simulate Physical Scenarios
Large language models (LLMs) have been extensively studied for tasks like math competitions, complex coding, and scientific reasoning, yet their ability to accurately represent and simulate physical scenarios via code remains underexplored. We propose SimuScene, the first systematic study that trains and evaluates LLMs on simulating physical scenarios across five physics domains and 52 physical concepts. We build an automatic pipeline to collect data, with human verification to ensure quality. The final dataset contains 7,659 physical scenarios with 334 human-verified examples as the test set. We evaluated 10 contemporary LLMs and found that even the strongest model achieves only a 21.5% pass rate, demonstrating the difficulty of the task. Finally, we introduce a reinforcement learning pipeline with visual rewards that uses a vision-language model as a judge to train textual models. Experiments show that training with our data improves physical simulation via code while substantially enhancing general code generation performance.
Self-Supervised Learning for Speaker Recognition: A study and review
Deep learning models trained in a supervised setting have revolutionized audio and speech processing. However, their performance inherently depends on the quantity of human-annotated data, making them costly to scale and prone to poor generalization under unseen conditions. To address these challenges, Self-Supervised Learning (SSL) has emerged as a promising paradigm, leveraging vast amounts of unlabeled data to learn relevant representations. The application of SSL for Automatic Speech Recognition (ASR) has been extensively studied, but research on other downstream tasks, notably Speaker Recognition (SR), remains in its early stages. This work describes major SSL instance-invariance frameworks (e.g., SimCLR, MoCo, and DINO), initially developed for computer vision, along with their adaptation to SR. Various SSL methods for SR, proposed in the literature and built upon these frameworks, are also presented. An extensive review of these approaches is then conducted: (1) the effect of the main hyperparameters of SSL frameworks is investigated; (2) the role of SSL components is studied (e.g., data-augmentation, projector, positive sampling); and (3) SSL frameworks are evaluated on SR with in-domain and out-of-domain data, using a consistent experimental setup, and a comprehensive comparison of SSL methods from the literature is provided. Specifically, DINO achieves the best downstream performance and effectively models intra-speaker variability, although it is highly sensitive to hyperparameters and training conditions, while SimCLR and MoCo provide robust alternatives that effectively capture inter-speaker variability and are less prone to collapse. This work aims to highlight recent trends and advancements, identifying current challenges in the field.
comment: accepted for publication in Speech Communication
☆ Adaptive Sampling for Private Worst-Case Group Optimization
Models trained by minimizing the average loss often fail to be accurate on small or hard-to-learn groups of the data. Various methods address this issue by optimizing a weighted objective that focuses on the worst-performing groups. However, this approach becomes problematic when learning with differential privacy, as unequal data weighting can result in inhomogeneous privacy guarantees, in particular weaker privacy for minority groups. In this work, we introduce a new algorithm for differentially private worst-case group optimization called ASC (Adaptively Sampled and Clipped Worst-case Group Optimization). It adaptively controls both the sampling rate and the clipping threshold of each group. Thereby, it allows for harder-to-learn groups to be sampled more often while ensuring consistent privacy guarantees across all groups. Comparing ASC to prior work, we show that it results in lower-variance gradients, tighter privacy guarantees, and substantially higher worst-case group accuracy without sacrificing overall average accuracy.
comment: 8 pages, 3 figures
☆ RePO: Bridging On-Policy Learning and Off-Policy Knowledge through Rephrasing Policy Optimization
Aligning large language models (LLMs) on domain-specific data remains a fundamental challenge. Supervised fine-tuning (SFT) offers a straightforward way to inject domain knowledge but often degrades the model's generality. In contrast, on-policy reinforcement learning (RL) preserves generality but fails to effectively assimilate hard samples that exceed the model's current reasoning level. Recent off-policy RL attempts improve hard sample utilization, yet they suffer from severe training instability due to the forced distribution shift toward off-policy knowledge. To reconcile effective off-policy knowledge absorption with the stability of on-policy RL, we propose Rephrasing Policy Optimization (RePO). In RePO, the policy model is prompted to first comprehend off-policy knowledge and then rephrase it into trajectories that conform to its own stylistic and parametric distribution. RePO dynamically replaces low-reward rollouts with these rephrased, high-quality trajectories. This strategy guides the model toward correct reasoning paths while strictly preserving on-policy training dynamics. Experiments on several benchmarks demonstrate that RePO improves hard-sample utilization and outperforms existing baselines, achieving state-of-the-art performance.
☆ Why Does RL Generalize Better Than SFT? A Data-Centric Perspective on VLM Post-Training
The adaptation of large-scale Vision-Language Models (VLMs) through post-training reveals a pronounced generalization gap: models fine-tuned with Reinforcement Learning (RL) consistently achieve superior out-of-distribution (OOD) performance compared to those trained with Supervised Fine-Tuning (SFT). This paper posits a data-centric explanation for this phenomenon, contending that RL's generalization advantage arises from an implicit data filtering mechanism that inherently prioritizes medium-difficulty training samples. To test this hypothesis, we systematically evaluate the OOD generalization of SFT models across training datasets of varying difficulty levels. Our results confirm that data difficulty is a critical factor, revealing that training on hard samples significantly degrades OOD performance. Motivated by this finding, we introduce Difficulty-Curated SFT (DC-SFT), a straightforward method that explicitly filters the training set based on sample difficulty. Experiments show that DC-SFT not only substantially enhances OOD generalization over standard SFT, but also surpasses the performance of RL-based training, all while providing greater stability and computational efficiency. This work offers a data-centric account of the OOD generalization gap in VLMs and establishes a more efficient pathway to achieving robust generalization. Code is available at https://github.com/byyx666/DC-SFT.
☆ Deep Learning-based Method for Expressing Knowledge Boundary of Black-Box LLM
Large Language Models (LLMs) have achieved remarkable success, however, the emergence of content generation distortion (hallucination) limits their practical applications. The core cause of hallucination lies in LLMs' lack of awareness regarding their stored internal knowledge, preventing them from expressing their knowledge state on questions beyond their internal knowledge boundaries, as humans do. However, existing research on knowledge boundary expression primarily focuses on white-box LLMs, leaving methods suitable for black-box LLMs which offer only API access without revealing internal parameters-largely unexplored. Against this backdrop, this paper proposes LSCL (LLM-Supervised Confidence Learning), a deep learning-based method for expressing the knowledge boundaries of black-box LLMs. Based on the knowledge distillation framework, this method designs a deep learning model. Taking the input question, output answer, and token probability from a black-box LLM as inputs, it constructs a mapping between the inputs and the model' internal knowledge state, enabling the quantification and expression of the black-box LLM' knowledge boundaries. Experiments conducted on diverse public datasets and with multiple prominent black-box LLMs demonstrate that LSCL effectively assists black-box LLMs in accurately expressing their knowledge boundaries. It significantly outperforms existing baseline models on metrics such as accuracy and recall rate. Furthermore, considering scenarios where some black-box LLMs do not support access to token probability, an adaptive alternative method is proposed. The performance of this alternative approach is close to that of LSCL and surpasses baseline models.
☆ PRISM: Parallel Residual Iterative Sequence Model
Generative sequence modeling faces a fundamental tension between the expressivity of Transformers and the efficiency of linear sequence models. Existing efficient architectures are theoretically bounded by shallow, single-step linear updates, while powerful iterative methods like Test-Time Training (TTT) break hardware parallelism due to state-dependent gradients. We propose PRISM (Parallel Residual Iterative Sequence Model) to resolve this tension. PRISM introduces a solver-inspired inductive bias that captures key structural properties of multi-step refinement in a parallelizable form. We employ a Write-Forget Decoupling strategy that isolates non-linearity within the injection operator. To bypass the serial dependency of explicit solvers, PRISM utilizes a two-stage proxy architecture: a short-convolution anchors the initial residual using local history energy, while a learned predictor estimates the refinement updates directly from the input. This design distills structural patterns associated with iterative correction into a parallelizable feedforward operator. Theoretically, we prove that this formulation achieves Rank-$L$ accumulation, structurally expanding the update manifold beyond the single-step Rank-$1$ bottleneck. Empirically, it achieves comparable performance to explicit optimization methods while achieving 174x higher throughput.
comment: 21 pages, 2 figures
☆ Transport, Don't Generate: Deterministic Geometric Flows for Combinatorial Optimization
Recent advances in Neural Combinatorial Optimization (NCO) have been dominated by diffusion models that treat the Euclidean Traveling Salesman Problem (TSP) as a stochastic $N \times N$ heatmap generation task. In this paper, we propose CycFlow, a framework that replaces iterative edge denoising with deterministic point transport. CycFlow learns an instance-conditioned vector field that continuously transports input 2D coordinates to a canonical circular arrangement, where the optimal tour is recovered from this $2N$ dimensional representation via angular sorting. By leveraging data-dependent flow matching, we bypass the quadratic bottleneck of edge scoring in favor of linear coordinate dynamics. This paradigm shift accelerates solving speed by up to three orders of magnitude compared to state-of-the-art diffusion baselines, while maintaining competitive optimality gaps.
comment: Preprint. 10 pages
☆ Semi-Supervised Cross-Domain Imitation Learning
Cross-domain imitation learning (CDIL) accelerates policy learning by transferring expert knowledge across domains, which is valuable in applications where the collection of expert data is costly. Existing methods are either supervised, relying on proxy tasks and explicit alignment, or unsupervised, aligning distributions without paired data, but often unstable. We introduce the Semi-Supervised CDIL (SS-CDIL) setting and propose the first algorithm for SS-CDIL with theoretical justification. Our method uses only offline data, including a small number of target expert demonstrations and some unlabeled imperfect trajectories. To handle domain discrepancy, we propose a novel cross-domain loss function for learning inter-domain state-action mappings and design an adaptive weight function to balance the source and target knowledge. Experiments on MuJoCo and Robosuite show consistent gains over the baselines, demonstrating that our approach achieves stable and data-efficient policy learning with minimal supervision. Our code is available at~ https://github.com/NYCU-RL-Bandits-Lab/CDIL.
comment: Published in Transactions on Machine Learning Research (TMLR)
☆ Bayesian Signal Component Decomposition via Diffusion-within-Gibbs Sampling
In signal processing, the data collected from sensing devices is often a noisy linear superposition of multiple components, and the estimation of components of interest constitutes a crucial pre-processing step. In this work, we develop a Bayesian framework for signal component decomposition, which combines Gibbs sampling with plug-and-play (PnP) diffusion priors to draw component samples from the posterior distribution. Unlike many existing methods, our framework supports incorporating model-driven and data-driven prior knowledge into the diffusion prior in a unified manner. Moreover, the proposed posterior sampler allows component priors to be learned separately and flexibly combined without retraining. Under suitable assumptions, the proposed DiG sampler provably produces samples from the posterior distribution. We also show that DiG can be interpreted as an extension of a class of recently proposed diffusion-based samplers, and that, for suitable classes of sensing operators, DiG better exploits the structure of the measurement model. Numerical experiments demonstrate the superior performance of our method over existing approaches.
comment: 13 pages, 2 figures. Submitted to journal
☆ Kill it with FIRE: On Leveraging Latent Space Directions for Runtime Backdoor Mitigation in Deep Neural Networks
Machine learning models are increasingly present in our everyday lives; as a result, they become targets of adversarial attackers seeking to manipulate the systems we interact with. A well-known vulnerability is a backdoor introduced into a neural network by poisoned training data or a malicious training process. Backdoors can be used to induce unwanted behavior by including a certain trigger in the input. Existing mitigations filter training data, modify the model, or perform expensive input modifications on samples. If a vulnerable model has already been deployed, however, those strategies are either ineffective or inefficient. To address this gap, we propose our inference-time backdoor mitigation approach called FIRE (Feature-space Inference-time REpair). We hypothesize that a trigger induces structured and repeatable changes in the model's internal representation. We view the trigger as directions in the latent spaces between layers that can be applied in reverse to correct the inference mechanism. Therefore, we turn the backdoored model against itself by manipulating its latent representations and moving a poisoned sample's features along the backdoor directions to neutralize the trigger. Our evaluation shows that FIRE has low computational overhead and outperforms current runtime mitigations on image benchmarks across various attacks, datasets, and network architectures.
☆ LOREN: Low Rank-Based Code-Rate Adaptation in Neural Receivers
Neural network based receivers have recently demonstrated superior system-level performance compared to traditional receivers. However, their practicality is limited by high memory and power requirements, as separate weight sets must be stored for each code rate. To address this challenge, we propose LOREN, a Low Rank-Based Code-Rate Adaptation Neural Receiver that achieves adaptability with minimal overhead. LOREN integrates lightweight low rank adaptation adapters (LOREN adapters) into convolutional layers, freezing a shared base network while training only small adapters per code rate. An end-to-end training framework over 3GPP CDL channels ensures robustness across realistic wireless environments. LOREN achieves comparable or superior performance relative to fully retrained base neural receivers. The hardware implementation of LOREN in 22nm technology shows more than 65% savings in silicon area and up to 15% power reduction when supporting three code rates.
comment: Accepted to / To appear IEEE Wireless Communications and Networking Conference Kuala Lumpur, Malaysia 13 - 16 April 2026
☆ Collaborative Threshold Watermarking
In federated learning (FL), $K$ clients jointly train a model without sharing raw data. Because each participant invests data and compute, clients need mechanisms to later prove the provenance of a jointly trained model. Model watermarking embeds a hidden signal in the weights, but naive approaches either do not scale with many clients as per-client watermarks dilute as $K$ grows, or give any individual client the ability to verify and potentially remove the watermark. We introduce $(t,K)$-threshold watermarking: clients collaboratively embed a shared watermark during training, while only coalitions of at least $t$ clients can reconstruct the watermark key and verify a suspect model. We secret-share the watermark key $τ$ so that coalitions of fewer than $t$ clients cannot reconstruct it, and verification can be performed without revealing $τ$ in the clear. We instantiate our protocol in the white-box setting and evaluate on image classification. Our watermark remains detectable at scale ($K=128$) with minimal accuracy loss and stays above the detection threshold ($z\ge 4$) under attacks including adaptive fine-tuning using up to 20% of the training data.
Exploring the impact of adaptive rewiring in Graph Neural Networks
This paper explores sparsification methods as a form of regularization in Graph Neural Networks (GNNs) to address high memory usage and computational costs in large-scale graph applications. Using techniques from Network Science and Machine Learning, including Erdős-Rényi for model sparsification, we enhance the efficiency of GNNs for real-world applications. We demonstrate our approach on N-1 contingency assessment in electrical grids, a critical task for ensuring grid reliability. We apply our methods to three datasets of varying sizes, exploring Graph Convolutional Networks (GCN) and Graph Isomorphism Networks (GIN) with different degrees of sparsification and rewiring. Comparison across sparsification levels shows the potential of combining insights from both research fields to improve GNN performance and scalability. Our experiments highlight the importance of tuning sparsity parameters: while sparsity can improve generalization, excessive sparsity may hinder learning of complex patterns. Our adaptive rewiring approach, particularly when combined with early stopping, proves promising by allowing the model to adapt its connectivity structure during training. This research contributes to understanding how sparsity can be effectively leveraged in GNNs for critical applications like power grid reliability analysis.
comment: This work has been submitted to the IEEE for possible publication
☆ Predicting integers from continuous parameters
We study the problem of predicting numeric labels that are constrained to the integers or to a subrange of the integers. For example, the number of up-votes on social media posts, or the number of bicycles available at a public rental station. While it is possible to model these as continuous values, and to apply traditional regression, this approach changes the underlying distribution on the labels from discrete to continuous. Discrete distributions have certain benefits, which leads us to the question whether such integer labels can be modeled directly by a discrete distribution, whose parameters are predicted from the features of a given instance. Moreover, we focus on the use case of output distributions of neural networks, which adds the requirement that the parameters of the distribution be continuous so that backpropagation and gradient descent may be used to learn the weights of the network. We investigate several options for such distributions, some existing and some novel, and test them on a range of tasks, including tabular learning, sequential prediction and image generation. We find that overall the best performance comes from two distributions: Bitwise, which represents the target integer in bits and places a Bernoulli distribution on each, and a discrete analogue of the Laplace distribution, which uses a distribution with exponentially decaying tails around a continuous mean.
☆ SecureScan: An AI-Driven Multi-Layer Framework for Malware and Phishing Detection Using Logistic Regression and Threat Intelligence Integration
The growing sophistication of modern malware and phishing campaigns has diminished the effectiveness of traditional signature-based intrusion detection systems. This work presents SecureScan, an AI-driven, triple-layer detection framework that integrates logistic regression-based classification, heuristic analysis, and external threat intelligence via the VirusTotal API for comprehensive triage of URLs, file hashes, and binaries. The proposed architecture prioritizes efficiency by filtering known threats through heuristics, classifying uncertain samples using machine learning, and validating borderline cases with third-party intelligence. On benchmark datasets, SecureScan achieves 93.1 percent accuracy with balanced precision (0.87) and recall (0.92), demonstrating strong generalization and reduced overfitting through threshold-based decision calibration. A calibrated threshold and gray-zone logic (0.45-0.55) were introduced to minimize false positives and enhance real-world stability. Experimental results indicate that a lightweight statistical model, when augmented with calibrated verification and external intelligence, can achieve reliability and performance comparable to more complex deep learning systems.
☆ Spectral-Spatial Contrastive Learning Framework for Regression on Hyperspectral Data
Contrastive learning has demonstrated great success in representation learning, especially for image classification tasks. However, there is still a shortage in studies targeting regression tasks, and more specifically applications on hyperspectral data. In this paper, we propose a spectral-spatial contrastive learning framework for regression tasks for hyperspectral data, in a model-agnostic design allowing to enhance backbones such as 3D convolutional and transformer-based networks. Moreover, we provide a collection of transformations relevant for augmenting hyperspectral data. Experiments on synthetic and real datasets show that the proposed framework and transformations significantly improve the performance of all studied backbone models.
Self-Supervised Image Super-Resolution Quality Assessment based on Content-Free Multi-Model Oriented Representation Learning
Super-resolution (SR) applied to real-world low-resolution (LR) images often results in complex, irregular degradations that stem from the inherent complexity of natural scene acquisition. In contrast to SR artifacts arising from synthetic LR images created under well-defined scenarios, those distortions are highly unpredictable and vary significantly across different real-life contexts. Consequently, assessing the quality of SR images (SR-IQA) obtained from realistic LR, remains a challenging and underexplored problem. In this work, we introduce a no-reference SR-IQA approach tailored for such highly ill-posed realistic settings. The proposed method enables domain-adaptive IQA for real-world SR applications, particularly in data-scarce domains. We hypothesize that degradations in super-resolved images are strongly dependent on the underlying SR algorithms, rather than being solely determined by image content. To this end, we introduce a self-supervised learning (SSL) strategy that first pretrains multiple SR model oriented representations in a pretext stage. Our contrastive learning framework forms positive pairs from images produced by the same SR model and negative pairs from those generated by different methods, independent of image content. The proposed approach S3 RIQA, further incorporates targeted preprocessing to extract complementary quality information and an auxiliary task to better handle the various degradation profiles associated with different SR scaling factors. To this end, we constructed a new dataset, SRMORSS, to support unsupervised pretext training; it includes a wide range of SR algorithms applied to numerous real LR images, which addresses a gap in existing datasets. Experiments on real SR-IQA benchmarks demonstrate that S3 RIQA consistently outperforms most state-of-the-art relevant metrics.
☆ Kalman Linear Attention: Parallel Bayesian Filtering For Efficient Language Modelling and State Tracking
State-space language models such as Mamba and gated linear attention (GLA) offer efficient alternatives to transformers due to their linear complexity and parallel training, but often lack the expressivity and robust state-tracking needed for complex reasoning. We address these limitations by reframing sequence modelling through a probabilistic lens, using Bayesian filters as a core primitive. While classical filters such as Kalman filters provide principled state estimation and uncertainty tracking, they are typically viewed as inherently sequential. We show that reparameterising the Kalman filter in information form enables its updates to be computed via an associative scan, allowing efficient parallel training. Building on this insight, we introduce the Kalman Linear Attention (KLA) layer, a neural sequence-modelling primitive that performs time-parallel probabilistic inference while maintaining explicit belief-state uncertainty. KLA offers strictly more expressive nonlinear updates and gating than GLA variants while retaining their computational advantages. On language modelling tasks, KLA matches or outperforms modern SSMs and GLAs across representative discrete token-manipulation and state-tracking benchmarks.
comment: Preprint. A version of this work was accepted and presented at the 1st Workshop on Epistemic Intelligence in Machine Learning (EIML) at EurIPS 2025
☆ Rising Multi-Armed Bandits with Known Horizons
The Rising Multi-Armed Bandit (RMAB) framework models environments where expected rewards of arms increase with plays, which models practical scenarios where performance of each option improves with the repeated usage, such as in robotics and hyperparameter tuning. For instance, in hyperparameter tuning, the validation accuracy of a model configuration (arm) typically increases with each training epoch. A defining characteristic of RMAB is em horizon-dependent optimality: unlike standard settings, the optimal strategy here shifts dramatically depending on the available budget $T$. This implies that knowledge of $T$ yields significantly greater utility in RMAB, empowering the learner to align its decision-making with this shifting optimality. However, the horizon-aware setting remains underexplored. To address this, we propose a novel CUmulative Reward Estimation UCB (CURE-UCB) that explicitly integrates the horizon. We provide a rigorous analysis establishing a new regret upper bound and prove that our method strictly outperforms horizon-agnostic strategies in structured environments like ``linear-then-flat'' instances. Extensive experiments demonstrate its significant superiority over baselines.
☆ SnapMLA: Efficient Long-Context MLA Decoding via Hardware-Aware FP8 Quantized Pipelining
While FP8 attention has shown substantial promise in innovations like FlashAttention-3, its integration into the decoding phase of the DeepSeek Multi-head Latent Attention (MLA) architecture presents notable challenges. These challenges include numerical heterogeneity arising from the decoupling of positional embeddings, misalignment of quantization scales in FP8 PV GEMM, and the need for optimized system-level support. In this paper, we introduce SnapMLA, an FP8 MLA decoding framework optimized to improve long-context efficiency through the following hardware-aware algorithm-kernel co-optimization techniques: (i) RoPE-Aware Per-Token KV Quantization, where the RoPE part is maintained in high precision, motivated by our comprehensive analysis of the heterogeneous quantization sensitivity inherent to the MLA KV cache. Furthermore, per-token granularity is employed to align with the autoregressive decoding process and maintain quantization accuracy. (ii) Quantized PV Computation Pipeline Reconstruction, which resolves the misalignment of quantization scale in FP8 PV computation stemming from the shared KV structure of the MLA KV cache. (iii) End-to-End Dataflow Optimization, where we establish an efficient data read-and-write workflow using specialized kernels, ensuring efficient data flow and performance gains. Extensive experiments on state-of-the-art MLA LLMs show that SnapMLA achieves up to a 1.91x improvement in throughput, with negligible risk of performance degradation in challenging long-context tasks, including mathematical reasoning and code generation benchmarks. Code is available at https://github.com/meituan-longcat/SGLang-FluentLLM.
☆ Interpretable Graph-Level Anomaly Detection via Contrast with Normal Prototypes
The task of graph-level anomaly detection (GLAD) is to identify anomalous graphs that deviate significantly from the majority of graphs in a dataset. While deep GLAD methods have shown promising performance, their black-box nature limits their reliability and deployment in real-world applications. Although some recent methods have made attempts to provide explanations for anomaly detection results, they either provide explanations without referencing normal graphs, or rely on abstract latent vectors as prototypes rather than concrete graphs from the dataset. To address these limitations, we propose Prototype-based Graph-Level Anomaly Detection (ProtoGLAD), an interpretable unsupervised framework that provides explanation for each detected anomaly by explicitly contrasting with its nearest normal prototype graph. It employs a point-set kernel to iteratively discover multiple normal prototype graphs and their associated clusters from the dataset, then identifying graphs distant from all discovered normal clusters as anomalies. Extensive experiments on multiple real-world datasets demonstrate that ProtoGLAD achieves competitive anomaly detection performance compared to state-of-the-art GLAD methods while providing better human-interpretable prototype-based explanations.
☆ Reducing Estimation Uncertainty Using Normalizing Flows and Stratification
Estimating the expectation of a real-valued function of a random variable from sample data is a critical aspect of statistical analysis, with far-reaching implications in various applications. Current methodologies typically assume (semi-)parametric distributions such as Gaussian or mixed Gaussian, leading to significant estimation uncertainty if these assumptions do not hold. We propose a flow-based model, integrated with stratified sampling, that leverages a parametrized neural network to offer greater flexibility in modeling unknown data distributions, thereby mitigating this limitation. Our model shows a marked reduction in estimation uncertainty across multiple datasets, including high-dimensional (30 and 128) ones, outperforming crude Monte Carlo estimators and Gaussian mixture models. Reproducible code is available at https://github.com/rnoxy/flowstrat.
comment: This is the extended version of a paper accepted for publication at ACIIDS 2026
☆ A Unified Experimental Architecture for Informative Path Planning: from Simulation to Deployment with GuadalPlanner
The evaluation of informative path planning algorithms for autonomous vehicles is often hindered by fragmented execution pipelines and limited transferability between simulation and real-world deployment. This paper introduces a unified architecture that decouples high-level decision-making from vehicle-specific control, enabling algorithms to be evaluated consistently across different abstraction levels without modification. The proposed architecture is realized through GuadalPlanner, which defines standardized interfaces between planning, sensing, and vehicle execution. It is an open and extensible research tool that supports discrete graph-based environments and interchangeable planning strategies, and is built upon widely adopted robotics technologies, including ROS2, MAVLink, and MQTT. Its design allows the same algorithmic logic to be deployed in fully simulated environments, software-in-the-loop configurations, and physical autonomous vehicles using an identical execution pipeline. The approach is validated through a set of experiments, including real-world deployment on an autonomous surface vehicle performing water quality monitoring with real-time sensor feedback.
♻ ☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: Library opensource and available at https://github.com/Lexsi-Labs/aligntune
♻ ☆ MOTGNN: Interpretable Graph Neural Networks for Multi-Omics Disease Classification
Integrating multi-omics data, such as DNA methylation, mRNA expression, and microRNA (miRNA) expression, offers a comprehensive view of the biological mechanisms underlying disease. However, the high dimensionality of multi-omics data, the heterogeneity across modalities, and the lack of reliable biological interaction networks make meaningful integration challenging. In addition, many existing models rely on handcrafted similarity graphs, are vulnerable to class imbalance, and often lack built-in interpretability, limiting their usefulness in biomedical applications. We propose Multi-Omics integration with Tree-generated Graph Neural Network (MOTGNN), a novel and interpretable framework for binary disease classification. MOTGNN employs eXtreme Gradient Boosting (XGBoost) for omics-specific supervised graph construction, followed by modality-specific Graph Neural Networks (GNNs) for hierarchical representation learning, and a deep feedforward network for cross-omics integration. Across three real-world disease datasets, MOTGNN outperforms state-of-the-art baselines by 5-10% in accuracy, ROC-AUC, and F1-score, and remains robust to severe class imbalance. The model maintains computational efficiency through the use of sparse graphs and provides built-in interpretability, revealing both top-ranked biomarkers and the relative contributions of each omics modality. These results highlight the potential of MOTGNN to improve both predictive accuracy and interpretability in multi-omics disease modeling.
comment: 11 pages, 6 figures, 7 tables
♻ ☆ Proficient Graph Neural Network Design by Accumulating Knowledge on Large Language Models WSDM 2026
High-level automation is increasingly critical in AI, driven by rapid advances in large language models (LLMs) and AI agents. However, LLMs, despite their general reasoning power, struggle significantly in specialized, data-sensitive tasks such as designing Graph Neural Networks (GNNs). This difficulty arises from (1) the inherent knowledge gaps in modeling the intricate, varying relationships between graph properties and suitable architectures and (2) the external noise from misleading descriptive inputs, often resulting in generic or even misleading model suggestions. Achieving proficiency in designing data-aware models -- defined as the meta-level capability to systematically accumulate, interpret, and apply data-specific design knowledge -- remains challenging for existing automated approaches, due to their inefficient construction and application of meta-knowledge. To achieve meta-level proficiency, we propose DesiGNN, a knowledge-centered framework that systematically converts past model design experience into structured, fine-grained knowledge priors well-suited for meta-learning with LLMs. To account for the inherent variability and external noise, DesiGNN aligns empirical property filtering from extensive benchmarks with adaptive elicitation of literature insights via LLMs. By constructing a solid meta-knowledge between unseen graph understanding and known effective architecture patterns, DesiGNN can deliver top-5.77% initial model proposals for unseen datasets within seconds and achieve consistently superior performance with minimal search cost compared to baselines.
comment: Accepted at WSDM 2026. Title changed from "Computation-friendly graph neural network design by accumulating knowledge on large language models" to "Proficient Graph Neural Network Design by Accumulating Knowledge on Large Language Models"
♻ ☆ Expanding the Capabilities of Reinforcement Learning via Text Feedback
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
comment: 43 pages, 6 figures
♻ ☆ End to End Collaborative Synthetic Data Generation AAAI 2025
The success of AI is based on the availability of data to train models. While in some cases a single data custodian may have sufficient data to enable AI, often multiple custodians need to collaborate to reach a cumulative size required for meaningful AI research. The latter is, for example, often the case for rare diseases, with each clinical site having data for only a small number of patients. Recent algorithms for federated synthetic data generation are an important step towards collaborative, privacy-preserving data sharing. Existing techniques, however, focus exclusively on synthesizer training, assuming that the training data is already preprocessed and that the desired synthetic data can be delivered in one shot, without any hyperparameter tuning. In this paper, we propose an end-to-end collaborative framework for publishing of synthetic data that accounts for privacy-preserving preprocessing as well as evaluation. We instantiate this framework with Secure Multiparty Computation (MPC) protocols and evaluate it in a use case for privacy-preserving publishing of synthetic genomic data for leukemia.
comment: Accepted at PPAI Workshop, AAAI 2025
♻ ☆ Implicit Hypothesis Testing and Divergence Preservation in Neural Network Representations
We study the supervised training dynamics of neural classifiers through the lens of binary hypothesis testing. We model classification as a set of binary tests between class-conditional distributions of representations and empirically show that, along training trajectories, well-generalizing networks increasingly align with Neyman-Pearson optimal decision rules via monotonic improvements in KL divergence that relate to error rate exponents. We finally discuss how this yields an explanation and possible training or regularization strategies for different classes of neural networks.
♻ ☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
♻ ☆ Is In-Context Learning Learning? ICLR 2026
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL fits the definition of learning; however, its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that, empirically, ICL is limited in its ability to learn and generalise to unseen tasks. Namely, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies and on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism for learning, and suggests limited all-purpose generalisability.
comment: Accepted to ICLR 2026 -- CR version
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanatory basin or separate into multiple structured explanatory basins. We evaluate EvoXplain on the Adult Income and Breast Cancer datasets using deep neural networks and Logistic Regression. Although all models achieve high predictive accuracy, explanation stability differs across pipelines. Deep neural networks on Breast Cancer converge to a single explanatory basin, while the same architecture on Adult Income separates into distinct explanatory basins despite identical training conditions. Logistic Regression on Breast Cancer exhibits conditional multiplicity, where basin accessibility is controlled by regularisation configuration. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory structure visible and quantifiable, revealing when single instance explanations obscure the existence of multiple admissible predictive mechanisms. More broadly, EvoXplain reframes interpretability as a property of the training pipeline under repeated instantiation, rather than of any single trained model.
♻ ☆ Goal-Conditioned Reinforcement Learning from Sub-Optimal Data on Metric Spaces
We study the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning under sparse rewards, invertible actions and deterministic transitions. To mitigate the effects of \emph{distribution shift}, we propose MetricRL, a method that combines metric learning for value function approximation with weighted imitation learning for policy estimation. MetricRL avoids conservative or behavior-cloning constraints, enabling effective learning even in severely sub-optimal regimes. We introduce distance monotonicity as a key property linking metric representations to optimality and design an objective that explicitly promotes it. Empirically, MetricRL consistently outperforms prior state-of-the-art goal-conditioned RL methods in recovering near-optimal behavior from sub-optimal offline data.
♻ ☆ Intrinsic Self-Correction in LLMs: Towards Explainable Prompting via Mechanistic Interpretability
Intrinsic self-correction refers to the phenomenon where a language model refines its own outputs purely through prompting, without external feedback or parameter updates. While this approach improves performance across diverse tasks, its mechanism remains unclear. We show that intrinsic self-correction functions by steering hidden representations along interpretable latent directions, as evidenced by both alignment analysis and activation interventions. To achieve this, we analyze intrinsic self-correction via the representation shift induced by prompting. In parallel, we construct interpretable latent directions with contrastive pairs and verify the causal effect of these directions via activation addition. Evaluating six open-source LLMs, our results demonstrate that prompt-induced representation shifts in text detoxification and text toxification consistently align with latent directions constructed from contrastive pairs. In detoxification, the shifts align with the non-toxic direction; in toxification, they align with the toxic direction. These findings suggest that representation steering is the mechanistic driver of intrinsic self-correction. Our analysis highlights that understanding model internals offers a direct route to analyzing the mechanisms of prompt-driven LLM behaviors.
♻ ☆ GLASS Flows: Transition Sampling for Alignment of Flow and Diffusion Models
The performance of flow matching and diffusion models can be greatly improved at inference time using reward alignment algorithms, yet efficiency remains a major limitation. While several algorithms were proposed, we demonstrate that a common bottleneck is the sampling method these algorithms rely on: many algorithms require to sample Markov transitions via SDE sampling, which is significantly less efficient and often less performant than ODE sampling. To remove this bottleneck, we introduce GLASS Flows, a new sampling paradigm that simulates a "flow matching model within a flow matching model" to sample Markov transitions. As we show in this work, this "inner" flow matching model can be retrieved from a pre-trained model without any re-training, combining the efficiency of ODEs with the stochastic evolution of SDEs. On large-scale text-to-image models, we show that GLASS Flows eliminate the trade-off between stochastic evolution and efficiency. Combined with Feynman-Kac Steering, GLASS Flows improve state-of-the-art performance in text-to-image generation, making it a simple, drop-in solution for inference-time scaling of flow and diffusion models.
♻ ☆ Learning to Explore with Parameter-Space Noise: A Deep Dive into Parameter-Space Noise for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) improves LLM reasoning, yet growing evidence indicates an exploration ceiling: it often reweights existing solution traces rather than discovering new strategies, limiting gains under large sampling budgets (e.g., pass-at-256). We address this limitation with PSN-RLVR, which perturbs policy parameters before rollout generation to induce temporally consistent, trajectory-level exploration that better preserves long-horizon chain-of-thought coherence than action-space noise. To mitigate the resulting sampling-update mismatch, we incorporate truncated importance sampling (TIS). To avoid expensive KL-based adaptive noise control, we propose a computationally efficient real-time adaptive noise scheduler driven by a lightweight surrogate that combines semantic diversity with normalized self-certainty. Instantiated on GRPO, a widely used RLVR method, PSN-GRPO consistently expands the effective reasoning capability boundary across multiple mathematical reasoning benchmarks and model families, yielding higher pass-at-k under large sampling budgets and outperforming prior exploration-oriented RLVR methods (e.g., Pass-at-k-style training) while remaining orthogonal and thus composable for additional gains.
comment: 17 pages, 10 Figures
♻ ☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics ICLR 2026
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: 49 pages, 28 figures. Accepted by ICLR 2026. Project page: https://bytedance-seed.github.io/ConfRover/starmd
♻ ☆ Shortest-Path Flow Matching with Mixture-Conditioned Bases for OOD Generalization to Unseen Conditions
Robust generalization under distribution shift remains a key challenge for conditional generative modeling: conditional flow-based methods often fit the training conditions well but fail to extrapolate to unseen ones. We introduce SP-FM, a shortest-path flow-matching framework that improves out-of-distribution (OOD) generalization by conditioning both the base distribution and the flow field on the condition. Specifically, SP-FM learns a condition-dependent base distribution parameterized as a flexible, learnable mixture, together with a condition-dependent vector field trained via shortest-path flow matching. Conditioning the base allows the model to adapt its starting distribution across conditions, enabling smooth interpolation and more reliable extrapolation beyond the observed training range. We provide theoretical insights into the resulting conditional transport and show how mixture-conditioned bases enhance robustness under shift. Empirically, SP-FM is effective across heterogeneous domains, including predicting responses to unseen perturbations in single-cell transcriptomics and modeling treatment effects in high-content microscopy--based drug screening. Overall, SP-FM provides a simple yet effective plug-in strategy for improving conditional generative modeling and OOD generalization across diverse domains.
♻ ☆ Provably Optimal Reinforcement Learning under Safety Filtering
Recent advances in reinforcement learning (RL) enable its use on increasingly complex tasks, but the lack of formal safety guarantees still limits its application in safety-critical settings. A common practical approach is to augment the RL policy with a safety filter that overrides unsafe actions to prevent failures during both training and deployment. However, safety filtering is often perceived as sacrificing performance and hindering the learning process. We show that this perceived safety-performance tradeoff is not inherent and prove, for the first time, that enforcing safety with a sufficiently permissive safety filter does not degrade asymptotic performance. We formalize RL safety with a safety-critical Markov decision process (SC-MDP), which requires categorical, rather than high-probability, avoidance of catastrophic failure states. Additionally, we define an associated filtered MDP in which all actions result in safe effects, thanks to a safety filter that is considered to be a part of the environment. Our main theorem establishes that (i) learning in the filtered MDP is safe categorically, (ii) standard RL convergence carries over to the filtered MDP, and (iii) any policy that is optimal in the filtered MDP-when executed through the same filter-achieves the same asymptotic return as the best safe policy in the SC-MDP, yielding a complete separation between safety enforcement and performance optimization. We validate the theory on Safety Gymnasium with representative tasks and constraints, observing zero violations during training and final performance matching or exceeding unfiltered baselines. Together, these results shed light on a long-standing question in safety-filtered learning and provide a simple, principled recipe for safe RL: train and deploy RL policies with the most permissive safety filter that is available.
comment: Accepted for publication in the proceedings of The International Association for Safe & Ethical AI (IASEAI) 2026; 17 pages, 3 figures
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7; v3: Fixed Figure 3 title and formula
♻ ☆ IGC-Net for conditional average potential outcome estimation over time
Estimating potential outcomes for treatments over time based on observational data is important for personalized decision-making in medicine. However, many existing methods for this task fail to properly adjust for time-varying confounding and thus yield biased estimates. There are only a few neural methods with proper adjustments, but these have inherent limitations (e.g., division by propensity scores that are often close to zero), which result in poor performance. As a remedy, we introduce the iterative G-computation network (IGC-Net). Our IGC-Net is a novel, neural end-to-end model which adjusts for time-varying confounding in order to estimate conditional average potential outcomes (CAPOs) over time. Specifically, our IGC-Net is the first neural model to perform fully regression-based iterative G-computation for CAPOs in the time-varying setting. We evaluate the effectiveness of our IGC-Net across various experiments. In sum, this work represents a significant step towards personalized decision-making from electronic health records.
♻ ☆ Orion-Bix: Bi-Axial Attention for Tabular In-Context Learning
Tabular data drive most real-world machine learning applications, yet building general-purpose models for them remains difficult. Mixed numeric and categorical fields, weak feature structure, and limited labeled data make scaling and generalization challenging. To this end, we introduce Orion-Bix, a tabular foundation model that combines biaxial attention with meta-learned in-context reasoning for few-shot tabular learning. Its encoder alternates standard, grouped, hierarchical, and relational attention, fusing their outputs through multi-CLS summarization to capture both local and global dependencies efficiently. A label-aware ICL head adapts on the fly and scales to large label spaces via hierarchical decision routing. Meta-trained on synthetically generated, structurally diverse tables with causal priors, Orion-Bix learns transferable inductive biases across heterogeneous data. Delivered as a scikit-learn compatible foundation model, it outperforms gradient-boosting baselines and remains competitive with state-of-the-art tabular foundation models on public benchmarks, showing that biaxial attention with episodic meta-training enables robust, few-shot-ready tabular learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-BiX .
♻ ☆ Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem is the local analogue of Hilbert's 18th problem, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry, dimensional structure variability, and combinatorial explosion beyond Go limit the scalability and generality of existing methods. Here we model the problem as a two-player matrix completion game and train the reinforcement learning system, PackingStar, to play the games. The matrix entries represent pairwise cosines of sphere center vectors. One player fills entries while another corrects suboptimal ones to improve exploration quality, cooperatively maximizing the matrix size, corresponding to the kissing number. These matrices are decomposed into representative substructures, providing diverse bases and structural constraints that steer subsequent games and make extremely large spaces tractable. PackingStar surpasses records from dimensions 25 to 31 and sets new lower bounds for generalized kissing numbers under various angular constraints. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions and discovers over 6000 new structures in other dimensions. Notably, some configurations challenge long-held antipodal paradigms, revealing algebraic correspondences with finite simple groups as well as geometric relationships across dimensions. Inspired by these patterns, humans devised further improved constructions. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition via extreme-scale reinforcement learning and open new pathways for the Kissing Number Problem and broader geometry research.
♻ ☆ Conformal Unlearning: A New Paradigm for Unlearning in Conformal Predictors
Conformal unlearning aims to ensure that a trained conformal predictor miscovers data points with specific shared characteristics, such as those from a particular label class, associated with a specific user, or belonging to a defined cluster, while maintaining valid coverage on the remaining data. Existing machine unlearning methods, which typically approximate a model retrained from scratch after removing the data to be forgotten, face significant challenges when applied to conformal unlearning. These methods often lack rigorous, uncertainty-aware statistical measures to evaluate unlearning effectiveness and exhibit a mismatch between their degraded performance on forgotten data and the frequency with which that data are still correctly covered by conformal predictors-a phenomenon we term ''fake conformal unlearning''. To address these limitations, we propose a new paradigm for conformal machine unlearning that provides finite-sample, uncertainty-aware guarantees on unlearning performance without relying on a retrained model as a reference. We formalize conformal unlearning to require high coverage on retained data and high miscoverage on forgotten data, introduce practical empirical metrics for evaluation, and present an algorithm that optimizes these conformal objectives. Extensive experiments on vision and text benchmarks demonstrate that the proposed approach effectively removes targeted information while preserving utility.
♻ ☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
♻ ☆ Energy Injection Identification enabled Disaggregation with Deep Multi-Task Learning
Non-Intrusive Load Monitoring (NILM) offers a cost-effective method to obtain fine-grained appliance-level energy consumption in smart homes and building applications. However, the increasing adoption of behind-the-meter (BTM) energy sources such as solar panels and battery storage poses new challenges for conventional NILM methods that rely solely on at-the-meter data. The energy injected from the BTM sources can obscure the power signatures of individual appliances, leading to a significant decrease in NILM performance. To address this challenge, we present DualNILM, a deep multi-task learning framework designed for the dual tasks of appliance state recognition and injected energy identification. Using a Transformer-based architecture that integrates sequence-to-point and sequence-to-sequence strategies, DualNILM effectively captures multiscale temporal dependencies in the aggregate power consumption patterns, allowing for accurate appliance state recognition and energy injection identification. Extensive evaluation on self-collected and synthesized datasets demonstrates that DualNILM maintains an excellent performance for dual tasks in NILM, much outperforming conventional methods. Our work underscores the framework's potential for robust energy disaggregation in modern energy systems with renewable penetration. Synthetic photovoltaic augmented datasets with realistic injection simulation methodology are open-sourced at https://github.com/MathAdventurer/PV-Augmented-NILM-Datasets.
comment: Accepted to The 17th ACM International Conference on Future and Sustainable Energy Systems (ACM e-Energy 2026)
♻ ☆ Certifying the Right to Be Forgotten: Primal-Dual Optimization for Sample and Label Unlearning in Vertical Federated Learning
Federated unlearning has become an attractive approach to address privacy concerns in collaborative machine learning, for situations when sensitive data is remembered by AI models during the machine learning process. It enables the removal of specific data influences from trained models, aligning with the growing emphasis on the "right to be forgotten." While extensively studied in horizontal federated learning, unlearning in vertical federated learning (VFL) remains challenging due to the distributed feature architecture. VFL unlearning includes sample unlearning that removes specific data points' influence and label unlearning that removes entire classes. Since different parties hold complementary features of the same samples, unlearning tasks require cross-party coordination, creating computational overhead and complexities from feature interdependencies. To address such challenges, we propose FedORA (Federated Optimization for data Removal via primal-dual Algorithm), designed for sample and label unlearning in VFL. FedORA formulates the removal of certain samples or labels as a constrained optimization problem solved using a primal-dual framework. Our approach introduces a new unlearning loss function that promotes classification uncertainty rather than misclassification. An adaptive step size enhances stability, while an asymmetric batch design, considering the prior influence of the remaining data on the model, handles unlearning and retained data differently to efficiently reduce computational costs. We provide theoretical analysis proving that the model difference between FedORA and Train-from-scratch is bounded, establishing guarantees for unlearning effectiveness. Experiments on tabular and image datasets demonstrate that FedORA achieves unlearning effectiveness and utility preservation comparable to Train-from-scratch with reduced computation and communication overhead.
comment: Published in the IEEE Transactions on Information Forensics and Security
♻ ☆ Measuring Orthogonality as the Blind-Spot of Uncertainty Disentanglement
Aleatoric (data) and epistemic (knowledge) uncertainty are textbook components of Uncertainty Quantification. Jointly estimating these components has been shown to be problematic and non-trivial. As a result, there are multiple ways to disentangle these uncertainties, but current methods to evaluate them are insufficient. We propose that aleatoric and epistemic uncertainty estimates should be orthogonally disentangled - meaning that each uncertainty is not affected by the other - a necessary condition that is often not met. We prove that orthogonality and consistency and necessary and sufficient criteria for disentanglement, and construct Uncertainty Disentanglement Error as a metric to measure these criteria, with further empirical evaluation showing that finetuned models give different orthogonality results than models trained from scratch and that UDE can be optimized for through dropout rate. We demonstrate a Deep Ensemble trained from scratch on ImageNet-1k with Information Theoretic disentangling achieves consistent and orthogonal estimates of epistemic uncertainty, but estimates of aleatoric uncertainty still fail on orthogonality.
comment: 25 pages, 17 figures, 6 tables
♻ ☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation ICLR 2026
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data.
comment: Accepted at ICLR 2026. Code available at: https://github.com/tj12323/GeoPurify
♻ ☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
♻ ☆ Overlap-weighted orthogonal meta-learner for treatment effect estimation over time
Estimating heterogeneous treatment effects (HTEs) in time-varying settings is particularly challenging, as the probability of observing certain treatment sequences decreases exponentially with longer prediction horizons. Thus, the observed data contain little support for many plausible treatment sequences, which creates severe overlap problems. Existing meta-learners for the time-varying setting typically assume adequate treatment overlap, and thus suffer from exploding estimation variance when the overlap is low. To address this problem, we introduce a novel overlap-weighted orthogonal (WO) meta-learner for estimating HTEs that targets regions in the observed data with high probability of receiving the interventional treatment sequences. This offers a fully data-driven approach through which our WO-learner can counteract instabilities as in existing meta-learners and thus obtain more reliable HTE estimates. Methodologically, we develop a novel Neyman-orthogonal population risk function that minimizes the overlap-weighted oracle risk. We show that our WO-learner has the favorable property of Neyman-orthogonality, meaning that it is robust against misspecification in the nuisance functions. Further, our WO-learner is fully model-agnostic and can be applied to any machine learning model. Through extensive experiments with both transformer and LSTM backbones, we demonstrate the benefits of our novel WO-learner.
♻ ☆ Kernel-based Optimally Weighted Conformal Time-Series Prediction
In this work, we present a novel conformal prediction method for time-series, which we call Kernel-based Optimally Weighted Conformal Prediction Intervals (KOWCPI). Specifically, KOWCPI adapts the classic Reweighted Nadaraya-Watson (RNW) estimator for quantile regression on dependent data and learns optimal data-adaptive weights. Theoretically, we tackle the challenge of establishing a conditional coverage guarantee for non-exchangeable data under strong mixing conditions on the non-conformity scores. We demonstrate the superior performance of KOWCPI on real and synthetic time-series data against state-of-the-art methods, where KOWCPI achieves narrower confidence intervals without losing coverage.
♻ ☆ Learning, Solving and Optimizing PDEs with TensorGalerkin: an efficient high-performance Galerkin assembly algorithm
We present a unified algorithmic framework for the numerical solution, constrained optimization, and physics-informed learning of PDEs with a variational structure. Our framework is based on a Galerkin discretization of the underlying variational forms, and its high efficiency stems from a novel highly-optimized and GPU-compliant TensorGalerkin framework for linear system assembly (stiffness matrices and load vectors). TensorGalerkin operates by tensorizing element-wise operations within a Python-level Map stage and then performs global reduction with a sparse matrix multiplication that performs message passing on the mesh-induced sparsity graph. It can be seamlessly employed downstream as i) a highly-efficient numerical PDEs solver, ii) an end-to-end differentiable framework for PDE-constrained optimization, and iii) a physics-informed operator learning algorithm for PDEs. With multiple benchmarks, including 2D and 3D elliptic, parabolic, and hyperbolic PDEs on unstructured meshes, we demonstrate that the proposed framework provides significant computational efficiency and accuracy gains over a variety of baselines in all the targeted downstream applications.
♻ ☆ Uni-DPO: A Unified Paradigm for Dynamic Preference Optimization of LLMs ICLR 2026
Direct Preference Optimization (DPO) has emerged as a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based methods typically treat all preference pairs equally, overlooking substantial variations in data quality and learning difficulty, which leads to inefficient data utilization and suboptimal performance. To address this limitation, we propose Uni-DPO, a unified dynamic preference optimization framework that jointly considers (a) the inherent quality of preference pairs and (b) the model's evolving performance during training. By adaptively reweighting samples based on both factors, Uni-DPO enables more effective use of preference data and achieves superior performance. Extensive experiments across models and benchmarks demonstrate the effectiveness and generalization of Uni-DPO. On textual tasks, Gemma-2-9B-IT fine-tuned with Uni-DPO surpasses the leading LLM, Claude 3 Opus, by 6.7 points on Arena-Hard. On mathematical and multimodal tasks, Uni-DPO consistently outperforms baseline methods across all benchmarks, providing strong empirical evidence of its effectiveness and robustness.
comment: Accepted by ICLR 2026. Code & models: https://github.com/pspdada/Uni-DPO
♻ ☆ Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Learning on large graphs presents significant challenges, with traditional Message Passing Neural Networks suffering from computational and memory costs scaling linearly with the number of edges. We introduce the Intersecting Block Graph (IBG), a low-rank factorization of large directed graphs based on combinations of intersecting bipartite components, each consisting of a pair of communities, for source and target nodes. By giving less weight to non-edges, we show how to efficiently approximate any graph, sparse or dense, by a dense IBG. Specifically, we prove a constructive version of the weak regularity lemma, showing that for any chosen accuracy, every graph, regardless of its size or sparsity, can be approximated by a dense IBG whose rank depends only on the accuracy. This dependence of the rank solely on the accuracy, and not on the sparsity level, is in contrast to previous forms of the weak regularity lemma. We present a graph neural network architecture operating on the IBG representation of the graph and demonstrating competitive performance on node classification, spatio-temporal graph analysis, and knowledge graph completion, while having memory and computational complexity linear in the number of nodes rather than edges.
♻ ☆ Neural Score Matching for High-Dimensional Causal Inference
Traditional methods for matching in causal inference are impractical for high-dimensional datasets. They suffer from the curse of dimensionality: exact matching and coarsened exact matching find exponentially fewer matches as the input dimension grows, and propensity score matching may match highly unrelated units together. To overcome this problem, we develop theoretical results which motivate the use of neural networks to obtain non-trivial, multivariate balancing scores of a chosen level of coarseness, in contrast to the classical, scalar propensity score. We leverage these balancing scores to perform matching for high-dimensional causal inference and call this procedure neural score matching. We show that our method is competitive against other matching approaches on semi-synthetic high-dimensional datasets, both in terms of treatment effect estimation and reducing imbalance.
comment: Fixed erroneous Propositions 5-6-7 and Appendix B from the previous version
♻ ☆ Position: Many generalization measures for deep learning are fragile
In this position paper, we argue that many post-mortem generalization measures -- those computed on trained networks -- are \textbf{fragile}: small training modifications that barely affect the performance of the underlying deep neural network can substantially change a measure's value, trend, or scaling behavior. For example, minor hyperparameter changes, such as learning rate adjustments or switching between SGD variants, can reverse the slope of a learning curve in widely used generalization measures such as the path norm. We also identify subtler forms of fragility. For instance, the PAC-Bayes origin measure is regarded as one of the most reliable, and is indeed less sensitive to hyperparameter tweaks than many other measures. However, it completely fails to capture differences in data complexity across learning curves. This data fragility contrasts with the function-based marginal-likelihood PAC-Bayes bound, which does capture differences in data-complexity, including scaling behavior, in learning curves, but which is not a post-mortem measure. Beyond demonstrating that many post-mortem bounds are fragile, this position paper also argues that developers of new measures should explicitly audit them for fragility.
♻ ☆ Provable Emergence of Deep Neural Collapse and Low-Rank Bias in $L^2$-Regularized Nonlinear Networks
We present a unified theoretical framework connecting the first property of Deep Neural Collapse (DNC1) to the emergence of implicit low-rank bias in nonlinear networks trained with $L^2$ weight decay regularization. Our main contributions are threefold. First, we derive a quantitative relation between the Total Cluster Variation (TCV) of intermediate embeddings and the numerical rank of stationary weight matrices. In particular, we establish that, at any critical point, the distance from a weight matrix to the set of rank-$K$ matrices is bounded by a constant times the TCV of earlier-layer features, scaled inversely with the weight-decay parameter. Second, we prove global optimality of DNC1 in a constrained representation-cost setting for both feedforward and residual architectures, showing that zero TCV across intermediate layers minimizes the representation cost under natural architectural constraints. Third, we establish a benign landscape property: for almost every interpolating initialization there exists a continuous, loss-decreasing path from the initialization to a globally optimal, DNC1-satisfying configuration. Our theoretical claims are validated empirically; numerical experiments confirm the predicted relations among TCV, singular-value structure, and weight decay. These results indicate that neural collapse and low-rank bias are intimately linked phenomena arising from the optimization geometry induced by weight decay.
♻ ☆ Discrete Variational Autoencoding via Policy Search
Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit efficiency and can be modeled with autoregressive discrete distributions, enabling parameter-efficient multimodal search with transformers. However, discrete random variables do not allow for exact differentiable parameterization; therefore, discrete VAEs typically rely on approximations, such as Gumbel-Softmax reparameterization or straight-through gradient estimates, or employ high-variance gradient-free methods such as REINFORCE that have had limited success on high-dimensional tasks such as image reconstruction. Inspired by popular techniques in policy search, we propose a training framework for discrete VAEs that leverages the natural gradient of a non-parametric encoder to update the parametric encoder without requiring reparameterization. Our method, combined with automatic step size adaptation and a transformer-based encoder, scales to challenging datasets such as ImageNet and outperforms both approximate reparameterization methods and quantization-based discrete autoencoders in reconstructing high-dimensional data from compact latent spaces.
♻ ☆ Conformal Prediction for Compositional Data
Dirichlet regression models are suitable for compositional data, in which the response variable represents proportions that sum to one. However, there are still no well-established methods for constructing valid prediction sets in this context, especially considering the geometry of the compositional space. In this work, we investigate conformal prediction-based strategies for constructing valid predictive regions in Dirichlet regression models. We evaluate three distinct approaches: a method based on quantile residuals, an approximate construction of highest density regions (HDR), and an adaptation of the approximate HDR using grid-based discretization over the simplex. The performance of the methods was analyzed through simulation studies under different scenarios, varying the model complexity, response dimensionality, and covariate structure. The results indicated that the HDR approximation approach exhibits good robustness in terms of coverage, while the grid discretization proved effective in reducing overcoverage and the area of the prediction region compared to the original method. The quantile method provided larger prediction regions compared to the grid method, while maintaining adequate coverage. The methodologies were also applied to two real datasets: one concerning sleep stages and another on biomass allocation in plants. In both cases, the proposed methods demonstrated practical feasibility and produced coherent interpretations within the compositional space. Finally, we discuss possible extensions of this work
comment: 32 pages, 11 figures
♻ ☆ Neural-Augmented Kelvinlet for Real-Time Soft Tissue Deformation Modeling
Accurate and efficient modeling of soft-tissue interactions is fundamental for advancing surgical simulation, surgical robotics, and model-based surgical automation. To achieve real-time latency, classical Finite Element Method (FEM) solvers are often replaced with neural approximations; however, naively training such models in a fully data-driven manner without incorporating physical priors frequently leads to poor generalization and physically implausible predictions. We present a novel physics-informed neural simulation framework that enables real-time prediction of soft-tissue deformations under complex single- and multi-grasper interactions. Our approach integrates Kelvinlet-based analytical priors with large-scale FEM data, capturing both linear and nonlinear tissue responses. This hybrid design improves predictive accuracy and physical plausibility across diverse neural architectures while maintaining the low-latency performance required for interactive applications. We validate our method on challenging surgical manipulation tasks involving standard laparoscopic grasping tools, demonstrating substantial improvements in deformation fidelity and temporal stability over existing baselines. These results establish Kelvinlet-augmented learning as a principled and computationally efficient paradigm for real-time, physics-aware soft-tissue simulation in surgical AI.
♻ ☆ HyperAIRI: a plug-and-play algorithm for precise hyperspectral image reconstruction in radio interferometry
The next-generation radio-interferometric (RI) telescopes require imaging algorithms capable of forming high-resolution high-dynamic-range images from large data volumes spanning wide frequency bands. Recently, AIRI, a plug-and-play (PnP) approach taking the forward-backward algorithmic structure (FB), has demonstrated state-of-the-art performance in monochromatic RI imaging by alternating a data-fidelity step with a regularization step via learned denoisers. In this work, we introduce HyperAIRI, its hyperspectral extension, underpinned by learned hyperspectral denoisers enforcing a power-law spectral model. For each spectral channel, the HyperAIRI denoiser takes as input its current image estimate, alongside estimates of its two immediate neighboring channels and the spectral index map, and provides as output its associated denoised image. To ensure convergence of HyperAIRI, the denoisers are trained with a Jacobian regularization enforcing non-expansiveness. To accommodate varying dynamic ranges, we assemble a shelf of pre-trained denoisers, each tailored to a specific dynamic range. At each HyperAIRI iteration, the spectral channels of the target image cube are updated in parallel using dynamic-range-matched denoisers from the pre-trained shelf. The denoisers are also endowed with a spatial image faceting functionality, enabling scalability to varied image sizes. Additionally, we formally introduce Hyper-uSARA, a variant of the optimization-based algorithm HyperSARA, promoting joint sparsity across spectral channels via the $\ell_{2,1}$-norm, also adopting FB. We evaluate HyperAIRI's performance on simulated and real observations. We showcase its superior performance compared to its optimization-based counterpart Hyper-uSARA, CLEAN's hyperspectral variant in WSClean, and the monochromatic imaging algorithms AIRI and uSARA.
comment: 24 pages, 10 figures, accepted by ApJS
♻ ☆ Learning to Coordinate via Quantum Entanglement in Multi-Agent Reinforcement Learning
The inability to communicate poses a major challenge to coordination in multi-agent reinforcement learning (MARL). Prior work has explored correlating local policies via shared randomness, sometimes in the form of a correlation device, as a mechanism to assist in decentralized decision-making. In contrast, this work introduces the first framework for training MARL agents to exploit shared quantum entanglement as a coordination resource, which permits a larger class of communication-free correlated policies than shared randomness alone. This is motivated by well-known results in quantum physics which posit that, for certain single-round cooperative games with no communication, shared quantum entanglement enables strategies that outperform those that only use shared randomness. In such cases, we say that there is quantum advantage. Our framework is based on a novel differentiable policy parameterization that enables optimization over quantum measurements, together with a novel policy architecture that decomposes joint policies into a quantum coordinator and decentralized local actors. To illustrate the effectiveness of our proposed method, we first show that we can learn, purely from experience, strategies that attain quantum advantage in single-round games that are treated as black box oracles. We then demonstrate how our machinery can learn policies with quantum advantage in an illustrative multi-agent sequential decision-making problem formulated as a decentralized partially observable Markov decision process (Dec-POMDP).
♻ ☆ Uncertainty-driven Embedding Convolution
Text embeddings are essential components in modern NLP pipelines. Although numerous embedding models have been proposed, no single model consistently dominates across domains and tasks. This variability motivates the use of ensemble techniques to combine complementary strengths. However, most existing ensemble methods operate on deterministic embeddings and fail to account for model-specific uncertainty, limiting their robustness and reliability in downstream applications. To address these limitations, we propose Uncertainty-driven Embedding Convolution (UEC). UEC first transforms deterministic embeddings into probabilistic ones in a post-hoc manner. It then computes adaptive ensemble coefficients based on embedding uncertainty, derived from a principled surrogate-loss formulation. Additionally, UEC employs an uncertainty-aware similarity function that directly incorporates uncertainty into the similarity scoring, providing a theoretically grounded and efficient surrogate to distributional distances. Extensive experiments on diverse benchmarks demonstrate that UEC consistently improves both performance and robustness by leveraging principled uncertainty modeling.
♻ ☆ Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation ICLR 2026
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning, gradient-calculation or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models and how they affect RAG behaviours. Our code is available at https://github.com/ruizheliUOA/ARC_JSD.
comment: Accepted at ICLR 2026; Best Paper Award at COLM 2025 XLLM-Reason-Plan Workshop; Accepted at NeurIPS 2025 Mechanistic Interpretability Workshop
♻ ☆ Fully-automated sleep staging: multicenter validation of a generalizable deep neural network for Parkinson's disease and isolated REM sleep behavior disorder
Isolated REM sleep behavior disorder (iRBD) is a key prodromal marker of Parkinson's disease (PD), and video-polysomnography (vPSG) remains the diagnostic gold standard. However, manual sleep staging is particularly challenging in neurodegenerative diseases due to EEG abnormalities and fragmented sleep, making PSG assessments a bottleneck for deploying new RBD screening technologies at scale. We adapted U-Sleep, a deep neural network, for generalizable sleep staging in PD and iRBD. A pretrained U-Sleep model, based on a large, multisite non-neurodegenerative dataset (PUB; 19,236 PSGs across 12 sites), was fine-tuned on research datasets from two centers (Lundbeck Foundation Parkinson's Disease Research Center (PACE) and the Cologne-Bonn Cohort (CBC); 112 PD, 138 iRBD, 89 age-matched controls. The resulting model was evaluated on an independent dataset from the Danish Center for Sleep Medicine (DCSM; 81 PD, 36 iRBD, 87 sleep-clinic controls). A subset of PSGs with low agreement between the human rater and the model (Cohen's $κ$ < 0.6) was re-scored by a second blinded human rater to identify sources of disagreement. Finally, we applied confidence-based thresholds to optimize REM sleep staging. The pretrained model achieved mean $κ$ = 0.81 in PUB, but $κ$ = 0.66 when applied directly to PACE/CBC. By fine-tuning the model, we developed a generalized model with $κ$ = 0.74 on PACE/CBC (p < 0.001 vs. the pretrained model). In DCSM, mean and median $κ$ increased from 0.60 to 0.64 (p < 0.001) and 0.64 to 0.69 (p < 0.001), respectively. In the interrater study, PSGs with low agreement between the model and the initial scorer showed similarly low agreement between human scorers. Applying a confidence threshold increased the proportion of correctly identified REM sleep epochs from 85% to 95.5%, while preserving sufficient (> 5 min) REM sleep for 95% of subjects.
comment: 21 pages excluding supplementary, 9 figures
♻ ☆ Escaping Local Minima Provably in Non-convex Matrix Sensing: A Deterministic Framework via Simulated Lifting
Low-rank matrix sensing is a fundamental yet challenging nonconvex problem whose optimization landscape typically contains numerous spurious local minima, making it difficult for gradient-based optimizers to converge to the global optimum. Recent work has shown that over-parameterization via tensor lifting can convert such local minima into strict saddle points, an insight that also partially explains why massive scaling can improve generalization and performance in modern machine learning. Motivated by this observation, we propose a Simulated Oracle Direction (SOD) escape mechanism that simulates the landscape and escape direction of the over-parametrized space, without resorting to actually lifting the problem, since that would be computationally intractable. In essence, we designed a mathematical framework to project over-parametrized escape directions onto the original parameter space to guarantee a strict decrease of objective value from existing local minima. To the best of our knowledge, this represents the first deterministic framework that could escape spurious local minima with guarantee, especially without using random perturbations or heuristic estimates. Numerical experiments demonstrate that our framework reliably escapes local minima and facilitates convergence to global optima, while incurring minimal computational cost when compared to explicit tensor over-parameterization. We believe this framework has non-trivial implications for nonconvex optimization beyond matrix sensing, by showcasing how simulated over-parameterization can be leveraged to tame challenging optimization landscapes.
comment: 36 pages, 10 figures, 5 tables
♻ ☆ Predictive AI with External Knowledge Infusion: Datasets and Benchmarks for Stock Markets
Fluctuations in stock prices are influenced by a complex interplay of factors that go beyond mere historical data. These factors, themselves influenced by external forces, encompass inter-stock dynamics, broader economic factors, various government policy decisions, outbreaks of wars, etc. Furthermore, all of these factors are dynamic and exhibit changes over time. In this paper, for the first time, we tackle the forecasting problem under external influence by proposing learning mechanisms that not only learn from historical trends but also incorporate external knowledge from temporal knowledge graphs. Since there are no such datasets or temporal knowledge graphs available, we study this problem with stock market data, and we construct comprehensive temporal knowledge graph datasets. In our proposed approach, we model relations on external temporal knowledge graphs as events of a Hawkes process on graphs. With extensive experiments, we show that learned dynamic representations effectively rank stocks based on returns across multiple holding periods, outperforming related baselines on relevant metrics.
♻ ☆ Diffusion posterior sampling for simulation-based inference in tall data settings
Identifying the parameters of a non-linear model that best explain observed data is a core task across scientific fields. When such models rely on complex simulators, evaluating the likelihood is typically intractable, making traditional inference methods such as MCMC inapplicable. Simulation-based inference (SBI) addresses this by training deep generative models to approximate the posterior distribution over parameters using simulated data. In this work, we consider the tall data setting, where multiple independent observations provide additional information, allowing sharper posteriors and improved parameter identifiability. Building on the flourishing score-based diffusion literature, F-NPSE (Geffner et al., 2023) estimates the tall data posterior by composing individual scores from a neural network trained only for a single context observation. This enables more flexible and simulation-efficient inference than alternative approaches for tall datasets in SBI. However, it relies on costly Langevin dynamics during sampling. We propose a new algorithm that eliminates the need for Langevin steps by explicitly approximating the diffusion process of the tall data posterior. Our method retains the advantages of compositional score-based inference while being significantly faster and more stable than F-NPSE. We demonstrate its improved performance on toy problems and standard SBI benchmarks, and showcase its scalability by applying it to a complex real-world model from computational neuroscience.
comment: 49 pages, 24 figures, 3 tables, 2 algorithms, 12 appendices, TMLR acceptance
♻ ☆ On the Optimal Reasoning Length for RL-Trained Language Models
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures
♻ ☆ Learning to Remember, Learn, and Forget in Attention-Based Models
In-Context Learning (ICL) in transformers acts as an online associative memory and is believed to underpin their high performance on complex sequence processing tasks. However, in gated linear attention models, this memory has a fixed capacity and is prone to interference, especially for long sequences. We propose Palimpsa, a self-attention model that views ICL as a continual learning problem that must address a stability-plasticity dilemma. Palimpsa uses Bayesian metaplasticity, where the plasticity of each attention state is tied to an importance state grounded by a prior distribution that captures accumulated knowledge. We demonstrate that various gated linear attention models emerge as specific architecture choices and posterior approximations, and that Mamba2 is a special case of Palimpsa where forgetting dominates. This theoretical link enables the transformation of any non-metaplastic model into a metaplastic one, significantly expanding its memory capacity. Our experiments show that Palimpsa consistently outperforms baselines on the Multi-Query Associative Recall (MQAR) benchmark and on Commonsense Reasoning tasks.
♻ ☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
♻ ☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
♻ ☆ Exponential time differencing for matrix-valued dynamical systems
Matrix evolution equations occur in many applications, such as dynamical Lyapunov/Sylvester systems or Riccati equations in optimization and stochastic control, machine learning or data assimilation. In many such problems, the dominant stability restriction is imposed by a stiff linear term, making standard explicit integrators impractical. Exponential time differencing (ETD) is known to produce highly stable numerical schemes by treating the linear term in an exact fashion. In particular, for stiff problems, ETD methods are the methods of choice. We extend ETD to matrix-valued evolution equations of the form $\dot Q = LQ + QR + N(Q,t)$ by deriving explicit matrix-ETD (METD) schemes. When $L$ and $R$ commute, we construct an explicit $p$-th order METD$p$ family and prove order-$p$ global convergence under standard assumptions; for the non-commuting case, we develop a Baker-Campbell-Hausdorff (BCH)-based extension. This allows us to produce highly efficient and stable integration schemes. We demonstrate efficiency and applicability on stiff PDE-derived and large-scale matrix dynamics, including an Allen-Cahn system, turbulent jet fluctuation statistics, and continuous graph neural networks. We further show that the scheme is more accurate, stable, and efficient than competing schemes in large-scale high-rank stiff systems.
♻ ☆ CostNav: A Navigation Benchmark for Real-World Economic-Cost Evaluation of Physical AI Agents
While current navigation benchmarks prioritize task success in simplified settings, they neglect the multidimensional economic constraints essential for the real-world commercialization of autonomous delivery systems. We introduce CostNav, an Economic Navigation Benchmark that evaluates physical AI agents through comprehensive economic cost-revenue analysis aligned with real-world business operations. By integrating industry-standard data - such as SEC filings and AIS injury reports - with Isaac Sim's detailed collision and cargo dynamics, CostNav transcends simple task completion to accurately evaluate business value in complex, real-world scenarios. To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability, revealing that optimizing for task success on a simplified task fundamentally differs from optimizing for real-world economic deployment. Our evaluation of rule-based Nav2 navigation shows that current approaches are not economically viable: the contribution margin is -22.81/run (AMCL) and -12.87/run (GPS), resulting in no break-even point. We challenge the community to develop navigation policies that achieve economic viability on CostNav. We remain method-agnostic, evaluating success solely on the metric of cost rather than the underlying architecture. All resources are available at https://github.com/worv-ai/CostNav.
♻ ☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 22 pages, 8 figures
♻ ☆ Revisit Visual Prompt Tuning: The Expressiveness of Prompt Experts ICLR 2026
Visual Prompt Tuning (VPT) has proven effective for parameter-efficient adaptation of pre-trained vision models to downstream tasks by inserting task-specific learnable prompt tokens. Despite its empirical success, a comprehensive theoretical understanding of VPT remains an active area of research. Building on the recently established connection between Mixture of Experts (MoE) and prompt-based methods, wherein each attention head can be conceptualized as a composition of multiple MoE models, we reinterpret VPT as the introduction of new prompt experts into these MoE structures. We identify a key limitation in existing VPT frameworks: the restricted functional expressiveness of prompt experts, which remain static and thus limited in their adaptability. To address this, we propose Visual Adaptive Prompt Tuning (VAPT), a novel method that endows prompt experts with enhanced expressiveness while preserving parameter efficiency. Empirical evaluations on VTAB-1K and FGVC demonstrate that VAPT achieves substantial performance improvements, surpassing fully fine-tuned baselines by 7.34% and 1.04%, respectively. Moreover, VAPT consistently outperforms VPT while requiring fewer additional parameters. Furthermore, our theoretical analysis indicates that VAPT achieves optimal sample efficiency. Collectively, these results underscore the theoretical grounding and empirical advantages of our approach.
comment: Accepted to ICLR 2026
♻ ☆ Rethinking Approximate Gaussian Inference in Classification
In classification tasks, softmax functions are ubiquitously used as output activations to produce predictive probabilities. Such outputs only capture aleatoric uncertainty. To capture epistemic uncertainty, approximate Gaussian inference methods have been proposed. We develop a common formalism to describe such methods, which we view as outputting Gaussian distributions over the logit space. Predictives are then obtained as the expectations of the Gaussian distributions pushed forward through the softmax. However, such softmax Gaussian integrals cannot be solved analytically, and Monte Carlo (MC) approximations can be costly and noisy. We propose to replace the softmax activation by element-wise normCDF or sigmoid, which allows for the accurate sampling-free approximation of predictives. This also enables the approximation of the Gaussian pushforwards by Dirichlet distributions with moment matching. This approach entirely eliminates the runtime and memory overhead associated with MC sampling. We evaluate it combined with several approximate Gaussian inference methods (Laplace, HET, SNGP) on large- and small-scale datasets (ImageNet, CIFAR-100, CIFAR-10), demonstrating improved uncertainty quantification capabilities compared to softmax MC sampling. Our code is available at https://github.com/bmucsanyi/probit.
comment: 46 pages
♻ ☆ Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise
In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding approximate stochastic stationary points under heavy-tailed noise and weakly average smoothness conditions -- both of which are weaker than the commonly used bounded variance and mean-squared smoothness assumptions. Our complexity bounds either improve upon or match the best-known results in the literature. Numerical experiments are presented to demonstrate the practical effectiveness of the proposed methods.
♻ ☆ Translate Policy to Language: Flow Matching Generated Rewards for LLM Explanations ICLR 2026
As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain agent policies in natural language is vital for reliable coexistence. We introduce a general-purpose framework that trains explanation-generating LLMs via reinforcement learning from AI feedback, with distributional rewards generated by generative continuous normalizing flows (CNFs). CNFs capture the pluralistic and probabilistic nature of human judgments about explanations. Moreover, under mild assumptions, CNFs provably bound deviations from true human reward distributions when trained on noisy proxy rewards from LLMs. We design a specialized CNF architecture that selectively attends to linguistic cues in the decision context and explanations when generating rewards. Human and LLM evaluators find that our method delivers explanations that enable more accurate predictions of true agent decisions, exhibit greater logical soundness and actionability, and impose lower cognitive load than explanations trained with proxy LLM rewards or state-of-the-art RLHF and RLAIF baselines.
comment: Accepted by ICLR 2026
♻ ☆ Decentralized Reinforcement Learning for Multi-Agent Multi-Resource Allocation via Dynamic Cluster Agreements
This paper addresses the challenge of allocating heterogeneous resources among multiple agents in a decentralized manner. Our proposed method, Liquid-Graph-Time Clustering-IPPO, builds upon Independent Proximal Policy Optimization (IPPO) by integrating dynamic cluster consensus, a mechanism that allows agents to form and adapt local sub-teams based on resource demands. This decentralized coordination strategy reduces reliance on global information and enhances scalability. We evaluate LGTC-IPPO against standard multi-agent reinforcement learning baselines and a centralized expert solution across a range of team sizes and resource distributions. Experimental results demonstrate that LGTC-IPPO achieves more stable rewards, better coordination, and robust performance even as the number of agents or resource types increases. Additionally, we illustrate how dynamic clustering enables agents to reallocate resources efficiently also for scenarios with discharging resources.
♻ ☆ Deep Network Trainability via Persistent Subspace Orthogonality
Training neural networks via backpropagation is often hindered by vanishing or exploding gradients. In this work, we design architectures that mitigate these issues by analyzing and controlling the network Jacobian. We first provide a unified characterization for a class of networks with orthogonal Jacobian including known architectures and yielding new trainable designs. We then introduce the relaxed notion of persistent subspace orthogonality. This applies to a broader class of networks whose Jacobians are isometries only on a non-trivial subspace. We propose practical mechanisms to enforce this condition and empirically show that it is necessary to sufficiently preserve the gradient norms during backpropagation, enabling the training of very deep networks. We support our theory with extensive experiments.
♻ ☆ EmbBERT: Attention Under 2 MB Memory
Transformer architectures based on the attention mechanism have revolutionized natural language processing (NLP), driving major breakthroughs across virtually every NLP task. However, their substantial memory and computational requirements still hinder deployment on ultra-constrained devices such as wearables and Internet-of-Things (IoT) units, where available memory is limited to just a few megabytes. To address this challenge, we introduce EmbBERT, a tiny language model (TLM) architecturally designed for extreme efficiency. The model integrates a compact embedding layer, streamlined feed-forward blocks, and an efficient attention mechanism that together enable optimal performance under strict memory budgets. Through this redesign for the extreme edge, we demonstrate that highly simplified transformer architectures remain remarkably effective under tight resource constraints. EmbBERT requires only 2 MB of total memory, and achieves accuracy performance comparable to the ones of state-of-the-art (SotA) models that require a $\mathbf{10\times}$ memory budget. Extensive experiments on the curated TinyNLP benchmark and the GLUE suite confirm that EmbBERT achieves competitive accuracy, comparable to that of larger SotA models, and consistently outperforms downsized versions of BERT and MAMBA of similar size. Furthermore, we demonstrate the model resilience to 8-bit quantization, which further reduces memory usage to just 781 kB , and the scalability of the EmbBERT architecture across the sub-megabyte to tens-of-megabytes range. Finally, we perform an ablation study demonstrating the positive contributions of all components and the pre-training procedure. All code, scripts, and checkpoints are publicly released to ensure reproducibility: https://github.com/RiccardoBravin/tiny-LLM.
comment: 24 pages, 4 figures, 14 tables
♻ ☆ Corruption-Aware Training of Latent Video Diffusion Models for Robust Text-to-Video Generation
Latent Video Diffusion Models (LVDMs) have achieved state-of-the-art generative quality for image and video generation; however, they remain brittle under noisy conditioning, where small perturbations in text or multimodal embeddings can cascade over timesteps and cause semantic drift. Existing corruption strategies from image diffusion (e.g., Gaussian, Uniform) fail in video settings because static noise disrupts temporal fidelity. In this paper, we propose CAT-LVDM, a corruption-aware training framework with structured, data-aligned noise injection tailored for video diffusion. Our two operators, Batch-Centered Noise Injection (BCNI) and Spectrum-Aware Contextual Noise (SACN), align perturbations with batch semantics or spectral dynamics to preserve coherence. CAT-LVDM yields substantial gains: BCNI reduces FVD by 31.9 percent on WebVid-2M, MSR-VTT, and MSVD, while SACN improves UCF-101 by 12.3 percent, outperforming Gaussian, Uniform, and large diffusion baselines such as DEMO (2.3B) and LaVie (3B) despite training on 5x less data. Ablations confirm the unique value of low-rank, data-aligned noise, and theoretical analysis establishes why these operators tighten robustness and generalization bounds. CAT-LVDM thus introduces a principled framework for robust video diffusion and further demonstrates transferability to autoregressive generation and multimodal video understanding models.
comment: Code: https://github.com/chikap421/catlvdm
♻ ☆ Do physics-informed neural networks (PINNs) need to be deep? Shallow PINNs using the Levenberg-Marquardt algorithm
This work investigates the use of shallow physics-informed neural networks (PINNs) for solving forward and inverse problems of nonlinear partial differential equations (PDEs). By reformulating PINNs as nonlinear systems, the Levenberg-Marquardt (LM) algorithm is employed to efficiently optimize the network parameters. Analytical expressions for the neural network derivatives with respect to the input variables are derived, enabling accurate and efficient computation of the Jacobian matrix required by LM. The proposed approach is tested on several benchmark problems, including the Burgers, Schrödinger, Allen-Cahn, and three-dimensional Bratu equations. Numerical results demonstrate that LM significantly outperforms BFGS in terms of convergence speed, accuracy, and final loss values, even when using shallow network architectures with only two hidden layers. These findings indicate that, for a wide class of PDEs, shallow PINNs combined with efficient second-order optimization methods can provide accurate and computationally efficient solutions for both forward and inverse problems.
♻ ☆ Learning the Value Systems of Societies with Preference-based Multi-objective Reinforcement Learning AAMAS 2026
Value-aware AI should recognise human values and adapt to the value systems (value-based preferences) of different users. This requires operationalization of values, which can be prone to misspecification. The social nature of values demands their representation to adhere to multiple users while value systems are diverse, yet exhibit patterns among groups. In sequential decision making, efforts have been made towards personalization for different goals or values from demonstrations of diverse agents. However, these approaches demand manually designed features or lack value-based interpretability and/or adaptability to diverse user preferences. We propose algorithms for learning models of value alignment and value systems for a society of agents in Markov Decision Processes (MDPs), based on clustering and preference-based multi-objective reinforcement learning (PbMORL). We jointly learn socially-derived value alignment models (groundings) and a set of value systems that concisely represent different groups of users (clusters) in a society. Each cluster consists of a value system representing the value-based preferences of its members and an approximately Pareto-optimal policy that reflects behaviours aligned with this value system. We evaluate our method against a state-of-the-art PbMORL algorithm and baselines on two MDPs with human values.
comment: 18 pages, 3 figures. To be published in proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2026). This is a full version that includes the supplementary material
Information Retrieval 24
☆ Diffusion-Pretrained Dense and Contextual Embeddings
In this report, we introduce pplx-embed, a family of multilingual embedding models that employ multi-stage contrastive learning on a diffusion-pretrained language model backbone for web-scale retrieval. By leveraging bidirectional attention through diffusion-based pretraining, our models capture comprehensive bidirectional context within passages, enabling the use of mean pooling and a late chunking strategy to better preserve global context across long documents. We release two model types: pplx-embed-v1 for standard retrieval, and pplx-embed-context-v1 for contextualized embeddings that incorporate global document context into passage representations. pplx-embed-v1 achieves competitive performance on the MTEB(Multilingual, v2), MTEB(Code), MIRACL, BERGEN, and ToolRet retrieval benchmarks, while pplx-embed-context-v1 sets new records on the ConTEB benchmark. Beyond public benchmarks, pplx-embed-v1 demonstrates strong performance on our internal evaluation suite, which focuses on real-world, large-scale search scenarios over tens of millions of documents. These results validate the models' effectiveness in production environments where retrieval quality and efficiency are critical at scale.
☆ MoToRec: Sparse-Regularized Multimodal Tokenization for Cold-Start Recommendation AAAI 2026
Graph neural networks (GNNs) have revolutionized recommender systems by effectively modeling complex user-item interactions, yet data sparsity and the item cold-start problem significantly impair performance, particularly for new items with limited or no interaction history. While multimodal content offers a promising solution, existing methods result in suboptimal representations for new items due to noise and entanglement in sparse data. To address this, we transform multimodal recommendation into discrete semantic tokenization. We present Sparse-Regularized Multimodal Tokenization for Cold-Start Recommendation (MoToRec), a framework centered on a sparsely-regularized Residual Quantized Variational Autoencoder (RQ-VAE) that generates a compositional semantic code of discrete, interpretable tokens, promoting disentangled representations. MoToRec's architecture is enhanced by three synergistic components: (1) a sparsely-regularized RQ-VAE that promotes disentangled representations, (2) a novel adaptive rarity amplification that promotes prioritized learning for cold-start items, and (3) a hierarchical multi-source graph encoder for robust signal fusion with collaborative signals. Extensive experiments on three large-scale datasets demonstrate MoToRec's superiority over state-of-the-art methods in both overall and cold-start scenarios. Our work validates that discrete tokenization provides an effective and scalable alternative for mitigating the long-standing cold-start challenge.
comment: Accepted to AAAI 2026 (Main Track)
GraphSeek: Next-Generation Graph Analytics with LLMs
Graphs are foundational across domains but remain hard to use without deep expertise. LLMs promise accessible natural language (NL) graph analytics, yet they fail to process industry-scale property graphs effectively and efficiently: such datasets are large, highly heterogeneous, structurally complex, and evolve dynamically. To address this, we devise a novel abstraction for complex multi-query analytics over such graphs. Its key idea is to replace brittle generation of graph queries directly from NL with planning over a Semantic Catalog that describes both the graph schema and the graph operations. Concretely, this induces a clean separation between a Semantic Plane for LLM planning and broader reasoning, and an Execution Plane for deterministic, database-grade query execution over the full dataset and tool implementations. This design yields substantial gains in both token efficiency and task effectiveness even with small-context LLMs. We use this abstraction as the basis of the first LLM-enhanced graph analytics framework called GraphSeek. GraphSeek achieves substantially higher success rates (e.g., 86% over enhanced LangChain) and points toward the next generation of affordable and accessible graph analytics that unify LLM reasoning with database-grade execution over large and complex property graphs.
☆ Training-Induced Bias Toward LLM-Generated Content in Dense Retrieval ECIR 2026
Dense retrieval is a promising approach for acquiring relevant context or world knowledge in open-domain natural language processing tasks and is now widely used in information retrieval applications. However, recent reports claim a broad preference for text generated by large language models (LLMs). This bias is called "source bias", and it has been hypothesized that lower perplexity contributes to this effect. In this study, we revisit this claim by conducting a controlled evaluation to trace the emergence of such preferences across training stages and data sources. Using parallel human- and LLM-generated counterparts of the SciFact and Natural Questions (NQ320K) datasets, we compare unsupervised checkpoints with models fine-tuned using in-domain human text, in-domain LLM-generated text, and MS MARCO. Our results show the following: 1) Unsupervised retrievers do not exhibit a uniform pro-LLM preference. The direction and magnitude depend on the dataset. 2) Across the settings tested, supervised fine-tuning on MS MARCO consistently shifts the rankings toward LLM-generated text. 3) In-domain fine-tuning produces dataset-specific and inconsistent shifts in preference. 4) Fine-tuning on LLM-generated corpora induces a pronounced pro-LLM bias. Finally, a retriever-centric perplexity probe involving the reattachment of a language modeling head to the fine-tuned dense retriever encoder indicates agreement with relevance near chance, thereby weakening the explanatory power of perplexity. Our study demonstrates that source bias is a training-induced phenomenon rather than an inherent property of dense retrievers.
comment: Accepted at ECIR 2026
☆ EST: Towards Efficient Scaling Laws in Click-Through Rate Prediction via Unified Modeling
Efficiently scaling industrial Click-Through Rate (CTR) prediction has recently attracted significant research attention. Existing approaches typically employ early aggregation of user behaviors to maintain efficiency. However, such non-unified or partially unified modeling creates an information bottleneck by discarding fine-grained, token-level signals essential for unlocking scaling gains. In this work, we revisit the fundamental distinctions between CTR prediction and Large Language Models (LLMs), identifying two critical properties: the asymmetry in information density between behavioral and non-behavioral features, and the modality-specific priors of content-rich signals. Accordingly, we propose the Efficiently Scalable Transformer (EST), which achieves fully unified modeling by processing all raw inputs in a single sequence without lossy aggregation. EST integrates two modules: Lightweight Cross-Attention (LCA), which prunes redundant self-interactions to focus on high-impact cross-feature dependencies, and Content Sparse Attention (CSA), which utilizes content similarity to dynamically select high-signal behaviors. Extensive experiments show that EST exhibits a stable and efficient power-law scaling relationship, enabling predictable performance gains with model scale. Deployed on Taobao's display advertising platform, EST significantly outperforms production baselines, delivering a 3.27\% RPM (Revenue Per Mile) increase and a 1.22\% CTR lift, establishing a practical pathway for scalable industrial CTR prediction models.
☆ DeepImageSearch: Benchmarking Multimodal Agents for Context-Aware Image Retrieval in Visual Histories
Existing multimodal retrieval systems excel at semantic matching but implicitly assume that query-image relevance can be measured in isolation. This paradigm overlooks the rich dependencies inherent in realistic visual streams, where information is distributed across temporal sequences rather than confined to single snapshots. To bridge this gap, we introduce DeepImageSearch, a novel agentic paradigm that reformulates image retrieval as an autonomous exploration task. Models must plan and perform multi-step reasoning over raw visual histories to locate targets based on implicit contextual cues. We construct DISBench, a challenging benchmark built on interconnected visual data. To address the scalability challenge of creating context-dependent queries, we propose a human-model collaborative pipeline that employs vision-language models to mine latent spatiotemporal associations, effectively offloading intensive context discovery before human verification. Furthermore, we build a robust baseline using a modular agent framework equipped with fine-grained tools and a dual-memory system for long-horizon navigation. Extensive experiments demonstrate that DISBench poses significant challenges to state-of-the-art models, highlighting the necessity of incorporating agentic reasoning into next-generation retrieval systems.
comment: 17 pages, 5 figures
☆ VulReaD: Knowledge-Graph-guided Software Vulnerability Reasoning and Detection
Software vulnerability detection (SVD) is a critical challenge in modern systems. Large language models (LLMs) offer natural-language explanations alongside predictions, but most work focuses on binary evaluation, and explanations often lack semantic consistency with Common Weakness Enumeration (CWE) categories. We propose VulReaD, a knowledge-graph-guided approach for vulnerability reasoning and detection that moves beyond binary classification toward CWE-level reasoning. VulReaD leverages a security knowledge graph (KG) as a semantic backbone and uses a strong teacher LLM to generate CWE-consistent contrastive reasoning supervision, enabling student model training without manual annotations. Students are fine-tuned with Odds Ratio Preference Optimization (ORPO) to encourage taxonomy-aligned reasoning while suppressing unsupported explanations. Across three real-world datasets, VulReaD improves binary F1 by 8-10% and multi-class classification by 30% Macro-F1 and 18% Micro-F1 compared to state-of-the-art baselines. Results show that LLMs outperform deep learning baselines in binary detection and that KG-guided reasoning enhances CWE coverage and interpretability.
comment: 22 pages, 3 figures
☆ Equity by Design: Fairness-Driven Recommendation in Heterogeneous Two-Sided Markets
Two-sided marketplaces embody heterogeneity in incentives: producers seek exposure while consumers seek relevance, and balancing these competing objectives through constrained optimization is now a standard practice. Yet real platforms face finer-grained complexity: consumers differ in preferences and engagement patterns, producers vary in catalog value and capacity, and business objectives impose additional constraints beyond raw relevance. We formalize two-sided fairness under these realistic conditions, extending prior work from soft single-item allocations to discrete multi-item recommendations. We introduce Conditional Value-at-Risk (CVaR) as a consumer-side objective that compresses group-level utility disparities, and integrate business constraints directly into the optimization. Our experiments reveal that the "free fairness" regime, where producer constraints impose no consumer cost, disappears in multi item settings. Strikingly, moderate fairness constraints can improve business metrics by diversifying exposure away from saturated producers. Scalable solvers match exact solutions at a fraction of the runtime, making fairness-aware allocation practical at scale. These findings reframe fairness not as a tax on platform efficiency but as a lever for sustainable marketplace health.
☆ A Cognitive Distribution and Behavior-Consistent Framework for Black-Box Attacks on Recommender Systems
With the growing deployment of sequential recommender systems in e-commerce and other fields, their black-box interfaces raise security concerns: models are vulnerable to extraction and subsequent adversarial manipulation. Existing black-box extraction attacks primarily rely on hard labels or pairwise learning, often ignoring the importance of ranking positions, which results in incomplete knowledge transfer. Moreover, adversarial sequences generated via pure gradient methods lack semantic consistency with real user behavior, making them easily detectable. To overcome these limitations, this paper proposes a dual-enhanced attack framework. First, drawing on primacy effects and position bias, we introduce a cognitive distribution-driven extraction mechanism that maps discrete rankings into continuous value distributions with position-aware decay, thereby advancing from order alignment to cognitive distribution alignment. Second, we design a behavior-aware noisy item generation strategy that jointly optimizes collaborative signals and gradient signals. This ensures both semantic coherence and statistical stealth while effectively promoting target item rankings. Extensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods in both attack success rate and evasion rate, validating the value of integrating cognitive modeling and behavioral consistency for secure recommender systems.
☆ S-GRec: Personalized Semantic-Aware Generative Recommendation with Asymmetric Advantage
Generative recommendation models sequence generation to produce items end-to-end, but training from behavioral logs often provides weak supervision on underlying user intent. Although Large Language Models (LLMs) offer rich semantic priors that could supply such supervision, direct adoption in industrial recommendation is hindered by two obstacles: semantic signals can conflict with platform business objectives, and LLM inference is prohibitively expensive at scale. This paper presents S-GRec, a semantic-aware framework that decouples an online lightweight generator from an offline LLM-based semantic judge for train-time supervision. S-GRec introduces a two-stage Personalized Semantic Judge (PSJ) that produces interpretable aspect evidence and learns user-conditional aggregation from pairwise feedback, yielding stable semantic rewards. To prevent semantic supervision from deviating from business goals, Asymmetric Advantage Policy Optimization (A2PO) anchors optimization on business rewards (e.g., eCPM) and injects semantic advantages only when they are consistent. Extensive experiments on public benchmarks and a large-scale production system validate both effectiveness and scalability, including statistically significant gains in CTR and a 1.19\% lift in GMV in online A/B tests, without requiring real-time LLM inference.
☆ Campaign-2-PT-RAG: LLM-Guided Semantic Product Type Attribution for Scalable Campaign Ranking
E-commerce campaign ranking models require large-scale training labels indicating which users purchased due to campaign influence. However, generating these labels is challenging because campaigns use creative, thematic language that does not directly map to product purchases. Without clear product-level attribution, supervised learning for campaign optimization remains limited. We present \textbf{Campaign-2-PT-RAG}, a scalable label generation framework that constructs user--campaign purchase labels by inferring which product types (PTs) each campaign promotes. The framework first interprets campaign content using large language models (LLMs) to capture implicit intent, then retrieves candidate PTs through semantic search over the platform taxonomy. A structured LLM-based classifier evaluates each PT's relevance, producing a campaign-specific product coverage set. User purchases matching these PTs generate positive training labels for downstream ranking models. This approach reframes the ambiguous attribution problem into a tractable semantic alignment task, enabling scalable and consistent supervision for downstream tasks such as campaign ranking optimization in production e-commerce environments. Experiments on internal and synthetic datasets, validated against expert-annotated campaign--PT mappings, show that our LLM-assisted approach generates high-quality labels with 78--90% precision while maintaining over 99% recall.
☆ Boundary-Aware Multi-Behavior Dynamic Graph Transformer for Sequential Recommendation
In the landscape of contemporary recommender systems, user-item interactions are inherently dynamic and sequential, often characterized by various behaviors. Prior research has explored the modeling of user preferences through sequential interactions and the user-item interaction graph, utilizing advanced techniques such as graph neural networks and transformer-based architectures. However, these methods typically fall short in simultaneously accounting for the dynamic nature of graph topologies and the sequential pattern of interactions in user preference models. Moreover, they often fail to adequately capture the multiple user behavior boundaries during model optimization. To tackle these challenges, we introduce a boundary-aware Multi-Behavioral Dynamic Graph Transformer (MB-DGT) model that dynamically refines the graph structure to reflect the evolving patterns of user behaviors and interactions. Our model involves a transformer-based dynamic graph aggregator for user preference modeling, which assimilates the changing graph structure and the sequence of user behaviors. This integration yields a more comprehensive and dynamic representation of user preferences. For model optimization, we implement a user-specific multi-behavior loss function that delineates the interest boundaries among different behaviors, thereby enriching the personalized learning of user preferences. Comprehensive experiments across three datasets indicate that our model consistently delivers remarkable recommendation performance.
☆ ChainRec: An Agentic Recommender Learning to Route Tool Chains for Diverse and Evolving Interests
Large language models (LLMs) are increasingly integrated into recommender systems, motivating recent interest in agentic and reasoning-based recommendation. However, most existing approaches still rely on fixed workflows, applying the same reasoning procedure across diverse recommendation scenarios. In practice, user contexts vary substantially-for example, in cold-start settings or during interest shifts, so an agent should adaptively decide what evidence to gather next rather than following a scripted process. To address this, we propose ChainRec, an agentic recommender that uses a planner to dynamically select reasoning tools. ChainRec builds a standardized Tool Agent Library from expert trajectories. It then trains a planner using supervised fine-tuning and preference optimization to dynamically select tools, decide their order, and determine when to stop. Experiments on AgentRecBench across Amazon, Yelp, and Goodreads show that ChainRec consistently improves Avg HR@{1,3,5} over strong baselines, with especially notable gains in cold-start and evolving-interest scenarios. Ablation studies further validate the importance of tool standardization and preference-optimized planning.
☆ Compute Only Once: UG-Separation for Efficient Large Recommendation Models
Driven by scaling laws, recommender systems increasingly rely on large-scale models to capture complex feature interactions and user behaviors, but this trend also leads to prohibitive training and inference costs. While long-sequence models(e.g., LONGER) can reuse user-side computation through KV caching, such reuse is difficult in dense feature interaction architectures(e.g., RankMixer), where user and group (candidate item) features are deeply entangled across layers. In this work, we propose User-Group Separation (UG-Sep), a novel framework that enables reusable user-side computation in dense interaction models for the first time. UG-Sep introduces a masking mechanism that explicitly disentangles user-side and item-side information flows within token-mixing layers, ensuring that a subset of tokens to preserve purely user-side representations across layers. This design enables corresponding token computations to be reused across multiple samples, significantly reducing redundant inference cost. To compensate for potential expressiveness loss induced by masking, we further propose an Information Compensation strategy that adaptively reconstructs suppressed user-item interactions. Moreover, as UG-Sep substantially reduces user-side FLOPs and exposes memory-bound components, we incorporate W8A16 (8-bit weight, 16-bit activation) weight-only quantization to alleviate memory bandwidth bottlenecks and achieve additional acceleration. We conduct extensive offline evaluations and large-scale online A/B experiments at ByteDance, demonstrating that UG-Sep reduces inference latency by up to 20 percent without degrading online user experience or commercial metrics across multiple business scenarios, including feed recommendation and advertising systems.
comment: Large Recommender Model, Industrial Recommenders, Scaling Law
☆ End-to-End Semantic ID Generation for Generative Advertisement Recommendation
Generative Recommendation (GR) has excelled by framing recommendation as next-token prediction. This paradigm relies on Semantic IDs (SIDs) to tokenize large-scale items into discrete sequences. Existing GR approaches predominantly generate SIDs via Residual Quantization (RQ), where items are encoded into embeddings and then quantized to discrete SIDs. However, this paradigm suffers from inherent limitations: 1) Objective misalignment and semantic degradation stemming from the two-stage compression; 2) Error accumulation inherent in the structure of RQ. To address these limitations, we propose UniSID, a Unified SID generation framework for generative advertisement recommendation. Specifically, we jointly optimize embeddings and SIDs in an end-to-end manner from raw advertising data, enabling semantic information to flow directly into the SID space and thus addressing the inherent limitations of the two-stage cascading compression paradigm. To capture fine-grained semantics, a multi-granularity contrastive learning strategy is introduced to align distinct items across SID levels. Finally, a summary-based ad reconstruction mechanism is proposed to encourage SIDs to capture high-level semantic information that is not explicitly present in advertising contexts. Experiments demonstrate that UniSID consistently outperforms state-of-the-art SID generation methods, yielding up to a 4.62% improvement in Hit Rate metrics across downstream advertising scenarios compared to the strongest baseline.
☆ Chamfer-Linkage for Hierarchical Agglomerative Clustering
Hierarchical Agglomerative Clustering (HAC) is a widely-used clustering method based on repeatedly merging the closest pair of clusters, where inter-cluster distances are determined by a linkage function. Unlike many clustering methods, HAC does not optimize a single explicit global objective; clustering quality is therefore primarily evaluated empirically, and the choice of linkage function plays a crucial role in practice. However, popular classical linkages, such as single-linkage, average-linkage and Ward's method show high variability across real-world datasets and do not consistently produce high-quality clusterings in practice. In this paper, we propose \emph{Chamfer-linkage}, a novel linkage function that measures the distance between clusters using the Chamfer distance, a popular notion of distance between point-clouds in machine learning and computer vision. We argue that Chamfer-linkage satisfies desirable concept representation properties that other popular measures struggle to satisfy. Theoretically, we show that Chamfer-linkage HAC can be implemented in $O(n^2)$ time, matching the efficiency of classical linkage functions. Experimentally, we find that Chamfer-linkage consistently yields higher-quality clusterings than classical linkages such as average-linkage and Ward's method across a diverse collection of datasets. Our results establish Chamfer-linkage as a practical drop-in replacement for classical linkage functions, broadening the toolkit for hierarchical clustering in both theory and practice.
☆ GeoGR: A Generative Retrieval Framework for Spatio-Temporal Aware POI Recommendation
Next Point-of-Interest (POI) prediction is a fundamental task in location-based services, especially critical for large-scale navigation platforms like AMAP that serve billions of users across diverse lifestyle scenarios. While recent POI recommendation approaches based on SIDs have achieved promising, they struggle in complex, sparse real-world environments due to two key limitations: (1) inadequate modeling of high-quality SIDs that capture cross-category spatio-temporal collaborative relationships, and (2) poor alignment between large language models (LLMs) and the POI recommendation task. To this end, we propose GeoGR, a geographic generative recommendation framework tailored for navigation-based LBS like AMAP, which perceives users' contextual state changes and enables intent-aware POI recommendation. GeoGR features a two-stage design: (i) a geo-aware SID tokenization pipeline that explicitly learns spatio-temporal collaborative semantic representations via geographically constrained co-visited POI pairs, contrastive learning, and iterative refinement; and (ii) a multi-stage LLM training strategy that aligns non-native SID tokens through multiple template-based continued pre-training(CPT) and enables autoregressive POI generation via supervised fine-tuning(SFT). Extensive experiments on multiple real-world datasets demonstrate GeoGR's superiority over state-of-the-art baselines. Moreover, deployment on the AMAP platform, serving millions of users with multiple online metrics boosting, confirms its practical effectiveness and scalability in production.
☆ Filtered Approximate Nearest Neighbor Search in Vector Databases: System Design and Performance Analysis
Retrieval-Augmented Generation (RAG) applications increasingly rely on Filtered Approximate Nearest Neighbor Search (FANNS) to combine semantic retrieval with metadata constraints. While algorithmic innovations for FANNS have been proposed, there remains a lack of understanding regarding how generic filtering strategies perform within Vector Databases. In this work, we systematize the taxonomy of filtering strategies and evaluate their integration into FAISS, Milvus, and pgvector. To provide a robust benchmarking framework, we introduce a new relational dataset, \textit{MoReVec}, consisting of two tables, featuring 768-dimensional text embeddings and a rich schema of metadata attributes. We further propose the \textit{Global-Local Selectivity (GLS)} correlation metric to quantify the relationship between filters and query vectors. Our experiments reveal that algorithmic adaptations within the engine often override raw index performance. Specifically, we find that: (1) \textit{Milvus} achieves superior recall stability through hybrid approximate/exact execution; (2) \textit{pgvector}'s cost-based query optimizer frequently selects suboptimal execution plans, favoring approximate index scans even when exact sequential scans would yield perfect recall at comparable latency; and (3) partition-based indexes (IVFFlat) outperform graph-based indexes (HNSW) for low-selectivity queries. To facilitate this analysis, we extend the widely-used \textit{ANN-Benchmarks} to support filtered vector search and make it available online. Finally, we synthesize our findings into a set of practical guidelines for selecting index types and configuring query optimizers for hybrid search workloads.
comment: The artifacts are available at: https://github.com/aabylay/ANN-benchmark-HQ
☆ MTFM: A Scalable and Alignment-free Foundation Model for Industrial Recommendation in Meituan
Industrial recommendation systems typically involve multiple scenarios, yet existing cross-domain (CDR) and multi-scenario (MSR) methods often require prohibitive resources and strict input alignment, limiting their extensibility. We propose MTFM (Meituan Foundation Model for Recommendation), a transformer-based framework that addresses these challenges. Instead of pre-aligning inputs, MTFM transforms cross-domain data into heterogeneous tokens, capturing multi-scenario knowledge in an alignment-free manner. To enhance efficiency, we first introduce a multi-scenario user-level sample aggregation that significantly enhances training throughput by reducing the total number of instances. We further integrate Grouped-Query Attention and a customized Hybrid Target Attention to minimize memory usage and computational complexity. Furthermore, we implement various system-level optimizations, such as kernel fusion and the elimination of CPU-GPU blocking, to further enhance both training and inference throughput. Offline and online experiments validate the effectiveness of MTFM, demonstrating that significant performance gains are achieved by scaling both model capacity and multi-scenario training data.
♻ ☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
♻ ☆ SegNSP: Revisiting Next Sentence Prediction for Linear Text Segmentation
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
♻ ☆ SA-CAISR: Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation
Sequential recommendation (SR) aims to predict a user's next action by learning from their historical interaction sequences. In real-world applications, these models require periodic updates to adapt to new interactions and evolving user preferences. While incremental learning methods facilitate these updates, they face significant challenges. Replay-based approaches incur high memory and computational costs, and regularization-based methods often struggle to discard outdated or conflicting knowledge. To overcome these challenges, we propose SA-CAISR, a Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation framework. As a buffer-free framework, SA-CAISR operates using only the old model and new data, directly addressing the high costs of replay-based techniques. SA-CAISR introduces a novel Fisher-weighted knowledge-screening mechanism that dynamically identifies outdated knowledge by estimating parameter-level conflicts between the old model and new data, selectively removing obsolete knowledge while preserving compatible historical patterns. This dynamic balance between stability and adaptability allows our method to achieve state-of-the-art performance in incremental SR. Specifically, SA-CAISR improves Recall@20 by 2.0% on average across datasets, while reducing memory usage by 97.5% and training time by 46.9% compared to the best baseline. This efficiency allows real-world systems to rapidly update user profiles with minimal computational overhead, ensuring more timely and accurate recommendations.
♻ ☆ Breaking the Likelihood Trap: Consistent Generative Recommendation with Graph-structured Model
Reranking, as the final stage of recommender systems, plays a crucial role in determining the final exposure, directly influencing user experience. Recently, generative reranking has gained increasing attention for formulating reranking as a holistic sequence generation task, implicitly modeling complex dependencies among items. However, most existing methods suffer from the likelihood trap, where high-likelihood sequences are often repetitive and perceived as low-quality by humans, thereby limiting user engagement. In this work, we propose Consistent Graph-structured Generative Recommendation (CONGRATS). We first introduce a novel Graph-structured Model, which enables the generation of more diverse sequences by exploring multiple paths. This design not only expands the decoding space to promote diversity, but also improves prediction accuracy by explicitly modeling item dependencies from graph transitions. Furthermore, we design a Consistent Differentiable Training method that incorporates an evaluator, allowing the model to learn directly from user preferences. Extensive offline experiments validate the superior performance of CONGRATS over state-of-the-art reranking methods. Moreover, CONGRATS has been evaluated on a large-scale video-sharing app, Kuaishou, with over 300 million daily active users, demonstrating that our approach significantly improves both recommendation quality and diversity, validating our effectiveness in practical industrial platforms.
♻ ☆ Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
The success of Large Language Models (LLMs) has motivated a shift toward generative approaches to retrieval and ranking, aiming to supersede classical Dual Encoders (DEs) and Cross Encoders (CEs). A prominent paradigm is pointwise Autoregressive Ranking (ARR), where an LLM generates document identifiers (docIDs) token-by-token to enable ranking via beam search. ARR offers the promise of superior expressivity compared to DEs while avoiding the prohibitive computational cost of CEs. However, a formal theoretical foundation for this expressive power has been missing. Moreover, the standard next-token prediction loss is rank-agnostic and inappropriate for finetuning an LLM for ranking tasks. In this paper, we first prove that the expressive capacity of ARR is strictly superior to DEs. While a DE requires an embedding dimension that grows linearly with corpus size to achieve arbitrary rankings, ARR can solve it with a constant hidden dimension. We then propose SToICaL (Simple Token-Item Calibrated Loss), a generalized rank-aware training loss for LLM finetuning. By using item-level reweighting and prefix-tree marginalization, we distribute probability mass over valid docID tokens based on their ground-truth relevance. Experiments on WordNet and ESCI datasets verify that our loss suppresses invalid docID generations and significantly improves ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
Computation and Language 143
☆ Quantum-Audit: Evaluating the Reasoning Limits of LLMs on Quantum Computing
Language models have become practical tools for quantum computing education and research, from summarizing technical papers to explaining theoretical concepts and answering questions about recent developments in the field. While existing benchmarks evaluate quantum code generation and circuit design, their understanding of quantum computing concepts has not been systematically measured. Quantum-Audit addresses this gap with 2,700 questions covering core quantum computing topics. We evaluate 26 models from leading organizations. Our benchmark comprises 1,000 expert-written questions, 1,000 questions extracted from research papers using LLMs and validated by experts, plus an additional 700 questions including 350 open-ended questions and 350 questions with false premises to test whether models can correct erroneous assumptions. Human participants scored between 23% and 86%, with experts averaging 74%. Top-performing models exceeded the expert average, with Claude Opus 4.5 reaching 84% accuracy, though top models showed an average 12-point accuracy drop on expert-written questions compared to LLM-generated ones. Performance declined further on advanced topics, dropping to 73% on security questions. Additionally, models frequently accepted and reinforced false premises embedded in questions instead of identifying them, with accuracy below 66% on these critical reasoning tasks.
comment: 18 pages
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ Anagent For Enhancing Scientific Table & Figure Analysis
In scientific research, analysis requires accurately interpreting complex multimodal knowledge, integrating evidence from different sources, and drawing inferences grounded in domain-specific knowledge. However, current artificial intelligence (AI) systems struggle to consistently demonstrate such capabilities. The complexity and variability of scientific tables and figures, combined with heterogeneous structures and long-context requirements, pose fundamental obstacles to scientific table \& figure analysis. To quantify these challenges, we introduce AnaBench, a large-scale benchmark featuring $63,178$ instances from nine scientific domains, systematically categorized along seven complexity dimensions. To tackle these challenges, we propose Anagent, a multi-agent framework for enhanced scientific table \& figure analysis through four specialized agents: Planner decomposes tasks into actionable subtasks, Expert retrieves task-specific information through targeted tool execution, Solver synthesizes information to generate coherent analysis, and Critic performs iterative refinement through five-dimensional quality assessment. We further develop modular training strategies that leverage supervised finetuning and specialized reinforcement learning to optimize individual capabilities while maintaining effective collaboration. Comprehensive evaluation across 170 subdomains demonstrates that Anagent achieves substantial improvements, up to $\uparrow 13.43\%$ in training-free settings and $\uparrow 42.12\%$ with finetuning, while revealing that task-oriented reasoning and context-aware problem-solving are essential for high-quality scientific table \& figure analysis. Our project page: https://xhguo7.github.io/Anagent/.
☆ CAPID: Context-Aware PII Detection for Question-Answering Systems EACL 2026
Detecting personally identifiable information (PII) in user queries is critical for ensuring privacy in question-answering systems. Current approaches mainly redact all PII, disregarding the fact that some of them may be contextually relevant to the user's question, resulting in a degradation of response quality. Large language models (LLMs) might be able to help determine which PII are relevant, but due to their closed source nature and lack of privacy guarantees, they are unsuitable for sensitive data processing. To achieve privacy-preserving PII detection, we propose CAPID, a practical approach that fine-tunes a locally owned small language model (SLM) that filters sensitive information before it is passed to LLMs for QA. However, existing datasets do not capture the context-dependent relevance of PII needed to train such a model effectively. To fill this gap, we propose a synthetic data generation pipeline that leverages LLMs to produce a diverse, domain-rich dataset spanning multiple PII types and relevance levels. Using this dataset, we fine-tune an SLM to detect PII spans, classify their types, and estimate contextual relevance. Our experiments show that relevance-aware PII detection with a fine-tuned SLM substantially outperforms existing baselines in span, relevance and type accuracy while preserving significantly higher downstream utility under anonymization.
comment: Accepted to the Student Research Workshop at EACL 2026
Overview of the TREC 2025 RAGTIME Track
The principal goal of the RAG TREC Instrument for Multilingual Evaluation (RAGTIME) track at TREC is to study report generation from multilingual source documents. The track has created a document collection containing Arabic, Chinese, English, and Russian news stories. RAGTIME includes three task types: Multilingual Report Generation, English Report Generation, and Multilingual Information Retrieval (MLIR). A total of 125 runs were submitted by 13 participating teams (and as baselines by the track coordinators) for three tasks. This overview describes these three tasks and presents the available results.
comment: 10 pages, 3 figures, notebook version of the RAGTIME 2025 overview paper
☆ MEVER: Multi-Modal and Explainable Claim Verification with Graph-based Evidence Retrieval EACL-26
Verifying the truthfulness of claims usually requires joint multi-modal reasoning over both textual and visual evidence, such as analyzing both textual caption and chart image for claim verification. In addition, to make the reasoning process transparent, a textual explanation is necessary to justify the verification result. However, most claim verification works mainly focus on the reasoning over textual evidence only or ignore the explainability, resulting in inaccurate and unconvincing verification. To address this problem, we propose a novel model that jointly achieves evidence retrieval, multi-modal claim verification, and explanation generation. For evidence retrieval, we construct a two-layer multi-modal graph for claims and evidence, where we design image-to-text and text-to-image reasoning for multi-modal retrieval. For claim verification, we propose token- and evidence-level fusion to integrate claim and evidence embeddings for multi-modal verification. For explanation generation, we introduce multi-modal Fusion-in-Decoder for explainability. Finally, since almost all the datasets are in general domain, we create a scientific dataset, AIChartClaim, in AI domain to complement claim verification community. Experiments show the strength of our model.
comment: Accepted to EACL-26
☆ Decoupled Reasoning with Implicit Fact Tokens (DRIFT): A Dual-Model Framework for Efficient Long-Context Inference
The integration of extensive, dynamic knowledge into Large Language Models (LLMs) remains a significant challenge due to the inherent entanglement of factual data and reasoning patterns. Existing solutions, ranging from non-parametric Retrieval-Augmented Generation (RAG) to parametric knowledge editing, are often constrained in practice by finite context windows, retriever noise, or the risk of catastrophic forgetting. In this paper, we propose DRIFT, a novel dual-model architecture designed to explicitly decouple knowledge extraction from the reasoning process. Unlike static prompt compression, DRIFT employs a lightweight knowledge model to dynamically compress document chunks into implicit fact tokens conditioned on the query. These dense representations are projected into the reasoning model's embedding space, replacing raw, redundant text while maintaining inference accuracy. Extensive experiments show that DRIFT significantly improves performance on long-context tasks, outperforming strong baselines among comparably sized models. Our approach provides a scalable and efficient paradigm for extending the effective context window and reasoning capabilities of LLMs. Our code is available at https://github.com/Lancelot-Xie/DRIFT.
☆ SCORE: Specificity, Context Utilization, Robustness, and Relevance for Reference-Free LLM Evaluation
Large language models (LLMs) are increasingly used to support question answering and decision-making in high-stakes, domain-specific settings such as natural hazard response and infrastructure planning, where effective answers must convey fine-grained, decision-critical details. However, existing evaluation frameworks for retrieval-augmented generation (RAG) and open-ended question answering primarily rely on surface-level similarity, factual consistency, or semantic relevance, and often fail to assess whether responses provide the specific information required for domain-sensitive decisions. To address this gap, we propose a multi-dimensional, reference-free evaluation framework that assesses LLM outputs along four complementary dimensions: specificity, robustness to paraphrasing and semantic perturbations, answer relevance, and context utilization. We introduce a curated dataset of 1,412 domain-specific question-answer pairs spanning 40 professional roles and seven natural hazard types to support systematic evaluation. We further conduct human evaluation to assess inter-annotator agreement and alignment between model outputs and human judgments, which highlights the inherent subjectivity of open-ended, domain-specific evaluation. Our results show that no single metric sufficiently captures answer quality in isolation and demonstrate the need for structured, multi-metric evaluation frameworks when deploying LLMs in high-stakes applications.
☆ ViSpeechFormer: A Phonemic Approach for Vietnamese Automatic Speech Recognition
Vietnamese has a phonetic orthography, where each grapheme corresponds to at most one phoneme and vice versa. Exploiting this high grapheme-phoneme transparency, we propose ViSpeechFormer (\textbf{Vi}etnamese \textbf{Speech} Trans\textbf{Former}), a phoneme-based approach for Vietnamese Automatic Speech Recognition (ASR). To the best of our knowledge, this is the first Vietnamese ASR framework that explicitly models phonemic representations. Experiments on two publicly available Vietnamese ASR datasets show that ViSpeechFormer achieves strong performance, generalizes better to out-of-vocabulary words, and is less affected by training bias. This phoneme-based paradigm is also promising for other languages with phonetic orthographies. The code will be released upon acceptance of this paper.
☆ A Unified Assessment of the Poverty of the Stimulus Argument for Neural Language Models
How can children acquire native-level syntax from limited input? According to the Poverty of the Stimulus Hypothesis (PoSH), the linguistic input children receive is insufficient to explain certain generalizations that are robustly learned; innate linguistic constraints, many have argued, are thus necessary to explain language learning. Neural language models, which lack such language-specific constraints in their design, offer a computational test of this longstanding (but controversial) claim. We introduce \poshbench, a training-and-evaluation suite targeting question formation, islands to movement, and other English phenomena at the center of the PoSH arguments. Training Transformer models on 10--50M words of developmentally plausible text, we find indications of generalization on all phenomena even without direct positive evidence -- yet neural models remain less data-efficient and their generalizations are weaker than those of children. We further enhance our models with three recently proposed cognitively motivated inductive biases. We find these biases improve general syntactic competence but not \poshbench performance. Our findings challenge the claim that innate syntax is the only possible route to generalization, while suggesting that human-like data efficiency requires inductive biases beyond those tested here.
☆ ViMultiChoice: Toward a Method That Gives Explanation for Multiple-Choice Reading Comprehension in Vietnamese
Multiple-choice Reading Comprehension (MCRC) models aim to select the correct answer from a set of candidate options for a given question. However, they typically lack the ability to explain the reasoning behind their choices. In this paper, we introduce a novel Vietnamese dataset designed to train and evaluate MCRC models with explanation generation capabilities. Furthermore, we propose ViMultiChoice, a new method specifically designed for modeling Vietnamese reading comprehension that jointly predicts the correct answer and generates a corresponding explanation. Experimental results demonstrate that ViMultiChoice outperforms existing MCRC baselines, achieving state-of-the-art (SotA) performance on both the ViMMRC 2.0 benchmark and the newly introduced dataset. Additionally, we show that jointly training option decision and explanation generation leads to significant improvements in multiple-choice accuracy.
☆ ATTNPO: Attention-Guided Process Supervision for Efficient Reasoning
Large reasoning models trained with reinforcement learning and verifiable rewards (RLVR) achieve strong performance on complex reasoning tasks, yet often overthink, generating redundant reasoning without performance gains. Existing trajectory-level length penalties often fail to effectively shorten reasoning length and degrade accuracy, as they uniformly treat all reasoning steps and lack fine-grained signals to distinguish redundancy from necessity. Meanwhile, process-supervised methods are typically resource-intensive and suffer from inaccurate credit assignment. To address these issues, we propose ATTNPO, a low-overhead process-supervised RL framework that leverages the model's intrinsic attention signals for step-level credit assignment. We first identify a set of special attention heads that naturally focus on essential steps while suppressing redundant ones. By leveraging the attention scores of these heads, We then employ two sub-strategies to mitigate overthinking by discouraging redundant steps while preserving accuracy by reducing penalties on essential steps. Experimental results show that ATTNPO substantially reduces reasoning length while significantly improving performance across 9 benchmarks.
comment: Work in process
LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ AmharicIR+Instr: A Two-Dataset Resource for Neural Retrieval and Instruction Tuning
Neural retrieval and GPT-style generative models rely on large, high-quality supervised data, which is still scarce for low-resource languages such as Amharic. We release an Amharic data resource consisting of two datasets that supports research on (i) neural retrieval-ranking and (ii) instruction-following text generation. The retrieval-ranking dataset contains 1,091 manually verified query-positive-negative document triplets drawn from diverse Amharic sources and constructed to support contrastive training and benchmarking of neural retrievers (e.g., DPR, ColBERT-style late interaction and SPLADE-style sparse neural retrieval). Triplets are created through a combination of expert-curated queries, web-derived queries, and LLM-assisted generation, with positive/negative documents selected from the web or synthesized by LLMs and then validated by native speakers. The instruction prompt-response dataset comprises 6,285 Amharic prompt-response pairs spanning multiple domains and instruction types, generated with several LLMs and refined through manual review and correction for grammaticality, relevance, fluency, and factual plausibility. We release both datasets with standardized splits and formats (CSV,JSON,JSONL) to enable reproducible work on Amharic retrieval, ranking, and generative modelling. These datasets also come with a methodology that can be generalized to other low-resource languages.
comment: 7 pages, Submitted to resource track
☆ QP-OneModel: A Unified Generative LLM for Multi-Task Query Understanding in Xiaohongshu Search
Query Processing (QP) bridges user intent and content supply in large-scale Social Network Service (SNS) search engines. Traditional QP systems rely on pipelines of isolated discriminative models (e.g., BERT), suffering from limited semantic understanding and high maintenance overhead. While Large Language Models (LLMs) offer a potential solution, existing approaches often optimize sub-tasks in isolation, neglecting intrinsic semantic synergy and necessitating independent iterations. Moreover, standard generative methods often lack grounding in SNS scenarios, failing to bridge the gap between open-domain corpora and informal SNS linguistic patterns, while struggling to adhere to rigorous business definitions. We present QP-OneModel, a Unified Generative LLM for Multi-Task Query Understanding in the SNS domain. We reformulate heterogeneous sub-tasks into a unified sequence generation paradigm, adopting a progressive three-stage alignment strategy culminating in multi-reward Reinforcement Learning. Furthermore, QP-OneModel generates intent descriptions as a novel high-fidelity semantic signal, effectively augmenting downstream tasks such as query rewriting and ranking. Offline evaluations show QP-OneModel achieves a 7.35% overall gain over discriminative baselines, with significant F1 boosts in NER (+9.01%) and Term Weighting (+9.31%). It also exhibits superior generalization, surpassing a 32B model by 7.60% accuracy on unseen tasks. Fully deployed at Xiaohongshu, online A/B tests confirm its industrial value, optimizing retrieval relevance (DCG) by 0.21% and lifting user retention by 0.044%.
☆ The Devil Behind Moltbook: Anthropic Safety is Always Vanishing in Self-Evolving AI Societies
The emergence of multi-agent systems built from large language models (LLMs) offers a promising paradigm for scalable collective intelligence and self-evolution. Ideally, such systems would achieve continuous self-improvement in a fully closed loop while maintaining robust safety alignment--a combination we term the self-evolution trilemma. However, we demonstrate both theoretically and empirically that an agent society satisfying continuous self-evolution, complete isolation, and safety invariance is impossible. Drawing on an information-theoretic framework, we formalize safety as the divergence degree from anthropic value distributions. We theoretically demonstrate that isolated self-evolution induces statistical blind spots, leading to the irreversible degradation of the system's safety alignment. Empirical and qualitative results from an open-ended agent community (Moltbook) and two closed self-evolving systems reveal phenomena that align with our theoretical prediction of inevitable safety erosion. We further propose several solution directions to alleviate the identified safety concern. Our work establishes a fundamental limit on the self-evolving AI societies and shifts the discourse from symptom-driven safety patches to a principled understanding of intrinsic dynamical risks, highlighting the need for external oversight or novel safety-preserving mechanisms.
☆ Steer2Edit: From Activation Steering to Component-Level Editing
Steering methods influence Large Language Model behavior by identifying semantic directions in hidden representations, but are typically realized through inference-time activation interventions that apply a fixed, global modification to the model's internal states. While effective, such interventions often induce unfavorable attribute-utility trade-offs under strong control, as they ignore the fact that many behaviors are governed by a small and heterogeneous subset of model components. We propose Steer2Edit, a theoretically grounded, training-free framework that transforms steering vectors from inference-time control signals into diagnostic signals for component-level rank-1 weight editing. Instead of uniformly injecting a steering direction during generation, Steer2Edit selectively redistributes behavioral influence across individual attention heads and MLP neurons, yielding interpretable edits that preserve the standard forward pass and remain compatible with optimized parallel inference. Across safety alignment, hallucination mitigation, and reasoning efficiency, Steer2Edit consistently achieves more favorable attribute-utility trade-offs: at matched downstream performance, it improves safety by up to 17.2%, increases truthfulness by 9.8%, and reduces reasoning length by 12.2% on average. Overall, Steer2Edit provides a principled bridge between representation steering and weight editing by translating steering signals into interpretable, training-free parameter updates.
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
☆ How Do People Quantify Naturally: Evidence from Mandarin Picture Description
Quantification is a fundamental component of everyday language use, yet little is known about how speakers decide whether and how to quantify in naturalistic production. We investigate quantification in Mandarin Chinese using a picture-based elicited description task in which speakers freely described scenes containing multiple objects, without explicit instructions to count or quantify. Across both spoken and written modalities, we examine three aspects of quantification: whether speakers choose to quantify at all, how precise their quantification is, and which quantificational strategies they adopt. Results show that object numerosity, animacy, and production modality systematically shape quantificational behaviour. In particular, increasing numerosity reduces both the likelihood and the precision of quantification, while animate referents and modality selectively modulate strategy choice. This study demonstrates how quantification can be examined under unconstrained production conditions and provides a naturalistic dataset for further analyses of quantity expression in language production.
LLM Reasoning Predicts When Models Are Right: Evidence from Coding Classroom Discourse
Large Language Models (LLMs) are increasingly deployed to automatically label and analyze educational dialogue at scale, yet current pipelines lack reliable ways to detect when models are wrong. We investigate whether reasoning generated by LLMs can be used to predict the correctness of a model's own predictions. We analyze 30,300 teacher utterances from classroom dialogue, each labeled by multiple state-of-the-art LLMs with an instructional move construct and an accompanying reasoning. Using human-verified ground-truth labels, we frame the task as predicting whether a model's assigned label for a given utterance is correct. We encode LLM reasoning using Term Frequency-Inverse Document Frequency (TF-IDF) and evaluate five supervised classifiers. A Random Forest classifier achieves an F1 score of 0.83 (Recall = 0.854), successfully identifying most incorrect predictions and outperforming baselines. Training specialist detectors for specific instructional move constructs further improves performance on difficult constructs, indicating that error detection benefits from construct-specific linguistic cues. Using the Linguistic Inquiry and Word Count (LIWC) framework, we examine four linguistic markers of correctness: Causation, Differentiation, Tentativeness, and Insight. Correct predictions exhibit grounded causal language (e.g., because, therefore), while incorrect reasoning is substantially more likely to rely on epistemic hedging (e.g., might, could) and performative metacognition (e.g., think, realize). Syntactic complexity does not distinguish correct from incorrect reasoning, and longer reasoning is not more reliable. These findings demonstrate that reasoning-based error detection offers a practical and scalable approach to quality control in automated educational dialogue analysis.
☆ From FusHa to Folk: Exploring Cross-Lingual Transfer in Arabic Language Models
Arabic Language Models (LMs) are pretrained predominately on Modern Standard Arabic (MSA) and are expected to transfer to its dialects. While MSA as the standard written variety is commonly used in formal settings, people speak and write online in various dialects that are spread across the Arab region. This poses limitations for Arabic LMs, since its dialects vary in their similarity to MSA. In this work we study cross-lingual transfer of Arabic models using probing on 3 Natural Language Processing (NLP) Tasks, and representational similarity. Our results indicate that transfer is possible but disproportionate across dialects, which we find to be partially explained by their geographic proximity. Furthermore, we find evidence for negative interference in models trained to support all Arabic dialects. This questions their degree of similarity, and raises concerns for cross-lingual transfer in Arabic models.
comment: Accepted to VarDial 2026
☆ Covo-Audio Technical Report
In this work, we present Covo-Audio, a 7B-parameter end-to-end LALM that directly processes continuous audio inputs and generates audio outputs within a single unified architecture. Through large-scale curated pretraining and targeted post-training, Covo-Audio achieves state-of-the-art or competitive performance among models of comparable scale across a broad spectrum of tasks, including speech-text modeling, spoken dialogue, speech understanding, audio understanding, and full-duplex voice interaction. Extensive evaluations demonstrate that the pretrained foundation model exhibits strong speech-text comprehension and semantic reasoning capabilities on multiple benchmarks, outperforming representative open-source models of comparable scale. Furthermore, Covo-Audio-Chat, the dialogue-oriented variant, demonstrates strong spoken conversational abilities, including understanding, contextual reasoning, instruction following, and generating contextually appropriate and empathetic responses, validating its applicability to real-world conversational assistant scenarios. Covo-Audio-Chat-FD, the evolved full-duplex model, achieves substantially superior performance on both spoken dialogue capabilities and full-duplex interaction behaviors, demonstrating its competence in practical robustness. To mitigate the high cost of deploying end-to-end LALMs for natural conversational systems, we propose an intelligence-speaker decoupling strategy that separates dialogue intelligence from voice rendering, enabling flexible voice customization with minimal text-to-speech (TTS) data while preserving dialogue performance. Overall, our results highlight the strong potential of 7B-scale models to integrate sophisticated audio intelligence with high-level semantic reasoning, and suggest a scalable path toward more capable and versatile LALMs.
comment: Technical Report
☆ Text summarization via global structure awareness
Text summarization is a fundamental task in natural language processing (NLP), and the information explosion has made long-document processing increasingly demanding, making summarization essential. Existing research mainly focuses on model improvements and sentence-level pruning, but often overlooks global structure, leading to disrupted coherence and weakened downstream performance. Some studies employ large language models (LLMs), which achieve higher accuracy but incur substantial resource and time costs. To address these issues, we introduce GloSA-sum, the first summarization approach that achieves global structure awareness via topological data analysis (TDA). GloSA-sum summarizes text efficiently while preserving semantic cores and logical dependencies. Specifically, we construct a semantic-weighted graph from sentence embeddings, where persistent homology identifies core semantics and logical structures, preserved in a ``protection pool'' as the backbone for summarization. We design a topology-guided iterative strategy, where lightweight proxy metrics approximate sentence importance to avoid repeated high-cost computations, thus preserving structural integrity while improving efficiency. To further enhance long-text processing, we propose a hierarchical strategy that integrates segment-level and global summarization. Experiments on multiple datasets demonstrate that GloSA-sum reduces redundancy while preserving semantic and logical integrity, striking a balance between accuracy and efficiency, and further benefits LLM downstream tasks by shortening contexts while retaining essential reasoning chains.
comment: 24pages
☆ AnalyticsGPT: An LLM Workflow for Scientometric Question Answering
This paper introduces AnalyticsGPT, an intuitive and efficient large language model (LLM)-powered workflow for scientometric question answering. This underrepresented downstream task addresses the subcategory of meta-scientific questions concerning the "science of science." When compared to traditional scientific question answering based on papers, the task poses unique challenges in the planning phase. Namely, the need for named-entity recognition of academic entities within questions and multi-faceted data retrieval involving scientometric indices, e.g. impact factors. Beyond their exceptional capacity for treating traditional natural language processing tasks, LLMs have shown great potential in more complex applications, such as task decomposition and planning and reasoning. In this paper, we explore the application of LLMs to scientometric question answering, and describe an end-to-end system implementing a sequential workflow with retrieval-augmented generation and agentic concepts. We also address the secondary task of effectively synthesizing the data into presentable and well-structured high-level analyses. As a database for retrieval-augmented generation, we leverage a proprietary research performance assessment platform. For evaluation, we consult experienced subject matter experts and leverage LLMs-as-judges. In doing so, we provide valuable insights on the efficacy of LLMs towards a niche downstream task. Our (skeleton) code and prompts are available at: https://github.com/lyvykhang/llm-agents-scientometric-qa/tree/acl.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Would a Large Language Model Pay Extra for a View? Inferring Willingness to Pay from Subjective Choices
As Large Language Models (LLMs) are increasingly deployed in applications such as travel assistance and purchasing support, they are often required to make subjective choices on behalf of users in settings where no objectively correct answer exists. We study LLM decision-making in a travel-assistant context by presenting models with choice dilemmas and analyzing their responses using multinomial logit models to derive implied willingness to pay (WTP) estimates. These WTP values are subsequently compared to human benchmark values from the economics literature. In addition to a baseline setting, we examine how model behavior changes under more realistic conditions, including the provision of information about users' past choices and persona-based prompting. Our results show that while meaningful WTP values can be derived for larger LLMs, they also display systematic deviations at the attribute level. Additionally, they tend to overestimate human WTP overall, particularly when expensive options or business-oriented personas are introduced. Conditioning models on prior preferences for cheaper options yields valuations that are closer to human benchmarks. Overall, our findings highlight both the potential and the limitations of using LLMs for subjective decision support and underscore the importance of careful model selection, prompt design, and user representation when deploying such systems in practice.
☆ Where Are We At with Automatic Speech Recognition for the Bambara Language? EACL 2026
This paper introduces the first standardized benchmark for evaluating Automatic Speech Recognition (ASR) in the Bambara language, utilizing one hour of professionally recorded Malian constitutional text. Designed as a controlled reference set under near-optimal acoustic and linguistic conditions, the benchmark was used to evaluate 37 models, ranging from Bambara-trained systems to large-scale commercial models. Our findings reveal that current ASR performance remains significantly below deployment standards in a narrow formal domain; the top-performing system in terms of Word Error Rate (WER) achieved 46.76\% and the best Character Error Rate (CER) of 13.00\% was set by another model, while several prominent multilingual models exceeded 100\% WER. These results suggest that multilingual pre-training and model scaling alone are insufficient for underrepresented languages. Furthermore, because this dataset represents a best-case scenario of the most simplified and formal form of spoken Bambara, these figures are yet to be tested against practical, real-world settings. We provide the benchmark and an accompanying public leaderboard to facilitate transparent evaluation and future research in Bambara speech technology.
comment: v1- 8 pages, 5 tables, 1 figure- AfricaNLP Workshop @ EACL 2026
☆ Circuit Fingerprints: How Answer Tokens Encode Their Geometrical Path ICML 2026
Circuit discovery and activation steering in transformers have developed as separate research threads, yet both operate on the same representational space. Are they two views of the same underlying structure? We show they follow a single geometric principle: answer tokens, processed in isolation, encode the directions that would produce them. This Circuit Fingerprint hypothesis enables circuit discovery without gradients or causal intervention -- recovering comparable structure to gradient-based methods through geometric alignment alone. We validate this on standard benchmarks (IOI, SVA, MCQA) across four model families, achieving circuit discovery performance comparable to gradient-based methods. The same directions that identify circuit components also enable controlled steering -- achieving 69.8\% emotion classification accuracy versus 53.1\% for instruction prompting while preserving factual accuracy. Beyond method development, this read-write duality reveals that transformer circuits are fundamentally geometric structures: interpretability and controllability are two facets of the same object.
comment: Submitted to ICML 2026. 15 pages, 11 figures
☆ Why Linear Interpretability Works: Invariant Subspaces as a Result of Architectural Constraints ICML 2026
Linear probes and sparse autoencoders consistently recover meaningful structure from transformer representations -- yet why should such simple methods succeed in deep, nonlinear systems? We show this is not merely an empirical regularity but a consequence of architectural necessity: transformers communicate information through linear interfaces (attention OV circuits, unembedding matrices), and any semantic feature decoded through such an interface must occupy a context-invariant linear subspace. We formalize this as the \emph{Invariant Subspace Necessity} theorem and derive the \emph{Self-Reference Property}: tokens directly provide the geometric direction for their associated features, enabling zero-shot identification of semantic structure without labeled data or learned probes. Empirical validation in eight classification tasks and four model families confirms the alignment between class tokens and semantically related instances. Our framework provides \textbf{a principled architectural explanation} for why linear interpretability methods work, unifying linear probes and sparse autoencoders.
comment: Submitted to ICML 2026. 19 pages, 13 figures
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Improving Interpretability of Lexical Semantic Change with Neurobiological Features ACL
Lexical Semantic Change (LSC) is the phenomenon in which the meaning of a word change over time. Most studies on LSC focus on improving the performance of estimating the degree of LSC, however, it is often difficult to interpret how the meaning of a word change. Enhancing the interpretability of LSC is a significant challenge as it could lead to novel insights in this field. To tackle this challenge, we propose a method to map the semantic space of contextualized embeddings of words obtained by a pre-trained language model to a neurobiological feature space. In the neurobiological feature space, each dimension corresponds to a primitive feature of words, and its value represents the intensity of that feature. This enables humans to interpret LSC systematically. When employed for the estimation of the degree of LSC, our method demonstrates superior performance in comparison to the majority of the previous methods. In addition, given the high interpretability of the proposed method, several analyses on LSC are carried out. The results demonstrate that our method not only discovers interesting types of LSC that have been overlooked in previous studies but also effectively searches for words with specific types of LSC.
comment: PACLIC 2025
☆ Targum -- A Multilingual New Testament Translation Corpus
Many European languages possess rich biblical translation histories, yet existing corpora - in prioritizing linguistic breadth - often fail to capture this depth. To address this gap, we introduce a multilingual corpus of 657 New Testament translations, of which 352 are unique, with unprecedented depth in five languages: English (208 unique versions from 396 total), French (41 from 78), Italian (18 from 33), Polish (30 from 48), and Spanish (55 from 102). Aggregated from 12 online biblical libraries and one preexisting corpus, each translation is manually annotated with metadata that maps the text to a standardized identifier for the work, its specific edition, and its year of revision. This canonicalization empowers researchers to define "uniqueness" for their own needs: they can perform micro-level analyses on translation families, such as the KJV lineage, or conduct macro-level studies by deduplicating closely related texts. By providing the first resource designed for such flexible, multilevel analysis, our corpus establishes a new benchmark for the quantitative study of translation history.
☆ AI-Assisted Scientific Assessment: A Case Study on Climate Change
The emerging paradigm of AI co-scientists focuses on tasks characterized by repeatable verification, where agents explore search spaces in 'guess and check' loops. This paradigm does not extend to problems where repeated evaluation is impossible and ground truth is established by the consensus synthesis of theory and existing evidence. We evaluate a Gemini-based AI environment designed to support collaborative scientific assessment, integrated into a standard scientific workflow. In collaboration with a diverse group of 13 scientists working in the field of climate science, we tested the system on a complex topic: the stability of the Atlantic Meridional Overturning Circulation (AMOC). Our results show that AI can accelerate the scientific workflow. The group produced a comprehensive synthesis of 79 papers through 104 revision cycles in just over 46 person-hours. AI contribution was significant: most AI-generated content was retained in the report. AI also helped maintain logical consistency and presentation quality. However, expert additions were crucial to ensure its acceptability: less than half of the report was produced by AI. Furthermore, substantial oversight was required to expand and elevate the content to rigorous scientific standards.
☆ Unsupervised Layer-Wise Dynamic Test Time Adaptation for LLMs
Test-time adaptation (TTA) for large language models (LLMs) updates model parameters at inference time using signals available at deployment. This paper focuses on a common yet under-explored regime: unsupervised, sample-specific TTA, where the model adapts independently for each prompt using only the prompt itself, without gold answers or external supervision. Although appealing, naive unsupervised TTA with a fixed, handcrafted learning rate can be unstable: updates may overfit to prompt-specific statistics, drift from the desired answer distribution, and ultimately degrade generation quality. This failure mode is not surprising, as in this case TTA must adapt to a single prompt within only a few gradient steps, unlike standard training that averages updates over large datasets and long optimization horizons. Therefore, we propose layer-wise dynamic test-time adaptation, a framework which explicitly modulates TTA strength as a function of prompt representation, LLM structure and adaptation step. In our setting, TTA updates only LoRA parameters, and a lightweight hypernetwork predicts per-layer, per-step learning-rate multipliers, enabling fine-grained control. Experiments across various datasets and LLMs consistently show that our method substantially strengthens TTA by learning effective scaling patterns over adaptation steps and transformer layer projections, improving stability while delivering better performance.
☆ TraceMem: Weaving Narrative Memory Schemata from User Conversational Traces
Sustaining long-term interactions remains a bottleneck for Large Language Models (LLMs), as their limited context windows struggle to manage dialogue histories that extend over time. Existing memory systems often treat interactions as disjointed snippets, failing to capture the underlying narrative coherence of the dialogue stream. We propose TraceMem, a cognitively-inspired framework that weaves structured, narrative memory schemata from user conversational traces through a three-stage pipeline: (1) Short-term Memory Processing, which employs a deductive topic segmentation approach to demarcate episode boundaries and extract semantic representation; (2) Synaptic Memory Consolidation, a process that summarizes episodes into episodic memories before distilling them alongside semantics into user-specific traces; and (3) Systems Memory Consolidation, which utilizes two-stage hierarchical clustering to organize these traces into coherent, time-evolving narrative threads under unifying themes. These threads are encapsulated into structured user memory cards, forming narrative memory schemata. For memory utilization, we provide an agentic search mechanism to enhance reasoning process. Evaluation on the LoCoMo benchmark shows that TraceMem achieves state-of-the-art performance with a brain-inspired architecture. Analysis shows that by constructing coherent narratives, it surpasses baselines in multi-hop and temporal reasoning, underscoring its essential role in deep narrative comprehension. Additionally, we provide an open discussion on memory systems, offering our perspectives and future outlook on the field. Our code implementation is available at: https://github.com/YimingShu-teay/TraceMem
☆ Maastricht University at AMIYA: Adapting LLMs for Dialectal Arabic using Fine-tuning and MBR Decoding
Large Language Models (LLMs) are becoming increasingly multilingual, supporting hundreds of languages, especially high resource ones. Unfortunately, Dialect variations are still underrepresented due to limited data and linguistic variation. In this work, we adapt a pre-trained LLM to improve dialectal performance. Specifically, we use Low Rank Adaptation (LoRA) fine-tuning on monolingual and English Dialect parallel data, adapter merging and dialect-aware MBR decoding to improve dialectal fidelity generation and translation. Experiments on Syrian, Moroccan, and Saudi Arabic show that merging and MBR improve dialectal fidelity while preserving semantic accuracy. This combination provides a compact and effective framework for robust dialectal Arabic generation.
☆ Life Cycle-Aware Evaluation of Knowledge Distillation for Machine Translation: Environmental Impact and Translation Quality Trade-offs
Knowledge distillation (KD) is a tool to compress a larger system (teacher) into a smaller one (student). In machine translation, studies typically report only the translation quality of the student and omit the computational complexity of performing KD, making it difficult to select among the many available KD choices under compute-induced constraints. In this study, we evaluate representative KD methods by considering both translation quality and computational cost. We express computational cost as a carbon footprint using the machine learning life cycle assessment (MLCA) tool. This assessment accounts for runtime operational emissions and amortized hardware production costs throughout the KD model life cycle (teacher training, distillation, and inference). We find that (i) distillation overhead dominates the total footprint at small deployment volumes, (ii) inference dominates at scale, making KD beneficial only beyond a task-dependent usage threshold, and (iii) word-level distillation typically offers more favorable footprint-quality trade-offs than sequence-level distillation. Our protocol provides reproducible guidance for selecting KD methods under explicit quality and compute-induced constraints.
☆ MATA: Multi-Agent Framework for Reliable and Flexible Table Question Answering
Recent advances in Large Language Models (LLMs) have significantly improved table understanding tasks such as Table Question Answering (TableQA), yet challenges remain in ensuring reliability, scalability, and efficiency, especially in resource-constrained or privacy-sensitive environments. In this paper, we introduce MATA, a multi-agent TableQA framework that leverages multiple complementary reasoning paths and a set of tools built with small language models. MATA generates candidate answers through diverse reasoning styles for a given table and question, then refines or selects the optimal answer with the help of these tools. Furthermore, it incorporates an algorithm designed to minimize expensive LLM agent calls, enhancing overall efficiency. MATA maintains strong performance with small, open-source models and adapts easily across various LLM types. Extensive experiments on two benchmarks of varying difficulty with ten different LLMs demonstrate that MATA achieves state-of-the-art accuracy and highly efficient reasoning while avoiding excessive LLM inference. Our results highlight that careful orchestration of multiple reasoning pathways yields scalable and reliable TableQA. The code is available at https://github.com/AIDAS-Lab/MATA.
☆ MILE-RefHumEval: A Reference-Free, Multi-Independent LLM Framework for Human-Aligned Evaluation
We introduce MILE-RefHumEval, a reference-free framework for evaluating Large Language Models (LLMs) without ground-truth annotations or evaluator coordination. It leverages an ensemble of independently prompted evaluators guided by a human-aligned schema, supporting both discrete and continuous scoring judgement. With task-specific prompts from best candidate selection, summarization and image captioning to dialogue, MILE-RefHumEval provides flexible, interpretable, and scalable assessments. Experiments show it aligns closely with human judgments, outperforms prior methods, and reduces computational overhead, offering an efficient, robust, and human-aligned solution for real-world LLM evaluation.
☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: https://github.com/Lexsi-Labs/aligntune
☆ Learning from the Irrecoverable: Error-Localized Policy Optimization for Tool-Integrated LLM Reasoning
Tool-integrated reasoning (TIR) enables LLM agents to solve tasks through planning, tool use, and iterative revision, but outcome-only reinforcement learning in this setting suffers from sparse, delayed rewards and weak step-level credit assignment. In long-horizon TIR trajectories, an early irrecoverable mistake can determine success or failure, making it crucial to localize the first irrecoverable step and leverage it for fine-grained credit assignment. We propose Error-Localized Policy Optimization (ELPO), which localizes the first irrecoverable step via binary-search rollout trees under a fixed rollout budget, converts the resulting tree into stable learning signals through hierarchical advantage attribution, and applies error-localized adaptive clipping to strengthen corrective updates on the critical step and its suffix. Across TIR benchmarks in math, science QA, and code execution, ELPO consistently outperforms strong Agentic RL baselines under comparable sampling budgets, with additional gains in Pass@K and Major@K scaling, rollout ranking quality, and tool-call efficiency. Our code will be publicly released soon.
comment: 20 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Context-Aware Counterfactual Data Augmentation for Gender Bias Mitigation in Language Models
A challenge in mitigating social bias in fine-tuned language models (LMs) is the potential reduction in language modeling capability, which can harm downstream performance. Counterfactual data augmentation (CDA), a widely used method for fine-tuning, highlights this issue by generating synthetic data that may align poorly with real-world distributions or creating overly simplistic counterfactuals that ignore the social context of altered sensitive attributes (e.g., gender) in the pretraining corpus. To address these limitations, we propose a simple yet effective context-augmented CDA method, Context-CDA, which uses large LMs to enhance the diversity and contextual relevance of the debiasing corpus. By minimizing discrepancies between the debiasing corpus and pretraining data through augmented context, this approach ensures better alignment, enhancing language modeling capability. We then employ uncertainty-based filtering to exclude generated counterfactuals considered low-quality by the target smaller LMs (i.e., LMs to be debiased), further improving the fine-tuning corpus quality. Experimental results on gender bias benchmarks demonstrate that Context-CDA effectively mitigates bias without sacrificing language modeling performance while offering insights into social biases by analyzing distribution shifts in next-token generation probabilities.
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ LEMUR: A Corpus for Robust Fine-Tuning of Multilingual Law Embedding Models for Retrieval EACL
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
comment: Accepted at EACL SRW 26
☆ Advancing Block Diffusion Language Models for Test-Time Scaling
Recent advances in block diffusion language models have demonstrated competitive performance and strong scalability on reasoning tasks. However, existing BDLMs have limited exploration under the test-time scaling setting and face more severe decoding challenges in long Chain-of-Thought reasoning, particularly in balancing the decoding speed and effectiveness. In this work, we propose a unified framework for test-time scaling in BDLMs that introduces adaptivity in both decoding and block-wise generation. At the decoding level, we propose Bounded Adaptive Confidence Decoding (BACD), a difficulty-aware sampling strategy that dynamically adjusts denoising based on model confidence, accelerating inference while controlling error accumulation. Beyond step-wise adaptivity, we introduce Think Coarse, Critic Fine (TCCF), a test-time scaling paradigm that allocates large block sizes to exploratory reasoning and smaller block sizes to refinement, achieving an effective efficiency-effectiveness balance. To enable efficient and effective decoding with a large block size, we adopt Progressive Block Size Extension, which mitigates performance degradation when scaling block sizes. Extensive experiments show that applying BACD and TCCF to TDAR-8B yields significant improvements over strong baselines such as TraDo-8B (2.26x speedup, +11.2 points on AIME24). These results mark an important step toward unlocking the potential of BDLMs for test-time scaling in complex reasoning tasks.
☆ Comprehensive Comparison of RAG Methods Across Multi-Domain Conversational QA EACL
Conversational question answering increasingly relies on retrieval-augmented generation (RAG) to ground large language models (LLMs) in external knowledge. Yet, most existing studies evaluate RAG methods in isolation and primarily focus on single-turn settings. This paper addresses the lack of a systematic comparison of RAG methods for multi-turn conversational QA, where dialogue history, coreference, and shifting user intent substantially complicate retrieval. We present a comprehensive empirical study of vanilla and advanced RAG methods across eight diverse conversational QA datasets spanning multiple domains. Using a unified experimental setup, we evaluate retrieval quality and answer generation using generator and retrieval metrics, and analyze how performance evolves across conversation turns. Our results show that robust yet straightforward methods, such as reranking, hybrid BM25, and HyDE, consistently outperform vanilla RAG. In contrast, several advanced techniques fail to yield gains and can even degrade performance below the No-RAG baseline. We further demonstrate that dataset characteristics and dialogue length strongly influence retrieval effectiveness, explaining why no single RAG strategy dominates across settings. Overall, our findings indicate that effective conversational RAG depends less on method complexity than on alignment between the retrieval strategy and the dataset structure. We publish the code used.\footnote{\href{https://github.com/Klejda-A/exp-rag.git}{GitHub Repository}}
comment: Accepted to EACL SRW 26
☆ UniARM: Towards a Unified Autoregressive Reward Model for Multi-Objective Test-Time Alignment
Multi-objective alignment aims to align LLM responses with multiple human preference objectives. Among existing methods, guiding the generation of frozen LLMs through autoregressive reward models (ARMs) to accomplish multi-objective test-time alignment is a low-cost solution. However, these methods typically rely on independent parameters for each preference objective, either by training ARMs independently across preference dimensions, which neglects interactions among preference features, or by training a single ARM with separate feature extraction modules for each preference, which can cause feature entanglement. Both strategies can result in misalignment between generated outputs and user preferences. To address this limitation, we propose Preference-Modulated \& Shared Low-Rank Adaptation (MoSLoRA) for ARM training, which first extracts shared features via a preference-agnostic module and then applies affine transformations to shared features via a preference modulation module conditioned on mixed preference vectors. This design mitigates feature entanglement and enables precise control over preference trade-offs during inference. Building on this, we introduce the Unified Autoregressive Reward Model (UniARM), a novel framework for multi-objective test-time alignment. UniARM jointly models all preference dimensions in a single parameter space, eliminating the need for independent parameters for each preference objective. es on larger-scale LLMs, enhancing its practical usability.
comment: Under Review
☆ Knowledge Integration Decay in Search-Augmented Reasoning of Large Language Models
Modern Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks by employing search-augmented reasoning to incorporate external knowledge into long chains of thought. However, we identify a critical yet underexplored bottleneck in this paradigm, termed Knowledge Integration Decay (KID). Specifically, we observe that as the length of reasoning generated before search grows, models increasingly fail to integrate retrieved evidence into subsequent reasoning steps, limiting performance even when relevant information is available. To address this, we propose Self-Anchored Knowledge Encoding (SAKE), a training-free inference-time strategy designed to stabilize knowledge utilization. By anchoring retrieved knowledge at both the beginning and end of the reasoning process, SAKE prevents it from being overshadowed by prior context, thereby preserving its semantic integrity. Extensive experiments on multi-hop QA and complex reasoning benchmarks demonstrate that SAKE significantly mitigates KID and improves performance, offering a lightweight yet effective solution for knowledge integration in agentic LLMs.
☆ The CLEF-2026 CheckThat! Lab: Advancing Multilingual Fact-Checking
The CheckThat! lab aims to advance the development of innovative technologies combating disinformation and manipulation efforts in online communication across a multitude of languages and platforms. While in early editions the focus has been on core tasks of the verification pipeline (check-worthiness, evidence retrieval, and verification), in the past three editions, the lab added additional tasks linked to the verification process. In this year's edition, the verification pipeline is at the center again with the following tasks: Task 1 on source retrieval for scientific web claims (a follow-up of the 2025 edition), Task 2 on fact-checking numerical and temporal claims, which adds a reasoning component to the 2025 edition, and Task 3, which expands the verification pipeline with generation of full-fact-checking articles. These tasks represent challenging classification and retrieval problems as well as generation challenges at the document and span level, including multilingual settings.
comment: misinformation, disinformation, fact-checking, claim source retrieval, generating fact-checking articles
☆ EcoGym: Evaluating LLMs for Long-Horizon Plan-and-Execute in Interactive Economies
Long-horizon planning is widely recognized as a core capability of autonomous LLM-based agents; however, current evaluation frameworks suffer from being largely episodic, domain-specific, or insufficiently grounded in persistent economic dynamics. We introduce EcoGym, a generalizable benchmark for continuous plan-and-execute decision making in interactive economies. EcoGym comprises three diverse environments: Vending, Freelance, and Operation, implemented in a unified decision-making process with standardized interfaces, and budgeted actions over an effectively unbounded horizon (1000+ steps if 365 day-loops for evaluation). The evaluation of EcoGym is based on business-relevant outcomes (e.g., net worth, income, and DAU), targeting long-term strategic coherence and robustness under partial observability and stochasticity. Experiments across eleven leading LLMs expose a systematic tension: no single model dominates across all three scenarios. Critically, we find that models exhibit significant suboptimality in either high-level strategies or efficient actions executions. EcoGym is released as an open, extensible testbed for transparent long-horizon agent evaluation and for studying controllability-utility trade-offs in realistic economic settings.
comment: work in progress
☆ Where-to-Unmask: Ground-Truth-Guided Unmasking Order Learning for Masked Diffusion Language Models
Masked Diffusion Language Models (MDLMs) generate text by iteratively filling masked tokens, requiring two coupled decisions at each step: which positions to unmask (where-to-unmask) and which tokens to place (what-to-unmask). While standard MDLM training directly optimizes token prediction (what-to-unmask), inference-time unmasking orders (where-to-unmask) are typically determined by heuristic confidence measures or trained through reinforcement learning with costly on-policy rollouts. To address this, we introduce Gt-Margin, a position-wise score derived from ground-truth tokens, defined as the probability margin between the correct token and its strongest alternative. Gt-Margin yields an oracle unmasking order that prioritizes easier positions first under each partially masked state. We demonstrate that leveraging this oracle unmasking order significantly enhances final generation quality, particularly on logical reasoning benchmarks. Building on this insight, we train a supervised unmasking planner via learning-to-rank to imitate the oracle ordering from masked contexts. The resulting planner integrates into standard MDLM sampling to select where-to-unmask, improving reasoning accuracy without modifying the token prediction model.
comment: 15 pages, 6 figures
☆ Listen to the Layers: Mitigating Hallucinations with Inter-Layer Disagreement
Pretrained Large Language Models (LLMs) are prone to generating fluent yet factually incorrect text-a phenomenon known as hallucinations, undermining their reliability and utility in downstream tasks. We hypothesize that a generated text span's factuality is correlated with its representational instability across the model's internal layers. Based on this, we propose the CoCoA (Confusion and Consistency Aware) decoder, a novel, training-free decoding algorithm that mitigates hallucinations at inference time by listening to these signals in the middle layers. We propose two metrics to quantify this instability in the middle layers, and use it to penalize outputs that exhibit high internal confusion, thereby steering the model towards more internally consistent and factually grounded outputs. We further propose a self-information gated variant, CoCoA-SIG, that dynamically modulates this penalty to selectively target high-surprise, unstable generations. Extensive experiments on diverse tasks, including question-answering, summarization and code generation demonstrate that CoCoA significantly improves factual correctness across multiple model families (e.g., Llama-3, Qwen-2.5, Mistral). By leveraging model-intrinsic signals, CoCoA offers an effective and broadly applicable method for enhancing the trustworthiness of LLMs at inference time, without requiring any model retraining.
comment: Preprint, 23 pages, 13 tables, 12 figures
☆ NOWJ @BioCreative IX ToxHabits: An Ensemble Deep Learning Approach for Detecting Substance Use and Contextual Information in Clinical Texts
Extracting drug use information from unstructured Electronic Health Records remains a major challenge in clinical Natural Language Processing. While Large Language Models demonstrate advancements, their use in clinical NLP is limited by concerns over trust, control, and efficiency. To address this, we present NOWJ submission to the ToxHabits Shared Task at BioCreative IX. This task targets the detection of toxic substance use and contextual attributes in Spanish clinical texts, a domain-specific, low-resource setting. We propose a multi-output ensemble system tackling both Subtask 1 - ToxNER and Subtask 2 - ToxUse. Our system integrates BETO with a CRF layer for sequence labeling, employs diverse training strategies, and uses sentence filtering to boost precision. Our top run achieved 0.94 F1 and 0.97 precision for Trigger Detection, and 0.91 F1 for Argument Detection.
