Computation and Language 113
☆ Value-Aware Numerical Representations for Transformer Language Models
Transformer-based language models often achieve strong results on mathematical reasoning benchmarks while remaining fragile on basic numerical understanding and arithmetic operations. A central limitation is that numbers are processed as symbolic tokens whose embeddings do not explicitly encode numerical value, leading to systematic errors. We introduce a value-aware numerical representation that augments standard tokenized inputs with a dedicated prefix token whose embedding is explicitly conditioned on the underlying numerical value. This mechanism injects magnitude information directly into the model's input space while remaining compatible with existing tokenizers and decoder-only Transformer architectures. Evaluation on arithmetic tasks shows that the proposed approach outperforms baselines across numerical formats, tasks, and operand lengths. These results indicate that explicitly encoding numerical value is an effective and efficient way to improve fundamental numerical robustness in language models.
☆ ShortCoder: Knowledge-Augmented Syntax Optimization for Token-Efficient Code Generation
Sicong Liu, Yanxian Huang, Mingwei Liu, Jiachi Chen, Ensheng Shi, Yuchi Ma, Hongyu Zhang, Yin Zhang, Yanlin Wang
Code generation tasks aim to automate the conversion of user requirements into executable code, significantly reducing manual development efforts and enhancing software productivity. The emergence of large language models (LLMs) has significantly advanced code generation, though their efficiency is still impacted by certain inherent architectural constraints. Each token generation necessitates a complete inference pass, requiring persistent retention of contextual information in memory and escalating resource consumption. While existing research prioritizes inference-phase optimizations such as prompt compression and model quantization, the generation phase remains underexplored. To tackle these challenges, we propose a knowledge-infused framework named ShortCoder, which optimizes code generation efficiency while preserving semantic equivalence and readability. In particular, we introduce: (1) ten syntax-level simplification rules for Python, derived from AST-preserving transformations, achieving 18.1% token reduction without functional compromise; (2) a hybrid data synthesis pipeline integrating rule-based rewriting with LLM-guided refinement, producing ShorterCodeBench, a corpus of validated tuples of original code and simplified code with semantic consistency; (3) a fine-tuning strategy that injects conciseness awareness into the base LLMs. Extensive experimental results demonstrate that ShortCoder consistently outperforms state-of-the-art methods on HumanEval, achieving an improvement of 18.1%-37.8% in generation efficiency over previous methods while ensuring the performance of code generation.
☆ Empathy Applicability Modeling for General Health Queries ACL
LLMs are increasingly being integrated into clinical workflows, yet they often lack clinical empathy, an essential aspect of effective doctor-patient communication. Existing NLP frameworks focus on reactively labeling empathy in doctors' responses but offer limited support for anticipatory modeling of empathy needs, especially in general health queries. We introduce the Empathy Applicability Framework (EAF), a theory-driven approach that classifies patient queries in terms of the applicability of emotional reactions and interpretations, based on clinical, contextual, and linguistic cues. We release a benchmark of real patient queries, dual-annotated by Humans and GPT-4o. In the subset with human consensus, we also observe substantial human-GPT alignment. To validate EAF, we train classifiers on human-labeled and GPT-only annotations to predict empathy applicability, achieving strong performance and outperforming the heuristic and zero-shot LLM baselines. Error analysis highlights persistent challenges: implicit distress, clinical-severity ambiguity, and contextual hardship, underscoring the need for multi-annotator modeling, clinician-in-the-loop calibration, and culturally diverse annotation. EAF provides a framework for identifying empathy needs before response generation, establishes a benchmark for anticipatory empathy modeling, and enables supporting empathetic communication in asynchronous healthcare.
comment: In Submission to ACL
☆ LLMs can Compress LLMs: Adaptive Pruning by Agents
As Large Language Models (LLMs) continue to scale, post-training pruning has emerged as a promising approach to reduce computational costs while preserving performance. Existing methods such as SparseGPT and Wanda achieve high sparsity through layer-wise weight reconstruction or activation-aware magnitude pruning, but rely on uniform or hand-crafted heuristics to determine per-layer sparsity ratios. Moreover, recent work has shown that pruned LLMs suffer from severe factual knowledge degradation, with structured pruning methods experiencing near-total collapse in factual question-answering capabilities. We introduce agent-guided pruning, where a foundation model acts as an adaptive pruning agent to intelligently select which layers to prune at each iteration while preserving critical knowledge pathways. Our method constructs layer-wise sensitivity profiles by combining Wanda-inspired weight-activation metrics with gradient importance scores, normalized as z-scores for model-agnostic comparison. These statistics are processed by an LLM agent equipped with self-reflection capabilities, enabling it to learn from previous pruning outcomes and iteratively refine its strategy. A checkpoint rollback mechanism maintains model quality by reverting when perplexity degradation exceeds a threshold. We evaluate our approach on Qwen3 models (4B and 8B parameters) at approximately 45% sparsity, demonstrating substantial improvements over structured pruning baselines: 56% relative improvement in MMLU accuracy, 19x better factual knowledge retention on FreebaseQA, and 69% lower perplexity degradation. Notably, our framework requires no retraining, operates in a model-agnostic manner, and exhibits effective self-correction with only 2-4 rollbacks across 21-40 iterations, demonstrating that foundation models can effectively guide the compression of other foundation models.
comment: 17 Pages
☆ Routing with Generated Data: Annotation-Free LLM Skill Estimation and Expert Selection
Tianyi Niu, Justin Chih-Yao Chen, Genta Indra Winata, Shi-Xiong Zhang, Supriyo Chakraborty, Sambit Sahu, Yue Zhang, Elias Stengel-Eskin, Mohit Bansal
Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
comment: Code: https://github.com/tianyiniu/RoutingGenData
☆ DeepResearchEval: An Automated Framework for Deep Research Task Construction and Agentic Evaluation
Yibo Wang, Lei Wang, Yue Deng, Keming Wu, Yao Xiao, Huanjin Yao, Liwei Kang, Hai Ye, Yongcheng Jing, Lidong Bing
Deep research systems are widely used for multi-step web research, analysis, and cross-source synthesis, yet their evaluation remains challenging. Existing benchmarks often require annotation-intensive task construction, rely on static evaluation dimensions, or fail to reliably verify facts when citations are missing. To bridge these gaps, we introduce DeepResearchEval, an automated framework for deep research task construction and agentic evaluation. For task construction, we propose a persona-driven pipeline generating realistic, complex research tasks anchored in diverse user profiles, applying a two-stage filter Task Qualification and Search Necessity to retain only tasks requiring multi-source evidence integration and external retrieval. For evaluation, we propose an agentic pipeline with two components: an Adaptive Point-wise Quality Evaluation that dynamically derives task-specific evaluation dimensions, criteria, and weights conditioned on each generated task, and an Active Fact-Checking that autonomously extracts and verifies report statements via web search, even when citations are missing.
comment: Source code: https://github.com/Infinity-AILab/DeepResearchEval
☆ Disentangling Task Conflicts in Multi-Task LoRA via Orthogonal Gradient Projection
Multi-Task Learning (MTL) combined with Low-Rank Adaptation (LoRA) has emerged as a promising direction for parameter-efficient deployment of Large Language Models (LLMs). By sharing a single adapter across multiple tasks, one can significantly reduce storage overhead. However, this approach suffers from negative transfer, where conflicting gradient updates from distinct tasks degrade the performance of individual tasks compared to single-task fine-tuning. This problem is exacerbated in LoRA due to the low-rank constraint, which limits the optimization landscape's capacity to accommodate diverse task requirements. In this paper, we propose Ortho-LoRA, a gradient projection method specifically tailored for the bipartite structure of LoRA. Ortho-LoRA dynamically projects conflicting task gradients onto the orthogonal complement of each other within the intrinsic LoRA subspace. Extensive experiments on the GLUE benchmark demonstrate that Ortho-LoRA effectively mitigates task interference, outperforming standard joint training and recovering 95\% of the performance gap between multi-task and single-task baselines with negligible computational overhead.
comment: preprint
☆ Collaborative Multi-Agent Test-Time Reinforcement Learning for Reasoning
Zhiyuan Hu, Yunhai Hu, Juncheng Liu, Shuyue Stella Li, Yucheng Wang, Zhen Xu, See-Kiong Ng, Anh Tuan Luu, Xinxing Xu, Bryan Hooi, Cynthia Breazeal, Hae Won Park
Multi-agent systems have evolved into practical LLM-driven collaborators for many applications, gaining robustness from diversity and cross-checking. However, multi-agent RL (MARL) training is resource-intensive and unstable: co-adapting teammates induce non-stationarity, and rewards are often sparse and high-variance. Therefore, we introduce \textbf{Multi-Agent Test-Time Reinforcement Learning (MATTRL)}, a framework that injects structured textual experience into multi-agent deliberation at inference time. MATTRL forms a multi-expert team of specialists for multi-turn discussions, retrieves and integrates test-time experiences, and reaches consensus for final decision-making. We also study credit assignment for constructing a turn-level experience pool, then reinjecting it into the dialogue. Across challenging benchmarks in medicine, math, and education, MATTRL improves accuracy by an average of 3.67\% over a multi-agent baseline, and by 8.67\% over comparable single-agent baselines. Ablation studies examine different credit-assignment schemes and provide a detailed comparison of how they affect training outcomes. MATTRL offers a stable, effective and efficient path to distribution-shift-robust multi-agent reasoning without tuning.
comment: Work in Progress
☆ Creating a Hybrid Rule and Neural Network Based Semantic Tagger using Silver Standard Data: the PyMUSAS framework for Multilingual Semantic Annotation
Andrew Moore, Paul Rayson, Dawn Archer, Tim Czerniak, Dawn Knight, Daisy Lal, Gearóid Ó Donnchadha, Mícheál Ó Meachair, Scott Piao, Elaine Uí Dhonnchadha, Johanna Vuorinen, Yan Yabo, Xiaobin Yang
Word Sense Disambiguation (WSD) has been widely evaluated using the semantic frameworks of WordNet, BabelNet, and the Oxford Dictionary of English. However, for the UCREL Semantic Analysis System (USAS) framework, no open extensive evaluation has been performed beyond lexical coverage or single language evaluation. In this work, we perform the largest semantic tagging evaluation of the rule based system that uses the lexical resources in the USAS framework covering five different languages using four existing datasets and one novel Chinese dataset. We create a new silver labelled English dataset, to overcome the lack of manually tagged training data, that we train and evaluate various mono and multilingual neural models in both mono and cross-lingual evaluation setups with comparisons to their rule based counterparts, and show how a rule based system can be enhanced with a neural network model. The resulting neural network models, including the data they were trained on, the Chinese evaluation dataset, and all of the code have been released as open resources.
comment: 12 pages, 2 figures
☆ TaxoBell: Gaussian Box Embeddings for Self-Supervised Taxonomy Expansion WWW
Taxonomies form the backbone of structured knowledge representation across diverse domains, enabling applications such as e-commerce catalogs, semantic search, and biomedical discovery. Yet, manual taxonomy expansion is labor-intensive and cannot keep pace with the emergence of new concepts. Existing automated methods rely on point-based vector embeddings, which model symmetric similarity and thus struggle with the asymmetric "is-a" relationships that are fundamental to taxonomies. Box embeddings offer a promising alternative by enabling containment and disjointness, but they face key issues: (i) unstable gradients at the intersection boundaries, (ii) no notion of semantic uncertainty, and (iii) limited capacity to represent polysemy or ambiguity. We address these shortcomings with TaxoBell, a Gaussian box embedding framework that translates between box geometries and multivariate Gaussian distributions, where means encode semantic location and covariances encode uncertainty. Energy-based optimization yields stable optimization, robust modeling of ambiguous concepts, and interpretable hierarchical reasoning. Extensive experimentation on five benchmark datasets demonstrates that TaxoBell significantly outperforms eight state-of-the-art taxonomy expansion baselines by 19% in MRR and around 25% in Recall@k. We further demonstrate the advantages and pitfalls of TaxoBell with error analysis and ablation studies.
comment: Accepted in The Web Conference (WWW) 2026
☆ LLMs Got Rhythm? Hybrid Phonological Filtering for Greek Poetry Rhyme Detection and Generation
Large Language Models (LLMs), despite their remarkable capabilities across NLP tasks, struggle with phonologically-grounded phenomena like rhyme detection and generation. This is even more evident in lower-resource languages such as Modern Greek. In this paper, we present a hybrid system that combines LLMs with deterministic phonological algorithms to achieve accurate rhyme identification/analysis and generation. Our approach implements a comprehensive taxonomy of Greek rhyme types, including Pure, Rich, Imperfect, Mosaic, and Identical Pre-rhyme Vowel (IDV) patterns, and employs an agentic generation pipeline with phonological verification. We evaluate multiple prompting strategies (zero-shot, few-shot, Chain-of-Thought, and RAG-augmented) across several LLMs including Claude 3.7 and 4.5, GPT-4o, Gemini 2.0 and open-weight models like Llama 3.1 8B and 70B and Mistral Large. Results reveal a significant "Reasoning Gap": while native-like models (Claude 3.7) perform intuitively (40\% accuracy in identification), reasoning-heavy models (Claude 4.5) achieve state-of-the-art performance (54\%) only when prompted with Chain-of-Thought. Most critically, pure LLM generation fails catastrophically (under 4\% valid poems), while our hybrid verification loop restores performance to 73.1\%. We release our system and a crucial, rigorously cleaned corpus of 40,000+ rhymes, derived from the Anemoskala and Interwar Poetry corpora, to support future research.
☆ Toward Understanding Unlearning Difficulty: A Mechanistic Perspective and Circuit-Guided Difficulty Metric
Machine unlearning is becoming essential for building trustworthy and compliant language models. Yet unlearning success varies considerably across individual samples: some are reliably erased, while others persist despite the same procedure. We argue that this disparity is not only a data-side phenomenon, but also reflects model-internal mechanisms that encode and protect memorized information. We study this problem from a mechanistic perspective based on model circuits--structured interaction pathways that govern how predictions are formed. We propose Circuit-guided Unlearning Difficulty (CUD), a {\em pre-unlearning} metric that assigns each sample a continuous difficulty score using circuit-level signals. Extensive experiments demonstrate that CUD reliably separates intrinsically easy and hard samples, and remains stable across unlearning methods. We identify key circuit-level patterns that reveal a mechanistic signature of difficulty: easy-to-unlearn samples are associated with shorter, shallower interactions concentrated in earlier-to-intermediate parts of the original model, whereas hard samples rely on longer and deeper pathways closer to late-stage computation. Compared to existing qualitative studies, CUD takes a first step toward a principled, fine-grained, and interpretable analysis of unlearning difficulty; and motivates the development of unlearning methods grounded in model mechanisms.
☆ DPWriter: Reinforcement Learning with Diverse Planning Branching for Creative Writing
Reinforcement learning (RL)-based enhancement of large language models (LLMs) often leads to reduced output diversity, undermining their utility in open-ended tasks like creative writing. Current methods lack explicit mechanisms for guiding diverse exploration and instead prioritize optimization efficiency and performance over diversity. This paper proposes an RL framework structured around a semi-structured long Chain-of-Thought (CoT), in which the generation process is decomposed into explicitly planned intermediate steps. We introduce a Diverse Planning Branching method that strategically introduces divergence at the planning phase based on diversity variation, alongside a group-aware diversity reward to encourage distinct trajectories. Experimental results on creative writing benchmarks demonstrate that our approach significantly improves output diversity without compromising generation quality, consistently outperforming existing baselines.
☆ Linear Complexity Self-Supervised Learning for Music Understanding with Random Quantizer
In recent years, foundation models have become very popular due to their exceptional performance, mainly in natural language (NLP) tasks where they were first introduced. These models usually consist of hundreds of millions, or even billions, of parameters, making them resource-intensive during training and in production systems, leading to increased costs. This paper focuses on the reduction of a foundation's model size when applied to music information retrieval (MIR) tasks. Our research combines the Branchformer architecture with SummaryMixing, which were first applied in speech recognition, along with a random quantization process. To facilitate reproducibility, we conduct pre-training on publicly available datasets, complemented by a proprietary dataset comparable in scale to other private datasets reported in the literature. We ensure robust evaluation by using a framework consisting of a variety of downstream MIR tasks. Our results show that our architecture achieves competitive performance when compared with other state-of-the-art models that use multi-head self-attention, while reducing the model size from 8.5% up to 12.3%.
comment: accepted by ACM/SIGAPP Symposium on Applied Computing (SAC 2026)
☆ Show, don't tell -- Providing Visual Error Feedback for Handwritten Documents
Handwriting remains an essential skill, particularly in education. Therefore, providing visual feedback on handwritten documents is an important but understudied area. We outline the many challenges when going from an image of handwritten input to correctly placed informative error feedback. We empirically compare modular and end-to-end systems and find that both approaches currently do not achieve acceptable overall quality. We identify the major challenges and outline an agenda for future research.
☆ Permutation Matching Under Parikh Budgets: Linear-Time Detection, Packing, and Disjoint Selection
We study permutation (jumbled/Abelian) pattern matching over a general alphabet $Σ$. Given a pattern P of length m and a text T of length n, the classical task is to decide whether T contains a length-m substring whose Parikh vector equals that of P . While this existence problem admits a linear-time sliding-window solution, many practical applications require optimization and packing variants beyond mere detection. We present a unified sliding-window framework based on maintaining the Parikh-vector difference between P and the current window of T , enabling permutation matching in O(n + σ) time and O(σ) space, where σ = |Σ|. Building on this foundation, we introduce a combinatorial-optimization variant that we call Maximum Feasible Substring under Pattern Supply (MFSP): find the longest substring S of T whose symbol counts are component-wise bounded by those of P . We show that MFSP can also be solved in O(n + σ) time via a two-pointer feasibility maintenance algorithm, providing an exact packing interpretation of P as a resource budget. Finally, we address non-overlapping occurrence selection by modeling each permutation match as an equal-length interval and proving that a greedy earliest-finishing strategy yields a maximum-cardinality set of disjoint matches, computable in linear time once all matches are enumerated. Our results provide concise, provably correct algorithms with tight bounds, and connect frequency-based string matching to packing-style optimization primitives.
comment: 12 pages (Excluding reference)
☆ Dialogue Telemetry: Turn-Level Instrumentation for Autonomous Information Gathering
Autonomous systems conducting schema-grounded information-gathering dialogues face an instrumentation gap, lacking turn-level observables for monitoring acquisition efficiency and detecting when questioning becomes unproductive. We introduce Dialogue Telemetry (DT), a measurement framework that produces two model-agnostic signals after each question-answer exchange: (i) a Progress Estimator (PE) quantifying residual information potential per category (with a bits-based variant), and (ii) a Stalling Index (SI) detecting an observable failure signature characterized by repeated category probing with semantically similar, low-marginal-gain responses. SI flags this pattern without requiring causal diagnosis, supporting monitoring in settings where attributing degradation to specific causes may be impractical. We validate DT in controlled search-and-rescue (SAR)-inspired interviews using large language model (LLM)-based simulations, distinguishing efficient from stalled dialogue traces and illustrating downstream utility by integrating DT signals into a reinforcement learning (RL) policy. Across these settings, DT provides interpretable turn-level instrumentation that improves policy performance when stalling carries operational costs.
comment: 16 pages, 9 Figures, Version submitted to IEEE for publication
☆ Benchmarking Post-Training Quantization of Large Language Models under Microscaling Floating Point Formats
Microscaling Floating-Point (MXFP) has emerged as a promising low-precision format for large language models (LLMs). Despite various post-training quantization (PTQ) algorithms being proposed, they mostly focus on integer quantization, while their applicability and behavior under MXFP formats remain largely unexplored. To address this gap, this work conducts a systematic investigation of PTQ under MXFP formats, encompassing over 7 PTQ algorithms, 15 evaluation benchmarks, and 3 LLM families. The key findings include: 1) MXFP8 consistently achieves near-lossless performance, while MXFP4 introduces substantial accuracy degradation and remains challenging; 2) PTQ effectiveness under MXFP depends strongly on format compatibility, with some algorithmic paradigms being consistently more effective than others; 3) PTQ performance exhibits highly consistent trends across model families and modalities, in particular, quantization sensitivity is dominated by the language model rather than the vision encoder in multimodal LLMs; 4) The scaling factor of quantization is a critical error source in MXFP4, and a simple pre-scale optimization strategy can significantly mitigate its impact. Together, these results provide practical guidance on adapting existing PTQ methods to MXFP quantization.
☆ SERM: Self-Evolving Relevance Model with Agent-Driven Learning from Massive Query Streams
Chenglong Wang, Canjia Li, Xingzhao Zhu, Yifu Huo, Huiyu Wang, Weixiong Lin, Yun Yang, Qiaozhi He, Tianhua Zhou, Xiaojia Chang, Jingbo Zhu, Tong Xiao
Due to the dynamically evolving nature of real-world query streams, relevance models struggle to generalize to practical search scenarios. A sophisticated solution is self-evolution techniques. However, in large-scale industrial settings with massive query streams, this technique faces two challenges: (1) informative samples are often sparse and difficult to identify, and (2) pseudo-labels generated by the current model could be unreliable. To address these challenges, in this work, we propose a Self-Evolving Relevance Model approach (SERM), which comprises two complementary multi-agent modules: a multi-agent sample miner, designed to detect distributional shifts and identify informative training samples, and a multi-agent relevance annotator, which provides reliable labels through a two-level agreement framework. We evaluate SERM in a large-scale industrial setting, which serves billions of user requests daily. Experimental results demonstrate that SERM can achieve significant performance gains through iterative self-evolution, as validated by extensive offline multilingual evaluations and online testing.
☆ MVSS: A Unified Framework for Multi-View Structured Survey Generation
Yinqi Liu, Yueqi Zhu, Yongkang Zhang, Xinfeng Li, Feiran Liu, Yufei Sun, Xin Wang, Renzhao Liang, Yidong Wang, Cunxiang Wang
Scientific surveys require not only summarizing large bodies of literature, but also organizing them into clear and coherent conceptual structures. Existing automatic survey generation methods typically focus on linear text generation and struggle to explicitly model hierarchical relations among research topics and structured methodological comparisons, resulting in gaps in structural organization compared to expert-written surveys. We propose MVSS, a multi-view structured survey generation framework that jointly generates and aligns citation-grounded hierarchical trees, structured comparison tables, and survey text. MVSS follows a structure-first paradigm: it first constructs a conceptual tree of the research domain, then generates comparison tables constrained by the tree, and finally uses both as structural constraints for text generation. This enables complementary multi-view representations across structure, comparison, and narrative. We introduce an evaluation framework assessing structural quality, comparative completeness, and citation fidelity. Experiments on 76 computer science topics show MVSS outperforms existing methods in organization and evidence grounding, achieving performance comparable to expert surveys.
☆ SlidesGen-Bench: Evaluating Slides Generation via Computational and Quantitative Metrics
Yunqiao Yang, Wenbo Li, Houxing Ren, Zimu Lu, Ke Wang, Zhiyuan Huang, Zhuofan Zong, Mingjie Zhan, Hongsheng Li
The rapid evolution of Large Language Models (LLMs) has fostered diverse paradigms for automated slide generation, ranging from code-driven layouts to image-centric synthesis. However, evaluating these heterogeneous systems remains challenging, as existing protocols often struggle to provide comparable scores across architectures or rely on uncalibrated judgments. In this paper, we introduce SlidesGen-Bench, a benchmark designed to evaluate slide generation through a lens of three core principles: universality, quantification, and reliability. First, to establish a unified evaluation framework, we ground our analysis in the visual domain, treating terminal outputs as renderings to remain agnostic to the underlying generation method. Second, we propose a computational approach that quantitatively assesses slides across three distinct dimensions - Content, Aesthetics, and Editability - offering reproducible metrics where prior works relied on subjective or reference-dependent proxies. Finally, to ensure high correlation with human preference, we construct the Slides-Align1.5k dataset, a human preference aligned dataset covering slides from nine mainstream generation systems across seven scenarios. Our experiments demonstrate that SlidesGen-Bench achieves a higher degree of alignment with human judgment than existing evaluation pipelines. Our code and data are available at https://github.com/YunqiaoYang/SlidesGen-Bench.
comment: 37 pages, 34 figures
☆ Dissecting Judicial Reasoning in U.S. Copyright Damage Awards KDD'25
Judicial reasoning in copyright damage awards poses a core challenge for computational legal analysis. Although federal courts follow the 1976 Copyright Act, their interpretations and factor weightings vary widely across jurisdictions. This inconsistency creates unpredictability for litigants and obscures the empirical basis of legal decisions. This research introduces a novel discourse-based Large Language Model (LLM) methodology that integrates Rhetorical Structure Theory (RST) with an agentic workflow to extract and quantify previously opaque reasoning patterns from judicial opinions. Our framework addresses a major gap in empirical legal scholarship by parsing opinions into hierarchical discourse structures and using a three-stage pipeline, i.e., Dataset Construction, Discourse Analysis, and Agentic Feature Extraction. This pipeline identifies reasoning components and extract feature labels with corresponding discourse subtrees. In analyzing copyright damage rulings, we show that discourse-augmented LLM analysis outperforms traditional methods while uncovering unquantified variations in factor weighting across circuits. These findings offer both methodological advances in computational legal analysis and practical insights into judicial reasoning, with implications for legal practitioners seeking predictive tools, scholars studying legal principle application, and policymakers confronting inconsistencies in copyright law.
comment: Presented in SIGKDD'25 SciSoc LLM Workshop: Large Language Models for Scientific and Societal Advances
☆ Improving Symbolic Translation of Language Models for Logical Reasoning AAAI 2026
The use of formal language for deductive logical reasoning aligns well with language models (LMs), where translating natural language (NL) into first-order logic (FOL) and employing an external solver results in a verifiable and therefore reliable reasoning system. However, smaller LMs often struggle with this translation task, frequently producing incorrect symbolic outputs due to formatting and translation errors. Existing approaches typically rely on self-iteration to correct these errors, but such methods depend heavily on the capabilities of the underlying model. To address this, we first categorize common errors and fine-tune smaller LMs using data synthesized by large language models. The evaluation is performed using the defined error categories. We introduce incremental inference, which divides inference into two stages, predicate generation and FOL translation, providing greater control over model behavior and enhancing generation quality as measured by predicate metrics. This decomposition framework also enables the use of a verification module that targets predicate-arity errors to further improve performance. Our study evaluates three families of models across four logical-reasoning datasets. The comprehensive fine-tuning, incremental inference, and verification modules reduce error rates, increase predicate coverage, and improve reasoning performance for smaller LMs, moving us closer to developing reliable and accessible symbolic-reasoning systems.
comment: The Third workshop of NeusymBridge @AAAI 2026 (Bridging Neurons and Symbols for NLP and Knowledge Graph Reasoning)
☆ Where Knowledge Collides: A Mechanistic Study of Intra-Memory Knowledge Conflict in Language Models
In language models (LMs), intra-memory knowledge conflict largely arises when inconsistent information about the same event is encoded within the model's parametric knowledge. While prior work has primarily focused on resolving conflicts between a model's internal knowledge and external resources through approaches such as fine-tuning or knowledge editing, the problem of localizing conflicts that originate during pre-training within the model's internal representations remain unexplored. In this work, we design a framework based on mechanistic interpretability methods to identify where and how conflicting knowledge from the pre-training data is encoded within LMs. Our findings contribute to a growing body of evidence that specific internal components of a language model are responsible for encoding conflicting knowledge from pre-training, and we demonstrate how mechanistic interpretability methods can be leveraged to causally intervene in and control conflicting knowledge at inference time.
☆ Bias Dynamics in BabyLMs: Towards a Compute-Efficient Sandbox for Democratising Pre-Training Debiasing
Pre-trained language models (LMs) have, over the last few years, grown substantially in both societal adoption and training costs. This rapid growth in size has constrained progress in understanding and mitigating their biases. Since re-training LMs is prohibitively expensive, most debiasing work has focused on post-hoc or masking-based strategies, which often fail to address the underlying causes of bias. In this work, we seek to democratise pre-model debiasing research by using low-cost proxy models. Specifically, we investigate BabyLMs, compact BERT-like models trained on small and mutable corpora that can approximate bias acquisition and learning dynamics of larger models. We show that BabyLMs display closely aligned patterns of intrinsic bias formation and performance development compared to standard BERT models, despite their drastically reduced size. Furthermore, correlations between BabyLMs and BERT hold across multiple intra-model and post-model debiasing methods. Leveraging these similarities, we conduct pre-model debiasing experiments with BabyLMs, replicating prior findings and presenting new insights regarding the influence of gender imbalance and toxicity on bias formation. Our results demonstrate that BabyLMs can serve as an effective sandbox for large-scale LMs, reducing pre-training costs from over 500 GPU-hours to under 30 GPU-hours. This provides a way to democratise pre-model debiasing research and enables faster, more accessible exploration of methods for building fairer LMs.
comment: 21 pages, 18 figures
☆ Speech-Hands: A Self-Reflection Voice Agentic Approach to Speech Recognition and Audio Reasoning with Omni Perception
Zhen Wan, Chao-Han Huck Yang, Jinchuan Tian, Hanrong Ye, Ankita Pasad, Szu-wei Fu, Arushi Goel, Ryo Hachiuma, Shizhe Diao, Kunal Dhawan, Sreyan Ghosh, Yusuke Hirota, Zhehuai Chen, Rafael Valle, Ehsan Hosseini Asl, Chenhui Chu, Shinji Watanabe, Yu-Chiang Frank Wang, Boris Ginsburg
We introduce a voice-agentic framework that learns one critical omni-understanding skill: knowing when to trust itself versus when to consult external audio perception. Our work is motivated by a crucial yet counterintuitive finding: naively fine-tuning an omni-model on both speech recognition and external sound understanding tasks often degrades performance, as the model can be easily misled by noisy hypotheses. To address this, our framework, Speech-Hands, recasts the problem as an explicit self-reflection decision. This learnable reflection primitive proves effective in preventing the model from being derailed by flawed external candidates. We show that this agentic action mechanism generalizes naturally from speech recognition to complex, multiple-choice audio reasoning. Across the OpenASR leaderboard, Speech-Hands consistently outperforms strong baselines by 12.1% WER on seven benchmarks. The model also achieves 77.37% accuracy and high F1 on audio QA decisions, showing robust generalization and reliability across diverse audio question answering datasets. By unifying perception and decision-making, our work offers a practical path toward more reliable and resilient audio intelligence.
comment: Preprint. The version was submitted in October 2025
☆ Structured Knowledge Representation through Contextual Pages for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by incorporating external knowledge. Recently, some works have incorporated iterative knowledge accumulation processes into RAG models to progressively accumulate and refine query-related knowledge, thereby constructing more comprehensive knowledge representations. However, these iterative processes often lack a coherent organizational structure, which limits the construction of more comprehensive and cohesive knowledge representations. To address this, we propose PAGER, a page-driven autonomous knowledge representation framework for RAG. PAGER first prompts an LLM to construct a structured cognitive outline for a given question, which consists of multiple slots representing a distinct knowledge aspect. Then, PAGER iteratively retrieves and refines relevant documents to populate each slot, ultimately constructing a coherent page that serves as contextual input for guiding answer generation. Experiments on multiple knowledge-intensive benchmarks and backbone models show that PAGER consistently outperforms all RAG baselines. Further analyses demonstrate that PAGER constructs higher-quality and information-dense knowledge representations, better mitigates knowledge conflicts, and enables LLMs to leverage external knowledge more effectively. All code is available at https://github.com/OpenBMB/PAGER.