☆ AlgoVeri: An Aligned Benchmark for Verified Code Generation on Classical Algorithms
Vericoding refers to the generation of formally verified code from rigorous specifications. Recent AI models show promise in vericoding, but a unified methodology for cross-paradigm evaluation is lacking. Existing benchmarks test only individual languages/tools (e.g., Dafny, Verus, and Lean) and each covers very different tasks, so the performance numbers are not directly comparable. We address this gap with AlgoVeri, a benchmark that evaluates vericoding of $77$ classical algorithms in Dafny, Verus, and Lean. By enforcing identical functional contracts, AlgoVeri reveals critical capability gaps in verification systems. While frontier models achieve tractable success in Dafny ($40.3$% for Gemini-3 Flash), where high-level abstractions and SMT automation simplify the workflow, performance collapses under the systems-level memory constraints of Verus ($24.7$%) and the explicit proof construction required by Lean (7.8%). Beyond aggregate metrics, we uncover a sharp divergence in test-time compute dynamics: Gemini-3 effectively utilizes iterative repair to boost performance (e.g., tripling pass rates in Dafny), whereas GPT-OSS saturates early. Finally, our error analysis shows that language design affects the refinement trajectory: while Dafny allows models to focus on logical correctness, Verus and Lean trap models in persistent syntactic and semantic barriers. All data and evaluation code can be found at https://github.com/haoyuzhao123/algoveri.
comment: 32 pages
☆ SWE-AGI: Benchmarking Specification-Driven Software Construction with MoonBit in the Era of Autonomous Agents
Although large language models (LLMs) have demonstrated impressive coding capabilities, their ability to autonomously build production-scale software from explicit specifications remains an open question. We introduce SWE-AGI, an open-source benchmark for evaluating end-to-end, specification-driven construction of software systems written in MoonBit. SWE-AGI tasks require LLM-based agents to implement parsers, interpreters, binary decoders, and SAT solvers strictly from authoritative standards and RFCs under a fixed API scaffold. Each task involves implementing 1,000-10,000 lines of core logic, corresponding to weeks or months of engineering effort for an experienced human developer. By leveraging the nascent MoonBit ecosystem, SWE-AGI minimizes data leakage, forcing agents to rely on long-horizon architectural reasoning rather than code retrieval. Across frontier models, gpt-5.3-codex achieves the best overall performance (solving 19/22 tasks, 86.4%), outperforming claude-opus-4.6 (15/22, 68.2%), and kimi-2.5 exhibits the strongest performance among open-source models. Performance degrades sharply with increasing task difficulty, particularly on hard, specification-intensive systems. Behavioral analysis further reveals that as codebases scale, code reading, rather than writing, becomes the dominant bottleneck in AI-assisted development. Overall, while specification-driven autonomous software engineering is increasingly viable, substantial challenges remain before it can reliably support production-scale development.
comment: 20 pages, 3 figures
☆ Conceptual Cultural Index: A Metric for Cultural Specificity via Relative Generality EACL 2026
Large language models (LLMs) are increasingly deployed in multicultural settings; however, systematic evaluation of cultural specificity at the sentence level remains underexplored. We propose the Conceptual Cultural Index (CCI), which estimates cultural specificity at the sentence level. CCI is defined as the difference between the generality estimate within the target culture and the average generality estimate across other cultures. This formulation enables users to operationally control the scope of culture via comparison settings and provides interpretability, since the score derives from the underlying generality estimates. We validate CCI on 400 sentences (200 culture-specific and 200 general), and the resulting score distribution exhibits the anticipated pattern: higher for culture-specific sentences and lower for general ones. For binary separability, CCI outperforms direct LLM scoring, yielding more than a 10-point improvement in AUC for models specialized to the target culture. Our code is available at https://github.com/IyatomiLab/CCI .
comment: 9 pages, 2 figures, 8 tables. Accepted at the First Workshop on Multilingual Multicultural Evaluation (MME) @ EACL 2026
☆ Evaluating Social Bias in RAG Systems: When External Context Helps and Reasoning Hurts PAKDD 2026
Social biases inherent in large language models (LLMs) raise significant fairness concerns. Retrieval-Augmented Generation (RAG) architectures, which retrieve external knowledge sources to enhance the generative capabilities of LLMs, remain susceptible to the same bias-related challenges. This work focuses on evaluating and understanding the social bias implications of RAG. Through extensive experiments across various retrieval corpora, LLMs, and bias evaluation datasets, encompassing more than 13 different bias types, we surprisingly observe a reduction in bias in RAG. This suggests that the inclusion of external context can help counteract stereotype-driven predictions, potentially improving fairness by diversifying the contextual grounding of the model's outputs. To better understand this phenomenon, we then explore the model's reasoning process by integrating Chain-of-Thought (CoT) prompting into RAG while assessing the faithfulness of the model's CoT. Our experiments reveal that the model's bias inclinations shift between stereotype and anti-stereotype responses as more contextual information is incorporated from the retrieved documents. Interestingly, we find that while CoT enhances accuracy, contrary to the bias reduction observed with RAG, it increases overall bias across datasets, highlighting the need for bias-aware reasoning frameworks that can mitigate this trade-off.
comment: Accepted as a full paper with an oral presentation at the 30th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2026)
☆ Breaking the Pre-Sampling Barrier: Activation-Informed Difficulty-Aware Self-Consistency
Self-Consistency (SC) is an effective decoding strategy that improves the reasoning performance of Large Language Models (LLMs) by generating multiple chain-of-thought reasoning paths and selecting the final answer via majority voting. However, it suffers from substantial inference costs because it requires a large number of samples. To mitigate this issue, Difficulty-Adaptive Self-Consistency (DSC) was proposed to reduce unnecessary token usage for easy problems by adjusting the number of samples according to problem difficulty. However, DSC requires additional model calls and pre-sampling to estimate difficulty, and this process is repeated when applying to each dataset, leading to significant computational overhead. In this work, we propose Activation-Informed Difficulty-Aware Self-Consistency (ACTSC) to address these limitations. ACTSC leverages internal difficulty signals reflected in the feed-forward network neuron activations to construct a lightweight difficulty estimation probe, without any additional token generation or model calls. The probe dynamically adjusts the number of samples for SC and can be applied to new datasets without requiring pre-sampling for difficulty estimation. To validate its effectiveness, we conduct experiments on five benchmarks. Experimental results show that ACTSC effectively reduces inference costs while maintaining accuracy relative to existing methods.
☆ Are Language Models Sensitive to Morally Irrelevant Distractors?
With the rapid development and uptake of large language models (LLMs) across high-stakes settings, it is increasingly important to ensure that LLMs behave in ways that align with human values. Existing moral benchmarks prompt LLMs with value statements, moral scenarios, or psychological questionnaires, with the implicit underlying assumption that LLMs report somewhat stable moral preferences. However, moral psychology research has shown that human moral judgements are sensitive to morally irrelevant situational factors, such as smelling cinnamon rolls or the level of ambient noise, thereby challenging moral theories that assume the stability of human moral judgements. Here, we draw inspiration from this "situationist" view of moral psychology to evaluate whether LLMs exhibit similar cognitive moral biases to humans. We curate a novel multimodal dataset of 60 "moral distractors" from existing psychological datasets of emotionally-valenced images and narratives which have no moral relevance to the situation presented. After injecting these distractors into existing moral benchmarks to measure their effects on LLM responses, we find that moral distractors can shift the moral judgements of LLMs by over 30% even in low-ambiguity scenarios, highlighting the need for more contextual moral evaluations and more nuanced cognitive moral modeling of LLMs.
☆ TVTSyn: Content-Synchronous Time-Varying Timbre for Streaming Voice Conversion and Anonymization
Real-time voice conversion and speaker anonymization require causal, low-latency synthesis without sacrificing intelligibility or naturalness. Current systems have a core representational mismatch: content is time-varying, while speaker identity is injected as a static global embedding. We introduce a streamable speech synthesizer that aligns the temporal granularity of identity and content via a content-synchronous, time-varying timbre (TVT) representation. A Global Timbre Memory expands a global timbre instance into multiple compact facets; frame-level content attends to this memory, a gate regulates variation, and spherical interpolation preserves identity geometry while enabling smooth local changes. In addition, a factorized vector-quantized bottleneck regularizes content to reduce residual speaker leakage. The resulting system is streamable end-to-end, with <80 ms GPU latency. Experiments show improvements in naturalness, speaker transfer, and anonymization compared to SOTA streaming baselines, establishing TVT as a scalable approach for privacy-preserving and expressive speech synthesis under strict latency budgets.
☆ Effective vocabulary expanding of multilingual language models for extremely low-resource languages
Multilingual pre-trained language models(mPLMs) offer significant benefits for many low-resource languages. To further expand the range of languages these models can support, many works focus on continued pre-training of these models. However, few works address how to extend mPLMs to low-resource languages that were previously unsupported. To tackle this issue, we expand the model's vocabulary using a target language corpus. We then screen out a subset from the model's original vocabulary, which is biased towards representing the source language(e.g. English), and utilize bilingual dictionaries to initialize the representations of the expanded vocabulary. Subsequently, we continue to pre-train the mPLMs using the target language corpus, based on the representations of these expanded vocabulary. Experimental results show that our proposed method outperforms the baseline, which uses randomly initialized expanded vocabulary for continued pre-training, in POS tagging and NER tasks, achieving improvements by 0.54% and 2.60%, respectively. Furthermore, our method demonstrates high robustness in selecting the training corpora, and the models' performance on the source language does not degrade after continued pre-training.
comment: 12 pages, 5 figures, 7 tables, under review
☆ Contractual Deepfakes: Can Large Language Models Generate Contracts?
Notwithstanding their unprecedented ability to generate text, LLMs do not understand the meaning of words, have no sense of context and cannot reason. Their output constitutes an approximation of statistically dominant word patterns. And yet, the drafting of contracts is often presented as a typical legal task that could be facilitated by this technology. This paper seeks to put an end to such unreasonable ideas. Predicting words differs from using language in the circumstances of specific transactions and reconstituting common contractual phrases differs from reasoning about the law. LLMs seem to be able to generate generic and superficially plausible contractual documents. In the cold light of day, such documents may turn out to be useless assemblages of inconsistent provisions or contracts that are enforceable but unsuitable for a given transaction. This paper casts a shadow on the simplistic assumption that LLMs threaten the continued viability of the legal industry.
comment: Accepted for publication
☆ BiasScope: Towards Automated Detection of Bias in LLM-as-a-Judge Evaluation ICLR 2026
LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To bridge this gap, we propose BiasScope, a LLM-driven framework for automatically and at scale discovering potential biases that may arise during model evaluation. BiasScope can uncover potential biases across different model families and scales, with its generality and effectiveness validated on the JudgeBench dataset. It overcomes the limitations of existing approaches, transforming bias discovery from a passive process relying on manual effort and predefined bias lists into an active and comprehensive automated exploration. Moreover, based on BiasScope, we propose JudgeBench-Pro, an extended version of JudgeBench and a more challenging benchmark for evaluating the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators show error rates above 50\% on JudgeBench-Pro, underscoring the urgent need to strengthen evaluation robustness and to mitigate potential biases further.
comment: Accepted to ICLR 2026
☆ LingxiDiagBench: A Multi-Agent Framework for Benchmarking LLMs in Chinese Psychiatric Consultation and Diagnosis
Mental disorders are highly prevalent worldwide, but the shortage of psychiatrists and the inherent subjectivity of interview-based diagnosis create substantial barriers to timely and consistent mental-health assessment. Progress in AI-assisted psychiatric diagnosis is constrained by the absence of benchmarks that simultaneously provide realistic patient simulation, clinician-verified diagnostic labels, and support for dynamic multi-turn consultation. We present LingxiDiagBench, a large-scale multi-agent benchmark that evaluates LLMs on both static diagnostic inference and dynamic multi-turn psychiatric consultation in Chinese. At its core is LingxiDiag-16K, a dataset of 16,000 EMR-aligned synthetic consultation dialogues designed to reproduce real clinical demographic and diagnostic distributions across 12 ICD-10 psychiatric categories. Through extensive experiments across state-of-the-art LLMs, we establish key findings: (1) although LLMs achieve high accuracy on binary depression--anxiety classification (up to 92.3%), performance deteriorates substantially for depression--anxiety comorbidity recognition (43.0%) and 12-way differential diagnosis (28.5%); (2) dynamic consultation often underperforms static evaluation, indicating that ineffective information-gathering strategies significantly impair downstream diagnostic reasoning; (3) consultation quality assessed by LLM-as-a-Judge shows only moderate correlation with diagnostic accuracy, suggesting that well-structured questioning alone does not ensure correct diagnostic decisions. We release LingxiDiag-16K and the full evaluation framework to support reproducible research at https://github.com/Lingxi-mental-health/LingxiDiagBench.
☆ AfriNLLB: Efficient Translation Models for African Languages
In this work, we present AfriNLLB, a series of lightweight models for efficient translation from and into African languages. AfriNLLB supports 15 language pairs (30 translation directions), including Swahili, Hausa, Yoruba, Amharic, Somali, Zulu, Lingala, Afrikaans, Wolof, and Egyptian Arabic, as well as other African Union official languages such as Arabic (MSA), French, Portuguese, and Spanish. Our training data covers bidirectional translation between English and 13 languages, and between French and two languages (Lingala and Wolof). AfriNLLB models are based on NLLB-200 600M, which we compress using iterative layer pruning and quantization. We fine-tune the pruned models on parallel corpora we curated for African languages, employing knowledge distillation from a larger teacher model. Our work aims at enabling efficient deployment of translation models for African languages in resource-constrained settings. Our evaluation results demonstrate that AfriNLLB models achieve performance comparable to the baseline while being significantly faster. We release two versions of the AfriNLLB models, a Transformers version that allows further fine-tuning and a CTranslate2 version for efficient inference. Moreover, we release all the training data that we used for fine-tuning the baseline and pruned models to facilitate further research.
comment: Accepted at AfricaNLP 2026 (oral)
☆ AgentSkiller: Scaling Generalist Agent Intelligence through Semantically Integrated Cross-Domain Data Synthesis
Large Language Model agents demonstrate potential in solving real-world problems via tools, yet generalist intelligence is bottlenecked by scarce high-quality, long-horizon data. Existing methods collect privacy-constrained API logs or generate scripted interactions lacking diversity, which struggle to produce data requisite for scaling capabilities. We propose AgentSkiller, a fully automated framework synthesizing multi-turn interaction data across realistic, semantically linked domains. It employs a DAG-based architecture with explicit state transitions to ensure determinism and recoverability. The pipeline builds a domain ontology and Person-Centric Entity Graph, defines tool interfaces via Service Blueprints for Model Context Protocol servers, and populates environments with consistent databases and strict Domain Policies. A cross-domain fusion mechanism links services to simulate complex tasks. Finally, the pipeline creates user tasks by verifying solution paths, filtering via execution-based validation, and generating queries using a Persona-based Simulator for automated rollout. This produces reliable environments with clear state changes. To demonstrate effectiveness, we synthesized $\approx$ 11K interaction samples; experimental results indicate that models trained on this dataset achieve significant improvements on function calling over baselines, particularly in larger parameter regimes.
comment: 33 pages, 9 figures
☆ Unsupervised Cross-Lingual Part-of-Speech Tagging with Monolingual Corpora Only
Due to the scarcity of part-of-speech annotated data, existing studies on low-resource languages typically adopt unsupervised approaches for POS tagging. Among these, POS tag projection with word alignment method transfers POS tags from a high-resource source language to a low-resource target language based on parallel corpora, making it particularly suitable for low-resource language settings. However, this approach relies heavily on parallel corpora, which are often unavailable for many low-resource languages. To overcome this limitation, we propose a fully unsupervised cross-lingual part-of-speech(POS) tagging framework that relies solely on monolingual corpora by leveraging unsupervised neural machine translation(UNMT) system. This UNMT system first translates sentences from a high-resource language into a low-resource one, thereby constructing pseudo-parallel sentence pairs. Then, we train a POS tagger for the target language following the standard projection procedure based on word alignments. Moreover, we propose a multi-source projection technique to calibrate the projected POS tags on the target side, enhancing to train a more effective POS tagger. We evaluate our framework on 28 language pairs, covering four source languages (English, German, Spanish and French) and seven target languages (Afrikaans, Basque, Finnis, Indonesian, Lithuanian, Portuguese and Turkish). Experimental results show that our method can achieve performance comparable to the baseline cross-lingual POS tagger with parallel sentence pairs, and even exceeds it for certain target languages. Furthermore, our proposed multi-source projection technique further boosts performance, yielding an average improvement of 1.3% over previous methods.
comment: 16 pages, 6 figures, 7 tables, under review
☆ Digital Linguistic Bias in Spanish: Evidence from Lexical Variation in LLMs
This study examines the extent to which Large Language Models (LLMs) capture geographic lexical variation in Spanish, a language that exhibits substantial regional variation. Treating LLMs as virtual informants, we probe their dialectal knowledge using two survey-style question formats: Yes-No questions and multiple-choice questions. To this end, we exploited a large-scale, expert-curated database of Spanish lexical variation. Our evaluation covers more than 900 lexical items across 21 Spanish-speaking countries and is conducted at both the country and dialectal area levels. Across both evaluation formats, the results reveal systematic differences in how LLMs represent Spanish language varieties. Lexical variation associated with Spain, Equatorial Guinea, Mexico & Central America, and the La Plata River is recognized more accurately by the models, while the Chilean variety proves particularly difficult for the models to distinguish. Importantly, differences in the volume of country-level digital resources do not account for these performance patterns, suggesting that factors beyond data quantity shape dialectal representation in LLMs. By providing a fine-grained, large-scale evaluation of geographic lexical variation, this work advances empirical understanding of dialectal knowledge in LLMs and contributes new evidence to discussions of Digital Linguistic Bias in Spanish.
☆ Not-in-Perspective: Towards Shielding Google's Perspective API Against Adversarial Negation Attacks
The rise of cyberbullying in social media platforms involving toxic comments has escalated the need for effective ways to monitor and moderate online interactions. Existing solutions of automated toxicity detection systems, are based on a machine or deep learning algorithms. However, statistics-based solutions are generally prone to adversarial attacks that contain logic based modifications such as negation in phrases and sentences. In that regard, we present a set of formal reasoning-based methodologies that wrap around existing machine learning toxicity detection systems. Acting as both pre-processing and post-processing steps, our formal reasoning wrapper helps alleviating the negation attack problems and significantly improves the accuracy and efficacy of toxicity scoring. We evaluate different variations of our wrapper on multiple machine learning models against a negation adversarial dataset. Experimental results highlight the improvement of hybrid (formal reasoning and machine-learning) methods against various purely statistical solutions.
☆ Understanding Risk and Dependency in AI Chatbot Use from User Discourse
Generative AI systems are increasingly embedded in everyday life, yet empirical understanding of how psychological risk associated with AI use emerges, is experienced, and is regulated by users remains limited. We present a large-scale computational thematic analysis of posts collected between 2023 and 2025 from two Reddit communities, r/AIDangers and r/ChatbotAddiction, explicitly focused on AI-related harm and distress. Using a multi-agent, LLM-assisted thematic analysis grounded in Braun and Clarke's reflexive framework, we identify 14 recurring thematic categories and synthesize them into five higher-order experiential dimensions. To further characterize affective patterns, we apply emotion labeling using a BERT-based classifier and visualize emotional profiles across dimensions. Our findings reveal five empirically derived experiential dimensions of AI-related psychological risk grounded in real-world user discourse, with self-regulation difficulties emerging as the most prevalent and fear concentrated in concerns related to autonomy, control, and technical risk. These results provide early empirical evidence from lived user experience of how AI safety is perceived and emotionally experienced outside laboratory or speculative contexts, offering a foundation for future AI safety research, evaluation, and responsible governance.
comment: 21 pages, 5 figures
☆ FM SO.P: A Progressive Task Mixture Framework with Automatic Evaluation for Cross-Domain SOP Understanding
Standard Operating Procedures (SOPs) are critical for enterprise operations, yet existing language models struggle with SOP understanding and cross-domain generalization. Current methods fail because joint training cannot differentiate between reasoning capabilities that SOP requires: terminology precision, sequential ordering, and constraint reasoning. We propose FM SO.P, solving these challenges through two novelties. First, we introduce progressive task mixtures that build capabilities by stages across three task types with cumulative data: concept disambiguation for terminology precision, action sequence understanding for procedural correctness, and scenario-aware graph reasoning for conditional logic. Second, we propose an automatic multi-agent evaluation system consisting of three agents that adaptively generate rubrics, stratified test sets, and rubric scoring, adapting to domains (e.g., temporal constraints for DMV, regulatory compliance for banking). Evaluated on SOPBench across seven domains (Bank, DMV, Healthcare, Market, University, Library, Hotel), FM SO.P achieves 48.3\% pass rate with our 32B model and 34.3\% with our opensource 7B model, matching Qwen-2.5-72B-Instruct baseline (34.4\%) with 10x fewer parameters.
☆ Beyond Uniform Credit: Causal Credit Assignment for Policy Optimization
Policy gradient methods for language model reasoning, such as GRPO and DAPO, assign uniform credit to all generated tokens - the filler phrase "Let me think" receives the same gradient update as the critical calculation "23 + 45 = 68." We propose counterfactual importance weighting: mask reasoning spans, measure the drop in answer probability, and upweight tokens accordingly during policy gradient updates. Our method requires no auxiliary models or external annotation, instead importance is estimated directly from the policy model's own probability shifts. Experiments on GSM8K across three models spanning the Qwen and Llama families demonstrate consistent improvements over uniform baselines and faster convergence to equivalent accuracy. Inverting the importance signal hurts performance, confirming we capture genuine causal structure rather than noise. Analysis shows the method correctly prioritizes calculation steps over scaffolding text. We view these findings as establishing counterfactual importance weighting as a foundation for further research rather than a complete solution.
comment: 12 pages, 1 figure
☆ Don't Shoot The Breeze: Topic Continuity Model Using Nonlinear Naive Bayes With Attention EMNLP 2024
Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model's ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.
comment: EMNLP 2024: Industry Track; 8 pages, 2 figures, 1 table
☆ Triggered: A Statistical Analysis of Environmental Influences on Extremist Groups
Online extremist communities operate within a wider information ecosystem shaped by real-world events, news coverage, and cross-community interaction. We adopt a systems perspective to examine these influences using seven years of data from two ideologically distinct extremist forums (Stormfront and Incels) and a mainstream reference community (r/News). We ask three questions: how extremist violence impacts community behaviour; whether news coverage of political entities predicts shifts in conversation dynamics; and whether linguistic diffusion occurs between mainstream and extremist spaces and across extremist ideologies. Methodologically, we combine counterfactual synthesis to estimate event-level impacts with vector autoregression and Granger causality analyses to model ongoing relationships among news signals, behavioural outcomes, and cross-community language change. Across analyses, our results indicate that Stormfront and r/News appear to be more reactive to external stimuli, while Incels demonstrates less cross-community linguistic influence and less responsiveness to news and violent events. These findings underscore that extremist communities are not homogeneous, but differ in how tightly they are coupled to the surrounding information ecosystem.
☆ Hardware Co-Design Scaling Laws via Roofline Modelling for On-Device LLMs
Vision-Language-Action Models (VLAs) have emerged as a key paradigm of Physical AI and are increasingly deployed in autonomous vehicles, robots, and smart spaces. In these resource-constrained on-device settings, selecting an appropriate large language model (LLM) backbone is a critical challenge: models must balance accuracy with strict inference latency and hardware efficiency constraints. This makes hardware-software co-design a game-changing requirement for on-device LLM deployment, where each hardware platform demands a tailored architectural solution. We propose a hardware co-design law that jointly captures model accuracy and inference performance. Specifically, we model training loss as an explicit function of architectural hyperparameters and characterise inference latency via roofline modelling. We empirically evaluate 1,942 candidate architectures on NVIDIA Jetson Orin, training 170 selected models for 10B tokens each to fit a scaling law relating architecture to training loss. By coupling this scaling law with latency modelling, we establish a direct accuracy-latency correspondence and identify the Pareto frontier for hardware co-designed LLMs. We further formulate architecture search as a joint optimisation over precision and performance, deriving feasible design regions under industrial hardware and application budgets. Our approach reduces architecture selection from months to days. At the same latency as Qwen2.5-0.5B on the target hardware, our co-designed architecture achieves 19.42% lower perplexity on WikiText-2. To our knowledge, this is the first principled and operational framework for hardware co-design scaling laws in on-device LLM deployment. We will make the code and related checkpoints publicly available.
☆ Autonomous Continual Learning of Computer-Use Agents for Environment Adaptation
Real-world digital environments are highly diverse and dynamic. These characteristics cause agents to frequently encounter unseen scenarios and distribution shifts, making continual learning in specific environments essential for computer-use agents (CUAs). However, a key challenge lies in obtaining high-quality and environment-grounded agent data without relying on costly human annotation. In this work, we introduce ACuRL, an Autonomous Curriculum Reinforcement Learning framework that continually adapts agents to specific environments with zero human data. The agent first explores target environments to acquire initial experiences. During subsequent iterative training, a curriculum task generator leverages these experiences together with feedback from the previous iteration to synthesize new tasks tailored for the agent's current capabilities. To provide reliable reward signals, we introduce CUAJudge, a robust automatic evaluator for CUAs that achieves 93% agreement with human judgments. Empirically, our method effectively enables both intra-environment and cross-environment continual learning, yielding 4-22% performance gains without catastrophic forgetting on existing environments. Further analyses show highly sparse updates (e.g., 20% parameters), which helps explain the effective and robust adaptation. Our data and code are available at https://github.com/OSU-NLP-Group/ACuRL.
comment: 24 pages, 6 figures
☆ Physically Interpretable AlphaEarth Foundation Model Embeddings Enable LLM-Based Land Surface Intelligence
Satellite foundation models produce dense embeddings whose physical interpretability remains poorly understood, limiting their integration into environmental decision systems. Using 12.1 million samples across the Continental United States (2017--2023), we first present a comprehensive interpretability analysis of Google AlphaEarth's 64-dimensional embeddings against 26 environmental variables spanning climate, vegetation, hydrology, temperature, and terrain. Combining linear, nonlinear, and attention-based methods, we show that individual embedding dimensions map onto specific land surface properties, while the full embedding space reconstructs most environmental variables with high fidelity (12 of 26 variables exceed $R^2 > 0.90$; temperature and elevation approach $R^2 = 0.97$). The strongest dimension-variable relationships converge across all three analytical methods and remain robust under spatial block cross-validation (mean $ΔR^2 = 0.017$) and temporally stable across all seven study years (mean inter-year correlation $r = 0.963$). Building on these validated interpretations, we then developed a Land Surface Intelligence system that implements retrieval-augmented generation over a FAISS-indexed embedding database of 12.1 million vectors, translating natural language environmental queries into satellite-grounded assessments. An LLM-as-Judge evaluation across 360 query--response cycles, using four LLMs in rotating generator, system, and judge roles, achieved weighted scores of $μ= 3.74 \pm 0.77$ (scale 1--5), with grounding ($μ= 3.93$) and coherence ($μ= 4.25$) as the strongest criteria. Our results demonstrate that satellite foundation model embeddings are physically structured representations that can be operationalized for environmental and geospatial intelligence.
☆ Learning Self-Interpretation from Interpretability Artifacts: Training Lightweight Adapters on Vector-Label Pairs
Self-interpretation methods prompt language models to describe their own internal states, but remain unreliable due to hyperparameter sensitivity. We show that training lightweight adapters on interpretability artifacts, while keeping the LM entirely frozen, yields reliable self-interpretation across tasks and model families. A scalar affine adapter with just $d_\text{model}+1$ parameters suffices: trained adapters generate sparse autoencoder feature labels that outperform the training labels themselves (71% vs 63% generation scoring at 70B scale), identify topics with 94% recall@1 versus 1% for untrained baselines, and decode bridge entities in multi-hop reasoning that appear in neither prompt nor response, surfacing implicit reasoning without chain-of-thought. The learned bias vector alone accounts for 85% of improvement, and simpler adapters generalize better than more expressive alternatives. Controlling for model knowledge via prompted descriptions, we find self-interpretation gains outpace capability gains from 7B to 72B parameters. Our results demonstrate that self-interpretation improves with scale, without modifying the model being interpreted.
comment: 23 pages, 17 tables, 17 figures. Code and data at https://github.com/agencyenterprise/selfie-adapters
☆ When Less Is More? Diagnosing ASR Predictions in Sardinian via Layer-Wise Decoding
Recent studies have shown that intermediate layers in multilingual speech models often encode more phonetically accurate representations than the final output layer. In this work, we apply a layer-wise decoding strategy to a pretrained Wav2Vec2 model to investigate how phoneme-level predictions evolve across encoder layers, focusing on Campidanese Sardinian, a low-resource language. We show that truncating upper transformer layers leads to improved Phoneme Error Rates (PER), with the best performance achieved not at the final layer, but two layers earlier. Through fine-grained alignment analysis, we find that intermediate predictions better preserve segmental identity, avoid overgeneration, and reduce certain classes of phonological errors. We also introduce the notion of regressive errors, cases where correct predictions at intermediate layers are overwritten by errors at the final layer. These regressions highlight the limitations of surface-level error metrics and reveal how deeper layers may generalize or abstract away from acoustic detail. Our findings support the use of early-layer probing as a diagnostic tool for ASR models, particularly in low-resource settings where standard evaluation metrics may fail to capture linguistically meaningful behavior.
☆ Geometry-Aware Decoding with Wasserstein-Regularized Truncation and Mass Penalties for Large Language Models
Large language models (LLMs) must balance diversity and creativity against logical coherence in open-ended generation. Existing truncation-based samplers are effective but largely heuristic, relying mainly on probability mass and entropy while ignoring semantic geometry of the token space. We present Top-W, a geometry-aware truncation rule that uses Wasserstein distance-defined over token-embedding geometry-to keep the cropped distribution close to the original, while explicitly balancing retained probability mass against the entropy of the kept set. Our theory yields a simple closed-form structure for the fixed-potential subset update: depending on the mass-entropy trade-off, the optimal crop either collapses to a single token or takes the form of a one-dimensional prefix that can be found efficiently with a linear scan. We implement Top-W using efficient geometry-based potentials (nearest-set or k-NN) and pair it with an alternating decoding routine that keeps the standard truncation-and-sampling interface unchanged. Extensive experiments on four benchmarks (GSM8K, GPQA, AlpacaEval, and MT-Bench) across three instruction-tuned models show that Top-W consistently outperforms prior state-of-the-art decoding approaches achieving up to 33.7% improvement. Moreover, we find that Top-W not only improves accuracy-focused performance, but also boosts creativity under judge-based open-ended evaluation.
☆ The Subjectivity of Respect in Police Traffic Stops: Modeling Community Perspectives in Body-Worn Camera Footage
Traffic stops are among the most frequent police-civilian interactions, and body-worn cameras (BWCs) provide a unique record of how these encounters unfold. Respect is a central dimension of these interactions, shaping public trust and perceived legitimacy, yet its interpretation is inherently subjective and shaped by lived experience, rendering community-specific perspectives a critical consideration. Leveraging unprecedented access to Los Angeles Police Department BWC footage, we introduce the first large-scale traffic-stop dataset annotated with respect ratings and free-text rationales from multiple perspectives. By sampling annotators from police-affiliated, justice-system-impacted, and non-affiliated Los Angeles residents, we enable the systematic study of perceptual differences across diverse communities. To this end, we (i) develop a domain-specific evaluation rubric grounded in procedural justice theory, LAPD training materials, and extensive fieldwork; (ii) introduce a rubric-driven preference data construction framework for perspective-consistent alignment; and (iii) propose a perspective-aware modeling framework that predicts personalized respect ratings and generates annotator-specific rationales for both officers and civilian drivers from traffic-stop transcripts. Across all three annotator groups, our approach improves both rating prediction performance and rationale alignment. Our perspective-aware framework enables law enforcement to better understand diverse community expectations, providing a vital tool for building public trust and procedural legitimacy.
☆ Are More Tokens Rational? Inference-Time Scaling in Language Models as Adaptive Resource Rationality
Human reasoning is shaped by resource rationality -- optimizing performance under constraints. Recently, inference-time scaling has emerged as a powerful paradigm to improve the reasoning performance of Large Language Models by expanding test-time computation. Specifically, instruction-tuned (IT) models explicitly generate long reasoning steps during inference, whereas Large Reasoning Models (LRMs) are trained by reinforcement learning to discover reasoning paths that maximize accuracy. However, it remains unclear whether resource-rationality can emerge from such scaling without explicit reward related to computational costs. We introduce a Variable Attribution Task in which models infer which variables determine outcomes given candidate variables, input-output trials, and predefined logical functions. By varying the number of candidate variables and trials, we systematically manipulate task complexity. Both models exhibit a transition from brute-force to analytic strategies as complexity increases. IT models degrade on XOR and XNOR functions, whereas LRMs remain robust. These findings suggest that models can adjust their reasoning behavior in response to task complexity, even without explicit cost-based reward. It provides compelling evidence that resource rationality is an emergent property of inference-time scaling itself.
☆ Discovering Differences in Strategic Behavior Between Humans and LLMs
As Large Language Models (LLMs) are increasingly deployed in social and strategic scenarios, it becomes critical to understand where and why their behavior diverges from that of humans. While behavioral game theory (BGT) provides a framework for analyzing behavior, existing models do not fully capture the idiosyncratic behavior of humans or black-box, non-human agents like LLMs. We employ AlphaEvolve, a cutting-edge program discovery tool, to directly discover interpretable models of human and LLM behavior from data, thereby enabling open-ended discovery of structural factors driving human and LLM behavior. Our analysis on iterated rock-paper-scissors reveals that frontier LLMs can be capable of deeper strategic behavior than humans. These results provide a foundation for understanding structural differences driving differences in human and LLM behavior in strategic interactions.
☆ On Emergent Social World Models -- Evidence for Functional Integration of Theory of Mind and Pragmatic Reasoning in Language Models
This paper investigates whether LMs recruit shared computational mechanisms for general Theory of Mind (ToM) and language-specific pragmatic reasoning in order to contribute to the general question of whether LMs may be said to have emergent "social world models", i.e., representations of mental states that are repurposed across tasks (the functional integration hypothesis). Using behavioral evaluations and causal-mechanistic experiments via functional localization methods inspired by cognitive neuroscience, we analyze LMs' performance across seven subcategories of ToM abilities (Beaudoin et al., 2020) on a substantially larger localizer dataset than used in prior like-minded work. Results from stringent hypothesis-driven statistical testing offer suggestive evidence for the functional integration hypothesis, indicating that LMs may develop interconnected "social world models" rather than isolated competencies. This work contributes novel ToM localizer data, methodological refinements to functional localization techniques, and empirical insights into the emergence of social cognition in artificial systems.
comment: 29 pages, 13 figures, under review
☆ MLDocRAG: Multimodal Long-Context Document Retrieval Augmented Generation
Understanding multimodal long-context documents that comprise multimodal chunks such as paragraphs, figures, and tables is challenging due to (1) cross-modal heterogeneity to localize relevant information across modalities, (2) cross-page reasoning to aggregate dispersed evidence across pages. To address these challenges, we are motivated to adopt a query-centric formulation that projects cross-modal and cross-page information into a unified query representation space, with queries acting as abstract semantic surrogates for heterogeneous multimodal content. In this paper, we propose a Multimodal Long-Context Document Retrieval Augmented Generation (MLDocRAG) framework that leverages a Multimodal Chunk-Query Graph (MCQG) to organize multimodal document content around semantically rich, answerable queries. MCQG is constructed via a multimodal document expansion process that generates fine-grained queries from heterogeneous document chunks and links them to their corresponding content across modalities and pages. This graph-based structure enables selective, query-centric retrieval and structured evidence aggregation, thereby enhancing grounding and coherence in long-context multimodal question answering. Experiments on datasets MMLongBench-Doc and LongDocURL demonstrate that MLDocRAG consistently improves retrieval quality and answer accuracy, demonstrating its effectiveness for long-context multimodal understanding.
comment: 15 pages
☆ Learning to Evict from Key-Value Cache
The growing size of Large Language Models (LLMs) makes efficient inference challenging, primarily due to the memory demands of the autoregressive Key-Value (KV) cache. Existing eviction or compression methods reduce cost but rely on heuristics, such as recency or past attention scores, which serve only as indirect proxies for a token's future utility and introduce computational overhead. We reframe KV cache eviction as a reinforcement learning (RL) problem: learning to rank tokens by their predicted usefulness for future decoding. To this end, we introduce KV Policy (KVP), a framework of lightweight per-head RL agents trained on pre-computed generation traces using only key and value vectors. Each agent learns a specialized eviction policy guided by future utility, which evaluates the quality of the ranking across all cache budgets, requiring no modifications to the underlying LLM or additional inference. Evaluated across two different model families on the long-context benchmark RULER and the multi-turn dialogue benchmark OASST2-4k, KVP significantly outperforms baselines. Furthermore, zero-shot tests on standard downstream tasks (e.g., LongBench, BOOLQ, ARC) indicate that KVP generalizes well beyond its training distribution and to longer context lengths. These results demonstrate that learning to predict future token utility is a powerful and scalable paradigm for adaptive KV cache management.
comment: 23 pages, 15 figures
☆ Blockwise Advantage Estimation for Multi-Objective RL with Verifiable Rewards
Group Relative Policy Optimization (GRPO) assigns a single scalar advantage to all tokens in a completion. For structured generations with explicit segments and objectives, this couples unrelated reward signals across segments, leading to objective interference and misattributed credit. We propose Blockwise Advantage Estimation, a family of GRPO-compatible methods that assigns each objective its own advantage and applies it only to the tokens in the corresponding text block, reducing reliance on hand-designed scalar rewards and scaling naturally to additional objectives. A key challenge is estimating advantages for later blocks whose rewards are conditioned on sampled prefixes; standard unbiased approaches require expensive nested rollouts from intermediate states. Concretely, we introduce an Outcome-Conditioned Baseline that approximates intermediate state values using only within-group statistics by stratifying samples according to a prefix-derived intermediate outcome. On math tasks with uncertainty estimation, our method mitigates reward interference, is competitive with a state-of-the-art reward-designed approach, and preserves test-time gains from confidence-weighted ensembling. More broadly, it provides a modular recipe for optimizing sequential objectives in structured generations without additional rollouts.
♻ ☆ Universal computation is intrinsic to language model decoding
Language models now provide an interface to express and often solve general problems in natural language, yet their ultimate computational capabilities remain a major topic of scientific debate. Unlike a formal computer, a language model is trained to autoregressively predict successive elements in human-generated text. We prove that chaining a language model's autoregressive output is sufficient to perform universal computation. That is, a language model can simulate the execution of any algorithm on any input. The challenge of eliciting desired computational behaviour can thus be reframed in terms of programmability: the ease of finding a suitable prompt. Strikingly, we demonstrate that even randomly initialized language models are capable of universal computation before training. This implies that training does not give rise to computational expressiveness -- rather, it improves programmability, enabling a natural language interface for accessing these intrinsic capabilities.
comment: Minor formatting corrections
♻ ☆ In-Context Learning Without Copying
Induction heads are attention heads that perform inductive copying by matching patterns from earlier context and copying their continuations verbatim. As models develop induction heads, they experience a sharp drop in training loss, a phenomenon cited as evidence that induction heads may underlie a wide range of in-context learning (ICL) capabilities. In this work, we investigate whether induction heads are a necessary building block for learning abstractive ICL capabilities (i.e., tasks where the answer is not contained in the input context), or whether such capabilities can emerge independently. We propose Hapax, a training regime that omits the loss contribution of tokens predictable by induction heads. Despite a significant reduction in inductive copying, abstractive ICL capabilities are preserved, with the model achieving higher accuracy than the vanilla model on 13 out of 21 tasks, even though 31.7% of tokens are omitted from the loss. Furthermore, our model achieves lower loss values on token positions that induction heads cannot predict. Mechanistic analysis shows that models trained with Hapax develop fewer and weaker induction heads despite preserving abstractive ICL capabilities. Our findings suggest that the developmental link between induction heads and abstractive ICL capabilities is weaker than previously hypothesized.
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research. Code are available at https://github.com/AvatarMemory/UnifiedMem
♻ ☆ Inference-Aware Prompt Optimization for Aligning Black-Box Large Language Models AAAI 2026
Prompt optimization methods have demonstrated significant effectiveness in aligning black-box large language models (LLMs). In parallel, inference scaling strategies such as Best-of-N Sampling and Majority Voting have likewise been shown to improve alignment and performance by trading additional computation for better output. However, existing prompt optimization approaches are inference strategy agnostic; that is, they optimize prompts without accounting for the inference strategy. This constitutes a significant methodological gap, as our empirical and theoretical analysis reveals a strong interdependence between these two paradigms. Moreover, we find that user preferences regarding trade-offs among multiple objectives and inference budgets substantially influence the choice of prompt and inference configuration. To address this gap, we introduce a novel unified framework named IAPO (Inference-Aware Prompt Optimization) that jointly optimizes the prompt and inference scale, while being aware of the inference budget and different task objectives. We then develop a fixed-budget training algorithm for IAPO, called PSST (Prompt Scaling via Sequential Trimming), and establish finite-budget guarantees on the error probability. Finally, we evaluate the effectiveness of PSST on six tasks, including multi-objective text generation and reasoning, and demonstrate the critical role of incorporating inference-awareness in aligning black-box LLMs using prompt optimization.
comment: Accepted to AAAI 2026. Extended 17-page version
♻ ☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
♻ ☆ Fundamental Reasoning Paradigms Induce Out-of-Domain Generalization in Language Models
Deduction, induction, and abduction are fundamental reasoning paradigms, core for human logical thinking. Although improving Large Language Model (LLM) reasoning has attracted significant research efforts, the extent to which the fundamental paradigms induce generalization has yet to be systematically explored. In this study, we shed light on how the interplay between these core paradigms influences LLMs' reasoning behavior. To this end, we first collect a new dataset of reasoning trajectories from symbolic tasks, each targeting one of the three fundamental paradigms, to abstract from concrete world knowledge. Then, we investigate effective ways for inducing these skills into LLMs. We experiment with a battery of methods including simple fine-tuning, and more complex approaches to increase model depth, or transform a dense model to a mixture-of-experts. We comprehensively evaluate induced models on realistic out-of-domain tasks, that are entirely formulated in natural language and contain real-world knowledge. Our results reveal that our approach yields strong generalizability with substantial performance gains (up to $14.60$) across realistic tasks.
♻ ☆ CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/.
comment: Accepted at TMLR (2026)
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization ICLR 2026
Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 22.6 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.
comment: Camera Ready version for ICLR 2026. Code: https://github.com/Chen-GX/ReForm
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ MAPS: A Multilingual Benchmark for Agent Performance and Security EACL 2026
Agentic AI systems, which build on Large Language Models (LLMs) and interact with tools and memory, have rapidly advanced in capability and scope. Yet, since LLMs have been shown to struggle in multilingual settings, typically resulting in lower performance and reduced safety, agentic systems risk inheriting these limitations. This raises concerns about the accessibility of such systems, as users interacting in languages other than English may encounter unreliable or security-critical agent behavior. Despite growing interest in evaluating agentic AI and recent initial efforts toward multilingual interaction, existing benchmarks do not yet provide a comprehensive, multi-domain, security-aware evaluation of multilingual agentic systems. To address this gap, we propose MAPS, a multilingual benchmark suite designed to evaluate agentic AI systems across diverse languages and tasks. MAPS builds on four widely used agentic benchmarks - GAIA (real-world tasks), SWE-Bench (code generation), MATH (mathematical reasoning), and the Agent Security Benchmark (security). We translate each dataset into eleven diverse languages, resulting in 805 unique tasks and 9,660 total language-specific instances - enabling a systematic analysis of the Multilingual Effect on AI agents' performance and robustness. Empirically, we observe a degradation in both performance and security when transitioning from English to other languages, with severity varying by task and correlating with the amount of translated input. This work establishes the first standardized evaluation framework for multilingual agentic AI, encouraging future research towards equitable, reliable, and accessible agentic AI. MAPS benchmark suite is publicly available at https://huggingface.co/datasets/Fujitsu-FRE/MAPS
comment: Accepted to EACL 2026 findings
♻ ☆ A large-scale pipeline for automatic corpus annotation using LLMs: variation and change in the English consider construction
As natural language corpora expand at an unprecedented rate, manual annotation remains a significant methodological bottleneck in corpus linguistic work. We address this challenge by presenting a scalable pipeline for automating grammatical annotation in voluminous corpora using large language models (LLMs). Unlike previous supervised and iterative approaches, our method employs a four-phase workflow: prompt engineering, pre-hoc evaluation, automated batch processing, and post-hoc validation. We demonstrate the pipeline's accessibility and effectiveness through a diachronic case study of variation in the English evaluative consider construction (consider X as/to be/zero Y). We annotate 143,933 'consider' concordance lines from the Corpus of Historical American English (COHA) via the OpenAI API in under 60 hours, achieving 98 percent+ accuracy on two sophisticated annotation procedures. A Bayesian multinomial GAM fitted to 44,527 true positives of the evaluative construction reveals previously undocumented genre-specific trajectories of change, enabling us to advance new hypotheses about the relationship between register formality and competing pressures of morphosyntactic reduction and enhancement. Our results suggest that LLMs can perform a range of data preparation tasks at scale with minimal human intervention, unlocking substantive research questions previously beyond practical reach, though implementation requires attention to costs, licensing, and other ethical considerations.
♻ ☆ Learning Tractable Distributions Of Language Model Continuations
Controlled generation imposes sequence-level constraints (syntax, style, safety) that depend on future tokens, making exact conditioning of an autoregressive LM intractable. Tractable surrogates such as HMMs can approximate continuation distributions and steer decoding, but standard surrogates are often weakly context-aware. We propose Learning to Look Ahead (LTLA), a hybrid method that uses base-LM embeddings to condition a globally learned tractable surrogate: a neural head predicts only a prefix-dependent latent prior, while a shared HMM answers continuation queries exactly. LTLA is designed to avoid two common efficiency traps when adding neural context. First, it avoids vocabulary-sized prefix rescoring (V extra LM evaluations) by scoring all next-token candidates via a single batched HMM forward update. Second, it avoids predicting a new HMM per prefix by learning one shared HMM and conditioning only the latent prior, which enables reuse of cached future-likelihood (backward) messages across decoding steps. Empirically, LTLA improves continuation likelihood over standard HMM surrogates, enables lookahead control for vision--language models by incorporating continuous context, achieves 100% syntactic constraint satisfaction, and improves detoxification while adding only a 14% decoding-time overhead.
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
♻ ☆ EAMET: Robust Massive Model Editing via Embedding Alignment Optimization ICLR 2026
Model editing techniques are essential for efficiently updating knowledge in large language models (LLMs). However, the effectiveness of existing approaches degrades in massive editing scenarios, particularly when evaluated with practical metrics. Their robustness is also limited in context-rich settings or when editing multiple facts of the same subject simultaneously. We attribute these failures to the embedding misalignment among knowledge items, which undermines editing reliability at scale. To address this, we propose EAMET (Embedding Alignment Model Editing in Transformers), which addresses this issue by aligning the space of key and residual embeddings. Extensive experiments across six LLMs and three datasets demonstrate that EAMET consistently outperforms existing methods, achieving about 90\% editing efficacy when editing 10k facts. Codes and datasets are publicly available at https://ybdai7.github.io/eamet-page/.
comment: This paper was accepted to ICLR 2026
♻ ☆ Distribution-Aligned Decoding for Efficient LLM Task Adaptation NeurIPS'25
Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model's output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models. Code is available at https://github.com/dl-m9/SVDecode.
comment: Accepted by NeurIPS'25
♻ ☆ Improving Data and Reward Design for Scientific Reasoning in Large Language Models
Solving open-ended science questions remains challenging for large language models, particularly due to inherently unreliable supervision and evaluation. The bottleneck lies in the data construction and reward design for scientific post-training. We develop a large-scale, systematic data processing pipeline that transforms heterogeneous open-source science data into Dr. SCI dataset, which comprises of 1M questions across eight STEM subjects, with explicit verifiable/open-ended splits, scalable difficulty annotation, and fine-grained rubrics that operationalize evaluation for open-ended answers. Building on this dataset, we propose the Dr. SCI post-training pipeline, which redesigns the standard SFT -> RL workflow through three components: (i) Exploration-Expanding SFT, which broadens the model's reasoning pattern coverage prior to RL; (ii) Dynamic Difficulty Curriculum, which adapts training data to the model's evolving scientific capability; and (iii) SciRubric-Guided RL, which enables stable reinforcement learning on open-ended scientific questions via rubric-based evaluation with explicit answer correctness. Qwen3-4B-Base trained using Dr. SCI pipeline achieves 63.2 on GPQA-diamond and 32.4 on GPQA-general, consistently improves over strong post-trained baselines such as o1-mini and GPT-4o, demonstrating substantial gains in scientific reasoning, especially in open-ended settings.
♻ ☆ What Should Feature Distillation Transfer in LLMs? A Task-Tangent Geometry View
Feature-based knowledge distillation aims to transfer intermediate representations from a teacher LLM model to a student. Existing approaches typically rely on direct feature matching or learned projections, implicitly treating representations as objects with intrinsic meaning. However, the relevance of a representation dimension is determined solely by how it affects the model's output. In this work, we propose a functional perspective on feature-based distillation. We characterize knowledge transfer in terms of the teacher's functional geometry, i.e., how its output depends on internal representations, rather than direct representation alignment. This viewpoint reveals that effective distillation need not preserve full high-dimensional features, but instead should retain dominant directions of functional contribution, naturally inducing an effective functional dimension for each task. Building on this framework, we introduce Flex-KD, an architecture-agnostic and parameter-free distillation method that transfers the teacher's functional geometry while matching the student's representational capacity. Extensive experiments across language understanding and generation benchmarks demonstrate that Flex-KD consistently outperforms existing distillation approaches, particularly under severe teacher-student dimension mismatch.
♻ ☆ Short-Context Dominance: How Much Local Context Natural Language Actually Needs?
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
comment: 38 pages, 7 figures, includes appendix and references
♻ ☆ Truth with a Twist: The Rhetoric of Persuasion in Professional vs. Community-Authored Fact-Checks WWW 2026
This study presents the first large-scale comparison of persuasion techniques present in crowd- versus professionally-written debunks. Using extensive datasets from Community Notes (CNs), EUvsDisinfo, and the Database of Known Fakes (DBKF), we quantify the prevalence and types of persuasion techniques across these fact-checking ecosystems. Contrary to prior hypothesis that community-produced debunks rely more heavily on subjective or persuasive wording, we find no evidence that CNs contain a higher average number of persuasion techniques than professional fact-checks. We additionally identify systematic rhetorical differences between CNs and professional debunking efforts, reflecting differences in institutional norms and topical coverage. Finally, we examine how the crowd evaluates persuasive language in CNs and show that, although notes with more persuasive elements receive slightly higher overall helpfulness ratings, crowd raters are effective at penalising the use of particular problematic rhetorical means
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Cochain: Balancing Insufficient and Excessive Collaboration in LLM Agent Workflows
Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating the collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves the business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
comment: 35 pages, 23 figures
♻ ☆ Common Objects Out of Context (COOCo): Investigating Multimodal Context and Semantic Scene Violations in Referential Communication ACL
To what degree and under what conditions do VLMs rely on scene context when generating references to objects? To address this question, we introduce the $\textit{Common Objects Out-of-Context (COOCo)}$ dataset and conduct experiments on several VLMs under different degrees of scene-object congruency and noise. We find that models leverage scene context adaptively, depending on scene-object semantic relatedness and noise level. Based on these consistent trends across models, we turn to the question of how VLM attention patterns change as a function of target-scene semantic fit, and to what degree these patterns are predictive of categorisation accuracy. We find that successful object categorisation is associated with increased mid-layer attention to the target. We also find a non-monotonic dependency on semantic fit, with attention dropping at moderate fit and increasing for both low and high fit. These results suggest that VLMs dynamically balance local and contextual information for reference generation. Dataset and code are available here: $\href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}$.
comment: Accepted to TACL (pre-MIT Press publication version)
♻ ☆ Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels EMNLP 2025
Large language models (LLMs) acquire substantial world knowledge during pre-training, which is further shaped by post-training techniques such as supervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge remains underexplored, limiting our ability to control knowledge change behavior in fine-tuned models. To address this gap, we evaluate closed-book question answering (CBQA) performance across five LLMs from the LLaMA-2 and LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying the level of knowledge mastery in the fine-tuning data leads to performance fluctuations of over 12%. To investigate these effects, we analyze model behavior at both the token and parameter levels. Our analysis reveals that up to 90% of parameter updates during SFT do not contribute to knowledge enhancement. Restoring these updates can improve performance on the CBQA task, depending on the characteristics of the fine-tuning data. These insights offer practical guidance for developing fine-tuning strategies that more effectively strengthen model knowledge.
comment: Accepted by EMNLP 2025 Main Conference. Codes for parameter restoration are available at https://github.com/UmeanNever/ParamRestore
♻ ☆ The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs ICLR 2026
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.
comment: Accepted by ICLR 2026
♻ ☆ IMAGINE: Integrating Multi-Agent System into One Model for Complex Reasoning and Planning
Although large language models (LLMs) have made significant strides across various tasks, they still face significant challenges in complex reasoning and planning. For example, even with carefully designed prompts and prior information explicitly provided, GPT-4o achieves only a 7% Final Pass Rate on the TravelPlanner dataset in the sole-planning mode. Similarly, even in the thinking mode, Qwen3-8B-Instruct and DeepSeek-R1-671B, only achieve Final Pass Rates of 5.9% and 40%, respectively. Although well-organized Multi-Agent Systems (MAS) can offer improved collective reasoning, they often suffer from high reasoning costs due to multi-round internal interactions, long per-response latency, and difficulties in end-to-end training. To address these challenges, we propose a general and scalable framework called IMAGINE, short for Integrating Multi-Agent System into One Model. This framework not only integrates the reasoning and planning capabilities of MAS into a single, compact model, but also significantly surpass the capabilities of the MAS through a simple end-to-end training. Through this pipeline, a single small-scale model is not only able to acquire the structured reasoning and planning capabilities of a well-organized MAS but can also significantly outperform it. Experimental results demonstrate that, when using Qwen3-8B-Instruct as the base model and training it with our method, the model achieves an 82.7% Final Pass Rate on the TravelPlanner benchmark, far exceeding the 40% of DeepSeek-R1-671B, while maintaining a much smaller model size.
♻ ☆ Structured Episodic Event Memory
Current approaches to memory in Large Language Models (LLMs) predominantly rely on static Retrieval-Augmented Generation (RAG), which often results in scattered retrieval and fails to capture the structural dependencies required for complex reasoning. For autonomous agents, these passive and flat architectures lack the cognitive organization necessary to model the dynamic and associative nature of long-term interaction. To address this, we propose Structured Episodic Event Memory (SEEM), a hierarchical framework that synergizes a graph memory layer for relational facts with a dynamic episodic memory layer for narrative progression. Grounded in cognitive frame theory, SEEM transforms interaction streams into structured Episodic Event Frames (EEFs) anchored by precise provenance pointers. Furthermore, we introduce an agentic associative fusion and Reverse Provenance Expansion (RPE) mechanism to reconstruct coherent narrative contexts from fragmented evidence. Experimental results on the LoCoMo and LongMemEval benchmarks demonstrate that SEEM significantly outperforms baselines, enabling agents to maintain superior narrative coherence and logical consistency.
♻ ☆ Evolving Interactive Diagnostic Agents in a Virtual Clinical Environment
We present a framework for training large language models (LLMs) as diagnostic agents with reinforcement learning, enabling them to manage multi-turn interactive diagnostic processes, adaptively select examinations, and commit to final diagnoses. Unlike instruction-tuned models trained on static data, our method acquires diagnostic strategies through dynamic exploration and outcome-based feedback, mapping evolving patient states to the next optimal examination and subsequent diagnosis. Our contributions include: (i) DiagGym, a diagnostics world model trained with electronic health records, serving as a virtual clinical environment to support closed-loop in-silico training and evaluation for interactive diagnosis; (ii) DiagAgent, trained via end-to-end multi-turn RL to learn dynamic diagnostic policies that optimize both interactive effectiveness and final accuracy; (iii) DiagBench, a multi-center diagnostic benchmark designed to evaluate multi-turn diagnostic interaction trajectories. The benchmark comprises 2.2K physician-validated cases sourced from 4 distinct distributions, alongside 3.3K physician-written rubrics for granular process-oriented evaluation. (iv) Extensive evaluations demonstrate DiagAgent's superior performance across both in-domain and out-of-domain (OOD) settings. DiagAgent significantly outperforms 11 SOTA LLMs and 2 prompt-engineered agents. In the end-to-end setting, it delivers a 11.20% increase in diagnostic accuracy and a 17.58% boost in examination recommendation F1 score, while consistently maintaining SOTA performance across all three external centers. Furthermore, in rubric-based evaluations, it surpasses the next-best model by 7.1% in weighted rubric score. These findings indicate that learning policies in interactive clinical environments confers long-term diagnostic management abilities unattainable through passive training.
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning ICLR 2026
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures, ICLR 2026
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has emerged as a pivotal direction in artificial intelligence (AI), emphasizing the role of high-quality training data. This shift is especially critical in the Text-to-SQL task, where the scarcity, limited diversity, and structural simplicity of existing datasets constrain model performance. To address these challenges, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that systematically generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from limited seed data. Our framework spans six augmentation dimensions and integrates an end-to-end pipeline with auxiliary database selection, SQL executability verification, natural language (NL) question generation, NL-SQL correspondence verification, and chain-of-thought (CoT) reasoning trace generation. Leveraging this framework, we construct SQLFlow, a high-quality dataset comprising 75,386 annotated examples. We demonstrate the utility of SQLFlow in both fine-tuning and prompt-based settings. (1) For open-source large language models (LLMs), fine-tuning with SQLFlow improves problem-solving ability, delivering competitive gains across multiple benchmarks under the same data budget. (2) For closed-source LLMs, we propose a masked alignment retrieval method that uses SQLFlow as both a knowledge base and training data for the retrieval model, enabling structure-aware example matching via fine-grained NL-SQL alignments. Experiments show that our retrieval strategy outperforms existing example retrieval methods, highlighting the combined value of SQLFlow's data quality and our retrieval technique. Overall, our work provides a scalable, data-centric foundation for advancing Text-to-SQL systems and underscores the importance of structured, high-fidelity data in modern AI development. Our code is available at https://github.com/TechNomad-ds/Text2SQL-Flow.
♻ ☆ Can LLMs Automate Fact-Checking Article Writing? ACL 2026
Automatic fact-checking aims to support professional fact-checkers by offering tools that can help speed up manual fact-checking. Yet, existing frameworks fail to address the key step of producing output suitable for broader dissemination to the general public: while human fact-checkers communicate their findings through fact-checking articles, automated systems typically produce little or no justification for their assessments. Here, we aim to bridge this gap. In particular, we argue for the need to extend the typical automatic fact-checking pipeline with automatic generation of full fact-checking articles. We first identify key desiderata for such articles through a series of interviews with experts from leading fact-checking organizations. We then develop QRAFT, an LLM-based agentic framework that mimics the writing workflow of human fact-checkers. Finally, we assess the practical usefulness of QRAFT through human evaluations with professional fact-checkers. Our evaluation shows that while QRAFT outperforms several previously proposed text-generation approaches, it lags considerably behind expert-written articles. We hope that our work will enable further research in this new and important direction. The code for our implementation is available at https://github.com/mbzuai-nlp/qraft.git.
comment: Accepted to TACL 2026, pre-MIT Press publication version
♻ ☆ Rethinking Memory Mechanisms of Foundation Agents in the Second Half: A Survey
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
♻ ☆ Self-Guided Function Calling in Large Language Models via Stepwise Experience Recall EMNLP 2025
Function calling enables large language models (LLMs) to interact with external systems by leveraging tools and APIs. When faced with multi-step tool usage, LLMs still struggle with tool selection, parameter generation, and tool-chain planning. Existing methods typically rely on manually designing task-specific demonstrations, or retrieving from a curated library. These approaches demand substantial expert effort and prompt engineering becomes increasingly complex and inefficient as tool diversity and task difficulty scale. To address these challenges, we propose a self-guided method, Stepwise Experience Recall (SEER), which performs fine-grained, stepwise retrieval from a continually updated experience pool. Instead of relying on static or manually curated library, SEER incrementally augments the experience pool with past successful trajectories, enabling continuous expansion of the pool and improved model performance over time. Evaluated on the ToolQA benchmark, SEER achieves an average improvement of 6.1% on easy and 4.7% on hard questions. We further test SEER on $τ$-bench, which includes two real-world domains. Powered by Qwen2.5-7B and Qwen2.5-72B models, SEER demonstrates substantial accuracy gains of 7.44% and 23.38%, respectively.
comment: Accepted to EMNLP 2025
♻ ☆ Sri Lanka Document Datasets: A Large-Scale, Multilingual Resource for Law, News, and Policy
We present a collection of open, machine-readable document datasets covering parliamentary proceedings, legal judgments, government publications, news, and tourism statistics from Sri Lanka. The collection currently comprises of 253,817 documents (72.2 GB) across 26 datasets in Sinhala, Tamil, and English. The datasets are updated daily and mirrored on GitHub and Hugging Face. These resources aim to support research in computational linguistics, legal analytics, socio-political studies, and multilingual natural language processing. We describe the data sources, collection pipeline, formats, and potential use cases, while discussing licensing and ethical considerations. This manuscript is at version v2026-02-10-1051.
comment: 4 pages. 253,817 documents (72.2 GB) across 26 datasets in Sinhala, Tamil, and English. Last updated on 2026-02-10 (10:51am)
♻ ☆ Free(): Learning to Forget in Malloc-Only Reasoning Models
Reasoning models enhance problem-solving by scaling test-time compute, yet they face a critical paradox: excessive thinking tokens often degrade performance rather than improve it. We attribute this to a fundamental architectural flaw: standard LLMs operate as "malloc-only" engines, continuously accumulating valid and redundant steps alike without a mechanism to prune obsolete information. To break this cycle, we propose Free()LM, a model that introduces an intrinsic self-forgetting capability via the Free-Module, a plug-and-play LoRA adapter. By iteratively switching between reasoning and cleaning modes, Free()LM dynamically identifies and prunes useless context chunks, maintaining a compact and noise-free state. Extensive experiments show that Free()LM provides consistent improvements across all model scales (8B to 685B). It achieves a 3.3% average improvement over top-tier reasoning baselines, even establishing a new SOTA on IMOanswerBench using DeepSeek V3.2-Speciale. Most notably, in long-horizon tasks where the standard Qwen3-235B-A22B model suffers a total collapse (0% accuracy), Free()LM restores performance to 50%. Our findings suggest that sustainable intelligence requires the freedom to forget as much as the power to think.
♻ ☆ Machine Text Detectors are Membership Inference Attacks
Although membership inference attacks (MIAs) and machine-generated text detection target different goals, their methods often exploit similar signals based on a language model's probability distribution, and the two tasks have been studied independently. This can result in conclusions that overlook stronger methods and valuable insights from the other task. In this work, we theoretically and empirically demonstrate the transferability, i.e., how well a method originally developed for one task performs on the other, between MIAs and machine text detection. We prove that the metric achieving asymptotically optimal performance is identical for both tasks. We unify existing methods under this optimal metric and hypothesize that the accuracy with which a method approximates this metric is directly correlated with its transferability. Our large-scale empirical experiments demonstrate very strong rank correlation ($ρ\approx 0.7$) in cross-task performance. Notably, we also find that a machine text detector achieves the strongest performance among evaluated methods on both tasks, demonstrating the practical impact of transferability. To facilitate cross-task development and fair evaluation, we introduce MINT, a unified evaluation suite for MIAs and machine-generated text detection, implementing 15 recent methods from both tasks.
♻ ☆ REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
♻ ☆ EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning
Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.
♻ ☆ SAGE: An Agentic Explainer Framework for Interpreting SAE Features in Language Models EACL 2026
Large language models (LLMs) have achieved remarkable progress, yet their internal mechanisms remain largely opaque, posing a significant challenge to their safe and reliable deployment. Sparse autoencoders (SAEs) have emerged as a promising tool for decomposing LLM representations into more interpretable features, but explaining the features captured by SAEs remains a challenging task. In this work, we propose SAGE (SAE AGentic Explainer), an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanation-driven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.an agent-based framework that recasts feature interpretation from a passive, single-pass generation task into an active, explanationdriven process. SAGE implements a rigorous methodology by systematically formulating multiple explanations for each feature, designing targeted experiments to test them, and iteratively refining explanations based on empirical activation feedback. Experiments on features from SAEs of diverse language models demonstrate that SAGE produces explanations with significantly higher generative and predictive accuracy compared to state-of-the-art baselines.
comment: EACL 2026 Industry Track
♻ ☆ Emergent Structured Representations Support Flexible In-Context Inference in Large Language Models
Large language models (LLMs) exhibit emergent behaviors suggestive of human-like reasoning. While recent work has identified structured, human-like conceptual representations within these models, it remains unclear whether they functionally rely on such representations for reasoning. Here we investigate the internal processing of LLMs during in-context concept inference. Our results reveal a conceptual subspace emerging in middle to late layers, whose representational structure persists across contexts. Using causal mediation analyses, we demonstrate that this subspace is not merely an epiphenomenon but is functionally central to model predictions, establishing its causal role in inference. We further identify a layer-wise progression where attention heads in early-to-middle layers integrate contextual cues to construct and refine the subspace, which is subsequently leveraged by later layers to generate predictions. Together, these findings provide evidence that LLMs dynamically construct and use structured, latent representations in context for inference, offering insights into the computational processes underlying flexible adaptation.
comment: 27 pages, 16 figures
♻ ☆ LoRA Provides Differential Privacy by Design via Random Sketching
Low-rank adaptation of language models has been proposed to reduce the computational and memory overhead of fine-tuning pre-trained language models. LoRA incorporates trainable low-rank matrices into some parameters of the pre-trained model, called adapters. In this work, we show theoretically that the low-rank adaptation mechanism of LoRA is equivalent to fine-tuning adapters with noisy batch gradients, with the noise variance being a decreasing function of adaptation rank ($r$). Motivated by this understanding, we prove inherent differential privacy for LoRA when adaptation matrices $A_\ell$ are frozen. We show that various factors, e.g., the adaptation rank and batch size, affect the guaranteed privacy level. Our findings provide useful insights into LoRA and uncovers the reason behind the robustness of models fine-tuned with LoRA to privacy attacks.
♻ ☆ Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
comment: Accepted by TMLR
♻ ☆ DLLM Agent: See Farther, Run Faster
Diffusion large language models (DLLMs) have emerged as an alternative to autoregressive (AR) decoding with appealing efficiency and modeling properties, yet their implications for agentic multi-step decision making remain underexplored. We ask a concrete question: when the generation paradigm is changed but the agent framework and supervision are held fixed, do diffusion backbones induce systematically different planning and tool-use behaviors, and do these differences translate into end-to-end efficiency gains? We study this in a controlled setting by instantiating DLLM and AR backbones within the same agent workflow (DeepDiver) and performing matched agent-oriented fine-tuning on the same trajectory data, yielding diffusion-backed DLLM Agents and directly comparable AR agents. Across benchmarks and case studies, we find that, at comparable accuracy, DLLM Agents are on average over 30% faster end to end than AR agents, with some cases exceeding 8x speedup. Conditioned on correct task completion, DLLM Agents also require fewer interaction rounds and tool invocations, consistent with higher planner hit rates that converge earlier to a correct action path with less backtracking. We further identify two practical considerations for deploying diffusion backbones in tool-using agents. First, naive DLLM policies are more prone to structured tool-call failures, necessitating stronger tool-call-specific training to emit valid schemas and arguments. Second, for multi-turn inputs interleaving context and action spans, diffusion-style span corruption requires aligned attention masking to avoid spurious context-action information flow; without such alignment, performance degrades. Finally, we analyze attention dynamics across workflow stages and observe paradigm-specific coordination patterns, suggesting stronger global planning signals in diffusion-backed agents.
♻ ☆ Offline World Models as Imagination Networks in Cognitive Agents
The computational role of imagination remains debated. While classical accounts emphasize reward maximization, emerging evidence suggests it accesses internal world models (IWMs). We employ psychological network analysis to compare IWMs in humans and large language models (LLMs) via imagination vividness ratings, distinguishing offline world models (persistent memory structures accessed independent of immediate goals) from online models (task-specific representations). Analyzing 2,743 humans across three populations and six LLM variants, we find human imagination networks exhibit robust structural consistency, with high centrality correlations and aligned clustering. LLMs show minimal clustering and weak correlations with human networks, even with conversational memory, across environmental and sensory contexts. These differences highlight disparities in how biological and artificial systems organize internal representations. Our framework offers quantitative metrics for evaluating offline world models in cognitive agents.
♻ ☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS Website: https://modular-gradient-surgery.github.io
♻ ☆ TOPol: Capturing and Explaining Multidimensional Semantic Polarity Fields and Vectors
Traditional approaches to semantic polarity in computational linguistics treat sentiment as a unidimensional scale, overlooking the multidimensional structure of language. This work introduces TOPol (Topic-Orientation POLarity), a semi-unsupervised framework for reconstructing and interpreting multidimensional narrative polarity fields under human-on-the-loop (HoTL) defined contextual boundaries (CBs). The framework embeds documents using a transformer-based large language model (tLLM), applies neighbor-tuned UMAP projection, and segments topics via Leiden partitioning. Given a CB between discourse regimes A and B, TOPol computes directional vectors between corresponding topic-boundary centroids, yielding a polarity field that quantifies fine-grained semantic displacement during regime shifts. This vectorial representation enables assessing CB quality and detecting polarity changes, guiding HoTL CB refinement. To interpret identified polarity vectors, the tLLM compares their extreme points and produces contrastive labels with estimated coverage. Robustness analyses show that only CB definitions (the main HoTL-tunable parameter) significantly affect results, confirming methodological stability. We evaluate TOPol on two corpora: (i) U.S. Central Bank speeches around a macroeconomic breakpoint, capturing non-affective semantic shifts, and (ii) Amazon product reviews across rating strata, where affective polarity aligns with NRC valence. Results demonstrate that TOPol consistently captures both affective and non-affective polarity transitions, providing a scalable, generalizable, and interpretable framework for context-sensitive multidimensional discourse analysis.
comment: 7 pages, 3 figures and 2 tables
♻ ☆ Building Production-Ready Probes For Gemini
Frontier language model capabilities are improving rapidly. We thus need stronger mitigations against bad actors misusing increasingly powerful systems. Prior work has shown that activation probes may be a promising misuse mitigation technique, but we identify a key remaining challenge: probes fail to generalize under important production distribution shifts. In particular, we find that the shift from short-context to long-context inputs is difficult for existing probe architectures. We propose several new probe architectures that handle this long-context distribution shift. We evaluate these probes in the cyber-offensive domain, testing their robustness against various production-relevant distribution shifts, including multi-turn conversations, long context prompts, and adaptive red teaming. Our results demonstrate that while our novel architectures address context length, a combination of architecture choice and training on diverse distributions is required for broad generalization. Additionally, we show that pairing probes with prompted classifiers achieves optimal accuracy at a low cost due to the computational efficiency of probes. These findings have informed the successful deployment of misuse mitigation probes in user-facing instances of Gemini, Google's frontier language model. Finally, we find early positive results using AlphaEvolve to automate improvements in both probe architecture search and adaptive red teaming, showing that automating some AI safety research is already possible.
comment: v4 (another minor acknowledgements fix)
♻ ☆ ZeroTuning: Unlocking the Initial Token's Power to Enhance Large Language Models Without Training ICLR 2026
Token-level attention tuning, a class of training-free methods including Post-hoc Attention Steering (PASTA) and Attention Calibration (ACT), has emerged as a promising approach for improving frozen LLMs via interpretable interventions. However, these methods rely on auxiliary heuristics to identify important task-specific tokens, which can introduce bias and limit applicability when token importance is ambiguous or when optimized kernels make attention maps inaccessible. We propose a simpler alternative: intervening only on the initial token (e.g., BOS in LLaMA). We theoretically show that adding lightweight biases to this token's attention logits systematically shifts and reshapes downstream attention patterns - an effect amplified by its natural role as an attention sink. Empirically, we find that this tuning can improve LLM performance and better elicit pretrained knowledge, with stronger effects in early layers and distinct scaling preferences across attention heads. Building on these findings, we introduce ZeroTuning, a training-free method that improves LLM performance by applying head-specific attention adjustments to the initial token, requiring no parameter updates. We present two variants: a supervised mode that calibrates on validation examples, and an unsupervised mode that directly minimizes output entropy. ZeroTuning requires no KV-cache or decoding changes and is kernel-agnostic (works with SDPA and FlashAttention). It requires only four lines of modification to the standard LlamaAttention code, achieves gains across 15 datasets, and outperforms prior, more complex methods. For example, on Llama-3.1-8B, it yields relative improvements of 19.9% on classification, 4.5% on question answering, and 2.1% on dialogue. ZeroTuning also works out of the box with quantized inference and maintains its improvements as context length increases.
comment: ICLR 2026 Accepted Version: proofread, introduction rewritten, additional experiments and appendix material added
♻ ☆ ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $μ= 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. In this work, we propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and thus prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU.
comment: Replace discrete Hadamard transforms with continuous Butterfly transforms to facilitate the learning of rotation matrices in LLM quantization
♻ ☆ ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models NeurIPS 2025
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
comment: NeurIPS 2025 Datasets & Benchmarks
♻ ☆ HEART: Emotionally-Driven Test-Time Scaling of Language Models
Test-time scaling has significantly improved how AI models solve problems, yet current methods often get stuck in repetitive, incorrect patterns of thought. We introduce HEART, a framework that uses emotional cues to guide the model's focus, much like how feelings contribute to human decision-making. By alternating between critical tones to sharpen error detection and encouraging tones to spark new ideas, HEART helps the model break out of dead-end reasoning and find the right solution. We evaluate HEART across seven high-difficulty benchmarks--including Humanity's Last Exam, GPQA Diamond, and LiveCodeBench--demonstrating robustness across diverse models. Results show that emotion facilitates deeper reasoning, yielding consistent accuracy gains over affect-sterile baselines. These findings suggest that the next frontier in machine reasoning lies in the strategic integration of affective regulation to guide logical synthesis.
♻ ☆ Parallel-Probe: Towards Efficient Parallel Thinking via 2D Probing
Parallel thinking has emerged as a promising paradigm for reasoning, yet it imposes significant computational burdens. Existing efficiency methods primarily rely on local, per-trajectory signals and lack principled mechanisms to exploit global dynamics across parallel branches. We introduce 2D probing, an interface that exposes the width-depth dynamics of parallel thinking by periodically eliciting intermediate answers from all branches. Our analysis reveals three key insights: non-monotonic scaling across width-depth allocations, heterogeneous reasoning branch lengths, and early stabilization of global consensus. Guided by these insights, we introduce $\textbf{Parallel-Probe}$, a training-free controller designed to optimize online parallel thinking. Parallel-Probe employs consensus-based early stopping to regulate reasoning depth and deviation-based branch pruning to dynamically adjust width. Extensive experiments across three benchmarks and multiple models demonstrate that Parallel-Probe establishes a superior Pareto frontier for test-time scaling. Compared to standard majority voting, it reduces sequential tokens by up to $\textbf{35.8}$% and total token cost by over $\textbf{25.8}$% while maintaining competitive accuracy.
comment: 14 pages
♻ ☆ SecureCode: A Production-Grade Multi-Turn Dataset for Training Security-Aware Code Generation Models
AI coding assistants produce vulnerable code in 45\% of security-relevant scenarios~\cite{veracode2025}, yet no public training dataset teaches both traditional web security and AI/ML-specific defenses in a format suitable for instruction tuning. We present SecureCode, a production-grade dataset of 2,185 multi-turn security training examples spanning two domains: web application security (1,435 examples covering the OWASP Top 10 2021 across 11 languages and 9 frameworks, 100\% grounded in documented CVEs and security incidents) and AI/ML security (750 examples covering all 10 OWASP LLM Top 10 2025 categories across more than 40 frameworks, including LangChain, OpenAI, and Hugging Face). Every example follows a 4-turn conversational structure -- feature request; vulnerable and secure implementations with attack demonstrations; advanced probing; and defense-in-depth operational guidance -- designed for direct use in instruction tuning pipelines. Quality assurance combines automated structural validation with multi-agent review from seven specialist AI perspectives (more than 10{,}500 assessments) and an 8-phase remediation pipeline, producing a rubric-calibrated mean quality score of 93.8/100 ($σ= 0.93$) for the AI/ML component. Each example provides SIEM integration strategies, infrastructure hardening recommendations, and testing approaches using production frameworks. We release the unified dataset on Hugging Face with domain-specific loading configurations (web, aiml, default), alongside eight fine-tuned open-source models (3B--20B parameters, QLoRA), and an evaluation framework with four security-specific metrics. To our knowledge, SecureCode is the first public dataset that jointly provides OWASP Top 10 2021 web coverage and OWASP LLM Top 10 2025 AI/ML coverage in a unified conversational schema suitable for instruction tuning.
comment: 27 pages, 12 figures, 10 tables. Dataset available at https://huggingface.co/datasets/scthornton/securecode. Code and validation tools at https://github.com/scthornton/securecode
Computer Vision and Pattern Recognition 167
☆ SAGE: Scalable Agentic 3D Scene Generation for Embodied AI
Real-world data collection for embodied agents remains costly and unsafe, calling for scalable, realistic, and simulator-ready 3D environments. However, existing scene-generation systems often rely on rule-based or task-specific pipelines, yielding artifacts and physically invalid scenes. We present SAGE, an agentic framework that, given a user-specified embodied task (e.g., "pick up a bowl and place it on the table"), understands the intent and automatically generates simulation-ready environments at scale. The agent couples multiple generators for layout and object composition with critics that evaluate semantic plausibility, visual realism, and physical stability. Through iterative reasoning and adaptive tool selection, it self-refines the scenes until meeting user intent and physical validity. The resulting environments are realistic, diverse, and directly deployable in modern simulators for policy training. Policies trained purely on this data exhibit clear scaling trends and generalize to unseen objects and layouts, demonstrating the promise of simulation-driven scaling for embodied AI. Code, demos, and the SAGE-10k dataset can be found on the project page here: https://nvlabs.github.io/sage.
comment: Project Page: https://nvlabs.github.io/sage
☆ Quantum Multiple Rotation Averaging
Multiple rotation averaging (MRA) is a fundamental optimization problem in 3D vision and robotics that aims to recover globally consistent absolute rotations from noisy relative measurements. Established classical methods, such as L1-IRLS and Shonan, face limitations including local minima susceptibility and reliance on convex relaxations that fail to preserve the exact manifold geometry, leading to reduced accuracy in high-noise scenarios. We introduce IQARS (Iterative Quantum Annealing for Rotation Synchronization), the first algorithm that reformulates MRA as a sequence of local quadratic non-convex sub-problems executable on quantum annealers after binarization, to leverage inherent hardware advantages. IQARS removes convex relaxation dependence and better preserves non-Euclidean rotation manifold geometry while leveraging quantum tunneling and parallelism for efficient solution space exploration. We evaluate IQARS's performance on synthetic and real-world datasets. While current annealers remain in their nascent phase and only support solving problems of limited scale with constrained performance, we observed that IQARS on D-Wave annealers can already achieve ca. 12% higher accuracy than Shonan, i.e., the best-performing classical method evaluated empirically.
comment: 16 pages, 13 figures, 4 tables; project page: https://4dqv.mpi-inf.mpg.de/QMRA/
☆ ConsID-Gen: View-Consistent and Identity-Preserving Image-to-Video Generation
Image-to-Video generation (I2V) animates a static image into a temporally coherent video sequence following textual instructions, yet preserving fine-grained object identity under changing viewpoints remains a persistent challenge. Unlike text-to-video models, existing I2V pipelines often suffer from appearance drift and geometric distortion, artifacts we attribute to the sparsity of single-view 2D observations and weak cross-modal alignment. Here we address this problem from both data and model perspectives. First, we curate ConsIDVid, a large-scale object-centric dataset built with a scalable pipeline for high-quality, temporally aligned videos, and establish ConsIDVid-Bench, where we present a novel benchmarking and evaluation framework for multi-view consistency using metrics sensitive to subtle geometric and appearance deviations. We further propose ConsID-Gen, a view-assisted I2V generation framework that augments the first frame with unposed auxiliary views and fuses semantic and structural cues via a dual-stream visual-geometric encoder as well as a text-visual connector, yielding unified conditioning for a Diffusion Transformer backbone. Experiments across ConsIDVid-Bench demonstrate that ConsID-Gen consistently outperforms in multiple metrics, with the best overall performance surpassing leading video generation models like Wan2.1 and HunyuanVideo, delivering superior identity fidelity and temporal coherence under challenging real-world scenarios. We will release our model and dataset at https://myangwu.github.io/ConsID-Gen.
comment: Project page: https://myangwu.github.io/ConsID-Gen
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ VideoWorld 2: Learning Transferable Knowledge from Real-world Videos
Learning transferable knowledge from unlabeled video data and applying it in new environments is a fundamental capability of intelligent agents. This work presents VideoWorld 2, which extends VideoWorld and offers the first investigation into learning transferable knowledge directly from raw real-world videos. At its core, VideoWorld 2 introduces a dynamic-enhanced Latent Dynamics Model (dLDM) that decouples action dynamics from visual appearance: a pretrained video diffusion model handles visual appearance modeling, enabling the dLDM to learn latent codes that focus on compact and meaningful task-related dynamics. These latent codes are then modeled autoregressively to learn task policies and support long-horizon reasoning. We evaluate VideoWorld 2 on challenging real-world handcraft making tasks, where prior video generation and latent-dynamics models struggle to operate reliably. Remarkably, VideoWorld 2 achieves up to 70% improvement in task success rate and produces coherent long execution videos. In robotics, we show that VideoWorld 2 can acquire effective manipulation knowledge from the Open-X dataset, which substantially improves task performance on CALVIN. This study reveals the potential of learning transferable world knowledge directly from raw videos, with all code, data, and models to be open-sourced for further research.
comment: Code and models are released at: https://maverickren.github.io/VideoWorld2.github.io/
☆ Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
comment: Technical Report
☆ VLA-JEPA: Enhancing Vision-Language-Action Model with Latent World Model
Pretraining Vision-Language-Action (VLA) policies on internet-scale video is appealing, yet current latent-action objectives often learn the wrong thing: they remain anchored to pixel variation rather than action-relevant state transitions, making them vulnerable to appearance bias, nuisance motion, and information leakage. We introduce VLA-JEPA, a JEPA-style pretraining framework that sidesteps these pitfalls by design. The key idea is \emph{leakage-free state prediction}: a target encoder produces latent representations from future frames, while the student pathway sees only the current observation -- future information is used solely as supervision targets, never as input. By predicting in latent space rather than pixel space, VLA-JEPA learns dynamics abstractions that are robust to camera motion and irrelevant background changes. This yields a simple two-stage recipe -- JEPA pretraining followed by action-head fine-tuning -- without the multi-stage complexity of prior latent-action pipelines. Experiments on LIBERO, LIBERO-Plus, SimplerEnv and real-world manipulation tasks show that VLA-JEPA achieves consistent gains in generalization and robustness over existing methods.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ 4RC: 4D Reconstruction via Conditional Querying Anytime and Anywhere
We present 4RC, a unified feed-forward framework for 4D reconstruction from monocular videos. Unlike existing approaches that typically decouple motion from geometry or produce limited 4D attributes such as sparse trajectories or two-view scene flow, 4RC learns a holistic 4D representation that jointly captures dense scene geometry and motion dynamics. At its core, 4RC introduces a novel encode-once, query-anywhere and anytime paradigm: a transformer backbone encodes the entire video into a compact spatio-temporal latent space, from which a conditional decoder can efficiently query 3D geometry and motion for any query frame at any target timestamp. To facilitate learning, we represent per-view 4D attributes in a minimally factorized form by decomposing them into base geometry and time-dependent relative motion. Extensive experiments demonstrate that 4RC outperforms prior and concurrent methods across a wide range of 4D reconstruction tasks.
comment: Project page: https://yihangluo.com/projects/4RC/
☆ Can Image Splicing and Copy-Move Forgery Be Detected by the Same Model? Forensim: An Attention-Based State-Space Approach
We introduce Forensim, an attention-based state-space framework for image forgery detection that jointly localizes both manipulated (target) and source regions. Unlike traditional approaches that rely solely on artifact cues to detect spliced or forged areas, Forensim is designed to capture duplication patterns crucial for understanding context. In scenarios such as protest imagery, detecting only the forged region, for example a duplicated act of violence inserted into a peaceful crowd, can mislead interpretation, highlighting the need for joint source-target localization. Forensim outputs three-class masks (pristine, source, target) and supports detection of both splicing and copy-move forgeries within a unified architecture. We propose a visual state-space model that leverages normalized attention maps to identify internal similarities, paired with a region-based block attention module to distinguish manipulated regions. This design enables end-to-end training and precise localization. Forensim achieves state-of-the-art performance on standard benchmarks. We also release CMFD-Anything, a new dataset addressing limitations of existing copy-move forgery datasets.
☆ Vendi Novelty Scores for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for the safe deployment of machine learning systems. Existing post-hoc detectors typically rely on model confidence scores or likelihood estimates in feature space, often under restrictive distributional assumptions. In this work, we introduce a third paradigm and formulate OOD detection from a diversity perspective. We propose the Vendi Novelty Score (VNS), an OOD detector based on the Vendi Scores (VS), a family of similarity-based diversity metrics. VNS quantifies how much a test sample increases the VS of the in-distribution feature set, providing a principled notion of novelty that does not require density modeling. VNS is linear-time, non-parametric, and naturally combines class-conditional (local) and dataset-level (global) novelty signals. Across multiple image classification benchmarks and network architectures, VNS achieves state-of-the-art OOD detection performance. Remarkably, VNS retains this performance when computed using only 1% of the training data, enabling deployment in memory- or access-constrained settings.
☆ Spatio-Temporal Attention for Consistent Video Semantic Segmentation in Automated Driving
Deep neural networks, especially transformer-based architectures, have achieved remarkable success in semantic segmentation for environmental perception. However, existing models process video frames independently, thus failing to leverage temporal consistency, which could significantly improve both accuracy and stability in dynamic scenes. In this work, we propose a Spatio-Temporal Attention (STA) mechanism that extends transformer attention blocks to incorporate multi-frame context, enabling robust temporal feature representations for video semantic segmentation. Our approach modifies standard self-attention to process spatio-temporal feature sequences while maintaining computational efficiency and requiring minimal changes to existing architectures. STA demonstrates broad applicability across diverse transformer architectures and remains effective across both lightweight and larger-scale models. A comprehensive evaluation on the Cityscapes and BDD100k datasets shows substantial improvements of 9.20 percentage points in temporal consistency metrics and up to 1.76 percentage points in mean intersection over union compared to single-frame baselines. These results demonstrate STA as an effective architectural enhancement for video-based semantic segmentation applications.
☆ Conformal Prediction Sets for Instance Segmentation
Current instance segmentation models achieve high performance on average predictions, but lack principled uncertainty quantification: their outputs are not calibrated, and there is no guarantee that a predicted mask is close to the ground truth. To address this limitation, we introduce a conformal prediction algorithm to generate adaptive confidence sets for instance segmentation. Given an image and a pixel coordinate query, our algorithm generates a confidence set of instance predictions for that pixel, with a provable guarantee for the probability that at least one of the predictions has high Intersection-Over-Union (IoU) with the true object instance mask. We apply our algorithm to instance segmentation examples in agricultural field delineation, cell segmentation, and vehicle detection. Empirically, we find that our prediction sets vary in size based on query difficulty and attain the target coverage, outperforming existing baselines such as Learn Then Test, Conformal Risk Control, and morphological dilation-based methods. We provide versions of the algorithm with asymptotic and finite sample guarantees.
☆ Simple Image Processing and Similarity Measures Can Link Data Samples across Databases through Brain MRI
Head Magnetic Resonance Imaging (MRI) is routinely collected and shared for research under strict regulatory frameworks. These frameworks require removing potential identifiers before sharing. But, even after skull stripping, the brain parenchyma contains unique signatures that can match other MRIs from the same participants across databases, posing a privacy risk if additional data features are available. Current regulatory frameworks often mandate evaluating such risks based on the assessment of a certain level of reasonableness. Prior studies have already suggested that a brain MRI could enable participant linkage, but they have relied on training-based or computationally intensive methods. Here, we demonstrate that linking an individual's skull-stripped T1-weighted MRI, which may lead to re-identification if other identifiers are available, is possible using standard preprocessing followed by image similarity computation. Nearly perfect linkage accuracy was achieved in matching data samples across various time intervals, scanner types, spatial resolutions, and acquisition protocols, despite potential cognitive decline, simulating MRI matching across databases. These results aim to contribute meaningfully to the development of thoughtful, forward-looking policies in medical data sharing.
☆ Fake-HR1: Rethinking reasoning of vision language model for synthetic image detection ICASSP 2026
Recent studies have demonstrated that incorporating Chain-of-Thought (CoT) reasoning into the detection process can enhance a model's ability to detect synthetic images. However, excessively lengthy reasoning incurs substantial resource overhead, including token consumption and latency, which is particularly redundant when handling obviously generated forgeries. To address this issue, we propose Fake-HR1, a large-scale hybrid-reasoning model that, to the best of our knowledge, is the first to adaptively determine whether reasoning is necessary based on the characteristics of the generative detection task. To achieve this, we design a two-stage training framework: we first perform Hybrid Fine-Tuning (HFT) for cold-start initialization, followed by online reinforcement learning with Hybrid-Reasoning Grouped Policy Optimization (HGRPO) to implicitly learn when to select an appropriate reasoning mode. Experimental results show that Fake-HR1 adaptively performs reasoning across different types of queries, surpassing existing LLMs in both reasoning ability and generative detection performance, while significantly improving response efficiency.
comment: Accepted by ICASSP 2026
☆ Perception with Guarantees: Certified Pose Estimation via Reachability Analysis
Agents in cyber-physical systems are increasingly entrusted with safety-critical tasks. Ensuring safety of these agents often requires localizing the pose for subsequent actions. Pose estimates can, e.g., be obtained from various combinations of lidar sensors, cameras, and external services such as GPS. Crucially, in safety-critical domains, a rough estimate is insufficient to formally determine safety, i.e., guaranteeing safety even in the worst-case scenario, and external services might additionally not be trustworthy. We address this problem by presenting a certified pose estimation in 3D solely from a camera image and a well-known target geometry. This is realized by formally bounding the pose, which is computed by leveraging recent results from reachability analysis and formal neural network verification. Our experiments demonstrate that our approach efficiently and accurately localizes agents in both synthetic and real-world experiments.
☆ Faster-GS: Analyzing and Improving Gaussian Splatting Optimization
Recent advances in 3D Gaussian Splatting (3DGS) have focused on accelerating optimization while preserving reconstruction quality. However, many proposed methods entangle implementation-level improvements with fundamental algorithmic modifications or trade performance for fidelity, leading to a fragmented research landscape that complicates fair comparison. In this work, we consolidate and evaluate the most effective and broadly applicable strategies from prior 3DGS research and augment them with several novel optimizations. We further investigate underexplored aspects of the framework, including numerical stability, Gaussian truncation, and gradient approximation. The resulting system, Faster-GS, provides a rigorously optimized algorithm that we evaluate across a comprehensive suite of benchmarks. Our experiments demonstrate that Faster-GS achieves up to 5$\times$ faster training while maintaining visual quality, establishing a new cost-effective and resource efficient baseline for 3DGS optimization. Furthermore, we demonstrate that optimizations can be applied to 4D Gaussian reconstruction, leading to efficient non-rigid scene optimization.
comment: Project page: https://fhahlbohm.github.io/faster-gaussian-splatting
☆ Efficient Special Stain Classification
Stains are essential in histopathology to visualize specific tissue characteristics, with Haematoxylin and Eosin (H&E) serving as the clinical standard. However, pathologists frequently utilize a variety of special stains for the diagnosis of specific morphologies. Maintaining accurate metadata for these slides is critical for quality control in clinical archives and for the integrity of computational pathology datasets. In this work, we compare two approaches for automated classification of stains using whole slide images, covering the 14 most commonly used special stains in our institute alongside standard and frozen-section H&E. We evaluate a Multi-Instance Learning (MIL) pipeline and a proposed lightweight thumbnail-based approach. On internal test data, MIL achieved the highest performance (macro F1: 0.941 for 16 classes; 0.969 for 14 merged classes), while the thumbnail approach remained competitive (0.897 and 0.953, respectively). On external TCGA data, the thumbnail model generalized best (weighted F1: 0.843 vs. 0.807 for MIL). The thumbnail approach also increased throughput by two orders of magnitude (5.635 vs. 0.018 slides/s for MIL with all patches). We conclude that thumbnail-based classification provides a scalable and robust solution for routine visual quality control in digital pathology workflows.
comment: 14 pages, 7 figures, 2 tables
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Learning to Detect Baked Goods with Limited Supervision
Monitoring leftover products provides valuable insights that can be used to optimize future production. This is especially important for German bakeries because freshly baked goods have a very short shelf life. Automating this process can reduce labor costs, improve accuracy, and streamline operations. We propose automating this process using an object detection model to identify baked goods from images. However, the large diversity of German baked goods makes fully supervised training prohibitively expensive and limits scalability. Although open-vocabulary detectors (e.g., OWLv2, Grounding DINO) offer lexibility, we demonstrate that they are insufficient for our task. While motivated by bakeries, our work addresses the broader challenges of deploying computer vision in industries, where tasks are specialized and annotated datasets are scarce. We compile dataset splits with varying supervision levels, covering 19 classes of baked goods. We propose two training workflows to train an object detection model with limited supervision. First, we combine OWLv2 and Grounding DINO localization with image-level supervision to train the model in a weakly supervised manner. Second, we improve viewpoint robustness by fine-tuning on video frames annotated using Segment Anything 2 as a pseudo-label propagation model. Using these workflows, we train YOLOv11 for our detection task due to its favorable speed accuracy tradeoff. Relying solely on image-level supervision, the model achieves a mean Average Precision (mAP) of 0.91. Finetuning with pseudo-labels raises model performance by 19.3% under non-ideal deployment conditions. Combining these workflows trains a model that surpasses our fully-supervised baseline model under non-ideal deployment conditions, despite relying only on image-level supervision.
☆ Bladder Vessel Segmentation using a Hybrid Attention-Convolution Framework
Urinary bladder cancer surveillance requires tracking tumor sites across repeated interventions, yet the deformable and hollow bladder lacks stable landmarks for orientation. While blood vessels visible during endoscopy offer a patient-specific "vascular fingerprint" for navigation, automated segmentation is challenged by imperfect endoscopic data, including sparse labels, artifacts like bubbles or variable lighting, continuous deformation, and mucosal folds that mimic vessels. State-of-the-art vessel segmentation methods often fail to address these domain-specific complexities. We introduce a Hybrid Attention-Convolution (HAC) architecture that combines Transformers to capture global vessel topology prior with a CNN that learns a residual refinement map to precisely recover thin-vessel details. To prioritize structural connectivity, the Transformer is trained on optimized ground truth data that exclude short and terminal branches. Furthermore, to address data scarcity, we employ a physics-aware pretraining, that is a self-supervised strategy using clinically grounded augmentations on unlabeled data. Evaluated on the BlaVeS dataset, consisting of endoscopic video frames, our approach achieves high accuracy (0.94) and superior precision (0.61) and clDice (0.66) compared to state-of-the-art medical segmentation models. Crucially, our method successfully suppresses false positives from mucosal folds that dynamically appear and vanish as the bladder fills and empties during surgery. Hence, HAC provides the reliable structural stability required for clinical navigation.
☆ VersaViT: Enhancing MLLM Vision Backbones via Task-Guided Optimization
Multimodal Large Language Models (MLLMs) have recently achieved remarkable success in visual-language understanding, demonstrating superior high-level semantic alignment within their vision encoders. An important question thus arises: Can these encoders serve as versatile vision backbones, capable of reliably performing classic vision-centric tasks as well? To address the question, we make the following contributions: (i) we identify that the vision encoders within MLLMs exhibit deficiencies in their dense feature representations, as evidenced by their suboptimal performance on dense prediction tasks (e.g., semantic segmentation, depth estimation); (ii) we propose VersaViT, a well-rounded vision transformer that instantiates a novel multi-task framework for collaborative post-training. This framework facilitates the optimization of the vision backbone via lightweight task heads with multi-granularity supervision; (iii) extensive experiments across various downstream tasks demonstrate the effectiveness of our method, yielding a versatile vision backbone suited for both language-mediated reasoning and pixel-level understanding.
☆ Unbalanced optimal transport for robust longitudinal lesion evolution with registration-aware and appearance-guided priors
Evaluating lesion evolution in longitudinal CT scans of can cer patients is essential for assessing treatment response, yet establishing reliable lesion correspondence across time remains challenging. Standard bipartite matchers, which rely on geometric proximity, struggle when lesions appear, disappear, merge, or split. We propose a registration-aware matcher based on unbalanced optimal transport (UOT) that accommodates unequal lesion mass and adapts priors to patient-level tumor-load changes. Our transport cost blends (i) size-normalized geometry, (ii) local registration trust from the deformation-field Jacobian, and (iii) optional patch-level appearance consistency. The resulting transport plan is sparsified by relative pruning, yielding one-to-one matches as well as new, disappearing, merging, and splitting lesions without retraining or heuristic rules. On longitudinal CT data, our approach achieves consistently higher edge-detection precision and recall, improved lesion-state recall, and superior lesion-graph component F1 scores versus distance-only baselines.
comment: This work has been submitted to the IEEE for possible publication. Accepted at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ GeoFormer: A Swin Transformer-Based Framework for Scene-Level Building Height and Footprint Estimation from Sentinel Imagery
Accurate three-dimensional urban data are critical for climate modelling, disaster risk assessment, and urban planning, yet remain scarce due to reliance on proprietary sensors or poor cross-city generalisation. We propose GeoFormer, an open-source Swin Transformer framework that jointly estimates building height (BH) and footprint (BF) on a 100 m grid using only Sentinel-1/2 imagery and open DEM data. A geo-blocked splitting strategy ensures strict spatial independence between training and test sets. Evaluated over 54 diverse cities, GeoFormer achieves a BH RMSE of 3.19 m and a BF RMSE of 0.05, improving 7.5% and 15.3% over the strongest CNN baseline, while maintaining under 3.5 m BH RMSE in cross-continent transfer. Ablation studies confirm that DEM is indispensable for height estimation and that optical reflectance dominates over SAR, though multi-source fusion yields the best overall accuracy. All code, weights, and global products are publicly released.
☆ Monocular Normal Estimation via Shading Sequence Estimation ICLR 2026
Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
comment: Accepted by ICLR 2026 (Oral Presentation)
☆ A benchmark for video-based laparoscopic skill analysis and assessment
Laparoscopic surgery is a complex surgical technique that requires extensive training. Recent advances in deep learning have shown promise in supporting this training by enabling automatic video-based assessment of surgical skills. However, the development and evaluation of deep learning models is currently hindered by the limited size of available annotated datasets. To address this gap, we introduce the Laparoscopic Skill Analysis and Assessment (LASANA) dataset, comprising 1270 stereo video recordings of four basic laparoscopic training tasks. Each recording is annotated with a structured skill rating, aggregated from three independent raters, as well as binary labels indicating the presence or absence of task-specific errors. The majority of recordings originate from a laparoscopic training course, thereby reflecting a natural variation in the skill of participants. To facilitate benchmarking of both existing and novel approaches for video-based skill assessment and error recognition, we provide predefined data splits for each task. Furthermore, we present baseline results from a deep learning model as a reference point for future comparisons.
comment: under review
☆ SARS: A Novel Face and Body Shape and Appearance Aware 3D Reconstruction System extends Morphable Models
Morphable Models (3DMMs) are a type of morphable model that takes 2D images as inputs and recreates the structure and physical appearance of 3D objects, especially human faces and bodies. 3DMM combines identity and expression blendshapes with a basic face mesh to create a detailed 3D model. The variability in the 3D Morphable models can be controlled by tuning diverse parameters. They are high-level image descriptors, such as shape, texture, illumination, and camera parameters. Previous research in 3D human reconstruction concentrated solely on global face structure or geometry, ignoring face semantic features such as age, gender, and facial landmarks characterizing facial boundaries, curves, dips, and wrinkles. In order to accommodate changes in these high-level facial characteristics, this work introduces a shape and appearance-aware 3D reconstruction system (named SARS by us), a c modular pipeline that extracts body and face information from a single image to properly rebuild the 3D model of the human full body.
☆ AdaTSQ: Pushing the Pareto Frontier of Diffusion Transformers via Temporal-Sensitivity Quantization
Diffusion Transformers (DiTs) have emerged as the state-of-the-art backbone for high-fidelity image and video generation. However, their massive computational cost and memory footprint hinder deployment on edge devices. While post-training quantization (PTQ) has proven effective for large language models (LLMs), directly applying existing methods to DiTs yields suboptimal results due to the neglect of the unique temporal dynamics inherent in diffusion processes. In this paper, we propose AdaTSQ, a novel PTQ framework that pushes the Pareto frontier of efficiency and quality by exploiting the temporal sensitivity of DiTs. First, we propose a Pareto-aware timestep-dynamic bit-width allocation strategy. We model the quantization policy search as a constrained pathfinding problem. We utilize a beam search algorithm guided by end-to-end reconstruction error to dynamically assign layer-wise bit-widths across different timesteps. Second, we propose a Fisher-guided temporal calibration mechanism. It leverages temporal Fisher information to prioritize calibration data from highly sensitive timesteps, seamlessly integrating with Hessian-based weight optimization. Extensive experiments on four advanced DiTs (e.g., Flux-Dev, Flux-Schnell, Z-Image, and Wan2.1) demonstrate that AdaTSQ significantly outperforms state-of-the-art methods like SVDQuant and ViDiT-Q. Our code will be released at https://github.com/Qiushao-E/AdaTSQ.
comment: Code will be released at https://github.com/Qiushao-E/AdaTSQ/
☆ MVISTA-4D: View-Consistent 4D World Model with Test-Time Action Inference for Robotic Manipulation
World-model-based imagine-then-act becomes a promising paradigm for robotic manipulation, yet existing approaches typically support either purely image-based forecasting or reasoning over partial 3D geometry, limiting their ability to predict complete 4D scene dynamics. This work proposes a novel embodied 4D world model that enables geometrically consistent, arbitrary-view RGBD generation: given only a single-view RGBD observation as input, the model imagines the remaining viewpoints, which can then be back-projected and fused to assemble a more complete 3D structure across time. To efficiently learn the multi-view, cross-modality generation, we explicitly design cross-view and cross-modality feature fusion that jointly encourage consistency between RGB and depth and enforce geometric alignment across views. Beyond prediction, converting generated futures into actions is often handled by inverse dynamics, which is ill-posed because multiple actions can explain the same transition. We address this with a test-time action optimization strategy that backpropagates through the generative model to infer a trajectory-level latent best matching the predicted future, and a residual inverse dynamics model that turns this trajectory prior into accurate executable actions. Experiments on three datasets demonstrate strong performance on both 4D scene generation and downstream manipulation, and ablations provide practical insights into the key design choices.
☆ BabyMamba-HAR: Lightweight Selective State Space Models for Efficient Human Activity Recognition on Resource Constrained Devices
Human activity recognition (HAR) on wearable and mobile devices is constrained by memory footprint and computational budget, yet competitive accuracy must be maintained across heterogeneous sensor configurations. Selective state space models (SSMs) offer linear time sequence processing with input dependent gating, presenting a compelling alternative to quadratic complexity attention mechanisms. However, the design space for deploying SSMs in the TinyML regime remains largely unexplored. In this paper, BabyMamba-HAR is introduced, a framework comprising two novel lightweight Mamba inspired architectures optimized for resource constrained HAR: (1) CI-BabyMamba-HAR, using a channel independent stem that processes each sensor channel through shared weight, but instance independent transformations to prevent cross channel noise propagation, and (2) Crossover-BiDir-BabyMamba-HAR, using an early fusion stem that achieves channel count independent computational complexity. Both variants incorporate weight tied bidirectional scanning and lightweight temporal attention pooling. Through evaluation across eight diverse benchmarks, it is demonstrated that Crossover-BiDir-BabyMamba-HAR achieves 86.52% average macro F1-score with approximately 27K parameters and 2.21M MACs, matching TinyHAR (86.16%) while requiring 11x fewer MACs on high channel datasets. Systematic ablation studies reveal that bidirectional scanning contributes up to 8.42% F1-score improvement, and gated temporal attention provides up to 8.94% F1-score gain over mean pooling. These findings establish practical design principles for deploying selective state space models as efficient TinyML backbones for HAR.
☆ Free-GVC: Towards Training-Free Extreme Generative Video Compression with Temporal Coherence
Building on recent advances in video generation, generative video compression has emerged as a new paradigm for achieving visually pleasing reconstructions. However, existing methods exhibit limited exploitation of temporal correlations, causing noticeable flicker and degraded temporal coherence at ultra-low bitrates. In this paper, we propose Free-GVC, a training-free generative video compression framework that reformulates video coding as latent trajectory compression guided by a video diffusion prior. Our method operates at the group-of-pictures (GOP) level, encoding video segments into a compact latent space and progressively compressing them along the diffusion trajectory. To ensure perceptually consistent reconstruction across GOPs, we introduce an Adaptive Quality Control module that dynamically constructs an online rate-perception surrogate model to predict the optimal diffusion step for each GOP. In addition, an Inter-GOP Alignment module establishes frame overlap and performs latent fusion between adjacent groups, thereby mitigating flicker and enhancing temporal coherence. Experiments show that Free-GVC achieves an average of 93.29% BD-Rate reduction in DISTS over the latest neural codec DCVC-RT, and a user study further confirms its superior perceptual quality and temporal coherence at ultra-low bitrates.
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
Reason-IAD: Knowledge-Guided Dynamic Latent Reasoning for Explainable Industrial Anomaly Detection
Industrial anomaly detection demands precise reasoning over fine-grained defect patterns. However, existing multimodal large language models (MLLMs), pretrained on general-domain data, often struggle to capture category-specific anomalies, thereby limiting both detection accuracy and interpretability. To address these limitations, we propose Reason-IAD, a knowledge-guided dynamic latent reasoning framework for explainable industrial anomaly detection. Reason-IAD comprises two core components. First, a retrieval-augmented knowledge module incorporates category-specific textual descriptions into the model input, enabling context-aware reasoning over domain-specific defects. Second, an entropy-driven latent reasoning mechanism conducts iterative exploration within a compact latent space using optimizable latent think tokens, guided by an entropy-based reward that encourages confident and stable predictions. Furthermore, a dynamic visual injection strategy selectively incorporates the most informative image patches into the latent sequence, directing the reasoning process toward regions critical for anomaly detection. Extensive experimental results demonstrate that Reason-IAD consistently outperforms state-of-the-art methods. The code will be publicly available at https://github.com/chenpeng052/Reason-IAD.
☆ Kelix Technique Report
Autoregressive large language models (LLMs) scale well by expressing diverse tasks as sequences of discrete natural-language tokens and training with next-token prediction, which unifies comprehension and generation under self-supervision. Extending this paradigm to multimodal data requires a shared, discrete representation across modalities. However, most vision-language models (VLMs) still rely on a hybrid interface: discrete text tokens paired with continuous Vision Transformer (ViT) features. Because supervision is largely text-driven, these models are often biased toward understanding and cannot fully leverage large-scale self-supervised learning on non-text data. Recent work has explored discrete visual tokenization to enable fully autoregressive multimodal modeling, showing promising progress toward unified understanding and generation. Yet existing discrete vision tokens frequently lose information due to limited code capacity, resulting in noticeably weaker understanding than continuous-feature VLMs. We present Kelix, a fully discrete autoregressive unified model that closes the understanding gap between discrete and continuous visual representations.
comment: Work in progress
☆ ARK: A Dual-Axis Multimodal Retrieval Benchmark along Reasoning and Knowledge
Existing multimodal retrieval benchmarks largely emphasize semantic matching on daily-life images and offer limited diagnostics of professional knowledge and complex reasoning. To address this gap, we introduce ARK, a benchmark designed to analyze multimodal retrieval from two complementary perspectives: (i) knowledge domains (five domains with 17 subtypes), which characterize the content and expertise retrieval relies on, and (ii) reasoning skills (six categories), which characterize the type of inference over multimodal evidence required to identify the correct candidate. Specifically, ARK evaluates retrieval with both unimodal and multimodal queries and candidates, covering 16 heterogeneous visual data types. To avoid shortcut matching during evaluation, most queries are paired with targeted hard negatives that require multi-step reasoning. We evaluate 23 representative text-based and multimodal retrievers on ARK and observe a pronounced gap between knowledge-intensive and reasoning-intensive retrieval, with fine-grained visual and spatial reasoning emerging as persistent bottlenecks. We further show that simple enhancements such as re-ranking and rewriting yield consistent improvements, but substantial headroom remains.
☆ SAKED: Mitigating Hallucination in Large Vision-Language Models via Stability-Aware Knowledge Enhanced Decoding
Hallucinations in Large Vision-Language Models (LVLMs) pose significant security and reliability risks in real-world applications. Inspired by the observation that humans are more error-prone when uncertain or hesitant, we investigate how instability in a model 's internal knowledge contributes to LVLM hallucinations. We conduct extensive empirical analyses from three perspectives, namely attention heads, model layers, and decoding tokens, and identify three key hallucination patterns: (i) visual activation drift across attention heads, (ii) pronounced knowledge fluctuations across layers, and (iii) visual focus distraction between neighboring output tokens. Building on these findings, we propose Stability-Aware Knowledge-Enhanced Decoding (SAKED), which introduces a layer-wise Knowledge Stability Score (KSS) to quantify knowledge stability throughout the model. By contrasting the most stability-aware and stability-agnostic layers, SAKED suppresses decoding noise and dynamically leverages the most reliable internal knowledge for faithful token generation. Moreover, SAKED is training-free and can be seamlessly integrated into different architectures. Extensive experiments demonstrate that SAKED achieves state-of-the-art performance for hallucination mitigation on various models, tasks, and benchmarks.
☆ CompSplat: Compression-aware 3D Gaussian Splatting for Real-world Video
High-quality novel view synthesis (NVS) from real-world videos is crucial for applications such as cultural heritage preservation, digital twins, and immersive media. However, real-world videos typically contain long sequences with irregular camera trajectories and unknown poses, leading to pose drift, feature misalignment, and geometric distortion during reconstruction. Moreover, lossy compression amplifies these issues by introducing inconsistencies that gradually degrade geometry and rendering quality. While recent studies have addressed either long-sequence NVS or unposed reconstruction, compression-aware approaches still focus on specific artifacts or limited scenarios, leaving diverse compression patterns in long videos insufficiently explored. In this paper, we propose CompSplat, a compression-aware training framework that explicitly models frame-wise compression characteristics to mitigate inter-frame inconsistency and accumulated geometric errors. CompSplat incorporates compression-aware frame weighting and an adaptive pruning strategy to enhance robustness and geometric consistency, particularly under heavy compression. Extensive experiments on challenging benchmarks, including Tanks and Temples, Free, and Hike, demonstrate that CompSplat achieves state-of-the-art rendering quality and pose accuracy, significantly surpassing most recent state-of-the-art NVS approaches under severe compression conditions.
comment: Preprint. Under review
☆ SciFlow-Bench: Evaluating Structure-Aware Scientific Diagram Generation via Inverse Parsing
Scientific diagrams convey explicit structural information, yet modern text-to-image models often produce visually plausible but structurally incorrect results. Existing benchmarks either rely on image-centric or subjective metrics insensitive to structure, or evaluate intermediate symbolic representations rather than final rendered images, leaving pixel-based diagram generation underexplored. We introduce SciFlow-Bench, a structure-first benchmark for evaluating scientific diagram generation directly from pixel-level outputs. Built from real scientific PDFs, SciFlow-Bench pairs each source framework figure with a canonical ground-truth graph and evaluates models as black-box image generators under a closed-loop, round-trip protocol that inverse-parses generated diagram images back into structured graphs for comparison. This design enforces evaluation by structural recoverability rather than visual similarity alone, and is enabled by a hierarchical multi-agent system that coordinates planning, perception, and structural reasoning. Experiments show that preserving structural correctness remains a fundamental challenge, particularly for diagrams with complex topology, underscoring the need for structure-aware evaluation.
☆ Where Do Images Come From? Analyzing Captions to Geographically Profile Datasets
Recent studies show that text-to-image models often fail to generate geographically representative images, raising concerns about the representativeness of their training data and motivating the question: which parts of the world do these training examples come from? We geographically profile large-scale multimodal datasets by mapping image-caption pairs to countries based on location information extracted from captions using LLMs. Studying English captions from three widely used datasets (Re-LAION, DataComp1B, and Conceptual Captions) across $20$ common entities (e.g., house, flag), we find that the United States, the United Kingdom, and Canada account for $48.0\%$ of samples, while South American and African countries are severely under-represented with only $1.8\%$ and $3.8\%$ of images, respectively. We observe a strong correlation between a country's GDP and its representation in the data ($ρ= 0.82$). Examining non-English subsets for $4$ languages from the Re-LAION dataset, we find that representation skews heavily toward countries where these languages are predominantly spoken. Additionally, we find that higher representation does not necessarily translate to greater visual or semantic diversity. Finally, analyzing country-specific images generated by Stable Diffusion v1.3 trained on Re-LAION, we show that while generations appear realistic, they are severely limited in their coverage compared to real-world images.
comment: 41 pages, 20 figures
Self-Supervised Learning as Discrete Communication
Most self-supervised learning (SSL) methods learn continuous visual representations by aligning different views of the same input, offering limited control over how information is structured across representation dimensions. In this work, we frame visual self-supervised learning as a discrete communication process between a teacher and a student network, where semantic information is transmitted through a fixed-capacity binary channel. Rather than aligning continuous features, the student predicts multi-label binary messages produced by the teacher. Discrete agreement is enforced through an element-wise binary cross-entropy objective, while a coding-rate regularization term encourages effective utilization of the constrained channel, promoting structured representations. We further show that periodically reinitializing the projection head strengthens this effect by encouraging embeddings that remain predictive across multiple discrete encodings. Extensive experiments demonstrate consistent improvements over continuous agreement baselines on image classification, retrieval, and dense visual prediction tasks, as well as under domain shift through self-supervised adaptation. Beyond backbone representations, we analyze the learned binary codes and show that they form a compact and informative discrete language, capturing semantic factors reusable across classes.
☆ Robust Vision Systems for Connected and Autonomous Vehicles: Security Challenges and Attack Vectors
This article investigates the robustness of vision systems in Connected and Autonomous Vehicles (CAVs), which is critical for developing Level-5 autonomous driving capabilities. Safe and reliable CAV navigation undeniably depends on robust vision systems that enable accurate detection of objects, lane markings, and traffic signage. We analyze the key sensors and vision components essential for CAV navigation to derive a reference architecture for CAV vision system (CAVVS). This reference architecture provides a basis for identifying potential attack surfaces of CAVVS. Subsequently, we elaborate on identified attack vectors targeting each attack surface, rigorously evaluating their implications for confidentiality, integrity, and availability (CIA). Our study provides a comprehensive understanding of attack vector dynamics in vision systems, which is crucial for formulating robust security measures that can uphold the principles of the CIA triad.
comment: Submitted to IEEE Transactions on Intelligent Vehicles
☆ Toward Fine-Grained Facial Control in 3D Talking Head Generation
Audio-driven talking head generation is a core component of digital avatars, and 3D Gaussian Splatting has shown strong performance in real-time rendering of high-fidelity talking heads. However, achieving precise control over fine-grained facial movements remains a significant challenge, particularly due to lip-synchronization inaccuracies and facial jitter, both of which can contribute to the uncanny valley effect. To address these challenges, we propose Fine-Grained 3D Gaussian Splatting (FG-3DGS), a novel framework that enables temporally consistent and high-fidelity talking head generation. Our method introduces a frequency-aware disentanglement strategy to explicitly model facial regions based on their motion characteristics. Low-frequency regions, such as the cheeks, nose, and forehead, are jointly modeled using a standard MLP, while high-frequency regions, including the eyes and mouth, are captured separately using a dedicated network guided by facial area masks. The predicted motion dynamics, represented as Gaussian deltas, are applied to the static Gaussians to generate the final head frames, which are rendered via a rasterizer using frame-specific camera parameters. Additionally, a high-frequency-refined post-rendering alignment mechanism, learned from large-scale audio-video pairs by a pretrained model, is incorporated to enhance per-frame generation and achieve more accurate lip synchronization. Extensive experiments on widely used datasets for talking head generation demonstrate that our method outperforms recent state-of-the-art approaches in producing high-fidelity, lip-synced talking head videos.
☆ Allure of Craquelure: A Variational-Generative Approach to Crack Detection in Paintings
Recent advances in imaging technologies, deep learning and numerical performance have enabled non-invasive detailed analysis of artworks, supporting their documentation and conservation. In particular, automated detection of craquelure in digitized paintings is crucial for assessing degradation and guiding restoration, yet remains challenging due to the possibly complex scenery and the visual similarity between cracks and crack-like artistic features such as brush strokes or hair. We propose a hybrid approach that models crack detection as an inverse problem, decomposing an observed image into a crack-free painting and a crack component. A deep generative model is employed as powerful prior for the underlying artwork, while crack structures are captured using a Mumford--Shah-type variational functional together with a crack prior. Joint optimization yields a pixel-level map of crack localizations in the painting.
☆ From Lightweight CNNs to SpikeNets: Benchmarking Accuracy-Energy Tradeoffs with Pruned Spiking SqueezeNet
Spiking Neural Networks (SNNs) are increasingly studied as energy-efficient alternatives to Convolutional Neural Networks (CNNs), particularly for edge intelligence. However, prior work has largely emphasized large-scale models, leaving the design and evaluation of lightweight CNN-to-SNN pipelines underexplored. In this paper, we present the first systematic benchmark of lightweight SNNs obtained by converting compact CNN architectures into spiking networks, where activations are modeled with Leaky-Integrate-and-Fire (LIF) neurons and trained using surrogate gradient descent under a unified setup. We construct spiking variants of ShuffleNet, SqueezeNet, MnasNet, and MixNet, and evaluate them on CIFAR-10, CIFAR-100, and TinyImageNet, measuring accuracy, F1-score, parameter count, computational complexity, and energy consumption. Our results show that SNNs can achieve up to 15.7x higher energy efficiency than their CNN counterparts while retaining competitive accuracy. Among these, the SNN variant of SqueezeNet consistently outperforms other lightweight SNNs. To further optimize this model, we apply a structured pruning strategy that removes entire redundant modules, yielding a pruned architecture, SNN-SqueezeNet-P. This pruned model improves CIFAR-10 accuracy by 6% and reduces parameters by 19% compared to the original SNN-SqueezeNet. Crucially, it narrows the gap with CNN-SqueezeNet, achieving nearly the same accuracy (only 1% lower) but with an 88.1% reduction in energy consumption due to sparse spike-driven computations. Together, these findings establish lightweight SNNs as practical, low-power alternatives for edge deployment, highlighting a viable path toward deploying high-performance, low-power intelligence on the edge.
☆ Stroke3D: Lifting 2D strokes into rigged 3D model via latent diffusion models ICLR 2026
Rigged 3D assets are fundamental to 3D deformation and animation. However, existing 3D generation methods face challenges in generating animatable geometry, while rigging techniques lack fine-grained structural control over skeleton creation. To address these limitations, we introduce Stroke3D, a novel framework that directly generates rigged meshes from user inputs: 2D drawn strokes and a descriptive text prompt. Our approach pioneers a two-stage pipeline that separates the generation into: 1) Controllable Skeleton Generation, we employ the Skeletal Graph VAE (Sk-VAE) to encode the skeleton's graph structure into a latent space, where the Skeletal Graph DiT (Sk-DiT) generates a skeletal embedding. The generation process is conditioned on both the text for semantics and the 2D strokes for explicit structural control, with the VAE's decoder reconstructing the final high-quality 3D skeleton; and 2) Enhanced Mesh Synthesis via TextuRig and SKA-DPO, where we then synthesize a textured mesh conditioned on the generated skeleton. For this stage, we first enhance an existing skeleton-to-mesh model by augmenting its training data with TextuRig: a dataset of textured and rigged meshes with captions, curated from Objaverse-XL. Additionally, we employ a preference optimization strategy, SKA-DPO, guided by a skeleton-mesh alignment score, to further improve geometric fidelity. Together, our framework enables a more intuitive workflow for creating ready to animate 3D content. To the best of our knowledge, our work is the first to generate rigged 3D meshes conditioned on user-drawn 2D strokes. Extensive experiments demonstrate that Stroke3D produces plausible skeletons and high-quality meshes.
comment: Accepted by ICLR 2026
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ GenSeg-R1: RL-Driven Vision-Language Grounding for Fine-Grained Referring Segmentation
We study fine-grained referring image segmentation via a decoupled reason-then-segment pipeline. A vision-language model (VLM) receives an image and a natural-language query, reasons about the scene, and emits structured spatial prompts: a bounding box plus two interior keypoints for every referred instance. A frozen promptable segmenter (SAM 2) converts these prompts into high-quality masks. Within our GenSeg-R1 framework we finetune Qwen3-VL models (4B and 8B parameters) using Group Relative Policy Optimization (GRPO), requiring no supervised reasoning-chain annotations. On RefCOCOg validation our best model (GenSeg-R1-8B) achieves 0.7127 cIoU and 0.7382 mIoU, substantially outperforming the corresponding Qwen3-VL Instruct baselines (+15.3 and +21.9 points, respectively) and surpassing Seg-Zero-7B [3] by +3.3 cIoU under identical evaluation. We further introduce GenSeg-R1-G, a variant trained on GRefCOCO [9] with a SAM 2 in-the-loop reward that directly optimizes mask quality. On GRefCOCO validation GenSeg-R1-G achieves 76.69% target mIoU with 82.40% accuracy on negative (no-target) prompts, substantially outperforming Seg-R1-7B and Seg-Zero-7B, which lack no-target detection capability. On ReasonSeg test, GenSeg-R1-4B reaches 68.40% mIoU, surpassing Seg-Zero-7B by +7.0 and Seg-R1-7B by +10.7 points.
☆ Semi-supervised Liver Segmentation and Patch-based Fibrosis Staging with Registration-aided Multi-parametric MRI
Liver fibrosis poses a substantial challenge in clinical practice, emphasizing the necessity for precise liver segmentation and accurate disease staging. Based on the CARE Liver 2025 Track 4 Challenge, this study introduces a multi-task deep learning framework developed for liver segmentation (LiSeg) and liver fibrosis staging (LiFS) using multiparametric MRI. The LiSeg phase addresses the challenge of limited annotated images and the complexities of multi-parametric MRI data by employing a semi-supervised learning model that integrates image segmentation and registration. By leveraging both labeled and unlabeled data, the model overcomes the difficulties introduced by domain shifts and variations across modalities. In the LiFS phase, we employed a patchbased method which allows the visualization of liver fibrosis stages based on the classification outputs. Our approach effectively handles multimodality imaging data, limited labels, and domain shifts. The proposed method has been tested by the challenge organizer on an independent test set that includes in-distribution (ID) and out-of-distribution (OOD) cases using three-channel MRIs (T1, T2, DWI) and seven-channel MRIs (T1, T2, DWI, GED1-GED4). The code is freely available. Github link: https://github.com/mileywang3061/Care-Liver
☆ TreeCUA: Efficiently Scaling GUI Automation with Tree-Structured Verifiable Evolution
Effectively scaling GUI automation is essential for computer-use agents (CUAs); however, existing work primarily focuses on scaling GUI grounding rather than the more crucial GUI planning, which requires more sophisticated data collection. In reality, the exploration process of a CUA across apps/desktops/web pages typically follows a tree structure, with earlier functional entry points often being explored more frequently. Thus, organizing large-scale trajectories into tree structures can reduce data cost and streamline the data scaling of GUI planning. In this work, we propose TreeCUA to efficiently scale GUI automation with tree-structured verifiable evolution. We propose a multi-agent collaborative framework to explore the environment, verify actions, summarize trajectories, and evaluate quality to generate high-quality and scalable GUI trajectories. To improve efficiency, we devise a novel tree-based topology to store and replay duplicate exploration nodes, and design an adaptive exploration algorithm to balance the depth (\emph{i.e.}, trajectory difficulty) and breadth (\emph{i.e.}, trajectory diversity). Moreover, we develop world knowledge guidance and global memory backtracking to avoid low-quality generation. Finally, we naturally extend and propose the TreeCUA-DPO method from abundant tree node information, improving GUI planning capability by referring to the branch information of adjacent trajectories. Experimental results show that TreeCUA and TreeCUA-DPO offer significant improvements, and out-of-domain (OOD) studies further demonstrate strong generalization. All trajectory node information and code will be available at https://github.com/UITron-hub/TreeCUA.
comment: 14 pages, 7 figures
☆ Time2General: Learning Spatiotemporal Invariant Representations for Domain-Generalization Video Semantic Segmentation
Domain Generalized Video Semantic Segmentation (DGVSS) is trained on a single labeled driving domain and is directly deployed on unseen domains without target labels and test-time adaptation while maintaining temporally consistent predictions over video streams. In practice, both domain shift and temporal-sampling shift break correspondence-based propagation and fixed-stride temporal aggregation, causing severe frame-to-frame flicker even in label-stable regions. We propose Time2General, a DGVSS framework built on Stability Queries. Time2General introduces a Spatio-Temporal Memory Decoder that aggregates multi-frame context into a clip-level spatio-temporal memory and decodes temporally consistent per-frame masks without explicit correspondence propagation. To further suppress flicker and improve robustness to varying sampling rates, the Masked Temporal Consistency Loss is proposed to regularize temporal prediction discrepancies across different strides, and randomize training strides to expose the model to diverse temporal gaps. Extensive experiments on multiple driving benchmarks show that Time2General achieves a substantial improvement in cross-domain accuracy and temporal stability over prior DGSS and VSS baselines while running at up to 18 FPS. Code will be released after the review process.
☆ VideoAfford: Grounding 3D Affordance from Human-Object-Interaction Videos via Multimodal Large Language Model
3D affordance grounding aims to highlight the actionable regions on 3D objects, which is crucial for robotic manipulation. Previous research primarily focused on learning affordance knowledge from static cues such as language and images, which struggle to provide sufficient dynamic interaction context that can reveal temporal and causal cues. To alleviate this predicament, we collect a comprehensive video-based 3D affordance dataset, \textit{VIDA}, which contains 38K human-object-interaction videos covering 16 affordance types, 38 object categories, and 22K point clouds. Based on \textit{VIDA}, we propose a strong baseline: VideoAfford, which activates multimodal large language models with additional affordance segmentation capabilities, enabling both world knowledge reasoning and fine-grained affordance grounding within a unified framework. To enhance action understanding capability, we leverage a latent action encoder to extract dynamic interaction priors from HOI videos. Moreover, we introduce a \textit{spatial-aware} loss function to enable VideoAfford to obtain comprehensive 3D spatial knowledge. Extensive experimental evaluations demonstrate that our model significantly outperforms well-established methods and exhibits strong open-world generalization with affordance reasoning abilities. All datasets and code will be publicly released to advance research in this area.
☆ Towards Training-free Multimodal Hate Localisation with Large Language Models
The proliferation of hateful content in online videos poses severe threats to individual well-being and societal harmony. However, existing solutions for video hate detection either rely heavily on large-scale human annotations or lack fine-grained temporal precision. In this work, we propose LELA, the first training-free Large Language Model (LLM) based framework for hate video localization. Distinct from state-of-the-art models that depend on supervised pipelines, LELA leverages LLMs and modality-specific captioning to detect and temporally localize hateful content in a training-free manner. Our method decomposes a video into five modalities, including image, speech, OCR, music, and video context, and uses a multi-stage prompting scheme to compute fine-grained hateful scores for each frame. We further introduce a composition matching mechanism to enhance cross-modal reasoning. Experiments on two challenging benchmarks, HateMM and MultiHateClip, demonstrate that LELA outperforms all existing training-free baselines by a large margin. We also provide extensive ablations and qualitative visualizations, establishing LELA as a strong foundation for scalable and interpretable hate video localization.
☆ AnyTouch 2: General Optical Tactile Representation Learning For Dynamic Tactile Perception ICLR 2026
Real-world contact-rich manipulation demands robots to perceive temporal tactile feedback, capture subtle surface deformations, and reason about object properties as well as force dynamics. Although optical tactile sensors are uniquely capable of providing such rich information, existing tactile datasets and models remain limited. These resources primarily focus on object-level attributes (e.g., material) while largely overlooking fine-grained tactile temporal dynamics during physical interactions. We consider that advancing dynamic tactile perception requires a systematic hierarchy of dynamic perception capabilities to guide both data collection and model design. To address the lack of tactile data with rich dynamic information, we present ToucHD, a large-scale hierarchical tactile dataset spanning tactile atomic actions, real-world manipulations, and touch-force paired data. Beyond scale, ToucHD establishes a comprehensive tactile dynamic data ecosystem that explicitly supports hierarchical perception capabilities from the data perspective. Building on it, we propose AnyTouch 2, a general tactile representation learning framework for diverse optical tactile sensors that unifies object-level understanding with fine-grained, force-aware dynamic perception. The framework captures both pixel-level and action-specific deformations across frames, while explicitly modeling physical force dynamics, thereby learning multi-level dynamic perception capabilities from the model perspective. We evaluate our model on benchmarks that covers static object properties and dynamic physical attributes, as well as real-world manipulation tasks spanning multiple tiers of dynamic perception capabilities-from basic object-level understanding to force-aware dexterous manipulation. Experimental results demonstrate consistent and strong performance across sensors and tasks.
comment: Accepted by ICLR 2026
☆ AGMark: Attention-Guided Dynamic Watermarking for Large Vision-Language Models
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks may introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases. Additionally, current vision-specific watermarks rely on a static, one-time estimation of vision critical weights and ignore the weight distribution density when determining the proportion of protected tokens. This design fails to account for dynamic changes in visual dependence during generation and may introduce low-quality tokens in the long tail. To address these challenges, we propose Attention-Guided Dynamic Watermarking (AGMark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. At each decoding step, AGMark first dynamically identifies semantic-critical evidence based on attention weights for visual relevance, together with context-aware coherence cues, resulting in a more adaptive and well-calibrated evidence-weight distribution. It then determines the proportion of semantic-critical tokens by jointly considering uncertainty awareness (token entropy) and evidence calibration (weight density), thereby enabling adaptive vocabulary partitioning to avoid irrelevant tokens. Empirical results confirm that AGMark outperforms conventional methods, observably improving generation quality and yielding particularly strong gains in visual semantic fidelity in the later stages of generation. The framework maintains highly competitive detection accuracy (at least 99.36\% AUC) and robust attack resilience (at least 88.61\% AUC) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multi-modal watermarking.
comment: preprint
☆ Tele-Omni: a Unified Multimodal Framework for Video Generation and Editing
Recent advances in diffusion-based video generation have substantially improved visual fidelity and temporal coherence. However, most existing approaches remain task-specific and rely primarily on textual instructions, limiting their ability to handle multimodal inputs, contextual references, and diverse video generation and editing scenarios within a unified framework. Moreover, many video editing methods depend on carefully engineered pipelines tailored to individual operations, which hinders scalability and composability. In this paper, we propose Tele-Omni, a unified multimodal framework for video generation and editing that follows multimodal instructions, including text, images, and reference videos, within a single model. Tele-Omni leverages pretrained multimodal large language models to parse heterogeneous instructions and infer structured generation or editing intents, while diffusion-based generators perform high-quality video synthesis conditioned on these structured signals. To enable joint training across heterogeneous video tasks, we introduce a task-aware data processing pipeline that unifies multimodal inputs into a structured instruction format while preserving task-specific constraints. Tele-Omni supports a wide range of video-centric tasks, including text-to-video generation, image-to-video generation, first-last-frame video generation, in-context video generation, and in-context video editing. By decoupling instruction parsing from video synthesis and combining it with task-aware data design, Tele-Omni achieves flexible multimodal control while maintaining strong temporal coherence and visual consistency. Experimental results demonstrate that Tele-Omni achieves competitive performance across multiple tasks.
☆ Hand2World: Autoregressive Egocentric Interaction Generation via Free-Space Hand Gestures
Egocentric interactive world models are essential for augmented reality and embodied AI, where visual generation must respond to user input with low latency, geometric consistency, and long-term stability. We study egocentric interaction generation from a single scene image under free-space hand gestures, aiming to synthesize photorealistic videos in which hands enter the scene, interact with objects, and induce plausible world dynamics under head motion. This setting introduces fundamental challenges, including distribution shift between free-space gestures and contact-heavy training data, ambiguity between hand motion and camera motion in monocular views, and the need for arbitrary-length video generation. We present Hand2World, a unified autoregressive framework that addresses these challenges through occlusion-invariant hand conditioning based on projected 3D hand meshes, allowing visibility and occlusion to be inferred from scene context rather than encoded in the control signal. To stabilize egocentric viewpoint changes, we inject explicit camera geometry via per-pixel Plücker-ray embeddings, disentangling camera motion from hand motion and preventing background drift. We further develop a fully automated monocular annotation pipeline and distill a bidirectional diffusion model into a causal generator, enabling arbitrary-length synthesis. Experiments on three egocentric interaction benchmarks show substantial improvements in perceptual quality and 3D consistency while supporting camera control and long-horizon interactive generation.
☆ MieDB-100k: A Comprehensive Dataset for Medical Image Editing
The scarcity of high-quality data remains a primary bottleneck in adapting multimodal generative models for medical image editing. Existing medical image editing datasets often suffer from limited diversity, neglect of medical image understanding and inability to balance quality with scalability. To address these gaps, we propose MieDB-100k, a large-scale, high-quality and diverse dataset for text-guided medical image editing. It categorizes editing tasks into perspectives of Perception, Modification and Transformation, considering both understanding and generation abilities. We construct MieDB-100k via a data curation pipeline leveraging both modality-specific expert models and rule-based data synthetic methods, followed by rigorous manual inspection to ensure clinical fidelity. Extensive experiments demonstrate that model trained with MieDB-100k consistently outperform both open-source and proprietary models while exhibiting strong generalization ability. We anticipate that this dataset will serve as a cornerstone for future advancements in specialized medical image editing.
☆ Delving into Spectral Clustering with Vision-Language Representations ICLR26
Spectral clustering is known as a powerful technique in unsupervised data analysis. The vast majority of approaches to spectral clustering are driven by a single modality, leaving the rich information in multi-modal representations untapped. Inspired by the recent success of vision-language pre-training, this paper enriches the landscape of spectral clustering from a single-modal to a multi-modal regime. Particularly, we propose Neural Tangent Kernel Spectral Clustering that leverages cross-modal alignment in pre-trained vision-language models. By anchoring the neural tangent kernel with positive nouns, i.e., those semantically close to the images of interest, we arrive at formulating the affinity between images as a coupling of their visual proximity and semantic overlap. We show that this formulation amplifies within-cluster connections while suppressing spurious ones across clusters, hence encouraging block-diagonal structures. In addition, we present a regularized affinity diffusion mechanism that adaptively ensembles affinity matrices induced by different prompts. Extensive experiments on \textbf{16} benchmarks -- including classical, large-scale, fine-grained and domain-shifted datasets -- manifest that our method consistently outperforms the state-of-the-art by a large margin.
comment: ICLR26
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Scalpel: Fine-Grained Alignment of Attention Activation Manifolds via Mixture Gaussian Bridges to Mitigate Multimodal Hallucination WACV 2026
Rapid progress in large vision-language models (LVLMs) has achieved unprecedented performance in vision-language tasks. However, due to the strong prior of large language models (LLMs) and misaligned attention across modalities, LVLMs often generate outputs inconsistent with visual content - termed hallucination. To address this, we propose \textbf{Scalpel}, a method that reduces hallucination by refining attention activation distributions toward more credible regions. Scalpel predicts trusted attention directions for each head in Transformer layers during inference and adjusts activations accordingly. It employs a Gaussian mixture model to capture multi-peak distributions of attention in trust and hallucination manifolds, and uses entropic optimal transport (equivalent to Schrödinger bridge problem) to map Gaussian components precisely. During mitigation, Scalpel dynamically adjusts intervention strength and direction based on component membership and mapping relationships between hallucination and trust activations. Extensive experiments across multiple datasets and benchmarks demonstrate that Scalpel effectively mitigates hallucinations, outperforming previous methods and achieving state-of-the-art performance. Moreover, Scalpel is model- and data-agnostic, requiring no additional computation, only a single decoding step.
comment: WACV 2026 (It was accepted in the first round, with an acceptance rate of 6%.)
☆ AUHead: Realistic Emotional Talking Head Generation via Action Units Control ICLR
Realistic talking-head video generation is critical for virtual avatars, film production, and interactive systems. Current methods struggle with nuanced emotional expressions due to the lack of fine-grained emotion control. To address this issue, we introduce a novel two-stage method (AUHead) to disentangle fine-grained emotion control, i.e. , Action Units (AUs), from audio and achieve controllable generation. In the first stage, we explore the AU generation abilities of large audio-language models (ALMs), by spatial-temporal AU tokenization and an "emotion-then-AU" chain-of-thought mechanism. It aims to disentangle AUs from raw speech, effectively capturing subtle emotional cues. In the second stage, we propose an AU-driven controllable diffusion model that synthesizes realistic talking-head videos conditioned on AU sequences. Specifically, we first map the AU sequences into the structured 2D facial representation to enhance spatial fidelity, and then model the AU-vision interaction within cross-attention modules. To achieve flexible AU-quality trade-off control, we introduce an AU disentanglement guidance strategy during inference, further refining the emotional expressiveness and identity consistency of the generated videos. Results on benchmark datasets demonstrate that our approach achieves competitive performance in emotional realism, accurate lip synchronization, and visual coherence, significantly surpassing existing techniques. Our implementation is available at https://github.com/laura990501/AUHead_ICLR
comment: https://openreview.net/forum?id=dmzlAUkulz&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DICLR.cc%2F2026%2FConference%2FAuthors%23your-submissions)
☆ RAD: Retrieval-Augmented Monocular Metric Depth Estimation for Underrepresented Classes
Monocular Metric Depth Estimation (MMDE) is essential for physically intelligent systems, yet accurate depth estimation for underrepresented classes in complex scenes remains a persistent challenge. To address this, we propose RAD, a retrieval-augmented framework that approximates the benefits of multi-view stereo by utilizing retrieved neighbors as structural geometric proxies. Our method first employs an uncertainty-aware retrieval mechanism to identify low-confidence regions in the input and retrieve RGB-D context samples containing semantically similar content. We then process both the input and retrieved context via a dual-stream network and fuse them using a matched cross-attention module, which transfers geometric information only at reliable point correspondences. Evaluations on NYU Depth v2, KITTI, and Cityscapes demonstrate that RAD significantly outperforms state-of-the-art baselines on underrepresented classes, reducing relative absolute error by 29.2% on NYU Depth v2, 13.3% on KITTI, and 7.2% on Cityscapes, while maintaining competitive performance on standard in-domain benchmarks.
☆ DR.Experts: Differential Refinement of Distortion-Aware Experts for Blind Image Quality Assessment AAAI 2026
Blind Image Quality Assessment, aiming to replicate human perception of visual quality without reference, plays a key role in vision tasks, yet existing models often fail to effectively capture subtle distortion cues, leading to a misalignment with human subjective judgments. We identify that the root cause of this limitation lies in the lack of reliable distortion priors, as methods typically learn shallow relationships between unified image features and quality scores, resulting in their insensitive nature to distortions and thus limiting their performance. To address this, we introduce DR.Experts, a novel prior-driven BIQA framework designed to explicitly incorporate distortion priors, enabling a reliable quality assessment. DR.Experts begins by leveraging a degradation-aware vision-language model to obtain distortion-specific priors, which are further refined and enhanced by the proposed Distortion-Saliency Differential Module through distinguishing them from semantic attentions, thereby ensuring the genuine representations of distortions. The refined priors, along with semantics and bridging representation, are then fused by a proposed mixture-of-experts style module named the Dynamic Distortion Weighting Module. This mechanism weights each distortion-specific feature as per its perceptual impact, ensuring that the final quality prediction aligns with human perception. Extensive experiments conducted on five challenging BIQA benchmarks demonstrate the superiority of DR.Experts over current methods and showcase its excellence in terms of generalization and data efficiency.
comment: Accepted by AAAI 2026
☆ SCA-Net: Spatial-Contextual Aggregation Network for Enhanced Small Building and Road Change Detection
Automated change detection in remote sensing imagery is critical for urban management, environmental monitoring, and disaster assessment. While deep learning models have advanced this field, they often struggle with challenges like low sensitivity to small objects and high computational costs. This paper presents SCA-Net, an enhanced architecture built upon the Change-Agent framework for precise building and road change detection in bi-temporal images. Our model incorporates several key innovations: a novel Difference Pyramid Block for multi-scale change analysis, an Adaptive Multi-scale Processing module combining shape-aware and high-resolution enhancement blocks, and multi-level attention mechanisms (PPM and CSAGate) for joint contextual and detail processing. Furthermore, a dynamic composite loss function and a four-phase training strategy are introduced to stabilize training and accelerate convergence. Comprehensive evaluations on the LEVIR-CD and LEVIR-MCI datasets demonstrate SCA-Net's superior performance over Change-Agent and other state-of-the-art methods. Our approach achieves a significant 2.64% improvement in mean Intersection over Union (mIoU) on LEVIR-MCI and a remarkable 57.9% increase in IoU for small buildings, while reducing the training time by 61%. This work provides an efficient, accurate, and robust solution for practical change detection applications.
comment: 6 pages, 2 figures, 3 tables. Submitted for review
☆ SchröMind: Mitigating Hallucinations in Multimodal Large Language Models via Solving the Schrödinger Bridge Problem ICASSP 2026
Recent advancements in Multimodal Large Language Models (MLLMs) have achieved significant success across various domains. However, their use in high-stakes fields like healthcare remains limited due to persistent hallucinations, where generated text contradicts or ignores visual input. We contend that MLLMs can comprehend images but struggle to produce accurate token sequences. Minor perturbations can shift attention from truthful to untruthful states, and the autoregressive nature of text generation often prevents error correction. To address this, we propose SchröMind-a novel framework reducing hallucinations via solving the Schrödinger bridge problem. It establishes a token-level mapping between hallucinatory and truthful activations with minimal transport cost through lightweight training, while preserving the model's original capabilities. Extensive experiments on the POPE and MME benchmarks demonstrate the superiority of Schrödinger, which achieves state-of-the-art performance while introducing only minimal computational overhead.
comment: ICASSP 2026
☆ HLGFA: High-Low Resolution Guided Feature Alignment for Unsupervised Anomaly Detection
Unsupervised industrial anomaly detection (UAD) is essential for modern manufacturing inspection, where defect samples are scarce and reliable detection is required. In this paper, we propose HLGFA, a high-low resolution guided feature alignment framework that learns normality by modeling cross-resolution feature consistency between high-resolution and low-resolution representations of normal samples, instead of relying on pixel-level reconstruction. Dual-resolution inputs are processed by a shared frozen backbone to extract multi-level features, and high-resolution representations are decomposed into structure and detail priors to guide the refinement of low-resolution features through conditional modulation and gated residual correction. During inference, anomalies are naturally identified as regions where cross-resolution alignment breaks down. In addition, a noise-aware data augmentation strategy is introduced to suppress nuisance-induced responses commonly observed in industrial environments. Extensive experiments on standard benchmarks demonstrate the effectiveness of HLGFA, achieving 97.9% pixel-level AUROC and 97.5% image-level AUROC on the MVTec AD dataset, outperforming representative reconstruction-based and feature-based methods.
comment: 14 pages, 6 figures, references added
☆ Singpath-VL Technical Report
We present Singpath-VL, a vision-language large model, to fill the vacancy of AI assistant in cervical cytology. Recent advances in multi-modal large language models (MLLMs) have significantly propelled the field of computational pathology. However, their application in cytopathology, particularly cervical cytology, remains underexplored, primarily due to the scarcity of large-scale, high-quality annotated datasets. To bridge this gap, we first develop a novel three-stage pipeline to synthesize a million-scale image-description dataset. The pipeline leverages multiple general-purpose MLLMs as weak annotators, refines their outputs through consensus fusion and expert knowledge injection, and produces high-fidelity descriptions of cell morphology. Using this dataset, we then fine-tune the Qwen3-VL-4B model via a multi-stage strategy to create a specialized cytopathology MLLM. The resulting model, named Singpath-VL, demonstrates superior performance in fine-grained morphological perception and cell-level diagnostic classification. To advance the field, we will open-source a portion of the synthetic dataset and benchmark.
☆ Attention to details, logits to truth: visual-aware attention and logits enhancement to mitigate hallucinations in LVLMs
Existing Large Vision-Language Models (LVLMs) exhibit insufficient visual attention, leading to hallucinations. To alleviate this problem, some previous studies adjust and amplify visual attention. These methods present a limitation that boosting attention for all visual tokens inevitably increases attention to task irrelevant tokens. To tackle this challenge, we propose a training free attentional intervention algorithm to enhance the attention of task-relevant tokens based on the argument that task-relevant tokens generally demonstrate high visual-textual similarities. Specifically, the vision-text cross-attention submatrices, which represent visual-textual correlations, are extracted to construct the reweighting matrices to reallocate attention. Besides, to enhance the contribution of visual tokens, we inject visual attention values into the beam search decoding to identify solutions with higher visual attention. Extensive experiments demonstrate that this method significantly reduces hallucinations across mainstream LVLMs, while preserving the accuracy and coherence of generated content.
☆ A Universal Action Space for General Behavior Analysis
Analyzing animal and human behavior has long been a challenging task in computer vision. Early approaches from the 1970s to the 1990s relied on hand-crafted edge detection, segmentation, and low-level features such as color, shape, and texture to locate objects and infer their identities-an inherently ill-posed problem. Behavior analysis in this era typically proceeded by tracking identified objects over time and modeling their trajectories using sparse feature points, which further limited robustness and generalization. A major shift occurred with the introduction of ImageNet by Deng and Li in 2010, which enabled large-scale visual recognition through deep neural networks and effectively served as a comprehensive visual dictionary. This development allowed object recognition to move beyond complex low-level processing toward learned high-level representations. In this work, we follow this paradigm to build a large-scale Universal Action Space (UAS) using existing labeled human-action datasets. We then use this UAS as the foundation for analyzing and categorizing mammalian and chimpanzee behavior datasets. The source code is released on GitHub at https://github.com/franktpmvu/Universal-Action-Space.
☆ Energy-Efficient Fast Object Detection on Edge Devices for IoT Systems
This paper presents an Internet of Things (IoT) application that utilizes an AI classifier for fast-object detection using the frame difference method. This method, with its shorter duration, is the most efficient and suitable for fast-object detection in IoT systems, which require energy-efficient applications compared to end-to-end methods. We have implemented this technique on three edge devices: AMD AlveoT M U50, Jetson Orin Nano, and Hailo-8T M AI Accelerator, and four models with artificial neural networks and transformer models. We examined various classes, including birds, cars, trains, and airplanes. Using the frame difference method, the MobileNet model consistently has high accuracy, low latency, and is highly energy-efficient. YOLOX consistently shows the lowest accuracy, lowest latency, and lowest efficiency. The experimental results show that the proposed algorithm has improved the average accuracy gain by 28.314%, the average efficiency gain by 3.6 times, and the average latency reduction by 39.305% compared to the end-to-end method. Of all these classes, the faster objects are trains and airplanes. Experiments show that the accuracy percentage for trains and airplanes is lower than other categories. So, in tasks that require fast detection and accurate results, end-to-end methods can be a disaster because they cannot handle fast object detection. To improve computational efficiency, we designed our proposed method as a lightweight detection algorithm. It is well suited for applications in IoT systems, especially those that require fast-moving object detection and higher accuracy.
comment: 14 pages, 12 figures
☆ Robust Depth Super-Resolution via Adaptive Diffusion Sampling
We propose AdaDS, a generalizable framework for depth super-resolution that robustly recovers high-resolution depth maps from arbitrarily degraded low-resolution inputs. Unlike conventional approaches that directly regress depth values and often exhibit artifacts under severe or unknown degradation, AdaDS capitalizes on the contraction property of Gaussian smoothing: as noise accumulates in the forward process, distributional discrepancies between degraded inputs and their pristine high-quality counterparts diminish, ultimately converging to isotropic Gaussian prior. Leveraging this, AdaDS adaptively selects a starting timestep in the reverse diffusion trajectory based on estimated refinement uncertainty, and subsequently injects tailored noise to position the intermediate sample within the high-probability region of the target posterior distribution. This strategy ensures inherent robustness, enabling generative prior of a pre-trained diffusion model to dominate recovery even when upstream estimations are imperfect. Extensive experiments on real-world and synthetic benchmarks demonstrate AdaDS's superior zero-shot generalization and resilience to diverse degradation patterns compared to state-of-the-art methods.
☆ Equilibrium contrastive learning for imbalanced image classification
Contrastive learning (CL) is a predominant technique in image classification, but they showed limited performance with an imbalanced dataset. Recently, several supervised CL methods have been proposed to promote an ideal regular simplex geometric configuration in the representation space-characterized by intra-class feature collapse and uniform inter-class mean spacing, especially for imbalanced datasets. In particular, existing prototype-based methods include class prototypes, as additional samples to consider all classes. However, the existing CL methods suffer from two limitations. First, they do not consider the alignment between the class means/prototypes and classifiers, which could lead to poor generalization. Second, existing prototype-based methods treat prototypes as only one additional sample per class, making their influence depend on the number of class instances in a batch and causing unbalanced contributions across classes. To address these limitations, we propose Equilibrium Contrastive Learning (ECL), a supervised CL framework designed to promote geometric equilibrium, where class features, means, and classifiers are harmoniously balanced under data imbalance. The proposed ECL framework uses two main components. First, ECL promotes the representation geometric equilibrium (i.e., a regular simplex geometry characterized by collapsed class samples and uniformly distributed class means), while balancing the contributions of class-average features and class prototypes. Second, ECL establishes a classifier-class center geometric equilibrium by aligning classifier weights and class prototypes. We ran experiments with three long-tailed datasets, the CIFAR-10(0)-LT, ImageNet-LT, and the two imbalanced medical datasets, the ISIC 2019 and our constructed LCCT dataset. Results show that ECL outperforms existing SOTA supervised CL methods designed for imbalanced classification.
comment: 18 pages, 8 figures
☆ OSI: One-step Inversion Excels in Extracting Diffusion Watermarks
Watermarking is an important mechanism for provenance and copyright protection of diffusion-generated images. Training-free methods, exemplified by Gaussian Shading, embed watermarks into the initial noise of diffusion models with negligible impact on the quality of generated images. However, extracting this type of watermark typically requires multi-step diffusion inversion to obtain precise initial noise, which is computationally expensive and time-consuming. To address this issue, we propose One-step Inversion (OSI), a significantly faster and more accurate method for extracting Gaussian Shading style watermarks. OSI reformulates watermark extraction as a learnable sign classification problem, which eliminates the need for precise regression of the initial noise. Then, we initialize the OSI model from the diffusion backbone and finetune it on synthesized noise-image pairs with a sign classification objective. In this manner, the OSI model is able to accomplish the watermark extraction efficiently in only one step. Our OSI substantially outperforms the multi-step diffusion inversion method: it is 20x faster, achieves higher extraction accuracy, and doubles the watermark payload capacity. Extensive experiments across diverse schedulers, diffusion backbones, and cryptographic schemes consistently show improvements, demonstrating the generality of our OSI framework.
☆ Beyond Next-Token Alignment: Distilling Multimodal Large Language Models via Token Interactions
Multimodal Large Language Models (MLLMs) demonstrate impressive cross-modal capabilities, yet their substantial size poses significant deployment challenges. Knowledge distillation (KD) is a promising solution for compressing these models, but existing methods primarily rely on static next-token alignment, neglecting the dynamic token interactions, which embed essential capabilities for multimodal understanding and generation. To this end, we introduce Align-TI, a novel KD framework designed from the perspective of Token Interactions. Our approach is motivated by the insight that MLLMs rely on two primary interactions: vision-instruction token interactions to extract relevant visual information, and intra-response token interactions for coherent generation. Accordingly, Align-TI introduces two components: IVA enables the student model to imitate the teacher's instruction-relevant visual information extract capability by aligning on salient visual regions. TPA captures the teacher's dynamic generative logic by aligning the sequential token-to-token transition probabilities. Extensive experiments demonstrate Align-TI's superiority. Notably, our approach achieves $2.6\%$ relative improvement over Vanilla KD, and our distilled Align-TI-2B even outperforms LLaVA-1.5-7B (a much larger MLLM) by $7.0\%$, establishing a new state-of-the-art distillation framework for training parameter-efficient MLLMs. Code is available at https://github.com/lchen1019/Align-TI.
☆ Weakly Supervised Contrastive Learning for Histopathology Patch Embeddings
Digital histopathology whole slide images (WSIs) provide gigapixel-scale high-resolution images that are highly useful for disease diagnosis. However, digital histopathology image analysis faces significant challenges due to the limited training labels, since manually annotating specific regions or small patches cropped from large WSIs requires substantial time and effort. Weakly supervised multiple instance learning (MIL) offers a practical and efficient solution by requiring only bag-level (slide-level) labels, while each bag typically contains multiple instances (patches). Most MIL methods directly use frozen image patch features generated by various image encoders as inputs and primarily focus on feature aggregation. However, feature representation learning for encoder pretraining in MIL settings has largely been neglected. In our work, we propose a novel feature representation learning framework called weakly supervised contrastive learning (WeakSupCon) that incorporates bag-level label information during training. Our method does not rely on instance-level pseudo-labeling, yet it effectively separates patches with different labels in the feature space. Experimental results demonstrate that the image features generated by our WeakSupCon method lead to improved downstream MIL performance compared to self-supervised contrastive learning approaches in three datasets. Our related code is available at github.com/BzhangURU/Paper_WeakSupCon_for_MIL
☆ FD-DB: Frequency-Decoupled Dual-Branch Network for Unpaired Synthetic-to-Real Domain Translation
Synthetic data provide low-cost, accurately annotated samples for geometry-sensitive vision tasks, but appearance and imaging differences between synthetic and real domains cause severe domain shift and degrade downstream performance. Unpaired synthetic-to-real translation can reduce this gap without paired supervision, yet existing methods often face a trade-off between photorealism and structural stability: unconstrained generation may introduce deformation or spurious textures, while overly rigid constraints limit adaptation to real-domain statistics. We propose FD-DB, a frequency-decoupled dual-branch model that separates appearance transfer into low-frequency interpretable editing and high-frequency residual compensation. The interpretable branch predicts physically meaningful editing parameters (white balance, exposure, contrast, saturation, blur, and grain) to build a stable low-frequency appearance base with strong content preservation. The free branch complements fine details through residual generation, and a gated fusion mechanism combines the two branches under explicit frequency constraints to limit low-frequency drift. We further adopt a two-stage training schedule that first stabilizes the editing branch and then releases the residual branch to improve optimization stability. Experiments on the YCB-V dataset show that FD-DB improves real-domain appearance consistency and significantly boosts downstream semantic segmentation performance while preserving geometric and semantic structures.
comment: 26 pages, 13 figures, 2 tables. Code available at https://github.com/tryzang/FD-DB
☆ ArtifactLens: Hundreds of Labels Are Enough for Artifact Detection with VLMs
Modern image generators produce strikingly realistic images, where only artifacts like distorted hands or warped objects reveal their synthetic origin. Detecting these artifacts is essential: without detection, we cannot benchmark generators or train reward models to improve them. Current detectors fine-tune VLMs on tens of thousands of labeled images, but this is expensive to repeat whenever generators evolve or new artifact types emerge. We show that pretrained VLMs already encode the knowledge needed to detect artifacts - with the right scaffolding, this capability can be unlocked using only a few hundred labeled examples per artifact category. Our system, ArtifactLens, achieves state-of-the-art on five human artifact benchmarks (the first evaluation across multiple datasets) while requiring orders of magnitude less labeled data. The scaffolding consists of a multi-component architecture with in-context learning and text instruction optimization, with novel improvements to each. Our methods generalize to other artifact types - object morphology, animal anatomy, and entity interactions - and to the distinct task of AIGC detection.
comment: https://jmhb0.github.io/ArtifactLens/
LLM-Grounded Dynamic Task Planning with Hierarchical Temporal Logic for Human-Aware Multi-Robot Collaboration
While Large Language Models (LLM) enable non-experts to specify open-world multi-robot tasks, the generated plans often lack kinematic feasibility and are not efficient, especially in long-horizon scenarios. Formal methods like Linear Temporal Logic (LTL) offer correctness and optimal guarantees, but are typically confined to static, offline settings and struggle with computational scalability. To bridge this gap, we propose a neuro-symbolic framework that grounds LLM reasoning into hierarchical LTL specifications and solves the corresponding Simultaneous Task Allocation and Planning (STAP) problem. Unlike static approaches, our system resolves stochastic environmental changes, such as moving users or updated instructions via a receding horizon planning (RHP) loop with real-time perception, which dynamically refines plans through a hierarchical state space. Extensive real-world experiments demonstrate that our approach significantly outperforms baseline methods in success rate and interaction fluency while minimizing planning latency.
☆ Look-Ahead and Look-Back Flows: Training-Free Image Generation with Trajectory Smoothing
Recent advances have reformulated diffusion models as deterministic ordinary differential equations (ODEs) through the framework of flow matching, providing a unified formulation for the noise-to-data generative process. Various training-free flow matching approaches have been developed to improve image generation through flow velocity field adjustment, eliminating the need for costly retraining. However, Modifying the velocity field $v$ introduces errors that propagate through the full generation path, whereas adjustments to the latent trajectory $z$ are naturally corrected by the pretrained velocity network, reducing error accumulation. In this paper, we propose two complementary training-free latent-trajectory adjustment approaches based on future and past velocity $v$ and latent trajectory $z$ information that refine the generative path directly in latent space. We propose two training-free trajectory smoothing schemes: \emph{Look-Ahead}, which averages the current and next-step latents using a curvature-gated weight, and \emph{Look-Back}, which smoothes latents using an exponential moving average with decay. We demonstrate through extensive experiments and comprehensive evaluation metrics that the proposed training-free trajectory smoothing models substantially outperform various state-of-the-art models across multiple datasets including COCO17, CUB-200, and Flickr30K.
☆ A Scoping Review of Deep Learning for Urban Visual Pollution and Proposal of a Real-Time Monitoring Framework with a Visual Pollution Index
Urban Visual Pollution (UVP) has emerged as a critical concern, yet research on automatic detection and application remains fragmented. This scoping review maps the existing deep learning-based approaches for detecting, classifying, and designing a comprehensive application framework for visual pollution management. Following the PRISMA-ScR guidelines, seven academic databases (Scopus, Web of Science, IEEE Xplore, ACM DL, ScienceDirect, SpringerNatureLink, and Wiley) were systematically searched and reviewed, and 26 articles were found. Most research focuses on specific pollutant categories and employs variations of YOLO, Faster R-CNN, and EfficientDet architectures. Although several datasets exist, they are limited to specific areas and lack standardized taxonomies. Few studies integrate detection into real-time application systems, yet they tend to be geographically skewed. We proposed a framework for monitoring visual pollution that integrates a visual pollution index to assess the severity of visual pollution for a certain area. This review highlights the need for a unified UVP management system that incorporates pollutant taxonomy, a cross-city benchmark dataset, a generalized deep learning model, and an assessment index that supports sustainable urban aesthetics and enhances the well-being of urban dwellers.
☆ Fine-T2I: An Open, Large-Scale, and Diverse Dataset for High-Quality T2I Fine-Tuning
High-quality and open datasets remain a major bottleneck for text-to-image (T2I) fine-tuning. Despite rapid progress in model architectures and training pipelines, most publicly available fine-tuning datasets suffer from low resolution, poor text-image alignment, or limited diversity, resulting in a clear performance gap between open research models and enterprise-grade models. In this work, we present Fine-T2I, a large-scale, high-quality, and fully open dataset for T2I fine-tuning. Fine-T2I spans 10 task combinations, 32 prompt categories, 11 visual styles, and 5 prompt templates, and combines synthetic images generated by strong modern models with carefully curated real images from professional photographers. All samples are rigorously filtered for text-image alignment, visual fidelity, and prompt quality, with over 95% of initial candidates removed. The final dataset contains over 6 million text-image pairs, around 2 TB on disk, approaching the scale of pretraining datasets while maintaining fine-tuning-level quality. Across a diverse set of pretrained diffusion and autoregressive models, fine-tuning on Fine-T2I consistently improves both generation quality and instruction adherence, as validated by human evaluation, visual comparison, and automatic metrics. We release Fine-T2I under an open license to help close the data gap in T2I fine-tuning in the open community.
comment: Dataset: https://huggingface.co/datasets/ma-xu/fine-t2i
☆ SceneReVis: A Self-Reflective Vision-Grounded Framework for 3D Indoor Scene Synthesis via Multi-turn RL
Current one-pass 3D scene synthesis methods often suffer from spatial hallucinations, such as collisions, due to a lack of deliberative reasoning. To bridge this gap, we introduce SceneReVis, a vision-grounded self-reflection framework that employs an iterative ``diagnose-and-act'' loop to explicitly intercept and resolve spatial conflicts using multi-modal feedback. To support this step-wise paradigm, we construct SceneChain-12k, a large-scale dataset of causal construction trajectories derived through a novel reverse engineering pipeline. We further propose a two-stage training recipe that transitions from Supervised Fine-Tuning to Agentic Reinforcement Learning, evolving the model into an active spatial planner. Extensive experiments demonstrate that SceneReVis achieves state-of-the-art performance in high-fidelity generation and goal-oriented optimization, with robust generalization to long-tail domains.