☆ Ability Transfer and Recovery via Modularized Parameters Localization
Large language models can be continually pre-trained or fine-tuned to improve performance in specific domains, languages, or skills, but this specialization often degrades other capabilities and may cause catastrophic forgetting. We investigate how abilities are distributed within LLM parameters by analyzing module activations under domain- and language-specific inputs for closely related models. Across layers and modules, we find that ability-related activations are highly concentrated in a small set of channels (typically <5\%), and these channels are largely disentangled with good sufficiency and stability. Building on these observations, we propose ACT (Activation-Guided Channel-wise Ability Transfer), which localizes ability-relevant channels via activation differences and selectively transfers only the corresponding parameters, followed by lightweight fine-tuning for compatibility. Experiments on multilingual mathematical and scientific reasoning show that ACT can recover forgotten abilities while preserving retained skills. It can also merge multiple specialized models to integrate several abilities into a single model with minimal interference. Our code and data will be publicly released.
☆ SLAM-LLM: A Modular, Open-Source Multimodal Large Language Model Framework and Best Practice for Speech, Language, Audio and Music Processing SP
Ziyang Ma, Guanrou Yang, Wenxi Chen, Zhifu Gao, Yexing Du, Xiquan Li, Zhisheng Zheng, Haina Zhu, Jianheng Zhuo, Zheshu Song, Ruiyang Xu, Tiranrui Wang, Yifan Yang, Yanqiao Zhu, Zhikang Niu, Liumeng Xue, Yinghao Ma, Ruibin Yuan, Shiliang Zhang, Kai Yu, Eng Siong Chng, Xie Chen
The recent surge in open-source Multimodal Large Language Models (MLLM) frameworks, such as LLaVA, provides a convenient kickoff for artificial intelligence developers and researchers. However, most of the MLLM frameworks take vision as the main input modality, and provide limited in-depth support for the modality of speech, audio, and music. This situation hinders the development of audio-language models, and forces researchers to spend a lot of effort on code writing and hyperparameter tuning. We present SLAM-LLM, an open-source deep learning framework designed to train customized MLLMs, focused on speech, language, audio, and music processing. SLAM-LLM provides a modular configuration of different encoders, projectors, LLMs, and parameter-efficient fine-tuning plugins. SLAM-LLM also includes detailed training and inference recipes for mainstream tasks, along with high-performance checkpoints like LLM-based Automatic Speech Recognition (ASR), Automated Audio Captioning (AAC), and Music Captioning (MC). Some of these recipes have already reached or are nearing state-of-the-art performance, and some relevant techniques have also been accepted by academic papers. We hope SLAM-LLM will accelerate iteration, development, data engineering, and model training for researchers. We are committed to continually pushing forward audio-based MLLMs through this open-source framework, and call on the community to contribute to the LLM-based speech, audio and music processing.
comment: Published in IEEE Journal of Selected Topics in Signal Processing (JSTSP)
☆ Long-term Task-oriented Agent: Proactive Long-term Intent Maintenance in Dynamic Environments
Current large language model agents predominantly operate under a reactive paradigm, responding only to immediate user queries within short-term sessions. This limitation hinders their ability to maintain long-term user's intents and dynamically adapt to evolving external environments. In this paper, we propose a novel interaction paradigm for proactive Task-oriented Agents capable of bridging the gap between relatively static user's needs and a dynamic environment. We formalize proactivity through two key capabilities, (i) Intent-Conditioned Monitoring: The agent autonomously formulates trigger conditions based on dialog history; (ii) Event-Triggered Follow-up: The agent actively engages the user upon detecting useful environmental updates. We introduce a high-quality data synthesis pipeline to construct complex, multi-turn dialog data in a dynamic environment. Furthermore, we attempt to address the lack of evaluation criteria of task-oriented interaction in a dynamic environment by proposing a new benchmark, namely ChronosBench. We evaluated some leading close-source and open-source models at present and revealed their flaws in long-term task-oriented interaction. Furthermore, our fine-tuned model trained using synthetic data for supervised learning achieves a task completion rate of 85.19% for complex tasks including shifts in user intent, outperforming other models under test. And the result validated the effectiveness of our data-driven strategy.
comment: 8 pages, 2 figures
☆ The Imperfective Paradox in Large Language Models
Do Large Language Models (LLMs) genuinely grasp the compositional semantics of events, or do they rely on surface-level probabilistic heuristics? We investigate the Imperfective Paradox, a logical phenomenon where the past progressive aspect entails event realization for activities (e.g., running $\to$ ran) but not for accomplishments (e.g., building $\nrightarrow$ built). We introduce ImperfectiveNLI, a diagnostic dataset designed to probe this distinction across diverse semantic classes. Evaluating state-of-the-art open-weight models, we uncover a pervasive Teleological Bias: models systematically hallucinate completion for goal-oriented events, often overriding explicit textual negation. Representational analyses show that while internal embeddings often distinguish process from result, inference decisions are dominated by strong priors about goal attainment. We further find that prompting-based interventions reduce hallucinated completions but also increase incorrect rejections of valid entailments. Our findings suggest that current LLMs lack structural aspectual awareness, operating as predictive narrative engines rather than faithful logical reasoners.
☆ Relation Extraction Capabilities of LLMs on Clinical Text: A Bilingual Evaluation for English and Turkish
The scarcity of annotated datasets for clinical information extraction in non-English languages hinders the evaluation of large language model (LLM)-based methods developed primarily in English. In this study, we present the first comprehensive bilingual evaluation of LLMs for the clinical Relation Extraction (RE) task in both English and Turkish. To facilitate this evaluation, we introduce the first English-Turkish parallel clinical RE dataset, derived and carefully curated from the 2010 i2b2/VA relation classification corpus. We systematically assess a diverse set of prompting strategies, including multiple in-context learning (ICL) and Chain-of-Thought (CoT) approaches, and compare their performance to fine-tuned baselines such as PURE. Furthermore, we propose Relation-Aware Retrieval (RAR), a novel in-context example selection method based on contrastive learning, that is specifically designed to capture both sentence-level and relation-level semantics. Our results show that prompting-based LLM approaches consistently outperform traditional fine-tuned models. Moreover, evaluations for English performed better than their Turkish counterparts across all evaluated LLMs and prompting techniques. Among ICL methods, RAR achieves the highest performance, with Gemini 1.5 Flash reaching a micro-F1 score of 0.906 in English and 0.888 in Turkish. Performance further improves to 0.918 F1 in English when RAR is combined with a structured reasoning prompt using the DeepSeek-V3 model. These findings highlight the importance of high-quality demonstration retrieval and underscore the potential of advanced retrieval and prompting techniques to bridge resource gaps in clinical natural language processing.
☆ Frame of Reference: Addressing the Challenges of Common Ground Representation in Situational Dialogs
Common ground plays a critical role in situated spoken dialogues, where interlocutors must establish and maintain shared references to entities, events, and relations to sustain coherent interaction. For dialog systems, the ability to correctly ground conversational content in order to refer back to it later is particularly important. Prior studies have demonstrated that LLMs are capable of performing grounding acts such as requesting clarification or producing acknowledgments, yet relatively little work has investigated how common ground can be explicitly represented and stored for later use. Without such mechanisms, it remains unclear whether acknowledgment or clarification behaviors truly reflect a grounded understanding. In this work, we evaluate a model's ability to establish and exploit common ground through relational references to entities within the shared context in a situational dialogue. We test multiple methods for representing common ground in situated dialogues and further propose approaches to improve both the establishment of common ground and its subsequent use in the conversation.
☆ Improving Implicit Hate Speech Detection via a Community-Driven Multi-Agent Framework
This work proposes a contextualised detection framework for implicitly hateful speech, implemented as a multi-agent system comprising a central Moderator Agent and dynamically constructed Community Agents representing specific demographic groups. Our approach explicitly integrates socio-cultural context from publicly available knowledge sources, enabling identity-aware moderation that surpasses state-of-the-art prompting methods (zero-shot prompting, few-shot prompting, chain-of-thought prompting) and alternative approaches on a challenging ToxiGen dataset. We enhance the technical rigour of performance evaluation by incorporating balanced accuracy as a central metric of classification fairness that accounts for the trade-off between true positive and true negative rates. We demonstrate that our community-driven consultative framework significantly improves both classification accuracy and fairness across all target groups.
comment: This paper has been accepted for the upcoming 18th International Conference on Agents and Artificial Intelligence (ICAART-2026), Marbella, Spain. The final published version will appear in the official conference proceedings
☆ Understanding or Memorizing? A Case Study of German Definite Articles in Language Models
Language models perform well on grammatical agreement, but it is unclear whether this reflects rule-based generalization or memorization. We study this question for German definite singular articles, whose forms depend on gender and case. Using GRADIEND, a gradient-based interpretability method, we learn parameter update directions for gender-case specific article transitions. We find that updates learned for a specific gender-case article transition frequently affect unrelated gender-case settings, with substantial overlap among the most affected neurons across settings. These results argue against a strictly rule-based encoding of German definite articles, indicating that models at least partly rely on memorized associations rather than abstract grammatical rules.
☆ ReGraM: Region-First Knowledge Graph Reasoning for Medical Question Answering
Recent studies in medical question answering (Medical QA) have actively explored the integration of large language models (LLMs) with biomedical knowledge graphs (KGs) to improve factual accuracy. However, most existing approaches still rely on traversing the entire KG or performing large-scale retrieval, which introduces substantial noise and leads to unstable multi-hop reasoning. We argue that the core challenge lies not in expanding access to knowledge, but in identifying and reasoning over the appropriate subset of evidence for each query. ReGraM is a region-first knowledge graph reasoning framework that addresses this challenge by constructing a query-aligned subgraph and performing stepwise reasoning constrained to this localized region under multiple evidence aware modes. By focusing inference on only the most relevant portion of the KG, ReGraM departs from the assumption that all relations are equally useful an assumption that rarely holds in domain-specific medical settings. Experiments on seven medical QA benchmarks demonstrate that ReGraM consistently outperforms a strong baseline (KGARevion), achieving an 8.04% absolute accuracy gain on MCQ, a 4.50% gain on SAQ, and a 42.9% reduction in hallucination rate. Ablation and qualitative analyses further show that aligning region construction with hop-wise reasoning is the primary driver of these improvements. Overall, our results highlight region-first KG reasoning as an effective paradigm for improving factual accuracy and consistency in medical QA.
comment: 18 pages, 2 figures. Preprint
☆ MCGA: A Multi-task Classical Chinese Literary Genre Audio Corpus
Yexing Du, Kaiyuan Liu, Bihe Zhang, Youcheng Pan, Bo Yang, Liangyu Huo, Xiyuan Zhang, Jian Xie, Daojing He, Yang Xiang, Ming Liu, Bin Qin
With the rapid advancement of Multimodal Large Language Models (MLLMs), their potential has garnered significant attention in Chinese Classical Studies (CCS). While existing research has primarily focused on text and visual modalities, the audio corpus within this domain remains largely underexplored. To bridge this gap, we propose the Multi-task Classical Chinese Literary Genre Audio Corpus (MCGA). It encompasses a diverse range of literary genres across six tasks: Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Captioning (SEC), Spoken Question Answering (SQA), Speech Understanding (SU), and Speech Reasoning (SR). Through the evaluation of ten MLLMs, our experimental results demonstrate that current models still face substantial challenges when processed on the MCGA test set. Furthermore, we introduce an evaluation metric for SEC and a metric to measure the consistency between the speech and text capabilities of MLLMs. We release MCGA and our code to the public to facilitate the development of MLLMs with more robust multidimensional audio capabilities in CCS. MCGA Corpus: https://github.com/yxduir/MCGA
☆ When to Invoke: Refining LLM Fairness with Toxicity Assessment WWW 2026
Large Language Models (LLMs) are increasingly used for toxicity assessment in online moderation systems, where fairness across demographic groups is essential for equitable treatment. However, LLMs often produce inconsistent toxicity judgements for subtle expressions, particularly those involving implicit hate speech, revealing underlying biases that are difficult to correct through standard training. This raises a key question that existing approaches often overlook: when should corrective mechanisms be invoked to ensure fair and reliable assessments? To address this, we propose FairToT, an inference-time framework that enhances LLM fairness through prompt-guided toxicity assessment. FairToT identifies cases where demographic-related variation is likely to occur and determines when additional assessment should be applied. In addition, we introduce two interpretable fairness indicators that detect such cases and improve inference consistency without modifying model parameters. Experiments on benchmark datasets show that FairToT reduces group-level disparities while maintaining stable and reliable toxicity predictions, demonstrating that inference-time refinement offers an effective and practical approach for fairness improvement in LLM-based toxicity assessment systems. The source code can be found at https://aisuko.github.io/fair-tot/.
comment: Accepted by Findings of WWW 2026
☆ TeachPro: Multi-Label Qualitative Teaching Evaluation via Cross-View Graph Synergy and Semantic Anchored Evidence Encoding
Standardized Student Evaluation of Teaching often suffer from low reliability, restricted response options, and response distortion. Existing machine learning methods that mine open-ended comments usually reduce feedback to binary sentiment, which overlooks concrete concerns such as content clarity, feedback timeliness, and instructor demeanor, and provides limited guidance for instructional improvement.We propose TeachPro, a multi-label learning framework that systematically assesses five key teaching dimensions: professional expertise, instructional behavior, pedagogical efficacy, classroom experience, and other performance metrics. We first propose a Dimension-Anchored Evidence Encoder, which integrates three core components: (i) a pre-trained text encoder that transforms qualitative feedback annotations into contextualized embeddings; (ii) a prompt module that represents five teaching dimensions as learnable semantic anchors; and (iii) a cross-attention mechanism that aligns evidence with pedagogical dimensions within a structured semantic space. We then propose a Cross-View Graph Synergy Network to represent student comments. This network comprises two components: (i) a Syntactic Branch that extracts explicit grammatical dependencies from parse trees, and (ii) a Semantic Branch that models latent conceptual relations derived from BERT-based similarity graphs. BiAffine fusion module aligns syntactic and semantic units, while a differential regularizer disentangles embeddings to encourage complementary representations. Finally, a cross-attention mechanism bridges the dimension-anchored evidence with the multi-view comment representations. We also contribute a novel benchmark dataset featuring expert qualitative annotations and multi-label scores. Extensive experiments demonstrate that TeachPro offers superior diagnostic granularity and robustness across diverse evaluation settings.
☆ When to Trust: A Causality-Aware Calibration Framework for Accurate Knowledge Graph Retrieval-Augmented Generation WWW 2026
Knowledge Graph Retrieval-Augmented Generation (KG-RAG) extends the RAG paradigm by incorporating structured knowledge from knowledge graphs, enabling Large Language Models (LLMs) to perform more precise and explainable reasoning. While KG-RAG improves factual accuracy in complex tasks, existing KG-RAG models are often severely overconfident, producing high-confidence predictions even when retrieved sub-graphs are incomplete or unreliable, which raises concerns for deployment in high-stakes domains. To address this issue, we propose Ca2KG, a Causality-aware Calibration framework for KG-RAG. Ca2KG integrates counterfactual prompting, which exposes retrieval-dependent uncertainties in knowledge quality and reasoning reliability, with a panel-based re-scoring mechanism that stabilises predictions across interventions. Extensive experiments on two complex QA datasets demonstrate that Ca2KG consistently improves calibration while maintaining or even enhancing predictive accuracy.
comment: Accepted by WWW 2026
☆ GIFT: Unlocking Global Optimality in Post-Training via Finite-Temperature Gibbs Initialization
Zhengyang Zhao, Lu Ma, Yizhen Jiang, Xiaochen Ma, Zimo Meng, Chengyu Shen, Lexiang Tang, Haoze Sun, Peng Pei, Wentao Zhang
The prevailing post-training paradigm for Large Reasoning Models (LRMs)--Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL)--suffers from an intrinsic optimization mismatch: the rigid supervision inherent in SFT induces distributional collapse, thereby exhausting the exploration space necessary for subsequent RL. In this paper, we reformulate SFT within a unified post-training framework and propose Gibbs Initialization with Finite Temperature (GIFT). We characterize standard SFT as a degenerate zero-temperature limit that suppresses base priors. Conversely, GIFT incorporates supervision as a finite-temperature energy potential, establishing a distributional bridge that ensures objective consistency throughout the post-training pipeline. Our experiments demonstrate that GIFT significantly outperforms standard SFT and other competitive baselines when utilized for RL initialization, providing a mathematically principled pathway toward achieving global optimality in post-training. Our code is available at https://github.com/zzy1127/GIFT.
☆ UserLM-R1: Modeling Human Reasoning in User Language Models with Multi-Reward Reinforcement Learning
Feng Zhang, Shijia Li, Chunmao Zhang, Zhanyu Ma, Jun Xu, Jiuchong Gao, Jinghua Hao, Renqing He, Jingwen Xu, Han Liu
User simulators serve as the critical interactive environment for agent post-training, and an ideal user simulator generalizes across domains and proactively engages in negotiation by challenging or bargaining. However, current methods exhibit two issues. They rely on static and context-unaware profiles, necessitating extensive manual redesign for new scenarios, thus limiting generalizability. Moreover, they neglect human strategic thinking, leading to vulnerability to agent manipulation. To address these issues, we propose UserLM-R1, a novel user language model with reasoning capability. Specifically, we first construct comprehensive user profiles with both static roles and dynamic scenario-specific goals for adaptation to diverse scenarios. Then, we propose a goal-driven decision-making policy to generate high-quality rationales before producing responses, and further refine the reasoning and improve strategic capabilities with supervised fine-tuning and multi-reward reinforcement learning. Extensive experimental results demonstrate that UserLM-R1 outperforms competitive baselines, particularly on the more challenging adversarial set.
☆ A.X K1 Technical Report
Sung Jun Cheon, Jaekyung Cho, Seongho Choi, Hyunjun Eun, Seokhwan Jo, Jaehyun Jun, Minsoo Kang, Jin Kim, Jiwon Kim, Minsang Kim, Sungwan Kim, Seungsik Kim, Tae Yoon Kim, Youngrang Kim, Hyeongmun Lee, Sangyeol Lee, Sungeun Lee, Youngsoon Lee, Yujin Lee, Seongmin Ok, Chanyong Park, Hyewoong Park, Junyoung Park, Hyunho Yang, Subin Yi, Soohyun Bae, Dhammiko Arya, Yongseok Choi, Sangho Choi, Dongyeon Cho, Seungmo Cho, Gyoungeun Han, Yong-jin Han, Seokyoung Hong, Hyeon Hwang, Wonbeom Jang, Minjeong Ju, Wonjin Jung, Keummin Ka, Sungil Kang, Dongnam Kim, Joonghoon Kim, Jonghwi Kim, SaeRom Kim, Sangjin Kim, Seongwon Kim, Youngjin Kim, Seojin Lee, Sunwoo Lee, Taehoon Lee, Chanwoo Park, Sohee Park, Sooyeon Park, Yohan Ra, Sereimony Sek, Seungyeon Seo, Gun Song, Sanghoon Woo, Janghan Yoon, Sungbin Yoon
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
☆ ProFit: Leveraging High-Value Signals in SFT via Probability-Guided Token Selection
Supervised fine-tuning (SFT) is a fundamental post-training strategy to align Large Language Models (LLMs) with human intent. However, traditional SFT often ignores the one-to-many nature of language by forcing alignment with a single reference answer, leading to the model overfitting to non-core expressions. Although our empirical analysis suggests that introducing multiple reference answers can mitigate this issue, the prohibitive data and computational costs necessitate a strategic shift: prioritizing the mitigation of single-reference overfitting over the costly pursuit of answer diversity. To achieve this, we reveal the intrinsic connection between token probability and semantic importance: high-probability tokens carry the core logical framework, while low-probability tokens are mostly replaceable expressions. Based on this insight, we propose ProFit, which selectively masks low-probability tokens to prevent surface-level overfitting. Extensive experiments confirm that ProFit consistently outperforms traditional SFT baselines on general reasoning and mathematical benchmarks.
☆ OrthoGeoLoRA: Geometric Parameter-Efficient Fine-Tuning for Structured Social Science Concept Retrieval on theWeb
Large language models and text encoders increasingly power web-based information systems in the social sciences, including digital libraries, data catalogues, and search interfaces used by researchers, policymakers, and civil society. Full fine-tuning is often computationally and energy intensive, which can be prohibitive for smaller institutions and non-profit organizations in the Web4Good ecosystem. Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA), reduces this cost by updating only a small number of parameters. We show that the standard LoRA update $ΔW = BA^\top$ has geometric drawbacks: gauge freedom, scale ambiguity, and a tendency toward rank collapse. We introduce OrthoGeoLoRA, which enforces an SVD-like form $ΔW = BΣA^\top$ by constraining the low-rank factors to be orthogonal (Stiefel manifold). A geometric reparameterization implements this constraint while remaining compatible with standard optimizers such as Adam and existing fine-tuning pipelines. We also propose a benchmark for hierarchical concept retrieval over the European Language Social Science Thesaurus (ELSST), widely used to organize social science resources in digital repositories. Experiments with a multilingual sentence encoder show that OrthoGeoLoRA outperforms standard LoRA and several strong PEFT variants on ranking metrics under the same low-rank budget, offering a more compute- and parameter-efficient path to adapt foundation models in resource-constrained settings.
☆ Geometric Stability: The Missing Axis of Representations
Analysis of learned representations has a blind spot: it focuses on $similarity$, measuring how closely embeddings align with external references, but similarity reveals only what is represented, not whether that structure is robust. We introduce $geometric$ $stability$, a distinct dimension that quantifies how reliably representational geometry holds under perturbation, and present $Shesha$, a framework for measuring it. Across 2,463 configurations in seven domains, we show that stability and similarity are empirically uncorrelated ($ρ\approx 0.01$) and mechanistically distinct: similarity metrics collapse after removing the top principal components, while stability retains sensitivity to fine-grained manifold structure. This distinction yields actionable insights: for safety monitoring, stability acts as a functional geometric canary, detecting structural drift nearly 2$\times$ more sensitively than CKA while filtering out the non-functional noise that triggers false alarms in rigid distance metrics; for controllability, supervised stability predicts linear steerability ($ρ= 0.89$-$0.96$); for model selection, stability dissociates from transferability, revealing a geometric tax that transfer optimization incurs. Beyond machine learning, stability predicts CRISPR perturbation coherence and neural-behavioral coupling. By quantifying $how$ $reliably$ systems maintain structure, geometric stability provides a necessary complement to similarity for auditing representations across biological and computational systems.
☆ EvasionBench: Detecting Evasive Answers in Financial Q&A via Multi-Model Consensus and LLM-as-Judge
Detecting evasive answers in earnings calls is critical for financial transparency, yet progress is hindered by the lack of large-scale benchmarks. We introduce EvasionBench, comprising 30,000 training samples and 1,000 human-annotated test samples (Cohen's Kappa 0.835) across three evasion levels. Our key contribution is a multi-model annotation framework leveraging a core insight: disagreement between frontier LLMs signals hard examples most valuable for training. We mine boundary cases where two strong annotators conflict, using a judge to resolve labels. This approach outperforms single-model distillation by 2.4 percent, with judge-resolved samples improving generalization despite higher training loss (0.421 vs 0.393) - evidence that disagreement mining acts as implicit regularization. Our trained model Eva-4B (4B parameters) achieves 81.3 percent accuracy, outperforming its base by 25 percentage points and approaching frontier LLM performance at a fraction of inference cost.
comment: Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin
☆ Identity-Robust Language Model Generation via Content Integrity Preservation
Large Language Model (LLM) outputs often vary across user sociodemographic attributes, leading to disparities in factual accuracy, utility, and safety, even for objective questions where demographic information is irrelevant. Unlike prior work on stereotypical or representational bias, this paper studies identity-dependent degradation of core response quality. We show empirically that such degradation arises from biased generation behavior, despite factual knowledge being robustly encoded across identities. Motivated by this mismatch, we propose a lightweight, training-free framework for identity-robust generation that selectively neutralizes non-critical identity information while preserving semantically essential attributes, thus maintaining output content integrity. Experiments across four benchmarks and 18 sociodemographic identities demonstrate an average 77% reduction in identity-dependent bias compared to vanilla prompting and a 45% reduction relative to prompt-based defenses. Our work addresses a critical gap in mitigating the impact of user identity cues in prompts on core generation quality.
☆ Adaptive Multi-Stage Patent Claim Generation with Unified Quality Assessment
Current patent claim generation systems face three fundamental limitations: poor cross-jurisdictional generalization, inadequate semantic relationship modeling between claims and prior art, and unreliable quality assessment. We introduce a novel three-stage framework that addresses these challenges through relationship-aware similarity analysis, domain-adaptive claim generation, and unified quality assessment. Our approach employs multi-head attention with eight specialized heads for explicit relationship modeling, integrates curriculum learning with dynamic LoRA adapter selection across five patent domains, and implements cross-attention mechanisms between evaluation aspects for comprehensive quality assessment. Extensive experiments on USPTO HUPD dataset, EPO patent collections, and Patent-CE benchmark demonstrate substantial improvements: 7.6-point ROUGE-L gain over GPT-4o, 8.3\% BERTScore enhancement over Llama-3.1-8B, and 0.847 correlation with human experts compared to 0.623 for separate evaluation models. Our method maintains 89.4\% cross-jurisdictional performance retention versus 76.2\% for baselines, establishing a comprehensive solution for automated patent prosecution workflows.
comment: 18 pages, 7 figures. Preprint
☆ Contrastive Bi-Encoder Models for Multi-Label Skill Extraction: Enhancing ESCO Ontology Matching with BERT and Attention Mechanisms
Fine-grained labor market analysis increasingly relies on mapping unstructured job advertisements to standardized skill taxonomies such as ESCO. This mapping is naturally formulated as an Extreme Multi-Label Classification (XMLC) problem, but supervised solutions are constrained by the scarcity and cost of large-scale, taxonomy-aligned annotations--especially in non-English settings where job-ad language diverges substantially from formal skill definitions. We propose a zero-shot skill extraction framework that eliminates the need for manually labeled job-ad training data. The framework uses a Large Language Model (LLM) to synthesize training instances from ESCO definitions, and introduces hierarchically constrained multi-skill generation based on ESCO Level-2 categories to improve semantic coherence in multi-label contexts. On top of the synthetic corpus, we train a contrastive bi-encoder that aligns job-ad sentences with ESCO skill descriptions in a shared embedding space; the encoder augments a BERT backbone with BiLSTM and attention pooling to better model long, information-dense requirement statements. An upstream RoBERTa-based binary filter removes non-skill sentences to improve end-to-end precision. Experiments show that (i) hierarchy-conditioned generation improves both fluency and discriminability relative to unconstrained pairing, and (ii) the resulting multi-label model transfers effectively to real-world Chinese job advertisements, achieving strong zero-shot retrieval performance (F1@5 = 0.72) and outperforming TF--IDF and standard BERT baselines. Overall, the proposed pipeline provides a scalable, data-efficient pathway for automated skill coding in labor economics and workforce analytics.
☆ AviationLMM: A Large Multimodal Foundation Model for Civil Aviation ICICS
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
comment: Accepted by 2025 7th International Conference on Interdisciplinary Computer Science and Engineering (ICICSE 2025) conference, Chongqing, China; 9 pages,1 figure,5 tables
☆ SubTokenTest: A Practical Benchmark for Real-World Sub-token Understanding
Recent advancements in large language models (LLMs) have significantly enhanced their reasoning capabilities. However, they continue to struggle with basic character-level tasks, such as counting letters in words, a problem rooted in their tokenization process. While existing benchmarks have highlighted this weakness through basic character operations, such failures are often dismissed due to lacking practical relevance. Yet, many real-world applications, such as navigating text-based maps or interpreting structured tables, rely heavily on precise sub-token understanding. In this regard, we introduce SubTokenTest, a comprehensive benchmark that assesses sub-token understanding through practical, utility-driven tasks. Our benchmark includes ten tasks across four domains and isolates tokenization-related failures by decoupling performance from complex reasoning. We provide a comprehensive evaluation of nine advanced LLMs. Additionally, we investigate the impact of test-time scaling on sub-token reasoning and explore how character-level information is encoded within the hidden states.
☆ Distribution-Aligned Sequence Distillation for Superior Long-CoT Reasoning
Shaotian Yan, Kaiyuan Liu, Chen Shen, Bing Wang, Sinan Fan, Jun Zhang, Yue Wu, Zheng Wang, Jieping Ye
In this report, we introduce DASD-4B-Thinking, a lightweight yet highly capable, fully open-source reasoning model. It achieves SOTA performance among open-source models of comparable scale across challenging benchmarks in mathematics, scientific reasoning, and code generation -- even outperforming several larger models. We begin by critically reexamining a widely adopted distillation paradigm in the community: SFT on teacher-generated responses, also known as sequence-level distillation. Although a series of recent works following this scheme have demonstrated remarkable efficiency and strong empirical performance, they are primarily grounded in the SFT perspective. Consequently, these approaches focus predominantly on designing heuristic rules for SFT data filtering, while largely overlooking the core principle of distillation itself -- enabling the student model to learn the teacher's full output distribution so as to inherit its generalization capability. Specifically, we identify three critical limitations in current practice: i) Inadequate representation of the teacher's sequence-level distribution; ii) Misalignment between the teacher's output distribution and the student's learning capacity; and iii) Exposure bias arising from teacher-forced training versus autoregressive inference. In summary, these shortcomings reflect a systemic absence of explicit teacher-student interaction throughout the distillation process, leaving the essence of distillation underexploited. To address these issues, we propose several methodological innovations that collectively form an enhanced sequence-level distillation training pipeline. Remarkably, DASD-4B-Thinking obtains competitive results using only 448K training samples -- an order of magnitude fewer than those employed by most existing open-source efforts. To support community research, we publicly release our models and the training dataset.
comment: Project Page: https://github.com/D2I-ai/dasd-thinking
☆ MMR-GRPO: Accelerating GRPO-Style Training through Diversity-Aware Reward Reweighting
Group Relative Policy Optimization (GRPO) has become a standard approach for training mathematical reasoning models; however, its reliance on multiple completions per prompt makes training computationally expensive. Although recent work has reduced the number of training steps required to reach peak performance, the overall wall-clock training time often remains unchanged or even increases due to higher per-step cost. We propose MMR-GRPO, which integrates Maximal Marginal Relevance to reweigh rewards based on completion diversity. Our key insight is that semantically redundant completions contribute limited marginal learning signal; prioritizing diverse solutions yields more informative updates and accelerates convergence. Extensive evaluations across three model sizes (1.5B, 7B, 8B), three GRPO variants, and five mathematical reasoning benchmarks show that MMR-GRPO achieves comparable peak performance while requiring on average 47.9% fewer training steps and 70.2% less wall-clock time. These gains are consistent across models, methods, and benchmarks. We will release our code, trained models, and experimental protocols.