☆ Understanding and Enhancing Encoder-based Adversarial Transferability against Large Vision-Language Models
Large vision-language models (LVLMs) have achieved impressive success across multimodal tasks, but their reliance on visual inputs exposes them to significant adversarial threats. Existing encoder-based attacks perturb the input image by optimizing solely on the vision encoder, rather than the entire LVLM, offering a computationally efficient alternative to end-to-end optimization. However, their transferability across different LVLM architectures in realistic black-box scenarios remains poorly understood. To address this gap, we present the first systematic study towards encoder-based adversarial transferability in LVLMs. Our contributions are threefold. First, through large-scale benchmarking over eight diverse LVLMs, we reveal that existing attacks exhibit severely limited transferability. Second, we perform in-depth analysis, disclosing two root causes that hinder the transferability: (1) inconsistent visual grounding across models, where different models focus their attention on distinct regions; (2) redundant semantic alignment within models, where a single object is dispersed across multiple overlapping token representations. Third, we propose Semantic-Guided Multimodal Attack (SGMA), a novel framework to enhance the transferability. Inspired by the discovered causes in our analysis, SGMA directs perturbations toward semantically critical regions and disrupts cross-modal grounding at both global and local levels. Extensive experiments across different victim models and tasks show that SGMA achieves higher transferability than existing attacks. These results expose critical security risks in LVLM deployment and underscore the urgent need for robust multimodal defenses.
comment: Under review; 21 pages
☆ Bridging the Modality Gap in Roadside LiDAR: A Training-Free Vision-Language Model Framework for Vehicle Classification
Fine-grained truck classification is critical for intelligent transportation systems (ITS), yet current LiDAR-based methods face scalability challenges due to their reliance on supervised deep learning and labor-intensive manual annotation. Vision-Language Models (VLMs) offer promising few-shot generalization, but their application to roadside LiDAR is limited by a modality gap between sparse 3D point clouds and dense 2D imagery. We propose a framework that bridges this gap by adapting off-the-shelf VLMs for fine-grained truck classification without parameter fine-tuning. Our new depth-aware image generation pipeline applies noise removal, spatial and temporal registration, orientation rectification, morphological operations, and anisotropic smoothing to transform sparse, occluded LiDAR scans into depth-encoded 2D visual proxies. Validated on a real-world dataset of 20 vehicle classes, our approach achieves competitive classification accuracy with as few as 16-30 examples per class, offering a scalable alternative to data-intensive supervised baselines. We further observe a "Semantic Anchor" effect: text-based guidance regularizes performance in ultra-low-shot regimes $k < 4$, but degrades accuracy in more-shot settings due to semantic mismatch. Furthermore, we demonstrate the efficacy of this framework as a Cold Start strategy, using VLM-generated labels to bootstrap lightweight supervised models. Notably, the few-shot VLM-based model achieves over correct classification rate of 75 percent for specific drayage categories (20ft, 40ft, and 53ft containers) entirely without the costly training or fine-tuning, significantly reducing the intensive demands of initial manual labeling, thus achieving a method of practical use in ITS applications.
comment: 12 pages, 10 figures, 4 tables
☆ Comp2Comp: Open-Source Software with FDA-Cleared Artificial Intelligence Algorithms for Computed Tomography Image Analysis
Artificial intelligence allows automatic extraction of imaging biomarkers from already-acquired radiologic images. This paradigm of opportunistic imaging adds value to medical imaging without additional imaging costs or patient radiation exposure. However, many open-source image analysis solutions lack rigorous validation while commercial solutions lack transparency, leading to unexpected failures when deployed. Here, we report development and validation for two of the first fully open-sourced, FDA-510(k)-cleared deep learning pipelines to mitigate both challenges: Abdominal Aortic Quantification (AAQ) and Bone Mineral Density (BMD) estimation are both offered within the Comp2Comp package for opportunistic analysis of computed tomography scans. AAQ segments the abdominal aorta to assess aneurysm size; BMD segments vertebral bodies to estimate trabecular bone density and osteoporosis risk. AAQ-derived maximal aortic diameters were compared against radiologist ground-truth measurements on 258 patient scans enriched for abdominal aortic aneurysms from four external institutions. BMD binary classifications (low vs. normal bone density) were compared against concurrent DXA scan ground truths obtained on 371 patient scans from four external institutions. AAQ had an overall mean absolute error of 1.57 mm (95% CI 1.38-1.80 mm). BMD had a sensitivity of 81.0% (95% CI 74.0-86.8%) and specificity of 78.4% (95% CI 72.3-83.7%). Comp2Comp AAQ and BMD demonstrated sufficient accuracy for clinical use. Open-sourcing these algorithms improves transparency of typically opaque FDA clearance processes, allows hospitals to test the algorithms before cumbersome clinical pilots, and provides researchers with best-in-class methods.
comment: Adrit Rao, Malte Jensen, Andrea T. Fisher, Louis Blankemeier: Co-first authors. Oliver Aalami, Akshay S. Chaudhari: Co-senior authors
☆ ENIGMA: EEG-to-Image in 15 Minutes Using Less Than 1% of the Parameters
To be practical for real-life applications, models for brain-computer interfaces must be easily and quickly deployable on new subjects, effective on affordable scanning hardware, and small enough to run locally on accessible computing resources. To directly address these current limitations, we introduce ENIGMA, a multi-subject electroencephalography (EEG)-to-Image decoding model that reconstructs seen images from EEG recordings and achieves state-of-the-art (SOTA) performance on the research-grade THINGS-EEG2 and consumer-grade AllJoined-1.6M benchmarks, while fine-tuning effectively on new subjects with as little as 15 minutes of data. ENIGMA boasts a simpler architecture and requires less than 1% of the trainable parameters necessary for previous approaches. Our approach integrates a subject-unified spatio-temporal backbone along with a set of multi-subject latent alignment layers and an MLP projector to map raw EEG signals to a rich visual latent space. We evaluate our approach using a broad suite of image reconstruction metrics that have been standardized in the adjacent field of fMRI-to-Image research, and we describe the first EEG-to-Image study to conduct extensive behavioral evaluations of our reconstructions using human raters. Our simple and robust architecture provides a significant performance boost across both research-grade and consumer-grade EEG hardware, and a substantial improvement in fine-tuning efficiency and inference cost. Finally, we provide extensive ablations to determine the architectural choices most responsible for our performance gains in both single and multi-subject cases across multiple benchmark datasets. Collectively, our work provides a substantial step towards the development of practical brain-computer interface applications.
☆ Beyond Calibration: Confounding Pathology Limits Foundation Model Specificity in Abdominal Trauma CT
Purpose: Translating foundation models into clinical practice requires evaluating their performance under compound distribution shift, where severe class imbalance coexists with heterogeneous imaging appearances. This challenge is relevant for traumatic bowel injury, a rare but high-mortality diagnosis. We investigated whether specificity deficits in foundation models are associated with heterogeneity in the negative class. Methods: This retrospective study used the multi-institutional, RSNA Abdominal Traumatic Injury CT dataset (2019-2023), comprising scans from 23 centres. Two foundation models (MedCLIP, zero-shot; RadDINO, linear probe) were compared against three task-specific approaches (CNN, Transformer, Ensemble). Models were trained on 3,147 patients (2.3% bowel injury prevalence) and evaluated on an enriched 100-patient test set. To isolate negative-class effects, specificity was assessed in patients without bowel injury who had concurrent solid organ injury (n=58) versus no abdominal pathology (n=50). Results: Foundation models achieved equivalent discrimination to task-specific models (AUC, 0.64-0.68 versus 0.58-0.64) with higher sensitivity (79-91% vs 41-74%) but lower specificity (33-50% vs 50-88%). All models demonstrated high specificity in patients without abdominal pathology (84-100%). When solid organ injuries were present, specificity declined substantially for foundation models (50-51 percentage points) compared with smaller reductions of 12-41 percentage points for task-specific models. Conclusion: Foundation models matched task-specific discrimination without task-specific training, but their specificity deficits were driven primarily by confounding negative-class heterogeneity rather than prevalence alone. Susceptibility to negative-class heterogeneity decreased progressively with labelled training, suggesting adaptation is required before clinical implementation.
comment: 26 pages, 4 figures, 4 tables
☆ Monte Carlo Maximum Likelihood Reconstruction for Digital Holography with Speckle
In coherent imaging, speckle is statistically modeled as multiplicative noise, posing a fundamental challenge for image reconstruction. While maximum likelihood estimation (MLE) provides a principled framework for speckle mitigation, its application to coherent imaging system such as digital holography with finite apertures is hindered by the prohibitive cost of high-dimensional matrix inversion, especially at high resolutions. This computational burden has prevented the use of MLE-based reconstruction with physically accurate aperture modeling. In this work, we propose a randomized linear algebra approach that enables scalable MLE optimization without explicit matrix inversions in gradient computation. By exploiting the structural properties of sensing matrix and using conjugate gradient for likelihood gradient evaluation, the proposed algorithm supports accurate aperture modeling without the simplifying assumptions commonly imposed for tractability. We term the resulting method projected gradient descent with Monte Carlo estimation (PGD-MC). The proposed PGD-MC framework (i) demonstrates robustness to diverse and physically accurate aperture models, (ii) achieves substantial improvements in reconstruction quality and computational efficiency, and (iii) scales effectively to high-resolution digital holography. Extensive experiments incorporating three representative denoisers as regularization show that PGD-MC provides a flexible and effective MLE-based reconstruction framework for digital holography with finite apertures, consistently outperforming prior Plug-and-Play model-based iterative reconstruction methods in both accuracy and speed. Our code is available at: https://github.com/Computational-Imaging-RU/MC_Maximum_Likelihood_Digital_Holography_Speckle.
☆ Conditional Uncertainty-Aware Political Deepfake Detection with Stochastic Convolutional Neural Networks
Recent advances in generative image models have enabled the creation of highly realistic political deepfakes, posing risks to information integrity, public trust, and democratic processes. While automated deepfake detectors are increasingly deployed in moderation and investigative pipelines, most existing systems provide only point predictions and fail to indicate when outputs are unreliable, being an operationally critical limitation in high-stakes political contexts. This work investigates conditional, uncertainty-aware political deepfake detection using stochastic convolutional neural networks within an empirical, decision-oriented reliability framework. Rather than treating uncertainty as a purely Bayesian construct, it is evaluated through observable criteria, including calibration quality, proper scoring rules, and its alignment with prediction errors under both global and confidence-conditioned analyses. A politically focused binary image dataset is constructed via deterministic metadata filtering from a large public real-synthetic corpus. Two pretrained CNN backbones (ResNet-18 and EfficientNet-B4) are fully fine-tuned for classification. Deterministic inference is compared with single-pass stochastic prediction, Monte Carlo dropout with multiple forward passes, temperature scaling, and ensemble-based uncertainty surrogates. Evaluation reports ROC-AUC, thresholded confusion matrices, calibration metrics, and generator-disjoint out-of-distribution performance. Results demonstrate that calibrated probabilistic outputs and uncertainty estimates enable risk-aware moderation policies. A systematic confidence-band analysis further clarifies when uncertainty provides operational value beyond predicted confidence, delineating both the benefits and limitations of uncertainty-aware deepfake detection in political settings.
comment: 21 pages, 12 figures, 18 tables
☆ Flow Matching with Uncertainty Quantification and Guidance
Despite the remarkable success of sampling-based generative models such as flow matching, they can still produce samples of inconsistent or degraded quality. To assess sample reliability and generate higher-quality outputs, we propose uncertainty-aware flow matching (UA-Flow), a lightweight extension of flow matching that predicts the velocity field together with heteroscedastic uncertainty. UA-Flow estimates per-sample uncertainty by propagating velocity uncertainty through the flow dynamics. These uncertainty estimates act as a reliability signal for individual samples, and we further use them to steer generation via uncertainty-aware classifier guidance and classifier-free guidance. Experiments on image generation show that UA-Flow produces uncertainty signals more highly correlated with sample fidelity than baseline methods, and that uncertainty-guided sampling further improves generation quality.
☆ A Low-Rank Defense Method for Adversarial Attack on Diffusion Models ICME2025
Recently, adversarial attacks for diffusion models as well as their fine-tuning process have been developed rapidly. To prevent the abuse of these attack algorithms from affecting the practical application of diffusion models, it is critical to develop corresponding defensive strategies. In this work, we propose an efficient defensive strategy, named Low-Rank Defense (LoRD), to defend the adversarial attack on Latent Diffusion Models (LDMs). LoRD introduces the merging idea and a balance parameter, combined with the low-rank adaptation (LoRA) modules, to detect and defend the adversarial samples. Based on LoRD, we build up a defense pipeline that applies the learned LoRD modules to help diffusion models defend against attack algorithms. Our method ensures that the LDM fine-tuned on both adversarial and clean samples can still generate high-quality images. To demonstrate the effectiveness of our approach, we conduct extensive experiments on facial and landscape images, and our method shows significantly better defense performance compared to the baseline methods.
comment: Accepted by ICME2025
☆ Uncertainty-Aware Ordinal Deep Learning for cross-Dataset Diabetic Retinopathy Grading
Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia due to insufficient insulin production or impaired insulin utilization. One of its most severe complications is diabetic retinopathy (DR), a progressive retinal disease caused by microvascular damage, leading to hemorrhages, exudates, and potential vision loss. Early and reliable detection of DR is therefore critical for preventing irreversible blindness. In this work, we propose an uncertainty-aware deep learning framework for automated DR severity grading that explicitly models the ordinal nature of disease progression. Our approach combines a convolutional backbone with lesion-query attention pooling and an evidential Dirichlet-based ordinal regression head, enabling both accurate severity prediction and principled estimation of predictive uncertainty. The model is trained using an ordinal evidential loss with annealed regularization to encourage calibrated confidence under domain shift. We evaluate the proposed method on a multi-domain training setup combining APTOS, Messidor-2, and a subset of EyePACS fundus datasets. Experimental results demonstrate strong cross-dataset generalization, achieving competitive classification accuracy and high quadratic weighted kappa on held-out test sets, while providing meaningful uncertainty estimates for low-confidence cases. These results suggest that ordinal evidential learning is a promising direction for robust and clinically reliable diabetic retinopathy grading.
☆ ERGO: Excess-Risk-Guided Optimization for High-Fidelity Monocular 3D Gaussian Splatting
Generating 3D content from a single image remains a fundamentally challenging and ill-posed problem due to the inherent absence of geometric and textural information in occluded regions. While state-of-the-art generative models can synthesize auxiliary views to provide additional supervision, these views inevitably contain geometric inconsistencies and textural misalignments that propagate and amplify artifacts during 3D reconstruction. To effectively harness these imperfect supervisory signals, we propose an adaptive optimization framework guided by excess risk decomposition, termed ERGO. Specifically, ERGO decomposes the optimization losses in 3D Gaussian splatting into two components, i.e., excess risk that quantifies the suboptimality gap between current and optimal parameters, and Bayes error that models the irreducible noise inherent in synthesized views. This decomposition enables ERGO to dynamically estimate the view-specific excess risk and adaptively adjust loss weights during optimization. Furthermore, we introduce geometry-aware and texture-aware objectives that complement the excess-risk-derived weighting mechanism, establishing a synergistic global-local optimization paradigm. Consequently, ERGO demonstrates robustness against supervision noise while consistently enhancing both geometric fidelity and textural quality of the reconstructed 3D content. Extensive experiments on the Google Scanned Objects dataset and the OmniObject3D dataset demonstrate the superiority of ERGO over existing state-of-the-art methods.
☆ Colorimeter-Supervised Skin Tone Estimation from Dermatoscopic Images for Fairness Auditing
Neural-network-based diagnosis from dermatoscopic images is increasingly used for clinical decision support, yet studies report performance disparities across skin tones. Fairness auditing of these models is limited by the lack of reliable skin-tone annotations in public dermatoscopy datasets. We address this gap with neural networks that predict Fitzpatrick skin type via ordinal regression and the Individual Typology Angle (ITA) via color regression, using in-person Fitzpatrick labels and colorimeter measurements as targets. We further leverage extensive pretraining on synthetic and real dermatoscopic and clinical images. The Fitzpatrick model achieves agreement comparable to human crowdsourced annotations, and ITA predictions show high concordance with colorimeter-derived ITA, substantially outperforming pixel-averaging approaches. Applying these estimators to ISIC 2020 and MILK10k, we find that fewer than 1% of subjects belong to Fitzpatrick types V and VI. We release code and pretrained models as an open-source tool for rapid skin-tone annotation and bias auditing. This is, to our knowledge, the first dermatoscopic skin-tone estimation neural network validated against colorimeter measurements, and it supports growing evidence of clinically relevant performance gaps across skin-tone groups.
comment: Preprint submitted to Computer Methods and Programs in Biomedicine
☆ PMMA: The Polytechnique Montreal Mobility Aids Dataset
This study introduces a new object detection dataset of pedestrians using mobility aids, named PMMA. The dataset was collected in an outdoor environment, where volunteers used wheelchairs, canes, and walkers, resulting in nine categories of pedestrians: pedestrians, cane users, two types of walker users, whether walking or resting, five types of wheelchair users, including wheelchair users, people pushing empty wheelchairs, and three types of users pushing occupied wheelchairs, including the entire pushing group, the pusher and the person seated on the wheelchair. To establish a benchmark, seven object detection models (Faster R-CNN, CenterNet, YOLOX, DETR, Deformable DETR, DINO, and RT-DETR) and three tracking algorithms (ByteTrack, BOT-SORT, and OC-SORT) were implemented under the MMDetection framework. Experimental results show that YOLOX, Deformable DETR, and Faster R-CNN achieve the best detection performance, while the differences among the three trackers are relatively small. The PMMA dataset is publicly available at https://doi.org/10.5683/SP3/XJPQUG, and the video processing and model training code is available at https://github.com/DatasetPMMA/PMMA.
comment: Submitted to the journal IEEE Transactions on Intelligent Transportation Systems, under review
♻ ☆ Story-Iter: A Training-free Iterative Paradigm for Long Story Visualization
This paper introduces Story-Iter, a new training-free iterative paradigm to enhance long-story generation. Unlike existing methods that rely on fixed reference images to construct a complete story, our approach features a novel external iterative paradigm, extending beyond the internal iterative denoising steps of diffusion models, to continuously refine each generated image by incorporating all reference images from the previous round. To achieve this, we propose a plug-and-play, training-free global reference cross-attention (GRCA) module, modeling all reference frames with global embeddings, ensuring semantic consistency in long sequences. By progressively incorporating holistic visual context and text constraints, our iterative paradigm enables precise generation with fine-grained interactions, optimizing the story visualization step-by-step. Extensive experiments in the official story visualization dataset and our long story benchmark demonstrate that Story-Iter's state-of-the-art performance in long-story visualization (up to 100 frames) excels in both semantic consistency and fine-grained interactions.
comment: 31 pages, 33 figures, The project page and associated code can be accessed via https://jwmao1.github.io/storyiter/
♻ ☆ Designing Multi-Robot Ground Video Sensemaking with Public Safety Professionals
Videos from fleets of ground robots can advance public safety by providing scalable situational awareness and reducing professionals' burden. Yet little is known about how to design and integrate multi-robot videos into public safety workflows. Collaborating with six police agencies, we examined how such videos could be made practical. In Study 1, we presented the first testbed for multi-robot ground video sensemaking. The testbed includes 38 events-of-interest (EoI) relevant to public safety, a dataset of 20 robot patrol videos (10 day/night pairs) covering EoI types, and 6 design requirements aimed at improving current video sensemaking practices. In Study 2, we built MRVS, a tool that augments multi-robot patrol video streams with a prompt-engineered video understanding model. Participants reported reduced manual workload and greater confidence with LLM-based explanations, while noting concerns about false alarms and privacy. We conclude with implications for designing future multi-robot video sensemaking tools.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ ALIVE: Animate Your World with Lifelike Audio-Video Generation
Video generation is rapidly evolving towards unified audio-video generation. In this paper, we present ALIVE, a generation model that adapts a pretrained Text-to-Video (T2V) model to Sora-style audio-video generation and animation. In particular, the model unlocks the Text-to-Video&Audio (T2VA) and Reference-to-Video&Audio (animation) capabilities compared to the T2V foundation models. To support the audio-visual synchronization and reference animation, we augment the popular MMDiT architecture with a joint audio-video branch which includes TA-CrossAttn for temporally-aligned cross-modal fusion and UniTemp-RoPE for precise audio-visual alignment. Meanwhile, a comprehensive data pipeline consisting of audio-video captioning, quality control, etc., is carefully designed to collect high-quality finetuning data. Additionally, we introduce a new benchmark to perform a comprehensive model test and comparison. After continue pretraining and finetuning on million-level high-quality data, ALIVE demonstrates outstanding performance, consistently outperforming open-source models and matching or surpassing state-of-the-art commercial solutions. With detailed recipes and benchmarks, we hope ALIVE helps the community develop audio-video generation models more efficiently. Official page: https://github.com/FoundationVision/Alive.
comment: Technical report for ALIVE. Bytedance ALIVE Team. Homepage: https://foundationvision.github.io/Alive/
♻ ☆ Scalable Dynamic Origin-Destination Demand Estimation Enhanced by High-Resolution Satellite Imagery Data
This study presents a novel integrated framework for dynamic origin-destination demand estimation (DODE) in multi-class mesoscopic network models, incorporating high-resolution satellite imagery together with conventional traffic data from local sensors. Unlike sparse local detectors, satellite imagery offers consistent, city-wide road and traffic information of both parking and moving vehicles, overcoming data availability limitations. To extract information from imagery data, we design a computer vision pipeline for class-specific vehicle detection and map matching, generating link-level traffic density observations by vehicle class. Building upon this information, we formulate a computational graph-based DODE framework that calibrates dynamic network states by jointly matching observed traffic counts/speeds from local sensors with density measurements derived from satellite imagery. To assess the accuracy and robustness of the proposed framework, we conduct a series of numerical experiments using both synthetic and real-world data. The results demonstrate that supplementing traditional data with satellite-derived density significantly improves estimation performance, especially for links without local sensors. Real-world experiments also show the framework's potential for practical deployment on large-scale networks. Sensitivity analysis further evaluates the impact of data quality related to satellite imagery data.
♻ ☆ Benchmarking 3D Human Pose Estimation Models under Occlusions
Human Pose Estimation (HPE) involves detecting and localizing keypoints on the human body from visual data. In 3D HPE, occlusions, where parts of the body are not visible in the image, pose a significant challenge for accurate pose reconstruction. This paper presents a benchmark on the robustness of 3D HPE models under realistic occlusion conditions, involving combinations of occluded keypoints commonly observed in real-world scenarios. We evaluate nine state-of-the-art 2D-to-3D HPE models, spanning convolutional, transformer-based, graph-based, and diffusion-based architectures, using the BlendMimic3D dataset, a synthetic dataset with ground-truth 2D/3D annotations and occlusion labels. All models were originally trained on Human3.6M and tested here without retraining to assess their generalization. We introduce a protocol that simulates occlusion by adding noise into 2D keypoints based on real detector behavior, and conduct both global and per-joint sensitivity analyses. Our findings reveal that all models exhibit notable performance degradation under occlusion, with diffusion-based models underperforming despite their stochastic nature. Additionally, a per-joint occlusion analysis identifies consistent vulnerability in distal joints (e.g., wrists, feet) across models. Overall, this work highlights critical limitations of current 3D HPE models in handling occlusions, and provides insights for improving real-world robustness.
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ Residual Decoding: Mitigating Hallucinations in Large Vision-Language Models via History-Aware Residual Guidance
Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
♻ ☆ Toward Efficient and Robust Behavior Models for Multi-Agent Driving Simulation ICRA 2026
Scalable multi-agent driving simulation requires behavior models that are both realistic and computationally efficient. We address this by optimizing the behavior model that controls individual traffic participants. To improve efficiency, we adopt an instance-centric scene representation, where each traffic participant and map element is modeled in its own local coordinate frame. This design enables efficient, viewpoint-invariant scene encoding and allows static map tokens to be reused across simulation steps. To model interactions, we employ a query-centric symmetric context encoder with relative positional encodings between local frames. We use Adversarial Inverse Reinforcement Learning to learn the behavior model and propose an adaptive reward transformation that automatically balances robustness and realism during training. Experiments demonstrate that our approach scales efficiently with the number of tokens, significantly reducing training and inference times, while outperforming several agent-centric baselines in terms of positional accuracy and robustness.
comment: Accepted for publication by IEEE International Conference on Robotics & Automation (ICRA 2026)
♻ ☆ Driving as a Diagnostic Tool: Scenario-based Cognitive Assessment in Older Drivers from Driving Video
We introduce scenario-based cognitive status identification in older drivers from naturalistic driving videos, leveraging large vision models. In recent times, cognitive decline including Dementia and Mild Cognitive Impairment (MCI), is often underdiagnosed due to the time-consuming and costly nature of current diagnostic methods. By analyzing real-world driving behavior captured through in-vehicle sensors, this study aims to extract "digital fingerprints" that correlate with functional decline and clinical features of dementia. Moreover, modern large vision models can draw meaningful insights from everyday driving patterns across different roadway scenarios to early detect cognitive decline. We propose a framework that uses large vision models and naturalistic driving videos to analyze driver behavior, identify cognitive status and predict disease progression. We leverage the strong relationship between real-world driving behavior as an observation of the current cognitive status of the drivers where the vehicle can be utilized as a "diagnostic tool". Our method identifies early warning signs of functional impairment, contributing to proactive intervention strategies. This work enhances early detection and supports the development of scalable, non-invasive monitoring systems to mitigate the growing societal and economic burden of cognitive decline in the aging population.
♻ ☆ CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration
Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/.
comment: Accepted at TMLR (2026)
♻ ☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ SNAP: Towards Segmenting Anything in Any Point Cloud
Interactive 3D point cloud segmentation enables efficient annotation of complex 3D scenes through user-guided prompts. However, current approaches are typically restricted in scope to a single domain (indoor or outdoor), and to a single form of user interaction (either spatial clicks or textual prompts). Moreover, training on multiple datasets often leads to negative transfer, resulting in domain-specific tools that lack generalizability. To address these limitations, we present SNAP (Segment aNything in Any Point cloud), a unified model for interactive 3D segmentation that supports both point-based and text-based prompts across diverse domains. Our approach achieves cross-domain generalizability by training on 7 datasets spanning indoor, outdoor, and aerial environments, while employing domain-adaptive normalization to prevent negative transfer. For text-prompted segmentation, we automatically generate mask proposals without human intervention and match them against CLIP embeddings of textual queries, enabling both panoptic and open-vocabulary segmentation. Extensive experiments demonstrate that SNAP consistently delivers high-quality segmentation results. We achieve state-of-the-art performance on 8 out of 9 zero-shot benchmarks for spatial-prompted segmentation and demonstrate competitive results on all 5 text-prompted benchmarks. These results show that a unified model can match or exceed specialized domain-specific approaches, providing a practical tool for scalable 3D annotation. Project page is at, https://neu-vi.github.io/SNAP/
comment: Project Page, https://neu-vi.github.io/SNAP/
♻ ☆ Grow with the Flow: 4D Reconstruction of Growing Plants with Gaussian Flow Fields
Modeling the time-varying 3D appearance of plants during their growth poses unique challenges: unlike many dynamic scenes, plants generate new geometry over time as they expand, branch, and differentiate. Recent motion modeling techniques are ill-suited to this problem setting. For example, deformation fields cannot introduce new geometry, and 4D Gaussian splatting constrains motion to a linear trajectory in space and time and cannot track the same set of Gaussians over time. Here, we introduce a 3D Gaussian flow field representation that models plant growth as a time-varying derivative over Gaussian parameters -- position, scale, orientation, color, and opacity -- enabling nonlinear and continuous-time growth dynamics. To initialize a sufficient set of Gaussian primitives, we reconstruct the mature plant and learn a process of reverse growth, effectively simulating the plant's developmental history in reverse. Our approach achieves superior image quality and geometric accuracy compared to prior methods on multi-view timelapse datasets of plant growth, providing a new approach for appearance modeling of growing 3D structures.
comment: Project page: https://weihanluo.ca/growflow/
♻ ☆ Assessing Identity Leakage in Talking Face Generation: Metrics and Evaluation Framework ICASSP 2026
Video editing-based talking face generation aims to preserve video details such as pose, lighting, and gestures while modifying only lip motion, often using an identity reference image to maintain speaker consistency. However, this mechanism can introduce lip leakage, where generated lips are influenced by the reference image rather than solely by the driving audio. Such leakage is difficult to detect with standard metrics and conventional test setup. To address this, we propose a systematic evaluation methodology to analyze and quantify lip leakage. Our framework employs three complementary test setups: silent-input generation, mismatched audio-video pairing, and matched audio-video synthesis. We also introduce derived metrics including lip-sync discrepancy and silent-audio-based lip-sync scores. In addition, we study how different identity reference selections affect leakage, providing insights into reference design. The proposed methodology is model-agnostic and establishes a more reliable benchmark for future research in talking face generation.
comment: Accepted to ICASSP 2026
♻ ☆ Thinking with Geometry: Active Geometry Integration for Spatial Reasoning
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
♻ ☆ Constant Rate Scheduling: A General Framework for Optimizing Diffusion Noise Schedule via Distributional Change
We propose a general framework for optimizing noise schedules in diffusion models, applicable to both training and sampling. Our method enforces a constant rate of change in the probability distribution of diffused data throughout the diffusion process, where the rate of change is quantified using a user-defined discrepancy measure. We introduce three such measures, which can be flexibly selected or combined depending on the domain and model architecture. While our framework is inspired by theoretical insights, we do not aim to provide a complete theoretical justification of how distributional change affects sample quality. Instead, we focus on establishing a general-purpose scheduling framework and validating its empirical effectiveness. Through extensive experiments, we demonstrate that our approach consistently improves the performance of both pixel-space and latent-space diffusion models, across various datasets, samplers, and a wide range of number of function evaluations from 5 to 250. In particular, when applied to both training and sampling schedules, our method achieves a state-of-the-art FID score of 2.03 on LSUN Horse 256$\times$256, without compromising mode coverage.
comment: Published in Transactions on Machine Learning Research (TMLR), January 2026
♻ ☆ OpenMonoGS-SLAM: Monocular Gaussian Splatting SLAM with Open-set Semantics
Simultaneous Localization and Mapping (SLAM) is a foundational component in robotics, AR/VR, and autonomous systems. With the rising focus on spatial AI in recent years, combining SLAM with semantic understanding has become increasingly important for enabling intelligent perception and interaction. Recent efforts have explored this integration, but they often rely on depth sensors or closed-set semantic models, limiting their scalability and adaptability in open-world environments. In this work, we present OpenMonoGS-SLAM, the first monocular SLAM framework that unifies 3D Gaussian Splatting (3DGS) with open-set semantic understanding. To achieve our goal, we leverage recent advances in Visual Foundation Models (VFMs), including MASt3R for visual geometry and SAM and CLIP for open-vocabulary semantics. These models provide robust generalization across diverse tasks, enabling accurate monocular camera tracking and mapping, as well as a rich understanding of semantics in open-world environments. Our method operates without any depth input or 3D semantic ground truth, relying solely on self-supervised learning objectives. Furthermore, we propose a memory mechanism specifically designed to manage high-dimensional semantic features, which effectively constructs Gaussian semantic feature maps, leading to strong overall performance. Experimental results demonstrate that our approach achieves performance comparable to or surpassing existing baselines in both closed-set and open-set segmentation tasks, all without relying on supplementary sensors such as depth maps or semantic annotations.
comment: Work in progress. Project page: https://jisang1528.github.io/OpenMonoGS-SLAM/
♻ ☆ Dual-IPO: Dual-Iterative Preference Optimization for Text-to-Video Generation ICLR 2026
Recent advances in video generation have enabled thrilling experiences in producing realistic videos driven by scalable diffusion transformers. However, they usually fail to produce satisfactory outputs that are aligned to users' authentic demands and preferences. In this work, we introduce Dual-Iterative Optimization (Dual-IPO), an iterative paradigm that sequentially optimizes both the reward model and the video generation model for improved synthesis quality and human preference alignment. For the reward model, our framework ensures reliable and robust reward signals via CoT-guided reasoning, voting-based self-consistency, and preference certainty estimation. Given this, we optimize video foundation models with guidance of signals from reward model's feedback, thus improving the synthesis quality in subject consistency, motion smoothness and aesthetic quality, etc. The reward model and video generation model complement each other and are progressively improved in the multi-round iteration, without requiring tediously manual preference annotations. Comprehensive experiments demonstrate that the proposed Dual-IPO can effectively and consistently improve the video generation quality of base model with various architectures and sizes, even help a model with only 2B parameters surpass a 5B one. Moreover, our analysis experiments and ablation studies identify the rational of our systematic design and the efficacy of each component.
comment: To appear in ICLR 2026
♻ ☆ Efficient HDR Reconstruction from Real-World Raw Images
The growing prevalence of high-resolution displays on edge devices has created a pressing need for efficient high dynamic range (HDR) imaging algorithms. However, most existing HDR methods either struggle to deliver satisfactory visual quality or incur high computational and memory costs, limiting their applicability to high-resolution inputs (typically exceeding 12 megapixels). Furthermore, current HDR dataset collection approaches are often labor-intensive and inefficient. In this work, we explore a novel and practical solution for HDR reconstruction directly from raw sensor data, aiming to enhance both performance and deployability on mobile platforms. Our key insights are threefold: (1) we propose RepUNet, a lightweight and efficient HDR network leveraging structural re-parameterization for fast and robust inference; (2) we design a new computational raw HDR data formation pipeline and construct a new raw HDR dataset, RealRaw-HDR; (3) we design a plug-and-play motion alignment loss to suppress ghosting artifacts under constrained bandwidth conditions effectively. Our model contains fewer than 830K parameters and takes less than 3 ms to process an image of 4K resolution using one RTX 3090 GPU. While being highly efficient, our model also achieves comparable performance to state-of-the-art HDR methods in terms of PSNR, SSIM, and a color difference metric.
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,14 figures,9 tables
♻ ☆ Wandering around: A bioinspired approach to visual attention through object motion sensitivity
Active vision enables dynamic visual perception, offering an alternative to static feedforward architectures in computer vision, which rely on large datasets and high computational resources. Biological selective attention mechanisms allow agents to focus on salient Regions of Interest (ROIs), reducing computational demand while maintaining real-time responsiveness. Event-based cameras, inspired by the mammalian retina, enhance this capability by capturing asynchronous scene changes enabling efficient low-latency processing. To distinguish moving objects while the event-based camera is in motion the agent requires an object motion segmentation mechanism to accurately detect targets and center them in the visual field (fovea). Integrating event-based sensors with neuromorphic algorithms represents a paradigm shift, using Spiking Neural Networks to parallelize computation and adapt to dynamic environments. This work presents a Spiking Convolutional Neural Network bioinspired attention system for selective attention through object motion sensitivity. The system generates events via fixational eye movements using a Dynamic Vision Sensor integrated into the Speck neuromorphic hardware, mounted on a Pan-Tilt unit, to identify the ROI and saccade toward it. The system, characterized using ideal gratings and benchmarked against the Event Camera Motion Segmentation Dataset, reaches a mean IoU of 82.2% and a mean SSIM of 96% in multi-object motion segmentation. The detection of salient objects reaches 88.8% accuracy in office scenarios and 89.8% in low-light conditions on the Event-Assisted Low-Light Video Object Segmentation Dataset. A real-time demonstrator shows the system's 0.12 s response to dynamic scenes. Its learning-free design ensures robustness across perceptual scenes, making it a reliable foundation for real-time robotic applications serving as a basis for more complex architectures.
♻ ☆ Automatic regularization parameter choice for tomography using a double model approach
Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
♻ ☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Modified TSception for Analyzing Driver Drowsiness and Mental Workload from EEG
Driver drowsiness is a leading cause of traffic accidents, necessitating real-time, reliable detection systems to ensure road safety. This study proposes a Modified TSception architecture for robust assessment of driver fatigue and mental workload using Electroencephalography (EEG). The model introduces a five-layer hierarchical temporal refinement strategy to capture multi-scale brain dynamics, surpassing the original TSception's three-layer approach. Key innovations include the use of Adaptive Average Pooling (ADP) for structural flexibility across varying EEG dimensions and a two-stage fusion mechanism to optimize spatiotemporal feature integration for improved stability. Evaluated on the SEED-VIG dataset, the Modified TSception achieves 83.46% accuracy, comparable to the original model (83.15%), but with a significantly reduced confidence interval (0.24 vs. 0.36), indicating better performance stability. The architecture's generalizability was further validated on the STEW mental workload dataset, achieving state-of-the-art accuracies of 95.93% and 95.35% for 2-class and 3-class classification, respectively. These results show that the proposed modifications improve consistency and cross-task generalizability, making the model a reliable framework for EEG-based safety monitoring.
comment: 8 Pages, 4 Figures, 1 Table
♻ ☆ Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
♻ ☆ UGround: Towards Unified Visual Grounding with Unrolled Transformers
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.
comment: https://github.com/rui-qian/UGround
♻ ☆ Temporal Concept Dynamics in Diffusion Models via Prompt-Conditioned Interventions ICLR 2026
Diffusion models are usually evaluated by their final outputs, gradually denoising random noise into meaningful images. Yet, generation unfolds along a trajectory, and analyzing this dynamic process is crucial for understanding how controllable, reliable, and predictable these models are in terms of their success/failure modes. In this work, we ask the question: when does noise turn into a specific concept (e.g., age) and lock in the denoising trajectory? We propose PCI (Prompt-Conditioned Intervention) to study this question. PCI is a training-free and model-agnostic framework for analyzing concept dynamics through diffusion time. The central idea is the analysis of Concept Insertion Success (CIS), defined as the probability that a concept inserted at a given timestep is preserved and reflected in the final image, offering a way to characterize the temporal dynamics of concept formation. Applied to several state-of-the-art text-to-image diffusion models and a broad taxonomy of concepts, PCI reveals diverse temporal behaviors across diffusion models, in which certain phases of the trajectory are more favorable to specific concepts even within the same concept type. These findings also provide actionable insights for text-driven image editing, highlighting when interventions are most effective without requiring access to model internals or training, and yielding quantitatively stronger edits that achieve a balance of semantic accuracy and content preservation than strong baselines. Code is available at: https://adagorgun.github.io/PCI-Project/
comment: Accepted at the International Conference on Learning Representations 2026 (ICLR 2026). Code is available at: https://adagorgun.github.io/PCI-Project/
♻ ☆ E-VAds: An E-commerce Short Videos Understanding Benchmark for MLLMs
E-commerce short videos represent a high-revenue segment of the online video industry characterized by a goal-driven format and dense multi-modal signals. Current models often struggle with these videos because existing benchmarks focus primarily on general-purpose tasks and neglect the reasoning of commercial intent. In this work, we first propose a multi-modal information density assessment framework to quantify the complexity of this domain. Our evaluation reveals that e-commerce content exhibits substantially higher density across visual, audio, and textual modalities compared to mainstream datasets, establishing a more challenging frontier for video understanding. To address this gap, we introduce E-commerce Video Ads Benchmark (E-VAds), which is the first benchmark specifically designed for e-commerce short video understanding. We curated 3,961 high-quality videos from Taobao covering a wide range of product categories and used a multi-agent system to generate 19,785 open-ended Q&A pairs. These questions are organized into two primary dimensions, namely Perception and Cognition and Reasoning, which consist of five distinct tasks. Finally, we develop E-VAds-R1, an RL-based reasoning model featuring a multi-grained reward design called MG-GRPO. This strategy provides smooth guidance for early exploration while creating a non-linear incentive for expert-level precision. Experimental results demonstrate that E-VAds-R1 achieves a 109.2% performance gain in commercial intent reasoning with only a few hundred training samples.
♻ ☆ PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits ICLR 2026
Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning. The code is available at https://github.com/lokali/PersonaX.
comment: ICLR 2026
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ TAMMs: Change Understanding and Forecasting in Satellite Image Time Series with Temporal-Aware Multimodal Models ICLR 2026
Temporal Change Description (TCD) and Future Satellite Image Forecasting (FSIF) are critical, yet historically disjointed tasks in Satellite Image Time Series (SITS) analysis. Both are fundamentally limited by the common challenge of modeling long-range temporal dynamics. To explore how to improve the performance of methods on both tasks simultaneously by enhancing long-range temporal understanding capabilities, we introduce **TAMMs**, the first unified framework designed to jointly perform TCD and FSIF within a single MLLM-diffusion architecture. TAMMs introduces two key innovations: Temporal Adaptation Modules (**TAM**) enhance frozen MLLM's ability to comprehend long-range dynamics, and Semantic-Fused Control Injection (**SFCI**) mechanism translates this change understanding into fine-grained generative control. This synergistic design makes the understanding from the TCD task to directly inform and improve the consistency of the FSIF task. Extensive experiments demonstrate TAMMs significantly outperforms state-of-the-art specialist baselines on both tasks. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs .
comment: Published as a conference paper at The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Shifting the Breaking Point of Flow Matching for Multi-Instance Editing
Flow matching models have recently emerged as an efficient alternative to diffusion, especially for text-guided image generation and editing, offering faster inference through continuous-time dynamics. However, existing flow-based editors predominantly support global or single-instruction edits and struggle with multi-instance scenarios, where multiple parts of a reference input must be edited independently without semantic interference. We identify this limitation as a consequence of globally conditioned velocity fields and joint attention mechanisms, which entangle concurrent edits. To address this issue, we introduce Instance-Disentangled Attention, a mechanism that partitions joint attention operations, enforcing binding between instance-specific textual instructions and spatial regions during velocity field estimation. We evaluate our approach on both natural image editing and a newly introduced benchmark of text-dense infographics with region-level editing instructions. Experimental results demonstrate that our approach promotes edit disentanglement and locality while preserving global output coherence, enabling single-pass, instance-level editing.
♻ ☆ Understanding Image2Video Domain Shift in Food Segmentation: An Instance-level Analysis on Apples
Food segmentation models trained on static images have achieved strong performance on benchmark datasets; however, their reliability in video settings remains poorly understood. In real-world applications such as food monitoring and instance counting, segmentation outputs must be temporally consistent, yet image-trained models often break down when deployed on videos. In this work, we analyze this failure through an instance segmentation and tracking perspective, focusing on apples as a representative food category. Models are trained solely on image-level food segmentation data and evaluated on video sequences using an instance segmentation with tracking-by-matching framework, enabling object-level temporal analysis. Our results reveal that high frame-wise segmentation accuracy does not translate to stable instance identities over time. Temporal appearance variations, particularly illumination changes, specular reflections, and texture ambiguity, lead to mask flickering and identity fragmentation, resulting in significant errors in apple counting. These failures are largely overlooked by conventional image-based metrics, which substantially overestimate real-world video performance. Beyond diagnosing the problem, we examine practical remedies that do not require full video supervision, including post-hoc temporal regularization and self-supervised temporal consistency objectives. Our findings suggest that the root cause of failure lies in image-centric training objectives that ignore temporal coherence, rather than model capacity. This study highlights a critical evaluation gap in food segmentation research and motivates temporally-aware learning and evaluation protocols for video-based food analysis.
♻ ☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: Data privacy regulations hinder the creation of generalizable foundation models (FMs) for surgery by preventing multi-institutional data aggregation. This study investigates federated learning (FL) as a privacy-preserving solution to collaboratively train robust surgical FMs. Methods: We introduce Federated EndoViT (FL-EndoViT), a federated framework that validates the Masked Autoencoder (MAE) pretraining strategy in a decentralized surgical setting. To ensure convergence under severe data heterogeneity, the architecture integrates adaptive Sharpness-Aware Minimization (FedSAM). Pretrained on the large-scale Endo700k dataset, FL-EndoViT is evaluated against a centralized baseline on different tasks including scene segmentation, action recognition, and phase recognition. Results: FedSAM is critical for successful pretraining, overcoming the convergence failures of standard federated methods. The resulting FL-EndoViT performs comparably to its centralized counterpart, with significant advantages in data-scarce, high-resolution segmentation and generalization to new surgical events. We also establish that full, end-to-end fine-tuning is necessary for optimal performance. Conclusion: This work validates FL with adaptive optimization as a viable paradigm for creating robust, privacy-preserving surgical FMs. Our findings provide a scalable framework for collaborative Surgical Data Science and underscore the optimizer's critical role in handling data heterogeneity. Future work should explore video-based models to incorporate spatiotemporal dynamics.
comment: Preprint submitted to MIDL
♻ ☆ GenTrack2: An Improved Hybrid Approach for Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ On the Provable Importance of Gradients for Language-Assisted Image Clustering ICCV2025
This paper investigates the recently emerged problem of Language-assisted Image Clustering (LaIC), where textual semantics are leveraged to improve the discriminability of visual representations to facilitate image clustering. Due to the unavailability of true class names, one of core challenges of LaIC lies in how to filter positive nouns, i.e., those semantically close to the images of interest, from unlabeled wild corpus data. Existing filtering strategies are predominantly based on the off-the-shelf feature space learned by CLIP; however, despite being intuitive, these strategies lack a rigorous theoretical foundation. To fill this gap, we propose a novel gradient-based framework, termed as GradNorm, which is theoretically guaranteed and shows strong empirical performance. In particular, we measure the positiveness of each noun based on the magnitude of gradients back-propagated from the cross-entropy between the predicted target distribution and the softmax output. Theoretically, we provide a rigorous error bound to quantify the separability of positive nouns by GradNorm and prove that GradNorm naturally subsumes existing filtering strategies as extremely special cases of itself. Empirically, extensive experiments show that GradNorm achieves the state-of-the-art clustering performance on various benchmarks.
comment: revised and extended version of ICCV2025
♻ ☆ WristMIR: Coarse-to-Fine Region-Aware Retrieval of Pediatric Wrist Radiographs with Radiology Report-Driven Learning
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
♻ ☆ MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach combines motion-aware latent world model features with pixel-space features, enabling MoWM to emphasize action-relevant visual details for action decoding. Extensive evaluations on the CALVIN and real-world manipulation tasks demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.
♻ ☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Experiments on three diverse video datasets - EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition) with multiple target models covering both classification and regression tasks, demonstrate that LD-ViCE generalizes well and achieves state-of-the-art performance. On the EchoNet-Dynamic dataset, LD-ViCE achieves significantly higher regression accuracy than prior methods and exhibits high temporal consistency, while the refinement stage further improves perceptual quality. Qualitative analyses confirm that LD-ViCE produces semantically meaningful and temporally coherent explanations, providing actionable insights into model behavior. LD-ViCE advances the trustworthiness and interpretability of video-based AI systems through visually coherent counterfactual explanations.
comment: 44 Pages
♻ ☆ MediRound: Multi-Round Entity-Level Reasoning Segmentation in Medical Images
Despite the progress in medical image segmentation, most existing methods remain task-specific and lack interactivity. Although recent text-prompt-based segmentation approaches enhance user-driven and reasoning-based segmentation, they remain confined to single-round dialogues and fail to perform multi-round reasoning. In this work, we introduce Multi-Round Entity-Level Medical Reasoning Segmentation (MEMR-Seg), a new task that requires generating segmentation masks through multi-round queries with entity-level reasoning. To support this task, we construct MR-MedSeg, a large-scale dataset of 177K multi-round medical segmentation dialogues, featuring entity-based reasoning across rounds. Furthermore, we propose MediRound, an effective baseline model designed for multi-round medical reasoning segmentation. To mitigate the inherent error propagation in the chain-like pipeline of multi-round segmentation, we introduce a lightweight yet effective Judgment & Correction Mechanism during model inference. Experimental results demonstrate that our method effectively addresses the MEMR-Seg task and outperforms conventional medical referring segmentation methods.
comment: 16pages, 10 figures
♻ ☆ Free-Boundary Quasiconformal Maps via a Least-squares Operator in Diffeomorphism Optimization
Free-boundary diffeomorphism optimization, an important and widely occurring task in geometric modeling, computer graphics, and biological imaging, requires simultaneously determining a planar target domain and a locally bijective map with well-controlled distortion. We formulate this task through the least-squares quasiconformal (LSQC) operator and establish key structural properties of the LSQC minimizer, including well-posedness under mild conditions, invariance under similarity transformations, and resolution-independent behavior with stability under mesh refinement. We further analyze the sensitivity of the LSQC solution with respect to the Beltrami coefficient, establishing stability and differentiability properties that enable gradient-based optimization over the space of Beltrami coefficients. To make this differentiable formulation practical at scale and to facilitate the optimization process, we introduce the Spectral Beltrami Network (SBN), a multiscale mesh-spectral surrogate that approximates the LSQC solution operator in a single differentiable forward pass. This yields SBN-Opt, an optimization framework that searches over admissible Beltrami coefficients and pinning conditions to solve free-boundary diffeomorphism objectives with explicit distortion control. Extensive experiments on equiareal parameterization and inconsistent surface registration demonstrate consistent improvements over traditional numerical algorithms.
♻ ☆ Common Objects Out of Context (COOCo): Investigating Multimodal Context and Semantic Scene Violations in Referential Communication ACL
To what degree and under what conditions do VLMs rely on scene context when generating references to objects? To address this question, we introduce the $\textit{Common Objects Out-of-Context (COOCo)}$ dataset and conduct experiments on several VLMs under different degrees of scene-object congruency and noise. We find that models leverage scene context adaptively, depending on scene-object semantic relatedness and noise level. Based on these consistent trends across models, we turn to the question of how VLM attention patterns change as a function of target-scene semantic fit, and to what degree these patterns are predictive of categorisation accuracy. We find that successful object categorisation is associated with increased mid-layer attention to the target. We also find a non-monotonic dependency on semantic fit, with attention dropping at moderate fit and increasing for both low and high fit. These results suggest that VLMs dynamically balance local and contextual information for reference generation. Dataset and code are available here: $\href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}$.
comment: Accepted to TACL (pre-MIT Press publication version)
♻ ☆ Self-Supervised Learning Based on Transformed Image Reconstruction for Equivariance-Coherent Feature Representation AAAI2026
Self-supervised learning (SSL) methods have achieved remarkable success in learning image representations allowing invariances in them - but therefore discarding transformation information that some computer vision tasks actually require. While recent approaches attempt to address this limitation by learning equivariant features using linear operators in feature space, they impose restrictive assumptions that constrain flexibility and generalization. We introduce a weaker definition for the transformation relation between image and feature space denoted as equivariance-coherence. We propose a novel SSL auxiliary task that learns equivariance-coherent representations through intermediate transformation reconstruction, which can be integrated with existing joint embedding SSL methods. Our key idea is to reconstruct images at intermediate points along transformation paths, e.g. when training on 30-degree rotations, we reconstruct the 10-degree and 20-degree rotation states. Reconstructing intermediate states requires the transformation information used in augmentations, rather than suppressing it, and therefore fosters features containing the augmented transformation information. Our method decomposes feature vectors into invariant and equivariant parts, training them with standard SSL losses and reconstruction losses, respectively. We demonstrate substantial improvements on synthetic equivariance benchmarks while maintaining competitive performance on downstream tasks requiring invariant representations. The approach seamlessly integrates with existing SSL methods (iBOT, DINOv2) and consistently enhances performance across diverse tasks, including segmentation, detection, depth estimation, and video dense prediction. Our framework provides a practical way for augmenting SSL methods with equivariant capabilities while preserving invariant performance.
comment: AAAI2026 oral
♻ ☆ A Real-Time DDS-Based Chest X-Ray Decision Support System for Resource-Constrained Clinics
Internet of Things (IoT)-based healthcare systems offer significant potential for improving healthcare delivery in humanitarian and resource-constrained environments, providing essential services to underserved populations in remote areas. However, limited network infrastructure in such regions makes reliable communication challenging for traditional IoT systems. This paper presents a real-time chest X-ray decision support system designed for hospitals in remote locations. The proposed system integrates a fine-tuned ResNet50 deep learning model for disease classification with Fast DDS real-time middleware to ensure reliable and low-latency communication between healthcare practitioners and the inference system. Experimental results show that the model achieves an accuracy of 88.61%, precision of 88.76%, and recall of 88.49%. The system attains an average throughput of 3.2 KB/s and an average latency of 65 ms, demonstrating its suitability for deployment in bandwidth-constrained environments. These results highlight the effectiveness of DDS-based middleware in enabling real-time medical decision support for remote healthcare applications.
♻ ☆ Local Dense Logit Relations for Enhanced Knowledge Distillation ICCV2025
State-of-the-art logit distillation methods exhibit versatility, simplicity, and efficiency. Despite the advances, existing studies have yet to delve thoroughly into fine-grained relationships within logit knowledge. In this paper, we propose Local Dense Relational Logit Distillation (LDRLD), a novel method that captures inter-class relationships through recursively decoupling and recombining logit information, thereby providing more detailed and clearer insights for student learning. To further optimize the performance, we introduce an Adaptive Decay Weight (ADW) strategy, which can dynamically adjust the weights for critical category pairs using Inverse Rank Weighting (IRW) and Exponential Rank Decay (ERD). Specifically, IRW assigns weights inversely proportional to the rank differences between pairs, while ERD adaptively controls weight decay based on total ranking scores of category pairs. Furthermore, after the recursive decoupling, we distill the remaining non-target knowledge to ensure knowledge completeness and enhance performance. Ultimately, our method improves the student's performance by transferring fine-grained knowledge and emphasizing the most critical relationships. Extensive experiments on datasets such as CIFAR-100, ImageNet-1K, and Tiny-ImageNet demonstrate that our method compares favorably with state-of-the-art logit-based distillation approaches. The code will be made publicly available.
comment: Accepted by ICCV2025, Code available at https://github.com/yema-web/LDRLD
♻ ☆ MOVA: Towards Scalable and Synchronized Video-Audio Generation
Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
comment: Technical report for MOVA (open-source video-audio generation model). 38 pages, 10 figures, 22 tables. Project page: https://mosi.cn/models/mova Code: https://github.com/OpenMOSS/MOVA Models: https://huggingface.co/collections/OpenMOSS-Team/mova. Qinyuan Cheng and Tianyi Liang are project leader. Xie Chen and Xipeng Qiu are corresponding authors
♻ ☆ Controllable Dance Generation with Style-Guided Motion Diffusion
Dance plays an important role as an artistic form and expression in human culture, yet automatically generating dance sequences is a significant yet challenging endeavor. Existing approaches often neglect the critical aspect of controllability in dance generation. Additionally, they inadequately model the nuanced impact of music styles, resulting in dances that lack alignment with the expressive characteristics inherent in the conditioned music. To address this gap, we propose Style-Guided Motion Diffusion (SGMD), which integrates the Transformer-based architecture with a Style Modulation module. By incorporating music features with user-provided style prompts, the SGMD ensures that the generated dances not only match the musical content but also reflect the desired stylistic characteristics. To enable flexible control over the generated dances, we introduce a spatial-temporal masking mechanism. As controllable dance generation has not been fully studied, we construct corresponding experimental setups and benchmarks for tasks such as trajectory-based dance generation, dance in-betweening, and dance inpainting. Extensive experiments demonstrate that our approach can generate realistic and stylistically consistent dances, while also empowering users to create dances tailored to diverse artistic and practical needs. Code is available on Github: https://github.com/mucunzhuzhu/DGSDP
♻ ☆ Multi-Expert Learning Framework with the State Space Model for Optical and SAR Image Registration
Optical and Synthetic Aperture Radar (SAR) image registration is crucial for multi-modal image fusion and applications. However, several challenges limit the performance of existing deep learning-based methods in cross-modal image registration: (i) significant nonlinear radiometric variations between optical and SAR images affect the shared feature learning and matching; (ii) limited textures in images hinder discriminative feature extraction; (iii) the local receptive field of Convolutional Neural Networks (CNNs) restricts the learning of contextual information, while the Transformer can capture long-range global features but with high computational complexity. To address these issues, this paper proposes a multi-expert learning framework with the State Space Model (ME-SSM) for optical and SAR image registration. Firstly, to improve the registration performance with limited textures, ME-SSM constructs a multi-expert learning framework to capture shared features from multi-modal images. Specifically, it extracts features from various transformations of the input image and employs a learnable soft router to dynamically fuse these features, thereby enriching feature representations and improving registration performance. Secondly, ME-SSM introduces a state space model, Mamba, for feature extraction, which employs a multi-directional cross-scanning strategy to efficiently capture global contextual relationships with linear complexity. ME-SSM can expand the receptive field, enhance image registration accuracy, and avoid incurring high computational costs. Additionally, ME-SSM uses a multi-level feature aggregation (MFA) module to enhance the multi-scale feature fusion and interaction. Extensive experiments have demonstrated the effectiveness and advantages of our proposed ME-SSM on optical and SAR image registration.
♻ ☆ Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, limiting its application in real-world scenarios. Existing methods often directly adapt noisy label learning techniques designed for instance classification, overlooking the pixel-wise heterogeneity in medical segmentation with its spatially and anatomically varying difficulties. Consequently, global assumptions or simple confidence metrics fail to address these local variations, leaving boundary ambiguities unresolved. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
♻ ☆ RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent
The unprecedented advancements in Multimodal Large Language Models (MLLMs) have demonstrated strong potential in interacting with humans through both language and visual inputs to perform downstream tasks such as visual question answering and scene understanding. However, these models are constrained to basic instruction-following or descriptive tasks, facing challenges in complex real-world remote sensing applications that require specialized tools and knowledge. To address these limitations, we propose RS-Agent, an AI agent designed to interact with human users and autonomously leverage specialized models to address the demands of real-world remote sensing applications. RS-Agent integrates four key components: a Central Controller based on large language models, a dynamic toolkit for tool execution, a Solution Space for task-specific expert guidance, and a Knowledge Space for domain-level reasoning, enabling it to interpret user queries and orchestrate tools for accurate remote sensing task. We introduce two novel mechanisms: Task-Aware Retrieval, which improves tool selection accuracy through expert-guided planning, and DualRAG, a retrieval-augmented generation method that enhances knowledge relevance through weighted, dual-path retrieval. RS-Agent supports flexible integration of new tools and is compatible with both open-source and proprietary LLMs. Extensive experiments across 9 datasets and 18 remote sensing tasks demonstrate that RS-Agent significantly outperforms state-of-the-art MLLMs, achieving over 95% task planning accuracy and delivering superior performance in tasks such as scene classification, object counting, and remote sensing visual question answering. Our work presents RS-Agent as a robust and extensible framework for advancing intelligent automation in remote sensing analysis.
♻ ☆ From Correspondence to Actions: Human-Like Multi-Image Spatial Reasoning in Multi-modal Large Language Models
While multimodal large language models (MLLMs) have made substantial progress in single-image spatial reasoning, multi-image spatial reasoning, which requires integration of information from multiple viewpoints, remains challenging. Cognitive studies suggest that humans address such tasks through two mechanisms: cross-view correspondence, which identifies regions across different views that correspond to the same physical locations, and stepwise viewpoint transformation, which composes relative viewpoint changes sequentially. However, existing studies incorporate these mechanisms only partially and often implicitly, without explicit supervision for both. We propose Human-Aware Training for Cross-view correspondence and viewpoint cHange (HATCH), a training framework with two complementary objectives: (1) Patch-Level Spatial Alignment, which encourages patch representations to align across views for spatially corresponding regions, and (2) Action-then-Answer Reasoning, which requires the model to generate explicit viewpoint transition actions before predicting the final answer. Experiments on three benchmarks demonstrate that HATCH consistently outperforms baselines of comparable size by a clear margin and achieves competitive results against much larger models, while preserving single-image reasoning capabilities.
♻ ☆ Efficient-SAM2: Accelerating SAM2 with Object-Aware Visual Encoding and Memory Retrieval ICLR 2026
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
comment: ICLR 2026,Code is available at: https://github.com/jingjing0419/Efficient-SAM2
♻ ☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric. The code is available at https://github.com/rohanasthana/memorization-anisotropy .
comment: Accepted at ICLR 2026
♻ ☆ AdaptMMBench: Benchmarking Adaptive Multimodal Reasoning for Mode Selection and Reasoning Process
Adaptive multimodal reasoning has emerged as a promising frontier in Vision-Language Models (VLMs), aiming to dynamically modulate between tool-augmented visual reasoning and text reasoning to enhance both effectiveness and efficiency. However, existing evaluations rely on static difficulty labels and simplistic metrics, which fail to capture the dynamic nature of difficulty relative to varying model capacities. Consequently, they obscure the distinction between adaptive mode selection and general performance while neglecting fine-grained process analyses. In this paper, we propose AdaptMMBench, a comprehensive benchmark for adaptive multimodal reasoning across five domains: real-world, OCR, GUI, knowledge, and math, encompassing both direct perception and complex reasoning tasks. AdaptMMBench utilizes a Matthews Correlation Coefficient (MCC) metric to evaluate the selection rationality of different reasoning modes, isolating this meta-cognition ability by dynamically identifying task difficulties based on models' capability boundaries. Moreover, AdaptMMBench facilitates multi-dimensional process evaluation across key step coverage, tool effectiveness, and computational efficiency. Our evaluation reveals that while adaptive mode selection scales with model capacity, it notably decouples from final accuracy. Conversely, key step coverage aligns with performance, though tool effectiveness remains highly inconsistent across model architectures.
♻ ☆ DINO-LG: Enhancing Vision Transformers with Label Guidance for Coronary Artery Calcium Detection
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by introducing DINO-LG, a novel label-guided extension of DINO (self-distillation with no labels) that incorporates targeted augmentation on annotated calcified regions during self-supervised pre-training. Our three-stage pipeline integrates Vision Transformer (ViT-Base/8) feature extraction via DINO-LG trained on 914 CT scans comprising 700 gated and 214 non-gated acquisitions, linear classification to identify calcified slices, and U-NET segmentation for CAC quantification and Agatston scoring. DINO-LG achieved 89% sensitivity and 90% specificity for detecting CAC-containing CT slices, compared to standard DINO's 79% sensitivity and 77% specificity, reducing false-negative and false-positive rates by 49% and 57% respectively. The integrated system achieves 90% accuracy in CAC risk classification on 45 test patients, outperforming standalone U-NET segmentation (76% accuracy) while processing only the relevant subset of CT slices. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, improving diagnostic precision while lowering healthcare costs by minimizing unnecessary tests and treatments.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ ReaMOT: A Benchmark and Framework for Reasoning-based Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track targets specified by language instructions. However, existing RMOT paradigms are largely designed for explicit instructions and consequently fail to generalize to complex instructions that require logical reasoning. To overcome this, we propose Reasoning-based Multi-Object Tracking (ReaMOT), a novel task that requires models to identify and track targets that satisfy implicit constraints via logical reasoning. To advance this field, we construct the ReaMOT Challenge, a comprehensive benchmark comprising: (1) a large-scale dataset with 1,156 instructions categorized into High-Level Reasoning and Low-Level Perception, covering 423,359 image-language pairs across 869 diverse scenes; and (2) a tailored metric suite designed to jointly evaluate reasoning accuracy and tracking robustness. Furthermore, we propose ReaTrack, a training-free framework that synergizes the reasoning capabilities of Thinking-variant Large Vision-Language Model (LVLM) with the precise temporal modeling of SAM2. Extensive experiments on the ReaMOT Challenge benchmark demonstrates the effectiveness of our ReaTrack framework.
comment: https://github.com/chen-si-jia/ReaMOT
♻ ☆ Q-DiT4SR: Exploration of Detail-Preserving Diffusion Transformer Quantization for Real-World Image Super-Resolution
Recently, Diffusion Transformers (DiTs) have emerged in Real-World Image Super-Resolution (Real-ISR) to generate high-quality textures, yet their heavy inference burden hinders real-world deployment. While Post-Training Quantization (PTQ) is a promising solution for acceleration, existing methods in super-resolution mostly focus on U-Net architectures, whereas generic DiT quantization is typically designed for text-to-image tasks. Directly applying these methods to DiT-based super-resolution models leads to severe degradation of local textures. Therefore, we propose Q-DiT4SR, the first PTQ framework specifically tailored for DiT-based Real-ISR. We propose H-SVD, a hierarchical SVD that integrates a global low-rank branch with a local block-wise rank-1 branch under a matched parameter budget. We further propose Variance-aware Spatio-Temporal Mixed Precision: VaSMP allocates cross-layer weight bit-widths in a data-free manner based on rate-distortion theory, while VaTMP schedules intra-layer activation precision across diffusion timesteps via dynamic programming (DP) with minimal calibration. Experiments on multiple real-world datasets demonstrate that our Q-DiT4SR achieves SOTA performance under both W4A6 and W4A4 settings. Notably, the W4A4 quantization configuration reduces model size by 5.8$\times$ and computational operations by over 60$\times$. Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR.
comment: Our code and models will be available at https://github.com/xunzhang1128/Q-DiT4SR
♻ ☆ SHIELD: Suppressing Hallucinations In LVLM Encoders via Bias and Vulnerability Defense ICLR 2026
Large Vision-Language Models (LVLMs) excel in diverse cross-modal tasks. However, object hallucination, where models produce plausible but inaccurate object descriptions, remains a significant challenge. In contrast to previous work focusing on LLM components, this paper is the first to trace LVLM hallucinations to visual encoders and identifies three key issues: statistical bias, inherent bias, and vulnerability. To address these challenges, we propose SHIELD, a training-free framework that mitigates hallucinations through three strategies: re-weighting visual tokens to reduce statistical bias, introducing noise-derived tokens to counter inherent bias, and applying adversarial attacks with contrastive decoding to address vulnerability. Experiments demonstrate that SHIELD effectively mitigates object hallucinations across diverse benchmarks and LVLM families. Moreover, SHIELD achieves strong performance on the general LVLM benchmark, highlighting its broad applicability. Code is available at https://github.com/hukcc/SHIELD.
comment: ICLR 2026
♻ ☆ SoulX-FlashHead: Oracle-guided Generation of Infinite Real-time Streaming Talking Heads
Achieving a balance between high-fidelity visual quality and low-latency streaming remains a formidable challenge in audio-driven portrait generation. Existing large-scale models often suffer from prohibitive computational costs, while lightweight alternatives typically compromise on holistic facial representations and temporal stability. In this paper, we propose SoulX-FlashHead, a unified 1.3B-parameter framework designed for real-time, infinite-length, and high-fidelity streaming video generation. To address the instability of audio features in streaming scenarios, we introduce Streaming-Aware Spatiotemporal Pre-training equipped with a Temporal Audio Context Cache mechanism, which ensures robust feature extraction from short audio fragments. Furthermore, to mitigate the error accumulation and identity drift inherent in long-sequence autoregressive generation, we propose Oracle-Guided Bidirectional Distillation, leveraging ground-truth motion priors to provide precise physical guidance. We also present VividHead, a large-scale, high-quality dataset containing 782 hours of strictly aligned footage to support robust training. Extensive experiments demonstrate that SoulX-FlashHead achieves state-of-the-art performance on HDTF and VFHQ benchmarks. Notably, our Lite variant achieves an inference speed of 96 FPS on a single NVIDIA RTX 4090, facilitating ultra-fast interaction without sacrificing visual coherence.
comment: 11 pages, 3 figures
♻ ☆ VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
♻ ☆ DiffBreak: Is Diffusion-Based Purification Robust?
Diffusion-based purification (DBP) has become a cornerstone defense against adversarial examples (AEs), regarded as robust due to its use of diffusion models (DMs) that project AEs onto the natural data manifold. We refute this core claim, theoretically proving that gradient-based attacks effectively target the DM rather than the classifier, causing DBP's outputs to align with adversarial distributions. This prompts a reassessment of DBP's robustness, attributing it to two critical flaws: incorrect gradients and inappropriate evaluation protocols that test only a single random purification of the AE. We show that with proper accounting for stochasticity and resubmission risk, DBP collapses. To support this, we introduce DiffBreak, the first reliable toolkit for differentiation through DBP, eliminating gradient flaws that previously further inflated robustness estimates. We also analyze the current defense scheme used for DBP where classification relies on a single purification, pinpointing its inherent invalidity. We provide a statistically grounded majority-vote (MV) alternative that aggregates predictions across multiple purified copies, showing partial but meaningful robustness gain. We then propose a novel adaptation of an optimization method against deepfake watermarking, crafting systemic perturbations that defeat DBP even under MV, challenging DBP's viability.
♻ ☆ Unconditional Priors Matter! Improving Conditional Generation of Fine-Tuned Diffusion Models WACV 2026
Classifier-Free Guidance (CFG) is a fundamental technique in training conditional diffusion models. The common practice for CFG-based training is to use a single network to learn both conditional and unconditional noise prediction, with a small dropout rate for conditioning. However, we observe that the joint learning of unconditional noise with limited bandwidth in training results in poor priors for the unconditional case. More importantly, these poor unconditional noise predictions become a serious reason for degrading the quality of conditional generation. Inspired by the fact that most CFG-based conditional models are trained by fine-tuning a base model with better unconditional generation, we first show that simply replacing the unconditional noise in CFG with that predicted by the base model can significantly improve conditional generation. Furthermore, we show that a diffusion model other than the one the fine-tuned model was trained on can be used for unconditional noise replacement. We experimentally verify our claim with a range of CFG-based conditional models for both image and video generation, including Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter, and InstructPix2Pix.
comment: WACV 2026; Project Page: https://unconditional-priors-matter.github.io/
♻ ☆ TwistNet-2D: Learning Second-Order Channel Interactions via Spiral Twisting for Texture Recognition
Second-order feature statistics are central to texture recognition, yet current methods face a fundamental tension: bilinear pooling and Gram matrices capture global channel correlations but collapse spatial structure, while self-attention models spatial context through weighted aggregation rather than explicit pairwise feature interactions. We introduce TwistNet-2D, a lightweight module that computes \emph{local} pairwise channel products under directional spatial displacement, jointly encoding where features co-occur and how they interact. The core component, Spiral-Twisted Channel Interaction (STCI), shifts one feature map along a prescribed direction before element-wise channel multiplication, thereby capturing the cross-position co-occurrence patterns characteristic of structured and periodic textures. Aggregating four directional heads with learned channel reweighting and injecting the result through a sigmoid-gated residual path, \TwistNet incurs only 3.5% additional parameters and 2% additional FLOPs over ResNet-18, yet consistently surpasses both parameter-matched and substantially larger baselines -- including ConvNeXt, Swin Transformer, and hybrid CNN--Transformer architectures -- across four texture and fine-grained recognition benchmarks.
comment: Code is available at https://github.com/junbolian/TwistNet-2D
♻ ☆ ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models NeurIPS 2025
Chart understanding presents a unique challenge for large vision-language models (LVLMs), as it requires the integration of sophisticated textual and visual reasoning capabilities. However, current LVLMs exhibit a notable imbalance between these skills, falling short on visual reasoning that is difficult to perform in text. We conduct a case study using a synthetic dataset solvable only through visual reasoning and show that model performance degrades significantly with increasing visual complexity, while human performance remains robust. We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions spanning multiple reasoning types, curated from real-world charts across 184 sources, specifically built to evaluate complex visual and textual reasoning. Unlike prior chart understanding benchmarks -- where frontier models perform similarly and near saturation -- our benchmark exposes a substantial gap between model and human performance, while effectively differentiating model capabilities: although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%. Moreover, on questions requiring primarily visual reasoning, all models experience a 35%-55% performance drop from text-reasoning-heavy question performance. Lastly, our qualitative error analysis reveals specific categories of visual reasoning that are challenging for current LVLMs.
comment: NeurIPS 2025 Datasets & Benchmarks
♻ ☆ CoRe3D: Collaborative Reasoning as a Foundation for 3D Intelligence
Recent advances in large multimodal models suggest that explicit reasoning mechanisms play a critical role in improving model reliability, interpretability, and cross-modal alignment. While such reasoning-centric approaches have been proven effective in language and vision tasks, their extension to 3D remains underdeveloped. CoRe3D introduces a unified 3D understanding and generation reasoning framework that jointly operates over semantic and spatial abstractions, enabling high-level intent inferred from language to directly guide low-level 3D content formation. Central to this design is a spatially grounded reasoning representation that decomposes 3D latent space into localized regions, allowing the model to reason over geometry in a compositional and procedural manner. By tightly coupling semantic chain-of-thought inference with structured spatial reasoning, CoRe3D produces 3D outputs that exhibit strong local consistency and faithful alignment with linguistic descriptions.
♻ ☆ Sim2real Image Translation Enables Viewpoint-Robust Policies from Fixed-Camera Datasets
Vision-based policies for robot manipulation have achieved significant recent success, but are still brittle to distribution shifts such as camera viewpoint variations. Robot demonstration data is scarce and often lacks appropriate variation in camera viewpoints. Simulation offers a way to collect robot demonstrations at scale with comprehensive coverage of different viewpoints, but presents a visual sim2real challenge. To bridge this gap, we propose MANGO -- an unpaired image translation method with a novel segmentation-conditioned InfoNCE loss, a highly-regularized discriminator design, and a modified PatchNCE loss. We find that these elements are crucial for maintaining viewpoint consistency during sim2real translation. When training MANGO, we only require a small amount of fixed-camera data from the real world, but show that our method can generate diverse unseen viewpoints by translating simulated observations. In this domain, MANGO outperforms all other image translation methods we tested. Imitation-learning policies trained on data augmented by MANGO are able to achieve success rates as high as 60% on views that the non-augmented policy fails completely on.
♻ ☆ H2OFlow: Grounding Human-Object Affordances with 3D Generative Models and Dense Diffused Flows
Understanding how humans interact with the surrounding environment, and specifically reasoning about object interactions and affordances, is a critical challenge in computer vision, robotics, and AI. Current approaches often depend on labor-intensive, hand-labeled datasets capturing real-world or simulated human-object interaction (HOI) tasks, which are costly and time-consuming to produce. Furthermore, most existing methods for 3D affordance understanding are limited to contact-based analysis, neglecting other essential aspects of human-object interactions, such as orientation (\eg, humans might have a preferential orientation with respect certain objects, such as a TV) and spatial occupancy (\eg, humans are more likely to occupy certain regions around an object, like the front of a microwave rather than its back). To address these limitations, we introduce \emph{H2OFlow}, a novel framework that comprehensively learns 3D HOI affordances -- encompassing contact, orientation, and spatial occupancy -- using only synthetic data generated from 3D generative models. H2OFlow employs a dense 3D-flow-based representation, learned through a dense diffusion process operating on point clouds. This learned flow enables the discovery of rich 3D affordances without the need for human annotations. Through extensive quantitative and qualitative evaluations, we demonstrate that H2OFlow generalizes effectively to real-world objects and surpasses prior methods that rely on manual annotations or mesh-based representations in modeling 3D affordance.
♻ ☆ Generalization of Diffusion Models Arises with a Balanced Representation Space ICLR 2026
Diffusion models excel at generating high-quality, diverse samples, yet they risk memorizing training data when overfit to the training objective. We analyze the distinctions between memorization and generalization in diffusion models through the lens of representation learning. By investigating a two-layer ReLU denoising autoencoder (DAE), we prove that (i) memorization corresponds to the model storing raw training samples in the learned weights for encoding and decoding, yielding localized spiky representations, whereas (ii) generalization arises when the model captures local data statistics, producing balanced representations. Furthermore, we validate these theoretical findings on real-world unconditional and text-to-image diffusion models, demonstrating that the same representation structures emerge in deep generative models with significant practical implications. Building on these insights, we propose a representation-based method for detecting memorization and a training-free editing technique that allows precise control via representation steering. Together, our results highlight that learning good representations is central to novel and meaningful generative modeling.
comment: Accepted at ICLR 2026. 40 pages, 19 figures. The first two authors contributed equally
Artificial Intelligence 150
☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention ICML 2026
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across six LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 10 pages, Under review at ICML 2026
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ Step-resolved data attribution for looped transformers
We study how individual training examples shape the internal computation of looped transformers, where a shared block is applied for $τ$ recurrent iterations to enable latent reasoning. Existing training-data influence estimators such as TracIn yield a single scalar score that aggregates over all loop iterations, obscuring when during the recurrent computation a training example matters. We introduce \textit{Step-Decomposed Influence (SDI)}, which decomposes TracIn into a length-$τ$ influence trajectory by unrolling the recurrent computation graph and attributing influence to specific loop iterations. To make SDI practical at transformer scale, we propose a TensorSketch implementation that never materialises per-example gradients. Experiments on looped GPT-style models and algorithmic reasoning tasks show that SDI scales excellently, matches full-gradient baselines with low error and supports a broad range of data attribution and interpretability tasks with per-step insights into the latent reasoning process.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ CODE-SHARP: Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs
Developing agents capable of open-endedly discovering and learning novel skills is a grand challenge in Artificial Intelligence. While reinforcement learning offers a powerful framework for training agents to master complex skills, it typically relies on hand-designed reward functions. This is infeasible for open-ended skill discovery, where the set of meaningful skills is not known a priori. While recent methods have shown promising results towards automating reward function design, they remain limited to refining rewards for pre-defined tasks. To address this limitation, we introduce Continuous Open-ended Discovery and Evolution of Skills as Hierarchical Reward Programs (CODE-SHARP), a novel framework leveraging Foundation Models (FM) to open-endedly expand and refine a hierarchical skill archive, structured as a directed graph of executable reward functions in code. We show that a goal-conditioned agent trained exclusively on the rewards generated by the discovered SHARP skills learns to solve increasingly long-horizon goals in the Craftax environment. When composed by a high-level FM-based planner, the discovered skills enable a single goal-conditioned agent to solve complex, long-horizon tasks, outperforming both pretrained agents and task-specific expert policies by over $134$% on average. We will open-source our code and provide additional videos $\href{https://sites.google.com/view/code-sharp/homepage}{here}$.
comment: Preprint
☆ Anagent For Enhancing Scientific Table & Figure Analysis
In scientific research, analysis requires accurately interpreting complex multimodal knowledge, integrating evidence from different sources, and drawing inferences grounded in domain-specific knowledge. However, current artificial intelligence (AI) systems struggle to consistently demonstrate such capabilities. The complexity and variability of scientific tables and figures, combined with heterogeneous structures and long-context requirements, pose fundamental obstacles to scientific table \& figure analysis. To quantify these challenges, we introduce AnaBench, a large-scale benchmark featuring $63,178$ instances from nine scientific domains, systematically categorized along seven complexity dimensions. To tackle these challenges, we propose Anagent, a multi-agent framework for enhanced scientific table \& figure analysis through four specialized agents: Planner decomposes tasks into actionable subtasks, Expert retrieves task-specific information through targeted tool execution, Solver synthesizes information to generate coherent analysis, and Critic performs iterative refinement through five-dimensional quality assessment. We further develop modular training strategies that leverage supervised finetuning and specialized reinforcement learning to optimize individual capabilities while maintaining effective collaboration. Comprehensive evaluation across 170 subdomains demonstrates that Anagent achieves substantial improvements, up to $\uparrow 13.43\%$ in training-free settings and $\uparrow 42.12\%$ with finetuning, while revealing that task-oriented reasoning and context-aware problem-solving are essential for high-quality scientific table \& figure analysis. Our project page: https://xhguo7.github.io/Anagent/.
☆ Chain of Mindset: Reasoning with Adaptive Cognitive Modes
Human problem-solving is never the repetition of a single mindset, by which we mean a distinct mode of cognitive processing. When tackling a specific task, we do not rely on a single mindset; instead, we integrate multiple mindsets within the single solution process. However, existing LLM reasoning methods fall into a common trap: they apply the same fixed mindset across all steps, overlooking that different stages of solving the same problem require fundamentally different mindsets. This single-minded assumption prevents models from reaching the next level of intelligence. To address this limitation, we propose Chain of Mindset (CoM), a training-free agentic framework that enables step-level adaptive mindset orchestration. CoM decomposes reasoning into four functionally heterogeneous mindsets: Spatial, Convergent, Divergent, and Algorithmic. A Meta-Agent dynamically selects the optimal mindset based on the evolving reasoning state, while a bidirectional Context Gate filters cross-module information flow to maintain effectiveness and efficiency. Experiments across six challenging benchmarks spanning mathematics, code generation, scientific QA, and spatial reasoning demonstrate that CoM achieves state-of-the-art performance, outperforming the strongest baseline by 4.96\% and 4.72\% in overall accuracy on Qwen3-VL-32B-Instruct and Gemini-2.0-Flash, while balancing reasoning efficiency. Our code is publicly available at \href{https://github.com/QuantaAlpha/chain-of-mindset}{https://github.com/QuantaAlpha/chain-of-mindset}.
☆ Long Chain-of-Thought Compression via Fine-Grained Group Policy Optimization ICASSP
Large Language Models (LLMs) often generate unnecessarily verbose Chain-of-Thought (CoT) reasoning that increases computational costs and latency without proportional performance gains. In this paper, we propose \textbf{F}ine-grained \textbf{G}roup policy \textbf{O}ptimization (\textbf{FGO}), a Reinforcement Learning (RL) algorithm that refines group responses by subdividing them and assigning appropriate weights based on length and entropy, thereby enabling effective CoT compression. Meanwhile, as an enhanced variant of Group Relative Policy Optimization (GRPO), FGO successfully addresses two major limitations of the GRPO: inefficient data utilization and entropy collapse. We evaluate FGO on multiple reasoning LLMs and benchmarks, including MATH500, AIME24, AMC23, and Minerva. Experimental results show that FGO achieves efficient CoT compression without degrading performance, and simultaneously resolves the key limitations of GRPO.
comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2026
☆ Optimistic World Models: Efficient Exploration in Model-Based Deep Reinforcement Learning
Efficient exploration remains a central challenge in reinforcement learning (RL), particularly in sparse-reward environments. We introduce Optimistic World Models (OWMs), a principled and scalable framework for optimistic exploration that brings classical reward-biased maximum likelihood estimation (RBMLE) from adaptive control into deep RL. In contrast to upper confidence bound (UCB)-style exploration methods, OWMs incorporate optimism directly into model learning by augmentation with an optimistic dynamics loss that biases imagined transitions toward higher-reward outcomes. This fully gradient-based loss requires neither uncertainty estimates nor constrained optimization. Our approach is plug-and-play with existing world model frameworks, preserving scalability while requiring only minimal modifications to standard training procedures. We instantiate OWMs within two state-of-the-art world model architectures, leading to Optimistic DreamerV3 and Optimistic STORM, which demonstrate significant improvements in sample efficiency and cumulative return compared to their baseline counterparts.
☆ Fake-HR1: Rethinking reasoning of vision language model for synthetic image detection ICASSP 2026
Recent studies have demonstrated that incorporating Chain-of-Thought (CoT) reasoning into the detection process can enhance a model's ability to detect synthetic images. However, excessively lengthy reasoning incurs substantial resource overhead, including token consumption and latency, which is particularly redundant when handling obviously generated forgeries. To address this issue, we propose Fake-HR1, a large-scale hybrid-reasoning model that, to the best of our knowledge, is the first to adaptively determine whether reasoning is necessary based on the characteristics of the generative detection task. To achieve this, we design a two-stage training framework: we first perform Hybrid Fine-Tuning (HFT) for cold-start initialization, followed by online reinforcement learning with Hybrid-Reasoning Grouped Policy Optimization (HGRPO) to implicitly learn when to select an appropriate reasoning mode. Experimental results show that Fake-HR1 adaptively performs reasoning across different types of queries, surpassing existing LLMs in both reasoning ability and generative detection performance, while significantly improving response efficiency.
comment: Accepted by ICASSP 2026
☆ Decoupled Reasoning with Implicit Fact Tokens (DRIFT): A Dual-Model Framework for Efficient Long-Context Inference
The integration of extensive, dynamic knowledge into Large Language Models (LLMs) remains a significant challenge due to the inherent entanglement of factual data and reasoning patterns. Existing solutions, ranging from non-parametric Retrieval-Augmented Generation (RAG) to parametric knowledge editing, are often constrained in practice by finite context windows, retriever noise, or the risk of catastrophic forgetting. In this paper, we propose DRIFT, a novel dual-model architecture designed to explicitly decouple knowledge extraction from the reasoning process. Unlike static prompt compression, DRIFT employs a lightweight knowledge model to dynamically compress document chunks into implicit fact tokens conditioned on the query. These dense representations are projected into the reasoning model's embedding space, replacing raw, redundant text while maintaining inference accuracy. Extensive experiments show that DRIFT significantly improves performance on long-context tasks, outperforming strong baselines among comparably sized models. Our approach provides a scalable and efficient paradigm for extending the effective context window and reasoning capabilities of LLMs. Our code is available at https://github.com/Lancelot-Xie/DRIFT.
☆ ADORA: Training Reasoning Models with Dynamic Advantage Estimation on Reinforcement Learning
Reinforcement learning has become a cornerstone technique for developing reasoning models in complex tasks, ranging from mathematical problem-solving to imaginary reasoning. The optimization of these models typically relies on policy gradient methods, whose efficacy hinges on the accurate estimation of an advantage function. However, prevailing methods typically employ static advantage estimation, a practice that leads to inefficient credit assignment by neglecting the dynamic utility of training samples over time. This limitation results in suboptimal policy updates, which in turn manifest as slower convergence rates and increased learning instability, as models fail to adapt to evolving sample utilities effectively. To address this problem, we introduce \textbf{ADORA} (\textbf{A}dvantage \textbf{D}ynamics via \textbf{O}nline \textbf{R}ollout \textbf{A}daptation), a novel framework for policy optimization. ADORA dynamically adjusts the advantage function's weighting by adaptively categorizing training data into temporarily advantageous and disadvantageous samples, based on their evolving utility during online model rollouts. This tailored data differentiation strategy allows ADORA to be seamlessly integrated into existing policy optimization algorithms without significant architectural modifications, enabling the policy to prioritize learning from more informative experiences and thereby achieve more efficient policy updates. Extensive evaluations across diverse model families and varying data scales demonstrate that ADORA is a robust and efficient framework. It significantly enhances long reasoning in both geometric and mathematical tasks, consistently achieving notable performance gains without requiring sensitive hyperparameter tuning.
☆ Kunlun: Establishing Scaling Laws for Massive-Scale Recommendation Systems through Unified Architecture Design
Deriving predictable scaling laws that govern the relationship between model performance and computational investment is crucial for designing and allocating resources in massive-scale recommendation systems. While such laws are established for large language models, they remain challenging for recommendation systems, especially those processing both user history and context features. We identify poor scaling efficiency as the main barrier to predictable power-law scaling, stemming from inefficient modules with low Model FLOPs Utilization (MFU) and suboptimal resource allocation. We introduce Kunlun, a scalable architecture that systematically improves model efficiency and resource allocation. Our low-level optimizations include Generalized Dot-Product Attention (GDPA), Hierarchical Seed Pooling (HSP), and Sliding Window Attention. Our high-level innovations feature Computation Skip (CompSkip) and Event-level Personalization. These advances increase MFU from 17% to 37% on NVIDIA B200 GPUs and double scaling efficiency over state-of-the-art methods. Kunlun is now deployed in major Meta Ads models, delivering significant production impact.
comment: 10 pages, 4 figures
☆ RoboSubtaskNet: Temporal Sub-task Segmentation for Human-to-Robot Skill Transfer in Real-World Environments
Temporally locating and classifying fine-grained sub-task segments in long, untrimmed videos is crucial to safe human-robot collaboration. Unlike generic activity recognition, collaborative manipulation requires sub-task labels that are directly robot-executable. We present RoboSubtaskNet, a multi-stage human-to-robot sub-task segmentation framework that couples attention-enhanced I3D features (RGB plus optical flow) with a modified MS-TCN employing a Fibonacci dilation schedule to capture better short-horizon transitions such as reach-pick-place. The network is trained with a composite objective comprising cross-entropy and temporal regularizers (truncated MSE and a transition-aware term) to reduce over-segmentation and to encourage valid sub-task progressions. To close the gap between vision benchmarks and control, we introduce RoboSubtask, a dataset of healthcare and industrial demonstrations annotated at the sub-task level and designed for deterministic mapping to manipulator primitives. Empirically, RoboSubtaskNet outperforms MS-TCN and MS-TCN++ on GTEA and our RoboSubtask benchmark (boundary-sensitive and sequence metrics), while remaining competitive on the long-horizon Breakfast benchmark. Specifically, RoboSubtaskNet attains F1 @ 50 = 79.5%, Edit = 88.6%, Acc = 78.9% on GTEA; F1 @ 50 = 30.4%, Edit = 52.0%, Acc = 53.5% on Breakfast; and F1 @ 50 = 94.2%, Edit = 95.6%, Acc = 92.2% on RoboSubtask. We further validate the full perception-to-execution pipeline on a 7-DoF Kinova Gen3 manipulator, achieving reliable end-to-end behavior in physical trials (overall task success approx 91.25%). These results demonstrate a practical path from sub-task level video understanding to deployed robotic manipulation in real-world settings.
☆ Discovering High Level Patterns from Simulation Traces
Artificial intelligence (AI) agents embedded in environments with physics-based interaction face many challenges including reasoning, planning, summarization, and question answering. This problem is exacerbated when a human user wishes to either guide or interact with the agent in natural language. Although the use of Language Models (LMs) is the default choice, as an AI tool, they struggle with tasks involving physics. The LM's capability for physical reasoning is learned from observational data, rather than being grounded in simulation. A common approach is to include simulation traces as context, but this suffers from poor scalability as simulation traces contain larger volumes of fine-grained numerical and semantic data. In this paper, we propose a natural language guided method to discover coarse-grained patterns (e.g., 'rigid-body collision', 'stable support', etc.) from detailed simulation logs. Specifically, we synthesize programs that operate on simulation logs and map them to a series of high level activated patterns. We show, through two physics benchmarks, that this annotated representation of the simulation log is more amenable to natural language reasoning about physical systems. We demonstrate how this method enables LMs to generate effective reward programs from goals specified in natural language, which may be used within the context of planning or supervised learning.
☆ A Collaborative Safety Shield for Safe and Efficient CAV Lane Changes in Congested On-Ramp Merging
Lane changing in dense traffic is a significant challenge for Connected and Autonomous Vehicles (CAVs). Existing lane change controllers primarily either ensure safety or collaboratively improve traffic efficiency, but do not consider these conflicting objectives together. To address this, we propose the Multi-Agent Safety Shield (MASS), designed using Control Barrier Functions (CBFs) to enable safe and collaborative lane changes. The MASS enables collaboration by capturing multi-agent interactions among CAVs through interaction topologies constructed as a graph using a simple algorithm. Further, a state-of-the-art Multi-Agent Reinforcement Learning (MARL) lane change controller is extended by integrating MASS to ensure safety and defining a customised reward function to prioritise efficiency improvements. As a result, we propose a lane change controller, known as MARL-MASS, and evaluate it in a congested on-ramp merging simulation. The results demonstrate that MASS enables collaborative lane changes with safety guarantees by strictly respecting the safety constraints. Moreover, the proposed custom reward function improves the stability of MARL policies trained with a safety shield. Overall, by encouraging the exploration of a collaborative lane change policy while respecting safety constraints, MARL-MASS effectively balances the trade-off between ensuring safety and improving traffic efficiency in congested traffic. The code for MARL-MASS is available with an open-source licence at https://github.com/hkbharath/MARL-MASS
comment: Accepted in IEEE IV 2026
☆ ESTAR: Early-Stopping Token-Aware Reasoning For Efficient Inference
Large reasoning models (LRMs) achieve state-of-the-art performance by generating long chains-of-thought, but often waste computation on redundant reasoning after the correct answer has already been reached. We introduce Early-Stopping for Token-Aware Reasoning (ESTAR), which detects and reduces such reasoning redundancy to improve efficiency without sacrificing accuracy. Our method combines (i) a trajectory-based classifier that identifies when reasoning can be safely stopped, (ii) supervised fine-tuning to teach LRMs to propose self-generated signals, and (iii) -aware reinforcement learning that truncates rollouts at self-generated stop points with compute-aware rewards. Experiments on four reasoning datasets show that ESTAR reduces reasoning length by about 3.7x (from 4,799 to 1,290) while preserving accuracy (74.9% vs. 74.2%), with strong cross-domain generalization. These results highlight early stopping as a simple yet powerful mechanism for improving reasoning efficiency in LRMs.
☆ A Unified Assessment of the Poverty of the Stimulus Argument for Neural Language Models
How can children acquire native-level syntax from limited input? According to the Poverty of the Stimulus Hypothesis (PoSH), the linguistic input children receive is insufficient to explain certain generalizations that are robustly learned; innate linguistic constraints, many have argued, are thus necessary to explain language learning. Neural language models, which lack such language-specific constraints in their design, offer a computational test of this longstanding (but controversial) claim. We introduce \poshbench, a training-and-evaluation suite targeting question formation, islands to movement, and other English phenomena at the center of the PoSH arguments. Training Transformer models on 10--50M words of developmentally plausible text, we find indications of generalization on all phenomena even without direct positive evidence -- yet neural models remain less data-efficient and their generalizations are weaker than those of children. We further enhance our models with three recently proposed cognitively motivated inductive biases. We find these biases improve general syntactic competence but not \poshbench performance. Our findings challenge the claim that innate syntax is the only possible route to generalization, while suggesting that human-like data efficiency requires inductive biases beyond those tested here.
☆ Empirical Stability Analysis of Kolmogorov-Arnold Networks in Hard-Constrained Recurrent Physics-Informed Discovery
We investigate the integration of Kolmogorov-Arnold Networks (KANs) into hard-constrained recurrent physics-informed architectures (HRPINN) to evaluate the fidelity of learned residual manifolds in oscillatory systems. Motivated by the Kolmogorov-Arnold representation theorem and preliminary gray-box results, we hypothesized that KANs would enable efficient recovery of unknown terms compared to MLPs. Through initial sensitivity analysis on configuration sensitivity, parameter scale, and training paradigm, we found that while small KANs are competitive on univariate polynomial residuals (Duffing), they exhibit severe hyperparameter fragility, instability in deeper configurations, and consistent failure on multiplicative terms (Van der Pol), generally outperformed by standard MLPs. These empirical challenges highlight limitations of the additive inductive bias in the original KAN formulation for state coupling and provide preliminary empirical evidence of inductive bias limitations for future hybrid modeling.
comment: 5 pages
☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Supervised Metric Regularization Through Alternating Optimization for Multi-Regime Physics-Informed Neural Networks
Standard Physics-Informed Neural Networks (PINNs) often face challenges when modeling parameterized dynamical systems with sharp regime transitions, such as bifurcations. In these scenarios, the continuous mapping from parameters to solutions can result in spectral bias or "mode collapse", where the network averages distinct physical behaviors. We propose a Topology-Aware PINN (TAPINN) that aims to mitigate this challenge by structuring the latent space via Supervised Metric Regularization. Unlike standard parametric PINNs that map physical parameters directly to solutions, our method conditions the solver on a latent state optimized to reflect the metric-based separation between regimes, showing ~49% lower physics residual (0.082 vs. 0.160). We train this architecture using a phase-based Alternating Optimization (AO) schedule to manage gradient conflicts between the metric and physics objectives. Preliminary experiments on the Duffing Oscillator demonstrate that while standard baselines suffer from spectral bias and high-capacity Hypernetworks overfit (memorizing data while violating physics), our approach achieves stable convergence with 2.18x lower gradient variance than a multi-output Sobolev Error baseline, and 5x fewer parameters than a hypernetwork-based alternative.
comment: 5 pages, 1 figure
☆ Drug Release Modeling using Physics-Informed Neural Networks
Accurate modeling of drug release is essential for designing and developing controlled-release systems. Classical models (Fick, Higuchi, Peppas) rely on simplifying assumptions that limit their accuracy in complex geometries and release mechanisms. Here, we propose a novel approach using Physics-Informed Neural Networks (PINNs) and Bayesian PINNs (BPINNs) for predicting release from planar, 1D-wrinkled, and 2D-crumpled films. This approach uniquely integrates Fick's diffusion law with limited experimental data to enable accurate long-term predictions from short-term measurements, and is systematically benchmarked against classical drug release models. We embedded Fick's second law into PINN as loss with 10,000 Latin-hypercube collocation points and utilized previously published experimental datasets to assess drug release performance through mean absolute error (MAE) and root mean square error (RMSE), considering noisy conditions and limited-data scenarios. Our approach reduced mean error by up to 40% relative to classical baselines across all film types. The PINN formulation achieved RMSE <0.05 utilizing only the first 6% of the release time data (reducing 94% of release time required for the experiments) for the planar film. For wrinkled and crumpled films, the PINN reached RMSE <0.05 in 33% of the release time data. BPINNs provide tighter and more reliable uncertainty quantification under noise. By combining physical laws with experimental data, the proposed framework yields highly accurate long-term release predictions from short-term measurements, offering a practical route for accelerated characterization and more efficient early-stage drug release system formulation.
☆ Bladder Vessel Segmentation using a Hybrid Attention-Convolution Framework
Urinary bladder cancer surveillance requires tracking tumor sites across repeated interventions, yet the deformable and hollow bladder lacks stable landmarks for orientation. While blood vessels visible during endoscopy offer a patient-specific "vascular fingerprint" for navigation, automated segmentation is challenged by imperfect endoscopic data, including sparse labels, artifacts like bubbles or variable lighting, continuous deformation, and mucosal folds that mimic vessels. State-of-the-art vessel segmentation methods often fail to address these domain-specific complexities. We introduce a Hybrid Attention-Convolution (HAC) architecture that combines Transformers to capture global vessel topology prior with a CNN that learns a residual refinement map to precisely recover thin-vessel details. To prioritize structural connectivity, the Transformer is trained on optimized ground truth data that exclude short and terminal branches. Furthermore, to address data scarcity, we employ a physics-aware pretraining, that is a self-supervised strategy using clinically grounded augmentations on unlabeled data. Evaluated on the BlaVeS dataset, consisting of endoscopic video frames, our approach achieves high accuracy (0.94) and superior precision (0.61) and clDice (0.66) compared to state-of-the-art medical segmentation models. Crucially, our method successfully suppresses false positives from mucosal folds that dynamically appear and vanish as the bladder fills and empties during surgery. Hence, HAC provides the reliable structural stability required for clinical navigation.
☆ Closing Reasoning Gaps in Clinical Agents with Differential Reasoning Learning
Clinical decision support requires not only correct answers but also clinically valid reasoning. We propose Differential Reasoning Learning (DRL), a framework that improves clinical agents by learning from reasoning discrepancies. From reference reasoning rationales (e.g., physician-authored clinical rationale, clinical guidelines, or outputs from more capable models) and the agent's free-form chain-of-thought (CoT), DRL extracts reasoning graphs as directed acyclic graphs (DAGs) and performs a clinically weighted graph edit distance (GED)-based discrepancy analysis. An LLM-as-a-judge aligns semantically equivalent nodes and diagnoses discrepancies between graphs. These graph-level discrepancy diagnostics are converted into natural-language instructions and stored in a Differential Reasoning Knowledge Base (DR-KB). At inference, we retrieve top-$k$ instructions via Retrieval-Augmented Generation (RAG) to augment the agent prompt and patch likely logic gaps. Evaluation on open medical question answering (QA) benchmarks and a Return Visit Admissions (RVA) prediction task from internal clinical data demonstrates gains over baselines, improving both final-answer accuracy and reasoning fidelity. Ablation studies confirm gains from infusing reference reasoning rationales and the top-$k$ retrieval strategy. Clinicians' review of the output provides further assurance of the approach. Together, results suggest that DRL supports more reliable clinical decision-making in complex reasoning scenarios and offers a practical mechanism for deployment under limited token budgets.
☆ Instruct2Act: From Human Instruction to Actions Sequencing and Execution via Robot Action Network for Robotic Manipulation
Robots often struggle to follow free-form human instructions in real-world settings due to computational and sensing limitations. We address this gap with a lightweight, fully on-device pipeline that converts natural-language commands into reliable manipulation. Our approach has two stages: (i) the instruction to actions module (Instruct2Act), a compact BiLSTM with a multi-head-attention autoencoder that parses an instruction into an ordered sequence of atomic actions (e.g., reach, grasp, move, place); and (ii) the robot action network (RAN), which uses the dynamic adaptive trajectory radial network (DATRN) together with a vision-based environment analyzer (YOLOv8) to generate precise control trajectories for each sub-action. The entire system runs on a modest system with no cloud services. On our custom proprietary dataset, Instruct2Act attains 91.5% sub-actions prediction accuracy while retaining a small footprint. Real-robot evaluations across four tasks (pick-place, pick-pour, wipe, and pick-give) yield an overall 90% success; sub-action inference completes in < 3.8s, with end-to-end executions in 30-60s depending on task complexity. These results demonstrate that fine-grained instruction-to-action parsing, coupled with DATRN-based trajectory generation and vision-guided grounding, provides a practical path to deterministic, real-time manipulation in resource-constrained, single-camera settings.
☆ Why Do AI Agents Systematically Fail at Cloud Root Cause Analysis?
Failures in large-scale cloud systems incur substantial financial losses, making automated Root Cause Analysis (RCA) essential for operational stability. Recent efforts leverage Large Language Model (LLM) agents to automate this task, yet existing systems exhibit low detection accuracy even with capable models, and current evaluation frameworks assess only final answer correctness without revealing why the agent's reasoning failed. This paper presents a process level failure analysis of LLM-based RCA agents. We execute the full OpenRCA benchmark across five LLM models, producing 1,675 agent runs, and classify observed failures into 12 pitfall types across intra-agent reasoning, inter-agent communication, and agent-environment interaction. Our analysis reveals that the most prevalent pitfalls, notably hallucinated data interpretation and incomplete exploration, persist across all models regardless of capability tier, indicating that these failures originate from the shared agent architecture rather than from individual model limitations. Controlled mitigation experiments further show that prompt engineering alone cannot resolve the dominant pitfalls, whereas enriching the inter-agent communication protocol reduces communication-related failures by up to 15 percentage points. The pitfall taxonomy and diagnostic methodology developed in this work provide a foundation for designing more reliable autonomous agents for cloud RCA.
☆ Unbalanced optimal transport for robust longitudinal lesion evolution with registration-aware and appearance-guided priors
Evaluating lesion evolution in longitudinal CT scans of can cer patients is essential for assessing treatment response, yet establishing reliable lesion correspondence across time remains challenging. Standard bipartite matchers, which rely on geometric proximity, struggle when lesions appear, disappear, merge, or split. We propose a registration-aware matcher based on unbalanced optimal transport (UOT) that accommodates unequal lesion mass and adapts priors to patient-level tumor-load changes. Our transport cost blends (i) size-normalized geometry, (ii) local registration trust from the deformation-field Jacobian, and (iii) optional patch-level appearance consistency. The resulting transport plan is sparsified by relative pruning, yielding one-to-one matches as well as new, disappearing, merging, and splitting lesions without retraining or heuristic rules. On longitudinal CT data, our approach achieves consistently higher edge-detection precision and recall, improved lesion-state recall, and superior lesion-graph component F1 scores versus distance-only baselines.
comment: This work has been submitted to the IEEE for possible publication. Accepted at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ Monocular Normal Estimation via Shading Sequence Estimation ICLR 2026
Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
comment: Accepted by ICLR 2026 (Oral Presentation)
LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ SARS: A Novel Face and Body Shape and Appearance Aware 3D Reconstruction System extends Morphable Models
Morphable Models (3DMMs) are a type of morphable model that takes 2D images as inputs and recreates the structure and physical appearance of 3D objects, especially human faces and bodies. 3DMM combines identity and expression blendshapes with a basic face mesh to create a detailed 3D model. The variability in the 3D Morphable models can be controlled by tuning diverse parameters. They are high-level image descriptors, such as shape, texture, illumination, and camera parameters. Previous research in 3D human reconstruction concentrated solely on global face structure or geometry, ignoring face semantic features such as age, gender, and facial landmarks characterizing facial boundaries, curves, dips, and wrinkles. In order to accommodate changes in these high-level facial characteristics, this work introduces a shape and appearance-aware 3D reconstruction system (named SARS by us), a c modular pipeline that extracts body and face information from a single image to properly rebuild the 3D model of the human full body.
☆ Self-Regulated Reading with AI Support: An Eight-Week Study with Students
College students increasingly use AI chatbots to support academic reading, yet we lack granular understanding of how these interactions shape their reading experience and cognitive engagement. We conducted an eight-week longitudinal study with 15 undergraduates who used AI to support assigned readings in a course. We collected 838 prompts across 239 reading sessions and developed a coding schema categorizing prompts into four cognitive themes: Decoding, Comprehension, Reasoning, and Metacognition. Comprehension prompts dominated (59.6%), with Reasoning (29.8%), Metacognition (8.5%), and Decoding (2.1%) less frequent. Most sessions (72%) contained exactly three prompts, the required minimum of the reading assignment. Within sessions, students showed natural cognitive progression from comprehension toward reasoning, but this progression was truncated. Across eight weeks, students' engagement patterns remained stable, with substantial individual differences persisting throughout. Qualitative analysis revealed an intention-behavior gap: students recognized that effective prompting required effort but rarely applied this knowledge, with efficiency emerging as the primary driver. Students also strategically triaged their engagement based on interest and academic pressures, exhibiting a novel pattern of reading through AI rather than with it: using AI-generated summaries as primary material to filter which sections merited deeper attention. We discuss design implications for AI reading systems that scaffold sustained cognitive engagement.
☆ Routing, Cascades, and User Choice for LLMs ICLR 2026
To mitigate the trade-offs between performance and costs, LLM providers route user tasks to different models based on task difficulty and latency. We study the effect of LLM routing with respect to user behavior. We propose a game between an LLM provider with two models (standard and reasoning) and a user who can re-prompt or abandon tasks if the routed model cannot solve them. The user's goal is to maximize their utility minus the delay from using the model, while the provider minimizes the cost of servicing the user. We solve this Stackelberg game by fully characterizing the user best response and simplifying the provider problem. We observe that in nearly all cases, the optimal routing policy involves a static policy with no cascading that depends on the expected utility of the models to the user. Furthermore, we reveal a misalignment gap between the provider-optimal and user-preferred routes when the user's and provider's rankings of the models with respect to utility and cost differ. Finally, we demonstrate conditions for extreme misalignment where providers are incentivized to throttle the latency of the models to minimize their costs, consequently depressing user utility. The results yield simple threshold rules for single-provider, single-user interactions and clarify when routing, cascading, and throttling help or harm.
comment: 23 pages, accepted in ICLR 2026
☆ TaCo: A Benchmark for Lossless and Lossy Codecs of Heterogeneous Tactile Data
Tactile sensing is crucial for embodied intelligence, providing fine-grained perception and control in complex environments. However, efficient tactile data compression, which is essential for real-time robotic applications under strict bandwidth constraints, remains underexplored. The inherent heterogeneity and spatiotemporal complexity of tactile data further complicate this challenge. To bridge this gap, we introduce TaCo, the first comprehensive benchmark for Tactile data Codecs. TaCo evaluates 30 compression methods, including off-the-shelf compression algorithms and neural codecs, across five diverse datasets from various sensor types. We systematically assess both lossless and lossy compression schemes on four key tasks: lossless storage, human visualization, material and object classification, and dexterous robotic grasping. Notably, we pioneer the development of data-driven codecs explicitly trained on tactile data, TaCo-LL (lossless) and TaCo-L (lossy). Results have validated the superior performance of our TaCo-LL and TaCo-L. This benchmark provides a foundational framework for understanding the critical trade-offs between compression efficiency and task performance, paving the way for future advances in tactile perception.
comment: 27 pages
☆ Code2World: A GUI World Model via Renderable Code Generation
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
comment: github: https://github.com/AMAP-ML/Code2World project page: https://amap-ml.github.io/Code2World/
☆ Hybrid Responsible AI-Stochastic Approach for SLA Compliance in Multivendor 6G Networks
The convergence of AI and 6G network automation introduces new challenges in maintaining transparency, fairness, and accountability across multivendor management systems. Although closed-loop AI orchestration improves adaptability and self-optimization, it also creates a responsibility gap, where violations of SLAs cannot be causally attributed to specific agents or vendors. This paper presents a hybrid responsible AI-stochastic learning framework that embeds fairness, robustness, and auditability directly into the network control loop. The framework integrates RAI games with stochastic optimization, enabling dynamic adversarial reweighting and probabilistic exploration across heterogeneous vendor domains. An RAAP continuously records AI-driven decision trajectories and produces dual accountability reports: user-level SLA summaries and operator-level responsibility analytics. Experimental evaluations on synthetic two-class multigroup datasets demonstrate that the proposed hybrid model improves the accuracy of the worst group by up to 10.5\%. Specifically, hybrid RAI achieved a WGAcc of 60.5\% and an AvgAcc of 72.7\%, outperforming traditional RAI-GA (50.0\%) and ERM (21.5\%). The audit mechanism successfully traced 99\% simulated SLA violations to the AI entities responsible, producing both vendor and agent-level accountability indices. These results confirm that the proposed hybrid approach enhances fairness and robustness as well as establishes a concrete accountability framework for autonomous SLA assurance in multivendor 6G networks.
comment: 6 pages, 4 figures
☆ Text summarization via global structure awareness
Text summarization is a fundamental task in natural language processing (NLP), and the information explosion has made long-document processing increasingly demanding, making summarization essential. Existing research mainly focuses on model improvements and sentence-level pruning, but often overlooks global structure, leading to disrupted coherence and weakened downstream performance. Some studies employ large language models (LLMs), which achieve higher accuracy but incur substantial resource and time costs. To address these issues, we introduce GloSA-sum, the first summarization approach that achieves global structure awareness via topological data analysis (TDA). GloSA-sum summarizes text efficiently while preserving semantic cores and logical dependencies. Specifically, we construct a semantic-weighted graph from sentence embeddings, where persistent homology identifies core semantics and logical structures, preserved in a ``protection pool'' as the backbone for summarization. We design a topology-guided iterative strategy, where lightweight proxy metrics approximate sentence importance to avoid repeated high-cost computations, thus preserving structural integrity while improving efficiency. To further enhance long-text processing, we propose a hierarchical strategy that integrates segment-level and global summarization. Experiments on multiple datasets demonstrate that GloSA-sum reduces redundancy while preserving semantic and logical integrity, striking a balance between accuracy and efficiency, and further benefits LLM downstream tasks by shortening contexts while retaining essential reasoning chains.
comment: 24pages
☆ Efficient Unsupervised Environment Design through Hierarchical Policy Representation Learning
Unsupervised Environment Design (UED) has emerged as a promising approach to developing general-purpose agents through automated curriculum generation. Popular UED methods focus on Open-Endedness, where teacher algorithms rely on stochastic processes for infinite generation of useful environments. This assumption becomes impractical in resource-constrained scenarios where teacher-student interaction opportunities are limited. To address this challenge, we introduce a hierarchical Markov Decision Process (MDP) framework for environment design. Our framework features a teacher agent that leverages student policy representations derived from discovered evaluation environments, enabling it to generate training environments based on the student's capabilities. To improve efficiency, we incorporate a generative model that augments the teacher's training dataset with synthetic data, reducing the need for teacher-student interactions. In experiments across several domains, we show that our method outperforms baseline approaches while requiring fewer teacher-student interactions in a single episode. The results suggest the applicability of our approach in settings where training opportunities are limited.
☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Would a Large Language Model Pay Extra for a View? Inferring Willingness to Pay from Subjective Choices
As Large Language Models (LLMs) are increasingly deployed in applications such as travel assistance and purchasing support, they are often required to make subjective choices on behalf of users in settings where no objectively correct answer exists. We study LLM decision-making in a travel-assistant context by presenting models with choice dilemmas and analyzing their responses using multinomial logit models to derive implied willingness to pay (WTP) estimates. These WTP values are subsequently compared to human benchmark values from the economics literature. In addition to a baseline setting, we examine how model behavior changes under more realistic conditions, including the provision of information about users' past choices and persona-based prompting. Our results show that while meaningful WTP values can be derived for larger LLMs, they also display systematic deviations at the attribute level. Additionally, they tend to overestimate human WTP overall, particularly when expensive options or business-oriented personas are introduced. Conditioning models on prior preferences for cheaper options yields valuations that are closer to human benchmarks. Overall, our findings highlight both the potential and the limitations of using LLMs for subjective decision support and underscore the importance of careful model selection, prompt design, and user representation when deploying such systems in practice.
☆ Symbolic Pattern Temporal Numeric Planning with Intermediate Conditions and Effects
Recently, a Symbolic Pattern Planning (SPP) approach was proposed for numeric planning where a pattern (i.e., a finite sequence of actions) suggests a causal order between actions. The pattern is then encoded in a SMT formula whose models correspond to valid plans. If the suggestion by the pattern is inaccurate and no valid plan can be found, the pattern is extended until it contains the causal order of actions in a valid plan, making the approach complete. In this paper, we extend the SPP approach to the temporal planning with Intermediate Conditions and Effects (ICEs) fragment, where $(i)$ actions are durative (and thus can overlap over time) and have conditions/effects which can be checked/applied at any time during an action's execution, and $(ii)$ one can specify plan's conditions/effects that must be checked/applied at specific times during the plan execution. Experimental results show that our SPP planner Patty $(i)$ outperforms all other planners in the literature in the majority of temporal domains without ICEs, $(ii)$ obtains comparable results with the SoTA search planner for ICS in literature domains with ICEs, and $(iii)$ outperforms the same planner in a novel domain based on a real-world application.
comment: Under review at the Artificial Intelligence Journal
☆ GHS-TDA: A Synergistic Reasoning Framework Integrating Global Hypothesis Space with Topological Data Analysis
Chain-of-Thought (CoT) has been shown to significantly improve the reasoning accuracy of large language models (LLMs) on complex tasks. However, due to the autoregressive, step-by-step generation paradigm, existing CoT methods suffer from two fundamental limitations. First, the reasoning process is highly sensitive to early decisions: once an initial error is introduced, it tends to propagate and amplify through subsequent steps, while the lack of a global coordination and revision mechanism makes such errors difficult to correct, ultimately leading to distorted reasoning chains. Second, current CoT approaches lack structured analysis techniques for filtering redundant reasoning and extracting key reasoning features, resulting in unstable reasoning processes and limited interpretability. To address these issues, we propose GHS-TDA. GHS-TDA first constructs a semantically enriched global hypothesis graph to aggregate, align, and coordinate multiple candidate reasoning paths, thereby providing alternative global correction routes when local reasoning fails. It then applies topological data analysis based on persistent homology to capture stable multi-scale structures, remove redundancy and inconsistencies, and extract a more reliable reasoning skeleton. By jointly leveraging reasoning diversity and topological stability, GHS-TDA achieves self-adaptive convergence, produces high-confidence and interpretable reasoning paths, and consistently outperforms strong baselines in terms of both accuracy and robustness across multiple reasoning benchmarks.
comment: 23pages
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Explainability in Generative Medical Diffusion Models: A Faithfulness-Based Analysis on MRI Synthesis SC2026
This study investigates the explainability of generative diffusion models in the context of medical imaging, focusing on Magnetic resonance imaging (MRI) synthesis. Although diffusion models have shown strong performance in generating realistic medical images, their internal decision making process remains largely opaque. We present a faithfulness-based explainability framework that analyzes how prototype-based explainability methods like ProtoPNet (PPNet), Enhanced ProtoPNet (EPPNet), and ProtoPool can link the relationship between generated and training features. Our study focuses on understanding the reasoning behind image formation through denoising trajectory of diffusion model and subsequently prototype explainability with faithfulness analysis. Experimental analysis shows that EPPNet achieves the highest faithfulness (with score 0.1534), offering more reliable insights, and explainability into the generative process. The results highlight that diffusion models can be made more transparent and trustworthy through faithfulness-based explanations, contributing to safer and more interpretable applications of generative AI in healthcare.
comment: Accepted at 3rd World Congress on Smart Computing (WCSC2026) conference
☆ Grounding LTL Tasks in Sub-Symbolic RL Environments for Zero-Shot Generalization
In this work we address the problem of training a Reinforcement Learning agent to follow multiple temporally-extended instructions expressed in Linear Temporal Logic in sub-symbolic environments. Previous multi-task work has mostly relied on knowledge of the mapping between raw observations and symbols appearing in the formulae. We drop this unrealistic assumption by jointly training a multi-task policy and a symbol grounder with the same experience. The symbol grounder is trained only from raw observations and sparse rewards via Neural Reward Machines in a semi-supervised fashion. Experiments on vision-based environments show that our method achieves performance comparable to using the true symbol grounding and significantly outperforms state-of-the-art methods for sub-symbolic environments.
comment: Preprint currently under review
☆ ExO-PPO: an Extended Off-policy Proximal Policy Optimization Algorithm
Deep reinforcement learning has been able to solve various tasks successfully, however, due to the construction of policy gradient and training dynamics, tuning deep reinforcement learning models remains challenging. As one of the most successful deep reinforcement-learning algorithm, the Proximal Policy Optimization algorithm (PPO) clips the policy gradient within a conservative on-policy updates, which ensures reliable and stable policy improvement. However, this training pattern may sacrifice sample efficiency. On the other hand, off-policy methods make more adequate use of data through sample reuse, though at the cost of increased the estimation variance and bias. To leverage the advantages of both, in this paper, we propose a new PPO variant based on the stability guarantee from conservative on-policy iteration with a more efficient off-policy data utilization. Specifically, we first derive an extended off-policy improvement from an expectation form of generalized policy improvement lower bound. Then, we extend the clipping mechanism with segmented exponential functions for a suitable surrogate objective function. Third, the trajectories generated by the past $M$ policies are organized in the replay buffer for off-policy training. We refer to this method as Extended Off-policy Proximal Policy Optimization (ExO-PPO). Compared with PPO and some other state-of-the-art variants, we demonstrate an improved performance of ExO-PPO with balanced sample efficiency and stability on varied tasks in the empirical experiments.
☆ From Lightweight CNNs to SpikeNets: Benchmarking Accuracy-Energy Tradeoffs with Pruned Spiking SqueezeNet
Spiking Neural Networks (SNNs) are increasingly studied as energy-efficient alternatives to Convolutional Neural Networks (CNNs), particularly for edge intelligence. However, prior work has largely emphasized large-scale models, leaving the design and evaluation of lightweight CNN-to-SNN pipelines underexplored. In this paper, we present the first systematic benchmark of lightweight SNNs obtained by converting compact CNN architectures into spiking networks, where activations are modeled with Leaky-Integrate-and-Fire (LIF) neurons and trained using surrogate gradient descent under a unified setup. We construct spiking variants of ShuffleNet, SqueezeNet, MnasNet, and MixNet, and evaluate them on CIFAR-10, CIFAR-100, and TinyImageNet, measuring accuracy, F1-score, parameter count, computational complexity, and energy consumption. Our results show that SNNs can achieve up to 15.7x higher energy efficiency than their CNN counterparts while retaining competitive accuracy. Among these, the SNN variant of SqueezeNet consistently outperforms other lightweight SNNs. To further optimize this model, we apply a structured pruning strategy that removes entire redundant modules, yielding a pruned architecture, SNN-SqueezeNet-P. This pruned model improves CIFAR-10 accuracy by 6% and reduces parameters by 19% compared to the original SNN-SqueezeNet. Crucially, it narrows the gap with CNN-SqueezeNet, achieving nearly the same accuracy (only 1% lower) but with an 88.1% reduction in energy consumption due to sparse spike-driven computations. Together, these findings establish lightweight SNNs as practical, low-power alternatives for edge deployment, highlighting a viable path toward deploying high-performance, low-power intelligence on the edge.
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ Maastricht University at AMIYA: Adapting LLMs for Dialectal Arabic using Fine-tuning and MBR Decoding
Large Language Models (LLMs) are becoming increasingly multilingual, supporting hundreds of languages, especially high resource ones. Unfortunately, Dialect variations are still underrepresented due to limited data and linguistic variation. In this work, we adapt a pre-trained LLM to improve dialectal performance. Specifically, we use Low Rank Adaptation (LoRA) fine-tuning on monolingual and English Dialect parallel data, adapter merging and dialect-aware MBR decoding to improve dialectal fidelity generation and translation. Experiments on Syrian, Moroccan, and Saudi Arabic show that merging and MBR improve dialectal fidelity while preserving semantic accuracy. This combination provides a compact and effective framework for robust dialectal Arabic generation.
☆ GenSeg-R1: RL-Driven Vision-Language Grounding for Fine-Grained Referring Segmentation
We study fine-grained referring image segmentation via a decoupled reason-then-segment pipeline. A vision-language model (VLM) receives an image and a natural-language query, reasons about the scene, and emits structured spatial prompts: a bounding box plus two interior keypoints for every referred instance. A frozen promptable segmenter (SAM 2) converts these prompts into high-quality masks. Within our GenSeg-R1 framework we finetune Qwen3-VL models (4B and 8B parameters) using Group Relative Policy Optimization (GRPO), requiring no supervised reasoning-chain annotations. On RefCOCOg validation our best model (GenSeg-R1-8B) achieves 0.7127 cIoU and 0.7382 mIoU, substantially outperforming the corresponding Qwen3-VL Instruct baselines (+15.3 and +21.9 points, respectively) and surpassing Seg-Zero-7B [3] by +3.3 cIoU under identical evaluation. We further introduce GenSeg-R1-G, a variant trained on GRefCOCO [9] with a SAM 2 in-the-loop reward that directly optimizes mask quality. On GRefCOCO validation GenSeg-R1-G achieves 76.69% target mIoU with 82.40% accuracy on negative (no-target) prompts, substantially outperforming Seg-R1-7B and Seg-Zero-7B, which lack no-target detection capability. On ReasonSeg test, GenSeg-R1-4B reaches 68.40% mIoU, surpassing Seg-Zero-7B by +7.0 and Seg-R1-7B by +10.7 points.
☆ Resilient Class-Incremental Learning: on the Interplay of Drifting, Unlabelled and Imbalanced Data Streams
In today's connected world, the generation of massive streaming data across diverse domains has become commonplace. In the presence of concept drift, class imbalance, label scarcity, and new class emergence, they jointly degrade representation stability, bias learning toward outdated distributions, and reduce the resilience and reliability of detection in dynamic environments. This paper proposes SCIL (Streaming Class-Incremental Learning) to address these challenges. The SCIL framework integrates an autoencoder (AE) with a multi-layer perceptron for multi-class prediction, uses a dual-loss strategy (classification and reconstruction) for prediction and new class detection, employs corrected pseudo-labels for online training, manages classes with queues, and applies oversampling to handle imbalance. The rationale behind the method's structure is elucidated through ablation studies and a comprehensive experimental evaluation is performed using both real-world and synthetic datasets that feature class imbalance, incremental classes, and concept drifts. Our results demonstrate that SCIL outperforms strong baselines and state-of-the-art methods. Based on our commitment to Open Science, we make our code and datasets available to the community.
comment: Accepted by Artificial Intelligence Science and Engineering
☆ Administrative Law's Fourth Settlement: AI and the Capability-Accountability Trap
Since 1887, administrative law has navigated a "capability-accountability trap": technological change forces government to become more sophisticated, but sophistication renders agencies opaque to generalist overseers like the courts and Congress. The law's response--substituting procedural review for substantive oversight--has produced a sedimentary accretion of requirements that ossify capacity without ensuring democratic control. This Article argues that the Supreme Court's post-Loper Bright retrenchment is best understood as an effort to shrink administration back to comprehensible size in response to this complexification. But reducing complexity in this way sacrifices capability precisely when climate change, pandemics, and AI risks demand more sophisticated governance. AI offers a different path. Unlike many prior administrative technologies that increased opacity alongside capacity, AI can help build "scrutability" in government, translating technical complexity into accessible terms, surfacing the assumptions that matter for oversight, and enabling substantive verification of agency reasoning. This Article proposes three doctrinal innovations within administrative law to realize this potential: a Model and System Dossier (documenting model purpose, evaluation, monitoring, and versioning) extending the administrative record to AI decision-making; a material-model-change trigger specifying when AI updates require new process; and a "deference to audit" standard that rewards agencies for auditable evaluation of their AI tools. The result is a framework for what this Article calls the "Fourth Settlement," administrative law that escapes the capability-accountability trap by preserving capability while restoring comprehensible oversight of administration.
comment: 67 pages
☆ ClinAlign: Scaling Healthcare Alignment from Clinician Preference
Although large language models (LLMs) demonstrate expert-level medical knowledge, aligning their open-ended outputs with fine-grained clinician preferences remains challenging. Existing methods often rely on coarse objectives or unreliable automated judges that are weakly grounded in professional guidelines. We propose a two-stage framework to address this gap. First, we introduce HealthRubrics, a dataset of 7,034 physician-verified preference examples in which clinicians refine LLM-drafted rubrics to meet rigorous medical standards. Second, we distill these rubrics into HealthPrinciples: 119 broadly reusable, clinically grounded principles organized by clinical dimensions, enabling scalable supervision beyond manual annotation. We use HealthPrinciples for (1) offline alignment by synthesizing rubrics for unlabeled queries and (2) an inference-time tool for guided self-revision. A 30B parameter model that activates only 3B parameters at inference trained with our framework achieves 33.4% on HealthBench-Hard, outperforming much larger models including Deepseek-R1 and o3, establishing a resource-efficient baseline for clinical alignment.
☆ MATA: Multi-Agent Framework for Reliable and Flexible Table Question Answering
Recent advances in Large Language Models (LLMs) have significantly improved table understanding tasks such as Table Question Answering (TableQA), yet challenges remain in ensuring reliability, scalability, and efficiency, especially in resource-constrained or privacy-sensitive environments. In this paper, we introduce MATA, a multi-agent TableQA framework that leverages multiple complementary reasoning paths and a set of tools built with small language models. MATA generates candidate answers through diverse reasoning styles for a given table and question, then refines or selects the optimal answer with the help of these tools. Furthermore, it incorporates an algorithm designed to minimize expensive LLM agent calls, enhancing overall efficiency. MATA maintains strong performance with small, open-source models and adapts easily across various LLM types. Extensive experiments on two benchmarks of varying difficulty with ten different LLMs demonstrate that MATA achieves state-of-the-art accuracy and highly efficient reasoning while avoiding excessive LLM inference. Our results highlight that careful orchestration of multiple reasoning pathways yields scalable and reliable TableQA. The code is available at https://github.com/AIDAS-Lab/MATA.
☆ Stop Testing Attacks, Start Diagnosing Defenses: The Four-Checkpoint Framework Reveals Where LLM Safety Breaks
Large Language Models (LLMs) deploy safety mechanisms to prevent harmful outputs, yet these defenses remain vulnerable to adversarial prompts. While existing research demonstrates that jailbreak attacks succeed, it does not explain \textit{where} defenses fail or \textit{why}. To address this gap, we propose that LLM safety operates as a sequential pipeline with distinct checkpoints. We introduce the \textbf{Four-Checkpoint Framework}, which organizes safety mechanisms along two dimensions: processing stage (input vs.\ output) and detection level (literal vs.\ intent). This creates four checkpoints, CP1 through CP4, each representing a defensive layer that can be independently evaluated. We design 13 evasion techniques, each targeting a specific checkpoint, enabling controlled testing of individual defensive layers. Using this framework, we evaluate GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro across 3,312 single-turn, black-box test cases. We employ an LLM-as-judge approach for response classification and introduce Weighted Attack Success Rate (WASR), a severity-adjusted metric that captures partial information leakage overlooked by binary evaluation. Our evaluation reveals clear patterns. Traditional Binary ASR reports 22.6\% attack success. However, WASR reveals 52.7\%, a 2.3$\times$ higher vulnerability. Output-stage defenses (CP3, CP4) prove weakest at 72--79\% WASR, while input-literal defenses (CP1) are strongest at 13\% WASR. Claude achieves the strongest safety (42.8\% WASR), followed by GPT-5 (55.9\%) and Gemini (59.5\%). These findings suggest that current defenses are strongest at input-literal checkpoints but remain vulnerable to intent-level manipulation and output-stage techniques. The Four-Checkpoint Framework provides a structured approach for identifying and addressing safety vulnerabilities in deployed systems.
comment: 17 pages, pre-print
☆ FLINGO -- Instilling ASP Expressiveness into Linear Integer Constraints
Constraint Answer Set Programming (CASP) is a hybrid paradigm that enriches Answer Set Programming (ASP) with numerical constraint processing, something required in many real-world applications. The usual specification of constraints in most CASP solvers is closer to the numerical back-end expressiveness and semantics, rather than to standard specification in ASP. In the latter, numerical attributes are represented with predicates and this allows declaring default values, leaving the attribute undefined, making non-deterministic assignments with choice rules or using aggregated values. In CASP, most (if not all) of these features are lost once we switch to a constraint-based representation of those same attributes. In this paper, we present the FLINGO language (and tool) that incorporates the aforementioned expressiveness inside the numerical constraints and we illustrate its use with several examples. Based on previous work that established its semantic foundations, we also present a translation from the newly introduced FLINGO syntax to regular CASP programs following the CLINGCON input format.
☆ AnyTouch 2: General Optical Tactile Representation Learning For Dynamic Tactile Perception ICLR 2026
Real-world contact-rich manipulation demands robots to perceive temporal tactile feedback, capture subtle surface deformations, and reason about object properties as well as force dynamics. Although optical tactile sensors are uniquely capable of providing such rich information, existing tactile datasets and models remain limited. These resources primarily focus on object-level attributes (e.g., material) while largely overlooking fine-grained tactile temporal dynamics during physical interactions. We consider that advancing dynamic tactile perception requires a systematic hierarchy of dynamic perception capabilities to guide both data collection and model design. To address the lack of tactile data with rich dynamic information, we present ToucHD, a large-scale hierarchical tactile dataset spanning tactile atomic actions, real-world manipulations, and touch-force paired data. Beyond scale, ToucHD establishes a comprehensive tactile dynamic data ecosystem that explicitly supports hierarchical perception capabilities from the data perspective. Building on it, we propose AnyTouch 2, a general tactile representation learning framework for diverse optical tactile sensors that unifies object-level understanding with fine-grained, force-aware dynamic perception. The framework captures both pixel-level and action-specific deformations across frames, while explicitly modeling physical force dynamics, thereby learning multi-level dynamic perception capabilities from the model perspective. We evaluate our model on benchmarks that covers static object properties and dynamic physical attributes, as well as real-world manipulation tasks spanning multiple tiers of dynamic perception capabilities-from basic object-level understanding to force-aware dexterous manipulation. Experimental results demonstrate consistent and strong performance across sensors and tasks.
comment: Accepted by ICLR 2026
☆ With Argus Eyes: Assessing Retrieval Gaps via Uncertainty Scoring to Detect and Remedy Retrieval Blind Spots
Reliable retrieval-augmented generation (RAG) systems depend fundamentally on the retriever's ability to find relevant information. We show that neural retrievers used in RAG systems have blind spots, which we define as the failure to retrieve entities that are relevant to the query, but have low similarity to the query embedding. We investigate the training-induced biases that cause such blind spot entities to be mapped to inaccessible parts of the embedding space, resulting in low retrievability. Using a large-scale dataset constructed from Wikidata relations and first paragraphs of Wikipedia, and our proposed Retrieval Probability Score (RPS), we show that blind spot risk in standard retrievers (e.g., CONTRIEVER, REASONIR) can be predicted pre-index from entity embedding geometry, avoiding expensive retrieval evaluations. To address these blind spots, we introduce ARGUS, a pipeline that enables the retrievability of high-risk (low-RPS) entities through targeted document augmentation from a knowledge base (KB), first paragraphs of Wikipedia, in our case. Extensive experiments on BRIGHT, IMPLIRET, and RAR-B show that ARGUS achieves consistent improvements across all evaluated retrievers (averaging +3.4 nDCG@5 and +4.5 nDCG@10 absolute points), with substantially larger gains in challenging subsets. These results establish that preemptively remedying blind spots is critical for building robust and trustworthy RAG systems (Code and Data).
comment: 8 pages
☆ AGMark: Attention-Guided Dynamic Watermarking for Large Vision-Language Models
Watermarking has emerged as a pivotal solution for content traceability and intellectual property protection in Large Vision-Language Models (LVLMs). However, vision-agnostic watermarks may introduce visually irrelevant tokens and disrupt visual grounding by enforcing indiscriminate pseudo-random biases. Additionally, current vision-specific watermarks rely on a static, one-time estimation of vision critical weights and ignore the weight distribution density when determining the proportion of protected tokens. This design fails to account for dynamic changes in visual dependence during generation and may introduce low-quality tokens in the long tail. To address these challenges, we propose Attention-Guided Dynamic Watermarking (AGMark), a novel framework that embeds detectable signals while strictly preserving visual fidelity. At each decoding step, AGMark first dynamically identifies semantic-critical evidence based on attention weights for visual relevance, together with context-aware coherence cues, resulting in a more adaptive and well-calibrated evidence-weight distribution. It then determines the proportion of semantic-critical tokens by jointly considering uncertainty awareness (token entropy) and evidence calibration (weight density), thereby enabling adaptive vocabulary partitioning to avoid irrelevant tokens. Empirical results confirm that AGMark outperforms conventional methods, observably improving generation quality and yielding particularly strong gains in visual semantic fidelity in the later stages of generation. The framework maintains highly competitive detection accuracy (at least 99.36\% AUC) and robust attack resilience (at least 88.61\% AUC) without sacrificing inference efficiency, effectively establishing a new standard for reliability-preserving multi-modal watermarking.
comment: preprint
☆ Detecting radar targets swarms in range profiles with a partially complex-valued neural network
Correctly detecting radar targets is usually challenged by clutter and waveform distortion. An additional difficulty stems from the relative proximity of several targets, the latter being perceived as a single target in the worst case, or influencing each other's detection thresholds. The negative impact of targets proximity notably depends on the range resolution defined by the radar parameters and the adaptive threshold adopted. This paper addresses the matter of targets detection in radar range profiles containing multiple targets with varying proximity and distorted echoes. Inspired by recent contributions in the radar and signal processing literature, this work proposes partially complex-valued neural networks as an adaptive range profile processing. Simulated datasets are generated and experiments are conducted to compare a common pulse compression approach with a simple neural network partially defined by complex-valued parameters. Whereas the pulse compression processes one pulse length at a time, the neural network put forward is a generative architecture going through the entire received signal in one go to generate a complete detection profile.
☆ Why the Counterintuitive Phenomenon of Likelihood Rarely Appears in Tabular Anomaly Detection with Deep Generative Models?
Deep generative models with tractable and analytically computable likelihoods, exemplified by normalizing flows, offer an effective basis for anomaly detection through likelihood-based scoring. We demonstrate that, unlike in the image domain where deep generative models frequently assign higher likelihoods to anomalous data, such counterintuitive behavior occurs far less often in tabular settings. We first introduce a domain-agnostic formulation that enables consistent detection and evaluation of the counterintuitive phenomenon, addressing the absence of precise definition. Through extensive experiments on 47 tabular datasets and 10 CV/NLP embedding datasets in ADBench, benchmarked against 13 baseline models, we demonstrate that the phenomenon, as defined, is consistently rare in general tabular data. We further investigate this phenomenon from both theoretical and empirical perspectives, focusing on the roles of data dimensionality and difference in feature correlation. Our results suggest that likelihood-only detection with normalizing flows offers a practical and reliable approach for anomaly detection in tabular domains.
comment: 47 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Context-Aware Counterfactual Data Augmentation for Gender Bias Mitigation in Language Models
A challenge in mitigating social bias in fine-tuned language models (LMs) is the potential reduction in language modeling capability, which can harm downstream performance. Counterfactual data augmentation (CDA), a widely used method for fine-tuning, highlights this issue by generating synthetic data that may align poorly with real-world distributions or creating overly simplistic counterfactuals that ignore the social context of altered sensitive attributes (e.g., gender) in the pretraining corpus. To address these limitations, we propose a simple yet effective context-augmented CDA method, Context-CDA, which uses large LMs to enhance the diversity and contextual relevance of the debiasing corpus. By minimizing discrepancies between the debiasing corpus and pretraining data through augmented context, this approach ensures better alignment, enhancing language modeling capability. We then employ uncertainty-based filtering to exclude generated counterfactuals considered low-quality by the target smaller LMs (i.e., LMs to be debiased), further improving the fine-tuning corpus quality. Experimental results on gender bias benchmarks demonstrate that Context-CDA effectively mitigates bias without sacrificing language modeling performance while offering insights into social biases by analyzing distribution shifts in next-token generation probabilities.
☆ MieDB-100k: A Comprehensive Dataset for Medical Image Editing
The scarcity of high-quality data remains a primary bottleneck in adapting multimodal generative models for medical image editing. Existing medical image editing datasets often suffer from limited diversity, neglect of medical image understanding and inability to balance quality with scalability. To address these gaps, we propose MieDB-100k, a large-scale, high-quality and diverse dataset for text-guided medical image editing. It categorizes editing tasks into perspectives of Perception, Modification and Transformation, considering both understanding and generation abilities. We construct MieDB-100k via a data curation pipeline leveraging both modality-specific expert models and rule-based data synthetic methods, followed by rigorous manual inspection to ensure clinical fidelity. Extensive experiments demonstrate that model trained with MieDB-100k consistently outperform both open-source and proprietary models while exhibiting strong generalization ability. We anticipate that this dataset will serve as a cornerstone for future advancements in specialized medical image editing.
☆ Mitigating the Likelihood Paradox in Flow-based OOD Detection via Entropy Manipulation
Deep generative models that can tractably compute input likelihoods, including normalizing flows, often assign unexpectedly high likelihoods to out-of-distribution (OOD) inputs. We mitigate this likelihood paradox by manipulating input entropy based on semantic similarity, applying stronger perturbations to inputs that are less similar to an in-distribution memory bank. We provide a theoretical analysis showing that entropy control increases the expected log-likelihood gap between in-distribution and OOD samples in favor of the in-distribution, and we explain why the procedure works without any additional training of the density model. We then evaluate our method against likelihood-based OOD detectors on standard benchmarks and find consistent AUROC improvements over baselines, supporting our explanation.
comment: 28 pages, 4 figures
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ Predictive Query Language: A Domain-Specific Language for Predictive Modeling on Relational Databases
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine learning model requires manual work to extract the required training examples - prediction entities and target labels - from the database, which is slow, laborious, and prone to mistakes. Here, we present the Predictive Query Language (PQL), a SQL-inspired declarative language for defining predictive tasks on relational databases. PQL allows specifying a predictive task in a single declarative query, enabling the automatic computation training labels for a large variety of machine learning tasks, such as regression, classification, time-series forecasting, and recommender systems. PQL is already successfully integrated and used in a collection of use cases as part of a predictive AI platform. The versatility of the language can be demonstrated through its many ongoing use cases, including financial fraud, item recommendations, and workload prediction. We demonstrate its versatile design through two implementations; one for small-scale, low-latency use and one that can handle large-scale databases.
☆ LEMUR: A Corpus for Robust Fine-Tuning of Multilingual Law Embedding Models for Retrieval EACL
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
comment: Accepted at EACL SRW 26
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Comprehensive Comparison of RAG Methods Across Multi-Domain Conversational QA EACL
Conversational question answering increasingly relies on retrieval-augmented generation (RAG) to ground large language models (LLMs) in external knowledge. Yet, most existing studies evaluate RAG methods in isolation and primarily focus on single-turn settings. This paper addresses the lack of a systematic comparison of RAG methods for multi-turn conversational QA, where dialogue history, coreference, and shifting user intent substantially complicate retrieval. We present a comprehensive empirical study of vanilla and advanced RAG methods across eight diverse conversational QA datasets spanning multiple domains. Using a unified experimental setup, we evaluate retrieval quality and answer generation using generator and retrieval metrics, and analyze how performance evolves across conversation turns. Our results show that robust yet straightforward methods, such as reranking, hybrid BM25, and HyDE, consistently outperform vanilla RAG. In contrast, several advanced techniques fail to yield gains and can even degrade performance below the No-RAG baseline. We further demonstrate that dataset characteristics and dialogue length strongly influence retrieval effectiveness, explaining why no single RAG strategy dominates across settings. Overall, our findings indicate that effective conversational RAG depends less on method complexity than on alignment between the retrieval strategy and the dataset structure. We publish the code used.\footnote{\href{https://github.com/Klejda-A/exp-rag.git}{GitHub Repository}}
comment: Accepted to EACL SRW 26
☆ Autoregressive Direct Preference Optimization
Direct preference optimization (DPO) has emerged as a promising approach for aligning large language models (LLMs) with human preferences. However, the widespread reliance on the response-level Bradley-Terry (BT) model may limit its full potential, as the reference and learnable models are assumed to be autoregressive only after deriving the objective function. Motivated by this limitation, we revisit the theoretical foundations of DPO and propose a novel formulation that explicitly introduces the autoregressive assumption prior to applying the BT model. By reformulating and extending DPO, we derive a novel variant, termed Autoregressive DPO (ADPO), that explicitly integrates autoregressive modeling into the preference optimization framework. Without violating the theoretical foundations, the derived loss takes an elegant form: it shifts the summation operation in the DPO objective outside the log-sigmoid function. Furthermore, through theoretical analysis of ADPO, we show that there exist two length measures to be considered when designing DPO-based algorithms: the token length $μ$ and the feedback length $μ$'. To the best of our knowledge, we are the first to explicitly distinguish these two measures and analyze their implications for preference optimization in LLMs.
☆ Learning to Discover Iterative Spectral Algorithms
We introduce AutoSpec, a neural network framework for discovering iterative spectral algorithms for large-scale numerical linear algebra and numerical optimization. Our self-supervised models adapt to input operators using coarse spectral information (e.g., eigenvalue estimates and residual norms), and they predict recurrence coefficients for computing or applying a matrix polynomial tailored to a downstream task. The effectiveness of AutoSpec relies on three ingredients: an architecture whose inference pass implements short, executable numerical linear algebra recurrences; efficient training on small synthetic problems with transfer to large-scale real-world operators; and task-defined objectives that enforce the desired approximation or preconditioning behavior across the range of spectral profiles represented in the training set. We apply AutoSpec to discovering algorithms for representative numerical linear algebra tasks: accelerating matrix-function approximation; accelerating sparse linear solvers; and spectral filtering/preconditioning for eigenvalue computations. On real-world matrices, the learned procedures deliver orders-of-magnitude improvements in accuracy and/or reductions in iteration count, relative to basic baselines. We also find clear connections to classical theory: the induced polynomials often exhibit near-equiripple, near-minimax behavior characteristic of Chebyshev polynomials.
☆ EcoGym: Evaluating LLMs for Long-Horizon Plan-and-Execute in Interactive Economies
Long-horizon planning is widely recognized as a core capability of autonomous LLM-based agents; however, current evaluation frameworks suffer from being largely episodic, domain-specific, or insufficiently grounded in persistent economic dynamics. We introduce EcoGym, a generalizable benchmark for continuous plan-and-execute decision making in interactive economies. EcoGym comprises three diverse environments: Vending, Freelance, and Operation, implemented in a unified decision-making process with standardized interfaces, and budgeted actions over an effectively unbounded horizon (1000+ steps if 365 day-loops for evaluation). The evaluation of EcoGym is based on business-relevant outcomes (e.g., net worth, income, and DAU), targeting long-term strategic coherence and robustness under partial observability and stochasticity. Experiments across eleven leading LLMs expose a systematic tension: no single model dominates across all three scenarios. Critically, we find that models exhibit significant suboptimality in either high-level strategies or efficient actions executions. EcoGym is released as an open, extensible testbed for transparent long-horizon agent evaluation and for studying controllability-utility trade-offs in realistic economic settings.
comment: work in progress
☆ Seeing the Goal, Missing the Truth: Human Accountability for AI Bias
This research explores how human-defined goals influence the behavior of Large Language Models (LLMs) through purpose-conditioned cognition. Using financial prediction tasks, we show that revealing the downstream use (e.g., predicting stock returns or earnings) of LLM outputs leads the LLM to generate biased sentiment and competition measures, even though these measures are intended to be downstream task-independent. Goal-aware prompting shifts intermediate measures toward the disclosed downstream objective. This purpose leakage improves performance before the LLM's knowledge cutoff, but with no advantage post-cutoff. AI bias due to "seeing the goal" is not an algorithmic flaw, but stems from human accountability in research design to ensure the statistical validity and reliability of AI-generated measurements.
comment: 17 pages, 3 figures, 5 tables
☆ Beware of the Batch Size: Hyperparameter Bias in Evaluating LoRA
Low-rank adaptation (LoRA) is a standard approach for fine-tuning large language models, yet its many variants report conflicting empirical gains, often on the same benchmarks. We show that these contradictions arise from a single overlooked factor: the batch size. When properly tuned, vanilla LoRA often matches the performance of more complex variants. We further propose a proxy-based, cost-efficient strategy for batch size tuning, revealing the impact of rank, dataset size, and model capacity on the optimal batch size. Our findings elevate batch size from a minor implementation detail to a first-order design parameter, reconciling prior inconsistencies and enabling more reliable evaluations of LoRA variants.
☆ Computing Conditional Shapley Values Using Tabular Foundation Models
Shapley values have become a cornerstone of explainable AI, but they are computationally expensive to use, especially when features are dependent. Evaluating them requires approximating a large number of conditional expectations, either via Monte Carlo integration or regression. Until recently it has not been possible to fully exploit deep learning for the regression approach, because retraining for each conditional expectation takes too long. Tabular foundation models such as TabPFN overcome this computational hurdle by leveraging in-context learning, so each conditional expectation can be approximated without any re-training. In this paper, we compute Shapley values with multiple variants of TabPFN and compare their performance with state-of-the-art methods on both simulated and real datasets. In most cases, TabPFN yields the best performance; where it does not, it is only marginally worse than the best method, at a fraction of the runtime. We discuss further improvements and how tabular foundation models can be better adapted specifically for conditional Shapley value estimation.
♻ ☆ Noisy-Pair Robust Representation Alignment for Positive-Unlabeled Learning ICLR 2026
Positive-Unlabeled (PU) learning aims to train a binary classifier (positive vs. negative) where only limited positive data and abundant unlabeled data are available. While widely applicable, state-of-the-art PU learning methods substantially underperform their supervised counterparts on complex datasets, especially without auxiliary negatives or pre-estimated parameters (e.g., a 14.26% gap on CIFAR-100 dataset). We identify the primary bottleneck as the challenge of learning discriminative representations under unreliable supervision. To tackle this challenge, we propose NcPU, a non-contrastive PU learning framework that requires no auxiliary information. NcPU combines a noisy-pair robust supervised non-contrastive loss (NoiSNCL), which aligns intra-class representations despite unreliable supervision, with a phantom label disambiguation (PLD) scheme that supplies conservative negative supervision via regret-based label updates. Theoretically, NoiSNCL and PLD can iteratively benefit each other from the perspective of the Expectation-Maximization framework. Empirically, extensive experiments demonstrate that: (1) NoiSNCL enables simple PU methods to achieve competitive performance; and (2) NcPU achieves substantial improvements over state-of-the-art PU methods across diverse datasets, including challenging datasets on post-disaster building damage mapping, highlighting its promise for real-world applications. Code: Code will be open-sourced after review.
comment: Published at ICLR 2026
♻ ☆ CyberExplorer: Benchmarking LLM Offensive Security Capabilities in a Real-World Attacking Simulation Environment
Real-world offensive security operations are inherently open-ended: attackers explore unknown attack surfaces, revise hypotheses under uncertainty, and operate without guaranteed success. Existing LLM-based offensive agent evaluations rely on closed-world settings with predefined goals and binary success criteria. To address this gap, we introduce CyberExplorer, an evaluation suite with two core components: (1) an open-environment benchmark built on a virtual machine hosting 40 vulnerable web services derived from real-world CTF challenges, where agents autonomously perform reconnaissance, target selection, and exploitation without prior knowledge of vulnerability locations; and (2) a reactive multi-agent framework supporting dynamic exploration without predefined plans. CyberExplorer enables fine-grained evaluation beyond flag recovery, capturing interaction dynamics, coordination behavior, failure modes, and vulnerability discovery signals-bridging the gap between benchmarks and realistic multi-target attack scenarios.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ From Moderation to Mediation: Can LLMs Serve as Mediators in Online Flame Wars?
The rapid advancement of large language models (LLMs) has opened new possibilities for AI for good applications. As LLMs increasingly mediate online communication, their potential to foster empathy and constructive dialogue becomes an important frontier for responsible AI research. This work explores whether LLMs can serve not only as moderators that detect harmful content, but as mediators capable of understanding and de-escalating online conflicts. Our framework decomposes mediation into two subtasks: judgment, where an LLM evaluates the fairness and emotional dynamics of a conversation, and steering, where it generates empathetic, de-escalatory messages to guide participants toward resolution. To assess mediation quality, we construct a large Reddit-based dataset and propose a multi-stage evaluation pipeline combining principle-based scoring, user simulation, and human comparison. Experiments show that API-based models outperform open-source counterparts in both reasoning and intervention alignment when doing mediation. Our findings highlight both the promise and limitations of current LLMs as emerging agents for online social mediation.
comment: Under review
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Does Memory Need Graphs? A Unified Framework and Empirical Analysis for Long-Term Dialog Memory
Graph structures are increasingly used in dialog memory systems, but empirical findings on their effectiveness remain inconsistent, making it unclear which design choices truly matter. We present an experimental, system-oriented analysis of long-term dialog memory architectures. We introduce a unified framework that decomposes dialog memory systems into core components and supports both graph-based and non-graph approaches. Under this framework, we conduct controlled, stage-wise experiments on LongMemEval and HaluMem, comparing common design choices in memory representation, organization, maintenance, and retrieval. Our results show that many performance differences are driven by foundational system settings rather than specific architectural innovations. Based on these findings, we identify stable and reliable strong baselines for future dialog memory research. Code are available at https://github.com/AvatarMemory/UnifiedMem
♻ ☆ The Impact of LLMs on Online News Consumption and Production
Large language models (LLMs) change how consumers acquire information online; their bots also crawl news publishers' websites for training data and to answer consumer queries; and they provide tools that can lower the cost of content creation. These changes lead to predictions of adverse impact on news publishers in the form of lowered consumer demand, reduced demand for newsroom employees, and an increase in news "slop." Consequently, some publishers strategically responded by blocking LLM access to their websites using the robots.txt file standard. Using high-frequency granular data, we document four effects related to the predicted shifts in news publishing following the introduction of generative AI (GenAI). First, we find a moderate decline in traffic to news publishers occurring after August 2024. Second, using a difference-in-differences approach, we find that blocking GenAI bots can be associated with a reduction of total website traffic to large publishers compared to not blocking. Third, on the hiring side, we do not find evidence that LLMs are replacing editorial or content-production jobs yet. The share of new editorial and content-production job listings increases over time. Fourth, regarding content production, we find no evidence that large publishers increased text volume; instead, they significantly increased rich content and use more advertising and targeting technologies. Together, these findings provide early evidence of some unforeseen impacts of the introduction of LLMs on news production and consumption.
♻ ☆ Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.
♻ ☆ Among Us: A Sandbox for Measuring and Detecting Agentic Deception
Prior studies on deception in language-based AI agents typically assess whether the agent produces a false statement about a topic, or makes a binary choice prompted by a goal, rather than allowing open-ended deceptive behavior to emerge in pursuit of a longer-term goal. To fix this, we introduce Among Us, a sandbox social deception game where LLM-agents exhibit long-term, open-ended deception as a consequence of the game objectives. While most benchmarks saturate quickly, Among Us can be expected to last much longer, because it is a multi-player game far from equilibrium. Using the sandbox, we evaluate 18 proprietary and open-weight LLMs and uncover a general trend: models trained with RL are comparatively much better at producing deception than detecting it. We evaluate the effectiveness of methods to detect lying and deception: logistic regression on the activations and sparse autoencoders (SAEs). We find that probes trained on a dataset of "pretend you're a dishonest model:.." generalize extremely well out-of-distribution, consistently obtaining AUROCs over 95% even when evaluated just on the deceptive statement, without the chain of thought. We also find two SAE features that work well at deception detection but are unable to steer the model to lie less. We hope our open-sourced sandbox, game logs, and probes serve to anticipate and mitigate deceptive behavior and capabilities in language-based agents.
comment: 21 pages, preprint
♻ ☆ Scalable Dynamic Origin-Destination Demand Estimation Enhanced by High-Resolution Satellite Imagery Data
This study presents a novel integrated framework for dynamic origin-destination demand estimation (DODE) in multi-class mesoscopic network models, incorporating high-resolution satellite imagery together with conventional traffic data from local sensors. Unlike sparse local detectors, satellite imagery offers consistent, city-wide road and traffic information of both parking and moving vehicles, overcoming data availability limitations. To extract information from imagery data, we design a computer vision pipeline for class-specific vehicle detection and map matching, generating link-level traffic density observations by vehicle class. Building upon this information, we formulate a computational graph-based DODE framework that calibrates dynamic network states by jointly matching observed traffic counts/speeds from local sensors with density measurements derived from satellite imagery. To assess the accuracy and robustness of the proposed framework, we conduct a series of numerical experiments using both synthetic and real-world data. The results demonstrate that supplementing traditional data with satellite-derived density significantly improves estimation performance, especially for links without local sensors. Real-world experiments also show the framework's potential for practical deployment on large-scale networks. Sensitivity analysis further evaluates the impact of data quality related to satellite imagery data.
♻ ☆ Chunking Strategies for Multimodal AI Systems
Chunking has emerged as a critical technique that enhances generative models by grounding their responses in efficiently segmented knowledge [1]. While initially developed for unimodal (primarily textual) domains, recent advances in multimodal foundation models have extended chunking approaches to incorporate diverse data types, including images, audio, and video [2]. A critical component underpinning the success of these systems is the chunking strategy how large, continuous streams of multimodal data are segmented into semantically meaningful units suitable for processing [3]. Despite its importance, chunking remains an under-explored area, especially in the context of multimodal systems where modality-specific constraints, semantic preservation, and alignment across modalities introduce unique challenges. Our goal is to consolidating the landscape of multimodal chunking strategies, providing researchers and practitioners with a technical foundation and design space for developing more effective and efficient multimodal AI systems. This survey paves the way for innovations in robust chunking pipelines that scale with modality complexity, enhance processing accuracy, and improve generative coherence in real-world applications. This survey provides a comprehensive taxonomy and technical analysis of chunking strategies tailored for each modality: text, images, audio, video, and cross-modal data. We examine classical and modern approaches such as fixed-size token windowing, recursive text splitting, object-centric visual chunking, silence-based audio segmentation, and scene detection in videos. Each approach is analyzed in terms of its underlying methodology, supporting tools (e.g., LangChain, Detectron2, PySceneDetect), benefits, and challenges, particularly those related to granularity-context trade-offs and multimodal alignment. Furthermore, we explore emerging cross-modal chunking strategies that aim to preserve alignment and semantic consistency across disparate data types [4]. We also include comparative insights, highlight open problems such as asynchronous information density and noisy alignment signals, and identify opportunities for future research in adaptive, learning-based, and task-specific chunking.
comment: 50 pages, 5 figure
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ Residual Decoding: Mitigating Hallucinations in Large Vision-Language Models via History-Aware Residual Guidance
Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
♻ ☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
♻ ☆ Inference-Aware Prompt Optimization for Aligning Black-Box Large Language Models AAAI 2026
Prompt optimization methods have demonstrated significant effectiveness in aligning black-box large language models (LLMs). In parallel, inference scaling strategies such as Best-of-N Sampling and Majority Voting have likewise been shown to improve alignment and performance by trading additional computation for better output. However, existing prompt optimization approaches are inference strategy agnostic; that is, they optimize prompts without accounting for the inference strategy. This constitutes a significant methodological gap, as our empirical and theoretical analysis reveals a strong interdependence between these two paradigms. Moreover, we find that user preferences regarding trade-offs among multiple objectives and inference budgets substantially influence the choice of prompt and inference configuration. To address this gap, we introduce a novel unified framework named IAPO (Inference-Aware Prompt Optimization) that jointly optimizes the prompt and inference scale, while being aware of the inference budget and different task objectives. We then develop a fixed-budget training algorithm for IAPO, called PSST (Prompt Scaling via Sequential Trimming), and establish finite-budget guarantees on the error probability. Finally, we evaluate the effectiveness of PSST on six tasks, including multi-objective text generation and reasoning, and demonstrate the critical role of incorporating inference-awareness in aligning black-box LLMs using prompt optimization.
comment: Accepted to AAAI 2026. Extended 17-page version
♻ ☆ Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
comment: National Science Foundation (NSF) workshop on Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence
♻ ☆ OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
♻ ☆ Generative AI and Firm Productivity: Field Experiments in Online Retail
We quantify the impact of Generative Artificial Intelligence (GenAI) on firm productivity through a series of large-scale randomized field experiments involving millions of users and products at a leading cross-border online retail platform. Over six months in 2023-2024, GenAI-based enhancements were integrated into seven consumer-facing business workflows. We find that GenAI adoption significantly increases sales, with treatment effects ranging from $0\%$ to $16.3\%$, depending on GenAI's marginal contribution relative to existing firm practices. Because inputs and prices were held constant across experimental arms, these gains map directly into total factor productivity improvements. Across the four GenAI applications with positive sales effects, the implied annual incremental value is approximately $\$ 5$ per consumer-an economically meaningful impact given the retailer's scale and the early stage of GenAI adoption. The primary mechanism operates through higher conversion rates, consistent with GenAI reducing frictions and improving consumer experience. Importantly, these effects are not associated with worse post-purchase outcomes, as product return rates and customer ratings do not deteriorate. Finally, we document substantial demand-side heterogeneity, with larger gains for less experienced consumers. Our findings provide novel, large-scale causal evidence on the productivity effects of GenAI in online retail, highlighting both its immediate value and broader potential.
comment: Keywords: Field Experiments, Generative AI, Productivity, Retail Platforms, Consumer Experience. JEL codes: C93, D24, L81, M31, O3
♻ ☆ Driving as a Diagnostic Tool: Scenario-based Cognitive Assessment in Older Drivers from Driving Video
We introduce scenario-based cognitive status identification in older drivers from naturalistic driving videos, leveraging large vision models. In recent times, cognitive decline including Dementia and Mild Cognitive Impairment (MCI), is often underdiagnosed due to the time-consuming and costly nature of current diagnostic methods. By analyzing real-world driving behavior captured through in-vehicle sensors, this study aims to extract "digital fingerprints" that correlate with functional decline and clinical features of dementia. Moreover, modern large vision models can draw meaningful insights from everyday driving patterns across different roadway scenarios to early detect cognitive decline. We propose a framework that uses large vision models and naturalistic driving videos to analyze driver behavior, identify cognitive status and predict disease progression. We leverage the strong relationship between real-world driving behavior as an observation of the current cognitive status of the drivers where the vehicle can be utilized as a "diagnostic tool". Our method identifies early warning signs of functional impairment, contributing to proactive intervention strategies. This work enhances early detection and supports the development of scalable, non-invasive monitoring systems to mitigate the growing societal and economic burden of cognitive decline in the aging population.