☆ How Many Human Judgments Are Enough? Feasibility Limits of Human Preference Evaluation
Human preference evaluations are widely used to compare generative models, yet it remains unclear how many judgments are required to reliably detect small improvements. We show that when preference signal is diffuse across prompts (i.e., all prompt types are similarly informative), proportional allocation is minimax-optimal: no allocation strategy substantially improves detectability. Empirical analysis of large-scale human preference datasets shows that most comparisons fall into this diffuse regime, exhibiting small preference margins that require far more judgments than typically collected, even in well-sampled comparisons. These limits persist across evaluation protocols and modalities, including chat, image generation, and code generation with execution feedback. In contrast, curated benchmarks that reduce prompt induced variability systematically induce larger margins and improve detectability through a $1.5\times$ reduction in prompt-level variance. Our results show that inconclusive or negative human evaluation outcomes frequently reflect underpowered evaluation rather than model equivalence, underscoring the need to account explicitly for effect size, budget, and protocol design.
☆ Human-AI Co-design for Clinical Prediction Models
Jean Feng, Avni Kothari, Patrick Vossler, Andrew Bishara, Lucas Zier, Newton Addo, Aaron Kornblith, Yan Shuo Tan, Chandan Singh
Developing safe, effective, and practically useful clinical prediction models (CPMs) traditionally requires iterative collaboration between clinical experts, data scientists, and informaticists. This process refines the often small but critical details of the model building process, such as which features/patients to include and how clinical categories should be defined. However, this traditional collaboration process is extremely time- and resource-intensive, resulting in only a small fraction of CPMs reaching clinical practice. This challenge intensifies when teams attempt to incorporate unstructured clinical notes, which can contain an enormous number of concepts. To address this challenge, we introduce HACHI, an iterative human-in-the-loop framework that uses AI agents to accelerate the development of fully interpretable CPMs by enabling the exploration of concepts in clinical notes. HACHI alternates between (i) an AI agent rapidly exploring and evaluating candidate concepts in clinical notes and (ii) clinical and domain experts providing feedback to improve the CPM learning process. HACHI defines concepts as simple yes-no questions that are used in linear models, allowing the clinical AI team to transparently review, refine, and validate the CPM learned in each round. In two real-world prediction tasks (acute kidney injury and traumatic brain injury), HACHI outperforms existing approaches, surfaces new clinically relevant concepts not included in commonly-used CPMs, and improves model generalizability across clinical sites and time periods. Furthermore, HACHI reveals the critical role of the clinical AI team, such as directing the AI agent to explore concepts that it had not previously considered, adjusting the granularity of concepts it considers, changing the objective function to better align with the clinical objectives, and identifying issues of data bias and leakage.
☆ From Symbolic to Natural-Language Relations: Rethinking Knowledge Graph Construction in the Era of Large Language Models
Knowledge graphs (KGs) have commonly been constructed using predefined symbolic relation schemas, typically implemented as categorical relation labels. This design has notable shortcomings: real-world relations are often contextual, nuanced, and sometimes uncertain, and compressing it into discrete relation labels abstracts away critical semantic detail. Nevertheless, symbolic-relation KGs remain widely used because they have been operationally effective and broadly compatible with pre-LLM downstream models and algorithms, in which KG knowledge could be retrieved or encoded into quantified features and embeddings at scale. The emergence of LLMs has reshaped how knowledge is created and consumed. LLMs support scalable synthesis of domain facts directly in concise natural language, and prompting-based inference favors context-rich free-form text over quantified representations. This position paper argues that these changes call for rethinking the representation of relations themselves rather than merely using LLMs to populate conventional schemas more efficiently. We therefore advocate moving from symbolic to natural-language relation descriptions, and we propose hybrid design principles that preserve a minimal structural backbone while enabling more flexible and context-sensitive relational representations.
☆ Mi:dm 2.0 Korea-centric Bilingual Language Models
Donghoon Shin, Sejung Lee, Soonmin Bae, Hwijung Ryu, Changwon Ok, Hoyoun Jung, Hyesung Ji, Jeehyun Lim, Jehoon Lee, Ji-Eun Han, Jisoo Baik, Mihyeon Kim, Riwoo Chung, Seongmin Lee, Wonjae Park, Yoonseok Heo, Youngkyung Seo, Seyoun Won, Boeun Kim, Cheolhun Heo, Eunkyeong Lee, Honghee Lee, Hyeongju Ju, Hyeontae Seo, Jeongyong Shim, Jisoo Lee, Junseok Koh, Junwoo Kim, Minho Lee, Minji Kang, Minju Kim, Sangha Nam, Seongheum Park, Taehyeong Kim, Euijai Ahn, Hong Seok Jeung, Jisu Shin, Jiyeon Kim, Seonyeong Song, Seung Hyun Kong, Sukjin Hong, Taeyang Yun, Yu-Seon Kim, A-Hyun Lee, Chae-Jeong Lee, Hye-Won Yu, Ji-Hyun Ahn, Song-Yeon Kim, Sun-Woo Jung, Eunju Kim, Eunji Ha, Jinwoo Baek, Yun-ji Lee, Wanjin Park, Jeong Yeop Kim, Eun Mi Kim, Hyoung Jun Park, Jung Won Yoon, Min Sung Noh, Myung Gyo Oh, Wongyoung Lee, Yun Jin Park, Young S. Kwon, Hyun Keun Kim, Jieun Lee, YeoJoo Park
We introduce Mi:dm 2.0, a bilingual large language model (LLM) specifically engineered to advance Korea-centric AI. This model goes beyond Korean text processing by integrating the values, reasoning patterns, and commonsense knowledge inherent to Korean society, enabling nuanced understanding of cultural contexts, emotional subtleties, and real-world scenarios to generate reliable and culturally appropriate responses. To address limitations of existing LLMs, often caused by insufficient or low-quality Korean data and lack of cultural alignment, Mi:dm 2.0 emphasizes robust data quality through a comprehensive pipeline that includes proprietary data cleansing, high-quality synthetic data generation, strategic data mixing with curriculum learning, and a custom Korean-optimized tokenizer to improve efficiency and coverage. To realize this vision, we offer two complementary configurations: Mi:dm 2.0 Base (11.5B parameters), built with a depth-up scaling strategy for general-purpose use, and Mi:dm 2.0 Mini (2.3B parameters), optimized for resource-constrained environments and specialized tasks. Mi:dm 2.0 achieves state-of-the-art performance on Korean-specific benchmarks, with top-tier zero-shot results on KMMLU and strong internal evaluation results across language, humanities, and social science tasks. The Mi:dm 2.0 lineup is released under the MIT license to support extensive research and commercial use. By offering accessible and high-performance Korea-centric LLMs, KT aims to accelerate AI adoption across Korean industries, public services, and education, strengthen the Korean AI developer community, and lay the groundwork for the broader vision of K-intelligence. Our models are available at https://huggingface.co/K-intelligence. For technical inquiries, please contact midm-llm@kt.com.
☆ Beyond Consensus: Perspectivist Modeling and Evaluation of Annotator Disagreement in NLP
Annotator disagreement is widespread in NLP, particularly for subjective and ambiguous tasks such as toxicity detection and stance analysis. While early approaches treated disagreement as noise to be removed, recent work increasingly models it as a meaningful signal reflecting variation in interpretation and perspective. This survey provides a unified view of disagreement-aware NLP methods. We first present a domain-agnostic taxonomy of the sources of disagreement spanning data, task, and annotator factors. We then synthesize modeling approaches using a common framework defined by prediction targets and pooling structure, highlighting a shift from consensus learning toward explicitly modeling disagreement, and toward capturing structured relationships among annotators. We review evaluation metrics for both predictive performance and annotator behavior, and noting that most fairness evaluations remain descriptive rather than normative. We conclude by identifying open challenges and future directions, including integrating multiple sources of variation, developing disagreement-aware interpretability frameworks, and grappling with the practical tradeoffs of perspectivist modeling.
☆ Efficient Multilingual Dialogue Processing via Translation Pipelines and Distilled Language Models
Santiago Martínez Novoa, Nicolás Rozo Fajardo, Diego Alejandro González Vargas, Nicolás Bedoya Figueroa
This paper presents team Kl33n3x's multilingual dialogue summarization and question answering system developed for the NLPAI4Health 2025 shared task. The approach employs a three-stage pipeline: forward translation from Indic languages to English, multitask text generation using a 2.55B parameter distilled language model, and reverse translation back to source languages. By leveraging knowledge distillation techniques, this work demonstrates that compact models can achieve highly competitive performance across nine languages. The system achieved strong win rates across the competition's tasks, with particularly robust performance on Marathi (86.7% QnA), Tamil (86.7% QnA), and Hindi (80.0% QnA), demonstrating the effectiveness of translation-based approaches for low-resource language processing without task-specific fine-tuning.
☆ StegoStylo: Squelching Stylometric Scrutiny through Steganographic Stitching
Stylometry--the identification of an author through analysis of a text's style (i.e., authorship attribution)--serves many constructive purposes: it supports copyright and plagiarism investigations, aids detection of harmful content, offers exploratory cues for certain medical conditions (e.g., early signs of dementia or depression), provides historical context for literary works, and helps uncover misinformation and disinformation. In contrast, when stylometry is employed as a tool for authorship verification--confirming whether a text truly originates from a claimed author--it can also be weaponized for malicious purposes. Techniques such as de-anonymization, re-identification, tracking, profiling, and downstream effects like censorship illustrate the privacy threats that stylometric analysis can enable. Building on these concerns, this paper further explores how adversarial stylometry combined with steganography can counteract stylometric analysis. We first present enhancements to our adversarial attack, $\textit{TraceTarnish}$, providing stronger evidence of its capacity to confound stylometric systems and reduce their attribution and verification accuracy. Next, we examine how steganographic embedding can be fine-tuned to mask an author's stylistic fingerprint, quantifying the level of authorship obfuscation achievable as a function of the proportion of words altered with zero-width Unicode characters. Based on our findings, steganographic coverage of 33% or higher seemingly ensures authorship obfuscation. Finally, we reflect on the ways stylometry can be used to undermine privacy and argue for the necessity of defensive tools like $\textit{TraceTarnish}$.
comment: 16 pages, 6 figures, 1 table
☆ SITA: Learning Speaker-Invariant and Tone-Aware Speech Representations for Low-Resource Tonal Languages
Tonal low-resource languages are widely spoken yet remain underserved by modern speech technology. A key challenge is learning representations that are robust to nuisance variation such as gender while remaining tone-aware for different lexical meanings. To address this, we propose SITA, a lightweight adaptation recipe that enforces Speaker-Invariance and Tone-Awareness for pretrained wav2vec-style encoders. SITA uses staged multi-objective training: (i) a cross-gender contrastive objective encourages lexical consistency across speakers, while a tone-repulsive loss prevents tone collapse by explicitly separating same-word different-tone realizations; and (ii) an auxiliary Connectionist Temporal Classification (CTC)-based ASR objective with distillation stabilizes recognition-relevant structure. We evaluate primarily on Hmong, a highly tonal and severely under-resourced language where off-the-shelf multilingual encoders fail to represent tone effectively. On a curated Hmong word corpus, SITA improves cross-gender lexical retrieval accuracy, while maintaining usable ASR accuracy relative to an ASR-adapted XLS-R teacher. We further observe similar gains when transferring the same recipe to Mandarin, suggesting SITA is a general, plug-in approach for adapting multilingual speech encoders to tonal languages.
comment: 8 pages (excluding references, limitations, ethics, acknowledgement, and appendix); 4 figures in the main paper; appendix included
☆ Is Grokking Worthwhile? Functional Analysis and Transferability of Generalization Circuits in Transformers
While Large Language Models (LLMs) excel at factual retrieval, they often struggle with the "curse of two-hop reasoning" in compositional tasks. Recent research suggests that parameter-sharing transformers can bridge this gap by forming a "Generalization Circuit" during a prolonged "grokking" phase. A fundamental question arises: Is a grokked model superior to its non-grokked counterparts on downstream tasks? Furthermore, is the extensive computational cost of waiting for the grokking phase worthwhile? In this work, we conduct a mechanistic study to evaluate the Generalization Circuit's role in knowledge assimilation and transfer. We demonstrate that: (i) The inference paths established by non-grokked and grokked models for in-distribution compositional queries are identical. This suggests that the "Generalization Circuit" does not represent the sudden acquisition of a new reasoning paradigm. Instead, we argue that grokking is the process of integrating memorized atomic facts into an naturally established reasoning path. (ii) Achieving high accuracy on unseen cases after prolonged training and the formation of a certain reasoning path are not bound; they can occur independently under specific data regimes. (iii) Even a mature circuit exhibits limited transferability when integrating new knowledge, suggesting that "grokked" Transformers do not achieve a full mastery of compositional logic.
☆ Can LLMs interpret figurative language as humans do?: surface-level vs representational similarity
Large language models generate judgments that resemble those of humans. Yet the extent to which these models align with human judgments in interpreting figurative and socially grounded language remains uncertain. To investigate this, human participants and four instruction-tuned LLMs of different sizes (GPT-4, Gemma-2-9B, Llama-3.2, and Mistral-7B) rated 240 dialogue-based sentences representing six linguistic traits: conventionality, sarcasm, funny, emotional, idiomacy, and slang. Each of the 240 sentences was paired with 40 interpretive questions, and both humans and LLMs rated these sentences on a 10-point Likert scale. Results indicated that humans and LLMs aligned at the surface level with humans, but diverged significantly at the representational level, especially in interpreting figurative sentences involving idioms and Gen Z slang. GPT-4 most closely approximates human representational patterns, while all models struggle with context-dependent and socio-pragmatic expressions like sarcasm, slang, and idiomacy.
comment: 17 pages, 5 figures
☆ SpectraQuery: A Hybrid Retrieval-Augmented Conversational Assistant for Battery Science
Scientific reasoning increasingly requires linking structured experimental data with the unstructured literature that explains it, yet most large language model (LLM) assistants cannot reason jointly across these modalities. We introduce SpectraQuery, a hybrid natural-language query framework that integrates a relational Raman spectroscopy database with a vector-indexed scientific literature corpus using a Structured and Unstructured Query Language (SUQL)-inspired design. By combining semantic parsing with retrieval-augmented generation, SpectraQuery translates open-ended questions into coordinated SQL and literature retrieval operations, producing cited answers that unify numerical evidence with mechanistic explanation. Across SQL correctness, answer groundedness, retrieval effectiveness, and expert evaluation, SpectraQuery demonstrates strong performance: approximately 80 percent of generated SQL queries are fully correct, synthesized answers reach 93-97 percent groundedness with 10-15 retrieved passages, and battery scientists rate responses highly across accuracy, relevance, grounding, and clarity (4.1-4.6/5). These results show that hybrid retrieval architectures can meaningfully support scientific workflows by bridging data and discourse for high-volume experimental datasets.
comment: 11 pages, 8 figures, appendix included
♻ ☆ Template-Based Probes Are Imperfect Lenses for Counterfactual Bias Evaluation in LLMs
Bias in large language models (LLMs) has many forms, from overt discrimination to implicit stereotypes. Counterfactual bias evaluation is a widely used approach to quantifying bias and often relies on template-based probes that explicitly state group membership. It aims to measure whether the outcome of a task performed by an LLM is invariant to a change in group membership. In this work, we find that template-based probes can introduce systematic distortions in bias measurements. Specifically, we consistently find that such probes suggest that LLMs classify text associated with White race as negative at disproportionately elevated rates. This is observed consistently across a large collection of LLMs, over several diverse template-based probes, and with different classification approaches. We hypothesize that this arises artificially due to linguistic asymmetries present in LLM pretraining data, in the form of markedness, (e.g., Black president vs. president) and templates used for bias measurement (e.g., Black president vs. White president). These findings highlight the need for more rigorous methodologies in counterfactual bias evaluation, ensuring that observed disparities reflect genuine biases rather than artifacts of linguistic conventions.
comment: 22 Pages, 6 Figures, 5 Tables
♻ ☆ Controlled Self-Evolution for Algorithmic Code Optimization
Tu Hu, Ronghao Chen, Shuo Zhang, Jianghao Yin, Mou Xiao Feng, Jingping Liu, Shaolei Zhang, Wenqi Jiang, Yuqi Fang, Sen Hu, Yi Xu, Huacan Wang
Self-evolution methods enhance code generation through iterative "generate-verify-refine" cycles, yet existing approaches suffer from low exploration efficiency, failing to discover solutions with superior complexity within limited budgets. This inefficiency stems from initialization bias trapping evolution in poor solution regions, uncontrolled stochastic operations lacking feedback guidance, and insufficient experience utilization across tasks. To address these bottlenecks, we propose Controlled Self-Evolution (CSE), which consists of three key components. Diversified Planning Initialization generates structurally distinct algorithmic strategies for broad solution space coverage. Genetic Evolution replaces stochastic operations with feedback-guided mechanisms, enabling targeted mutation and compositional crossover. Hierarchical Evolution Memory captures both successful and failed experiences at inter-task and intra-task levels. Experiments on EffiBench-X demonstrate that CSE consistently outperforms all baselines across various LLM backbones. Furthermore, CSE achieves higher efficiency from early generations and maintains continuous improvement throughout evolution. Our code is publicly available at https://github.com/QuantaAlpha/EvoControl.
comment: 27 pages
♻ ☆ Non-Linear Scoring Model for Translation Quality Evaluation
Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition.
Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size.
Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model
E(x) = a * ln(1 + b * x), a, b > 0,
anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added.
The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.
comment: Technical report, 31 pages
♻ ☆ Mathematical Derivation Graphs: A Relation Extraction Task in STEM Manuscripts
Recent advances in natural language processing (NLP), particularly with the emergence of large language models (LLMs), have significantly enhanced the field of textual analysis. However, while these developments have yielded substantial progress in analyzing natural language text, applying analysis to mathematical equations and their relationships within texts has produced mixed results. This paper takes the initial steps in expanding the problem of relation extraction towards understanding the dependency relationships between mathematical expressions in STEM articles. The authors construct the Mathematical Derivation Graphs Dataset (MDGD), sourced from a random sampling of the arXiv corpus, containing an analysis of $107$ published STEM manuscripts with over $2000$ manually labeled inter-equation dependency relationships, resulting in a new object referred to as a derivation graph that summarizes the mathematical content of the manuscript. The authors exhaustively evaluate analytical and machine learning (ML) based models to assess their capability to identify and extract the derivation relationships for each article and compare the results with the ground truth. The authors show that the best tested LLMs achieve $F_1$ scores of $\sim45\%-52\%$, and attempt to improve their performance by combining them with analytic algorithms and other methods.
comment: 29 pages, 11 figures
♻ ☆ LaoBench: A Large-Scale Multidimensional Lao Benchmark for Large Language Models
Jian Gao, Richeng Xuan, Zhaolu Kang, Dingshi Liao, Wenxin Huang, Zongmou Huang, Yangdi Xu, Bowen Qin, Zheqi He, Xi Yang, Changjin Li, Yonghua Lin
The rapid advancement of large language models (LLMs) has not been matched by their evaluation in low-resource languages, especially Southeast Asian languages like Lao. To fill this gap, we introduce \textbf{LaoBench}, the first large-scale, high-quality, and multidimensional benchmark for assessing LLM language understanding and reasoning in Lao. LaoBench contains \textbf{17,000+} expert-curated samples across three dimensions: culturally grounded knowledge application, curriculum-aligned K12 education, and bilingual translation among Lao, Chinese, and English. It includes open-source and held-out subsets, where the held-out portion enables secure black-box evaluation via a controlled service to improve fairness and data security. We construct LaoBench with a hybrid pipeline that combines expert authoring with agent-assisted verification, ensuring linguistic accuracy, cultural relevance, and educational validity. We evaluate diverse state-of-the-art open-source and closed-source LLMs, and find that even strong multilingual models lag behind human experts, particularly in culturally grounded reasoning and translation fidelity. We hope LaoBench will catalyze research on Lao and other underrepresented Southeast Asian languages for more inclusive multilingual evaluation.
♻ ☆ HapticLLaMA: A Multimodal Sensory Language Model for Haptic Captioning
Haptic captioning is the task of generating natural language descriptions from haptic signals, such as vibrations, for use in virtual reality, accessibility, and rehabilitation applications. While previous multimodal research has focused primarily on vision and audio, haptic signals for the sense of touch remain underexplored. To address this gap, we formalize the haptic captioning task and propose HapticLLaMA, a multimodal sensory language model that interprets vibration signals into descriptions in a given sensory, emotional, or associative category. We investigate two types of haptic tokenizers, a frequency-based tokenizer and an EnCodec-based tokenizer, that convert haptic signals into sequences of discrete units, enabling their integration with the LLaMA model. HapticLLaMA is trained in two stages: (1) supervised fine-tuning using the LLaMA architecture with LoRA-based adaptation, and (2) fine-tuning via reinforcement learning from human feedback (RLHF). We assess HapticLLaMA's captioning performance using both automated n-gram metrics and human evaluation. HapticLLaMA demonstrates strong capability in interpreting haptic vibration signals, achieving a METEOR score of 59.98 and a BLEU-4 score of 32.06 respectively. Additionally, over 61% of the generated captions received human ratings above 3.5 on a 7-point scale, with RLHF yielding a 10% improvement in the overall rating distribution, indicating stronger alignment with human haptic perception. These findings highlight the potential of large language models to process and adapt to sensory data.
♻ ☆ Beyond Chunking: Discourse-Aware Hierarchical Retrieval for Long Document Question Answering
Existing long-document question answering systems typically process texts as flat sequences or use heuristic chunking, which overlook the discourse structures that naturally guide human comprehension. We present a discourse-aware hierarchical framework that leverages rhetorical structure theory (RST) for long document question answering. Our approach converts discourse trees into sentence-level representations and employs LLM-enhanced node representations to bridge structural and semantic information. The framework involves three key innovations: language-universal discourse parsing for lengthy documents, LLM-based enhancement of discourse relation nodes, and structure-guided hierarchical retrieval. Extensive experiments on four datasets demonstrate consistent improvements over existing approaches through the incorporation of discourse structure, across multiple genres and languages. Moreover, the proposed framework exhibits strong robustness across diverse document types and linguistic settings.
comment: 21 pages, 9 figures
♻ ☆ FigEx2: Visual-Conditioned Panel Detection and Captioning for Scientific Compound Figures
Scientific compound figures combine multiple labeled panels into a single image, but captions in real pipelines are often missing or only provide figure-level summaries, making panel-level understanding difficult. In this paper, we propose FigEx2, visual-conditioned framework that localizes panels and generates panel-wise captions directly from the compound figure. To mitigate the impact of diverse phrasing in open-ended captioning, we introduce a noise-aware gated fusion module that adaptively filters token-level features to stabilize the detection query space. Furthermore, we employ a staged optimization strategy combining supervised learning with reinforcement learning (RL), utilizing CLIP-based alignment and BERTScore-based semantic rewards to enforce strict multimodal consistency. To support high-quality supervision, we curate BioSci-Fig-Cap, a refined benchmark for panel-level grounding, alongside cross-disciplinary test suites in physics and chemistry. Experimental results demonstrate that FigEx2 achieves a superior 0.726 mAP@0.5:0.95 for detection and significantly outperforms Qwen3-VL-8B by 0.51 in METEOR and 0.24 in BERTScore. Notably, FigEx2 exhibits remarkable zero-shot transferability to out-of-distribution scientific domains without any fine-tuning.
♻ ☆ Head Pursuit: Probing Attention Specialization in Multimodal Transformers NeurIPS 2025
Language and vision-language models have shown impressive performance across a wide range of tasks, but their internal mechanisms remain only partly understood. In this work, we study how individual attention heads in text-generative models specialize in specific semantic or visual attributes. Building on an established interpretability method, we reinterpret the practice of probing intermediate activations with the final decoding layer through the lens of signal processing. This lets us analyze multiple samples in a principled way and rank attention heads based on their relevance to target concepts. Our results show consistent patterns of specialization at the head level across both unimodal and multimodal transformers. Remarkably, we find that editing as few as 1% of the heads, selected using our method, can reliably suppress or enhance targeted concepts in the model output. We validate our approach on language tasks such as question answering and toxicity mitigation, as well as vision-language tasks including image classification and captioning. Our findings highlight an interpretable and controllable structure within attention layers, offering simple tools for understanding and editing large-scale generative models.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ DYCP: Dynamic Context Pruning for Long-Form Dialogue with LLMs ACL 2026
Large Language Models (LLMs) often exhibit increased response latency and degraded answer quality as dialogue length grows, making effective context management essential. However, existing methods rely on extra LLM calls to build memory or perform offline memory construction without considering the current user utterance, which can introduce inefficiencies or disrupt conversational continuity. We introduce DyCP, a lightweight context management method that dynamically segment and retrieve relevant memory at query time. It preserves the sequential structure of dialogue without predefined topic boundaries and supports efficient, adaptive context retrieval. Across three long-form dialogue benchmarks, LoCoMo, MT-Bench+, and SCM4LLMs, and multiple LLMs, DyCP consistently improves answer quality while reducing response latency. We also examine the gap between modern LLMs' expanded context windows and their actual long-context processing capacity, highlighting the continued importance of effective context management.
comment: Accepted (B) to TACL 2026
♻ ☆ Navigating the Reality Gap: Privacy-Preserving On-Device Continual Adaptation of ASR for Clinical Telephony
Darshil Chauhan, Adityasinh Solanki, Vansh Patel, Kanav Kapoor, Ritvik Jain, Aditya Bansal, Pratik Narang, Dhruv Kumar
Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. Such adaptation is essential for clinical telephony systems, where patient speech is highly variable and transcription errors can directly impact downstream clinical workflows. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades up to a 40.94% WER on rural clinical telephony speech from India, rendering it unusable. We demonstrate consistent improvements on these helpline interactions without transmitting raw patient data off-device via an on-device continual adaptation framework using Low-Rank Adaptation (LoRA). We conduct an investigative study of stabilization strategies, characterizing the trade-offs between data-driven and parameter-driven approaches. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we investigate a stabilized importance estimation strategy (Absolute Fisher) to ensure robust convergence against the high-variance gradients common in clinical telephony speech. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability in healthcare settings which cannot be bypassed by language models alone.
comment: 17 pages, 13 figures. Under review
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, despite sampling from a larger set of tokens.
comment: Published in Transactions on Machine Learning Research (2025), see https://tmlr.infinite-conf.org/paper_pages/kXjHbMvdIi.html
♻ ☆ Can LLMs Generate Reliable Test Case Generators? A Study on Competition-Level Programming Problems
Yuhan Cao, Zian Chen, Kun Quan, Ziliang Zhang, Yu Wang, Xiaoning Dong, Yeqi Feng, Guanzhong He, Jingcheng Huang, Jianhao Li, Yixuan Tan, Jiafu Tang, Yilin Tang, Junlei Wu, Qianyu Xiao, Can Zheng, Shouchen Zhou, Yuxiang Zhu, Yiming Huang, Tianxing He
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, capable of tackling complex tasks during inference. However, the extent to which LLMs can be utilized for code checking or debugging through test case generation remains largely unexplored. We investigate this problem from the perspective of competition-level programming (CP) programs and propose TCGBench, a Benchmark for (LLM generation of) Test Case Generators. This benchmark comprises two tasks, aimed at studying the capabilities of LLMs in (1) generating valid test case generators for a given CP problem, and further (2) generating targeted test case generators that expose bugs in human-written code. Experimental results indicate that while state-of-the-art LLMs can generate valid test case generators in most cases, most LLMs struggle to generate targeted test cases that reveal flaws in human code effectively. Especially, even advanced reasoning models (e.g., o3-mini) fall significantly short of human performance in the task of generating targeted generators. Furthermore, we construct a high-quality, manually curated dataset of instructions for generating targeted generators. Analysis demonstrates that the performance of LLMs can be enhanced with the aid of this dataset, by both prompting and fine-tuning.
comment: 37 pages, 22 figures
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ Autofocus Retrieval: An Effective Pipeline for Multi-Hop Question Answering With Semi-Structured Knowledge
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. Yet, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data. In this work, we present Autofocus-Retriever (AF-Retriever), a modular framework for SKB-based, multi-hop question answering. It combines structural and textual retrieval through novel integration steps and optimizations, achieving the best zero- and one-shot results across all three STaRK QA benchmarks, which span diverse domains and evaluation metrics.
AF-Retriever's average first-hit rate surpasses the second-best method by 32.1%. Its performance is driven by (1) leveraging exchangeable large language models (LLMs) to extract entity attributes and relational constraints for both parsing and reranking the top-k answers, (2) vector similarity search for ranking both extracted entities and final answers, (3) a novel incremental scope expansion procedure that prepares for the reranking on a configurable amount of suitable candidates that fulfill the given constraints the most, and (4) a hybrid retrieval strategy that reduces error susceptibility.
In summary, while constantly adjusting the focus like an optical autofocus, AF-Retriever delivers a configurable amount of answer candidates in four constraint-driven retrieval steps, which are then supplemented and ranked through four additional processing steps. An ablation study and a detailed error analysis, including a comparison of three different LLM reranking strategies, provide component-level insights. The source code is available at https://github.com/kramerlab/AF-Retriever.
♻ ☆ AutoToM: Scaling Model-based Mental Inference via Automated Agent Modeling NeurIPS 2025
Theory of Mind (ToM), the ability to understand people's minds based on their behavior, is key to developing socially intelligent agents. Current approaches to ToM reasoning either rely on prompting Large Language Models (LLMs), which are prone to systematic errors, or use handcrafted, rigid agent models for model-based inference, which are more robust but fail to generalize across domains. In this work, we introduce AutoToM, an automated agent modeling method for scalable, robust, and interpretable mental inference. Given a ToM problem, AutoToM first proposes an initial agent model and then performs automated Bayesian inverse planning based on this model, leveraging an LLM backend. Guided by inference uncertainty, it iteratively refines the model by introducing additional mental variables and/or incorporating more timesteps in the context. Across five diverse benchmarks, AutoToM outperforms existing ToM methods and even large reasoning models. Additionally, we show that AutoToM can produce human-like confidence estimates and enable online mental inference for embodied decision-making.
comment: NeurIPS 2025 (Spotlight). 42 pages, 11 figures, 15 tables. Website at https://chuanyangjin.com/AutoToM/
♻ ★ Memory-R1: Enhancing Large Language Model Agents to Manage and Utilize Memories via Reinforcement Learning
Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Jinhe Bi, Kristian Kersting, Jeff Z. Pan, Hinrich Schütze, Volker Tresp, Yunpu Ma
Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of NLP tasks, but they remain fundamentally stateless, constrained by limited context windows that hinder long-horizon reasoning. Recent efforts to address this limitation often augment LLMs with an external memory bank, yet most existing pipelines are static and heuristic-driven, lacking a learned mechanism for deciding what to store, update, or retrieve. We present Memory-R1, a reinforcement learning (RL) framework that equips LLMs with the ability to actively manage and utilize external memory through two specialized agents: a Memory Manager that learns structured operations, including ADD, UPDATE, DELETE, and NOOP; and an Answer Agent that pre-selects and reasons over relevant entries. Both agents are fine-tuned with outcome-driven RL (PPO and GRPO), enabling adaptive memory management with minimal supervision. With only 152 training QA pairs, Memory-R1 outperforms strong baselines and generalizes across diverse question types, three benchmarks (LoCoMo, MSC, LongMemEval), and multiple model scales (3B-14B).