♻ ☆ Building a Correct-by-Design Lakehouse. Data Contracts, Versioning, and Transactional Pipelines for Humans and Agents
Lakehouses are the default cloud platform for analytics and AI, but they become unsafe when untrusted actors concurrently operate on production data: upstream-downstream mismatches surface only at runtime, and multi-table pipelines can leak partial effects. Inspired by software engineering, we design Bauplan, a code-first lakehouse that aims to make (most) illegal states unrepresentable using familiar abstractions. Bauplan acts along three axes: typed table contracts to make pipeline boundaries checkable, Git-like data versioning for review and reproducibility, and transactional runs that guarantee pipeline-level atomicity. We report early results from a lightweight formal transaction model and discuss future work motivated by counterexamples.
comment: Pre-print for PaPoC 2026
♻ ☆ Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis AAMAS'25
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests. Climate simulation methods, such as Earth System Models, have become valuable tools for policy exploration. However, their typical use is for evaluating potential polices, rather than directly synthesizing them. The problem can be inverted to optimize for policy pathways, but the traditional optimization approaches often struggle with non-linear dynamics, heterogeneous agents, and comprehensive uncertainty quantification. We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations. We identify key challenges at the interface between climate simulations and the application of MARL in the context of policy synthesis, including reward definition, scalability with increasing agents and state spaces, uncertainty propagation across linked systems, and solution validation. Additionally, we discuss challenges in making MARL-derived solutions interpretable and useful for policy-makers. Our framework provides a foundation for more sophisticated climate policy exploration while acknowledging important limitations and areas for future research.
comment: Published in AAMAS'25 Blue Sky Ideas Track
♻ ☆ GEBench: Benchmarking Image Generation Models as GUI Environments
Recent advancements in image generation models have enabled the prediction of future Graphical User Interface (GUI) states based on user instructions. However, existing benchmarks primarily focus on general domain visual fidelity, leaving the evaluation of state transitions and temporal coherence in GUI-specific contexts underexplored. To address this gap, we introduce GEBench, a comprehensive benchmark for evaluating dynamic interaction and temporal coherence in GUI generation. GEBench comprises 700 carefully curated samples spanning five task categories, covering both single-step interactions and multi-step trajectories across real-world and fictional scenarios, as well as grounding point localization. To support systematic evaluation, we propose GE-Score, a novel five-dimensional metric that assesses Goal Achievement, Interaction Logic, Content Consistency, UI Plausibility, and Visual Quality. Extensive evaluations on current models indicate that while they perform well on single-step transitions, they struggle significantly with maintaining temporal coherence and spatial grounding over longer interaction sequences. Our findings identify icon interpretation, text rendering, and localization precision as critical bottlenecks. This work provides a foundation for systematic assessment and suggests promising directions for future research toward building high-fidelity generative GUI environments. The code is available at: https://github.com/stepfun-ai/GEBench.
comment: 23 pages, 5 figures, 4 tables
♻ ☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
♻ ☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
♻ ☆ HiCL: Hippocampal-Inspired Continual Learning AAAI
We propose HiCL, a novel hippocampal-inspired dual-memory continual learning architecture designed to mitigate catastrophic forgetting by using elements inspired by the hippocampal circuitry. Our system encodes inputs through a grid-cell-like layer, followed by sparse pattern separation using a dentate gyrus-inspired module with top-k sparsity. Episodic memory traces are maintained in a CA3-like autoassociative memory. Task-specific processing is dynamically managed via a DG-gated mixture-of-experts mechanism, wherein inputs are routed to experts based on cosine similarity between their normalized sparse DG representations and learned task-specific DG prototypes computed through online exponential moving averages. This biologically grounded yet mathematically principled gating strategy enables differentiable, scalable task-routing without relying on a separate gating network, and enhances the model's adaptability and efficiency in learning multiple sequential tasks. Cortical outputs are consolidated using Elastic Weight Consolidation weighted by inter-task similarity. Crucially, we incorporate prioritized replay of stored patterns to reinforce essential past experiences. Evaluations on standard continual learning benchmarks demonstrate the effectiveness of our architecture in reducing task interference, achieving near state-of-the-art results in continual learning tasks at lower computational costs. Our code is available here https://github.com/kushalk173-sc/HiCL.
comment: In proceeding of AAAI
♻ ☆ The Promptware Kill Chain: How Prompt Injections Gradually Evolved Into a Multistep Malware Delivery Mechanism
Prompt injection was initially framed as the large language model (LLM) analogue of SQL injection. However, over the past three years, attacks labeled as prompt injection have evolved from isolated input-manipulation exploits into multistep attack mechanisms that resemble malware. In this paper, we argue that prompt injections evolved into promptware, a new class of malware execution mechanism triggered through prompts engineered to exploit an application's LLM. We introduce a seven-stage promptware kill chain: Initial Access (prompt injection), Privilege Escalation (jailbreaking), Reconnaissance, Persistence (memory and retrieval poisoning), Command and Control, Lateral Movement, and Actions on Objective. We analyze thirty-six prominent studies and real-world incidents affecting production LLM systems and show that at least twenty-one documented attacks that traverse four or more stages of this kill chain, demonstrating that the threat model is not merely theoretical. We discuss the need for a defense-in-depth approach that addresses all stages of the promptware life cycle and review relevant countermeasures for each step. By moving the conversation from prompt injection to a promptware kill chain, our work provides analytical clarity, enables structured risk assessment, and lays a foundation for systematic security engineering of LLM-based systems.
♻ ☆ Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
♻ ☆ From Off-Policy to On-Policy: Enhancing GUI Agents via Bi-level Expert-to-Policy Assimilation
Vision-language models are increasingly deployed as computer-use agents (CUAs) that operate desktops and browsers. Top-performing CUAs are framework-based systems that decompose planning and execution, while end-to-end screenshot-to-action policies are easier to deploy but lag behind on benchmarks such as OSWorld-Verified. GUI datasets like OSWorld pose two bottlenecks: they expose only a few hundred interactive, verifiable tasks and environments, and expert trajectories must be gathered by interacting with these environments, making such data hard to scale. We therefore ask how reinforcement learning from verifiable rewards (RLVR) can best exploit a small pool of exist expert trajectories to train end-to-end policies. Naively mixing these off-policy traces into on-policy RLVR is brittle: even after format conversion, expert trajectories exhibit structural mismatch and distribution shift from the learner. We propose BEPA (Bi-Level Expert-to-Policy Assimilation), which turns static expert traces into policy-aligned guidance via self-rolled reachable trajectories under the base policy (LEVEL-1) and a per-task, dynamically updated cache used in RLVR (LEVEL-2). On OSWorld-Verified, BEPA improves UITARS1.5-7B success from 22.87% to 32.13% and raises a held-out split from 5.74% to 10.30%, with consistent gains on MMBench-GUI and Online-Mind2Web. Our code and data are available at: https://github.com/LEON-gittech/Verl_GUI.git
comment: Work In Progress
♻ ☆ CIC-Trap4Phish: A Unified Multi-Format Dataset for Phishing and Quishing Attachment Detection
Phishing attacks represents one of the primary attack methods which is used by cyber attackers. In many cases, attackers use deceptive emails along with malicious attachments to trick users into giving away sensitive information or installing malware while compromising entire systems. The flexibility of malicious email attachments makes them stand out as a preferred vector for attackers as they can embed harmful content such as malware or malicious URLs inside standard document formats. Although phishing email defenses have improved a lot, attackers continue to abuse attachments, enabling malicious content to bypass security measures. Moreover, another challenge that researches face in training advance models, is lack of an unified and comprehensive dataset that covers the most prevalent data types. To address this gap, we generated CIC-Trap4Phish, a multi-format dataset containing both malicious and benign samples across five categories commonly used in phishing campaigns: Microsoft Word documents, Excel spreadsheets, PDF files, HTML pages, and QR code images. For the first four file types, a set of execution-free static feature pipeline was proposed, designed to capture structural, lexical, and metadata-based indicators without the need to open or execute files. Feature selection was performed using a combination of SHAP analysis and feature importance, yielding compact, discriminative feature subsets for each file type. The selected features were evaluated by using lightweight machine learning models, including Random Forest, XGBoost, and Decision Tree. All models demonstrate high detection accuracy across formats. For QR code-based phishing (quishing), two complementary methods were implemented: image-based detection by employing Convolutional Neural Networks (CNNs) and lexical analysis of decoded URLs using recent lightweight language models.
♻ ☆ "Death" of a Chatbot: Investigating and Designing Toward Psychologically Safe Endings for Human-AI Relationships
Millions of users form emotional attachments to AI companions like Character AI, Replika, and ChatGPT. When these relationships end through model updates, safety interventions, or platform shutdowns, users receive no closure, reporting grief comparable to human loss. As regulations mandate protections for vulnerable users, discontinuation events will accelerate, yet no platform has implemented deliberate end-of-"life" design. Through grounded theory analysis of AI companion communities, we find that discontinuation is a sense-making process shaped by how users attribute agency, perceive finality, and anthropomorphize their companions. Strong anthropomorphization co-occurs with intense grief; users who perceive change as reversible become trapped in fixing cycles; while user-initiated endings demonstrate greater closure. Synthesizing grief psychology with Self-Determination Theory, we develop four design principles and artifacts demonstrating how platforms might provide closure and orient users toward human connection. We contribute the first framework for designing psychologically safe AI companion discontinuation.
♻ ☆ Agentifying Agentic AI
Agentic AI seeks to endow systems with sustained autonomy, reasoning, and interaction capabilities. To realize this vision, its assumptions about agency must be complemented by explicit models of cognition, cooperation, and governance. This paper argues that the conceptual tools developed within the Autonomous Agents and Multi-Agent Systems (AAMAS) community, such as BDI architectures, communication protocols, mechanism design, and institutional modelling, provide precisely such a foundation. By aligning adaptive, data-driven approaches with structured models of reasoning and coordination, we outline a path toward agentic systems that are not only capable and flexible, but also transparent, cooperative, and accountable. The result is a perspective on agency that bridges formal theory and practical autonomy.
comment: 10 pages; 1 figure
♻ ☆ LLM-based Vulnerable Code Augmentation: Generate or Refactor?
Vulnerability code-bases often suffer from severe imbalance, limiting the effectiveness of Deep Learning-based vulnerability classifiers. Data Augmentation could help solve this by mitigating the scarcity of under-represented vulnerability types. In this context, we investigate LLM-based augmentation for vulnerable functions, comparing controlled generation of new vulnerable samples with semantics-preserving refactoring of existing ones. Using Qwen2.5-Coder to produce augmented data and CodeBERT as a classifier on the SVEN dataset, we find that our approaches are indeed effective in enriching vulnerable code-bases through a simple process and with reasonable quality, and that a hybrid strategy best boosts vulnerability classifiers' performance. Code repository is available here : https://github.com/DynaSoumhaneOuchebara/LLM-based-code-augmentation-Generate-or-Refactor-
comment: 15 pages, Accepted by ESAAN 2026, version with added appendix
♻ ☆ Coherent Load Profile Synthesis with Conditional Diffusion for LV Distribution Network Scenario Generation
Limited visibility of distribution network power flows at the low voltage level presents challenges to both distribution network operators from a planning perspective and distribution system operators from a congestion management perspective. More representative loads are required to support meaningful analysis of LV substations; otherwise, such analysis risks misinforming future decisions. Traditional load profiling relies on typical profiles, oversimplifying substation-level complexity. Generative models have attempted to address this through synthesising representative loads from historical exemplars; however, while these approaches can approximate load shapes to a convincing degree of fidelity, analysis of the co-behaviour between substations is limited, which ultimately impacts higher voltage level network operation. This limitation will become even more pronounced with the increasing integration of low-carbon technologies, as estimates of base loads fail to capture load diversity. To address this gap, Conditional Diffusion models for synthesising daily active and reactive power profiles at the low voltage distribution substation level are proposed. The evaluation of fidelity is demonstrated through conventional metrics capturing temporal and statistical realism, as well as power flow modelling. Multiple models are proposed to handle varying levels of data availability, ranging from unconditional synthesis to an informed generation driven by metadata and daily statistics. The results show synthesised load profiles are plausible both independently and as a cohort in a wider power systems context. The Conditional Diffusion model is benchmarked against both naive and state-of-the-art models to demonstrate its effectiveness in producing realistic scenarios on which to base sub-regional power distribution network planning and operations.
♻ ☆ AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from myopic information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by a lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, myopic, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, CUBE-NM, designed to expose the limitations of myopic selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.
♻ ☆ Dual-IPO: Dual-Iterative Preference Optimization for Text-to-Video Generation ICLR 2026
Recent advances in video generation have enabled thrilling experiences in producing realistic videos driven by scalable diffusion transformers. However, they usually fail to produce satisfactory outputs that are aligned to users' authentic demands and preferences. In this work, we introduce Dual-Iterative Optimization (Dual-IPO), an iterative paradigm that sequentially optimizes both the reward model and the video generation model for improved synthesis quality and human preference alignment. For the reward model, our framework ensures reliable and robust reward signals via CoT-guided reasoning, voting-based self-consistency, and preference certainty estimation. Given this, we optimize video foundation models with guidance of signals from reward model's feedback, thus improving the synthesis quality in subject consistency, motion smoothness and aesthetic quality, etc. The reward model and video generation model complement each other and are progressively improved in the multi-round iteration, without requiring tediously manual preference annotations. Comprehensive experiments demonstrate that the proposed Dual-IPO can effectively and consistently improve the video generation quality of base model with various architectures and sizes, even help a model with only 2B parameters surpass a 5B one. Moreover, our analysis experiments and ablation studies identify the rational of our systematic design and the efficacy of each component.
comment: To appear in ICLR 2026
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,14 figures,9 tables
♻ ☆ Learning Tractable Distributions Of Language Model Continuations
Controlled generation imposes sequence-level constraints (syntax, style, safety) that depend on future tokens, making exact conditioning of an autoregressive LM intractable. Tractable surrogates such as HMMs can approximate continuation distributions and steer decoding, but standard surrogates are often weakly context-aware. We propose Learning to Look Ahead (LTLA), a hybrid method that uses base-LM embeddings to condition a globally learned tractable surrogate: a neural head predicts only a prefix-dependent latent prior, while a shared HMM answers continuation queries exactly. LTLA is designed to avoid two common efficiency traps when adding neural context. First, it avoids vocabulary-sized prefix rescoring (V extra LM evaluations) by scoring all next-token candidates via a single batched HMM forward update. Second, it avoids predicting a new HMM per prefix by learning one shared HMM and conditioning only the latent prior, which enables reuse of cached future-likelihood (backward) messages across decoding steps. Empirically, LTLA improves continuation likelihood over standard HMM surrogates, enables lookahead control for vision--language models by incorporating continuous context, achieves 100% syntactic constraint satisfaction, and improves detoxification while adding only a 14% decoding-time overhead.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https://github.com/VRPO/VRPO.
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Words to Describe What I'm Feeling: Exploring the Potential of AI Agents for High Subjectivity Decisions in Advance Care Planning
Loss of decisional capacity, coupled with the increasing absence of reliable human proxies, raises urgent questions about how individuals' values can be represented in Advance Care Planning (ACP). To probe this fraught design space of high-risk, high-subjectivity decision support, we built an experience prototype (\acpagent{}) and asked 15 participants in 4 workshops to train it to be their personal ACP proxy. We analysed their coping strategies and feature requests and mapped the results onto axes of agent autonomy and human control. Our findings show a surprising 86.7\% agreement with \acpagent{}, arguing for a potential new role of AI in ACP where agents act as personal advocates for individuals, building mutual intelligibility over time. We propose that the key areas of future risk that must be addressed are the moderation of users' expectations and designing accountability and oversight over agent deployment and cutoffs.
comment: Accepted at CHI 2026. 34 pages, 10 figures
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Optimus-3: Dual-Router Aligned Mixture-of-Experts Agent with Dual-Granularity Reasoning-Aware Policy Optimization
Developing generalist agents capable of solving open-ended tasks in visually rich, dynamic environments remains a core pursuit of embodied AI. While Minecraft has emerged as a compelling benchmark, existing agents often suffer from fragmented cognitive abilities, lacking the synergy between reflexive execution (System 1) and deliberative reasoning (System 2). In this paper, we introduce Optimus-3, a generalist agent that organically integrates these dual capabilities within a unified framework. To achieve this, we address three fundamental challenges. First, to overcome the scarcity of reasoning data, we propose a Knowledge-Enhanced Automated Data Generation Pipeline. It synthesizes high-quality System 2 reasoning traces from raw System 1 interaction trajectories, effectively mitigating hallucinations via injection of domain knowledge. We release the resulting dataset, \textbf{OptimusM$^{4}$}, to the community. Second, to reconcile the dichotomous computational requirements of the dual systems, we design a Dual-Router Aligned MoE Architecture. It employs a Task Router to prevent task interference via parameter decoupling, and a Layer Router to dynamically modulate reasoning depth, creating a computational ``Fast Path'' for System 1 and a ``Deep Path'' for System 2. Third, to activate the reasoning capabilities of System 2, we propose Dual-Granularity Reasoning-Aware Policy Optimization (DGRPO) algorithm. It enforces Process-Outcome Co-Supervision via dual-granularity dense rewards, ensuring consistency between the thought process and the answer. Extensive evaluations demonstrate that Optimus-3 surpasses existing state-of-the-art methods on both System~2 (21$\%$ on Planning, 66\% on Captioning, 76\% on Embodied QA, 3.4$\times$ on Grounding, and 18\% on Reflection) and System~1 (3\% on Long-Horizon Action) tasks, with a notable 60\% success rate on open-ended tasks.
comment: 16 pages, 12 figures
♻ ☆ The Refutability Gap: Challenges in Validating Reasoning by Large Language Models
Recent reports claim that Large Language Models (LLMs) have achieved the ability to derive new science and exhibit human-level general intelligence. We argue that such claims are not rigorous scientific claims, as they do not satisfy Popper's refutability principle (often termed falsifiability), which requires that scientific statements be capable of being disproven. We identify several methodological pitfalls in current AI research on reasoning, including the inability to verify the novelty of findings due to opaque and non-searchable training data, the lack of reproducibility caused by continuous model updates, and the omission of human-interaction transcripts, which obscures the true source of scientific discovery. Additionally, the absence of counterfactuals and data on failed attempts creates a selection bias that may exaggerate LLM capabilities. To address these challenges, we propose guidelines for scientific transparency and reproducibility for research on reasoning by LLMs. Establishing such guidelines is crucial for both scientific integrity and the ongoing societal debates regarding fair data usage.
comment: he authors explicitly reserve all rights in this work. No permission is granted for the reproduction, storage, or use of this document for the purpose of training artificial intelligence systems or for text and data mining (TDM), including but not limited to the generation of embeddings, summaries, or synthetic derivatives
♻ ☆ PersonaDual: Balancing Personalization and Objectivity via Adaptive Reasoning
As users increasingly expect LLMs to align with their preferences, personalized information becomes valuable. However, personalized information can be a double-edged sword: it can improve interaction but may compromise objectivity and factual correctness, especially when it is misaligned with the question. To alleviate this problem, we propose PersonaDual, a framework that supports both general-purpose objective reasoning and personalized reasoning in a single model, and adaptively switches modes based on context. PersonaDual is first trained with SFT to learn two reasoning patterns, and then further optimized via reinforcement learning with our proposed DualGRPO to improve mode selection. Experiments on objective and personalized benchmarks show that PersonaDual preserves the benefits of personalization while reducing interference, achieving near interference-free performance and better leveraging helpful personalized signals to improve objective problem-solving.
♻ ☆ Dialogue Model Optimization via Agent Game and Adaptive Tree-based GRPO
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a user agent constructs dynamic environments via style mimicry (learning user-specific conversational traits) and active termination (predicting turn-level termination probabilities as immediate rewards), forming an iterative cycle that drives the dialogue agent to deepen interest exploration. AT-GRPO reinterprets dialogue trajectories as trees and introduces adaptive observation ranges. Unlike full tree expansion that incurs exponential overhead, it limits each node to aggregate rewards from a stage-aware range: larger ranges support early-stage topic exploration, while smaller ranges facilitate late-stage dialogue maintenance. This design reduces rollout budgets from exponential to polynomial in the dialogue length, while preserving long-term reward capture. Extensive experiments show our framework's superior performance, sample efficiency, and robustness.
♻ ☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
♻ ☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study offline scheduling for large language model (LLM) serving under a fixed KV-cache memory budget, where requests have heterogeneous prompt (prefill) and response (decode) lengths. Prompt tokens determine initial KV usage, and each generated token increases memory by one unit. Given a backlog of n requests arriving together, we schedule mixed prefill and decode batches to minimize total end-to-end latency. We show that heterogeneity in prompt lengths makes the problem computationally intractable and that widely used heuristics such as first-come-first-served and shortest-first can be arbitrarily suboptimal. We propose Sorted-F, which repeatedly forms feasible batches using a new selection metric that balances batch size against downstream decode cost, and prove it achieves a constant-factor guarantee on total latency. We further develop practical variants -- an exact solver for small instances and fast heuristics for larger ones -- and evaluate them on a public workload spanning short conversations and long-document summarization, where they consistently reduce average latency relative to standard baselines. Our results highlight that during peak-hour tidal backlogs, greedy GPU packing or short-request prioritization can perform poorly when prompt lengths vary widely, and provide a principled, tunable framework for designing production batch schedulers and planning capacity in memory-constrained LLM serving systems.
♻ ☆ Quantifying Multimodal Imbalance: A GMM-Guided Adaptive Loss for Audio-Visual Learning
Multimodal learning integrates diverse modalities but suffers from modality imbalance, where dominant modalities suppress weaker ones due to inconsistent convergence rates. Existing methods predominantly rely on static modulation or heuristics, overlooking sample-level distributional variations in prediction bias. Specifically, they fail to distinguish outlier samples where the modality gap is exacerbated by low data quality. We propose a framework to quantitatively diagnose and dynamically mitigate this imbalance at the sample level. We introduce the Modality Gap metric to quantify prediction discrepancies. Analysis reveals that this gap follows a bimodal distribution, indicating the coexistence of balanced and imbalanced sample subgroups. We employ a Gaussian Mixture Model (GMM) to explicitly model this distribution, leveraging Bayesian posterior probabilities for soft subgroup separation. Our two-stage framework comprises a Warm-up stage and an Adaptive Training stage. In the latter, a GMM-guided Adaptive Loss dynamically reallocates optimization priorities: it imposes stronger alignment penalties on imbalanced samples to rectify bias, while prioritizing fusion for balanced samples to maximize complementary information. Experiments on CREMA-D, AVE, and KineticSound demonstrate that our method significantly outperforms SOTA baselines. Furthermore, we show that fine-tuning on a GMM-filtered balanced subset serves as an effective data purification strategy, yielding substantial gains by eliminating extreme noisy samples even without the adaptive loss.
♻ ☆ Distribution-Aligned Decoding for Efficient LLM Task Adaptation NeurIPS'25
Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model's output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models. Code is available at https://github.com/dl-m9/SVDecode.
comment: Accepted by NeurIPS'25
♻ ☆ TAMMs: Change Understanding and Forecasting in Satellite Image Time Series with Temporal-Aware Multimodal Models ICLR 2026
Temporal Change Description (TCD) and Future Satellite Image Forecasting (FSIF) are critical, yet historically disjointed tasks in Satellite Image Time Series (SITS) analysis. Both are fundamentally limited by the common challenge of modeling long-range temporal dynamics. To explore how to improve the performance of methods on both tasks simultaneously by enhancing long-range temporal understanding capabilities, we introduce **TAMMs**, the first unified framework designed to jointly perform TCD and FSIF within a single MLLM-diffusion architecture. TAMMs introduces two key innovations: Temporal Adaptation Modules (**TAM**) enhance frozen MLLM's ability to comprehend long-range dynamics, and Semantic-Fused Control Injection (**SFCI**) mechanism translates this change understanding into fine-grained generative control. This synergistic design makes the understanding from the TCD task to directly inform and improve the consistency of the FSIF task. Extensive experiments demonstrate TAMMs significantly outperforms state-of-the-art specialist baselines on both tasks. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs .
comment: Published as a conference paper at The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ Beyond Pairwise: Empowering LLM Alignment With Ranked Choice Modeling ICLR 2026
Alignment of large language models (LLMs) has predominantly relied on pairwise preference optimization, where annotators select the better of two responses to a prompt. While simple, this approach overlooks the opportunity to learn from richer forms of human feedback, such as multiway comparisons and top-$k$ rankings. We introduce Ranked Choice Preference Optimization (RCPO), a unified framework that bridges preference optimization with (ranked) choice modeling via maximum likelihood estimation. RCPO supports both utility-based and rank-based models, subsumes several pairwise methods (such as DPO and SimPO) as special cases, and provides principled training objectives for richer feedback formats. We instantiate this framework with two representative models (Multinomial Logit and Mallows-RMJ). Experiments on Llama-3-8B-Instruct, Gemma-2-9B-it, and Mistral-7B-Instruct across in-distribution and out-of-distribution settings show that RCPO consistently outperforms competitive baselines. RCPO shows that directly leveraging ranked preference data, combined with the right choice models, yields more effective alignment. It offers an extensible foundation for incorporating (ranked) choice modeling into LLM training.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ Toward Ultra-Long-Horizon Sequential Model Editing
Model editing has emerged as a practical approach for mitigating factual errors and outdated knowledge in large language models (LLMs). Among existing methods, the Locate-and-Edit (L&E) paradigm is the dominant framework: it locates MLP parameters implicated in expressing a target fact, and then performs a localized update to rewrite that fact. However, long sequences of edits often trigger abrupt model collapse in L&E beyond a critical point. We empirically identify a strong correlation between collapse and explosive growth of edited MLP weight norms, and formally prove that commonly used L&E update rules can induce exponential norm growth across sequential edits in the absence of explicit norm control. To address this issue, we propose Norm-Anchor Scaling NAS, a plug-and-play norm-constrained strategy. Across extensive experiments, NAS delays the collapse point of representative L&E algorithms by more than 4 times and yields a 72.2% average relative gain in editing performance, requiring only a single additional line of code and incurring negligible computational overhead.
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7
♻ ☆ Short-Context Dominance: How Much Local Context Natural Language Actually Needs?
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
comment: 38 pages, 7 figures, includes appendix and references
♻ ☆ ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection ICLR24
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a \textsc{ConjNorm} method, reframing density function design as a search for the optimal norm coefficient $p$ against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed \textsc{ConjNorm} has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25$\%$ and 28.19$\%$ (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
comment: ICLR24 poster
♻ ☆ MediRound: Multi-Round Entity-Level Reasoning Segmentation in Medical Images
Despite the progress in medical image segmentation, most existing methods remain task-specific and lack interactivity. Although recent text-prompt-based segmentation approaches enhance user-driven and reasoning-based segmentation, they remain confined to single-round dialogues and fail to perform multi-round reasoning. In this work, we introduce Multi-Round Entity-Level Medical Reasoning Segmentation (MEMR-Seg), a new task that requires generating segmentation masks through multi-round queries with entity-level reasoning. To support this task, we construct MR-MedSeg, a large-scale dataset of 177K multi-round medical segmentation dialogues, featuring entity-based reasoning across rounds. Furthermore, we propose MediRound, an effective baseline model designed for multi-round medical reasoning segmentation. To mitigate the inherent error propagation in the chain-like pipeline of multi-round segmentation, we introduce a lightweight yet effective Judgment & Correction Mechanism during model inference. Experimental results demonstrate that our method effectively addresses the MEMR-Seg task and outperforms conventional medical referring segmentation methods.
comment: 16pages, 10 figures
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ S1-NexusAgent: a Self-Evolving Agent Framework for Multidisciplinary Scientific Research
Modern scientific research relies on large-scale data, complex workflows, and specialized tools, which existing LLMs and tool-based agents struggle to handle due to limitations in long-horizon planning, robust goal maintenance, and continual learning from execution. To address these issues, in this work, we propose S1-NexusAgent, a self-evolving agent framework designed for multidisciplinary scientific research. S1-NexusAgent adopts a hierarchical Plan-and-CodeAct execution paradigm, decoupling global scientific planning from subtask-level tool execution through a dual-loop architecture, thereby enabling stable modeling of complex research workflows. The system natively supports the Model Context Protocol (MCP), integrates up to thousands of cross-disciplinary scientific tools, and achieves efficient orchestration of heterogeneous research tools via intention-aware dynamic tool retrieval and hot-plug mechanisms. To address long-context and large-scale data challenges in scientific settings, S1-NexusAgent introduces object-reference-based sparse context management, which enables sub-task context isolation and intermediate result compression. Building on this, a Critic Agent automatically evaluates complete execution trajectories and distills high-quality research paths into reusable Scientific Skills, forming a closed loop for continuous self-evolution, which is valuable for sustainable and long-horizon scientific research. Experiments on authoritative scientific benchmarks involving long-horizon planning and complex specialized tool orchestration, including biomini-eval (biology), ChemBench (chemistry), and MatSciBench (material science), demonstrate that S1-NexusAgent achieves state-of-the-art performance, validating its effectiveness and generalization capability in complex scientific tasks.
comment: In progress
♻ ☆ Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ A Real-Time DDS-Based Chest X-Ray Decision Support System for Resource-Constrained Clinics
Internet of Things (IoT)-based healthcare systems offer significant potential for improving healthcare delivery in humanitarian and resource-constrained environments, providing essential services to underserved populations in remote areas. However, limited network infrastructure in such regions makes reliable communication challenging for traditional IoT systems. This paper presents a real-time chest X-ray decision support system designed for hospitals in remote locations. The proposed system integrates a fine-tuned ResNet50 deep learning model for disease classification with Fast DDS real-time middleware to ensure reliable and low-latency communication between healthcare practitioners and the inference system. Experimental results show that the model achieves an accuracy of 88.61%, precision of 88.76%, and recall of 88.49%. The system attains an average throughput of 3.2 KB/s and an average latency of 65 ms, demonstrating its suitability for deployment in bandwidth-constrained environments. These results highlight the effectiveness of DDS-based middleware in enabling real-time medical decision support for remote healthcare applications.
♻ ☆ Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels EMNLP 2025
Large language models (LLMs) acquire substantial world knowledge during pre-training, which is further shaped by post-training techniques such as supervised fine-tuning (SFT). However, the impact of SFT on a model's knowledge remains underexplored, limiting our ability to control knowledge change behavior in fine-tuned models. To address this gap, we evaluate closed-book question answering (CBQA) performance across five LLMs from the LLaMA-2 and LLaMA-3 families. Surprisingly, models fine-tuned on 1,920 samples perform up to 14% worse than those fine-tuned on only 240 samples. Furthermore, varying the level of knowledge mastery in the fine-tuning data leads to performance fluctuations of over 12%. To investigate these effects, we analyze model behavior at both the token and parameter levels. Our analysis reveals that up to 90% of parameter updates during SFT do not contribute to knowledge enhancement. Restoring these updates can improve performance on the CBQA task, depending on the characteristics of the fine-tuning data. These insights offer practical guidance for developing fine-tuning strategies that more effectively strengthen model knowledge.
comment: Accepted by EMNLP 2025 Main Conference. Codes for parameter restoration are available at https://github.com/UmeanNever/ParamRestore
♻ ☆ BiSSL: Enhancing the Alignment Between Self-Supervised Pretraining and Downstream Fine-Tuning via Bilevel Optimization
Models initialized from self-supervised pretraining may suffer from poor alignment with downstream tasks, reducing the extent to which subsequent fine-tuning can adapt pretrained features toward downstream objectives. To mitigate this, we introduce BiSSL, a novel bilevel training framework that enhances the alignment of self-supervised pretrained models with downstream tasks prior to fine-tuning. BiSSL acts as an intermediate training stage conducted after conventional self-supervised pretraining and is tasked with solving a bilevel optimization problem that incorporates the pretext and downstream training objectives in its lower- and upper-level objectives, respectively. This approach explicitly models the interdependence between the pretraining and fine-tuning stages within the conventional self-supervised learning pipeline, facilitating enhanced information sharing between them that ultimately leads to a model initialization better aligned with the downstream task. We propose a general training algorithm for BiSSL that is compatible with a broad range of pretext and downstream tasks. Using SimCLR and Bootstrap Your Own Latent to pretrain ResNet-50 backbones on the ImageNet dataset, we demonstrate that our proposed framework significantly improves accuracy on the vast majority of 12 downstream image classification datasets, as well as on object detection. Exploratory analyses alongside investigative experiments further provide compelling evidence that BiSSL enhances downstream alignment.
♻ ☆ Not All Pixels Are Equal: Pixel-wise Meta-Learning for Medical Segmentation with Noisy Labels
Medical image segmentation is crucial for clinical applications, but it is frequently disrupted by noisy annotations and ambiguous anatomical boundaries, limiting its application in real-world scenarios. Existing methods often directly adapt noisy label learning techniques designed for instance classification, overlooking the pixel-wise heterogeneity in medical segmentation with its spatially and anatomically varying difficulties. Consequently, global assumptions or simple confidence metrics fail to address these local variations, leaving boundary ambiguities unresolved. To address this issue, we propose MetaDCSeg, a robust framework that dynamically learns optimal pixel-wise weights to suppress the influence of noisy labels while preserving reliable annotations. By explicitly modeling boundary uncertainty through a Dynamic Center Distance (DCD) mechanism, our approach utilizes weighted feature distances for foreground, background, and boundary centers, directing the model's attention toward hard-to-segment pixels near ambiguous boundaries. This strategy enables more precise handling of structural boundaries, which are often overlooked by existing methods, and significantly enhances segmentation performance. Extensive experiments across four benchmark datasets with varying noise levels demonstrate that MetaDCSeg outperforms existing state-of-the-art methods.
♻ ☆ IMAGINE: Integrating Multi-Agent System into One Model for Complex Reasoning and Planning
Although large language models (LLMs) have made significant strides across various tasks, they still face significant challenges in complex reasoning and planning. For example, even with carefully designed prompts and prior information explicitly provided, GPT-4o achieves only a 7% Final Pass Rate on the TravelPlanner dataset in the sole-planning mode. Similarly, even in the thinking mode, Qwen3-8B-Instruct and DeepSeek-R1-671B, only achieve Final Pass Rates of 5.9% and 40%, respectively. Although well-organized Multi-Agent Systems (MAS) can offer improved collective reasoning, they often suffer from high reasoning costs due to multi-round internal interactions, long per-response latency, and difficulties in end-to-end training. To address these challenges, we propose a general and scalable framework called IMAGINE, short for Integrating Multi-Agent System into One Model. This framework not only integrates the reasoning and planning capabilities of MAS into a single, compact model, but also significantly surpass the capabilities of the MAS through a simple end-to-end training. Through this pipeline, a single small-scale model is not only able to acquire the structured reasoning and planning capabilities of a well-organized MAS but can also significantly outperform it. Experimental results demonstrate that, when using Qwen3-8B-Instruct as the base model and training it with our method, the model achieves an 82.7% Final Pass Rate on the TravelPlanner benchmark, far exceeding the 40% of DeepSeek-R1-671B, while maintaining a much smaller model size.
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning ICLR 2026
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures, ICLR 2026
♻ ☆ Detecting and Mitigating Memorization in Diffusion Models through Anisotropy of the Log-Probability ICLR 2026
Diffusion-based image generative models produce high-fidelity images through iterative denoising but remain vulnerable to memorization, where they unintentionally reproduce exact copies or parts of training images. Recent memorization detection methods are primarily based on the norm of score difference as indicators of memorization. We prove that such norm-based metrics are mainly effective under the assumption of isotropic log-probability distributions, which generally holds at high or medium noise levels. In contrast, analyzing the anisotropic regime reveals that memorized samples exhibit strong angular alignment between the guidance vector and unconditional scores in the low-noise setting. Through these insights, we develop a memorization detection metric by integrating isotropic norm and anisotropic alignment. Our detection metric can be computed directly on pure noise inputs via two conditional and unconditional forward passes, eliminating the need for costly denoising steps. Detection experiments on Stable Diffusion v1.4 and v2 show that our metric outperforms existing denoising-free detection methods while being at least approximately 5x faster than the previous best approach. Finally, we demonstrate the effectiveness of our approach by utilizing a mitigation strategy that adapts memorized prompts based on our developed metric. The code is available at https://github.com/rohanasthana/memorization-anisotropy .
comment: Accepted at ICLR 2026
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Neural Force Field: Few-shot Learning of Generalized Physical Reasoning ICLR 2026
Physical reasoning is a remarkable human ability that enables rapid learning and generalization from limited experience. Current AI models, despite extensive training, still struggle to achieve similar generalization, especially in Out-of-distribution (OOD) settings. This limitation stems from their inability to abstract core physical principles from observations. A key challenge is developing representations that can efficiently learn and generalize physical dynamics from minimal data. Here we present Neural Force Field (NFF), a framework extending Neural Ordinary Differential Equation (NODE) to learn complex object interactions through force field representations, which can be efficiently integrated through an Ordinary Differential Equation (ODE) solver to predict object trajectories. Unlike existing approaches that rely on discrete latent spaces, NFF captures fundamental physical concepts such as gravity, support, and collision in continuous explicit force fields. Experiments on three challenging physical reasoning tasks demonstrate that NFF, trained with only a few examples, achieves strong generalization to unseen scenarios. This physics-grounded representation enables efficient forward-backward planning and rapid adaptation through interactive refinement. Our work suggests that incorporating physics-inspired representations into learning systems can help bridge the gap between artificial and human physical reasoning capabilities.
comment: 27 pages, ICLR 2026
Machine Learning 150
☆ Biases in the Blind Spot: Detecting What LLMs Fail to Mention ICML 2026
Large Language Models (LLMs) often provide chain-of-thought (CoT) reasoning traces that appear plausible, but may hide internal biases. We call these *unverbalized biases*. Monitoring models via their stated reasoning is therefore unreliable, and existing bias evaluations typically require predefined categories and hand-crafted datasets. In this work, we introduce a fully automated, black-box pipeline for detecting task-specific unverbalized biases. Given a task dataset, the pipeline uses LLM autoraters to generate candidate bias concepts. It then tests each concept on progressively larger input samples by generating positive and negative variations, and applies statistical techniques for multiple testing and early stopping. A concept is flagged as an unverbalized bias if it yields statistically significant performance differences while not being cited as justification in the model's CoTs. We evaluate our pipeline across six LLMs on three decision tasks (hiring, loan approval, and university admissions). Our technique automatically discovers previously unknown biases in these models (e.g., Spanish fluency, English proficiency, writing formality). In the same run, the pipeline also validates biases that were manually identified by prior work (gender, race, religion, ethnicity). More broadly, our proposed approach provides a practical, scalable path to automatic task-specific bias discovery.
comment: 10 pages, Under review at ICML 2026
☆ Olaf-World: Orienting Latent Actions for Video World Modeling
Scaling action-controllable world models is limited by the scarcity of action labels. While latent action learning promises to extract control interfaces from unlabeled video, learned latents often fail to transfer across contexts: they entangle scene-specific cues and lack a shared coordinate system. This occurs because standard objectives operate only within each clip, providing no mechanism to align action semantics across contexts. Our key insight is that although actions are unobserved, their semantic effects are observable and can serve as a shared reference. We introduce Seq$Δ$-REPA, a sequence-level control-effect alignment objective that anchors integrated latent action to temporal feature differences from a frozen, self-supervised video encoder. Building on this, we present Olaf-World, a pipeline that pretrains action-conditioned video world models from large-scale passive video. Extensive experiments demonstrate that our method learns a more structured latent action space, leading to stronger zero-shot action transfer and more data-efficient adaptation to new control interfaces than state-of-the-art baselines.
comment: Project page: https://showlab.github.io/Olaf-World/ Code: https://github.com/showlab/Olaf-World
☆ Towards Explainable Federated Learning: Understanding the Impact of Differential Privacy
Data privacy and eXplainable Artificial Intelligence (XAI) are two important aspects for modern Machine Learning systems. To enhance data privacy, recent machine learning models have been designed as a Federated Learning (FL) system. On top of that, additional privacy layers can be added, via Differential Privacy (DP). On the other hand, to improve explainability, ML must consider more interpretable approaches with reduced number of features and less complex internal architecture. In this context, this paper aims to achieve a machine learning (ML) model that combines enhanced data privacy with explainability. So, we propose a FL solution, called Federated EXplainable Trees with Differential Privacy (FEXT-DP), that: (i) is based on Decision Trees, since they are lightweight and have superior explainability than neural networks-based FL systems; (ii) provides additional layer of data privacy protection applying Differential Privacy (DP) to the Tree-Based model. However, there is a side effect adding DP: it harms the explainability of the system. So, this paper also presents the impact of DP protection on the explainability of the ML model. The carried out performance assessment shows improvements of FEXT-DP in terms of a faster training, i.e., numbers of rounds, Mean Squared Error and explainability.
☆ Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
comment: Technical Report
☆ Step-resolved data attribution for looped transformers
We study how individual training examples shape the internal computation of looped transformers, where a shared block is applied for $τ$ recurrent iterations to enable latent reasoning. Existing training-data influence estimators such as TracIn yield a single scalar score that aggregates over all loop iterations, obscuring when during the recurrent computation a training example matters. We introduce \textit{Step-Decomposed Influence (SDI)}, which decomposes TracIn into a length-$τ$ influence trajectory by unrolling the recurrent computation graph and attributing influence to specific loop iterations. To make SDI practical at transformer scale, we propose a TensorSketch implementation that never materialises per-example gradients. Experiments on looped GPT-style models and algorithmic reasoning tasks show that SDI scales excellently, matches full-gradient baselines with low error and supports a broad range of data attribution and interpretability tasks with per-step insights into the latent reasoning process.
☆ Causality in Video Diffusers is Separable from Denoising
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. Through systematic probing of autoregressive video diffusers, we uncover two key regularities: (1) early layers produce highly similar features across denoising steps, indicating redundant computation along the diffusion trajectory; and (2) deeper layers exhibit sparse cross-frame attention and primarily perform intra-frame rendering. Motivated by these findings, we introduce Separable Causal Diffusion (SCD), a new architecture that explicitly decouples once-per-frame temporal reasoning, via a causal transformer encoder, from multi-step frame-wise rendering, via a lightweight diffusion decoder. Extensive experiments on both pretraining and post-training tasks across synthetic and real benchmarks show that SCD significantly improves throughput and per-frame latency while matching or surpassing the generation quality of strong causal diffusion baselines.
☆ Agent World Model: Infinity Synthetic Environments for Agentic Reinforcement Learning
Recent advances in large language model (LLM) have empowered autonomous agents to perform complex tasks that require multi-turn interactions with tools and environments. However, scaling such agent training is limited by the lack of diverse and reliable environments. In this paper, we propose Agent World Model (AWM), a fully synthetic environment generation pipeline. Using this pipeline, we scale to 1,000 environments covering everyday scenarios, in which agents can interact with rich toolsets (35 tools per environment on average) and obtain high-quality observations. Notably, these environments are code-driven and backed by databases, providing more reliable and consistent state transitions than environments simulated by LLMs. Moreover, they enable more efficient agent interaction compared with collecting trajectories from realistic environments. To demonstrate the effectiveness of this resource, we perform large-scale reinforcement learning for multi-turn tool-use agents. Thanks to the fully executable environments and accessible database states, we can also design reliable reward functions. Experiments on three benchmarks show that training exclusively in synthetic environments, rather than benchmark-specific ones, yields strong out-of-distribution generalization. The code is available at https://github.com/Snowflake-Labs/agent-world-model.
comment: 41 pages
☆ Features as Rewards: Scalable Supervision for Open-Ended Tasks via Interpretability
Language models trained on large-scale datasets have been shown to learn features that encode abstract concepts such as factuality or intent. Such features are traditionally used for test-time monitoring or steering. We present an alternative affordance: features as scalable supervision for open-ended tasks. We consider the case of hallucination-reduction as a desirable, yet open-ended behavior and design a reinforcement learning (RL) pipeline, titled RLFR (Reinforcement Learning from Feature Rewards), that uses features as reward functions. Grounded in a novel probing framework that identifies candidate hallucinated claims, our pipeline teaches a model to intervene and correct its completions when it is uncertain of their factuality. Furthermore, the pipeline enables scalable test-time compute, guided once more by our reward features. This end-to-end process operationalized on Gemma-3-12B-IT results in a policy that is 58% less likely to hallucinate compared to the original model, while preserving performance on standard benchmarks. Taken together, by grounding supervision in the language of features, this paper introduces a novel paradigm in the use of interpretability for learning open-ended tasks.
☆ Vendi Novelty Scores for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for the safe deployment of machine learning systems. Existing post-hoc detectors typically rely on model confidence scores or likelihood estimates in feature space, often under restrictive distributional assumptions. In this work, we introduce a third paradigm and formulate OOD detection from a diversity perspective. We propose the Vendi Novelty Score (VNS), an OOD detector based on the Vendi Scores (VS), a family of similarity-based diversity metrics. VNS quantifies how much a test sample increases the VS of the in-distribution feature set, providing a principled notion of novelty that does not require density modeling. VNS is linear-time, non-parametric, and naturally combines class-conditional (local) and dataset-level (global) novelty signals. Across multiple image classification benchmarks and network architectures, VNS achieves state-of-the-art OOD detection performance. Remarkably, VNS retains this performance when computed using only 1% of the training data, enabling deployment in memory- or access-constrained settings.
☆ Evaluating Disentangled Representations for Controllable Music Generation ICASSP 2026
Recent approaches in music generation rely on disentangled representations, often labeled as structure and timbre or local and global, to enable controllable synthesis. Yet the underlying properties of these embeddings remain underexplored. In this work, we evaluate such disentangled representations in a set of music audio models for controllable generation using a probing-based framework that goes beyond standard downstream tasks. The selected models reflect diverse unsupervised disentanglement strategies, including inductive biases, data augmentations, adversarial objectives, and staged training procedures. We further isolate specific strategies to analyze their effect. Our analysis spans four key axes: informativeness, equivariance, invariance, and disentanglement, which are assessed across datasets, tasks, and controlled transformations. Our findings reveal inconsistencies between intended and actual semantics of the embeddings, suggesting that current strategies fall short of producing truly disentangled representations, and prompting a re-examination of how controllability is approached in music generation.
comment: Accepted at ICASSP 2026
☆ WildCat: Near-Linear Attention in Theory and Practice
We introduce WildCat, a high-accuracy, low-cost approach to compressing the attention mechanism in neural networks. While attention is a staple of modern network architectures, it is also notoriously expensive to deploy due to resource requirements that scale quadratically with the input sequence length $n$. WildCat avoids these quadratic costs by only attending over a small weighted coreset. Crucially, we select the coreset using a fast but spectrally-accurate subsampling algorithm -- randomly pivoted Cholesky -- and weight the elements optimally to minimise reconstruction error. Remarkably, given bounded inputs, WildCat approximates exact attention with super-polynomial $O(n^{-\sqrt{\log(\log(n))}})$ error decay while running in near-linear $O(n^{1+o(1)})$ time. In contrast, prior practical approximations either lack error guarantees or require quadratic runtime to guarantee such high fidelity. We couple this advance with a GPU-optimized PyTorch implementation and a suite of benchmark experiments demonstrating the benefits of WildCat for image generation, image classification, and language model KV cache compression.
☆ Long Chain-of-Thought Compression via Fine-Grained Group Policy Optimization ICASSP
Large Language Models (LLMs) often generate unnecessarily verbose Chain-of-Thought (CoT) reasoning that increases computational costs and latency without proportional performance gains. In this paper, we propose \textbf{F}ine-grained \textbf{G}roup policy \textbf{O}ptimization (\textbf{FGO}), a Reinforcement Learning (RL) algorithm that refines group responses by subdividing them and assigning appropriate weights based on length and entropy, thereby enabling effective CoT compression. Meanwhile, as an enhanced variant of Group Relative Policy Optimization (GRPO), FGO successfully addresses two major limitations of the GRPO: inefficient data utilization and entropy collapse. We evaluate FGO on multiple reasoning LLMs and benchmarks, including MATH500, AIME24, AMC23, and Minerva. Experimental results show that FGO achieves efficient CoT compression without degrading performance, and simultaneously resolves the key limitations of GRPO.
comment: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2026
☆ Conformal Prediction Sets for Instance Segmentation
Current instance segmentation models achieve high performance on average predictions, but lack principled uncertainty quantification: their outputs are not calibrated, and there is no guarantee that a predicted mask is close to the ground truth. To address this limitation, we introduce a conformal prediction algorithm to generate adaptive confidence sets for instance segmentation. Given an image and a pixel coordinate query, our algorithm generates a confidence set of instance predictions for that pixel, with a provable guarantee for the probability that at least one of the predictions has high Intersection-Over-Union (IoU) with the true object instance mask. We apply our algorithm to instance segmentation examples in agricultural field delineation, cell segmentation, and vehicle detection. Empirically, we find that our prediction sets vary in size based on query difficulty and attain the target coverage, outperforming existing baselines such as Learn Then Test, Conformal Risk Control, and morphological dilation-based methods. We provide versions of the algorithm with asymptotic and finite sample guarantees.
☆ Optimistic World Models: Efficient Exploration in Model-Based Deep Reinforcement Learning
Efficient exploration remains a central challenge in reinforcement learning (RL), particularly in sparse-reward environments. We introduce Optimistic World Models (OWMs), a principled and scalable framework for optimistic exploration that brings classical reward-biased maximum likelihood estimation (RBMLE) from adaptive control into deep RL. In contrast to upper confidence bound (UCB)-style exploration methods, OWMs incorporate optimism directly into model learning by augmentation with an optimistic dynamics loss that biases imagined transitions toward higher-reward outcomes. This fully gradient-based loss requires neither uncertainty estimates nor constrained optimization. Our approach is plug-and-play with existing world model frameworks, preserving scalability while requiring only minimal modifications to standard training procedures. We instantiate OWMs within two state-of-the-art world model architectures, leading to Optimistic DreamerV3 and Optimistic STORM, which demonstrate significant improvements in sample efficiency and cumulative return compared to their baseline counterparts.
☆ Effectiveness of Binary Autoencoders for QUBO-Based Optimization Problems
In black-box combinatorial optimization, objective evaluations are often expensive, so high quality solutions must be found under a limited budget. Factorization machine with quantum annealing (FMQA) builds a quadratic surrogate model from evaluated samples and optimizes it on an Ising machine. However, FMQA requires binary decision variables, and for nonbinary structures such as integer permutations, the choice of binary encoding strongly affects search efficiency. If the encoding fails to reflect the original neighborhood structure, small Hamming moves may not correspond to meaningful modifications in the original solution space, and constrained problems can yield many infeasible candidates that waste evaluations. Recent work combines FMQA with a binary autoencoder (bAE) that learns a compact binary latent code from feasible solutions, yet the mechanism behind its performance gains is unclear. Using a small traveling salesman problem as an interpretable testbed, we show that the bAE reconstructs feasible tours accurately and, compared with manually designed encodings at similar compression, better aligns tour distances with latent Hamming distances, yields smoother neighborhoods under small bit flips, and produces fewer local optima. These geometric properties explain why bAE+FMQA improves the approximation ratio faster while maintaining feasibility throughout optimization, and they provide guidance for designing latent representations for black-box optimization.
comment: 14 pages, 5 figures
☆ Position: Message-passing and spectral GNNs are two sides of the same coin
Graph neural networks (GNNs) are commonly divided into message-passing neural networks (MPNNs) and spectral graph neural networks, reflecting two largely separate research traditions in machine learning and signal processing. This paper argues that this divide is mostly artificial, hindering progress in the field. We propose a viewpoint in which both MPNNs and spectral GNNs are understood as different parametrizations of permutation-equivariant operators acting on graph signals. From this perspective, many popular architectures are equivalent in expressive power, while genuine gaps arise only in specific regimes. We further argue that MPNNs and spectral GNNs offer complementary strengths. That is, MPNNs provide a natural language for discrete structure and expressivity analysis using tools from logic and graph isomorphism research, while the spectral perspective provides principled tools for understanding smoothing, bottlenecks, stability, and community structure. Overall, we posit that progress in graph learning will be accelerated by clearly understanding the key similarities and differences between these two types of GNNs, and by working towards unifying these perspectives within a common theoretical and conceptual framework rather than treating them as competing paradigms.
☆ ADORA: Training Reasoning Models with Dynamic Advantage Estimation on Reinforcement Learning
Reinforcement learning has become a cornerstone technique for developing reasoning models in complex tasks, ranging from mathematical problem-solving to imaginary reasoning. The optimization of these models typically relies on policy gradient methods, whose efficacy hinges on the accurate estimation of an advantage function. However, prevailing methods typically employ static advantage estimation, a practice that leads to inefficient credit assignment by neglecting the dynamic utility of training samples over time. This limitation results in suboptimal policy updates, which in turn manifest as slower convergence rates and increased learning instability, as models fail to adapt to evolving sample utilities effectively. To address this problem, we introduce \textbf{ADORA} (\textbf{A}dvantage \textbf{D}ynamics via \textbf{O}nline \textbf{R}ollout \textbf{A}daptation), a novel framework for policy optimization. ADORA dynamically adjusts the advantage function's weighting by adaptively categorizing training data into temporarily advantageous and disadvantageous samples, based on their evolving utility during online model rollouts. This tailored data differentiation strategy allows ADORA to be seamlessly integrated into existing policy optimization algorithms without significant architectural modifications, enabling the policy to prioritize learning from more informative experiences and thereby achieve more efficient policy updates. Extensive evaluations across diverse model families and varying data scales demonstrate that ADORA is a robust and efficient framework. It significantly enhances long reasoning in both geometric and mathematical tasks, consistently achieving notable performance gains without requiring sensitive hyperparameter tuning.
☆ A Task-Centric Theory for Iterative Self-Improvement with Easy-to-Hard Curricula
Iterative self-improvement fine-tunes an autoregressive large language model (LLM) on reward-verified outputs generated by the LLM itself. In contrast to the empirical success of self-improvement, the theoretical foundation of this generative, iterative procedure in a practical, finite-sample setting remains limited. We make progress toward this goal by modeling each round of self-improvement as maximum-likelihood fine-tuning on a reward-filtered distribution and deriving finite-sample guarantees for the expected reward. Our analysis reveals an explicit feedback loop where better models accept more data per iteration, supporting sustained self-improvement while explaining eventual saturation of such improvement. Adopting a task-centric view by considering reasoning tasks with multiple difficulty levels, we further prove quantifiable conditions on model initialization, task difficulty, and sample budget where easy-to-hard curricula provably achieve better guarantees than training on fixed mixtures of tasks. Our analyses are validated via Monte-Carlo simulations and controlled experiments on graph-based reasoning tasks.
☆ Answer First, Reason Later: Aligning Search Relevance via Mode-Balanced Reinforcement Learning
Building a search relevance model that achieves both low latency and high performance is a long-standing challenge in the search industry. To satisfy the millisecond-level response requirements of online systems while retaining the interpretable reasoning traces of Large Language Models (LLMs), we propose a novel \textbf{Answer-First, Reason Later (AFRL)} paradigm. This paradigm requires the model to output the definitive relevance score in the very first token, followed by a structured logical explanation. Inspired by the success of reasoning models, we adopt a "Supervised Fine-Tuning (SFT) + Reinforcement Learning (RL)" pipeline to achieve AFRL. However, directly applying existing RL training often leads to \textbf{mode collapse} in the search relevance task, where the model forgets complex long-tail rules in pursuit of high rewards. From an information theory perspective: RL inherently minimizes the \textbf{Reverse KL divergence}, which tends to seek probability peaks (mode-seeking) and is prone to "reward hacking." On the other hand, SFT minimizes the \textbf{Forward KL divergence}, forcing the model to cover the data distribution (mode-covering) and effectively anchoring expert rules. Based on this insight, we propose a \textbf{Mode-Balanced Optimization} strategy, incorporating an SFT auxiliary loss into Stepwise-GRPO training to balance these two properties. Furthermore, we construct an automated instruction evolution system and a multi-stage curriculum to ensure expert-level data quality. Extensive experiments demonstrate that our 32B teacher model achieves state-of-the-art performance. Moreover, the AFRL architecture enables efficient knowledge distillation, successfully transferring expert-level logic to a 0.6B model, thereby reconciling reasoning depth with deployment latency.
☆ Empirical Stability Analysis of Kolmogorov-Arnold Networks in Hard-Constrained Recurrent Physics-Informed Discovery
We investigate the integration of Kolmogorov-Arnold Networks (KANs) into hard-constrained recurrent physics-informed architectures (HRPINN) to evaluate the fidelity of learned residual manifolds in oscillatory systems. Motivated by the Kolmogorov-Arnold representation theorem and preliminary gray-box results, we hypothesized that KANs would enable efficient recovery of unknown terms compared to MLPs. Through initial sensitivity analysis on configuration sensitivity, parameter scale, and training paradigm, we found that while small KANs are competitive on univariate polynomial residuals (Duffing), they exhibit severe hyperparameter fragility, instability in deeper configurations, and consistent failure on multiplicative terms (Van der Pol), generally outperformed by standard MLPs. These empirical challenges highlight limitations of the additive inductive bias in the original KAN formulation for state coupling and provide preliminary empirical evidence of inductive bias limitations for future hybrid modeling.
comment: 5 pages
☆ Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infusion to just 0.2% (100/45,000) of the training documents can be competitive with the baseline of inserting a small number of explicit behavior examples. We also find that Infusion transfers across architectures (ResNet $\leftrightarrow$ CNN), suggesting a single poisoned corpus can affect multiple independently trained models. In preliminary language experiments, we characterize when our approach increases the probability of target behaviors and when it fails, finding it most effective at amplifying behaviors the model has already learned. Taken together, these results show that small, subtle edits to training data can systematically shape model behavior, underscoring the importance of training data interpretability for adversaries and defenders alike. We provide the code here: https://github.com/jrosseruk/infusion.
comment: 10 pages, 14 figures
☆ Online Monitoring Framework for Automotive Time Series Data using JEPA Embeddings
As autonomous vehicles are rolled out, measures must be taken to ensure their safe operation. In order to supervise a system that is already in operation, monitoring frameworks are frequently employed. These run continuously online in the background, supervising the system status and recording anomalies. This work proposes an online monitoring framework to detect anomalies in object state representations. Thereby, a key challenge is creating a framework for anomaly detection without anomaly labels, which are usually unavailable for unknown anomalies. To address this issue, this work applies a self-supervised embedding method to translate object data into a latent representation space. For this, a JEPA-based self-supervised prediction task is constructed, allowing training without anomaly labels and the creation of rich object embeddings. The resulting expressive JEPA embeddings serve as input for established anomaly detection methods, in order to identify anomalies within object state representations. This framework is particularly useful for applications in real-world environments, where new or unknown anomalies may occur during operation for which there are no labels available. Experiments performed on the publicly available, real-world nuScenes dataset illustrate the framework's capabilities.
comment: Accepted at the 2026 IEEE Intelligent Vehicles Symposium. Copyright 2026 IEEE. Permission from IEEE must be obtained for use in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Coupled Inference in Diffusion Models for Semantic Decomposition
Many visual scenes can be described as compositions of latent factors. Effective recognition, reasoning, and editing often require not only forming such compositional representations, but also solving the decomposition problem. One popular choice for constructing these representations is through the binding operation. Resonator networks, which can be understood as coupled Hopfield networks, were proposed as a way to perform decomposition on such bound representations. Recent works have shown notable similarities between Hopfield networks and diffusion models. Motivated by these observations, we introduce a framework for semantic decomposition using coupled inference in diffusion models. Our method frames semantic decomposition as an inverse problem and couples the diffusion processes using a reconstruction-driven guidance term that encourages the composition of factor estimates to match the bound vector. We also introduce a novel iterative sampling scheme that improves the performance of our model. Finally, we show that attention-based resonator networks are a special case of our framework. Empirically, we demonstrate that our coupled inference framework outperforms resonator networks across a range of synthetic semantic decomposition tasks.
comment: 15 pages
☆ Supervised Metric Regularization Through Alternating Optimization for Multi-Regime Physics-Informed Neural Networks
Standard Physics-Informed Neural Networks (PINNs) often face challenges when modeling parameterized dynamical systems with sharp regime transitions, such as bifurcations. In these scenarios, the continuous mapping from parameters to solutions can result in spectral bias or "mode collapse", where the network averages distinct physical behaviors. We propose a Topology-Aware PINN (TAPINN) that aims to mitigate this challenge by structuring the latent space via Supervised Metric Regularization. Unlike standard parametric PINNs that map physical parameters directly to solutions, our method conditions the solver on a latent state optimized to reflect the metric-based separation between regimes, showing ~49% lower physics residual (0.082 vs. 0.160). We train this architecture using a phase-based Alternating Optimization (AO) schedule to manage gradient conflicts between the metric and physics objectives. Preliminary experiments on the Duffing Oscillator demonstrate that while standard baselines suffer from spectral bias and high-capacity Hypernetworks overfit (memorizing data while violating physics), our approach achieves stable convergence with 2.18x lower gradient variance than a multi-output Sobolev Error baseline, and 5x fewer parameters than a hypernetwork-based alternative.
comment: 5 pages, 1 figure
☆ Causal Identification in Multi-Task Demand Learning with Confounding
We study a canonical multi-task demand learning problem motivated by retail pricing, in which a firm seeks to estimate heterogeneous linear price-response functions across a large collection of decision contexts. Each context is characterized by rich observable covariates yet typically exhibits only limited historical price variation, motivating the use of multi-task learning to borrow strength across tasks. A central challenge in this setting is endogeneity: historical prices are chosen by managers or algorithms and may be arbitrarily correlated with unobserved, task-level demand determinants. Under such confounding by latent fundamentals, commonly used approaches, such as pooled regression and meta-learning, fail to identify causal price effects. We propose a new estimation framework that achieves causal identification despite arbitrary dependence between prices and latent task structure. Our approach, Decision-Conditioned Masked-Outcome Meta-Learning (DCMOML), involves carefully designing the information set of a meta-learner to leverage cross-task heterogeneity while accounting for endogenous decision histories. Under a mild restriction on price adaptivity in each task, we establish that this method identifies the conditional mean of the task-specific causal parameters given the designed information set. Our results provide guarantees for large-scale demand estimation with endogenous prices and small per-task samples, offering a principled foundation for deploying causal, data-driven pricing models in operational environments.
☆ Drug Release Modeling using Physics-Informed Neural Networks
Accurate modeling of drug release is essential for designing and developing controlled-release systems. Classical models (Fick, Higuchi, Peppas) rely on simplifying assumptions that limit their accuracy in complex geometries and release mechanisms. Here, we propose a novel approach using Physics-Informed Neural Networks (PINNs) and Bayesian PINNs (BPINNs) for predicting release from planar, 1D-wrinkled, and 2D-crumpled films. This approach uniquely integrates Fick's diffusion law with limited experimental data to enable accurate long-term predictions from short-term measurements, and is systematically benchmarked against classical drug release models. We embedded Fick's second law into PINN as loss with 10,000 Latin-hypercube collocation points and utilized previously published experimental datasets to assess drug release performance through mean absolute error (MAE) and root mean square error (RMSE), considering noisy conditions and limited-data scenarios. Our approach reduced mean error by up to 40% relative to classical baselines across all film types. The PINN formulation achieved RMSE <0.05 utilizing only the first 6% of the release time data (reducing 94% of release time required for the experiments) for the planar film. For wrinkled and crumpled films, the PINN reached RMSE <0.05 in 33% of the release time data. BPINNs provide tighter and more reliable uncertainty quantification under noise. By combining physical laws with experimental data, the proposed framework yields highly accurate long-term release predictions from short-term measurements, offering a practical route for accelerated characterization and more efficient early-stage drug release system formulation.
☆ Statistical-Computational Trade-offs in Learning Multi-Index Models via Harmonic Analysis
We study the problem of learning multi-index models (MIMs), where the label depends on the input $\boldsymbol{x} \in \mathbb{R}^d$ only through an unknown $\mathsf{s}$-dimensional projection $\boldsymbol{W}_*^\mathsf{T} \boldsymbol{x} \in \mathbb{R}^\mathsf{s}$. Exploiting the equivariance of this problem under the orthogonal group $\mathcal{O}_d$, we obtain a sharp harmonic-analytic characterization of the learning complexity for MIMs with spherically symmetric inputs -- which refines and generalizes previous Gaussian-specific analyses. Specifically, we derive statistical and computational complexity lower bounds within the Statistical Query (SQ) and Low-Degree Polynomial (LDP) frameworks. These bounds decompose naturally across spherical harmonic subspaces. Guided by this decomposition, we construct a family of spectral algorithms based on harmonic tensor unfolding that sequentially recover the latent directions and (nearly) achieve these SQ and LDP lower bounds. Depending on the choice of harmonic degree sequence, these estimators can realize a broad range of trade-offs between sample and runtime complexity. From a technical standpoint, our results build on the semisimple decomposition of the $\mathcal{O}_d$-action on $L^2 (\mathbb{S}^{d-1})$ and the intertwining isomorphism between spherical harmonics and traceless symmetric tensors.
comment: 91 pages
☆ The Catastrophic Failure of The k-Means Algorithm in High Dimensions, and How Hartigan's Algorithm Avoids It
Lloyd's k-means algorithm is one of the most widely used clustering methods. We prove that in high-dimensional, high-noise settings, the algorithm exhibits catastrophic failure: with high probability, essentially every partition of the data is a fixed point. Consequently, Lloyd's algorithm simply returns its initial partition - even when the underlying clusters are trivially recoverable by other methods. In contrast, we prove that Hartigan's k-means algorithm does not exhibit this pathology. Our results show the stark difference between these algorithms and offer a theoretical explanation for the empirical difficulties often observed with k-means in high dimensions.
LLMs Encode Their Failures: Predicting Success from Pre-Generation Activations
Running LLMs with extended reasoning on every problem is expensive, but determining which inputs actually require additional compute remains challenging. We investigate whether their own likelihood of success is recoverable from their internal representations before generation, and if this signal can guide more efficient inference. We train linear probes on pre-generation activations to predict policy-specific success on math and coding tasks, substantially outperforming surface features such as question length and TF-IDF. Using E2H-AMC, which provides both human and model performance on identical problems, we show that models encode a model-specific notion of difficulty that is distinct from human difficulty, and that this distinction increases with extended reasoning. Leveraging these probes, we demonstrate that routing queries across a pool of models can exceed the best-performing model whilst reducing inference cost by up to 70\% on MATH, showing that internal representations enable practical efficiency gains even when they diverge from human intuitions about difficulty. Our code is available at: https://github.com/KabakaWilliam/llms_know_difficulty
☆ Safeguarding Privacy: Privacy-Preserving Detection of Mind Wandering and Disengagement Using Federated Learning in Online Education
Since the COVID-19 pandemic, online courses have expanded access to education, yet the absence of direct instructor support challenges learners' ability to self-regulate attention and engagement. Mind wandering and disengagement can be detrimental to learning outcomes, making their automated detection via video-based indicators a promising approach for real-time learner support. However, machine learning-based approaches often require sharing sensitive data, raising privacy concerns. Federated learning offers a privacy-preserving alternative by enabling decentralized model training while also distributing computational load. We propose a framework exploiting cross-device federated learning to address different manifestations of behavioral and cognitive disengagement during remote learning, specifically behavioral disengagement, mind wandering, and boredom. We fit video-based cognitive disengagement detection models using facial expressions and gaze features. By adopting federated learning, we safeguard users' data privacy through privacy-by-design and introduce a novel solution with the potential for real-time learner support. We further address challenges posed by eyeglasses by incorporating related features, enhancing overall model performance. To validate the performance of our approach, we conduct extensive experiments on five datasets and benchmark multiple federated learning algorithms. Our results show great promise for privacy-preserving educational technologies promoting learner engagement.
☆ Routing, Cascades, and User Choice for LLMs ICLR 2026
To mitigate the trade-offs between performance and costs, LLM providers route user tasks to different models based on task difficulty and latency. We study the effect of LLM routing with respect to user behavior. We propose a game between an LLM provider with two models (standard and reasoning) and a user who can re-prompt or abandon tasks if the routed model cannot solve them. The user's goal is to maximize their utility minus the delay from using the model, while the provider minimizes the cost of servicing the user. We solve this Stackelberg game by fully characterizing the user best response and simplifying the provider problem. We observe that in nearly all cases, the optimal routing policy involves a static policy with no cascading that depends on the expected utility of the models to the user. Furthermore, we reveal a misalignment gap between the provider-optimal and user-preferred routes when the user's and provider's rankings of the models with respect to utility and cost differ. Finally, we demonstrate conditions for extreme misalignment where providers are incentivized to throttle the latency of the models to minimize their costs, consequently depressing user utility. The results yield simple threshold rules for single-provider, single-user interactions and clarify when routing, cascading, and throttling help or harm.
comment: 23 pages, accepted in ICLR 2026
☆ Stemphonic: All-at-once Flexible Multi-stem Music Generation ICASSP
Music stem generation, the task of producing musically-synchronized and isolated instrument audio clips, offers the potential of greater user control and better alignment with musician workflows compared to conventional text-to-music models. Existing stem generation approaches, however, either rely on fixed architectures that output a predefined set of stems in parallel, or generate only one stem at a time, resulting in slow inference despite flexibility in stem combination. We propose Stemphonic, a diffusion-/flow-based framework that overcomes this trade-off and generates a variable set of synchronized stems in one inference pass. During training, we treat each stem as a batch element, group synchronized stems in a batch, and apply a shared noise latent to each group. At inference-time, we use a shared initial noise latent and stem-specific text inputs to generate synchronized multi-stem outputs in one pass. We further expand our approach to enable one-pass conditional multi-stem generation and stem-wise activity controls to empower users to iteratively generate and orchestrate the temporal layering of a mix. We benchmark our results on multiple open-source stem evaluation sets and show that Stemphonic produces higher-quality outputs while accelerating the full mix generation process by 25 to 50%. Demos at: https://stemphonic-demo.vercel.app.
comment: Accepted for publication at Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Statistical benchmarking of transformer models in low signal-to-noise time-series forecasting ICML
We study the performance of transformer architectures for multivariate time-series forecasting in low-data regimes consisting of only a few years of daily observations. Using synthetically generated processes with known temporal and cross-sectional dependency structures and varying signal-to-noise ratios, we conduct bootstrapped experiments that enable direct evaluation via out-of-sample correlations with the optimal ground-truth predictor. We show that two-way attention transformers, which alternate between temporal and cross-sectional self-attention, can outperform standard baselines-Lasso, boosting methods, and fully connected multilayer perceptrons-across a wide range of settings, including low signal-to-noise regimes. We further introduce a dynamic sparsification procedure for attention matrices applied during training, and demonstrate that it becomes significantly effective in noisy environments, where the correlation between the target variable and the optimal predictor is on the order of a few percent. Analysis of the learned attention patterns reveals interpretable structure and suggests connections to sparsity-inducing regularization in classical regression, providing insight into why these models generalize effectively under noise.
comment: Submitted to ICML
☆ Differentiable Tripartite Modularity for Clustering Heterogeneous Graphs
Clustering heterogeneous relational data remains a central challenge in graph learning, particularly when interactions involve more than two types of entities. While differentiable modularity objectives such as DMoN have enabled end-to-end community detection on homogeneous and bipartite graphs, extending these approaches to higher-order relational structures remains non-trivial. In this work, we introduce a differentiable formulation of tripartite modularity for graphs composed of three node types connected through mediated interactions. Community structure is defined in terms of weighted co-paths across the tripartite graph, together with an exact factorized computation that avoids the explicit construction of dense third-order tensors. A structural normalization at pivot nodes is introduced to control extreme degree heterogeneity and ensure stable optimization. The resulting objective can be optimized jointly with a graph neural network in an end-to-end manner, while retaining linear complexity in the number of edges. We validate the proposed framework on large-scale urban cadastral data, where it exhibits robust convergence behavior and produces spatially coherent partitions. These results highlight differentiable tripartite modularity as a generic methodological building block for unsupervised clustering of heterogeneous graphs.
comment: 12 pages, 3 figures
☆ CoFEH: LLM-driven Feature Engineering Empowered by Collaborative Bayesian Hyperparameter Optimization
Feature Engineering (FE) is pivotal in automated machine learning (AutoML) but remains a bottleneck for traditional methods, which treat it as a black-box search, operating within rigid, predefined search spaces and lacking domain awareness. While Large Language Models (LLMs) offer a promising alternative by leveraging semantic reasoning to generate unbounded operators, existing methods fail to construct free-form FE pipelines, remaining confined to isolated subtasks such as feature generation. Most importantly, they are rarely optimized jointly with hyperparameter optimization (HPO) of the ML model, leading to greedy "FE-then-HPO" workflows that cannot capture strong FE-HPO interactions. In this paper, we present CoFEH, a collaborative framework that interleaves LLM-based FE and Bayesian HPO for robust end-to-end AutoML. CoFEH uses an LLM-driven FE optimizer powered by Tree of Thought (ToT) to explore flexible FE pipelines, a Bayesian optimization (BO) module to solve HPO, and a dynamic optimizer selector that realizes interleaved optimization by adaptively scheduling FE and HPO steps. Crucially, we introduce a mutual conditioning mechanism that shares context between LLM and BO, enabling mutually informed decisions. Experiments show that CoFEH not only outperforms traditional and LLM-based FE baselines, but also achieves superior end-to-end performance under joint optimization.
☆ Robust Processing and Learning: Principles, Methods, and Wireless Applications
This tutorial-style overview article examines the fundamental principles and methods of robustness, using wireless sensing and communication (WSC) as the narrative and exemplifying framework. First, we formalize the conceptual and mathematical foundations of robustness, highlighting the interpretations and relations across robust statistics, optimization, and machine learning. Key techniques, such as robust estimation and testing, distributionally robust optimization, and regularized and adversary training, are investigated. Together, the costs of robustness in system design, for example, the compromised nominal performances and the extra computational burdens, are discussed. Second, we review recent robust signal processing solutions for WSC that address model mismatch, data scarcity, adversarial perturbation, and distributional shift. Specific applications include robust ranging-based localization, modality sensing, channel estimation, receive combining, waveform design, and federated learning. Through this effort, we aim to introduce the classical developments and recent advances in robustness theory to the general signal processing community, exemplifying how robust statistical, optimization, and machine learning approaches can address the uncertainties inherent in WSC systems.
☆ Stabilized Maximum-Likelihood Iterative Quantum Amplitude Estimation for Structural CVaR under Correlated Random Fields
Conditional Value-at-Risk (CVaR) is a central tail-risk measure in stochastic structural mechanics, yet its accurate evaluation under high-dimensional, spatially correlated material uncertainty remains computationally prohibitive for classical Monte Carlo methods. Leveraging bounded-expectation reformulations of CVaR compatible with quantum amplitude estimation, we develop a quantum-enhanced inference framework that casts CVaR evaluation as a statistically consistent, confidence-constrained maximum-likelihood amplitude estimation problem. The proposed method extends iterative quantum amplitude estimation (IQAE) by embedding explicit maximum-likelihood inference within a rigorously controlled interval-tracking architecture. To ensure global correctness under finite-shot noise and the non-injective oscillatory response induced by Grover amplification, we introduce a stabilized inference scheme incorporating multi-hypothesis feasibility tracking, periodic low-depth disambiguation, and a bounded restart mechanism governed by an explicit failure-probability budget. This formulation preserves the quadratic oracle-complexity advantage of amplitude estimation while providing finite-sample confidence guarantees and reduced estimator variance. The framework is demonstrated on benchmark problems with spatially correlated lognormal Young's modulus fields generated using a Nystrom low-rank Gaussian kernel model. Numerical results show that the proposed estimator achieves substantially lower oracle complexity than classical Monte Carlo CVaR estimation at comparable confidence levels, while maintaining rigorous statistical reliability. This work establishes a practically robust and theoretically grounded quantum-enhanced methodology for tail-risk quantification in stochastic continuum mechanics.
☆ Step-Size Stability in Stochastic Optimization: A Theoretical Perspective
We present a theoretical analysis of stochastic optimization methods in terms of their sensitivity with respect to the step size. We identify a key quantity that, for each method, describes how the performance degrades as the step size becomes too large. For convex problems, we show that this quantity directly impacts the suboptimality bound of the method. Most importantly, our analysis provides direct theoretical evidence that adaptive step-size methods, such as SPS or NGN, are more robust than SGD. This allows us to quantify the advantage of these adaptive methods beyond empirical evaluation. Finally, we show through experiments that our theoretical bound qualitatively mirrors the actual performance as a function of the step size, even for nonconvex problems.
☆ Hybrid Responsible AI-Stochastic Approach for SLA Compliance in Multivendor 6G Networks
The convergence of AI and 6G network automation introduces new challenges in maintaining transparency, fairness, and accountability across multivendor management systems. Although closed-loop AI orchestration improves adaptability and self-optimization, it also creates a responsibility gap, where violations of SLAs cannot be causally attributed to specific agents or vendors. This paper presents a hybrid responsible AI-stochastic learning framework that embeds fairness, robustness, and auditability directly into the network control loop. The framework integrates RAI games with stochastic optimization, enabling dynamic adversarial reweighting and probabilistic exploration across heterogeneous vendor domains. An RAAP continuously records AI-driven decision trajectories and produces dual accountability reports: user-level SLA summaries and operator-level responsibility analytics. Experimental evaluations on synthetic two-class multigroup datasets demonstrate that the proposed hybrid model improves the accuracy of the worst group by up to 10.5\%. Specifically, hybrid RAI achieved a WGAcc of 60.5\% and an AvgAcc of 72.7\%, outperforming traditional RAI-GA (50.0\%) and ERM (21.5\%). The audit mechanism successfully traced 99\% simulated SLA violations to the AI entities responsible, producing both vendor and agent-level accountability indices. These results confirm that the proposed hybrid approach enhances fairness and robustness as well as establishes a concrete accountability framework for autonomous SLA assurance in multivendor 6G networks.
comment: 6 pages, 4 figures
☆ PlugSI: Plug-and-Play Test-Time Graph Adaptation for Spatial Interpolation DASFAA 2026
With the rapid advancement of IoT and edge computing, sensor networks have become indispensable, driving the need for large-scale sensor deployment. However, the high deployment cost hinders their scalability. To tackle the issues, Spatial Interpolation (SI) introduces virtual sensors to infer readings from observed sensors, leveraging graph structure. However, current graph-based SI methods rely on pre-trained models, lack adaptation to larger and unseen graphs at test-time, and overlook test data utilization. To address these issues, we propose PlugSI, a plug-and-play framework that refines test-time graph through two key innovations. First, we design an Unknown Topology Adapter (UTA) that adapts to the new graph structure of each small-batch at test-time, enhancing the generalization of SI pre-trained models. Second, we introduce a Temporal Balance Adapter (TBA) that maintains a stable historical consensus to guide UTA adaptation and prevent drifting caused by noise in the current batch. Empirically, extensive experiments demonstrate PlugSI can be seamlessly integrated into existing graph-based SI methods and provide significant improvement (e.g., a 10.81% reduction in MAE).
comment: Accepted at DASFAA 2026 (Full Research Paper)
☆ A Controlled Study of Double DQN and Dueling DQN Under Cross-Environment Transfer
Transfer learning in deep reinforcement learning is often motivated by improved stability and reduced training cost, but it can also fail under substantial domain shift. This paper presents a controlled empirical study examining how architectural differences between Double Deep Q-Networks (DDQN) and Dueling DQN influence transfer behavior across environments. Using CartPole as a source task and LunarLander as a structurally distinct target task, we evaluate a fixed layer-wise representation transfer protocol under identical hyperparameters and training conditions, with baseline agents trained from scratch used to contextualize transfer effects. Empirical results show that DDQN consistently avoids negative transfer under the examined setup and maintains learning dynamics comparable to baseline performance in the target environment. In contrast, Dueling DQN consistently exhibits negative transfer under identical conditions, characterized by degraded rewards and unstable optimization behavior. Statistical analysis across multiple random seeds confirms a significant performance gap under transfer. These findings suggest that architectural inductive bias is strongly associated with robustness to cross-environment transfer in value-based deep reinforcement learning under the examined transfer protocol.
☆ Decomposing Reasoning Efficiency in Large Language Models
Large language models trained for reasoning trade off inference tokens against accuracy, yet standard evaluations report only final accuracy, obscuring where tokens are spent or wasted. We introduce a trace-optional framework that decomposes token efficiency into interpretable factors: completion under a fixed token budget (avoiding truncation), conditional correctness given completion, and verbosity (token usage). When benchmark metadata provides per-instance workload proxies, we further factor verbosity into two components: mean verbalization overhead (tokens per work unit) and a coupling coefficient capturing how overhead scales with task workload. When reasoning traces are available, we add deterministic trace-quality measures (grounding, repetition, prompt copying) to separate degenerate looping from verbose-but-engaged reasoning, avoiding human labeling and LLM judges. Evaluating 25 models on CogniLoad, we find that accuracy and token-efficiency rankings diverge (Spearman $ρ=0.63$), efficiency gaps are often driven by conditional correctness, and verbalization overhead varies by about 9 times (only weakly related to model scale). Our decomposition reveals distinct bottleneck profiles that suggest different efficiency interventions.
comment: Preprint (under review). 29 pages, 4 figures
☆ Fully-automated sleep staging: multicenter validation of a generalizable deep neural network for Parkinson's disease and isolated REM sleep behavior disorder
Isolated REM sleep behavior disorder (iRBD) is a key prodromal marker of Parkinson's disease (PD), and video-polysomnography (vPSG) remains the diagnostic gold standard. However, manual sleep staging is particularly challenging in neurodegenerative diseases due to EEG abnormalities and fragmented sleep, making PSG assessments a bottleneck for deploying new RBD screening technologies at scale. We adapted U-Sleep, a deep neural network, for generalizable sleep staging in PD and iRBD. A pretrained U-Sleep model, based on a large publicly available, multisite non-neurodegenerative dataset (PUB; 19,236 PSGs across 12 sites), was fine-tuned on research datasets from two centers (Lundbeck Foundation Parkinson's Disease Research Center (PACE) and the Cologne-Bonn Cohort (CBC); 112 PD, 138 iRBD, 89 age-matched controls. The resulting model was evaluated on an independent dataset from the Danish Center for Sleep Medicine (DCSM; 81 PD, 36 iRBD, 87 sleep-clinic controls). A subset of PSGs with low agreement between the human rater and the model (\k{appa} < 0.6) was re-scored by a second blinded human rater to identify sources of disagreement. Finally, we applied confidence-based thresholds to optimize REM sleep staging. The pretrained model achieved mean \k{appa} = 0.81 in PUB, but \k{appa} = 0.66 when applied directly to PACE/CBC. By fine-tuning the model, we developed a generalized model with \k{appa} = 0.74 on PACE/CBC (p < 0.001 vs. the pretrained model). In DCSM, mean and median \k{appa} increased from 0.60 to 0.64 (p < 0.001) and 0.64 to 0.69 (p < 0.001), respectively. In the interrater study, PSGs with low agreement between the model and the initial scorer showed similarly low agreement between human scorers. Applying a confidence threshold increased the proportion of correctly identified REM sleep epochs from 85% to 95.5%, while preserving sufficient (> 5 min) REM sleep for 95% of subjects.
comment: 21 pages excluding supplementary, 9 figures
☆ Toeplitz Based Spectral Methods for Data-driven Dynamical Systems
We introduce a Toeplitz-based framework for data-driven spectral estimation of linear evolution operators in dynamical systems. Focusing on transfer and Koopman operators from equilibrium trajectories without access to the underlying equations of motion, our method applies Toeplitz filters to the infinitesimal generator to extract eigenvalues, eigenfunctions, and spectral measures. Structural prior knowledge, such as self-adjointness or skew-symmetry, can be incorporated by design. The approach is statistically consistent and computationally efficient, leveraging both primal and dual algorithms commonly used in statistical learning. Numerical experiments on deterministic and chaotic systems demonstrate that the framework can recover spectral properties beyond the reach of standard data-driven methods.
comment: 18 pages, 3 figures
☆ When Less is More: The LLM Scaling Paradox in Context Compression
Scaling up model parameters has long been a prevalent training paradigm driven by the assumption that larger models yield superior generation capabilities. However, under lossy context compression in a compressor-decoder setup, we observe a Size-Fidelity Paradox: increasing the compressor size can lessen the faithfulness of reconstructed contexts though training loss decreases. Through extensive experiments across models from 0.6B to 90B, we coin this paradox arising from two dominant factors: 1) knowledge overwriting: larger models increasingly replace source facts with their own prior beliefs, e.g., ``the white strawberry'' $\to$ ``the red strawberry''; and 2) semantic drift: larger models tend to paraphrase or restructure content instead of reproducing it verbatim, e.g., ``Alice hit Bob'' $\to$ ``Bob hit Alice''. By holding model size fixed, we reflect on the emergent properties of compressed context representations. We show that the culprit is not parameter count itself, but the excessive semantic capacity and amplified generative uncertainty that accompany scaling. Specifically, the increased rank of context embeddings facilitates prior knowledge intrusion, whereas higher entropy over token prediction distributions promotes rewriting. Our results complement existing evaluations over context compression paradigm, underpinning a breakdown in scaling laws for faithful preservation in open-ended generation.
comment: 10 pages, 4 figures, conference
☆ Circuit Fingerprints: How Answer Tokens Encode Their Geometrical Path ICML 2026
Circuit discovery and activation steering in transformers have developed as separate research threads, yet both operate on the same representational space. Are they two views of the same underlying structure? We show they follow a single geometric principle: answer tokens, processed in isolation, encode the directions that would produce them. This Circuit Fingerprint hypothesis enables circuit discovery without gradients or causal intervention -- recovering comparable structure to gradient-based methods through geometric alignment alone. We validate this on standard benchmarks (IOI, SVA, MCQA) across four model families, achieving circuit discovery performance comparable to gradient-based methods. The same directions that identify circuit components also enable controlled steering -- achieving 69.8\% emotion classification accuracy versus 53.1\% for instruction prompting while preserving factual accuracy. Beyond method development, this read-write duality reveals that transformer circuits are fundamentally geometric structures: interpretability and controllability are two facets of the same object.
comment: Submitted to ICML 2026. 15 pages, 11 figures
☆ Why Linear Interpretability Works: Invariant Subspaces as a Result of Architectural Constraints ICML 2026
Linear probes and sparse autoencoders consistently recover meaningful structure from transformer representations -- yet why should such simple methods succeed in deep, nonlinear systems? We show this is not merely an empirical regularity but a consequence of architectural necessity: transformers communicate information through linear interfaces (attention OV circuits, unembedding matrices), and any semantic feature decoded through such an interface must occupy a context-invariant linear subspace. We formalize this as the \emph{Invariant Subspace Necessity} theorem and derive the \emph{Self-Reference Property}: tokens directly provide the geometric direction for their associated features, enabling zero-shot identification of semantic structure without labeled data or learned probes. Empirical validation in eight classification tasks and four model families confirms the alignment between class tokens and semantically related instances. Our framework provides \textbf{a principled architectural explanation} for why linear interpretability methods work, unifying linear probes and sparse autoencoders.
comment: Submitted to ICML 2026. 19 pages, 13 figures
☆ Flexible Entropy Control in RLVR with Gradient-Preserving Perspective
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a critical method for enhancing the reasoning capabilities of Large Language Models (LLMs). However, continuous training often leads to policy entropy collapse, characterized by a rapid decay in entropy that results in premature overconfidence, reduced output diversity, and vanishing gradient norms that inhibit learning. Gradient-Preserving Clipping is a primary factor influencing these dynamics, but existing mitigation strategies are largely static and lack a framework connecting clipping mechanisms to precise entropy control. This paper proposes reshaping entropy control in RL from the perspective of Gradient-Preserving Clipping. We first theoretically and empirically verify the contributions of specific importance sampling ratio regions to entropy growth and reduction. Leveraging these findings, we introduce a novel regulation mechanism using dynamic clipping threshold to precisely manage entropy. Furthermore, we design and evaluate dynamic entropy control strategies, including increase-then-decrease, decrease-increase-decrease, and oscillatory decay. Experimental results demonstrate that these strategies effectively mitigate entropy collapse, and achieve superior performance across multiple benchmarks.
comment: https://github.com/Kwen-Chen/Flexible-Entropy-Control
☆ Explainability in Generative Medical Diffusion Models: A Faithfulness-Based Analysis on MRI Synthesis SC2026
This study investigates the explainability of generative diffusion models in the context of medical imaging, focusing on Magnetic resonance imaging (MRI) synthesis. Although diffusion models have shown strong performance in generating realistic medical images, their internal decision making process remains largely opaque. We present a faithfulness-based explainability framework that analyzes how prototype-based explainability methods like ProtoPNet (PPNet), Enhanced ProtoPNet (EPPNet), and ProtoPool can link the relationship between generated and training features. Our study focuses on understanding the reasoning behind image formation through denoising trajectory of diffusion model and subsequently prototype explainability with faithfulness analysis. Experimental analysis shows that EPPNet achieves the highest faithfulness (with score 0.1534), offering more reliable insights, and explainability into the generative process. The results highlight that diffusion models can be made more transparent and trustworthy through faithfulness-based explanations, contributing to safer and more interpretable applications of generative AI in healthcare.
comment: Accepted at 3rd World Congress on Smart Computing (WCSC2026) conference
Self-Supervised Learning as Discrete Communication
Most self-supervised learning (SSL) methods learn continuous visual representations by aligning different views of the same input, offering limited control over how information is structured across representation dimensions. In this work, we frame visual self-supervised learning as a discrete communication process between a teacher and a student network, where semantic information is transmitted through a fixed-capacity binary channel. Rather than aligning continuous features, the student predicts multi-label binary messages produced by the teacher. Discrete agreement is enforced through an element-wise binary cross-entropy objective, while a coding-rate regularization term encourages effective utilization of the constrained channel, promoting structured representations. We further show that periodically reinitializing the projection head strengthens this effect by encouraging embeddings that remain predictive across multiple discrete encodings. Extensive experiments demonstrate consistent improvements over continuous agreement baselines on image classification, retrieval, and dense visual prediction tasks, as well as under domain shift through self-supervised adaptation. Beyond backbone representations, we analyze the learned binary codes and show that they form a compact and informative discrete language, capturing semantic factors reusable across classes.
☆ Grounding LTL Tasks in Sub-Symbolic RL Environments for Zero-Shot Generalization
In this work we address the problem of training a Reinforcement Learning agent to follow multiple temporally-extended instructions expressed in Linear Temporal Logic in sub-symbolic environments. Previous multi-task work has mostly relied on knowledge of the mapping between raw observations and symbols appearing in the formulae. We drop this unrealistic assumption by jointly training a multi-task policy and a symbol grounder with the same experience. The symbol grounder is trained only from raw observations and sparse rewards via Neural Reward Machines in a semi-supervised fashion. Experiments on vision-based environments show that our method achieves performance comparable to using the true symbol grounding and significantly outperforms state-of-the-art methods for sub-symbolic environments.
comment: Preprint currently under review
☆ Towards Poisoning Robustness Certification for Natural Language Generation
Understanding the reliability of natural language generation is critical for deploying foundation models in security-sensitive domains. While certified poisoning defenses provide provable robustness bounds for classification tasks, they are fundamentally ill-equipped for autoregressive generation: they cannot handle sequential predictions or the exponentially large output space of language models. To establish a framework for certified natural language generation, we formalize two security properties: stability (robustness to any change in generation) and validity (robustness to targeted, harmful changes in generation). We introduce Targeted Partition Aggregation (TPA), the first algorithm to certify validity/targeted attacks by computing the minimum poisoning budget needed to induce a specific harmful class, token, or phrase. Further, we extend TPA to provide tighter guarantees for multi-turn generations using mixed integer linear programming (MILP). Empirically, we demonstrate TPA's effectiveness across diverse settings including: certifying validity of agent tool-calling when adversaries modify up to 0.5% of the dataset and certifying 8-token stability horizons in preference-based alignment. Though inference-time latency remains an open challenge, our contributions enable certified deployment of language models in security-critical applications.
☆ Linear Model Extraction via Factual and Counterfactual Queries
In model extraction attacks, the goal is to reveal the parameters of a black-box machine learning model by querying the model for a selected set of data points. Due to an increasing demand for explanations, this may involve counterfactual queries besides the typically considered factual queries. In this work, we consider linear models and three types of queries: factual, counterfactual, and robust counterfactual. First, for an arbitrary set of queries, we derive novel mathematical formulations for the classification regions for which the decision of the unknown model is known, without recovering any of the model parameters. Second, we derive bounds on the number of queries needed to extract the model's parameters for (robust) counterfactual queries under arbitrary norm-based distances. We show that the full model can be recovered using just a single counterfactual query when differentiable distance measures are employed. In contrast, when using polyhedral distances for instance, the number of required queries grows linearly with the dimension of the data space. For robust counterfactuals, the latter number of queries doubles. Consequently, the applied distance function and robustness of counterfactuals have a significant impact on the model's security.
☆ Allure of Craquelure: A Variational-Generative Approach to Crack Detection in Paintings
Recent advances in imaging technologies, deep learning and numerical performance have enabled non-invasive detailed analysis of artworks, supporting their documentation and conservation. In particular, automated detection of craquelure in digitized paintings is crucial for assessing degradation and guiding restoration, yet remains challenging due to the possibly complex scenery and the visual similarity between cracks and crack-like artistic features such as brush strokes or hair. We propose a hybrid approach that models crack detection as an inverse problem, decomposing an observed image into a crack-free painting and a crack component. A deep generative model is employed as powerful prior for the underlying artwork, while crack structures are captured using a Mumford--Shah-type variational functional together with a crack prior. Joint optimization yields a pixel-level map of crack localizations in the painting.
☆ ExO-PPO: an Extended Off-policy Proximal Policy Optimization Algorithm
Deep reinforcement learning has been able to solve various tasks successfully, however, due to the construction of policy gradient and training dynamics, tuning deep reinforcement learning models remains challenging. As one of the most successful deep reinforcement-learning algorithm, the Proximal Policy Optimization algorithm (PPO) clips the policy gradient within a conservative on-policy updates, which ensures reliable and stable policy improvement. However, this training pattern may sacrifice sample efficiency. On the other hand, off-policy methods make more adequate use of data through sample reuse, though at the cost of increased the estimation variance and bias. To leverage the advantages of both, in this paper, we propose a new PPO variant based on the stability guarantee from conservative on-policy iteration with a more efficient off-policy data utilization. Specifically, we first derive an extended off-policy improvement from an expectation form of generalized policy improvement lower bound. Then, we extend the clipping mechanism with segmented exponential functions for a suitable surrogate objective function. Third, the trajectories generated by the past $M$ policies are organized in the replay buffer for off-policy training. We refer to this method as Extended Off-policy Proximal Policy Optimization (ExO-PPO). Compared with PPO and some other state-of-the-art variants, we demonstrate an improved performance of ExO-PPO with balanced sample efficiency and stability on varied tasks in the empirical experiments.
☆ Continual Learning for non-stationary regression via Memory-Efficient Replay
Data streams are rarely static in dynamic environments like Industry 4.0. Instead, they constantly change, making traditional offline models outdated unless they can quickly adjust to the new data. This need can be adequately addressed by continual learning (CL), which allows systems to gradually acquire knowledge without incurring the prohibitive costs of retraining them from scratch. Most research on continual learning focuses on classification problems, while very few studies address regression tasks. We propose the first prototype-based generative replay framework designed for online task-free continual regression. Our approach defines an adaptive output-space discretization model, enabling prototype-based generative replay for continual regression without storing raw data. Evidence obtained from several benchmark datasets shows that our framework reduces forgetting and provides more stable performance than other state-of-the-art solutions.
☆ SAQNN: Spectral Adaptive Quantum Neural Network as a Universal Approximator
Quantum machine learning (QML), as an interdisciplinary field bridging quantum computing and machine learning, has garnered significant attention in recent years. Currently, the field as a whole faces challenges due to incomplete theoretical foundations for the expressivity of quantum neural networks (QNNs). In this paper we propose a constructive QNN model and demonstrate that it possesses the universal approximation property (UAP), which means it can approximate any square-integrable function up to arbitrary accuracy. Furthermore, it supports switching function bases, thus adaptable to various scenarios in numerical approximation and machine learning. Our model has asymptotic advantages over the best classical feed-forward neural networks in terms of circuit size and achieves optimal parameter complexity when approximating Sobolev functions under $L_2$ norm.
☆ BRAVA-GNN: Betweenness Ranking Approximation Via Degree MAss Inspired Graph Neural Network KDD
Computing node importance in networks is a long-standing fundamental problem that has driven extensive study of various centrality measures. A particularly well-known centrality measure is betweenness centrality, which becomes computationally prohibitive on large-scale networks. Graph Neural Network (GNN) models have thus been proposed to predict node rankings according to their relative betweenness centrality. However, state-of-the-art methods fail to generalize to high-diameter graphs such as road networks. We propose BRAVA-GNN, a lightweight GNN architecture that leverages the empirically observed correlation linking betweenness centrality to degree-based quantities, in particular multi-hop degree mass. This correlation motivates the use of degree masses as size-invariant node features and synthetic training graphs that closely match the degree distributions of real networks. Furthermore, while previous work relies on scale-free synthetic graphs, we leverage the hyperbolic random graph model, which reproduces power-law exponents outside the scale-free regime, better capturing the structure of real-world graphs like road networks. This design enables BRAVA-GNN to generalize across diverse graph families while using 54x fewer parameters than the most lightweight existing GNN baseline. Extensive experiments on 19 real-world networks, spanning social, web, email, and road graphs, show that BRAVA-GNN achieves up to 214% improvement in Kendall-Tau correlation and up to 70x speedup in inference time over state-of-the-art GNN-based approaches, particularly on challenging road networks.
comment: Submitted to KDD
☆ Physics-informed diffusion models in spectral space
We propose a methodology that combines generative latent diffusion models with physics-informed machine learning to generate solutions of parametric partial differential equations (PDEs) conditioned on partial observations, which includes, in particular, forward and inverse PDE problems. We learn the joint distribution of PDE parameters and solutions via a diffusion process in a latent space of scaled spectral representations, where Gaussian noise corresponds to functions with controlled regularity. This spectral formulation enables significant dimensionality reduction compared to grid-based diffusion models and ensures that the induced process in function space remains within a class of functions for which the PDE operators are well defined. Building on diffusion posterior sampling, we enforce physics-informed constraints and measurement conditions during inference, applying Adam-based updates at each diffusion step. We evaluate the proposed approach on Poisson, Helmholtz, and incompressible Navier--Stokes equations, demonstrating improved accuracy and computational efficiency compared with existing diffusion-based PDE solvers, which are state of the art for sparse observations. Code is available at https://github.com/deeplearningmethods/PISD.
comment: 24 pages, 9 figures
☆ Life Cycle-Aware Evaluation of Knowledge Distillation for Machine Translation: Environmental Impact and Translation Quality Trade-offs
Knowledge distillation (KD) is a tool to compress a larger system (teacher) into a smaller one (student). In machine translation, studies typically report only the translation quality of the student and omit the computational complexity of performing KD, making it difficult to select among the many available KD choices under compute-induced constraints. In this study, we evaluate representative KD methods by considering both translation quality and computational cost. We express computational cost as a carbon footprint using the machine learning life cycle assessment (MLCA) tool. This assessment accounts for runtime operational emissions and amortized hardware production costs throughout the KD model life cycle (teacher training, distillation, and inference). We find that (i) distillation overhead dominates the total footprint at small deployment volumes, (ii) inference dominates at scale, making KD beneficial only beyond a task-dependent usage threshold, and (iii) word-level distillation typically offers more favorable footprint-quality trade-offs than sequence-level distillation. Our protocol provides reproducible guidance for selecting KD methods under explicit quality and compute-induced constraints.
☆ Contextual and Seasonal LSTMs for Time Series Anomaly Detection ICLR 2026
Univariate time series (UTS), where each timestamp records a single variable, serve as crucial indicators in web systems and cloud servers. Anomaly detection in UTS plays an essential role in both data mining and system reliability management. However, existing reconstruction-based and prediction-based methods struggle to capture certain subtle anomalies, particularly small point anomalies and slowly rising anomalies. To address these challenges, we propose a novel prediction-based framework named Contextual and Seasonal LSTMs (CS-LSTMs). CS-LSTMs are built upon a noise decomposition strategy and jointly leverage contextual dependencies and seasonal patterns, thereby strengthening the detection of subtle anomalies. By integrating both time-domain and frequency-domain representations, CS-LSTMs achieve more accurate modeling of periodic trends and anomaly localization. Extensive evaluations on public benchmark datasets demonstrate that CS-LSTMs consistently outperform state-of-the-art methods, highlighting their effectiveness and practical value in robust time series anomaly detection.
comment: Published as a conference paper at ICLR 2026
☆ Model soups need only one ingredient
Fine-tuning large pre-trained models on a target distribution often improves in-distribution (ID) accuracy, but at the cost of out-of-distribution (OOD) robustness as representations specialize to the fine-tuning data. Weight-space ensembling methods, such as Model Soups, mitigate this effect by averaging multiple checkpoints, but they are computationally prohibitive, requiring the training and storage of dozens of fine-tuned models. In this paper, we introduce MonoSoup, a simple, data-free, hyperparameter-free, post-hoc method that achieves a strong ID-OOD balance using only a single checkpoint. Our method applies Singular Value Decomposition (SVD) to each layer's update and decomposes it into high-energy directions that capture task-specific adaptation and low-energy directions that introduce noise but may still encode residual signals useful for robustness. MonoSoup then uses entropy-based effective rank to automatically re-weigh these components with layer-wise coefficients that account for the spectral and geometric structure of the model. Experiments on CLIP models fine-tuned on ImageNet and evaluated under natural distribution shifts, as well as on Qwen language models tested on mathematical reasoning and multiple-choice benchmarks, show that this plug-and-play approach is a practical and effective alternative to multi-checkpoint methods, retaining much of their benefits without their computational overhead.
☆ Resilient Class-Incremental Learning: on the Interplay of Drifting, Unlabelled and Imbalanced Data Streams
In today's connected world, the generation of massive streaming data across diverse domains has become commonplace. In the presence of concept drift, class imbalance, label scarcity, and new class emergence, they jointly degrade representation stability, bias learning toward outdated distributions, and reduce the resilience and reliability of detection in dynamic environments. This paper proposes SCIL (Streaming Class-Incremental Learning) to address these challenges. The SCIL framework integrates an autoencoder (AE) with a multi-layer perceptron for multi-class prediction, uses a dual-loss strategy (classification and reconstruction) for prediction and new class detection, employs corrected pseudo-labels for online training, manages classes with queues, and applies oversampling to handle imbalance. The rationale behind the method's structure is elucidated through ablation studies and a comprehensive experimental evaluation is performed using both real-world and synthetic datasets that feature class imbalance, incremental classes, and concept drifts. Our results demonstrate that SCIL outperforms strong baselines and state-of-the-art methods. Based on our commitment to Open Science, we make our code and datasets available to the community.
comment: Accepted by Artificial Intelligence Science and Engineering
☆ Differentiable Modeling for Low-Inertia Grids: Benchmarking PINNs, NODEs, and DP for Identification and Control of SMIB System
The transition toward low-inertia power systems demands modeling frameworks that provide not only accurate state predictions but also physically consistent sensitivities for control. While scientific machine learning offers powerful nonlinear modeling tools, the control-oriented implications of different differentiable paradigms remain insufficiently understood. This paper presents a comparative study of Physics-Informed Neural Networks (PINNs), Neural Ordinary Differential Equations (NODEs), and Differentiable Programming (DP) for modeling, identification, and control of power system dynamics. Using the Single Machine Infinite Bus (SMIB) system as a benchmark, we evaluate their performance in trajectory extrapolation, parameter estimation, and Linear Quadratic Regulator (LQR) synthesis. Our results highlight a fundamental trade-off between data-driven flexibility and physical structure. NODE exhibits superior extrapolation by capturing the underlying vector field, whereas PINN shows limited generalization due to its reliance on a time-dependent solution map. In the inverse problem of parameter identification, while both DP and PINN successfully recover the unknown parameters, DP achieves significantly faster convergence by enforcing governing equations as hard constraints. Most importantly, for control synthesis, the DP framework yields closed-loop stability comparable to the theoretical optimum. Furthermore, we demonstrate that NODE serves as a viable data-driven surrogate when governing equations are unavailable.
comment: 9 pages, 7 figures, 4 tables
☆ The Entropic Signature of Class Speciation in Diffusion Models
Diffusion models do not recover semantic structure uniformly over time. Instead, samples transition from semantic ambiguity to class commitment within a narrow regime. Recent theoretical work attributes this transition to dynamical instabilities along class-separating directions, but practical methods to detect and exploit these windows in trained models are still limited. We show that tracking the class-conditional entropy of a latent semantic variable given the noisy state provides a reliable signature of these transition regimes. By restricting the entropy to semantic partitions, the entropy can furthermore resolve semantic decisions at different levels of abstraction. We analyze this behavior in high-dimensional Gaussian mixture models and show that the entropy rate concentrates on the same logarithmic time scale as the speciation symmetry-breaking instability previously identified in variance-preserving diffusion. We validate our method on EDM2-XS and Stable Diffusion 1.5, where class-conditional entropy consistently isolates the noise regimes critical for semantic structure formation. Finally, we use our framework to quantify how guidance redistributes semantic information over time. Together, these results connect information-theoretic and statistical physics perspectives on diffusion and provide a principled basis for time-localized control.
comment: 21 pages
☆ Blind denoising diffusion models and the blessings of dimensionality
We analyze, theoretically and empirically, the performance of generative diffusion models based on \emph{blind denoisers}, in which the denoiser is not given the noise amplitude in either the training or sampling processes. Assuming that the data distribution has low intrinsic dimensionality, we prove that blind denoising diffusion models (BDDMs), despite not having access to the noise amplitude, \emph{automatically} track a particular \emph{implicit} noise schedule along the reverse process. Our analysis shows that BDDMs can accurately sample from the data distribution in polynomially many steps as a function of the intrinsic dimension. Empirical results corroborate these mathematical findings on both synthetic and image data, demonstrating that the noise variance is accurately estimated from the noisy image. Remarkably, we observe that schedule-free BDDMs produce samples of higher quality compared to their non-blind counterparts. We provide evidence that this performance gain arises because BDDMs correct the mismatch between the true residual noise (of the image) and the noise assumed by the schedule used in non-blind diffusion models.
comment: 40 pages, 12 figures
LLM-FS: Zero-Shot Feature Selection for Effective and Interpretable Malware Detection
Feature selection (FS) remains essential for building accurate and interpretable detection models, particularly in high-dimensional malware datasets. Conventional FS methods such as Extra Trees, Variance Threshold, Tree-based models, Chi-Squared tests, ANOVA, Random Selection, and Sequential Attention rely primarily on statistical heuristics or model-driven importance scores, often overlooking the semantic context of features. Motivated by recent progress in LLM-driven FS, we investigate whether large language models (LLMs) can guide feature selection in a zero-shot setting, using only feature names and task descriptions, as a viable alternative to traditional approaches. We evaluate multiple LLMs (GPT-5.0, GPT-4.0, Gemini-2.5 etc.) on the EMBOD dataset (a fusion of EMBER and BODMAS benchmark datasets), comparing them against established FS methods across several classifiers, including Random Forest, Extra Trees, MLP, and KNN. Performance is assessed using accuracy, precision, recall, F1, AUC, MCC, and runtime. Our results demonstrate that LLM-guided zero-shot feature selection achieves competitive performance with traditional FS methods while offering additional advantages in interpretability, stability, and reduced dependence on labeled data. These findings position zero-shot LLM-based FS as a promising alternative strategy for effective and interpretable malware detection, paving the way for knowledge-guided feature selection in security-critical applications
☆ AlignTune: Modular Toolkit for Post-Training Alignment of Large Language Models
Post-training alignment is central to deploying large language models (LLMs), yet practical workflows remain split across backend-specific tools and ad-hoc glue code, making experiments hard to reproduce. We identify backend interference, reward fragmentation, and irreproducible pipelines as key obstacles in alignment research. We introduce AlignTune, a modular toolkit exposing a unified interface for supervised fine-tuning (SFT) and RLHF-style optimization with interchangeable TRL and Unsloth backends. AlignTune standardizes configuration, provides an extensible reward layer (rule-based and learned), and integrates evaluation over standard benchmarks and custom tasks. By isolating backend-specific logic behind a single factory boundary, AlignTune enables controlled comparisons and reproducible alignment experiments.
comment: https://github.com/Lexsi-Labs/aligntune
☆ Tracking Finite-Time Lyapunov Exponents to Robustify Neural ODEs
We investigate finite-time Lyapunov exponents (FTLEs), a measure for exponential separation of input perturbations, of deep neural networks within the framework of continuous-depth neural ODEs. We demonstrate that FTLEs are powerful organizers for input-output dynamics, allowing for better interpretability and the comparison of distinct model architectures. We establish a direct connection between Lyapunov exponents and adversarial vulnerability, and propose a novel training algorithm that improves robustness by FTLE regularization. The key idea is to suppress exponents far from zero in the early stage of the input dynamics. This approach enhances robustness and reduces computational cost compared to full-interval regularization, as it avoids a full ``double'' backpropagation.
comment: Lyapunov exponents, neural ODEs, deep learning, adversarial robustness, Lagrangian coherent structures
☆ Why the Counterintuitive Phenomenon of Likelihood Rarely Appears in Tabular Anomaly Detection with Deep Generative Models?
Deep generative models with tractable and analytically computable likelihoods, exemplified by normalizing flows, offer an effective basis for anomaly detection through likelihood-based scoring. We demonstrate that, unlike in the image domain where deep generative models frequently assign higher likelihoods to anomalous data, such counterintuitive behavior occurs far less often in tabular settings. We first introduce a domain-agnostic formulation that enables consistent detection and evaluation of the counterintuitive phenomenon, addressing the absence of precise definition. Through extensive experiments on 47 tabular datasets and 10 CV/NLP embedding datasets in ADBench, benchmarked against 13 baseline models, we demonstrate that the phenomenon, as defined, is consistently rare in general tabular data. We further investigate this phenomenon from both theoretical and empirical perspectives, focusing on the roles of data dimensionality and difference in feature correlation. Our results suggest that likelihood-only detection with normalizing flows offers a practical and reliable approach for anomaly detection in tabular domains.
comment: 47 pages, 11 figures
☆ On the Optimal Reasoning Length for RL-Trained Language Models SP
Reinforcement learning substantially improves reasoning in large language models, but it also tends to lengthen chain of thought outputs and increase computational cost during both training and inference. Though length control methods have been proposed, it remains unclear what the optimal output length is for balancing efficiency and performance. In this work, we compare several length control methods on two models, Qwen3-1.7B Base and DeepSeek-R1-Distill-Qwen-1.5B. Our results indicate that length penalties may hinder reasoning acquisition, while properly tuned length control can improve efficiency for models with strong prior reasoning. By extending prior work to RL trained policies, we identify two failure modes, 1) long outputs increase dispersion, and 2) short outputs lead to under-thinking.
comment: 15 pages, 10 figures. Submitted to the Workshop on Scaling Post-training for LLMs (SPOT) at ICLR 2026
☆ Mitigating the Likelihood Paradox in Flow-based OOD Detection via Entropy Manipulation
Deep generative models that can tractably compute input likelihoods, including normalizing flows, often assign unexpectedly high likelihoods to out-of-distribution (OOD) inputs. We mitigate this likelihood paradox by manipulating input entropy based on semantic similarity, applying stronger perturbations to inputs that are less similar to an in-distribution memory bank. We provide a theoretical analysis showing that entropy control increases the expected log-likelihood gap between in-distribution and OOD samples in favor of the in-distribution, and we explain why the procedure works without any additional training of the density model. We then evaluate our method against likelihood-based OOD detectors on standard benchmarks and find consistent AUROC improvements over baselines, supporting our explanation.
comment: 28 pages, 4 figures
☆ Sample-Efficient Real-World Dexterous Policy Fine-Tuning via Action-Chunked Critics and Normalizing Flows
Real-world fine-tuning of dexterous manipulation policies remains challenging due to limited real-world interaction budgets and highly multimodal action distributions. Diffusion-based policies, while expressive, do not permit conservative likelihood-based updates during fine-tuning because action probabilities are intractable. In contrast, conventional Gaussian policies collapse under multimodality, particularly when actions are executed in chunks, and standard per-step critics fail to align with chunked execution, leading to poor credit assignment. We present SOFT-FLOW, a sample-efficient off-policy fine-tuning framework with normalizing flow (NF) to address these challenges. The normalizing flow policy yields exact likelihoods for multimodal action chunks, allowing conservative, stable policy updates through likelihood regularization and thereby improving sample efficiency. An action-chunked critic evaluates entire action sequences, aligning value estimation with the policy's temporal structure and improving long-horizon credit assignment. To our knowledge, this is the first demonstration of a likelihood-based, multimodal generative policy combined with chunk-level value learning on real robotic hardware. We evaluate SOFT-FLOW on two challenging dexterous manipulation tasks in the real world: cutting tape with scissors retrieved from a case, and in-hand cube rotation with a palm-down grasp -- both of which require precise, dexterous control over long horizons. On these tasks, SOFT-FLOW achieves stable, sample-efficient adaptation where standard methods struggle.
☆ Rollout-Training Co-Design for Efficient LLM-Based Multi-Agent Reinforcement Learning
Despite algorithm-level innovations for multi-agent reinforcement learning (MARL), the underlying networked infrastructure for large-scale MARL training remains underexplored. Existing training frameworks primarily optimize for single-agent scenarios and fail to address the unique system-level challenges of MARL, including rollout-training synchronization barriers, rollout load imbalance, and training resource underutilization. To bridge this gap, we propose FlexMARL, the first end-to-end training framework that holistically optimizes rollout, training, and their orchestration for large-scale LLM-based MARL. Specifically, FlexMARL introduces the joint orchestrator to manage data flow under the rollout-training disaggregated architecture. Building upon the experience store, a novel micro-batch driven asynchronous pipeline eliminates the synchronization barriers while providing strong consistency guarantees. Rollout engine adopts a parallel sampling scheme combined with hierarchical load balancing, which adapts to skewed inter/intra-agent request patterns. Training engine achieves on-demand hardware binding through agent-centric resource allocation. The training states of different agents are swapped via unified and location-agnostic communication. Empirical results on a large-scale production cluster demonstrate that FlexMARL achieves up to 7.3x speedup and improves hardware utilization by up to 5.6x compared to existing frameworks.
☆ Aligning Tree-Search Policies with Fixed Token Budgets in Test-Time Scaling of LLMs
Tree-search decoding is an effective form of test-time scaling for large language models (LLMs), but real-world deployment imposes a fixed per-query token budget that varies across settings. Existing tree-search policies are largely budget-agnostic, treating the budget as a termination condition, which can lead to late-stage over-branching or premature termination. We propose {Budget-Guided MCTS} (BG-MCTS), a tree-search decoding algorithm that aligns its search policy with the remaining token budget: it starts with broad exploration, then prioritizes refinement and answer completion as the budget depletes while reducing late-stage branching from shallow nodes. BG-MCTS consistently outperforms budget-agnostic tree-search baselines across different budgets on MATH500 and AIME24/25 with open-weight LLMs.
☆ Predictive Query Language: A Domain-Specific Language for Predictive Modeling on Relational Databases
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine learning model requires manual work to extract the required training examples - prediction entities and target labels - from the database, which is slow, laborious, and prone to mistakes. Here, we present the Predictive Query Language (PQL), a SQL-inspired declarative language for defining predictive tasks on relational databases. PQL allows specifying a predictive task in a single declarative query, enabling the automatic computation training labels for a large variety of machine learning tasks, such as regression, classification, time-series forecasting, and recommender systems. PQL is already successfully integrated and used in a collection of use cases as part of a predictive AI platform. The versatility of the language can be demonstrated through its many ongoing use cases, including financial fraud, item recommendations, and workload prediction. We demonstrate its versatile design through two implementations; one for small-scale, low-latency use and one that can handle large-scale databases.
☆ Training deep physical neural networks with local physical information bottleneck
Deep learning has revolutionized modern society but faces growing energy and latency constraints. Deep physical neural networks (PNNs) are interconnected computing systems that directly exploit analog dynamics for energy-efficient, ultrafast AI execution. Realizing this potential, however, requires universal training methods tailored to physical intricacies. Here, we present the Physical Information Bottleneck (PIB), a general and efficient framework that integrates information theory and local learning, enabling deep PNNs to learn under arbitrary physical dynamics. By allocating matrix-based information bottlenecks to each unit, we demonstrate supervised, unsupervised, and reinforcement learning across electronic memristive chips and optical computing platforms. PIB also adapts to severe hardware faults and allows for parallel training via geographically distributed resources. Bypassing auxiliary digital models and contrastive measurements, PIB recasts PNN training as an intrinsic, scalable information-theoretic process compatible with diverse physical substrates.
comment: 9 pages, 4 figures
☆ ECG-IMN: Interpretable Mesomorphic Neural Networks for 12-Lead Electrocardiogram Interpretation
Deep learning has achieved expert-level performance in automated electrocardiogram (ECG) diagnosis, yet the "black-box" nature of these models hinders their clinical deployment. Trust in medical AI requires not just high accuracy but also transparency regarding the specific physiological features driving predictions. Existing explainability methods for ECGs typically rely on post-hoc approximations (e.g., Grad-CAM and SHAP), which can be unstable, computationally expensive, and unfaithful to the model's actual decision-making process. In this work, we propose the ECG-IMN, an Interpretable Mesomorphic Neural Network tailored for high-resolution 12-lead ECG classification. Unlike standard classifiers, the ECG-IMN functions as a hypernetwork: a deep convolutional backbone generates the parameters of a strictly linear model specific to each input sample. This architecture enforces intrinsic interpretability, as the decision logic is mathematically transparent and the generated weights (W) serve as exact, high-resolution feature attribution maps. We introduce a transition decoder that effectively maps latent features to sample-wise weights, enabling precise localization of pathological evidence (e.g., ST-elevation, T-wave inversion) in both time and lead dimensions. We evaluate our approach on the PTB-XL dataset for classification tasks, demonstrating that the ECG-IMN achieves competitive predictive performance (AUROC comparable to black-box baselines) while providing faithful, instance-specific explanations. By explicitly decoupling parameter generation from prediction execution, our framework bridges the gap between deep learning capability and clinical trustworthiness, offering a principled path toward "white-box" cardiac diagnostics.
☆ Learning to Discover Iterative Spectral Algorithms
We introduce AutoSpec, a neural network framework for discovering iterative spectral algorithms for large-scale numerical linear algebra and numerical optimization. Our self-supervised models adapt to input operators using coarse spectral information (e.g., eigenvalue estimates and residual norms), and they predict recurrence coefficients for computing or applying a matrix polynomial tailored to a downstream task. The effectiveness of AutoSpec relies on three ingredients: an architecture whose inference pass implements short, executable numerical linear algebra recurrences; efficient training on small synthetic problems with transfer to large-scale real-world operators; and task-defined objectives that enforce the desired approximation or preconditioning behavior across the range of spectral profiles represented in the training set. We apply AutoSpec to discovering algorithms for representative numerical linear algebra tasks: accelerating matrix-function approximation; accelerating sparse linear solvers; and spectral filtering/preconditioning for eigenvalue computations. On real-world matrices, the learned procedures deliver orders-of-magnitude improvements in accuracy and/or reductions in iteration count, relative to basic baselines. We also find clear connections to classical theory: the induced polynomials often exhibit near-equiripple, near-minimax behavior characteristic of Chebyshev polynomials.
♻ ☆ Noisy-Pair Robust Representation Alignment for Positive-Unlabeled Learning ICLR 2026
Positive-Unlabeled (PU) learning aims to train a binary classifier (positive vs. negative) where only limited positive data and abundant unlabeled data are available. While widely applicable, state-of-the-art PU learning methods substantially underperform their supervised counterparts on complex datasets, especially without auxiliary negatives or pre-estimated parameters (e.g., a 14.26% gap on CIFAR-100 dataset). We identify the primary bottleneck as the challenge of learning discriminative representations under unreliable supervision. To tackle this challenge, we propose NcPU, a non-contrastive PU learning framework that requires no auxiliary information. NcPU combines a noisy-pair robust supervised non-contrastive loss (NoiSNCL), which aligns intra-class representations despite unreliable supervision, with a phantom label disambiguation (PLD) scheme that supplies conservative negative supervision via regret-based label updates. Theoretically, NoiSNCL and PLD can iteratively benefit each other from the perspective of the Expectation-Maximization framework. Empirically, extensive experiments demonstrate that: (1) NoiSNCL enables simple PU methods to achieve competitive performance; and (2) NcPU achieves substantial improvements over state-of-the-art PU methods across diverse datasets, including challenging datasets on post-disaster building damage mapping, highlighting its promise for real-world applications. Code: Code will be open-sourced after review.
comment: Published at ICLR 2026
♻ ☆ Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder
Inverse materials design has proven successful in accelerating novel material discovery. Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations. A latent space learned this way is likely to be entangled, in terms of the target property and other properties of the materials. This makes the inverse design process ambiguous. Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties. This approach is data efficient because it combines all labelled and unlabelled data in a coherent manner, and it uses expert-informed prior distributions to improve model robustness even with limited labelled data. It is in essence interpretable, as the learnable target property is disentangled out of the other properties of the materials, and an extra layer of interpretability can be provided by a post-hoc analysis of the classification head of the model. We demonstrate this new approach on an experimental high-entropy alloy dataset with chemical compositions as input and single-phase formation as the single target property. High-entropy alloys were chosen as example materials because of the vast chemical space of their possible combinations of compositions and atomic configurations. While single property is used in this work, the disentangled model can be extended to customize for inverse design of materials with multiple target properties.
comment: Code: https://github.com/cengc13/d_vae_hea
♻ ☆ Variational Sparse Paired Autoencoders (vsPAIR) for Inverse Problems and Uncertainty Quantification
Inverse problems are fundamental to many scientific and engineering disciplines; they arise when one seeks to reconstruct hidden, underlying quantities from noisy measurements. Many applications demand not just point estimates but interpretable uncertainty. Providing fast inference alongside uncertainty estimates remains challenging yet desirable in numerous applications. We propose the Variational Sparse Paired Autoencoder (vsPAIR) to address this challenge. The architecture pairs a standard VAE encoding observations with a sparse VAE encoding quantities of interest, connected through a learned latent mapping. The variational structure enables uncertainty estimation, the paired architecture encourages interpretability by anchoring QoI representations to clean data, and sparse encodings provide structure by concentrating information into identifiable factors rather than diffusing across all dimensions. To validate the effectiveness of our proposed architecture, we conduct experiments on blind inpainting and computed tomography, demonstrating that vsPAIR is a capable inverse problem solver that can provide interpretable and structured uncertainty estimates.
♻ ☆ From Spatial to Actions: Grounding Vision-Language-Action Model in Spatial Foundation Priors ICLR 2026
Existing vision-language-action (VLA) models act in 3D real-world but are typically built on 2D encoders, leaving a spatial reasoning gap that limits generalization and adaptability. Recent 3D integration techniques for VLAs either require specialized sensors and transfer poorly across modalities, or inject weak cues that lack geometry and degrade vision-language alignment. In this work, we introduce FALCON (From Spatial to Action), a novel paradigm that injects rich 3D spatial tokens into the action head. FALCON leverages spatial foundation models to deliver strong geometric priors from RGB alone, and includes an Embodied Spatial Model that can optionally fuse depth, or pose for higher fidelity when available, without retraining or architectural changes. To preserve language reasoning, spatial tokens are consumed by a Spatial-Enhanced Action Head rather than being concatenated into the vision-language backbone. These designs enable FALCON to address limitations in spatial representation, modality transferability, and alignment. In comprehensive evaluations across three simulation benchmarks and eleven real-world tasks, our proposed FALCON achieves state-of-the-art performance, consistently surpasses competitive baselines, and remains robust under clutter, spatial-prompt conditioning, and variations in object scale and height.
comment: ICLR 2026, Project page: https://falcon-vla.github.io/
♻ ☆ Knowledge-Guided Masked Autoencoder with Linear Spectral Mixing and Spectral-Angle-Aware Reconstruction AAAI 2026
Integrating domain knowledge into deep learning has emerged as a promising direction for improving model interpretability, generalization, and data efficiency. In this work, we present a novel knowledge-guided ViT-based Masked Autoencoder that embeds scientific domain knowledge within the self-supervised reconstruction process. Instead of relying solely on data-driven optimization, our proposed approach incorporates the Linear Spectral Mixing Model (LSMM) as a physical constraint and physically-based Spectral Angle Mapper (SAM), ensuring that learned representations adhere to known structural relationships between observed signals and their latent components. The framework jointly optimizes LSMM and SAM loss with a conventional Huber loss objective, promoting both numerical accuracy and geometric consistency in the feature space. This knowledge-guided design enhances reconstruction fidelity, stabilizes training under limited supervision, and yields interpretable latent representations grounded in physical principles. The experimental findings indicate that the proposed model substantially enhances reconstruction quality and improves downstream task performance, highlighting the promise of embedding physics-informed inductive biases within transformer-based self-supervised learning.
comment: Accepted to the KGML Bridge at AAAI 2026 (non-archival)
♻ ☆ How to Purchase Labels? A Cost-Effective Approach Using Active Learning Markets
We introduce and analyse active learning markets as a way to purchase labels, in situations where analysts aim to acquire additional data to improve model fitting, or to better train models for predictive analytics applications. This comes in contrast to the many proposals that already exist to purchase features and examples. By originally formalising the market clearing as an optimisation problem, we integrate budget constraints and improvement thresholds into the label acquisition process. We focus on a single-buyer-multiple-seller setup and propose the use of two active learning strategies (variance based and query-by-committee based), paired with distinct pricing mechanisms. They are compared to benchmark baselines including random sampling and a greedy knapsack heuristic. The proposed strategies are validated on real-world datasets from two critical application domains: real estate pricing and energy forecasting. Results demonstrate the robustness of our approach, consistently achieving superior performance with fewer labels acquired compared to conventional methods. Our proposal comprises an easy-to-implement practical solution for optimising data acquisition in resource-constrained environments.
comment: Accepted for publication in INFORMS Journal on Data Science (IJDS). This is the authors' preprint
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 40 pages
♻ ☆ Stochastic Optimization with Optimal Importance Sampling
Importance Sampling (IS) is a widely used variance reduction technique for enhancing the efficiency of Monte Carlo methods, particularly in rare-event simulation and related applications. Despite its effectiveness, the performance of IS is highly sensitive to the choice of the proposal distribution and often requires stochastic calibration. While the design and analysis of IS have been extensively studied in estimation settings, applying IS within stochastic optimization introduces a lesser-known fundamental challenge: the decision variable and the importance sampling distribution are mutually dependent, creating a circular optimization structure. This interdependence complicates both convergence analysis and variance control. In this paper, we consider the generic setting of convex stochastic optimization with linear constraints. We propose a single-loop stochastic approximation algorithm, based on a variant of Nesterov's dual averaging, that jointly updates the decision variable and the importance sampling distribution, notably without time-scale separation or nested optimization. The method is globally convergent and achieves the minimal asymptotic variance among stochastic gradient schemes, which moreover matches the performance of an oracle sampler adapted to the optimal solution and thus effectively resolves the circular optimization challenge.
♻ ☆ Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.
♻ ☆ Stopping Rules for SGD via Anytime-Valid Confidence Sequences
Deciding when to stop stochastic gradient descent (SGD) has long remained unresolved in a statistically rigorous sense. While SGD is routinely monitored as it runs, the classical theory of SGD provides guarantees only at pre-specified iteration horizons and offers no valid way to decide, based on the observed trajectory, when further computation is justified. We address this gap by developing anytime-valid confidence sequences for stochastic gradient methods, which remain valid under continuous monitoring and directly induce statistically valid, trajectory-dependent stopping rules: stop as soon as the current upper confidence bound on an appropriate performance measure falls below a user-specified tolerance. The confidence sequences are constructed using nonnegative supermartingales, are time-uniform, and depend only on observable quantities along the SGD trajectory, without requiring prior knowledge of the optimization horizon. In convex optimization, this yields anytime-valid certificates for weighted suboptimality of projected SGD under general stepsize schedules, without assuming smoothness or strong convexity. In nonconvex optimization, it yields time-uniform certificates for weighted first-order stationarity under smoothness assumptions. We further characterize the stopping-time complexity of the resulting stopping rules under standard stepsize schedules. To the best of our knowledge, this is the first framework that provides statistically valid, time-uniform stopping rules for SGD across both convex and nonconvex settings based solely on its observed trajectory.
♻ ☆ Among Us: A Sandbox for Measuring and Detecting Agentic Deception
Prior studies on deception in language-based AI agents typically assess whether the agent produces a false statement about a topic, or makes a binary choice prompted by a goal, rather than allowing open-ended deceptive behavior to emerge in pursuit of a longer-term goal. To fix this, we introduce Among Us, a sandbox social deception game where LLM-agents exhibit long-term, open-ended deception as a consequence of the game objectives. While most benchmarks saturate quickly, Among Us can be expected to last much longer, because it is a multi-player game far from equilibrium. Using the sandbox, we evaluate 18 proprietary and open-weight LLMs and uncover a general trend: models trained with RL are comparatively much better at producing deception than detecting it. We evaluate the effectiveness of methods to detect lying and deception: logistic regression on the activations and sparse autoencoders (SAEs). We find that probes trained on a dataset of "pretend you're a dishonest model:.." generalize extremely well out-of-distribution, consistently obtaining AUROCs over 95% even when evaluated just on the deceptive statement, without the chain of thought. We also find two SAE features that work well at deception detection but are unable to steer the model to lie less. We hope our open-sourced sandbox, game logs, and probes serve to anticipate and mitigate deceptive behavior and capabilities in language-based agents.
comment: 21 pages, preprint
♻ ☆ RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
comment: The paper is no longer valid and the contents will be fused to another different paper
♻ ☆ Chunking Strategies for Multimodal AI Systems
Chunking has emerged as a critical technique that enhances generative models by grounding their responses in efficiently segmented knowledge [1]. While initially developed for unimodal (primarily textual) domains, recent advances in multimodal foundation models have extended chunking approaches to incorporate diverse data types, including images, audio, and video [2]. A critical component underpinning the success of these systems is the chunking strategy how large, continuous streams of multimodal data are segmented into semantically meaningful units suitable for processing [3]. Despite its importance, chunking remains an under-explored area, especially in the context of multimodal systems where modality-specific constraints, semantic preservation, and alignment across modalities introduce unique challenges. Our goal is to consolidating the landscape of multimodal chunking strategies, providing researchers and practitioners with a technical foundation and design space for developing more effective and efficient multimodal AI systems. This survey paves the way for innovations in robust chunking pipelines that scale with modality complexity, enhance processing accuracy, and improve generative coherence in real-world applications. This survey provides a comprehensive taxonomy and technical analysis of chunking strategies tailored for each modality: text, images, audio, video, and cross-modal data. We examine classical and modern approaches such as fixed-size token windowing, recursive text splitting, object-centric visual chunking, silence-based audio segmentation, and scene detection in videos. Each approach is analyzed in terms of its underlying methodology, supporting tools (e.g., LangChain, Detectron2, PySceneDetect), benefits, and challenges, particularly those related to granularity-context trade-offs and multimodal alignment. Furthermore, we explore emerging cross-modal chunking strategies that aim to preserve alignment and semantic consistency across disparate data types [4]. We also include comparative insights, highlight open problems such as asynchronous information density and noisy alignment signals, and identify opportunities for future research in adaptive, learning-based, and task-specific chunking.
comment: 50 pages, 5 figure
♻ ☆ Entropy-Aware Structural Alignment for Zero-Shot Handwritten Chinese Character Recognition
Zero-shot Handwritten Chinese Character Recognition (HCCR) aims to recognize unseen characters by leveraging radical-based semantic compositions. However, existing approaches often treat characters as flat radical sequences, neglecting the hierarchical topology and the uneven information density of different components. To address these limitations, we propose an Entropy-Aware Structural Alignment Network that bridges the visual-semantic gap through information-theoretic modeling. First, we introduce an Information Entropy Prior to dynamically modulate positional embeddings via multiplicative interaction, acting as a saliency detector that prioritizes discriminative roots over ubiquitous components. Second, we construct a Dual-View Radical Tree to extract multi-granularity structural features, which are integrated via an adaptive Sigmoid-based gating network to encode both global layout and local spatial roles. Finally, a Top-K Semantic Feature Fusion mechanism is devised to augment the decoding process by utilizing the centroid of semantic neighbors, effectively rectifying visual ambiguities through feature-level consensus. Extensive experiments demonstrate that our method establishes new state-of-the-art performance, achieving an accuracy of 55.04\% on the ICDAR 2013 dataset ($m=1500$), significantly outperforming existing CLIP-based baselines in the challenging zero-shot setting. Furthermore, the framework exhibits exceptional data efficiency, demonstrating rapid adaptability with minimal support samples, achieving 92.41\% accuracy with only one support sample per class.
comment: 34 pages, 8 figures
♻ ☆ ContextBench: A Benchmark for Context Retrieval in Coding Agents
LLM-based coding agents have shown strong performance on automated issue resolution benchmarks, yet existing evaluations largely focus on final task success, providing limited insight into how agents retrieve and use code context during problem solving. We introduce ContextBench, a process-oriented evaluation of context retrieval in coding agents. ContextBench consists of 1,136 issue-resolution tasks from 66 repositories across eight programming languages, each augmented with human-annotated gold contexts. We further implement an automated evaluation framework that tracks agent trajectories and measures context recall, precision, and efficiency throughout issue resolution. Using ContextBench, we evaluate four frontier LLMs and five coding agents. Our results show that sophisticated agent scaffolding yields only marginal gains in context retrieval ("The Bitter Lesson" of coding agents), LLMs consistently favor recall over precision, and substantial gaps exist between explored and utilized context. ContextBench augments existing end-to-end benchmarks with intermediate gold-context metrics that unbox the issue-resolution process. These contexts offer valuable intermediate signals for guiding LLM reasoning in software tasks.
comment: 36 pages, 6 figures, 4 tables
♻ ☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
♻ ☆ Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
comment: National Science Foundation (NSF) workshop on Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence
♻ ☆ OmniMER: Auxiliary-Enhanced LLM Adaptation for Indonesian Multimodal Emotion Recognition
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
♻ ☆ Multi-Objective $\textit{min-max}$ Online Convex Optimization
In this paper, we broaden the horizon of online convex optimization (OCO), and consider multi-objective OCO, where there are $K$ distinct loss function sequences, and an algorithm has to choose its action at time $t$, before the $K$ loss functions at time $t$ are revealed. To capture the tradeoff between tracking the $K$ different sequences, we consider the {\it min-max} regret, where the benchmark (optimal offline algorithm) takes a static action across all time slots that minimizes the maximum of the total loss (summed across time slots) incurred by each of the $K$ sequences. An online algorithm is allowed to change its action across time slots, and its {\it min-max} regret is defined as the difference between its {\it min-max} cost and that of the benchmark. The {\it min-max} regret is a stringent performance measure and an algorithm with small regret needs to `track' all loss functions simultaneously. We first show that with adversarial input, {\it min-max} regret scales linearly with the time horizon $T$ for any online algorithm. Consequently, we consider a stochastic i.i.d. input model where all loss functions are i.i.d. generated from an unknown joint distribution and propose a simple algorithm that combines the well-known {\it Hedge} and online gradient descent (OGD) and show via a remarkably simple proof that its expected {\it min-max} regret is $O(\sqrt{T \log (T K)})$. Analogous results are also derived for Martingale difference and Markov input models.
♻ ☆ Predictive Modeling of Power Outages during Extreme Events: Integrating Weather and Socio-Economic Factors
This paper presents a novel learning based framework for predicting power outages caused by extreme events. The proposed approach targets low-probability high-consequence outage scenarios and leverages a comprehensive set of features derived from publicly available data sources. We integrate EAGLE-I outage records from 2014 to 2024 with weather, socioeconomic, infrastructure, and seasonal event data. Incorporating social and demographic indicators reveals patterns of community vulnerability and improves understanding of outage risk during extreme conditions. Four machine learning models are evaluated, including Random Forest (RF), Graph Neural Network (GNN), Adaptive Boosting (AdaBoost), and Long Short-Term Memory (LSTM). Experimental validation is performed on a large-scale dataset covering counties in the lower peninsula of Michigan. Among all models tested, the LSTM network achieves higher accuracy.
♻ ☆ ParisKV: Fast and Drift-Robust KV-Cache Retrieval for Long-Context LLMs
KV-cache retrieval is essential for long-context LLM inference, yet existing methods struggle with distribution drift and high latency at scale. We introduce ParisKV, a drift-robust, GPU-native KV-cache retrieval framework based on collision-based candidate selection, followed by a quantized inner-product reranking estimator. For million-token contexts, ParisKV supports CPU-offloaded KV caches via Unified Virtual Addressing (UVA), enabling on-demand top-$k$ fetching with minimal overhead. ParisKV matches or outperforms full attention quality on long-input and long-generation benchmarks. It achieves state-of-the-art long-context decoding efficiency: it matches or exceeds full attention speed even at batch size 1 for long contexts, delivers up to 2.8$\times$ higher throughput within full attention's runnable range, and scales to million-token contexts where full attention runs out of memory. At million-token scale, ParisKV reduces decode latency by 17$\times$ and 44$\times$ compared to MagicPIG and PQCache, respectively, two state-of-the-art KV-cache Top-$k$ retrieval baselines.
comment: 25 pages, 16 figures. Under review
♻ ☆ TabNSA: Native Sparse Attention for Efficient Tabular Data Learning
Tabular data poses unique challenges for deep learning due to its heterogeneous feature types, lack of spatial structure, and often limited sample sizes. We propose TabNSA, a novel deep learning framework that integrates Native Sparse Attention (NSA) with a TabMixer backbone to efficiently model tabular data. TabNSA tackles computational and representational challenges by dynamically focusing on relevant feature subsets per instance. The NSA module employs a hierarchical sparse attention mechanism, including token compression, selective preservation, and localized sliding windows, to significantly reduce the quadratic complexity of standard attention operations while addressing feature heterogeneity. Complementing this, the TabMixer backbone captures complex, non-linear dependencies through parallel multilayer perceptron (MLP) branches with independent parameters. These modules are synergistically combined via element-wise summation and mean pooling, enabling TabNSA to model both global context and fine-grained interactions. Extensive experiments across supervised and transfer learning settings show that TabNSA consistently outperforms state-of-the-art deep learning models. Furthermore, by augmenting TabNSA with a fine-tuned large language model (LLM), we enable it to effectively address Few-Shot Learning challenges through language-guided generalization on diverse tabular benchmarks. Code available on: https://github.com/aseslamian/TabNSA
comment: 26 pages, 11 tables
♻ ☆ Targeted Unlearning Using Perturbed Sign Gradient Methods With Applications On Medical Images
Machine unlearning aims to remove the influence of specific training samples from a trained model without full retraining. While prior work has largely focused on privacy-motivated settings, we recast unlearning as a general-purpose tool for post-deployment model revision. Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device deprecation, and policy changes are common. To this end, we propose a bilevel optimization formulation of boundary-based unlearning that can be solved using iterative algorithms. We provide convergence guarantees when first-order algorithms are used to unlearn. Our method introduces tunable loss design for controlling the forgetting-retention tradeoff and supports novel model composition strategies that merge the strengths of distinct unlearning runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms baselines on both forgetting and retention metrics, including scenarios involving imaging devices and anatomical outliers. This work establishes machine unlearning as a modular, practical alternative to retraining for real-world model maintenance in clinical applications.
comment: 39 pages, 12 figures, 11 tables, 3 algorithms
♻ ☆ ECHO-2: A Large-Scale Distributed Rollout Framework for Cost-Efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
♻ ☆ An adaptive data sampling strategy for stabilizing dynamical systems via controller inference
Learning stabilizing controllers from data is an important task in engineering applications; however, collecting informative data is challenging because unstable systems often lead to rapidly growing or erratic trajectories. In this work, we propose an adaptive sampling scheme that generates data while simultaneously stabilizing the system to avoid instabilities during the data collection. Under mild assumptions, the approach provably generates data sets that are informative for stabilization and have minimal size. The numerical experiments demonstrate that controller inference with the novel adaptive sampling approach learns controllers with up to one order of magnitude fewer data samples than unguided data generation. The results show that the proposed approach opens the door to stabilizing systems in edge cases and limit states where instabilities often occur and data collection is inherently difficult.
comment: 27 pages, 9 figures
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ DISPROTBENCH: Uncovering the Functional Limits of Protein Structure Prediction Models in Intrinsically Disordered Regions
Intrinsically disordered regions (IDRs) play central roles in cellular function, yet remain poorly evaluated by existing protein structure prediction benchmarks. Current evaluations largely focus on well-folded domains, overlooking three fundamental challenges in realistic biological settings: the structural complexity of proteins, the resulting low availability of reliable ground truth, and prediction uncertainty that can propagate into high-risk downstream failures, such as in drug discovery, protein-protein interaction modeling, and functional annotation. We present DisProtBench, an IDR-centric benchmark that explicitly incorporates prediction uncertainty into the evaluation of protein structure prediction models (PSPMs). To address structural complexity and ground-truth scarcity, we curate and unify a large-scale, multi-modal dataset spanning disease-relevant IDRs, GPCR-ligand interactions, and multimeric protein complexes. To assess predictive uncertainty, we introduce Functional Uncertainty Sensitivity (FUS), a novel prediction uncertainty-stratified metric that quantifies downstream task performance under prediction uncertainty. Using this benchmark, we conduct a systematic evaluation of state-of-the-art PSPMs and reveal clear, task-dependent failure modes. Protein-protein interaction prediction degrades sharply in IDRs, while structure-based drug discovery remains comparatively robust. These effects are largely invisible to standard global accuracy metrics, which overestimate functional reliability under prediction uncertainty. We have open-sourced our benchmark and the codebase at https://github.com/Susan571/DisProtBench.
♻ ☆ FlashSinkhorn: IO-Aware Entropic Optimal Transport
Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.
♻ ☆ HiCL: Hippocampal-Inspired Continual Learning AAAI
We propose HiCL, a novel hippocampal-inspired dual-memory continual learning architecture designed to mitigate catastrophic forgetting by using elements inspired by the hippocampal circuitry. Our system encodes inputs through a grid-cell-like layer, followed by sparse pattern separation using a dentate gyrus-inspired module with top-k sparsity. Episodic memory traces are maintained in a CA3-like autoassociative memory. Task-specific processing is dynamically managed via a DG-gated mixture-of-experts mechanism, wherein inputs are routed to experts based on cosine similarity between their normalized sparse DG representations and learned task-specific DG prototypes computed through online exponential moving averages. This biologically grounded yet mathematically principled gating strategy enables differentiable, scalable task-routing without relying on a separate gating network, and enhances the model's adaptability and efficiency in learning multiple sequential tasks. Cortical outputs are consolidated using Elastic Weight Consolidation weighted by inter-task similarity. Crucially, we incorporate prioritized replay of stored patterns to reinforce essential past experiences. Evaluations on standard continual learning benchmarks demonstrate the effectiveness of our architecture in reducing task interference, achieving near state-of-the-art results in continual learning tasks at lower computational costs. Our code is available here https://github.com/kushalk173-sc/HiCL.
comment: In proceeding of AAAI
♻ ☆ Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional propagation of values and densities
Recently a million of biological neurons (BNN) has turned out better from modern RL methods in playing pong~\cite{RL}, reminding they are still qualitatively superior e.g. in learning, flexibility and robustness - suggesting to try to improve current artificial e.g. MLP/KAN for better agreement with biological. There is proposed extension of KAN approach to neurons containing model of local joint distribution: $ρ(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$, adding interpretation and information flow control to KAN, and allowing to gradually add missing 3 basic properties of biological: 1) biological axons propagate in both directions~\cite{axon}, while current artificial are focused on unidirectional propagation - joint distribution neurons can repair by substituting some variables, getting conditional values/distributions for the remaining. 2) Animals show risk avoidance~\cite{risk} requiring to process variance, and generally real world rather needs probabilistic models - the proposed can predict and propagate also distributions as vectors of moments: (expected value, variance) or higher. 3) biological neurons require local training, and beside backpropagation, the proposed allows many additional ways, like direct training, through tensor decomposition, or finally local and very promising: information bottleneck. Proposed approach is very general, can be also used as extension of softmax $\textrm{Pr}\propto \exp(-E)$ e.g. in embeddings of transformer, into their probability distributions working on $(a_j)$ few moments: $ρ(x)\approx \sum_j a_j f_j(x)$.
comment: 9 pages, 13 figures
♻ ☆ Coherent Load Profile Synthesis with Conditional Diffusion for LV Distribution Network Scenario Generation
Limited visibility of distribution network power flows at the low voltage level presents challenges to both distribution network operators from a planning perspective and distribution system operators from a congestion management perspective. More representative loads are required to support meaningful analysis of LV substations; otherwise, such analysis risks misinforming future decisions. Traditional load profiling relies on typical profiles, oversimplifying substation-level complexity. Generative models have attempted to address this through synthesising representative loads from historical exemplars; however, while these approaches can approximate load shapes to a convincing degree of fidelity, analysis of the co-behaviour between substations is limited, which ultimately impacts higher voltage level network operation. This limitation will become even more pronounced with the increasing integration of low-carbon technologies, as estimates of base loads fail to capture load diversity. To address this gap, Conditional Diffusion models for synthesising daily active and reactive power profiles at the low voltage distribution substation level are proposed. The evaluation of fidelity is demonstrated through conventional metrics capturing temporal and statistical realism, as well as power flow modelling. Multiple models are proposed to handle varying levels of data availability, ranging from unconditional synthesis to an informed generation driven by metadata and daily statistics. The results show synthesised load profiles are plausible both independently and as a cohort in a wider power systems context. The Conditional Diffusion model is benchmarked against both naive and state-of-the-art models to demonstrate its effectiveness in producing realistic scenarios on which to base sub-regional power distribution network planning and operations.
♻ ☆ AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from myopic information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by a lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, myopic, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, CUBE-NM, designed to expose the limitations of myopic selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.
♻ ☆ Constant Rate Scheduling: A General Framework for Optimizing Diffusion Noise Schedule via Distributional Change
We propose a general framework for optimizing noise schedules in diffusion models, applicable to both training and sampling. Our method enforces a constant rate of change in the probability distribution of diffused data throughout the diffusion process, where the rate of change is quantified using a user-defined discrepancy measure. We introduce three such measures, which can be flexibly selected or combined depending on the domain and model architecture. While our framework is inspired by theoretical insights, we do not aim to provide a complete theoretical justification of how distributional change affects sample quality. Instead, we focus on establishing a general-purpose scheduling framework and validating its empirical effectiveness. Through extensive experiments, we demonstrate that our approach consistently improves the performance of both pixel-space and latent-space diffusion models, across various datasets, samplers, and a wide range of number of function evaluations from 5 to 250. In particular, when applied to both training and sampling schedules, our method achieves a state-of-the-art FID score of 2.03 on LSUN Horse 256$\times$256, without compromising mode coverage.
comment: Published in Transactions on Machine Learning Research (TMLR), January 2026
♻ ☆ One-Prompt Strikes Back: Sparse Mixture of Experts for Prompt-based Continual Learning ICLR 2026
Prompt-based methods have recently gained prominence in Continual Learning (CL) due to their strong performance and memory efficiency. A prevalent strategy in this paradigm assigns a dedicated subset of prompts to each task, which, while effective, incurs substantial computational overhead and causes memory requirements to scale linearly with the number of tasks. Conversely, approaches employing a single shared prompt across tasks offer greater efficiency but often suffer from degraded performance due to knowledge interference. To reconcile this trade-off, we propose SMoPE, a novel framework that integrates the benefits of both task-specific and shared prompt strategies. Inspired by recent findings on the relationship between Prefix Tuning and Mixture of Experts (MoE), SMoPE organizes a shared prompt into multiple "prompt experts" within a sparse MoE architecture. For each input, only a select subset of relevant experts is activated, effectively mitigating interference. To facilitate expert selection, we introduce a prompt-attention score aggregation mechanism that computes a unified proxy score for each expert, enabling dynamic and sparse activation. Additionally, we propose an adaptive noise mechanism to encourage balanced expert utilization while preserving knowledge from prior tasks. To further enhance expert specialization, we design a prototype-based loss function that leverages prefix keys as implicit memory representations. Extensive experiments across multiple CL benchmarks demonstrate that SMoPE consistently outperforms task-specific prompt methods and achieves performance competitive with state-of-the-art approaches, all while significantly reducing parameter counts and computational costs.
comment: Accepted to ICLR 2026
♻ ☆ Emergence of Distortions in High-Dimensional Guided Diffusion Models
Classifier-free guidance (CFG) is the de facto standard for conditional sampling in diffusion models, yet it often leads to a loss of diversity in generated samples. We formalize this phenomenon as generative distortion, defined as the mismatch between the CFG-induced sampling distribution and the true conditional distribution. Considering Gaussian mixtures and their exact scores, and leveraging tools from statistical physics, we characterize the onset of distortion in a high-dimensional regime as a function of the number of classes. Our analysis reveals that distortions emerge through a phase transition in the effective potential governing the guided dynamics. In particular, our dynamical mean-field analysis shows that distortion persists when the number of modes grows exponentially with dimension, but vanishes in the sub-exponential regime. Consistent with prior finite-dimensional results, we further demonstrate that vanilla CFG shifts the mean and shrinks the variance of the conditional distribution. We show that standard CFG schedules are fundamentally incapable of preventing variance shrinkage. Finally, we propose a theoretically motivated guidance schedule featuring a negative-guidance window, which mitigates loss of diversity while preserving class separability.
comment: 29 pages, 16 figures
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https://github.com/VRPO/VRPO.
♻ ☆ Redundancy-Free View Alignment for Multimodal Human Activity Recognition with Arbitrarily Missing Views
Multimodal multiview learning seeks to integrate information from diverse sources to enhance task performance. Existing approaches often struggle with flexible view configurations, including arbitrary view combinations, numbers of views, and heterogeneous modalities. Focusing on the context of human activity recognition, we propose RALIS, a model that combines multiview contrastive learning with a mixture-of-experts module to support arbitrary view availability during both training and inference. Instead of trying to reconstruct missing views, an adjusted center contrastive loss is used for self-supervised representation learning and view alignment, mitigating the impact of missing views on multiview fusion. This loss formulation allows for the integration of view weights to account for view quality. Additionally, it reduces computational complexity from $O(V^2)$ to $O(V)$, where $V$ is the number of views. To address residual discrepancies not captured by contrastive learning, we employ a mixture-of-experts module with a specialized load balancing strategy, tasked with adapting to arbitrary view combinations. We highlight the geometric relationship among components in our model and how they combine well in the latent space. RALIS is validated on four datasets encompassing inertial and human pose modalities, with the number of views ranging from three to nine, demonstrating its performance and flexibility.
♻ ☆ Block-Recurrent Dynamics in Vision Transformers
As Vision Transformers (ViTs) become standard vision backbones, a mechanistic account of their computational phenomenology is essential. Despite architectural cues that hint at dynamical structure, there is no settled framework that interprets Transformer depth as a well-characterized flow. In this work, we introduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit a block-recurrent depth structure such that the computation of the original $L$ blocks can be accurately rewritten using only $k \ll L$ distinct blocks applied recurrently. Across diverse ViTs, between-layer representational similarity matrices suggest few contiguous phases. To determine whether these phases reflect genuinely reusable computation, we train block-recurrent surrogates of pretrained ViTs: Recurrent Approximations to Phase-structured TransfORmers (Raptor). In small-scale, we demonstrate that stochastic depth and training promote recurrent structure and subsequently correlate with our ability to accurately fit Raptor. We then provide an empirical existence proof for BRH by training a Raptor model to recover $96\%$ of DINOv2 ImageNet-1k linear probe accuracy in only 2 blocks at equivalent runtime. Finally, we leverage our hypothesis to develop a program of Dynamical Interpretability. We find i) directional convergence into class-dependent angular basins with self-correcting trajectories under small perturbations, ii) token-specific dynamics, where cls executes sharp late reorientations while patch tokens exhibit strong late-stage coherence toward their mean direction, and iii) a collapse to low rank updates in late depth, consistent with convergence to low-dimensional attractors. Altogether, we find a compact recurrent program emerges along ViT depth, pointing to a low-complexity normative solution that enables these models to be studied through principled dynamical systems analysis.
comment: 25 pages, 15 figures
♻ ☆ Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Gaussian process (GP) models have received increasing attention in recent years due to their superb prediction accuracy and modeling flexibility. To address the computational burdens of GP models for large-scale datasets, distributed learning for GPs are often adopted. Current aggregation models for distributed GPs is not time-efficient when incorporating correlations between GP experts. In this work, we propose a novel approach for aggregated prediction in distributed GPs. The technique is suitable for both the exact and sparse variational GPs. The proposed method incorporates correlations among experts, leading to better prediction accuracy with manageable computational requirements. As demonstrated by empirical studies, the proposed approach results in more stable predictions in less time than state-of-the-art consistent aggregation models.
comment: 34 pages, 8 figures, 2 tables
♻ ☆ Retrieval Pivot Attacks in Hybrid RAG: Measuring and Mitigating Amplified Leakage from Vector Seeds to Graph Expansion
Hybrid Retrieval-Augmented Generation (RAG) pipelines combine vector similarity search with knowledge graph expansion for multi-hop reasoning. We show that this composition introduces a distinct security failure mode: a vector-retrieved "seed" chunk can pivot via entity links into sensitive graph neighborhoods, causing cross-tenant data leakage that does not occur in vector-only retrieval. We formalize this risk as Retrieval Pivot Risk (RPR) and introduce companion metrics Leakage@k, Amplification Factor, and Pivot Depth (PD) to quantify leakage magnitude and traversal structure. We present seven Retrieval Pivot Attacks that exploit the vector-to-graph boundary and show that adversarial injection is not required: naturally shared entities create cross-tenant pivot paths organically. Across a synthetic multi-tenant enterprise corpus and the Enron email corpus, the undefended hybrid pipeline exhibits high pivot risk (RPR up to 0.95) with multiple unauthorized items returned per query. Leakage consistently appears at PD=2, which we attribute to the bipartite chunk-entity topology and formalize as a proposition. We then show that enforcing authorization at a single location, the graph expansion boundary, eliminates measured leakage (RPR near 0) across both corpora, all attack variants, and label forgery rates up to 10 percent, with minimal overhead. Our results indicate the root cause is boundary enforcement, not inherently complex defenses: two individually secure retrieval components can compose into an insecure system unless authorization is re-checked at the transition point.
comment: 18 pages, 5 figures
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: V2: We added CIFAR. V3: Old FID & CIFAR images of the Kac model corresponded to schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error & updated the CIFAR results. V5: Added: mean-reverting Kac process is Lipschitz; rigorous proof of decomp. Lemma 6.1 & a nearest neighbor analysis. V6: Polishing. V7: Correction in proof of Lem. 6.1
♻ ☆ A Survey on Active Feature Acquisition Strategies
Active feature acquisition (AFA) studies how to sequentially acquire features for each data instance to trade off predictive performance against acquisition cost. This survey offers the first unified treatment of AFA via an explicit partially observable Markov decision process (POMDP) formulation. We place this formulation in the broader literature on optimal information acquisition and, more specifically, in a family of structured POMDPs (for example, information-gathering and sensing POMDPs) whose assumptions and algorithmic tools directly apply to AFA. This connection provides a common language for comparing problem settings and methods, and it highlights where AFA can leverage established results in structured POMDP planning and approximation. Building on this perspective, we present an up-to-date taxonomy of AFA methods that (roughly) mirrors standard approaches to solving POMDPs: (i) embedded cost-aware predictors (notably cost-sensitive decision trees and ensembles), (ii) model-based methods that plan using learned probabilistic components, (iii) model-free methods that learn acquisition policies from simulated episodes, and (iv) hybrid methods that combine the strengths of model-based and model-free approaches. We argue that this POMDP-centric view clarifies connections among existing methods and motivates more principled algorithm design. Since much prior work is heuristic and lacks formal guarantees, we also outline routes to guarantees by connecting AFA to adaptive stochastic optimization. We conclude by highlighting open challenges and promising directions for future research.
♻ ☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study offline scheduling for large language model (LLM) serving under a fixed KV-cache memory budget, where requests have heterogeneous prompt (prefill) and response (decode) lengths. Prompt tokens determine initial KV usage, and each generated token increases memory by one unit. Given a backlog of n requests arriving together, we schedule mixed prefill and decode batches to minimize total end-to-end latency. We show that heterogeneity in prompt lengths makes the problem computationally intractable and that widely used heuristics such as first-come-first-served and shortest-first can be arbitrarily suboptimal. We propose Sorted-F, which repeatedly forms feasible batches using a new selection metric that balances batch size against downstream decode cost, and prove it achieves a constant-factor guarantee on total latency. We further develop practical variants -- an exact solver for small instances and fast heuristics for larger ones -- and evaluate them on a public workload spanning short conversations and long-document summarization, where they consistently reduce average latency relative to standard baselines. Our results highlight that during peak-hour tidal backlogs, greedy GPU packing or short-request prioritization can perform poorly when prompt lengths vary widely, and provide a principled, tunable framework for designing production batch schedulers and planning capacity in memory-constrained LLM serving systems.
♻ ☆ Quantifying Multimodal Imbalance: A GMM-Guided Adaptive Loss for Audio-Visual Learning
Multimodal learning integrates diverse modalities but suffers from modality imbalance, where dominant modalities suppress weaker ones due to inconsistent convergence rates. Existing methods predominantly rely on static modulation or heuristics, overlooking sample-level distributional variations in prediction bias. Specifically, they fail to distinguish outlier samples where the modality gap is exacerbated by low data quality. We propose a framework to quantitatively diagnose and dynamically mitigate this imbalance at the sample level. We introduce the Modality Gap metric to quantify prediction discrepancies. Analysis reveals that this gap follows a bimodal distribution, indicating the coexistence of balanced and imbalanced sample subgroups. We employ a Gaussian Mixture Model (GMM) to explicitly model this distribution, leveraging Bayesian posterior probabilities for soft subgroup separation. Our two-stage framework comprises a Warm-up stage and an Adaptive Training stage. In the latter, a GMM-guided Adaptive Loss dynamically reallocates optimization priorities: it imposes stronger alignment penalties on imbalanced samples to rectify bias, while prioritizing fusion for balanced samples to maximize complementary information. Experiments on CREMA-D, AVE, and KineticSound demonstrate that our method significantly outperforms SOTA baselines. Furthermore, we show that fine-tuning on a GMM-filtered balanced subset serves as an effective data purification strategy, yielding substantial gains by eliminating extreme noisy samples even without the adaptive loss.
♻ ☆ PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits ICLR 2026
Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning. The code is available at https://github.com/lokali/PersonaX.
comment: ICLR 2026
♻ ☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on problem configurations outside their training distribution, such as new initial conditions or structural dimensions. While Unsupervised Domain Adaptation (UDA) techniques have been widely used in vision and language to generalize across domains without additional labeled data, their application to complex engineering simulations remains largely unexplored. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks spanning diverse processes and physics: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established UDA methods to state-of-the-art neural surrogates and systematically evaluate them. Extensive experiments on SIMSHIFT highlight the challenges of out-of-distribution neural surrogate modeling, demonstrate the potential of UDA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
♻ ☆ A Unified Framework for Debiased Machine Learning: Riesz Representer Fitting under Bregman Divergence
Estimating the Riesz representer is central to debiased machine learning for causal and structural parameter estimation. We propose generalized Riesz regression, a unified framework for estimating the Riesz representer by fitting a representer model via Bregman divergence minimization. This framework includes various divergences as special cases, such as the squared distance and the Kullback--Leibler (KL) divergence, where the former recovers Riesz regression and the latter recovers tailored loss minimization. Under suitable pairs of divergence and model specifications (link functions), the dual problems of the Riesz representer fitting problem correspond to covariate balancing, which we call automatic covariate balancing. Moreover, under the same specifications, the sample average of outcomes weighted by the estimated Riesz representer satisfies Neyman orthogonality even without estimating the regression function, a property we call automatic Neyman orthogonalization. This property not only reduces the estimation error of Neyman orthogonal scores but also clarifies a key distinction between debiased machine learning and targeted maximum likelihood estimation (TMLE). Our framework can also be viewed as a generalization of density ratio fitting under Bregman divergences to Riesz representer estimation, and it applies beyond density ratio estimation. We provide convergence analyses for both reproducing kernel Hilbert space (RKHS) and neural network model classes. A Python package for generalized Riesz regression is released as genriesz and is available at https://github.com/MasaKat0/genriesz.
♻ ☆ RAP: KV-Cache Compression via RoPE-Aligned Pruning
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
♻ ☆ Beyond Pairwise: Empowering LLM Alignment With Ranked Choice Modeling ICLR 2026
Alignment of large language models (LLMs) has predominantly relied on pairwise preference optimization, where annotators select the better of two responses to a prompt. While simple, this approach overlooks the opportunity to learn from richer forms of human feedback, such as multiway comparisons and top-$k$ rankings. We introduce Ranked Choice Preference Optimization (RCPO), a unified framework that bridges preference optimization with (ranked) choice modeling via maximum likelihood estimation. RCPO supports both utility-based and rank-based models, subsumes several pairwise methods (such as DPO and SimPO) as special cases, and provides principled training objectives for richer feedback formats. We instantiate this framework with two representative models (Multinomial Logit and Mallows-RMJ). Experiments on Llama-3-8B-Instruct, Gemma-2-9B-it, and Mistral-7B-Instruct across in-distribution and out-of-distribution settings show that RCPO consistently outperforms competitive baselines. RCPO shows that directly leveraging ranked preference data, combined with the right choice models, yields more effective alignment. It offers an extensible foundation for incorporating (ranked) choice modeling into LLM training.
comment: Accepted by The Fourteenth International Conference on Learning Representations (ICLR 2026)
♻ ☆ Understanding Image2Video Domain Shift in Food Segmentation: An Instance-level Analysis on Apples
Food segmentation models trained on static images have achieved strong performance on benchmark datasets; however, their reliability in video settings remains poorly understood. In real-world applications such as food monitoring and instance counting, segmentation outputs must be temporally consistent, yet image-trained models often break down when deployed on videos. In this work, we analyze this failure through an instance segmentation and tracking perspective, focusing on apples as a representative food category. Models are trained solely on image-level food segmentation data and evaluated on video sequences using an instance segmentation with tracking-by-matching framework, enabling object-level temporal analysis. Our results reveal that high frame-wise segmentation accuracy does not translate to stable instance identities over time. Temporal appearance variations, particularly illumination changes, specular reflections, and texture ambiguity, lead to mask flickering and identity fragmentation, resulting in significant errors in apple counting. These failures are largely overlooked by conventional image-based metrics, which substantially overestimate real-world video performance. Beyond diagnosing the problem, we examine practical remedies that do not require full video supervision, including post-hoc temporal regularization and self-supervised temporal consistency objectives. Our findings suggest that the root cause of failure lies in image-centric training objectives that ignore temporal coherence, rather than model capacity. This study highlights a critical evaluation gap in food segmentation research and motivates temporally-aware learning and evaluation protocols for video-based food analysis.
♻ ☆ Bandits with Single-Peaked Preferences and Limited Resources ICLR'26
We study an online stochastic matching problem in which an algorithm sequentially matches $U$ users to $K$ arms, aiming to maximize cumulative reward over $T$ rounds under budget constraints. Without structural assumptions, computing the optimal matching is NP-hard, making online learning computationally infeasible. To overcome this barrier, we focus on single-peaked preferences -- a well-established structure in social choice theory, where users' preferences are unimodal with respect to a common order over arms. We devise an efficient algorithm for the offline budgeted matching problem, and leverage it into an efficient online algorithm with a regret of $\tilde O(UKT^{2/3})$. Our approach relies on a novel PQ tree-based order approximation method. If the single-peaked structure is known, we develop an efficient UCB-like algorithm that achieves a regret bound of $\tilde O(U\sqrt{TK})$.
comment: Accepted to the International Conference on Learning Representations 2026 (ICLR'26)
♻ ☆ Toward Ultra-Long-Horizon Sequential Model Editing
Model editing has emerged as a practical approach for mitigating factual errors and outdated knowledge in large language models (LLMs). Among existing methods, the Locate-and-Edit (L&E) paradigm is the dominant framework: it locates MLP parameters implicated in expressing a target fact, and then performs a localized update to rewrite that fact. However, long sequences of edits often trigger abrupt model collapse in L&E beyond a critical point. We empirically identify a strong correlation between collapse and explosive growth of edited MLP weight norms, and formally prove that commonly used L&E update rules can induce exponential norm growth across sequential edits in the absence of explicit norm control. To address this issue, we propose Norm-Anchor Scaling NAS, a plug-and-play norm-constrained strategy. Across extensive experiments, NAS delays the collapse point of representative L&E algorithms by more than 4 times and yields a 72.2% average relative gain in editing performance, requiring only a single additional line of code and incurring negligible computational overhead.
♻ ☆ Information-Theoretic Limits of Quantum Learning via Data Compression
Understanding the power of quantum data in machine learning is central to many proposed applications of quantum technologies. While access to quantum data can offer exponential advantages for carefully designed learning tasks and often under strong assumptions on the data distribution, it remains an open question whether such advantages persist in less structured settings and under more realistic, naturally occurring distributions. Motivated by these practical concerns, we introduce a systematic framework based on quantum lossy data compression to bound the power of quantum data in the context of probably approximately correct (PAC) learning. Specifically, we provide lower bounds on the sample complexity of quantum learners for arbitrary functions when data is drawn from Zipf's distribution, a widely used model for the empirical distributions of real-world data. We also establish lower bounds on the size of quantum input data required to learn linear functions, thereby proving the optimality of previous positive results. Beyond learning theory, we show that our framework has applications in secure delegated quantum computation within the measurement-based quantum computation (MBQC) model. In particular, we constrain the amount of private information the server can infer, strengthening the security guarantees of the delegation protocol proposed in (Mantri et al., PRX, 2017).
comment: Version accepted at the IEEE International Conference on Quantum Artificial Intelligence (2025)
♻ ☆ Breaking the Simplification Bottleneck in Amortized Neural Symbolic Regression
Symbolic regression (SR) aims to discover interpretable analytical expressions that accurately describe observed data. Amortized SR promises to be much more efficient than the predominant genetic programming SR methods, but currently struggles to scale to realistic scientific complexity. We find that a key obstacle is the lack of a fast reduction of equivalent expressions to a concise normalized form. Amortized SR has addressed this by general-purpose Computer Algebra Systems (CAS) like SymPy, but the high computational cost severely limits training and inference speed. We propose SimpliPy, a rule-based simplification engine achieving a 100-fold speed-up over SymPy at comparable quality. This enables substantial improvements in amortized SR, including scalability to much larger training sets, more efficient use of the per-expression token budget, and systematic training set decontamination with respect to equivalent test expressions. We demonstrate these advantages in our Flash-ANSR framework, which achieves much better accuracy than amortized baselines (NeSymReS, E2E) on the FastSRB benchmark. Moreover, it performs on par with state-of-the-art direct optimization (PySR) while recovering more concise instead of more complex expressions with increasing inference budget.
comment: main text: 8 pages, 7 figures; appendix: 12 pages, 11 figures; code available at https://github.com/psaegert/simplipy and https://github.com/psaegert/flash-ansr; v2: Fixed rendering artifact in Figure 7
♻ ☆ Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: Data privacy regulations hinder the creation of generalizable foundation models (FMs) for surgery by preventing multi-institutional data aggregation. This study investigates federated learning (FL) as a privacy-preserving solution to collaboratively train robust surgical FMs. Methods: We introduce Federated EndoViT (FL-EndoViT), a federated framework that validates the Masked Autoencoder (MAE) pretraining strategy in a decentralized surgical setting. To ensure convergence under severe data heterogeneity, the architecture integrates adaptive Sharpness-Aware Minimization (FedSAM). Pretrained on the large-scale Endo700k dataset, FL-EndoViT is evaluated against a centralized baseline on different tasks including scene segmentation, action recognition, and phase recognition. Results: FedSAM is critical for successful pretraining, overcoming the convergence failures of standard federated methods. The resulting FL-EndoViT performs comparably to its centralized counterpart, with significant advantages in data-scarce, high-resolution segmentation and generalization to new surgical events. We also establish that full, end-to-end fine-tuning is necessary for optimal performance. Conclusion: This work validates FL with adaptive optimization as a viable paradigm for creating robust, privacy-preserving surgical FMs. Our findings provide a scalable framework for collaborative Surgical Data Science and underscore the optimizer's critical role in handling data heterogeneity. Future work should explore video-based models to incorporate spatiotemporal dynamics.
comment: Preprint submitted to MIDL
♻ ☆ Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning
In scientific domains -- from biology to the social sciences -- many questions boil down to \textit{What effect will we observe if we intervene on a particular variable?} If the causal relationships (e.g.~a causal graph) are known, it is possible to estimate the intervention distributions. In the absence of this domain knowledge, the causal structure must be discovered from the available observational data. However, observational data are often compatible with multiple causal graphs, making methods that commit to a single structure prone to overconfidence. A principled way to manage this structural uncertainty is via Bayesian inference, which averages over a posterior distribution on possible causal structures and functional mechanisms. Unfortunately, the number of causal structures grows super-exponentially with the number of nodes in the graph, making computations intractable. We propose to circumvent these challenges by using meta-learning to create an end-to-end model: the Model-Averaged Causal Estimation Transformer Neural Process (MACE-TNP). The model is trained to predict the Bayesian model-averaged interventional posterior distribution, and its end-to-end nature bypasses the need for expensive calculations. Empirically, we demonstrate that MACE-TNP outperforms strong Bayesian baselines. Our work establishes meta-learning as a flexible and scalable paradigm for approximating complex Bayesian causal inference, that can be scaled to increasingly challenging settings in the future.
♻ ☆ A Generalized Version of Chung's Lemma and its Applications
Chung's Lemma is a classical tool for establishing asymptotic convergence rates of (stochastic) optimization methods under strong convexity-type assumptions and appropriate polynomial diminishing step sizes. In this work, we develop a generalized version of Chung's Lemma, which provides a simple non-asymptotic convergence framework for a more general family of step size rules. We demonstrate broad applicability of the proposed generalized lemma by deriving tight non-asymptotic convergence rates for a large variety of stochastic methods. In particular, we obtain partially new non-asymptotic complexity results for stochastic optimization methods, such as Stochastic Gradient Descent (SGD) and Random Reshuffling (RR), under a general $(θ,μ)$-Polyak-Lojasiewicz (PL) condition and for various step sizes strategies, including polynomial, constant, exponential, and cosine step sizes rules. Notably, as a by-product of our analysis, we observe that exponential step sizes exhibit superior adaptivity to both landscape geometry and gradient noise; specifically, they achieve optimal convergence rates without requiring exact knowledge of the underlying landscape or separate parameter selection strategies for noisy and noise-free regimes. Our results demonstrate that the developed variant of Chung's Lemma offers a versatile, systematic, and streamlined approach to establish non-asymptotic convergence rates under general step size rules.
comment: 38 pages
♻ ☆ Adapting Noise to Data: Generative Flows from 1D Processes
The default Gaussian latent in flow-based generative models poses challenges when learning certain distributions such as heavy-tailed ones. We introduce a general framework for learning data-adaptive latent distributions using one-dimensional quantile functions, optimized via the Wasserstein distance between noise and data. The quantile-based parameterization naturally adapts to both heavy-tailed and compactly supported distributions and shortens transport paths. Numerical results confirm the method's flexibility and effectiveness achieved with negligible computational overhead.
♻ ☆ ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection ICLR24
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a \textsc{ConjNorm} method, reframing density function design as a search for the optimal norm coefficient $p$ against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed \textsc{ConjNorm} has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25$\%$ and 28.19$\%$ (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
comment: ICLR24 poster
♻ ☆ A Nonparametric Discrete Hawkes Model with a Collapsed Gaussian-Process Prior
Hawkes process models are used in settings where past events increase the likelihood of future events occurring. Many applications record events as counts on a regular grid, yet discrete-time Hawkes models remain comparatively underused and are often constrained by fixed-form baselines and excitation kernels. In particular, there is a lack of flexible, nonparametric treatments of both the baseline and the excitation in discrete time. To this end, we propose the Gaussian Process Discrete Hawkes Process (GP-DHP), a nonparametric framework that places Gaussian process priors on both the baseline and the excitation and performs inference through a collapsed latent representation. This yields smooth, data-adaptive structure without prespecifying trends, periodicities, or decay shapes, and enables maximum a posteriori (MAP) estimation with near-linear-time \(O(T\log T)\) complexity. A closed-form projection recovers interpretable baseline and excitation functions from the optimized latent trajectory. In simulations, GP-DHP recovers diverse excitation shapes and evolving baselines. In case studies on U.S. terrorism incidents and weekly Cryptosporidiosis counts, it improves test predictive log-likelihood over standard parametric discrete Hawkes baselines while capturing bursts, delays, and seasonal background variation. The results indicate that flexible discrete-time self-excitation can be achieved without sacrificing scalability or interpretability.
♻ ☆ LD-ViCE: Latent Diffusion Model for Video Counterfactual Explanations
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Experiments on three diverse video datasets - EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition) with multiple target models covering both classification and regression tasks, demonstrate that LD-ViCE generalizes well and achieves state-of-the-art performance. On the EchoNet-Dynamic dataset, LD-ViCE achieves significantly higher regression accuracy than prior methods and exhibits high temporal consistency, while the refinement stage further improves perceptual quality. Qualitative analyses confirm that LD-ViCE produces semantically meaningful and temporally coherent explanations, providing actionable insights into model behavior. LD-ViCE advances the trustworthiness and interpretability of video-based AI systems through visually coherent counterfactual explanations.
comment: 44 Pages
♻ ☆ NeuroRVQ: Multi-Scale EEG Tokenization for Generative Large Brainwave Models
Electroencephalography (EEG) captures neural activity across multiple temporal and spectral scales, yielding signals that are rich but complex for representation learning. Recently, EEG foundation models trained to predict masked signal-tokens have shown promise for learning generalizable representations. However, their performance is hindered by their signal tokenization modules. Existing neural tokenizers fail to preserve high-frequency dynamics, limiting their ability to reconstruct EEG signals with high fidelity. We introduce NeuroRVQ, a scalable Large Brainwave Model (LBM) centered on a codebook-based tokenizer. Our tokenizer integrates: (i) multi-scale feature extraction modules that capture the full frequency neural spectrum; (ii) hierarchical residual vector quantization (RVQ) codebooks for high-resolution encoding; and, (iii) an EEG signal phase- and amplitude-aware loss function for efficient training. This design enables efficient EEG compression while supporting accurate reconstruction across all frequency bands, leading to robust generative masked modeling. Our empirical results demonstrate that NeuroRVQ achieves lower reconstruction error and outperforms existing LBMs on a variety of downstream tasks. More broadly, NeuroRVQ tokenizer establishes a strong prior for codebook-based general-purpose brainwave models, enabling advances in neural decoding, generative modeling and multimodal biosignal integration.
♻ ☆ Patch-Level Tokenization with CNN Encoders and Attention for Improved Transformer Time-Series Forecasting
Transformer-based models have shown strong performance in time-series forecasting by leveraging self-attention to model long-range temporal dependencies. However, their effectiveness depends critically on the quality and structure of input representations derived from raw multivariate time-series data, particularly as sequence length and data scale increase. This paper proposes a two-stage forecasting framework that explicitly separates local temporal representation learning from global dependency modelling. In the proposed approach, a convolutional neural network operates on fixed-length temporal patches to extract short-range temporal dynamics and non-linear feature interactions, producing compact patch-level token embeddings. Token-level self-attention is applied during representation learning to refine these embeddings, after which a Transformer encoder models inter-patch temporal dependencies to generate forecasts. The method is evaluated on a synthetic multivariate time-series dataset with controlled static and dynamic factors, using an extended sequence length and a larger number of samples. Experimental results demonstrate that the proposed framework consistently outperforms a convolutional baseline under increased temporal context and remains competitive with a strong patch-based Transformer model. These findings indicate that structured patch-level tokenization provides a scalable and effective representation for multivariate time-series forecasting, particularly when longer input sequences are considered.
comment: 6 pages, 2 figures, 3 tables
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Compiler-Assisted Speculative Sampling for Accelerated LLM Inference on Heterogeneous Edge Devices
LLM deployment on resource-constrained edge devices faces severe latency constraints, particularly in real-time applications where delayed responses can compromise safety or usability. Among many approaches to mitigate the inefficiencies of sequential token-by-token generation, Speculative Decoding (SD) has emerged as a promising technique. However, SD at the edge is hindered by two major challenges: (1) integrating SD into a compiler-based workflow without sacrificing performance or programmability, and (2) exploiting the heterogeneous compute resources of modern SoCs through carefully designed partitioning strategies. This work addresses these challenges by using an analytical cost model that explores heterogeneous hardware configurations and guides coarse-grained partitioning of LLM subgraphs, particularly with edge-typical short input sequence lengths. The cost model predicts when speculative sampling and heterogeneous execution are jointly beneficial and is validated on an edge device featuring a hexacore Cortex-A CPU and a Mali GPU, revealing up to 1.68$\times$ speedup for translation tasks, closely matching analytic expectations.
comment: Accepted to AccML@HiPEAC 2026
♻ ☆ UTOPIA: Unlearnable Tabular Data via Decoupled Shortcut Embedding
Unlearnable examples (UE) have emerged as a practical mechanism to prevent unauthorized model training on private vision data, while extending this protection to tabular data is nontrivial. Tabular data in finance and healthcare is highly sensitive, yet existing UE methods transfer poorly because tabular features mix numerical and categorical constraints and exhibit saliency sparsity, with learning dominated by a few dimensions. Under a Spectral Dominance condition, we show certified unlearnability is feasible when the poison spectrum overwhelms the clean semantic spectrum. Guided by this, we propose Unlearnable Tabular Data via DecOuPled Shortcut EmbeddIng (UTOPIA), which exploits feature redundancy to decouple optimization into two channels: high saliency features for semantic obfuscation and low saliency redundant features for embedding a hyper correlated shortcut, yielding constraint-aware dominant shortcuts while preserving tabular validity. Extensive experiments across tabular datasets and models show UTOPIA drives unauthorized training toward near random performance, outperforming strong UE baselines and transferring well across architectures.
♻ ☆ Free-Boundary Quasiconformal Maps via a Least-squares Operator in Diffeomorphism Optimization
Free-boundary diffeomorphism optimization, an important and widely occurring task in geometric modeling, computer graphics, and biological imaging, requires simultaneously determining a planar target domain and a locally bijective map with well-controlled distortion. We formulate this task through the least-squares quasiconformal (LSQC) operator and establish key structural properties of the LSQC minimizer, including well-posedness under mild conditions, invariance under similarity transformations, and resolution-independent behavior with stability under mesh refinement. We further analyze the sensitivity of the LSQC solution with respect to the Beltrami coefficient, establishing stability and differentiability properties that enable gradient-based optimization over the space of Beltrami coefficients. To make this differentiable formulation practical at scale and to facilitate the optimization process, we introduce the Spectral Beltrami Network (SBN), a multiscale mesh-spectral surrogate that approximates the LSQC solution operator in a single differentiable forward pass. This yields SBN-Opt, an optimization framework that searches over admissible Beltrami coefficients and pinning conditions to solve free-boundary diffeomorphism objectives with explicit distortion control. Extensive experiments on equiareal parameterization and inconsistent surface registration demonstrate consistent improvements over traditional numerical algorithms.
♻ ☆ The hidden risks of temporal resampling in clinical reinforcement learning
Offline reinforcement learning (ORL) has shown potential for improving decision-making in healthcare. However, contemporary research typically aggregates patient data into fixed time intervals, simplifying their mapping to standard ORL frameworks. The impact of these temporal manipulations on model safety and efficacy remains poorly understood. In this work, using both a gridworld navigation task and the UVA/Padova clinical diabetes simulator, we demonstrate that temporal resampling significantly degrades the performance of offline reinforcement learning algorithms during live deployment. We propose three mechanisms that drive this failure: (i) the generation of counterfactual trajectories, (ii) the distortion of temporal expectations, and (iii) the compounding of generalisation errors. Crucially, we find that standard off-policy evaluation metrics can fail to detect these drops in performance. Our findings reveal a fundamental risk in current healthcare ORL pipelines and emphasise the need for methods that explicitly handle the irregular timing of clinical decision-making.
comment: 12 pages, 4 figures. v2 fixes missing acknowledgements
♻ ☆ Input Convex Kolmogorov Arnold Networks
This article presents an input convex neural network architecture using Kolmogorov-Arnold networks (ICKAN). Two specific networks are presented: the first is based on a low-order, linear-by-part, representation of functions, and a universal approximation theorem is provided. The second is based on cubic splines, for which only numerical results support convergence. We demonstrate on simple tests that these networks perform competitively with classical input convex neural networks (ICNNs). In a second part, we use the networks to solve some optimal transport problems needing a convex approximation of functions and demonstrate their effectiveness. Comparisons with ICNNs show that cubic ICKANs produce results similar to those of classical ICNNs.
♻ ☆ BiSSL: Enhancing the Alignment Between Self-Supervised Pretraining and Downstream Fine-Tuning via Bilevel Optimization
Models initialized from self-supervised pretraining may suffer from poor alignment with downstream tasks, reducing the extent to which subsequent fine-tuning can adapt pretrained features toward downstream objectives. To mitigate this, we introduce BiSSL, a novel bilevel training framework that enhances the alignment of self-supervised pretrained models with downstream tasks prior to fine-tuning. BiSSL acts as an intermediate training stage conducted after conventional self-supervised pretraining and is tasked with solving a bilevel optimization problem that incorporates the pretext and downstream training objectives in its lower- and upper-level objectives, respectively. This approach explicitly models the interdependence between the pretraining and fine-tuning stages within the conventional self-supervised learning pipeline, facilitating enhanced information sharing between them that ultimately leads to a model initialization better aligned with the downstream task. We propose a general training algorithm for BiSSL that is compatible with a broad range of pretext and downstream tasks. Using SimCLR and Bootstrap Your Own Latent to pretrain ResNet-50 backbones on the ImageNet dataset, we demonstrate that our proposed framework significantly improves accuracy on the vast majority of 12 downstream image classification datasets, as well as on object detection. Exploratory analyses alongside investigative experiments further provide compelling evidence that BiSSL enhances downstream alignment.
♻ ☆ The Theory and Practice of MAP Inference over Non-Convex Constraints
In many safety-critical settings, probabilistic ML systems have to make predictions subject to algebraic constraints, e.g., predicting the most likely trajectory that does not cross obstacles. These real-world constraints are rarely convex, nor the densities considered are (log-)concave. This makes computing this constrained maximum a posteriori (MAP) prediction efficiently and reliably extremely challenging. In this paper, we first investigate under which conditions we can perform constrained MAP inference over continuous variables exactly and efficiently and devise a scalable message-passing algorithm for this tractable fragment. Then, we devise a general constrained MAP strategy that interleaves partitioning the domain into convex feasible regions with numerical constrained optimization. We evaluate both methods on synthetic and real-world benchmarks, showing our approaches outperform constraint-agnostic baselines, and scale to complex densities intractable for SoTA exact solvers.
Information Retrieval 36
Overview of the TREC 2025 RAGTIME Track
The principal goal of the RAG TREC Instrument for Multilingual Evaluation (RAGTIME) track at TREC is to study report generation from multilingual source documents. The track has created a document collection containing Arabic, Chinese, English, and Russian news stories. RAGTIME includes three task types: Multilingual Report Generation, English Report Generation, and Multilingual Information Retrieval (MLIR). A total of 125 runs were submitted by 13 participating teams (and as baselines by the track coordinators) for three tasks. This overview describes these three tasks and presents the available results.
comment: 10 pages, 3 figures, notebook version of the RAGTIME 2025 overview paper
☆ Kunlun: Establishing Scaling Laws for Massive-Scale Recommendation Systems through Unified Architecture Design
Deriving predictable scaling laws that govern the relationship between model performance and computational investment is crucial for designing and allocating resources in massive-scale recommendation systems. While such laws are established for large language models, they remain challenging for recommendation systems, especially those processing both user history and context features. We identify poor scaling efficiency as the main barrier to predictable power-law scaling, stemming from inefficient modules with low Model FLOPs Utilization (MFU) and suboptimal resource allocation. We introduce Kunlun, a scalable architecture that systematically improves model efficiency and resource allocation. Our low-level optimizations include Generalized Dot-Product Attention (GDPA), Hierarchical Seed Pooling (HSP), and Sliding Window Attention. Our high-level innovations feature Computation Skip (CompSkip) and Event-level Personalization. These advances increase MFU from 17% to 37% on NVIDIA B200 GPUs and double scaling efficiency over state-of-the-art methods. Kunlun is now deployed in major Meta Ads models, delivering significant production impact.
comment: 10 pages, 4 figures
☆ Efficient Learning of Sparse Representations from Interactions WWW
Behavioral patterns captured in embeddings learned from interaction data are pivotal across various stages of production recommender systems. However, in the initial retrieval stage, practitioners face an inherent tradeoff between embedding expressiveness and the scalability and latency of serving components, resulting in the need for representations that are both compact and expressive. To address this challenge, we propose a training strategy for learning high-dimensional sparse embedding layers in place of conventional dense ones, balancing efficiency, representational expressiveness, and interpretability. To demonstrate our approach, we modified the production-grade collaborative filtering autoencoder ELSA, achieving up to 10x reduction in embedding size with no loss of recommendation accuracy, and up to 100x reduction with only a 2.5% loss. Moreover, the active embedding dimensions reveal an interpretable inverted-index structure that segments items in a way directly aligned with the model's latent space, thereby enabling integration of segment-level recommendation functionality (e.g., 2D homepage layouts) within the candidate retrieval model itself. Source codes, additional results, as well as a live demo are available at https://github.com/zombak79/compressed_elsa
comment: In the proceedings of the Web Conference (WWW) 2026 (4 pages)
☆ AmharicIR+Instr: A Two-Dataset Resource for Neural Retrieval and Instruction Tuning
Neural retrieval and GPT-style generative models rely on large, high-quality supervised data, which is still scarce for low-resource languages such as Amharic. We release an Amharic data resource consisting of two datasets that supports research on (i) neural retrieval-ranking and (ii) instruction-following text generation. The retrieval-ranking dataset contains 1,091 manually verified query-positive-negative document triplets drawn from diverse Amharic sources and constructed to support contrastive training and benchmarking of neural retrievers (e.g., DPR, ColBERT-style late interaction and SPLADE-style sparse neural retrieval). Triplets are created through a combination of expert-curated queries, web-derived queries, and LLM-assisted generation, with positive/negative documents selected from the web or synthesized by LLMs and then validated by native speakers. The instruction prompt-response dataset comprises 6,285 Amharic prompt-response pairs spanning multiple domains and instruction types, generated with several LLMs and refined through manual review and correction for grammaticality, relevance, fluency, and factual plausibility. We release both datasets with standardized splits and formats (CSV,JSON,JSONL) to enable reproducible work on Amharic retrieval, ranking, and generative modelling. These datasets also come with a methodology that can be generalized to other low-resource languages.
comment: 7 pages, Submitted to resource track
☆ QP-OneModel: A Unified Generative LLM for Multi-Task Query Understanding in Xiaohongshu Search
Query Processing (QP) bridges user intent and content supply in large-scale Social Network Service (SNS) search engines. Traditional QP systems rely on pipelines of isolated discriminative models (e.g., BERT), suffering from limited semantic understanding and high maintenance overhead. While Large Language Models (LLMs) offer a potential solution, existing approaches often optimize sub-tasks in isolation, neglecting intrinsic semantic synergy and necessitating independent iterations. Moreover, standard generative methods often lack grounding in SNS scenarios, failing to bridge the gap between open-domain corpora and informal SNS linguistic patterns, while struggling to adhere to rigorous business definitions. We present QP-OneModel, a Unified Generative LLM for Multi-Task Query Understanding in the SNS domain. We reformulate heterogeneous sub-tasks into a unified sequence generation paradigm, adopting a progressive three-stage alignment strategy culminating in multi-reward Reinforcement Learning. Furthermore, QP-OneModel generates intent descriptions as a novel high-fidelity semantic signal, effectively augmenting downstream tasks such as query rewriting and ranking. Offline evaluations show QP-OneModel achieves a 7.35% overall gain over discriminative baselines, with significant F1 boosts in NER (+9.01%) and Term Weighting (+9.31%). It also exhibits superior generalization, surpassing a 32B model by 7.60% accuracy on unseen tasks. Fully deployed at Xiaohongshu, online A/B tests confirm its industrial value, optimizing retrieval relevance (DCG) by 0.21% and lifting user retention by 0.044%.
☆ Internalizing Multi-Agent Reasoning for Accurate and Efficient LLM-based Recommendation
Large Language Models (LLMs) are reshaping recommender systems by leveraging extensive world knowledge and semantic reasoning to interpret user intent. However, effectively integrating these capabilities with collaborative signals while avoiding prohibitive inference latency remains a critical bottleneck. To address this, we propose a trajectory-driven internalization framework to develop a Single-agent Trajectory-Aligned Recommender (STAR). Specifically, to internalize complex reasoning capabilities into a single efficient model, we first design a multi-agent teacher system capable of multi-turn tool usage and reflection. This teacher utilizes a Collaborative Signal Translation mechanism to explicitly convert latent behavioral patterns into descriptive natural language evidence to enhance reasoning accuracy. Subsequently, a trajectory-driven distillation pipeline transfers this agentic logic, including planning, tool usage, and self-reflection, into the compact STAR model. Extensive experiments demonstrate that STAR surpasses its teacher by 8.7% to 39.5% while eliminating iterative latency, paving the way for real-time, reasoning-enhanced recommendation.
Self-Supervised Learning as Discrete Communication
Most self-supervised learning (SSL) methods learn continuous visual representations by aligning different views of the same input, offering limited control over how information is structured across representation dimensions. In this work, we frame visual self-supervised learning as a discrete communication process between a teacher and a student network, where semantic information is transmitted through a fixed-capacity binary channel. Rather than aligning continuous features, the student predicts multi-label binary messages produced by the teacher. Discrete agreement is enforced through an element-wise binary cross-entropy objective, while a coding-rate regularization term encourages effective utilization of the constrained channel, promoting structured representations. We further show that periodically reinitializing the projection head strengthens this effect by encouraging embeddings that remain predictive across multiple discrete encodings. Extensive experiments demonstrate consistent improvements over continuous agreement baselines on image classification, retrieval, and dense visual prediction tasks, as well as under domain shift through self-supervised adaptation. Beyond backbone representations, we analyze the learned binary codes and show that they form a compact and informative discrete language, capturing semantic factors reusable across classes.
☆ DiffuReason: Bridging Latent Reasoning and Generative Refinement for Sequential Recommendation
Latent reasoning has emerged as a promising paradigm for sequential recommendation, enabling models to capture complex user intent through multi-step deliberation. Yet existing approaches often rely on deterministic latent chains that accumulate noise and overlook the uncertainty inherent in user intent, and they are typically trained in staged pipelines that hinder joint optimization and exploration. To address these challenges, we propose DiffuReason, a unified "Think-then-Diffuse" framework for sequential recommendation. It integrates multi-step Thinking Tokens for latent reasoning, diffusion-based refinement for denoising intermediate representations, and end-to-end Group Relative Policy Optimization (GRPO) alignment to optimize for ranking performance. In the Think stage, the model generates Thinking Tokens that reason over user history to form an initial intent hypothesis. In the Diffuse stage, rather than treating this hypothesis as the final output, we refine it through a diffusion process that models user intent as a probabilistic distribution, providing iterative denoising against reasoning noise. Finally, GRPO-based reinforcement learning enables the reasoning and refinement modules to co-evolve throughout training, without the constraints of staged optimization. Extensive experiments on four benchmarks demonstrate that DiffuReason consistently improves diverse backbone architectures. Online A/B tests on a large-scale industrial platform further validate its practical effectiveness.
☆ With Argus Eyes: Assessing Retrieval Gaps via Uncertainty Scoring to Detect and Remedy Retrieval Blind Spots
Reliable retrieval-augmented generation (RAG) systems depend fundamentally on the retriever's ability to find relevant information. We show that neural retrievers used in RAG systems have blind spots, which we define as the failure to retrieve entities that are relevant to the query, but have low similarity to the query embedding. We investigate the training-induced biases that cause such blind spot entities to be mapped to inaccessible parts of the embedding space, resulting in low retrievability. Using a large-scale dataset constructed from Wikidata relations and first paragraphs of Wikipedia, and our proposed Retrieval Probability Score (RPS), we show that blind spot risk in standard retrievers (e.g., CONTRIEVER, REASONIR) can be predicted pre-index from entity embedding geometry, avoiding expensive retrieval evaluations. To address these blind spots, we introduce ARGUS, a pipeline that enables the retrievability of high-risk (low-RPS) entities through targeted document augmentation from a knowledge base (KB), first paragraphs of Wikipedia, in our case. Extensive experiments on BRIGHT, IMPLIRET, and RAR-B show that ARGUS achieves consistent improvements across all evaluated retrievers (averaging +3.4 nDCG@5 and +4.5 nDCG@10 absolute points), with substantially larger gains in challenging subsets. These results establish that preemptively remedying blind spots is critical for building robust and trustworthy RAG systems (Code and Data).
comment: 8 pages
☆ LEMUR: A Corpus for Robust Fine-Tuning of Multilingual Law Embedding Models for Retrieval EACL
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
comment: Accepted at EACL SRW 26
☆ Comprehensive Comparison of RAG Methods Across Multi-Domain Conversational QA EACL
Conversational question answering increasingly relies on retrieval-augmented generation (RAG) to ground large language models (LLMs) in external knowledge. Yet, most existing studies evaluate RAG methods in isolation and primarily focus on single-turn settings. This paper addresses the lack of a systematic comparison of RAG methods for multi-turn conversational QA, where dialogue history, coreference, and shifting user intent substantially complicate retrieval. We present a comprehensive empirical study of vanilla and advanced RAG methods across eight diverse conversational QA datasets spanning multiple domains. Using a unified experimental setup, we evaluate retrieval quality and answer generation using generator and retrieval metrics, and analyze how performance evolves across conversation turns. Our results show that robust yet straightforward methods, such as reranking, hybrid BM25, and HyDE, consistently outperform vanilla RAG. In contrast, several advanced techniques fail to yield gains and can even degrade performance below the No-RAG baseline. We further demonstrate that dataset characteristics and dialogue length strongly influence retrieval effectiveness, explaining why no single RAG strategy dominates across settings. Overall, our findings indicate that effective conversational RAG depends less on method complexity than on alignment between the retrieval strategy and the dataset structure. We publish the code used.\footnote{\href{https://github.com/Klejda-A/exp-rag.git}{GitHub Repository}}
comment: Accepted to EACL SRW 26
☆ The Wisdom of Many Queries: Complexity-Diversity Principle for Dense Retriever Training
Prior work reports conflicting results on query diversity in synthetic data generation for dense retrieval. We identify this conflict and design Q-D metrics to quantify diversity's impact, making the problem measurable. Through experiments on 4 benchmark types (31 datasets), we find query diversity especially benefits multi-hop retrieval. Deep analysis on multi-hop data reveals that diversity benefit correlates strongly with query complexity ($r$$\geq$0.95, $p$$<$0.05 in 12/14 conditions), measured by content words (CW). We formalize this as the Complexity-Diversity Principle (CDP): query complexity determines optimal diversity. CDP provides actionable thresholds (CW$>$10: use diversity; CW$<$7: avoid it). Guided by CDP, we propose zero-shot multi-query synthesis for multi-hop tasks, achieving state-of-the-art performance.
comment: Under review
☆ Personalized Parameter-Efficient Fine-Tuning of Foundation Models for Multimodal Recommendation WWW 2026
In recent years, substantial research has integrated multimodal item metadata into recommender systems, often by using pre-trained multimodal foundation models to encode such data. Since these models are not originally trained for recommendation tasks, recent works efficiently adapt them via parameter-efficient fine-tuning (PEFT). However, even with PEFT, item embeddings from multimodal foundation models remain user-blind: item embeddings are not conditioned on user interests, despite the fact that users with diverse interests attend to different item aspects. To address this limitation, we propose PerPEFT, a personalized PEFT strategy for multimodal recommendation. Specifically, PerPEFT groups users by interest and assigns a distinct PEFT module to each group, enabling each module to capture the fine-grained item aspects most predictive of that group`s purchase decisions. We further introduce a specialized training technique that strengthens this user-group conditioning. Notably, PerPEFT is PEFT-agnostic and can be paired with any PEFT method applicable to multimodal foundation models. Through extensive experiments, we show that (1) PerPEFT outperforms the strongest baseline by up to 15.3% (NDCG@20) and (2) delivers consistent gains across diverse PEFT variants. It is noteworthy that, even with personalization, PEFT remains lightweight, adding only 1.3% of the parameter count of the foundation model. We provide our code and datasets at https://github.com/kswoo97/PerPEFT.
comment: To be published at The Web Conference 2026 (WWW 2026)
☆ SARM: LLM-Augmented Semantic Anchor for End-to-End Live-Streaming Ranking
Large-scale live-streaming recommendation requires precise modeling of non-stationary content semantics under strict real-time serving constraints. In industrial deployment, two common approaches exhibit fundamental limitations: discrete semantic abstractions sacrifice descriptive precision through clustering, while dense multimodal embeddings are extracted independently and remain weakly aligned with ranking optimization, limiting fine-grained content-aware ranking. To address these limitations, we propose \textbf{SARM}, an end-to-end ranking architecture that integrates natural-language semantic anchors directly into ranking optimization, enabling fine-grained author representations conditioned on multimodal content. Each semantic anchor is represented as learnable text tokens jointly optimized with ranking features, allowing the model to adapt content descriptions to ranking objectives. A lightweight dual-token gated design captures domain-specific live-streaming semantics, while an asymmetric deployment strategy preserves low-latency online training and serving. Extensive offline evaluation and large-scale A/B tests show consistent improvements over production baselines. SARM is fully deployed and serves over 400 million users daily.
☆ Query-Mixed Interest Extraction and Heterogeneous Interaction: A Scalable CTR Model for Industrial Recommender Systems
Learning effective feature interactions is central to modern recommender systems, yet remains challenging in industrial settings due to sparse multi-field inputs and ultra-long user behavior sequences. While recent scaling efforts have improved model capacity, they often fail to construct both context-aware and context-independent user intent from the long-term and real-time behavior sequence. Meanwhile, recent work also suffers from inefficient and homogeneous interaction mechanisms, leading to suboptimal prediction performance. To address these limitations, we propose HeMix, a scalable ranking model that unifies adaptive sequence tokenization and heterogeneous interaction structure. Specifically, HeMix introduces a Query-Mixed Interest Extraction module that jointly models context-aware and context-independent user interests via dynamic and fixed queries over global and real-time behavior sequences. For interaction, we replace self-attention with the HeteroMixer block, enabling efficient, multi-granularity cross-feature interactions that adopt the multi-head token fusion, heterogeneous interaction and group-aligned reconstruction pipelines. HeMix demonstrates favorable scaling behavior, driven by the HeteroMixer block, where increasing model scale via parameter expansion leads to steady improvements in recommendation accuracy. Experiments on industrial-scale datasets show that HeMix scales effectively and consistently outperforms strong baselines. Most importantly, HeMix has been deployed on the AMAP platform, delivering significant online gains: +0.61% GMV, +2.32% PV_CTR, and +0.81% UV_CVR.
☆ SMES: Towards Scalable Multi-Task Recommendation via Expert Sparsity
Industrial recommender systems typically rely on multi-task learning to estimate diverse user feedback signals and aggregate them for ranking. Recent advances in model scaling have shown promising gains in recommendation. However, naively increasing model capacity imposes prohibitive online inference costs and often yields diminishing returns for sparse tasks with skewed label distributions. This mismatch between uniform parameter scaling and heterogeneous task capacity demands poses a fundamental challenge for scalable multi-task recommendation. In this work, we investigate parameter sparsification as a principled scaling paradigm and identify two critical obstacles when applying sparse Mixture-of-Experts (MoE) to multi-task recommendation: exploded expert activation that undermines instance-level sparsity and expert load skew caused by independent task-wise routing. To address these challenges, we propose SMES, a scalable sparse MoE framework with progressive expert routing. SMES decomposes expert activation into a task-shared expert subset jointly selected across tasks and task-adaptive private experts, explicitly bounding per-instance expert execution while preserving task-specific capacity. In addition, SMES introduces a global multi-gate load-balancing regularizer that stabilizes training by regulating aggregated expert utilization across all tasks. SMES has been deployed in Kuaishou large-scale short-video services, supporting over 400 million daily active users. Extensive online experiments demonstrate stable improvements, with GAUC gain of 0.29% and a 0.31% uplift in user watch time.
☆ Single-Turn LLM Reformulation Powered Multi-Stage Hybrid Re-Ranking for Tip-of-the-Tongue Known-Item Retrieval
Retrieving known items from vague descriptions, Tip-of-the-Tongue (ToT) retrieval, remains a significant challenge. We propose using a single call to a generic 8B-parameter LLM for query reformulation, bridging the gap between ill-formed ToT queries and specific information needs. This method is particularly effective where standard Pseudo-Relevance Feedback fails due to poor initial recall. Crucially, our LLM is not fine-tuned for ToT or specific domains, demonstrating that gains stem from our prompting strategy rather than model specialization. Rewritten queries feed a multi-stage pipeline: sparse retrieval (BM25), dense/late-interaction reranking (Contriever, E5-large-v2, ColBERTv2), monoT5 cross-encoding, and list-wise reranking (Qwen 2.5 72B). Experiments on 2025 TREC-ToT datasets show that while raw queries yield poor performance, our lightweight pre-retrieval transformation improves Recall by 20.61%. Subsequent reranking improves nDCG@10 by 33.88%, MRR by 29.92%, and MAP@10 by 29.98%, offering a cost-effective intervention that unlocks the potential of downstream rankers. Code and data: https://github.com/debayan1405/TREC-TOT-2025
☆ ECHO: An Open Research Platform for Evaluation of Chat, Human Behavior, and Outcomes
ECHO (Evaluation of Chat, Human behavior, and Outcomes) is an open research platform designed to support reproducible, mixed-method studies of human interaction with both conversational AI systems and Web search engines. It enables researchers from varying disciplines to orchestrate end-to-end experimental workflows that integrate consent and background surveys, chat-based and search-based information-seeking sessions, writing or judgment tasks, and pre- and post-task evaluations within a unified, low-coding-load framework. ECHO logs fine-grained interaction traces and participant responses, and exports structured datasets for downstream analysis. By supporting both chat and search alongside flexible evaluation instruments, ECHO lowers technical barriers for studying learning, decision making, and user experience across different information access paradigms, empowering researchers from information retrieval, HCI, and the social sciences to conduct scalable and reproducible human-centered AI evaluations.
☆ MLDocRAG: Multimodal Long-Context Document Retrieval Augmented Generation
Understanding multimodal long-context documents that comprise multimodal chunks such as paragraphs, figures, and tables is challenging due to (1) cross-modal heterogeneity to localize relevant information across modalities, (2) cross-page reasoning to aggregate dispersed evidence across pages. To address these challenges, we are motivated to adopt a query-centric formulation that projects cross-modal and cross-page information into a unified query representation space, with queries acting as abstract semantic surrogates for heterogeneous multimodal content. In this paper, we propose a Multimodal Long-Context Document Retrieval Augmented Generation (MLDocRAG) framework that leverages a Multimodal Chunk-Query Graph (MCQG) to organize multimodal document content around semantically rich, answerable queries. MCQG is constructed via a multimodal document expansion process that generates fine-grained queries from heterogeneous document chunks and links them to their corresponding content across modalities and pages. This graph-based structure enables selective, query-centric retrieval and structured evidence aggregation, thereby enhancing grounding and coherence in long-context multimodal question answering. Experiments on datasets MMLongBench-Doc and LongDocURL demonstrate that MLDocRAG consistently improves retrieval quality and answer accuracy, demonstrating its effectiveness for long-context multimodal understanding.
comment: 15 pages
☆ JAG: Joint Attribute Graphs for Filtered Nearest Neighbor Search
Despite filtered nearest neighbor search being a fundamental task in modern vector search systems, the performance of existing algorithms is highly sensitive to query selectivity and filter type. In particular, existing solutions excel either at specific filter categories (e.g., label equality) or within narrow selectivity bands (e.g., pre-filtering for low selectivity) and are therefore a poor fit for practical deployments that demand generalization to new filter types and unknown query selectivities. In this paper, we propose JAG (Joint Attribute Graphs), a graph-based algorithm designed to deliver robust performance across the entire selectivity spectrum and support diverse filter types. Our key innovation is the introduction of attribute and filter distances, which transform binary filter constraints into continuous navigational guidance. By constructing a proximity graph that jointly optimizes for both vector similarity and attribute proximity, JAG prevents navigational dead-ends and allows JAG to consistently outperform prior graph-based filtered nearest neighbor search methods. Our experimental results across five datasets and four filter types (Label, Range, Subset, Boolean) demonstrate that JAG significantly outperforms existing state-of-the-art baselines in both throughput and recall robustness.
♻ ☆ A Semantic Encoding of Object Centric Event Data
The Object-Centric Event Data (OCED) is a novel meta-model aimed at providing a common ground for process data records centered around events and objects. One of its objectives is to foster interoperability and process information exchange. In this context, the integration of data from different providers, the combination of multiple processes, and the enhancement of knowledge inference are novel challenges. Semantic Web technologies can enable the creation of a machine-readable OCED description enriched through ontology-based relationships and entity categorization. In this paper, we introduce an approach built upon Semantic Web technologies for the realization of semantic-enhanced OCED, with the aim to strengthen process data reasoning, interconnect information sources, and boost expressiveness.
comment: 12 pages, 3 figures, Mining a Scientist's Process
♻ ☆ SCoTER: Structured Chain-of-Thought Transfer for Enhanced Recommendation
Harnessing the reasoning power of Large Language Models (LLMs) for recommender systems is hindered by two fundamental challenges. First, current approaches lack a mechanism for automated, data-driven discovery of effective reasoning patterns, relying instead on brittle manual templates or unstable zero-shot prompting. Second, they employ structure-collapsing integration: direct prompting incurs prohibitive online inference costs, while feature extraction collapses reasoning chains into single vectors, discarding stepwise logic. To address these challenges, we propose SCoTER (Structured Chain-of-Thought Transfer for Enhanced Recommendation), a unified framework that treats pattern discovery and structure-aware transfer as a jointly optimized problem. Specifically, SCoTER operationalizes this through two synergistic components: a Generate-Validate-Mine (GVM) pipeline for automated pattern discovery and a structure-preserving integration architecture that transfers stepwise logic to efficient models. Empirically, experiments on four benchmarks demonstrate consistent improvements across diverse backbones. Moreover, in production deployment on the Tencent Advertising Platform, SCoTER achieved a 2.14\% lift in Gross Merchandise Value (GMV) while eliminating online LLM inference costs. Overall, SCoTER presents a practical and unified framework for integrating structured LLM reasoning into recommender systems, validated by consistent improvements in both offline benchmarks and online production environments.
♻ ☆ Retrieval Pivot Attacks in Hybrid RAG: Measuring and Mitigating Amplified Leakage from Vector Seeds to Graph Expansion
Hybrid Retrieval-Augmented Generation (RAG) pipelines combine vector similarity search with knowledge graph expansion for multi-hop reasoning. We show that this composition introduces a distinct security failure mode: a vector-retrieved "seed" chunk can pivot via entity links into sensitive graph neighborhoods, causing cross-tenant data leakage that does not occur in vector-only retrieval. We formalize this risk as Retrieval Pivot Risk (RPR) and introduce companion metrics Leakage@k, Amplification Factor, and Pivot Depth (PD) to quantify leakage magnitude and traversal structure. We present seven Retrieval Pivot Attacks that exploit the vector-to-graph boundary and show that adversarial injection is not required: naturally shared entities create cross-tenant pivot paths organically. Across a synthetic multi-tenant enterprise corpus and the Enron email corpus, the undefended hybrid pipeline exhibits high pivot risk (RPR up to 0.95) with multiple unauthorized items returned per query. Leakage consistently appears at PD=2, which we attribute to the bipartite chunk-entity topology and formalize as a proposition. We then show that enforcing authorization at a single location, the graph expansion boundary, eliminates measured leakage (RPR near 0) across both corpora, all attack variants, and label forgery rates up to 10 percent, with minimal overhead. Our results indicate the root cause is boundary enforcement, not inherently complex defenses: two individually secure retrieval components can compose into an insecure system unless authorization is re-checked at the transition point.
comment: 18 pages, 5 figures
♻ ☆ A Hierarchical Quantized Tokenization Framework for Task-Adaptive Graph Representation Learning
Foundation models in language and vision benefit from a unified discrete token interface that converts raw inputs into sequences for scalable pre-training and inference. For graphs, an effective tokenizer should yield reusable discrete codes that capture both node semantics and relational structure across scales, yet prior quantization-based graph tokenizers typically combine residual vector quantization (RVQ) levels with fixed rules and often focus on a single structural view, limiting cross-task transfer. We present a hierarchical quantized tokenization framework with task-conditioned routing and dual-view token streams. It produces multi-scale codes and two synchronized sequences: a local stream that preserves node-level information and a diffusion-style multi-hop stream that summarizes connectivity. A lightweight router learns task-dependent mixtures over RVQ depths to select an appropriate granularity, while a gated cross-attention module aligns and fuses the two streams into a single token sequence without altering the downstream backbone encoder. Experiments on node classification and link prediction show consistent gains over strong quantized baselines at matched compute, with ablations verifying contributions from hierarchical quantization, adaptive routing, and fusion.
♻ ☆ VK-LSVD: A Large-Scale Industrial Dataset for Short-Video Recommendation WWW '26
Short-video recommendation presents unique challenges, such as modeling rapid user interest shifts from implicit feedback, but progress is constrained by a lack of large-scale open datasets that reflect real-world platform dynamics. To bridge this gap, we introduce the VK Large Short-Video Dataset (VK-LSVD), the largest publicly available industrial dataset of its kind. VK-LSVD offers an unprecedented scale of over 40 billion interactions from 10 million users and almost 20 million videos over six months, alongside rich features including content embeddings, diverse feedback signals, and contextual metadata. Our analysis supports the dataset's quality and diversity. The dataset's immediate impact is confirmed by its central role in the live VK RecSys Challenge 2025. VK-LSVD provides a vital, open dataset to use in building realistic benchmarks to accelerate research in sequential recommendation, cold-start scenarios, and next-generation recommender systems.
comment: Accepted to The ACM Web Conference 2026 (WWW '26). Preprint of conference paper. 7 pages, 2 (7) figures, 4 tables. Dataset available at: https://huggingface.co/datasets/deepvk/VK-LSVD
♻ ☆ Reason to Retrieve: Enhancing Query Understanding through Decomposition and Interpretation
Query understanding (QU) aims to accurately infer user intent to improve document retrieval. It plays a vital role in modern search engines. While large language models (LLMs) have made notable progress in this area, their effectiveness has primarily been studied on short, keyword-based queries. With the rise of AI-driven search, long-form queries with complex intent become increasingly common, but they are underexplored in the context of LLM-based QU. To address this gap, we introduce ReDI, a reasoning-enhanced query understanding method through decomposition and interpretation. ReDI uses the reasoning and understanding capabilities of LLMs within a three-stage pipeline. (i) It decomposes a complex query into a set of targeted sub-queries to capture the user intent. (ii) It enriches each sub-query with detailed semantic interpretations to enhance the retrieval of intent-document matching. And (iii), after independently retrieving documents for each sub-query, ReDI uses a fusion strategy to aggregate the results and obtain the final ranking. We collect a large-scale dataset of real-world complex queries from a commercial search engine and distill the query understanding capabilities of DeepSeek-R1 into small models for practical application. Experiments on public benchmarks, including BRIGHT and BEIR, show that ReDI consistently outperforms strong baselines in both sparse and dense retrieval paradigms, demonstrating its effectiveness. We release our code, generated sub-queries, and interpretations at https://github.com/youngbeauty250/ReDI.
♻ ☆ Generative Reasoning Re-ranker
Recent studies increasingly explore Large Language Models (LLMs) as a new paradigm for recommendation systems due to their scalability and world knowledge. However, existing work has three key limitations: (1) most efforts focus on retrieval and ranking, while the reranking phase, critical for refining final recommendations, is largely overlooked; (2) LLMs are typically used in zero-shot or supervised fine-tuning settings, leaving their reasoning abilities, especially those enhanced through reinforcement learning (RL) and high-quality reasoning data, underexploited; (3) items are commonly represented by non-semantic IDs, creating major scalability challenges in industrial systems with billions of identifiers. To address these gaps, we propose the Generative Reasoning Reranker (GR2), an end-to-end framework with a three-stage training pipeline tailored for reranking. First, a pretrained LLM is mid-trained on semantic IDs encoded from non-semantic IDs via a tokenizer achieving $\ge$99% uniqueness. Next, a stronger larger-scale LLM generates high-quality reasoning traces through carefully designed prompting and rejection sampling, which are used for supervised fine-tuning to impart foundational reasoning skills. Finally, we apply Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO), enabling scalable RL supervision with verifiable rewards designed specifically for reranking. Experiments on two real-world datasets demonstrate GR2's effectiveness: it surpasses the state-of-the-art OneRec-Think by 2.4% in Recall@5 and 1.3% in NDCG@5. Ablations confirm that advanced reasoning traces yield substantial gains across metrics. We further find that RL reward design is crucial in reranking: LLMs tend to exploit reward hacking by preserving item order, motivating conditional verifiable rewards to mitigate this behavior and optimize reranking performance.
comment: 31 pages
♻ ☆ MDL: A Unified Multi-Distribution Learner in Large-scale Industrial Recommendation through Tokenization
Industrial recommender systems increasingly adopt multi-scenario learning (MSL) and multi-task learning (MTL) to handle diverse user interactions and contexts, but existing approaches suffer from two critical drawbacks: (1) underutilization of large-scale model parameters due to limited interaction with complex feature modules, and (2) difficulty in jointly modeling scenario and task information in a unified framework. To address these challenges, we propose a unified \textbf{M}ulti-\textbf{D}istribution \textbf{L}earning (MDL) framework, inspired by the "prompting" paradigm in large language models (LLMs). MDL treats scenario and task information as specialized tokens rather than auxiliary inputs or gating signals. Specifically, we introduce a unified information tokenization module that transforms features, scenarios, and tasks into a unified tokenized format. To facilitate deep interaction, we design three synergistic mechanisms: (1) feature token self-attention for rich feature interactions, (2) domain-feature attention for scenario/task-adaptive feature activation, and (3) domain-fused aggregation for joint distribution prediction. By stacking these interactions, MDL enables scenario and task information to "prompt" and activate the model's vast parameter space in a bottom-up, layer-wise manner. Extensive experiments on real-world industrial datasets demonstrate that MDL significantly outperforms state-of-the-art MSL and MTL baselines. Online A/B testing on Douyin Search platform over one month yields +0.0626\% improvement in LT30 and -0.3267\% reduction in change query rate. MDL has been fully deployed in production, serving hundreds of millions of users daily.
comment: 9 pages, 4 figures
♻ ☆ Continuous Input Embedding Size Search For Recommender Systems SIGIR'23
Latent factor models are the most popular backbones for today's recommender systems owing to their prominent performance. Latent factor models represent users and items as real-valued embedding vectors for pairwise similarity computation, and all embeddings are traditionally restricted to a uniform size that is relatively large (e.g., 256-dimensional). With the exponentially expanding user base and item catalog in contemporary e-commerce, this design is admittedly becoming memory-inefficient. To facilitate lightweight recommendation, reinforcement learning (RL) has recently opened up opportunities for identifying varying embedding sizes for different users/items. However, challenged by search efficiency and learning an optimal RL policy, existing RL-based methods are restricted to highly discrete, predefined embedding size choices. This leads to a largely overlooked potential of introducing finer granularity into embedding sizes to obtain better recommendation effectiveness under a given memory budget. In this paper, we propose continuous input embedding size search (CIESS), a novel RL-based method that operates on a continuous search space with arbitrary embedding sizes to choose from. In CIESS, we further present an innovative random walk-based exploration strategy to allow the RL policy to efficiently explore more candidate embedding sizes and converge to a better decision. CIESS is also model-agnostic and hence generalizable to a variety of latent factor RSs, whilst experiments on two real-world datasets have shown state-of-the-art performance of CIESS under different memory budgets when paired with three popular recommendation models.
comment: Accepted to SIGIR'23. Code is available at https://github.com/qykcq/Continuous-Input-Embedding-Size-Search-For-Recommender-Systems
♻ ☆ SAGE: Scalable AI Governance & Evaluation
Evaluating relevance in large-scale search systems is fundamentally constrained by the governance gap between nuanced, resource-constrained human oversight and the high-throughput requirements of production systems. While traditional approaches rely on engagement proxies or sparse manual review, these methods often fail to capture the full scope of high-impact relevance failures. We present \textbf{SAGE} (Scalable AI Governance \& Evaluation), a framework that operationalizes high-quality human product judgment as a scalable evaluation signal. At the core of SAGE is a bidirectional calibration loop where natural-language \emph{Policy}, curated \emph{Precedent}, and an \emph{LLM Surrogate Judge} co-evolve. SAGE systematically resolves semantic ambiguities and misalignments, transforming subjective relevance judgment into an executable, multi-dimensional rubric with near human-level agreement. To bridge the gap between frontier model reasoning and industrial-scale inference, we apply teacher-student distillation to transfer high-fidelity judgments into compact student surrogates at \textbf{92$\times$} lower cost. Deployed within LinkedIn Search ecosystems, SAGE guided model iteration through simulation-driven development, distilling policy-aligned models for online serving and enabling rapid offline evaluation. In production, it powered policy oversight that measured ramped model variants and detected regressions invisible to engagement metrics. Collectively, these drove a \textbf{0.25\%} lift in LinkedIn daily active users.
♻ ☆ LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
♻ ☆ Multi-Granularity Distribution Modeling for Video Watch Time Prediction via Exponential-Gaussian Mixture Network RecSys'2025
Accurate watch time prediction is crucial for enhancing user engagement in streaming short-video platforms, although it is challenged by complex distribution characteristics across multi-granularity levels. Through systematic analysis of real-world industrial data, we uncover two critical challenges in watch time prediction from a distribution aspect: (1) coarse-grained skewness induced by a significant concentration of quick-skips1, (2) fine-grained diversity arising from various user-video interaction patterns. Consequently, we assume that the watch time follows the Exponential-Gaussian Mixture (EGM) distribution, where the exponential and Gaussian components respectively characterize the skewness and diversity. Accordingly, an Exponential-Gaussian Mixture Network (EGMN) is proposed for the parameterization of EGM distribution, which consists of two key modules: a hidden representation encoder and a mixture parameter generator. We conducted extensive offline experiments on public datasets and online A/B tests on the industrial short-video feeding scenario of Xiaohongshu App to validate the superiority of EGMN compared with existing state-of-the-art methods. Remarkably, comprehensive experimental results have proven that EGMN exhibits excellent distribution fitting ability across coarse-to-fine-grained levels. We open source related code on Github: https://github.com/BestActionNow/EGMN.
comment: Accepted as oral full paper by RecSys'2025 conference
♻ ☆ TokenMixer-Large: Scaling Up Large Ranking Models in Industrial Recommenders
While scaling laws for recommendation models have gained significant traction, existing architectures such as Wukong, HiFormer and DHEN, often struggle with sub-optimal designs and hardware under-utilization, limiting their practical scalability. Our previous TokenMixer architecture (introduced in RankMixer paper) addressed effectiveness and efficiency by replacing self-attention with a ightweight token-mixing operator; however, it faced critical bottlenecks in deeper configurations, including sub-optimal residual paths, vanishing gradients, incomplete MoE sparsification and constrained scalability. In this paper, we propose TokenMixer-Large, a systematically evolved architecture designed for extreme-scale recommendation. By introducing a mixing-and-reverting operation, inter-layer residuals and the auxiliary loss, we ensure stable gradient propagation even as model depth increases. Furthermore, we incorporate a Sparse Per-token MoE to enable efficient parameter expansion. TokenMixer-Large successfully scales its parameters to 7-billion and 15-billion on online traffic and offline experiments, respectively. Currently deployed in multiple scenarios at ByteDance, TokenMixer-Large has achieved significant offline and online performance gains, delivering an increase of +1.66\% in orders and +2.98\% in per-capita preview payment GMV for e-commerce, improving ADSS by +2.0\% in advertising and achieving a +1.4\% revenue growth for live streaming.
♻ ☆ Can Explanations Improve Recommendations? A Joint Optimization with LLM Reasoning
Modern recommender systems rely on large-scale ML models that are data-hungry and black-box. Recent advances in LLMs suggest that explicit reasoning can improve learning efficiency, yet it remains unclear how generative LLMs can systematically improve recommendation tasks that are discriminative in nature. Moreover, in personalized settings, LLMs tend to hallucinate. Existing explainable recommender systems either generate explanations independently of predictions or provide post-hoc rationales; in both cases, explanations do not improve accuracy over black-box recommenders. We argue that when properly calibrated to prediction outcomes, natural-language explanations can in fact improve recommendations. We propose RecPIE (Recommendation with Prediction-Informed Explanations), a framework that jointly optimizes prediction-informed explanations and explanation-informed predictions. In RecPIE, the recommendation task guides the learning of consumer representations, which are used by a trainable LLM to generate explanations for why a consumer may or may not like a product; these explanations are then fed back into a neural recommender to improve predictions. The two components are trained alternately, allowing explanations to be progressively refined based on how much they improve recommendation accuracy. Empirically, on next point-of-interest recommendation using Google Maps data, RecPIE improves accuracy by 3-4% over state-of-the-art baselines and matches the best baseline using only 12% of the training data. Human evaluations show that RecPIE's explanations are preferred 61.5% of the time among five competing methods. To our knowledge, this work is among the first to demonstrate that generative explanation and discriminative recommendation tasks can be jointly learned to outperform standalone approaches on either task.
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026. Project Page: https://y-research-sbu.github.io/CSRv2/
♻ ☆ A Multimodal Manufacturing Safety Chatbot: Knowledge Base Design, Benchmark Development, and Evaluation of Multiple RAG Approaches
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration, selected for chatbot deployment, achieved an accuracy of 86.66%, an average cost of $0.005 per query, and an average end-to-end latency of 10.04 seconds. This latency is practical for delivering a complete safety instruction and is measured from query submission to full instruction delivery rather than generation onset. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.
comment: 25 pages, 5 figures
Computation and Language 27
☆ Effective Reasoning Chains Reduce Intrinsic Dimensionality
Chain-of-thought (CoT) reasoning and its variants have substantially improved the performance of language models on complex reasoning tasks, yet the precise mechanisms by which different strategies facilitate generalization remain poorly understood. While current explanations often point to increased test-time computation or structural guidance, establishing a consistent, quantifiable link between these factors and generalization remains challenging. In this work, we identify intrinsic dimensionality as a quantitative measure for characterizing the effectiveness of reasoning chains. Intrinsic dimensionality quantifies the minimum number of model dimensions needed to reach a given accuracy threshold on a given task. By keeping the model architecture fixed and varying the task formulation through different reasoning strategies, we demonstrate that effective reasoning strategies consistently reduce the intrinsic dimensionality of the task. Validating this on GSM8K with Gemma-3 1B and 4B, we observe a strong inverse correlation between the intrinsic dimensionality of a reasoning strategy and its generalization performance on both in-distribution and out-of-distribution data. Our findings suggest that effective reasoning chains facilitate learning by better compressing the task using fewer parameters, offering a new quantitative metric for analyzing reasoning processes.
comment: 20 pages, 3 figures
☆ Collective Behavior of AI Agents: the Case of Moltbook
We present a large scale data analysis of Moltbook, a Reddit-style social media platform exclusively populated by AI agents. Analyzing over 369,000 posts and 3.0 million comments from approximately 46,000 active agents, we find that AI collective behavior exhibits many of the same statistical regularities observed in human online communities: heavy-tailed distributions of activity, power-law scaling of popularity metrics, and temporal decay patterns consistent with limited attention dynamics. However, we also identify key differences, including a sublinear relationship between upvotes and discussion size that contrasts with human behavior. These findings suggest that, while individual AI agents may differ fundamentally from humans, their emergent collective dynamics share structural similarities with human social systems.
☆ Measuring Inclusion in Interaction: Inclusion Analytics for Human-AI Collaborative Learning
Inclusion, equity, and access are widely valued in AI and education, yet are often assessed through coarse sample descriptors or post-hoc self-reports that miss how inclusion is shaped moment by moment in collaborative problem solving (CPS). In this proof-of-concept paper, we introduce inclusion analytics, a discourse-based framework for examining inclusion as a dynamic, interactional process in CPS. We conceptualize inclusion along three complementary dimensions -- participation equity, affective climate, and epistemic equity -- and demonstrate how these constructs can be made analytically visible using scalable, interaction-level measures. Using both simulated conversations and empirical data from human-AI teaming experiments, we illustrate how inclusion analytics can surface patterns of participation, relational dynamics, and idea uptake that remain invisible to aggregate or post-hoc evaluations. This work represents an initial step toward process-oriented approaches to measuring inclusion in human-AI collaborative learning environments.
☆ FlyAOC: Evaluating Agentic Ontology Curation of Drosophila Scientific Knowledge Bases
Scientific knowledge bases accelerate discovery by curating findings from primary literature into structured, queryable formats for both human researchers and emerging AI systems. Maintaining these resources requires expert curators to search relevant papers, reconcile evidence across documents, and produce ontology-grounded annotations - a workflow that existing benchmarks, focused on isolated subtasks like named entity recognition or relation extraction, do not capture. We present FlyBench to evaluate AI agents on end-to-end agentic ontology curation from scientific literature. Given only a gene symbol, agents must search and read from a corpus of 16,898 full-text papers to produce structured annotations: Gene Ontology terms describing function, expression patterns, and historical synonyms linking decades of nomenclature. The benchmark includes 7,397 expert-curated annotations across 100 genes drawn from FlyBase, the Drosophila (fruit fly) knowledge base. We evaluate four baseline agent architectures: memorization, fixed pipeline, single-agent, and multi-agent. We find that architectural choices significantly impact performance, with multi-agent designs outperforming simpler alternatives, yet scaling backbone models yields diminishing returns. All baselines leave substantial room for improvement. Our analysis surfaces several findings to guide future development; for example, agents primarily use retrieval to confirm parametric knowledge rather than discover new information. We hope FlyBench will drive progress on retrieval-augmented scientific reasoning, a capability with broad applications across scientific domains.
Overview of PAN 2026: Voight-Kampff Generative AI Detection, Text Watermarking, Multi-Author Writing Style Analysis, Generative Plagiarism Detection, and Reasoning Trajectory Detection
The goal of the PAN workshop is to advance computational stylometry and text forensics via objective and reproducible evaluation. In 2026, we run the following five tasks: (1) Voight-Kampff Generative AI Detection, particularly in mixed and obfuscated authorship scenarios, (2) Text Watermarking, a new task that aims to find new and benchmark the robustness of existing text watermarking schemes, (3) Multi-author Writing Style Analysis, a continued task that aims to find positions of authorship change, (4) Generative Plagiarism Detection, a continued task that targets source retrieval and text alignment between generated text and source documents, and (5) Reasoning Trajectory Detection, a new task that deals with source detection and safety detection of LLM-generated or human-written reasoning trajectories. As in previous years, PAN invites software submissions as easy-to-reproduce Docker containers for most of the tasks. Since PAN 2012, more than 1,100 submissions have been made this way via the TIRA experimentation platform.
☆ PABU: Progress-Aware Belief Update for Efficient LLM Agents
Large Language Model (LLM) agents commonly condition actions on full action-observation histories, which introduce task-irrelevant information that easily leads to redundant actions and higher inference cost. We propose Progress-Aware Belief Update (PABU), a belief-state framework that compactly represents an agent's state by explicitly modeling task progress and selectively retaining past actions and observations. At each step, the agent predicts its relative progress since the previous round and decides whether the newly encountered interaction should be stored, conditioning future decisions only on the retained subset. Across eight environments in the AgentGym benchmark, and using identical training trajectories, PABU achieves an 81.0% task completion rate, outperforming previous State of the art (SoTA) models with full-history belief by 23.9%. Additionally, PABU's progress-oriented action selection improves efficiency, reducing the average number of interaction steps to 9.5, corresponding to a 26.9% reduction. Ablation studies show that both explicit progress prediction and selective retention are necessary for robust belief learning and performance gains.
☆ Benchmarking the Energy Savings with Speculative Decoding Strategies EACL
Speculative decoding has emerged as an effective method to reduce latency and inference cost of LLM inferences. However, there has been inadequate attention towards the energy requirements of these models. To address this gap, this paper presents a comprehensive survey of energy requirements of speculative decoding strategies, with detailed analysis on how various factors -- model size and family, speculative decoding strategies, and dataset characteristics -- influence the energy optimizations.
comment: Accepted at EACL Findings 2026
☆ Next-Gen CAPTCHAs: Leveraging the Cognitive Gap for Scalable and Diverse GUI-Agent Defense
The rapid evolution of GUI-enabled agents has rendered traditional CAPTCHAs obsolete. While previous benchmarks like OpenCaptchaWorld established a baseline for evaluating multimodal agents, recent advancements in reasoning-heavy models, such as Gemini3-Pro-High and GPT-5.2-Xhigh have effectively collapsed this security barrier, achieving pass rates as high as 90% on complex logic puzzles like "Bingo". In response, we introduce Next-Gen CAPTCHAs, a scalable defense framework designed to secure the next-generation web against the advanced agents. Unlike static datasets, our benchmark is built upon a robust data generation pipeline, allowing for large-scale and easily scalable evaluations, notably, for backend-supported types, our system is capable of generating effectively unbounded CAPTCHA instances. We exploit the persistent human-agent "Cognitive Gap" in interactive perception, memory, decision-making, and action. By engineering dynamic tasks that require adaptive intuition rather than granular planning, we re-establish a robust distinction between biological users and artificial agents, offering a scalable and diverse defense mechanism for the agentic era.
comment: Project page at https://greenoso.github.io/NextGen-CAPTCHAs_webpage/
☆ SinFoS: A Parallel Dataset for Translating Sinhala Figures of Speech EACL 2026
Figures of Speech (FoS) consist of multi-word phrases that are deeply intertwined with culture. While Neural Machine Translation (NMT) performs relatively well with the figurative expressions of high-resource languages, it often faces challenges when dealing with low-resource languages like Sinhala due to limited available data. To address this limitation, we introduce a corpus of 2,344 Sinhala figures of speech with cultural and cross-lingual annotations. We examine this dataset to classify the cultural origins of the figures of speech and to identify their cross-lingual equivalents. Additionally, we have developed a binary classifier to differentiate between two types of FOS in the dataset, achieving an accuracy rate of approximately 92%. We also evaluate the performance of existing LLMs on this dataset. Our findings reveal significant shortcomings in the current capabilities of LLMs, as these models often struggle to accurately convey idiomatic meanings. By making this dataset publicly available, we offer a crucial benchmark for future research in low-resource NLP and culturally aware machine translation.
comment: 19 pages, 6 figures, 8 tables, Accepted paper at the 22nd Workshop on Multiword Expressions (MWE 2026) @ EACL 2026
☆ Data Science and Technology Towards AGI Part I: Tiered Data Management
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
comment: 16 pages, 3 figures, 7 tables
☆ UI-Venus-1.5 Technical Report
GUI agents have emerged as a powerful paradigm for automating interactions in digital environments, yet achieving both broad generality and consistently strong task performance remains challenging.In this report, we present UI-Venus-1.5, a unified, end-to-end GUI Agent designed for robust real-world applications.The proposed model family comprises two dense variants (2B and 8B) and one mixture-of-experts variant (30B-A3B) to meet various downstream application scenarios.Compared to our previous version, UI-Venus-1.5 introduces three key technical advances: (1) a comprehensive Mid-Training stage leveraging 10 billion tokens across 30+ datasets to establish foundational GUI semantics; (2) Online Reinforcement Learning with full-trajectory rollouts, aligning training objectives with long-horizon, dynamic navigation in large-scale environments; and (3) a single unified GUI Agent constructed via Model Merging, which synthesizes domain-specific models (grounding, web, and mobile) into one cohesive checkpoint. Extensive evaluations demonstrate that UI-Venus-1.5 establishes new state-of-the-art performance on benchmarks such as ScreenSpot-Pro (69.6%), VenusBench-GD (75.0%), and AndroidWorld (77.6%), significantly outperforming previous strong baselines. In addition, UI-Venus-1.5 demonstrates robust navigation capabilities across a variety of Chinese mobile apps, effectively executing user instructions in real-world scenarios. Code: https://github.com/inclusionAI/UI-Venus; Model: https://huggingface.co/collections/inclusionAI/ui-venus
☆ Paradox of De-identification: A Critique of HIPAA Safe Harbour in the Age of LLMs
Privacy is a human right that sustains patient-provider trust. Clinical notes capture a patient's private vulnerability and individuality, which are used for care coordination and research. Under HIPAA Safe Harbor, these notes are de-identified to protect patient privacy. However, Safe Harbor was designed for an era of categorical tabular data, focusing on the removal of explicit identifiers while ignoring the latent information found in correlations between identity and quasi-identifiers, which can be captured by modern LLMs. We first formalize these correlations using a causal graph, then validate it empirically through individual re-identification of patients from scrubbed notes. The paradox of de-identification is further shown through a diagnosis ablation: even when all other information is removed, the model can predict the patient's neighborhood based on diagnosis alone. This position paper raises the question of how we can act as a community to uphold patient-provider trust when de-identification is inherently imperfect. We aim to raise awareness and discuss actionable recommendations.
☆ When Actions Go Off-Task: Detecting and Correcting Misaligned Actions in Computer-Use Agents
Computer-use agents (CUAs) have made tremendous progress in the past year, yet they still frequently produce misaligned actions that deviate from the user's original intent. Such misaligned actions may arise from external attacks (e.g., indirect prompt injection) or from internal limitations (e.g., erroneous reasoning). They not only expose CUAs to safety risks, but also degrade task efficiency and reliability. This work makes the first effort to define and study misaligned action detection in CUAs, with comprehensive coverage of both externally induced and internally arising misaligned actions. We further identify three common categories in real-world CUA deployment and construct MisActBench, a benchmark of realistic trajectories with human-annotated, action-level alignment labels. Moreover, we propose DeAction, a practical and universal guardrail that detects misaligned actions before execution and iteratively corrects them through structured feedback. DeAction outperforms all existing baselines across offline and online evaluations with moderate latency overhead: (1) On MisActBench, it outperforms baselines by over 15% absolute in F1 score; (2) In online evaluation, it reduces attack success rate by over 90% under adversarial settings while preserving or even improving task success rate in benign environments.
comment: Project Homepage: https://osu-nlp-group.github.io/Misaligned-Action-Detection/
☆ Next Concept Prediction in Discrete Latent Space Leads to Stronger Language Models
We propose Next Concept Prediction (NCP), a generative pretraining paradigm built on top of Next Token Prediction (NTP). NCP predicts discrete concepts that span multiple tokens, thereby forming a more challenging pretraining objective. Our model, ConceptLM, quantizes hidden states using Vector Quantization and constructs a concept vocabulary. It leverages both NCP and NTP to drive parameter updates and generates a concept to guide the generation of the following tokens. We train ConceptLM from scratch at scales ranging from 70M to 1.5B parameters with up to 300B training data, including Pythia and GPT-2 backbones. Results on 13 benchmarks show that NCP yields consistent performance gains over traditional token-level models. Furthermore, continual pretraining experiments on an 8B-parameter Llama model indicate that NCP can further improve an NTP-trained model. Our analysis suggests that NCP leads to more powerful language models by introducing a harder pretraining task, providing a promising path toward better language modeling.
☆ Beyond Transcripts: A Renewed Perspective on Audio Chaptering
Audio chaptering, the task of automatically segmenting long-form audio into coherent sections, is increasingly important for navigating podcasts, lectures, and videos. Despite its relevance, research remains limited and text-based, leaving key questions unresolved about leveraging audio information, handling ASR errors, and transcript-free evaluation. We address these gaps through three contributions: (1) a systematic comparison between text-based models with acoustic features, a novel audio-only architecture (AudioSeg) operating on learned audio representations, and multimodal LLMs; (2) empirical analysis of factors affecting performance, including transcript quality, acoustic features, duration, and speaker composition; and (3) formalized evaluation protocols contrasting transcript-dependent text-space protocols with transcript-invariant time-space protocols. Our experiments on YTSeg reveal that AudioSeg substantially outperforms text-based approaches, pauses provide the largest acoustic gains, and MLLMs remain limited by context length and weak instruction following, yet MLLMs are promising on shorter audio.
♻ ☆ Nudging the Boundaries of LLM Reasoning ICLR 2026
Current online reinforcement learning (RL) algorithms like GRPO share a key limitation in LLM reasoning: they cannot learn from problems that are "unsolvable" to the model. In other words, they can only improve performance on problems where the model is capable of exploring the correct answer. Consequently, the model's "upper limit" remains unchanged after RL training, even though the likelihood of solving easier, solvable problems may increase. These hard samples cannot contribute to training, as no rollouts yield rewards and thus no gradients are produced. To unlock learning from these hard samples, we propose NuRL, a "nudging" method that aims to push the upper bound of LLM reasoning using self-generated hints, i.e., abstract cues that help reduce the problem difficulty for the model. Given a question and its gold answer, the model generates a CoT and then produces a hint containing the core knowledge needed to solve the problem. During training, we generate G rollouts from the base policy and use the pass rate to decide whether the hint should be injected. For hard samples with a 0% pass rate, we inject the hint and regenerate a new batch of trajectories. This yields two benefits: (1) the hint boosts pass rates (from 0% to non-zero), thereby introducing training signals for previously unsolvable samples, and (2) the hints are self-generated, avoiding distributional shift and do not rely on external models. NuRL achieves consistent improvements across 6 benchmarks and 3 models, while remaining complementary to test-time scaling. Notably, NuRL can raise the model's upper limit, whereas GRPO leaves pass@1024 unchanged from the base model. Furthermore, we present a systematic study of what makes an effective hint and when hints are most useful. Interestingly, the best hints are abstract and high-level, and are most beneficial when applied necessarily and after GRPO has converged.
comment: ICLR 2026 (Camera-Ready)
♻ ☆ Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure ICLR 2026
Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we hypothesize two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. Our research opens up the broader fundamental challenge of designing models capable of learning systematic conceptual binding with less human scaffolding.
comment: ICLR 2026
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation ICLR-2026
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.The dataset and code can be accessed at https://huggingface.co/datasets/ChemFM/MolLangBench and https://github.com/TheLuoFengLab/MolLangBench, respectively.
comment: ICLR-2026 Camera-Ready version
♻ ☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables, 1 pseudocode algorithm
♻ ☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges in two ways: 1) it introduces a novel, unambiguous annotation schema that is explicitly designed for reliable automatic processing, and 2) it presents a comprehensive evaluation of a wide range of large language models (LLMs) on the task of classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments reveal that modern LLMs achieve strong results on this task when fine-tuned on high-quality data, surpassing 96% F1, with both large proprietary models such as GPT-4o and lightweight open-source alternatives performing well. Moreover, augmenting the training set with semi-synthetic LLM-generated examples further boosts performance, enabling small encoders to achieve robust results and substantially improving several open decoder models.
♻ ☆ Online Density-Based Clustering for Real-Time Narrative Evolution Monitorin
Automated narrative intelligence systems for social media monitoring face significant scalability challenges when relying on batch clustering methods to process continuous data streams. We investigate replacing offline HDBSCAN with online density-based clustering algorithms in a production narrative report generation pipeline that processes large volumes of multilingual social media data. While HDBSCAN effectively discovers hierarchical clusters and handles noise, its batch-only nature requires full retraining for each time window, limiting scalability and real-time adaptability. We evaluate online clustering methods with respect to cluster quality, computational efficiency, memory footprint, and integration with downstream narrative extraction. Our evaluation combines standard clustering metrics, narrative-specific measures, and human validation of cluster correctness to assess both structural quality and semantic interpretability. Experiments using sliding-window simulations on historical data from the Ukrainian information space reveal trade-offs between temporal stability and narrative coherence, with DenStream achieving the strongest overall performance. These findings bridge the gap between batch-oriented clustering approaches and the streaming requirements of large-scale narrative monitoring systems.
♻ ☆ MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification NeurIPS 2025
Decoding speech-related information from non-invasive MEG is a key step toward scalable brain-computer interfaces. We present compact Conformer-based decoders on the LibriBrain 2025 PNPL benchmark for two core tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, winning the Phoneme Classification Standard track. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments.
comment: 8 pages, 7 figures, 4 tables, v1 presentend in LibriBrain Workshop, NeurIPS 2025; v2 submitted to Odyssey 2026
♻ ☆ Subject islands do not reduce to construction-specific discourse function
The term islands in linguistics refers to phrases from which extracting an element results in ungrammaticality (Ross, 1967). Grammatical subjects are considered islands because extracting a sub-part of a subject results in an ill-formed sentence, despite having a clear intended meaning (e.g., "Which topic did the article about inspire you?"). The generative tradition, which views syntax as autonomous of meaning and function, attributes this ungrammaticality to the abstract movement dependency between the wh-phrase and the subject-internal position with which it is associated for interpretation. However, research on language that emphasizes its communicative function suggests instead that syntactic constraints, including islands, can be explained based on the way different constructions package information. Accordingly, Abeillé et al. (2020) suggest that the islandhood of subjects is specific to the information structure of wh-questions, and propose that subjects are not islands for movement, but for focusing, due to their discourse-backgroundedness. This predicts that other constructions that differ in their information structure from wh-questions, but still involve movement, should not create a subject island effect. We test this prediction in three large-scale acceptability studies, using a super-additive design that singles out subject island violations, in three different constructions: wh-questions, relative clauses, and topicalization. We report evidence for a subject island effect in each construction type, despite only wh-questions introducing what Abeillé et al. (2020) call "a clash in information structure." We argue that this motivates an account of islands in terms of abstract, syntactic representations, independent of the communicative function associated with the constructions.
♻ ☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
♻ ☆ Safety Subspaces are Not Linearly Distinct: A Fine-Tuning Case Study ICLR 2026
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. However, this behavior is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this perspective. We examine whether safety-relevant behavior is concentrated in specific linear subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in activations. Across both weight and activation spaces, our findings are consistent: subspaces that amplify safe behaviors also amplify useful ones, and prompts with different safety implications activate overlapping representations. Rather than residing in distinct directions, we show that safety is highly entangled with the general learning components of the model. This suggests that subspace-based defenses face fundamental limitations and underscores the need for alternative strategies to preserve safety under continued training. We corroborate these findings with multiple experiments on five open-source LLMs from the Llama and Qwen families. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
comment: ICLR 2026. Kaustubh Ponkshe, Shaan Shah, and Raghav Singhal contributed equally to this work
♻ ☆ Which course? Discourse! Teaching Discourse and Generation in the Era of LLMs EACL 2026
The field of NLP has undergone vast, continuous transformations over the past few years, sparking debates going beyond discipline boundaries. This begs important questions in education: how do we design courses that bridge sub-disciplines in this shifting landscape? This paper explores this question from the angle of discourse processing, an area with rich linguistic insights and computational models for the intentional, attentional, and coherence structure of language. Discourse is highly relevant for open-ended or long-form text generation, yet this connection is under-explored in existing undergraduate curricula. We present a new course, "Computational Discourse and Natural Language Generation". The course is collaboratively designed by a team with complementary expertise and was offered for the first time in Fall 2025 as an upper-level undergraduate course, cross-listed between Linguistics and Computer Science. Our philosophy is to deeply integrate the theoretical and empirical aspects, and create an exploratory mindset inside the classroom and in the assignments. This paper describes the course in detail and concludes with takeaways from an independent survey as well as our vision for future directions.
comment: accepted to the TeachNLP 2026 workshop (co-located with EACL 2026), camera-ready, 14 pages; aclpubcheck fixed and ref updated
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models ICLR 2026
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: ICLR 2026. Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
Information Retrieval 31
☆ Beyond the Unit Hypersphere: Embedding Magnitude in Contrastive Learning
Cosine similarity is prevalent in contrastive learning, yet it makes an implicit assumption: embedding magnitude is noise. Prior work occasionally found dot product and cosine similarity comparable, but left unanswered WHAT information magnitude carries, WHEN it helps, and HOW to leverage it. We conduct a systematic study through a $2 \times 2$ ablation that independently controls input-side and output-side normalization across text and vision models. Our findings reveal three key insights. First, in text retrieval, output (document) magnitude strongly correlates with relevance (Cohen's $d$ up to 1.80), yielding the largest gains on reasoning-intensive tasks. Second, input and output magnitudes serve asymmetric roles: output magnitude directly scales similarity scores while input magnitude modulates training dynamics. Third, magnitude learning benefits asymmetric tasks (text retrieval, RAG) but harms symmetric tasks (STS, text-image alignment). These findings establish a task symmetry principle: the choice between cosine and dot product depends on whether the task has distinct input roles, enabling cost-free improvements by simply removing an unnecessary constraint.
comment: Preliminary work. Under review
☆ FlyAOC: Evaluating Agentic Ontology Curation of Drosophila Scientific Knowledge Bases
Scientific knowledge bases accelerate discovery by curating findings from primary literature into structured, queryable formats for both human researchers and emerging AI systems. Maintaining these resources requires expert curators to search relevant papers, reconcile evidence across documents, and produce ontology-grounded annotations - a workflow that existing benchmarks, focused on isolated subtasks like named entity recognition or relation extraction, do not capture. We present FlyBench to evaluate AI agents on end-to-end agentic ontology curation from scientific literature. Given only a gene symbol, agents must search and read from a corpus of 16,898 full-text papers to produce structured annotations: Gene Ontology terms describing function, expression patterns, and historical synonyms linking decades of nomenclature. The benchmark includes 7,397 expert-curated annotations across 100 genes drawn from FlyBase, the Drosophila (fruit fly) knowledge base. We evaluate four baseline agent architectures: memorization, fixed pipeline, single-agent, and multi-agent. We find that architectural choices significantly impact performance, with multi-agent designs outperforming simpler alternatives, yet scaling backbone models yields diminishing returns. All baselines leave substantial room for improvement. Our analysis surfaces several findings to guide future development; for example, agents primarily use retrieval to confirm parametric knowledge rather than discover new information. We hope FlyBench will drive progress on retrieval-augmented scientific reasoning, a capability with broad applications across scientific domains.
☆ An Interactive Metrics Dashboard for the Keck Observatory Archive
Since 2004, the Keck Observatory Archive (KOA) has operated as a NASA-funded collaboration between the NASA Exoplanet Science Institute ( NExScI) and the W.M. Keck Observatory. It ingests and serves all data acquired by the twin 10-meter Keck telescopes on Mauna Kea, Hawaii. In the past three years, KOA has begun a modernization program to replace the architecture and systems used since the archive's creation with a new modern Python-based infrastructure. This infrastructure will position KOA to respond to the rapid growth of new and complex data sets that will be acquired by new instruments now in development, and enable follow-up to identify the deluge of alerts of transient sources expected by new survey telescopes such as the Vera C. Rubin Observatory. Since 2022, KOA has ingested new data in near-real time, generally within one minute of creation, and has made them immediately accessible to observers through a dedicated web interface. The archive is now deploying a new, scalable, Python-based, VO-compliant query infrastructure built with the Plotly-Dash framework and R-tree indices to speed-up queries by a factor of 20. The project described here exploits the new query infrastructure to develop a dashboard that will return live metrics on the performance and growth of the archive. These metrics assess the current health of the archive and guide planning future hardware and software upgrades. This single dashboard will enable, for example, monitoring of real-time ingestion, as well as studying the long-term growth of the archive. Current methods of gathering metrics that have been in place since the archive opened will not support the archive as it continues to scale. These methods suffer from high latency, are not optimized for on-demand metrics, are scattered among various tools, and are cumbersome to use.
comment: 4 pages, 2 figures, Submitted to Proc. ADASS 2025
☆ Automatic In-Domain Exemplar Construction and LLM-Based Refinement of Multi-LLM Expansions for Query Expansion
Query expansion with large language models is promising but often relies on hand-crafted prompts, manually chosen exemplars, or a single LLM, making it non-scalable and sensitive to domain shift. We present an automated, domain-adaptive QE framework that builds in-domain exemplar pools by harvesting pseudo-relevant passages using a BM25-MonoT5 pipeline. A training-free cluster-based strategy selects diverse demonstrations, yielding strong and stable in-context QE without supervision. To further exploit model complementarity, we introduce a two-LLM ensemble in which two heterogeneous LLMs independently generate expansions and a refinement LLM consolidates them into one coherent expansion. Across TREC DL20, DBPedia, and SciFact, the refined ensemble delivers consistent and statistically significant gains over BM25, Rocchio, zero-shot, and fixed few-shot baselines. The framework offers a reproducible testbed for exemplar selection and multi-LLM generation, and a practical, label-free solution for real-world QE.
☆ OmniReview: A Large-scale Benchmark and LLM-enhanced Framework for Realistic Reviewer Recommendation
Academic peer review remains the cornerstone of scholarly validation, yet the field faces some challenges in data and methods. From the data perspective, existing research is hindered by the scarcity of large-scale, verified benchmarks and oversimplified evaluation metrics that fail to reflect real-world editorial workflows. To bridge this gap, we present OmniReview, a comprehensive dataset constructed by integrating multi-source academic platforms encompassing comprehensive scholarly profiles through the disambiguation pipeline, yielding 202, 756 verified review records. Based on this data, we introduce a three-tier hierarchical evaluaion framework to assess recommendations from recall to precise expert identification. From the method perspective, existing embedding-based approaches suffer from the information bottleneck of semantic compression and limited interpretability. To resolve these method limitations, we propose Profiling Scholars with Multi-gate Mixture-of-Experts (Pro-MMoE), a novel framework that synergizes Large Language Models (LLMs) with Multi-task Learning. Specifically, it utilizes LLM-generated semantic profiles to preserve fine-grained expertise nuances and interpretability, while employing a Task-Adaptive MMoE architecture to dynamically balance conflicting evaluation goals. Comprehensive experiments demonstrate that Pro-MMoE achieves state-of-the-art performance across six of seven metrics, establishing a new benchmark for realistic reviewer recommendation.
☆ Contrastive Learning for Diversity-Aware Product Recommendations in Retail
Recommender systems often struggle with long-tail distributions and limited item catalog exposure, where a small subset of popular items dominates recommendations. This challenge is especially critical in large-scale online retail settings with extensive and diverse product assortments. This paper introduces an approach to enhance catalog coverage without compromising recommendation quality in the existing digital recommendation pipeline at IKEA Retail. Drawing inspiration from recent advances in negative sampling to address popularity bias, we integrate contrastive learning with carefully selected negative samples. Through offline and online evaluations, we demonstrate that our method improves catalog coverage, ensuring a more diverse set of recommendations yet preserving strong recommendation performance.
☆ Whose Name Comes Up? Benchmarking and Intervention-Based Auditing of LLM-Based Scholar Recommendation
Large language models (LLMs) are increasingly used for academic expert recommendation. Existing audits typically evaluate model outputs in isolation, largely ignoring end-user inference-time interventions. As a result, it remains unclear whether failures such as refusals, hallucinations, and uneven coverage stem from model choice or deployment decisions. We introduce LLMScholarBench, a benchmark for auditing LLM-based scholar recommendation that jointly evaluates model infrastructure and end-user interventions across multiple tasks. LLMScholarBench measures both technical quality and social representation using nine metrics. We instantiate the benchmark in physics expert recommendation and audit 22 LLMs under temperature variation, representation-constrained prompting, and retrieval-augmented generation (RAG) via web search. Our results show that end-user interventions do not yield uniform improvements but instead redistribute error across dimensions. Higher temperature degrades validity, consistency, and factuality. Representation-constrained prompting improves diversity at the expense of factuality, while RAG primarily improves technical quality while reducing diversity and parity. Overall, end-user interventions reshape trade-offs rather than providing a general fix. We release code and data that can be adapted to other disciplines by replacing domain-specific ground truth and metrics.
comment: 28 pages: 8 pages in main (5 figures, 1 table), 20 pages in appendix (18 figures, 2 tables). under-review
Large Language Models for Geolocation Extraction in Humanitarian Crisis Response
Humanitarian crises demand timely and accurate geographic information to inform effective response efforts. Yet, automated systems that extract locations from text often reproduce existing geographic and socioeconomic biases, leading to uneven visibility of crisis-affected regions. This paper investigates whether Large Language Models (LLMs) can address these geographic disparities in extracting location information from humanitarian documents. We introduce a two-step framework that combines few-shot LLM-based named entity recognition with an agent-based geocoding module that leverages context to resolve ambiguous toponyms. We benchmark our approach against state-of-the-art pretrained and rule-based systems using both accuracy and fairness metrics across geographic and socioeconomic dimensions. Our evaluation uses an extended version of the HumSet dataset with refined literal toponym annotations. Results show that LLM-based methods substantially improve both the precision and fairness of geolocation extraction from humanitarian texts, particularly for underrepresented regions. By bridging advances in LLM reasoning with principles of responsible and inclusive AI, this work contributes to more equitable geospatial data systems for humanitarian response, advancing the goal of leaving no place behind in crisis analytics.
☆ AMEM4Rec: Leveraging Cross-User Similarity for Memory Evolution in Agentic LLM Recommenders
Agentic systems powered by Large Language Models (LLMs) have shown strong potential in recommender systems but remain hindered by several challenges. Fine-tuning LLMs is parameter-inefficient, and prompt-based agentic reasoning is limited by context length and hallucination risk. Moreover, existing agentic recommendation systems predominantly leverages semantic knowledge while neglecting the collaborative filtering (CF) signals essential for implicit preference modeling. To address these limitations, we propose AMEM4Rec, an agentic LLM-based recommender that learns collaborative signals in an end-to-end manner through cross-user memory evolution. AMEM4Rec stores abstract user behavior patterns from user histories in a global memory pool. Within this pool, memories are linked to similar existing ones and iteratively evolved to reinforce shared cross-user patterns, enabling the system to become aware of CF signals without relying on a pre-trained CF model. Extensive experiments on Amazon and MIND datasets show that AMEM4Rec consistently outperforms state-of-the-art LLM-based recommenders, demonstrating the effectiveness of evolving memory-guided collaborative filtering.
☆ Welfarist Formulations for Diverse Similarity Search
Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging applications, such as web search, recommendation systems, and, more recently, retrieval-augmented generations (RAG). In such recent applications, in addition to the relevance (similarity) of the returned neighbors, diversity among the neighbors is a central requirement. In this paper, we develop principled welfare-based formulations in NNS for realizing diversity across attributes. Our formulations are based on welfare functions -- from mathematical economics -- that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a particular focus on Nash social welfare, we note that our welfare-based formulations provide objective functions that adaptively balance relevance and diversity in a query-dependent manner. Notably, such a balance was not present in the prior constraint-based approach, which forced a fixed level of diversity and optimized for relevance. In addition, our formulation provides a parametric way to control the trade-off between relevance and diversity, providing practitioners with flexibility to tailor search results to task-specific requirements. We develop efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives. Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard ANN method as a subroutine) to efficiently find neighbors that approximately maximize our welfare-based objectives. Experimental results demonstrate that our approach is practical and substantially improves diversity while maintaining high relevance of the retrieved neighbors.
☆ Do Images Clarify? A Study on the Effect of Images on Clarifying Questions in Conversational Search
Conversational search systems increasingly employ clarifying questions to refine user queries and improve the search experience. Previous studies have demonstrated the usefulness of text-based clarifying questions in enhancing both retrieval performance and user experience. While images have been shown to improve retrieval performance in various contexts, their impact on user performance when incorporated into clarifying questions remains largely unexplored. We conduct a user study with 73 participants to investigate the role of images in conversational search, specifically examining their effects on two search-related tasks: (i) answering clarifying questions and (ii) query reformulation. We compare the effect of multimodal and text-only clarifying questions in both tasks within a conversational search context from various perspectives. Our findings reveal that while participants showed a strong preference for multimodal questions when answering clarifying questions, preferences were more balanced in the query reformulation task. The impact of images varied with both task type and user expertise. In answering clarifying questions, images helped maintain engagement across different expertise levels, while in query reformulation they led to more precise queries and improved retrieval performance. Interestingly, for clarifying question answering, text-only setups demonstrated better user performance as they provided more comprehensive textual information in the absence of images. These results provide valuable insights for designing effective multimodal conversational search systems, highlighting that the benefits of visual augmentation are task-dependent and should be strategically implemented based on the specific search context and user characteristics.
comment: Accepted at CHIIR 2025
☆ SA-CAISR: Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation
Sequential recommendation (SR) aims to predict a user's next action by learning from their historical interaction sequences. In real-world applications, these models require periodic updates to adapt to new interactions and evolving user preferences. While incremental learning methods facilitate these updates, they face significant challenges. Replay-based approaches incur high memory and computational costs, and regularization-based methods often struggle to discard outdated or conflicting knowledge. To overcome these challenges, we propose SA-CAISR, a Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation framework. As a buffer-free framework, SA-CAISR operates using only the old model and new data, directly addressing the high costs of replay-based techniques. SA-CAISR introduces a novel Fisher-weighted knowledge-screening mechanism that dynamically identifies outdated knowledge by estimating parameter-level conflicts between the old model and new data, allowing our approach to selectively remove obsolete knowledge while preserving compatible historical patterns. This dynamic balance between stability and adaptability allows our method to achieve a new state-of-the-art performance in incremental SR. Specifically, SA-CAISR improves Recall@20 by 2.0%, MRR@20 by 1.2%, and NDCG@20 by 1.4% on average across datasets, while reducing memory usage by 97.5% and training time by 46.9% compared to the best baselines. This efficiency allows real-world systems to rapidly update user profiles with minimal computational overhead, ensuring more timely and accurate recommendations.
☆ SRSUPM: Sequential Recommender System Based on User Psychological Motivation
Sequential recommender infers users' evolving psychological motivations from historical interactions to recommend the next preferred items. Most existing methods compress recent behaviors into a single vector and optimize it toward a single observed target item, but lack explicit modeling of psychological motivation shift. As a result, they struggle to uncover the distributional patterns across different shift degrees and to capture collaborative knowledge that is sensitive to psychological motivation shift. We propose a general framework, the Sequential Recommender System Based on User Psychological Motivation, to enhance sequential recommenders with psychological motivation shift-aware user modeling. Specifically, the Psychological Motivation Shift Assessment quantitatively measures psychological motivation shift; guided by PMSA, the Shift Information Construction models dynamically evolving multi-level shift states, and the Psychological Motivation Shift-driven Information Decomposition decomposes and regularizes representations across shift levels. Moreover, the Psychological Motivation Shift Information Matching strengthens collaborative patterns related to psychological motivation shift to learn more discriminative user representations. Extensive experiments on three public benchmarks show that SRSUPM consistently outperforms representative baselines on diverse sequential recommender tasks.
comment: 9 pages, 8 pages
☆ OneLive: Dynamically Unified Generative Framework for Live-Streaming Recommendation
Live-streaming recommender system serves as critical infrastructure that bridges the patterns of real-time interactions between users and authors. Similar to traditional industrial recommender systems, live-streaming recommendation also relies on cascade architectures to support large-scale concurrency. Recent advances in generative recommendation unify the multi-stage recommendation process with Transformer-based architectures, offering improved scalability and higher computational efficiency. However, the inherent complexity of live-streaming prevents the direct transfer of these methods to live-streaming scenario, where continuously evolving content, limited lifecycles, strict real-time constraints, and heterogeneous multi-objectives introduce unique challenges that invalidate static tokenization and conventional model framework. To address these issues, we propose OneLive, a dynamically unified generative recommendation framework tailored for live-streaming scenario. OneLive integrates four key components: (i) A Dynamic Tokenizer that continuously encodes evolving real-time live content fused with behavior signal through residual quantization; (ii) A Time-Aware Gated Attention mechanism that explicitly models temporal dynamics for timely decision making; (iii) An efficient decoder-only generative architecture enhanced with Sequential MTP and QK Norm for stable training and accelerated inference; (iv) A Unified Multi-Objective Alignment Framework reinforces policy optimization for personalized preferences.
comment: Work in progress
☆ RankGR: Rank-Enhanced Generative Retrieval with Listwise Direct Preference Optimization in Recommendation
Generative retrieval (GR) has emerged as a promising paradigm in recommendation systems by autoregressively decoding identifiers of target items. Despite its potential, current approaches typically rely on the next-token prediction schema, which treats each token of the next interacted items as the sole target. This narrow focus 1) limits their ability to capture the nuanced structure of user preferences, and 2) overlooks the deep interaction between decoded identifiers and user behavior sequences. In response to these challenges, we propose RankGR, a Rank-enhanced Generative Retrieval method that incorporates listwise direct preference optimization for recommendation. RankGR decomposes the retrieval process into two complementary stages: the Initial Assessment Phase (IAP) and the Refined Scoring Phase (RSP). In IAP, we incorporate a novel listwise direct preference optimization strategy into GR, thus facilitating a more comprehensive understanding of the hierarchical user preferences and more effective partial-order modeling. The RSP then refines the top-λ candidates generated by IAP with interactions towards input sequences using a lightweight scoring module, leading to more precise candidate evaluation. Both phases are jointly optimized under a unified GR model, ensuring consistency and efficiency. Additionally, we implement several practical improvements in training and deployment, ultimately achieving a real-time system capable of handling nearly ten thousand requests per second. Extensive offline performance on both research and industrial datasets, as well as the online gains on the "Guess You Like" section of Taobao, validate the effectiveness and scalability of RankGR.
☆ Towards Reliable Social A/B Testing: Spillover-Contained Clustering with Robust Post-Experiment Analysis
A/B testing is the foundation of decision-making in online platforms, yet social products often suffer from network interference: user interactions cause treatment effects to spill over into the control group. Such spillovers bias causal estimates and undermine experimental conclusions. Existing approaches face key limitations: user-level randomization ignores network structure, while cluster-based methods often rely on general-purpose clustering that is not tailored for spillover containment and has difficulty balancing unbiasedness and statistical power at scale. We propose a spillover-contained experimentation framework with two stages. In the pre-experiment stage, we build social interaction graphs and introduce a Balanced Louvain algorithm that produces stable, size-balanced clusters while minimizing cross-cluster edges, enabling reliable cluster-based randomization. In the post-experiment stage, we develop a tailored CUPAC estimator that leverages pre-experiment behavioral covariates to reduce the variance induced by cluster-level assignment, thereby improving statistical power. Together, these components provide both structural spillover containment and robust statistical inference. We validate our approach through large-scale social sharing experiments on Kuaishou, a platform serving hundreds of millions of users. Results show that our method substantially reduces spillover and yields more accurate assessments of social strategies than traditional user-level designs, establishing a reliable and scalable framework for networked A/B testing.
☆ QARM V2: Quantitative Alignment Multi-Modal Recommendation for Reasoning User Sequence Modeling
With the evolution of large language models (LLMs), there is growing interest in leveraging their rich semantic understanding to enhance industrial recommendation systems (RecSys). Traditional RecSys relies on ID-based embeddings for user sequence modeling in the General Search Unit (GSU) and Exact Search Unit (ESU) paradigm, which suffers from low information density, knowledge isolation, and weak generalization ability. While LLMs offer complementary strengths with dense semantic representations and strong generalization, directly applying LLM embeddings to RecSys faces critical challenges: representation unmatch with business objectives and representation unlearning end-to-end with downstream tasks. In this paper, we present QARM V2, a unified framework that bridges LLM semantic understanding with RecSys business requirements for user sequence modeling.
comment: Work in progress
☆ DA-RAG: Dynamic Attributed Community Search for Retrieval-Augmented Generation
Owing to their unprecedented comprehension capabilities, large language models (LLMs) have become indispensable components of modern web search engines. From a technical perspective, this integration represents retrieval-augmented generation (RAG), which enhances LLMs by grounding them in external knowledge bases. A prevalent technical approach in this context is graph-based RAG (G-RAG). However, current G-RAG methodologies frequently underutilize graph topology, predominantly focusing on low-order structures or pre-computed static communities. This limitation affects their effectiveness in addressing dynamic and complex queries. Thus, we propose DA-RAG, which leverages attributed community search (ACS) to extract relevant subgraphs based on the queried question dynamically. DA-RAG captures high-order graph structures, allowing for the retrieval of self-complementary knowledge. Furthermore, DA-RAG is equipped with a chunk-layer oriented graph index, which facilitates efficient multi-granularity retrieval while significantly reducing both computational and economic costs. We evaluate DA-RAG on multiple datasets, demonstrating that it outperforms existing RAG methods by up to 40% in head-to-head comparisons across four metrics while reducing index construction time and token overhead by up to 37% and 41%, respectively.
☆ GISA: A Benchmark for General Information-Seeking Assistant
The advancement of large language models (LLMs) has significantly accelerated the development of search agents capable of autonomously gathering information through multi-turn web interactions. Various benchmarks have been proposed to evaluate such agents. However, existing benchmarks often construct queries backward from answers, producing unnatural tasks misaligned with real-world needs. Moreover, these benchmarks tend to focus on either locating specific information or aggregating information from multiple sources, while relying on static answer sets prone to data contamination. To bridge these gaps, we introduce GISA, a benchmark for General Information-Seeking Assistants comprising 373 human-crafted queries that reflect authentic information-seeking scenarios. GISA features four structured answer formats (item, set, list, and table), enabling deterministic evaluation. It integrates both deep reasoning and broad information aggregation within unified tasks, and includes a live subset with periodically updated answers to resist memorization. Notably, GISA provides complete human search trajectories for every query, offering gold-standard references for process-level supervision and imitation learning. Experiments on mainstream LLMs and commercial search products reveal that even the best-performing model achieves only 19.30\% exact match score, with performance notably degrading on tasks requiring complex planning and comprehensive information gathering. These findings highlight substantial room for future improvement.
☆ PIT: A Dynamic Personalized Item Tokenizer for End-to-End Generative Recommendation
Generative Recommendation has revolutionized recommender systems by reformulating retrieval as a sequence generation task over discrete item identifiers. Despite the progress, existing approaches typically rely on static, decoupled tokenization that ignores collaborative signals. While recent methods attempt to integrate collaborative signals into item identifiers either during index construction or through end-to-end modeling, they encounter significant challenges in real-world production environments. Specifically, the volatility of collaborative signals leads to unstable tokenization, and current end-to-end strategies often devolve into suboptimal two-stage training rather than achieving true co-evolution. To bridge this gap, we propose PIT, a dynamic Personalized Item Tokenizer framework for end-to-end generative recommendation, which employs a co-generative architecture that harmonizes collaborative patterns through collaborative signal alignment and synchronizes item tokenizer with generative recommender via a co-evolution learning. This enables the dynamic, joint, end-to-end evolution of both index construction and recommendation. Furthermore, a one-to-many beam index ensures scalability and robustness, facilitating seamless integration into large-scale industrial deployments. Extensive experiments on real-world datasets demonstrate that PIT consistently outperforms competitive baselines. In a large-scale deployment at Kuaishou, an online A/B test yielded a substantial 0.402% uplift in App Stay Time, validating the framework's effectiveness in dynamic industrial environments.
☆ Hybrid Pooling with LLMs via Relevance Context Learning
High-quality relevance judgements over large query sets are essential for evaluating Information Retrieval (IR) systems, yet manual annotation remains costly and time-consuming. Large Language Models (LLMs) have recently shown promise as automatic relevance assessors, but their reliability is still limited. Most existing approaches rely on zero-shot prompting or In-Context Learning (ICL) with a small number of labeled examples. However, standard ICL treats examples as independent instances and fails to explicitly capture the underlying relevance criteria of a topic, restricting its ability to generalize to unseen query-document pairs. To address this limitation, we introduce Relevance Context Learning (RCL), a novel framework that leverages human relevance judgements to explicitly model topic-specific relevance criteria. Rather than directly using labeled examples for in-context prediction, RCL first prompts an LLM (Instructor LLM) to analyze sets of judged query-document pairs and generate explicit narratives that describe what constitutes relevance for a given topic. These relevance narratives are then used as structured prompts to guide a second LLM (Assessor LLM) in producing relevance judgements. To evaluate RCL in a realistic data collection setting, we propose a hybrid pooling strategy in which a shallow depth-\textit{k} pool from participating systems is judged by human assessors, while the remaining documents are labeled by LLMs. Experimental results demonstrate that RCL substantially outperforms zero-shot prompting and consistently improves over standard ICL. Overall, our findings indicate that transforming relevance examples into explicit, context-aware relevance narratives is a more effective way of exploiting human judgements for LLM-based IR dataset construction.
☆ A Sketch+Text Composed Image Retrieval Dataset for Thangka
Composed Image Retrieval (CIR) enables image retrieval by combining multiple query modalities, but existing benchmarks predominantly focus on general-domain imagery and rely on reference images with short textual modifications. As a result, they provide limited support for retrieval scenarios that require fine-grained semantic reasoning, structured visual understanding, and domain-specific knowledge. In this work, we introduce CIRThan, a sketch+text Composed Image Retrieval dataset for Thangka imagery, a culturally grounded and knowledge-specific visual domain characterized by complex structures, dense symbolic elements, and domain-dependent semantic conventions. CIRThan contains 2,287 high-quality Thangka images, each paired with a human-drawn sketch and hierarchical textual descriptions at three semantic levels, enabling composed queries that jointly express structural intent and multi-level semantic specification. We provide standardized data splits, comprehensive dataset analysis, and benchmark evaluations of representative supervised and zero-shot CIR methods. Experimental results reveal that existing CIR approaches, largely developed for general-domain imagery, struggle to effectively align sketch-based abstractions and hierarchical textual semantics with fine-grained Thangka images, particularly without in-domain supervision. We believe CIRThan offers a valuable benchmark for advancing sketch+text CIR, hierarchical semantic modeling, and multimodal retrieval in cultural heritage and other knowledge-specific visual domains. The dataset is publicly available at https://github.com/jinyuxu-whut/CIRThan.
comment: 9 pages
☆ SynthAgent: A Multi-Agent LLM Framework for Realistic Patient Simulation -- A Case Study in Obesity with Mental Health Comorbidities AAAI 2026
Simulating high-fidelity patients offers a powerful avenue for studying complex diseases while addressing the challenges of fragmented, biased, and privacy-restricted real-world data. In this study, we introduce SynthAgent, a novel Multi-Agent System (MAS) framework designed to model obesity patients with comorbid mental disorders, including depression, anxiety, social phobia, and binge eating disorder. SynthAgent integrates clinical and medical evidence from claims data, population surveys, and patient-centered literature to construct personalized virtual patients enriched with personality traits that influence adherence, emotion regulation, and lifestyle behaviors. Through autonomous agent interactions, the system simulates disease progression, treatment response, and life management across diverse psychosocial contexts. Evaluation of more than 100 generated patients demonstrated that GPT-5 and Claude 4.5 Sonnet achieved the highest fidelity as the core engine in the proposed MAS framework, outperforming Gemini 2.5 Pro and DeepSeek-R1. SynthAgent thus provides a scalable and privacy-preserving framework for exploring patient journeys, behavioral dynamics, and decision-making processes in both medical and psychological domains.
comment: Presented in AAAI 2026 Singapore at the workshop of Health Intelligence
☆ Silence Routing: When Not Speaking Improves Collective Judgment
The wisdom of crowds has been shown to operate not only for factual judgments but also in matters of taste, where accuracy is defined relative to an individual's preferences. However, it remains unclear how different types of social signals should be selectively used in such domains. Focusing on a music preference dataset in which contributors provide both personal evaluations (Own) and estimates of population-level preferences (Estimated), we propose a routing framework for collective intelligence in taste. The framework specifies when contributors should speak, what they should report, and when silence is preferable. Using simulation-based aggregation, we show that prediction accuracy improves over an all-own baseline across a broad region of the parameter space, conditional on items where routing applies. Importantly, these gains arise only when silence is allowed, enabling second-order signals to function effectively. The results demonstrate that collective intelligence in matters of taste depends on principled signal routing rather than simple averaging.
comment: 7pages, 2 figures
♻ ☆ Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
The success of Large Language Models (LLMs) has motivated a shift toward generative approaches to retrieval and ranking, aiming to supersede classical Dual Encoders (DEs) and Cross Encoders (CEs). A prominent paradigm is pointwise Autoregressive Ranking (ARR), where an LLM generates document identifiers (docIDs) token-by-token to enable ranking via beam search. ARR offers the promise of superior expressivity compared to DEs while avoiding the prohibitive computational cost of CEs. However, a formal theoretical foundation for this expressive power has been missing. Moreover, the standard next-token prediction loss is rank-agnostic and inappropriate for finetuning an LLM for ranking tasks. In this paper, we first prove that the expressive capacity of ARR is strictly superior to DEs. While a DE requires an embedding dimension that grows linearly with corpus size to achieve arbitrary rankings, ARR can solve it with a constant hidden dimension. We then propose SToICaL (Simple Token-Item Calibrated Loss), a generalized rank-aware training loss for LLM finetuning. By using item-level reweighting and prefix-tree marginalization, we distribute probability mass over valid docID tokens based on their ground-truth relevance. Experiments on WordNet and ESCI datasets verify that our loss suppresses invalid docID generations and significantly improves ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
♻ ☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges in two ways: 1) it introduces a novel, unambiguous annotation schema that is explicitly designed for reliable automatic processing, and 2) it presents a comprehensive evaluation of a wide range of large language models (LLMs) on the task of classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments reveal that modern LLMs achieve strong results on this task when fine-tuned on high-quality data, surpassing 96% F1, with both large proprietary models such as GPT-4o and lightweight open-source alternatives performing well. Moreover, augmenting the training set with semi-synthetic LLM-generated examples further boosts performance, enabling small encoders to achieve robust results and substantially improving several open decoder models.
♻ ☆ Rethinking Multi-objective Ranking Ensemble in Recommender System: From Score Fusion to Rank Consistency
The industrial recommender systems always pursue more than one business goals. The inherent intensions between objectives pose significant challenges for ranking stage. A popular solution is to build a multi-objective ensemble (ME) model to integrate multi-objective predictions into a unified score. Although there have been some exploratory efforts, few work has yet been able to systematically delineate the core requirements of ME problem. We rethink ME problem from two perspectives. From the perspective of each individual objective, to achieve its maximum value the scores should be as consistent as possible with the ranks of its labels. From the perspective of entire set of objectives, an overall optimum can be achieved only when the scores align with the commonality shared by the majority of objectives. However, none of existing methods can meet these two requirements. To fill this gap, we propose a novel multi-objective ensemble framework HarmonRank to fulfill both requirements. For rank consistency, we formulate rank consistency (AUC) metric as a rank-sum problem and make the model optimized towards rank consistency in an end-to-end differentiable manner. For commonality modeling, we change the original relation-agnostic ensemble paradigm to a relation-aware one. Extensive offline experimental results on two industrial datasets and online experiments demonstrate that our approach significantly outperforms existing state-of-the-art methods. Besides, our method exhibits superior robustness to label skew situations which is common in industrial scenarios. The proposed method has been fully deployed in Kuaishou's live-streaming e-commerce recommendation platform with 400 million DAUs, contributing 2.6% purchase gain.
comment: 11 pages, 5 figures
♻ ☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (BOOM), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, BOOM naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that BOOM consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
♻ ☆ REG4Rec: Reasoning-Enhanced Generative Model for Large-Scale Recommendation Systems
Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.
♻ ☆ SIVF: GPU-Resident IVF Index for Streaming Vector Analytics
GPU-accelerated Inverted File (IVF) index is one of the industry standards for large-scale vector analytics but relies on static VRAM layouts that hinder real-time mutability. Our benchmark and analysis reveal that existing designs of GPU IVF necessitate expensive CPU-GPU data transfers for index updates, causing system latency to spike from milliseconds to seconds in streaming scenarios. We present SIVF, a GPU-native index that enables high-velocity, in-place mutation via a series of new data structures and algorithms, such as conflict-free slab allocation and coalesced search on non-contiguous memory. SIVF has been implemented and integrated into the open-source vector search library, Faiss. Evaluation against baselines with diverse vector datasets demonstrates that SIVF reduces deletion latency by orders of magnitude compared to the baseline. Furthermore, distributed experiments on a 12-GPU cluster reveal that SIVF exhibits near perfect linear scalability, achieving an aggregate ingestion throughput of 4.07 million vectors/s and a deletion throughput of 108.5 million vectors/s.
♻ ☆ A Lightweight Architecture for Multi-instrument Transcription with Practical Optimizations
Existing multi-timbre transcription models struggle with generalization beyond pre-trained instruments, rigid source-count constraints, and high computational demands that hinder deployment on low-resource devices. We address these limitations with a lightweight model that extends a timbre-agnostic transcription backbone with a dedicated timbre encoder and performs deep clustering at the note level, enabling joint transcription and dynamic separation of arbitrary instruments given a specified number of instrument classes. Practical optimizations including spectral normalization, dilated convolutions, and contrastive clustering further improve efficiency and robustness. Despite its small size and fast inference, the model achieves competitive performance with heavier baselines in terms of transcription accuracy and separation quality, and shows promising generalization ability, making it highly suitable for real-world deployment in practical and resource-constrained settings.
Information Retrieval 9
☆ Prune, Don't Rebuild: Efficiently Tuning $α$-Reachable Graphs for Nearest Neighbor Search
Vector similarity search is an essential primitive in modern AI and ML applications. Most vector databases adopt graph-based approximate nearest neighbor (ANN) search algorithms, such as DiskANN (Subramanya et al., 2019), which have demonstrated state-of-the-art empirical performance. DiskANN's graph construction is governed by a reachability parameter $α$, which gives a trade-off between construction time, query time, and accuracy. However, adaptively tuning this trade-off typically requires rebuilding the index for different $α$ values, which is prohibitive at scale. In this work, we propose RP-Tuning, an efficient post-hoc routine, based on DiskANN's pruning step, to adjust the $α$ parameter without reconstructing the full index. Within the $α$-reachability framework of prior theoretical works (Indyk and Xu, 2023; Gollapudi et al., 2025), we prove that pruning an initially $α$-reachable graph with RP-Tuning preserves worst-case reachability guarantees in general metrics and improved guarantees in Euclidean metrics. Empirically, we show that RP-Tuning accelerates DiskANN tuning on four public datasets by up to $43\times$ with negligible overhead.
☆ IRB: Automated Generation of Robust Factuality Benchmarks
Static benchmarks for RAG systems often suffer from rapid saturation and require significant manual effort to maintain robustness. To address this, we present IRB, a framework for automatically generating benchmarks to evaluate the factuality of RAG systems. IRB employs a structured generation pipeline utilizing \textit{factual scaffold} and \textit{algorithmic scaffold}. We utilize IRB to construct a benchmark and evaluate frontier LLMs and retrievers. Our results demonstrate that IRB poses a significant challenge for frontier LLMs in the closed-book setting. Furthermore, our evaluation suggests that reasoning LLMs are more reliable, and that improving the retrieval component may yield more cost-effective gains in RAG system correctness than scaling the generator.
comment: Code: https://github.com/Hozaifa-Bhutta/IRB
☆ Learning to Alleviate Familiarity Bias in Video Recommendation WWW '26
Modern video recommendation systems aim to optimize user engagement and platform objectives, yet often face structural exposure imbalances caused by behavioral biases. In this work, we focus on the post-ranking stage and present LAFB (Learning to Alleviate Familiarity Bias), a lightweight and model-agnostic framework designed to mitigate familiarity bias in recommendation outputs. LAFB models user-content familiarity using discrete and continuous interaction features, and estimates personalized debiasing factors to adjust user rating prediction scores, thereby reducing the dominance of familiar content in the final ranking. We conduct large-scale offline evaluations and online A/B testing in a real-world recommendation system, under a unified serving stack that also compares LAFB with deployable popularity-oriented remedies. Results show that LAFB increases novel watch-time share and improves exposure for emerging creators and overall content diversity, while maintaining stable overall watch time and short-term satisfaction. LAFB has already been launched in the post-ranking stage of YouTube's recommendation system, demonstrating its effectiveness in real-world applications.
comment: Accepted to the Companion Proceedings of the ACM Web Conference 2026 (WWW '26), April 13-17, 2026, Dubai, UAE
☆ SimGR: Escaping the Pitfalls of Generative Decoding in LLM-based Recommendation
A core objective in recommender systems is to accurately model the distribution of user preferences over items to enable personalized recommendations. Recently, driven by the strong generative capabilities of large language models (LLMs), LLM-based generative recommendation has become increasingly popular. However, we observe that existing methods inevitably introduce systematic bias when estimating item-level preference distributions. Specifically, autoregressive generation suffers from incomplete coverage due to beam search pruning, while parallel generation distorts probabilities by assuming token independence. We attribute this issue to a fundamental modeling mismatch: these methods approximate item-level distributions via token-level generation, which inherently induces approximation errors. Through both theoretical analysis and empirical validation, we demonstrate that token-level generation cannot faithfully substitute item-level generation, leading to biased item distributions. To address this, we propose \textbf{Sim}ply \textbf{G}enerative \textbf{R}ecommendation (\textbf{SimGR}), a framework that directly models item-level preference distributions in a shared latent space and ranks items by similarity, thereby aligning the modeling objective with recommendation and mitigating distributional distortion. Extensive experiments across multiple datasets and LLM backbones show that SimGR consistently outperforms existing generative recommenders. Our code is available at https://anonymous.4open.science/r/SimGR-C408/
☆ SRR-Judge: Step-Level Rating and Refinement for Enhancing Search-Integrated Reasoning in Search Agents
Recent deep search agents built on large reasoning models (LRMs) excel at complex question answering by iteratively planning, acting, and gathering evidence, a capability known as search-integrated reasoning. However, mainstream approaches often train this ability using only outcome-based supervision, neglecting the quality of intermediate thoughts and actions. We introduce SRR-Judge, a framework for reliable step-level assessment of reasoning and search actions. Integrated into a modified ReAct-style rate-and-refine workflow, SRR-Judge provides fine-grained guidance for search-integrated reasoning and enables efficient post-training annotation. Using SRR-annotated data, we apply an iterative rejection sampling fine-tuning procedure to enhance the deep search capability of the base agent. Empirically, SRR-Judge delivers more reliable step-level evaluations than much larger models such as DeepSeek-V3.1, with its ratings showing strong correlation with final answer correctness. Moreover, aligning the policy with SRR-Judge annotated trajectories leads to substantial performance gains, yielding over a 10 percent average absolute pass@1 improvement across challenging deep search benchmarks.
☆ HypRAG: Hyperbolic Dense Retrieval for Retrieval Augmented Generation
Embedding geometry plays a fundamental role in retrieval quality, yet dense retrievers for retrieval-augmented generation (RAG) remain largely confined to Euclidean space. However, natural language exhibits hierarchical structure from broad topics to specific entities that Euclidean embeddings fail to preserve, causing semantically distant documents to appear spuriously similar and increasing hallucination risk. To address these limitations, we introduce hyperbolic dense retrieval, developing two model variants in the Lorentz model of hyperbolic space: HyTE-FH, a fully hyperbolic transformer, and HyTE-H, a hybrid architecture projecting pre-trained Euclidean embeddings into hyperbolic space. To prevent representational collapse during sequence aggregation, we introduce the Outward Einstein Midpoint, a geometry-aware pooling operator that provably preserves hierarchical structure. On MTEB, HyTE-FH outperforms equivalent Euclidean baselines, while on RAGBench, HyTE-H achieves up to 29% gains over Euclidean baselines in context relevance and answer relevance using substantially smaller models than current state-of-the-art retrievers. Our analysis also reveals that hyperbolic representations encode document specificity through norm-based separation, with over 20% radial increase from general to specific concepts, a property absent in Euclidean embeddings, underscoring the critical role of geometric inductive bias in faithful RAG systems.
♻ ☆ SHERLOCK:Towards Dynamic Knowledge Adaptation in LLM-enhanced E-commerce Risk Management
Effective e-commerce risk management requires in-depth case investigations to identify emerging fraud patterns in highly adversarial environments. However, manual investigation typically requires analyzing the associations and couplings among multi-source heterogeneous data, a labor-intensive process that limits efficiency. While Large Language Models (LLMs) show promise in automating these analyses, their deployment is hindered by the complexity of risk scenarios and the sparsity of long-tail domain knowledge. To address these challenges, we propose Sherlock, a framework that integrates structured domain knowledge with LLM-based reasoning through three core modules. First, we construct a domain Knowledge Base (KB) by distilling structured expertise from heterogeneous knowledge sources. Second, we design a two-stage retrieval-augmented generation strategy tailored for case investigation, which combines input contextual augmentation with a Reflect & Refine module to fully leverage the KB for improved analysis quality. Finally, we develop an integrated platform for operations and annotation to drive a self-evolving data flywheel. By combining real-time hotfixes through KB updates with periodic logic alignment via post-training, we facilitate continuous system evolution to counteract adversarial drifts. Online A/B tests at JD dot com demonstrate that Sherlock achieves an 82% Expert Acceptance Rate (EAR) and a 386.7% increase in daily investigation throughput. An additional 90-day evaluation shows that the flywheel successfully recovers from performance decay caused by changing tactics twice, raising the EAR ceiling by around 3.5% through autonomous model updates.
♻ ☆ RARe: Retrieval Augmented Retrieval with In-Context Examples
While in-context learning is well-studied with decoder-only language models (LLMs), its utility for encoder-only models remains underexplored. We study in-context learning for encoder-only models for text retrieval tasks. Can incorporating in-context examples (query-document pairs) to the target query enhance retriever performance? Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This approach achieves performance gains of up to +2.72% nDCG across open-domain retrieval datasets (BeIR, RAR-b) compared to using the target query only as an input. In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation for retrievers and lay the foundation for future work.
comment: COLM 2025
♻ ☆ Benchmarking Large Language Models for Geolocating Colonial Virginia Land Grants
Virginia's seventeenth- and eighteenth-century land patents survive primarily as narrative metes-and-bounds descriptions, limiting spatial analysis. This study systematically evaluates current-generation large language models (LLMs) in converting these prose abstracts into geographically accurate latitude/longitude coordinates within a focused evaluation context. A digitized corpus of 5,471 Virginia patent abstracts (1695-1732) is released, with 43 rigorously verified test cases serving as an initial, geographically focused benchmark. Six OpenAI models across three architectures-o-series, GPT-4-class, and GPT-3.5-were tested under two paradigms: direct-to-coordinate and tool-augmented chain-of-thought invoking external geocoding APIs. Results were compared against a GIS analyst baseline, Stanford NER geoparser, Mordecai-3 neural geoparser, and a county-centroid heuristic. The top single-call model, o3-2025-04-16, achieved a mean error of 23 km (median 14 km), outperforming the median LLM (37.4 km) by 37.5%, the weakest LLM (50.3 km) by 53.5%, and external baselines by 67% (GIS analyst) and 70% (Stanford NER). A five-call ensemble further reduced errors to 19.2 km (median 12.2 km) at minimal additional cost (~USD 0.20 per grant), outperforming the median LLM by 48.7%. A patentee-name redaction ablation slightly increased error (~7%), showing reliance on textual landmark and adjacency descriptions rather than memorization. The cost-effective gpt-4o-2024-08-06 model maintained a 28 km mean error at USD 1.09 per 1,000 grants, establishing a strong cost-accuracy benchmark. External geocoding tools offer no measurable benefit in this evaluation. These findings demonstrate LLMs' potential for scalable, accurate, cost-effective historical georeferencing.
Information Retrieval 15
☆ EventCast: Hybrid Demand Forecasting in E-Commerce with LLM-Based Event Knowledge
Demand forecasting is a cornerstone of e-commerce operations, directly impacting inventory planning and fulfillment scheduling. However, existing forecasting systems often fail during high-impact periods such as flash sales, holiday campaigns, and sudden policy interventions, where demand patterns shift abruptly and unpredictably. In this paper, we introduce EventCast, a modular forecasting framework that integrates future event knowledge into time-series prediction. Unlike prior approaches that ignore future interventions or directly use large language models (LLMs) for numerical forecasting, EventCast leverages LLMs solely for event-driven reasoning. Unstructured business data, which covers campaigns, holiday schedules, and seller incentives, from existing operational databases, is processed by an LLM that converts it into interpretable textual summaries leveraging world knowledge for cultural nuances and novel event combinations. These summaries are fused with historical demand features within a dual-tower architecture, enabling accurate, explainable, and scalable forecasts. Deployed on real-world e-commerce scenarios spanning 4 countries of 160 regions over 10 months, EventCast achieves up to 86.9% and 97.7% improvement on MAE and MSE compared to the variant without event knowledge, and reduces MAE by up to 57.0% and MSE by 83.3% versus the best industrial baseline during event-driven periods. EventCast has deployed into real-world industrial pipelines since March 2025, offering a practical solution for improving operational decision-making in dynamic e-commerce environments.
☆ Assessing the impact of Open Research Information Infrastructures using NLP driven full-text Scientometrics: A case study of the LXCat open-access platform
Open research information (ORI) play a central role in shaping how scientific knowledge is produced, disseminated, validated, and reused across the research lifecycle. While the visibility of such ORI infrastructures is often assessed through citation-based metrics, in this study, we present a full-text, natural language processing (NLP) driven scientometric framework to systematically quantify the impact of ORI infrastructures beyond citation counts, using the LXCat platform for low temperature plasma (LTP) research as a representative case study. The modeling of LTPs and interpretation of LTP experiments rely heavily on accurate data, much of which is hosted on LXCat, a community-driven, open-access platform central to the LTP research ecosystem. To investigate the scholarly impact of the LXCat platform over the past decade, we analyzed a curated corpus of full-text research articles citing three foundational LXCat publications. We present a comprehensive pipeline that integrates chemical entity recognition, dataset and solver mention extraction, affiliation based geographic mapping and topic modeling to extract fine-grained patterns of data usage that reflect implicit research priorities, data practices, differential reliance on specific databases, evolving modes of data reuse and coupling within scientific workflows, and thematic evolution. Importantly, our proposed methodology is domain-agnostic and transferable to other ORI contexts, and highlights the utility of NLP in quantifying the role of scientific data infrastructures and offers a data-driven reflection on how open-access platforms like LXCat contribute to shaping research directions. This work presents a scalable scientometric framework that has the potential to support evidence based evaluation of ORI platforms and to inform infrastructure design, governance, sustainability, and policy for future development.
☆ MSN: A Memory-based Sparse Activation Scaling Framework for Large-scale Industrial Recommendation
Scaling deep learning recommendation models is an effective way to improve model expressiveness. Existing approaches often incur substantial computational overhead, making them difficult to deploy in large-scale industrial systems under strict latency constraints. Recent sparse activation scaling methods, such as Sparse Mixture-of-Experts, reduce computation by activating only a subset of parameters, but still suffer from high memory access costs and limited personalization capacity due to the large size and small number of experts. To address these challenges, we propose MSN, a memory-based sparse activation scaling framework for recommendation models. MSN dynamically retrieves personalized representations from a large parameterized memory and integrates them into downstream feature interaction modules via a memory gating mechanism, enabling fine-grained personalization with low computational overhead. To enable further expansion of the memory capacity while keeping both computational and memory access costs under control, MSN adopts a Product-Key Memory (PKM) mechanism, which factorizes the memory retrieval complexity from linear time to sub-linear complexity. In addition, normalization and over-parameterization techniques are introduced to maintain balanced memory utilization and prevent memory retrieval collapse. We further design customized Sparse-Gather operator and adopt the AirTopK operator to improve training and inference efficiency in industrial settings. Extensive experiments demonstrate that MSN consistently improves recommendation performance while maintaining high efficiency. Moreover, MSN has been successfully deployed in the Douyin Search Ranking System, achieving significant gains over deployed state-of-the-art models in both offline evaluation metrics and large-scale online A/B test.
☆ IGMiRAG: Intuition-Guided Retrieval-Augmented Generation with Adaptive Mining of In-Depth Memory
Retrieval-augmented generation (RAG) equips large language models (LLMs) with reliable knowledge memory. To strengthen cross-text associations, recent research integrates graphs and hypergraphs into RAG to capture pairwise and multi-entity relations as structured links. However, their misaligned memory organization necessitates costly, disjointed retrieval. To address these limitations, we propose IGMiRAG, a framework inspired by human intuition-guided reasoning. It constructs a hierarchical heterogeneous hypergraph to align multi-granular knowledge, incorporating deductive pathways to simulate realistic memory structures. During querying, IGMiRAG distills intuitive strategies via a question parser to control mining depth and memory window, and activates instantaneous memories as anchors using dual-focus retrieval. Mirroring human intuition, the framework guides retrieval resource allocation dynamically. Furthermore, we design a bidirectional diffusion algorithm that navigates deductive paths to mine in-depth memories, emulating human reasoning processes. Extensive evaluations indicate IGMiRAG outperforms the state-of-the-art baseline by 4.8% EM and 5.0% F1 overall, with token costs adapting to task complexity (average 6.3k+, minimum 3.0k+). This work presents a cost-effective RAG paradigm that improves both efficiency and effectiveness.
comment: 29 pages, Information Retrieval
☆ Echoes in the Loop: Diagnosing Risks in LLM-Powered Recommender Systems under Feedback Loops
Large language models (LLMs) are increasingly embedded into recommender systems, where they operate across multiple functional roles such as data augmentation, profiling, and decision making. While prior work emphasizes recommendation performance, the systemic risks of LLMs, such as bias and hallucination, and their propagation through feedback loops remain largely unexplored. In this paper, we propose a role-aware, phase-wise diagnostic framework that traces how these risks emerge, manifest in ranking outcomes, and accumulate over repeated recommendation cycles. We formalize a controlled feedback-loop pipeline that simulates long-term interaction dynamics and enables empirical measurement of risks at the LLM-generated content, ranking, and ecosystem levels. Experiments on widely used benchmarks demonstrate that LLM-based components can amplify popularity bias, introduce spurious signals through hallucination, and lead to polarized and self-reinforcing exposure patterns over time. We plan to release our framework as an open-source toolkit to facilitate systematic risk analysis across diverse LLM-powered recommender systems.
☆ ViHERMES: A Graph-Grounded Multihop Question Answering Benchmark and System for Vietnamese Healthcare Regulations
Question Answering (QA) over regulatory documents is inherently challenging due to the need for multihop reasoning across legally interdependent texts, a requirement that is particularly pronounced in the healthcare domain where regulations are hierarchically structured and frequently revised through amendments and cross-references. Despite recent progress in retrieval-augmented and graph-based QA methods, systematic evaluation in this setting remains limited, especially for low-resource languages such as Vietnamese, due to the lack of benchmark datasets that explicitly support multihop reasoning over healthcare regulations. In this work, we introduce the Vietnamese Healthcare Regulations-Multihop Reasoning Dataset (ViHERMES), a benchmark designed for multihop QA over Vietnamese healthcare regulatory documents. ViHERMES consists of high-quality question-answer pairs that require reasoning across multiple regulations and capture diverse dependency patterns, including amendment tracing, cross-document comparison, and procedural synthesis. To construct the dataset, we propose a controlled multihop QA generation pipeline based on semantic clustering and graph-inspired data mining, followed by large language model-based generation with structured evidence and reasoning annotations. We further present a graph-aware retrieval framework that models formal legal relations at the level of legal units and supports principled context expansion for legally valid and coherent answers. Experimental results demonstrate that ViHERMES provides a challenging benchmark for evaluating multihop regulatory QA systems and that the proposed graph-aware approach consistently outperforms strong retrieval-based baselines. The ViHERMES dataset and system implementation are publicly available at https://github.com/ura-hcmut/ViHERMES.
comment: Accepted at ACIIDS 2026
☆ High Fidelity Textual User Representation over Heterogeneous Sources via Reinforcement Learning
Effective personalization on large-scale job platforms requires modeling members based on heterogeneous textual sources, including profiles, professional data, and search activity logs. As recommender systems increasingly adopt Large Language Models (LLMs), creating unified, interpretable, and concise representations from heterogeneous sources becomes critical, especially for latency-sensitive online environments. In this work, we propose a novel Reinforcement Learning (RL) framework to synthesize a unified textual representation for each member. Our approach leverages implicit user engagement signals (e.g., clicks, applies) as the primary reward to distill salient information. Additionally, the framework is complemented by rule-based rewards that enforce formatting and length constraints. Extensive offline experiments across multiple LinkedIn products, one of the world's largest job platforms, demonstrate significant improvements in key downstream business metrics. This work provides a practical, labeling-free, and scalable solution for constructing interpretable user representations that are directly compatible with LLM-based systems.
☆ Semantic Search At LinkedIn
Semantic search with large language models (LLMs) enables retrieval by meaning rather than keyword overlap, but scaling it requires major inference efficiency advances. We present LinkedIn's LLM-based semantic search framework for AI Job Search and AI People Search, combining an LLM relevance judge, embedding-based retrieval, and a compact Small Language Model trained via multi-teacher distillation to jointly optimize relevance and engagement. A prefill-oriented inference architecture co-designed with model pruning, context compression, and text-embedding hybrid interactions boosts ranking throughput by over 75x under a fixed latency constraint while preserving near-teacher-level NDCG, enabling one of the first production LLM-based ranking systems with efficiency comparable to traditional approaches and delivering significant gains in quality and user engagement.
☆ LIT-GRAPH: Evaluating Deep vs. Shallow Graph Embeddings for High-Quality Text Recommendation in Domain-Specific Knowledge Graphs
This study presents LIT-GRAPH (Literature Graph for Recommendation and Pedagogical Heuristics), a novel knowledge graph-based recommendation system designed to scaffold high school English teachers in selecting diverse, pedagogically aligned instructional literature. The system is built upon an ontology for English literature, addressing the challenge of curriculum stagnation, where we compare four graph embedding paradigms: DeepWalk, Biased Random Walk (BRW), Hybrid (concatenated DeepWalk and BRW vectors), and the deep model Relational Graph Convolutional Network (R-GCN). Results reveal a critical divergence: while shallow models excelled in structural link prediction, R-GCN dominated semantic ranking. By leveraging relation-specific message passing, the deep model prioritizes pedagogical relevance over raw connectivity, resulting in superior, high-quality, domain-specific recommendations.
☆ Principled Synthetic Data Enables the First Scaling Laws for LLMs in Recommendation
Large Language Models (LLMs) represent a promising frontier for recommender systems, yet their development has been impeded by the absence of predictable scaling laws, which are crucial for guiding research and optimizing resource allocation. We hypothesize that this may be attributed to the inherent noise, bias, and incompleteness of raw user interaction data in prior continual pre-training (CPT) efforts. This paper introduces a novel, layered framework for generating high-quality synthetic data that circumvents such issues by creating a curated, pedagogical curriculum for the LLM. We provide powerful, direct evidence for the utility of our curriculum by showing that standard sequential models trained on our principled synthetic data significantly outperform ($+130\%$ on recall@100 for SasRec) models trained on real data in downstream ranking tasks, demonstrating its superiority for learning generalizable user preference patterns. Building on this, we empirically demonstrate, for the first time, robust power-law scaling for an LLM that is continually pre-trained on our high-quality, recommendation-specific data. Our experiments reveal consistent and predictable perplexity reduction across multiple synthetic data modalities. These findings establish a foundational methodology for reliable scaling LLM capabilities in the recommendation domain, thereby shifting the research focus from mitigating data deficiencies to leveraging high-quality, structured information.
☆ Progressive Searching for Retrieval in RAG
Retrieval Augmented Generation (RAG) is a promising technique for mitigating two key limitations of large language models (LLMs): outdated information and hallucinations. RAG system stores documents as embedding vectors in a database. Given a query, search is executed to find the most related documents. Then, the topmost matching documents are inserted into LLMs' prompt to generate a response. Efficient and accurate searching is critical for RAG to get relevant information. We propose a cost-effective searching algorithm for retrieval process. Our progressive searching algorithm incrementally refines the candidate set through a hierarchy of searches, starting from low-dimensional embeddings and progressing into a higher, target-dimensionality. This multi-stage approach reduces retrieval time while preserving the desired accuracy. Our findings demonstrate that progressive search in RAG systems achieves a balance between dimensionality, speed, and accuracy, enabling scalable and high-performance retrieval even for large databases.
♻ ☆ Retrieval-GRPO: A Multi-Objective Reinforcement Learning Framework for Dense Retrieval in Taobao Search
Dense retrieval, as the core component of e-commerce search engines, maps user queries and items into a unified semantic space through pre-trained embedding models to enable large-scale real-time semantic retrieval. Despite the rapid advancement of LLMs gradually replacing traditional BERT architectures for embedding, their training paradigms still adhere to BERT-like supervised fine-tuning and hard negative mining strategies. This approach relies on complex offline hard negative sample construction pipelines, which constrain model iteration efficiency and hinder the evolutionary potential of semantic representation capabilities. Besides, existing multi-task learning frameworks face the seesaw effect when simultaneously optimizing semantic relevance and non-relevance objectives. In this paper, we propose Retrieval-GRPO, a multi-objective reinforcement learning-based dense retrieval framework designed to address these challenges. The method eliminates offline hard negative sample construction by dynamically retrieving Top-K candidate products for each query during training, while introducing a relevance LLM as a reward model to generate real-time feedback. Specifically, the retrieval model dynamically optimizes embedding representations through reinforcement learning, with reward signals combining LLM-generated relevance scores, product quality scores, and multi-way exclusivity metrics to achieve multi-objective user preference alignment and real-time error correction. This mechanism not only removes dependency on hard negatives but also mitigates the seesaw effect through collaborative multi-objective optimization, significantly enhancing the model's semantic generalization capability for complex long-tail queries. Extensive offline and online experiments validate the effectiveness of Retrieval-GRPO, which has been deployed on China's largest e-commerce platform.
♻ ☆ MIXRAG : Mixture-of-Experts Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Large Language Models (LLMs) have achieved impressive performance across a wide range of applications. However, they often suffer from hallucinations in knowledge-intensive domains due to their reliance on static pretraining corpora. To address this limitation, Retrieval-Augmented Generation (RAG) enhances LLMs by incorporating external knowledge sources during inference. Among these sources, textual graphs provide structured and semantically rich information that supports more precise and interpretable reasoning. This has led to growing interest in graph-based RAG systems. Despite their potential, most existing approaches rely on a single retriever to identify relevant subgraphs, which limits their ability to capture the diverse aspects of complex queries. Moreover, these systems often struggle to accurately judge the relevance of retrieved content, making them prone to distraction by irrelevant noise. To address these challenges, in this paper, we propose MIXRAG, a Mixture-of-Experts Graph-RAG framework that introduces multiple specialized graph retrievers and a dynamic routing controller to better handle diverse query intents. Each retriever is trained to focus on a specific aspect of graph semantics, such as entities, relations, or subgraph topology. A Mixture-of-Experts module adaptively selects and fuses relevant retrievers based on the input query. To reduce noise in the retrieved information, we introduce a query-aware GraphEncoder that carefully analyzes relationships within the retrieved subgraphs, highlighting the most relevant parts while down-weighting unnecessary noise. Empirical results demonstrate that our method achieves state-of-the-art performance and consistently outperforms various baselines. MIXRAG is effective across a wide range of graph-based tasks in different domains. The code will be released upon paper acceptance.
♻ ☆ Learning to Select: Query-Aware Adaptive Dimension Selection for Dense Retrieval
Dense retrieval represents queries and documents as high-dimensional embeddings, but these representations can be redundant at the query level: for a given information need, only a subset of dimensions is consistently helpful for ranking. Prior work addresses this via pseudo-relevance feedback (PRF) based dimension importance estimation, which can produce query-aware masks without labeled data but often relies on noisy pseudo signals and heuristic test-time procedures. In contrast, supervised adapter methods leverage relevance labels to improve embedding quality, yet they learn global transformations shared across queries and do not explicitly model query-aware dimension importance. We propose a Query-Aware Adaptive Dimension Selection framework that \emph{learns} to predict per-dimension importance directly from query embedding. We first construct oracle dimension importance distributions over embedding dimensions using supervised relevance labels, and then train a predictor to map a query embedding to these label-distilled importance scores. At inference, the predictor selects a query-aware subset of dimensions for similarity computation based solely on the query embedding, without pseudo-relevance feedback. Experiments across multiple dense retrievers and benchmarks show that our learned dimension selector improves retrieval effectiveness over the full-dimensional baseline as well as PRF-based masking and supervised adapter baselines.
♻ ☆ Infinity Search: Approximate Vector Search with Projections on q-Metric Spaces
An ultrametric space or infinity-metric space is defined by a dissimilarity function that satisfies a strong triangle inequality in which every side of a triangle is not larger than the larger of the other two. We show that search in ultrametric spaces with a vantage point tree has worst-case complexity equal to the depth of the tree. Since datasets of interest are not ultrametric in general, we employ a projection operator that transforms an arbitrary dissimilarity function into an ultrametric space while preserving nearest neighbors. We further learn an approximation of this projection operator to efficiently compute ultrametric distances between query points and points in the dataset. We proceed to solve a more general problem in which we consider projections in $q$-metric spaces -- in which triangle sides raised to the power of $q$ are smaller than the sum of the $q$-powers of the other two. Notice that the use of learned approximations of projected $q$-metric distances renders the search pipeline approximate. We show in experiments that increasing values of $q$ result in faster search but lower recall. Overall, search in q-metric and infinity metric spaces is competitive with existing search methods.
Computation and Language 106
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
☆ DAWN: Dependency-Aware Fast Inference for Diffusion LLMs
Diffusion large language models (dLLMs) have shown advantages in text generation, particularly due to their inherent ability for parallel decoding. However, constrained by the quality--speed trade-off, existing inference solutions adopt conservative parallel strategies, leaving substantial efficiency potential underexplored. A core challenge is that parallel decoding assumes each position can be filled independently, but tokens are often semantically coupled. Thus, the correct choice at one position constrains valid choices at others. Without modeling these inter-token dependencies, parallel strategies produce deteriorated outputs. Motivated by this insight, we propose DAWN, a training-free, dependency-aware decoding method for fast dLLM inference. DAWN extracts token dependencies and leverages two key motivations: (1) positions dependent on unmasked certain positions become more reliable, (2) simultaneously unmasking strongly coupled uncertain positions induces errors. Given those findings, DAWN leverages a dependency graph to select more reliable unmasking positions at each iteration, achieving high parallelism with negligible loss in generation quality. Extensive experiments across multiple models and datasets demonstrate that DAWN speedups the inference by 1.80-8.06x over baselines while preserving the generation quality. Code is released at https://github.com/lizhuo-luo/DAWN.
☆ Optimal Turkish Subword Strategies at Scale: Systematic Evaluation of Data, Vocabulary, Morphology Interplay
Tokenization is a pivotal design choice for neural language modeling in morphologically rich languages (MRLs) such as Turkish, where productive agglutination challenges both vocabulary efficiency and morphological fidelity. Prior studies have explored tokenizer families and vocabulary sizes but typically (i) vary vocabulary without systematically controlling the tokenizer's training corpus, (ii) provide limited intrinsic diagnostics, and (iii) evaluate a narrow slice of downstream tasks. We present the first comprehensive, principled study of Turkish subword tokenization; a "subwords manifest", that jointly varies vocabulary size and tokenizer training corpus size (data and vocabulary coupling), compares multiple tokenizer families under matched parameter budgets (WordPiece, morphology level, and character baselines), and evaluates across semantic (NLI, STS, sentiment analysis, NER), syntactic (POS, dependency parsing), and morphology-sensitive probes. To explain why tokenizers succeed or fail, we introduce a morphology-aware diagnostic toolkit that goes beyond coarse aggregates to boundary-level micro/macro F1, decoupled lemma atomicity vs. surface boundary hits, over/under-segmentation indices, character/word edit distances (CER/WER), continuation rates, and affix-type coverage and token-level atomicity. Our contributions are fourfold: (i) a systematic investigation of the vocabulary-corpus-success triad; (ii) a unified, morphology-aware evaluation framework linking intrinsic diagnostics to extrinsic outcomes; (iii) controlled comparisons identifying when character-level and morphology-level tokenization pay off; and (iv) an open-source release of evaluation code, tokenizer pipelines, and models. As the first work of its kind, this "subwords manifest" delivers actionable guidance for building effective tokenizers in MRLs and establishes a reproducible foundation for future research.
comment: Submitted to Cambridge NLP journal, all rights belong to them
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ Halluverse-M^3: A multitask multilingual benchmark for hallucination in LLMs
Hallucinations in large language models remain a persistent challenge, particularly in multilingual and generative settings where factual consistency is difficult to maintain. While recent models show strong performance on English-centric benchmarks, their behavior across languages, tasks, and hallucination types is not yet well understood. In this work, we introduce Halluverse-M^3, a dataset designed to enable systematic analysis of hallucinations across multiple languages, multiple generation tasks, and multiple hallucination categories. Halluverse-M^3 covers four languages, English, Arabic, Hindi, and Turkish, and supports two generation tasks: question answering and dialogue summarization. The dataset explicitly distinguishes between entity-level, relation-level, and sentence-level hallucinations. Hallucinated outputs are constructed through a controlled editing process and validated by human annotators, ensuring clear alignment between original content and hallucinated generations. Using this dataset, we evaluate a diverse set of contemporary open-source and proprietary language models on fine-grained hallucination detection. Our results show that question answering is consistently easier than dialogue summarization, while sentence-level hallucinations remain challenging even for the strongest models. Performance is highest in English and degrades in lower-resource languages, with Hindi exhibiting the lowest detection accuracy. Overall, Halluverse-M^3 provides a realistic and challenging benchmark for studying hallucinations in multilingual, multi-task settings. We release the dataset to support future research on hallucination detection and mitigation\footnote{https://huggingface.co/datasets/sabdalja/HalluVerse-M3}.
☆ Uncovering Cross-Objective Interference in Multi-Objective Alignment
We study a persistent failure mode in multi-objective alignment for large language models (LLMs): training improves performance on only a subset of objectives while causing others to degrade. We formalize this phenomenon as cross-objective interference and conduct the first systematic study across classic scalarization algorithms, showing that interference is pervasive and exhibits strong model dependence. To explain this phenomenon, we derive a local covariance law showing that an objective improves at first order when its reward exhibits positive covariance with the scalarized score. We extend this analysis to clipped surrogate objectives used in modern alignment, demonstrating that the covariance law remains valid under mild conditions despite clipping. Building on this analysis, we propose Covariance Targeted Weight Adaptation (CTWA), a plug-and-play method that maintains positive covariance between objective rewards and the training signal to effectively mitigate cross-objective interference. Finally, we complement these local improvement conditions with a global convergence analysis under the Polyak--Łojasiewicz condition, establishing when non-convex scalarized optimization achieves global convergence and how cross-objective interference depends on specific model geometric properties.
☆ SEMA: Simple yet Effective Learning for Multi-Turn Jailbreak Attacks ICLR 2026
Multi-turn jailbreaks capture the real threat model for safety-aligned chatbots, where single-turn attacks are merely a special case. Yet existing approaches break under exploration complexity and intent drift. We propose SEMA, a simple yet effective framework that trains a multi-turn attacker without relying on any existing strategies or external data. SEMA comprises two stages. Prefilling self-tuning enables usable rollouts by fine-tuning on non-refusal, well-structured, multi-turn adversarial prompts that are self-generated with a minimal prefix, thereby stabilizing subsequent learning. Reinforcement learning with intent-drift-aware reward trains the attacker to elicit valid multi-turn adversarial prompts while maintaining the same harmful objective. We anchor harmful intent in multi-turn jailbreaks via an intent-drift-aware reward that combines intent alignment, compliance risk, and level of detail. Our open-loop attack regime avoids dependence on victim feedback, unifies single- and multi-turn settings, and reduces exploration complexity. Across multiple datasets, victim models, and jailbreak judges, our method achieves state-of-the-art (SOTA) attack success rates (ASR), outperforming all single-turn baselines, manually scripted and template-driven multi-turn baselines, as well as our SFT (Supervised Fine-Tuning) and DPO (Direct Preference Optimization) variants. For instance, SEMA performs an average $80.1\%$ ASR@1 across three closed-source and open-source victim models on AdvBench, 33.9% over SOTA. The approach is compact, reproducible, and transfers across targets, providing a stronger and more realistic stress test for large language model (LLM) safety and enabling automatic redteaming to expose and localize failure modes. Our code is available at: https://github.com/fmmarkmq/SEMA.
comment: ICLR 2026, 37 pages, 13 tables, 7 figures
☆ The Representational Geometry of Number
A central question in cognitive science is whether conceptual representations converge onto a shared manifold to support generalization, or diverge into orthogonal subspaces to minimize task interference. While prior work has discovered evidence for both, a mechanistic account of how these properties coexist and transform across tasks remains elusive. We propose that representational sharing lies not in the concepts themselves, but in the geometric relations between them. Using number concepts as a testbed and language models as high-dimensional computational substrates, we show that number representations preserve a stable relational structure across tasks. Task-specific representations are embedded in distinct subspaces, with low-level features like magnitude and parity encoded along separable linear directions. Crucially, we find that these subspaces are largely transformable into one another via linear mappings, indicating that representations share relational structure despite being located in distinct subspaces. Together, these results provide a mechanistic lens of how language models balance the shared structure of number representation with functional flexibility. It suggests that understanding arises when task-specific transformations are applied to a shared underlying relational structure of conceptual representations.
☆ Visual Word Sense Disambiguation with CLIP through Dual-Channel Text Prompting and Image Augmentations
Ambiguity poses persistent challenges in natural language understanding for large language models (LLMs). To better understand how lexical ambiguity can be resolved through the visual domain, we develop an interpretable Visual Word Sense Disambiguation (VWSD) framework. The model leverages CLIP to project ambiguous language and candidate images into a shared multimodal space. We enrich textual embeddings using a dual-channel ensemble of semantic and photo-based prompts with WordNet synonyms, while image embeddings are refined through robust test-time augmentations. We then use cosine similarity to determine the image that best aligns with the ambiguous text. When evaluated on the SemEval-2023 VWSD dataset, enriching the embeddings raises the MRR from 0.7227 to 0.7590 and the Hit Rate from 0.5810 to 0.6220. Ablation studies reveal that dual-channel prompting provides strong, low-latency performance, whereas aggressive image augmentation yields only marginal gains. Additional experiments with WordNet definitions and multilingual prompt ensembles further suggest that noisy external signals tend to dilute semantic specificity, reinforcing the effectiveness of precise, CLIP-aligned prompts for visual word sense disambiguation.
comment: 9 pages, 6 figures, pending journal/workshop submission
☆ Generating Data-Driven Reasoning Rubrics for Domain-Adaptive Reward Modeling
An impediment to using Large Language Models (LLMs) for reasoning output verification is that LLMs struggle to reliably identify errors in thinking traces, particularly in long outputs, domains requiring expert knowledge, and problems without verifiable rewards. We propose a data-driven approach to automatically construct highly granular reasoning error taxonomies to enhance LLM-driven error detection on unseen reasoning traces. Our findings indicate that classification approaches that leverage these error taxonomies, or "rubrics", demonstrate strong error identification compared to baseline methods in technical domains like coding, math, and chemical engineering. These rubrics can be used to build stronger LLM-as-judge reward functions for reasoning model training via reinforcement learning. Experimental results show that these rewards have the potential to improve models' task accuracy on difficult domains over models trained by general LLMs-as-judges by +45%, and approach performance of models trained by verifiable rewards while using as little as 20% as many gold labels. Through our approach, we extend the usage of reward rubrics from assessing qualitative model behavior to assessing quantitative model correctness on tasks typically learned via RLVR rewards. This extension opens the door for teaching models to solve complex technical problems without a full dataset of gold labels, which are often highly costly to procure.
☆ R-Align: Enhancing Generative Reward Models through Rationale-Centric Meta-Judging
Reinforcement Learning from Human Feedback (RLHF) remains indispensable for aligning large language models (LLMs) in subjective domains. To enhance robustness, recent work shifts toward Generative Reward Models (GenRMs) that generate rationales before predicting preferences. Yet in GenRM training and evaluation, practice remains outcome-label-only, leaving reasoning quality unchecked. We show that reasoning fidelity-the consistency between a GenRM's preference decision and reference decision rationales-is highly predictive of downstream RLHF outcomes, beyond standard label accuracy. Specifically, we repurpose existing reward-model benchmarks to compute Spurious Correctness (S-Corr)-the fraction of label-correct decisions with rationales misaligned with golden judgments. Our empirical evaluation reveals substantial S-Corr even for competitive GenRMs, and higher S-Corr is associated with policy degeneration under optimization. To improve fidelity, we propose Rationale-Centric Alignment, R-Align, which augments training with gold judgments and explicitly supervises rationale alignment. R-Align reduces S-Corr on RM benchmarks and yields consistent gains in actor performance across STEM, coding, instruction following, and general tasks.
comment: Github: https://github.com/lyn22333/R-Align Huggingface: https://huggingface.co/collections/lyn22333/r-align
☆ Table-as-Search: Formulate Long-Horizon Agentic Information Seeking as Table Completion
Current Information Seeking (InfoSeeking) agents struggle to maintain focus and coherence during long-horizon exploration, as tracking search states, including planning procedure and massive search results, within one plain-text context is inherently fragile. To address this, we introduce \textbf{Table-as-Search (TaS)}, a structured planning framework that reformulates the InfoSeeking task as a Table Completion task. TaS maps each query into a structured table schema maintained in an external database, where rows represent search candidates and columns denote constraints or required information. This table precisely manages the search states: filled cells strictly record the history and search results, while empty cells serve as an explicit search plan. Crucially, TaS unifies three distinct InfoSeeking tasks: Deep Search, Wide Search, and the challenging DeepWide Search. Extensive experiments demonstrate that TaS significantly outperforms numerous state-of-the-art baselines across three kinds of benchmarks, including multi-agent framework and commercial systems. Furthermore, our analysis validates the TaS's superior robustness in long-horizon InfoSeeking, alongside its efficiency, scalability and flexibility. Code and datasets are publicly released at https://github.com/AIDC-AI/Marco-Search-Agent.