♻ ☆ Structured yet Bounded Temporal Understanding in Large Language Models
Large language models (LLMs) increasingly show strong performance on temporally grounded tasks, such as timeline construction, temporal question answering, and event ordering. However, it remains unclear how their behavior depends on the way time is anchored in language. In this work, we study LLMs' temporal understanding through temporal frames of reference (t-FoRs), contrasting deictic framing (past-present-future) and sequential framing (before-after). Using a large-scale dataset of real-world events from Wikidata and similarity judgement task, we examine how LLMs' outputs vary with temporal distance, interval relations, and event duration. Our results show that LLMs systematically adapt to both t-FoRs, but the resulting similarity patterns differ significantly. Under deictic t-FoR, the similarity judgement scores form graded and asymmetric structures centered on the present, with sharper decline for future events and higher variance in the past. Under sequential t-FoR, similarity becomes strongly negative once events are temporally separated. Temporal judgements are also shaped by interval algebra and duration, with instability concentrated in overlap- and containment-based relations, and duration influencing only past events under deictic t-FoR. Overall, these findings characterize how LLMs organize temporal representation under different reference structures and identify the factors that most strongly shape their temporal understanding.
comment: Under review. Results on larger dataset. Correct a theoretical error. 11 pages, 5 figures
♻ ☆ Development and Evaluation of HopeBot: an LLM-based chatbot for structured and interactive PHQ-9 depression screening
Zhijun Guo, Alvina Lai, Julia Ive, Alexandru Petcu, Yutong Wang, Luyuan Qi, Johan H Thygesen, Kezhi Li
Static tools like the Patient Health Questionnaire-9 (PHQ-9) effectively screen depression but lack interactivity and adaptability. We developed HopeBot, a chatbot powered by a large language model (LLM) that administers the PHQ-9 using retrieval-augmented generation and real-time clarification. In a within-subject study, 132 adults in the United Kingdom and China completed both self-administered and chatbot versions. Scores demonstrated strong agreement (ICC = 0.91; 45% identical). Among 75 participants providing comparative feedback, 71% reported greater trust in the chatbot, highlighting clearer structure, interpretive guidance, and a supportive tone. Mean ratings (0-10) were 8.4 for comfort, 7.7 for voice clarity, 7.6 for handling sensitive topics, and 7.4 for recommendation helpfulness; the latter varied significantly by employment status and prior mental-health service use (p < 0.05). Overall, 87.1% expressed willingness to reuse or recommend HopeBot. These findings demonstrate voice-based LLM chatbots can feasibly serve as scalable, low-burden adjuncts for routine depression screening.
♻ ☆ Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts ICML 2024
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
comment: ICML 2024 main conference paper. The source code is available at https://github.com/zhiyichin/P4D
♻ ☆ ProfVLM: A Lightweight Video-Language Model for Multi-View Proficiency Estimation
Existing approaches treat action quality assessment and skill proficiency estimation as classification problems, outputting discrete labels without interpretable reasoning. We reformulate this task as generative vision language modeling, introducing ProfVLM, a compact model that jointly predicts proficiency levels and generates expert-like natural language feedback from multi-view videos. ProfVLM leverages conditional language generation to provide actionable insights along with quantitative evaluation scores. Central to our method is an AttentiveGatedProjector that dynamically fuses and projects multi-view egocentric and exocentric features from a frozen TimeSformer backbone into a language model fine-tuned for feedback generation. Trained on EgoExo4D with expert commentaries, ProfVLM surpasses state-of-the-art methods while using up to 20x fewer parameters and reducing training time by up to 60% compared to existing classification-based methods. By providing natural language critiques aligned with performance levels, this work shows that generative vision-language modeling offers a powerful and efficient paradigm shift for interpretable action quality assessment.
♻ ☆ Sentiment Analysis Of Shopee Product Reviews Using Distilbert
The rapid growth of digital commerce has led to the accumulation of a massive number of consumer reviews on online platforms. Shopee, as one of the largest e-commerce platforms in Southeast Asia, receives millions of product reviews every day containing valuable information regarding customer satisfaction and preferences. Manual analysis of these reviews is inefficient, thus requiring a computational approach such as sentiment analysis. This study examines the use of DistilBERT, a lightweight transformer-based deep learning model, for sentiment classification on Shopee product reviews. The dataset used consists of approximately one million English-language reviews that have been preprocessed and trained using the distilbert-base-uncased model. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics, and compared against benchmark models such as BERT and SVM. The results show that DistilBERT achieved an accuracy of 94.8%, slightly below BERT (95.3%) but significantly higher than SVM (90.2%), with computation time reduced by more than 55%. These findings demonstrate that DistilBERT provides an optimal balance between accuracy and efficiency, making it suitable for large scale sentiment analysis on e-commerce platforms. Keywords: Sentiment Analysis, DistilBERT, Shopee Reviews, Natural Language Processing, Deep Learning, Transformer Models.
comment: The authors have decided to withdraw this manuscript because substantial improvements are needed in the methodology, data analysis, and presentation of the research results to ensure the article's scientific quality meets journal publication standards. Therefore, the authors plan to conduct a thorough revision before resubmitting to an appropriate journal
♻ ☆ Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Arjun Krishnakumar, Rhea Sanjay Sukthanker, Hannan Javed Mahadik, Gabriela Kadlecová, Vladyslav Moroshan, Timur Carstensen, Frank Hutter, Aaron Klein
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 5.16x and 1.26x fewer floating point operations for token budgets of 10B and 100B, respectively. We release all code publicly, offering a practical and reproducible path toward cost-efficient small language model development at scale.
♻ ☆ Can Language Models Discover Scaling Laws?
Haowei Lin, Haotian Ye, Wenzheng Feng, Quzhe Huang, Yujun Li, Hubert Lim, Zhengrui Li, Xiangyu Wang, Jianzhu Ma, James Zou, Yitao Liang
Discovering scaling laws for predicting model performance at scale is a fundamental and open-ended challenge, mostly reliant on slow, case specific human experimentation. To investigate the potential for LLMs to automate this process, we collect over 5,000 experiments from existing literature and curate eight diverse scaling law discovery tasks. While existing agents struggle to produce accurate law formulas, this paper introduces SLDAgent, an evolution-based agent that co-optimize the scaling law model and the parameters, enabling it to autonomously explore complex relationships between variables. For the first time, we demonstrates that SLDAgent can automatically discover laws that exhibit consistently more accurate extrapolation than their established, human-derived counterparts across all tasks. Through comprehensive analysis, we elucidate why these discovered laws are superior and verify their practical utility in both pretraining and finetuning applications. This work establishes a new paradigm for agentic scientific discovery, showing that AI systems can understand their own scaling behavior, and can contribute novel and practical knowledge back to the research community.
♻ ☆ Efficient Test-Time Scaling of Multi-Step Reasoning by Probing Internal States of Large Language Models
Jingwei Ni, Ekaterina Fadeeva, Tianyi Wu, Mubashara Akhtar, Jiaheng Zhang, Elliott Ash, Markus Leippold, Timothy Baldwin, See-Kiong Ng, Artem Shelmanov, Mrinmaya Sachan
LLMs can solve complex tasks by generating long, multi-step reasoning chains. Test-time scaling (TTS) can further improve LLM performance by sampling multiple variants of intermediate reasoning steps, verifying their correctness, and strategically choosing the best steps for continuation. However, existing verification approaches, such as Process Reward Models (PRMs), are computationally expensive, limited to specific domains, and require large-scale human or model-generated annotations. We propose a lightweight alternative for step-level reasoning verification based on probing the internal states of LLMs. We train a transformer-based probe that uses the internal states of the frozen LLM to estimate the credibility of its reasoning steps during generation. Annotation can be generated either by another larger LLM (e.g., DeepSeek-R1) or in a self-supervised manner by the original model itself. The probes are both effective and lightweight, containing fewer than 10M parameters. Across multiple domains, including mathematics, planning, and general knowledge question answering, our probes match or even exceed the performance of PRMs that are up to 810x larger. Our findings suggest that the internal states of LLMs encode their confidence in reasoning processes and can serve as reliable signals for reasoning step verification, offering a promising direction towards scalable and generalizable TTS and introspective LLMs.
comment: Preprint under review
♻ ☆ TeleMem: Building Long-Term and Multimodal Memory for Agentic AI
Chunliang Chen, Ming Guan, Xiao Lin, Jiaxu Li, Qiyi Wang, Xiangyu Chen, Jixiang Luo, Changzhi Sun, Dell Zhang, Xuelong Li
Large language models (LLMs) excel at many NLP tasks but struggle to sustain long-term interactions due to limited attention over extended dialogue histories. Retrieval-augmented generation (RAG) mitigates this issue but lacks reliable mechanisms for updating or refining stored memories, leading to schema-driven hallucinations, inefficient write operations, and minimal support for multimodal reasoning.To address these challenges, we propose TeleMem, a unified long-term and multimodal memory system that maintains coherent user profiles through narrative dynamic extraction, ensuring that only dialogue-grounded information is preserved. TeleMem further introduces a structured writing pipeline that batches, retrieves, clusters, and consolidates memory entries, substantially improving storage efficiency, reducing token usage, and accelerating memory operations. Additionally, a multimodal memory module combined with ReAct-style reasoning equips the system with a closed-loop observe, think, and act process that enables accurate understanding of complex video content in long-term contexts. Experimental results show that TeleMem surpasses the state-of-the-art Mem0 baseline with 19% higher accuracy, 43% fewer tokens, and a 2.1x speedup on the ZH-4O long-term role-play gaming benchmark.
♻ ☆ AgenticIE: An Adaptive Agent for Information Extraction from Complex Regulatory Documents
Declaration of Performance (DoP) documents, mandated by EU regulation, specify characteristics of construction products, such as fire resistance and insulation. While this information is essential for quality control and reducing carbon footprints, it is not easily machine readable. Despite content requirements, DoPs exhibit significant variation in layout, schema, and format, further complicated by their multilingual nature. In this work, we propose DoP Key Information Extraction (KIE) and Question Answering (QA) as new NLP challenges. To address this challenge, we design a domain-specific AgenticIE system based on a planner-executor-corresponder pattern. For evaluation, we introduce a high-density, expert-annotated dataset of complex, multi-page regulatory documents in English and German. Unlike standard IE datasets (e.g., FUNSD, CORD) with sparse annotations, our dataset contains over 15K annotated entities, averaging over 190 annotations per document. Our agentic system outperforms static and multimodal LLM baselines, achieving Exact Match (EM) scores of 0.396 vs. 0.342 (GPT-4o, +16%) and 0.314 (GPT-4o-V, +26%) across the KIE and QA tasks. Our experimental analysis validates the benefits of the agentic system, as well as the challenging nature of our new DoP dataset.
♻ ☆ Afri-MCQA: Multimodal Cultural Question Answering for African Languages
Atnafu Lambebo Tonja, Srija Anand, Emilio Villa-Cueva, Israel Abebe Azime, Jesujoba Oluwadara Alabi, Muhidin A. Mohamed, Debela Desalegn Yadeta, Negasi Haile Abadi, Abigail Oppong, Nnaemeka Casmir Obiefuna, Idris Abdulmumin, Naome A Etori, Eric Peter Wairagala, Kanda Patrick Tshinu, Imanigirimbabazi Emmanuel, Gabofetswe Malema, Alham Fikri Aji, David Ifeoluwa Adelani, Thamar Solorio
Africa is home to over one-third of the world's languages, yet remains underrepresented in AI research. We introduce Afri-MCQA, the first Multilingual Cultural Question-Answering benchmark covering 7.5k Q&A pairs across 15 African languages from 12 countries. The benchmark offers parallel English-African language Q&A pairs across text and speech modalities and was entirely created by native speakers. Benchmarking large language models (LLMs) on Afri-MCQA shows that open-weight models perform poorly across evaluated cultures, with near-zero accuracy on open-ended VQA when queried in native language or speech. To evaluate linguistic competence, we include control experiments meant to assess this specific aspect separate from cultural knowledge, and we observe significant performance gaps between native languages and English for both text and speech. These findings underscore the need for speech-first approaches, culturally grounded pretraining, and cross-lingual cultural transfer. To support more inclusive multimodal AI development in African languages, we release our Afri-MCQA under academic license or CC BY-NC 4.0 on HuggingFace (https://huggingface.co/datasets/Atnafu/Afri-MCQA)
♻ ☆ Bench360: Benchmarking Local LLM Inference from 360 Degrees
Running LLMs locally has become increasingly common, but users face a complex design space across models, quantization levels, inference engines, and serving scenarios. Existing inference benchmarks are fragmented and focus on isolated goals, offering little guidance for practical deployments. We present Bench360, a framework for evaluating local LLM inference across tasks, usage patterns, and system metrics in one place. Bench360 supports custom tasks, integrates multiple inference engines and quantization formats, and reports both task quality and system behavior (latency, throughput, energy, startup time). We demonstrate it on four NLP tasks across three GPUs and four engines, showing how design choices shape efficiency and output quality. Results confirm that tradeoffs are substantial and configuration choices depend on specific workloads and constraints. There is no universal best option, underscoring the need for comprehensive, deployment-oriented benchmarks.
♻ ☆ DR-LoRA: Dynamic Rank LoRA for Mixture-of-Experts Adaptation
Mixture-of-Experts (MoE) has become a prominent paradigm for scaling Large Language Models (LLMs). Parameter-efficient fine-tuning (PEFT), such as LoRA, is widely adopted to adapt pretrained MoE LLMs to downstream tasks. However, existing approaches assign identical LoRA ranks to all experts, overlooking the intrinsic functional specialization within MoE LLMs. This uniform allocation leads to resource mismatch, task-relevant experts are under-provisioned while less relevant ones receive redundant parameters. We propose a Dynamic Rank LoRA framework named DR-LoRA, which dynamically grows expert LoRA ranks during fine-tuning based on task-specific demands. DR-LoRA employs an Expert Saliency Scoring mechanism that integrates expert routing frequency and LoRA rank importance to quantify each expert's demand for additional capacity. Experts with higher saliency scores are prioritized for rank expansion, enabling the automatic formation of a heterogeneous rank distribution tailored to the target task. Experiments on multiple benchmarks demonstrate that DR-LoRA consistently outperforms standard LoRA and static allocation strategies under the same parameter budget, achieving superior task performance with more efficient parameter utilization.
♻ ☆ ThinkBrake: A Simple Test-Time Decoding Control for Efficient Reasoning
Large Reasoning Models (LRMs) allocate substantial inference-time compute to Chain-of-Thought (CoT) reasoning, improving performance on mathematics, scientific QA, and tool usage. However, this introduces overthinking: LRMs often reach a correct intermediate solution, continue reasoning, and overwrite it with an incorrect answer. We first demonstrate that oracle stopping--where we inject at every sentence boundary and select the best stopping point in hindsight--improves average accuracy by 8% while reducing thinking tokens by 72%, exposing substantial overthinking. Motivated by this finding, we propose ThinkBrake, which monitors the log-probability margin between the top continuation token and at sentence boundaries, stopping reasoning when this margin narrows. ThinkBrake requires no training and achieves favorable accuracy-efficiency trade-offs across math, scientific QA, and tool usage benchmarks, reducing thinking token usage by up to 30%. Furthermore, we provide theoretical analysis showing that ThinkBrake is equivalent to test-time realignment with a reward bonus for the token.