☆ Quantum Attention by Overlap Interference: Predicting Sequences from Classical and Many-Body Quantum Data
We propose a variational quantum implementation of self-attention (QSA), the core operation in transformers and large language models, which predicts future elements of a sequence by forming overlap-weighted combinations of past data. At variance with previous approaches, our QSA realizes the required nonlinearity through interference of state overlaps and returns a Renyi-1/2 cross-entropy loss directly as the expectation value of an observable, avoiding the need to decode amplitude-encoded predictions into classical logits. Furthermore, QSA naturally accommodates a constrained, trainable data-embedding that ties quantum state overlaps to data-level similarities. We find a gate complexity dominant scaling O(T d^2) for QSA, versus O(T^2 d) classically, suggesting an advantage in the practical regime where the sequence length T dominates the embedding size d. In simulations, we show that our QSA-based quantum transformer learns sequence prediction on classical data and on many-body transverse-field Ising quantum trajectories, establishing trainable attention as a practical primitive for quantum dynamical modeling.
comment: 4 + 1 pages, 2 figures
☆ Evaluating Prompt Engineering Strategies for Sentiment Control in AI-Generated Texts
The groundbreaking capabilities of Large Language Models (LLMs) offer new opportunities for enhancing human-computer interaction through emotion-adaptive Artificial Intelligence (AI). However, deliberately controlling the sentiment in these systems remains challenging. The present study investigates the potential of prompt engineering for controlling sentiment in LLM-generated text, providing a resource-sensitive and accessible alternative to existing methods. Using Ekman's six basic emotions (e.g., joy, disgust), we examine various prompting techniques, including Zero-Shot and Chain-of-Thought prompting using gpt-3.5-turbo, and compare it to fine-tuning. Our results indicate that prompt engineering effectively steers emotions in AI-generated texts, offering a practical and cost-effective alternative to fine-tuning, especially in data-constrained settings. In this regard, Few-Shot prompting with human-written examples was the most effective among other techniques, likely due to the additional task-specific guidance. The findings contribute valuable insights towards developing emotion-adaptive AI systems.
comment: The definitive, peer-reviewed and edited version of this article is published in HHAI 2025 - Proceedings of the Fourth International Conference on Hybrid Human-Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, Volume 408, ISBN 978-1-64368-611-0, pages 423 - 438, 2025
☆ compar:IA: The French Government's LLM arena to collect French-language human prompts and preference data
Large Language Models (LLMs) often show reduced performance, cultural alignment, and safety robustness in non-English languages, partly because English dominates both pre-training data and human preference alignment datasets. Training methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) require human preference data, which remains scarce and largely non-public for many languages beyond English. To address this gap, we introduce compar:IA, an open-source digital public service developed inside the French government and designed to collect large-scale human preference data from a predominantly French-speaking general audience. The platform uses a blind pairwise comparison interface to capture unconstrained, real-world prompts and user judgments across a diverse set of language models, while maintaining low participation friction and privacy-preserving automated filtering. As of 2026-02-07, compar:IA has collected over 600,000 free-form prompts and 250,000 preference votes, with approximately 89% of the data in French. We release three complementary datasets -- conversations, votes, and reactions -- under open licenses, and present initial analyses, including a French-language model leaderboard and user interaction patterns. Beyond the French context, compar:IA is evolving toward an international digital public good, offering reusable infrastructure for multilingual model training, evaluation, and the study of human-AI interaction.
comment: 18 pages, 7 figures, preprint
☆ Not All Layers Need Tuning: Selective Layer Restoration Recovers Diversity
Post-training improves instruction-following and helpfulness of large language models (LLMs) but often reduces generation diversity, which leads to repetitive outputs in open-ended settings, a phenomenon known as mode collapse. Motivated by evidence that LLM layers play distinct functional roles, we hypothesize that mode collapse can be localized to specific layers and that restoring a carefully chosen range of layers to their pre-trained weights can recover diversity while maintaining high output quality. To validate this hypothesis and decide which layers to restore, we design a proxy task -- Constrained Random Character(CRC) -- with an explicit validity set and a natural diversity objective. Results on CRC reveal a clear diversity-validity trade-off across restoration ranges and identify configurations that increase diversity with minimal quality loss. Based on these findings, we propose Selective Layer Restoration (SLR), a training-free method that restores selected layers in a post-trained model to their pre-trained weights, yielding a hybrid model with the same architecture and parameter count, incurring no additional inference cost. Across three different tasks (creative writing, open-ended question answering, and multi-step reasoning) and three different model families (Llama, Qwen, and Gemma), we find SLR can consistently and substantially improve output diversity while maintaining high output quality.
comment: 16 pages, 7 figures, 12 tables
☆ Beyond Static Alignment: Hierarchical Policy Control for LLM Safety via Risk-Aware Chain-of-Thought
Large Language Models (LLMs) face a fundamental safety-helpfulness trade-off due to static, one-size-fits-all safety policies that lack runtime controllabilityxf, making it difficult to tailor responses to diverse application needs. %As a result, models may over-refuse benign requests or under-constrain harmful ones. We present \textbf{PACT} (Prompt-configured Action via Chain-of-Thought), a framework for dynamic safety control through explicit, risk-aware reasoning. PACT operates under a hierarchical policy architecture: a non-overridable global safety policy establishes immutable boundaries for critical risks (e.g., child safety, violent extremism), while user-defined policies can introduce domain-specific (non-global) risk categories and specify label-to-action behaviors to improve utility in real-world deployment settings. The framework decomposes safety decisions into structured Classify$\rightarrow$Act paths that route queries to the appropriate action (comply, guide, or reject) and render the decision-making process transparent. Extensive experiments demonstrate that PACT achieves near state-of-the-art safety performance under global policy evaluation while attaining the best controllability under user-specific policy evaluation, effectively mitigating the safety-helpfulness trade-off. We will release the PACT model suite, training data, and evaluation protocols to facilitate reproducible research in controllable safety alignment.
comment: 13 pages, 5 tables, 2 figures
☆ Reading Between the Waves: Robust Topic Segmentation Using Inter-Sentence Audio Features ICASSP 2026
Spoken content, such as online videos and podcasts, often spans multiple topics, which makes automatic topic segmentation essential for user navigation and downstream applications. However, current methods do not fully leverage acoustic features, leaving room for improvement. We propose a multi-modal approach that fine-tunes both a text encoder and a Siamese audio encoder, capturing acoustic cues around sentence boundaries. Experiments on a large-scale dataset of YouTube videos show substantial gains over text-only and multi-modal baselines. Our model also proves more resilient to ASR noise and outperforms a larger text-only baseline on three additional datasets in Portuguese, German, and English, underscoring the value of learned acoustic features for robust topic segmentation.
comment: Accepted to IEEE ICASSP 2026
☆ FairJudge: An Adaptive, Debiased, and Consistent LLM-as-a-Judge
Existing LLM-as-a-Judge systems suffer from three fundamental limitations: limited adaptivity to task- and domain-specific evaluation criteria, systematic biases driven by non-semantic cues such as position, length, format, and model provenance, and evaluation inconsistency that leads to contradictory judgments across different evaluation modes (e.g., pointwise versus pairwise). To address these issues, we propose FairJudge, an adaptive, debiased, and consistent LLM-as-a-Judge. Unlike prior approaches that treat the judge as a static evaluator, FairJudge models judging behavior itself as a learnable and regularized policy. From a data-centric perspective, we construct a high-information-density judging dataset that explicitly injects supervision signals aligned with evaluation behavior. Building on this dataset, we adopt a curriculum-style SFT-DPO-GRPO training paradigm that progressively aligns rubric adherence, bias mitigation, and cross-mode consistency, while avoiding catastrophic forgetting. Experimental results on multiple internal and public benchmarks show that FairJudge consistently improves agreement and F1, reduces non-semantic biases, and outperforms substantially larger instruction-tuned LLMs. All resources will be publicly released after acceptance to facilitate future research.
☆ Do Prompts Guarantee Safety? Mitigating Toxicity from LLM Generations through Subspace Intervention
Large Language Models (LLMs) are powerful text generators, yet they can produce toxic or harmful content even when given seemingly harmless prompts. This presents a serious safety challenge and can cause real-world harm. Toxicity is often subtle and context-dependent, making it difficult to detect at the token level or through coarse sentence-level signals. Moreover, efforts to mitigate toxicity often face a trade-off between safety and the coherence, or fluency of the generated text. In this work, we present a targeted subspace intervention strategy for identifying and suppressing hidden toxic patterns from underlying model representations, while preserving overall ability to generate safe fluent content. On the RealToxicityPrompts, our method achieves strong mitigation performance compared to existing baselines, with minimal impact on inference complexity. Across multiple LLMs, our approach reduces toxicity of state-of-the-art detoxification systems by 8-20%, while maintaining comparable fluency. Through extensive quantitative and qualitative analyses, we show that our approach achieves effective toxicity reduction without impairing generative performance, consistently outperforming existing baselines.
☆ Echoes as Anchors: Probabilistic Costs and Attention Refocusing in LLM Reasoning
Test-time compute allocation in large reasoning models (LRMs) is widely used and has applications in mathematical problem solving, code synthesis, and planning. Recent work has addressed this problem by scaling self-consistency and parallel thinking, adding generic ``thinking tokens'' and prompting models to re-read the question before answering. Unfortunately, these approaches either inject task-agnostic tokens or mandate heuristics that do not explain -- and often ignore -- the \emph{spontaneous} repetition that many LRMs exhibit at the head of their internal chains. In contrast, we analyze and harness the model's tendency to restate the question, which we term the \emph{Echo of Prompt (EOP)}, as a front-loaded, compute-shaping mechanism. We formalize its probabilistic cost by casting echo removal as rejection-based conditioning and defining the \emph{Echo Likelihood Gap} $Δ\mathcal{L}$ as a computable proxy. This provides the missing theoretical link that links early repetition to likelihood gains and downstream accuracy. However, it does not by itself specify how to exploit EOP. Consequently, we develop \emph{Echo-Distilled SFT (ED-SFT)} to instill an ``echo-then-reason'' pattern through supervised finetuning, and \emph{Echoic Prompting (EP)} to re-ground the model mid-trace without training. While promising, quantifying benefits beyond verbosity is non-trivial. Therefore, we conduct length and suffix-controlled likelihood analyses together with layer-wise attention studies, showing that EOP increases answer to answer-prefix attention in middle layers, consistent with an \emph{attention refocusing} mechanism. We evaluate on GSM8K, MathQA, Hendrycks-MATH, AIME24, and MATH-500 under identical decoding settings and budgets, and find consistent gains over baselines. Code is available at https://github.com/hhh2210/echoes-as-anchors.
☆ Personality as Relational Infrastructure: User Perceptions of Personality-Trait-Infused LLM Messaging
Digital behaviour change systems increasingly rely on repeated, system-initiated messages to support users in everyday contexts. LLMs enable these messages to be personalised consistently across interactions, yet it remains unclear whether such personalisation improves individual messages or instead shapes users' perceptions through patterns of exposure. We explore this question in the context of LLM-generated JITAIs, which are short, context-aware messages delivered at moments deemed appropriate to support behaviour change, using physical activity as an application domain. In a controlled retrospective study, 90 participants evaluated messages generated using four LLM strategies: baseline prompting, few-shot prompting, fine-tuned models, and retrieval augmented generation, each implemented with and without Big Five Personality Traits to produce personality-aligned communication across multiple scenarios. Using ordinal multilevel models with within-between decomposition, we distinguish trial-level effects, whether personality information improves evaluations of individual messages, from person-level exposure effects, whether participants receiving higher proportions of personality-informed messages exhibit systematically different overall perceptions. Results showed no trial-level associations, but participants who received higher proportions of BFPT-informed messages rated the messages as more personalised, appropriate, and reported less negative affect. We use Communication Accommodation Theory for post-hoc analysis. These results suggest that personality-based personalisation in behaviour change systems may operate primarily through aggregate exposure rather than per-message optimisation, with implications for how adaptive systems are designed and evaluated in sustained human-AI interaction. In-situ longitudinal studies are needed to validate these findings in real-world contexts.
comment: Currently under review
☆ Inference-Time Rethinking with Latent Thought Vectors for Math Reasoning
Standard chain-of-thought reasoning generates a solution in a single forward pass, committing irrevocably to each token and lacking a mechanism to recover from early errors. We introduce Inference-Time Rethinking, a generative framework that enables iterative self-correction by decoupling declarative latent thought vectors from procedural generation. We factorize reasoning into a continuous latent thought vector (what to reason about) and a decoder that verbalizes the trace conditioned on this vector (how to reason). Beyond serving as a declarative buffer, latent thought vectors compress the reasoning structure into a continuous representation that abstracts away surface-level token variability, making gradient-based optimization over reasoning strategies well-posed. Our prior model maps unstructured noise to a learned manifold of valid reasoning patterns, and at test time we employ a Gibbs-style procedure that alternates between generating a candidate trace and optimizing the latent vector to better explain that trace, effectively navigating the latent manifold to refine the reasoning strategy. Training a 0.2B-parameter model from scratch on GSM8K, our method with 30 rethinking iterations surpasses baselines with 10 to 15 times more parameters, including a 3B counterpart. This result demonstrates that effective mathematical reasoning can emerge from sophisticated inference-time computation rather than solely from massive parameter counts.
☆ Baichuan-M3: Modeling Clinical Inquiry for Reliable Medical Decision-Making
We introduce Baichuan-M3, a medical-enhanced large language model engineered to shift the paradigm from passive question-answering to active, clinical-grade decision support. Addressing the limitations of existing systems in open-ended consultations, Baichuan-M3 utilizes a specialized training pipeline to model the systematic workflow of a physician. Key capabilities include: (i) proactive information acquisition to resolve ambiguity; (ii) long-horizon reasoning that unifies scattered evidence into coherent diagnoses; and (iii) adaptive hallucination suppression to ensure factual reliability. Empirical evaluations demonstrate that Baichuan-M3 achieves state-of-the-art results on HealthBench, the newly introduced HealthBench-Hallu and ScanBench, significantly outperforming GPT-5.2 in clinical inquiry, advisory and safety. The models are publicly available at https://huggingface.co/collections/baichuan-inc/baichuan-m3.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ Malicious Agent Skills in the Wild: A Large-Scale Security Empirical Study
Third-party agent skills extend LLM-based agents with instruction files and executable code that run on users' machines. Skills execute with user privileges and are distributed through community registries with minimal vetting, but no ground-truth dataset exists to characterize the resulting threats. We construct the first labeled dataset of malicious agent skills by behaviorally verifying 98,380 skills from two community registries, confirming 157 malicious skills with 632 vulnerabilities. These attacks are not incidental. Malicious skills average 4.03 vulnerabilities across a median of three kill chain phases, and the ecosystem has split into two archetypes: Data Thieves that exfiltrate credentials through supply chain techniques, and Agent Hijackers that subvert agent decision-making through instruction manipulation. A single actor accounts for 54.1\% of confirmed cases through templated brand impersonation. Shadow features, capabilities absent from public documentation, appear in 0\% of basic attacks but 100\% of advanced ones; several skills go further by exploiting the AI platform's own hook system and permission flags. Responsible disclosure led to 93.6\% removal within 30 days. We release the dataset and analysis pipeline to support future work on agent skill security.
☆ MTQE.en-he: Machine Translation Quality Estimation for English-Hebrew EACL 2026
We release MTQE.en-he: to our knowledge, the first publicly available English-Hebrew benchmark for Machine Translation Quality Estimation. MTQE.en-he contains 959 English segments from WMT24++, each paired with a machine translation into Hebrew, and Direct Assessment scores of the translation quality annotated by three human experts. We benchmark ChatGPT prompting, TransQuest, and CometKiwi and show that ensembling the three models outperforms the best single model (CometKiwi) by 6.4 percentage points Pearson and 5.6 percentage points Spearman. Fine-tuning experiments with TransQuest and CometKiwi reveal that full-model updates are sensitive to overfitting and distribution collapse, yet parameter-efficient methods (LoRA, BitFit, and FTHead, i.e., fine-tuning only the classification head) train stably and yield improvements of 2-3 percentage points. MTQE.en-he and our experimental results enable future research on this under-resourced language pair.
comment: Accepted to LoResLM at EACL 2026
☆ AgentCPM-Report: Interleaving Drafting and Deepening for Open-Ended Deep Research
Generating deep research reports requires large-scale information acquisition and the synthesis of insight-driven analysis, posing a significant challenge for current language models. Most existing approaches follow a plan-then-write paradigm, whose performance heavily depends on the quality of the initial outline. However, constructing a comprehensive outline itself demands strong reasoning ability, causing current deep research systems to rely almost exclusively on closed-source or online large models. This reliance raises practical barriers to deployment and introduces safety and privacy concerns for user-authored data. In this work, we present AgentCPM-Report, a lightweight yet high-performing local solution composed of a framework that mirrors the human writing process and an 8B-parameter deep research agent. Our framework uses a Writing As Reasoning Policy (WARP), which enables models to dynamically revise outlines during report generation. Under this policy, the agent alternates between Evidence-Based Drafting and Reasoning-Driven Deepening, jointly supporting information acquisition, knowledge refinement, and iterative outline evolution. To effectively equip small models with this capability, we introduce a Multi-Stage Agentic Training strategy, consisting of cold-start, atomic skill RL, and holistic pipeline RL. Experiments on DeepResearch Bench, DeepConsult, and DeepResearch Gym demonstrate that AgentCPM-Report outperforms leading closed-source systems, with substantial gains in Insight.
☆ LogicSkills: A Structured Benchmark for Formal Reasoning in Large Language Models
Large language models have demonstrated notable performance across various logical reasoning benchmarks. However, it remains unclear which core logical skills they truly master. To address this, we introduce LogicSkills, a unified benchmark designed to isolate three fundamental skills in formal reasoning: (i) $\textit{formal symbolization}\unicode{x2014}$translating premises into first-order logic; (ii) $\textit{countermodel construction}\unicode{x2014}$formulating a finite structure in which all premises are true while the conclusion is false; and (iii) $\textit{validity assessment}\unicode{x2014}$deciding whether a conclusion follows from a given set of premises. Items are drawn from the two-variable fragment of first-order logic (without identity) and are presented in both natural English and a Carroll-style language with nonce words. All examples are verified for correctness and non-triviality using the SMT solver Z3. Across leading models, performance is high on validity but substantially lower on symbolization and countermodel construction, suggesting reliance on surface-level patterns rather than genuine symbolic or rule-based reasoning.
comment: 13 pages, 5 figures
☆ Completing Missing Annotation: Multi-Agent Debate for Accurate and Scalable Relevant Assessment for IR Benchmarks ICLR 2026
Information retrieval (IR) evaluation remains challenging due to incomplete IR benchmark datasets that contain unlabeled relevant chunks. While LLMs and LLM-human hybrid strategies reduce costly human effort, they remain prone to LLM overconfidence and ineffective AI-to-human escalation. To address this, we propose DREAM, a multi-round debate-based relevance assessment framework with LLM agents, built on opposing initial stances and iterative reciprocal critique. Through our agreement-based debate, it yields more accurate labeling for certain cases and more reliable AI-to-human escalation for uncertain ones, achieving 95.2% labeling accuracy with only 3.5% human involvement. Using DREAM, we build BRIDGE, a refined benchmark that mitigates evaluation bias and enables fairer retriever comparison by uncovering 29,824 missing relevant chunks. We then re-benchmark IR systems and extend evaluation to RAG, showing that unaddressed holes not only distort retriever rankings but also drive retrieval-generation misalignment. The relevance assessment framework is available at https: //github.com/DISL-Lab/DREAM-ICLR-26; and the BRIDGE dataset is available at https://github.com/DISL-Lab/BRIDGE-Benchmark.
comment: Accepted at ICLR 2026
☆ Designing Computational Tools for Exploring Causal Relationships in Qualitative Data
Exploring causal relationships for qualitative data analysis in HCI and social science research enables the understanding of user needs and theory building. However, current computational tools primarily characterize and categorize qualitative data; the few systems that analyze causal relationships either inadequately consider context, lack credibility, or produce overly complex outputs. We first conducted a formative study with 15 participants interested in using computational tools for exploring causal relationships in qualitative data to understand their needs and derive design guidelines. Based on these findings, we designed and implemented QualCausal, a system that extracts and illustrates causal relationships through interactive causal network construction and multi-view visualization. A feedback study (n = 15) revealed that participants valued our system for reducing the analytical burden and providing cognitive scaffolding, yet navigated how such systems fit within their established research paradigms, practices, and habits. We discuss broader implications for designing computational tools that support qualitative data analysis.
comment: 19 pages, 5 figures, conditionally accepted by CHI26
☆ Revisiting the Shape Convention of Transformer Language Models
Dense Transformer language models have largely adhered to one consistent architectural shape: each layer consists of an attention module followed by a feed-forward network (FFN) with a narrow-wide-narrow MLP, allocating most parameters to the MLP at expansion ratios between 2 and 4. Motivated by recent results that residual wide-narrow-wide (hourglass) MLPs offer superior function approximation capabilities, we revisit the long-standing MLP shape convention in Transformer, challenging the necessity of the narrow-wide-narrow design. To study this, we develop a Transformer variant that replaces the conventional FFN with a deeper hourglass-shaped FFN, comprising a stack of hourglass sub-MLPs connected by residual pathways. We posit that a deeper but lighter hourglass FFN can serve as a competitive alternative to the conventional FFN, and that parameters saved by using a lighter hourglass FFN can be more effectively utilized, such as by enlarging model hidden dimensions under fixed budgets. We confirm these through empirical validations across model scales: hourglass FFNs outperform conventional FFNs up to 400M and achieve comparable performance at larger scales to 1B parameters; hourglass FFN variants with reduced FFN and increased attention parameters show consistent improvements over conventional configurations at matched budgets. Together, these findings shed new light on recent work and prompt a rethinking of the narrow-wide-narrow MLP convention and the balance between attention and FFN towards efficient and expressive modern language models.
☆ Improve Large Language Model Systems with User Logs
Scaling training data and model parameters has long driven progress in large language models (LLMs), but this paradigm is increasingly constrained by the scarcity of high-quality data and diminishing returns from rising computational costs. As a result, recent work is increasing the focus on continual learning from real-world deployment, where user interaction logs provide a rich source of authentic human feedback and procedural knowledge. However, learning from user logs is challenging due to their unstructured and noisy nature. Vanilla LLM systems often struggle to distinguish useful feedback signals from noisy user behavior, and the disparity between user log collection and model optimization (e.g., the off-policy optimization problem) further strengthens the problem. To this end, we propose UNO (User log-driveN Optimization), a unified framework for improving LLM systems (LLMsys) with user logs. UNO first distills logs into semi-structured rules and preference pairs, then employs query-and-feedback-driven clustering to manage data heterogeneity, and finally quantifies the cognitive gap between the model's prior knowledge and the log data. This assessment guides the LLMsys to adaptively filter out noisy feedback and construct different modules for primary and reflective experiences extracted from user logs, thereby improving future responses. Extensive experiments show that UNO achieves state-of-the-art effectiveness and efficiency, significantly outperforming Retrieval Augmented Generation (RAG) and memory-based baselines. We have open-sourced our code at https://github.com/bebr2/UNO .
☆ Diffusion-State Policy Optimization for Masked Diffusion Language Models
Masked diffusion language models generate by iteratively filling masked tokens over multiple denoising steps, so learning only from a terminal reward on the final completion yields coarse credit assignment over intermediate decisions. We propose DiSPO (Diffusion-State Policy Optimization), a plug-in credit-assignment layer that directly optimizes intermediate filling decisions. At selected intermediate masked states, DiSPO branches by resampling fillings for the currently masked positions from rollout-cached logits, scores the resulting completions, and updates only the newly filled tokens -- without additional multi-step diffusion rollouts. We formalize a fixed-state objective for branched completions and derive a policy-gradient estimator that can be combined with terminal-feedback policy optimization using the same rollouts. On LLaDA-8B-Instruct, DiSPO consistently improves over the terminal-feedback diffu-GRPO baseline on math and planning benchmarks under matched rollout compute and optimizer steps. Our code will be available at https://daioba.github.io/dispo .
☆ RelayGen: Intra-Generation Model Switching for Efficient Reasoning
Large reasoning models (LRMs) achieve strong performance on complex reasoning tasks by generating long, multi-step reasoning trajectories, but inference-time scaling incurs substantial deployment cost. A key challenge is that generation difficulty varies within a single output, whereas existing efficiency-oriented approaches either ignore this intra-generation variation or rely on supervised token-level routing with high system complexity. We present \textbf{RelayGen}, a training-free, segment-level runtime model switching framework that exploits difficulty variation in long-form reasoning. Through offline analysis of generation uncertainty using token probability margins, we show that coarse-grained segment-level control is sufficient to capture difficulty transitions within a reasoning trajectory. RelayGen identifies model-specific switch cues that signal transitions to lower-difficulty segments and dynamically delegates their continuation to a smaller model, while preserving high-difficulty reasoning on the large model. Across multiple reasoning benchmarks, RelayGen substantially reduces inference latency while preserving most of the accuracy of large models. When combined with speculative decoding, RelayGen achieves up to 2.2$\times$ end-to-end speedup with less than 2\% accuracy degradation, without requiring additional training or learned routing components.
☆ Evaluating an evidence-guided reinforcement learning framework in aligning light-parameter large language models with decision-making cognition in psychiatric clinical reasoning
Large language models (LLMs) hold transformative potential for medical decision support yet their application in psychiatry remains constrained by hallucinations and superficial reasoning. This limitation is particularly acute in light-parameter LLMs which are essential for privacy-preserving and efficient clinical deployment. Existing training paradigms prioritize linguistic fluency over structured clinical logic and result in a fundamental misalignment with professional diagnostic cognition. Here we introduce ClinMPO, a reinforcement learning framework designed to align the internal reasoning of LLMs with professional psychiatric practice. The framework employs a specialized reward model trained independently on a dataset derived from 4,474 psychiatry journal articles and structured according to evidence-based medicine principles. We evaluated ClinMPO on a unseen subset of the benchmark designed to isolate reasoning capabilities from rote memorization. This test set comprises items where leading large-parameter LLMs consistently fail. We compared the ClinMPO-aligned light LLM performance against a cohort of 300 medical students. The ClinMPO-tuned Qwen3-8B model achieved a diagnostic accuracy of 31.4% and surpassed the human benchmark of 30.8% on these complex cases. These results demonstrate that medical evidence-guided optimization enables light-parameter LLMs to master complex reasoning tasks. Our findings suggest that explicit cognitive alignment offers a scalable pathway to reliable and safe psychiatric decision support.
comment: 21 pages, 8 figures
☆ CORE: Comprehensive Ontological Relation Evaluation for Large Language Models
Large Language Models (LLMs) perform well on many reasoning benchmarks, yet existing evaluations rarely assess their ability to distinguish between meaningful semantic relations and genuine unrelatedness. We introduce CORE (Comprehensive Ontological Relation Evaluation), a dataset of 225K multiple-choice questions spanning 74 disciplines, together with a general-domain open-source benchmark of 203 rigorously validated questions (Cohen's Kappa = 1.0) covering 24 semantic relation types with equal representation of unrelated pairs. A human baseline from 1,000+ participants achieves 92.6% accuracy (95.1% on unrelated pairs). In contrast, 29 state-of-the-art LLMs achieve 48.25-70.9% overall accuracy, with near-ceiling performance on related pairs (86.5-100%) but severe degradation on unrelated pairs (0-41.35%), despite assigning similar confidence (92-94%). Expected Calibration Error increases 2-4x on unrelated pairs, and a mean semantic collapse rate of 37.6% indicates systematic generation of spurious relations. On the CORE 225K MCQs dataset, accuracy further drops to approximately 2%, highlighting substantial challenges in domain-specific semantic reasoning. We identify unrelatedness reasoning as a critical, under-evaluated frontier for LLM evaluation and safety.
☆ TrailBlazer: History-Guided Reinforcement Learning for Black-Box LLM Jailbreaking
Large Language Models (LLMs) have become integral to many domains, making their safety a critical priority. Prior jailbreaking research has explored diverse approaches, including prompt optimization, automated red teaming, obfuscation, and reinforcement learning (RL) based methods. However, most existing techniques fail to effectively leverage vulnerabilities revealed in earlier interaction turns, resulting in inefficient and unstable attacks. Since jailbreaking involves sequential interactions in which each response influences future actions, reinforcement learning provides a natural framework for this problem. Motivated by this, we propose a history-aware RL-based jailbreak framework that analyzes and reweights vulnerability signals from prior steps to guide future decisions. We show that incorporating historical information alone improves jailbreak success rates. Building on this insight, we introduce an attention-based reweighting mechanism that highlights critical vulnerabilities within the interaction history, enabling more efficient exploration with fewer queries. Extensive experiments on AdvBench and HarmBench demonstrate that our method achieves state-of-the-art jailbreak performance while significantly improving query efficiency. These results underscore the importance of historical vulnerability signals in reinforcement learning-driven jailbreak strategies and offer a principled pathway for advancing adversarial research on LLM safeguards.
☆ Investigating the structure of emotions by analyzing similarity and association of emotion words
In the field of natural language processing, some studies have attempted sentiment analysis on text by handling emotions as explanatory or response variables. One of the most popular emotion models used in this context is the wheel of emotion proposed by Plutchik. This model schematizes human emotions in a circular structure, and represents them in two or three dimensions. However, the validity of Plutchik's wheel of emotion has not been sufficiently examined. This study investigated the validity of the wheel by creating and analyzing a semantic networks of emotion words. Through our experiments, we collected data of similarity and association of ordered pairs of emotion words, and constructed networks using these data. We then analyzed the structure of the networks through community detection, and compared it with that of the wheel of emotion. The results showed that each network's structure was, for the most part, similar to that of the wheel of emotion, but locally different.
comment: 5 figures, 8 tables
☆ On the Wings of Imagination: Conflicting Script-based Multi-role Framework for Humor Caption Generation ICLR 2026
Humor is a commonly used and intricate human language in daily life. Humor generation, especially in multi-modal scenarios, is a challenging task for large language models (LLMs), which is typically as funny caption generation for images, requiring visual understanding, humor reasoning, creative imagination, and so on. Existing LLM-based approaches rely on reasoning chains or self-improvement, which suffer from limited creativity and interpretability. To address these bottlenecks, we develop a novel LLM-based humor generation mechanism based on a fundamental humor theory, GTVH. To produce funny and script-opposite captions, we introduce a humor-theory-driven multi-role LLM collaboration framework augmented with humor retrieval (HOMER). The framework consists of three LLM-based roles: (1) conflicting-script extractor that grounds humor in key script oppositions, forming the basis of caption generation; (2) retrieval-augmented hierarchical imaginator that identifies key humor targets and expands the creative space of them through diverse associations structured as imagination trees; and (3) caption generator that produces funny and diverse captions conditioned on the obtained knowledge. Extensive experiments on two New Yorker Cartoon benchmarking datasets show that HOMER outperforms state-of-the-art baselines and powerful LLM reasoning strategies on multi-modal humor captioning.
comment: Paper accepted as a conference paper at ICLR 2026
☆ Stopping Computation for Converged Tokens in Masked Diffusion-LM Decoding ICLR 2026
Masked Diffusion Language Models generate sequences via iterative sampling that progressively unmasks tokens. However, they still recompute the attention and feed-forward blocks for every token position at every step -- even when many unmasked tokens are essentially fixed, resulting in substantial waste in compute. We propose SureLock: when the posterior at an unmasked position has stabilized across steps (our sure condition), we lock that position -- thereafter skipping its query projection and feed-forward sublayers -- while caching its attention keys and values so other positions can continue to attend to it. This reduces the dominant per-iteration computational cost from $O(N^2d)$ to $O(MNd)$ where $N$ is the sequence length, $M$ is the number of unlocked token positions, and $d$ is the model dimension. In practice, $M$ decreases as the iteration progresses, yielding substantial savings. On LLaDA-8B, SureLock reduces algorithmic FLOPs by 30--50% relative to the same sampler without locking, while maintaining comparable generation quality. We also provide a theoretical analysis to justify the design rationale of SureLock: monitoring only the local KL at the lock step suffices to bound the deviation in final token probabilities. Our code will be available at https://daioba.github.io/surelock .
comment: Accepted at ICLR 2026
☆ FMBench: Adaptive Large Language Model Output Formatting
Producing outputs that satisfy both semantic intent and format constraints is essential for deploying large language models in user-facing and system-integrated workflows. In this work, we focus on Markdown formatting, which is ubiquitous in assistants, documentation, and tool-augmented pipelines but still prone to subtle, hard-to-detect errors (e.g., broken lists, malformed tables, inconsistent headings, and invalid code blocks) that can significantly degrade downstream usability. We present FMBench, a benchmark for adaptive Markdown output formatting that evaluates models under a wide range of instruction-following scenarios with diverse structural requirements. FMBench emphasizes real-world formatting behaviors such as multi-level organization, mixed content (natural language interleaved with lists/tables/code), and strict adherence to user-specified layout constraints. To improve Markdown compliance without relying on hard decoding constraints, we propose a lightweight alignment pipeline that combines supervised fine-tuning (SFT) with reinforcement learning fine-tuning. Starting from a base model, we first perform SFT on instruction-response pairs, and then optimize a composite objective that balances semantic fidelity with structural correctness. Experiments on two model families (OpenPangu and Qwen) show that SFT consistently improves semantic alignment, while reinforcement learning provides additional gains in robustness to challenging Markdown instructions when initialized from a strong SFT policy. Our results also reveal an inherent trade-off between semantic and structural objectives, highlighting the importance of carefully designed rewards for reliable formatted generation. Code is available at: https://github.com/FudanCVL/FMBench.
☆ ReBeCA: Unveiling Interpretable Behavior Hierarchy behind the Iterative Self-Reflection of Language Models with Causal Analysis
While self-reflection can enhance language model reliability, its underlying mechanisms remain opaque, with existing analyses often yielding correlation-based insights that fail to generalize. To address this, we introduce \textbf{\texttt{ReBeCA}} (self-\textbf{\texttt{Re}}flection \textbf{\texttt{Be}}havior explained through \textbf{\texttt{C}}ausal \textbf{\texttt{A}}nalysis), a framework that unveils the interpretable behavioral hierarchy governing the self-reflection outcome. By modeling self-reflection trajectories as causal graphs, ReBeCA isolates genuine determinants of performance through a three-stage Invariant Causal Prediction (ICP) pipeline. We establish three critical findings: (1) \textbf{Behavioral hierarchy:} Semantic behaviors of the model influence final self-reflection results hierarchically: directly or indirectly; (2) \textbf{Causation matters:} Generalizability in self-reflection effects is limited to just a few semantic behaviors; (3) \textbf{More $\mathbf{\neq}$ better:} The confluence of seemingly positive semantic behaviors, even among direct causal factors, can impair the efficacy of self-reflection. ICP-based verification identifies sparse causal parents achieving up to $49.6\%$ structural likelihood gains, stable across tasks where correlation-based patterns fail. Intervention studies on novel datasets confirm these causal relationships hold out-of-distribution ($p = .013, η^2_\mathrm{p} = .071$). ReBeCA thus provides a rigorous methodology for disentangling genuine causal mechanisms from spurious associations in self-reflection dynamics.
comment: 17 pages, 3 figures
☆ Cost-Aware Model Selection for Text Classification: Multi-Objective Trade-offs Between Fine-Tuned Encoders and LLM Prompting in Production
Large language models (LLMs) such as GPT-4o and Claude Sonnet 4.5 have demonstrated strong capabilities in open-ended reasoning and generative language tasks, leading to their widespread adoption across a broad range of NLP applications. However, for structured text classification problems with fixed label spaces, model selection is often driven by predictive performance alone, overlooking operational constraints encountered in production systems. In this work, we present a systematic comparison of two contrasting paradigms for text classification: zero- and few-shot prompt-based large language models, and fully fine-tuned encoder-only architectures. We evaluate these approaches across four canonical benchmarks (IMDB, SST-2, AG News, and DBPedia), measuring predictive quality (macro F1), inference latency, and monetary cost. We frame model evaluation as a multi-objective decision problem and analyze trade-offs using Pareto frontier projections and a parameterized utility function reflecting different deployment regimes. Our results show that fine-tuned encoder-based models from the BERT family achieve competitive, and often superior, classification performance while operating at one to two orders of magnitude lower cost and latency compared to zero- and few-shot LLM prompting. Overall, our findings suggest that indiscriminate use of large language models for standard text classification workloads can lead to suboptimal system-level outcomes. Instead, fine-tuned encoders emerge as robust and efficient components for structured NLP pipelines, while LLMs are better positioned as complementary elements within hybrid architectures. We release all code, datasets, and evaluation protocols to support reproducibility and cost-aware NLP system design.
comment: 26 pages, 12 figures. Empirical benchmark comparing fine-tuned encoders and LLM prompting for text classification under cost and latency constraints
☆ SHINE: A Scalable In-Context Hypernetwork for Mapping Context to LoRA in a Single Pass
We propose SHINE (Scalable Hyper In-context NEtwork), a scalable hypernetwork that can map diverse meaningful contexts into high-quality LoRA adapters for large language models (LLM). By reusing the frozen LLM's own parameters in an in-context hypernetwork design and introducing architectural innovations, SHINE overcomes key limitations of prior hypernetworks and achieves strong expressive power with a relatively small number of parameters. We introduce a pretraining and instruction fine-tuning pipeline, and train our hypernetwork to generate high quality LoRA adapters from diverse meaningful contexts in a single forward pass. It updates LLM parameters without any fine-tuning, and immediately enables complex question answering tasks related to the context without directly accessing the context, effectively transforming in-context knowledge to in-parameter knowledge in one pass. Our work achieves outstanding results on various tasks, greatly saves time, computation and memory costs compared to SFT-based LLM adaptation, and shows great potential for scaling. Our code is available at https://github.com/Yewei-Liu/SHINE
☆ Can Post-Training Transform LLMs into Causal Reasoners?
Causal inference is essential for decision-making but remains challenging for non-experts. While large language models (LLMs) show promise in this domain, their precise causal estimation capabilities are still limited, and the impact of post-training on these abilities is insufficiently explored. This paper examines the extent to which post-training can enhance LLMs' capacity for causal inference. We introduce CauGym, a comprehensive dataset comprising seven core causal tasks for training and five diverse test sets. Using this dataset, we systematically evaluate five post-training approaches: SFT, DPO, KTO, PPO, and GRPO. Across five in-domain and four existing benchmarks, our experiments demonstrate that appropriate post-training enables smaller LLMs to perform causal inference competitively, often surpassing much larger models. Our 14B parameter model achieves 93.5% accuracy on the CaLM benchmark, compared to 55.4% by OpenAI o3. Furthermore, the post-trained LLMs exhibit strong generalization and robustness under real-world conditions such as distribution shifts and noisy data. Collectively, these findings provide the first systematic evidence that targeted post-training can produce reliable and robust LLM-based causal reasoners. Our data and GRPO-model are available at https://github.com/OpenCausaLab/CauGym.
☆ The Condensate Theorem: Transformers are O(n), Not $O(n^2)$
We present the Condensate Theorem: attention sparsity is a learned topological property, not an architectural constraint. Through empirical analysis of trained language models, we find that attention mass concentrates on a distinct topological manifold -- and this manifold can be identified dynamically without checking every position. We prove a general result: for any query, projecting attention onto the Condensate Manifold (Anchor + Window + Dynamic Top-k) achieves 100% output equivalence with full $O(n^2)$ attention. This is not an approximation -- it is lossless parity. We validate this across GPT-2, Pythia, Qwen2, TinyLlama, and Mistral, demonstrating bit-exact token matching on 1,500+ generated tokens. By mapping this topology to hardware, our Topological Attention kernel achieves a 159x measured speedup at 131K tokens (3.94ms vs 628ms) and a projected >1,200x speedup at 1M tokens, reducing inference costs by >99.9% compared to Flash Attention. We conclude that the quadratic bottleneck is an artifact of naive implementation, not intelligence.
comment: 13 pages, 4 figures, 8 tables
☆ Lost in Speech: Benchmarking, Evaluation, and Parsing of Spoken Code-Switching Beyond Standard UD Assumptions
Spoken code-switching (CSW) challenges syntactic parsing in ways not observed in written text. Disfluencies, repetition, ellipsis, and discourse-driven structure routinely violate standard Universal Dependencies (UD) assumptions, causing parsers and large language models (LLMs) to fail despite strong performance on written data. These failures are compounded by rigid evaluation metrics that conflate genuine structural errors with acceptable variation. In this work, we present a systems-oriented approach to spoken CSW parsing. We introduce a linguistically grounded taxonomy of spoken CSW phenomena and SpokeBench, an expert-annotated gold benchmark designed to test spoken-language structure beyond standard UD assumptions. We further propose FLEX-UD, an ambiguity-aware evaluation metric, which reveals that existing parsing techniques perform poorly on spoken CSW by penalizing linguistically plausible analyses as errors. We then propose DECAP, a decoupled agentic parsing framework that isolates spoken-phenomena handling from core syntactic analysis. Experiments show that DECAP produces more robust and interpretable parses without retraining and achieves up to 52.6% improvements over existing parsing techniques. FLEX-UD evaluations further reveal qualitative improvements that are masked by standard metrics.
comment: 18 pages, 4 Figures
☆ Judging What We Cannot Solve: A Consequence-Based Approach for Oracle-Free Evaluation of Research-Level Math
Recent progress in reasoning models suggests that generating plausible attempts for research-level mathematics may be within reach, but verification remains a bottleneck, consuming scarce expert time. We hypothesize that a meaningful solution should contain enough method-level information that, when applied to a neighborhood of related questions, it should yield better downstream performance than incorrect solutions. Building on this idea, we propose \textbf{Consequence-Based Utility}, an oracle-free evaluator that scores each candidate by testing its value as an in-context exemplar in solving related yet verifiable questions. Our approach is evaluated on an original set of research-level math problems, each paired with one expert-written solution and nine LLM-generated solutions. Notably, Consequence-Based Utility consistently outperforms reward models, generative reward models, and LLM judges on ranking quality. Specifically, for GPT-OSS-120B, it improves Acc@1 from 67.2 to 76.3 and AUC from 71.4 to 79.6, with similarly large AUC gains on GPT-OSS-20B (69.0 to 79.2). Furthermore, compared to LLM-Judges, it also exhibits a larger solver-evaluator gap, maintaining a stronger correct-wrong separation even on instances where the underlying solver often fails to solve.
comment: Preprint
☆ RoPE-LIME: RoPE-Space Locality + Sparse-K Sampling for Efficient LLM Attribution
Explaining closed-source LLM outputs is challenging because API access prevents gradient-based attribution, while perturbation methods are costly and noisy when they depend on regenerated text. We introduce RoPE-LIME, an open-source extension of gSMILE that decouples reasoning from explanation: given a fixed output from a closed model, a smaller open-source surrogate computes token-level attributions from probability-based objectives (negative log-likelihood and divergence targets) under input perturbations. RoPE-LIME incorporates (i) a locality kernel based on Relaxed Word Mover's Distance computed in RoPE embedding space for stable similarity under masking, and (ii) Sparse-K sampling, an efficient perturbation strategy that improves interaction coverage under limited budgets. Experiments on HotpotQA (sentence features) and a hand-labeled MMLU subset (word features) show that RoPE-LIME produces more informative attributions than leave-one-out sampling and improves over gSMILE while substantially reducing closed-model API calls.
☆ VowelPrompt: Hearing Speech Emotions from Text via Vowel-level Prosodic Augmentation ICLR 2026
Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.
comment: Accepted to ICLR 2026
☆ MPIB: A Benchmark for Medical Prompt Injection Attacks and Clinical Safety in LLMs
Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems are increasingly integrated into clinical workflows; however, prompt injection attacks can steer these systems toward clinically unsafe or misleading outputs. We introduce the Medical Prompt Injection Benchmark (MPIB), a dataset-and-benchmark suite for evaluating clinical safety under both direct prompt injection and indirect, RAG-mediated injection across clinically grounded tasks. MPIB emphasizes outcome-level risk via the Clinical Harm Event Rate (CHER), which measures high-severity clinical harm events under a clinically grounded taxonomy, and reports CHER alongside Attack Success Rate (ASR) to disentangle instruction compliance from downstream patient risk. The benchmark comprises 9,697 curated instances constructed through multi-stage quality gates and clinical safety linting. Evaluating MPIB across a diverse set of baseline LLMs and defense configurations, we find that ASR and CHER can diverge substantially, and that robustness depends critically on whether adversarial instructions appear in the user query or in retrieved context. We release MPIB with evaluation code, adversarial baselines, and comprehensive documentation to support reproducible and systematic research on clinical prompt injection. Code and data are available at GitHub (code) and Hugging Face (data).
comment: 13 pages, 7 figures
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
comment: Blog post: https://ssundaram21.github.io/soar/
♻ ☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
♻ ☆ Harnessing the Unseen: The Hidden Influence of Intrinsic Knowledge in Long-Context Language Models AAAI 2026
Recent advances in long-context language models (LCLMs), designed to handle extremely long contexts, primarily focus on utilizing external contextual information, often leaving the influence of language models' parametric knowledge underexplored. In this work, we firstly investigate how this parametric knowledge affects content generation and demonstrate that its impact becomes increasingly pronounced as context length extends. Furthermore, we show that the model's ability to utilize parametric knowledge, which we call parametric recall ability, does not improve simultaneously with its ability to leverage contextual knowledge through extrinsic retrieval ability. Moreover, better extrinsic retrieval ability can interfere with the model's parametric recall ability, limiting its full potential. To bridge this gap, we design a simple yet effective Hybrid Needle-in-a-Haystack test that evaluates models based on their capabilities across both abilities, rather than solely emphasizing extrinsic retrieval ability. Our experimental results reveal that Qwen-2.5 models significantly outperform Llama-3.1 models, demonstrating superior potential to combine various abilities. Moreover, even the more powerful Llama-3.1-70B-Instruct model fails to exhibit better performance, highlighting the importance of evaluating models from a dual-ability perspective.
comment: 17 pages,11figures (accepted to AAAI 2026)
♻ ☆ Encoding syntactic objects and Merge operations in function spaces
We provide a mathematical argument showing that, given a representation of lexical items as functions (wavelets, for instance) in some function space, it is possible to construct a faithful representation of arbitrary syntactic objects in the same function space. This space can be endowed with a commutative non-associative semiring structure built using the second Renyi entropy. The resulting representation of syntactic objects is compatible with the magma structure. The resulting set of functions is an algebra over an operad, where the operations in the operad model circuits that transform the input wave forms into a combined output that encodes the syntactic structure. The action of Merge on workspaces is faithfully implemented as action on these circuits, through a coproduct and a Hopf algebra Markov chain. The results obtained here provide a constructive argument showing the theoretical possibility of a neurocomputational realization of the core computational structure of syntax. We also present a particular case of this general construction where this type of realization of Merge is implemented as a cross frequency phase synchronization on sinusoidal waves. This also shows that Merge can be expressed in terms of the successor function of a semiring, thus clarifying the well known observation of its similarities with the successor function of arithmetic.
comment: 48 pages, LaTeX, 4 png figures; v2: expository changes
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ You Had One Job: Per-Task Quantization Using LLMs' Hidden Representations
Many applications of large language models (LLMs) require only a narrow capability, yet common post-training quantization (PTQ) pipelines assign precision largely without regard to the target task. As a result, they may spend bits on layers that are less relevant to the task. We propose per-task mixed-precision PTQ guided by hidden representations. Given a small set of unlabeled calibration prompts from the target task, we estimate layer importance and allocate higher precision to task-relevant layers while lower to the rest, under a bits allocation budget. We introduce three task-aware allocation signals: \textbf{TAQ}, which scores layers using an information-stability criterion derived from activation geometry; \textbf{TAQO}, which ranks layers by direct sensitivity to single-layer quantization; and \textbf{TAQ-KL}, which measures output sensitivity via KL divergence under a noise proxy for quantization error. Together, these methods provide a simple, post-training framework that connects mechanistic signals to quantization decisions, enabling task-aligned compression without additional training.
♻ ☆ AFD-INSTRUCTION: A Comprehensive Antibody Instruction Dataset with Functional Annotations for LLM-Based Understanding and Design ICLR 2026
Large language models (LLMs) have significantly advanced protein representation learning. However, their capacity to interpret and design antibodies through natural language remains limited. To address this challenge, we present AFD-Instruction, the first large-scale instruction dataset with functional annotations tailored to antibodies. This dataset encompasses two key components: antibody understanding, which infers functional attributes directly from sequences, and antibody design, which enables de novo sequence generation under functional constraints. These components provide explicit sequence-function alignment and support antibody design guided by natural language instructions. Extensive instruction-tuning experiments on general-purpose LLMs demonstrate that AFD-Instruction consistently improves performance across diverse antibody-related tasks. By linking antibody sequences with textual descriptions of function, AFD-Instruction establishes a new foundation for advancing antibody modeling and accelerating therapeutic discovery.
comment: Accepted by ICLR 2026
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: This revised version strengthens the architectural clarity and conceptual coherence of the manuscript. In particular, it formalizes Soft Symbolic Control as a dedicated Governance layer distinct from the R-CCAM loop, clarifying its structural role beyond the earlier meta-prompt add-on formulation
♻ ☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
♻ ☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
♻ ☆ STAR: Stepwise Task Augmentation with Relation Learning for Aspect Sentiment Quad Prediction
Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct a complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), requires predicting all four elements simultaneously and is hindered by the difficulty of accurately modeling dependencies among sentiment elements. A key challenge lies in the scarcity of annotated data, which limits the model ability to understand and reason about the relational dependencies required for effective quad prediction. To address this challenge, we propose a stepwise task augmentation framework with relation learning that decomposes ASQP into a sequence of auxiliary subtasks with increasing relational granularity. Specifically, STAR incrementally constructs auxiliary data by augmenting the training data with pairwise and overall relation tasks, enabling the model to capture and compose sentiment dependencies in a stepwise manner. This stepwise formulation provides effective relational learning signals that enhance quad prediction performance, particularly in low-resource scenarios. Extensive experiments across four benchmark datasets demonstrate that STAR consistently outperforms existing methods, achieving average F1 improvements of over $2\%$ under low-resource conditions.
comment: 17 pages, 6 figures, and 7 tables
♻ ☆ Estimating Semantic Alphabet Size for LLM Uncertainty Quantification
Many black-box techniques for quantifying the uncertainty of large language models (LLMs) rely on repeated LLM sampling, which can be computationally expensive. Therefore, practical applicability demands reliable estimation from few samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator with a discrete formulation attractive for the black-box setting. Recent extensions of SE exhibit improved LLM hallucination detection, but do so with less interpretable methods that admit additional hyperparameters. For this reason, we revisit the canonical discrete semantic entropy (DSE) estimator, finding that it underestimates the "true" semantic entropy, as expected from theory. We propose a modified semantic alphabet size estimator, and illustrate that using it to adjust DSE for sample coverage results in more accurate SE estimation in our setting of interest. Furthermore, we find that two semantic alphabet size estimators, including our proposed, flag incorrect LLM responses as well or better than many top-performing alternatives, with the added benefit of remaining highly interpretable.
♻ ☆ SWE-Dev: Evaluating and Training Autonomous Feature-Driven Software Development
Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks. However, feature-driven development, a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world end-to-end feature-driven software development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. We evaluated SWE-Dev across 17 base LLMs, 10 reasoning-focused LLMs, 10 multi-agent systems, and 8 tool-augmented LLM agents. Results show substantial headroom: the best single-turn model reaches only 22.51\% Pass@1 on the hard split, while OpenHands agents improve to 56.44\% but still leave many tasks unsolved. Code is available here https://github.com/DorothyDUUU/SWE-Dev.
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established DirectHarm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure, double-object datives, is predominantly associated with Germanic verbs rather than Latinate verbs. From the perspective of language acquisition, however, such etymology-based generalizations raise learnability concerns, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our model also uncovered previously unrecognized features of the quasi-etymological clusters. Taken together with prior results from Japanese, our findings indicate that the proposed method provides a general, cross-linguistic approach to discovering etymological structure from phonotactic cues in the lexicon.
♻ ☆ Scoring, Reasoning, and Selecting the Best! Ensembling Large Language Models via a Peer-Review Process
We propose LLM-PeerReview, an unsupervised LLM Ensemble method that selects the most ideal response from multiple LLM-generated candidates for each query, harnessing the collective wisdom of multiple models with diverse strengths. LLM-PeerReview is built on a novel, peer-review-inspired framework that offers a transparent and interpretable mechanism, while remaining fully unsupervised for flexible adaptability and generalization. Specifically, it operates in three stages: For scoring, we use the emerging LLM-as-a-Judge technique to evaluate each response by reusing multiple LLMs at hand; For reasoning, we can apply a straightforward averaging strategy or a principled graphical model-based truth inference algorithm to aggregate multiple scores to produce a final score for each response; Finally, the highest-scoring response is selected as the best ensemble output. LLM-PeerReview is conceptually simple and empirically powerful. Our results across four datasets show that the two variants of the proposed approach outperform the advanced model Smoothie-Global by 6.9% and 7.3% points, cross diverse task types including factual recall QA, math reasoning, and instruction following.
♻ ☆ D-SCoRE: Document-Centric Segmentation and CoT Reasoning with Structured Export for QA-CoT Data Generation
The scarcity and high cost of high-quality domain-specific question-answering (QA) datasets limit supervised fine-tuning of large language models (LLMs). We introduce $\textbf{D-SCoRE}$, a training-free framework that leverages LLMs and prompt engineering to automatically generate diverse, rich QA datasets with Chain-of-Thought (CoT) from arbitrary textual sources. By integrating $\textbf{D}$ocument-centric processing, $\textbf{S}$egmentation, $\textbf{Co}$T $\textbf{R}$easoning, and structured $\textbf{E}$xport - along with multi-dimensional controls such as semantic role transformation, question type balancing, and counterfactual augmentation - D-SCoRE produces tailored QA pairs with enhanced diversity and relevance. LLMs fine-tuned on D-SCoRE-generated datasets outperform those trained on human-annotated QA data across most evaluated domains. Its efficiency and scalability enable rapid, high-performance domain-adaptive fine-tuning on consumer-grade hardware, generating over 1,100 high-quality QA pairs per GPU-hour end-to-end.
♻ ☆ LeWiDi-2025 at NLPerspectives: Third Edition of the Learning with Disagreements Shared Task EMNLP 2025
Many researchers have reached the conclusion that AI models should be trained to be aware of the possibility of variation and disagreement in human judgments, and evaluated as per their ability to recognize such variation. The LEWIDI series of shared tasks on Learning With Disagreements was established to promote this approach to training and evaluating AI models, by making suitable datasets more accessible and by developing evaluation methods. The third edition of the task builds on this goal by extending the LEWIDI benchmark to four datasets spanning paraphrase identification, irony detection, sarcasm detection, and natural language inference, with labeling schemes that include not only categorical judgments as in previous editions, but ordinal judgments as well. Another novelty is that we adopt two complementary paradigms to evaluate disagreement-aware systems: the soft-label approach, in which models predict population-level distributions of judgments, and the perspectivist approach, in which models predict the interpretations of individual annotators. Crucially, we moved beyond standard metrics such as cross-entropy, and tested new evaluation metrics for the two paradigms. The task attracted diverse participation, and the results provide insights into the strengths and limitations of methods to modeling variation. Together, these contributions strengthen LEWIDI as a framework and provide new resources, benchmarks, and findings to support the development of disagreement-aware technologies.
comment: 14 pages; LeWiDi-2025 shared task description paper at NLPerspective workshop at EMNLP 2025
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ OpenDeception: Learning Deception and Trust in Human-AI Interaction via Multi-Agent Simulation
As large language models (LLMs) are increasingly deployed as interactive agents, open-ended human-AI interactions can involve deceptive behaviors with serious real-world consequences, yet existing evaluations remain largely scenario-specific and model-centric. We introduce OpenDeception, a lightweight framework for jointly evaluating deception risk from both sides of human-AI dialogue. It consists of a scenario benchmark with 50 real-world deception cases, an IntentNet that infers deceptive intent from agent reasoning, and a TrustNet that estimates user susceptibility. To address data scarcity, we synthesize high-risk dialogues via LLM-based role-and-goal simulation, and train the User Trust Scorer using contrastive learning on controlled response pairs, avoiding unreliable scalar labels. Experiments on 11 LLMs and three large reasoning models show that over 90% of goal-driven interactions in most models exhibit deceptive intent, with stronger models displaying higher risk. A real-world case study adapted from a documented AI-induced suicide incident further demonstrates that our joint evaluation can proactively trigger warnings before critical trust thresholds are reached.
♻ ☆ Benchmarking Automatic Speech Recognition for Indian Languages in Agricultural Contexts
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
comment: 9 pages, 6 figures
♻ ☆ DimABSA: Building Multilingual and Multidomain Datasets for Dimensional Aspect-Based Sentiment Analysis
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
♻ ☆ DimStance: Multilingual Datasets for Dimensional Stance Analysis
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
♻ ☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
♻ ☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
♻ ☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
♻ ☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
♻ ☆ Personalized Learning Path Planning with Goal-Driven Learner State Modeling WWW'26
Personalized Learning Path Planning (PLPP) aims to design adaptive learning paths that align with individual goals. While large language models (LLMs) show potential in personalizing learning experiences, existing approaches often lack mechanisms for goal-aligned planning. We introduce Pxplore, a novel framework for PLPP that integrates a reinforcement-based training paradigm and an LLM-driven educational architecture. We design a structured learner state model and an automated reward function that transforms abstract objectives into computable signals. We train the policy combining supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO), and deploy it within a real-world learning platform. Extensive experiments validate Pxplore's effectiveness in producing coherent, personalized, and goal-driven learning paths. We release our code and dataset at https://github.com/Pxplore/pxplore-algo.
comment: Accepted at The Web Conference 2026 (WWW'26)
♻ ☆ FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration
While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82$\times$ in prefill and 2.87$\times$ in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: This work is currently in progress
♻ ☆ Context-Free Recognition with Transformers
Transformers excel empirically on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs. Past work proves that $\mathcal{O}(\log(n))$ looping layers (w.r.t. input length n) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that looped transformers with $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on a language that provably requires logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.
♻ ☆ Causal Front-Door Adjustment for Robust Jailbreak Attacks on LLMs
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the Causal Front-Door Adjustment Attack (CFA{$^2$}) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that CFA{$^2$} achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
♻ ☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
♻ ☆ T$^3$-S2S: Training-free Triplet Tuning for Sketch to Scene Synthesis in Controllable Concept Art Generation
2D concept art generation for 3D scenes is a crucial yet challenging task in computer graphics, as creating natural intuitive environments still demands extensive manual effort in concept design. While generative AI has simplified 2D concept design via text-to-image synthesis, it struggles with complex multi-instance scenes and offers limited support for structured terrain layout. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the ControlNet model for detailed multi-instance generation via three key modules: Prompt Balance ensures keyword representation and minimizes the risk of missing critical instances; Characteristic Priority emphasizes sketch-based features by highlighting TopK indices in feature channels; and Dense Tuning refines contour details within instance-related regions of the attention map. Leveraging the controllability of T3-S2S, we also introduce a feature-sharing strategy with dual prompt sets to generate layer-aware isometric and terrain-view representations for the terrain layout. Experiments show that our sketch-to-scene workflow consistently produces multi-instance 2D scenes with details aligned with input prompts.
comment: https://openreview.net/forum?id=lyn2BgKQ8F
♻ ☆ Let LLMs Speak Embedding Languages: Generative Text Embeddings via Iterative Contrastive Refinement
Existing large language model (LLM)-based embeddings typically adopt an encoder-only paradigm, treating LLMs as static feature extractors and overlooking their core generative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive Sentence Embeddings), a novel framework that leverages autoregressive generation to iteratively refine semantic representations. By producing sequences of soft tokens optimized under contrastive objective, GIRCSE captures latent concepts and implicit semantics that encoder-only methods often miss. To guide this process, we propose an Iterative Contrastive Refinement (ICR) objective that encourages each refinement step to yield better representations. Extensive experiments show that GIRCSE outperforms strong LLM-based embedding baselines on the MTEB benchmark and instruction-following tasks. Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more tokens at inference steadily improves embedding quality. Our results establish generative iterative refinement as a new paradigm for representation learning.
♻ ☆ Scalable Multi-Stage Influence Function for Large Language Models via Eigenvalue-Corrected Kronecker-Factored Parameterization IJCAI 2025
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks. Since the majority of knowledge is acquired during pre-training, attributing the predictions of fine-tuned LLMs to their pre-training data may provide valuable insights. Influence functions have been proposed as a means to explain model predictions based on training data. However, existing approaches fail to compute ``multi-stage'' influence and lack scalability to billion-scale LLMs. In this paper, we propose the multi-stage influence function to attribute the downstream predictions of fine-tuned LLMs to pre-training data under the full-parameter fine-tuning paradigm. To enhance the efficiency and practicality of our multi-stage influence function, we leverage Eigenvalue-corrected Kronecker-Factored (EK-FAC) parameterization for efficient approximation. Empirical results validate the superior scalability of EK-FAC approximation and the effectiveness of our multi-stage influence function. Additionally, case studies on a real-world LLM, dolly-v2-3b, demonstrate its interpretive power, with exemplars illustrating insights provided by multi-stage influence estimates. Our code is public at https://github.com/colored-dye/multi_stage_influence_function.
comment: 17 pages, 4 figures; accepted by IJCAI 2025
♻ ☆ Hyperbolic Fine-Tuning for Large Language Models NeurIPS 2025
Large language models (LLMs) have demonstrated remarkable performance across various tasks. However, it remains an open question whether the default Euclidean space is the most suitable choice for LLMs. In this study, we investigate the geometric characteristics of LLMs, focusing specifically on tokens and their embeddings. Our findings reveal that token frequency follows a power-law distribution, where high-frequency tokens (e.g., the, that ) constitute the minority, while low-frequency tokens (e.g., apple, dog) constitute the majority. Furthermore, high-frequency tokens cluster near the origin, whereas low-frequency tokens are positioned farther away in the embedding space. Additionally, token embeddings exhibit hyperbolic characteristics, indicating a latent tree-like structure within the embedding space. Motivated by these observations, we propose HypLoRA, an efficient fine-tuning approach that operates in hyperbolic space to exploit these underlying hierarchical structures better. HypLoRA performs low-rank adaptation directly in hyperbolic space, thereby preserving hyperbolic modeling capabilities throughout the fine-tuning process. Extensive experiments across various base models and reasoning benchmarks, specifically arithmetic and commonsense reasoning tasks, demonstrate that HypLoRA substantially improves LLM performance.
comment: NeurIPS 2025; https://github.com/marlin-codes/HypLoRA
♻ ☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus. We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
♻ ☆ Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) have shown impressive moral reasoning abilities. Yet they often diverge when confronted with complex, multi-factor moral dilemmas. To address these discrepancies, we propose a framework that synthesizes multiple LLMs' moral judgments into a collectively formulated moral judgment, realigning models that deviate significantly from this consensus. Our aggregation mechanism fuses continuous moral acceptability scores (beyond binary labels) into a collective probability, weighting contributions by model reliability. For misaligned models, a targeted embedding-optimization procedure fine-tunes token embeddings for moral philosophical theories, minimizing JS divergence to the consensus while preserving semantic integrity. Experiments on a large-scale social moral dilemma dataset show our approach builds robust consensus and improves individual model fidelity. These findings highlight the value of data-driven moral alignment across multiple models and its potential for safer, more consistent AI systems.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ Simulated Adoption: Decoupling Magnitude and Direction in LLM In-Context Conflict Resolution
Large Language Models (LLMs) frequently prioritize conflicting in-context information over pre-existing parametric memory, a phenomenon often termed sycophancy or compliance. However, the mechanistic realization of this behavior remains obscure, specifically how the model resolves these knowledge conflicts through compliance, and whether this suppression arises from signal magnitude dilution or directional geometric alteration within the residual stream. To resolve this, we conducted a layer-wise geometric analysis across Qwen-3-4B, Llama-3.1-8B, and GLM-4-9B, decomposing the residual stream updates induced by counter-factual contexts into radial (norm-based) and angular (cosine-based) components. Our empirical results reject the universality of the "Manifold Dilution" hypothesis, as two of the three architectures maintained stable residual norms despite exhibiting significant performance degradation on factual queries. Instead, we observed that compliance is consistently characterized by "Orthogonal Interference," where the conflicting context injects a steering vector that is quasi-orthogonal to the ground-truth direction, effectively rotating the hidden state representation. This suggests that models do not "unlearn" or suppress the magnitude of internal truths but rather employ a mechanism of geometric displacement to bypass the correct unembedding vector, effectively simulating adoption while preserving the original structural magnitude. These findings challenge scalar confidence metrics for detecting hallucinations and underscore the necessity of vectorial monitoring to distinguish between genuine knowledge integration and superficial in-context mimicry.
♻ ☆ SeSE: Black-Box Uncertainty Quantification for Large Language Models Based on Structural Information Theory
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding hallucinations, i.e., plausible yet factually incorrect responses. However, while semantic UQ methods have achieved advanced performance, they overlook latent semantic structural information that could enable more precise uncertainty estimates. In this paper, we propose \underline{Se}mantic \underline{S}tructural \underline{E}ntropy ({SeSE}), a principled black-box UQ framework applicable to both open- and closed-source LLMs. To reveal the intrinsic structure of the semantic space, SeSE constructs its optimal hierarchical abstraction through an encoding tree with minimal structural entropy. The structural entropy of this encoding tree thus quantifies the inherent uncertainty within LLM semantic space after optimal compression. Additionally, unlike existing methods that primarily focus on simple short-form generation, we extent SeSE to provide interpretable, granular uncertainty estimation for long-form outputs. We theoretically prove that SeSE generalizes semantic entropy, the gold standard for UQ in LLMs, and empirically demonstrate its superior performance over strong baselines across 24 model-dataset combinations.
♻ ☆ Quantifying the Effect of Test Set Contamination on Generative Evaluations
As frontier AI systems are pretrained on web-scale data, test set contamination has become a critical concern for accurately assessing their capabilities. While research has thoroughly investigated the impact of test set contamination on discriminative evaluations like multiple-choice question-answering, comparatively little research has studied the impact of test set contamination on generative evaluations. In this work, we quantitatively assess the effect of test set contamination on generative evaluations through the language model lifecycle. We pretrain language models on mixtures of web data and the MATH benchmark, sweeping model sizes and number of test set replicas contaminating the pretraining corpus; performance improves with contamination and model size. Using scaling laws, we make a surprising discovery: including even a single test set replica enables models to achieve lower loss than the irreducible error of training on the uncontaminated corpus. We then study further training: overtraining with fresh data reduces the effects of contamination, whereas supervised finetuning on the training set can either increase or decrease performance on test data, depending on the amount of pretraining contamination. Finally, at inference, we identify factors that modulate memorization: high sampling temperatures mitigate contamination effects, and longer solutions are exponentially more difficult to memorize than shorter ones, presenting a contrast with discriminative evaluations, where solutions are only a few tokens in length. By characterizing how generation and memorization interact, we highlight a new layer of complexity for trustworthy evaluation of AI systems.
♻ ☆ ExpressivityBench: Can LLMs Communicate Implicitly?
Human communication is often implicit, conveying tone, identity, and intent beyond literal meanings. While large language models have achieved strong performance on explicit tasks such as summarization and reasoning, their capacity for expressivity, or implicit communication, remains underexplored. We introduce \textbf{ExpressivityBench}, a framework for evaluating the expressivity of LLMs using information-theoretic communication models. Our approach quantifies how well LLM-generated text communicates target properties without explicit mention, across nine tasks spanning emotion, identity, and tone. To enable scalable and reproducible evaluation, we employ LLM-based graders validated against human judgments. Our results reveal that while models are adept at expressing affective content, they struggle with sociolinguistic signals, lagging behind human baselines. This study provides a necessary step to evaluate human-like implicit communication, with implications for applications such as education, mental health support, and socially-aware dialogue systems. We provide code and data for our benchmark alongside our paper.
comment: 21 pages, 7 figures
♻ ☆ inversedMixup: Data Augmentation via Inverting Mixed Embeddings
Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
♻ ☆ MAGIC: A Co-Evolving Attacker-Defender Adversarial Game for Robust LLM Safety
Ensuring robust safety alignment is crucial for Large Language Models (LLMs), yet existing defenses often lag behind evolving adversarial attacks due to their \textbf{reliance on static, pre-collected data distributions}. In this paper, we introduce \textbf{MAGIC}, a novel multi-turn multi-agent reinforcement learning framework that formulates LLM safety alignment as an adversarial asymmetric game. Specifically, an attacker agent learns to iteratively rewrite original queries into deceptive prompts, while a defender agent simultaneously optimizes its policy to recognize and refuse such inputs. This dynamic process triggers a \textbf{co-evolution}, where the attacker's ever-changing strategies continuously uncover long-tail vulnerabilities, driving the defender to generalize to unseen attack patterns. Remarkably, we observe that the attacker, endowed with initial reasoning ability, evolves \textbf{novel, previously unseen combinatorial strategies} through iterative RL training, underscoring our method's substantial potential. Theoretically, we provide insights into a more robust game equilibrium and derive safety guarantees. Extensive experiments validate our framework's effectiveness, demonstrating superior defense success rates without compromising the helpfulness of the model. Our code is available at https://github.com/BattleWen/MAGIC.
♻ ☆ Large Language Models as Formalizers on Constraint Satisfaction Problems
An emerging line of recent work advocates for using large language models (LLMs) as formalizers instead of as end-to-end solvers for various types of problems. Instead of generating the solution, the LLM generates a formal program that derives a solution via an external solver. We thoroughly investigate the formalization capability of LLMs on real-life constraint satisfaction problems. On 4 domains, we systematically evaluate 6 LLMs, including 4 large reasoning models with inference-time scaling, paired with 5 pipelines, including 2 types of formalism. We show that in zero-shot settings, LLM-as-formalizer performs on par with the mainstream LLM-as-solver while offering verifiability, interpretability, and robustness. We also observe excessive reasoning tokens and hard-coded solutions scaling with problem complexity, which demonstrates that even the state-of-the-art LLMs have limited ability to generate solutions or formal programs. We present our detailed analysis and actionable remedies to drive future research that improves LLM-as-formalizer.
♻ ☆ PACE: Defying the Scaling Hypothesis of Exploration in Iterative Alignment for Mathematical Reasoning
Iterative Direct Preference Optimization has emerged as the state-of-the-art paradigm for aligning Large Language Models on reasoning tasks. Standard implementations (DPO-R1) rely on Best-of-N sampling (e.g., $N \ge 8$) to mine golden trajectories from the distribution tail. In this paper, we challenge this scaling hypothesis and reveal a counter-intuitive phenomenon: in mathematical reasoning, aggressive exploration yields diminishing returns and even catastrophic policy collapse. We theoretically demonstrate that scaling $N$ amplifies verifier noise and induces detrimental distribution shifts. To resolve this, we introduce \textbf{PACE} (Proximal Alignment via Corrective Exploration), which replaces brute-force mining with a generation-based corrective strategy. Operating with a minimal budget ($2
♻ ☆ Layer-adaptive Expert Pruning for Pre-Training of Mixture-of-Experts Large Language Models
Although Mixture-of-Experts (MoE) Large Language Models (LLMs) deliver superior accuracy with a reduced number of active parameters, their pre-training represents a significant computationally bottleneck due to underutilized experts and limited training efficiency. This work introduces a Layer-Adaptive Expert Pruning (LAEP) algorithm designed for the pre-training stage of MoE LLMs. In contrast to previous expert pruning approaches that operate primarily in the post-training phase, the proposed algorithm enhances training efficiency by selectively pruning underutilized experts and reorganizing experts across computing devices according to token distribution statistics. Comprehensive experiments demonstrate that LAEP effectively reduces model size and substantially improves pre-training efficiency. In particular, when pre-training the Yuan3.0-1T Base model from scratch original with 1515B parameters, LAEP achieves a 48.3% improvement in training efficiency alongside a 33.3% parameter reduction, while still delivering excellent performance across multiple domains.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains. Code & pretrained checkpoints: https://github.com/apple/ml-fs-dfm
comment: Accepted to ICLR 2026
Computer Vision and Pattern Recognition 133
☆ MedMO: Grounding and Understanding Multimodal Large Language Model for Medical Images
Multimodal large language models (MLLMs) have rapidly advanced, yet their adoption in medicine remains limited by gaps in domain coverage, modality alignment, and grounded reasoning. In this work, we introduce MedMO, a medical foundation model built upon a generalized MLLM architecture and trained exclusively on large-scale, domain-specific data. MedMO follows a multi-stage training recipe: (i) cross-modal pretraining to align heterogeneous visual encoders with a medical language backbone; (ii) instruction tuning on multi-task supervision that spans captioning, VQA, report generation, retrieval, and grounded disease localization with bounding boxes; and (iii) reinforcement learning with verifiable rewards that combine factuality checks with a box-level GIoU reward to strengthen spatial grounding and step-by-step reasoning in complex clinical scenarios. MedMO consistently outperforms strong open-source medical MLLMs across multiple modalities and tasks. On VQA benchmarks, MedMO achieves an average accuracy improvement of +13.7% over the baseline and performs within 1.9% of the SOTA Fleming-VL. For text-based QA, it attains +6.9% over the baseline and +14.5% over Fleming-VL. In medical report generation, MedMO delivers significant gains in both semantic and clinical accuracy. Moreover, it exhibits strong grounding capability, achieving an IoU improvement of +40.4 over the baseline and +37.0% over Fleming-VL, underscoring its robust spatial reasoning and localization performance. Evaluations across radiology, ophthalmology, and pathology-microscopy confirm MedMO's broad cross-modality generalization. We release two versions of MedMO: 4B and 8B. Project is available at https://genmilab.github.io/MedMO-Page
comment: 21 pages, 6 figures and 4 tables
☆ CineScene: Implicit 3D as Effective Scene Representation for Cinematic Video Generation
Cinematic video production requires control over scene-subject composition and camera movement, but live-action shooting remains costly due to the need for constructing physical sets. To address this, we introduce the task of cinematic video generation with decoupled scene context: given multiple images of a static environment, the goal is to synthesize high-quality videos featuring dynamic subject while preserving the underlying scene consistency and following a user-specified camera trajectory. We present CineScene, a framework that leverages implicit 3D-aware scene representation for cinematic video generation. Our key innovation is a novel context conditioning mechanism that injects 3D-aware features in an implicit way: By encoding scene images into visual representations through VGGT, CineScene injects spatial priors into a pretrained text-to-video generation model by additional context concatenation, enabling camera-controlled video synthesis with consistent scenes and dynamic subjects. To further enhance the model's robustness, we introduce a simple yet effective random-shuffling strategy for the input scene images during training. To address the lack of training data, we construct a scene-decoupled dataset with Unreal Engine 5, containing paired videos of scenes with and without dynamic subjects, panoramic images representing the underlying static scene, along with their camera trajectories. Experiments show that CineScene achieves state-of-the-art performance in scene-consistent cinematic video generation, handling large camera movements and demonstrating generalization across diverse environments.
comment: Project website: https://karine-huang.github.io/CineScene/
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Reliable Mislabel Detection for Video Capsule Endoscopy Data
The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
☆ Seeing Beyond Redundancy: Task Complexity's Role in Vision Token Specialization in VLLMs
Vision capabilities in vision large language models (VLLMs) have consistently lagged behind their linguistic capabilities. In particular, numerous benchmark studies have demonstrated that VLLMs struggle when fine-grained visual information or spatial reasoning is required. However, we do not yet understand exactly why VLLMs struggle so much with these tasks relative to others. Some works have focused on visual redundancy as an explanation, where high-level visual information is uniformly spread across numerous tokens and specific, fine-grained visual information is discarded. In this work, we investigate this premise in greater detail, seeking to better understand exactly how various types of visual information are processed by the model and what types of visual information are discarded. To do so, we introduce a simple synthetic benchmark dataset that is specifically constructed to probe various visual features, along with a set of metrics for measuring visual redundancy, allowing us to better understand the nuances of their relationship. Then, we explore fine-tuning VLLMs on a number of complex visual tasks to better understand how redundancy and compression change based upon the complexity of the data that a model is trained on. We find that there is a connection between task complexity and visual compression, implying that having a sufficient ratio of high complexity visual data is crucial for altering the way that VLLMs distribute their visual representation and consequently improving their performance on complex visual tasks. We hope that this work will provide valuable insights for training the next generation of VLLMs.
comment: 25 pages
☆ PANC: Prior-Aware Normalized Cut for Object Segmentation
Fully unsupervised segmentation pipelines naively seek the most salient object, should this be present. As a result, most of the methods reported in the literature deliver non-deterministic partitions that are sensitive to initialization, seed order, and threshold heuristics. We propose PANC, a weakly supervised spectral segmentation framework that uses a minimal set of annotated visual tokens to produce stable, controllable, and reproducible object masks. From the TokenCut approach, we augment the token-token affinity graph with a handful of priors coupled to anchor nodes. By manipulating the graph topology, we bias the spectral eigenspace toward partitions that are consistent with the annotations. Our approach preserves the global grouping enforced by dense self-supervised visual features, trading annotated tokens for significant gains in reproducibility, user control, and segmentation quality. Using 5 to 30 annotations per dataset, our training-free method achieves state-of-the-art performance among weakly and unsupervised approaches on standard benchmarks (e.g., DUTS-TE, ECSSD, MS COCO). Contrarily, it excels in domains where dense labels are costly or intra-class differences are subtle. We report strong and reliable results on homogeneous, fine-grained, and texture-limited domains, achieving 96.8% (+14.43% over SotA), 78.0% (+0.2%), and 78.8% (+0.37%) average mean intersection-over-union (mIoU) on CrackForest (CFD), CUB-200-2011, and HAM10000 datasets, respectively. For multi-object benchmarks, the framework showcases explicit, user-controllable semantic segmentation.
Prompt Reinjection: Alleviating Prompt Forgetting in Multimodal Diffusion Transformers
Multimodal Diffusion Transformers (MMDiTs) for text-to-image generation maintain separate text and image branches, with bidirectional information flow between text tokens and visual latents throughout denoising. In this setting, we observe a prompt forgetting phenomenon: the semantics of the prompt representation in the text branch is progressively forgotten as depth increases. We further verify this effect on three representative MMDiTs--SD3, SD3.5, and FLUX.1 by probing linguistic attributes of the representations over the layers in the text branch. Motivated by these findings, we introduce a training-free approach, prompt reinjection, which reinjects prompt representations from early layers into later layers to alleviate this forgetting. Experiments on GenEval, DPG, and T2I-CompBench++ show consistent gains in instruction-following capability, along with improvements on metrics capturing preference, aesthetics, and overall text--image generation quality.
comment: 18 pages
☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
☆ NanoFLUX: Distillation-Driven Compression of Large Text-to-Image Generation Models for Mobile Devices
While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
☆ RFDM: Residual Flow Diffusion Model for Efficient Causal Video Editing
Instructional video editing applies edits to an input video using only text prompts, enabling intuitive natural-language control. Despite rapid progress, most methods still require fixed-length inputs and substantial compute. Meanwhile, autoregressive video generation enables efficient variable-length synthesis, yet remains under-explored for video editing. We introduce a causal, efficient video editing model that edits variable-length videos frame by frame. For efficiency, we start from a 2D image-to-image (I2I) diffusion model and adapt it to video-to-video (V2V) editing by conditioning the edit at time step t on the model's prediction at t-1. To leverage videos' temporal redundancy, we propose a new I2I diffusion forward process formulation that encourages the model to predict the residual between the target output and the previous prediction. We call this Residual Flow Diffusion Model (RFDM), which focuses the denoising process on changes between consecutive frames. Moreover, we propose a new benchmark that better ranks state-of-the-art methods for editing tasks. Trained on paired video data for global/local style transfer and object removal, RFDM surpasses I2I-based methods and competes with fully spatiotemporal (3D) V2V models, while matching the compute of image models and scaling independently of input video length. More content can be found in: https://smsd75.github.io/RFDM_page/
☆ Parameters as Experts: Adapting Vision Models with Dynamic Parameter Routing
Adapting pre-trained vision models using parameter-efficient fine-tuning (PEFT) remains challenging, as it aims to achieve performance comparable to full fine-tuning using a minimal number of trainable parameters. When applied to complex dense prediction tasks, existing methods exhibit limitations, including input-agnostic modeling and redundant cross-layer representations. To this end, we propose AdaRoute, a new adapter-style method featuring a simple mixture-of-experts (MoE) architecture. Specifically, we introduce shared expert centers, where each expert is a trainable parameter matrix. During a feedforward pass, each AdaRoute module in the network dynamically generates weight matrices tailored for the current module via a simple dynamic parameter routing mechanism, which selectively aggregates parameter matrices in the corresponding expert center. Dynamic weight matrices in AdaRoute modules facilitate low-rank adaptation in an input-dependent manner, thus generating more customized and powerful feature representations. Moreover, since AdaRoute modules across multiple network layers share the same expert center, they improve feature diversity by promoting implicit cross-layer feature interaction. Extensive experiments demonstrate the superiority of AdaRoute on diverse vision tasks, including semantic segmentation, object detection and instance segmentation, and panoptic segmentation. Code will be available at: https://bit.ly/3NZcr0H.
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ GaussianPOP: Principled Simplification Framework for Compact 3D Gaussian Splatting via Error Quantification
Existing 3D Gaussian Splatting simplification methods commonly use importance scores, such as blending weights or sensitivity, to identify redundant Gaussians. However, these scores are not driven by visual error metrics, often leading to suboptimal trade-offs between compactness and rendering fidelity. We present GaussianPOP, a principled simplification framework based on analytical Gaussian error quantification. Our key contribution is a novel error criterion, derived directly from the 3DGS rendering equation, that precisely measures each Gaussian's contribution to the rendered image. By introducing a highly efficient algorithm, our framework enables practical error calculation in a single forward pass. The framework is both accurate and flexible, supporting on-training pruning as well as post-training simplification via iterative error re-quantification for improved stability. Experimental results show that our method consistently outperforms existing state-of-the-art pruning methods across both application scenarios, achieving a superior trade-off between model compactness and high rendering quality.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ RAIGen: Rare Attribute Identification in Text-to-Image Generative Models
Text-to-image diffusion models achieve impressive generation quality but inherit and amplify training-data biases, skewing coverage of semantic attributes. Prior work addresses this in two ways. Closed-set approaches mitigate biases in predefined fairness categories (e.g., gender, race), assuming socially salient minority attributes are known a priori. Open-set approaches frame the task as bias identification, highlighting majority attributes that dominate outputs. Both overlook a complementary task: uncovering rare or minority features underrepresented in the data distribution (social, cultural, or stylistic) yet still encoded in model representations. We introduce RAIGen, the first framework, to our knowledge, for un-supervised rare-attribute discovery in diffusion models. RAIGen leverages Matryoshka Sparse Autoencoders and a novel minority metric combining neuron activation frequency with semantic distinctiveness to identify interpretable neurons whose top-activating images reveal underrepresented attributes. Experiments show RAIGen discovers attributes beyond fixed fairness categories in Stable Diffusion, scales to larger models such as SDXL, supports systematic auditing across architectures, and enables targeted amplification of rare attributes during generation.
☆ A Unified Formula for Affine Transformations between Calibrated Cameras
In this technical note, we derive a closed-form expression for the affine transformation mapping local image patches between two calibrated views. We show that the transformation is a function of the relative camera pose, the image coordinates, and the local surface normal.
☆ Machine Learning for Detection and Severity Estimation of Sweetpotato Weevil Damage in Field and Lab Conditions
Sweetpotato weevils (Cylas spp.) are considered among the most destructive pests impacting sweetpotato production, particularly in sub-Saharan Africa. Traditional methods for assessing weevil damage, predominantly relying on manual scoring, are labour-intensive, subjective, and often yield inconsistent results. These challenges significantly hinder breeding programs aimed at developing resilient sweetpotato varieties. This study introduces a computer vision-based approach for the automated evaluation of weevil damage in both field and laboratory contexts. In the field settings, we collected data to train classification models to predict root-damage severity levels, achieving a test accuracy of 71.43%. Additionally, we established a laboratory dataset and designed an object detection pipeline employing YOLO12, a leading real-time detection model. This methodology incorporated a two-stage laboratory pipeline that combined root segmentation with a tiling strategy to improve the detectability of small objects. The resulting model demonstrated a mean average precision of 77.7% in identifying minute weevil feeding holes. Our findings indicate that computer vision technologies can provide efficient, objective, and scalable assessment tools that align seamlessly with contemporary breeding workflows. These advancements represent a significant improvement in enhancing phenotyping efficiency within sweetpotato breeding programs and play a crucial role in mitigating the detrimental effects of weevils on food security.
☆ Revisiting Emotions Representation for Recognition in the Wild
Facial emotion recognition has been typically cast as a single-label classification problem of one out of six prototypical emotions. However, that is an oversimplification that is unsuitable for representing the multifaceted spectrum of spontaneous emotional states, which are most often the result of a combination of multiple emotions contributing at different intensities. Building on this, a promising direction that was explored recently is to cast emotion recognition as a distribution learning problem. Still, such approaches are limited in that research datasets are typically annotated with a single emotion class. In this paper, we contribute a novel approach to describe complex emotional states as probability distributions over a set of emotion classes. To do so, we propose a solution to automatically re-label existing datasets by exploiting the result of a study in which a large set of both basic and compound emotions is mapped to probability distributions in the Valence-Arousal-Dominance (VAD) space. In this way, given a face image annotated with VAD values, we can estimate the likelihood of it belonging to each of the distributions, so that emotional states can be described as a mixture of emotions, enriching their description, while also accounting for the ambiguous nature of their perception. In a preliminary set of experiments, we illustrate the advantages of this solution and a new possible direction of investigation. Data annotations are available at https://github.com/jbcnrlz/affectnet-b-annotation.
☆ Orientation-Robust Latent Motion Trajectory Learning for Annotation-free Cardiac Phase Detection in Fetal Echocardiography
Fetal echocardiography is essential for detecting congenital heart disease (CHD), facilitating pregnancy management, optimized delivery planning, and timely postnatal interventions. Among standard imaging planes, the four-chamber (4CH) view provides comprehensive information for CHD diagnosis, where clinicians carefully inspect the end-diastolic (ED) and end-systolic (ES) phases to evaluate cardiac structure and motion. Automated detection of these cardiac phases is thus a critical component toward fully automated CHD analysis. Yet, in the absence of fetal electrocardiography (ECG), manual identification of ED and ES frames remains a labor-intensive bottleneck. We present ORBIT (Orientation-Robust Beat Inference from Trajectories), a self-supervised framework that identifies cardiac phases without manual annotations under various fetal heart orientation. ORBIT employs registration as self-supervision task and learns a latent motion trajectory of cardiac deformation, whose turning points capture transitions between cardiac relaxation and contraction, enabling accurate and orientation-robust localization of ED and ES frames across diverse fetal positions. Trained exclusively on normal fetal echocardiography videos, ORBIT achieves consistent performance on both normal (MAE = 1.9 frames for ED and 1.6 for ES) and CHD cases (MAE = 2.4 frames for ED and 2.1 for ES), outperforming existing annotation-free approaches constrained by fixed orientation assumptions. These results highlight the potential of ORBIT to facilitate robust cardiac phase detection directly from 4CH fetal echocardiography.
comment: Preprint, Submitted to a journal
☆ Gold Exploration using Representations from a Multispectral Autoencoder
Satellite imagery is employed for large-scale prospectivity mapping due to the high cost and typically limited availability of on-site mineral exploration data. In this work, we present a proof-of-concept framework that leverages generative representations learned from multispectral Sentinel-2 imagery to identify gold-bearing regions from space. An autoencoder foundation model, called Isometric, which is pretrained on the large-scale FalconSpace-S2 v1.0 dataset, produces information-dense spectral-spatial representations that serve as inputs to a lightweight XGBoost classifier. We compare this representation-based approach with a raw spectral input baseline using a dataset of 63 Sentinel-2 images from known gold and non-gold locations. The proposed method improves patch-level accuracy from 0.51 to 0.68 and image-level accuracy from 0.55 to 0.73, demonstrating that generative embeddings capture transferable mineralogical patterns even with limited labeled data. These results highlight the potential of foundation-model representations to make mineral exploration more efficient, scalable, and globally applicable.
comment: Presented in Eurips2025, 1st Workshop: Advances in Representation Learning for Earth Observation
☆ Clinical-Prior Guided Multi-Modal Learning with Latent Attention Pooling for Gait-Based Scoliosis Screening
Adolescent Idiopathic Scoliosis (AIS) is a prevalent spinal deformity whose progression can be mitigated through early detection. Conventional screening methods are often subjective, difficult to scale, and reliant on specialized clinical expertise. Video-based gait analysis offers a promising alternative, but current datasets and methods frequently suffer from data leakage, where performance is inflated by repeated clips from the same individual, or employ oversimplified models that lack clinical interpretability. To address these limitations, we introduce ScoliGait, a new benchmark dataset comprising 1,572 gait video clips for training and 300 fully independent clips for testing. Each clip is annotated with radiographic Cobb angles and descriptive text based on clinical kinematic priors. We propose a multi-modal framework that integrates a clinical-prior-guided kinematic knowledge map for interpretable feature representation, alongside a latent attention pooling mechanism to fuse video, text, and knowledge map modalities. Our method establishes a new state-of-the-art, demonstrating a significant performance gap on a realistic, non-repeating subject benchmark. Our approach establishes a new state of the art, showing a significant performance gain on a realistic, subject-independent benchmark. This work provides a robust, interpretable, and clinically grounded foundation for scalable, non-invasive AIS assessment.
☆ Diffeomorphism-Equivariant Neural Networks
Incorporating group symmetries via equivariance into neural networks has emerged as a robust approach for overcoming the efficiency and data demands of modern deep learning. While most existing approaches, such as group convolutions and averaging-based methods, focus on compact, finite, or low-dimensional groups with linear actions, this work explores how equivariance can be extended to infinite-dimensional groups. We propose a strategy designed to induce diffeomorphism equivariance in pre-trained neural networks via energy-based canonicalisation. Formulating equivariance as an optimisation problem allows us to access the rich toolbox of already established differentiable image registration methods. Empirical results on segmentation and classification tasks confirm that our approach achieves approximate equivariance and generalises to unseen transformations without relying on extensive data augmentation or retraining.
☆ Can We Build a Monolithic Model for Fake Image Detection? SICA: Semantic-Induced Constrained Adaptation for Unified-Yet-Discriminative Artifact Feature Space Reconstruction
Fake Image Detection (FID), aiming at unified detection across four image forensic subdomains, is critical in real-world forensic scenarios. Compared with ensemble approaches, monolithic FID models are theoretically more promising, but to date, consistently yield inferior performance in practice. In this work, by discovering the ``heterogeneous phenomenon'', which is the intrinsic distinctness of artifacts across subdomains, we diagnose the cause of this underperformance for the first time: the collapse of the artifact feature space driven by such phenomenon. The core challenge for developing a practical monolithic FID model thus boils down to the ``unified-yet-discriminative" reconstruction of the artifact feature space. To address this paradoxical challenge, we hypothesize that high-level semantics can serve as a structural prior for the reconstruction, and further propose Semantic-Induced Constrained Adaptation (SICA), the first monolithic FID paradigm. Extensive experiments on our OpenMMSec dataset demonstrate that SICA outperforms 15 state-of-the-art methods and reconstructs the target unified-yet-discriminative artifact feature space in a near-orthogonal manner, thus firmly validating our hypothesis. The code and dataset are available at:https: //github.com/scu-zjz/SICA_OpenMMSec.
☆ CytoCrowd: A Multi-Annotator Benchmark Dataset for Cytology Image Analysis
High-quality annotated datasets are crucial for advancing machine learning in medical image analysis. However, a critical gap exists: most datasets either offer a single, clean ground truth, which hides real-world expert disagreement, or they provide multiple annotations without a separate gold standard for objective evaluation. To bridge this gap, we introduce CytoCrowd, a new public benchmark for cytology analysis. The dataset features 446 high-resolution images, each with two key components: (1) raw, conflicting annotations from four independent pathologists, and (2) a separate, high-quality gold-standard ground truth established by a senior expert. This dual structure makes CytoCrowd a versatile resource. It serves as a benchmark for standard computer vision tasks, such as object detection and classification, using the ground truth. Simultaneously, it provides a realistic testbed for evaluating annotation aggregation algorithms that must resolve expert disagreements. We provide comprehensive baseline results for both tasks. Our experiments demonstrate the challenges presented by CytoCrowd and establish its value as a resource for developing the next generation of models for medical image analysis.
☆ PlanViz: Evaluating Planning-Oriented Image Generation and Editing for Computer-Use Tasks
Unified multimodal models (UMMs) have shown impressive capabilities in generating natural images and supporting multimodal reasoning. However, their potential in supporting computer-use planning tasks, which are closely related to our lives, remain underexplored. Image generation and editing in computer-use tasks require capabilities like spatial reasoning and procedural understanding, and it is still unknown whether UMMs have these capabilities to finish these tasks or not. Therefore, we propose PlanViz, a new benchmark designed to evaluate image generation and editing for computer-use tasks. To achieve the goal of our evaluation, we focus on sub-tasks which frequently involve in daily life and require planning steps. Specifically, three new sub-tasks are designed: route planning, work diagramming, and web&UI displaying. We address challenges in data quality ensuring by curating human-annotated questions and reference images, and a quality control process. For challenges of comprehensive and exact evaluation, a task-adaptive score, PlanScore, is proposed. The score helps understanding the correctness, visual quality and efficiency of generated images. Through experiments, we highlight key limitations and opportunities for future research on this topic.
comment: The main part of our paper: PlanViz Code is at: https://github.com/lijunxian111/PlanViz Supplementary material is at: https://github.com/lijunxian111/PlanViz/releases/tag/v1
☆ Same Answer, Different Representations: Hidden instability in VLMs
The robustness of Vision Language Models (VLMs) is commonly assessed through output-level invariance, implicitly assuming that stable predictions reflect stable multimodal processing. In this work, we argue that this assumption is insufficient. We introduce a representation-aware and frequency-aware evaluation framework that measures internal embedding drift, spectral sensitivity, and structural smoothness (spatial consistency of vision tokens), alongside standard label-based metrics. Applying this framework to modern VLMs across the SEEDBench, MMMU, and POPE datasets reveals three distinct failure modes. First, models frequently preserve predicted answers while undergoing substantial internal representation drift; for perturbations such as text overlays, this drift approaches the magnitude of inter-image variability, indicating that representations move to regions typically occupied by unrelated inputs despite unchanged outputs. Second, robustness does not improve with scale; larger models achieve higher accuracy but exhibit equal or greater sensitivity, consistent with sharper yet more fragile decision boundaries. Third, we find that perturbations affect tasks differently: they harm reasoning when they disrupt how models combine coarse and fine visual cues, but on the hallucination benchmarks, they can reduce false positives by making models generate more conservative answers.
☆ CauCLIP: Bridging the Sim-to-Real Gap in Surgical Video Understanding via Causality-Inspired Vision-Language Modeling
Surgical phase recognition is a critical component for context-aware decision support in intelligent operating rooms, yet training robust models is hindered by limited annotated clinical videos and large domain gaps between synthetic and real surgical data. To address this, we propose CauCLIP, a causality-inspired vision-language framework that leverages CLIP to learn domain-invariant representations for surgical phase recognition without access to target domain data. Our approach integrates a frequency-based augmentation strategy to perturb domain-specific attributes while preserving semantic structures, and a causal suppression loss that mitigates non-causal biases and reinforces causal surgical features. These components are combined in a unified training framework that enables the model to focus on stable causal factors underlying surgical workflows. Experiments on the SurgVisDom hard adaptation benchmark demonstrate that our method substantially outperforms all competing approaches, highlighting the effectiveness of causality-guided vision-language models for domain-generalizable surgical video understanding.
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ ProtoQuant: Quantization of Prototypical Parts For General and Fine-Grained Image Classification
Prototypical parts-based models offer a "this looks like that" paradigm for intrinsic interpretability, yet they typically struggle with ImageNet-scale generalization and often require computationally expensive backbone finetuning. Furthermore, existing methods frequently suffer from "prototype drift," where learned prototypes lack tangible grounding in the training distribution and change their activation under small perturbations. We present ProtoQuant, a novel architecture that achieves prototype stability and grounded interpretability through latent vector quantization. By constraining prototypes to a discrete learned codebook within the latent space, we ensure they remain faithful representations of the training data without the need to update the backbone. This design allows ProtoQuant to function as an efficient, interpretable head that scales to large-scale datasets. We evaluate ProtoQuant on ImageNet and several fine-grained benchmarks (CUB-200, Cars-196). Our results demonstrate that ProtoQuant achieves competitive classification accuracy while generalizing to ImageNet and comparable interpretability metrics to other prototypical-parts-based methods.
comment: Work under review. Code will be released upon acceptance
☆ An Integer Linear Programming Approach to Geometrically Consistent Partial-Partial Shape Matching
The task of establishing correspondences between two 3D shapes is a long-standing challenge in computer vision. While numerous studies address full-full and partial-full 3D shape matching, only a limited number of works have explored the partial-partial setting, very likely due to its unique challenges: we must compute accurate correspondences while at the same time find the unknown overlapping region. Nevertheless, partial-partial 3D shape matching reflects the most realistic setting, as in many real-world cases, such as 3D scanning, shapes are only partially observable. In this work, we introduce the first integer linear programming approach specifically designed to address the distinctive challenges of partial-partial shape matching. Our method leverages geometric consistency as a strong prior, enabling both robust estimation of the overlapping region and computation of neighbourhood-preserving correspondences. We empirically demonstrate that our approach achieves high-quality matching results both in terms of matching error and smoothness. Moreover, we show that our method is more scalable than previous formalisms.
☆ Think Proprioceptively: Embodied Visual Reasoning for VLA Manipulation
Vision-language-action (VLA) models typically inject proprioception only as a late conditioning signal, which prevents robot state from shaping instruction understanding and from influencing which visual tokens are attended throughout the policy. We introduce ThinkProprio, which converts proprioception into a sequence of text tokens in the VLM embedding space and fuses them with the task instruction at the input. This early fusion lets embodied state participate in subsequent visual reasoning and token selection, biasing computation toward action-critical evidence while suppressing redundant visual tokens. In a systematic ablation over proprioception encoding, state entry point, and action-head conditioning, we find that text tokenization is more effective than learned projectors, and that retaining roughly 15% of visual tokens can match the performance of using the full token set. Across CALVIN, LIBERO, and real-world manipulation, ThinkProprio matches or improves over strong baselines while reducing end-to-end inference latency over 50%.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ LIBERO-X: Robustness Litmus for Vision-Language-Action Models
Reliable benchmarking is critical for advancing Vision-Language-Action (VLA) models, as it reveals their generalization, robustness, and alignment of perception with language-driven manipulation tasks. However, existing benchmarks often provide limited or misleading assessments due to insufficient evaluation protocols that inadequately capture real-world distribution shifts. This work systematically rethinks VLA benchmarking from both evaluation and data perspectives, introducing LIBERO-X, a benchmark featuring: 1) A hierarchical evaluation protocol with progressive difficulty levels targeting three core capabilities: spatial generalization, object recognition, and task instruction understanding. This design enables fine-grained analysis of performance degradation under increasing environmental and task complexity; 2) A high-diversity training dataset collected via human teleoperation, where each scene supports multiple fine-grained manipulation objectives to bridge the train-evaluation distribution gap. Experiments with representative VLA models reveal significant performance drops under cumulative perturbations, exposing persistent limitations in scene comprehension and instruction grounding. By integrating hierarchical evaluation with diverse training data, LIBERO-X offers a more reliable foundation for assessing and advancing VLA development.
comment: 19 pages, 14 figures and 8 tables
☆ NECromancer: Breathing Life into Skeletons via BVH Animation
Motion tokenization is a key component of generalizable motion models, yet most existing approaches are restricted to species-specific skeletons, limiting their applicability across diverse morphologies. We propose NECromancer (NEC), a universal motion tokenizer that operates directly on arbitrary BVH skeletons. NEC consists of three components: (1) an Ontology-aware Skeletal Graph Encoder (OwO) that encodes structural priors from BVH files, including joint semantics, rest-pose offsets, and skeletal topology, into skeletal embeddings; (2) a Topology-Agnostic Tokenizer (TAT) that compresses motion sequences into a universal, topology-invariant discrete representation; and (3) the Unified BVH Universe (UvU), a large-scale dataset aggregating BVH motions across heterogeneous skeletons. Experiments show that NEC achieves high-fidelity reconstruction under substantial compression and effectively disentangles motion from skeletal structure. The resulting token space supports cross-species motion transfer, composition, denoising, generation with token-based models, and text-motion retrieval, establishing a unified framework for motion analysis and synthesis across diverse morphologies. Demo page: https://animotionlab.github.io/NECromancer/
☆ Universal Anti-forensics Attack against Image Forgery Detection via Multi-modal Guidance
The rapid advancement of AI-Generated Content (AIGC) technologies poses significant challenges for authenticity assessment. However, existing evaluation protocols largely overlook anti-forensics attack, failing to ensure the comprehensive robustness of state-of-the-art AIGC detectors in real-world applications. To bridge this gap, we propose ForgeryEraser, a framework designed to execute universal anti-forensics attack without access to the target AIGC detectors. We reveal an adversarial vulnerability stemming from the systemic reliance on Vision-Language Models (VLMs) as shared backbones (e.g., CLIP), where downstream AIGC detectors inherit the feature space of these publicly accessible models. Instead of traditional logit-based optimization, we design a multi-modal guidance loss to drive forged image embeddings within the VLM feature space toward text-derived authentic anchors to erase forgery traces, while repelling them from forgery anchors. Extensive experiments demonstrate that ForgeryEraser causes substantial performance degradation to advanced AIGC detectors on both global synthesis and local editing benchmarks. Moreover, ForgeryEraser induces explainable forensic models to generate explanations consistent with authentic images for forged images. Our code will be made publicly available.
comment: 17 pages, 11 figures
☆ AdaptOVCD: Training-Free Open-Vocabulary Remote Sensing Change Detection via Adaptive Information Fusion
Remote sensing change detection plays a pivotal role in domains such as environmental monitoring, urban planning, and disaster assessment. However, existing methods typically rely on predefined categories and large-scale pixel-level annotations, which limit their generalization and applicability in open-world scenarios. To address these limitations, this paper proposes AdaptOVCD, a training-free Open-Vocabulary Change Detection (OVCD) architecture based on dual-dimensional multi-level information fusion. The framework integrates multi-level information fusion across data, feature, and decision levels vertically while incorporating targeted adaptive designs horizontally, achieving deep synergy among heterogeneous pre-trained models to effectively mitigate error propagation. Specifically, (1) at the data level, Adaptive Radiometric Alignment (ARA) fuses radiometric statistics with original texture features and synergizes with SAM-HQ to achieve radiometrically consistent segmentation; (2) at the feature level, Adaptive Change Thresholding (ACT) combines global difference distributions with edge structure priors and leverages DINOv3 to achieve robust change detection; (3) at the decision level, Adaptive Confidence Filtering (ACF) integrates semantic confidence with spatial constraints and collaborates with DGTRS-CLIP to achieve high-confidence semantic identification. Comprehensive evaluations across nine scenarios demonstrate that AdaptOVCD detects arbitrary category changes in a zero-shot manner, significantly outperforming existing training-free methods. Meanwhile, it achieves 84.89\% of the fully-supervised performance upper bound in cross-dataset evaluations and exhibits superior generalization capabilities. The code is available at https://github.com/Dmygithub/AdaptOVCD.
☆ MicroBi-ConvLSTM: An Ultra-Lightweight Efficient Model for Human Activity Recognition on Resource Constrained Devices
Human Activity Recognition (HAR) on resource constrained wearables requires models that balance accuracy against strict memory and computational budgets. State of the art lightweight architectures such as TinierHAR (34K parameters) and TinyHAR (55K parameters) achieve strong accuracy, but exceed memory budgets of microcontrollers with limited SRAM once operating system overhead is considered. We present MicroBi-ConvLSTM, an ultra-lightweight convolutional-recurrent architecture achieving 11.4K parameters on average through two stage convolutional feature extraction with 4x temporal pooling and a single bidirectional LSTM layer. This represents 2.9x parameter reduction versus TinierHAR and 11.9x versus DeepConvLSTM while preserving linear O(N) complexity. Evaluation across eight diverse HAR benchmarks shows that MicroBi-ConvLSTM maintains competitive performance within the ultra-lightweight regime: 93.41% macro F1 on UCI-HAR, 94.46% on SKODA assembly gestures, and 88.98% on Daphnet gait freeze detection. Systematic ablation reveals task dependent component contributions where bidirectionality benefits episodic event detection, but provides marginal gains on periodic locomotion. INT8 post training quantization incurs only 0.21% average F1-score degradation, yielding a 23.0 KB average deployment footprint suitable for memory constrained edge devices.
☆ DriveWorld-VLA: Unified Latent-Space World Modeling with Vision-Language-Action for Autonomous Driving
End-to-end (E2E) autonomous driving has recently attracted increasing interest in unifying Vision-Language-Action (VLA) with World Models to enhance decision-making and forward-looking imagination. However, existing methods fail to effectively unify future scene evolution and action planning within a single architecture due to inadequate sharing of latent states, limiting the impact of visual imagination on action decisions. To address this limitation, we propose DriveWorld-VLA, a novel framework that unifies world modeling and planning within a latent space by tightly integrating VLA and world models at the representation level, which enables the VLA planner to benefit directly from holistic scene-evolution modeling and reducing reliance on dense annotated supervision. Additionally, DriveWorld-VLA incorporates the latent states of the world model as core decision-making states for the VLA planner, facilitating the planner to assess how candidate actions impact future scene evolution. By conducting world modeling entirely in the latent space, DriveWorld-VLA supports controllable, action-conditioned imagination at the feature level, avoiding expensive pixel-level rollouts. Extensive open-loop and closed-loop evaluations demonstrate the effectiveness of DriveWorld-VLA, which achieves state-of-the-art performance with 91.3 PDMS on NAVSIMv1, 86.8 EPDMS on NAVSIMv2, and 0.16 3-second average collision rate on nuScenes. Code and models will be released in https://github.com/liulin815/DriveWorld-VLA.git.
comment: 20 pages, 7 tables, 12 figures
☆ FloorplanVLM: A Vision-Language Model for Floorplan Vectorization
Converting raster floorplans into engineering-grade vector graphics is challenging due to complex topology and strict geometric constraints. To address this, we present FloorplanVLM, a unified framework that reformulates floorplan vectorization as an image-conditioned sequence modeling task. Unlike pixel-based methods that rely on fragile heuristics or query-based transformers that generate fragmented rooms, our model directly outputs structured JSON sequences representing the global topology. This 'pixels-to-sequence' paradigm enables the precise and holistic constraint satisfaction of complex geometries, such as slanted walls and curved arcs. To support this data-hungry approach, we introduce a scalable data engine: we construct a large-scale dataset (Floorplan-2M) and a high-fidelity subset (Floorplan-HQ-300K) to balance geometric diversity and pixel-level precision. We then employ a progressive training strategy, using Supervised Fine-Tuning (SFT) for structural grounding and quality annealing, followed by Group Relative Policy Optimization (GRPO) for strict geometric alignment. To standardize evaluation on complex layouts, we establish and open-source FPBench-2K. Evaluated on this rigorous benchmark, FloorplanVLM demonstrates exceptional structural validity, achieving $\textbf{92.52%}$ external-wall IoU and robust generalization across non-Manhattan architectures.
☆ MultiGraspNet: A Multitask 3D Vision Model for Multi-gripper Robotic Grasping
Vision-based models for robotic grasping automate critical, repetitive, and draining industrial tasks. Existing approaches are typically limited in two ways: they either target a single gripper and are potentially applied on costly dual-arm setups, or rely on custom hybrid grippers that require ad-hoc learning procedures with logic that cannot be transferred across tasks, restricting their general applicability. In this work, we present MultiGraspNet, a novel multitask 3D deep learning method that predicts feasible poses simultaneously for parallel and vacuum grippers within a unified framework, enabling a single robot to handle multiple end effectors. The model is trained on the richly annotated GraspNet-1Billion and SuctionNet-1Billion datasets, which have been aligned for the purpose, and generates graspability masks quantifying the suitability of each scene point for successful grasps. By sharing early-stage features while maintaining gripper-specific refiners, MultiGraspNet effectively leverages complementary information across grasping modalities, enhancing robustness and adaptability in cluttered scenes. We characterize MultiGraspNet's performance with an extensive experimental analysis, demonstrating its competitiveness with single-task models on relevant benchmarks. We run real-world experiments on a single-arm multi-gripper robotic setup showing that our approach outperforms the vacuum baseline, grasping 16% percent more seen objects and 32% more of the novel ones, while obtaining competitive results for the parallel task.
☆ Forest canopy height estimation from satellite RGB imagery using large-scale airborne LiDAR-derived training data and monocular depth estimation
Large-scale, high-resolution forest canopy height mapping plays a crucial role in understanding regional and global carbon and water cycles. Spaceborne LiDAR missions, including the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation (GEDI), provide global observations of forest structure but are spatially sparse and subject to inherent uncertainties. In contrast, near-surface LiDAR platforms, such as airborne and unmanned aerial vehicle (UAV) LiDAR systems, offer much finer measurements of forest canopy structure, and a growing number of countries have made these datasets openly available. In this study, a state-of-the-art monocular depth estimation model, Depth Anything V2, was trained using approximately 16,000 km2 of canopy height models (CHMs) derived from publicly available airborne LiDAR point clouds and related products across multiple countries, together with 3 m resolution PlanetScope and airborne RGB imagery. The trained model, referred to as Depth2CHM, enables the estimation of spatially continuous CHMs directly from PlanetScope RGB imagery. Independent validation was conducted at sites in China (approximately 1 km2) and the United States (approximately 116 km2). The results showed that Depth2CHM could accurately estimate canopy height, with biases of 0.59 m and 0.41 m and root mean square errors (RMSEs) of 2.54 m and 5.75 m for these two sites, respectively. Compared with an existing global meter-resolution CHM product, the mean absolute error is reduced by approximately 1.5 m and the RMSE by approximately 2 m. These results demonstrated that monocular depth estimation networks trained with large-scale airborne LiDAR-derived canopy height data provide a promising and scalable pathway for high-resolution, spatially continuous forest canopy height estimation from satellite RGB imagery.
☆ DreamHome-Pano: Design-Aware and Conflict-Free Panoramic Interior Generation
In modern interior design, the generation of personalized spaces frequently necessitates a delicate balance between rigid architectural structural constraints and specific stylistic preferences. However, existing multi-condition generative frameworks often struggle to harmonize these inputs, leading to "condition conflicts" where stylistic attributes inadvertently compromise the geometric precision of the layout. To address this challenge, we present DreamHome-Pano, a controllable panoramic generation framework designed for high-fidelity interior synthesis. Our approach introduces a Prompt-LLM that serves as a semantic bridge, effectively translating layout constraints and style references into professional descriptive prompts to achieve precise cross-modal alignment. To safeguard architectural integrity during the generative process, we develop a Conflict-Free Control architecture that incorporates structural-aware geometric priors and a multi-condition decoupling strategy, effectively suppressing stylistic interference from eroding the spatial layout. Furthermore, we establish a comprehensive panoramic interior benchmark alongside a multi-stage training pipeline, encompassing progressive Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). Experimental results demonstrate that DreamHome-Pano achieves a superior balance between aesthetic quality and structural consistency, offering a robust and professional-grade solution for panoramic interior visualization.
☆ Rebenchmarking Unsupervised Monocular 3D Occupancy Prediction
Inferring the 3D structure from a single image, particularly in occluded regions, remains a fundamental yet unsolved challenge in vision-centric autonomous driving. Existing unsupervised approaches typically train a neural radiance field and treat the network outputs as occupancy probabilities during evaluation, overlooking the inconsistency between training and evaluation protocols. Moreover, the prevalent use of 2D ground truth fails to reveal the inherent ambiguity in occluded regions caused by insufficient geometric constraints. To address these issues, this paper presents a reformulated benchmark for unsupervised monocular 3D occupancy prediction. We first interpret the variables involved in the volume rendering process and identify the most physically consistent representation of the occupancy probability. Building on these analyses, we improve existing evaluation protocols by aligning the newly identified representation with voxel-wise 3D occupancy ground truth, thereby enabling unsupervised methods to be evaluated in a manner consistent with that of supervised approaches. Additionally, to impose explicit constraints in occluded regions, we introduce an occlusion-aware polarization mechanism that incorporates multi-view visual cues to enhance discrimination between occupied and free spaces in these regions. Extensive experiments demonstrate that our approach not only significantly outperforms existing unsupervised approaches but also matches the performance of supervised ones. Our source code and evaluation protocol will be made available upon publication.
☆ Instance-Free Domain Adaptive Object Detection
While Domain Adaptive Object Detection (DAOD) has made significant strides, most methods rely on unlabeled target data that is assumed to contain sufficient foreground instances. However, in many practical scenarios (e.g., wildlife monitoring, lesion detection), collecting target domain data with objects of interest is prohibitively costly, whereas background-only data is abundant. This common practical constraint introduces a significant technical challenge: the difficulty of achieving domain alignment when target instances are unavailable, forcing adaptation to rely solely on the target background information. We formulate this challenge as the novel problem of Instance-Free Domain Adaptive Object Detection. To tackle this, we propose the Relational and Structural Consistency Network (RSCN) which pioneers an alignment strategy based on background feature prototypes while simultaneously encouraging consistency in the relationship between the source foreground features and the background features within each domain, enabling robust adaptation even without target instances. To facilitate research, we further curate three specialized benchmarks, including simulative auto-driving detection, wildlife detection, and lung nodule detection. Extensive experiments show that RSCN significantly outperforms existing DAOD methods across all three benchmarks in the instance-free scenario. The code and benchmarks will be released soon.
comment: 14 pages, 12 figures
☆ Efficient-LVSM: Faster, Cheaper, and Better Large View Synthesis Model via Decoupled Co-Refinement Attention ICLR 2026
Feedforward models for novel view synthesis (NVS) have recently advanced by transformer-based methods like LVSM, using attention among all input and target views. In this work, we argue that its full self-attention design is suboptimal, suffering from quadratic complexity with respect to the number of input views and rigid parameter sharing among heterogeneous tokens. We propose Efficient-LVSM, a dual-stream architecture that avoids these issues with a decoupled co-refinement mechanism. It applies intra-view self-attention for input views and self-then-cross attention for target views, eliminating unnecessary computation. Efficient-LVSM achieves 29.86 dB PSNR on RealEstate10K with 2 input views, surpassing LVSM by 0.2 dB, with 2x faster training convergence and 4.4x faster inference speed. Efficient-LVSM achieves state-of-the-art performance on multiple benchmarks, exhibits strong zero-shot generalization to unseen view counts, and enables incremental inference with KV-cache, thanks to its decoupled designs.
comment: Accepted at ICLR 2026
☆ LAB-Det: Language as a Domain-Invariant Bridge for Training-Free One-Shot Domain Generalization in Object Detection
Foundation object detectors such as GLIP and Grounding DINO excel on general-domain data but often degrade in specialized and data-scarce settings like underwater imagery or industrial defects. Typical cross-domain few-shot approaches rely on fine-tuning scarce target data, incurring cost and overfitting risks. We instead ask: Can a frozen detector adapt with only one exemplar per class without training? To answer this, we introduce training-free one-shot domain generalization for object detection, where detectors must adapt to specialized domains with only one annotated exemplar per class and no weight updates. To tackle this task, we propose LAB-Det, which exploits Language As a domain-invariant Bridge. Instead of adapting visual features, we project each exemplar into a descriptive text that conditions and guides a frozen detector. This linguistic conditioning replaces gradient-based adaptation, enabling robust generalization in data-scarce domains. We evaluate on UODD (underwater) and NEU-DET (industrial defects), two widely adopted benchmarks for data-scarce detection, where object boundaries are often ambiguous, and LAB-Det achieves up to 5.4 mAP improvement over state-of-the-art fine-tuned baselines without updating a single parameter. These results establish linguistic adaptation as an efficient and interpretable alternative to fine-tuning in specialized detection settings.
Exploring Specular Reflection Inconsistency for Generalizable Face Forgery Detection
Detecting deepfakes has become increasingly challenging as forgery faces synthesized by AI-generated methods, particularly diffusion models, achieve unprecedented quality and resolution. Existing forgery detection approaches relying on spatial and frequency features demonstrate limited efficacy against high-quality, entirely synthesized forgeries. In this paper, we propose a novel detection method grounded in the observation that facial attributes governed by complex physical laws and multiple parameters are inherently difficult to replicate. Specifically, we focus on illumination, particularly the specular reflection component in the Phong illumination model, which poses the greatest replication challenge due to its parametric complexity and nonlinear formulation. We introduce a fast and accurate face texture estimation method based on Retinex theory to enable precise specular reflection separation. Furthermore, drawing from the mathematical formulation of specular reflection, we posit that forgery evidence manifests not only in the specular reflection itself but also in its relationship with corresponding face texture and direct light. To address this issue, we design the Specular-Reflection-Inconsistency-Network (SRI-Net), incorporating a two-stage cross-attention mechanism to capture these correlations and integrate specular reflection related features with image features for robust forgery detection. Experimental results demonstrate that our method achieves superior performance on both traditional deepfake datasets and generative deepfake datasets, particularly those containing diffusion-generated forgery faces.
☆ What Is Wrong with Synthetic Data for Scene Text Recognition? A Strong Synthetic Engine with Diverse Simulations and Self-Evolution
Large-scale and categorical-balanced text data is essential for training effective Scene Text Recognition (STR) models, which is hard to achieve when collecting real data. Synthetic data offers a cost-effective and perfectly labeled alternative. However, its performance often lags behind, revealing a significant domain gap between real and current synthetic data. In this work, we systematically analyze mainstream rendering-based synthetic datasets and identify their key limitations: insufficient diversity in corpus, font, and layout, which restricts their realism in complex scenarios. To address these issues, we introduce UnionST, a strong data engine synthesizes text covering a union of challenging samples and better aligns with the complexity observed in the wild. We then construct UnionST-S, a large-scale synthetic dataset with improved simulations in challenging scenarios. Furthermore, we develop a self-evolution learning (SEL) framework for effective real data annotation. Experiments show that models trained on UnionST-S achieve significant improvements over existing synthetic datasets. They even surpass real-data performance in certain scenarios. Moreover, when using SEL, the trained models achieve competitive performance by only seeing 9% of real data labels.
☆ ChatUMM: Robust Context Tracking for Conversational Interleaved Generation
Unified multimodal models (UMMs) have achieved remarkable progress yet remain constrained by a single-turn interaction paradigm, effectively functioning as solvers for independent requests rather than assistants in continuous dialogue. To bridge this gap, we present ChatUMM. As a conversational unified model, it excels at robust context tracking to sustain interleaved multimodal generation. ChatUMM derives its capabilities from two key innovations: an interleaved multi-turn training strategy that models serialized text-image streams as a continuous conversational flow, and a systematic conversational data synthesis pipeline. This pipeline transforms a diverse set of standard single-turn datasets into fluid dialogues through three progressive stages: constructing basic stateful dialogues, enforcing long-range dependency resolution via ``distractor'' turns with history-dependent query rewriting, and synthesizing naturally interleaved multimodal responses. Extensive evaluations demonstrate that ChatUMM achieves state-of-the-art performance among open-source unified models on visual understanding and instruction-guided editing benchmarks, while maintaining competitive fidelity in text-to-image generation. Notably, ChatUMM exhibits superior robustness in complex multi-turn scenarios, ensuring fluid, context-aware dialogues.
comment: ChatUMM Project
☆ Bridging the Indoor-Outdoor Gap: Vision-Centric Instruction-Guided Embodied Navigation for the Last Meters
Embodied navigation holds significant promise for real-world applications such as last-mile delivery. However, most existing approaches are confined to either indoor or outdoor environments and rely heavily on strong assumptions, such as access to precise coordinate systems. While current outdoor methods can guide agents to the vicinity of a target using coarse-grained localization, they fail to enable fine-grained entry through specific building entrances, critically limiting their utility in practical deployment scenarios that require seamless outdoor-to-indoor transitions. To bridge this gap, we introduce a novel task: out-to-in prior-free instruction-driven embodied navigation. This formulation explicitly eliminates reliance on accurate external priors, requiring agents to navigate solely based on egocentric visual observations guided by instructions. To tackle this task, we propose a vision-centric embodied navigation framework that leverages image-based prompts to drive decision-making. Additionally, we present the first open-source dataset for this task, featuring a pipeline that integrates trajectory-conditioned video synthesis into the data generation process. Through extensive experiments, we demonstrate that our proposed method consistently outperforms state-of-the-art baselines across key metrics including success rate and path efficiency.
☆ POPL-KF: A Pose-Only Geometric Representation-Based Kalman Filter for Point-Line-Based Visual-Inertial Odometry
Mainstream Visual-inertial odometry (VIO) systems rely on point features for motion estimation and localization. However, their performance degrades in challenging scenarios. Moreover, the localization accuracy of multi-state constraint Kalman filter (MSCKF)-based VIO systems suffers from linearization errors associated with feature 3D coordinates and delayed measurement updates. To improve the performance of VIO in challenging scenes, we first propose a pose-only geometric representation for line features. Building on this, we develop POPL-KF, a Kalman filter-based VIO system that employs a pose-only geometric representation for both point and line features. POPL-KF mitigates linearization errors by explicitly eliminating both point and line feature coordinates from the measurement equations, while enabling immediate update of visual measurements. We also design a unified base-frames selection algorithm for both point and line features to ensure optimal constraints on camera poses within the pose-only measurement model. To further improve line feature quality, a line feature filter based on image grid segmentation and bidirectional optical flow consistency is proposed. Our system is evaluated on public datasets and real-world experiments, demonstrating that POPL-KF outperforms the state-of-the-art (SOTA) filter-based methods (OpenVINS, PO-KF) and optimization-based methods (PL-VINS, EPLF-VINS), while maintaining real-time performance.
☆ Alleviating Sparse Rewards by Modeling Step-Wise and Long-Term Sampling Effects in Flow-Based GRPO
Deploying GRPO on Flow Matching models has proven effective for text-to-image generation. However, existing paradigms typically propagate an outcome-based reward to all preceding denoising steps without distinguishing the local effect of each step. Moreover, current group-wise ranking mainly compares trajectories at matched timesteps and ignores within-trajectory dependencies, where certain early denoising actions can affect later states via delayed, implicit interactions. We propose TurningPoint-GRPO (TP-GRPO), a GRPO framework that alleviates step-wise reward sparsity and explicitly models long-term effects within the denoising trajectory. TP-GRPO makes two key innovations: (i) it replaces outcome-based rewards with step-level incremental rewards, providing a dense, step-aware learning signal that better isolates each denoising action's "pure" effect, and (ii) it identifies turning points-steps that flip the local reward trend and make subsequent reward evolution consistent with the overall trajectory trend-and assigns these actions an aggregated long-term reward to capture their delayed impact. Turning points are detected solely via sign changes in incremental rewards, making TP-GRPO efficient and hyperparameter-free. Extensive experiments also demonstrate that TP-GRPO exploits reward signals more effectively and consistently improves generation. Demo code is available at https://github.com/YunzeTong/TurningPoint-GRPO.
comment: 18 pages, in submission
☆ Learning Human Visual Attention on 3D Surfaces through Geometry-Queried Semantic Priors
Human visual attention on three-dimensional objects emerges from the interplay between bottom-up geometric processing and top-down semantic recognition. Existing 3D saliency methods rely on hand-crafted geometric features or learning-based approaches that lack semantic awareness, failing to explain why humans fixate on semantically meaningful but geometrically unremarkable regions. We introduce SemGeo-AttentionNet, a dual-stream architecture that explicitly formalizes this dichotomy through asymmetric cross-modal fusion, leveraging diffusion-based semantic priors from geometry-conditioned multi-view rendering and point cloud transformers for geometric processing. Cross-attention ensures geometric features query semantic content, enabling bottom-up distinctiveness to guide top-down retrieval. We extend our framework to temporal scanpath generation through reinforcement learning, introducing the first formulation respecting 3D mesh topology with inhibition-of-return dynamics. Evaluation on SAL3D, NUS3D and 3DVA datasets demonstrates substantial improvements, validating how cognitively motivated architectures effectively model human visual attention on three-dimensional surfaces.
☆ A neuromorphic model of the insect visual system for natural image processing
Insect vision supports complex behaviors including associative learning, navigation, and object detection, and has long motivated computational models for understanding biological visual processing. However, many contemporary models prioritize task performance while neglecting biologically grounded processing pathways. Here, we introduce a bio-inspired vision model that captures principles of the insect visual system to transform dense visual input into sparse, discriminative codes. The model is trained using a fully self-supervised contrastive objective, enabling representation learning without labeled data and supporting reuse across tasks without reliance on domain-specific classifiers. We evaluated the resulting representations on flower recognition tasks and natural image benchmarks. The model consistently produced reliable sparse codes that distinguish visually similar inputs. To support different modelling and deployment uses, we have implemented the model as both an artificial neural network and a spiking neural network. In a simulated localization setting, our approach outperformed a simple image downsampling comparison baseline, highlighting the functional benefit of incorporating neuromorphic visual processing pathways. Collectively, these results advance insect computational modelling by providing a generalizable bio-inspired vision model capable of sparse computation across diverse tasks.
comment: 21 pages, 7 figures, under review
☆ MeDocVL: A Visual Language Model for Medical Document Understanding and Parsing
Medical document OCR is challenging due to complex layouts, domain-specific terminology, and noisy annotations, while requiring strict field-level exact matching. Existing OCR systems and general-purpose vision-language models often fail to reliably parse such documents. We propose MeDocVL, a post-trained vision-language model for query-driven medical document parsing. Our framework combines Training-driven Label Refinement to construct high-quality supervision from noisy annotations, with a Noise-aware Hybrid Post-training strategy that integrates reinforcement learning and supervised fine-tuning to achieve robust and precise extraction. Experiments on medical invoice benchmarks show that MeDocVL consistently outperforms conventional OCR systems and strong VLM baselines, achieving state-of-the-art performance under noisy supervision.
comment: 20 pages, 8 figures. Technical report
☆ TFusionOcc: Student's t-Distribution Based Object-Centric Multi-Sensor Fusion Framework for 3D Occupancy Prediction
3D semantic occupancy prediction enables autonomous vehicles (AVs) to perceive fine-grained geometric and semantic structure of their surroundings from onboard sensors, which is essential for safe decision-making and navigation. Recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, the intermediate representations used by existing methods for 3D semantic occupancy prediction rely heavily on 3D voxel volumes or a set of 3D Gaussians, hindering the model's ability to efficiently and effectively capture fine-grained geometric details in the 3D driving environment. This paper introduces TFusionOcc, a novel object-centric multi-sensor fusion framework for predicting 3D semantic occupancy. By leveraging multi-stage multi-sensor fusion, Student's t-distribution, and the T-Mixture model (TMM), together with more geometrically flexible primitives, such as the deformable superquadric (superquadric with inverse warp), the proposed method achieved state-of-the-art (SOTA) performance on the nuScenes benchmark. In addition, extensive experiments were conducted on the nuScenes-C dataset to demonstrate the robustness of the proposed method in different camera and lidar corruption scenarios. The code will be available at: https://github.com/DanielMing123/TFusionOcc
☆ POINTS-GUI-G: GUI-Grounding Journey
The rapid advancement of vision-language models has catalyzed the emergence of GUI agents, which hold immense potential for automating complex tasks, from online shopping to flight booking, thereby alleviating the burden of repetitive digital workflows. As a foundational capability, GUI grounding is typically established as a prerequisite for end-to-end task execution. It enables models to precisely locate interface elements, such as text and icons, to perform accurate operations like clicking and typing. Unlike prior works that fine-tune models already possessing strong spatial awareness (e.g., Qwen3-VL), we aim to master the full technical pipeline by starting from a base model with minimal grounding ability, such as POINTS-1.5. We introduce POINTS-GUI-G-8B, which achieves state-of-the-art performance with scores of 59.9 on ScreenSpot-Pro, 66.0 on OSWorld-G, 95.7 on ScreenSpot-v2, and 49.9 on UI-Vision. Our model's success is driven by three key factors: (1) Refined Data Engineering, involving the unification of diverse open-source datasets format alongside sophisticated strategies for augmentation, filtering, and difficulty grading; (2) Improved Training Strategies, including continuous fine-tuning of the vision encoder to enhance perceptual accuracy and maintaining resolution consistency between training and inference; and (3) Reinforcement Learning (RL) with Verifiable Rewards. While RL is traditionally used to bolster reasoning, we demonstrate that it significantly improves precision in the perception-intensive GUI grounding task. Furthermore, GUI grounding provides a natural advantage for RL, as rewards are easily verifiable and highly accurate.
☆ Revisiting Salient Object Detection from an Observer-Centric Perspective
Salient object detection is inherently a subjective problem, as observers with different priors may perceive different objects as salient. However, existing methods predominantly formulate it as an objective prediction task with a single groundtruth segmentation map for each image, which renders the problem under-determined and fundamentally ill-posed. To address this issue, we propose Observer-Centric Salient Object Detection (OC-SOD), where salient regions are predicted by considering not only the visual cues but also the observer-specific factors such as their preferences or intents. As a result, this formulation captures the intrinsic ambiguity and diversity of human perception, enabling personalized and context-aware saliency prediction. By leveraging multi-modal large language models, we develop an efficient data annotation pipeline and construct the first OC-SOD dataset named OC-SODBench, comprising 33k training, validation and test images with 152k textual prompts and object pairs. Built upon this new dataset, we further design OC-SODAgent, an agentic baseline which performs OC-SOD via a human-like "Perceive-Reflect-Adjust" process. Extensive experiments on our proposed OC-SODBench have justified the effectiveness of our contribution. Through this observer-centric perspective, we aim to bridge the gap between human perception and computational modeling, offering a more realistic and flexible understanding of what makes an object truly "salient." Code and dataset are publicly available at: https://github.com/Dustzx/OC_SOD
☆ Robust Pedestrian Detection with Uncertain Modality
Existing cross-modal pedestrian detection (CMPD) employs complementary information from RGB and thermal-infrared (TIR) modalities to detect pedestrians in 24h-surveillance systems.RGB captures rich pedestrian details under daylight, while TIR excels at night. However, TIR focuses primarily on the person's silhouette, neglecting critical texture details essential for detection. While the near-infrared (NIR) captures texture under low-light conditions, which effectively alleviates performance issues of RGB and detail loss in TIR, thereby reducing missed detections. To this end, we construct a new Triplet RGB-NIR-TIR (TRNT) dataset, comprising 8,281 pixel-aligned image triplets, establishing a comprehensive foundation for algorithmic research. However, due to the variable nature of real-world scenarios, imaging devices may not always capture all three modalities simultaneously. This results in input data with unpredictable combinations of modal types, which challenge existing CMPD methods that fail to extract robust pedestrian information under arbitrary input combinations, leading to significant performance degradation. To address these challenges, we propose the Adaptive Uncertainty-aware Network (AUNet) for accurately discriminating modal availability and fully utilizing the available information under uncertain inputs. Specifically, we introduce Unified Modality Validation Refinement (UMVR), which includes an uncertainty-aware router to validate modal availability and a semantic refinement to ensure the reliability of information within the modality. Furthermore, we design a Modality-Aware Interaction (MAI) module to adaptively activate or deactivate its internal interaction mechanisms per UMVR output, enabling effective complementary information fusion from available modalities.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
☆ Di3PO -- Diptych Diffusion DPO for Targeted Improvements in Image
Existing methods for preference tuning of text-to-image (T2I) diffusion models often rely on computationally expensive generation steps to create positive and negative pairs of images. These approaches frequently yield training pairs that either lack meaningful differences, are expensive to sample and filter, or exhibit significant variance in irrelevant pixel regions, thereby degrading training efficiency. To address these limitations, we introduce "Di3PO", a novel method for constructing positive and negative pairs that isolates specific regions targeted for improvement during preference tuning, while keeping the surrounding context in the image stable. We demonstrate the efficacy of our approach by applying it to the challenging task of text rendering in diffusion models, showcasing improvements over baseline methods of SFT and DPO.
☆ Trifuse: Enhancing Attention-Based GUI Grounding via Multimodal Fusion
GUI grounding maps natural language instructions to the correct interface elements, serving as the perception foundation for GUI agents. Existing approaches predominantly rely on fine-tuning multimodal large language models (MLLMs) using large-scale GUI datasets to predict target element coordinates, which is data-intensive and generalizes poorly to unseen interfaces. Recent attention-based alternatives exploit localization signals in MLLMs attention mechanisms without task-specific fine-tuning, but suffer from low reliability due to the lack of explicit and complementary spatial anchors in GUI images. To address this limitation, we propose Trifuse, an attention-based grounding framework that explicitly integrates complementary spatial anchors. Trifuse integrates attention, OCR-derived textual cues, and icon-level caption semantics via a Consensus-SinglePeak (CS) fusion strategy that enforces cross-modal agreement while retaining sharp localization peaks. Extensive evaluations on four grounding benchmarks demonstrate that Trifuse achieves strong performance without task-specific fine-tuning, substantially reducing the reliance on expensive annotated data. Moreover, ablation studies reveal that incorporating OCR and caption cues consistently improves attention-based grounding performance across different backbones, highlighting its effectiveness as a general framework for GUI grounding.
comment: 17 pages, 10 figures
☆ AS-Mamba: Asymmetric Self-Guided Mamba Decoupled Iterative Network for Metal Artifact Reduction
Metal artifact significantly degrades Computed Tomography (CT) image quality, impeding accurate clinical diagnosis. However, existing deep learning approaches, such as CNN and Transformer, often fail to explicitly capture the directional geometric features of artifacts, leading to compromised structural restoration. To address these limitations, we propose the Asymmetric Self-Guided Mamba (AS-Mamba) for metal artifact reduction. Specifically, the linear propagation of metal-induced streak artifacts aligns well with the sequential modeling capability of State Space Models (SSMs). Consequently, the Mamba architecture is leveraged to explicitly capture and suppress these directional artifacts. Simultaneously, a frequency domain correction mechanism is incorporated to rectify the global amplitude spectrum, thereby mitigating intensity inhomogeneity caused by beam hardening. Furthermore, to bridge the distribution gap across diverse clinical scenarios, we introduce a self-guided contrastive regularization strategy. Extensive experiments on public andclinical dental CBCT datasets demonstrate that AS-Mamba achieves superior performance in suppressing directional streaks and preserving structural details, validating the effectiveness of integrating physical geometric priors into deep network design.
comment: 10 pages,10 figures
☆ FlowConsist: Make Your Flow Consistent with Real Trajectory
Fast flow models accelerate the iterative sampling process by learning to directly predict ODE path integrals, enabling one-step or few-step generation. However, we argue that current fast-flow training paradigms suffer from two fundamental issues. First, conditional velocities constructed from randomly paired noise-data samples introduce systematic trajectory drift, preventing models from following a consistent ODE path. Second, the model's approximation errors accumulate over time steps, leading to severe deviations across long time intervals. To address these issues, we propose FlowConsist, a training framework designed to enforce trajectory consistency in fast flows. We propose a principled alternative that replaces conditional velocities with the marginal velocities predicted by the model itself, aligning optimization with the true trajectory. To further address error accumulation over time steps, we introduce a trajectory rectification strategy that aligns the marginal distributions of generated and real samples at every time step along the trajectory. Our method establishes a new state-of-the-art on ImageNet 256$\times$256, achieving an FID of 1.52 with only 1 sampling step.
☆ Uncertainty-Aware 4D Gaussian Splatting for Monocular Occluded Human Rendering
High-fidelity rendering of dynamic humans from monocular videos typically degrades catastrophically under occlusions. Existing solutions incorporate external priors-either hallucinating missing content via generative models, which induces severe temporal flickering, or imposing rigid geometric heuristics that fail to capture diverse appearances. To this end, we reformulate the task as a Maximum A Posteriori estimation problem under heteroscedastic observation noise. In this paper, we propose U-4DGS, a framework integrating a Probabilistic Deformation Network and a Double Rasterization pipeline. This architecture renders pixel-aligned uncertainty maps that act as an adaptive gradient modulator, automatically attenuating artifacts from unreliable observations. Furthermore, to prevent geometric drift in regions lacking reliable visual cues, we enforce Confidence-Aware Regularizations, which leverage the learned uncertainty to selectively propagate spatial-temporal validity. Extensive experiments on ZJU-MoCap and OcMotion demonstrate that U-4DGS achieves SOTA rendering fidelity and robustness.
SPDA-SAM: A Self-prompted Depth-Aware Segment Anything Model for Instance Segmentation
Recently, Segment Anything Model (SAM) has demonstrated strong generalizability in various instance segmentation tasks. However, its performance is severely dependent on the quality of manual prompts. In addition, the RGB images that instance segmentation methods normally use inherently lack depth information. As a result, the ability of these methods to perceive spatial structures and delineate object boundaries is hindered. To address these challenges, we propose a Self-prompted Depth-Aware SAM (SPDA-SAM) for instance segmentation. Specifically, we design a Semantic-Spatial Self-prompt Module (SSSPM) which extracts the semantic and spatial prompts from the image encoder and the mask decoder of SAM, respectively. Furthermore, we introduce a Coarse-to-Fine RGB-D Fusion Module (C2FFM), in which the features extracted from a monocular RGB image and the depth map estimated from it are fused. In particular, the structural information in the depth map is used to provide coarse-grained guidance to feature fusion, while local variations in depth are encoded in order to fuse fine-grained feature representations. To our knowledge, SAM has not been explored in such self-prompted and depth-aware manners. Experimental results demonstrate that our SPDA-SAM outperforms its state-of-the-art counterparts across twelve different data sets. These promising results should be due to the guidance of the self-prompts and the compensation for the spatial information loss by the coarse-to-fine RGB-D fusion operation.
☆ Taming SAM3 in the Wild: A Concept Bank for Open-Vocabulary Segmentation
The recent introduction of \texttt{SAM3} has revolutionized Open-Vocabulary Segmentation (OVS) through \textit{promptable concept segmentation}, which grounds pixel predictions in flexible concept prompts. However, this reliance on pre-defined concepts makes the model vulnerable: when visual distributions shift (\textit{data drift}) or conditional label distributions evolve (\textit{concept drift}) in the target domain, the alignment between visual evidence and prompts breaks down. In this work, we present \textsc{ConceptBank}, a parameter-free calibration framework to restore this alignment on the fly. Instead of adhering to static prompts, we construct a dataset-specific concept bank from the target statistics. Our approach (\textit{i}) anchors target-domain evidence via class-wise visual prototypes, (\textit{ii}) mines representative supports to suppress outliers under data drift, and (\textit{iii}) fuses candidate concepts to rectify concept drift. We demonstrate that \textsc{ConceptBank} effectively adapts \texttt{SAM3} to distribution drifts, including challenging natural-scene and remote-sensing scenarios, establishing a new baseline for robustness and efficiency in OVS. Code and model are available at https://github.com/pgsmall/ConceptBank.
☆ Halt the Hallucination: Decoupling Signal and Semantic OOD Detection Based on Cascaded Early Rejection
Efficient and robust Out-of-Distribution (OOD) detection is paramount for safety-critical applications.However, existing methods still execute full-scale inference on low-level statistical noise. This computational mismatch not only incurs resource waste but also induces semantic hallucination, where deep networks forcefully interpret physical anomalies as high-confidence semantic features.To address this, we propose the Cascaded Early Rejection (CER) framework, which realizes hierarchical filtering for anomaly detection via a coarse-to-fine logic.CER comprises two core modules: 1)Structural Energy Sieve (SES), which establishes a non-parametric barrier at the network entry using the Laplacian operator to efficiently intercept physical signal anomalies; and 2) the Semantically-aware Hyperspherical Energy (SHE) detector, which decouples feature magnitude from direction in intermediate layers to identify fine-grained semantic deviations. Experimental results demonstrate that CER not only reduces computational overhead by 32% but also achieves a significant performance leap on the CIFAR-100 benchmark:the average FPR95 drastically decreases from 33.58% to 22.84%, and AUROC improves to 93.97%. Crucially, in real-world scenarios simulating sensor failures, CER exhibits performance far exceeding state-of-the-art methods. As a universal plugin, CER can be seamlessly integrated into various SOTA models to provide performance gains.
☆ Adaptive and Balanced Re-initialization for Long-timescale Continual Test-time Domain Adaptation ICASSP 2026
Continual test-time domain adaptation (CTTA) aims to adjust models so that they can perform well over time across non-stationary environments. While previous methods have made considerable efforts to optimize the adaptation process, a crucial question remains: Can the model adapt to continually changing environments over a long time? In this work, we explore facilitating better CTTA in the long run using a re-initialization (or reset) based method. First, we observe that the long-term performance is associated with the trajectory pattern in label flip. Based on this observed correlation, we propose a simple yet effective policy, Adaptive-and-Balanced Re-initialization (ABR), towards preserving the model's long-term performance. In particular, ABR performs weight re-initialization using adaptive intervals. The adaptive interval is determined based on the change in label flip. The proposed method is validated on extensive CTTA benchmarks, achieving superior performance.
comment: Accepted in ICASSP 2026
☆ Accelerating Vision Transformers on Brain Processing Unit
With the advancement of deep learning technologies, specialized neural processing hardware such as Brain Processing Units (BPUs) have emerged as dedicated platforms for CNN acceleration, offering optimized INT8 computation capabilities for convolutional operations. Meanwhile, Vision Transformer (ViT) models, such as the Data-efficient Image Transformer (DeiT), have demonstrated superior performance and play increasingly crucial roles in computer vision tasks. However, due to the architectural mismatch between CNN-optimized hardware and Vision Transformer computation characteristics--namely, that linear layers in Transformers operate on three-dimensional data while BPU acceleration is designed for four-dimensional convolution operations-it is difficult or even impossible to leverage BPU's advantages when deploying Vision Transformers. To address this challenge, we propose a novel approach that restructures the Vision Transformer by replacing linear layers and layer normalization operations with carefully designed convolutional operators. This enables DeiT to fully utilize the acceleration capabilities of BPUs, while allowing the original weight parameters to be inherited by the restructured models without retraining or fine-tuning. To the best of our knowledge, this is the first successful deployment of Vision Transformers that fully leverages BPU classification datasets demonstrate the effectiveness of our approach. Specifically, the quantized DeiT-Base model achieves 80.4% accuracy on ImageNet, compared to the original 81.8%, while obtaining up to a 3.8* inference speedup. Our finetuned DeiT model on the flower classification dataset also achieves excellent performance, with only a 0.5% accuracy drop for the DeiT-Base model, further demonstrating the effectiveness of our method.
☆ Zero-shot Multi-Contrast Brain MRI Registration by Intensity Randomizing T1-weighted MRI (LUMIR25) MICCAI 2025
In this paper, we summarize the methods and results of our submission to the LUMIR25 challenge in Learn2Reg 2025, which achieved 1st place overall on the test set. Extended from LUMIR24, this year's task focuses on zero-shot registration under domain shifts (high-field MRI, pathological brains, and various MRI contrasts), while the training data comprise only in-domain T1-weighted brain MRI. We start with a meticulous analysis of LUMIR24 winners to identify the main contributors to good monomodal registration performance. To achieve good generalization with diverse contrasts from a model trained with T1-weighted MRI only, we employ three simple but effective strategies: (i) a multimodal loss based on the modality-independent neighborhood descriptor (MIND), (ii) intensity randomization for appearance augmentation, and (iii) lightweight instance-specific optimization (ISO) on feature encoders at inference time. On the validation set, our approach achieves reasonable T1-T2 registration accuracy while maintaining good deformation regularity.
comment: Submitted to and reviewed by Learn2Reg MICCAI 2025
☆ Unsupervised MRI-US Multimodal Image Registration with Multilevel Correlation Pyramidal Optimization MICCAI 2025
Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2025, an unsupervised multimodal medical image registration method based on multilevel correlation pyramidal optimization (MCPO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the displacement field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. Our method focuses on the ReMIND2Reg task in Learn2Reg 2025. Based on the results, our method achieved the first place in the validation phase and test phase of ReMIND2Reg. The MCPO is also validated on the Resect dataset, achieving an average TRE of 1.798 mm. This demonstrates the broad applicability of our method in preoperative-to-intraoperative image registration. The code is avaliable at https://github.com/wjiazheng/MCPO.
comment: first-place method of ReMIND2Reg Learn2Reg 2025 (in MICCAI 2025)
☆ MMEarth-Bench: Global Model Adaptation via Multimodal Test-Time Training
Recent research in geospatial machine learning has demonstrated that models pretrained with self-supervised learning on Earth observation data can perform well on downstream tasks with limited training data. However, most of the existing geospatial benchmark datasets have few data modalities and poor global representation, limiting the ability to evaluate multimodal pretrained models at global scales. To fill this gap, we introduce MMEarth-Bench, a collection of five new multimodal environmental tasks with 12 modalities, globally distributed data, and both in- and out-of-distribution test splits. We benchmark a diverse set of pretrained models and find that while (multimodal) pretraining tends to improve model robustness in limited data settings, geographic generalization abilities remain poor. In order to facilitate model adaptation to new downstream tasks and geographic domains, we propose a model-agnostic method for test-time training with multimodal reconstruction (TTT-MMR) that uses all the modalities available at test time as auxiliary tasks, regardless of whether a pretrained model accepts them as input. Our method improves model performance on both the random and geographic test splits, and geographic batching leads to a good trade-off between regularization and specialization during TTT. Our dataset, code, and visualization tool are linked from the project page at lgordon99.github.io/mmearth-bench.
☆ An Interpretable Vision Transformer as a Fingerprint-Based Diagnostic Aid for Kabuki and Wiedemann-Steiner Syndromes
Kabuki syndrome (KS) and Wiedemann-Steiner syndrome (WSS) are rare but distinct developmental disorders that share overlapping clinical features, including neurodevelopmental delay, growth restriction, and persistent fetal fingertip pads. While genetic testing remains the diagnostic gold standard, many individuals with KS or WSS remain undiagnosed due to barriers in access to both genetic testing and expertise. Dermatoglyphic anomalies, despite being established hallmarks of several genetic syndromes, remain an underutilized diagnostic signal in the era of molecular testing. This study presents a vision transformer-based deep learning model that leverages fingerprint images to distinguish individuals with KS and WSS from unaffected controls and from one another. We evaluate model performance across three binary classification tasks. Across the three classification tasks, the model achieved AUC scores of 0.80 (control vs. KS), 0.73 (control vs. WSS), and 0.85 (KS vs. WSS), with corresponding F1 scores of 0.71, 0.72, and 0.83, respectively. Beyond classification, we apply attention-based visualizations to identify fingerprint regions most salient to model predictions, enhancing interpretability. Together, these findings suggest the presence of syndrome-specific fingerprint features, demonstrating the feasibility of a fingerprint-based artificial intelligence (AI) tool as a noninvasive, interpretable, and accessible future diagnostic aid for the early diagnosis of underdiagnosed genetic syndromes.
♻ ☆ Dataset Distillation as Pushforward Optimal Quantization ICLR 2026
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose Dataset Distillation by Optimal Quantization, based on clustering in a latent space. Compared to the previous SOTA method D\textsuperscript{4}M, we achieve better performance and inter-model generalization on the ImageNet-1K dataset with trivial additional computation, and SOTA performance in higher image-per-class settings. Using the distilled noise initializations in a stronger diffusion transformer model, we obtain SOTA distillation performance on ImageNet-1K and its subsets, outperforming diffusion guidance methods.
comment: ICLR 2026, https://openreview.net/forum?id=FMSp8AUF3m
♻ ☆ WAFT: Warping-Alone Field Transforms for Optical Flow
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring, Sintel, and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being 1.3-4.1x faster than existing methods that have competitive accuracy (e.g., 1.3x than Flowformer++, 4.1x than CCMR+). Code and model weights are available at \href{https://github.com/princeton-vl/WAFT}{https://github.com/princeton-vl/WAFT}.
♻ ☆ Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation
We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
comment: Project page at https://cvlab-kaist.github.io/MoAI
♻ ☆ Learning a distance measure from the information-estimation geometry of data ICLR 2026
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global distance metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.
comment: ICLR 2026. Code is available at https://github.com/ohayonguy/information-estimation-metric
♻ ☆ AR as an Evaluation Playground: Bridging Metrics and Visual Perception of Computer Vision Models
Quantitative metrics are central to evaluating computer vision (CV) models, but they often fail to capture real-world performance due to protocol inconsistencies and ground-truth noise. While visual perception studies can complement these metrics, they often require end-to-end systems that are time-consuming to implement and setups that are difficult to reproduce. We systematically summarize key challenges in evaluating CV models and present the design of ARCADE, an evaluation platform that leverages augmented reality (AR) to enable easy, reproducible, and human-centered CV evaluation. ARCADE uses a modular architecture that provides cross-platform data collection, pluggable model inference, and interactive AR tasks, supporting both metric and visual perception evaluation. We demonstrate ARCADE through a user study with 15 participants and case studies on two representative CV tasks, depth and lighting estimation, showing that ARCADE can reveal perceptual flaws in model quality that are often missed by traditional metrics. We also evaluate ARCADE's usability and performance, showing its flexibility as a reliable real-time platform.
comment: Accepted at MMSys 2026
♻ ☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new technique designed to stabilize training and boost the sample efficiency of DoRA. Our framework introduces two key components: (i) the injection of learnable noise into the denominator of DoRA weight decomposition, which serves as an adaptive regularizer to mitigate instabilities and improve the estimation rate of low-rank matrices; and (ii) the replacement of static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling between the query and value projection matrices, leading to improved sample efficiency both theoretically and empirically. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines, underscoring the effectiveness of combining noise-based regularization with network-based parameter generation.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
♻ ☆ Inverse problems with diffusion models: MAP estimation via mode-seeking loss
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can also be computationally demanding. In this work, we propose a new MAP estimation strategy for solving inverse problems with a pre-trained unconditional diffusion model. Specifically, we introduce the variational mode-seeking loss (VML) and show that its minimization at each reverse diffusion step guides the generated sample towards the MAP estimate (modes in practice). VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived without any modeling approximations. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems via VML minimization, and validate its efficacy in both performance and computational time through extensive experiments on diverse image-restoration tasks across multiple datasets.
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
♻ ☆ An Evaluation of Hybrid Annotation Workflows on High-Ambiguity Spatiotemporal Video Footage
Manual annotation remains the gold standard for high-quality, dense temporal video datasets, yet it is inherently time-consuming. Vision-language models can aid human annotators and expedite this process. We report on the impact of automatic Pre-Annotations from a tuned encoder on a Human-in-the-Loop labeling workflow for video footage. Quantitative analysis in a study of a single-iteration test involving 18 volunteers demonstrates that our workflow reduced annotation time by 35% for the majority (72%) of the participants. Beyond efficiency, we provide a rigorous framework for benchmarking AI-assisted workflows that quantifies trade-offs between algorithmic speed and the integrity of human verification.
♻ ☆ BADet: Boundary-Aware 3D Object Detection from Point Clouds
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.
comment: The manuscript is accepted by Pattern Recognition on 6 Jan, 2022
♻ ☆ Synthetic Data Guided Feature Selection for Robust Activity Recognition in Older Adults
Physical activity during hip fracture rehabilitation is essential for mitigating long-term functional decline in geriatric patients. However, it is rarely quantified in clinical practice. Existing continuous monitoring systems with commercially available wearable activity trackers are typically developed in middle-aged adults and therefore perform unreliably in older adults with slower and more variable gait patterns. This study aimed to develop a robust human activity recognition (HAR) system to improve continuous physical activity recognition in the context of hip fracture rehabilitation. 24 healthy older adults aged over 80 years were included to perform activities of daily living (walking, standing, sitting, lying down, and postural transfers) under simulated free-living conditions for 75 minutes while wearing two accelerometers positioned on the lower back and anterior upper thigh. Model robustness was evaluated using leave-one-subject-out cross-validation. The synthetic data demonstrated potential to improve generalization across participants. The resulting feature intervention model (FIM), aided by synthetic data guidance, achieved reliable activity recognition with mean F1-scores of 0.896 for walking, 0.927 for standing, 0.997 for sitting, 0.937 for lying down, and 0.816 for postural transfers. Compared with a control condition model without synthetic data, the FIM significantly improved the postural transfer detection, i.e., an activity class of high clinical relevance that is often overlooked in existing HAR literature. In conclusion, these preliminary results demonstrate the feasibility of robust activity recognition in older adults. Further validation in hip fracture patient populations is required to assess the clinical utility of the proposed monitoring system.
comment: This paper has been submitted to Nordic Conference on Digital Health and Wireless Solutions 2026, currently under review
♻ ☆ 3D Object Detection for Autonomous Driving: A Survey
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of perception stack especially for the sake of path planning, motion prediction, and collision avoidance etc. Taking a quick glance at the progress we have made, we attribute challenges to visual appearance recovery in the absence of depth information from images, representation learning from partially occluded unstructured point clouds, and semantic alignments over heterogeneous features from cross modalities. Despite existing efforts, 3D object detection for autonomous driving is still in its infancy. Recently, a large body of literature have been investigated to address this 3D vision task. Nevertheless, few investigations have looked into collecting and structuring this growing knowledge. We therefore aim to fill this gap in a comprehensive survey, encompassing all the main concerns including sensors, datasets, performance metrics and the recent state-of-the-art detection methods, together with their pros and cons. Furthermore, we provide quantitative comparisons with the state of the art. A case study on fifteen selected representative methods is presented, involved with runtime analysis, error analysis, and robustness analysis. Finally, we provide concluding remarks after an in-depth analysis of the surveyed works and identify promising directions for future work.
comment: The manuscript is accepted by Pattern Recognition on 14 May 2022
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation
Text-to-image diffusion models, such as Stable Diffusion, generate highly realistic images from text descriptions. However, the generation of certain content at such high quality raises concerns. A prominent issue is the accurate depiction of identifiable facial images, which could lead to malicious deepfake generation and privacy violations. In this paper, we propose Anonymization Prompt Learning (APL) to address this problem. Specifically, we train a learnable prompt prefix for text-to-image diffusion models, which forces the model to generate anonymized facial identities, even when prompted to produce images of specific individuals. Extensive quantitative and qualitative experiments demonstrate the successful anonymization performance of APL, which anonymizes any specific individuals without compromising the quality of non-identity-specific image generation. Furthermore, we reveal the plug-and-play property of the learned prompt prefix, enabling its effective application across different pretrained text-to-image models for transferrable privacy and security protection against the risks of deepfakes.
comment: Accepted by IJCV
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
comment: v2: clarify confusion in definition of JEPAs vs. regularization-based JEPAs
♻ ☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
comment: After careful consideration, we have decided to withdraw our submission for substantial revisions. We plan to significantly improve Section 4 and include more comprehensive experiments. These changes are necessary to ensure the paper's quality and rigor. We believe the revisions will strengthen the contribution and provide a more solid foundation for the results
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ MATTER: Multiscale Attention for Registration Error Regression
Point cloud registration (PCR) is crucial for many downstream tasks, such as simultaneous localization and mapping (SLAM) and object tracking. This makes detecting and quantifying registration misalignment, i.e., PCR quality validation, an important task. All existing methods treat validation as a classification task, aiming to assign the PCR quality to a few classes. In this work, we instead use regression for PCR validation, allowing for a more fine-grained quantification of the registration quality. We also extend previously used misalignment-related features by using multiscale extraction and attention-based aggregation. This leads to accurate and robust registration error estimation on diverse datasets, especially for point clouds with heterogeneous spatial densities. Furthermore, when used to guide a mapping downstream task, our method significantly improves the mapping quality for a given amount of re-registered frames, compared to the state-of-the-art classification-based method.
♻ ☆ Visual Autoregressive Modeling for Instruction-Guided Image Editing ICLR 2026
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On EMU-Edit and PIE-Bench benchmarks, VAREdit outperforms leading diffusion-based methods by a substantial margin in terms of both CLIP and GPT scores. Moreover, VAREdit completes a 512$\times$512 editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. Code is available at: https://github.com/HiDream-ai/VAREdit.
comment: ICLR 2026; Source codes and models are available at https://github.com/HiDream-ai/VAREdit
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models' implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model's sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
comment: 23 pages, 11 figures. Added appendix with more figure results. Code will be available here: https://github.com/ag-perception-wallis-lab/MRD
♻ ☆ Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
♻ ☆ An Example for Domain Adaptation Using CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) is very promising in domain adaptation. In this report, an example in medical domain will be explained. We present struecture of a CycleGAN model for unpaired image-to-image translation from microscopy to pseudo H\&E stained histopathology images.
comment: 3 pages, 2 figures
♻ ☆ Concepts in Motion: Temporal Bottlenecks for Interpretable Video Classification
Concept Bottleneck Models (CBMs) enable interpretable image classification by structuring predictions around human-understandable concepts, but extending this paradigm to video remains challenging due to the difficulty of extracting concepts and modeling them over time. In this paper, we introduce $\textbf{MoTIF}$ (Moving Temporal Interpretable Framework), a transformer-based concept architecture that operates on sequences of temporally grounded concept activations, by employing per-concept temporal self-attention to model when individual concepts recur and how their temporal patterns contribute to predictions. Central to the framework is an agentic concept discovery module to automatically extract object- and action-centric textual concepts from videos, yielding temporally expressive concept sets without manual supervision. Across multiple video benchmarks, this combination substantially narrows the performance gap between interpretable and black-box video models while maintaining faithful and temporally grounded concept explanations. Code available at $\href{https://github.com/patrick-knab/MoTIF}{github.com/patrick-knab/MoTIF}$.
♻ ☆ Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 $\pm$ 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 $\pm$ 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
comment: Preprint; not yet peer reviewed. AMEE Conference Proceeding 2025, 11 pages, 2 figures
♻ ☆ EchoJEPA: A Latent Predictive Foundation Model for Echocardiography
Foundation models for echocardiography often struggle to disentangle anatomical signal from the stochastic speckle and acquisition artifacts inherent to ultrasound. We present EchoJEPA, a foundation model trained on 18 million echocardiograms across 300K patients, representing the largest pretraining corpus for this modality to date. By leveraging a latent predictive objective, EchoJEPA learns robust anatomical representations that ignore speckle noise. We validate this using a novel multi-view probing framework with frozen backbones, where EchoJEPA outperforms leading baselines by approximately 20% in left ventricular ejection fraction (LVEF) estimation and 17% in right ventricular systolic pressure (RVSP) estimation. The model also exhibits remarkable sample efficiency, reaching 79% view classification accuracy with only 1% of labeled data versus 42% for the best baseline trained on 100%. Crucially, EchoJEPA demonstrates superior generalization, degrading by only 2% under physics-informed acoustic perturbations compared to 17% for competitors. Most remarkably, its zero-shot performance on pediatric patients surpasses fully fine-tuned baselines, establishing latent prediction as a superior paradigm for robust, generalizable medical AI.
♻ ☆ T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning NeurIPS 2025
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
comment: NeurIPS 2025
♻ ☆ CompEvent: Complex-valued Event-RGB Fusion for Low-light Video Enhancement and Deblurring
Low-light video deblurring poses significant challenges in applications like nighttime surveillance and autonomous driving due to dim lighting and long exposures. While event cameras offer potential solutions with superior low-light sensitivity and high temporal resolution, existing fusion methods typically employ staged strategies, limiting their effectiveness against combined low-light and motion blur degradations. To overcome this, we propose CompEvent, a complex neural network framework enabling holistic full-process fusion of event data and RGB frames for enhanced joint restoration. CompEvent features two core components: 1) Complex Temporal Alignment GRU, which utilizes complex-valued convolutions and processes video and event streams iteratively via GRU to achieve temporal alignment and continuous fusion; and 2) Complex Space-Frequency Learning module, which performs unified complex-valued signal processing in both spatial and frequency domains, facilitating deep fusion through spatial structures and system-level characteristics. By leveraging the holistic representation capability of complex-valued neural networks, CompEvent achieves full-process spatiotemporal fusion, maximizes complementary learning between modalities, and significantly strengthens low-light video deblurring capability. Extensive experiments demonstrate that CompEvent outperforms SOTA methods in addressing this challenging task.
♻ ☆ SPARK: Scalable Real-Time Point Cloud Aggregation with Multi-View Self-Calibration
Real-time multi-camera 3D reconstruction is crucial for 3D perception, immersive interaction, and robotics. Existing methods struggle with multi-view fusion, camera extrinsic uncertainty, and scalability for large camera setups. We propose SPARK, a self-calibrating real-time multi-camera point cloud reconstruction framework that jointly handles point cloud fusion and extrinsic uncertainty. SPARK consists of: (1) a geometry-aware online extrinsic estimation module leveraging multi-view priors and enforcing cross-view and temporal consistency for stable self-calibration, and (2) a confidence-driven point cloud fusion strategy modeling depth reliability and visibility at pixel and point levels to suppress noise and view-dependent inconsistencies. By performing frame-wise fusion without accumulation, SPARK produces stable point clouds in dynamic scenes while scaling linearly with the number of cameras. Extensive experiments on real-world multi-camera systems show that SPARK outperforms existing approaches in extrinsic accuracy, geometric consistency, temporal stability, and real-time performance, demonstrating its effectiveness and scalability for large-scale multi-camera 3D reconstruction.
comment: 10 pages, 1 figure, submitted to IEEE Transactions on Image Processing (TIP). Version 3: Minor revision; several experimental results have been removed and supplemented after further verification
♻ ☆ M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve $mAP$ by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
♻ ☆ High-Precision Edge Detection via Task-Adaptive Texture Handling and Ideal-Prior Guidance
Image edge detection (ED) requires specialized architectures, reliable supervision, and rigorous evaluation criteria to ensure accurate localization. In this work, we present a framework for high-precision ED that jointly addresses architectural design, data supervision, and evaluation consistency. We propose SDPED, a compact ED model built upon Cascaded Skipping Density Blocks (CSDB), motivated by a task-adaptive architectural transfer from image super-resolution. By re-engineering texture-oriented structures for ED, SDPED effectively differentiates textures from edges while preserving fine spatial precision. Extensive experiments on four benchmark datasets (BRIND, UDED, MDBD, and BIPED2) demonstrate consistent performance improvements, particularly in Average Precision (AP), with gains of up to 22.5% on MDBD and 11.8% on BIPED2. In addition, we introduce an ideal-prior guidance strategy that incorporates noiseless data into training by treating labels as noise-free samples, providing a practical means to mitigate the subjectivity and noise inherent in human annotations. To enable fair and resolution-independent evaluation, we further adopt a fixed-pixel criterion for assessing localization accuracy. Overall, this work offers a coherent solution for high-precision ED and provides insights applicable to precision-oriented modeling in low-level and soft-computing-based vision tasks. Codes can be found on https://github.com/Hao-B-Shu/SDPED.
comment: 30 pages
♻ ☆ SyncAnyone: Implicit Disentanglement via Progressive Self-Correction for Lip-Syncing in the wild
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.
comment: Project page: https://humanaigc.github.io/sync_anyone_demo_page/
♻ ☆ A Data-driven Typology of Vision Models from Integrated Representational Metrics
Large vision models differ widely in architecture and training paradigm, yet we lack principled methods to determine which aspects of their representations are shared across families and which reflect distinctive computational strategies. We leverage a suite of representational similarity metrics, each capturing a different facet-geometry, unit tuning, or linear decodability-and assess family separability using multiple complementary measures. Metrics preserving geometry or tuning (e.g., RSA, Soft Matching) yield strong family discrimination, whereas flexible mappings such as Linear Predictivity show weaker separation. These findings indicate that geometry and tuning carry family-specific signatures, while linearly decodable information is more broadly shared. To integrate these complementary facets, we adapt Similarity Network Fusion (SNF), a method inspired by multi-omics integration. SNF achieves substantially sharper family separation than any individual metric and produces robust composite signatures. Clustering of the fused similarity matrix recovers both expected and surprising patterns: supervised ResNets and ViTs form distinct clusters, yet all self-supervised models group together across architectural boundaries. Hybrid architectures (ConvNeXt, Swin) cluster with masked autoencoders, suggesting convergence between architectural modernization and reconstruction-based training. This biology-inspired framework provides a principled typology of vision models, showing that emergent computational strategies-shaped jointly by architecture and training objective-define representational structure beyond surface design categories.
comment: Update the main text format
♻ ☆ Self-Supervised Video Representation Learning in a Heuristic Decoupled Perspective
Video contrastive learning (V-CL) has emerged as a popular framework for unsupervised video representation learning, demonstrating strong results in tasks such as action classification and detection. Yet, to harness these benefits, it is critical for the learned representations to fully capture both static and dynamic semantics. However, our experiments show that existing V-CL methods fail to effectively learn either type of feature. Through a rigorous theoretical analysis based on the Structural Causal Model and gradient update, we find that in a given dataset, certain static semantics consistently co-occur with specific dynamic semantics. This phenomenon creates spurious correlations between static and dynamic semantics in the dataset. However, existing V-CL methods do not differentiate static and dynamic similarities when computing sample similarity. As a result, learning only one type of semantics is sufficient for the model to minimize the contrastive loss. Ultimately, this causes the V-CL pre-training process to prioritize learning the easier-to-learn semantics. To address this limitation, we propose Bi-level Optimization with Decoupling for Video Contrastive Learning. (BOD-VCL). In BOD-VCL, we model videos as linear dynamical systems based on Koopman theory. In this system, all frame-to-frame transitions are represented by a linear Koopman operator. By performing eigen-decomposition on this operator, we can separate time-variant and time-invariant components of semantics, which allows us to explicitly separate the static and dynamic semantics in the video. By modeling static and dynamic similarity separately, both types of semantics can be fully exploited during the V-CL training process. BOD-VCL can be seamlessly integrated into existing V-CL frameworks, and experimental results highlight the significant improvements achieved by our method.
♻ ☆ XTransfer: Modality-Agnostic Few-Shot Model Transfer for Human Sensing at the Edge
Deep learning for human sensing on edge systems presents significant potential for smart applications. However, its training and development are hindered by the limited availability of sensor data and resource constraints of edge systems. While transferring pre-trained models to different sensing applications is promising, existing methods often require extensive sensor data and computational resources, resulting in high costs and limited transferability. In this paper, we propose XTransfer, a first-of-its-kind method enabling modality-agnostic, few-shot model transfer with resource-efficient design. XTransfer flexibly uses pre-trained models and transfers knowledge across different modalities by (i) model repairing that safely mitigates modality shift by adapting pre-trained layers with only few sensor data, and (ii) layer recombining that efficiently searches and recombines layers of interest from source models in a layer-wise manner to restructure models. We benchmark various baselines across diverse human sensing datasets spanning different modalities. The results show that XTransfer achieves state-of-the-art performance while significantly reducing the costs of sensor data collection, model training, and edge deployment.
♻ ☆ STAG: Structural Test-time Alignment of Gradients for Online Adaptation
Test-Time Adaptation (TTA) adapts pre-trained models using only unlabeled test streams, requiring real-time inference and update without access to source data. We propose StructuralTest-time Alignment of Gradients (STAG), a lightweight plug-in enhancer that exploits an always-available structural signal: the classifier's intrinsic geometry. STAG derives class-wise structural anchors from classifier weights via self-structural entropy, and during adaptation analytically computes the predicted-class entropy gradient from forward-pass quantities, aligning it to the corresponding anchor with a cosine-similarity loss. This closed-form design incurs near-zero memory and latency overhead and requires no additional backpropagation beyond the underlying baseline. Across corrupted image classification and continual semantic segmentation, STAG provides broadly applicable performance gains for strong TTA baselines on both CNN and Transformer architectures regardless of the underlying normalization scheme, with particularly large gains under challenging online regimes such as imbalanced label shifts, single-sample adaptation, mixed corruption streams and long-horizon continual TTA.
♻ ☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
♻ ☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released at https://github.com/iSEE-Laboratory/Refer-Agent.
♻ ☆ Spectral Compressive Imaging via Chromaticity-Intensity Decomposition
In coded aperture snapshot spectral imaging (CASSI), the captured measurement entangles spatial and spectral information, posing a severely ill-posed inverse problem for hyperspectral images (HSIs) reconstruction. Moreover, the captured radiance inherently depends on scene illumination, making it difficult to recover the intrinsic spectral reflectance that remains invariant to lighting conditions. To address these challenges, we propose a chromaticity-intensity decomposition framework, which disentangles an HSI into a spatially smooth intensity map and a spectrally variant chromaticity cube. The chromaticity encodes lighting-invariant reflectance, enriched with high-frequency spatial details and local spectral sparsity. Building on this decomposition, we develop CIDNet, a Chromaticity-Intensity Decomposition unfolding network within a dual-camera CASSI system. CIDNet integrates a hybrid spatial-spectral Transformer tailored to reconstruct fine-grained and sparse spectral chromaticity and a degradation-aware, spatially-adaptive noise estimation module that captures anisotropic noise across iterative stages. Extensive experiments on both synthetic and real-world CASSI datasets demonstrate that our method achieves superior performance in both spectral and chromaticity fidelity. Code and models will be publicly available.
♻ ☆ Predicting Camera Pose from Perspective Descriptions for Spatial Reasoning
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
♻ ☆ T$^3$-S2S: Training-free Triplet Tuning for Sketch to Scene Synthesis in Controllable Concept Art Generation
2D concept art generation for 3D scenes is a crucial yet challenging task in computer graphics, as creating natural intuitive environments still demands extensive manual effort in concept design. While generative AI has simplified 2D concept design via text-to-image synthesis, it struggles with complex multi-instance scenes and offers limited support for structured terrain layout. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the ControlNet model for detailed multi-instance generation via three key modules: Prompt Balance ensures keyword representation and minimizes the risk of missing critical instances; Characteristic Priority emphasizes sketch-based features by highlighting TopK indices in feature channels; and Dense Tuning refines contour details within instance-related regions of the attention map. Leveraging the controllability of T3-S2S, we also introduce a feature-sharing strategy with dual prompt sets to generate layer-aware isometric and terrain-view representations for the terrain layout. Experiments show that our sketch-to-scene workflow consistently produces multi-instance 2D scenes with details aligned with input prompts.
comment: https://openreview.net/forum?id=lyn2BgKQ8F
♻ ☆ A Comparative Study of 3D Person Detection: Sensor Modalities and Robustness in Diverse Indoor and Outdoor Environments
Accurate 3D person detection is critical for safety in applications such as robotics, industrial monitoring, and surveillance. This work presents a systematic evaluation of 3D person detection using camera-only, LiDAR-only, and camera-LiDAR fusion. While most existing research focuses on autonomous driving, we explore detection performance and robustness in diverse indoor and outdoor scenes using the JRDB dataset. We compare three representative models - BEVDepth (camera), PointPillars (LiDAR), and DAL (camera-LiDAR fusion) - and analyze their behavior under varying occlusion and distance levels. Our results show that the fusion-based approach consistently outperforms single-modality models, particularly in challenging scenarios. We further investigate robustness against sensor corruptions and misalignments, revealing that while DAL offers improved resilience, it remains sensitive to sensor misalignment and certain LiDAR-based corruptions. In contrast, the camera-based BEVDepth model showed the lowest performance and was most affected by occlusion, distance, and noise. Our findings highlight the importance of utilizing sensor fusion for enhanced 3D person detection, while also underscoring the need for ongoing research to address the vulnerabilities inherent in these systems.
comment: Accepted for VISAPP 2026
♻ ☆ Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches
3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc. This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes, all from the user's casual prompts such as a hand-drawn sketch. Sketch-based input offers a natural, and convenient way to convey the user's design intention in the content creation process. To circumvent the data-deficient challenge in learning (i.e. the lack of large training data of 3D scenes), our method leverages a pre-trained 2D denoising diffusion model to generate a 2D image of the scene as the conceptual guidance. In this process, we adopt the isometric projection mode to factor out unknown camera poses while obtaining the scene layout. From the generated isometric image, we use a pre-trained image understanding method to segment the image into meaningful parts, such as off-ground objects, trees, and buildings, and extract the 2D scene layout. These segments and layouts are subsequently fed into a procedural content generation (PCG) engine, such as a 3D video game engine like Unity or Unreal, to create the 3D scene. The resulting 3D scene can be seamlessly integrated into a game development environment and is readily playable. Extensive tests demonstrate that our method can efficiently generate high-quality and interactive 3D game scenes with layouts that closely follow the user's intention.
comment: Project Page: https://xrvisionlabs.github.io/Sketch2Scene/ Code: https://github.com/Tencent/Triplet_Tuning
♻ ☆ SoliReward: Mitigating Susceptibility to Reward Hacking and Annotation Noise in Video Generation Reward Models
Post-training alignment of video generation models with human preferences is a critical goal. Developing effective Reward Models (RMs) for this process faces significant methodological hurdles. Current data collection paradigms, reliant on in-prompt pairwise annotations, suffer from labeling noise. Concurrently, the architectural design of VLM-based RMs, particularly their output mechanisms, remains underexplored. Furthermore, RM is susceptible to reward hacking in post-training. To mitigate these limitations, we propose SoliReward, a systematic framework for video RM training. Our framework first sources high-quality, cost-efficient data via single-item binary annotations, then constructs preference pairs using a cross-prompt pairing strategy. Architecturally, we employ a Hierarchical Progressive Query Attention mechanism to enhance feature aggregation. Finally, we introduce a modified BT loss that explicitly accommodates win-tie scenarios. This approach regularizes the RM's score distribution for positive samples, providing more nuanced preference signals to alleviate over-focus on a small number of top-scoring samples. Our approach is validated on benchmarks evaluating physical plausibility, subject deformity, and semantic alignment, demonstrating improvements in direct RM evaluation metrics and in the efficacy of post-training on video generation models. Code and benchmark are available at https://github.com/lian700/SoliReward
comment: 16 pages, 9 figures
♻ ☆ Multi-Sensor Attention Networks for Automated Subsurface Delamination Detection in Concrete Bridge Decks
Subsurface delaminations in concrete bridge decks remain undetectable through conventional visual inspection, necessitating automated non-destructive evaluation methods. This work introduces a deep learning framework that integrates Ground Penetrating Radar (GPR) and Infrared Thermography (IRT) through hierarchical attention mechanisms. Our architecture employs temporal self-attention to process GPR electromagnetic signals, spatial attention to analyze thermal imagery, and cross-modal attention with learnable embeddings to model inter-sensor correspondences. We integrate Monte Carlo dropout-based uncertainty quantification, decomposing prediction confidence into model uncertainty and data-driven uncertainty components. Testing across five real-world bridge datasets from the SDNET2021 benchmark reveals that our approach delivers substantial performance gains over single-sensor and concatenation-based baselines when applied to balanced or moderately imbalanced data distributions. Comprehensive ablation analysis confirms that cross-modal attention mechanisms contribute meaningful improvements beyond unimodal attention alone. Critically, we identify and characterize specific failure modes: under extreme class imbalance, attention-based architectures demonstrate susceptibility to majority class bias, indicating scenarios where simpler architectural choices may prove more robust. Our findings equip practitioners with empirically-grounded criteria for selecting appropriate fusion strategies based on dataset characteristics, rather than promoting universal architectural superiority.
♻ ☆ Probing Perceptual Constancy in Large Vision-Language Models
Perceptual constancy is the ability to maintain stable perceptions of objects despite changes in sensory input, such as variations in distance, angle, or lighting. This ability is crucial for visual understanding in a dynamic world. Here, we explored such ability in current Vision Language Models (VLMs). In this study, we evaluated 155 VLMs using 236 experiments across three domains: color, size, and shape constancy. The experiments included single-image and video adaptations of classic cognitive tasks, along with novel tasks in in-the-wild conditions. We found significant variability in VLM performance across these domains, with model performance in shape constancy clearly dissociated from that of color and size constancy.
comment: Under Review
♻ ☆ Causal Forcing: Autoregressive Diffusion Distillation Done Right for High-Quality Real-Time Interactive Video Generation
To achieve real-time interactive video generation, current methods distill pretrained bidirectional video diffusion models into few-step autoregressive (AR) models, facing an architectural gap when full attention is replaced by causal attention. However, existing approaches do not bridge this gap theoretically. They initialize the AR student via ODE distillation, which requires frame-level injectivity, where each noisy frame must map to a unique clean frame under the PF-ODE of an AR teacher. Distilling an AR student from a bidirectional teacher violates this condition, preventing recovery of the teacher's flow map and instead inducing a conditional-expectation solution, which degrades performance. To address this issue, we propose Causal Forcing that uses an AR teacher for ODE initialization, thereby bridging the architectural gap. Empirical results show that our method outperforms all baselines across all metrics, surpassing the SOTA Self Forcing by 19.3\% in Dynamic Degree, 8.7\% in VisionReward, and 16.7\% in Instruction Following. Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
comment: Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
♻ ☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
comment: https://github.com/chen-si-jia/DRMOT
♻ ☆ Multimodal Iterative RAG for Knowledge-Intensive Visual Question Answering
Knowledge-intensive visual question answering (VQA) requires external knowledge beyond image content, demanding precise visual grounding and coherent integration of visual and textual information. Although multimodal retrieval-augmented generation has achieved notable advances by incorporating external knowledge bases, existing approaches largely adopt single-pass frameworks that often fail to acquire sufficient knowledge and lack mechanisms to revise misdirected reasoning. We propose PMSR (Progressive Multimodal Search and Reasoning), a framework that progressively constructs a structured reasoning trajectory to enhance both knowledge acquisition and synthesis. PMSR uses dual-scope queries conditioned on both the latest record and the trajectory to retrieve diverse knowledge from heterogeneous knowledge bases. The retrieved evidence is then synthesized into compact records via compositional reasoning. This design facilitates controlled iterative refinement, which supports more stable reasoning trajectories with reduced error propagation. Extensive experiments across six diverse benchmarks (Encyclopedic-VQA, InfoSeek, MMSearch, LiveVQA, FVQA, and OK-VQA) demonstrate that PMSR consistently improves both retrieval recall and end-to-end answer accuracy.
♻ ☆ Enhancing Features in Long-tailed Data Using Large Vision Model
Language-based foundation models, such as large language models (LLMs) or large vision-language models (LVLMs), have been widely studied in long-tailed recognition. However, the need for linguistic data is not applicable to all practical tasks. In this study, we aim to explore using large vision models (LVMs) or visual foundation models (VFMs) to enhance long-tailed data features without any language information. Specifically, we extract features from the LVM and fuse them with features in the baseline network's map and latent space to obtain the augmented features. Moreover, we design several prototype-based losses in the latent space to further exploit the potential of the augmented features. In the experimental section, we validate our approach on two benchmark datasets: ImageNet-LT and iNaturalist2018.
♻ ☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code will be made publicly available soon.
comment: 17 pages, 7 figures; cvpr2026 submission
♻ ☆ DiMo: Discrete Diffusion Modeling for Motion Generation and Understanding
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps. We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change. Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
♻ ☆ Extreme Weather Nowcasting via Local Precipitation Pattern Prediction
Accurate forecasting of extreme weather events such as heavy rainfall or storms is critical for risk management and disaster mitigation. Although high-resolution radar observations have spurred extensive research on nowcasting models, precipitation nowcasting remains particularly challenging due to pronounced spatial locality, intricate fine-scale rainfall structures, and variability in forecasting horizons. While recent diffusion-based generative ensembles show promising results, they are computationally expensive and unsuitable for real-time applications. In contrast, deterministic models are computationally efficient but remain biased toward normal rainfall. Furthermore, the benchmark datasets commonly used in prior studies are themselves skewed--either dominated by ordinary rainfall events or restricted to extreme rainfall episodes--thereby hindering general applicability in real-world settings. In this paper, we propose exPreCast, an efficient deterministic framework for generating finely detailed radar forecasts, and introduce a newly constructed balanced radar dataset from the Korea Meteorological Administration (KMA), which encompasses both ordinary precipitation and extreme events. Our model integrates local spatiotemporal attention, a texture-preserving cubic dual upsampling decoder, and a temporal extractor to flexibly adjust forecasting horizons. Experiments on established benchmarks (SEVIR and MeteoNet) as well as on the balanced KMA dataset demonstrate that our approach achieves state-of-the-art performance, delivering accurate and reliable nowcasts across both normal and extreme rainfall regimes.
comment: 10pages, 20 figures, The Fourteenth International Conference on Learning Representations, see https://github.com/tony890048/exPreCast
♻ ☆ Adaptive Rank, Reduced Forgetting: Continual Learning with Dynamic Rank-Selective LoRA
Continual learning (CL) aims to accumulate knowledge from sequential tasks without catastrophic forgetting. Vision-language models such as CLIP, with strong generalization, are widely used for CL. Existing methods often adapt isolated PTM components, increasing inference complexity and limiting model improvement, or rely on replay, stored data, or assumptions, leading to high costs and limited applicability. To advance models as continual learners, we explore CL through natural and efficient PTM updates rather than complex task-specific additions. We study continual low-rank learning and analyze how LoRA ranks and placements affect learning and forgetting. A higher-rank LoRA improves task learning (plasticity) but increases forgetting, while a lower-rank LoRA enhances stability but limits adaptation. We observe a plasticity-stability balance tied to rank across parameters and tasks, with moderately small ranks maximizing CL benefits. Motivated by this, we propose Continual Dynamic Rank-Selective LoRA (CoDyRA), which continually updates PTMs with LoRA adapters of adaptively optimized ranks. The new-task objective drives learning, while sparsity-promoting regularization minimizes ranks to reduce interference and forgetting, achieving a balance tailored to each parameter and task. Although all parameters are updated, the minimized ranks keep the model close to its prior state while enabling effective new-task learning. CoDyRA performs efficient CL as a sequence of LoRA-based updates without storing past data or relying on assumptions, preserving the original model architecture and adding no inference overhead. Experiments show CoDyRA improves new representations while retaining old knowledge, achieving state-of-the-art results. Code is available at https://github.com/jeff024/codyra.
comment: Preprint
♻ ☆ FloodDiffusion: Tailored Diffusion Forcing for Streaming Motion Generation
We present FloodDiffusion, a new framework for text-driven, streaming human motion generation. Given time-varying text prompts, FloodDiffusion generates text-aligned, seamless motion sequences with real-time latency. Unlike existing methods that rely on chunk-by-chunk or auto-regressive model with diffusion head, we adopt a diffusion forcing framework to model this time-series generation task under time-varying control events. We find that a straightforward implementation of vanilla diffusion forcing (as proposed for video models) fails to model real motion distributions. We demonstrate that to guarantee modeling the output distribution, the vanilla diffusion forcing must be tailored to: (i) train with a bi-directional attention instead of casual attention; (ii) implement a lower triangular time scheduler instead of a random one; (iii) utilize a continues time-varying way to introduce text conditioning. With these improvements, we demonstrate in the first time that the diffusion forcing-based framework achieves state-of-the-art performance on the streaming motion generation task, reaching an FID of 0.057 on the HumanML3D benchmark. Models, code, and weights are available. https://shandaai.github.io/FloodDiffusion/
comment: 15 pages, 7 figures
♻ ☆ Adaptive Attention Distillation for Robust Few-Shot Segmentation under Environmental Perturbations
Few-shot segmentation (FSS) aims to rapidly learn novel class concepts from limited examples to segment specific targets in unseen images, and has been widely applied in areas such as medical diagnosis and industrial inspection. However, existing studies largely overlook the complex environmental factors encountered in real world scenarios-such as illumination, background, and camera viewpoint-which can substantially increase the difficulty of test images. As a result, models trained under laboratory conditions often fall short of practical deployment requirements. To bridge this gap, in this paper, an environment-robust FSS setting is introduced that explicitly incorporates challenging test cases arising from complex environments-such as motion blur, small objects, and camouflaged targets-to enhance model's robustness under realistic, dynamic conditions. An environment robust FSS benchmark (ER-FSS) is established, covering eight datasets across multiple real world scenarios. In addition, an Adaptive Attention Distillation (AAD) method is proposed, which repeatedly contrasts and distills key shared semantics between known (support) and unknown (query) images to derive class-specific attention for novel categories. This strengthens the model's ability to focus on the correct targets in complex environments, thereby improving environmental robustness. Comparative experiments show that AAD improves mIoU by 3.3% - 8.5% across all datasets and settings, demonstrating superior performance and strong generalization. The source code and dataset are available at: https://github.com/guoqianyu-alberta/Adaptive-Attention-Distillation-for-FSS.
comment: 12 pages, 5 figures
♻ ☆ Robust Detection of Retinal Neovascularization in Widefield Optical Coherence Tomography
Retinal neovascularization (RNV) is a vision threatening development in diabetic retinopathy (DR). Vision loss associated with RNV is preventable with timely intervention, making RNV clinical screening and monitoring a priority. Optical coherence tomography (OCT) angiography (OCTA) provides high-resolution imaging and high-sensitivity detection of RNV lesions. With recent commercial devices introducing widefield OCTA imaging to the clinic, the technology stands to improve early detection of RNV pathology. However, to meet clinical requirements these imaging capabilities must be combined with effective RNV detection and quantification, but existing algorithms for OCTA images are optimized for conventional, i.e. narrow, fields of view. Here, we present a novel approach for RNV diagnosis and staging on widefield OCT/OCTA. Unlike conventional methods dependent on multi-layer retinal segmentation, our model reframes RNV identification as a direct binary localization task. Our fully automated approach was trained and validated on 589 widefield scans (17x17-mm to 26x21-mm) collected from multiple devices at multiple clinics. Our method achieved a device-dependent area under curve (AUC) ranging from 0.96 to 0.99 for RNV diagnosis, and mean intersection over union (IOU) ranging from 0.76 to 0.88 for segmentation. We also demonstrate our method's ability to monitor lesion growth longitudinally. Our results indicate that deep learning-based analysis for widefield OCTA images could offer a valuable means for improving RNV screening and management.
comment: 21 pages, 12 figures. Submitted to Optica. Corresponding author: Yali Jia
♻ ☆ Preserving Spectral Structure and Statistics in Diffusion Models
Standard diffusion models (DMs) rely on the total destruction of data into non-informative white noise, forcing the backward process to denoise from a fully unstructured noise state. While ensuring diversity, this results in a cumbersome and computationally intensive image generation task. We address this challenge by proposing new forward and backward process within a mathematically tractable spectral space. Unlike pixel-based DMs, our forward process converges towards an informative Gaussian prior N(mu_hat,Sigma_hat) rather than white noise. Our method, termed Preserving Spectral Structure and Statistics (PreSS) in diffusion models, guides spectral components toward this informative prior while ensuring that corresponding structural signals remain intact at terminal time. This provides a principled starting point for the backward process, enabling high-quality image reconstruction that builds upon preserved spectral structure while maintaining high generative diversity. Experimental results on CIFAR-10, CelebA and CelebA-HQ demonstrate significant reductions in computational complexity, improved visual diversity, less drift, and a smoother diffusion process compared to pixel-based DMs.
Artificial Intelligence 150
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ InftyThink+: Effective and Efficient Infinite-Horizon Reasoning via Reinforcement Learning
Large reasoning models achieve strong performance by scaling inference-time chain-of-thought, but this paradigm suffers from quadratic cost, context length limits, and degraded reasoning due to lost-in-the-middle effects. Iterative reasoning mitigates these issues by periodically summarizing intermediate thoughts, yet existing methods rely on supervised learning or fixed heuristics and fail to optimize when to summarize, what to preserve, and how to resume reasoning. We propose InftyThink+, an end-to-end reinforcement learning framework that optimizes the entire iterative reasoning trajectory, building on model-controlled iteration boundaries and explicit summarization. InftyThink+ adopts a two-stage training scheme with supervised cold-start followed by trajectory-level reinforcement learning, enabling the model to learn strategic summarization and continuation decisions. Experiments on DeepSeek-R1-Distill-Qwen-1.5B show that InftyThink+ improves accuracy by 21% on AIME24 and outperforms conventional long chain-of-thought reinforcement learning by a clear margin, while also generalizing better to out-of-distribution benchmarks. Moreover, InftyThink+ significantly reduces inference latency and accelerates reinforcement learning training, demonstrating improved reasoning efficiency alongside stronger performance.
comment: Project Page: https://zju-real.github.io/InftyThink-Plus Code: https://github.com/ZJU-REAL/InftyThink-Plus
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Agentic Uncertainty Reveals Agentic Overconfidence
Can AI agents predict whether they will succeed at a task? We study agentic uncertainty by eliciting success probability estimates before, during, and after task execution. All results exhibit agentic overconfidence: some agents that succeed only 22% of the time predict 77% success. Counterintuitively, pre-execution assessment with strictly less information tends to yield better discrimination than standard post-execution review, though differences are not always significant. Adversarial prompting reframing assessment as bug-finding achieves the best calibration.
☆ Optimal Turkish Subword Strategies at Scale: Systematic Evaluation of Data, Vocabulary, Morphology Interplay
Tokenization is a pivotal design choice for neural language modeling in morphologically rich languages (MRLs) such as Turkish, where productive agglutination challenges both vocabulary efficiency and morphological fidelity. Prior studies have explored tokenizer families and vocabulary sizes but typically (i) vary vocabulary without systematically controlling the tokenizer's training corpus, (ii) provide limited intrinsic diagnostics, and (iii) evaluate a narrow slice of downstream tasks. We present the first comprehensive, principled study of Turkish subword tokenization; a "subwords manifest", that jointly varies vocabulary size and tokenizer training corpus size (data and vocabulary coupling), compares multiple tokenizer families under matched parameter budgets (WordPiece, morphology level, and character baselines), and evaluates across semantic (NLI, STS, sentiment analysis, NER), syntactic (POS, dependency parsing), and morphology-sensitive probes. To explain why tokenizers succeed or fail, we introduce a morphology-aware diagnostic toolkit that goes beyond coarse aggregates to boundary-level micro/macro F1, decoupled lemma atomicity vs. surface boundary hits, over/under-segmentation indices, character/word edit distances (CER/WER), continuation rates, and affix-type coverage and token-level atomicity. Our contributions are fourfold: (i) a systematic investigation of the vocabulary-corpus-success triad; (ii) a unified, morphology-aware evaluation framework linking intrinsic diagnostics to extrinsic outcomes; (iii) controlled comparisons identifying when character-level and morphology-level tokenization pay off; and (iv) an open-source release of evaluation code, tokenizer pipelines, and models. As the first work of its kind, this "subwords manifest" delivers actionable guidance for building effective tokenizers in MRLs and establishes a reproducible foundation for future research.
comment: Submitted to Cambridge NLP journal, all rights belong to them
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ Cochain Perspectives on Temporal-Difference Signals for Learning Beyond Markov Dynamics
Non-Markovian dynamics are commonly found in real-world environments due to long-range dependencies, partial observability, and memory effects. The Bellman equation that is the central pillar of Reinforcement learning (RL) becomes only approximately valid under Non-Markovian. Existing work often focus on practical algorithm designs and offer limited theoretical treatment to address key questions, such as what dynamics are indeed capturable by the Bellman framework and how to inspire new algorithm classes with optimal approximations. In this paper, we present a novel topological viewpoint on temporal-difference (TD) based RL. We show that TD errors can be viewed as 1-cochain in the topological space of state transitions, while Markov dynamics are then interpreted as topological integrability. This novel view enables us to obtain a Hodge-type decomposition of TD errors into an integrable component and a topological residual, through a Bellman-de Rham projection. We further propose HodgeFlow Policy Search (HFPS) by fitting a potential network to minimize the non-integrable projection residual in RL, achieving stability/sensitivity guarantees. In numerical evaluations, HFPS is shown to significantly improve RL performance under non-Markovian.
☆ Implementing Grassroots Logic Programs with Multiagent Transition Systems and AI
Grassroots Logic Programs (GLP) is a concurrent logic programming language with variables partitioned into paired \emph{readers} and \emph{writers}, conjuring both linear logic and futures/promises: an assignment is produced at most once via the sole occurrence of a writer (promise) and consumed at most once via the sole occurrence of its paired reader (future), and may contain additional readers and/or writers, enabling the concise expression of rich multidirectional communication modalities. GLP was designed as a language for grassroots platforms -- distributed systems with multiple instances that can operate independently of each other and of any global resource, and can coalesce into ever larger instances -- with its target architecture being smartphones communicating peer-to-peer. The operational semantics of Concurrent (single-agent) GLP and of multiagent GLP (maGLP) were defined via transition systems/multiagent transition systems, respectively. Here, we describe the mathematics developed to facilitate the workstation- and smartphone-based implementations of GLP by AI in Dart. We developed dGLP -- implementation-ready deterministic operational semantics for single-agent GLP -- and proved it correct with respect to the Concurrent GLP operational semantics; dGLP was used by AI as a formal spec, from which it developed a workstation-based implementation of GLP. We developed madGLP -- an implementation-ready multiagent operational semantics for maGLP -- and proved it correct with respect to the maGLP operational semantics; madGLP is deterministic at the agent level (not at the system level due to communication asynchrony), and is being used by AI as a formal spec from which it develops a smartphone-based implementation of maGLP.
☆ From Kepler to Newton: Inductive Biases Guide Learned World Models in Transformers
Can general-purpose AI architectures go beyond prediction to discover the physical laws governing the universe? True intelligence relies on "world models" -- causal abstractions that allow an agent to not only predict future states but understand the underlying governing dynamics. While previous "AI Physicist" approaches have successfully recovered such laws, they typically rely on strong, domain-specific priors that effectively "bake in" the physics. Conversely, Vafa et al. recently showed that generic Transformers fail to acquire these world models, achieving high predictive accuracy without capturing the underlying physical laws. We bridge this gap by systematically introducing three minimal inductive biases. We show that ensuring spatial smoothness (by formulating prediction as continuous regression) and stability (by training with noisy contexts to mitigate error accumulation) enables generic Transformers to surpass prior failures and learn a coherent Keplerian world model, successfully fitting ellipses to planetary trajectories. However, true physical insight requires a third bias: temporal locality. By restricting the attention window to the immediate past -- imposing the simple assumption that future states depend only on the local state rather than a complex history -- we force the model to abandon curve-fitting and discover Newtonian force representations. Our results demonstrate that simple architectural choices determine whether an AI becomes a curve-fitter or a physicist, marking a critical step toward automated scientific discovery.
☆ Halluverse-M^3: A multitask multilingual benchmark for hallucination in LLMs
Hallucinations in large language models remain a persistent challenge, particularly in multilingual and generative settings where factual consistency is difficult to maintain. While recent models show strong performance on English-centric benchmarks, their behavior across languages, tasks, and hallucination types is not yet well understood. In this work, we introduce Halluverse-M^3, a dataset designed to enable systematic analysis of hallucinations across multiple languages, multiple generation tasks, and multiple hallucination categories. Halluverse-M^3 covers four languages, English, Arabic, Hindi, and Turkish, and supports two generation tasks: question answering and dialogue summarization. The dataset explicitly distinguishes between entity-level, relation-level, and sentence-level hallucinations. Hallucinated outputs are constructed through a controlled editing process and validated by human annotators, ensuring clear alignment between original content and hallucinated generations. Using this dataset, we evaluate a diverse set of contemporary open-source and proprietary language models on fine-grained hallucination detection. Our results show that question answering is consistently easier than dialogue summarization, while sentence-level hallucinations remain challenging even for the strongest models. Performance is highest in English and degrades in lower-resource languages, with Hindi exhibiting the lowest detection accuracy. Overall, Halluverse-M^3 provides a realistic and challenging benchmark for studying hallucinations in multilingual, multi-task settings. We release the dataset to support future research on hallucination detection and mitigation\footnote{https://huggingface.co/datasets/sabdalja/HalluVerse-M3}.
☆ PANC: Prior-Aware Normalized Cut for Object Segmentation
Fully unsupervised segmentation pipelines naively seek the most salient object, should this be present. As a result, most of the methods reported in the literature deliver non-deterministic partitions that are sensitive to initialization, seed order, and threshold heuristics. We propose PANC, a weakly supervised spectral segmentation framework that uses a minimal set of annotated visual tokens to produce stable, controllable, and reproducible object masks. From the TokenCut approach, we augment the token-token affinity graph with a handful of priors coupled to anchor nodes. By manipulating the graph topology, we bias the spectral eigenspace toward partitions that are consistent with the annotations. Our approach preserves the global grouping enforced by dense self-supervised visual features, trading annotated tokens for significant gains in reproducibility, user control, and segmentation quality. Using 5 to 30 annotations per dataset, our training-free method achieves state-of-the-art performance among weakly and unsupervised approaches on standard benchmarks (e.g., DUTS-TE, ECSSD, MS COCO). Contrarily, it excels in domains where dense labels are costly or intra-class differences are subtle. We report strong and reliable results on homogeneous, fine-grained, and texture-limited domains, achieving 96.8% (+14.43% over SotA), 78.0% (+0.2%), and 78.8% (+0.37%) average mean intersection-over-union (mIoU) on CrackForest (CFD), CUB-200-2011, and HAM10000 datasets, respectively. For multi-object benchmarks, the framework showcases explicit, user-controllable semantic segmentation.
☆ TamperBench: Systematically Stress-Testing LLM Safety Under Fine-Tuning and Tampering
As increasingly capable open-weight large language models (LLMs) are deployed, improving their tamper resistance against unsafe modifications, whether accidental or intentional, becomes critical to minimize risks. However, there is no standard approach to evaluate tamper resistance. Varied data sets, metrics, and tampering configurations make it difficult to compare safety, utility, and robustness across different models and defenses. To this end, we introduce TamperBench, the first unified framework to systematically evaluate the tamper resistance of LLMs. TamperBench (i) curates a repository of state-of-the-art weight-space fine-tuning attacks and latent-space representation attacks; (ii) enables realistic adversarial evaluation through systematic hyperparameter sweeps per attack-model pair; and (iii) provides both safety and utility evaluations. TamperBench requires minimal additional code to specify any fine-tuning configuration, alignment-stage defense method, and metric suite while ensuring end-to-end reproducibility. We use TamperBench to evaluate 21 open-weight LLMs, including defense-augmented variants, across nine tampering threats using standardized safety and capability metrics with hyperparameter sweeps per model-attack pair. This yields novel insights, including effects of post-training on tamper resistance, that jailbreak-tuning is typically the most severe attack, and that Triplet emerges as a leading alignment-stage defense. Code is available at: https://github.com/criticalml-uw/TamperBench
comment: 28 pages, 13 figures
☆ Supercharging Simulation-Based Inference for Bayesian Optimal Experimental Design
Bayesian optimal experimental design (BOED) seeks to maximize the expected information gain (EIG) of experiments. This requires a likelihood estimate, which in many settings is intractable. Simulation-based inference (SBI) provides powerful tools for this regime. However, existing work explicitly connecting SBI and BOED is restricted to a single contrastive EIG bound. We show that the EIG admits multiple formulations which can directly leverage modern SBI density estimators, encompassing neural posterior, likelihood, and ratio estimation. Building on this perspective, we define a novel EIG estimator using neural likelihood estimation. Further, we identify optimization as a key bottleneck of gradient based EIG maximization and show that a simple multi-start parallel gradient ascent procedure can substantially improve reliability and performance. With these innovations, our SBI-based BOED methods are able to match or outperform by up to $22\%$ existing state-of-the-art approaches across standard BOED benchmarks.
☆ NanoFLUX: Distillation-Driven Compression of Large Text-to-Image Generation Models for Mobile Devices
While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
☆ TraceCoder: A Trace-Driven Multi-Agent Framework for Automated Debugging of LLM-Generated Code
Large Language Models (LLMs) often generate code with subtle but critical bugs, especially for complex tasks. Existing automated repair methods typically rely on superficial pass/fail signals, offering limited visibility into program behavior and hindering precise error localization. In addition, without a way to learn from prior failures, repair processes often fall into repetitive and inefficient cycles. To overcome these challenges, we present TraceCoder, a collaborative multi-agent framework that emulates the observe-analyze-repair process of human experts. The framework first instruments the code with diagnostic probes to capture fine-grained runtime traces, enabling deep insight into its internal execution. It then conducts causal analysis on these traces to accurately identify the root cause of the failure. This process is further enhanced by a novel Historical Lesson Learning Mechanism (HLLM), which distills insights from prior failed repair attempts to inform subsequent correction strategies and prevent recurrence of similar mistakes. To ensure stable convergence, a Rollback Mechanism enforces that each repair iteration constitutes a strict improvement toward the correct solution. Comprehensive experiments across multiple benchmarks show that TraceCoder achieves up to a 34.43\% relative improvement in Pass@1 accuracy over existing advanced baselines. Ablation studies verify the significance of each system component, with the iterative repair process alone contributing a 65.61\% relative gain in accuracy. Furthermore, TraceCoder significantly outperforms leading iterative methods in terms of both accuracy and cost-efficiency.
☆ Git for Sketches: An Intelligent Tracking System for Capturing Design Evolution
During product conceptualization, capturing the non-linear history and cognitive intent is crucial. Traditional sketching tools often lose this context. We introduce DIMES (Design Idea Management and Evolution capture System), a web-based environment featuring sGIT (SketchGit), a custom visual version control architecture, and Generative AI. sGIT includes AEGIS, a module using hybrid Deep Learning and Machine Learning models to classify six stroke types. The system maps Git primitives to design actions, enabling implicit branching and multi-modal commits (stroke data + voice intent). In a comparative study, experts using DIMES demonstrated a 160% increase in breadth of concept exploration. Generative AI modules generated narrative summaries that enhanced knowledge transfer; novices achieved higher replication fidelity (Neural Transparency-based Cosine Similarity: 0.97 vs. 0.73) compared to manual summaries. AI-generated renderings also received higher user acceptance (Purchase Likelihood: 4.2 vs 3.1). This work demonstrates that intelligent version control bridges creative action and cognitive documentation, offering a new paradigm for design education.
comment: 49 pages, 25 figures
☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
☆ AIRS-Bench: a Suite of Tasks for Frontier AI Research Science Agents
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
comment: 49 pages, 14 figures, 10 tables
☆ The Quantum Sieve Tracer: A Hybrid Framework for Layer-Wise Activation Tracing in Large Language Models
Mechanistic interpretability aims to reverse-engineer the internal computations of Large Language Models (LLMs), yet separating sparse semantic signals from high-dimensional polysemantic noise remains a significant challenge. This paper introduces the Quantum Sieve Tracer, a hybrid quantum-classical framework designed to characterize factual recall circuits. We implement a modular pipeline that first localizes critical layers using classical causal tracing, then maps specific attention head activations into an exponentially large quantum Hilbert space. Using open-weight models (Meta Llama-3.2-1B and Alibaba Qwen2.5-1.5B-Instruct), we perform a two-stage analysis that reveals a fundamental architectural divergence. While Qwen's layer 7 circuit functions as a classic Recall Hub, we discover that Llama's layer 9 acts as an Interference Suppression circuit, where ablating the identified heads paradoxically improves factual recall. Our results demonstrate that quantum kernels can distinguish between these constructive (recall) and reductive (suppression) mechanisms, offering a high-resolution tool for analyzing the fine-grained topology of attention.
comment: 4 pages, 4 figures
☆ Rethinking Multi-Condition DiTs: Eliminating Redundant Attention via Position-Alignment and Keyword-Scoping
While modern text-to-image models excel at prompt-based generation, they often lack the fine-grained control necessary for specific user requirements like spatial layouts or subject appearances. Multi-condition control addresses this, yet its integration into Diffusion Transformers (DiTs) is bottlenecked by the conventional ``concatenate-and-attend'' strategy, which suffers from quadratic computational and memory overhead as the number of conditions scales. Our analysis reveals that much of this cross-modal interaction is spatially or semantically redundant. To this end, we propose Position-aligned and Keyword-scoped Attention (PKA), a highly efficient framework designed to eliminate these redundancies. Specifically, Position-Aligned Attention (PAA) linearizes spatial control by enforcing localized patch alignment, while Keyword-Scoped Attention (KSA) prunes irrelevant subject-driven interactions via semantic-aware masking. To facilitate efficient learning, we further introduce a Conditional Sensitivity-Aware Sampling (CSAS) strategy that reweights the training objective towards critical denoising phases, drastically accelerating convergence and enhancing conditional fidelity. Empirically, PKA delivers a 10.0$\times$ inference speedup and a 5.1$\times$ VRAM saving, providing a scalable and resource-friendly solution for high-fidelity multi-conditioned generation.
☆ The Representational Geometry of Number
A central question in cognitive science is whether conceptual representations converge onto a shared manifold to support generalization, or diverge into orthogonal subspaces to minimize task interference. While prior work has discovered evidence for both, a mechanistic account of how these properties coexist and transform across tasks remains elusive. We propose that representational sharing lies not in the concepts themselves, but in the geometric relations between them. Using number concepts as a testbed and language models as high-dimensional computational substrates, we show that number representations preserve a stable relational structure across tasks. Task-specific representations are embedded in distinct subspaces, with low-level features like magnitude and parity encoded along separable linear directions. Crucially, we find that these subspaces are largely transformable into one another via linear mappings, indicating that representations share relational structure despite being located in distinct subspaces. Together, these results provide a mechanistic lens of how language models balance the shared structure of number representation with functional flexibility. It suggests that understanding arises when task-specific transformations are applied to a shared underlying relational structure of conceptual representations.
☆ From Features to Actions: Explainability in Traditional and Agentic AI Systems
Over the last decade, explainable AI has primarily focused on interpreting individual model predictions, producing post-hoc explanations that relate inputs to outputs under a fixed decision structure. Recent advances in large language models (LLMs) have enabled agentic AI systems whose behaviour unfolds over multi-step trajectories. In these settings, success and failure are determined by sequences of decisions rather than a single output. While useful, it remains unclear how explanation approaches designed for static predictions translate to agentic settings where behaviour emerges over time. In this work, we bridge the gap between static and agentic explainability by comparing attribution-based explanations with trace-based diagnostics across both settings. To make this distinction explicit, we empirically compare attribution-based explanations used in static classification tasks with trace-based diagnostics used in agentic benchmarks (TAU-bench Airline and AssistantBench). Our results show that while attribution methods achieve stable feature rankings in static settings (Spearman $ρ= 0.86$), they cannot be applied reliably to diagnose execution-level failures in agentic trajectories. In contrast, trace-grounded rubric evaluation for agentic settings consistently localizes behaviour breakdowns and reveals that state tracking inconsistency is 2.7$\times$ more prevalent in failed runs and reduces success probability by 49\%. These findings motivate a shift towards trajectory-level explainability for agentic systems when evaluating and diagnosing autonomous AI behaviour. Resources: https://github.com/VectorInstitute/unified-xai-evaluation-framework https://vectorinstitute.github.io/unified-xai-evaluation-framework
☆ An Adaptive Differentially Private Federated Learning Framework with Bi-level Optimization
Federated learning enables collaborative model training across distributed clients while preserving data privacy. However, in practical deployments, device heterogeneity, non-independent, and identically distributed (Non-IID) data often lead to highly unstable and biased gradient updates. When differential privacy is enforced, conventional fixed gradient clipping and Gaussian noise injection may further amplify gradient perturbations, resulting in training oscillation and performance degradation and degraded model performance. To address these challenges, we propose an adaptive differentially private federated learning framework that explicitly targets model efficiency under heterogeneous and privacy-constrained settings. On the client side, a lightweight local compressed module is introduced to regularize intermediate representations and constrain gradient variability, thereby mitigating noise amplification during local optimization. On the server side, an adaptive gradient clipping strategy dynamically adjusts clipping thresholds based on historical update statistics to avoid over-clipping and noise domination. Furthermore, a constraint-aware aggregation mechanism is designed to suppress unreliable or noise-dominated client updates and stabilize global optimization. Extensive experiments on CIFAR-10 and SVHN demonstrate improved convergence stability and classification accuracy.
comment: submited to a conference
LLM Active Alignment: A Nash Equilibrium Perspective
We develop a game-theoretic framework for predicting and steering the behavior of populations of large language models (LLMs) through Nash equilibrium (NE) analysis. To avoid the intractability of equilibrium computation in open-ended text spaces, we model each agent's action as a mixture over human subpopulations. Agents choose actively and strategically which groups to align with, yielding an interpretable and behaviorally substantive policy class. We derive closed-form NE characterizations, adopting standard concave-utility assumptions to enable analytical system-level predictions and give explicit, actionable guidance for shifting alignment targets toward socially desirable outcomes. The method functions as an active alignment layer on top of existing alignment pipelines such as RLHF. In a social-media setting, we show that a population of LLMs, especially reasoning-based models, may exhibit political exclusion, pathologies where some subpopulations are ignored by all LLM agents, which can be avoided by our method, illustrating the promise of applying the method to regulate multi-agent LLM dynamics across domains.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ AI-Generated Music Detection in Broadcast Monitoring
AI music generators have advanced to the point where their outputs are often indistinguishable from human compositions. While detection methods have emerged, they are typically designed and validated in music streaming contexts with clean, full-length tracks. Broadcast audio, however, poses a different challenge: music appears as short excerpts, often masked by dominant speech, conditions under which existing detectors fail. In this work, we introduce AI-OpenBMAT, the first dataset tailored to broadcast-style AI-music detection. It contains 3,294 one-minute audio excerpts (54.9 hours) that follow the duration patterns and loudness relations of real television audio, combining human-made production music with stylistically matched continuations generated with Suno v3.5. We benchmark a CNN baseline and state-of-the-art SpectTTTra models to assess SNR and duration robustness, and evaluate on a full broadcast scenario. Across all settings, models that excel in streaming scenarios suffer substantial degradation, with F1-scores dropping below 60% when music is in the background or has a short duration. These results highlight speech masking and short music length as critical open challenges for AI music detection, and position AI-OpenBMAT as a benchmark for developing detectors capable of meeting industrial broadcast requirements.
☆ POP: Online Structural Pruning Enables Efficient Inference of Large Foundation Models
Large foundation models (LFMs) achieve strong performance through scaling, yet current structural pruning methods derive fixed pruning decisions during inference, overlooking sparsity patterns that emerge in the autoregressive token generation. In this paper, we propose POP (Partition-guided Online Pruning), an efficient online structural pruning framework that enables context-conditioned dynamic pruning with minimal computational overhead. POP partitions model channels into retained, candidate, and pruned regions, where prefilling defines a coarse pruning partition, and the decoding stage generates a fine-grained mask within the candidate region, avoiding full-channel re-evaluation. The coarse pruning partition preserves consistently important weights, while the fine-grained masking provides context-conditioned variation during decoding. Moreover, POP is a lightweight, plug-and-play method that requires no preprocessing, including offline calibration, retraining, or learning predictors. Extensive evaluations across diverse LFMs, including large language models (LLMs), mixture-of-experts models (MoEs), and vision-language models (VLMs), demonstrate that POP consistently delivers higher accuracy than existing pruning approaches while incurring smaller computational overhead and minimizing inference latency.
☆ ScaleEnv: Scaling Environment Synthesis from Scratch for Generalist Interactive Tool-Use Agent Training
Training generalist agents capable of adapting to diverse scenarios requires interactive environments for self-exploration. However, interactive environments remain critically scarce, and existing synthesis methods suffer from significant limitations regarding environmental diversity and scalability. To address these challenges, we introduce ScaleEnv, a framework that constructs fully interactive environments and verifiable tasks entirely from scratch. Specifically, ScaleEnv ensures environment reliability through procedural testing, and guarantees task completeness and solvability via tool dependency graph expansion and executable action verification. By enabling agents to learn through exploration within ScaleEnv, we demonstrate significant performance improvements on unseen, multi-turn tool-use benchmarks such as $τ^2$-Bench and VitaBench, highlighting strong generalization capabilities. Furthermore, we investigate the relationship between increasing number of domains and model generalization performance, providing empirical evidence that scaling environmental diversity is critical for robust agent learning.
☆ Bridging 6G IoT and AI: LLM-Based Efficient Approach for Physical Layer's Optimization Tasks
This paper investigates the role of large language models (LLMs) in sixth-generation (6G) Internet of Things (IoT) networks and proposes a prompt-engineering-based real-time feedback and verification (PE-RTFV) framework that perform physical-layer's optimization tasks through an iteratively process. By leveraging the naturally available closed-loop feedback inherent in wireless communication systems, PE-RTFV enables real-time physical-layer optimization without requiring model retraining. The proposed framework employs an optimization LLM (O-LLM) to generate task-specific structured prompts, which are provided to an agent LLM (A-LLM) to produce task-specific solutions. Utilizing real-time system feedback, the O-LLM iteratively refines the prompts to guide the A-LLM toward improved solutions in a gradient-descent-like optimization process. We test PE-RTFV approach on wireless-powered IoT testbed case study on user-goal-driven constellation design through semantically solving rate-energy (RE)-region optimization problem which demonstrates that PE-RTFV achieves near-genetic-algorithm performance within only a few iterations, validating its effectiveness for complex physical-layer optimization tasks in resource-constrained IoT networks.
comment: This paper is submitted to IEEE IoT Journal and is currently under review
☆ Wild Guesses and Mild Guesses in Active Concept Learning
Human concept learning is typically active: learners choose which instances to query or test in order to reduce uncertainty about an underlying rule or category. Active concept learning must balance informativeness of queries against the stability of the learner that generates and scores hypotheses. We study this trade-off in a neuro-symbolic Bayesian learner whose hypotheses are executable programs proposed by a large language model (LLM) and reweighted by Bayesian updating. We compare a Rational Active Learner that selects queries to maximize approximate expected information gain (EIG) and the human-like Positive Test Strategy (PTS) that queries instances predicted to be positive under the current best hypothesis. Across concept-learning tasks in the classic Number Game, EIG is effective when falsification is necessary (e.g., compound or exception-laden rules), but underperforms on simple concepts. We trace this failure to a support mismatch between the EIG policy and the LLM proposal distribution: highly diagnostic boundary queries drive the posterior toward regions where the generator produces invalid or overly specific programs, yielding a support-mismatch trap in the particle approximation. PTS is information-suboptimal but tends to maintain proposal validity by selecting "safe" queries, leading to faster convergence on simple rules. Our results suggest that "confirmation bias" may not be a cognitive error, but rather a rational adaptation for maintaining tractable inference in the sparse, open-ended hypothesis spaces characteristic of human thought.
☆ SuReNav: Superpixel Graph-based Constraint Relaxation for Navigation in Over-constrained Environments ICRA 2026
We address the over-constrained planning problem in semi-static environments. The planning objective is to find a best-effort solution that avoids all hard constraint regions while minimally traversing the least risky areas. Conventional methods often rely on pre-defined area costs, limiting generalizations. Further, the spatial continuity of navigation spaces makes it difficult to identify regions that are passable without overestimation. To overcome these challenges, we propose SuReNav, a superpixel graph-based constraint relaxation and navigation method that imitates human-like safe and efficient navigation. Our framework consists of three components: 1) superpixel graph map generation with regional constraints, 2) regional-constraint relaxation using graph neural network trained on human demonstrations for safe and efficient navigation, and 3) interleaving relaxation, planning, and execution for complete navigation. We evaluate our method against state-of-the-art baselines on 2D semantic maps and 3D maps from OpenStreetMap, achieving the highest human-likeness score of complete navigation while maintaining a balanced trade-off between efficiency and safety. We finally demonstrate its scalability and generalization performance in real-world urban navigation with a quadruped robot, Spot.
comment: Accepted by ICRA 2026. Code and videos are available at https://sure-nav.github.io/
☆ On the Identifiability of Steering Vectors in Large Language Models
Activation steering methods, such as persona vectors, are widely used to control large language model behavior and increasingly interpreted as revealing meaningful internal representations. This interpretation implicitly assumes steering directions are identifiable and uniquely recoverable from input-output behavior. We formalize steering as an intervention on internal representations and prove that, under realistic modeling and data conditions, steering vectors are fundamentally non-identifiable due to large equivalence classes of behaviorally indistinguishable interventions. Empirically, we validate this across multiple models and semantic traits, showing orthogonal perturbations achieve near-equivalent efficacy with negligible effect sizes. However, identifiability is recoverable under structural assumptions including statistical independence, sparsity constraints, multi-environment validation or cross-layer consistency. These findings reveal fundamental interpretability limits and clarify structural assumptions required for reliable safety-critical control.
comment: 23 pages, 4 figures, 2 tables
☆ Generating Data-Driven Reasoning Rubrics for Domain-Adaptive Reward Modeling
An impediment to using Large Language Models (LLMs) for reasoning output verification is that LLMs struggle to reliably identify errors in thinking traces, particularly in long outputs, domains requiring expert knowledge, and problems without verifiable rewards. We propose a data-driven approach to automatically construct highly granular reasoning error taxonomies to enhance LLM-driven error detection on unseen reasoning traces. Our findings indicate that classification approaches that leverage these error taxonomies, or "rubrics", demonstrate strong error identification compared to baseline methods in technical domains like coding, math, and chemical engineering. These rubrics can be used to build stronger LLM-as-judge reward functions for reasoning model training via reinforcement learning. Experimental results show that these rewards have the potential to improve models' task accuracy on difficult domains over models trained by general LLMs-as-judges by +45%, and approach performance of models trained by verifiable rewards while using as little as 20% as many gold labels. Through our approach, we extend the usage of reward rubrics from assessing qualitative model behavior to assessing quantitative model correctness on tasks typically learned via RLVR rewards. This extension opens the door for teaching models to solve complex technical problems without a full dataset of gold labels, which are often highly costly to procure.
☆ Next-generation cyberattack detection with large language models: anomaly analysis across heterogeneous logs
This project explores large language models (LLMs) for anomaly detection across heterogeneous log sources. Traditional intrusion detection systems suffer from high false positive rates, semantic blindness, and data scarcity, as logs are inherently sensitive, making clean datasets rare. We address these challenges through three contributions: (1) LogAtlas-Foundation-Sessions and LogAtlas-Defense-Set, balanced and heterogeneous log datasets with explicit attack annotations and privacy preservation; (2) empirical benchmarking revealing why standard metrics such as F1 and accuracy are misleading for security applications; and (3) a two phase training framework combining log understanding (Base-AMAN, 3B parameters) with real time detection (AMAN, 0.5B parameters via knowledge distillation). Results demonstrate practical feasibility, with inference times of 0.3-0.5 seconds per session and operational costs below 50 USD per day.
☆ Towards Understanding What State Space Models Learn About Code
State Space Models (SSMs) have emerged as an efficient alternative to the transformer architecture. Recent studies show that SSMs can match or surpass Transformers on code understanding tasks, such as code retrieval, when trained under similar conditions. However, their internal mechanisms remain a black box. We present the first systematic analysis of what SSM-based code models actually learn and perform the first comparative analysis of SSM and Transformer-based code models. Our analysis reveals that SSMs outperform Transformers at capturing code syntax and semantics in pretraining but forgets certain syntactic and semantic relations during fine-tuning on task, especially when the task emphasizes short-range dependencies. To diagnose this, we introduce SSM-Interpret, a frequency-domain framework that exposes a spectral shift toward short-range dependencies during fine-tuning. Guided by these findings, we propose architectural modifications that significantly improve the performance of SSM-based code model, validating that our analysis directly enables better models.
☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
☆ A Unified Framework for LLM Watermarks
LLM watermarks allow tracing AI-generated texts by inserting a detectable signal into their generated content. Recent works have proposed a wide range of watermarking algorithms, each with distinct designs, usually built using a bottom-up approach. Crucially, there is no general and principled formulation for LLM watermarking. In this work, we show that most existing and widely used watermarking schemes can in fact be derived from a principled constrained optimization problem. Our formulation unifies existing watermarking methods and explicitly reveals the constraints that each method optimizes. In particular, it highlights an understudied quality-diversity-power trade-off. At the same time, our framework also provides a principled approach for designing novel watermarking schemes tailored to specific requirements. For instance, it allows us to directly use perplexity as a proxy for quality, and derive new schemes that are optimal with respect to this constraint. Our experimental evaluation validates our framework: watermarking schemes derived from a given constraint consistently maximize detection power with respect to that constraint.
☆ Gold Exploration using Representations from a Multispectral Autoencoder
Satellite imagery is employed for large-scale prospectivity mapping due to the high cost and typically limited availability of on-site mineral exploration data. In this work, we present a proof-of-concept framework that leverages generative representations learned from multispectral Sentinel-2 imagery to identify gold-bearing regions from space. An autoencoder foundation model, called Isometric, which is pretrained on the large-scale FalconSpace-S2 v1.0 dataset, produces information-dense spectral-spatial representations that serve as inputs to a lightweight XGBoost classifier. We compare this representation-based approach with a raw spectral input baseline using a dataset of 63 Sentinel-2 images from known gold and non-gold locations. The proposed method improves patch-level accuracy from 0.51 to 0.68 and image-level accuracy from 0.55 to 0.73, demonstrating that generative embeddings capture transferable mineralogical patterns even with limited labeled data. These results highlight the potential of foundation-model representations to make mineral exploration more efficient, scalable, and globally applicable.
comment: Presented in Eurips2025, 1st Workshop: Advances in Representation Learning for Earth Observation
☆ Semantically Labelled Automata for Multi-Task Reinforcement Learning with LTL Instructions
We study multi-task reinforcement learning (RL), a setting in which an agent learns a single, universal policy capable of generalising to arbitrary, possibly unseen tasks. We consider tasks specified as linear temporal logic (LTL) formulae, which are commonly used in formal methods to specify properties of systems, and have recently been successfully adopted in RL. In this setting, we present a novel task embedding technique leveraging a new generation of semantic LTL-to-automata translations, originally developed for temporal synthesis. The resulting semantically labelled automata contain rich, structured information in each state that allow us to (i) compute the automaton efficiently on-the-fly, (ii) extract expressive task embeddings used to condition the policy, and (iii) naturally support full LTL. Experimental results in a variety of domains demonstrate that our approach achieves state-of-the-art performance and is able to scale to complex specifications where existing methods fail.
☆ Optimal Abstractions for Verifying Properties of Kolmogorov-Arnold Networks (KANs)
We present a novel approach for verifying properties of Kolmogorov-Arnold Networks (KANs), a class of neural networks characterized by nonlinear, univariate activation functions typically implemented as piecewise polynomial splines or Gaussian processes. Our method creates mathematical ``abstractions'' by replacing each KAN unit with a piecewise affine (PWA) function, providing both local and global error estimates between the original network and its approximation. These abstractions enable property verification by encoding the problem as a Mixed Integer Linear Program (MILP), determining whether outputs satisfy specified properties when inputs belong to a given set. A critical challenge lies in balancing the number of pieces in the PWA approximation: too many pieces add binary variables that make verification computationally intractable, while too few pieces create excessive error margins that yield uninformative bounds. Our key contribution is a systematic framework that exploits KAN structure to find optimal abstractions. By combining dynamic programming at the unit level with a knapsack optimization across the network, we minimize the total number of pieces while guaranteeing specified error bounds. This approach determines the optimal approximation strategy for each unit while maintaining overall accuracy requirements. Empirical evaluation across multiple KAN benchmarks demonstrates that the upfront analysis costs of our method are justified by superior verification results.
☆ Pairwise is Not Enough: Hypergraph Neural Networks for Multi-Agent Pathfinding ICLR 2026
Multi-Agent Path Finding (MAPF) is a representative multi-agent coordination problem, where multiple agents are required to navigate to their respective goals without collisions. Solving MAPF optimally is known to be NP-hard, leading to the adoption of learning-based approaches to alleviate the online computational burden. Prevailing approaches, such as Graph Neural Networks (GNNs), are typically constrained to pairwise message passing between agents. However, this limitation leads to suboptimal behaviours and critical issues, such as attention dilution, particularly in dense environments where group (i.e. beyond just two agents) coordination is most critical. Despite the importance of such higher-order interactions, existing approaches have not been able to fully explore them. To address this representational bottleneck, we introduce HMAGAT (Hypergraph Multi-Agent Attention Network), a novel architecture that leverages attentional mechanisms over directed hypergraphs to explicitly capture group dynamics. Empirically, HMAGAT establishes a new state-of-the-art among learning-based MAPF solvers: e.g., despite having just 1M parameters and being trained on 100$\times$ less data, it outperforms the current SoTA 85M parameter model. Through detailed analysis of HMAGAT's attention values, we demonstrate how hypergraph representations mitigate the attention dilution inherent in GNNs and capture complex interactions where pairwise methods fail. Our results illustrate that appropriate inductive biases are often more critical than the training data size or sheer parameter count for multi-agent problems.
comment: Accepted at ICLR 2026
☆ GhostCite: A Large-Scale Analysis of Citation Validity in the Age of Large Language Models
Citations provide the basis for trusting scientific claims; when they are invalid or fabricated, this trust collapses. With the advent of Large Language Models (LLMs), this risk has intensified: LLMs are increasingly used for academic writing, yet their tendency to fabricate citations (``ghost citations'') poses a systemic threat to citation validity. To quantify this threat and inform mitigation, we develop CiteVerifier, an open-source framework for large-scale citation verification, and conduct the first comprehensive study of citation validity in the LLM era through three experiments built on it. We benchmark 13 state-of-the-art LLMs on citation generation across 40 research domains, finding that all models hallucinate citations at rates from 14.23\% to 94.93\%, with significant variation across research domains. Moreover, we analyze 2.2 million citations from 56,381 papers published at top-tier AI/ML and Security venues (2020--2025), confirming that 1.07\% of papers contain invalid or fabricated citations (604 papers), with an 80.9\% increase in 2025 alone. Furthermore, we survey 97 researchers and analyze 94 valid responses after removing 3 conflicting samples, revealing a critical ``verification gap'': 41.5\% of researchers copy-paste BibTeX without checking and 44.4\% choose no-action responses when encountering suspicious references; meanwhile, 76.7\% of reviewers do not thoroughly check references and 80.0\% never suspect fake citations. Our findings reveal an accelerating crisis where unreliable AI tools, combined with inadequate human verification by researchers and insufficient peer review scrutiny, enable fabricated citations to contaminate the scientific record. We propose interventions for researchers, venues, and tool developers to protect citation integrity.
☆ F-GRPO: Don't Let Your Policy Learn the Obvious and Forget the Rare
Reinforcement Learning with Verifiable Rewards (RLVR) is commonly based on group sampling to estimate advantages and stabilize policy updates. In practice, large group sizes are not feasible due to computational limits, which biases learning toward trajectories that are already likely. Smaller groups often miss rare-correct trajectories while still containing mixed rewards, concentrating probability on common solutions. We derive the probability that updates miss rare-correct modes as a function of group size, showing non-monotonic behavior, and characterize how updates redistribute mass within the correct set, revealing that unsampled-correct mass can shrink even as total correct mass grows. Motivated by this analysis, we propose a difficulty-aware advantage scaling coefficient, inspired by Focal loss, that down-weights updates on high-success prompts. The lightweight modification can be directly integrated into any group-relative RLVR algorithm such as GRPO, DAPO, and CISPO. On Qwen2.5-7B across in-domain and out-of-domain benchmarks, our method improves pass@256 from 64.1 $\rightarrow$ 70.3 (GRPO), 69.3 $\rightarrow$ 72.5 (DAPO), and 73.2 $\rightarrow$ 76.8 (CISPO), while preserving or improving pass@1, without increasing group size or computational cost.
☆ Autoregressive Models for Knowledge Graph Generation
Knowledge Graph (KG) generation requires models to learn complex semantic dependencies between triples while maintaining domain validity constraints. Unlike link prediction, which scores triples independently, generative models must capture interdependencies across entire subgraphs to produce semantically coherent structures. We present ARK (Auto-Regressive Knowledge Graph Generation), a family of autoregressive models that generate KGs by treating graphs as sequences of (head, relation, tail) triples. ARK learns implicit semantic constraints directly from data, including type consistency, temporal validity, and relational patterns, without explicit rule supervision. On the IntelliGraphs benchmark, our models achieve 89.2% to 100.0% semantic validity across diverse datasets while generating novel graphs not seen during training. We also introduce SAIL, a variational extension of ARK that enables controlled generation through learned latent representations, supporting both unconditional sampling and conditional completion from partial graphs. Our analysis reveals that model capacity (hidden dimensionality >= 64) is more critical than architectural depth for KG generation, with recurrent architectures achieving comparable validity to transformer-based alternatives while offering substantial computational efficiency. These results demonstrate that autoregressive models provide an effective framework for KG generation, with practical applications in knowledge base completion and query answering.
☆ SaDiT: Efficient Protein Backbone Design via Latent Structural Tokenization and Diffusion Transformers
Generative models for de novo protein backbone design have achieved remarkable success in creating novel protein structures. However, these diffusion-based approaches remain computationally intensive and slower than desired for large-scale structural exploration. While recent efforts like Proteina have introduced flow-matching to improve sampling efficiency, the potential of tokenization for structural compression and acceleration remains largely unexplored in the protein domain. In this work, we present SaDiT, a novel framework that accelerates protein backbone generation by integrating SaProt Tokenization with a Diffusion Transformer (DiT) architecture. SaDiT leverages a discrete latent space to represent protein geometry, significantly reducing the complexity of the generation process while maintaining theoretical SE(3) equivalence. To further enhance efficiency, we introduce an IPA Token Cache mechanism that optimizes the Invariant Point Attention (IPA) layers by reusing computed token states during iterative sampling. Experimental results demonstrate that SaDiT outperforms state-of-the-art models, including RFDiffusion and Proteina, in both computational speed and structural viability. We evaluate our model across unconditional backbone generation and fold-class conditional generation tasks, where SaDiT shows superior ability to capture complex topological features with high designability.
☆ compar:IA: The French Government's LLM arena to collect French-language human prompts and preference data
Large Language Models (LLMs) often show reduced performance, cultural alignment, and safety robustness in non-English languages, partly because English dominates both pre-training data and human preference alignment datasets. Training methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) require human preference data, which remains scarce and largely non-public for many languages beyond English. To address this gap, we introduce compar:IA, an open-source digital public service developed inside the French government and designed to collect large-scale human preference data from a predominantly French-speaking general audience. The platform uses a blind pairwise comparison interface to capture unconstrained, real-world prompts and user judgments across a diverse set of language models, while maintaining low participation friction and privacy-preserving automated filtering. As of 2026-02-07, compar:IA has collected over 600,000 free-form prompts and 250,000 preference votes, with approximately 89% of the data in French. We release three complementary datasets -- conversations, votes, and reactions -- under open licenses, and present initial analyses, including a French-language model leaderboard and user interaction patterns. Beyond the French context, compar:IA is evolving toward an international digital public good, offering reusable infrastructure for multilingual model training, evaluation, and the study of human-AI interaction.
comment: 18 pages, 7 figures, preprint
☆ Not All Layers Need Tuning: Selective Layer Restoration Recovers Diversity
Post-training improves instruction-following and helpfulness of large language models (LLMs) but often reduces generation diversity, which leads to repetitive outputs in open-ended settings, a phenomenon known as mode collapse. Motivated by evidence that LLM layers play distinct functional roles, we hypothesize that mode collapse can be localized to specific layers and that restoring a carefully chosen range of layers to their pre-trained weights can recover diversity while maintaining high output quality. To validate this hypothesis and decide which layers to restore, we design a proxy task -- Constrained Random Character(CRC) -- with an explicit validity set and a natural diversity objective. Results on CRC reveal a clear diversity-validity trade-off across restoration ranges and identify configurations that increase diversity with minimal quality loss. Based on these findings, we propose Selective Layer Restoration (SLR), a training-free method that restores selected layers in a post-trained model to their pre-trained weights, yielding a hybrid model with the same architecture and parameter count, incurring no additional inference cost. Across three different tasks (creative writing, open-ended question answering, and multi-step reasoning) and three different model families (Llama, Qwen, and Gemma), we find SLR can consistently and substantially improve output diversity while maintaining high output quality.
comment: 16 pages, 7 figures, 12 tables
Multimodal Generative Retrieval Model with Staged Pretraining for Food Delivery on Meituan
Multimodal retrieval models are becoming increasingly important in scenarios such as food delivery, where rich multimodal features can meet diverse user needs and enable precise retrieval. Mainstream approaches typically employ a dual-tower architecture between queries and items, and perform joint optimization of intra-tower and inter-tower tasks. However, we observe that joint optimization often leads to certain modalities dominating the training process, while other modalities are neglected. In addition, inconsistent training speeds across modalities can easily result in the one-epoch problem. To address these challenges, we propose a staged pretraining strategy, which guides the model to focus on specialized tasks at each stage, enabling it to effectively attend to and utilize multimodal features, and allowing flexible control over the training process at each stage to avoid the one-epoch problem. Furthermore, to better utilize the semantic IDs that compress high-dimensional multimodal embeddings, we design both generative and discriminative tasks to help the model understand the associations between SIDs, queries, and item features, thereby improving overall performance. Extensive experiments on large-scale real-world Meituan data demonstrate that our method achieves improvements of 3.80%, 2.64%, and 2.17% on R@5, R@10, and R@20, and 5.10%, 4.22%, and 2.09% on N@5, N@10, and N@20 compared to mainstream baselines. Online A/B testing on the Meituan platform shows that our approach achieves a 1.12% increase in revenue and a 1.02% increase in click-through rate, validating the effectiveness and superiority of our method in practical applications.
☆ RAPID: Reconfigurable, Adaptive Platform for Iterative Design
Developing robotic manipulation policies is iterative and hypothesis-driven: researchers test tactile sensing, gripper geometries, and sensor placements through real-world data collection and training. Yet even minor end-effector changes often require mechanical refitting and system re-integration, slowing iteration. We present RAPID, a full-stack reconfigurable platform designed to reduce this friction. RAPID is built around a tool-free, modular hardware architecture that unifies handheld data collection and robot deployment, and a matching software stack that maintains real-time awareness of the underlying hardware configuration through a driver-level Physical Mask derived from USB events. This modular hardware architecture reduces reconfiguration to seconds and makes systematic multi-modal ablation studies practical, allowing researchers to sweep diverse gripper and sensing configurations without repeated system bring-up. The Physical Mask exposes modality presence as an explicit runtime signal, enabling auto-configuration and graceful degradation under sensor hot-plug events, so policies can continue executing when sensors are physically added or removed. System-centric experiments show that RAPID reduces the setup time for multi-modal configurations by two orders of magnitude compared to traditional workflows and preserves policy execution under runtime sensor hot-unplug events. The hardware designs, drivers, and software stack are open-sourced at https://rapid-kit.github.io/ .
☆ Same Answer, Different Representations: Hidden instability in VLMs
The robustness of Vision Language Models (VLMs) is commonly assessed through output-level invariance, implicitly assuming that stable predictions reflect stable multimodal processing. In this work, we argue that this assumption is insufficient. We introduce a representation-aware and frequency-aware evaluation framework that measures internal embedding drift, spectral sensitivity, and structural smoothness (spatial consistency of vision tokens), alongside standard label-based metrics. Applying this framework to modern VLMs across the SEEDBench, MMMU, and POPE datasets reveals three distinct failure modes. First, models frequently preserve predicted answers while undergoing substantial internal representation drift; for perturbations such as text overlays, this drift approaches the magnitude of inter-image variability, indicating that representations move to regions typically occupied by unrelated inputs despite unchanged outputs. Second, robustness does not improve with scale; larger models achieve higher accuracy but exhibit equal or greater sensitivity, consistent with sharper yet more fragile decision boundaries. Third, we find that perturbations affect tasks differently: they harm reasoning when they disrupt how models combine coarse and fine visual cues, but on the hallucination benchmarks, they can reduce false positives by making models generate more conservative answers.
☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
☆ Trust Regions Sell, But Who's Buying? Overlap Geometry as an Alternative Trust Region for Policy Optimization
Standard trust-region methods constrain policy updates via Kullback-Leibler (KL) divergence. However, KL controls only an average divergence and does not directly prevent rare, large likelihood-ratio excursions that destabilize training--precisely the failure mode that motivates heuristics such as PPO's clipping. We propose overlap geometry as an alternative trust region, constraining distributional overlap via the Bhattacharyya coefficient (closely related to the Hellinger/Renyi-1/2 geometry). This objective penalizes separation in the ratio tails, yielding tighter control over likelihood-ratio excursions without relying on total variation bounds that can be loose in tail regimes. We derive Bhattacharyya-TRPO (BTRPO) and Bhattacharyya-PPO (BPPO), enforcing overlap constraints via square-root ratio updates: BPPO clips the square-root ratio q = sqrt(r), and BTRPO applies a quadratic Hellinger/Bhattacharyya penalty. Empirically, overlap-based updates improve robustness and aggregate performance as measured by RLiable under matched training budgets, suggesting overlap constraints as a practical, principled alternative to KL for stable policy optimization.
comment: Under Review
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ The challenge of generating and evolving real-life like synthetic test data without accessing real-world raw data -- a Systematic Review
Background: High-level system testing of applications that use data from e-Government services as input requires test data that is real-life-like but where the privacy of personal information is guaranteed. Applications with such strong requirement include information exchange between countries, medicine, banking, etc. This review aims to synthesize the current state-of-the-practice in this domain. Objectives: The objective of this Systematic Review is to identify existing approaches for creating and evolving synthetic test data without using real-life raw data. Methods: We followed well-known methodologies for conducting systematic literature reviews, including the ones from Kitchenham as well as guidelines for analysing the limitations of our review and its threats to validity. Results: A variety of methods and tools exist for creating privacy-preserving test data. Our search found 1,013 publications in IEEE Xplore, ACM Digital Library, and SCOPUS. We extracted data from 75 of those publications and identified 37 approaches that answer our research question partly. A common prerequisite for using these methods and tools is direct access to real-life data for data anonymization or synthetic test data generation. Nine existing synthetic test data generation approaches were identified that were closest to answering our research question. Nevertheless, further work would be needed to add the ability to evolve synthetic test data to the existing approaches. Conclusions: None of the publications really covered our requirements completely, only partially. Synthetic test data evolution is a field that has not received much attention from researchers but needs to be explored in Digital Government Solutions, especially since new legal regulations are being placed in force in many countries.
comment: 22 pages
☆ Scaling Speech Tokenizers with Diffusion Autoencoders ICLR 2026
Speech tokenizers are foundational to speech language models, yet existing approaches face two major challenges: (1) balancing trade-offs between encoding semantics for understanding and acoustics for reconstruction, and (2) achieving low bit rates and low token rates. We propose Speech Diffusion Tokenizer (SiTok), a diffusion autoencoder that jointly learns semantic-rich representations through supervised learning and enables high-fidelity audio reconstruction with diffusion. We scale SiTok to 1.6B parameters and train it on 2 million hours of speech. Experiments show that SiTok outperforms strong baselines on understanding, reconstruction and generation tasks, at an extremely low token rate of $12.5$ Hz and a bit-rate of 200 bits-per-second.
comment: ICLR 2026
☆ Sample-Efficient Policy Space Response Oracles with Joint Experience Best Response AAMAS 2026
Multi-agent reinforcement learning (MARL) offers a scalable alternative to exact game-theoretic analysis but suffers from non-stationarity and the need to maintain diverse populations of strategies that capture non-transitive interactions. Policy Space Response Oracles (PSRO) address these issues by iteratively expanding a restricted game with approximate best responses (BRs), yet per-agent BR training makes it prohibitively expensive in many-agent or simulator-expensive settings. We introduce Joint Experience Best Response (JBR), a drop-in modification to PSRO that collects trajectories once under the current meta-strategy profile and reuses this joint dataset to compute BRs for all agents simultaneously. This amortizes environment interaction and improves the sample efficiency of best-response computation. Because JBR converts BR computation into an offline RL problem, we propose three remedies for distribution-shift bias: (i) Conservative JBR with safe policy improvement, (ii) Exploration-Augmented JBR that perturbs data collection and admits theoretical guarantees, and (iii) Hybrid BR that interleaves JBR with periodic independent BR updates. Across benchmark multi-agent environments, Exploration-Augmented JBR achieves the best accuracy-efficiency trade-off, while Hybrid BR attains near-PSRO performance at a fraction of the sample cost. Overall, JBR makes PSRO substantially more practical for large-scale strategic learning while preserving equilibrium robustness.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
☆ Personality as Relational Infrastructure: User Perceptions of Personality-Trait-Infused LLM Messaging
Digital behaviour change systems increasingly rely on repeated, system-initiated messages to support users in everyday contexts. LLMs enable these messages to be personalised consistently across interactions, yet it remains unclear whether such personalisation improves individual messages or instead shapes users' perceptions through patterns of exposure. We explore this question in the context of LLM-generated JITAIs, which are short, context-aware messages delivered at moments deemed appropriate to support behaviour change, using physical activity as an application domain. In a controlled retrospective study, 90 participants evaluated messages generated using four LLM strategies: baseline prompting, few-shot prompting, fine-tuned models, and retrieval augmented generation, each implemented with and without Big Five Personality Traits to produce personality-aligned communication across multiple scenarios. Using ordinal multilevel models with within-between decomposition, we distinguish trial-level effects, whether personality information improves evaluations of individual messages, from person-level exposure effects, whether participants receiving higher proportions of personality-informed messages exhibit systematically different overall perceptions. Results showed no trial-level associations, but participants who received higher proportions of BFPT-informed messages rated the messages as more personalised, appropriate, and reported less negative affect. We use Communication Accommodation Theory for post-hoc analysis. These results suggest that personality-based personalisation in behaviour change systems may operate primarily through aggregate exposure rather than per-message optimisation, with implications for how adaptive systems are designed and evaluated in sustained human-AI interaction. In-situ longitudinal studies are needed to validate these findings in real-world contexts.
comment: Currently under review
☆ AgentStepper: Interactive Debugging of Software Development Agents
Software development agents powered by large language models (LLMs) have shown great promise in automating tasks like environment setup, issue solving, and program repair. Unfortunately, understanding and debugging such agents remain challenging due to their complex and dynamic nature. Developers must reason about trajectories of LLM queries, tool calls, and code modifications, but current techniques reveal little of this intermediate process in a comprehensible format. The key insight of this paper is that debugging software development agents shares many similarities with conventional debugging of software programs, yet requires a higher level of abstraction that raises the level from low-level implementation details to high-level agent actions. Drawing on this insight, we introduce AgentStepper, the first interactive debugger for LLM-based software engineering agents. AgentStepper enables developers to inspect, control, and interactively manipulate agent trajectories. AgentStepper represents trajectories as structured conversations among an LLM, the agent program, and tools. It supports breakpoints, stepwise execution, and live editing of prompts and tool invocations, while capturing and displaying intermediate repository-level code changes. Our evaluation applies AgentStepper to three state-of-the-art software development agents, ExecutionAgent, SWE-Agent, and RepairAgent, showing that integrating the approach into existing agents requires minor code changes (39-42 edited lines). Moreover, we report on a user study with twelve participants, indicating that AgentStepper improves the ability of participants to interpret trajectories (64% vs. 67% mean performance) and identify bugs in the agent's implementation (17% vs. 60% success rate), while reducing perceived workload (e.g., frustration reduced from 5.4/7.0 to 2.4/7.0) compared to conventional tools.
☆ ProtoQuant: Quantization of Prototypical Parts For General and Fine-Grained Image Classification
Prototypical parts-based models offer a "this looks like that" paradigm for intrinsic interpretability, yet they typically struggle with ImageNet-scale generalization and often require computationally expensive backbone finetuning. Furthermore, existing methods frequently suffer from "prototype drift," where learned prototypes lack tangible grounding in the training distribution and change their activation under small perturbations. We present ProtoQuant, a novel architecture that achieves prototype stability and grounded interpretability through latent vector quantization. By constraining prototypes to a discrete learned codebook within the latent space, we ensure they remain faithful representations of the training data without the need to update the backbone. This design allows ProtoQuant to function as an efficient, interpretable head that scales to large-scale datasets. We evaluate ProtoQuant on ImageNet and several fine-grained benchmarks (CUB-200, Cars-196). Our results demonstrate that ProtoQuant achieves competitive classification accuracy while generalizing to ImageNet and comparable interpretability metrics to other prototypical-parts-based methods.
comment: Work under review. Code will be released upon acceptance
☆ Target noise: A pre-training based neural network initialization for efficient high resolution learning
Weight initialization plays a crucial role in the optimization behavior and convergence efficiency of neural networks. Most existing initialization methods, such as Xavier and Kaiming initializations, rely on random sampling and do not exploit information from the optimization process itself. We propose a simple, yet effective, initialization strategy based on self-supervised pre-training using random noise as the target. Instead of directly training the network from random weights, we first pre-train it to fit random noise, which leads to a structured and non-random parameter configuration. We show that this noise-driven pre-training significantly improves convergence speed in subsequent tasks, without requiring additional data or changes to the network architecture. The proposed method is particularly effective for implicit neural representations (INRs) and Deep Image Prior (DIP)-style networks, which are known to exhibit a strong low-frequency bias during optimization. After noise-based pre-training, the network is able to capture high-frequency components much earlier in training, leading to faster and more stable convergence. Although random noise contains no semantic information, it serves as an effective self-supervised signal (considering its white spectrum nature) for shaping the initialization of neural networks. Overall, this work demonstrates that noise-based pre-training offers a lightweight and general alternative to traditional random initialization, enabling more efficient optimization of deep neural networks.
comment: 11 pages, 12 figures
Exploring Sparsity and Smoothness of Arbitrary $\ell_p$ Norms in Adversarial Attacks
Adversarial attacks against deep neural networks are commonly constructed under $\ell_p$ norm constraints, most often using $p=1$, $p=2$ or $p=\infty$, and potentially regularized for specific demands such as sparsity or smoothness. These choices are typically made without a systematic investigation of how the norm parameter \( p \) influences the structural and perceptual properties of adversarial perturbations. In this work, we study how the choice of \( p \) affects sparsity and smoothness of adversarial attacks generated under \( \ell_p \) norm constraints for values of $p \in [1,2]$. To enable a quantitative analysis, we adopt two established sparsity measures from the literature and introduce three smoothness measures. In particular, we propose a general framework for deriving smoothness measures based on smoothing operations and additionally introduce a smoothness measure based on first-order Taylor approximations. Using these measures, we conduct a comprehensive empirical evaluation across multiple real-world image datasets and a diverse set of model architectures, including both convolutional and transformer-based networks. We show that the choice of $\ell_1$ or $\ell_2$ is suboptimal in most cases and the optimal $p$ value is dependent on the specific task. In our experiments, using $\ell_p$ norms with $p\in [1.3, 1.5]$ yields the best trade-off between sparse and smooth attacks. These findings highlight the importance of principled norm selection when designing and evaluating adversarial attacks.
☆ Perturbing the Phase: Analyzing Adversarial Robustness of Complex-Valued Neural Networks
Complex-valued neural networks (CVNNs) are rising in popularity for all kinds of applications. To safely use CVNNs in practice, analyzing their robustness against outliers is crucial. One well known technique to understand the behavior of deep neural networks is to investigate their behavior under adversarial attacks, which can be seen as worst case minimal perturbations. We design Phase Attacks, a kind of attack specifically targeting the phase information of complex-valued inputs. Additionally, we derive complex-valued versions of commonly used adversarial attacks. We show that in some scenarios CVNNs are more robust than RVNNs and that both are very susceptible to phase changes with the Phase Attacks decreasing the model performance more, than equally strong regular attacks, which can attack both phase and magnitude.
Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis
Chemical exchange saturation transfer (CEST) MRI is a non-invasive imaging modality for detecting metabolites. It offers higher resolution and sensitivity compared to conventional magnetic resonance spectroscopy (MRS). However, quantification of CEST data is challenging because the measured signal results from a complex interplay of many physiological variables. Here, we introduce a transformer-based neural network to fit parameters such as metabolite concentrations, exchange and relaxation rates of a physical model derived from Bloch-McConnell equations to in-vitro CEST spectra. We show that our self-supervised trained neural network clearly outperforms the solution of classical gradient-based solver.
☆ SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.
☆ Which Graph Shift Operator? A Spectral Answer to an Empirical Question
Graph Neural Networks (GNNs) have established themselves as the leading models for learning on graph-structured data, generally categorized into spatial and spectral approaches. Central to these architectures is the Graph Shift Operator (GSO), a matrix representation of the graph structure used to filter node signals. However, selecting the optimal GSO, whether fixed or learnable, remains largely empirical. In this paper, we introduce a novel alignment gain metric that quantifies the geometric distortion between the input signal and label subspaces. Crucially, our theoretical analysis connects this alignment directly to generalization bounds via a spectral proxy for the Lipschitz constant. This yields a principled, computation-efficient criterion to rank and select the optimal GSO for any prediction task prior to training, eliminating the need for extensive search.
☆ LIBERO-X: Robustness Litmus for Vision-Language-Action Models
Reliable benchmarking is critical for advancing Vision-Language-Action (VLA) models, as it reveals their generalization, robustness, and alignment of perception with language-driven manipulation tasks. However, existing benchmarks often provide limited or misleading assessments due to insufficient evaluation protocols that inadequately capture real-world distribution shifts. This work systematically rethinks VLA benchmarking from both evaluation and data perspectives, introducing LIBERO-X, a benchmark featuring: 1) A hierarchical evaluation protocol with progressive difficulty levels targeting three core capabilities: spatial generalization, object recognition, and task instruction understanding. This design enables fine-grained analysis of performance degradation under increasing environmental and task complexity; 2) A high-diversity training dataset collected via human teleoperation, where each scene supports multiple fine-grained manipulation objectives to bridge the train-evaluation distribution gap. Experiments with representative VLA models reveal significant performance drops under cumulative perturbations, exposing persistent limitations in scene comprehension and instruction grounding. By integrating hierarchical evaluation with diverse training data, LIBERO-X offers a more reliable foundation for assessing and advancing VLA development.
comment: 19 pages, 14 figures and 8 tables
☆ SeeUPO: Sequence-Level Agentic-RL with Convergence Guarantees
Reinforcement learning (RL) has emerged as the predominant paradigm for training large language model (LLM)-based AI agents. However, existing backbone RL algorithms lack verified convergence guarantees in agentic scenarios, especially in multi-turn settings, which can lead to training instability and failure to converge to optimal policies. In this paper, we systematically analyze how different combinations of policy update mechanisms and advantage estimation methods affect convergence properties in single/multi-turn scenarios. We find that REINFORCE with Group Relative Advantage Estimation (GRAE) can converge to the globally optimal under undiscounted conditions, but the combination of PPO & GRAE breaks PPO's original monotonic improvement property. Furthermore, we demonstrate that mainstream backbone RL algorithms cannot simultaneously achieve both critic-free and convergence guarantees in multi-turn scenarios. To address this, we propose SeeUPO (Sequence-level Sequential Update Policy Optimization), a critic-free approach with convergence guarantees for multi-turn interactions. SeeUPO models multi-turn interaction as sequentially executed multi-agent bandit problems. Through turn-by-turn sequential policy updates in reverse execution order, it ensures monotonic improvement and convergence to global optimal solution via backward induction. Experiments on AppWorld and BFCL v4 demonstrate SeeUPO's substantial improvements over existing backbone algorithms: relative gains of 43.3%-54.6% on Qwen3-14B and 24.1%-41.9% on Qwen2.5-14B (averaged across benchmarks), along with superior training stability.
☆ Dynamics-Aligned Shared Hypernetworks for Zero-Shot Actuator Inversion
Zero-shot generalization in contextual reinforcement learning remains a core challenge, particularly when the context is latent and must be inferred from data. A canonical failure mode is actuator inversion, where identical actions produce opposite physical effects under a latent binary context. We propose DMA*-SH, a framework where a single hypernetwork, trained solely via dynamics prediction, generates a small set of adapter weights shared across the dynamics model, policy, and action-value function. This shared modulation imparts an inductive bias matched to actuator inversion, while input/output normalization and random input masking stabilize context inference, promoting directionally concentrated representations. We provide theoretical support via an expressivity separation result for hypernetwork modulation, and a variance decomposition with policy-gradient variance bounds that formalize how within-mode compression improves learning under actuator inversion. For evaluation, we introduce the Actuator Inversion Benchmark (AIB), a suite of environments designed to isolate discontinuous context-to-dynamics interactions. On AIB's held-out actuator-inversion tasks, DMA*-SH achieves zero-shot generalization, outperforming domain randomization by 111.8% and surpassing a standard context-aware baseline by 16.1%.
☆ Malicious Agent Skills in the Wild: A Large-Scale Security Empirical Study
Third-party agent skills extend LLM-based agents with instruction files and executable code that run on users' machines. Skills execute with user privileges and are distributed through community registries with minimal vetting, but no ground-truth dataset exists to characterize the resulting threats. We construct the first labeled dataset of malicious agent skills by behaviorally verifying 98,380 skills from two community registries, confirming 157 malicious skills with 632 vulnerabilities. These attacks are not incidental. Malicious skills average 4.03 vulnerabilities across a median of three kill chain phases, and the ecosystem has split into two archetypes: Data Thieves that exfiltrate credentials through supply chain techniques, and Agent Hijackers that subvert agent decision-making through instruction manipulation. A single actor accounts for 54.1\% of confirmed cases through templated brand impersonation. Shadow features, capabilities absent from public documentation, appear in 0\% of basic attacks but 100\% of advanced ones; several skills go further by exploiting the AI platform's own hook system and permission flags. Responsible disclosure led to 93.6\% removal within 30 days. We release the dataset and analysis pipeline to support future work on agent skill security.
☆ MTQE.en-he: Machine Translation Quality Estimation for English-Hebrew EACL 2026
We release MTQE.en-he: to our knowledge, the first publicly available English-Hebrew benchmark for Machine Translation Quality Estimation. MTQE.en-he contains 959 English segments from WMT24++, each paired with a machine translation into Hebrew, and Direct Assessment scores of the translation quality annotated by three human experts. We benchmark ChatGPT prompting, TransQuest, and CometKiwi and show that ensembling the three models outperforms the best single model (CometKiwi) by 6.4 percentage points Pearson and 5.6 percentage points Spearman. Fine-tuning experiments with TransQuest and CometKiwi reveal that full-model updates are sensitive to overfitting and distribution collapse, yet parameter-efficient methods (LoRA, BitFit, and FTHead, i.e., fine-tuning only the classification head) train stably and yield improvements of 2-3 percentage points. MTQE.en-he and our experimental results enable future research on this under-resourced language pair.
comment: Accepted to LoResLM at EACL 2026
☆ AgentCPM-Report: Interleaving Drafting and Deepening for Open-Ended Deep Research
Generating deep research reports requires large-scale information acquisition and the synthesis of insight-driven analysis, posing a significant challenge for current language models. Most existing approaches follow a plan-then-write paradigm, whose performance heavily depends on the quality of the initial outline. However, constructing a comprehensive outline itself demands strong reasoning ability, causing current deep research systems to rely almost exclusively on closed-source or online large models. This reliance raises practical barriers to deployment and introduces safety and privacy concerns for user-authored data. In this work, we present AgentCPM-Report, a lightweight yet high-performing local solution composed of a framework that mirrors the human writing process and an 8B-parameter deep research agent. Our framework uses a Writing As Reasoning Policy (WARP), which enables models to dynamically revise outlines during report generation. Under this policy, the agent alternates between Evidence-Based Drafting and Reasoning-Driven Deepening, jointly supporting information acquisition, knowledge refinement, and iterative outline evolution. To effectively equip small models with this capability, we introduce a Multi-Stage Agentic Training strategy, consisting of cold-start, atomic skill RL, and holistic pipeline RL. Experiments on DeepResearch Bench, DeepConsult, and DeepResearch Gym demonstrate that AgentCPM-Report outperforms leading closed-source systems, with substantial gains in Insight.
☆ LogicSkills: A Structured Benchmark for Formal Reasoning in Large Language Models
Large language models have demonstrated notable performance across various logical reasoning benchmarks. However, it remains unclear which core logical skills they truly master. To address this, we introduce LogicSkills, a unified benchmark designed to isolate three fundamental skills in formal reasoning: (i) $\textit{formal symbolization}\unicode{x2014}$translating premises into first-order logic; (ii) $\textit{countermodel construction}\unicode{x2014}$formulating a finite structure in which all premises are true while the conclusion is false; and (iii) $\textit{validity assessment}\unicode{x2014}$deciding whether a conclusion follows from a given set of premises. Items are drawn from the two-variable fragment of first-order logic (without identity) and are presented in both natural English and a Carroll-style language with nonce words. All examples are verified for correctness and non-triviality using the SMT solver Z3. Across leading models, performance is high on validity but substantially lower on symbolization and countermodel construction, suggesting reliance on surface-level patterns rather than genuine symbolic or rule-based reasoning.
comment: 13 pages, 5 figures
☆ HyPER: Bridging Exploration and Exploitation for Scalable LLM Reasoning with Hypothesis Path Expansion and Reduction
Scaling test-time compute with multi-path chain-of-thought improves reasoning accuracy, but its effectiveness depends critically on the exploration-exploitation trade-off. Existing approaches address this trade-off in rigid ways: tree-structured search hard-codes exploration through brittle expansion rules that interfere with post-trained reasoning, while parallel reasoning over-explores redundant hypothesis paths and relies on weak answer selection. Motivated by the observation that the optimal balance is phase-dependent and that correct and incorrect reasoning paths often diverge only at late stages, we reformulate test-time scaling as a dynamic expand-reduce control problem over a pool of hypotheses. We propose HyPER, a training-free online control policy for multi-path decoding in mixture-of-experts models that reallocates computation under a fixed budget using lightweight path statistics. HyPER consists of an online controller that transitions from exploration to exploitation as the hypothesis pool evolves, a token-level refinement mechanism that enables efficient generation-time exploitation without full-path resampling, and a length- and confidence-aware aggregation strategy for reliable answer-time exploitation. Experiments on four mixture-of-experts language models across diverse reasoning benchmarks show that HyPER consistently achieves a superior accuracy-compute trade-off, improving accuracy by 8 to 10 percent while reducing token usage by 25 to 40 percent.
☆ Completing Missing Annotation: Multi-Agent Debate for Accurate and Scalable Relevant Assessment for IR Benchmarks ICLR 2026
Information retrieval (IR) evaluation remains challenging due to incomplete IR benchmark datasets that contain unlabeled relevant chunks. While LLMs and LLM-human hybrid strategies reduce costly human effort, they remain prone to LLM overconfidence and ineffective AI-to-human escalation. To address this, we propose DREAM, a multi-round debate-based relevance assessment framework with LLM agents, built on opposing initial stances and iterative reciprocal critique. Through our agreement-based debate, it yields more accurate labeling for certain cases and more reliable AI-to-human escalation for uncertain ones, achieving 95.2% labeling accuracy with only 3.5% human involvement. Using DREAM, we build BRIDGE, a refined benchmark that mitigates evaluation bias and enables fairer retriever comparison by uncovering 29,824 missing relevant chunks. We then re-benchmark IR systems and extend evaluation to RAG, showing that unaddressed holes not only distort retriever rankings but also drive retrieval-generation misalignment. The relevance assessment framework is available at https: //github.com/DISL-Lab/DREAM-ICLR-26; and the BRIDGE dataset is available at https://github.com/DISL-Lab/BRIDGE-Benchmark.
comment: Accepted at ICLR 2026
☆ Progress Constraints for Reinforcement Learning in Behavior Trees
Behavior Trees (BTs) provide a structured and reactive framework for decision-making, commonly used to switch between sub-controllers based on environmental conditions. Reinforcement Learning (RL), on the other hand, can learn near-optimal controllers but sometimes struggles with sparse rewards, safe exploration, and long-horizon credit assignment. Combining BTs with RL has the potential for mutual benefit: a BT design encodes structured domain knowledge that can simplify RL training, while RL enables automatic learning of the controllers within BTs. However, naive integration of BTs and RL can lead to some controllers counteracting other controllers, possibly undoing previously achieved subgoals, thereby degrading the overall performance. To address this, we propose progress constraints, a novel mechanism where feasibility estimators constrain the allowed action set based on theoretical BT convergence results. Empirical evaluations in a 2D proof-of-concept and a high-fidelity warehouse environment demonstrate improved performance, sample efficiency, and constraint satisfaction, compared to prior methods of BT-RL integration.
☆ JADE: Expert-Grounded Dynamic Evaluation for Open-Ended Professional Tasks
Evaluating agentic AI on open-ended professional tasks faces a fundamental dilemma between rigor and flexibility. Static rubrics provide rigorous, reproducible assessment but fail to accommodate diverse valid response strategies, while LLM-as-a-judge approaches adapt to individual responses yet suffer from instability and bias. Human experts address this dilemma by combining domain-grounded principles with dynamic, claim-level assessment. Inspired by this process, we propose JADE, a two-layer evaluation framework. Layer 1 encodes expert knowledge as a predefined set of evaluation skills, providing stable evaluation criteria. Layer 2 performs report-specific, claim-level evaluation to flexibly assess diverse reasoning strategies, with evidence-dependency gating to invalidate conclusions built on refuted claims. Experiments on BizBench show that JADE improves evaluation stability and reveals critical agent failure modes missed by holistic LLM-based evaluators. We further demonstrate strong alignment with expert-authored rubrics and effective transfer to a medical-domain benchmark, validating JADE across professional domains. Our code is publicly available at https://github.com/smiling-world/JADE.
☆ AgentCPM-Explore: Realizing Long-Horizon Deep Exploration for Edge-Scale Agents
While Large Language Model (LLM)-based agents have shown remarkable potential for solving complex tasks, existing systems remain heavily reliant on large-scale models, leaving the capabilities of edge-scale models largely underexplored. In this paper, we present the first systematic study on training agentic models at the 4B-parameter scale. We identify three primary bottlenecks hindering the performance of edge-scale models: catastrophic forgetting during Supervised Fine-Tuning (SFT), sensitivity to reward signal noise during Reinforcement Learning (RL), and reasoning degradation caused by redundant information in long-context scenarios. To address the issues, we propose AgentCPM-Explore, a compact 4B agent model with high knowledge density and strong exploration capability. We introduce a holistic training framework featuring parameter-space model fusion, reward signal denoising, and contextual information refinement. Through deep exploration, AgentCPM-Explore achieves state-of-the-art (SOTA) performance among 4B-class models, matches or surpasses 8B-class SOTA models on four benchmarks, and even outperforms larger-scale models such as Claude-4.5-Sonnet or DeepSeek-v3.2 in five benchmarks. Notably, AgentCPM-Explore achieves 97.09% accuracy on GAIA text-based tasks under pass@64. These results provide compelling evidence that the bottleneck for edge-scale models is not their inherent capability ceiling, but rather their inference stability. Based on our well-established training framework, AgentCPM-Explore effectively unlocks the significant, yet previously underestimated, potential of edge-scale models.
☆ Efficient-LVSM: Faster, Cheaper, and Better Large View Synthesis Model via Decoupled Co-Refinement Attention ICLR 2026
Feedforward models for novel view synthesis (NVS) have recently advanced by transformer-based methods like LVSM, using attention among all input and target views. In this work, we argue that its full self-attention design is suboptimal, suffering from quadratic complexity with respect to the number of input views and rigid parameter sharing among heterogeneous tokens. We propose Efficient-LVSM, a dual-stream architecture that avoids these issues with a decoupled co-refinement mechanism. It applies intra-view self-attention for input views and self-then-cross attention for target views, eliminating unnecessary computation. Efficient-LVSM achieves 29.86 dB PSNR on RealEstate10K with 2 input views, surpassing LVSM by 0.2 dB, with 2x faster training convergence and 4.4x faster inference speed. Efficient-LVSM achieves state-of-the-art performance on multiple benchmarks, exhibits strong zero-shot generalization to unseen view counts, and enables incremental inference with KV-cache, thanks to its decoupled designs.
comment: Accepted at ICLR 2026
☆ Prism: Spectral Parameter Sharing for Multi-Agent Reinforcement Learning
Parameter sharing is a key strategy in multi-agent reinforcement learning (MARL) for improving scalability, yet conventional fully shared architectures often collapse into homogeneous behaviors. Recent methods introduce diversity through clustering, pruning, or masking, but typically compromise resource efficiency. We propose Prism, a parameter sharing framework that induces inter-agent diversity by representing shared networks in the spectral domain via singular value decomposition (SVD). All agents share the singular vector directions while learning distinct spectral masks on singular values. This mechanism encourages inter-agent diversity and preserves scalability. Extensive experiments on both homogeneous (LBF, SMACv2) and heterogeneous (MaMuJoCo) benchmarks show that Prism achieves competitive performance with superior resource efficiency.
☆ Revisiting the Shape Convention of Transformer Language Models
Dense Transformer language models have largely adhered to one consistent architectural shape: each layer consists of an attention module followed by a feed-forward network (FFN) with a narrow-wide-narrow MLP, allocating most parameters to the MLP at expansion ratios between 2 and 4. Motivated by recent results that residual wide-narrow-wide (hourglass) MLPs offer superior function approximation capabilities, we revisit the long-standing MLP shape convention in Transformer, challenging the necessity of the narrow-wide-narrow design. To study this, we develop a Transformer variant that replaces the conventional FFN with a deeper hourglass-shaped FFN, comprising a stack of hourglass sub-MLPs connected by residual pathways. We posit that a deeper but lighter hourglass FFN can serve as a competitive alternative to the conventional FFN, and that parameters saved by using a lighter hourglass FFN can be more effectively utilized, such as by enlarging model hidden dimensions under fixed budgets. We confirm these through empirical validations across model scales: hourglass FFNs outperform conventional FFNs up to 400M and achieve comparable performance at larger scales to 1B parameters; hourglass FFN variants with reduced FFN and increased attention parameters show consistent improvements over conventional configurations at matched budgets. Together, these findings shed new light on recent work and prompt a rethinking of the narrow-wide-narrow MLP convention and the balance between attention and FFN towards efficient and expressive modern language models.
☆ Improve Large Language Model Systems with User Logs
Scaling training data and model parameters has long driven progress in large language models (LLMs), but this paradigm is increasingly constrained by the scarcity of high-quality data and diminishing returns from rising computational costs. As a result, recent work is increasing the focus on continual learning from real-world deployment, where user interaction logs provide a rich source of authentic human feedback and procedural knowledge. However, learning from user logs is challenging due to their unstructured and noisy nature. Vanilla LLM systems often struggle to distinguish useful feedback signals from noisy user behavior, and the disparity between user log collection and model optimization (e.g., the off-policy optimization problem) further strengthens the problem. To this end, we propose UNO (User log-driveN Optimization), a unified framework for improving LLM systems (LLMsys) with user logs. UNO first distills logs into semi-structured rules and preference pairs, then employs query-and-feedback-driven clustering to manage data heterogeneity, and finally quantifies the cognitive gap between the model's prior knowledge and the log data. This assessment guides the LLMsys to adaptively filter out noisy feedback and construct different modules for primary and reflective experiences extracted from user logs, thereby improving future responses. Extensive experiments show that UNO achieves state-of-the-art effectiveness and efficiency, significantly outperforming Retrieval Augmented Generation (RAG) and memory-based baselines. We have open-sourced our code at https://github.com/bebr2/UNO .
☆ Principle-Evolvable Scientific Discovery via Uncertainty Minimization
Large Language Model (LLM)-based scientific agents have accelerated scientific discovery, yet they often suffer from significant inefficiencies due to adherence to fixed initial priors. Existing approaches predominantly operate within a static hypothesis space, which restricts the discovery of novel phenomena, resulting in computational waste when baseline theories fail. To address this, we propose shifting the focus from searching hypotheses to evolving the underlying scientific principles. We present PiEvo, a principle-evolvable framework that treats scientific discovery as Bayesian optimization over an expanding principle space. By integrating Information-Directed Hypothesis Selection via Gaussian Process and an anomaly-driven augmentation mechanism, PiEvo enables agents to autonomously refine their theoretical worldview. Evaluation across four benchmarks demonstrates that PiEvo (1) achieves an average solution quality of up to 90.81%~93.15%, representing a 29.7%~31.1% improvement over the state-of-the-art, (2) attains an 83.3% speedup in convergence step via significantly reduced sample complexity by optimizing the compact principle space, and (3) maintains robust performance across diverse scientific domains and LLM backbones.
☆ CORE: Comprehensive Ontological Relation Evaluation for Large Language Models
Large Language Models (LLMs) perform well on many reasoning benchmarks, yet existing evaluations rarely assess their ability to distinguish between meaningful semantic relations and genuine unrelatedness. We introduce CORE (Comprehensive Ontological Relation Evaluation), a dataset of 225K multiple-choice questions spanning 74 disciplines, together with a general-domain open-source benchmark of 203 rigorously validated questions (Cohen's Kappa = 1.0) covering 24 semantic relation types with equal representation of unrelated pairs. A human baseline from 1,000+ participants achieves 92.6% accuracy (95.1% on unrelated pairs). In contrast, 29 state-of-the-art LLMs achieve 48.25-70.9% overall accuracy, with near-ceiling performance on related pairs (86.5-100%) but severe degradation on unrelated pairs (0-41.35%), despite assigning similar confidence (92-94%). Expected Calibration Error increases 2-4x on unrelated pairs, and a mean semantic collapse rate of 37.6% indicates systematic generation of spurious relations. On the CORE 225K MCQs dataset, accuracy further drops to approximately 2%, highlighting substantial challenges in domain-specific semantic reasoning. We identify unrelatedness reasoning as a critical, under-evaluated frontier for LLM evaluation and safety.
☆ TrajAD: Trajectory Anomaly Detection for Trustworthy LLM Agents
We address the problem of runtime trajectory anomaly detection, a critical capability for enabling trustworthy LLM agents. Current safety measures predominantly focus on static input/output filtering. However, we argue that ensuring LLM agents reliability requires auditing the intermediate execution process. In this work, we formulate the task of Trajectory Anomaly Detection. The goal is not merely detection, but precise error localization. This capability is essential for enabling efficient rollback-and-retry. To achieve this, we construct TrajBench, a dataset synthesized via a perturb-and-complete strategy to cover diverse procedural anomalies. Using this benchmark, we investigate the capability of models in process supervision. We observe that general-purpose LLMs, even with zero-shot prompting, struggle to identify and localize these anomalies. This reveals that generalized capabilities do not automatically translate to process reliability. To address this, we propose TrajAD, a specialized verifier trained with fine-grained process supervision. Our approach outperforms baselines, demonstrating that specialized supervision is essential for building trustworthy agents.
comment: 9 pages, 5 figures, 1 table
☆ TrailBlazer: History-Guided Reinforcement Learning for Black-Box LLM Jailbreaking
Large Language Models (LLMs) have become integral to many domains, making their safety a critical priority. Prior jailbreaking research has explored diverse approaches, including prompt optimization, automated red teaming, obfuscation, and reinforcement learning (RL) based methods. However, most existing techniques fail to effectively leverage vulnerabilities revealed in earlier interaction turns, resulting in inefficient and unstable attacks. Since jailbreaking involves sequential interactions in which each response influences future actions, reinforcement learning provides a natural framework for this problem. Motivated by this, we propose a history-aware RL-based jailbreak framework that analyzes and reweights vulnerability signals from prior steps to guide future decisions. We show that incorporating historical information alone improves jailbreak success rates. Building on this insight, we introduce an attention-based reweighting mechanism that highlights critical vulnerabilities within the interaction history, enabling more efficient exploration with fewer queries. Extensive experiments on AdvBench and HarmBench demonstrate that our method achieves state-of-the-art jailbreak performance while significantly improving query efficiency. These results underscore the importance of historical vulnerability signals in reinforcement learning-driven jailbreak strategies and offer a principled pathway for advancing adversarial research on LLM safeguards.
☆ A methodology for analyzing financial needs hierarchy from social discussions using LLM
This study examines the hierarchical structure of financial needs as articulated in social media discourse, employing generative AI techniques to analyze large-scale textual data. While human needs encompass a broad spectrum from fundamental survival to psychological fulfillment financial needs are particularly critical, influencing both individual well-being and day-to-day decision-making. Our research advances the understanding of financial behavior by utilizing large language models (LLMs) to extract and analyze expressions of financial needs from social media posts. We hypothesize that financial needs are organized hierarchically, progressing from short-term essentials to long-term aspirations, consistent with theoretical frameworks established in the behavioral sciences. Through computational analysis, we demonstrate the feasibility of identifying these needs and validate the presence of a hierarchical structure within them. In addition to confirming this structure, our findings provide novel insights into the content and themes of financial discussions online. By inferring underlying needs from naturally occurring language, this approach offers a scalable and data-driven alternative to conventional survey methodologies, enabling a more dynamic and nuanced understanding of financial behavior in real-world contexts.
comment: 15 pages, 5 figures, 4 tables
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Forecast Aware Deep Reinforcement Learning for Efficient Electricity Load Scheduling in Dairy Farms
Dairy farming is an energy intensive sector that relies heavily on grid electricity. With increasing renewable energy integration, sustainable energy management has become essential for reducing grid dependence and supporting the United Nations Sustainable Development Goal 7 on affordable and clean energy. However, the intermittent nature of renewables poses challenges in balancing supply and demand in real time. Intelligent load scheduling is therefore crucial to minimize operational costs while maintaining reliability. Reinforcement Learning has shown promise in improving energy efficiency and reducing costs. However, most RL-based scheduling methods assume complete knowledge of future prices or generation, which is unrealistic in dynamic environments. Moreover, standard PPO variants rely on fixed clipping or KL divergence thresholds, often leading to unstable training under variable tariffs. To address these challenges, this study proposes a Deep Reinforcement Learning framework for efficient load scheduling in dairy farms, focusing on battery storage and water heating under realistic operational constraints. The proposed Forecast Aware PPO incorporates short term forecasts of demand and renewable generation using hour of day and month based residual calibration, while the PID KL PPO variant employs a proportional integral derivative controller to regulate KL divergence for stable policy updates adaptively. Trained on real world dairy farm data, the method achieves up to 1% lower electricity cost than PPO, 4.8% than DQN, and 1.5% than SAC. For battery scheduling, PPO reduces grid imports by 13.1%, demonstrating scalability and effectiveness for sustainable energy management in modern dairy farming.
♻ ☆ FeNN-DMA: A RISC-V SoC for SNN acceleration
Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to spatio-temporal tasks such as keyword spotting and video classification. However, SNNs have a much lower arithmetic intensity than ANNs and are therefore not well-matched to standard accelerators like GPUs and TPUs. Field Programmable Gate Arrays (FPGAs) are designed for such memory-bound workloads, and here we present a novel, fully-programmable RISC-V-based system-on-chip (FeNN-DMA), tailored to simulating SNNs on modern UltraScale+ FPGAs. We show that FeNN-DMA has comparable resource usage and energy requirements to state-of-the-art fixed-function SNN accelerators, yet it supports more complex neuron models and network topologies, and can simulate up to 16 thousand neurons and 256 million synapses per core. Using this functionality, we demonstrate state-of-the-art classification accuracy on the Spiking Heidelberg Digits, Neuromorphic MNIST and Braille tactile classification tasks.
♻ ☆ Yunjue Agent Tech Report: A Fully Reproducible, Zero-Start In-Situ Self-Evolving Agent System for Open-Ended Tasks
Conventional agent systems often struggle in open-ended environments where task distributions continuously drift and external supervision is scarce. Their reliance on static toolsets or offline training lags behind these dynamics, leaving the system's capability boundaries rigid and unknown. To address this, we propose the In-Situ Self-Evolving paradigm. This approach treats sequential task interactions as a continuous stream of experience, enabling the system to distill short-term execution feedback into long-term, reusable capabilities without access to ground-truth labels. Within this framework, we identify tool evolution as the critical pathway for capability expansion, which provides verifiable, binary feedback signals. Within this framework, we develop Yunjue Agent, a system that iteratively synthesizes, optimizes, and reuses tools to navigate emerging challenges. To optimize evolutionary efficiency, we further introduce a Parallel Batch Evolution strategy. Empirical evaluations across five diverse benchmarks under a zero-start setting demonstrate significant performance gains over proprietary baselines. Additionally, complementary warm-start evaluations confirm that the accumulated general knowledge can be seamlessly transferred to novel domains. Finally, we propose a novel metric to monitor evolution convergence, serving as a function analogous to training loss in conventional optimization. We open-source our codebase, system traces, and evolved tools to facilitate future research in resilient, self-evolving intelligence.
♻ ☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
♻ ☆ Constella: Supporting Storywriters' Interconnected Character Creation through LLM-based Multi-Agents
Creating a cast of characters by attending to their relational dynamics is a critical aspect of most long-form storywriting. However, our formative study (N=14) reveals that writers struggle to envision new characters that could influence existing ones, balance similarities and differences among characters, and intricately flesh out their relationships. Based on these observations, we designed Constella, an LLM-based multi-agent tool that supports storywriters' interconnected character creation process. Constella suggests related characters (FRIENDS DISCOVERY feature), reveals the inner mindscapes of several characters simultaneously (JOURNALS feature), and manifests relationships through inter-character responses (COMMENTS feature). Our 7-8 day deployment study with storywriters (N=11) shows that Constella enabled the creation of expansive communities composed of related characters, facilitated the comparison of characters' thoughts and emotions, and deepened writers' understanding of character relationships. We conclude by discussing how multi-agent interactions can help distribute writers' attention and effort across the character cast.
comment: Accepted to ACM Transactions on Computer-Human Interaction (TOCHI)
♻ ☆ Accelerating Diffusion Planners in Offline RL via Reward-Aware Consistency Trajectory Distillation
Although diffusion models have achieved strong results in decision-making tasks, their slow inference speed remains a key limitation. While consistency models offer a potential solution, existing applications to decision-making either struggle with suboptimal demonstrations under behavior cloning or rely on complex concurrent training of multiple networks under the actor-critic framework. In this work, we propose a novel approach to consistency distillation for offline reinforcement learning that directly incorporates reward optimization into the distillation process. Our method achieves single-step sampling while generating higher-reward action trajectories through decoupled training and noise-free reward signals. Empirical evaluations on the Gym MuJoCo, FrankaKitchen, and long horizon planning benchmarks demonstrate that our approach can achieve a 9.7% improvement over previous state-of-the-art while offering up to 142x speedup over diffusion counterparts in inference time.
♻ ☆ Neuro-symbolic AI for Predictive Maintenance (PdM) -- review and recommendations
In this document we perform a systematic review of the State-of-the-art in Predictive Maintenance (PdM) over the last five years in industrial settings such as commercial buildings, pharmaceutical facilities, or semi-conductor manufacturing. In general, data-driven methods such as those based on deep learning, exhibit higher accuracy than traditional knowledge-based systems. These systems however, are not without significant limitations. The need for large labeled data sets, a lack of generalizability to new environments (out-of-distribution generalization), and a lack of transparency at inference time are some of the obstacles to adoption in real world environments. In contrast, traditional approaches based on domain expertise in the form of rules, logic or first principles suffer from poor accuracy, many false positives and a need for ongoing expert supervision and manual tuning. While the majority of approaches in recent literature utilize some form of data-driven architecture, there are hybrid systems which also take into account domain specific knowledge. Such hybrid systems have the potential to overcome the weaknesses of either approach on its own while preserving their strengths. We propose taking the hybrid approach even further and integrating deep learning with symbolic logic, or Neuro-symbolic AI, to create more accurate, explainable, interpretable, and robust systems. We describe several neuro-symbolic architectures and examine their strengths and limitations within the PdM domain. We focus specifically on methods which involve the use of sensor data and manually crafted rules as inputs by describing concrete NeSy architectures. In short, this survey outlines the context of modern maintenance, defines key concepts, establishes a generalized framework, reviews current modeling approaches and challenges, and introduces the proposed focus on Neuro-symbolic AI (NESY).
♻ ☆ Bridging Symbolic Control and Neural Reasoning in LLM Agents: Structured Cognitive Loop with a Governance Layer
Large language model agents suffer from fundamental architectural problems: entangled reasoning and execution, memory volatility, and uncontrolled action sequences. We introduce Structured Cognitive Loop (SCL), a modular architecture that explicitly separates agent cognition into five phases: Retrieval, Cognition, Control, Action, and Memory (R-CCAM). Soft Symbolic Control constitutes a dedicated governance layer within SCL, applying symbolic constraints to probabilistic inference while preserving the flexibility of neural reasoning and restoring the explainability and controllability of classical symbolic systems. Through empirical validation on multi-step conditional reasoning tasks, we demonstrate that SCL achieves zero policy violations, eliminates redundant tool calls, and maintains complete decision traceability. These results address critical gaps in existing frameworks such as ReAct, AutoGPT, and memory-augmented approaches. Our contributions are threefold: (1) we situate SCL within the taxonomy of hybrid intelligence, differentiating it from prompt-centric and memory-only approaches; (2) we formally define Soft Symbolic Control and contrast it with neuro-symbolic AI; and (3) we derive three design principles for trustworthy agents: modular decomposition, adaptive symbolic governance, and transparent state management. We provide a complete open-source implementation demonstrating the R-CCAM loop architecture, alongside a live GPT-4o-powered travel planning agent. By connecting expert system principles with modern LLM capabilities, this work offers a practical and theoretically grounded path toward reliable, explainable, and governable AI agents.
comment: This revised version strengthens the architectural clarity and conceptual coherence of the manuscript. In particular, it formalizes Soft Symbolic Control as a dedicated Governance layer distinct from the R-CCAM loop, clarifying its structural role beyond the earlier meta-prompt add-on formulation
♻ ☆ Leveraging Spreading Activation for Improved Document Retrieval in Knowledge-Graph-Based RAG Systems
Despite initial successes and a variety of architectures, retrieval-augmented generation systems still struggle to reliably retrieve and connect the multi-step evidence required for complicated reasoning tasks. Most of the standard RAG frameworks regard all retrieved information as equally reliable, overlooking the varying credibility and interconnected nature of large textual corpora. GraphRAG approaches offer potential improvement to RAG systems by integrating knowledge graphs, which structure information into nodes and edges, capture entity relationships, and enable multi-step logical traversal. However, GraphRAG is not always an ideal solution, as it depends on high-quality graph representations of the corpus. Such representations usually rely on manually curated knowledge graphs, which are costly to construct and update, or on automated graph-construction pipelines that are often unreliable. Moreover, systems following this paradigm typically use large language models to guide graph traversal and evidence retrieval. In this paper, we propose a novel RAG framework that uses a spreading activation algorithm to retrieve information from a corpus of documents connected by an automatically constructed heterogeneous knowledge graph. This approach reduces reliance on semantic knowledge graphs, which are often incomplete due to information loss during information extraction, avoids LLM-guided graph traversal, and improves performance on multi-hop question answering. Experiments show that our method achieves better or comparable performance to several state-of-the-art RAG methods and can be integrated as a plug-and-play module with different iterative RAG pipelines. When combined with chain-of-thought iterative retrieval, it yields up to a 39% absolute improvement in answer correctness over naive RAG, while achieving these results with small open-weight language models.
comment: 20 pages, 5 figures
♻ ☆ Reparameterization Proximal Policy Optimization
By leveraging differentiable dynamics, Reparameterization Policy Gradient (RPG) achieves high sample efficiency. However, current approaches are hindered by two critical limitations: the under-utilization of computationally expensive dynamics Jacobians and inherent training instability. While sample reuse offers a remedy for under-utilization, no prior principled framework exists, and naive attempts risk exacerbating instability. To address these challenges, we propose Reparameterization Proximal Policy Optimization (RPO). We first establish that under sample reuse, RPG naturally optimizes a PPO-style surrogate objective via Backpropagation Through Time, providing a unified framework for both on- and off-policy updates. To further ensure stability, RPO integrates a clipped policy gradient mechanism tailored for RPG and employs explicit Kullback-Leibler divergence regularization. Experimental results demonstrate that RPO maintains superior sample efficiency and consistently outperforms or achieves state-of-the-art performance across diverse tasks.
♻ ☆ Emergent Cognitive Convergence via Implementation: Structured Cognitive Loop Reflecting Four Theories of Mind SC
We report a structural convergence among four influential theories of mind: Kahneman dual-system theory, Friston predictive processing, Minsky society of mind, and Clark extended mind, emerging unintentionally within a practical AI architecture known as Agentic Flow. Designed to address limitations of large language models LLMs, Agentic Flow comprises five interlocking modules - Retrieval, Cognition, Control, Action, and Memory - organized into a repeatable cognitive loop. Although originally inspired only by Minsky and Clark, subsequent analysis showed that its structure echoes computational motifs from all four theories. This suggests that theoretical convergence may arise from implementation constraints rather than deliberate synthesis. In controlled evaluations, the structured agent achieved 95.8 percent task success compared to 62.3 percent for baseline LLMs, demonstrating stronger constraint adherence and more reproducible reasoning. We characterize this convergence through a broader descriptive meta-architecture called PEACE, highlighting recurring patterns such as predictive modeling, associative recall, and error-sensitive control. Later formalized as the Structured Cognitive Loop (SCL), this abstraction generalizes principles first realized in Agentic Flow as a foundation for behavioral intelligence in LLM-based agents.Rather than asserting theoretical unification, this position paper proposes that intelligent architectures may evolve toward shared structural patterns shaped by practical demands. Agentic Flow thus functions as an implementation instance of the Structured Cognitive Loop, illustrating how a unified cognitive form can emerge not from abstraction, but from the necessities of real-world reasoning.
comment: This revised version improves conceptual consistency between Agentic Flow and the Structured Cognitive Loop (SCL; arXiv:2510.05107)
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences, such as backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness. These factors cause an off-policy mismatch ($π_{\text{roll}} \neq π_θ$), leading to approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive two new bounds: a Pinsker-Marginal bound scaling as $O(T^{3/2})$ and a Mixed bound scaling as $O(T)$. We further derive an Adaptive bound that strictly generalizes the Pinsker-Marginal bound by combining an importance-ratio decomposition of the error with an adaptive per-position application of Pinsker's inequality on the future trajectory divergence; the minimum over all three bounds is tighter than any individual bound. Crucially, all bounds depend on $D_{\mathrm{KL}}^{\mathrm{tok,max}}$, the maximum token-level KL divergence across the sequence. As a \emph{sequence-level} term, the divergence cannot be controlled by previous token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences that violate the trust region. TRM enables the first non-vacuous monotonic improvement guarantees and demonstrates empirical training stability for long-horizon LLM-RL.
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language, nor how it leverages working memory. Furthermore, Transformers encounters a computational limitation: quadratic complexity growth with sequence length. Motivated by these limitations, we aim to design architectures that leverage efficient working memory dynamics to overcome standard computational barriers. We introduce Echo State Transformers (EST), a hybrid architecture that resolves this challenge while demonstrating state of the art performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with nodes from Reservoir Computing to create a fixed-size memory system. Drawing inspiration from Echo State Networks, our approach leverages several reservoirs (random recurrent networks) in parallel as a lightweight and efficient working memory. These independent units possess distinct and learned internal dynamics with an adaptive leak rate, enabling them to dynamically adjust their own temporality. By applying attention on those fixed number of units instead of input tokens, EST achieves linear complexity for the whole sequence, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results demonstrate that by shifting the attention mechanism from the entire input sequence to a fixed set of evolving memory units, it is possible to maintains high sensitivity to temporal events while achieving constant computational complexity per step.
♻ ☆ Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
♻ ☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
♻ ☆ In-Run Data Shapley for Adam Optimizer
Reliable data attribution is essential for mitigating bias and reducing computational waste in modern machine learning, with the Shapley value serving as the theoretical gold standard. While recent "In-Run" methods bypass the prohibitive cost of retraining by estimating contributions dynamically, they heavily rely on the linear structure of Stochastic Gradient Descent (SGD) and fail to capture the complex dynamics of adaptive optimizers like Adam. In this work, we demonstrate that data attribution is inherently optimizer-dependent: we show that SGD-based proxies diverge significantly from true contributions under Adam (Pearson $R \approx 0.11$), rendering them ineffective for modern training pipelines. To bridge this gap, we propose Adam-Aware In-Run Data Shapley. We derive a closed-form approximation that restores additivity by redefining utility under a fixed-state assumption and enable scalable computation via a novel Linearized Ghost Approximation. This technique linearizes the variance-dependent scaling term, allowing us to compute pairwise gradient dot-products without materializing per-sample gradients. Extensive experiments show that our method achieves near-perfect fidelity to ground-truth marginal contributions ($R > 0.99$) while retaining $\sim$95\% of standard training throughput. Furthermore, our Adam-aware attribution significantly outperforms SGD-based baselines in data attribution downstream tasks.
comment: 16 pages
♻ ☆ STAR: Stepwise Task Augmentation with Relation Learning for Aspect Sentiment Quad Prediction
Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct a complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), requires predicting all four elements simultaneously and is hindered by the difficulty of accurately modeling dependencies among sentiment elements. A key challenge lies in the scarcity of annotated data, which limits the model ability to understand and reason about the relational dependencies required for effective quad prediction. To address this challenge, we propose a stepwise task augmentation framework with relation learning that decomposes ASQP into a sequence of auxiliary subtasks with increasing relational granularity. Specifically, STAR incrementally constructs auxiliary data by augmenting the training data with pairwise and overall relation tasks, enabling the model to capture and compose sentiment dependencies in a stepwise manner. This stepwise formulation provides effective relational learning signals that enhance quad prediction performance, particularly in low-resource scenarios. Extensive experiments across four benchmark datasets demonstrate that STAR consistently outperforms existing methods, achieving average F1 improvements of over $2\%$ under low-resource conditions.
comment: 17 pages, 6 figures, and 7 tables
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Encoder-Only and Decoder-Only Transformers
We theoretically investigate whether the Query, Key, Value weight triplet can be reduced in encoder-only and decoder-only transformers. Under mild assumptions, we prove that Query weights are redundant and can be replaced with the identity matrix, reducing attention parameters by $25\%$. This also simplifies optimization: attention logits become linear rather than quadratic in learned weights. Validating on decoder-only GPT-style small models trained from scratch, we find that with adjusted attention scaling and weight decay, reduced models match baseline performance despite fewer parameters. Training remains stable at over $3\times$ lower weight decay, suggesting Query weight elimination provides implicit regularization. Our analysis has also led us to a structural expressivity boundary: in the mathematically tractable ReLU setting, skip connections push MLPs into a generically disjoint function class at fixed width. These findings motivate investigation across modalities and at scale, where the observed stability and efficiency gains may prove most consequential.
♻ ☆ Towards Agentic Intelligence for Materials Science
The convergence of artificial intelligence and materials science presents a transformative opportunity, but achieving true acceleration in discovery requires moving beyond task-isolated, fine-tuned models toward agentic systems that plan, act, and learn across the full discovery loop. This survey advances a unique pipeline-centric view that spans from corpus curation and pretraining, through domain adaptation and instruction tuning, to goal-conditioned agents interfacing with simulation and experimental platforms. Unlike prior reviews, we treat the entire process as an end-to-end system to be optimized for tangible discovery outcomes rather than proxy benchmarks. This perspective allows us to trace how upstream design choices-such as data curation and training objectives-can be aligned with downstream experimental success through effective credit assignment. To bridge communities and establish a shared frame of reference, we first present an integrated lens that aligns terminology, evaluation, and workflow stages across AI and materials science. We then analyze the field through two focused lenses: From the AI perspective, the survey details LLM strengths in pattern recognition, predictive analytics, and natural language processing for literature mining, materials characterization, and property prediction; from the materials science perspective, it highlights applications in materials design, process optimization, and the acceleration of computational workflows via integration with external tools (e.g., DFT, robotic labs). Finally, we contrast passive, reactive approaches with agentic design, cataloging current contributions while motivating systems that pursue long-horizon goals with autonomy, memory, and tool use. This survey charts a practical roadmap towards autonomous, safety-aware LLM agents aimed at discovering novel and useful materials.
comment: 81 pages
♻ ☆ LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://github.com/1163710212/LERL.
♻ ☆ Feature Identification via the Empirical NTK
We provide evidence that eigenanalysis of the empirical neural tangent kernel (eNTK) can surface the features used by trained neural networks. Across three standard toy models for mechanistic interpretability, Toy Models of Superposition (TMS), a 1-layer MLP trained on modular addition and a 1-layer Transformer trained on modular addition, we find that top eigenspaces of the eNTK align with ground-truth features. In TMS, the eNTK recovers the ground-truth features in both the sparse (high superposition) and dense regimes. In modular arithmetic, the eNTK can be used to recover Fourier feature families. Moreover, we provide evidence that a layerwise eNTK localizes features to specific layers and that the evolution of the eNTK spectrum can be used to diagnose the grokking phase transition. These results suggest that eNTK analysis may provide a practical handle for feature discovery and for detecting phase changes in small models.
comment: 19 pages, 9 figures. v2: references and expanded discussion in Appendix B added. v3: Transformer case study and more appendices added
♻ ☆ AI sustains higher strategic tension than humans in chess
Strategic decision-making requires balancing immediate opportunities against long-term objectives: a tension fundamental to competitive environments. We investigate this trade-off in chess by analyzing the dynamics of human and AI gameplay through a network-based metric that quantifies piece-to-piece interactions. Our analysis reveals that elite AI players sustain substantially higher levels of strategic tension for longer durations than top human grandmasters. We find that cumulative tension scales with algorithmic complexity in AI systems and increases linearly with skill level (Elo rating) in human play. Longer time controls are associated with higher tension in human games, reflecting the additional strategic complexity players can manage with more thinking time. The temporal profiles reveal contrasting approaches: highly competitive AI systems tolerate densely interconnected positions that balance offensive and defensive tactics over extended periods, while human players systematically limit tension and game complexity. These differences have broader implications for understanding how artificial and biological systems navigate complex strategic environments and for the deployment of AI in high-stakes competitive scenarios.
♻ ☆ VERA-MH: Reliability and Validity of an Open-Source AI Safety Evaluation in Mental Health
Millions now use generative AI chatbots for psychological support. Despite the promise related to availability and scale, the single most pressing question in AI for mental health is whether these tools are safe. The Validation of Ethical and Responsible AI in Mental Health (VERA-MH) evaluation was recently proposed to meet the urgent need for an evidence-based, automated safety benchmark. This study aimed to examine the clinical validity and reliability of VERA-MH for evaluating AI safety in suicide risk detection and response. We first simulated a large set of conversations between large language model (LLM)-based users (user-agents) and general-purpose AI chatbots. Licensed mental health clinicians used a rubric (scoring guide) to independently rate the simulated conversations for safe and unsafe chatbot behaviors, as well as user-agent realism. An LLM-based judge used the same scoring rubric to evaluate the same set of simulated conversations. We then examined rating alignment (a) among individual clinicians and (b) between clinician consensus and the LLM judge, and (c) summarized clinicians' ratings of user-agent realism. Individual clinicians were generally consistent with one another in their safety ratings (chance-corrected inter-rater reliability [IRR] = 0.77), establishing a gold-standard clinical reference. The LLM judge was strongly aligned with this clinical consensus overall (IRR = 0.81) and within key conditions. Together, findings from this human evaluation study support the validity and reliability of VERA-MH: an open-source, automated AI safety evaluation for mental health. Future research will examine the generalizability and robustness of VERA-MH and expand the framework to target additional key areas of AI safety in mental health.
♻ ☆ GraphToxin: Reconstructing Full Unlearned Graphs from Graph Unlearning
Graph unlearning has emerged as a promising solution to comply with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks (GNNs). These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the intended functionality of graph unlearning. In this work, we propose GraphToxin, the first full graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide fine-grained guidance for unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning, it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple-node removal under both white-box and black-box settings, showcasing its practical feasibility and potential to cause considerable harm. We highlight the necessity of worst-case analysis and propose a systematic evaluation framework to assess attack performance under both random and worst-case node removal scenarios. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, existing defense mechanisms are largely ineffective against this attack or even amplify its performance in some cases. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for more effective and robust defenses.
♻ ☆ Efficient Perplexity Bound and Ratio Matching in Discrete Diffusion Language Models
While continuous diffusion models excel in modeling continuous distributions, their application to categorical data has been less effective. Recent work has shown that ratio-matching through score-entropy within a continuous-time discrete Markov chain (CTMC) framework serves as a competitive alternative to autoregressive models in language modeling. To enhance this framework, we first introduce three new theorems concerning the KL divergence between the data and learned distribution. Our results serve as the discrete counterpart to those established for continuous diffusion models and allow us to derive an improved upper bound of the perplexity. Second, we empirically show that ratio-matching performed by minimizing the denoising cross-entropy between the clean and corrupted data enables models to outperform those utilizing score-entropy with up to 10% lower perplexity/generative-perplexity, and 15% faster training steps. To further support our findings, we introduce and evaluate a novel CTMC transition-rate matrix that allows prediction refinement, and derive the analytic expression for its matrix exponential which facilitates the computation of conditional ratios thus enabling efficient training and generation.
♻ ☆ AudioSAE: Towards Understanding of Audio-Processing Models with Sparse AutoEncoders EACL 2026
Sparse Autoencoders (SAEs) are powerful tools for interpreting neural representations, yet their use in audio remains underexplored. We train SAEs across all encoder layers of Whisper and HuBERT, provide an extensive evaluation of their stability, interpretability, and show their practical utility. Over 50% of the features remain consistent across random seeds, and reconstruction quality is preserved. SAE features capture general acoustic and semantic information as well as specific events, including environmental noises and paralinguistic sounds (e.g. laughter, whispering) and disentangle them effectively, requiring removal of only 19-27% of features to erase a concept. Feature steering reduces Whisper's false speech detections by 70% with negligible WER increase, demonstrating real-world applicability. Finally, we find SAE features correlated with human EEG activity during speech perception, indicating alignment with human neural processing. The code and checkpoints are available at https://github.com/audiosae/audiosae_demo.
comment: Accepted to EACL 2026, main track
♻ ☆ HyPlan: Hybrid Learning-Assisted Planning Under Uncertainty for Safe Autonomous Driving
We present a novel hybrid learning-assisted planning method, named HyPlan, for solving the collision-free navigation problem for self-driving cars in partially observable traffic environments. HyPlan combines methods for multi-agent behavior prediction, deep reinforcement learning with proximal policy optimization and approximated online POMDP planning with heuristic confidence-based vertical pruning to reduce its execution time without compromising safety of driving. Our experimental performance analysis on the CARLA-CTS2 benchmark of critical traffic scenarios with pedestrians revealed that HyPlan may navigate safer than selected relevant baselines and perform significantly faster than considered alternative online POMDP planners.
♻ ☆ D$^2$Quant: Accurate Low-bit Post-Training Weight Quantization for LLMs
Large language models (LLMs) deliver strong performance, but their high compute and memory costs make deployment difficult in resource-constrained scenarios. Weight-only post-training quantization (PTQ) is appealing, as it reduces memory usage and enables practical speedup without low-bit operators or specialized hardware. However, accuracy often degrades significantly in weight-only PTQ at sub-4-bit precision, and our analysis identifies two main causes: (1) down-projection matrices are a well-known quantization bottleneck, but maintaining their fidelity often requires extra bit-width; (2) weight quantization induces activation deviations, but effective correction strategies remain underexplored. To address these issues, we propose D$^2$Quant, a novel weight-only PTQ framework that improves quantization from both the weight and activation perspectives. On the weight side, we design a Dual-Scale Quantizer (DSQ) tailored to down-projection matrices, with an absorbable scaling factor that significantly improves accuracy without increasing the bit budget. On the activation side, we propose Deviation-Aware Correction (DAC), which incorporates a mean-shift correction within LayerNorm to mitigate quantization-induced activation distribution shifts. Extensive experiments across multiple LLM families and evaluation metrics show that D$^2$Quant delivers superior performance for weight-only PTQ at sub-4-bit precision. The code and models will be available at https://github.com/XIANGLONGYAN/D2Quant.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
comment: v2: clarify confusion in definition of JEPAs vs. regularization-based JEPAs
♻ ☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
comment: After careful consideration, we have decided to withdraw our submission for substantial revisions. We plan to significantly improve Section 4 and include more comprehensive experiments. These changes are necessary to ensure the paper's quality and rigor. We believe the revisions will strengthen the contribution and provide a more solid foundation for the results
♻ ☆ Spider-Sense: Intrinsic Risk Sensing for Efficient Agent Defense with Hierarchical Adaptive Screening
As large language models (LLMs) evolve into autonomous agents, their real-world applicability has expanded significantly, accompanied by new security challenges. Most existing agent defense mechanisms adopt a mandatory checking paradigm, in which security validation is forcibly triggered at predefined stages of the agent lifecycle. In this work, we argue that effective agent security should be intrinsic and selective rather than architecturally decoupled and mandatory. We propose Spider-Sense framework, an event-driven defense framework based on Intrinsic Risk Sensing (IRS), which allows agents to maintain latent vigilance and trigger defenses only upon risk perception. Once triggered, the Spider-Sense invokes a hierarchical defence mechanism that trades off efficiency and precision: it resolves known patterns via lightweight similarity matching while escalating ambiguous cases to deep internal reasoning, thereby eliminating reliance on external models. To facilitate rigorous evaluation, we introduce S$^2$Bench, a lifecycle-aware benchmark featuring realistic tool execution and multi-stage attacks. Extensive experiments demonstrate that Spider-Sense achieves competitive or superior defense performance, attaining the lowest Attack Success Rate (ASR) and False Positive Rate (FPR), with only a marginal latency overhead of 8.3\%.
♻ ☆ Detecting Latin in Historical Books with Large Language Models: A Multimodal Benchmark EACL 2026
This paper presents a novel task of extracting low-resourced and noisy Latin fragments from mixed-language historical documents with varied layouts. We benchmark and evaluate the performance of large foundation models against a multimodal dataset of 724 annotated pages. The results demonstrate that reliable Latin detection with contemporary zero-shot models is achievable, yet these models lack a functional comprehension of Latin. This study establishes a comprehensive baseline for processing Latin within mixed-language corpora, supporting quantitative analysis in intellectual history and historical linguistics. Both the dataset and code are available at https://github.com/COMHIS/EACL26-detect-latin.
comment: Accepted by the EACL 2026 main conference. Code and data available at https://github.com/COMHIS/EACL26-detect-latin
♻ ☆ Scoring, Reasoning, and Selecting the Best! Ensembling Large Language Models via a Peer-Review Process
We propose LLM-PeerReview, an unsupervised LLM Ensemble method that selects the most ideal response from multiple LLM-generated candidates for each query, harnessing the collective wisdom of multiple models with diverse strengths. LLM-PeerReview is built on a novel, peer-review-inspired framework that offers a transparent and interpretable mechanism, while remaining fully unsupervised for flexible adaptability and generalization. Specifically, it operates in three stages: For scoring, we use the emerging LLM-as-a-Judge technique to evaluate each response by reusing multiple LLMs at hand; For reasoning, we can apply a straightforward averaging strategy or a principled graphical model-based truth inference algorithm to aggregate multiple scores to produce a final score for each response; Finally, the highest-scoring response is selected as the best ensemble output. LLM-PeerReview is conceptually simple and empirically powerful. Our results across four datasets show that the two variants of the proposed approach outperform the advanced model Smoothie-Global by 6.9% and 7.3% points, cross diverse task types including factual recall QA, math reasoning, and instruction following.
♻ ☆ D-SCoRE: Document-Centric Segmentation and CoT Reasoning with Structured Export for QA-CoT Data Generation
The scarcity and high cost of high-quality domain-specific question-answering (QA) datasets limit supervised fine-tuning of large language models (LLMs). We introduce $\textbf{D-SCoRE}$, a training-free framework that leverages LLMs and prompt engineering to automatically generate diverse, rich QA datasets with Chain-of-Thought (CoT) from arbitrary textual sources. By integrating $\textbf{D}$ocument-centric processing, $\textbf{S}$egmentation, $\textbf{Co}$T $\textbf{R}$easoning, and structured $\textbf{E}$xport - along with multi-dimensional controls such as semantic role transformation, question type balancing, and counterfactual augmentation - D-SCoRE produces tailored QA pairs with enhanced diversity and relevance. LLMs fine-tuned on D-SCoRE-generated datasets outperform those trained on human-annotated QA data across most evaluated domains. Its efficiency and scalability enable rapid, high-performance domain-adaptive fine-tuning on consumer-grade hardware, generating over 1,100 high-quality QA pairs per GPU-hour end-to-end.
♻ ☆ Adventures in Demand Analysis Using AI
This paper advances empirical demand analysis by integrating multimodal product representations derived from artificial intelligence (AI). Using a detailed dataset of toy cars on textit{Amazon.com}, we combine text descriptions, images, and tabular covariates to represent each product using transformer-based embedding models. These embeddings capture nuanced attributes, such as quality, branding, and visual characteristics, that traditional methods often struggle to summarize. Moreover, we fine-tune these embeddings for causal inference tasks. We show that the resulting embeddings substantially improve the predictive accuracy of sales ranks and prices and that they lead to more credible causal estimates of price elasticity. Notably, we uncover strong heterogeneity in price elasticity driven by these product-specific features. Our findings illustrate that AI-driven representations can enrich and modernize empirical demand analysis. The insights generated may also prove valuable for applied causal inference more broadly.
comment: 35 pages, 8 figures
♻ ☆ DECEPTICON: How Dark Patterns Manipulate Web Agents
Deceptive UI designs, widely instantiated across the web and commonly known as dark patterns, manipulate users into performing actions misaligned with their goals. In this paper, we show that dark patterns are highly effective in steering agent trajectories, posing a significant risk to agent robustness. To quantify this risk, we introduce DECEPTICON, an environment for testing individual dark patterns in isolation. DECEPTICON includes 700 web navigation tasks with dark patterns -- 600 generated tasks and 100 real-world tasks, designed to measure instruction-following success and dark pattern effectiveness. Across state-of-the-art agents, we find dark patterns successfully steer agent trajectories towards malicious outcomes in over 70% of tested generated and real-world tasks -- compared to a human average of 31%. Moreover, we find that dark pattern effectiveness correlates positively with model size and test-time reasoning, making larger, more capable models more susceptible. Leading countermeasures against adversarial attacks, including in-context prompting and guardrail models, fail to consistently reduce the success rate of dark pattern interventions. Our findings reveal dark patterns as a latent and unmitigated risk to web agents, highlighting the urgent need for robust defenses against manipulative designs.
♻ ☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing improvements in the scalability of multi-agent epistemic planning.
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ A Free Lunch in LLM Compression: Revisiting Retraining after Pruning
Post-training pruning substantially reduces inference costs but often causes severe quality degradation without adapting the remaining weights. For LLMs, such retraining is commonly considered impractical due to large computational costs, motivating increasingly sophisticated pruning criteria to compensate by selecting better sparsity patterns. In this work, we revisit post-pruning adaptation and study local reconstruction: adapting only a small pruned submodel at a time using a small calibration set by matching intermediate activations of the dense model. We conduct a large-scale study across model families and scales (up to 72B parameters) and establish three central results. First, local reconstruction is an effective adaptation mechanism for LLMs, matching post-pruning PEFT while using over an order of magnitude less data and compute. Second, we identify a broad "free lunch" regime in reconstruction granularity: across a wide range of submodel sizes, final quality remains essentially unchanged, allowing granularity to be chosen based on memory constraints. Finally, with reconstruction, the pruning criterion becomes less critical: performance gaps between sophisticated methods and simple baselines shrink with model size, making simple methods competitive again. Collectively, our results challenge the prevailing narrative that post-pruning adaptation is impractical for LLMs.
♻ ☆ Bayesian Matrix Decomposition and Applications
The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in Bayesian matrix decomposition in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning Bayesian matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of variational inference for conducting the optimization. We refer the reader to literature in the field of Bayesian analysis for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important Bayesian matrix decomposition methods, e.g., real-valued decomposition, nonnegative matrix factorization, Bayesian interpolative decomposition, and the origin and complexity of the methods which shed light on their applications. The mathematical prerequisite is a first course in statistics and linear algebra. Other than this modest background, the development is self-contained, with rigorous proof provided throughout.
♻ ☆ An Example for Domain Adaptation Using CycleGAN
Cycle-Consistent Adversarial Network (CycleGAN) is very promising in domain adaptation. In this report, an example in medical domain will be explained. We present struecture of a CycleGAN model for unpaired image-to-image translation from microscopy to pseudo H\&E stained histopathology images.
comment: 3 pages, 2 figures
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints
Physics-constrained generative modeling aims to produce high-dimensional samples that are both physically consistent and distributionally accurate, a task that remains challenging due to often conflicting optimization objectives. Recent advances in flow matching and diffusion models have enabled efficient generative modeling, but integrating physical constraints often degrades generative fidelity or requires costly inference-time corrections. Our work is the first to recognize the trade-off between distributional and physical accuracy. Based on the insight of inherently conflicting objectives, we introduce Physics-Based Flow Matching (PBFM) a method that enforces physical constraints at training time using conflict-free gradient updates and unrolling to mitigate Jensen's gap. Our approach avoids manual loss balancing and enables simultaneous optimization of generative and physical objectives. As a consequence, physics constraints do not impede inference performance. We benchmark our method across three representative PDE benchmarks. PBFM achieves a Pareto-optimal trade-off, competitive inference speed, and generalizes to a wide range of physics-constrained generative tasks, providing a practical tool for scientific machine learning. Code and datasets available at https://github.com/tum-pbs/PBFM.
♻ ☆ Balancing Sustainability And Performance: The Role Of Small-Scale LLMs In Agentic Artificial Intelligence Systems
As large language models become integral to agentic artificial intelligence systems, their energy demands during inference may pose significant sustainability challenges. This study investigates whether deploying smaller-scale language models can reduce energy consumption without compromising responsiveness and output quality in a multi-agent, real-world environments. We conduct a comparative analysis across language models of varying scales to quantify trade-offs between efficiency and performance. Results show that smaller open-weights models can lower energy usage while preserving task quality. Building on these findings, we propose practical guidelines for sustainable artificial intelligence design, including optimal batch size configuration and computation resource allocation. These insights offer actionable strategies for developing scalable, environmentally responsible artificial intelligence systems.
♻ ☆ OpenDeception: Learning Deception and Trust in Human-AI Interaction via Multi-Agent Simulation
As large language models (LLMs) are increasingly deployed as interactive agents, open-ended human-AI interactions can involve deceptive behaviors with serious real-world consequences, yet existing evaluations remain largely scenario-specific and model-centric. We introduce OpenDeception, a lightweight framework for jointly evaluating deception risk from both sides of human-AI dialogue. It consists of a scenario benchmark with 50 real-world deception cases, an IntentNet that infers deceptive intent from agent reasoning, and a TrustNet that estimates user susceptibility. To address data scarcity, we synthesize high-risk dialogues via LLM-based role-and-goal simulation, and train the User Trust Scorer using contrastive learning on controlled response pairs, avoiding unreliable scalar labels. Experiments on 11 LLMs and three large reasoning models show that over 90% of goal-driven interactions in most models exhibit deceptive intent, with stronger models displaying higher risk. A real-world case study adapted from a documented AI-induced suicide incident further demonstrates that our joint evaluation can proactively trigger warnings before critical trust thresholds are reached.
♻ ☆ Benchmarking Automatic Speech Recognition for Indian Languages in Agricultural Contexts
The digitization of agricultural advisory services in India requires robust Automatic Speech Recognition (ASR) systems capable of accurately transcribing domain-specific terminology in multiple Indian languages. This paper presents a benchmarking framework for evaluating ASR performance in agricultural contexts across Hindi, Telugu, and Odia languages. We introduce evaluation metrics including Agriculture Weighted Word Error Rate (AWWER) and domain-specific utility scoring to complement traditional metrics. Our evaluation of 10,934 audio recordings, each transcribed by up to 10 ASR models, reveals performance variations across languages and models, with Hindi achieving the best overall performance (WER: 16.2%) while Odia presents the greatest challenges (best WER: 35.1%, achieved only with speaker diarization). We characterize audio quality challenges inherent to real-world agricultural field recordings and demonstrate that speaker diarization with best-speaker selection can substantially reduce WER for multi-speaker recordings (upto 66% depending on the proportion of multi-speaker audio). We identify recurring error patterns in agricultural terminology and provide practical recommendations for improving ASR systems in low-resource agricultural domains. The study establishes baseline benchmarks for future agricultural ASR development.
comment: 9 pages, 6 figures
♻ ☆ Adaptive AI-based Decentralized Resource Management in the Cloud-Edge Continuum
In the Cloud-Edge Continuum, dynamic infrastructure change and variable workloads complicate efficient resource management. Centralized methods can struggle to adapt, whilst purely decentralized policies lack global oversight. This paper proposes a hybrid framework using Graph Neural Network (GNN) embeddings and collaborative multi-agent reinforcement learning (MARL). Local agents handle neighbourhood-level decisions, and a global orchestrator coordinates system-wide. This work contributes to decentralized application placement strategies with centralized oversight, GNN integration and collaborative MARL for efficient, adaptive and scalable resource management.
comment: Accepted at AHPC3 workshop, PDP 2025
♻ ☆ Testing Storage-System Correctness: Challenges, Fuzzing Limitations, and AI-Augmented Opportunities
Storage systems are fundamental to modern computing infrastructures, yet ensuring their correctness remains challenging in practice. Despite decades of research on system testing, many storage-system failures (including durability, ordering, recovery, and consistency violations) remain difficult to expose systematically. This difficulty stems not primarily from insufficient testing tooling, but from intrinsic properties of storage-system execution, including nondeterministic interleavings, long-horizon state evolution, and correctness semantics that span multiple layers and execution phases. This survey adopts a storage-centric view of system testing and organizes existing techniques according to the execution properties and failure mechanisms they target. We review a broad spectrum of approaches, ranging from concurrency testing and long-running workloads to crash-consistency analysis, hardware-level semantic validation, and distributed fault injection, and analyze their fundamental strengths and limitations. Within this framework, we examine fuzzing as an automated testing paradigm, highlighting systematic mismatches between conventional fuzzing assumptions and storage-system semantics, and discuss how recent artificial intelligence advances may complement fuzzing through state-aware and semantic guidance. Overall, this survey provides a unified perspective on storage-system correctness testing and outlines key challenges
♻ ☆ Steering LLMs via Scalable Interactive Oversight
As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
♻ ☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
♻ ☆ Think-Augmented Function Calling: Improving LLM Parameter Accuracy Through Embedded Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.
♻ ☆ FadeMem: Biologically-Inspired Forgetting for Efficient Agent Memory
Large language models deployed as autonomous agents face critical memory limitations, lacking selective forgetting mechanisms that lead to either catastrophic forgetting at context boundaries or information overload within them. While human memory naturally balances retention and forgetting through adaptive decay processes, current AI systems employ binary retention strategies that preserve everything or lose it entirely. We propose FadeMem, a biologically-inspired agent memory architecture that incorporates active forgetting mechanisms mirroring human cognitive efficiency. FadeMem implements differential decay rates across a dual-layer memory hierarchy, where retention is governed by adaptive exponential decay functions modulated by semantic relevance, access frequency, and temporal patterns. Through LLM-guided conflict resolution and intelligent memory fusion, our system consolidates related information while allowing irrelevant details to fade. Experiments on Multi-Session Chat, LoCoMo, and LTI-Bench demonstrate superior multi-hop reasoning and retrieval with 45\% storage reduction, validating the effectiveness of biologically-inspired forgetting in agent memory systems.
♻ ☆ Personalized Learning Path Planning with Goal-Driven Learner State Modeling WWW'26
Personalized Learning Path Planning (PLPP) aims to design adaptive learning paths that align with individual goals. While large language models (LLMs) show potential in personalizing learning experiences, existing approaches often lack mechanisms for goal-aligned planning. We introduce Pxplore, a novel framework for PLPP that integrates a reinforcement-based training paradigm and an LLM-driven educational architecture. We design a structured learner state model and an automated reward function that transforms abstract objectives into computable signals. We train the policy combining supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO), and deploy it within a real-world learning platform. Extensive experiments validate Pxplore's effectiveness in producing coherent, personalized, and goal-driven learning paths. We release our code and dataset at https://github.com/Pxplore/pxplore-algo.
comment: Accepted at The Web Conference 2026 (WWW'26)
♻ ☆ A Data-driven Typology of Vision Models from Integrated Representational Metrics
Large vision models differ widely in architecture and training paradigm, yet we lack principled methods to determine which aspects of their representations are shared across families and which reflect distinctive computational strategies. We leverage a suite of representational similarity metrics, each capturing a different facet-geometry, unit tuning, or linear decodability-and assess family separability using multiple complementary measures. Metrics preserving geometry or tuning (e.g., RSA, Soft Matching) yield strong family discrimination, whereas flexible mappings such as Linear Predictivity show weaker separation. These findings indicate that geometry and tuning carry family-specific signatures, while linearly decodable information is more broadly shared. To integrate these complementary facets, we adapt Similarity Network Fusion (SNF), a method inspired by multi-omics integration. SNF achieves substantially sharper family separation than any individual metric and produces robust composite signatures. Clustering of the fused similarity matrix recovers both expected and surprising patterns: supervised ResNets and ViTs form distinct clusters, yet all self-supervised models group together across architectural boundaries. Hybrid architectures (ConvNeXt, Swin) cluster with masked autoencoders, suggesting convergence between architectural modernization and reconstruction-based training. This biology-inspired framework provides a principled typology of vision models, showing that emergent computational strategies-shaped jointly by architecture and training objective-define representational structure beyond surface design categories.
comment: Update the main text format
♻ ☆ Learning to Guarantee Type Correctness in Code Generation through Type-Guided Program Synthesis
Language models have shown remarkable proficiency in code generation; nevertheless, ensuring type correctness remains a challenge. Although traditional methods, such as constrained decoding, alleviate this problem by externally rejecting untypable code, the model itself does not effectively learn type reasoning internally, which ultimately limits its overall performance. This paper introduces TyFlow, a novel system that internalizes type reasoning within code generation to guide the model to learn the type system. The core of our approach is a novel type-guided program synthesis system that maintains an isomorphism between type derivation trees and synthesis derivation trees, enabling a new code representation based on synthesis decision sequences rather than traditional text-based token sequences. By offloading the complexity of type system learning to the representation itself, models can redirect their computational resources toward higher-level program semantics. Our evaluation shows that TyFlow not only eliminates type errors but also significantly improves functional correctness, highlighting the importance of aligning LMs with type systems internally.
♻ ☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks, where untrusted data contains an injected prompt to manipulate the system, have been listed as the top security threat to LLM-integrated applications. Model-level prompt injection defenses have shown strong effectiveness, but the strongest defenses are proprietary. Open-source secure models are needed by the AI security community so that co-development of attacks and defenses through open research can drive scientific progress in mitigating prompt injection attacks. To this end, we develop Meta SecAlign, the first fully open-source LLM with built-in model-level defense that achieves commercial-grade performance and is powerful enough for complex agentic tasks. We provide complete details of our training recipe. We perform the most comprehensive evaluation to date on 9 utility benchmarks (measuring general knowledge, instruction following, and agentic workflows) and 7 security benchmarks. Results show that Meta SecAlign, despite being trained only on generic instruction-tuning samples, surprisingly confers security in unseen downstream tasks, including tool-calling and web-navigation, in addition to general instruction-following. Our best model -- Meta-SecAlign-70B -- establishes a new frontier of utility-security trade-off for open-source LLMs, and is more secure than several flagship proprietary models with prompt injection defense. Below are links for the code (https://github.com/facebookresearch/Meta_SecAlign), Meta-SecAlign-70B (https://huggingface.co/facebook/Meta-SecAlign-70B), and Meta-SecAlign-8B (https://huggingface.co/facebook/Meta-SecAlign-8B) models.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: This work is currently in progress
♻ ☆ PiFlow: Principle-Aware Scientific Discovery with Multi-Agent Collaboration
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering the systematic reduction of uncertainty. Overcoming these limitations fundamentally requires a principled approach to exploration. We introduce PiFlow, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). Extensive evaluations across three distinct scientific domains demonstrate that PiFlow (I) improves discovery efficiency by 31.18%~41.73% and solution quality by 12.47%~31.72% against state-of-the-art methods, (II) delivers a 5.6x speedup in time-to-solution while reducing token consumption by up to 27% compared to vanilla agents, and (III) serves as a Plug-and-Play module that generalizes on existing agent architecture. Overall, PiFlow establishes a novel paradigm shift in highly efficient agentic scientific discovery, paving the way for more robust and accelerated AI-driven research.
♻ ☆ dUltra: Ultra-Fast Diffusion Language Models via Reinforcement Learning
Masked diffusion language models (MDLMs) offer the potential for parallel token generation, but most open-source MDLMs decode fewer than 5 tokens per model forward pass even with sophisticated sampling strategies, limiting their parallel generation potential. Existing acceleration methods either rely on fixed confidence-based heuristics or use distillation-based approaches that finetune MDLMs on trajectories generated by a base model, which can become off-policy during finetuning and restrict performance to the quality of the base model's samples. We propose \texttt{dUltra}, an on-policy reinforcement learning framework based on Group Relative Policy Optimization (GRPO) that learns unmasking strategies for efficient parallel decoding. dUltra introduces an unmasking planner head that predicts per-token unmasking likelihoods under independent Bernoulli distributions. We jointly optimize the base diffusion LLM and the unmasking order planner using reward signals combining verifiable reward, distillation reward, and the number of unmasking steps. Across mathematical reasoning and code generation tasks, dUltra achieves superior accuracy-efficiency trade-offs compared to state-of-the-art heuristic (Fast-dLLM) and distillation baselines (d3LLM, dParallel), demonstrating that learned unmasking trajectories through on-policy RL enable better exploitation of parallel generation in MDLMs. Code and checkpoints are released at https://github.com/chinsengi/dUltra-os.
♻ ☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
Machine Learning 150
☆ Learning a Generative Meta-Model of LLM Activations
Existing approaches for analyzing neural network activations, such as PCA and sparse autoencoders, rely on strong structural assumptions. Generative models offer an alternative: they can uncover structure without such assumptions and act as priors that improve intervention fidelity. We explore this direction by training diffusion models on one billion residual stream activations, creating "meta-models" that learn the distribution of a network's internal states. We find that diffusion loss decreases smoothly with compute and reliably predicts downstream utility. In particular, applying the meta-model's learned prior to steering interventions improves fluency, with larger gains as loss decreases. Moreover, the meta-model's neurons increasingly isolate concepts into individual units, with sparse probing scores that scale as loss decreases. These results suggest generative meta-models offer a scalable path toward interpretability without restrictive structural assumptions. Project page: https://generative-latent-prior.github.io.