♻ ☆ Higher Satisfaction, Lower Cost: A Technical Report on How LLMs Revolutionize Meituan's Intelligent Interaction Systems
Xuxin Cheng, Ke Zeng, Zhiquan Cao, Linyi Dai, Wenxuan Gao, Fei Han, Ai Jian, Feng Hong, Wenxing Hu, Zihe Huang, Dejian Kong, Jia Leng, Zhuoyuan Liao, Pei Liu, Jiaye Lin, Xing Ma, Jingqing Ruan, Jiaxing Song, Xiaoyu Tan, Ruixuan Xiao, Wenhui Yu, Wenyu Zhan, Haoxing Zhang, Chao Zhou, Hao Zhou, Shaodong Zheng, Ruinian Chen, Siyuan Chen, Ziyang Chen, Yiwen Dong, Yaoyou Fan, Yangyi Fang, Yang Gan, Shiguang Guo, Qi He, Chaowen Hu, Binghui Li, Dailin Li, Xiangyu Li, Yan Li, Chengjian Liu, Xiangfeng Liu, Jiahui Lv, Qiao Ma, Jiang Pan, Cong Qin, Chenxing Sun, Wen Sun, Zhonghui Wang, Abudukelimu Wuerkaixi, Xin Yang, Fangyi Yuan, Yawen Zhu, Tianyi Zhai, Jie Zhang, Runlai Zhang, Yao Xu, Yiran Zhao, Yifan Wang, Xunliang Cai, Yangen Hu, Cao Liu, Lu Pan, Xiaoli Wang, Bo Xiao, Wenyuan Yao, Qianlin Zhou, Benchang Zhu
Enhancing customer experience is essential for business success, particularly as service demands grow in scale and complexity. Generative artificial intelligence and Large Language Models (LLMs) have empowered intelligent interaction systems to deliver efficient, personalized, and 24/7 support. In practice, intelligent interaction systems encounter several challenges: (1) Constructing high-quality data for cold-start training is difficult, hindering self-evolution and raising labor costs. (2) Multi-turn dialogue performance remains suboptimal due to inadequate intent understanding, rule compliance, and solution extraction. (3) Frequent evolution of business rules affects system operability and transferability, constraining low-cost expansion and adaptability. (4) Reliance on a single LLM is insufficient in complex scenarios, where the absence of multi-agent frameworks and effective collaboration undermines process completeness and service quality. (5) The open-domain nature of multi-turn dialogues, lacking unified golden answers, hampers quantitative evaluation and continuous optimization. To address these challenges, we introduce WOWService, an intelligent interaction system tailored for industrial applications. With the integration of LLMs and multi-agent architectures, WOWService enables autonomous task management and collaborative problem-solving. Specifically, WOWService focuses on core modules including data construction, general capability enhancement, business scenario adaptation, multi-agent coordination, and automated evaluation. Currently, WOWService is deployed on the Meituan App, achieving significant gains in key metrics, e.g., User Satisfaction Metric 1 (USM 1) -27.53% and User Satisfaction Metric 2 (USM 2) +25.51%, demonstrating its effectiveness in capturing user needs and advancing personalized service.
comment: 36 pages, 14 figures
♻ ☆ Stuttering-Aware Automatic Speech Recognition for Indonesian Language
Automatic speech recognition systems have achieved remarkable performance on fluent speech but continue to degrade significantly when processing stuttered speech, a limitation that is particularly acute for low-resource languages like Indonesian where specialized datasets are virtually non-existent. To overcome this scarcity, we propose a data augmentation framework that generates synthetic stuttered audio by injecting repetitions and prolongations into fluent text through a combination of rule-based transformations and large language models followed by text-to-speech synthesis. We apply this synthetic data to fine-tune a pre-trained Indonesian Whisper model using transfer learning, enabling the architecture to adapt to dysfluent acoustic patterns without requiring large-scale real-world recordings. Our experiments demonstrate that this targeted synthetic exposure consistently reduces recognition errors on stuttered speech while maintaining performance on fluent segments, validating the utility of synthetic data pipelines for developing more inclusive speech technologies in under-represented languages.
comment: Preprint
♻ ☆ Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets LREC 2026
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18% on spontaneous and 4.8% on repeated speech. Diarization experiments yield diarization error rates between 12.46% and 17.40%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
♻ ☆ Spiffy: Multiplying Diffusion LLM Acceleration via Lossless Speculative Decoding
Diffusion LLMs (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs (AR-LLMs) with the potential to operate at significantly higher token generation rates. However, currently available open-source dLLMs often generate at much lower rates, typically decoding only a single token at every denoising timestep in order to maximize output quality. We present Spiffy, a speculative decoding algorithm that accelerates dLLM inference by $\mathbf{2.8{-}3.1\times}$ while provably preserving the model's output distribution. This work addresses the unique challenges involved in applying ideas from speculative decoding of AR-LLMs to the dLLM setting. Spiffy proposes draft states by leveraging the dLLM's distribution itself in an auto-speculative manner. This approach is efficient and effective, and eliminates the overheads of training and running an independent draft model. To structure the candidate draft states, we propose a novel directed draft graph which is uniquely designed to take advantage of the bidirectional, block-wise nature of dLLM generation and can be verified in parallel by the dLLM. To further optimize the structure of these draft graphs, we introduce an efficient, offline calibration algorithm that procedurally determines high-quality graph configurations. These optimized draft graphs, enabling increased acceptance rates, lead to a significant boost in the overall speedup achieved by the system. Crucially, Spiffy is also complementary to other recent innovations in improving dLLM generation speeds such as KV-caching and multi-token unmasking. We demonstrate that when combined with such parallel decoding algorithms, Spiffy is able to effectively multiply the benefits of these methods leading to total speedups of up to $\mathbf{7.9\times}$.
comment: Original version uploaded on Sep 22, 2025. (v2): Extended Table 2 with additional analysis and referenced it in Sec 5.2. (v3): Added note to Sec 4.2 and Appendix A.2 specifying conditions for losslessness
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ "Hiding in Plain Sight": Designing Synthetic Dialog Generation for Uncovering Socially Situated Norms AAAI
Naturally situated conversations encapsulate the social norms inherent to their context, reflecting both the relationships between interlocutors and the underlying communicative intent. In this paper, we propose a novel, multi-step framework for generating dialogues that automatically uncovers social norms from rich, context-laden interactions through a process of self-assessment and norm discovery, rather than relying on predefined norm labels. Leveraging this framework, we construct NormHint, a comprehensive synthetic dialogue dataset spanning a wide range of interlocutor attributes (e.g., age, profession, personality), relationship types, conversation topics, and conversational trajectories. NormHint is meticulously annotated with turn-level norm violation information, detailed participant descriptions, and remediation suggestions-including alternative trajectories achieved through early intervention. Human validation and automated analysis demonstrate that our dataset captures diverse conversational topics with high naturalness and realism. Moreover, we discovered that fine-tuning a model with our norm violation data significantly enhances its ability to detect and understand potential norm violations in conversations.
comment: Accepted at AAAI Workshop on Shaping Responsible Synthetic Data in the Era of Foundation Models
♻ ☆ KPoEM: A Human-Annotated Dataset for Emotion Classification and RAG-Based Poetry Generation in Korean Modern Poetry
This study introduces KPoEM (Korean Poetry Emotion Mapping), a novel dataset that serves as a foundation for both emotion-centered analysis and generative applications in modern Korean poetry. Despite advancements in NLP, poetry remains underexplored due to its complex figurative language and cultural specificity. We constructed a multi-label dataset of 7,662 entries (7,007 line-level and 615 work-level), annotated with 44 fine-grained emotion categories from five influential Korean poets. The KPoEM emotion classification model, fine-tuned through a sequential strategy -- moving from general-purpose corpora to the specialized KPoEM dataset -- achieved an F1-micro score of 0.60, significantly outperforming previous models (0.43). The model demonstrates an enhanced ability to identify temporally and culturally specific emotional expressions while preserving core poetic sentiments. Furthermore, applying the structured emotion dataset to a RAG-based poetry generation model demonstrates the empirical feasibility of generating texts that reflect the emotional and cultural sensibilities of Korean literature. This integrated approach strengthens the connection between computational techniques and literary analysis, opening new pathways for quantitative emotion research and generative poetics. Overall, this study provides a foundation for advancing emotion-centered analysis and creation in modern Korean poetry.
comment: 43 pages, 22 tables, 3 figures, Digital Humanities and Social Sciences Korea Conference, James Joo-Jin Kim Center for Korean Studies, University of Pennsylvania, Philadelphia, USA
♻ ☆ Can Editing LLMs Inject Harm? AAAI 2026
Canyu Chen, Baixiang Huang, Zekun Li, Zhaorun Chen, Shiyang Lai, Xiongxiao Xu, Jia-Chen Gu, Jindong Gu, Huaxiu Yao, Chaowei Xiao, Xifeng Yan, William Yang Wang, Philip Torr, Dawn Song, Kai Shu
Large Language Models (LLMs) have emerged as a new information channel. Meanwhile, one critical but under-explored question is: Is it possible to bypass the safety alignment and inject harmful information into LLMs stealthily? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the first risk, we find that editing attacks can inject both commonsense and long-tail misinformation into LLMs, and the effectiveness for the former one is particularly high. For the second risk, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can degrade the overall fairness. Then, we further illustrate the high stealthiness of editing attacks. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs and the feasibility of disseminating misinformation or bias with LLMs as new channels.
comment: Accepted to Proceedings of AAAI 2026. The first two authors contributed equally. 7 pages for main paper, 31 pages including appendix. The code, results, dataset for this paper and more resources are on the project website: https://llm-editing.github.io
♻ ☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning NeurIPS 2025
Self-improvement via RL often fails on complex reasoning tasks because GRPO-style post-training methods rely on the model's initial ability to generate positive samples. Without guided exploration, these approaches merely reinforce what the model already knows (distribution-sharpening) rather than enabling the model to solve problems where it initially generates no correct solutions. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. It can be integrated with popular RL training methods like GRPO and DPO. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most. Code is available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation .
comment: Accepted to NeurIPS 2025 (Poster). Code available at https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation
♻ ☆ SOP-Maze: Evaluating Large Language Models on Complicated Business Standard Operating Procedures
As large language models (LLMs) are widely deployed as domain-specific agents, many benchmarks have been proposed to evaluate their ability to follow instructions and make decisions in real-world scenarios. However, business scenarios often involve complex standard operating procedures (SOPs), and the evaluation of LLM capabilities in such contexts has not been fully explored. To bridge this gap, we propose SOP-Maze, a benchmark constructed from real-world business data and adapted into a collection of 397 instances and 3422 subtasks from 23 complex SOP scenarios. We further categorize SOP tasks into two broad classes: Lateral Root System (LRS), representing wide-option tasks that demand precise selection; and Heart Root System (HRS), which emphasizes deep logical reasoning with complex branches. Extensive experiments reveal that nearly all state-of-the-art models struggle with SOP-Maze. We conduct a comprehensive analysis and identify three key error categories: (i) route blindness: difficulty following procedures; (ii) conversational fragility: inability to handle real dialogue nuances; and (iii) calculation errors: mistakes in time or arithmetic reasoning under complex contexts. The systematic study explores LLM performance across SOP tasks that challenge both breadth and depth, offering new insights for improving model capabilities. We have open-sourced our work on: https://github.com/meituan-longcat/SOP-Maze.
♻ ☆ Revisiting the Uniform Information Density Hypothesis in LLM Reasoning Traces
The Uniform Information Density (UID) hypothesis suggests that effective communication maintains a stable flow of information. In this work, we revisit this principle in the context of large language model (LLM) reasoning traces, asking whether step-level uniformity reflects reasoning quality. To this end, we propose an entropy-based stepwise information density metric and introduce two complementary measures of uniformity, local and global uniformity scores. Across the experiments on six different reasoning benchmarks, we find that step-level uniformity not only provides a strong theoretical lens but also yields practical performance benefits; for example, selecting reasoning traces with more uniform information density at the step-level improves accuracy by 10-32\% relative gains over baselines at AIME2025. Our analysis further reveals that correct reasoning traces tend to avoid sharp information density spikes, while incorrect traces exhibit irregular information bursts. These results demonstrate that UID-inspired information density measures outperform alternative internal signals as predictors of reasoning quality. Results highlight the uniformity of the information density as a robust diagnostic and selection criterion for building more reliable and accurate reasoning systems.
♻ ☆ To Retrieve or To Think? An Agentic Approach for Context Evolution
Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks. However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting. It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption. Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.
♻ ☆ Mitigating Gender Bias via Fostering Exploratory Thinking in LLMs
Large Language Models (LLMs) often exhibit gender bias, resulting in unequal treatment of male and female subjects across different contexts. To address this issue, we propose a novel data generation framework that fosters exploratory thinking in LLMs. Our approach prompts models to generate story pairs featuring male and female protagonists in structurally identical, morally ambiguous scenarios, then elicits and compares their moral judgments. When inconsistencies arise, the model is guided to produce balanced, gender-neutral judgments. These story-judgment pairs are used to fine-tune or optimize the models via Direct Preference Optimization (DPO). Experimental results show that our method significantly reduces gender bias while preserving or even enhancing general model capabilities. We will release the code and generated data. We release the code and generated data at: https://github.com/WeiKangda/LLMs-Exploratory-Bias-Mitigation/tree/main.
♻ ☆ Word Synchronization Challenge: A Benchmark for Word Association Responses for Large Language Models
This paper introduces the Word Synchronization Challenge, a novel benchmark to evaluate large language models (LLMs) in Human-Computer Interaction (HCI). This benchmark uses a dynamic game-like framework to test LLMs ability to mimic human cognitive processes through word associations. By simulating complex human interactions, it assesses how LLMs interpret and align with human thought patterns during conversational exchanges, which are essential for effective social partnerships in HCI. Initial findings highlight the influence of model sophistication on performance, offering insights into the models capabilities to engage in meaningful social interactions and adapt behaviors in human-like ways. This research advances the understanding of LLMs potential to replicate or diverge from human cognitive functions, paving the way for more nuanced and empathetic human-machine collaborations.
♻ ☆ Investigating Retrieval-Augmented Generation Systems on Unanswerable, Uncheatable, Realistic, Multi-hop Queries ECIR 2026
Real-world use cases often present RAG systems with complex queries for which relevant information is missing from the corpus or is incomplete. In these settings, RAG systems must be able to reject unanswerable, out-of-scope queries and identify failures of retrieval and multi-hop reasoning. Despite this, existing RAG benchmarks rarely reflect realistic task complexity for multi-hop or out-of-scope questions, which often can be cheated via disconnected reasoning (i.e., solved without genuine multi-hop inference) or require only simple factual recall. This limits the ability for such benchmarks to uncover limitations of existing RAG systems. To address this gap, we present the first pipeline for automatic, difficulty-controlled creation of un$\underline{c}$heatable, $\underline{r}$ealistic, $\underline{u}$nanswerable, and $\underline{m}$ulti-hop $\underline{q}$uerie$\underline{s}$ (CRUMQs), adaptable to any corpus and domain. We use our pipeline to create CRUMQs over two popular RAG datasets and demonstrate its effectiveness via benchmark experiments on leading retrieval-augmented LLMs. Results show that compared to prior RAG benchmarks, CRUMQs are highly challenging for RAG systems and achieve up to 81.0\% reduction in cheatability scores. More broadly, our pipeline offers a simple way to enhance benchmark difficulty and drive development of more capable RAG systems.
comment: ECIR 2026