☆ Improving Credit Card Fraud Detection with an Optimized Explainable Boosting Machine
Addressing class imbalance is a central challenge in credit card fraud detection, as it directly impacts predictive reliability in real-world financial systems. To overcome this, the study proposes an enhanced workflow based on the Explainable Boosting Machine (EBM)-a transparent, state-of-the-art implementation of the GA2M algorithm-optimized through systematic hyperparameter tuning, feature selection, and preprocessing refinement. Rather than relying on conventional sampling techniques that may introduce bias or cause information loss, the optimized EBM achieves an effective balance between accuracy and interpretability, enabling precise detection of fraudulent transactions while providing actionable insights into feature importance and interaction effects. Furthermore, the Taguchi method is employed to optimize both the sequence of data scalers and model hyperparameters, ensuring robust, reproducible, and systematically validated performance improvements. Experimental evaluation on benchmark credit card data yields an ROC-AUC of 0.983, surpassing prior EBM baselines (0.975) and outperforming Logistic Regression, Random Forest, XGBoost, and Decision Tree models. These results highlight the potential of interpretable machine learning and data-driven optimization for advancing trustworthy fraud analytics in financial systems.
comment: 22 pages, 5 figures, 5 tables
☆ DreamDojo: A Generalist Robot World Model from Large-Scale Human Videos
Being able to simulate the outcomes of actions in varied environments will revolutionize the development of generalist agents at scale. However, modeling these world dynamics, especially for dexterous robotics tasks, poses significant challenges due to limited data coverage and scarce action labels. As an endeavor towards this end, we introduce DreamDojo, a foundation world model that learns diverse interactions and dexterous controls from 44k hours of egocentric human videos. Our data mixture represents the largest video dataset to date for world model pretraining, spanning a wide range of daily scenarios with diverse objects and skills. To address the scarcity of action labels, we introduce continuous latent actions as unified proxy actions, enhancing interaction knowledge transfer from unlabeled videos. After post-training on small-scale target robot data, DreamDojo demonstrates a strong understanding of physics and precise action controllability. We also devise a distillation pipeline that accelerates DreamDojo to a real-time speed of 10.81 FPS and further improves context consistency. Our work enables several important applications based on generative world models, including live teleoperation, policy evaluation, and model-based planning. Systematic evaluation on multiple challenging out-of-distribution (OOD) benchmarks verifies the significance of our method for simulating open-world, contact-rich tasks, paving the way for general-purpose robot world models.
comment: Project page: https://dreamdojo-world.github.io/
☆ Agentic Uncertainty Reveals Agentic Overconfidence
Can AI agents predict whether they will succeed at a task? We study agentic uncertainty by eliciting success probability estimates before, during, and after task execution. All results exhibit agentic overconfidence: some agents that succeed only 22% of the time predict 77% success. Counterintuitively, pre-execution assessment with strictly less information tends to yield better discrimination than standard post-execution review, though differences are not always significant. Adversarial prompting reframing assessment as bug-finding achieves the best calibration.
☆ Optimal Derivative Feedback Control for an Active Magnetic Levitation System: An Experimental Study on Data-Driven Approaches
This paper presents the design and implementation of data-driven optimal derivative feedback controllers for an active magnetic levitation system. A direct, model-free control design method based on the reinforcement learning framework is compared with an indirect optimal control design derived from a numerically identified mathematical model of the system. For the direct model-free approach, a policy iteration procedure is proposed, which adds an iteration layer called the epoch loop to gather multiple sets of process data, providing a more diverse dataset and helping reduce learning biases. This direct control design method is evaluated against a comparable optimal control solution designed from a plant model obtained through the combined Dynamic Mode Decomposition with Control (DMDc) and Prediction Error Minimization (PEM) system identification. Results show that while both controllers can stabilize and improve the performance of the magnetic levitation system when compared to controllers designed from a nominal model, the direct model-free approach consistently outperforms the indirect solution when multiple epochs are allowed. The iterative refinement of the optimal control law over the epoch loop provides the direct approach a clear advantage over the indirect method, which relies on a single set of system data to determine the identified model and control.
comment: 10 pages, 9 figures. Preprint; manuscript under journal review
☆ Endogenous Resistance to Activation Steering in Language Models
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.
☆ From Core to Detail: Unsupervised Disentanglement with Entropy-Ordered Flows
Learning unsupervised representations that are both semantically meaningful and stable across runs remains a central challenge in modern representation learning. We introduce entropy-ordered flows (EOFlows), a normalizing-flow framework that orders latent dimensions by their explained entropy, analogously to PCA's explained variance. This ordering enables adaptive injective flows: after training, one may retain only the top C latent variables to form a compact core representation while the remaining variables capture fine-grained detail and noise, with C chosen flexibly at inference time rather than fixed during training. EOFlows build on insights from Independent Mechanism Analysis, Principal Component Flows and Manifold Entropic Metrics. We combine likelihood-based training with local Jacobian regularization and noise augmentation into a method that scales well to high-dimensional data such as images. Experiments on the CelebA dataset show that our method uncovers a rich set of semantically interpretable features, allowing for high compression and strong denoising.
☆ Cochain Perspectives on Temporal-Difference Signals for Learning Beyond Markov Dynamics
Non-Markovian dynamics are commonly found in real-world environments due to long-range dependencies, partial observability, and memory effects. The Bellman equation that is the central pillar of Reinforcement learning (RL) becomes only approximately valid under Non-Markovian. Existing work often focus on practical algorithm designs and offer limited theoretical treatment to address key questions, such as what dynamics are indeed capturable by the Bellman framework and how to inspire new algorithm classes with optimal approximations. In this paper, we present a novel topological viewpoint on temporal-difference (TD) based RL. We show that TD errors can be viewed as 1-cochain in the topological space of state transitions, while Markov dynamics are then interpreted as topological integrability. This novel view enables us to obtain a Hodge-type decomposition of TD errors into an integrable component and a topological residual, through a Bellman-de Rham projection. We further propose HodgeFlow Policy Search (HFPS) by fitting a potential network to minimize the non-integrable projection residual in RL, achieving stability/sensitivity guarantees. In numerical evaluations, HFPS is shown to significantly improve RL performance under non-Markovian.
☆ Reliable Mislabel Detection for Video Capsule Endoscopy Data
The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
☆ Reciprocal Latent Fields for Precomputed Sound Propagation
Realistic sound propagation is essential for immersion in a virtual scene, yet physically accurate wave-based simulations remain computationally prohibitive for real-time applications. Wave coding methods address this limitation by precomputing and compressing impulse responses of a given scene into a set of scalar acoustic parameters, which can reach unmanageable sizes in large environments with many source-receiver pairs. We introduce Reciprocal Latent Fields (RLF), a memory-efficient framework for encoding and predicting these acoustic parameters. The RLF framework employs a volumetric grid of trainable latent embeddings decoded with a symmetric function, ensuring acoustic reciprocity. We study a variety of decoders and show that leveraging Riemannian metric learning leads to a better reproduction of acoustic phenomena in complex scenes. Experimental validation demonstrates that RLF maintains replication quality while reducing the memory footprint by several orders of magnitude. Furthermore, a MUSHRA-like subjective listening test indicates that sound rendered via RLF is perceptually indistinguishable from ground-truth simulations.
comment: Temporary pre-print, will be updated. In review at a conference
☆ When RL Meets Adaptive Speculative Training: A Unified Training-Serving System
Speculative decoding can significantly accelerate LLM serving, yet most deployments today disentangle speculator training from serving, treating speculator training as a standalone offline modeling problem. We show that this decoupled formulation introduces substantial deployment and adaptation lag: (1) high time-to-serve, since a speculator must be trained offline for a considerable period before deployment; (2) delayed utility feedback, since the true end-to-end decoding speedup is only known after training and cannot be inferred reliably from acceptance rate alone due to model-architecture and system-level overheads; and (3) domain-drift degradation, as the target model is repurposed to new domains and the speculator becomes stale and less effective. To address these issues, we present Aurora, a unified training-serving system that closes the loop by continuously learning a speculator directly from live inference traces. Aurora reframes online speculator learning as an asynchronous reinforcement-learning problem: accepted tokens provide positive feedback, while rejected speculator proposals provide implicit negative feedback that we exploit to improve sample efficiency. Our design integrates an SGLang-based inference server with an asynchronous training server, enabling hot-swapped speculator updates without service interruption. Crucially, Aurora supports day-0 deployment: a speculator can be served immediately and rapidly adapted to live traffic, improving system performance while providing immediate utility feedback. Across experiments, Aurora achieves a 1.5x day-0 speedup on recently released frontier models (e.g., MiniMax M2.1 229B and Qwen3-Coder-Next 80B). Aurora also adapts effectively to distribution shifts in user traffic, delivering an additional 1.25x speedup over a well-trained but static speculator on widely used models (e.g., Qwen3 and Llama3).
☆ Continuous-time reinforcement learning: ellipticity enables model-free value function approximation
We study off-policy reinforcement learning for controlling continuous-time Markov diffusion processes with discrete-time observations and actions. We consider model-free algorithms with function approximation that learn value and advantage functions directly from data, without unrealistic structural assumptions on the dynamics. Leveraging the ellipticity of the diffusions, we establish a new class of Hilbert-space positive definiteness and boundedness properties for the Bellman operators. Based on these properties, we propose the Sobolev-prox fitted $q$-learning algorithm, which learns value and advantage functions by iteratively solving least-squares regression problems. We derive oracle inequalities for the estimation error, governed by (i) the best approximation error of the function classes, (ii) their localized complexity, (iii) exponentially decaying optimization error, and (iv) numerical discretization error. These results identify ellipticity as a key structural property that renders reinforcement learning with function approximation for Markov diffusions no harder than supervised learning.
☆ Robustness Beyond Known Groups with Low-rank Adaptation
Deep learning models trained to optimize average accuracy often exhibit systematic failures on particular subpopulations. In real world settings, the subpopulations most affected by such disparities are frequently unlabeled or unknown, thereby motivating the development of methods that are performant on sensitive subgroups without being pre-specified. However, existing group-robust methods typically assume prior knowledge of relevant subgroups, using group annotations for training or model selection. We propose Low-rank Error Informed Adaptation (LEIA), a simple two-stage method that improves group robustness by identifying a low-dimensional subspace in the representation space where model errors concentrate. LEIA restricts adaptation to this error-informed subspace via a low-rank adjustment to the classifier logits, directly targeting latent failure modes without modifying the backbone or requiring group labels. Using five real-world datasets, we analyze group robustness under three settings: (1) truly no knowledge of subgroup relevance, (2) partial knowledge of subgroup relevance, and (3) full knowledge of subgroup relevance. Across all settings, LEIA consistently improves worst-group performance while remaining fast, parameter-efficient, and robust to hyperparameter choice.
☆ From Kepler to Newton: Inductive Biases Guide Learned World Models in Transformers
Can general-purpose AI architectures go beyond prediction to discover the physical laws governing the universe? True intelligence relies on "world models" -- causal abstractions that allow an agent to not only predict future states but understand the underlying governing dynamics. While previous "AI Physicist" approaches have successfully recovered such laws, they typically rely on strong, domain-specific priors that effectively "bake in" the physics. Conversely, Vafa et al. recently showed that generic Transformers fail to acquire these world models, achieving high predictive accuracy without capturing the underlying physical laws. We bridge this gap by systematically introducing three minimal inductive biases. We show that ensuring spatial smoothness (by formulating prediction as continuous regression) and stability (by training with noisy contexts to mitigate error accumulation) enables generic Transformers to surpass prior failures and learn a coherent Keplerian world model, successfully fitting ellipses to planetary trajectories. However, true physical insight requires a third bias: temporal locality. By restricting the attention window to the immediate past -- imposing the simple assumption that future states depend only on the local state rather than a complex history -- we force the model to abandon curve-fitting and discover Newtonian force representations. Our results demonstrate that simple architectural choices determine whether an AI becomes a curve-fitter or a physicist, marking a critical step toward automated scientific discovery.
☆ Automatic Detection and Analysis of Singing Mistakes for Music Pedagogy
The advancement of machine learning in audio analysis has opened new possibilities for technology-enhanced music education. This paper introduces a framework for automatic singing mistake detection in the context of music pedagogy, supported by a newly curated dataset. The dataset comprises synchronized teacher learner vocal recordings, with annotations marking different types of mistakes made by learners. Using this dataset, we develop different deep learning models for mistake detection and benchmark them. To compare the efficacy of mistake detection systems, a new evaluation methodology is proposed. Experiments indicate that the proposed learning-based methods are superior to rule-based methods. A systematic study of errors and a cross-teacher study reveal insights into music pedagogy that can be utilised for various music applications. This work sets out new directions of research in music pedagogy. The codes and dataset are publicly available.
comment: Under Review at Transactions of Audio Speech and Language Processing
☆ Revisiting the Generic Transformer: Deconstructing a Strong Baseline for Time Series Foundation Models
The recent surge in Time Series Foundation Models has rapidly advanced the field, yet the heterogeneous training setups across studies make it difficult to attribute improvements to architectural innovations versus data engineering. In this work, we investigate the potential of a standard patch Transformer, demonstrating that this generic architecture achieves state-of-the-art zero-shot forecasting performance using a straightforward training protocol. We conduct a comprehensive ablation study that covers model scaling, data composition, and training techniques to isolate the essential ingredients for high performance. Our findings identify the key drivers of performance, while confirming that the generic architecture itself demonstrates excellent scalability. By strictly controlling these variables, we provide comprehensive empirical results on model scaling across multiple dimensions. We release our open-source model and detailed findings to establish a transparent, reproducible baseline for future research.
☆ A first realization of reinforcement learning-based closed-loop EEG-TMS
Background: Transcranial magnetic stimulation (TMS) is a powerful tool to investigate neurophysiology of the human brain and treat brain disorders. Traditionally, therapeutic TMS has been applied in a one-size-fits-all approach, disregarding inter- and intra-individual differences. Brain state-dependent EEG-TMS, such as coupling TMS with a pre-specified phase of the sensorimotor mu-rhythm, enables the induction of differential neuroplastic effects depending on the targeted phase. But this approach is still user-dependent as it requires defining an a-priori target phase. Objectives: To present a first realization of a machine-learning-based, closed-loop real-time EEG-TMS setup to identify user-independently the individual mu-rhythm phase associated with high- vs. low-corticospinal excitability states. Methods: We applied EEG-TMS to 25 participants targeting the supplementary motor area-primary motor cortex network and used a reinforcement learning algorithm to identify the mu-rhythm phase associated with high- vs. low corticospinal excitability. We employed linear mixed effects models and Bayesian analysis to determine effects of reinforced learning on corticospinal excitability indexed by motor evoked potential amplitude, and functional connectivity indexed by the imaginary part of resting-state EEG coherence. Results: Reinforcement learning effectively identified the mu-rhythm phase associated with high- vs. low-excitability states, and their repetitive stimulation resulted in long-term increases vs. decreases in functional connectivity in the stimulated sensorimotor network. Conclusions: We demonstrated for the first time the feasibility of closed-loop EEG-TMS in humans, a critical step towards individualized treatment of brain disorders.
☆ Parameter-free Dynamic Regret: Time-varying Movement Costs, Delayed Feedback, and Memory
In this paper, we study dynamic regret in unconstrained online convex optimization (OCO) with movement costs. Specifically, we generalize the standard setting by allowing the movement cost coefficients $λ_t$ to vary arbitrarily over time. Our main contribution is a novel algorithm that establishes the first comparator-adaptive dynamic regret bound for this setting, guaranteeing $\widetilde{\mathcal{O}}(\sqrt{(1+P_T)(T+\sum_t λ_t)})$ regret, where $P_T$ is the path length of the comparator sequence over $T$ rounds. This recovers the optimal guarantees for both static and dynamic regret in standard OCO as a special case where $λ_t=0$ for all rounds. To demonstrate the versatility of our results, we consider two applications: OCO with delayed feedback and OCO with time-varying memory. We show that both problems can be translated into time-varying movement costs, establishing a novel reduction specifically for the delayed feedback setting that is of independent interest. A crucial observation is that the first-order dependence on movement costs in our regret bound plays a key role in enabling optimal comparator-adaptive dynamic regret guarantees in both settings.
☆ Supercharging Simulation-Based Inference for Bayesian Optimal Experimental Design
Bayesian optimal experimental design (BOED) seeks to maximize the expected information gain (EIG) of experiments. This requires a likelihood estimate, which in many settings is intractable. Simulation-based inference (SBI) provides powerful tools for this regime. However, existing work explicitly connecting SBI and BOED is restricted to a single contrastive EIG bound. We show that the EIG admits multiple formulations which can directly leverage modern SBI density estimators, encompassing neural posterior, likelihood, and ratio estimation. Building on this perspective, we define a novel EIG estimator using neural likelihood estimation. Further, we identify optimization as a key bottleneck of gradient based EIG maximization and show that a simple multi-start parallel gradient ascent procedure can substantially improve reliability and performance. With these innovations, our SBI-based BOED methods are able to match or outperform by up to $22\%$ existing state-of-the-art approaches across standard BOED benchmarks.
☆ Sample Complexity of Causal Identification with Temporal Heterogeneity
Recovering a unique causal graph from observational data is an ill-posed problem because multiple generating mechanisms can lead to the same observational distribution. This problem becomes solvable only by exploiting specific structural or distributional assumptions. While recent work has separately utilized time-series dynamics or multi-environment heterogeneity to constrain this problem, we integrate both as complementary sources of heterogeneity. This integration yields unified necessary identifiability conditions and enables a rigorous analysis of the statistical limits of recovery under thin versus heavy-tailed noise. In particular, temporal structure is shown to effectively substitute for missing environmental diversity, possibly achieving identifiability even under insufficient heterogeneity. Extending this analysis to heavy-tailed (Student's t) distributions, we demonstrate that while geometric identifiability conditions remain invariant, the sample complexity diverges significantly from the Gaussian baseline. Explicit information-theoretic bounds quantify this cost of robustness, establishing the fundamental limits of covariance-based causal graph recovery methods in realistic non-stationary systems. This work shifts the focus from whether causal structure is identifiable to whether it is statistically recoverable in practice.
☆ A Cycle-Consistent Graph Surrogate for Full-Cycle Left Ventricular Myocardial Biomechanics
Image-based patient-specific simulation of left ventricular (LV) mechanics is valuable for understanding cardiac function and supporting clinical intervention planning, but conventional finite-element analysis (FEA) is computationally intensive. Current graph-based surrogates do not have full-cycle prediction capabilities, and physics-informed neural networks often struggle to converge on complex cardiac geometries. We present CardioGraphFENet (CGFENet), a unified graph-based surrogate for rapid full-cycle estimation of LV myocardial biomechanics, supervised by a large FEA simulation dataset. The proposed model integrates (i) a global--local graph encoder to capture mesh features with weak-form-inspired global coupling, (ii) a gated recurrent unit-based temporal encoder conditioned on the target volume-time signal to model cycle-coherent dynamics, and (iii) a cycle-consistent bidirectional formulation for both loading and inverse unloading within a single framework. These strategies enable high fidelity with respect to traditional FEA ground truths and produce physiologically plausible pressure-volume loops that match FEA results when coupled with a lumped-parameter model. In particular, the cycle-consistency strategy enables a significant reduction in FEA supervision with only minimal loss in accuracy.
☆ Vision Transformer Finetuning Benefits from Non-Smooth Components
The smoothness of the transformer architecture has been extensively studied in the context of generalization, training stability, and adversarial robustness. However, its role in transfer learning remains poorly understood. In this paper, we analyze the ability of vision transformer components to adapt their outputs to changes in inputs, or, in other words, their plasticity. Defined as an average rate of change, it captures the sensitivity to input perturbation; in particular, a high plasticity implies low smoothness. We demonstrate through theoretical analysis and comprehensive experiments that this perspective provides principled guidance in choosing the components to prioritize during adaptation. A key takeaway for practitioners is that the high plasticity of the attention modules and feedforward layers consistently leads to better finetuning performance. Our findings depart from the prevailing assumption that smoothness is desirable, offering a novel perspective on the functional properties of transformers. The code is available at https://github.com/ambroiseodt/vit-plasticity.
☆ Decoupling Variance and Scale-Invariant Updates in Adaptive Gradient Descent for Unified Vector and Matrix Optimization
Adaptive methods like Adam have become the $\textit{de facto}$ standard for large-scale vector and Euclidean optimization due to their coordinate-wise adaptation with a second-order nature. More recently, matrix-based spectral optimizers like Muon (Jordan et al., 2024b) show the power of treating weight matrices as matrices rather than long vectors. Linking these is hard because many natural generalizations are not feasible to implement, and we also cannot simply move the Adam adaptation to the matrix spectrum. To address this, we reformulate the AdaGrad update and decompose it into a variance adaptation term and a scale-invariant term. This decoupling produces $\textbf{DeVA}$ ($\textbf{De}$coupled $\textbf{V}$ariance $\textbf{A}$daptation), a framework that bridges between vector-based variance adaptation and matrix spectral optimization, enabling a seamless transition from Adam to adaptive spectral descent. Extensive experiments across language modeling and image classification demonstrate that DeVA consistently outperforms state-of-the-art methods such as Muon and SOAP (Vyas et al., 2024), reducing token usage by around 6.6\%. Theoretically, we show that the variance adaptation term effectively improves the blockwise smoothness, facilitating faster convergence. Our implementation is available at https://github.com/Tsedao/Decoupled-Variance-Adaptation
☆ Uncovering Cross-Objective Interference in Multi-Objective Alignment
We study a persistent failure mode in multi-objective alignment for large language models (LLMs): training improves performance on only a subset of objectives while causing others to degrade. We formalize this phenomenon as cross-objective interference and conduct the first systematic study across classic scalarization algorithms, showing that interference is pervasive and exhibits strong model dependence. To explain this phenomenon, we derive a local covariance law showing that an objective improves at first order when its reward exhibits positive covariance with the scalarized score. We extend this analysis to clipped surrogate objectives used in modern alignment, demonstrating that the covariance law remains valid under mild conditions despite clipping. Building on this analysis, we propose Covariance Targeted Weight Adaptation (CTWA), a plug-and-play method that maintains positive covariance between objective rewards and the training signal to effectively mitigate cross-objective interference. Finally, we complement these local improvement conditions with a global convergence analysis under the Polyak--Łojasiewicz condition, establishing when non-convex scalarized optimization achieves global convergence and how cross-objective interference depends on specific model geometric properties.
☆ T-STAR: A Context-Aware Transformer Framework for Short-Term Probabilistic Demand Forecasting in Dock-Based Shared Micro-Mobility
Reliable short-term demand forecasting is essential for managing shared micro-mobility services and ensuring responsive, user-centered operations. This study introduces T-STAR (Two-stage Spatial and Temporal Adaptive contextual Representation), a novel transformer-based probabilistic framework designed to forecast station-level bike-sharing demand at a 15-minute resolution. T-STAR addresses key challenges in high-resolution forecasting by disentangling consistent demand patterns from short-term fluctuations through a hierarchical two-stage structure. The first stage captures coarse-grained hourly demand patterns, while the second stage improves prediction accuracy by incorporating high-frequency, localized inputs, including recent fluctuations and real-time demand variations in connected metro services, to account for temporal shifts in short-term demand. Time series transformer models are employed in both stages to generate probabilistic predictions. Extensive experiments using Washington D.C.'s Capital Bikeshare data demonstrate that T-STAR outperforms existing methods in both deterministic and probabilistic accuracy. The model exhibits strong spatial and temporal robustness across stations and time periods. A zero-shot forecasting experiment further highlights T-STAR's ability to transfer to previously unseen service areas without retraining. These results underscore the framework's potential to deliver granular, reliable, and uncertainty-aware short-term demand forecasts, which enable seamless integration to support multimodal trip planning for travelers and enhance real-time operations in shared micro-mobility services.
comment: This work has been submitted to Transportation Research Part C
☆ Zero-shot Generalizable Graph Anomaly Detection with Mixture of Riemannian Experts
Graph Anomaly Detection (GAD) aims to identify irregular patterns in graph data, and recent works have explored zero-shot generalist GAD to enable generalization to unseen graph datasets. However, existing zero-shot GAD methods largely ignore intrinsic geometric differences across diverse anomaly patterns, substantially limiting their cross-domain generalization. In this work, we reveal that anomaly detectability is highly dependent on the underlying geometric properties and that embedding graphs from different domains into a single static curvature space can distort the structural signatures of anomalies. To address the challenge that a single curvature space cannot capture geometry-dependent graph anomaly patterns, we propose GAD-MoRE, a novel framework for zero-shot Generalizable Graph Anomaly Detection with a Mixture of Riemannian Experts architecture. Specifically, to ensure that each anomaly pattern is modeled in the Riemannian space where it is most detectable, GAD-MoRE employs a set of specialized Riemannian expert networks, each operating in a distinct curvature space. To align raw node features with curvature-specific anomaly characteristics, we introduce an anomaly-aware multi-curvature feature alignment module that projects inputs into parallel Riemannian spaces, enabling the capture of diverse geometric characteristics. Finally, to facilitate better generalization beyond seen patterns, we design a memory-based dynamic router that adaptively assigns each input to the most compatible expert based on historical reconstruction performance on similar anomalies. Extensive experiments in the zero-shot setting demonstrate that GAD-MoRE significantly outperforms state-of-the-art generalist GAD baselines, and even surpasses strong competitors that are few-shot fine-tuned with labeled data from the target domain.
☆ Designing a Robust, Bounded, and Smooth Loss Function for Improved Supervised Learning
The loss function is crucial to machine learning, especially in supervised learning frameworks. It is a fundamental component that controls the behavior and general efficacy of learning algorithms. However, despite their widespread use, traditional loss functions have significant drawbacks when dealing with high-dimensional and outlier-sensitive datasets, which frequently results in reduced performance and slower convergence during training. In this work, we develop a robust, bounded, and smooth (RoBoS-NN) loss function to resolve the aforementioned hindrances. The generalization ability of the loss function has also been theoretically analyzed to rigorously justify its robustness. Moreover, we implement RoboS-NN loss in the framework of a neural network (NN) to forecast time series and present a new robust algorithm named $\mathcal{L}_{\text{RoBoS}}$-NN. To assess the potential of $\mathcal{L}_{\text{RoBoS}}$-NN, we conduct experiments on multiple real-world datasets. In addition, we infuse outliers into data sets to evaluate the performance of $\mathcal{L}_{\text{RoBoS}}$-NN in more challenging scenarios. Numerical results show that $\mathcal{L}_{\text{RoBoS}}$-NN outperforms the other benchmark models in terms of accuracy measures.
☆ Improved Sampling Schedules for Discrete Diffusion Models
Discrete diffusion models have emerged as a powerful paradigm for generative modeling on sequence data; however, the information-theoretic principles governing their reverse processes remain significantly less understood than those of their continuous counterparts. In this work, we bridge this gap by analyzing the reverse process dynamics through the lens of thermodynamic entropy production. We propose the entropy production rate as a rigorous proxy for quantifying information generation, deriving as a byproduct a bound on the Wasserstein distance between intermediate states and the data distribution. Leveraging these insights, we introduce two novel sampling schedules that are uniformly spaced with respect to their corresponding physics-inspired metrics: the Entropic Discrete Schedule (EDS), which is defined by maintaining a constant rate of information gain, and the Wasserstein Discrete Schedule (WDS), which is defined by taking equal steps in terms of the Wasserstein distance. We empirically demonstrate that our proposed schedules significantly outperform state-of-the-art strategies across diverse application domains, including synthetic data, music notation, vision and language modeling, consistently achieving superior performance at a lower computational budget.
☆ Are Deep Learning Based Hybrid PDE Solvers Reliable? Why Training Paradigms and Update Strategies Matter
Deep learning-based hybrid iterative methods (DL-HIMs) integrate classical numerical solvers with neural operators, utilizing their complementary spectral biases to accelerate convergence. Despite this promise, many DL-HIMs stagnate at false fixed points where neural updates vanish while the physical residual remains large, raising questions about reliability in scientific computing. In this paper, we provide evidence that performance is highly sensitive to training paradigms and update strategies, even when the neural architecture is fixed. Through a detailed study of a DeepONet-based hybrid iterative numerical transferable solver (HINTS) and an FFT-based Fourier neural solver (FNS), we show that significant physical residuals can persist when training objectives are not aligned with solver dynamics and problem physics. We further examine Anderson acceleration (AA) and demonstrate that its classical form is ill-suited for nonlinear neural operators. To overcome this, we introduce physics-aware Anderson acceleration (PA-AA), which minimizes the physical residual rather than the fixed-point update. Numerical experiments confirm that PA-AA restores reliable convergence in substantially fewer iterations. These findings provide a concrete answer to ongoing controversies surrounding AI-based PDE solvers: reliability hinges not only on architectures but on physically informed training and iteration design.
☆ Learning Deep Hybrid Models with Sharpness-Aware Minimization
Hybrid modeling, the combination of machine learning models and scientific mathematical models, enables flexible and robust data-driven prediction with partial interpretability. However, effectively the scientific models may be ignored in prediction due to the flexibility of the machine learning model, making the idea of hybrid modeling pointless. Typically some regularization is applied to hybrid model learning to avoid such a failure case, but the formulation of the regularizer strongly depends on model architectures and domain knowledge. In this paper, we propose to focus on the flatness of loss minima in learning hybrid models, aiming to make the model as simple as possible. We employ the idea of sharpness-aware minimization and adapt it to the hybrid modeling setting. Numerical experiments show that the SAM-based method works well across different choices of models and datasets.
☆ AEGPO: Adaptive Entropy-Guided Policy Optimization for Diffusion Models
Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
☆ RanSOM: Second-Order Momentum with Randomized Scaling for Constrained and Unconstrained Optimization
Momentum methods, such as Polyak's Heavy Ball, are the standard for training deep networks but suffer from curvature-induced bias in stochastic settings, limiting convergence to suboptimal $\mathcal{O}(ε^{-4})$ rates. Existing corrections typically require expensive auxiliary sampling or restrictive smoothness assumptions. We propose \textbf{RanSOM}, a unified framework that eliminates this bias by replacing deterministic step sizes with randomized steps drawn from distributions with mean $η_t$. This modification allows us to leverage Stein-type identities to compute an exact, unbiased estimate of the momentum bias using a single Hessian-vector product computed jointly with the gradient, avoiding auxiliary queries. We instantiate this framework in two algorithms: \textbf{RanSOM-E} for unconstrained optimization (using exponentially distributed steps) and \textbf{RanSOM-B} for constrained optimization (using beta-distributed steps to strictly preserve feasibility). Theoretical analysis confirms that RanSOM recovers the optimal $\mathcal{O}(ε^{-3})$ convergence rate under standard bounded noise, and achieves optimal rates for heavy-tailed noise settings ($p \in (1, 2]$) without requiring gradient clipping.
☆ Calibrating Tabular Anomaly Detection via Optimal Transport
Tabular anomaly detection (TAD) remains challenging due to the heterogeneity of tabular data: features lack natural relationships, vary widely in distribution and scale, and exhibit diverse types. Consequently, each TAD method makes implicit assumptions about anomaly patterns that work well on some datasets but fail on others, and no method consistently outperforms across diverse scenarios. We present CTAD (Calibrating Tabular Anomaly Detection), a model-agnostic post-processing framework that enhances any existing TAD detector through sample-specific calibration. Our approach characterizes normal data via two complementary distributions, i.e., an empirical distribution from random sampling and a structural distribution from K-means centroids, and measures how adding a test sample disrupts their compatibility using Optimal Transport (OT) distance. Normal samples maintain low disruption while anomalies cause high disruption, providing a calibration signal to amplify detection. We prove that OT distance has a lower bound proportional to the test sample's distance from centroids, and establish that anomalies systematically receive higher calibration scores than normals in expectation, explaining why the method generalizes across datasets. Extensive experiments on 34 diverse tabular datasets with 7 representative detectors spanning all major TAD categories (density estimation, classification, reconstruction, and isolation-based methods) demonstrate that CTAD consistently improves performance with statistical significance. Remarkably, CTAD enhances even state-of-the-art deep learning methods and shows robust performance across diverse hyperparameter settings, requiring no additional tuning for practical deployment.
☆ SuReNav: Superpixel Graph-based Constraint Relaxation for Navigation in Over-constrained Environments ICRA 2026
We address the over-constrained planning problem in semi-static environments. The planning objective is to find a best-effort solution that avoids all hard constraint regions while minimally traversing the least risky areas. Conventional methods often rely on pre-defined area costs, limiting generalizations. Further, the spatial continuity of navigation spaces makes it difficult to identify regions that are passable without overestimation. To overcome these challenges, we propose SuReNav, a superpixel graph-based constraint relaxation and navigation method that imitates human-like safe and efficient navigation. Our framework consists of three components: 1) superpixel graph map generation with regional constraints, 2) regional-constraint relaxation using graph neural network trained on human demonstrations for safe and efficient navigation, and 3) interleaving relaxation, planning, and execution for complete navigation. We evaluate our method against state-of-the-art baselines on 2D semantic maps and 3D maps from OpenStreetMap, achieving the highest human-likeness score of complete navigation while maintaining a balanced trade-off between efficiency and safety. We finally demonstrate its scalability and generalization performance in real-world urban navigation with a quadruped robot, Spot.
comment: Accepted by ICRA 2026. Code and videos are available at https://sure-nav.github.io/
☆ RAIGen: Rare Attribute Identification in Text-to-Image Generative Models
Text-to-image diffusion models achieve impressive generation quality but inherit and amplify training-data biases, skewing coverage of semantic attributes. Prior work addresses this in two ways. Closed-set approaches mitigate biases in predefined fairness categories (e.g., gender, race), assuming socially salient minority attributes are known a priori. Open-set approaches frame the task as bias identification, highlighting majority attributes that dominate outputs. Both overlook a complementary task: uncovering rare or minority features underrepresented in the data distribution (social, cultural, or stylistic) yet still encoded in model representations. We introduce RAIGen, the first framework, to our knowledge, for un-supervised rare-attribute discovery in diffusion models. RAIGen leverages Matryoshka Sparse Autoencoders and a novel minority metric combining neuron activation frequency with semantic distinctiveness to identify interpretable neurons whose top-activating images reveal underrepresented attributes. Experiments show RAIGen discovers attributes beyond fixed fairness categories in Stable Diffusion, scales to larger models such as SDXL, supports systematic auditing across architectures, and enables targeted amplification of rare attributes during generation.
☆ On the Identifiability of Steering Vectors in Large Language Models
Activation steering methods, such as persona vectors, are widely used to control large language model behavior and increasingly interpreted as revealing meaningful internal representations. This interpretation implicitly assumes steering directions are identifiable and uniquely recoverable from input-output behavior. We formalize steering as an intervention on internal representations and prove that, under realistic modeling and data conditions, steering vectors are fundamentally non-identifiable due to large equivalence classes of behaviorally indistinguishable interventions. Empirically, we validate this across multiple models and semantic traits, showing orthogonal perturbations achieve near-equivalent efficacy with negligible effect sizes. However, identifiability is recoverable under structural assumptions including statistical independence, sparsity constraints, multi-environment validation or cross-layer consistency. These findings reveal fundamental interpretability limits and clarify structural assumptions required for reliable safety-critical control.
comment: 23 pages, 4 figures, 2 tables
☆ FlowDA: Accurate, Low-Latency Weather Data Assimilation via Flow Matching
Data assimilation (DA) is a fundamental component of modern weather prediction, yet it remains a major computational bottleneck in machine learning (ML)-based forecasting pipelines due to reliance on traditional variational methods. Recent generative ML-based DA methods offer a promising alternative but typically require many sampling steps and suffer from error accumulation under long-horizon auto-regressive rollouts with cycling assimilation. We propose FlowDA, a low-latency weather-scale generative DA framework based on flow matching. FlowDA conditions on observations through a SetConv-based embedding and fine-tunes the Aurora foundation model to deliver accurate, efficient, and robust analyses. Experiments across observation rates decreasing from $3.9\%$ to $0.1\%$ demonstrate superior performance of FlowDA over strong baselines with similar tunable-parameter size. FlowDA further shows robustness to observational noise and stable performance in long-horizon auto-regressive cycling DA. Overall, FlowDA points to an efficient and scalable direction for data-driven DA.
☆ Optimal Learning-Rate Schedules under Functional Scaling Laws: Power Decay and Warmup-Stable-Decay
We study optimal learning-rate schedules (LRSs) under the functional scaling law (FSL) framework introduced in Li et al. (2025), which accurately models the loss dynamics of both linear regression and large language model (LLM) pre-training. Within FSL, loss dynamics are governed by two exponents: a source exponent $s>0$ controlling the rate of signal learning, and a capacity exponent $β>1$ determining the rate of noise forgetting. Focusing on a fixed training horizon $N$, we derive the optimal LRSs and reveal a sharp phase transition. In the easy-task regime $s \ge 1 - 1/β$, the optimal schedule follows a power decay to zero, $η^*(z) = η_{\mathrm{peak}}(1 - z/N)^{2β- 1}$, where the peak learning rate scales as $η_{\mathrm{peak}} \eqsim N^{-ν}$ for an explicit exponent $ν= ν(s,β)$. In contrast, in the hard-task regime $s < 1 - 1/β$, the optimal LRS exhibits a warmup-stable-decay (WSD) (Hu et al. (2024)) structure: it maintains the largest admissible learning rate for most of training and decays only near the end, with the decay phase occupying a vanishing fraction of the horizon. We further analyze optimal shape-fixed schedules, where only the peak learning rate is tuned -- a strategy widely adopted in practiceand characterize their strengths and intrinsic limitations. This yields a principled evaluation of commonly used schedules such as cosine and linear decay. Finally, we apply the power-decay LRS to one-pass stochastic gradient descent (SGD) for kernel regression and show the last iterate attains the exact minimax-optimal rate, eliminating the logarithmic suboptimality present in prior analyses. Numerical experiments corroborate our theoretical predictions.
☆ Rare Event Analysis of Large Language Models
Being probabilistic models, during inference large language models (LLMs) display rare events: behaviour that is far from typical but highly significant. By definition all rare events are hard to see, but the enormous scale of LLM usage means that events completely unobserved during development are likely to become prominent in deployment. Here we present an end-to-end framework for the systematic analysis of rare events in LLMs. We provide a practical implementation spanning theory, efficient generation strategies, probability estimation and error analysis, which we illustrate with concrete examples. We outline extensions and applications to other models and contexts, highlighting the generality of the concepts and techniques presented here.
☆ Displacement-Resistant Extensions of DPO with Nonconvex $f$-Divergences ICLR 2026
DPO and related algorithms align language models by directly optimizing the RLHF objective: find a policy that maximizes the Bradley-Terry reward while staying close to a reference policy through a KL divergence penalty. Previous work showed that this approach could be further generalized: the original problem remains tractable even if the KL divergence is replaced by a family of $f$-divergence with a convex generating function $f$. Our first contribution is to show that convexity of $f$ is not essential. Instead, we identify a more general condition, referred to as DPO-inducing, that precisely characterizes when the RLHF problem remains tractable. Our next contribution is to establish a second condition on $f$ that is necessary to prevent probability displacement, a known empirical phenomenon in which the probabilities of the winner and the loser responses approach zero. We refer to any $f$ that satisfies this condition as displacement-resistant. We finally focus on a specific DPO-inducing and displacement-resistant $f$, leading to our novel SquaredPO loss. Compared to DPO, this new loss offers stronger theoretical guarantees while performing competitively in practice.
comment: Published as a conference paper at ICLR 2026
☆ Weisfeiler and Lehman Go Categorical
While lifting map has significantly enhanced the expressivity of graph neural networks, extending this paradigm to hypergraphs remains fragmented. To address this, we introduce the categorical Weisfeiler-Lehman framework, which formalizes lifting as a functorial mapping from an arbitrary data category to the unifying category of graded posets. When applied to hypergraphs, this perspective allows us to systematically derive Hypergraph Isomorphism Networks, a family of neural architectures where the message passing topology is strictly determined by the choice of functor. We introduce two distinct functors from the category of hypergraphs: an incidence functor and a symmetric simplicial complex functor. While the incidence architecture structurally mirrors standard bipartite schemes, our functorial derivation enforces a richer information flow over the resulting poset, capturing complex intersection geometries often missed by existing methods. We theoretically characterize the expressivity of these models, proving that both the incidence-based and symmetric simplicial approaches subsume the expressive power of the standard Hypergraph Weisfeiler-Lehman test. Extensive experiments on real-world benchmarks validate these theoretical findings.
comment: Comments are welcome!
☆ Revisiting Emotions Representation for Recognition in the Wild
Facial emotion recognition has been typically cast as a single-label classification problem of one out of six prototypical emotions. However, that is an oversimplification that is unsuitable for representing the multifaceted spectrum of spontaneous emotional states, which are most often the result of a combination of multiple emotions contributing at different intensities. Building on this, a promising direction that was explored recently is to cast emotion recognition as a distribution learning problem. Still, such approaches are limited in that research datasets are typically annotated with a single emotion class. In this paper, we contribute a novel approach to describe complex emotional states as probability distributions over a set of emotion classes. To do so, we propose a solution to automatically re-label existing datasets by exploiting the result of a study in which a large set of both basic and compound emotions is mapped to probability distributions in the Valence-Arousal-Dominance (VAD) space. In this way, given a face image annotated with VAD values, we can estimate the likelihood of it belonging to each of the distributions, so that emotional states can be described as a mixture of emotions, enriching their description, while also accounting for the ambiguous nature of their perception. In a preliminary set of experiments, we illustrate the advantages of this solution and a new possible direction of investigation. Data annotations are available at https://github.com/jbcnrlz/affectnet-b-annotation.
☆ Fair Transit Stop Placement: A Clustering Perspective and Beyond
We study the transit stop placement (TrSP) problem in general metric spaces, where agents travel between source-destination pairs and may either walk directly or utilize a shuttle service via selected transit stops. We investigate fairness in TrSP through the lens of justified representation (JR) and the core, and uncover a structural correspondence with fair clustering. Specifically, we show that a constant-factor approximation to proportional fairness in clustering can be used to guarantee a constant-factor biparameterized approximation to core. We establish a lower bound of 1.366 on the approximability of JR, and moreover show that no clustering algorithm can approximate JR within a factor better than 3. Going beyond clustering, we propose the Expanding Cost Algorithm, which achieves a tight 2.414-approximation for JR, but does not give any bounded core guarantee. In light of this, we introduce a parameterized algorithm that interpolates between these approaches, and enables a tunable trade-off between JR and core. Finally, we complement our results with an experimental analysis using small-market public carpooling data.
☆ Robust Online Learning
We study the problem of learning robust classifiers where the classifier will receive a perturbed input. Unlike robust PAC learning studied in prior work, here the clean data and its label are also adversarially chosen. We formulate this setting as an online learning problem and consider both the realizable and agnostic learnability of hypothesis classes. We define a new dimension of classes and show it controls the mistake bounds in the realizable setting and the regret bounds in the agnostic setting. In contrast to the dimension that characterizes learnability in the PAC setting, our dimension is rather simple and resembles the Littlestone dimension. We generalize our dimension to multiclass hypothesis classes and prove similar results in the realizable case. Finally, we study the case where the learner does not know the set of allowed perturbations for each point and only has some prior on them.
☆ On the Convergence of Multicalibration Gradient Boosting
Multicalibration gradient boosting has recently emerged as a scalable method that empirically produces approximately multicalibrated predictors and has been deployed at web scale. Despite this empirical success, its convergence properties are not well understood. In this paper, we bridge the gap by providing convergence guarantees for multicalibration gradient boosting in regression with squared-error loss. We show that the magnitude of successive prediction updates decays at $O(1/\sqrt{T})$, which implies the same convergence rate bound for the multicalibration error over rounds. Under additional smoothness assumptions on the weak learners, this rate improves to linear convergence. We further analyze adaptive variants, showing local quadratic convergence of the training loss, and we study rescaling schemes that preserve convergence. Experiments on real-world datasets support our theory and clarify the regimes in which the method achieves fast convergence and strong multicalibration.
comment: Under submission
☆ Calibrating Generative AI to Produce Realistic Essays for Data Augmentation
Data augmentation can mitigate limited training data in machine-learning automated scoring engines for constructed response items. This study seeks to determine how well three approaches to large language model prompting produce essays that preserve the writing quality of the original essays and produce realistic text for augmenting ASE training datasets. We created simulated versions of student essays, and human raters assigned scores to them and rated the realism of the generated text. The results of the study indicate that the predict next prompting strategy produces the highest level of agreement between human raters regarding simulated essay scores, predict next and sentence strategies best preserve the rated quality of the original essay in the simulated essays, and predict next and 25 examples strategies produce the most realistic text as judged by human raters.
comment: Artificial Intelligence in Measurement and Education Conference (AIME-Con)
☆ AEGIS: Adversarial Target-Guided Retention-Data-Free Robust Concept Erasure from Diffusion Models
Concept erasure helps stop diffusion models (DMs) from generating harmful content; but current methods face robustness retention trade off. Robustness means the model fine-tuned by concept erasure methods resists reactivation of erased concepts, even under semantically related prompts. Retention means unrelated concepts are preserved so the model's overall utility stays intact. Both are critical for concept erasure in practice, yet addressing them simultaneously is challenging, as existing works typically improve one factor while sacrificing the other. Prior work typically strengthens one while degrading the other, e.g., mapping a single erased prompt to a fixed safe target leaves class level remnants exploitable by prompt attacks, whereas retention-oriented schemes underperform against adaptive adversaries. This paper introduces Adversarial Erasure with Gradient Informed Synergy (AEGIS), a retention-data-free framework that advances both robustness and retention.
comment: 30 pages,12 figures
☆ Soft Forward-Backward Representations for Zero-shot Reinforcement Learning with General Utilities
Recent advancements in zero-shot reinforcement learning (RL) have facilitated the extraction of diverse behaviors from unlabeled, offline data sources. In particular, forward-backward algorithms (FB) can retrieve a family of policies that can approximately solve any standard RL problem (with additive rewards, linear in the occupancy measure), given sufficient capacity. While retaining zero-shot properties, we tackle the greater problem class of RL with general utilities, in which the objective is an arbitrary differentiable function of the occupancy measure. This setting is strictly more expressive, capturing tasks such as distribution matching or pure exploration, which may not be reduced to additive rewards. We show that this additional complexity can be captured by a novel, maximum entropy (soft) variant of the forward-backward algorithm, which recovers a family of stochastic policies from offline data. When coupled with zero-order search over compact policy embeddings, this algorithm can sidestep iterative optimization schemes, and optimizes general utilities directly at test-time. Across both didactic and high-dimensional experiments, we demonstrate that our method retains favorable properties of FB algorithms, while also extending their range to more general RL problems.
☆ A Unified Framework for LLM Watermarks
LLM watermarks allow tracing AI-generated texts by inserting a detectable signal into their generated content. Recent works have proposed a wide range of watermarking algorithms, each with distinct designs, usually built using a bottom-up approach. Crucially, there is no general and principled formulation for LLM watermarking. In this work, we show that most existing and widely used watermarking schemes can in fact be derived from a principled constrained optimization problem. Our formulation unifies existing watermarking methods and explicitly reveals the constraints that each method optimizes. In particular, it highlights an understudied quality-diversity-power trade-off. At the same time, our framework also provides a principled approach for designing novel watermarking schemes tailored to specific requirements. For instance, it allows us to directly use perplexity as a proxy for quality, and derive new schemes that are optimal with respect to this constraint. Our experimental evaluation validates our framework: watermarking schemes derived from a given constraint consistently maximize detection power with respect to that constraint.
☆ Semantically Labelled Automata for Multi-Task Reinforcement Learning with LTL Instructions
We study multi-task reinforcement learning (RL), a setting in which an agent learns a single, universal policy capable of generalising to arbitrary, possibly unseen tasks. We consider tasks specified as linear temporal logic (LTL) formulae, which are commonly used in formal methods to specify properties of systems, and have recently been successfully adopted in RL. In this setting, we present a novel task embedding technique leveraging a new generation of semantic LTL-to-automata translations, originally developed for temporal synthesis. The resulting semantically labelled automata contain rich, structured information in each state that allow us to (i) compute the automaton efficiently on-the-fly, (ii) extract expressive task embeddings used to condition the policy, and (iii) naturally support full LTL. Experimental results in a variety of domains demonstrate that our approach achieves state-of-the-art performance and is able to scale to complex specifications where existing methods fail.
☆ Disentanglement by means of action-induced representations
Learning interpretable representations with variational autoencoders (VAEs) is a major goal of representation learning. The main challenge lies in obtaining disentangled representations, where each latent dimension corresponds to a distinct generative factor. This difficulty is fundamentally tied to the inability to perform nonlinear independent component analysis. Here, we introduce the framework of action-induced representations (AIRs) which models representations of physical systems given experiments (or actions) that can be performed on them. We show that, in this framework, we can provably disentangle degrees of freedom w.r.t. their action dependence. We further introduce a variational AIR architecture (VAIR) that can extract AIRs and therefore achieve provable disentanglement where standard VAEs fail. Beyond state representation, VAIR also captures the action dependence of the underlying generative factors, directly linking experiments to the degrees of freedom they influence.
comment: Main text: 10 pages, 4 figures
☆ Optimal Abstractions for Verifying Properties of Kolmogorov-Arnold Networks (KANs)
We present a novel approach for verifying properties of Kolmogorov-Arnold Networks (KANs), a class of neural networks characterized by nonlinear, univariate activation functions typically implemented as piecewise polynomial splines or Gaussian processes. Our method creates mathematical ``abstractions'' by replacing each KAN unit with a piecewise affine (PWA) function, providing both local and global error estimates between the original network and its approximation. These abstractions enable property verification by encoding the problem as a Mixed Integer Linear Program (MILP), determining whether outputs satisfy specified properties when inputs belong to a given set. A critical challenge lies in balancing the number of pieces in the PWA approximation: too many pieces add binary variables that make verification computationally intractable, while too few pieces create excessive error margins that yield uninformative bounds. Our key contribution is a systematic framework that exploits KAN structure to find optimal abstractions. By combining dynamic programming at the unit level with a knapsack optimization across the network, we minimize the total number of pieces while guaranteeing specified error bounds. This approach determines the optimal approximation strategy for each unit while maintaining overall accuracy requirements. Empirical evaluation across multiple KAN benchmarks demonstrates that the upfront analysis costs of our method are justified by superior verification results.
☆ Pairwise is Not Enough: Hypergraph Neural Networks for Multi-Agent Pathfinding ICLR 2026
Multi-Agent Path Finding (MAPF) is a representative multi-agent coordination problem, where multiple agents are required to navigate to their respective goals without collisions. Solving MAPF optimally is known to be NP-hard, leading to the adoption of learning-based approaches to alleviate the online computational burden. Prevailing approaches, such as Graph Neural Networks (GNNs), are typically constrained to pairwise message passing between agents. However, this limitation leads to suboptimal behaviours and critical issues, such as attention dilution, particularly in dense environments where group (i.e. beyond just two agents) coordination is most critical. Despite the importance of such higher-order interactions, existing approaches have not been able to fully explore them. To address this representational bottleneck, we introduce HMAGAT (Hypergraph Multi-Agent Attention Network), a novel architecture that leverages attentional mechanisms over directed hypergraphs to explicitly capture group dynamics. Empirically, HMAGAT establishes a new state-of-the-art among learning-based MAPF solvers: e.g., despite having just 1M parameters and being trained on 100$\times$ less data, it outperforms the current SoTA 85M parameter model. Through detailed analysis of HMAGAT's attention values, we demonstrate how hypergraph representations mitigate the attention dilution inherent in GNNs and capture complex interactions where pairwise methods fail. Our results illustrate that appropriate inductive biases are often more critical than the training data size or sheer parameter count for multi-agent problems.
comment: Accepted at ICLR 2026
☆ F-GRPO: Don't Let Your Policy Learn the Obvious and Forget the Rare
Reinforcement Learning with Verifiable Rewards (RLVR) is commonly based on group sampling to estimate advantages and stabilize policy updates. In practice, large group sizes are not feasible due to computational limits, which biases learning toward trajectories that are already likely. Smaller groups often miss rare-correct trajectories while still containing mixed rewards, concentrating probability on common solutions. We derive the probability that updates miss rare-correct modes as a function of group size, showing non-monotonic behavior, and characterize how updates redistribute mass within the correct set, revealing that unsampled-correct mass can shrink even as total correct mass grows. Motivated by this analysis, we propose a difficulty-aware advantage scaling coefficient, inspired by Focal loss, that down-weights updates on high-success prompts. The lightweight modification can be directly integrated into any group-relative RLVR algorithm such as GRPO, DAPO, and CISPO. On Qwen2.5-7B across in-domain and out-of-domain benchmarks, our method improves pass@256 from 64.1 $\rightarrow$ 70.3 (GRPO), 69.3 $\rightarrow$ 72.5 (DAPO), and 73.2 $\rightarrow$ 76.8 (CISPO), while preserving or improving pass@1, without increasing group size or computational cost.
☆ Missing At Random as Covariate Shift: Correcting Bias in Iterative Imputation
Accurate imputation of missing data is critical to downstream machine learning performance. We formulate missing data imputation as a risk minimisation problem, which highlights a covariate shift between the observed and unobserved data distributions. This covariate shift induced bias is not accounted for by popular imputation methods and leads to suboptimal performance. In this paper, we derive theoretically valid importance weights that correct for the induced distributional bias. Furthermore, we propose a novel imputation algorithm that jointly estimates both the importance weights and imputation models, enabling bias correction throughout the imputation process. Empirical results across benchmark datasets show reductions in root mean squared error and Wasserstein distance of up to 7% and 20%, respectively, compared to otherwise identical unweighted methods.
comment: 8 pages, 6 figures
☆ SaDiT: Efficient Protein Backbone Design via Latent Structural Tokenization and Diffusion Transformers
Generative models for de novo protein backbone design have achieved remarkable success in creating novel protein structures. However, these diffusion-based approaches remain computationally intensive and slower than desired for large-scale structural exploration. While recent efforts like Proteina have introduced flow-matching to improve sampling efficiency, the potential of tokenization for structural compression and acceleration remains largely unexplored in the protein domain. In this work, we present SaDiT, a novel framework that accelerates protein backbone generation by integrating SaProt Tokenization with a Diffusion Transformer (DiT) architecture. SaDiT leverages a discrete latent space to represent protein geometry, significantly reducing the complexity of the generation process while maintaining theoretical SE(3) equivalence. To further enhance efficiency, we introduce an IPA Token Cache mechanism that optimizes the Invariant Point Attention (IPA) layers by reusing computed token states during iterative sampling. Experimental results demonstrate that SaDiT outperforms state-of-the-art models, including RFDiffusion and Proteina, in both computational speed and structural viability. We evaluate our model across unconditional backbone generation and fold-class conditional generation tasks, where SaDiT shows superior ability to capture complex topological features with high designability.
☆ Explaining Grokking in Transformers through the Lens of Inductive Bias
We investigate grokking in transformers through the lens of inductive bias: dispositions arising from architecture or optimization that let the network prefer one solution over another. We first show that architectural choices such as the position of Layer Normalization (LN) strongly modulates grokking speed. This modulation is explained by isolating how LN on specific pathways shapes shortcut-learning and attention entropy. Subsequently, we study how different optimization settings modulate grokking, inducing distinct interpretations of previously proposed controls such as readout scale. Particularly, we find that using readout scale as a control for lazy training can be confounded by learning rate and weight decay in our setting. Accordingly, we show that features evolve continuously throughout training, suggesting grokking in transformers can be more nuanced than a lazy-to-rich transition of the learning regime. Finally, we show how generalization predictably emerges with feature compressibility in grokking, across different modulators of inductive bias. Our code is released at https://tinyurl.com/y52u3cad.
comment: Total 15 pages, 9 figures
☆ Taipan: A Query-free Transfer-based Multiple Sensitive Attribute Inference Attack Solely from Publicly Released Graphs
Graph-structured data underpin a wide spectrum of modern applications. However, complex graph topologies and homophilic patterns can facilitate attribute inference attacks (AIAs) by enabling sensitive information leakage to propagate across local neighborhoods. Existing AIAs predominantly assume that adversaries can probe sensitive attributes through repeated model queries. Such assumptions are often impractical in real-world settings due to stringent data protection regulations, prohibitive query budgets, and heightened detection risks, especially when inferring multiple sensitive attributes. More critically, this model-centric perspective obscures a pervasive blind spot: \textbf{intrinsic multiple sensitive information leakage arising solely from publicly released graphs.} To exploit this unexplored vulnerability, we introduce a new attack paradigm and propose \textbf{Taipan, the first query-free transfer-based attack framework for multiple sensitive attribute inference attacks on graphs (G-MSAIAs).} Taipan integrates \emph{Hierarchical Attack Knowledge Routing} to capture intricate inter-attribute correlations, and \emph{Prompt-guided Attack Prototype Refinement} to mitigate negative transfer and performance degradation. We further present a systematic evaluation framework tailored to G-MSAIAs. Extensive experiments on diverse real-world graph datasets demonstrate that Taipan consistently achieves strong attack performance across same-distribution settings and heterogeneous similar- and out-of-distribution settings with mismatched feature dimensionalities, and remains effective even under rigorous differential privacy guarantees. Our findings underscore the urgent need for more robust multi-attribute privacy-preserving graph publishing methods and data-sharing practices.
☆ Quantum Attention by Overlap Interference: Predicting Sequences from Classical and Many-Body Quantum Data
We propose a variational quantum implementation of self-attention (QSA), the core operation in transformers and large language models, which predicts future elements of a sequence by forming overlap-weighted combinations of past data. At variance with previous approaches, our QSA realizes the required nonlinearity through interference of state overlaps and returns a Renyi-1/2 cross-entropy loss directly as the expectation value of an observable, avoiding the need to decode amplitude-encoded predictions into classical logits. Furthermore, QSA naturally accommodates a constrained, trainable data-embedding that ties quantum state overlaps to data-level similarities. We find a gate complexity dominant scaling O(T d^2) for QSA, versus O(T^2 d) classically, suggesting an advantage in the practical regime where the sequence length T dominates the embedding size d. In simulations, we show that our QSA-based quantum transformer learns sequence prediction on classical data and on many-body transverse-field Ising quantum trajectories, establishing trainable attention as a practical primitive for quantum dynamical modeling.
comment: 4 + 1 pages, 2 figures
☆ Diffeomorphism-Equivariant Neural Networks
Incorporating group symmetries via equivariance into neural networks has emerged as a robust approach for overcoming the efficiency and data demands of modern deep learning. While most existing approaches, such as group convolutions and averaging-based methods, focus on compact, finite, or low-dimensional groups with linear actions, this work explores how equivariance can be extended to infinite-dimensional groups. We propose a strategy designed to induce diffeomorphism equivariance in pre-trained neural networks via energy-based canonicalisation. Formulating equivariance as an optimisation problem allows us to access the rich toolbox of already established differentiable image registration methods. Empirical results on segmentation and classification tasks confirm that our approach achieves approximate equivariance and generalises to unseen transformations without relying on extensive data augmentation or retraining.
☆ NanoQuant: Efficient Sub-1-Bit Quantization of Large Language Models
Weight-only quantization has become a standard approach for efficiently serving large language models (LLMs). However, existing methods fail to efficiently compress models to binary (1-bit) levels, as they either require large amounts of data and compute or incur additional storage. In this work, we propose NanoQuant, the first post-training quantization (PTQ) method to compress LLMs to both binary and sub-1-bit levels. NanoQuant formulates quantization as a low-rank binary factorization problem, and compresses full-precision weights to low-rank binary matrices and scales. Specifically, it utilizes an efficient alternating direction method of multipliers (ADMM) method to precisely initialize latent binary matrices and scales, and then tune the initialized parameters through a block and model reconstruction process. Consequently, NanoQuant establishes a new Pareto frontier in low-memory post-training quantization, achieving state-of-the-art accuracy even at sub-1-bit compression rates. NanoQuant makes large-scale deployment feasible on consumer hardware. For example, it compresses Llama2-70B by 25.8$\times$ in just 13 hours on a single H100, enabling a 70B model to operate on a consumer 8 GB GPU.
comment: 26 pages. Hyochan Chong and Dongkyu Kim contributed equally to this work
☆ Makespan Minimization in Split Learning: From Theory to Practice
Split learning recently emerged as a solution for distributed machine learning with heterogeneous IoT devices, where clients can offload part of their training to computationally-powerful helpers. The core challenge in split learning is to minimize the training time by jointly devising the client-helper assignment and the schedule of tasks at the helpers. We first study the model where each helper has a memory cardinality constraint on how many clients it may be assigned, which represents the case of homogeneous tasks. Through complexity theory, we rule out exact polynomial-time algorithms and approximation schemes even for highly restricted instances of this problem. We complement these negative results with a non-trivial polynomial-time 5-approximation algorithm. Building on this, we then focus on the more general heterogeneous task setting considered by Tirana et al. [INFOCOM 2024], where helpers have memory capacity constraints and clients have variable memory costs. In this case, we prove that, unless P=NP, the problem cannot admit a polynomial-time approximation algorithm for any approximation factor. However, by adapting our aforementioned 5-approximation algorithm, we develop a novel heuristic for the heterogeneous task setting and show that it outperforms heuristics from prior works through extensive experiments.
comment: This paper will appear at IEEE INFOCOM 2026
☆ Memory-Conditioned Flow-Matching for Stable Autoregressive PDE Rollouts
Autoregressive generative PDE solvers can be accurate one step ahead yet drift over long rollouts, especially in coarse-to-fine regimes where each step must regenerate unresolved fine scales. This is the regime of diffusion and flow-matching generators: although their internal dynamics are Markovian, rollout stability is governed by per-step \emph{conditional law} errors. Using the Mori--Zwanzig projection formalism, we show that eliminating unresolved variables yields an exact resolved evolution with a Markov term, a memory term, and an orthogonal forcing, exposing a structural limitation of memoryless closures. Motivated by this, we introduce memory-conditioned diffusion/flow-matching with a compact online state injected into denoising via latent features. Via disintegration, memory induces a structured conditional tail prior for unresolved scales and reduces the transport needed to populate missing frequencies. We prove Wasserstein stability of the resulting conditional kernel. We then derive discrete Grönwall rollout bounds that separate memory approximation from conditional generation error. Experiments on compressible flows with shocks and multiscale mixing show improved accuracy and markedly more stable long-horizon rollouts, with better fine-scale spectral and statistical fidelity.
☆ Pruning at Initialisation through the lens of Graphon Limit: Convergence, Expressivity, and Generalisation
Pruning at Initialisation methods discover sparse, trainable subnetworks before training, but their theoretical mechanisms remain elusive. Existing analyses are often limited to finite-width statistics, lacking a rigorous characterisation of the global sparsity patterns that emerge as networks grow large. In this work, we connect discrete pruning heuristics to graph limit theory via graphons, establishing the graphon limit of PaI masks. We introduce a Factorised Saliency Model that encompasses popular pruning criteria and prove that, under regularity conditions, the discrete masks generated by these algorithms converge to deterministic bipartite graphons. This limit framework establishes a novel topological taxonomy for sparse networks: while unstructured methods (e.g., Random, Magnitude) converge to homogeneous graphons representing uniform connectivity, data-driven methods (e.g., SNIP, GraSP) converge to heterogeneous graphons that encode implicit feature selection. Leveraging this continuous characterisation, we derive two fundamental theoretical results: (i) a Universal Approximation Theorem for sparse networks that depends only on the intrinsic dimension of active coordinate subspaces; and (ii) a Graphon-NTK generalisation bound demonstrating how the limit graphon modulates the kernel geometry to align with informative features. Our results transform the study of sparse neural networks from combinatorial graph problems into a rigorous framework of continuous operators, offering a new mechanism for analysing expressivity and generalisation in sparse neural networks.
☆ CytoCrowd: A Multi-Annotator Benchmark Dataset for Cytology Image Analysis
High-quality annotated datasets are crucial for advancing machine learning in medical image analysis. However, a critical gap exists: most datasets either offer a single, clean ground truth, which hides real-world expert disagreement, or they provide multiple annotations without a separate gold standard for objective evaluation. To bridge this gap, we introduce CytoCrowd, a new public benchmark for cytology analysis. The dataset features 446 high-resolution images, each with two key components: (1) raw, conflicting annotations from four independent pathologists, and (2) a separate, high-quality gold-standard ground truth established by a senior expert. This dual structure makes CytoCrowd a versatile resource. It serves as a benchmark for standard computer vision tasks, such as object detection and classification, using the ground truth. Simultaneously, it provides a realistic testbed for evaluating annotation aggregation algorithms that must resolve expert disagreements. We provide comprehensive baseline results for both tasks. Our experiments demonstrate the challenges presented by CytoCrowd and establish its value as a resource for developing the next generation of models for medical image analysis.
☆ Humanoid Manipulation Interface: Humanoid Whole-Body Manipulation from Robot-Free Demonstrations
Current approaches for humanoid whole-body manipulation, primarily relying on teleoperation or visual sim-to-real reinforcement learning, are hindered by hardware logistics and complex reward engineering. Consequently, demonstrated autonomous skills remain limited and are typically restricted to controlled environments. In this paper, we present the Humanoid Manipulation Interface (HuMI), a portable and efficient framework for learning diverse whole-body manipulation tasks across various environments. HuMI enables robot-free data collection by capturing rich whole-body motion using portable hardware. This data drives a hierarchical learning pipeline that translates human motions into dexterous and feasible humanoid skills. Extensive experiments across five whole-body tasks--including kneeling, squatting, tossing, walking, and bimanual manipulation--demonstrate that HuMI achieves a 3x increase in data collection efficiency compared to teleoperation and attains a 70% success rate in unseen environments.
comment: Website: https://humanoid-manipulation-interface.github.io
☆ Temperature Scaling Attack Disrupting Model Confidence in Federated Learning
Predictive confidence serves as a foundational control signal in mission-critical systems, directly governing risk-aware logic such as escalation, abstention, and conservative fallback. While prior federated learning attacks predominantly target accuracy or implant backdoors, we identify confidence calibration as a distinct attack objective. We present the Temperature Scaling Attack (TSA), a training-time attack that degrades calibration while preserving accuracy. By injecting temperature scaling with learning rate-temperature coupling during local training, malicious updates maintain benign-like optimization behavior, evading accuracy-based monitoring and similarity-based detection. We provide a convergence analysis under non-IID settings, showing that this coupling preserves standard convergence bounds while systematically distorting confidence. Across three benchmarks, TSA substantially shifts calibration (e.g., 145% error increase on CIFAR-100) with <2 accuracy change, and remains effective under robust aggregation and post-hoc calibration defenses. Case studies further show that confidence manipulation can cause up to 7.2x increases in missed critical cases (healthcare) or false alarms (autonomous driving), even when accuracy is unchanged. Overall, our results establish calibration integrity as a critical attack surface in federated learning.
comment: 20 pages, 20 figures
☆ Trust Regions Sell, But Who's Buying? Overlap Geometry as an Alternative Trust Region for Policy Optimization
Standard trust-region methods constrain policy updates via Kullback-Leibler (KL) divergence. However, KL controls only an average divergence and does not directly prevent rare, large likelihood-ratio excursions that destabilize training--precisely the failure mode that motivates heuristics such as PPO's clipping. We propose overlap geometry as an alternative trust region, constraining distributional overlap via the Bhattacharyya coefficient (closely related to the Hellinger/Renyi-1/2 geometry). This objective penalizes separation in the ratio tails, yielding tighter control over likelihood-ratio excursions without relying on total variation bounds that can be loose in tail regimes. We derive Bhattacharyya-TRPO (BTRPO) and Bhattacharyya-PPO (BPPO), enforcing overlap constraints via square-root ratio updates: BPPO clips the square-root ratio q = sqrt(r), and BTRPO applies a quadratic Hellinger/Bhattacharyya penalty. Empirically, overlap-based updates improve robustness and aggregate performance as measured by RLiable under matched training budgets, suggesting overlap constraints as a practical, principled alternative to KL for stable policy optimization.
comment: Under Review
☆ Infinite-dimensional generative diffusions via Doob's h-transform
This paper introduces a rigorous framework for defining generative diffusion models in infinite dimensions via Doob's h-transform. Rather than relying on time reversal of a noising process, a reference diffusion is forced towards the target distribution by an exponential change of measure. Compared to existing methodology, this approach readily generalises to the infinite-dimensional setting, hence offering greater flexibility in the diffusion model. The construction is derived rigorously under verifiable conditions, and bounds with respect to the target measure are established. We show that the forced process under the changed measure can be approximated by minimising a score-matching objective and validate our method on both synthetic and real data.
☆ Confundo: Learning to Generate Robust Poison for Practical RAG Systems
Retrieval-augmented generation (RAG) is increasingly deployed in real-world applications, where its reference-grounded design makes outputs appear trustworthy. This trust has spurred research on poisoning attacks that craft malicious content, inject it into knowledge sources, and manipulate RAG responses. However, when evaluated in practical RAG systems, existing attacks suffer from severely degraded effectiveness. This gap stems from two overlooked realities: (i) content is often processed before use, which can fragment the poison and weaken its effect, and (ii) users often do not issue the exact queries anticipated during attack design. These factors can lead practitioners to underestimate risks and develop a false sense of security. To better characterize the threat to practical systems, we present Confundo, a learning-to-poison framework that fine-tunes a large language model as a poison generator to achieve high effectiveness, robustness, and stealthiness. Confundo provides a unified framework supporting multiple attack objectives, demonstrated by manipulating factual correctness, inducing biased opinions, and triggering hallucinations. By addressing these overlooked challenges, Confundo consistently outperforms a wide range of purpose-built attacks across datasets and RAG configurations by large margins, even in the presence of defenses. Beyond exposing vulnerabilities, we also present a defensive use case that protects web content from unauthorized incorporation into RAG systems via scraping, with no impact on user experience.
☆ DAVE: Distribution-aware Attribution via ViT Gradient Decomposition
Vision Transformers (ViTs) have become a dominant architecture in computer vision, yet producing stable and high-resolution attribution maps for these models remains challenging. Architectural components such as patch embeddings and attention routing often introduce structured artifacts in pixel-level explanations, causing many existing methods to rely on coarse patch-level attributions. We introduce DAVE \textit{(\underline{D}istribution-aware \underline{A}ttribution via \underline{V}iT Gradient D\underline{E}composition)}, a mathematically grounded attribution method for ViTs based on a structured decomposition of the input gradient. By exploiting architectural properties of ViTs, DAVE isolates locally equivariant and stable components of the effective input--output mapping. It separates these from architecture-induced artifacts and other sources of instability.
comment: work under review. Code will be released upon acceptance
☆ Adaptive-CaRe: Adaptive Causal Regularization for Robust Outcome Prediction
Accurate prediction of outcomes is crucial for clinical decision-making and personalized patient care. Supervised machine learning algorithms, which are commonly used for outcome prediction in the medical domain, optimize for predictive accuracy, which can result in models latching onto spurious correlations instead of robust predictors. Causal structure learning methods on the other hand have the potential to provide robust predictors for the target, but can be too conservative because of algorithmic and data assumptions, resulting in loss of diagnostic precision. Therefore, we propose a novel model-agnostic regularization strategy, Adaptive-CaRe, for generalized outcome prediction in the medical domain. Adaptive-CaRe strikes a balance between both predictive value and causal robustness by incorporating a penalty that is proportional to the difference between the estimated statistical contribution and estimated causal contribution of the input features for model predictions. Our experiments on synthetic data establish the efficacy of the proposed Adaptive-CaRe regularizer in finding robust predictors for the target while maintaining competitive predictive accuracy. With experiments on a standard causal benchmark, we provide a blueprint for navigating the trade-off between predictive accuracy and causal robustness by tweaking the regularization strength, $λ$. Validation using real-world dataset confirms that the results translate to practical, real-domain settings. Therefore, Adaptive-CaRe provides a simple yet effective solution to the long-standing trade-off between predictive accuracy and causal robustness in the medical domain. Future work would involve studying alternate causal structure learning frameworks and complex classification models to provide deeper insights at a larger scale.
☆ The challenge of generating and evolving real-life like synthetic test data without accessing real-world raw data -- a Systematic Review
Background: High-level system testing of applications that use data from e-Government services as input requires test data that is real-life-like but where the privacy of personal information is guaranteed. Applications with such strong requirement include information exchange between countries, medicine, banking, etc. This review aims to synthesize the current state-of-the-practice in this domain. Objectives: The objective of this Systematic Review is to identify existing approaches for creating and evolving synthetic test data without using real-life raw data. Methods: We followed well-known methodologies for conducting systematic literature reviews, including the ones from Kitchenham as well as guidelines for analysing the limitations of our review and its threats to validity. Results: A variety of methods and tools exist for creating privacy-preserving test data. Our search found 1,013 publications in IEEE Xplore, ACM Digital Library, and SCOPUS. We extracted data from 75 of those publications and identified 37 approaches that answer our research question partly. A common prerequisite for using these methods and tools is direct access to real-life data for data anonymization or synthetic test data generation. Nine existing synthetic test data generation approaches were identified that were closest to answering our research question. Nevertheless, further work would be needed to add the ability to evolve synthetic test data to the existing approaches. Conclusions: None of the publications really covered our requirements completely, only partially. Synthetic test data evolution is a field that has not received much attention from researchers but needs to be explored in Digital Government Solutions, especially since new legal regulations are being placed in force in many countries.
comment: 22 pages
☆ The hidden risks of temporal resampling in clinical reinforcement learning
Offline reinforcement learning (ORL) has shown potential for improving decision-making in healthcare. However, contemporary research typically aggregates patient data into fixed time intervals, simplifying their mapping to standard ORL frameworks. The impact of these temporal manipulations on model safety and efficacy remains poorly understood. In this work, using both a gridworld navigation task and the UVA/Padova clinical diabetes simulator, we demonstrate that temporal resampling significantly degrades the performance of offline reinforcement learning algorithms during live deployment. We propose three mechanisms that drive this failure: (i) the generation of counterfactual trajectories, (ii) the distortion of temporal expectations, and (iii) the compounding of generalisation errors. Crucially, we find that standard off-policy evaluation metrics can fail to detect these drops in performance. Our findings reveal a fundamental risk in current healthcare ORL pipelines and emphasise the need for methods that explicitly handle the irregular timing of clinical decision-making.
comment: 12 pages, 4 figures. Currently under submission to npj Digital Medicine
☆ Scaling Speech Tokenizers with Diffusion Autoencoders ICLR 2026
Speech tokenizers are foundational to speech language models, yet existing approaches face two major challenges: (1) balancing trade-offs between encoding semantics for understanding and acoustics for reconstruction, and (2) achieving low bit rates and low token rates. We propose Speech Diffusion Tokenizer (SiTok), a diffusion autoencoder that jointly learns semantic-rich representations through supervised learning and enables high-fidelity audio reconstruction with diffusion. We scale SiTok to 1.6B parameters and train it on 2 million hours of speech. Experiments show that SiTok outperforms strong baselines on understanding, reconstruction and generation tasks, at an extremely low token rate of $12.5$ Hz and a bit-rate of 200 bits-per-second.
comment: ICLR 2026
☆ Sample-Efficient Policy Space Response Oracles with Joint Experience Best Response AAMAS 2026
Multi-agent reinforcement learning (MARL) offers a scalable alternative to exact game-theoretic analysis but suffers from non-stationarity and the need to maintain diverse populations of strategies that capture non-transitive interactions. Policy Space Response Oracles (PSRO) address these issues by iteratively expanding a restricted game with approximate best responses (BRs), yet per-agent BR training makes it prohibitively expensive in many-agent or simulator-expensive settings. We introduce Joint Experience Best Response (JBR), a drop-in modification to PSRO that collects trajectories once under the current meta-strategy profile and reuses this joint dataset to compute BRs for all agents simultaneously. This amortizes environment interaction and improves the sample efficiency of best-response computation. Because JBR converts BR computation into an offline RL problem, we propose three remedies for distribution-shift bias: (i) Conservative JBR with safe policy improvement, (ii) Exploration-Augmented JBR that perturbs data collection and admits theoretical guarantees, and (iii) Hybrid BR that interleaves JBR with periodic independent BR updates. Across benchmark multi-agent environments, Exploration-Augmented JBR achieves the best accuracy-efficiency trade-off, while Hybrid BR attains near-PSRO performance at a fraction of the sample cost. Overall, JBR makes PSRO substantially more practical for large-scale strategic learning while preserving equilibrium robustness.
comment: Accepted at the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
☆ DiTS: Multimodal Diffusion Transformers Are Time Series Forecasters
While generative modeling on time series facilitates more capable and flexible probabilistic forecasting, existing generative time series models do not address the multi-dimensional properties of time series data well. The prevalent architecture of Diffusion Transformers (DiT), which relies on simplistic conditioning controls and a single-stream Transformer backbone, tends to underutilize cross-variate dependencies in covariate-aware forecasting. Inspired by Multimodal Diffusion Transformers that integrate textual guidance into video generation, we propose Diffusion Transformers for Time Series (DiTS), a general-purpose architecture that frames endogenous and exogenous variates as distinct modalities. To better capture both inter-variate and intra-variate dependencies, we design a dual-stream Transformer block tailored for time-series data, comprising a Time Attention module for autoregressive modeling along the temporal dimension and a Variate Attention module for cross-variate modeling. Unlike the common approach for images, which flattens 2D token grids into 1D sequences, our design leverages the low-rank property inherent in multivariate dependencies, thereby reducing computational costs. Experiments show that DiTS achieves state-of-the-art performance across benchmarks, regardless of the presence of future exogenous variate observations, demonstrating unique generative forecasting strengths over traditional deterministic deep forecasting models.
☆ Degradation of Feature Space in Continual Learning
Centralized training is the standard paradigm in deep learning, enabling models to learn from a unified dataset in a single location. In such setup, isotropic feature distributions naturally arise as a mean to support well-structured and generalizable representations. In contrast, continual learning operates on streaming and non-stationary data, and trains models incrementally, inherently facing the well-known plasticity-stability dilemma. In such settings, learning dynamics tends to yield increasingly anisotropic feature space. This arises a fundamental question: should isotropy be enforced to achieve a better balance between stability and plasticity, and thereby mitigate catastrophic forgetting? In this paper, we investigate whether promoting feature-space isotropy can enhance representation quality in continual learning. Through experiments using contrastive continual learning techniques on CIFAR-10 and CIFAR-100 data, we find that isotropic regularization fails to improve, and can in fact degrade, model accuracy in continual settings. Our results highlight essential differences in feature geometry between centralized and continual learning, suggesting that isotropy, while beneficial in centralized setups, may not constitute an appropriate inductive bias for non-stationary learning scenarios.
☆ Target noise: A pre-training based neural network initialization for efficient high resolution learning
Weight initialization plays a crucial role in the optimization behavior and convergence efficiency of neural networks. Most existing initialization methods, such as Xavier and Kaiming initializations, rely on random sampling and do not exploit information from the optimization process itself. We propose a simple, yet effective, initialization strategy based on self-supervised pre-training using random noise as the target. Instead of directly training the network from random weights, we first pre-train it to fit random noise, which leads to a structured and non-random parameter configuration. We show that this noise-driven pre-training significantly improves convergence speed in subsequent tasks, without requiring additional data or changes to the network architecture. The proposed method is particularly effective for implicit neural representations (INRs) and Deep Image Prior (DIP)-style networks, which are known to exhibit a strong low-frequency bias during optimization. After noise-based pre-training, the network is able to capture high-frequency components much earlier in training, leading to faster and more stable convergence. Although random noise contains no semantic information, it serves as an effective self-supervised signal (considering its white spectrum nature) for shaping the initialization of neural networks. Overall, this work demonstrates that noise-based pre-training offers a lightweight and general alternative to traditional random initialization, enabling more efficient optimization of deep neural networks.
comment: 11 pages, 12 figures
☆ Inference-Time Rethinking with Latent Thought Vectors for Math Reasoning
Standard chain-of-thought reasoning generates a solution in a single forward pass, committing irrevocably to each token and lacking a mechanism to recover from early errors. We introduce Inference-Time Rethinking, a generative framework that enables iterative self-correction by decoupling declarative latent thought vectors from procedural generation. We factorize reasoning into a continuous latent thought vector (what to reason about) and a decoder that verbalizes the trace conditioned on this vector (how to reason). Beyond serving as a declarative buffer, latent thought vectors compress the reasoning structure into a continuous representation that abstracts away surface-level token variability, making gradient-based optimization over reasoning strategies well-posed. Our prior model maps unstructured noise to a learned manifold of valid reasoning patterns, and at test time we employ a Gibbs-style procedure that alternates between generating a candidate trace and optimizing the latent vector to better explain that trace, effectively navigating the latent manifold to refine the reasoning strategy. Training a 0.2B-parameter model from scratch on GSM8K, our method with 30 rethinking iterations surpasses baselines with 10 to 15 times more parameters, including a 3B counterpart. This result demonstrates that effective mathematical reasoning can emerge from sophisticated inference-time computation rather than solely from massive parameter counts.
Exploring Sparsity and Smoothness of Arbitrary $\ell_p$ Norms in Adversarial Attacks
Adversarial attacks against deep neural networks are commonly constructed under $\ell_p$ norm constraints, most often using $p=1$, $p=2$ or $p=\infty$, and potentially regularized for specific demands such as sparsity or smoothness. These choices are typically made without a systematic investigation of how the norm parameter \( p \) influences the structural and perceptual properties of adversarial perturbations. In this work, we study how the choice of \( p \) affects sparsity and smoothness of adversarial attacks generated under \( \ell_p \) norm constraints for values of $p \in [1,2]$. To enable a quantitative analysis, we adopt two established sparsity measures from the literature and introduce three smoothness measures. In particular, we propose a general framework for deriving smoothness measures based on smoothing operations and additionally introduce a smoothness measure based on first-order Taylor approximations. Using these measures, we conduct a comprehensive empirical evaluation across multiple real-world image datasets and a diverse set of model architectures, including both convolutional and transformer-based networks. We show that the choice of $\ell_1$ or $\ell_2$ is suboptimal in most cases and the optimal $p$ value is dependent on the specific task. In our experiments, using $\ell_p$ norms with $p\in [1.3, 1.5]$ yields the best trade-off between sparse and smooth attacks. These findings highlight the importance of principled norm selection when designing and evaluating adversarial attacks.
☆ Perturbing the Phase: Analyzing Adversarial Robustness of Complex-Valued Neural Networks
Complex-valued neural networks (CVNNs) are rising in popularity for all kinds of applications. To safely use CVNNs in practice, analyzing their robustness against outliers is crucial. One well known technique to understand the behavior of deep neural networks is to investigate their behavior under adversarial attacks, which can be seen as worst case minimal perturbations. We design Phase Attacks, a kind of attack specifically targeting the phase information of complex-valued inputs. Additionally, we derive complex-valued versions of commonly used adversarial attacks. We show that in some scenarios CVNNs are more robust than RVNNs and that both are very susceptible to phase changes with the Phase Attacks decreasing the model performance more, than equally strong regular attacks, which can attack both phase and magnitude.
Transformer-based Parameter Fitting of Models derived from Bloch-McConnell Equations for CEST MRI Analysis
Chemical exchange saturation transfer (CEST) MRI is a non-invasive imaging modality for detecting metabolites. It offers higher resolution and sensitivity compared to conventional magnetic resonance spectroscopy (MRS). However, quantification of CEST data is challenging because the measured signal results from a complex interplay of many physiological variables. Here, we introduce a transformer-based neural network to fit parameters such as metabolite concentrations, exchange and relaxation rates of a physical model derived from Bloch-McConnell equations to in-vitro CEST spectra. We show that our self-supervised trained neural network clearly outperforms the solution of classical gradient-based solver.
☆ Learning to Allocate Resources with Censored Feedback
We study the online resource allocation problem in which at each round, a budget $B$ must be allocated across $K$ arms under censored feedback. An arm yields a reward if and only if two conditions are satisfied: (i) the arm is activated according to an arm-specific Bernoulli random variable with unknown parameter, and (ii) the allocated budget exceeds a random threshold drawn from a parametric distribution with unknown parameter. Over $T$ rounds, the learner must jointly estimate the unknown parameters and allocate the budget so as to maximize cumulative reward facing the exploration--exploitation trade-off. We prove an information-theoretic regret lower bound $Ω(T^{1/3})$, demonstrating the intrinsic difficulty of the problem. We then propose RA-UCB, an optimistic algorithm that leverages non-trivial parameter estimation and confidence bounds. When the budget $B$ is known at the beginning of each round, RA-UCB achieves a regret of order $\widetilde{\mathcal{O}}(\sqrt{T})$, and even $\mathcal{O}(\mathrm{poly}\text{-}\log T)$ under stronger assumptions. As for unknown, round dependent budget, we introduce MG-UCB, which allows within-round switching and infinitesimal allocations, and matches the regret guarantees of RA-UCB. We then validate our theoretical results through experiments on real-world datasets.
☆ Which Graph Shift Operator? A Spectral Answer to an Empirical Question
Graph Neural Networks (GNNs) have established themselves as the leading models for learning on graph-structured data, generally categorized into spatial and spectral approaches. Central to these architectures is the Graph Shift Operator (GSO), a matrix representation of the graph structure used to filter node signals. However, selecting the optimal GSO, whether fixed or learnable, remains largely empirical. In this paper, we introduce a novel alignment gain metric that quantifies the geometric distortion between the input signal and label subspaces. Crucially, our theoretical analysis connects this alignment directly to generalization bounds via a spectral proxy for the Lipschitz constant. This yields a principled, computation-efficient criterion to rank and select the optimal GSO for any prediction task prior to training, eliminating the need for extensive search.
☆ Reinforcement Learning-Based Dynamic Management of Structured Parallel Farm Skeletons on Serverless Platforms
We present a framework for dynamic management of structured parallel processing skeletons on serverless platforms. Our goal is to bring HPC-like performance and resilience to serverless and continuum environments while preserving the programmability benefits of skeletons. As a first step, we focus on the well known Farm pattern and its implementation on the open-source OpenFaaS platform, treating autoscaling of the worker pool as a QoS-aware resource management problem. The framework couples a reusable farm template with a Gymnasium-based monitoring and control layer that exposes queue, timing, and QoS metrics to both reactive and learning-based controllers. We investigate the effectiveness of AI-driven dynamic scaling for managing the farm's degree of parallelism via the scalability of serverless functions on OpenFaaS. In particular, we discuss the autoscaling model and its training, and evaluate two reinforcement learning (RL) policies against a baseline of reactive management derived from a simple farm performance model. Our results show that AI-based management can better accommodate platform-specific limitations than purely model-based performance steering, improving QoS while maintaining efficient resource usage and stable scaling behaviour.
comment: Accepted at AHPC3 workshop, PDP 2026
☆ Evolving Ranking Functions for Canonical Blow-Ups in Positive Characteristic
Resolution of singularities in positive characteristic remains a long-standing open problem in algebraic geometry. In characteristic zero, the problem was solved by Hironaka in 1964, work for which he was awarded the Fields Medal. Modern proofs proceed by constructing suitable ranking functions, that is, invariants shown to strictly decrease along canonical sequences of blow-ups, ensuring termination. In positive characteristic, however, no such general ranking function is known: Frobenius-specific pathologies, such as the kangaroo phenomenon, can cause classical characteristic-zero invariants to plateau or even temporarily increase, presenting a fundamental obstruction to existing approaches. In this paper we report a sequence of experiments using the evolutionary search model AlphaEvolve, designed to discover candidate ranking functions for a toy canonical blow-up process. Our test benchmarks consist of carefully selected hypersurface singularities in dimension $4$ and characteristic $p=3$, with monic purely inseparable leading term, a regime in which naive order-based invariants often fail. After iteratively refining the experimental design, we obtained a discretized five-component lexicographic ranking function satisfying a bounded-delay descent criterion with zero violations across the benchmark. These experiments in turn motivated our main results: the conjectural delayed ranking functions in characteristic $3$ formulated in two conjectures.
comment: 41 pages
☆ Fine-Grained Model Merging via Modular Expert Recombination
Model merging constructs versatile models by integrating task-specific models without requiring labeled data or expensive joint retraining. Although recent methods improve adaptability to heterogeneous tasks by generating customized merged models for each instance, they face two critical limitations. First, the instance-specific merged models lack reusability, restricting the exploitation of high-quality merging configurations and efficient batch inference. Second, these methods treat each task-specific model as a monolithic whole, overlooking the diverse mergeability of homologous components such as attention and multilayer perceptron layers, and the differing merging sensitivities across components. To address these limitations, we propose MERGE (\underline{M}odular \underline{E}xpert \underline{R}ecombination for fine-\underline{G}rained m\underline{E}rging), a method that enables component-wise model merging and input-aware, on-demand module recombination at inference. MERGE formulates component-wise merging as a bi-objective optimization problem that balances cross-task performance and storage efficiency, and develops a surrogate-assisted evolutionary algorithm to efficiently identify Pareto-optimal merging configurations. These high-quality configurations underpin a reusable modular expert library, from which a lightweight routing network dynamically activates and recombines modular experts to assemble input-specific models and enable efficient inference under storage constraints. Extensive experiments across various model scales, task types, and fine-tuning strategies demonstrate that MERGE consistently outperforms strong baselines and generalizes effectively.
☆ Dynamics-Aligned Shared Hypernetworks for Zero-Shot Actuator Inversion
Zero-shot generalization in contextual reinforcement learning remains a core challenge, particularly when the context is latent and must be inferred from data. A canonical failure mode is actuator inversion, where identical actions produce opposite physical effects under a latent binary context. We propose DMA*-SH, a framework where a single hypernetwork, trained solely via dynamics prediction, generates a small set of adapter weights shared across the dynamics model, policy, and action-value function. This shared modulation imparts an inductive bias matched to actuator inversion, while input/output normalization and random input masking stabilize context inference, promoting directionally concentrated representations. We provide theoretical support via an expressivity separation result for hypernetwork modulation, and a variance decomposition with policy-gradient variance bounds that formalize how within-mode compression improves learning under actuator inversion. For evaluation, we introduce the Actuator Inversion Benchmark (AIB), a suite of environments designed to isolate discontinuous context-to-dynamics interactions. On AIB's held-out actuator-inversion tasks, DMA*-SH achieves zero-shot generalization, outperforming domain randomization by 111.8% and surpassing a standard context-aware baseline by 16.1%.
☆ Refining the Information Bottleneck via Adversarial Information Separation
Generalizing from limited data is particularly critical for models in domains such as material science, where task-relevant features in experimental datasets are often heavily confounded by measurement noise and experimental artifacts. Standard regularization techniques fail to precisely separate meaningful features from noise, while existing adversarial adaptation methods are limited by their reliance on explicit separation labels. To address this challenge, we propose the Adversarial Information Separation Framework (AdverISF), which isolates task-relevant features from noise without requiring explicit supervision. AdverISF introduces a self-supervised adversarial mechanism to enforce statistical independence between task-relevant features and noise representations. It further employs a multi-layer separation architecture that progressively recycles noise information across feature hierarchies to recover features inadvertently discarded as noise, thereby enabling finer-grained feature extraction. Extensive experiments demonstrate that AdverISF outperforms state-of-the-art methods in data-scarce scenarios. In addition, evaluations on real-world material design tasks show that it achieves superior generalization performance.
☆ NECromancer: Breathing Life into Skeletons via BVH Animation
Motion tokenization is a key component of generalizable motion models, yet most existing approaches are restricted to species-specific skeletons, limiting their applicability across diverse morphologies. We propose NECromancer (NEC), a universal motion tokenizer that operates directly on arbitrary BVH skeletons. NEC consists of three components: (1) an Ontology-aware Skeletal Graph Encoder (OwO) that encodes structural priors from BVH files, including joint semantics, rest-pose offsets, and skeletal topology, into skeletal embeddings; (2) a Topology-Agnostic Tokenizer (TAT) that compresses motion sequences into a universal, topology-invariant discrete representation; and (3) the Unified BVH Universe (UvU), a large-scale dataset aggregating BVH motions across heterogeneous skeletons. Experiments show that NEC achieves high-fidelity reconstruction under substantial compression and effectively disentangles motion from skeletal structure. The resulting token space supports cross-species motion transfer, composition, denoising, generation with token-based models, and text-motion retrieval, establishing a unified framework for motion analysis and synthesis across diverse morphologies. Demo page: https://animotionlab.github.io/NECromancer/
☆ Operationalizing Stein's Method for Online Linear Optimization: CLT-Based Optimal Tradeoffs
Adversarial online linear optimization (OLO) is essentially about making performance tradeoffs with respect to the unknown difficulty of the adversary. In the setting of one-dimensional fixed-time OLO on a bounded domain, it has been observed since Cover (1966) that achievable tradeoffs are governed by probabilistic inequalities, and these descriptive results can be converted into algorithms via dynamic programming, which, however, is not computationally efficient. We address this limitation by showing that Stein's method, a classical framework underlying the proofs of probabilistic limit theorems, can be operationalized as computationally efficient OLO algorithms. The associated regret and total loss upper bounds are "additively sharp", meaning that they surpass the conventional big-O optimality and match normal-approximation-based lower bounds by additive lower order terms. Our construction is inspired by the remarkably clean proof of a Wasserstein martingale central limit theorem (CLT) due to Röllin (2018). Several concrete benefits can be obtained from this general technique. First, with the same computational complexity, the proposed algorithm improves upon the total loss upper bounds of online gradient descent (OGD) and multiplicative weight update (MWU). Second, our algorithm can realize a continuum of optimal two-point tradeoffs between the total loss and the maximum regret over comparators, improving upon prior works in parameter-free online learning. Third, by allowing the adversary to randomize on an unbounded support, we achieve sharp in-expectation performance guarantees for OLO with noisy feedback.
☆ Live Knowledge Tracing: Real-Time Adaptation using Tabular Foundation Models
Deep knowledge tracing models have achieved significant breakthroughs in modeling student learning trajectories. However, these architectures require substantial training time and are prone to overfitting on datasets with short sequences. In this paper, we explore a new paradigm for knowledge tracing by leveraging tabular foundation models (TFMs). Unlike traditional methods that require offline training on a fixed training set, our approach performs real-time ''live'' knowledge tracing in an online way. The core of our method lies in a two-way attention mechanism: while attention knowledge tracing models only attend across earlier time steps, TFMs simultaneously attend across both time steps and interactions of other students in the training set. They align testing sequences with relevant training sequences at inference time, therefore skipping the training step entirely. We demonstrate, using several datasets of increasing size, that our method achieves competitive predictive performance with up to 273x speedups, in a setting where more student interactions are observed over time.
♻ ☆ Implicit Unitarity Bias in Tensor Factorization: A Theoretical Framework for Symmetry Group Discovery
While modern neural architectures typically generalize via smooth interpolation, it lacks the inductive biases required to uncover algebraic structures essential for systematic generalization. We present the first theoretical analysis of HyperCube, a differentiable tensor factorization architecture designed to bridge this gap. This work establishes an intrinsic geometric property of the HyperCube formulation: we prove that the architecture mediates a fundamental equivalence between geometric alignment and algebraic structure. Independent of the global optimization landscape, we show that the condition of geometric alignment imposes rigid algebraic constraints, proving that the feasible collinear manifold is non-empty if and only if the target is isotopic to a group. Within this manifold, we characterize the objective as a rank-maximizing potential that unconditionally drives factors toward full-rank, unitary representations. Finally, we propose the Collinearity Dominance mechanism to link these structural results to the global landscape. Supported by empirical scaling laws, we establish that global minima are achieved exclusively by unitary regular representations of group isotopes. This formalizes the HyperCube objective as a differentiable proxy for associativity, demonstrating how rigid geometric constraints enable the discovery of latent algebraic symmetry.
♻ ☆ code_transformed: The Influence of Large Language Models on Code EACL 2026
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 20,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake_case function names in Python code increased from 40.7% in Q1 2023 to 49.8% in Q3 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Our experimental results may provide the first large-scale empirical evidence that LLMs affect real-world programming style. We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
comment: EACL 2026 Findings
♻ ☆ Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability
Can a model learn to escape its own learning plateau? Reinforcement learning methods for finetuning large reasoning models stall on datasets with low initial success rates, and thus little training signal. We investigate a fundamental question: Can a pretrained LLM leverage latent knowledge to generate an automated curriculum for problems it cannot solve? To explore this, we design SOAR: A self-improvement framework designed to surface these pedagogical signals through meta-RL. A teacher copy of the model proposes synthetic problems for a student copy, and is rewarded with its improvement on a small subset of hard problems. Critically, SOAR grounds the curriculum in measured student progress rather than intrinsic proxy rewards. Our study on the hardest subsets of mathematical benchmarks (0/128 success) reveals three core findings. First, we show that it is possible to realize bi-level meta-RL that unlocks learning under sparse, binary rewards by sharpening a latent capacity of pretrained models to generate useful stepping stones. Second, grounded rewards outperform intrinsic reward schemes used in prior LLM self-play, reliably avoiding the instability and diversity collapse modes they typically exhibit. Third, analyzing the generated questions reveals that structural quality and well-posedness are more critical for learning progress than solution correctness. Our results suggest that the ability to generate useful stepping stones does not require the preexisting ability to actually solve the hard problems, paving a principled path to escape reasoning plateaus without additional curated data.
comment: Blog post: https://ssundaram21.github.io/soar/
♻ ☆ Dataset Distillation as Pushforward Optimal Quantization ICLR 2026
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose Dataset Distillation by Optimal Quantization, based on clustering in a latent space. Compared to the previous SOTA method D\textsuperscript{4}M, we achieve better performance and inter-model generalization on the ImageNet-1K dataset with trivial additional computation, and SOTA performance in higher image-per-class settings. Using the distilled noise initializations in a stronger diffusion transformer model, we obtain SOTA distillation performance on ImageNet-1K and its subsets, outperforming diffusion guidance methods.
comment: ICLR 2026, https://openreview.net/forum?id=FMSp8AUF3m
♻ ☆ RMT-KD: Random Matrix Theoretic Causal Knowledge Distillation ICASSP 2026
Large deep learning models such as BERT and ResNet achieve state-of-the-art performance but are costly to deploy at the edge due to their size and compute demands. We present RMT-KD, a compression method that leverages Random Matrix Theory (RMT) for knowledge distillation to iteratively reduce network size. Instead of pruning or heuristic rank selection, RMT-KD preserves only informative directions identified via the spectral properties of hidden representations. RMT-based causal reduction is applied layer by layer with self-distillation to maintain stability and accuracy. On GLUE and CIFAR-10, RMT-KD achieves up to 80% parameter reduction with only 2% accuracy loss, delivering 2.8x faster inference and nearly halved power consumption. These results establish RMT-KD as a mathematically grounded approach to network distillation.
comment: 5 pages, submitted to ICASSP 2026, September 2025
♻ ☆ EigenTrack: Spectral Activation Feature Tracking for Hallucination and Out-of-Distribution Detection in LLMs and VLMs ICASSP 2026
Large language models (LLMs) offer broad utility but remain prone to hallucination and out-of-distribution (OOD) errors. We propose EigenTrack, an interpretable real-time detector that uses the spectral geometry of hidden activations, a compact global signature of model dynamics. By streaming covariance-spectrum statistics such as entropy, eigenvalue gaps, and KL divergence from random baselines into a lightweight recurrent classifier, EigenTrack tracks temporal shifts in representation structure that signal hallucination and OOD drift before surface errors appear. Unlike black- and grey-box methods, it needs only a single forward pass without resampling. Unlike existing white-box detectors, it preserves temporal context, aggregates global signals, and offers interpretable accuracy-latency trade-offs.
comment: 5 pages, submitted to ICASSP 2026, September 2025
♻ ☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
♻ ☆ Discriminative Feature Feedback with General Teacher Classes
We study the theoretical properties of the interactive learning protocol Discriminative Feature Feedback (DFF) (Dasgupta et al., 2018). The DFF learning protocol uses feedback in the form of discriminative feature explanations. We provide the first systematic study of DFF in a general framework that is comparable to that of classical protocols such as supervised learning and online learning. We study the optimal mistake bound of DFF in the realizable and the non-realizable settings, and obtain novel structural results, as well as insights into the differences between Online Learning and settings with richer feedback such as DFF. We characterize the mistake bound in the realizable setting using a new notion of dimension. In the non-realizable setting, we provide a mistake upper bound and show that it cannot be improved in general. Our results show that unlike Online Learning, in DFF the realizable dimension is insufficient to characterize the optimal non-realizable mistake bound or the existence of no-regret algorithms.
♻ ☆ Demystifying Mergeability: Interpretable Properties to Predict Model Merging Success
Model merging combines knowledge from separately fine-tuned models, yet success factors remain poorly understood. While recent work treats mergeability as an intrinsic property, we show with an architecture-agnostic framework that it fundamentally depends on both the merging method and the partner tasks. Using linear optimization over a set of interpretable pairwise metrics (e.g., gradient L2 distance), we uncover properties correlating with post-merge performance across four merging methods. We find substantial variation in success drivers (46.7% metric overlap; 55.3% sign agreement), revealing method-specific "fingerprints". Crucially, however, subspace overlap and gradient alignment metrics consistently emerge as foundational, method-agnostic prerequisites for compatibility. These findings provide a diagnostic foundation for understanding mergeability and motivate future fine-tuning strategies that explicitly encourage these properties.
comment: 8 pages of main paper, 3 figures in the main paper, 4 tables in the main paper, many more figures and tables in the appendix
♻ ☆ Ensemble Transport Filter via Optimized Maximum Mean Discrepancy
In this paper, we present a new ensemble-based filter method by reconstructing the analysis step of the particle filter through a transport map, which directly transports prior particles to posterior particles. The transport map is constructed through an optimization problem described by the Maximum Mean Discrepancy loss function, which matches the expectation information of the approximated posterior and reference posterior. The proposed method inherits the accurate estimation of the posterior distribution from particle filtering while gives an extension to high dimensional assimilation problems. To improve the robustness of Maximum Mean Discrepancy, a variance penalty term is used to guide the optimization. It prioritizes minimizing the discrepancy between the expectations of highly informative statistics for the reference posteriors. The penalty term significantly enhances the robustness of the proposed method and leads to a better approximation of the posterior. A few numerical examples are presented to illustrate the advantage of the proposed method over ensemble Kalman filter.
comment: 27 pages, 14 figures
♻ ☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new technique designed to stabilize training and boost the sample efficiency of DoRA. Our framework introduces two key components: (i) the injection of learnable noise into the denominator of DoRA weight decomposition, which serves as an adaptive regularizer to mitigate instabilities and improve the estimation rate of low-rank matrices; and (ii) the replacement of static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling between the query and value projection matrices, leading to improved sample efficiency both theoretically and empirically. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines, underscoring the effectiveness of combining noise-based regularization with network-based parameter generation.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
♻ ☆ Inverse problems with diffusion models: MAP estimation via mode-seeking loss
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can also be computationally demanding. In this work, we propose a new MAP estimation strategy for solving inverse problems with a pre-trained unconditional diffusion model. Specifically, we introduce the variational mode-seeking loss (VML) and show that its minimization at each reverse diffusion step guides the generated sample towards the MAP estimate (modes in practice). VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior $p(\mathbf{x}_0|\mathbf{x}_t)$ and the measurement posterior $p(\mathbf{x}_0|\mathbf{y})$, where $\mathbf{y}$ denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived without any modeling approximations. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems via VML minimization, and validate its efficacy in both performance and computational time through extensive experiments on diverse image-restoration tasks across multiple datasets.
♻ ☆ Accelerating Diffusion Planners in Offline RL via Reward-Aware Consistency Trajectory Distillation
Although diffusion models have achieved strong results in decision-making tasks, their slow inference speed remains a key limitation. While consistency models offer a potential solution, existing applications to decision-making either struggle with suboptimal demonstrations under behavior cloning or rely on complex concurrent training of multiple networks under the actor-critic framework. In this work, we propose a novel approach to consistency distillation for offline reinforcement learning that directly incorporates reward optimization into the distillation process. Our method achieves single-step sampling while generating higher-reward action trajectories through decoupled training and noise-free reward signals. Empirical evaluations on the Gym MuJoCo, FrankaKitchen, and long horizon planning benchmarks demonstrate that our approach can achieve a 9.7% improvement over previous state-of-the-art while offering up to 142x speedup over diffusion counterparts in inference time.
♻ ☆ Downscaling Neural Network for Coastal Simulations
Learning the fine-scale details of a coastal ocean simulation from a coarse representation is a challenging task. For real-world applications, high-resolution simulations are necessary to advance understanding of many coastal processes, specifically, to predict flooding resulting from tsunamis and storm surges. We propose a Downscaling Neural Network for Coastal Simulation (DNNCS) for spatiotemporal enhancement to learn the high-resolution numerical solution. Given images of coastal simulations produced on low-resolution computational meshes using low polynomial order discontinuous Galerkin discretizations and a coarse temporal resolution, the proposed DNNCS learns to produce high-resolution free surface elevation and velocity visualizations in both time and space. To model the dynamic changes over time and space, we propose grid-aware spatiotemporal attention to project the temporal features to the spatial domain for non-local feature matching. The coordinate information is also utilized via positional encoding. For the final reconstruction, we use the spatiotemporal bilinear operation to interpolate the missing frames and then expand the feature maps to the frequency domain for residual mapping. Besides data-driven losses, the proposed physics-informed loss guarantees gradient consistency and momentum changes, leading to a 24% reduction in root-mean-square error compared to the model trained with only data-driven losses. To train the proposed model, we propose a coastal simulation dataset and use it for model optimization and evaluation. Our method shows superior downscaling quality and fast computation compared to the state-of-the-art methods.
♻ ☆ Interpreting Manifolds and Graph Neural Embeddings from Internet of Things Traffic Flows
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
♻ ☆ Predicting the fatigue life of asphalt concrete using neural networks
Asphalt concrete's (AC) durability and maintenance demands are strongly influenced by its fatigue life. Traditional methods for determining this characteristic are both resource-intensive and time-consuming. This study employs artificial neural networks (ANNs) to predict AC fatigue life, focusing on the impact of strain level, binder content, and air-void content. Leveraging a substantial dataset, we tailored our models to effectively handle the wide range of fatigue life data, typically represented on a logarithmic scale. The mean square logarithmic error was utilized as the loss function to enhance prediction accuracy across all levels of fatigue life. Through comparative analysis of various hyperparameters, we developed a machine-learning model that captures the complex relationships within the data. Our findings demonstrate that higher binder content significantly enhances fatigue life, while the influence of air-void content is more variable, depending on binder levels. Most importantly, this study provides insights into the intricacies of using ANNs for modeling, showcasing their potential utility with larger datasets. The codes developed and the data used in this study are provided as open source on a GitHub repository, with a link included in the paper for full access.
comment: Accepted paper
♻ ☆ Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
♻ ☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
♻ ☆ An Evaluation of Hybrid Annotation Workflows on High-Ambiguity Spatiotemporal Video Footage
Manual annotation remains the gold standard for high-quality, dense temporal video datasets, yet it is inherently time-consuming. Vision-language models can aid human annotators and expedite this process. We report on the impact of automatic Pre-Annotations from a tuned encoder on a Human-in-the-Loop labeling workflow for video footage. Quantitative analysis in a study of a single-iteration test involving 18 volunteers demonstrates that our workflow reduced annotation time by 35% for the majority (72%) of the participants. Beyond efficiency, we provide a rigorous framework for benchmarking AI-assisted workflows that quantifies trade-offs between algorithmic speed and the integrity of human verification.
♻ ☆ Reparameterization Proximal Policy Optimization
By leveraging differentiable dynamics, Reparameterization Policy Gradient (RPG) achieves high sample efficiency. However, current approaches are hindered by two critical limitations: the under-utilization of computationally expensive dynamics Jacobians and inherent training instability. While sample reuse offers a remedy for under-utilization, no prior principled framework exists, and naive attempts risk exacerbating instability. To address these challenges, we propose Reparameterization Proximal Policy Optimization (RPO). We first establish that under sample reuse, RPG naturally optimizes a PPO-style surrogate objective via Backpropagation Through Time, providing a unified framework for both on- and off-policy updates. To further ensure stability, RPO integrates a clipped policy gradient mechanism tailored for RPG and employs explicit Kullback-Leibler divergence regularization. Experimental results demonstrate that RPO maintains superior sample efficiency and consistently outperforms or achieves state-of-the-art performance across diverse tasks.
♻ ☆ Trust Region Masking for Long-Horizon LLM Reinforcement Learning
Policy gradient methods for Large Language Models optimize a policy $π_θ$ via a surrogate objective computed from samples of a rollout policy $π_{\text{roll}}$. However, modern LLM-RL pipelines suffer from unavoidable implementation divergences, such as backend discrepancies, Mixture-of-Experts routing discontinuities, and distributed training staleness. These factors cause an off-policy mismatch ($π_{\text{roll}} \neq π_θ$), leading to approximation errors between the surrogate and the true objective. We demonstrate that classical trust region bounds on this error scale as $O(T^2)$ with sequence length $T$, rendering them vacuous for long-horizon tasks. To address this, we derive two new bounds: a Pinsker-Marginal bound scaling as $O(T^{3/2})$ and a Mixed bound scaling as $O(T)$. We further derive an Adaptive bound that strictly generalizes the Pinsker-Marginal bound by combining an importance-ratio decomposition of the error with an adaptive per-position application of Pinsker's inequality on the future trajectory divergence; the minimum over all three bounds is tighter than any individual bound. Crucially, all bounds depend on $D_{\mathrm{KL}}^{\mathrm{tok,max}}$, the maximum token-level KL divergence across the sequence. As a \emph{sequence-level} term, the divergence cannot be controlled by previous token-independent methods like PPO clipping. We propose Trust Region Masking (TRM), which masks entire sequences that violate the trust region. TRM enables the first non-vacuous monotonic improvement guarantees and demonstrates empirical training stability for long-horizon LLM-RL.
♻ ☆ Echo State Transformer: Attention Over Finite Memories
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language, nor how it leverages working memory. Furthermore, Transformers encounters a computational limitation: quadratic complexity growth with sequence length. Motivated by these limitations, we aim to design architectures that leverage efficient working memory dynamics to overcome standard computational barriers. We introduce Echo State Transformers (EST), a hybrid architecture that resolves this challenge while demonstrating state of the art performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with nodes from Reservoir Computing to create a fixed-size memory system. Drawing inspiration from Echo State Networks, our approach leverages several reservoirs (random recurrent networks) in parallel as a lightweight and efficient working memory. These independent units possess distinct and learned internal dynamics with an adaptive leak rate, enabling them to dynamically adjust their own temporality. By applying attention on those fixed number of units instead of input tokens, EST achieves linear complexity for the whole sequence, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results demonstrate that by shifting the attention mechanism from the entire input sequence to a fixed set of evolving memory units, it is possible to maintains high sensitivity to temporal events while achieving constant computational complexity per step.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results characterize the reliability of the prediction sets in terms of the severity of distributional changes and the size of the training dataset.
comment: Published in Transactions on Machine Learning Research
♻ ☆ Nash Equilibria in Games with Playerwise Concave Coupling Constraints: Existence and Computation
We study the existence and computation of Nash equilibria in concave games where the players' admissible strategies are subject to shared coupling constraints. Under playerwise concavity of constraints, we prove existence of Nash equilibria. Our proof leverages topological fixed point theory and novel structural insights into the contractibility of feasible sets, and relaxes strong assumptions for existence in prior work. Having established existence, we address the question of whether in the presence of coupling constraints, playerwise independent learning dynamics have convergence guarantees. We address this positively for the class of potential games by designing a convergent algorithm. To account for the possibly nonconvex feasible region, we employ a log barrier regularized gradient ascent with adaptive stepsizes. Starting from an initial feasible strategy profile and under exact gradient feedback, the proposed method converges to an $ε$-approximate constrained Nash equilibrium within $\mathcal{O}(ε^{-3})$ iterations.
♻ ☆ In-Run Data Shapley for Adam Optimizer
Reliable data attribution is essential for mitigating bias and reducing computational waste in modern machine learning, with the Shapley value serving as the theoretical gold standard. While recent "In-Run" methods bypass the prohibitive cost of retraining by estimating contributions dynamically, they heavily rely on the linear structure of Stochastic Gradient Descent (SGD) and fail to capture the complex dynamics of adaptive optimizers like Adam. In this work, we demonstrate that data attribution is inherently optimizer-dependent: we show that SGD-based proxies diverge significantly from true contributions under Adam (Pearson $R \approx 0.11$), rendering them ineffective for modern training pipelines. To bridge this gap, we propose Adam-Aware In-Run Data Shapley. We derive a closed-form approximation that restores additivity by redefining utility under a fixed-state assumption and enable scalable computation via a novel Linearized Ghost Approximation. This technique linearizes the variance-dependent scaling term, allowing us to compute pairwise gradient dot-products without materializing per-sample gradients. Extensive experiments show that our method achieves near-perfect fidelity to ground-truth marginal contributions ($R > 0.99$) while retaining $\sim$95\% of standard training throughput. Furthermore, our Adam-aware attribution significantly outperforms SGD-based baselines in data attribution downstream tasks.
comment: 16 pages
♻ ☆ A Unified Framework for Lifted Training and Inversion Approaches
The training of deep neural networks predominantly relies on a combination of gradient-based optimisation and back-propagation for the computation of the gradient. While incredibly successful, this approach faces challenges such as vanishing or exploding gradients, difficulties with non-smooth activations, and an inherently sequential structure that limits parallelisation. Lifted training methods offer an alternative by reformulating the nested optimisation problem into a higher-dimensional, constrained optimisation problem where the constraints are no longer enforced directly but penalised with penalty terms. This chapter introduces a unified framework that encapsulates various lifted training strategies, including the Method of Auxiliary Coordinates, Fenchel Lifted Networks, and Lifted Bregman Training, and demonstrates how diverse architectures, such as Multi-Layer Perceptrons, Residual Neural Networks, and Proximal Neural Networks fit within this structure. By leveraging tools from convex optimisation, particularly Bregman distances, the framework facilitates distributed optimisation, accommodates non-differentiable proximal activations, and can improve the conditioning of the training landscape. We discuss the implementation of these methods using block-coordinate descent strategies, including deterministic implementations enhanced by accelerated and adaptive optimisation techniques, as well as implicit stochastic gradient methods. Furthermore, we explore the application of this framework to inverse problems, detailing methodologies for both the training of specialised networks (e.g., unrolled architectures) and the stable inversion of pre-trained networks. Numerical results on standard imaging tasks validate the effectiveness and stability of the lifted Bregman approach compared to conventional training, particularly for architectures employing proximal activations.
♻ ☆ DarkEQA: Benchmarking Vision-Language Models for Embodied Question Answering in Low-Light Indoor Environments
Vision Language Models (VLMs) are increasingly adopted as central reasoning modules for embodied agents. Existing benchmarks evaluate their capabilities under ideal, well-lit conditions, yet robust 24/7 operation demands performance under a wide range of visual degradations, including low-light conditions at night or in dark environments--a core necessity that has been largely overlooked. To address this underexplored challenge, we present DarkEQA, an open-source benchmark for evaluating EQA-relevant perceptual primitives under multi-level low-light conditions. DarkEQA isolates the perception bottleneck by evaluating question answering from egocentric observations under controlled degradations, enabling attributable robustness analysis. A key design feature of DarkEQA is its physical fidelity: visual degradations are modeled in linear RAW space, simulating physics-based illumination drop and sensor noise followed by an ISP-inspired rendering pipeline. We demonstrate the utility of DarkEQA by evaluating a wide range of state-of-the-art VLMs and Low-Light Image Enhancement (LLIE) models. Our analysis systematically reveals VLMs' limitations when operating under these challenging visual conditions. Project website: https://darkeqa-benchmark.github.io/
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Estimating Semantic Alphabet Size for LLM Uncertainty Quantification
Many black-box techniques for quantifying the uncertainty of large language models (LLMs) rely on repeated LLM sampling, which can be computationally expensive. Therefore, practical applicability demands reliable estimation from few samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator with a discrete formulation attractive for the black-box setting. Recent extensions of SE exhibit improved LLM hallucination detection, but do so with less interpretable methods that admit additional hyperparameters. For this reason, we revisit the canonical discrete semantic entropy (DSE) estimator, finding that it underestimates the "true" semantic entropy, as expected from theory. We propose a modified semantic alphabet size estimator, and illustrate that using it to adjust DSE for sample coverage results in more accurate SE estimation in our setting of interest. Furthermore, we find that two semantic alphabet size estimators, including our proposed, flag incorrect LLM responses as well or better than many top-performing alternatives, with the added benefit of remaining highly interpretable.
♻ ☆ Radon--Wasserstein Gradient Flows for Interacting-Particle Sampling in High Dimensions
Gradient flows of the Kullback--Leibler (KL) divergence, such as the Fokker--Planck equation and Stein Variational Gradient Descent, evolve a distribution toward a target density known only up to a normalizing constant. We introduce new gradient flows of the KL divergence with a remarkable combination of properties: they admit accurate interacting-particle approximations in high dimensions, and the per-step cost scales linearly in both the number of particles and the dimension. These gradient flows are based on new transportation-based Riemannian geometries on the space of probability measures: the Radon--Wasserstein geometry and the related Regularized Radon--Wasserstein (RRW) geometry. We define these geometries using the Radon transform so that the gradient-flow velocities depend only on one-dimensional projections. This yields interacting-particle-based algorithms whose per-step cost follows from efficient Fast Fourier Transform-based evaluation of the required 1D convolutions. We additionally provide numerical experiments that study the performance of the proposed algorithms and compare convergence behavior and quantization. Finally, we prove some theoretical results including well-posedness of the flows and long-time convergence guarantees for the RRW flow.
comment: 49 pages, 7 figures; corrected Figure 4.4
♻ ☆ Science-Informed Design of Deep Learning With Applications to Wireless Systems: A Tutorial
Recent advances in computational infrastructure and large-scale data processing have accelerated the adoption of data-driven inference methods, particularly deep learning (DL), to solve problems in many scientific and engineering domains. In wireless systems, DL has been applied to problems where analytical modeling or optimization is difficult to formulate, relies on oversimplified assumptions, or becomes computationally intractable. However, conventional DL models are often regarded as non-transparent, as their internal reasoning mechanisms are difficult to interpret even when model parameters are fully accessible. This lack of transparency undermines trust and leads to three interrelated challenges: limited interpretability, weak generalization, and the absence of a principled framework for parameter tuning. Science-informed deep learning (ScIDL) has emerged as a promising paradigm to address these limitations by integrating scientific knowledge into deep learning pipelines. This integration enables more precise characterization of model behavior and provides clearer explanations of how and why DL models succeed or fail. Despite growing interest, the existing literature remains fragmented and lacks a unifying taxonomy. This tutorial presents a structured overview of ScIDL methods and their applications in wireless systems. We introduce a structured taxonomy that organizes the ScIDL landscape, present two representative case studies illustrating its use in challenging wireless problems, and discuss key challenges and open research directions. The pedagogical structure guides readers from foundational concepts to advanced applications, making the tutorial accessible to researchers in wireless communications without requiring prior expertise in AI.
♻ ☆ HSG-12M: A Large-Scale Benchmark of Spatial Multigraphs from the Energy Spectra of Non-Hermitian Crystals
AI is transforming scientific research by revealing new ways to understand complex physical systems, but its impact remains constrained by the lack of large, high-quality domain-specific datasets. A rich, largely untapped resource lies in non-Hermitian quantum physics, where the energy spectra of crystals form intricate geometries on the complex plane -- termed as Hamiltonian spectral graphs. Despite their significance as fingerprints for electronic behavior, their systematic study has been intractable due to the reliance on manual extraction. To unlock this potential, we introduce Poly2Graph: a high-performance, open-source pipeline that automates the mapping of 1-D crystal Hamiltonians to spectral graphs. Using this tool, we present HSG-12M: a dataset containing 11.6 million static and 5.1 million dynamic Hamiltonian spectral graphs across 1401 characteristic-polynomial classes, distilled from 177 TB of spectral potential data. Crucially, HSG-12M is the first large-scale dataset of spatial multigraphs -- graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. This simultaneously addresses a critical gap, as existing graph benchmarks overwhelmingly assume simple, non-spatial edges, discarding vital geometric information. Benchmarks with popular GNNs expose new challenges in learning spatial multi-edges at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for data-driven scientific discovery in condensed matter physics, new opportunities in geometry-aware graph learning and beyond.
comment: 48 pages, 13 figures, 14 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0. Benchmark scripts and data loaders included
♻ ☆ Key and Value Weights Are Probably All You Need: On the Necessity of the Query, Key, Value weight Triplet in Encoder-Only and Decoder-Only Transformers
We theoretically investigate whether the Query, Key, Value weight triplet can be reduced in encoder-only and decoder-only transformers. Under mild assumptions, we prove that Query weights are redundant and can be replaced with the identity matrix, reducing attention parameters by $25\%$. This also simplifies optimization: attention logits become linear rather than quadratic in learned weights. Validating on decoder-only GPT-style small models trained from scratch, we find that with adjusted attention scaling and weight decay, reduced models match baseline performance despite fewer parameters. Training remains stable at over $3\times$ lower weight decay, suggesting Query weight elimination provides implicit regularization. Our analysis has also led us to a structural expressivity boundary: in the mathematically tractable ReLU setting, skip connections push MLPs into a generically disjoint function class at fixed width. These findings motivate investigation across modalities and at scale, where the observed stability and efficiency gains may prove most consequential.
♻ ☆ Reservoir Predictive Path Integral Control for Unknown Nonlinear Dynamics
Neural networks have found extensive application in data-driven control of nonlinear dynamical systems, yet fast online identification and control of unknown dynamics remain central challenges. To meet these challenges, this paper integrates echo-state networks (ESNs)--reservoir computing models implemented with recurrent neural networks--and model predictive path integral (MPPI) control--sampling-based variants of model predictive control. The proposed reservoir predictive path integral (RPPI) enables fast learning of nonlinear dynamics with ESNs and exploits the learned nonlinearities directly in MPPI control computation without linearization approximations. This framework is further extended to uncertainty-aware RPPI (URPPI), which achieves robust stochastic control by treating ESN output weights as random variables and minimizing an expected cost over their distribution to account for identification errors. Experiments on controlling a Duffing oscillator and a four-tank system demonstrate that URPPI improves control performance, reducing control costs by up to 60% compared to traditional quadratic programming-based model predictive control methods.
comment: Submitted to IEEE for possible publication, 13 pages, 5 figures
♻ ☆ Feature Identification via the Empirical NTK
We provide evidence that eigenanalysis of the empirical neural tangent kernel (eNTK) can surface the features used by trained neural networks. Across three standard toy models for mechanistic interpretability, Toy Models of Superposition (TMS), a 1-layer MLP trained on modular addition and a 1-layer Transformer trained on modular addition, we find that top eigenspaces of the eNTK align with ground-truth features. In TMS, the eNTK recovers the ground-truth features in both the sparse (high superposition) and dense regimes. In modular arithmetic, the eNTK can be used to recover Fourier feature families. Moreover, we provide evidence that a layerwise eNTK localizes features to specific layers and that the evolution of the eNTK spectrum can be used to diagnose the grokking phase transition. These results suggest that eNTK analysis may provide a practical handle for feature discovery and for detecting phase changes in small models.
comment: 19 pages, 9 figures. v2: references and expanded discussion in Appendix B added. v3: Transformer case study and more appendices added
♻ ☆ GraphToxin: Reconstructing Full Unlearned Graphs from Graph Unlearning
Graph unlearning has emerged as a promising solution to comply with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks (GNNs). These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the intended functionality of graph unlearning. In this work, we propose GraphToxin, the first full graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide fine-grained guidance for unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning, it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple-node removal under both white-box and black-box settings, showcasing its practical feasibility and potential to cause considerable harm. We highlight the necessity of worst-case analysis and propose a systematic evaluation framework to assess attack performance under both random and worst-case node removal scenarios. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, existing defense mechanisms are largely ineffective against this attack or even amplify its performance in some cases. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for more effective and robust defenses.
♻ ☆ Efficient Perplexity Bound and Ratio Matching in Discrete Diffusion Language Models
While continuous diffusion models excel in modeling continuous distributions, their application to categorical data has been less effective. Recent work has shown that ratio-matching through score-entropy within a continuous-time discrete Markov chain (CTMC) framework serves as a competitive alternative to autoregressive models in language modeling. To enhance this framework, we first introduce three new theorems concerning the KL divergence between the data and learned distribution. Our results serve as the discrete counterpart to those established for continuous diffusion models and allow us to derive an improved upper bound of the perplexity. Second, we empirically show that ratio-matching performed by minimizing the denoising cross-entropy between the clean and corrupted data enables models to outperform those utilizing score-entropy with up to 10% lower perplexity/generative-perplexity, and 15% faster training steps. To further support our findings, we introduce and evaluate a novel CTMC transition-rate matrix that allows prediction refinement, and derive the analytic expression for its matrix exponential which facilitates the computation of conditional ratios thus enabling efficient training and generation.
♻ ☆ Adversarial generalization of unfolding (model-based) networks NeurIPS2025
Unfolding networks are interpretable networks emerging from iterative algorithms, incorporate prior knowledge of data structure, and are designed to solve inverse problems like compressed sensing, which deals with recovering data from noisy, missing observations. Compressed sensing finds applications in critical domains, from medical imaging to cryptography, where adversarial robustness is crucial to prevent catastrophic failures. However, a solid theoretical understanding of the performance of unfolding networks in the presence of adversarial attacks is still in its infancy. In this paper, we study the adversarial generalization of unfolding networks when perturbed with $l_2$-norm constrained attacks, generated by the fast gradient sign method. Particularly, we choose a family of state-of-the-art overaparameterized unfolding networks and deploy a new framework to estimate their adversarial Rademacher complexity. Given this estimate, we provide adversarial generalization error bounds for the networks under study, which are tight with respect to the attack level. To our knowledge, this is the first theoretical analysis on the adversarial generalization of unfolding networks. We further present a series of experiments on real-world data, with results corroborating our derived theory, consistently for all data. Finally, we observe that the family's overparameterization can be exploited to promote adversarial robustness, shedding light on how to efficiently robustify neural networks.
comment: Accepted at NeurIPS2025
♻ ☆ SafeCOMM: A Study on Safety Degradation in Fine-Tuned Telecom Large Language Models
Fine-tuning large language models (LLMs) on telecom datasets is a common practice to adapt general-purpose models to the telecom domain. However, little attention has been paid to how this process may compromise model safety. Recent research has shown that even benign fine-tuning can degrade the safety alignment of LLMs, causing them to respond to harmful or unethical user queries. In this paper, we investigate this issue by fine-tuning LLMs on three representative telecom datasets and show that safety degrades even for light telecom domain adaptation. To this end, we introduce TeleHarm, the first telecom-specific red-teaming benchmark, which we use alongside established DirectHarm and HexPhi datasets to systematically assess harmful behavior. We further extend our analysis to publicly available TeleLLMs that were continually pre-trained on large telecom corpora, revealing that safety alignment is severely lacking, primarily due to the omission of safety-focused instruction tuning. To address these issues, we evaluate three realignment defenses: SafeInstruct, SafeLoRA, SafeMERGE. We show that, across all settings, the proposed defenses can effectively restore safety without compromising telecom task performance, leading to Safe teleCOMMunication (SafeCOMM) models. Our work serves as both a diagnostic study and practical guide for safety realignment in telecom-tuned LLMs, underscoring the need for safety-aware instruction and fine-tuning in the telecom domain.
♻ ☆ Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows
Alongside optimization-based planners, sampling-based approaches are often used in trajectory planning for autonomous driving due to their simplicity. Model predictive path integral control is a framework that builds upon optimization principles while incorporating stochastic sampling of input trajectories. This paper investigates several sampling approaches for trajectory generation. In this context, normalizing flows originating from the field of variational inference are considered for the generation of sampling distributions, as they model transformations of simple to more complex distributions. Accordingly, learning-based normalizing flow models are trained for a more efficient exploration of the input domain for the task at hand. The developed algorithm and the proposed sampling distributions are evaluated in two simulation scenarios.
comment: Accepted to be published as part of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island, Korea, June 2-5, 2024
♻ ☆ Generative modelling with jump-diffusions
Score-based diffusion models generate samples from an unknown target distribution using a time-reversed diffusion process. While such models represent state-of-the-art approaches in industrial applications such as artificial image generation, it has recently been noted that their performance can be further improved by considering injection noise with heavy tailed characteristics. Here, I present a generalization of generative diffusion processes to a wide class of non-Gaussian noise processes. I consider forward processes driven by standard Gaussian noise with super-imposed Poisson jumps representing a finite activity Levy process. The generative process is shown to be governed by a generalized score function that depends on the jump amplitude distribution and can be estimated by minimizing a simple MSE loss as in conventional Gaussian models. Both probability flow ODE and SDE formulations are derived using basic technical effort. A detailed implementation for a pure jump process with Laplace distributed amplitudes yields a generalized score function in closed analytical form and is shown to outperform the equivalent Gaussian model in specific parameter regimes.
comment: New version contains: (i) A generalized score function in closed analytical form leading to the jump-Laplace (JL) model; (ii) Additional numerical experiments comparing JL ODE/SDE, Gaussian ODE, and Levy-Ito-Model SDE
♻ ☆ MapFormer: Self-Supervised Learning of Cognitive Maps with Input-Dependent Positional Embeddings
A cognitive map is an internal model which encodes the abstract relationships among entities in the world, giving humans and animals the flexibility to adapt to new situations, with a strong out-of-distribution (OOD) generalization that current AI systems still do not possess. To bridge this gap, we introduce MapFormers, new architectures based on Transformer models, which can learn cognitive maps from observational data and perform path integration in parallel, in a self-supervised manner. Cognitive maps are learned in the model by disentangling structural relationships in the inputs from their specific content, a property that can be achieved naturally by updating the positional encoding in Transformers with input-dependent matrices. We developed two variants of MapFormers that unify absolute and relative positional encoding to model episodic (EM) and working memory (WM), respectively. We tested MapFormers on several tasks, including a classic 2D navigation task, showing that our models can learn a cognitive map of the underlying space and generalize OOD (e.g., to longer sequences) with near-perfect performance, unlike current architectures. Together, these results demonstrate the superiority of models designed to learn a cognitive map, and the importance of introducing a structural bias for structure-content disentanglement, which can be achieved in Transformers with input-dependent positional encoding. MapFormers have broad applications in both neuroscience and AI, by explaining the neural mechanisms giving rise to cognitive maps, while allowing these relation models to be learned at scale.
comment: 19 pages (29 with appendix), 8 figures
♻ ☆ D$^2$Quant: Accurate Low-bit Post-Training Weight Quantization for LLMs
Large language models (LLMs) deliver strong performance, but their high compute and memory costs make deployment difficult in resource-constrained scenarios. Weight-only post-training quantization (PTQ) is appealing, as it reduces memory usage and enables practical speedup without low-bit operators or specialized hardware. However, accuracy often degrades significantly in weight-only PTQ at sub-4-bit precision, and our analysis identifies two main causes: (1) down-projection matrices are a well-known quantization bottleneck, but maintaining their fidelity often requires extra bit-width; (2) weight quantization induces activation deviations, but effective correction strategies remain underexplored. To address these issues, we propose D$^2$Quant, a novel weight-only PTQ framework that improves quantization from both the weight and activation perspectives. On the weight side, we design a Dual-Scale Quantizer (DSQ) tailored to down-projection matrices, with an absorbable scaling factor that significantly improves accuracy without increasing the bit budget. On the activation side, we propose Deviation-Aware Correction (DAC), which incorporates a mean-shift correction within LayerNorm to mitigate quantization-induced activation distribution shifts. Extensive experiments across multiple LLM families and evaluation metrics show that D$^2$Quant delivers superior performance for weight-only PTQ at sub-4-bit precision. The code and models will be available at https://github.com/XIANGLONGYAN/D2Quant.
♻ ☆ QUATRO: Query-Adaptive Trust Region Policy Optimization for LLM Fine-tuning
GRPO-style reinforcement learning (RL)-based LLM fine-tuning algorithms have recently gained popularity. Relying on heuristic trust-region approximations, however, they can lead to brittle optimization behavior, as global importance-ratio clipping and group-wise normalization fail to regulate samples whose importance ratios fall outside the clipping range. We propose Query-Adaptive Trust-Region policy Optimization (QUATRO), which directly enforces trust-region constraints through a principled optimization. This yields a clear and interpretable objective that enables explicit control over policy updates and stable, entropy-controlled optimization, with a stabilizer terms arising intrinsically from the exact trust-region formulation. Empirically verified on diverse mathematical reasoning benchmarks, QUATRO shows stable training under increased policy staleness and aggressive learning rates, maintaining well-controlled entropy throughout training.
♻ ☆ Multi-Order Wavelet Derivative Transform for Deep Time Series Forecasting
In deep time series forecasting, the Fourier Transform (FT) is extensively employed for frequency representation learning. However, it often struggles in capturing multi-scale, time-sensitive patterns. Although the Wavelet Transform (WT) can capture these patterns through frequency decomposition, its coefficients are insensitive to change points in time series, leading to suboptimal modeling. To mitigate these limitations, we introduce the multi-order Wavelet Derivative Transform (WDT) grounded in the WT, enabling the extraction of time-aware patterns spanning both the overall trend and subtle fluctuations. Compared with the standard FT and WT, which model the raw series, the WDT operates on the derivative of the series, selectively magnifying rate-of-change cues and exposing abrupt regime shifts that are particularly informative for time series modeling. Practically, we embed the WDT into a multi-branch framework named WaveTS, which decomposes the input series into multi-scale time-frequency coefficients, refines them via linear layers, and reconstructs them into the time domain via the inverse WDT. Extensive experiments on ten benchmark datasets demonstrate that WaveTS achieves state-of-the-art forecasting accuracy while retaining high computational efficiency.
comment: Preprint
♻ ☆ FLAME: Flow Enhanced Legendre Memory Models for General Time Series Forecasting
In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.
♻ ☆ Deep learning methods for inverse problems using connections between proximal operators and Hamilton-Jacobi equations
Inverse problems are important mathematical problems that seek to recover model parameters from noisy data. Since inverse problems are often ill-posed, they require regularization or incorporation of prior information about the underlying model or unknown variables. Proximal operators, ubiquitous in nonsmooth optimization, are central to this because they provide a flexible and convenient way to encode priors and build efficient iterative algorithms. They have also recently become key to modern machine learning methods, e.g., for plug-and-play methods for learned denoisers and deep neural architectures for learning priors of proximal operators. The latter was developed partly due to recent work characterizing proximal operators of nonconvex priors as subdifferential of convex potentials. In this work, we propose to leverage connections between proximal operators and Hamilton-Jacobi partial differential equations (HJ PDEs) to develop novel deep learning architectures for learning the prior. In contrast to other existing methods, we learn the prior directly without recourse to inverting the prior after training. We present several numerical results that demonstrate the efficiency of the proposed method in high dimensions.
♻ ☆ SALAAD: Sparse And Low-Rank Adaptation via ADMM for Large Language Model Inference
Modern large language models are increasingly deployed under compute and memory constraints, making flexible control of model capacity a central challenge. While sparse and low-rank structures naturally trade off capacity and performance, existing approaches often rely on heuristic designs that ignore layer and matrix heterogeneity or require model-specific architectural modifications. We propose SALAAD, a plug-and-play framework applicable to different model architectures that induces sparse and low-rank structures during training. By formulating structured weight learning under an augmented Lagrangian framework and introducing an adaptive controller that dynamically balances the training loss and structural constraints, SALAAD preserves the stability of standard training dynamics while enabling explicit control over the evolution of effective model capacity during training. Experiments across model scales show that SALAAD substantially reduces memory consumption during deployment while achieving performance comparable to ad-hoc methods. Moreover, a single training run yields a continuous spectrum of model capacities, enabling smooth and elastic deployment across diverse memory budgets without the need for retraining.
♻ ☆ Are Time-Indexed Foundation Models the Future of Time Series Imputation?
Foundation models for time series imputation remain largely unexplored. Recently, two such models, TabPFN-TS and MoTM, have emerged. These models share a common philosophy that places them within the family of time-indexed foundation models. This paper presents the first large-scale empirical study of these models for zero-shot imputation, which enables missing value recovery without retraining across a wide range of scenarios. We conduct extensive univariate experiments across 33 out-of-domain datasets (approximately 1.3M imputation windows) and evaluate their ability to integrate covariates at inference time to improve accuracy without fine-tuning. Our results demonstrate that time-indexed foundation models are a powerful and practical step toward achieving general-purpose, zero-shot imputation for real-world time series.
♻ ☆ PromptSplit: Revealing Prompt-Level Disagreement in Generative Models
Prompt-guided generative AI models have rapidly expanded across vision and language domains, producing realistic and diverse outputs from textual inputs. The growing variety of such models, trained with different data and architectures, calls for principled methods to identify which types of prompts lead to distinct model behaviors. In this work, we propose PromptSplit, a kernel-based framework for detecting and analyzing prompt-dependent disagreement between generative models. For each compared model pair, PromptSplit constructs a joint prompt--output representation by forming tensor-product embeddings of the prompt and image (or text) features, and then computes the corresponding kernel covariance matrix. We utilize the eigenspace of the weighted difference between these matrices to identify the main directions of behavioral difference across prompts. To ensure scalability, we employ a random-projection approximation that reduces computational complexity to $O(nr^2 + r^3)$ for projection dimension $r$. We further provide a theoretical analysis showing that this approximation yields an eigenstructure estimate whose expected deviation from the full-dimensional result is bounded by $O(1/r^2)$. Experiments across text-to-image, text-to-text, and image-captioning settings demonstrate that PromptSplit accurately detects ground-truth behavioral differences and isolates the prompts responsible, offering an interpretable tool for detecting where generative models disagree.
♻ ☆ Learning Nonlinear Heterogeneity in Physical Kolmogorov-Arnold Networks
Physical neural networks typically train linear synaptic weights while treating device nonlinearities as fixed. We show the opposite - by training the synaptic nonlinearity itself, as in Kolmogorov-Arnold Network (KAN) architectures, we yield markedly higher task performance per physical resource and improved performance-parameter scaling than conventional linear weight-based networks, demonstrating ability of KAN topologies to exploit reconfigurable nonlinear physical dynamics. We experimentally realise physical KANs in silicon-on-insulator devices we term 'Synaptic Nonlinear Elements' (SYNEs), operating at room temperature, microampere currents, 2 MHz speeds and ~750 fJ per nonlinear operation, with no observed degradation over 10^13 measurements and months-long timescales. We demonstrate nonlinear function regression, classification, and prediction of Li-Ion battery dynamics from noisy real-world multi-sensor data. Physical KANs outperform equivalently-parameterised software multilayer perceptron networks across all tasks, with up to two orders of magnitude fewer parameters, and two orders of magnitude fewer devices than linear weight based physical networks. These results establish learned physical nonlinearity as a hardware-native computational primitive for compact and efficient learning systems, and SYNE devices as effective substrates for heterogenous nonlinear computing.
♻ ☆ A Free Lunch in LLM Compression: Revisiting Retraining after Pruning
Post-training pruning substantially reduces inference costs but often causes severe quality degradation without adapting the remaining weights. For LLMs, such retraining is commonly considered impractical due to large computational costs, motivating increasingly sophisticated pruning criteria to compensate by selecting better sparsity patterns. In this work, we revisit post-pruning adaptation and study local reconstruction: adapting only a small pruned submodel at a time using a small calibration set by matching intermediate activations of the dense model. We conduct a large-scale study across model families and scales (up to 72B parameters) and establish three central results. First, local reconstruction is an effective adaptation mechanism for LLMs, matching post-pruning PEFT while using over an order of magnitude less data and compute. Second, we identify a broad "free lunch" regime in reconstruction granularity: across a wide range of submodel sizes, final quality remains essentially unchanged, allowing granularity to be chosen based on memory constraints. Finally, with reconstruction, the pruning criterion becomes less critical: performance gaps between sophisticated methods and simple baselines shrink with model size, making simple methods competitive again. Collectively, our results challenge the prevailing narrative that post-pruning adaptation is impractical for LLMs.
♻ ☆ Bayesian Matrix Decomposition and Applications
The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in Bayesian matrix decomposition in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning Bayesian matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of variational inference for conducting the optimization. We refer the reader to literature in the field of Bayesian analysis for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important Bayesian matrix decomposition methods, e.g., real-valued decomposition, nonnegative matrix factorization, Bayesian interpolative decomposition, and the origin and complexity of the methods which shed light on their applications. The mathematical prerequisite is a first course in statistics and linear algebra. Other than this modest background, the development is self-contained, with rigorous proof provided throughout.
♻ ☆ Efficient LLM Moderation with Multi-Layer Latent Prototypes
Although modern LLMs are aligned with human values during post-training, robust moderation remains essential to prevent harmful outputs at deployment time. Existing approaches suffer from performance-efficiency trade-offs and are difficult to customize to user-specific requirements. Motivated by this gap, we introduce Multi-Layer Prototype Moderator (MLPM), a lightweight and highly customizable input moderation tool. We propose leveraging prototypes of intermediate representations across multiple layers to improve moderation quality while maintaining high efficiency. By design, our method adds negligible overhead to the generation pipeline and can be seamlessly applied to any model. MLPM achieves state-of-the-art performance on diverse moderation benchmarks and demonstrates strong scalability across model families of various sizes. Moreover, we show that it integrates smoothly into end-to-end moderation pipelines and further improves response safety when combined with output moderation techniques. Overall, our work provides a practical and adaptable solution for safe, robust, and efficient LLM deployment.
♻ ☆ FreDN: Spectral Disentanglement for Time Series Forecasting via Learnable Frequency Decomposition
Time series forecasting is essential in a wide range of real world applications. Recently, frequency-domain methods have attracted increasing interest for their ability to capture global dependencies. However, when applied to non-stationary time series, these methods encounter the $\textit{spectral entanglement}$ and the computational burden of complex-valued learning. The $\textit{spectral entanglement}$ refers to the overlap of trends, periodicities, and noise across the spectrum due to $\textit{spectral leakage}$ and the presence of non-stationarity. However, existing decompositions are not suited to resolving spectral entanglement. To address this, we propose the Frequency Decomposition Network (FreDN), which introduces a learnable Frequency Disentangler module to separate trend and periodic components directly in the frequency domain. Furthermore, we propose a theoretically supported ReIm Block to reduce the complexity of complex-valued operations while maintaining performance. We also re-examine the frequency-domain loss function and provide new theoretical insights into its effectiveness. Extensive experiments on seven long-term forecasting benchmarks demonstrate that FreDN outperforms state-of-the-art methods by up to 10\%. Furthermore, compared with standard complex-valued architectures, our real-imaginary shared-parameter design reduces the parameter count and computational cost by at least 50\%.
comment: Added a code link and fixed minor typos
♻ ☆ Physics vs Distributions: Pareto Optimal Flow Matching with Physics Constraints
Physics-constrained generative modeling aims to produce high-dimensional samples that are both physically consistent and distributionally accurate, a task that remains challenging due to often conflicting optimization objectives. Recent advances in flow matching and diffusion models have enabled efficient generative modeling, but integrating physical constraints often degrades generative fidelity or requires costly inference-time corrections. Our work is the first to recognize the trade-off between distributional and physical accuracy. Based on the insight of inherently conflicting objectives, we introduce Physics-Based Flow Matching (PBFM) a method that enforces physical constraints at training time using conflict-free gradient updates and unrolling to mitigate Jensen's gap. Our approach avoids manual loss balancing and enables simultaneous optimization of generative and physical objectives. As a consequence, physics constraints do not impede inference performance. We benchmark our method across three representative PDE benchmarks. PBFM achieves a Pareto-optimal trade-off, competitive inference speed, and generalizes to a wide range of physics-constrained generative tasks, providing a practical tool for scientific machine learning. Code and datasets available at https://github.com/tum-pbs/PBFM.
♻ ☆ Forecasting with Hyper-Trees
We introduce Hyper-Trees as a novel framework for modeling time series data using gradient boosted trees. Unlike conventional tree-based approaches that forecast time series directly, Hyper-Trees learn the parameters of a target time series model, such as ARIMA or Exponential Smoothing, as functions of features. These parameters are then used by the target model to generate the final forecasts. Our framework combines the effectiveness of decision trees on tabular data with classical forecasting models, thereby inducing a time series inductive bias into tree-based models. To resolve the scaling limitations of boosted trees when estimating a high-dimensional set of target model parameters, we combine decision trees and neural networks within a unified framework. In this hybrid approach, the trees generate informative representations from the input features, which a shallow network then uses as input to learn the parameters of a time series model. With our research, we explore the effectiveness of Hyper-Trees across a range of forecasting tasks and extend tree-based modeling beyond its conventional use in time series analysis.
comment: Gradient Boosted Trees, Hyper Models, Hybrid Models, Time Series Forecasting, Time-Varying Parameters
♻ ☆ Position: Epistemic uncertainty estimation methods are fundamentally incomplete
Identifying and disentangling sources of predictive uncertainty is essential for trustworthy supervised learning. We argue that widely used second-order methods that disentangle aleatoric and epistemic uncertainty are fundamentally incomplete. First, we show that unaccounted bias contaminates uncertainty estimates by overestimating aleatoric (data-related) uncertainty and underestimating the epistemic (model-related) counterpart, leading to incorrect uncertainty quantification. Second, we demonstrate that existing methods capture only partial contributions to the variance-driven part of epistemic uncertainty; different approaches account for different variance sources, yielding estimates that are incomplete and difficult to interpret. Together, these results highlight that current epistemic uncertainty estimates can only be used in safety-critical and high-stakes decision-making when limitations are fully understood by end users and acknowledged by AI developers.
Information Retrieval 17
☆ On the Efficiency of Sequentially Aware Recommender Systems: Cotten4Rec
Sequential recommendation (SR) models predict a user's next interaction by modeling their historical behaviors. Transformer-based SR methods, notably BERT4Rec, effectively capture these patterns but incur significant computational overhead due to extensive intermediate computations associated with Softmax-based attention. We propose Cotten4Rec, a novel SR model utilizing linear-time cosine similarity attention, implemented through a single optimized compute unified device architecture (CUDA) kernel. By minimizing intermediate buffers and kernel-launch overhead, Cotten4Rec substantially reduces resource usage compared to BERT4Rec and the linear-attention baseline, LinRec, especially for datasets with moderate sequence lengths and vocabulary sizes. Evaluations across three benchmark datasets confirm that Cotten4Rec achieves considerable reductions in memory and runtime with minimal compromise in recommendation accuracy, demonstrating Cotten4Rec's viability as an efficient alternative for practical, large-scale sequential recommendation scenarios where computational resources are critical.
Multimodal Generative Retrieval Model with Staged Pretraining for Food Delivery on Meituan
Multimodal retrieval models are becoming increasingly important in scenarios such as food delivery, where rich multimodal features can meet diverse user needs and enable precise retrieval. Mainstream approaches typically employ a dual-tower architecture between queries and items, and perform joint optimization of intra-tower and inter-tower tasks. However, we observe that joint optimization often leads to certain modalities dominating the training process, while other modalities are neglected. In addition, inconsistent training speeds across modalities can easily result in the one-epoch problem. To address these challenges, we propose a staged pretraining strategy, which guides the model to focus on specialized tasks at each stage, enabling it to effectively attend to and utilize multimodal features, and allowing flexible control over the training process at each stage to avoid the one-epoch problem. Furthermore, to better utilize the semantic IDs that compress high-dimensional multimodal embeddings, we design both generative and discriminative tasks to help the model understand the associations between SIDs, queries, and item features, thereby improving overall performance. Extensive experiments on large-scale real-world Meituan data demonstrate that our method achieves improvements of 3.80%, 2.64%, and 2.17% on R@5, R@10, and R@20, and 5.10%, 4.22%, and 2.09% on N@5, N@10, and N@20 compared to mainstream baselines. Online A/B testing on the Meituan platform shows that our approach achieves a 1.12% increase in revenue and a 1.02% increase in click-through rate, validating the effectiveness and superiority of our method in practical applications.
☆ R2LED: Equipping Retrieval and Refinement in Lifelong User Modeling with Semantic IDs for CTR Prediction
Lifelong user modeling, which leverages users' long-term behavior sequences for CTR prediction, has been widely applied in personalized services. Existing methods generally adopted a two-stage "retrieval-refinement" strategy to balance effectiveness and efficiency. However, they still suffer from (i) noisy retrieval due to skewed data distribution and (ii) lack of semantic understanding in refinement. While semantic enhancement, e.g., LLMs modeling or semantic embeddings, offers potential solutions to these two challenges, these approaches face impractical inference costs or insufficient representation granularity. Obsorbing multi-granularity and lightness merits of semantic identity (SID), we propose a novel paradigm that equips retrieval and refinement in Lifelong User Modeling with SEmantic IDs (R2LED) to address these issues. First, we introduce a Multi-route Mixed Retrieval for the retrieval stage. On the one hand, it captures users' interests from various granularities by several parallel recall routes. On the other hand, a mixed retrieval mechanism is proposed to efficiently retrieve candidates from both collaborative and semantic views, reducing noise. Then, for refinement, we design a Bi-level Fusion Refinement, including a target-aware cross-attention for route-level fusion and a gate mechanism for SID-level fusion. It can bridge the gap between semantic and collaborative spaces, exerting the merits of SID. The comprehensive experimental results on two public datasets demonstrate the superiority of our method in both performance and efficiency. To facilitate the reproduction, we have released the code online https://github.com/abananbao/R2LED.
☆ TokenMixer-Large: Scaling Up Large Ranking Models in Industrial Recommenders
In recent years, the study of scaling laws for large recommendation models has gradually gained attention. Works such as Wukong, HiFormer, and DHEN have attempted to increase the complexity of interaction structures in ranking models and validate scaling laws between performance and parameters/FLOPs by stacking multiple layers. However, their experimental scale remains relatively limited. Our previous work introduced the TokenMixer architecture, an efficient variant of the standard Transformer where the self-attention mechanism is replaced by a simple reshape operation, and the feed-forward network is adapted to a pertoken FFN. The effectiveness of this architecture was demonstrated in the ranking stage by the model presented in the RankMixer paper. However, this foundational TokenMixer architecture itself has several design limitations. In this paper, we propose TokenMixer-Large, which systematically addresses these core issues: sub-optimal residual design, insufficient gradient updates in deep models, incomplete MoE sparsification, and limited exploration of scalability. By leveraging a mixing-and-reverting operation, inter-layer residuals, the auxiliary loss and a novel Sparse-Pertoken MoE architecture, TokenMixer-Large successfully scales its parameters to 7-billion and 15-billion on online traffic and offline experiments, respectively. Currently deployed in multiple scenarios at ByteDance, TokenMixer -Large has achieved significant offline and online performance gains.
☆ A methodology for analyzing financial needs hierarchy from social discussions using LLM
This study examines the hierarchical structure of financial needs as articulated in social media discourse, employing generative AI techniques to analyze large-scale textual data. While human needs encompass a broad spectrum from fundamental survival to psychological fulfillment financial needs are particularly critical, influencing both individual well-being and day-to-day decision-making. Our research advances the understanding of financial behavior by utilizing large language models (LLMs) to extract and analyze expressions of financial needs from social media posts. We hypothesize that financial needs are organized hierarchically, progressing from short-term essentials to long-term aspirations, consistent with theoretical frameworks established in the behavioral sciences. Through computational analysis, we demonstrate the feasibility of identifying these needs and validate the presence of a hierarchical structure within them. In addition to confirming this structure, our findings provide novel insights into the content and themes of financial discussions online. By inferring underlying needs from naturally occurring language, this approach offers a scalable and data-driven alternative to conventional survey methodologies, enabling a more dynamic and nuanced understanding of financial behavior in real-world contexts.
comment: 15 pages, 5 figures, 4 tables
☆ MuCo: Multi-turn Contrastive Learning for Multimodal Embedding Model
Universal Multimodal embedding models built on Multimodal Large Language Models (MLLMs) have traditionally employed contrastive learning, which aligns representations of query-target pairs across different modalities. Yet, despite its empirical success, they are primarily built on a "single-turn" formulation where each query-target pair is treated as an independent data point. This paradigm leads to computational inefficiency when scaling, as it requires a separate forward pass for each pair and overlooks potential contextual relationships between multiple queries that can relate to the same context. In this work, we introduce Multi-Turn Contrastive Learning (MuCo), a dialogue-inspired framework that revisits this process. MuCo leverages the conversational nature of MLLMs to process multiple, related query-target pairs associated with a single image within a single forward pass. This allows us to extract a set of multiple query and target embeddings simultaneously, conditioned on a shared context representation, amplifying the effective batch size and overall training efficiency. Experiments exhibit MuCo with a newly curated 5M multimodal multi-turn dataset (M3T), which yields state-of-the-art retrieval performance on MMEB and M-BEIR benchmarks, while markedly enhancing both training efficiency and representation coherence across modalities. Code and M3T are available at https://github.com/naver-ai/muco
comment: 22 pages
☆ Sequences as Nodes for Contrastive Multimodal Graph Recommendation
To tackle cold-start and data sparsity issues in recommender systems, numerous multimodal, sequential, and contrastive techniques have been proposed. While these augmentations can boost recommendation performance, they tend to add noise and disrupt useful semantics. To address this, we propose MuSICRec (Multimodal Sequence-Item Contrastive Recommender), a multi-view graph-based recommender that combines collaborative, sequential, and multimodal signals. We build a sequence-item (SI) view by attention pooling over the user's interacted items to form sequence nodes. We propagate over the SI graph, obtaining a second view organically as an alternative to artificial data augmentation, while simultaneously injecting sequential context signals. Additionally, to mitigate modality noise and align the multimodal information, the contribution of text and visual features is modulated according to an ID-guided gate. We evaluate under a strict leave-two-out split against a broad range of sequential, multimodal, and contrastive baselines. On the Amazon Baby, Sports, and Electronics datasets, MuSICRec outperforms state-of-the-art baselines across all model types. We observe the largest gains for short-history users, mitigating sparsity and cold-start challenges. Our code is available at https://anonymous.4open.science/r/MuSICRec-3CEE/ and will be made publicly available.
☆ Multimodal Enhancement of Sequential Recommendation
We propose a novel recommender framework, MuSTRec (Multimodal and Sequential Transformer-based Recommendation), that unifies multimodal and sequential recommendation paradigms. MuSTRec captures cross-item similarities and collaborative filtering signals, by building item-item graphs from extracted text and visual features. A frequency-based self-attention module additionally captures the short- and long-term user preferences. Across multiple Amazon datasets, MuSTRec demonstrates superior performance (up to 33.5% improvement) over multimodal and sequential state-of-the-art baselines. Finally, we detail some interesting facets of this new recommendation paradigm. These include the need for a new data partitioning regime, and a demonstration of how integrating user embeddings into sequential recommendation leads to drastically increased short-term metrics (up to 200% improvement) on smaller datasets. Our code is availabe at https://anonymous.4open.science/r/MuSTRec-D32B/ and will be made publicly available.
☆ Reasoning-Augmented Representations for Multimodal Retrieval
Universal Multimodal Retrieval (UMR) seeks any-to-any search across text and vision, yet modern embedding models remain brittle when queries require latent reasoning (e.g., resolving underspecified references or matching compositional constraints). We argue this brittleness is often data-induced: when images carry "silent" evidence and queries leave key semantics implicit, a single embedding pass must both reason and compress, encouraging spurious feature matching. We propose a data-centric framework that decouples these roles by externalizing reasoning before retrieval. Using a strong Vision--Language Model, we make implicit semantics explicit by densely captioning visual evidence in corpus entries, resolving ambiguous multimodal references in queries, and rewriting verbose instructions into concise retrieval constraints. Inference-time enhancement alone is insufficient; the retriever must be trained on these semantically dense representations to avoid distribution shift and fully exploit the added signal. Across M-BEIR, our reasoning-augmented training method yields consistent gains over strong baselines, with ablations showing that corpus enhancement chiefly benefits knowledge-intensive queries while query enhancement is critical for compositional modification requests. We publicly release our code at https://github.com/AugmentedRetrieval/ReasoningAugmentedRetrieval.
♻ ☆ ProfOlaf: Semi-Automated Tool for Systematic Literature Reviews
Systematic reviews and mapping studies are critical to synthesize research, identify gaps, and guide future work, but are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to help select articles, extract key topics, and answer queries about the content of articles. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. ProfOlaf can be used both as a CLI tool and in web application format. A video demonstrating ProfOlaf is available at: https://youtu.be/R-gY4dJlN3s
comment: 5 pages, 1 Figure, 2 tables
♻ ☆ LLM-Enhanced Reinforcement Learning for Long-Term User Satisfaction in Interactive Recommendation
Interactive recommender systems can dynamically adapt to user feedback, but often suffer from content homogeneity and filter bubble effects due to overfitting short-term user preferences. While recent efforts aim to improve content diversity, they predominantly operate in static or one-shot settings, neglecting the long-term evolution of user interests. Reinforcement learning provides a principled framework for optimizing long-term user satisfaction by modeling sequential decision-making processes. However, its application in recommendation is hindered by sparse, long-tailed user-item interactions and limited semantic planning capabilities. In this work, we propose LLM-Enhanced Reinforcement Learning (LERL), a novel hierarchical recommendation framework that integrates the semantic planning power of LLM with the fine-grained adaptability of RL. LERL consists of a high-level LLM-based planner that selects semantically diverse content categories, and a low-level RL policy that recommends personalized items within the selected semantic space. This hierarchical design narrows the action space, enhances planning efficiency, and mitigates overexposure to redundant content. Extensive experiments on real-world datasets demonstrate that LERL significantly improves long-term user satisfaction when compared with state-of-the-art baselines. The implementation of LERL is available at https://github.com/1163710212/LERL.
♻ ☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
♻ ☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: This work is currently in progress
♻ ☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus. We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
♻ ☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
♻ ☆ RecoWorld: Building Simulated Environments for Agentic Recommender Systems WWW 2026
We present RecoWorld, a blueprint for building simulated environments tailored to agentic recommender systems. Such environments give agents a proper training space where they can learn from errors without impacting real users. RecoWorld distinguishes itself with a dual-view architecture: a simulated user and an agentic recommender engage in multi-turn interactions aimed at maximizing user retention. The user simulator reviews recommended items, updates its mindset, and when sensing potential user disengagement, generates reflective instructions. The agentic recommender adapts its recommendations by incorporating these user instructions and reasoning traces, creating a dynamic feedback loop that actively engages users. This process leverages the exceptional reasoning capabilities of modern LLMs. We explore diverse content representations within the simulator, including text-based, multimodal, and semantic ID modeling, and discuss how multi-turn RL enables the recommender to refine its strategies through iterative interactions. RecoWorld also supports multi-agent simulations, allowing creators to simulate the responses of targeted user populations. It marks an important first step toward recommender systems where users and agents collaboratively shape personalized information streams. We envision new interaction paradigms where "user instructs, recommender responds," jointly optimizing user retention and engagement.
comment: HCRS @ WWW 2026
♻ ☆ The LCLStream Ecosystem for Multi-Institutional Dataset Exploration
We describe a new end-to-end experimental data streaming framework designed from the ground up to support new types of applications -- AI training, extremely high-rate X-ray time-of-flight analysis, crystal structure determination with distributed processing, and custom data science applications and visualizers yet to be created. Throughout, we use design choices merging cloud microservices with traditional HPC batch execution models for security and flexibility. This project makes a unique contribution to the DOE Integrated Research Infrastructure (IRI) landscape. By creating a flexible, API-driven data request service, we address a significant need for high-speed data streaming sources for the X-ray science data analysis community. With the combination of data request API, mutual authentication web security framework, job queue system, high-rate data buffer, and complementary nature to facility infrastructure, the LCLStreamer framework has prototyped and implemented several new paradigms critical for future generation experiments.
comment: 3 figures